multtest/DESCRIPTION0000644000175200017520000000372114710310212015155 0ustar00biocbuildbiocbuildPackage: multtest Title: Resampling-based multiple hypothesis testing Version: 2.62.0 Author: Katherine S. Pollard, Houston N. Gilbert, Yongchao Ge, Sandra Taylor, Sandrine Dudoit Description: Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of t- and F-statistics (including t-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with t-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted p-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments. Maintainer: Katherine S. Pollard Depends: R (>= 2.10), methods, BiocGenerics, Biobase Imports: survival, MASS, stats4 Suggests: snow License: LGPL LazyLoad: yes biocViews: Microarray, DifferentialExpression, MultipleComparison git_url: https://git.bioconductor.org/packages/multtest git_branch: RELEASE_3_20 git_last_commit: b2a4744 git_last_commit_date: 2024-10-29 Repository: Bioconductor 3.20 Date/Publication: 2024-10-29 NeedsCompilation: yes Packaged: 2024-10-30 01:48:58 UTC; biocbuild multtest/MD50000644000175200017520000000555614710310212013767 0ustar00biocbuildbiocbuildedcf9d3ef4cf4106d685f5e225478fd1 *DESCRIPTION 219e81a10f865d7101e722bb515f4faf *NAMESPACE d30f60a052ccc26f3542e1ca562a913b *R/EBMTP.R 2c0d77b6653f49aebc8fdbb905b1745b *R/EBzzz.R cc8ec54d08bc939d1d04e84515cef3e9 *R/ICQTNullDist.R 33735a0483f4df0728a3d5d88cdccc3c *R/mt.basic.R c9f770e1cb6bc8fac91adecb0cedd76a *R/mt.func.R 5035f5b48f389134289c490131384023 *R/nulldistn_c.R b1dac7cbc754b206c424742d1c6ac43f *R/statistics.R 9bd5d69af9053eb8848d1587ed1a38be *R/test.R 71a3a75f36da96744d1724031a6c5153 *R/zzz.R 11d23ad3dd4db2e4cf995b89f9bf48b9 *data/golub.RData aeb77e1e1f742c50ca1ad460aee794b4 *inst/CITATION 37597f3075c6f6b48636608c36c6e078 *inst/otherDocs/MTP.Rnw 3323fb74754cb6d2c943ce5e6e924280 *inst/otherDocs/MTPALL.Rnw 9dc547c1fb857716f446fd96396b635c *inst/otherDocs/multtest.Rnw d24c02707ae377e81f9712c0c3c098d4 *man/EBMTP-class.Rd 13b4ae183a5ce40a4c07e577f153ef47 *man/EBMTP.Rd 6dea4d5e6630197a4d03cc90b45d7270 *man/Hsets.Rd 12314137c97181e35b3ff006f82d0550 *man/MTP-class.Rd 57553c265d0b577917db360fedb8c1ff *man/MTP-methods.Rd 194ec96445a9c7e60f04aede39353c70 *man/MTP.Rd e61c4e9c5563b9229db2671cf2b1b802 *man/boot.null.Rd b1712c9d62253bca64e6da5c08e9bdc5 *man/corr.null.Rd be254997e3fb5a772c6e4e80bcaf9295 *man/fwer2gfwer.Rd 85ad70d7d423f6ae2a0b99e8dd341bbc *man/get.index.Rd 533c26d8055d2cd95bcd504b4a04c139 *man/golub.Rd 5e75808fbb0af7e5acee77ebb6fa2c40 *man/meanX.Rd fbcacb717008559f94e550b9e0bfe687 *man/mt.internal.Rd 6e71467dcb3a3e0499900ceb14928e39 *man/mt.maxT.Rd 37de1f6111f0ef0fded7820181dbedde *man/mt.plot.Rd e320944d9b44042005797ab500b57c66 *man/mt.rawp2adjp.Rd b8ea1b6bc5aa97a8dd93506dcc7c40ab *man/mt.reject.Rd f3efb5645379d5ab1d2259956408eb1c *man/mt.sample.teststat.Rd 49fddf72b68b13b0f7566d3bbc3ee7eb *man/mt.teststat.Rd ca879f4486ead5637f5c2427bd964194 *man/ss.maxT.Rd 84cdf306695b1e0bca7f0ebe6030dffe *man/wapply.Rd fa92d91925651534d11cbe2ec379f3bd *src/Makevars 9ea5a522cdaa511913184fc28f5d7cbb *src/Makevars.win 447981409b4caab336e89dfd8503ff65 *src/Rpack.c fa199a0f8aba30b3c92f586e274efc7d *src/VScount.c 214122d46d905bf1d8ee42c5d9843824 *src/block_sampling_fixed.c 8804a30fbe7d478051f9155eb86a4016 *src/bootloop.c b920a8da6e87f1a25a0bc88496019d52 *src/mt.c 39b79ea3681e0e9b7fb926736ffd8039 *src/mt.h df04918180fd2e682e33fbb7f5ce5715 *src/pairt_sampling.c 4b9c86b7d785318356486457db93418f *src/pairt_sampling_fixed.c f12fc9befc3a8730ccbdab398726ecc8 *src/random.c 65aafdd2b72e3340193c00a69a1b71a2 *src/sampling.c b69df1c932e148639ddaac0e3635e208 *src/sampling_fixed.c ab1a4eafbb9f98c64f61b34648c35b32 *src/stat_func.c 3bc5809078a3ea6aafcf5da4e28b86dc *src/stat_order.c 35bd307f3198ce1a2cd9c817d59baeb3 *vignettes/MTP.pdf 25af521bc672223f6a32e3bd796c4e2f *vignettes/MTP.tex 2525efef70fc1bd4217b4e1c82ed8973 *vignettes/MTPALL.pdf daec3951b58d82fa6d8461a56c54a2ed *vignettes/golub.R 6e63f41ff4fed09bd50714dd881c8235 *vignettes/multtest.bib cd8f53588b3a8bf3a346321e50c2ffbc *vignettes/multtest.pdf multtest/NAMESPACE0000644000175200017520000000325014710217035014674 0ustar00biocbuildbiocbuilduseDynLib(multtest) useDynLib(multtest, VScount=VScount) import(methods, BiocGenerics, Biobase) importFrom(graphics, plot) importFrom(stats, update) importFrom(survival, is.Surv) importFrom(survival, coxph.control) importFrom(survival, coxph.fit) importFrom(MASS, mvrnorm) importFrom(MASS, rlm) importFrom("grDevices", "dev.interactive", "xy.coords") importFrom("graphics", "matplot", "mtext", "par", "points", "rect", "segments", "strheight", "strwidth", "text", "title", "xinch", "yinch") importFrom("stats", "approxfun", "cor", "cov", "cov2cor","lm.fit", "lm.wfit", "quantile", "rbinom", "rf", "rnorm", "rt", "runif") importFrom("utils", "combn") importMethodsFrom(stats4, plot, summary) #snow does not have a NAMESPACE #importFrom(snow, clusterApply) #importFrom(snow, LBclusterApply) #importFrom(snow, clusterEvalQ) #importFrom(snow, makeCluster) #importFrom(snow, stopCluster) exportClasses(MTP, EBMTP) exportMethods(as.list, plot, summary, update, EBupdate, "[") export(MTP, EBMTP, as.list, mt.maxT, mt.minP, mt.plot, mt.rawp2adjp, mt.reject, mt.sample.label, mt.sample.rawp, mt.sample.teststat, mt.teststat, mt.teststat.num.denum, meanX, diffmeanX, FX, blockFX, twowayFX, lmX, lmY, coxY, get.Tn, boot.null, boot.resample, center.only, center.scale, quant.trans, fwer2gfwer, fwer2tppfp, fwer2fdr, get.index, ss.maxT, ss.minP, sd.maxT, sd.minP, wapply, corr.Tn, corr.null, IC.Cor.NA, IC.CorXW.NA, insert.NA, diffs.1.N, marg.samp, tQuantTrans, G.VS, ABH.h0, dens.est, Hsets, VScount, mtp2ebmtp, ebmtp2mtp) S3method(print, MTP) S3method(print, EBMTP) multtest/R/0000755000175200017520000000000014710217035013656 5ustar00biocbuildbiocbuildmulttest/R/EBMTP.R0000644000175200017520000006337414710217035014665 0ustar00biocbuildbiocbuild#main user-level function for empirical Bayes multiple hypothesis testing EBMTP<-function(X,W=NULL,Y=NULL,Z=NULL,Z.incl=NULL,Z.test=NULL,na.rm=TRUE,test="t.twosamp.unequalvar",robust=FALSE,standardize=TRUE,alternative="two.sided",typeone="fwer",method="common.cutoff",k=0,q=0.1,alpha=0.05,smooth.null=FALSE,nulldist="boot.cs",B=1000,psi0=0,marg.null=NULL,marg.par=NULL,ncp=NULL,perm.mat=NULL,ic.quant.trans=FALSE,MVN.method="mvrnorm",penalty=1e-6,prior="conservative",bw="nrd",kernel="gaussian",seed=NULL,cluster=1,type=NULL,dispatch=NULL,keep.nulldist=TRUE,keep.rawdist=FALSE,keep.falsepos=FALSE,keep.truepos=FALSE,keep.errormat=FALSE,keep.Hsets=FALSE,keep.margpar=TRUE,keep.index=FALSE,keep.label=FALSE){ ##sanity checks / formatting #X if(missing(X)) stop("Argument X is missing") if(inherits(X,"eSet")){ if(is.character(Y)) Y<-pData(X)[,Y] if(is.character(Z)){ if(Z%in%Y){ Z<-Z[!(Z%in%Y)] warning(paste("Outcome Y=",Y,"should not be included in the covariates Z=",Z,". Removing Y from Z",sep="")) } Z<-pData(X)[,Z] } X<-exprs(X) } X<-as.matrix(X) dx<-dim(X) if(length(dx)==0) stop("dim(X) must have positive length") p<-dx[1] n<-dx[2] #W if(!is.null(W)){ W[W<=0]<-NA if(is.vector(W) & length(W)==n) W <- matrix(rep(W,p),nrow=p,ncol=n,byrow=TRUE) if(is.vector(W) & length(W)==p) W <- matrix(rep(W,n),nrow=p,ncol=n) if(test%in%c("f","f.block","f.twoway","t.cor","z.cor")){ warning("Weights can not be used with F-tests or tests of correlation parameters, arg W is being ignored.") W<-NULL } } #Y if(!is.null(Y)){ if(is.Surv(Y)){ if(test!="coxph.YvsXZ") stop(paste("Test ",test," does not work with a survival object Y",sep="")) } else{ Y<-as.matrix(Y) if(ncol(Y)!=1) stop("Argument Y must be a vector") } if(nrow(Y)!=n) stop("Outcome Y has length ",nrow(Y),", not equal to n=",n) } #Z if(!is.null(Z)){ Z<-as.matrix(Z) if(nrow(Z)!=n) stop("Covariates in Z have length ",nrow(Z),", not equal to n=",n,"\n") #Z.incl tells which columns of Z to include in model if(is.null(Z.incl)) Z.incl<-(1:ncol(Z)) if(length(Z.incl)>ncol(Z)) stop("Number of columns in Z.incl ",length(Z.incl)," exceeds ncol(Z)=",ncol(Z)) if(is.logical(Z.incl)) Z.incl<-(1:ncol(Z))[Z.incl] if(is.character(Z.incl) & length(Z.incl)!=sum(Z.incl%in%colnames(Z))) stop(paste("Z.incl=",Z.incl," names columns not in Z",sep="")) Za<-Z[,Z.incl] #Z.test tells which column of Z to test for an association if(test=="lm.XvsZ"){ if(is.null(Z.test)){ warning(paste("Z.test not specified, testing for association with variable in first column of Z:",colnames(Z)[1],sep="")) Z.test<-1 } if(is.logical(Z.test)) Z.test<-(1:ncol(Z))[Z.test] if(is.character(Z.test) & !(Z.test%in%colnames(Z))) stop(paste("Z.test=",Z.test," names a column not in Z",sep="")) if(is.numeric(Z.test) & !(Z.test%in%(1:ncol(Z)))) stop("Value of Z.test must be >0 and <",ncol(Z)) if(Z.test%in%Z.incl){ Z.incl<-Z.incl[!(Z.incl%in%Z.test)] Za<-Z[,Z.incl] } Za<-cbind(Z[,Z.test],Za) } Z<-Za rm(Za) } #test TESTS<-c("t.onesamp","t.twosamp.equalvar","t.twosamp.unequalvar","t.pair","f","f.block","f.twoway","lm.XvsZ","lm.YvsXZ","coxph.YvsXZ","t.cor","z.cor") test<-TESTS[pmatch(test,TESTS)] if(is.na(test)) stop(paste("Invalid test, try one of ",TESTS,sep="")) #robust + see below with choice of nulldist if(test=="coxph.YvsXZ" & robust==TRUE) warning("No robust version of coxph.YvsXZ, proceeding with usual version") #temp until fix if((test=="t.onesamp" | test=="t.pair") & robust==TRUE) stop("Robust test statistics currently not available for one-sample or two-sample paired test statistics.") #alternative ALTS<-c("two.sided","less","greater") alternative<-ALTS[pmatch(alternative,ALTS)] if(is.na(alternative)) stop(paste("Invalid alternative, try one of ",ALTS,sep="")) #null values if(length(psi0)>1) stop(paste("In current implementation, all hypotheses must have the same null value. Number of null values: ",length(psi0),">1",sep="")) ERROR<-c("fwer","gfwer","tppfp","fdr") typeone<-ERROR[pmatch(typeone,ERROR)] if(is.na(typeone)) stop(paste("Invalid typeone, try one of ",ERROR,sep="")) if(any(alpha<0) | any(alpha>1)) stop("Nominal level alpha must be between 0 and 1.") nalpha<-length(alpha) reject<- if(nalpha) array(dim=c(p,nalpha),dimnames=list(rownames(X),paste("alpha=",alpha,sep=""))) if(test=="z.cor" | test=="t.cor") matrix(nrow=0,ncol=0) # deprecated for correlations, rownames now represent p choose 2 edges - too weird and clunky in current state for output. else matrix(nrow=0,ncol=0) if(typeone=="fwer"){ if(length(k)>1) k<-k[1] if(sum(k)!=0) stop("FWER control, by definition, requires k=0. To control k false positives, please select typeone='gfwer'.") } if(typeone=="gfwer"){ if(length(k)>1){ k<-k[1] warning("Can only compute gfwer adjp for one value of k at a time (using first value). Use EBupdate() to get results for additional values of k.") } if(k==0) warning("gfwer(0) is the same as fwer.") if(k<0) stop("Number of false positives can not be negative.") if(k>=p) stop(paste("Number of false positives must be less than number of tests=",p,sep="")) } if(typeone=="tppfp"){ if(length(q)>1){ q<-q[1] warning("Can only compute tppfp adjp for one value of q at a time (using first value). Use EBupdate() to get results for additional values of q.") } if(q<0) stop("Proportion of false positives, q, can not be negative.") if(q>1) stop("Proportion of false positives, q, must be less than 1.") } #null distribution NULLS<-c("boot","boot.cs","boot.ctr","boot.qt","ic","perm") nulldist<-NULLS[pmatch(nulldist,NULLS)] if(is.na(nulldist)) stop(paste("Invalid nulldist, try one of ",NULLS,sep="")) if(nulldist=="perm") stop("EBMTP currently only available with bootstrap-based and influence curve null distribution methods. One can, however, supply an externally created perm.mat for boot.qt marginal null distributions.") if(nulldist=="boot"){ nulldist <- "boot.cs" warning("nulldist='boot' is deprecated and now corresponds to 'boot.cs'. Proceeding with default center and scaled null distribution.") } if(nulldist!="perm" & test=="f.block") stop("f.block test only available with permutation null distribution. Try test=f.twoway") if(nulldist=="ic" & keep.rawdist==TRUE) stop("Test statistics distribution estimation using keep.rawdist=TRUE is only available with a bootstrap-based null distribution") if(nulldist=="boot.qt" & robust==TRUE) stop("Quantile transform method requires parametric marginal nulldist. Set robust=FALSE") if(nulldist=="boot.qt" & standardize==FALSE) stop("Quantile transform method requires standardized test statistics. Set standardize=TRUE") if(nulldist=="ic" & robust==TRUE) stop("Influence curve null distributions available only for (parametric) t-statistics. Set robust=FALSE") if(nulldist=="ic" & standardize==FALSE) stop("Influence curve null distributions available only for (standardized) t-statistics. Set standardize=TRUE") if(nulldist=="ic" & (test=="f" | test=="f.twoway" | test=="f.block" | test=="coxph.YvsXZ")) stop("Influence curve null distributions available only for tests of mean, regression and correlation parameters. Cox PH also not yet implemented.") if(nulldist!="ic" & (test=="t.cor" | test=="z.cor")) stop("Tests of correlation parameters currently only implemented for influence curve null distributions") if((test!="t.cor" & test!="z.cor") & keep.index) warning("Matrix of indices only returned for tests of correlation parameters") ### specifically for sampling null test statistics with IC nulldist MVNS <- c("mvrnorm","Cholesky") MVN.method <- MVNS[pmatch(MVN.method,MVNS)] if(is.na(MVN.method)) stop("Invalid sampling method for IC-based MVN null test statistics. Try either 'mvrnorm' or 'Cholesky'") #methods METHODS<-c("common.cutoff","common.quantile") method<-METHODS[pmatch(method,METHODS)] if(is.na(method)) stop(paste("Invalid method, try one of ",METHODS,sep="")) if(method=="common.quantile") stop("Common quantile procedure not currently implemented. Common cutoff is pretty good, though.") #prior PRIORS<-c("conservative","ABH","EBLQV") prior<-PRIORS[pmatch(prior,PRIORS)] if(is.na(prior)) stop(paste("Invalid prior, try one of ",PRIORS,sep="")) #estimate ftest<-FALSE if(test=="f" | test=="f.block"){ ftest<-TRUE if(!is.null(W)) warning("Weighted F tests not yet implemented, proceding with unweighted version") } ##making a closure for the particular test theta0<-0 tau0<-1 stat.closure<-switch(test, t.onesamp=meanX(psi0,na.rm,standardize,alternative,robust), t.twosamp.equalvar=diffmeanX(Y,psi0,var.equal=TRUE,na.rm,standardize,alternative,robust), t.twosamp.unequalvar=diffmeanX(Y,psi0,var.equal=FALSE,na.rm,standardize,alternative,robust), t.pair={ uY<-sort(unique(Y)) if(length(uY)!=2) stop("Must have two class labels for this test") if(trunc(n/2)!=n/2) stop("Must have an even number of samples for this test") X<-X[,Y==uY[2]]-X[,Y==uY[1]] meanX(psi0,na.rm,standardize,alternative,robust) }, f={ theta0<-1 tau0<-2/(length(unique(Y))-1) FX(Y,na.rm,robust) }, f.twoway={ theta0<-1 tau0 <- 2/((length(unique(Y))*length(gregexpr('12', paste(Y, collapse=""))[[1]]))-1) twowayFX(Y,na.rm,robust) }, lm.XvsZ=lmX(Z,n,psi0,na.rm,standardize,alternative,robust), lm.YvsXZ=lmY(Y,Z,n,psi0,na.rm,standardize,alternative,robust), coxph.YvsXZ=coxY(Y,Z,psi0,na.rm,standardize,alternative), t.cor=NULL, z.cor=NULL) ##computing observed test statistics if(test=="t.cor" | test=="z.cor") obs<-corr.Tn(X,test=test,alternative=alternative,use="pairwise") else obs<-get.Tn(X,stat.closure,W) statistic <- (obs[3,]*obs[1,]/obs[2,]) #observed, with sign Tn <- obs[1,]/obs[2,] # for sidedness, matching with mulldistn #Begin nulldists. Permutation no longer included. if(nulldist=="boot.qt"){ if(!is.null(marg.par)){ if(is.matrix(marg.par)) marg.par <- marg.par if(is.vector(marg.par)) marg.par <- matrix(rep(marg.par,p),nrow=p,ncol=length(marg.par),byrow=TRUE) } if(is.null(ncp)) ncp = 0 if(!is.null(perm.mat)){ if(dim(X)[1]!=dim(perm.mat)[1]) stop("perm.mat must same number of rows as X.") } nstats <- c("t.twosamp.unequalvar","z.cor","lm.XvsZ","lm.YvsXZ","coxph.lmYvsXZ") tstats <- c("t.onesamp","t.twosamp.equalvar","t.pair","t.cor") fstats <- c("f","f.block","f.twoway") # If default, set values of marg.null to pass on. if(is.null(marg.null)){ if(any(nstats == test)) marg.null="normal" if(any(tstats == test)) marg.null="t" if(any(fstats == test)) marg.null="f" } else{ # Check to see that user-supplied entries make sense. MARGS <- c("normal","t","f","perm") marg.null <- MARGS[pmatch(marg.null,MARGS)] if(is.na(marg.null)) stop("Invalid marginal null distribution. Try one of: normal, t, f, or perm") if(any(tstats==test) & marg.null == "f") stop("Choice of test stat and marginal nulldist do not match") if(any(fstats==test) & (marg.null == "normal" | marg.null=="t")) stop("Choice of test stat and marginal nulldist do not match") if(marg.null=="perm" & is.null(perm.mat)) stop("Must supply a matrix of permutation test statistics if marg.null='perm'") if(marg.null=="f" & ncp < 0) stop("Cannot have negative noncentrality parameter with F distribution.") } # If default (=NULL), set values of marg.par. Return as m by 1 or 2 matrix. if(is.null(marg.par)){ marg.par <- switch(test, t.onesamp = n-1, t.twosamp.equalvar = n-2, t.twosamp.unequalvar = c(0,1), t.pair = floor(n/2-1), f = c(length(is.finite(unique(Y)))-1,dim(X)[2]- length(is.finite(unique(Y))) ), f.twoway = { c(length(is.finite(unique(Y)))-1, dim(X)[2]-(length(is.finite(unique(Y)))*length(gregexpr('12', paste(Y, collapse=""))[[1]]))-2) }, lm.XvsZ = c(0,1), lm.YvsXZ = c(0,1), coxph.YvsXZ = c(0,1), t.cor = n-2, z.cor = c(0,1) ) marg.par <- matrix(rep(marg.par,dim(X)[1]),nrow=dim(X)[1],ncol=length(marg.par),byrow=TRUE) } else{ # Check that user-supplied values of marg.par make sense (marg.par != NULL) if((marg.null=="t" | marg.null=="f") & any(marg.par[,1]==0)) stop("Cannot have zero df with t or F distributions. Check marg.par settings") if(marg.null=="t" & dim(marg.par)[2]>1) stop("Too many parameters for t distribution. marg.par should have length 1.") if((marg.null=="f" | marg.null=="normal") & dim(marg.par)[2]!=2) stop("Incorrect number of parameters defining marginal null distribution. marg.par should have length 2.") } } ##or computing influence curves if(nulldist=="ic"){ rawdistn <- matrix(nrow=0,ncol=0) nulldistn<-switch(test, t.onesamp=corr.null(X,W,Y,Z,test="t.onesamp",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.pair=corr.null(X,W,Y,Z,test="t.pair",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.twosamp.equalvar=corr.null(X,W,Y,Z,test="t.twosamp.equalvar",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.twosamp.unequalvar=corr.null(X,W,Y,Z,test="t.twosamp.unequalvar",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), lm.XvsZ=corr.null(X,W,Y,Z,test="lm.XvsZ",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), lm.YvsXZ=corr.null(X,W,Y,Z,test="lm.YvsXZ",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.cor=corr.null(X,W,Y,Z,test="t.cor",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), z.cor=corr.null(X,W,Y,Z,test="z.cor",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat) ) } ## Cluster Checking if ((!is.numeric(cluster))&(!inherits(cluster,c("MPIcluster", "PVMcluster", "SOCKcluster")))) stop("Cluster argument must be integer or cluster object") ## Create cluster if cluster > 1 and load required packages on nodes if(is.numeric(cluster)){ if(cluster>1){ ## Check installation of packages have_snow <- qRequire("snow") if(!have_snow) stop("The package snow is required to use a cluster. Either snow is not installed or it is not in the standard library location.") if (is.null(type)) stop("Must specify type argument to use a cluster. Alternatively, provide a cluster object as the argument to cluster.") if (type=="SOCK") stop("Create desired cluster and specify cluster object as the argument to cluster directly.") if ((type!="PVM")&(type!="MPI")) stop("Type must be MPI or PVM") else if (type=="MPI"){ have_rmpi <- qRequire("Rmpi") if(!have_rmpi) stop("The package Rmpi is required for the specified type. Either Rmpi is not installed or it is not in the standard library location.") } else if (type=="PVM"){ have_rpvm <- qRequire("rpvm") if(!have_rpvm) stop("The package rpvm is required for the specified type. Either rpvm is not installed or it is not in the standard library location.") } cluster <- makeCluster(cluster, type) clusterEvalQ(cluster, {library(Biobase); library(multtest)}) if (is.null(dispatch)) dispatch=0.05 } } else if(inherits(cluster,c("MPIcluster", "PVMcluster", "SOCKcluster"))){ clusterEvalQ(cluster, {library(Biobase); library(multtest)}) if (is.null(dispatch)) dispatch=0.05 } ##computing the nonparametric bootstrap (null) distribution if(nulldist=="boot.cs" | nulldist=="boot.ctr" | nulldist=="boot.qt"){ nulldistn<-boot.null(X,Y,stat.closure,W,B,test,nulldist,theta0,tau0,marg.null,marg.par,ncp,perm.mat,alternative,seed,cluster,dispatch,keep.nulldist,keep.rawdist) if(inherits(cluster,c("MPIcluster", "PVMcluster", "SOCKcluster"))) stopCluster(cluster) rawdistn <- nulldistn$rawboot nulldistn <- nulldistn$muboot } ##performing multiple testing #rawp values rawp<-apply((obs[1,]/obs[2,])<=nulldistn,1,mean) if(smooth.null & (min(rawp,na.rm=TRUE)==0)){ zeros<-(rawp==0) if(sum(zeros)==1){ den<-density(nulldistn[zeros,],to=max(obs[1,zeros]/obs[2,zeros],nulldist[zeros,],na.rm=TRUE),na.rm=TRUE) rawp[zeros]<-sum(den$y[den$x>=(obs[1,zeros]/obs[2,zeros])])/sum(den$y) } else{ den<-apply(nulldistn[zeros,],1,density,to=max(obs[1,zeros]/obs[2,zeros],nulldistn[zeros,],na.rm=TRUE),na.rm=TRUE) newp<-NULL stats<-obs[1,zeros]/obs[2,zeros] for(i in 1:length(den)){ newp[i]<-sum(den[[i]]$y[den[[i]]$x>=stats[i]])/sum(den[[i]]$y) } rawp[zeros]<-newp } rawp[rawp<0]<-0 } #c, cr, adjp - this is where the function gets a lot different from MTP. ### Begin nuts and bolts of EB here. ### Set G function of type I error rates #MOVED BELOW SO V,S DEFINED # error.closure <- switch(typeone, fwer=G.VS(V,S=NULL,tp=TRUE,bound=0), # gfwer=G.VS(V,S=NULL,tp=TRUE,bound=k), # tppfp=G.VS(V,S,tp=TRUE,bound=q), # fdr=G.VS(V,S,tp=FALSE,bound=NULL) # ) ### Generate guessed sets of true null hypotheses ### This function relates null and full densities. ### Sidedness should be accounted for above. H0.sets <- Hsets(Tn, nullmat=nulldistn, bw, kernel, prior, B, rawp=rawp) EB.h0M <- H0.sets$EB.h0M prior.type <- prior prior.val <- H0.sets$prior lqv <- H0.sets$pn.out H0.sets <- H0.sets$Hsets.mat m <- length(Tn) ### B is defined in global environment. ### For adjusted p-values, just sort now and be able to get the index. ### We want to sort the test statistics in terms of their evidence against the null ### i.e., from largest to smallest. ord.Tn <- order(Tn,decreasing=TRUE) sort.Tn <- Tn[ord.Tn] Z.nulls <- nulldistn[ord.Tn,]*H0.sets[ord.Tn,] Tn.mat <- (1-H0.sets[ord.Tn,])*matrix(rep(sort.Tn,B),nrow=m,ncol=B) ### Rather than using a sieve of candidate cutoffs, for adjp, test statistics ### are used as cutoffs themselves. cutoffs <- sort.Tn clen <- m cat("counting guessed false positives...", "\n") Vn <- .Call(VScount,as.numeric(Z.nulls),as.numeric(cutoffs),as.integer(m),as.integer(B),as.integer(clen),NAOK=TRUE) cat("\n") Vn <- matrix(Vn, nrow=clen, ncol=B) if(typeone=="fwer" | typeone=="gfwer") Sn <- NULL else{ cat("counting guessed true positives...", "\n") Sn <- .Call(VScount,as.numeric(Tn.mat),as.numeric(cutoffs),as.integer(m),as.integer(B),as.integer(clen),NOAK=TRUE) cat("\n") Sn <- matrix(Sn, nrow=clen, ncol=B) } ### Set G function of type I error rates G <- switch(typeone, fwer=G.VS(Vn,Sn,tp=TRUE,bound=0), gfwer=G.VS(Vn,Sn,tp=TRUE,bound=k), tppfp=G.VS(Vn,Sn,tp=TRUE,bound=q), fdr=G.VS(Vn,Sn,tp=FALSE,bound=NULL) ) Gmeans <- rowSums(G,na.rm=TRUE)/B ### Now get adjps and rejection indicators. adjp <- rep(0,m) for(i in 1:m){ adjp[i] <- min(Gmeans[i:m]) } ### Now reverse order to go back to original order of test statistics. rev.order <- rep(0,m) for(i in 1:m){ rev.order[i] <- which(sort.Tn==Tn[i]) } adjp <- adjp[rev.order] if(keep.falsepos) Vn <- Vn[rev.order,] else Vn <- matrix(0,nrow=0,ncol=0) if(keep.truepos) Sn <- Sn[rev.order,] else Sn <- matrix(0,nrow=0,ncol=0) if(typeone=="fwer" | typeone=="gfwer") Sn <- matrix(0,nrow=0,ncol=0) if(keep.errormat) G <- G[rev.order,] else G <- matrix(0,nrow=0,ncol=0) if(!keep.Hsets) H0.sets <- matrix(0,nrow=0,ncol=0) # No confidence regions, but vector of rejections logicals, and cutoff, if applicable ### Generate matrix of rejection logicals. EB.reject <- reject if(test!="z.cor" & test!="t.cor") for(a in 1:nalpha) EB.reject[,a]<-adjp<=alpha[a] else EB.reject <- matrix(0,nrow=0,ncol=0) ### Grab test statistics corresponding to cutoff, based on adjp. #Leave out. #cutoff <- rep(0,nalpha) #for(a in 1:nalpha){ # if(sum(adjp<=alpha[a])>0){ # temp <- max(adjp[adjp<=alpha[a]]) # cutoff.ind <- which(adjp==temp) # cutoff[a] <- max(Tn[cutoff.ind]) # } # else cutoff[a] <- NA #} #output results if(!keep.nulldist) nulldistn<-matrix(nrow=0,ncol=0) if(keep.rawdist==FALSE) rawdist<-matrix(nrow=0,ncol=0) if(is.null(Y)) Y<-matrix(nrow=0,ncol=0) if(nulldist!="boot.qt"){ marg.null <- vector("character") marg.par <- matrix(nrow=0,ncol=0) } if(!keep.label) label <- vector("numeric",0) if(!keep.index) index <- matrix(nrow=0,ncol=0) if(test!="z.cor" & test !="t.cor") index <- matrix(nrow=0,ncol=0) if(keep.index & (test!="z.cor" | test !="t.cor")){ index <- t(combn(p,2)) colnames(index) <- c("Var1","Var2") } names(adjp)<-names(rawp) estimates <- obs[3,]*obs[1,] if(ftest) estimates <- vector("numeric",0) if(test=="t.onesamp" | test=="t.pair") estimates <- obs[3,]*obs[1,]/sqrt(n) out<-new("EBMTP",statistic=statistic, estimate=estimates, sampsize=n,rawp=rawp,adjp=adjp,reject=EB.reject, rawdist=rawdistn,nulldist=nulldistn,nulldist.type=nulldist, marg.null=marg.null,marg.par=marg.par, label=label,falsepos=Vn,truepos=Sn,errormat=G,EB.h0M=EB.h0M, prior=prior.val,prior.type=prior.type,lqv=lqv,Hsets=H0.sets, index=index,call=match.call(),seed=as.integer(seed)) return(out) } ###################################################### ###################################################### ###################################################### ### Function closure for different error rates. # CHANGE G.VS to function, not closure #G.VS <- function(V,S=NULL,tp=TRUE,bound){ # function(V,S){ # if(is.null(S)) g <- V #FWER, GFWER # else g <- V/(V+S) #TPPFP, FDR # if(tp==TRUE) { # temp <- matrix(0,dim(g)[1],dim(g)[2]) # temp[g>bound] <- 1 #FWER, GFWER, TPPFP # g <- temp # } # g # } #} G.VS <- function(V,S=NULL,tp=TRUE,bound){ if(is.null(S)) g <- V #FWER, GFWER else g <- V/(V+S) #TPPFP, FDR if(tp==TRUE) { temp <- matrix(0,dim(g)[1],dim(g)[2]) temp[g>bound] <- 1 #FWER, GFWER, TPPFP g <- temp } g } ### Adaptive BH estimate of the number of true null hypotheses. ABH.h0 <- function(rawp){ sortrawp <- sort(rawp) m <- length(rawp) ho.m <- rep(0,m) for(k in 1:length(rawp)){ ho.m[k] <- (m+1-k)/(1-sortrawp[k]) } grab <- min(which(diff(ho.m)>0)) ho.hat <- ceiling(min(ho.m[grab],m)) ho.hat } ### Function for generating guessed sets via kernel density estimation. ### The marginal null is specified, although if boot.cs or boot.ctr is true, ### we can pool over the matrix of centered and scaled test statistics to ### estimate the null density. ### Also want the user to be able to set values of bw and kernel like they could ### using the density() function in R. dens.est <- function(x,t,bw,kernel){ dg <- density(t, from=x, to=x, bw=bw, kernel=kernel) dg$y[1] } Hsets <- function(Tn, nullmat, bw, kernel, prior, B, rawp){ ### Full density estimation over vector of observed test statistics, ### saves on time and is asymptotic bootstrap distribution anyway. ### (As opposed to pooling over the whole matrix of raw tstats) f.Tn.est <- apply(as.matrix(Tn),1,dens.est,t=Tn, bw=bw, kernel=kernel) ### Obtain null density - use matrix of null test statistics... ### Ensures sidedness maintained more generally, especially in common-cutoff scenario dens.est.null <- approxfun(density(nullmat, bw=bw, kernel=kernel)) f.Tn.null <- dens.est.null(Tn) ### pn represent local q-values obtained by density estimation ### Numbers might be so small and get returned NaN... true alts absolutely pn <- pmin(1, f.Tn.null/f.Tn.est) pn[is.na(pn)] <- 0 ### Do you want to relax the prior? if(prior=="conservative") priorval <- 1 if(prior=="ABH") priorval <- ABH.h0(rawp)/length(Tn) if(prior=="EBLQV") priorval <- sum(pn,na.rm=TRUE)/length(Tn) pn.out <- pmin(1, priorval*pn) pn.out[is.na(pn.out)] <- 0 # Draw Bernoullis for Ho matrix (Guessed sets of true null and true alternative hypotheses). # 1 = guessed true null, 0 = guessed true alternative hypotheses Hsets.mat <- matrix(rbinom(length(Tn)*B,1,pn.out),nrow=length(Tn),ncol=B) out <- list(Hsets.mat=Hsets.mat, EB.h0M=sum(pn,na.rm=TRUE)/length(Tn), prior=priorval, pn.out=pn.out) out } multtest/R/EBzzz.R0000644000175200017520000007706214710217035015061 0ustar00biocbuildbiocbuildsetClass("EBMTP",representation(statistic="numeric", estimate="numeric", sampsize="numeric", rawp="numeric", adjp="numeric", reject="matrix", rawdist="matrix", nulldist="matrix", nulldist.type="character", marg.null="character", marg.par="matrix", label="numeric", falsepos="matrix", truepos="matrix", errormat="matrix", EB.h0M="numeric", prior="numeric", prior.type="character", lqv="numeric", Hsets="matrix", index="matrix", call="call", seed="integer"), prototype=list(statistic=vector("numeric",0), estimate=vector("numeric",0), sampsize=vector("numeric",0), rawp=vector("numeric",0), adjp=vector("numeric",0), reject=matrix(nrow=0,ncol=0), rawdist=matrix(nrow=0,ncol=0), nulldist=matrix(nrow=0,ncol=0), nulldist.type=vector("character",0), marg.null=vector("character",0), marg.par=matrix(nrow=0,ncol=0), label=vector("numeric",0), falsepos=matrix(nrow=0,ncol=0), truepos=matrix(nrow=0,ncol=0), errormat=matrix(nrow=0,ncol=0), EB.h0M=vector("numeric",0), prior=vector("numeric",0), prior.type=vector("character",0), lqv=vector("numeric",0), Hsets=matrix(nrow=0,ncol=0), index=matrix(nrow=0,ncol=0), call=NULL, seed=vector("integer",0))) print.EBMTP<-function(x,...){ call.list<-as.list(x@call) cat("\n") writeLines(strwrap("Multiple Testing Procedure",prefix="\t")) cat("\n") cat(paste("Object of class: ",class(x))) cat("\n") cat(paste("sample size =",x@sampsize,"\n")) cat(paste("number of hypotheses =",length(x@statistic),"\n")) cat("\n") cat(paste("test statistics =",ifelse(is.null(call.list$test),"t.twosamp.unequalvar",call.list$test),"\n")) cat(paste("type I error rate =",ifelse(is.null(call.list$typeone),"fwer",call.list$typeone),"\n")) nominal<-eval(call.list$alpha) if(is.null(eval(call.list$alpha))) nominal<-0.05 cat("nominal level alpha = ") cat(nominal,"\n") cat(paste("multiple testing procedure =",ifelse(is.null(call.list$method),"common.cutoff",call.list$method),"\n")) cat("\n") cat("Call: ") print(x@call) cat("\n") cat("Slots: \n") snames<-slotNames(x) n<-length(snames) out<-matrix(nrow=n,ncol=4) dimnames(out)<-list(snames,c("Class","Mode","Length","Dimension")) for(s in snames) { out[s,]<-c(class(slot(x,s))[1],mode(slot(x,s)),length(slot(x,s)),paste(dim(slot(x,s)),collapse=",")) #Added [1] to fix the bug } out<-data.frame(out) print(out) invisible(x) } ### Put EBupdate last, since it is such a pain. ### Start with the rest of the other methods, and see what ### we want to keep/change from the MTP methods # plot, EBMTP currently does not return cutoffs or confidence regions, so, leave 5 and 6 from MTP # blank if( !isGeneric("plot") ) setGeneric("plot", function(x, y, ...) standardGeneric("plot")) setMethod("plot","EBMTP", function(x,y="missing",which=1:4,caption=c("Rejections vs. Error Rate", "Ordered Adjusted p-values","Adjusted p-values vs. Statistics", "Unordered Adjusted p-values","Estimates & Confidence Regions", "Test Statistics & Cut-offs"),sub.caption = deparse(x@call,width.cutoff=500), ask = prod(par("mfcol"))4)) stop("which must be in 1:4") show<-rep(FALSE,4) show[which]<-TRUE m<-length(x@adjp) if(top>m){ warning("number of top hypotheses to plot exceeds total number of hypotheses - plotting less than requested number") top<-m } ord<-order(x@adjp) if(any(show[2:4]) & logscale){ pv<-(-log(x@adjp,10)) pvlab<-"-log (base 10) Adjusted p-values" } else{ pv<-x@adjp pvlab<-"Adjusted p-values" } one.fig<-prod(par("mfcol"))==1 if(ask){ op<-par(ask=TRUE) on.exit(par(op)) } if(show[1]){ nominal<-seq(0,1,by=0.05) r<-mt.reject(x@adjp,nominal)$r matplot(nominal,r,xlab="Type I error rate", ylab="Number of rejected hypotheses", type="l",...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[1],3,0.25) } if(show[2]){ spval<-sort(pv) matplot(1:m,spval,xlab="Number of rejected hypotheses", ylab=paste("Sorted",pvlab,sep=" "),type="l",...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[2],3,0.25) } if(show[3]){ symb<-ifelse(length(pv)<100,"o",".") matplot(x@statistic,pv,xlab="Test statistics", ylab=pvlab,type="p",pch=symb,...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[3],3,0.25) } if(show[4]){ matplot(1:m,pv,xlab="Index",ylab=pvlab,type = "l", ...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[4],3,0.25) } if(!one.fig && par("oma")[3]>=1) mtext(sub.caption,outer=TRUE,cex=0.8) invisible() }) #summary if( !isGeneric("summary") ) setGeneric("summary", function(object, ...) standardGeneric("summary")) setMethod("summary","EBMTP", function(object,...){ call.list<-as.list(object@call) #cat(paste("EBMTP: ",ifelse(is.null(call.list$method),"common.cutoff",call.list$method),"\n")) cat("EBMTP: common.cutoff","\n") # always common.cutoff, even when being updated from MTP object err<-ifelse(is.null(call.list$typeone),"fwer",call.list$typeone) if(err=="gfwer") err<-paste(err," (k=",ifelse(is.null(call.list$k),0,call.list$k),")",sep="") if(err=="tppfp") err<-paste(err," (q=",ifelse(is.null(call.list$q),0.1,call.list$q),")",sep="") cat(paste("Type I error rate: ",err,"\n")) cat(paste("prior: ",ifelse(is.null(call.list$prior),"conservative",call.list$prior),"\n\n")) nominal<-eval(call.list$alpha) if(is.null(nominal)) nominal<-0.05 if(is.null(call.list$test)) test <- "t.twosamp.unequalvar" else test <- call.list$test if(test!="t.cor" & test!="z.cor") out1<-data.frame(Level=nominal,Rejections=apply(object@reject,2,sum),row.names=NULL) else{ tmp <- rep(0,length(nominal)) for(i in 1:length(nominal)) tmp[i] <- sum(object@adjp < nominal[i]) out1 <- data.frame(Level=nominal,Rejections=tmp,row.names=NULL) } print(out1) cat("\n") out2<-get.index(object@adjp,object@rawp,abs(object@statistic)) out3<-rn<-NULL if(!is.null(object@adjp)){ out3<-rbind(out3,c(summary(object@adjp[!is.na(object@adjp)]),sum(is.na(object@adjp)))) rn<-c(rn,"adjp") } if(!is.null(object@rawp)){ out3<-rbind(out3,c(summary(object@rawp[!is.na(object@rawp)]),sum(is.na(object@rawp)))) rn<-c(rn,"rawp") } if(!is.null(object@statistic)){ out3<-rbind(out3,c(summary(object@statistic[!is.na(object@statistic)]),sum(is.na(object@statistic)))) rn<-c(rn,"statistic") } if(!is.null(object@estimate)){ out3<-rbind(out3,c(summary(object@estimate[!is.na(object@estimate)]),sum(is.na(object@estimate)))) rn<-c(rn,"estimate") } rownames(out3)<-rn colnames(out3)[ncol(out3)]<-"NA's" print(out3) invisible(list(rejections=out1,index=out2,summaries=out3)) }) if( !isGeneric("ebmtp2mtp") ) setGeneric("ebmtp2mtp", function(object, ...) standardGeneric("ebmtp2mtp")) setMethod("ebmtp2mtp","EBMTP", function(object,...){ y<-new("MTP") slot(y,"statistic") <- object@statistic slot(y,"estimate") <- object@estimate slot(y,"sampsize") <- object@sampsize slot(y,"rawp") <- object@rawp slot(y,"adjp") <- object@adjp slot(y,"reject") <- object@reject slot(y,"rawdist") <- object@rawdist slot(y,"nulldist") <- object@nulldist slot(y,"nulldist.type") <- object@nulldist.type slot(y,"marg.null") <- object@marg.null slot(y,"marg.par") <- object@marg.par slot(y,"label") <- object@label slot(y,"index") <- object@index slot(y,"call") <- object@call slot(y,"seed") <- object@seed invisible(y) } ) setMethod("[","EBMTP", function(x,i,j=NULL,...,drop=FALSE){ if(missing(i)) i<-TRUE newx<-x slot(newx,"statistic")<-x@statistic[i] slot(newx,"estimate")<-x@estimate[i] slot(newx,"rawp")<-x@rawp[i] if(sum(length(x@adjp))) slot(newx,"adjp")<-x@adjp[i] if(sum(length(x@label))) slot(newx,"label")<-x@label[i] d<-dim(x@reject) dn<-dimnames(x@reject) if(sum(d)) slot(newx,"reject")<-matrix(x@reject[i,],nrow=ifelse(i[1]==TRUE & !is.numeric(i),d[1],length(i)),ncol=d[-1],dimnames=list(dn[[1]][i],dn[[2]])) if(sum(dim(x@nulldist))) slot(newx,"nulldist")<-x@nulldist[i,] if(sum(dim(x@marg.par))) slot(newx,"marg.par")<-x@marg.par[i,] if(sum(dim(x@rawdist))) slot(newx,"rawdist")<-x@rawdist[i,] if(sum(dim(x@falsepos))) slot(newx,"falsepos")<-x@falsepos[i,] if(sum(dim(x@truepos))) slot(newx,"truepos")<-x@truepos[i,] if(sum(dim(x@errormat))) slot(newx,"errormat")<-x@errormat[i,] slot(newx,"lqv")<-x@lqv[i] if(sum(dim(x@index))) slot(newx,"index")<-x@index[i,] invisible(newx) }) setMethod("as.list","EBMTP", function(x,...){ snames<-slotNames(x) n<-length(snames) lobj<-list() for(i in 1:n) lobj[[i]]<-slot(x,snames[i]) names(lobj)<-snames invisible(lobj) }) if( !isGeneric("EBupdate") ) setGeneric("EBupdate", function(object, ...) standardGeneric("EBupdate")) setMethod("EBupdate","EBMTP", function(object,formula.="missing",alternative="two.sided",typeone="fwer", k=0,q=0.1,alpha=0.05,smooth.null=FALSE, method="common.cutoff",prior="conservative",bw="nrd",kernel="gaussian", get.adjp=TRUE,nulldist="boot.cs",keep.rawdist=FALSE,keep.nulldist=TRUE, keep.falsepos=FALSE,keep.truepos=FALSE,keep.errormat=FALSE,keep.Hsets=FALSE, marg.null=object@marg.null,marg.par=object@marg.par,ncp=NULL, keep.label=TRUE,...,evaluate=TRUE){ p <- length(object@statistic) m <- length(object@statistic) B <- dim(object@nulldist)[2] if(sum(object@rawdist)!=0) B <- dim(object@rawdist)[2] ## checking #Error rate ERROR<-c("fwer","gfwer","tppfp","fdr") typeone<-ERROR[pmatch(typeone,ERROR)] if(is.na(typeone)) stop(paste("Invalid typeone, try one of ",ERROR,sep="")) if(any(alpha<0) | any(alpha>1)) stop("Nominal level alpha must be between 0 and 1.") nalpha<-length(alpha) reject<- if(nalpha) array(dim=c(p,nalpha),dimnames=list(names(object@rawp),paste("alpha=",alpha,sep=""))) else matrix(nrow=0,ncol=0) if(typeone=="fwer"){ if(length(k)>1) k<-k[1] if(sum(k)!=0) stop("FWER control, by definition, requires k=0. To control k false positives, please select typeone='gfwer'.") } if(typeone=="gfwer"){ if(length(k)>1){ k<-k[1] warning("Can only compute gfwer adjp for one value of k at a time (using first value). Use EBupdate() to get results for other values of k.") } if(k<0) stop("Number of false positives can not be negative.") if(k>=p) stop(paste("Number of false positives must be less than number of tests=",p,sep="")) } if(typeone=="tppfp"){ if(length(q)>1){ q<-q[1] warning("Can only compute tppfp adjp for one value of q at a time (using first value). Use EBupdate() to get results for other values of q.") } if(q<0) stop("Proportion of false positives, q, can not be negative.") if(q>1) stop("Proportion of false positives, q, must be less than 1.") } #methods METHODS<-c("common.cutoff","common.quantile") method<-METHODS[pmatch(method,METHODS)] if(is.na(method)) stop(paste("Invalid method, try one of ",METHODS,sep="")) if(method=="common.quantile") stop("Common quantile procedure not currently implemented. Common cutoff is pretty good, though.") #prior PRIORS<-c("conservative","ABH","EBLQV") prior<-PRIORS[pmatch(prior,PRIORS)] if(is.na(prior)) stop(paste("Invalid prior, try one of ",PRIORS,sep="")) #get args from previous call call.list<-as.list(object@call) if(is.null(call.list$test)) test<-"t.twosamp.unequalvar" #default else test<-call.list$test ### nulldistn ### Preserve the old null dist, if kept (i.e., could have alternatively kept raw dist) nulldistn <- object@nulldist if(object@nulldist.type=="perm") stop("No way to update objects which originally used the permutation distribution. No available options for storing nulldist. Rawdist can only be stored for bootstrap distribution.") ### For boot.qt, make sure values of marg.null and marg.par, if set previously, are kept. ### Otherwise, these become null, but the original values are set here before proceeding. prev.marg.null <- object@marg.null prev.marg.par <- object@marg.par if(!ncol(object@nulldist) & !ncol(object@rawdist)) stop("Update method requires either keep.raw and/or keep.null=TRUE in original call to MTP") nulldist<- # just setting character value of what nulldist should be if(is.null(call.list$nulldist)) "boot.cs" else call.list$nulldist ## new call newcall.list<-as.list(match.call()) changed<-names(call.list)[names(call.list)%in%names(newcall.list)] changed<-changed[changed!=""] added<-names(newcall.list)[!(names(newcall.list)%in%names(call.list))] added<-added[added!="x"] for(n in changed) call.list[[n]]<-newcall.list[[n]] for(n in added) call.list[[n]]<-newcall.list[[n]] newcall<-as.call(call.list) ### NB can still use "call.list" to help with what has been changed. df <- marg.par call.list$marg.par <- df ## return call if evaluate is false if(!evaluate) return(newcall) ## else redo MTP else{ num<-object@estimate snum<-1 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } if(alternative=="less"){ snum<-(-1) num<-(-num) } if(object@nulldist.type!="boot.qt"){ marg.null = vector("character",length=0) marg.par = matrix(nrow=0,ncol=0) } if("alternative" %in% changed | "alternative" %in% added) alternative <- call.list$alternative if("marg.null" %in% changed | "marg.null" %in% added) marg.null <- call.list$marg.null if("marg.par" %in% changed | "marg.par" %in% added){ marg.par <- call.list$marg.par if(is.numeric(marg.par) & !is.matrix(marg.par)) marg.par <- matrix(rep(marg.par,length(object@statistic)),nrow=length(object@statistic),ncol=length(marg.par),byrow=TRUE) } if("perm.mat" %in% changed | "perm.mat" %in% added) perm.mat <- call.list$perm.mat if("ncp" %in% changed | "ncp" %in% added) ncp <- call.list$ncp if("MVN.method" %in% changed | "MVN.method" %in% added | "penalty" %in% changed | "penalty" %in% added |"ic.quant.trans" %in% changed | "ic.quant.trans" %in% added) stop("Changing 'MVN.method', 'ic.quant.trans' or 'penalty' requires new calculation of null distribution using nulldist='ic'. Please use a new call to EBMTP.") ### Check value of nulldist in this case if("nulldist" %in% changed | "nulldist" %in% added) { nulldist <- call.list$nulldist ### Otherwise, nulldist keeps the old/default value in the original call.list, not the updated one. if(nulldist=="perm") stop("Calls to update() cannot include changes involving the permutation distribution. Please try a separate call to MTP() with nulldist='perm'") if(object@nulldist.type=="ic") stop("You cannot update an influence curve null distribution to another choice of null distribution. Valid only for changes in the bootstrap distribution when keep.rawdist=TRUE. Please try a separate call to MTP() if nulldist='boot' or 'perm' desired. Changing 'MVN.method', 'ic.quant.trans' or 'penalty' also requires new calculation of null distribution using nulldist='ic'") if(nulldist=="ic") stop("Calls to update() cannot include changes involving the influence curve null distribution. Please try a separate call to MTP() with nulldist='ic'") if(!ncol(object@rawdist)) stop("Calls to update() involving changes in bootstrap-based null distributions require keep.rawdist=TRUE") ### Just recompute (bootstrap-based) nulldistn - way easier this way (with keep.raw=TRUE) ### "Easy" ones first. Need to get tau0 and theta0. if(nulldist=="ic"){ marg.null = vector("character",length=0) marg.par = matrix(nrow=0,ncol=0) } if(nulldist=="boot" | nulldist=="boot.cs" | nulldist=="boot.ctr"){ marg.null = vector("character",length=0) marg.par = matrix(nrow=0,ncol=0) tau0<-1 theta0<-0 if(test=="f"){ theta0<-1 tau0<-2/(length(unique(object@label))-1) } if(test=="f.twoway"){ theta0<-1 tau0 <- 2/((length(unique(object@label))*length(gregexpr('12', paste(object@label, collapse=""))[[1]]))-1) } if(nulldist=="boot") nulldistn <- center.scale(object@rawdist, theta0, tau0, alternative) if(nulldist=="boot.cs") nulldistn <- center.scale(object@rawdist, theta0, tau0, alternative) if(nulldist=="boot.ctr") nulldistn <- center.only(object@rawdist, theta0, alternative) } if(nulldist=="boot.qt"){ if("marg.null" %in% changed | "marg.null" %in% added) marg.null <- call.list$marg.null else marg.null <- NULL if("marg.par" %in% changed | "marg.par" %in% added){ marg.par <- call.list$marg.par if(is.numeric(marg.par) & !is.matrix(marg.par)) marg.par <- matrix(rep(marg.par,length(object@statistic)),nrow=length(object@statistic),ncol=length(marg.par),byrow=TRUE) } else marg.par <- NULL ### If these additional args are changed or added, these will be the new defaults, but they will not be NULL ### Cannot be NULL for object defn. ncp <- if(is.null(call.list$ncp)) 0 perm.mat <- if(is.null(call.list$perm.mat)) NULL if(!is.null(perm.mat)){ if(length(object@statistic)!=dim(perm.mat)[1]){ stop("Permutation and bootstrap matrices must have same number of rows (hypotheses).") } } nstats <- c("t.twosamp.unequalvar","z.cor","lm.XvsZ","lm.YvsXZ","coxph.lmYvsXZ") tstats <- c("t.onesamp","t.twosamp.equalvar","t.pair","t.cor") fstats <- c("f","f.block","f.twoway") # If default (=NULL), set values of marg.null to pass on. if(is.null(marg.null)){ if(any(nstats == test)) marg.null="normal" if(any(tstats == test)) marg.null="t" if(any(fstats == test)) marg.null="f" } else{ # Check to see that user-supplied entries make sense. MARGS <- c("normal","t","f","perm") marg.null <- MARGS[pmatch(marg.null,MARGS)] if(is.na(marg.null)) stop("Invalid marginal null distribution. Try one of: normal, t, f, or perm") if(any(tstats==test) & marg.null == "f") stop("Choice of test stat and marginal nulldist do not match") if(any(fstats==test) & (marg.null == "normal" | marg.null=="t")) stop("Choice of test stat and marginal nulldist do not match") if(marg.null=="perm" & is.null(perm.mat)) stop("Must supply a matrix of permutation test statistics if marg.null='perm'") if(marg.null=="f" & ncp < 0) stop("Cannot have negative noncentrality parameter with F distribution.") } # If default (=NULL), set values of marg.par. Return as m by 1 or 2 matrix. if(is.null(marg.par)){ marg.par <- switch(test, t.onesamp = object@sampsize-1, t.twosamp.equalvar = object@sampsize-2, t.twosamp.unequalvar = c(0,1), t.pair = object@sampsize-2, f = c(length(is.finite(unique(object@label)))-1,object@sampsize-length(is.finite(unique(object@label)))), f.twoway = { c(length(is.finite(unique(object@label)))-1,object@sampsize-(length(is.finite(unique(object@label)))*length(gregexpr('12', paste(y, collapse=""))[[1]]))-2) }, lm.XvsZ = c(0,1), lm.YvsXZ = c(0,1), coxph.YvsXZ = c(0,1), t.cor = object@sampsize-2, z.cor = c(0,1) ) marg.par <- matrix(rep(marg.par,length(object@statistic)),nrow=length(object@statistic),ncol=length(marg.par),byrow=TRUE) } else{ # Check that user-supplied values of marg.par make sense (marg.par != NULL) if((marg.null=="t" | marg.null=="f") & any(marg.par[,1]==0)) stop("Cannot have zero df with t or F distributions. Check marg.par settings") if(marg.null=="t" & dim(marg.par)[2]>1) stop("Too many parameters for t distribution. marg.par should have length 1.") if((marg.null=="f" | marg.null=="normal") & dim(marg.par)[2]!=2) stop("Incorrect number of parameters defining marginal null distribution. marg.par should have length 2.") } nulldistn <- quant.trans(object@rawdist, marg.null, marg.par, ncp, alternative, perm.mat) } } ### Cool. Now pick up where we left off. ##performing multiple testing #rawp values obs<-rbind(num,object@estimate/object@statistic,sign(object@estimate)) rawp<-apply((obs[1,]/obs[2,])<=nulldistn,1,mean) if(smooth.null & min(rawp,na.rm=TRUE)==0){ zeros<-rawp==0 if(sum(zeros)==1){ den<-density(nulldistn[zeros,],to=max(obs[1,zeros]/obs[2,zeros],nulldistn[zeros,],na.rm=TRUE),na.rm=TRUE) rawp[zeros]<-sum(den$y[den$x>=(obs[1,zeros]/obs[2,zeros])])/sum(den$y) } else{ den<-apply(nulldistn[zeros,],1,density,to=max(obs[1,zeros]/obs[2,zeros],nulldistn[zeros,],na.rm=TRUE),na.rm=TRUE) newp<-NULL stats<-obs[1,zeros]/obs[2,zeros] for(i in 1:length(den)) newp[i]<-sum(den[[i]]$y[den[[i]]$x>=stats[i]])/sum(den[[i]]$y) rawp[zeros]<-newp } rawp[rawp<0]<-0 } #c, cr, adjp - this is where the function gets a lot different from MTP. ### Begin nuts and bolts of EB here. t ### Set G function of type I error rates #REMOVED CLOSURE SO V,S DEFINED #error.closure <- switch(typeone, fwer=G.VS(V,S=NULL,tp=TRUE,bound=0), # gfwer=G.VS(V,S=NULL,tp=TRUE,bound=k), # tppfp=G.VS(V,S,tp=TRUE,bound=q), # fdr=G.VS(V,S,tp=FALSE,bound=NULL) # ) ### Generate guessed sets of true null hypotheses ### This function relates null and full densities. Sidedness should be accounted for above. statistic <- (obs[3,]*obs[1,]/obs[2,]) #observed, with sign Tn <- obs[1,]/obs[2,] # for sidedness, matching with mulldistn H0.sets <- Hsets(Tn, nullmat=nulldistn, bw, kernel, prior=prior, B=dim(object@nulldist)[2], rawp=object@rawp) EB.h0M <- H0.sets$EB.h0M prior.type <- prior prior.val <- H0.sets$prior lqv <- H0.sets$pn.out H0.sets <- H0.sets$Hsets.mat m <- length(Tn) ### B defined in global environment ### For adjusted p-values, just sort now and be able to get the index. ### We want to sort the test statistics in terms of their evidence against the null ### i.e., from largest to smallest. ord.Tn <- order(Tn,decreasing=TRUE) sort.Tn <- Tn[ord.Tn] Z.nulls <- nulldistn[ord.Tn,]*H0.sets[ord.Tn,] Tn.mat <- (1-H0.sets[ord.Tn,])*matrix(rep(sort.Tn,B),nrow=m,ncol=B) ### Rather than using a sieve of candidate cutoffs, for adjp, test statistics ### are used as cutoffs themselves. cutoffs <- sort.Tn clen <- m cat("counting guessed false positives...", "\n") Vn <- object Vn <- .Call(VScount,as.numeric(Z.nulls),as.numeric(cutoffs),as.integer(m), as.integer(B),as.integer(clen),NAOK=TRUE) cat("\n") Vn <- matrix(Vn, nrow=clen, ncol=B) if(typeone=="fwer" | typeone=="gfwer") Sn <- NULL else{ cat("counting guessed true positives...", "\n") Sn <- .Call(VScount,as.numeric(Tn.mat),as.numeric(cutoffs),as.integer(m), as.integer(B),as.integer(clen),NOAK=TRUE) cat("\n") Sn <- matrix(Sn, nrow=clen, ncol=B) } ### Set G function of type I error rates #REMOVED CLOSURE: G <- error.closure(Vn,Sn) G <- switch(typeone, fwer=G.VS(Vn,Sn,tp=TRUE,bound=0), gfwer=G.VS(Vn,Sn,tp=TRUE,bound=k), tppfp=G.VS(Vn,Sn,tp=TRUE,bound=q), fdr=G.VS(Vn,Sn,tp=FALSE,bound=NULL) ) Gmeans <- rowSums(G,na.rm=TRUE)/B ### Now get adjps and rejection indicators. adjp <- rep(0,m) for(i in 1:m){ adjp[i] <- min(Gmeans[i:m]) } ### Now reverse order to go back to original order of test statistics. rev.order <- rep(0,m) for(i in 1:m){ rev.order[i] <- which(sort.Tn==Tn[i]) } adjp <- adjp[rev.order] if(keep.falsepos) Vn <- Vn[rev.order,] else Vn <- matrix(0,nrow=0,ncol=0) if(keep.truepos) Sn <- Sn[rev.order,] else Sn <- matrix(0,nrow=0,ncol=0) if(keep.errormat) G <- G[rev.order,] else G <- matrix(0,nrow=0,ncol=0) if(!keep.Hsets) H0.sets <- matrix(0,nrow=0,ncol=0) # No confidence regions, but vector of rejections logicals, and cutoff, if applicable ### Generate matrix of rejection logicals. EB.reject <- matrix(rep(0,m),nrow=m,ncol=length(alpha)) dimnames(EB.reject) <- list(rownames(object@nulldist),paste("alpha", alpha, sep="")) if(nalpha) for(a in 1:nalpha) EB.reject[,a]<-adjp<=alpha[a] else EB.reject <- matrix(0,nrow=0,ncol=0) ### Grab test statistics corresponding to cutoff, based on adjp. #Leave out. #cutoff <- rep(0,nalpha) #for(a in 1:nalpha){ # if(sum(adjp<=alpha[a])>0){ # temp <- max(adjp[adjp<=alpha[a]]) # cutoff.ind <- which(adjp==temp) # cutoff[a] <- max(Tn[cutoff.ind]) # } # else cutoff[a] <- NA #} #output results if(!keep.nulldist) nulldistn <-matrix(nrow=0,ncol=0) if(keep.rawdist==FALSE) object@rawdist<-matrix(nrow=0,ncol=0) out<-new("EBMTP",statistic=object@statistic,estimate=object@estimate, sampsize=object@sampsize,rawp=rawp,adjp=adjp, reject=EB.reject,rawdist=object@rawdist,nulldist=nulldistn, nulldist.type=nulldist,marg.null=marg.null,marg.par=marg.par,label=object@label, falsepos=Vn,truepos=Sn,errormat=G,Hsets=H0.sets,EB.h0M=EB.h0M, prior=prior.val,prior.type=prior.type,lqv=lqv, index=object@index,call=newcall,seed=object@seed) return(out) } #re else redo MTP } # re function ) # re set method multtest/R/ICQTNullDist.R0000644000175200017520000002465514710217035016234 0ustar00biocbuildbiocbuild # No robust correlation test statistics. # Want to return a 3 by M matrix of observations. corr.Tn <- function(X,test,alternative,use="pairwise"){ P <- dim(X)[1] M <- P*(P-1)/2 N <- dim(X)[2] VCM <- cov(t(X),use=use) Cor <- cov2cor(VCM) Cov.v <- VCM[lower.tri(VCM)] # vectorize. Cor.v <- Cor[lower.tri(Cor)] # vectorize. if(test=="t.cor") num <- sqrt(N-2)*Cor.v/sqrt(1-Cor.v^2) if(test=="z.cor") num <- sqrt(N-3)*0.5*log((1+Cor.v)/(1-Cor.v)) denom <- 1 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } rbind(num,denom,snum) } ic.tests <- c("t.onesamp","t.pair","t.twosamp.equalvar","t.twosamp.unequalvar","lm.XvsZ","lm.YvsXZ","t.cor","z.cor") corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alternative="two-sided",use="pairwise",B=1000,MVN.method="mvrnorm",penalty=1e-6,ic.quant.trans=FALSE,marg.null=NULL,marg.par=NULL,perm.mat=NULL){ # Most sanity checks conducted already... p <- dim(X)[1] m <- dim(X)[1] n <- dim(X)[2] cat("calculating vector influence curve...", "\n") if(test=="t.onesamp" | test=="t.pair"){ #t.pair sanity checks and formatting done in stat.closure section #in test.R if(is.null(W)) IC.Cor <- cor(t(X),use=use) else IC.Cor <- IC.CorXW.NA(X,W,N=n,M=p,output="cor") } if(test=="t.twosamp.equalvar" | test=="t.twosamp.unequalvar"){ uY<-sort(unique(Y)) if(length(uY)!=2) stop("Must have two class labels for this test") n1 <- sum(Y==uY[1]) n2 <- sum(Y==uY[2]) if(is.null(W)){ cov1 <- cov(t(X[,Y==uY[1]]),use=use) cov2 <- cov(t(X[,Y==uY[2]]),use=use) } else{ cov1 <- IC.CorXW.NA(X[,Y==uY[1]],W[,Y==uY[1]],N=n1,M=p,output="cov") cov2 <- IC.CorXW.NA(X[,Y==uY[2]],W[,Y==uY[2]],N=n2,M=p,output="cov") } newcov <- cov1/n1 + cov2/n2 IC.Cor <- cov2cor(newcov) } # Regression ICs written to automatically incorporate weights. # If W=NULL, then give equal weights. if(test=="lm.XvsZ"){ if(is.null(Z)) Z <- matrix(1,nrow=n,ncol=1) else Z <- cbind(Z,1) if(is.null(W)) W <- matrix(1/n,nrow=p,ncol=n) IC.i <- matrix(0,nrow=m,ncol=n) for(i in 1:m){ drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,]) x <- as.numeric(X[i,!drop]) z <- Z[!drop,] w <- W[i,!drop] nn <- n-sum(drop) EXtWXinv <- solve(t(z)%*%(w*diag(nn))%*%z)*sum(w) res.m <- lm.wfit(z,x,w)$res if(sum(drop)>0) res.m <- insert.NA(which(drop==TRUE),res.m) EXtWXinvXt <- rep(0,n) for(j in 1:n){ EXtWXinvXt[j] <- (EXtWXinv%*%(t(Z)[,j]))[1] } IC.i[i,] <- res.m * EXtWXinvXt } IC.Cor <- IC.Cor.NA(IC.i,W,N=n,M=p,output="cor") } if(test=="lm.YvsXZ"){ if(is.null(Y)) stop("An outcome variable is needed for this test") if(length(Y)!=n) stop(paste("Dimension of outcome Y=",length(Y),", not equal dimension of data=",n,sep="")) if(is.null(Z)) Z <- matrix(1,n,1) else Z <- cbind(Z,1) if(is.null(W)) W <- matrix(1,nrow=p,ncol=n) IC.i <- matrix(0,nrow=m,ncol=n) for(i in 1:m){ drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,]) x <- as.numeric(X[i,!drop]) z <- Z[!drop,] w <- W[i,!drop] y <- Y[!drop] nn <- n-sum(drop) xz <- cbind(x,z) XZ <- cbind(X[i,],Z) EXtWXinv <- solve(t(xz)%*%(w*diag(nn))%*%xz)*sum(w) res.m <- lm.wfit(xz,y,w)$res if(sum(drop)>0) res.m <- insert.NA(which(drop==TRUE),res.m) EXtWXinvXt <- rep(0,n) for(j in 1:n){ EXtWXinvXt[j] <- (EXtWXinv%*%(t(XZ)[,j]))[1] } IC.i[i,] <- res.m * EXtWXinvXt } IC.Cor <- IC.Cor.NA(IC.i,W,N=n,M=p,output="cor") } if(test=="t.cor" | test=="z.cor"){ if(!is.null(W)) warning("Weights not currently implemented for tests of correlation parameters. Proceeding with unweighted version") # Change of dimension P <- dim(X)[1] -> p # Number of variables. M <- P*(P-1)/2 -> m # Actual number of pairwise hypotheses. N <- dim(X)[2] -> m ind <- t(combn(P,2)) VCM <- cov(t(X),use="pairwise") Cor <- cov2cor(VCM) Vars <- diag(VCM) Cov.v <- VCM[lower.tri(VCM)] # vectorize. Cor.v <- Cor[lower.tri(Cor)] # vectorize. X2 <- X*X EX <- rowMeans(X,na.rm=TRUE) E2X <- rowMeans(X2,na.rm=TRUE) Var1.v <- Vars[ind[,1]] Var2.v <- Vars[ind[,2]] EX1.v <- EX[ind[,1]] EX2.v <- EX[ind[,2]] E2X1.v <- E2X[ind[,1]] E2X2.v <- E2X[ind[,2]] X.vec1 <- X[ind[,1],] X.vec2 <- X[ind[,2],] X.vec12 <- X.vec1*X.vec2 EX1X2.v <- rowMeans(X.vec12,na.rm=TRUE) cons <- 1/sqrt(Var1.v*Var2.v) gradient <- matrix(1,nrow=M,ncol=5) gradient[,1] <- EX1.v*Cov.v/Var1.v - EX2.v gradient[,2] <- EX2.v*Cov.v/Var2.v - EX1.v gradient[,3] <- -0.5*Cov.v/Var1.v gradient[,4] <- -0.5*Cov.v/Var2.v IC.i <- matrix(0, nrow=M, ncol=N) for(i in 1:N){ diffs.i <- diffs.1.N(X[ind[,1],i], X[ind[,2],i], EX1.v, EX2.v, E2X1.v, E2X2.v, EX1X2.v) IC.M <- rep(0,M) for(j in 1:M){ IC.M[j] <- gradient[j,]%*%diffs.i[,j] } IC.i[,i] <- IC.M } IC.i <- cons * IC.i IC.Cor <- IC.Cor.NA(IC.i,W=NULL,N=n,M=M,output="cor") } if(ic.quant.trans==FALSE) cat("sampling null test statistics...", "\n\n") else cat("sampling null test statistics...", "\n") if(MVN.method=="mvrnorm") nulldist <- t(mvrnorm(n=B,mu=rep(0,dim(IC.Cor)[1]),Sigma=IC.Cor)) if(MVN.method=="Cholesky"){ IC.chol <- t(chol(IC.Cor+penalty*diag(dim(IC.Cor)[1]))) norms <- matrix(rnorm(B*dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=B) nulldist <- IC.chol%*%norms } if(ic.quant.trans==TRUE){ cat("applying quantile transform...", "\n\n") if(is.null(marg.null)){ marg.null <- "t" if(test=="t.cor" | test=="z.cor" | test=="t.twosamp.equalvar") marg.par <- matrix(rep(dim(X)[2]-2,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) if(test=="lm.XvsZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2],dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) if(test=="lm.YvsXZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2]-1,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) else marg.par <- matrix(rep(dim(X)[2]-1,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1) } if(test=="z.cor" & marg.null=="t") warning("IC nulldist for z.cor already MVN. Transforming to N-2 df t marginal distribution not advised.") if(marg.null!="t" & marg.null!="perm") stop("IC nulldists can only be quantile transformed to a marginal t-distribution or user-supplied marginal permutation distribution") if(marg.null=="t") nulldist <- tQuantTrans(nulldist,marg.null="t",marg.par,ncp=0,perm.mat=NULL) if(marg.null=="perm") nulldist <- tQuantTrans(nulldist,marg.null="perm",marg.par=NULL,ncp=NULL,perm.mat=perm.mat) } if(alternative=="greater") nulldist <- nulldist else if(alternative=="less") nulldist <- -nulldist else nulldist <- abs(nulldist) nulldist } # Function, given ICs for each individual, returns variance covariance # matrix or corresponding correlation matrix. IC.Cor.NA <- function(IC,W,N,M,output){ n <- dim(IC)[2] m <- dim(IC)[1] if(is.null(W)){ W <- matrix(1,nrow=dim(IC)[1],ncol=dim(IC)[2]) Wnew <- W/rowSums(W,na.rm=TRUE) # Equal weight, NA handling. } else Wnew <- W/rowSums(W,na.rm=TRUE) IC.VC <- matrix(0,nrow=m,ncol=m) for(i in 1:n){ temp <- crossprod(t(sqrt(Wnew[,i])*IC[,i])) temp[is.na(temp)] <- 0 IC.VC <- IC.VC + temp } if(output=="cov") out <- IC.VC if(output=="cor") out <- cov2cor(IC.VC) out } # Weighted correlation. Generalizes cov.wt() to account for a matrix # of weights. Uses IC formulation instead of sweep() and crossprod(). # May be slower/clunkier, but pretty transparent, and allows for NA # handling much like cor(...,use="pairwise") would. That is, each # element of the correlation matrix returned uses the maximum amount # of information possible in obtaining individual elements of that # matrix. IC.CorXW.NA <- function(X,W,N,M,output){ n <- dim(X)[2] m <- dim(X)[1] XW <- X*W EXW <- rowSums(XW)/rowSums(W) ICW.i <- X-EXW Wnew <- W/rowSums(W,na.rm=T) IC.VC <- matrix(0,nrow=m,ncol=m) for(i in 1:n){ temp <- crossprod(t(sqrt(Wnew[,i])*X[,i])) temp[is.na(temp)] <- 0 IC.VC <- IC.VC + temp } if(output=="cov") out <- IC.VC if(output=="cor") out <- cov2cor(IC.VC) out } # For regression ICs, a function to insert NAs into appropriate locations # of a vector of returned residuals. insert.NA <- function(orig.NA, res.vec){ for(i in 1:length(orig.NA)){ res.vec <- append(res.vec, NA, after=orig.NA[i]-1) } res.vec } # For correlation ICS, a function to get diff vectors for all M. # This is the difference between estimates for # a sample size of one and a sample of size n. diffs.1.N <- function(vec1, vec2, e1, e2, e21, e22, e12){ diff.mat.1.N <- matrix(0,nrow=5,ncol=length(vec1)) diff.mat.1.N[1,] <- vec1 - e1 diff.mat.1.N[2,] <- vec2 - e2 diff.mat.1.N[3,] <- vec1*vec1 - e21 diff.mat.1.N[4,] <- vec2*vec2 - e22 diff.mat.1.N[5,] <- vec1*vec2 - e12 diff.mat.1.N } ### For quantile transform, take a sample from the marginal null distribution. marg.samp <- function(marg.null,marg.par,m,B,ncp){ out <- matrix(0,m,B) for(i in 1:m){ if(marg.null=="normal") out[i,] <- rnorm(B,mean=marg.par[i,1],sd=marg.par[i,2]) if(marg.null=="t") out[i,] <- rt(B,df=marg.par[i,1],ncp) if(marg.null=="f") out[i,] <- rf(B,df1=marg.par[i,1],df2=marg.par[i,2],ncp) } out } ### Quantile transform streamlined for IC nulldists. tQuantTrans <- function(rawboot, marg.null, marg.par, ncp, perm.mat=NULL){ m <- dim(rawboot)[1] B <- dim(rawboot)[2] ranks <- t(apply(rawboot,1,rank,ties.method="random")) if(marg.null=="t") Z.quant <- marg.samp(marg.null="t",marg.par,m,B,ncp) if(marg.null=="perm") Z.quant <- perm.mat Z.quant <- t(apply(Z.quant,1,sort)) if(marg.null!="perm"){ for(i in 1:m){ Z.quant[i,] <- Z.quant[i,][ranks[i,]] } } else{ Z.quant <- t(apply(Z.quant,1,quantile,probs=seq(0,1,length.out=B),na.rm=TRUE)) for(i in 1:m){ Z.quant[i,] <- Z.quant[i,][ranks[i,]] } } Z.quant } ### Effective df for two sample test of means, unequal var. t.effective.df <- function(X,Y){ uY<-sort(unique(Y)) X1 <- X[Y==uY[1]] X2 <- X[Y==uY[2]] mu <- var(X2)/var(X1) n1 <- length(Y[Y==uY[1]]) n2 <- length(Y[Y==uY[2]]) df <- (((1/n1)+(mu/n2))^2)/(1/((n1^2)*(n1-1)) + (mu^2)/((n2^2)*(n2-1))) df } multtest/R/mt.basic.R0000755000175200017520000003112714710217035015510 0ustar00biocbuildbiocbuildmt.rawp2adjp<-function(rawp,proc=c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY","ABH", "TSBH"), alpha=0.05, na.rm=FALSE) { m<-length(rawp) if(na.rm){ mgood<-sum(!is.na(rawp)) }else{ mgood<-m } n<-length(proc) a<-length(alpha) index<-order(rawp) h0.ABH<-NULL h0.TSBH<-NULL spval<-rawp[index] adjp<-matrix(0,m,n+1) dimnames(adjp)<-list(NULL,c("rawp",proc)) adjp[,1]<-spval if(is.element("TSBH",proc)) { #N.B.: This method performed first in order to handle a potential $adjp #dimension change in the case that length(alpha)>1. #Could also be possibly done using more append() functions, should more #alpha-dependent procedures be developed/included later. TS.spot <- which(proc=="TSBH") TSBHs<-paste("TSBH",alpha,sep="_") newprocs<-append(proc,TSBHs,after=TS.spot) newprocs<-newprocs[newprocs!="TSBH"] adjp<-matrix(0,m,n+a) dimnames(adjp)<-list(NULL,c("rawp",newprocs)) adjp[,1]<-spval # Apply first-pass BH. tmp<-spval for(i in (m-1):1){ tmp[i]<-min(tmp[i+1],min((mgood/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE) if(is.na(spval[i])) tmp[i]<-NA } # Now use first-pass results to estimate h_0, the number of true nulls. # These results depend on the nominal testing level, alpha. h0.TSBH <- rep(0,length(alpha)) names(h0.TSBH) <- paste("h0.TSBH",alpha,sep="_") for(i in 1:length(alpha)){ h0.TSBH[i] <- mgood - sum(tmp < alpha[i]/(1+alpha[i]),na.rm=TRUE) adjp[,TS.spot+i]<-tmp*h0.TSBH[i]/mgood } } if(is.element("Bonferroni",proc)) { tmp<-mgood*spval tmp[tmp>1]<-1 adjp[,"Bonferroni"]<-tmp } if(is.element("Holm",proc)) { tmp<-spval tmp[1]<-min(mgood*spval[1],1) for(i in 2:m) tmp[i]<-max(tmp[i-1],min((mgood-i+1)*spval[i],1)) adjp[,"Holm"]<-tmp } if(is.element("Hochberg",proc)) { tmp<-spval for(i in (m-1):1){ tmp[i]<-min(tmp[i+1],min((mgood-i+1)*spval[i],1,na.rm=TRUE),na.rm=TRUE) if(is.na(spval[i])) tmp[i]<-NA } adjp[,"Hochberg"]<-tmp } if(is.element("SidakSS",proc)) adjp[,"SidakSS"]<-1-(1-spval)^mgood if(is.element("SidakSD",proc)) { tmp<-spval tmp[1]<-1-(1-spval[1])^mgood for(i in 2:m) tmp[i]<-max(tmp[i-1],1-(1-spval[i])^(mgood-i+1)) adjp[,"SidakSD"]<-tmp } if(is.element("BH",proc)) { tmp<-spval for(i in (m-1):1){ tmp[i]<-min(tmp[i+1],min((mgood/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE) if(is.na(spval[i])) tmp[i]<-NA } adjp[,"BH"]<-tmp } if(is.element("BY",proc)) { tmp<-spval a<-sum(1/(1:mgood)) tmp[m]<-min(a*spval[m], 1) for(i in (m-1):1){ tmp[i]<-min(tmp[i+1],min((mgood*a/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE) if(is.na(spval[i])) tmp[i]<-NA } adjp[,"BY"]<-tmp } if(is.element("ABH",proc)) { ## First obtain estimate of h_0, the number of true null hypotheses. tmp<-spval h0.m <- rep(0,mgood) for(k in 1:mgood){ h0.m[k] <- (mgood+1-k)/(1-spval[k]) } grab <- min(which(diff(h0.m,na.rm=TRUE)>0),na.rm=TRUE) h0.ABH <- ceiling(min(h0.m[grab],mgood)) ## Now apply BH procedure with adaptive correction. for(i in (m-1):1){ tmp[i]<-min(tmp[i+1],min((mgood/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE) if(is.na(spval[i])) tmp[i]<-NA } adjp[,"ABH"]<-tmp*h0.ABH/mgood } list(adjp=adjp,index=index,h0.ABH=h0.ABH[1],h0.TSBH=h0.TSBH[1:length(alpha)]) } ########################################################################### mt.reject<-function(adjp,alpha) { which<-adjp<=alpha[1] dimnames(which)<-dimnames(adjp) if(is.matrix(adjp)) { r<-matrix(0,length(alpha),ncol(adjp)) for(i in 1:length(alpha)) r[i,] <- colSums(adjp<=alpha[i]) dimnames(r)<-list(alpha,dimnames(adjp)[[2]]) } if(!is.matrix(adjp)) { r<-rep(0,length(alpha)) for(i in 1:length(alpha)) r[i]<-sum(adjp<=alpha[i]) } list(r=r,which=which) } ########################################################################### #need ... arg to legend to use with ... in mt.plot mt.legend<-function(x, y = NULL, legend, fill = NULL, col = "black", lty, lwd, pch, angle = 45, density = NULL, bty = "o", bg = par("bg"), pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd, xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1, adj = c(0, 0.5), text.width = NULL, text.col = par("col"), merge = do.lines && has.pch, trace = FALSE, plot = TRUE, ncol = 1, horiz = FALSE,...) { if (missing(legend) && !missing(y) && (is.character(y) || is.expression(y))) { legend <- y y <- NULL } mfill <- !missing(fill) || !missing(density) xy <- xy.coords(x, y) x <- xy$x y <- xy$y nx <- length(x) if (nx < 1 || nx > 2) stop("invalid coordinate lengths") xlog <- par("xlog") ylog <- par("ylog") rect2 <- function(left, top, dx, dy, density = NULL, angle, ...) { r <- left + dx if (xlog) { left <- 10^left r <- 10^r } b <- top - dy if (ylog) { top <- 10^top b <- 10^b } rect(left, top, r, b, angle = angle, density = density, ...) } segments2 <- function(x1, y1, dx, dy, ...) { x2 <- x1 + dx if (xlog) { x1 <- 10^x1 x2 <- 10^x2 } y2 <- y1 + dy if (ylog) { y1 <- 10^y1 y2 <- 10^y2 } segments(x1, y1, x2, y2, ...) } points2 <- function(x, y, ...) { if (xlog) x <- 10^x if (ylog) y <- 10^y points(x, y, ...) } text2 <- function(x, y, ...) { if (xlog) x <- 10^x if (ylog) y <- 10^y text(x, y, ...) } if (trace) catn <- function(...) do.call(cat, c(lapply(list(...), formatC), list("\n"))) cin <- par("cin") Cex <- cex * par("cex") if (is.null(text.width)) text.width <- max(strwidth(legend, units = "user", cex = cex)) else if (!is.numeric(text.width) || text.width < 0) stop("text.width must be numeric, >= 0") xc <- Cex * xinch(cin[1], warn.log = FALSE) yc <- Cex * yinch(cin[2], warn.log = FALSE) xchar <- xc yextra <- yc * (y.intersp - 1) ymax <- max(yc, strheight(legend, units = "user", cex = cex)) ychar <- yextra + ymax if (trace) catn(" xchar=", xchar, "; (yextra,ychar)=", c(yextra, ychar)) if (mfill) { xbox <- xc * 0.8 ybox <- yc * 0.5 dx.fill <- xbox } do.lines <- (!missing(lty) && (is.character(lty) || any(lty > 0))) || !missing(lwd) n.leg <- if (is.call(legend)) 1 else length(legend) n.legpercol <- if (horiz) { if (ncol != 1) warning("horizontal specification overrides: Number of columns := ", n.leg) ncol <- n.leg 1 } else ceiling(n.leg/ncol) if (has.pch <- !missing(pch) && length(pch) > 0) { if (is.character(pch) && !is.na(pch[1]) && nchar(pch[1]) > 1) { if (length(pch) > 1) warning("Not using pch[2..] since pch[1] has multiple chars") np <- nchar(pch[1]) pch <- substr(rep.int(pch[1], np), 1:np, 1:np) } if (!merge) dx.pch <- x.intersp/2 * xchar } x.off <- if (merge) -0.7 else 0 if (xlog) x <- log10(x) if (ylog) y <- log10(y) if (nx == 2) { x <- sort(x) y <- sort(y) left <- x[1] top <- y[2] w <- diff(x) h <- diff(y) w0 <- w/ncol x <- mean(x) y <- mean(y) if (missing(xjust)) xjust <- 0.5 if (missing(yjust)) yjust <- 0.5 } else { h <- n.legpercol * ychar + yc w0 <- text.width + (x.intersp + 1) * xchar if (mfill) w0 <- w0 + dx.fill if (has.pch && !merge) w0 <- w0 + dx.pch if (do.lines) w0 <- w0 + (2 + x.off) * xchar w <- ncol * w0 + 0.5 * xchar left <- x - xjust * w top <- y + (1 - yjust) * h } if (plot && bty != "n") { if (trace) catn(" rect2(", left, ",", top, ", w=", w, ", h=", h, ", ...)", sep = "") rect2(left, top, dx = w, dy = h, col = bg, density = NULL) } xt <- left + xchar + (w0 * rep.int(0:(ncol - 1), rep.int(n.legpercol, ncol)))[1:n.leg] yt <- top - (rep.int(1:n.legpercol, ncol)[1:n.leg] - 1) * ychar - 0.5 * yextra - ymax if (mfill) { if (plot) { fill <- rep(fill, length.out = n.leg) rect2(left = xt, top = yt + ybox/2, dx = xbox, dy = ybox, col = fill, density = density, angle = angle, border = "black") } xt <- xt + dx.fill } if (plot && (has.pch || do.lines)) col <- rep(col, length.out = n.leg) if (missing(lwd)) lwd <- par("lwd") if (do.lines) { seg.len <- 2 if (missing(lty)) lty <- 1 ok.l <- !is.na(lty) & (is.character(lty) | lty > 0) lty <- rep(lty, length.out = n.leg) lwd <- rep(lwd, length.out = n.leg) if (trace) catn(" segments2(", xt[ok.l] + x.off * xchar, ",", yt[ok.l], ", dx=", seg.len * xchar, ", dy=0, ...)") if (plot) segments2(xt[ok.l] + x.off * xchar, yt[ok.l], dx = seg.len * xchar, dy = 0, lty = lty[ok.l], lwd = lwd[ok.l], col = col[ok.l]) xt <- xt + (seg.len + x.off) * xchar } if (has.pch) { pch <- rep(pch, length.out = n.leg) pt.bg <- rep(pt.bg, length.out = n.leg) pt.cex <- rep(pt.cex, length.out = n.leg) pt.lwd <- rep(pt.lwd, length.out = n.leg) ok <- !is.na(pch) & (is.character(pch) | pch >= 0) x1 <- (if (merge) xt - (seg.len/2) * xchar else xt)[ok] y1 <- yt[ok] if (trace) catn(" points2(", x1, ",", y1, ", pch=", pch[ok], ", ...)") if (plot) points2(x1, y1, pch = pch[ok], col = col[ok], cex = pt.cex[ok], bg = pt.bg[ok], lwd = pt.lwd[ok]) if (!merge) xt <- xt + dx.pch } xt <- xt + x.intersp * xchar if (plot) text2(xt, yt, labels = legend, adj = adj, cex = cex, col = text.col) invisible(list(rect = list(w = w, h = h, left = left, top = top), text = list(x = xt, y = yt))) } mt.plot<-function(adjp,teststat, plottype="rvsa",logscale=FALSE, alpha=seq(0,1,length=100), proc="",leg=c(0,0),...) { m<-nrow(adjp) n<-ncol(adjp) a<-length(alpha) if(plottype=="rvsa") { r<-mt.reject(adjp,alpha)$r matplot(alpha,r,xlab="Type I error rate", ylab="Number of rejected hypotheses", type="l", ...) mt.legend(leg[1],leg[2],proc,...) } if(plottype=="pvsr") { spval<-apply(adjp,2,sort) matplot(1:m,spval,xlab="Number of rejected hypotheses", ylab="Sorted adjusted p-values", type="l", ...) mt.legend(leg[1],leg[2],proc,...) } if(plottype=="pvst") { if(!logscale) matplot(teststat,adjp,xlab="Test statistics", ylab="Adjusted p-values", type="p", ...) if(logscale) matplot(teststat,-log(adjp,10),xlab="Test statistics", ylab="-log(adjusted p-values,10)", type="p", ...) mt.legend(leg[1],leg[2],proc,...) } if(plottype=="pvsi") { if(!logscale) matplot(1:m,adjp,xlab="index",ylab="Adjusted p-values", type="l", ...) if(logscale) matplot(1:m,-log(adjp,10),xlab="index", ylab="-log(adjusted p-values,10)", type="l", ...) mt.legend(leg[1],leg[2],proc,...) } } multtest/R/mt.func.R0000755000175200017520000003401414710217035015360 0ustar00biocbuildbiocbuild.mt.BLIM<-2^30 .mt.naNUM<- -93074815 .mt.RandSeed<-3455660 #the maxim number of setting of the permutation, it's not resettable #in the current version. the numer comes from the largest #integer can be 2^32, while we need to exlcude one sign bit, and #to exclude another bit for safety. #dyn.load("multtest.so") #X is a matrix data #classlabel is a vector mt.teststat<-function(X,classlabel,test="t",na=.mt.naNUM,nonpara="n") { if(is.factor(classlabel)) classlabel<-unclass(classlabel)-1 extra<-max(classlabel)+1 mt.checkothers(na=na,nonpara=nonpara) tmp<-mt.transformX(X,classlabel,test,na,nonpara) options<-c(test,"abs","y"); #"abs" and "y" has no meaning here res<-.C("get_stat",as.double(tmp$X),as.integer(tmp$m), as.integer(tmp$n),as.integer(tmp$classlabel),as.double(na), teststat=double(tmp$m),as.character(options), as.integer(extra), PACKAGE="multtest")$teststat res[abs(res)>=0.9*1e20]<-NA res } mt.teststat.num.denum<-function(X,classlabel,test="t",na=.mt.naNUM,nonpara="n") { extra<-max(classlabel)+1 mt.checkothers(na=na,nonpara=nonpara) tmp<-mt.transformX(X,classlabel,test,na,nonpara) options<-c(test,"abs","y"); #"abs" and "y" has no meaning here teststat<-.C("get_stat_num_denum",as.double(tmp$X),as.integer(tmp$m), as.integer(tmp$n),as.integer(tmp$classlabel),as.double(na), t.num=double(tmp$m),t.denum=double(tmp$m),as.character(options), as.integer(extra), PACKAGE="multtest") res<-cbind(teststat.num=teststat$t.num,teststat.denum=teststat$t.denum) mt.niceres(res,X) } mt.maxT<-function(X,classlabel,test="t",side="abs", fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") { if(is.factor(classlabel)) classlabel<-unclass(classlabel)-1 extra<-max(classlabel)+1 mt.checkothers(side=side,fixed.seed.sampling=fixed.seed.sampling,B=B,na=na,nonpara=nonpara) tmp<-mt.transformX(X,classlabel,test,na,nonpara) newB<-mt.getmaxB(classlabel,test,B) if(B==0||newB=0.9*1e20]<-NA res } mt.sample.rawp<-function(V,classlabel,test="t",side="abs", fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") { extra<-max(classlabel)+1 mt.checkothers(side=side,fixed.seed.sampling=fixed.seed.sampling,B=B,na=na,nonpara=nonpara) tmp<-mt.transformV(V,classlabel,test,na,nonpara) newB<-mt.getmaxB(classlabel,test,B) if(B==0||newB=0.9*1e20]<-NA res } mt.sample.label<-function(classlabel,test="t", fixed.seed.sampling="y",B=10000) { extra<-max(classlabel)+1 tmp<-mt.transformL(classlabel,test) mt.checkothers(fixed.seed.sampling=fixed.seed.sampling,B=B) newB<-mt.getmaxB(classlabel,test,B) if(B==0||newB1) ||(!any(test==c("t","f","blockf","pairt","wilcoxon","t.equalvar")))) stop(paste("your setting of test is",test,"\nthe test needs to be a single character from c('t',f','blockf','pairt','wilcoxon','t.equalvar')")) if((!is.integer(as.integer(classlabel))) ||(!is.vector(classlabel))) stop("classlabel needs to be just a vector of integers") if(any(test==c("t","wilcoxon","t.equalvar"))){ x<-sum(classlabel==0) y<-sum(classlabel==1) if((x==0)||(y==0)||(x+y0] if(length(tab)<2) stop(paste("in F test, we need at least two groups\n", "Your setting of classlabel is", classlabel, "\n")) if(sum(tab)-length(tab)<2) stop(paste("Insufficient df for denominator of F", "the settings are", classlabel, "\n")) } if(test=="pairt"){ K<-max(classlabel) if(K!=1) stop(paste("in paired t test, we only handle two groups\n", "your classlabel=",classlabel,"\n")) if(length(classlabel)%%2==1) stop(paste("the classlabel length must be an even number in the paired t\n","your classlabel=",classlabel,"\n")) halfn<-length(classlabel)%/%2 for(i in c(1:halfn)){ cur<-classlabel[(2*i-1):(2*i)] if((sum(cur==0)==0)||(sum(cur==1)==0)) stop(paste("Some errors in specifying classlabel for the paired t test for the block",i,"located at","(",2*i-1,2*i,")\n", "your classlabel=",classlabel,"\n")) } } if(test=="blockf"){ K<-max(classlabel) if(K<1) stop(paste("in blockF test, we need at least two groups\n", "your classlabel=",classlabel,"\n")) if(length(classlabel)%%(K+1)>0) stop(paste("the classlabel length must be the multiple of the number of treatments in the block test\n","your classlabel=",classlabel,"\n")) B<-length(classlabel)%/%(K+1) for(i in c(1:B)){ cur<-classlabel[c((K+1)*(i-1)+1):((K+1)*i)] #to check if cur is a permutation of c(0,1,..,K) for(j in c(0:K)) if(sum(cur==j)==0) stop(paste("the classlabel has some errors for the blockf test at block",i,"located at", "(",(K+1)*(i-1)+1,(K+1)*i,")","There is no elements =",j,"within this block\n","your classlabel=",classlabel,"\n")) } } } mt.checkX<-function(X,classlabel,test){ if((!is.matrix(X)) || !(is.numeric(X))) stop(paste("X needs to be a matrix\n","your X=",X,"\n")) if(ncol(X)!=length(classlabel)) stop(paste("the number of column of X needs to be the same as the lengtho of classlabel\n","your X=",X,"\n your classlabel is",classlabel,"\n")) mt.checkclasslabel(classlabel,test) } mt.checkV<-function(V,classlabel,test){ if((!is.vector(V)) || !(is.numeric(V))) stop(paste("V needs to be a vector\n","your V=",V,"\n")) if(length(V)!=length(classlabel)) stop("the length of V needs to be the same as the length of classlabel\n", "your V=",V,"\n your classlabel=",classlabel,"\n") mt.checkclasslabel(classlabel,test) } mt.checkothers<-function(side="abs",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") { if((length(B)>1) || !(is.integer(as.integer(B))) ||(!is.vector(B))) stop(paste("B needs to be just a integer\n","your B=",B,"\n")) if(B<0) stop(paste("the number of Permutations (B) needs to be positive\n, If you want to complete permutation, just specify B as any number greater than the maximum number of permutation\n","your B=",B)) if((length(na)>1) || !(is.numeric(na)) ||(!is.vector(na))) stop(paste("na needs to be just a number\n","your na=",na,"\n")) if((!is.character(side))||(!is.vector(side))||(length(side)>1) ||(!any(side==c("upper","abs","lower")))) stop(paste("the side needs to be a single character from c('upper','abs','lower')\n","your side=",side,"\n")) if((!is.character(fixed.seed.sampling))||(!is.vector(fixed.seed.sampling))||(length(fixed.seed.sampling)>1) ||(!any(fixed.seed.sampling==c("y","n")))) stop(paste("the fixed.seed.sampling needs to be a single character from c('y','n')\n","your fixed.sampling=",fixed.seed.sampling,"\n")) if((!is.character(nonpara))||(!is.vector(nonpara))||(length(nonpara)>1) ||(!any(nonpara==c("y","n")))) stop(paste("the nonpara needs to be a single character from c('y','n')\n","your nonpara=",nonpara,"\n")) } mt.transformX<-function(X,classlabel,test,na,nonpara) { X<-mt.number2na(data.matrix(X),na) mt.checkX(X,classlabel,test) n<-ncol(X) if(test=="pairt"){ if(n%%2==1) stop(paste("the number of columns for X must be an even number in the paired t test\n","your X=",X,"\n your classlabel=",classlabel, "\n your test=",test,"\n")) halfn<-n%/%2; evendata<-X[,c(1:halfn)*2] odddata<-X[,c(1:halfn)*2-1] vecX<-(evendata-odddata) vecX<-data.matrix(vecX) }else{ vecX<-data.matrix(X) } if(test=="wilcoxon"||nonpara=="y"){ for(i in c(1:nrow(vecX))){ vecX[i,]<-rank(vecX[i,]) } } vecX<-mt.na2number(c(vecX),na) newL<-mt.transformL(classlabel,test) list(X=vecX,m=nrow(X),n=newL$n,classlabel=newL$classlabel) } mt.transformV<-function(V,classlabel,test,na,nonpara) { V<-mt.number2na(as.double(V),na) mt.checkV(V,classlabel,test) n<-length(classlabel) if(test=="pairt"){ if(n%%2==1) stop(paste("the number of columns for V must be an even number in the paired t test\n","your V=",V,"\n your classlabel=",classlabel, "\n your test=",test,"\n")) halfn<-n%/%2 evendata<-V[c(1:halfn)*2] odddata<-V[c(1:halfn)*2-1] newV<-c(evendata-odddata) } else{ newV<-V } if(test=="wilcoxon"||nonpara=="y"){ newV<-rank(newV) } newL<-mt.transformL(classlabel,test) list(V=mt.na2number(newV,na),n=newL$n,classlabel=newL$classlabel) } mt.transformL<-function(classlabel,test) { classlabel<-as.integer(classlabel) mt.checkclasslabel(classlabel,test) n<-length(classlabel) newL<-classlabel if(test=="pairt"){ if(n%%2==1) stop(paste("the length of classlabel must be an even number in the pair t\n","your classlabel=",classlabel,"\n your test=",test="\n")) halfn<-n%/%2; n<-halfn newL<-rep(0,n); for(i in c(1:n)){ newL[i]<-classlabel[2*i] } } list(classlabel=newL,n=n) } #this functions finds the maximum number of permutation #if the the initial B=0, or initial B greater than the maximum number of #permutation maxB, it will return all possible of number of permutation. mt.getmaxB<-function(classlabel,test,B, verbose=FALSE) { if(B>.mt.BLIM) stop(paste("The setting of B=",B,"is too large, Please set B<",.mt.BLIM,"\n")) n<-length(classlabel) if(test=="pairt"){ maxB<-2^(n%/%2) } if(any(test==c("t","f","wilcoxon","t.equalvar"))){ k<-max(classlabel) maxB<-1 curn<-n for(i in c(0:k)){ nk<-sum(classlabel==i) for(j in c(1:nk)){ maxB<-maxB*curn/j curn<-curn-1 } } } if(test=="blockf"){ k<-max(classlabel) maxB<-1 for(i in c(1:(k+1))){ maxB<-maxB*i } maxB<-maxB^(n%/%(k+1)) } #finished the computing of maxB if((B==0)&(maxB>.mt.BLIM)){ stop(paste("The complete enumeration is too big",maxB, "is too large, Please set random permutation\n")) } if((B>maxB)||(B==0)){ if(verbose) cat("We'll do complete enumerations\n") return(maxB) } return(B) } mt.na2number<-function(x,na){ y<-x y[is.na(y)]<-na y } mt.number2na<-function(x,na){ y<-x y[y==na]<-NA y } #patched from the new version mt.niceres<-function(res,X,index){ newres<-res name<-rownames(X,do.NULL=FALSE,prefix="") if(missing(index)) { rownames(newres)<-name }else { rownames(newres)<-name[index] } newres[abs(newres)>=0.9*1e20]<-NA data.frame(newres) } multtest/R/nulldistn_c.R0000755000175200017520000002051414710217035016324 0ustar00biocbuildbiocbuild#functions to generate bootstrap null distribution #theta0 is the value of the test statistics under the complete null hypthesis #tau0 is the scaling parameter (upper bound on variance of test statistics) boot.null <- function(X,label,stat.closure,W=NULL,B=1000,test,nulldist,theta0=0,tau0=1,marg.null=NULL,marg.par=NULL,ncp=0,perm.mat,alternative="two.sided",seed=NULL,cluster=1,dispatch=0.05,keep.nulldist,keep.rawdist){ cat("running bootstrap...\n") X<-as.matrix(X) n<-ncol(X) p<-nrow(X) if(!(is.vector(W) | is.matrix(W) | is.null(W))) stop("W must be a vector or a matrix") if(is.null(W))W<-matrix(1,nrow=p,ncol=n) if(is.vector(W)){ if(length(W)==n) W<-matrix(W,nrow=p,ncol=n,byrow=TRUE) if(length(W)==p) W<-matrix(W,nrow=p,ncol=n) if(length(W)!=n & length(W)!=p) stop("Length of W does not match dim(X)") } if(is.matrix(W) & (dim(W)[1]!=p | dim(W)[2]!=n)) stop("W and X must have same dimension") # Dispatch to cluster if (is.numeric(cluster)) { if(!is.null(seed)) set.seed(seed) muboot <- boot.resample(X,label,p,n,stat.closure,W,B,test) } else { autoload("clusterApply","snow") autoload("clusterApplyLB","snow") if(!is.null(seed)) clusterApply(cluster, seed, set.seed) else clusterApply(cluster, runif(length(cluster), max=10000000), set.seed) # Create vector of jobs to dispatch if ((dispatch > 0) & (dispatch < 1)){ BtoNodes <- rep(B*dispatch, 1/dispatch) } else { BtoNodes <- rep(dispatch, B/dispatch) } FromCluster <- clusterApplyLB(cluster, BtoNodes, boot.resample,X=X,label=label,p=p,n=n,stat.closure=stat.closure,W=W, test=test) muboot <- matrix(unlist(FromCluster), nrow=nrow(X)) } Xnames<-dimnames(X)[[1]] dimnames(muboot)<-list(Xnames,paste(1:B)) #fill in any nas by resampling some more nas<-(is.na(muboot)|muboot=="Inf"|muboot=="-Inf") count<-0 while(sum(nas)){ count<-count+1 if(count>1000) stop("Bootstrap null distribution computation terminating. Cannot obtain distribution without missing values after 1000 attempts. This problem may be resolved if you try again with a different seed.") nascols<-unique(col(muboot)[nas]) for(b in nascols){ samp<-sample(n,n,replace=TRUE) Xb<-X[,samp] Wb<-W[,samp] if(p==1){ Xb<-t(as.matrix(Xb)) Wb<-t(as.matrix(Wb)) } Tb<-get.Tn(Xb,stat.closure,Wb) muboot[,b]<-Tb[3,]*Tb[1,]/Tb[2,] } nas<-is.na(muboot) } rawboot <- matrix(nrow=0,ncol=0) if(keep.rawdist) rawboot <- muboot if(nulldist=="boot") muboot <- center.scale(muboot, theta0, tau0, alternative) if(nulldist=="boot.cs") muboot <- center.scale(muboot, theta0, tau0, alternative) if(nulldist=="boot.ctr") muboot <- center.only(muboot, theta0, alternative) if(nulldist=="boot.qt") muboot <- quant.trans(muboot, marg.null, marg.par, ncp, alternative, perm.mat) out <- list(muboot=muboot, rawboot=rawboot) out } center.only <- function(muboot,theta0,alternative){ muboot<-(muboot-apply(muboot,1,mean))+theta0 if(alternative=="greater") muboot <- muboot else if(alternative=="less") muboot <- -muboot else muboot <- abs(muboot) } center.scale <- function(muboot, theta0, tau0, alternative){ muboot<-(muboot-apply(muboot,1,mean))*sqrt(pmin(1,tau0/apply(muboot,1,var)))+theta0 if(alternative=="greater") muboot <- muboot else if(alternative=="less") muboot <- -muboot else muboot <- abs(muboot) } quant.trans <- function(muboot, marg.null, marg.par, ncp, alternative, perm.mat){ ### NB: Sanity checks occur outside this function at the beginning of MTP. m <- dim(muboot)[1] B <- dim(muboot)[2] ranks <- t(apply(muboot,1,rank,ties.method="random")) Z.quant <- switch(marg.null, normal = marg.samp(marg.null="normal",marg.par,m,B,ncp), t = marg.samp(marg.null="t",marg.par,m,B,ncp), f = marg.samp(marg.null="f",marg.par,m,B,ncp), perm = perm.mat) Z.quant <- t(apply(Z.quant,1,sort)) ### Left code like this for transparency. Could just as easily use quantile() ### for this first part, although it would be redundant. if(marg.null!="perm"){ for(i in 1:m){ Z.quant[i,] <- Z.quant[i,][ranks[i,]] } } else{ Z.quant <- t(apply(Z.quant,1,quantile,probs=seq(0,1,length.out=B),na.rm=TRUE)) for(i in 1:m){ Z.quant[i,] <- Z.quant[i,][ranks[i,]] } } if(alternative=="greater") Z.quant <- Z.quant else if(alternative=="less") Z.quant <- -Z.quant else Z.quant <- abs(Z.quant) Z.quant } boot.resample <- function (X, label, p, n, stat.closure, W, B, test){ muboot <- matrix(0, nrow = p, ncol = B) samp <- sample(n, n * B, replace = TRUE) if (any(test == c("t.twosamp.equalvar", "t.twosamp.unequalvar", "f"))) { label <- as.vector(label) uniqlabs <- unique(label) num.group <- length(uniqlabs) groupIndex <- lapply(1:num.group, function(k) which(label == uniqlabs[k])) if(sum(is.na(label))){ naindex<-c(1:num.group)[is.na(uniqlabs)] groupIndex[[naindex]]<-which(is.na(label)) } obs <- sapply(1:num.group, function(x) length(groupIndex[[x]])) samp <- lapply(1:num.group, function(k) matrix(NA, nrow = B, ncol = obs[k])) for (j in 1:B) { for (i in 1:num.group) { uniq.obs <- 1 count <- 0 while (uniq.obs == 1) { count <- count + 1 samp[[i]][j, ] <- sample(groupIndex[[i]], obs[i], replace = TRUE) uniq.obs <- length(unique(samp[[i]][j, ])) if (count > 1000) stop("Bootstrap null distribution computation terminating. Cannot obtain bootstrap sample with at least 2 unique observations after 1000 attempts. Sample size may be too small for bootstrap procedure but this problem may be resolved if you try again with a different seed.") } } } samp <- as.vector(t(matrix(unlist(samp), nrow = B, ncol = sum(obs)))) } else if (test == c("f.twoway")) { label <- as.vector(label) utreat <- unique(label) num.treat <- length(utreat) num.block <- length(gregexpr("12", paste(label, collapse = ""))[[1]]) ublock <- 1:num.block Breaks <- c(0, gregexpr(paste(c(num.treat, 1), collapse = ""), paste(label, collapse = ""))[[1]], n) BlockNum <- sapply(1:num.block, function(x) Breaks[x + 1] - Breaks[x]) block <- unlist(lapply(1:num.block, function(x) rep(x, BlockNum[x]))) groupIndex <- lapply(1:num.block, function(j) sapply(1:num.treat, function(i) which(label == utreat[i] & block == ublock[j]))) obs <- sapply(1:num.block, function(x) sapply(1:num.treat, function(y) length(groupIndex[[x]][,y]))) samp <- lapply(1:(num.treat * num.block), function(k) matrix(NA, nrow = B, ncol = obs[k])) for (k in 1:B) { for (i in 1:num.block) { for (j in 1:num.treat) { uniq.obs <- 1 count <- 0 while (uniq.obs == 1) { count <- count + 1 samp[[(i - 1) * num.treat + j]][k, ] <- sample(groupIndex[[i]][,j], obs[j, i], replace = TRUE) uniq.obs <- length(unique(samp[[(i - 1) * num.treat + j]][k, ])) if (count > 1000) stop("Bootstrap null distribution computation terminating. Cannot obtain bootstrap sample with at least 2 unique observations after 1000 attempts. Sample size may be too small for bootstrap procedure but this problem may be resolved if you try again with a different seed.") } } } } samp <- as.vector(t(matrix(unlist(samp), nrow = B, ncol = sum(obs)))) } cat("iteration = ") muboot <- .Call("bootloop", stat.closure, as.numeric(X), as.numeric(W), as.integer(p), as.integer(n), as.integer(B), as.integer(samp), NAOK = TRUE) cat("\n") muboot <- matrix(muboot, nrow = p, ncol = B) } multtest/R/statistics.R0000755000175200017520000004437614710217035016214 0ustar00biocbuildbiocbuild#for one sample t #paired t (where difference is the r.v.) #Wilcoxon signed rank if robust=TRUE meanX<-function(psi0=0,na.rm=TRUE,standardize=TRUE,alternative="two.sided",robust=FALSE){ function(x,w=NULL, samp){ if(is.null(w)) w=rep(1,length(x)) if(length(w)!=length(x)) stop("x and w must have same length") x[!is.finite(w)]<-NA if(na.rm){ drop<-is.na(x)|is.na(w) x<-x[!drop] w<-w[!drop] } if(robust) x<-(x>0)*rank(abs(x)) n<-length(x) sumw<-sum(w) num<-sum(w*x)/sumw-psi0 if(is.na(num)) denom <- NA else{ if(standardize) {denom <- sqrt(sum(w*(x-num)^2)/(sum(w*(1-(sum(w^2)/sumw^2)))))} else denom <- 1 } if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } c(num*sqrt(sumw),denom,snum) } } diffmeanX<-function(label,psi0=0,var.equal=FALSE,na.rm=TRUE,standardize=TRUE,alternative="two.sided",robust=FALSE){ if(is.null(label)) stop("A label variable is needed for this test") Samp<-1:length(label) function(x,w=NULL, samp=Samp){ dep<-label[samp] if(is.null(w)) w=rep(1,length(x)) if(length(w)!=length(x)) stop("x and w must have same length") x[!is.finite(w)]<-NA if(na.rm){ drop<-is.na(x)|is.na(dep)|is.na(w) x<-x[!drop] xlabel<-as.vector(dep[!drop]) w<-w[!drop] } else xlabel<-as.vector(dep) # Convert to 0,1 coding uniq <- sort.int(unique.default(xlabel)) if(length(uniq)>2) warning("More than 2 classes! Working with first unique label vs. rest.") lab1<-uniq[1] New0 <- which(xlabel==lab1) New1 <- which(xlabel!=lab1) xlabel <- as.numeric(replace(replace(xlabel, New1, 1), New0, 0)) xlabel <- as.numeric(xlabel) # Check for at least 2 unique values in each group if(standardize & length(unique.default(x[xlabel==lab1]))==1) stop("Only one unique value in bootstrap sample for first group. Cannot calculate variance. This problem may be resolved if you try again with a different seed.") if(standardize & length(unique.default(x[xlabel!=lab1]))==1) stop("Only one unique value in bootstrap sample for second group. Cannot calculate variance. This problem may be resolved if you try again with a different seed.") n<-length(x) if(robust) x<-rank(x) if ((sum(w==1)==n)&(standardize)){ vecX <- as.vector(x) extra <- max(xlabel) + 1 na = -93074815 # Consistency with mt.teststat nonpara<-"y" if (var.equal) test <- "t.equalvar" else test = "t" if (robust) test <- "wilcoxon" if (is.null(nrow(x))) traits <- 1 else traits <- nrow(x) options <- c(test, "abs", "y") TestStat <- .C("get_stat_num_denum", as.double(vecX), as.integer(traits), as.integer(n), as.integer(xlabel), as.double(na), t.num = double(traits), t.denum = double(traits), as.character(options), as.integer(extra), PACKAGE = "multtest") if (robust) { obs <- length(xlabel) lab1<-sort.int(unique.default(xlabel))[1] m=sum(xlabel==lab1) num <- TestStat$t.num*obs/(m*(obs-m)) # Conversion to same numerator value as original non C code function denom <- TestStat$t.denum*obs/(m*(obs-m)) # Conversion to same denominator value as original non C code function } else { num <- TestStat$t.num - psi0 denom <- TestStat$t.denum } } else { sub1<-x[xlabel==lab1] sub2<-x[xlabel!=lab1] w1<-w[xlabel==lab1] w2<-w[xlabel!=lab1] m<-length(sub1) m1<-sum(w1*sub1)/sum(w1) m2<-sum(w2*sub2)/sum(w2) num<-m2-m1-psi0 if(is.na(num)) denom<-NA else{ if(robust){ if(sum(w)==1) df <- sum(w) else { df<- sum(w)-1 } mm<-sum(w*x)/sum(w) if(standardize) denom <- sqrt((1/m+1/(n-m))*sum(w*(x-mm)^2)/df) else denom <- 1 } else{ if(standardize){ df1<-sum(w1)-1 df2<-sum(w2)-1 df<-sum(w)-2 if(var.equal) denom <- sqrt((1/m+1/(n-m))*(sum(w1*(sub1-m1)^2)+sum(w2*(sub2-m2)^2))/df) else denom <- sqrt((1/m*sum(w1*(sub1-m1)^2)/df1)+(1/(n-m)*sum(w2*(sub2-m2)^2)/df2)) } else denom<-1 } } } if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } c(num,denom,snum) } } FX<-function(label,na.rm=TRUE,robust=FALSE){ if(is.null(label)) stop("A label variable is needed for this test") Samp<-1:length(label) function(x,w=NULL, samp=Samp){ dep<-label[samp] if(is.null(w)){ if(na.rm){ drop<-is.na(x)|is.na(dep) x<-x[!drop] xlabel<-as.vector(dep[!drop]) } else xlabel<-as.vector(dep) # Convert to 0,1,..k coding labs <- sort.int(unique.default(xlabel)) num.levels <- length(labs) for (i in 1:num.levels){ Index <- which(xlabel==labs[i]) xlabel <- replace(xlabel, Index, i-1) } xlabel <- as.numeric(xlabel) # Check for at least 2 unique values in each group for (i in 1:length(labs)){ if(length(unique.default(x[xlabel==labs[i]]))==1) stop("Only one unique value in bootstrap sample for one of the groups. Within group sum of squares is 0. This problem may be resolved if you try again with a different seed.") } if(robust) x<-rank(x) n<-length(x) vecX <- as.vector(x) extra <- max(xlabel) + 1 na = -93074815 # Consistency with mt.teststat if (is.null(nrow(x))) traits <- 1 else traits <- nrow(x) options <- c("f", "abs", "y") TestStat <- .C("get_stat_num_denum", as.double(vecX), as.integer(traits), as.integer(n), as.integer(xlabel), as.double(na), t.num = double(traits), t.denum = double(traits), as.character(options), as.integer(extra), PACKAGE = "multtest") num <- TestStat$t.num denom <- TestStat$t.denum } else{ if(length(w)!=length(x)) stop("x and w must have same length") x[!is.finite(w)]<-NA if(na.rm){ drop<-is.na(x)|is.na(dep)|is.na(w) x<-x[!drop] xlabel<-as.vector(dep[!drop]) w<-w[!drop] } else xlabel<-as.vector(dep) # Convert to 0,1,..k coding labs <- sort.int(unique.default(xlabel)) num.levels <- length(labs) for (i in 1:num.levels){ Index <- which(xlabel==labs[i]) xlabel <- replace(xlabel, Index, i-1) } xlabel <- as.numeric(xlabel) # Check for at least 2 unique values in each group for (i in 1:length(labs)){ if(length(unique.default(x[xlabel==labs[i]]))==1) stop("Only one unique value in bootstrap sample for one of the groups. Within group sum of squares is 0. This problem may be resolved if you try again with a different seed.") } if(robust) x<-rank(x) n<-length(x) if(robust) x<-rank(x) #TODO: how to deal with weights in F? vecX <- as.vector(x) extra <- max(xlabel) + 1 na = -93074815 # Consistency with mt.teststat if (is.null(nrow(x))) traits <- 1 else traits <- nrow(x) options <- c("f", "abs", "y") TestStat <- .C("get_stat_num_denum", as.double(vecX), as.integer(traits), as.integer(n), as.integer(xlabel), as.double(na), t.num = double(traits), t.denum = double(traits), as.character(options), as.integer(extra), PACKAGE = "multtest") num <- TestStat$t.num denom <- TestStat$t.denum } c(2*num,2*denom,1) } } #F statistic for block design with k treatments and l blocks # One observation per block # The observations are ordered by block, and within # each block, they are labeled using the integers 1 to k. #Friedman statistic if robust=TRUE blockFX<-function(label,na.rm=TRUE,robust=FALSE){ if(is.null(label)) stop("A label variable is needed for this test") samp<-1:length(label) function(x,w=NULL){ dep<-label[samp] if(is.null(w)){ if(na.rm){ drop<-is.na(x)|is.na(dep) x<-x[!drop] xlabel<-dep[!drop] } else xlabel<-dep n<-length(x) ulab<-sort(unique(xlabel)) k<-length(ulab) l<-n/k if(round(l)*k!=n) stop("The blocks are not of equal size.") block<-sort(rep(1:l,k))[samp] ublock<-1:l if(robust){ for(j in 1:l) x[block==j]<-rank(x[block==j]) } m<-mean(x) mlab<-mblock<-denom<-NULL for(i in 1:k){ mlab[i]<-mean(x[xlabel==ulab[i]]) for(j in 1:l){ if(i==1) mblock[j]<-mean(x[block==ublock[j]]) denom[(i-1)*l+j]<-x[xlabel==ulab[i] & block==ublock[j]]-mlab[i]-mblock[j]+m } } num<-sum(l*(mlab-m)^2) denom<-sum(denom^2)/(l-1) } else{ if(length(w)!=length(x)) stop("x and w must have same length") x[!is.finite(w)]<-NA if(na.rm){ drop<-is.na(x)|is.na(dep)|is.na(w) x<-x[!drop] xlabel<-dep[!drop] w<-w[!drop] } else xlabel<-dep n<-length(x) ulab<-sort(unique(xlabel)) k<-length(ulab) l<-n/k if(round(l)*k!=n) stop("The blocks are not of equal size.") block<-sort(rep(1:l,k))[samp] ublock<-1:l if(robust){ for(j in 1:l) x[block==j]<-rank(x[block==j]) } # TODO: how to deal with weights in block f? m<-mean(x) mlab<-mblock<-denom<-NULL for(i in 1:k){ mlab[i]<-mean(x[xlabel==ulab[i]]) for(j in 1:l){ if(i==1) mblock[j]<-mean(x[block==ublock[j]]) denom[(i-1)*l+j]<-x[xlabel==ulab[i] & block==ublock[j]]-mlab[i]-mblock[j]+m } } num<-sum(l*(mlab-m)^2) denom<-sum(denom^2)/(l-1) } c(num,denom,1) } } #could add standardize=FALSE and set denom=1 to return just the sum of squares. # #F statistic for block design with k treatments and l blocks # The observations are ordered by block, and within # each block, they are labeled using the integers 1 to k. #Friedman statistic if robust=TRUE twowayFX <-function(label,na.rm=TRUE,robust=FALSE){ if(is.null(label)) stop("A label variable is needed for this test") Samp<-1:length(label) function(x,w=NULL, samp=Samp){ dep<-label[samp] if(is.null(w)){ if(na.rm){ drop<-is.na(x)|is.na(dep) x<-x[!drop] xlabel<-dep[!drop] } else xlabel<-dep n<-length(x) ulab<-sort(unique(xlabel)) k<-length(ulab) l <- length(gregexpr('12', paste(xlabel, collapse=""))[[1]]) ublock<-1:l Breaks <- c(0,gregexpr(paste(c(k,1),collapse=""), paste(xlabel, collapse=""))[[1]], n) BlockNum <- sapply(1:l, function(x) Breaks[x+1]-Breaks[x]) block <- unlist(sapply(1:l, function(x) rep(x,BlockNum[x]))) if(robust){ for(j in 1:l) x[block==j]<-rank(x[block==j]) } m<-mean(x) mlab<-mblock<-mcell<-denom<-NULL for(i in 1:k){ mlab[i]<-mean(x[xlabel==ulab[i]]) for(j in 1:l){ if(i==1) mblock[j]<-mean(x[block==ublock[j]]) denom[(i-1)*l+j]<-sum((mean(x[xlabel==ulab[i] & block==ublock[j]])-mlab[i]-mblock[j]+m)^2) } } num<-sum(l*(mlab-m)^2)/(k-1) denom<-sum(denom)/((l-1)*(k-1)) } else{ if(length(w)!=length(x)) stop("x and w must have same length") x[!is.finite(w)]<-NA if(na.rm){ drop<-is.na(x)|is.na(dep)|is.na(w) x<-x[!drop] xlabel<-dep[!drop] w<-w[!drop] } else xlabel<-dep n<-length(x) ulab<-sort(unique(xlabel)) k<-length(ulab) l <- length(gregexpr('12', paste(xlabel, collapse=""))[[1]]) ublock<-1:l Breaks <- c(0,gregexpr(paste(c(k,1),collapse=""), paste(xlabel, collapse=""))[[1]], n) BlockNum <- sapply(1:l, function(x) Breaks[x+1]-Breaks[x]) block <- unlist(sapply(1:l, function(x) rep(x,BlockNum[x]))) if(robust){ for(j in 1:l) x[block==j]<-rank(x[block==j]) } #TODO: how to deal with weights in block f? m<-mean(x) mlab<-mblock<-denom<-NULL for(i in 1:k){ mlab[i]<-mean(x[xlabel==ulab[i]]) for(j in 1:l){ if(i==1) mblock[j]<-mean(x[block==ublock[j]]) denom[(i-1)*l+j]<-sum((mean(x[xlabel==ulab[i] & block==ublock[j]])-mlab[i]-mblock[j]+m)^2) } } num<-sum(l*(mlab-m)^2)/(k-1) denom<-sum(denom)/((l-1)*(k-1)) } c(num,denom,1) } } ## Z is a design *matrix* ## with variable of interest in first column ## and variables to adjust for in remaining columns ## Z is fixed for all columns of X ## gene expression is the outcome lmX<-function(Z=NULL,n,psi0=0,na.rm=TRUE,standardize=TRUE,alternative="two.sided",robust=FALSE){ if(is.null(Z)) Z<-matrix(1,n,1) else Z<-cbind(Z,rep(1,n)) Samp<-1:n function(x,w=NULL, samp=Samp){ covar<-Z[samp,] if(is.null(w)){ if(na.rm){ drop<-is.na(x)|rowSums(is.na(covar)) covar<-covar[!drop,] x<-x[!drop] } covar<-as.matrix(covar) if(robust){ autoload("rlm","MASS") out<-rlm(covar,x) out$df.residual<-length(x)-out$rank } else out<-lm.fit(covar,x) if(standardize) denom <- sqrt(sum(out$residuals^2)/out$df.residual)*sqrt(diag(chol2inv(out$qr$qr,size=out$rank))[1]) else denom <- 1 if(denom==0) stop("Denominator of test statistic is 0 for a bootstrap sample. This problem may resuly from too small and sample size but may be resolved if you try again with a different seed.") } else{ if(length(w)!=length(x)) stop("x and w must have same length") x[!is.finite(w)]<-NA if(na.rm){ drop<-is.na(x)|rowSums(is.na(covar))|is.na(w) covar<-covar[!drop,] x<-x[!drop] w<-w[!drop] } covar<-as.matrix(covar) if(robust){ autoload("rlm","MASS") out<-rlm(covar,x,w) out$df.residual<-length(x)-out$rank } else out<-lm.wfit(covar,x,w) if(standardize) denom <- sqrt(sum(w*out$residuals^2)/out$df.residual)*sqrt(diag(chol2inv(out$qr$qr,size=out$rank))[1]) else denom <- 1 if(denom==0) stop("Denominator of test statistic is 0 for a bootstrap sample. This problem may resuly from too small and sample size but may be resolved if you try again with a different seed.") } num<-out$coef[1]-psi0 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } c(num,denom,snum) } } ## gene expression is the covariate ## y is an outcome of interest ## Z is any intercept or other covariates ## Z changes for each row of X lmY<-function(Y,Z=NULL,n,psi0=0,na.rm=TRUE,standardize=TRUE,alternative="two.sided",robust=FALSE){ if(is.null(Y)) stop("An outcome variable is needed for this test") if(length(Y)!=n) stop(paste("Dimension of outcome Y=",length(Y),", not equal dimension of data=",n,sep="")) if(is.null(Z)) Z<-matrix(1,n,1) else Z<-cbind(Z,rep(1,n)) Samp<-1:n function(x,w=NULL, samp=Samp){ dep<-Y[samp] covar<-Z[samp,] covar<-cbind(x,covar) covar[!is.finite(w),]<-NA if(is.null(w)){ if(na.rm){ drop<-is.na(dep)|rowSums(is.na(covar)) covar<-covar[!drop,] xy<-dep[!drop] } else xy<-dep if(robust){ autoload("rlm","MASS") out<-rlm(covar,xy) out$df.residual<-length(xy)-out$rank } else out<-lm.fit(covar,xy) if(standardize) denom <- sqrt(sum(out$residuals^2)/out$df.residual)*sqrt(diag(chol2inv(out$qr$qr,size=out$rank))[1]) else denom <- 1 if(denom==0) stop("Denominator of test statistic is 0 for a bootstrap sample. This problem may resuly from too small and sample size but may be resolved if you try again with a different seed.") } else{ if(length(w)!=length(x)) stop("x and w must have same length") if(na.rm){ drop<-is.na(dep)|rowSums(is.na(covar))|is.na(w) covar<-covar[!drop,] xy<-dep[!drop] w<-w[!drop] } else xy<-dep if(robust){ autoload("rlm","MASS") out<-rlm(covar,xy,w) out$df.residual<-length(xy)-out$rank } else out<-lm.wfit(covar,xy,w) if(standardize) denom <- sqrt(sum(w*out$residuals^2)/out$df.residual)*sqrt(diag(chol2inv(out$qr$qr,size=out$rank))[1]) else denom <- 1 if(denom==0) stop("Denominator of test statistic is 0 for a bootstrap sample. This problem may resuly from too small and sample size but may be resolved if you try again with a different seed.") } num<-out$coef[1]-psi0 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } c(num,denom,snum) } } ## returns NA's if coxph fails ## strata is covariates to adjust for coxY<-function(surv.obj,strata=NULL,psi0=0,na.rm=TRUE,standardize=TRUE,alternative="two.sided",init=NULL,method="efron"){ autoload("coxph","survival") if(!inherits(surv.obj,"Surv")) #covers NULL case stop("Response must be a survival object") if(!is.null(strata)) strat<-as.matrix(strata) else strat<-rep(1,nrow(surv.obj)) strat<-strata(strat) Samp<-1:nrow(surv.obj) function(x,w=NULL, samp=Samp){ if(!is.null(w)&length(w)!=length(x)) stop("x and w must have same length") dep<-surv.obj[samp,] covar<-strat[samp] if(na.rm){ drop<-is.na(x) if(!is.null(w)) drop<-drop+is.na(w) if(!is.null(strat)) drop<-drop+is.na(covar) x<-x[!drop] w<-w[!drop] covar<-covar[!drop] dep<-dep[!drop,] } if(sum(is.na(covar))){ drop<-is.na(covar) x<-x[!drop] w<-w[!drop] covar<-covar[!drop] dep<-dep[!drop,] } design<-cbind(x,rep(1,length(x))) design[!is.finite(w),]<-NA control<-coxph.control() srvd<-try(coxph.fit(design,dep,strata=covar,init=init,control=control,weights=w,method=method,rownames=rownames(design))) if(inherits(srvd,"try-error")) return(c(NA,NA,NA)) if(standardize) denom <- sqrt(srvd$var[1,1]) else denom <- 1 if(denom==0) stop("Denominator of test statistic is 0 for a bootstrap sample. This problem may resuly from too small and sample size but may be resolved if you try again with a different seed.") num<-srvd$coef[1]-psi0 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } else { if(alternative=="less"){ snum<-(-1) num<-(-num) } else snum<-1 } c(num,denom,snum) } } #function that applies stat.closure to (X,W) get.Tn<-function(X,stat.closure,W=NULL){ wapply(X,1,stat.closure,W) } multtest/R/test.R0000755000175200017520000010115614710217035014767 0ustar00biocbuildbiocbuild#main user-level function for multiple hypothesis testing MTP<-function(X,W=NULL,Y=NULL,Z=NULL,Z.incl=NULL,Z.test=NULL,na.rm=TRUE,test="t.twosamp.unequalvar",robust=FALSE,standardize=TRUE,alternative="two.sided",psi0=0,typeone="fwer",k=0,q=0.1,fdr.method="conservative",alpha=0.05,smooth.null=FALSE,nulldist="boot.cs",B=1000,ic.quant.trans=FALSE,MVN.method="mvrnorm",penalty=1e-6,method="ss.maxT",get.cr=FALSE,get.cutoff=FALSE,get.adjp=TRUE,keep.nulldist=TRUE,keep.rawdist=FALSE,seed=NULL,cluster=1,type=NULL,dispatch=NULL,marg.null=NULL,marg.par=NULL,keep.margpar=TRUE,ncp=NULL,perm.mat=NULL,keep.index=FALSE,keep.label=FALSE){ ##sanity checks / formatting #X if(missing(X)) stop("Argument X is missing") if(inherits(X,"eSet")){ if(is.character(Y)) Y<-pData(X)[,Y] if(is.character(Z)){ if(Z%in%Y){ Z<-Z[!(Z%in%Y)] warning(paste("Outcome Y=",Y,"should not be included in the covariates Z=",Z,". Removing Y from Z",sep="")) } Z<-pData(X)[,Z] } X<-exprs(X) } X<-as.matrix(X) dx<-dim(X) if(length(dx)==0) stop("dim(X) must have positive length") p<-dx[1] n<-dx[2] #W if(!is.null(W)){ W[W<=0]<-NA if(is.vector(W) & length(W)==n) W <- matrix(rep(W,p),nrow=p,ncol=n,byrow=TRUE) if(is.vector(W) & length(W)==p) W <- matrix(rep(W,n),nrow=p,ncol=n) if(test%in%c("f","f.block","f.twoway","t.cor","z.cor")){ warning("Weights can not be used with F-tests or tests of correlation parameters, arg W is being ignored.") W<-NULL } } #Y if(!is.null(Y)){ if(is.Surv(Y)){ if(test!="coxph.YvsXZ") stop(paste("Test ",test," does not work with a survival object Y",sep="")) } else{ Y<-as.matrix(Y) if(ncol(Y)!=1) stop("Argument Y must be a vector") } if(nrow(Y)!=n) stop("Outcome Y has length ",nrow(Y),", not equal to n=",n) } if(test=="t.pair") n <- dx[2]/2 #Z if(!is.null(Z)){ Z<-as.matrix(Z) if(nrow(Z)!=n) stop("Covariates in Z have length ",nrow(Z),", not equal to n=",n,"\n") #Z.incl tells which columns of Z to include in model if(is.null(Z.incl)) Z.incl<-(1:ncol(Z)) if(length(Z.incl)>ncol(Z)) stop("Number of columns in Z.incl ",length(Z.incl)," exceeds ncol(Z)=",ncol(Z)) if(is.logical(Z.incl)) Z.incl<-(1:ncol(Z))[Z.incl] if(is.character(Z.incl) & length(Z.incl)!=sum(Z.incl%in%colnames(Z))) stop(paste("Z.incl=",Z.incl," names columns not in Z",sep="")) Za<-Z[,Z.incl] #Z.test tells which column of Z to test for an association if(test=="lm.XvsZ"){ if(is.null(Z.test)){ warning(paste("Z.test not specified, testing for association with variable in first column of Z:",colnames(Z)[1],sep="")) Z.test<-1 } if(is.logical(Z.test)) Z.test<-(1:ncol(Z))[Z.test] if(is.character(Z.test) & !(Z.test%in%colnames(Z))) stop(paste("Z.test=",Z.test," names a column not in Z",sep="")) if(is.numeric(Z.test) & !(Z.test%in%(1:ncol(Z)))) stop("Value of Z.test must be >0 and <",ncol(Z)) if(Z.test%in%Z.incl){ Z.incl<-Z.incl[!(Z.incl%in%Z.test)] Za<-Z[,Z.incl] } Za<-cbind(Z[,Z.test],Za) } Z<-Za rm(Za) } #test TESTS<-c("t.onesamp","t.twosamp.equalvar","t.twosamp.unequalvar","t.pair","f","f.block","f.twoway","lm.XvsZ","lm.YvsXZ","coxph.YvsXZ","t.cor","z.cor") test<-TESTS[pmatch(test,TESTS)] if(is.na(test)) stop(paste("Invalid test, try one of ",TESTS,sep="")) #robust + see below with choice of nulldist if(test=="coxph.YvsXZ" & robust==TRUE) warning("No robust version of coxph.YvsXZ, proceding with usual version") #temp until fix if((test=="t.onesamp" | test=="t.pair") & robust==TRUE) stop("Robust test statistics currently not available for one-sample or two-sample paired test statistics.") #alternative ALTS<-c("two.sided","less","greater") alternative<-ALTS[pmatch(alternative,ALTS)] if(is.na(alternative)) stop(paste("Invalid alternative, try one of ",ALTS,sep="")) #null values if(length(psi0)>1) stop(paste("In current implementation, all hypotheses must have the same null value. Number of null values: ",length(psi0),">1",sep="")) #Error rate ERROR<-c("fwer","gfwer","tppfp","fdr") typeone<-ERROR[pmatch(typeone,ERROR)] if(is.na(typeone)) stop(paste("Invalid typeone, try one of ",ERROR,sep="")) if(any(alpha<0) | any(alpha>1)) stop("Nominal level alpha must be between 0 and 1") nalpha<-length(alpha) reject<- if(nalpha) array(dim=c(p,nalpha),dimnames=list(rownames(X),paste("alpha=",alpha,sep=""))) if(test=="z.cor" | test=="t.cor") matrix(nrow=0,ncol=0) # deprecated for correlations, rownames now represent p choose 2 edges - too weird and clunky in current state for output. else matrix(nrow=0,ncol=0) if(typeone=="gfwer"){ if(get.cr==TRUE) warning("Confidence regions not currently implemented for gFWER") if(get.cutoff==TRUE) warning("Cut-offs not currently implemented for gFWER") get.cr<-get.cutoff<-FALSE if(k<0) stop("Number of false positives can not be negative") if(k>=p) stop(paste("Number of false positives must be less than number of tests=",p,sep="")) if(length(k)>1){ k<-k[1] warning("can only compute gfwer(k) adjp for one value of k at a time (using first value), try fwer2gfwer() function for multiple k") } } if(typeone=="tppfp"){ if(get.cr==TRUE) warning("Confidence regions not currently implemented for TPPFP") if(get.cutoff==TRUE) warning("Cut-offs not currently implemented for TPPFP") get.cr<-get.cutoff<-FALSE if(q<0) stop("Proportion of false positives, q, can not be negative") if(q>1) stop("Proportion of false positives, q, must be less than 1") if(length(q)>1){ q<-q[1] warning("Can only compute tppfp adjp for one value of q at a time (using first value), try fwer2tppfp() function for multiple q") } } if(typeone=="fdr"){ if(!nalpha) stop("Must specify a nominal level alpha for control of FDR") if(get.cr==TRUE) warning("Confidence regions not currently implemented for FDR") if(get.cutoff==TRUE) warning("Cut-offs not currently implemented for FDR") get.cr<-get.cutoff<-FALSE } #null distribution NULLS<-c("boot","boot.cs","boot.ctr","boot.qt","ic","perm") nulldist<-NULLS[pmatch(nulldist,NULLS)] if(is.na(nulldist)) stop(paste("Invalid nulldist, try one of ",NULLS,sep="")) if(nulldist=="boot"){ nulldist <- "boot.cs" warning("nulldist='boot' is deprecated and now corresponds to 'boot.cs'. Proceeding with default center and scaled null distribution.") } if(nulldist!="perm" & test=="f.block") stop("f.block test only available with permutation null distribution. Try test=f.twoway") if((nulldist=="perm" | nulldist=="ic") & keep.rawdist==TRUE) stop("Test statistics distribution estimation using keep.rawdist=TRUE is only available with a bootstrap-based null distribution") if(nulldist=="boot.qt" & robust==TRUE) stop("Quantile transform method requires parametric marginal nulldist. Set robust=FALSE") if(nulldist=="boot.qt" & standardize==FALSE) stop("Quantile transform method requires standardized test statistics. Set standardize=TRUE") if(nulldist=="ic" & robust==TRUE) stop("Influence curve null distributions available only for (parametric) t-statistics. Set robust=FALSE") if(nulldist=="ic" & standardize==FALSE) stop("Influence curve null distributions available only for (standardized) t-statistics. Set standardize=TRUE") if(nulldist=="ic" & (test=="f" | test=="f.twoway" | test=="f.block" | test=="coxph.YvsXZ")) stop("Influence curve null distributions available only for tests of mean, regression and correlation parameters. Cox PH also not yet implemented.") if(nulldist!="ic" & (test=="t.cor" | test=="z.cor")) stop("Tests of correlation parameters currently only implemented for influence curve null distributions") if((test!="t.cor" & test!="z.cor") & keep.index) warning("Matrix of indices only returned for tests of correlation parameters") ### specifically for sampling null test statistics with IC nulldist MVNS <- c("mvrnorm","Cholesky") MVN.method <- MVNS[pmatch(MVN.method,MVNS)] if(is.na(MVN.method)) stop("Invalid sampling method for IC-based MVN null test statistics. Try either 'mvrnorm' or 'Cholesky'") #methods METHODS<-c("ss.maxT","ss.minP","sd.maxT","sd.minP") method<-METHODS[pmatch(method,METHODS)] if(is.na(method)) stop(paste("Invalid method, try one of ",METHODS,sep="")) #estimate and conf.reg ftest<-FALSE if(test=="f" | test=="f.block"){ ftest<-TRUE if(get.cr) stop("Confidence intervals not available for F tests, try get.cr=FALSE") if(!is.null(W)) warning("Weighted F tests not yet implemented, proceding with unweighted version") } #permutation null distribution - self contained in this if statement if(nulldist=="perm"){ if(method=="ss.minP" | method=="ss.maxT") stop("Only step-down procedures are currently available with permutation nulldist") if(smooth.null) warning("Kernal density p-values not available with permutation nulldist") if(get.cr) warning("Confidence regions not available with permutation nulldist") if(get.cutoff) warning("Cut-offs not available with permutation nulldist") #if(keep.nulldist) warning("keep.nulldist not available with permutation nulldist") ptest<-switch(test, t.onesamp=stop("One sample t-test not available with permutation nulldist"), t.twosamp.equalvar=ifelse(robust,"wilcoxon","t.equalvar"), t.twosamp.unequalvar="t", t.pair="pairt", f="f", f.block="blockf", f.twoway=stop("f.twoway not available with permutation nulldist"), lm.XvsZ=stop("lm.XvsZ not available with permutation nulldist"), lm.YvsXZ=stop("lm.YvsXZ not available with permutation nulldist"), coxph.YvsXZ=stop("coxph.YvsXZ not available with permutation nulldist"), t.cor=stop("t.cor not available with permutation nulldist"), z.cor=stop("z.cor not available with permutation nulldist") ) pside<-switch(alternative,two.sided="abs",less="lower",greater="upper") pnonpara<- if(robust)"y" else "n" if(any(is.na(Y))){ bad<-is.na(Y) Y<-Y[!bad] X<-X[,!bad] warning("No NAs allowed in Y, these observations have been removed.") } presult<-switch(method, sd.maxT=mt.maxT(X,classlabel=Y,test=ptest,side=pside,B=B,nonpara=pnonpara), sd.minP=mt.minP(X,classlabel=Y,test=ptest,side=pside,B=B,nonpara=pnonpara) ) if(typeone=="fwer" & nalpha){ for(a in 1:nalpha) reject[,a]<-(presult$adjp<=alpha[a]) } if(typeone=="gfwer"){ presult$adjp<-fwer2gfwer(presult$adjp,k) if(nalpha){ for(a in 1:nalpha) reject[,a]<-(presult$adjp<=alpha[a]) } if(!get.adjp) presult$adjp<-vector("numeric",0) } if(typeone=="tppfp"){ presult$adjp<-fwer2tppfp(presult$adjp,q) if(nalpha){ for(a in 1:nalpha) reject[,a]<-(presult$adjp<=alpha[a]) } if(!get.adjp) presult$adjp<-vector("numeric",0) } if(typeone=="fdr"){ temp<-fwer2fdr(presult$adjp,fdr.method,alpha) reject<-temp$reject if(!get.adjp) presult$adjp<-vector("numeric",0) else presult$adjp<-temp$adjp rm(temp) } #output results orig<-order(presult$index) if(keep.label) label <- as.numeric(Y) else label <- vector("numeric",0) out<-new("MTP",statistic=presult$teststat[orig],estimate=vector("numeric",0),sampsize=n,rawp=presult$rawp[orig],adjp=presult$adjp[orig],conf.reg=array(dim=c(0,0,0)),cutoff=matrix(nrow=0,ncol=0),reject=as.matrix(reject[orig,]),rawdist=matrix(nrow=0,ncol=0),nulldist=matrix(nrow=0,ncol=0),nulldist.type="perm",marg.null=vector("character",0),marg.par=matrix(nrow=0,ncol=0),label=label,index=matrix(nrow=0,ncol=0),call=match.call(),seed=vector("integer",0)) } else{ # This should apply to all other MTP calls using the bootstrap and IC nulldists. if(nulldist=="boot.qt"){ # get parameter vals for quantile transform. # Get parameter values for the quantile transformed nulldist if(!is.null(marg.par)){ if(is.matrix(marg.par)) marg.par <- marg.par if(is.vector(marg.par)) marg.par <- matrix(rep(marg.par,p),nrow=p,ncol=length(marg.par),byrow=TRUE) } if(is.null(ncp)) ncp = 0 if(!is.null(perm.mat)){ if(dim(X)[1]!=dim(perm.mat)[1]) stop("perm.mat must same number of rows as X.") } nstats <- c("t.twosamp.unequalvar","z.cor","lm.XvsZ","lm.YvsXZ","coxph.lmYvsXZ") tstats <- c("t.onesamp","t.twosamp.equalvar","t.pair","t.cor") fstats <- c("f","f.block","f.twoway") # If default , set values of marg.null to pass on. if(is.null(marg.null)){ if(any(nstats == test)) marg.null="normal" if(any(tstats == test)) marg.null="t" if(any(fstats == test)) marg.null="f" } else{ # Check to see that user-supplied entries make sense. MARGS <- c("normal","t","f","perm") marg.null <- MARGS[pmatch(marg.null,MARGS)] if(is.na(marg.null)) stop("Invalid marginal null distribution. Try one of: normal, t, f, or perm") if(any(tstats==test) & marg.null == "f") stop("Choice of test stat and marginal nulldist do not match") if(any(fstats==test) & (marg.null == "normal" | marg.null=="t")) stop("Choice of test stat and marginal nulldist do not match") if(marg.null=="perm" & is.null(perm.mat)) stop("Must supply a matrix of permutation test statistics if marg.null='perm'") if(marg.null=="f" & ncp < 0) stop("Cannot have negative noncentrality parameter with F distribution.") } # If default (=NULL), set values of marg.par. Return as m by 1 or 2 matrix. if(is.null(marg.par)){ marg.par <- switch(test, t.onesamp = n-1, t.twosamp.equalvar = n-2, t.twosamp.unequalvar = c(0,1), t.pair = floor(n/2-1), f = c(length(is.finite(unique(Y)))-1,dim(X)[2]- length(is.finite(unique(Y))) ), f.twoway = { c(length(is.finite(unique(Y)))-1, dim(X)[2]-(length(is.finite(unique(Y)))*length(gregexpr('12', paste(Y, collapse=""))[[1]]))-2) }, lm.XvsZ = c(0,1), lm.YvsXZ = c(0,1), coxph.YvsXZ = c(0,1), t.cor = n-2, z.cor = c(0,1) ) marg.par <- matrix(rep(marg.par,dim(X)[1]),nrow=dim(X)[1],ncol=length(marg.par),byrow=TRUE) } else{ # Check that user-supplied values of marg.par make sense (marg.par != NULL) if((marg.null=="t" | marg.null=="f") & any(marg.par[,1]==0)) stop("Cannot have zero df with t or F distributions. Check marg.par settings") if(marg.null=="t" & dim(marg.par)[2]>1) stop("Too many parameters for t distribution. marg.par should have length 1.") if((marg.null=="f" | marg.null=="normal") & dim(marg.par)[2]!=2) stop("Incorrect number of parameters defining marginal null distribution. marg.par should have length 2.") } } ##making a closure for the particular test theta0<-0 tau0<-1 stat.closure<-switch(test, t.onesamp=meanX(psi0,na.rm,standardize,alternative,robust), t.twosamp.equalvar=diffmeanX(Y,psi0,var.equal=TRUE,na.rm,standardize,alternative,robust), t.twosamp.unequalvar=diffmeanX(Y,psi0,var.equal=FALSE,na.rm,standardize,alternative,robust), t.pair={ uY<-sort(unique(Y)) if(length(uY)!=2) stop("Must have two class labels for this test") if(trunc(ncol(X)/2)!=ncol(X)/2) stop("Must have an even number of samples for this test") X<-X[,Y==uY[2]]-X[,Y==uY[1]] Y<-NULL n<-dim(X)[2] meanX(psi0,na.rm,standardize,alternative,robust) }, f={ theta0<-1 tau0<-2/(length(unique(Y))-1) FX(Y,na.rm,robust) }, f.twoway={ theta0<-1 tau0 <- 2/((length(unique(Y))*length(gregexpr('12', paste(Y, collapse=""))[[1]]))-1) twowayFX(Y,na.rm,robust) }, lm.XvsZ=lmX(Z,n,psi0,na.rm,standardize,alternative,robust), lm.YvsXZ=lmY(Y,Z,n,psi0,na.rm,standardize,alternative,robust), coxph.YvsXZ=coxY(Y,Z,psi0,na.rm,standardize,alternative), t.cor=NULL, z.cor=NULL) ##computing observed test statistics if(test=="t.cor" | test=="z.cor") obs<-corr.Tn(X,test=test,alternative=alternative,use="pairwise") else obs<-get.Tn(X,stat.closure,W) ##or computing influence curves if(nulldist=="ic"){ rawdistn <- matrix(nrow=0,ncol=0) nulldistn<-switch(test, t.onesamp=corr.null(X,W,Y,Z,test="t.onesamp",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.pair=corr.null(X,W,Y,Z,test="t.pair",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.twosamp.equalvar=corr.null(X,W,Y,Z,test="t.twosamp.equalvar",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.twosamp.unequalvar=corr.null(X,W,Y,Z,test="t.twosamp.unequalvar",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), lm.XvsZ=corr.null(X,W,Y,Z,test="lm.XvsZ",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), lm.YvsXZ=corr.null(X,W,Y,Z,test="lm.YvsXZ",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), t.cor=corr.null(X,W,Y,Z,test="t.cor",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat), z.cor=corr.null(X,W,Y,Z,test="z.cor",alternative,use="pairwise",B,MVN.method,penalty,ic.quant.trans,marg.null,marg.par,perm.mat) ) } ## Cluster Checking if ((!is.numeric(cluster))&(!inherits(cluster,c("MPIcluster", "PVMcluster", "SOCKcluster")))) stop("Cluster argument must be integer or cluster object") ## Create cluster if cluster > 1 and load required packages on nodes if(is.numeric(cluster)){ if(cluster>1){ ## Check installation of packages have_snow <- qRequire("snow") if(!have_snow) stop("The package snow is required to use a cluster. Either snow is not installed or it is not in the standard library location.") if (is.null(type)) stop("Must specify type argument to use a cluster. Alternatively, provide a cluster object as the argument to cluster.") if (type=="SOCK") stop("Create desired cluster and specify cluster object as the argument to cluster directly.") if ((type!="PVM")&(type!="MPI")) stop("Type must be MPI or PVM") else if (type=="MPI"){ have_rmpi <- qRequire("Rmpi") if(!have_rmpi) stop("The package Rmpi is required for the specified type. Either Rmpi is not installed or it is not in the standard library location.") } else if (type=="PVM"){ have_rpvm <- qRequire("rpvm") if(!have_rpvm) stop("The package rpvm is required for the specified type. Either rpvm is not installed or it is not in the standard library location.") } cluster <- makeCluster(cluster, type) clusterEvalQ(cluster, {library(Biobase); library(multtest)}) if (is.null(dispatch)) dispatch=0.05 } } else if(inherits(cluster,c("MPIcluster", "PVMcluster", "SOCKcluster"))){ clusterEvalQ(cluster, {library(Biobase); library(multtest)}) if (is.null(dispatch)) dispatch=0.05 } ##computing the nonparametric bootstrap (null) distribution if(nulldist=="boot.cs" | nulldist=="boot.ctr" | nulldist=="boot.qt"){ nulldistn<-boot.null(X,Y,stat.closure,W,B,test,nulldist,theta0,tau0,marg.null,marg.par,ncp,perm.mat,alternative,seed,cluster,dispatch,keep.nulldist,keep.rawdist) if(inherits(cluster,c("MPIcluster", "PVMcluster", "SOCKcluster"))) stopCluster(cluster) rawdistn <- nulldistn$rawboot nulldistn <- nulldistn$muboot } ##performing multiple testing #rawp values rawp<-apply((obs[1,]/obs[2,])<=nulldistn,1,mean) if(smooth.null & (min(rawp,na.rm=TRUE)==0)){ zeros<-(rawp==0) if(sum(zeros)==1){ den<-density(nulldistn[zeros,],to=max(obs[1,zeros]/obs[2,zeros],nulldist[zeros,],na.rm=TRUE),na.rm=TRUE) rawp[zeros]<-sum(den$y[den$x>=(obs[1,zeros]/obs[2,zeros])])/sum(den$y) } else{ den<-apply(nulldistn[zeros,],1,density,to=max(obs[1,zeros]/obs[2,zeros],nulldistn[zeros,],na.rm=TRUE),na.rm=TRUE) newp<-NULL stats<-obs[1,zeros]/obs[2,zeros] for(i in 1:length(den)){ newp[i]<-sum(den[[i]]$y[den[[i]]$x>=stats[i]])/sum(den[[i]]$y) } rawp[zeros]<-newp } rawp[rawp<0]<-0 } #c, cr, adjp values pind<-ifelse(typeone!="fwer",TRUE,get.adjp) if(method=="ss.maxT") out<-ss.maxT(nulldistn,obs,alternative,get.cutoff,get.cr,pind,alpha) if(method=="ss.minP") out<-ss.minP(nulldistn,obs,rawp,alternative,get.cutoff,get.cr,pind,alpha) if(method=="sd.maxT") out<-sd.maxT(nulldistn,obs,alternative,get.cutoff,get.cr,pind,alpha) if(method=="sd.minP") out<-sd.minP(nulldistn,obs,rawp,alternative,get.cutoff,get.cr,pind,alpha) if(typeone=="fwer" & nalpha & (test!="t.cor" & test !="z.cor")){ for(a in 1:nalpha) reject[,a]<-(out$adjp<=alpha[a]) } #augmentation procedures if(typeone=="gfwer"){ out$adjp<-as.numeric(fwer2gfwer(out$adjp,k)) out$c<-matrix(nrow=0,ncol=0) out$cr<-array(dim=c(0,0,0)) if(nalpha){ for(a in 1:nalpha) reject[,a]<-(out$adjp<=alpha[a]) } if(!get.adjp) out$adjp<-vector("numeric",0) } if(typeone=="tppfp"){ out$adjp<-as.numeric(fwer2tppfp(out$adjp,q)) out$c<-matrix(nrow=0,ncol=0) out$cr<-array(dim=c(0,0,0)) if(nalpha){ for(a in 1:nalpha) reject[,a]<-(out$adjp<=alpha[a]) } if(!get.adjp) out$adjp<-vector("numeric",0) } if(typeone=="fdr"){ out$c<-matrix(nrow=0,ncol=0) out$cr<-array(dim=c(0,0,0)) temp<-fwer2fdr(out$adjp,fdr.method,alpha) reject<-temp$reject if(!get.adjp) out$adjp<-vector("numeric",0) else out$adjp<-temp$adjp rm(temp) } #output results if(!keep.nulldist) nulldistn<-matrix(nrow=0,ncol=0) if(!keep.rawdist) rawdist<-matrix(nrow=0,ncol=0) if(nulldist!="boot.qt"){ marg.null <- vector("character") marg.par <- matrix(nrow=0,ncol=0) } if(!keep.label) label <- vector("numeric",0) if(!keep.index) index <- matrix(nrow=0,ncol=0) if(test!="z.cor" & test !="t.cor") index <- matrix(nrow=0,ncol=0) if(keep.index & (test!="z.cor" | test !="t.cor")){ index <- t(combn(p,2)) colnames(index) <- c("Var1","Var2") } names(out$adjp)<-names(rawp) estimates <- obs[3,]*obs[1,] if(ftest) estimates <- vector("numeric",0) if(test=="t.onesamp" | test=="t.pair") estimates <- obs[3,]*obs[1,]/sqrt(n) out<-new("MTP",statistic=(obs[3,]*obs[1,]/obs[2,]), estimate=estimates, sampsize=n,rawp=rawp,adjp=out$adjp,conf.reg=out$cr,cutoff=out$c,reject=reject, rawdist=rawdistn,nulldist=nulldistn,nulldist.type=nulldist, marg.null=marg.null,marg.par=marg.par,label=label,index=index, call=match.call(),seed=as.integer(seed)) } return(out) } #funtions to compute cutoffs and adjusted pvals ss.maxT<-function(null,obs,alternative,get.cutoff,get.cr,get.adjp,alpha=0.05){ p<-dim(null)[1] B<-dim(null)[2] nalpha<-length(alpha) mT<-apply(null,2,max) getc<-matrix(nrow=0,ncol=0) getcr<-array(dim=c(0,0,0)) getp<-vector(mode="numeric") if(get.cutoff | get.cr){ getc<-array(dim=c(p,nalpha),dimnames=list(dimnames(null)[[1]],paste("alpha=",alpha,sep=""))) if(get.cr) getcr<-array(dim=c(p,2,nalpha),dimnames=list(dimnames(null)[[1]],c("LB","UB"),paste("alpha=",alpha,sep=""))) for(a in 1:nalpha){ getc[,a]<-rep(quantile(mT,pr=(1-alpha[a])),p) if(get.cr) getcr[,,a]<-cbind(ifelse(rep(alternative=="less",p),rep(-Inf,p),obs[3,]*obs[1,]-getc[,a]*obs[2,]),ifelse(rep(alternative=="greater",p),rep(Inf,p),obs[3,]*obs[1,]+getc[,a]*obs[2,])) } } if(get.adjp) getp<-apply((obs[1,]/obs[2,])<=matrix(mT,nrow=p,ncol=B,byrow=TRUE),1,mean) if(!get.cutoff) getc<-matrix(nrow=0,ncol=0) list(c=getc,cr=getcr,adjp=getp) } ss.minP<-function(null,obs,rawp,alternative,get.cutoff,get.cr,get.adjp,alpha=0.05){ p<-dim(null)[1] B<-dim(null)[2] nalpha<-length(alpha) getc<-matrix(nrow=0,ncol=0) getcr<-array(dim=c(0,0,0)) getp<-vector(mode="numeric") R<-apply(null,1,rank) if(get.cutoff | get.cr){ getc<-array(dim=c(p,nalpha),dimnames=list(dimnames(null)[[1]],paste("alpha=",alpha,sep=""))) if(get.cr) getcr<-array(dim=c(p,2,nalpha),dimnames=list(dimnames(null)[[1]],c("LB","UB"),paste("alpha=",alpha,sep=""))) for(a in 1:nalpha){ q<-quantile(apply(R,1,max),1-alpha[a]) for(j in 1:p){ getc[j,a]<-min(c(null[j,R[,j]>=q],max(null[j,]))) } if(get.cr) getcr[,,a]<-cbind(ifelse(rep(alternative=="less",p),rep(-Inf,p),obs[3,]*obs[1,]-getc[,a]*obs[2,]),ifelse(rep(alternative=="greater",p),rep(Inf,p),obs[3,]*obs[1,]+getc[,a]*obs[2,])) } } if(get.adjp){ R<-matrix(apply((B+1-R)/B,1,min),nrow=p,ncol=B,byrow=TRUE) getp<-apply(rawp>=R,1,mean) } if(!get.cutoff) getc<-matrix(nrow=0,ncol=0) list(c=getc,cr=getcr,adjp=getp) } sd.maxT<-function(null,obs,alternative,get.cutoff,get.cr,get.adjp,alpha=0.05){ p<-dim(null)[1] B<-dim(null)[2] nalpha<-length(alpha) ord<-rev(order(obs[1,]/obs[2,])) mT<-null[ord[p],] getc<-matrix(nrow=0,ncol=0) getcr<-array(dim=c(0,0,0)) getp<-vector(mode="numeric") if(get.cutoff | get.cr){ getc<-array(dim=c(p,nalpha),dimnames=list(dimnames(null)[[1]],paste("alpha=",alpha,sep=""))) for(a in 1:nalpha) getc[ord[p],a]<-quantile(mT,pr=1-alpha[a]) } if(get.adjp) getp[ord[p]]<-mean((obs[1,]/obs[2,])[ord[p]]<=mT) for(j in (p-1):1){ mT<-pmax(mT,null[ord[j],]) if(get.adjp) getp[ord[j]]<-mean((obs[1,ord[j]]/obs[2,ord[j]])<=mT) if(get.cutoff | get.cr){ for(a in 1:nalpha) getc[ord[j],a]<-quantile(mT,pr=(1-alpha[a])) } } c.ind<-rep(TRUE,nalpha) for(j in 2:p){ if(get.adjp) getp[ord[j]]<-max(getp[ord[j]],getp[ord[j-1]]) if(get.cutoff | get.cr){ for(a in 1:nalpha){ if(c.ind[a]){ if((obs[1,]/obs[2,])[ord[j-1]]<=getc[ord[j-1],a]){ getc[ord[j:p],a]<-Inf c.ind[a]<-FALSE } } } } } if(get.cr){ getcr<-array(dim=c(p,2,nalpha),dimnames=list(dimnames(null)[[1]],c("LB","UB"),paste("alpha=",alpha,sep=""))) for(a in 1:nalpha){ getcr[,,a]<-cbind(ifelse(rep(alternative=="less",p),rep(-Inf,p),obs[3,]*obs[1,]-getc[,a]*obs[2,]),ifelse(rep(alternative=="greater",p),rep(Inf,p),obs[3,]*obs[1,]+getc[,a]*obs[2,])) } } if(!get.cutoff) getc<-matrix(nrow=0,ncol=0) list(c=getc,cr=getcr,adjp=getp) } sd.minP<-function(null,obs,rawp,alternative,get.cutoff,get.cr,get.adjp,alpha=0.05){ p<-dim(null)[1] B<-dim(null)[2] nalpha<-length(alpha) ord<-order(rawp) R<-apply(null,1,rank) #B x p mR<-R[,ord[p]] getc<-matrix(nrow=0,ncol=0) getcr<-array(dim=c(0,0,0)) getp<-vector(mode="numeric") if(get.cutoff | get.cr){ getc<-array(dim=c(p,nalpha),dimnames=list(dimnames(null)[[1]],paste("alpha=",alpha,sep=""))) for(a in 1:nalpha){ q<-quantile(mR,pr=1-alpha[a]) getc[ord[p],a]<-min(c(null[ord[p],R[,ord[p]]>=q],max(null[ord[p],]))) } } if(get.adjp){ mP<-(B+1-mR)/B getp[ord[p]]<-mean(rawp[ord[p]]>=mP) } for(j in (p-1):1){ mR<-pmax(mR,R[,ord[j]]) if(get.adjp){ mP<-(B+1-mR)/B getp[ord[j]]<-mean(rawp[ord[j]]>=mP) } if(get.cutoff | get.cr){ for(a in 1:nalpha){ q<-quantile(mR,pr=1-alpha[a]) getc[ord[j],a]<-min(c(null[ord[j],R[,ord[j]]>=q],max(null[ord[j],]))) } } } c.ind<-rep(TRUE,nalpha) for(j in 2:p){ if(get.adjp) getp[ord[j]]<-max(getp[ord[j]],getp[ord[j-1]]) if(get.cutoff | get.cr){ for(a in 1:nalpha){ if(c.ind[a]){ if((obs[1,]/obs[2,])[ord[j-1]]<=getc[ord[j-1],a]){ getc[ord[j:p],a]<-Inf c.ind[a]<-FALSE } } } } } if(get.cr){ getcr<-array(dim=c(p,2,nalpha),dimnames=list(dimnames(null)[[1]],c("LB","UB"),paste("alpha=",alpha,sep=""))) for(a in 1:nalpha){ getcr[,,a]<-cbind(ifelse(rep(alternative=="less",p),rep(-Inf,p),obs[3,]*obs[1,]-getc[,a]*obs[2,]),ifelse(rep(alternative=="greater",p),rep(Inf,p),obs[3,]*obs[1,]+getc[,a]*obs[2,])) } } if(!get.cutoff) getc<-matrix(nrow=0,ncol=0) list(c=getc,cr=getcr,adjp=getp) } #functions to convert FWER adjp to AMTP (gFWER, TPPFP) adjp: fwer2gfwer<-function(adjp,k=0){ ord<-order(adjp) m<-length(adjp) if(any(k>=m)) stop(paste("number of rejections k=",k," must be less than number of hypotheses=",m,sep="")) newp<-NULL for(j in k) newp<-rbind(newp,c(rep(0,j),adjp[ord[1:(m-j)]])) rownames(newp)<-k colnames(newp)<-ord newp<-matrix(newp[,order(ord)],ncol=m,byrow=FALSE) return(t(newp)) } fwer2tppfp<-function(adjp,q=0.05){ ord<-order(adjp) m<-length(adjp) newp<-NULL if(any(q>1)|any(q<0)) stop(paste("proportion of false positives q=",q," must be in [0,1]",sep="")) for(l in q) newp<-rbind(newp,adjp[ord][ceiling((1:m)*(1-l))]) rownames(newp)<-q colnames(newp)<-names(ord) newp<-matrix(newp[,order(ord)],ncol=m,byrow=FALSE) return(t(newp)) } #function to compute rejection indicator for FDR methods fwer2fdr<-function(adjp,method="both",alpha=0.05){ get.cons<-function(adjp,alpha,ord,M,nalpha){ newp<-NULL for(m in 1:M){ #try ceiling/floor k<-if(m%%2) 0:((m-1)/2) else 0:(m/2) f<-2*adjp[ord][m-k] u<-2*(k+1)/m l<-2*k/m if(sum(f<=u)){ ind<-min(which(f<=u)) newp[ord[m]]<- if(f[ind]>=l[ind]) f[ind] else l[ind] } else newp[ord[m]]<-1 } newp[newp>1]<-1 a<-alpha/2 rejections<-matrix(nrow=M,ncol=nalpha) for(i in 1:nalpha) rejections[,i]<-(fwer2tppfp(adjp,a[i])<=a[i]) return(list(reject=rejections,adjp=newp)) } get.restr<-function(adjp,alpha,ord,M,nalpha){ newp<-NULL ginv<-function(x) 1-(1-x)^2 for(m in 1:M){ k<-m:1 f<-adjp[ord][k] u<-1-(k-1)/m l<-1-k/m if(sum(f<=u)){ ind<-min(which(f<=u)) newp[ord[m]]<- if(f[ind]>=l[ind]) ginv(f[ind]) else ginv(l[ind]) } else newp[ord[m]]<-1 } newp[newp>1]<-1 a<-1-sqrt(1-alpha) rejections<-matrix(nrow=M,ncol=nalpha) for(i in 1:nalpha) rejections[,i]<-(fwer2tppfp(adjp,a[i])<=a[i]) return(list(reject=rejections,adjp=newp)) } ord<-order(adjp) nalpha<-length(alpha) M<-length(adjp) if(method=="both"){ rejections<-array(dim=c(M,nalpha,2),dimnames=list(NULL,paste("alpha=",alpha,sep=""),c("conservative","restricted"))) newp<-matrix(nrow=M,ncol=2,dimnames=list(NULL,c("conservative","restricted"))) temp<-get.cons(adjp,alpha,ord,M,nalpha) rejections[,,"conservative"]<-temp$reject newp[,"conservative"]<-temp$adjp temp<-get.restr(adjp,alpha,ord,M,nalpha) rejections[,,"restricted"]<-temp$reject newp[,"restricted"]<-temp$adjp rm(temp) } else{ rejections<-matrix(nrow=M,ncol=nalpha,dimnames=list(NULL,paste("alpha=",alpha,sep=""))) newp<-NULL if(method=="conservative") temp<-get.cons(adjp,alpha,ord,M,nalpha) else temp<-get.restr(adjp,alpha,ord,M,nalpha) rejections<-temp$reject newp<-temp$adjp rm(temp) } return(list(reject=rejections,adjp=newp)) } multtest/R/zzz.R0000755000175200017520000010212514710217035014642 0ustar00biocbuildbiocbuild#utils::globalVariables(c("y")) setClass("MTP",representation(statistic="numeric", estimate="numeric", sampsize="numeric", rawp="numeric", adjp="numeric", conf.reg="array", cutoff="matrix", reject="matrix", rawdist="matrix", nulldist="matrix", nulldist.type="character", marg.null="character", marg.par="matrix", label="numeric", index="matrix", call="call", seed="integer"), prototype=list(statistic=vector("numeric",0), estimate=vector("numeric",0), sampsize=vector("numeric",0), rawp=vector("numeric",0), adjp=vector("numeric",0), conf.reg=array(), cutoff=matrix(nrow=0,ncol=0), reject=matrix(nrow=0,ncol=0), rawdist=matrix(nrow=0,ncol=0), nulldist=matrix(nrow=0,ncol=0), nulldist.type=vector("character",0), marg.null=vector("character",0), marg.par=matrix(nrow=0,ncol=0), label=vector("numeric",0), index=matrix(nrow=0,ncol=0), call=NULL, seed=vector("integer",0))) if( !isGeneric("mtp2ebmtp") ) setGeneric("mtp2ebmtp", function(object, ...) standardGeneric("mtp2ebmtp")) setMethod("mtp2ebmtp","MTP", function(object,...){ y<-new("EBMTP") slot(y,"statistic") <- object@statistic slot(y,"estimate") <- object@estimate slot(y,"sampsize") <- object@sampsize slot(y,"rawp") <- object@rawp slot(y,"adjp") <- object@adjp slot(y,"reject") <- object@reject slot(y,"rawdist") <- object@rawdist slot(y,"nulldist") <- object@nulldist slot(y,"nulldist.type") <- object@nulldist.type slot(y,"marg.null") <- object@marg.null slot(y,"marg.par") <- object@marg.par slot(y,"label") <- object@label slot(y,"index") <- object@index slot(y,"call") <- object@call slot(y,"seed") <- object@seed invisible(y) } ) if( !isGeneric("plot") ) setGeneric("plot", function(x, y, ...) standardGeneric("plot")) setMethod("plot","MTP", function(x,y="missing",which=1:4,caption=c("Rejections vs. Error Rate", "Ordered Adjusted p-values","Adjusted p-values vs. Statistics", "Unordered Adjusted p-values","Estimates & Confidence Regions", "Test Statistics & Cut-offs"),sub.caption = deparse(x@call,width.cutoff=500), ask = prod(par("mfcol"))6)) stop("which must be in 1:6") show<-rep(FALSE,6) show[which]<-TRUE m<-length(x@adjp) if(top>m){ warning("number of top hypotheses to plot exceeds total number of hypotheses - plotting less than requested number") top<-m } ord<-order(x@adjp) if(any(show[2:4]) & logscale){ pv<-(-log(x@adjp,10)) pvlab<-"-log (base 10) Adjusted p-values" } else{ pv<-x@adjp pvlab<-"Adjusted p-values" } one.fig<-prod(par("mfcol"))==1 if(ask){ op<-par(ask=TRUE) on.exit(par(op)) } if(show[1]){ nominal<-seq(0,1,by=0.05) r<-mt.reject(x@adjp,nominal)$r matplot(nominal,r,xlab="Type I error rate", ylab="Number of rejected hypotheses", type="l",...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[1],3,0.25) } if(show[2]){ spval<-sort(pv) matplot(1:m,spval,xlab="Number of rejected hypotheses", ylab=paste("Sorted",pvlab,sep=" "),type="l",...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[2],3,0.25) } if(show[3]){ symb<-ifelse(length(pv)<100,"o",".") matplot(x@statistic,pv,xlab="Test statistics", ylab=pvlab,type="p",pch=symb,...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[3],3,0.25) } if(show[4]){ matplot(1:m,pv,xlab="Index",ylab=pvlab,type = "l", ...) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[4],3,0.25) } if(show[5]){ if(is.null(call.list$test)) call.list$test<-"t.twosamp.unequalvar" if(call.list$test=="f" | call.list$test=="f.block") stop("Plot 5 requires confidence intervals, which are not available with F tests") topp<-ord[1:top] plot(c(1,top),range(c(x@estimate[topp],x@conf.reg[topp,,]),finite=TRUE,na.rm=TRUE),type="n",xlab="Most Significant Hypotheses",ylab="Estimates") points(1:top,x@estimate[topp],pch="o") nominal<-eval(call.list$alpha) if(is.null(nominal)) nominal<-0.05 for(a in 1:length(nominal)){ text(1:top,x@conf.reg[topp,1,a],nominal[a]) text(1:top,x@conf.reg[topp,2,a],nominal[a]) } if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[5],3,0.25) } if(show[6]){ topp<-ord[1:top] alt<-call.list$alternative if(is.null(alt)) alt<-"two.sided" stats<-switch(alt,two.sided=abs(x@statistic),greater=x@statistic,less=(-x@statistic)) plot(c(1,top),range(c(x@cutoff[topp,],stats[topp]),finite=TRUE,na.rm=TRUE),type="n",xlab="Most Significant Hypotheses",ylab="Test Statistics") points(1:top,stats[topp],pch="o") nominal<-eval(call.list$alpha) if(is.null(nominal)) nominal<-0.05 for(a in 1:length(nominal)) text(1:top,x@cutoff[topp,a],nominal[a]) if(one.fig) title(sub=sub.caption,cex.sub=0.5,...) mtext(caption[6],3,0.25) } if(!one.fig && par("oma")[3]>=1) mtext(sub.caption,outer=TRUE,cex=0.8) invisible() }) if( !isGeneric("summary") ) setGeneric("summary", function(object, ...) standardGeneric("summary")) setMethod("summary","MTP", function(object,...){ call.list<-as.list(object@call) cat(paste("MTP: ",ifelse(is.null(call.list$method),"ss.maxT",call.list$method),"\n")) err<-ifelse(is.null(call.list$typeone),"fwer",call.list$typeone) if(err=="gfwer") err<-paste(err," (k=",ifelse(is.null(call.list$k),0,call.list$k),")",sep="") if(err=="tppfp") err<-paste(err," (q=",ifelse(is.null(call.list$q),0.1,call.list$q),")",sep="") if(err=="fdr") err<-paste(err," (",ifelse(is.null(call.list$fdr.method),"conservative",call.list$method),")",sep="") cat(paste("Type I error rate: ",err,"\n\n")) nominal<-eval(call.list$alpha) if(is.null(nominal)) nominal<-0.05 if(is.null(call.list$test)) test <- "t.twosamp.unequalvar" else test <- call.list$test if(test!="t.cor" & test!="z.cor") out1<-data.frame(Level=nominal,Rejections=apply(object@reject,2,sum),row.names=NULL) else{ tmp <- rep(0,length(nominal)) for(i in 1:length(nominal)) tmp[i] <- sum(object@adjp < nominal[i]) out1 <- data.frame(Level=nominal,Rejections=tmp,row.names=NULL) } print(out1) cat("\n") out2<-get.index(object@adjp,object@rawp,abs(object@statistic)) out3<-rn<-NULL if(!is.null(object@adjp)){ out3<-rbind(out3,c(summary(object@adjp[!is.na(object@adjp)]),sum(is.na(object@adjp)))) rn<-c(rn,"adjp") } if(!is.null(object@rawp)){ out3<-rbind(out3,c(summary(object@rawp[!is.na(object@rawp)]),sum(is.na(object@rawp)))) rn<-c(rn,"rawp") } if(!is.null(object@statistic)){ out3<-rbind(out3,c(summary(object@statistic[!is.na(object@statistic)]),sum(is.na(object@statistic)))) rn<-c(rn,"statistic") } if(!is.null(object@estimate)){ out3<-rbind(out3,c(summary(object@estimate[!is.na(object@estimate)]),sum(is.na(object@estimate)))) rn<-c(rn,"estimate") } rownames(out3)<-rn colnames(out3)[ncol(out3)]<-"NA's" print(out3) invisible(list(rejections=out1,index=out2,summaries=out3)) }) setMethod("[","MTP", function(x,i,j=NULL,...,drop=FALSE){ if(missing(i)) i<-TRUE newx<-x slot(newx,"statistic")<-x@statistic[i] slot(newx,"estimate")<-x@estimate[i] slot(newx,"rawp")<-x@rawp[i] if(sum(length(x@adjp))) slot(newx,"adjp")<-x@adjp[i] if(sum(length(x@label))) slot(newx,"label")<-x@label[i] d<-dim(x@conf.reg) dn<-dimnames(x@conf.reg) if(sum(d)) slot(newx,"conf.reg")<-array(x@conf.reg[i,,],dim=c(ifelse(i[1]==TRUE & !is.numeric(i),d[1],length(i)),d[-1]),dimnames=list(dn[[1]][i],dn[[2]],dn[[3]])) d<-dim(x@cutoff) dn<-dimnames(x@cutoff) if(sum(d)) slot(newx,"cutoff")<-matrix(x@cutoff[i,],nrow=ifelse(i[1]==TRUE & !is.numeric(i),d[1],length(i)),ncol=d[-1],dimnames=list(dn[[1]][i],dn[[2]])) d<-dim(x@reject) dn<-dimnames(x@reject) if(sum(d)) slot(newx,"reject")<-matrix(x@reject[i,],nrow=ifelse(i[1]==TRUE & !is.numeric(i),d[1],length(i)),ncol=d[-1],dimnames=list(dn[[1]][i],dn[[2]])) if(sum(dim(x@nulldist))) slot(newx,"nulldist")<-x@nulldist[i,] if(sum(dim(x@rawdist))) slot(newx,"rawdist")<-x@nulldist[i,] if(sum(dim(x@marg.par))) slot(newx,"marg.par")<-x@marg.par[i,] if(sum(dim(x@index))) slot(newx,"index")<-x@index[i,] invisible(newx) }) setMethod("as.list","MTP", function(x,...){ snames<-slotNames(x) n<-length(snames) lobj<-list() for(i in 1:n) lobj[[i]]<-slot(x,snames[i]) names(lobj)<-snames invisible(lobj) }) if( !isGeneric("update") ) setGeneric("update", function(object, ...) standardGeneric("update")) setMethod("update","MTP", function(object,formula.="missing",alternative="two.sided",typeone="fwer", k=0,q=0.1,fdr.method="conservative",alpha=0.05,smooth.null=FALSE, method="ss.maxT",get.cr=FALSE,get.cutoff=FALSE,get.adjp=TRUE,nulldist="boot.cs", keep.rawdist=TRUE,keep.nulldist=TRUE,marg.null=object@marg.null, marg.par=object@marg.par,perm.mat=NULL,ncp=NULL,...,evaluate=TRUE){ ## checking #Error rate ERROR<-c("fwer","gfwer","tppfp","fdr") typeone<-ERROR[pmatch(typeone,ERROR)] if(is.na(typeone)) stop(paste("Invalid typeone, try one of ",ERROR,sep="")) if(any(alpha<0) | any(alpha>1)) stop("Nominal level alpha must be between 0 and 1") nalpha<-length(alpha) p<-length(object@rawp) reject<- if(nalpha) array(dim=c(p,nalpha),dimnames=list(rownames(object@reject),paste("alpha=",alpha,sep=""))) else matrix(nrow=0,ncol=0) if(typeone=="gfwer"){ if(get.cr==TRUE) warning("Confidence regions not currently implemented for gFWER") if(get.cutoff==TRUE) warning("Cut-offs not currently implemented for gFWER") get.cr<-get.cutoff<-FALSE if(k<0) stop("Number of false positives can not be negative") if(k>=p) stop(paste("Number of false positives must be less than number of tests=",p,sep="")) if(length(k)>1){ k<-k[1] warning("can only compute gfwer adjp for one value of k at a time (using first value), try fwer2gfwer() function for multiple k") } } if(typeone=="tppfp"){ if(get.cr==TRUE) warning("Confidence regions not currently implemented for TPPFP") if(get.cutoff==TRUE) warning("Cut-offs not currently implemented for TPPFP") get.cr<-get.cutoff<-FALSE if(q<0) stop("Proportion of false positives, q, can not be negative") if(q>1) stop("Proportion of false positives, q, must be less than 1") if(length(q)>1){ q<-q[1] warning("Can only compute tppfp adjp for one value of q at a time (using first value), try fwer2tppfp() function for multiple q") } } if(typeone=="fdr"){ if(!nalpha) stop("Must specify a nominal level alpha for control of FDR") if(get.cr==TRUE) warning("Confidence regions not currently implemented for FDR") if(get.cutoff==TRUE) warning("Cut-offs not currently implemented for FDR") get.cr<-get.cutoff<-FALSE } METHODS<-c("ss.maxT","ss.minP","sd.maxT","sd.minP") method<-METHODS[pmatch(method,METHODS)] if(is.na(method)) stop(paste("Invalid method, try one of ",METHODS," ",sep="")) #get args from previous call call.list <- as.list(object@call) #estimate and conf.reg ftest<-FALSE if(is.null(call.list$test)) test<-"t.twosamp.unequalvar" #default else test<-call.list$test if(test%in%c("f","f.block","f.twoway")){ ftest<-TRUE if(get.cr) stop("Confidence intervals not available for F tests, try get.cr=FALSE") } #alternative #if(is.null(call.list$alternative)) alternative<-"two.sided" #else alternative<-call.list$alternative #typeone #if(is.null(call.list$typeone)) typeone<-"fwer" #else typeone<-call.list$typeone ### nulldistn ### Preserve the old null dist, if kept (i.e., could have alternatively kept raw dist) nulldistn <- object@nulldist if(object@nulldist.type=="perm") stop("No way to update objects which originally used the permutation distribution. No available options for storing nulldist. Rawdist can only be stored for bootstrap distribution.") ### For boot.qt, make sure values of marg.null and marg.par, if set previously, are kept. ### Otherwise, these become null, but the original values are set here before proceeding. prev.marg.null <- object@marg.null prev.marg.par <- object@marg.par if(!ncol(object@nulldist) & !ncol(object@rawdist)) stop("Update method requires either keep.raw and/or keep.null=TRUE in original call to MTP") nulldist<- # just setting character value of what nulldist should be if(is.null(call.list$nulldist)) "boot.cs" else call.list$nulldist ## new call newcall.list<-as.list(match.call()) changed<-names(call.list)[names(call.list)%in%names(newcall.list)] changed<-changed[changed!=""] added<-names(newcall.list)[!(names(newcall.list)%in%names(call.list))] added<-added[added!="x"] for(n in changed) call.list[[n]]<-newcall.list[[n]] for(n in added) call.list[[n]]<-newcall.list[[n]] newcall<-as.call(call.list) ### NB can still use "call.list" to help with what has been changed. df <- marg.par call.list$marg.par <- df ## return call if evaluate is false if(!evaluate) return(newcall) ## else redo MTP else{ num<-object@estimate snum<-1 if(alternative=="two.sided"){ snum<-sign(num) num<-abs(num) } if(alternative=="less"){ snum<-(-1) num<-(-num) } if(object@nulldist.type!="boot.qt"){ marg.null = vector("character",length=0) marg.par = matrix(nrow=0,ncol=0) } ### Move rawp down from before. ### Redoing the new null distributions needs to go here. if("method" %in% changed | "method" %in% added) method <- call.list$method if("alternative" %in% changed | "alternative" %in% added) alternative <- call.list$alternative ### Preserve the old null dist, if kept (i.e., could have alternatively kept raw dist) nulldistn <- object@nulldist if("marg.null" %in% changed | "marg.null" %in% added) marg.null <- call.list$marg.null if("marg.par" %in% changed | "marg.par" %in% added){ marg.par <- call.list$marg.par if(is.numeric(marg.par) & !is.matrix(marg.par)) marg.par <- matrix(rep(marg.par,length(object@statistic)),nrow=length(object@statistic),ncol=length(marg.par),byrow=TRUE) } if("perm.mat" %in% changed | "perm.mat" %in% added) perm.mat <- call.list$perm.mat if("ncp" %in% changed | "ncp" %in% added) ncp <- call.list$ncp if("MVN.method" %in% changed | "MVN.method" %in% added | "penalty" %in% changed | "penalty" %in% added |"ic.quant.trans" %in% changed | "ic.quant.trans" %in% added) stop("Changing 'MVN.method', 'ic.quant.trans' or 'penalty' requires new calculation of null distribution using nulldist='ic'. Please use a new call to MTP.") ### Check value of nulldist in this case if("nulldist" %in% changed | "nulldist" %in% added) { nulldist <- call.list$nulldist ### Otherwise, nulldist keeps the old/default value in the original call.list, not the updated one. if(nulldist=="perm") stop("Calls to update() cannot include changes involving the permutation distribution. Please try a separate call to MTP() with nulldist='perm'") if(object@nulldist.type=="ic") stop("You cannot update an influence curve null distribution to another choice of null distribution. Valid only for changes in the bootstrap distribution when keep.rawdist=TRUE. Please try a separate call to MTP() if nulldist='boot' or 'perm' desired. Changing 'MVN.method', 'ic.quant.trans' or 'penalty' also requires new calculation of null distribution using nulldist='ic'") if(nulldist=="ic") stop("Calls to update() cannot include changes involving the influence curve null distribution. Please try a separate call to MTP() with nulldist='ic'") if(!ncol(object@rawdist)) stop("Calls to update() involving changes in bootstrap-based null distributions require keep.rawdist=TRUE") ### Just recompute (bootstrap-based) nulldistn - way easier this way (with keep.raw=TRUE) ### "Easy" ones first. Need to get tau0 and theta0. if(nulldist=="ic"){ marg.null = vector("character",length=0) marg.par = matrix(nrow=0,ncol=0) } if(nulldist=="boot" | nulldist=="boot.cs" | nulldist=="boot.ctr"){ marg.null = vector("character",length=0) marg.par = matrix(nrow=0,ncol=0) tau0<-1 theta0<-0 if(test=="f"){ theta0<-1 tau0<-2/(length(unique(object@label))-1) } if(test=="f.twoway"){ theta0<-1 tau0 <- 2/((length(unique(object@label))*length(gregexpr('12', paste(object@label, collapse=""))[[1]]))-1) } if(nulldist=="boot") nulldistn <- center.scale(object@rawdist, theta0, tau0, alternative) if(nulldist=="boot.cs") nulldistn <- center.scale(object@rawdist, theta0, tau0, alternative) if(nulldist=="boot.ctr") nulldistn <- center.only(object@rawdist, theta0, alternative) } if(nulldist=="boot.qt"){ if("marg.null" %in% changed | "marg.null" %in% added) marg.null <- call.list$marg.null else marg.null <- NULL if("marg.par" %in% changed | "marg.par" %in% added){ marg.par <- call.list$marg.par if(is.numeric(marg.par) & !is.matrix(marg.par)) marg.par <- matrix(rep(marg.par,length(object@statistic)),nrow=length(object@statistic),ncol=length(marg.par),byrow=TRUE) } else marg.par <- NULL ### If these additional args are changed or added, these will be the new defaults, but they will not be NULL ### Cannot be NULL for object defn. ncp <- if(is.null(call.list$ncp)) 0 perm.mat <- if(is.null(call.list$perm.mat)) NULL if(!is.null(perm.mat)){ if(length(object@statistic)!=dim(perm.mat)[1]){ stop("Permutation and bootstrap matrices must have same number of rows (hypotheses).") } } nstats <- c("t.twosamp.unequalvar","z.cor","lm.XvsZ","lm.YvsXZ","coxph.lmYvsXZ") tstats <- c("t.onesamp","t.twosamp.equalvar","t.pair","t.cor") fstats <- c("f","f.block","f.twoway") # If default (=NULL), set values of marg.null to pass on. if(is.null(marg.null)){ if(any(nstats == test)) marg.null="normal" if(any(tstats == test)) marg.null="t" if(any(fstats == test)) marg.null="f" } else{ # Check to see that user-supplied entries make sense. MARGS <- c("normal","t","f","perm") marg.null <- MARGS[pmatch(marg.null,MARGS)] if(is.na(marg.null)) stop("Invalid marginal null distribution. Try one of: normal, t, f, or perm") if(any(tstats==test) & marg.null == "f") stop("Choice of test stat and marginal nulldist do not match") if(any(fstats==test) & (marg.null == "normal" | marg.null=="t")) stop("Choice of test stat and marginal nulldist do not match") if(marg.null=="perm" & is.null(perm.mat)) stop("Must supply a matrix of permutation test statistics if marg.null='perm'") if(marg.null=="f" & ncp < 0) stop("Cannot have negative noncentrality parameter with F distribution.") } # If default (=NULL), set values of marg.par. Return as m by 1 or 2 matrix. if(is.null(marg.par)){ marg.par <- switch(test, t.onesamp = object@sampsize-1, t.twosamp.equalvar = object@sampsize-2, t.twosamp.unequalvar = c(0,1), t.pair = object@sampsize-2, f = c(length(is.finite(unique(object@label)))-1,object@sampsize-length(is.finite(unique(object@label)))), f.twoway = { c(length(is.finite(unique(object@label)))-1,object@sampsize-(length(is.finite(unique(object@label)))*length(gregexpr('12', paste(y, collapse=""))[[1]]))-2) }, lm.XvsZ = c(0,1), lm.YvsXZ = c(0,1), coxph.YvsXZ = c(0,1), t.cor = object@sampsize-2, z.cor = c(0,1) ) marg.par <- matrix(rep(marg.par,length(object@statistic)),nrow=length(object@statistic),ncol=length(marg.par),byrow=TRUE) } else{ # Check that user-supplied values of marg.par make sense (marg.par != NULL) if((marg.null=="t" | marg.null=="f") & any(marg.par[,1]==0)) stop("Cannot have zero df with t or F distributions. Check marg.par settings") if(marg.null=="t" & dim(marg.par)[2]>1) stop("Too many parameters for t distribution. marg.par should have length 1.") if((marg.null=="f" | marg.null=="normal") & dim(marg.par)[2]!=2) stop("Incorrect number of parameters defining marginal null distribution. marg.par should have length 2.") } nulldistn <- quant.trans(object@rawdist, marg.null, marg.par, ncp, alternative, perm.mat) } } ### Cool. Now pick up where we left off. obs<-rbind(num,object@estimate/object@statistic,sign(object@estimate)) rawp<-apply((obs[1,]/obs[2,])<=nulldistn,1,mean) if(smooth.null & min(rawp,na.rm=TRUE)==0){ zeros<-rawp==0 if(sum(zeros)==1){ den<-density(nulldistn[zeros,],to=max(obs[1,zeros]/obs[2,zeros],nulldistn[zeros,],na.rm=TRUE),na.rm=TRUE) rawp[zeros]<-sum(den$y[den$x>=(obs[1,zeros]/obs[2,zeros])])/sum(den$y) } else{ den<-apply(nulldistn[zeros,],1,density,to=max(obs[1,zeros]/obs[2,zeros],nulldistn[zeros,],na.rm=TRUE),na.rm=TRUE) newp<-NULL stats<-obs[1,zeros]/obs[2,zeros] for(i in 1:length(den)) newp[i]<-sum(den[[i]]$y[den[[i]]$x>=stats[i]])/sum(den[[i]]$y) rawp[zeros]<-newp } rawp[rawp<0]<-0 } pind<-ifelse(typeone!="fwer",TRUE,get.adjp) if(method=="ss.maxT") out<-ss.maxT(nulldistn,obs,alternative,get.cutoff,get.cr,pind,alpha) if(method=="ss.minP") out<-ss.minP(nulldistn,obs,rawp,alternative,get.cutoff,get.cr,pind,alpha) if(method=="sd.maxT") out<-sd.maxT(nulldistn,obs,alternative,get.cutoff,get.cr,pind,alpha) if(method=="sd.minP") out<-sd.minP(nulldistn,obs,rawp,alternative,get.cutoff,get.cr,pind,alpha) if(typeone=="fwer" & nalpha){ for(a in 1:nalpha) reject[,a]<-(out$adjp<=alpha[a]) } #augmentation procedures #cat(typeone,"\n") #cat(k,"\n") if(typeone=="gfwer"){ out$adjp<-as.numeric(fwer2gfwer(out$adjp,k)) out$c<-matrix(nrow=0,ncol=0) out$cr<-array(dim=c(0,0,0)) if(nalpha){ for(a in 1:nalpha) reject[,a]<-(out$adjp<=alpha[a]) } if(!get.adjp) out$adjp<-vector("numeric",0) } if(typeone=="tppfp"){ out$adjp<-as.numeric(fwer2tppfp(out$adjp,q)) out$c<-matrix(nrow=0,ncol=0) out$cr<-array(dim=c(0,0,0)) if(nalpha){ for(a in 1:nalpha) reject[,a]<-(out$adjp<=alpha[a]) } if(!get.adjp) out$adjp<-vector("numeric",0) } if(typeone=="fdr"){ out$c<-matrix(nrow=0,ncol=0) out$cr<-array(dim=c(0,0,0)) temp<-fwer2fdr(out$adjp,fdr.method,alpha) reject<-temp$reject if(!get.adjp) out$adjp<-vector("numeric",0) else out$adjp<-temp$adjp rm(temp) } #output results if(!keep.nulldist) nulldistn <-matrix(nrow=0,ncol=0) if(keep.rawdist==FALSE) object@rawdist<-matrix(nrow=0,ncol=0) out<-new("MTP",statistic=object@statistic,estimate=object@estimate, sampsize=object@sampsize,rawp=rawp,adjp=out$adjp,conf.reg=out$cr, cutoff=out$c,reject=reject,rawdist=object@rawdist,nulldist=nulldistn, nulldist.type=nulldist,marg.null=marg.null,marg.par=marg.par,label=object@label, index=object@index,call=newcall,seed=object@seed) return(out) } #re else redo MTP } # re function ) # re set method ### print.MTP<-function(x,...){ call.list<-as.list(x@call) cat("\n") writeLines(strwrap("Multiple Testing Procedure",prefix="\t")) cat("\n") cat(paste("Object of class: ",class(x))) cat("\n") cat(paste("sample size =",x@sampsize,"\n")) cat(paste("number of hypotheses =",length(x@statistic),"\n")) cat("\n") cat(paste("test statistics =",ifelse(is.null(call.list$test),"t.twosamp.unequalvar",call.list$test),"\n")) cat(paste("type I error rate =",ifelse(is.null(call.list$typeone),"fwer",call.list$typeone),"\n")) nominal<-eval(call.list$alpha) if(is.null(eval(call.list$alpha))) nominal<-0.05 cat("nominal level alpha = ") cat(nominal,"\n") cat(paste("multiple testing procedure =",ifelse(is.null(call.list$method),"ss.maxT",call.list$method),"\n")) cat("\n") cat("Call: ") print(x@call) cat("\n") cat("Slots: \n") snames<-slotNames(x) n<-length(snames) out<-matrix(nrow=n,ncol=4) dimnames(out)<-list(snames,c("Class","Mode","Length","Dimension")) for(s in snames){ out[s,]<-c(class(slot(x,s))[1],mode(slot(x,s)),length(slot(x,s)), paste(dim(slot(x,s)),collapse=",")) #added [1] to fix the bug } out<-data.frame(out) print(out) invisible(x) } .onLoad <- function(lib, pkg) require(methods) .onUnload <- function( libpath ) { library.dynam.unload( "multtest", libpath ) } #apply function with a weight matrix/vector #written copying apply, except that X must # be a matrix and MARGIN must be 1 or 2. # W is NULL, matrix or vector. wapply<-function(X,MARGIN,FUN,W=NULL,...){ if(is.null(W)) return(apply(X,MARGIN,FUN,...)) else{ if(length(MARGIN)!=1) stop("length(MARGIN) should be 1") if(!(MARGIN==1 || MARGIN==2)) stop("MARGIN must be 1 or 2") FUN<-match.fun(FUN) X<-as.matrix(X) dx<-dim(X) if(length(dx)!=2) stop("X must be a matrix") dn<-dimnames(X) if(!(is.vector(W) | is.matrix(W))) stop("W must be a vector or matrix") if(is.vector(W)){ if(MARGIN==1 & length(W)!=dx[2]) stop("length(W) not equal to ",dx[2]) if(MARGIN==2 & length(W)!=dx[1]) stop("length(W) not equal to ",dx[1]) } if(is.matrix(W) & sum(dx!=dim(W))>0) stop("X and W must have the same dimension(s)") d.call<-dx[-MARGIN] d.ans<-dx[MARGIN] dn.call<-dn[-MARGIN] dn.ans<-dn[MARGIN] if(is.na(d.ans) || !(d.ans>0)) stop("dim(X)[",MARGIN,"] is not a positive number") if(MARGIN==1){ X<-t(X) if(is.matrix(W)) W<-t(W) } ans<-vector("list",d.ans) if(length(dn.call)) dimnames(X)<-c(dn.call,list(NULL)) for(i in 1:d.ans){ if(is.vector(W)) ans[[i]]<-FUN(X[,i]*W,...) else ans[[i]]<-FUN(X[,i]*W[,i],...) } ans.list<-is.recursive(ans[[1]]) l.ans<-length(ans[[1]]) ans.names<-names(ans[[1]]) if(!ans.list) ans.list<-any(unlist(lapply(ans,length))!=l.ans) if(!ans.list && length(ans.names)){ all.same<-sapply(ans,function(x) identical(names(x),ans.names)) if(!all(all.same)) ans.names<-NULL } len.a<- if(ans.list) d.ans else length(ans<-unlist(ans,recursive=FALSE)) if(len.a==d.ans){ names(ans)<-if(length(dn.ans[[1]])) dn.ans[[1]] return(ans) } if(len.a>0 && len.a%%d.ans==0) return(array(ans,c(len.a%/%d.ans,d.ans), if(is.null(dn.ans)){ if(!is.null(ans.names)) list(ans.names,NULL) } else c(list(ans.names),dn.ans))) return(ans) } } #function to make a vector for ordering the results by # adjp, then rawp, then abs(stat) get.index<-function(adjp,rawp,stat){ adj<-!is.null(adjp) raw<-!is.null(rawp) sta<-!is.null(stat) if(adj) p<-length(adjp) else{ if(raw) p<-length(rawp) else stop("Must have at least one argument") } if(!sta) stat<-rep(1,p) if(!raw) rawp<-rep(1,p) if(!adj) adjp<-rep(1,p) if((length(adjp)!=length(rawp)) | (length(adjp)!=length(stat))) stop("adjp, rawp, and stat must all be the same length") index<-rank(adjp) d1<-duplicated(index) u1<-u2<-NULL if(sum(d1)){ u1<-unique(index[d1]) for(u in u1){ sub<-index==u i2<-rank(rawp[sub]) index[sub]<-index[sub]+i2-mean(i2) d2<-duplicated(index[sub]) if(sum(d2)) u2<-unique(index[sub][d2]) for(uu in u2){ sub2<-index==uu i3<-length(stat[sub2])-rank(abs(stat[sub2]))+1 index[sub2]<-index[sub2]+i3-mean(i3) } } } if(sum(duplicated(index))) warning("indices are not unique") if(sum(index)!=sum(1:length(index))) warning("indices are not based on true ranks") order(index) } qRequire <- function(pkg){ suppressWarnings(require(pkg, character.only=TRUE, quietly=TRUE, warn.conflicts=FALSE)) } multtest/data/0000755000175200017520000000000014710217035014366 5ustar00biocbuildbiocbuildmulttest/data/golub.RData0000755000175200017520000112222414710217035016422 0ustar00biocbuildbiocbuild7zXZi"6!Xo])TW"nRʟXgqjnj-&cE!).C)EB^SAߚB FXm Ćm1]=+my;·Y se8>*7VyRc g'k%6q"ϥܸ]KitF45ͱR3s3Leu䗀W7b7TZK@v"3ϫQG+yvpmHT /{~#(-VJ(֘c2S5V8|qnk5 Ef'xIM1Dҡ,ۉ,WL׆vMI?#}P[CNV >Wɚ?cg;AД p\^dNZ9"*QzRqך+\+^dSchJwٍЀE @%CYoʶsi28L>0FKLtFGlf}G41^(E#Es™DU8)@]l Qyxw˼k>]u$V$$F2 !Hy^)ϛTMDMN-IN.A (ԃe&)J$Zֲ(E.$V_F왔hY @*Eλ4\5Uh+nVr5QbMbaiL2c{gb*ME2eeYҀ/g a>:BU4 Kޅݘ7  )L9[jz1{&"XgF>G:1Rozk45OKFJ 9LH'S{$PكcYx.2OiR[m2DA=J ?_ȑCUiowsI鋗k6q.947f0'v0L>;t# 9]|2|JjrX˨I!'#\* 6og&Hr6RI42-Ʉ=dY1'an26@Mu8#1==4[mxMQ*5 Ygvi?(VwfO?Ta\0Ocf~%vŭ|yb!]ku? H?tYJ ͓꺃f G@'Hpp|"3! tOiaH|I [Nk5Zg.ͤ$zTTD#ҲԽ<8.;(J G% FcZ\,(ŵuTd)xV( ^g NvӉ}G#8% }_ ? 06eR܀ŭ|ҮwU#ǭ w8[o`"*sīdRt\tHl&D@V l6qW__1#}əz -R+via"ph! Z9jA ^k8|:8hQִ]Fܚ{,пajC /N_%J{27և5 }sC*B=aBō4FM`u }o B] 뵎Wg{^={yQKt^{ZiA(Qh]O+w<)c&CkҥPTЪ-_)}{Vue']/й7I焛@&;cK;Nt:8k"YN!ベlJUǬc!d$$o1aN*ZAFl␠sb>]i!S'W/3I| 73P6 әCOYG 鍄ȞeW ~ @Ank 0KG_OJh=ⶕmTĝsdVαoAa0\xwq|Lv°foxj].UYn:Cuw,dLW~3Ep\~~V ?pt,]|)%fiPʪnJK뢜V4;䮴K;\2d w_nt2%T2Ӳgqrt{AjYLnDxK_:Qo/ه8`yG"qb:qG9)*`k# _pO*z]^8Bj mL_ΠuDgON)_Cv|&V1f+*sdXf}H!֐wO | `nv49 !hwO>1<) .f .+fC͵:$tXGsPڪ>`޼WY1A{n(cdhϷT!lbsl+DlH#4 {2ヘ} ',:?3dGy<q_?Hw>Qk䮣Nީ`rn쀱ČoģgJ;fR~óOLdjek2lt6W"N|CEAb8l"[VА ~h_z!_1YP$O7gb)ߕ3C:ܖsH{zG?ͫݗKl;ea Y3ʫH@J|m+W%Dt^ p0T US8uh+:bk0/2|I j+4&0J9xOjF~SvmhtA۴#mq ,J[+3oB(c#A م3o!#6ԼOciPUMRg\y-YjHm L +Z@7~L\f8"A;7W-#[ $83sc-s,uT|we[i (!w1aigo6w9uX/څWa n#lY",Ǜw?(vKh,ŽHfV^@pGAy#VcH 8{Ch3nTt727Ҁ=0ٚ=Uv r#f~11{m gY >.aBx_gYAOᣘn2X'-V7ϰ 8[elUW.V%K9=ҸnDҬ /M-?VeVFF#w!`Ϧm$¶ao/V(˴p  BWJW8~*hcۙK(Ns9utp•24|- mwEf%i%=h+S73-g~-voūJoLY&5*7;`ZCVsݛ$|޶Fxofk5rz62m$gmv}A 65_܆y g+O VG!,DN|(r8Zc#iZ̻_d$xe 4\U1x#<`p:y7.+̑i hczvAva͝ٽp'> 9 N8œٷ.Q5c/g̊Y3Own64(=q+zE9._idh:ҘչXTi^jdC[tz>:dDb N9úgQexX<p?us":0{# 32tYHš_Qf em>› fH!]ʮ݈\?CE)r b^YT]/ Z*O̳+Щ>C,Ϋ!_Uzh9̭;,Q k/?MGx;4ĹSK̈́-韔 ++K ջm"'=V;̠l 塆}\^>d^Ck`aZS↯tpVw:-)Q*5m\wث7frq&Y "# H!g? WJ>u'\\>qm(Њ<ƞYUPc dX!1o%&P mlJLCi$[&`p @mH}j,y4.-N_N2:殁&@^j3je|qđi3ƢO>C_{"quֈ9I+5'Ě㞋'fa8[ܨy~(%1e++De~Qa 6tlza5Vs:Dg'd0tgL>FY4W>@n y"C bXJiQwyJ80Fܜ3LKYMMb+Ut Vd8ٯX$HIr5$S թEQ%:/ŤwvJ0ЫUSޏzGtP}@|xl?m0ŏk%\ ]sc3sAE*ղ3=+(:j}ճu]#{ha~2H(I~ p5qC={b{DqcEIg  GeƧEEʍ6deQ{( 'j!#mJ${|+iu~DF\GK;׎ ޷H^ `[_( P%0T:Hdqz9QwHݭBL\G a & aA% #£>E:?荹 BLC/* qG|T=`8AABOrA۴Qt7mP??=R"o0ş3#T,QmY*.6J찗`KBZ@] \<[j"hPCڣN$ I-^xƕ;m-h?՘1$iLI|&!|6l"dҰNP&$\Wۉro7rOYNfך? gqMo4pALXMD'&tަL%m8ZXeF͉;RJkAIzU=H㥧zw 't^SZ#t>"PEf:m(H9΢H`@ qHOnvKH7z̵]VG !ZmN5$-0NR2` eS]Gb c.rSac}Vw݀|hEi>-n⸤'2Yf1>NspD ]Y`Ar5AĒ8b/2 ΍SHP.9=P#HN:-$Z:ҭ2J~"Yn ~40:&79j)*syY)a٥Slvxӽ3r;Z?uJT5Yd"m'/w m3?JO?yoY)k::=X) "͚ ߫]|i],rkXH 8.)XQ*T%`&ɔ;$X|x*_{7Q|=Ԕ5zV3N>#/Ee[K/=1APfRd; \9mt3~ӟ[< (%:;[*UFB+t]'Kr3 m MYbrwfjJT[C/EGtDI;߁/2{<2DΗa&psj_N   䂷xNkzHsSa@ز LEpG %O^۝.]EqM^pC`EAqXc}MvM(!z26 yVJT!břGK^ r d$n1šs%cI5@fc9'nJ1gy`_QEh=K;QrD} Oɲ =2}s:QnE>ˆJNi!@)HHy_~*D]|tkU?,F|2ju,茙QC>u/'_#%ORWpD~yU7FA N"ҶXkؠgljSQ4[J}**;a@N>Ǎxnb2_  !{dGqoՉ HU+s'-\E)ELI~ڸ=%9qZqGdkeF!" tK=h)lv;K11)ƨ~=$J7nGA^{'\x_o<S?e4˩п g˧7-|);U3``,JEA(5мzz> d\ Xgy!a֬^=PLgwIt/OE#kC"Nhy9ܞm ơvp<`*G6lp6-&6-X5vTx I`%?P׏=&2J0h\-:cchawk`Aon_Y^0!F#.%f@V~ǯR};i"TTZQ ^cԮvJAck4iQ)2KkSV/k߯橭i2`e s*(!(nzSE\X|8e@ur!;ZXoI|(C񒅾p"i6?[SA_ce)e-ёj(D56]:3H Z*|Я}<8"8k]^uP ]ij8䣃oo=vgF|KMV㋻:x"rOzA! w@B-&w%5dCe[jg }_P~癮d ID9ي rW&:fz կ)йJ}kR"Hc'} ]e 8xK2| Ҝ z%9[ _ZCu7sҘ_" c.ttFQq,FA1sͰ(YV¥>4YL9{ib%؃VF郗L(PeaSb26@ɡb6yпś0Ⱥe7,&"&EMMP |8 EO[XBR[e7G"~E|| }5~OfYC1yЫ_}]Jsz C8c҂eEx15I_*Z~SOyHG##;SS2}6WsY^4[8E/*]TcߝTj,~0-3.]+GyN%ުF )egA7i׍DP﹩EhG (5x/:Mя4)u7{PdycJ< ޷cGc#̽!udHJn폌3aQW P:=98ZMtfa"Ihž+. o= Ɲ!Wm!?On+Lٱw`k8<ƹm|:Tȏvp6y7[ s7c$\ 3%%4 yD+ưn)OAxYޘܪ~A굉 cRm a>ݛj8ZϜG佊$gVqôo2aN>߬Zdٝ*Y <МƳ2an;oa<2DԮξe~LFuuQdZyاȏw}Ɋ'3,Ո{R*v7eڼ R"wR&̄ )V[[*AqrxXO]Y<\˳;0*9A0]BGG}bg3+#Ǻ}0^U[i@ʅᨚ~A4\Ppϟ6\3C(6z/3bA; b jPJhKk:E]#+Oue~.`~Z'ؚV~̂}CaZ\̗UO8U/iXFFW)ptƢ]'S> PCYل:2ċ'wp+Xw  aa&Yi~;6RV S+0P&`Bɳi c`oC:Cm,]-ٚH:* 뺽]i>><<-No~Jrv焁Gw޲M qa >x2T O.)8åC~^Uց9gpSJ~ۚUcz8_009R+^)3|>*)}Sk[Es@).?OۊnSccv5ve67F2ܠ?``$7K\8Hc]Ku"(dle_/wZ^+ξ̋}M98j "ۏ*;0snʿ@&9CccRX빹*NXBPCrzsTin(M֭si\_E#%}MVA;q}B"$>zzפBk/9 )[JUI|&l`Y%wbawz" A!)׌'%>cANU ޲~)v6 -(/[Z'b{VoQm#~i1[Uq O{qjkUvѫ`c.syV(*@N c:\A^hdOѧK0U;ctlYGÞrwyKh"@Y~T(O<,׾:"0 g$ްekNu7Ļ-FRc/S(OՋ1)7yC&E2hWAGO1+1*3FPֵZ_,}e)1ZF)9F2Jݦź6:m=z1 JGІCKZJ\R5| nvh& HN }XsevIJ,wX/rӔߢ:L].kbUo_#ޢHɾ}fdJîhwK94.$MhWZ<*>l -箣sa&M ͙꿞dž,JNR(H) 8ׯAy~*9λϕ1`mI?:}P&*n˪8|3GsUu2;SWT!(?6ĪϝYunKLl`ʴݫRHZmMQ-(CWuõbpn/Nm%h>)cC7:/H} 0Br#ցC(hЙ椵})P_c|dKN? < D;z]Hu$0Nς/7^V+솁w峋_0wBN!؈ۭ9b鑠Xk?OĖ@%%$?De:іt~Z\k# \47y^w俕s#$}6,egߛq,# g W$F` ׫)`&1ˤʴ< <2ON6s4~\d_5G ح"i#ʑJd8r#ˮvKsL) uEV kNH(jCAG)3 jcjawVjQƠڧMR|W~ڿh_txX6~&)w!9˖I OkpqU}CtZɱi4Hu2BO-g>e@yBRM0?'ePz=b r(Uup5!$ c, N1͆u?%Q%߷+g:v` p S8(ˆ#`ǯ(Cf)@z8 qd$Ql>);[El7SM'rwI$8,W\Vs|Y6(.ؖ$Eg9H\o~EV8n*4 ojؐ,~qz . XMTA" Lȯ/ j2mx $5:k_KWLDқYRҞKQ+\l -.2@_'nU*FUOŻT}аjtabBF5)JsarN_>h0B+=sI촅jiI/gg68p]#f1~@3v$Y7<sHur4kƹ4WhX{u6U_׈۪iNDgyqc+*NQ m!ɸE s<'Dq_Z>on^IuN5)7er@'A[bB|c$;= !x_o|'H+"}<KLɦ mD( QœJn7SD.x>\ν<=D?~e~g桸$6@~*E@XȩUx)r-*)+@N]h"`I84r RަnSO7äؠ v6b(|ɚW\kɌr">_)-HHVTA_{dj;`H7Bu[r,X76nYF 3ymꉮCx8}oOAA;"A"LROdG">#g@,ܘ!T a2;l.*ܸ&`tUv"pg &;bZ5S}~ϙ%pI_E>m'-@z^U4:fx2 v܏>m`|7\7ͬ3H}g+YP@$B8DEnY[Z2'WЅ:dYV5sL Vv70V@~QgWb!W&_PT4(g\O^N-5~ʪEJocQaܫI?N :&s`nX>,&v0yY/mh(?e1#7nsRhB؄#]$@A\$J8 HIW>1C S@@ *c.0Z񣒠AH,L CrڛC~Dm~+iUѫP7.^P.=@tf:/}zO/nNGCI/n>zY /S6jӓenG]əE{?aEop /xE&:@ح\qx߰q<(" z]nV"ml2ZNW,K|-Uuʋy窡YɌѹ(]U7geP Z?-l@q{Ћ\\5wbc'eoEDJwnqɬ$ 3d>e[*wݜ,8/r(ci2mwރznDDr6joa_OL`OꢇLatE$¤5CO2Y-6n.򳵄<6 ֙NүA]b1P&0e߫ꠎ2ǦzEn(0省L5![ƧV.s/K孄~ yNZ,I Nd+Rn,a Tn%}Xg9|pϏ&23U h$ܚ?ޏt& 7K0W$A8#$k`y{?gYc11sc!Z,aiW/17LVBgm/M tk T a.;Eܕr)7Q (鳯":}< M2vM{*q6b_R<+ +4G׻T[U)a`4GCuHG^SjR=HI q ^E :I7TRwk/)r?TۛK@dzd N!Qi?VKȂzbsAq-%_}JӌDOF_,%Ik9聯p30`o`jPw֑@!Qdt#Pj!WZ#Xuhˠ1̈K",OLVj/; ؤ֌ռ3 ?s(-H7 ]12`*\g[YQ!38BgQښ'JYdkidf8Qi#ueÿ@tL Lj:;Öd YFUϬv0a?̌e 43ί(u%X\X _b,K%UjMovT;%uL2rXӈ#;Pa>:}ILK\< oN*gj0ӴYRz>r}PcbnQ=V+o osi 59(.n] |K*)$yen$*#izyndSOݢ1M'.rH \:e[bQ1e$~Mct\A4J0I;y}q}S=gyߗ?+F\\j9mBހBب3bזxG]MyzӓVk`LUgAoF&}|M"C!u['-V`Oglt݌lwO8K;J|.۹ҏjX:|/}Vwp26{V+}; 1ޭ<ͣTr;J1 N%nCONZK`:Lnw!.oQ UQt^3k!o&:xBNIz x{톂hCm2XEGty /86MjKCh뷲f!(@6/Ff$i *?_3^2ZMlj ܸ#5mmH"35ՂߑқC0\$r)ޮ5Gs+U%-(QƔZUO\u+&Tpa~oڀAYii^h{gj Q%^6sjAFcoebQ%Cabb dL!\5{e;~GT-+P/JQwo;KĩZMA‹|^OvY"wڅ]lS(q aFהeX@ |ͻp~OC!`PRWST|V(:j"k䩽(. (Ecn2P\0$nk1݋'lȡ̦< $'i@VBE=/}mot љJ0VD#}|ֿ #º?vHWenr)I沄O͞ l<)!Z(ByV[my\ **mF5w clJT"2q'B p h_rL4ysuNK2i@G~6ѩT&O+te$Pֽcշ7hDtŚ@lW PjЧmV 5Sّ4%C&%7ʊ?V}^V!'PG!eZȱP4_2}l7\Qa}T"D=\ CB_r:JQ!>8Ȧj<˜C՚JjW m |yWD!D6dDbbÉh= \01@4?0V$ukZ4uS?~=y yM{/I>G;ֽ?Gma*4vA*ص*(^8VA׍1b㷟6H P56T8 YrHbzCj} xND!`@HLmmQSbg#ZNbt)N[\8n BM5v\uXNf&FްvfT9~c ]8OGhjRx :Y&~Z8xj?1%!`3"_5d^O*ڻiFe?XAQdͺ/֠k3I|g\ ^cYM}5BttB2lFEHcxb ͷZ> V)3,SLXr. -tlmf!$h( JJ*sΧ 9}\L@}Q6y-\uѲLDn[8&ļefU WGe@9BJ9NJ"O]l}H`coRCgB9bb݅aDyu&*&ӯ.S69gfZǯ..1z;CnznRJ;-#'g쥓{J)&u*s;؜Gs},D|t7IȎqO{?whkyNX5;EzRuWl jrQOim%dF)7B."_@&^'Zy"&R %71hTĚd E19ނMMEIwy2n=LgNSd^=D\.(FDSoiW Q\ Lyθ(b֢`,ȱ%ף=Ma:doχ= sP+J!ÅS4VyklitGv4ܭ: ;L&ƕh0QDfT JPb(U:adТFٷ?6A7_c')w]D_եWI}p&AQ-Py/6#;ߎ eyFqjLz0AdFBq{K03Gpv'啾3(˥{5zn$/ѿ^ЦOŏڷ }0RT2pA]Hn%^t%fy+ XǩNݷ t*_vRY}Dj\@KM~jָ'aΪa7/eBu}'KMFH>t|)xEunh)0!ǵZO&<0梡+';!0'9Ф?ֻ*g+3+}CFټ&}Krs\9% |{2 r+?hd4X#ùƆ0l-کne4_@H٩(+04@+F9MKUzRZͽΆu 87 ?$D鸥L&eԇ}ϱ :gTsw4^*?0#zF~/ 2@$|Ӄi]C; ,jΓK-Q6i'>72Hik/Ix;cNV*̷Z*HeTlW.^Ku|n8MBf>[;xotvq W@xB['>ٹm!ra݋q__3KcC(Es"p\WFa6GWBEp\LNNano85'yxbݮ i<q^ 4Q8r?AfzV̤-U> j_%UyO'9="ˠڃ/ Xv]J|ƕ"gdpxyY%םY^UVrh݊يCx FGYExG@NJÅDmqbE?Յ-7Hʖ$}qW" הgؓt)ת0ҎŶ6/5utDh_K5%eyY!%%'2'VdƆ9~@pW$4 gK)i(uKh9֭zN2M m\I龈@"J}>"vdFY m_YUS1cj9I*w~hۗUoA,]Ty6|f1m,ųx˳P'Cs֙%,,!!]{[.78N7Dx(Cf`Gk DӞX? AXdޟMR<ҠˤtbVX7|kBr]BT7O G~,K'4xAAfaTH$;+cbp8>/:! Ь>\jl09Ri kkkj_K S>ր%Ew+>XYoA;=ݦ]!P+MȩVT)>l#䊓Ьӣ>M| h3l_Hy*CBF/;첏L'uԎ0,V;U C7ko *⦏?zߏy]mۛFm]Cv9aGiO* =R Ԧ6hcWC(CKr"~͐Fz THu,"Y(]1eJ`ikad*X-Ly.ΆZ y 2")))]'90sLJ2}@%֘2QU+/ൺy௩z0t (`&bh3҇&2MǮ" ^5p!u]j;">-%Ĭ6#6ѵӌJgm^ QhhT1] KuT$˿~b֮|XX_l:czEMa[jF*S Ҙ/Cv)2mx:H1}&O\s:cC]h+41-%DgOKFR+h~ESV|߬J>*➝I}_L PæIzoO4=_?t3/KK+Ciڕdr\jm&=R68j2tl3l)Fk/a hPPav pMc-kPC.$ WBTC/2 EőPp/)2`.' $ː3Z3zhd:pei|+wyqt71t:AoK7+–[ȴ9h:P8 =Fpjv/PٗU~|A2tw[CO7\Ѝ5'|C\1ergƄpMS?G"yo+4AY ^laӃR!>䛆Ϋ X_,7Ĝ ٸMa$UړHѠB;.]%GpD18Ld]s%t(x3dlX3CPB'Ǭ=!O* }̒S1QF`^Ao\B-Œ;MRG]b٣uAuIX%LHR2hDPp/f 8OrT#³]|E /B[l1?ܪMzÓ2 ly[_*o"Yq;HqPYlA,ntЍ≼ן] t<Es')([]zVC.oN׍Kl_T(Y*VH Sp[DŽ4Ï߻1-C؟J8٨I9i02^ԑa6vܷ_,7 #6Mr"!ʧkNUҎ f8jqWF]֯Ȗj6GY4C)ЍrPTApd:Ne?[[_6{[`<*۝}·,'\B m!`3yp1u˛9 q!)6nPFpx%Ց?w.)zV7 }9|K)0+Kf7ŋ/3~2`I4B_dbV&Ji\zpm ħOmQrÊ]5eE,rƺ8<5Ү0cA71b5yB¹+Ҍױ&h/o8#cQW\!+ ^) Ç̹ EF{-'13tl{͜V+Va:3l"h lz7"Bb b@z#)v*AßhWs3gU%4-i Q,!Lfd"L TL3"(U! `uK%uީ|lgON$jyUئAaxGbm#yߋ!4#X:K4u[΅D|lnU͊wFP@؂Olr\BvC+VP<L_/,vxwưs`'ł~+v;S_|?7)u~ku ¾Gjs<S<~|V龴`~.6HaBm[m؂H'Z蛵+{;1t%@7-4mc^veiۄeu(!;'G/ C_9W(C*Gh2 5xt"_.u*lt;Ѣ\ҿ*nzwvZJq`7^̽ x?[A1h c̄wWeWD8hAiƂvlBy,W5U%umW`ǭ-JN\3J#KF<m;'OBEk{8X9iTЙkܳQײ{i&hpaӾԻG|Eڮ~dJk#uR\vA>K[I`N9R&IG=T[VtUN'ri>|ШiCYރMʞlD\Oh w{a290/) j:nqg$'ve"0[>iYNy_xn K#vRK&<iMhmmPe(QHgs Z(3$-HNO9RU4\*$|1ypD4Wkdn_9p I\$bXEhxSRJXМh6>nœP$(5pPFrLٟc7LBN3]r׼5$(V[ C6$#+V_FˇBSyŐ=۽dR2+mQ56|}*h8H >ԛi!+-"ŇGo_vvAVw(׊_i ߀ mLkR9 (&sf K+M"I2[$GBXT mXy_^txɁ 2Bfy!]EE_x+x}=JH+N@Xr}T1NJz%$Mz=sHݴ*-O ?`D)ԪvSN?1'wy0?4KB25xfX&ֶMvIvIU)v 8m9gO%X&:9) Qù RlC$29CsgY4hxIxLV d.WJЈZ"ЈC0KpR[vN\bj!Ǝvk+}7kKR鰃[J)>I#& [vqp.űP'4>6xŅ9b>n@޵o7;{B5A~:1F]&ƧRvpҙX`QϢi{ F֙Oפl>f'u!^ m-=xNt9GP $#0J捀OWMZy!c~zP.@cL+PE7.l4tLZ,+Lў䣎5KlnSt,jI 95\}4@S2d'nq:L+B)f{rdFs!w1ۼfȱz$js98Q7`t **ʐw),m xV΢ѨN?h`y_um{ht,^f mEJێrn]۳qWܟ䝯}{l69ZPsV )gϭUhot)Q]~xFʄ.:6VIŨ"[:Ѡ~"gZ QHc*Կ]Y+Vv{ V|wۃžf⤂IGg?s %$Վ5:~D4(VdC t:˾028H jQ 3 &KxO3CRR&-~1;֗ȇnmii ?t ^G@&E8]2hgwh鴚t82*vHJ-p[4l$|ZkFbKv)F3a%hfI1$ +Ó_b0ZjP7_Sz;a2&l+T9 եMDu(bADdYRƀ:I=)㷴(sèlu.^NiB(@HMԟ|FEE&N(dGPQtS߰<~s~??o-fs7y0/CI/+Nq[7$${8X|fA&KR`B^=i9:j&*N`\g':`1@#OQ0!  նbM (4Gд g4. Z>^S*&Vd]n#s7k&{l9 I%Օ486JDR1,\- FlN6BL224WrYLmvv;Jeڷ=^V4 Ɖߏ`. jJ"ΦۜВ;i*:<\tK=O$9*I ]w_4bjOlF; q$@zS9oI)>\]ɀM-D,49ٖ- 91(-ZCg*NŬy-JX=т(ƯԵ_ٹ?,vJvFx)pZJL=> 1;]- "(fHIיhO_2i24p eG Σ?x+(O)7yhi +;ohpn.<Dh!Q X`liƭfKQХA4VEc8_y~"p#^@=Z0₀\E Yn&4R%~qs{<[o}S280 ETUA-RPx}E][[ ^-`@Xj+?6Xbu^`u;# cY BcpCOMT>ɄpLd?ikBx7rT?1Ǡ?4M#]J5N/K3<[߀;zs^(w3\-Tί9^bԃM}}zD8(BgG1W%F^̹6x2Sr}k@U9N & Xpt;1+6}5iw9bFEBng s΀H*;PQx?,Sn1B]NpSϔ&{ J /gy 5&Ǭ9!`Y6Щ2p /tL< ehi-@!2=̉I!h3(l[t;%J&)[C-?GK0b|ug mHk/O+KÖw^6Վfu1$9.Oy4Qmw)C>kukʶiiO\Be䂂^Ei |q,Z Z"AbKǾxC5^m/Ef @OLRRtls;ǁ" |2ؤ*rRy#?,{Xt<,?PB˙厂_ y.M3\xuH)+7]} sQ^a<$a6!* Gzѝj8:XbC{ǎS'[^-JBC#<ܾ8eivzG{)Ǒ =584IE~z!>O}JV9<ɈRa<hO,M~HGgw=n Z=\HNoww$<9Z j>Ow*~y'>K FI\ `;(:e^x* bw&v~A#I bchB403Opjօ=&M 14I*#qؗe>N& T袿9͆&l5HhOی)(^~inΣ\%8M ;:ATsOa><+r@p]WZss_Ī Ep@-<..c׈.eTW\'4[ R_Q@gǽ2623;װ>}P}PbF> 0'hF|Ze") /ew0%[k#W7Ar=% {./nGVRPs]ρ HsoU>9eUMn^|l$I˻ܓR+;Zz4H!p.|Ot BQ;ZyQz( 越`k/e']|ELOHz@4粦*ދ ez; :[X8¬f-!2/"i#G:ڗ_ |jF`nylN"Z%VsTQo6S|vU7kOEӁ-~?Rhgrs͚dp-Dަ !IeG▙Z*34}I(\YdW*nJv+5ppR_k?@0lOum-⼝YXdh$QZa8+7!UE?O), c޿GjY_qr6J&@$ҿ4|٫ #Y ^B{WS9_gh!@' c;RF rRkpIwŔ 5Â8vfTR`<HSv%=G0/*~5;Vjgx5sKHmOyKDz]11f z);1U\u6Vvs-ʺHlAjKq:ǿs;i>a,:[@s'ƄFg5UK[ PEZ]a ѿp_[>s@1yPצ; V8noEᛇmhL#V.T݇[4lX4]`D@<_U<=wP#X2NCzB H%A+mwp 6g}uB9 E .Ԕ=ap"Fp6:DF>c.^Fqܮoo]Ͽ&⍼Dzt+<`<\xuM*T&ýO|>w`-_ am_f*`=BkɅ'cz#C'LScPOyƧuJs G(ebq =Ǧ/'-%@kH(ɸō]qcCQ_Bm|Z^a= pZq"~ԓO=4[<ØڧѲ^ܶ!`+ &ې{ӜFDK-S_$.ͼsE #ɫh5Q&O h8Av[vq UV%DCS [O锑IK`­ |/FmX䣉)SP3-bU_&|Gitbvz)j@-_Vz#uhqme  qD>kkW̨Nݎq3F|52rTg:AP O~P予+ ajd ʈkr!5//|_ rf)yzr/'k&~#W`p@MJ<#B {CHp^~-ŵ82[~O::ΝW,IZpX$лQ{;Hxܔx閲wa [#4hEI4 @ k<ȶ-MG@yl!}ժ (n!s:CvT%d04":Jy< ):zO=1/.EQ%j>0%/oU ; 1ڽ+8O9i֛jn&, aQz~ˊ|IK4Z'eP_󉪒R{#vΐrǘzG9N#c]&ޙ4Cbz@K`۔6 ĕxM #M*BJc;Gώ} SB^fՉ< t>ǍRH@gRٕLjBdݱ;2OԼojZBLFϻnBNiV>gMfKϔ N0ɟ?fL]J) YجthQ?l(q$P  DuLiWVQNMg}(q|%mýr\tB(F\ݶAoPAiQ _zϮ&{3*MIθ6AvImszq7YZ~1PQeAB9K/FY( ̙:g[t\xXAu<(5`آ@Sh4XC~#(بirJ5Caz E.RFYD?zŇPTgIBMZ) /~8:ùB_X15הQ"[l34R/ `ȋ gHUI~$WAW)Zpr8< AAњtM]_O;d(:/?z3_*:80z`scЁ#%l8#zI?z+ g|Xb÷,+"{Dau;bG^ꐉiv֖]:{1o"r$ߔx-~6S_O0Y QP5 7BLk t6~ 0:Uu>t $h.2آB Iv|Ƚ[R#p&jMwʥuN.܋otcPvIeu܎.HG},E{5( #&xi dZ ;GY kʾP+`L- +C'ITvy`i !؄SN\󦔯U~E񠏁W#K6f2\oPԪrNkqxp:fD@m@ SȐBRMsa!9;)  蝈Q&& V!Βd9[{|,o:u)Ln ܗF@‚#uBs{ߏBph ggtZ?\u-as )T,#<8ɃD?#EmunEM9^oOeYcf}Cpd8ʱTh^ܮ7X\,4%wg?"X*#aϗI*qP*Y^Vm u/ ޙYpߴ7aW'HvsD&Xn r.J‚S7gDA)[m)j ~]}14xnUz}C*qL܃Γ\PF7zԱoMZ]L rVZ M: ߴ&R.e緕-N5)-<=vD/Q]Aj?@O*E3]?j0(GW{Fg ҳ@8*~ņ(SQ6\piӸ o/BB{ᖿbwr=6OPh+SG䞰EҘtj4JQS^f;2}4u&_m@`h߇TUS00ҟݎ$()/)rbTϹW:b}dw0 a=)+px3zIîܺL2ZNWY? S?|^zr|VJrdw;),Ğ !9F?~vÔ";ǹ|>W;1ϮOJXn`y/gC|$_=Ig*^Nl1'PX}u!џdnXf|WZ{\]dCw.jm]Z~L\[ I /W(R&ΆS.Yt߂F&),׎u='Tv8N]L:nv7H=$a5g B#$lFu Coj zz&0V&_ ZHQ`d@#U{+$€t;/# |SJĂ K"_nb4X/JL߫ _Gd?F)WvTCr܀.eiZS%LAoĮBS-n]hT2d.]~sŠ+Zė K!,|_skmg-{Rb7ؾN.qIbSK 6,eBw=J-?o &?v>qB<=i)pW=+}yp%Л% )Xm=._ +W)Ҙ(7_#ݝbu+sʣѭD#Zx/N tܞ1R u2~&vsS8lqkH{'y)~L!m2|sFљjomA.˙^4 \cE2}_FGgJ[$(0dLtr;݀Ⱥ1* /}9 `A" OL`q%o  Y]ˌ 2Hf fn&&mi_Hђ "Il )ih37ap"[hvjaPdKʃKw4G6c='njboOBIsdtD3'8P"qtsvo_E1JJW0` 7a|[5fKT-[lFs| mWˎ ڒyB"i4O(2 Ҷ.V146ҟtT0SY!^ŹI~tnKp(BZE[wEӂ_PkiQ|Ś5}qgYXeٿCyisYw0hHXId 0p2Aâ_~B]R'Y]У\Rc*l`np\K /(r D2Kf8tWWㄳ}Ћ%lo(sAٰ\j礓%⒂vk!o5zHuCmN!QIfrFtpB*"Opo[1iЈsstgĠ>q]V8ꥍ'Y.m;q)|h=BK=E/d0L=\~ro!.wbͤ@MкݒgG ǀ*z=F)$y8za>K/(h eG U}I3:r ;s'gs")M0/v>5p7.?9q2O͵QT` >l2:kqF U[o8-bT`~hdХ\6R~k^w0TQ\*}E9 h5F[.JyfJ:ұQBC3KT=:"en|$I_.4vqýv8 m#Y$j<il3{?3b8m)ru8>ȿԝmBcDž}Y] ,BJ*8*6@J*Xo`,1}׸nm09O_xד"C,P|G#?ƑRXKZ aB|e^K w=egڳEۈ kVֈHX$4Y@+]NL\@ԏa5MEjKQuuǚWɶ׻N?0_Y8 pj^J.0h:kE"*hOq:Ń`q!YIn}NRm+,\2;JbUf?U/`9铰gPRknxuU~-RsL*Ӻ< D]"P#I6X`v[|Ig Af;o x7]+k" yG *8#3!qrbg' ֣?3/XM|c8V<Ac/B.;KQ8"PI( ~9 n61\%kRvoDG58@-%o߮{?LԫPZ(DHELpb!/<JLo4]H[-Ϟl.[yv[sS?fcEA=XT&v>S9L Zt!Iej p5{z@2 p[“ohc4wScf:??Mzyj%s<üb4yR0mɞlkPȩ ÁEno]|bS}V!y[ɑ7'gMWm4gYwWp3qW)]nK9t4Qh "cN{4oVl0Xt'+}>n\r2)WmWT~ֈ[<˓1$_ٜYvz<0}ROcd@d"Gv\ܿsqyҗ:pDYS1Qј4t6Yk_[uPS>N;M~E;4k֭VmU qm/}us ުvدψO (<. !)-~F1雞!MBEǀ;Ps"WCJ ނ 0&yR$ՑPش"1}Z3VsC v`LMI4.!Y?[tvl*k&cȧnS: 9JwyuC^0LSrtD572_SZP5BKq9Q?6E+aB__MlCg{[,\oN 81'*":w\tw5j3 ƃ%PXkRNICY.l9RS:eh3G5kM?0hݠyf5 l뜇)aEd_I'Ou! QҊ 9{bG4<*R]dKAD Q:xJМ 4?X$x%航IO4X[}Q[ e8{gyF(s5Z*q#Ce.&"H6Fd)ؔyw1*ex>YmmN |0_?uY:Tx0B88Go\` ^l6E#㊍GNlLeQ4&rtn P{=u}Sz䄕1fસcErXMQꈒQKp~Hd2(Yv;|+16е:(4U.G_ l*1yJjskaL^οW )dQDmުG^yfægʭSA@;iC1S[=GGSQ%>5I8>wg.vSzͩ[Y\{Xў804FG $_%5O3'9ė齜8.M}N6rG[@Qpceͷ8VSwx1yrO CA%8U۰o#sF@316r}{dfwY_Iv:'oqBl#Gn|.ϰ~6jxC)wQI `+F/Yz]{xBӽ2+Ht/ö5iB5d*KU6t\ )h|*xt~T F_M}nD?E,j"w)'ܕ WzXF(ֈ$?L]%!g!c 理mʜTQJ+NCy⑮*ZW>vK}_|םa ӯ<_ eޯ nc_D,5D<%JCcah+BDUV6зCdL1$ԞpYXʳD2W4cf3IRtBT=0 .W?["7?jUG6%6 ƘTnB@3O͈jjAamt=g~JG'z 1QyYC2l4~(M{ԩ"4SVr-߬p|SG*9)H)D&E@9\H -|H2W.lfG:3_me☋;pf BG8T̑I2g:s*]&AC@\.^S"%QB]":YwuglJƸ-'6O Σ-vRnHD%F!XL}/LJl?M$9?=veJ|ۘ{x)N|{ s#nStQ8\F]ZW/rD}1$ )`qTڂydoű9V"sZ7S C פQ&q8w)Z)&Q%Jf#ZtOf~LQ L'@6N[hk7=!Y٤:PD 'HP5QO^5f֎!N0Ci>nnD4 _88t 3m\ x1iHv@(ekoQM3rs,oS9~_ot/-d'|}JlV":@߯ 8-_ ||DA]#W n45arx+2<*uD쵦~1 *!>`wXnnuf9z*>s?EZ%]XLàzZBdoSn_9,F{l$KBQ}8n]{*+AGJ!EuW"qA4Gg% `5=3bfڰWRp Ƌ+P?v"o*D1;V, i%N='zHKg[ Ux}Pc)> )OK jB>Hxyԗ(UiR/G;V 뭨a@8Eߝ,Q Oӵ1 bhiWp;F[n&Oz@ɿ)W"b$fz?c s֕}e6EݶB^J" |% 6OݡIh-cPs 7Ϝ8gE7 '?!XPƲؽ_vfӲ$d/4qk;tˉ]p+|Q-YU4|]*g0+ckQuCE#ey,:.b[φm^}^)mBE.fަO:!~d?._t~jZφ.W 8yV./R4qT?M_4A~ W"UZ#ێ |-QgQH>٨$(^cl=1cϘjsޙ%/P$IWov u} 9GV.Q3q e,mK0>.՚+݀-!9@lUk\`~[i#5,9{BVܠ`ǎϘ. EYe5$jc\j̙ b+ L]ڤwl1T9> &.#WH#8,6$%P6DKWEmq*9oF>9!ݘVmL{LBV xݛmokP6蛶7j$~r[⾛Ś7j+;wћ1MHg]aes6UO^H$j{uܠ-z^kv}_'%d&!kmXhO/b. ʃYKr=Ejf@Cv~50u62d[,MYx A^ч$%C?&Nc$RI>|)A88rD!e !;."z$n|Fe8?Ks=01ъbnOC)s#ɧ{;լ]cd=9źC!O[2knVMth"0`þfѦծNquN>=i~>dp4u,[rCJ۸JIR]h՜cuMut| :"MXpC5v;z&\πqYv|L SyެM(54u]Q>Dvk-_tAZ}M ^ zkOޢ Dݩ1.9V_xL/)JCLׯkԂR!CJ8M2:{\ ñsk CjPŧ'\"]NxϤY [oMQ֝nՄEG ;V3, K: WN^@CK{\ aPp!#Ԉ,_+!yIE~ʉ{!Ad=P{Hz j+y\ò2ʦH;d6pőSr]hDa cM>9{C"@3Dz1Ja#QGߑVevMVǴ.D^_ۻ182T3i,fHq' l-(|~ȫۛ2~r2kZȠjT\:M46K?oIJ^$-gx=dYk>'jGJt+4]2wJ)xOɿ".ҮƀIiqZd0:tWV E8V~H#"_K8k ײNvVUУuW`v4EZtΣ^'xpv@`?xœK|Fw^,m|Jḏَ߻>ߺ{hmX1Pţ/yǟcLfgk$f$UBtgª[jYXF{XH.Vp W#?K%w"oj(e'FUX??4]%ZOh3$@k lXvu8 zꤹrSƥtQS:TlfO#2#sl`۸m}:(DunD_:,GҖhҦ4sE&.k94OOt ]U6f{j7g_RCCs{b*PܙhI~'ج<{;4tl1@فDmX8_,SN`z`zS_Bvr1- &_jl4X:OI]ڡvm0lpwYJj>18@9oGR wRyjE_rZ/kJ3>Yьi;E#eq68/ ޚ%1}ɇX6Uf֫eISX9mxx swO3l8 2#8p4iwS!q8x{PP*4`r j)kX@iOKi],m8U=ܥʑѧ4D^͋3~TMdp>-X`%$fĈj(~qWa %&]}"s V2K\PߊH&+2 @LRPGf&&j4Pd^ofM,Dj4T$Z#x|l[pZj9vV8m%kz;8 緤@94{P-~/(4.8qvvAG,QCT?9=ljo67Pvf_@Y= ֞w@p,(x'ozsY.•S*HY4,oUxGDLJTNofY~3:ÔJ5L`B,efMGcf-;~C,3J}w _<J`v/JCccZJƤװ5 rK1smLzo|"C,&ï(sj)q9Sî+(mfG5~'k\2Sk l<ȋ9wLfj~k >e)NlU_R" zwMsFNܐ>̍Cϖ1]ʢ0\t舴vY:HF;w-nWy@%3Z2%KY2tn SL@z"6a);&$ 4"1S=OPnOȧ1syJ[G)‹ÕE5ӮEa#L6"0wor'q)/~z4 QE4$wsj"z*cF|bf2$fsr~CY74Y.&B51f;,w^T]I@|ÀK&:&3ޞ{Pጌ&} ^Lz\4Irg;ZYs p_ŜCYV o")TT9\ziI6Y'D%.+UVQBAs7zT,el. $`^)@azJt}q0zVafKU$' )O7rwr;=ĺNw<,O b[N d{dT!YҊPs5<νRFodi4+e)Y]5EuIo Տ\F,t`zŶlcQ5= SJZ9pW ~Y, a~O13S˯qf@0A vaU Ag0p4B:m fK_AfWQgĦS5S#{mo2JM??틯" )PTv넁X}*nFK0GMvO̙Lq9IǩC&loK&h1gZ WH1:>5:)+'W?3;ZfcxuVajٕ'`4(yېRE ¾V(g7^κ6XbVT1VRO01χݚ4@ϻW簝ak֓(z3ɔ N>`>~g5~?;U IZC35 ȏ%ff@ {u&鼕6>4GGjl )Ne'Q|=WcfO3G4v^ zw9K<e9oUCg X+5خ&a| o׍\aPKa2k E1rD Gè׉J16TA[QEEYL;1>;]KE.S)wo,ckdH#JQN1~"5A ΅@ړ\q" ӌ?ivsךq>~9GCv\Vf?sćN簝NK\(ZB ]RFT;b ɚc3EMm x,'I - ʚ!޽F#~2kA?b>68FeCeQjQj}f@,ó SO T^XνG{j.1tGgViTDh<ҔDhPG/>p[`ǸyпPjXEYn#UCD$z7{zyyGoF\n{b >omצ 8L;Ң6ea3ß>t8=HK )l뙛@/7:A6HTSi3ĢM[ȿ?ӚÉYtfV$ k$ i7\ =9="_%-H@ŠxY=2W#y~M=9/pd&dᪧ_Ec9 oKyqq8L_Vp兎@:6M7:޲kJB[OG+P*clK?PnowX' {DH!GϢbdY.p䵋_ ˫Lڴm]@QC57ҵީ]gB[",؆&l7 {M$}\rIf[|Ÿ1.6EH q"1r^XO.+o =DzNh9y$;%YҞ: Í()\ ,@HT&PB6*(ȒtN:VpD[\4A`IGq4ONd(A5 At+72Ma!S w.~LdȺŒ/Mx{'!;O>rf;sPXkvG8yd?PV.9H&!I6yaj}PJ,FxFe;"1W٭^ uårnґlW{890kB!MQL)FOh, 6H$H(CI)g4b " mLFc 7ns0:ʜ8e[My\# 6TIS5Z%It)$3ElaNya"ٚ۟b%tz $͎5Ch݉ss[5`$^ZZøw CnW'Oog 7M 95},F߃T׿+YVG?6m;:njdz ng${\)Vׄg;8[#3~Rpdyp"C/ ܤ"*ai/Qh~Oۿ .[Ck5 944KI{ gEHڴIlKpd@o:-87 cQh%g᧓> D?x&\G )@ld?v:[*aG Nf"C&ˎZ4kے: aUu@cr;7mWNgHvY1,{6ר3 ^.&;\d&zwAd2GCdpl&lF'@6 f)~";!:Fp-W ы JQDE>nyy _|ۗ Z Lb 2,5hB0ܘQ/%_JeVvl-(xtOvHXr-b=h1stҿlcrV]`X[Ӿ\:VB:HB<.Ba@MG!l@'(-ˁPp+Difw#+'/pk^'!>ۯb蜮ڳXHa3N;:E:7fg1Hv鼰ͭ0;~dÙwqT{11RjYʁ˖l$XΑNX3hF}1'h`i檹wAy -#<~\i(䰽f߆x '栬^w"+"4[e{7SW"zpb`$:oB//kS|*Wɰh#LԀDSdGχ #ET)tS5y@ ٪oYtԮ[Rp(H|簐* М.O^]x^uoȖi.8zxWhWU|\E1m78 +UJpĘ 3/d%ӝO+ǒnsk5~(T +Y16rfp_=MJyǃ> Ee>2vʑBBw@1 RhpCc?7 Cɳ7XcLT,^hPmQjx# TRl m3?^N`0#ت8>5ro[7"r+#SOvȼf:˄j:$ݗ bWhߋ~'UlK +@~ t䀇`}S3\?K^`sVB=:s".YГx$#!958uNX38ZLh֧r+Ou{T[XnbژMDŁ `| Pd/6&h/8K]*9r14(@.[xV ] ^R{V+~=]BENn ;Wg7;$rcagi8g#P_ڬ{Tob Q]5-VB\oyg7ճvs]ԻM&L3;Sb5ʳB/%[y>ǀ1u]bOsGٝo]Ys>"ARS=(%LHdNwIcEHSaE-7fMשEn8 ƽy~y0!Y&A) ۧiU*E~UEs#ىLyzsәtCaeQx @5<-%6nE RvGDoKtB=gŅ$5xEwGI&Uhxu;5wEaaG+2vOn!.I3@U.HUi F:w6=4EC8d, \m|JעAw9Zea`XSvڞLkIN!VƶHm\qx*<7&uph ^XKZrf=/,4`D]v־w}2ja1"D$8,Y_ei|9䦉 m`Kգօܰ=i1^}cفk. dB,t5g84̶Ad t͛UGO81Js&^`2+~5ER@{)$Ë,XU~CuKedAz@_͍~F=h+$Z< +Frc ;Va"W j0/#Õd.vŗJ56aHf{v?:`VLykf酧ڨ(pSe,ESd!@k.2 EFwbt/oA^*dǿJ okC1~z4iBM b3VbTZ[NJrd|lq5q\ןe39s RJ}B*V'!u+]TAD).KW\o>D[S:X"h$Cky)gz;'VF&x0,?@Rtq5|26{~2^$PF;j7``X3AIti| crb btPC d7zYE4HCkYN#O3ꦐ)` I5o[x&Ę6'nsmYͿ¼[1?K[oSM3/bΔ j "`F1B=In7,NB-'HIczr" Ī؉ThLՑ%SpX_-=()h0S]SH[(Oe1 sS2%5 JL.=:fTEvd/p#3M&nOT sA,Mp2U d[0{B.lwzr@"~X.cVid_r${YqB˾g]BH|g]Rl2*`o۞{I2(HpCoxNS/,|gBM-Z7vЃ̈ e)Q’-S~D?^`̈M@8Tdt[" b3ԥs6!>\5;͜hk,'tUGl>+S U%uOV<γ=F)řIЛP>MTE[K](^ Vh:Vu1Й$@RIiD[ ;˺P V?eTbZ `QpB_{b#RL1w,f}4׹OFTP# |鉈Qê8A y/S:/ʼlW YƳݿ_=uBe,FF?~(+pYp=XྡྷCmo ިB| /sCyߙmj]l.n!Oz2:ڸBC$R`9@d#Kq ;XE`$޳+m.J&2'i%.5 0>b6#l.0V 4=D4I4:A%b Ԕ%驒Gu`=+;u+ Q@1a/#syRZ YJv.)71x=|CıT.1`iN9$~i6óc*Z04 ;\a@cr>.uW͹*7O&2KѼᐖpáY՟pkb 7*Dl~l/SήKETSIѯNja4[[Ҏ'TeAj?pY:I?Rr4HnG#kW4we5[c,/WOP'- )סkgR`uK֫}_Bu,8]? b|IІ=U2꟦k8J5q#QDoah'DRJp,;XTa,-(WZf]|8觊|iue?'T3BtUPhҔ,.F-w @Wa 2RZSo-ֹnr$;\\Fm#He}HRR'\%+Oe!ƀ`]3$9|Zfnnѷ7֭&Q̡PV,2:[ǙݽF)9m೟sx,$TMBT66MzЀҏb#m st!^tT;`֋neƂ*ou8Mc%CχG׿_}"(HHet]v:jCno60Jvj3cdw; \ҩ7(ԯ`܍֑ {rŝctY>lUU:ȤL=\Qp=?a҂d[Q~{]bI,,.\kR)n q/n/"fzvi07 tf'SQ{ ӉVKoGGL "5ck nb"J#bCPoBmurBxHÚ80bozJx#6 MrRhQ׀a/J+oje u]^a?fjd_H):xM$sDS/]n%[l4k&ut3׎ΠuEXu%>V]vaI1k4^ iD8\,c(eFAhJ {ɐ͐rA+1K撤Y mRAp8! aoR FG}` {< KmR(|@Oi6 OnTI-I]L!ybfa5234'k˴\"2\oM)UPR늢w!6+ʍίWєS|]_;j{4̔94 Fd;w ה )RZFRP(/Vm] SP,74|0~|z1t})bș-Piul JϬg{GtĄ,Y=v^,ȝm DWő͘9myp!BOnM/v&#Ēcm7cnQvWd ְaK? xfz.A?p$a&}[+WC Fp]44!__~>\NJĆqpqV4&l4a復2QK)]4H=n ::\m2;,Us{޾[|}# _oQʾSK s?|sA["tmNxxn76=6u]W2ybLI衮Su,3p0(` F7q el9eli=k;kH)vRGdӖGvYڪqN3M~-u 66fOEW]I[@# \\6V-QV^Oյ;z>/m~D0{H V2=3Gsn/HgNܿ4 _E+lCZQP5@j~,ףNgsx32ZfFn?;p|#+UQw[zjK6e(ɱTYD]rYUVtՎs]PNTz8 ؊l", jd v1 {p!\ ]6"M; 8 :` sG??{^&ܑ4et@=iV;NFNFPʎU.3EfH"VN/P6p[bu/NG]!j78. ^)7Y.N#:jоx<RZk^@),slQF`cRn~TQ!tyrCKb!Uآ`븿ʆz 1pmbl`vs>JD~7笖@4 5ql'_:)"fŝf`/̅v ᰁAs# 8ZKx}W&d4_MpLƚ < DNOyz~9 h2AW{Nσ7P-)<ǺhhmN9 Tbe; " 2^hA~Zp ŭf8qR@g ^Ϊ0EG96!T "-ApzzR7Fσ,'!2SooL=q/]£zFnvߩ|@xF^ z␁I Iyh`$n[A?"ŃoJV.jHlПDxvxOprva?_dPZ0f7saYJ,>Lp%w/&w/ĞRF L!&aفy~ì45k4FKeu3ԏ\ --6*SOŹ=Y HfBF9ɴik^ ˁDbve:EMG^˪qki?c[MX[ #m-0H6qDm97I0nkX{C+JP48g-. ɈeiH!΢pcSP.wo9 fG=ZY넼[2lZMӠv/mwjELYh\2J$}]GZ 7UGY ?JxH'J\hu?v5+҆6ݤx^E ^9ch`FZ{vf('&7󄡽doej j&lM"Uo@O+ߴ;W{EHD~}7"c[K2w[#LÚu@a>K1/|]9qGmҸ7khfvqIIz}ZR{D7voUdJm8 H.|kpZ\I<  )Q,'`{!0k ГVMI3UJjxEaJ{i9Y9]oOlE%x~bj ,GX 7,c0;L(VLm'$SN00Kvwg,S! Gĺʭ[uTYmQ9W20~jhDnM tn[uOL`&2#XX$k/ ϰQFdK# 516g_rgϕѯ^muADtzQ5`Ւ EsCϲ];^*V/d!ps)X!SAܣ6VÀURѫXGds/FKXOUZ{Ngo;rT:ʗ.2)4-;VfQEg5 LId+ D\[wyD{j M`~6G覉 ؽ H z>_Ytb$CPs7y͔E ߪ̨KZ(Y;P 02=\} x}/TQ_zڇ1m*ͿUzs}v4bDn9&ٲV`L}QVf=#S%D,g@l%w|ɤ|6{5xSnKy.z$ &εcYk1k;꽄s71)\=_f<cI++A:աR-~O5~jV3SAb$l4镋U:lzk.|ϧR`Žh8j@ Zɽ|΀))]Xi'28jDp,.Js{ @â~(bgOW^)q yǛNkvNI !U^coW{ v2։3 f -+ }_71YW?8GAqH.>&EY{Al;3PSJ~Qa^rtxJPkJ[Uץ=K UC jartۆNiXet|#Yˌ.VE1ŗp3k gc`Kk D~0L(-s"?.IދKŰ~X|4䪝ߟ1~5HB gN[$[[nE2h ?xH't,ɇy8S|"쫒#.)C4P޻dCZ5ʯ Lg2 x^dz.V{{o5][oǁZM0|~lÜ7*z84"YݥW4 DlL+ 85{C{G:`K!fzzq>,>3MNTWw_=qbGbiObK *ڷΚ'\ #0 zZrfRBtVdm^vxhT.fmYj?»sR]3hꝆ86Iwx1tIMV?gu &X7,䃞_H)C.d"/n^N/9)% -y%-oCP7yzשiif!:x )/Tћ.Aem-;3 EU8 =_ ߐi\NlVj@Gא;r]-l09-GI^s:'-Z@{?8=!wK%`¤lh[ Dt@_B9J3߈X;Ri8CO=rzWr)KC(j}XRDkX+㬚`dG1ӸEѶkr{`^VHJvu=ūKK)=P |LLz@m,`{2]ėp7"9<5HoAzk߳GQ ֟d2]W3cw)T{棔]-\n7\g?l6Z2` .SK3#VN&!N_Qߢ}܂/\M٢ѽTH:.~ JJCf&5\eEncp\Σ0'w^W, [#!#z*C06KL82 :Bvd~Y- 1{sn"uVu{8QhF>RP0#{ Ʊ7{mI2mcu$U<J&^Zodo?`ejIVߛX!-84EOiqDddCV 4}B,IO fЁoC贇娍N/h3{Ca04ͣg @G8D(VSЧc?<,SknmxۤIJ×lwEP[=Rڧ%WG&"CФ]O0DKIC5lu= ځ{ +})w*i>kVKGƮ=S(b~ك!2ǣ Tc} eO^s.KQ_z "{̠N;8aYɿ'kJ/14B Ivf){tK+&@T7܄h{Ї8MuqBr˶TOAn ֘\f#帣w,t:Ez\ U8Q?x2 ԭ/7ESoArNc ]3cCǑ5FD $eAxXDD)A\YXc\;VC9+(+ mb$q!I-?%Q=TwYuۗQ sm6.t5vl}Е6bL8Ąp8PU5o g1:`7|Big K\qe#͢ il&FN.y\ZGד'!l1q[BR6=ɏ.vΒKb:#K_ú,$ >h%Ǥl+!Mg/̭ 4 Y{j (?Oih__{| vþsJ7S -ɹz7(w#mʎϳ~˸Ol8ilMadz1cp %oedy+ hޝ'Bn™/!5>_NF;:r l4 LE.pLk&B?T͊`ø'Bnjد/&"Qաfϗ34E/;|TP "<"Qn;{+yL=ΪoPٽ>LTcW s}m[7ISH`}{wf#NAlqm5H1fQfbh/v曪m":lxA@1FA7sLSd5Ҵ Nsm1NcBf3٨Ԏ'B4 U=&̡&X}dt!@"rEc18u:,QOv$o ֥D1qO0u>=EZ\ţ/7|C$}DnW QE IzP=`ϸ-Wod<()"މYQP%/O](T>n1_u2vu`ȭ.疖LqOk፱Z%%C78|YэY)fVgM!sY[!52bUdHzelԁzA_ϴ8 @FR-wRlw,C5j |W5=K\>T8!n' ?s덊cb GWRj?'|OdžQL|44Ҝ܈6:vu, )Xy m%w #?6ʓmzP]2Op$(*z]ȴ}GSoҠHZ-xw{bBD_sjȁtq[%9zG.@Nʴm݀(B=u <#ukȹD'd^]#sƇN~H;Mi~raj7She0 Yw PL'q^ x1RFlqfyk;v3.FGX|浙Ia<v/ʰu6” ~SbbECFE$"C{.%PF( Aにc06V74.jPM!HYSbfQ.fyGUm뤠~2*AT昪zVZynv"ɉ4O} QZb7:qfe==5V†+ WLC Ȅe4_!_|\'Sq͙g.+/^\4)q7$uHw<ݟ8-D}Z@;׶_"3< n2cDu]M =>w>\(gGc$^b~f[26/_סآu69:(6jeuo8@͹(D{v%Wބ)8ݯkRdEHA?9ŪQī3 =<9(oՄk%s y(&_:<ڢ8-sz$ݞ~}ƱBM_kӷ^1%|~Pbbitc^ M}x 5wʹ҄g] ^1:J6qwN4s@:,x wc"`?2Ah ZDo>V7yP\[VXC%% /'Xeطc5NT?`@)2˽paO|{h*. 1[ωtg=POߣnB`&QcHV +7 .>v&6Vhc7"2dDڥԧT2h1ǁhPBx4@?Gi WFiy<-E É;\"P2- ,=#A+ rSD&^fPQE4^IǪ5yH0'b 6ZQLx ㊯Ӣ=E(EF"w_D-ߚzQn^EG/ܜF,9=N=&FśA˖d 2R w@&F曶ؿti"0AOkZs[dv͸Gc+LsYNx}ZܹάD{8H `*_&܌ G$I(+gʻl?]c@8P{n}Ib"7S?IU񽷗b:է+i^.Wpj/%: AF9ggGoYvPe?֙থ7l $ =fQ1:ڍMe6>4rJR[9ZHeneO1/I d@<JV ;+/`R'$X2O% Bm,;eç"/{)CEZXnռȞZOks-$T3<*Uީ›%S\$t5ר~ky2G#Z_pkIk\T 8`GQ[y$8,({oh | G<21YҪ!޲pYpBѾӻ7HI}!Q4˩yzƼ3YDjvݜm3Y@믡}'1)@@ 1( "k[R; l*u2zk-)T[M^9CXF+s$ EQp_ [K!Ur^4ڙp(ިx2'ҽ-%cSLU8٩5z i- Xg6Hgqqrm8:;]`|.Py6s39 jv[V ?:ng;EfaEkfK z,MnHPyn4|]a9sOlVt4 P&}26:dv<'Z@y:cw"cހ'a$ Hghte7tUW(bu_礜xJj4q{R:B@F>Mut$No}(RQ-]UJSg/j#DYg $C pK",Ad 2B(XUngUuom*6fQ~ܦg9yⲢs|o(&ZمG@Q|=?a<Mвy<^\Ukfnnls7PʯK5MOc'bvT(~E,I@` _HȫvoA}lwS7= d7Ė;-^(]]W>6~\\eK%t>O2 / yWm0TW?jb귉2ȣ? Tc  Cw$X4wm3 $huc= Վ %Wەa k(aqD/9#! ߜ# @;xZ0D>DLjܬ%TN^y,[:0TdՠެcLHCv?ARwE fbfx.wf[o=T*u V-!2+WPcŐ #Y2.[b0hKx2hsvå <C^{Y_7+h,iXX A԰<*Y$`E틯}LI⪵ù˺oVZ៳9Ƕ)9#/*ՊEC&ǥ&Pyx ;h@P" |*M k6Ç2.uU-P뿉nvSϱn>쵺 45kn^^Ƅ JK Cs 3˷5ewū[Xl)}?zՀP ͻ쪝[ zfdž#ШtHKgjlL@xS)8"TA kJO,p;oc&_e:'aٱ𤠪`$]ؿ8 x9#}}\9A-NCE*ņ4yhY9C{Ha K7)4UYQg`f';?yYń)uxϓ%?إvX8XDx_K;W Bm٠,D&-Dwn1KSMf9c8Nٕ R<g b"գ]E{إZqUUƯpBpBPQup(\[zx]kUgʒf)蝉 xaz*9y_!Lpui?HsVS/yBiX Afx|}yȟH9Gz`HbJY`Wq{wE+/ɦ2Rj5sb2ANf!1M 'ǩf'_~u-Ҡ(ɶ !?a\V֘W,& X 8Co#=AFՄJm"syljX’߭9b[!-4?Z,Fέro#.1V]K203j/3-Щƣ ]CMv^4ıdsp+F]qy2E׬9FR!koW `;[MȪ@;MNҤLu=2hk9KX/@VLB遲߽Ds-Nts$M*Nz#MWٔ߳Q1M.H񣝄@Rܟ~Զ,ΊAd!Z^4w2F_p8~htdQ۽xm}r7!3HL1o\wGX?57k LoKn&,*!Z )'gv" ܸ)6AnES~]/Zҹ3d2,_4\ |ۦq}Lr'6A+-Z&ߒ0K"K^^fbm6'αBg#={,_o;7bJ mj9-JjqʁXO1 uȥ*P0s~OL4BP@O QJL /hu՞5,} $!cЧ\TOږIGJMڵǢ[:`@ CѿGIR~^ 库uK=Jo&h KIC"3n* _ת:U B_F[|?@)-.ܦF~u/! }%;GCH6WN ۍ}6Ee#_i]Xv+\;PAʢ4]^HbxY6c.Ohm]ן#SAl 2&dP¬Wґ/I Ve3U|ٖA[kÊBaؤߵ]$QFi9E~dnv,lMJA^bm:r6 FQǃ G9y@}; x#ϡQ1Vcէ,³5+PR3KltJ3U pD}.*A#fzs phzYd8.ڰi9~̉r rcz唒: {͌rJP0ľ8(5x}0_ط !<VeAɀXo""xl;E_THxQbQ;#C|ra%k68`;K0P _" tQG(iA(r7|4!&RRΑ]+p$)yl)hc:5+\ `TC(.hKLww?lƤ *YJ1@0tԷV+E%lHË FPHV(|B0L_Y.2r71aLP 8C;ᵊHڎ1n@I?Gqq`{=\6-"M#]lac݊498%ѐ)feV:j.^3#`Rҟ"lIWghqD:cB"N"j2Qכw {F8-sT!Y$N~^0}|{`dTųiyY] //28NƑOUU= RO0y㴓 ^K:ʞu{Q/VL$EyK}jEv5?g TC +8EY1.?4\P] Ro"8!#3YEZ/D c )NG3y΄MOn`D1+IoХ@Tv9%d525\'7M.5喻(}:xDs#wDVK# #2IӁy,Bpf% *UWTR?۳iP 3AB8pzW% Z~Vyu6`ZAoΰ&h$6M?wءV{^"7*2"}ֺ'#9POa#h>'Y `{jc\uk @n+֭):xے3+xj@8ONS 8#QȈoԢ)qTےހ9?ʋW8"}n;ӣ-=9+^{hu7Gu q`wo'OX+pq_COr浄f:e/J5 1j*)4Z-I #0ÍX$sd i uNhf?S:6΀|TLWf AC}{`ҍ g.%"vdRk]B03)beFgjg;"QR~=ެq鯲] MRjF8P>g3#юПۺ~ŹGOqU苇̊ rY t} G396x@My _t/OB/"Ѵe ^SuF̗2,SvĭD '0|K,ͪ52p8{]ܲ5b7ZrG!G ^\7p|[[^\)>!a ] Ul{+̽oxEb8:Z`,, vWVgWYjyO1F%| c*D ݤQ%ӋxgU$1)dR}\~꣉)VNw˲fU_}Pϸn+ٍt D XMyK tpbPZ Nl_RujSo!>FG3J}TGlPMse[Y˿"y8`KZ"?#WVa씢@9S!p`*-mtΌάΡ.+~G`J9n][&ѫ[sIsVYR\elҠNf3DRu@bSk 4ۙݚX_ ߰b-5!L_ENT,cga?Ȉ5@/[b|{C`7 kHhvN KŔ,ퟰ*N*$GRUoN9b&7_0>u!w% ر4]ޜ&_fvXiC/$^9߃Ǟ5ioQ'X9l&LY3̺ޯ49\|g%7w?ħQ8㹋uk jdp2RƥTc!F)+bsX;1vVigQ :oG-a R`<ȯ3$$I#ޘtKF-_jRa@CѴ"<"Ӽ5G%Dd`-#W~:?˼EoO({508& TP\눥Wݲ@ HJxxW2qN""G;lEG[ڄllˋzQth? a0BO *e<dRs@XkcA7']pBobI_OwP. Ӕ\ףwvբݴ惵d}CdGŇ=, SO{fDR΁}~~fa_>Yoj7 8JH%9˗6# b{Dj!H&[bcE-!bt!<0?榺D^_Ï_O:5|߂ `[Cn@* Hao o+\yB#|2J_P׋Lp _Qd za۴" 5QcUp`LܣT JJa\5?Nz7mY"5[a# OW ĽVc"f PIuU D L/f~/iB{Tԏ2B;A ܢʿ֋"ZX|԰`/gRʦ|}GЍEapv7C>F؂ћfSC(A ,Z ȶqٚ p *=%ג%iTijĉ{;M _GT@ZH; S0mV bIJ5*RIϦ<{cXr/ZC],]-!)31=5|]i3Z="_.W @,&dבlz]$4oIWS8Dt/.1ioCsdXǀ;Pg)HSx3 Tw֏wDHh~koO~Khr,&Kz?1r@|ѯռvD9Q9B!}r5L5yJR@Y8Q7Ri%%(F+DVr6izL{ρOkM) "%Xe,S D]EB#Sj ildd;tzk[~b1no+ULEu P_FRnұ2ܢ01E g6[J9?La*"zkM`@ח9 6 B7U5^/Ya}RGaeO+S V&BJ,EPH ;+Mz1o(m=69VOR8~o}oH5ߚU JBtO5mȕгZ)߉ڔ0%"ʀ}*Ypj\m},46nUI68s)_.zEu$g82 :Ak^iXa `TтCAڃ"pbaMm]$ʥ* 3iaM8Ϻau{8ZFz|wa?W;tyuVGkE1ɖZjz)ha5Y¤8_@5rBT`.4oN_ b)?GcpWcr/Hӂi;ۦáIzΙ&IFrPj.R31fpshYyuBD9qfťΥd$rWe>@=BVYe*JQVF0Íy#|ZVZ&*uPN`iq%Zq nn KLI- O!M¸u⛭(ݓEg6 5hJlZDr/Oƍ]iW/2`n^h^Se!]5lQqvF/ç a$5A\C\f<oK< pIQ_8 pj z͗ };m._c\m^/ #uHVD74Kiiٹ(wPps* C}am#%U̷E~]ͣ*[Sm^,{X 3)xȔsEoMA G;99tCKbsVZPy?Q4؁P=s`V9cWl{НO/ w;=I35f+\׵y#?"vc)ٰY* ~v"^Z/Ț`L˜^4%[ o3ع]U*YRal\"(}-^8RM,L^:ˊ{jk,V Vt("?^=R:J»|TExmO+ʠ&?!V&&5[b.b[ds{;NZtCp;Cs%S:; _SP}9Fd]&hMA7#^ :$yz=G>x de&rykiu=wpM$cO\@Wjbԉͤ<$;6@cJ SC Ij9/B9Damvv ,(dY|b|3xC$C qY]5z+2V uֲL#GLs-""sq=4ҧEs~6N7>0#D\ ].pd#@[Lt #a*uDbL{YpI:;Ħfi?Zg}A_HԼ3Yĥ%oZK+lS{y@Ah'xť,,_jeDfDQ6sʃ7,V1* 3bn"P _;zL@;eDh)'!#hpa23xeWآ:-b} ) p|Oh>b5R/ !cnG|;j!8\;8;%١ CZ=Ey*_H4eV kv#ߍ".>~c X![\fqOs)cZ,UP3m(Nވ‡[mdjw5i˂Tڰza4Ս5A/+޻;Xw Blٮl-]2^=OYÆuڪg~, -&;X2yuL?ҠS&'d1ݕ'QYmZWa껹s?e&4f 3616N4xܟaŎ8.3Pot9uf@\k{S֚J;ps&i8!+K-fK?zM^}3BAAEʿo[)L eWÓcMEoX2/!Cga{Nf|vKXe޹.wwڴ.MP o8Hz5 CO/T>3D֙؀\b7[GrKFr]( EDK˵ _9Phxn<}6~ї;X|gs,kS9<)\JЫEuUJ!Quy7'_O>1%\HY9m$ȱ=Q&3; 9[$rFLM6IGUEh 2^#%\wO3zɺHտMIl9[:w?Kn W|ُ/fqQLI p?g5{IA`XlMs DR3AA`ZrpM wW )591bDf̹;6Swx݌[\ڋ2wrRcMe>@(k^PP*WxWE|r@ )w |zneGAeSeS FH/ ٛԴc3%e#Lu[aIdfC:C|.rbϨf״3 U66 @͍~;,$R? o QE>y|b 6" y)Ӹ<1ӕ|m-(qa^T5on#/ߵ2jYr fQ( rC:yWL D6% (@He~(GT,p}1`6:cʑ&Gx!5B,QLŦ2Ukg\aG.2 OŔŇ3χw֓M}̿䕲 <ŌQ]8@Rogz*7.% ]JR{anE #)S۶~F>}$5I FO(לּV/PBW #wSGsx2l_P3b2wm~Y7')kJɁQe[)>-W~eH0ZPMnӌK-J˒*o!2΢b,YZ %àEc'hUuQIP`/;^dYZ"3%, h1L\1#M_W-L;j|xWCtkC0𧔂L@8#{+s'3l A0i :~ ߝ+u\#`n< sz& jRlr jyzRίE\ü T]tNB,3W{[%{xltl$ړ(DySBױUx E`?u!ު*TvB7cRz ÁhkY c(w@K˜ Y;Jsf"\PZl:)Nޕ`p[q]><erA*g"v,^q [,6rЂybXj\K2;g"T0UBhsl0.VTF6M{ρהH˝׈s zz( P\v!DN*39*cF򪈖!Iydtgo&՝U-Urdn9`Kݑ$Rs)SnI֨o3^ 4Y0~FmMܚЊLHw~Fԩ TkaO?ߴ+0ڍN%y*jϷ3~zA쬋Ygr^ךbrўx8H3'Ew+EԞ~o1FA0lCo)T2kBmT}D" ]L%HT M.mZfN $լ+50o|W83|Q0.G~Yxէ` >wRΪ&+YyCN)oQGAϖkH)t^MF e%d[>go.y>qSwHyP{[x%Gb*mݐ?_?XMX47#;`5ig+%b9wzq{$WOYs_ψci_jX%+3{]wvP6޺v6߳DkyfD~ p;1DqY`:|SgvY ]TT:IߕCp5/STeɮDꔝ{Udp@VP'OOOXSx C)ML9ƴ(vx' fLǬ ܎!7H}yLq+\ÍˏJq"!UFeHv kx!)-ҁ}]zMy[#dz 륳X.x=<}Z0/'8_)*AQ$" ]Xb1 PbzGDU솮gP0hȬ3%V~EFY]om^؟mY x掷yFE 3ԣFndfxxi4X/!dnArg/;va H`t&bP4w=VO0y}Wi0,Fۚ6b[:0}jwi8e6Tӳ57$fM)(dM ;G:<-qLƹTbk)|j__ '&U![04iWGvzs/Pw3ѯ:o#zf:[½L&^l;L?WP!{o}VT1wݼ'q7_1io[Dӛ={܌O`3\|]e[Ѹq;4P8=qjпijφ،lo~1ҫٶ:ݹ< n\iy4<)]|9-m#3 D$]{CD &(CJe[5HMԞX.<^@8#`pFD9aRMOWzzf\G*v?zvS8m:8oqa  I& XY81*3{v+CP ^@G@6gC9lD_bvۦ™PIHcOBg.0bɚM4f5p'O㰢x)_H{s}wo6q_\rbdoס۩Cնo~b꒘ ¦Eު  \'^J |$41cV/Ύ`]&@!]j^\fnw{h1d]2jDa#y~q,Zx%z!T2h tZgv.)25K߷z9v"qH5$^<~?R@L.R"tuŞh1y 7li M_j(,֖Q-Woԥ%t7s:_Q?7kJ,6:v0ΛM\|TQ&~Єu8#,*|J_0U0ko@לØ=adaFū)#u(hҷv\,H:kyzG4xVQd9!7"i'r$H|N!#d3ۅ ~=C|}H_1g'_;Fq(ϴ$ҤLc`ilQp% rK>ʬK7Yta65]uG$W'x+VC4*9{+D' Dm.*F:bcz;.Qh7 |l, H*?׳yƦGݞz zg2-Hb^̯a !cZaj~~`mS.CpgXMo!"a(r\b&H%RGWu:fرT1tyQѲ6MޝHJyE©s~3}{nwy2tKaEkFK3Z+e?}N¾aAҍ&~7cjeG?wz8=/W+ƌ*Au)$[r4l l {E}e׫d7-{rxzYI8+@v!۫QU[{aT>q HÊ @Od/@=cOSrvN5VPxƀcKsq,( LcǑIfo,-GFJufAG-_  n#Ǣ0au{A[VBaB}Uڜ9 [Pp2PT܎vNďn;?D/og4ѱ=.a8v~N&?Zqg]VO\%V7羻8F@'H: M貄 Ao?@b]MAAc,֊vu+@ŏ;!@p{CÝLJRĸ׾wlJ%&qtْ<3$*;) xgLSL^iS1Oezv̳BoDD4?TԊQhe *G%d{sAFǽ79B AB]DL}N~4C3Y(ba(bճyYB70S jb>Jkl'Dеmck)(ҪP& ^ȁDR>ڌA)7MӃt)C+0(D"܀5ܓ[hb1|!t1o|YlI=mShs Hleڕ{j8=4׭~?Q y11(ˮ_ԇl+?~`>en>Xioss74qCTM$<7ӳGڧG}Mͅӓ+9As٣2B\k/x1]hu7fG01O%^sv'A';C[c1{B6` It9Ʋ|%;.-M\*kWrT&HK; [hX~ &X >n3RAiq\tGpJʚ_Q>=Ů\̄mM /{la9^Wz2<_QJTHryHkSHĔ;/cgd[ɔIb=wjFwvnI ˫aVW!fW Ξf`vS6\qevj` d_>Ѵ!?0% 7uoEfnuaTp2[ib&+7 +AN HOrYV;dhXNA`KyPEL }{.$yjXWBb9gEMrd>CO <Տy!(Bf)>\A޼H#GDRB="xY2 gȸ%jB)bu$*v|M_ I)7N /Zb8Q#Ufcg\ld'Zӓ>Sm Mfp^A1*-umD1.nOHXN~v?d%z>#kYt.0^1fb.+mZd((Pj2``_3B9p^%cO?Lp^3˟APMCndygQ׉3'0IaS63]g;ƄNl='5)]ew4!O^ΩSUV:wlڼi8XosoD=#'A;7J?7c}[Ļ@Æf{VWT}G?_V>^ z >*@\N=tKAhڪ+k8<q^lmK993vp3]Pbg"14P$s;IxW ȵ׽{@&~xzpƯx2r4>yrpfkST2i6FSR4/uJe1Iϛx=OR~rgeX/ڽكuk)7p ȺI:UAE=L$)O0[%}]F G) 1][[B+{{` 5.Ӆ 1S<cs ^ mdJm.-4=;"2U%%]dYN8~//0Eݘ-AydTgS!]2ԔrwҞ{ʠnL Zlǿ `~ю܆xP,:˪e%]@UݨեժK[O@ *?uۯ/V0(h* !q]{q\k0E~Q ;K8 {^Z&.3]e|JߕQ&v?ZPlQaU:FঘP82C|$+ig&O钖u#`R;5 Ǻ&k2̀DtR+LBx2iԍ^ƾZC\:5( L4+)={ԽUc }B(]!bG7="Ln>yRmS+yoBɃdM֭P\.eu4fh{k8b^L-yX5@'0J@PH<:x?s-Pۭ,0\a^t3^kT]tp3f@9U+qrw qY?g '5#YIwzoHso!=;sۈ>V֘ R~=oVIX1z#yQFYLUܟګA*(R7e8bUqYMh}Ȳi8Tfk7Q=:#h((I!p1xΡhܫ[z:ɒJhW^zӷRx+g-s l?!.6 9pnf0&ob NѥsZH_i]@Ӆ!&xcO庤Z"W^$hW6W gi^ASKnQ*ZJ? $2L_ݢ_G{F C3z~S?Zwm' "Ѳ]}H4'H[ *S-<_[A}׈7yp0_?9eL(M(b9<ǽP]lukLƩgKNj_Ӳ}|DMT(ԓưB׆kCjlr qZՒRdr!Wx9fmRs6){S:{qC`羿իht.G9OX5 " fJ-"Me=m?6Vkymd B 9ijB]736kTr[{yN[ZF,U|N-/hqKd4+ͰQnAhAwۡ)G--qn}$PO`j %J PG"v<[*4v0r"Tfw=y !ؕ~, J U[ԉ~0*N}yI1?2r2N=L%KLcnٽrjcCD `,&*q7/{;(pY2{G~nffn e<9Y }lc_ǝi\Q߰IW}ԼkMJ}t"ћKGHH{܌,ŹOJt*^ s.r 44 |7GPVer)7Ʉ8jXT湿)W!-I,Pz_i*Ѧ#=%thdn]K+ b |X<<>LㅐUF,V^' ݣIes"m̢ [lW!L =;\[ O]9"c z4|Hj8Gy`H(HPM&Лґ-@7&H{;h *꿂;/Dc<ɍӎ$mM9;d\/oΏO#JgqR/ō|Ei?q;u*GLrʧNmtJv69j"^"0mIJ"# P,@tTrp#ͧys"gc}Ku5Dqŗ&YBp?nH{'a5]~# yt^#&szM^v"a⭟+ q,gM-oax1഑`Vi>)@^JeUYa⎋S F"2!goz/unAr`-{ěcPT 50v8_hUPDV:W)hSھM J7LD`EqǝGjy✄iS-4uT/KKGU' dmhs PU=pLۢOeՈD\'H{tat.NSN! %ґ2]g{ ]Xsl]'M`n#q9=813Yb{U0S/]I\{&He8XQxS$(p3Mmap+'u+ir&e)P\|c9wPCwdX68'߈O:͌ ag=r(XD]{eMR[$͒s8'|ѝ(ḔOOʝkXasXnamh>#(fQLo˴WY?bۼ`|T$xeZaݎ2Gp"֍_+'0I}yE!7f.&wgb$QBvyڊF(:?G<׼W 8Qf)ލD_ӟ"u%ݰjBJ@cZ>.P/X[B:ei$PxVLQݷ!"mE>-_t?IX`uȅlu|E->>;|'#Xo86NA)\5nq -1|5qYNКq~oT|T IȈ{$bز)N@buk%(GuM%MHDokFijP͎m.DKd%&!!V?]XUU%>(6 S' kJ1=wi52V}c߶?-ΛH(\xCs#J)t6nѺ bX&,'Bco~[TIQZEa{&o>^TL0Itl҈|/hņPM`WECiUja}G[cp9ﻖ 9Ő%YJFr^J Az9AjfΣl~oscvH*(2 M1Pi+T%hC}CwY ܏<2~K 1#dw24T,ゖ2˄ߟqM'DfR謩Yg%gWdhmb-|q{ew6F9hlrI"kB`6{Br:u2װ_V.HUe.Ɨ;(sAdb%hAwwׁN kaO vu\019Xh1p,iN>nÆoDodz}$jf }CM{KUI)4qOZ9%b;H>sg ȝ,;LU'C Q`mt, {P0,•Ʈd6`+e<ݫ#.m%}yo)YNXہ$O-#d-M,* ãZ[ WؓȠzQ17+< I9# wӧ`y=oT}$ 4[qTS 8aa~\EJ͡\~O=Sl]9r-2\,Rի#x:W% B'dRhϣ>Zw]-thlL1i}{dE' LB/ƕ-=ϫ@&Mfqx~@|gs骵hy_np*wv4%3\Mln y1.jT>9xVyyq"M{qZV"@B PahN1Xx^B fe02M_RPn ɝ1G׿ |Kxb܍Y>*jK@pȒ$`?-m wPz9Px;/ɧTDo>V47yݶHn~sq}+=S- 4& 7yV9/3ɗV7[KPYLR3Xv5YFK&ɋDXؑgb 4] tY碆c)žm*ւ:)ߗ#UMD!ƠZK)փk$M6#1@KbP8J[/IkU qwF3aտL;j;ロ';&iO]ոƢ]>/=dw׾Pw(lʾz ˄`cüUUP/ڠ0>zKdY⛊vB糏+i=7l7<[ c|oV0eMg+b\%\ͪX<|2gˤ݀UFvG=Pn áWgCZҒWaEb  7<ܻkog td婰;˶As r v-*nJ~.l'w!B;5pg$R&3_MZLSqJQəKԹ5_P hSP-O$O9doB'oBvYxt*[Y4oa\5bq}%z.aEl5ȯwy!ZzZEp?T7w=X?ZKv O|A8s_cdeFYL SYKTL'yz2wN4kP3sܗ@apS>ӑbpdG7aTmpJDצ-jт^aDbK8aOuQ6MTб ,qcs4`ZVhp6u ^NZu3 ,;ۊ"p'Ї4Hb73g-Sl(\p}-=v떝u >_K"sWu , !$E!ݶ3#{mk,D d!׻wt'K-S VɲŞd[ԑ5) 8 SMI KW4h;~!4i@ a L%0Qɬʛg%DLpFLy#eAu7^Z.sEZآ(Zv9Der?1`W(6At.@TןƜ q;DFLgͰ˥Z61"@CQSN:oiuVlaDNrbrsݬv0(^A-R5ӾsJ5` %^ ޠrj:ࣳrG:|ђoIPr騝nL9 cˊ$D-Uav Utէy`O^"'\LD u5E-B}ʏW^M?۴b ʻaԍ"J,`.+4?襖3?e ! 8G{&q94vCG"EA 7XvBs$$W?sԻNTvj qIZ7zx,/Cx p_d:CDGj.֑-Ob<ӟ31270p8_H+hQpGˍnڅZ|DOL&E-UUFA9,YR?} ׊Gq5 ukwɑ5[Uk%i"uWS{XiD*yjjh'lmk՝.ق8Nu&w@{A7zکoku,4Y"G/Q nP qg\-B}}xzE?M\O fB~^~:@ѱKv!,5'j2/-/V HƢ?$#ˇ-XN]J0įo!ËVe՞l9"Oc=9A$كwǮw >:IkH8.q,"n9mzzX`$::G qPl59ӿM0ZբӒ79UG\ەRU ~qƖbX fJ?ҺZ 9&f Fsr5`@R,?7gHmuw}dR8e,2m[ϔC#L 2Jv}E-={@&1_bAӹ s3T>kvun}TN6M]Inp \8o{ɋ~ NUz>&0?$R5{U.Z/7!Xv1v}f1n#`~U {,trjnI+LC}Ily3n5&ATY1j R-J5M5$$#qf)f߃w 版PrAV wW^>؏;ߒki5nc*)w2/6g6Y`<9TVH`~t ~UX^4yw (漘%&V{Ս?.k4(/g֞E8(ʩiȂwҌCnu~+ ykE2v+H|w(OS4cWHƐQu'!ݻɿ'1r2ȱ}dc{1JYo˱8}|;uUqD 95wR0Y[.njb[њ7PނGv90bHz ! |)3Nl߅K%P^PHY>PE&8V:+Ai]X4L?ŭBO)<&?5cVcC-q=mA6m~Aa}+`-^&,њt3݌*(U֢T+X%""{<.6tsXffdy.H-ؿq3?C~\[t;w,C[ـܲ͝*q#b-lK8ˬXI BXmC#jI )%37mkP-e!Jk UAƝtJC /+5?/)`*!2 l0j h3/x '5^N&*22SnV 6^O}2Ș?xxWݨގـ wcaKiF4vhjtKzjհ WJj:" F6{ ]gġZ<ıe,zLiDNo%slc8Sl2f37KVs;*XB]CJD @^i]Ӽjߢ}h$r`Di%y:A UK0勋{kq]%uKPu~ۭUثHgRS FOY3}d[K}h8`P~97$1@>"omwL#c_ą![ x yO\6Zkk/.ݠ"C>,⏒~xqVql"~kl%OOq/6h0f3?3dk,}T0n=/aD$[b‘?/"'ȼP | ܆+w:PS\_&N=#H<`i)Rk![-\;Tv.NTܨ!v8U4uz˫+4^Twa2O>/EuLuijT&d+tzgK_ZsD?`Tk??`' {vGE/=ͣq`nR,X'MGx|rV>.bPf9ퟓh $J-ު[V'3ӣY؛M4 h@H&`4>sUٸ-[,4D}Y?ڜo4 zc 'j9 P 8l*' .GuUa'kN^(Zu5k,lw H Z<ձq[,$REcsRj Dzp)G4~Ցcvrr1 '2췯J N:l<'cDwgK%Ak|~OaX8`XM!OÉy'B klr, f14v4+#x]Qj3T"+N3*LFʀѪf\N2cuu_~㧄0(.-(#噢_ #LI)FAcWE{.Ja/;L›uZLń ?%u1\KL 3Z ̄"DxhQMn.^T663,Y94~S ZɊ1Kk`"YCCָZw(7UI0l|9ͯ( o:10eKTKdvNQկ2W]coGqsFIg}J>8g9il<ۨQ.( Q/TUA]%ԧ4J ?4@ry+"eifi<4i[+=b߸s44q$RWbj2{QAg1pVՇ$QB pF)Ӻ^IhDp݅Ч* CJC@{? Pϸ|vNNIԊ#3i~]"/Y=i/FyՐM_'j$s`ئ) ?[#+W*D s?{$q{4I>" DGz_s,v,;Jh\/!!kQC/MKO&+CHar&@Ь_Ύز42yn!y:&$JXbʒ}Ѡo8gT-S}s~B =i\F<#R,6C@BDƓopWu8 P۽)pH_iUs \lfߖbu QvH;l'b:f'+ೳNQ`Q•lD;AhH/\_{=Y!f.KRUz wM0Fw9l{3 Pj? VsIGLM09+A50b~caiPĸpӚ!`KL_))kmjtfC"EYr o,D+}A_^L{E|Sٹ)BbB ;a_:-F%1QR 4[ׄOΪJ Y'i'̽ISd*W;h3A lx[{H?B[-!bF52ңRWl~q6-!%m(^ek: DШH˲O ';A :SCᝅY.l2^nH!ažmUQ.`iQiTw58!@-CPgVS5!Wie83KU s qQ! I?5g`w1)Ђ9#mA z~{pGFĸN͛T tggg$ExѮ'iނOrGCr6mÄ ?v*?r_I8^-a @2(ΟL4Nљ&Rh,"4su#({73,3 @+|YTށ¬Iozg=X5}aUEţ¡ri3DHlWuѾ\xQ=>L]$7N \sk CsV"x^ÜhU (B&kᅞ^.5\ .#ӄ5_Mb)fZ?)w3CY?"Xi#G Pi%G}R,5uiAqR  "=Ԍ>"ܣr * ӿeחros-4hs8Dޖgm?gǫ? zʖKvZPxոu&kU'p~\Daf I \bzS2}j8,!EʘJGDY/TfYOSWjDr*\Dng YFV3dǪ+3;WSSr,.J3ȸ`(Hn9{^(N_<J0xN}ו O:uӨ+Tt܈E-.c#%6٘G{dJ>Vw.;Hs۾3ؒT+/eaQWZH :awP!"jB >]2X9N p%~wDg mA][za[&g4aJb`fOԥwחXjF)e&cBei.\ _taCġ's91O5f gQNXG+ VYVub ڣ_o] .".>eO@z ]?Gekyr3C7豁xFRyV585dl[[ +vO3ȔhˡLоIOk^$G&¦y*`΃ؘdGKj NWrOnnsb-wʲ\dQvDcU;9N oaw.flV%5TN1 c3Vv+U'ȏb+ V|:~I>,Y=\ro\!yc9{<,竊 :xnJ,?5׌-i DB=TL=`۸ ]G]v w@8-2$+iL@8ZǦ"f/1[3-3`,䡆]iywF=ŀ_u9PqiyA n-g`6̆yTuCMm_H%@#vpmO6Cy_*ЃN#l9Xr /D?̓Qe:8H: 9@ WiJ(@|Ѯ]OWH57 %] 9ۑկ#=Ξ>2[ E \}o O>fx.Ǘ1Bc8[C!/\,=ƲnJ'\Kf)NPtu Kֻ0ߗբ؞qx8$f$ںt<8rzھ 9{*Ēv|EӗiHemnε3mb>ev(*CĤ«(J/[9`72^c& QS=Ix峾&73G%}LF2Ği4gd.#J؍('| ޽378Urr2p3.x4κMd Z=]9ȽZ]kf$lvhxO] 1WS]XURԞwb쐧nTm3E2 P,7y@-)$nn! lӊVK4w9:Y$Dr<%  {T]{*]KB}s h8N8.}TS@$XcR !׽OTb km(FC)a*A0I7.]t&–5(V7^,$=-P$6v&~N)VceDh]򄸘I<,v$e}@A]cO`(0dZ;>n`9|se6V9 o's簹$P{;`  fj&D(+؇*ob`Qp9R^q>IgNU6;IEs_0o, Müpfooĭs $*x=8׳Sd+Dvv*DkDr{GCu>ȼ×0'_JO^ ,Zxؼj `:N"T>bLͱcYي)aDQ{m>:y_֭OjrJ]\^Ɓo30&d2 VдPm-a3̖*127楊Ho)+ >Gض>;oZ#% !<((Wqb~@F쒗g_[lZNJ${敊lI#蹦/7"jE9F s @\~Sh׏ӝ}X4+,lт)ƮaaP`J.ѫaCMYЦÌ0!0f{Q)J͍t?Pw)iI\Z{!o+Brp^nkm9d1$' b~xw"KņI5Hc:+ #w^MҮ3'Or#XVOq](3!R-ӿh̘E|n/.lK TYbSM+$ 亹yfBeh0 Fs ( YT OKDSsVqy=m Et\z;Gkԧ[)z"B=/EYĕsmGOEzgvbDʷrHsw>wY+L]9xvj;>hsQ(%%a!m)-Ջ݆!\*;W㌊Cb AQݚQ63f,MXGt+9 N{UXtnܿ |&7󊓯k-ݙAisVb7 K{5G]&5^t,JMwrt~y-YFf5i>TXzT}ŊQn3],X˧eҦh- 8GIߥmpp}<ʤWtLH>`N" ~Gqi>'#ATsZy:6?'j6s7:PT$x6'I4/.*a^ jLވ?t%US:W9\4?͞8&Fօe*&/g-]o|uhn햡vZnFHuC \ g XF"` ߁vă9 G2Y'y& nqVmbq/L)E 0ؗ-\2$IW!,6zå֐(I!Sa cb~&6m| iaD?w 9t`+`g/=- 1NQ98-[ PVDEX|<7 #;m[D;MBm,g+ef#1"5"L=3y ,!tDŲ[۷nݪ|OvPNAD#0|> tr̈ te8ĮNZcF'QJ""$|/-gl{ۃzo5>M&Ɨ{D&cXD7W.7vw;JQijYZ&?%X5-s5bđfގf/2.tc %2b-u1 +mwIsɄw(z8_^ VJFwWtdKmU8)?مv9v9EKgA)8 1ю(RH1N~ə:8W!3`eT;GB_MŠ7,}t8x *?nlAG |(gm~,x.%F¯Lm(bPVrecBť-)[6=b"8`e")/Z3'ԁutaVysʹx`E&Vәa@ pS@Mª1_.q :vBuD,4رgf6o҉`b澦5=-O4ΕpI7BGPܜc'a,mvi%Cq?ey62T*^rS!+;j6,*x=8}@DfMRiYI rp;<~T@Y`0U/ZO'Cӗ L3xfnҥPHñvuj0O?)2X޾LrOߠy"ٵʐVL;Tq̌)҃Ļ3d OVic*.OMP0  >Ȑ*Z ȏb/e0.2ZcSV˱) %k,R%k&[4 XrG!n*GjrH=Gpt"Hz)\+#ϊRf-,74gj:m:P4ISbBrG bshXo"ڋQuߜu |`9(9I/wB育UB`0I`#/tE/@-?ߐ9]0# quSo/092c# BChT".].N]GEN%D"wQ&QlF+ f_&o{26@DIIoz7 *:}=ٰ{]y#MH]zD`pћvT!V2^wfo[cZEa1l&(n)2rTM^ @~=}mSx̄q%s>ҕ-klQAjR0USq[2OZEt=${ z yFumUث!Y5gHO^d s*ө`W_H-d1,e6Ι)Iț!P*]LjY+2da=7ՆˌG^k\ ?(RXoXFc[1X.RPAccзHhz9y֠] È'Kp& 70l͑i/#Ӟ /C*^es%51=;d l?2>:b:>iM}F7w߈V&8Nv YZMsƭ]x'h*( K}ԧ|ɍ6qӠM y0h!QlHeh}!2P|` ת3 iI\M+_r]>>BNNג ̻#|2ygxiDvglc]r ѝ泠$asHHyq9^@` In9T:>4't7.T~xԜ@#wc O)~;s{8xv O}%GB/XBI:[6E@L24͉z`A+=L#V,'B8 Vz,V?Gø|',,S(7i:K/+;ʵ!g.iS١Id1M.c3HY47 6̥9x*_ib&߀eat-3Df*:;^E@-E:6zZ:WF/-UsNc̅G`j}v]FC`t[I+60Tb2<Mb)*]qGny 9'蘾#cW<ݑ>&}U$n|+9{MK\kzjzCDǯ:"N ˞Ҹel%wKeURY W~,aM"p!rdf[L@cPu|bμZf  RV_Ac:/Y1}旷wM3&*`H >5faWv)NR!(lB0wƏ`u EtdzWP4n~@7VXW' os~L.mWU|"EJB:l[/ܷ,b$1Kn0o6q{>ė#齼+; ^i-Gr1%d1pnn^i gi;&S/ T[['C/OPKP"/Zso;XJbln|l0٪h]V'l$-`%G:9hU7#lW7]3P8B,0/+K N-ݟ8P.AZl^SS0BSE2?@ke֥֝- z|u.ӭfgughUQ2N "@Ypg,> \C ,%:1ЗLoH9]'/F蕛pzz ~wk}NjX&W a DˊeV'-yX!U`@dcV6!enʟ~"3 T"iw txV//%$^Ƈ9*UliW`Gꡗo[q ~7(`'UzAnyYzB64ho@P y87=b=!\.e}3%R[dhprq?9BDwZSj|_7,P܈G P\;2P/f*aMu0vpyv{`q4|tC%u0ng S~ %Ѷ608,[jR_te !Pր刮 mZEPƙwgw/N8aʎԽL,zcb5ghK0lcwE~d_L0=[E.@w{ VpBȓ*E+s/]Q\5|2 =p-0?+$0g.!@aL+ᮛRFsCs,eB="ѳZ,teZY&wi0U#Hsw7<'Ns9Mw*2YQ߰?jP0H~rȒlhUq!#!Ɵ(Pi:O,7@'8eĮ˿ Qbe[Codx0۸ۈW#7Ph Xfcy3(#?*t 4\Sq7D/y&*n֘32&nU_qZFEeG4uTdC lR]  @rdLMGztes&Ju jNH46'|kZ\Ü @Mv8uK-+D2 K1TP;iH@E:#q~dkcl+Rg1$k"dǰD#y D_{İ\'A.4s[ف*c!GpDJ53E "k{JoL wu u= R7 e 7!MW̝$;(FϘ58^V7.=/FOKֽ78]^lL7n*N"5NUV=ѿ3T?oH=J\zg}WLufז)!'{d!~iK*05Z:AyX~!t|cśiߧć;DV 1B"`M0=gc[MSi8;U1CTO?k`wl1-A@[tk+oo5?*5i:I:i+,qA7`}1Tp5(qMFvU'>׬Bz UÙ KO=J8 >\#⸵f/!e(-46zZIO;ZAR=Cwu(F5` F[(AjZ;*-Rc 9Wn&wcGnJ]UV-7dfGCHZ+bq%pvkD?3z߼xv6 -?nN4*ڳP ME+ޔRf3$eMO$wӔ-NcM0_eݱhq1(H֓F1z)RЗSX<-RQPX%ٚ!7D䯧,XS},y,WHzW*(2fRnf>(z[HXrȉ a+M¿4r|g$P2ΝgX-4WDkJW=c150P2b>oUoV{>W{5߲܇%_г雗|.uW Pi;3cVGwl9⟸Z)u%EkfmcjZ][`75Ǘ-4+͘_M%"=dXQ%#Hklz`-I;VOԠG9gѴMԎWLqس_TjJea v^b0n$P|:eؚr}4=5ضoV1?G)XA8`u'=2&\ggzGzٯ"sb>u0Ou86A' P/2tN2)+vkT,u"LDSFp ԅTYmg*Qc`[=븣g櫃-~s|qg.B{]:"/7je$Dg ιt2 3ƌz=ӴI3n0)?>n Jt'FuznSL!ɏ :NC9Rǎ'0 Y1W8S85}2JC90w(_eQK>&> ;o/JՋNΘ~QV0;xWM{G[aۈ]3 F%<# Ș&3yҼ^{ZÝwPtZC̫?:Ȭ꓂%ZR2RR\Z1l?%oypy1&oSrԦAXX -ʒ*dQBz{}a`uzzb6DibZvmE x>ch@.!&P(gUPR|W`43!E+oiˀ*PT6#Z?H6آ>ywuϊp2x{e F98s6xn;J85N&6e>eBQsr"JVʌMԻ[npėʼnT?'l= p"'`?O~GhHn% M Lso`}*(4j]bL3 Y ptiy!"OgL:͐W챦1Q7G01^R}QL1FXA_jV  A+)OFn[rZL2O|;I4гYND$5~ƚ-l7@1 E͟-hF%&HO."XX[`8 %~ Gnj@zCc\ Rk/߷(X|*o1¡X6:1Ej"},`etn<,t6?PF 6^R^-7逪s?{CN֋~p"8ĚE 08ɛspXςzpo)@P[kWyVy:MW JR@RkLNE:4I '~q)`؅U'h/Yr ;#ۿ5%|@LL}{Sކ~Z;vNw4TAnd!Ekp_o2"[ $|jUM! df)Ysp.|\82 7۽xW۶cNYW,{u׳H$T rPpZ(J"hҪzʰY-u=бkE¶NP>>D29jpZFFŬ@z ϑna&ji źU@NJ$:Yd~TD`b(/zu~Sg7emJ1g'Uf 9 #s4d{9Yq%b>-2nX񭼅D)Rϐ`UJzh<'~қIe=b ^AG *WE \_U\7dK_<!&Wqj⎣VqrDgTrw HC3S#jmއjʅgJ7e0)?FLX`?ގ<4ۖ[<*qmHMS< 2?]w)`!"}Wpr5FS[_;IR4- mN!`xmvz31|V\hT wn/3Wvn&mjxe&0t)Ģ%UD6]hأ[9Nd 6(FK-n_KTs.!3k3˙قSBu0= `:ڲSr.1r_H"S1"Ҙz"T©I 6X)(a\sKw|zKz[!vnaFR_X1Zjaz= s$!>JK\3CeqVx:ٱ Ǚ?`k(t3\bro cvT($#g",V\e~v$\ >e<.U.Ƥ@u- ,6DZ}?BO(&=+;_%9t@$>^lE&hg?~ L`N`k$DHGo!rb*] 9R"Vm$)r҅-C=pkJ^/A&:*1主g.&AyD(tx9E *j<_7 Z|Pr8\is1EDA]ꭓ){0Tq Mzdnz?c˴Nc !AGgĆ!W(:ޅߦD́I(Ӳ%CD٬ֲ"PˋKz0P6wn-}){2 + ~x:0lʓ PS:5Ew:gZs遼ey7ֿSWI%7Q#)md{N@' woYvS 'v&wY 㼯j NՄRԟ*ZK]A{U?RnՔE$kԫESQw/VĐ>Bny$Dˀbv =V޴kr+;!$\j ` znӵj[=Sqb@x+6s=F ׺Q֪6”wz||J"h>c~f#&=:׽hYVx {l$qkmg֕,A=mJAF (f릥Y s}^זY7;R#m'NfbL^&˟3M| ` R/TQqH+&-0>H|xP٪}?$Q,kWʵ ⾎[NgK3\ эCzd=$rD{_=/!Ȑ7xQf(l;Dg6b[BDĎ]fL a YX`Pl]bE-^~.UVEomXc&D <:aglqaC /OB <ҸJj̇aY.tn7Yd! 'e RN:$ 56O…o+z.LP\%$Vepަ]92eP>ogE6W[{)MbuNoiJ n&eyhuEh4 )2g[Fl1TB4S xxA(W:sމ|XX2䇎| u7ϢO}/P[%* |A 4 b:Cԗ%^ŊCx: %&-(!i qH!Lgr|xZ mL&9*)vTy"2 ְJ-3>F=x3 |B %h{E=ILM:tcj[d,vG aғ:DrH?F=Aiu3~\W;64;5:/HiZXorNn=Vo%*JsN(1̓!YތJ0qzϬN{į fUJ5O<oJkfS%t|ǥ)4yB?Ig[g/O7b= ^r=_)0P]ɹ4N7lp /`e+']RqV=܈zYNquVά_nQ|F;)ofL7(dmRJm{ےČt]q|gNAЄ h2,o6DA02#S^n0'էs"R0HAOCRX %ΧAQ,pR`ճƭ]XrCD1/%(22*sF;Ϻ^C4 fYk;yRbpv-rԮ+ ;a]!(bp4;h,D1~ƕ@lWUn5,(ƨqL>{Nu~$:_/n%;: zV~+Wd3w2o!0!*jJed̒`V^K=agIfSFL"AjG|CΏ`ݶ/Wƪ* zkAҴS"ˇ[ S\MԚ3-- 'זDJ`N%;E( Q';ӧ2^FQeD6 ط$AG Ǹ 0oIaTd/ /_|t'b_/ ~ 4鱓j+G,2KR5iMc0U Тd6)›jX}@2Kp :nCTIX\u*V?K吜CN[v{VOBQ|f GbHaKb~%<ےo[m~w\v:g|I&j:> 7iCPmTްqCb l$w`PN ?̨ħ/2Y(5[a ۛS=:&;7R|&d6̝ڌg .SlW;Ħye DG-nS#Y X ˶ҫ+Ft|\gϪ+A^,Uz)h@нdS{1okP,]8/F1+浿 Cf8 軔W74T}^AU]Zez2Lv5Cˌкs,MZ'93c`DnIpՠPBjEشblP[ph)owxm/ ꋨ񱇮1qx-~ٴ~h4lYjfo}Ͷ?h(XX,r:̉D]׸c)dN Q 1:^QUUiҎn0.핶HЮF!| ]EN Wi=ֹ-{3 \u#6Z.[OHf=ὁP+=@i!" y~͙#kհ3xr@i6"+*:S.%W(\VSdMJ-!6ص~[|AӜ[iۿ c;G˥.,&&l!$Ҧptc(Nl?5_b.1w55~q I;]~z}&IZ :"\}!AnUMŇG}u'K'TιzG9ujCzfu%48cߗy?zOnB{vO RAji :DCi]=]b3P L<2:Ʃ4z?= ao (cčSMR]*l fY>4HQi*mKI)бqWPb:|a`V *=p֝"Nn7ScZ65\q΢FNmͱWQ)ëX0ce䁹|"a6iEDYuW0`LpYz_cL}a#v<ڑ}줙Z(\l _Wr{')7{@ Es|K#]368n_ræ V:J'z='K7yU7ߒ/kd.P^#~ޓb#t?ʸX($I:B!}NQV?gRot:8ײ`ag.'h~bOp!l6wHV!ETq~=萣-T \ .+9RTwZNֆKX,,104B[c?`GjK:60x sUGܖ݃$U56}D;JCyW|8Uб/Mb"ԬLttזh-+E^jCL!>Y$S)çѝ5d\;hUD"?Qj4H|0UonQOh. ѹ66#5ijHNB[bD!%` ">u.͓c* |c`[\+n9ؔtwrǟ}eİ_GBGpvci/vkeW ײַ۟1C[B0ǿL+<]%ˡW&%_4rv#Ui> (h4 1,BlE&ŌAKWba4\mֈ.l?ih9W.i~-VC,XjаPA WST>PsӚ)G;<>/Ubmzb 6%mBQwdA\m:!1cڌk[:&08>ɦyb'5ooO+Qש ͜oڀ^pfpFj92ܖ~1aqg XCjĨxMr/1g7Q܇Oe^W~85!zWe9_O&Yb .@$.ƮD-ἃX>!j|Z&ٙas#-J0[ XMȍͶ:DmԤ4rKD-1Zcr*+¬MT}Z7q lL[;>o3ep:N(Ӣ~ 66 Ȗe uKXE7WIڂ/3?t1fQ-Cs]xidxUH ij 5%Nf6Hݛ3td^unl) R39;'<&8wGCoZe&tH ,Hg:8iq,hqaڗr?aD(?O6a%Y5cdaJ_J2vu)ҀKmꕆ/{Yʤ)*Y 4OàƚJe$S@ʵH,zd/rION*:nȑY&ac6dSC+,x6@7"TâL:\9A &cXޭ=b0MRr\_A1Tekr};tynbn{} ^&>"$U0#aE|m[8;aX?G,ճE.[TU:deW_ bu2eV熷.9~6T56]sQ/rN r 7 ct̗XYdyV3ei/i„,a-s"“ߵ,)FV)  &<5Ӓi4膄3OVB$jSlu烍º fL3҃z*xJF\/֕94Ҋ^if^j=#&T&&vU,z_(WEkxK#F+!Y[S·!^fڼ-Ϣx$s'6Y;"I;r_AT㊝g ?dB#-AA 2npTpCkET$P efPR,T(vFZ$*_~\v__T]nE]~nei䜴vGպ,5t0^֌WY09Nv/Ƃ 05tG<<O?<%O\7l[ 2iR@#Y͐gC~.2ޏI+ŘVtzm5P5*,'ٺ)H@he ֲӯ!YZK3!g@ eX3ُ;7dra6syv:-1N#Wс:dm3_: Y-w Zǔo"G.:-3s[E:#~LLڷbRO⦏ 3=RHm g%,VFDc\N#8;LOʸ={O{^ rVb6ߦ9HgY#KZtR=OCqU@Dd)Q<_v/%ܽ%TYDYx( {B#EmhpZ<-@cΓ釔O0 $w j%N*kD` 2F"cH\Q;-,6]n=塃FK5R :' s̾B%~vu4wo D-*hD s'v Qd^Z%߀mx妸kh .֨?57)Qpz)0QE9J cPWzl珬zx^R=+T+Wun+";iO$y8#>S=i-JiH|xji)a|*hES4YxKZ_)$Wmաm%cSY!bBV34$xaHyJx3|{O⚡gnx3s V ݶA/Q]T.T s rKq9ľ΅ g//sq,GxKQ$`@eN3,D._G+'2IeKϧƢX<JMQ86D BxQ4=ӗOˑe9_m")& OݔX$v>&Ȓ+vL i!eaa4Fx ) 577/_} SS)T$9lO{4l01u{Vk&!NusprZ24akGr&ܸ[FBPùt EV  `Eއr ld#%L/%XU](k6l%65>C.,qq+7/`8Lz=5_}}U,r?Eܼ<@V}} hS&!Q:[,y6yOl"y3T 5vs+S/`[&HӉ"j Qث$z5);ۡa؂NɍuA/y҆v K!URS5T 8.)5b"0bQLd&` i&~fkc+h}e3P'ĭp`i1扝‘]?8JexesǡVpa"NCDF!p{-3j7d9]?yW0{g+"Qo;8WA =,ߝv9{kfwە)4?Xfv?x=$Hzjx/1iյ~&,od&zuX.>>~p rnaj3O>"ۓI4vCգ73-YxnsbRtݩ[dZsGLMKoEiJƛ3LlsA1@f[&q8we/} ?ﻛVZmgPZ:Yv< _UbfVU2 dkuaE0A]qv8u%~,q~wQGo lF2C;yUttH!eӃό:fof^f%HRѧT0$LMY%&z BJ*C^Q;ԷJ$ oL&Z..>Z0; -+.\Md9dz4ՙRK -хmet6(!f5.hjdFMj SèKT,K# ueCSt?|uƨ5TV$gQ@Y|dv-nm 6 l9p:,Xߧ%pX)ř٘ d]e 749BOZ١]J|%taAO`JyY9^~O,jyVV>tRh;8 %I.~*PdT"i[3ح sx3Ŝ;ǻɀy& ukcz$ZU u L }Ԏ3|co2}t iύV؉ -+1>JĜ"b.{8yUuQ\yN#o_c)OpJWn[95ig!]'Asr~-|aL 4xxC:*H1!ݣioy->MMIR+%~e4pʔ/A\nIP+}]y4ӆl`)9t "b6cC)|BWG@0hc />4&aް_^ϡ ލBYT]D2՟o8̆h">覚oAEMe;ţ4T/F^CP˓ c4:[k:yqXTJ~FXި L[Σ^Bb*Ip I&%F׍kMK'BI"('(ͲXñq|sô^ܧ~/xz;LfKU->ƈ֧d^6pGi~seyˇLy>t4r;2Yʤ2qVH5 SɏiC*8Zg&LJBd&Rj\{Hx6bS fwRח'Yd5 ^QhJ|-,&Fa =9G#oAP;ĭ3X.+v~-?Euc j8l±QI%Owf3>,@{2A"i{{V fCa͎<M MBM)XwȢڊV_$wXN?N.IHIT0 GOD7vXӷc@ FL">:0sCx-u.q9KC_([?*DT7cZfwD(n\-Ъ ,#ߝtj~kϞFi_J oIZjRAoɳ_6KpJvWtGcүg0&L32:Žk: $2IY@:碴~T; aIz&`f+̵Au=G}E9c6|!l& !TC\ |HVSb=XՇ瓡l4K|-s跧̚sߵ,G?W~zuna9D|Kͺ5'#]5q?e"LByM|~$L=3ezVcs\K/ϥl]wRRm7Z%|E_ B0 lD(ͱSYҲLe׮7 ?Tڏ];;hBc>Ad5=n-6A]r91d!`9rK@FYe] Dwh Z g5L]v>ɻz' NK\1c! %PԐe~l]2v ĶD0ӡΉ{Gnj^sfUyO,߫ĄNY㊖$4fRՆ0i穫%uo'E4%sMj%7G([Ч%O Xcqp2C܌IܥG.P={Ywn/9>~ #k_K06QƦo 7`Q#aͶvU]5(q/0x*Q,q?~SM#)Dg,"c啢<]AS#iDv/ffe2QM#T{Y&=jMߵLJYQhw'Bn$mwyzw"X_Y}K}FK䙠6#B̍WAO3k6^wI_A; ,90Xs4K{vj@$.>9DT.el2ӢA?_4ô@(@ G%n7cR%p"Oc; %Bw_eIu~c"_*@1WQ!/DAآΆy%Doq)O'ƚc6zĶm}80zիF+vټq4[6^I(=*V`<}?7D&M4dI\8 db} G+pN*O&g*C3K;'FhP/-('" ݏHrV)9 οSx+<.n>m{xr]{Y 5!KvL=,BTxȒf6ūglytE ('#WGeH\s!B %qXf./g:`Mc>1M,V?-+_(r" wuL(ұʏTxEAP&ʏv G@'M쨬U ~2E&Xh-gԚH^FT6]QZ*ш3"в7{Z-¯HJږ>{_BJ3Hg*$HFyӭqi)Bm2o`;rcv`n7)%)urqZEXCr?[=P}=?da::cGJ}wBq1(bQ-[.|ۮ.,܅_R+PO9xxoclnBuxdil.!uE-Iic_b{R2&k5ސ'r_7Vq#gEf膳~=,#v0"2wdHn kϩ,޹ }}?"Ր[]H]j=DsxN.^7t;2m1(T;65&T^b$VKecG?]XY²pޮ ;hDf:A~lfocr5>usy?`ok ָZVecaX|3WEZ*YIUbB%u;[@՝nD:rXrլr)RP4Dlp%iveU˃3Ovv9&ʜEA:>_(ls=F')>,U`.^K(o0|6FBũ>!BwޱXomj4&B4ÚYHkzS^9[yU.> <gDfGMQsisJkw=0e <ӫo"$v;8I \x`.B"bAҹ/'jCMrKbl@(Xl?S{WZ0E *-p6_D9ژ5$: oPhqs6x%OC%1cN!n- fD 1p< eL6bJotR&J1ջܑwl%wUIsebkGD/@κr$~(%C:zŌ+Mϩ== %5K9kw &dJay _Q V€g(UٶV3Ebs(gv[W윋- Kr6u+2ҤEgFj-h6~;::Hf2(rԂcP(ٌX8:E{OUi z9}I~>6>$E7@pD1gJ78ocbz# {0)}L#4&sfRZ^Y zt| pخg a|"4܁ lr x2m 0>^o!xX[,ޑ;;ed 7[OqƀkpoIa8I[=p|Lg5J | _oE o9364~UybHWgGDQ8=~\_ z.$}-dE|9NT, "4>^BJ[-AqeP@{ 6i(";pq>ZsܚJ!91րb ,{̣@=&0K H4rK$\ tge-gՅ师4)Va<4CTt HJ0"rU-j;i3TcFP[C60AdOuh;כ|N*[>7WM3>tL>4 y^š<8;8;φkeǎ)ha׏j2 3mM3YKuհGxq j.aO,vKw w rgyH6 )rA\*s?tz%9#({G|Ĥء/Ǧ:'U 5W-b 4X&y?ʤ6ο?-SLJ]\M1Ҵy?>1=RM1N ̜*l}?@&vv.F=<(/0. '0,F]7RvY[nn w1K-5,e isXxEn)r>v4Pn9dӹ#9WءP)k]|Nǵ!h, H:Y\Y;|*g죢%2TdpG e2pʁl/UY/<,os?I n|IZ_s;/S1?PC18D[juk`Hw٩q(q'g~H/ԧi zӥ>b\Ag{\6YMw<9>+ci%jZ#Ȧ&5awFNvPOU0WAr1հ™>y2f1G_VO [0GFan 4.H;7"X"m58L.g|9ab%h~ Òa@T>pͦThUMu-y0;ysyG#Grfwf-OqР{v~@8-WdiYrUV@[i8>$q%`tBy,7iG !mB=c0>}xԕۧAv‰; \+pDNI`xJܑ푝/^Vևڇk S\"5^ĬO{i*{\||G0.m#l܍YEd[lXQfGBӶ_Ig(USDIdk'*6RԐ!!^i?k9gcպ{쪇6 ue̓$~i7}u?e μmd6*@!EJ RGt(cZy\McL?WISn{IYq׷p1*@+ ,UGFGI vY[@(TFT>ձ՜jq/0<YGrؚCNT%Dt>x_čqV1Z؋)CX.rKBVs\*V.l|=vszq_hE4S-$f{Ib/f e$U쏙uD- ?wё ^*|ňjm~ve#DaCf|<2Z1|#_$r(c# j8y}={ZM%ױuF fGN 0PX¨3f"7O_e$mrB2XϦ12685?s|FC2 Dsu¸J#m<߼U}D59pX{sPQ*ab) ع t>Iqk`+5cbSuyl7źГϚm{Nzx 1zNG0 !.`E0цCzhوХq<;*`߳JˑgӋN=&EB'%87qtj: -q`ip5>SwTn-Z:r&ol $V>T $OfJ@]Δe M#]C/Yt)7;NaV*Κ*w0#(-ը$45P=ʄ=E\4y5ƿ^ͦDzǯc KyPPT7.9(J+sH.5tn4wSN Z NG6~!t\eaR ec++߅*B (3#~0Lrd}?&XgWC5nPݛP}ԗ<#Q x*t .K% xmTX9hL;y:ݔ0Ae/c\ ~2ʴE:6x |H a>脗_}$KgrأAM35RhF5XZ)JՌ#XU<E y ^)Dĭʦ;yZvʑ0Fn:˜aXU Es@0l?v,ӔuTM R_l0/̵@}­Y 9 ;8.#fȉ.%T')~i<{=z )b6W {YΥ,Ng6wWxGkKͺ0%ǓOa#O@2SyU$_1*1o(U6qwiOj@1 BO6Ӟh'6ƀMNJSXς# WR>?xM_ >7} m\ɚkۦlG0_P-X16bmY"چ@&K|MaS#|<'9n)kt uīGf 'h[Axi 312wG= *&\B0 ?s5@ pjzÃäRF1 B4:B+KbJ[t߁.A^}[i&#cOIn nt1C 6xSF+-qEh~UYO Z/D׆7&Ϲ^m޲b*{n2&A*~o~0.? ;-HP㾁wEiGXKyJxf>Eִ0*.*Zo֪nH/GdSP*bR66+Bzl{՜+.؛7gbaM8dޙ.cl˖#: /%EC.bC %B+MY+%I:arC,h'-;Bw)G^qM}X(!AmǵF#U$1&ӕT}y  dޢLt.PúTSps,/xrԓLV@('eҽE7 "d"CfلƶA]|RY2; qR]E?iZqixh{aR[(YRR |aOp}l8AȤn4.OJi aˬOؒW5cNf ӣݣ)ugDZv7unbTDW=ū,aتؽqA"AUۭcf7bsњcG"sI<|&)QV!"uu-2=-Ȫ5@n\G<\+[?jHO{L7{-mzipP^=aHY7O6iċ)%xN Dhȕg*[u/!2sѢ^E=gRC]8GE^J |\WÍUY^o`$+8B'[I_ef}H(+w6'Ǣ(]@ ӍUWNe\ѷ+&kP@Wn_蜷>کs࿤_}66uET&_[P}T1”7rbv&0Ӥs=f6yI&!ӢC("mK}c(>hIb&IH5J_R`8TE-_g;0g8uU}ZzA8{0Z]^nݻ2`n qi&FɻnJ~h] 4btWu RlNuO\1jN<\c_)dQ/MGp61w#P|ZC&-OTWPfLZg"ʒМ"hFx`6CkGyJQ]MNw/TJ^fGOhaTqf.Y@xG/K]mW\%4Tc08}1Q8}#̍9]gq;)5Hj[wnQ;R8vE*l7)qy; yKVU4ay&?sX3= K {U8O[]Ac2J4꾝/O_ak@O?4.yDXP LOxP;3Ͳ׸ {8s&%hFD` +?0̤G#s>q0[ڽb“'wD gu(DmH}Pn|7BuLV=>n-QMU䔪 a*Ztz7' i$ NS9ȻǢqП}+SB~뗼l5`ؠ~ {}wc]kZAE/b@ޝw{1QX67]2UQΑ#}X7:~ :LC|)6ox`m+6_kuGIыiDFX+\? U̮9(u__oo`%8WK&\[Ј}a+ftr≹xxFL)a3h:mLdh+*}9`C>eU^/10*Lݭ^Q$#%I1fJt8da{ 9L@e{j;Ϻ^1K1DKyW}?oS3jLI 0P1,F,Tӯ 6Zu:op _~FG4}[|_Wq 'ڪ#%Â8U+i YZ׌<&LPf^]=Ox!m5/.>zr2v e*(ROEqe 7],!u\],woɜD{YYbѢD ,ĥ) kyj«L=2-m!X ? DqV?'r².Aj[A!?΂T"A22U̬XAC_[m]{B'e>g|1-?aAܮY!?^jSc)-u%_%*Re ]-NQA՞Й6mS R<6:\eD´@=ږW!I ˼vd`ص0J2 ja;H?6bWD%O:rT2& |A ԨYfr>׫>3:J;?-p~s BGRMA]=A 1S] Of/=heh2:ٕ?7Pږ.l@hIM9T soP7+vVA)ۢ9IjOQF E8Qid6T)b:6~UeEGEOuҬAw`3[Ӹ{%<;s'#, AAYI/}8~nPB.{FDG%ԇ3hq~K߅OblpLG{ⴝGTSl׫~"IšFՁ D~I}2?;7Sdse[>RJ8hh6J=. zخNXy1/!A>) F5Kdl7}lu!o(_:2\op6<]4b ;n1Z-dN)*=l-kgRw$H(ᙑ",¥|y_`)I([o-M+zHx}/&q@$jug 'V`Dw4O.3ôï(./uhbӸx[5rTc"2[Rѹ-KTk~.OrFkwlujfQoU!we?X\. 0A:h:BMqP):]C_ꔿ;sl.3Ԙx`z 87W)Ap&1ufZƽABc8!u1(_o&U} j9t⣮` S gq"򬉊lZm͊y5 /o'?Sּq(I9hXĸ&PX͞) hY: @q$]7PwdLunI@gn{Z|R =28:J#"(A[ C^>f ?ԏPO2bcTeqJnlvW_&eFﱑ\%\gP54$?)Op7@/Qͥ¯ʩ霍]ݴwovΗ75h9R{)j0NnƺEs g\[.歩Nq㋯嗱=/rIbԨVxJe]xlXN`jA{G{<֐>6ur7Hvo @ۃ.`եYr@}.fҤ€ùpGAu|Lg,u袨4 ?[C1<Ѝ - ܥX _/֯ hq3EtLPssT4c8p9~"u|#8+7r}(jTcD:4OZH WƤ?*>(߻Ah\']滲 4_qf&ऊ)_ߦۢѕ4U,/  E cаlZ5!fZM:AXb2M`+ż$If ٚ(N;'l(GayԗݞM/0ԥXv bsOզD%, 4| i+o0E䎟=Z`$j< M#fA>IM_da-0IAwptSI:ZUٛv=/DM걋zTXXjo xg)|<4O&?\j+`+}\F:AM7mqtUgW|Ɨ<R)?t=LI/!q+eNefAm\ r'Y x#},jY{.HjhZ]\ǔ<~+TE۪P!u YsL,j k63!6",qWPxRb"TcZdOy5#?= Y'AI*J6WZ^߃>ؘ sZ0̯N.] =|qHtQ֑ˍ) aU <&+y~4 9K[vD(pO҇.htOl%?aJC.(lϮ_&Vu Rl4軜ݦ&h=]8>^PQ'.΍{>eoq>Hn)3/z;\{de-y]F_=K (UpP?J<ɺ>(ؓ >vߜmwIp s'E;IIYv*_>SL5 ΌM y T4}QwD7,w)t4.p K+`.(*DgXeڍӲ?*1ٛa u9|~j{QHMJ'LOv<#^Ƣy.oH,+imE҇>  ; /n|sm_z@ qR|+0pxJGlc[ ;Sן *%j$jo ^)Seי.w $۴ǁ G㿅 q^eDzT:ݯ$1 yhص9)xywN6/Md9ӏ]=/% —Lq{HkW#7)l N)Sڍt4+&[q:W  ]TSR`O[Rɿ.-r8sX58[Hiq!Q֧i:\[n IżJiB]` }ۻBCG?HF$0Q8Ӈ?褰gЯ&Y=&KR^92E+z[I){lx, d)Qhٍ#c C)_\kS`TnI [pխ6,~^TGn,.c `NI[HmυrBQ\lPV < QvpypVn7}}[r~ %]~*p)&>#+( .<%6*?]QNX ;SPWeM#'`،yvLڢnXOe`/h yRJ4PK$ĭFTF4 rC۩ܬ xMu 5EN~*y1;zqN׉36r+HvEg}4D1 ~`jw0q3(iElto<xW9شP9jI}!ɜ,r?dl|SwU2}h̾vb K ̕%]-XSeQsDJSRx6r:.B3Cyal1}i#w|.9]6\@FUYF ;P7hsн~ ^}NvvDGK=G2/tiVSt:$O5ި$"P󝳢 W{DddEƕɛDD9d%Ȣ3|7^lAGrj7k~61g[A$/hCyQ.U2{ c0+ .adkN>t˃$✳)4bQZtXz =:m%h(fcU2V%|ǿv_5#Ltg.ux^2YTctw_Dwy jU>r A*Hp_zUBjkf{ec>rT+/JI(B.Ԓlr}򑧘6!Sb&yPϱ>3 +o4kyB?U,iRC7C0we=}.fG\hc$* I͡F|Q?Nn| o.}xbʹ%Taa~XKaOlZ3IЫGɋ}m-u`7Z̮NǀKlݲf0ӻi}_ _?C[lsj 7L; ~kYYpH[Le0#x~MљDe5Y:\daFoW yݕY8,rIȉi j]ҭs*66?ΗHo( 8259(=|-}_҆ϳPaKKy6p (,"MQxkH Ȗ ]Cž:bN4t9lq2cγd*c5FʖҴ v3DkIȘ׼Wj #)3L6aTdOB}qzۮfQ2n>}0ΑoI@=Tn1σH[iQ6J#~IvEM:\?GQF/B@uҨ2KAr&TE]A qI2;?Ši>O=Ȝ l*kXPH_qBԬ5O;W 2h7(4lO@h҂y:&0[b ފm߭Iw~^%x:Qt]w:{4f c6%,L˜BP#}6֡ 8X2RyC+V5'(vRFu;hrqfJ HO{ pF4(Z}b| I=-,׫P9j0̓xd) 4mъ$9+f %Nkݏ-R ii75rxn\(c@H 3XP][8\!iIN;NbD~E|!囓p] tR_ŏZ4TJ"ьKݴaVBvN9Wd-fă?iKf.tz֗Cq]2<ܯR{ދEwjV1p]: < e|ʙ1m^?6|*׬0>rȸ+4_k/;(HOkWr >?@~Mb$L [U9v/pg?k N>5A`"CwI3Wb318o|: mp|\@PuOoV>r;P%BG}" jlXUߴMd㠾*<$agLh| Iz9nRExP{[x6nw[2xE1$l<8N. p,3~eȴ`0.2&5E^3/ V랰ނB Hs$Vұۊ2xQ#֙"jkGN Q ڶfrIC>̺/*1t'ck`ԅdꗆ}Mz53CvfCsbz]H;Ӽ0mL+v rZ/Zn%wFB}o+Yʠ:۝GF}jec lK#/X4 aҚfWYMuxJ8.pR;B7K"3`}ƧIdjej;IS6_:/lꊧeп)E 1"W:1)t/Cy~~`͑ >pE=@}Z@qirx+Gi ?7n)=JXY>3ٱ wc15|ǑXӤ2:w"=gs(#]OpQ.xJpTFW#!=er!uٻ9cnzM: }ώ|zE#rbtPEZQ)5s3@*Njmsz%DvvA彗g/-sHR0)a\P6z9C)# Q%/B0^,Y͑%ȣN!u~e" ݒ҈ Anּl+nV6'ؾ?ri{(^o ;axy-z#*OdCߟ ]Zᨿvm*[/q6:\[~h9{݇;.Ik 1hlq '@_Mj;ޮxAWUܺ.uW-w׵ȋ<^LՒCP]hxALr3SЇMKɕc>x VˋEj~X|51>S^锕7\ex[ O6FPs)\Ŷʯ!W4iwO/hxN}771=l6?If$!l$[lASDgk M(6`ڔ:0$-{ mݫ0s8|X"KU[g[R\AiA,MC+#$fjl*O` tDND!zJQ$bu}’}wᴵ p5JLTѴ`~bqN=.$G4{W\(x 4 oUlL+u/_˞,/{%;n&Cgp mҗlK +RV.:ieٸ5"b 掦`S *77(9?V(}ϫ>dC&̢rH^]`I76EB":sFTHX&^YUSWz>[~(th I#]AIJYA[AuFszÚXAL_b4k $GK9*sQGu4N[LŶ [ƽ$o!_$!ʢ%G2?PGe+l H| K Ӆ?RZ _wip, :X'f,.LPd~|1h!I#1Ha*_ /x=PyHJdOQ̀9-nK!\9S LCPe Iʡx\n'M|eZv" [^$lRΤHLa9Pš Nl6\|#v𡰹ԟ4%)8 X?$c6)BT .H]fsDպ^xY>k :8!ݹdƂ(k NXѷ;].Q>chVz6]=R& qa`ɝ\ߘ:hSxc'@:ys0@˯`^Vܮ)Y_}.BhcY@kCRS3m#ޒW b{k.t6orpBJ64$~T ʮӨXwSZF$2>'e7{xԌվ\ul|tIdGr-`{WE><+P$_YP^{&W32Bpi:;T4g¤bỨ`Fv 'inmtz` T3J&TBgcGEs 8JN,i> Z7$#6*n:g5 ;@ Xhi! ۨH_AY|rT}JQ1WGU>}vilwo9?=$2͜\O*@,5gA}Խ*"hP2O S_7S) S ;շ2K^Z̔,τ9ޮH?H2?'p3R; )cD񍘂 \D/?}[Vx`bZ- uy96 K']ac&W',@q.HzGCn'fP$BYn6i]p؟Eߊty ̻[`ѸXa\Tw Bol!k̡I+>Ěa77{Dr:]N͔Q`FGٲiL|Th"±Cs"8eiC _u`~wU)0bِYj$Yf߰) = <AΛNw(Biqb9ufp`.3[`w/0h9}֍JN: 4 myCyS?Q_~qIɹ9j:[nvdRQgLg9`]#rb:ǗquBrΛن"z=w]uoȯy: 6_ungRcc<3Gf%♉ku&¬lQrt Na콕JN|pNH$4Uhm!D>z0RZwԻ  -'UCZ}[b5\ȵQLAr׌i*,'q/`]`MCR,0bXLmWV\ĿKSd$nfCWmUgfE/Egq˸ ȩbMjz\CO#I +PZq5ѡw@•p@>)YN[,dJf3iv;i%07o<CIP ZĦW48+FWN`E>V/}WxQ -Ri:%bH'DŽi+Al)$0;:% #ƷyK=*t:E?~N䇾gͶYZXv/; ΘSOԻV= d >P{nULZ\ZZG-nlrbrdc2  D^4P{X,t^Zb $ȿː1I2ʜĒ@0ĆjS]jL7 FD~\n8㩦KlA$ )&dńV^ߠf^W_p܄OWG]U)'j=*0| -dֺ݊(G6lzɓ: }]a GYA5H,A]8^jM3oZۯNJ t_zx[ų@*uqs{}"WJc2Gō%{B,pmG$_ K7Z*8?ZuT/kPIIǖA=.fRV39F&yc%:Q|9@jYV΂!` 8/dPHEDCGG9d7R]л q=0yX |R^tJB?j/$dOAR.o'x:8k=J[m,O%9r DN:ő9X #* ]ѝKY_kq5 sxz;%^n1pDMzq3^WQyг $Av9%CE /w(Q5SʗvvpD `.P'ڢ>y=DfݕhJ05Z~ӁΨGh9څ2XuNu]`5T%ܥ&B <%zA IZrvunr{A`.BI:`r(trwKyJַuSWF< lz}m07z>J4-bHK$C. TPI' 0O:렎P.{ƅ&qd6 ƭJ ) j 6s-\ޫƣ6{8]Jш39!6K" &˛Tb(1/`C4~m?)yHX_B4t0yIΜhN;o?G>/!O>b=UQ!uADjiFKL(+y0 !#ePQIٗf0t 48j~3J\7r!17?5 \}B=E4KNE,Z<0 rj͂$x]B{Aح[%^.{[v1 q'[' vfh,`uMpS-ʔ$I!TR)YN$87漀݉'^t.~k!m `S%­K^J5n]UB:Q^8r}VElCE?OM}<'ak,,rPf~]HHX4{=lMЍ/Q|5^9 iA e"yfz1_$q0#,3mX]D***6C[U(+|l倅{P./lϰí([™ɡS .E85)01'kbX@5)$Ɠu%+`o(ns8`O0NAfOV,dBa$ڐGnr|ފ_)1ጐl S״y+W-vY_[L`L H/O2jF^yɻ~hTj]IK[+`V X;D9 %;vɼdm2b p ,L(R?Ye?2Eqa+=kF \g Ap:h/hE0BLuևyһD~1*<(]|ЄYAB\Qw_]e0U/.٣B(fcݫWֱS2ŵ ' D\w:FXH]ޤR/6K/a1 1dxʳ=:F k'c T_QT ӽ+}n4nj!¿Z )yaC$-;tڵ Pg"M>@$:Q,1Dd:Zۙi.+bpبP2dS2)xg9S409QtIsemɳ\eAp6 GW@v @З!%1tMA<+m+,[Cʛc(!S" : |qt*_Q >Y Y D& EEUo }[W ġyU{bvݐE4/3=3eFaQe~1Wx~T2}rQ&Z)j4W,yt iwa$(!ƶĹP=zH` \+<K;xel'DWqsxRH0S9K1Bm2 8da>ƽE)g+$ќC"J[*Y(PM8N6k; d_tL1*=I25A˝F3(z|}p6*Y?s-a5?C:9:QARp̜0(Iٙa]f|KXfO^NB̅UQ{[Q-'zm`㪩k_eXhe)&Y^+NͰisK)x+zuL+{ k+M |ԡe'iq܈=rkfw,hUY]~<| ڴ:Ld8;`*u3<¾ #|ӦWtSy!X~䖽KDT9@3KFp-8@﨣zKYAN2 Jg:HފvjjʡL; >psAڟ{:; 22WfQtasj'"0fJ>|#Up1Kbʲ'$8RϤy%#8l5n"Wi17٫~omw];rfE 'D՞C:Bc>#A?qKl@t|yGCn> {7OĚػC_$!g DʀegiF]7LI vģ$SVC\lql!4 * .!k0\92x&2"=z/&$ x9bN*FTp7H9_Ot\Fx>]y}#L(]\E9r {7A%P3DaGm늑_d*o{oЬ5Yg'^ҕ(Fɋ߈pMZ}nV5Wob젪_olB$6]vMǗM<\jEyYN%4͚">X*/ʾ9IlG8!nl ^~gdRt1^sW#o!9mIy*^ 򲳳 Fl=Lk/ fj-Մ:[=pIYjnytHF9 0f )0xLB?O|C*>HZ#dh ?s2 eMZ'm3!C&d8 yO`<0hڽߟ '9Z$ kLkB Ɇt&×%MwA]ڒf{v*!ŮBQPmn?E)T0-ϜO BgSv1Jg7 Dw?'AJyL[uk#7OzOX,E507& NipfO.N'#~TK->LV/+&l^$1I^U;: nd^状|VAE jcWyi֍t~7(RF9!\jD> v|\~+xJr Jczjð˲KHEYH {?bn2FHYk…Y-+;Wna)}ږ֞7쩘(@>:C 6%BL5Okق ,>@uq!f55C&נ]E2p80| V3qTY =;4@_mkK{[ZOF-nj9(]2J+r$]/and8$)[=N~w[_ V-A &%֝K,1R8%{ ;0jtOA@@T_R$`M.@gIJ{OifGآHMgEHkUsۂ!St!\י޸x/ J8[~HEe^U& 'z/VvWR3)N`yPp7*ȰGv^%Kv._s/C/%9;-,7:+;o<[QlE6.EŨӋ(Yvb:CVq(7J m-Ƕ<0P<}k!\ ;'9|LvV{2yzy-_Y9m`2NjOOv*U ʠk]}}Ğ-CG.szj $ _[]2\\K Y5!s[, !Nt\+O[J 9vY 1:$mQ*,߱;pZmϻ|a\Z ,%. Z{PRVU9GKd<;n`pXJż HgT1@qN\{b-|sw*iJ7}/lL+w5Iœrb8_=Š߭D$o/ix('{ԗkd~T=ԖwLa089뺳6~KϻP <7bݗ7j:O`h#|?;vg>f,>|}]X*~BΫpo\{^AYJ>g_!bj]Bpyvz$F*8l&㻰Ďڤ٧VW6m Y^֖d,*TԅGğ}_=a3a!A=UxU V3gEA5 5'2yTk 7rL1fA*BW:TUh*!'$.\wx5Zl}*F/R&0N4U*9)ӹi9 Mqun" cCܻcG#Q}Y{!8!sFpJ^`=;zi|?}2U{f6'/WXQci< AV¸ zB+j0qX;|i'yP ~{r+Mȳ =F<ҕKN[,R4\6x^ʱ~ F2dk">Z"DyHy?BMpG'&lp^M:) ؟I 59U;;S6~?ac63"Zutstd8")ݕo˶D>vW-YI}d|h-GYUifJ粘@駘/50ȓaQGŽ7b 3A4 Ha֢6W\%9m&fbdXl$rT>{zqAweejtqv5^  q=p)6zFLRQg5RSzN>N؈4Lj[mVÉ?+{xCasm֋j\qq(\!<@E25qF.+ 7ynoU܃_ڣwp)\SrH#V+1q׮uW4K9UA@틑cHh1$~UhRt;~\fi瀄_;UiZSmPmcթVv)ՠ_{fq;7h[Uc%8>cR],zg7U1>|9n|gX&>rժ#YR𫣥$JSDQ759}mg2%bV4* g%=Bb{4rR.'A#bhͨF9(і26%i#ZVbk R_cv2u$N-p4m0B:9ldg!=w w~mW1Xרp̫=3xu ~p`-p.1ӿeW6~,0ZiLؗdEyzg)AX_1dwd]vbtpʻy$=DB?>A(,țo/TzD>{i b(*x5(8*'7Ύ$ Er$ );Yne ZbCSItrfƳf\/a3`Zx2 f }.ٝ2}C#bA)zAλ?w_eE9~i +\A:LȰ 5q ^ V|\7s!`8lT`{8ςF;iVR_$"w  aEkDrZ:1fbr`8$b])X"T>phfxڀIڌ,*#sw@ d W=6\kƶqg ' !N]ۗ h5g$F' T~ESWE)7W\N^z;vrOƼ_fc{t!I)%ՀjԅK DNZ$~fIMgRՕ)uл#fu!.9Szfv5nIm$.N4Ey)N]\9-eNebVOLLb8{W.3g7\9LI2NZ5o֞-!@^h/./P{LI\[{JН^'QUG;_\/u~VT5P̉.i;V9KR(g ҝ*zRбZʽc[=d55Uc8>bgnB3}JMޜT '?Mg 4Au(th=R1/FM c5zѿ vq;J` \w Etn4WP?\6;g&;ݍ `mb}!pO˲Dx&]Ah7N-Vp ">,r=𦯳ٵx[;J¨r*c5NlQ>9bx7q_Noe-1kσ?ʥ'܇~ MaEl# ʊv)Q;4%%#mW\mw)P_V+xl=lzH3b+V+z >m| KKsHG)08>9227ҫp8hH Of:u9a`ThȦշ;a$ |^c~ qz$(P3р>;_BL~L4.Iϳ?PmLjO\ bvHW~4"o? y57>mt6ew'B AW?lB}o=e7QmnFB 0?͇̏>϶rWׂD?}7yXkKOò)s9aD*Luv y8u '')h{-.p<>mc)?\{m1Dkb5AmK3nM?z$33dV;>6҂ꖹqL+4A֡UKDaF(;GY+Ê`܈Ds r˜I` :Ų(iZM%}y(fEkkv\= b76{N&;*^ X_wVGEDRc!. @ kn#.6㡽+65Ku\/{pc2|@Ē6 Dx K<'X?^О _du[\P9y@2߿{yw-'pe>9 ū͌&UL| :lQn!!(&YIb qG$4p ?,"оg8G$\\~^)19 qU&g 1xdCiaݪߔTA/A - -#&ej{A~\.0N7Z6Qp XP*ltxTFB`Pؕh/&P&v_Uz7tB$޼Uax \3ZD3-:EM/Hj2g(;!eX Zi1MS3/vqbdBY]yӨ]y^xo :i>^J3a2 "05X&{; ov1qؐߗ\ v*^o?2䜺dO`uj_N8/FT*hF!dй1Zt; 鑝śY3Esπpֿ) T$)6ǛX9 j{=" Y2dR;A0_Sŋ}[f#d+}3;V?!ia`]eZ?hQ@E o|gD|ַT 6ؿ #@s>ScJih'3JQ3xtn0Ψ2mkI<3IkTo4@2,k<Ő)*"Ay/=FRwVpn= Uz +kJ.uuns;_a oܕ@20J{lYz7P]=**l\_h%ƎDo9f#ʿur$fe1Or6=nIlLzLyձeOnqBiD_~kP[dZr7Rha//^uy_-Uʬmy]e]nV?a._뜷83ͳe?8+G">'-(n͗mGr ڹt#HڂxU[1{źmaI {4N(~#nn81,} UMZc`9ͱҍ\_$vK+w?J&`ID&@kDb>s`,l@BQ-oXVM=B@aB.Cһn1@aVCMާil*]gs'JXzSFE/b;Ct#¶2`Pu,OIM۬fQH&Yl&x]lj2h񜲮CKX2BߦFb&g ХB$ĂtGTqYƁYXs~Nn (񬼵ojɛ` '{>a!N;TZ!U)geݷ{7)GLSTArWq?#_a{ʧQ5m=[/:_ O[Yi:\/nwGCyKRLtH{ ~/"E9٤O\B&y[Z8,1T.>!u0z|&7P#M_tRYMŊg\;UiGZN1H!èVmN!#TX^A'O' @[>h'rĻ [N=\;.攋P]'߼gݫN*k )ȣ5ytp!2)a3xW5hSc7Gjۉ%_Z:)S!ٓ"9s(*ߔ5ogk=T-%q|I4j (ӕU@`/%Y.;(&n0e91ՠD]5 S_oiAi퀪lKd,WaVPnF7&{{,ua$|gI Y\,vFi$r :tGs눜2-ĴK>]I4D˫G:=cJusWiKp5G_m4S2 u+fČ1PծR<1+ˌOoӕ<'B?TKzu$J?HN7ն P`q$hMyXm7](bnX -¤çɿ/#sJ_6{Cr6Ua9+,$4khﳨFeFC-ũA׊DS]V! @Msރ$T@/(N@\ܿH场%,ELRmB.![n(PJ.lhD9ݠG;>[x՚@Qtȁ%ڠ~{YR㟭cL|*[ǁ )IzG<ugdDoE^K2@rxR6j2_ Y nV8 8eVIO} c$\xt9ss %Q?1u)Ko-05IZՌOS>WwM}Ra~8cX":DȋUEU))&#\IA'!N&߀ɀQ{4P蕺ihlx鐍L\5q?1/H⠋Z' _^k1`7 Iz!$]:Ta׃qҴڃ͂Q_M~n2Vd6}l} .\j mi=p5rcTC͙Lܥ:tټzFPi#UqPL(yCGuȯ/@~ [\8b[fKf/2;ܟ-ӊ݄?AC..{/kPƟ:DE;#71pN1'm=U<^.e]?IoBǮ=\;HHZ\A/ӐW51e REGhr‡=⛾ˇQgO* +=^EM @C# P(:=%' "L{pZ'YhbV{>㙙'ą$XY;RC+HDPv` f=}x|r#c|@s@@8"u`z' ;*K}HWzNoCF &JZK- .w 4W!&J{l *k5vA 9>I7}^loז[Դe⍵Y3; m:ccZ!^HqLc')4[٥'PC.N>xa5-NATK*S_գmc~t ѺVyW^\B #pS%8V{8@ uN#=˶<S]>0,trYEU@%&Vg)| H,UQ!hGl,#ryhu?dU0u5moyG"Q'w;4pcZ2/cCG{Î+^礗Zm7'05qu+Yupt?Ô}^Ci !xf-"'&1 U_ y9jNHllG!TJ*^U_3umun(rB3`QȩP=h3O`-#'>aTS{;.\}wq0KХ[ ;lt6IC"qߚ~MK}[o]ZL<PoIU3VPńcA˒`ؾMwx/hD* {McL u eOul(v.Jm\{f]v/㮺Z\X \;Ɉj L1(t'jx+] -^)|tFym!E(tV Fܞ/wr$m$l?ˏRۛKEK&7#;orb""s2rrݎ+p⒝@XS3#A[F< 1D~|C65SZoQ}y̺r+HC{ЫKE R?OVIC:?~g;'q8*im[Z-gƿ5CiA'k iH3{v9e3]Vf2QLCޢ ;30:3WHMLƯ:dȢqtlr'VD%m[emP3Pt~]͈|=70p:-fxz庠1aGd TQ4| S+Zv1Ufdt1;ۺ(= \8[sJ\I[`Ñp\> vJN+$>j5Mb p~JH5U àVݞ٠յWh^p0U+lO/=jhMR+[KTzfig45 L *EErEb6-(f%JwSz(w( e.OѬhx~M.Sc 9 ;k )z` H鰌泺T[r"8S7,$/P+=##CpCcyPP]O7tPRU[3K}m)^rT^/$�H5wZu&fB4m ߘV 6pť ^> YMh6UNxKi(]>Ȯp?ܝ~''@ "3}kpqcGV-VveOѢBPwA%ȵӽN,E`FewHʆ( Iɋ{bTjL]4uOB5pU:.*\\ngƥmߧ^uB?{LWpc.o[֌&ӎD5?<آz䶔T9bs}Y`_2or ggBL= ”L͌\U_J<ءI駧MO$U0z vz5pբ9`l_W|%5(Uȹ̯1r΢nUqͬ&6j~-ct NI>5)=!v{BlSZ5 &:iM(3Z&˔L,#W{훈AƉ(f^/>\l; / 5 M(gp\P9FR= u1=FF-CqpWBaEOM>Qf{M>Vg>'=@/ü)B"d&C,I"}OjQ[Y̨e3LMF1牜˒+^pjh  r4̻F<Ɓ𛸸t4@k14Q ^\U؅_i˹Ta%0 t,?DTv$=)/F@W.C~^GiO AxNq 2]._nWU ZM,],'Ul8'Tfd\4K4@=i΃ HD@rI`h$_!ŀKZtvcm1qJUL|G9d8OkI ř~ {bu><ؠTWsk^*δp \gP=`Q2)czu_Vim:Q6pb,4]Fy6?hmֲb<{z4BSM$mD!V@9kX6iqz ~Z˨xK^;q}nr-dErd8[BW(152a1ZS,"5=*uy9PX{ŃgK|ܶAǧjmIA`<H` SU'zǕLgglfĒ)G2Vː/RsWޭ˶0HPt*jɗaBKmeħS3c64W9^jaÚ'ZލY&6Q+?ǎu4d$4DvD`ZЇ5[ŔCW1: D:q?uH(:`:nQ ~r%z`FN~ތtYy 4qzPQ©b>9W7%Kw p2oǏ+^a[S o,zLy9 BjiS=yog*h98Oܛl(B@`lxg'Dz/!|_P{P5Ӊ. /ă_qR"o~x+[؆|5Id8"iM)ɸeOK#A|ONWA慌Q=5z%ԒԴ^inJkVmp]1 I ݋]QK1\|J*w->m@5XV̋=E MmeV.аhdyT׊ 3y=cԞxl@tscFb^G s[u3" #PPQ5ڳ-Y)ڍY:fqP1()7?M3 TFG) YoM#@_ʗ南w1kJc86sM_J$:. 2ߤuK=qy :M/iu 1UM|ֵtŵ q %:O"Zc?$J1:u;%oVEG$z9\OKU"!Ct{û{P'{Žk-+<=~aAcsS'.|sRbQ/F'0ZJ&p&Orwq(49sDB'~Gt8?)^بJ&CvŠ( 0`ʊNc3J(hHYv@PSsXH#5Ӳ7UH6pŎPK{T=HEz@uɆ գm>6jK|J^yh] MDKl5>W͠䒶6Czh:uܞ"2;ܛ@ڳ\۪ʗiʍm$CAEFk3惜éuX%!^YXc Gib6&@ hF44ɒ~KV906HP y#M-]ik1dhWGD0z+ؠ QBGum>.͆ 6pWi&8*(5ms:RP>nIO\%zgMzJ Ym}5z 1Zn~|_p>Ux}T@^]ۯEPc 18i Cy>v@\LkDL M&?3TuةğMzIϛP?W<,*Xvkzk@ٺr ߓ1n(MGZxVd]saD9ByX1MBP - m9RI@ iӲPw,+G\OYlǎQɚY6 wntn'u?b;'Ue69-ݗ#a$AaByϙLyqrL\hNbPs;V]|54Urx0$SA$@ŖT j+F2i8yk0(58h)UﻀQ(z_Վ6F%~" Yni@ #CBĶa 0ݡoJb2Ay+5{\7Ց l⧑ӡƵIm_|K Ҟ9ʞRg>v626ozЎmm>2£kNm g]2;F'w@;OKjFpHC0CE*YPT_ƮaO5“Ps&FѲ` T+-o)j[+oYER10x`D#pMqs[/1ELSeͲR 7An_$.̎_@GM10ߒnFOKP!:c: IyaΪ> t_,BאH%$ ӟ*3rWAfPq[y?'RZ 9hsv.=Jr.>vS4]ϓ;U2WZNOn PVyn¼YAJCS+BorM),Jzf*lV[/[ b~$B,ݪ1 /@*=w8rQA`\ 7xj9|BGJHgN+ygS=DDk8WWՑ.VS/s=&H$Ce?Δᛠmh["̭?/aޙLhW޹d)2Z&"NfacZ埃,ڲ?dOMHwu r2 oa@6Wg-F3}ԩ~Bԅėp[H9$ponvq#<6BC+Ɛ_ζkh őNOn pIXr[ϕ~F).e R"xoH^:j]IsI,׽J32y3^3*zYIAȂ0w?Ur-GyUhG&7gD\& :ď4C**8 f@QyI~Hgo~;N Ĵ~}!^Yb-Z'0do~k|0o)F;+b,p.E%G"$$ ߺO*PyQuĹSAID !#=~eS* wC838AԵsmҳϱW׈+ GM?9Kd;7Tonw庴*xe{)7Ѕ%ᰟάMOf_W҈$'(f g:$N |S@zBL6ibƔ%|D H !և)bjѮxƗ/=) XӅI!!Arb @%26ݖQ Q ӂhЪzN6 *]w~S0LYV f8tةW8? uw!Kb:F(8|d?V S9iD ѡ9]5iz)^U-nA4Oaots{@M{8l\$b{=\^ ן&#.OB$KSY 6hAW=>@d|l6+R`I:&fLt\ca@0`Ʊ\NRUz҈a)+ͭɍh꼔E&G#V3+ɀc@혁?3:A}Ɩ5@[y/UBtTX}n #ᡝ7/i`Ƨ4oVR мA'bpX{mY詡bu`?Ǚn ib+Þ04K֦MRX-F/Q r~*?tz9 *B~nY4;|q|@N~ `q.fGdEcHe\ &/ YvSpCePy2h nB6W<c2v`&F%|R=KK7A<& R(ZOLk&iXfq])wNuAtprNy ukԟrTkLx`WQŕ |Ǥ/٘ bm@GG9A@@ ގ!}Cf}U#FSzo~E݈ie^.(kgU $K>^d\"k[:ֹ8'x Krd%:I0M4m膓_=9tRA({ aeXjiI=qqYc -'Iy V)Ălo2[UwB*6-RAJYA8xm\TVhjf? ԦԂ3Dhe=$ Gt99. SM5(@H5d}+EyQ![&/n9HУ<j^<zk\K 9),:(/I߸9ne;:SFӟL\heG2{=ʺ䘬COڶUyjs9 $w~j{+[ZHQ_ Z&7n8r if#ٚN|lۘx\vm*oww: ?xU*- x@tTvus-[sRN"Lnv,/ç,,k 2~O(ЂXIO[vt $I-w„'֮ύM?CVsy kn`| s&)U}om'%?O!_DF$SUAv1~rRI8JĖVw;sMU*5:jzQ[XU'_pk =G:|$Wc1?1جyV]8Kț05M`=Wp۫s4`,D<-Ѿ6[K2!I'I9%I;uj&\(Asav0stHvwӴkY"NΘY3qނ6.uFaΒɡb|f^ږXej:}+{sUBv34`m„f13gه#2C? NϼC믱Zߑs\1Y׈(fQvQSOkjk|H=qI)5?iQGq}Xkz8gօ3s-Kt@6`P PhrxЎ>E<}V8Ti*~LNEIB큁7O IXwo!%,-uDS6:UR1-σ`6HVӈZ$DH &AvC^͏O@,bK:-kv%s?,F3Hoύ EwMh2o/[D?f8xiF;D6 d`!֏SJXs5j\^\4RBI˲)vNZǢ!˿^8TǴmvӵ6a”[=bi "v2E>㷳@܉QZIO8sg*q?a,Phg7hiސr@1G#&LP!=wf/FS]qS=h2_zO2E}A 9֪d8m\׺Gin~ :T[k:V$ЦAէ8VFV歳cPZ[v]` v'x[pOѲҏq"̎\.DrYv'C3ymkL!>ҥ%L܃QTX$; ,#rHXdTfP gMYʏSGv%su, R1MIb"SHRX]xAȲ·ɝWꯜN I눻Mlu*zzB|v8MTu1V+t-E[ŌxE8ȷ`;1".Ll5Nc|KPY-FcTl A38dւ`\j+ƚ8P<G-+j~-*Sfc+=d&cpIp&bwA|T Cj9,潉x5jc T&kVGOț^idW5Dض#N6'RDoD {oHK7I8.+N$b'+ }ϭXsYF {s;+D#qSk3v^o@c+gׇ3OħB38& >o,(f_\u |h`E(Ц+6"Duupo)B{l~BSI(hݷ9&S)ONA(?|p2NHP)數|nEgBn6l?^֌|fۙ3A=Gg*U\+b^Wf#*eN~]ʀ̯_ R+*]0ȹo4.JfxijKt Yln<4bCL $t-Fg+)ǹM{+S }fmӪ٥~xQ<*K͛j?M {xbAF2,?S#>z +[W/~ѡ}j/zL'^cbџUm3ݺWKaa"~>]2mp;Q5%pi R qwZd7M`$gZ4פL.xF[w76<; }?[͉܌#0 Q բθxUq%d N=X%o[3I1=Ս> $Q9x\KOqB7r5eUK: +B6D[9p -UZKiv}/4aO ~Z׈_2']R0MC= e.po`!/4C%t;.Y`M%%E}Xg˕Kcr$5N! ӶOHZ<5gY2Jʶ2HXfɀCԲioThiȅiۤ_]C A E$tU1Z_A8g*8 ur]G>>`D9&64lMS'-E"DPcb,e(%z[}>Rx)caEYulHX+M6 ^F\mZ o+O4(@'BmzdӅ9f>mwDi?6Ơ?u f6ʠEF }aL}b_s4 iN)5[GPj†ەMFf_K>fK &heq%"n" %ז]ecM9-V*7pyּ2f}ž#9!#Y%!vG͈QT"]lh=O[;kRv aJ53c٢| P{&OíG `YA- ~<ҝ4{A㮃H,o;9GϞ_?\Uq#9>E il#L%oܮ@A!}XPsvfI"^,~`ŕ!Р7Z97JQq@dߤ5%Ou, --@XԒacC*,! xѵPlf1!hK{U#f*$Ea`R4gu!jjc$ 8X>L0's#i6RRى%.ĵ֫ʏĀ=3f~球 Gժ?VvrrU7z攛A(ȆP[y=\!C@0j=Pd Dx<_}4-5I?0"*5 = _Y@w 9T]BvNSNE#ahy6j"p׷ q]|u pt<]Z@?*SVnYs;,uU"gERXmGU iڂ/0WzigY3 5.@B;Rlk00FB*N"`uXC^?DZcn.h8 ڹxp|q7H:/Ʒ>-^:se<9q&b|uQk~LjZ}E^&3d25M+/3<7"U,qÕ;XOBئ@]I4A7^oazIyt.Ea&rMǞzw}ScrrͤԎ'^a vLe"Yi22vjN"ykm\QjV8WI,k'3&%;+tb.o.ۃ)2Ő?RgƸS S(PXW ?!VR-8|`v[;{SUHcIDrTⵖ't. ivaQжy|W \1QAe5sߒZkeB؋9.}]Z8c3}B"xـl;gXvf*\ ,?Lbފ ׌%jQH~ gyKJX<@1(tx"sYyKzre.Vu֙;OW..gn@Ckr4AR꯴1η{"!M-w8ld=Jf-˭(5QԪE D38e&gPhY!F={1 6c ;֞r<7+ܴ\jE/Dn/'ފ+Lɂ==QZOM0dGwnG8i^ z^'Tܛ/Efޣ:c% nHI`QNm-m9o?7Nbh*jtV°:&jCp 9Vq#fM0uO1A/Ě2Lylzr,a?Y31D&W6}e-X*7o]CZTzxc˸r|ٺӜ&SF{~PHҍW쯟Ý#, s'X2#D { .δC(b% Q W1+K/LɰOOeП b,u?Z :aS@ny[zEh?[w߾%c4u/ԈM#W)O$Q>^`cm \l՝`@ݷ'D`s&QUXH 7([4XnSV!٦`4O$lm0q!N?u)YVYDky$2ϕqAlƘD&~4rY[JA&q֧\.`y@6+NZ'J/$_w2Yarh%6æu*w!qZ4*,{qz( 1:8gm/|aHYT몶W.c1TD5[y~+mH^*88rN[ji?,x g/6GlUI>ŇT8uXH93 Yb;$ː0P}NlS['И=o=vg{`;!"{'Ԥ@I~G Dtu$%̗(GJNQT>[b.dՑ8[k_!3.*GVZ b~M,;D6ix,Q٣MghU`VS/,gҲEJF,?-(Fl637i'jȞ=ó^JxdpMUUU}v<73` Q8oW+`m@`hC_`rxO@Ʀ&;l8<}3{!qg*yU)PÍHBduԭ}nwQ; $ c eH)P̐EyOUƓH|VAI@Lm\̳$tjt ;(!y햝<+8%reYߗB}cv w܄Q=;^&1D<٤(z[96F3#b.$ó+s:LZ41q-.)I&5?Q8 WLrd= LM50Ⱥ4I[5lZ~q=Ⱥ+X|*M9nk9ƪinKsL)yњz+fhו\mT7 s#4v9ߖNdRtb>݁Ie闀 KcĠ-!ڛD${'O: cL*s܊0q uLH$l$H-`bTyJcک kPm~>(n]0CwFz!*m~ Die<UsJ2ʅtqV0Uq3?AĠ' h;xlDY::VϞ "\fI2kO 8o"^rc)|džS(4s ZE_{|v]mzviu6]4˱X-2KM.6nw5N4gFBD~w招?[è.ܣBOG΍:; 6IadK)ǜa4ڠWk/y/0k/0XK hI!NsYg˄ozqHD&Y9Tީ4;sdͭX<)=[9vw W(}40;Rc_G7"4Yu[f 㸩f7*tWz;ia:Dx0Tv$S7b0?yyOEy*}L_K}#"٨kGPJϗ+9] Հ1: a ]o>ZIJNQ@ig ʳ2bJ*LiqKm>Slnh)P8" +%e@)Yӡuo<SrIՙs2EKLea)u:8x'[$NcV4V4c(9N3ZxgNr9;[UA)׸?5Mbnۺbȑ tZy`YiL L{i Ү \4&7fZ:1W![ %B(8RaDQ~)T Q"1x)vk{LXdiGɼ-tT(Lr/<7MC; )`tL~A،1ĄxdjzZnwCCuR ư-w@Ok%wImJE ruW~ 3!>%v{d4gx@w0lP+N\D⣠R*0."`rS9X~N )R?-=zIGw;-7vÁEvҁy"e4zrp/(􆭡NPFhsՀz6L˜uCNP[&v.Kj=ǯ?|tU%R}>8b+v O?{juNvD Y |Y9+why(gy2̩T""jM;:8yR4jOk F8H>ƅkR uW\DP ý +U301ѲBkR(1WI,˷Ws2 󑮜eZrxAWi9ӹj _Dd6M$2.y0-~i}E oUHuz13 .X*qM* f ] !B6:K8pqm8fl0p~>#=ghhOxzn($>!6Įl#cph3~d,ť=ˊXVQщ2Pi$Sή&m7v"`ˤYB̴9rӴf.z t6CSLYDLԜO=ݨ^2} UBX?j1Sm{5>5gp[7BL˄F]ɩ5HA tX0]cL:G5cN~=?bFx3R|9JuI ay 4 D "Z]Nh~?dMX2 wa+2S{b66݋D:0K<ǪD$  {=@qxxyRat&%6ɮ@ AYIغ5,κ&PtX%5>ߛQ!^6je%jn|UXblIO0q6U0|5${[PwDDӞ}EGRMe'1D@[49+6x$OIg[-C<@E(mDD/⢒=sz٤,p빥2G|2͏$(|$0 SF!u١Iex(.*qf d5Rs7L퍏w@SC1[Ki)A'1\fy H@1--z,yZ GY|[LN`]xOtzb.G)\f13gj lr%\(DK}4BAپws6SfzfQUvtFN$LVb&Ђ&ŗk^ q~g1 Jf) ~L_$i+Nx糃i"jwh!?M=eZ_0<1wgD D* bj&'B6g(j~,!ZicT "#K_]X! Traаh/38iQ*19Ys!nVSis6CU*r/M' qzV[}f0W=3m P5^d݋}U|q?a,f2.'d;*7Pz4R~)KsxasÞe2>Q*4< ؀;D)nH@gꨘ]CO{wrgi~bDTR-b\{{JaL:QSU9*.՜,xiR7y5=OOdp_'AEy2b EhleevH?R!}KJI5뱂Xk)Pu6jRH osBh)뎧VE'v**yql?+F%s 8M߭,#Z4PGgjbyɭ3Za*)MZymKiR0 BԬԴYG-=+jh:{ Uv4@e \:+EPvUW, -\% 9R5yb_IJ%-͏\_(CCE HDVbhT_6]Lf!p=0;D}T!ƁEJ?=WFŁp,ڤψ9*VcؽnzGAf}M]I)v?*XCJ6oMo QWcxJe<}6N|j\zbX܋e)(&-72 C Lyˆt-Xa!xllBc.H<и506j쵒E BMWa#й>6hj(ڔ6n`ΓļȐY6%ZRsmB4yYomit"&G"pA@Y=z|"+xRc!dxpf6 Rt) v/dW?M>|%v&6ˠvbB:Y̗.L傕t^|#ۑ>[`AXvӘN!iIA%gf e坪YV`Rh :0Y|Ke0sE x3Cd&qr;1}Ӭ-0idgS}0>#Vr:<,R$Hr}"m>M8{_N #j)t6 CCH 9Ñ`!y=2g on\2GOX˺3b\$:}#lj)M7͗Wȸ|1 8ʪU:iQD})hYGoKhZz4Y]j zKTNӻ~P!L# h@t-<rdY# ]U'0Sj2i]9'nCW] V :DlD[CCx"8U4EQk=,*c/H5'UOtɆJ]WMĦ˘Y'tfGDAϢpR sn~H!l>%a\ijRzڰkiG3ՎUt[;D8M9F֐Ўn:YtzWLM8' Ɲ'sg/06WLR8++8HeE/ߢ4+PVW:J .x.} 7溍L JuSegQp ӦP*e01ZQ,B0䘡tU/(ɘǺ#t=9E @0bRFOgB$r`Z/4.zS&c$jөA]||E׆V+|ۭl1"VEt]dGdx.`P>x7;T0Y{s/p@ɥQl=y5Zs~l!rm.Ig)TVg HTEhdh-֚X!r<(g%p ls4=}<ο/aƚ`E3z([$}DBO~[[4ɇ;f IkYnUv^E4/"CT ҸH -cq PUI_`c!$+ ^?C$zl hHIJj| $KYxMwtLAB)i\rvZTP3Gu*hm'-bͧQqmfN4?@([Nqr:LpPf Hbr6T4ѻ;˾Z+3j vB@5 WzǻH -zU/`ܨebLCtON4LPF8(@=bPٹ [ACsRL\ PxɒC Ysaӭ 2!ErH>~3ETRe^$,ɠf3T5&H'YnX@[@6?ЖS`vskM:0 l;R 2RM'у^IT5*X#׃#"H$sJia3-9X B~!2z}G"&$'eYkʜ$-LCtJ/jn; ⺅F0B-Hȝ|G&GC;Nq LBGg kA?5rzAb zglWI}/:8OZ%uٴI0_M/xfSX#IseQ_<+̉s };HU{O^ Kg AfGƧ<C-x#LVƚn5YmӐaRj:$Y0'N `O$~J;>Fhfv@zO_P^6+Cx3LSv*aB,cĎ{4_)*Wm"۾t?&K\ 1UW*פx}.US'"|` ٸ'gwR `P#|g~Vo}lQ0:}# 2ce͹DS^o9E#v/+`slhF~_+r5ccgvI \1?IU+b|I6GC?5 Pi f%Ip7iD)r ^d|e-qNGoL{_ xraxʉ'\d)$Хw M=!@WhdM}zȚ/ hߨ?ng:h(" WrªbYK?ɯEmQk5- ˲+z- nqT+O\<9vN%2s5 \5 K)&M*s] O=H'sx.I,}yUeBD'TbzD9 . %o߲4K/ Ĭvy9)+i? 8s_bdӥJܤ/BV%6" aV׹*_1AqDy(&[pwPITSp. g28u&T}:tϳkK Njt3ܝýbS洭"0 NĴCOHbINA WT9i{e Mj]s%*^MBf-?԰JV,|b4w57&K:ص0r]On ŵƫ(DT[ڃsۀ[{@&a2_- [P\gM:zL.сIG=!*UZ!9r<1k3ݦN*'뀐qlwuA e\3m"Dt$nrG.n6xMvWLcA!`?DS{OAi]jypbD93э x A^f 9ϝli$: $_~ڄšP;,IX@6d)d2;j+\NM !*Nf.RH=@P3(@M4 "rEZU0&ͤtM FIz fks[C4oc4+H~ }PH%(7=-4]h*2l]9.`3 6R|\%#ciq^ qFNG  Tn2] es6FD:j!&>cKBU=>59*'2s #!ZȲ&5Re'9\YmedeXHa TϪšm<R/]K+7Ol擫˱ J 1k еTC3кVott 7v8^`b8CnYOsue*ې@wRlfIza˴E$Gl #~>VoLl`EOno~u(O  ,د'TRSShɏW`)!&њ8Ժِ`%9U4}0}pl1?kw&݃F(BJq3BsxZ f; kcAϟ8vIp 'h6I|FlyU]L5@3ʟC/ҊCOh]6m|uH0]ҏi Q%OVbj3AT,Sa]g}M[emCV`6f58X]—dꪀH1fYyno.oƭY1fUŬ'Y<񲢰( 0;-mZ8A*Fa*(b!Eik?#Pyap!wh RB/-+viwN뉴`k- m"rh]:JMDBBMvq_<2oXIT0|_"Kï7wuruSa):K˯[o52Hߥir<ǀy)JVpoZ}Feyf KJfvt/͖}n-xb =7*!A%7Nc 8#Jq3MѣjXCDָ>͛Mc:4;KSնse8O[F1ܢkSeȈG(d$'vwܰIXugfcx k^fu&D=`@:/";?ЩFv!R 6tSQTK:!U$ꭠ!Bbn> ~v^8)8CW:32{ԭс*a0MfU.`# EbfSp Xt:AiГEX 4bvQIp'˓ؠXo8OT.RFGG27D^ 3@V@HvrMLR@@AQx4B*#jDؑi"gZȧkg) z||jPlPoXoӉfp_}=Z?׳|a*c_ #~ 1}x-_mnJAW?j'\NA@k4ǹB'Mdj ŴV] IxZ3;`(;$r\W -T}NkV@ބ^lTS9씔adz6WDX1,``̣}g K?RػҦ_^}椕qWt#M;gϨ vfScM!ˠx\,[ѷ &G r =+ l2.]ƝQ(iᶡo VUɪOy#z>rC<égxK`jpBfU`a !Vêω[3%h_"tA.=a-|m5UgBO1B{ub F"2K I -dpr'q!1WwjL`&\mЮ`8Ky"5QNz[;) P:~ܖmk9o^E0y0׎#_7K?lKL/F8pX&)eFqsGJzCK\IRlrߪ!6j5ǝQN -IqI lE7I=;/q". ^8eO,P{ Ӹдs~)i/1(RvgiCMCyiSͼ@bf 1\_&}*jwDgYw $<_kN즰߀H + Aݡ$go2 }I68+p~1?/Bz:xsUR&hʲ"Vz R3MW>Rʟ7q珊,ȂXv Ku`gyeV:A텀A2OAN{3σWs^`lj_ :;XW91H9N`u[M+7 aV AYW<3})1$E;{KȜ»Զ8e/֞&]޶"Q)NnƝX6o p rWvfO4l`Ɛl9@/6)?Ų*%T+XӿZUYT  mmU! Y DH:%3)@' N^+u'SԵը0 #ea?BS-*ۼ!h~L;8tϸn7t9iKIFkʃB?9J};,_($4| +tHkn-w;aa@oM3{T@iW5%Lźg΋)KGac@&9ſvȱQ`Mp?-De1D ߚ!(pZHtAXd] cS>/ZT ~Y(|ayiPl*6٤ԻZuL\BdǙF[]#vR}1<':b=ȏVU圠okهMx({F- ,^WAsi]2,`#sQ6P! B+U !;_LjrE.?x?sp q|F^<ƴUahSWT{DB;BJH} 4&G]U`e#ԭ>Bp!d Dr1?Fa~hZUz8<BXvsVFCp&(:ƅٍz\ゐ RqPSUg c`(OiǡѹnT cs{-CW=zVneEPjxSnU{╺fl1@Q-6 L(ۦ{ˇ~EˁahOnI|a{'-8d>JOv(0i(Øod2fD錘ca N hA7dzVjwl*'JOGbZK_-?AE@=#ћFϦ`cbȌW&\&kϨ)4TWKctm6 ՝ֶ hE/D&[9X+!j2u|C#]zUD͸Eyo=jBxPFӀ,Xm1cc: uI Q- jg`b$3q8HۮwSHI3VV_Ԃ3$]8[稷 <8x%6+3VIYB}{U\`9 Yn#tG"* hz ;܂H[>QGE=?XԠUz3AHr}BOYgL?NծB# zZ-MYC21汍;&J 0"fTm`/UzrhWuNnNv1U叾c0o*+녚;yS69p2)e_y,/gEECrbdߨ_n0Fggc9 >uyՄՀ<3Й+U1A~%_[iFX5Zqhw|YBoDA k!t˘+=J8-WZ[h@3^6}I>a& bNB+$d=b4R#̓+@hܣԛ^:gM_&v 3Tz.D(oF%HɈn0\WVTf$`1ıM+؋`m>ݠ{iW4}.ekąI ゥ 9ݣM9rIDoݝ"$al& @QR0 8p&C*括6e{=0sAMgR '\F}@n= yIG)ڌǵb/IwgnԗȫV،K_Kȸڨ7{wJ-ݬciG=ʦ9YCᳳwl/.WwXepۍө80 Й'FPaAT>* ;x 7j@[A < AJ2R<7ޟn ڥ.^EpT'Y1)_ĉH9P \Έ.9Џ3dPZ8}_w$<#I%h9(Ay2n[ k "zy0#y(2{DqA6lV)|= q8DbBb<$8N[s!1֭8* 2H!䮕\B}M"fr45wxDgFVE>3 ygҴ%m:LѼN6JM""4٬Sm$`0v^3|/Z-GU.?P,~\\x9 ۽PeG BkqiZb -Sc07BjQK]ghL8!ՈxF{~});;ilEEP%G._(]#?t҆".g}lc_pG9)Q[]QT/m\5%DM3K:jXVkiw|@ŤKIğ:؜{-c5Ke#V0_V_?h#vt4n.nL-:Уəd/p<F:K^ Onm,h")sOPcg uw| %|^A[IP̓:3ub28 Vk *ς;vM9,U;?n0#t &٧5]\M_+9zSkRvP"t<"tۥڸXtaAi<q2mW͟ r_9KkhZ.  ff˾iP/fk o.i? $fRaHx]oTXFJ="3+Diö)9йa-, p_/Ejfp [?I=b!$Fi)d7k3q![+g;._ۄj=FUެҵLtgQm+'7XAacS7P Oq[BjRwu5vJM]'  ѾÞo*"A=/rESqD[{00< ,A.o925ۆ`QzlnU ̭_QAUyT 9>NhH[Nh2Ӌ9"oWOLV#0-ހA(0-ٳbiɏ2a[fy \DO}wY䮷l\;7vT8` 7"-v1v{Xh|]r8f$Z]5sty\po3ۻ4h\qM(P6l%F0^:jZs? 1,#+lq+&U ](@Ĵ SU!mNim>u?OStYU4HyPh_W,H;Zq0v1?o>NKx :ijNef$WQu9=eU(F#MD"BS+"}>kЇR^5L .?HV6|z/pi}\y9)mWVy714?l& eLֽ8$)+kv"P;ZBB>k41谕n4UzUi>bFlJ^ΐ,[3N~ū0lHmFy8KU*h=U W9DJ#Yp}wEF UF>eӊ' zZ1x>!Ҩj\M@~PںsEώquTϣ*_R)WԣqX+!"Q3#΂!]PTy߂D[}M6Uha(A&)͘޽T9j?'] +HZmIA铠 ]Dz~_-rCg`?Y !X? |ibXX@@|>4GLA^H81J́rPua':MKp74X $bu^עX 3OG =|hHf%1QCFy.BM^J0 lLF~*ƺ\=8 6PoU2GB*t*/GI^OOJ(! lYy@F j`ʼ n:2ʖy b P\v ?X6D[Xș5{֜}]-,GnD΅+Gy?K"}C3яꤴRm0.`cG?w{W2x34*H`I˵k^]t $1kX1:L(#R[ڰ~@+}y}yWXzDV|.U,?ڍ**AWCF:Hs6M%\zʭ6aLZdg Wmɴ`y>W_L`07o6 Q٠l}f2x{C!o4]tU2nf;?G/obR Ps]1,B}ׯ3Ot x3SjUf;U.4 5ūO}˟/h\iɱ.`1=? э7}~^ ɏNKHtL* Rߤ5&UlU*;H' +Jɂ(5"01$jS4R5 aAE ] p9>{Zjd#ڤGλgDج#c5"Ng%>EԖMkIb_pEO|c[?6E WFiGfX7 ӢzjZV,¦A}HOdI(9~7؏s7>y U8H}" wws6m`OvR$h0/hSg#{hhՐ6\?:K了 {*sQ3> 6EIY5^mEpFMVF|KE.MU=Hɷ GPcM씰NwWA\7`k@mU@돵6Ɣ F2 GtlFёZGZ/u 'ZǴ+uVM>gPQb2 2D,p]x;`JQ5!*=\RlS64='FRd`[璦$cln$y.T-yRH*tK \U*P!/q^1fC8rDUCӿMoEA toeFD/H';kd{o9۽+4'W2Za8=l8HGj᥇Gk,>{Sb^ډv,5yJZPe5Lc}X|P~f!g#K-WUnDPCi(~C"nHDLl2@EG$Lo:$1j!ny /zy8]e#0 F@we]vG> *7 )5bG$"ZGDম4L6p@5+D6-JHܾ&K'bbDA`x~jN+H sCpگ*]rqP^B],e4 ~}Ox1gT3&݄8PlJNgORG>OhMa,!R6B;p@@tV1[EmۙCZKL:+(zvo&ѯ}3ښʫά)'eXB B:Y|}(z[#Y:7<*b֠8wx´Kx#џ**FzѺ1pNG,Rs:zӏWKy2$ׄ, P/̔6ޱ[D.GZm)NÎC!^IҔLkTטk}4]|]ygdJ|DD>HY7V$zmx/' ]޶ )A3jsr?f݅{cvr?/없]k^Js҇0V  \+7`xZayI8*!"Ap:B<ϹdxO~񜜑XsL%~Npj1I9m[=9%eGUK4ȃOOa墌yM\)q:Wt}}e{ԾH0U+XjB6gxF/qOJ>[>@3e wjJyM?{:hY)L6ҷ5S{/&dվ.Fv0šb|?nN0}JNEj';Vީg` w2 }/wC( f ;٫2K\yN34|ABo$а5il4^B|֜$$q ]H4.1BdHGXXzZ iIRqT-#S1_ |m0`L#e4XފؔXPܕC_,BxR {@VY̒?893<>a_kQ#mp;RxDva`VlE!Nj?@M\! Iv^bEK*!Qy;qdkVVm{koLCvYQRw>쀗3Kd)fܻFcU/X8w~J82gXRl, >f=ΰ[xyNt6&2tY#yB,y5݈}ge {O<4] oqsy8.kwHN{Oնfwzl.@DWWQ=&;GS޴' y [%J_YCGà*ogs .q- 4[Οl뇆be 7#:2čj1XS"t]u0Ʃ]L}Mj(:c} в';J)/8#gcL_Xf__6s6lP|zBߜT*k\O ]KY(-dğ6߁g.N߀`ejfM'Wh@{Tm vx]gL+Z%!k = GF~‹e}5+ bɜ˯•u/ê֓Nf?e7:wiJNRNJ-.!⃵ĹCt|ASA;,C6i9#}%q7vBOdv;90ޝvuգC, },ƣҳۢ+̷8i%d}a$7s3ځ7c ȳ[;`.{}e eݦK֞qt6DK0t~1}NsiKa-noXsˆJ[;@6G /,B{jBhbު E^xġ JUX'&N9(7ͳj1uH^~9!#tnbG3{h|b_A/jF[J Rp`zʒ߬:пTy( N73> 7A9Fo< У@2p}(1lkWo[aJT^Grj A?Gg*޾j1jC SNBRM/-ZQ`™`%y)Ò]Q8yK3Y %Y)twrp6hP'P up~̶!)0?Ns'S_ 'gy]Rjc}OM8t_$ЦQ0 'aS;޼}5îZ!? ZPSX֧Vi/;(~c᪸j7gq p&/B5=Y-4>Zr)5z{ ǩ:H3%Q C9UXz<%e3jryw /G\\h}^]8JGoZ'Bݥ {o2H>?0 _82dsKUoZGbC]C{&\Ot5/͛Lշ7եG3Aob϶̓2VmZ/n %d!yViGGԦZ[(l>/3ۡB" o{^9ĨM-&] ':pAz䴷ٷ`E-j;eu so[Ǽ3|ٮ j@ڔq2fz82w0d3FzȾQ)n)9&nYUTMZb|hV!quC˷f"uK FR Wj ?g?-ܽIV(E\7Mp][MiZL%I J q~%[! h.R!#`QuP^fUID'ƅN~蔅LFZt#(}KwL[;[^[::-HZmc:(pwl)% JT+ۋT7k MUdl)^Ͳ߻dž]L"lOv5ΦzW{ mgh[졭-L D?ƑfxL*1 K1p*=w!%|Ɯkp ؏gIF#k32z~rJOC#;h䤯 hȩ!|Ccd1564֏<(sN& !) Qf7Z68 `ߦi_{IbruH+9@atNU:F?O3 ~pbQ'ѹ6o_zU6e3+W:Uɢ2:%v-e f{(.>X{ ٦od y~W$'_YQ故)EP-"KO{VU#x?v#>,Ҫ=(Ob\-ehxwzZ%i߳/ TmEq?kK s'4yUBԏ.UψxՀZO`־:ֿx/Tx6SO'փA([',҅Q*CѽqIZUfYWeDŽV[3:OsSN DHrt,7`0˙_sL<50\NK.{63I4t4@wfsSQU.c(怠T=.ֿ1^s6ί#5'~/fY.+v;j}0n2گv^ek(p4H*;j(SG6{]U=K廓 :ܲLgyfga|Q0, R^2_귲u@:jޱȳ1{ŕ0iW{ChCaOOt6̖Wg=/zD)m`d)o1M/ll'`<\xM(P[j Cݷx9Of׬OQWNmOU÷MK&wSi#1IMgbA^Ez`nCSpm5;r-_t2L6 Ӛv;m;DC3&BP%:2@wGK_e]K0FUP f ٲFhODE0!M ϙQ2@Q/F4jczz>|m r}+WJk_x^UO ^|!A -$*c8iWaǚ^wF /'/ WIƒ.E$U $za=^sWT/Mc^w3|-5%Hu%FeMɹ2m %phе,ͤit[gorj|~`~c-c:i5tg2<: ~@췌67d2y ==R` ?S=[ߥp<MAha條K /~@3o֊q f{ʨ: `nAlz)ø[*J/>u8"!(|:%0}[Zֲ_/៥*M|O_lj~4nHm߃;XV׶R sr:SVScJ{z;Jj,ٚvڱ#N<[1г[;rg2k&xIZXy$*th3h 5Xo{ h}[\8CC%oTfED$Ky>hkZ~c>ϕvdcX:0ڶ%zaAC.}GJ >g]7y֍ M\UeQQ4{ȱ[!lɿ8V0 eYgٔ,HvZZN$όb& <Pl1NSptKl:&bv"h-|CndX-Z!倣+XOMݺ-lM1@D Ayo&7p`,` P j+aGc8Pb4$߀.ƣEbl(`-?gwB~CKP#ӯY\$Iӿ6O"sV9V:+(g#&3 iC{ !1DxpA}^L^l 閣)zi:3ǥz\_j06uDդwۿ^x2Eǹ1 l  xajPL; )3s!?-z"jD%:QT oA~\9pv:/ O1D 쀃=~sTm <?V0y} 肍M Լ~6NC[NT,bu[ A|KdM]u Xeq[MUTd$p}|wM{U#Ѡc$>~;9fz`{ϮqM美LͫOa*mc\^%G0Aoz_LDʊی~Xm(g$rNZ}3h%gX`ОB.^k3͒RṖ&7< ,)yv>=!ͷ:̈Ukm>F}1&ٍnھ4gaes)_Bڑ΀ w9L1{9 x s7\\ pC^.n4+qΈS0*Khly9>q AL<:V'^AlC4zG)^ER&j"KMh]89ⲈJ(갩m`.=SS~0;USMG|فDvG @5-j'S&gҺeo8i2;z %(%+Qx-fCJf4*8xǁ]SH,u/%5jZC! $7%Ք<Æu)%f|e/PU0PJ{*ه_@Jg'f=6yUTY'RJj#MA,/4u VOٗҔR-ä" Y{ק!IMj묥T.Rw 6NMAQ#YG~%VFz>t ; P_0'#{= =u+v.5{A=D9i TocCI~U~ }PΞM|K*u']-n,H~KHֽ֙G6_wN3L6g!M<7/R=S\<'lh%`@􉂩ϻ~a%"[",+ӿɚ|﵆y8* < dقtC:PSχ; b' ~/n8$%#$t&^97~88 tM5+A@RTQdb L 9ǜL1nbBsx-dg\PixLCfDz%ƏpSV.ċ|} qϡL0OKmxiEr JïO D))k37xXɛ KEFtD/ĄpL-;=;aQUtߣ KVYwٳɳ ',cGs#o+}y6E*533Fj֯r%]4Yh2?FLYwr3*qGRojcOXT@(TXC-fDTbuZ/&IFU~o1Yd=goN3XS$7d=Ճ8Qcr^H (J!jecWހ&+VquDjޠ=@w4~c'A~ؿw&r}hO<9Ma D޾a q_o%Y풞C fYT J?ȏVI[$dD= XC*~ަx.@Q$&7Pi|sѨ+6RzPD'؝ gi1!QDeUC+3:h D!cX^>tlboG(Q0XS}2Q3 dןt`>~]"+C1 6igh "ξ+] 6LP̉uE)n*X"J߮JA7' Nuwuxj$zj;|ìГR2J/@98'[ۈ^g?u̬_8!1YН&znpD=Dz QƍVwPr/m@4#kj܎Zp)I&Ƌ/dԵShGflTw!n jq rഏĆ{3{SòaVyH5Ae-JrXq|rqNOgɚofe8%`yd|)%D*v (? 'ZYO]<ђR )eMAs֡R|?sӬ> ȵv.o< 1sZHunY. FHńw 8HnF.B++q՚gt4 * cی,#C6`o24!aVF#'b^$leјp%) (`!Q4Q" *!ja?iL&1/AųTn*UG?ϜÝޭ(@ěyBъoR{Nx vElutc‰1*q!M!!Rh>Lz-f}[Yr~!֟C@̈́ǚd$G"Y@2{|/cI'Sp0A!th -g~W:ݬ. ˜FC<@m%{ .Iuwg۳6EI0T+7[(ipnrNZ@G=VV|Hؘ̋J e8|h"; gs ?4X&"o\|X[KN16W+1Az~_pJ`5 #qVGbc\G@ۦ# XD =#Y<9;r{< B06"mvw[,Lۙ瓪kS@c~q5 rfcg˲* ȶph~p Lo9_wVhfS%U"Ke]yrU}aFTJ6˚oXXH?&W_'?B ߾@ 4ɔm%9=ZP$ ܾAĴtMbr2wBBY66}r2A,!8 OevkbB{9OS-ܝGKgԊS/5E 3x&p]%!<[`}"=@}\]^lhmr!xV <[LFJ:ezYV5Ig@FWJϽ;H=ޕ~`!B۳Vhͪ\F~Ru%ܺkjdO../QJ"zr%dXԈ-Xg K=eۊUCp1S"LhHr`H_rlCEmϛ wؒ1 Q6P9w2^l>^/HNQ~tkz1D#LIigjh 0(m w_"t'c ͺ[RR` D3'`?R%$#T$K94A@ qcmh~U06 hq㷔H2G]= 7_Zu[5)DC$aW<%񺿩$#gt9PE|l4Ĥl9&a1|$:`Wgz)ԛ`h2bݣa^@7'De\A's9 %(8㈠=WaE Fb\,-pK±zpiGOEzN3!@ag?M#O\xhy$ձqg醚sif1n%/bݽ0W@;6_!7a5'bV /|})Tn]Zg:Չb8s W뼁KCǦ^ FF"\zՂc*As\&z`E^~? 3v0{6ԞTX /Iŭ#VվAFnjh \bmz M4zu1~,ާZ^+4hUuUg+" RKU[=z0|\5M~(+4C ްaO22sSܖ=dA$o3k\b nnkc$ kLpX[mNaL}Qg"cL{R\o{"N@\}@SMpjx1ꇾ~b?FK#>e毄'C H޿9W! g $,U| **Sn"4֪ HnAv!vr&w(#$=Hqo؆r8g BKK%Iy8bB4?HN#n>{H>].M_ dž(֚mΜݛ{F*78PR\*K.NU@C.DKVyq̜)ٮ}0?" /O(.pzA[—Д5M|/_F W}3byȯet~fqӜ +(])pDGL27{Sep_n#7]e:޼ែ Ӥo3OD+U37j =KWVOSl[UVPacl eqFLZ@4Η%6/%Pu>2i؁$):l٢PJXokY,rr/8Ѳ _ix 8JD]g:ΐRy,O?eFP4ET:S [n'#Ab;Pݝ2x+ s ƼT dUO" J"TF[6:rº;Y&nQMUG=!' m#-QEtqWPeñg!,L봭X n#&G ŌtWn$svY)Yb b'1V#n!l4h%7T*glSo?lX|nf&G"bݩS%cQ=ߜuXpٛ(ؕdU |eD8_,= B 8x%}h(M6jՔ[ޒ,74;2rN-oR' (%\ Uf~#.DnَxLj?HA*q:^T I.ȤnJ?<) mA1@+ee=,DX5|"`@LU}XDZ2%2g_-AG.<1][r*ZYp4 p7 \_t.jowzGaֺ璄8x{A*Lk]UZO+I0>7(t)> $0QVPc{T&{z, 5FgrOB;aqӍH)6 #*ݓv$L\D[3" IR -:1pҙd:u9b:^NlGXM^qkjb^LyM‚7*Y!ṚVX_ /GӃ(W%.\]*0J4$rEA.odEy޲o/YyFC8KTA`5z$,_uPBO(Io2i~ ؀|iY f5@~o%rݝIRO_ 'vʭD+ 'AQ˝;#H|8QyB25b&ϡS2}jsH%~ /US$~!y"( %T8.}CE6Sn"?A Я+u]ki& c_qN;i5wM.V1昗 }S5B$kdo}HeXg:"`F'eՃi.6qL:p=C~7C{[w[^dJTFh%X9 9.#SpLvhKu03$J޾Z!  JN{ow>" <fDK:4SHh; K[**Rt;$`B`cIjrױ ֊եQ!ȯS~qYn)o1}+bpqd3 @Dƕ2|(u\G3mHRDӮ#S,ӻ{7Ix-hR]9s3ߜ0Y`=)j hS,QMګV`NQ13kJqP ]}1}9Y2'oC# 7} ߷Y~gYR3얂Թ.\Lcg[Z[Dpz>3)bvapK{RG&YI\)˽]"{؞nAi"|RLݱ5\ UۏP!x7+& gQ@@軖އ9vf,v^aب~isgq[PsIאN]J,c rWj"`Un 1= n]JoDžv-(;G;xRXI7qil&Ic$M'g73ZNWXW) |0]0Dm_Tƞx@?:ϖ@aЖ[4pD~WQ6=ȿH0m"<7p*Tҟ9t" 1 Zt16"dtc5.uY:M/2 (9,`""=KGV<ʎB x{ϞT5kg:-99!4s3ʉ#6-Ր"? 8ې6ƄnFB>-@H$6&iA(a19zm˩@V#>@?~(difq=WH0%}?Hۇdsm9Fx{V*kd8Þ2xM>^1Kunx{`Ù'.~ [蒤XHᬑy n?xiZ-%C<>>=zKI#[Ѝc<)R**ס:LnGF5:x 2 3׏6Ov-'ЃUUdU EC׶|-a\3VmFg/1 / rsF|R`U!6|Ut? BK_qt+@}ݲK+zmQ{i`x. maRs}U}3sULoˇߌf"6rJ׫ٱ#09ba\l ,Z׿InQ_='Lm|_qq'}P+8uRqR`TYcw΄ZR7xYQF`~C:oҭ7xDɛNrwDTi,:hr;ߊ tkTvÌ9|-Wafu+Э'>OEɺ O">B+\*; sk0f̒pIf)'| (-)0j';vG'-dvLtк(HܻuUZz{x]|"ҀkZ~{5秒iUydZhѠ/}j\I1|$EMyxL0YY_¬]y)ZY n_kfQdbQʖx7ep\(yZfg./Pp߮ #i*m+Lğc塾gk-I ,9Au*_ZERzA·֧v|V+%$8{x1wG+O-7@Vs#jbO'ڪ dlb -zzE0,(Ԉm玲`[fXV#FJp!ΎmUAD:^.q#Բ 4* W޴Z eYcԳOZΌEAԇЍZj'jlG򍏱هmv|0AfS].rн+…^!ݗ }Ź_(G'\Ki>~-Mn&ɧCߜ G9j=oj0'! p=B%X#9|ZOb!iQ8= j6VS7 ŷ&$HdVru2K#2S},4[٥3*%s 1=<8m{xIc*]S{D_c״{l9xCz52t[A;)'Z_uy!??-mF^IK~䉖/}z/^Uue(|uks zߒVQ%L-sUS͇E*/һE "7Ei=H/Qs6-}:Lz؞#720=ym`8QQA^`:^f4?ʕY&TK:~__S)25!vJ́ܢbXigՐ& xTj)/(|#uL EFm^@z9 0~@G`!?PnQuEgaԶQ+6\[Sr$&Wak=+ߓ#T͜V兂 hlh^6~YVj,ei9lBBT .II ZK #gw@3ik0#4(H*M``/.JGU{EEuC?$(wȮ+gL{!֋ $y/r4Hوͫ69<ڇ"RS5ah$\@r<{|X)\Ǯ>&;t œnn^b-/XJt  2_ZPU.x6k2nZ{8H1J9f)uTVwɉ!V1G1!5fq_?o}%O1Ђ4 EJXE,O?.P$z=.e.nd8_U/\WoYCpȵUj󋪻W.+jt)"BpG OiyinroW.V<%hZۛluEXn|!tՓ;}_ )Lxs+H__Թza4G%o7QA08jrᠬx  Py JG)NB~[1}%d{`;$jD%Iy mM:8/$z@B$HZMa:Ulvwg˃Oixkd@P6a3I;1m;Ԅ6s# <%9l<>ũ&b읭M!C5?eFBZ{T5}9Y=VDIM,}J47' N4\rYq[bIYδ_m hzyr)A4E2+ apK?C b y{}w&#-fE ̑_q]L }#?qg꒯-D#M_ ' :2$dNaƎPw$tG:! &6a[968n8C@ZVMy ~Ï8r4aX]4mv"KjYû|Ͱ)gȞ`5VX!9/[&Qtw 59|C|Wr,xnĆ[2b;?D 5v6֥ʉd ǀb\TiNClsagCk.Gu [+;bV|3I$]ꉐ&}y(E@,F[F?(hԜI_!DtAH{;<J2ǃlq҂5Ybm #)x$Q/{uX~6ldas\~¯h9\wءgc`ȪoT& ЮBY _eQ>̵;|0s ' n+2s% b2 DOS IM敄"(AΎ*-\c$ēx}QCunw'i/L]ɣ4C줏goႜv+Ðq(nsLEm$nw9 =y oY~c 7u D=(мF i5~S92l{qA鐾H3!C0koL>*%>b?oEё;<"TGK01dVtmZhܜjFS.$$$+Zcma<\ӛG  S{t_O ęqx 4$N޴Dz; =3j ~)֓zZVF˰'WK6$}ۋxffk9'l2Evo8TYL/'lDdMyE;3SS LluOH{(H PEPPaHeQ8Pm¡t2/f~ˏ@0օ+G׎Cy"߿EG3 ;^gVU1NX-3Ys6Q3MЖor *h__>=nIv(Z<;ee`_BI4{;{3+ {!Y6J$>?2+~: iR*desfz}qIcHޖ͡{ci6^Wf(/.v#GM|"y %0jd컓F3ʤYf&L؃O~aua։Sal<R >5*kxI׈YK/h[mlCɛ tqDŌxq 6pt{01T8Tm (Kw^ ?#Y5":&Y* Y !@]{8 8Eh#p|  ΄ oUINq 'F1 ZvMnļ2|c/`"G.ftg#6ΰZ(_@C.]F$Ƶ4 *&b)G ӱot"~,rE^RqFNN~:đ~>ϧL-;txvqH9_p ׭L*b7| <".&u~ "b Rr(*D㡬-LHwnCIJs$02'rD5xYf*x-gs:q&<јg E _mm/ȷ4&a W vyi66y 83\5vDReXY+# [\%y]?Ā` C~5Xܢ G =ZLCn'ud[.TR[K`R\rQmѹ 7\D.j7J~ޞYj@ǔw{G=zo*Scuu7W\-~վ{rUI\AFmaDy7eEV$8<* n[|Móa %xڸP[>ciXB?"CϭMWlJI$5~~/#W7ܣd[.謱} bԉkȕ{c4Q<B;U\Q:..4!ʮ{c1WzbhMɩ$h I>)wtggG wm{5̓뒽=)=:ޖX\ssZ]Q|FLtob,4d"Ff\G61袝jBu|ᐱ]Ljb~f:V b&LFKߏWl}xMvzhu~d7xOGPQ=͵~}bs A2ض cA/ey Yd9C ? +)^6 P0`Ş =_N]5nP@uyp^J= 3z  :SS+ ˣ+7*iY顒Ƽܛj-vB]'W @eIݴpJjVJIR b hLR}}$[?jL @]塎.a;|g̢bg|[k*˾Ql1-HlcSs%Ԯ4B_{0@_A|?a4&Pfy#iCzq>νm <4 8|!A)[zq?ګu'd?g3`d# EىcA wvgRPCn==_XbN紲PhA]˗(g`]g:وe-[8LrFU(٨ ?yDV1Rn*_*V o) >SO+Pvof  i.v恵WdY` C) IViW)ކ.7/vࢆv/tu/Pv~-uMM%֚̔]j|ߠY;Yn72S!ASw U&p^CҋQ2GҀ*w G\lJn:ޡHisLTKE(yyĖ]tK8$2qS3q:Sy .hXp(յEE)gVhJRui>ib=֎^[C)yLj[+L1:T`&PX6C%܀8x+#続-5%́}SǖRFfP=uaw.zۤn GqRt 5%vXo0\w3u]Ey>{gP^F^;:Ր4u!&Gtgnn3y 8%q>$ihڝ+sn8qߩ` uMb(]Mwh`!ӭ(G|m ?!,iq_!+t%`]ghDX$pPS]Z(! Orܬ?=|yIˑ8%[:6+n09ޙ;!%k#UMm Hn(橵P]8U8MH }VY^Cd #<'4ϟE٪t4WmD I]fvuwUt{~ <$_bT[y=½aGS2M6./g{v[5_9THJF-I.MH95r&&iufJbt)ҹ“)Bxn>KS,?gˆnhxiAq]ܙ"H"e([a0TQb[SRQ'%o;iL[*F>6~ :çpc?peMT6}sI#^qHm*zOD)a/s55dX}a4*DO4&Ր}.;= 1.ڭI50ʖ[/YA.(c%2sUEp}9NG|(zU Rۥ7Uu = :MĆ:}}g^L"tJ]pf0ARߟ1\O«= HbOt|27nweK) n\ o</e:ogXvWUP~ Ą&)TUMc×fUDeQueLpa]57@RBjg\uGW@։E#@TYFq*ш/۠[Ulڴ6,D=qH,KXG+]8L夑AZmAwBFV~&vfj,x1-BJzR:r$-#H Vή>ZzV<<]4`n?xg-ߩȬ -l S[kJqqe~(^b%az]濅b -z3-mZH`.wRݝGD Ar8Y-ҿD[*P@v#Xük7ރm!CkN`J qt{M>:uJJT~I?j9tJ@dV8AܕCT+[ے(KL>5Lp/ lDlN-Ci3/J5Ax~{* C [?.aK{_]֟A,B˴HmTʤkhU! +ky"<@{?oF-TX.oK!!P]^p>)o2cr1X}/{MәXky%ERmiM*5gq 8ӘiifZW,#V67I`GOH76똵dwӾفx#sHƹQ6h7$B6sB{Jr~A2]HRbC' DIesg@=f%^yJ 'SD ߦW۠>6OKmPx/:>gBpy O22}9E6;,۾˘S;T>.̲H'o27lY$NP>J-iH*Rc+5Cٗ4%I҉rW{aDpaO |9fG3Y}l8vP3?d%|ӏc9Ғ&80vg'C Վ#>>.w%Yt~b-(VYwQI<"+4AdQC? /&v4`2G}SA,Y] "6(``qb~xppMZ;XϜ:sMRmH $7aG'vО,hVNxZ gݳ( ܾ5k|%^:H L5hrzeper<4ֲ<] |`|PEŘU|b+elXX܏z~)ܵ-xBlҴm/R28U2E=`>(|@.p}[TJށcꖂ&isIq4:za뽉ԉ  V= [tXƎ\ʲZ PhQ*غ3~ A5b|uO{S L1`Bt6O`U KJ@c<`5mh#J%]eOǍZO(_l N'`G5ˮ >Aٞ.^^a-5l2Ԧ&93&=/I^c{NkDWs yTka?:S>*1 +9s }xn(_Qt>g+R8073̀L&=^{YTk㕰s86M!9?(QTfz.'uULAE\v;r*u pMvXm)~q?\ b=%QY'V[=ys.]]P.ZmdJTcn)@`63} -#zS)l"CMd>dŤ=lDT[{qa= B Dx5=5͙`(4c2K]ʜB glӡ|}O)9OGgLVt$ k`-e_8.iC9ߠ̵[Z$T#M=eaxQ.:U`y[c,Ԑ/L\hV^5\PjA0{(*ݮ^̎nث4f$ڻ(; ѭq@BQJjHz UQf] o4%nXu K~Ohۄ_ ?C2VI|ꋍF<*&@LGk8vc&T˪$J{,cldڿ`~J#u9>v)gyV6t[yf-v*C6>i=[B[kR*S$dd/oM@?*Z^a M9H27}AXT~""2gA͗uJi=KTRLZgP#p>ԥ1p!{bEljz*!3ya_`mO x-15KA1[ԻjH*LȠt,6qOf|dԵj͡ń.!.i,|w ?IX]6RX=00򔰄OKh#j/_9b?K ,L]ҝ@K}!Ǿ1BO™7(dBp);em} V[{,SBO$lάD81t$ʹ.IFJ).o͕?7fznaL (Tp-cbGW&7v%@d1TސDAw&vB|iοShWN)"$(噆ד0P}L Ts=)& )f61iC&:Ϭ: a!ғq&oͨ!1;RW"戆XYvN@.x JP@!mb! 8ȄP+~k&a;沂hj2O$(\.S=fѾ\:pŔ^F4B{6ʛ|0@~]Z\`54z/H hmdU^NӋ6%Ix,GKT@<ե5Hpf&:THZ".#U˛k#՞ i|3EcB\}lؠ_5y[}逻e!JET<`jV8ݣĉ g|,?z#X>"a!74 ;h'?_9 uZN]>$e4^mľ|WNhD| naTtFٲ!S0) 'Y*Lj*h`iǪva^՟2Q?/t {kCo}Q 7px-!\gkf&ciQwL-;v,gqJTsiگLnjw ۏ\B4MR>卶9_s(莥k 42[{,Cw%@ИWlڡw-ŏN4anފ+M>AA[_ކJ`ai5 ;9@HR.&X5-dc`[A(0穜~vmconB5Bp/*!SbbLS$tWz׵i7D&Nu&wҎRE@𝃼 b!gǀա0p+%o\ w IH(T+;LwiY^Q5QiU^`4ζ{wW+3p5Ϋ6,УG\6ij ZnheA̔k<8d/h'^@G+9)r,h4cQ F_/ &L1;2MoQǡ=G2 9gW&yzvkws]Xs|f/c2) ް'50b9{*z-p^>ݮEsMliQNabsa!c'V*V4^6\Jg[pN;cl6w<8I1!ľS5jR聳ȍv^Ti…m:-3Ry4qGe@ֶ܀z/ O!UzU{x`Ώd.d(.ʰ šXs 0_ FѪNF{6ԩx,`I^?Kk49;id\ ;s\WN~Xe_0&)27:i&+N?A>{ ϳc^[~+O6欬dD[No$=0UۢSܰqf*;8r}^Z"ǔA գMf-^#Mg; s Ȅ) &Lev&,jBjf  GNT~P秂+S=ÆLV?oSL$nH$d3o)DMIߧ6*5[w7e@e6bh|Qg"»n)hCsvC=# V` Q xz+_ SX=+/FNDŚDaIM"@'1%+tx.X㘨Gbǯ!lyz?,w+OKZ&e0McfO-[?O]t!YfP)RWH6,5Olq8I;:-ykjhM(RO‡F+Ș;4{GAyrcSl{T&%1C{l~1jvwU歪RRd{VZFye?B} uˣxpV=b Zt+G\W'$#E2Q}C\=ȏM48(mڰ GbێwK(K‚Sx҂fJ)D2S׸~{jY8K7Z¼78<8'Ɏtn?%<{V/.d*lRҿVaQ{Hm95W}H=QGm?vZifEЍXrYʌ_e)lo.G \PZPN&+ _%JLҦJ:ࣳb맓T-I#`NM 8LͲ0IbS6&FڵD9qIƴś4RFn@T H*uP~6EIrlV`-YM,nAPU2Rv&Ɓ?s'y .>h׸ 6آ5HV)/*4LVOrskBq"2.aۙXh\.}i\6vN6eJiٴN41K lUVD7s&5EIz1#*U &(۬n>ǯ0Z6 $CZmgs9vnaiindv|m hjďOv17 h |>ܗϒٔ$# _Ȩɑ.mB3"a9yY1!E,>I< &`Շ4=[|y6vir=QdEnziwY&0ǸPhChSTܭ"CSaG-\~mdA#9.8GQK==Db?: 9RwQ3NC9J=pn3=0jBmڤUCv&j+^AJ;CD׊>1+5'`Ds'=m.xYVNwW48\D.N\Mn]| +wڳ=rT~ς$)a+Sv0XC@4[oX-č4JT/ClNRZ;e@7/Ci@`͈4UaC7 s,7$q0NK@UǃzF%yV_,f#zN5x43t04FMr>JFi _`$⫅e痩Eڂe]Zto2`3-'BWs ,bZ¼^R nt¹(o?EAtS,Ч Nd;Y|-ɚ(H6@~cXf"(M4kO<t^r9 )lLL89v6`24.x[۟P 8xN'naI|53@"$MkS QD:<^%Q2>Z6|DLY=7 Vc(-ۼ^ODmSRפF@b;)kT5@+|6dMn7oüf%֗vG鵟o~(t((8FfG5߂B0MgӺy;C %6Hd6:k K,õD|ᙀPkMt4hx4Fc;bL<ld;C 0ZcM)g(=~hLD[}5¾ l+N)3(dBtĭ6F~',ɩ"rKM3VaCPC^$?_oBIao0ހdK  ۲SOI,U^rxZHdrχCjw2@EmUi[1}u &  ,tJ_WArSpnZ䒾(g1+|= 3X?D &B&?anDrĆCw;qlOJJarba7VlQtd:Lr4$&:淄A]f,b EMu\>J%ݒHGXs4z&χrw{F:mּ}ܟ_jbuX!)oҙ'h͠VK]V)v8׽LZir=KԚI{9!fK5 ?B>w&ض-ň iNN-L2<|('#F$ qo5WxvL<_889»N F߲uWz*۾7R:QA,D__2Gz+nN`KWqt13>V09tL]EeIX)Cq9=誘 ۜ' :揝<3ucMhL(sg-@( (ƾ>!32$xZ ϧ- +0oꚂ{kJiA~! pLPcY(#>R5w 4shASwD  y#R˵r ܢ&5lgaXJ:otٓihOG.R\T{vqNŽyY,i:kJ<;WZpvR >?dfRa\6i#x;+̼ b_XKf ?po4x1YCT Hԫo  p3:{㓀Nu Pr{#c7Ix԰n9^iwzql|B8ы/ r_3>_{m>&>-EXẹ{If:<\Pz=}s{w$V0"6 dl"e`A{grs_[cVz?J[v״D,`Nq{r=j^9XoMRc/-f>y'Ng"'ZVHjSJףNChug~fM'认TAf2KV~-^匘Pr-޶]t-s:Ko~T^khBh@X:H{ 0TTyAzl):uK_>uċT^y, c/c2Ѹ-! '{|/2m0h.ϡ ۳~ك[TEvjY-(i 5PEg&Z$O,KE" Ȑ1eaD}\5]y4Ӽ+٥jL+"~鷓WZ];(os/'"eךp8Rj8fP@NۇZާ\ņZm~"ةR*VW^z kI.a,,[9:50*T}GΏE_BMu^n;/kFC+pZTNۗBD}?@0~E;J 7*fWr"VdrS x v lj-àޝ+6tahp0MٳgYTۥ|CZ-؋-RkRZs%*MSB+t9oebUWgS0L̴==^RM-aHO|Q"^!PnRZms:pe!:wy;SiuUz'n, J'wjm>k& L{|mwr|]R<ӄ'2Luay+'DGlICǕ- ŵT 8D!$B3`_9pLFs983vޚ9.C:m̹+zxlkc6]VK$Z'D[»495r,beɊU<~d 7 00'gh F@3$Dy%2ڨjA_S`bo!h80~4{׵3TqcVP bbS1"|MqIL?T)Ԕ;2gm*=P, J V--6/-FaQъf$zj7ysar$g]D|:p쭜JZvBuB>aۤ('7Cgr,_Z0-GzA ``T) EqA13 T;ބ!`JUL@"] _^4nq$wIůa[#reD4暴 ;~I4(1:v[go)Oq9DW\59|@1#yLѲ"'XMmq{|*27#0vX 9JV hycSv&{)3j0 (خK'/0Rf Qߛ-9Vٜ3wӫH7s)fWƸrk/lFmwJߙz-ŗ_P<6&^yǛ6KvЫiVX ؼ.$B]$iw#8I)֦5u0ԃi9I˭0kK!i$8[r9Xz[B&mJ1OP VE3gmx=dk**X=Xw~UCNlvp8O9BFǔ=ˢ·nM0D04q~\{Q~8C{?8Ԡ'qG 'JI\u)0gɀj/ü!o+QZ p_pT37f,})8Lo8^f߯a*.tq^ {ǩ}0C,88@V/S/ ;s|=93 9I}Q=2N/nj nf,۞)QsQ~j{p:XZIM@d,y 1 2[ 4팔dŗ$M+M-6d=4-.JL`Puϲݽ3-)!FMr]* D\;pAv/7ȓXII;]O r 7j2H*e"1CjnE#k -Z:_򽲄.^rhOB=LR\T|e#IsqeYYyۭoRw^/J_ln Cy*rͻ궅ҟR!+*$.Y4Ebuo=OOև-L|mN&]U聎4iDثO[eX դ~ٶ͕"@m2@-i5jur@TUh G_*˴jrkrpn8axeKxz1554C僭q*U4}ζDh %@B St)Pj آdCC蹫|zfF y:J~!~I FiTʝ7fqLmmɼĜ {ͫkLr?UҒY Pc/Лib). f)D ӠdT眑gR"fnzPѢZA,( kժӮ >^r7Ca93wSlWRy亙p9P*/t;J ݹ~;M< uG6& ^d k^RBZ3鵄etsCy3#Gpލ<8jFRe)uSZ=fF=aTPOQM Eryc(ݲ%Z*7(^ "Ut*WDVA(_kl⻔3O>,b^ō80dt4~9 Y%N;"elM..e/aE{[?'&PϼMi Mx a9i7bp!Iވ;ћ2)a-)cGE3elE Fx|ˌ N߉YS38gЭ5ۇ˿ѿd"A:Eﵲ횱ǝmq1+"L6"1ŵ0}r- wKzYoΜMrR%{ y4 {|[ ըP굨tchgT&$Z:R[5+q?)A0D陲WEŮ̄5_;Xf_e]_JC/UYe Y뢈״#Xwrc.;W0\,j?^wF$`H [F&[~?(Nf} wAKH> F>D)Je-/dboZOtL]*(It:9AQO*kȇ`_6B0hDo%0Qyؠ_y0<=RW {"w(s0a,lq8%'pkg QXC{ aZp )_(Pi϶P_j 0`S6<2e1KLnƪx[;3'gʽ5 iSݒ;Oc nh+Ǥ&RV=DĆB{:MXHavǕ&Hk8:')feVgG{`Rd׿Eb3ˊw@m~f>OJU]z,^'O>:%V{ωs_aZ+c7Lҩll$r;9R- 33gڒ{B6 mJɕϖwF 8Ld TOF Uv[i¶Wz%˷޽-x=1Z$Mw([a*[4[伨h1A? Q09 ˙5I$_1?IYa4=%xln 1?v$v+k,| s]ںA5F̔Zm+ŧm b+\rՍ+-zrSCJ?EWp^V1gv2G{USW7)Ig7"V#4%hm{'B)m?c AFB_S9 pE67Ehk0(5da* #]}.z~!')几dSZ1cAU{ סQ`);FfzH*-LJ#`NkE)I@n"A퍚M35 v.RM/\x=~Av -HiQIp#jn!>mkίx͗طU6 YAb6kڴykNUm7ߴ~]CH Ә#Y:cRq`7 ?טusg=l:1Рx<akM e<uRmC]Po`AIFa|.;PzۇL8렦';L 2˜ a:P3FЦ 𐳼%O 63TÛ>‘,k,<ҋd*h`&)o ʪa7}-ǖP <1רImP[(m\> A 鬹\)r{lqUCf]v2"$Qjm cj`YhF`j"_~]UcC 3՘򬟻lbX5o}R @8UŒk0Ag· c _7#y+l*Cʱ ")nJ4[.}@[ Tk,V;jc 󱴙go*{ p @̈ᡜ?3Nt-&K?a2FhPcR#׭m?֮z$_,Igs%H3Iu0%oC[*hɫ-ڹUDP4ckgonE瀇  2.<( ,I_?E*2| Mk7t AXP2:ծڈㅭ_rCl%7q,r{ū]r[;ȅdEB~Ǘ5f{=2S<Ԥp3~/m*QF HJ[x<90 ,Zѧ wN>=-/W?$m-)'qdž9ocrRTcDgiIGhJӃ2ڦAQG-Nl/f@0\/+UY( ’N92ȷ4J;]^V`Wh*W!fYTwj`723QV*lߔtIH3@xk&8jo3-W;{1QaQY4օ6E?+k$szageC #?lc,lH7ZCz ŗueT:3sP d&#uU\,e 4+`Q)b)fSM;Y`|O9QMT<19z'}͘buh"'olp0eJfr'sD4' A1OH{5kWг0SWɞX>FQV36 ̷q`EPфO/_xV&<[Wfk6֘ƛ ~4-3 :`*BSnyg*<K]^Zb[;WahovdaGZL1׵$rYP<ʖ+/'&Q0bU4=s#^CdH~,ݍsz.o[S{WŅȳxF;\ Lq;z VmGW6й^rpYFL?K;p-yj-b >ϓQ*4r>H}LȇC!>:m(8N8Pg7C1$b#{N [,{ gٚ 9.eNjs6h (KsHs>Q?|)iq:/쫩eOGPRTC +ʎ4MF68{KQHͨ.9m4a 7&3"O?x{0,iykҊ( bsN!U5Do$Ԥ*c5y%  AW]XA{$4ٲ]>g!ڙd޵v=e* uȽNhd3}p̸p[jNLڐX%Br+>%_(0ؐ\!1X SڂN|C#jR2"\JGID*a/S `A!e׷uO,/7l tQowU Lv?]j[Ga7iAv)*#@x+i"6gz+9^QO>LmU俞F>)t atƝƙ87#_s0.='캛"nU93 6 &ռ:KBEkKc͈f2/஋L`< W ?d[d6Mz1Q}#GbɘjC'k :cx .׳25LU^|Y/k7iSWs]IU,_33Mҗ*TetR7/Ǡ1=xnKtO(D` "]&\Ƹ"8*[\lg𣚸>'SH ķƨܞ8GOQě`us)~b渭ȋ+4Mςji)ش #]w_%I(Pc ~hynPӖ"leaB?0bN! <R0mDvЧ֐pSa<$18:r?eXŶ#Qmt8:3ZrclYsM{>))^,'7 B&u2T;rg!:aL ;88)HO9 U/v-k(oC7>M=1O%qoTť)C" Ȱ~5$YU1+B-N PR2ao_܍ܗ& U3*zRs#tqyʊ054z '4[Ǧs+sMECK2 pm&e>}ߜ#bn0vw][6ոPzF[DCSsiy*au{[c%.U ž^M+zٻ%np&Րjta\N$KZAT_<$ٙa9_ہM"-}$"MΗjS\IDn{)¹ vVX=E%"DӯY9a|8CYwF|N6^_*:-VlU-\ɬG/nm݃3҆HpQ7oX~Hti9 A.y͇2F$OOS>_ @ǀ^6~Q ܃ĬbjFԕUotDDs(^^G:'b4L74ު˵', 6U%NFd^-L?P1g|jBY= Y騩P`& cOv=N>]F Am cXp=V* -a -XpΜV/jmBz.8꘶(PB䘩mi"P)V0 }2#zecO: pRƗI=iϩT24M@QfJyj x{NjϞa2Lj-1i%gi-B KNDz3˕w= H t{e~)NI(#i*.${۰(Ss{rw:Y{^H6}\ޤowRl^Z,3lvjP?v ?5XCKBi- qDؓ7UN_b'Icyũ+ŒD$Q>c%ѵ}[4iDp90KP&zOhLt jgl=4s){_(r˒fvK>.QjK1 _/e$!:<-AtmD;b׹2-sH/d"ZTgo : qCM hL$C$&M~|`C^5WNt٧)BaDG p2Z"D'"f臕R ~gXx$n t3}d3ѶnZnv ؒӷG(<mE03Bpq$J{mp%L&"-]pIHE>V}!5g!AjZ̙? hأ $@K|!&T\7ę;/K`57bvqho ?śaDcva&{Pw 6Bo0=@?qI%ľ m.fg;Wm(G-Z*$Ԕw,#-csˣNoY31R/+V%\m{ #`!UaT}[zT*]Pz_K$PQ9SCw0 Z\zx VHf}){(t`bn4j0>Z.hrez(uFsÙjZ(@f5QKu2.9Yawr: ;QgZ -kXoaiD9S> ?.ڊm2r[i斣Z旾Bf%x"!T3JllJY҅Z <\1d;;LySC7% ]fZ]s> bZe&ʲ!/c1VxJΚXUĝLd] dcW~& #բ`} ]6/ߣ7f5gm00!DGdP3_QeN-Cid-͛et[ v$FRO!ʹ R?һ.J#5T͇*H/!j^􈳵#Bj;؅PP.;KGMq%C=ZN9#.kW:^y]0B.s3,%xL +TNHߐsq/qC?B-aAܖ4_UCoB͇pH/H~8@ĚGdJVV'u@De w`fG񆸘 Dw!c*޳ ԃ @5r*{Mp L4n)5Y ^lw6vmPƚ45UKp]뮢<~ =Y ճ\ܫ˘ WDz=EE1KPHxt rQ8{A%Sv-]R^XJ5wMluƒIh5-b&}u=b ʹ[$qv~D\(|qH8 tfpAzbcy"(L)/7JǗJJ;yJjєj'zRfv5+Z뚍]'iHGbˏ cXr~n06oL]wmRdj͵[Ǥ}B=]Á m=MB*vEѴfMd,YsP7ioZ[恼fyeؗf y܋fNlE#}8MoU^jBwh6+i(J8/0b7g iuO -˂exS-Y E?Bǵ]% V)h+"^]5FSvUe|ujdfk2όI.zQDh Cyft M &0.Ώ75/aA2{CMIvʑݣ$.9oJ϶WǼeF暯뽻30Eu,Ͷ'^/X|ˊkJ6f'&xMb}O,> r.zIfu^ L}mx TID+ԏnX\Z B&FHiUZWrx4,OOc"BҌ H) =:)1yMG R9,[|6fþY ?v\0 "Vrlv)UEgc]rʾs j8сČvr]Vn"3ds7[=7CU1nգsqR 1РLr93y""m9K{᠒6[]MʜD& F-*I_&:[mr4}AX_W֙\b>x3O+r=bFGj]À&8j~DV}ݱEb-+T5gO RS_Dc|ry.GSSQ@SE˩ϬSBt̓8e%ߜ>񾎏ѧ#K6!t-:Qp+VϚwyNcKTeO>{rm 4EC>*FX_3-0mRݡGzמ)5W2sjI\Ν!:F"q `yN9/6E |E2e8$GPjt2RjNc XԠҒ{+[T걣pY1m7C2za*pцas5-wLo\ˉe=@X+Zx"3Orwl渨6RϏ ь/KV$6J۷dzs_6ˀI.AB [:!'&xQUS ͱo>pUj4eI5c8cm-O+,fh)t1c.^hVvl~ȔbT|y敕[>YqX 6$,+%j{R K@X:ٕ1'ܖ<؏Bs|A|d׽?&҈IH*+X(b@Bt. |O1wB 9=7-ˎhK0"݉*'s3a$W6 X9tq+9z U2=SH;Ŧ<-<.R=-`C~bg& 3kiЩyeyseѢU|ÉʯuI ugG(YwA%i:[\3Ѕ6Zʼn%+LծX)iv$_PcATR"ItN̚H0fUp->1_~RO%Wm%^H(?g}7E"gNȟk,h`Ŀl(׳okAWI(阛u%!c˔GTOd+F!ĕw006kP] . *+q29;>1L_.{oy:2dciׅ99"~yd&Q_q >}/$.ZP=}r`yh>{|a!dw-n9s7kL9EPg4F%Rg^=l_kf7*8oU%J5$'FqA[cV'ŀ_ʾ9|Tfj/f7":beH*`qwY'(KJ*(|dt~S%!r<ce-裞G2fy? M 'h]?:E7pDD+&$מs9UB5Q(_#Sij>=k$GY .𨟓҂t``YXGU:Wl_l/S1 0)<$-7#c:+ VvҾ=0SfEr'ָz/I?*Z8YFGٚ5T'v_ iv7r17)@#ko00ME'еKR5Yh9̲jM8)_tX9Xa`v AY0BƿM:vdxq\Su@AIRhBe CuAWD|QOT\}|=ak lʋ0:s8c:⚯sy(59~2jw5DPo|h;]gTg5=DŽa{1f,by[,"ӝrU?!?V0#,ǵRNoKpW z?gG>b:EQ &6vHLqNE+\܌z,l]JoVù0UD s"`e-yV>ȭ+ddıM{2uj#['x2R]3`s8x^*pw3 >x7#|Nm.@qp7@7R^[t"cH$|E8,Ck͑Y|.Ӳ''`t$E{'l5 j?y/#q`=/D 4GGHh})>4z@Bx8PǦցߎ6 l|pmfjɨzڞ9 tj7w]#BCjbf2!Ҙ@b&q*Bٲ6M󚾈|"`BR Tw ^L޹;QJǨFռ3vK=>bF/*կj"WaQ\#G LR(9pKZ[4fO ?guZ,%l@/\` c/s[MV;ƺ[qXIi{ٚ&~b:,Oy/zu#,YYE*O~.ѕ+QVKԗcKLd$atls/]{aE?\`lPUۧuq]W6*; =]geuӄU'Ȝ%fR6Җȉ0?Y6s+?2h XþFy5]jۍ@1/a-kɞ$pf'LJ,s'';:2N@v :9T^1<(k_e;FȚ +M>鴙3$,3(7<n Q( DuF3} q7PA}CpJz0vY $+>P~| Zį!^['Ohto!FRHj)j52<&'K%9ǟ þPO]Rp2;ˮW98 ˝9ert ͖jɛFh|ax i?JשC:Y\:oTXrƃ]tJL$&sI] ),-DohJܙsbMzNפF[u,N[ ڨ?('AH(XM &xiڕTv^G){nw0;h!?=W~NfA>wP<0 B:h<oqE nD wm(V~cO'l/T(lOMMŭH7y| ްv$ v*l^%N}/<*῵]R*\ 1f(FصMJpˎ6 #8IOkkIbk=/a#u>{c]?A;]՞wmdљ#l Z~[0Cߨy, 7Rp@ 3퉰>so ؃'jqѳh+`|_0 Q ]hPr~`rVr2K y,~.J4~FŌvj$+R{; 2f0)'o{EqqG|"q CiH}D[WEǣ-OU@V]scڝLW$GN툌aJ< Pt gj""g*ސLC޽q^oihT$Tq@ha vrouo3**2g*|d'f_E5U3Y¼D@ޔN{4>E{mF xĨ62 #eg2ͼY7_h4v(a-A];&1}/7b.4(mo]n/*/ۥ>gQ=r d_=W|͑:?YG!5R hc+&WG|i^ctҵI5fc;7%ʤHxf ~Y|4)B7B =E_&"{Ɲ _8IogiP1aJY#yIAӤ~ZiXԣn.~vKؾ8/%oAU3{PȆ xsdL5aAIΖ^yCqmnUYf$Oⳇ\x|Aof 8-֔Q]H22p#H Mul"9:/d#ҋ1A9&=PI.dW9WWxGQXr|KNl n U`*1󿓬8 [Xܺ^N2O">6SaXڣZ̩7bY2#rTpB~ŽSLBd&FQ l4v߷tJ)m %D +].-qB %Śz}ÁL{"$K؂PtPg챤L H&Y$bĤt5~MH%7?_&? ]2R0Reϔ$R[.Qwyw]xiCԲ$h{B]re/F?8v)σ@Mߜ^ DFxt@n=xA0@hPRYQ?^ xԡ.41;JҌ2N##e 9;3@Qq)0T Je9s '?ۜ3_`oMxjw+M͛?](4=tjDwlubxn²of) XTaSM #kT:zu4y^=T83}dG0c9Ia~0.HrvY1 mGG&MDBU;J9]wV>tGqVͫg.݆:"ޡƕA,xj6F*2 gڛƒʝT<:W^8qĖj _0{OVv(3y0)tx=K6;^ƣPL,I)yW²'>QDД` :yO8P%g=Gxly+[L\箘,J5pϩwY_?g]D;W"X(Q|xp*X< jC+0.4oڴC=Cj pظfTpK;'("Ҥ3S hl~NMkh6IbgFP!=˭SN?ַ;RXض=PC>tkkE)4{\\yׄQe5Xrg۞ewh 09>fFϜ8{~ ooUrF1=T+rdX> Vq=^mzS64^el'ۤ1]0HJW{J~E?%& "W=PT{{7v1d;ԗȅS<驩f̄;?wx<܏&+ t)΢I$)3₸C>_4hc?Qnklo*KTu]\KH|88 CT?d;9agO$A2azj1 U6%_ F?|b=Gl; Λ5\NXSdb]q&QN`HPngr +6s]O޽mV3|;] gX?VG ˘c L]ֈ/[ZM;Mv!oP7$[]bȰ&v(pQq))R "CݲA:֫0U1#K֡1 2zeH# Jsz_ 8'e([?Y>2!'. jڞ BYƣasM,p"{zs_UaJ!WQ$1,N({ldx,М Jl%(y ~̧ܱ&+jtZݔkO2ܡdt V眉>4T"{UWY8r91@ U8`?U\X:!(AeUn*2howzn> ?OHHTM8yyuOz9suԬܓM{ȷT*uM*roS|fcxbc`}2$a&}Q.!DNMP_ FHm;Bݬ~U]'"i2AaL۵mƱhv&,J>)Ggzo=sХ)4MSK \6q0༷obN`Q[87h2XvzP4ob, AS*z*>1bDI_c s_A4t*Ԏ X(+1!2#p@y@!+M1uő,aNVȂp@k͘d/˅4kL/'! S<8<#Ҷ rݘDBzߢH+|۩ce"x2uXfB1~,mCp~S;}'$N,f2 7ZXc ;a➺O[n(`7݄zYy xD"O XސR1ǒA8)L-#A06FSSS~&×^Zҳ ugzK?EO`ʩ̺ 1 %b9G̸bGU9ͪ=x/zYr5҇ep IYf7)^gKE9[dnJV$t,nѐWV.tZS34=TLs3bz5SWK! q{~9TKmon7#R㐹Db͸G((+nnmK {'E8O2|M5 IT`|t/> xQ=sEIL `ϜiRM_Ty 6DVƀ o86,J-A`cl0H7$NS0ȚTY۱5^EKdQ òqn5·0o[Pߞ:üA2Vk'+jh 1zhB[ںO:EiTT# ̢xPQ揷530ڞğW?h\ [{&[K_aʓx2-_J[/ d'қIHN>[3kƓ L[0n[ƙP=^򡎼ヌn9|,q'aQа)~uJ}MwrFR<ϺԹЎX\:lv͐~NN`=s3,>/g= aA#g/0lK|`wLRQ{p^FgM4̡>*glhbpXW/ʻ!6뺞vXPv67v?x58x;SC2Pq"҇Nq@KP3:_ ;׍TeՏsbh;F>wr꼅?CjVK &ZQrfiq@\!7L6:1,MߘFr!pMfy1ե>\+Wubxۻ جa" PuTs/~3C1,bWQN 9Z;}O"etLSٰ vZEf*䇘+TryPO@,CS)|]eFvcЎTx ot]CÇyMyd@,eLGM/uu%׋mHbQ`~x4?{ރ>1 I[n7%Kz ZޱBTpITsRl #]K䡌Zhr9 @l9h W#OBI'#X,_U7D?#ƠxI a^Q*p D]FT 1n*<nJJ' Z=BIh.9{rE Y~8WXGq0@ $ ˧vʩ3N.At8sUd zb2mnO}=?,ɡQ>0֨]CtP9'[DOWV2c^q#,q`Kx)+,?!MfC eȢD}px4)Xpn"n{z,wR*/T~_#jdFU5v DOZߴ8 S| _–D/[ [ "QiLl-6f0r9͙A>VR3(lOIL|2\8ַ[:^g V7hg*WhM䇆3MB?@ Hf-i‘k1ď-0*g,& @]I{Ri)EE^?A_0#d͙#vjЫ\ϞFw'4 BQpR:0S~}Ȁ-r:nduD>F OXr`}W[OAݪ+<T j̀"(G"@-h>@AG Pp 7JYZO $WιP Ajї* qa^ͺ+SN^t[L [rg}7w VlCtZIp:Yx?MO0!H8$=0u5jːǠrS,Rs[(EV>ڝMԫ!( 3/nN&YFq_`PI0XÌ퇤ed\*?tJw cmWRGC CZW[Em597'E#2Ab\i5onZQ4YG$Y-G˘j;24=r Iu|3p'^Ҵ\07Ux)YZ,v6$=7[#?7`_n͢C(U SנeE犁ѭwFUa׿ IdЄ;X`!ʾ?77OWǀZԜ?r~/3A?b7awA 0_цfQJьلbb! n ݌~US`}(?wFWea~r)Nq5 !=>f=y&]+ud"Qef.GZhђԤD* :qKbq7O%S6qqf2瘎zk\ŗR!FdZVUs:* +2)ʑ!381Nr܏m}V,C ny$_ VG< HDbtv7-VJ,ɖA.Q^U4n}Q)B .-00yKYՕ3 ']laRZ簍dNhXsa]tnT)üFeWńvDvυL͇|_vPy\'eE{HޞFI<1M^B_,uF! ؗ+Z=l~N.̼)Y&FD\HkU Dqf|\l C#k~~m)c~c4襁==y%y{gd4$ܰOnjH@ߚP: \#Ro`ϣ^&4)˰?.f(\da&ǘ!9)CCE|Oм2:hoyj巸尜z`B\:r*9u0q8C+7K/!(lFFo,\liL7 AqixD3': FP+bozDX^q*\($OAp/PSMײ;?ƥ\;EH^r3 ,R }4EdŢa } FRhDi}-z+(Z=p3];hs[݇DQecokҁ&]iSe-߿r+U13SgdW +Zť!8q=i*8*~j9nH9̻ofpdBw9|Of`*:K9!nn]Il+ZC,8/\zP<1#iIċI"j$I^4o= pG+"3`esY@T{;ݏ w񹄺t1G_S#[.pŸɜQ- [tpkmAG('Ę-qbj7_ ::7YXwY5yC-ɐJoVEXy`QH<^|g4>#=Od~ `ջ4ц% BAvmٍ*H攙C~8ǜ!!}E% >^a3h8oC>ɓ|<`ytd \ԩ9RWxcFr)/Plϊ;ӏZvmG_7ƽIڳj6SyH޺ٱ uW.QB8-ݗov`$y@05{bΥV;\`{E ~%@aؠD@=Bܐ]ճ|`2`Z&WݏئRF:a2OVX )rx>U-w^(zW}NUc>/<Y)DˎBNL"m^!ߜW"<ĕJh) KUgAgbցŏ+59 eиGɡF8O~' $(Ft,zڠHkJHyfce2mY Rtl 8#|2@o Zg?#ܦeO6ݠ*/1 6P!Ghgb֡1TQ;5I^@ DO7 κT&3䤎İo/G۬D!;:ŐT;ړm}t҆'r|Ԉ)(ҡbaFҊchn0F]4SϿJs2`Q5*2?E Usmzj^SF¶XX$(kcɥn6 O>ʭiJ|*!Xj>3뛪*<*cX7|~!ܚʅ8L4k +v]OzG`w~YずT@Ny2A$8/"Z$@io,yN+zniI"3B2؃gߙxQ_,C"bjQ-Zn(cɵ}Ax:{94\. 󂳧k.үlh̬;Us[%Ȼ%MA7gvؙC?d>)Lne=M޿3.MƜ/V_R8ar^M0Edn:ӥS֗(?H nRC?g H@@se9O'\kԨ XmQxY}^;D$ŻЖw쒣"Lnil)XWBυ HL:շ\oooǘfLn8 ¼ jbkdEG$MB*@^IצH4}JZ*>o,L!~'ky=<Ǥ=Y㒋8 :T7r@ifXqԫWD( Xx#3Go-u7qYuy9|]s_ ׺44Uѷ)*}rI̊g1voSOIiGA\4% / N4liWzhjá_uQYɘ(-x-DR]B3uL+]geoy_{1{~#?S̳!aLUB$µ)[%LH1hj' )*1kd&Hm ;' 9aQ@WZRN)VS'[蓙nZʑHf {:)n0DTm0G5}=\JaAk %xgKqQaukɂ\ J*9vhĝM45sq23AjBA[b$È74^` 8=EKf6M9<$7U{Zs>bb$5XMB̪vH=ܡ5R< VUNYr G%TBE$m/vET7Tpog9Zsi>`RuNC`ɮ%76abXsDd41_{a&Kעu>tKɂCc.Ws "]qɦ zFפ!y Vz<"TmHopXwO%ּ-r\_~ElHDfC|pȮM2428('eK!!u?8埮W}0</WP)K$f,'?ux+:ԙ[>۶OߤՁ+_: JJi,B"/~&"ҔSis!!{+u; A׌w u,e G ~MVQ̣W=$#\TmSsO[CW8z 4`5$Ē>&4M~C=c{udL1NfŇy;{aiSL&s+%b~++a2^Vo~j i\tFNƹ1\e9 "%S`6H. IZlO-;j}-Aٯm0x-f -"<Š| WgztC3l/fgt@t !>&Yn( R0L?p@RUN+= 7Ŭ:xlVf3ZF kF*{ H S 2PqԐ?._X/sTKk6gڷSE;dlN*&K1Duܪ喭ɐۣtS25 c:E}[0=?.M3ޝ6TSs 1S +seL&@*y`CDeph$7 @6eog܈oKJjK];e^މd/+.J4?R[VC"1,"@|v$d ?eyo@>$sbYF5j^i݅Lau:3 k ^+AaKSt \y%ʠVpkWHtn:H}P7TiRފNVReXy@+$H=\usx pN b4+?HM|+[bVlPi2z+TO}u'`C0,DYO>SɅdAFOPSC`9)wnx-b{R Z}r?X37ʦ~PMLL7vcr yqZqΊы!J]ză!_E㺒v;HG!É.2-e0ׅ2*cwxoYGs7cA&fj&6楟 4/wLBCz!BÄ܈˵<<_k*濁][S5^qkuM4-0JmʒL-Yy,v?uM_{_DwK*þՇ"2)ܖCɰ403n{z*[QbQ<rSNPlS瘈(lҁ,[VD -X"(aSP\vlI/d[7;r~gr% 'Fi[k1xa}X^m3.si(I*Cƀ$ApwH2w%&\>&leBiٷb(:krx;ǵ$ K'%fW\_x~;9dZ"]h[ŬҠ5?+ qP/EmA5 <.Q +j uۘE}iG,% .IٽRB,5a EV΋r1",17`>=e3Ϛ71'tC7Y=;J4!c>8,hk)k!}l[T+3]Si XJb(kz^5OpŃq ZJlO%Q5=H"m05m3(Mw.98oџIs&pUgs=۷&g%ĵ@CO;g|˓mF6Ċ]pľɓp#I{Pa{TI@t 9`UlѵlC@n#7s`yvȶuk.M HЇ:Nař:ߢ 1{joE=Jm<0~ξ  =; ]ރjc˰{{{߭76- e a`df>ȽkNKە<顦NVd@e]wxbSq_Fť i¤!׭ݟr)RLZʱhbZ[hn;HHfL"#ϥ# cW1^6g?Yx]w7`-Mdy9~ nY,c'Ug`uQ=Mj{.v$1Ÿ«<v7tAdjZzڜ% m=vx|Ϛ뉬@^Uha)W }1f8oތ@~!1~.M< 8ݟ\YIy` иp %OhD`WBY31 <K@TغL؀{C+}Ct< =lZj=ANhUjΪu8 `V\/@CV}591=U Mvm>Lm2ղdz͙3g:"ibg:PPQI_&[q `,  hܬ(E_y=>S{2kť2Q|pmF3v&ͼaN(R\)C?&!vQplFАXmhs$k@ d/܄ ÈQLCʜ#2ZW-qTXa֬O/֦`{Ý\jc/ʎ48NlI)75ʍ-:f(qepir%#^Na=pH~=F)(6 *KtY[`,?6o&XsY7dƃ|1zjAUՆ$y$b@a3GLCD7ϼPY/yhppbDH%rWDE[P88k2mMz]=Xx1CQ F40vL(Jd(T֜߷NO-WK&#X˗J,B_~>wTJq-rY<Ю^g;3Gsэs6& N ]T˅@w~B(ر,%'aiO!mkX Wo tYNU̖7I4Kq+" [bgd1b͟4sHT|$6&'64K8U"F#Čެy' 7=*=E!X@rG^`Ȋ[}O-p2P}E%W7kDyܫAF2P=8rI+T3;jS_\%m>Å9 }u6^E ~iHA+nFM^(nY=@fWkkcJՒLZ|,& ?)0YFZkݸsVy]dU 1xh\p]ALvں2pɶQX0ʝfErLr{f7Z bN%5Rn|~$E|ALu$M`T0#fյ3e(6}\/>Q/ꓮPe.W=L>+5!m9A.0lsSb֘ hmP>y5*QZgq0>2Ě{GG3H 3lc?[o69`?eByU-ɍ%LQxFq탠چՁd5l+Ŷd DS8 CnBrEY>Vjpsrg e L Qa##g cn 7L,fDE$t˵@ |qR0 YZmulttest/inst/0000755000175200017520000000000014710217035014432 5ustar00biocbuildbiocbuildmulttest/inst/CITATION0000644000175200017520000000142214710217035015566 0ustar00biocbuildbiocbuildcitHeader("To cite package multtest in publications use:") citEntry( entry="Book", title="Multiple Testing Procedures: R multtest Package and Applications to Genomics, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor", year="2005", author=personList(as.person("Katherine S. Pollard"), as.person("Sandrine Dudoit"), as.person("Mark J. van der Laan")), publisher="Springer", textVersion="K.S Pollard, S. Dudoit, M.J. van der Laan (2005). Multiple Testing Procedures: R multtest Package and Applications to Genomics, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor, R. Gentleman, V. Carey, W. Huber, R. Irizarry, S. Dudoit (Editors). Springer (Statistics for Biology and Health Series), pp. 251-272.") multtest/inst/otherDocs/0000755000175200017520000000000014710217035016364 5ustar00biocbuildbiocbuildmulttest/inst/otherDocs/MTP.Rnw0000755000175200017520000023023414710217035017523 0ustar00biocbuildbiocbuild%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \VignetteIndexEntry{Multiple Testing Procedures} % \VignetteKeywords{Expression Analysis} % \VignettePackage{multtest} \documentclass[11pt]{article} \usepackage{graphicx} % standard LaTeX graphics tool \usepackage{Sweave} \usepackage{amsfonts} % these should probably go into a dedicated style file \newcommand{\Rpackage}[1]{\textit{#1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\textit{#1}} %%%%%%%%%%%%%%%%%%%%%%%%% % Our added packages and definitions \usepackage{hyperref} \usepackage{amsmath} \usepackage{color} \usepackage{comment} \usepackage[authoryear,round]{natbib} \parindent 0in \definecolor{red}{rgb}{1, 0, 0} \definecolor{green}{rgb}{0, 1, 0} \definecolor{blue}{rgb}{0, 0, 1} \definecolor{myblue}{rgb}{0.25, 0, 0.75} \definecolor{myred}{rgb}{0.75, 0, 0} \definecolor{gray}{rgb}{0.5, 0.5, 0.5} \definecolor{purple}{rgb}{0.65, 0, 0.75} \definecolor{orange}{rgb}{1, 0.65, 0} \def\RR{\mbox{\it I\hskip -0.177em R}} \def\ZZ{\mbox{\it I\hskip -0.177em Z}} \def\NN{\mbox{\it I\hskip -0.177em N}} \newtheorem{theorem}{Theorem} \newtheorem{procedure}{Procedure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \title{Multiple Testing Procedures} \author{Katherine S. Pollard$^1$, Sandrine Dudoit$^2$, Mark J. van der Laan$^3$} \maketitle \begin{center} 1. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, \url{ http://lowelab.ucsc.edu/katie/}\\ 2. Division of Biostatistics, University of California, Berkeley, \url{ http://www.stat.berkeley.edu/~sandrine/}\\ 3. Department of Statistics and Division of Biostatistics, University of California, Berkeley, \url{ http://www.stat.berkeley.edu/~laan/}\\ \end{center} \tableofcontents \label{anal:mult:multtest} \section{Introduction} \label{anal:mult:s:intro} \subsection{Overview} The Bioconductor R package \Rpackage{multtest} implements widely applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. The current version of \Rpackage{multtest} provides MTPs for null hypotheses concerning means, differences in means, and regression parameters in linear and Cox proportional hazards models. Both bootstrap and permutation estimators of the test statistics ($t$- or $F$-statistics) null distribution are available. Procedures are provided to control Type I error rates defined as tail probabilities and expected values of arbitrary functions of the numbers of Type I errors, $V_n$, and rejected hypotheses, $R_n$. These error rates include: the generalized family-wise error rate, $gFWER(k) = Pr(V_n > k)$, or chance of at least $(k+1)$ false positives (the special case $k=0$ corresponds to the usual family-wise error rate, FWER); tail probabilities $TPPFP(q) = Pr(V_n/R_n > q)$ for the proportion of false positives among the rejected hypotheses; the false discovery rate, $FDR=E[V_n/R_n]$. Single-step and step-down common-cut-off (maxT) and common-quantile (minP) procedures, that take into account the joint distribution of the test statistics, are implemented to control the FWER. In addition, augmentation procedures are provided to control the gFWER, TPPFP, and FDR, based on {\em any} initial FWER-controlling procedure. The results of a multiple testing procedure are summarized using rejection regions for the test statistics, confidence regions for the parameters of interest, and adjusted $p$-values. The modular design of the \Rpackage{multtest} package allows interested users to readily extend the package's functionality, by inserting additional functions for test statistics and testing procedures. The S4 class/method object-oriented programming approach was adopted to summarize the results of a MTP. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Motivation} Current statistical inference problems in areas such as genomics, astronomy, and marketing routinely involve the simultaneous test of thousands, or even millions, of null hypotheses. Examples of testing problems in genomics include: \begin{itemize} \item the identification of differentially expressed genes in microarray experiments, i.e., genes whose expression measures are associated with possibly censored responses or covariates interest; \item tests of association between gene expression measures and Gene Ontology (GO) annotation (\url{www.geneontology.org}); \item the identification of transcription factor binding sites in ChIP-Chip experiments, where chromatin immunoprecipitation (ChIP) of transcription factor bound DNA is followed by microarray hybridization (Chip) of the IP-enriched DNA \cite{KelesetalTechRep147}; \item the genetic mapping of complex traits using single nucleotide polymorphisms (SNP). \end{itemize} The above testing problems share the following general characteristics: \begin{itemize} \item inference for high-dimensional multivariate distributions, with complex and unknown dependence structures among variables; \item broad range of parameters of interest, such as, regression coefficients in model relating patient survival to genome-wide transcript levels or DNA copy numbers, pairwise gene correlations between transcript levels; \item many null hypotheses, in the thousands or even millions; \item complex dependence structures among test statistics, e.g., Gene Ontology directed acyclic graph (DAG). \end{itemize} Motivated by these applications, we have developed resampling-based single-step and step-down multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. In particular, Dudoit et al. \cite{DudoitetalMT1SAGMB04} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} derive {\em single-step common-cut-off and common-quantile procedures} for controlling arbitrary parameters of the distribution of the number of Type I errors, such as the generalized family-wise error rate, $gFWER(k)$, or chance of at least $(k+1)$ false positives. van der Laan et al. \cite{vdLaanetalMT2SAGMB04} focus on control of the family-wise error rate, $FWER = gFWER(0)$, and provide {\em step-down common-cut-off and common-quantile procedures}, based on maxima of test statistics (maxT) and minima of unadjusted $p$-values (minP), respectively. Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and van der Laan et al. \cite{vdLaanetalMT3SAGMB04} propose a general class of {\em augmentation multiple testing procedures} (AMTP), obtained by adding suitably chosen null hypotheses to the set of null hypotheses already rejected by an initial MTP. In particular, given {\em any} FWER-controlling procedure, they show how one can trivially obtain procedures controlling tail probabilities for the number (gFWER) and proportion (TPPFP) of false positives among the rejected hypotheses. A key feature of our proposed MTPs is the {\em test statistics null distribution} (rather than data generating null distribution) used to derive rejection regions (i.e., cut-offs) for the test statistics and resulting adjusted $p$-values \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. For general null hypotheses, defined in terms of submodels for the data generating distribution, this null distribution is the asymptotic distribution of the vector of null value shifted and scaled test statistics. Resampling procedures (e.g., based on the non-parametric or model-based bootstrap) are proposed to conveniently obtain consistent estimators of the null distribution and the resulting test statistic cut-offs and adjusted $p$-values \cite{DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,Pollard&vdLaanJSPI04}. The Bioconductor R package \Rpackage{multtest} provides software implementations of the above multiple testing procedures. \subsection{Outline} The present vignette provides a summary of our proposed multiple testing procedures (\cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. Section \ref{anal:mult:s:methods}), discusses their software implementation in the Bioconductor R package \Rpackage{multtest} (Section \ref{anal:mult:s:software}). The accompanying vignette (MTPALL) describes their application to the ALL dataset of Chiaretti et al. \cite{Chiarettietal04}. Specifically, given a multivariate dataset (stored as a \Rclass{matrix}, \Rclass{data.frame}, or microarray object of class \Rclass{ExpressionSet}) and user-supplied choices for the test statistics, Type I error rate and its target level, resampling-based estimator of the test statistics null distribution, and procedure for error rate control, the main user-level function \Robject{MTP} returns unadjusted and adjusted $p$-values, cut-off vectors for the test statistics, and estimates and confidence regions for the parameters of interest. Both bootstrap and permutation estimators of the test statistics null distribution are available and can optionally be output to the user. The variety of models and hypotheses, test statistics, Type I error rates, and MTPs currently implemented are discussed in Section \ref{anal:mult:s:MTP}. The S4 class/method object-oriented programming approach was adopted to represent the results of a MTP. Several methods are defined to produce numerical and graphical summaries of these results (Section \ref{anal:mult:s:summaries}). A modular programming approach, which utilizes function closures, allows interested users to readily extend the package's functionality, by inserting functions for new test statistics and testing procedures (Section \ref{anal:mult:s:design}). Ongoing efforts are discussed in Section \ref{anal:mult:s:disc}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Methods} \label{anal:mult:s:methods} \subsection{Multiple hypothesis testing framework} \label{anal:mult:s:framework} {\em Hypothesis testing} is concerned with using observed data to test hypotheses, i.e., make decisions, regarding properties of the unknown data generating distribution. Below, we discuss in turn the main ingredients of a multiple testing problem, namely: data, null and alternative hypotheses, test statistics, multiple testing procedure (MTP) to define rejection regions for the test statistics, Type I and Type II errors, and adjusted $p$-values. The crucial choice of a test statistics null distribution is addressed in Section \ref{anal:mult:s:nullDistn}. Specific proposals of MTPs are given in Sections \ref{anal:mult:s:SS} -- \ref{anal:mult:s:AMTP}.\\ \noindent {\bf Data.} Let $X_1,\ldots,X_n$ be a {\em random sample} of $n$ independent and identically distributed (i.i.d.) random variables, $X \sim P\in {\cal M}$, where the {\em data generating distribution} $P$ is known to be an element of a particular {\em statistical model} ${\cal M}$ (i.e., a set of possibly non-parametric distributions).\\ \noindent {\bf Null and alternative hypotheses.} In order to cover a broad class of testing problems, define $M$ null hypotheses in terms of a collection of {\em submodels}, ${\cal M}(m)\subseteq {\cal M}$, $m=1,\ldots,M$, for the data generating distribution $P$. The $M$ {\em null hypotheses} are defined as $H_0(m) \equiv \mathrm{I}(P\in {\cal M}(m))$ and the corresponding {\em alternative hypotheses} as $H_1(m) \equiv \mathrm{I}(P \notin {\cal M}(m))$. In many testing problems, the submodels concern {\em parameters}, i.e., functions of the data generating distribution $P$, $\Psi(P) = \psi= (\psi(m):m=1,\ldots,M)$, such as means, differences in means, correlations, and parameters in linear models, generalized linear models, survival models, time-series models, dose-response models, etc. One distinguishes between two types of testing problems: {\em one-sided tests}, where $H_0(m) = \mathrm{I}(\psi(m) \leq \psi_0(m))$, and {\em two-sided tests}, where $H_0(m) = \mathrm{I}(\psi(m) = \psi_0(m))$. The hypothesized {\em null values}, $\psi_0(m)$, are frequently zero. Let ${\cal H}_0={\cal H}_0(P)\equiv \{m:H_0(m)=1\} = \{m: P \in {\cal M}(m)\}$ be the set of $h_0 \equiv |{\cal H}_0|$ true null hypotheses, where we note that ${\cal H}_0$ depends on the data generating distribution $P$. Let ${\cal H}_1={\cal H}_1(P) \equiv {\cal H}_0^c(P) = \{m: H_1(m) = 1\} = \{m: P \notin {\cal M}(m)\}$ be the set of $h_1 \equiv |{\cal H}_1| = M-h_0$ false null hypotheses, i.e., true positives. The goal of a multiple testing procedure is to accurately estimate the set ${\cal H}_0$, and thus its complement ${\cal H}_1$, while controlling probabilistically the number of false positives at a user-supplied level $\alpha$.\\ \noindent {\bf Test statistics.} A testing procedure is a data-driven rule for deciding whether or not to {\em reject} each of the $M$ null hypotheses $H_0(m)$, i.e., declare that $H_0(m)$ is false (zero) and hence $P \notin {\cal M}(m)$. The decisions to reject or not the null hypotheses are based on an $M$--vector of {\em test statistics}, $T_n =(T_n(m):m=1,\ldots,M)$, that are functions of the data, $X_1, \ldots, X_n$. Denote the typically unknown (finite sample) {\em joint distribution} of the test statistics $T_n$ by $Q_n=Q_n(P)$. Single-parameter null hypotheses are commonly tested using {\em $t$-statistics}, i.e., standardized differences, \begin{equation}\label{anal:mult:e:tstat} T_n(m) \equiv \frac{\mbox{Estimator} - \mbox{Null value}}{\mbox{Standard error}} = \sqrt{n}\frac{\psi_n(m) - \psi_0(m)}{{\sigma_n(m)}}. \end{equation} In general, the $M$--vector $\psi_n = (\psi_n(m): m=1,\ldots, M)$ denotes an asymptotically linear {\em estimator} of the parameter $M$--vector $\psi = (\psi(m): m=1,\ldots,M)$ and $(\sigma_n(m)/\sqrt{n}: m=1,\ldots, M)$ denote consistent estimators of the {\em standard errors} of the components of $\psi_n$. For tests of means, one recovers the usual one-sample and two-sample $t$-statistics, where the $\psi_n(m)$ and $\sigma_n(m)$ are based on sample means and variances, respectively. In some settings, it may be appropriate to use (unstandardized) {\em difference statistics}, $T_n(m) \equiv \sqrt{n}(\psi_n(m) - \psi_0(m))$ \cite{Pollard&vdLaanJSPI04}. Test statistics for other types of null hypotheses include $F$-statistics, $\chi^2$-statistics, and likelihood ratio statistics. \\ \noindent {\bf Example: ALL microarray dataset.} Suppose that, as in the analysis of the ALL dataset of Chiaretti et al. \cite{Chiarettietal04} (See accompanying vignette MTPALL), one is interested in identifying genes that are differentially expressed in two populations of ALL cancer patients, those with normal cytogenetic test status and those with abnormal test. The data consist of random $J$--vectors $X$, where the first $M$ entries of $X$ are microarray expression measures on $M$ genes of interest and the last entry, $X(J)$, is an indicator for cytogenetic test status (1 for normal, 0 for abnormal). Then, the parameter of interest is an $M$--vector of differences in mean expression measures in the two populations, $\psi(m) = E[X(m) | X(J)=0] - E[X(m) | X(J)=1]$, $m=1,\ldots,M$. To identify genes with higher mean expression measures in the abnormal compared to the normal cytogenetics subjects, one can test the one-sided null hypotheses $H_0(m) = \mathrm{I}(\psi(m) \leq 0)$ vs. the alternative hypotheses $H_1(m) = \mathrm{I}(\psi(m) > 0)$, using two-sample Welch $t$-statistics \begin{equation} T_n(m) \equiv \frac{\bar{X}_{0,n_0}(m) - \bar{X}_{1,n_1}(m)}{\sqrt{\frac{\sigma_{0,n_0}^2(m)}{n_0} + \frac{\sigma_{1,n_1}^2(m)}{n_1}}}, \end{equation} where $n_k$, $\bar{X}_{k,n_k}(m)$, and $\sigma_{k,n_k}^2(m)$ denote, respectively, the sample size, sample means, and sample variances, for patients with test status $k$, $k=0,\, 1$. The null hypotheses are rejected, i.e., the corresponding genes are declared differentially expressed, for large values of the test statistics $T_n(m)$.\\ \noindent {\bf Multiple testing procedure.} A {\em multiple testing procedure} (MTP) provides {\em rejection regions}, ${\cal C}_n(m)$, i.e., sets of values for each test statistic $T_n(m)$ that lead to the decision to reject the null hypothesis $H_0(m)$. In other words, a MTP produces a random (i.e., data-dependent) subset ${\cal R}_n$ of rejected hypotheses that estimates ${\cal H}_1$, the set of true positives, \begin{equation} {\cal R}_n={\cal R}(T_n, Q_{0n},\alpha) \equiv \{m:\mbox{$H_0(m)$ is rejected}\} = \{m: T_n(m) \in {\cal C}_n(m)\}, \end{equation} where ${\cal C}_n(m)={\cal C}(T_n,Q_{0n},\alpha)(m)$, $m=1,\ldots,M$, denote possibly random rejection regions. The long notation ${\cal R}(T_n, Q_{0n},\alpha)$ and ${\cal C}(T_n, Q_{0n},\alpha)(m)$ emphasizes that the MTP depends on: (i) the {\em data}, $X_1, \ldots, X_n$, through the $M$--vector of {\em test statistics}, $T_n = (T_n(m): m=1,\ldots, M)$; (ii) a test statistics {\em null distribution}, $Q_{0n}$ (Section \ref{anal:mult:s:nullDistn}); and (iii) the {\em nominal level} $\alpha$ of the MTP, i.e., the desired upper bound for a suitably defined false positive rate. Unless specified otherwise, it is assumed that large values of the test statistic $T_n(m)$ provide evidence against the corresponding null hypothesis $H_0(m)$, that is, we consider rejection regions of the form ${\cal C}_n(m) = (c_n(m),\infty)$, where $c_n(m)$ are to-be-determined {\em cut-offs}, or {\em critical values}.\\ \noindent {\bf Type I and Type II errors.} In any testing situation, two types of errors can be committed: a {\em false positive}, or {\em Type I error}, is committed by rejecting a true null hypothesis, and a {\em false negative}, or {\em Type II error}, is committed when the test procedure fails to reject a false null hypothesis. The situation can be summarized by Table \ref{anal:mult:t:TypeIandII}, below, where the number of Type I errors is $V_n \equiv \sum_{m \in {\cal H}_0} \mathrm{I}(T_n(m) \in {\cal C}_n(m)) = |{\cal R}_n \cap {\cal H}_0|$ and the number of Type II errors is $U_n \equiv \sum_{m \in {\cal H}_1} \mathrm{I}(T_n(m) \notin {\cal C}_n(m)) = |{\cal R}_n^c \cap {\cal H}_1|$. Note that both $U_n$ and $V_n$ depend on the unknown data generating distribution $P$ through the unknown set of true null hypotheses ${\cal H}_0 = {\cal H}_0(P)$. The numbers $h_0=|{\cal H}_0|$ and $h_1 = |{\cal H}_1| = M-h_0$ of true and false null hypotheses are {\em unknown parameters}, the number of rejected hypotheses $R_n \equiv \sum_{m=1}^M \mathrm{I}(T_n(m) \in {\cal C}_n(m)) = |{\cal R}_n|$ is an {\em observable random variable}, and the entries in the body of the table, $U_n$, $h_1 - U_n$, $V_n$, and $h_0-V_n$, are {\em unobservable random variables} (depending on $P$, through ${\cal H}_0(P)$). \begin{table}[hhh] \caption{Type I and Type II errors in multiple hypothesis testing.} \label{anal:mult:t:TypeIandII} \begin{tabular}{ll|cc|l} \multicolumn{5}{c}{} \\ \multicolumn{2}{c}{} & \multicolumn{2}{c}{Null hypotheses} & \multicolumn{1}{c}{}\\ \multicolumn{2}{c}{} & \multicolumn{1}{c}{not rejected} & \multicolumn{1}{c}{rejected} & \multicolumn{1}{c}{} \\ %%% \multicolumn{5}{c}{}\\ \cline{3-4} &&&&\\ & true & $| {\cal R}_n^c \cap {\cal H}_0 |$ & $V_n = | {\cal R}_n \cap {\cal H}_0 |$ & $h_0=| {\cal H}_0|$\\ &&&(Type I errors)&\\ Null hypotheses&&&&\\ & false & $U_n = | {\cal R}_n^c \cap {\cal H}_1 |$ & $| {\cal R}_n \cap {\cal H}_1 |$ & $h_1=| {\cal H}_1 |$\\ &&(Type II errors)&&\\ &&&&\\ \cline{3-4} %%% \multicolumn{5}{c}{}\\ \multicolumn{2}{c}{}& \multicolumn{1}{c}{$M-R_n$} & \multicolumn{1}{c}{ $R_n = | {\cal R}_n|$} &\multicolumn{1}{l}{$M$}\\ \end{tabular} \end{table} Ideally, one would like to simultaneously minimize both the chances of committing a Type I error and a Type II error. Unfortunately, this is not feasible and one seeks a {\em trade-off} between the two types of errors. A standard approach is to specify an acceptable level $\alpha$ for the Type I error rate and derive testing procedures, i.e., rejection regions, that aim to minimize the Type II error rate, i.e., maximize {\em power}, within the class of tests with Type I error rate at most $\alpha$. \\ \noindent {\bf Type I error rates.} When testing multiple hypotheses, there are many possible definitions for the Type I error rate (and power). Accordingly, we adopt a general definition of Type I error rates, as parameters, $\theta_n = \theta(F_{V_n,R_n})$, of the joint distribution $F_{V_n,R_n}$ of the numbers of Type I errors $V_n$ and rejected hypotheses $R_n$. Such a general representation covers the following commonly-used Type I error rates. \begin{enumerate} \item {\em Generalized family-wise error rate} (gFWER), or probability of at least $(k+1)$ Type I errors, $k=0,\ldots, (h_0-1)$, \begin{equation}\label{anal:mult:e:gFWER} gFWER(k) \equiv Pr(V_n > k) = 1 - F_{V_n}(k). \end{equation} When $k=0$, the gFWER is the usual {\em family-wise error rate}, FWER, controlled by the classical Bonferroni procedure. \item {\em Per-comparison error rate} (PCER), or expected proportion of Type I errors among the $M$ tests, \begin{equation}\label{anal:mult:e:PCER} PCER \equiv \frac{1}{M} E[V_n] = \frac{1}{M} \int v dF_{V_n}(v). \end{equation} \item {\em Tail probabilities for the proportion of false positives} (TPPFP) among the rejected hypotheses, \begin{equation}\label{anal:mult:e:TPPFP} TPPFP(q) \equiv Pr(V_n/R_n > q) = 1 - F_{V_n/R_n}(q), \qquad q \in (0,1), \end{equation} with the convention that $V_n/R_n \equiv 0$, if $R_n=0$. \item {\em False discovery rate} (FDR), or expected value of the proportion of false positives among the rejected hypotheses, \begin{equation}\label{anal:mult:e:FDR} FDR \equiv E[V_n/R_n] = \int q dF_{V_n/R_n}(q), \end{equation} again with the convention that $V_n/R_n \equiv 0$, if $R_n=0$ \cite{Benjamini&Hochberg95}. \end{enumerate} Note that while the gFWER is a parameter of only the {\em marginal} distribution $F_{V_n}$ for the number of Type I errors $V_n$ (tail probability, or survivor function, for $V_n$), the TPPFP is a parameter of the {\em joint} distribution of $(V_n,R_n)$ (tail probability, or survivor function, for $V_n/R_n$). Error rates based on the {\em proportion} of false positives (e.g., TPPFP and FDR) are especially appealing for the large-scale testing problems encountered in genomics, compared to error rates based on the {\em number} of false positives (e.g., gFWER), as they do not increase exponentially with the number of hypotheses. The above four error rates are part of the broad class of Type I error rates considered in Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and defined as tail probabilities $Pr(g(V_n,R_n) > q)$ and expected values $E[g(V_n,R_n)]$ for an arbitrary function $g(V_n,R_n)$ of the numbers of false positives $V_n$ and rejected hypotheses $R_n$. The gFWER and TPPFP correspond to the special cases $g(V_n,R_n) = V_n$ and $g(V_n,R_n) = V_n/R_n$, respectively.\\ \noindent {\bf Adjusted $p$-values.} The notion of $p$-value extends directly to multiple testing problems, as follows. Given a MTP, ${\cal R}_n = {\cal R}(T_n,Q_{0n}, \alpha)$, the {\em adjusted $p$-value}, $\widetilde{P}_{0n}(m) = \widetilde{P}(T_n,Q_{0n})(m)$, for null hypothesis $H_0(m)$, is defined as the smallest Type I error level $\alpha$ at which one would reject $H_0(m)$, that is, \begin{eqnarray} \widetilde{P}_{0n}(m) &\equiv& \inf \left \{ \alpha \in [0,1]: \mbox{Reject $H_0(m)$ at MTP level $\alpha$}\right \}\\ &=& \inf\left \{\alpha \in [0,1]: m \in {\cal R}_n \right \}\nonumber \\ &=& \inf\left \{\alpha \in [0,1]: T_n(m) \in {\cal C}_n(m) \right \}, \qquad m=1,\ldots, M.\nonumber \end{eqnarray} As in single hypothesis tests, the smaller the adjusted $p$-value, the stronger the evidence against the corresponding null hypothesis. The main difference between unadjusted (i.e., for the test of a single hypothesis) and adjusted $p$-values is that the latter are defined in terms of the Type I error rate for the {\em entire} testing procedure, i.e., take into account the multiplicity of tests. For example, the adjusted $p$-values for the classical Bonferroni procedure for FWER control are given by $\widetilde{P}_{0n}(m) = \min(M P_{0n}(m), 1)$, where $P_{0n}(m)$ is the unadjusted $p$-value for the test of single hypothesis $H_0(m)$. We now have two representations for a MTP, in terms of rejection regions for the test statistics and in terms of adjusted $p$-values \begin{equation} {\cal R}_n = \{m: T_n(m) \in {\cal C}_n(m) \} = \{m: \widetilde{P}_{0n}(m) \leq \alpha\}. \end{equation} Again, as in the single hypothesis case, an advantage of reporting adjusted $p$-values, as opposed to only rejection or not of the hypotheses, is that the level $\alpha$ of the test does not need to be determined in advance, that is, results of the multiple testing procedure are provided for all $\alpha$. Adjusted $p$-values are convenient and flexible summaries of the strength of the evidence against each null hypothesis, in terms of the Type I error rate for the entire MTP (gFWER, TPPFP, FDR, or any other suitably defined error rate). \\ \noindent {\bf Stepwise multiple testing procedures.} One usually distinguishes between two main classes of multiple testing procedures, single-step and stepwise procedures. In {\em single-step procedures}, each null hypothesis is evaluated using a rejection region that is independent of the results of the tests of other hypotheses. Improvement in power, while preserving Type I error rate control, may be achieved by {\em stepwise procedures}, in which rejection of a particular null hypothesis depends on the outcome of the tests of other hypotheses. That is, the (single-step) test procedure is applied to a sequence of successively smaller nested random (i.e., data-dependent) subsets of null hypotheses, defined by the ordering of the test statistics (common cut-offs) or unadjusted $p$-values (common-quantile cut-offs). In {\em step-down procedures}, the hypotheses corresponding to the {\em most significant} test statistics (i.e., largest absolute test statistics or smallest unadjusted $p$-values) are considered successively, with further tests depending on the outcome of earlier ones. As soon as one fails to reject a null hypothesis, no further hypotheses are rejected. In contrast, for {\em step-up procedures}, the hypotheses corresponding to the {\em least significant} test statistics are considered successively, again with further tests depending on the outcome of earlier ones. As soon as one hypothesis is rejected, all remaining more significant hypotheses are rejected.\\ \noindent {\bf Confidence regions.} For the test of single-parameter null hypotheses and for any Type I error rate of the form $\theta(F_{V_n})$, Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} provide results on the correspondence between single-step MTPs and $\theta$--specific {\em confidence regions}. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Test statistics null distribution} \label{anal:mult:s:nullDistn} \noindent {\bf Test statistics null distribution.} One of the main tasks in specifying a MTP is to derive rejection regions for the test statistics such that the Type I error rate is controlled at a desired level $\alpha$, i.e., such that $\theta(F_{V_n,R_n}) \leq \alpha$, for finite sample control, or $\limsup_n \theta(F_{V_n,R_n}) \leq \alpha$, for asymptotic control. However, one is immediately faced with the problem that the {\em true distribution} $Q_n=Q_n(P)$ of the test statistics $T_n$ is usually {\em unknown}, and hence, so are the distributions of the numbers of Type I errors, $V_n = \sum_{m \in {\cal H}_0} \mathrm{I}(T_n(m) \in {\cal C}_n(m))$, and rejected hypotheses, $R_n = \sum_{m=1}^M \mathrm{I}(T_n(m) \in {\cal C}_n(m))$. In practice, the test statistics {\em true distribution} $Q_n(P)$ is replaced by a {\em null distribution} $Q_0$ (or estimate thereof, $Q_{0n}$), in order to derive rejection regions, ${\cal C}(T_n,Q_0,\alpha)(m)$, and resulting adjusted $p$-values, $\widetilde{P}(T_n,Q_0)(m)$. The choice of null distribution $Q_0$ is crucial, in order to ensure that (finite sample or asymptotic) control of the Type I error rate under the {\em assumed} null distribution $Q_0$ does indeed provide the required control under the {\em true} distribution $Q_n(P)$. For proper control, the null distribution $Q_0$ must be such that the Type I error rate under this assumed null distribution {\em dominates} the Type I error rate under the true distribution $Q_n(P)$. That is, one must have $\theta(F_{V_n,R_n}) \leq \theta(F_{V_0,R_0})$, for finite sample control, and $\limsup_n \theta(F_{V_n,R_n}) \leq \theta(F_{V_0,R_0})$, for asymptotic control, where $V_0$ and $R_0$ denote, respectively, the numbers of Type I errors and rejected hypotheses under the assumed null distribution $Q_0$. For error rates $\theta(F_{V_n})$, defined as arbitrary parameters of the distribution of the number of Type I errors $V_n$, we propose as null distribution the asymptotic distribution $Q_0$ of the vector of null value shifted and scaled test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}: \begin{equation} Z_n(m) \equiv \sqrt{\min \left(1, \frac{\tau_0(m)}{Var[T_n(m)]}\right)} \Bigl( T_n(m) + \lambda_0(m) - E[T_n(m)] \Bigr). \end{equation} For the test of single-parameter null hypotheses using $t$-statistics, the null values are $\lambda_0(m)=0$ and $\tau_0(m)=1$. For testing the equality of $K$ population means using $F$-statistics, the null values are $\lambda_0(m)= 1$ and $\tau_0(m) = 2/(K-1)$, under the assumption of equal variances in the different populations. Dudoit et al. \cite{DudoitetalMT1SAGMB04} and van der Laan et al. \cite{vdLaanetalMT2SAGMB04} prove that this null distribution does indeed provide the desired asymptotic control of the Type I error rate $\theta(F_{V_n})$, for general data generating distributions (with arbitrary dependence structures among variables), null hypotheses (defined in terms of submodels for the data generating distribution), and test statistics (e.g., $t$-statistics, $F$-statistics). For a broad class of testing problems, such as the test of single-parameter null hypotheses using $t$-statistics (as in Equation (\ref{anal:mult:e:tstat})), the null distribution $Q_0$ is an $M$--variate Gaussian distribution with mean vector zero and covariance matrix $\Sigma^*(P)$: $Q_0 = Q_0(P) \equiv N(0,\Sigma^*(P))$. For tests of means, where the parameter of interest is the $M$--dimensional mean vector $\Psi(P) = \psi = E[X]$, the estimator $\psi_n$ is simply the $M$--vector of sample averages and $\Sigma^*(P)$ is the correlation matrix of $X \sim P$, $Cor[X]$. More generally, for an asymptotically linear estimator $\psi_n$, $\Sigma^*(P)$ is the correlation matrix of the vector influence curve (IC). Note that the following important points distinguish our approach from existing approaches to Type I error rate control. Firstly, we are only concerned with Type I error control under the {\em true data generating distribution} $P$. The notions of weak and strong control (and associated subset pivotality, Westfall \& Young \cite{Westfall&Young93}, p. 42--43) are therefore irrelevant to our approach. Secondly, we propose a {\em null distribution for the test statistics} ($T_n \sim Q_0$), and not a data generating null distribution ($X \sim P_0\in \cap_{m=1}^M {\cal M}(m)$). The latter practice does not necessarily provide proper Type I error control, as the test statistics' {\em assumed} null distribution $Q_n(P_0)$ and their {\em true} distribution $Q_n(P)$ may have different dependence structures (in the limit) for the true null hypotheses ${\cal H}_0$.\\ \noindent {\bf Bootstrap estimation of the test statistics null distribution.} In practice, since the data generating distribution $P$ is unknown, then so is the proposed null distribution $Q_0=Q_0(P)$. Resampling procedures, such as bootstrap Procedure \ref{anal:mult:proc:boot}, below, may be used to conveniently obtain consistent estimators $Q_{0n}$ of the null distribution $Q_0$ and of the resulting test statistic cut-offs and adjusted $p$-values. Dudoit et al. \cite{DudoitetalMT1SAGMB04} and van der Laan et al. \cite{vdLaanetalMT2SAGMB04} show that single-step and step-down procedures based on consistent estimators of the null distribution $Q_0$ also provide asymptotic control of the Type I error rate. The reader is referred to these two articles and to Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} for details on the choice of null distribution and various approaches for estimating this null distribution. Having selected a suitable test statistics null distribution, there remains the main task of specifying rejection regions for each null hypothesis, i.e., cut-offs for each test statistic. Among the different approaches for defining rejection regions, we distinguish between single-step vs. stepwise procedures, and common cut-offs (i.e., the same cut-off $c_0$ is used for each test statistic) vs. common-quantile cut-offs (i.e., the cut-offs are the $\delta_0$--quantiles of the marginal null distributions of the test statistics). The next three subsections discuss three main approaches for deriving rejection regions and corresponding adjusted $p$-values: single-step common-cut-off and common-quantile procedures for control of general Type I error rates $\theta(F_{V_n})$ (Section \ref{anal:mult:s:SS}); step-down common-cut-off (maxT) and common-quantile (minP) procedures for control of the FWER (Section \ref{anal:mult:s:SD}); augmentation procedures for control of the gFWER and TPPFP, based on an initial FWER-controlling procedure (Section \ref{anal:mult:s:AMTP}). \begin{center} \fbox{\parbox{4.5in}{% \begin{procedure} \label{anal:mult:proc:boot} {\bf [Bootstrap estimation of the null distribution $Q_0$]} \begin{enumerate} \item Let $P_n^{\star}$ denote an estimator of the data generating distribution $P$. For the {\em non-parametric bootstrap}, $P_n^{\star}$ is simply the empirical distribution $P_n$, that is, samples of size $n$ are drawn at random, with replacement from the observed data $X_1, \ldots, X_n$. For the {\em model-based bootstrap}, $P_n^{\star}$ is based on a model ${\cal M}$ for the data generating distribution $P$, such as the family of $M$--variate Gaussian distributions. \item Generate $B$ bootstrap samples, each consisting of $n$ i.i.d. realizations of a random variable $X^{\#} \sim P_n^{\star}$. \item For the $b$th bootstrap sample, $b=1,\ldots, B$, compute an $M$--vector of test statistics, $T_n^{\#}(\cdot,b) = (T_n^{\#}(m,b): m=1,\ldots,M)$. Arrange these bootstrap statistics in an $M \times B$ matrix, $\mathbf{T}_n^{\#} = \bigl(T_n^{\#}(m,b)\bigr)$, with rows corresponding to the $M$ null hypotheses and columns to the $B$ bootstrap samples. \item Compute row means, $E[T_n{^\#}(m,\cdot)]$, and row variances, $Var[T_n{^\#}(m,\cdot)]$, of the matrix $\mathbf{T}_n^{\#}$, to yield estimates of the true means $E[T_n(m)]$ and variances $Var[T_n(m)]$ of the test statistics, respectively. \item Obtain an $M \times B$ matrix, $\mathbf{Z}_n^{\#} = \bigl(Z_n^{\#}(m,b)\bigr)$, of null value shifted and scaled bootstrap statistics $Z_n^{\#}(m,b)$, by row-shifting and scaling the matrix $\mathbf{T}_n^{\#}$ using the bootstrap estimates of $E[T_n(m)]$ and $Var[T_n(m)]$ and the user-supplied null values $\lambda_0(m)$ and $\tau_0(m)$. That is, compute \begin{eqnarray} Z_n^{\#}(m,b) &\equiv& \sqrt{\min \left(1, \frac{\tau_0(m)}{Var[T_n{^\#}(m,\cdot)]}\right)}\\ && \qquad \times \ \Bigl( T_n^{\#}(m,b) + \lambda_0(m) - E[T_n{^\#}(m,\cdot)] \Bigr) \nonumber . \end{eqnarray} \item The bootstrap estimate $Q_{0n}$ of the null distribution $Q_0$ is the empirical distribution of the $B$ columns $Z_n^{\#}(\cdot,b)$ of matrix $\mathbf{Z}_n^{\#}$. \end{enumerate} \end{procedure} }} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Single-step procedures for control of general Type I error rates $\theta(F_{V_n})$} \label{anal:mult:s:SS} Dudoit et al. \cite{DudoitetalMT1SAGMB04} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} propose single-step common-cut-off and common-quantile procedures for controlling arbitrary parameters $\theta(F_{V_n})$ of the distribution of the number of Type I errors. The main idea is to substitute control of the parameter $\theta(F_{V_n})$, for the {\em unknown, true distribution} $F_{V_n}$ of the number of Type I errors, by control of the corresponding parameter $\theta(F_{R_0})$, for the {\em known, null distribution} $F_{R_0}$ of the number of rejected hypotheses. That is, consider single-step procedures of the form ${\cal R}_n \equiv \{m: T_n(m)> c_n(m) \}$, where the cut-offs $c_n(m)$ are chosen so that $\theta(F_{R_0}) \leq \alpha$, for $R_0 \equiv \sum_{m=1}^M \mathrm{I}(Z(m) > c_n(m))$ and $Z \sim Q_0$. Among the class of MTPs that satisfy $\theta(F_{R_0}) \leq \alpha$, Dudoit et al. \cite{DudoitetalMT1SAGMB04} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} propose two procedures, based on common cut-offs and common-quantile cut-offs, respectively. The procedures are summarized below and the reader is referred to the articles for proofs and details on the derivation of cut-offs and adjusted $p$-values.\\ \noindent {\bf Single-step common-cut-off procedure.} The set of rejected hypotheses for the {\em $\theta$--controlling single-step common-cut-off procedure} is of the form ${\cal R}_n \equiv \{m: T_n(m)> c_0 \}$, where the common cut-off $c_0$ is the {\em smallest} (i.e., least conservative) value for which $\theta(F_{R_0}) \leq \alpha$. For $gFWER(k)$ control (special case $\theta(F_{V_n}) = 1 - F_{V_n}(k)$), the procedure is based on the {\em $(k+1)$st ordered test statistic}. Specifically, the adjusted $p$-values are given by \begin{equation}\label{anal:mult:e:SScut} \widetilde{p}_{0n}(m) = Pr_{Q_0} \left(Z^{\circ}(k+1) \geq t_n(m) \right), \qquad m=1,\ldots, M, \end{equation} where $Z^{\circ}(m)$ denotes the $m$th ordered component of $Z = (Z(m): m=1,\ldots,M) \sim Q_0$, so that $Z^{\circ}(1) \geq \ldots \geq Z^{\circ}(M)$. For FWER control ($k=0$), the procedure reduces to the {\em single-step maxT procedure}, based on the {\em maximum test statistic}, $Z^{\circ}(1)$.\\ \noindent {\bf Single-step common-quantile procedure.} The set of rejected hypotheses for the {\em $\theta$--controlling single-step common-quantile procedure} is of the form ${\cal R}_n \equiv \{m: T_n(m)> c_0(m) \}$, where $c_0(m) = Q_{0,m}^{-1}(\delta_0)$ is the $\delta_0$--quantile of the marginal null distribution $Q_{0,m}$ of the $m$th test statistic, i.e., the smallest value $c$ such that $Q_{0,m}(c) = Pr_{Q_0}(Z(m) \leq c) \geq \delta_0$ for $Z \sim Q_0$. Here, $\delta_0$ is chosen as the {\em smallest} (i.e., least conservative) value for which $\theta(F_{R_0}) \leq \alpha$. For $gFWER(k)$ control, the procedure is based on the {\em $(k+1)$st ordered unadjusted $p$-value}. Specifically, let $\bar{Q}_{0,m} \equiv 1 - Q_{0,m}$ denote the survivor functions for the marginal null distributions $Q_{0,m}$ and define unadjusted $p$-values $P_0(m) \equiv \bar{Q}_{0,m}(Z(m))$ and $P_{0n}(m) \equiv \bar{Q}_{0,m}(T_n(m))$, for $Z \sim Q_0$ and $T_n \sim Q_n$, respectively. Then, the adjusted $p$-values for the common-quantile procedure are given by \begin{equation}\label{anal:mult:e:SSquant} \widetilde{p}_{0n}(m) = Pr_{Q_0} \left(P_0^{\circ}(k+1) \leq p_{0n}(m) \right), \qquad m=1,\ldots, M, \end{equation} where $P_0^{\circ}(m)$ denotes the $m$th ordered component of the $M$--vector of unadjusted $p$-values $(P_0(m): m=1,\ldots,M)$, so that $P_0^{\circ}(1) \leq \ldots \leq P_0^{\circ}(M)$. For FWER control ($k=0$), one recovers the {\em single-step minP procedure}, based on the {\em minimum unadjusted $p$-value}, $P_0^{\circ}(1)$. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Step-down procedures for control of the family-wise error rate} \label{anal:mult:s:SD} van der Laan et al. \cite{vdLaanetalMT2SAGMB04} propose step-down common-cut-off (maxT) and common-quantile (minP) procedures for controlling the family-wise error rate, FWER. These procedures are similar in spirit to their single-step counterparts in Section \ref{anal:mult:s:SS} (special case $\theta(F_{V_n}) = 1 - F_{V_n}(0)$), with the important step-down distinction that hypotheses are considered successively, from most significant to least significant, with further tests depending on the outcome of earlier ones. That is, the test procedure is applied to a sequence of successively smaller nested random (i.e., data-dependent) subsets of null hypotheses, defined by the ordering of the test statistics (common cut-offs) or unadjusted $p$-values (common-quantile cut-offs). \\ \noindent {\bf Step-down common-cut-off (maxT) procedure.} Rather than being based solely on the distribution of the maximum test statistic over all $M$ hypotheses, the step-down common cut-offs and corresponding adjusted $p$-values are based on the distributions of maxima of test statistics over successively smaller nested random subsets of null hypotheses. Specifically, let $O_n(m)$ denote the indices for the ordered test statistics $T_n(m)$, so that $T_n(O_n(1)) \geq \ldots \geq T_n(O_n(M))$. The step-down common-cut-off procedure is then based on the distributions of maxima of test statistics over the nested subsets of ordered hypotheses $\overline{\cal O}_n(h) \equiv \{O_n(h),\ldots,O_n(M)\}$. The adjusted $p$-values for the {\em step-down maxT procedure} are given by \begin{equation}\label{anal:mult:e:SDmaxT} \widetilde{p}_{0n}(o_n(m)) = \max_{h=1,\ldots, m}\ \left\{ Pr_{Q_0}\left( \max_{l \in \overline{\cal o}_n(h)} Z(l) \geq t_n(o_n(h))\right) \right \}, \end{equation} where $Z=(Z(m): m=1,\ldots, M) \sim Q_0$. Taking maxima of the probabilities over $h \in \{1, \ldots, m\}$ enforces monotonicity of the adjusted $p$-values and ensures that the procedure is indeed step-down, that is, one can only reject a particular hypothesis provided all hypotheses with more significant (i.e., larger) test statistics were rejected beforehand.\\ \noindent {\bf Step-down common-quantile (minP) procedure.} Likewise, the step-down common-quantile cut-offs and corresponding adjusted $p$-values are based on the distributions of minima of unadjusted $p$-values over successively smaller nested random subsets of null hypotheses. Specifically, let $O_n(m)$ denote the indices for the ordered unadjusted $p$-values $P_{0n}(m)$, so that $P_{0n}(O_n(1)) \leq \ldots \leq P_{0n}(O_n(M))$. The step-down common-quantile procedure is then based on the distributions of minima of unadjusted $p$-values over the nested subsets of ordered hypotheses $\overline{\cal O}_n(h) \equiv \{O_n(h),\ldots,O_n(M)\}$. The adjusted $p$-values for the {\em step-down minP procedure} are given by \begin{equation}\label{anal:mult:e:SDminP} \widetilde{p}_{0n}(o_n(m)) = \max_{h=1,\ldots, m}\ \left\{ Pr_{Q_0}\left( \min_{l \in \overline{\cal o}_n(h)} P_0(l) \leq p_{0n}(o_n(h))\right) \right \}, \end{equation} where $P_0(m) = \bar{Q}_{0,m}(Z(m))$ and $Z=(Z(m): m=1,\ldots, M) \sim Q_0$. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Augmentation multiple testing procedures} \label{anal:mult:s:AMTP} Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and van der Laan et al. \cite{vdLaanetalMT3SAGMB04} discuss {\em augmentation multiple testing procedures} (AMTP), obtained by adding suitably chosen null hypotheses to the set of null hypotheses already rejected by an initial MTP. Specifically, given {\em any} initial procedure controlling the generalized family-wise error rate, augmentation procedures are derived for controlling Type I error rates defined as tail probabilities and expected values for arbitrary functions $g(V_n,R_n)$ of the numbers of Type I errors and rejected hypotheses (e.g., proportion $g(V_n,R_n)=V_n/R_n$ of false positives among the rejected hypotheses). Adjusted $p$-values for the AMTP are shown to be simply shifted versions of the adjusted $p$-values of the original MTP. The important practical implication of these results is that {\em any} FWER-controlling MTP and its corresponding adjusted $p$-values, provide, without additional work, multiple testing procedures controlling a broad class of Type I error rates and their adjusted $p$-values. One can therefore build on the large pool of available FWER-controlling procedures, such as the single-step and step-down maxT and minP procedures discussed in Sections \ref{anal:mult:s:SS} and \ref{anal:mult:s:SD}, above. Augmentation procedures for controlling tail probabilities of the number (gFWER) and proportion (TPPFP) of false positives, based on an initial FWER-controlling procedure, are treated in detail in van der Laan et al. \cite{vdLaanetalMT3SAGMB04} and are summarized below. The gFWER and TPPFP correspond to the special cases $g(V_n,R_n) = V_n$ and $g(V_n,R_n) = V_n/R_n$, respectively. Denote the adjusted $p$-values for the initial FWER-controlling procedure by $\widetilde{P}_{0n}(m)$. Order the $M$ null hypotheses according to these $p$-values, from smallest to largest, that is, define indices $O_n(m)$, so that $\widetilde{P}_{0n}(O_n(1))\leq \ldots \leq \widetilde{P}_{0n}(O_n(M))$. Then, for a nominal level $\alpha$ test, the initial FWER-controlling procedure rejects the $R_n$ null hypotheses \begin{equation} {\cal R}_n \equiv \{m: \widetilde{P}_{0n}(m) \leq \alpha\}. \end{equation} \noindent {\bf Augmentation procedure for controlling the gFWER.} For control of $gFWER(k)$ at level $\alpha$, given an initial FWER-controlling procedure, reject the $R_n$ hypotheses specified by this MTP, as well as the next $A_n = \min\{k, M-R_n\}$ most significant null hypotheses. The adjusted $p$-values $\widetilde{P}_{0n}^{+}(O_n(m))$ for the new gFWER-controlling AMTP are simply $k$--shifted versions of the adjusted $p$-values of the initial FWER-controlling MTP: \begin{equation}\label{anal:mult:e:adjpgFWER} \widetilde{P}_{0n}^{+}(O_n(m)) = \begin{cases} 0, & \text{if $m=1,\ldots,k$},\\ \widetilde{P}_{0n}(O_n(m-k)), & \text{if $m=k+1, \ldots, M$}. \end{cases} \end{equation} That is, the first $k$ adjusted $p$-values are set to zero and the remaining $p$-values are the adjusted $p$-values of the FWER-controlling MTP shifted by $k$. The AMTP thus guarantees at least $k$ rejected hypotheses.\\ \noindent {\bf Augmentation procedure for controlling the TPPFP.} For control of $TPPFP(q)$ at level $\alpha$, given an initial FWER-controlling procedure, reject the $R_n$ hypotheses specified by this MTP, as well as the next $A_n$ most significant null hypotheses, \begin{eqnarray} \label{anal:mult:e:augTPPFP} A_n &=& \max\left\{m \in \{0,\ldots, M - R_n\}:\frac{m}{m+ R_n}\leq q\right\} \nonumber\\ &=& \min \left\{ \left \lfloor \frac{q R_n}{1-q} \right \rfloor, M-R_n \right\}, \end{eqnarray} where the {\em floor} $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$, i.e., $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. That is, keep rejecting null hypotheses until the ratio of additional rejections to the total number of rejections reaches the allowed proportion $q$ of false positives. The adjusted $p$-values $\widetilde{P}_{0n}^{+}(O_n(m))$ for the new TPPFP-controlling AMTP are simply shifted versions of the adjusted $p$-values of the initial FWER-controlling MTP, that is, \begin{equation}\label{anal:mult:e:adjpTPPFP} \widetilde{P}_{0n}^{+}(O_n(m)) = \widetilde{P}_{0n}(O_n(\lceil(1-q)m\rceil)), \qquad m=1,\ldots,M, \end{equation} where the {\em ceiling} $\lceil x \rceil$ denotes the least integer greater than or equal to $x$, i.e., $\lceil x \rceil -1 < x \leq \lceil x \rceil$. \\ \noindent {\bf FDR-controlling procedures.} Given any TPPFP-controlling procedure, van der Laan et al. \cite{vdLaanetalMT3SAGMB04} derive two simple (conservative) FDR-controlling procedures. The more general and conservative procedure controls the FDR at nominal level $\alpha$, by controlling $TPPFP(\alpha/2)$ at level $\alpha/2$. The less conservative procedure controls the FDR at nominal level $\alpha$, by controlling $TPPFP(1 - \sqrt{1-\alpha})$ at level $1 - \sqrt{1-\alpha}$. In what follows, we refer to these two MTPs as "conservative" and "restricted", respectively. The reader is referred to the original article for details and proofs of FDR control (Section 2.4, Theorem 3). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Software implementation: \Rpackage{multtest} package} \label{anal:mult:s:software} \subsection{Overview} The MTPs proposed in Sections \ref{anal:mult:s:SS} -- \ref{anal:mult:s:AMTP} are implemented in the latest version of the Bioconductor R package \Rpackage{multtest} (version 1.5.0, Bioconductor release 1.5). New features include: expanded class of tests (e.g., for regression parameters in linear models and in Cox proportional hazards models); control of a wider selection of Type I error rates (e.g., gFWER, TPPFP, FDR); bootstrap estimation of the test statistics null distribution; augmentation multiple testing procedures; confidence regions for the parameter vector of interest. Because of their general applicability and novelty, we focus in this section on MTPs that utilize a bootstrap estimated test statistics null distribution and that are available through the package's main user-level function: \Robject{MTP}. Note that for many testing problems, MTPs based on permutation (rather than bootstrap) estimated null distributions are also available in the present and earlier versions of \Rpackage{multtest}. In particular, permutation-based step-down maxT and minP FWER-controlling MTPs are implemented in the functions \Robject{mt.maxT} and \Robject{mt.minP}, respectively, and can also be applied directly through a call to the \Robject{MTP} function. We stress that {\em all} the bootstrap-based MTPs implemented in \Rpackage{multtest} can be performed using the main user-level function \Robject{MTP}. Most users will therefore only need to be familiar with this function. Other functions are provided primarily for the benefit of more advanced users, interested in extending the package's functionality (Section \ref{anal:mult:s:design}). For greater detail on \Rpackage{multtest} functions, the reader is referred to the package documentation, in the form of help files, e.g., \Robject{? MTP}, and vignettes, e.g., \Robject{openVignette("multtest")}. One needs to specify the following main ingredients when applying a MTP: the {\em data}, $X_1, \ldots, X_n$; suitably defined {\em test statistics}, $T_n$, for each of the null hypotheses under consideration (e.g., one-sample $t$-statistics, robust rank-based $F$-statistics, $t$-statistics for regression coefficients in Cox proportional hazards model); a choice of {\em Type I error rate}, $\theta(F_{V_n,R_n})$, providing an appropriate measure of false positives for the particular testing problem (e.g., $TPPFP(0.10)$); a proper {\em joint null distribution}, $Q_0$ (or estimate thereof, $Q_{0n})$, for the test statistics (e.g., bootstrap null distribution as in Procedure \ref{anal:mult:proc:boot}); given the previously defined components, a {\em multiple testing procedure}, ${\cal R}_n={\cal R}(T_n, Q_{0n},\alpha)$, for controlling the error rate $\theta(F_{V_n,R_n})$ at a target level $\alpha$. Accordingly, the \Rpackage{multtest} package has adopted a modular and extensible approach to the implementation of MTPs, with the following four main types of functions. \begin{itemize} \item Functions for computing the {\em test statistics}, $T_n$. These are internal functions (e.g., \Robject{meanX}, \Robject{coxY}), i.e., functions that are generally not called directly by the user. As shown in Section \ref{anal:mult:s:MTP}, below, the type of test statistic is specified by the \Robject{test} argument of the main user-level function \Robject{MTP}. Advanced users, interested in extending the class of tests available in \Rpackage{multtest}, can simply add their own test statistic functions to the existing library of such internal functions (see Section \ref{anal:mult:s:design}, below, for a brief discussion of the closure approach for specifying test statistics). \item Functions for obtaining the {\em test statistics null distribution}, $Q_0$, or an estimate thereof, $Q_{0n}$. The main function currently available is the internal function \Robject{boot.resample}, implementing the non-parametric version of bootstrap Procedure \ref{anal:mult:proc:boot} (Section \ref{anal:mult:s:nullDistn}). \item Functions for implementing the {\em multiple testing procedure}, ${\cal R}(T_n, Q_{0n},\alpha)$, i.e., for deriving rejection regions, confidence regions, and adjusted $p$-values. The main function is the user-level wrapper function \Robject{MTP}, which implements the single-step and step-down maxT and minP procedures for FWER control (Sections \ref{anal:mult:s:SS} and \ref{anal:mult:s:SD}). The functions \Robject{fwer2gfwer}, \Robject{fwer2tppfp}, and \Robject{fwer2fdr} implement, respectively, gFWER-, TPPFP-, and FDR-controlling augmentation multiple testing procedures, based on adjusted $p$-values from {\em any} FWER-controlling procedure, and can be called via the \Robject{typeone} argument to \Robject{MTP} (Section \ref{anal:mult:s:AMTP}). \item Functions for {\em numerical and graphical summaries} of a MTP. As described in Section \ref{anal:mult:s:summaries}, below, a number of summary methods are available to operate on objects of class \Rclass{MTP}, output from the main \Robject{MTP} function. \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Resampling-based multiple testing procedures: \Robject{MTP} function} \label{anal:mult:s:MTP} The main user-level function for resampling-based multiple testing is \Robject{MTP}. Its input/output and usage are described next. <>= library(Biobase) library(multtest) @ <>= args(MTP) @ \noindent {\bf INPUT.} \begin{description} \item{\em Data.} The data, \Robject{X}, consist of a $J$--dimensional random vector, observed on each of $n$ sampling units (patients, cell lines, mice, etc). These data can be stored in a $J \times n$ \Rclass{matrix}, \Rclass{data.frame}, or \Rclass{exprs} slot of an object of class \Rclass{ExpressionSet}. In some settings, a $J$--vector of weights may be associated with each observation, and stored in a $J \times n$ weight matrix, \Robject{W} (or an $n$--vector \Robject{W}, if the weights are the same for each of the $J$ variables). One may also observe a possibly censored continuous or polychotomous outcome, \Robject{Y}, for each sampling unit, as obtained, for example, from the \Rclass{phenoData} slot of an object of class \Rclass{ExpressionSet}. In some studies, $L$ additional covariates may be measured on each sampling unit and stored in \Robject{Z}, an $n \times L$ \Rclass{matrix} or \Rclass{data.frame}. When the tests concern parameters in regression models with covariates from \Robject{Z} (e.g., values \Robject{lm.XvsZ}, \Robject{lm.YvsXZ}, and \Robject{coxph.YvsXZ}, for the argument \Robject{test}, described below), the arguments \Robject{Z.incl} and \Robject{Z.test} specify, respectively, which covariates (i.e., which columns of \Robject{Z}, including \Robject{Z.test}) should be included in the model and which regression parameter is to be tested (only when \texttt{test="lm.XvsZ"}). The covariates can be specified either by a numeric column index or character string. If \Robject{X} is an instance of the class \Rclass{ExpressionSet}, \Robject{Y} can be a column index or character string referring to the variable in the \Rclass{data.frame} \Robject{pData(X)} to use as outcome. Likewise, \Robject{Z.incl} and \Robject{Z.test} can be column indices or character strings referring to the variables in \Robject{pData(X)} to use as covariates. The data components (\Robject{X}, \Robject{W}, \Robject{Y}, \Robject{Z}, \Robject{Z.incl}, and \Robject{Z.test}) are the first six arguments to the \Robject{MTP} function. Only \Robject{X} is a required argument; the others are by default \Robject{NULL}. The argument \Robject{na.rm} allows one to control the treatment of "Not Available" or \Robject{NA} values. It is set to \Robject{TRUE}, by default, so that an observation with a missing value in any of the data objects' $j$th component ($j=1,\ldots,J$) is excluded from computation of any of the relevant test statistics. \item{\em Test statistics.} The test statistics should be chosen based on the parameter of interest (e.g., location, scale, or regression parameters) and the hypotheses one wishes to test. In the current implementation of \Rpackage{multtest}, the following test statistics are available through the argument \Robject{test}, with default value \Robject{t.twosamp.unequalvar}, for the two-sample Welch $t$-statistic. \begin{itemize} \item \Robject{t.onesamp}: One-sample $t$-statistic for tests of means. \item \Robject{t.twosamp.equalvar}: Equal variance two-sample $t$-statistic for tests of differences in means. \item \Robject{t.twosamp.unequalvar}: Unequal variance two-sample $t$-statistic for tests of differences in means (also known as two-sample Welch $t$-statistic). \item \Robject{t.pair}: Two-sample paired $t$-statistic for tests of differences in means. \item \Robject{f}: Multi-sample $F$-statistic for tests of equality of population means. \item \Robject{f.block}: Multi-sample $F$-statistic for tests of equality of population means in a block design. \item \Robject{lm.XvsZ}: $t$-statistic for tests of regression coefficients for variable \Robject{Z.test} in linear models each with outcome \Robject{X[j,]} ($j=1,\ldots,J$), and possibly additional covariates \Robject{Z.incl} from the \Rclass{matrix} \Robject{Z} (in the case of no covariates, one recovers the one-sample $t$-statistic, \Robject{t.onesamp}). \item \Robject{lm.YvsXZ}: $t$-statistic for tests of regression coefficients in linear models with outcome \Robject{Y} and each \Robject{X[j,]} ($j=1,\ldots,J$) as covariate of interest, with possibly other covariates \Robject{Z.incl} from the \Rclass{matrix} \Robject{Z}. \item \Robject{coxph.YvsXZ}: $t$-statistic for tests of regression coefficients in Cox proportional hazards survival models with outcome \Robject{Y} and each \Robject{X[j,]} ($j=1,\ldots,J$) as covariate of interest, with possibly other covariates \Robject{Z.incl} from the \Rclass{matrix} \Robject{Z}. \end{itemize} {\em Robust}, {\em rank-based} versions of the above test statistics can be specified by setting the argument \Robject{robust} to \Robject{TRUE} (the default value is \Robject{FALSE}). Consideration should be given to whether {\em standardized} (Equation (\ref{anal:mult:e:tstat})) or {\em unstandardized} difference statistics are most appropriate (see Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} for a comparison). Both options are available through the argument \Robject{standardize}, by default \Robject{TRUE}. The type of alternative hypotheses is specified via the \Robject{alternative} argument: default value of \Robject{two.sided}, for two-sided test, and values of \Robject{less} or \Robject{greater}, for one-sided tests. The (common) null value for the parameters of interest is specified through the \Robject{psi0} argument, by default zero. \item{\em Type I error rate.} The \Robject{MTP} function controls by default the family-wise error rate (FWER), or chance of at least one false positive (argument \Robject{typeone="fwer"}). Augmentation procedures (Section \ref{anal:mult:s:AMTP}), controlling other Type I error rates such as the gFWER, TPPFP, and FDR, can be specified through the argument \Robject{typeone}. Related arguments include \Robject{k} and \Robject{q}, for the allowed number and proportion of false positives for control of $gFWER(k)$ and $TPPFP(q)$, respectively, and \Robject{fdr.method}, for the type of TPPFP-based FDR-controlling procedure (i.e., \Robject{"conservative"} or \Robject{"restricted"} methods). The nominal level of the test is determined by the argument \Robject{alpha}, by default 0.05. Testing can be performed for a range of nominal Type I error rates by specifying a vector of levels \Robject{alpha}. \item{\em Test statistics null distribution.} In the current implementation of \Robject{MTP}, the test statistics null distribution is estimated by default using the non-parametric version of bootstrap Procedure~\ref{anal:mult:proc:boot} (argument \Robject{nulldist="boot"}). The bootstrap procedure is implemented in the internal function \Robject{boot.resample}, which calls C to compute test statistics for each bootstrap sample. The values of the shift ($\lambda_0$) and scale ($\tau_0$) parameters are determined by the type of test statistics (e.g., $\lambda_0=0$ and $\tau_0=1$ for $t$-statistics). When \Robject{csnull=TRUE} (default), these values will be used to center and scale the estimated test statistics distribution, producing a null distribution. One may specify \Robject{csnull=FALSE} to compute a non-null test statistics distribution. Permutation null distributions are also available via \Robject{nulldist="perm"}. The number of resampling steps is specified by the argument \Robject{B}, by default 1,000. Since the upper tail of a the bootstrap distribution may be difficult to estimate, particularly for small values of \Robject{B}, a kernal density estimator may be used for the tail of the distribution by setting \Robject{smooth.null=TRUE} (default is FALSE). \item{\em Multiple testing procedures.} Several methods for controlling the chosen Type I error rate are available in \Rpackage{multtest}. \begin{itemize} \item {\em FWER-controlling procedures.} For FWER control, the \Robject{MTP} function implements the single-step and step-down (common-cut-off) maxT and (common-quantile) minP MTPs, described in Sections~\ref{anal:mult:s:SS} and \ref{anal:mult:s:SD}, and specified through the argument \Robject{method} (internal functions \Robject{ss.maxT}, \Robject{ss.minP}, \Robject{sd.maxT}, and \Robject{sd.minP}). The default MTP is the single-step maxT procedure (\Robject{method="ss.maxT"}), since it requires the least computation. \item {\em gFWER-, TPPFP-, and FDR-controlling augmentation procedures.} As discussed in Section \ref{anal:mult:s:AMTP}, any FWER-controlling MTP can be trivially augmented to control additional Type I error rates, such as the gFWER and TPPFP. Two FDR-controlling procedures can then be derived from the TPPFP-controlling AMTP. The AMTPs are implemented in the functions \Robject{fwer2gfwer}, \Robject{fwer2tppfp}, and \Robject{fwer2fdr}, that take FWER adjusted $p$-values as input and return augmentation adjusted $p$-values for control of the gFWER, TPPFP, and FDR, respectively. Note that the aforementioned AMTPs can be applied directly via the \Robject{typeone} argument of the main function \Robject{MTP}. \end{itemize} \item{\em Parallel processing.} MTP can be run on a computer cluster with multiple nodes. This functionality requires the package \Rpackage{snow}. In addition, the packages \Rpackage{multtest} and \Rpackage{Biobase} must be installed on each node. \Robject{MTP} will load these packages as long as they are in the library search path. Else the user must load the packages on each node. When \Robject{cluster=1}, computations are performed on a single CPU. To implement bootstrapping in parallel, the user either sets \Robject{cluster} equal to a cluster object created using the function \Robject{makeCluster} in \Rpackage{snow} or specifies the integer number of nodes to use in a cluster. For the latter approach, \Robject{MTP} creates a cluster object with the specified number of nodes for the user. In this case, the type of interface system to use must be specified in the \Robject{type} argument. MPI and PVM interfaces require the packages \Rpackage{Rmpi} and \Rpackage{rpvm}, respectively. The number or percentage of bootstrap iterations to dispatch at one time to each node is specified with the \Robject{dispatch} argument (default is 5\%). The following example illustrates how to load the \Rpackage{snow} package, make a cluster consisting of two nodes, and load \Rpackage{Biobase} and \Rpackage{multtest} onto each node of the cluster using \Robject{clusterEvalQ}. The object \Robject{cl} can be passed to \Robject{MTP} via the \Robject{cluster} argument. <>= library(snow) cl <- makeCluster(2, "MPI") clusterEvalQ(cl, {library(Biobase); library(multtest)}) @ \item{\em Output control.} Various arguments are available to control output, i.e., specify which combination of the following quantities should be returned: confidence regions (argument \Robject{get.cr}); cut-offs for the test statistics (argument \Robject{get.cutoff}); adjusted $p$-values (argument \Robject{get.adjp}); test statistics null distribution (argument \Robject{keep.nulldist}). Note that parameter estimates and confidence regions only apply to the test of single-parameter null hypotheses (i.e., not the $F$-tests). In addition, in the current implementation of \Robject{MTP}, parameter confidence regions and test statistic cut-offs are only provided when \texttt{typeone="fwer"}, so that \Robject{get.cr} and \Robject{get.cutoff} should be set to \Robject{FALSE} when using the error rates gFWER, TPPFP, or FDR. \end{description} Note that the \Rpackage{multtest} package also provides several simple, marginal FWER-controlling MTPs, such as the Bonferroni, Holm \cite{Holm79}, Hochberg \cite{Hochberg88}, and \v{S}id\'{a}k \cite{Sidak67} procedures, and FDR-controlling MTPs, such as the Benjamini \& Hochberg \cite{Benjamini&Hochberg95} and Benjamini \& Yekutieli \cite{Benjamini&Yekutieli01} procedures. These procedures are available through the \Robject{mt.rawp2adjp} function, which takes a vector of unadjusted $p$-values as input and returns the corresponding adjusted $p$-values.\\ \noindent {\bf OUTPUT.}\\ The S4 class/method object-oriented programming approach was adopted to summarize the results of a MTP (Section \ref{anal:mult:s:design}). Specifically, the output of the \Robject{MTP} function is an instance of the {\em class} \Rclass{MTP}. A brief description of the class and associated methods is given next. Please consult the documentation for details, e.g., using \texttt{class ? MTP} and \texttt{methods ? MTP}. <>= slotNames("MTP") @ \begin{description} \item{\Robject{statistic}:} The numeric $M$--vector of test statistics, specified by the values of the \Robject{MTP} arguments \Robject{test}, \Robject{robust}, \Robject{standardize}, and \Robject{psi0}. In many testing problems, $M = J = $ \Robject{nrow(X)}. \item{\Robject{estimate}:} For the test of single-parameter null hypotheses using $t$-statistics (i.e., not the $F$-tests), the numeric $M$--vector of estimated parameters. \item{\Robject{sampsize}:} The sample size, i.e., $n=$ \Robject{ncol(X)}. \item{\Robject{rawp}:} The numeric $M$--vector of unadjusted $p$-values. \item{\Robject{adjp}:} The numeric $M$--vector of adjusted $p$-values (computed only if the \Robject{get.adjp} argument is \Robject{TRUE}). \item{\Robject{conf.reg}:} For the test of single-parameter null hypotheses using $t$-statistics (i.e., not the $F$-tests), the numeric $M \times 2 \times$ \Robject{length(alpha)} \Rclass{array} of lower and upper simultaneous confidence limits for the parameter vector, for each value of the nominal Type I error rate \Robject{alpha} (computed only if the \Robject{get.cr} argument is \Robject{TRUE}). \item{\Robject{cutoff}:} The numeric $M \times$ \Robject{length(alpha)} \Rclass{matrix} of cut-offs for the test statistics, for each value of the nominal Type I error rate \Robject{alpha} (computed only if the \Robject{get.cutoff} argument is \Robject{TRUE}). \item{\Robject{reject}:} The $M \times$ \Robject{length(alpha)} \Rclass{matrix} of rejection indicators (\Robject{TRUE} for a rejected null hypothesis), for each value of the nominal Type I error rate \Robject{alpha}. \item{\Robject{nulldist}:} The numeric $M \times B$ \Rclass{matrix} for the estimated test statistics null distribution (returned only if \texttt{keep.nulldist=TRUE}; option not currently available for permutation null distribution, i.e., \texttt{nulldist="perm"}). By default (i.e., for \Robject{nulldist="boot"}), the entries of \Robject{nulldist} are the null value shifted and scaled bootstrap test statistics, as defined by Procedure~\ref{anal:mult:proc:boot}. \item{\Robject{call}:} The call to the function \Robject{MTP}. \item{\Robject{seed}:} An integer for specifying the state of the random number generator used to create the resampled datasets. The seed can be reused for reproducibility in a repeat call to \Robject{MTP}. This argument is currently used only for the bootstrap null distribution (i.e., for \texttt{nulldist="boot"}). See \texttt{? set.seed} for details. \end{description} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Numerical and graphical summaries} \label{anal:mult:s:summaries} The following {\em methods} are defined to operate on \Rclass{MTP} instances and summarize the results of a MTP. \begin{description} \item{\Robject{print}:} The \Robject{print} method returns a description of an object of class \Rclass{MTP}, including the sample size $n$, the number $M$ of tested hypotheses, the type of test performed (value of argument \Robject{test}), the Type I error rate (value of argument \Robject{typeone}), the nominal level of the test (value of argument \Robject{alpha}), the name of the MTP (value of argument \Robject{method}), the call to the function \Robject{MTP}. In addition, this method produces a table with the class, mode, length, and dimension of each slot of the \Rclass{MTP} instance. \item{\Robject{summary}:} The \Robject{summary} method provides numerical summaries of the results of a MTP and returns a list with the following three components. \begin{itemize} \item \Robject{rejections}: A \Rclass{data.frame} with the number(s) of rejected hypotheses for the nominal Type I error rate(s) specified by the \Robject{alpha} argument of the function \Robject{MTP} (\Robject{NULL} values are returned if all three arguments \Robject{get.cr}, \Robject{get.cutoff}, and \Robject{get.adjp} are \Robject{FALSE}). \item \Robject{index}: A numeric $M$--vector of indices for ordering the hypotheses according to first \Robject{adjp}, then \Robject{rawp}, and finally the absolute value of \Robject{statistic} (not printed in the summary). \item \Robject{summaries}: When applicable (i.e., when the corresponding quantities are returned by \Robject{MTP}), a table with six number summaries of the distributions of the adjusted $p$-values, unadjusted $p$-values, test statistics, and parameter estimates. \end{itemize} \item{\Robject{plot}:} The \Robject{plot} method produces the following graphical summaries of the results of a MTP. The type of display may be specified via the \Robject{which} argument. \begin{enumerate} \item Scatterplot of number of rejected hypotheses vs. nominal Type I error rate. \item Plot of ordered adjusted $p$-values; can be viewed as a plot of Type I error rate vs. number of rejected hypotheses. \item Scatterplot of adjusted $p$-values vs. test statistics (also known as ``volcano plot''). \item Plot of unordered adjusted $p$-values. \item Plot of confidence regions for user-specified parameters, by default the 10 parameters corresponding to the smallest adjusted $p$-values (argument \Robject{top}). \item Plot of test statistics and corresponding cut-offs (for each value of \Robject{alpha}) for user-specified hypotheses, by default the 10 hypotheses corresponding to the smallest adjusted $p$-values (argument \Robject{top}). \end{enumerate} The argument \Robject{logscale} (by default equal to \Robject{FALSE}) allows one to use the negative decimal logarithms of the adjusted $p$-values in the second, third, and fourth graphical displays. Note that some of these plots are implemented in the older function \Robject{mt.plot}. \item{\Robject{[}:} Subsetting method, which operates selectively on each slot of an \Rclass{MTP} instance to retain only the data related to the specified hypotheses. \item{\Robject{as.list}:} Converts an object of class \Rclass{MTP} to an object of class \Rclass{list}, with an entry for each slot. \end{description} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Software design} \label{anal:mult:s:design} The following features of the programming approach employed in \Rpackage{multtest} may be of interest to users, especially those interested in extending the functionality of the package. \\ \noindent {\bf Function closures.} The use of {\em function closures}, in the style of the \Rpackage{genefilter} package, allows uniform data input for all MTPs and facilitates the extension of the package's functionality by adding, for example, new types of test statistics. Specifically, for each value of the \Robject{MTP} argument \Robject{test}, a closure is defined which consists of a function for computing the test statistic (with only two arguments, a data vector \Robject{x} and a corresponding weight vector \Robject{w}, with default value of \Robject{NULL}) and its enclosing environment, with bindings for relevant additional arguments, such as null values \Robject{psi0}, outcomes \Robject{Y}, and covariates \Robject{Z}. Thus, new test statistics can be added to \Rpackage{multtest} by simply defining a new closure and adding a corresponding value for the \Robject{test} argument to \Robject{MTP} (existing internal test statistic functions are located in the file \texttt{R/statistics.R}).\\ \noindent {\bf Class/method object-oriented programming.} Like many other Bioconductor packages, \Rpackage{multtest} has adopted the {\em S4 class/method object-oriented programming approach} of Chambers \cite{Chambers98}. In particular, a new class, \Rclass{MTP}, is defined to represent the results of multiple testing procedures, as implemented in the main \Robject{MTP} function. As discussed above, in Section \ref{anal:mult:s:summaries}, several methods are provided to operate on instances of this class.\\ \noindent {\bf Calls to C.} Because resampling procedures, such as the non-parametric bootstrap implemented in \Rpackage{multtest}, are computationally intensive, care must be taken to ensure that the resampling steps are not prohibitively slow. The use of closures for the test statistics, however, prevents writing the entire program in C. In the current implementation, we have chosen to define the closure and compute the observed test statistics in R, and then call C (using the R random number generator) to apply the closure to each bootstrap resampled dataset. This approach puts the for loops over bootstrap samples ($B$) and hypotheses ($M$) in the C environment, thus speeding up this computationally expensive part of the program. Further optimization for speed may be investigated for future releases. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Discussion} \label{anal:mult:s:disc} The \Rpackage{multtest} package implements a broad range of resampling-based multiple testing procedures. Ongoing efforts are as follows. \begin{enumerate} \item Extending the class of available tests, by adding test statistic closures for tests of correlations, quantiles, and parameters in generalized linear models (e.g., logistic regression). \item Extending the class of resampling-based estimators for the test statistics null distribution (e.g., parametric bootstrap, Bayesian bootstrap). A closure approach may be considered for this purpose. \item Providing parameter confidence regions and test statistic cut-offs for other Type I error rates than the FWER. \item Implementing the new augmentation multiple testing procedures proposed in Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} for controlling tail probabilities $Pr(g(V_n,R_n) > q)$ for an arbitrary function $g(V_n,R_n)$ of the numbers of false positives $V_n$ and rejected hypotheses $R_n$. \item Providing a formula interface for a symbolic description of the tests to be performed (cf. model specification in \Robject{lm}). %\item %Providing an \Robject{update} method for objects of class \Rclass{MTP}. This would allow reusing available estimates of the null distribution to implement different MTPs for a given Type I error rate and to control different Type I error rates. \item Extending the \Rclass{MTP} class to keep track of results for several MTPs. \item Increasing the computational efficiency of the bootstrap estimation of the test statistics null distribution. \end{enumerate} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{plainnat} \bibliography{multtest} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} multtest/inst/otherDocs/MTPALL.Rnw0000755000175200017520000007236114710217035020061 0ustar00biocbuildbiocbuild%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \VignetteIndexEntry{Multiple Testing Procedures} % \VignetteKeywords{Expression Analysis} % \VignettePackage{multtest} \documentclass[11pt]{article} \usepackage{graphicx} % standard LaTeX graphics tool \usepackage{Sweave} \usepackage{amsfonts} % these should probably go into a dedicated style file \newcommand{\Rpackage}[1]{\textit{#1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\textit{#1}} %%%%%%%%%%%%%%%%%%%%%%%%% % Our added packages and definitions \usepackage{hyperref} \usepackage{amsmath} \usepackage{color} \usepackage{comment} \usepackage[authoryear,round]{natbib} \parindent 0in \definecolor{red}{rgb}{1, 0, 0} \definecolor{green}{rgb}{0, 1, 0} \definecolor{blue}{rgb}{0, 0, 1} \definecolor{myblue}{rgb}{0.25, 0, 0.75} \definecolor{myred}{rgb}{0.75, 0, 0} \definecolor{gray}{rgb}{0.5, 0.5, 0.5} \definecolor{purple}{rgb}{0.65, 0, 0.75} \definecolor{orange}{rgb}{1, 0.65, 0} \def\RR{\mbox{\it I\hskip -0.177em R}} \def\ZZ{\mbox{\it I\hskip -0.177em Z}} \def\NN{\mbox{\it I\hskip -0.177em N}} \newtheorem{theorem}{Theorem} \newtheorem{procedure}{Procedure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \title{Applications of Multiple Testing Procedures: ALL Data} \author{Katherine S. Pollard$^1$, Sandrine Dudoit$^2$, Mark J. van der Laan$^3$} \maketitle \begin{center} 1. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, \url{ http://lowelab.ucsc.edu/katie/}\\ 2. Division of Biostatistics, University of California, Berkeley, \url{ http://www.stat.berkeley.edu/~sandrine/}\\ 3. Department of Statistics and Division of Biostatistics, University of California, Berkeley, \url{ http://www.stat.berkeley.edu/~laan/}\\ \end{center} \tableofcontents %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Overview} The Bioconductor R package \Rpackage{multtest} implements widely applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. A key feature of these MTPs is the test statistics null distribution (rather than data generating null distribution) used to derive rejection regions (i.e., cut-offs) for the test statistics and the resulting adjusted $p$-values. For general null hypotheses, defined in terms of submodels for the data generating distribution, this null distribution is the asymptotic distribution of the vector of null value shifted and scaled test statistics. The current version of \Rpackage{multtest} provides MTPs for null hypotheses concerning means, differences in means, and regression parameters in linear,and Cox proportional hazards models. Both non-parametric bootstrap and permutation estimators of the test statistics ($t$- or $F$-statistics) null distribution are available. Procedures are provided to control Type I error rates defined as tail probabilities and expected values of arbitrary functions of the numbers of Type I errors, $V_n$, and rejected hypotheses, $R_n$. These error rates include: the generalized family-wise error rate, $gFWER(k) = Pr(V_n > k)$, or chance of at least $(k+1)$ false positives (the special case $k=0$ corresponds to the usual family-wise error rate, FWER); tail probabilities $TPPFP(q) = Pr(V_n/R_n > q)$ for the proportion of false positives among the rejected hypotheses; the false discovery rate, $FDR=E[V_n/R_n]$. Single-step and step-down common-cut-off (maxT) and common-quantile (minP) procedures, that take into account the joint distribution of the test statistics, are implemented to control the FWER. In addition, augmentation procedures are provided to control the gFWER and TPPFP, based on {\em any} initial FWER-controlling procedure. The results of a multiple testing procedure are summarized using rejection regions for the test statistics, confidence regions for the parameters of interest, and adjusted $p$-values. The modular design of the \Rpackage{multtest} package allows interested users to readily extend the package functionality by inserting additional functions for test statistics and testing procedures. A class/method object-oriented programming approach was adopted to summarize the results of a MTP. The multiple testing procedures are applied to the Acute Lymphoblastic Leukemia (ALL) dataset of Chiaretti et al. \cite{Chiarettietal04}, available in the R package \Rpackage{ALL}, to identify genes whose expression measures are associated with (possibly censored) biological and clinical outcomes such as: cytogenetic test status (normal vs. abnormal), tumor molecular subtype (BCR/ABL, NEG, ALL1/AF4, E2A/PBX1, p15/p16, NUP-98), and patient survival. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Getting started} {\bf Installing the package.} To install the \Rpackage{multtest} package, first download the appropriate file for your platform from the Bioconductor website \url{http://www.bioconductor.org/}. For Windows, start R and select the \texttt{Packages} menu, then \texttt{Install package from local zip file...}. Find and highlight the location of the zip file and click on {\tt open}. For Linux/Unix, use the usual command \texttt{R CMD INSTALL} or set the option \texttt{CRAN} to your nearest mirror site and use the command \texttt{install.packages} from within an R session.\\ {\bf Loading the package.} To load the \Rpackage{multtest} package in your R session, type \texttt{library(multtest)}. \\ {\bf Help files.} Detailed information on \Rpackage{multtest} package functions can be obtained in the help files. For example, to view the help file for the function \texttt{MTP} in a browser, use \texttt{help.start} followed by \texttt{? MTP}.\\ {\bf Case study.} We illustrate some of the functionality of the \Rpackage{multtest} package using the Acute Lymphoblastic Leukemia (ALL) microarray dataset of Chiaretti et al. \cite{Chiarettietal04}. Available in the data package \Rpackage{ALL}, this dataset includes 21 phenotypes and 12,625 Affymetrix gene expression measures (chip series hgu95av2), for each of 128 ALL patients. The expression measures have been jointly normalized using RMA. To view a description of the experiments and data, type \texttt{? ALL}.\\ {\bf Sweave.} This document was generated using the \Robject{Sweave} function from the R \Rpackage{tools} package. The source (.Rnw) file is in the \texttt{/inst/doc} directory of the \Rpackage{multtest} package. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Software Application: ALL microarray dataset} \subsection{} The main user-level function for resampling-based multiple testing is \Robject{MTP}. Its input/output and usage are described in the accompanying vignette (MTP). Here, we illustrate some of the functionality of the \Rpackage{multtest} package using the Acute Lymphoblastic Leukemia (ALL) microarray dataset of Chiaretti et al. \cite{Chiarettietal04}, available in the data package \Rpackage{ALL}. We begin by loading the necessary packages. <>= library(Biobase) library(multtest) <>= options(width=60) @ We use the \Robject{install.packages} command to get the necessary analysis and data pacakges from the R and Bioconductor repositories, after first checking if they are already installed. <>= reposList<-c("http://www.bioconductor.org/packages/bioc/devel", "http://www.bioconductor.org/packages/data/devel", "http://www.bioconductor.org/packages/omegahat/devel", "http://cran.fhcrc.org") installed<-installed.packages()[,"Package"] if(!("genefilter"%in%installed)) try(install.packages("genefilter",repos=reposList,dependencies=c("Depends", "Imports"))) library(genefilter) if(!("ALL"%in%installed)) try(install.packages("ALL",repos=reposList,dependencies=c("Depends", "Imports"))) library(ALL) if(!("hgu95av2"%in%installed)) try(install.packages("hgu95av2",repos=reposList,dependencies=c("Depends", "Imports"))) library(hgu95av2) @ %<>= %z<-try(getReposEntry("http://www.bioconductor.org/data/experimental/repos")) %try(install.packages2("ALL",repEntry=z)) %library(ALL) %try(install.packages2("hgu95av2")) %library(hgu95av2) %@ \subsection{\Rpackage{ALL} data package and initial gene filtering} The Acute Lymphoblastic Leukemia (ALL) microarray dataset of Chiaretti et al. \cite{Chiarettietal04} consists of 21 {\em phenotypes} (i.e., patient level responses and covariates) and 12,625 Affymetrix {\em gene expression measures} (chip series HGU95Av2), for each of 128 ALL patients. For greater detail, please consult the \Rpackage{ALL} package documentation. The main object in this package is \Robject{ALL}, an instance of the class \Rclass{ExpressionSet}, which contains the expression measures, phenotypes, and gene annotation information. The genes-by-subjects matrix of expression measures is provided in the \Robject{exprs} slot of \Robject{ALL} and the phenotype data are stored in the \Robject{phenoData} slot. Note that the expression measures have been obtained using the three-step robust multichip average (RMA) pre-processing method, implemented in the package \Rpackage{affy}. In particular, the expression measures have been subject to a base 2 logarithmic transformation. <>= data(ALL) class(ALL) slotNames(ALL) show(ALL) names(varLabels(ALL)) X <- exprs(ALL) pheno <- pData(ALL) @ Our goal is to identify genes whose expression measures are associated with (possibly censored) biological and clinical outcomes such as: cytogenetic test status (normal vs. abnormal), tumor molecular subtype (BCR/ABL, NEG, ALL1/AF4, E2A/PBX1, p15/p16, NUP-98), and time to relapse. Before applying the multiple testing procedures, we perform initial gene filtering as in Chiaretti et al. \cite{Chiarettietal04} and retain only those genes for which (i) at least 20\% of the subjects have a measured intensity of at least 100 and (ii) the coefficient of variation (i.e., the ratio of the standard deviation to the mean) of the intensities across samples is between 0.7 and 10. These two filtering criteria can be readily applied using functions from the \Rpackage{genefilter} package. <>= ffun <- filterfun(pOverA(p=0.2, A=100), cv(a=0.7, b=10)) filt <- genefilter(2^X, ffun) filtX <- X[filt,] dim(filtX) filtALL <- ALL[filt,] @ %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Association of expression measures and cytogenetic test status: two-sample $t$-statistics} \paragraph{Step-down minP FWER-controlling MTP with two-sample Welch $t$-statistics and bootstrap null distribution} The phenotype data include an indicator variable, \Robject{cyto.normal}, for cytogenetic test status (1 for normal vs. 0 for abnormal). To identify genes with higher mean expression measures in the abnormal compared to the normal cytogenetics subjects, one-sided two-sample $t$-tests can be performed. We choose to use the Welch $t$-statistic and to control the FWER using the bootstrap-based step-down minP procedure with $B=100$ bootstrap iterations (though many more are recommended in practice). <>= seed <- 99 cyto.boot <- MTP(X=filtALL, Y="cyto.normal", alternative="less", B=100, method="sd.minP", seed=seed) @ Let us examine the results of the MTP stored in the object \Robject{cyto.boot}. <>= class(cyto.boot) slotNames(cyto.boot) print(cyto.boot) summary(cyto.boot) @ The following commands may be used to obtain a list of genes that are differentially expressed in normal vs. abnormal cytogenetics patients at nominal FWER level $\alpha=0.05$, i.e., genes with adjusted $p$-values less than or equal to 0.05. Functions from the \Rpackage{annotate} and \Rpackage{annaffy} packages may then be used to obtain annotation information on these genes (e.g., gene names, PubMed abstracts, GO terms) and to generate HTML tables of the results. <>= cyto.diff <- cyto.boot@adjp<=0.05 sum(cyto.diff) cyto.AffyID <- geneNames(filtALL)[cyto.diff] mget(cyto.AffyID, env=hgu95av2GENENAME) @ Various graphical summaries of the results may be obtained using the \Robject{plot} method, by selecting appropriate values of the argument \Robject{which} (Figure \ref{f:cytoPlot}). <>= par(mfrow=c(2,2)) plot(cyto.boot) @ \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{cytoPlot} \end{center} \caption{ {\em Cytogenetic test status --- Step-down minP FWER-controlling MTP.} By default, four graphical summaries are produced by the \Robject{plot} method for instances of the class \Rclass{MTP}.} \protect\label{f:cytoPlot} \end{figure} \paragraph{Marginal FWER-controlling MTPs with two-sample Welch $t$-statistics and bootstrap null distribution} Given a vector of unadjusted $p$-values, the \Robject{mt.rawp2adjp} function computes adjusted $p$-values for the marginal FWER-controlling MTPs of Bonferroni, Holm \cite{Holm79}, Hochberg \cite{Hochberg88}, and $\check{\rm S}$id\'{a}k \cite{Sidak67}, discussed in detail in Dudoit et al. \cite{DudoitetalStatSci03}. The \Robject{mt.plot} function may then be used to compare the different procedures in terms of their adjusted $p$-values. <>= marg <- c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD") cyto.marg <- mt.rawp2adjp(rawp=cyto.boot@rawp, proc=marg) comp.marg <- cbind(cyto.boot@adjp, cyto.marg$adjp[order(cyto.marg$index),-1]) @ <>= par(mfrow=c(1,1)) mt.plot(adjp=comp.marg, teststat=cyto.boot@statistic, proc=c("SD minP", marg), leg=c(0.1,400), col=1:6, lty=1:6, lwd=3) title("Comparison of marginal and step-down minP FWER-controlling MTPs") @ In this dataset, most of the FWER-controlling MTPs perform similarly, making very few rejections at nominal Type I error rates near zero. As expected, the bootstrap-based step-down minP procedure, which takes into account the joint distribution of the test statistics, leads to slightly more rejections than the marginal methods (Figure \ref{f:cytoMargPlot}). The results also illustrate that stepwise MTPs are less conservative than their single-step analogues (e.g., Holm and Hochberg vs. Bonferroni; step-down \v{S}id\'{a}k vs. single-step \v{S}id\'{a}k). \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{cytoMargPlot} \end{center} \caption{ {\em Cytogenetic test status --- Marginal vs. joint FWER-controlling MTPs.} Plot of number of rejected hypotheses vs. nominal Type I error rate for comparing bootstrap-based marginal and step-down minP FWER-controlling MTPs.} \protect\label{f:cytoMargPlot} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%% \paragraph{Step-down minP FWER-controlling MTP with two-sample Welch $t$-statistics and permutation null distribution} Because the sample sizes are not equal for the two cytogenetic groups and the expression measures may have different covariance structures in the two populations, we expect the bootstrap and permutation null distributions to yield different sets of rejected hypotheses (Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04}). To compare the two approaches, we apply the permutation-based step-down minP procedure, first using the old \Robject{mt.minP} function and then using the new \Robject{MTP} function (which calls \Robject{mt.minP}). Please note that while the \Robject{MTP} and \Robject{mt.minP} functions produce the same results, these are presented in a different manner. In particular, for the new function \Robject{MTP}, the results (e.g., test statistics, parameter estimates, unadjusted $p$-values, adjusted $p$-values, cut-offs) are given in the original order of the null hypotheses, while in the \Robject{mt.minP} function, the hypotheses are sorted first according to their adjusted $p$-values, next their unadjusted $p$-values, and finally their test statistics. In addition, the new function \Robject{MTP} implements a broader range of MTPs and has adopted the S4 class/method design for representing and summarizing the results of a MTP. <>= set.seed(99) NAs <- is.na(pheno$cyto.normal) cyto.perm.old <- mt.minP(X=filtX[,!NAs], classlabel=pheno$cyto.normal[!NAs], side="lower", B=100) names(cyto.perm.old) sum(cyto.perm.old$adjp<=0.05) @ <>= set.seed(99) cyto.perm.new <- MTP(X=filtX, Y=pheno$cyto.normal, alternative="less", nulldist="perm", B=100, method="sd.minP") @ <>= summary(cyto.perm.new) sum(cyto.perm.new@adjp<=0.05) sum(cyto.perm.new@adjp<=0.05 & cyto.boot@adjp<=0.05) @ At nominal FWER level $\alpha=0.05$, the permutation step-down minP procedure identifies \Sexpr{sum(cyto.perm.new@adjp<=0.05)} genes as differentially expressed between patients with normal and abnormal cytogenetic test status. In contrast, the bootstrap version of the step-down minP procedure identifies \Sexpr{sum(cyto.boot@adjp<=0.05)} differentially expressed genes. %%%%%%%%%%%%%%%%%%%%%%%%% \paragraph{Step-down minP FWER-controlling MTP with robust two-sample $t$-statistics and bootstrap null distribution} The Wilcoxon rank sum statistic (also known as the Mann-Whitney statistic) is a robust alternative to the usual two-sample $t$-statistic. <>= cyto.wilcox <- MTP(X=filtALL, Y="cyto.normal", robust=TRUE, alternative="less", B=100, method="sd.minP", seed=seed) @ <>= sum(cyto.wilcox@adjp<=0.05) sum(cyto.wilcox@adjp<=0.05 & cyto.boot@adjp<=0.05) @ At nominal FWER level $\alpha=0.05$, the bootstrap step-down minP MTP based on the robust Wilcoxon test statistic identifies \Sexpr{sum(cyto.wilcox@adjp<=0.05)} genes as differentially expressed, compared to \Sexpr{sum(cyto.boot@adjp<=0.05)} genes for the same MTP based on the Welch $t$-statistic. \Sexpr{sum(cyto.wilcox@adjp<=0.05 & cyto.boot@adjp<=0.05)} genes are identified by both procedures. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Augmentation procedures for gFWER, TPPFP, and FDR control} In the context of microarray gene expression data analysis or other high-dimensional inference problems, one is often willing to accept some false positives, provided their number is small in comparison to the number of rejected hypotheses. In this case, the FWER is not a suitable choice of Type I error rate and one should consider other rates that lead to larger sets of rejected hypotheses. The augmentation procedures implemented in the function \Robject{MTP}, allow one to reject additional hypotheses, while controlling an error rate such as the generalized family-wise error rate (gFWER), the tail probability of the proportion of false positives (TPPFP), or the false discovery rate (FDR). We illustrate the use of the \Robject{fwer2gfwer}, \Robject{fwer2tppfp}, and \Robject{fwer2fdr} functions, but note that the gFWER, TPPFP, and FDR can also be controlled directly using the \Robject{MTP} function with appropriate choices of arguments \Robject{typeone}, \Robject{k}, \Robject{q}, and \Robject{fdr.method}. %%%%%%%%%%%%%%%%%%%%%%%%% \paragraph{gFWER control} <>= k <- c(5, 10, 50, 100) cyto.gfwer <- fwer2gfwer(adjp=cyto.boot@adjp, k=k) comp.gfwer <- cbind(cyto.boot@adjp, cyto.gfwer) mtps <- paste("gFWER(",c(0,k),")", sep="") mt.plot(adjp=comp.gfwer, teststat=cyto.boot@statistic, proc=mtps, leg=c(0.1,400),col=1:5, lty=1:5, lwd=3) title("Comparison of gFWER(k)-controlling AMTPs based on SD minP MTP") @ For gFWER-controlling AMTPs, Figure \ref{f:cytogfwer} illustrates that the number of rejected hypotheses increases linearly with the number $k$ of allowed false positives, for nominal levels $\alpha$ such that the initial FWER-controlling MTP does not reject more than $M-k$ hypotheses. That is, the curve for the $gFWER(k)$--controlling AMTP is obtained from that of the initial FWER-controlling procedure by a simple vertical shift of $k$. %%%%%%%%%%%%%%%%%%%%%%%%% \paragraph{TPPFP control} <>= q <- c(0.05,0.1,0.5) cyto.tppfp <- fwer2tppfp(adjp=cyto.boot@adjp, q=q) comp.tppfp <- cbind(cyto.boot@adjp, cyto.tppfp) mtps <- c("FWER",paste("TPPFP(",q,")", sep="")) mt.plot(adjp=comp.tppfp, teststat=cyto.boot@statistic, proc=mtps, leg=c(0.1,400), col=1:4, lty=1:4, lwd=3) title("Comparison of TPPFP(q)-controlling AMTPs based on SD minP MTP") @ For TPPFP control, Figure \ref{f:cytotppfp} shows that, as expected, the number of rejections, while controlling $TPPFP(q)$ at a given level $\alpha$, increases with the allowed proportion $q$ of false positives, though not linearly. Furthermore, for the ALL dataset, the increases in the number of rejections are not very large. %%%%%%%%%%%%%%%%%%%%%%%%% \paragraph{FDR control} Given any TPPFP-controlling MTP, van der Laan et al. \cite{vdLaanetalMT3SAGMB04} derive two simple (conservative) FDR-controlling MTPs. Here, we compare these two FDR-controlling approaches, based on a TPPFP-controlling augmentation of the step-down minP procedure, to the marginal Benjamini \& Hochberg \cite{Benjamini&Hochberg95} and Benjamini \& Yekutieli \cite{Benjamini&Yekutieli01} procedures, implemented in the function \Robject{mt.rawp2adjp}. <>= cyto.fdr <- fwer2fdr(adjp=cyto.boot@adjp, method="both")$adjp cyto.marg.fdr <- mt.rawp2adjp(rawp=cyto.boot@rawp, proc=c("BY","BH")) comp.fdr <- cbind(cyto.fdr, cyto.marg.fdr$adjp[order(cyto.marg.fdr$index),-1]) mtps <- c("AMTP Cons", "AMTP Rest", "BY", "BH") mt.plot(adjp=comp.fdr, teststat=cyto.boot@statistic, proc=mtps, leg=c(0.1,400), col=c(2,2,3,3), lty=rep(1:2,2), lwd=3) title("Comparison of FDR-controlling MTPs") @ Figure \ref{f:cytofdr} shows that for most values of the nominal FDR level $\alpha$, the usual Benjamini \& Hochberg ("BH") MTP leads by far to the largest number of rejected hypotheses. The Benjamini \& Yekutieli ("BY") MTP, a conservative version of the Benjamini \& Hochberg MTP (with $\sim \log M$ penalty on the $p$-values), leads to much fewer rejections. The AMTPs based on conservative bounds for the FDR ("AMTP Cons" and "AMTP Rest") are much more conservative than the Benjamini \& Hochberg MTP and only lead to an increased number of rejections for very high nominal FDR levels. %%%%%%%%%%%%%%%%%%%%%%%%% \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{cytogfwer} \end{center} \caption{ {\em Cytogenetic test status --- gFWER-controlling AMTPs.} Plot of number of rejected hypotheses vs. nominal Type I error rate for comparing gFWER-controlling AMTPs, based on the bootstrap step-down minP FWER-controlling procedure, with different allowed numbers $k$ of false positives.} \protect\label{f:cytogfwer} \end{figure} \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{cytotppfp} \end{center} \caption{ {\em Cytogenetic test status --- TPPFP-controlling AMTPs.} Plot of number of rejected hypotheses vs. nominal Type I error rate for comparing TPPFP-controlling AMTPs, based on the bootstrap step-down minP FWER-controlling procedure, with different allowed proportions $q$ of false positives.} \protect\label{f:cytotppfp} \end{figure} \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{cytofdr} \end{center} \caption{ {\em Cytogenetic test status --- FDR-controlling MTPs.} Plot of number of rejected hypotheses vs. nominal Type I error rate for comparing four FDR-controlling MTPs.} \protect\label{f:cytofdr} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Association of expression measures and tumor molecular subtype: multi-sample $F$-statistics} To identify genes with differences in mean expression measures between different tumor molecular subtypes (BCR/ABL, NEG, ALL1/AF4, E2A/PBX1, p15/p16, NUP-98), one can perform a family of $F$-tests. Tumor subtypes with fewer than 10 subjects are merged into one group. Adjusted $p$-values and test statistic cut-offs (for nominal levels $\alpha$ of 0.01 and 0.1) are computed as follows for the bootstrap-based single-step maxT FWER-controlling procedure. <>= mb <- as.character(pheno$mol.biol) table(mb) other <- c("E2A/PBX1", "NUP-98", "p15/p16") mb[mb%in%other] <- "other" table(mb) mb.boot <- MTP(X=filtX, Y=mb, test="f", alpha=c(0.01,0.1), B=100, get.cutoff=TRUE, seed=seed) @ Let us examine the results of the MTP. <>= summary(mb.boot) mb.diff <- mb.boot@adjp<=0.01 sum(mb.diff) sum(mb.boot@statistic>=mb.boot@cutoff[,"alpha=0.01"] & mb.diff) @ For control of the FWER at nominal level $\alpha=0.01$, the bootstrap-based single-step maxT procedure with $F$-statistics identifies \Sexpr{sum(mb.diff)} genes (out of the \Sexpr{sum(filt)} filtered genes) as having significant differences in mean expression measures between tumor molecular subtypes. This set can be identified through either adjusted $p$-values or cut-offs for the test statistics. The plot of test statistics and corresponding cut-offs in Figure \ref{f:mbPlot} illustrates that the $F$-statistics for the 10 genes with the smallest adjusted $p$-values are much larger than expected by chance under the null distribution. <>= plot(mb.boot,which=6) @ \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{mbPlot} \end{center} \caption{ {\em Tumor molecular subtype --- Single-step maxT FWER-controlling MTP.} Plot of $F$-statistics and corresponding cut-offs for the 10 genes with the smallest adjusted $p$-values, based on the bootstrap single-step maxT FWER-controlling procedure (\Robject{plot} method, \texttt{which=6}).} \protect\label{f:mbPlot} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Association of expression measures and time to relapse: Cox $t$-statistics} The bootstrap-based MTPs implemented in the main \Robject{MTP} function (\Robject{nulldist="boot"}) allow the test of hypotheses concerning regression parameters in models for which the subset pivotality condition may not hold (e.g., logistic and Cox proportional hazards models). The phenotype information in the \Rpackage{ALL} package includes the original remission status of the ALL patients (\Robject{remission} variable in the \Rclass{data.frame} \Robject{pData(ALL)}). There are 88 subjects who experienced original complete remission (\texttt{remission="CR"}) and who were followed up for remission status at a later date. We apply the single-step maxT procedure to test for a significant association between expression measures and time to relapse amongst these 88 subjects, adjusting for sex. Note that most of the code below is concerned with extracting the (censored) time to relapse outcome and covariates from slots of the \Rclass{ExpressionSet} instance \Robject{ALL}. <>= library(survival) # Patients with original complete remission and who were followed up cr.ind <- pheno$remission=="CR" cr.pheno <- pheno[cr.ind,] times <- strptime(cr.pheno$"date last seen", "%m/%d/%Y")-strptime(cr.pheno$date.cr, "%m/%d/%Y") time.ind <- !is.na(times) times <- times[time.ind] # Patients who haven't relapsed are treated as censored cens <- ((1:length(times))%in%grep("CR", cr.pheno[time.ind,"f.u"])) # Time to relapse rel.times <- Surv(times, !cens) patients <- (1: ncol(filtX))[cr.ind][time.ind] # Prepare data for MTP relX <- filtX[, patients] relZ <- pheno[patients,] @ <>= cox.boot <- MTP(X=relX, Y=rel.times, Z=relZ, Z.incl="sex", Z.test=NULL, test="coxph.YvsXZ", B=100, get.cr=TRUE, seed=seed) @ <>= summary(cox.boot) cox.diff <- cox.boot@adjp<=0.05 sum(cox.diff) cox.AffyID <- geneNames(filtALL)[cox.diff] mget(cox.AffyID, env=hgu95av2GENENAME) @ <>= plot(cox.boot, which=5) abline(h=0, col=2, lwd=2) @ For control of the FWER at nominal level $\alpha=0.05$, the bootstrap-based single-step maxT procedure identifies \Sexpr{sum(cox.diff)} genes whose expression measures are significantly associated with time to relapse. Equivalently, Figure \ref{f:coxphPlot} illustrates that the level $\alpha=0.05$ confidence regions corresponding to these \Sexpr{sum(cox.diff)} genes do not include the null value $\psi_0=0$ for the Cox regression parameters (indicated by red horizontal line). %The confidence intervals for the next four genes barely cover $\psi_0=0$. \begin{figure} \begin{center} \includegraphics[width=3in,height=3in,angle=0]{coxphPlot} \end{center} \caption{ {\em Time to relapse --- Single-step maxT FWER-controlling MTP.} Plot of Cox regression coefficient estimates and corresponding confidence intervals for the 10 genes with the smallest adjusted $p$-values, based on the bootstrap single-step maxT FWER-controlling procedure (\Robject{plot} method, \texttt{which=5}).} \protect\label{f:coxphPlot} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{plainnat} \bibliography{multtest} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} multtest/inst/otherDocs/multtest.Rnw0000755000175200017520000003320514710217035020743 0ustar00biocbuildbiocbuild% \VignetteIndexEntry{multtest Tutorial} % \VignetteKeywords{Expression Analysis} % \VignettePackage{multtest} \documentclass[11pt]{article} \usepackage{amsmath,epsfig,fullpage} \usepackage{graphicx} \usepackage[authoryear,round]{natbib} \usepackage{hyperref} \parindent 0in \bibliographystyle{abbrvnat} \begin{document} \title{\bf Bioconductor's multtest package} \author{Sandrine Dudoit$^1$ and Yongchao Ge$^2$} \maketitle \begin{center} 1. Division of Biostatistics, University of California, Berkeley, \url{http://www.stat.berkeley.edu/~sandrine}\\ 2. Department of Biomathematical Sciences, Mount Sinai School of Medicine, New York, {\tt yongchao.ge@mssm.edu}\\ \end{center} \tableofcontents % library(tools) % Rnwfile<- file.path("/home/sandrine/CVS_stuff/madman/Rpacks/multtest/inst/doc", % "multtest.Rnw") % Sweave(Rnwfile,pdf=TRUE,eps=TRUE,stylepath=TRUE,driver=RweaveLatex()) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Overview} The {\tt multtest} package contains a collection of functions for multiple hypothesis testing. These functions can be used to identify differentially expressed genes in microarray experiments, i.e., genes whose expression levels are associated with a response or covariate of interest. \\ {\bf Introduction to multiple testing.} This document provides a tutorial for using the {\tt multtest} package. For a detailed introduction to multiple testing consult the document {\tt multtest.intro} in the {\tt inst/doc} directory of the package. See also \cite{Shaffer95} and \cite{Dudoit&Shaffer02} for a review of multiple testing procedures and complete references.\\ {\bf Multiple testing procedures implemented in {\tt multtest}.} The {\tt multtest} package implements multiple testing procedures for controlling different Type I error rates. It includes procedures for controlling the family--wise Type I error rate (FWER): Bonferroni, \cite{Hochberg88}, \cite{Holm79}, Sidak, \cite{Westfall&Young93} minP and maxT procedures. It also includes procedures for controlling the false discovery rate (FDR): \cite{Benjamini&Hochberg95} and \cite{Benjamini&Yekutieli01} step--up procedures. These procedures are implemented for tests based on $t$--statistics, $F$--statistics, paired $t$--statistics, block $F$--statistics, Wilcoxon statistics. The results of the procedures are summarized using adjusted $p$--values, which reflect for each gene the overall experiment Type I error rate when genes with a smaller $p$--value are declared differentially expressed. Adjusted $p$--values may be obtained either from the nominal distribution of the test statistics or by permutation. The permutation algorithm for the maxT and minP procedures is described in \cite{Ge&Dudoit}.\\ {\bf Help files.} As with any R package, detailed information on functions, their arguments and value, can be obtained in the help files. For instance, to view the help file for the function {\tt mt.maxT} in a browser, use {\tt help.start()} followed by {\tt ? mt.maxT}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Case study: the ALL/AML leukemia dataset of Golub et al. (1999)} We demonstrate the functionality of this package using gene expression data from the leukemia ALL/AML study of \cite{Golubetal}. To load the leukemia dataset, use {\tt data(golub)}, and to view a description of the experiments and data, type {\tt ? golub}. %<>= <<>>= library(multtest, verbose=FALSE) data(golub) @ \cite{Golubetal} were interested in identifying genes that are differentially expressed in patients with two type of leukemias, acute lymphoblastic leukemia (ALL, class 0) and acute myeloid leukemia (AML, class 1). Gene expression levels were measured using Affymetrix high--density oligonucleotide chips containing $p=6,817$ human genes. The learning set comprises $n=38$ samples, 27 ALL cases and 11 AML cases (data available at {\tt http://www.genome.wi.mit.edu/MPR}). Following Golub et al. (personal communication, Pablo Tamayo), three preprocessing steps were applied to the normalized matrix of intensity values available on the website: (i) thresholding: floor of 100 and ceiling of 16,000; (ii) filtering: exclusion of genes with $\max/\min \leq 5$ or $(\max-\min) \leq 500$, where $\max$ and $\min$ refer respectively to the maximum and minimum intensities for a particular gene across mRNA samples; (iii) base 10 logarithmic transformation. Boxplots of the expression levels for each of the 38 samples revealed the need to standardize the expression levels within arrays before combining data across samples. The data were then summarized by a $3,051 \times 38 $ matrix $X=(x_{ji})$, where $x_{ji}$ denotes the expression level for gene $j$ in tumor mRNA sample $i$. \\ The dataset {\tt golub} contains the gene expression data for the 38 training set tumor mRNA samples and 3,051 genes retained after pre--processing. The dataset includes \begin{itemize} \item {{\tt golub}:} a $3,051 \times 38 $ matrix of expression levels; \item {{\tt golub.gnames}:} a $3,051 \times 3 $ matrix of gene identifiers; \item {{\tt golub.cl}:} a vector of tumor class labels (0 for ALL, 1 for AML). \end{itemize} %<>= <<>>= dim(golub) golub[1:4,1:4] dim(golub.gnames) golub.gnames[1:4,] golub.cl @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{The {\tt mt.teststat} and {\tt mt.teststat.num.denum} functions} The {\tt mt.teststat} and {\tt mt.teststat.num.denum} functions provide a convenient way to compute test statistics for each row of a data frame, e.g., two--sample Welch $t$--statistics, Wilcoxon statistics, $F$--statistics, paired $t$--statistics, block $F$--statistics. To compute two--sample $t$--statistics comparing, for each gene, expression in the ALL cases to expression in the AML cases %<>= <<>>= teststat<-mt.teststat(golub,golub.cl) @ The following produces a normal Quantile--Quantile (Q--Q) plot of the test statistics (Figure \ref{fig:mtQQ}) . In our application, we are not so much interested in testing whether the test statistics follow a particular distribution, but in using the Q--Q plot as a visual aid for identifying genes with ``unusual'' test statistics. Q--Q plots informally correct for the large number of comparisons and the points which deviate markedly from an otherwise linear relationship are likely to correspond to those genes whose expression levels differ between the control and treatment groups. %%<>= %%\begin{verbatim} <<>>= postscript("mtQQ.eps") qqnorm(teststat) qqline(teststat) dev.off() pdf("mtQQ.pdf") qqnorm(teststat) qqline(teststat) dev.off() @ %%\end{verbatim} %%@ We may also wish to look at plots of the numerators and denominators of the test statistics (Figure \ref{fig:mtNumDen}) %%<>= %%\begin{verbatim} <<>>= tmp<-mt.teststat.num.denum(golub,golub.cl,test="t") num<-tmp$teststat.num denum<-tmp$teststat.denum postscript("mtNumDen.eps") plot(sqrt(denum),num) dev.off() pdf("mtNumDen.pdf") plot(sqrt(denum),num) dev.off() @ %%\end{verbatim} %%@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{The {\tt mt.rawp2adjp} function} This function computes adjusted $p$--values for simple multiple testing procedures from a vector of raw (unadjusted) $p$--values. The procedures include the Bonferroni, \cite{Holm79}, \cite{Hochberg88}, and Sidak procedures for strong control of the family--wise Type I error rate (FWER), and the \cite{Benjamini&Hochberg95} and \cite{Benjamini&Yekutieli01} procedures for (strong) control of the false discovery rate (FDR). \\ As a first approximation, compute raw nominal two--sided $p$--values for the $3,051$ test statistics using the standard Gaussian distribution %%<>= <<>>= rawp0<-2*(1-pnorm(abs(teststat))) @ Adjusted $p$--values for these seven multiple testing procedures can be computed as follows and stored in the original gene order in {\tt adjp} using {\tt order(res\$index)} %%<>= <<>>= procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY") res<-mt.rawp2adjp(rawp0,procs) adjp<-res$adjp[order(res$index),] round(adjp[1:10,],2) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{The {\tt mt.maxT} and {\tt mt.minP} functions} The {\tt mt.maxT} and {\tt mt.minP} functions compute permutation adjusted $p$--values for the maxT and minP step--down multiple testing procedure described in \cite{Westfall&Young93}. These procedure provide strong control of the FWER and also incorporate the joint dependence structure between the test statistics. There are thus in general less conservative than the standard Bonferroni procedure. The permutation algorithm for the maxT and minP procedures is described in \cite{Ge&Dudoit}.\\ Permutation unadjusted $p$--values and adjusted $p$--values for the maxT procedure with Welch $t$--statistics are computed as follows. {\tt mt.maxT} returns $p$--values sorted in decreasing order of the absolute $t$--statistics and {\tt order(resT\$index)} is used to obtain $p$--values and test statistics in the original gene order. In practice, the number of permutations $B$ should be several thousands, we set $B=1,000$ here for illustration purposes. %%<>= <<>>= resT<-mt.maxT(golub,golub.cl,B=1000) ord<-order(resT$index) rawp<-resT$rawp[ord] maxT<-resT$adjp[ord] teststat<-resT$teststat[ord] @ Three functions related to the {\tt mt.maxT} and {\tt mt.minP} functions are {\tt mt.sample.teststat}, {\tt mt.sample.rawp}, and {\tt mt.sample.label}. These functions provide tools to investigate the permutation distribution of test statistics, raw (unadjusted) $p$--values, and class labels, respectively. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{The {\tt mt.reject} function} The function {\tt mt.reject} returns the identity and number of rejected hypotheses for several multiple testing procedures and different nominal Type I error rates. The number of hypotheses rejected using unadjusted $p$--values and maxT $p$--values for different Type I error rates ($\alpha=0, 0.1, 0.2, \ldots, 1$) can be obtained by %%<>= <<>>= mt.reject(cbind(rawp,maxT),seq(0,1,0.1))$r @ The genes with maxT $p$--values less than or equal to 0.01 are %%<>= <<>>= which<-mt.reject(cbind(rawp,maxT),0.01)$which[,2] golub.gnames[which,2] @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{The {\tt mt.plot} function} The {\tt mt.plot} function produces a number of graphical summaries for the results of multiple testing procedures and their corresponding adjusted $p$--values. To produce plots of sorted permutation unadjusted $p$--values and adjusted $p$--values for the Bonferroni, maxT, \cite{Benjamini&Hochberg95}, and \cite{Benjamini&Yekutieli01} procedures use %%<>= <<>>= res<-mt.rawp2adjp(rawp,c("Bonferroni","BH","BY")) adjp<-res$adjp[order(res$index),] allp<-cbind(adjp,maxT) dimnames(allp)[[2]]<-c(dimnames(adjp)[[2]],"maxT") procs<-dimnames(allp)[[2]] procs<-procs[c(1,2,5,3,4)] cols<-c(1,2,3,5,6) ltypes<-c(1,2,2,3,3) @ For plotting sorted adjusted $p$--values set the argument {\tt plottype="pvsr"} %%<>= %%\begin{verbatim} <<>>= postscript("mtpvsr.eps") mt.plot(allp[,procs],teststat,plottype="pvsr", proc=procs,leg=c(2000,0.4),lty=ltypes,col=cols,lwd=2) dev.off() pdf("mtpvsr.pdf") mt.plot(allp[,procs],teststat,plottype="pvsr", proc=procs,leg=c(2000,0.4),lty=ltypes,col=cols,lwd=2) dev.off() @ %%\end{verbatim} %%@ and for plotting adjusted $p$--values vs. the test statistics use {\tt plottype="pvst"} %%<>= %%\begin{verbatim} <<>>= postscript("mtpvst.eps") mt.plot(allp[,procs],teststat,plottype="pvst", logscale=TRUE,proc=procs,leg=c(-0.5,2),pch=ltypes,col=cols) dev.off() pdf("mtpvst.pdf") mt.plot(allp[,procs],teststat,plottype="pvst", logscale=TRUE,proc=procs,leg=c(-0.5,2),pch=ltypes,col=cols) dev.off() @ %%\end{verbatim} %%@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliography{multtest} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{figure}[ht] %%\centerline{\epsfig{figure=mtQQ.eps,width=4in,height=4in,angle=0}} \begin{center} \includegraphics[width=4in,height=4in,angle=0]{mtQQ} \end{center} \caption{Normal Q--Q plot of $t$--statistics for leukemia data.} \protect\label{fig:mtQQ} \end{figure} \begin{figure}[ht] %%\centerline{\epsfig{figure=mtNumDen.eps,width=4in,height=4in,angle=0}} \begin{center} \includegraphics[width=4in,height=4in,angle=0]{mtNumDen} \end{center} \caption{Numerator vs. square root of denominator of the $t$--statistics for the leukemia data.} \protect\label{fig:mtNumDen} \end{figure} \begin{figure}[ht] %%\centerline{\epsfig{figure=mtpvsr.eps,width=4in,height=4in,angle=0}} \begin{center} \includegraphics[width=4in,height=4in,angle=0]{mtpvsr} \end{center} \caption{Sorted adjusted $p$--values for the leukemia data.} \protect\label{fig:mtpvsr} \end{figure} \begin{figure}[ht] %%\centerline{\epsfig{figure=mtpvst.eps,width=4in,height=4in,angle=0}} \begin{center} \includegraphics[width=4in,height=4in,angle=0]{mtpvst} \end{center} \caption{Adjusted $p$--values (log scale) vs. $t$--statistics for the leukemia data.} \protect\label{fig:mtpvst} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} multtest/man/0000755000175200017520000000000014710217035014230 5ustar00biocbuildbiocbuildmulttest/man/EBMTP-class.Rd0000644000175200017520000003677514710217035016513 0ustar00biocbuildbiocbuild\name{EBMTP-class} \alias{EBMTP-class} \alias{EBMTP-method} \title{Class "EBMTP", classes and methods for empirical Bayes multiple testing procedure output} \description{An object of class EBMTP is the output of a particular multiple testing procedure, as generated by the function \code{EBMTP}. The object has slots for the various data used to make multiple testing decisions, in particular adjusted p-values.} \section{Objects from the Class}{ Objects can be created by calls of the form \cr new('MTP', \cr statistic = ...., object of class numeric\cr estimate = ...., object of class numeric\cr sampsize = ...., object of class numeric\cr rawp = ...., object of class numeric\cr adjp = ...., object of class numeric\cr reject = ...., object of class matrix\cr rawdist = ...., object of class matrix\cr nulldist = ...., object of class matrix\cr nulldist.type = ...., object of class character\cr marg.null = ...., object of class character\cr marg.par = ...., object of class matrix\cr label = ...., object of class numeric\cr falsepos = ...., object of class matrix\cr truepos = ...., object of class matrix\cr errormat = ...., object of class matrix\cr EB.h0M = ...., object of class numeric\cr prior = ...., object of class numeric\cr prior.type= ...., object of class character\cr lqv = ...., object of class numeric\cr Hsets = ...., object of class matrix\cr index = ...., object of class matrix\cr call = ...., object of class call\cr seed = ...., object of class integer\cr ) } \section{Slots}{ \describe{ \item{\code{statistic}}{Object of class \code{numeric}, observed test statistics for each hypothesis, specified by the values of the \code{MTP} arguments \code{test}, \code{robust}, \code{standardize}, and \code{psi0}.} \item{\code{estimate}}{For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests), the numeric vector of estimated parameters corresponding to each hypothesis, e.g. means, differences in means, regression parameters.} \item{\code{sampsize}}{Object of class \code{numeric}, number of columns (i.e. observations) in the input data set.} \item{\code{rawp}}{Object of class \code{numeric}, unadjusted, marginal p-values for each hypothesis.} \item{\code{adjp}}{Object of class \code{numeric}, adjusted (for multiple testing) p-values for each hypothesis (computed only if the \code{get.adjp} argument is TRUE).} \item{\code{reject}}{Object of class \code{'matrix'}, rejection indicators (TRUE for a rejected null hypothesis), for each value of the nominal Type I error rate \code{alpha}.} \item{\code{rawdist}}{The numeric matrix for the estimated nonparametric non-null test statistics distribution (returned only if \code{keep.rawdist=TRUE} and if \code{nulldist} is one of 'boot.ctr', 'boot.cs', or 'boot.qt'). This slot must not be empty if one wishes to call \code{update} to change choice of bootstrap-based null distribution.} \item{\code{nulldist}}{The numeric matrix for the estimated test statistics null distribution (returned only if \code{keep.nulldist=TRUE}). By default (i.e., for \code{nulldist='boot.cs'}), the entries of \code{nulldist} are the null value shifted and scaled bootstrap test statistics, with one null test statistic value for each hypothesis (rows) and bootstrap iteration (columns).} \item{\code{nulldist.type}}{Character value describing which choice of null distribution was used to generate the MTP results. Takes on one of the values of the original \code{nulldist} argument in the call to MTP, i.e., 'boot.cs', 'boot.ctr', 'boot.qt', or 'ic'.} \item{\code{marg.null}}{If \code{nulldist='boot.qt'}, a character value returning which choice of marginal null distribution was used by the MTP. Can be used to check default values or to ensure manual settings were correctly applied.} \item{\code{marg.par}}{If \code{nulldist='boot.qt'}, a numeric matrix returning the parameters of the marginal null distribution(s) used by the MTP. Can be used to check default values or to ensure manual settings were correctly applied.} \item{\code{falsepos}}{A matrix with rows equal to the number of hypotheses and columns the number of samples of null test statistics (\code{B}) indicating the number of guessed false positives when using the corresponding value of the observed test statistic as a cut-off. Not returned unless \code{keep.falsepos=TRUE}.} \item{\code{truepos}}{A matrix with rows equal to the number of hypotheses and columns the number of samples of null test statistics (\code{B}) indicating the number of guessed true positives when using the corresponding value of the observed test statistic as a cut-off. Not returned unless \code{keep.truepos=TRUE}.} \item{\code{errormat}}{The matrix obtained after applying to type I error rate function closure to the matrices in \code{falsepos}, and, if applicable, \code{truepos}. Not returned unless \code{keep.errormat=TRUE}.} \item{\code{EB.h0M}}{The sum of the local q-values obtained after density estimation. This number serves as an estimate of the proportion of true null hypotheses. Values close to one indicate situations in which type I error control may not be guaranteed by the EBMTP. When \code{prior='EBLQV'}, this value is used as the prior 'pi' during evaluation of the local q-value function.} \item{\code{prior}}{The numeric value of the prior 'pi' used when evaluating the local q-value function.} \item{\code{prior.type}}{Character string returning the value of \code{prior} in the original call to \code{EBMTP}. One of 'conservative', 'ABH', or 'EBLQV'.} \item{\code{lqv}}{A numeric vector of length the number of hypotheses with the estimated local q-values used for generating guessed sets of true null hypotheses.} \item{\code{Hsets}}{A numeric matrix with the same dimension as \code{nulldist}, containing the Bernoulli realizations of the estimated local q-values stored in \code{lqv} which were used to partition the hypotheses into guessed sets of true and false null hypotheses at each round of (re)sampling. Not returned unless \code{keep.Hsets=TRUE}.} \item{\code{label}}{If \code{keep.label=TRUE}, a vector storing the values used in the argument \code{Y}. Storing this object is particularly important when one wishes to update EBMTP objects with F-statistics using default \code{marg.null} and \code{marg.par} settings when \code{nulldist='boot.qt'}. } \item{\code{index}}{For tests of correlation parameters a matrix corresponding to \code{t(combn(p,2))}, where \code{p} is the number of variables in \code{X}. This matrix gives the indices of the variables considered in each pairwise correlation. For all other tests, this slot is empty, as the indices are in the same order as the rows of \code{X}.} \item{\code{call}}{Object of class \code{call}, the call to the MTP function.} \item{\code{seed}}{An integer or vector for specifying the state of the random number generator used to create the resampled datasets. The seed can be reused for reproducibility in a repeat call to \code{MTP}. This argument is currently used only for the bootstrap null distribution (i.e., for \code{nulldist="boot.xx"}). See \code{?set.seed} for details.} } } \section{Methods}{ \code{signature(x = "EBMTP")} \cr \describe{ \item{[}{: Subsetting method for \code{EBMTP} class, which operates selectively on each slot of an \code{EBMTP} instance to retain only the data related to the specified hypotheses.} \item{as.list}{: Converts an object of class \code{EBMTP} to an object of class \code{list}, with an entry for each slot.} \item{plot}{: plot methods for \code{EBMTP} class, produces the following graphical summaries of the results of a EBMTP. The type of display may be specified via the \code{which} argument. \cr 1. Scatterplot of number of rejected hypotheses vs. nominal Type I error rate. \cr 2. Plot of ordered adjusted p-values; can be viewed as a plot of Type I error rate vs. number of rejected hypotheses. \cr 3. Scatterplot of adjusted p-values vs. test statistics (also known as "volcano plot"). \cr 4. Plot of unordered adjusted p-values. \cr The plot method for objects of class \code{EBMTP} does not return the plots associated with \code{which=5} (using confidence regions) or with \code{which=6} (pertaining to cut-offs) as it does for objects of class \code{MTP}. This is because the function \code{EBMTP} currently only returns adjusted p-values. The argument \code{logscale} (by default equal to FALSE) allows one to use the negative decimal logarithms of the adjusted p-values in the second, third, and fourth graphical displays. The arguments \code{caption} and \code{sub.caption} allow one to change the titles and subtitles for each of the plots (default subtitle is the MTP function call). Note that some of these plots are implemented in the older function \code{mt.plot}.} \item{print}{: print method for \code{EBMTP} class, returns a description of an object of class \code{EBMTP}, including sample size, number of tested hypotheses, type of test performed (value of argument \code{test}), Type I error rate (value of argument \code{typeone}), nominal level of the test (value of argument \code{alpha}), name of the EBMTP (value of argument \code{method}), call to the function \code{EBMTP}. In addition, this method produces a table with the class, mode, length, and dimension of each slot of the \code{EBMTP} instance. } \item{summary}{: summary method for \code{EBMTP} class, provides numerical summaries of the results of an EBMTP and returns a list with the following three components. \cr 1. rejections: A data.frame with the number(s) of rejected hypotheses for the nominal Type I error rate(s) specified by the \code{alpha} argument of the function \code{MTP}. \cr 2. index: A numeric vector of indices for ordering the hypotheses according to first \code{adjp}, then \code{rawp}, and finally the absolute value of \code{statistic} (not printed in the summary). \cr 3. summaries: When applicable (i.e., when the corresponding quantities are returned by \code{MTP}), a table with six number summaries of the distributions of the adjusted p-values, unadjusted p-values, test statistics, and parameter estimates.} \item{EBupdate}{: update method for \code{EBMTP} class, provides a mechanism to re-run the MTP with different choices of the following arguments - nulldist, alternative, typeone, k, q, alpha, smooth.null, bw, kernel, prior, keep.nulldist, keep.rawdist, keep.falsepos, keep.truepos, keep.errormat, keep.margpar. When evaluate is 'TRUE', a new object of class EBMTP is returned. Else, the updated call is returned. The \code{EBMTP} object passed to the update method must have either a non-empty \code{rawdist} slot or a non-empty \code{nulldist} slot (i.e., must have been called with either 'keep.rawdist=TRUE' or 'keep.nulldist=TRUE'). \cr Additionally, when calling \code{EBupdate} for any Type I error rate other than FWER, the \code{typeone} argument must be specified (even if the original object did not control FWER). For example, \code{typeone="fdr"}, would always have to be specified, even if the original object also controlled the FDR. In other words, for all function arguments, it is safest to always assume that you are updating from the \code{EBMTP} default function settings, regardless of the original call to the \code{EBMTP} function. Currently, the main advantage of the \code{EBupdate} method is that it prevents the need for repeated estimation of the test statistics null distribution. \cr To save on memory, if one knows ahead of time that one will want to compare different choices of bootstrap-based null distribution, then it is both necessary and sufficient to specify 'keep.rawdist=TRUE', as there is no other means of moving between null distributions other than through the non-transformed non-parametric bootstrap distribution. In this case, 'keep.nulldist=FALSE' may be used. Specifically, if an object of class \code{EBMTP} contains a non-empty \code{rawdist} slot and an empty \code{nulldist} slot, then a new null distribution will be generated according to the values of the \code{nulldist=} argument in the original call to \code{EBMTP} or any additional specifications in the call to \code{update}. On the other hand, if one knows that one wishes to only update an \code{EBMTP} object in ways which do not involve choice of null distribution, then 'keep.nulldist=TRUE' will suffice and 'keep.rawdist' can be set to \code{FALSE} (default settings). The original null distribution object will then be used for all subsequent calls to \code{update}. \cr N.B.: Note that \code{keep.rawdist=TRUE} is only available for the bootstrap-based resampling methods. The non-null distribution does not exist for the permutation or influence curve multivariate normal null distributions. } \item{ebmtp2mtp}{: coersion method for converting objects of class \code{EBMTP} to objects of class \code{MTP}. Slots common to both objects are taken from the object of class \code{EBMTP} and used to create a new object of class \code{MTP}. Once an object of class \code{MTP} is created, one may use the method \code{update} to perform resampling-based multiple testing (as would have been done with calls to \code{MTP}) without the need for repeated resampling.} } } \references{ H.N. Gilbert, K.S. Pollard, M.J. van der Laan, and S. Dudoit (2009). Resampling-based multiple hypothesis testing with applications to genomics: New developments in R/Bioconductor package multtest. \emph{Journal of Statistical Software} (submitted). Temporary URL: \url{http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf}.\cr Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. \emph{J. Behav. Educ. Statist}. Vol 25: 60-83.\cr Y. Benjamini, A. M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that control the false discovery rate. \emph{Biometrika}. Vol. 93: 491-507.\cr M.J. van der Laan, M.D. Birkner, and A.E. Hubbard (2005). Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling the Tail Probability of the Proportion of False Positives. Statistical Applications in Genetics and Molecular Biology, 4(1). \url{http://www.bepress.com/sagmb/vol4/iss1/art29/} \cr S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. \cr S. Dudoit, H. N. Gilbert, and M. J. van der Laan (2008). Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study. \emph{Biometrical Journal}, 50(5):716-44. \url{http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html}. \cr H.N. Gilbert, M.J. van der Laan, and S. Dudoit. Joint multiple testing procedures for graphical model selection with applications to biological networks. Technical report, U.C. Berkeley Division of Biostatistics Working Paper Series, April 2009. URL \url{http://www.bepress.com/ucbbiostat/paper245}. \cr } \author{Houston N. Gilbert, based on the original \code{MTP} class and method definitions written by Katherine S. Pollard} \seealso{ \code{\link{EBMTP}}, \code{\link{EBMTP-methods}}, \code{\link{MTP}}, \code{\link{MTP-methods}}, \code{\link{[-methods}}, \code{\link{as.list-methods}}, \code{\link{print-methods}}, \code{\link{plot-methods}}, \code{\link{summary-methods}}, \code{\link{mtp2ebmtp}}, \code{\link{ebmtp2mtp}}} \examples{ ## See EBMTP function: ? EBMTP } \keyword{classes} multtest/man/EBMTP.Rd0000644000175200017520000003757214710217035015404 0ustar00biocbuildbiocbuild\name{EBMTP} \alias{EBMTP} \title{A function to perform empirical Bayes resampling-based multiple hypothesis testing} \description{ A user-level function to perform empirical Bayes multiple testing procedures (EBMTP). A variety of t- and F-tests, including robust versions of most tests, are implemented. A common-cutoff method is used to control the chosen type I error rate (FWER, gFWER, TPPFP, or FDR). Bootstrap-based null distributions are available. Additionally, for t-statistics, one may wish to sample from an appropriate multivariate normal distribution with mean zero and correlation matrix derived from the vector influence function. In EBMTP, realizations of local q-values, obtained via density estimation, are used to partition null and observed test statistics into guessed sets of true and false null hypotheses at each round of (re)sampling. In this manner, parameters of any type I error rate which can be expressed as a function the number of false positives and true positives can be estimated. Arguments are provided for user control of output. Gene selection in microarray experiments is one application. } \usage{ EBMTP(X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL, na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE, standardize = TRUE, alternative = "two.sided", typeone = "fwer", method = "common.cutoff", k = 0, q = 0.1, alpha = 0.05, smooth.null = FALSE, nulldist = "boot.cs", B = 1000, psi0 = 0, marg.null = NULL, marg.par = NULL, ncp = NULL, perm.mat = NULL, ic.quant.trans = FALSE, MVN.method = "mvrnorm", penalty = 1e-06, prior = "conservative", bw = "nrd", kernel = "gaussian", seed = NULL, cluster = 1, type = NULL, dispatch = NULL, keep.nulldist = TRUE, keep.rawdist = FALSE, keep.falsepos = FALSE, keep.truepos = FALSE, keep.errormat = FALSE, keep.Hsets=FALSE, keep.margpar = TRUE, keep.index = FALSE, keep.label = FALSE) } \arguments{ For brevity, the presentation of arguments below will highlight those which differ significantly from arguments in the other main-level user function \code{MTP}. See \code{\link{MTP}} for further details. \item{typeone}{Character string indicating which type I error rate to control, by default family-wise error rate ('fwer'). Other options include generalized family-wise error rate ('gfwer'), with parameter \code{k} giving the allowed number of false positives, and tail probability of the proportion of false positives ('tppfp'), with parameter \code{q} giving the allowed proportion of false positives. The false discovery rate ('fdr') can also be controlled. In particular, for 'gfwer', 'tppfp' and 'fdr', multiple testing is not performed via augmentation of the results of a FWER-controlling MTP. Rather, using guessed sets of true and false null hypotheses, these error rates are controlled in a more direct manner.} \item{method}{Character string indicating the EBMTP method. Currently only 'common.cutoff' is implemented. This method is most similar to 'ss.maxT' in \code{MTP}.} \item{nulldist}{Character string indicating which resampling method to use for estimating the joint test statistics null distribution, by default the non-parametric bootstrap with centering and scaling ('boot.cs'). The old default 'boot' will still compile and will correspond to 'boot.cs'. Other null distribution options include 'boot.ctr', 'boot.qt', and 'ic', corresponding to the centered-only bootstrap distribution, quantile-transformed bootstrap distribution, and influence curve multivariate normal joint null distribution, respectively. The permutation distribution is not available.} \item{prior}{Character string indicating which choice of prior probability to use for estimating local q-values (i.e., the posterior probabilities of a null hypothesis being true given the value of its corresponding test statistic). Default is 'conservative', in which case the prior is set to its most conservative value of 1, meaning that all hypotheses are assumed to belong to the set of true null hypotheses. Other options include 'ABH' for the adaptive Benjamini-Hochberg estimator of the number/proportion of true null hypotheses, and 'EBLQV' for the empirical Bayes local q-value value estimator of the number/proportion of true null hypotheses. If 'EBLQV', the estimator of the prior probability is taken to be the sum of the estimated local q-values divided by the number of tests. Relaxing the prior may result in more rejections, albeit at a cost of type I error control under certain conditions. See details and references.} \item{bw}{A character string argument to \code{density} indicating the smoothing bandwidth to be used during kernel density estimation. Default is 'nrd'.} \item{kernel}{A character string argument to \code{density} specifying the smoothing kernel to be used. Default is 'gaussian'.} \item{keep.falsepos}{A logical indicating whether or not to store the matrix of guessed false positives at each round of (re)sampling. The matrix has rows equal to the number of cut-offs (observed test statistics) and columns equal to the \code{B} number of bootstrap samples or samples from the multivariate normal distribution (if \code{nulldist='ic'}). Default is 'FALSE'.} \item{keep.truepos}{A logical indicating whether or not to store the matrix of guessed true positives at each round of (re)sampling. The matrix has rows equal to the number of cut-offs (observed test statistics) and columns equal to the \code{B} number of bootstrap samples or samples from the multivariate normal distribution (if \code{nulldist='ic'}). Default is 'FALSE'.} \item{keep.errormat}{A logical indicating whether or not to store the matrix of type I error rate values at each round of (re)sampling. The matrix has rows equal to the number of cut-offs (observed test statistics) and columns equal to the \code{B} number of bootstrap samples or samples from the multivariate normal distribution (if \code{nulldist='ic'}). Default is 'FALSE'. In the case of FDR-control, for example, this matrix is \code{falsepos}/(\code{falsepos} + \code{truepos}). The row means of this matrix are eventually used for assigning/ordering adjusted p-values to test statistics of each hypothesis.} \item{keep.Hsets}{A logical indicating whether or not to return the matrix of indicators which partition the hypotheses into guessed sets of true and false null hypotheses at each round of (re)sampling. Default is 'FALSE'.} \item{X, W, Y, Z, Z.incl, Z.test, na.rm, test, robust, standardize, alternative, k, q, alpha, smooth.null, B, psi0, marg.null, marg.par, ncp, perm.mat, ic.quant.trans, MVN.method, penalty, seed, cluster, type, dispatch, keep.nulldist, keep.rawdist, keep.margpar, keep.index, keep.label}{These arguments are all similarly used by the \code{MTP} function, and their use has been defined elsewhere. Please consult the \code{link{MTP}} help file or the references for further details. Note that the \code{MTP}-function arguments \code{get.cr, get.cutoff, get.adjp} are now DEPRECATED in the \code{EBMTP} function. Only adjusted p-values are calculated by \code{EBMTP}. These adjusted p-values are returned in the same order as the original hypotheses and raw p-values (typically corresponding to rows of \code{X}.)} } \details{ The EBMTP begins with a marginal nonparametric mixture model for estimating local q-values. By definition, q-values are 'the opposite' of traditional p-values. That is, q-values represent the probability of null hypothesis being true given the value of its corresponding test statistic. If the test statistics Tn have marginal distribution f = pi*f_0 + (1-pi)f_1, where pi is the prior probability of a true null hypothesis and f_0 and f_1 represent the marginal null and alternative densities, respectively, then the local q-value function is given by pi*f_0(Tn)/f(Tn). \cr One can estimate both the null density f_0 and full density f by applying kernel density estimation over the matrix of null test statistics and the vector of observed test statistics, respectively. Practically, this step in \code{EBMTP} also ensures that sidedness is correctly accounted for among the test statistics and their estimated null distribution. The prior probability pi can be set to its most conservative value of 1 or estimated by some other means, e.g., using the adaptive Benjamini Hochberg ('ABH') estimator or by summing up the estimated local q-values themselves ('EBLQV')and dividing by the number of tests. Bounding these estimated probabilities by one provides a vector of estimated local q-values with length equal to the number of hypotheses. Bernoulli 0/1 realizations of the posterior probabilities indicate which hypotheses are guessed as belonging to the true set of null hypotheses given the value of their test statistics. Once this partitioning has been achieved, one can count the numbers of guessed false positives and guessed true positives at each round of (re)sampling that are obtained when using the value of an observed test statistic as a cut-off. \cr EBMTPs use function closures to represent type I error rates in terms of their defining features. Restricting the choice of type I error rate to 'fwer', 'gfwer', 'tppfp', and 'fdr', means that these features include whether to control the number of false positives or the proportion of false positives among the number of rejetions made (i.e., the false discovery proportion), whether we are controlling a tail probability or expected value error rate, and, in the case of tail probability error rates, what bound we are placing on the random variable defining the type I error rate (e.g., k for 'gfwer' or 'q' for 'tppfp'). Averaging the type I error results over B (bootstrap or multivariate normal) samples provides an estimator of the evidence against the null hypothesis (adjusted p-values) with respect to the choice of type I error rate. Finally, a monotonicity constraint is placed on the adjusted p-values before being returned as output. \cr As detailed in the references, relaxing the prior may result in a more powerful multiple testing procedure, albeit sometimes at the cost of type I error control. Additionally, when the proportion of true null hypotheses is close to one, type I error control may also become an issue, even when using the most conservative prior probability of one. This feature is known to occur with some other procedures which rely on the marginal nonparametric mixture model for estimating (local) q-values. The slot \code{EB.h0M} returned by objects of class \code{EBMTP} is the sum of the local q-values estimated via kernel density estimation (divided by the total number of tests). If this value is close to one (>0.9-0.95), the user will probably not want relax the prior, as even the conservative EBMTP might be approaching a performance bound with respect to type I error control. The user is advised to begin by using the most 'conservative' prior, assess the estimated proportion of true null hypotheses, and then decide if relaxing the prior might be desired. Gains in power over other multiple testing procedures have been observed even when using the most conservative prior of one. \cr Situations of moderate-high to high levels of correlation may also affect the results of multiple testing methods which use the same mixture model for generating q-values. Microarray analysis represents a scenario in which dependence structures are typically weak enough to mitigate this concern. On the other hand, the analysis of densely sampled SNPs, for example, may present problems. \cr } \value{ An object of class \code{EBMTP}. Again, for brevity, the values below represent slots which distinguish objects of class \code{EBMTP} from those of class \code{MTP}. \cr \item{\code{falsepos}}{A matrix with rows equal to the number of hypotheses and columns the number of samples of null test statistics (\code{B}) indicating the number of guessed false positives when using the corresponding value of the observed test statistic as a cut-off. Not returned unless \code{keep.falsepos=TRUE}.} \item{\code{truepos}}{A matrix with rows equal to the number of hypotheses and columns the number of samples of null test statistics (\code{B}) indicating the number of guessed true positives when using the corresponding value of the observed test statistic as a cut-off. Not returned unless \code{keep.truepos=TRUE}.} \item{\code{errormat}}{The matrix obtained after applying to type I error rate function closure to the matrices in \code{falsepos}, and, if applicable, \code{truepos}. Not returned unless \code{keep.errormat=TRUE}.} \item{\code{EB.h0M}}{The sum of the local q-values obtained after density estimation. This number serves as an estimate of the proportion of true null hypotheses. Values close to one indicate situations in which type I error control may not be guaranteed by the EBMTP. When \code{prior='EBLQV'}, this value is used as the prior 'pi' during evaluation of the local q-value function.} \item{\code{prior}}{The numeric value of the prior 'pi' used when evaluating the local q-value function.} \item{\code{prior.type}}{Character string returning the value of \code{prior} in the original call to \code{EBMTP}. One of 'conservative', 'ABH', or 'EBLQV'.} \item{\code{lqv}}{A numeric vector of length the number of hypotheses with the estimated local q-values used for generating guessed sets of true null hypotheses.} \item{\code{Hsets}}{A numeric matrix with the same dimension as \code{nulldist}, containing the Bernoulli realizations of the estimated local q-values stored in \code{lqv} which were used to partition the hypotheses into guessed sets of true and false null hypotheses at each round of (re)sampling. Not returned unless \code{keep.Hsets=TRUE}.} } \references{ H.N. Gilbert, K.S. Pollard, M.J. van der Laan, and S. Dudoit (2009). Resampling-based multiple hypothesis testing with applications to genomics: New developments in R/Bioconductor package multtest. \emph{Journal of Statistical Software} (submitted). Temporary URL: \url{http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf}.\cr Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. \emph{J. Behav. Educ. Statist}. Vol 25: 60-83.\cr Y. Benjamini, A. M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that control the false discovery rate. \emph{Biometrika}. Vol. 93: 491-507.\cr M.J. van der Laan, M.D. Birkner, and A.E. Hubbard (2005). Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling the Tail Probability of the Proportion of False Positives. Statistical Applications in Genetics and Molecular Biology, 4(1). \url{http://www.bepress.com/sagmb/vol4/iss1/art29/} \cr S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. \cr S. Dudoit, H.N. Gilbert, and M J. van der Laan (2008). Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study. \emph{Biometrical Journal}, 50(5):716-44. \url{http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html}. \cr H.N. Gilbert, M.J. van der Laan, and S. Dudoit. Joint multiple testing procedures for graphical model selection with applications to biological networks. Technical report, U.C. Berkeley Division of Biostatistics Working Paper Series, April 2009. URL \url{http://www.bepress.com/ucbbiostat/paper245}. \cr } \author{Houston N. Gilbert, based on the original \code{MTP} code written by Katherine S. Pollard} \seealso{\code{\link{MTP}}, \code{\link{EBMTP-class}}, \code{\link{EBMTP-methods}}, \code{\link{Hsets}}} \examples{ set.seed(99) data<-matrix(rnorm(90),nr=9) group<-c(rep(1,5),rep(0,5)) #EB fwer control with centered and scaled bootstrap null distribution #(B=100 for speed) eb.m1<-EBMTP(X=data,Y=group,alternative="less",B=100,method="common.cutoff") print(eb.m1) summary(eb.m1) par(mfrow=c(2,2)) plot(eb.m1,top=9) } multtest/man/Hsets.Rd0000644000175200017520000002045114710217035015607 0ustar00biocbuildbiocbuild\name{Hsets} \alias{Hsets} \alias{G.VS} \alias{ABH.h0} \alias{VScount} \alias{dens.est} \title{Functions for generating guessed sets of true null hypotheses in empirical Bayes resampling-based multiple hypothesis testing} \description{These functions are called internally by the main user-level function \code{EBMTP}. They are used for estimating local q-values, generating guessed sets of true null hypotheses, and applying these results to function closures defining the choice of type I error rate (FWER, gFWER, TPPFP, and FDR).} \usage{ Hsets(Tn, nullmat, bw, kernel, prior, B, rawp) ABH.h0(rawp) G.VS(V, S = NULL, tp = TRUE, bound) } \arguments{ \item{Tn}{The vector of observed test statistics.} \item{nullmat}{The matrix of null test statistics obtained either through null transformation of the bootstrap distribution or by sampling from an appropriate multivariate normal distribution (when \code{nulldist='ic'}.)} \item{bw}{A character string argument to \code{density} indicating the smoothing bandwidth to be used during kernel density estimation. Default is 'nrd'.} \item{kernel}{A character string argument to \code{density} specifying the smoothing kernel to be used. Default is 'gaussian'.} \item{prior}{Character string indicating which choice of prior probability to use for estimating local q-values (i.e., the posterior probabilities of a null hypothesis being true given the value of its corresponding test statistic). Default is 'conservative', in which case the prior is set to its most conservative value of 1, meaning that all hypotheses are assumed to belong to the set of true null hypotheses. Other options include 'ABH' for the adaptive Benjamini-Hochberg estimator of the number/proportion of true null hypotheses, and 'EBLQV' for the empirical Bayes local q-value value estimator of the number/proportion of true null hypotheses. If 'EBLQV', the estimator of the prior probability is taken to be the sum of the estimated local q-values divided by the number of tests. Relaxing the prior may result in more rejections, albeit at a cost of type I error control under certain conditions. See references.} \item{B}{The number of bootstrap iterations (i.e. how many resampled data sets) or the number of samples from the multivariate normal distribution (if \code{nulldist='ic'}). Can be reduced to increase the speed of computation, at a cost to precision. Default is 1000.} \item{rawp}{A vector of raw (unadjusted) p-values obtained bootstrap-based or influence curve null distribution.} \item{V}{A matrix of the numbers of guessed false positives for each cut-off, i.e., observed value of a test statistic, within each sample in \code{B}.} \item{S}{A matrix of the numbers of guessed true positives for each cut-off, i.e., observed value of a test statistic, within each sample in \code{B}.} \item{tp}{Logical indicator which is TRUE if type I error rate is a tail probability error rate and FALSE is if it is an expected value error rate.} \item{bound}{If a tail probability error rate, the bound to be placed on function of guessed false positives and guessed true positives. For, 'fwer', equal to 0; 'gfwer', equal to 'k'; and tppfp, equal to 'q'.} } \details{ The most important object to be returned from the function \code{Hsets} is a matrix of indicators, i.e., Bernoulli realizations of the estimated local q-values, taking the value of 1 if the hypothesis is guessed as belonging to the set of true null hypotheses and 0 otherwise (guessed true alternative). Realizations of these probabilities are generated with a call to \code{rbinom}, meaning that this function will set the RNG seed forward another \code{B}*(the number of hypotheses) places. This matrix, with rows equal to the number of hypotheses and columns the number of (bootstrap or multivariate normal) samples is used to subset the matrix of null test statistics and the vector of observed test statistics at each round of (re)sampling into samples of statistics guessed as belonging to the sets of true null and true alternative hypotheses, respectively. Using the values of the observed test statistics themselves as cut-offs, the numbers of guessed false positives and (if applicable) guessed true positives can be counted and eventually used to estimate the distribution of a type I error rate characterized by the closure returned from \code{G.VS}. Counting of guessed false positives and guessed true positives is performed in C through the function \code{VScount}. } \value{ For the function \code{Hsets}, a list with the following elements: \item{Hsets.mat}{A matrix of numeric indicators with rows equal to the number of test (hypotheses, typically \code{nrow(X)}) and columns the number of samples of null test statistics, \code{B}. Values of one indicate hypotheses guessed as belonging to the set of true null hypotheses based on the value of their corresponding test statistic. Values of zero correspond to hypotheses guesses as belonging to the set of true alternative hypotheses.} \item{EB.h0M}{The estimated proportion of true null hypotheses as determined by nonparametric density estimation. This value is the sum of the estimated local q-values divided by the total number of tests (hypotheses).} \item{prior}{The value of the prior applied to the local q-value function. If 'conservative', the prior is set to one. Otherwise, the prior is the value obtained from the estimator of the adaptive Benjamini-Hochberg procedure (if \code{prior} is 'ABH') or from density estimation (if \code{prior} is 'EBLQV').} \item{pn.out}{The vector of estimated local q-values. This vector is returned in the \code{lqv} slot of objects of class \code{EBMTP}.} For the function \code{ABH.h0}, the estimated number of true null hypotheses using the estimator from the linear step-up adaptive Benjamini-Hochberg procedure. \cr For the function \code{G.VS}, a closure which accepts as arguments the matrices of guessed false positive and true positives (if applicable) and applies the appropriate function defining the desired type I error rate. } \references{ H.N. Gilbert, K.S. Pollard, M.J. van der Laan, and S. Dudoit (2009). Resampling-based multiple hypothesis testing with applications to genomics: New developments in R/Bioconductor package multtest. \emph{Journal of Statistical Software} (submitted). Temporary URL: \url{http://www.stat.berkeley.edu/~houston/JSSNullDistEBMTP.pdf}.\cr Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. \emph{J. Behav. Educ. Statist}. Vol 25: 60-83.\cr Y. Benjamini, A.M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that control the false discovery rate. \emph{Biometrika}. Vol. 93: 491-507.\cr M.J. van der Laan, M.D. Birkner, and A.E. Hubbard (2005). Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling the Tail Probability of the Proportion of False Positives. Statistical Applications in Genetics and Molecular Biology, 4(1). \url{http://www.bepress.com/sagmb/vol4/iss1/art29/} \cr S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. \cr S. Dudoit, H.N. Gilbert, and M.J. van der Laan (2008). Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study. \emph{Biometrical Journal}, 50(5):716-44. \url{http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html}. \cr H.N. Gilbert, M.J. van der Laan, and S. Dudoit. Joint multiple testing procedures for graphical model selection with applications to biological networks. Technical report, U.C. Berkeley Division of Biostatistics Working Paper Series, April 2009. URL \url{http://www.bepress.com/ucbbiostat/paper245}. \cr } \author{Houston N. Gilbert} \seealso{\code{\link{EBMTP}}, \code{\link{EBMTP-class}}, \code{\link{EBMTP-methods}}} \examples{ set.seed(99) data<-matrix(rnorm(90),nr=9) group<-c(rep(1,5),rep(0,5)) #EB fwer control with centered and scaled bootstrap null distribution #(B=100 for speed) eb.m1<-EBMTP(X=data,Y=group,alternative="less",B=100,method="common.cutoff") print(eb.m1) summary(eb.m1) par(mfrow=c(2,2)) plot(eb.m1,top=9) abh <- ABH.h0(eb.m1@rawp) abh eb.m2 <- EBupdate(eb.m1,prior="ABH") eb.m2@prior } multtest/man/MTP-class.Rd0000755000175200017520000003172014710217035016270 0ustar00biocbuildbiocbuild\name{MTP-class} \docType{class} \alias{MTP-class} \title{Class "MTP", classes and methods for multiple testing procedure output} \description{An object of class MTP is the output of a particular multiple testing procedure, for example, generated by the MTP function. It has slots for the various data used to make multiple testing decisions, such as adjusted p-values and confidence regions.} \section{Objects from the Class}{ Objects can be created by calls of the form \cr new('MTP', \cr statistic = ...., object of class numeric\cr estimate = ...., object of class numeric\cr sampsize = ...., object of class numeric\cr rawp = ...., object of class numeric\cr adjp = ...., object of class numeric\cr conf.reg = ...., object of class array\cr cutoff = ...., object of class matrix\cr reject = ...., object of class matrix\cr rawdist = ...., object of class matrix\cr nulldist = ...., object of class matrix\cr nulldist.type = ...., object of class character\cr marg.null = ...., object of class character\cr marg.par = ...., object of class matrix\cr label = ...., object of class numeric\cr index = ...., object of class matrix\cr call = ...., object of class call\cr seed = ...., object of class integer\cr ) } \section{Slots}{ \describe{ \item{\code{statistic}}{Object of class \code{numeric}, observed test statistics for each hypothesis, specified by the values of the \code{MTP} arguments \code{test}, \code{robust}, \code{standardize}, and \code{psi0}.} \item{\code{estimate}}{For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests), the numeric vector of estimated parameters corresponding to each hypothesis, e.g. means, differences in means, regression parameters.} \item{\code{sampsize}}{Object of class \code{numeric}, number of columns (i.e. observations) in the input data set.} \item{\code{rawp}}{Object of class \code{numeric}, unadjusted, marginal p-values for each hypothesis.} \item{\code{adjp}}{Object of class \code{numeric}, adjusted (for multiple testing) p-values for each hypothesis (computed only if the \code{get.adjp} argument is TRUE).} \item{\code{conf.reg}}{For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests), the numeric array of lower and upper simultaneous confidence limits for the parameter vector, for each value of the nominal Type I error rate \code{alpha} (computed only if the \code{get.cr} argument is TRUE).} \item{\code{cutoff}}{The numeric matrix of cut-offs for the vector of test statistics for each value of the nominal Type I error rate \code{alpha} (computed only if the \code{get.cutoff} argument is TRUE).} \item{\code{reject}}{Object of class \code{'matrix'}, rejection indicators (TRUE for a rejected null hypothesis), for each value of the nominal Type I error rate \code{alpha}.} \item{\code{rawdist}}{The numeric matrix for the estimated nonparametric non-null test statistics distribution (returned only if \code{keep.rawdist=TRUE} and if \code{nulldist} is one of 'boot.ctr', 'boot.cs', or 'boot.qt'). This slot must not be empty if one wishes to call \code{update} to change choice of bootstrap-based null distribution.} \item{\code{nulldist}}{The numeric matrix for the estimated test statistics null distribution (returned only if \code{keep.nulldist=TRUE}); option not currently available for permutation null distribution, i.e., \code{nulldist='perm'}). By default (i.e., for \code{nulldist='boot.cs'}), the entries of \code{nulldist} are the null value shifted and scaled bootstrap test statistics, with one null test statistic value for each hypothesis (rows) and bootstrap iteration (columns).} \item{\code{nulldist.type}}{Character value describing which choice of null distribution was used to generate the MTP results. Takes on one of the values of the original \code{nulldist} argument in the call to MTP, i.e., 'boot.cs', 'boot.ctr', 'boot.qt', 'ic', or 'perm'.} \item{\code{marg.null}}{If \code{nulldist='boot.qt'}, a character value returning which choice of marginal null distribution was used by the MTP. Can be used to check default values or to ensure manual settings were correctly applied.} \item{\code{marg.par}}{If \code{nulldist='boot.qt'}, a numeric matrix returning the parameters of the marginal null distribution(s) used by the MTP. Can be used to check default values or to ensure manual settings were correctly applied.} \item{\code{label}}{If \code{keep.label=TRUE}, a vector storing the values used in the argument \code{Y}. Storing this object is particularly important when one wishes to update MTP objects with F-statistics using default \code{marg.null} and \code{marg.par} settings when \code{nulldist='boot.qt'}. } \item{\code{index}}{For tests of correlation parameters a matrix corresponding to \code{t(combn(p,2))}, where \code{p} is the number of variables in \code{X}. This matrix gives the indices of the variables considered in each pairwise correlation. For all other tests, this slot is empty, as the indices are in the same order as the rows of \code{X}.} \item{\code{call}}{Object of class \code{call}, the call to the MTP function.} \item{\code{seed}}{An integer or vector for specifying the state of the random number generator used to create the resampled datasets. The seed can be reused for reproducibility in a repeat call to \code{MTP}. This argument is currently used only for the bootstrap null distribution (i.e., for \code{nulldist="boot.xx"}). See \code{?set.seed} for details.} } } \section{Methods}{ \code{signature(x = "MTP")} \cr \describe{ \item{[}{: Subsetting method for \code{MTP} class, which operates selectively on each slot of an \code{MTP} instance to retain only the data related to the specified hypotheses.} \item{as.list}{: Converts an object of class \code{MTP} to an object of class \code{list}, with an entry for each slot.} \item{plot}{: plot methods for \code{MTP} class, produces the following graphical summaries of the results of a MTP. The type of display may be specified via the \code{which} argument. \cr 1. Scatterplot of number of rejected hypotheses vs. nominal Type I error rate. \cr 2. Plot of ordered adjusted p-values; can be viewed as a plot of Type I error rate vs. number of rejected hypotheses. \cr 3. Scatterplot of adjusted p-values vs. test statistics (also known as "volcano plot"). \cr 4. Plot of unordered adjusted p-values. \cr 5. Plot of confidence regions for user-specified parameters, by default the 10 parameters corresponding to the smallest adjusted p-values (argument \code{top}). \cr 6. Plot of test statistics and corresponding cut-offs (for each value of \code{alpha}) for user-specified hypotheses, by default the 10 hypotheses corresponding to the smallest adjusted p-values (argument \code{top}). \cr The argument \code{logscale} (by default equal to FALSE) allows one to use the negative decimal logarithms of the adjusted p-values in the second, third, and fourth graphical displays. The arguments \code{caption} and \code{sub.caption} allow one to change the titles and subtitles for each of the plots (default subtitle is the MTP function call). Note that some of these plots are implemented in the older function \code{mt.plot}.} \item{print}{: print method for \code{MTP} class, returns a description of an object of class \code{MTP}, including sample size, number of tested hypotheses, type of test performed (value of argument \code{test}), Type I error rate (value of argument \code{typeone}), nominal level of the test (value of argument \code{alpha}), name of the MTP (value of argument \code{method}), call to the function \code{MTP}. In addition, this method produces a table with the class, mode, length, and dimension of each slot of the \code{MTP} instance. } \item{summary}{: summary method for \code{MTP} class, provides numerical summaries of the results of a MTP and returns a list with the following three components. \cr 1. rejections: A data.frame with the number(s) of rejected hypotheses for the nominal Type I error rate(s) specified by the \code{alpha} argument of the function \code{MTP}. (NULL values are returned if all three arguments \code{get.cr}, \code{get.cutoff}, and \code{get.adjp} are FALSE). \cr 2. index: A numeric vector of indices for ordering the hypotheses according to first \code{adjp}, then \code{rawp}, and finally the absolute value of \code{statistic} (not printed in the summary). \cr 3. summaries: When applicable (i.e., when the corresponding quantities are returned by \code{MTP}), a table with six number summaries of the distributions of the adjusted p-values, unadjusted p-values, test statistics, and parameter estimates.} \item{update}{: update method for \code{MTP} class, provides a mechanism to re-run the MTP with different choices of the following arguments - nulldist, alternative, typeone, k, q, fdr.method, alpha, smooth.null, method, get.cr, get.cutoff, get.adjp, keep.nulldist, keep.rawdist, keep.margpar. When evaluate is 'TRUE', a new object of class MTP is returned. Else, the updated call is returned. The \code{MTP} object passed to the update method must have either a non-empty \code{rawdist} slot or a non-empty \code{nulldist} slot (i.e., must have been called with either 'keep.rawdist=TRUE' or 'keep.nulldist=TRUE').\cr To save on memory, if one knows ahead of time that one will want to compare different choices of bootstrap-based null distribution, then it is both necessary and sufficient to specify 'keep.rawdist=TRUE', as there is no other means of moving between null distributions other than through the non-transformed non-parametric bootstrap distribution. In this case, 'keep.nulldist=FALSE' may be used. Specifically, if an object of class \code{MTP} contains a non-empty \code{rawdist} slot and an empty \code{nulldist} slot, then a new null distribution will be generated according to the values of the \code{nulldist=} argument in the original call to \code{MTP} or any additional specifications in the call to \code{update}. On the other hand, if one knows that one wishes to only update an \code{MTP} object in ways which do not involve choice of null distribution, then 'keep.nulldist=TRUE' will suffice and 'keep.rawdist' can be set to \code{FALSE} (default settings). The original null distribution object will then be used for all subsequent calls to \code{update}. \cr N.B.: Note that \code{keep.rawdist=TRUE} is only available for the bootstrap-based resampling methods. The non-null distribution does not exist for the permutation or influence curve multivariate normal null distributions. } \item{mtp2ebmtp}{: coersion method for converting objects of class \code{MTP} to objects of class \code{EBMTP}. Slots common to both objects are taken from the object of class \code{MTP} and used to create a new object of class \code{EBMTP}. Once an object of class \code{EBMTP} is created, one may use the method \code{EBupdate} to perform resampling-based empirical Bayes multiple testing without the need for repeated resampling.} } } \references{ M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art15/} M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art14/} S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art13/} Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 121. \url{http://www.bepress.com/ucbbiostat/paper121} M.J. van der Laan and A.E. Hubbard (2006), Quantile-function Based Null Distributions in Resampling Based Multiple Testing, Statistical Applications in Genetics and Molecular Biology, 5(1). \url{http://www.bepress.com/sagmb/vol5/iss1/art14/} S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. } \author{Katherine S. Pollard and Houston N. Gilbert with design contributions from Sandrine Dudoit and Mark J. van der Laan.} \seealso{ \code{\link{MTP}}, \code{\link{MTP-methods}}, \code{\link{EBMTP}}, \code{\link{EBMTP-methods}}, \code{\link{[-methods}}, \code{\link{as.list-methods}}, \code{\link{print-methods}}, \code{\link{plot-methods}}, \code{\link{summary-methods}}, \code{\link{mtp2ebmtp}}, \code{\link{ebmtp2mtp}}} \examples{ ## See MTP function: ? MTP } \keyword{classes} multtest/man/MTP-methods.Rd0000755000175200017520000002253714710217035016634 0ustar00biocbuildbiocbuild\name{MTP-methods} \docType{methods} \alias{MTP-methods} \alias{EBMTP-methods} \alias{[-methods} \alias{[,MTP-method} \alias{[,EBMTP-method} \alias{as.list-methods} \alias{as.list,MTP-method} \alias{as.list,EBMTP-method} \alias{as.list} \alias{plot-methods} \alias{plot,MTP,ANY-method} \alias{plot,EBMTP,ANY-method} \alias{plot} \alias{print-methods} \alias{print,MTP-method} \alias{print,EBMTP-method} \alias{print.MTP} \alias{summary-methods} \alias{summary,MTP-method} \alias{summary,EBMTP-method} \alias{summary} \alias{update-methods} \alias{update,MTP-method} \alias{update} \alias{EBupdate-methods} \alias{EBupdate,EBMTP-method} \alias{EBupdate} \alias{mtp2ebmtp-methods} \alias{mtp2ebmtp,MTP-method} \alias{mtp2ebmtp} \alias{ebmtp2mtp-methods} \alias{ebmtp2mtp,EBMTP-method} \alias{ebmtp2mtp} \title{Methods for MTP and EBMTP objects in Package `multtest'} \description{Summary, printing, plotting, subsetting, updating, as.list and class conversion methods were defined for the \code{MTP} and \code{EBMTP} classes. These methods provide visual and numeric summaries of the results of a multiple testing procedure (MTP) and allow one to perform some basic manipulations of objects class \code{MTP} or \code{EBMTP}. \cr Several of the methods with the same name will work on objects of their respective class. One exception to this rule is the difference between \code{update} and \code{EBupdate} (described below). Because of the differences in the testing procedures, separately named methods were chosen to clearly delineate which method was being applied to which type of object.} \section{Methods}{ \describe{ \item{[}{: Subsetting method for \code{MTP} and \code{EBMTP} classes, which operates selectively on each slot of an \code{MTP} or \code{EBMTP} instance to retain only the data related to the specified hypotheses.} \item{as.list}{: Converts an object of class \code{MTP} or \code{EBMTP} to an object of class \code{list}, with an entry for each slot.} \item{plot}{: plot methods for \code{MTP} and \code{EBMTP} classes, produces the following graphical summaries of the results of a MTP. The type of display may be specified via the \code{which} argument. \cr 1. Scatterplot of number of rejected hypotheses vs. nominal Type I error rate. \cr 2. Plot of ordered adjusted p-values; can be viewed as a plot of Type I error rate vs. number of rejected hypotheses. \cr 3. Scatterplot of adjusted p-values vs. test statistics (also known as volcano plot). \cr 4. Plot of unordered adjusted p-values. \cr Only for objects of class \code{MTP}: \cr 5. Plot of confidence regions for user-specified parameters, by default the 10 parameters corresponding to the smallest adjusted p-values (argument \code{top}). \cr 6. Plot of test statistics and corresponding cut-offs (for each value of \code{alpha}) for user-specified hypotheses, by default the 10 hypotheses corresponding to the smallest adjusted p-values (argument \code{top}). \cr Plots (5) and (6) are not available for objects of class \code{EBMTP} because the function \code{EBMTP} returns only adjusted p-values and not confidence regions of cut-offs. The argument \code{logscale} (by default equal to FALSE) allows one to use the negative decimal logarithms of the adjusted p-values in the second, third, and fourth graphical displays. The arguments \code{caption} and \code{sub.caption} allow one to change the titles and subtitles for each of the plots (default subtitle is the MTP function call). Note that some of these plots are implemented in the older function \code{mt.plot}.} \item{print}{: print method for \code{MTP} and \code{EBMTP} classes, returns a description of an object of either class, including sample size, number of tested hypotheses, type of test performed (value of argument \code{test}), Type I error rate (value of argument \code{typeone}), nominal level of the test (value of argument \code{alpha}), name of the MTP (value of argument \code{method}), call to the function \code{MTP} or \code{EBMTP}. In addition, this method produces a table with the class, mode, length, and dimension of each slot of the \code{MTP} or \code{EBMTP} instance. } \item{summary}{: summary method for \code{MTP} and \code{EBMTP} classes, provides numerical summaries of the results of a MTP and returns a list with the following three components. \cr 1. rejections: A data.frame with the number(s) of rejected hypotheses for the nominal Type I error rate(s) specified by the \code{alpha} argument of the function \code{MTP} or \code{EBMTP}. (For objects of class \code{MTP}, NULL values are returned if all three arguments \code{get.cr}, \code{get.cutoff}, and \code{get.adjp} are FALSE). \cr 2. index: A numeric vector of indices for ordering the hypotheses according to first \code{adjp}, then \code{rawp}, and finally the absolute value of \code{statistic} (not printed in the summary). \cr 3. summaries: When applicable (i.e., when the corresponding quantities are returned by \code{MTP} or \code{EBMTP}), a table with six number summaries of the distributions of the adjusted p-values, unadjusted p-values, test statistics, and parameter estimates.} \item{update}{: update methods for \code{MTP} class, respectively, provides a mechanism to re-run the MTP with different choices of the following arguments - nulldist, alternative, typeone, k, q, fdr.method, alpha, smooth.null, method, get.cr, get.cutoff, get.adjp, keep.nulldist, keep.rawdist, keep.margpar. When evaluate is 'TRUE', a new object of class MTP is returned. Else, the updated call is returned. The \code{MTP} object passed to the update method must have either a non-empty \code{rawdist} slot or a non-empty \code{nulldist} slot (i.e., must have been called with either 'keep.rawdist=TRUE' or 'keep.nulldist=TRUE').\cr} \item{EBupdate}{: update method for \code{EBMTP} class, provides a mechanism to re-run the MTP with different choices of the following arguments - nulldist, alternative, typeone, k, q, alpha, smooth.null, bw, kernel, prior, keep.nulldist, keep.rawdist, keep.falsepos, keep.truepos, keep.errormat, keep.margpar. When evaluate is 'TRUE', a new object of class EBMTP is returned. Else, the updated call is returned. The \code{EBMTP} object passed to the update method must have either a non-empty \code{rawdist} slot or a non-empty \code{nulldist} slot (i.e., must have been called with either 'keep.rawdist=TRUE' or 'keep.nulldist=TRUE').\cr Additionally, when calling \code{EBupdate} for any Type I error rate other than FWER, the \code{typeone} argument must be specified (even if the original object did not control FWER). For example, \code{typeone="fdr"}, would always have to be specified, even if the original object also controlled the FDR. In other words, for all function arguments, it is safest to always assume that you are updating from the \code{EBMTP} default function settings, regardless of the original call to the \code{EBMTP} function. Currently, the main advantage of the \code{EBupdate} method is that it prevents the need for repeated estimation of the test statistics null distribution. \cr To save on memory, if one knows ahead of time that one will want to compare different choices of bootstrap-based null distribution, then it is both necessary and sufficient to specify 'keep.rawdist=TRUE', as there is no other means of moving between null distributions other than through the non-transformed non-parametric bootstrap distribution. In this case, 'keep.nulldist=FALSE' may be used. Specifically, if an object of class \code{MTP} or \code{EBMTP} contains a non-empty \code{rawdist} slot and an empty \code{nulldist} slot, then a new null distribution will be generated according to the values of the \code{nulldist=} argument in the original call to \code{(EB)MTP} or any additional specifications in the call to \code{(EB)update}. On the other hand, if one knows that one wishes to only update an \code{(EB)MTP} object in ways which do not involve choice of bootstrap null distribution, then 'keep.nulldist=TRUE' will suffice and 'keep.rawdist' can be set to \code{FALSE} (default settings). The original null distribution object will then be used for all subsequent calls to \code{update}. \cr N.B.: Note that \code{keep.rawdist=TRUE} is only available for the bootstrap-based resampling methods. The non-null distribution does not exist for the permutation or influence curve multivariate normal null distributions. } \item{mtp2ebmtp}{: coersion method for converting objects of class \code{MTP} to objects of class \code{EBMTP}. Slots common to both objects are taken from the object of class \code{MTP} and used to create a new object of class \code{EBMTP}. Once an object of class \code{EBMTP} is created, one may use the method \code{EBupdate} to perform resampling-based empirical Bayes multiple testing without the need for repeated resampling.} \item{ebmtp2mtp}{: coersion method for converting objects of class \code{EBMTP} to objects of class \code{MTP}. Slots common to both objects are taken from the object of class \code{EBMTP} and used to create a new object of class \code{MTP}. Once an object of class \code{MTP} is created, one may use the method \code{update} to perform resampling-based multiple testing (as would have been done with calls to \code{MTP}) without the need for repeated resampling.} } } \author{Katherine S. Pollard and Houston N. Gilbert with design contributions from Sandrine Dudoit and Mark J. van der Laan.} \keyword{methods} multtest/man/MTP.Rd0000755000175200017520000007431314710217035015172 0ustar00biocbuildbiocbuild\name{MTP} \alias{MTP} \title{A function to perform resampling-based multiple hypothesis testing} \description{ A user-level function to perform multiple testing procedures (MTP). A variety of t- and F-tests, including robust versions of most tests, are implemented. Single-step and step-down minP and maxT methods are used to control the chosen type I error rate (FWER, gFWER, TPPFP, or FDR). Bootstrap and permutation null distributions are available. Additionally, for t-statistics, one may wish to sample from an appropriate multivariate normal distribution with mean zero and correlation matrix derived from the vector influence function. Arguments are provided for user control of output. Gene selection in microarray experiments is one application. } \usage{ MTP(X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL, na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE, standardize = TRUE, alternative = "two.sided", psi0 = 0, typeone = "fwer", k = 0, q = 0.1, fdr.method = "conservative", alpha = 0.05, smooth.null = FALSE, nulldist = "boot.cs", B = 1000, ic.quant.trans = FALSE, MVN.method = "mvrnorm", penalty = 1e-06, method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE, get.adjp = TRUE, keep.nulldist = TRUE, keep.rawdist = FALSE, seed = NULL, cluster = 1, type = NULL, dispatch = NULL, marg.null = NULL, marg.par = NULL, keep.margpar = TRUE, ncp = NULL, perm.mat = NULL, keep.index = FALSE, keep.label = FALSE) } \arguments{ \item{X}{A matrix, data.frame or ExpressionSet containing the raw data. In the case of an ExpressionSet, \code{exprs(X)} is the data of interest and \code{pData(X)} may contain outcomes and covariates of interest. For most currently implemented tests (exception: tests involving correlation parameters), one hypothesis is tested for each row of the data.} \item{W}{A vector or matrix containing non-negative weights to be used in computing the test statistics. If a matrix, \code{W} must be the same dimension as \code{X} with one weight for each value in \code{X}. If a vector, \code{W} may contain one weight for each observation (i.e. column) of \code{X} or one weight for each variable (i.e. row) of \code{X}. In either case, the weights are duplicated appropriately. Weighted F-tests are not available. Default is 'NULL'.} \item{Y}{A vector, factor, or \code{Surv} object containing the outcome of interest. This may be class labels (F-tests and two sample t-tests) or a continuous or polycotomous dependent variable (linear regression based t-tests), or survival data (Cox proportional hazards based t-tests). For \code{block.f} and \code{f.twoway} tests, class labels must be ordered by block and within each block ordered by group. If \code{X} is an ExpressionSet, \code{Y} can be a character string referring to the column of \code{pData(X)} to use as outcome. Default is 'NULL'.} \item{Z}{A vector, factor, or matrix containing covariate data to be used in the regression (linear and Cox) models. Each variable should be in one column, so that \code{nrow(Z)=ncol(X)}. If \code{X} is an ExpressionSet, \code{Z} can be a character string referring to the column of \code{pData(X)} to use as covariates. The variables \code{Z.incl} and \code{Z.adj} allow one to specify which covariates to use in a particular test without modifying the input \code{Z}. Default is 'NULL'.} \item{Z.incl}{The indices of the columns of \code{Z} (i.e. which variables) to include in the model. These can be numbers or column names (if the columns are names). Default is 'NULL'.} \item{Z.test}{The index or names of the column of \code{Z} (i.e. which variable) to use to test for association with each row of \code{X} in a linear model. Only used for \code{test="lm.XvsZ"}, where it is necessary to specify which covariate's regression parameter is of interest. Default is 'NULL'.} \item{na.rm}{Logical indicating whether to remove observations with an NA. Default is 'TRUE'.} \item{test}{Character string specifying the test statistics to use, by default 't.twosamp.unequalvar'. See details (below) for a list of tests.} \item{robust}{Logical indicating whether to use the robust version of the chosen test, e.g. Wilcoxon singed rank test for robust one-sample t-test or \code{rlm} instead of \code{lm} in linear models. Default is 'FALSE'.} \item{standardize}{Logical indicating whether to use the standardized version of the test statistics (usual t-statistics are standardized). Default is 'TRUE'.} \item{alternative}{Character string indicating the alternative hypotheses, by default 'two.sided'. For one-sided tests, use 'less' or 'greater' for null hypotheses of 'greater than or equal' (i.e. alternative is 'less') and 'less than or equal', respectively.} \item{psi0}{The hypothesized null value, typically zero (default). Currently, this should be a single value, which is used for all hypotheses.} \item{typeone}{Character string indicating which type I error rate to control, by default family-wise error rate ('fwer'). Other options include generalized family-wise error rate ('gfwer'), with parameter \code{k} giving the allowed number of false positives, and tail probability of the proportion of false positives ('tppfp'), with parameter \code{q} giving the allowed proportion of false positives. The false discovery rate ('fdr') can also be controlled.} \item{k}{The allowed number of false positives for gFWER control. Default is 0 (FWER).} \item{q}{The allowed proportion of false positives for TPPFP control. Default is 0.1.} \item{fdr.method}{Character string indicating which FDR controlling method should be used when \code{typeone="fdr"}. The options are "conservative" (default) for the more conservative, general FDR controlling procedure and "restricted" for the method which requires more assumptions.} \item{alpha}{The target nominal type I error rate, which may be a vector of error rates. Default is 0.05.} \item{smooth.null}{Indicator of whether to use a kernel density estimate for the tail of the null distributon for computing raw pvalues close to zero. Only used if 'rawp' would be zero without smoothing. Default is 'FALSE'.} \item{nulldist}{Character string indicating which resampling method to use for estimating the joint test statistics null distribution, by default the non-parametric bootstrap with centering and scaling ('boot.cs'). The old default 'boot' will still compile and will correspond to 'boot.cs'. Other null distribution options include 'perm', 'boot.ctr', 'boot.qt', and 'ic', corresponding to the permutation distribution, centered-only bootstrap distribution, quantile-transformed bootstrap distribution, and influence curve multivariate normal joint null distribution, respectively. More details below.} \item{B}{The number of bootstrap iterations (i.e. how many resampled data sets), the number of permutations (if \code{nulldist} is 'perm'), or the number of samples from the multivariate normal distribution (if \code{nulldist} is 'ic') Can be reduced to increase the speed of computation, at a cost to precision. Default is 1000.} \item{ic.quant.trans}{If \code{nulldist='ic'}, a logical indicating whether or not a marginal quantile transformation using a t-distribution or user-supplied marginal distribution (stored in \code{perm.mat}) should be applied to the multivariate normal null distribution. Defaults for \code{marg.null} and \code{marg.par} exist, but can also be specified by the user (see below). Default is 'FALSE'.} \item{MVN.method}{If \code{nulldist='ic'}, one of 'mvrnorm' or 'Cholesky' designating how correlated normal test statistics are to be generated. Selecting 'mvrnorm' uses the function of the same name found in the \code{MASS} library, whereas 'Cholesky' relies on a Cholesky decomposition. Default is 'mvrnorm'.} \item{penalty}{If \code{nulldist='ic'} and \code{MVN.method='Cholesky'}, the value in \code{penalty} is added to all diagonal elements of the estimated test statistics correlation matrix to ensure that the matrix is positive definite and that internal calls to \code{'chol'} do not return an error. Default is 1e-6.} \item{method}{The multiple testing procedure to use. Options are single-step maxT ('ss.maxT', default), single-step minP ('ss.minP'), step-down maxT ('sd.maxT'), and step-down minP ('sd.minP').} \item{get.cr}{Logical indicating whether to compute confidence intervals for the estimates. Not available for F-tests. Default is 'FALSE'.} \item{get.cutoff}{Logical indicating whether to compute thresholds for the test statistics. Default is 'FALSE'.} \item{get.adjp}{Logical indicating whether to compute adjusted p-values. Default is 'TRUE'.} \item{keep.nulldist}{Logical indicating whether to return the computed bootstrap or influence curve null distribution, by default 'TRUE'. Not available for \code{nulldist}='perm'. Note that this matrix can be quite large.} \item{keep.rawdist}{Logical indicating whether to return the computed non-null (raw) bootstrap distribution, by default 'FALSE'. Not available when using \code{nulldist}='perm' or 'ic'. Note that this matrix can become quite large. If one wishes to use subsequent calls to \code{update} or \code{EBupdate} in which one updates choice of bootstrap null distribution, \code{keep.rawdist} must be TRUE. To save on memory, \code{update} only requires that one of \code{keep.nulldist} or \code{keep.rawdist} be 'TRUE'.} \item{seed}{Integer or vector of integers to be used as argument to \code{set.seed} to set the seed for the random number generator for bootstrap resampling. This argument can be used to repeat exactly a test performed with a given seed. If the seed is specified via this argument, the same seed will be returned in the seed slot of the MTP object created. Else a random seed(s) will be generated, used and returned. Vector of integers used to specify seeds for each node in a cluster used to to generate a bootstrap null distribution.} \item{cluster}{Integer for number of nodes to create or a cluster object created through the package snow. With \code{cluster=1}, bootstrap is implemented on single node. Supplying a cluster object results in the bootstrap being implemented in parallel on the provided nodes. This option is only available for the bootstrap procedure. With default value of 1, bootstrap is executed on single CPU.} \item{type}{Interface system to use for computer cluster. See \code{snow} package for details.} \item{dispatch}{The number or percentage of bootstrap iterations to dispatch at a time to each node of the cluster if a computer cluster is used. If dispatch is a percentage, \code{B*dispatch} must be an integer. If dispatch is an integer, then \code{B/dispatch} must be an integer. Default is 5 percent.} \item{marg.null}{If \code{nulldist='boot.qt'}, the marginal null distribution to use for quantile transformation. Can be one of 'normal', 't', 'f' or 'perm'. Default is 'NULL', in which case the marginal null distribution is selected based on choice of test statistics. Defaults explained below. If 'perm', the user must supply a vector or matrix of test statistics corresponding to another marginal null distribution, perhaps one created externally by the user, and possibly referring to empirically derived \emph{marginal permutation distributions}, although the statistics could represent any suitable choice of marginal null distribution.} \item{marg.par}{If \code{nulldist='boot.qt'}, the parameters defining the marginal null distribution in \code{marg.null} to be used for quantile transformation. Default is 'NULL', in which case the values are selected based on choice of test statistics and other available parameters (e.g., sample size, number of groups, etc.). Defaults explained below. User can override defaults, in which case a matrix of marginal null distribution parameters can be accepted. Providing numeric (vector) values will apply the same null distribution defined by the parameter to all hypotheses, while providing a matrix of values allows the user to perform multiple testing using parameters which may vary with each hypothesis, as may be desired in common-quantile minP procedures. In this way, theoretical factors or factors affecting sample size or missingness may be assessed.} \item{keep.margpar}{If \code{nulldist='boot.qt'}, a logical indicating whether the (internally created) matrix of marginal null distribution parameters should be returned. Default is 'TRUE'.} \item{ncp}{If \code{nulldist='boot.qt'}, a value for a possible noncentrality parameter to be used during marginal quantile transformation. Default is 'NULL'.} \item{perm.mat}{If \code{nulldist='boot.qt'} and \code{marg.null='perm'}, a matrix of user-supplied test statistics from a particular distribution to be used during marginal quantile transformation. The statistics may represent empirically derived marginal permutation values, may be theoretical values, or may represent a sample from some other suitable choice of marginal null distribution.} \item{keep.index}{If \code{nulldist='ic'} and \code{test='t.cor'} or \code{test='z.cor'}, the index returned is a matrix with the indices of the first and second variables considered for pairwise correlations. If there are p hypotheses, this arguments returns \code{t(combn(p,2))}. For all other choices of test statistic, the index is not returned, as they correspond to the original order of the hypotheses in \code{X}.} \item{keep.label}{Default is 'FALSE'. A logical indicating whether or not the label in \code{Y} should be returned as a slot in the resulting MTP object. Typically not necessary, although useful if one is using \code{update} and wants to use marginal null distribution defaults with \code{nulldist='boot.qt'} (e.g., with F-tests).} } \details{ A multiple testing procedure (MTP) is defined by choices of test statistics, type I error rate, null distribution and method for error rate control. Each component is described here. For two-sample t-tests, the group with the smaller-valued label is substracted from the group with the larger-valued label. That is, differences in means are calculated as "mean of group 2 - mean of group 1" or "mean of group B - mean of group A". For paired t-tests, the arrangement of group indices does not matter, as long as the columns are arranged in the same corresponding order between groups. For example, if group 1 is coded as 0, and group 2 is coded as 1, for 3 pairs of data, it does not matter if the label \code{Y} is coded as "0,0,0,1,1,1", "1,1,1,0,0,0" "0,1,0,1,0,1" or "1,0,1,0,1,0", the paired differences between groups will be calculated as "group 2 - group 1". See references for more detail. Test statistics are determined by the values of \code{test}: \describe{ \item{t.onesamp:}{one-sample t-statistic for tests of means;} \item{t.twosamp.equalvar:}{equal variance two-sample t-statistic for tests of differences in means (two-sample t-statistic);} \item{t.twosamp.unequalvar:}{unequal variance two-sample t-statistic for tests of differences in means (two-sample Welch t-statistic);} \item{t.pair:}{two-sample paired t-statistic for tests of differences in means;} \item{f:}{multi-sample F-statistic for tests of equality of population means (assumes constant variance across groups, but not normality); } \item{f.block:}{multi-sample F-statistic for tests of equality of population means in a block design (assumes constant variance across groups, but not normality). This test is not available with the bootstrap null distribution;} \item{f.twoway:}{multi-sample F-statistic for tests of equality of population means in a block design (assumes constant variance across groups, but not normality). Differs from \code{f.block} in requiring multiple observations per group*block combintation. This test uses the means of each group*block combination as response variable and test for group main effects assuming a randomized block design;} \item{lm.XvsZ:}{t-statistic for tests of regression coefficients for variable \code{Z.test} in linear models, each with a row of X as outcome, possibly adjusted by covariates \code{Z.incl} from the matrix \code{Z} (in the case of no covariates, one recovers the one-sample t-statistic, \code{t.onesamp});} \item{lm.YvsXZ:}{t-statistic for tests of regression coefficients in linear models, with outcome Y and each row of X as covariate of interest, with possibly other covariates \code{Z.incl} from the matrix \code{Z};} \item{coxph.YvsXZ:}{t-statistic for tests of regression coefficients in Cox proportional hazards survival models, with outcome Y and each row of X as covariate of interest, with possibly other covariates \code{Z.incl} from the matrix \code{Z}.} \item{t.cor}{t-statistics for tests of pairwise correlation parameters for all variables in X. Note that the number of hypotheses can become quite large very fast. This test is only available with the influence curve null distribution.} \item{z.cor}{Fisher's z-statistics for tests of pairwise correlation parameters for all variables in X. Note that the number of hypotheses can become quite large very fast. This test is only available with the influence curve null distribution.} } When \code{robust=TRUE}, non-parametric versions of each test are performed. For the linear models, this means \code{rlm} is used instead of \code{lm}. There is not currently a robust version of \code{test=coxph.YvsXZ}. For the t- and F-tests, data values are simply replaced by their ranks. This is equivalent to performing the following familiar named rank-based tests. The conversion after each test is the formula to convert from the MTP test to the statistic reported by the listed R function (where num is the numerator of the MTP test statistics, n is total sample size, nk is group k sample size, K is total number of groups or treatments, and rk are the ranks in group k). \describe{ \item{t.onesamp or t.pair:}{Wilcoxon signed rank, \code{wilcox.test} with \code{y=NULL} or \code{paired=TRUE}, \cr conversion: num/n} \item{t.twosamp.equalvar:}{Wilcoxon rank sum or Mann-Whitney, \code{wilcox.test}, \cr conversion: n2*(num+mean(r1)) - n2*(n2+1)/2} \item{f:}{Kruskal-Wallis rank sum, \code{kruskal.test}, \cr conversion: num*12/(n*(n-1))} \item{f.block:}{Friedman rank sum, \code{friedman.test}, \cr conversion: num*12/(K*(K+1))} \item{f.twoway:}{Friedman rank sum, \code{friedman.test}, \cr conversion: num*12/(K*(K+1))} } The implemented MTPs are based on control of the family-wise error rate, defined as the probability of any false positives. Let Vn denote the (unobserved) number of false positives. Then, control of FWER at level alpha means that Pr(Vn>0)<=alpha. The set of rejected hypotheses under a FWER controlling procedure can be augmented to increase the number of rejections, while controlling other error rates. The generalized family-wise error rate is defined as Pr(Vn>k)<=alpha, and it is clear that one can simply take an FWER controlling procedure, reject k more hypotheses and have control of gFWER at level alpha. The tail probability of the proportion of false positives depends on both the number of false postives (Vn) and the number of rejections (Rn). Control of TPPFP at level alpha means Pr(Vn/Rn>q)<=alpha, for some proportion q. Control of the false discovery rate refers to the expected proportion of false positives (rather than a tail probability). Control of FDR at level alpha means E(Vn/Rn)<=alpha. In practice, one must choose a method for estimating the test statistics null distribution. We have implemented several versions of an ordinary non-parametric bootstrap estimator and a permutation estimator (which makes sense in certain settings, see references). The non-parametric bootstrap estimator (default) provides asymptotic control of the type I error rate for any data generating distribution, whereas the permutation estimator requires the subset pivotality assumption. One draw back of both methods is the discreteness of the estimated null distribution when the sample size is small. Furthermore, when the sample size is small enough, it is possible that ties will lead to a very small variance estimate. Using \code{standardize=FALSE} allows one to avoid these unusually small test statistic denominators. Parametric bootstrap estimators are another option (not yet implemented). For asymptotically linear estimators, such as those commonly probed using t-statistics, another choice of null distribution is provided when sampling from a multivariate normal distribution with mean zero and correlation matrix derived from the vector influence function. Sampling from a multivariate normal may alleviate the discreteness of the bootstrap and permutation distributions, although accuracy in estimation of the test statistics correlation matrix will be of course also affected by sample size. For the nonparametric bootstrap distribution with marginal null quantile transformation, the following defaults for \code{marg.null} and \code{marg.par} are available based on choice of test statistics, sample size 'n', and various other parameters: \describe{ \item{t.onesamp:}{t-distribution with df=n-1;} \item{t.twosamp.equalvar:}{t-distribution with df=n-2;} \item{t.twosamp.unequalvar:}{N(0,1);} \item{t.pair:}{t-distribution with df=n-1, where n is the number of unique samples, i.e., the number of observed differences between paired samples;} \item{f:}{F-distribution with df1=k-1, df2=n-k, for k groups;} \item{f.block:}{NA. Only available with permutation distribution;} \item{f.twoway:}{F-distribution with df1=k-1,df2=n-k*l, for k groups and l blocks;} \item{lm.XvsZ:}{N(0,1);} \item{lm.YvsXZ:}{N(0,1);} \item{coxph.YvsXZ:}{N(0,1);} \item{t.cor}{t-distribution with df=n-2;} \item{z.cor}{N(0,1).} } The above defaults, however, can be overridden by manually setting values of \code{marg.null} and \code{marg.par}. In the case of \code{nulldist='ic'}, and \code{ic.quant.trans=TRUE}, the defaults are the same as above except that 'lm.XvsZ' and 'lm.YvsXZ' are replaced with t-distributions with df=n-p. Given observed test statistics, a type I error rate (with nominal level), and a test statistics null distribution, MTPs provide adjusted p-values, cutoffs for test statistics, and possibly confidence regions for estimates. Four methods are implemented, based on minima of p-values and maxima of test statistics. Only the step down methods are currently available with the permutation null distribution. Computation times using a bootstrap null distribution are slower when weights are used for one and two-sample tests. Computation times when using a bootstrap null distribution also are slower for the tests \code{lmXvsZ}, \code{lmYvsXZ}, \code{coxph.YvsXZ}. To execute the bootstrap on a computer cluster, a cluster object generated with \code{makeCluster} in the package \code{snow} may be used as the argument for cluster. Alternatively, the number of nodes to use in the computer cluster can be used as the argument to cluster. In this case, \code{type} must be specified and a cluster will be created. In both cases, \code{Biobase} and \code{multtest} will be loaded onto each cluster node if these libraries are located in a directory in the standard search path. If these libraries are in a non-standard location, it is necessary to first create the cluster, load \code{Biobase} and \code{multtest} on each node and then to use the cluster object as the argument to cluster. See documentation for \code{snow} package for additional information on creating and using a cluster. Finally, note that the old argument \code{csnull} is now DEPRECATED as of \code{multtest} v. 2.0.0 given the expanded null distribution options described above. Previously, this argument was an indicator of whether the bootstrap estimated test statistics distribution should be centered and scaled (to produce a null distribution) or not. If \code{csnull=FALSE}, the (raw) non-null bootstrap estimated test statistics distribution was returned. If the non-null bootstrap distribution should be returned, this object is now stored in the 'rawdist' slot when \code{keep.rawdist=TRUE} in the original \code{MTP} function call. } \value{ An object of class \code{MTP}, with the following slots: \item{\code{statistic}}{Object of class \code{numeric}, observed test statistics for each hypothesis, specified by the values of the \code{MTP} arguments \code{test}, \code{robust}, \code{standardize}, and \code{psi0}.} \item{\code{estimate}}{For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests), the numeric vector of estimated parameters corresponding to each hypothesis, e.g. means, differences in means, regression parameters.} \item{\code{sampsize}}{Object of class \code{numeric}, number of columns (i.e. observations) in the input data set.} \item{\code{rawp}}{Object of class \code{numeric}, unadjusted, marginal p-values for each hypothesis.} \item{\code{adjp}}{Object of class \code{numeric}, adjusted (for multiple testing) p-values for each hypothesis (computed only if the \code{get.adjp} argument is TRUE).} \item{\code{conf.reg}}{For the test of single-parameter null hypotheses using t-statistics (i.e., not the F-tests), the numeric array of lower and upper simultaneous confidence limits for the parameter vector, for each value of the nominal Type I error rate \code{alpha} (computed only if the \code{get.cr} argument is TRUE).} \item{\code{cutoff}}{The numeric matrix of cut-offs for the vector of test statistics for each value of the nominal Type I error rate \code{alpha} (computed only if the \code{get.cutoff} argument is TRUE).} \item{\code{reject}}{Object of class \code{'matrix'}, rejection indicators (TRUE for a rejected null hypothesis), for each value of the nominal Type I error rate \code{alpha}.} \item{\code{rawdist}}{The numeric matrix for the estimated nonparametric non-null test statistics distribution (returned only if \code{keep.rawdist=TRUE} and if \code{nulldist} is one of 'boot.ctr', 'boot.cs', or 'boot.qt'). This slot must not be empty if one wishes to call \code{update} to change choice of bootstrap-based null distribution.} \item{\code{nulldist}}{The numeric matrix for the estimated test statistics null distribution (returned only if \code{keep.nulldist=TRUE}); option not currently available for permutation null distribution, i.e., \code{nulldist='perm'}). By default (i.e., for \code{nulldist='boot.cs'}), the entries of \code{nulldist} are the null value shifted and scaled bootstrap test statistics, with one null test statistic value for each hypothesis (rows) and bootstrap iteration (columns).} \item{\code{nulldist.type}}{Character value describing which choice of null distribution was used to generate the MTP results. Takes on one of the values of the original \code{nulldist} argument in the call to MTP, i.e., 'boot.cs', 'boot.ctr', 'boot.qt', 'ic', or 'perm'.} \item{\code{marg.null}}{If \code{nulldist='boot.qt'}, a character value returning which choice of marginal null distribution was used by the MTP. Can be used to check default values or to ensure manual settings were correctly applied.} \item{\code{marg.par}}{If \code{nulldist='boot.qt'}, a numeric matrix returning the parameters of the marginal null distribution(s) used by the MTP. Can be used to check default values or to ensure manual settings were correctly applied.} \item{\code{call}}{Object of class \code{call}, the call to the MTP function.} \item{\code{seed}}{An integer or vector for specifying the state of the random number generator used to create the resampled datasets. The seed can be reused for reproducibility in a repeat call to \code{MTP}. This argument is currently used only for the bootstrap null distribution (i.e., for \code{nulldist="boot.xx"}). See \code{?set.seed} for details.} } \references{ M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art15/} M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art14/} S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art13/} K.S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 121. \url{http://www.bepress.com/ucbbiostat/paper121} M.J. van der Laan and A.E. Hubbard (2006), Quantile-function Based Null Distributions in Resampling Based Multiple Testing, Statistical Applications in Genetics and Molecular Biology, 5(1). \url{http://www.bepress.com/sagmb/vol5/iss1/art14/} S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. } \author{Katherine S. Pollard and Houston N. Gilbert with design contributions from Sandra Taylor, Sandrine Dudoit and Mark J. van der Laan.} \note{Thank you to Peter Dimitrov for suggestions about the code.} \seealso{\code{\link{EBMTP}}, \code{\link{MTP-class}}, \code{\link{MTP-methods}}, \code{\link{mt.minP}}, \code{\link{mt.maxT}}, \code{\link{ss.maxT}}, \code{\link{fwer2gfwer}}} \examples{ #data set.seed(99) data<-matrix(rnorm(90),nr=9) group<-c(rep(1,5),rep(0,5)) #fwer control with centered and scaled bootstrap null distribution #(B=100 for speed) m1<-MTP(X=data,Y=group,alternative="less",B=100,method="sd.minP") print(m1) summary(m1) par(mfrow=c(2,2)) plot(m1,top=9) #fwer control with quantile transformed bootstrap null distribution #default settings = N(0,1) marginal null distribution m2<-MTP(X=data,Y=group,alternative="less",B=100,method="sd.minP", nulldist="boot.qt",keep.rawdist=TRUE) #fwer control with quantile transformed bootstrap null distribution #marginal null distribution and df parameters manually set, #first all equal, then varying with hypothesis m3<-update(m2,marg.null="t",marg.par=10) mps<-matrix(c(rep(9,5),rep(10,5)),nr=10,nc=1) m4<-update(m2,marg.null="t",marg.par=mps) m1@nulldist.type m2@nulldist.type m2@marg.null m2@marg.par m3@nulldist.type m3@marg.null m3@marg.par m4@nulldist.type m4@marg.null m4@marg.par } \keyword{htest} multtest/man/boot.null.Rd0000644000175200017520000003477314710217035016451 0ustar00biocbuildbiocbuild\name{boot.null} \alias{boot.null} \alias{boot.resample} \alias{center.scale} \alias{center.only} \alias{quant.trans} \title{Non-parametric bootstrap resampling function in package `multtest'} \description{Given a data set and a closure, which consists of a function for computing the test statistic and its enclosing environment, this function produces a non-parametric bootstrap estimated test statistics null distribution. The observations in the data are resampled using the ordinary non-parametric bootstrap is used to produce an estimated test statistics distribution. This distribution is then transformed to produce the null distribution. Options for transforming the nonparametric bootstrap distribution include \code{center.only}, \code{center.scale}, and \code{quant.trans}. Details are given below. These functions are called by \code{MTP} and \code{EBMTP}. } \usage{ boot.null(X, label, stat.closure, W = NULL, B = 1000, test, nulldist, theta0 = 0, tau0 = 1, marg.null = NULL, marg.par = NULL, ncp = 0, perm.mat, alternative = "two.sided", seed = NULL, cluster = 1, dispatch = 0.05, keep.nulldist, keep.rawdist) boot.resample(X, label, p, n, stat.closure, W, B, test) center.only(muboot, theta0, alternative) center.scale(muboot, theta0, tau0, alternative) quant.trans(muboot, marg.null, marg.par, ncp, alternative, perm.mat) } \arguments{ \item{X}{A matrix, data.frame or ExpressionSet containing the raw data. In the case of an ExpressionSet, \code{exprs(X)} is the data of interest and \code{pData(X)} may contain outcomes and covariates of interest. For \code{boot.resample} \code{X} must be a matrix. For currently implemented tests, one hypothesis is tested for each row of the data.} \item{label}{A vector containing the class labels for t- and F-tests.} \item{stat.closure}{A closure for test statistic computation, like those produced internally by the \code{MTP} function. The closure consists of a function for computing the test statistic and its enclosing environment, with bindings for relevant additional arguments (such as null values, outcomes, and covariates).} \item{W}{A vector or matrix containing non-negative weights to be used in computing the test statistics. If a matrix, \code{W} must be the same dimension as \code{X} with one weight for each value in \code{X}. If a vector, \code{W} may contain one weight for each observation (i.e. column) of \code{X} or one weight for each variable (i.e. row) of \code{X}. In either case, the weights are duplicated appropriately. Weighted F-tests are not available. Default is 'NULL'.} \item{B}{The number of bootstrap iterations (i.e. how many resampled data sets) or the number of permutations (if \code{nulldist} is 'perm'). Can be reduced to increase the speed of computation, at a cost to precision. Default is 1000.} \item{test}{Character string specifying the test statistics to use. See \code{MTP} for a list of tests.} \item{theta0}{The value used to center the test statistics. For tests based on a form of t-statistics, this should be zero (default). For F-tests, this should be 1.} \item{tau0}{The value used to scale the test statistics. For tests based on a form of t-statistics, this should be 1 (default). For F-tests, this should be 2/(K-1), where K is the number of groups. This argument is missing when \code{center.only} is chosen for transforming the raw bootstrap test statistics.} \item{marg.null}{If \code{nulldist='boot.qt'}, the marginal null distribution to use for quantile transformation. Can be one of 'normal', 't', 'f' or 'perm'. Default is 'NULL', in which case the marginal null distribution is selected based on choice of test statistics. Defaults explained below. If 'perm', the user must supply a vector or matrix of test statistics corresponding to another marginal null distribution, perhaps one created externally by the user, and possibly referring to empirically derived \emph{marginal permutation distributions}, although the statistics could represent any suitable choice of marginal null distribution.} \item{marg.par}{If \code{nulldist='boot.qt'}, the parameters defining the marginal null distribution in \code{marg.null} to be used for quantile transformation. Default is 'NULL', in which case the values are selected based on choice of test statistics and other available parameters (e.g., sample size, number of groups, etc.). Defaults explained below. User can override defaults, in which case a matrix of marginal null distribution parameters can be accepted. Providing a matrix of values allows the user to perform multiple testing using parameters which may vary with each hypothesis, as may be desired in common-quantile minP procedures. In this way, factors affecting multiple testing procedure performance such as sample size or missingness may be assessed.} \item{ncp}{If \code{nulldist='boot.qt'}, a value for a possible noncentrality parameter to be used during marginal quantile transformation. Default is 'NULL'.} \item{perm.mat}{If \code{nulldist='boot.qt'} and \code{marg.null='perm'}, a matrix of user-supplied test statistics from a particular distribution to be used during marginal quantile transformation. The statistics may represent empirically derived marginal permutation values, may be theoretical values, or may represent a sample from some other suitable choice of marginal null distribution.} \item{alternative}{Character string indicating the alternative hypotheses, by default 'two.sided'. For one-sided tests, use 'less' or 'greater' for null hypotheses of 'greater than or equal' (i.e. alternative is 'less') and 'less than or equal', respectively.} \item{seed}{Integer or vector of integers to be used as argument to \code{set.seed} to set the seed for the random number generator for bootstrap resampling. This argument can be used to repeat exactly a test performed with a given seed. If the seed is specified via this argument, the same seed will be returned in the seed slot of the MTP object created. Else a random seed(s) will be generated, used and returned. Vector of integers used to specify seeds for each node in a cluster used to to generate a bootstrap null distribution.} \item{cluster}{Integer of 1 or a cluster object created through the package snow. With cluster=1, bootstrap is implemented on single node. Supplying a cluster object results in the bootstrap being implemented in parallel on the provided nodes. This option is only available for the bootstrap procedure.} \item{csnull}{DEPRECATED as of \code{multtest} v. 2.0.0 given expanded null distribution options. Previously, this argument was an indicator of whether the bootstrap estimated test statistics distribution should be centered and scaled (to produce a null distribution) or not. If \code{csnull=FALSE}, the (raw) non-null bootstrap estimated test statistics distribution was returned. If the non-null bootstrap distribution should be returned, this object is now stored in the 'rawdist' slot when \code{keep.rawdist=TRUE}.} \item{dispatch}{The number or percentage of bootstrap iterations to dispatch at a time to each node of the cluster if a computer cluster is used. If dispatch is a percentage, \code{B*dispatch} must be an integer. If dispatch is an integer, then \code{B/dispatch} must be an integer. Default is 5 percent.} \item{p}{An integer of the number of variables of interest to be tested.} \item{n}{An integer of the total number of samples.} \item{muboot}{A matrix of bootstrapped test statistics.} \item{keep.nulldist}{Logical indicating whether to return the computed bootstrap null distribution, by default 'TRUE'. Not available for \code{nulldist}='perm'. Note that this matrix can be quite large.} \item{keep.rawdist}{Logical indicating whether to return the computed non-null (raw) bootstrap distribution, by default 'FALSE'. Not available for when using \code{nulldist}='perm' or 'ic'. Note that this matrix can become quite large. If one wishes to use subsequent calls to \code{update} in which one updates choice of bootstrap null distribution, \code{keep.rawdist} must be TRUE. To save on memory, \code{update} only requires that one of \code{keep.nulldist} or \code{keep.rawdist} be 'TRUE'.} } \value{ A list with the following elements: \item{rawboot}{If \code{keep.rawdist=TRUE}, the matrix of non-null, non-transformed bootstrap test statistics. If 'FALSE', an empty matrix with dimension 0-by-0.} \item{muboot}{If \code{keep.rawdist=TRUE} (default), the matrix of appropriately transformed null test statistics as given by one of \code{center.scale}, \code{center.only}, or \code{quant.trans}. This is the estimated joint test statistics null distribution. \cr Both list elements \code{rawboot} and \code{muboot} contain matrices of dimension the number of hypotheses (typically \code{nrow(X)}) by the number of bootstrap iterations (\code{B}). Each row of \code{muboot} is the bootstrap estimated marginal null distribution for a single hypothesis. For \code{boot.null} and \code{center.scale}, each column of \code{muboot} is a centered and scaled resampled vector of test statistics. For \code{boot.null} and \code{center.only}, each column of \code{muboot} is a centered, resampled vector of test statistics.\cr For \code{boot.null} and \code{quant.trans}, each column of \code{muboot} is a marginal null quantile-transformed resampled vector of test statistics. For each choice of marginal null distribution (defined by \code{marg.null} and \code{marg.par}), a random sample of size B is drawn and then rearranged based on the ranks of the marginal test statistics bootstrap distribution corresponding to each hypothesis (typically within rows of \code{X}). This means that using \code{quant.trans} will set the RNG seed ahead by B * the number of hypotheses (similarly, typically \code{nrow(X)}). Tie breaks in the marginal non-null bootstrap distribution are implemented inside the internal function \code{marg.samp} called by \code{quant.trans}. Default values of \code{marg.null} and \code{marg.par} are available based on choice of test statistics, sample size 'n', and various other parameters. By the time \code{boot.null} is called in either the \code{MTP} or \code{EBMTP} functions, the default marginal null distribution settings have already been formatted and passed in their correct form to \code{boot.null}. These default values correspond to: \describe{ \item{t.onesamp:}{t-distribution with df=n-1;} \item{t.twosamp.equalvar:}{t-distribution with df=n-2;} \item{t.twosamp.unequalvar:}{N(0,1);} \item{t.pair:}{t-distribution with df=n-1, where n is the number of unique samples, i.e., the number of observed differences/paired samples;} \item{f:}{F-distribution with df1=k-1, df2=n-k, for k groups;} \item{f.block:}{NA. Only available with permutation distribution;} \item{f.twoway:}{F-distribution with df1=k-1,df2=n-k*l, for k groups and l blocks;} \item{lm.XvsZ:}{N(0,1);} \item{lm.YvsXZ:}{N(0,1);} \item{coxph.YvsXZ:}{N(0,1);} \item{t.cor}{t-distribution with df=n-2;} \item{z.cor}{N(0,1).} } The above defaults, however, can be overridden by manually setting values of \code{marg.null} and \code{marg.par}. \cr The \code{rawboot} and \code{muboot} objects are returned in the slots \code{rawdist} and \code{nulldist} of an object of class \code{MTP} or \code{EBMTP} when the arguments \code{keep.rawdist} or \code{keep.nulldist} to the \code{MTP} function are TRUE. For \code{boot.resample} a matrix of bootstrap samples prior to null transformation is returned. } } \references{ M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art15/} M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art14/} S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art13/} Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 121. \url{http://www.bepress.com/ucbbiostat/paper121} M.J. van der Laan and A.E. Hubbard (2006), Quantile-function Based Null Distributions in Resampling Based Multiple Testing, Statistical Applications in Genetics and Molecular Biology, 5(1). \url{http://www.bepress.com/sagmb/vol5/iss1/art14/} S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. } \author{Katherine S. Pollard, Houston N. Gilbert, and Sandra Taylor, with design contributions from Sandrine Dudoit and Mark J. van der Laan.} \note{Thank you to Duncan Temple Lang and Peter Dimitrov for suggestions about the code.} \seealso{\code{\link{corr.null}}, \code{\link{MTP}}, \code{\link{MTP-class}}, \code{\link{EBMTP}}, \code{\link{EBMTP-class}}, \code{\link{get.Tn}}, \code{\link{ss.maxT}}, \code{\link{mt.sample.teststat}},\code{\link{get.Tn}}, \code{\link{wapply}}, \code{\link{boot.resample}}} \examples{ set.seed(99) data<-matrix(rnorm(90),nr=9) #closure ttest<-meanX(psi0=0,na.rm=TRUE,standardize=TRUE,alternative="two.sided",robust=FALSE) #test statistics obs<-get.Tn(X=data,stat.closure=ttest,W=NULL) #bootstrap null distribution (B=100 for speed, default nulldist, "boot.cs") nulldistn<-boot.null(X=data,W=NULL,stat.closure=ttest,B=100,test="t.onesamp", nulldist="boot.cs",theta0=0,tau0=1,alternative="two.sided", keep.nulldist=TRUE,keep.rawdist=FALSE)$muboot #bootstrap null distribution with marginal quantile transformation showing #default values that are passed to marg.null and marg.par arguments nulldistn.qt<-boot.null(X=data,W=NULL,stat.closure=ttest,B=100,test="t.onesamp", nulldist="boot.qt",theta0=0,tau0=1,alternative="two.sided", keep.nulldist=TRUE,keep.rawdist=FALSE,marg.null="t", marg.par=matrix(9,nr=10,nc=1))$muboot #unadjusted p-values rawp<-apply((obs[1,]/obs[2,])<=nulldistn,1,mean) sum(rawp<=0.01) rawp.qt<-apply((obs[1,]/obs[2,])<=nulldistn.qt,1,mean) sum(rawp.qt<=0.01) } \keyword{manip} \keyword{internal} multtest/man/corr.null.Rd0000644000175200017520000002604414710217035016443 0ustar00biocbuildbiocbuild\name{corr.null} \alias{corr.null} \alias{tQuantTrans} \title{Function to estimate a test statistics joint null distribution for t-statistics via the vector influence curve} \description{For a broad class of testing problems, such as the test of single-parameter null hypotheses using t-statistics, a proper, asymptotically valid test statistics joint null distribution is the multivariate Gaussian distribution with mean vector zero and covariance matrix equal to the correlation matrix of the vector influence curve for the estimator of the parameter of interest. The function \code{corr.null} estimates the correlation matrix of the vector influence curve for such parameters and returns samples from the corresponding normal distribution. Arguments to the function allow for refinements in calculating the resulting null distribution estimate.} \usage{ corr.null(X, W = NULL, Y = NULL, Z = NULL, test = "t.twosamp.unequalvar", alternative = "two-sided", use = "pairwise", B = 1000, MVN.method = "mvrnorm", penalty = 1e-06, ic.quant.trans = FALSE, marg.null = NULL, marg.par = NULL, perm.mat = NULL) } \arguments{ \item{X}{A matrix, data.frame or ExpressionSet containing the raw data. In the case of an ExpressionSet, \code{exprs(X)} is the data of interest and \code{pData(X)} may contain outcomes and covariates of interest. For most currently implemented tests (exception: tests involving correlation parameters), one hypothesis is tested for each row of the data.} \item{W}{A matrix containing non-negative weights to be used in computing the test statistics. Must be same dimension as \code{X}.} \item{Y}{A vector, factor, or \code{Surv} object containing the outcome of interest.} \item{Z}{A vector, factor, or matrix containing covariate data to be used in linear regression models. Each variable should be in one column, so that \code{nrow(Z)=ncol(X)}. By the time the function is called, this argument contains a 'design matrix' with the variable to be tested in the first column, additional covariates in the remaining columns, and no intercept column.} \item{test}{Character string specifying the test statistics to use, by default 't.twosamp.unequalvar'. See details (below) for a list of tests.} \item{alternative}{Character string indicating the alternative hypotheses, by default 'two.sided'. For one-sided tests, use 'less' or 'greater' for null hypotheses of 'greater than or equal' (i.e. alternative is 'less') and 'less than or equal', respectively.} \item{use}{Similar to the options in \code{cor}, a character string giving a method for computing covariances in the presence of missing values. Default is 'pairwise', which allows for the covariance/correlation matrix to be calculated using the most information possible when \code{NA}s are present.} \item{B}{The number of samples to be drawn from the normal distribution. Default is 1000.} \item{MVN.method}{Character string of either of 'mvrnorm' or 'Cholesky' designating how correlated normal test statistics are to be generated. Selecting 'mvrnorm' uses the function of the same name found in the \code{MASS} library, whereas 'Cholesky' relies on a Cholesky decomposition. Default is 'mvrnorm'.} \item{penalty}{If \code{MVN.method='Cholesky'}, the value in \code{penalty} is added to all diagonal elements of the estimated test statistics correlation matrix to ensure that the matrix is positive definite and that internal calls to \code{'chol'} do not return an error. Default is 1e-6.} \item{ic.quant.trans}{A logical indicating whether or not a marginal quantile transformation using a t-distribution or user-supplied marginal distribution (stored in \code{perm.mat}) should be applied to the multivariate normal null distribution. Defaults for \code{marg.null} and \code{marg.par} exist, but can also be specified by the user (see below). Default is 'FALSE'.} \item{marg.null}{If \code{ic.quant.trans=TRUE}, a character string naming the marginal null distribution to use for quantile transformation. Can be one of, 't' or 'perm'. Default is 'NULL', in which case the marginal null distribution is selected based on choice of test statistics. Defaults explained below. If 'perm', the user must supply a vector or matrix of test statistics corresponding to another marginal null distribution, perhaps one created externally by the user, and possibly referring to empirically derived \emph{marginal permutation distributions}, although the statistics could represent any suitable choice of marginal null distribution.} \item{marg.par}{If \code{ic.quant.trans=TRUE}, the parameters defining the marginal null distribution in \code{marg.null} to be used for quantile transformation. Default is 'NULL', in which case the values are selected based on choice of test statistics and other available parameters (e.g., sample size, number of groups, etc.). Defaults explained below. User can override defaults, in which case a matrix of marginal null distribution parameters must be provided. Providing a matrix allows the user to perform multiple testing using parameters which may vary with each hypothesis, as may be desired in common-quantile minP procedures} \item{perm.mat}{If \code{ic.quant.trans=TRUE}, a matrix of user-supplied test statistics from a particular distribution to be used during marginal quantile transformation. Supplying a vector of test statistics will apply the same vector to each hypothesis. The statistics may represent empirically derived marginal permutation values, may be theoretical values, or may represent a sample from some other suitable choice of marginal null distribution.} } \details{ This function is called internally when the argument \code{nulldist='ic'} is evaluated in the main user-level functions \code{MTP} or \code{EBMTP}. Formatting of the data objects \code{X}, \code{W}, \code{Y}, and especially \code{Z} occurs at execution begin of the main user-level functions.\cr Based on the value of \code{test}, the appropriate correlation matrix of the vector influence curve is calculated. Once the correlation matrix is obtained, one may sample vectors of null test statistics directly from a multivariate normal distribution rather than relying on permutation-based or bootstrap-based resampling. Because the Gaussian distribution is continuous, we expect this choice of null distribution to suffer less from discreteness than either the permutation or the bootstrap distribution. Additionally, in large-scale settings, use of null distributions derived from the vector influence function typically reduce computational bottlenecks associated with resampling methods.\cr Because the influence curve null distributions have been implemented for parametric, standardized t-statistics, the options \code{robust} and \code{standardize} are not allowed. Influence curve null distributions are available for the following values of \code{test}: 't.onesamp', 't.pair', 't.twosamp.equalvar', 't.twosamp.unequalvar', 'lm.XvsZ', 'lm.YvsXZ', 't.cor', and 'z.cor'.\cr In the simpler cases involving one-sample and two-sample tests of means, the correlation matrices are obtained via calls to \code{cor}. For two-sample tests, the correlation matrix corresponds to the following transformation of the group-specific covariance matrices: cov(X(group1))/n1 + cov(X(group2))/n2, where n1 and n2 are sample sizes of each group. When weights are present, the internal function \code{IC.CorXW.NA} is called to calculate weighted estimates of the (group) covariance matrices from each subject's estimated vector influence curve. The calculations are similar in spirit to those in \code{cov.wt}, but they are done in a way which allows for handling \code{NA} elements in the estimated vector influence curve IC_n. The correlation matrix corresponding to IC_n * (IC_n)^t is calculated. \cr For linear regression models, \code{corr.null} calculates the vector influence curve associated with each subject/sample. The vector has length equal to the number of hypotheses. The internal function \code{IC.Cor.NA} is used to calculate IC_n * (IC_n)^t in a manner which allows for NA-handling when the influence curve may contain missing elements. For linear regression models of the form E[Y|X], IC_n takes the form (E[((X^t)X)^(-1)] (X^t)_i Y_i) - Y_i-hat. Influence curves for correlation parameters are more complicated, and the user is referred to the references below.\cr Once the correlation matrix sigma' corresponding to the variance covariance matrix of the vector influence curve sigma =IC_n * (IC_n)^t is obtained, one may sample from N(0,sigma') to obtain null test statistics.\cr If \code{ic.quant.trans=TRUE}, the matrix of null test statistics can be quantile transformed to produce a matrix which accounts for the joint dependencies between test statistics (down columns), but which has marginal t-distributions (across rows). If \code{marg.null} and \code{marg.par} are not specified (=NULL), the following default t-distributions are applied:\cr \describe{ \item{t.onesamp}{df=n-1;} \item{t.pair}{df=n-1, where n is the number of unique samples, i.e., the number of observed differences between paired samples;} \item{t.twosamp.equalvar}{df=n-2;} \item{t.twosamp.unequalvar}{df=n-1; N.B., this is not recommended, since the effective degrees of freedom are unknown. With sufficiently large n, a normal approximation should yield similar results.} \item{lm.XvsZ}{df=n-p, where p is the number of variables in the regression equation;} \item{lm.YvsXZ}{df=n-p, where p is the number of variables in the regression equation;} \item{t.cor}{df=n-2;} \item{z.cor}{N.B., also not recommended. Fisher's z-statistics are already normally distributed. Marginal transformation to a t-distribution makes little sense.} } } \value{ A matrix of null test statistics with dimension the number of hypotheses (typically \code{nrow(X)}) by the number of desired samples (\code{B}). } \references{ K.S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 121. \url{http://www.bepress.com/ucbbiostat/paper121} S. Dudoit and M.J. van der Laan. Multiple Testing Procedures and Applications to Genomics. Springer Series in Statistics. Springer, New York, 2008. H.N. Gilbert, M.J. van der Laan, and S. Dudoit, "Joint Multiple Testing Procedures for Inferring Genetic Networks from Lower-Order Conditional Independence Graphs" (2009). \emph{In preparation.} } \author{Houston N. Gilbert} \seealso{\code{\link{boot.null}},\code{\link{MTP}}, \code{\link{MTP-class}}, \code{\link{EBMTP}}, \code{\link{EBMTP-class}}, \code{\link{get.Tn}}, \code{\link{ss.maxT}}, \code{\link{mt.sample.teststat}},\code{\link{get.Tn}}, \code{\link{wapply}}, \code{\link{boot.resample}}} \examples{ set.seed(99) data <- matrix(rnorm(10*50),nr=10,nc=50) nulldistn.mvrnorm <- corr.null(data,t="t.onesamp",alternative="greater",B=5000) nulldistn.chol <- corr.null(data,t="t.onesamp",MVN.method="Cholesky",penalty=1e-9) nulldistn.t <- corr.null(data,t="t.onesamp",ic.quant.trans=TRUE) dim(nulldistn.mvrnorm) } \keyword{htest} \keyword{internal} multtest/man/fwer2gfwer.Rd0000755000175200017520000001356014710217035016607 0ustar00biocbuildbiocbuild\name{fwer2gfwer} \alias{fwer2gfwer} \alias{fwer2tppfp} \alias{fwer2fdr} \title{Function to compute augmentation MTP adjusted p-values} \description{Augmentation multiple testing procedures (AMTPs) to control the generalized family-wise error rate (gFWER), the tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR) based on any initial procudeure controlling the family-wise error rate (FWER). AMTPs are obtained by adding suitably chosen null hypotheses to the set of null hypotheses already rejected by an initial FWER-controlling MTP. A function for control of FDR given any TPPFP controlling procedure is also provided. } \usage{ fwer2gfwer(adjp, k = 0) fwer2tppfp(adjp, q = 0.05) fwer2fdr(adjp, method = "both", alpha = 0.05) } \arguments{ \item{adjp}{Numeric vector of adjusted p-values from any FWER-controlling procedure.} \item{k}{Maximum number of false positives.} \item{q}{Maximum proportion of false positives.} \item{method}{Character string indicating which FDR controlling method should be used. The options are "conservative" for a conservative, general method, "restricted" for a less conservative, but restricted method, or "both" (default) for both.} \item{alpha}{Nominal level for an FDR controlling procedure (can be a vector of levels).} } \details{ The gFWER and TPPFP functions control Type I error rates defined as tail probabilities for functions g(Vn,Rn) of the numbers of Type I errors (Vn) and rejected hypotheses (Rn). The gFWER and TPPFP correspond to the special cases g(Vn,Rn)=Vn (number of false positives) and g(Vn,Rn)=Vn/Rn (proportion of false positives among the rejected hypotheses), respectively. Adjusted p-values for an AMTP are simply shifted versions of the adjusted p-values of the original FWER-controlling MTP. For control of gFWER (Pr(Vn>k)), for example, the first \code{k} adjusted p-values are set to zero and the remaining p-values are the adjusted p-values of the FWER-controlling MTP shifted by k. One can therefore build on the large pool of available FWER-controlling procedures, such as the single-step and step-down maxT and minP procedures. Given a FWER-controlling MTP, the FDR can be conservatively controlled at level \code{alpha} by considering the corresponding TPPFP AMTP with \code{q=alpha/2} at level \code{alpha/2}, so that Pr(Vn/Rn>alpha/2)<=alpha/2. A less conservative procedure (\code{general=FALSE}) is obtained by using an AMTP controlling the TPPFP with \code{q=1-sqrt(1-alpha)} at level \code{1-sqrt(1-alpha)}, so that Pr(Vn/Rn>1-sqrt(1-alpha))<=1-sqrt(1-alpha). The first, more general method can be used with any procedure that asymptotically controls FWER. The second, less conservative method requires the following additional assumptions: (i) the true alternatives are asymptotically always rejected by the FWER-controlling procedure, (ii) the limit of the FWER exists, and (iii) the FWER-controlling procedure provides exact asymptotic control. See \url{http://www.bepress.com/sagmb/vol3/iss1/art15/} for more details. The method implemented in \code{fwer2fdr} for computing rejections simply uses the TPPFP AMTP \code{fwer2tppfp} with \code{q=alpha/2} (or 1-sqrt(1-alpha)) and rejects each hypothesis for which the TPPFP adjusted p-value is less than or equal to alpha/2 (or 1-sqrt(1-alpha)). The adjusted p-values are based directly on the FWER adjusted p-values, so that very occasionally a hypothesis will have the indicator that it is rejected in the matrix of rejections, but the adjusted p-value will be slightly greater than the nominal level. The opposite might also occur occasionally. } \value{ For \code{fwer2gfwer} and \code{fwer2tppfp}, a numeric vector of AMTP adjusted p-values. For \code{fwer2fdr}, a list with two components: (i) a numeric vector (or a \code{length(adjp)} by 2 matrix if \code{method="both"}) of adjusted p-values for each hypothesis, (ii) a \code{length(adjp)} by \code{length(alpha)} matrix (or \code{length(adjp)} by \code{length(alpha)} by 2 array if \code{method="both"}) of indicators of whether each hypothesis is rejected at each value of the argument \code{alpha}. } \references{ M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art15/} M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art14/} S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art13/} Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 121. \url{http://www.bepress.com/ucbbiostat/paper121} } \author{Katherine S. Pollard with design contributions from Sandrine Dudoit and Mark J. van der Laan.} \seealso{\code{\link{MTP}}, \code{\link{MTP-class}}, \code{\link{MTP-methods}}, \code{\link{mt.minP}}, \code{\link{mt.maxT}}} \examples{ data<-matrix(rnorm(200),nr=20) group<-c(rep(0,5),rep(1,5)) fwer.mtp<-MTP(X=data,Y=group) fwer.adjp<-fwer.mtp@adjp gfwer.adjp<-fwer2gfwer(adjp=fwer.adjp,k=c(1,5,10)) compare.gfwer<-cbind(fwer.adjp,gfwer.adjp) mt.plot(adjp=compare.gfwer,teststat=fwer.mtp@statistic,proc=c("gFWER(0)","gFWER(1)","gFWER(5)","gFWER(10)"),col=1:4,lty=1:4) title("Comparison of Single-step MaxT gFWER Controlling Methods") } \keyword{htest} \keyword{internal} multtest/man/get.index.Rd0000755000175200017520000000261614710217035016414 0ustar00biocbuildbiocbuild\name{get.index} \alias{get.index} \title{Function to compute indices for ordering hypotheses in Package 'multtest'} \description{ The hypotheses tested in a multiple testing procedure (MTP), can be ordered based on the output of that procedure. This function orders hypotheses based on adjusted p-values, then unadjusted p-values (to break ties in adjusted p-values), and finally test statistics (to break remaining ties). } \usage{ get.index(adjp, rawp, stat) } \arguments{ \item{adjp}{Numeric vector of adjusted p-values.} \item{rawp}{Numeric vector of unadjusted ("raw") marginal p-values.} \item{stat}{Numeric vector of test statistics.} } \value{ Numeric vector of indices so that the hypotheses can be ordered accroding to significance (smallest p-values and largest test statistics first). This function is used in the plot method for objects of class \code{MTP} to order adjusted p-values for graphical summaries. The summary method for objects of class \code{MTP} will return these indices as its second component. } \author{Katherine S. Pollard} \seealso{\code{\link{MTP}}, \code{\link{plot,MTP,ANY-method}}, \code{\link{summary,MTP-method}}} \examples{ data<-matrix(rnorm(200),nr=20) mtp<-MTP(X=data,test="t.onesamp") index<-get.index(adjp=mtp@adjp,rawp=mtp@rawp,stat=mtp@statistic) mtp@statistic[index] mtp@estimate[index] apply(data[index,],1,mean) } \keyword{htest} \keyword{internal} multtest/man/golub.Rd0000755000175200017520000000264614710217035015642 0ustar00biocbuildbiocbuild\name{golub} \alias{golub} \alias{golub.cl} \alias{golub.gnames} \title{Gene expression dataset from Golub et al. (1999)} \usage{ data(golub) } \description{ Gene expression data (3051 genes and 38 tumor mRNA samples) from the leukemia microarray study of Golub et al. (1999). Pre-processing was done as described in Dudoit et al. (2002). The R code for pre-processing is available in the file \url{../doc/golub.R}.} \value{ \item{golub}{matrix of gene expression levels for the 38 tumor mRNA samples, rows correspond to genes (3051 genes) and columns to mRNA samples.} \item{golub.cl}{numeric vector indicating the tumor class, 27 acute lymphoblastic leukemia (ALL) cases (code 0) and 11 acute myeloid leukemia (AML) cases (code 1). } \item{golub.gnames}{a matrix containing the names of the 3051 genes for the expression matrix \code{golub}. The three columns correspond to the gene \code{index}, \code{ID}, and \code{Name}, respectively. } } \source{Golub et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, \emph{Science}, Vol. 286:531-537.\cr \url{http://www-genome.wi.mit.edu/MPR/} .} \references{S. Dudoit, J. Fridlyand, and T. P. Speed (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. \emph{Journal of the American Statistical Association}, Vol. 97, No. 457, p. 77--87. } \keyword{datasets} multtest/man/meanX.Rd0000755000175200017520000002460214710217035015576 0ustar00biocbuildbiocbuild\name{meanX} \alias{meanX} \alias{diffmeanX} \alias{FX} \alias{blockFX} \alias{twowayFX} \alias{lmX} \alias{lmY} \alias{coxY} \alias{get.Tn} \title{Functions to create test statistic closures and apply them to data} \description{ The package \code{multtest} uses closures in the function \code{MTP} to compute test statistics. The closure used depends on the value of the argument \code{test}. These functions create the closures for different tests, given any additional variables, such as outcomes or covariates. The function \code{get.Tn} calls \code{wapply} to apply one of these closures to observed data (and possibly weights). \cr One exception for how test statistics are calculated in \code{multtest} involve tests of correlation parameters, where the change of dimensionality between the p variables in \code{X} and the p-choose-2 hypotheses corresponding to the number of pairwise correlations presents a challenge. In this case, the test statistics are calculated directly in \code{corr.Tn} and returned in a manner similar to the test statistic function closures. No resampling is done either, since the null distribution for tests of correlation parameters are only implemented when \code{nulldist='ic'}. Details are given below. } \usage{ meanX(psi0 = 0, na.rm = TRUE, standardize = TRUE, alternative = "two.sided", robust = FALSE) diffmeanX(label, psi0 = 0, var.equal = FALSE, na.rm = TRUE, standardize = TRUE, alternative = "two.sided", robust = FALSE) FX(label, na.rm = TRUE, robust = FALSE) blockFX(label, na.rm = TRUE, robust = FALSE) twowayFX(label, na.rm = TRUE, robust = FALSE) lmX(Z = NULL, n, psi0 = 0, na.rm = TRUE, standardize = TRUE, alternative = "two.sided", robust = FALSE) lmY(Y, Z = NULL, n, psi0 = 0, na.rm = TRUE, standardize = TRUE, alternative = "two.sided", robust = FALSE) coxY(surv.obj, strata = NULL, psi0 = 0, na.rm = TRUE, standardize = TRUE, alternative = "two.sided", init = NULL, method = "efron") get.Tn(X, stat.closure, W = NULL) corr.Tn(X, test, alternative, use = "pairwise") } \arguments{ \item{X}{A matrix, data.frame or ExpressionSet containing the raw data. In the case of an ExpressionSet, \code{exprs(X)} is the data of interest and \code{pData(X)} may contain outcomes and covariates of interest. For currently implemented tests, one hypothesis is tested for each row of the data.} \item{W}{A vector or matrix containing non-negative weights to be used in computing the test statistics. If a matrix, \code{W} must be the same dimension as \code{X} with one weight for each value in \code{X}. If a vector, \code{W} may contain one weight for each observation (i.e. column) of \code{X} or one weight for each variable (i.e. row) of \code{X}. In either case, the weights are duplicated apporpraiately. Weighted f-tests are not available. Default is 'NULL'.} \item{label}{A vector containing the class labels for t- and f-tests. For the \code{blockFX} function, observations are divided into \code{l} blocks of \code{n/l} observations. Within each block there may be \code{k} groups with \code{k>2}. For this test, there is only one observation per block*group combination. The labels (and corresponding rows of \code{Z} and columns of \code{X} and \code{W}) must be ordered by block and within each block ordered by group. Groups must be labeled with integers \code{1,...,k}. For the \code{twowayFX} function, observations are divided into \code{l} blocks. Within each block there may be \code{k} groups with \code{k>2}. There must be more than one observation per group*block combination for this test. The labels (and corresponding rows of \code{Z} and columns of \code{X} and \code{W}) must be ordered by block and within each block ordered by group. Groups must be labeled with integers \code{1,...,k}.} \item{Y}{A vector or factor containing the outcome of interest for linear models. This may be a continuous or polycotomous dependent variable.} \item{surv.object}{A survival object as returned by the \code{Surv} function, to be used as response in \code{coxY}.} \item{Z}{A vector, factor, or matrix containing covariate data to be used in the linear regression models. Each variable should be in one column.} \item{strata}{A vector, factor, or matrix containing covariate data to be used in the Cox regression models. Covariate data will be converted to a factor variable (via the \code{strata} function) for use in the \code{coxph} function. Each variable should be in one column.} \item{n}{The sample size, e.g. \code{length(Y)} or \code{nrow(Z)}.} \item{psi0}{Hypothesized null value for the parameter of interest (e.g. mean or difference in means), typically zero (default).} \item{var.equal}{Indicator of whether to use t-statistics that assume equal variance in the two groups when computing the denominator of the test statistics.} \item{na.rm}{Logical indicating whether to remove observations with an NA. Default is 'TRUE'.} \item{standardize}{Logical indicating whether to use the standardized version of the test statistics (usual t-statistics are standardized). Default is 'TRUE'.} \item{alternative}{Character string indicating the alternative hypotheses, by default 'two.sided'. For one-sided tests, use 'less' or 'greater' for null hypotheses of 'greater than or equal' (i.e. alternative is 'less') and 'less than or equal', respectively.} \item{robust}{Logical indicating whether to use robust versions of the test statistics.} \item{init}{Vector of initial values of the iteration in \code{coxY} function, as used in \code{coxph} in the \code{survival} package. Default initial value is zero for all variables (\code{init=NULL}).} \item{method}{A character string specifying the method for tie handling in \code{coxY} function, as used in \code{coxph} in the \code{survival} package. Default is "efron".} \item{test}{For \code{corr.Tn}, a character string of either 't.cor' or 'z.cor' indicating whether t-statistics or Fisher's z-statistics are to be calculated when probing hypotheses involving correlation parameters.} \item{use}{Similar to the options in \code{cor}, a character string giving a method for computing covariances in the presence of missing values. Default is 'pairwise', which allows for the covariance/correlation matrix to be calculated using the most information possible when \code{NA}s are present.} } \details{ The use of closures, in the style of the \code{genefilter} package, allows uniform data input for all MTPs and facilitates the extension of the package's functionality by adding, for example, new types of test statistics. Specifically, for each value of the \code{MTP} argument \code{test}, a closure is defined which consists of a function for computing the test statistic (with only two arguments, a data vector \code{x} and a corresponding weight vector \code{w}, with default value of \code{NULL}) and its enclosing environment, with bindings for relevant additional arguments. These arguments may include null values \code{psi0}, outcomes (\code{Y}, \code{label}, \code{surv.object}), and covariates \code{Z}. The vectors \code{x} and \code{w} are rows of the matrices \code{X} and \code{W}. In the \code{MTP} function, the closure is first used to compute the vector of observed test statistics, and then, in each bootstrap iteration, to produce the estimated joint null distribution of the test statistics. In both cases, the function \code{get.Tn} is used to apply the closure to rows of the matrices of data (\code{X}) and weights (\code{W}). Thus, new test statistics can be added to \code{multtest} package by simply defining a new closure and adding a corresponding value for the \code{test} argument to the \code{MTP} function. As mentioned above, one exception made to the closure rule in \code{multtest} was done for the case of tests involving correlation parameters (i.e., when \code{test='t.cor'} or \code{test='z.cor'}). In particular, the change of dimension between the number of variables in \code{X} and the number of hypotheses corresponding to all pairwise correlation parameters presented a challenge. In this setting, a 'closure-like' function was written which returns \code{choose(dim(X)[2],2)} test statistics stored in a matrix \code{obs} described below. No resampling methods are available for 't.cor' and 'z.cor', as their only current available null distribution is based on influence curves (\code{nulldist='ic'}), meaning that the test statistics null distribution is sampled directly from an appropriate multivariate normal distribution. In this manner, the data are used to calculate test statistics and null distribution estimates of the appropriate length and dimension, with sidedness correctly accounted for. With care, these objects for tests of correlation can then be integrated into the rest of the (modular) \code{multtest} functionality to perform multiple testing using other available argument options in the functions \code{MTP} or \code{EBMTP}. } \value{ For \code{meanX}, \code{diffmeanX}, \code{FX}, \code{blockFX}, \code{twowayFX}, \code{lmX}, \code{lmY}, and \code{coxY}, a closure consisting of a function for computing test statistics and its enclosing environment. For \code{get.Tn} and \code{corr.Tn}, the observed test statistics stored in a matrix \code{obs} with numerator (possibly absolute value or negative, depending on the value of \code{alternative}) in the first row, denominator in the second row, and a 1 or -1 in the third row (depending on the value of alternative). The vector of observed test statistics is obs[1,]*obs[3,]/obs[2,]. } \author{Katherine S. Pollard, Houston N. Gilbert, and Sandra Taylor, with design contributions from Duncan Temple Lang, Sandrine Dudoit and Mark J. van der Laan} \seealso{\code{\link{MTP}}, \code{\link{get.Tn}}, \code{\link{wapply}}, \code{\link{boot.resample}}} \examples{ data<-matrix(rnorm(200),nr=20) #one-sample t-statistics ttest<-meanX(psi0=0,na.rm=TRUE,standardize=TRUE,alternative="two.sided",robust=FALSE) obs<-wapply(data,1,ttest,W=NULL) statistics<-obs[1,]*obs[3,]/obs[2,] statistics #for tests of correlation parameters, #note change of dimension compared to dim(data), #function calculate statistics directly in same form as above obs <- corr.Tn(data,test="t.cor",alternative="greater") dim(obs) statistics<-obs[1,]*obs[3,]/obs[2,] length(statistics) #two-way F-statistics FData <- matrix(rnorm(5*60),nr=5) label<-rep(c(rep(1,10), rep(2,10), rep(3,10)),2) twowayf<-twowayFX(label) obs<-wapply(FData,1,twowayf,W=NULL) statistics<-obs[1,]*obs[3,]/obs[2,] statistics } \keyword{htest} \keyword{internal} multtest/man/mt.internal.Rd0000755000175200017520000000327114710217035016760 0ustar00biocbuildbiocbuild\name{multtest-internal} \alias{.mt.BLIM} \alias{.mt.RandSeed} \alias{.mt.naNUM} \alias{mt.number2na} \alias{mt.na2number} \alias{mt.getmaxB} \alias{mt.transformL} \alias{mt.transformX} \alias{mt.transformV} \alias{mt.checkothers} \alias{mt.checkX} \alias{mt.checkV} \alias{mt.checkclasslabel} \alias{mt.niceres} \alias{mt.legend} \alias{corr.Tn} \alias{diffs.1.N} \alias{IC.Cor.NA} \alias{IC.CorXW.NA} \alias{insert.NA} \alias{marg.samp} \title{Internal multtest functions and variables} \description{ Internal multtest functions and variables } \usage{ .mt.BLIM .mt.RandSeed .mt.naNUM mt.number2na(x,na) mt.na2number(x,na) mt.getmaxB(classlabel,test,B, verbose) mt.transformL(classlabel,test) mt.transformV(V,classlabel,test,na,nonpara) mt.transformX(X,classlabel,test,na,nonpara) mt.checkothers(side="abs",fixed.seed.sampling="y", B=10000, na=.mt.naNUM, nonpara="n") mt.checkX(X,classlabel,test) mt.checkV(V,classlabel,test) mt.checkclasslabel(classlabel,test) mt.niceres<-function(res,X,index) mt.legend(x, y = NULL, legend, fill = NULL, col = "black", lty, lwd, pch, angle = 45, density = NULL, bty = "o", bg = par("bg"), pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd, xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1, adj = c(0, 0.5), text.width = NULL, text.col = par("col"), merge = do.lines && has.pch, trace = FALSE, plot = TRUE, ncol = 1, horiz = FALSE,...) corr.Tn(X, test, alternative, use = "pairwise") diffs.1.N(vec1, vec2, e1, e2, e21, e22, e12) IC.Cor.NA(IC, W, N, M, output) IC.CorXW.NA(X, W, N, M, output) insert.NA(orig.NA, res.vec) marg.samp(marg.null, marg.par, m, B, ncp) } \details{ These are not to be called directly by the user. } \keyword{internal} multtest/man/mt.maxT.Rd0000755000175200017520000001777114710217035016067 0ustar00biocbuildbiocbuild\name{mt.maxT} \alias{mt.maxT} \alias{mt.minP} \title{ Step-down maxT and minP multiple testing procedures } \description{These functions compute permutation adjusted \eqn{p}-values for step-down multiple testing procedures described in Westfall & Young (1993). } \usage{ mt.maxT(X,classlabel,test="t",side="abs",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") mt.minP(X,classlabel,test="t",side="abs",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") } \arguments{ \item{X}{A data frame or matrix, with \eqn{m} rows corresponding to variables (hypotheses) and \eqn{n} columns to observations. In the case of gene expression data, rows correspond to genes and columns to mRNA samples. The data can be read using \code{\link{read.table}}. } \item{classlabel}{ A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}. For the \code{blockf} test option, observations may be divided into \eqn{n/k} blocks of \eqn{k} observations each. The observations are ordered by block, and within each block, they are labeled using the integers 0 to \eqn{k-1}. } \item{test}{A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels.\cr If \code{test="t"}, the tests are based on two-sample Welch t-statistics (unequal variances). \cr If \code{test="t.equalvar"}, the tests are based on two-sample t-statistics with equal variance for the two samples. The square of the t-statistic is equal to an F-statistic for \eqn{k=2}. \cr If \code{test="wilcoxon"}, the tests are based on standardized rank sum Wilcoxon statistics.\cr If \code{test="f"}, the tests are based on F-statistics.\cr If \code{test="pairt"}, the tests are based on paired t-statistics. The square of the paired t-statistic is equal to a block F-statistic for \eqn{k=2}. \cr If \code{test="blockf"}, the tests are based on F-statistics which adjust for block differences (cf. two-way analysis of variance). } \item{side}{A character string specifying the type of rejection region.\cr If \code{side="abs"}, two-tailed tests, the null hypothesis is rejected for large absolute values of the test statistic.\cr If \code{side="upper"}, one-tailed tests, the null hypothesis is rejected for large values of the test statistic.\cr If \code{side="lower"}, one-tailed tests, the null hypothesis is rejected for small values of the test statistic. } \item{fixed.seed.sampling}{If \code{fixed.seed.sampling="y"}, a fixed seed sampling procedure is used, which may double the computing time, but will not use extra memory to store the permutations. If \code{fixed.seed.sampling="n"}, permutations will be stored in memory. For the \code{blockf} test, the option \code{n} was not implemented as it requires too much memory. } \item{B}{The number of permutations. For a complete enumeration, \code{B} should be 0 (zero) or any number not less than the total number of permutations. } \item{na}{Code for missing values (the default is \code{.mt.naNUM=--93074815.62}). Entries with missing values will be ignored in the computation, i.e., test statistics will be based on a smaller sample size. This feature has not yet fully implemented. } \item{nonpara}{If \code{nonpara}="y", nonparametric test statistics are computed based on ranked data. \cr If \code{nonpara}="n", the original data are used. } } \details{These functions compute permutation adjusted \eqn{p}-values for the step-down maxT and minP multiple testing procedures, which provide strong control of the family-wise Type I error rate (FWER). The adjusted \eqn{p}-values for the minP procedure are defined in equation (2.10) p. 66 of Westfall & Young (1993), and the maxT procedure is discussed p. 50 and 114. The permutation algorithms for estimating the adjusted \eqn{p}-values are given in Ge et al. (In preparation). The procedures are for the simultaneous test of \eqn{m} null hypotheses, namely, the null hypotheses of no association between the \eqn{m} variables corresponding to the rows of the data frame \code{X} and the class labels \code{classlabel}. For gene expression data, the null hypotheses correspond to no differential gene expression across mRNA samples. } \value{ A data frame with components \item{index}{Vector of row indices, between 1 and \code{nrow(X)}, where rows are sorted first according to their adjusted \eqn{p}-values, next their unadjusted \eqn{p}-values, and finally their test statistics. } \item{teststat}{Vector of test statistics, ordered according to \code{index}. To get the test statistics in the original data order, use \code{teststat[order(index)]}.} \item{rawp}{Vector of raw (unadjusted) \eqn{p}-values, ordered according to \code{index}.} \item{adjp}{Vector of adjusted \eqn{p}-values, ordered according to \code{index}.} \item{plower}{For \code{\link{mt.minP}} function only, vector of "adjusted \eqn{p}-values", where ties in the permutation distribution of the successive minima of raw \eqn{p}-values with the observed \eqn{p}-values are counted only once. Note that procedures based on \code{plower} do not control the FWER. Comparison of \code{plower} and \code{adjp} gives an idea of the discreteness of the permutation distribution. Values in \code{plower} are ordered according to \code{index}.} } \references{ S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray experiments.\cr Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothesis, Technical Report \#633 of UCB Stat. \url{http://www.stat.berkeley.edu/~gyc} \cr P. H. Westfall and S. S. Young (1993). \emph{Resampling-based multiple testing: Examples and methods for \eqn{p}-value adjustment}. John Wiley \& Sons. } \author{Yongchao Ge, \email{yongchao.ge@mssm.edu}, \cr Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine}.} \seealso{\code{\link{mt.plot}}, \code{\link{mt.rawp2adjp}}, \code{\link{mt.reject}}, \code{\link{mt.sample.teststat}}, \code{\link{mt.teststat}}, \code{\link{golub}}.} \examples{ # Gene expression data from Golub et al. (1999) # To reduce computation time and for illustrative purposes, we condider only # the first 100 genes and use the default of B=10,000 permutations. # In general, one would need a much larger number of permutations # for microarray data. data(golub) smallgd<-golub[1:100,] classlabel<-golub.cl # Permutation unadjusted p-values and adjusted p-values # for maxT and minP procedures with Welch t-statistics resT<-mt.maxT(smallgd,classlabel) resP<-mt.minP(smallgd,classlabel) rawp<-resT$rawp[order(resT$index)] teststat<-resT$teststat[order(resT$index)] # Plot results and compare to Bonferroni procedure bonf<-mt.rawp2adjp(rawp, proc=c("Bonferroni")) allp<-cbind(rawp, bonf$adjp[order(bonf$index),2], resT$adjp[order(resT$index)],resP$adjp[order(resP$index)]) mt.plot(allp, teststat, plottype="rvsa", proc=c("rawp","Bonferroni","maxT","minP"),leg=c(0.7,50),lty=1,col=1:4,lwd=2) mt.plot(allp, teststat, plottype="pvsr", proc=c("rawp","Bonferroni","maxT","minP"),leg=c(60,0.2),lty=1,col=1:4,lwd=2) mt.plot(allp, teststat, plottype="pvst", proc=c("rawp","Bonferroni","maxT","minP"),leg=c(-6,0.6),pch=16,col=1:4) # Permutation adjusted p-values for minP procedure with F-statistics (like equal variance t-statistics) mt.minP(smallgd,classlabel,test="f",fixed.seed.sampling="n") # Note that the test statistics used in the examples below are not appropriate # for the Golub et al. data. The sole purpose of these examples is to # demonstrate the use of the mt.maxT and mt.minP functions. # Permutation adjusted p-values for maxT procedure with paired t-statistics classlabel<-rep(c(0,1),19) mt.maxT(smallgd,classlabel,test="pairt") # Permutation adjusted p-values for maxT procedure with block F-statistics classlabel<-rep(0:18,2) mt.maxT(smallgd,classlabel,test="blockf",side="upper") } \keyword{htest} multtest/man/mt.plot.Rd0000755000175200017520000001115214710217035016117 0ustar00biocbuildbiocbuild\name{mt.plot} \alias{mt.plot} \title{Plotting results from multiple testing procedures} \description{This function produces a number of graphical summaries for the results of multiple testing procedures and their corresponding adjusted \eqn{p}-values.} \usage{ mt.plot(adjp, teststat, plottype="rvsa", logscale=FALSE, alpha=seq(0, 1, length = 100), proc, leg=c(0, 0), \dots) } \arguments{ \item{adjp}{A matrix of adjusted \emph{p}-values, with rows corresponding to hypotheses (genes) and columns to multiple testing procedures. This matrix could be obtained from the functions \code{\link{mt.maxT}}, \code{\link{mt.minP}}, or \code{\link{mt.rawp2adjp}}.} \item{teststat}{A vector of test statistics for each of the hypotheses. This vector could be obtained from the functions \code{\link{mt.teststat}}, \code{\link{mt.maxT}}, or \code{\link{mt.minP}}.} \item{plottype}{A character string specifying the type of graphical summary for the results of the multiple testing procedures. \cr If \code{plottype="rvsa"}, the number of rejected hypotheses is plotted against the nominal Type I error rate for each of the procedures given in \code{proc}.\cr If \code{plottype="pvsr"}, the ordered adjusted \emph{p}-values are plotted for each of the procedures given in \code{proc}. This can be viewed as a plot of the Type I error rate against the number of rejected hypotheses. \cr If \code{plottype="pvst"}, the adjusted \emph{p}-values are plotted against the test statistics for each of the procedures given in \code{proc}. \cr If \code{plottype="pvsi"}, the adjusted \emph{p}-values are plotted for each of the procedures given in \code{proc} using the original data order. } \item{logscale}{A logical variable for the \code{pvst} and \code{pvsi} plots. If \code{logscale} is \code{TRUE}, the negative decimal logarithms of the adjusted \emph{p}-values are plotted against the test statistics or gene indices. If \code{logscale} is \code{FALSE}, the adjusted \emph{p}-values are plotted against the test statistics or gene indices.} \item{alpha}{A vector of nominal Type I error rates for the \code{rvsa} plot.} \item{proc}{A vector of character strings containing the names of the multiple testing procedures, to be used in the legend.} \item{\dots}{Graphical parameters such as \code{col}, \code{lty}, \code{pch}, and \code{lwd} may also be supplied as arguments to the function (see \code{\link{par}}).} \item{leg}{A vector of coordinates for the legend.} } \references{ S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray experiments.\cr Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothesis, Technical Report \#633 of UCB Stat. \url{http://www.stat.berkeley.edu/~gyc} \cr } \author{ Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine}, \cr Yongchao Ge, \email{yongchao.ge@mssm.edu}. } \seealso{\code{\link{mt.maxT}}, \code{\link{mt.minP}}, \code{\link{mt.rawp2adjp}}, \code{\link{mt.reject}}, \code{\link{mt.teststat}}, \code{\link{golub}}.} \examples{ # Gene expression data from Golub et al. (1999) # To reduce computation time and for illustrative purposes, we condider only # the first 100 genes and use the default of B=10,000 permutations. # In general, one would need a much larger number of permutations # for microarray data. data(golub) smallgd<-golub[1:100,] classlabel<-golub.cl # Permutation unadjusted p-values and adjusted p-values for maxT procedure res1<-mt.maxT(smallgd,classlabel) rawp<-res1$rawp[order(res1$index)] teststat<-res1$teststat[order(res1$index)] # Permutation adjusted p-values for simple multiple testing procedures procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY") res2<-mt.rawp2adjp(rawp,procs) # Plot results from all multiple testing procedures allp<-cbind(res2$adjp[order(res2$index),],res1$adjp[order(res1$index)]) dimnames(allp)[[2]][9]<-"maxT" procs<-dimnames(allp)[[2]] procs[7:9]<-c("maxT","BH","BY") allp<-allp[,procs] cols<-c(1:4,"orange","brown","purple",5:6) ltypes<-c(3,rep(1,6),rep(2,2)) # Ordered adjusted p-values mt.plot(allp,teststat,plottype="pvsr",proc=procs,leg=c(80,0.4),lty=ltypes,col=cols,lwd=2) # Adjusted p-values in original data order mt.plot(allp,teststat,plottype="pvsi",proc=procs,leg=c(80,0.4),lty=ltypes,col=cols,lwd=2) # Number of rejected hypotheses vs. level of the test mt.plot(allp,teststat,plottype="rvsa",proc=procs,leg=c(0.05,100),lty=ltypes,col=cols,lwd=2) # Adjusted p-values vs. test statistics mt.plot(allp,teststat,plottype="pvst",logscale=TRUE,proc=procs,leg=c(0,4),pch=ltypes,col=cols) } \keyword{hplot} multtest/man/mt.rawp2adjp.Rd0000755000175200017520000001725414710217035017044 0ustar00biocbuildbiocbuild\name{mt.rawp2adjp} \alias{mt.rawp2adjp} \title{Adjusted p-values for simple multiple testing procedures} \description{ This function computes adjusted \eqn{p}-values for simple multiple testing procedures from a vector of raw (unadjusted) \eqn{p}-values. The procedures include the Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for strong control of the family-wise Type I error rate (FWER), and the Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001) procedures for (strong) control of the false discovery rate (FDR). The less conservative adaptive Benjamini & Hochberg (2000) and two-stage Benjamini & Hochberg (2006) FDR-controlling procedures are also included. } \usage{ mt.rawp2adjp(rawp, proc=c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY","ABH","TSBH"), alpha = 0.05, na.rm = FALSE) } \arguments{ \item{rawp}{A vector of raw (unadjusted) \eqn{p}-values for each hypothesis under consideration. These could be nominal \eqn{p}-values, for example, from \eqn{t}-tables, or permutation \eqn{p}-values as given in \code{mt.maxT} and \code{mt.minP}. If the \code{mt.maxT} or \code{mt.minP} functions are used, raw \eqn{p}-values should be given in the original data order, \code{rawp[order(index)]}.} \item{proc}{A vector of character strings containing the names of the multiple testing procedures for which adjusted \eqn{p}-values are to be computed. This vector should include any of the following: \code{"Bonferroni"}, \code{"Holm"}, \code{"Hochberg"}, \code{"SidakSS"}, \code{"SidakSD"}, \code{"BH"}, \code{"BY"}, \code{"ABH"}, \code{"TSBH"}.\cr Adjusted \eqn{p}-values are computed for simple FWER- and FDR- controlling procedures based on a vector of raw (unadjusted) \eqn{p}-values by one or more of the following methods: \describe{ \item{Bonferroni}{Bonferroni single-step adjusted \eqn{p}-values for strong control of the FWER.} \item{Holm}{Holm (1979) step-down adjusted \eqn{p}-values for strong control of the FWER.} \item{Hochberg}{ Hochberg (1988) step-up adjusted \eqn{p}-values for strong control of the FWER (for raw (unadjusted) \eqn{p}-values satisfying the Simes inequality).} \item{SidakSS}{Sidak single-step adjusted \eqn{p}-values for strong control of the FWER (for positive orthant dependent test statistics).} \item{SidakSD}{Sidak step-down adjusted \eqn{p}-values for strong control of the FWER (for positive orthant dependent test statistics).} \item{BH}{Adjusted \eqn{p}-values for the Benjamini & Hochberg (1995) step-up FDR-controlling procedure (independent and positive regression dependent test statistics).} \item{BY}{Adjusted \eqn{p}-values for the Benjamini & Yekutieli (2001) step-up FDR-controlling procedure (general dependency structures).} \item{ABH}{Adjusted \eqn{p}-values for the adaptive Benjamini & Hochberg (2000) step-up FDR-controlling procedure. This method ammends the original step-up procedure using an estimate of the number of true null hypotheses obtained from \eqn{p}-values.} \item{TSBH}{Adjusted \eqn{p}-values for the two-stage Benjamini & Hochberg (2006) step-up FDR-controlling procedure. This method ammends the original step-up procedure using an estimate of the number of true null hypotheses obtained from a first-pass application of \code{"BH"}. The adjusted \eqn{p}-values are \eqn{a}-dependent, therefore \code{alpha} must be set in the function arguments when using this procedure.} } } \item{alpha}{A nominal type I error rate, or a vector of error rates, used for estimating the number of true null hypotheses in the two-stage Benjamini & Hochberg procedure (\code{"TSBH"}). Default is 0.05.} \item{na.rm}{An option for handling \code{NA} values in a list of raw \eqn{p}-values. If \code{FALSE}, the number of hypotheses considered is the length of the vector of raw \eqn{p}-values. Otherwise, if \code{TRUE}, the number of hypotheses is the number of raw \eqn{p}-values which were not \code{NA}s.} } \value{ A list with components: \item{adjp}{A matrix of adjusted \eqn{p}-values, with rows corresponding to hypotheses and columns to multiple testing procedures. Hypotheses are sorted in increasing order of their raw (unadjusted) \eqn{p}-values.} \item{index}{A vector of row indices, between 1 and \code{length(rawp)}, where rows are sorted according to their raw (unadjusted) \eqn{p}-values. To obtain the adjusted \eqn{p}-values in the original data order, use \code{adjp[order(index),]}.} \item{h0.ABH}{The estimate of the number of true null hypotheses as proposed by Benjamini & Hochberg (2000) used when computing adjusted \eqn{p}-values for the \code{"ABH"} procedure (see Dudoit et al., 2007).} \item{h0.TSBH}{The estimate (or vector of estimates) of the number of true null hypotheses as proposed by Benjamini et al. (2006) when computing adjusted \eqn{p}-values for the \code{"TSBH"} procedure. (see Dudoit et al., 2007).} } \references{ Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. \emph{J. R. Statist. Soc. B}. Vol. 57: 289-300.\cr Y. Benjamini and Y. Hochberg (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. \emph{J. Behav. Educ. Statist}. Vol 25: 60-83.\cr Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypothesis testing under dependency. \emph{Annals of Statistics}. Vol. 29: 1165-88.\cr Y. Benjamini, A. M. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that control the false discovery rate. \emph{Biometrika}. Vol. 93: 491-507.\cr S. Dudoit, J. P. Shaffer, and J. C. Boldrick (2003). Multiple hypothesis testing in microarray experiments. \emph{Statistical Science}. Vol. 18: 71-103. \cr S. Dudoit, H. N. Gilbert, and M. J. van der Laan (2008). Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study. \emph{Biometrical Journal}, 50(5):716-44. \url{http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html}. \cr Y. Ge, S. Dudoit, and T. P. Speed (2003). Resampling-based multiple testing for microarray data analysis. \emph{TEST}. Vol. 12: 1-44 (plus discussion p. 44-77).\cr Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, \emph{Biometrika}. Vol. 75: 800-802.\cr S. Holm (1979). A simple sequentially rejective multiple test procedure. \emph{Scand. J. Statist.}. Vol. 6: 65-70. } \author{ Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine},\cr Yongchao Ge, \email{yongchao.ge@mssm.edu},\cr Houston Gilbert, \url{http://www.stat.berkeley.edu/~houston}. } \seealso{\code{\link{mt.maxT}}, \code{\link{mt.minP}}, \code{\link{mt.plot}}, \code{\link{mt.reject}}, \code{\link{golub}}.} \examples{ # Gene expression data from Golub et al. (1999) # To reduce computation time and for illustrative purposes, we condider only # the first 100 genes and use the default of B=10,000 permutations. # In general, one would need a much larger number of permutations # for microarray data. data(golub) smallgd<-golub[1:100,] classlabel<-golub.cl # Permutation unadjusted p-values and adjusted p-values for maxT procedure res1<-mt.maxT(smallgd,classlabel) rawp<-res1$rawp[order(res1$index)] # Permutation adjusted p-values for simple multiple testing procedures procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY","ABH","TSBH") res2<-mt.rawp2adjp(rawp,procs) } \keyword{htest} multtest/man/mt.reject.Rd0000755000175200017520000000350514710217035016420 0ustar00biocbuildbiocbuild\name{mt.reject} \alias{mt.reject} \title{Identity and number of rejected hypotheses } \description{This function returns the identity and number of rejected hypotheses for several multiple testing procedures and different nominal Type I error rates. } \usage{ mt.reject(adjp, alpha) } \arguments{ \item{adjp}{A matrix of adjusted \emph{p}-values, with rows corresponding to hypotheses and columns to multiple testing procedures. This matrix could be obtained from the function \code{\link{mt.rawp2adjp}} .} \item{alpha}{A vector of nominal Type I error rates.} } \value{ A list with components \item{r}{A matrix containing the number of rejected hypotheses for several multiple testing procedures and different nominal Type I error rates. Rows correspond to Type I error rates and columns to multiple testing procedures.} \item{which}{A matrix of indicators for the rejection of individual hypotheses by different multiple testing procedures for a nominal Type I error rate \code{alpha[1]}. Rows correspond to hypotheses and columns to multiple testing procedures.} } \author{ Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine}, \cr Yongchao Ge, \email{yongchao.ge@mssm.edu}. } \seealso{\code{\link{mt.maxT}}, \code{\link{mt.minP}}, \code{\link{mt.rawp2adjp}}, \code{\link{golub}}.} \examples{ # Gene expression data from Golub et al. (1999) # To reduce computation time and for illustrative purposes, we condider only # the first 100 genes and use the default of B=10,000 permutations. # In general, one would need a much larger number of permutations # for microarray data. data(golub) smallgd<-golub[1:100,] classlabel<-golub.cl # Permutation unadjusted p-values and adjusted p-values for maxT procedure res<-mt.maxT(smallgd,classlabel) mt.reject(cbind(res$rawp,res$adjp),seq(0,1,0.1))$r } \keyword{htest} multtest/man/mt.sample.teststat.Rd0000755000175200017520000001060514710217035020276 0ustar00biocbuildbiocbuild\name{mt.sample.teststat} \title{Permutation distribution of test statistics and raw (unadjusted) p-values} \alias{mt.sample.teststat} \alias{mt.sample.rawp} \alias{mt.sample.label} \usage{ mt.sample.teststat(V,classlabel,test="t",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") mt.sample.rawp(V,classlabel,test="t",side="abs",fixed.seed.sampling="y",B=10000,na=.mt.naNUM,nonpara="n") mt.sample.label(classlabel,test="t",fixed.seed.sampling="y",B=10000) } \description{ These functions provide tools to investigate the permutation distribution of test statistics, raw (unadjusted) \eqn{p}-values, and class labels. } \arguments{ \item{V}{A numeric vector containing the data for one of the variables (genes).} \item{classlabel}{ A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}. For the \code{blockf} test option, observations may be divided into \eqn{n/k} blocks of \eqn{k} observations each. The observations are ordered by block, and within each block, they are labeled using the integers 0 to \eqn{k-1}. } \item{test}{A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels.\cr If \code{test="t"}, the tests are based on two-sample Welch t-statistics (unequal variances). \cr If \code{test="t.equalvar"}, the tests are based on two-sample t-statistics with equal variance for the two samples. The square of the t-statistic is equal to an F-statistic for \eqn{k=2}. \cr If \code{test="wilcoxon"}, the tests are based on standardized rank sum Wilcoxon statistics.\cr If \code{test="f"}, the tests are based on F-statistics.\cr If \code{test="pairt"}, the tests are based on paired t-statistics. The square of the paired t-statistic is equal to a block F-statistic for \eqn{k=2}. \cr If \code{test="blockf"}, the tests are based on F-statistics which adjust for block differences (cf. two-way analysis of variance). } \item{side}{A character string specifying the type of rejection region.\cr If \code{side="abs"}, two-tailed tests, the null hypothesis is rejected for large absolute values of the test statistic.\cr If \code{side="upper"}, one-tailed tests, the null hypothesis is rejected for large values of the test statistic.\cr If \code{side="lower"}, one-tailed tests, the null hypothesis is rejected for small values of the test statistic. } \item{fixed.seed.sampling}{If \code{fixed.seed.sampling="y"}, a fixed seed sampling procedure is used, which may double the computing time, but will not use extra memory to store the permutations. If \code{fixed.seed.sampling="n"}, permutations will be stored in memory. For the \code{blockf} test, the option \code{n} was not implemented as it requires too much memory. } \item{B}{The number of permutations. For a complete enumeration, \code{B} should be 0 (zero) or any number not less than the total number of permutations. } \item{na}{Code for missing values (the default is \code{.mt.naNUM=--93074815.62}). Entries with missing values will be ignored in the computation, i.e., test statistics will be based on a smaller sample size. This feature has not yet fully implemented. } \item{nonpara}{If \code{nonpara}="y", nonparametric test statistics are computed based on ranked data. \cr If \code{nonpara}="n", the original data are used. } } \value{ For \code{\link{mt.sample.teststat}}, a vector containing \code{B} permutation test statistics. \cr \cr For \code{\link{mt.sample.rawp}}, a vector containing \code{B} permutation unadjusted \eqn{p}-values. \cr\cr For \code{\link{mt.sample.label}}, a matrix containing \code{B} sets of permuted class labels. Each row corresponds to one permutation. } \examples{ # Gene expression data from Golub et al. (1999) data(golub) mt.sample.label(golub.cl,B=10) permt<-mt.sample.teststat(golub[1,],golub.cl,B=1000) qqnorm(permt) qqline(permt) permt<-mt.sample.teststat(golub[50,],golub.cl,B=1000) qqnorm(permt) qqline(permt) permp<-mt.sample.rawp(golub[1,],golub.cl,B=1000) hist(permp) } \author{Yongchao Ge, \email{yongchao.ge@mssm.edu}, \cr Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine}.} \seealso{\code{\link{mt.maxT}}, \code{\link{mt.minP}}, \code{\link{golub}}.} \keyword{manip} multtest/man/mt.teststat.Rd0000755000175200017520000000703414710217035017020 0ustar00biocbuildbiocbuild\name{mt.teststat} \alias{mt.teststat} \alias{mt.teststat.num.denum} \title{Computing test statistics for each row of a data frame} \usage{ mt.teststat(X,classlabel,test="t",na=.mt.naNUM,nonpara="n") mt.teststat.num.denum(X,classlabel,test="t",na=.mt.naNUM,nonpara="n") } \description{ These functions provide a convenient way to compute test statistics, e.g., two-sample Welch t-statistics, Wilcoxon statistics, F-statistics, paired t-statistics, block F-statistics, for each row of a data frame. } \arguments{ \item{X}{A data frame or matrix, with \eqn{m} rows corresponding to variables (hypotheses) and\eqn{n} columns to observations. In the case of gene expression data, rows correspond to genes and columns to mRNA samples. The data can be read using \code{\link{read.table}}. } \item{classlabel}{ A vector of integers corresponding to observation (column) class labels. For \eqn{k} classes, the labels must be integers between 0 and \eqn{k-1}. For the \code{blockf} test option, observations may be divided into \eqn{n/k} blocks of \eqn{k} observations each. The observations are ordered by block, and within each block, they are labeled using the integers 0 to \eqn{k-1}. } \item{test}{A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels.\cr If \code{test="t"}, the tests are based on two-sample Welch t-statistics (unequal variances). \cr If \code{test="t.equalvar"}, the tests are based on two-sample t-statistics with equal variance for the two samples. The square of the t-statistic is equal to an F-statistic for \eqn{k=2}. \cr If \code{test="wilcoxon"}, the tests are based on standardized rank sum Wilcoxon statistics.\cr If \code{test="f"}, the tests are based on F-statistics.\cr If \code{test="pairt"}, the tests are based on paired t-statistics. The square of the paired t-statistic is equal to a block F-statistic for \eqn{k=2}. \cr If \code{test="blockf"}, the tests are based on F-statistics which adjust for block differences (cf. two-way analysis of variance). } \item{na}{Code for missing values (the default is \code{.mt.naNUM=--93074815.62}). Entries with missing values will be ignored in the computation, i.e., test statistics will be based on a smaller sample size. This feature has not yet fully implemented. } \item{nonpara}{If \code{nonpara}="y", nonparametric test statistics are computed based on ranked data. \cr If \code{nonpara}="n", the original data are used.} } \value{ For \code{\link{mt.teststat}}, a vector of test statistics for each row (gene). \cr \cr For \code{\link{mt.teststat.num.denum}}, a data frame with \cr \item{teststat.num}{the numerator of the test statistics for each row, depending on the specific \code{test} option.} \item{teststat.denum}{the denominator of the test statistics for each row, depending on the specific \code{test} option.} } \author{Yongchao Ge, \email{yongchao.ge@mssm.edu}, \cr Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine}.} \seealso{\code{\link{mt.maxT}}, \code{\link{mt.minP}}, \code{\link{golub}}.} \examples{ # Gene expression data from Golub et al. (1999) data(golub) teststat<-mt.teststat(golub,golub.cl) qqnorm(teststat) qqline(teststat) tmp<-mt.teststat.num.denum(golub,golub.cl,test="t") num<-tmp$teststat.num denum<-tmp$teststat.denum plot(sqrt(denum),num) tmp<-mt.teststat.num.denum(golub,golub.cl,test="f") } \keyword{univar} multtest/man/ss.maxT.Rd0000755000175200017520000001371314710217035016064 0ustar00biocbuildbiocbuild\name{ss.maxT} \alias{ss.maxT} \alias{ss.minP} \alias{sd.maxT} \alias{sd.minP} \title{Procedures to perform multiple testing} \description{ Given observed test statistics, a test statistics null distribution, and alternetive hyptheses, these multiple testing procedures provide family-wise error rate (FWER) adjusted p-values, cutoffs for test statistics, and possibly confidence regions for estimates. Four methods are implemented, based on minima of p-values and maxima of test statistics. } \usage{ ss.maxT(null, obs, alternative, get.cutoff, get.cr, get.adjp, alpha = 0.05) ss.minP(null, obs, rawp, alternative, get.cutoff, get.cr, get.adjp, alpha=0.05) sd.maxT(null, obs, alternative, get.cutoff, get.cr, get.adjp, alpha = 0.05) sd.minP(null, obs, rawp, alternative, get.cutoff, get.cr, get.adjp, alpha=0.05) } \arguments{ \item{null}{A matrix containing the test statistics null distribution, e.g. the output of \code{boot.resample}.} \item{obs}{A vector of observed test statistics, e.g. the output of a test statistics closure such as \code{meanX}. These are stored as a matrix with numerator (possibly absolute value or negative, depending on the value of alternative) in the first row, denominator in the second row, and a 1 or -1 in the third row (depending on the value of alternative). The observed test statistics are obs[1,]*obs[3,]/obs[2,].} \item{rawp}{Numeric vector of unadjusted ("raw") marginal p-values.} \item{alternative}{Character string indicating the alternative hypotheses, by default 'two.sided'. For one-sided tests, use 'less' or 'greater' for null hypotheses of 'greater than or equal' (i.e. alternative is 'less') and 'less than or equal', respectively.} \item{get.cutoff}{Logical indicating whether to compute thresholds for the test statistics. Default is 'FALSE'.} \item{get.cr}{Logical indicating whether to compute confidence intervals for the estimates. Not available for f-tests. Default is 'FALSE'.} \item{get.adjp}{Logical indicating whether to compute adjusted p-values. Default is 'TRUE'.} \item{alpha}{The target nominal type I error rate, which may be a vector of error rates. Default is 0.05.} } \details{ Having selected a suitable test statistics null distribution, there remains the main task of specifying rejection regions for each null hypothesis, i.e., cut-offs for each test statistic. One usually distinguishes between two main classes of multiple testing procedures, single-step and stepwise procedures. In single-step procedures, each null hypothesis is evaluated using a rejection region that is independent of the results of the tests of other hypotheses. Improvement in power, while preserving Type I error rate control, may be achieved by stepwise (step-down or step-up) procedures, in which rejection of a particular null hypothesis depends on the outcome of the tests of other hypotheses. That is, the (single-step) test procedure is applied to a sequence of successively smaller nested random (i.e., data-dependent) subsets of null hypotheses, defined by the ordering of the test statistics (common cut-offs or maxT procedures) or unadjusted p-values (common-quantiles or minP procedures). In step-down procedures, the hypotheses corresponding to the most significant test statistics (i.e., largest absolute test statistics or smallest unadjusted p-values) are considered successively, with further tests depending on the outcome of earlier ones. As soon as one fails to reject a null hypothesis, no further hypotheses are rejected. In contrast, for step-up procedures, the hypotheses corresponding to the least significant test statistics are considered successively, again with further tests depending on the outcome of earlier ones. As soon as one hypothesis is rejected, all remaining more significant hypotheses are rejected. These functions perform the following procedures: \cr ss.maxT: single-step, common cut-off (maxima of test statistics) \cr ss.minP: single-step, common quantile (minima of p-values) \cr sd.maxT: step-down, common cut-off (maxima of test statistics) \cr sd.minP: step-down, common quantile (minima of p-values) \cr } \value{A list with the following components: \item{c}{Object of class \code{"matrix"}, for each nominal (i.e. target) level for the test, a vector of threshold values for the vector of test statistics.} \item{cr}{Object of class \code{"array"}, for each nominal (i.e. target) level for the test, a matrix of lower and upper confidence bounds for the parameter of interest for each hypothesis. Not available for f-tests.} \item{adjp}{Object of class \code{"numeric"}, adjusted p-values for each hypothesis.} } \references{ M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art15/} M.J. van der Laan, S. Dudoit, K.S. Pollard (2004), Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art14/} S. Dudoit, M.J. van der Laan, K.S. Pollard (2004), Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates, Statistical Applications in Genetics and Molecular Biology, 3(1). \url{http://www.bepress.com/sagmb/vol3/iss1/art13/} Katherine S. Pollard and Mark J. van der Laan, "Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data" (June 24, 2003). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 121. \url{http://www.bepress.com/ucbbiostat/paper121} } \author{Katherine S. Pollard with design contributions from Sandrine Dudoit and Mark J. van der Laan.} \seealso{\code{\link{MTP}}} \examples{ ## These functions are used internally by the MTP function ## See MTP function: ? MTP } \keyword{htest} \keyword{internal} multtest/man/wapply.Rd0000755000175200017520000000350514710217035016041 0ustar00biocbuildbiocbuild\name{wapply} \alias{wapply} \title{Weighted version of the apply function} \description{ A function to perform 'apply' on an matrix of data and corresponding matrix of weights. } \usage{ wapply(X, MARGIN, FUN, W = NULL, ...) } \arguments{ \item{X}{A matrix of data.} \item{MARGIN}{A vector giving the subscripts which the function will be applied over. 1 indicates rows, 2 indicates columns.} \item{FUN}{The function to be applied. In the case of functions like \code{+} the function name must be quoted.} \item{W}{An optional matrix of weights. When \code{W=NULL}, the usual \code{apply} function is called.} \item{\dots}{optional arguments to \code{FUN}.} } \details{ When weights are provided, these are passed to \code{FUN} along with the data \code{X}. For example, if \code{FUN=meanX}, each data value is multiplied by the corresponding weight before the mean is applied. } \value{ If each call to \code{FUN} returns a vector of length \code{n}, then \code{wapply} returns an array of dimension \code{c(n, dim(X)[MARGIN])} if \code{n > 1}. If \code{n = 1}, \code{wapply} returns a vector if \code{MARGIN} has length 1 and an array of dimension \code{dim(X)[MARGIN]} otherwise. If \code{n = 0}, the result has length 0 but not necessarily the "correct" dimension. If the calls to \code{FUN} return vectors of different lengths, \code{wapply} returns a list of length \code{dim(X)[MARGIN]}. This function is used in the package \code{multtest} to compute weighted versions of test statistics. It is called by the function \code{get.Tn} inside the user-level function \code{MTP}. } \author{Katherine S. Pollard} \seealso{\code{\link{get.Tn}}, \code{\link{MTP}}} \examples{ data<-matrix(rnorm(200),nr=20) weights<-matrix(rexp(200,rate=0.1),nr=20) wapply(X=data,MARGIN=1,FUN=mean,W=weights) } \keyword{internal} multtest/src/0000755000175200017520000000000014710310212014233 5ustar00biocbuildbiocbuildmulttest/src/Makevars0000644000175200017520000000004414710217035015736 0ustar00biocbuildbiocbuildPKG_CFLAGS=-DUSEDOUBLE PKG_LIBS=-lm multtest/src/Makevars.win0000755000175200017520000000005614710217035016540 0ustar00biocbuildbiocbuildPKG_CFLAGS=-DUSEDOUBLE -DWINDOWS PKG_LIBS=-lm multtest/src/Rpack.c0000755000175200017520000002073114710217035015456 0ustar00biocbuildbiocbuild/*****************************************************************/ /* Header files */ /*****************************************************************/ #include #include #include #include #include #include #include "mt.h" #define mtT 1 #define mtF 2 #define mtPairT 3 #define mtBlockF 4 #define mtWilcoxon 5 #define mtTequalVar 6 #define mtFixedSampling 7 typedef float (*FUNC_NUM_DENUM)(const float *, const int* ,const int, const float , float *, float*,const void *); typedef void (*FUNC_CREATE)(int, int*,int); typedef void (*FUNC_DELETE)(); typedef struct tagSAMPLING_DATA{ FUNC_STAT fn_maxT; /*the computing for maxT*, mostly needs to be standardlized*/ FUNC_STAT fn_minP; /*used to speed up the computation;mostly will be set as fn_stat;*/ FUNC_NUM_DENUM fn_num_denum; /*the numerator and denumerator of maxT*/ FUNC_STAT fn_stat;/*the centered of the original definition, no further modification mostly will be fn_minP or fn_maxT, e.g. in Wiloxon test, ranksum- mean, which is also fn_minP in two sample t-test, it will be the t, also fn_maxT */ FUNC_CMP fn_cmp; FUNC_SAMPLE fn_first; FUNC_SAMPLE fn_next; FUNC_CREATE fn_create; FUNC_DELETE fn_delete; int test; int is_fixed_seed; } SAMPLING_DATA; int type2sample(char** options,SAMPLING_DATA* sd); int type2test(char* ptest,SAMPLING_DATA* sd); void create_gene_data(double*d, int*pnrow, int*pncol, int*L, double*pna,GENE_DATA* pdata,int PrintIDX) { int i,j; pdata->nrow=*pnrow; pdata->ncol=*pncol; pdata->na=*pna; malloc_gene_data(pdata); for (j=0; jncol; j++) pdata->L[j]=L[j]; for (i=0; inrow; i++) { if(PrintIDX) sprintf(pdata->id[i],"%d",i+1); /*used for the indexes*/ else sprintf(pdata->id[i],"0"); for (j=0; jncol; j++) { pdata->d[i][j]=d[j*pdata->nrow+i]; /*using the R tradition, which store the data column by column*/ } } } void data2vec(double** data,double*d, int nrow, int ncol) { int i,j; for (i=0; inrow;i++){ indexes[i]=atoi(pdata->id[i]); } } /*is computing fn_stat*/ void get_stat(double*d, int*pnrow, int* pncol, int*L,double *pna, float *T,char** options,int* extra) { GENE_DATA data; SAMPLING_DATA sd; if(type2test(options[0],&sd)==0) return; create_gene_data(d,pnrow,pncol,L,pna,&data,0); compute_test_stat(&data,data.L,T,sd.fn_stat,extra); free_gene_data(&data); } void get_stat_num_denum(double*d, int*pnrow, int* pncol, int*L,double *pna, float *Tnum,float*Tdenum,char**options, int*extra) { GENE_DATA data; SAMPLING_DATA sd; int i; if(type2test(options[0],&sd)==0) return; create_gene_data(d,pnrow,pncol,L,pna,&data,0); for(i=0;ifn_stat=two_sample_tstat; sd->fn_maxT=sd->fn_stat; sd->fn_minP=sd->fn_stat; sd->fn_num_denum=two_sample_tstat_num_denum; }else if(strcmp(ptest,"f")==0){ test=mtF; sd->fn_stat=Fstat; sd->fn_num_denum=Fstat_num_denum; sd->fn_maxT=sd->fn_stat; sd->fn_minP=sd->fn_stat; }else if(strcmp(ptest,"pairt")==0){ test=mtPairT; sd->fn_stat=sign_tstat; sd->fn_num_denum=sign_tstat_num_denum; sd->fn_maxT=sd->fn_stat; sd->fn_minP=sign_sum;/*changed to montone*/ }else if(strcmp(ptest,"blockf")==0){ test=mtBlockF; sd->fn_stat=Block_Fstat; sd->fn_num_denum=Block_Fstat_num_denum; sd->fn_maxT=sd->fn_stat; sd->fn_minP=sd->fn_stat; } else if(strcmp(ptest,"wilcoxon")==0){ test=mtWilcoxon; sd->fn_stat=Wilcoxon_T; sd->fn_num_denum=Wilcoxon_num_denum; sd->fn_maxT=sd->fn_stat;/*changed to normalize*/ sd->fn_minP=Wilcoxon_stat; }else if(strcmp(ptest,"t.equalvar")==0){ test=mtTequalVar; sd->fn_stat=two_sample_t1stat; sd->fn_num_denum=two_sample_t1stat_num_denum; sd->fn_maxT=sd->fn_stat; sd->fn_minP=ave_diff;/*changed to montone*/ }else return 0; sd->test=test; return 1; } int type2sample(char** options,SAMPLING_DATA* sd) { char *ptest,*pfixed_seed,*pside; int test=0; int is_fixed_sampling=0; int side=-2; /************************/ ptest=options[0]; pside=options[1]; pfixed_seed=options[2]; /***********************/ type2test(ptest,sd); test=sd->test; /***********************/ if(strcmp(pside,"upper")==0) side=1; if(strcmp(pside,"lower")==0) side=-1; if(strcmp(pside,"abs")==0) side=0; sd->fn_cmp=side2cmp(side); /**************/ if(strcmp(pfixed_seed,"y")==0) is_fixed_sampling=mtFixedSampling; else is_fixed_sampling=0; sd->is_fixed_seed=is_fixed_sampling; /***************/ switch(test){ case mtT: case mtF: case mtWilcoxon: case mtTequalVar: if(is_fixed_sampling){ sd->fn_first=first_sample_fixed; sd->fn_next=next_sample_fixed; sd->fn_create=create_sampling_fixed; sd->fn_delete=delete_sampling_fixed; }else{ sd->fn_first=first_sample; sd->fn_next=next_sample; sd->fn_create=create_sampling; sd->fn_delete=delete_sampling; } break; case mtPairT: if(is_fixed_sampling){ sd->fn_create=create_sampling_pairt_fixed; sd->fn_delete=delete_sampling_pairt_fixed; sd->fn_first=first_sample_pairt_fixed; sd->fn_next=next_sample_pairt_fixed; }else{ sd->fn_create=create_sampling_pairt; sd->fn_delete=delete_sampling_pairt; sd->fn_first=first_sample_pairt; sd->fn_next=next_sample_pairt; } break; case mtBlockF:/*have not implemented the solutuion for storing the permutation yet, as it is very memory instensive*/ sd->fn_create=create_sampling_block; sd->fn_delete=delete_sampling_block; sd->fn_first=first_sample_block; sd->fn_next=next_sample_block; break; default: fprintf(stderr,"Can not recogize the parameter\n"); return 0; } return 1; } /*test*/ /*main() { #define N 6 #define NUMB 6 int n=N; int L[N]={0,0,1,1,2,2}; int B=NUMB; int S[NUMB*N]; int i; get_sample_labels(&n,L,&B,S); for(i=0;i #include #include #include SEXP VScount(SEXP TH, SEXP cutoffs, SEXP m, SEXP B, SEXP c){ int B_len = INTEGER(B)[0], m_len = INTEGER(m)[0], c_len = INTEGER(c)[0]; int b, i, j; SEXP guessFT, THb, VS; PROTECT(guessFT=allocVector(INTSXP,1)); PROTECT(THb=allocVector(REALSXP,m_len)); PROTECT(VS=allocVector(INTSXP,c_len*B_len)); for(b=0;b0.0)) Rprintf("%d ",b); for(j=0;jREAL(cutoffs)[j]){ ++INTEGER(guessFT)[0]; } } INTEGER(VS)[b*c_len+j]=INTEGER(guessFT)[0]; } } Rprintf("%d\n",B_len); UNPROTECT(3); return(VS); } multtest/src/block_sampling_fixed.c0000755000175200017520000000402214710217035020554 0ustar00biocbuildbiocbuild/*This file is used to do the sampling for block sampling*/ #include "stdio.h" #include "stdlib.h" #include "math.h" #include "string.h" #include "mt.h" static int l_n=0; static int l_B=0;/*the number of total simultaions*/ static int l_b=0;/* the number of permutations are done*/ static int l_is_random=1;/* the permuation is random or not*/ static int* l_L=NULL; static int l_m=0;/*the number of treaments*/ static int* l_order_block=NULL; void create_sampling_block(int n,int*L,int B) { int i,maxB,Nblock,m,imax,fac;/*m is the number of treatments*/ double logfac; m=0; for(i=0;im){ m++; } m++; Nblock=n/m; logfac=logfactorial(m,m)*Nblock; imax=(unsigned int)(~0)>>1;/*divide by 2 to avoid the negative number*/ if(fabs(logfac)=maxB)){ /* checking if complete permutation doable*/ if (fabs(logfac)>log(imax)){ fprintf(stderr,"as B(log(B)=%5.2f) is too big,we can not do the complete permutations\n",logfac); return; /*exit(0)*/ } l_B=maxB; fprintf(stderr,"\nWe're doing %d complete permutations\n",l_B); l_is_random=0; }else{ /*doing random permutation*/ l_B=B; l_is_random=1; set_seed(g_random_seed); } l_n=n; l_b=0; l_m=m; l_L=(int*)R_Calloc(n,int); memcpy(l_L,L,sizeof(int)*n); l_order_block=(int*)R_Calloc(n,int); init_label_block(l_order_block,n,m); } void delete_sampling_block() { R_Free(l_L); l_L=NULL; R_Free(l_order_block); } int next_sample_block(int* L) { if(l_b>=l_B) return 0; if(l_is_random){ memcpy(L,l_order_block,sizeof(int)*l_n); sample_block(L,l_n,l_m); } else{ next_label_block(L,l_n,l_m); } l_b++; return 1; } int first_sample_block(int *L) { if(L==NULL) return l_B; if(l_is_random){ memcpy(L,l_L,sizeof(int)*l_n); }else{ init_label_block(L,l_n,l_m); } l_b=1; return 1; } multtest/src/bootloop.c0000755000175200017520000000241314710217035016250 0ustar00biocbuildbiocbuild#include #include #include #include SEXP bootloop(SEXP fbody, SEXP X, SEXP W, SEXP p, SEXP n, SEXP B, SEXP samp) { int B_len= INTEGER(B)[0], p_len=INTEGER(p)[0], num_samples, b, i, j; SEXP Xb, Wb, Sb, Tb, muboot; num_samples = INTEGER(n)[0]; PROTECT(Xb=allocVector(REALSXP,num_samples)); PROTECT(Wb=allocVector(REALSXP,num_samples)); PROTECT(Sb=allocVector(INTSXP,num_samples)); PROTECT(Tb=allocVector(REALSXP,3)); PROTECT(muboot = allocVector(REALSXP, B_len * p_len)); SEXP e, ptr; PROTECT(e=allocVector(LANGSXP,4)); // this includes the samp SETCAR(e, fbody); for(b=0;b0.0)) /* modulo 100 */ Rprintf("%d ",b); for(j=0;j #include #include #include #include #include #include #include "mt.h" /************************************************************************************/ /* malloc_gene_data */ /************************************************************************************/ /*Allocate the necessary space for the big data, see the comments about the structrue GENE_DATA */ int myDEBUG=0; long int g_random_seed=3455660; void print_b(int b,int B,char* prompt){ static int p=0; if(b==0) p=0; if(!PROMPT_LEN){ if((B<=100) ||(b%(B/100)==0)) { /*fprintf(stderr,"%s%d\t",prompt,b);*/ Rprintf("%s%d\t",prompt,b); p++; if(PRINT_VAR_NUM && (p%PRINT_VAR_NUM==0)) /*fprintf(stderr,"\n");*/ Rprintf("\n"); } }else if((b%(PROMPT_LEN+1))==0){ /*use PROMPT_LEN+1 to avoid the compiling warnings*/ p++; /*fprintf(stderr,"%s%d",prompt,b);*/ Rprintf("%s%d",prompt,b); if(PRINT_VAR_NUM && (p%PRINT_VAR_NUM==0)) /*fprintf(stderr,"\n");*/ Rprintf("\n"); } } #ifdef WINDOWS void win_print(FILE* fp, char* format,...) { va_list ap; va_start(ap, format); REvprintf(format, ap); va_end(ap); } #endif void malloc_gene_data(GENE_DATA* pdata) { int i; int nrow=pdata->nrow; int ncol=pdata->ncol; pdata->id=(char**)R_Calloc(nrow,char*); pdata->d=(float**)R_Calloc(nrow,float*); pdata->L=(int*)R_Calloc(ncol,int); /*initialization*/ memset(pdata->L,0,sizeof(int)*ncol); for(i=0;iL[i]=0; for (i=0; iid[i] = (char *) R_Calloc(MAX_ID,char); pdata->d[i]=(float *) R_Calloc(ncol,float); } } /********************************************************************************/ /* free_gene_data */ /********************************************************************************/ /*free the space allocated for pdata*/ void free_gene_data(GENE_DATA* pdata) { int i; for (i=0; inrow; i++) { R_Free(pdata->d[i]); R_Free(pdata->id[i]); } R_Free(pdata->L); R_Free(pdata->d); R_Free(pdata->id); } /********************************************************************************/ /* compute_test_stat */ /********************************************************************************/ void compute_test_stat(GENE_DATA* pdata, int* L,float* T, FUNC_STAT func_stat,const void* extra) /*L is an array which contains 0,1,2 ... for specifying class label*/ /*T is the test_test needs to return*/ /*func_stat is a functin pointer with the following protocol float func_stat(float *Y, int* L,int n, float na,const void* extra)*/ { int i; for(i=0;inrow;i++){ /* fprintf(stderr,"i=%d,T[%d]=%d\n",i,i,T[i]);*/ T[i]=(*func_stat)(pdata->d[i],L,pdata->ncol,pdata->na,extra); } } /********************************************************************************/ /* get1pvalue */ /********************************************************************************/ /* we'll do complete resampling with the function next_sample, which is determined by the function next_sample when it returns false. in the next_sample, you need to decide to choose complet resampling or not or whatever you like L: is the labelling of each experiment T: is that test statistics P: unadjtesed P-values To use the function first_sample, and next_sample, they're needed to write into a separate file, where it provides the create_sampling to do initialization such as allocate the space (before use the sampling) and delete_sampling after we've done the sampling in the main(). int first_sample(int *L) get the first sample of the labelling. int next_sample(int* L) get the next sample, if it's done all the sampling, then it returns 0, otherwise it returns 1. input: pdata, L, B,next_sample,func_stat output: T,P */ void get1pvalue(GENE_DATA* pdata,int* L,float* T,float* P, FUNC_STAT func_stat,FUNC_SAMPLE func_first_sample, FUNC_SAMPLE func_next_sample,FUNC_CMP func_cmp,const void* extra) { int b=0,*bL,i,is_next,*total; float *bT, *count; int ncol=pdata->ncol; int nrow=pdata->nrow; int B=(*func_first_sample)(NULL); /*allocate the space and initialziation*/ bT=(float*)R_Calloc(nrow,float); bL=(int*)R_Calloc(ncol,int); count=(float*)R_Calloc(nrow,float); memset(count,0,sizeof(float)*nrow); total=(int*)R_Calloc(nrow,int); memset(total,0,sizeof(int)*nrow); /*comuter the original one first*/ compute_test_stat(pdata,L,T,func_stat,extra); /*iteration for permutaion*/ (*func_first_sample)(bL); is_next=1; b=0; while(is_next){ compute_test_stat(pdata,bL,bT,func_stat,extra); for(i=0;i=T[i]-EPSILON)){ count[i]+=1; }else if((func_cmp==cmp_low) &&(bT[i]<=T[i]+EPSILON)){ count[i]+=1; }else if ((func_cmp==cmp_abs) &&(fabs(bT[i])>=fabs(T[i])-EPSILON)){ count[i]+=1; } total[i]++; } b++; print_b(b,B,"b="); is_next=(*func_next_sample)(bL); } /*summarize the results*/ for(i=0;inrow; char** old_id; /*the old addresses of the gene id*/ float** old_d; /*th old addresses of the gene data*/ old_d=(float**)R_Calloc(nrow,float*); old_id=(char**)R_Calloc(nrow,char*); /*store the original pointers from pdata*/ for(i=0;id[i]; old_id[i]=pdata->id[i]; } /*rearrange the data so that it's ordered according to R*/ for(i=0;id[i]=old_d[R[i]]; pdata->id[i]=old_id[R[i]]; } R_Free(old_id); R_Free(old_d); } /********************************************************************************/ /* sort_vector */ /********************************************************************************/ /* Desciption sort the vector V according to the order R with n elemnets where R[0],...,R[n-1] is a permutation of 0,...n-1 */ void sort_vector(float* V,int*R,int n) { float* old_V; int i; old_V=(float*)R_Calloc(n,float); for(i=0;i=oldf-EPSILON)) continue; else if ((func_cmp==cmp_low ) &&(T[R[b]]<=oldf+EPSILON)) continue; else if((func_cmp==cmp_abs )&& fabs(T[R[b]])>=fabs(oldf)-EPSILON) continue; for(i=oldb;incol,nrow=pdata->nrow; /*allocate the space*/ B=(*func_first_sample)(NULL); L=(int*)R_Calloc(ncol,int); R=(int*)R_Calloc(nrow,int); all_P=(float*)R_Calloc(B,float); all_Q=(float*)R_Calloc(B,float); /*get the original unadjusted p-values first we'll use the normalized t-statistics*/ get1pvalue(pdata,pdata->L,T,P,func_stat_T,func_first_sample,func_next_sample,func_cmp,extra); if(myDEBUG) { print_farray(stderr,T,pdata->nrow); print_farray(stderr,P,pdata->nrow); } /*sort the test_stat*/ order_mult_data(R,nrow,2,P,cmp_low,T,func_cmp); /*order_data(P,R,nrow,func_cmp);*/ /*rearrange the data according the unadjusted p-values*/ sort_gene_data(pdata,R); sort_vector(T,R,nrow); sort_vector(P,R,nrow); /*initialze all_Q[]=NA_FLOAT*/ for(b=0;b=0;i--){ get_all_samples_P(pdata->d[i],ncol,all_P,pdata->na, func_stat,func_first_sample,func_next_sample,func_cmp,extra); if(myDEBUG) print_farray(stderr,all_P,B); /*update all_Q*/ count=0; B_new=0; neq=0; for(b=0;ball_P[b]) all_Q[b]=all_P[b];/*update q* by the value p*/ if(all_Q[b]==NA_FLOAT) continue;/*skip NA q*/ if(all_Q[b] */ neq++; B_new++; } if(myDEBUG) { print_farray(stderr,all_Q,B); fprintf(stderr,"P[%d]=%5.3f,count=%5.2f,neq=%d\n",i,P[i],count,neq); } /*assign the Adj_P and Adj_Lower for gene i */ if(B_new!=0) { Adj_P[i]=(count+neq)/B_new; if(neq==0) Adj_Lower[i]=count/B_new; else Adj_Lower[i]=(count+1)/B_new; } else { Adj_P[i]=NA_FLOAT; Adj_Lower[i]=NA_FLOAT; } /*************************** */ print_b((nrow-i),nrow,"r="); } /* to make monotone of Adj_P and Adj_Lower*/ for(i=1;incol; int nrow=pdata->nrow; int B=(*func_first_sample)(NULL); /*allocate the space and initialziation*/ bT=(float*)R_Calloc(nrow,float); bL=(int*)R_Calloc(ncol,int); count1=(float*)R_Calloc(nrow,float); memset(count1,0,sizeof(float)*nrow); total1=(int*)R_Calloc(nrow,int); memset(total1,0,sizeof(int)*nrow); count2=(float*)R_Calloc(nrow,float); memset(count2,0,sizeof(float)*nrow); total2=(int*)R_Calloc(nrow,int); memset(total2,0,sizeof(int)*nrow); R=(int*)R_Calloc(nrow,int); /*comuter the original t-statfirst*/ compute_test_stat(pdata,pdata->L,T,func_stat,extra); /*sort the T*/ order_data(T,R,nrow,func_cmp); sort_gene_data(pdata,R); sort_vector(T,R,nrow); /*iteration for permutaion*/ (*func_first_sample)(bL); /*changed to the orignal stat, which is monotone of t and centered*/ is_next=1; b=0; while(is_next){ compute_test_stat(pdata,bL,bT,func_stat,extra); /*deal with unajdused value first*/ for(i=0;i=T[i])) count2[i]++; if((func_cmp==cmp_low)&&(bT[i]<=T[i]+EPSILON)) count2[i]++; if((func_cmp==cmp_abs)&&(fabs(bT[i])>=fabs(T[i])-EPSILON)) count2[i]++; total2[i]++; } } /*deal with adjusted values*/ qT=NA_FLOAT;/*intitalize the qT*/ for(i=nrow-1;i>=0;i--){ /*looping the row reversely*/ if(T[i]==NA_FLOAT) continue; /* right now I only implements the 3 cases, which are pretty common*/ if(func_cmp==cmp_high){ if((bT[i]!=NA_FLOAT)&&(qT!=NA_FLOAT)&&(bT[i]>qT)) qT=bT[i]; if((bT[i]!=NA_FLOAT)&&(qT==NA_FLOAT)) qT=bT[i]; if((qT!=NA_FLOAT)&&(qT>=T[i]-EPSILON)) count1[i]+=1; }else if(func_cmp==cmp_low){ if((bT[i]!=NA_FLOAT)&&(qT!=NA_FLOAT)&&(bT[i]qT)) qT=fabs(bT[i]); if((bT[i]!=NA_FLOAT)&&(qT==NA_FLOAT)) qT=fabs(bT[i]); if((qT!=NA_FLOAT)&&(qT>=fabs(T[i])-EPSILON)) count1[i]+=1; } if(qT!=NA_FLOAT) total1[i]++; } b++; print_b(b,B,"b="); is_next=(*func_next_sample)(bL); } /*summarize the results*/ /*unadjusted one*/ for(i=0;i1, then we'll use PROMPT_LEN+1 to report the progess in permutations, otherwise, we'll report it when finish 1% of permutations, this only applies to the permutations in get the unadjusted p-values. For calculating adjusted p-values, it always prompt after finish every genes, as the total number of genes is typically small, around 6000*/ #include #define MAX_ID 40 /*the max number of characters allowed for ID*/ #define MAX_WARN 256 /*the max of chars allowed in the warning message*/ #define NA_FLOAT FLT_MAX /*the default NA representation for float number*/ #define NA_DATA 1e30 /*the default NA representation for a gene value*/ /*using the double data*/ #ifdef USEDOUBLE #define EPSILON (120*DBL_EPSILON) #define float double #else #define EPSILON (12*FLT_EPSILON) #endif typedef struct tagGENE_DATA{ char** id; /*the gene index id*/ float** d; /*the gene values matrix, mxn*/ float na; int nrow; /*nrow is the number of the genes*/ int ncol; /*ncol is the number of the experiments*/ int* L; /*the status labelling of each experiment*/ char name[MAX_ID];/*the name of the status*/ }GENE_DATA; typedef int (*FUNC_SAMPLE)(int *); typedef int (*FUNC_CMP)(const void*,const void*); typedef float (*FUNC_STAT)(const float*,const int*,const int,const float,const void*); /********************************************************************************/ /* multiple testing */ /********************************************************************************/ void get_all_samples_P(float* V, int n,float* P,float na, FUNC_STAT func_stat,FUNC_SAMPLE first_sample, FUNC_SAMPLE next_sample,FUNC_CMP func_cmp,const void* extra); void get_all_samples_T(float* V, int n,float* T,float na, FUNC_STAT func_stat,FUNC_SAMPLE first_sample, FUNC_SAMPLE next_sample,const void* extra); void adj_pvalue_quick(GENE_DATA* pdata,float*T, float* P, float* Adj_P,float* Adj_Lower, FUNC_STAT func_stat,FUNC_STAT func_stat_maxT,FUNC_SAMPLE first_sample, FUNC_SAMPLE next_sample,FUNC_CMP func_cmp,const void* extra); void get1pvalue(GENE_DATA* pdata,int* L,float* T,float* P, FUNC_STAT func_stat,FUNC_SAMPLE first_sample, FUNC_SAMPLE next_sample,FUNC_CMP func_cmp,const void* extra); void adj_by_T(GENE_DATA* pdata,float* T,float* P,float*Adj_P, FUNC_STAT func_stat,FUNC_SAMPLE func_first_sample, FUNC_SAMPLE func_next_sample,FUNC_CMP func_cmp,const void* extra); /********************************************************************************/ /* processing with the gene_data */ /********************************************************************************/ void read_infile(char *filename,GENE_DATA *pdata); void write_outfile(FILE* fp,GENE_DATA* pdata,float*T, float*P,float*Adj_P,float* Adj_Lower); void malloc_gene_data(GENE_DATA* pdata); void free_gene_data(GENE_DATA* pdata); void print_gene_data(GENE_DATA* pdata); void sort_gene_data(GENE_DATA* pdata,int*R); void sort_vector(float* V,int*R,int n); /********************************************************************************/ /* sampling good for two sample t and F-stat */ /********************************************************************************/ void create_sampling(int n,int*L,int B); void delete_sampling(); int first_sample(int *L); int next_sample(int* L); void create_sampling_fixed(int n,int*L,int B); void delete_sampling_fixed(); int first_sample_fixed(int *L); int next_sample_fixed(int* L); void set_seed_sampling(long int seed); void create_sampling_block(int n,int*L,int B); void delete_sampling_block(); int first_sample_block(int *L); int next_sample_block(int* L); void create_sampling_pairt(int n,int*L,int B); void delete_sampling_pairt(); int first_sample_pairt(int *L); int next_sample_pairt(int* L); void create_sampling_pairt_fixed(int n,int*L,int B); void delete_sampling_pairt_fixed(); int first_sample_pairt_fixed(int *L); int next_sample_pairt_fixed(int* L); /********************************************************************************/ /* data_sorting */ /********************************************************************************/ void order_mult_data(int* R,int n,int k,...); void order_data(float* V,int*R,int n,FUNC_CMP func_cmp); int cmp_high(const void *v1, const void *v2); int cmp_low(const void *v1, const void *v2); int cmp_abs(const void *v1, const void *v2); /*micesslay functions*/ void print_farray(FILE* fh,float* p_arr,int n); void print_narray(FILE*fh,int* p_arr,int n); /********************************************************************************/ /* common used statistics */ /********************************************************************************/ void compute_test_stat(GENE_DATA* pdata, int* L,float* T, FUNC_STAT func_stat,const void* extra); float two_sample_tstat(const float *Y, const int* L,const int n, const float na,const void *extra); float two_sample_tstat_num_denum(const float *Y, const int* L,const int n, const float na,float* num, float* denum,const void* extra); /*t1stat is dealing with two sample t-statistics with equal variance*/ float ave_diff(const float *Y, const int* L,const int n, const float na,const void* extra); /*used to speed up the minP as ave_diff is monotone of the t1stat*/ float two_sample_t1stat(const float *Y, const int* L,const int n, const float na,const void *extra); float two_sample_t1stat_num_denum(const float *Y, const int* L,const int n, const float na,float* num, float* denum,const void* extra); /* Wilkoxon test*/ float Wilcoxon_stat(const float *Y, const int* L,const int n, const float na,const void* extra); /*T-ET, where ET=1/2 n_0(n_0|+n_1+1), T is the sum of rank*/ float Wilcoxon_T(const float *Y, const int* L,const int n, const float na,const void *extra); /* is computing (T-ET)/var(T), wher var(T)=1/12*n_0*n_1*(n_0+n_1+1) */ float Wilcoxon_num_denum(const float *Y, const int* L,const int n, const float na,float* num, float* denum,const void* extra); float sign_sum(const float *Y, const int* L,const int n, const float na,const void* extra); float sign_tstat_num_denum(const float *Y, const int* L,const int n, const float na, float *num, float*denum,const void *extra); float sign_tstat(const float *Y, const int* L,const int n, const float na, const void* extra); float Fstat_num_denum(const float *Y, const int* L,const int n, const float na, float *num, float*denum,const void* extra); float Fstat(const float *Y, const int* L,const int n, const float na,const void* extra); float Block_Fstat(const float *Y, const int* L,const int n, const float na,const void* extra); float Block_Fstat_num_denum(const float *Y, const int* L,const int n, const float na, float *num, float*denum,const void* extra); /********************************************************************************/ /* some useful tools */ /********************************************************************************/ int bin2int(int*V,int n);/*integrate the bits as an integer*/ void int2bin(int x,int*V,int n);/*decompose an integar as bits stored in V*/ int bincoeff(int n, int k); double logbincoeff(int n, int k); double logfactorial(int n, int k); void init_label(int n, int k, int*nk, int*L); void init_label_block(int *L, int n,int m); int next_label_block(int* L, int n, int m); void sample_block(int *L, int n,int m); void sample2label(int n, int k, int* nk,int *permun, int*L); void label2sample(int n, int k, int* nk,int*L,int *permun); int next_label(int n, int k, int* nk, int*L); int next_lex(int* A, int n, int k); void A2L(int* A,int* L,int n,int k); FUNC_CMP side2cmp(int side); void sample(int *V, int n, int m); float get_rand(); void set_seed(long int seed); int next_mult_permu(int* V, int n, int k, int* nk); int next_two_permu(int* V, int n, int k); int next_permu(int*V,int n); void data2vec(double** data,double*d, int nrow, int ncol); void set_seed_sampling(long int seed); void get_maxT(double*, int*, int*, int*, double*, float*, float*, float*, int*, int*, char**, int*); multtest/src/pairt_sampling.c0000755000175200017520000000775514710217035017442 0ustar00biocbuildbiocbuild/*the l is for local global variable in this file*/ #include "stdio.h" #include "stdlib.h" #include "math.h" #include "string.h" #include "mt.h" static int l_n=0;/*the number of samples for permutations*/ static int l_B=0;/*the number of total simultaions*/ static int l_b=0;/* the number of permutations are done*/ static int l_is_random=1;/* the permuation is random or not*/ static unsigned int* l_all_samples=NULL; /*store all the samples in random case*/ static int l_sz=0; /*the number of bytes for per permutation*/ static int l_len=0; static int get_binpermu(int h,int n,int sz,int len,int *L,int hMax,unsigned int *V)/*sz=ceiling(n/sizeof(int)*8)*/; static int set_binpermu(int *L,int h,int n,int sz,int len,int hMax,unsigned int *V); void create_sampling_pairt(int n,int*L,int B) { int i,maxB; unsigned int imax; l_n=n; l_b=0; imax=(unsigned int)(~0); l_len=floor(log(imax+1.0)/log(2)); l_sz=ceil(n/(l_len*1.0)); /*setting the maximum B*/ if(fabs(n*log(2))>1)){ /*to be safe, moved two bits*/ maxB=1<>1; } if((B==0) ||(B>=maxB)){ if(n>=(l_len-1)){ fprintf(stderr,"as n=%d is very large, we can not do complete permutation\n, Please try random permutation\n",n); return; } l_is_random=0; l_B=maxB; /*when exceeding the maximum numbers, we'll use the complete permutaions*/ /*fprintf(stderr,"\nWe're doing %d complete permutations\n",l_B);*/ Rprintf("\nWe're doing %d complete permutations\n",l_B); } else{ int* myL; myL=(int*)R_Calloc(n,int); l_B=B; l_is_random=1; /*fprintf(stderr,"\nWe're doing %d random permutations\n",l_B);*/ Rprintf("\nWe're doing %d random permutations\n",l_B); set_seed(g_random_seed); l_all_samples=(unsigned int*)R_Calloc(l_B*l_sz,int); /*setting the first sample as the original data*/ set_binpermu(L,0,n,l_sz,l_len,l_B,l_all_samples); /*the extra as a buffer*/ for(i=1;i0.5) myL[j]=1; else myL[j]=0; } set_binpermu(myL,i,n,l_sz,l_len,l_B,l_all_samples); } R_Free(myL); if(myDEBUG) { fprintf(stderr,"the samples are\n"); for(i=0;i=l_B) return 0; /*no next sample*/ /*call different sampling function*/ if(l_is_random) get_binpermu(l_b,l_n,l_sz,l_len,L,l_B,l_all_samples); else int2bin(l_b,L,l_n); /* note for the complete resampling, we can not do more than 2^32 times*/ l_b++; return 1; } static int get_binpermu(int h,int n,int sz,int len,int *L,int hMax,unsigned int *V)/*sz=ceiling(n/sizeof(int)*8)*/ { int i,j; unsigned val; memset(L,0,sizeof(unsigned int)*n); if((h+1)> hMax) return 0; for(j=0;j0){ /*this code maybe faster if necessary*/ L[i]=val&1; i++; val>>=1;/*to move another bit*/ } } return 1; } static int set_binpermu(int *L,int h,int n,int sz,int len,int hMax,unsigned int *V) { int i,j,nextbound; unsigned val,pow; if((h+1)> hMax) return 0; i=0; /*starting from the last bit*/ for(j=0;j n) nextbound=n; pow=1; val=0; while(i=l_B) return 0; for(i=0;i0.5) L[i]=1; else L[i]=0; } l_b++; return 1; } multtest/src/random.c0000755000175200017520000000707114710217035015700 0ustar00biocbuildbiocbuild/* mt/random.c Copyright (C) Yongchao Ge, Berkeley, USA This program is part of the the free software of the multtest, which is a C stand alone package, the multtest software has also been wrapped to R package for people easy to use. */ #include "stdio.h" #include "stdlib.h" #include "math.h" #include "mt.h" /*-------------------------------ran2()---------------------------*/ /* This function is implementation of random number generating algorithm based on ran2 function in the book of Numerical Recipes in C pp282(1992), 2nd edition It generates a unifrom random number from 0 to 1 (not including 0 and 1) using random number generator of L'Ecuyer with Bayes_Durham Shuffle and added safeguards. */ #define A1 40014 #define Q1 53668 #define R1 12211 #define M1 2147483563 #define A2 40692 #define Q2 52774 #define R2 3791 #define M2 2147483399 #define ONE (1.0- 1.2e-7) #define N_SHUFF 32 #define N_WARMUP 8 /*prestoring the results to increase the computing speed*/ static long int N_DIV=(1+(M1-1)/N_SHUFF); static float M1inv=(1.0/M1); /*---------------------------begin of RNG------------------------------------*/ typedef struct tagRNG{ long int z1; /*the generatore 1*/ long int z2; /*the generator 2*/ long int y; long int V[N_SHUFF]; }RNG; RNG l_rng; void set_seed(long int seed){ long int z1,z2,*V; int i; z1=abs(seed); /*setting the seed to z1 and initialize it*/ if(z1==0) z1=1;/*be sure to prevent seed=0*/ z2=z1;/*initializing z2*/ /*warm up*/ for(i=0;i=0;i--){ long int t=z1/Q1; z1=A1*(z1-t*Q1)-R1*t; if(z1<0) z1+=M1; V[i]=z1; } l_rng.z1=z1; l_rng.z2=z2; l_rng.y=z1; } float get_rand(){ int i; long t; long int z1=l_rng.z1,z2=l_rng.z2,y=l_rng.y,*V=l_rng.V; float res; /*generator 1*/ t=z1/Q1; z1=A1*(z1-t*Q1)-R1*t; if(z1<0) z1+=M1; /*generator 2*/ t=z2/Q2; z2=A2*(z2-t*Q2)-R2*t; if(z2<0) z2+=M2; /*shuffling*/ i=y/N_DIV; /*N_DIV=(1+P1/N_SHUFF);to make sure i to be 0..N_SHUFF-1*/ y=V[i]-z2; /*V[i] is a random number similar to z1, y will be in {-(m2-1)} .. (m1-1)*/ if(y<1) y+=(M1-1); /*to make sure y will be 1...(m1-1) note m1 is almost equal to m2,m1>m2*/ V[i]=z1; /*filling the new generated random number z1 to array V*/ /*normalizing from 0 to 1*/ res=y*M1inv; /*=y/M1*/ l_rng.z1=z1; l_rng.z2=z2; l_rng.y=y; if(res>ONE) return ONE; else return res; } /*-----------------------end of RNG----------------------------*/ /*get the n samples from the n-dim vector V. the results are stored in the first m member of vector V*/ void sample(int *V, int n, int m) { int i,j,temp; float f; for(i=0;in*/ static int set_permu(PERMU_ARRAY* pa, int h,int *L); static void delete_permu_array(PERMU_ARRAY* pa); static int l_b=0; /* the number of permutations are done*/ static int l_B=0; /*the number of all permutations */ static PERMU_ARRAY l_pa; /*store all the samples in random case, the first one needs to be from the original data*/ void create_sampling(int n,int*L,int B) { int i,rest,maxB=0; int imax; double f; /*initiate the prelim computation*/ init_permu_array(&l_pa,L,n,0); /*setting the value of f=log(maxB)*/ f=0; rest=n; for(i=0;i>1;/*divide by 2 to avoid the negative number*/ if(fabs(f)=maxB)){ /* checking if complete permutation doable*/ if (fabs(f)>log(imax)){ fprintf(stderr,"as B(log(B)=%5.2lf) is too big,we can not do the complete permutations\n",f); return;/*exit(0);*/ } /*when exceeding the maximum numbers, we'll use the complete permutaions*/ l_B=maxB; /* fprintf(stderr,"\nWe're doing %d complete permutations\n",l_B);*/ Rprintf("\nWe're doing %d complete permutations\n",l_B); }else{ /*doing random permutation*/ int * ordern,* permun,*myL; l_B=B; /*fprintf(stderr,"\nWe're doing %d random permutations\n",l_B);*/ Rprintf("\nWe're doing %d random permutations\n",l_B); /*reintiailize the permu_array*/ delete_permu_array(&l_pa); init_permu_array(&l_pa,L,n,B); permun=(int*)R_Calloc(l_pa.n,int); ordern=(int*)R_Calloc(l_pa.n,int); myL=(int*)R_Calloc(l_pa.n,int); for(i=0;i 0){ get_permu(&l_pa,0,L); }else{ init_label(l_pa.n,l_pa.k,l_pa.nk,L); } l_b=1;/*resetting the the number of permuatins done*/ /*print_narray(L,16);*/ return 1; } int next_sample(int* L) { if(l_b>=l_B) return 0; if(l_pa.B > 0){ get_permu(&l_pa,l_b,L); } else{ next_label(l_pa.n,l_pa.k,l_pa.nk,L); } l_b++; return 1; } static int init_permu_array(PERMU_ARRAY* pa, int *L,int n, int B) { int i; unsigned imax; pa->n=n; pa->B=B; pa->nk=NULL; pa->v=NULL; /* compute the k*/ pa->k=0; for(i=0;ipa->k) pa->k=L[i]; (pa->k)++; /*compue nk*/ pa->nk=(int*)R_Calloc(pa->k,int); memset(pa->nk,0,sizeof(int)*pa->k); for(i=0;ink[L[i]]++; /*computer imax, len*/ imax=~0; /*get all bits are 1 for the integars*/ pa->len=floor(log(imax+1.0)/log(pa->k)); pa->sz=ceil(n/(pa->len*1.0)); /*allocate the space for v*/ pa->v=(unsigned int*)R_Calloc(B*pa->sz,int); return 1; } static int get_permu(PERMU_ARRAY* pa, int h, int *L) { int i,j; unsigned val; memset(L,0,sizeof(unsigned int)*pa->n); if((h+1)> pa->B) return 0; for(j=0;jsz;j++){ i=j*pa->len; /*starting from the last bit*/ val=pa->v[h*pa->sz+j]; while(val>0){ /*this code maybe faster if necessary*/ L[i]=val%(unsigned int)(pa->k); i++; val/=(unsigned int)(pa->k);/*to move another bit*/ } } return 1; } static int set_permu(PERMU_ARRAY* pa, int h,int *L) { int i,j,nextbound; unsigned val,pow; if((h+1)> pa->B) return 0; i=0; /*starting from the last bit*/ for(j=0;jsz;j++){ nextbound=(j+1)*pa->len; if(nextbound> (pa->n)) nextbound=pa->n; pow=1; val=0; while(ik; i++; } pa->v[h*pa->sz+j]=val; } return 1; } static void delete_permu_array(PERMU_ARRAY* pa) { R_Free(pa->nk); pa->nk=NULL; if(pa->B!=0){ R_Free(pa->v); pa->v=NULL; } } multtest/src/sampling_fixed.c0000755000175200017520000000307314710217035017407 0ustar00biocbuildbiocbuild/*the l is for local global variable in this file*/ #include "stdio.h" #include "stdlib.h" #include "math.h" #include "string.h" #include "mt.h" static int l_n=0; /*the length of L*/ static int l_k=0; /*the number of groups*/ static int* l_nk=NULL;/* the number of objects in each groups*/ static int* l_L=NULL;/*the storrage of first label*/ static int l_b=0; /* the number of permutations are done*/ static int l_B=0; /*the number of all permutations */ static int* l_permun=NULL; static int* l_ordern=NULL; void create_sampling_fixed(int n,int*L,int B) { int i,k; l_n=n; l_B=B; l_b=0; if(B<=0){ fprintf(stderr,"B needs to be positive\n"); return;/*exit(0)*/; } l_L=(int*)R_Calloc(n,int); memcpy(l_L,L,sizeof(int)*n); k=0; for(i=0;ik) k=L[i]; k++; l_k=k; l_nk=(int*)R_Calloc(k,int); memset(l_nk,0,sizeof(int)*k); for(i=0;i=l_B) return 0; memcpy(l_permun,l_ordern,sizeof(int)*n); sample(l_permun,n,n); /*change to labbeling*/ sample2label(n,l_k,l_nk,l_permun,L); l_b++; return 1; } multtest/src/stat_func.c0000755000175200017520000005613614710217035016414 0ustar00biocbuildbiocbuild#include "stdio.h" #include "stdlib.h" #include "stdarg.h" #include "math.h" #include "string.h" #include "mt.h" /*This file is used to collect some useful statistics functions*/ /********************************************************************************/ /* two_sample_tstat */ /********************************************************************************/ /* Computes the value of the two sample t-statistic, allowing for missing values. Missing values are represented by na. (At least two values per group should be present.) if return == NA_FLOAT, then it has some problems to calculate the t-stat,such as variance is 0, or the count of one class is less than 2 Y: the vector of one gene across experiments n: the number of experiments L: the class labelling of each experiments na: the NA representation of gene values. extra: the additional information, not used here */ float two_sample_tstat(const float *Y, const int* L,const int n, const float na,const void *extra) { float num,denum,res; res=two_sample_tstat_num_denum(Y,L,n,na,&num,&denum,extra); if(res==NA_FLOAT) return NA_FLOAT; return num/denum; } float two_sample_tstat_num_denum(const float *Y, const int* L,const int n, const float na,float* num, float* denum,const void* extra) { float mean_na[2]={0,0},ss_na[2]={0,0},devi; float c0,c1; int i,count[2]={0,0},class; /*compute the mean and count first*/ /* count is the number of objects in each class*/ for (i=0; i=0;i--){ V[i]=r&1; r>>=1; /*divide by 2 so that we can look-at the next digit*/ } } int bin2int(int*V,int n) { int i,ret=0; for(i=0;i=0) { l--; s--; } if(l<0) { if (myDEBUG) { fprintf(stderr,"%s%s","We've achieved the maximum permutation already\n", "We can not find the next one in next_lex\n"); } return 0;/*note we can not generate the next permutations*/ } /*we increase every number by 1*/ old=A[l]; for(i=l;i=0&& A[i]>maxb){ i--; } /*there's no next_permu as all the elements of array A is greater than array B*/ if(i<0){ /*rearrange the output so that V be ordered for the whole array.*/ memcpy(tempV,B,sizeof(int)*(n-k)); memcpy(tempV+(n-k),A,sizeof(int)*k); /*using the tempV to swap the array A and array B*/ memcpy(V,tempV,sizeof(int)*n); /*coppying back to V*/ R_Free(tempV); return 0; } /*else to find the next permutation*/ /*first to find how many elements in B are between A[i] and A[i+1]*/ j=n-k-2; old=A[i]; while(j>=0&&(B[j]>old)){ j--; } /*keep the original A[0..(i-1)] elements to tempV*/ memcpy(tempV,A,sizeof(int)*i); /*keep the original B[0..j] elements to tempV+k*/ if(j+1>0) memcpy(tempV+k,B,sizeof(int)*(j+1)); /*copy the (k-i) elements from array (A[i]<)B[j+1],...B[n-k-1],A[i+1],..A[k-1]*/ /*copy the ((n-k)-(j+1)) elements from array B[j+1],...B[n-k-1],..,A[i+1],..A[k-1]*/ /*construct the array B[j+1],...B[n-k-1],A[i+1],..A[k-1]*/ cpyV=(int*)R_Calloc(n,int); memcpy(cpyV,B+j+1,sizeof(int)*((n-k)-(j+1))); if(k>(i+1)) memcpy(cpyV+(n-k)-(j+1),A+i+1,sizeof(int)*(k-(i+1))); memcpy(tempV+i,cpyV,sizeof(int)*(k-i)); tempV[k+j+1]=A[i]; if((n-k)>(j+2)) memcpy(tempV+k+j+2,cpyV+(k-i),sizeof(int)*((n-k)-(j+2))); /*copy back to V*/ memcpy(V,tempV,sizeof(int)*n); R_Free(cpyV); R_Free(tempV); return 1; } /*the next_permutation for multiple classes*/ int next_mult_permu(int* V, int n, int k, int* nk) { int olds,s,l;/*s is for starting location*/ int next=0; /*initialize the begining*/ s=nk[0]; for(l=1;l=0){ if(V[i]...>V[n-1]*/ /*i.e. V[n-1]i){ if(V[j]>old) break; j--; } cpyV=(int*)R_Calloc(n,int); memcpy(cpyV,V,sizeof(int)*n); V[i]=cpyV[j]; cpyV[j]=old; for(l=i+1;lname); if(res != 1) Rf_error("error reading file '%s'", filename); for (j=0; jncol; j++){ res=fscanf(fh, "%d", pdata->L+j); if(res != 1) Rf_error("error reading file '%s'", filename); } /*read the mxn matrix of the gene values data*/ for (i=0; inrow; i++) { /*read gene id and the first gene values*/ res=fscanf(fh, "%s", pdata->id[i]); if(res != 1) Rf_error("error reading file '%s'", filename); /*read the rest of it*/ for (j=0; jncol; j++) { /*deal with the double data*/ res=fscanf(fh, "%lg",&ftemp); if(res != 1) Rf_error("error reading file '%s'", filename); pdata->d[i][j]=ftemp; } } fclose(fh); } /********************************************************************************/ /* print_gene_data */ /********************************************************************************/ /*print the gene_data to stderr, useful in debug*/ void print_gene_data(GENE_DATA* pdata) { int i, j; for (i=0; inrow; i++){ fprintf(stderr,"%20s", pdata->id[i]); for (j=0; jncol; j++) fprintf(stderr," %5.3f", pdata->d[i][j]); fprintf(stderr,"\n"); } } /********************************************************************************/ /* write_outfile */ /********************************************************************************/ /*Descriptions: write the test-statistics, unadjusted p-values, adjusted pvalues and Adjusted p-values lower to the file. input parameters: filename: the file to write pdata: the pointer of the whole data T,P,Adj_P,Adj_Lower: the array stores the test-statistics, unadjusted p-values, adjusted pvalues and adjusted p-values lower, respectively if Adj_Lower==NULL, it will not print this item */ void write_outfile(FILE* fh,GENE_DATA* pdata,float*T, float*P,float*Adj_P,float* Adj_Lower) { int i,nrow; /*float num,denum;*/ nrow=pdata->nrow; /*the length of the array T,P,etc.*/ if(myDEBUG) { fprintf(stderr,"\nThe results of T,P Adj_P and Adj_Lower"); print_farray(stderr,T,nrow); print_farray(stderr,P,nrow); print_farray(stderr,Adj_P,nrow); if(Adj_Lower) print_farray(stderr,Adj_Lower,nrow); }; fprintf(stderr,"\nWe're writing the output\n"); fprintf(fh,"%20s %10s %10s %10s","gene_id","test-stat", "unadj-p","adjusted-p"); if(Adj_Lower) fprintf(fh,"%10s","p-lower"); fprintf(fh,"\n"); for (i=0; id[i],pdata->L, pdata->ncol,pdata->na,&num,&denum);*/ fprintf(fh, "%20s %10.6f %7g %7g", pdata->id[i],T[i],P[i],Adj_P[i]); if(Adj_Lower){ fprintf(fh," %7g",Adj_Lower[i]); } fprintf(fh,"\n"); } } /*testing */ /*int main() { #define N 5 int V[N]; int i,is_next=1; for(i=0;if2) return -1; else return 0; } int cmp_low(const void *v1, const void *v2) { if((*(gp_arr+*(int *)v1))==NA_FLOAT) return 1; if((*(gp_arr+*(int *)v2))==NA_FLOAT) return -1; if ((*(gp_arr+*(int *)v1))<(*(gp_arr+*(int *)v2))) return -1; if ((*(gp_arr+*(int *)v1))>(*(gp_arr+*(int *)v2))) return 1; else return 0; } int cmp_high(const void *v1, const void *v2) { if((*(gp_arr+*(int *)v1))==NA_FLOAT) return -1; if((*(gp_arr+*(int *)v2))==NA_FLOAT) return 1; if ((*(gp_arr+*(int *)v1))<(*(gp_arr+*(int *)v2))) return 1; if ((*(gp_arr+*(int *)v1))>(*(gp_arr+*(int *)v2))) return -1; else return 0; } /********************************************************************************/ /* ending the sorting functions */ /********************************************************************************/ multtest/vignettes/0000755000175200017520000000000014710217035015465 5ustar00biocbuildbiocbuildmulttest/vignettes/MTP.pdf0000755000175200017520000102171214710217035016627 0ustar00biocbuildbiocbuild%PDF-1.3 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (subsection.1.1) >> endobj 12 0 obj (Overview) endobj 13 0 obj << /S /GoTo /D (subsection.1.2) >> endobj 16 0 obj (Motivation) endobj 17 0 obj << /S /GoTo /D (subsection.1.3) >> endobj 20 0 obj (Outline) endobj 21 0 obj << /S /GoTo /D (section.2) >> endobj 24 0 obj (Methods) endobj 25 0 obj << /S /GoTo /D (subsection.2.1) >> endobj 28 0 obj (Multiple hypothesis testing framework) endobj 29 0 obj << /S /GoTo /D (subsection.2.2) >> endobj 32 0 obj (Test statistics null distribution) endobj 33 0 obj << /S /GoTo /D (subsection.2.3) >> endobj 36 0 obj (Single-step procedures for control of general Type I error rates \(FVn\)) endobj 37 0 obj << /S /GoTo /D (subsection.2.4) >> endobj 40 0 obj (Step-down procedures for control of the family-wise error rate) endobj 41 0 obj << /S /GoTo /D (subsection.2.5) >> endobj 44 0 obj (Augmentation multiple testing procedures) endobj 45 0 obj << /S /GoTo /D (section.3) >> endobj 48 0 obj (Software implementation: multtest package) endobj 49 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 52 0 obj (Overview) endobj 53 0 obj << /S /GoTo /D (subsection.3.2) >> endobj 56 0 obj (Resampling-based multiple testing procedures: MTP function) endobj 57 0 obj << /S /GoTo /D (subsection.3.3) >> endobj 60 0 obj (Numerical and graphical summaries) endobj 61 0 obj << /S /GoTo /D (subsection.3.4) >> endobj 64 0 obj (Software design) endobj 65 0 obj << /S /GoTo /D (section.4) >> endobj 68 0 obj (Discussion) endobj 69 0 obj << /S /GoTo /D [70 0 R /Fit ] >> endobj 72 0 obj << /Length 1607 /Filter /FlateDecode >> stream xYKs6WH͘0$[$u^=,%דۻXP,Vmn;X,v(d&3WWB*e6WH&ѶZPJpLi6i03Y %m6pk~r= ]vPRAvI.`LqZ eQ;]~;zT&(,W & -]k8e_dk*­[*_H8p.Nb:p)YZQ*ʊ5aXy_ƆXxzWRhz'q{wֲx{4G߳-Z%mf i:8gEWpeےG<^NꬰpG9e)|Sct~^ TMC*9%d1__7mZtM6XuuJ]! "4kӷ5Q^umS@\eRm+a|(m(&yzJJa_޾A\lG|l"u}^NJڿlءD |;S@<7!rzf3?瘇(n(2p=nϱDz~AmMӦ^{wc|2=RnUO'S@'+l> endobj 87 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [275.329 493.917 448.812 505.902] /Subtype/Link/A<> >> endobj 91 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [192.661 466.819 417.591 478.804] /Subtype/Link/A<> >> endobj 92 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [254.144 439.72 456.208 451.705] /Subtype/Link/A<> >> endobj 97 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 383.333 212.245 392.853] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 101 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 369.784 212.779 379.14] /Subtype /Link /A << /S /GoTo /D (subsection.1.1) >> >> endobj 102 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 356.235 220.317 365.591] /Subtype /Link /A << /S /GoTo /D (subsection.1.2) >> >> endobj 103 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 342.685 203.954 352.249] /Subtype /Link /A << /S /GoTo /D (subsection.1.3) >> >> endobj 104 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 318.227 191.146 327.747] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 105 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 302.562 351.617 314.241] /Subtype /Link /A << /S /GoTo /D (subsection.2.1) >> >> endobj 106 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 291.129 315.05 300.692] /Subtype /Link /A << /S /GoTo /D (subsection.2.2) >> >> endobj 107 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 275.463 485.45 287.143] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 108 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 261.303 199.702 274.205] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 118 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 248.365 463.761 260.045] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 119 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 234.816 369.431 246.495] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 120 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 210.357 380.701 221.993] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 124 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 198.925 212.779 208.281] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 125 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 183.259 454.947 194.939] /Subtype /Link /A << /S /GoTo /D (subsection.3.2) >> >> endobj 126 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 169.71 339.52 181.39] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 127 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 156.161 242.528 167.84] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 128 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 133.819 200.31 143.338] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 73 0 obj << /D [70 0 R /XYZ 125.798 687.123 null] >> endobj 74 0 obj << /D [70 0 R /XYZ 125.798 662.217 null] >> endobj 96 0 obj << /D [70 0 R /XYZ 125.798 397.999 null] >> endobj 71 0 obj << /Font << /F53 77 0 R /F22 80 0 R /F23 83 0 R /F15 86 0 R /F62 90 0 R /F64 95 0 R /F69 100 0 R /F41 111 0 R /F26 114 0 R /F27 117 0 R /F72 123 0 R >> /ProcSet [ /PDF /Text ] >> endobj 132 0 obj << /Length 2862 /Filter /FlateDecode >> stream xڕk۶ $Ќ'vǝ޴|%tϏ˯> lN$X, U JHtޭ!j{֮n`DQ5x.Lqg ¼z+WB7J5^mĺBZT<Zns߮hDaBSKt D'"7<Z+Y Om[q\Gu-^a[|Qv8"2= 5~X[7l/F"a#>hԢQBeH>v~-qndJ>Rxd*{\!Q#>.CHЪkP=(q؂Ĭƴ#5d d0tK 4OdZZ:>b;N\ kkZx>Wo F{$,l>vex[-y5\_"XUmO# OH'iɑ#ڄiDyAl}v gԒU=ö()1$sQ"G˻ d{Vi\FʂyqZZV 6#N$Tj 4=VB9ɖ*8M?p--6ne/%[7cpÑV4ZDWp/7VԬkpA7)Gr ҋ~$R(qш(v&{: V=_'rKa !6t $<$1ɛFfƣhB I+Q}M[9"'7,&mr|,m/0$Nb ,%t!ً!} yl1MBIMva+g| PR6^G/CHmhl#10kW 8\l; 퓳Tw@;.#x8m ޞ5ҩNuc/X-X6MR˥󔐕ȃk@QB}Κ}Pf5I/R6;%#Kʗ|LQT#(r=%0zd3(p #H~rUudPqct1PA\:zwaeLbclRL@_f1-vW0hmlV6as/a 0/%a@Ot&mwWl2of_[mvSvnҕMOnt.Ƴ=3y~UED:;Ȃm3n\g4Ok%y+bN+`)u.OoB8_,A۩ɣMxLZ~.fe"˝P YN@AB o6x,*iC*NZ\-O巻PT:}yNIk2qNgQA!.q#n2] nE:-n}(F([x,6B;츔*}ib -./ݝxȘǒM'd6DqDw}z>,J UN`z1ss`/r*KeK;WB?se=adR++82E6қ[co&hTl˽陦fj +()g>Dwxd90Tښ.7RWp*p')КuY:Qh&9f#`3_b'!eܴvi5bÑRycX;5l#A,>җ``C-Y@_Mwơ|YjGcc,M۹ Qr.P:\H}@wpRKBj6bͣ:MTݰrߎ7zmC7>s?-%,aԯx(u&$`pZԜ5oW_CkzB o#t Xk*[;iu䭻%up W$"VNܐ> endobj 133 0 obj << /D [131 0 R /XYZ 125.798 687.123 null] >> endobj 6 0 obj << /D [131 0 R /XYZ 125.798 662.217 null] >> endobj 10 0 obj << /D [131 0 R /XYZ 125.798 640.469 null] >> endobj 14 0 obj << /D [131 0 R /XYZ 125.798 224.862 null] >> endobj 130 0 obj << /Font << /F64 95 0 R /F15 86 0 R /F79 136 0 R /F69 100 0 R /F41 111 0 R /F26 114 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 142 0 obj << /Length 2391 /Filter /FlateDecode >> stream xZߓ۶~_qOjj1`;NZw4L>Ow$^E!y  `x榀͍>pS:7Y^7hzˆHC^yeY  >G?ݾ7ț#VYwX~n!;BqxX"Pu:ۀ eٸ=Co ؿc)6|K/X.vzPVثE557}_/ҔwM'{->Bf+u:ҋI@{ PWਏbEܫQݎunQcj2Se؜d*ggLca>w6dY޸:d>9KDCB;v#nܩq //|}등NnQmo?w;«la&uXJ6bCJ|VrJ7<ىqqyihvPk{s )@F1#8NϣllXi>ގ]VN$27Ҡx:FFEĽ"h0>vsÊ1beq.?jۡ̓jnyPӾɾӕ6vPp?WP[,3\FG)X9.` k #w؍t Ii{eWO|>JG gȈK:]4&Y6HƵycg" d|nUbVV1{%wV 1 *Uu a #J?&n""B; Y$o G'=b]o5WrV]]e|[7X76kGco\'/G7 #foԜ(^F YIs) O_#*m%?iN!C l?&kr.Ց"(CB]dYh^[bnLfGq1b 2 `2{ B3$WD 1J2 G=[:p8b9:r5_L52'^/3!b]_ r0@ z`y)t@n$oוA-t6Q2)`paɲݮ>*IbYZz -FO!htnu&K\+,Rܨ^2e<X Z}/f]lvDv[bjuBg{G18w':Yfúfn=C,CS&XhQ~*)L,4 ;S; F9|܌|} Sp8>X Lh.pahyOy;TUgG /ҫRvJ # <:ݳӟN7asΞ0Q7ysy x_.ŀ56V𿙻 "/&y"JVt}%GDpzu䫢vH9ѹt5]qy#n Ct~lEZR_v?w<1ͧNԥ>Y_Bo| MD8t/C ǎ=U!oYRnY&\Jz%&H`:i4COjLJkQ@ ]R9ZUtcjQ +]qx.6XbJ Id1Kԟڴ9c[V"{(Nm(3Ӈ J%s QQx$T6I;/"7Ap+_V8jӔ㧈bf|@pZ(\J푥A.hbL\%U@[HFn}+&;5tCkm4}HpNp ʄcT"q%/5lmfR$Lr|ͩb{U4\wL[M t.sNԿm+02Xby* .wIR g uOz0#Ps#Lb]HSgiR'?$k[ H2]F&vkT;MWQڋemp=7W~ '>߸Kaօ^U |#18κ9Fc8$R8T S²ʫ%&ؼ/?(Yendstream endobj 141 0 obj << /Type /Page /Contents 142 0 R /Resources 140 0 R /MediaBox [0 0 612 792] /Parent 129 0 R /Annots [ 144 0 R ] >> endobj 144 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [273.535 597.92 389.854 610.718] /Subtype/Link/A<> >> endobj 143 0 obj << /D [141 0 R /XYZ 125.798 687.123 null] >> endobj 140 0 obj << /Font << /F15 86 0 R /F42 139 0 R /F62 90 0 R /F69 100 0 R /F79 136 0 R /F41 111 0 R >> /ProcSet [ /PDF /Text ] >> endobj 147 0 obj << /Length 2829 /Filter /FlateDecode >> stream xڝZKoHWH~ YYdv@K2Dy_?jvLT?UEՅҮlZQT\w懲-t Ce/t^J_;뺽PUVכV.SM/UDB*w|{.vRmYY՟>˕b?2 $ָp7 xK<Bj//VʔζD<=UqDb|q -NK5gLۤ8gI&T _xwiw&oѦP#iM6rǂcjNgF=xDaBV >(*HIP4Z| :]3OecpL G?)qƈM NYACI7_&69,tM; k(rv<,NuI븭Qjpy=:@+ǕLVu^`*-8T6KWÂQ 40;Y| d81>Zpd ܋gRQ 1_>E4V m+'22R)3>Z5JH#G ۇL"Ɖi0 a47P2~z^+rl?,@+'qڲVBU[p0 6v7W v\[ 8*a(e nPw!C0&qۍw #59WC;EBSi`oKZn@¤}7plVg66|Ҵ6a="?[ жmSZ[s!hL6VP0@tVK2FuWl3osx[Ԙ0>nS@J(9cL hsj3f6Gѩ?8}Ju୹60{T TsJQAL||J0Y3aB4+s/¦OU#z_Nӹ-1UC|Wt*PLg`73^(Kc&'$\,DVzY7cFgL$Q|#x<@p(JSK Ϗ%~륺cS5|K'蝄\GS :IUGNU+')qgL,.d׍ Z03n·j$1OH5.Vш<YSBKҋOZ X_=271 YַPw_>Kr&Kz#t##cJF>ia xr=-1olS=*hG*-Md%I3H8fx@kJ#Z> bXcd_T"Ǻ46cS dvGKz#Mj*"Ժ=k$0+tg2n\ezU9N>u 7\A09(Xpl`CO"Nj h㉜q֜}`+Ppۛ fxk9Tjcm^&'ߠtQQ&|~!U/'6sы_k2%8ge6?kFV%5M=ZRr*Jҿ|.\H4z^ςSi.t, 8!p7dc;~/8gJgA3xhjӌzS%r] Xx و6;w 5Bc,ߖpr|趐?-80~ R#!e%qkw!l”e*]MV$oC[2u|ABajRvy "Vpn2EG]-tm!o:h2眚6#sB)`)@W3|X<"_˴_.PbXv3U(Y 'u]a`6ZW)2&s? |)b-3_(aU:8dIF}(D` 8rXLmi%ps,mB_r521<yї+ @hOC09'IJ`4X,w;_^+?nΝ6sE^GIAN?v<_iI?kJe6s;f|xS>u3endstream endobj 154 0 obj << /Type /Page /Contents 155 0 R /Resources 153 0 R /MediaBox [0 0 612 792] /Parent 129 0 R /Annots [ 157 0 R 158 0 R 159 0 R 160 0 R 161 0 R ] >> endobj 157 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [384.452 633.985 400.375 646.783] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 158 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [241.244 623.163 248.691 632.726] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 159 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [466.505 462.195 482.428 471.759] /Subtype /Link /A << /S /GoTo /D (subsection.2.2) >> >> endobj 160 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [360.162 446.53 376.085 458.21] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 161 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [386.813 446.53 402.736 458.21] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 156 0 obj << /D [154 0 R /XYZ 125.798 687.123 null] >> endobj 22 0 obj << /D [154 0 R /XYZ 125.798 607.742 null] >> endobj 26 0 obj << /D [154 0 R /XYZ 125.798 579.02 null] >> endobj 153 0 obj << /Font << /F15 86 0 R /F64 95 0 R /F79 136 0 R /F41 111 0 R /F69 100 0 R /F23 83 0 R /F26 114 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 164 0 obj << /Length 3715 /Filter /FlateDecode >> stream x[Y[E~_яn /E@$Nbv˟sN-ʷ4#|;KKK! s_Zrտ.Dgp58.̥,py}Kco,+1^-0vzqǟkY9V _& f!<iS0g,hdopq"-\lpûv^r 2ecq`jw dVdok|/)y91Ñ~h[x7)ldɷJ;Ylmqm螆N 0,{xӿMNIL}Ȥ\"a y過04D]_Ln?XGyOG/ 3zn2C &rC(8zplz^14ћ<'7xhԦ S:A-K$"'( l߮wzG!32Y6WF¶̉cj up1DN+F1:}ug~a* (f'[ ' xYm 1^ЁǬ> {I ,y˞ 2|Q #hIfx_zO=dJ2|ٮ! ̝qG.pv8&NR%|lW2I| |D|yOlӞ_D8N⻮h95!ClP) ۽^e"4ĂuO@}Zp#gGul9bIm?~O\QǮ \oфwRcf$bv  -|)\/o%sE?flReʙZV]^W*4M΄l3-؃[0YVF'=+ T-Ϛ4N$zYöْ:siJyd[ |NRxf 㨷=(bQvQ ł$f58Ӌj Dj>ʍ6Bka!:y~!h~%Ä=A ` B"NcD,9/xaն#&" ܛZ#D0cScC OWF6[ϮK*H0Iej0}ߋ_˛ ~g9_./Co.]|[&T@ڣg홄dSHr4 `JksR(GBI:}R B`Zp|Fx qk>f~K;u#kM-qՙ3>#$3<YKĠEKwϹRz󧲹q)NpAwIN #hd!Yqt @YyRe2?*1GMcOEmvrR@̷P|90.u{ 粊`n(P7m܂9M z;","-p/˟muS-X6whaQc%EY[3+4תB 1q&O?b ?}U]P=^m?{P㞞ؐDŽڀ u1/.ƩC$߹SFk F}||[A7݀ᛩ{7\ɟF'-鞸av"eV 8OcbU%񸢵gAyLdF..1J*;%Hu8r\ SW73*i "zW&2ɖkc"UuX$ʼn6f|~u#F;~\(i*)b檡 OY82$D9w8`~ t&@T@ :#Ǭxt>"GG-fq'~AY T[ަ)>NqUΞHɁ临R8H]F[PR ^=J,:5Iٺ&ښj]0~P`PH0Cr.vw[ 1-y9^0Sj̟:J:љdr{FB@΋m$dd: : R5o5s.bZ]G:\ہ'b$j ?SJ P9+*w> mJJٖzz+ %-5]W)%xMȌQj gѥG/uqT%^.?rOi2 y4m'[&SbEl:kgubN|jU0}5\^g D@Q"x ,ͤq,E=,ryW6:.xtp0N bs[H^imj8o@y8}ao~6sZr*K4bW,A}*NÇʂ^w/ߡS)̝ՖcZ~8cаxHd[ztV%e7dU~ˑb0m.`v1W4} z#C4J`x.xo h:rf2HhVڙf!$_*c|mIKH3 MNlKw6~[rڍþ9FKBR0ajhبy\Kn *maG3 yJStst3wv(e8bl(-"aoyZ;0t>8:)ƆdoVyrՔ.h!q!]\Vݒ48*/ ]VFj}yb(=eWG9nOWWRSk kg+YG&ʼn]{Y&!9E6Eg bxeN@/+OG>b2b |.FHj(n4 !$CSklQQקǶRendstream endobj 163 0 obj << /Type /Page /Contents 164 0 R /Resources 162 0 R /MediaBox [0 0 612 792] /Parent 129 0 R >> endobj 165 0 obj << /D [163 0 R /XYZ 125.798 687.123 null] >> endobj 166 0 obj << /D [163 0 R /XYZ 246.145 515.766 null] >> endobj 162 0 obj << /Font << /F15 86 0 R /F42 139 0 R /F23 83 0 R /F41 111 0 R /F69 100 0 R /F79 136 0 R /F26 114 0 R >> /ProcSet [ /PDF /Text ] >> endobj 169 0 obj << /Length 4058 /Filter /FlateDecode >> stream x\Ys~B>rWUr6BeTH?vfwCxpD,vfYlƸ"ٙ0.f ]AOX"%Z)n4S+\g_15c8f/|˟vn/jڞrg_IV<QLg`8͎PmgsF0 ]%1>?SESI¥380}{:1(׸q EYxCIC1c@h;Pt.s_=퐉N5 C?OVxc]^6VlI'<ߢ,c.-3 C+1sJQptMQ6֠U'8wܘ;|3P.j[O RFO"q8( `ԔC 4OK7_j8Lik1L]tyL}XAyM&@l4McN.ƷMg98pF(` Jj>O}?C)!Z:01˜xO#q@,YXhP-.x5XfXTyc3 0G,}ۆ6@:׿Oq64];+[)&!vIW{^ ,,D`F!)WBaO>=|J߇Eh%e`sX%W]+xs!D)ӔJSŰ K\풯jon߱Ȏ?1:pDh[d^F/afge9Ed[z95,FcV)Ndk|,:.2K>ejr0 W YYr6er!cv΄uގ 3@ 0ZPB?"Zu?AG νE(?\N\"JI?PD˒ғs j,yS/"ԹvWzj9.h.eʆRźFH[qOE0dw&Ww05CqƓhr{NeEML7-Ba]O #|bX#@^Bo+feLoRQJ/ s " 7$\/BGOMEqY6.m:بnz ܠTډXq%\*B~Ow]: :PW$l]6 :.{l]epe5ާSA˹M]GHiC"U}ڹJ둵|Qq@Wa?Y,*pJb{R`%V9oS2D5e\W(oG+v }.qoJçʗq$Y6\ci~ִWk lq i$u]o2$7=] |2SE糈!Zrq.4ŻwuZX>1B<ۄ O\*x[J^#k"݄1cF@'}>V{Ҧ@&!9 "I~8Op"ءjs'QIxr?ޘ$./]1gxT/ (xSC/`7abN&Y68>ҘFUe?A>׬ k`YrHoaoG|VKgBa$2X WBYWͷU}vHL- 7*zB`Á-wzұc)gMAǤ=DhG=B}vR{qV O\Њ{+6}yxjN~]Ő4 k&Z3(CgJSDTp_$k*0=3EHWYمoiM}Tpݨeibr fz;A*r /ځISZ⾓+mR/s@"5~C*Ѧ); S\Sd)zׯcb X<ĸ&;iF5ƇK5:QjՄH1&N z۞2ඝd̦T #O Oi`ifCHrƷB RoREu9X~TQaKՌݘ&3!ĔBe^endstream endobj 168 0 obj << /Type /Page /Contents 169 0 R /Resources 167 0 R /MediaBox [0 0 612 792] /Parent 184 0 R /Annots [ 179 0 R 180 0 R ] >> endobj 179 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [315.268 349.452 331.192 362.25] /Subtype /Link /A << /S /GoTo /D (subsection.2.2) >> >> endobj 180 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [344.11 187.473 351.557 199.152] /Subtype /Link /A << /S /GoTo /D (table.1) >> >> endobj 170 0 obj << /D [168 0 R /XYZ 125.798 687.123 null] >> endobj 171 0 obj << /D [168 0 R /XYZ 463.415 664.807 null] >> endobj 178 0 obj << /D [168 0 R /XYZ 380.797 470.126 null] >> endobj 167 0 obj << /Font << /F15 86 0 R /F41 111 0 R /F23 83 0 R /F26 114 0 R /F42 139 0 R /F24 174 0 R /F43 177 0 R /F27 117 0 R /F69 100 0 R /F79 136 0 R /F29 183 0 R >> /ProcSet [ /PDF /Text ] >> endobj 188 0 obj << /Length 3070 /Filter /FlateDecode >> stream x[[s[~ׯDp$;Ufq}@QIW$ Iɒ[G9{^]?q,a.cROG}$2Ycp wG߼Xpx8> _#}kj~=.,c^->n/*  ѭ"J"1|Llzy0 ǚHm|~?<>TnfJhQ30?-\(ft FBi <^ "/DNt) ,Df0\Z&&t6I[_sLؗzYlI NqjAdt:2LCXJ͑4:4oY 3`< ƝK$r4Zu؈Fh_M`/K 9L:{Eߐ1\{5d{gD=7͛Z.ƀr _-D}L@[S3 =AE@EPZw3$5y|$EX逫ciPY/σCh7v,\}; XV4Ieaq޲t__cÇe3fC aEDZlOOgz1]y{HD(tfel{3s,B EbZ-蜢Qꖋ`N1%P(iwQ%|BL 0jp ©CsS:q@ %Hbf pȫzaN~mTzz` I6/Gt3f`APScLc-n{Ihp.kE% D.Z ",e cbjD)4-߸518H<` ~8LAqלGt xv""URͪQ\ƒs9J`qK=: D3ϖIrCTDu`4 -.k Փd6$*KgBy[9 :W6>y7rՖSH(**APiQHx ̖IfI J *hhAWDŽe~ނf"*@lHhdonJV,w)@8~GD6bRd3On*3ʬ'0CL@3_}=3k! e h(saO9vאRYےY rTa- \vn$!%wKow_'  3 *^"W!<)0Dso-k?3}cGU`!?0> L{;v϶c܄R#jx|UBVN: 5g&7 \1Z)\`O pLwηojRBD0dSm>{0#V8"sN/ǟYo)qYOa7/'7eb]tR3JMKF' 5D"R{b4P·Fc-l37שśj %z!8H!r/hia|MJz+PVt6-k4 2Y^96 (;.TFlr,mѦfEl;L,nNbRW  H}MM<;'Izj>fd$Yv0*I6N o5Lt1IњgtyM+zż4^lv JC5?ko{t#1ۑ$}D&uF.^9yjRndzfG Iek>$ưh6eyv)0|,C 6wq#`h(}tyOyկIXؘn:Y/rD6=(ACQ@uZCEX!u Η0lcIRpߚgvZ,aDHOmu3Cq!9w$l{*)@(ſACMu|&|L$YHW[9g}{]8Sq\Ux]X 2>+g ],r^eym>N'3wNm"':r­L(PF1C!mC$~ՊвPȲ;?sg,Ъs~apelt&:@Jߌ])+[r.bQ}v;@'AQBszol<15 %H=B.ZRw0dƺ*OJDZUYH(`_ؑ/Tu,[Pc ݓٰ[ ~Zy(>n>g]Zsf}pAM'dS2 Q<}R b_O~t`sgRA R2!,yLOF@\wJ-Q |B8d#<Tmozԙnk_OF9gj^ z@(m+9~ԿP\IBا?wO{<%fu35| zoS~rXx)r9<#q37L^'KٓW2R0i_b;[*4:|4m¸ w͞efbӷsrU8:GW¸툹i/9[Gpzlhl|uo:,@cm۟1:oܷN/sy⺩hw%W*HR]sڇtPtb% 8uԙi4vEHhghbr`걼zq?ŗg ]WM#Zƭ|N0]Vg{YJAe)EA񧓴277 օxol i,qMø8:`K531yendstream endobj 187 0 obj << /Type /Page /Contents 188 0 R /Resources 186 0 R /MediaBox [0 0 612 792] /Parent 184 0 R >> endobj 189 0 obj << /D [187 0 R /XYZ 125.798 687.123 null] >> endobj 185 0 obj << /D [187 0 R /XYZ 190.702 578.394 null] >> endobj 190 0 obj << /D [187 0 R /XYZ 125.798 220.725 null] >> endobj 191 0 obj << /D [187 0 R /XYZ 354.982 204.808 null] >> endobj 186 0 obj << /Font << /F15 86 0 R /F79 136 0 R /F41 111 0 R /F26 114 0 R /F42 139 0 R /F43 177 0 R /F23 83 0 R /F69 100 0 R /F27 117 0 R >> /ProcSet [ /PDF /Text ] >> endobj 194 0 obj << /Length 3320 /Filter /FlateDecode >> stream x[oB X)Ңh\j@sdIcER+)sw=ήpflD1qv!愎.eV + 7jUvvǗL%مs6;dg{H*"Gq6^f(6noy;yS‡:h6 :8p?RE0!=Njz\ /]}x\zE{6fiK(<yM[S3X%+?i߿l|~X0SɲZIqjjO+Ħ\$\%a&?L LAo<{U :+֌ b]b\Fax 'o x+^"q~QPN @_]W_m{HoW`}pEp:z52,c÷_enCn3װlZ/h wR\E{0~]\^_J@ Rz\5yYs7r2(Cd|U+s̏ڂDkcp`s 5$#Ōkr֭% 8ȧS+)7(~(ނ:y*n'MӂhX/B8fҶ\7ӯR Sσ׏]Q*wSZY֚I/+ yȗ/N ;m܁G÷c)d?b֭d/)U2pJQ}y`YJ`n#9:ױR݊ <iasY][Yp< ~mjE!ۀhp#rbć_).z\u+ ghn*ZSX&Xӻ-^$z9z1mCdjpi: b\Vwa qEi!xqGüE vX+LS޻:(OٓlmgA0" -}oPqje*y .1Lե*q@n.d1?#I]4r1]ϚԢ=)fZc<=VJ)y0, T 1OvݴXSce"<`Y6lرxa}2E_#PZ@߲$"3,0,deаp6ÊyIcAq^ 5"y6yQorb4L2 #4e"MQ;ChNd4ʚD^51ԍ0n8H->X 2jk洘#t;O4y7kb?Y +-3oQb ޮ6xy@,lB?Pk )7m- ]焁HS2m.1 e9> SvẨǚ5;Jꁶ|9۾|~eɻ;Ib7VFI;f,:| *Jgpc][; ۞XV9Ph8 f֡pMQ뛶͇&񗢜)nT qIMd='0C~P |ˤZFW;!b v(?F]xik U9\Njs<=ģҗ4Q ~::&v[oZ+`sF04-ymn4RLTV[wf~@|h Rczʦ΍}% n?:5ɾ^piŶW6 4 F־0}A|ZNh[{rendstream endobj 193 0 obj << /Type /Page /Contents 194 0 R /Resources 192 0 R /MediaBox [0 0 612 792] /Parent 184 0 R >> endobj 195 0 obj << /D [193 0 R /XYZ 125.798 687.123 null] >> endobj 196 0 obj << /D [193 0 R /XYZ 125.798 662.217 null] >> endobj 197 0 obj << /D [193 0 R /XYZ 281.962 651.258 null] >> endobj 198 0 obj << /D [193 0 R /XYZ 125.798 595.402 null] >> endobj 199 0 obj << /D [193 0 R /XYZ 271.258 582.425 null] >> endobj 200 0 obj << /D [193 0 R /XYZ 125.798 520.196 null] >> endobj 201 0 obj << /D [193 0 R /XYZ 351.002 505.472 null] >> endobj 202 0 obj << /D [193 0 R /XYZ 150.145 155.915 null] >> endobj 192 0 obj << /Font << /F15 86 0 R /F79 136 0 R /F41 111 0 R /F42 139 0 R /F26 114 0 R /F43 177 0 R /F27 117 0 R /F69 100 0 R /F23 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 205 0 obj << /Length 3094 /Filter /FlateDecode >> stream xn}R<$mA@>h[ό;]g>F4{0ƒs'UJms_*mV7F 5t.C/ۛ7_Uʶjn7Ҙ_b8/4bzMK~$OԀ׌+1a!N»Ew GBoWoJ׮*]e -.mHӢvMh#~;Z<X`TjLYۖ%u#[wXZ 5Ʈv{?k)\3wpԹ])K 7q>Sl fR'+^rM+~O'y}(-mMٍ#JlVкl7ePq!&HhP[m1qkjgk==C>pb& \[t v Հ'h1PUldzx&Gs'De'H,bo)0R z&ul@$Jb4.Bx[ك}P{m&mJPψ/|?16lVǡrnj]lAI}{ Q%-Hlgm 1VDov\n|f`T8Zzโ:#u#2V$U0ߒ[%FQf$~)J8*~w%lvvbD~"ar{0fIfVJ"S.uLC{eƗUex E[jce;c dx6z3-k6Zf~%1YV2RUJAwKGa3(l؀B!(XIm Ce®C YXeNS<0T3v蘧cTa!>2y.1:Զ\ÛM7j[\nACmf"Bҳے[/pP$1}$~`99hn~@:=1F0ISd(N*fZ''ᬬR9d1ИA$F65ԁ :u@ bUi@pS 3,9H3)U֪fV UtUXf2jd18|Sr×?MhV"/!]FyGPg6aEdȫ(j;[‘,JSY4jݝlN>_pZ~ $cP~e曡r!e6r&9xe[1}pK&rpQkAJ>B 5'#WaJ)џ{tFryIyBUd0U52dG[<̹A[*'[ 7 0yi}1D>}( >nj() l(yV(G9#m`G1MۦNW!F)@ǙAbҊ ʼnI!bRڗM[hetT~J ?0B),3"E]cQTvxQo6>TXj~J8|5Md@JHdVnOjv<_s+~-;RU*&GJW*.!2TΛLx묾t1> PS?'!`oY#mKp/zܽOu`hϹ 7IcҠc-J9g$| V9 =jGpzkM51ؚB2m &XA˚QghiFnDTRb./]'Z_hg) TRnbXϕԮGAҒ#c}D˩b? un^%(tv[g8TRsgii٧vHlZEyb*5!\]!P13uADk9ϱ4~<4vQT@QhǺ!ur%gl% ^4LPӠ5`] #/a Mm^Mnkͬu Ȅ`BhnZe^l7/ 9$$vbs_5CPdU(=NCY!(3Rq|yWr@S`$$Pwc,=h07]sŶ CMӦf>hvk^,Ks"V滛xP Ffn+oʆN1O^MW-ްt`+endstream endobj 204 0 obj << /Type /Page /Contents 205 0 R /Resources 203 0 R /MediaBox [0 0 612 792] /Parent 184 0 R >> endobj 206 0 obj << /D [204 0 R /XYZ 125.798 687.123 null] >> endobj 207 0 obj << /D [204 0 R /XYZ 390.253 542.864 null] >> endobj 203 0 obj << /Font << /F15 86 0 R /F41 111 0 R /F79 136 0 R /F43 177 0 R /F23 83 0 R /F26 114 0 R /F42 139 0 R /F69 100 0 R >> /ProcSet [ /PDF /Text ] >> endobj 210 0 obj << /Length 3695 /Filter /FlateDecode >> stream xk }J*a\.B Bb K}$3.*>=33nwgzp_L4?1!dW @YA]_| Yar`ϧ^~~+|^.g=6?7rw)/?\bT!B?zA>kq |T=ľK&gww+z!~nGƶ_r&tͷ["|CUOfy3сQA3x!L/+^gzNC\lbxԢģslô4q4ZvAN {0L0#O ,l+10qL^mJ1;M"-C_Kcلew~ry-/XZdAeA+sN"2?Q6$)h^l3-v 6#~poqjB)&bȔ;m_)9I+S@c)i M/%W\+GZ\ F M o8x^%do72)FLbjn, Ἔ$d`"(0"5H ;=ݥC _"Rd ^/E} &xG /]b:d}t_ ŤʌJ H ,(tw'q?r[JSq Xez`0 = Neuc\c%H|%Ԡ! 7V|Eb)m{ Uj>6jfȟYkHhR4qt$W$y^:+QXQ&?-aeIiDӯ+/_\~-|wʢiVH,3 Dw.7)VQU[jJ oJJR <`ϸߊTeDdFɐ\R?ZѠE96.12%؉71~93Y /<0ovY)nZu2/9h7y<}qlihъhi./؆INo];֥cN7ZO}4?=~rU\ 1'Bɩ VǕ;, ޼{w U}aJK6@KkP6Tt׎rt9,7;r(u9+HLjӃxP'Hc qgN H遥8%w.9 2qJ *||xp=(+7,Lǽd%MyMnzؐ#090 |) :5 Sr7 SbWpU:YћtVu*>* )/#\z407cwBy#H{w8. Fww9da_AP2hU\Oh@"L t"Ai4l(E%B ݍhŢE3^E3^DR9AvP`&6 /z'wZ3umbBf"%Yr$g$mAOO;|ӿuinjҧp:N>"*QRRY(w5 %79D=Naݟ$m@{B.О tU q;R5t=fW0{(~8&At9Cn侱6*e"B/$.BU1)q4ɂf?.PQ\hG{ .xO&@߭/ 1`}r+]׃tqTjlok+a 2%'k]Y'!V՟}.[aL[ZlC R4ˡ-;+ũLh塰`Fهu]!tlC% o8`9/s,ȡpH?ؓkU84i*&`UFDh\CWlG&.$@I=bjh}@k*ABTfƓ"b+BiO;T0jx>jÛumz"8Wme5 GbohʐCLb _e?e:KbZo.uis+ӜjU.9 *0q+#4 3ør? sQY&O_ `ΧP)@]|v}$Lv17K/' >3 y meCzŷ`@\jSͦXɱ(O"=:30$ÉfREYɸZ8#UI9T=(cQX!,V=?kI%;=(Hf5r`v]rVe;ͻTz 4OEcXcd{ʬu׍YH=UT& ]i_6%^jk~G.H9K\f]EU`]oGѢ*HiT((SY`%| 5P?AySh72EM#n}s SRD/DhVD - a'|!'E 82AcTb̬ӧx0oʾGмVDd4_Wd]FY>JXfOPvWA]jf`<+2 wiے`KA<pI^C)> endobj 211 0 obj << /D [209 0 R /XYZ 125.798 687.123 null] >> endobj 30 0 obj << /D [209 0 R /XYZ 125.798 593.249 null] >> endobj 212 0 obj << /D [209 0 R /XYZ 183.31 233.398 null] >> endobj 208 0 obj << /Font << /F69 100 0 R /F15 86 0 R /F41 111 0 R /F26 114 0 R /F27 117 0 R /F79 136 0 R /F64 95 0 R /F42 139 0 R /F43 177 0 R /F29 183 0 R /F24 174 0 R /F23 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 215 0 obj << /Length 3542 /Filter /FlateDecode >> stream x[Ys~ׯS2ƒk$JarrrH*2ud>ݍc!Y-\hfa\ȋE{q]_aԖuZss{NϮ_|Z햹]\뛯7T\0a`bs+:ihTpQAR\Lc޴: +&RL(&T8Mr%m^iD)PLi5Qwzdmw) C!"0abug:0/yi(q/o{smٍxM 7ٲ=H{w%O8=.e_Z.|3j0=W Ďн+YݐE2EϤCŘ51XO(%v%AtҐ!h;`DG\E]ⶺ q6ݰ_ R>$ [|JEʊ/y.f8oH m1%#iSsL`&[.fzova3mF A77hka6.i ETd |}dfh/R v\)~^9 #2Ʒϗq'e&V0ÔLc/'pj`FT2e_\ Ы3HkF –iOR`^};:sw*oBs=RwS3Kk'WJFx DHpLpLc4~3#qHT鸙'itd^ܥ;)?[P>| F1a=2ԾmKh$ε.5K P \(Oc< =3)u!!&ח5xD̵32ǀ8|bdMЇ3=(XST&# BjUɸ)ݑ."~y0YNf{)< Q@Q} e}ֺ̓|e[\ .2ì2OmjtkKu"uuVM,ԸO4-dIq Z G}DC|1zN27 t\捕"x.xBWDsJDklQmD y@-/§/򁄇VIkThYf4T(6haˢGI|Q_Uh}_WHFj56o> ?A<ª.Bs3wIg//vyֽye)}iZzN*Bh>*BOSUSZѲ~67knAi[.&Y ܫx¾TeNWJ=e(P-/WfRCK?K`^ ve}*d79^ !Kl'g9ճm\S4Õ ̱ʊ3 į*K(qLl>䈙 8祭"L*sʔ]}^e. ʕuQvJ5\Y9oMiS>@ D1y>It~o?Rغ#}u&Yf(nCCUQp;Bm^q , hט{ P=<?M4 #@saUkexP]mw_YHdy~j&2c(?Q#hB-$Ȼ0/$,``'t]Bhhy;h뿥dGDO;ZTcc%{G_\OH96G:dǰBr^ #P=AB5gEnP]~柗VzjON qY#:Lq&~֢T(müDPm7XrC<*RypWD(Lr3T"}o73MDVMtC{_1 <&[_[WRa0$0w zv6FXc(eUqYF^/`EǤyc[Í-pEYsX?؜B/ϋ|f[玎 , `ȱ#<">gA੪8%ܜh̲mUN$> äzK4v0uZ_Z(~$=A`)$Ϲ;JT bE@g,`'z~-;=b<Xʳ@dDG@zZ*f%2 լvX#hγS0>eyZl}g?F;$¶C]Mi_ӭkwC܉ggG7>.ŠUVE0rB0TD>b$xV,AHW?!?0'2KoY;SV\m!rOC,ق;$T`r5hBUX;]5e (u?dyxK17nL`pB4XWa<6XVh##tWqNXW^.X^ú#X0S*mU"+ [HDu^ȎV8Dߋk|;v4h1ϛg~ `(e*y=Kfw?|Z=s7HЋ[ (ZVH5e+#Wdn6K?2'Q ^;ĆG&ۈM@%[lGm`ĐpY:| jءd(4I%xS909YR%VS_Cv^31Gbݦ1=[vіAc6٥at[-d@HIq"ч.D=_EcMՎ$knV/[+_y(a 7׼gmc؅7y<4,UdX"3V* {w cȐ9 $w tGme̱KzR!eKHl+Q$0_@شF7"Qq[S!6M@Jk~+ΡD(|CIle.''U 5\$$Cg2ԥQS*3,)S|n .?uI]*z)dZ=G%1AY;~ГԲOS}: k Ȭ5aq#HW\㯯p*]ɨkǭendstream endobj 214 0 obj << /Type /Page /Contents 215 0 R /Resources 213 0 R /MediaBox [0 0 612 792] /Parent 184 0 R /Annots [ 217 0 R 218 0 R ] >> endobj 217 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [341.002 539.141 348.449 551.939] /Subtype /Link /A << /S /GoTo /D (equation.1) >> >> endobj 218 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [224.552 228.12 231.999 239.8] /Subtype /Link /A << /S /GoTo /D (procedure.1) >> >> endobj 216 0 obj << /D [214 0 R /XYZ 125.798 687.123 null] >> endobj 213 0 obj << /Font << /F41 111 0 R /F23 83 0 R /F15 86 0 R /F42 139 0 R /F69 100 0 R /F26 114 0 R /F27 117 0 R /F29 183 0 R /F79 136 0 R >> /ProcSet [ /PDF /Text ] >> endobj 222 0 obj << /Length 1220 /Filter /FlateDecode >> stream xڍWKs6WḦ́ă8eZM{hz)ZvjYi'gIT:oHSuظfG?\)&16g-/^Dpi]VveFf}i{=-{E׾=5|xHJaH}ziq4Pܳ~L T:q}B[lKwz;I^?w?ϥ2Vu=TE"$tKӶ,n>б==13QtMp,6@q{L9e1H|*pW \6E<}ʀ%l%ʠb TkS|w|m~ùkM==&ӊH':E{Şo\V RU:姅, O[0HlظzT M}uBJi&!.ڑe=eI큶1yM<a0ޟ%H b3B됛*X 2Lr~؏E7& $Hi0<.ZbA96Yoy(-*&@jφq B?㠅})l!;1k"K>ްМcRSΏR/r5V=~`Gj,TPѠ9c6S.|}G%p89{Cp=:>CSnDdφ[kraK&˹`RuP\LeH6]+X pzQEPendstream endobj 221 0 obj << /Type /Page /Contents 222 0 R /Resources 220 0 R /MediaBox [0 0 612 792] /Parent 227 0 R /Annots [ 224 0 R 225 0 R 226 0 R ] >> endobj 224 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 512.042 140.725 524.84] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 225 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [323.599 498.493 339.522 511.291] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 226 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [217.779 471.395 233.702 484.193] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 223 0 obj << /D [221 0 R /XYZ 125.798 687.123 null] >> endobj 220 0 obj << /Font << /F15 86 0 R /F41 111 0 R /F23 83 0 R /F26 114 0 R /F27 117 0 R >> /ProcSet [ /PDF /Text ] >> endobj 230 0 obj << /Length 3101 /Filter /FlateDecode >> stream x[[o~ pyXM ](MJ,ݵi?sɹrFc[N swHXp'B_Xjq;Op͙HM煛2  ۍ F/5LW{?q`: a;S3L}}2Rh?~YlzTq -IN¿:?5*8 <,?R˷˿˛Ubs mWKzuֲ mYU| puUZnv>lJjOp__ǧQmC'|Z֠*'Mсslv,8ln$5aVYjc|9%M}Up*< E,Ҡ+iP~׭ǎ٤_V *Hxc[1", S?b TfQY@y?qbWǰ9\(id/pklr1Wa27peM?-9 o/0XAbȅ:IclU9뗯W-q-=*j2}XV(0nsHщAWbKFSKŬU-/ 2ϱvxYh"$Z|i4Uiɒx/_ىmG9ho, % u-Hx /Zҍ;2r@zhgCBJ@!>qָ`MQIJ!yIрVB鎦c.=g3▩$"DLO =х$TIFΡe|PRCY <0|nI˗xpPJ~xRLzKJ R((T(˾)qVP OGX4?7ƕXdwm p#vDq QzNc7SI|˼ҡׂ!U.a0%uE,BQ YLN^ #;j--exv'dWcC"F\1/㉘<9{SkǬW4 lj@QBp7 [3)eǰZ'oքQ6-#VxXvY-YMKP:Vbfo J/$)EK`\;~H_LZ@v"[pܰi+^ 1BVˤv-hYCEړ@`Y %7r NCľ떷mQZњ(23-OiˆfBHʉJ#; .GWR|x, ev"ie:U"ڙҨEyA3tȸL`LGs`Ny{xkf,Giv2)u|; ^Lafixg XB`NYK7`ݔgIW!cnhGmqmRh/‘srG-d'-dfZH}} ɠIKfS}MfR: 2lQPIe\XIS$}ڝ E4d}@bxD'lrSZ؉H.VMw:7Ou˺CO¤yS:Ɉ lT'E4ΨBh9؈=4! ?QkFUB#^ws }ܜɅO#˫-mL!~OXtuyWS_Y iPGkQJLCHLfL.$zɵQ2:gPPB99Sm1[`<ά d@`JWc IIuEN$7zLah TNeDvA!j7rG0'z,DK3B R{qχ⪼PnڷPfVYH(x#@DU}b [6{59*TX%'23gDvu:/`"`L&U!LQ޶ LQ./q8\oc& ,S[3L>?g@W|M 4{|M X_!Y<;T}; ;{ǣK!J~PN| a< Lhݘ\_S׺"$JblR$թipթY|_._^5qfinvq/P<{Tx=>y^Yְ1_>d@?_HÍS6vQw| mȢ7~qJ]Q| `*\zlV *O VZ @p|'  O" \ , i#ga =Uɧbm+Kendstream endobj 229 0 obj << /Type /Page /Contents 230 0 R /Resources 228 0 R /MediaBox [0 0 612 792] /Parent 227 0 R >> endobj 231 0 obj << /D [229 0 R /XYZ 125.798 687.123 null] >> endobj 219 0 obj << /D [229 0 R /XYZ 143.126 658.829 null] >> endobj 232 0 obj << /D [229 0 R /XYZ 143.126 617.933 null] >> endobj 233 0 obj << /D [229 0 R /XYZ 143.126 516.849 null] >> endobj 234 0 obj << /D [229 0 R /XYZ 143.126 478.088 null] >> endobj 235 0 obj << /D [229 0 R /XYZ 143.126 400.939 null] >> endobj 236 0 obj << /D [229 0 R /XYZ 143.126 336.76 null] >> endobj 237 0 obj << /D [229 0 R /XYZ 177.942 228.29 null] >> endobj 238 0 obj << /D [229 0 R /XYZ 143.126 181.096 null] >> endobj 228 0 obj << /Font << /F69 100 0 R /F41 111 0 R /F23 83 0 R /F79 136 0 R /F26 114 0 R /F15 86 0 R /F42 139 0 R /F43 177 0 R >> /ProcSet [ /PDF /Text ] >> endobj 241 0 obj << /Length 3880 /Filter /FlateDecode >> stream x\oB -7~8p[5$B%r\7|gfwdI H73{g~ęϬwLHu>gWp鯏D"Q3k |o\\yk>}j,Kx< |)ԋ onz;_*Xo^ox..`x7*޹3_/W|f_uW/wp ςoga>>?SYΖB=MHHSi*ńir)h@#1F3cd"y3ǂëaP|HHp8kYhn#1QxBdFd əHx/qII$\|ObP10x|:nŹݫ2}$tn,Ap`}1넘I_VlIC&2?&UxqnwxqIR2QLMR[.>eR*o+cCnG}v!>~_ '- L)K31| ^vs/>uHOiG㣙ꄁp`b?e 2 d0h 6i=R]"i|@ICZB:d)]'Ec:{- oa#m#MnKɅ8gIΗt@=iY! e=pL;gvޠ- MB,~):z>;ql7 F0{<'*yhU>ThLRqo<7Vӻ W&XNLYޮ큤7hmiƥ;UOC3,viWHK{QwlyS%#> WHOQHbhqnILJI9&! QL2Ige ,j>~.){ykL"𾟐7dԐh*@:֋UNG \H+ަ{d=bU RVw2C}ʐ(W2f9W$n`YThXk#*nU7Up,XH RJu# i)Wl9 ˸d8Wth%R=X '%5lu쀺|s'X#GJQTk[ ò}j(VseOJg'T&YAXYPf*B>7vOMWxoHMFf[Q͐f'x:>>܈xrÆ󺐇lSXKN,]Ô0·Kp, Ln,3.0U]Cֹee!r~9~A-2y3=:hz.:dlA 0LUH|Rɞ]6X##KcI׬HKC1Vⶮ*薿"-ݘa,w9\u)1_ǏA|PBPc ''='ytlybxrR%ٕy[D  9rm9=ne^m"ȎJJ[sHtɠ;⡲! 9wpەУ_jKѦFxv.Z.uu[Xѷ2hP X:/ K^GQCGB A ?Y*;wLRRU~nbhI]quSCz~\* -nE8<`+oOC0 ݃hϤ/ߏ˕i-joE+Rad(L[S5UUemB΁)u5BmepY`omi_ӆ`r N`Ѻ铵Q0*5dɦ۱.C.2F Mb:dn2X+VMJ WP95xP5~!|{lɑ tn  yg53 L`ٶCXRՅ."$ﵿQl5ssکޯurj 8v(8v7m\ X,mYޮ_jxpNDA $Ƀ)3,7{CI4jesI 4hѹ\#,@nغkL3]p,I)IMEyV4;mk?躀᫯F>VUNoi%&c3Dnjqj󭘱t^Ԉ;rK@6Zr+SqoF$l7^G it2ܮl ,;'h. ʇlt$ dmd2iaw|GBwǚr7[Y;UC#0'}fx\VP9[Ϋ3 a)T/n54~53QlJGanJIfil,v ׉FX:?Mb {Oǜ8]Mg|O ^}҄ܣyE/7liLrM7~#̐- G/BU\܈yendstream endobj 240 0 obj << /Type /Page /Contents 241 0 R /Resources 239 0 R /MediaBox [0 0 612 792] /Parent 227 0 R >> endobj 242 0 obj << /D [240 0 R /XYZ 125.798 687.123 null] >> endobj 34 0 obj << /D [240 0 R /XYZ 125.798 662.217 null] >> endobj 246 0 obj << /D [240 0 R /XYZ 229.173 345.741 null] >> endobj 239 0 obj << /Font << /F64 95 0 R /F25 245 0 R /F22 80 0 R /F26 114 0 R /F27 117 0 R /F15 86 0 R /F69 100 0 R /F41 111 0 R /F79 136 0 R /F24 174 0 R /F42 139 0 R /F23 83 0 R /F43 177 0 R /F29 183 0 R >> /ProcSet [ /PDF /Text ] >> endobj 249 0 obj << /Length 3531 /Filter /FlateDecode >> stream x[Yo#~ׯP(d 7#WH\Z+^2){cϧas8Z`g(.9B悿1!j{/£]4DϬ1O ^_|JKY^[\/W҂;>>x]mz}os.=>4tf>t&=Z/>yEE_&9!6̷"s"LH&ͤ?k<-{Pؚl5GBiǜڝ`Fg[۳'\/"&.6Ep tvUZ\#[eS#D;2,OwcVv8n%'9$g#o %ؔ1a>;mڬ$ 6Z}HpXⷴqUkdVe*SشyȜ괟bu\P:0u9 bD6r@5PZY+pU2 j9ع,[ʀjf*I=:.jfbf;?5-P-B@;H sV-g/g՞.y>O?|*02ݟEmNhY '`>%qOJϾꌆ Uob!T R2'϶j `B ]łe2n7C1bBS{ȶʞcu5ѹD0Ced:GxI0_1gmZ˖ '+']2 1u `~ytwsѣ? Ȟ:c4jhQ=ISࠏ3b&L NDMkscAX|LE8"㳰-Zi!d3,?q0e\ MiPZv[8&/$6 \ݸ8>m2di[9q=>ЉtYTh.]cME!)Y}MPTՅD$%u P0nt4}&eۅz~6QHL?g:tLa*/ VG$Art_3?r^!`ora1&ȑܾ 鎄kY=O0° y( No EC^^AWyKfOV);Vá%!~[RvwH4oHyQhJ*nCTvSY‚}ou вbt/.0%Ɗḿl :np`QInqwH*E [T+'Y;! v׷0U ^5 #ZvS9I)`0v&FǻR'j9srFDQ>zxs嘞c:) CoytܙO #8 i39ivI?U%cϖndܨzou"BVS|ijj`5sds2Ș3 y\<QwJ&o%75M7cJe L}JgL RV)nV/|tT|3Q ?{|ë][?Ú1O\ob51##޲pw2K\|~]6Liw?3 s@ ,`ј]L{* rr{ɳ%خ:x3@mɀvXIuʂ(Z 64J8zmG"mL2 sU4Aޑ3uRꡁyles S`4XTgu ԰UZSݶV+XUG&VkZ_-ˠܝb69HЉVtbQҴ2> endobj 252 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [217.713 421.718 233.636 434.62] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 250 0 obj << /D [248 0 R /XYZ 125.798 687.123 null] >> endobj 251 0 obj << /D [248 0 R /XYZ 238.204 624.159 null] >> endobj 38 0 obj << /D [248 0 R /XYZ 125.798 511.647 null] >> endobj 253 0 obj << /D [248 0 R /XYZ 394.444 208.655 null] >> endobj 247 0 obj << /Font << /F15 86 0 R /F41 111 0 R /F23 83 0 R /F26 114 0 R /F42 139 0 R /F43 177 0 R /F24 174 0 R /F29 183 0 R /F79 136 0 R /F64 95 0 R /F69 100 0 R /F27 117 0 R >> /ProcSet [ /PDF /Text ] >> endobj 256 0 obj << /Length 3355 /Filter /FlateDecode >> stream xYo]})(̹ pѸp N"@[Ϭ-Nu̼~0H{D>g@ 7+|_$LX`H)3rV_z nh-f‰NJprc&ն?u.JYtڎ?]3M89^7pD|"TN:ZӞwA zn;~b]|d(Wlwr1ڰuzOEpuIl|©ky)4q* Mˣze6}c6]Xy.K90),pCrj& lMYaH4YB :oRA\Gߐ(_18 NGoHPa[O"I ]ڔDrBE|'М `ϕfjrZEQ rؼ\ K[f)Ô+U|)2*!wCx4 J_e(1 #n« C7>asBUC7ӽ"CľĝzOѓ;ľOFKQOR Oj?:uozㄩf=`sg_@RPÁKASB?_|05z6tw7x( Cс#bTW%Q9Cʹb.HR#{>h xHԓ R`v(gr?t,7=!/FJ:}c-\a~RwB˨ HqsZ&.tPTE!?>¥w!6uǥ.ࡣzR{$Z㺷~tw pw-wŊ3֕Ep$пcmI0^L/i[3@s(db9xn}~*-P<_նdIѤ!1}&`J8/6j+JX lձ qv8xo:Ud?Zk6re V`@ߛ9.4ahNBY e C9uz9zlSWckTlSL&6IMv G|[8cx+-RȘE?f!h͕e m鞘y _>0>_SvgOis@8tcG]/׻a ߘ oFUfp[Wh6>6Gs >hݞqiyM7I>9z i9՞,zldJPϥmW`OG9<ңv<69i{OܲQx ڷ&T2т1UyL^&kCʇiʵKG)T p4j7-)l&tEɻ>r|LZrAcԅd-u76Th I-~8hI|}XaSۨ/RpOl?LQ_"&* bIc0s^f^YiJΫqt2,`$Qwx `o%W^$yd NaizԬwi-t1qc$+ЀGRozN$#KvGb|2 ܆[3Y*DKE zko}oW3MTNo0L4 hY {[?3Q:Vg^]Ž6ޔ3; jcI WTs3[s'g:9N=/aZC=8Iy`Za3Нucw>ctWvyS5ix[aGAl>B~%X(}ot4ʔ>@p,vw*f9_{|Ul =RMZ6nie9iq~GGyLt"q}Lz.+Y*\|8Rǃ *+߄zE1p]VzQhendstream endobj 255 0 obj << /Type /Page /Contents 256 0 R /Resources 254 0 R /MediaBox [0 0 612 792] /Parent 227 0 R /Annots [ 259 0 R 260 0 R ] >> endobj 259 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [332.66 164.828 348.584 176.508] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 260 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [371.42 164.828 387.343 176.508] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 257 0 obj << /D [255 0 R /XYZ 125.798 687.123 null] >> endobj 258 0 obj << /D [255 0 R /XYZ 459.243 502.217 null] >> endobj 42 0 obj << /D [255 0 R /XYZ 125.798 402.526 null] >> endobj 254 0 obj << /Font << /F15 86 0 R /F69 100 0 R /F41 111 0 R /F26 114 0 R /F23 83 0 R /F42 139 0 R /F79 136 0 R /F43 177 0 R /F24 174 0 R /F29 183 0 R /F27 117 0 R /F64 95 0 R >> /ProcSet [ /PDF /Text ] >> endobj 263 0 obj << /Length 3259 /Filter /FlateDecode >> stream x[~>`/IE烢un,mc;;rE|wMY.<~3C?Xz02rޝ_ R3Zco/g_=<y_^ÒxWOuIM;3v:uXi.Ӕﱽlv+u:t.?ƃ\^\/O/{ߧ{ ]<6= -״T!fX4 V>PVnr˛@HXW-Λ5я ׫fdm 4-^p+(&H] ŷIp;HLYt}9odp6 HQn@t9V|PLs8ytaL_YM`KNp\Ms\,p8=_7Jŷ'I)ƙM2` >;61,J(\$(4ru}W@{x՝/DsIӢ_)}IFě`?²5kD" 5-a”c{v\&  {۳Zf>¤F:Ƚ'XXyRhAe1s-2gN!8.1y? cxγuj ?#{g*V@{ )2$Ɓ\\\RO\2imfSz!x nѱ}:y#o8'TF2D[\F]ENS'aA͟slA)ʤ>7ɨNu(Sc^]JqWArʃS$@>>`BjY#prJ<<5B> l++]05!@lՖP)f"1P{ILz&g y٭ a!D is`GA>χ[r:kaݐa櫡(33ew 1tWU̴HCN) Jj!V6r!8 wQڛ~0lH5c ,0蚼JI'i6F!h"滹^=_ shRJ-ݚN"ʞOJ ПwUmԙT*>:S NJI%3Zg>*Jr aН+fmy8.ޮB-@iįΨsg.R3"wֽPEsg0z NfH%1*#2O֗ ^d Er0Pܭ>U"f N$}A]#Cf4:$P|f5$"JBǴd]t(ٓEpxٻ~3^#93>:(z܊ A̮߽6 1'ixRU4m\$ C XhHR!zMQqOb.e@0Pb4K 7UgOѬP-X2<#:'ɕ+/ET|!l P>Tk.\quy?_4z^1ǫx0XCb+Hy^E>ҵ!çe>uڊ6,/ _a|&.qu{Cm/lCX^Mװ8#$~>NCyR@Z|pn}MbQo'/yPY%@~M,1'Ur]E{Ͼҏ;#DAw6֗[ Pwpm:yPtai`S0XJ@K6=a8>&?Z5QKDoww)?s39JLn /{+y^??ܫ=UV_r=~POꀀý8{Jɵo7{WMcɚR᰽?Q'3q ȉAka 聕 zt*\(cendstream endobj 262 0 obj << /Type /Page /Contents 263 0 R /Resources 261 0 R /MediaBox [0 0 612 792] /Parent 227 0 R >> endobj 264 0 obj << /D [262 0 R /XYZ 125.798 687.123 null] >> endobj 265 0 obj << /D [262 0 R /XYZ 447.087 583.512 null] >> endobj 266 0 obj << /D [262 0 R /XYZ 470.02 470.644 null] >> endobj 267 0 obj << /D [262 0 R /XYZ 178.529 271.867 null] >> endobj 268 0 obj << /D [262 0 R /XYZ 390.243 158.949 null] >> endobj 261 0 obj << /Font << /F15 86 0 R /F69 100 0 R /F41 111 0 R /F26 114 0 R /F43 177 0 R /F23 83 0 R /F42 139 0 R /F79 136 0 R >> /ProcSet [ /PDF /Text ] >> endobj 271 0 obj << /Length 3044 /Filter /FlateDecode >> stream xZ[o#~%#b$- t!4,G]Br-i5C߹RrVŸIeE6Tz^5t}s%Lƒh*4_\}Rڙ,E[;Y\<ˢB8#u RX[˹U@%{lÚ FhUa+G ##Ӹ *ud3-*L?nWsUa@sYI(݁C~Iv adž;p٨2Zhӭ&[zxVTR kZBr3"S>#b/ś,3,FF:RYSrQT)sJ Ā_@_ȲYπQ, Y,w Y65 #c :IJF*x\뱵f5X CvX9ar&]h147jHUrZI3WߑD`'!{ojKlU(,.#_XE*mm}(?d yĥJ1q:et.un#j]r^(ݦ'V{) 2v!6mD=@`7B9B9:0U&~\8F^;V ٰb&VR}؄ IFt%9+U|u?F6;V nhMÿb}h~%KUSdՈolCO xiTFK"IF텻S`A-X^~ҳly8T:B%~#8αّ-\jq=t5wV[`N0TYs<M "n3 ǖȆd`my|Cúx˒&70oY)K?TbS /L@wp5.q;/ugSbc&qaeO>aW/'Rsw cs_ >_Ϲvkp 5٬ xK:=vuZp2yQcpL5g5f#-Z(V;>3zw/:lf[bqhasgN0ɶqe9YL2ZW.\TEҠ3'BCWE'bN kS-`KSڲJ> %x72up/{ҩ[ěwN&8޿5:Q'-}fG ¡k>T66~<K C#6 68S30JaB8Xt`Y&sR5\д8O ]?㢋U`} ">J: H" hD9 |>@!<בkckGj>ڜ@H&RƘ?M Հډv̹^_qHbB@ 1|ԙ@NS6M \w}ݧQ&O}*0U"1S3Sj,NVsQ/Ht?\؛NiϢ< R'M/=<9a&^稪>Q"c8S'`ӌSU(sbX̏p(>t^7Jx;y7L[?[цΦT+cXD,L~cNDYd#pbzژɕ8kc[ 2tI;3S4%U>S ߈mtc#+ !o}D\:6}  pY:e@6zVQm@e^?xl.FP\\һW. y(p!ѝF3Bu61>\=H ͅhe'95ӷtvDҳendstream endobj 270 0 obj << /Type /Page /Contents 271 0 R /Resources 269 0 R /MediaBox [0 0 612 792] /Parent 276 0 R /Annots [ 273 0 R 274 0 R 275 0 R ] >> endobj 273 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [280.133 419.431 296.056 431.111] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 274 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [306.045 419.431 321.968 431.111] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 275 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [304.945 147.837 320.868 160.634] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 272 0 obj << /D [270 0 R /XYZ 125.798 687.123 null] >> endobj 46 0 obj << /D [270 0 R /XYZ 125.798 483.072 null] >> endobj 50 0 obj << /D [270 0 R /XYZ 125.798 454.294 null] >> endobj 269 0 obj << /Font << /F15 86 0 R /F79 136 0 R /F42 139 0 R /F41 111 0 R /F69 100 0 R /F64 95 0 R /F72 123 0 R /F62 90 0 R >> /ProcSet [ /PDF /Text ] >> endobj 279 0 obj << /Length 3389 /Filter /FlateDecode >> stream xZ[o~ϯ DᝳAv]@ij[4}HۻdhM_s/Cj8 <3$w>_4/̶8˸ͫ&R;fJ2 sFc_ ްi/?Q?^~R o5|#J.,}߳/&cXwabz; Kps[_ ͢{0e։o_?^rɴjYCwẄ́S η)(&m^g S"a5-k-ֶ&ČԄWPJy1ysKz uq$Fbmk4Ԛr$bx Eiuė1 \CUTuENVEQ>RJoǻX7+zp/M Rާ {R> lj=*aR/CZ@OA$=j%X K чF7X(|ӻr6|(LjIIʸ1oVCgCy4C6-f5{ulXc_Uf阖YNւ528{a+VhNf5uMt^ ſHJzl])[T>bBʅƯVg ` ޿ P0'E2Mkk2gEe {k >OLXj aDfg)޳8/&n= %ڝy͚,*x~ڍxP{4t(`6:~G?ֶtd}>a_c 4 |g TEC@u|; ,Rq4YSy|OCC1DdC8Ԝ%l[հdЛQw`|Bd; 1 o%߄(] D.,.u7@җ %T>zAj n<ԶΈqԞc؄/pկ͐1Ɨ>@rw=[?Y \O*UXjT.UDA[z&m`k*q4j8(/Z":rc/MxN3@dmƘ,&CPP}`gLx}f?F鬹2LpI^,[%w\_pEK 㦧 w7Xa-S1VCQJriY]vC=S5(G *¿"Mw#L4ϧ$x3z"ƖY$Ui0W[xwN#Db,ctHA Cb"U*ag~N yFrFybH•7=VuFtgBu;TVp\ WlySrFJ y#GQ(  \n+H?t .7#] ˄L1nUlP] q8^r+ @/Zg"h!x`Z/eZӟCv$ 7ΣS`i6mh`ݸ41V@>|]1I J B R$4"5e4x:7x+xއR+ aqʴZ3fgpwM`5Aѐc IK[hK7`[?aj2 1G>ZG']7RPY%+ƉYTg>gS6{jalSMQf'jGKxq&aR|(/KQ99.*wy]Ap3`QT*2T`{N}2;$$ԒrgS^f<~$$E8PHdݵi(8Oα8te{<ضRªjiN'Hgpu3jc`4?@b͚, 7yrrV/TQ!vlT} cǻ`,$7ٙshx$H# 6eڙ6} Ǡf&LɐxT49ay1=NOcT2%_B̩bF,>Q gڴߒCrΩE^˪-PX5T7o {6̳=y3f1d`Rf<`6Zч+f©QECKH1νHE藠㹓RyDpB#Y%]:$}&6;d|PSL)'Udj2|;?H eT镬ݻ˳gN< gnW\u΄`ݦBC=/mbsJqPFSРWpOz}C-ߣ $}1H*'%MEo&ipW#ok<{8=R(%3PSp-ρ}4a ^bRW`7mM %ɒ% iW 5HU:TٍHp7h<)ʇnix8@aiN[~'0q+CcyL3Tn\?l.j L.1+BO9Bn" o=>AfwVdsP>d ۙ C)HY1URtPXXBH2s6dxV XiExBaESixM)}c3(Ms~]"fvԸՠZaĵ p a:@ IV#7C6AߘtJ ^^Lv$|DŽbLM`L7DBOoSX UMYfZ1VR#:Yendstream endobj 278 0 obj << /Type /Page /Contents 279 0 R /Resources 277 0 R /MediaBox [0 0 612 792] /Parent 276 0 R /Annots [ 281 0 R 282 0 R 283 0 R 284 0 R 285 0 R 286 0 R 287 0 R 288 0 R 289 0 R ] >> endobj 281 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 539.141 132.249 551.939] /Subtype /Link /A << /S /GoTo /D (procedure.1) >> >> endobj 282 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [388.01 439.926 403.933 451.606] /Subtype /Link /A << /S /GoTo /D (subsection.3.2) >> >> endobj 283 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [152.075 372.18 167.998 383.86] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 284 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [303.207 296.451 310.654 309.249] /Subtype /Link /A << /S /GoTo /D (procedure.1) >> >> endobj 285 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [354.664 296.451 370.587 309.249] /Subtype /Link /A << /S /GoTo /D (subsection.2.2) >> >> endobj 286 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [339.501 221.332 355.424 234.13] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 287 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [382.734 221.332 398.657 234.13] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 288 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [152.075 153.586 167.998 166.384] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 289 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [238.056 119.727 253.98 131.406] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 280 0 obj << /D [278 0 R /XYZ 125.798 687.123 null] >> endobj 277 0 obj << /Font << /F15 86 0 R /F79 136 0 R /F41 111 0 R /F23 83 0 R /F26 114 0 R /F27 117 0 R /F42 139 0 R /F62 90 0 R >> /ProcSet [ /PDF /Text ] >> endobj 292 0 obj << /Length 2555 /Filter /FlateDecode >> stream xڥkoO'G$ @ƅ n%]rSn%n|g!K. -yV?q&aֻY&:[^kX A 8ϕťR)'0ys[ag{ע<-\Rs}|ߝ/e@t<_WV+ Ѷ}_8]XD7w׷rD[A"wp n&mv?n!,qN gf@B1}pEd4X2x.ݢ"$R?a'.D'6zyL{v#$H%x&honJ9>E +cX2 R*0xXSjr`.iA|^W2 چτ:$Re_#tp)@/DGy:!')S^B:hr@0Q}Bg0((BW͏x,{)@?֦s{6E{|#J\JeHDFrߍРȿ#T_ ?}lD>Ĵԃ~-ca[/>T x oJLsƖXI'~<;B qDF  >BƟЧ\)\V  1\Z 9!eU$=VeH-1 k D垮D)#zRh۞`vaii\N.f,tՔ{~Pl)_)pjSܓ]Z/Au._ [WuDD 룑9e%:cOwP0i$ԖY#j}azKK-NJ'洬Rp)̈́MYA7Wnd/nP h*U1lk@졟6bТX%_WT7®ˇm=1žk#[OEٸG&"VV!/Q;em<Ђ/{`\.(0bz^d4Z\rgb<ljbɓ(t6DB[<>=4fOm\U%g6G1gy!CHLsvmX12f0zWE&ö8C*$ >=G#(jC#iH =U5ƛYd EBD+ @vJ3]XBxY;+Q7 h:VCփI3Ɯ{Iy碓*yDmH\=[9PB-'S AhB #EKTcʏ=7 n\iVqFB(f _;1v #uTf&tSJ1#݅AKY7.#E[rEBy,kKc#FGh00#M5G@)8ʩdn+ J}NŰSɜSsi#(~AH|x^d@]'?`~NRs>̯6;9v 3AKyW߶@aZY3c4/BBGOκM@`h,5%c˿¶R ' 0󻕣!!^dɖMM**]iwB8}ʾ';)gWEjS$2tJKljXaUb"p½wFVendstream endobj 291 0 obj << /Type /Page /Contents 292 0 R /Resources 290 0 R /MediaBox [0 0 612 792] /Parent 276 0 R >> endobj 293 0 obj << /D [291 0 R /XYZ 125.798 687.123 null] >> endobj 54 0 obj << /D [291 0 R /XYZ 125.798 622.463 null] >> endobj 290 0 obj << /Font << /F15 86 0 R /F79 136 0 R /F62 90 0 R /F64 95 0 R /F94 296 0 R /F95 299 0 R /F69 100 0 R /F41 111 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 302 0 obj << /Length 2721 /Filter /FlateDecode >> stream xZKsW| X3HJ"rTBe>K! 4~3KA.f0n@ISGJ;p/6GgL.:ƅ1Jĉ:דg_RHIܜ/t ӆfsagxm~Nz>?K:ۯ_:WI'qt <Wqk8o-yK4j ]֤م9ca06-ܾMUl{>Z-lGPHel`*Vp7Ou )'4+u;Ң؂EAPӊFKE{뗛lZRZ@y}^Q:!|Sx'Zc)ܯXBF"=KMpbZIgK%͢K{?< m7#7 $+i/:bO$Np}\x5lm{@sp@$>t$5$[q 00 칊N$Lt_bwN8mc7oh9=Y7|*d.%nU0~d5]!]nE7ߣe𡆙Έ8谒ܗ$ ГzEˡKR kn-tbsNr> +B;`BNU:rAjKa:P}P#8I8&qh)ėBUQB@1cÎi}++T9p K^=O|'w>hBOA8`V?No +;J@ I-n92Z!AvX].|߬$<6uǿ*oeR<>D&آo5gldXљ@D|>p+=qlTrXR c#6cwpn7U!+ S C5qv,xU+AV(^q7/͂\z2XB@np YQFEP=U\"?'4)O_@^e\%!0lfs^8u;CΓE1VZ2/aPFf$0$FbKZRl=N1fp?8^<,[R㛑]ëh;p鞨{qDz4SLw؝'UyzW )J %2H'S}<=0S3UUQW)HP?m݂4G\yB.*grImQwMPYxn1ldIұ+V b,fɒ9ֳ'YC W"NXg%l,S>L*ݽc$[1p%BN 2)1k:=F?P 4DJa)V x7AxfJVcs&>9!R\##+chY`&!Kr"C,c\t|u /|0R;o./?5qx8ktBR"׸VtpM6w9G'+$Qd\юrOz]ǽ$okK27({Tz13~`GT 愮PyG;!B2j!t ;+14=#J[3pa€lR k͔u we܂kl|doYX`7rcJ lB8=H(i=`=vSͯ([`a8>/;a.ʉTHo4k=}c!Rxn/czW GsbWweJ渦qMN(g">f|MTڛ\@/eNիb?2Y~D*X.,endstream endobj 301 0 obj << /Type /Page /Contents 302 0 R /Resources 300 0 R /MediaBox [0 0 612 792] /Parent 276 0 R >> endobj 303 0 obj << /D [301 0 R /XYZ 125.798 687.123 null] >> endobj 300 0 obj << /Font << /F15 86 0 R /F62 90 0 R /F79 136 0 R /F41 111 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 306 0 obj << /Length 3277 /Filter /FlateDecode >> stream xZ[o~P,qsmk@pUI5I+JDRJv_srH j/sv.߹ EBiWh;_+m.g 4㺺u scTm: ZWQnz~+/TSMqhWipճױ剱%c1fZU-\7\dR.gFI?3U wPԽ}>>4yb6MW}M+"C_mqn8b\j\kذtW!:jÏw2b@]A:5D;IW}8n/3!j=2-u<ખ O!Wea`@؆@]j'u3R% ؖidۛcNC] Ci&“voA9 ̟73E> =ep068f7sgkNBבOujG #xc,{N'\[V4TG4'RNYW]&ӷ8?ոzHPq #WR:@p!PWt&YnvNl| 7pu 1IQKp-ax}`P5 5*P{D_5\82N .^b݊"^F6bɮ0ܰB>e)9Jn $)@&ġ?VխE_%̡Gh)Zh}X-N%{肗>0+îpY7G-vf!]oMt/!#9>2b\ p{GE @\lO_ n7$jz~⻿b& )ƒb )r]6PXq!FnMފJڤ't;X _q^>5\`RC8 gtf۫"@.ºOEM}i xz% }5L5*cp' ؤ099dr6mpq3y妐c Hڈ$6$ S Id-@sR466rz~Z\kt/0 g!+۰?mY{p](QZ%wqrzsybc Nl<ǿ b c*gHʢ%A, =`7zB>j! Jpc@7'Gh֢m h$L5G$ǬʀjI{S&}MY^29TC&Ąُ &"D]^#|{Xqm1Ъp+r`*X7@{0'1$i*Fy7CøI0,jH0!mL!ҡT{νפڅTvi ,$|#q%=xҟJ:`C@݄dw\adiO ;7!W69\goT~6B_]'Z)bMى1Z-lsIںFe),J[s66fA׼*֫zI=)s;# <C==(N\RW˱*m% 'R1 mbZUH$Uc?l̈́ހ;DzDL"VX ȲRz h'6dŤ~ۦV^Jo`4].ɘ"IsGԫm Ws1 ?F]㙗`(h(|q\b-q M܆=`s8''^f*^76ϋ=3Pù-}r)ԲƅpISu+^Rw|Eq%'4m I]'L5߲)B&HɾyI㒃B?#gpϔ\^Bh@ N=}+%59 ;..#ipB)k z)]dxZp`*\% 8d럒p,eH˼rYeNrELؚnQMwu x$:H{(UMϓ*w >p` %=N'D*zg{H+Ŕ'vȘw,+:@x3X!}+z+ߟoRN.;8s:k5*n>GKGԎ?;=V)>꽈c(>=t9<<3Ji1&4!IBp6p/Hb\V?TI2JP\[*;NѰs Py Ly'ܱB/Tю ;E@BT1 gK8q,&Y2#KB`E0Y ăZ~+ŸP6sd yh\+YH\t7)Ń>h$F.׾i՞bWk%\ RXϋ%Zuş+oꎒd3EUX*lHendstream endobj 305 0 obj << /Type /Page /Contents 306 0 R /Resources 304 0 R /MediaBox [0 0 612 792] /Parent 276 0 R /Annots [ 308 0 R 309 0 R 310 0 R ] >> endobj 308 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [469.537 500.984 476.984 513.782] /Subtype /Link /A << /S /GoTo /D (equation.1) >> >> endobj 309 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [409 343.923 424.924 356.721] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 310 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [384.913 173.312 392.36 186.11] /Subtype /Link /A << /S /GoTo /D (procedure.1) >> >> endobj 307 0 obj << /D [305 0 R /XYZ 125.798 687.123 null] >> endobj 304 0 obj << /Font << /F42 139 0 R /F62 90 0 R /F15 86 0 R /F41 111 0 R /F79 136 0 R /F69 100 0 R /F23 83 0 R >> /ProcSet [ /PDF /Text ] >> endobj 313 0 obj << /Length 2988 /Filter /FlateDecode >> stream xZoܸ_aI<~!wMָM]q&nIQwNQ0%r8f(u!O](] 6Bisٽ7TbF˕1JFM-Wc֯~x %E+ۋG/U?*력zr`ȋc+k/VJ8㩗.ymtiu{JEbU8a=w(حҼ32k=f4;11#i*$o&u*`[F \~gwlacU2} 4j-Tё .vAKN[w> ;#isH7jt> ,J]ޟ y覯|-uRWp/D*M{*y9"oNQ@KPC&h^ijA3$ZCn;׮sB7&m2qDm\$icrzܞʉjuj*+J;!˽Rp?06.-7C a͊sܨ̴oBg [1_]ǧ d蚭1P|*a[ Fc?t)6P1™̽ Ma&I6jt0-ǻofJVg_)+3oM5VٞmMged.xIqzH \*}"gH] pzzօ#. L>,zU=:x|^x*9+WypX=4‚n!qL\'ތNhtqFF^lsFk AHPߓ_o}:+l?# qB9 XTµ, J_ec'CU|d?j^wںcIbR@dDs\#Ʋ&;`Dg|vR/0us7<6%4NNjwJ5-~RRD/^s\ikN.aJOe5v@Y}&vʞZS`4;?g+|S[)CWΛWhqGKWRe*%ZߦCd1_nP0:}b#FF>Pds߾KYڹ 1} m>}c>{5?(}v*ه2H-T=@a">=,6 kocvѐwH&I2,|A(sV$P+}p"hɾH+}B‹*%mfVCtS(vͨ>Kg[U .ȬY;:ƟYy `7=֗c [~ y8m\.b[pV~[ՖP4B.lߧ $MqS/7Gt:a?@.ӥ@8IퟏqG$x`8FWS. z#䗕ih-Tendstream endobj 312 0 obj << /Type /Page /Contents 313 0 R /Resources 311 0 R /MediaBox [0 0 612 792] /Parent 276 0 R /Annots [ 315 0 R 316 0 R 317 0 R ] >> endobj 315 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [202.012 428.256 217.935 441.054] /Subtype /Link /A << /S /GoTo /D (subsection.2.3) >> >> endobj 316 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [239.258 428.256 255.181 441.054] /Subtype /Link /A << /S /GoTo /D (subsection.2.4) >> >> endobj 317 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [324.791 358.083 340.714 369.763] /Subtype /Link /A << /S /GoTo /D (subsection.2.5) >> >> endobj 314 0 obj << /D [312 0 R /XYZ 125.798 687.123 null] >> endobj 311 0 obj << /Font << /F15 86 0 R /F41 111 0 R /F23 83 0 R /F62 90 0 R /F79 136 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 320 0 obj << /Length 2657 /Filter /FlateDecode >> stream xڥko #@ 9mO.D5))du~Е.JSyxTV4?sRݫ ~J2^8kṰZ xU4p|>9.-/[2 2 *?< z;Pq,sOXǑ~RzГ[((Uoaܖ_G )b1NHé`v`z*Afw>&}Epщ: :ĄM!ѡq=":䄏x}uB :XJ:fMUj$*ZX QRvcɶ\ )A#iJY 7ur"ojҟ; :ha\`ya('Q58zRs%TtO-%w =CM+Ѓt3R}~hOtY"~Xv w 3kUt3xj"Iϡf.L\ @ bb(e,Fv7xr WYD/bicZ"hl-tCj6M v{;ZC#,֖#J{1Q. lw c8 D&bytn!TbmHˀblRF-SRr|ƟA籎^@fbgm+ $nF&wNJInZcԋmN5޳m C'S=QIY|(8l22ǠW2՚+ v#.lخޓ'J@i̖QSu6 GG.s]3CF/2t(}j =܎c`{z+ erbR{zUچa14D=kts v@*Ij !s6mi3hRL.]Nv=:K|(M (%9S%DY"u"I33 $H!6yOF].uHI]O+B0F$ vrDjaj͘4#U17%MjcH+@@o ?!"J&8?ڄx ^UIlݬrb!1Ażhø`T>ce̒Jg"Yy6 fӚ۱#qKzMYn}%AƑaH| 5[a(ΦТF44+Ȱ/Aendstream endobj 319 0 obj << /Type /Page /Contents 320 0 R /Resources 318 0 R /MediaBox [0 0 612 792] /Parent 322 0 R >> endobj 321 0 obj << /D [319 0 R /XYZ 125.798 687.123 null] >> endobj 318 0 obj << /Font << /F15 86 0 R /F62 90 0 R /F79 136 0 R /F95 299 0 R /F41 111 0 R /F69 100 0 R >> /ProcSet [ /PDF /Text ] >> endobj 325 0 obj << /Length 2649 /Filter /FlateDecode >> stream xZo_!ih~/-j . @$,Ww'h$N !Ca~ g7$;1Hk͙6-a\54C Jsq[g/0u(Ԟ]\yڋs+.UP%6]bkv^~qnE-v&oaKT(Wiㅽ* 2\3-EԂB[$Fu}s^h&_{-+vz:]˞[I@}Mhs-5p7oQ.*CA-aV#ʨ{QJ(7I= 98@/au ,<<߸Qf"8}~ >ǡp(!{^9y?if]@*w{iM0P*mk5'+oa++ۅ܅u0`*0r2z087Y^#k6gk9zó쫋ѽ+"tl U=Ԅq &"(qͨ1#RF 0dm[CL@rqm 2cmO@HBdr C86$Ffu6C9i4 ~:w-G`Uv}Y6"o'8>@;=]1 aQ h:pkN4B)d>imYp}qNsn.hJ$ZB J1" /C/*aQT.Y$ $xUG׵@}U/ cwqUb| ޒ[+iS۲,`9捋=x7{/ݕx!D>dp U1ا~: jbĊ(A y%ӅjoqRC'WB?xuM-"* b5ҀNWTc`>w!rvMa-R1Tptv$*ѵ;]-m'JQ%TM2_d[J1:~'I;-(aNNcNLj&aV:yJIi\G=DADbO$"*  w(&9$Zz't~AT )oZ WXŒKVYzNf aŐ!}H~'<p.?1b̗3_4Nr8#!+qeڜI^e.pKyyH+SǬhr%v,pEѸ5D{ SMh^WӲp0X Hw7biO|~1t9f '%X+&;^W1ƴeMJ㸠X7^ J?YB5}:xBOK./mK!AÒ+žSRФ< J0ϴcuw8k,pg7X1UXȀ\ceLװ *XBtee`5#pC>.Prdxhɮ@jȂJ SR4c,RjV* =PGYB/EjL#NBb*.Gq헙ω!A5#>7*ACjwv}ر+<&]FY(?%f;ud ?Bg/~1X"2JgdFopVHKxQڞdAQb=.a/.LK`ֲ5h&}rnpd\Á239wjG2w>89\LfFIӆвYa`$g"X*GWavZHl3wmpUә;<:Ʀ%4vwC9?BF"7D$B ߥldg+T@bAe9EI[C3#IkxjA\endstream endobj 324 0 obj << /Type /Page /Contents 325 0 R /Resources 323 0 R /MediaBox [0 0 612 792] /Parent 322 0 R /Annots [ 327 0 R 328 0 R ] >> endobj 327 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [319.811 633.985 335.734 646.783] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 328 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [219.186 119.727 226.634 131.406] /Subtype /Link /A << /S /GoTo /D (procedure.1) >> >> endobj 326 0 obj << /D [324 0 R /XYZ 125.798 687.123 null] >> endobj 323 0 obj << /Font << /F15 86 0 R /F62 90 0 R /F79 136 0 R /F95 299 0 R /F41 111 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 331 0 obj << /Length 2622 /Filter /FlateDecode >> stream xZm۸_'XWI".E8{~Ml-or)J#[3 WޔOHeE7TfS<£,m-=pl9+57߽sFHnbE }sI)E3{?wֺشM3|=5{9g>O8R Va|~Ȩ&aAoǂkX[خ*ۙ#Cd;y '/?ed2fjpLJag> O(v aԩ`T_0-:Ca`dQ .ZX \'rmq681Uw1. yȟTp"^zZW(wAzˢG= (G(pM켴;q́ b.<{1doL0h#> hT jo]#a߱EYdk&kH8o|!Ҍ,w< l/teɛ{M=xDaQA8A.mɷN#${?1`Z-Xqe8~b%K\JÓ!h "GFSxQ j] )`X z~4 ?).7*<5 }.=tX9{P!'iê6ҵ4Z _?%q E39GRIΖU ^4¨\KL}Zե噡vIJ*߄ٞ&臣R:j# 5'|sslv\) ]waMm6@S'S` ơ)L #߲nI HiQ;j|1.C'sV4umIV 0ZݩXj}u{P]e SC2#+Ӿ 2Ɇ\pGˌZ3y j=]؜8Ip'b_Q^3e[^v`w2߳r؏P`|J+k1o*//pʑ[83ݭ'>aΎo|^uBIyg rXnX"j ꓼK'TW:N#~f g..`n;oE ?p<~| tq j&cDԈs&管q#si+8V`_vCMf r5B蓯[}cgBs5#*)jYcS&'ldm&mPoUӱ7|bMwѸs?UB~@, qmϭ`VvZYaN(v}{cvʐ{JJ$.MJZudzf9p_ ݠ1GsRBseDPz zeI#rZ8aW_Fh#R&*mc""P >Ec<Ăq6а̰PjsaН.E]-rD"S邊L w =[_Cu%EA[6/ttV2/ 9s;`*ЛnsZ[7xM{*9GBSXimQcr3"@~)Rc!jvs%iAOd5w5n'`Le{p'=d-9Ft0/qA(cj#nR[U3 &|'g+Ns_̑ḩN+iiW1$g8`pK%ʘKvut>1iźa(jpp {Y/Higxt'{(_^1G5>C= dQ)XS_ہHzB u2i Vj/ܼr6|'T{Jnqڀxankw;ߺSFUy敓6FצtrSu"!:7É6|S.\CU)p|[9#"R^;.:bjni*I<󍑪7Fda:$erg2ld! `4>qT``h aS q_R+lϿJ>{m> endobj 332 0 obj << /D [330 0 R /XYZ 125.798 687.123 null] >> endobj 58 0 obj << /D [330 0 R /XYZ 125.798 559.3 null] >> endobj 329 0 obj << /Font << /F62 90 0 R /F15 86 0 R /F64 95 0 R /F79 136 0 R /F41 111 0 R /F42 139 0 R >> /ProcSet [ /PDF /Text ] >> endobj 335 0 obj << /Length 2541 /Filter /FlateDecode >> stream xZKs# Paղ=INIʛrvjĆFbQT4=aJJErf |>`$/ZRYpR]{E p=8Z \X#[Ѻ.廯>HϺ>?6Ruw__qA聯¤L6?#|Zfsf*4а)\hӹ_K:>š_hn[l{3 b67BjqU98e.3)iEt~O~se@- WEjЁr-W9:lPغ'(u}br)0JG<-nYҏa`-q/WIxC/1*dS-t.}i8vp20na@I-e{8RpC8kOx3_]B3^,yܧֶ+@'vTCa$ZV0$ܓt`BN!np6 7o;J?')l=ׇ@(s{e(ʿ^Meh'7wA ~jI2e8nY!Zۀca74;8#*!}=4Z u-'b .xS!ddcFwzضwɮ(z{n baMOF[9m^iS(q:B'dkxx$9.@Vf38 +8{cr!snoa ܤp| $fLhT|C| JvS%D.*Wf}d@.&@ EΕf U8Ufdf 8QMRJ<ՠlXlowD Ș:^8 ]iy*@=.B:sF|+<=odE "؜ 39>hâÜ % '| $_i%`Fd^C\ ֗;dF U SbĽ ~=5jtR&V;8zE5CJA~q rCV?);6$FgmLL_2p84kLS>p,&6q1!'/\" VCj6V$Л}q@愑upLGT'`H(\Aqx(X//Ih[o1MD*W_6dg!G lTg.ږ$aBgCu״7@ ժ4Bv3ڜm1EnjePiDMQ$+ Cst`0 ug֬f3Coff_'Du?Wd9'Z X:0E騸GOnl!S<~L% )6N`~Xn a:ݍgM]O2WG@0qA'mQup7n"ɧP>TN l8"q/)xSN5ǩlWu S5"fuDf\v)U8H?5[ ==0+\6.7zٌj{\bF'6 &,!ɲxB) d*eb?>̧Lvئ`s?>~컿 ފq_scZ U0Α}t 'E&]bu Qwc@5M(}dRʌe<W~ Odt"Qݔc!Ё}(/}4&,VZjR{r;=^Dn3I5>iK~9V-H&2D:dͅ߹)k-\nOEHl|fԐ \;NyU--u2('^Bw~qQ vB'Vq$}ʇ= l{Я 8|P\9J?5/*M2n}k2[_vendstream endobj 334 0 obj << /Type /Page /Contents 335 0 R /Resources 333 0 R /MediaBox [0 0 612 792] /Parent 322 0 R >> endobj 336 0 obj << /D [334 0 R /XYZ 125.798 687.123 null] >> endobj 337 0 obj << /D [334 0 R /XYZ 125.798 662.217 null] >> endobj 338 0 obj << /D [334 0 R /XYZ 125.798 635.82 null] >> endobj 339 0 obj << /D [334 0 R /XYZ 125.798 602.828 null] >> endobj 340 0 obj << /D [334 0 R /XYZ 125.798 571.341 null] >> endobj 341 0 obj << /D [334 0 R /XYZ 125.798 554.62 null] >> endobj 342 0 obj << /D [334 0 R /XYZ 125.798 509.589 null] >> endobj 62 0 obj << /D [334 0 R /XYZ 125.798 317.846 null] >> endobj 333 0 obj << /Font << /F15 86 0 R /F41 111 0 R /F62 90 0 R /F79 136 0 R /F64 95 0 R /F69 100 0 R >> /ProcSet [ /PDF /Text ] >> endobj 345 0 obj << /Length 2531 /Filter /FlateDecode >> stream xYKo6ϯi^E<,fE6{eMw՞oHQe'A bWU J\uuUT&joҫ ,TpܺQQU#ݛu~SUG{Wr1Ueu27:9v?\w0\I|}g3?k!D5fmvsfk?'|EzJq3KG߾/D[֤ Qd߅' 3*IHܠp;\Q\ &}d¨BW2@tchf4OQ_deXI< $\ӛ˜Y%iYn>0`2ia{}N֬؜6nƀ,P=*5N@[!}7 ~V)0Gjn ,+أJJ [Un[I~˶((Ȋ${%7(**c< ZmCso:Kz3ߐEl)*tֻٳ1m gr]7\eP, Keʴi(2(5(U̜z"AY,w~0ߊ~S\B^DCY-+х3 jʉOg$ lXxjps_] ^ԜҦ]-ulsIޑh{ Cht~qٖI>y29/gPz{ TEaز 6~K4.ίYTy UlQƩ%0H7L#<2 Zْq䃚-B7 iWF<'c'&0QJ ;3eǖa*px8>g@5Yzti|IDm=*4Pq& c}&CǓϜ%)YUX3SSkAl i9MDbWzOrR9 :Y$(sXJ٩yzy{|}J ,gktmCDbsA`_cPxY$eM9NfwA)( nZs>1 dU3YVR"Hz@HmO<2f*TJ= $&=yrh4jCK@p A#ܒAfO L94+}n k{՘x} !hȯ|-9M*ΗSě;;i:Պŕ fs[^u#XQhZ i"uOAн|v Ȱ:NK*vG1)^1K£kb_y>W${3PXQpػGI 8bC'78!sd.1ARJ7# OAzl@YȧJ9w;pc֖*UVc#vQe-_D=^8| bŔ \"nPge3TEH}=gP SGGu$sM6Le&7Y V ߯@cڊ9(\aV_|۹~M ɽS_;ftKl!pPXpP%_PN{i#hzd\O߭ TeFe+ Զ^Oc*80"M:FrLjB=( !`/T֟FϸT쨠8|٘ٳgFq0y͝o#Fʚ59vYz\/VʖE+qFͭˉã;SŖօM{פ$|L^G*$z$˘cnBn'E8EMQ%05ɝBMQT4|)3 س j1v#tEBP ^>6+vjLPB.X{سatkkHL#>MLn2FX /q9'|q5&> endobj 347 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [431.221 539.752 447.144 551.431] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 346 0 obj << /D [344 0 R /XYZ 125.798 687.123 null] >> endobj 66 0 obj << /D [344 0 R /XYZ 125.798 348.191 null] >> endobj 348 0 obj << /D [344 0 R /XYZ 125.798 287.887 null] >> endobj 349 0 obj << /D [344 0 R /XYZ 125.798 237.662 null] >> endobj 350 0 obj << /D [344 0 R /XYZ 125.798 188.659 null] >> endobj 351 0 obj << /D [344 0 R /XYZ 125.798 152.595 null] >> endobj 343 0 obj << /Font << /F15 86 0 R /F62 90 0 R /F69 100 0 R /F79 136 0 R /F41 111 0 R /F64 95 0 R >> /ProcSet [ /PDF /Text ] >> endobj 354 0 obj << /Length 842 /Filter /FlateDecode >> stream xVMo@Wx{E !U(B9B8ġٵc'nQNޝ};3l +2F3r=)\z3d|Y)By/Fxk|\#v!B5Η Tww/L@ u,Lm0ZH-&߇ץ͜VPVg3V96ٌ@\%em C%G¡0rҩL:KC` z y =!_p {͓MqlpdXNNM}[UL甭ange!l& ) % BQ+e0oy{ݴ=`ÓS7iC/1QWR-9.!ͨS^^)-l&gCSZfʊ"㾅(V[ۯ'ʜ@{F m|"YMO.ӓ}y XPm&AH!h`b U\nky0fJ'%3WSg W>d=K$=E_1VZ&5Zә*_h$,@ӖE[ULKʾZ=8;#MVT>js*8'B-hb$Q2ST_;nbB)Iw]iuE b[s%[8QR A{vUA/>AW ~zgZ+>e0%X+i/b 2.1nM651ap<$"k;2]+e7nU/ ]'][%,1֝d=I*kA4endstream endobj 353 0 obj << /Type /Page /Contents 354 0 R /Resources 352 0 R /MediaBox [0 0 612 792] /Parent 322 0 R >> endobj 355 0 obj << /D [353 0 R /XYZ 125.798 687.123 null] >> endobj 356 0 obj << /D [353 0 R /XYZ 125.798 631.109 null] >> endobj 357 0 obj << /D [353 0 R /XYZ 125.798 594.433 null] >> endobj 358 0 obj << /D [353 0 R /XYZ 125.798 572.529 null] >> endobj 352 0 obj << /Font << /F41 111 0 R /F15 86 0 R /F26 114 0 R /F62 90 0 R /F79 136 0 R >> /ProcSet [ /PDF /Text ] >> endobj 298 0 obj << /Length1 1368 /Length2 6525 /Length3 532 /Length 7376 /Filter /FlateDecode >> stream xe\]A@:@)A:;``` )AC EKPzg뾟K;{k{tZ쒖0s++;( VRr\XϟK;A , nn:0/P9@ q0K$;C,@ h, `W/$ & W9'+@_/],EK ` T!jNoܠPU_ݧ@wts;T``g ˞ f (B  qKx-!6Wg72?} NIy= #;ofD!C... "?('`8 &rvya!FA| ` =99`W`X+/ 4t9`+*!C\~ 0{{oihvGCp]~gpZuMN$~"R7 8U!ADa߄أoBDB1= !&Du8*Npc"y@Dblc" @a?QDDuu@D]ȍ("vd r[="rHI<}2vn?q8ds%b挘>׿I{lA\T0luf261_T)s hM߷7a+\5mvZ?#=4.kpz:UfvwT-H$i7tIXppK{qj)"vA6YH;/q9j8^jӢPV %>[W y**Jq7 >Ⱦh+'ÍNn5:Rt=ss7e[-EZd\RGMSrM`6 }Z-]4n.˫."ç4sxcvY MڧSś@eߓą J,(oڮ뻮&f৘!!~5CnKޞ/$dbr Όz0dKJ`袚^S\G F㉙ƬHob?|cB?Ug 떱c Mաc>IZc[u#?" Ń@RL"F )M?bBf_])Ew>w8n&=t~qF&l<۝" $uSU[!r 7tTYw/$!3nOa~%ݘ\?cY}$ aw<åF^|E^։3X /FT#0oDBjWW#Va=G̞ ONcO yڔJKcf"Dl^$-uUkQv}y%íx)6>UK)g`1>FM_~a*Y Ρ+ST=/44Kf^#iEjc+N\N3ug6A[Xg6]5{I-&ݲߵrape!\}CJZB¼?d"}kŞj=z'r )%P8`:䘷PRͽ}h2PnH٦,SjysQ-2 gjUbӅjs9#gO8G_3f0&ʻz'*t# -¹JT?mk4]S\l \^_V=[%_tƈ | ?uXdf sE&ICtA̕;%Y=o&*Ẍ=JΊ>Wu^҃'.Q9-bgyIe-{kAb s)b 8O5ϴffp9SVqǝj3_٭l9U̕hQH[pF{Clz1Ύz?,ɵ6[­}K_i7 8Z'W(V'ʱ\uj_ ߕ &LB<Rv5CN_qYG)9G9uRj Xѻ4WϒhZHL3iԳFs%[:K{;FRldY5?wP\eC)`Maeb`LD>Q%ϛ>&//(TU-h1ԏq0=~"COsT;MZfj_OIu(Ӓ8xͤ^ծ IRgz(dep؟[*X9=8q΀M-"U64Xj{+>x={WsXe9:*jq/\]|u‹ESjMJqʾF,1>/9XG1 ywT'i5S%EoeDv3膅9^oZ` Y^~u urkk [i1VX Wޔ%2X V$1\ %WNJ1`eĐX:J\A}W\!_'޴n52|8csI̧FQNAvW/Lv}zX/7B]i[-+w$[ЭY>Civdi"~}1ޏE_ud(28em\X1+iBz"[h8D 0xb[ ξFYdMO6(|k)7ۧX'EgtI+wJNk1ەcLǙz:\~1ڞƝhX V&[x-k]̫͝jO.K֠7$+t`Ն)1&("Y9ųC]F]W1C^ >RUTYGݟ{Ke9W%062yk9,My\W.r!fpLĞ.I[\}WK'9x@}#qOW] ?0ŝr*hYVsj=[o Ʉ%gxn `Ѷlykt^Իr&j6p' F-j('>@Q6yF-Qn{6b+1tw\< 48k# H : 4VzSַ .o,jW=JՄh'j-H;˨'XAu)Xoll.8ܻf7%[&G0֯1T4w_J\jDDN+"OQ:sةY*Dz+&ʂ.K?pL})ǒ*i_:ΎӺH82fŴک]e4_A6wdk~#8g}|mLpzdYYg *%t#|xE]_K;VCP9oww!WddAF_{ w Pj|LOv8k(#q)٩טf3U <6V H'cj8XW&_vHVZi0\8ǝkv8F! iTQDHˈQKqB ~Ѹ09j v]6e[xFnCѝbcM;zkR@*hn3s<ŧoæ:r4/$<6f]iX fˍj\CU2h0*W.'2f^JSdж`- Si>RP+)W+?;1MWVp᝟8ݝNِ2BcsܚGgٻ. ^`{ 0M锒v 271^]Yhw1qS󍜌fRK Lx"Cm=޵yqܓWJQ6n;ToX@h0SnĩWĎej s|۞gS %h"ذf~t-@E)7&1m^+T4pXnYc")w SI</ys^[0 g|6g7)dZfˬHH!"!w kw*opq%.eeuQS`qZJ~ȴ ~9</2*[tJ&q'l7>חV7O?W6 z#W}Y.'юB0 ӗ^5R| Pctv.Mܤ&vF:'!X`R9d/Wr X"\\am=\#ӍA&PMH_a{POCZR^_]\W uJ 1n>;uA}Ry˴<24ɼMl^IkJ!~񠡱cȎP+ 瞮%J~Ў1n/Ո  _M?9C)Wj(2$()s)fAHa)y|鈾6Z uJ&T6J^C&dwOD ( 9aZV߅endstream endobj 299 0 obj << /Type /Font /Subtype /Type1 /Encoding 359 0 R /FirstChar 34 /LastChar 125 /Widths 360 0 R /BaseFont /IAHIWX+CMSLTT10 /FontDescriptor 297 0 R >> endobj 297 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /IAHIWX+CMSLTT10 /ItalicAngle -9 /StemV 69 /XHeight 431 /FontBBox [-20 -233 617 696] /Flags 4 /CharSet (/quotedbl/parenleft/parenright/plus/comma/hyphen/two/less/greater/B/C/E/I/M/N/P/Q/T/a/b/c/e/g/i/k/l/m/n/o/r/s/t/u/v/w/y/braceleft/braceright) /FontFile 298 0 R >> endobj 360 0 obj [525 0 0 0 0 0 525 525 0 525 525 525 0 0 0 0 525 0 0 0 0 0 0 0 0 0 525 0 525 0 0 0 525 525 0 525 0 0 0 525 0 0 0 525 525 0 525 525 0 0 525 0 0 0 0 0 0 0 0 0 0 0 0 525 525 525 0 525 0 525 0 525 0 525 525 525 525 525 0 0 525 525 525 525 525 525 0 525 0 525 0 525 ] endobj 359 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl 35/.notdef 40/parenleft/parenright 42/.notdef 43/plus/comma/hyphen 46/.notdef 50/two 51/.notdef 60/less 61/.notdef 62/greater 63/.notdef 66/B/C 68/.notdef 69/E 70/.notdef 73/I 74/.notdef 77/M/N 79/.notdef 80/P/Q 82/.notdef 84/T 85/.notdef 97/a/b/c 100/.notdef 101/e 102/.notdef 103/g 104/.notdef 105/i 106/.notdef 107/k/l/m/n/o 112/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y 122/.notdef 123/braceleft 124/.notdef 125/braceright 126/.notdef] >> endobj 295 0 obj << /Length1 786 /Length2 1384 /Length3 532 /Length 1963 /Filter /FlateDecode >> stream xRYXSIfR8,Baq[Z.1B: !7$ ,AEY (" \Eܐ (4*%tvqiRO:ohc@~\6 kD/! 0v![P% eGC|`D4'Cą46 L(BAB!8X{xC< 1QX,`t> (#;/eFk+䦀ܤ1[d l0ɝ7L-wbi )OYH'qa@\b?bQ$>ء,`` 1 (h =s[p&(Φ?BӓοT Åc@ ʉ뎺2g6alD˥ Pѐ#<̀b#76g#| $ \{M/- k @{,w83,0YX<X GFA$'`0 Uz $O+1CP DG=}RrkK:.5Qp ruM-"M$) a=x^.o"eâ:=ʯ"`n:y웫5߽+x<4gON44rY`K7X(."a +"-{VdUmON \6D4%*EdAJV`֜B=>|MU!cTV+Y-#TFZR`OWΣc WعC}CYFWW>*eݕ=>zEĸ=rnߌo*j!S-+OtjmOTUj6.RBkWY-$`Fϫ5,>eܨnG= b17܈oS/k ˛؆噿 ] MCWĴ~F;$:Ptww"M<%CMNE]~RqdsSn^16^\z3h2uʱ];Fۊ'*[4U(u%⒞dZ@;6dOzDU+&CiҬͷG|ʦW^V>6IJm[;G kTzB{,FϞJ[V6ĎP%{SDb˴眤>12[`5lK<=kvJ*E6 sA`$J+\F--}fɹؖG4h8iV/!=+|M~ > endobj 294 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /IIXBWE+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/M/P/T) /FontFile 295 0 R >> endobj 362 0 obj [515 0 0 515 0 0 0 515 ] endobj 361 0 obj << /Type /Encoding /Differences [ 0 /.notdef 77/M 78/.notdef 80/P 81/.notdef 84/T 85/.notdef] >> endobj 244 0 obj << /Length1 788 /Length2 1323 /Length3 532 /Length 1903 /Filter /FlateDecode >> stream xR{8T˱.;}̚1c\+wҔc2R3 Y `l.OkF)84I) M7mqp:Cg?s{w2Ctb;[x;Bx @v Jvokk v X@lG"a EBtDNl0@`LAg*@`~ 8Xw<3<0á[ A3D~iE\0Yi d&(pMe^V XtJR+7ʎa.LYM?LD^YÉʂ%qag:0ډ,87o]ioL$ +5Z2r:j2N( ˥` D"<@8LX`1A+@L<AmN>}^AT*ggT(%$;я^ِlWP˅9Iؗ: BAuGJ:*Lyy[Syܫ\̙1CHgZtM$T)x!h  E^5ٗQJջFb=K W}*g`oؕ ~y[+.P2>jy'Sz.;Q=eR~?pǸY_5֜%=G;MՊ`7OlyS6Q0rKWEiww1 g4:9i9d8ו~Q';zea5q[JpZ蜓x;ğLW'~#R7.vo!>03epCQmiFPE}ͻyRKv|%b42nj]KEP 2bcLU Hm˶zzx;O]al'Qms_RtV;t13!ܽăW; /GS4̺Yq. ~I?kF#=X4tg!q"~9lڙq^hs< sL1GVZ<$fkVHZ)K ׼xPh=9Fkd]b?sNqGS=W󪏶 k\]Ҁv*O_ү?0Bnzwl,zr@Og"]fa u9glnS}FgaF[F,2 {*靴 7VHέu? x϶UeU$WJM8+͆"܉׷uw㱾ۂmѺ|W7'Dvbݎ 5c3tKc9*_N9 <)ƾZ/~.9+|ۡw5+|b5*ۚ_BXۍm[N2:1ߟ*|6m\$;d`кD /R3R~K RJD[.O3q@j);h^d𞅃$7! y_&o# }40u-ٜdA"*myFAcG',l:7/endstream endobj 245 0 obj << /Type /Font /Subtype /Type1 /Encoding 363 0 R /FirstChar 18 /LastChar 70 /Widths 364 0 R /BaseFont /EMRFKH+CMMI12 /FontDescriptor 243 0 R >> endobj 243 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /EMRFKH+CMMI12 /ItalicAngle -14 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/theta/F) /FontFile 244 0 R >> endobj 364 0 obj [456 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 634 ] endobj 363 0 obj << /Type /Encoding /Differences [ 0 /.notdef 18/theta 19/.notdef 70/F 71/.notdef] >> endobj 182 0 obj << /Length1 875 /Length2 1426 /Length3 532 /Length 2056 /Filter /FlateDecode >> stream xR{8iM2ڈ<Ed`C C&6nj/3Όr(iIYQI.8mZ9upHI"R:IEbۮ}3ugqA d+pay[230`[ {dKK22 V# "CBE` c  spaB!>aK!Q xcx@B 0Gg 9!@ϥ(bZY ^ B8aNwxlLH+0/O!A(pp!#4bU'sLTɌ6Wp4uEP YB_[қ5B`ylbyMuΆѶg/w,#$DƈUMG@6cp$LB]d#\(@јa"'K& PPIȇp-ĢؐBT@D@H6HL ć/_bE̬rh*9sĿ'q z Zbd -cbkL"YBQ304>߃al qp=]²~_r%ۖӏz_;scY!!YۚΜ.Er=pi@t{z҈Isn GTYL#F>9BW%1ciq}1J:q*{.۹aO6f%Pyv7$K{6;-wfᰑM­5 j,FXB8]/Nu4 R7%#o:.<7&^*{ӭeJ $)uNrf55zȶYH&ɀJj;g0&'vI&:,,KtV1͊X9x\~&QkMM{«5+>?/GzVvr~nXI%^ZiT>J~\zSX.S񲲙rqQ2$V+篝J1 E%[rk5w!;P)dNўUwZ=r_IdZ7(:^,C}_h=[ pJ>/;QS=l>-1^m_w=!ޫ-ku S4Z7?RzsF?!SQ ~ϝ$^0|t0(-R>Rty[s}uQ>6 vk) H\;ޜ߮e6NDJ}K|N].Η_.Z= 򗾝++l Y&r;mcySlHʒͩegT?]hM K[n>".{wIFDzߍ,5ꦖ2=K=t]xfPBi] M||fđ]Q(I55==pr>}2LW'^SMtq`]%6R\9TёQfRKي'mj.}Z5/>=M}uAmYsXܓ$aDVS|4o!\/;9TUT-SY^vm$ :aajikCŅ 99E$o `ƥj~+Q,ydZnpyjadlCT; UD?Q-8oy}=+;>eWdBS쒉'KǙ > endobj 181 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /RSRESY+CMSY8 /ItalicAngle -14 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus/asteriskmath/openbullet/element/H/wreathproduct) /FontFile 182 0 R >> endobj 366 0 obj [826 0 0 531 0 0 0 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 708 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 904 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 295 ] endobj 365 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 3/asteriskmath 4/.notdef 14/openbullet 15/.notdef 50/element 51/.notdef 72/H 73/.notdef 111/wreathproduct 112/.notdef] >> endobj 176 0 obj << /Length1 1242 /Length2 4071 /Length3 532 /Length 4825 /Filter /FlateDecode >> stream xW\SٷAE {I (w  *MD )ҋt)UEg3ܷ{rk}yͭ$5`@K* -; ,%#C#(x * 2dH@ XQSia8;$%IpW(dŻP$ R $d= d x8o&E`W<pCiK2@1 ?0?y|W) :à 6o=.4ѧq( d8﮶LH d4!tDfPa8 hE|c g},s_/ߊ]10 WAq8/A`  xXZ cp4OT$4]n;/(3P9koeAH`p :?t$uw,Dd?HNJϕ~AJGA^ǕDD"a/,O^@ I㠰wצjjb9$DYhd@_=O` QTau%[8ሣD U5#z^NVw 1rMxӊƾ‡o#ۍ<& 1?1f]EZg|yrm3/=Z'7xh^-eh_Z89KtISZ=5)\Hג>3/J4Cp|+<ȃDU#>#0gQ=qUN}e7a4I+;jT0w&xNB&Aid[ŅTnKڍ6n9- }ٻ6j, p{@aqHܺLʏM6nMm)ϛVآo7\ƌ-^@g7vFK0E vׁ ڧ| 0K"ySt{C?5M]βg\1:%kl|H1HN}і$h #Ѩݍf|auO/71la+T2rj:pN-0 )b"cB# ۊөsoVJQkZ1sϟrqAitL cƢPV*%N#B|+e}Mr?'  iIo`Gv*+f_oupȫq%-oεP* Sl[}q ddW75p5R6!>яlUYҖ'a9#\YnZ:fCד<.0@!ٰwMO^piE{F.nbM +dxB'&ɐ{}౛XrԱ6\2{5i>,j>0j6MjX3"&|)uzVsO))@*ˀc5wNE·&j!ɋ|񱎑9#~=Ey-S֭[2Z-#i܅ @ߌ5JF:0F}OCoFM=YF1HGo3NS);{paY5,hy ` \CAK6q©a^+~ҙBnVAa4`etFjBk|iϳ0-HesN" '<w4\z`XHHJ՟ތXT3!/3kgS1` h4ՄsU";Wg[YDE#1jKFHCZֻ?Wʙp@_Bҩz Vkǭ'o1.D0-v c$擼@d;uN8͆}JkeL^fEea+JUxH]M.$6$HӘڍ⹬$SwIQup̬S^''U{qBCd`~s^r%{Y`3$x u #/M\B/w-uwyg7䲭N{P?g|ü['5ibKK3q JOW¦ CiYC%DONb|)<kQҷ1.yBexlAb.wv 0|X2˨{RtVHD%id]9K͗AFbUG<,wvbYG ;USX  I)VجUVKu wudSƍtDh=`u˜Ì+9X,#<'"(AAqh 'endstream endobj 177 0 obj << /Type /Font /Subtype /Type1 /Encoding 367 0 R /FirstChar 0 /LastChar 115 /Widths 368 0 R /BaseFont /ZFQZZQ+CMEX10 /FontDescriptor 175 0 R >> endobj 175 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /ZFQZZQ+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/parenleftbig/parenrightbig/parenleftBig/parenrightBig/parenleftbigg/parenrightbigg/floorleftbigg/floorrightbigg/braceleftbigg/bracerightbigg/parenleftBigg/parenrightBigg/braceleftBigg/bracerightBigg/summationtext/integraldisplay/tildewide/radicalbigg/radicalBigg) /FontFile 176 0 R >> endobj 368 0 obj [458 458 0 0 0 0 0 0 0 0 0 0 0 0 0 0 597 597 736 736 0 0 583 583 0 0 750 750 0 0 0 0 792 792 0 0 0 0 0 0 806 806 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1056 0 0 0 0 0 0 0 0 0 556 0 0 0 0 0 0 0 0 0 0 556 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 ] endobj 367 0 obj << /Type /Encoding /Differences [ 0 /parenleftbig/parenrightbig 2/.notdef 16/parenleftBig/parenrightBig/parenleftbigg/parenrightbigg 20/.notdef 22/floorleftbigg/floorrightbigg 24/.notdef 26/braceleftbigg/bracerightbigg 28/.notdef 32/parenleftBigg/parenrightBigg 34/.notdef 40/braceleftBigg/bracerightBigg 42/.notdef 80/summationtext 81/.notdef 90/integraldisplay 91/.notdef 101/tildewide 102/.notdef 114/radicalbigg/radicalBigg 116/.notdef] >> endobj 173 0 obj << /Length1 790 /Length2 1354 /Length3 532 /Length 1935 /Filter /FlateDecode >> stream xR{<_Fv}23fH.c9 fksȥMr;g.YkGI[lD-E*i?|~}uh~ƎL4vE1ɄDΞVdB|Qd@%GQ(0#ܖL43١aB`lD\f@a0`@2ذPl9tB|ȁ&8 0 !Ctɏ;BJ)⽇`3 0D0a 1' S]E]2 q?q a>D0YM WyLuB6 b \102 >0Wb[`#Ћ b#}bKˆώ&D" #b}UT26V!1 GH0`~MMTX$qKiaLca>]iS-T'И#$aDX[菰#E E$Z.w">FSfa8fP%9\"=^@-V6Rr 38w="~ TpTyym8WW QyW_yӝ=6g楥wU9Z nO \T烦QuMVցykwFVHEd?rdmmQe/͌u9׊t> r SnOο0X`e.ݕdCV+zYw L|^ #A7mtn[Ѽ@+ԔoޚKhԔ=;c1n&|7N ;ȿlYgM Ze9V\4t/Tp ^w y>yr7;=>Jz7NU|ׄ)6 - >Q ;~r<[)žpl\`/~V!iה`[Y7f⯜~9Rb'Swэ#U0#L\Rt<܍GR6U1I0ۤ"И_jǼAu)[,}-L{M]3Qu'_w`?IHSOA.e'CE%:T ׋dR i+yGwCOlBxWgTr Ԫ}zI ^zBMg%ON=W]W1{@m7?,GdޔiXvFm8jGzBPvya 5I+rYjaBj;EryeġG?s-7o֤2&ꍔƥI*5 quBӷ qpkOl=rdtK ڰ-Ye0z^Ѷ!|YK2HPo,teuJ=mt%O}^,ħics,Tj&5I(^:~`r\h;hQu!rX}wݹ!ۊ'i7 f->. dYfQ@݀ =| ]~ }h- o뗙J{*_hݦx\$JӸF|r{ЭoذYwu wCqV@9yEOݽ#= #^;}"F~rʸ1J鍥<5p: okQJu[DL]?G/ooӴI#t(]hgތ3h}LY;v41mI[R׵>f˿z:}lpg.}h >㻮*3@/27`]bjfrg9\Л2cn~=RӋ5T^j5e7B q:_B!B?~endstream endobj 174 0 obj << /Type /Font /Subtype /Type1 /Encoding 369 0 R /FirstChar 48 /LastChar 50 /Widths 370 0 R /BaseFont /VQUKXN+CMR6 /FontDescriptor 172 0 R >> endobj 172 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VQUKXN+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/zero/one/two) /FontFile 173 0 R >> endobj 370 0 obj [611 611 611 ] endobj 369 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one/two 51/.notdef] >> endobj 138 0 obj << /Length1 1268 /Length2 4121 /Length3 532 /Length 4958 /Filter /FlateDecode >> stream xTw<!sMQFT9s8qUF]d!e$#l*~o~s^k<߯qy MUP8;@%$``5 I@AjxA@)(*` *( U pD<>&IH Gr$6!(V`?"ƀ;P  B# `;A~(r((ON>O) &KD"؃ 8r-Cԟ5<0}ˏ?_<!sq x0?]-OV*X IK@d"hoe& ;?S䊞u3ѿ4DS+i~.` #;,Bc2` Dd007Y1D#CqxЏB4!YPHKn!H]=0+/o0Ď<C7'` C=vsI N"/, 5'! Fa `kƢ ɐ_,Y/K$) ~YdO_rdelj&opx `_G!P@$Ơ_ğ!vx#@oOwY2o}x{qUUq޾ `qY"`h{ KH<ǶG $h5y!)Va-hL!clULDf|%{kUQ-d%L؈QIt>jܿ9˩،K:ZRi6I8^CnV6a/ϕk}zچlQi6[ [{AQE֑Y3 wmW"?{ vfXg@jRh {> l;5'%,_eq7{R ?\ G8߯ǥVP͌-_B:j=uiq؝L^(IGVRc2maUf\ I~F5hUtW9gF15w\&LGik5%'GQ.ʽy/U]S oI?S_bD=C=>ZJ!kg/|!i/走 NRW4؇E)589׹ʀot<8ZW{+1Rj%0vI*:\{>ۥe/NWTUpԹr41W9PLv=;\|0,'osU*[`>䉎=֛1A`&=D<1Y@\VÌN<[xds''.\/ҳ]hRB׾7`L*<-s%u]6\Mg{2lk>)r)<1դBCdy4I"O>`6JQwQ·e} \y*_C^͐`rhGÓm: E:B<6Hf"gTe룔GnY~IOl,oqaupz;/:1k%,y[VubG`^n5ELA4j꤭4^UFî8u &mWo(&p9xSq͆`F3<[a]'lSzknʝVnސ75]tFF$ve7w6xo=cY~u&E1cXP fu>oaLG;Zw,BO s WЄ}c+PNhf,qg MxF .wvjiVtJ.ͫ0$sy0UvYo>4@[F*BPpW6®>=qr6Wݿ?cV[CuR2tReK(%* G>{%YB}4MzW/2*j7f s,̽8 Έg7w:vޙɛҫ5ɻHq炝rtj۷z]fG䏨_`K[lƣyy!3r'fe=Ϭ~ )Sv\˙_(O)uw ?>pDBr;|ȣj=#1~ IMrÑrjb bχVt1A=x!f4!1G&f^`Cٯ%,BbXd.|VZmp3|b7 ]7_b(*DhIOwN?ΘSj\$AibuvJS\?;_S0,Theyw 1VgYBnbG^1ެ~݅\`A7ї9^pB_N"gVЕڳ^_Th5s)Q_1{Pm9/+Մ@ys!^sFNsJ9&{K}q,څSbni7±7HOD-U?{ϕ S.`mϟͭӇ™5/JQoy3lQB'ڬᲞt+\Vt}rؒ)ަ=:gԅgp*ƴ/=D]^)Ivko76Uh&;]<ρC 6M L|R3"\-gtV};&qwô;}K4 +\6GPQF'n q_z+)WaxjQj#6ZIl*0Ezµ^+{C{1qpFJYK1o4%QGo|9/a<(cߩkփSaGH)S4Ŵ l]LN:TDZoj*Q7ZH9\mc`ʋc?ּ܍?O"   vjendstream endobj 139 0 obj << /Type /Font /Subtype /Type1 /Encoding 371 0 R /FirstChar 0 /LastChar 112 /Widths 372 0 R /BaseFont /ELNEDU+CMSY10 /FontDescriptor 137 0 R >> endobj 137 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /ELNEDU+CMSY10 /ItalicAngle -14 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/periodcentered/multiply/bullet/equivalence/reflexsubset/lessequal/greaterequal/similar/infinity/element/C/H/M/O/R/intersection/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/bar/radical) /FontFile 138 0 R >> endobj 372 0 obj [778 278 778 0 0 0 0 0 0 0 0 0 0 0 0 500 0 778 778 0 778 778 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 527 0 0 0 0 845 0 0 0 0 1201 0 796 0 0 848 0 0 0 0 0 0 0 0 0 667 0 0 0 0 0 444 444 444 444 500 500 0 0 278 0 0 0 0 0 833 ] endobj 371 0 obj << /Type /Encoding /Differences [ 0 /minus/periodcentered/multiply 3/.notdef 15/bullet 16/.notdef 17/equivalence/reflexsubset 19/.notdef 20/lessequal/greaterequal 22/.notdef 24/similar 25/.notdef 49/infinity/element 51/.notdef 67/C 68/.notdef 72/H 73/.notdef 77/M 78/.notdef 79/O 80/.notdef 82/R 83/.notdef 92/intersection 93/.notdef 98/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright 104/.notdef 106/bar 107/.notdef 112/radical 113/.notdef] >> endobj 135 0 obj << /Length1 1621 /Length2 12957 /Length3 532 /Length 13900 /Filter /FlateDecode >> stream xUX\]֨( Hp.5HZ8Cpwwwww$;wwrz_s]Uk9ީ(H) ZŬ@ aEIf&3-P $g0sqĀ?n6vnfv =Zӿ8@[S=@Fhކ@h|v@;#А`hj`$ 2pO߷vR4?% @.C{5Zݸ忚gz.+h 2ڂ;U?r2@CS+igaj 2YX'nj'f 4fjo`0ҳ }`TT_Soz {Ek O?>_iW1Q)гsAx_Dpc 1#xl5ShOMw ,-D&.&@П;} 8vzv&"\F+?`wZ&2ef`'/7Sǿ2G&޵л0w7ǻzCN]HדCd{{oM?C?ަ}1z&齠_'_ w}Z.L6 ߝw)oF_ne[YV6ổ_ne[Vổ_n~xr ߭\w+׿8BO!!+g7zfz%bg*Lm"ﻂ󟨁-dρ^ld~J@+ĆbOܩOv :y~`6N*/LKN37)0,"c}NQ=38ԆAL[&ٶn=[!Ys쀮>`? *^\x4__FL2$I@l*}<ʵZL|]5c9+,Sr>铳8s9ɲj[U*)ð·%YdB^4"3hL(cva،R:'ߩkƺN)@fQH}&q(9IZ9V_Q~Qmc|Z_Wss1L 0B-JPb2I}3=p Jn_{p+/2$"qp>q>$ۺv!IqϮ| k7DXQ$іyx7j|2"fA^Gpt?v2!m=7wFM RO[.]BcZHZCڌyϖ1iӥ~G o9V)`m΂PaOg)EQqbe)m&2ޱ QwWN hӁЃE4=Sj9\cJe4ʼn–qgsW'.<ބ{]boÍn<<ۖ!IoT4 rs~.lcB>*q &;LE)TBd7OW0~MrU|!YB*@VQ7{K`#*; 8FqC{"t BHMXVYCF\вܓ22jۇW-9kK>qPeq+Uȫw5Jm*,Ĩ.-3dR)iMP&&ZI\"(k)CP'OW3hӔ@Eŀ Uo$[h6GRQ<]]lCo!!Miny#[&NU$2-&{ː6 P S~EΫ.#oxRRn t/zuFHȰ1r 0)ٴlW@*ԡ4y loZ^|͙g4T|\pn"MăFMmM,* GaH<+9uyҷմc7NE+ i:Y1o.~Lʎ+`8i hG' P͌ui% *[Z JBrߵ]h?q`CcD,ɨ|bN9amJҽ*, t{M9#MYWm%C^n1L%(m=B[ǩN |IAWp:cxrNX_kK:9"\|ǶekpI pG, qgW}4KDOk QJ<.I1U]ſτ :;%!]bQќ 9@YF8i-;pYizj+h&anA5~O'W>:(gl ׸sΟ`6-գq3*+\&x?%!SW245Ҏ|XP0 [ ;lsuSê,`E^Px(pUy8 !Lft4 E[9Cd Xwi'[{MilD2GQ po?NZm®%lKaZʄ%}Yҡ HšƏp'R~W "Υ(.K0=+cjOk皇7Wvq@duBXWǘR@$?NGcğ˕ ɩȐmϘɊMF(rOX|z$r ,yɖ&.FZ+5" & .%_ k ܶ|w{Y麮.\'-<܍m'!'Z&zbʫ(fc? CәqҺ<~|0+Gb"M`%M)%O3L{)]ɍPC/!:id_MKz$0scY0n*fCZ g/cmRIC)#}OBit7/y6l.qYץÖl^6uL)sCadVçO8fFjGMb319h_>U#n'va椳'b60>["u4E}Vg!'V@x2hV'wjtdJ^e, [L&[ Ab$V+J4rZkLb1G=7Wpې!@UuE- _OX杈oɻ-ٴ=J]0ʷ+Ź n镦c铇k3Uwۮ{H6{$>vaH0zAX?c'A1I*faoKꁮ>5urDj흘[ ۓ9FVkkH}MA gbo3}&) δ+7(7/>^iR Aû`Lgؖw}Uu̳CYU꺫k MwL0qRj/3c7}v)~?C?w4;uGf؄ʀRLw;1:bjc!BQ_-98\t[ӈ0;!2e\uVm¿z8d]{D},)=S4Kj' $lM1ژ>}$S9 u t|氖CE#?ήX(a`3[ yĀ8Oy_NjvnBЊ ÙL/.bےPlDl;Ye[y&h 5Oq߽؞:T 39߼ ap,ԓD:q=BH9_MxnfY<)zf?S.2K$JƵo~Z[$>BQ{я lCSX8NCߓLƥީw)Z+B |KyL§ICڎg)x7BVf*,|qs bW v} J )2t_C~KWݞ[rH 'lN*mF^ "yޅ_5_W}6ڞ&YqC|!CGG/{ݡ0l</ 0%5NYp8N/(!j,Uy d%`@6YzC@ L ==bRoV._zB3C&iP)YPJUCKh.q )ǁ=6SΚd*$i(P/vrToe?~]_<_"~3syQ# 5U& ^'P85YfB_$dmk~#sߛ=e2~e 2CqghO8wH UH́D#FR8efa#:pǠmYt|TV;O!E%@GdTnZez؁_FCV/fdsr uqIa0:.K&7:4~bťXXV`5(Vb!çVu6}uɲ̏;yW9~,|L*)w*0EI';XY))|nhs7؂k5{tLP>PUnϘKH4}I bƅQK,򫱡'd yu:*ARmQeq4F(%1#[;>YTSۥ9IyyiWR>c =>⼔ELC>7!CMZ%6[.6I^L m^@Zp^4y4:{02DveȨ*8OU{PZڇfiԄjI3 9NO3li^CGla><;D#Mdy~\aӉxL>Y4EAg?ma]너6$Q6iuuugYd)SbB:ⳘlZ5l䁔G]W?uƬX6p.}CIek}0D\'/']nU=y^ScF6"iBz"A$Me,

m+g(G,os#by 93"c+_#7`XXK dĆG U>wo#ߗBG;#V=$! \ cs`Ƹ&q%|TkMv&iRU$Gmhɠ&k;F(<ӑ3m+hH)& 9h/!S&AhQwG$_Docc* ė*O[`A :B^u˛ $aNZEZP,*!VʭC}s:ڼ\|HM Ô ѠsPgT {}"fW$Km>Y BoOu*w\#"U|:.w [N2Ó4Pcಘk bYn <|().h)!#Ks7ȯ2 _T 3#-cR}7ϕ ꝰgUJrQFG"7C2;JF{m`]h\AiL3l&5SC: ݴvs5UeZ 8Vtsؖ`}XVqrw}?DX[ /y/ o<;5(P.%gZ u};'a"oP!gZ0ρ!BevI1ˬ{pVQ(- Lr4=U~jc-9_tǗ,)qnK--~p}7$h7ԩQOhi`b;5riDt3-^Q)mq֒֯*Q<09_Ez3vMMbko L޻S}IZl1UCvw2&_sB;Ƽu}|e9Mɼ%ܘ<ͬge2|XI`jObB}YBLSݬB"#\H;ŦT}\PhS.C(pto:=p8Y4|)V8'iGC4b\|蔉|D7_iƍv3JG($@4F$| c{Șp ,\ Yr \qz>PvM,F?$` VGgpqe)Clg S!'\I+8jZK!ˑ`#;Xz0+dk taM>M29 pS^EͽobٯF\8 yΘP;Јc؈;?vന1jFn3P]ǀ5Ljk{[dmX&~Tc" XIr ~Yق×U*-,TRS1m!a<<0nG9mWQrNDC!q,3)#3CH@X \%iq4=+`"v~ϡOƲouO Խx%7;Eu3MC]q#"+T#1OiU+/{HK{|vKX]>(~˂ }靵ŐbCk T T/>mBinT7s"w\N3GqyzdPæD *Ԧ"lHځ|9qa~l$zK"E.GYs6'!.OH!ϋ}kڧDIW:C`3#&fևN-/%] g*"1sK 3~h7I[ߕZN$Q,$]cEϡE N(bLH:&9X/p-dTٷG#b28^1 U<`} q~b9|u 'ŇQ@?7JqSGuD0IBj~!D}c~|Fب*Ӷ, L)VTDjkѳNBc>6~a(vuF48:wYCiߐOJkڊSl񶐡øXm$i0 ߳6HWBz3P2"hO1L ˽Cyy6FM mgDkm) Z-{i:F&2a =8$)!=FȔ ?.T,ήL <"?x|MJpk5ߘK< `_B<I4xHR-xuC$Ź/iMf~04 kBZ9#;r,K&s=hbfw!,zL1qI_=SF/tRc?Ӑ$)Fy E_xc  j)3%Z';DNѨx@ Z;G%,kHGb-TVF wP0:vPwʐ55)Vl_R+aa'u _zvygBC:FoZSl%j u+VCLСUoQgƬd C݁k4x/+h#YF$_ c1k+#srȅ-5P:ML N:j.KVTsDDW 6o t٧J5 cy;]GnSqr0>]>E/d_@wMFEK-/ `C˰4eݪPt~"H% I7Q(r󆓸֛̅\J=ĎˌI*Jps,ihА 3VZFm֕OYnlj[-XV"$ %#P3:Qd><:n@>!@Տn4lV^,Hٝf/!{aTU1㉂>A2h !Kx gA-=ٛ2Xi.˜H~sK_ik0CF2m9|ATd8"t$(̼˚t)qxCjTkpX#!͒>SׁwAgOzT8kDW"xMm@S6& .we1qR`!4[IܮG"3k!3/Hc03 3tqvE ~v =Z^Hq)#SlTWLb ?`@i3Ys 9%|`*S<۵M.Li10̆$u9o¬j)ʬZ =U{6Ԯ<*N֞ERyz'^8Tȁ&(I lOpjnI %7=5!%w#Uc2]sbrh=+ZyUc682{ڙ "0^KIn]5'}**d#\~T|@T,fǧC{=xX'g)ud̏Dx|^qh-Ԧǁ;\ѕ0V<0X] D繝+Ѻǘ>Wc%p) ~W&VUKqi?=i1~[C&~*ヷW^7 hyin -8/V=_dg'tpF h3a҃hPl~7㯡0EJt8voAm+Cf7)Q\pdy\ @dFA|Yx X| 6ƶxSA 3e*lVX1!U+a}`U@ i]AѠH24 ړ}1r /Jh__:K#W[}Nz'@GrLL6JdVqxq TH[ ~dEN@,n/CΫ.qD3&ҳi!T{ât(3ky|Ӑ{lwج)蝲㎳C^Ы/oBY܎"'% sg0)1*Tn1˰dS4O l;(qX$ixZ:#M:χ10ݡ#`$Q3 hbp%Kڢ ڟm(m[bY];jLg yU_A(f=ӭ_voRd:zip|E[^ϡ>rvGIÏU@H’Š0fi죅EZ  iբ H?=$'u$b_SWj9Xُ kx)Jh NuGNdFU+X+2'!TѾ)S3w8h#(ީrʖ)Z +F*=M[hK.]#Џ#HOs 8ohdC}m1ӍWhB0y` RG D+QH(׬VW:LܖRt>6pﳞwTW Uݫq+FnW( tG[6pA2j\js2=)VlOoHȻ=:2O٤QRaUmDG9p U"L[LGJ2*ƽhC;9_OWdI|ZfEmF/40TsHڈ&as}UIx𻯳7a'4#L rBߞIL1҃E5kSӮ`?:PR qxbTGZQYz;f=mUF[7:6S=b#" SIÜn1VL)6 tʙ<އ@Oq7(KB_les89}t@ aeCGso^'dYAd#>Ŧlc1o>/ }}vcmE$x",jlè3~vv@i~=Vd!i/'-$[chϲ (R$n'"|lAdGV̞fMWl#7L?#0[Yٚ#?Xyjendstream endobj 136 0 obj << /Type /Font /Subtype /Type1 /Encoding 373 0 R /FirstChar 11 /LastChar 123 /Widths 374 0 R /BaseFont /TTADQL+CMTI10 /FontDescriptor 134 0 R >> endobj 134 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /TTADQL+CMTI10 /ItalicAngle -14 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/ff/fi/fl/comma/hyphen/period/slash/one/two/three/four/five/six/A/B/C/D/E/F/G/H/I/L/M/O/P/R/S/T/W/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 135 0 R >> endobj 374 0 obj [613 562 588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 307 358 307 511 0 511 511 511 511 511 511 0 0 0 0 0 0 0 0 0 0 743 704 716 755 678 653 774 743 386 0 0 627 897 0 767 678 0 729 562 716 0 0 999 0 0 0 0 0 0 0 0 0 511 460 460 511 460 307 460 511 307 307 460 256 818 562 511 511 460 422 409 332 537 460 664 464 486 409 511 ] endobj 373 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl 14/.notdef 44/comma/hyphen/period/slash 48/.notdef 49/one/two/three/four/five/six 55/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 76/L/M 78/.notdef 79/O/P 81/.notdef 82/R/S/T 85/.notdef 87/W 88/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 122 0 obj << /Length1 846 /Length2 2050 /Length3 532 /Length 2652 /Filter /FlateDecode >> stream xRiGtȰKdŞ0~t/Cc>] +DsZ3ahN K9W-DqSr~j,)> 篲Aa J6W"|#۟ g&3 ?߶Jm_^mr*5(4;o9t"F/|6~rV!Y/מL@ЫHeh`F1'ytE֝p5Ɔoՙw}"V,3]̓GZ(\|}cX+G>|ڣr *4_EZ`k#S~ 7b<&UsUUƮD Ţ١ KPo7GZc}ᾷJ }'1T#1?)q;Bz`؀\&eA 1WǶ+ l=^$(:f̊}8V>0mgśaYcsfVAxxܞH(@IH8c\a Kۇ)kkr׷U>FMݓ1ג- Yz0p=vP.RS?~HR} H;ڔqOp# /+9ع1304!5] SZVj%Iv}pI* 8! iMin`Pf;]p -!}M2[8| c֐{Oqcf{RZk6J]( Ch }#3l埧I֙,_re=qЎJ-~mv~J,xJN\QGT 1$2l} z5 X0{h/]mUFVcq(uc8ՒqHÑ=cߍQ VgݫvȏD̏:3ٲпDQdj4]K^j>2ynɀ/Wݓ7CZlRt.Vv?kKȝM'ۣђRBiQeJGj+w:T @\iɬGv '߂,a$dX}.Ys29 3X=|yd,2 aJMEی<9 3zj p9Q S _6*:"`.!*$HԹjӶ|EUhJ[`Q'TDrcA [%~c=uCn9#؞++X*iW;L&0(j*{xn2ja3=Swܮb23 }@ [Q~SJ875<8w[)֏>=Ǵ H9,Ոt T̄dl5Sy O .p؏AHwRטFe7|5C-'7R4CP|Ⱦlfኋ|&Ѽ?^ֶ<?)9YS!q2&bIR^wBCr&F knE:w ?`^g6$vԊ"O,M$,73^GLILЈNCk"oEndk׋uڜ]RScS5ogwt5*> endobj 121 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /DCOKCN+CMBXTI10 /ItalicAngle -14 /StemV 107 /XHeight 444 /FontBBox [-29 -250 1274 754] /Flags 4 /CharSet (/e/l/m/s/t/u) /FontFile 122 0 R >> endobj 376 0 obj [532 0 0 0 0 0 0 297 944 0 0 0 0 0 487 385 621 ] endobj 375 0 obj << /Type /Encoding /Differences [ 0 /.notdef 101/e 102/.notdef 108/l/m 110/.notdef 115/s/t/u 118/.notdef] >> endobj 116 0 obj << /Length1 800 /Length2 1528 /Length3 532 /Length 2114 /Filter /FlateDecode >> stream xRy8k>}/qICX0h5jidȞ2)ɱ9ʖBG-4]}y~ϣIۜ@K;;> \phuuKLِ172lAu:`~l`%fd3!€B  b ฼#p xJȗ˖0  Z$4l]& ݋AB/ [?[3{ArPkL:#̆XBX}WovKf :e@6^ONs!=Mh #ZC0G'V|`ͭ-\ܴ^Jl@}'`w,E8/$ o+fYJ}QY,0JD a* 0VF-0p˷J4+<|xWiapCoG@%".?y.0P0D&DSRY,f<.a~0.׍PLbj" ;Q ՜؇U>a] mWHgN҈C*5aP'l\ _BIl2%rwYy.qoZSO9 T&DzsmC}kj#hO^ݞ `J +qf^nOyg3<ݿOTeLm-?n w_AeL(0Gv(%(2 xfz$w9'pO?ۖ/.fy#߽d&M缌 ĪK. к0 9")%pkxM>So[bE˳?v;_/U9{$9!#~?R:| l遷)5&gM'xwG9qAj966vڷGÆC}4*~?֣os֝ Ql$*6֌iY3ۧ3n㝖-HGK=C䓛d F(}|]fxKmS鍌C sro-.Lj Ƨ9vz .u#찥!Ii *n,Osc*&y`t:*= I.? MMDXp]cKFd·TuvrFIK8igO|8_Fsz5^J,Fy'k6ԦgsgK+[Ev/.pœgi \vyϯ֠Q<Ν)ս KVՆ1fA>S]RrJi;FyC)]IϲJs"AیNksYYS.h+>KHm/)ly=V('Vڤ0*N,?ޚ)k&m빚%7ݐWEK4^ MZ|ъ]*o_;(cwVO@ ?< ƼMz lo;Z{}IY)KC ™ޝkf_y6乎P a=5U~p٪7iE,ɗ=756 '_2w`yTe;LM)?sϪrj>"}:Do~}oqGnkbQ>c`ݖ5Kc÷;e 7⍪>q&-:3nS l`C´JUuM4n!gF|H|'Kc4'19dB73F> endobj 115 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /AFBUZZ+CMMI6 /ItalicAngle -14 /StemV 85 /XHeight 431 /FontBBox [11 -250 1241 750] /Flags 4 /CharSet (/comma/k/n) /FontFile 116 0 R >> endobj 378 0 obj [380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 661 0 0 770 ] endobj 377 0 obj << /Type /Encoding /Differences [ 0 /.notdef 59/comma 60/.notdef 107/k 108/.notdef 110/n 111/.notdef] >> endobj 113 0 obj << /Length1 988 /Length2 3923 /Length3 532 /Length 4609 /Filter /FlateDecode >> stream xSWX%$X(sM:@4AHErEMET@ʹg̹3OM˿^{ۻJJTqu1h_QI1I%bbb,E`P_P TT 4 !$+$+C+@0^AX/prHDX L "+ H$`}@?/!д?#]14%C \ @ ǠAt7oY7b\4~(2/L0p3 GY5"0MD%e$d>@nP&!Wq}K#S#{?fE}@@#" 1 Itwa8HP,D+AB$` 1Kl b?*% PП/FV" M)0 o"9Ib&2P_LdwvYHWtS֒24e䁨dhT-w]|:b%M`gRtߊzDI*/7^-(k7%9?S_ ];A{8}3Y,'s}< Lgwjӷ/ Yݴ.9Ayil)(to%Q٪Ƃl#)aHu$0'} ytMuv㯝=3?F>@s*e>$%@vp=}ѳ@!_<3ҧ ^dgi×+I(835Htww#($tp#ҕ-&PtSkS#]yFeGݎq#,(ex 323܇2y XSy_%\Bмw z^ɫRpG>;uS#vZrQ䱝ɘ o G8*= 8y6.xO츆ו8i$3:6KLJO-+آSY}RL)hk@Θ7hm,g4u-E9ilz1sq~rn{hڑg)BugI.n&^u#ƛژ`:ggkZZ9r~*|Hn+ksiȡʹ)%*YSG<"DE-Qv(0n#\DWePr6M2 b>ޛa-B?ؐ\YMj,0<7T򵜀?qVQȶ̝K钘ni0(X`upΌhW}=[&ǚf&Efb:o4Eq c@uKp^yAĉ*{Vgװ`VfsShACaAʏvwZ:VhDs}m5Ɨ`eu*Imklj䨷`]mfm_jLl~v|#;d^`c}a(yi ܭ}H̓>EiI 39 ^ӛוͧ4޴ heg!WnH|h*ǔ)MҢy{9D6kC͡#K[mZvXu%jToš9_~g )ЬM(߅8=)tA/`AH:W<9aue{%>Ce:^qxunir>:yO5Og)9|DI.|R}ch+rSQ}1uiEoca$1P- Hyz yAvcg?|\vk}wj@Svrr4Gxopj,@=1R>RכM͌o: a%Kg~t1œ>DkTQ)>Yiy2g.|:QŐc$ GVtgE|xh"%|sw"ĩf3n7(M=Q;TK=9dr+1t^wjZ7ZPZR5v΢01QTaev+2mo.GH[j*n|\O#4`s#/IV}~} k?%WѩiXx:s^_<4Ag 5?hk Ӹ8[{(q~l@O)Z7ФPM;7/Q`;B3h⯑ubbx>UU A">g–\bW~tҝ7n>@AG~MؙH$*K|[ >cs5.ូ%l2y+L_ӝ +&͂)ήt[=LP뜖Pyyb#=Mֹ"Y2q2|c-7[3̘bej> endobj 112 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HRKNKZ+CMMI8 /ItalicAngle -14 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/sigma/period/comma/slash/star/M/Q/R/V/c/h/k/l/m/n) /FontFile 113 0 R >> endobj 380 0 obj [607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 295 295 0 531 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 1020 0 0 0 836 800 0 0 0 619 0 0 0 0 0 0 0 0 0 0 0 0 460 0 0 0 0 612 0 0 553 317 940 645 ] endobj 379 0 obj << /Type /Encoding /Differences [ 0 /.notdef 27/sigma 28/.notdef 58/period/comma 60/.notdef 61/slash 62/.notdef 63/star 64/.notdef 77/M 78/.notdef 81/Q/R 83/.notdef 86/V 87/.notdef 99/c 100/.notdef 104/h 105/.notdef 107/k/l/m/n 111/.notdef] >> endobj 110 0 obj << /Length1 1562 /Length2 11529 /Length3 532 /Length 12451 /Filter /FlateDecode >> stream xU\\qwh -xи;Npww9s9s5ZU<{ZDQAd:10DX"@C'  vx9x9(" ;w 3s'?I\!-@h2:3T8@ # `4E`Ǔ)_ag^r:8P& ݤ `4E`߽߰ŝ mi m,g l3U_&6*dhma,dkf 032WQ hhdl05v+5O'/LrBtsZT4uRudY&9XtY?lA&fVN;!z'' ;fb9w` r@gg237'_v 7}hEX߫ mL q-lSfof{/26ì&;?o~J@&B<% r2+޻:Z:510 w"݅z7 ozC:}ۤлzדCzr]O)*wu?лzWC&w=?gy3?s@ MB w?Ọ_c [do /D6w ] -, rdx? D5[ {g(}"DN7M-?5@aid)21G,;4#azqXGp}'OM@K`tK2S &SMF!AOEA4y*u rzPmw~/lt@Wp};*]\BL3!KA* T?؈}<僖 pt3n0_zfVy"s iLX24yUx9gs`$?dvixvHґfS$5n aXK{;mlCw0XX욒) ^(.ɣ<=߽Eu6$íРBMwL3ƌ3lD隽+zX`Ãg't(ገ.cLgv{N`{3f@'^UTNuse#"*GM˹?t/cߒ`#og2K4#Rs窶UE+Sd7'eluh+l1K Iagctxi.)\8SZ 7`[k@E41I3?bTc2wvF!eu Z6$ɮ d9dH3IQ5gd;ҟV!:GxUHCsI$ZS BCZĢ~i2e:3љVMtƴt3#R = 17s*-ZEt$;XM5}]m@2ZIx.h5 =58YdnɊ0Q+O6CdCJ+i|"M>YF .S98bZIx8:F3NiFrTOXN2e>թiRX[4;17yB(iG(d7UYf5Z$>Z#q[@z9.6 =ײ"`к`Yh2 D2䓗$XFǵa*Z2{`Gn|*ﭾ;Z 3{|̶V6PfG_sfqu `kڧ v!aܶI4}I )JH=6J;)$/A騢Mc+vhVC0. XN+ 7]!`cҾL8M|pb0{Q7Fg,Nts%tM[uwuTYf:(-&/%I M|E!TԘLDv9Z0\O݌ )aMՙGj4GMV 21 8F$Bu,dBc9-r ZҨg/Xq)y,luhax ʝo31=8t7T9uuћY |4k~k;26`sֆ{vM3x! M4lNJLӀ^Z|ϬLqc\%b e`H|bbt+pGJ/WPᛡ>o# "i~5~.j)Ce k5c'icsR!x^ 2pA$$ A =#<ڽ׈ euⓝ11n2I6? ** ۡ:Xi3nlκd}YV)Ub˞8x?Că揋KxHϞ q!,K5;1 |_ʸLc9kˤ2J'Hv6(G-HU)ÄMOXѽN4*qFx?0 C(@՟B!az-^3cSK&GrcIln[q;]k cm[Ms3PI4{Kj,9>d+/{AF|p7mtͬuqnhG`KS,M+.SQ`/y!.OLU[⳼C=b+ QkJpcծ< 3ʇC5 $jzWG6! Hmxp']P a$`rv("pR]/W+\w"~$FTW\DyWt@bgo^MLe4_9w#MxX4DԳ 3̈xzg+4to3 dW6ˉB] f.>;\1RáO7g8߶/b9dnpɐ};M]VBX\\HZ>Poe7OK +`_sqP!x. e6uedmr2]_ĐrzK񿩔1BvvZELmt+q V`'V ͫog Rn1XAkf冔j ]ͦ^K,#{#ʳMvfcʥ9xoI Y_8l3;Xe/[sI#%= FrUzx;g:/7gɅ"$R+Kp4iANnopar Ml&8{e2l;)]s"죮$4#/6̬I+mLXU8 WǹLjVïr wʺ7c P*Q՛w,5PZ2!Y[O%ODBF6~K:hF{6qEPO֗ːiQ<ʹ7HחWH53ĩti\(Ͼ(.&qggH( 38E|RfdeK:7&JhR\|%~fHj' iH}2b1tS|$ZW,9טVE{v έ$چd*(SJ i(cctA}:Ue'2ӿ2jZBX1u8,Tvb/^J݀aV+?CQsNk^|N%=@[NB _ۮT,Ux7?0+ܩZbJۍ>$ k9{w}~ V} vgt%*QH񋇖wK͘o'0{k8Kr0 ؿ򄪘j`$e$ WtLqdr 59#"hq.VC+1EW:0Y(as6!xD%q=8ma1 < FK]EԎ(s >X\zER\zvgoT/{n[Džq_Y'#]> KI@x%\dj;UlngY}b>I3!P)B4c"cN|;6<2|aਲmЮ`QH`csw9W%kv [ju,7뚳 eHo(J`79IYx"NVi-07cxuOB)&ðq _aBj'#kIQut*®Hy.ɓ,CUxk[1q:}R2Zd6֧˱Bǃl/|ҏL},!QAZakl9 -6Yj@Iy Srxd>&YnqW80N~q2Sca+9đAlCΛ#36z\+>OPS~vARoq;wqΥF؈ơ Nf鎵~#1KYOE, lU_zsM9T߻%͉#efcOD1#1J$KHӣq~33e!R|lZhϖ7+G洤)Ҵ`2iy)CÊ8v Tl#ƫ.X4MTïP05+{{r1t2ʯ$GdUGy`G0$qȬ5Lb7 C%Px_~_,asg`ωĤ;>L $\Cƹ:sB }G胟s Tnj%GzH`בq6U6bu#Zw>]}eڒ ?ԯfK)Q@*'T!)P.nI]Q;%a Cv6+1ߴ5.F("w6*| @lVɡ?# B z-܈9m>EG(5D;CD~HE[y9ByW;AԿ8/SSӫm4~@LAђ6:!:vĀ25cB2Αlא^E "vOsiobf`͉vLÔBSUoX\}j5!\.'?;ʬ9APe9gO.}s9J=)0oX.3%/rgxɅk]0aM|ޛX~C MjKtpˣ! =pXmT5(_00&yk,\[&4=3F # Is(i"Mw(狟 0qAaG$_"y"s_J|q 53S|OlwiPBكF|IFA3y> [*~;EpOA% 3OgZL)7JK1_Gԏ_6CSKP5iy|^\pY?j|Y9L6V{Mm*jV)-:o["MBx@;Th3_ڇ!zC%˽d$Tqt,2l 鶬y(\j]`۶<5T8q ݾgShTG>/߳;qa񒝸ȟDǓK*ʵ(_1u&|!Ԍ+3HhDhe2b\d!c3I`N;XV"ʼ#Q*Fe& t`k0XWSsSK'Hbv7ܥiwԳ];f뇪AVXK$ݹ`\= t ; ^;"#`s3J0-/ke PF@bLM܌W-j42N4CkqĂNN<ߌIboxlⅨDD]鰥w0+ T!?^)Ct%F|F2NPq(A$İ7,k@9]BIkY6غ෸ƾ؋Wgﲾ4l,o'mC9~_S`A@v1GgjY>TEhxae/WNSLٛe)pRb"\-~e % 8FA(%7eJm7$|Л@Z}ͩXFfz.8d| BBVd )#S83a}|.7ز3ѻ~l篜[a9li;;>8sffUHEō@IC+b֣;W1kt@z(XW');یaD#H؇ݒ?ֹ# *jHxmaHq>t 04 H_b !lP,!@Ń@*p1m{AZbQ( WsDrGjJu€ rǷCB% b6C)Xn(kzQ9F8%#ҡ4y{D )ԴLstbe>C~5H-[K`l,/%agɆ c)$!z'2&uꎎIke1[(FLGm7585bIF*.=RV  YDy2~Gg?6:@)Dv>޵Ź-h5 [hR&mzLb'ƊH~KHZ'˷T^~82qD @; +72ʨrANiPz)#P ~ԩnA|r x"Tsz4X\Ƶx@E f8'ў#_XgFHN"V:<\,b3kƃy%U֮(R iPv5 8N1˲\(Un6r,xV`WDZ_Z~HZPxBLjq6yIi6BȘw=ꝫ*lC͋[P;r,a8׊|yH7>JzQ [duf t_ֲӊF/pԥM'#r^#Xط.cViE4'ܖJJ TYӐa$Z~?AQR sz6ʀurPBSd朊R%i+_H]Jԭ_+ YǹEߜĉi=;~sjc^aع N8taE5s%iՍekڷ)P U[M`ڻ kRz h<> endobj 109 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FMAXGN+CMMI10 /ItalicAngle -14 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/alpha/delta/theta/lambda/sigma/tau/chi/psi/period/comma/less/slash/greater/A/B/C/D/E/F/H/J/K/L/M/N/O/P/Q/R/T/U/V/W/X/Z/a/b/c/d/g/h/j/k/l/m/n/o/p/q/r/t/v/x) /FontFile 110 0 R >> endobj 382 0 obj [640 0 0 444 0 0 0 469 0 0 583 0 0 0 0 0 571 437 0 0 626 651 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 278 778 500 778 0 0 750 759 715 828 738 643 0 831 0 555 849 681 970 803 763 642 791 759 0 584 683 583 944 828 0 683 0 0 0 0 0 0 529 429 433 520 0 0 477 576 0 412 521 298 878 600 485 503 446 451 0 361 0 485 0 572 ] endobj 381 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/alpha 12/.notdef 14/delta 15/.notdef 18/theta 19/.notdef 21/lambda 22/.notdef 27/sigma/tau 29/.notdef 31/chi/psi 33/.notdef 58/period/comma/less/slash/greater 63/.notdef 65/A/B/C/D/E/F 71/.notdef 72/H 73/.notdef 74/J/K/L/M/N/O/P/Q/R 83/.notdef 84/T/U/V/W/X 89/.notdef 90/Z 91/.notdef 97/a/b/c/d 101/.notdef 103/g/h 105/.notdef 106/j/k/l/m/n/o/p/q/r 115/.notdef 116/t 117/.notdef 118/v 119/.notdef 120/x 121/.notdef] >> endobj 99 0 obj << /Length1 1694 /Length2 11161 /Length3 532 /Length 12130 /Filter /FlateDecode >> stream xU\] H]Ӹhpw =[pB~ޙy9}ZUkdJ¦@ {;=33@T^D $შdio'fY@c@' l t41,` #%3@ tr2 23L-M@c"?6uqG@'g)l&Ml<@3DF{p5 ?zndki. @d?S5aNXۙLtt*YL,fF6Łvq2(&!',%?gJFv 5/f8Yte'O373s<L/K;S;v`g`f@3g4W?F6&he avO 'Oho70 W?.]XWߢ\F{?889]5!}?C`A?^?.$r) ok*!pTb0!濉}6v22۸YgF?6oMl+&p%ӿ\ 3Ͽ\/////{ lB+?>v!ؕ_v_B+/`W.!ؕ_vr <wB n'= ؀˲8{%xKO'x5qq`пnv_lf @w ʢ oUJSHxL9,-ysB}\'RrV-֮;\0 s@4yLBB^  njf >T8%XEsEBݭ3^[h!xQ@2υq<yN8{`OHtPz vdoJ'ZhA؆I{#t8v7 ƾ; yt6﷘{W_%DýA[xVڮ8*xd>K/Q2DRRv _*L  [|`I e Ca$N3\ƏDnNl)6)̂-ܶ , z<`;QQn#Bۆ׈D<[ n "=C+HY'nL11ЭJp> UMl9=w WLg>]TftoNihp#bzɤs -;O_1PFaJ|- Ж$M30y^0"ס{уQWã9hTHpqeAVuzծ.@o@H7l˘,=|kJ] ~`5H% kr5򩆴UQt EEcpDIk`}R~+ Z9_0! LC6@[(dm;b.1x-jڿGHi$ 6*27fb}.Ы@`_XwipfIBP^w@Jcϗ{uMee5@ǩY |EwkJw9>Vᄰ=CWJL͉Eީ^'>ವ[;fl@$*4T̩<ɶ5U:1"A>}4wP{4Oru{,E>qڤ&hTbҀR=Ɋ~S WsVV<#(Kv0z&1 7%?l\*Bkw&eĈ|**Qor9cfy?'_绚y=ϊ~h{~QK0ޟH%^X^NJ\蚉QbګT]P'jl-9!7}GKG,e0^`1FʈRa!mV5T^ߙ+_{y _ ]5Rh'WG ɰ݌FBu%w4@scϽ2jPP(*jA ^8TE@ bfϩdg:X  B_ۘr c=`2SjKY/ -k.,,2@s&~lmՒygvûeNzDgҚ hʪ( 1ZBK`o? aĢgvxj7]D 9BpT?qMy7g>&>uߣ`t\qMr3pՖ;Vڠ~`CD"dn6O$FF2ϼOyzNy)98=o"0,Wt";ö#(l@0 PucX}?v i\8QBu4567`19%TG"eQ'#!a) :m>l ` d|QVs(܎r΀~t2]YU"w獅Ju yo{xeNٚϏAQxڭ YݲWRWF-wʛ0U jXVz 4ZSZ TfGbG$megq8Zרqx=}J%(Nc5c~Ţo`B\HVkx].S>uLwة7Q>kV'-.b*,mDƿԴy!ņczGbc:16tsƉeVE6ZT|8Y?*rseM,?(^""up:PNZP離U꺋5c{\ 6t@ BbXdu~SIJw~<dtLj['*VT?w~Z#KhLPE[8Lqƫ˕:N%-U5 'b]B!6h0TyOk-9؝%bO'X?ejf NŦ4"Vظ$HvʺAvƶΏAhi}W0Abqh62}0ke3d凘[qYM,ܪ~1ųk!w9~!bsWnOI4 5}e+ RL Z@<9Ci1Г^gY AÚ@tX8- \7mY DUyVS7eM ,Lj`v-pۮ"^ C4pi_x g},FANΈ²%wؾEP=CͶDswHZiSBpK%3L(&VWy0ƻzw>1N=PɻO;A(s9cٌmAGƯչZ]kU.ҖH^~v߳.\+5-o׭⋷9m*rԢh-?+Uul<ǻ5!G =U:)=j:SMgkoGywq-0˵Cp^P_`sm/ص!&MH[4M'OLs,1깂=܃N}^U<9dHY7=|MZТǩ-/2Cp~-㥩qz'̳R5X}nﺚn%-@BNekzDPHlBywocX70Up lsH6?"W<_A/a&䈳G )ONw~?f/F€\oxVOsahqCS/,K,֣3=G}*>S<)S *E>99 )5[!1җՂ/niys@4 FmnkfMiUK0F~O[\!{ekrݏ3wSJs=f. x-3HܣYo.X%&lK.IETu5{эy `*^«&%ly[Buߺr؅Ѡ/ Ȟ[5jqo=ֶW1 5lt4eKvWF,9HB5tmOpPHIP>r75k-fZ)E\ړqo=xd{|fPR@zA~]˻0(ؓ:MUp!%IpTD"%1k=;l%ORDfuG^SZkJut[J?0%&wK13絝hClYw{ ә;ÝɱaI\(Dsx`-֏ɼOk$UǎTK :4 x,|q0# <ɅK"PvD]]鞫umQ7#Q6+տ4!OadAh4l.qWhNUڅ{@@ls1<]aa ?̳gB+x))'DupwBd y$8@$[f0"fHs*f c T(5sJ`ʗQǘէ +d+$W"S)QIwO5J wÂ,UW;ϝwoN֩HHF Y] k.!rrW*I:|=Ya(82{ʾu537Ku?{d TT{l!$ҽ}K) * j2pJ[CD%&ESI:A*rpE)gdƇ;0ecV}o]&Nw:qg)L"&U}r%ZQD*jӥ`Q+, bUO,_F41?FC|5"!Zes;W.͗ﻪ`cFDa^j)KV < Dece !ۮmV' ȝ:8:eF͋,:^/NOWFnӄ/h?'3PBP" wQ4rMK@59~V폰%X"VCT~Dt; z5,{ ZTie襟W3nB_Oq ?Re!ћE] Zxì]0(L~r2*Ym%e=Orz 0u *"~2 ʑX0H8%.At{P+1Q*w4i=r9+N< ]%53Yh1+IYf1 aq KZҋ^">Ō!뀥ˏH' n.A- u7( ӊ/o7f4zOemPWyl<{zĤQvj [0$3CS;o`)[/\pkV^t8S2R&!s53~6)h;zխӗ ף2ԩ%9(e/H^X g5*Z%uBzZ.ǠH$O{`Gga~ME8ĉ)fU*ѬT7sq/ cˡ|lbHכOއ6.Ol>L.HsPnsII38h@6*KQ(iߺ}ygdTߑMt+69sMz6ګHB>F,5DiR*')^u"hMErJf}Ju&REܜLo5v W_oEeUK Sb?JuaGD^k8йH`C*u"Ng:JxGI?KW$`&dI4';ײ!D8ĪI"m!d#RqbJ#J1YP(D;ZHߖ_Tb~ʕ?Aq?~k{w+PE拾^%oLa-˭S;;nԶ\ITn04#t9iǴr #|8fp7 =}U+cC)V';QrG$a Pc߼\sД ^"+ܸỉ"l(svH;x5=Q!,yIV8 3w,bd¾r“#61)4e-rOBKjڂ%s*4 df:~0_>]PFlpq/K7)AcLݝ6 Wd¾,kcQġ+nu1׿2ңs$ BTp ּQ-h|)_V<}:g sk"dR&[H+;IX";N9iKiw"LT;NO5:qnq*Q{6 IN^PlCSbZĄ5Ix3QT K?([-lP?RnjtLX:tr "'"jGUAjGԔ4S!XBwT.~FHj jeD_9Å%}**%B[IùF-an 8Ae'B&"Dp6AmF6x09Fg-"WaIyx(ܑM[:,r."uo9],ҍ=ttp$x,4xu"Y1>|*"۶<ZA (iJ-N0qpV6an 4^J$^9貜ŽuUfXo vYkJ&^Uދ=;JJ[0VG4 kvmmÌ}@;',BoA8Z1Ǻoh sWMGyoFaB4M燸W+ˡ]ɾ7Č.0*j]?>&xOxtBkgp~aYz=5%I+YЋ>e쵄vњ3ma@QO=!*i!i]?j[,p%h&8'&tDE3,A W@&rn~1l\ͩ_ hSߒyzb8/lt*mc%LYbrANSгzNձg3z9is\]Ģhc?)Mt{6R, vl#ͼX: sTJ3j&!>yvN_-`EM_|%NI~%C N @͓g5=N͜RY]q6+}Ug? oQhMfeoEpNGID$ /:#*Ք6ؚY4>|EHwUl99XkL-mSwM~@38qK"[u|'"s,W7;CdZr㈏sϭ7x6ZQΞÕBle1fއPCt=P`(sN\{ ,Z9D%gJF1d΄pM܌r$ GyX0 DŷRisS;mc +!(Z H Wr S$>Jpc)!$g~N#B{(C{(g}T戢G@}b`q9NM 8 W'۟p:(fQ{i>ҏ: AGz;&e5\%ɼ M:QU,S4إT: ߃Pxw'G/WO!㙩Er{] Y6(R׮³*~wtrb *T83 [kic)1Y&bXVSEd:>:CT)#r ue \(`LFг9w#I8Mf73I߱%y-/|=EC0*[~[G€S6";~ ㏽iEboO0~;A2~&`h}D˖wkFR@"a&NQ;/PuHDŽꓦ[*ǒ6a>a\.9M K@Ң2h2B(խps"%Te ءS-VE^Ľ l7l^r6L'0DZN6g^d7F> *uFZ㋆"wM Eb>v_}6墋~^'І8d$͉x2;oU#ՏxV,_JV'S/9se\A9V΋|eIion= ITydyd9Ub]5q^>,H!e&:zw֠ɌKѴ2&0/w#1= IW4Q"S&-@*CntC}lU&[U0z*BD6|Tmg' T3/\UO-J?[e=Kza X2Gԃq4GkIfw;%K4:ިdsq,F;$d&(~F4NR}Y֚jZk~<:N[X;r[;{bp؛I*XpQO]g5>9pjͻs#,@iz% Lq&4c!<ѯߑ;=u~B5'29f!y] >wig?nj7JԔФnq\)W:Wݙ- JN"c~g^E>B*wL_Q'ֹ=8l\ri#g7 j&M]UI׍(=! $B$P^ޚWw ud9;MM5BʅF,DuҮA$Gtz4sE6),J;y*|)Vϑ3'8ӘXO|ÿdCڻeڴ8pڭN#RnpQm,~ @rN6~mUh?MF闼o uv؏WY8~>޼9 O}+ik.|.3No(q>#'Bfw`]WͰnO4hCFFI1׈'"s%$vŋtR̝#͌h &v˙L7٩򰠸;⿮MӔocrh=n~Z3n,:Nd>RmϠmw0O1Q 낏E1//$*.~X`0+i ~1v zA7g~4.5Sk.`SăL`9s9~d-ӑ{2ℼCItY9"I ^ =9#AeҪU{J#Q?#ʧB=5[NTR44ط:r+SzbT u> endobj 98 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /DFLAHH+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/ff/fi/parenleft/parenright/hyphen/period/slash/one/two/three/four/five/nine/colon/question/A/B/C/D/E/F/I/L/M/N/O/P/R/S/T/U/W/Z/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 99 0 R >> endobj 384 0 obj [671 639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 383 319 575 0 575 575 575 575 575 0 0 0 575 319 0 0 0 0 543 0 869 818 831 882 756 724 0 0 436 0 0 692 1092 900 864 786 0 863 639 800 885 0 1189 0 0 703 319 0 319 0 0 0 559 639 511 639 527 351 575 639 319 351 607 319 958 639 575 639 607 474 454 447 639 607 831 607 607 ] endobj 383 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi 13/.notdef 40/parenleft/parenright 42/.notdef 45/hyphen/period/slash 48/.notdef 49/one/two/three/four/five 54/.notdef 57/nine/colon 59/.notdef 63/question 64/.notdef 65/A/B/C/D/E/F 71/.notdef 73/I 74/.notdef 76/L/M/N/O/P 81/.notdef 82/R/S/T/U 86/.notdef 87/W 88/.notdef 90/Z/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 94 0 obj << /Length1 1352 /Length2 6868 /Length3 532 /Length 7692 /Filter /FlateDecode >> stream xg8D$({61:{ FD/;тBE3Mt3egZ<0irHa Ȫy@Nn\FFY8œ@(, Hx@^>~>\F,EXdYJH;BP+@8jX0+( vpu+@ #!`N\ Z!._FN0`7_BB() JRÜ<`5. 2!4@{Juu @%'s6JW+[5wORQ6gt_37zL9D߿ uB-^c/[ÇU*˒khݯ\#[|\S'oאk^TꞫ΂&5.|)J2y߻"5GY)#X@P!A?,N8ե(/lޝ8 ?07w9go< /H?2+\vQO3-48FgL0=G9ϖOd_hb?+VP$F6}`k08|7VU6Ktgf0Od"``eSU )OqHa"ܺj(B/32A=.r/Ŗ-pI";5P/hsi?CoӺRXyE }AO`U &VAd:]ϴTuG|Axw~D&F,,ވ?Le=!Yز̠XeLZYT/1es3=Yqƻ5ޟ} x=; EAfFGҲK 38l<}o _ e-n™K>%>,,t=~l|'cFAG7^.@{N\Wvf|/n4mVspm g1G}"Td[y!q/_Y]OE7Kc+xY솋G nn寰AdE≨7"x`hjNy~Y7w}d+'e Fs?;|ؘ4l\8QΉ_#?+`mZ.&;>1fU!p¿ߒqӍsֿ-|ܯ5BY=ڌ'In# A1@["2b+m uGhN6R)r:*n$y$F^-P B2aaچWFRCJ CXŒ>#ck8c)[ܐnrdڂ.٫ =~_ < IIZ/=ךUl#whh/V %--dYk =eJ{)QW㏓EMix{A{se5k}w&%I *4.0oƳ?=tzm}bFͿB۴is!OHVLln%5C;}}ac38ԥe&E&z XbvDَҚ B{5z2=CCBOtS~wk\V p0oM]\#bV3+y7G3qѐ}35<[ipWy}xG"2HJa]ksG?]ȟ|UxQ{D8C[O!~iM6!b#{UP( HNoTFo2فbyxmtRenTuxuE  ZIk~j@Shfrbz6A[xE,b֨IU)/Șr>pk\Q[ϣU%E(Za7^FCN#ErQ[0] x(+n~q'SoݝW-o0kFb[@\y߸GLX qzhb|UN25mJQnVK8@rB7ؚ$y|ha]beTHݸs!+@t!kJ,qPZ*&7E{[)y<=m[W|pyE*!0oo^; u)7r0_@j J2Qi5hG\ⶼHuT"P&n74ãYdM/ ^~vu95:m>n׮='\IbV_PDiY"̴ItVX%Cr\'} HI#\?}/<X8~rmr,' :^a4<)I!Bѫ2iz]R>UT u` z|m(w tIRL?|?> ӞM}tU3=ccKr<Ӡe"SRs͆:T{ՅUwE-Z"H>ͷݙCH`!;\\LL3Ze|f'M:f0C׸p~I?U;RR1k`h3JP3f7&^86Ke$ƚ}f٢X^~8OϦD7P )TYcUbRuwq 0e b$Cl[K=OWƗF1M8ͪ/Jd |HX"Q}2J lzmW'<EO+R2r[b;2Ǹk Õ.\BO3r~㻤#A2`Q=J)L(vP"&4VX Q 76:: mۚX1 Dk(xR]V\("XQ]cŁ,^Жd7wa<2{ :4.'_{l}3͸S#ȦgiCw4mymV2H(pX j/δ=hܿMV؍+\  @:YwQ6W:~=?(Ü{Tjk*ҮzVsUIcP[dLy^ދd=S q܀svG+0+4QypF\NFY^v )i2=(ǎ׀GrPM[~A. `8#st`I/)$}%Mة9gsW;(pv[2*m'5I$;Ǚd̡>8>0uuf1ºDh[r T^J h3w7bF|uX(Z1x? [wDjAD? ']J7^Fy>tݜ~uHn'0LJWh*@pW r`?V̜k!uqP9}} 7ޠx:w19 :#>:i8 V# ͓tg5~>gaջ³^4 Do۽khYzJY W~SpηԸ,#-ܲh ^u/; [geH!7Ses2UWag0֓5/㥞u>T)ee5Q^g`a^ F_l򼔯:&X#6AcEw̗Orƭbs`J)k?IK7HxL9DRlqf*ܣ 1(HŖ=i Woy叓Rw[_s.4qޕ T&0鎂9明^`agYh[{C9:HOj~?*WRo;NH-$n E$;=%VUKǩS@*`;->|EEzE֨Ů=KZP,z@pLMYgM0)}7ƌ_=x,S`Yɏʘ[}駊t1\;5 \m+'/|cv-3oI^ӵ ¥} ݯ;P/_ "y`q+scu)B ÙJeN~6fK(~08HVg'!nyK]ՙe(XIĀXMH ?^}2o\m UFGj%3j~wL3! qYX)A*f?-hVnƙ 7(-zvVvTTv&Zuѧ+-MrN);bX[~qGҙٚԐ6$/#\ zYv)S~%}5(Aqe> ᮠ 5iIHrS jr:8MO "Z [l$&Lijj &\J ƨ Az,_ȝҀ oq ؜quAf6WaFd5^$mGryj*)P\f:sӧx:׊^oZ$SKc!q[yy8t~Q-:~캀5FYPkk^&]i[$cl~b"8lp`4k/憩pWP1G~x:g[//UK\>1q ,a`Njm 뗨OC\ 6$aG;.e_GĵRFMhqESV/kP͡y/ ةyI[ ,}*C%J#,&##WwpZQaNÆuQH!u]S2L|tfU2><9XXm)vvI}T2YcÈq<-:i#Ț%1|ʥX!8'U`'^'a'YͤH>a\XvL~36!7? $lr͝W?Or#nĈendstream endobj 95 0 obj << /Type /Font /Subtype /Type1 /Encoding 385 0 R /FirstChar 45 /LastChar 121 /Widths 386 0 R /BaseFont /MBKQWE+CMBX12 /FontDescriptor 93 0 R >> endobj 93 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /MBKQWE+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/hyphen/period/one/two/three/four/five/colon/A/C/D/I/M/N/O/R/S/T/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 94 0 R >> endobj 386 0 obj [375 313 0 0 563 563 563 563 563 0 0 0 0 313 0 0 0 0 0 0 850 0 813 862 0 0 0 0 419 0 0 0 1067 880 845 0 0 839 625 782 0 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 0 459 444 438 625 594 813 0 594 ] endobj 385 0 obj << /Type /Encoding /Differences [ 0 /.notdef 45/hyphen/period 47/.notdef 49/one/two/three/four/five 54/.notdef 58/colon 59/.notdef 65/A 66/.notdef 67/C/D 69/.notdef 73/I 74/.notdef 77/M/N/O 80/.notdef 82/R/S/T 85/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w 120/.notdef 121/y 122/.notdef] >> endobj 89 0 obj << /Length1 1769 /Length2 10714 /Length3 532 /Length 11723 /Filter /FlateDecode >> stream xU\ݶNq^]kqwww(8www-|y{{\Irg9xrbEz!S{c =33@DNU $ GN.4r5rYBN3 Gwt4pPPӉ d t41XmA9Ll*&@O @e3 h 04q-q3p;lMn@'g_'h(o_+ZxW{[W@dj-'4t߭R.F6&Bv6@ӿC@SEK +_avܿ %dehkSըhdi3a8Yzt@ z7UL0rr2v@$`g/ ee0:ڻMmiW `2Wߛ0(џ;h' {{?!Nş d' `A^.YfnuUvU;?4FhTB/@"TBC c?"@Y( 4N QUh3ThjT]k!Pu?@.NF&@q:Yt nP!?*dbfU2 ٩4oT//M//9Y )deA7/Y +_r AV!/YA_ AV^!鿗~d {xӳYX̠C?Y.(&21q+jz(G0o6=9@ ʢ oUZsh4- =sA 624OUH_#;|&8Ƨ/fzi^ey8!7ߜ+nU$k<+PU=N ֫؛)iROJX᎒1* ;oW"7G@)+Lz ]QǍh=\XCi7#qVMoFM|JjJ[]'.1ѐ,ingUPg幅\B|vWk@XniMJ:Ж9B;C3MQ-V4Ҳ$Ks9͙FJ6,*=:lsY'Dj%PHgar!s^VIJLוm sִ%$V3x/e]ua(%ADzW@z4tͷyo^zpLS=b tE΃/,̟`FŚ=;bI|(oΒîzL =dNvb饷EZSRraZ"fm[X^?(&m@?1j~߽3 T~/ڲU*Ą˃9R->='ijTBr te t&uKcI"ʯVg9cLFg>+ǘYQm(Imy$w|vg'$?}v/aLWJZ)M|5`~X}fB9]rk X*tnhᐮ U]AW+p{`Wa?rTz4ȭUL@Ws*zh$a !bjw}&Ó Ζ't*vI'_Bh*,\Mف677 9K#wG(e-~ЇM w"3eDncMwnuwrԕZ{,WXQhͲ:i1-@D|Х;KFz/o&zJE|"u.۩{}K.KZ[~xUg qafYLS)@-Vt~p/*dq9 L:R$s  S(+pgʃy5Iq%;Z(8w,цɒ՞(3Yyǚ7›];.*s*=_YZ\1X*u_;$Ni*+|$!~]hS쓝n& qZݥsSb'{<P@ "([eCLs fhچF51Pi Qϳu+ Ԭ>sPNƒ9Po?\_W| qZ}jn* "/IxmBSFzZ&RP.tOMWB^ldiPw0 ڤBlJdzc4tnBFX5 cp1Z+Lx'\5;-:җ^dPzf#YoS5@ߋ# mA#o!BY_nb]De˂1!6 d\2QDwkJ7} ѽHRQ|UW^ju0_>GoS 9=3'bޝy~_,dwC(S6T4R"xD֮}1 ο_(w38dPCƉ8Ι3{8IH\a=3_puE]ݵ ' kyZ2" , ?*5ǹ eF56+De0AU.!.Q.?]4db3,R3~OEo6وXK䈿0z<ޖ4xӜi-g EFCx??Թ5.Q+xeaֶceuy}#_2܅qgw=]YGFd]HX=Pm3;Ghη՗*\&T!FXQ T1w\rbS VotB-3P~1լiҧ7&No[=3t/r~N"tz>[IUD"1a,r2 cc "'wi9f\D@$\l٧#HJ;[5F^~r-MkL'4[&P28ksH1u}X맾v<JI a&'A#_M)Ơ-U3~e2(GwĘN&>%>1qbDN^WD,y6^x4b&tMXwkHf䡘Y7l2= V`:UɐAU 6M6M'js' ✀Y(.Njb'L~w"0?w:>~f)|yΰA7F+.,Gϓmf< i4wO-ajxΦ+j?fagd(6ViW^ ~pRq/H=|}d%ӇuRoos9$O+%c=8c~%1>yCX(i8_uz>7Z>IwirfT{-ʯk (emSsum]|C&Bi;&;3*hv̓ ʮQtSb[`w˻͹[D,xC5|rBF 1|!f^"ը~lXml4VM|pw1w !dq&\;ZȑF(1,,C( pr,!uN֧d ʋ.uU W<SHc\9(jv 3B4\P) z%^`n!- Jt]t{(Ȑgط+_egʎqw2 WwT8+: cu:&. & {W#7C|~8=},Ǘ϶B'WSEɼJegR]@=320AȌ坪VgF^x"5;n^9- &@6MT n4ZꔪB@`/KJj͏Qcu0nkYJ!n筜 $kH޿ǒl𝷷5 NL l#qw5 -~ٜ77FxB`{q"YxzJ^1|)Gg[D8R 2Z,w8)MWLp'Pڔ0޸:azBqRrw<  `KNafL!E7cڣ.*im<UC?mfWmcRx4Up6(oˏR˰+p#D"BLRmNMD8-1A2Ҧ 1i@*M>ͽ-M?gk uJ\nmm\Zᴛi4=8Ee˙,?y0<&.U&|Y ][1fPлW/gs{=N[_l^.H7=2lS='ue0.9*|De+3/b[9Wh+$rrǼ/G3pk7|纍7eQ+ZC]NQM#~ ,9R%P)DcF#i/5DZGgfEk_FwJUd#d7SGүLK,1<0̓ExI`m9gꗑ/13}g; *zҫB]#^GkH&m"3f5yJ5Fu6utT s0njR_31?R+j2  MWbn5 @&~RD FP=ml#L :Tb26oߦM JU.<ō:l&VTwFmrIlsjzu]; IB/vWKD9l98<\*LN{G死cDZY E!,Wo Rt&bxF5 ">Qtl](>6j`Nsгi0 \/Roǡ s\\s}a oy^+`P9dR(/"1&5ҦXL;+黲%IyZWMmmו(ӚhZU|z`޵ zzdխ$ ji\䠈iO'BKN/{HaGQ2 JXͶ>.@5MFUӣ_YW+_-6bf=$^d].Wh`1?.u8/H`xt F\\x'pvqs`CXF@P@ h^z QY]nB;n'Ey1$/4j&2< X,H7kaa3n {\u{h7h M&$rs|2@!:6lJy*w-0"}݃вG{/ x'h_8g"?z^l^@ cURkaa&9B0 o6ei+JIU'poz$+QχE>B iOOS-DÇ)|0xvZ,R1щ=GPJX|ysyp2ַJwDI}׶\Cݢؠ?Q ?- 6niFYL +^^H;|Y,7ԙ-騏l|tZS|#?DGCWʔƸN2Wix&Ht"n:t.m.淧&)MGtUGJo.Cɢ1d")>*{ X2%X36xܧOus=XIcۏm%=h\Nıh.:ZZ.a=w]G)0XXq f7C^^r(0L0>ܡ=>~^G!WU /MC:j!:U RQ 9| :󕞘Jd]1Q}t:AJ0:FɮqyGqhM'ԡ^Ǧw6"} QyTl)9n2Z#s$E͇ Y:V7[^(8- bq}) ,#'nG-LYc![lKRW%8nrֲ=G3C瘶^/{_SUNhv^ 3JbY5;ӟ{BHgjߙs<3gd]"Y z_GTjJ7-;TEƃ̈m>^RCXčb |ȧF`WfDH@3(6~܎ .8?鑍/fIۚ|\yZ}E2aݖ)gJSMcmWUOv_; (B=/O|⩤ 0&I?j_5,Z%Ep7tsUq=Fl(yGwt7Ǭjbz4zM/Lc? :8ܖjҽ'] ̿?}BmAG1[9ݧ tUTo9*On*%n'V⦄1tsXs448bC.˰^r͹!=FєVXumoqo5@Ćv,6{Va~񝈪&ݍN'w1Qae^US\\KdF^XÎ\:/.YMP&B.fT9d/5ٔЏuˉgDw%v}d'7 Wg$z9Mmk0Fݼ(+bz᎚vۢ"@^QU@8A%u^V&fnֶ%*Si8I! ÓZo& DCL$깫:Ob[̘g;prW l␩bd-3}? 85cy ^ۭۦGFs qrQ Bʉvks22 jqMiuXwspח=ćF}X{~?]/|gg+(B:eRLQmE<~JӡCOv{/Bˋ_ö.GO QើfSvffKs3JTG9:Kz.a2epe&Y1O3J}r@hDL4xi7vb㖒 %=Cb XF޵HfS\Q@?RQ33Qui-fli&I7myA{5AǮ 6%_ Ex VtTl"q>VVg* 9ӫ$9E1h:әy<ķ=!_c;Ŀɝ̇}x):N!lUd @I|U%),QU*:?R{}1k4_H _LtY%Gf `Rf Y==U+MCyK5r`y(w/iI om9^Equ_O'*ܮxN#bLH70KF2ȏ2-Lfiދ+|qߝP{K6n5p˱> f')dw\^;'c0' ~Z\c>s+QDiTvVU;]q]zŃKBZe[rk򽎝=)65_Vll1j/Ճ5̆& *gN[kJ)tIB\Lֽ;Z&MuSF9K\g 7K{l=[G?T֎amw[ ]Ektu72"h ^ 71H L[&Ĥ6@#ďx.${rAYuuC¹z5 ֕fuٔ(Ԏ~AkZ2 eX{,Me#QB։=Jd<O(+OwD#Mt!ۭ>w#X^sN1{,}}RKSl9~.JQ@~6;hl.}@w>?! `g |wؿ%}!b/_`(F1%Jw<{;S/~< 3[Ԅz5K.XLns&|h[Jk#4H09&S슚|ˠN$0l*Eoͽa~\CV/\V_W8Zm&?"% 2 UƇ}_!P-CUmR66r;j[jXE8%Urc6iI 1QĬ""K1aUYBc!Z:-q::xoNxDɥhG]ƃ4CpSvDuua 3^FGM4N) J˩nTD_(05Zfw82|So^L^|ðw{zy] l{סּȴ{ ɲ*RoxGS{rVCz|I8}䕐;yc5:F($LꂼA֗Xt$YYx$)5aңח%,j;AdF- Lyf<;8.ނX)I{8yW *)cy" .>v_=)"T ]T-(y u')Wf1pɌAG[ @ֱPB/ |BSh>߂ ?4~=sN~arꊅ ;%sr((ɦwšpVԉ0rrmuS6Lf8!=I >t>FZYFDhNAn$!Du힫<$61dRc@˛YD-rFV|[%d[{6Ckonn8VAٌbqb=g84͸{hMՎ1)Z"s«w3c/ DЃ}$}CG .P( :? =Mf3*6]b| _Ͻb"  P+endstream endobj 90 0 obj << /Type /Font /Subtype /Type1 /Encoding 387 0 R /FirstChar 34 /LastChar 126 /Widths 388 0 R /BaseFont /GOYOLK+CMTT10 /FontDescriptor 88 0 R >> endobj 88 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /GOYOLK+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quotedbl/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/five/seven/colon/equal/question/A/B/C/D/E/F/L/M/N/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/asciitilde) /FontFile 89 0 R >> endobj 388 0 obj [525 0 0 0 0 0 525 525 0 0 525 525 525 525 525 525 525 0 0 525 0 525 0 0 525 0 0 525 0 525 0 525 525 525 525 525 525 0 0 0 0 0 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 0 525 ] endobj 387 0 obj << /Type /Encoding /Differences [ 0 /.notdef 34/quotedbl 35/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two 51/.notdef 53/five 54/.notdef 55/seven 56/.notdef 58/colon 59/.notdef 61/equal 62/.notdef 63/question 64/.notdef 65/A/B/C/D/E/F 71/.notdef 76/L/M/N 79/.notdef 80/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft 92/.notdef 93/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef 126/asciitilde 127/.notdef] >> endobj 85 0 obj << /Length1 2127 /Length2 15306 /Length3 532 /Length 16477 /Filter /FlateDecode >> stream xeTͶ݂qwwwww .ݝ +Yyί30z5y߳jV=+* %lyrJLf&&rrQ{#xxY6nf&*Q&qf9}GS(%@ (@ w1 03 @3k,I[8+ld?C@{)տlR@&l-F@cFy [;?YkX'X:9r6F@{=U_FfNV{TQP`+H`oWhmMV_e4>מkLQQY/fàձ7s|e-/3h"i/-qkC#3k ;@^ = bx0̬+0##hM6l(QJFE#' edg_àd-w hojG@ 98 ,= `qD@Q}F;93HVhm 4+5TßȘ_`4u5q/f6̰l;X;Lm@~m,;Ȩ˟qvEGS{_3 '?6 67: jFjmjk{عIceQAn !Ɉ!7qBT$h ~?ғC =?ғC =HOHAWUC u?RWC =? T?ztv]cPi\24 ٻ A&!lӿT_' T_dLu]0\YuՀ\Y W6!ȕ_re\_r\9 W!ȕ_7ȕ_r\ W "bA:Πv3U윀bkD AW ac3 t",4y(1iD X,٬xHr}!ˤĥ]lۡa{+uہ-CO3vpD_C?T`׉z:7frpjH[Q+ڕl%CmLxЮ]t8a<&}{A7ĪKt$xVZZ>0R-0QB)Idrם=%*|IڡAJΡYJkZyW|Meo8S@#w~Lٶ'jc^7j-hbVsRl(x$NB^f{hO"/ C|'ٍD2JDBW;"n ߴ"^fT <16m 7J+7 {%NKc e##y1Vȋ`8;7ФUvԌy*sO<[|b[j9 R=i:Qpȟʞ#Wqf:P_t~Nf <.D6=,~&YH=+o2EGML> %鵠I(&/'ˮe6I4ճ{x"Y:z"!uBZ遉 @u '.0V\il?r0rye +Q Rle8/SŹ(-ASqY?썂d$wC(w㴇SgbBV`i, ܈#Fi "[6t4( 9KhܳKؙd+(۸<,2F:Oc$*Λthya.+f0l` mvr,>3vUsKU69ؘd3(b^^qQi] &2*/ňFمFZ厖m4z +fNQey&xW-12nJoo#%}Hhe)W yjɻ?8en=+tl{Ä.mM SND'"б/O +SD352U= YYL(AZНيMY{8攪cTA)38X'&76[+>~|f(|_N&xqWN{%@7A _O/i ,343 I.-t.^jQeCsR#QFc=F1ݐn:>)QއH\Eníe*upߏ9uWK4&~H#xmaNل6kaD;Y0Y,*g:?mDaɌE (BhϦyEF~\+vNׇ#r_&cjTT*#kQ Nږ+cv/%@Ed[V - 0i&pIT*,x9ɠ?/VN. ;1ptcw٣XT e3g+ C s~o 6"7ENrkY/neܰwLElT3oq=;Ҧc"5&lTvI 3l4=.|+ e´l!ɘpJ}8uBR)O10pt![dfH7} $w;#[ioܹ ̹u!3ckSk,/Po6p#RrsENl pX!X[ʪNL)˗LVzrH>z. g9"xm"Wآ:Hqqɝ]j+Ig|hM&%*U b ) ڎESPRM!H39muxew.!Ec^CF|ٓHL}RY5}ëGcU"$ Sսxr>)2!,YQ&2Lj(" E.0a{i`jW20_?T$NZcV `7MKLLKWÅ-,YVsKY9bheusv*'FChqV! 7knv8KmE~}rzo!^!m9f --dЯg1]^`O\y- ai@'{WpbP(jR.lDWcT*;j乢E\Ioq;"2?bBB'bfB_ޟsAYbD ΙQ-_kG!#WieI^LJ1f)M_ D2͵YtSJהkɈ"1]C.ޖ4ILSƚGCoDܡE`|U#y:( ۟QnhidpXCyZ! ;f_PlX8O^4r%kJѴ 8좕 -{ޟ希n%Hiz] >im&arkCklUgEWBo9ab P\mVRL'P ,߷qZ~(liwMpa ֋UzW ȍc5fpX .dH1.s޾|zDq(8ɫi"(~H]:2]ˊF—X%ӺX3\Ȁ/-rgAx@ ގYUI _(EW"xa#G'ΣzO- f߂!g{Ӳ*ix^{נC%bA}Xؙ+7 {TRj)S^UD,ERRt6=m/6pauXF Aݩ%f od~()q[a==.)aׅWpx୙*Ydc|~lxs}mPz"L+pj*V8gISWcdhK4^*=(bW696֮!VuF{Ke s]{}W#- Aѧ3/xW쒚[=F~X>K9Bxb~~'x'˻īQ̸2зUt7SLlTɡ'b'SFWd떾c3 bh[R:lLmL`'tmYg 6f NT^<)\(wľ'c;d7q} n=6ːԗg[gSgQTߒv{ҁ}0?Z@+Bptu5Lt&,ꆏV\UJjq[xꉾJ#wϚyYkt&}\Y"/рGC0sAj!Uz>_5҂"/B~r/RB0ʗ/y:[၊nƵIuZic;aS3sb\ƟCRβH4HXFMjq9Vـv&W:1`d򘂒C[|B#}~gՃ-g `l~TP8xb̨%`^FTD1OGy! ~#>30)|/-c0fX |ex#WCKea;c 5KRZ Օu鷌/ݝO:C*"%Y j7f%%(GQIKXYX:aT;O'VXa`M zB"g,uկ dacFFYÙ_rBi'ܣXQ&Wzk7 ,xWDTe.Yf;agM'YwSK=8GzM}5C֡Jo8$!hX &՝,r3VF)͓C }t^c4ێF`*pU4 3.ٹc%eup{'~N3*S+ـoϥsD _n|gz>:wiSr{&\ xM'2Ƈs4ggᮄQ=s 6̕=IG6>HD >vtvf }^tQ=S]!\;(lЮőMxK3 unSOw}%a z|qCѾOzUAAU%ЉdriE G~uvOs:5`şS$|wEΚUkʝ܆B<8IzY fAz>^sd9λOsvŢqfA׷$5n= M~ "`64ܮnMaxO⚢]=#3KiEQka˼"dW-r]VX}_h R:n~Ţ3Tf̟r ~jelKi.^hŵzY"撬Õ)EZ$:1oWILrj5͗移_RfD~\^j\xU*WAS1 $q-ZVb|4 w;>w'k{ rX| !j1 \N0`(5 Qq<ٌ)Y3"0jQ,J,hX< 1_W/lxV]>f*sx=^ 2O%}tgD-StEXbjzK3z]&#lٗr6-URr%˷N@"GE=p]F(BD#ʉ(D1AxBW<ƅ6 B{ex<;Sƾ]ݺMŇ>Dƨ==ԅQrV1> ݏ32lHj18CVPZ'K?,{03y6/rƤIeޤ8 Snߏ|hu 暖 ݓ)[X5ff+S ! y'HAO4OZ?\ߘ *t:t6A=RUj%M~mwIVP[9-D]gz. 5߮1C. 4˗u/aQ+9֜ο"lE *UNθMp&eD=M'U84WJbOX>T~TEN[KrJCY/,s<.j7&}#A]@H;]ʂg rtVhh^JELJ$}T՟;!XnB}RN禹>52wnl嬒y LW`\){{ێi65}P_m:w" .:- bZL5{y]%(d7Ԗ; OxZm?wcr<}bϻ;%ڊQZzb'wB:>dًOa̘O}(4Y({8cP47- 㺗6 FW\o*k8nkGXb#V$ 1<P<=aMîZ|Vz2?{9$~5}|/ry=^O{(y.BRa^sE^d*:7}I# ñ(:lG->ٍ`;nE}ԮP.W>洓/dYEbB^ ycMJL7=9Y^א`.{AyB;$iD9LxjCF4[a|W=7I3fH䋝gTQC n 1V : FKm\ }Ღf5CڟntOBbƋɑJBr _2 رP%L&pu3e@#_LaUSNЇq~ 1Wv- :渪3rG\XVOYƦ2QV1:h jP?jI7it4EA]D?8 CAYjl$kQZ)mo|=$ۃ]럌k੍a`AՃ%ó0̀?YYE5v ˨p*w1QM.6Z,01*@ w_5sS^eI GNdOPIΓ6e2ǁ{:׼O9?7Lb[WPB uDȞx0g@YD}XC4=2uݕ]njuQ sNuCb峒0MC}A#fKw`ɄubY9~5J"<#d2os!sF,$y<Oj[%LPKjW؞TR+!Z~|/nsՍ %!BK޶hD煭oX bk0pk+˗Jrr }X6(񎯁I/YB"2'_0h {4$yYq+f0a3]Vc'ԤY[z;.2:{m1ÛL`'ѿDٝ2K kcKSH9uNHmj! |xtDR|CSl5kWFӤ ?gj5bcb3BOD`SqղV" |;$*C>L.8?dGà~?v102H-\iK9Rplz|- ![4Du\՚xiOg#s3I~#o( Z GR5}yAGmŽ"̵o{)ρO혅?fAbyI.Pym߷@HIuyڋo<7#I5\9{UIldQnWĘD[(OoA-w7u:SL~JRpu^ima؜ӂ ܲs&:iwb=3#Χ> RMz+wNªK=!G)w 핻&:ZAǹ7qGoi,d[* -Amf\&r Qš`wk,8W3q'7O-ZZHkh`Td7H)qlo~2dHG.3FEWInVlڬ,b>dpY.汢HD-u] nx[*SoB›J5N5ʻ|| u:Yԯ ^AMv\-O6"@al:e_AKixh:Hcۋ&Khunv6ӹ ^w=x藺HuPZ@@j`ᙔ4=011H]<qx%v;*C6hːBI :#Ep4W{$B{E˿6V8qwC5n͙@)k_ &:7eO6`䷮c Y=|[feM {S>g<=MDu,ECjm-[%Rzb']%D[g\5fZxu$[Bh1{STaN3?A%R i&|x{[cH[pcm*q @&Sm5V4ր(>V]<&Uqi~d#C%:H5&;戭;e(A#8˳Io-?ՈJ; \of;ElnDDfu Wi@Uϣ!E޿( yZua+FTWHbmuOZ;ͨvlӤ%\_^Nb&zRz t:pIdz3~q*ЛýIS2PD6#=޾KF)Ne mUuTЩN|EyV_r@,Dj鋃sT|cR>c`%Xp1̗ X[Vpm!= (SNN+51R7f- /Uw:6UO&!e h˲CELC$t &ԍbJ!gqȟk1Eq;D<%<ʢ>@03c;XNM4ÜDyݴ㻝u&;e*m5܎ ;RHpEzLPxVܿP,rΥdzBj|CA%PqEe,q"8܏Ky+W[gM~ήd8ݾ~))7Piqwe0efz7*X,jx; 'z+CJ_ޘ*̂B]#1#:ajs6vi nPDjH֙i߫' $Nv#$~_lSXy4|BGV(D)ifƽ&.V]Y}Q+CEG0zF›aض55)_suh`4JiEFg$ ͩU8(嫜kP8qlZ|yr12 TtXSƾk,]Z}HS@;䁑գR8AU˕1gTV޹B.ڞrA~dIh\a5Y$%Q |,<@n#+dBI]!/Q1hCJʹcE E SŸYb}VP-ߢyv\S_1S9Vr:KOn ~-RKeƤYhu.rY.6m)֐K>!,﬿Fu& 6dM^M P$>PDkިigrȋ 36NH>h]mK*>G ń̃^S2֩?Erw6^diY ^KOpដTZȋJAQq2"cQ*\hn1f|FWϕʛﺯ)BidYp ,$\JF|BQq=0T[cp(>΅ͺi|%2 Ѧ'ÆEBUDcf"Fة/z,Hs0|Q|$qXߔŋǍW?'甔. H-}~md( 4{\eyO#/o4\$}bTG[fjj 8(lAtOs)pGU!'>暃,n ! []:/2Yo4qDS %7晒įP`%d6DP$z!NT06%}SrUc.N*EOd(g@ܓcWK fvQN P+i 87ikǁ%}zXw"/􌩮4[z7}=$YE1ڏ\G J ;%%܍oojy5bDH=:0dӀ>E-pfa)OgP#\1~:`4t ;to(p=G^E:]ִ C{EGwbn` 7|JX#3kC<;R%'AEʫ [u+H"fMGO9h!4,6qrѺ3!Wz9>,)y*3nEL՞K VxԸ0ˎmE829]`AcP'ɺYԱԒp5qN\>] Khm3ŮW˶R`·%7IOg lWH4j73%!O DdWqEH@:7 J_I`@p@uQ; :ɲ rP+ 'j(' D|ed}c+\6dm&SjƝ6|}Qx F'|E-ݢՖ>FV:KDRi؂s[*fr=Ww'_~DOh?.P$UQ]J{*^ 5&uw${bbFӷ/sAY,%!xNhm<^t|7H9HMd^1~9w z޷D|H[).n\Om7Ԃsd|GsbLwcb?vժY&~ZEͲ Mps)8!nX@+4FƱ\f]H|ywx|fQ\IC \*x&ͲQz2Ӽ8,{ otF=ۯ>?o˺B~[y Fo[Z) [G"g9BaqSQ}{dL`OI$ -LYC1i1NP凕 "}_w㧡 of'ZTj#47`Zl )nE ]2oFŷ0A-fzB'b&ě4ܶj$jA%O rǸ[E.UX)?2VՊĒHq[e۫GX{glH;B8.7zUlCA{ 4Ў㼍$[j\BdOWzV)[t獫8ǝF8Ab/*1bjU+qT!%Fhν#lxөH>D,ԯZҧRa} Sa{RI EϷ!#H)͓=7u6tK {J6R}Rcu'9 9SFϖ?-lftOɔ#O Y]z*IHGg>lwSgp>f)=.bqWEUEm%HŋYN%F_ؒHP&61+L[ݝxd|ޒ9c=-uM{Htۙ_$<,Yiڔulq}ZȠ?2Nj-ҿ~vocWjiox30[t1Td ,u#"E9z#*ֵm*rJsXoɒ&/!&kDpd6p_R_Nl%P~oʯK{IuTe&mS0킴.DH|-Ͼ @(h/q71i]1zJX1h a9a. =Cm+b*+qeEj&he<@mz6^P~}VgJ$JM sɣ-gP'/AM'$, ¶X9fVzJ.QTR hKhڬ\occR8t&6>?F( קN`_+T}9 Li/d/W)O֬fShzsn@RA ۹ ..Uͅ^ Sugm޵C^qQq8ܵwtr5duZ 8)xeqV$pÆL%&I^+|_:h]yx)֢T=@Y00)3(8V\T0fG<s:E16wE3Ϫlτpm_~(sjYE)ulWM׻SY$t|q3oNE@ggi5b xbГxPЙ=3f:+l;娫MHLq> 䇧rA'+12^W)zs~=8STTa{$"ex-OH;AG+e?k*}4jC_l^CI Gh[o)1=eCǍf=GZ$t.P48(Q Ms}A ˡgaVc}!=QIjR\.`.\$g`|G9{Aժ$ I کW_E%Xwܶ`IbjJOFw-) gUA_l֛k6|Ta<s 5?,$GgͬIwmaBqLi) !9vL\5䲭SD훽 /1?A"%PJmzendstream endobj 86 0 obj << /Type /Font /Subtype /Type1 /Encoding 389 0 R /FirstChar 6 /LastChar 123 /Widths 390 0 R /BaseFont /LHDXRJ+CMR10 /FontDescriptor 84 0 R >> endobj 84 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /LHDXRJ+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/Sigma/Psi/ff/fi/fl/ffi/acute/caron/macron/quotedblright/percent/ampersand/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/L/M/N/O/P/R/S/T/U/V/W/Y/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 85 0 R >> endobj 390 0 obj [722 0 0 778 0 583 556 556 833 0 0 0 0 500 500 0 500 0 0 0 0 0 0 0 0 0 0 0 500 0 0 833 778 278 389 389 0 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 0 0 625 917 750 778 681 0 736 556 722 750 750 1028 0 750 0 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 389 0 obj << /Type /Encoding /Differences [ 0 /.notdef 6/Sigma 7/.notdef 9/Psi 10/.notdef 11/ff/fi/fl/ffi 15/.notdef 19/acute/caron 21/.notdef 22/macron 23/.notdef 34/quotedblright 35/.notdef 37/percent/ampersand/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 76/L/M/N/O/P 81/.notdef 82/R/S/T/U/V/W 88/.notdef 89/Y 90/.notdef 91/bracketleft/quotedblleft/bracketright 94/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash 124/.notdef] >> endobj 82 0 obj << /Length1 911 /Length2 2303 /Length3 532 /Length 2946 /Filter /FlateDecode >> stream xRi<{Fd'YRa2Hlc5fLf03dIPUǾE=[ec/;||O}/}]_}rH;% %2L8ni9dE F( aB\GM[G)It2˛<-xE% h# p8v/` d? M<@/,njI4*/$2C!fD bEd27BjnLPm{fXO'Q) $b@2W##%RfFp a}4Rހ' ~A̶}bnld|4SH@6~a?kfoX UBaL!헫ND \ 8"Qts/ H@32Ha- =r]^:MLrVwHbĤZ_jU벉EFIN4o:lm!*ƋJw8Ҕ<`B\97XK޲&h6o3-ToYJ)U8rz+$0+и'&I;شR "` {ǏN׿Fd˓֊(q܇zae&~c~[H\QƐ<}$[(vjc+'Υi=\8qnB>J[z{Lj)6›>=(Όyl۽׉A-;u Cf־#/JB^Bf1:b=F=f_sؙbJK&3VNj/I[Xsg|p(g4PO>!qyt'֜(c|CQخJEϱI=idnr[6ںWݧ^ɤw9oCn!eD7OepqϞ52Mw|M7ǟHs_筬"o/`9x`i x/V}~bjHB뉆F'X"z7XK>'+Z+U?{qJѷ5͍wеySƁO j;=+7x{>*W}yG)*<6(tQiPb"'JО;ݧ|nln¸šLbSJ_Y!ERTBfenhǬRnz:u²;3]mM#+GYCV| ΦSERV"l#MHiͥj=˨h'诼8>4~pQDH$r oN~ %X '4>2i40u`pHI>FK !˔:dHDڊ&wlx D;6KӴl ]ycx<Q*|jl< Z۶*mͫ7L7QuXVGmzzpJsݣS{~;ns|uSܣ[ y/&ZhPFKߌ̅HB%_RtlccrJ-]k\2(;1XǬJnXLL\v+U_dMrj-w*ݩ]g|n$R/lhVU:zعȥn1> endobj 81 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /KNYFXF+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/numbersign/parenleft/parenright/plus/zero/one/two/three/equal) /FontFile 82 0 R >> endobj 392 0 obj [885 0 0 0 0 413 413 0 826 0 0 0 0 531 531 531 531 0 0 0 0 0 0 0 0 0 826 ] endobj 391 0 obj << /Type /Encoding /Differences [ 0 /.notdef 35/numbersign 36/.notdef 40/parenleft/parenright 42/.notdef 43/plus 44/.notdef 48/zero/one/two/three 52/.notdef 61/equal 62/.notdef] >> endobj 79 0 obj << /Length1 1168 /Length2 4839 /Length3 532 /Length 5589 /Filter /FlateDecode >> stream xgTS붆#) +WAz IPJ{T* ;қ ])RD}ֻ{q?y;͹'-98FaoX 890(F)BI,!!A87igxxr EZP=:h䜜'=぀  6;$L!5-+ wwwqÙxp&yE8 dh\/+;9iCHCN*@;c@ G`P,5BM G;3:!ar(;'+tSFz!H,:!~(?MA UCM+ E]VYw;`B߿,K CÑ(B@D(&m }0D^ gXP;l.P 儰L+03wDW);$ 0\  QſI E75~o&q\$ M •@"@?@w)@2)c@`@S]hE[B0 !.'3@!]j@b"0w n_3nqͶHܚ#^8&VVT8TNć'o"^h+ydSq+|ɓL+D+ݢZ|+Ƨ?[^inɅ0d~l32[l#˻]{$l5v;; *om@؃|MO!ꕒYm6ts֡]9Tfqޓ):υÎ "~4WP?LK&< /p-gdqQy/c7B|WE=^? bj / [yE~=,PMAK'V8 \Kf1?9Kcxjf 2Yim,֨HDu$=KiذLLtiT.p`yt%[QQ`m0NJ9\wNٸ(S}>_UazHzq` *O1fv~.U!@%~S(B2'3_3+R7=1G-_%_^X.GLp;÷3p;D_mZT=y`BXX2d\i  k(sZTXfdx) sJBmhL Ћ|  ϯ[biyzf.>Qz\N_Ddn{P/Y`_˗ȫC] QEV#Uպ}t=[c͹>+l=tfTtkl^Wy充#}1luM_Jՠ'Ojo6AWT>5gi1EzB/?/KG>&/wZ0ihxmBr%FWi0ܿkˏU4JK6ї頻˫s;ǿ"ݶHt7k| (0` zc;k[yR| ɚPmos2kylV ah5fkoTVnd~ UGV5_i0rkŠԠ̩ e^CQQw(a'6~ 0To JïԲ'{\F ˍ!ٖ"v3:Gտ h+Uy:z} de)7#]Œ(@ڭR#}Ϫ#Kg蹇A{q6H*,MTG=I N%VH0k&Y_07:|^ө o;&+Ƕ`S {ׇm7JvԞݲt.%v u`dSz-A&F̾OX[_jak6kG̕ GAߓf!j2Ѭ\y"*ƐwF‐ѨmX#a~-hJ|W: *{[Ń(oĬq#^o P\K~+ӂ -%sCS^A1tbc )w({5PGC&陹"2 1EpZĥ}NypD)$O)!j!:py1jG\$l ;y$Ja !߻[|~Qydw+xv.5Y>l(@j;h6˻˗C>s]Ξꊆ'&>D"_IvwL(J'Gd*y/RZx]Ty6˝:ͪ?&/]vGgCHT+&\Qρ%^vOۓ?B c975TP5 )n b@Tq*~ԜǨ9+ޞ "RPa~v駷eJХ-E;xB2Wd㾰:o /۵ mR]&O%'i ~oTB{jqsa5ZCe@yH,@0CZI5}h|4vY|oI"uX8A4pyQDT7QhvcI瑫Ȫ2׌y gFVYkF JSnJ]ʹr|#9O$R<Z% bA֐vv~neH/;aqViP,٭W&E:j2ѢG|vD^IgWc{%=6S 'r\xѸ zeޝ& +^R6G-^رD֑w}xendΝ gÊR<=߷~LK\[ur:OY& uepC 2(*w^JWi `$UQiN|,8(Z{귮^>>vA?LIjf߀,̱x)yr[?k n {ɞqs }*I[Q`u=/Kmv覵|lguq^qw8+u c)!~u칶 g3qVFƔz3T܋m:[]۽b?dTSPDd꣧1 +M4g}] A>bU_jb;{^f)Ş<3]e;u/5nWĞ^aZ:¡gN f~%dWa=Ғ+G* \w,0dݷt Fɒ'kh8jXHDE3e&L9xƙSO3UUWFn'@$~/ĸnŃ PyR7Aˤ?}Vt$JYW|tnU,JE;\当Ǽqه}Qp좢9V :1BRN:#[*W+J2.AtY8gugV2x!Hm1}&#rUeնwREΧ ~7JU9`JBB0wVH_~4VH<+,)˧0O9GBxʮbn=UEV%D鎲iM.NW% 16Sl/(?o^i\ `|:^1-2]x"pG2Fh.F!b>l戇{J[b^^Y܋;CVHVkv^rOoU3f.GohlLR3|u´%rUe7 M4ҥM_I>zuaskٌ"FZSjڢxIoNdx~6aH՝M+9OtAQ96gq0sp +Fkr".^$z }:ʝf:ך2RmZq**E"fBu+v!;I4rY '6Tn-Xo=5A݀N9(v Â,ۮ}'2H!~ K\xF޵l@!!lw :}òNlc<Ȇ[;nvZ搪C`WZn^ze6^O3Ar4Ud)9;g1eǨV\ݱ{q[C\gӓh1>*M5MPHߠ72v#;eIFt9S!=kZpv% e-E bAbfsξ) ǟ $))m7C2wZl1Wy>˿7Z|oF/:x9D:^:6{ݲN#ShU(OuS.o>&<]ԙs~!80Fv.Š(j(|+k#[{6(Cq1$I؊SALO8ڵiE|@}B6W$Q3 ~<%䣳 x`Lӈ1O˳Z%nu4T^p2vsؼ,=rVLSZ,znƙF!0'E;C1d*>endstream endobj 80 0 obj << /Type /Font /Subtype /Type1 /Encoding 393 0 R /FirstChar 40 /LastChar 118 /Widths 394 0 R /BaseFont /OKHVGL+CMR12 /FontDescriptor 78 0 R >> endobj 78 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /OKHVGL+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/parenleft/parenright/comma/period/zero/two/seven/D/J/K/L/M/P/S/a/d/e/h/i/k/l/n/o/r/t/u/v) /FontFile 79 0 R >> endobj 394 0 obj [381 381 0 0 272 0 272 0 490 0 490 0 0 0 0 490 0 0 0 0 0 0 0 0 0 0 0 0 748 0 0 0 0 0 503 761 612 897 0 0 666 0 0 544 0 0 0 0 0 0 0 0 0 0 0 0 0 490 0 0 544 435 0 0 544 272 0 517 272 0 544 490 0 0 381 0 381 544 517 ] endobj 393 0 obj << /Type /Encoding /Differences [ 0 /.notdef 40/parenleft/parenright 42/.notdef 44/comma 45/.notdef 46/period 47/.notdef 48/zero 49/.notdef 50/two 51/.notdef 55/seven 56/.notdef 68/D 69/.notdef 74/J/K/L/M 78/.notdef 80/P 81/.notdef 83/S 84/.notdef 97/a 98/.notdef 100/d/e 102/.notdef 104/h/i 106/.notdef 107/k/l 109/.notdef 110/n/o 112/.notdef 114/r 115/.notdef 116/t/u/v 119/.notdef] >> endobj 76 0 obj << /Length1 979 /Length2 3327 /Length3 532 /Length 3993 /Filter /FlateDecode >> stream xyh'i8aPD? a')4n 8vAt')Kb?4H  $"?Kx3B;aHX JE?Bo]/CDH7gs z~ZY[iXc?s&H h !`|4 ?wB^@H?fI@ Cqx"} @I '~SQ$ MrEJJaR_@ѿ,u(DPK~A +{ OG> MM, %#E9]gxڀ< STE4Ovo FF(0ꈢ ׏Y0hWi6:3Un]yxe^tWCR}So Xy4Tm,3\)Jߑs)D\|Vִ0EkTŭrH[׏&%0O"b=n t|;-;q)e)#_@^^hDML{(H@pZy0~ղί◨Pvq[o7]QU{\165y&~GRS'r,!pv*le_ B}sf~,T_&B!P ag qqL > WSvQ?: $75c{)h]9 ME"†D0lL#jE lQHR/ЇM"b͜1T7UwOK?S%< iݖB[`K ?VvAM"@hIΙ)-J!!y~*v230賌:Q+rѷj&V?m?l3PfoZd`u"ڙ!oc>ȂZaآ8{Ŀg'ZT}fb 9~8 #^D0<  e6dRz!H1&Rvdk(1OsQ&Wh,gʭԺ剷#M^UPF67յA4J+V]yf*w ָ\]|Z&%ƕWFf+hr[haפoso/{i oB U(O7G IHvw]q<{҃2Y_{ٜ&h脯tUR~ hR!zHEjm뚌ՁOrمwc$#j lnG\<5YU'l*/fUSb7+EBߑ~s H{R%<ӱAxVUdB5 I\/ֿ6+ g$ȇ'zQ#"K%7˜I3oI>AzGN 0<[9 TX-歎'í$umnjCgQ9Oı [Z:b|yNc㺙y|EvDAkkoB"5)jOc-?YQ5F?wn5m˙;8ܦ\ܵ! ЍUJow:j ROL8<6-hKB9gwyʗӡ˂Jk.߄꣱GF tso#Ʃk͌i.I[9Śڔ~"k*s{4a#f 34ۥ~@ۿ:h1,6i1Kb|aw/Wlg5bV 7XWcB0z[ lO'kb&]!;IUMbQ8Wn*Gz)&:ө66!Ǵ87(mma.WF[[+9Ҡ@@>YA/&BhDp߂sx%qrЋgz1WfVO̟kWEgsl85fߩ\ *.\ge+XVڛ추W7]m a]x>٭WyTs=aܚB6g"(W _~ 'Α 8 \ buci9|®o1bIo'- O-O`Gu)F/OQq]|Ze35j3<#@ԿQF{ Eҽ-zgXU:Z=ooteNJ\k;V Vx9 ags-Bu@ "rվ-ZV[ûNK{qS G]z+KG<N_|ʹA/ Ho?HE[jw33WT$Jס󄝕ՙ3Yy<W;'DL[fKՇ: P'u jna9& j4JoQrWW]ekH\%k<nxsl2:ZqoVsBEƺw3x܍=^?WT)3Nk6λ9kLMZy2e3δF}X)>.>1w4߸d:2W'X j!)c ,@/n,IS>%yKR*[#E{Lּ^qLq҅ѶK.dݩ>15fmR9"(;Ƽ& -n+>ToH` r&B`a~q+InWzF!wu8@ӹ"d"i6KGeNNpGU|gj7[RئU32|TF f!w_nt^8µdH^'0Rp@9fDpkx6gI˔2Xװ!rH,LeV)$<{Xvgeѽ(pmGU=ʢħ9E.v~_Jm[XX".і|[A~.ܡՆ7y同Ruph!9c"a= SmCM?46AA%(3c/?> Gh$@A(!endstream endobj 77 0 obj << /Type /Font /Subtype /Type1 /Encoding 395 0 R /FirstChar 77 /LastChar 117 /Widths 396 0 R /BaseFont /THXWAU+CMR17 /FontDescriptor 75 0 R >> endobj 75 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /THXWAU+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 431 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/M/P/T/c/d/e/g/i/l/n/o/p/r/s/t/u) /FontFile 76 0 R >> endobj 396 0 obj [850 0 0 628 0 0 0 668 0 0 0 0 0 0 0 0 0 0 0 0 0 0 406 511 406 0 459 0 250 0 0 250 0 511 459 511 0 354 359 354 511 ] endobj 395 0 obj << /Type /Encoding /Differences [ 0 /.notdef 77/M 78/.notdef 80/P 81/.notdef 84/T 85/.notdef 99/c/d/e 102/.notdef 103/g 104/.notdef 105/i 106/.notdef 108/l 109/.notdef 110/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef] >> endobj 129 0 obj << /Type /Pages /Count 6 /Parent 397 0 R /Kids [70 0 R 131 0 R 141 0 R 146 0 R 154 0 R 163 0 R] >> endobj 184 0 obj << /Type /Pages /Count 6 /Parent 397 0 R /Kids [168 0 R 187 0 R 193 0 R 204 0 R 209 0 R 214 0 R] >> endobj 227 0 obj << /Type /Pages /Count 6 /Parent 397 0 R /Kids [221 0 R 229 0 R 240 0 R 248 0 R 255 0 R 262 0 R] >> endobj 276 0 obj << /Type /Pages /Count 6 /Parent 397 0 R /Kids [270 0 R 278 0 R 291 0 R 301 0 R 305 0 R 312 0 R] >> endobj 322 0 obj << /Type /Pages /Count 6 /Parent 397 0 R /Kids [319 0 R 324 0 R 330 0 R 334 0 R 344 0 R 353 0 R] >> endobj 397 0 obj << /Type /Pages /Count 30 /Kids [129 0 R 184 0 R 227 0 R 276 0 R 322 0 R] >> endobj 398 0 obj << /Type /Outlines /First 7 0 R /Last 67 0 R /Count 4 >> endobj 67 0 obj << /Title 68 0 R /A 65 0 R /Parent 398 0 R /Prev 47 0 R >> endobj 63 0 obj << /Title 64 0 R /A 61 0 R /Parent 47 0 R /Prev 59 0 R >> endobj 59 0 obj << /Title 60 0 R /A 57 0 R /Parent 47 0 R /Prev 55 0 R /Next 63 0 R >> endobj 55 0 obj << /Title 56 0 R /A 53 0 R /Parent 47 0 R /Prev 51 0 R /Next 59 0 R >> endobj 51 0 obj << /Title 52 0 R /A 49 0 R /Parent 47 0 R /Next 55 0 R >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 398 0 R /Prev 23 0 R /Next 67 0 R /First 51 0 R /Last 63 0 R /Count -4 >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 23 0 R /Prev 39 0 R >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 23 0 R /Prev 35 0 R /Next 43 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 23 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 23 0 R /Prev 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 23 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 398 0 R /Prev 7 0 R /Next 47 0 R /First 27 0 R /Last 43 0 R /Count -5 >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 7 0 R /Prev 15 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 7 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 398 0 R /Next 23 0 R /First 11 0 R /Last 19 0 R /Count -3 >> endobj 399 0 obj << /Names [(Doc-Start) 74 0 R (Item.1) 190 0 R (Item.10) 233 0 R (Item.11) 234 0 R (Item.12) 235 0 R (Item.13) 236 0 R (Item.14) 238 0 R (Item.15) 337 0 R (Item.16) 338 0 R (Item.17) 339 0 R (Item.18) 340 0 R (Item.19) 341 0 R (Item.2) 191 0 R (Item.20) 342 0 R (Item.21) 348 0 R (Item.22) 349 0 R (Item.23) 350 0 R (Item.24) 351 0 R (Item.25) 356 0 R (Item.26) 357 0 R (Item.27) 358 0 R (Item.3) 196 0 R (Item.4) 197 0 R (Item.5) 198 0 R (Item.6) 199 0 R (Item.7) 200 0 R (Item.8) 201 0 R (Item.9) 232 0 R (equation.1) 166 0 R (equation.10) 212 0 R (equation.11) 237 0 R (equation.12) 246 0 R (equation.13) 251 0 R (equation.14) 253 0 R (equation.15) 258 0 R (equation.16) 265 0 R (equation.17) 266 0 R (equation.18) 267 0 R (equation.19) 268 0 R (equation.2) 171 0 R (equation.3) 178 0 R (equation.8) 202 0 R (equation.9) 207 0 R (page.1) 73 0 R (page.10) 206 0 R (page.11) 211 0 R (page.12) 216 0 R (page.13) 223 0 R (page.14) 231 0 R (page.15) 242 0 R (page.16) 250 0 R (page.17) 257 0 R (page.18) 264 0 R (page.19) 272 0 R (page.2) 133 0 R (page.20) 280 0 R (page.21) 293 0 R (page.22) 303 0 R (page.23) 307 0 R (page.24) 314 0 R (page.25) 321 0 R (page.26) 326 0 R (page.27) 332 0 R (page.28) 336 0 R (page.29) 346 0 R (page.3) 143 0 R (page.30) 355 0 R (page.4) 148 0 R (page.5) 156 0 R (page.6) 165 0 R (page.7) 170 0 R (page.8) 189 0 R (page.9) 195 0 R (procedure.1) 219 0 R (section*.1) 96 0 R (section.1) 6 0 R (section.2) 22 0 R (section.3) 46 0 R (section.4) 66 0 R (subsection.1.1) 10 0 R (subsection.1.2) 14 0 R (subsection.1.3) 18 0 R (subsection.2.1) 26 0 R (subsection.2.2) 30 0 R (subsection.2.3) 34 0 R (subsection.2.4) 38 0 R (subsection.2.5) 42 0 R (subsection.3.1) 50 0 R (subsection.3.2) 54 0 R (subsection.3.3) 58 0 R (subsection.3.4) 62 0 R (table.1) 185 0 R] /Limits [(Doc-Start) (table.1)] >> endobj 400 0 obj << /Kids [399 0 R] >> endobj 401 0 obj << /Dests 400 0 R >> endobj 402 0 obj << /Type /Catalog /Pages 397 0 R /Outlines 398 0 R /Names 401 0 R /PageMode /UseOutlines /URI<> /ViewerPreferences<<>> /OpenAction 69 0 R >> endobj 403 0 obj << /Producer (pdfTeX-0.14h) /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX14.h)/Keywords() /Creator (TeX) /CreationDate (D:20070622094700) >> endobj xref 0 404 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000010250 00000 n 0000260754 00000 n 0000000054 00000 n 0000000084 00000 n 0000010310 00000 n 0000260682 00000 n 0000000134 00000 n 0000000161 00000 n 0000010371 00000 n 0000260596 00000 n 0000000212 00000 n 0000000241 00000 n 0000017289 00000 n 0000260523 00000 n 0000000292 00000 n 0000000318 00000 n 0000022009 00000 n 0000260399 00000 n 0000000364 00000 n 0000000390 00000 n 0000022070 00000 n 0000260325 00000 n 0000000441 00000 n 0000000497 00000 n 0000046824 00000 n 0000260238 00000 n 0000000548 00000 n 0000000600 00000 n 0000061706 00000 n 0000260151 00000 n 0000000651 00000 n 0000000742 00000 n 0000066089 00000 n 0000260064 00000 n 0000000793 00000 n 0000000874 00000 n 0000070435 00000 n 0000259990 00000 n 0000000925 00000 n 0000000984 00000 n 0000078434 00000 n 0000259865 00000 n 0000001030 00000 n 0000001090 00000 n 0000078495 00000 n 0000259791 00000 n 0000001141 00000 n 0000001168 00000 n 0000086813 00000 n 0000259704 00000 n 0000001219 00000 n 0000001296 00000 n 0000107498 00000 n 0000259617 00000 n 0000001347 00000 n 0000001399 00000 n 0000110856 00000 n 0000259543 00000 n 0000001450 00000 n 0000001484 00000 n 0000114013 00000 n 0000259468 00000 n 0000001530 00000 n 0000001559 00000 n 0000003295 00000 n 0000006939 00000 n 0000001609 00000 n 0000006759 00000 n 0000006819 00000 n 0000258123 00000 n 0000253852 00000 n 0000257964 00000 n 0000252934 00000 n 0000247066 00000 n 0000252775 00000 n 0000246522 00000 n 0000243300 00000 n 0000246365 00000 n 0000241711 00000 n 0000224955 00000 n 0000241553 00000 n 0000003572 00000 n 0000223706 00000 n 0000211702 00000 n 0000223546 00000 n 0000003750 00000 n 0000003937 00000 n 0000210795 00000 n 0000202823 00000 n 0000210635 00000 n 0000006879 00000 n 0000004119 00000 n 0000201596 00000 n 0000189184 00000 n 0000201435 00000 n 0000004270 00000 n 0000004426 00000 n 0000004583 00000 n 0000004740 00000 n 0000004892 00000 n 0000005049 00000 n 0000005205 00000 n 0000005361 00000 n 0000188001 00000 n 0000175266 00000 n 0000187839 00000 n 0000174539 00000 n 0000169649 00000 n 0000174378 00000 n 0000169191 00000 n 0000166796 00000 n 0000169030 00000 n 0000005518 00000 n 0000005675 00000 n 0000005832 00000 n 0000166391 00000 n 0000163454 00000 n 0000166226 00000 n 0000005984 00000 n 0000006141 00000 n 0000006298 00000 n 0000006452 00000 n 0000006608 00000 n 0000258716 00000 n 0000010432 00000 n 0000010076 00000 n 0000007134 00000 n 0000010188 00000 n 0000162390 00000 n 0000148206 00000 n 0000162228 00000 n 0000147017 00000 n 0000141777 00000 n 0000146856 00000 n 0000013412 00000 n 0000013051 00000 n 0000010580 00000 n 0000013350 00000 n 0000013183 00000 n 0000017349 00000 n 0000016456 00000 n 0000013547 00000 n 0000017227 00000 n 0000016612 00000 n 0000016763 00000 n 0000016914 00000 n 0000017071 00000 n 0000022130 00000 n 0000021007 00000 n 0000017483 00000 n 0000021947 00000 n 0000021171 00000 n 0000021328 00000 n 0000021480 00000 n 0000021637 00000 n 0000021792 00000 n 0000026321 00000 n 0000026085 00000 n 0000022290 00000 n 0000026197 00000 n 0000026259 00000 n 0000031238 00000 n 0000030607 00000 n 0000026469 00000 n 0000031052 00000 n 0000031114 00000 n 0000141445 00000 n 0000139231 00000 n 0000141286 00000 n 0000138020 00000 n 0000132913 00000 n 0000137859 00000 n 0000031176 00000 n 0000030747 00000 n 0000030903 00000 n 0000132214 00000 n 0000129878 00000 n 0000132054 00000 n 0000258832 00000 n 0000034762 00000 n 0000034948 00000 n 0000034588 00000 n 0000031438 00000 n 0000034700 00000 n 0000034824 00000 n 0000034886 00000 n 0000039130 00000 n 0000038522 00000 n 0000035122 00000 n 0000038634 00000 n 0000038696 00000 n 0000038758 00000 n 0000038820 00000 n 0000038882 00000 n 0000038944 00000 n 0000039006 00000 n 0000039068 00000 n 0000042714 00000 n 0000042478 00000 n 0000039304 00000 n 0000042590 00000 n 0000042652 00000 n 0000046946 00000 n 0000046650 00000 n 0000042875 00000 n 0000046762 00000 n 0000046885 00000 n 0000051286 00000 n 0000050780 00000 n 0000047158 00000 n 0000051224 00000 n 0000050920 00000 n 0000051073 00000 n 0000056917 00000 n 0000053440 00000 n 0000052760 00000 n 0000051460 00000 n 0000053378 00000 n 0000052908 00000 n 0000053064 00000 n 0000053221 00000 n 0000258949 00000 n 0000057411 00000 n 0000056743 00000 n 0000053562 00000 n 0000056855 00000 n 0000056979 00000 n 0000057041 00000 n 0000057103 00000 n 0000057165 00000 n 0000057227 00000 n 0000057288 00000 n 0000057349 00000 n 0000061829 00000 n 0000061532 00000 n 0000057572 00000 n 0000061644 00000 n 0000129440 00000 n 0000127256 00000 n 0000129279 00000 n 0000061767 00000 n 0000066212 00000 n 0000065677 00000 n 0000062066 00000 n 0000065965 00000 n 0000066027 00000 n 0000065809 00000 n 0000066150 00000 n 0000070496 00000 n 0000069859 00000 n 0000066424 00000 n 0000070311 00000 n 0000070373 00000 n 0000069999 00000 n 0000070155 00000 n 0000074468 00000 n 0000074047 00000 n 0000070708 00000 n 0000074159 00000 n 0000074221 00000 n 0000074283 00000 n 0000074344 00000 n 0000074406 00000 n 0000078556 00000 n 0000077753 00000 n 0000074629 00000 n 0000078372 00000 n 0000077901 00000 n 0000078058 00000 n 0000078215 00000 n 0000259066 00000 n 0000083844 00000 n 0000082185 00000 n 0000078716 00000 n 0000083782 00000 n 0000082381 00000 n 0000082535 00000 n 0000082691 00000 n 0000082846 00000 n 0000083000 00000 n 0000083157 00000 n 0000083313 00000 n 0000083469 00000 n 0000083626 00000 n 0000086874 00000 n 0000086639 00000 n 0000084004 00000 n 0000086751 00000 n 0000126900 00000 n 0000124656 00000 n 0000126739 00000 n 0000123521 00000 n 0000115860 00000 n 0000123357 00000 n 0000090022 00000 n 0000089848 00000 n 0000087047 00000 n 0000089960 00000 n 0000094169 00000 n 0000093501 00000 n 0000090144 00000 n 0000094107 00000 n 0000093649 00000 n 0000093802 00000 n 0000093955 00000 n 0000098065 00000 n 0000097384 00000 n 0000094316 00000 n 0000098003 00000 n 0000097532 00000 n 0000097689 00000 n 0000097846 00000 n 0000101110 00000 n 0000100936 00000 n 0000098199 00000 n 0000101048 00000 n 0000259183 00000 n 0000104487 00000 n 0000103974 00000 n 0000101245 00000 n 0000104425 00000 n 0000104114 00000 n 0000104271 00000 n 0000107557 00000 n 0000107324 00000 n 0000104622 00000 n 0000107436 00000 n 0000110917 00000 n 0000110312 00000 n 0000107691 00000 n 0000110424 00000 n 0000110486 00000 n 0000110548 00000 n 0000110609 00000 n 0000110671 00000 n 0000110733 00000 n 0000110794 00000 n 0000114322 00000 n 0000113662 00000 n 0000111051 00000 n 0000113951 00000 n 0000113794 00000 n 0000114074 00000 n 0000114136 00000 n 0000114198 00000 n 0000114260 00000 n 0000115738 00000 n 0000115378 00000 n 0000114456 00000 n 0000115490 00000 n 0000115552 00000 n 0000115614 00000 n 0000115676 00000 n 0000124139 00000 n 0000123859 00000 n 0000127142 00000 n 0000127100 00000 n 0000129776 00000 n 0000129646 00000 n 0000132721 00000 n 0000132465 00000 n 0000138770 00000 n 0000138477 00000 n 0000141684 00000 n 0000141652 00000 n 0000147725 00000 n 0000147427 00000 n 0000163105 00000 n 0000162745 00000 n 0000166670 00000 n 0000166604 00000 n 0000169527 00000 n 0000169397 00000 n 0000175005 00000 n 0000174786 00000 n 0000188700 00000 n 0000188354 00000 n 0000202358 00000 n 0000201994 00000 n 0000211353 00000 n 0000211098 00000 n 0000224461 00000 n 0000224127 00000 n 0000242678 00000 n 0000242253 00000 n 0000246868 00000 n 0000246776 00000 n 0000253447 00000 n 0000253215 00000 n 0000258481 00000 n 0000258347 00000 n 0000259300 00000 n 0000259394 00000 n 0000260863 00000 n 0000262701 00000 n 0000262740 00000 n 0000262778 00000 n 0000262947 00000 n trailer << /Size 404 /Root 402 0 R /Info 403 0 R >> startxref 263140 %%EOF multtest/vignettes/MTP.tex0000755000175200017520000023163414710217035016663 0ustar00biocbuildbiocbuild%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \VignetteIndexEntry{Multiple Testing Procedures} % \VignetteKeywords{Expression Analysis} % \VignettePackage{multtest} \documentclass[11pt]{article} \usepackage{graphicx} % standard LaTeX graphics tool \usepackage{Sweave} \usepackage{amsfonts} % these should probably go into a dedicated style file \newcommand{\Rpackage}[1]{\textit{#1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\textit{#1}} %%%%%%%%%%%%%%%%%%%%%%%%% % Our added packages and definitions \usepackage{hyperref} \usepackage{amsmath} \usepackage{color} \usepackage{comment} \usepackage[authoryear,round]{natbib} \parindent 0in \definecolor{red}{rgb}{1, 0, 0} \definecolor{green}{rgb}{0, 1, 0} \definecolor{blue}{rgb}{0, 0, 1} \definecolor{myblue}{rgb}{0.25, 0, 0.75} \definecolor{myred}{rgb}{0.75, 0, 0} \definecolor{gray}{rgb}{0.5, 0.5, 0.5} \definecolor{purple}{rgb}{0.65, 0, 0.75} \definecolor{orange}{rgb}{1, 0.65, 0} \def\RR{\mbox{\it I\hskip -0.177em R}} \def\ZZ{\mbox{\it I\hskip -0.177em Z}} \def\NN{\mbox{\it I\hskip -0.177em N}} \newtheorem{theorem}{Theorem} \newtheorem{procedure}{Procedure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \title{Multiple Testing Procedures} \author{Katherine S. Pollard$^1$, Sandrine Dudoit$^2$, Mark J. van der Laan$^3$} \maketitle \begin{center} 1. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, \url{ http://lowelab.ucsc.edu/katie/}\\ 2. Division of Biostatistics, University of California, Berkeley, \url{ http://www.stat.berkeley.edu/~sandrine/}\\ 3. Department of Statistics and Division of Biostatistics, University of California, Berkeley, \url{ http://www.stat.berkeley.edu/~laan/}\\ \end{center} \tableofcontents \label{anal:mult:multtest} \section{Introduction} \label{anal:mult:s:intro} \subsection{Overview} The Bioconductor R package \Rpackage{multtest} implements widely applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. The current version of \Rpackage{multtest} provides MTPs for null hypotheses concerning means, differences in means, and regression parameters in linear and Cox proportional hazards models. Both bootstrap and permutation estimators of the test statistics ($t$- or $F$-statistics) null distribution are available. Procedures are provided to control Type I error rates defined as tail probabilities and expected values of arbitrary functions of the numbers of Type I errors, $V_n$, and rejected hypotheses, $R_n$. These error rates include: the generalized family-wise error rate, $gFWER(k) = Pr(V_n > k)$, or chance of at least $(k+1)$ false positives (the special case $k=0$ corresponds to the usual family-wise error rate, FWER); tail probabilities $TPPFP(q) = Pr(V_n/R_n > q)$ for the proportion of false positives among the rejected hypotheses; the false discovery rate, $FDR=E[V_n/R_n]$. Single-step and step-down common-cut-off (maxT) and common-quantile (minP) procedures, that take into account the joint distribution of the test statistics, are implemented to control the FWER. In addition, augmentation procedures are provided to control the gFWER, TPPFP, and FDR, based on {\em any} initial FWER-controlling procedure. The results of a multiple testing procedure are summarized using rejection regions for the test statistics, confidence regions for the parameters of interest, and adjusted $p$-values. The modular design of the \Rpackage{multtest} package allows interested users to readily extend the package's functionality, by inserting additional functions for test statistics and testing procedures. The S4 class/method object-oriented programming approach was adopted to summarize the results of a MTP. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Motivation} Current statistical inference problems in areas such as genomics, astronomy, and marketing routinely involve the simultaneous test of thousands, or even millions, of null hypotheses. Examples of testing problems in genomics include: \begin{itemize} \item the identification of differentially expressed genes in microarray experiments, i.e., genes whose expression measures are associated with possibly censored responses or covariates interest; \item tests of association between gene expression measures and Gene Ontology (GO) annotation (\url{www.geneontology.org}); \item the identification of transcription factor binding sites in ChIP-Chip experiments, where chromatin immunoprecipitation (ChIP) of transcription factor bound DNA is followed by microarray hybridization (Chip) of the IP-enriched DNA \cite{KelesetalTechRep147}; \item the genetic mapping of complex traits using single nucleotide polymorphisms (SNP). \end{itemize} The above testing problems share the following general characteristics: \begin{itemize} \item inference for high-dimensional multivariate distributions, with complex and unknown dependence structures among variables; \item broad range of parameters of interest, such as, regression coefficients in model relating patient survival to genome-wide transcript levels or DNA copy numbers, pairwise gene correlations between transcript levels; \item many null hypotheses, in the thousands or even millions; \item complex dependence structures among test statistics, e.g., Gene Ontology directed acyclic graph (DAG). \end{itemize} Motivated by these applications, we have developed resampling-based single-step and step-down multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. In particular, Dudoit et al. \cite{DudoitetalMT1SAGMB04} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} derive {\em single-step common-cut-off and common-quantile procedures} for controlling arbitrary parameters of the distribution of the number of Type I errors, such as the generalized family-wise error rate, $gFWER(k)$, or chance of at least $(k+1)$ false positives. van der Laan et al. \cite{vdLaanetalMT2SAGMB04} focus on control of the family-wise error rate, $FWER = gFWER(0)$, and provide {\em step-down common-cut-off and common-quantile procedures}, based on maxima of test statistics (maxT) and minima of unadjusted $p$-values (minP), respectively. Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and van der Laan et al. \cite{vdLaanetalMT3SAGMB04} propose a general class of {\em augmentation multiple testing procedures} (AMTP), obtained by adding suitably chosen null hypotheses to the set of null hypotheses already rejected by an initial MTP. In particular, given {\em any} FWER-controlling procedure, they show how one can trivially obtain procedures controlling tail probabilities for the number (gFWER) and proportion (TPPFP) of false positives among the rejected hypotheses. A key feature of our proposed MTPs is the {\em test statistics null distribution} (rather than data generating null distribution) used to derive rejection regions (i.e., cut-offs) for the test statistics and resulting adjusted $p$-values \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. For general null hypotheses, defined in terms of submodels for the data generating distribution, this null distribution is the asymptotic distribution of the vector of null value shifted and scaled test statistics. Resampling procedures (e.g., based on the non-parametric or model-based bootstrap) are proposed to conveniently obtain consistent estimators of the null distribution and the resulting test statistic cut-offs and adjusted $p$-values \cite{DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,Pollard&vdLaanJSPI04}. The Bioconductor R package \Rpackage{multtest} provides software implementations of the above multiple testing procedures. \subsection{Outline} The present vignette provides a summary of our proposed multiple testing procedures (\cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}. Section \ref{anal:mult:s:methods}), discusses their software implementation in the Bioconductor R package \Rpackage{multtest} (Section \ref{anal:mult:s:software}). The accompanying vignette (MTPALL) describes their application to the ALL dataset of Chiaretti et al. \cite{Chiarettietal04}. Specifically, given a multivariate dataset (stored as a \Rclass{matrix}, \Rclass{data.frame}, or microarray object of class \Rclass{ExpressionSet}) and user-supplied choices for the test statistics, Type I error rate and its target level, resampling-based estimator of the test statistics null distribution, and procedure for error rate control, the main user-level function \Robject{MTP} returns unadjusted and adjusted $p$-values, cut-off vectors for the test statistics, and estimates and confidence regions for the parameters of interest. Both bootstrap and permutation estimators of the test statistics null distribution are available and can optionally be output to the user. The variety of models and hypotheses, test statistics, Type I error rates, and MTPs currently implemented are discussed in Section \ref{anal:mult:s:MTP}. The S4 class/method object-oriented programming approach was adopted to represent the results of a MTP. Several methods are defined to produce numerical and graphical summaries of these results (Section \ref{anal:mult:s:summaries}). A modular programming approach, which utilizes function closures, allows interested users to readily extend the package's functionality, by inserting functions for new test statistics and testing procedures (Section \ref{anal:mult:s:design}). Ongoing efforts are discussed in Section \ref{anal:mult:s:disc}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Methods} \label{anal:mult:s:methods} \subsection{Multiple hypothesis testing framework} \label{anal:mult:s:framework} {\em Hypothesis testing} is concerned with using observed data to test hypotheses, i.e., make decisions, regarding properties of the unknown data generating distribution. Below, we discuss in turn the main ingredients of a multiple testing problem, namely: data, null and alternative hypotheses, test statistics, multiple testing procedure (MTP) to define rejection regions for the test statistics, Type I and Type II errors, and adjusted $p$-values. The crucial choice of a test statistics null distribution is addressed in Section \ref{anal:mult:s:nullDistn}. Specific proposals of MTPs are given in Sections \ref{anal:mult:s:SS} -- \ref{anal:mult:s:AMTP}.\\ \noindent {\bf Data.} Let $X_1,\ldots,X_n$ be a {\em random sample} of $n$ independent and identically distributed (i.i.d.) random variables, $X \sim P\in {\cal M}$, where the {\em data generating distribution} $P$ is known to be an element of a particular {\em statistical model} ${\cal M}$ (i.e., a set of possibly non-parametric distributions).\\ \noindent {\bf Null and alternative hypotheses.} In order to cover a broad class of testing problems, define $M$ null hypotheses in terms of a collection of {\em submodels}, ${\cal M}(m)\subseteq {\cal M}$, $m=1,\ldots,M$, for the data generating distribution $P$. The $M$ {\em null hypotheses} are defined as $H_0(m) \equiv \mathrm{I}(P\in {\cal M}(m))$ and the corresponding {\em alternative hypotheses} as $H_1(m) \equiv \mathrm{I}(P \notin {\cal M}(m))$. In many testing problems, the submodels concern {\em parameters}, i.e., functions of the data generating distribution $P$, $\Psi(P) = \psi= (\psi(m):m=1,\ldots,M)$, such as means, differences in means, correlations, and parameters in linear models, generalized linear models, survival models, time-series models, dose-response models, etc. One distinguishes between two types of testing problems: {\em one-sided tests}, where $H_0(m) = \mathrm{I}(\psi(m) \leq \psi_0(m))$, and {\em two-sided tests}, where $H_0(m) = \mathrm{I}(\psi(m) = \psi_0(m))$. The hypothesized {\em null values}, $\psi_0(m)$, are frequently zero. Let ${\cal H}_0={\cal H}_0(P)\equiv \{m:H_0(m)=1\} = \{m: P \in {\cal M}(m)\}$ be the set of $h_0 \equiv |{\cal H}_0|$ true null hypotheses, where we note that ${\cal H}_0$ depends on the data generating distribution $P$. Let ${\cal H}_1={\cal H}_1(P) \equiv {\cal H}_0^c(P) = \{m: H_1(m) = 1\} = \{m: P \notin {\cal M}(m)\}$ be the set of $h_1 \equiv |{\cal H}_1| = M-h_0$ false null hypotheses, i.e., true positives. The goal of a multiple testing procedure is to accurately estimate the set ${\cal H}_0$, and thus its complement ${\cal H}_1$, while controlling probabilistically the number of false positives at a user-supplied level $\alpha$.\\ \noindent {\bf Test statistics.} A testing procedure is a data-driven rule for deciding whether or not to {\em reject} each of the $M$ null hypotheses $H_0(m)$, i.e., declare that $H_0(m)$ is false (zero) and hence $P \notin {\cal M}(m)$. The decisions to reject or not the null hypotheses are based on an $M$--vector of {\em test statistics}, $T_n =(T_n(m):m=1,\ldots,M)$, that are functions of the data, $X_1, \ldots, X_n$. Denote the typically unknown (finite sample) {\em joint distribution} of the test statistics $T_n$ by $Q_n=Q_n(P)$. Single-parameter null hypotheses are commonly tested using {\em $t$-statistics}, i.e., standardized differences, \begin{equation}\label{anal:mult:e:tstat} T_n(m) \equiv \frac{\mbox{Estimator} - \mbox{Null value}}{\mbox{Standard error}} = \sqrt{n}\frac{\psi_n(m) - \psi_0(m)}{{\sigma_n(m)}}. \end{equation} In general, the $M$--vector $\psi_n = (\psi_n(m): m=1,\ldots, M)$ denotes an asymptotically linear {\em estimator} of the parameter $M$--vector $\psi = (\psi(m): m=1,\ldots,M)$ and $(\sigma_n(m)/\sqrt{n}: m=1,\ldots, M)$ denote consistent estimators of the {\em standard errors} of the components of $\psi_n$. For tests of means, one recovers the usual one-sample and two-sample $t$-statistics, where the $\psi_n(m)$ and $\sigma_n(m)$ are based on sample means and variances, respectively. In some settings, it may be appropriate to use (unstandardized) {\em difference statistics}, $T_n(m) \equiv \sqrt{n}(\psi_n(m) - \psi_0(m))$ \cite{Pollard&vdLaanJSPI04}. Test statistics for other types of null hypotheses include $F$-statistics, $\chi^2$-statistics, and likelihood ratio statistics. \\ \noindent {\bf Example: ALL microarray dataset.} Suppose that, as in the analysis of the ALL dataset of Chiaretti et al. \cite{Chiarettietal04} (See accompanying vignette MTPALL), one is interested in identifying genes that are differentially expressed in two populations of ALL cancer patients, those with normal cytogenetic test status and those with abnormal test. The data consist of random $J$--vectors $X$, where the first $M$ entries of $X$ are microarray expression measures on $M$ genes of interest and the last entry, $X(J)$, is an indicator for cytogenetic test status (1 for normal, 0 for abnormal). Then, the parameter of interest is an $M$--vector of differences in mean expression measures in the two populations, $\psi(m) = E[X(m) | X(J)=0] - E[X(m) | X(J)=1]$, $m=1,\ldots,M$. To identify genes with higher mean expression measures in the abnormal compared to the normal cytogenetics subjects, one can test the one-sided null hypotheses $H_0(m) = \mathrm{I}(\psi(m) \leq 0)$ vs. the alternative hypotheses $H_1(m) = \mathrm{I}(\psi(m) > 0)$, using two-sample Welch $t$-statistics \begin{equation} T_n(m) \equiv \frac{\bar{X}_{0,n_0}(m) - \bar{X}_{1,n_1}(m)}{\sqrt{\frac{\sigma_{0,n_0}^2(m)}{n_0} + \frac{\sigma_{1,n_1}^2(m)}{n_1}}}, \end{equation} where $n_k$, $\bar{X}_{k,n_k}(m)$, and $\sigma_{k,n_k}^2(m)$ denote, respectively, the sample size, sample means, and sample variances, for patients with test status $k$, $k=0,\, 1$. The null hypotheses are rejected, i.e., the corresponding genes are declared differentially expressed, for large values of the test statistics $T_n(m)$.\\ \noindent {\bf Multiple testing procedure.} A {\em multiple testing procedure} (MTP) provides {\em rejection regions}, ${\cal C}_n(m)$, i.e., sets of values for each test statistic $T_n(m)$ that lead to the decision to reject the null hypothesis $H_0(m)$. In other words, a MTP produces a random (i.e., data-dependent) subset ${\cal R}_n$ of rejected hypotheses that estimates ${\cal H}_1$, the set of true positives, \begin{equation} {\cal R}_n={\cal R}(T_n, Q_{0n},\alpha) \equiv \{m:\mbox{$H_0(m)$ is rejected}\} = \{m: T_n(m) \in {\cal C}_n(m)\}, \end{equation} where ${\cal C}_n(m)={\cal C}(T_n,Q_{0n},\alpha)(m)$, $m=1,\ldots,M$, denote possibly random rejection regions. The long notation ${\cal R}(T_n, Q_{0n},\alpha)$ and ${\cal C}(T_n, Q_{0n},\alpha)(m)$ emphasizes that the MTP depends on: (i) the {\em data}, $X_1, \ldots, X_n$, through the $M$--vector of {\em test statistics}, $T_n = (T_n(m): m=1,\ldots, M)$; (ii) a test statistics {\em null distribution}, $Q_{0n}$ (Section \ref{anal:mult:s:nullDistn}); and (iii) the {\em nominal level} $\alpha$ of the MTP, i.e., the desired upper bound for a suitably defined false positive rate. Unless specified otherwise, it is assumed that large values of the test statistic $T_n(m)$ provide evidence against the corresponding null hypothesis $H_0(m)$, that is, we consider rejection regions of the form ${\cal C}_n(m) = (c_n(m),\infty)$, where $c_n(m)$ are to-be-determined {\em cut-offs}, or {\em critical values}.\\ \noindent {\bf Type I and Type II errors.} In any testing situation, two types of errors can be committed: a {\em false positive}, or {\em Type I error}, is committed by rejecting a true null hypothesis, and a {\em false negative}, or {\em Type II error}, is committed when the test procedure fails to reject a false null hypothesis. The situation can be summarized by Table \ref{anal:mult:t:TypeIandII}, below, where the number of Type I errors is $V_n \equiv \sum_{m \in {\cal H}_0} \mathrm{I}(T_n(m) \in {\cal C}_n(m)) = |{\cal R}_n \cap {\cal H}_0|$ and the number of Type II errors is $U_n \equiv \sum_{m \in {\cal H}_1} \mathrm{I}(T_n(m) \notin {\cal C}_n(m)) = |{\cal R}_n^c \cap {\cal H}_1|$. Note that both $U_n$ and $V_n$ depend on the unknown data generating distribution $P$ through the unknown set of true null hypotheses ${\cal H}_0 = {\cal H}_0(P)$. The numbers $h_0=|{\cal H}_0|$ and $h_1 = |{\cal H}_1| = M-h_0$ of true and false null hypotheses are {\em unknown parameters}, the number of rejected hypotheses $R_n \equiv \sum_{m=1}^M \mathrm{I}(T_n(m) \in {\cal C}_n(m)) = |{\cal R}_n|$ is an {\em observable random variable}, and the entries in the body of the table, $U_n$, $h_1 - U_n$, $V_n$, and $h_0-V_n$, are {\em unobservable random variables} (depending on $P$, through ${\cal H}_0(P)$). \begin{table}[hhh] \caption{Type I and Type II errors in multiple hypothesis testing.} \label{anal:mult:t:TypeIandII} \begin{tabular}{ll|cc|l} \multicolumn{5}{c}{} \\ \multicolumn{2}{c}{} & \multicolumn{2}{c}{Null hypotheses} & \multicolumn{1}{c}{}\\ \multicolumn{2}{c}{} & \multicolumn{1}{c}{not rejected} & \multicolumn{1}{c}{rejected} & \multicolumn{1}{c}{} \\ %%% \multicolumn{5}{c}{}\\ \cline{3-4} &&&&\\ & true & $| {\cal R}_n^c \cap {\cal H}_0 |$ & $V_n = | {\cal R}_n \cap {\cal H}_0 |$ & $h_0=| {\cal H}_0|$\\ &&&(Type I errors)&\\ Null hypotheses&&&&\\ & false & $U_n = | {\cal R}_n^c \cap {\cal H}_1 |$ & $| {\cal R}_n \cap {\cal H}_1 |$ & $h_1=| {\cal H}_1 |$\\ &&(Type II errors)&&\\ &&&&\\ \cline{3-4} %%% \multicolumn{5}{c}{}\\ \multicolumn{2}{c}{}& \multicolumn{1}{c}{$M-R_n$} & \multicolumn{1}{c}{ $R_n = | {\cal R}_n|$} &\multicolumn{1}{l}{$M$}\\ \end{tabular} \end{table} Ideally, one would like to simultaneously minimize both the chances of committing a Type I error and a Type II error. Unfortunately, this is not feasible and one seeks a {\em trade-off} between the two types of errors. A standard approach is to specify an acceptable level $\alpha$ for the Type I error rate and derive testing procedures, i.e., rejection regions, that aim to minimize the Type II error rate, i.e., maximize {\em power}, within the class of tests with Type I error rate at most $\alpha$. \\ \noindent {\bf Type I error rates.} When testing multiple hypotheses, there are many possible definitions for the Type I error rate (and power). Accordingly, we adopt a general definition of Type I error rates, as parameters, $\theta_n = \theta(F_{V_n,R_n})$, of the joint distribution $F_{V_n,R_n}$ of the numbers of Type I errors $V_n$ and rejected hypotheses $R_n$. Such a general representation covers the following commonly-used Type I error rates. \begin{enumerate} \item {\em Generalized family-wise error rate} (gFWER), or probability of at least $(k+1)$ Type I errors, $k=0,\ldots, (h_0-1)$, \begin{equation}\label{anal:mult:e:gFWER} gFWER(k) \equiv Pr(V_n > k) = 1 - F_{V_n}(k). \end{equation} When $k=0$, the gFWER is the usual {\em family-wise error rate}, FWER, controlled by the classical Bonferroni procedure. \item {\em Per-comparison error rate} (PCER), or expected proportion of Type I errors among the $M$ tests, \begin{equation}\label{anal:mult:e:PCER} PCER \equiv \frac{1}{M} E[V_n] = \frac{1}{M} \int v dF_{V_n}(v). \end{equation} \item {\em Tail probabilities for the proportion of false positives} (TPPFP) among the rejected hypotheses, \begin{equation}\label{anal:mult:e:TPPFP} TPPFP(q) \equiv Pr(V_n/R_n > q) = 1 - F_{V_n/R_n}(q), \qquad q \in (0,1), \end{equation} with the convention that $V_n/R_n \equiv 0$, if $R_n=0$. \item {\em False discovery rate} (FDR), or expected value of the proportion of false positives among the rejected hypotheses, \begin{equation}\label{anal:mult:e:FDR} FDR \equiv E[V_n/R_n] = \int q dF_{V_n/R_n}(q), \end{equation} again with the convention that $V_n/R_n \equiv 0$, if $R_n=0$ \cite{Benjamini&Hochberg95}. \end{enumerate} Note that while the gFWER is a parameter of only the {\em marginal} distribution $F_{V_n}$ for the number of Type I errors $V_n$ (tail probability, or survivor function, for $V_n$), the TPPFP is a parameter of the {\em joint} distribution of $(V_n,R_n)$ (tail probability, or survivor function, for $V_n/R_n$). Error rates based on the {\em proportion} of false positives (e.g., TPPFP and FDR) are especially appealing for the large-scale testing problems encountered in genomics, compared to error rates based on the {\em number} of false positives (e.g., gFWER), as they do not increase exponentially with the number of hypotheses. The above four error rates are part of the broad class of Type I error rates considered in Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and defined as tail probabilities $Pr(g(V_n,R_n) > q)$ and expected values $E[g(V_n,R_n)]$ for an arbitrary function $g(V_n,R_n)$ of the numbers of false positives $V_n$ and rejected hypotheses $R_n$. The gFWER and TPPFP correspond to the special cases $g(V_n,R_n) = V_n$ and $g(V_n,R_n) = V_n/R_n$, respectively.\\ \noindent {\bf Adjusted $p$-values.} The notion of $p$-value extends directly to multiple testing problems, as follows. Given a MTP, ${\cal R}_n = {\cal R}(T_n,Q_{0n}, \alpha)$, the {\em adjusted $p$-value}, $\widetilde{P}_{0n}(m) = \widetilde{P}(T_n,Q_{0n})(m)$, for null hypothesis $H_0(m)$, is defined as the smallest Type I error level $\alpha$ at which one would reject $H_0(m)$, that is, \begin{eqnarray} \widetilde{P}_{0n}(m) &\equiv& \inf \left \{ \alpha \in [0,1]: \mbox{Reject $H_0(m)$ at MTP level $\alpha$}\right \}\\ &=& \inf\left \{\alpha \in [0,1]: m \in {\cal R}_n \right \}\nonumber \\ &=& \inf\left \{\alpha \in [0,1]: T_n(m) \in {\cal C}_n(m) \right \}, \qquad m=1,\ldots, M.\nonumber \end{eqnarray} As in single hypothesis tests, the smaller the adjusted $p$-value, the stronger the evidence against the corresponding null hypothesis. The main difference between unadjusted (i.e., for the test of a single hypothesis) and adjusted $p$-values is that the latter are defined in terms of the Type I error rate for the {\em entire} testing procedure, i.e., take into account the multiplicity of tests. For example, the adjusted $p$-values for the classical Bonferroni procedure for FWER control are given by $\widetilde{P}_{0n}(m) = \min(M P_{0n}(m), 1)$, where $P_{0n}(m)$ is the unadjusted $p$-value for the test of single hypothesis $H_0(m)$. We now have two representations for a MTP, in terms of rejection regions for the test statistics and in terms of adjusted $p$-values \begin{equation} {\cal R}_n = \{m: T_n(m) \in {\cal C}_n(m) \} = \{m: \widetilde{P}_{0n}(m) \leq \alpha\}. \end{equation} Again, as in the single hypothesis case, an advantage of reporting adjusted $p$-values, as opposed to only rejection or not of the hypotheses, is that the level $\alpha$ of the test does not need to be determined in advance, that is, results of the multiple testing procedure are provided for all $\alpha$. Adjusted $p$-values are convenient and flexible summaries of the strength of the evidence against each null hypothesis, in terms of the Type I error rate for the entire MTP (gFWER, TPPFP, FDR, or any other suitably defined error rate). \\ \noindent {\bf Stepwise multiple testing procedures.} One usually distinguishes between two main classes of multiple testing procedures, single-step and stepwise procedures. In {\em single-step procedures}, each null hypothesis is evaluated using a rejection region that is independent of the results of the tests of other hypotheses. Improvement in power, while preserving Type I error rate control, may be achieved by {\em stepwise procedures}, in which rejection of a particular null hypothesis depends on the outcome of the tests of other hypotheses. That is, the (single-step) test procedure is applied to a sequence of successively smaller nested random (i.e., data-dependent) subsets of null hypotheses, defined by the ordering of the test statistics (common cut-offs) or unadjusted $p$-values (common-quantile cut-offs). In {\em step-down procedures}, the hypotheses corresponding to the {\em most significant} test statistics (i.e., largest absolute test statistics or smallest unadjusted $p$-values) are considered successively, with further tests depending on the outcome of earlier ones. As soon as one fails to reject a null hypothesis, no further hypotheses are rejected. In contrast, for {\em step-up procedures}, the hypotheses corresponding to the {\em least significant} test statistics are considered successively, again with further tests depending on the outcome of earlier ones. As soon as one hypothesis is rejected, all remaining more significant hypotheses are rejected.\\ \noindent {\bf Confidence regions.} For the test of single-parameter null hypotheses and for any Type I error rate of the form $\theta(F_{V_n})$, Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} provide results on the correspondence between single-step MTPs and $\theta$--specific {\em confidence regions}. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Test statistics null distribution} \label{anal:mult:s:nullDistn} \noindent {\bf Test statistics null distribution.} One of the main tasks in specifying a MTP is to derive rejection regions for the test statistics such that the Type I error rate is controlled at a desired level $\alpha$, i.e., such that $\theta(F_{V_n,R_n}) \leq \alpha$, for finite sample control, or $\limsup_n \theta(F_{V_n,R_n}) \leq \alpha$, for asymptotic control. However, one is immediately faced with the problem that the {\em true distribution} $Q_n=Q_n(P)$ of the test statistics $T_n$ is usually {\em unknown}, and hence, so are the distributions of the numbers of Type I errors, $V_n = \sum_{m \in {\cal H}_0} \mathrm{I}(T_n(m) \in {\cal C}_n(m))$, and rejected hypotheses, $R_n = \sum_{m=1}^M \mathrm{I}(T_n(m) \in {\cal C}_n(m))$. In practice, the test statistics {\em true distribution} $Q_n(P)$ is replaced by a {\em null distribution} $Q_0$ (or estimate thereof, $Q_{0n}$), in order to derive rejection regions, ${\cal C}(T_n,Q_0,\alpha)(m)$, and resulting adjusted $p$-values, $\widetilde{P}(T_n,Q_0)(m)$. The choice of null distribution $Q_0$ is crucial, in order to ensure that (finite sample or asymptotic) control of the Type I error rate under the {\em assumed} null distribution $Q_0$ does indeed provide the required control under the {\em true} distribution $Q_n(P)$. For proper control, the null distribution $Q_0$ must be such that the Type I error rate under this assumed null distribution {\em dominates} the Type I error rate under the true distribution $Q_n(P)$. That is, one must have $\theta(F_{V_n,R_n}) \leq \theta(F_{V_0,R_0})$, for finite sample control, and $\limsup_n \theta(F_{V_n,R_n}) \leq \theta(F_{V_0,R_0})$, for asymptotic control, where $V_0$ and $R_0$ denote, respectively, the numbers of Type I errors and rejected hypotheses under the assumed null distribution $Q_0$. For error rates $\theta(F_{V_n})$, defined as arbitrary parameters of the distribution of the number of Type I errors $V_n$, we propose as null distribution the asymptotic distribution $Q_0$ of the vector of null value shifted and scaled test statistics \cite{Dudoit&vdLaanMTBook,DudoitetalMT1SAGMB04,vdLaanetalMT2SAGMB04,vdLaanetalMT3SAGMB04,Pollard&vdLaanJSPI04}: \begin{equation} Z_n(m) \equiv \sqrt{\min \left(1, \frac{\tau_0(m)}{Var[T_n(m)]}\right)} \Bigl( T_n(m) + \lambda_0(m) - E[T_n(m)] \Bigr). \end{equation} For the test of single-parameter null hypotheses using $t$-statistics, the null values are $\lambda_0(m)=0$ and $\tau_0(m)=1$. For testing the equality of $K$ population means using $F$-statistics, the null values are $\lambda_0(m)= 1$ and $\tau_0(m) = 2/(K-1)$, under the assumption of equal variances in the different populations. Dudoit et al. \cite{DudoitetalMT1SAGMB04} and van der Laan et al. \cite{vdLaanetalMT2SAGMB04} prove that this null distribution does indeed provide the desired asymptotic control of the Type I error rate $\theta(F_{V_n})$, for general data generating distributions (with arbitrary dependence structures among variables), null hypotheses (defined in terms of submodels for the data generating distribution), and test statistics (e.g., $t$-statistics, $F$-statistics). For a broad class of testing problems, such as the test of single-parameter null hypotheses using $t$-statistics (as in Equation (\ref{anal:mult:e:tstat})), the null distribution $Q_0$ is an $M$--variate Gaussian distribution with mean vector zero and covariance matrix $\Sigma^*(P)$: $Q_0 = Q_0(P) \equiv N(0,\Sigma^*(P))$. For tests of means, where the parameter of interest is the $M$--dimensional mean vector $\Psi(P) = \psi = E[X]$, the estimator $\psi_n$ is simply the $M$--vector of sample averages and $\Sigma^*(P)$ is the correlation matrix of $X \sim P$, $Cor[X]$. More generally, for an asymptotically linear estimator $\psi_n$, $\Sigma^*(P)$ is the correlation matrix of the vector influence curve (IC). Note that the following important points distinguish our approach from existing approaches to Type I error rate control. Firstly, we are only concerned with Type I error control under the {\em true data generating distribution} $P$. The notions of weak and strong control (and associated subset pivotality, Westfall \& Young \cite{Westfall&Young93}, p. 42--43) are therefore irrelevant to our approach. Secondly, we propose a {\em null distribution for the test statistics} ($T_n \sim Q_0$), and not a data generating null distribution ($X \sim P_0\in \cap_{m=1}^M {\cal M}(m)$). The latter practice does not necessarily provide proper Type I error control, as the test statistics' {\em assumed} null distribution $Q_n(P_0)$ and their {\em true} distribution $Q_n(P)$ may have different dependence structures (in the limit) for the true null hypotheses ${\cal H}_0$.\\ \noindent {\bf Bootstrap estimation of the test statistics null distribution.} In practice, since the data generating distribution $P$ is unknown, then so is the proposed null distribution $Q_0=Q_0(P)$. Resampling procedures, such as bootstrap Procedure \ref{anal:mult:proc:boot}, below, may be used to conveniently obtain consistent estimators $Q_{0n}$ of the null distribution $Q_0$ and of the resulting test statistic cut-offs and adjusted $p$-values. Dudoit et al. \cite{DudoitetalMT1SAGMB04} and van der Laan et al. \cite{vdLaanetalMT2SAGMB04} show that single-step and step-down procedures based on consistent estimators of the null distribution $Q_0$ also provide asymptotic control of the Type I error rate. The reader is referred to these two articles and to Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} for details on the choice of null distribution and various approaches for estimating this null distribution. Having selected a suitable test statistics null distribution, there remains the main task of specifying rejection regions for each null hypothesis, i.e., cut-offs for each test statistic. Among the different approaches for defining rejection regions, we distinguish between single-step vs. stepwise procedures, and common cut-offs (i.e., the same cut-off $c_0$ is used for each test statistic) vs. common-quantile cut-offs (i.e., the cut-offs are the $\delta_0$--quantiles of the marginal null distributions of the test statistics). The next three subsections discuss three main approaches for deriving rejection regions and corresponding adjusted $p$-values: single-step common-cut-off and common-quantile procedures for control of general Type I error rates $\theta(F_{V_n})$ (Section \ref{anal:mult:s:SS}); step-down common-cut-off (maxT) and common-quantile (minP) procedures for control of the FWER (Section \ref{anal:mult:s:SD}); augmentation procedures for control of the gFWER and TPPFP, based on an initial FWER-controlling procedure (Section \ref{anal:mult:s:AMTP}). \begin{center} \fbox{\parbox{4.5in}{% \begin{procedure} \label{anal:mult:proc:boot} {\bf [Bootstrap estimation of the null distribution $Q_0$]} \begin{enumerate} \item Let $P_n^{\star}$ denote an estimator of the data generating distribution $P$. For the {\em non-parametric bootstrap}, $P_n^{\star}$ is simply the empirical distribution $P_n$, that is, samples of size $n$ are drawn at random, with replacement from the observed data $X_1, \ldots, X_n$. For the {\em model-based bootstrap}, $P_n^{\star}$ is based on a model ${\cal M}$ for the data generating distribution $P$, such as the family of $M$--variate Gaussian distributions. \item Generate $B$ bootstrap samples, each consisting of $n$ i.i.d. realizations of a random variable $X^{\#} \sim P_n^{\star}$. \item For the $b$th bootstrap sample, $b=1,\ldots, B$, compute an $M$--vector of test statistics, $T_n^{\#}(\cdot,b) = (T_n^{\#}(m,b): m=1,\ldots,M)$. Arrange these bootstrap statistics in an $M \times B$ matrix, $\mathbf{T}_n^{\#} = \bigl(T_n^{\#}(m,b)\bigr)$, with rows corresponding to the $M$ null hypotheses and columns to the $B$ bootstrap samples. \item Compute row means, $E[T_n{^\#}(m,\cdot)]$, and row variances, $Var[T_n{^\#}(m,\cdot)]$, of the matrix $\mathbf{T}_n^{\#}$, to yield estimates of the true means $E[T_n(m)]$ and variances $Var[T_n(m)]$ of the test statistics, respectively. \item Obtain an $M \times B$ matrix, $\mathbf{Z}_n^{\#} = \bigl(Z_n^{\#}(m,b)\bigr)$, of null value shifted and scaled bootstrap statistics $Z_n^{\#}(m,b)$, by row-shifting and scaling the matrix $\mathbf{T}_n^{\#}$ using the bootstrap estimates of $E[T_n(m)]$ and $Var[T_n(m)]$ and the user-supplied null values $\lambda_0(m)$ and $\tau_0(m)$. That is, compute \begin{eqnarray} Z_n^{\#}(m,b) &\equiv& \sqrt{\min \left(1, \frac{\tau_0(m)}{Var[T_n{^\#}(m,\cdot)]}\right)}\\ && \qquad \times \ \Bigl( T_n^{\#}(m,b) + \lambda_0(m) - E[T_n{^\#}(m,\cdot)] \Bigr) \nonumber . \end{eqnarray} \item The bootstrap estimate $Q_{0n}$ of the null distribution $Q_0$ is the empirical distribution of the $B$ columns $Z_n^{\#}(\cdot,b)$ of matrix $\mathbf{Z}_n^{\#}$. \end{enumerate} \end{procedure} }} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Single-step procedures for control of general Type I error rates $\theta(F_{V_n})$} \label{anal:mult:s:SS} Dudoit et al. \cite{DudoitetalMT1SAGMB04} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} propose single-step common-cut-off and common-quantile procedures for controlling arbitrary parameters $\theta(F_{V_n})$ of the distribution of the number of Type I errors. The main idea is to substitute control of the parameter $\theta(F_{V_n})$, for the {\em unknown, true distribution} $F_{V_n}$ of the number of Type I errors, by control of the corresponding parameter $\theta(F_{R_0})$, for the {\em known, null distribution} $F_{R_0}$ of the number of rejected hypotheses. That is, consider single-step procedures of the form ${\cal R}_n \equiv \{m: T_n(m)> c_n(m) \}$, where the cut-offs $c_n(m)$ are chosen so that $\theta(F_{R_0}) \leq \alpha$, for $R_0 \equiv \sum_{m=1}^M \mathrm{I}(Z(m) > c_n(m))$ and $Z \sim Q_0$. Among the class of MTPs that satisfy $\theta(F_{R_0}) \leq \alpha$, Dudoit et al. \cite{DudoitetalMT1SAGMB04} and Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} propose two procedures, based on common cut-offs and common-quantile cut-offs, respectively. The procedures are summarized below and the reader is referred to the articles for proofs and details on the derivation of cut-offs and adjusted $p$-values.\\ \noindent {\bf Single-step common-cut-off procedure.} The set of rejected hypotheses for the {\em $\theta$--controlling single-step common-cut-off procedure} is of the form ${\cal R}_n \equiv \{m: T_n(m)> c_0 \}$, where the common cut-off $c_0$ is the {\em smallest} (i.e., least conservative) value for which $\theta(F_{R_0}) \leq \alpha$. For $gFWER(k)$ control (special case $\theta(F_{V_n}) = 1 - F_{V_n}(k)$), the procedure is based on the {\em $(k+1)$st ordered test statistic}. Specifically, the adjusted $p$-values are given by \begin{equation}\label{anal:mult:e:SScut} \widetilde{p}_{0n}(m) = Pr_{Q_0} \left(Z^{\circ}(k+1) \geq t_n(m) \right), \qquad m=1,\ldots, M, \end{equation} where $Z^{\circ}(m)$ denotes the $m$th ordered component of $Z = (Z(m): m=1,\ldots,M) \sim Q_0$, so that $Z^{\circ}(1) \geq \ldots \geq Z^{\circ}(M)$. For FWER control ($k=0$), the procedure reduces to the {\em single-step maxT procedure}, based on the {\em maximum test statistic}, $Z^{\circ}(1)$.\\ \noindent {\bf Single-step common-quantile procedure.} The set of rejected hypotheses for the {\em $\theta$--controlling single-step common-quantile procedure} is of the form ${\cal R}_n \equiv \{m: T_n(m)> c_0(m) \}$, where $c_0(m) = Q_{0,m}^{-1}(\delta_0)$ is the $\delta_0$--quantile of the marginal null distribution $Q_{0,m}$ of the $m$th test statistic, i.e., the smallest value $c$ such that $Q_{0,m}(c) = Pr_{Q_0}(Z(m) \leq c) \geq \delta_0$ for $Z \sim Q_0$. Here, $\delta_0$ is chosen as the {\em smallest} (i.e., least conservative) value for which $\theta(F_{R_0}) \leq \alpha$. For $gFWER(k)$ control, the procedure is based on the {\em $(k+1)$st ordered unadjusted $p$-value}. Specifically, let $\bar{Q}_{0,m} \equiv 1 - Q_{0,m}$ denote the survivor functions for the marginal null distributions $Q_{0,m}$ and define unadjusted $p$-values $P_0(m) \equiv \bar{Q}_{0,m}(Z(m))$ and $P_{0n}(m) \equiv \bar{Q}_{0,m}(T_n(m))$, for $Z \sim Q_0$ and $T_n \sim Q_n$, respectively. Then, the adjusted $p$-values for the common-quantile procedure are given by \begin{equation}\label{anal:mult:e:SSquant} \widetilde{p}_{0n}(m) = Pr_{Q_0} \left(P_0^{\circ}(k+1) \leq p_{0n}(m) \right), \qquad m=1,\ldots, M, \end{equation} where $P_0^{\circ}(m)$ denotes the $m$th ordered component of the $M$--vector of unadjusted $p$-values $(P_0(m): m=1,\ldots,M)$, so that $P_0^{\circ}(1) \leq \ldots \leq P_0^{\circ}(M)$. For FWER control ($k=0$), one recovers the {\em single-step minP procedure}, based on the {\em minimum unadjusted $p$-value}, $P_0^{\circ}(1)$. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Step-down procedures for control of the family-wise error rate} \label{anal:mult:s:SD} van der Laan et al. \cite{vdLaanetalMT2SAGMB04} propose step-down common-cut-off (maxT) and common-quantile (minP) procedures for controlling the family-wise error rate, FWER. These procedures are similar in spirit to their single-step counterparts in Section \ref{anal:mult:s:SS} (special case $\theta(F_{V_n}) = 1 - F_{V_n}(0)$), with the important step-down distinction that hypotheses are considered successively, from most significant to least significant, with further tests depending on the outcome of earlier ones. That is, the test procedure is applied to a sequence of successively smaller nested random (i.e., data-dependent) subsets of null hypotheses, defined by the ordering of the test statistics (common cut-offs) or unadjusted $p$-values (common-quantile cut-offs). \\ \noindent {\bf Step-down common-cut-off (maxT) procedure.} Rather than being based solely on the distribution of the maximum test statistic over all $M$ hypotheses, the step-down common cut-offs and corresponding adjusted $p$-values are based on the distributions of maxima of test statistics over successively smaller nested random subsets of null hypotheses. Specifically, let $O_n(m)$ denote the indices for the ordered test statistics $T_n(m)$, so that $T_n(O_n(1)) \geq \ldots \geq T_n(O_n(M))$. The step-down common-cut-off procedure is then based on the distributions of maxima of test statistics over the nested subsets of ordered hypotheses $\overline{\cal O}_n(h) \equiv \{O_n(h),\ldots,O_n(M)\}$. The adjusted $p$-values for the {\em step-down maxT procedure} are given by \begin{equation}\label{anal:mult:e:SDmaxT} \widetilde{p}_{0n}(o_n(m)) = \max_{h=1,\ldots, m}\ \left\{ Pr_{Q_0}\left( \max_{l \in \overline{\cal o}_n(h)} Z(l) \geq t_n(o_n(h))\right) \right \}, \end{equation} where $Z=(Z(m): m=1,\ldots, M) \sim Q_0$. Taking maxima of the probabilities over $h \in \{1, \ldots, m\}$ enforces monotonicity of the adjusted $p$-values and ensures that the procedure is indeed step-down, that is, one can only reject a particular hypothesis provided all hypotheses with more significant (i.e., larger) test statistics were rejected beforehand.\\ \noindent {\bf Step-down common-quantile (minP) procedure.} Likewise, the step-down common-quantile cut-offs and corresponding adjusted $p$-values are based on the distributions of minima of unadjusted $p$-values over successively smaller nested random subsets of null hypotheses. Specifically, let $O_n(m)$ denote the indices for the ordered unadjusted $p$-values $P_{0n}(m)$, so that $P_{0n}(O_n(1)) \leq \ldots \leq P_{0n}(O_n(M))$. The step-down common-quantile procedure is then based on the distributions of minima of unadjusted $p$-values over the nested subsets of ordered hypotheses $\overline{\cal O}_n(h) \equiv \{O_n(h),\ldots,O_n(M)\}$. The adjusted $p$-values for the {\em step-down minP procedure} are given by \begin{equation}\label{anal:mult:e:SDminP} \widetilde{p}_{0n}(o_n(m)) = \max_{h=1,\ldots, m}\ \left\{ Pr_{Q_0}\left( \min_{l \in \overline{\cal o}_n(h)} P_0(l) \leq p_{0n}(o_n(h))\right) \right \}, \end{equation} where $P_0(m) = \bar{Q}_{0,m}(Z(m))$ and $Z=(Z(m): m=1,\ldots, M) \sim Q_0$. %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Augmentation multiple testing procedures} \label{anal:mult:s:AMTP} Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} and van der Laan et al. \cite{vdLaanetalMT3SAGMB04} discuss {\em augmentation multiple testing procedures} (AMTP), obtained by adding suitably chosen null hypotheses to the set of null hypotheses already rejected by an initial MTP. Specifically, given {\em any} initial procedure controlling the generalized family-wise error rate, augmentation procedures are derived for controlling Type I error rates defined as tail probabilities and expected values for arbitrary functions $g(V_n,R_n)$ of the numbers of Type I errors and rejected hypotheses (e.g., proportion $g(V_n,R_n)=V_n/R_n$ of false positives among the rejected hypotheses). Adjusted $p$-values for the AMTP are shown to be simply shifted versions of the adjusted $p$-values of the original MTP. The important practical implication of these results is that {\em any} FWER-controlling MTP and its corresponding adjusted $p$-values, provide, without additional work, multiple testing procedures controlling a broad class of Type I error rates and their adjusted $p$-values. One can therefore build on the large pool of available FWER-controlling procedures, such as the single-step and step-down maxT and minP procedures discussed in Sections \ref{anal:mult:s:SS} and \ref{anal:mult:s:SD}, above. Augmentation procedures for controlling tail probabilities of the number (gFWER) and proportion (TPPFP) of false positives, based on an initial FWER-controlling procedure, are treated in detail in van der Laan et al. \cite{vdLaanetalMT3SAGMB04} and are summarized below. The gFWER and TPPFP correspond to the special cases $g(V_n,R_n) = V_n$ and $g(V_n,R_n) = V_n/R_n$, respectively. Denote the adjusted $p$-values for the initial FWER-controlling procedure by $\widetilde{P}_{0n}(m)$. Order the $M$ null hypotheses according to these $p$-values, from smallest to largest, that is, define indices $O_n(m)$, so that $\widetilde{P}_{0n}(O_n(1))\leq \ldots \leq \widetilde{P}_{0n}(O_n(M))$. Then, for a nominal level $\alpha$ test, the initial FWER-controlling procedure rejects the $R_n$ null hypotheses \begin{equation} {\cal R}_n \equiv \{m: \widetilde{P}_{0n}(m) \leq \alpha\}. \end{equation} \noindent {\bf Augmentation procedure for controlling the gFWER.} For control of $gFWER(k)$ at level $\alpha$, given an initial FWER-controlling procedure, reject the $R_n$ hypotheses specified by this MTP, as well as the next $A_n = \min\{k, M-R_n\}$ most significant null hypotheses. The adjusted $p$-values $\widetilde{P}_{0n}^{+}(O_n(m))$ for the new gFWER-controlling AMTP are simply $k$--shifted versions of the adjusted $p$-values of the initial FWER-controlling MTP: \begin{equation}\label{anal:mult:e:adjpgFWER} \widetilde{P}_{0n}^{+}(O_n(m)) = \begin{cases} 0, & \text{if $m=1,\ldots,k$},\\ \widetilde{P}_{0n}(O_n(m-k)), & \text{if $m=k+1, \ldots, M$}. \end{cases} \end{equation} That is, the first $k$ adjusted $p$-values are set to zero and the remaining $p$-values are the adjusted $p$-values of the FWER-controlling MTP shifted by $k$. The AMTP thus guarantees at least $k$ rejected hypotheses.\\ \noindent {\bf Augmentation procedure for controlling the TPPFP.} For control of $TPPFP(q)$ at level $\alpha$, given an initial FWER-controlling procedure, reject the $R_n$ hypotheses specified by this MTP, as well as the next $A_n$ most significant null hypotheses, \begin{eqnarray} \label{anal:mult:e:augTPPFP} A_n &=& \max\left\{m \in \{0,\ldots, M - R_n\}:\frac{m}{m+ R_n}\leq q\right\} \nonumber\\ &=& \min \left\{ \left \lfloor \frac{q R_n}{1-q} \right \rfloor, M-R_n \right\}, \end{eqnarray} where the {\em floor} $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$, i.e., $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. That is, keep rejecting null hypotheses until the ratio of additional rejections to the total number of rejections reaches the allowed proportion $q$ of false positives. The adjusted $p$-values $\widetilde{P}_{0n}^{+}(O_n(m))$ for the new TPPFP-controlling AMTP are simply shifted versions of the adjusted $p$-values of the initial FWER-controlling MTP, that is, \begin{equation}\label{anal:mult:e:adjpTPPFP} \widetilde{P}_{0n}^{+}(O_n(m)) = \widetilde{P}_{0n}(O_n(\lceil(1-q)m\rceil)), \qquad m=1,\ldots,M, \end{equation} where the {\em ceiling} $\lceil x \rceil$ denotes the least integer greater than or equal to $x$, i.e., $\lceil x \rceil -1 < x \leq \lceil x \rceil$. \\ \noindent {\bf FDR-controlling procedures.} Given any TPPFP-controlling procedure, van der Laan et al. \cite{vdLaanetalMT3SAGMB04} derive two simple (conservative) FDR-controlling procedures. The more general and conservative procedure controls the FDR at nominal level $\alpha$, by controlling $TPPFP(\alpha/2)$ at level $\alpha/2$. The less conservative procedure controls the FDR at nominal level $\alpha$, by controlling $TPPFP(1 - \sqrt{1-\alpha})$ at level $1 - \sqrt{1-\alpha}$. In what follows, we refer to these two MTPs as "conservative" and "restricted", respectively. The reader is referred to the original article for details and proofs of FDR control (Section 2.4, Theorem 3). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Software implementation: \Rpackage{multtest} package} \label{anal:mult:s:software} \subsection{Overview} The MTPs proposed in Sections \ref{anal:mult:s:SS} -- \ref{anal:mult:s:AMTP} are implemented in the latest version of the Bioconductor R package \Rpackage{multtest} (version 1.5.0, Bioconductor release 1.5). New features include: expanded class of tests (e.g., for regression parameters in linear models and in Cox proportional hazards models); control of a wider selection of Type I error rates (e.g., gFWER, TPPFP, FDR); bootstrap estimation of the test statistics null distribution; augmentation multiple testing procedures; confidence regions for the parameter vector of interest. Because of their general applicability and novelty, we focus in this section on MTPs that utilize a bootstrap estimated test statistics null distribution and that are available through the package's main user-level function: \Robject{MTP}. Note that for many testing problems, MTPs based on permutation (rather than bootstrap) estimated null distributions are also available in the present and earlier versions of \Rpackage{multtest}. In particular, permutation-based step-down maxT and minP FWER-controlling MTPs are implemented in the functions \Robject{mt.maxT} and \Robject{mt.minP}, respectively, and can also be applied directly through a call to the \Robject{MTP} function. We stress that {\em all} the bootstrap-based MTPs implemented in \Rpackage{multtest} can be performed using the main user-level function \Robject{MTP}. Most users will therefore only need to be familiar with this function. Other functions are provided primarily for the benefit of more advanced users, interested in extending the package's functionality (Section \ref{anal:mult:s:design}). For greater detail on \Rpackage{multtest} functions, the reader is referred to the package documentation, in the form of help files, e.g., \Robject{? MTP}, and vignettes, e.g., \Robject{openVignette("multtest")}. One needs to specify the following main ingredients when applying a MTP: the {\em data}, $X_1, \ldots, X_n$; suitably defined {\em test statistics}, $T_n$, for each of the null hypotheses under consideration (e.g., one-sample $t$-statistics, robust rank-based $F$-statistics, $t$-statistics for regression coefficients in Cox proportional hazards model); a choice of {\em Type I error rate}, $\theta(F_{V_n,R_n})$, providing an appropriate measure of false positives for the particular testing problem (e.g., $TPPFP(0.10)$); a proper {\em joint null distribution}, $Q_0$ (or estimate thereof, $Q_{0n})$, for the test statistics (e.g., bootstrap null distribution as in Procedure \ref{anal:mult:proc:boot}); given the previously defined components, a {\em multiple testing procedure}, ${\cal R}_n={\cal R}(T_n, Q_{0n},\alpha)$, for controlling the error rate $\theta(F_{V_n,R_n})$ at a target level $\alpha$. Accordingly, the \Rpackage{multtest} package has adopted a modular and extensible approach to the implementation of MTPs, with the following four main types of functions. \begin{itemize} \item Functions for computing the {\em test statistics}, $T_n$. These are internal functions (e.g., \Robject{meanX}, \Robject{coxY}), i.e., functions that are generally not called directly by the user. As shown in Section \ref{anal:mult:s:MTP}, below, the type of test statistic is specified by the \Robject{test} argument of the main user-level function \Robject{MTP}. Advanced users, interested in extending the class of tests available in \Rpackage{multtest}, can simply add their own test statistic functions to the existing library of such internal functions (see Section \ref{anal:mult:s:design}, below, for a brief discussion of the closure approach for specifying test statistics). \item Functions for obtaining the {\em test statistics null distribution}, $Q_0$, or an estimate thereof, $Q_{0n}$. The main function currently available is the internal function \Robject{boot.resample}, implementing the non-parametric version of bootstrap Procedure \ref{anal:mult:proc:boot} (Section \ref{anal:mult:s:nullDistn}). \item Functions for implementing the {\em multiple testing procedure}, ${\cal R}(T_n, Q_{0n},\alpha)$, i.e., for deriving rejection regions, confidence regions, and adjusted $p$-values. The main function is the user-level wrapper function \Robject{MTP}, which implements the single-step and step-down maxT and minP procedures for FWER control (Sections \ref{anal:mult:s:SS} and \ref{anal:mult:s:SD}). The functions \Robject{fwer2gfwer}, \Robject{fwer2tppfp}, and \Robject{fwer2fdr} implement, respectively, gFWER-, TPPFP-, and FDR-controlling augmentation multiple testing procedures, based on adjusted $p$-values from {\em any} FWER-controlling procedure, and can be called via the \Robject{typeone} argument to \Robject{MTP} (Section \ref{anal:mult:s:AMTP}). \item Functions for {\em numerical and graphical summaries} of a MTP. As described in Section \ref{anal:mult:s:summaries}, below, a number of summary methods are available to operate on objects of class \Rclass{MTP}, output from the main \Robject{MTP} function. \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Resampling-based multiple testing procedures: \Robject{MTP} function} \label{anal:mult:s:MTP} The main user-level function for resampling-based multiple testing is \Robject{MTP}. Its input/output and usage are described next. \begin{Schunk} \begin{Sinput} > library(Biobase) > library(multtest) \end{Sinput} \end{Schunk} \begin{Schunk} \begin{Sinput} > args(MTP) \end{Sinput} \begin{Soutput} function (X, W = NULL, Y = NULL, Z = NULL, Z.incl = NULL, Z.test = NULL, na.rm = TRUE, test = "t.twosamp.unequalvar", robust = FALSE, standardize = TRUE, alternative = "two.sided", psi0 = 0, typeone = "fwer", k = 0, q = 0.1, fdr.method = "conservative", alpha = 0.05, smooth.null = FALSE, nulldist = "boot", B = 1000, method = "ss.maxT", get.cr = FALSE, get.cutoff = FALSE, get.adjp = TRUE, keep.nulldist = TRUE, seed = NULL) NULL \end{Soutput} \end{Schunk} \noindent {\bf INPUT.} \begin{description} \item{\em Data.} The data, \Robject{X}, consist of a $J$--dimensional random vector, observed on each of $n$ sampling units (patients, cell lines, mice, etc). These data can be stored in a $J \times n$ \Rclass{matrix}, \Rclass{data.frame}, or \Rclass{exprs} slot of an object of class \Rclass{ExpressionSet}. In some settings, a $J$--vector of weights may be associated with each observation, and stored in a $J \times n$ weight matrix, \Robject{W} (or an $n$--vector \Robject{W}, if the weights are the same for each of the $J$ variables). One may also observe a possibly censored continuous or polychotomous outcome, \Robject{Y}, for each sampling unit, as obtained, for example, from the \Rclass{phenoData} slot of an object of class \Rclass{ExpressionSet}. In some studies, $L$ additional covariates may be measured on each sampling unit and stored in \Robject{Z}, an $n \times L$ \Rclass{matrix} or \Rclass{data.frame}. When the tests concern parameters in regression models with covariates from \Robject{Z} (e.g., values \Robject{lm.XvsZ}, \Robject{lm.YvsXZ}, and \Robject{coxph.YvsXZ}, for the argument \Robject{test}, described below), the arguments \Robject{Z.incl} and \Robject{Z.test} specify, respectively, which covariates (i.e., which columns of \Robject{Z}, including \Robject{Z.test}) should be included in the model and which regression parameter is to be tested (only when \texttt{test="lm.XvsZ"}). The covariates can be specified either by a numeric column index or character string. If \Robject{X} is an instance of the class \Rclass{ExpressionSet}, \Robject{Y} can be a column index or character string referring to the variable in the \Rclass{data.frame} \Robject{pData(X)} to use as outcome. Likewise, \Robject{Z.incl} and \Robject{Z.test} can be column indices or character strings referring to the variables in \Robject{pData(X)} to use as covariates. The data components (\Robject{X}, \Robject{W}, \Robject{Y}, \Robject{Z}, \Robject{Z.incl}, and \Robject{Z.test}) are the first six arguments to the \Robject{MTP} function. Only \Robject{X} is a required argument; the others are by default \Robject{NULL}. The argument \Robject{na.rm} allows one to control the treatment of "Not Available" or \Robject{NA} values. It is set to \Robject{TRUE}, by default, so that an observation with a missing value in any of the data objects' $j$th component ($j=1,\ldots,J$) is excluded from computation of any of the relevant test statistics. \item{\em Test statistics.} The test statistics should be chosen based on the parameter of interest (e.g., location, scale, or regression parameters) and the hypotheses one wishes to test. In the current implementation of \Rpackage{multtest}, the following test statistics are available through the argument \Robject{test}, with default value \Robject{t.twosamp.unequalvar}, for the two-sample Welch $t$-statistic. \begin{itemize} \item \Robject{t.onesamp}: One-sample $t$-statistic for tests of means. \item \Robject{t.twosamp.equalvar}: Equal variance two-sample $t$-statistic for tests of differences in means. \item \Robject{t.twosamp.unequalvar}: Unequal variance two-sample $t$-statistic for tests of differences in means (also known as two-sample Welch $t$-statistic). \item \Robject{t.pair}: Two-sample paired $t$-statistic for tests of differences in means. \item \Robject{f}: Multi-sample $F$-statistic for tests of equality of population means. \item \Robject{f.block}: Multi-sample $F$-statistic for tests of equality of population means in a block design. \item \Robject{lm.XvsZ}: $t$-statistic for tests of regression coefficients for variable \Robject{Z.test} in linear models each with outcome \Robject{X[j,]} ($j=1,\ldots,J$), and possibly additional covariates \Robject{Z.incl} from the \Rclass{matrix} \Robject{Z} (in the case of no covariates, one recovers the one-sample $t$-statistic, \Robject{t.onesamp}). \item \Robject{lm.YvsXZ}: $t$-statistic for tests of regression coefficients in linear models with outcome \Robject{Y} and each \Robject{X[j,]} ($j=1,\ldots,J$) as covariate of interest, with possibly other covariates \Robject{Z.incl} from the \Rclass{matrix} \Robject{Z}. \item \Robject{coxph.YvsXZ}: $t$-statistic for tests of regression coefficients in Cox proportional hazards survival models with outcome \Robject{Y} and each \Robject{X[j,]} ($j=1,\ldots,J$) as covariate of interest, with possibly other covariates \Robject{Z.incl} from the \Rclass{matrix} \Robject{Z}. \end{itemize} {\em Robust}, {\em rank-based} versions of the above test statistics can be specified by setting the argument \Robject{robust} to \Robject{TRUE} (the default value is \Robject{FALSE}). Consideration should be given to whether {\em standardized} (Equation (\ref{anal:mult:e:tstat})) or {\em unstandardized} difference statistics are most appropriate (see Pollard \& van der Laan \cite{Pollard&vdLaanJSPI04} for a comparison). Both options are available through the argument \Robject{standardize}, by default \Robject{TRUE}. The type of alternative hypotheses is specified via the \Robject{alternative} argument: default value of \Robject{two.sided}, for two-sided test, and values of \Robject{less} or \Robject{greater}, for one-sided tests. The (common) null value for the parameters of interest is specified through the \Robject{psi0} argument, by default zero. \item{\em Type I error rate.} The \Robject{MTP} function controls by default the family-wise error rate (FWER), or chance of at least one false positive (argument \Robject{typeone="fwer"}). Augmentation procedures (Section \ref{anal:mult:s:AMTP}), controlling other Type I error rates such as the gFWER, TPPFP, and FDR, can be specified through the argument \Robject{typeone}. Related arguments include \Robject{k} and \Robject{q}, for the allowed number and proportion of false positives for control of $gFWER(k)$ and $TPPFP(q)$, respectively, and \Robject{fdr.method}, for the type of TPPFP-based FDR-controlling procedure (i.e., \Robject{"conservative"} or \Robject{"restricted"} methods). The nominal level of the test is determined by the argument \Robject{alpha}, by default 0.05. Testing can be performed for a range of nominal Type I error rates by specifying a vector of levels \Robject{alpha}. \item{\em Test statistics null distribution.} In the current implementation of \Robject{MTP}, the test statistics null distribution is estimated by default using the non-parametric version of bootstrap Procedure~\ref{anal:mult:proc:boot} (argument \Robject{nulldist="boot"}). The bootstrap procedure is implemented in the internal function \Robject{boot.resample}, which calls C to compute test statistics for each bootstrap sample. The values of the shift ($\lambda_0$) and scale ($\tau_0$) parameters are determined by the type of test statistics (e.g., $\lambda_0=0$ and $\tau_0=1$ for $t$-statistics). When \Robject{csnull=TRUE} (default), these values will be used to center and scale the estimated test statistics distribution, producing a null distribution. One may specify \Robject{csnull=FALSE} to compute a non-null test statistics distribution. Permutation null distributions are also available via \Robject{nulldist="perm"}. The number of resampling steps is specified by the argument \Robject{B}, by default 1,000. Since the upper tail of a the bootstrap distribution may be difficult to estimate, particularly for small values of \Robject{B}, a kernal density estimator may be used for the tail of the distribution by setting \Robject{smooth.null=TRUE} (default is FALSE). \item{\em Multiple testing procedures.} Several methods for controlling the chosen Type I error rate are available in \Rpackage{multtest}. \begin{itemize} \item {\em FWER-controlling procedures.} For FWER control, the \Robject{MTP} function implements the single-step and step-down (common-cut-off) maxT and (common-quantile) minP MTPs, described in Sections~\ref{anal:mult:s:SS} and \ref{anal:mult:s:SD}, and specified through the argument \Robject{method} (internal functions \Robject{ss.maxT}, \Robject{ss.minP}, \Robject{sd.maxT}, and \Robject{sd.minP}). The default MTP is the single-step maxT procedure (\Robject{method="ss.maxT"}), since it requires the least computation. \item {\em gFWER-, TPPFP-, and FDR-controlling augmentation procedures.} As discussed in Section \ref{anal:mult:s:AMTP}, any FWER-controlling MTP can be trivially augmented to control additional Type I error rates, such as the gFWER and TPPFP. Two FDR-controlling procedures can then be derived from the TPPFP-controlling AMTP. The AMTPs are implemented in the functions \Robject{fwer2gfwer}, \Robject{fwer2tppfp}, and \Robject{fwer2fdr}, that take FWER adjusted $p$-values as input and return augmentation adjusted $p$-values for control of the gFWER, TPPFP, and FDR, respectively. Note that the aforementioned AMTPs can be applied directly via the \Robject{typeone} argument of the main function \Robject{MTP}. \end{itemize} \item{\em Parallel processing.} MTP can be run on a computer cluster with multiple nodes. This functionality requires the package \Rpackage{snow}. In addition, the packages \Rpackage{multtest} and \Rpackage{Biobase} must be installed on each node. \Robject{MTP} will load these packages as long as they are in the library search path. Else the user must load the packages on each node. When \Robject{cluster=1}, computations are performed on a single CPU. To implement bootstrapping in parallel, the user either sets \Robject{cluster} equal to a cluster object created using the function \Robject{makeCluster} in \Rpackage{snow} or specifies the integer number of nodes to use in a cluster. For the latter approach, \Robject{MTP} creates a cluster object with the specified number of nodes for the user. In this case, the type of interface system to use must be specified in the \Robject{type} argument. MPI and PVM interfaces require the packages \Rpackage{Rmpi} and \Rpackage{rpvm}, respectively. The number or percentage of bootstrap iterations to dispatch at one time to each node is specified with the \Robject{dispatch} argument (default is 5\%). The following example illustrates how to load the \Rpackage{snow} package, make a cluster consisting of two nodes, and load \Rpackage{Biobase} and \Rpackage{multtest} onto each node of the cluster using \Robject{clusterEvalQ}. The object \Robject{cl} can be passed to \Robject{MTP} via the \Robject{cluster} argument. \begin{Schunk} \begin{Sinput} > library(snow) > cl <- makeCluster(2, "MPI") > clusterEvalQ(cl, { + library(Biobase) + library(multtest) + }) \end{Sinput} \end{Schunk} \item{\em Output control.} Various arguments are available to control output, i.e., specify which combination of the following quantities should be returned: confidence regions (argument \Robject{get.cr}); cut-offs for the test statistics (argument \Robject{get.cutoff}); adjusted $p$-values (argument \Robject{get.adjp}); test statistics null distribution (argument \Robject{keep.nulldist}). Note that parameter estimates and confidence regions only apply to the test of single-parameter null hypotheses (i.e., not the $F$-tests). In addition, in the current implementation of \Robject{MTP}, parameter confidence regions and test statistic cut-offs are only provided when \texttt{typeone="fwer"}, so that \Robject{get.cr} and \Robject{get.cutoff} should be set to \Robject{FALSE} when using the error rates gFWER, TPPFP, or FDR. \end{description} Note that the \Rpackage{multtest} package also provides several simple, marginal FWER-controlling MTPs, such as the Bonferroni, Holm \cite{Holm79}, Hochberg \cite{Hochberg88}, and \v{S}id\'{a}k \cite{Sidak67} procedures, and FDR-controlling MTPs, such as the Benjamini \& Hochberg \cite{Benjamini&Hochberg95} and Benjamini \& Yekutieli \cite{Benjamini&Yekutieli01} procedures. These procedures are available through the \Robject{mt.rawp2adjp} function, which takes a vector of unadjusted $p$-values as input and returns the corresponding adjusted $p$-values.\\ \noindent {\bf OUTPUT.}\\ The S4 class/method object-oriented programming approach was adopted to summarize the results of a MTP (Section \ref{anal:mult:s:design}). Specifically, the output of the \Robject{MTP} function is an instance of the {\em class} \Rclass{MTP}. A brief description of the class and associated methods is given next. Please consult the documentation for details, e.g., using \texttt{class ? MTP} and \texttt{methods ? MTP}. \begin{Schunk} \begin{Sinput} > slotNames("MTP") \end{Sinput} \begin{Soutput} [1] "statistic" "estimate" "sampsize" "rawp" "adjp" "conf.reg" [7] "cutoff" "reject" "nulldist" "call" "seed" \end{Soutput} \end{Schunk} \begin{description} \item{\Robject{statistic}:} The numeric $M$--vector of test statistics, specified by the values of the \Robject{MTP} arguments \Robject{test}, \Robject{robust}, \Robject{standardize}, and \Robject{psi0}. In many testing problems, $M = J = $ \Robject{nrow(X)}. \item{\Robject{estimate}:} For the test of single-parameter null hypotheses using $t$-statistics (i.e., not the $F$-tests), the numeric $M$--vector of estimated parameters. \item{\Robject{sampsize}:} The sample size, i.e., $n=$ \Robject{ncol(X)}. \item{\Robject{rawp}:} The numeric $M$--vector of unadjusted $p$-values. \item{\Robject{adjp}:} The numeric $M$--vector of adjusted $p$-values (computed only if the \Robject{get.adjp} argument is \Robject{TRUE}). \item{\Robject{conf.reg}:} For the test of single-parameter null hypotheses using $t$-statistics (i.e., not the $F$-tests), the numeric $M \times 2 \times$ \Robject{length(alpha)} \Rclass{array} of lower and upper simultaneous confidence limits for the parameter vector, for each value of the nominal Type I error rate \Robject{alpha} (computed only if the \Robject{get.cr} argument is \Robject{TRUE}). \item{\Robject{cutoff}:} The numeric $M \times$ \Robject{length(alpha)} \Rclass{matrix} of cut-offs for the test statistics, for each value of the nominal Type I error rate \Robject{alpha} (computed only if the \Robject{get.cutoff} argument is \Robject{TRUE}). \item{\Robject{reject}:} The $M \times$ \Robject{length(alpha)} \Rclass{matrix} of rejection indicators (\Robject{TRUE} for a rejected null hypothesis), for each value of the nominal Type I error rate \Robject{alpha}. \item{\Robject{nulldist}:} The numeric $M \times B$ \Rclass{matrix} for the estimated test statistics null distribution (returned only if \texttt{keep.nulldist=TRUE}; option not currently available for permutation null distribution, i.e., \texttt{nulldist="perm"}). By default (i.e., for \Robject{nulldist="boot"}), the entries of \Robject{nulldist} are the null value shifted and scaled bootstrap test statistics, as defined by Procedure~\ref{anal:mult:proc:boot}. \item{\Robject{call}:} The call to the function \Robject{MTP}. \item{\Robject{seed}:} An integer for specifying the state of the random number generator used to create the resampled datasets. The seed can be reused for reproducibility in a repeat call to \Robject{MTP}. This argument is currently used only for the bootstrap null distribution (i.e., for \texttt{nulldist="boot"}). See \texttt{? set.seed} for details. \end{description} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Numerical and graphical summaries} \label{anal:mult:s:summaries} The following {\em methods} are defined to operate on \Rclass{MTP} instances and summarize the results of a MTP. \begin{description} \item{\Robject{print}:} The \Robject{print} method returns a description of an object of class \Rclass{MTP}, including the sample size $n$, the number $M$ of tested hypotheses, the type of test performed (value of argument \Robject{test}), the Type I error rate (value of argument \Robject{typeone}), the nominal level of the test (value of argument \Robject{alpha}), the name of the MTP (value of argument \Robject{method}), the call to the function \Robject{MTP}. In addition, this method produces a table with the class, mode, length, and dimension of each slot of the \Rclass{MTP} instance. \item{\Robject{summary}:} The \Robject{summary} method provides numerical summaries of the results of a MTP and returns a list with the following three components. \begin{itemize} \item \Robject{rejections}: A \Rclass{data.frame} with the number(s) of rejected hypotheses for the nominal Type I error rate(s) specified by the \Robject{alpha} argument of the function \Robject{MTP} (\Robject{NULL} values are returned if all three arguments \Robject{get.cr}, \Robject{get.cutoff}, and \Robject{get.adjp} are \Robject{FALSE}). \item \Robject{index}: A numeric $M$--vector of indices for ordering the hypotheses according to first \Robject{adjp}, then \Robject{rawp}, and finally the absolute value of \Robject{statistic} (not printed in the summary). \item \Robject{summaries}: When applicable (i.e., when the corresponding quantities are returned by \Robject{MTP}), a table with six number summaries of the distributions of the adjusted $p$-values, unadjusted $p$-values, test statistics, and parameter estimates. \end{itemize} \item{\Robject{plot}:} The \Robject{plot} method produces the following graphical summaries of the results of a MTP. The type of display may be specified via the \Robject{which} argument. \begin{enumerate} \item Scatterplot of number of rejected hypotheses vs. nominal Type I error rate. \item Plot of ordered adjusted $p$-values; can be viewed as a plot of Type I error rate vs. number of rejected hypotheses. \item Scatterplot of adjusted $p$-values vs. test statistics (also known as ``volcano plot''). \item Plot of unordered adjusted $p$-values. \item Plot of confidence regions for user-specified parameters, by default the 10 parameters corresponding to the smallest adjusted $p$-values (argument \Robject{top}). \item Plot of test statistics and corresponding cut-offs (for each value of \Robject{alpha}) for user-specified hypotheses, by default the 10 hypotheses corresponding to the smallest adjusted $p$-values (argument \Robject{top}). \end{enumerate} The argument \Robject{logscale} (by default equal to \Robject{FALSE}) allows one to use the negative decimal logarithms of the adjusted $p$-values in the second, third, and fourth graphical displays. Note that some of these plots are implemented in the older function \Robject{mt.plot}. \item{\Robject{[}:} Subsetting method, which operates selectively on each slot of an \Rclass{MTP} instance to retain only the data related to the specified hypotheses. \item{\Robject{as.list}:} Converts an object of class \Rclass{MTP} to an object of class \Rclass{list}, with an entry for each slot. \end{description} %%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Software design} \label{anal:mult:s:design} The following features of the programming approach employed in \Rpackage{multtest} may be of interest to users, especially those interested in extending the functionality of the package. \\ \noindent {\bf Function closures.} The use of {\em function closures}, in the style of the \Rpackage{genefilter} package, allows uniform data input for all MTPs and facilitates the extension of the package's functionality by adding, for example, new types of test statistics. Specifically, for each value of the \Robject{MTP} argument \Robject{test}, a closure is defined which consists of a function for computing the test statistic (with only two arguments, a data vector \Robject{x} and a corresponding weight vector \Robject{w}, with default value of \Robject{NULL}) and its enclosing environment, with bindings for relevant additional arguments, such as null values \Robject{psi0}, outcomes \Robject{Y}, and covariates \Robject{Z}. Thus, new test statistics can be added to \Rpackage{multtest} by simply defining a new closure and adding a corresponding value for the \Robject{test} argument to \Robject{MTP} (existing internal test statistic functions are located in the file \texttt{R/statistics.R}).\\ \noindent {\bf Class/method object-oriented programming.} Like many other Bioconductor packages, \Rpackage{multtest} has adopted the {\em S4 class/method object-oriented programming approach} of Chambers \cite{Chambers98}. In particular, a new class, \Rclass{MTP}, is defined to represent the results of multiple testing procedures, as implemented in the main \Robject{MTP} function. As discussed above, in Section \ref{anal:mult:s:summaries}, several methods are provided to operate on instances of this class.\\ \noindent {\bf Calls to C.} Because resampling procedures, such as the non-parametric bootstrap implemented in \Rpackage{multtest}, are computationally intensive, care must be taken to ensure that the resampling steps are not prohibitively slow. The use of closures for the test statistics, however, prevents writing the entire program in C. In the current implementation, we have chosen to define the closure and compute the observed test statistics in R, and then call C (using the R random number generator) to apply the closure to each bootstrap resampled dataset. This approach puts the for loops over bootstrap samples ($B$) and hypotheses ($M$) in the C environment, thus speeding up this computationally expensive part of the program. Further optimization for speed may be investigated for future releases. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Discussion} \label{anal:mult:s:disc} The \Rpackage{multtest} package implements a broad range of resampling-based multiple testing procedures. Ongoing efforts are as follows. \begin{enumerate} \item Extending the class of available tests, by adding test statistic closures for tests of correlations, quantiles, and parameters in generalized linear models (e.g., logistic regression). \item Extending the class of resampling-based estimators for the test statistics null distribution (e.g., parametric bootstrap, Bayesian bootstrap). A closure approach may be considered for this purpose. \item Providing parameter confidence regions and test statistic cut-offs for other Type I error rates than the FWER. \item Implementing the new augmentation multiple testing procedures proposed in Dudoit \& van der Laan \cite{Dudoit&vdLaanMTBook} for controlling tail probabilities $Pr(g(V_n,R_n) > q)$ for an arbitrary function $g(V_n,R_n)$ of the numbers of false positives $V_n$ and rejected hypotheses $R_n$. \item Providing a formula interface for a symbolic description of the tests to be performed (cf. model specification in \Robject{lm}). %\item %Providing an \Robject{update} method for objects of class \Rclass{MTP}. This would allow reusing available estimates of the null distribution to implement different MTPs for a given Type I error rate and to control different Type I error rates. \item Extending the \Rclass{MTP} class to keep track of results for several MTPs. \item Increasing the computational efficiency of the bootstrap estimation of the test statistics null distribution. \end{enumerate} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{plainnat} \bibliography{multtest} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} multtest/vignettes/MTPALL.pdf0000755000175200017520000104313714710217035017165 0ustar00biocbuildbiocbuild%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Overview) endobj 9 0 obj << /S /GoTo /D (section.2) >> endobj 12 0 obj (Getting started) endobj 13 0 obj << /S /GoTo /D (section.3) >> endobj 16 0 obj (Software Application: ALL microarray dataset) endobj 17 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 20 0 obj () endobj 21 0 obj << /S /GoTo /D (subsection.3.2) >> endobj 24 0 obj (ALL data package and initial gene filtering) endobj 25 0 obj << /S /GoTo /D (subsection.3.3) >> endobj 28 0 obj (Association of expression measures and cytogenetic test status: two-sample t-statistics) endobj 29 0 obj << /S /GoTo /D (subsection.3.4) >> endobj 32 0 obj (Augmentation procedures for gFWER, TPPFP, and FDR control) endobj 33 0 obj << /S /GoTo /D (subsection.3.5) >> endobj 36 0 obj (Association of expression measures and tumor molecular subtype: multi-sample F-statistics) endobj 37 0 obj << /S /GoTo /D (subsection.3.6) >> endobj 40 0 obj (Association of expression measures and time to relapse: Cox t-statistics) endobj 41 0 obj << /S /GoTo /D [42 0 R /Fit ] >> endobj 44 0 obj << /Length 1609 /Filter /FlateDecode >> stream xYKoFWHz$7ĉ*zh{P%ZbYq흙%)i pɝݙ%D?(D$/ I,abJ; WIVxKե9U:$e!Hlzrv@Bhu2I$.~K~  lF=Ɍ 8돼*M'Op2ysdڥj񀻪~2ɬKx1}( 'Z J9T3$9:Tl! wD0ޡ\w|[RLN]f ܋[$)P:!K0&z$0:ZϾ=j]c_ )LG R{_>Mc}4GK<,hEyGk'-Kl Qz L WTpxɋi|ePȺ,qaڬCL>ΡeMm *֤D+Ҍ`(?#YoEf֟#EIg D":L.O/ C$u >up&+JF8.,z8?N[IgMgA;_j 8E#w|[O`ad[2S Ot1hr9}'vl!2޹f[>omEkRCdVɼ2?wYIi>0nzc *vT) U ZaYñm<ݑtS}[GUCy=7:y!JUkcx():ovDc\c2t97VDSf Dj>\UBº{3 g24FeCflq^V*(@Jp%Peޢ(^Na϶XLA㔌1^w|pG4` B :=rawR'$;qUj[@F> oޚ;da$Դ=`W"b8;gG .\8a+Tc8xzyك PYE s)α$~?qy:[*Nqv֖U,gaR)uW8+ƭXv7h1v5V.4T+CQRC@k젊PE6W.CAɟ9P,.ͺ%[-a36i/n9+$Ɍb$}%[Snv+go$.絎!r3+p]C_>ЖhL(:ƮAnhv@c%)4^~q^p\Г"X((#avM#&I*GZ6Z!_dž0yÜ)LsGF]9qm?2'PFd҆6)XFFEьjԴظư,QǢ=a(Y8y {g0[h2s80k9/TyV-@#Rymme& dUXۆ(K0gׄ8WXw7#VAҌ#C4HDmB7#4mneBi~='vendstream endobj 42 0 obj << /Type /Page /Contents 44 0 R /Resources 43 0 R /MediaBox [0 0 612 792] /Parent 91 0 R /Annots [ 59 0 R 63 0 R 64 0 R 69 0 R 73 0 R 74 0 R 75 0 R 76 0 R 80 0 R 81 0 R 85 0 R 86 0 R 87 0 R 88 0 R 89 0 R 90 0 R ] >> endobj 59 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [275.329 471.999 448.812 483.984] /Subtype/Link/A<> >> endobj 63 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [192.661 444.901 417.591 456.886] /Subtype/Link/A<> >> endobj 64 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [254.144 417.802 456.208 429.788] /Subtype/Link/A<> >> endobj 69 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 361.415 194.648 370.935] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 73 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 334.841 228.062 346.477] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 74 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 310.382 399.53 322.018] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 75 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 298.949 168.249 307.967] /Subtype /Link /A << /S /GoTo /D (subsection.3.1) >> >> endobj 76 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 283.284 373.523 294.964] /Subtype /Link /A << /S /GoTo /D (subsection.3.2) >> >> endobj 80 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 269.735 485.45 281.414] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 81 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 256.186 297.205 267.865] /Subtype /Link /A << /S /GoTo /D (subsection.3.3) >> >> endobj 85 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 242.636 485.45 254.316] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 86 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 231.204 201.281 240.767] /Subtype /Link /A << /S /GoTo /D (subsection.3.4) >> >> endobj 87 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 215.538 485.45 227.218] /Subtype /Link /A << /S /GoTo /D (subsection.3.5) >> >> endobj 88 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 201.989 316.239 213.668] /Subtype /Link /A << /S /GoTo /D (subsection.3.5) >> >> endobj 89 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.166 188.44 485.45 200.119] /Subtype /Link /A << /S /GoTo /D (subsection.3.6) >> >> endobj 90 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [124.802 177.007 217.755 186.363] /Subtype /Link /A << /S /GoTo /D (subsection.3.6) >> >> endobj 45 0 obj << /D [42 0 R /XYZ 125.798 687.123 null] >> endobj 46 0 obj << /D [42 0 R /XYZ 125.798 662.217 null] >> endobj 68 0 obj << /D [42 0 R /XYZ 125.798 376.081 null] >> endobj 43 0 obj << /Font << /F51 49 0 R /F22 52 0 R /F23 55 0 R /F15 58 0 R /F60 62 0 R /F62 67 0 R /F67 72 0 R /F71 79 0 R /F41 84 0 R >> /ProcSet [ /PDF /Text ] >> endobj 94 0 obj << /Length 3099 /Filter /FlateDecode >> stream xrF_GV1Myr[6I :TɎǜ-1+Ō4E6 !lyQή/Q)*c\Fڨ2J΄.fWa# iX,z^(9y ׋_ 3eі-(gK ARJ9cvЮk=o{ |`[j])?Zd|z=eḦaZ){*kE/v ~a+*>9,K6I%-x>Un{#;x ޲ØGr0@ڎ]fd%È|*Dmub`-lT#+GrK)`IT F*h;@Ghز]!!>Y^stFˢ+gS覱KV;Ps/mc*=4i,RԊZ6`vftybM"J׆c SBAZJ';V8fhR-xc৉YjEn Bknxra(锗v保KdBʅ@9 ek쌔y.%Wv%I) LEnrwѴGU (f>͌6m*eYjpF_A/JU6g0@(r\UF:8!B%{+{$m;')Fy]5v4eb|e)䤲8aF-C)u0 Pwtu+LRE ,Pc.E:ɺ/ਊRF(0*uB]ig0kO*/:#* (K?E]4u3BPe9o\U+];=0noܢhMEno\{UVClI9E\  Ψ޺ }H#4âѯ%O"fאBדD>nt鼚QI&= ?Zڍj"HTѐU\ ?->"=١M8 ֜ܽeO ں~^|5:,Su\NԟqCԭ %yXBEBc!eʬ 4C\AC((g<.ľI$h'Oۜ?whsu#(|ȼ1KG<IVG$\?`~unU޾jaoIBո9@Q>'qOWj.Mk,ԯ!kv ŗ6,`QuZO0(0BPncg#bέIݳ+ X',o|au+n=;RaNi[M"U-}u+ ODTnt:M L8‚2(#G ZC֊ H>$`Χ>O2Muh;kjh*BGtCvLPASWΓvۧ+ envc0Z52 ڗOft s0~zh1pא:wst8)#Af㏂ȣ+s-s(ɞ񏎒R&>SWg''=KQ$Tz]jG Il!s3OR)gZC@892>_5V2)Le ѵ#snvேxOgvpW$ny' V$ك1%WiΒxBօ(=+BNȱZ,N6 nd$.B.:fgs*u'fUYML,h_l݂ ;khv3#;R>4Y_yx" e*AUuC*sB\3﵏& bcSCC߻N|J܅Q*/Z:FF%3;Ȭٝ5&iSanJ)In\*x&,Fi'` }],8IT8lsH/^kl+ֈ[ 0t6=@+e\nN-tendstream endobj 93 0 obj << /Type /Page /Contents 94 0 R /Resources 92 0 R /MediaBox [0 0 612 792] /Parent 91 0 R /Annots [ 96 0 R 97 0 R 98 0 R 99 0 R 100 0 R 101 0 R 102 0 R 103 0 R 104 0 R 105 0 R 106 0 R 110 0 R 111 0 R ] >> endobj 96 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [387.286 568.999 485.45 581.797] /Subtype /Link /A << /S /GoTo /D (cite.Dudoit&vdLaanMTBook) >> >> endobj 97 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [124.802 555.45 150.576 568.248] /Subtype /Link /A << /S /GoTo /D (cite.Dudoit&vdLaanMTBook) >> >> endobj 98 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [157.495 555.45 181.305 568.248] /Subtype /Link /A << /S /GoTo /D (cite.Dudoit&vdLaanMTBook) >> >> endobj 99 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [191.245 555.45 256.31 568.248] /Subtype /Link /A << /S /GoTo /D (cite.DudoitetalMT1SAGMB04) >> >> endobj 100 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [263.228 555.45 287.039 568.248] /Subtype /Link /A << /S /GoTo /D (cite.DudoitetalMT1SAGMB04) >> >> endobj 101 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [296.979 555.45 393.861 568.248] /Subtype /Link /A << /S /GoTo /D (cite.vdLaanetalMT2SAGMB04) >> >> endobj 102 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [400.78 555.45 430.645 568.248] /Subtype /Link /A << /S /GoTo /D (cite.vdLaanetalMT2SAGMB04) >> >> endobj 103 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [431.674 555.45 439.121 568.248] /Subtype /Link /A << /S /GoTo /D (cite.vdLaanetalMT3SAGMB04) >> >> endobj 104 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [449.061 555.45 485.45 568.248] /Subtype /Link /A << /S /GoTo /D (cite.Pollard&vdLaanJSPI04) >> >> endobj 105 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [124.802 541.901 210.462 554.699] /Subtype /Link /A << /S /GoTo /D (cite.Pollard&vdLaanJSPI04) >> >> endobj 106 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [216.202 541.901 240.013 554.699] /Subtype /Link /A << /S /GoTo /D (cite.Pollard&vdLaanJSPI04) >> >> endobj 110 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [332.126 135.425 404.296 148.223] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 111 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [409.836 135.425 433.647 148.223] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 95 0 obj << /D [93 0 R /XYZ 125.798 687.123 null] >> endobj 6 0 obj << /D [93 0 R /XYZ 125.798 662.217 null] >> endobj 92 0 obj << /Font << /F62 67 0 R /F15 58 0 R /F71 79 0 R /F41 84 0 R /F26 109 0 R >> /ProcSet [ /PDF /Text ] >> endobj 120 0 obj << /Length 2345 /Filter /FlateDecode >> stream xڝko8{?@͈/=n{{EpwGqr rEv(p3YzWe]͊Tz&m`- W'ry;[$ޭޜ}~sUlu=25}ַs5{^gMv>{/q-f@{̥/6.H gm [:5x1#,Z6_Vqc`-Dznuu^;v.[8q`3XVјٮhX(`>Е:AW:e +vb5woT8J_6 +yӂ|Uh'@GZY;}FR9n/#6{+%Z*T*J}#{ORg m=]pp9Q0"I$adX_k$VU>T}CLM7~?40y8*' oÏF+v&{ $+y˄:miJ-Ps2R4V:7e](v{8ץhe D=]@QDO-Q)Jܲ d.]1"h14PbnK( 7Տ 5M2l2hր'Fǐ } !$Od#rgb%(.yXwYI BXgRֿbJ.'*GW3wIi5' Αbmz &g2ŴP/mc }}M!NT jB̓X nqa"[X ğxݨ` S6u+ o4%(<ضy x.!@[vA4! 冐F*"`VmiHΉ6F b=#& tCJ1%ZLBզ;*V&;CU& aUCVq&x9!VqK>TK`ߩ B?0| f [?De(Z3"+l%bex?ſ m vA;u3ΫVjIm'JrT.ަVKu+SibHq ?/d._*/kyveT*_ʫDtz_<dݭ Bws/O?}R[)y> endobj 122 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [144.41 521.405 306.46 533.39] /Subtype/Link/A<> >> endobj 123 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [219.215 304.312 294.154 317.11] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 124 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [301.079 304.312 324.89 317.11] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 121 0 obj << /D [119 0 R /XYZ 125.798 687.123 null] >> endobj 10 0 obj << /D [119 0 R /XYZ 125.798 594.192 null] >> endobj 118 0 obj << /Font << /F15 58 0 R /F62 67 0 R /F67 72 0 R /F71 79 0 R /F60 62 0 R >> /ProcSet [ /PDF /Text ] >> endobj 127 0 obj << /Length 1468 /Filter /FlateDecode >> stream xYo6B P@"F$E=m@g (6,+Q;,%Ee+[ -R;ww*@*#"<RZ?LM.Rc`>%y"ȓrzt]?HLLoB=TIf"KDՓHg&'[8÷al.4uUVVՆ @-Z\[XmlbX^%M+?ea2D~#q\fK|*|}@Nk-$n+E{R("75@ kkΧvq0BsO s *P"UCfqx^) E63ְdbS"TH GbiSk[RPA&Y ++Cn __-D.1=\j 䏉ف2998a XMH[rZ9k@1qZgH0G`(tcG r < ]Xl3|໙C4Tk>L`6Ҹ|̇5ª˽omJR+ͳ)ygf~7r%O>H.9\z2%:k.<߫aR`Dk .,EzR5zڀֶo Ü[ ͝+? $^d ?V,^J4l4~ۮe:|i1sоN`4Kv5D K6 ԴV!tbr%(A:c8a\Ō"Қҏ):@Tr=>%v -N÷e4"/ZvZyq*޵ /<>xCp$ܵs=[+e>rK)4\'#Q }s~f߆kn{%l쭼p_2۫F:i2,{t׶ZeO)]卽̸Ʌ |gú\󒱳hI Px .{D{zU5#ltC7j&ɤW[/5Z_p#{j ^5ls6{[?q[^'C:$ sf-ixLouq< _>T*IGsaDL5aqco3s?*<'i}/(H>:ױ'g28> endobj 129 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [154.783 548.015 228.083 560.813] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 130 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [234.188 548.015 257.999 560.813] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 128 0 obj << /D [126 0 R /XYZ 125.798 687.123 null] >> endobj 14 0 obj << /D [126 0 R /XYZ 125.798 662.217 null] >> endobj 18 0 obj << /D [126 0 R /XYZ 125.798 637.686 null] >> endobj 125 0 obj << /Font << /F62 67 0 R /F15 58 0 R /F60 62 0 R /F71 79 0 R /F81 133 0 R >> /ProcSet [ /PDF /Text ] >> endobj 136 0 obj << /Length 1922 /Filter /FlateDecode >> stream xڵYKoFW9Q]r血p D=%9-),Aw^\(%rv|3dD31֩&EU*cb{'+ẍH*U8#ӼUIix1;{~Y؉1Ό3ʺj2[~HI痕3 S+`OqfT^rBOӬ̓=/IL,|n i0-k-w65ڶbj]Wia$Z fkmbB\}B57ZЂ7^5VIL-  Ҿ@$xul|G2Y=A6mwÏ^=@xj2z @zK)MKgOo'IQ&1Xs;XkQa>t[&Bߚ.sa~`v~s3̚+֕lo6B:*6D L4[)U=v?M!^aeNxG -ǩ+ڴ㲎6ԉpSXǷՌhE{JCr\#rbwB^<> ͵N , 6c`0|n# 9'7؁嚹LX5 *^*8 *geE)l&)42(qVLy O6I3&Wl :BX|!R4z2 um{ } n)0d4 Z˓f=ce d|ۨ},pQ%TzaD ) sV:G]-NJZ4$<{s;[;UI7סkYE6}_ ^ G|fQ(P\0sMSX;i= HАʣ77  qyWrc#3)ow]Qe56>a'xeFx*&!p"FٰifnWv䐿%MJ7{VL, 02[dTMa"c'rxSݟx`*I$ITO4 ɚA6M5eĬwbi 6R|=.P w"wf1YZ=g$hZbD+41;I=;\0Zwk~`MRZa_f$A1Gr/{n;Qqd |t}BQ+vvMv|[TUl@᯽.NpΎq5- ހ_{WQjQJ֪CǓ7̒`Z> endobj 141 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [158.351 613.4 233.436 626.198] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 142 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [240.433 613.4 264.244 626.198] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 137 0 obj << /D [135 0 R /XYZ 125.798 687.123 null] >> endobj 22 0 obj << /D [135 0 R /XYZ 125.798 662.217 null] >> endobj 134 0 obj << /Font << /F62 67 0 R /F80 140 0 R /F15 58 0 R /F71 79 0 R /F60 62 0 R /F81 133 0 R >> /ProcSet [ /PDF /Text ] >> endobj 145 0 obj << /Length 1879 /Filter /FlateDecode >> stream xYmo6_aLJ^C6 +b˱2,iȻ#yzq0${(ˁ?9 <$Y0L'bp^H"T$JQApq}2LrgPA %Pe39|FR~k[UlK}-iR Ҋ-?_Rd8|lkB$/4털k3C->{NTfS. OB }$]zX2l fY+x9Mcц֮H;}bYMK_0=)tǂ6 `fR$uHg^O{Fӊ[djƛdL JRyo?ZEKlauk Մ)9|pjI~RLL$sϮ$ +;z/ֈ]9:Ⱥfηeegp :H2[$ ^4R\`;m5n->mթ%ہũfig Fz< 8oؕ,#.e]/XL4=,p./Xl.;5qwԌhףچaBA4fU}Ϳ+oEڵkZ]vlHO]KE+ -x>~GЌ]SS6\10v;Wȝm- Y}ă.(/-20e'`+JĠs1Y\1TaDr '@QFdJ`6|$RVWg$RPPeMv ]O~X/uMc0P;6m9c-M71(ĈlߒDRe9o|Pʭk7~exFM!uQ&&3~ҭISƾ&7͝ K]=V3QSpx%3v};áx0}%7Gk޻s&Oac(^_Jգ F;`誸3OA?h[rufgNA S۽QK\\r۔u aBeY;7uE\:%&6%RjC' r]mpO{< KPзp02ˊFHI4zJGrH+3j]jcqDvdgԮzzkͲEk\uyFɰid$w0\V%KG9q' : tt<8IWp+=u:KS&4y'CC7|04pKfg^CjSOh,{l> endobj 147 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [234.917 193.238 310.133 206.036] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 148 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [317.197 193.238 341.007 206.036] /Subtype /Link /A << /S /GoTo /D (cite.Chiarettietal04) >> >> endobj 146 0 obj << /D [144 0 R /XYZ 125.798 687.123 null] >> endobj 143 0 obj << /Font << /F60 62 0 R /F81 133 0 R /F15 58 0 R /F71 79 0 R >> /ProcSet [ /PDF /Text ] >> endobj 151 0 obj << /Length 1596 /Filter /FlateDecode >> stream xڝXmo6_a䓌E*$KZCt:@Gl~wǣDt cJ;=|HJ.ɅTi*E],<&1^Ğ7r0.B8M*SjJGKImo_}xmzh5~{h?C{$+D@€(Wl ]R,ufLMp2~ݞ+ '<7=ntŻLx@T2 i]MڙPI y}qtlaq!Hrˆ$32+jX} aB[57\yCH9#::#zt*¯2'ӕvc*hHX e6<)0huTUd9)c }}(WRD GOc$Kx3 $TrwK@M2}zב^r-m|3@s"+5m]oRai5l^X[=#segRH_ՖjZ_Zɠ]Grز@;rږMyFI$U({15aH@ҲG"=L'W(]5wXjkX'E Jz> endobj 152 0 obj << /D [150 0 R /XYZ 125.798 687.123 null] >> endobj 26 0 obj << /D [150 0 R /XYZ 125.798 529.302 null] >> endobj 156 0 obj << /D [150 0 R /XYZ 125.798 493.556 null] >> endobj 149 0 obj << /Font << /F81 133 0 R /F60 62 0 R /F62 67 0 R /F25 155 0 R /F67 72 0 R /F41 84 0 R /F15 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 160 0 obj << /Length 994 /Filter /FlateDecode >> stream xڵXN0}+};sAjBK TC+C Y؊]k{f+Q,g3'?D*,HjãvGH*KK{X&(&;'ZU4D"L RDbbO 5.b#RcFWjZ&X Nu2K鑽Gٟ(;ڻW"e2{[ũ`M3_1WcC }k4cIx%ܳJǴuMMdU+DoPA?8) }LQjK`D;H##oohEy)Txxg\+KqO:Ml9R] 7k v{ +Q 5WȦF zb4{M' ì& n^ID+61fȺ1lo1:K[@)dޤ#$s㾭kL5Eϑghoݏ|51SޫE)6hF(wg|mXb,jTNgz,Jg,0'=s*S玛ĦWj/ކц3wmo(NQMpl>̃}xa<zsh9}$ae{3Cm@.C}[Uܐ' (mZ:/rǝ27ޙxf5ipchl%}X)pK3wIOk۾{b }~ra%dߧ=7\"A/S\mEEAF4ˬiB t頪 TĆus Y!Jy`TvNvvB;bÑ&e#_E3]Nw|ykA4~Zׂv;!Xx+iqgݔԐ\_V)1A ӊ+H7cnUR~[1CBz42IJ$b endstream endobj 159 0 obj << /Type /Page /Contents 160 0 R /Resources 158 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 161 0 obj << /D [159 0 R /XYZ 125.798 687.123 null] >> endobj 158 0 obj << /Font << /F60 62 0 R /F81 133 0 R /F15 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 164 0 obj << /Length 1473 /Filter /FlateDecode >> stream xڝX[o6~ϯ0=8(:ۚlnC> ۊ53Ns([ `L\xs#i=RG:iQQh8Q9.N4[0 &y5$ɋ*uʍ.Fq0eZgz|c #=Klf- }[fYh`XF$+ 4^kdզmQs?_=Ժbh`od,1EQ hhh}#zF#;_Ok pd=-gSxLӅf?h%B~wdvzin'zBLn)H4e!;A0K%k! l {QI%59Ү2Ỳ"*deE%ygnᚍ!`Re-'ǖRENL*+ XdӼzrf ʊm-e} -+]LՋ D?˚0T BVCܪ9=djI Vcީq^PW&ʂQjSoyy:'e:utj%CTZـ{',AsZW̗QS1YTb4!BbUW,:Z#jH탲J2xih:Pi}CiQkKj(x )"hͲO> endobj 165 0 obj << /D [163 0 R /XYZ 125.798 687.123 null] >> endobj 162 0 obj << /Font << /F60 62 0 R /F15 58 0 R /F41 84 0 R /F71 79 0 R /F81 133 0 R >> /ProcSet [ /PDF /Text ] >> endobj 169 0 obj << /Length 1505 /Filter /FlateDecode >> stream xڭXYoF~ >@ޓG(BMSQt$:REAP+;3s}3Q*Rډ,ȅ&D1qȜbODPC6'l%l*#OSR8 O2Ho^u'D7J40Rk3Ug7EJeX0hq1~x cu ?;Mk1xw&W#y c 숒=Kȓ5,lj=Noz[a I窻ɖ۞{^TS;znx$Vh@Ω2ْ4 8B#gк%TQK 6λW~YB,lm[|ŞD:Qn<2EjG,rjwթ17MX?\ڛh$rV[s$wKrБkԢgKTA+f ^ `Yn ճ<鈉2ᰒ"  C(FoK~V$/( GV0>Ag1:^={m5bF(Ⱦzuɤ4TXH*PqNZ2Ϥ0Wc1Z"E(Lc=_[%9 "%sV!jF?GEa`n 8TLUeq{zjmE-un΂wHLЧ4׌Pt1ׅQBk-$~yy3Bo2Dw;FfUqvhy:4J&3пX5B- FQ!C[FZ{Xc4͚E;w({![O zQ0 Sd]M|\&S ]̈ҧ|$Xs]}6P43DBD@( $Ε8~XL!<%_{o'KH(,D\A% 9nnI ͱ)Sz(#Zay2xϐ,}tAlrRQ㺢;2_ ,(㺣 R~;= TgT*X%jV#>.\g6\FZC/! i;gݖT KlYJ&l䃋\JY5]pwPiQcⰗ.%UP`!m#0@XsfILLXɎPHҁr~z 5MOb}M [z+pL_q^!_oI' r;Kٴ⑸q9:fhSyx ޥRS(9(h8|"޳C1w@ GaBER2e@C'>+tޫ>ٍ@!| EǎGk<ƹo,XZ)HWћNE \7Wf~f@endstream endobj 168 0 obj << /Type /Page /Contents 169 0 R /Resources 167 0 R /MediaBox [0 0 612 792] /Parent 157 0 R /Annots [ 172 0 R 174 0 R 175 0 R 176 0 R 177 0 R 178 0 R 179 0 R 180 0 R 181 0 R 182 0 R ] >> endobj 166 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./cytoPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 183 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 184 0 R /F2 185 0 R /F3 186 0 R /F4 187 0 R /F5 188 0 R /F6 189 0 R >> /ExtGState << >>>> /Length 190 0 R >> stream q Q q 49.00 276.96 141.90 106.04 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 54.26 280.88 m 60.83 280.88 l 67.40 280.88 l 73.97 280.88 l 80.54 280.88 l 87.11 280.88 l 93.67 280.88 l 100.24 280.88 l 106.81 280.88 l 113.38 280.88 l 119.95 280.88 l 126.52 280.88 l 133.09 280.88 l 139.66 280.88 l 146.23 280.88 l 152.80 280.88 l 159.37 280.88 l 165.94 283.66 l 172.51 283.66 l 179.08 283.66 l 185.65 379.07 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 54.26 276.96 m 185.65 276.96 l S 54.26 276.96 m 54.26 270.98 l S 80.54 276.96 m 80.54 270.98 l S 106.81 276.96 m 106.81 270.98 l S 133.09 276.96 m 133.09 270.98 l S 159.37 276.96 m 159.37 270.98 l S 185.65 276.96 m 185.65 270.98 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 47.31 255.44 Tm (0.0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 73.59 255.44 Tm (0.2) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 99.86 255.44 Tm (0.4) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 126.14 255.44 Tm (0.6) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 152.42 255.44 Tm (0.8) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 178.70 255.44 Tm (1.0) Tj ET 49.00 279.26 m 49.00 371.89 l S 49.00 279.26 m 43.03 279.26 l S 49.00 302.42 m 43.03 302.42 l S 49.00 325.58 m 43.03 325.58 l S 49.00 348.73 m 43.03 348.73 l S 49.00 371.89 m 43.03 371.89 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 276.48 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 294.08 Tm (100) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 340.39 Tm (300) Tj ET 49.00 276.96 m 190.90 276.96 l 190.90 383.00 l 49.00 383.00 l 49.00 276.96 l S Q q 0.00 216.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 84.71 231.54 Tm (Type I error rate) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 260.50 Tm (Number of rejected hypotheses) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 53.72 388.38 Tm (Rejections vs. Error Rate) Tj ET Q q 265.00 276.96 141.90 106.04 re W n Q q 265.00 276.96 141.90 106.04 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 270.26 280.88 m 270.56 280.88 l 270.87 280.88 l 271.18 280.88 l 271.48 280.88 l 271.79 280.88 l 272.09 280.88 l 272.40 364.34 l 272.70 364.34 l 273.01 364.34 l 273.31 364.34 l 273.62 364.34 l 273.93 364.34 l 274.23 364.34 l 274.54 364.34 l 274.84 364.34 l 275.15 364.34 l 275.45 364.34 l 275.76 364.34 l 276.06 375.14 l 276.37 375.14 l 276.68 375.14 l 276.98 375.14 l 277.29 375.14 l 277.59 377.11 l 277.90 377.11 l 278.20 377.11 l 278.51 377.11 l 278.81 377.11 l 279.12 377.11 l 279.43 377.11 l 279.73 377.11 l 280.04 377.11 l 280.34 377.11 l 280.65 377.11 l 280.95 377.11 l 281.26 377.11 l 281.56 377.11 l 281.87 377.11 l 282.18 377.11 l 282.48 378.09 l 282.79 378.09 l 283.09 378.09 l 283.40 378.09 l 283.70 378.09 l 284.01 378.09 l 284.31 378.09 l 284.62 378.09 l 284.93 379.07 l 285.23 379.07 l 285.54 379.07 l 285.84 379.07 l 286.15 379.07 l 286.45 379.07 l 286.76 379.07 l 287.06 379.07 l 287.37 379.07 l 287.68 379.07 l 287.98 379.07 l 288.29 379.07 l 288.59 379.07 l 288.90 379.07 l 289.20 379.07 l 289.51 379.07 l 289.81 379.07 l 290.12 379.07 l 290.42 379.07 l 290.73 379.07 l 291.04 379.07 l 291.34 379.07 l 291.65 379.07 l 291.95 379.07 l 292.26 379.07 l 292.56 379.07 l 292.87 379.07 l 293.17 379.07 l 293.48 379.07 l 293.79 379.07 l 294.09 379.07 l 294.40 379.07 l 294.70 379.07 l 295.01 379.07 l 295.31 379.07 l 295.62 379.07 l 295.92 379.07 l 296.23 379.07 l 296.54 379.07 l 296.84 379.07 l 297.15 379.07 l 297.45 379.07 l 297.76 379.07 l 298.06 379.07 l 298.37 379.07 l 298.67 379.07 l 298.98 379.07 l 299.29 379.07 l 299.59 379.07 l 299.90 379.07 l 300.20 379.07 l 300.51 379.07 l 300.81 379.07 l 301.12 379.07 l 301.42 379.07 l 301.73 379.07 l 302.04 379.07 l 302.34 379.07 l 302.65 379.07 l 302.95 379.07 l 303.26 379.07 l 303.56 379.07 l 303.87 379.07 l 304.17 379.07 l 304.48 379.07 l 304.79 379.07 l 305.09 379.07 l 305.40 379.07 l 305.70 379.07 l 306.01 379.07 l 306.31 379.07 l 306.62 379.07 l 306.92 379.07 l 307.23 379.07 l 307.54 379.07 l 307.84 379.07 l 308.15 379.07 l 308.45 379.07 l 308.76 379.07 l 309.06 379.07 l 309.37 379.07 l 309.67 379.07 l 309.98 379.07 l 310.29 379.07 l 310.59 379.07 l 310.90 379.07 l 311.20 379.07 l 311.51 379.07 l 311.81 379.07 l 312.12 379.07 l 312.42 379.07 l 312.73 379.07 l 313.04 379.07 l 313.34 379.07 l 313.65 379.07 l 313.95 379.07 l 314.26 379.07 l 314.56 379.07 l 314.87 379.07 l 315.17 379.07 l 315.48 379.07 l 315.79 379.07 l 316.09 379.07 l 316.40 379.07 l 316.70 379.07 l 317.01 379.07 l 317.31 379.07 l 317.62 379.07 l 317.92 379.07 l 318.23 379.07 l 318.54 379.07 l 318.84 379.07 l 319.15 379.07 l 319.45 379.07 l 319.76 379.07 l 320.06 379.07 l 320.37 379.07 l 320.67 379.07 l 320.98 379.07 l 321.29 379.07 l 321.59 379.07 l 321.90 379.07 l 322.20 379.07 l 322.51 379.07 l 322.81 379.07 l 323.12 379.07 l 323.42 379.07 l 323.73 379.07 l 324.04 379.07 l 324.34 379.07 l 324.65 379.07 l 324.95 379.07 l 325.26 379.07 l 325.56 379.07 l 325.87 379.07 l 326.17 379.07 l 326.48 379.07 l 326.79 379.07 l 327.09 379.07 l 327.40 379.07 l 327.70 379.07 l 328.01 379.07 l 328.31 379.07 l 328.62 379.07 l 328.92 379.07 l 329.23 379.07 l 329.54 379.07 l 329.84 379.07 l 330.15 379.07 l 330.45 379.07 l 330.76 379.07 l 331.06 379.07 l 331.37 379.07 l 331.67 379.07 l 331.98 379.07 l 332.29 379.07 l 332.59 379.07 l 332.90 379.07 l 333.20 379.07 l 333.51 379.07 l 333.81 379.07 l 334.12 379.07 l 334.42 379.07 l 334.73 379.07 l 335.04 379.07 l 335.34 379.07 l 335.65 379.07 l 335.95 379.07 l 336.26 379.07 l 336.56 379.07 l 336.87 379.07 l 337.17 379.07 l 337.48 379.07 l 337.79 379.07 l 338.09 379.07 l 338.40 379.07 l 338.70 379.07 l 339.01 379.07 l 339.31 379.07 l 339.62 379.07 l 339.92 379.07 l 340.23 379.07 l 340.54 379.07 l 340.84 379.07 l 341.15 379.07 l 341.45 379.07 l 341.76 379.07 l 342.06 379.07 l 342.37 379.07 l 342.67 379.07 l 342.98 379.07 l 343.29 379.07 l 343.59 379.07 l 343.90 379.07 l 344.20 379.07 l 344.51 379.07 l 344.81 379.07 l 345.12 379.07 l 345.42 379.07 l 345.73 379.07 l 346.04 379.07 l 346.34 379.07 l 346.65 379.07 l 346.95 379.07 l 347.26 379.07 l 347.56 379.07 l 347.87 379.07 l 348.17 379.07 l 348.48 379.07 l 348.79 379.07 l 349.09 379.07 l 349.40 379.07 l 349.70 379.07 l 350.01 379.07 l 350.31 379.07 l 350.62 379.07 l 350.92 379.07 l 351.23 379.07 l 351.54 379.07 l 351.84 379.07 l 352.15 379.07 l 352.45 379.07 l 352.76 379.07 l 353.06 379.07 l 353.37 379.07 l 353.67 379.07 l 353.98 379.07 l 354.29 379.07 l 354.59 379.07 l 354.90 379.07 l 355.20 379.07 l 355.51 379.07 l 355.81 379.07 l 356.12 379.07 l 356.42 379.07 l 356.73 379.07 l 357.03 379.07 l 357.34 379.07 l 357.65 379.07 l 357.95 379.07 l 358.26 379.07 l 358.56 379.07 l 358.87 379.07 l 359.17 379.07 l 359.48 379.07 l 359.78 379.07 l 360.09 379.07 l 360.40 379.07 l 360.70 379.07 l 361.01 379.07 l 361.31 379.07 l 361.62 379.07 l 361.92 379.07 l 362.23 379.07 l 362.53 379.07 l 362.84 379.07 l 363.15 379.07 l 363.45 379.07 l 363.76 379.07 l 364.06 379.07 l 364.37 379.07 l 364.67 379.07 l 364.98 379.07 l 365.28 379.07 l 365.59 379.07 l 365.90 379.07 l 366.20 379.07 l 366.51 379.07 l 366.81 379.07 l 367.12 379.07 l 367.42 379.07 l 367.73 379.07 l 368.03 379.07 l 368.34 379.07 l 368.65 379.07 l 368.95 379.07 l 369.26 379.07 l 369.56 379.07 l 369.87 379.07 l 370.17 379.07 l 370.48 379.07 l 370.78 379.07 l 371.09 379.07 l 371.40 379.07 l 371.70 379.07 l 372.01 379.07 l 372.31 379.07 l 372.62 379.07 l 372.92 379.07 l 373.23 379.07 l 373.53 379.07 l 373.84 379.07 l 374.15 379.07 l 374.45 379.07 l 374.76 379.07 l 375.06 379.07 l 375.37 379.07 l 375.67 379.07 l 375.98 379.07 l 376.28 379.07 l 376.59 379.07 l 376.90 379.07 l 377.20 379.07 l 377.51 379.07 l 377.81 379.07 l 378.12 379.07 l 378.42 379.07 l 378.73 379.07 l 379.03 379.07 l 379.34 379.07 l 379.65 379.07 l 379.95 379.07 l 380.26 379.07 l 380.56 379.07 l 380.87 379.07 l 381.17 379.07 l 381.48 379.07 l 381.78 379.07 l 382.09 379.07 l 382.40 379.07 l 382.70 379.07 l 383.01 379.07 l 383.31 379.07 l 383.62 379.07 l 383.92 379.07 l 384.23 379.07 l 384.53 379.07 l 384.84 379.07 l 385.15 379.07 l 385.45 379.07 l 385.76 379.07 l 386.06 379.07 l 386.37 379.07 l 386.67 379.07 l 386.98 379.07 l 387.28 379.07 l 387.59 379.07 l 387.90 379.07 l 388.20 379.07 l 388.51 379.07 l 388.81 379.07 l 389.12 379.07 l 389.42 379.07 l 389.73 379.07 l 390.03 379.07 l 390.34 379.07 l 390.65 379.07 l 390.95 379.07 l 391.26 379.07 l 391.56 379.07 l 391.87 379.07 l 392.17 379.07 l 392.48 379.07 l 392.78 379.07 l 393.09 379.07 l 393.40 379.07 l 393.70 379.07 l 394.01 379.07 l 394.31 379.07 l 394.62 379.07 l 394.92 379.07 l 395.23 379.07 l 395.53 379.07 l 395.84 379.07 l 396.15 379.07 l 396.45 379.07 l 396.76 379.07 l 397.06 379.07 l 397.37 379.07 l 397.67 379.07 l 397.98 379.07 l 398.28 379.07 l 398.59 379.07 l 398.90 379.07 l 399.20 379.07 l 399.51 379.07 l 399.81 379.07 l 400.12 379.07 l 400.42 379.07 l 400.73 379.07 l 401.03 379.07 l 401.34 379.07 l 401.65 379.07 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 269.95 276.96 m 392.17 276.96 l S 269.95 276.96 m 269.95 270.98 l S 300.51 276.96 m 300.51 270.98 l S 331.06 276.96 m 331.06 270.98 l S 361.62 276.96 m 361.62 270.98 l S 392.17 276.96 m 392.17 270.98 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 267.17 255.44 Tm (0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 292.17 255.44 Tm (100) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 322.72 255.44 Tm (200) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 353.28 255.44 Tm (300) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 383.83 255.44 Tm (400) Tj ET 265.00 280.88 m 265.00 379.07 l S 265.00 280.88 m 259.03 280.88 l S 265.00 300.52 m 259.03 300.52 l S 265.00 320.16 m 259.03 320.16 l S 265.00 339.79 m 259.03 339.79 l S 265.00 359.43 m 259.03 359.43 l S 265.00 379.07 m 259.03 379.07 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 250.66 273.93 Tm (0.0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 250.66 313.21 Tm (0.4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 250.66 352.48 Tm (0.8) Tj ET 265.00 276.96 m 406.90 276.96 l 406.90 383.00 l 265.00 383.00 l 265.00 276.96 l S Q q 216.00 216.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 266.48 231.54 Tm (Number of rejected hypotheses) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 226.76 272.66 Tm (Sorted Adjusted p-values) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 263.08 388.38 Tm (Ordered Adjusted p-values) Tj ET Q q 49.00 60.96 141.90 106.04 re W n Q q 49.00 60.96 141.90 106.04 re W n 0.000 0.000 0.000 rg 158.38 162.57 1.00 1.00 re f 116.29 162.57 1.00 1.00 re f 91.56 161.59 1.00 1.00 re f 152.98 162.57 1.00 1.00 re f 83.08 160.61 1.00 1.00 re f 118.55 162.57 1.00 1.00 re f 141.78 162.57 1.00 1.00 re f 119.04 162.57 1.00 1.00 re f 97.33 162.57 1.00 1.00 re f 159.16 162.57 1.00 1.00 re f 155.26 162.57 1.00 1.00 re f 150.82 162.57 1.00 1.00 re f 94.38 162.57 1.00 1.00 re f 121.79 162.57 1.00 1.00 re f 103.39 162.57 1.00 1.00 re f 121.51 162.57 1.00 1.00 re f 117.20 162.57 1.00 1.00 re f 138.08 162.57 1.00 1.00 re f 122.85 162.57 1.00 1.00 re f 147.73 162.57 1.00 1.00 re f 139.66 162.57 1.00 1.00 re f 137.83 162.57 1.00 1.00 re f 132.88 162.57 1.00 1.00 re f 111.15 162.57 1.00 1.00 re f 80.24 158.64 1.00 1.00 re f 53.76 147.84 1.00 1.00 re f 132.28 162.57 1.00 1.00 re f 106.72 162.57 1.00 1.00 re f 123.76 162.57 1.00 1.00 re f 124.98 162.57 1.00 1.00 re f 121.24 162.57 1.00 1.00 re f 108.51 162.57 1.00 1.00 re f 108.96 162.57 1.00 1.00 re f 96.79 162.57 1.00 1.00 re f 123.53 162.57 1.00 1.00 re f 96.21 162.57 1.00 1.00 re f 150.12 162.57 1.00 1.00 re f 137.55 162.57 1.00 1.00 re f 132.70 162.57 1.00 1.00 re f 131.12 162.57 1.00 1.00 re f 133.43 162.57 1.00 1.00 re f 88.15 161.59 1.00 1.00 re f 156.34 162.57 1.00 1.00 re f 144.62 162.57 1.00 1.00 re f 90.55 161.59 1.00 1.00 re f 101.04 162.57 1.00 1.00 re f 136.83 162.57 1.00 1.00 re f 112.72 162.57 1.00 1.00 re f 133.01 162.57 1.00 1.00 re f 105.67 162.57 1.00 1.00 re f 144.56 162.57 1.00 1.00 re f 155.60 162.57 1.00 1.00 re f 112.99 162.57 1.00 1.00 re f 144.86 162.57 1.00 1.00 re f 142.79 162.57 1.00 1.00 re f 137.48 162.57 1.00 1.00 re f 141.22 162.57 1.00 1.00 re f 127.82 162.57 1.00 1.00 re f 125.86 162.57 1.00 1.00 re f 126.51 162.57 1.00 1.00 re f 107.40 162.57 1.00 1.00 re f 111.86 162.57 1.00 1.00 re f 133.65 162.57 1.00 1.00 re f 146.05 162.57 1.00 1.00 re f 109.79 162.57 1.00 1.00 re f 144.62 162.57 1.00 1.00 re f 93.85 162.57 1.00 1.00 re f 111.17 162.57 1.00 1.00 re f 142.21 162.57 1.00 1.00 re f 129.19 162.57 1.00 1.00 re f 168.81 162.57 1.00 1.00 re f 166.45 162.57 1.00 1.00 re f 107.35 162.57 1.00 1.00 re f 116.20 162.57 1.00 1.00 re f 115.61 162.57 1.00 1.00 re f 106.24 162.57 1.00 1.00 re f 115.31 162.57 1.00 1.00 re f 108.72 162.57 1.00 1.00 re f 99.24 162.57 1.00 1.00 re f 100.81 162.57 1.00 1.00 re f 64.16 147.84 1.00 1.00 re f 77.55 64.38 1.00 1.00 re f 156.66 162.57 1.00 1.00 re f 122.43 162.57 1.00 1.00 re f 127.33 162.57 1.00 1.00 re f 74.86 147.84 1.00 1.00 re f 135.65 162.57 1.00 1.00 re f 127.63 162.57 1.00 1.00 re f 147.37 162.57 1.00 1.00 re f 93.64 162.57 1.00 1.00 re f 138.52 162.57 1.00 1.00 re f 136.54 162.57 1.00 1.00 re f 136.43 162.57 1.00 1.00 re f 117.40 162.57 1.00 1.00 re f 147.87 162.57 1.00 1.00 re f 128.51 162.57 1.00 1.00 re f 133.73 162.57 1.00 1.00 re f 103.28 162.57 1.00 1.00 re f 107.84 162.57 1.00 1.00 re f 90.43 160.61 1.00 1.00 re f 133.26 162.57 1.00 1.00 re f 129.73 162.57 1.00 1.00 re f 173.62 162.57 1.00 1.00 re f 58.17 64.38 1.00 1.00 re f 137.61 162.57 1.00 1.00 re f 106.94 162.57 1.00 1.00 re f 88.64 162.57 1.00 1.00 re f 148.14 162.57 1.00 1.00 re f 143.87 162.57 1.00 1.00 re f 73.32 160.61 1.00 1.00 re f 133.94 162.57 1.00 1.00 re f 160.29 162.57 1.00 1.00 re f 150.36 162.57 1.00 1.00 re f 142.10 162.57 1.00 1.00 re f 146.86 162.57 1.00 1.00 re f 144.00 162.57 1.00 1.00 re f 95.35 162.57 1.00 1.00 re f 101.52 162.57 1.00 1.00 re f 105.18 162.57 1.00 1.00 re f 131.27 162.57 1.00 1.00 re f 134.39 162.57 1.00 1.00 re f 132.72 162.57 1.00 1.00 re f 150.63 162.57 1.00 1.00 re f 143.58 162.57 1.00 1.00 re f 112.16 162.57 1.00 1.00 re f 130.07 162.57 1.00 1.00 re f 130.80 162.57 1.00 1.00 re f 147.77 162.57 1.00 1.00 re f 116.52 162.57 1.00 1.00 re f 148.22 162.57 1.00 1.00 re f 124.20 162.57 1.00 1.00 re f 74.69 147.84 1.00 1.00 re f 157.86 162.57 1.00 1.00 re f 115.51 162.57 1.00 1.00 re f 152.85 162.57 1.00 1.00 re f 104.39 162.57 1.00 1.00 re f 131.99 162.57 1.00 1.00 re f 96.94 162.57 1.00 1.00 re f 114.98 162.57 1.00 1.00 re f 103.40 162.57 1.00 1.00 re f 129.57 162.57 1.00 1.00 re f 79.47 160.61 1.00 1.00 re f 83.50 160.61 1.00 1.00 re f 115.99 162.57 1.00 1.00 re f 136.14 162.57 1.00 1.00 re f 118.61 162.57 1.00 1.00 re f 104.63 162.57 1.00 1.00 re f 105.03 162.57 1.00 1.00 re f 149.54 162.57 1.00 1.00 re f 129.55 162.57 1.00 1.00 re f 141.01 162.57 1.00 1.00 re f 130.77 162.57 1.00 1.00 re f 128.21 162.57 1.00 1.00 re f 131.46 162.57 1.00 1.00 re f 130.34 162.57 1.00 1.00 re f 130.20 162.57 1.00 1.00 re f 112.56 162.57 1.00 1.00 re f 124.93 162.57 1.00 1.00 re f 66.76 147.84 1.00 1.00 re f 129.48 162.57 1.00 1.00 re f 152.83 162.57 1.00 1.00 re f 136.99 162.57 1.00 1.00 re f 133.73 162.57 1.00 1.00 re f 76.82 160.61 1.00 1.00 re f 142.37 162.57 1.00 1.00 re f 136.43 162.57 1.00 1.00 re f 164.20 162.57 1.00 1.00 re f 128.18 162.57 1.00 1.00 re f 107.44 162.57 1.00 1.00 re f 94.04 162.57 1.00 1.00 re f 87.87 162.57 1.00 1.00 re f 127.22 162.57 1.00 1.00 re f 118.37 162.57 1.00 1.00 re f 103.88 162.57 1.00 1.00 re f 122.95 162.57 1.00 1.00 re f 148.39 162.57 1.00 1.00 re f 122.65 162.57 1.00 1.00 re f 71.37 161.59 1.00 1.00 re f 119.16 162.57 1.00 1.00 re f 114.14 162.57 1.00 1.00 re f 148.89 162.57 1.00 1.00 re f 102.78 162.57 1.00 1.00 re f 145.89 162.57 1.00 1.00 re f 100.45 162.57 1.00 1.00 re f 144.59 162.57 1.00 1.00 re f 132.80 162.57 1.00 1.00 re f 128.82 162.57 1.00 1.00 re f 131.29 162.57 1.00 1.00 re f 142.96 162.57 1.00 1.00 re f 159.18 162.57 1.00 1.00 re f 79.08 160.61 1.00 1.00 re f 165.98 162.57 1.00 1.00 re f 85.22 147.84 1.00 1.00 re f 100.84 162.57 1.00 1.00 re f 152.41 162.57 1.00 1.00 re f 139.22 162.57 1.00 1.00 re f 81.12 158.64 1.00 1.00 re f 113.16 162.57 1.00 1.00 re f 147.04 162.57 1.00 1.00 re f 124.20 162.57 1.00 1.00 re f 115.16 162.57 1.00 1.00 re f 98.48 162.57 1.00 1.00 re f 128.66 162.57 1.00 1.00 re f 128.38 162.57 1.00 1.00 re f 93.47 162.57 1.00 1.00 re f 106.16 162.57 1.00 1.00 re f 101.54 162.57 1.00 1.00 re f 127.56 162.57 1.00 1.00 re f 128.75 162.57 1.00 1.00 re f 171.52 162.57 1.00 1.00 re f 88.35 162.57 1.00 1.00 re f 148.61 162.57 1.00 1.00 re f 115.37 162.57 1.00 1.00 re f 107.88 162.57 1.00 1.00 re f 184.19 162.57 1.00 1.00 re f 66.64 158.64 1.00 1.00 re f 86.92 161.59 1.00 1.00 re f 141.57 162.57 1.00 1.00 re f 130.07 162.57 1.00 1.00 re f 126.41 162.57 1.00 1.00 re f 156.71 162.57 1.00 1.00 re f 123.96 162.57 1.00 1.00 re f 132.24 162.57 1.00 1.00 re f 145.38 162.57 1.00 1.00 re f 124.37 162.57 1.00 1.00 re f 139.65 162.57 1.00 1.00 re f 134.35 162.57 1.00 1.00 re f 75.71 158.64 1.00 1.00 re f 159.32 162.57 1.00 1.00 re f 109.47 162.57 1.00 1.00 re f 96.12 162.57 1.00 1.00 re f 120.97 162.57 1.00 1.00 re f 107.62 162.57 1.00 1.00 re f 96.77 162.57 1.00 1.00 re f 148.92 162.57 1.00 1.00 re f 116.78 162.57 1.00 1.00 re f 105.48 162.57 1.00 1.00 re f 119.91 162.57 1.00 1.00 re f 133.02 162.57 1.00 1.00 re f 78.04 158.64 1.00 1.00 re f 59.91 64.38 1.00 1.00 re f 166.14 162.57 1.00 1.00 re f 57.62 64.38 1.00 1.00 re f 132.00 162.57 1.00 1.00 re f 149.95 162.57 1.00 1.00 re f 151.72 162.57 1.00 1.00 re f 105.99 162.57 1.00 1.00 re f 96.22 162.57 1.00 1.00 re f 98.35 162.57 1.00 1.00 re f 111.63 162.57 1.00 1.00 re f 121.66 162.57 1.00 1.00 re f 90.37 162.57 1.00 1.00 re f 103.94 162.57 1.00 1.00 re f 119.56 162.57 1.00 1.00 re f 127.91 162.57 1.00 1.00 re f 141.64 162.57 1.00 1.00 re f 86.67 160.61 1.00 1.00 re f 88.94 162.57 1.00 1.00 re f 107.56 162.57 1.00 1.00 re f 118.62 162.57 1.00 1.00 re f 77.30 64.38 1.00 1.00 re f 146.74 162.57 1.00 1.00 re f 127.63 162.57 1.00 1.00 re f 108.37 162.57 1.00 1.00 re f 131.82 162.57 1.00 1.00 re f 117.86 162.57 1.00 1.00 re f 105.97 162.57 1.00 1.00 re f 144.99 162.57 1.00 1.00 re f 143.90 162.57 1.00 1.00 re f 122.11 162.57 1.00 1.00 re f 117.39 162.57 1.00 1.00 re f 119.06 162.57 1.00 1.00 re f 117.56 162.57 1.00 1.00 re f 76.25 160.61 1.00 1.00 re f 166.60 162.57 1.00 1.00 re f 119.53 162.57 1.00 1.00 re f 122.35 162.57 1.00 1.00 re f 141.58 162.57 1.00 1.00 re f 73.03 64.38 1.00 1.00 re f 148.74 162.57 1.00 1.00 re f 124.97 162.57 1.00 1.00 re f 131.73 162.57 1.00 1.00 re f 56.44 147.84 1.00 1.00 re f 125.78 162.57 1.00 1.00 re f 100.88 162.57 1.00 1.00 re f 113.29 162.57 1.00 1.00 re f 140.38 162.57 1.00 1.00 re f 114.46 162.57 1.00 1.00 re f 117.65 162.57 1.00 1.00 re f 128.59 162.57 1.00 1.00 re f 128.87 162.57 1.00 1.00 re f 59.14 147.84 1.00 1.00 re f 130.33 162.57 1.00 1.00 re f 103.69 162.57 1.00 1.00 re f 105.94 162.57 1.00 1.00 re f 118.56 162.57 1.00 1.00 re f 120.38 162.57 1.00 1.00 re f 77.49 160.61 1.00 1.00 re f 141.02 162.57 1.00 1.00 re f 88.44 161.59 1.00 1.00 re f 145.61 162.57 1.00 1.00 re f 130.23 162.57 1.00 1.00 re f 119.68 162.57 1.00 1.00 re f 133.24 162.57 1.00 1.00 re f 118.88 162.57 1.00 1.00 re f 125.69 162.57 1.00 1.00 re f 117.51 162.57 1.00 1.00 re f 81.41 161.59 1.00 1.00 re f 132.18 162.57 1.00 1.00 re f 77.94 160.61 1.00 1.00 re f 150.23 162.57 1.00 1.00 re f 116.19 162.57 1.00 1.00 re f 104.73 162.57 1.00 1.00 re f 114.26 162.57 1.00 1.00 re f 112.79 162.57 1.00 1.00 re f 146.87 162.57 1.00 1.00 re f 135.78 162.57 1.00 1.00 re f 133.17 162.57 1.00 1.00 re f 159.43 162.57 1.00 1.00 re f 61.79 147.84 1.00 1.00 re f 109.30 162.57 1.00 1.00 re f 169.74 162.57 1.00 1.00 re f 185.15 162.57 1.00 1.00 re f 96.94 162.57 1.00 1.00 re f 77.39 160.61 1.00 1.00 re f 116.52 162.57 1.00 1.00 re f 124.26 162.57 1.00 1.00 re f 149.76 162.57 1.00 1.00 re f 100.47 162.57 1.00 1.00 re f 150.38 162.57 1.00 1.00 re f 100.61 162.57 1.00 1.00 re f 116.90 162.57 1.00 1.00 re f 106.74 162.57 1.00 1.00 re f 133.11 162.57 1.00 1.00 re f 112.12 162.57 1.00 1.00 re f 144.00 162.57 1.00 1.00 re f 94.67 162.57 1.00 1.00 re f 125.86 162.57 1.00 1.00 re f 61.80 147.84 1.00 1.00 re f 103.40 162.57 1.00 1.00 re f 149.98 162.57 1.00 1.00 re f 173.15 162.57 1.00 1.00 re f 108.31 162.57 1.00 1.00 re f 133.98 162.57 1.00 1.00 re f 163.64 162.57 1.00 1.00 re f 145.31 162.57 1.00 1.00 re f 150.96 162.57 1.00 1.00 re f 113.37 162.57 1.00 1.00 re f 142.99 162.57 1.00 1.00 re f 102.70 162.57 1.00 1.00 re f 71.14 147.84 1.00 1.00 re f 140.20 162.57 1.00 1.00 re f 120.17 162.57 1.00 1.00 re f 136.70 162.57 1.00 1.00 re f 134.13 162.57 1.00 1.00 re f 135.66 162.57 1.00 1.00 re f 111.18 162.57 1.00 1.00 re f 100.53 162.57 1.00 1.00 re f 125.30 162.57 1.00 1.00 re f 158.94 162.57 1.00 1.00 re f 88.89 162.57 1.00 1.00 re f 114.62 162.57 1.00 1.00 re f 133.64 162.57 1.00 1.00 re f 118.66 162.57 1.00 1.00 re f 59.34 64.38 1.00 1.00 re f 144.77 162.57 1.00 1.00 re f 96.90 162.57 1.00 1.00 re f 82.41 160.61 1.00 1.00 re f 133.86 162.57 1.00 1.00 re f 165.86 162.57 1.00 1.00 re f 129.26 162.57 1.00 1.00 re f 117.72 162.57 1.00 1.00 re f 94.80 162.57 1.00 1.00 re f 100.95 162.57 1.00 1.00 re f 112.56 162.57 1.00 1.00 re f 113.11 162.57 1.00 1.00 re f 112.26 162.57 1.00 1.00 re f 141.15 162.57 1.00 1.00 re f 100.42 162.57 1.00 1.00 re f 128.95 162.57 1.00 1.00 re f 110.22 162.57 1.00 1.00 re f 116.01 162.57 1.00 1.00 re f 110.77 162.57 1.00 1.00 re f 149.93 162.57 1.00 1.00 re f 80.87 160.61 1.00 1.00 re f 97.33 162.57 1.00 1.00 re f 82.01 160.61 1.00 1.00 re f 148.80 162.57 1.00 1.00 re f 66.40 160.61 1.00 1.00 re f 118.17 162.57 1.00 1.00 re f 139.52 162.57 1.00 1.00 re f 89.23 162.57 1.00 1.00 re f 158.90 162.57 1.00 1.00 re f 91.42 162.57 1.00 1.00 re f 98.68 162.57 1.00 1.00 re f 113.04 162.57 1.00 1.00 re f 83.09 161.59 1.00 1.00 re f 117.84 162.57 1.00 1.00 re f 129.52 162.57 1.00 1.00 re f 104.21 162.57 1.00 1.00 re f 148.90 162.57 1.00 1.00 re f 133.76 162.57 1.00 1.00 re f 101.15 162.57 1.00 1.00 re f 125.13 162.57 1.00 1.00 re f 100.00 162.57 1.00 1.00 re f 125.46 162.57 1.00 1.00 re f 129.03 162.57 1.00 1.00 re f 109.30 162.57 1.00 1.00 re f 140.49 162.57 1.00 1.00 re f 110.25 162.57 1.00 1.00 re f 121.80 162.57 1.00 1.00 re f 148.80 162.57 1.00 1.00 re f 120.73 162.57 1.00 1.00 re f 149.51 162.57 1.00 1.00 re f 114.13 162.57 1.00 1.00 re f 127.74 162.57 1.00 1.00 re f 111.93 162.57 1.00 1.00 re f 120.06 162.57 1.00 1.00 re f 131.17 162.57 1.00 1.00 re f 154.23 162.57 1.00 1.00 re f 132.10 162.57 1.00 1.00 re f 128.86 162.57 1.00 1.00 re f 127.44 162.57 1.00 1.00 re f 115.64 162.57 1.00 1.00 re f 136.23 162.57 1.00 1.00 re f 137.93 162.57 1.00 1.00 re f 140.83 162.57 1.00 1.00 re f 66.70 147.84 1.00 1.00 re f 143.07 162.57 1.00 1.00 re f 152.65 162.57 1.00 1.00 re f 113.17 162.57 1.00 1.00 re f Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 52.38 60.96 m 172.18 60.96 l S 52.38 60.96 m 52.38 54.98 l S 76.34 60.96 m 76.34 54.98 l S 100.30 60.96 m 100.30 54.98 l S 124.26 60.96 m 124.26 54.98 l S 148.22 60.96 m 148.22 54.98 l S 172.18 60.96 m 172.18 54.98 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 46.68 39.44 Tm (-3) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 70.64 39.44 Tm (-2) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 94.60 39.44 Tm (-1) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 121.48 39.44 Tm (0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 145.44 39.44 Tm (1) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 169.40 39.44 Tm (2) Tj ET 49.00 64.88 m 49.00 163.07 l S 49.00 64.88 m 43.03 64.88 l S 49.00 84.52 m 43.03 84.52 l S 49.00 104.16 m 43.03 104.16 l S 49.00 123.79 m 43.03 123.79 l S 49.00 143.43 m 43.03 143.43 l S 49.00 163.07 m 43.03 163.07 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 57.93 Tm (0.0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 97.21 Tm (0.4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 136.48 Tm (0.8) Tj ET 49.00 60.96 m 190.90 60.96 l 190.90 167.00 l 49.00 167.00 l 49.00 60.96 l S Q q 0.00 0.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 90.27 15.54 Tm (Test statistics) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 72.98 Tm (Adjusted p-values) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 36.20 172.38 Tm (Adjusted p-values vs. Statistics) Tj ET Q q 265.00 60.96 141.90 106.04 re W n Q q 265.00 60.96 141.90 106.04 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 270.26 163.07 m 270.56 163.07 l 270.87 162.09 l 271.18 163.07 l 271.48 161.11 l 271.79 163.07 l 272.09 163.07 l 272.40 163.07 l 272.70 163.07 l 273.01 163.07 l 273.31 163.07 l 273.62 163.07 l 273.93 163.07 l 274.23 163.07 l 274.54 163.07 l 274.84 163.07 l 275.15 163.07 l 275.45 163.07 l 275.76 163.07 l 276.06 163.07 l 276.37 163.07 l 276.68 163.07 l 276.98 163.07 l 277.29 163.07 l 277.59 159.14 l 277.90 148.34 l 278.20 163.07 l 278.51 163.07 l 278.81 163.07 l 279.12 163.07 l 279.43 163.07 l 279.73 163.07 l 280.04 163.07 l 280.34 163.07 l 280.65 163.07 l 280.95 163.07 l 281.26 163.07 l 281.56 163.07 l 281.87 163.07 l 282.18 163.07 l 282.48 163.07 l 282.79 162.09 l 283.09 163.07 l 283.40 163.07 l 283.70 162.09 l 284.01 163.07 l 284.31 163.07 l 284.62 163.07 l 284.93 163.07 l 285.23 163.07 l 285.54 163.07 l 285.84 163.07 l 286.15 163.07 l 286.45 163.07 l 286.76 163.07 l 287.06 163.07 l 287.37 163.07 l 287.68 163.07 l 287.98 163.07 l 288.29 163.07 l 288.59 163.07 l 288.90 163.07 l 289.20 163.07 l 289.51 163.07 l 289.81 163.07 l 290.12 163.07 l 290.42 163.07 l 290.73 163.07 l 291.04 163.07 l 291.34 163.07 l 291.65 163.07 l 291.95 163.07 l 292.26 163.07 l 292.56 163.07 l 292.87 163.07 l 293.17 163.07 l 293.48 163.07 l 293.79 163.07 l 294.09 163.07 l 294.40 163.07 l 294.70 148.34 l 295.01 64.88 l 295.31 163.07 l 295.62 163.07 l 295.92 163.07 l 296.23 148.34 l 296.54 163.07 l 296.84 163.07 l 297.15 163.07 l 297.45 163.07 l 297.76 163.07 l 298.06 163.07 l 298.37 163.07 l 298.67 163.07 l 298.98 163.07 l 299.29 163.07 l 299.59 163.07 l 299.90 163.07 l 300.20 163.07 l 300.51 161.11 l 300.81 163.07 l 301.12 163.07 l 301.42 163.07 l 301.73 64.88 l 302.04 163.07 l 302.34 163.07 l 302.65 163.07 l 302.95 163.07 l 303.26 163.07 l 303.56 161.11 l 303.87 163.07 l 304.17 163.07 l 304.48 163.07 l 304.79 163.07 l 305.09 163.07 l 305.40 163.07 l 305.70 163.07 l 306.01 163.07 l 306.31 163.07 l 306.62 163.07 l 306.92 163.07 l 307.23 163.07 l 307.54 163.07 l 307.84 163.07 l 308.15 163.07 l 308.45 163.07 l 308.76 163.07 l 309.06 163.07 l 309.37 163.07 l 309.67 163.07 l 309.98 163.07 l 310.29 148.34 l 310.59 163.07 l 310.90 163.07 l 311.20 163.07 l 311.51 163.07 l 311.81 163.07 l 312.12 163.07 l 312.42 163.07 l 312.73 163.07 l 313.04 163.07 l 313.34 161.11 l 313.65 161.11 l 313.95 163.07 l 314.26 163.07 l 314.56 163.07 l 314.87 163.07 l 315.17 163.07 l 315.48 163.07 l 315.79 163.07 l 316.09 163.07 l 316.40 163.07 l 316.70 163.07 l 317.01 163.07 l 317.31 163.07 l 317.62 163.07 l 317.92 163.07 l 318.23 163.07 l 318.54 148.34 l 318.84 163.07 l 319.15 163.07 l 319.45 163.07 l 319.76 163.07 l 320.06 161.11 l 320.37 163.07 l 320.67 163.07 l 320.98 163.07 l 321.29 163.07 l 321.59 163.07 l 321.90 163.07 l 322.20 163.07 l 322.51 163.07 l 322.81 163.07 l 323.12 163.07 l 323.42 163.07 l 323.73 163.07 l 324.04 163.07 l 324.34 162.09 l 324.65 163.07 l 324.95 163.07 l 325.26 163.07 l 325.56 163.07 l 325.87 163.07 l 326.17 163.07 l 326.48 163.07 l 326.79 163.07 l 327.09 163.07 l 327.40 163.07 l 327.70 163.07 l 328.01 163.07 l 328.31 161.11 l 328.62 163.07 l 328.92 148.34 l 329.23 163.07 l 329.54 163.07 l 329.84 163.07 l 330.15 159.14 l 330.45 163.07 l 330.76 163.07 l 331.06 163.07 l 331.37 163.07 l 331.67 163.07 l 331.98 163.07 l 332.29 163.07 l 332.59 163.07 l 332.90 163.07 l 333.20 163.07 l 333.51 163.07 l 333.81 163.07 l 334.12 163.07 l 334.42 163.07 l 334.73 163.07 l 335.04 163.07 l 335.34 163.07 l 335.65 163.07 l 335.95 159.14 l 336.26 162.09 l 336.56 163.07 l 336.87 163.07 l 337.17 163.07 l 337.48 163.07 l 337.79 163.07 l 338.09 163.07 l 338.40 163.07 l 338.70 163.07 l 339.01 163.07 l 339.31 163.07 l 339.62 159.14 l 339.92 163.07 l 340.23 163.07 l 340.54 163.07 l 340.84 163.07 l 341.15 163.07 l 341.45 163.07 l 341.76 163.07 l 342.06 163.07 l 342.37 163.07 l 342.67 163.07 l 342.98 163.07 l 343.29 159.14 l 343.59 64.88 l 343.90 163.07 l 344.20 64.88 l 344.51 163.07 l 344.81 163.07 l 345.12 163.07 l 345.42 163.07 l 345.73 163.07 l 346.04 163.07 l 346.34 163.07 l 346.65 163.07 l 346.95 163.07 l 347.26 163.07 l 347.56 163.07 l 347.87 163.07 l 348.17 163.07 l 348.48 161.11 l 348.79 163.07 l 349.09 163.07 l 349.40 163.07 l 349.70 64.88 l 350.01 163.07 l 350.31 163.07 l 350.62 163.07 l 350.92 163.07 l 351.23 163.07 l 351.54 163.07 l 351.84 163.07 l 352.15 163.07 l 352.45 163.07 l 352.76 163.07 l 353.06 163.07 l 353.37 163.07 l 353.67 161.11 l 353.98 163.07 l 354.29 163.07 l 354.59 163.07 l 354.90 163.07 l 355.20 64.88 l 355.51 163.07 l 355.81 163.07 l 356.12 163.07 l 356.42 148.34 l 356.73 163.07 l 357.03 163.07 l 357.34 163.07 l 357.65 163.07 l 357.95 163.07 l 358.26 163.07 l 358.56 163.07 l 358.87 163.07 l 359.17 148.34 l 359.48 163.07 l 359.78 163.07 l 360.09 163.07 l 360.40 163.07 l 360.70 163.07 l 361.01 161.11 l 361.31 163.07 l 361.62 162.09 l 361.92 163.07 l 362.23 163.07 l 362.53 163.07 l 362.84 163.07 l 363.15 163.07 l 363.45 163.07 l 363.76 163.07 l 364.06 162.09 l 364.37 163.07 l 364.67 161.11 l 364.98 163.07 l 365.28 163.07 l 365.59 163.07 l 365.90 163.07 l 366.20 163.07 l 366.51 163.07 l 366.81 163.07 l 367.12 163.07 l 367.42 163.07 l 367.73 148.34 l 368.03 163.07 l 368.34 163.07 l 368.65 163.07 l 368.95 163.07 l 369.26 161.11 l 369.56 163.07 l 369.87 163.07 l 370.17 163.07 l 370.48 163.07 l 370.78 163.07 l 371.09 163.07 l 371.40 163.07 l 371.70 163.07 l 372.01 163.07 l 372.31 163.07 l 372.62 163.07 l 372.92 163.07 l 373.23 163.07 l 373.53 148.34 l 373.84 163.07 l 374.15 163.07 l 374.45 163.07 l 374.76 163.07 l 375.06 163.07 l 375.37 163.07 l 375.67 163.07 l 375.98 163.07 l 376.28 163.07 l 376.59 163.07 l 376.90 163.07 l 377.20 148.34 l 377.51 163.07 l 377.81 163.07 l 378.12 163.07 l 378.42 163.07 l 378.73 163.07 l 379.03 163.07 l 379.34 163.07 l 379.65 163.07 l 379.95 163.07 l 380.26 163.07 l 380.56 163.07 l 380.87 163.07 l 381.17 163.07 l 381.48 64.88 l 381.78 163.07 l 382.09 163.07 l 382.40 161.11 l 382.70 163.07 l 383.01 163.07 l 383.31 163.07 l 383.62 163.07 l 383.92 163.07 l 384.23 163.07 l 384.53 163.07 l 384.84 163.07 l 385.15 163.07 l 385.45 163.07 l 385.76 163.07 l 386.06 163.07 l 386.37 163.07 l 386.67 163.07 l 386.98 163.07 l 387.28 163.07 l 387.59 161.11 l 387.90 163.07 l 388.20 161.11 l 388.51 163.07 l 388.81 161.11 l 389.12 163.07 l 389.42 163.07 l 389.73 163.07 l 390.03 163.07 l 390.34 163.07 l 390.65 163.07 l 390.95 163.07 l 391.26 162.09 l 391.56 163.07 l 391.87 163.07 l 392.17 163.07 l 392.48 163.07 l 392.78 163.07 l 393.09 163.07 l 393.40 163.07 l 393.70 163.07 l 394.01 163.07 l 394.31 163.07 l 394.62 163.07 l 394.92 163.07 l 395.23 163.07 l 395.53 163.07 l 395.84 163.07 l 396.15 163.07 l 396.45 163.07 l 396.76 163.07 l 397.06 163.07 l 397.37 163.07 l 397.67 163.07 l 397.98 163.07 l 398.28 163.07 l 398.59 163.07 l 398.90 163.07 l 399.20 163.07 l 399.51 163.07 l 399.81 163.07 l 400.12 163.07 l 400.42 163.07 l 400.73 148.34 l 401.03 163.07 l 401.34 163.07 l 401.65 163.07 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 269.95 60.96 m 392.17 60.96 l S 269.95 60.96 m 269.95 54.98 l S 300.51 60.96 m 300.51 54.98 l S 331.06 60.96 m 331.06 54.98 l S 361.62 60.96 m 361.62 54.98 l S 392.17 60.96 m 392.17 54.98 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 267.17 39.44 Tm (0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 292.17 39.44 Tm (100) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 322.72 39.44 Tm (200) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 353.28 39.44 Tm (300) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 383.83 39.44 Tm (400) Tj ET 265.00 64.88 m 265.00 163.07 l S 265.00 64.88 m 259.03 64.88 l S 265.00 84.52 m 259.03 84.52 l S 265.00 104.16 m 259.03 104.16 l S 265.00 123.79 m 259.03 123.79 l S 265.00 143.43 m 259.03 143.43 l S 265.00 163.07 m 259.03 163.07 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 250.66 57.93 Tm (0.0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 250.66 97.21 Tm (0.4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 250.66 136.48 Tm (0.8) Tj ET 265.00 60.96 m 406.90 60.96 l 406.90 167.00 l 265.00 167.00 l 265.00 60.96 l S Q q 216.00 0.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 323.87 15.54 Tm (Index) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 226.76 72.98 Tm (Adjusted p-values) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 256.75 172.38 Tm (Unordered Adjusted p-values) Tj ET Q endstream endobj 183 0 obj << /CreationDate (D:20050415164317) /ModDate (D:20050415164317) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 184 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 185 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 191 0 R >> endobj 186 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 191 0 R >> endobj 187 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 191 0 R >> endobj 188 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 191 0 R >> endobj 189 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 190 0 obj 32598 endobj 191 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 172 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [468.903 296.441 476.35 309.239] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 174 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [342.732 175.991 370.47 188.789] /Subtype /Link /A << /S /GoTo /D (cite.Holm79) >> >> endobj 175 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [375.132 175.991 398.943 188.789] /Subtype /Link /A << /S /GoTo /D (cite.Holm79) >> >> endobj 176 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [454.442 175.991 501.587 188.789] /Subtype /Link /A << /S /GoTo /D (cite.Hochberg88) >> >> endobj 177 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [129.035 162.442 152.845 176.775] /Subtype /Link /A << /S /GoTo /D (cite.Hochberg88) >> >> endobj 178 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [213.267 162.442 241.594 176.775] /Subtype /Link /A << /S /GoTo /D (cite.Sidak67) >> >> endobj 179 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [247.577 162.442 271.388 176.775] /Subtype /Link /A << /S /GoTo /D (cite.Sidak67) >> >> endobj 180 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [450.316 162.442 485.45 176.775] /Subtype /Link /A << /S /GoTo /D (cite.DudoitetalStatSci03) >> >> endobj 181 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [124.802 148.892 151.27 161.69] /Subtype /Link /A << /S /GoTo /D (cite.DudoitetalStatSci03) >> >> endobj 182 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [157.411 148.892 181.222 161.69] /Subtype /Link /A << /S /GoTo /D (cite.DudoitetalStatSci03) >> >> endobj 170 0 obj << /D [168 0 R /XYZ 125.798 687.123 null] >> endobj 171 0 obj << /D [168 0 R /XYZ 177.257 424.299 null] >> endobj 173 0 obj << /D [168 0 R /XYZ 125.798 231.489 null] >> endobj 167 0 obj << /Font << /F15 58 0 R /F71 79 0 R /F60 62 0 R /F81 133 0 R /F67 72 0 R /F41 84 0 R >> /XObject << /Im1 166 0 R >> /ProcSet [ /PDF /Text ] >> endobj 199 0 obj << /Length 2502 /Filter /FlateDecode >> stream xڥZ[~XE!&M΅к-`4 !%q+j}m3U\3g;gƛd_~+uuSTe+}^d7k\HZL&2& 8}M̳66OnnW?.Lҋ2_4Y?0a ß2oy Ot|K÷2gw~7.>%^6Y:ISkjRDy}q?d=蛇,lh.3l;Kʧ|4S>uٷa ?H6;7ؔӽ/(mk2!q1Go-bM)?6D`u1z<Ue9 |"燄٘r8Jg5@9ĩПsC3W H~Χ x#+۠X [aR^mPc2UA{{kbG$(xmǟ#u/U50."ލ?`-Q KwdyYو5&# E!.yI!t ~/~SeFKU [^Ngn`Bd52tToÌvݧq+[4*(##Xtni(b+V<1z㜘_BiGtC-(:C%B䌁d2M#QbbET;MDc)7=3>e̞MQs ْz(lL`Ԭ$pT!麕`#(!4ʼ>~uGٲCV:G[9H8iSJj4~Q qd3&("S 0`y yDn@O@F9r0KLQ kr;vC(chĉdn.u*y\۞=4sZ$g{7I>v[ޟ<Aά:(uC-QiYL6PXLx>*Yy@"{fU(K˪^ogRE9kgq n+@=y'Uz KZo7RspXm2b9qMŸ.Cx5u"=+bX0IN5)(4?6 nARv壬%R{˝,$t*N[oHkGRyAa}o xBKzS>Fh+c8L=`DžuGz<(m J=K +CHd'Ѯ^46V\[;_aI30ԁN2L'HݦaX45 2v.۰2cՆuw=UŻ> .nz&j }bd|#B|n; sW3IeUش(Ml0;l脁ԟwH;/1eϋV\Nh_ .pfǵITk,k)M BC@QFGaf}+HUEa.ǘX6] q.1 |.#]בq%5% \i)r'>B1.,|/x=rցRJ 0G/Z>c=SS8r}*~^ω{IGEkÌ0uV|m, ߹ -M)M7#u1EKTYjBgD:6O\bA.l#2:调dR!L#o'Yь"2i RV®* uxNIQt"[AY#\fRULsq&$`5yVq/gE=gaJ@HJ:k}Xh dΓFG84ZtL'Tfu)J?XB8$\BozfN>Wu~/Vl]Kźp=ASxi#nN/r`&pnHr)BSZ}E4DRig ssg:z' ;N6AnݜZk-6@r-B+D4 Uo Oo=ژѿ6+sS{1/Hg5FYB/ )3s 1qXnSt͠x_w+ ^\B*?wGY_]:ťHN0PW] q]ZȤFtTu }k72> endobj 201 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [345.002 420.386 352.449 433.184] /Subtype /Link /A << /S /GoTo /D (figure.2) >> >> endobj 203 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [365.804 283.198 485.45 295.996] /Subtype /Link /A << /S /GoTo /D (cite.Pollard&vdLaanJSPI04) >> >> endobj 204 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [129.035 269.649 152.845 282.447] /Subtype /Link /A << /S /GoTo /D (cite.Pollard&vdLaanJSPI04) >> >> endobj 200 0 obj << /D [198 0 R /XYZ 125.798 687.123 null] >> endobj 202 0 obj << /D [198 0 R /XYZ 125.798 365.49 null] >> endobj 197 0 obj << /Font << /F81 133 0 R /F15 58 0 R /F67 72 0 R /F41 84 0 R /F60 62 0 R >> /ProcSet [ /PDF /Text ] >> endobj 208 0 obj << /Length 573 /Filter /FlateDecode >> stream xmTKo0 W(Z֎ۚdI7QǏe7)DEI ~)m sJl3ۃSIm鬅B/MsY !5̑3C)ITIϋw }ׂ HAҺ4~7+edkwKItH=kT' L'})j~Wh?߬:Zz $z~0XZOqq@ FwCnzId_@ҝJ"Y 1dL$qH#V0CPcA:@Eՙ3BX#Ԟ?B;ޟ.mRCpޒ]O+c?2@ @8$JXa';ZS>x"dF&$^&OtF6"fOSաx݈Lkc ɣÏ-S,ڟ#kr].xmb:9xwΣ Tf)n-UVW e"h~Gu6os1f@s7endstream endobj 207 0 obj << /Type /Page /Contents 208 0 R /Resources 206 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 196 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./cytoMargPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 210 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 211 0 R /F2 212 0 R /F3 213 0 R /F4 214 0 R /F5 215 0 R /F6 216 0 R >> /ExtGState << >>>> /Length 217 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 2.25 w [] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 92.38 l 347.40 92.38 l 350.60 92.38 l 353.81 92.38 l 357.01 92.38 l 360.22 92.38 l 363.42 92.38 l 366.63 92.38 l 369.83 92.38 l 373.04 92.38 l 376.25 92.38 l 379.45 95.65 l 382.66 95.65 l 385.86 106.12 l 389.07 361.87 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 71.73 73.44 m 389.07 73.44 l S 71.73 73.44 m 71.73 66.24 l S 135.20 73.44 m 135.20 66.24 l S 198.67 73.44 m 198.67 66.24 l S 262.13 73.44 m 262.13 66.24 l S 325.60 73.44 m 325.60 66.24 l S 389.07 73.44 m 389.07 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 63.39 47.52 Tm (0.0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 126.86 47.52 Tm (0.2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 190.33 47.52 Tm (0.4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 253.79 47.52 Tm (0.6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 317.26 47.52 Tm (0.8) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 380.73 47.52 Tm (1.0) Tj ET 59.04 79.95 m 59.04 341.59 l S 59.04 79.95 m 51.84 79.95 l S 59.04 145.36 m 51.84 145.36 l S 59.04 210.77 m 51.84 210.77 l S 59.04 276.18 m 51.84 276.18 l S 59.04 341.59 m 51.84 341.59 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 76.62 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 135.36 Tm (100) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 200.76 Tm (200) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 266.17 Tm (300) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 331.58 Tm (400) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 188.11 18.72 Tm (Type I error rate) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 139.83 Tm (Number of rejected hypotheses) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 84.53 l 347.40 84.53 l 350.60 84.53 l 353.81 84.53 l 357.01 84.53 l 360.22 84.53 l 363.42 84.53 l 366.63 84.53 l 369.83 84.53 l 373.04 84.53 l 376.25 84.53 l 379.45 84.53 l 382.66 84.53 l 385.86 84.53 l 389.07 361.87 l S 0.000 0.804 0.000 RG 2.25 w [ 0.00 9.00] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 84.53 l 347.40 84.53 l 350.60 84.53 l 353.81 84.53 l 357.01 84.53 l 360.22 84.53 l 363.42 84.53 l 366.63 84.53 l 369.83 84.53 l 373.04 84.53 l 376.25 84.53 l 379.45 84.53 l 382.66 84.53 l 385.86 84.53 l 389.07 361.87 l S 0.000 0.000 1.000 RG 2.25 w [ 0.00 9.00 6.75 9.00] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 84.53 l 347.40 84.53 l 350.60 84.53 l 353.81 84.53 l 357.01 84.53 l 360.22 84.53 l 363.42 84.53 l 366.63 84.53 l 369.83 84.53 l 373.04 84.53 l 376.25 84.53 l 379.45 84.53 l 382.66 84.53 l 385.86 84.53 l 389.07 361.87 l S 0.000 1.000 1.000 RG 2.25 w [ 13.50 9.00] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 84.53 l 347.40 84.53 l 350.60 84.53 l 353.81 84.53 l 357.01 84.53 l 360.22 84.53 l 363.42 84.53 l 366.63 84.53 l 369.83 84.53 l 373.04 84.53 l 376.25 84.53 l 379.45 84.53 l 382.66 84.53 l 385.86 92.38 l 389.07 361.87 l S 1.000 0.000 1.000 RG 2.25 w [ 2.25 6.75 11.25 6.75] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 84.53 l 347.40 84.53 l 350.60 84.53 l 353.81 84.53 l 357.01 84.53 l 360.22 84.53 l 363.42 84.53 l 366.63 84.53 l 369.83 84.53 l 373.04 84.53 l 376.25 84.53 l 379.45 84.53 l 382.66 84.53 l 385.86 92.38 l 389.07 361.87 l S 0.000 0.000 0.000 RG 0.75 w [] 0 d 103.47 341.59 103.60 -100.80 re S 2.25 w [] 0 d 114.27 327.19 m 135.87 327.19 l S 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 114.27 312.79 m 135.87 312.79 l S 0.000 0.804 0.000 RG 2.25 w [ 0.00 9.00] 0 d 114.27 298.39 m 135.87 298.39 l S 0.000 0.000 1.000 RG 2.25 w [ 0.00 9.00 6.75 9.00] 0 d 114.27 283.99 m 135.87 283.99 l S 0.000 1.000 1.000 RG 2.25 w [ 13.50 9.00] 0 d 114.27 269.59 m 135.87 269.59 l S 1.000 0.000 1.000 RG 2.25 w [ 2.25 6.75 11.25 6.75] 0 d 114.27 255.19 m 135.87 255.19 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 322.88 Tm (SD minP) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 308.48 Tm (Bonferroni) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 294.08 Tm (Holm) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 279.68 Tm (Hochberg) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 265.28 Tm (SidakSS) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 250.88 Tm (SidakSD) Tj ET Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 -5.35 397.45 Tm (Comparison of marginal and step-down minP FWER-controlling MTPs) Tj ET Q endstream endobj 210 0 obj << /CreationDate (D:20050415164317) /ModDate (D:20050415164317) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 211 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 212 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 218 0 R >> endobj 213 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 218 0 R >> endobj 214 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 218 0 R >> endobj 215 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 218 0 R >> endobj 216 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 217 0 obj 11823 endobj 218 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 209 0 obj << /D [207 0 R /XYZ 125.798 687.123 null] >> endobj 205 0 obj << /D [207 0 R /XYZ 174.584 301.726 null] >> endobj 206 0 obj << /Font << /F15 58 0 R /F71 79 0 R >> /XObject << /Im2 196 0 R >> /ProcSet [ /PDF /Text ] >> endobj 221 0 obj << /Length 1138 /Filter /FlateDecode >> stream xڭ]o6+< V7 `0`.|"Ek; l})d!IX4#BBY~9i2kYikmԢp:zɛ:4a<QKO*#8!:ޕX>6_!X'_z%TmtN{S?I_!^VO7iN6qX$Ůk,bɭu&MaiTh$8LTuG,Pw}Bcx44hn|Y,Z2u'O)K_|ߟTҊЏI.މhf' 1OwnIexofbC4iti62O1Al26z"d!  `"HrHJ& $`I& $`I0)J&`RI&`3L0iϦdҀI& 4`Ҁ0dLn%L0dݿEXdH Y˕H YdyL09L09{L09g<`&<`Sd)0SL0SL\mv)ނ#hsm h(gYJ= 3@& 4,p@ Z`Xvj KvMڑ-5ѕ3ObA#}B]vk!vKb$Gbp$O=D7@xOI=gkbۢ$UDW]}&1h!1%Z눮#3[$֓zXO))b7E즈:`Szj NIEbЄ]]Mt 5DnI H '迓( 4&[&~[y)9MJoݏLz%16$"YJ6&{9Nզ2 d_JgN?U6MI?ڙE7hћPX^MmExzn:j?xy_Zbw;l?4|=IOͷcan||i[.Oi3—$W} dXN,rjgxdo!8A$2:1/T.6k*ž?|fendstream endobj 220 0 obj << /Type /Page /Contents 221 0 R /Resources 219 0 R /MediaBox [0 0 612 792] /Parent 223 0 R >> endobj 222 0 obj << /D [220 0 R /XYZ 125.798 687.123 null] >> endobj 219 0 obj << /Font << /F81 133 0 R /F60 62 0 R /F15 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 226 0 obj << /Length 1179 /Filter /FlateDecode >> stream xڥ[DW΃WU_ DD ew6b Orjf}qu}36m} ;|K,ǫnKuc٘`Zce"m#ƠMNbo'@ L ކ-abĀ&L 0 `(L0 `$IL0d0dL0dL0YdO[vE$ ,@r$ܙ6er&<`&&<-L0SL SL0පe )"`g"`)"n-ȕV[}Zmio!]40,]($ O}pдp-Jl$+H`9' XJ ,dRԙ"Onv$RB^tnRCH)ZծnG:e^y^!(9%N7>oK|š4{,U"7VƊX_`_H"=VNJ"7VƊX_`sHO"=Q'Չ7Q&ĶxDў(E{hOEoM7Dў(E{hOEoFfdu+vh(3̤<׳fϢ,'.3o,SG.`Sg{Zo}X>ֶSiHa8lLJ /C.slPg|?;Ćd wטZ)9UO5q5~"ֈl}u!揵~u>fUn\ЅFW3uK;dAe~R}Sj%멜q_C wN}?]ꥻF}YG] ژ ܡF;b*i]wnjGK8wb.:o6" ^HZ3fo\TcTx3vԬ#O]$/MJ^ o'k!qLyAv6+:Ocbvf=e;ٿvendstream endobj 225 0 obj << /Type /Page /Contents 226 0 R /Resources 224 0 R /MediaBox [0 0 612 792] /Parent 223 0 R >> endobj 227 0 obj << /D [225 0 R /XYZ 125.798 687.123 null] >> endobj 224 0 obj << /Font << /F60 62 0 R /F81 133 0 R /F15 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 230 0 obj << /Length 1674 /Filter /FlateDecode >> stream xXY6~_a䡐ш!ZRMlѢmA>v׭m-,m:lyykaТpUgI*chУ[x8x7;N/^]f\\M7l4]|^co]TMmO5<Jh =%VоV@[@ZVWo&RƟi3X#6N$'vbMIC.'cXl2O?)N ?ئ ehKF)7+1OQ]B;hxhglhˬʬp?qb >g7N ZMf# ZN%}[@KL ^\ReLN*I/˅`t'8Gr "Ȃ)vm]T]H>&d"*glQuuLe.bWbFŖ>0$ a9ϓ[_uhJ4O[a^6Q#,&yKOkVhƀ*`f>*oan$ %|oDf=Sx(a"PIJ yñWdWoڞԍDo|X1/;5:zi`Wυ c"A3e\/BNNbV9[Cp4:HgDA*?8 .lVAz:e*75 :+`Ye{*E4@iU/lVcL.aX b 30k цtI+WȶGZ$Y w:(.W>/A(*A.O0nbkW9"L|.wyˡbc.Og0.ddsmb~36t 7~I-xq"J?dp0}ANP'"BgǩD$ XEG:neײeGl$gtÀ\J,^0=*a?>@j0ҁX!H\G: p3YdQdFI_ޫz%`(|7>ҙ{:9iRbX[3鬅*ӨVi|+vm?tp1 1\WRnM `|Rq|qy^|/|4b,`KҾ6PW<'Dh$P=Qz|>ސPa& )-f!Txs\lC%+ʛly}r~!@)&Z)x7m/$nils5IMf3p-xendstream endobj 229 0 obj << /Type /Page /Contents 230 0 R /Resources 228 0 R /MediaBox [0 0 612 792] /Parent 223 0 R >> endobj 231 0 obj << /D [229 0 R /XYZ 125.798 687.123 null] >> endobj 232 0 obj << /D [229 0 R /XYZ 125.798 517.557 null] >> endobj 30 0 obj << /D [229 0 R /XYZ 125.798 182.753 null] >> endobj 228 0 obj << /Font << /F81 133 0 R /F60 62 0 R /F15 58 0 R /F41 84 0 R /F67 72 0 R /F62 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 235 0 obj << /Length 2070 /Filter /FlateDecode >> stream xn}bOXC<Ĉ]c X$!E(cͱG6ynsD `AlV]U5fS3mZլTi3kwo=|c'>.*Oskf77_Wvrݓ*ն-|/t\%G\Wɪ/rcB%Op溄O rTN=x%"+`>ڤ5[xvHyza;ĉ$za=B5Wı5!tCxfEu}0d,MCF۸L`(u ~r[;*jp:R4ڣSZ ֤;ȇGumnn%s)L(ԿHF[&|4SeDw  LϳZC?ZF$cOVrRygxmekᇹ@Vl{eUDy:s]DZVo=F_][6.elБ]h ]A9eBS:/w̿yk8s߁,zӢT*ECbaendstream endobj 234 0 obj << /Type /Page /Contents 235 0 R /Resources 233 0 R /MediaBox [0 0 612 792] /Parent 223 0 R /Annots [ 238 0 R ] >> endobj 238 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [326.166 330.434 333.613 342.114] /Subtype /Link /A << /S /GoTo /D (figure.3) >> >> endobj 236 0 obj << /D [234 0 R /XYZ 125.798 687.123 null] >> endobj 237 0 obj << /D [234 0 R /XYZ 125.798 498.099 null] >> endobj 242 0 obj << /D [234 0 R /XYZ 125.798 248.439 null] >> endobj 233 0 obj << /Font << /F15 58 0 R /F60 62 0 R /F67 72 0 R /F81 133 0 R /F41 84 0 R /F42 241 0 R >> /ProcSet [ /PDF /Text ] >> endobj 249 0 obj << /Length 2396 /Filter /FlateDecode >> stream xn_!)c@ G16@PG2v8^}jyS`鮮Rg)SgJ$/b&={oW$s0XmaY`}sq]4)#T]qv9aLj=<_g&gSe̿Sf XI-Ÿ? Q^g gx*xv c=oaQky _=G*Y8^$khxN8kDeǑ0OG Q*V.0*HReI׳F,*nbkֲ&'( 5njI :4 tg,3 ITq\QWՂlR5u#!;+Y;3^~Vd!vNҔ6)Mˤp~ ܣ" ) DzִmidqQu!bp&8O ThǚD5Zú5dcXytys,ZHx[iS48JET\2XJm)*sG2hCmu6,UE%H9hߥ*G7h#yC2t3<ֳ4X{"P"|UR` GZ~/EG)>+W;#'VV'9bHUɂN&%L N{aVu-=e;oe/# m]eT=yW aJ0{83l>k7$6׽A-Q +x>x)?r/p!"԰zu[&ߎSneNϿL(||xaE Tw箈7q'wAߠb'-~tRDZM 2wEdCūo^:N[2N6}+'ml>hv"L&}k.@'4 U-~;T,8z`X:|]mA% \zj.&^.ԴDkǤ0,v\:l' ́ӤEnPu*cΑqelOuop!,xZp'ۢ=Xky$p-ԩȳi#[5bٴedj3N~G/qJUVd= kL%' RD|{(c뛑k"ҖnM{ρ3Z< rѥ]z$hl upiU{C;4TN*-%w{lˉf`T/LV(q#骷꒝vƔ9*-K|h&e n)nv]avRٶAI5\ 6-X]Vq|Mu]HvZ{~jNI tm1.֚?%Xo !*'NSNϜW>]\^y?~|˛uqdqƚWRT7PAlgz]I+!1cbDendstream endobj 248 0 obj << /Type /Page /Contents 249 0 R /Resources 247 0 R /MediaBox [0 0 612 792] /Parent 223 0 R /Annots [ 251 0 R 253 0 R 254 0 R 255 0 R 256 0 R 257 0 R 258 0 R 259 0 R ] >> endobj 251 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [263.207 616.583 270.654 628.262] /Subtype /Link /A << /S /GoTo /D (figure.4) >> >> endobj 253 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [124.802 520.279 213.729 533.077] /Subtype /Link /A << /S /GoTo /D (cite.vdLaanetalMT3SAGMB04) >> >> endobj 254 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [218.658 520.279 247.923 533.077] /Subtype /Link /A << /S /GoTo /D (cite.vdLaanetalMT3SAGMB04) >> >> endobj 255 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [283.597 479.632 404.276 492.43] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 256 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [410.207 479.632 434.017 492.43] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 257 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [214.455 466.083 330.761 478.88] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 258 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [336.049 466.083 359.86 478.88] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 259 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [159.343 290.998 166.79 302.678] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 250 0 obj << /D [248 0 R /XYZ 125.798 687.123 null] >> endobj 252 0 obj << /D [248 0 R /XYZ 125.798 548.985 null] >> endobj 34 0 obj << /D [248 0 R /XYZ 125.798 182.753 null] >> endobj 247 0 obj << /Font << /F81 133 0 R /F15 58 0 R /F41 84 0 R /F67 72 0 R /F60 62 0 R /F42 241 0 R /F62 67 0 R /F25 155 0 R >> /ProcSet [ /PDF /Text ] >> endobj 266 0 obj << /Length 660 /Filter /FlateDecode >> stream xڕTKo1W蕰~͍GTz!٤$f̌ۤJl}[~)dJNJՇ&靃3J1hJVld ZcK3'퐆3%enXAz?zgrkvy?""PP!otSedjCG#C4^~B;0By]|?Ng: t?*éLjB Ӟ>II;-qq-(ӼZ7p%zwljWXOPJm 0F#N oN:LFvWm+y JiL[tEvբ]CDd! ,MQcM|ܡMCOը3|nFAxCfTƵXDDd O|o $&c#J@Q`|"%K0WnH4'4@,1?KAGҮa =h0x5)5vF2Z*ӐaNE)R4 c{|sK-+>Cz )1QϽxʺOAD-#\/lթ,=q"ZXendstream endobj 265 0 obj << /Type /Page /Contents 266 0 R /Resources 264 0 R /MediaBox [0 0 612 792] /Parent 223 0 R >> endobj 244 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./cytogfwer.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 268 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 269 0 R /F2 270 0 R /F3 271 0 R /F4 272 0 R /F5 273 0 R /F6 274 0 R >> /ExtGState << >>>> /Length 275 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 2.25 w [] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 92.38 l 347.40 92.38 l 350.60 92.38 l 353.81 92.38 l 357.01 92.38 l 360.22 92.38 l 363.42 92.38 l 366.63 92.38 l 369.83 92.38 l 373.04 92.38 l 376.25 92.38 l 379.45 95.65 l 382.66 95.65 l 385.86 106.12 l 389.07 361.87 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 71.73 73.44 m 389.07 73.44 l S 71.73 73.44 m 71.73 66.24 l S 135.20 73.44 m 135.20 66.24 l S 198.67 73.44 m 198.67 66.24 l S 262.13 73.44 m 262.13 66.24 l S 325.60 73.44 m 325.60 66.24 l S 389.07 73.44 m 389.07 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 63.39 47.52 Tm (0.0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 126.86 47.52 Tm (0.2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 190.33 47.52 Tm (0.4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 253.79 47.52 Tm (0.6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 317.26 47.52 Tm (0.8) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 380.73 47.52 Tm (1.0) Tj ET 59.04 79.95 m 59.04 341.59 l S 59.04 79.95 m 51.84 79.95 l S 59.04 145.36 m 51.84 145.36 l S 59.04 210.77 m 51.84 210.77 l S 59.04 276.18 m 51.84 276.18 l S 59.04 341.59 m 51.84 341.59 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 76.62 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 135.36 Tm (100) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 200.76 Tm (200) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 266.17 Tm (300) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 331.58 Tm (400) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 188.11 18.72 Tm (Type I error rate) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 139.83 Tm (Number of rejected hypotheses) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 1 J 1 j 10.00 M 71.73 87.80 m 74.94 87.80 l 78.14 87.80 l 81.35 87.80 l 84.55 87.80 l 87.76 87.80 l 90.97 87.80 l 94.17 87.80 l 97.38 87.80 l 100.58 87.80 l 103.79 87.80 l 106.99 87.80 l 110.20 87.80 l 113.40 87.80 l 116.61 87.80 l 119.81 87.80 l 123.02 87.80 l 126.22 87.80 l 129.43 87.80 l 132.64 87.80 l 135.84 87.80 l 139.05 87.80 l 142.25 87.80 l 145.46 87.80 l 148.66 87.80 l 151.87 87.80 l 155.07 87.80 l 158.28 87.80 l 161.48 87.80 l 164.69 87.80 l 167.89 87.80 l 171.10 87.80 l 174.31 87.80 l 177.51 87.80 l 180.72 87.80 l 183.92 87.80 l 187.13 87.80 l 190.33 87.80 l 193.54 87.80 l 196.74 87.80 l 199.95 87.80 l 203.15 87.80 l 206.36 87.80 l 209.56 87.80 l 212.77 87.80 l 215.98 87.80 l 219.18 87.80 l 222.39 87.80 l 225.59 87.80 l 228.80 87.80 l 232.00 87.80 l 235.21 87.80 l 238.41 87.80 l 241.62 87.80 l 244.82 87.80 l 248.03 87.80 l 251.24 87.80 l 254.44 87.80 l 257.65 87.80 l 260.85 87.80 l 264.06 87.80 l 267.26 87.80 l 270.47 87.80 l 273.67 87.80 l 276.88 87.80 l 280.08 87.80 l 283.29 87.80 l 286.49 87.80 l 289.70 87.80 l 292.91 87.80 l 296.11 87.80 l 299.32 87.80 l 302.52 87.80 l 305.73 87.80 l 308.93 87.80 l 312.14 87.80 l 315.34 87.80 l 318.55 87.80 l 321.75 87.80 l 324.96 87.80 l 328.16 87.80 l 331.37 87.80 l 334.58 87.80 l 337.78 87.80 l 340.99 87.80 l 344.19 95.65 l 347.40 95.65 l 350.60 95.65 l 353.81 95.65 l 357.01 95.65 l 360.22 95.65 l 363.42 95.65 l 366.63 95.65 l 369.83 95.65 l 373.04 95.65 l 376.25 95.65 l 379.45 98.92 l 382.66 98.92 l 385.86 109.39 l 389.07 361.87 l S 0.000 0.804 0.000 RG 2.25 w [ 0.00 9.00] 0 d 71.73 91.07 m 74.94 91.07 l 78.14 91.07 l 81.35 91.07 l 84.55 91.07 l 87.76 91.07 l 90.97 91.07 l 94.17 91.07 l 97.38 91.07 l 100.58 91.07 l 103.79 91.07 l 106.99 91.07 l 110.20 91.07 l 113.40 91.07 l 116.61 91.07 l 119.81 91.07 l 123.02 91.07 l 126.22 91.07 l 129.43 91.07 l 132.64 91.07 l 135.84 91.07 l 139.05 91.07 l 142.25 91.07 l 145.46 91.07 l 148.66 91.07 l 151.87 91.07 l 155.07 91.07 l 158.28 91.07 l 161.48 91.07 l 164.69 91.07 l 167.89 91.07 l 171.10 91.07 l 174.31 91.07 l 177.51 91.07 l 180.72 91.07 l 183.92 91.07 l 187.13 91.07 l 190.33 91.07 l 193.54 91.07 l 196.74 91.07 l 199.95 91.07 l 203.15 91.07 l 206.36 91.07 l 209.56 91.07 l 212.77 91.07 l 215.98 91.07 l 219.18 91.07 l 222.39 91.07 l 225.59 91.07 l 228.80 91.07 l 232.00 91.07 l 235.21 91.07 l 238.41 91.07 l 241.62 91.07 l 244.82 91.07 l 248.03 91.07 l 251.24 91.07 l 254.44 91.07 l 257.65 91.07 l 260.85 91.07 l 264.06 91.07 l 267.26 91.07 l 270.47 91.07 l 273.67 91.07 l 276.88 91.07 l 280.08 91.07 l 283.29 91.07 l 286.49 91.07 l 289.70 91.07 l 292.91 91.07 l 296.11 91.07 l 299.32 91.07 l 302.52 91.07 l 305.73 91.07 l 308.93 91.07 l 312.14 91.07 l 315.34 91.07 l 318.55 91.07 l 321.75 91.07 l 324.96 91.07 l 328.16 91.07 l 331.37 91.07 l 334.58 91.07 l 337.78 91.07 l 340.99 91.07 l 344.19 98.92 l 347.40 98.92 l 350.60 98.92 l 353.81 98.92 l 357.01 98.92 l 360.22 98.92 l 363.42 98.92 l 366.63 98.92 l 369.83 98.92 l 373.04 98.92 l 376.25 98.92 l 379.45 102.19 l 382.66 102.19 l 385.86 112.66 l 389.07 361.87 l S 0.000 0.000 1.000 RG 2.25 w [ 0.00 9.00 6.75 9.00] 0 d 71.73 117.24 m 74.94 117.24 l 78.14 117.24 l 81.35 117.24 l 84.55 117.24 l 87.76 117.24 l 90.97 117.24 l 94.17 117.24 l 97.38 117.24 l 100.58 117.24 l 103.79 117.24 l 106.99 117.24 l 110.20 117.24 l 113.40 117.24 l 116.61 117.24 l 119.81 117.24 l 123.02 117.24 l 126.22 117.24 l 129.43 117.24 l 132.64 117.24 l 135.84 117.24 l 139.05 117.24 l 142.25 117.24 l 145.46 117.24 l 148.66 117.24 l 151.87 117.24 l 155.07 117.24 l 158.28 117.24 l 161.48 117.24 l 164.69 117.24 l 167.89 117.24 l 171.10 117.24 l 174.31 117.24 l 177.51 117.24 l 180.72 117.24 l 183.92 117.24 l 187.13 117.24 l 190.33 117.24 l 193.54 117.24 l 196.74 117.24 l 199.95 117.24 l 203.15 117.24 l 206.36 117.24 l 209.56 117.24 l 212.77 117.24 l 215.98 117.24 l 219.18 117.24 l 222.39 117.24 l 225.59 117.24 l 228.80 117.24 l 232.00 117.24 l 235.21 117.24 l 238.41 117.24 l 241.62 117.24 l 244.82 117.24 l 248.03 117.24 l 251.24 117.24 l 254.44 117.24 l 257.65 117.24 l 260.85 117.24 l 264.06 117.24 l 267.26 117.24 l 270.47 117.24 l 273.67 117.24 l 276.88 117.24 l 280.08 117.24 l 283.29 117.24 l 286.49 117.24 l 289.70 117.24 l 292.91 117.24 l 296.11 117.24 l 299.32 117.24 l 302.52 117.24 l 305.73 117.24 l 308.93 117.24 l 312.14 117.24 l 315.34 117.24 l 318.55 117.24 l 321.75 117.24 l 324.96 117.24 l 328.16 117.24 l 331.37 117.24 l 334.58 117.24 l 337.78 117.24 l 340.99 117.24 l 344.19 125.09 l 347.40 125.09 l 350.60 125.09 l 353.81 125.09 l 357.01 125.09 l 360.22 125.09 l 363.42 125.09 l 366.63 125.09 l 369.83 125.09 l 373.04 125.09 l 376.25 125.09 l 379.45 128.36 l 382.66 128.36 l 385.86 138.82 l 389.07 361.87 l S 0.000 1.000 1.000 RG 2.25 w [ 13.50 9.00] 0 d 71.73 149.94 m 74.94 149.94 l 78.14 149.94 l 81.35 149.94 l 84.55 149.94 l 87.76 149.94 l 90.97 149.94 l 94.17 149.94 l 97.38 149.94 l 100.58 149.94 l 103.79 149.94 l 106.99 149.94 l 110.20 149.94 l 113.40 149.94 l 116.61 149.94 l 119.81 149.94 l 123.02 149.94 l 126.22 149.94 l 129.43 149.94 l 132.64 149.94 l 135.84 149.94 l 139.05 149.94 l 142.25 149.94 l 145.46 149.94 l 148.66 149.94 l 151.87 149.94 l 155.07 149.94 l 158.28 149.94 l 161.48 149.94 l 164.69 149.94 l 167.89 149.94 l 171.10 149.94 l 174.31 149.94 l 177.51 149.94 l 180.72 149.94 l 183.92 149.94 l 187.13 149.94 l 190.33 149.94 l 193.54 149.94 l 196.74 149.94 l 199.95 149.94 l 203.15 149.94 l 206.36 149.94 l 209.56 149.94 l 212.77 149.94 l 215.98 149.94 l 219.18 149.94 l 222.39 149.94 l 225.59 149.94 l 228.80 149.94 l 232.00 149.94 l 235.21 149.94 l 238.41 149.94 l 241.62 149.94 l 244.82 149.94 l 248.03 149.94 l 251.24 149.94 l 254.44 149.94 l 257.65 149.94 l 260.85 149.94 l 264.06 149.94 l 267.26 149.94 l 270.47 149.94 l 273.67 149.94 l 276.88 149.94 l 280.08 149.94 l 283.29 149.94 l 286.49 149.94 l 289.70 149.94 l 292.91 149.94 l 296.11 149.94 l 299.32 149.94 l 302.52 149.94 l 305.73 149.94 l 308.93 149.94 l 312.14 149.94 l 315.34 149.94 l 318.55 149.94 l 321.75 149.94 l 324.96 149.94 l 328.16 149.94 l 331.37 149.94 l 334.58 149.94 l 337.78 149.94 l 340.99 149.94 l 344.19 157.79 l 347.40 157.79 l 350.60 157.79 l 353.81 157.79 l 357.01 157.79 l 360.22 157.79 l 363.42 157.79 l 366.63 157.79 l 369.83 157.79 l 373.04 157.79 l 376.25 157.79 l 379.45 161.06 l 382.66 161.06 l 385.86 171.53 l 389.07 361.87 l S 0.000 0.000 0.000 RG 0.75 w [] 0 d 103.47 341.59 118.61 -86.40 re S 2.25 w [] 0 d 114.27 327.19 m 135.87 327.19 l S 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 114.27 312.79 m 135.87 312.79 l S 0.000 0.804 0.000 RG 2.25 w [ 0.00 9.00] 0 d 114.27 298.39 m 135.87 298.39 l S 0.000 0.000 1.000 RG 2.25 w [ 0.00 9.00 6.75 9.00] 0 d 114.27 283.99 m 135.87 283.99 l S 0.000 1.000 1.000 RG 2.25 w [ 13.50 9.00] 0 d 114.27 269.59 m 135.87 269.59 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 322.88 Tm (gFWER\(0\)) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 308.48 Tm (gFWER\(5\)) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 294.08 Tm (gFWER\(10\)) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 279.68 Tm (gFWER\(50\)) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 265.28 Tm (gFWER\(100\)) Tj ET Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 -0.29 397.45 Tm (Comparison of gFWER\(k\)-controlling AMTPs based on SD minP MTP) Tj ET Q endstream endobj 268 0 obj << /CreationDate (D:20050415164412) /ModDate (D:20050415164412) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 269 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 270 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 276 0 R >> endobj 271 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 276 0 R >> endobj 272 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 276 0 R >> endobj 273 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 276 0 R >> endobj 274 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 275 0 obj 10340 endobj 276 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 267 0 obj << /D [265 0 R /XYZ 125.798 687.123 null] >> endobj 243 0 obj << /D [265 0 R /XYZ 175.19 307.442 null] >> endobj 264 0 obj << /Font << /F15 58 0 R /F71 79 0 R /F41 84 0 R >> /XObject << /Im3 244 0 R >> /ProcSet [ /PDF /Text ] >> endobj 279 0 obj << /Length 673 /Filter /FlateDecode >> stream xڍTn0+x*u(zh{pey)l˱RP$p4SL/P,6Ǚb[P}db})syB)NB)˲L__yvP*(Rp~NѱLT0Nh3dPU ^j/2]`5q6Y}/ }[ շr[L8mxn )Y $% oOC&⇔i=}è2fdSh!%Xa"-o7<xһ@̔> endobj 245 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./cytotppfp.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 282 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 283 0 R /F2 284 0 R /F3 285 0 R /F4 286 0 R /F5 287 0 R /F6 288 0 R >> /ExtGState << >>>> /Length 289 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 2.25 w [] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 92.38 l 347.40 92.38 l 350.60 92.38 l 353.81 92.38 l 357.01 92.38 l 360.22 92.38 l 363.42 92.38 l 366.63 92.38 l 369.83 92.38 l 373.04 92.38 l 376.25 92.38 l 379.45 95.65 l 382.66 95.65 l 385.86 106.12 l 389.07 361.87 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 71.73 73.44 m 389.07 73.44 l S 71.73 73.44 m 71.73 66.24 l S 135.20 73.44 m 135.20 66.24 l S 198.67 73.44 m 198.67 66.24 l S 262.13 73.44 m 262.13 66.24 l S 325.60 73.44 m 325.60 66.24 l S 389.07 73.44 m 389.07 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 63.39 47.52 Tm (0.0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 126.86 47.52 Tm (0.2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 190.33 47.52 Tm (0.4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 253.79 47.52 Tm (0.6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 317.26 47.52 Tm (0.8) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 380.73 47.52 Tm (1.0) Tj ET 59.04 79.95 m 59.04 341.59 l S 59.04 79.95 m 51.84 79.95 l S 59.04 145.36 m 51.84 145.36 l S 59.04 210.77 m 51.84 210.77 l S 59.04 276.18 m 51.84 276.18 l S 59.04 341.59 m 51.84 341.59 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 76.62 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 135.36 Tm (100) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 200.76 Tm (200) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 266.17 Tm (300) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 331.58 Tm (400) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 188.11 18.72 Tm (Type I error rate) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 139.83 Tm (Number of rejected hypotheses) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 93.04 l 347.40 93.04 l 350.60 93.04 l 353.81 93.04 l 357.01 93.04 l 360.22 93.04 l 363.42 93.04 l 366.63 93.04 l 369.83 93.04 l 373.04 93.04 l 376.25 93.04 l 379.45 96.31 l 382.66 96.31 l 385.86 107.43 l 389.07 361.87 l S 0.000 0.804 0.000 RG 2.25 w [ 0.00 9.00] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 93.69 l 347.40 93.69 l 350.60 93.69 l 353.81 93.69 l 357.01 93.69 l 360.22 93.69 l 363.42 93.69 l 366.63 93.69 l 369.83 93.69 l 373.04 93.69 l 376.25 93.69 l 379.45 96.96 l 382.66 96.96 l 385.86 108.73 l 389.07 361.87 l S 0.000 0.000 1.000 RG 2.25 w [ 0.00 9.00 6.75 9.00] 0 d 71.73 89.11 m 74.94 89.11 l 78.14 89.11 l 81.35 89.11 l 84.55 89.11 l 87.76 89.11 l 90.97 89.11 l 94.17 89.11 l 97.38 89.11 l 100.58 89.11 l 103.79 89.11 l 106.99 89.11 l 110.20 89.11 l 113.40 89.11 l 116.61 89.11 l 119.81 89.11 l 123.02 89.11 l 126.22 89.11 l 129.43 89.11 l 132.64 89.11 l 135.84 89.11 l 139.05 89.11 l 142.25 89.11 l 145.46 89.11 l 148.66 89.11 l 151.87 89.11 l 155.07 89.11 l 158.28 89.11 l 161.48 89.11 l 164.69 89.11 l 167.89 89.11 l 171.10 89.11 l 174.31 89.11 l 177.51 89.11 l 180.72 89.11 l 183.92 89.11 l 187.13 89.11 l 190.33 89.11 l 193.54 89.11 l 196.74 89.11 l 199.95 89.11 l 203.15 89.11 l 206.36 89.11 l 209.56 89.11 l 212.77 89.11 l 215.98 89.11 l 219.18 89.11 l 222.39 89.11 l 225.59 89.11 l 228.80 89.11 l 232.00 89.11 l 235.21 89.11 l 238.41 89.11 l 241.62 89.11 l 244.82 89.11 l 248.03 89.11 l 251.24 89.11 l 254.44 89.11 l 257.65 89.11 l 260.85 89.11 l 264.06 89.11 l 267.26 89.11 l 270.47 89.11 l 273.67 89.11 l 276.88 89.11 l 280.08 89.11 l 283.29 89.11 l 286.49 89.11 l 289.70 89.11 l 292.91 89.11 l 296.11 89.11 l 299.32 89.11 l 302.52 89.11 l 305.73 89.11 l 308.93 89.11 l 312.14 89.11 l 315.34 89.11 l 318.55 89.11 l 321.75 89.11 l 324.96 89.11 l 328.16 89.11 l 331.37 89.11 l 334.58 89.11 l 337.78 89.11 l 340.99 89.11 l 344.19 104.81 l 347.40 104.81 l 350.60 104.81 l 353.81 104.81 l 357.01 104.81 l 360.22 104.81 l 363.42 104.81 l 366.63 104.81 l 369.83 104.81 l 373.04 104.81 l 376.25 104.81 l 379.45 111.35 l 382.66 111.35 l 385.86 132.28 l 389.07 361.87 l S 0.000 0.000 0.000 RG 0.75 w [] 0 d 103.47 341.59 118.62 -72.00 re S 2.25 w [] 0 d 114.27 327.19 m 135.87 327.19 l S 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 114.27 312.79 m 135.87 312.79 l S 0.000 0.804 0.000 RG 2.25 w [ 0.00 9.00] 0 d 114.27 298.39 m 135.87 298.39 l S 0.000 0.000 1.000 RG 2.25 w [ 0.00 9.00 6.75 9.00] 0 d 114.27 283.99 m 135.87 283.99 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 322.88 Tm (FWER) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 308.48 Tm (TPPFP\(0.05\)) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 294.08 Tm (TPPFP\(0.1\)) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 279.68 Tm (TPPFP\(0.5\)) Tj ET Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 1.65 397.45 Tm (Comparison of TPPFP\(q\)-controlling AMTPs based on SD minP MTP) Tj ET Q endstream endobj 282 0 obj << /CreationDate (D:20050415164412) /ModDate (D:20050415164412) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 283 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 284 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 290 0 R >> endobj 285 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 290 0 R >> endobj 286 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 290 0 R >> endobj 287 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 290 0 R >> endobj 288 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 289 0 obj 8465 endobj 290 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 280 0 obj << /D [278 0 R /XYZ 125.798 687.123 null] >> endobj 260 0 obj << /D [278 0 R /XYZ 175.489 308.5 null] >> endobj 277 0 obj << /Font << /F15 58 0 R /F71 79 0 R /F41 84 0 R >> /XObject << /Im4 245 0 R >> /ProcSet [ /PDF /Text ] >> endobj 293 0 obj << /Length 496 /Filter /FlateDecode >> stream xmSKo0 W(E[q2tlm!stC;`~Hv"H(||HJZ(i B(}XtG2}bCHb:p*|eEa4Baͩij`mD2&_N%zRl;w}5Ձ,.:l5 58eD]ns-_hHڼ0NK|?o^8ޖ#?_ϑcg^FFl2rdŅ;KF?ldrGhd\Qo8!Zq\endstream endobj 292 0 obj << /Type /Page /Contents 293 0 R /Resources 291 0 R /MediaBox [0 0 612 792] /Parent 281 0 R >> endobj 246 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./cytofdr.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 295 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 296 0 R /F2 297 0 R /F3 298 0 R /F4 299 0 R /F5 300 0 R /F6 301 0 R >> /ExtGState << >>>> /Length 302 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 2.25 w [] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 85.19 l 155.07 85.19 l 158.28 85.19 l 161.48 85.19 l 164.69 85.19 l 167.89 85.19 l 171.10 85.19 l 174.31 85.19 l 177.51 85.19 l 180.72 85.19 l 183.92 85.19 l 187.13 85.19 l 190.33 85.19 l 193.54 85.19 l 196.74 85.19 l 199.95 85.19 l 203.15 85.19 l 206.36 85.19 l 209.56 85.19 l 212.77 85.84 l 215.98 85.84 l 219.18 85.84 l 222.39 85.84 l 225.59 85.84 l 228.80 85.84 l 232.00 85.84 l 235.21 85.84 l 238.41 85.84 l 241.62 85.84 l 244.82 85.84 l 248.03 85.84 l 251.24 85.84 l 254.44 85.84 l 257.65 85.84 l 260.85 85.84 l 264.06 86.50 l 267.26 86.50 l 270.47 86.50 l 273.67 86.50 l 276.88 86.50 l 280.08 86.50 l 283.29 86.50 l 286.49 86.50 l 289.70 86.50 l 292.91 86.50 l 296.11 86.50 l 299.32 86.50 l 302.52 87.15 l 305.73 87.15 l 308.93 87.15 l 312.14 87.15 l 315.34 87.15 l 318.55 87.15 l 321.75 87.15 l 324.96 87.15 l 328.16 87.15 l 331.37 87.15 l 334.58 87.15 l 337.78 87.80 l 340.99 87.80 l 344.19 87.80 l 347.40 87.80 l 350.60 87.80 l 353.81 87.80 l 357.01 87.80 l 360.22 87.80 l 363.42 87.80 l 366.63 88.46 l 369.83 88.46 l 373.04 88.46 l 376.25 88.46 l 379.45 88.46 l 382.66 88.46 l 385.86 88.46 l 389.07 361.87 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 71.73 73.44 m 389.07 73.44 l S 71.73 73.44 m 71.73 66.24 l S 135.20 73.44 m 135.20 66.24 l S 198.67 73.44 m 198.67 66.24 l S 262.13 73.44 m 262.13 66.24 l S 325.60 73.44 m 325.60 66.24 l S 389.07 73.44 m 389.07 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 63.39 47.52 Tm (0.0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 126.86 47.52 Tm (0.2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 190.33 47.52 Tm (0.4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 253.79 47.52 Tm (0.6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 317.26 47.52 Tm (0.8) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 380.73 47.52 Tm (1.0) Tj ET 59.04 79.95 m 59.04 341.59 l S 59.04 79.95 m 51.84 79.95 l S 59.04 145.36 m 51.84 145.36 l S 59.04 210.77 m 51.84 210.77 l S 59.04 276.18 m 51.84 276.18 l S 59.04 341.59 m 51.84 341.59 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 76.62 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 135.36 Tm (100) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 200.76 Tm (200) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 266.17 Tm (300) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 331.58 Tm (400) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 188.11 18.72 Tm (Type I error rate) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 139.83 Tm (Number of rejected hypotheses) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 2.25 w [ 6.75 11.25] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 85.19 l 151.87 85.19 l 155.07 85.19 l 158.28 85.19 l 161.48 85.19 l 164.69 85.19 l 167.89 85.19 l 171.10 85.19 l 174.31 85.19 l 177.51 85.19 l 180.72 85.19 l 183.92 85.19 l 187.13 85.19 l 190.33 85.19 l 193.54 85.19 l 196.74 85.19 l 199.95 85.84 l 203.15 85.84 l 206.36 85.84 l 209.56 85.84 l 212.77 85.84 l 215.98 85.84 l 219.18 85.84 l 222.39 85.84 l 225.59 85.84 l 228.80 85.84 l 232.00 85.84 l 235.21 86.50 l 238.41 86.50 l 241.62 86.50 l 244.82 86.50 l 248.03 86.50 l 251.24 86.50 l 254.44 86.50 l 257.65 86.50 l 260.85 87.15 l 264.06 87.15 l 267.26 87.15 l 270.47 87.15 l 273.67 87.15 l 276.88 87.15 l 280.08 87.15 l 283.29 87.80 l 286.49 87.80 l 289.70 87.80 l 292.91 87.80 l 296.11 87.80 l 299.32 88.46 l 302.52 88.46 l 305.73 88.46 l 308.93 88.46 l 312.14 89.11 l 315.34 89.11 l 318.55 89.11 l 321.75 89.77 l 324.96 89.77 l 328.16 89.77 l 331.37 90.42 l 334.58 90.42 l 337.78 91.07 l 340.99 91.07 l 344.19 91.73 l 347.40 92.38 l 350.60 93.04 l 353.81 93.69 l 357.01 94.34 l 360.22 95.00 l 363.42 95.65 l 366.63 96.96 l 369.83 98.27 l 373.04 100.23 l 376.25 102.19 l 379.45 106.12 l 382.66 166.95 l 385.86 203.58 l 389.07 361.87 l S 0.000 0.804 0.000 RG 2.25 w [] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 84.53 l 148.66 84.53 l 151.87 84.53 l 155.07 84.53 l 158.28 84.53 l 161.48 84.53 l 164.69 84.53 l 167.89 84.53 l 171.10 84.53 l 174.31 84.53 l 177.51 84.53 l 180.72 84.53 l 183.92 84.53 l 187.13 84.53 l 190.33 84.53 l 193.54 84.53 l 196.74 84.53 l 199.95 84.53 l 203.15 84.53 l 206.36 84.53 l 209.56 84.53 l 212.77 84.53 l 215.98 84.53 l 219.18 84.53 l 222.39 84.53 l 225.59 84.53 l 228.80 84.53 l 232.00 84.53 l 235.21 84.53 l 238.41 84.53 l 241.62 84.53 l 244.82 84.53 l 248.03 84.53 l 251.24 84.53 l 254.44 84.53 l 257.65 84.53 l 260.85 84.53 l 264.06 84.53 l 267.26 84.53 l 270.47 84.53 l 273.67 84.53 l 276.88 84.53 l 280.08 84.53 l 283.29 84.53 l 286.49 84.53 l 289.70 84.53 l 292.91 84.53 l 296.11 84.53 l 299.32 84.53 l 302.52 84.53 l 305.73 84.53 l 308.93 84.53 l 312.14 84.53 l 315.34 84.53 l 318.55 84.53 l 321.75 84.53 l 324.96 84.53 l 328.16 84.53 l 331.37 84.53 l 334.58 84.53 l 337.78 84.53 l 340.99 84.53 l 344.19 84.53 l 347.40 84.53 l 350.60 84.53 l 353.81 84.53 l 357.01 84.53 l 360.22 84.53 l 363.42 84.53 l 366.63 84.53 l 369.83 84.53 l 373.04 84.53 l 376.25 84.53 l 379.45 84.53 l 382.66 84.53 l 385.86 84.53 l 389.07 361.87 l S 2.25 w [ 6.75 11.25] 0 d 71.73 84.53 m 74.94 84.53 l 78.14 84.53 l 81.35 84.53 l 84.55 84.53 l 87.76 84.53 l 90.97 84.53 l 94.17 84.53 l 97.38 84.53 l 100.58 84.53 l 103.79 84.53 l 106.99 84.53 l 110.20 84.53 l 113.40 84.53 l 116.61 84.53 l 119.81 84.53 l 123.02 84.53 l 126.22 84.53 l 129.43 84.53 l 132.64 84.53 l 135.84 84.53 l 139.05 84.53 l 142.25 84.53 l 145.46 92.38 l 148.66 92.38 l 151.87 92.38 l 155.07 92.38 l 158.28 92.38 l 161.48 92.38 l 164.69 92.38 l 167.89 92.38 l 171.10 92.38 l 174.31 92.38 l 177.51 92.38 l 180.72 92.38 l 183.92 92.38 l 187.13 95.65 l 190.33 95.65 l 193.54 95.65 l 196.74 95.65 l 199.95 95.65 l 203.15 95.65 l 206.36 100.23 l 209.56 106.12 l 212.77 106.12 l 215.98 106.12 l 219.18 106.12 l 222.39 106.12 l 225.59 106.12 l 228.80 106.12 l 232.00 106.12 l 235.21 106.12 l 238.41 106.12 l 241.62 106.77 l 244.82 111.35 l 248.03 111.35 l 251.24 111.35 l 254.44 111.35 l 257.65 111.35 l 260.85 111.35 l 264.06 112.66 l 267.26 112.66 l 270.47 120.51 l 273.67 120.51 l 276.88 120.51 l 280.08 120.51 l 283.29 120.51 l 286.49 120.51 l 289.70 121.16 l 292.91 121.16 l 296.11 124.43 l 299.32 124.43 l 302.52 134.24 l 305.73 134.24 l 308.93 140.78 l 312.14 144.06 l 315.34 157.14 l 318.55 157.14 l 321.75 157.14 l 324.96 158.45 l 328.16 160.41 l 331.37 160.41 l 334.58 162.37 l 337.78 162.37 l 340.99 163.68 l 344.19 181.99 l 347.40 187.88 l 350.60 189.84 l 353.81 197.69 l 357.01 197.69 l 360.22 210.77 l 363.42 210.77 l 366.63 222.55 l 369.83 222.55 l 373.04 282.07 l 376.25 284.03 l 379.45 295.15 l 382.66 340.94 l 385.86 359.25 l 389.07 361.87 l S 0.000 0.000 0.000 RG 0.75 w [] 0 d 103.47 341.59 113.28 -72.00 re S 1.000 0.000 0.000 RG 2.25 w [] 0 d 114.27 327.19 m 135.87 327.19 l S 2.25 w [ 6.75 11.25] 0 d 114.27 312.79 m 135.87 312.79 l S 0.000 0.804 0.000 RG 2.25 w [] 0 d 114.27 298.39 m 135.87 298.39 l S 2.25 w [ 6.75 11.25] 0 d 114.27 283.99 m 135.87 283.99 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 322.88 Tm (AMTP Cons) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 308.48 Tm (AMTP Rest) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 294.08 Tm (BY) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 146.67 279.68 Tm (BH) Tj ET Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 103.94 397.45 Tm (Comparison of FDR-controlling MTPs) Tj ET Q endstream endobj 295 0 obj << /CreationDate (D:20050415164412) /ModDate (D:20050415164412) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 296 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 297 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 303 0 R >> endobj 298 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 303 0 R >> endobj 299 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 303 0 R >> endobj 300 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 303 0 R >> endobj 301 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 302 0 obj 8384 endobj 303 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 294 0 obj << /D [292 0 R /XYZ 125.798 687.123 null] >> endobj 263 0 obj << /D [292 0 R /XYZ 172.002 294.951 null] >> endobj 291 0 obj << /Font << /F15 58 0 R /F71 79 0 R >> /XObject << /Im5 246 0 R >> /ProcSet [ /PDF /Text ] >> endobj 306 0 obj << /Length 1446 /Filter /FlateDecode >> stream xX[O6~WPWJTb8Υj+AZA݇0jf2b=7'd`/>\??31SEUNP&bOOnψuʝfʜ$qU7J]9|V;G~' X&UQ;3$K7qb,K$ͣX0Z,墚H;_koO?O2\UгDP*YZIV4.m`Fk\]i w'I94X岊?ߓyA7qZ`Da&D,eg|iF1~u-?oY5P}$MP )VI%g)u*++ӧQ=>K6U gɑd`.9XXJ?1̐[FGm~Ʈ 0=~H o%tyT5sJ JiI@hdG̕H" 8$/ʔV5A3ڹaL꼃XìkB-`ۍO,:R!^ P0Gz@]ⲕ١V1 ngc$ֽcLVr _Ril> endobj 307 0 obj << /D [305 0 R /XYZ 125.798 687.123 null] >> endobj 304 0 obj << /Font << /F15 58 0 R /F41 84 0 R /F81 133 0 R /F60 62 0 R >> /ProcSet [ /PDF /Text ] >> endobj 311 0 obj << /Length 2348 /Filter /FlateDecode >> stream xڵY[o~ϯ0s,Eu"-"%hrf8(0h rf;C}ßҦPe]]Tثv*Z^ibJ`*\a_o^x꼾)2Euuv.vKGg =4ghf3_iyWf.+W/?Οi W`염ȥ9BB\<HE^^|-YS‰B+4'Aڍn>lLQ>_!$}$^ˆ[(~MsEe^VnE"=ww{f;|`^#rFOCwsQ ^+8 \ۙgd[$&NKW:2VVs zuƟw Hdž [Z3SAk<#b|~yn%VxxxڊUn^+UM,#1l NIm.DzHBtDB-ء6lv/,w$ /ǀx9;"𓜙dc~LDf5ZPg4s5{>LYhp?a*uG< a-"!9fYB,}4H4oIJ@ g$:eV›MDh@։W3,hހdHfWR tBz DOY{eZaƜ 0}Z %}9jgy֣fe#+ϰ+n8E_Q(1D xUUMcRd_-qH[fOjmfĺIf}CZ֬HoT]pnp佛Qr.E)0ek;j wMDйEî b۫Wz^a&a8x$8T^OI(\̚Q!{~ENC[Ԗm4Z딼L8-R6U$\E g CkOrޭ` w S|e^N+[|Ck 8i[p J/@Nq̂8{#盿I҉7J{i~䪆:(Kې+1 r=fk]"AVڞP45Si@~r!ә2>ο"(wuA*61w1<Ԏ_2ԕgNuKNAsƦ6ɞC ^++< +wE<7 _~/*i,qeW?/em׳@ÔlC@k9(VcN7 _S7?7endstream endobj 310 0 obj << /Type /Page /Contents 311 0 R /Resources 309 0 R /MediaBox [0 0 612 792] /Parent 281 0 R /Annots [ 313 0 R ] >> endobj 313 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [384.058 451.283 391.505 462.963] /Subtype /Link /A << /S /GoTo /D (figure.6) >> >> endobj 312 0 obj << /D [310 0 R /XYZ 125.798 687.123 null] >> endobj 38 0 obj << /D [310 0 R /XYZ 125.798 372.171 null] >> endobj 309 0 obj << /Font << /F81 133 0 R /F60 62 0 R /F15 58 0 R /F41 84 0 R /F62 67 0 R /F25 155 0 R /F71 79 0 R >> /ProcSet [ /PDF /Text ] >> endobj 317 0 obj << /Length 678 /Filter /FlateDecode >> stream xmTKo@Wі۝}ً Jārp'-J4$~<30iw7& +Jnlw H&Y%Z#TfYQWq\ ӰGF\GRW<}coŧ PaJ o<iK ҳf=ZZfXPRWUB{8w6w,Z*{_Ͱ8a6jyY;/6LX;b *"y*"=Dq"4@]r0p`4 % U9Ő :ֈ8CY]JI&ȋK#z? }qgjbZJz1(iKӴf)$dG.|efʦ;Xq_uvUG UZLmL Qmendstream endobj 316 0 obj << /Type /Page /Contents 317 0 R /Resources 315 0 R /MediaBox [0 0 612 792] /Parent 281 0 R >> endobj 308 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mbPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 319 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 320 0 R /F2 321 0 R /F3 322 0 R /F4 323 0 R /F5 324 0 R /F6 325 0 R >> /ExtGState << >>>> /Length 326 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 106.99 73.44 m 389.07 73.44 l S 106.99 73.44 m 106.99 66.24 l S 177.51 73.44 m 177.51 66.24 l S 248.03 73.44 m 248.03 66.24 l S 318.55 73.44 m 318.55 66.24 l S 389.07 73.44 m 389.07 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 103.66 47.52 Tm (2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 174.18 47.52 Tm (4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 244.69 47.52 Tm (6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 315.21 47.52 Tm (8) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 382.39 47.52 Tm (10) Tj ET 59.04 129.96 m 59.04 349.16 l S 59.04 129.96 m 51.84 129.96 l S 59.04 203.03 m 51.84 203.03 l S 59.04 276.10 m 51.84 276.10 l S 59.04 349.16 m 51.84 349.16 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 126.62 Tm (6) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 199.69 Tm (8) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 269.42 Tm (10) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 342.49 Tm (12) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 166.78 397.45 Tm (Top 10 Hypotheses) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 198.72 18.72 Tm (Hypotheses) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 186.58 Tm (Test Statistics) Tj ET Q q 59.04 73.44 342.72 299.52 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 68.40 190.04 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 103.66 161.94 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 138.92 284.78 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 174.18 217.97 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 209.43 170.35 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 244.69 137.21 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 279.95 225.28 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 315.21 358.72 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 350.47 267.34 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 385.73 249.32 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 60.06 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 95.32 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 130.58 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 165.84 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 201.09 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 236.35 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 271.61 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 306.87 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 342.13 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 377.39 93.81 Tm (0.01) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 63.39 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 98.65 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 133.91 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 169.17 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 204.43 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 239.69 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 274.95 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 310.21 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 345.47 80.43 Tm (0.1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 380.73 80.43 Tm (0.1) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 6.00 0.00 -0.00 6.00 104.63 4.32 Tm (MTP\(X = filtX, Y = mb, test = "f", alpha = c\(0.01, 0.1\), B = 100, get.cutoff = TRUE, seed = seed\)) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 163.93 379.44 Tm (Test Statistics & Cut-offs) Tj ET Q endstream endobj 319 0 obj << /CreationDate (D:20050415164534) /ModDate (D:20050415164534) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 320 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 321 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 327 0 R >> endobj 322 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 327 0 R >> endobj 323 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 327 0 R >> endobj 324 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 327 0 R >> endobj 325 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 326 0 obj 3318 endobj 327 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 318 0 obj << /D [316 0 R /XYZ 125.798 687.123 null] >> endobj 314 0 obj << /D [316 0 R /XYZ 172.684 302.031 null] >> endobj 315 0 obj << /Font << /F15 58 0 R /F71 79 0 R /F41 84 0 R /F60 62 0 R >> /XObject << /Im6 308 0 R >> /ProcSet [ /PDF /Text ] >> endobj 330 0 obj << /Length 1136 /Filter /FlateDecode >> stream xڝXmo0_Q*&$noKƄJmEk7<ώVSuSޞ/PxG٨3Gqg: ;rǖXP9,(a;jv$, ¨Ebhȳު{wn1IK%E()0lBҍǒ%M "^7"{]9݅=nH2eRk#BIS[iPNau \a+zѦ}UyQe{g.O upT5Ṅ-Ǡ$w˿.qE^Kޖ82Pu?P}x҈v6+v,&mьp޵^}u7p u 9De h|@&k>;5Z7TIMoSBnR*|ak!(q(cILҾʀX{R42l'SGu*]X-?$} ̉g|'g m1|n%(40_ G8 ? $7Ծo{o!D[$ZfId ǭ{~XEu# Ȋ(D61y4r1b\V&[E(CMCܿ/UZj&i()3еZkx$GŚXJӆ+2hJlLmL L]ܰ&ۤ uqknU:!IǐNhK˱Jɱ JmolUmo6/e-ahl2p؆ny3]D%Q\*%uIb<:{I:'o17VgUY[MdA 8FCtDB!c|1("OR]NuT}N.\Űf{e^4$ 2ۆ{&qUH" nfl226LS %2?3Wendstream endobj 329 0 obj << /Type /Page /Contents 330 0 R /Resources 328 0 R /MediaBox [0 0 612 792] /Parent 281 0 R >> endobj 331 0 obj << /D [329 0 R /XYZ 125.798 687.123 null] >> endobj 328 0 obj << /Font << /F81 133 0 R /F60 62 0 R /F15 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 335 0 obj << /Length 1488 /Filter /FlateDecode >> stream xڍW[o6~ϯУ D,X{n+0K úMVZNv;RGiDH;s2 *S PdLf[XLE*Q: EZ-AK47@f˧dN$%l!3^))f? ij_w>;,AO2+-V_ϞV.STrp)JWloO*{k&;q.n6?vviS51Xj!fux ɻw/q6a9kr]籜W%s?=3*htۍH0t.L4(OSa`Y?R;endstream endobj 334 0 obj << /Type /Page /Contents 335 0 R /Resources 333 0 R /MediaBox [0 0 612 792] /Parent 340 0 R /Annots [ 338 0 R ] >> endobj 332 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./coxphPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 341 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 342 0 R /F2 343 0 R /F3 344 0 R /F4 345 0 R /F5 346 0 R /F6 347 0 R >> /ExtGState << >>>> /Length 348 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 106.99 73.44 m 389.07 73.44 l S 106.99 73.44 m 106.99 66.24 l S 177.51 73.44 m 177.51 66.24 l S 248.03 73.44 m 248.03 66.24 l S 318.55 73.44 m 318.55 66.24 l S 389.07 73.44 m 389.07 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 103.66 47.52 Tm (2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 174.18 47.52 Tm (4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 244.69 47.52 Tm (6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 315.21 47.52 Tm (8) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 382.39 47.52 Tm (10) Tj ET 59.04 123.30 m 59.04 354.67 l S 59.04 123.30 m 51.84 123.30 l S 59.04 181.14 m 51.84 181.14 l S 59.04 238.99 m 51.84 238.99 l S 59.04 296.83 m 51.84 296.83 l S 59.04 354.67 m 51.84 354.67 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 114.96 Tm (0.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 172.80 Tm (0.2) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 230.65 Tm (0.4) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 288.49 Tm (0.6) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 346.33 Tm (0.8) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 166.78 397.45 Tm (Top 10 Hypotheses) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 198.72 18.72 Tm (Hypotheses) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 196.86 Tm (Estimates) Tj ET Q q 59.04 73.44 342.72 299.52 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 68.40 231.06 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 103.66 227.30 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 138.92 235.03 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 174.18 219.05 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 209.43 210.69 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 244.69 172.25 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 279.95 207.98 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 315.21 202.11 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 350.47 200.69 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 385.73 220.06 Tm (o) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 60.06 136.70 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 95.32 116.89 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 130.58 111.52 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 165.84 102.04 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 201.09 98.54 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 236.35 106.63 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 271.61 96.37 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 306.87 89.17 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 342.13 88.33 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 377.39 80.43 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 60.06 323.50 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 95.32 335.79 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 130.58 356.62 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 165.84 334.14 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 201.09 320.92 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 236.35 235.95 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 271.61 317.66 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 306.87 313.12 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 342.13 311.12 Tm (0.05) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 377.39 357.76 Tm (0.05) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 6.00 0.00 -0.00 6.00 61.39 4.32 Tm (MTP\(X = relX, Y = rel.times, Z = relZ, Z.incl = "sex", Z.test = NULL, test = "coxph.YvsXZ", B = 100, get.cr = TRUE, seed = seed\)) Tj ET Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 142.70 379.44 Tm (Estimates & Confidence Regions) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 1.50 w [] 0 d 1 J 1 j 10.00 M 59.04 123.30 m 401.76 123.30 l S Q endstream endobj 341 0 obj << /CreationDate (D:20050415164837) /ModDate (D:20050415164837) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 342 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 343 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 349 0 R >> endobj 344 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 349 0 R >> endobj 345 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 349 0 R >> endobj 346 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 349 0 R >> endobj 347 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 348 0 obj 3585 endobj 349 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 338 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [478.003 253.677 485.45 265.357] /Subtype /Link /A << /S /GoTo /D (figure.7) >> >> endobj 336 0 obj << /D [334 0 R /XYZ 125.798 687.123 null] >> endobj 337 0 obj << /D [334 0 R /XYZ 175.914 424.299 null] >> endobj 339 0 obj << /D [334 0 R /XYZ 125.798 171.003 null] >> endobj 261 0 obj << /D [334 0 R /XYZ 98.525 171.003 null] >> endobj 333 0 obj << /Font << /F15 58 0 R /F71 79 0 R /F41 84 0 R /F60 62 0 R /F81 133 0 R /F23 55 0 R /F62 67 0 R >> /XObject << /Im7 332 0 R >> /ProcSet [ /PDF /Text ] >> endobj 352 0 obj << /Length 2554 /Filter /FlateDecode >> stream xZrܸ}WSNpߤxV,%zkfͬ~>ݍmm*DƥOt7$SGJ;Q7ȇZ(mg~zXĸ s<97Fxp"x7&ڣwJhP))]d/b6JV'zOv ]Z|^FG2 >@#yUu7R6z&6o.<؞UukAm[nXb3uuu>v+U:2نBb L}} 2PHn4Q]ѿ+.97Q[aq?  VE is>%UϴxFNw.6 z!CH(/TXwtZs@G7肋_ ;JKh rAZF?ٽ=f!\)C54Wl1  ,&h$F.cE>r,kK~$pX‹^Ǵ7esټ,By~q'.3BYdmVNMV0zO '%kt W(0bF+XSDH=]$ERW7Ala00UA `ǟğt=cǒL#XE^Ǘ~ڣBמOo7Z uMZSȣwh" ZFW wm"ϕWz];@Wǻ Yev/H j:%f~"Yum,=@͈vbB4P .$YAbTA * =o6)s[25cU]|)¥r4鞓F Co[ܢK] @]|ImZ[zT/cG(6Q&5tCqIcdϲQlnVyt6\mQLC'Kr\qIHXaߕA!W)ãrq4OZ+oF5ާ(M?#® ԷܿM?ϹŽxs6|Bۮ ]Zgmf켔pd`5O <~DTbL9Prއ R(J j?CPwocuQ\?Xqq)挮H*S r\t^lDhlsWt=} |nxyاvAʇ u`~;. HBdj o&]mo0kӕrX`v݄lwxq5jR4H%nKZ*y\X0G{Pl4 4OH {B隷8#<x?_RP9ҝ_9 jk8E|% %0rM r[kAC9kѻޏ?c<$C:aOlCXs3h$_(^8G]cuI_V6kͣMt?7il'1 rq3>%S[ͺqc*0G( _yau H taߢoǵ-E s*m?\$N^s;%<r=o;Rۭ8kŰšԐ*LQn};n-o P=͞=NYFes(WJBD+"7QH-Er"WR?%̏ipLvN Kli!,Q ~`7P t:&|x9SwCu;@ϠS$_}إќW': jw/2zS4zZ{! BB+6ѯB(!eQY?|y,B6:#nHY'< lF&/ENendstream endobj 351 0 obj << /Type /Page /Contents 352 0 R /Resources 350 0 R /MediaBox [0 0 612 792] /Parent 340 0 R /Annots [ 354 0 R 355 0 R 356 0 R 357 0 R ] >> endobj 354 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [162.373 426.479 375.87 438.465] /Subtype/Link/A<> >> endobj 355 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [391.996 245.461 485.45 258.259] /Subtype/Link/A<> >> endobj 356 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [135.711 232.217 257.747 244.203] /Subtype/Link/A<> >> endobj 357 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [162.373 170.103 375.87 182.088] /Subtype/Link/A<> >> endobj 353 0 obj << /D [351 0 R /XYZ 125.798 687.123 null] >> endobj 262 0 obj << /D [351 0 R /XYZ 98.525 664.807 null] >> endobj 117 0 obj << /D [351 0 R /XYZ 98.525 616.241 null] >> endobj 195 0 obj << /D [351 0 R /XYZ 98.525 554.127 null] >> endobj 112 0 obj << /D [351 0 R /XYZ 98.525 519.111 null] >> endobj 113 0 obj << /D [351 0 R /XYZ 98.525 484.094 null] >> endobj 193 0 obj << /D [351 0 R /XYZ 98.525 421.98 null] >> endobj 192 0 obj << /D [351 0 R /XYZ 98.525 386.963 null] >> endobj 116 0 obj << /D [351 0 R /XYZ 98.525 351.947 null] >> endobj 115 0 obj << /D [351 0 R /XYZ 98.525 303.381 null] >> endobj 114 0 obj << /D [351 0 R /XYZ 98.525 227.718 null] >> endobj 194 0 obj << /D [351 0 R /XYZ 98.525 165.603 null] >> endobj 350 0 obj << /Font << /F15 58 0 R /F71 79 0 R /F60 62 0 R >> /ProcSet [ /PDF /Text ] >> endobj 358 0 obj << /Type /Encoding /Differences [ 0 /minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft 129/.notdef 161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus 171/.notdef 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade 197/.notdef] >> endobj 240 0 obj << /Length1 790 /Length2 707 /Length3 532 /Length 1271 /Filter /FlateDecode >> stream xRkPWm(XZb H1X `hZݛd1م͆& G'**S*0eFRFFEU+UAmQ.A)lu~;|{RJɆ ͅbb,&ia(("Ʋ(9  (-z2"LbI 4A"p$x 7-CPhw|hl>$"8 HiC0i}ʇ7D@[$h$!dy'17 {Rz()1Z8Ȃ$,=%Awn%7B0P2SVHPa:hp+||#M&z)8Esr!@=5Sb)+@(D~=6lM0$ET&86A|%v P4 Zy1pG:EE[̃YT*jF9? @9NL< T3Cg%,, i؞:B+$wCD-)^qpξ#%ct{}pE:izn5NGDme'ܷsO Ezy̹Ձ[ꆼ[w~>%ؾzFgҦe N(ЌAUZl/{?ͦ0C-W^w:3ϱ|Qxg&%y w.nsoQNixZú.涖;L/UYkQŮk4cǥvgZscQ[{mˎ d}ٗusbE vq|;&žVT';]o>,vֆƛ\ _l9|.TwP .6CK}< jL8jXlݖ{*MR}A#,!u_}DP%c#'(ŌL6f΁qZ}Aw4+kuj`h5[ň1O}SvݬU 5ٷ;md>.bmR#Еh7l?穂a FPWUC\3J$-e΍'fV=)7@?B0B.F{endstream endobj 241 0 obj << /Type /Font /Subtype /Type1 /Encoding 358 0 R /FirstChar 0 /LastChar 24 /Widths 359 0 R /BaseFont /OQGHIO+CMSY10 /FontDescriptor 239 0 R >> endobj 239 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /OQGHIO+CMSY10 /ItalicAngle -14 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/similar) /FontFile 240 0 R >> endobj 359 0 obj [778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 ] endobj 360 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie 197/.notdef] >> endobj 154 0 obj << /Length1 785 /Length2 1338 /Length3 532 /Length 1916 /Filter /FlateDecode >> stream xR{<G.ȵ(vs1c2\"2a$txy;u:Bn݊Dk%'mÒZ%Bvh?||}8Q ,hs8CPpx@bQh̵ @2311`$2BV0/X~Xp@bй.9  Pa   6p^;A>(`B  . Ɏ Oefs<%6uI&eLq%@6l#&_tsx(0Dn's p6vt6İ `#b L'H|l>^̍N$;X8jכNt+p O:%!!b8 Q}ymvˀA(D O$82A! %1\X 9H |av$,Y+#_au)(-;į> endobj 153 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /JLDTPJ+CMMI12 /ItalicAngle -14 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/F/t) /FontFile 154 0 R >> endobj 361 0 obj [634 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 354 ] endobj 362 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 139 0 obj << /Length1 784 /Length2 1297 /Length3 532 /Length 1870 /Filter /FlateDecode >> stream xR{E&BI~NlFzٶW,3Uo#u>zH96#ս:]*[s){Y=ܪ}K@4|ͼ޾,٠NeEϲ7S?m۬:C,iDqŦ,/oyr0PLbGdms)iԪ~^6eUvtq}IDk˅'F4Ą]ӯVYЮ): 7vHEзYY.lv>^' fv%nRDo>2[9 1Xs @limKݛZ77 tg=|}z_F蓓T| OS[1fRQ.߀S-^=[rAҧSSuQrvBOT45 ;p};#Y?Иjm\PS~&|'R kT˭o?Z<-qmC0[|NGnAn4nCE?%kmeA8~W͏e$KPA[/!Nendstream endobj 140 0 obj << /Type /Font /Subtype /Type1 /Encoding 362 0 R /FirstChar 65 /LastChar 76 /Widths 363 0 R /BaseFont /FZRVTA+CMBXTI10 /FontDescriptor 138 0 R >> endobj 138 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /FZRVTA+CMBXTI10 /ItalicAngle -14 /StemV 107 /XHeight 444 /FontBBox [-29 -250 1274 754] /Flags 4 /CharSet (/A/L) /FontFile 139 0 R >> endobj 363 0 obj [866 0 0 0 0 0 0 0 0 0 0 698 ] endobj 364 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef] >> endobj 132 0 obj << /Length1 2003 /Length2 12473 /Length3 532 /Length 13600 /Filter /FlateDecode >> stream xUXͶp{pwwwww=;  n.[kE/Ϲ:1k5GͪDYA K,&L GA!0qvt7q[9yYx(]-܈hI"X8+Ys9YܼEUy•X p3±[,qqp$w鿇<.@)bj$ 1PΛ`Ǥ!'tS4gabom_9NnbGsN[O`nnGeLD, <[JZ{̬̕\ {`גkXM @/f``\Y2_$ͭ'xDABl`"x݀;OlϾ3L;N07r3;ٙ|.f71=0jlGٙ&.;G.;E}X9ٹ~>f&b&+o'+G_2֎UڙZ}Dv>Ǐ1?u*Y`%fptP +p@YW_b5sUgvqmM>fϵژ|ʈ|PDb4 `$C\@H}PBݑ `=S `=Sq)+}p\i}xt?>S3[87=m.>-ЗM(x[U}2\WsY1'C8Gg3!|=by/~]DC 6APhļa+dga៕ϭc괔v(R LQvǞ%w.tN aCJ!AY qg\E5noi~Y"64t~ g(O#|m|6˸5gͳ<9 " CbK kf@_t>/%5'vBOqm2)/H&4?;t?m o;<@hD7i'DTrޢ-Tek>[ZtDF|RfoFĶcQ` ˛Ł/0xHGkx`YS"|MB7J"̖͈,@!{H*G] }Aꦤϫ.B?QYڴSIUo+Уצ| [zĎI0k {OsHPFln2".JM>[/%tUp`# s]#|Hݦu+-884YB:rwUae0[6C!kUxHoVP$6u;/2W $ŋb4d~J PՎ%htZunC\ 4qw~4:n-߉S3n\.kXER41J8מov ی'H~:\I5X\ZezȒRqIFH^FVD:Yh2.EYΧ{9Oö)bV-M p=,ݡmh̸(0Qf9UAN(h\c VL$4<{[ׅRD23~%w;^XrNWO%./G@~ȥR#z⪻ )c&Zrd~2CQv5v3z-+"I K@qu؝;豘)O*ژ͑9),hs/oZOMyjwJ" K*aQSEⓜx,$l-Ը{XT#e4$ĉ3yʭ#88ĂbԑFŘ^lNs\v=huVc6߈^>K71RLUۖr t|#7YѓLpb%UYB][M8ܡnl:Q=bF۩#'<`)'Kv:亨}ztƔud? /#;jlYhLs &#gE>nA59[a&ً@c&G0f0=r<+H s~DjJۓS$ {?z>n< }o,d*/'ӭw FӮ Ct4=#ĻY,p,l|q)O88jg㘸uְ$<wcta;YqoWB!o}db|bsDj;Dc38X*|X{''2 mL |y1.Ugc'f13ؾMivK17MagB0p? ިf`MpV)@BjYm`IrZ3Y?C5iOAg"^\5s\kr I.0kbm JYb6m=kݍ݋h 'GhG ϩ"ޑb^M@ʫߺ#=ۈ:A fjmm4i6\QcZgglLI=vlW4)1^R*߿\?%/2%Q>WnjT˟k\+S0"2,A>G!ܕ6'/R}/D1):5ȎN/w2N?X"/톔 ̀Wj4#^ %ewC(YVN^g]\e;>JP~718#Gq &TKLrT7a'ŽKORH 4hf'5-8'#)kep8הR&C][H5G,bCYs]ο#]TOӫQu!?5lMuHрc?~s&k׹V_\ \Ce(gFQRޱW;҂TyS:,XoxK}WΣ6r.%pсOxh0,4;ONXS׼x{۸kCZ庇5eS##S)%`h2LFwqӘkYH+?hcV.wD+u+ @`Ak^8_u*b) c&$HI8ތb\ǘPٙia5Vav{蔭?rf'iV%+ˌN%#σJK;>_4qC#  `M Rp2yr5mc&roz<, Dd=P{^:PP:X3PԹSX!Q̄5|+Nc_TZɾ3+qH2ʀJPW'EP;OT|>,|*gfU3yL_OWlImTzlsS~CmZb*YjnT a6R\SӣÀ} =;r/)QgQ/VwVʬ݄D?Ϸ * %2cQaҘa#DIJTVٌDeb˫2Ѩ*!Eu ^Dण3vsGDSwnB~`0^ަ^s-_VC*[crL oʮﮅ|<~*˽Kn&g*IM``r-f<}@(MRkMod(۬P]qA4 *te90P+旌ELVCwpaއ6Tr^tYA ,YWϿF&7UR^YSG Z+ԩ@ъ6qj!Kz`Kڃe Jb^.Z?E ղqO#hsKH}&).X[ =b?ISխq{+Kէx#Lp3YMz;feeݝ>5< ۆm&*mY )=Ym0?$̔JQ1(x&kHo'6Nw%1|Klsrj]QBa!KY)n'ȡȣ#~/$WD٢^Uq kHФL}]t2\3gG]H[ɻeҿ,Cr\q5 34G~Rg7}ilHx V?VZ5h \ (tc/D6d2GVhb-{YE8Y,3lIѕPxD "x45Q.D)9ԀG0eǯ͚aO<~-V_xeޖY2$/+t#mkx5{ iEja䂴:OKg/] yBըR-Ycw.CԤ7W `oi9ĥ!iv_X hj:J8Fs2o_o Tf7U2Լ66\w@ߔm^ mIaKXGo1W:Ej ݣGuMK5*$8&)f&/_']:K%qm*VQtj)l"!ƟU, @?x60xlpuOQϾ_X 9 ҬtOv&<=V!0jRйD72txdN#oiLקLjܕEby9XwNfϜ a2ܑU|ȿ"d6o3 /;IˉNִX^Z<MF`>SUS j'a179ή= qCK6=A_ '_Y|Pi&e4R7ͪ"aI#OE3G-xe6gGt%sǙfW>]KIlU` GkEjT߀̹LW`sd3F6`DE';X/+abD$O.^ӛX% ~4 ga*M'tv < 1ĘR{O{Ѝ!*S^w'zAWS_Bh2g{q\AbzTdj=%4(A%+mECQŽfacZS_dR>a~8wWa*]: @Q- wy@9Oi4')w8lj$6ri\+6a~33.3)Xr)`} ? tef^8ª|^@4;Pˠ(4<lQzyKSMA@"$}X7ClSjy@%6atT)?( 5vDXNuGL֖ ni"("QA:^|q|cܱΛFbIp_Q͍4R{vV`ղ|} GJH!~8ɡ=k0 +ʼn k6Ʈ3%  nl־p67(@Qk)\yfoǓgUB:UiW1(DU4&{4KGV|jܞ-?Dkd(oԬ#CB4hQO' UƲO.@L -fQH͉CY$OG-W2jFDsw#q\0^pR7?OXr|dwvLtco|wgOSR`[aFص iFkǖ S7o-O6PHnL2 9^VH.y`,T`+Z ҠkU|vo u$l:&~=1ǹm5enD7I,Jù;Ju9LXt4=^G IdK%F5ҩSÒ:f{3`e1cfeeԡΞEڅwl6':{-?Fj}b4J "q|5HpIE|Rhċr6ܾ.TK>yE("~XaB W j5hw$N 9rk==1s@yXG3z,XO( ~w$ pKs C=/*V£Mg8FI`Vn;Ժ%nQQ2 G?2ry6c{qAaX@8nO$$PuPߜ5e,5Y\e0UWnEe מZG1N1d{A^cŵ pBB>% RO 93-m«f򦝷J$.TqlO2..mIr {OiUpi  독snS-žp J'yuDSɱOFt6Z?[ gsn%DYi2ho:Oj;a"cW=Ht|w8^u'p^򬅢C-:˷JW*RĀoT#5.¹1T,((y J+Vۣ]C|o^0oϣïes ;CUr'YOZ5lUěN@ISqtyž"hzWc:eO)sWñYo@܌&U#}v]?;mJO =h=2o%;<h[aT"eXruMD^׹*=vPE \?fY"&ϭetoK(N mfXn9o'4d˦-oMp:Ws̠QA֎a4V*0wEڂ'D=nlVj)pyqy(!%w^m :k'U>s jGpxIz-hqMqաQsg< 2;o~UplSa]3$k$-[ׅ6<-ӗ첛ّː!X_eذN8A4`Oj`oh'Ԏ̼ŷ̲fMoj^J Ѕ,?9-{z AL*|o0.j {(v͙dGxYt85-gZ ڃ"}>sIJu~UM)b]w UO0'XhCoǏnyq`+J)95T$ Kj2!Swyڝ:{<Φ:uRš~+69-|/N|)BߙC>ݫ`Q HiM@-E,DI*& 9 \۪dlqޱJ캰?]Ǩ!;8%,bkC9CD7cF_ui JaK @*i-e! ݖ)'鋦A^ua#GrݭܔGz pdSe@Ӂ $:"=D;Cql*d+hjy[(0osD1<':#ؾ)D!Bۗ<aQ'vA NzUSuCLܔU1*Q-(JUBkA20 hd 7Xi`VKfscO 2|KGv[لU3}~A^bf^l/Y5CD04XS}bZS2BG;?2.wm^n%׮1)qL_?A+%fdy~÷xduM#Q--uVmt^._~kX*Oۯ! /Dj)# }ѓG0gsrF@-RqwAp0EΗi f{>1%gs%F,/;6=Ƀ4aUngbNӼb[" E^ߐt PܲԧhoĨxz57(9v `W}F]l3>wfjeӃuX: pꤪ[}ӂȳҲDJrDddPQL&ƴ8Q.eO˳"Sá Cآ=MpNƯ}Y KET$i:[N+eJ`6{lu[7eټZaAeYdhԌHtG[/i7?.~-9g^W,(KӰrGW]f1tޤ> endobj 131 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /HYDWGK+CMSLTT10 /ItalicAngle -9 /StemV 69 /XHeight 431 /FontBBox [-20 -233 617 696] /Flags 4 /CharSet (/exclam/quotedbl/dollar/percent/ampersand/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/less/equal/greater/at/A/B/C/D/E/F/G/H/I/L/M/N/O/P/R/S/T/U/W/X/Y/Z/bracketleft/bracketright/asciicircum/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 132 0 R >> endobj 365 0 obj [525 525 0 525 525 525 0 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 0 525 525 525 525 0 525 525 525 525 525 0 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 ] endobj 108 0 obj << /Length1 768 /Length2 1163 /Length3 532 /Length 1734 /Filter /FlateDecode >> stream xkTg+Q, TY y` t!$\RP;dHf`HQQ D-*X/\ \BJUZ\Oҏ=;}߱'`<q1Icr_(t%A$CqL.`:9q\Xveqd ǣ 4TEl3=yNL`:|iQG}gGjuy,\蓇}%1܉ئSCz5dc{㰏Pvl%%Qeβ+IwOufRBy")w6s@DŇ5/=lqyi翞^icVNqqܲG=f&n(ֿR?1Jl ضXmPþʵ)WkMե uz]ԽoI7?W RaQ ']5Mɷ( ۔;C5EysՖw5'͎{ԵzO>zo':{ I[d<*{/ǥkJEuƯg'CJ^ `鹼aQ2ֹԝ#rһSwBXBiGnNTKdvwYũ@ߟ2aTs{j;[c<T=Yt\`tMAՅQ[óuE)ԓ .f٪DW.Nȵӯ?%es{:a󪘏Z?o?a !åE7/endstream endobj 109 0 obj << /Type /Font /Subtype /Type1 /Encoding 360 0 R /FirstChar 110 /LastChar 110 /Widths 366 0 R /BaseFont /ICTVXG+CMMI8 /FontDescriptor 107 0 R >> endobj 107 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /ICTVXG+CMMI8 /ItalicAngle -14 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/n) /FontFile 108 0 R >> endobj 366 0 obj [645 ] endobj 83 0 obj << /Length1 1077 /Length2 5317 /Length3 532 /Length 6044 /Filter /FlateDecode >> stream xW\Sǩ"A:HWAjB лtҤ D@B/H MޥHٞsxܵ^wf353aq*APuW,iA@3RAB|pU_ ,--ED IqQqIPtsq$ T"ݜ@=_W'6 hpr `0'|P("7'_# S/(+ K&+3@Xjߐ~0u?n0F <|HEj8=(^-_ ń@bC7_'WCۿ_:Ut̔9_NC7$ h @+wB@.@q .ā`E(ba!8{L09W`^YDE^>nC@2I`|\[\XlI6o E o ERXo1Mb@a߄gY,"0H+?o-79vee*PBAq@bR@IqP4yAT )IQ)_V'?$ aW_B(u`&Nw3"a*lϺ+9wj 8l e9twHy- q_oP 4% ۄhi/y*u٫Q`whA+a:X~;|r0#thC XI5_2p(B`ndQ_a;z̒fI'g]P΋Cp+򅴶M&1, [&>Ic˺5ievʩ&QL 鸇,EPyԌȥӸ^rp&~>wr@u dá³Qx+7'flWIAsD1bлS=xeOό;zzڨpಋ{][u9fIʷmEԕ1{Ջ8n")ffKCdl t}iE=rm ?\!#|pYovsJ$c-S@VJ{7< A rGikA-?Oռ:G|=\v+}) !p$|gf;6.W/Cw'Ř2$SߤC4H(՚1WY_ܤE㐳|-!ɫ4;]Uʼ}kF{/ BljŔ{4JO x٫6>|P   ۮȆ>CɉL%qhڕآ| q'$J'޿Tem{w|?Tzx߻ͷڏ .ٮ8Aj9:0/.Gg?MV[C2y9L@[$bEm1=\W]1,ދsҨw|C<AbbE>[HMјuYvnAWdMD~wm/ I|a_+!QeQt n{]Mi&brdE7.i^`oQ\#g5kP]WK(e$ 0i~Lۨ?o 4ћ֫!\˔ݿ?z8*,)ھeRh& }cC(oyy@ud]quɎq7|6g.6>3_7XMTu`#~nw*(_m:} &1 n:"|c;(͝ fQW Mo" kN-cvҹљiLöu۰It!xlzG8XZ3ZNyjPq/. uH?Azk)'8"&n'v@uUuOfd~8 Ɂм: r/n2"n$;$Nx`fY`֖Q.TG+V.de9! epS jhҶg-X u+ErwΖBFK3r &7FQ$/0,;w2zP8DU;žyk+8( 6*;n,-m_h"K_5g,8c%-!Ǭq=*>~,iXe nGGkYD3Iw+'Ħx6?#MȩyG11hDT!\w5ITR"iVNM-b2äߺF L WmKzr!96 lwq!1 z喟yuCuxDtVk? Rދ֢K=ﭱg uR>m|giHD5 o8+uI b޵*`7ə;8LU 7gq&@EסB6~5uk\bw+րVJbނu|maKwdȽ+9X*]jO{ GSd6?b?\V1;a1yR.e #!]B(`=bCPnݸè)S(aS+5CjU$4.]hoИ6Օo X?5`w'*ocqdOgu%# .'2*BFwugG/GvR)?HNPsqg@/,g]gANՊu| /(-[V=' Ŭ_dK;O!f qx^ye|Ed+*PI<)/?5)Su֮')l*n23բy|Nw&[^=b {UQo[ ~_q]574ZkK=r+'A3SˌS$gVa빶Goqavo˩mo*c7MFL4uѯzc l)͊cwN&TTYRŪ!έ[Y8w!1 Xsҩ3B)PLc Nء<_3mx[J:I/psOfOX`mY>IB|Mx S41Xf7QXƌZ ڈ=EZ6+WyZ2Qr0@ϯ9>~;5Yi svҕ@x|DXwkcaʄfM@x Vv#M+XNUP!Ǥ˅B{vkkz5}9Qսk7Ci3F3;̴7AX&õ *>]E;=kmL2+U0*Wdwuug]QoʹUnQ8>bHE[ׇCȰZ#WUgbrisV 2^菠h<ϒzr`cȦkI4@]lr ᴿmC:Ԝ{Fv5ݶYxw\ RRӀ'aq 2bkPljb2GMgI\I[7nԭq<]r_S)mlEc>ȝ{wy0e&wۈk dNA{&^bh[C͋K!3<ɷN@G0»\O<=.ҁܻyX*T͛t$ w(}) ;40O0a)%Ν JUFk;i /=!/F+}nI:ޱ8*Q`KZ#]Lo{$?p!oG672aLB=}TBL18Dc$M-Y{^5Ygf61}Mb$A!oőU ^쮅k w73iRw\h)>-0ztqМrߦJA(_3XɪBO xzThAx3.3+֣7 A3xgbr#]6G\U<+y_WᛷSC@,x^ 9HmhrCùY=HKCqsŴZj]!Wpgu}(i3x?N0nj?endstream endobj 84 0 obj << /Type /Font /Subtype /Type1 /Encoding 360 0 R /FirstChar 11 /LastChar 116 /Widths 367 0 R /BaseFont /CIKUAY+CMMI10 /FontDescriptor 82 0 R >> endobj 82 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /CIKUAY+CMMI10 /ItalicAngle -14 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/alpha/psi/period/slash/greater/B/D/E/F/M/P/R/T/V/W/g/k/p/q/r/t) /FontFile 83 0 R >> endobj 367 0 obj [640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 651 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 0 0 500 778 0 0 0 759 0 828 738 643 0 0 0 0 0 0 970 0 0 642 0 759 0 584 0 583 944 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 477 0 0 0 521 0 0 0 0 503 446 451 0 361 ] endobj 78 0 obj << /Length1 1426 /Length2 10456 /Length3 532 /Length 11315 /Filter /FlateDecode >> stream xUT\&Kp ܃t4и  <@pw''^oN>>qa}UsլZ=ƢTUgڛd,I% yv+; $dle2q 882 ׋ן  / @bea dW@23L-Av9LlfV gV-@_w8@N +ȊZ9LAV`9Ƀ|8ϔ+*G* z s6ejW?;ݿөmE98 %{ Pmп@@+w62[؂,ܬrrU,&NA`JZ*LkkT5;kx8a?$;@2b`3{ 0@LKWԨX_eUZwJӚ`?2qժv_EN9Q WE3e}DMK֕q 5FyT:Ha!HMQwJ"؅0OÃYA C8vab%PuK…_ NRXNEd8Rގ _0@vEC!ćƱ X2.}wح\Ӽ }~I!K=~P(d҅0p#}4cC&w/Ǒ^}Wu T)בQSjk9;WXyTɢXg6,¼$T(ȧSQ4;d\,pxQy 3\\N}Q:<쪙'I~e2(EAηLM<8Rv"fE[#w@zlUyY>@")5.}3;-A|0va8 ،l3)]k%sH*vK|ZGNсHd6*]` bJ{~߫N~MZpNf'.S!?ɡhF಼w8O L?UM&rpQcKq%I?g7"z3gSiB>%|@U9LVkk}j(E>ycU V¾Or[C ),UoUU;^Q|Ԣ } wx;c)vwfw2r3/ $6Nb?;JM݂ G?^)u=6pZǥ=u/ *tW(a]4) WMʊ?SdYCPVL^(k.G$&oRec81}q\(γ$c&O++awoΆ'iAT"{htrCj=KPk]Tٺ|;r?A^0 i]Wa) cae3eV1K~ :aҹƓTwPq@,I:.u򭳻d=di`;6{qXy߭3il+5b˺rS%)Q𲟾5d\t ܅8} ̟YP' *nKR`vD05 uH2ja2ԋǶCP|CZ,n(vGEжXS?]P<݊<lnOpF%Q|)Kߺ,j[50MHkQ!WO[7t9ڵh^ߕa=ƳF~A jn$K=,cTghݹ=AoQ,*z: ;c{fTW$T S($fhISӶzrzx8t-'ׂMbفpКt#WMm`v|?cg3u,4ty1V L0E׊E.CS&38|'G"~ИԖ:c%+É.en6649}+L~rSQ+JAS rkg×zMWIV7?B$ XǂѯW0,ʻwܯWݭq3 Qdn2~"铥!Ρ;¤ q#RW.s>Q3Zokk">\o}̩|$Fk A FX+\ʝql(o$e6Y Ej_ˢ#VY7_D݄So7Z~]"mZT>yvLH-(ҼS?LPWJ:'F\1bxА_eMe}/7TDT_g| 4ru14*]'.;򏄕ڍO]I,q&OEY*q0%sR@gć|Tr9p[pzPVmMMX?^ϖrKszyҺlF7$%Yt1] F_XP趶s[עyh1W$@Vg?^*s@0}jLKr͘g{2coj,* eo]6ꆉ;0"o|rز'81XϡRנ-)*Nz5sI3lNQvKRKYݸfv O'=7l2аM mn[ht&1%XEqjMsç$fu򧎳#}o~*9~;ú)p ߕC FըJ4eh&GAvs䀦 ůǂ =X|?+ҽ5*ٹLy>pP_ {A~c;˙c4/2`'v͢Jjq)Y Ӌ&x6`'ѴZ9U$4m{Ds` ֔I8wmPn = +~C4]iaG.,_SE-v!˘(C]D{T[4z4dMŘ媑̅'l} k06:uX80&TONg4}jefØi nr!n~A8Y⹩f =3]ϜYC|&a ^%B#/ ƒEj/z91<,59C zQHR9tp NcwGoKc噜M{47DF3ֱ ڍ`k'ҌXA՟mnOَ GĒ˂#ol5Y)=n+RtwV)Y<ܡ?Q(/kCReK$×HV),cW?4Ew 7Tf^Vhx؈w]cje 'Y'ߚ2$>{8(R,ʔ?`{%:6 `o  WsA7CGA`|QS'(Vy 6 wpmQ4 <ӌ`ra/~7O!U#HSƗ=C:+0(; Y4?wDP"e@)\ϛu)a*~@b>#;禋Ś)ZHƄ,ɍ==!:"xˠ[sw%WxFW4JGC_8ͱe AI;¯#cI,V^5 :|+,||Ss1*%d ElSs$H2{Ru.A|u^Z\ v0Zm f"\]hF0']6mHzx]kԪ1j.l#.5^W q$KLXhlA=a'_gcӆ[۷ɦ1l%[D؇rѻo;iGN .WBz  ܐ aR KN8$WRcKhXA7vk(.ӝY* tvl;)XЗPExemev -lAڹF${Nc 2@ZWL6YIf's*ӉzIKRA9T>x Zr*yFWIvVZ w;߾8e/ un>0̚03f~"!ÁKf[d)]ʖcK؆bf;B0*ExӤ%XIsJq3vT*@C B >! tY̗)V[n'o*;ěya8[.cIa@O4(dTK`>?(˃MDUNLR|V쭡6Qpm&u$1Re!r}%DD2 wXJ![^BT9=. 1FMBC!ZP/xF: 7)x0n\Z+<;avinٴPv#8BzVF<9xfIZ~Az\׷M@!t0S*l.Y94h0VqO2MDˡjO=jy7-Q.%יḡeSY=#Bfg [qY͘X^2;/+K} VEO$bpSا ɤ7(q eԑP?O wAMQ,MWghO#(_mO ֭$W3x)v4OBfaP]E}39jL RP9zvKRީ`n<~V4 ыЃK98>!9޶iw#2GIhj&R7B 7'F~:y$1g\ec^ ]/G?.KyzSYЇEd[2$[nV8V|ҲqlU55{Gq/"^=ʣ9_?G;-A&vf{zo(8A_" w99P);\jEIݎX׃Op'pKe`H10ĂS"o*3SS|=&^uʙrMcuYI1epGz"f K4rb?(8͵ ]cO:)O4&)i6>?AH_<HnHiיDm{w3uE Tdf΄}yt |Bֆ^V$)t !vea]X`a`Ⱦ_" eZA0M&VK@_\iZrq5:-ہlD}W7xr 6Wb+ۆ! j{i:O#-ih +"9QL\·:W]MҘv0of-3UA{X9/p j\T\:$i{.m4?eRw3rZD/{v=댥05޽U1"cQDt]%NN&)|7#gX$"P$\%$0/ܦ`XL8Rw@h7$V3ε^Q"Eá;-'i\XQ͒Rq^"|M^béch.ڊ]qPC#Kˮl׸ "{sr9\[BBF3JDQt2B1JNf.^p$l GWUc]gYcn s-fq5ToNWcyg /J:xнump81?Ws&o2H*:v;-JU]olDC92'>>Jȵ1+ PƜt!Xt29 # LOC+-Gd夒0w f=x(*?a HQݧz $*u[0{k%¦X##_=y{'Y>h`ꆌǔR!famNOѶVĐeD#~Z^67_2=|v{D {dZ!z/δ00tx7 c2y)0C*1`cq+2`2HmqC֏Yf=gc1 DSg_`LhUisܖ'7 O^Vg714Q]qOS.Aj~ȷx94N}Bxr<ENu)7pm*7k]$؍% h%sK tEbJtln!Y8HNcv_sU/QJhdX2BY=b+]Tez_&DVbJ Q7k!;/oHz˹*.foK[ͥ_Viִpr b]ĥ\mˇei.d`D[|u[+%S%Ln؁6?kNK^uodm|3/>Eta^ 49<\^&F*4۞z1'‹o 6Q#;TYZGՖuӊ˔/O X5 nZKڎ- f9?En-}Bʠ OQ􃭯C؊z1n%!0P֞.lhbܠb#s ={٘kI_g&{ŋiPcu &zuC<ϣʤc.>f^`sq3()k*(: %|#;7.I N4h!M/)G.P ta@WqoƇ mETZ fL* qϐD=l"&6L7o&+;9ƼQ7 ~0Kpo5GqEXZ~EX:6FRfK(*[1xy_G@k>zϖ% u،ݱb/ɝ|oUZ? S|dʾ ~KgQh+G4a Π4-]-VM0!{<%?G!y&]t5MD3[ b?endstream endobj 79 0 obj << /Type /Font /Subtype /Type1 /Encoding 362 0 R /FirstChar 11 /LastChar 124 /Widths 368 0 R /BaseFont /QYMVSO+CMTI10 /FontDescriptor 77 0 R >> endobj 77 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /QYMVSO+CMTI10 /ItalicAngle -14 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/ff/fi/hyphen/period/A/B/C/D/E/F/G/I/J/L/M/P/R/S/T/W/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/y/emdash) /FontFile 78 0 R >> endobj 368 0 obj [613 562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 358 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 743 704 716 755 678 653 774 0 386 525 0 627 897 0 0 678 0 729 562 716 0 0 999 0 0 0 0 0 0 0 0 0 511 460 460 511 460 307 460 511 307 307 460 256 818 562 511 511 0 422 409 332 537 460 664 464 486 0 0 1022 ] endobj 369 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 71 0 obj << /Length1 1439 /Length2 9018 /Length3 532 /Length 9878 /Filter /FlateDecode >> stream xUXݳ$Ӹ[pw5и[ ]kp$82d>9kժ{ժtTlRK<ɝK *m bFqZ N@a7@h }x9Q2gW;Q$#dePp:BkXY+݇ y tzQ +w%'%'@ tu0k 5i q6(j [fO;-A`qtpT!@W/sQrl@@n o`cv:YO kCEYJKN鿋 'w'_ƜrA~2brNVk-`j( 'k7 uq$`qE@6b"/'pOHq8^?e;W_@<\V0?TZ 8d4[ACPq?VCPY?PC}!* ZSAkj!^AAwdzV!.N_/!ԁ_`B &B _#Bm@B BuBhB j/P]_3iiCl)xN ,tP99O_7ۀ7Z,CD3Z"势VfmMRkޅ .Sva^k0}KH9);%)sy|7۷<[gǙ&fGxyaPB FY=T=r Q U巔7OrԐm!ϝ/kc3vm@IaJ;WvՎ+.j>Jqi;vզ$Q@m ߇:6^$FcJISyN۔ wLZݝXWoĈ|F%f*bT[jO܅q1$VWҨyxmLf <⅜.{7jwIkN[fX77RF\3L_Hfnz*#xsF1==!07YGnӿidpS?~P N b>ucauj3pݸV JN,b|֣W^vj5D0 q{!z8}0)tX^ XpJ?Rv„>p%xb_mQ49"u9 ߤC fAu6EꀽzHva0qI$ f}E}Ou])m7Cai7QbI& # $9D`ѪVހشy oۛ*_%RW/ITKW*&^ Z47HΟ3Yθe~Ջm (2D޿ ..wTrvoߛAwɭ[%Gz~GE (p7$} D' ~Ywݾ놼Fsw;ԣx>uMa3BY [$ueq+](oɻ^muF́VXqYW6G`4_wG+´&`+3HLv@8:xhOI(d*B t|wZEn<z轶 ,^ FfOT _-.DԿ49.K\RxK]PJ"(I:hWTyb;w%mob<4M˿t ^n_b0k@DBWS޴aD\5)TK7L$O~Fø!b-R/;(!Q  '8,zKWU) U4oؗFHC1yr.-j>uH[i,߈OHFTN0}SO 0cҿbJl2q_|o 龠#e*8ʢltkt_ +q04.,٧LЌqQ[3S b9mG1^jSF1\ քa*l%Fի씔'BP[<>L;x6a ض=i96J+Hb ʇ{3M_KT3ZG>e@E-< &j"{[?tXw+sEz2Bfz=eȾI߁V]+ыC.G#seJY$DZ|er, wqFHϱ֣vQF735qGxόde56Iq]t9Ropԓ6l ȃׇ$SoUFvN+4FC=~ =JvL:9,@1ֳmJ"Eg–RQ KhnSe3&JjߟuLX31}|8T(l6;nNaP}}Ng5J>:2{GRAJ;jmG-9)Eኄ\0\ZQ^nnm|~zT5l{$WĽG2+.j/) ;f0i(4$N0_ѢtƄ\Tjg4du#~zw \Tv5;`S 7r嚺NVWi\Ƿvb~Rm2؞; pL>k|$ŒlK<.,.kRۍTj/Ď9$nBIׂ.P"f azf`Ĉ RGF%ȑJGW+dCϓcueӘu Yc)ɇ얕Nˮy=Sp7P8 b~N8eޅjD{Jdjإ#-*1ըm?냈.X8eu!ħ%|3?2\~ͨu@l֡OWZd(櫋m 3,V{n Pa;'N*P1qۖү_I恟צ^R$.N՝)!: m}ސoT(+j)]pD{6l2"\!s &!v~sW&&r^('fЙ//Xnv"S1%e[FNs//% 6r?7'GSҖHG3j'eC)̬EسǐmMW 4{M2v/7IO[݆N+>)ysDx Sk;$aջ;øvbHT| aVO z%soM3*O.>:L#Ի,/_{pǍN|;J#k n: זGlI4NzfMNti@zi׆@jLΎP WMUDӬ8UUS"D(/x$T&AZ3k;:VnrZ7 .8x{*}X{"r1gÝ/H"30ҸOl{VcqGN3qMwM~y+6mS;=_Tԃr:àa4$ }~T<\K6GgJ o+fLf⭞wг̧!6-Qq$dvHà-kbxl_p!|k`3쏌6M&(' (t*4q2WʦGoEPXgF/)QV:MsZܤx>-%T2~+?oؓDʎ&RU7S$@B zF3ږ<~X1Ly;U(5n]TkFA ;ivF/ӻsɿE\H)n%@eHz{[;[1Y"L3}H$}8vULY*GT^V?YwͧR^O6.&\sv'sI99R/\0MC 2UaBfމ F|%dYOjnZ8?!P Y7P0-@a^܊2`18U.[+" '9<\oPZ9ޑ%tK~UB#1l}eQArp%]/#!na0~%oDipKIuJCk)61&j G6ĹH2'G!h9rgRbyۥY@!}5;_^BL52%ko*)V~?cEqM '4E1 B|㻸 ST-ȿc1.*$B]h1 ~ qc.t+\)v^Ij^+V4[le\=$Oi> s7fdKn2@:t8 c"һ5LӃf4yt'T:x<'k?G8FbՎl=pzoYFr{z켨 o]亸"Xﰦn|ԉNW ,&8.G_kHdxB5;RЄEH [! fgeإ,=D]"r:U&Z֟EOx2\&2׼vGMN9">ռ,,nZrO۱m'Ktf3'*iU"p0}4En69."ٹ+l GBD/(2Kve@$y5eRL:tʞquC3ibn2B}u5C'VS'd erg:3 0#Xy"Ay]Ր\!\%˸wҬ錦૫!q A}v1v4_|k2pL 0>aBرf8kiZyܹX ?8qa b;dRHkYOLRZDgycn\7tR@K-A` %+}Ia60+z^|iȩT.%dӹ@"%oAYm/V ΍87p3b ybDV|Js)Clγ-h^%jb3!qI0ߣo|9z c7O ;5NFK p6'K[97!~,F\ifD.(YᦉY[`VbYenbkKLqVQ~)p%WSտHcvKRT7qPU0`ƃ#}3ƐwIbU7$WYuko5& Stwli\Y{%#!A9 AS/vi~^ݮ;s5jcۿwSGkg%0M[rr }y޶X?6SĝfRHg(+CfW8j:0:k]&5]tifU6@U #C'‚৬I0 ^ng>)!]&7(P= ?_R4];uTmXT U̐`96^Љy\]iW[VExQ~o:ӧC2Pg1jl a4KU%ͽ>Df@Ip(i4j*5i ^Dv{*kɶ.=ĺ%<ڈ5 \ g{lGZWJ'/|gĹډdON|g͘W1ެK,?Zx`)[F{PPy\s%lٕ0C} ,-^ꀌ=g G>I<^\Á:ܫUXa/K~Վ8+d {RNҟ.Ӑr_]c盟k!#1o}׀FBnaē nŝ(؍yg;B~ǣ>}|&I9ي@|kIJS#7ed F}~I]TWa4t|>S~}Q߾#Rp_fX.6<=H]^ݥ0krկ) Wy4C;6p`IC1fvDdKZ7%erJ1{Ò}}bܜ\/upk!yus=S*a=Tf K"qgh6Lk@Ooƣo ךMmUI=M> NG5d}룒x㌺Q@0~q`EbLj6]0TGg3I@TɋUZPҤ`%Y_šyи $O@XL%4:' k>:j#,^G݋ZTRij;hx[)!&7ۑwp7&[7x).dD1Gs _W9NxU!F'e.3ZlEN'1{pn敗]k-JlwlPjo,R$\YF%oKZmp>pK_)%WIbl=VSD# tΓqEE{s8.{hxe !EM@([^~5n,7&؍@ ϊj*[-auq|fsW)]I" AۋթxEwT J-6MXd>o_v(h! |m 0ևJ`oTis'YvN2# ԻsU=-{p'rtbwg#RmBM\BL|p줕Gcb'VjgmKT 7 o^ڵk؈/0gBtȟVFdӕ ǽ@,YǖY o Ҳ#vPH]Mt0(R*9i1ek)Fo ۀۘƫdԹ^6_KXl|%46ŨIk v9N/*+eJm]E7߯'V6Z[@wUm u-j E[.OϡLe!eD|(1,3&gMa.*ۑJ;%嬉õZA wd9Z@v&IxFgHk<5yD/LT#u[A`轟o{K^ yjX&`8EM9*~;K-0,HFF=|Gw}#בʂSl{t|5L`ObV \ 37V\!hH;"v6jQnP650IM%lYlo$k!vMRYC1{6SBhX̶ўCx”UlqwW;_:v4ӓ2D#{EKLiZg̵IƵ16}J}9l#㕐6ysI-6;=X1;tYbݽNuLDGM:2o- }:s ŗ=T Ij]8hvLh^[bFcvU2{,W :M "{^ Ԭ +P/JJEe]\u9G/V`;/Oendstream endobj 72 0 obj << /Type /Font /Subtype /Type1 /Encoding 369 0 R /FirstChar 12 /LastChar 121 /Widths 370 0 R /BaseFont /LKAREM+CMBX10 /FontDescriptor 70 0 R >> endobj 70 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /LKAREM+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/fi/hyphen/period/one/two/three/four/colon/A/C/D/E/F/G/H/I/L/M/O/P/R/S/T/W/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 71 0 R >> endobj 370 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 383 319 0 0 575 575 575 575 0 0 0 0 0 319 0 0 0 0 0 0 869 0 831 882 756 724 904 900 436 0 0 692 1092 0 864 786 0 863 639 800 0 0 1189 0 0 0 0 0 0 0 0 0 559 639 511 639 527 351 575 639 319 0 607 319 958 639 575 639 0 474 454 447 639 607 831 0 607 ] endobj 66 0 obj << /Length1 1443 /Length2 7746 /Length3 532 /Length 8606 /Filter /FlateDecode >> stream xeX[֨עCqww  ^)]S[KX ^ZPn>=罿s?ysw9ZO8e6 +א3r`12@֞NP'H +* rxP7?'E$a+dk hX{:\sZzP['@ 5 Av\X;'[O  WߗA0! @(A!`?[BߐɁ^`_ݥn 'Ѐځ`L5KN 2*`'[YW vu[=@AT@on=##uE#YϿ/j[;A<쿙7#sp"2b[!0bg H p؁| _17@$`a-n{bj;"vssA~nu?,f^;@dU  _n`o!op&DoB)C;oB)&ͩ&8H1N7!@7!~]7!̌!1_QoBԳxy@) D4DTue oEԅ?QD+D^ BDhF3Dh}䠾=ɇkaA=RQ@lOaĞ+j ?gl8 /kej+UX YΡ=Iy`;|9\>ζd|[CCsG3 < uOkj'E'y߶۳Z7&+LJOGYwޘyɍ6 #t +c}Rφ9Gct]`|]Z/5 Rz*[JgԘT<۾^heyI3UH娦Bs<^BW? ^=K.+Ã*ZJb}mKp6GR#ޞ3>~6Ç(Na,!I$wCSM+L'.UgH5RPeEJgzS~<jRLPG| b_rڗ /4W72EK~d|-Yi-?,@AQMfpw/O+HعK^R(e&|QnXFŖ{/cUa 2 vƅ`%aܱF5`O~l{eXAp1SѩTf&|.0q|ʭ}:yR''mDqLexF~PJ,Xyk~ut+)-;-N)< *jԳݐ6+䴽?gyx8%ETKG\/fy͡ ,"d!/ٮe Ѱg$uۓ)Մ[Ay>$~@ ?NzvȻ?Uq0#g0 P)ML.Wnn3*~1Ҕ-ORfɰXm>Zp8|DvI](u#˚!sE4dz/Ҧ3c-dmh2 9>&Cߚ]dyތn}1Պn6v8M`p]S}wd"7Xrhwhb*wYL݇ yS ǰVtzKeX"hKp8gn)TdGӠN>Tv&r5J!]YT:}|nVqa/7"x/ԍF.U(N}9ttg|kvJXtMxT6}Oba pb!v<@*MLLMG9YN+׷I g7 쥊ԋ)9J&9'8GycuWpHK^bl<˱Ìs-_4kG %B [1HӋor>7u; ʓoZJEi7<@f /3māͦ ^#kb9pY;XR08Gd6". < 5a[5%V>}?v(8~\Bn? R!6ћ"DsDP)[{HT\%*2YYD$FOX[28Du8U81QSt EJ vcFA zD︒uuWk]LHޑhѬ}U~pYS]( 1Z`*>)_ErS"i*W*nP6އg3ZTzx+h%$pܰwD.ɲEVG:_iՑ"3 mSI 8+J?$7NwS]šWVAfrX qy=^yZrG= ܑK:x[W/ߞ7{Գ͂Q=M՜4g@%B U&V=Y˘;5mSߋc;s=Uk>l#ŕQ-7V9eZ2K>5kH|݆G [9Ҭ?J9̜*n+<ƪ$k]_03 Qb23%RV6Ec=1T3; u  _maVGpt^PxSa}zK9(mmt퇍vVD~=-5%+g|.EڭlNqKdyJHpE d1=]L3αo[FN}G`E 9Vxie^" =k_B=+ه1;r:ՙI:4Ih>7CǭB)ѥY)g! &SylZ\#|N ݍhn*RG*|,|*lCs]#5!br{&k*MXop H.).llg2VfA.VQކ&RKb川P@Iv^g'qqN/̭ZZJčs2f>&c\؆'j(h 9:P4\F+p'JA>\_ĕɺՊEٳ+7ݜoⵑ\ьXaFt+1j^5lj/ ~9.I̖ 6&@ҽNF8]%9<?퉰4i/חwK ѣ v56|/E3E@,K*尽D*103 m!w5Y0CќxǤVGB1ѮDgΣΈ H2ۊR)R*50-oT<4/-g5?L nl= NFۺN,s 'I]aFt>T#ΌW :uQ\qQ8_JD(-ߚtWRlm&S:G{6{'(Kyc$ĊHtЭL9{!^ j;T1sJKM#"I%Ur9ʼy/BLn:_7p J$!n^Aws;قrIBM5w8+9-/1ms2HlфX+Z0;Rsra?ȑlh(s\. ) XGyOOHy¾Vqx˿z&37$9\@r@;h׍`$ft^^ٰ_zXotN+PdƼcSoQ)ꨱ#,#aIyby1w&`&B D"`d23j;SL-&"0%E1:}pBZ-c;{_Gi#+ ݥcЯ_#SZ6q Sr`Z&il1{MQ?X5d>0T*C([I(р/ Q$K<~^\2*ZhI/ƙ/g4%)ucN*M&ЍkQ6$k 6 2S6(KO<{siZ,٫$c} $ ;j݌SW4ux,]iU-)Uz5|)yn%>_M8Y+s)k{f }i'u[XtYl9 ys -%&[ |o_&yBΧ&iԆZGα%7 ˆUa7)! Q{ 5"si/K(hqL'W(c؆[! iڦ/jz*]~Kd4؄J{PC.uϸŽ{8XH%DQ H|nH=SeG_ߧ1A~fOk*AS/53l~z?cMcwkۻMW6'Y|>jN2ZpӛFe@&K4ÅSn̲3${,p#ߗb5 `q?n27H'U6u^o01~Y1Y܋Ad7cf <”B@JbZKG8~^b;|!%Xr؊X9uFt|O∷Ž`=;kƀl`:r>ÔӢSmK"Ѻ|&)<żYyuҐ4[c8HlnM)Iv\:6&Xc\0[kЫӓ9rzE֕vȾsR \AmeT&*Z<u]J,+TO{LZjp8QaUVu1 {He@Wge`kդ!'9ضi #P, @-Gv?Hӄhq&m>6Zz9 )9oȷQ]2o>QJ u&`GAjb2ϑ"Cҳ/ai~~NTYRUwIl'YTyHwRG,RA6VaMHTce'DyIjJyCB[jco4JypfB3UͰ27 jlyfj#ה:dNڴ`4Ƶ1Iآ\JNX׫ جH'{YWKi3Oy∖uhh08{=SN5~'X2gG桞nCo<ްf볎{›='9OATȬHID̫*qRr}ijm7=U#Vo1H)MOA)Nr@A6, S1T+Qp$4,GA^|ttGR3ub2 =l2V_j҄r3x+> .ON:+-yH?CW6f`Ҡ9ʠMaPliə&7~MuywRSD)o<?؂A0O5ƈ endstream endobj 67 0 obj << /Type /Font /Subtype /Type1 /Encoding 369 0 R /FirstChar 12 /LastChar 121 /Widths 371 0 R /BaseFont /SWWLEW+CMBX12 /FontDescriptor 65 0 R >> endobj 65 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /SWWLEW+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/fi/comma/hyphen/period/one/two/three/four/five/six/colon/A/C/D/E/F/G/L/O/P/R/S/T/W/a/b/c/d/e/f/g/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 66 0 R >> endobj 371 0 obj [625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313 375 313 0 0 563 563 563 563 563 563 0 0 0 313 0 0 0 0 0 0 850 0 813 862 738 707 884 0 0 0 0 676 0 0 845 769 0 839 625 782 0 0 1162 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 0 313 0 594 313 938 625 563 625 0 459 444 438 625 594 813 594 594 ] endobj 61 0 obj << /Length1 1933 /Length2 12208 /Length3 532 /Length 13302 /Filter /FlateDecode >> stream xUXͺ 'wNN8wwww$A7Z3Y?h_QVR~Pg7w08ػpr$448ȴ` ^(;vnN YZ$3@L\v5Llf '+@534gE\@K=2?--: `W̷HHs{[O9Md#^\VUkd_3]]`9ljN hrߣr.& 3q{K[ Y4r1];rJ&,_& { O1 C 9 0MNʜ8ŧ{w3j'H;uZens"Yx(b:%T[sV0;mL[ͰF:.J5tp wD؍ _0Lk]EI/FPfQma,D|R^6ZӬڨ߫3[ P OHD# 3ZgU2hj'mJ605A!eɢY*g@ 4f,W2 ԙP``\st/~StOԉw]Z/u\׽ XiJW '<} <96>֨f)%0G[_Yf)A~4Y kݑ,zа*WJȏs?c `C .w+ˆ {_T=DZz*1=L3f6O(?Y\5I3P_0{{<8,օ:@oƍ=}s`'hNUUFU2 #(A;g!͑TTx\+<^X DfZPd TkO;U=Ytm4< !\D6 r(yq5EVELS*)zn^>久yU]- TV>%V/td*`vtgfXnLhf:XJs 74.z.\ekϡ^+Y!aJzlv2TN*-U9.LOE֕Q$9 #Zt16TŨZJ^OSFw6@] ȧ-Ň%`kr'YCV PF|LCq5w~ilGԎ_zMq:ZKU:un]Gg`ǻU2? f~;zӦӤ&Õfmzҿf>H!W7-B}"Uc.+ܒEuelaR*`,slf\WcNOi%=ak  Rcl=1y ʿYt^|sqEԦÈWW6=?):y{}M|Vm)E9I闅1BSǝd\;^T.[dܣ*"S%.$oF?p @E-NqMG=4 #Hٰ^Y'n׹OD7*ͧӥÕQeCdqknm װjMe~8CL Kk mN J$PmQR+l[xфݘ˲3O-?G_5Zb'\qIӪz)Gx4Ilnu;\ϯyK4!ݩx8-hwa湼۶"|jF鯏X=gsV,D"T~iA"uFy`w,jfvg |نO;5TZPrAE4. oJd$d3n' 1?m3&{#mWpGo/-M>uݠ[\-qH826q˙x)YPA/ab|1}{F"T#mO\Y6 $,}ݜCtD5]O1rd֛,lj\sFpan]w ݩ\ĕn{2ҏ-ҋIp^St:VH:om`K>=4lC_6WXh1n LC$ϭRC?qitd8] 7W^0Bȳ#MO/FSo9:5y\kre}koWZcTX,AC~M`!ݝ"wUB/aY=劷if{R9rR6˞{;We(6%-tB]#]|-b3iR=NVJ"g`Jvs!ktȝ5Ma8 ?pnҁy2/sew:+.,vdJ\:+9w>NEluvlsI^eј**hM{ҾnOakutZZm0SYoO{q1 k4R1 UB]7,]6gB;5FQ6Y-(dM%A߄u(F^a2"DZU(l3[|j>_-=~ kK3xhoW࡟٧SQ*v(nfW +c7nc()9^d^[y:5N .Yp(<]>1Я'Jaӭ;# l߉bͰ߫YknlwFa%[L#"R,)3{6*J[40|ùE`HKF>:݁8Vo$ ~48>?E7~bŒ8=]g&.).\pzw"LIN=lYOoFȠ„@}kE+7/4VW ]N͍(eɲT)6<~S=\(D_><˘1wČ~4:? *G籘 u=7Ik;F\1.P۶͛f0Ǿ+4TޝmGzqlĘTBYeG^p_cyD ǒZHQ0^y+yQZG*Mۡ^D5*Hƀلx;-iQ+oTeWm/6=hG o#幎z8ү-k|.ZX*F^DOU 5}mB |cL.Ydmj+MbN5|Z.FbŰ&{ʺ.34 $G|~ef }LqrTb|L0WXDStHy:v/o 2pG,YoKġ "LY2N7DO40>pb|ݚV̐\!̋Ϸ ?\ ujA۝S0ѽ9'^G: dWy FM&Umr VѤ S7Oh OvZ)k}g? I4ETcƇ,8 %՞ TʕegƯ1_6@ 0D<(W(>ʻWJK@pvi'3<@}^#[򫹁YRkoG!B,F{9hN!ѭ_hEi) kNqPSj.g+e_v EpCv8 I,mXfI~x5)Mn-M&oO3Xub%b4S64q_t՗A$1Faҽ}+ׂJMް蟢UäT}oF%(敌 e1FlB] ,Þ`H8| ~8n/͍RZs:%0H|\\oJ-Лf=]q 7a;^@Yvq 2/770.>ekSm+Cʭ6 I/Pd@eth+uGDjBZ.٫QP/0qJkǓ8_1&=0zϤ^0)YtԲ:9:L{{1ay.iqVf EfEYi(I:r &΁eb0Xi iH- 7KP#b$LNi[SFF6Q~5~2z6[„:XG/H#5 *AVRߢX at|gɟqe%8c ܾF{sVolvo@\`h'|wYгj[ sr=4٨w嘝#3,;Ote7=5Z4*nJs8.)o}$l ܩ5uHT.OJyr`J&kTm3{J#Put3y:4CMiI_RQ>S"T\RkH\LnhLghZo15hﭏ~ s*2$Ni|〗exR5iRYO ]:*eX&ۨS ~dM\W꬗sB*pugI'wTO$<֚ V)in96z=_׭'€0r)LƺN¨Ќ֛#JE#ФMy˵[y4M9j0q=.xX(]ryCa)a2a7'bv(ͩ9<f3o^ujŻX&{sS tS:A2y߷i%oZ.f~Zתq*h;f ,qqP͐T >@jzO*݂Ӻ01Z{\B;Zʪʲ. ef6e  cIoxXZǞk{i8n"oJol~ ϭҩ]acUN(fе6 v"#o$1Tck! HHTR|LT1w0Ɩ}?Jro|nSxol٧Kh̿02BlIO6% [ .T&kAВxҋ'9"OH7D=s1q~'+ tC*p%Ӿ`?:(E)ϞC[cȑcFix0mkR'#h$Ty>CĚU=oK7*ZFЏS pqwյ 9ii/0|#&vU,K;v)Za ?L*1x6xOR+, ͐6SPo^)V9U> #={ uTTgOo򕑓wK/0sb8YsK@E Fg://uI•P1 OԦXۢx}߼}w!p"Jo=ZyiqU}sOBwֽ'/"İ`47 BC3DO@#iskXI?;׼H)jWrn0䢃.єE ?i20{O+{iS4\Wt9n 715-tAhMIjêWC w ,PgꦒtWaOAwm,WIv̡W_z5YL>ek4|PA]5vv!_o-cҞ1,^zbb> f+T*=z chm՜W[M^wؗG Z)Ч_Va[퀝"] a*_Vjhʅ+.'ܤpH[A{x3j`ě~}1>R&;(YRj-ld.5O1pq,Vr8 :`O+$S]`j ):^ti`)Dy}ky(METKB42yIam%C[8-sӞicGt YbZ$Q߈}G=J4k~el;#'7+|Dw;}6t=9 f6<}]8!CbM gVh0:}F*Fwo~&wqvZH2i̐/,G]"Վ.׏,ב"ޔ-BG,kQIzC҇ذ!_]Q>=U,Fz7G{q.v(fD7ADû)22a:΂3;qꥶv5CPJ74},Zrc>L([{;P W]R蔢U  a K笫k 2?ThǖUOWፑ>v6UOLM)~w?NɴJ9UN[BO+>LƟ`W<'8G9ISWN>RͬU]n$22 OƸ u[ܸ޺N)oHePnjߔSւLn28Q/=_YvÙ?>:"T S2$=6BUB(gl=g4Ϫ[eEۯ \7}y*̈́XP7ֶٚyM$+:}^X7_Qmo/ÝO6Ψ>d]Υ 62ʋowt:ML=N Smz6aS I^o0/Pn$²PJ\c0$ 6V==5:v<[vr[)$mp!؀*/ ԩr!c̈́t)s|V#(3~kdoVu wZQ@g󴅏ʦ~oˣCaogdCX#}ht ֔liB1:_; /?:WpúFiebcOxQQ2))bV ]&U(zZ'3#CNHIQTHșAsķ^T8n>$\[Z<ƿת2,z-PQCSЮBn"vP``/&UJo`?.LGoPe$ >~T6[']wA@b95t1cǓE#mGY?sɠ7?8x-aZ^ d & D$NJ +3"RcZ'b7(Č}|􌬇+oٻ>qa]{t _&-жiM7Kۉq&We=EVmNmYRws끒rн E2mҜ$Jw@9&u#HR!8=qpNE_hsӺBKU:N#)B:EcRAK(wbl:k3{j) Gr/I*N8Uz!j1]hhg[\+ŸT+kt9,$H0 GV @~I^<v". ˽P֭^h%/()I( xi,B9g+mzB?pK[Urdh,윥خ_- ʷfQikM/vE>_Oݢ_NѠZqn+}}ZHP;\(&PEja3~W :LPhT;30e됣a؊UygŀJQ"T;٠]Ig0"B>g^Fff–Lrq㯟:~e8=|ʧ[9>V) KӂuS%H‖R]>^<1q^m~b/lWܞ61[=(,gL G#5FMs(3ff;Zp,/Ea|56,JЏˏS6Dzѡ ?yN!HcY"߷;9IvUbRnF W^158rs)v(c!$Rs[0^v0>fP W>GTrWfd'>FkmCN&w4+|ǍK<ҤZa:"z+DF3|a9G}^]b"NtXW/x6`9SH.kx :zQ~@Gp9J2YGIː"h+Q2k6΅;ZȼOwE c/y$=9>5)>G7>5zVQ6|~{VDPDGfD˻ 'Lݜ~LBZB"y桻g`c8ڸ#STrY 1rr7͹暓"_y͒nm(0p(F˷@vIf1_ $[ܯH'`oTi'afUukQ@Wk2eXfW) kQqXx.ҿhd7.[v\ij).0.C݌EOٶt%W.QD| c~og9+.P {?5j4譹>)(+#G&IhpRZ)j/tdlFPh¼읂 fIK]R}k裪;ٓ-0N k؈te}!($a:v\ lrB3w0/l&`; Bendstream endobj 62 0 obj << /Type /Font /Subtype /Type1 /Encoding 364 0 R /FirstChar 34 /LastChar 126 /Widths 372 0 R /BaseFont /DKNJZX+CMTT10 /FontDescriptor 60 0 R >> endobj 60 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /DKNJZX+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quotedbl/dollar/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/question/A/B/C/D/E/F/G/I/L/M/N/O/P/Q/R/S/T/U/W/X/Y/bracketleft/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/asciitilde) /FontFile 61 0 R >> endobj 372 0 obj [525 0 525 0 0 0 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 0 525 525 525 525 525 525 525 0 525 0 0 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 525 0 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 0 525 ] endobj 57 0 obj << /Length1 2069 /Length2 15076 /Length3 532 /Length 16217 /Filter /FlateDecode >> stream xeTְ;!k]݂{p n!O?|$;?g~`U]JR%UaS{c  # / 3 #3%NKJ"0rrQ;x:Y[P3DdibdG"obabdCjob pd$!Q$*gą`ni􏒴= ׿ær89HIC4$11).oh%\mllYB߆l-m<{[W)OM`jjG]l,Mm$Y:KXzL,]L,ȞlLrR`RבVwO5ddiU/f8Yz2+KΜxzABbig x]o!ė {dؿѿXFXILg?6{]]6GHN&bmQg#`e`sYv6`Oh`bokk'Ad`/Km-Dv^'?`l(gbk?wu`n:_:rv ?T[=QN 7L'D0CK\BH!`?,_7/."..%nfWC]!`v?̮ٵ0]+addb pgy$ӟLdL=#ұIQx(-c0M o 8)(gꣽ_xQPqN̋)W˕AP]2-Ƨ8e֑ [=^sQ*gv-_BVs7͒ qͲ3]Az ͇@eyz#"= WYG"[h|462ӣθͩ@%^*ߵhB5v1ּ.*P #ɬLܲ}+"S'V2vghk0JXe-T>:zrw%=o9 HڵU}·x_ ꌴV'bR.nxM7OF棾 ev{e>'Vhi ;u`xR62EE@ݿh^cJxlL!ew&g{Y#G\Iό4 cOu|zF,+k6QFu3IX5"%छ{rL#,p8Mkgg&I0u=o3"h8A%lC_/{: F #(sbW7I %3[s ׏}_`kC]8%!GH"*Tocβr<>G@fc~V@A*TfHz+o>~꙼ v|ݝcS8џM«z>C瓶V"zB8'z'=egʟ}Mo?;׊Q7ݙ-tW*)e0LpIbߗStwf?MyD7vGԾ!g@װZUxaàIЭv<f\~|RlM>gv녪r=Q_AŷUCQQ@!a7u)#}TӖIc9]їWѺ}r%:@z7e`,բtA*RmOqR#:bn%%Z.`P$iW npDs}۳P+MTÅ$.+;BvhFE0FYh5^w~QDU\w +džǛl3M>, :iu,[L}ғ So "ݰ15#Zt^^eQ0bfj),aqp?nfs F!-,(o(2E6fUi!u00C%yA&Yg/J,/PhHAj [ D<5Y|6z = -w:)}pA]?lM^xslLN7O`JD6*Ho ղ"66!cz>j&aiQE,7Ugq2.HPE/݌q'b J6Y,m0axMJgq~z;e^_~Ʌ`Y}ftXx ׳nϸoӊ?E4Nc܌Qv!qDgx%,QNjQTvjƦGcJOLDNI;)M2r[@ZAүy"BLf;7 pJTSdfݡH[}gd\=+d_em Su[Ӿ}ox FDOdX89, Iك]MKrp|䶩uiOJW&f]ZqA(΀"}6uu,:]|&5}P6d]mݺA趙C܁p1=n9Ow 7xPrZc&U28NZH[;trVe{M}W5g[+d)'~~(}M``­CKp,Y}Ej^ϼ~ Kn/d( d(fiW-3nhEc:s#C(`-Ս %Yi—BF$8J]-UY(G߫ == 6q0kn_aɅ20rB#UGB>2w:ovcTNzZ8;,r [~ҽBSydAG+CӸbm.ױ^,)2qZFڧR5OKapĝ4>`Ž=?VI,&Dz Y3Uǯ>N m;]/v$[zfRД+\+o"E1JPcч*[b= \MtDf:4D b!mN1QVgh p?C~ژr$Ee680=G@ xJBa˔eʺ>NSsI 7 C}Dn6}/ߏ wqV\OdtI(׹SJ_Q -Ϣr,N59#,)i+Ek̮ q[F8Igv /rZa~f,l_=#(ܓGRxLsp\12ei=BK{h= ֲc0z574R~u.wĈz)$Q#\3,L dɝUqۮtx{:DK}ND{%yZB(j,O$zm΍.$TBD2pSKP̟ *ݥRC+b9Ub $8K8E$A5-BKkU\ l ,K}49 : }(#p\#/&.?F{QT3'w"Yw0}b@) }ycOň`mzT>2tpMLQ/j^af 85.UE y=k8bf$ O] g(2z n@| 5 5>2ӪXz0S7&+5'o"nɤ3lE_NCgU奊nokJuynht.ht@dX6IO0\p|Ȏڝk%wdTuV>UxĩNrUDݯTFw/Ms?_A&IL=݂$ M57o cKyHB5Ǚ.Sgync 5"!Lp8 Eo0ǵbR#lMc\~ 4QGZH|d%SAnTW|P fʄ8RܶsEͱ)D/Fm$w_ bL׊SIuZ'{ѫh4dV5&r%jJHDޑ){7q ":VS i|?@xIq jD1#?5k's %|\44U]e#}#%&j`}HHM3L'1#v"]V%@o -j4FNK|>9R ud7sk8ԟ,y|ZZ2Sa3ޜ Z -Y8Oci[~cW|C!"d-G{5 Hm7T]w<ƏwEl}&Gݖܚ@dO#1[l!t$bGut1mB1g|_wUwzuw8.YR~"ƙdj6i[ߒׂ+)GAkW0pD7}D:ھ̠ʥWNRbGI!`g=ؾCTzb{욵|s" ]j0PuC]x=R2sf^|uÐ;AYEI<8嫾Ƞ|GϚSlw<#(Uhwo|0Ω<˛{DmMLl▽QE|x>5:+Q އGDO4a_)zo%z(wIHpĦMDzo|~ 6_~BT˃a{bM01K% ORrtYla.uplgP-2~'-=30و9ᕯm$;$]GtXuhk)Wt)DǦk:h@ʧ|jJpߠK qn^Ŗ0F=Wn R+xdITۡT,aFp!t`]طGhs2,9{9g1?8bia'S(!i qN~ZpŦ%^O=7V8xCKdZOҼQ?&|)mz_v˴,<̯"By b9[NTmⰭNP<렮$6@ffs,Imav_5y@nW/aY0Q?B=knH\``1"hZN 6 Z?O+0] ԗsRjVbDVH:x+=YּHd@M_uVLmYLw12oG8e>*zAl{GwEZ@ҩw=jχ3M}4< !&um[{AC]j%l= P la8LjlղqVhw[?:D0fs'G1"|4ԒM }dǛU44g}!cnqS8׋Dꣁ;`w^'hjb$,*7'޷IW',kI )f7]HMuRVSBIe--Zá!ձ&TJ@KthLe+ ZӪܫOJWkS}^E}3:s*R\wQQvO#Vj~bP%DŽV_TWbF9GC9wEO8-'΢z.ZG(_dͦ¶8^Lt, ~_U>Mvy2Aɼ]{2 ߀1}Vrk]$dK,=mj'}+ATkb~Ql\l mWf! 5-c>\:UQIl۳sop_~! qd$,ؑnu_OSڕ<VF[ Dbyz"wL`M4kަ蘰oOFF87zSdp囫C_fy>}T{zBF?}HS Ի#3*%ޟdI@V<~̕L갿ᢎ'r1Ŝ(%/L2~N:E#TGL%,N˗N7N[կxo' MPYej-ρ+d tR9Ɲ( W{N:häƳ=d7+au}6{䨁bOk<4RfLN/w,ۦgB\hrѪBGɗҘ㬄+Vc^^ ~.ŵ:vۀ`_=Ϭ{,׳5z>9%Ԗi(_V| ߝr cG/$jB2֦Tc}_UKa0[~í(vMαLAڶ>:)ΊnE  =A\@kyܦoנ`fNk=3D\fMNjmjZX}eF)jT2 W [ E3װPbFS:NL=_^&H5lWo/99<p>dbJ̈UwY4soJL } yiv&vP!*)|&Ѿ$s7 pBL ; ϓ50Hl.l!a"7 4ĵ_Ptf#G4pky~>DJ3SOzvyYU*͛A%I%iˆb \  | WLlcH2+4X_zp ;-hi8KBk>83`NHB)tJ,}ƥrBX$frxpo.hZ aaL/j&a)W9+zPkAs4.%GI 7ٱXֵNj~ep_sFVGl3hjfT?ewyk=ӇbBC\>Eٻl)2R:|cbϳᕈ׉Z13Ogu&ѳ#Ʌ*ro^z ш"MF&Ξzo?CX-OQVf..$_AyVsRM q8FИP xbK4k3 L YLٴ킰Yb孎wQ!;Q {*WI3SOl uTM|?W 2Ԕ]f,Ƒ\uCAu3+mUy[.W1jUl*#^W 5[GqðHʅA5wP㾃}?,%l!Nr^G($删|H%>dx_o3nr@!AvRV39_0b)Tv qT`2x^&a5Xt^1&ңBgٯpmH&[4Z=y"+&g_ ϥՀYH soE. : y<րdq\@o!bܾ؛ ;s:7؜¬0l"8/ŹhW-GQϔ4P@إ! 40eoo~n¾ʰhc12K$vQ`(F,¶S+;~2¦# ߒ2}2{&'1Z̕l\e}߂i;V$ {?uŚ _ CN*8v֚xsN5gg]ΗUX^d9bYa.bkIp.-P35*#DY AlM(rתٳÍ6(ɐ?s?`1R+{` S[o؆\\y-ð,K`,!G\H%8{HzWF;P ŧP6ZBnDP _Gǫ-O ^N[{f;+uuKB"F 9Ǜ?$!CĜ^N1+.ewӟVjT/I%H'۾*nhqhIe9.])j{ I\ % !_!sKhD'Y<G1cK;F=~g-6i: 6jv(RJj4\wg0uPU{g/ĆL_Yld=)i1GRjx )FJ/˼z3͍>ߐ)It)M|>hTkPb7 *pMZ*QSE6u<0ʡپ1y{+/=:8G:u~Vkn4 {|¶HK؄CLSٜ_>ius}YH,Vve'K/H{w r?cwyUFd,oZL(qa_gu KaH߸r#RͰOҎW-ws azb+9c}W>KZ.Xar@ёhMOlU'a{B/n^bYN򳡉2jsP)Dq U %{s2J{{"aFPn"lj$|fbi:#VM[癕}Ef8.f@ZӜ-s 3'CXkZrNL˴-VƔ1Mw'56mvGIb?.W!G=4Z;ɵ77TVsf+O4ţDvFGyn*^1<^U@NZ]Om ʢXne2O8#>4~]~iX[!xBB9h4Uq30!?OHI{u{6h4 +ڃ7q&~k\$-` %(Fߵ2(]a9؇> ^[rx# !4ЊfZ褽896`WjWp2'Rx3=xYp?!ei-+{V1!#Y~^?CQz~aCa{<+!-cى;\WnlpWYITat.@ = tZp&yX<e벙f}GxV g3{nc=Wpgr6^5#(SJכD#Fy(*nm}ui,%Ɲ| #N& X|iґa ӑ3R˽bR*s{gCqvvɳPai3^@d {8Cd-9xb|bU)OKj̢6 s:+)̖YƲ=",bϔb5s!Dl1LomMZ쇮#実̐7h hpjZ351Ӧ0~Q`W[.޺^~l57ľ8AR)R<eކ2_akF7e*oE}nͼ),ArsTmO)3#9~e9sP(?ޅM;ːNWƦEdX{} lviJفQҿWpUrJjTB/΀OӬȔ&pF=jàe_aױo5N,Q0=T#Y ;y,yd)EJ1O-?6YcWo븣,CfT^10tUJ:$⏡+SA}Ϻt{Ui!DqbYL*5Ao6V2anR" RiN:D{hY+C\]פf3*mx4<Սk*%:B];tGk$a8ԔG^BdZEؑFiURWc ԓOTƀ^E.C~8ҕA }~׎BX7oE_ZK23,hK>q֣\̥t/;f/tdMFH=R!yF0, pTʁ&&o "&Ke)N)2:y[sͶT)qi^'I"}q5nc2Tx! WE,9F'Z0/_C+uwY]/cv$UZ݄a] u-.wM^d{oDjR"IW UM/cHfyQ@b:mh+@IG7xo0k}vR5*Qt=P)wc Xr+"z&X]feE҅~H6ֺiY>8{::)!nV0YH#bF$At9(S_Wf/ޥ1I c|VO {=%crچE-iÉ?|?[Z7Ah&OIMIZCvX'#aC2<4};>D 6^|Q~#Pu5VOLÊE[ztrRXeE( IQLڪ8\Vv.&YUn}>ujeR1 7ز٨W84sH}a\j{ƬfST$N(\&y6wHPl=͋Q@ "ip,D *Ln>[ڰo1R;̹Efl?jdp%d".w><{x]$(\(ǃil KXbǘ]5с^z::(3c'Zk}'>8#Ԝk.n''{X3*|D\j=8LOY^Z嚂\'3L&~&zߑeqfI?Q4:O&Z>DZ2YYcE#a5iB8LjHK])+ FJ+:*WC? Y9Y Q|Ep@ y:E`k֬Ri3;aۺ:t"5sݢoU@~֎ hx5xɣkWB]ʷ<'/lf}AcƏu9?-M0z WDGA\_\6̈́# ϩ.ǍvYb2(5% As!@sX[laW+IsntpIK[:*3:5%Q& f}q4^*_g~ *]_}ur|w Ac2+֠Fg%1?Ky ś:|1 $lC(($fXS)!`Eq}4ysֹn}\MT7 X?[fƱ{@-=Cr0ǚ<,` *'E7;=ĄLonu& wAøӌ7_Xr;b?X9<5y:Hc͐<|;mEBBQϳ4ciU3Yrí%/dD\Vo@pjS8/U/b-HSԭ7)H{@{^}k#CO9aN G(Fh}zT}[FH=t&;2/eN+gx;cXi$rFP,{#K49MӌFo'!NwOpߩr9>89(2{^<"gh01g7bx*S՝Ø[y&_ULFsτbO|ʜJeGj+S{HvΣ՛^ͨU5:H5!jZhR*L!AՑ%ѓ~WoDJ:vL_vb{AwcO3;Nr_i퍣o1r@Wę?/5 nwW;<ıbֵWXxa׼ È&f^ gx` 'C!p8VYA~;^/ bh&QXq\Şh`fl޺m>I"7dXl>;|3AD ebey ޅbAj~aaQ]=SVO_pX`bokd endstream endobj 58 0 obj << /Type /Font /Subtype /Type1 /Encoding 369 0 R /FirstChar 11 /LastChar 123 /Widths 373 0 R /BaseFont /OEZITA+CMR10 /FontDescriptor 56 0 R >> endobj 56 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /OEZITA+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/ffi/acute/caron/quotedblright/percent/ampersand/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 57 0 R >> endobj 373 0 obj [583 556 0 833 0 0 0 0 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 833 778 0 389 389 0 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 0 736 556 722 750 750 1028 750 750 611 278 0 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 54 0 obj << /Length1 808 /Length2 1562 /Length3 532 /Length 2148 /Filter /FlateDecode >> stream xRy8{&[r:'eXJb'I33c͉%GNIb-k" +ᄬq,ߋ9s?=ϳ_Q@PAKơqƀ!CcQ@ ŁI>h pA `XX!n h ѠQ Cc4@ ap}AQ8@gd(̪0"Cb΁2Pr8oZRA6<ңe)lG A5\f Y| Ģ`O!%۱4&@Z_@ڶfsܞ6͵r0/X4CU0Cg: G @!{ } `:_ iyVg`Ag500c ﯼ>LD.AJqX,`=Dg#u,h4=CZ3X@^{%DXdwKi=Kcm$&zvG=ׅ[GFTFU۷ZN&u/=FRΦX s͋*K>viλ}N}txAӯ2jbS)s{jI>y"IB"7ip 3̍vwuK6Ĥ\SΎI-X\(LØv薨&]&iEٷq*OAw]lWzA11mm(ny!/?l? # c(נ%zN','Wwf6%IFldxY?wbO_T.]7gH9'Z]=6)]:;c@Wn bUzvBK*_jR](cADEe:]v]Up׎v6e'o(7?| cežUabuoڵMe7ftPJH8۹*ew_ثv =w(!ݏI''kSD-@s"B!~*_"%- GW>;jخ}s4 ׾i,cI/;o&R/k9v%gB^ )]o#[SpV5n|t7X^@XsVR)]cĀ[!Q{,Sl ZVIIѬ䧕 =~m I.QIQOv:tT;vBd{nsmnU7P^%%Zv_H1~d*XXI7OoS J$?1pW lm=`]ﴽnZu[NrKj0)ЬHxS1|:Ճ%%LtjF-?QkQ=龞v{[ d(::x`|')eg+W e&z,e&%Ҕl;I'{*zɧJ_5-,}ڜU/~7uQz,j&!hFꡓ5ni1y{ +vǴ҃?h\w -*9 un{j.gҒ`6~乢dHCݻOLd[k܇;ZvF |S]~Ld>I4_wiB2!Rb*{Ml %wtcR7Bܙ8ej/rkSaIJ4 ?"]^U}d[2rU+W;+u <·nkP]AM G-wc.X+$GΝ@,z%޸'!M|?O3/~˧ĮAO=$Cd\&~$!gjRFt|{@h8(j%vm.CuߦnCJP,SL'*Kj;$$.)9GCįhkxU.;[tMpٔF˩ƃC_BæQNmendstream endobj 55 0 obj << /Type /Font /Subtype /Type1 /Encoding 369 0 R /FirstChar 48 /LastChar 51 /Widths 374 0 R /BaseFont /JHWCQD+CMR8 /FontDescriptor 53 0 R >> endobj 53 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /JHWCQD+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/zero/one/two/three) /FontFile 54 0 R >> endobj 374 0 obj [531 531 531 531 ] endobj 51 0 obj << /Length1 1167 /Length2 5114 /Length3 532 /Length 5867 /Filter /FlateDecode >> stream xe\TF:ABz:Kz@Zj [Z$KATJ$9yuZk_6+ 5DxAy ?G*B\aH*n~>HX\@TO tBl\DP h@\ +izdpί7\:P(jKaVK- AeHavsOrcLr0jCDbzA1N q%kH- qOh (ĿK {ӀZUqaV[8wZaVvW WА<ʁ!0?boL<a 1LKa!0 !$ P/Bf`H !'0tż`D:NAA ;" :aN i;$ zCQ1B|0hs] ,&?$0j cF7()7aZ>0I >L ƀq1R ;70ʈ?11P \@L#?/%'|# DE1c0g7pDZPP_3fo60̖CP+D}r}hbX).M9ۆ8ͷ^ބ9s~1<FI} FVoq)W_-y71ix}qz#hvKюMC%F={s xKL7:v *BjtRKÖ=qG#[(L2Oi2Mgfv\^75_gRS aFU~KS!C5_^,kurZr/#4w nw`מUr!pMFשW%|@_82=M1tw1j뵈Ԉ|H:еq;'vQ]bưiQ]$Q-6.2tkF(@ָj֘g6)mtX ^r5}Ex75T. 0;E`13:/ w~INP%QV{jo+ݪqABНrϛo7p%j''hk Kji%*ntZ1:ޝh"(=֢W15J:%E?6plvz&S^2[61Bk:uwX^cY~kuCNQ3,@Ƌ̓;'<Ks4j~$M:PIR?jkf|/#uiHxe\6ŀ#y|}l==ŬG0c3ukٟy̯Ⱦ*wp1Q:ų ^#I0Q$90 &aߊ JkǕڒxZEZosj %Fi=$P4FO iU p8=ɧ,/sG(|EGVFs?Qn vBi$7("O&p,B5D+ Œ =/7k4^F}E LCܽ0Vf=t8e>#zF ʸ?{ӉwS4iSeEƛl[a[չ ;1qyYuA/~w$m1wґm S0KphXWLAN.?lKtքfTBw1U.J_=t7\'mx+㵘 ]& {ꑊк/?x>#`|Y.hiی4(Z,~˴Iu۾XNܯ3-L)Տ~6S}屇mhş_g+N7yʨ=O/r_tW }PUcc]bdʭ`\FZ8B6ce4T' V)cXSm*~V0G&Dnb_trA1Co+hXr} *Q%N#)ae{yAGEMd`=~9:o<rܘNX*.G$fZuB)gƨJO~\yʽްk]ˏd#d^×jc;O.M89'"oQȬIqۏUTe9L<[\iܖ)}%PX)#wb5^ av;Ez`++hq#'Nʒ@kGLlyu)u47~yH%ƄS΀86wyzTFP_}C oaD_吞ħ{2[qAGa䷲!Dꙅwk25+3X4xˇBSoee_VR9rPFvz> ݱm#u4懖/#ysQ_wMkz芺R]r/!Or?rNˉ:s4>û贜wU*Vy!Vwx^#]ǭi w`.CPwSߞq8O.2'+ N+W|kOkdKVTjKT_c菏K:T(qKRg#8eB/̖SX6J{ppRoe}Ww%gV69XiVgzU%o ^OѴTՊ1m淁pO Sڨ#;\ #'6zI5Xsu씩ۚ9mĆA/Gn]}E*5soo" >6aYUhb_s IH>MA Ι5׈N0tciSXֲ2 |-3Z;"Ѣ*%e>`~m`<{$ *_|hzMu!%T0A֤82wMkhm{xQn§q5UhH[|̺QFhc*0*ff}ksgx.QQ~Qm<5p[B҃q6*O/҇gOݻŵ?ri*REZ=@V?%Lz=?V {;p21͗6]Ay!NЗiC-w;/ UG-u&R]:; s୫&à@Se1jP6r28)BjvIVVψ_{T|'U BYpdavu;@/GMY;I5#K>e9lċvo~_;.6GLGGx b65dv-"gcΟ۬,*>ȯ:K$₏v,j/ΙнZNJ3( ?/ss0~1*z5򙭍A( M{H6J6楿dH)@r'})OBtH_DӏtaC'{ ޗQ)֙.UgT4I *OD~ ã}ན&`@aV=Yg0*/Z[5 MYiVn+h<2Uv^ 1x_٭;e{.?W?(y^e{^U}` ^c!78s^6ܖ!Os,[Ipy( gb񙭣q$VEK& B5r-';?(֩OIHI kʉyl:D$/b=>Úə-}Vs>c7_eEg)1`7yLg9B2qJzG `Oa6[ɦX c !F hi b̧N󜖲pR #9"`1F5R08֎3HI^ ?m ŷT8H}o`=j+i4tgwION;KhI U %0bM -(qg/ {.mڢ[)⅏N|}|XNX-`-tt8ǕTu.)q0%)lKzj !GVSjf6XGvK1x6|<VW0qȖvͻEqja띱^A${ #>HRQt0+҉V.E#PA9^!endstream endobj 52 0 obj << /Type /Font /Subtype /Type1 /Encoding 369 0 R /FirstChar 44 /LastChar 118 /Widths 375 0 R /BaseFont /CFMMMA+CMR12 /FontDescriptor 50 0 R >> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /CFMMMA+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/period/zero/one/two/five/A/D/J/K/L/M/P/S/a/d/e/h/i/k/l/n/o/p/r/t/u/v) /FontFile 51 0 R >> endobj 375 0 obj [272 0 272 0 490 490 490 0 0 490 0 0 0 0 0 0 0 0 0 0 0 734 0 0 748 0 0 0 0 0 503 761 612 897 0 0 666 0 0 544 0 0 0 0 0 0 0 0 0 0 0 0 0 490 0 0 544 435 0 0 544 272 0 517 272 0 544 490 544 0 381 0 381 544 517 ] endobj 48 0 obj << /Length1 1068 /Length2 4165 /Length3 532 /Length 4872 /Filter /FlateDecode >> stream xy_9~u}@$QgO/`MpE&`pE1$a8"p@?PpUMeuM%0$I8O@Pg%0hD{bi48KdE@~XR Mn8?p#? ܉ڟa$?)@fRYt#d Zi{aiN7LS$@{٤Hqx}$ItÒ, ux3k0<n(?pGX?M؟Cq_?1ou `0VH @;UM" ɠ86 C D֓PH'Bbx$i_UhyHMMj(oR6mPߤA/h ~C8J7T!,7p27)CoHsL i~!C 18䄲2pB 4TF%|Fi ~E1$S;v`,4ъJ-b\YM'QI.3_%~%4]5Y6?:~Aa#IډZ~\7AozGaGp.x s:ֶS|UbWUpϲ>xKT5G̦Fʖ3ˤ+zWT^NntZM΀ceoOG+QI@l0U:O (^:ѭU  oDZ3L  ¸š!HvW)$aY]dv$.UQ3ZDq._ 㲌@T=4qЩoiRT׃\՛lM2xW.){_`>̶iGF ~Y5izce=z4]5T XTR-sQh<̠B|QjN$FYKN8F^Ф[quQ(Ov!r !XS Pa, т1?d#5F2bO$hP,$g+| n,R06j]GJ~|w$%9g '7F:<Նlgi$M2CވRm#w\zz8M2r'&bwld=h ۬fw%_QsQ3p1kE_r<3㎎yic'194O}X֠'{}|,vFG,ی2=س9TmrqZgaN{2SlVEӿj= 7l^CLj$忄7pZ)}j(TqRߛQ.<7}j?!lBz>SҬLtu.kXwE?sJ4:~emzҲ! @Z>]Hk0:,𾌅J^&y{9a!P!i|.+_s 7u.xZ|^7h>c_.zsgxMnV=nLr9ȉRR3%) y9zJ>Ùֶ?)QYqP@Y3q ?g3]%XSs/ 0"S7/MޕT׿~_=Yپp=0"G֫ K"rQ>gNRJkRhr\Ghi ΕgTBB>b|ĥ~=[, 8[)8W#fڛK9EuPwweC!25By #*~ڃ,r r~3s6 )Ӛt{;kl(5ח,&.s]gCP*fFomfWN7,bgN#p-(;:R6Rf߼4<ޮSR`$*?y(uB#\W{nkI Z߻Êk33 ̡"UYKpA=s> >ZFZI v__%?'L M,*e ']FW%Eɟ]廖Y8Z67(#@tOϝ 9/fZmݎgmekTv2K|jpe(\Z%sƜk dzZ !\ltYyTybdZ =-}3=.gGݽV; 8GIsR-eߔS"$ A[]Paa#5fDkoLz/%A֓<ئ:V*x]w6S*T c.O_(MC*r`X)&Kv#"tLUb.is<6I1aC{!&:1]?[bZ#n^t~0\!alnAdH3۽_E nN^$O٨lrkgt-|K>(CRB{Asq14_ KӐy4*y+V…t4fL^DE>ճAV`~@Yt[Tʏ.Zv0U24{7 zmMcVّҳ BI1oz! 3(l%8oDNyߋg9)S=G'燗7W=}_T $MU{q`sRok-r;+40eBG2#+JK%_kCn~2Rק4&#ű,v]+c*)m}+2 y߽|Zع-|k9ae;?YoFJ70ۨ2N>' BRO47(a"jOŜvЕBFNy+F1{0$*׊Y 2yA6+_#- 6&m~\V_ۯzU~ZMWcuf0mUKSf8T?yr#8d㇭'Mz˥ւDbj{_?/61g>N濖̒0x?&R?0L4lt/~^#uJosh:,sQ31f[Ng-9!2Rxu Y=u'-6y'jdJ ?i }x@mE~ŚETmky=&\8 l" D_d.tesU~ڍ}ABNHE&tDGF.3 2.GWWK j n]vvSG f.ߌĔjɢ+$hԋYQk`ߓ9'h?rN\ v+j!sD5OvU×{fs|''^EDdJx{R럀\s+//DÍtK2Kب#tW J+DjeNu&DM/h8fiqq }.T$G71fңp&ҪIr+\/XؼS.mᦅauƃC:wOT5Q*K6$)Ty5V 4M]H)1, Rq26 m×~SO:QS8…mAТliE܄ol%Au=EVolaGX`;&HS]_d99;Nu'% XMV [<],>.iP׍㻝uTKNt>Sd!F^^gy, ,}y_g0r0t%wd*ɗŗ|9%]l"J> endobj 47 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /BRUENV+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 431 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/colon/A/D/L/M/P/T/a/c/d/e/f/g/i/l/n/o/p/r/s/t/u) /FontFile 48 0 R >> endobj 376 0 obj [250 0 0 0 0 0 0 693 0 0 707 0 0 0 0 0 0 0 576 850 0 0 628 0 0 0 668 0 0 0 0 0 0 0 0 0 0 0 0 459 0 406 511 406 276 459 0 250 0 0 250 0 511 459 511 0 354 359 354 511 ] endobj 91 0 obj << /Type /Pages /Count 6 /Parent 377 0 R /Kids [42 0 R 93 0 R 119 0 R 126 0 R 135 0 R 144 0 R] >> endobj 157 0 obj << /Type /Pages /Count 6 /Parent 377 0 R /Kids [150 0 R 159 0 R 163 0 R 168 0 R 198 0 R 207 0 R] >> endobj 223 0 obj << /Type /Pages /Count 6 /Parent 377 0 R /Kids [220 0 R 225 0 R 229 0 R 234 0 R 248 0 R 265 0 R] >> endobj 281 0 obj << /Type /Pages /Count 6 /Parent 377 0 R /Kids [278 0 R 292 0 R 305 0 R 310 0 R 316 0 R 329 0 R] >> endobj 340 0 obj << /Type /Pages /Count 2 /Parent 377 0 R /Kids [334 0 R 351 0 R] >> endobj 377 0 obj << /Type /Pages /Count 26 /Kids [91 0 R 157 0 R 223 0 R 281 0 R 340 0 R] >> endobj 378 0 obj << /Type /Outlines /First 7 0 R /Last 15 0 R /Count 3 >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 15 0 R /Prev 35 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 15 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 15 0 R /Prev 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 15 0 R /Prev 23 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 15 0 R /Prev 19 0 R /Next 27 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 378 0 R /Prev 11 0 R /First 19 0 R /Last 39 0 R /Count -6 >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 378 0 R /Prev 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 378 0 R /Next 11 0 R >> endobj 379 0 obj << /Names [(Doc-Start) 46 0 R (cite.Benjamini&Hochberg95) 261 0 R (cite.Benjamini&Yekutieli01) 262 0 R (cite.Chiarettietal04) 117 0 R (cite.Dudoit&vdLaanMTBook) 112 0 R (cite.DudoitetalMT1SAGMB04) 113 0 R (cite.DudoitetalStatSci03) 195 0 R (cite.Hochberg88) 193 0 R (cite.Holm79) 192 0 R (cite.Pollard&vdLaanJSPI04) 116 0 R (cite.Sidak67) 194 0 R (cite.vdLaanetalMT2SAGMB04) 114 0 R (cite.vdLaanetalMT3SAGMB04) 115 0 R (figure.1) 171 0 R (figure.2) 205 0 R (figure.3) 243 0 R (figure.4) 260 0 R (figure.5) 263 0 R (figure.6) 314 0 R (figure.7) 337 0 R (page.1) 45 0 R (page.10) 170 0 R (page.11) 200 0 R (page.12) 209 0 R (page.13) 222 0 R (page.14) 227 0 R (page.15) 231 0 R (page.16) 236 0 R (page.17) 250 0 R (page.18) 267 0 R (page.19) 280 0 R (page.2) 95 0 R (page.20) 294 0 R (page.21) 307 0 R (page.22) 312 0 R (page.23) 318 0 R (page.24) 331 0 R (page.25) 336 0 R (page.26) 353 0 R (page.3) 121 0 R (page.4) 128 0 R (page.5) 137 0 R (page.6) 146 0 R (page.7) 152 0 R (page.8) 161 0 R (page.9) 165 0 R (section*.1) 68 0 R (section*.2) 156 0 R (section*.3) 173 0 R (section*.4) 202 0 R (section*.5) 232 0 R (section*.6) 237 0 R (section*.7) 242 0 R (section*.8) 252 0 R (section*.9) 339 0 R (section.1) 6 0 R (section.2) 10 0 R (section.3) 14 0 R (subsection.3.1) 18 0 R (subsection.3.2) 22 0 R (subsection.3.3) 26 0 R (subsection.3.4) 30 0 R (subsection.3.5) 34 0 R (subsection.3.6) 38 0 R] /Limits [(Doc-Start) (subsection.3.6)] >> endobj 380 0 obj << /Kids [379 0 R] >> endobj 381 0 obj << /Dests 380 0 R >> endobj 382 0 obj << /Type /Catalog /Pages 377 0 R /Outlines 378 0 R /Names 381 0 R /PageMode /UseOutlines /URI<> /ViewerPreferences<<>> /OpenAction 41 0 R /PTEX.Fullbanner (This is pdfTeX, Version 3.14159-1.10b) >> endobj 383 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.10b)/Keywords() /CreationDate (D:20050415164800) >> endobj xref 0 384 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000011520 00000 n 0000270406 00000 n 0000000054 00000 n 0000000080 00000 n 0000014828 00000 n 0000270320 00000 n 0000000125 00000 n 0000000159 00000 n 0000017083 00000 n 0000270208 00000 n 0000000205 00000 n 0000000268 00000 n 0000017144 00000 n 0000270134 00000 n 0000000319 00000 n 0000000338 00000 n 0000019850 00000 n 0000270047 00000 n 0000000389 00000 n 0000000451 00000 n 0000024488 00000 n 0000269960 00000 n 0000000502 00000 n 0000000608 00000 n 0000088263 00000 n 0000269873 00000 n 0000000659 00000 n 0000000735 00000 n 0000095302 00000 n 0000269786 00000 n 0000000786 00000 n 0000000894 00000 n 0000134486 00000 n 0000269712 00000 n 0000000945 00000 n 0000001036 00000 n 0000002774 00000 n 0000005741 00000 n 0000001086 00000 n 0000005561 00000 n 0000005621 00000 n 0000268571 00000 n 0000263420 00000 n 0000268412 00000 n 0000262927 00000 n 0000256781 00000 n 0000262768 00000 n 0000256534 00000 n 0000254110 00000 n 0000256377 00000 n 0000253193 00000 n 0000236696 00000 n 0000253034 00000 n 0000003006 00000 n 0000235867 00000 n 0000222284 00000 n 0000235707 00000 n 0000003184 00000 n 0000003371 00000 n 0000221629 00000 n 0000212743 00000 n 0000221469 00000 n 0000005681 00000 n 0000003554 00000 n 0000212095 00000 n 0000201937 00000 n 0000211935 00000 n 0000003705 00000 n 0000003856 00000 n 0000004006 00000 n 0000004162 00000 n 0000200348 00000 n 0000188752 00000 n 0000200188 00000 n 0000004318 00000 n 0000004473 00000 n 0000188219 00000 n 0000181895 00000 n 0000188059 00000 n 0000004629 00000 n 0000004784 00000 n 0000004940 00000 n 0000005095 00000 n 0000005251 00000 n 0000005405 00000 n 0000268995 00000 n 0000011579 00000 n 0000009085 00000 n 0000005907 00000 n 0000011460 00000 n 0000009305 00000 n 0000009470 00000 n 0000009635 00000 n 0000009800 00000 n 0000009965 00000 n 0000010132 00000 n 0000010299 00000 n 0000010465 00000 n 0000010632 00000 n 0000010798 00000 n 0000010966 00000 n 0000181672 00000 n 0000179656 00000 n 0000181510 00000 n 0000011134 00000 n 0000011297 00000 n 0000152958 00000 n 0000153019 00000 n 0000153323 00000 n 0000153262 00000 n 0000153201 00000 n 0000152836 00000 n 0000014889 00000 n 0000014123 00000 n 0000011698 00000 n 0000014766 00000 n 0000014270 00000 n 0000014443 00000 n 0000014605 00000 n 0000017205 00000 n 0000016556 00000 n 0000015008 00000 n 0000017021 00000 n 0000016695 00000 n 0000016858 00000 n 0000178804 00000 n 0000164918 00000 n 0000178640 00000 n 0000019911 00000 n 0000019327 00000 n 0000017325 00000 n 0000019788 00000 n 0000163647 00000 n 0000161494 00000 n 0000163484 00000 n 0000019466 00000 n 0000019627 00000 n 0000022530 00000 n 0000022003 00000 n 0000020044 00000 n 0000022468 00000 n 0000022142 00000 n 0000022305 00000 n 0000024611 00000 n 0000024314 00000 n 0000022638 00000 n 0000024426 00000 n 0000160226 00000 n 0000158028 00000 n 0000160064 00000 n 0000024549 00000 n 0000269109 00000 n 0000026004 00000 n 0000025830 00000 n 0000024756 00000 n 0000025942 00000 n 0000027827 00000 n 0000027653 00000 n 0000026100 00000 n 0000027765 00000 n 0000029736 00000 n 0000065455 00000 n 0000029532 00000 n 0000027947 00000 n 0000065269 00000 n 0000065331 00000 n 0000063689 00000 n 0000065393 00000 n 0000063839 00000 n 0000063992 00000 n 0000064146 00000 n 0000064304 00000 n 0000064462 00000 n 0000064617 00000 n 0000064772 00000 n 0000064938 00000 n 0000065103 00000 n 0000062690 00000 n 0000062834 00000 n 0000062919 00000 n 0000063019 00000 n 0000063124 00000 n 0000063232 00000 n 0000063344 00000 n 0000063423 00000 n 0000063446 00000 n 0000153140 00000 n 0000153080 00000 n 0000153384 00000 n 0000152897 00000 n 0000069839 00000 n 0000068954 00000 n 0000068197 00000 n 0000065615 00000 n 0000068831 00000 n 0000068345 00000 n 0000068893 00000 n 0000068496 00000 n 0000068663 00000 n 0000083083 00000 n 0000083145 00000 n 0000069727 00000 n 0000069074 00000 n 0000083021 00000 n 0000082022 00000 n 0000082166 00000 n 0000082251 00000 n 0000082351 00000 n 0000082456 00000 n 0000082564 00000 n 0000082676 00000 n 0000082755 00000 n 0000082778 00000 n 0000084648 00000 n 0000084474 00000 n 0000083256 00000 n 0000084586 00000 n 0000269226 00000 n 0000086177 00000 n 0000086003 00000 n 0000084744 00000 n 0000086115 00000 n 0000088324 00000 n 0000088027 00000 n 0000086273 00000 n 0000088139 00000 n 0000088201 00000 n 0000091075 00000 n 0000090606 00000 n 0000088456 00000 n 0000090889 00000 n 0000090951 00000 n 0000090738 00000 n 0000156747 00000 n 0000155197 00000 n 0000156587 00000 n 0000091013 00000 n 0000108131 00000 n 0000096373 00000 n 0000109180 00000 n 0000119933 00000 n 0000095363 00000 n 0000093684 00000 n 0000091208 00000 n 0000095178 00000 n 0000093872 00000 n 0000095240 00000 n 0000094023 00000 n 0000094191 00000 n 0000094359 00000 n 0000094526 00000 n 0000094693 00000 n 0000094861 00000 n 0000095028 00000 n 0000119062 00000 n 0000148953 00000 n 0000152775 00000 n 0000129732 00000 n 0000108192 00000 n 0000096261 00000 n 0000095521 00000 n 0000108069 00000 n 0000107070 00000 n 0000107214 00000 n 0000107299 00000 n 0000107399 00000 n 0000107504 00000 n 0000107612 00000 n 0000107724 00000 n 0000107803 00000 n 0000107826 00000 n 0000119122 00000 n 0000109068 00000 n 0000108315 00000 n 0000119000 00000 n 0000269343 00000 n 0000118002 00000 n 0000118146 00000 n 0000118231 00000 n 0000118331 00000 n 0000118436 00000 n 0000118544 00000 n 0000118656 00000 n 0000118735 00000 n 0000118757 00000 n 0000129794 00000 n 0000119821 00000 n 0000119245 00000 n 0000129670 00000 n 0000128672 00000 n 0000128816 00000 n 0000128901 00000 n 0000129001 00000 n 0000129106 00000 n 0000129214 00000 n 0000129326 00000 n 0000129405 00000 n 0000129427 00000 n 0000131605 00000 n 0000131431 00000 n 0000129905 00000 n 0000131543 00000 n 0000135562 00000 n 0000134547 00000 n 0000134141 00000 n 0000131713 00000 n 0000134424 00000 n 0000134273 00000 n 0000140294 00000 n 0000140356 00000 n 0000135450 00000 n 0000134692 00000 n 0000140232 00000 n 0000139234 00000 n 0000139378 00000 n 0000139463 00000 n 0000139563 00000 n 0000139668 00000 n 0000139776 00000 n 0000139888 00000 n 0000139967 00000 n 0000139989 00000 n 0000141881 00000 n 0000141707 00000 n 0000140491 00000 n 0000141819 00000 n 0000143677 00000 n 0000149014 00000 n 0000143545 00000 n 0000141977 00000 n 0000148767 00000 n 0000148829 00000 n 0000148617 00000 n 0000148891 00000 n 0000269460 00000 n 0000147619 00000 n 0000147763 00000 n 0000147848 00000 n 0000147948 00000 n 0000148053 00000 n 0000148161 00000 n 0000148273 00000 n 0000148352 00000 n 0000148374 00000 n 0000153445 00000 n 0000151820 00000 n 0000149186 00000 n 0000152713 00000 n 0000151976 00000 n 0000152160 00000 n 0000152344 00000 n 0000152529 00000 n 0000153540 00000 n 0000156959 00000 n 0000157033 00000 n 0000160428 00000 n 0000160546 00000 n 0000163852 00000 n 0000163900 00000 n 0000179304 00000 n 0000181871 00000 n 0000188478 00000 n 0000200652 00000 n 0000200991 00000 n 0000212409 00000 n 0000221951 00000 n 0000236344 00000 n 0000253699 00000 n 0000256745 00000 n 0000263194 00000 n 0000268811 00000 n 0000269545 00000 n 0000269638 00000 n 0000270478 00000 n 0000271935 00000 n 0000271974 00000 n 0000272012 00000 n 0000272238 00000 n trailer << /Size 384 /Root 382 0 R /Info 383 0 R >> startxref 272393 %%EOF multtest/vignettes/golub.R0000755000175200017520000000260714710217035016730 0ustar00biocbuildbiocbuild########################################################################### # # Script for pre-processing the Golub et al. (1999) ALL AML training dataset # # Data available at: # http://www-genome.wi.mit.edu/mpr # ########################################################################### # Get data from Whitehead Institute website URL<-"http://www-genome.wi.mit.edu/mpr/publications/projects/Leukemia/data_set_ALL_AML_train.txt" golub.all<-read.table(URL,sep="\t",quote="",header=T,row.names=NULL,comment.char="") # Gene names and tumor class labels golub.gnames<-cbind(dimnames(golub.all)[[1]],as.character(golub.all[,1]),as.character(golub.all[,2])) golub.cl<-c(rep(1,27),rep(2,11)) # Re-order columns golub<-golub.all golub<-golub[,1+2*(1:38)] golub<-golub[,c(1:27,33:38,28:32)] golub<-as.matrix(golub) # Floor & ceiling golub[golub<100]<-100 golub[golub>16000]<-16000 # Preliminary selection of genes tmp1<-apply(golub,1,max) tmp2<-apply(golub,1,min) which1<-(1:7129)[(tmp1/tmp2)>5] which2<-(1:7129)[(tmp1-tmp2)>500] golub.sub<-intersect(which1,which2) golub<-golub[golub.sub,] # Log_10 transformation golub<-log(golub,10) # Normalization golub.expr<-scale(golub,T,T) dimnames(golub.expr)<-list(NULL,NULL) #export to multtest golub<-golub.expr golub.cl<-c(rep(0,27),rep(1,11)) golub.gnames<-golub.gnames[golub.sub,] ########################################################################### multtest/vignettes/multtest.bib0000755000175200017520000002050314710217035020027 0ustar00biocbuildbiocbuild@STRING{ANNSTAT = {The Annals of Statistics} } @string{JASA= {Journal of the American Statistical Association}} @string{JC = {Journal of Classification}} @string{JSPI = {Journal of Statistical Planning and Inference}} @string{JRSSB = {Journal of the Royal Statistical Society, Series B}} @string{PNAS = {Proc. Natl. Acad. Sci.}} @string{SAGMB = {Statistical Applications in Genetics and Molecular Biology}} @Article{ benjamini&hochberg95, author = {Y. Benjamini and Y. Hochberg}, title = {Controlling the false discovery rate: a practical and powerful approach to multiple testing}, journal = {JRSSB}, year = {1995}, optkey = {}, volume = {57}, optnumber = {}, optmonth = {}, pages = {289--300}, optnote = {}, optannote = {} } @Article{ benjamini&yekutieli01, author = {Y. Benjamini and D. Yekutieli}, title = {The control of the false discovery rate in multiple hypothesis testing under dependency}, journal = ANNSTAT, year = {2001}, optkey = {}, volume = {29}, number = {4}, pages = {1165--1188} } @Book{Chambers98, author = {J. M. Chambers}, title = {Programming with Data: A Guide to the S Language}, publisher = {Springer-Verlag, New York}, year = {1998} } @Unpublished{ dudoit&shaffer02, author = {S. Dudoit and J. P. Shaffer and J. C. Boldrick}, title = {Multiple hypothesis testing in microarray experiments}, note = {{\it Statistical Science}, to appear, preprint available at UC Berkeley, Division Biostatistics working paper series: 2002-110, {\tt http://www.bepress.com/ucbbiostat/paper110}}, optkey = {}, optmonth = {}, year = {2002}, optannote = {} } @Article{DudoitetalStatSci03, author = {S. Dudoit and J. P. Shaffer and J. C. Boldrick}, title = {Multiple hypothesis testing in microarray experiments}, journal = {Statistical Science}, optkey = {}, optmonth = {}, year = {2003}, volume = {18}, number = {1}, pages = {71--103}, optannote = {} } @Unpublished{ ge&dudoit, author = {Y. Ge and S. Dudoit and T. P. Speed}, title = {Resampling-based multiple testing for microarray data analysis}, note = {{\it Test}, to appear, preprint available at the Technical Report \#633, Jan. 2003, the Department of Statistics, UC Berkeley, {\tt http://www.stat.berkeley.edu/tech-reports/index.html}}, optkey = {}, optmonth = {}, year = {2003}, optannote = {} } @Article{ golubetal, author = {T. R. Golub and D. K. Slonim and P. Tamayo and C. Huard and M. Gaasenbeek and J. P. Mesirov and H. Coller and M.L. Loh and J. R. Downing and M. A. Caligiuri and C. D. Bloomfield and E. S. Lander}, title = {Molecular classification of cancer: class discovery and class prediction by gene expression monitoring}, journal = {Science}, year = {1999}, optkey = {}, volume = {286}, optnumber = {}, optmonth = {}, pages = {531--537}, optnote = {}, optannote = {} } @Article{ hochberg88, author = {Y. Hochberg}, title = {A sharper Bonferroni procedure for multiple tests of significance}, journal = {Biometrika}, year = {1988}, optkey = {}, volume = {75}, optnumber = {}, pages = {800--802}, optmonth = {}, optnote = {}, optannote = {} } @Article{ holm79, author = {S. Holm}, title = {A simple sequentially rejective multiple test procedure}, journal = {Scand. J. Statist.}, year = {1979}, optkey = {}, volume = {6}, optnumber = {}, pages = {65--70}, optmonth = {}, optnote = {}, optannote = {} } @Article{Sidak67, author = {Z. \v{S}id\'{a}k}, title = {Rectangular confidence regions for the means of multivariate normal distributions}, journal = JASA, year = {1967}, OPTkey = {}, volume = {62}, OPTnumber = {}, pages = {626-633}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{ shaffer95, author = {J. P. Shaffer}, title = {Multiple hypothesis testing}, journal = {Annu. Rev. Psychol.}, year = {1995}, optkey = {}, volume = {46}, optnumber = {}, pages = {561--584}, optmonth = {}, optnote = {}, optannote = {} } @TechReport{KelesetalTechRep147, author = {S. Kele\c{s} and M. J. van der Laan and S. Dudoit and S. E. Cawley}, title = {Multiple Testing Methods for {ChIP}-{Chip} High Density Oligonucleotide Array Data}, institution = {Division of Biostatistics, University of California, Berkeley}, year = {2004}, OPTkey = {}, OPTtype = {}, number = {147}, OPTaddress = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {}, url={www.bepress.com/ucbbiostat/paper147} } @Book{ westfall&young93, author = {P. H. Westfall and S. S. Young}, opteditor = {}, title = {Resampling-based multiple testing: {E}xamples and methods for $p$-value adjustment}, publisher = {John Wiley \& Sons}, year = {1993}, optkey = {}, optvolume = {}, optnumber = {}, optseries = {}, optaddress = {}, optedition = {}, optmonth = {}, optnote = {}, optannote = {} } @Book{Dudoit&vdLaanMTBook, author = {S. Dudoit and M. J. van der Laan}, ALTeditor = {}, title = {Multiple Testing Procedures and Applications to Genomics}, publisher = {Springer}, year = {2004}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTseries = {}, OPTaddress = {}, OPTedition = {}, OPTmonth = {}, note = {(In preparation)}, OPTannote = {} } @Article{DudoitetalMT1SAGMB04, author = {S. Dudoit and M. J. van der Laan and K. S. Pollard}, title = {Multiple testing. {P}art {I}. {S}ingle-step procedures for control of general {T}ype {I} error rates}, journal = SAGMB, year = {2004}, OPTkey = {}, volume = {3}, number = {1}, pages = {Article 13}, OPTmonth = {}, OPTnote = {(To appear)}, OPTannote = {Technical Report 138, Division of Biostatistics, University of California, Berkeley}, url={www.bepress.com/sagmb/vol3/iss1/art13} } @Article{vdLaanetalMT2SAGMB04, author = {M. J. van der Laan and S. Dudoit and K. S. Pollard}, title = {Multiple testing. {P}art {II}. {S}tep-down procedures for control of the family-wise error rate}, journal = SAGMB, year = {2004}, OPTkey = {}, volume = {3}, number = {1}, pages = {Article 14}, OPTmonth = {}, OPTnote = {(To appear)}, OPTannote = {Technical Report 139, Division of Biostatistics, University of California, Berkeley}, url={www.bepress.com/sagmb/vol3/iss1/art14} } @Article{vdLaanetalMT3SAGMB04, author = {M. J. van der Laan and S. Dudoit and K. S. Pollard}, title = {Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives}, journal = SAGMB, year = {2004}, OPTkey = {}, volume = {3}, number = {1}, pages = {Article 15}, OPTmonth = {}, OPTnote = {}, OPTannote = {Technical Report 141, Division of Biostatistics, University of California, Berkeley}, url={www.bepress.com/sagmb/vol3/iss1/art15} } @Article{Pollard&vdLaanJSPI04, author = {K. S. Pollard and M. J. van der Laan}, title = {Choice of a null distribution in resampling-based multiple testing}, journal = JSPI, year = {2004}, OPTkey = {}, volume = {125}, number = {1--2}, pages = {85--100}, OPTmonth = {}, OPTnote = {}, annote = {The Third International Conference on Multiple Comparisons} } @Article{Chiarettietal04, author = {S. Chiaretti and X. Li and R. Gentleman and A. Vitale and M. Vignetti and F. Mandelli and J. Ritz and R. Foa}, title = {Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival}, journal = {Blood}, year = {2004}, OPTkey = {}, volume = {103}, number = {7}, pages = {2771--2778}, OPTmonth = {}, OPTnote = {}, OPTannote = {} }multtest/vignettes/multtest.pdf0000755000175200017520000637014714710217035020066 0ustar00biocbuildbiocbuild%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Overview) endobj 9 0 obj << /S /GoTo /D (section.2) >> endobj 12 0 obj (Case study: the ALL/AML leukemia dataset of Golub et al. \(1999\)) endobj 13 0 obj << /S /GoTo /D (section.3) >> endobj 16 0 obj (The mt.teststat and mt.teststat.num.denum functions) endobj 17 0 obj << /S /GoTo /D (section.4) >> endobj 20 0 obj (The mt.rawp2adjp function) endobj 21 0 obj << /S /GoTo /D (section.5) >> endobj 24 0 obj (The mt.maxT and mt.minP functions) endobj 25 0 obj << /S /GoTo /D (section.6) >> endobj 28 0 obj (The mt.reject function) endobj 29 0 obj << /S /GoTo /D (section.7) >> endobj 32 0 obj (The mt.plot function) endobj 33 0 obj << /S /GoTo /D [34 0 R /Fit ] >> endobj 36 0 obj << /Length 1929 /Filter /FlateDecode >> stream xڥXKoFWV q)h\E#Ӷj=co6\Zrvfv~ӳ''/蠌.JeL1) lCeS-Lg6x\- l 7pspjjM_@+WzZ .QdO'/h*O8*WLZ'oA: yo)q/7nTPw锱)kKҬG(Ua'^ |dkY|jBv%.nXv܇Ķ=+S̔*D|!Y hxp=W\Bbub`#7֥UYt朥ءrQנR) 0u|~_wL5ۨۡR/PVB;% פ i`ʹ@ZTL[]E˻Jj#-\'r$"fZ8#-KߊL#%:)yA뭸jv,=+J .YuYK6H̛78uO&^׋DAvtx,~0|wFZZ)#*h_# Tg 1:q~%yI4LvLꈷU䛅 |iU#+ |B𥪌N@OId>+U0qw06#[ ~(a4)cDو!0#t&x1]UOhR 1dL#w2L^Yl1ۖq3YDo,"5iդM`JMM?kxթNP/:$Xfz*`# o*d A( /ӐDz8-&njFZ|t7.]5e#zVjVt{JRJ"#("%gLy:U6Eێ+W'/^ ,3;zH%RD'/֝6\7HoSF/pFD?tlSڮFf?J8,}6/vtU3/yI8i膎3/'/ΞMendstream endobj 34 0 obj << /Type /Page /Contents 36 0 R /Resources 35 0 R /MediaBox [0 0 612 792] /Parent 74 0 R /Annots [ 51 0 R 56 0 R 60 0 R 61 0 R 62 0 R 63 0 R 64 0 R 65 0 R 66 0 R 67 0 R 68 0 R 69 0 R 70 0 R 71 0 R 72 0 R 73 0 R ] >> endobj 51 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [196.393 551.7 415.607 563.685] /Subtype/Link/A<> >> endobj 56 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 468.215 140.85 477.735] /Subtype /Link /A << /S /GoTo /D (section.1) >> >> endobj 60 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 441.029 460.842 453.931] /Subtype /Link /A << /S /GoTo /D (section.2) >> >> endobj 61 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 419.298 380.281 428.818] /Subtype /Link /A << /S /GoTo /D (section.3) >> >> endobj 62 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 392.418 232.639 404.36] /Subtype /Link /A << /S /GoTo /D (section.4) >> >> endobj 63 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 370.382 277.387 379.901] /Subtype /Link /A << /S /GoTo /D (section.5) >> >> endobj 64 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 343.502 215.489 355.443] /Subtype /Link /A << /S /GoTo /D (section.6) >> >> endobj 65 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 319.043 204.057 330.985] /Subtype /Link /A << /S /GoTo /D (section.7) >> >> endobj 66 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [298.062 178.754 333.087 191.552] /Subtype /Link /A << /S /GoTo /D (cite.Shaffer95) >> >> endobj 67 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [338.323 178.754 362.133 191.552] /Subtype /Link /A << /S /GoTo /D (cite.Shaffer95) >> >> endobj 68 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [387.929 178.754 449.628 191.552] /Subtype /Link /A << /S /GoTo /D (cite.Dudoit&Shaffer02) >> >> endobj 69 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [454.864 178.754 478.675 191.552] /Subtype /Link /A << /S /GoTo /D (cite.Dudoit&Shaffer02) >> >> endobj 70 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [391.336 111.008 438.481 123.806] /Subtype /Link /A << /S /GoTo /D (cite.Hochberg88) >> >> endobj 71 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [444.09 111.008 467.901 123.806] /Subtype /Link /A << /S /GoTo /D (cite.Hochberg88) >> >> endobj 72 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [476.584 111.008 504.322 123.806] /Subtype /Link /A << /S /GoTo /D (cite.Holm79) >> >> endobj 73 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [509.931 111.008 533.742 123.806] /Subtype /Link /A << /S /GoTo /D (cite.Holm79) >> >> endobj 37 0 obj << /D [34 0 R /XYZ 72 720 null] >> endobj 38 0 obj << /D [34 0 R /XYZ 72 720 null] >> endobj 55 0 obj << /D [34 0 R /XYZ 72 482.88 null] >> endobj 6 0 obj << /D [34 0 R /XYZ 72 303.622 null] >> endobj 35 0 obj << /Font << /F42 41 0 R /F23 44 0 R /F24 47 0 R /F15 50 0 R /F51 54 0 R /F58 59 0 R >> /ProcSet [ /PDF /Text ] >> endobj 81 0 obj << /Length 3459 /Filter /FlateDecode >> stream xڽZYo#~# }e k; '0")^QCh*SW_Jy 9GuuUWG˯^VEڳڜժ-g>׳ |V|aU5y޸zC5vv=g5缱 x~Q7ݶ5nd=>%|Գ9;Hz( g짽PAgw2eES^BNb˿EZSbua*E7`i+2,9an >q?>vH@>;}ͣ[ҿ wyXG7x+^{dJV[NKMߋ|5Kj,NY(ZfFF}B";l7TK=  = `axduŮc1Fj'Vf ,국gހؖhDvBm:D;/?, ҥ+JS2ib*ܔB>B2\M0nhֻm$~jQSTuKYpa>QQN3dbll!:k-Sђt]+\I v\8~&d?d5¶n%w3V]mw". xa^V|%ۨ㭗cq@tI;=VٺKgnSfvy! 'SN.qS%.6;(?W0qր=Hf7;>fGMZ%N5q=(.#n\qpӁCSLla-LS V´v+zn:Hxջe©)߃?4U Ю|" 0e FAA̷( tQ͂xc d 33نqm?82 K*`\?2+Fsnba Q!zlX 6вI bSeHЎ8Mzssn # : |E֨;n#,O͚ьQ!t2U"U8PY&ExrsHQV_H> %IhO4ZYιAGz4uF@D'G/I%g|ȳ`U\x)Ą*hg+)c66>g&IAz8`tmQ&U8`z FwW2d#Q!ĒݘH/2 K`rWY_BV"|] [3gK5ESpK IRE9VOե 7y5oOYaܵ `hpk褝6xf\aD M:D6S_k` BS,O F.8$FO%%.)ۏhl )BPA% >ƘSPe=s7o^]%c +!ObQUzW܇>-Y1nųSԒ1D{ I^P.OP/jac%X8/+Q  QY!'kÌQC*TP0 {M\3=E,y9)K@#l3 {C[c pa McKB֟޶ϑ<3 /[y=Ȉ5#8:4o&%|i9_Η/jdgyh`񵨇Px"j]_(y`fذ]w! iqh^$u9=çgsH]:=dV+ɅzBXRc;Pdb>dmQO.Gj~Il3J=U7S\4蚙b-a!o$~tєR`p~K2pY!|]~]J件 1tNg3S3pD +V BU@oLkv!lzC=.bs*I`f1 ą(l?ɧ(&DA辥ڈ:rÎr7Op9ve0m-TeT^E5} U(%y[vYԎP90. (^vGG#Ydu!C# q Ft;QGX1i zccsI&ABlR#0ġSYC!p,|ײm|Mgqmi ͧآ XfqJx M5ձ\uu#R`\&<[eB1yߥkjK& Yn%cpa*w0Ajz(.E(]J ePeUX0ɲpm&,JΙs#}0<R^2l׾ﯡP:  gنW._o{Bm'Zea^Sv&>d`Q,QAn"=2Q3S8hſ7:@"itWiGSwF3 qԏ)n9u2 Q,R,^GM cU.Bvq.fυs]%W*RyzT|҆Ct 4'+%d|$,:5RU.K/PoQ8r^Nޓx; {&@6 )bh4:j+Gq9&)<=u_]b_ V [ɢ\u(k}UF"v kv4,V,@S`z>8m{F7>HZ"Dm YSþQ!_ LԊ`rOF?DeIUS5ްʐ@:_RoHkcTV# ꘦?rI.#@dDۚB*O*CSŔŒo>aVwWjbdbKNӒk6/_ض*¿2hEb/e k[jHm VRNu4B5>%PmD Rv BǂĽ?qyo/ sz1mAtg`rPAzϔ9XřSv/$W2i㓞z[טR.,I`6bv_~bc`f0-|ܬøendstream endobj 80 0 obj << /Type /Page /Contents 81 0 R /Resources 79 0 R /MediaBox [0 0 612 792] /Parent 74 0 R /Annots [ 83 0 R 84 0 R 85 0 R 86 0 R 87 0 R 88 0 R 92 0 R 93 0 R 94 0 R 95 0 R 99 0 R 100 0 R ] >> endobj 83 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [103.714 705.318 198.633 718.115] /Subtype /Link /A << /S /GoTo /D (cite.Westfall&Young93) >> >> endobj 84 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [204.158 705.318 227.968 718.115] /Subtype /Link /A << /S /GoTo /D (cite.Westfall&Young93) >> >> endobj 85 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [254.087 691.768 372.398 704.566] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 86 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [377.145 691.768 400.955 704.566] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 87 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [425.773 691.768 540.996 704.566] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 88 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [75.236 678.219 99.047 691.017] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 92 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [463.902 610.473 505.082 623.271] /Subtype /Link /A << /S /GoTo /D (cite.Ge&Dudoit) >> >> endobj 93 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [509.931 610.473 533.742 623.271] /Subtype /Link /A << /S /GoTo /D (cite.Ge&Dudoit) >> >> endobj 94 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [170.466 466.413 230.188 479.211] /Subtype /Link /A << /S /GoTo /D (cite.Golubetal) >> >> endobj 95 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [236.437 466.413 260.248 479.211] /Subtype /Link /A << /S /GoTo /D (cite.Golubetal) >> >> endobj 99 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [71.004 392.221 129.644 405.019] /Subtype /Link /A << /S /GoTo /D (cite.Golubetal) >> >> endobj 100 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [135.352 392.221 159.163 405.019] /Subtype /Link /A << /S /GoTo /D (cite.Golubetal) >> >> endobj 82 0 obj << /D [80 0 R /XYZ 72 720 null] >> endobj 10 0 obj << /D [80 0 R /XYZ 72 541.468 null] >> endobj 79 0 obj << /Font << /F15 50 0 R /F36 91 0 R /F58 59 0 R /F51 54 0 R /F42 41 0 R /F64 98 0 R /F37 103 0 R /F27 106 0 R /F63 107 0 R >> /ProcSet [ /PDF /Text ] >> endobj 115 0 obj << /Length 1124 /Filter /FlateDecode >> stream xn6=_aIlE)e]0"dZ.k=:<(?_k19&ˉJL(t%[z.WN/?Ց's*& B- Ÿo,vQQ~R-Rbikq2 U7' V>&sB1b I # J$(J%rh+'cU H:JƔC)IU!$@j {[WOA5V"U"@RX /HLDڌs_vҢ%Ui9mEX#ƵדBF BE5BD>>*$wqc!!KK926B'F9xvL,v,!eõG{z}pN+~A{% S:whwtvF{]TIu[SWTWܖJKBmQv**2)}݅.| WG<|NdK/ҟջO`cXF4T$/մTE}Fh"L'- ,:n9EzN"DP<:Yư9H돾}xG;هRXUF-N TB冡9#I]dXLK aX{f cˆdžgMuKx߮Ws`pTE%ut [" KӢn$,j [oL˗q[ ~@Vԓ{Nj $_KYgZe3˥M/_˜Tpf!]1Ἇendstream endobj 114 0 obj << /Type /Page /Contents 115 0 R /Resources 113 0 R /MediaBox [0 0 612 792] /Parent 74 0 R >> endobj 116 0 obj << /D [114 0 R /XYZ 72 720 null] >> endobj 14 0 obj << /D [114 0 R /XYZ 72 230.248 null] >> endobj 113 0 obj << /Font << /F51 54 0 R /F64 98 0 R /F42 41 0 R /F66 119 0 R /F15 50 0 R /F36 91 0 R >> /ProcSet [ /PDF /Text ] >> endobj 122 0 obj << /Length 1089 /Filter /FlateDecode >> stream xXKo@WDG`׻~$Hp@&NZ!v(?ϼvv>x !{U_LO&*0l0] Fz0 `:M+~ ws 3o }a߬XA(mPn g®յ)Bcuan5W.JL\-*p3Y̪/Rd * 84C?I3fG+Y ֱS2e'6w"ETPUUy)b"JRX$f;w$_[a} eͦO"pJKD#bB~$$ jً$:fY;;\ YiH^rK<xqDrb?cɜ FR_mIħ,6od7}wxo wP 7t̩mQ+Gn3W0cf!$ʔIq+ʘYlu60+7\#ƶl5Mf,QC\;S8%jH&(0sͬ%ci켠S̕[8e63AЄ~9>2V*IhXVm71""sT;EȨb )(Gf!:u". g(kӎD[^\&iܤN$)phnBP)N3r.)PbXxz1 8> RJ1nԢzEBv|.ҟ%Rɢ1`M՛eHTǣ/Hm}GFnm*W1eel=vedk 8#8[XHI|3`^ȍ܇7M}?4IldCoS{#햇{bv[>K1=H{'T\X VB!Z=F g+b; 1]YKR?]xG)=zpNl_kPk7[/!msU2wdE銻,+K`Ӂ?A41򝼚|Rk!'endstream endobj 121 0 obj << /Type /Page /Contents 122 0 R /Resources 120 0 R /MediaBox [0 0 612 792] /Parent 74 0 R /Annots [ 124 0 R 125 0 R ] >> endobj 124 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [529.317 705.318 536.764 718.115] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 125 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [71.004 388.107 78.451 400.905] /Subtype /Link /A << /S /GoTo /D (figure.2) >> >> endobj 123 0 obj << /D [121 0 R /XYZ 72 720 null] >> endobj 120 0 obj << /Font << /F15 50 0 R /F64 98 0 R /F51 54 0 R >> /ProcSet [ /PDF /Text ] >> endobj 130 0 obj << /Length 2182 /Filter /FlateDecode >> stream xڥَ7_!, Z >],I) IO,ؓ`~~ d:y ZMbZ7W߾z0>=jҪl~l'S>&fm]'U#G@75~!``a]Ԇq51nqQNqaO+Koꄾ0*ha%lIUkv혝=F!Ԋ6Ўޫ5h|XDQx7G7jKϏݎW_e׵he?#@ H9;MV2Q}Q TAgSL +&n0-pC@Tj0o_!M G'P**kz7۶q/YI2̷4 _<7(3ΩJhTtGMf^ϸfz*ʣo xIMr3D>cy W__HU2`fkSҥd=V#lҩQ6"2ʜ3QUo4WCa=ݤ5$G!j3)i)UOl1G20xgKFm> 5مbs'!?/:T yMb`HFHǹ?{3>~zA2,0I̓ÁF:|R fi#J`>b ەddJ)V <(Zpt p򖨵x, Pj%nCX oyz2/|PDDtJTߓiA"y_+"<ȃ,m&1Y=w~=?ǧC{a,GeD~m_h{[R~{jRe-:?f1ny(Qdy*sAIɯ M+%Td,_ y  [raA}[45 ska]0 qVT >^w87f7UN !p%?E`K/<]2a_3_^=M0g~zxVT$ɭk9;9rCN7}w_Q%el!SOEL !KuBpY(hT 丛\~3z\73)&6/^K|4URiIV[th T : {)SuUT3|HDmhC\E@ԪLU嫨IuUT3T2U{nT+򊫨6Pu]].:Dz@}LA4I0uҍϓx 4*\Zm*Q{ }8~>vݗZ8軮JŤ](z~rR+z W~ަT"Y-K}?j݊ viGYK(;TlݴK9+^z+ 46I5*yIxiSGzNnV^*vOj_2pTNZľӚbW vPW-ijԾJ`y&E6+n*u`۬Ƶ]Ee(/@sc榫&{p5ݜGx#1EXdXAf$ %DUCy]u ꬛^ /GP@+o]{71ޛ𧿘]]~ C1GJU"9Bw2Hm=m/K\Hs O$TCXBW iݣqzVVJ)vة> vQh}ɗDn&*~_Sl x&?niΥyy]9BJZ 'Bpb>D0™(v`n6W1mږډ8=v(u\sMeT نX\j9Tq˾ ۞2A/ ! Ф\.?n'>!ߏc8”˿kR[gWm{ s/7@hƪBPа g(i|wQ0~Sozd^Ψ3hM'{R4`mF,~Nendstream endobj 129 0 obj << /Type /Page /Contents 130 0 R /Resources 128 0 R /MediaBox [0 0 612 792] /Parent 74 0 R /Annots [ 132 0 R 133 0 R 134 0 R 135 0 R 136 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R 144 0 R ] >> endobj 132 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [391.787 667.43 419.525 680.228] /Subtype /Link /A << /S /GoTo /D (cite.Holm79) >> >> endobj 133 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [424.973 667.43 448.783 680.228] /Subtype /Link /A << /S /GoTo /D (cite.Holm79) >> >> endobj 134 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [457.338 667.43 504.483 680.228] /Subtype /Link /A << /S /GoTo /D (cite.Hochberg88) >> >> endobj 135 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [509.931 667.43 533.742 680.228] /Subtype /Link /A << /S /GoTo /D (cite.Hochberg88) >> >> endobj 136 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [516.749 653.881 540.996 666.679] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 137 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [71.004 640.332 172.542 653.13] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 138 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [178.214 640.332 202.025 653.13] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 139 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [228.692 640.332 345.765 653.13] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 140 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [351.436 640.332 375.247 653.13] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 141 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [348.246 208.642 445.116 221.44] /Subtype /Link /A << /S /GoTo /D (cite.Westfall&Young93) >> >> endobj 142 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [451.618 208.642 475.428 221.44] /Subtype /Link /A << /S /GoTo /D (cite.Westfall&Young93) >> >> endobj 143 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [498.741 168.605 540.996 180.285] /Subtype /Link /A << /S /GoTo /D (cite.Ge&Dudoit) >> >> endobj 144 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [75.236 154.445 99.047 167.243] /Subtype /Link /A << /S /GoTo /D (cite.Ge&Dudoit) >> >> endobj 131 0 obj << /D [129 0 R /XYZ 72 720 null] >> endobj 18 0 obj << /D [129 0 R /XYZ 72 720 null] >> endobj 22 0 obj << /D [129 0 R /XYZ 72 266.68 null] >> endobj 128 0 obj << /Font << /F42 41 0 R /F66 119 0 R /F15 50 0 R /F36 91 0 R /F64 98 0 R /F51 54 0 R >> /ProcSet [ /PDF /Text ] >> endobj 147 0 obj << /Length 1759 /Filter /FlateDecode >> stream xڵYK6WЃ IM =[lxyeqMlIy}|fF7O`j(ڼ]2t TUw|X߽mD`g!^ ڽ )*ֽ»~m=߭QF6ifqfBWи218<<6o<_J 8-c<⧆F ʈUgNk(d &#iN(O!š<Cy xΏòHZNP ͪƽ/{Ee&~w}Onp.WɺTQظP]hEZd{.…Z8Uhh~~Al`4ѠM5hӜGl"5q4Dl64h:GK n<35Ad-Bejӱe] tB#9#] ¶]"t/av`v`v` Z"t/av`v`Wv`WvB]!]#5]#5]#BTnnnn -"-"-"#ۅ׺EoB] tB}@ irjecr{3KLHH_JB:hYK̚+Ubyʋ!r3-S ֽor nlZ?6*cu_c{YYU4M7ҺAƹ>5۝3RQP*y+u*Qq"l`>mſ/8䚳?FxwqJڨ)'vU EͭZJ(j^P3L6wzucבvhyܤ#(~"߰9Bsd]6P"n 1 hy٣=zGqFDdk¨!B ut-+N';<֗(1>M6(LzgCLn@"Ҧx ɥq :TDk|Vvm# ODH6ޢ^HBuz3ƥ\k](Co?뮜Mê}}٬~3n5O[:sFrEBM§xg  h'ՍN{ww%W[vُq?:Fe&`Swsʳ%f̬͙N^y ݺ :*@p3f CkDhcIx@Dex% s6o'`f_ :ayA|} +lq@> endobj 148 0 obj << /D [146 0 R /XYZ 72 720 null] >> endobj 26 0 obj << /D [146 0 R /XYZ 72 378.544 null] >> endobj 145 0 obj << /Font << /F15 50 0 R /F36 91 0 R /F64 98 0 R /F51 54 0 R /F42 41 0 R /F66 119 0 R >> /ProcSet [ /PDF /Text ] >> endobj 151 0 obj << /Length 1925 /Filter /FlateDecode >> stream xZr6}Wx2}L3ۭd{,%4MQm4n$p@\$}G$֋ssa_L_YpzL'-vnLgk)ŧx}$e>۫$K2]g;q;1B474hU3n!ep#o'fyC6p+e#cqI "Ø_O[/nKөx遱ivH;k!}ud; XF \|>` ՙfK3x,P棙umTwXGSНAÏ5Yh@x䨲6a218w݊fJUXS{:}O?}Ƣ ,%*řA0<}^K u( V*!Ͼ?׶JƐ#GC<>,|~lo=MwSfe@t /D+h;A63#jfQޒb޴%vĚڶ7$pD@&Cw B&= A=o&/$: w$$.Űrhx'7x*\# @hACp8B}S_9BiJ(jeҢxb#{!yߪU79jif=[^ka]ט$A^*UȺ >U΃m& tI%,MՐ12s%0n6_}F$m ڨ ·3J?x&VD[ᔡrGN4ieHv7]C5]l*ȑr, n(TN5 lz+1ö{FZ0$F-0bFt@LYA矨OhS$!t-$es\x=1bN)5g M ~psN fg2`Q. 7v&^Uű, /NHoJp_)0 h(GcL #`ek )O G8ljõo X?)(K*X7P II:{l iXY&Y'Gl&-IZ B$%Ux!+xX|yvF'?+A4]/XP>CΗa,&{@gB,SxtA}P)`:p^)<Rjco!Hi#g'1T@tO-VQ%C4G6%k :)owFMbwJZV;'UJu}I0nDҹֺlU2/~YRlHS <~9!&lr$b 4зӠ<8M~?%KܓD:Dz=H<%)ElO#ņ.Lx,DTnmFdIp0) [ّ88+C¶˜M!euN0w$G:Uxo'.w*t_\[(o=q=+=w8wZ]P7PWZʨJm }_UR6&W3/o%I[gGht]~Ͽ(6/K#Ays.B[vkB%RRk[L8^6zNB\[ȅyLgҵ e7M 1U pN  2Yk'&{5h5endstream endobj 150 0 obj << /Type /Page /Contents 151 0 R /Resources 149 0 R /MediaBox [0 0 612 792] /Parent 153 0 R >> endobj 152 0 obj << /D [150 0 R /XYZ 72 720 null] >> endobj 149 0 obj << /Font << /F15 50 0 R /F36 91 0 R /F64 98 0 R /F51 54 0 R >> /ProcSet [ /PDF /Text ] >> endobj 156 0 obj << /Length 1381 /Filter /FlateDecode >> stream xXKo#7 WA6j+WscByu$^RzHQj4y#(+o5&O].Dq\K2Ң#?I*!($?4&y g,Z(g\x*x5ǁ iddn2E>"d(vfC$y^ˇ903 d| Zo,ϧꉁO>љ/9-7W2"9 ,B&rZZ4w h]aU)|DTTHFPk\r}eM 捫+.\^GE0Yʘt2p`Q<]]0RvYOoяyE?ۻބJ6G0qIGF'oPyc tƴ k`m)c5Q2N M\[7J-, T"[ix9QԖOP9Q0ad}ND{5N^3zn$:Rߪx[bnfE7wq`֙0VjFE/NwыKhLjjqSά%gU r'x-YǺnVQUZ0%u%~#w?8vf$PW"^Mt=l_3m&XZaH*O *%lJUC"-O ]1cŖ,MnF9?zՕH;nJe&?Wb^+6NP~h ZJ87nWqga^7*;^*&BU~|(R$"9*LBendstream endobj 155 0 obj << /Type /Page /Contents 156 0 R /Resources 154 0 R /MediaBox [0 0 612 792] /Parent 153 0 R /Annots [ 158 0 R 159 0 R 160 0 R 161 0 R ] >> endobj 158 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [417.938 579.489 540.996 591.174] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 159 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [75.236 565.334 99.047 578.132] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Hochberg95) >> >> endobj 160 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [129.138 565.334 246.612 578.132] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 161 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [252.485 565.334 276.295 578.132] /Subtype /Link /A << /S /GoTo /D (cite.Benjamini&Yekutieli01) >> >> endobj 157 0 obj << /D [155 0 R /XYZ 72 720 null] >> endobj 30 0 obj << /D [155 0 R /XYZ 72 649.554 null] >> endobj 154 0 obj << /Font << /F51 54 0 R /F42 41 0 R /F66 119 0 R /F15 50 0 R /F36 91 0 R /F64 98 0 R >> /ProcSet [ /PDF /Text ] >> endobj 168 0 obj << /Length 2221 /Filter /FlateDecode >> stream xY_oFϧ0R@"zrw@ r P*MѶKrEɉ/ߙR&;3;;lœHW:]8uD #Of_OVn"5Ɩ ;MX00~C cg[>:!#'m: tjXln/6˜޳xŃO2>HS6z_rn&q߄aHgyIpht"{}`@ s Q&(7i6FH7ԈЄDhBiRNV! 5IB^l OnY$-l&>#c|&2 qRBy>j:/RoS6Cx::Eo\Dh5R) TT[{$E)O2i7Iz(m̿K"$ԥ,N(/y(#rQ{I@:7p\-q㉡md1}0w㱝sx*^WS4Fݵs/]4 x)zb'z:ݯ Ĺ`׻Lj:0thl"\8=POpiEH")&$w2Xk:9Wѫa,JBV7 wIqJKP=ȭ4 F{JsSmc 囱ML;t& CeH^re`)bqPx0S њ3\ך.Ox-g>1?=^r4Ltov0~w.S q ĝD,B#]|L1yTQ5P7uI oWaO4wQDH-?*쁐<ͯg%h&-dpݳ^WP'1 9xކ~tdW޵KEHhv m>xeK)ӭEH| 9c "T#%_SzV.Re8GFmmJqUߩ>v00EY-X^^vH #*U24~#ʣ_ '*nBDdMy֓EIy\,;`if> X{)zɪIe@yg_r~ ^ *e9"mԴR+<=IOLd( l]Y7$by w,/G"7Ón5=N}T`gSr}t&*k$7-A7 h Y2J"N v5XmVO .W9^رP(qBhzX#h5,3~BrP =E3]$8>awO~+ mч24|l5Һ$Qـoԙm6$ ?q::?6j9a߼J$S"YvsZ!щ }$pW䌻Cf)C;eסNPOAXRdcL}@%6J].3]TA+^Ϟ akendstream endobj 167 0 obj << /Type /Page /Contents 168 0 R /Resources 166 0 R /MediaBox [0 0 612 792] /Parent 153 0 R >> endobj 169 0 obj << /D [167 0 R /XYZ 72 720 null] >> endobj 170 0 obj << /D [167 0 R /XYZ 72 451.897 null] >> endobj 109 0 obj << /D [167 0 R /XYZ 44.727 451.897 null] >> endobj 110 0 obj << /D [167 0 R /XYZ 44.727 415.832 null] >> endobj 76 0 obj << /D [167 0 R /XYZ 44.727 379.767 null] >> endobj 111 0 obj << /D [167 0 R /XYZ 44.727 330.153 null] >> endobj 112 0 obj << /D [167 0 R /XYZ 44.727 280.539 null] >> endobj 77 0 obj << /D [167 0 R /XYZ 44.727 217.376 null] >> endobj 78 0 obj << /D [167 0 R /XYZ 44.727 181.311 null] >> endobj 75 0 obj << /D [167 0 R /XYZ 44.727 158.796 null] >> endobj 108 0 obj << /D [167 0 R /XYZ 44.727 136.28 null] >> endobj 166 0 obj << /Font << /F64 98 0 R /F51 54 0 R /F42 41 0 R /F15 50 0 R /F68 173 0 R /F36 91 0 R >> /ProcSet [ /PDF /Text ] >> endobj 176 0 obj << /Length 251 /Filter /FlateDecode >> stream xUPn sȀ qӚ&&ܚ̮n|ޛ{h!CYUN ZZ!%sJn Y+ O#k,{Ŧ%vb- #kݓZTL{ MmmH+}[ʥ{8ȱ~s_endstream endobj 175 0 obj << /Type /Page /Contents 176 0 R /Resources 174 0 R /MediaBox [0 0 612 792] /Parent 153 0 R >> endobj 162 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mtQQ.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 178 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 179 0 R /F2 180 0 R /F3 181 0 R /F4 182 0 R /F5 183 0 R /F6 184 0 R >> /ExtGState << >>>> /Length 185 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.38 224.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.93 211.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.71 195.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.31 192.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.94 176.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.82 178.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.31 208.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.32 205.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.22 197.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.06 199.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.48 260.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.30 241.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.54 257.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.44 190.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.01 194.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.35 202.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.98 169.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.09 237.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.32 203.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.05 231.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.70 219.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.32 204.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.69 128.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.16 186.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.18 163.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.04 219.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.47 191.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.95 196.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.89 217.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.48 190.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.17 195.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.10 253.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.48 193.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.99 179.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.93 239.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.56 235.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.07 180.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.09 203.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.95 148.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.22 222.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.13 222.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.57 214.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.48 237.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.94 182.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.64 211.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.05 213.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.75 174.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.95 171.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.47 215.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.50 246.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.90 156.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.00 188.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.75 220.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.80 185.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.71 135.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 312.52 263.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.69 207.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.24 197.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.65 168.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.24 234.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.09 172.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.10 247.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.70 168.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.70 214.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.84 184.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.46 125.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.25 226.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 326.72 276.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.72 182.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.96 206.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.19 189.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.22 216.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.27 222.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.69 154.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.36 178.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.66 201.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.71 167.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.82 153.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.06 159.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.10 179.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.00 145.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.59 231.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.53 174.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.28 142.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.65 206.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.38 198.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.53 197.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.61 183.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.61 165.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.38 218.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.44 199.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.78 186.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.91 185.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.38 184.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.75 189.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.70 107.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.12 208.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.19 180.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.69 199.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.76 224.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.85 229.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.76 154.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.11 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.62 155.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.30 250.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.97 160.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.58 175.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 337.41 292.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.15 180.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.51 238.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.51 191.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.42 159.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.53 235.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.59 180.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 311.61 262.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.54 171.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.71 156.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.92 200.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.10 191.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.63 179.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.61 153.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.50 171.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.21 170.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.77 171.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.34 243.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.57 121.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.93 140.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.80 165.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.23 204.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.34 227.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.30 205.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.35 208.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.95 193.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.95 185.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.22 141.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.71 181.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.57 222.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.69 150.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.87 221.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 312.98 263.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.27 260.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.89 158.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.65 207.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.68 195.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.12 221.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.42 199.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.07 188.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.77 173.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.32 171.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.89 197.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.76 166.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.87 230.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.58 143.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.75 168.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.93 240.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.13 163.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.65 226.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.99 138.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.05 175.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.82 208.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.25 182.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.11 207.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.08 147.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.19 193.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.80 213.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.93 190.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.39 170.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.46 251.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.96 205.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.66 195.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.75 161.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.04 137.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.34 217.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.23 140.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.31 206.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.63 181.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.42 151.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.21 157.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.42 183.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.80 182.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.82 248.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.71 120.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.06 201.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.82 139.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.83 179.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.60 192.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.12 143.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.60 147.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.63 162.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.49 222.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.38 223.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.74 130.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.53 159.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.12 162.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.99 151.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.05 211.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.74 197.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.69 187.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.84 185.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.58 187.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.55 180.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.40 123.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.33 182.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.78 131.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.86 151.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.26 155.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.02 155.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.94 186.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.48 223.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.64 171.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.44 210.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.23 174.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.65 185.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.28 164.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.10 252.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.15 212.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.54 191.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.03 168.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.21 201.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.03 144.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.93 188.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.89 192.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.03 206.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.73 176.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.99 171.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.48 148.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.23 172.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.92 147.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.08 222.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.65 144.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.90 219.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.03 138.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.39 181.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.58 203.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.63 160.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.69 203.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.95 146.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.26 193.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.20 153.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.36 174.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.18 175.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.71 158.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.52 222.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.36 127.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.35 206.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.40 122.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.48 194.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.52 145.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.47 181.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.25 165.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.87 202.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.96 207.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.97 130.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.03 156.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.71 190.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.74 208.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.86 194.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.95 145.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.82 118.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.15 183.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.81 227.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.34 188.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.17 221.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.62 222.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.36 176.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.61 194.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.72 211.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.22 194.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.13 225.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.56 148.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.47 142.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.17 201.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.99 178.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.34 218.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.67 197.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.83 191.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.99 177.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.92 208.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.66 176.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.68 214.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.40 201.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.70 137.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.32 147.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.47 197.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.57 157.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.34 132.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.24 208.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.52 141.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.98 168.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.59 156.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.81 163.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.91 195.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.25 224.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.41 165.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.13 171.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.83 181.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.21 131.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.34 156.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.82 196.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.07 200.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.43 215.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.64 197.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.52 231.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.49 143.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.41 209.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.01 186.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.12 136.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.32 214.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.45 135.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.17 230.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.74 204.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.40 156.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.81 126.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.70 138.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.76 203.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.11 146.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.56 210.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.17 168.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.00 204.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.25 138.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.65 218.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.43 220.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.89 117.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.62 174.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.74 162.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.47 176.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.36 175.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.49 170.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.35 109.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.13 140.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.60 164.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.68 182.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.91 183.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.14 160.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.30 135.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.24 158.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.63 140.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.69 184.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.56 210.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.19 200.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.66 190.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.54 146.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.15 182.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.49 131.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.97 108.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.17 238.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.48 158.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.74 169.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.68 185.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.03 238.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.29 230.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.83 202.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.48 182.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.29 187.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.03 224.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.26 209.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.52 127.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.11 183.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.33 140.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.80 161.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.39 222.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.88 175.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.65 156.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.25 160.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.83 154.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.57 176.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.92 210.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.88 169.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.63 154.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.15 167.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.44 187.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.70 211.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.64 176.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.04 204.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.71 236.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.36 125.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.87 108.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 343.06 296.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.74 205.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.22 206.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.40 240.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.07 225.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.98 224.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.07 207.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.50 152.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.01 209.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.36 169.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.38 212.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.00 159.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.28 259.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.92 132.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.27 186.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.73 195.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.87 88.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.16 155.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.09 196.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.42 219.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.48 144.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.39 144.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.95 238.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 320.86 269.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.59 158.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.73 215.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.80 219.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.00 216.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.95 215.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.34 160.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.37 194.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.05 205.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.11 194.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.04 192.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.39 202.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.66 229.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.04 190.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.09 220.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.43 208.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.16 218.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.16 244.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.69 253.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.15 243.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.36 171.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.17 113.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.41 166.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.82 192.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.89 196.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.31 143.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.63 236.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.89 189.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.07 176.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.63 225.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.94 208.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.66 219.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.82 198.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.92 231.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.24 163.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.99 253.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.13 216.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.47 212.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.56 205.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.71 180.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.49 174.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.48 200.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.93 218.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.53 205.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.65 158.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.69 169.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.67 170.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.11 190.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.45 174.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.04 249.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.51 188.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.18 174.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.22 143.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.58 161.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.84 147.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.78 215.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.57 202.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.24 195.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.29 182.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.26 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.24 177.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.36 118.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.60 210.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.11 180.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.93 194.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.31 197.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.73 191.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.78 156.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.11 178.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.41 245.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.03 233.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.51 180.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.81 219.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.78 222.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.55 244.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.48 218.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.89 233.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.03 139.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.18 158.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.20 230.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.80 220.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.11 218.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.40 227.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.57 184.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.55 195.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.71 179.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.81 209.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.28 193.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.50 132.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.33 135.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.85 179.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.45 177.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.65 163.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.64 126.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.24 202.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.10 239.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.80 225.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 311.38 262.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.49 192.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.20 167.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.27 199.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.09 214.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.87 185.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.87 146.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.16 191.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.59 181.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.30 189.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.18 186.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.75 241.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.89 188.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.45 244.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.16 237.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.76 202.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.60 176.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.68 116.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.76 167.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.53 207.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.67 222.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.47 221.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.66 166.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.81 253.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.85 127.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.42 92.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.35 181.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.93 192.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.38 252.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.35 176.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.79 239.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.78 138.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.54 182.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.79 229.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.88 242.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.40 178.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.09 219.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.78 216.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.75 217.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.36 199.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.79 148.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.30 224.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.54 229.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.73 178.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.16 147.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.09 171.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.44 163.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.86 196.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.61 108.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.38 234.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.42 182.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.17 205.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.54 207.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.40 148.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.22 168.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.55 213.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.63 208.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.00 165.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.80 199.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.91 160.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.66 217.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.45 157.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.68 127.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.65 96.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.22 223.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.78 122.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.35 173.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.37 193.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 341.98 295.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.54 165.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.55 243.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.04 235.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.70 188.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.10 125.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.82 190.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.30 167.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.82 182.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.92 221.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.53 211.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.78 208.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.78 188.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.96 166.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 314.20 264.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.01 237.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.84 195.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.97 221.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.69 207.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.07 218.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.55 181.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.32 191.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.45 233.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.88 213.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.78 132.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.67 179.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.03 185.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.65 216.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.24 233.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.92 185.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.48 186.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.37 209.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.38 206.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.32 178.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.86 232.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.58 220.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.49 195.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.45 188.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.69 201.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.51 160.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.82 235.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.07 191.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.85 237.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.56 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.20 155.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.06 162.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.83 203.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.29 247.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.03 191.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.26 176.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.49 199.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.85 246.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.95 219.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.17 233.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.09 145.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.74 114.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.53 239.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.40 214.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.17 246.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.00 197.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.18 219.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.19 142.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.07 242.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.31 245.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.58 211.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.83 182.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.49 198.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.02 212.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.09 149.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.25 191.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.11 192.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.20 210.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.87 198.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.99 185.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.11 166.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.97 192.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.01 239.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.19 212.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.53 198.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.13 151.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.47 203.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.69 225.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.33 111.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.24 199.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.02 240.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.88 175.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.15 185.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.68 260.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.96 188.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.87 179.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.85 205.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.60 195.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.24 186.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.57 185.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.89 179.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.49 177.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.82 221.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.23 180.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.82 216.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.60 211.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.59 238.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.91 201.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.62 205.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.80 225.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.84 206.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.71 156.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.63 186.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.02 198.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.69 196.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.75 132.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.91 223.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.60 222.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.86 172.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.48 173.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.22 200.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.21 187.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.57 206.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.57 194.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.80 203.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.11 160.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.71 164.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.42 197.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.20 132.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.46 156.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.23 189.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.74 188.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.31 184.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.27 174.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.66 211.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.48 137.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.27 157.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.22 175.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.85 142.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.77 237.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.11 217.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.67 143.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.14 186.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.22 89.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.43 116.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.82 233.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.61 207.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.88 193.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.01 174.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.02 256.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.19 175.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.76 150.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.51 205.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.03 114.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.38 189.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.64 151.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.86 212.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.76 85.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.07 170.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.04 230.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.21 152.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.70 193.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.40 199.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.07 221.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.67 180.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.99 126.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.63 148.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.07 198.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.02 226.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.01 213.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.15 154.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.14 204.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.09 234.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.45 146.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.95 179.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 327.65 277.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.53 209.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.88 195.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.13 104.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.28 227.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.62 199.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.71 189.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.77 158.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.42 185.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.81 224.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.04 196.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.24 108.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.84 203.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.88 190.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.24 218.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.05 244.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.57 207.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.73 197.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.80 160.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.61 184.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.96 208.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.96 239.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.12 228.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.53 158.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.05 227.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.13 219.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.48 235.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.86 215.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.59 138.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.51 139.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.83 205.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 362.12 319.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.25 197.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.47 220.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.18 225.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.58 174.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.24 178.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.83 168.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.61 267.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.88 234.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.40 232.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.09 175.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.58 156.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.04 189.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.95 234.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.72 237.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.24 237.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.87 238.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.39 231.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.82 211.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.42 135.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 335.87 289.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.58 199.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.68 162.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.55 250.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.13 191.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.80 206.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.55 268.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.45 156.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.20 202.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.15 165.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.63 200.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.64 132.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.68 205.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.37 177.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.88 158.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.15 121.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.39 216.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 331.90 285.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.97 175.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.47 201.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.03 204.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.47 132.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 348.26 301.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.22 247.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.11 196.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.34 131.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.21 211.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.97 182.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.76 213.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.46 227.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.23 219.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.40 175.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.30 218.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.34 213.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.46 202.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.66 241.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.76 226.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.91 215.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.55 228.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.26 183.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.85 197.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.96 235.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.50 151.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 372.99 347.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.86 256.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.52 245.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.00 200.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.00 158.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.23 184.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.28 130.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.36 210.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.56 154.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.60 105.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.75 103.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.46 184.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.59 251.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.37 146.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.82 197.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.97 211.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.66 234.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.14 138.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.08 194.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.95 261.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.13 118.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.31 195.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.67 186.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.33 155.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.27 252.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.26 215.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.13 214.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.14 174.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.52 234.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.78 152.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.73 199.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.23 267.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.93 238.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.85 128.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.77 201.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.09 153.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.17 226.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.13 115.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.75 175.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.05 212.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.27 239.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.36 226.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.88 174.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.01 212.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.49 216.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.16 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.75 181.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.68 210.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.12 145.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.99 201.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.58 191.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.18 216.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.88 207.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.50 179.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.73 220.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.81 214.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.79 149.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.49 163.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.14 212.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 316.57 265.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.76 164.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.24 159.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.60 213.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.42 154.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.57 142.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.87 259.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.91 202.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 366.52 320.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.19 207.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.53 185.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.99 219.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.06 224.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.64 182.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.32 209.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.77 183.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 307.33 258.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.85 225.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.60 163.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.93 214.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.49 211.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.12 168.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.06 258.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.93 188.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.36 166.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.31 199.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.47 229.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.63 190.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.18 199.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.14 197.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.99 180.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.23 214.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.11 184.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.93 236.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.30 106.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.02 202.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.96 174.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.53 199.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.40 210.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.22 227.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.19 220.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.06 202.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.27 223.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.84 207.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 332.50 286.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.51 213.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.30 165.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.08 189.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.46 168.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 346.80 301.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 315.75 265.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.06 228.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.15 156.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.72 202.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.42 250.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.15 189.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.28 202.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.10 229.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.16 199.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.45 175.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.75 243.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.47 180.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.86 236.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.39 195.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.92 153.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.64 199.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.41 182.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.39 215.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.98 199.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.27 219.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.69 183.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.34 198.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.04 184.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.84 201.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.46 169.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.28 133.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.26 244.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.84 156.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.09 155.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.17 162.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 330.19 282.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.96 210.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.46 162.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.88 133.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.91 225.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.42 193.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.06 153.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.54 201.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.85 207.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.56 149.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.89 168.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.72 185.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.93 213.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.06 246.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.95 201.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.95 202.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.25 104.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.36 162.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.06 214.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.89 212.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 314.70 264.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.97 194.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.38 165.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.79 196.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.64 237.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.96 204.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.25 217.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.94 251.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.75 219.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.84 150.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.89 260.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.87 203.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.08 226.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.08 219.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.19 189.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.71 174.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.77 190.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.31 267.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.98 104.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.59 171.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.00 228.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 324.17 273.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.28 238.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.32 141.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.51 194.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.73 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.82 135.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.83 177.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.43 152.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.26 188.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.10 167.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.63 131.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.01 166.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.01 162.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.15 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.88 218.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.53 218.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.52 147.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.63 190.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.49 167.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.13 195.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.68 199.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.43 101.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.33 209.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.00 205.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.91 180.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.52 253.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.71 199.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.09 216.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.20 89.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.44 254.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.91 193.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.45 172.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.25 216.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.26 100.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.46 206.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.52 238.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.39 115.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.56 189.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.15 157.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.13 266.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.36 191.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.21 205.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.92 217.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.62 203.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.86 176.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.81 200.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.11 180.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.26 206.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.07 155.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.28 160.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.27 180.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.37 103.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.63 157.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.89 257.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.33 224.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.24 252.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.97 226.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 327.18 276.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.00 196.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.85 224.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 329.14 279.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.92 131.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.81 205.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.60 182.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.33 187.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.42 218.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.79 162.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.59 213.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.14 220.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.14 151.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.75 247.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.61 187.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.20 122.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.44 196.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.08 177.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.78 198.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.93 237.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.47 99.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.26 200.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.28 203.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.29 197.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.69 209.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.49 206.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.70 217.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.72 218.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.15 133.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.37 190.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.18 201.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.83 222.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.52 182.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.91 203.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.75 194.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.96 135.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.00 251.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.22 193.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.76 210.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.08 161.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.20 195.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.85 223.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.46 179.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.02 127.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.49 120.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.95 180.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.67 240.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.15 200.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.29 211.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.60 189.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.37 189.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.59 159.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.35 193.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.65 187.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.80 212.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.04 215.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.78 245.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.46 231.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.67 259.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.54 222.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.54 153.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.80 202.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.97 218.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.70 222.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.49 228.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.29 218.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.09 211.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.93 175.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.65 244.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.53 217.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.15 192.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.22 221.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.85 225.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.40 193.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.02 170.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 322.64 271.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.61 178.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.53 220.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.10 193.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.59 118.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.00 172.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.77 195.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.79 180.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.39 202.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.69 242.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.88 226.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.31 181.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.32 221.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.56 219.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.71 208.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.78 192.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.23 182.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.83 214.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.19 185.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.12 177.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.35 145.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.89 106.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.35 167.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.07 246.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.13 199.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.73 187.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.32 172.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.16 227.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.51 193.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 314.96 264.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.96 258.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.56 198.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.80 175.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.62 146.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.71 148.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.95 158.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.47 161.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.76 191.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.74 173.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.45 209.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.78 168.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.90 165.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.38 197.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.52 231.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.98 231.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.51 168.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.71 198.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.48 220.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.79 214.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.96 175.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.70 205.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.67 174.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.94 144.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.64 228.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.85 200.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.94 205.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.15 176.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.14 161.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.45 171.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.35 199.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.93 198.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.54 135.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.96 156.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.46 206.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.35 182.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.34 129.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.10 204.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.01 223.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.37 257.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.96 214.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.97 218.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.08 205.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.07 184.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.41 200.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.35 170.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.94 191.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.20 209.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.02 218.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.98 208.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.68 252.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.48 155.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.81 176.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.19 184.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.63 188.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.66 136.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.62 218.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.78 242.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.36 168.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.09 259.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.51 181.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.52 162.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.88 187.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.70 195.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.82 194.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.93 227.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.37 200.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.19 235.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.29 155.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.61 232.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.85 190.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.55 200.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.85 256.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.47 236.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.00 185.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.98 124.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.28 195.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.70 228.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.70 200.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.28 205.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.66 204.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.40 197.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.32 175.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.57 138.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.20 178.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.65 159.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.53 223.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.21 201.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.77 176.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.12 221.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.55 213.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.36 197.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.78 182.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.42 195.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.03 185.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.45 234.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.87 191.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.60 224.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.65 217.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.28 176.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.91 181.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.10 107.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.13 213.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.96 155.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.30 194.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.12 206.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.75 195.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.74 177.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.75 155.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.24 203.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.31 187.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.50 193.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.66 164.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.90 220.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.06 204.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.71 163.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.41 176.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.62 177.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.55 155.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.18 148.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.39 149.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.87 180.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.99 173.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.12 130.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.69 191.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.39 157.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.72 203.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.60 186.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.03 143.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.11 235.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.18 239.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.67 181.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.35 187.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.37 186.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.36 205.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.80 183.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.33 196.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.65 231.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.47 244.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.92 204.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.01 159.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.81 190.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.28 246.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.81 193.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.44 182.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 316.02 265.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.58 135.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.90 162.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.79 168.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.80 223.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.18 228.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.58 217.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.88 201.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.63 198.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.92 175.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.25 186.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.07 185.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.28 125.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.80 201.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.75 153.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.11 170.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.76 212.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.95 220.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.21 182.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.78 96.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.64 223.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.43 191.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.31 139.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.36 238.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.42 249.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.29 145.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.96 156.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.65 178.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.99 227.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.10 209.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.78 220.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.92 190.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.36 147.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.00 123.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.75 205.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.57 192.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.84 168.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.01 128.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.28 177.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.56 166.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.94 168.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.52 225.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.73 209.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.65 191.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.02 133.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.13 155.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.31 233.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.36 209.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.82 188.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.22 162.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.14 209.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.24 193.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.61 214.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.01 110.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.55 169.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.87 214.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.74 190.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.20 177.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.03 241.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.08 215.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.47 204.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.68 212.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.95 172.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 316.85 265.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.52 216.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.59 223.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.81 130.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.91 172.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.95 244.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.09 205.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.69 223.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.45 197.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.93 205.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.65 156.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.69 256.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.57 152.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 312.75 263.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.43 173.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.15 206.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.64 212.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.57 225.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.92 267.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.02 193.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.24 210.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.61 173.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.41 194.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.73 206.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.98 212.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.47 219.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.69 206.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.27 221.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.19 256.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.51 201.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.96 225.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.77 214.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.39 162.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.24 253.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.61 228.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 338.23 292.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.29 196.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.52 210.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.09 199.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 325.41 274.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.68 250.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.85 188.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.65 215.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.92 164.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.02 195.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.88 210.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.76 218.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.42 161.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.19 161.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.96 223.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.62 150.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.40 227.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.97 242.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.63 189.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.76 196.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.57 183.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.93 179.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.13 172.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.89 205.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.30 176.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.85 243.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.95 246.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.93 169.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.00 142.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.49 230.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.78 189.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.95 199.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.65 111.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.42 179.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.63 180.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 356.00 304.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.52 228.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.76 228.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.09 186.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.44 224.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.70 135.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.06 179.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.87 113.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.19 131.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.34 232.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.29 225.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.36 131.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.87 196.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.79 181.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.81 207.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.12 186.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.42 198.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.71 186.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.41 168.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.27 181.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.81 137.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.41 169.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.26 145.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.57 241.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.83 217.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.41 190.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.85 143.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.10 218.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.98 205.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.09 191.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.87 149.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.36 187.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.94 134.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.74 160.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.02 203.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.50 202.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.49 149.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.65 203.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.00 189.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.02 221.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.11 238.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.55 134.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.95 204.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.68 138.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.28 209.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.70 255.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.84 196.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.67 235.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.33 199.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.84 246.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.10 201.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.03 176.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.56 215.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.84 156.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.49 183.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.49 205.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.27 232.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.18 171.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.12 215.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.99 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.36 161.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.23 185.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.21 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.17 211.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.24 228.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.57 144.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.76 238.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.51 165.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.34 247.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.07 190.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.11 212.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.33 157.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.78 236.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.13 196.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.07 204.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.84 253.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.91 95.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.62 182.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.58 225.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.27 182.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.94 219.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.74 218.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.95 187.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.40 160.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.89 190.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.90 194.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.22 188.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.51 218.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.79 237.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.04 194.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.95 177.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.08 224.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.42 184.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.89 198.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.46 113.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.39 155.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.80 195.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.55 193.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.97 189.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.02 148.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.84 213.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.11 185.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.47 199.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.19 188.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.35 197.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.36 243.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.97 170.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.00 192.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 340.97 295.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.20 165.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.32 219.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.59 130.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.76 185.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.84 175.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.05 165.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.40 237.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.91 150.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.25 167.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.17 169.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.05 198.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.70 177.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.30 249.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.36 214.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.02 156.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.98 191.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.48 178.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.66 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.29 199.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.62 236.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.35 195.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.19 206.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.50 169.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.42 238.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.77 200.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.15 206.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.83 221.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.19 194.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.32 109.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.97 163.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.33 190.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.96 197.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.72 222.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.27 192.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.25 218.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.54 236.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.93 199.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.57 151.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.94 241.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.16 229.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.99 191.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.10 102.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.99 195.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.66 200.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 311.16 262.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.41 205.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.70 182.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.42 155.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.81 166.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.32 176.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.89 188.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.81 167.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.53 176.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.08 135.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 320.19 268.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.02 199.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.53 161.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.26 185.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.13 205.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.83 135.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.44 214.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.81 188.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.32 169.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.69 145.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.35 155.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.52 186.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.86 208.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.52 215.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.22 212.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.24 225.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.89 209.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.98 198.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.83 140.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.58 202.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.29 163.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.56 190.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.69 161.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.62 246.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.51 197.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.00 151.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.42 206.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.86 114.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.23 229.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.22 104.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.02 163.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.91 115.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.07 197.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.54 172.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.59 193.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.17 203.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.52 256.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.15 137.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.03 145.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.48 189.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.57 221.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 323.39 272.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.99 122.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.14 224.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.01 218.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.50 172.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.49 197.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.87 163.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.94 226.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.18 172.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.68 171.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.20 208.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.92 161.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.24 201.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 349.87 301.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.95 183.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.04 216.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.60 168.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.54 187.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.92 229.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.92 138.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.96 224.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.34 189.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.54 202.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.60 212.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.87 268.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.32 210.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.46 193.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.71 159.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.67 188.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.43 180.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.75 244.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.48 226.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.75 157.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.88 200.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.82 186.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.56 188.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.54 179.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.34 205.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.93 168.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.94 142.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.14 179.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.47 208.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.95 203.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.24 176.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.10 138.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.82 199.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.31 166.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.06 151.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.46 185.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.02 149.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.33 162.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.08 200.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.34 184.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.49 185.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.01 236.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.64 152.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.19 182.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.72 170.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.44 204.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.15 188.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.64 161.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.76 199.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.03 177.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.22 209.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.13 175.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.07 221.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.35 151.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.13 153.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.62 193.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.52 200.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.37 196.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.46 138.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.28 178.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.62 175.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.88 168.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.75 186.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.61 230.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.61 185.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.59 188.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.75 179.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.93 121.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.86 166.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.76 187.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.08 196.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.85 204.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.18 248.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.93 197.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.78 177.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.43 223.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.87 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.26 149.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.45 205.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.68 172.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.00 155.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.64 192.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.13 201.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.13 202.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.09 198.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.39 213.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.57 199.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.89 138.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.71 188.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 336.62 290.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.06 223.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.28 152.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.86 188.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.00 214.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.03 181.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.77 205.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.65 207.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.61 220.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.20 217.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.38 185.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.14 175.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.07 134.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.47 232.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.75 255.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.49 209.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.51 157.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.98 222.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.39 241.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.26 137.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 324.58 273.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.36 172.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.30 215.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.95 165.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 344.22 300.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.59 179.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.95 243.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.00 184.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.17 224.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.12 231.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.39 253.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.26 238.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.74 165.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.00 147.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.97 199.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.18 212.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.02 208.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.74 167.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.35 180.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.95 162.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.32 220.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.41 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.20 198.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.22 255.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.71 257.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.35 202.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.42 226.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.18 187.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.85 231.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.75 227.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.91 178.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.20 138.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.53 156.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.93 139.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.24 220.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.47 150.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.26 235.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.41 117.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.03 161.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.22 169.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.65 199.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.79 179.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.10 230.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.87 96.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.65 169.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.15 184.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.87 199.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.48 159.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.64 205.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.33 251.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.81 250.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.49 240.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.60 238.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.28 156.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.30 159.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 333.13 287.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.29 254.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.41 225.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.83 169.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.44 216.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.61 89.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.76 182.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.06 175.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 307.71 259.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.96 233.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 312.06 262.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.84 193.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.97 221.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.43 212.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.37 211.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.38 205.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.31 168.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.28 224.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.96 198.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.01 238.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.52 247.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.81 164.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.32 149.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.11 204.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.48 212.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.60 197.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.76 163.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.59 124.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.54 150.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.54 206.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.85 167.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.50 164.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.46 227.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.42 220.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.06 232.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.49 176.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.57 160.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.46 166.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.06 218.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.52 225.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.01 109.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.56 197.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.52 188.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.77 204.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.53 140.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.49 175.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.33 211.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.97 164.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.76 197.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.42 222.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.00 175.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.44 170.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.93 151.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.56 104.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.17 116.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.20 241.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.06 209.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.61 202.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.19 127.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.40 252.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.85 220.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.91 166.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.96 191.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.02 196.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.47 222.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.89 235.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.34 183.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.27 206.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.64 167.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.19 180.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.14 226.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.13 169.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 331.31 284.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.72 212.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.18 129.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.49 214.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.16 198.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.36 230.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 329.66 282.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.06 166.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.68 104.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.60 258.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 345.46 300.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.88 217.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.92 224.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.11 240.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.22 213.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.04 105.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.04 172.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.63 220.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.08 163.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.22 104.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.23 164.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.72 221.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.17 215.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.77 221.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.80 207.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.20 147.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 316.29 265.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.39 230.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.86 171.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.42 221.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.22 171.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.94 159.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.72 213.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.12 144.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.29 220.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.58 196.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.96 185.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.21 151.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.65 115.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.47 218.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.37 219.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.29 204.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.72 139.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.70 146.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.30 158.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.65 197.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.13 141.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.68 134.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.95 153.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.48 209.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.41 172.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.70 175.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.62 196.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.35 256.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.75 142.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.44 186.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.43 187.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.26 194.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.68 109.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.69 203.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.44 178.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.42 141.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.20 134.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.10 175.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.80 187.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.88 245.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.53 226.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.05 239.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.33 153.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.71 224.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.52 178.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.56 186.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.03 173.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.06 248.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.02 256.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.21 204.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 324.99 273.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.58 114.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.68 147.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.44 145.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.28 151.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.55 204.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.71 197.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.05 186.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.44 147.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.16 170.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.26 230.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.68 194.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.27 212.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.26 204.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.71 151.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.39 173.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.89 136.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.44 193.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 81.89 83.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.32 201.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.23 189.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 307.52 258.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.46 187.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.53 177.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.26 179.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.08 91.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.50 202.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 312.28 262.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.34 179.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.83 174.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.30 188.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.04 200.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.53 195.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.70 237.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.32 237.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.10 165.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.38 192.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.91 187.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.33 197.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.54 197.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.31 193.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.04 171.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.87 164.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.57 112.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.43 197.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.92 207.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.04 188.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.10 227.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.40 216.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.17 243.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.03 178.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.67 218.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.00 190.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.40 204.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.74 214.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.76 143.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.39 208.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.25 201.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.36 204.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.64 247.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.82 226.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.86 219.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.69 165.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.30 170.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.74 198.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.96 184.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.41 225.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.39 187.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.01 175.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.89 208.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.44 218.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.76 239.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.84 199.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.90 173.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.10 187.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.06 132.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.63 227.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.17 202.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.96 216.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.68 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.55 196.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.35 212.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.59 200.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.52 189.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.33 149.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.81 211.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.25 162.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.36 228.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.74 104.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.33 218.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.41 171.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.81 170.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.97 161.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.25 204.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.70 204.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.86 161.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.90 156.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.73 234.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.63 188.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.13 164.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.88 153.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.38 207.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.35 136.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.77 156.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.45 231.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.91 191.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.16 177.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.78 197.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.34 207.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.13 198.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.42 133.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.53 183.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.41 189.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.37 220.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.29 191.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.64 149.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.47 225.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.69 178.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.52 209.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.20 145.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.27 169.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.33 193.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.93 209.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.33 235.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 323.01 272.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.41 247.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.43 181.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.54 167.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.24 136.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.03 183.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.90 182.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.76 170.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.61 206.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.81 142.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.79 205.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.27 197.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.79 229.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.14 187.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.43 205.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.38 199.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.28 227.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.24 147.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.42 258.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.85 214.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.42 192.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.36 121.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.06 203.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 386.10 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.72 207.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.17 193.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.67 221.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.84 210.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.15 189.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.15 190.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.27 207.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.47 137.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.68 192.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.40 196.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.34 212.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.56 218.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.88 222.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.32 222.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.24 209.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.46 182.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.29 201.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.90 205.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.21 166.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.74 225.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.84 218.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.36 159.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.22 263.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.03 207.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.68 155.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.77 178.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.26 212.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.47 205.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.89 214.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.29 209.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.52 176.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.92 163.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.10 195.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.44 238.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.32 223.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.58 182.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.91 196.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.66 175.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.60 205.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.10 148.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.23 206.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.58 205.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.68 238.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.52 261.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.07 181.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.52 156.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.62 211.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 320.53 268.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.87 216.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.32 231.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.28 210.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.91 204.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.84 185.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.54 203.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.69 105.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.77 136.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.99 207.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.68 160.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.59 167.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.67 190.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.20 176.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.09 213.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.93 217.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.45 164.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.19 214.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.40 174.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.67 244.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.74 235.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.91 179.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.44 194.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.70 218.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.39 180.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.09 238.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 353.68 303.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.71 205.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.73 196.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.33 186.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.68 153.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.66 214.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.13 239.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.79 218.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.23 198.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.17 173.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.58 137.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.51 166.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.06 158.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.21 191.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.52 189.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.86 145.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.65 202.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.54 224.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.21 135.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.87 178.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.79 169.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.89 211.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.12 223.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.50 206.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.39 205.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.00 167.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.27 171.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.85 153.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.46 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.02 191.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.81 173.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.00 219.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.47 196.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.82 159.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.61 202.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.73 261.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.63 172.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.04 130.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.92 145.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.79 231.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.96 200.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.24 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.23 175.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.85 173.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.07 180.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.10 174.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.41 139.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.49 154.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.06 195.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.12 210.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.59 190.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.40 191.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.05 167.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.09 156.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.14 219.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.15 178.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.43 130.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.10 186.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.38 217.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.85 190.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.99 200.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.13 159.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.22 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.88 155.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.83 144.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.18 231.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.37 188.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.65 117.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.74 104.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.73 171.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.08 192.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.18 197.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.21 215.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.18 190.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.30 185.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.10 233.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.87 239.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.23 227.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.37 137.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.01 211.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.11 206.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.69 157.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.84 239.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.54 232.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.62 204.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.30 212.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.45 189.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.36 158.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.92 184.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.91 198.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.16 196.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.47 106.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.07 151.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.72 172.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.87 182.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.94 149.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.38 142.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.30 183.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.83 198.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.07 131.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.30 213.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.53 170.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.58 240.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.31 240.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.65 130.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.41 162.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.02 225.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.06 255.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.92 137.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.17 115.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.60 188.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.99 187.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.17 182.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.00 208.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.11 182.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.01 136.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.25 187.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.11 226.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.80 197.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.15 194.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.09 142.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.82 157.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.52 173.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.20 245.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.24 258.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.94 228.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.37 221.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.18 209.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.22 190.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.94 158.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.33 194.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.85 244.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.21 144.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.79 175.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.26 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.37 182.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.62 176.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.50 242.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.84 238.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.85 162.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.65 222.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.09 202.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.58 227.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.38 179.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.62 221.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.17 124.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.59 172.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.78 145.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.16 209.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.96 111.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.43 140.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.70 177.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.26 243.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.77 209.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.72 149.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.42 207.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.36 244.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.03 146.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.49 108.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.41 188.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.86 182.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.56 165.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.71 192.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.50 207.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.13 182.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.96 190.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.81 134.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.71 141.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.09 212.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.55 163.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.79 174.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.81 178.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.41 235.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.38 183.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.00 210.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.28 147.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.35 138.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.59 234.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.19 160.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.75 180.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.98 176.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.03 187.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.99 215.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.71 220.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.85 229.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.62 197.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.77 184.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.30 216.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.36 85.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.20 196.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.08 173.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.46 199.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.95 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.60 190.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.45 198.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.73 246.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.25 199.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.85 165.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.12 189.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.78 146.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.66 196.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.95 246.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.18 183.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.88 228.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.34 126.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.72 231.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.39 212.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.87 205.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.72 229.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.36 224.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.25 170.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.98 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.79 124.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.55 208.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.61 217.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.44 209.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.97 212.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.14 253.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.91 255.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.39 167.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.67 109.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.40 153.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.84 240.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.70 239.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.18 135.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.73 201.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.64 165.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.53 214.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.51 212.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.16 236.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.87 221.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.81 155.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.58 135.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.14 191.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.27 168.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.02 164.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.79 194.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.52 227.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.71 266.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.86 186.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.16 126.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.22 199.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.54 202.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.16 234.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.69 176.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.27 153.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.24 149.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.98 202.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.58 201.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.08 160.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.07 212.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.74 144.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.62 217.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.55 168.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.26 189.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.30 193.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.53 194.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.69 227.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 307.90 259.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.30 200.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.82 171.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.31 114.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.22 179.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.60 198.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.98 217.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.29 217.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.08 169.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.67 229.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.27 119.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.50 184.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.18 219.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.59 226.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.23 212.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.97 186.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.38 182.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.67 189.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.77 206.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.75 240.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.50 182.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.23 219.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.74 190.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.28 201.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.32 174.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.59 204.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.03 180.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.63 245.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.07 178.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.97 188.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.43 176.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.57 173.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.82 228.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.13 86.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 307.15 258.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.51 196.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.41 229.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.81 204.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.01 266.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.80 203.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.36 152.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.55 164.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.92 174.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.95 264.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.78 258.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.43 201.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.02 214.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.75 223.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.07 230.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.66 182.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.45 135.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.51 208.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.04 188.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.82 189.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.25 243.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.57 209.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.77 159.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.56 220.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.08 189.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.29 186.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.83 180.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.08 156.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.18 204.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.97 196.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.93 222.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.60 254.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.72 210.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.64 213.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.20 232.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.79 199.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.59 165.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.74 182.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.87 224.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.74 188.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.67 249.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.68 232.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.28 162.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.30 228.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.65 209.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.07 217.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.54 255.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.72 231.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.29 154.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.04 220.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.34 222.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.82 252.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.02 234.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.90 167.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.14 200.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.04 208.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.80 185.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.43 228.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.99 226.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.73 193.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.71 194.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.22 183.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.17 249.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 321.55 271.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.95 167.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.27 214.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.75 223.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.18 145.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.88 159.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.38 255.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.12 241.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.60 235.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.18 246.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.49 224.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.05 243.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.26 189.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.99 245.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.91 177.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.17 160.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.65 231.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.13 232.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.62 201.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.94 248.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.47 153.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.23 230.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.31 180.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.61 145.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.08 208.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.71 226.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.03 222.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.17 223.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.23 160.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.58 170.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.95 195.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.54 184.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.85 209.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.75 199.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.68 213.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.47 217.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 323.78 272.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.90 176.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.53 192.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.30 144.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.73 125.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.17 149.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.02 160.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.73 203.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.52 212.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.18 222.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.30 161.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 358.75 319.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.22 186.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.61 132.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.17 214.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.67 198.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.76 207.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.09 236.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.02 217.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.15 180.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.97 213.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.83 175.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.46 243.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.19 226.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.18 164.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.58 228.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.20 218.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.27 112.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.07 206.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.79 217.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.99 232.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.91 230.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.54 199.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.33 230.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.34 227.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.85 198.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.27 175.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.27 184.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.91 125.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.90 199.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.66 173.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.03 200.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.87 247.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.47 216.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.65 183.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.68 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.35 216.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.09 260.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.29 222.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.57 162.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.35 229.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.71 217.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.05 182.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.90 142.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.07 251.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.93 196.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.81 94.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.60 215.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 315.22 264.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.04 210.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.27 198.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.80 217.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.01 224.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.22 224.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.06 135.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.74 225.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.05 226.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 322.27 271.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.87 181.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.69 216.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.68 220.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.06 185.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.13 251.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.61 207.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 340.01 294.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 351.66 302.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.55 205.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.23 180.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.58 248.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.36 154.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.92 249.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 328.63 278.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.55 249.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.24 236.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.93 116.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.46 160.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.35 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.04 197.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.90 171.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.30 189.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.32 202.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.59 231.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.74 245.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.78 188.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.39 163.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.59 208.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.80 191.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.89 130.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.03 179.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.74 217.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.92 221.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.46 183.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.62 195.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.19 238.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.73 140.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.69 225.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.61 218.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.25 231.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.00 198.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.65 243.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.39 193.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.96 252.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.34 215.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.89 94.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.30 261.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.39 176.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.26 190.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.26 166.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.64 195.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.09 182.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.97 209.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.15 218.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.69 215.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.91 226.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.31 236.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.46 263.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.31 234.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.78 178.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.18 179.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.56 237.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.80 196.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.66 165.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.21 203.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.23 207.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.64 210.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.43 203.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.98 214.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.69 197.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.34 163.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.34 189.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.30 162.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.12 224.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.35 203.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.56 176.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.41 186.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 328.14 278.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.38 220.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.80 123.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.55 190.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.38 233.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.74 216.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.31 241.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.98 203.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.18 213.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 311.83 262.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.32 201.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.19 206.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.46 195.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.27 172.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.51 204.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 333.78 287.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 326.28 275.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.95 178.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.71 263.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.33 134.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.50 203.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.30 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.93 212.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.00 188.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.13 211.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.08 210.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.06 187.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 314.45 264.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.65 184.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.00 230.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.02 179.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.00 220.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.74 230.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.47 202.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.87 227.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.66 205.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.22 155.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.02 201.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.72 214.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.59 242.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.88 184.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.90 212.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.61 166.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.65 224.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.22 240.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.04 205.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.99 206.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.45 211.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.15 207.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.46 165.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.33 177.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.44 165.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.05 119.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.40 143.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.99 204.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.99 183.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.07 159.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.48 241.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.66 253.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.03 198.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.54 125.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.52 217.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.05 209.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.01 182.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.94 135.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.84 217.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.42 266.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.66 92.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.94 155.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.81 138.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.02 153.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.84 187.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.50 187.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.12 189.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.77 211.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.74 200.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.30 207.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.21 214.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.51 220.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 335.14 289.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.77 193.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.87 148.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.88 203.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.21 156.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.60 169.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.45 189.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.68 230.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 321.20 270.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.90 224.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.56 216.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.51 219.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.29 229.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.24 192.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.43 202.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.07 164.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.73 101.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.36 201.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.69 167.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.86 199.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.45 176.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.35 239.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.31 212.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.60 216.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.09 245.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.09 209.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.64 194.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.98 229.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.07 183.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.76 147.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.43 213.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.78 151.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.36 165.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.34 185.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.07 260.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.28 219.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.65 202.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.48 210.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.00 89.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.91 214.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.59 195.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.31 182.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.15 204.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.73 251.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.19 204.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.15 214.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.20 218.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.20 123.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.42 158.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.34 238.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.07 168.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.75 192.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.86 251.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.43 202.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.70 173.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.48 187.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.57 244.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 315.48 264.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.94 173.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.47 213.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.91 216.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.54 253.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.02 221.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.16 166.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.99 153.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.10 200.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.50 129.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.44 222.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.34 216.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.86 192.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.25 211.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.60 229.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.44 200.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.51 199.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.04 219.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.61 141.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.51 126.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.66 177.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.18 191.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.06 196.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.62 191.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.03 169.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.88 185.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.30 206.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.43 217.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.89 204.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.17 221.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.41 177.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.66 193.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.89 154.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.66 142.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.95 253.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.82 215.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.44 239.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.62 139.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.76 203.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.41 189.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.58 207.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.43 212.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.86 189.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.40 187.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.41 211.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.52 221.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.85 212.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.75 233.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.22 241.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.61 239.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 334.45 287.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 339.10 293.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 330.75 283.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.11 188.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.39 236.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.49 165.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.80 223.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.94 230.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.42 230.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.89 219.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.13 203.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.93 232.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.34 206.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.38 206.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.58 197.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.13 193.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.53 175.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 325.84 274.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.99 193.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 68.77 81.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.56 217.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.85 241.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.78 211.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.39 203.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.94 212.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.39 246.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.33 200.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.85 160.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.74 178.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.06 193.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.15 105.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.56 212.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 296.79 249.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.73 229.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.13 230.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.60 123.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.48 188.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.57 178.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 321.91 271.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.22 154.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.40 209.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.12 158.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.67 208.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.70 190.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.41 242.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.84 219.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.04 229.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.60 199.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.81 234.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.48 259.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.29 190.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.16 217.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.66 220.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.63 170.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.04 214.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.26 213.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.02 205.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.20 251.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.93 189.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.49 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.77 207.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.16 210.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.12 173.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.83 158.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.33 165.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.03 140.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.85 211.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.97 179.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.71 152.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.19 256.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.24 222.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.63 225.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.46 207.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.55 230.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.90 208.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.80 210.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.52 190.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.11 176.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.73 207.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.43 216.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.71 166.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.18 159.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.34 220.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.61 219.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.19 224.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.61 209.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.58 177.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.88 206.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.31 226.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.37 222.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.98 196.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.79 231.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.28 208.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.46 225.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.91 199.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.70 248.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.57 195.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.20 199.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.90 186.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.81 230.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.58 218.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.11 198.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.63 213.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.10 214.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.05 174.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.78 190.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.46 192.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.31 198.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.20 192.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.92 206.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.12 209.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.54 252.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.42 206.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.73 184.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.05 191.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.27 216.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.55 188.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.44 167.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.11 200.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.39 218.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.30 179.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.74 211.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.18 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.31 216.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.21 193.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.20 186.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.01 101.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.94 198.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.69 202.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.35 225.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.14 199.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.99 247.81 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 97.89 73.44 m 362.91 73.44 l S 97.89 73.44 m 97.89 66.24 l S 142.06 73.44 m 142.06 66.24 l S 186.23 73.44 m 186.23 66.24 l S 230.40 73.44 m 230.40 66.24 l S 274.57 73.44 m 274.57 66.24 l S 318.74 73.44 m 318.74 66.24 l S 362.91 73.44 m 362.91 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 91.05 47.52 Tm (-3) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 135.22 47.52 Tm (-2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 179.39 47.52 Tm (-1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 227.06 47.52 Tm (0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 271.23 47.52 Tm (1) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 315.40 47.52 Tm (2) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 359.57 47.52 Tm (3) Tj ET 59.04 123.52 m 59.04 353.03 l S 59.04 123.52 m 51.84 123.52 l S 59.04 200.02 m 51.84 200.02 l S 59.04 276.53 m 51.84 276.53 l S 59.04 353.03 m 51.84 353.03 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 116.68 Tm (-5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 196.69 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 273.19 Tm (5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 346.35 Tm (10) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 174.19 397.45 Tm (Normal Q-Q Plot) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 173.71 18.72 Tm (Theoretical Quantiles) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 175.85 Tm (Sample Quantiles) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 59.04 64.42 m 401.76 330.70 l S Q endstream endobj 178 0 obj << /CreationDate (D:20050415164841) /ModDate (D:20050415164841) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 179 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 180 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 186 0 R >> endobj 181 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 186 0 R >> endobj 182 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 186 0 R >> endobj 183 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 186 0 R >> endobj 184 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 185 0 obj 175531 endobj 186 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 177 0 obj << /D [175 0 R /XYZ 72 720 null] >> endobj 126 0 obj << /D [175 0 R /XYZ 209.243 263.81 null] >> endobj 174 0 obj << /Font << /F15 50 0 R /F36 91 0 R >> /XObject << /Im1 162 0 R >> /ProcSet [ /PDF /Text ] >> endobj 189 0 obj << /Length 281 /Filter /FlateDecode >> stream x]QMO0Wc9} Ą@XkיhPѠK-C0pW T)Ye]鹙Mkhay J:TF)4{u\3\ep@@Ӯ~.Eƞe/2a*>4Ľ3#9K>^ssXPLgЇkC_˚LqIqwvze>ܸT4[I *#Zn xendstream endobj 188 0 obj << /Type /Page /Contents 189 0 R /Resources 187 0 R /MediaBox [0 0 612 792] /Parent 153 0 R >> endobj 163 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mtNumDen.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 191 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 192 0 R /F2 193 0 R /F3 194 0 R /F4 195 0 R /F5 196 0 R /F6 197 0 R >> /ExtGState << >>>> /Length 198 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.80 227.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.59 212.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.11 199.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 329.58 191.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 341.43 160.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 328.80 165.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.43 207.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.11 206.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.84 200.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.14 201.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.76 237.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.27 240.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.39 250.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.20 190.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.63 198.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.19 203.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.51 182.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.15 226.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.61 204.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.39 220.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.72 215.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.79 205.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.35 168.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.24 195.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.93 170.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.87 223.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.89 197.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.21 200.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.08 211.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.21 195.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.21 198.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.43 222.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.27 198.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.50 188.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.38 217.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.21 221.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.41 194.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.82 204.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.25 186.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.46 217.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.69 208.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.04 211.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.79 218.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.97 186.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.62 208.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.94 213.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.47 186.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.68 188.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.03 220.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.63 216.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.13 180.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.06 194.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.26 216.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.04 192.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.67 176.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.73 228.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.40 204.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.95 199.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.31 173.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.56 223.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.05 191.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.09 242.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.30 183.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.05 211.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.52 195.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.38 164.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.85 223.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.51 259.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.71 191.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.19 211.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.74 194.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.89 215.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.25 216.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.14 162.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.77 186.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.27 202.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.86 180.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.82 182.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.55 181.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.35 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.57 154.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.86 228.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.26 189.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.77 179.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.55 213.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.01 201.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.23 200.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 86.38 196.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 84.75 192.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.02 211.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.54 201.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.59 196.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.59 194.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.58 190.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.41 192.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.88 157.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.96 204.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.30 193.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.71 201.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.99 220.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.77 220.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.01 189.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.52 200.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.36 175.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.01 231.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.26 189.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.26 191.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.75 240.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.12 193.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 81.46 210.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.38 196.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.88 163.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.75 218.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.40 189.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.68 236.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.59 191.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.02 179.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.81 203.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.89 195.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.70 191.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.26 152.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.52 191.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.58 191.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.74 184.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.27 217.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.45 166.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.22 167.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.13 189.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.00 203.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.01 224.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.31 203.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.20 204.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.93 198.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.98 196.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.70 164.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.12 191.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.93 213.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.33 184.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.88 216.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.85 254.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.56 245.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.80 184.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.54 204.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.43 199.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.57 217.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.88 202.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.25 194.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.72 185.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.22 188.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.08 200.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.44 175.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.86 220.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.16 182.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.07 178.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.78 225.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.37 180.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.73 213.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.60 176.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.61 183.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.46 212.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.64 192.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.36 207.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.83 174.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.47 198.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.74 206.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.19 197.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.47 169.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.23 217.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.05 205.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.10 198.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.16 187.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.78 176.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.87 208.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.48 160.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.40 207.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.83 195.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.40 179.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.04 176.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.42 194.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.16 190.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.22 227.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.42 161.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.38 203.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.90 170.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.34 185.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.89 198.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.79 180.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.01 175.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.98 175.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.30 224.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.47 211.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.26 173.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.89 173.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.29 179.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.24 176.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.25 206.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.84 200.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.39 192.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.93 197.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.78 195.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.05 189.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.03 167.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.90 192.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.29 151.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.89 177.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.93 176.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.49 165.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.34 192.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.48 211.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.21 184.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.86 206.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.80 186.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.98 188.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.87 184.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.84 253.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.79 213.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.11 196.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.47 180.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.98 204.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.50 157.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.37 194.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.41 195.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.47 205.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.15 187.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.42 193.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.12 177.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.69 172.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.60 174.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.98 235.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.30 178.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.96 212.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.32 148.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.35 190.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.56 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.54 177.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.85 205.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.41 173.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.93 196.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.59 164.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.62 186.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.15 179.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.78 185.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.39 215.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.52 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.23 205.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.00 177.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.75 199.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.99 165.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.18 185.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.37 187.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.57 202.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.12 203.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.66 165.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.37 182.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.80 197.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.17 205.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.73 199.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.84 179.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.28 155.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.92 192.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.75 217.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.16 194.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.88 220.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.85 215.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.05 192.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.12 198.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.65 210.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.24 199.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.33 214.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.80 170.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.19 180.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.79 202.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.78 188.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.37 227.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.47 200.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.36 196.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.31 191.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.46 206.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.31 190.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.36 207.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.50 201.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.62 178.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.51 177.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.68 200.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.60 168.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.81 161.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.51 206.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.50 180.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.58 180.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.22 183.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.84 177.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.93 199.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.84 215.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.87 175.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.47 177.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.50 193.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.25 159.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.44 186.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.35 199.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.78 202.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.22 214.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.15 200.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.90 250.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.81 161.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.19 206.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.57 193.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.85 159.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.36 213.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.24 164.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.17 253.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.42 204.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.77 182.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.27 177.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.16 161.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.21 202.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.68 182.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.20 207.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.36 170.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.58 203.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.60 176.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.31 214.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.28 217.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.53 166.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.42 189.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.04 174.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.14 194.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.90 190.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.41 184.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.20 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.79 148.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.73 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.21 194.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.83 186.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.75 175.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.63 172.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.69 188.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.98 163.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.79 193.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.22 207.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.74 203.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.65 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.52 173.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.91 192.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.68 147.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.79 137.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.59 247.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.60 171.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.22 188.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.56 191.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.47 260.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.50 224.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.34 203.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.19 192.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.16 194.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.12 217.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.12 204.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.38 169.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.63 192.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.48 182.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.42 180.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.81 210.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.25 183.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.81 176.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.79 186.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.13 186.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.08 188.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.97 208.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.99 184.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.99 167.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.36 186.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.53 194.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.39 207.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.04 189.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.58 209.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.75 215.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.07 173.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.62 99.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.54 307.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.81 205.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.58 203.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.52 237.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.95 217.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.77 212.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.21 205.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.54 186.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.67 205.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.29 190.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.57 206.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.71 175.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.98 232.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.04 180.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.77 195.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.57 198.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.53 144.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.36 159.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.58 200.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.20 212.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.29 167.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.28 176.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.86 221.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.82 224.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.63 182.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.81 208.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.15 214.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.32 210.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.89 211.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.06 169.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.45 198.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.03 204.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.55 199.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 85.99 199.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.82 203.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.61 217.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.97 196.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.35 212.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.56 207.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.32 210.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.48 255.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.07 240.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.13 228.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.63 183.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.98 152.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.70 189.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.40 197.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.00 199.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.73 183.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.98 215.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.78 194.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.50 184.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.18 216.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.03 212.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.80 218.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.62 201.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.09 215.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.52 188.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.95 269.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.57 212.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.79 205.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.18 204.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.85 190.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.06 189.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.37 203.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.83 215.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.12 205.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.09 179.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.03 178.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.49 184.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.35 194.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.02 176.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.10 230.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.96 194.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.66 182.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.86 185.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.14 176.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.64 186.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.97 209.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.74 203.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.43 199.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.04 193.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.04 185.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.70 190.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.04 158.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.92 204.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.34 191.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.66 199.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.96 200.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.74 196.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.99 182.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.29 188.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.45 241.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.68 215.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.94 191.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.86 211.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.65 215.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.34 257.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.26 210.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.76 213.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.49 168.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.59 184.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.13 212.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.46 218.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.68 213.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.88 221.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.87 193.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.91 199.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.81 192.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.64 206.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 80.76 199.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.41 151.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.53 172.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.62 186.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.37 192.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.35 182.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.24 179.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.89 204.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 288.80 260.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.48 227.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.14 252.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.99 197.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.42 180.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.95 202.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.77 222.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.34 192.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.00 168.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.76 197.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 347.89 169.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.75 194.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.60 190.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.94 263.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.84 193.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.97 219.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.23 222.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.26 202.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.67 184.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.57 106.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.19 172.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.38 204.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.38 214.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.13 215.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.94 182.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.14 268.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.99 164.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.02 123.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.70 187.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.60 196.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.50 236.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.85 178.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.13 246.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.41 150.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.78 193.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.73 218.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.24 225.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.28 191.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.77 215.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.09 207.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.04 217.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.89 201.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.33 180.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.92 224.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.80 228.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.12 188.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.33 185.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.28 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.26 174.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.52 199.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.52 157.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.82 229.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.18 192.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.90 205.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.74 205.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.54 173.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.90 190.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.15 209.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.17 208.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.14 181.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.48 201.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.42 182.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.48 209.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.24 169.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.35 177.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.35 165.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.56 216.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.94 160.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.15 184.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.24 198.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.16 259.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.58 187.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.28 228.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.47 227.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.43 197.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.51 143.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.13 197.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.61 187.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.10 191.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.69 218.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.73 210.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.88 213.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.10 195.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.82 189.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.36 248.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.27 212.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.29 198.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.23 237.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.54 212.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.67 207.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.59 189.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.14 197.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.45 222.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.54 206.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.86 176.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.61 194.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.85 192.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.03 208.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.50 218.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.60 195.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.20 191.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.57 208.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.97 203.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.70 189.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.35 214.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.01 210.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.19 199.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.09 193.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.69 202.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.12 175.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.50 220.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.68 194.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.82 215.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.53 190.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.50 180.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.49 158.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.72 203.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.62 221.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.64 197.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.54 170.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.80 201.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.91 242.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.25 223.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.53 227.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.99 175.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.69 165.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.56 215.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.19 207.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.46 238.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.79 200.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.89 210.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.13 177.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.93 250.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.09 236.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.30 210.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.67 191.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.36 200.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.63 210.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.25 174.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.59 198.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.71 196.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.04 211.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.40 200.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.27 189.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.68 182.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.38 198.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.54 215.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.68 210.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.79 200.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.80 179.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.48 202.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.11 217.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.56 166.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.70 202.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.62 237.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.12 182.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.58 195.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.76 229.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.83 195.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.77 191.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.14 205.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.34 199.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.33 195.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.55 189.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.66 186.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.13 189.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.27 216.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.54 187.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.31 218.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.68 209.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.34 229.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.58 202.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.75 204.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.16 219.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.04 204.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.83 184.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.00 192.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.66 200.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.53 200.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.28 166.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.53 216.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.36 217.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.59 189.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.08 177.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.86 202.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.85 194.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.02 205.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.42 197.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.33 203.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.73 183.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.18 176.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.87 200.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.65 149.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.62 180.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.44 195.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.77 195.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.77 196.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.07 182.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.49 219.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.92 158.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.62 186.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.10 191.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.95 182.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.16 220.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.87 219.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.35 163.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.76 194.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.42 152.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.15 164.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.74 221.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.35 205.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.82 197.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.54 193.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.04 259.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.89 184.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.11 178.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.71 204.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.64 167.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.48 197.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.00 185.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.58 211.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.27 117.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.96 175.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.28 230.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.90 177.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.40 195.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.36 201.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.92 211.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.33 193.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.62 158.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.05 179.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.60 201.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.89 213.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.02 210.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.23 176.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.25 202.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.25 235.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.86 170.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.10 194.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.39 227.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.03 209.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.80 197.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.06 103.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.45 216.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.36 201.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.90 191.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 336.29 128.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.00 193.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.17 218.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.30 198.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.01 132.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.13 204.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.23 197.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.84 215.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.42 231.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.77 208.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.14 200.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.05 165.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.31 194.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.67 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.18 223.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.82 233.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.11 186.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.39 217.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.02 209.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.51 217.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.67 208.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.99 156.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.61 164.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.18 203.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.55 276.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.40 200.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.03 214.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.08 228.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.26 182.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.60 184.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.28 190.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 320.49 320.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.14 234.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.23 219.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.61 187.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.50 174.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.27 196.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.85 246.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.83 235.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.18 263.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.41 240.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.70 219.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.39 215.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.05 174.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.88 233.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.41 201.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.96 169.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.59 274.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.54 197.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.25 204.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.95 261.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.19 174.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.42 202.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.85 183.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.45 202.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.64 170.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.06 206.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.21 189.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.27 183.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.56 150.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.26 220.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.02 270.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.51 190.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.65 202.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.00 205.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.96 182.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.41 268.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.82 223.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.86 199.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.08 166.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.58 208.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.98 192.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.13 211.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.00 218.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.17 223.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 80.68 195.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.28 223.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.65 206.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.58 206.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.40 228.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.77 230.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.74 208.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.65 243.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.94 195.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.18 200.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.39 242.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.24 178.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.16 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.99 225.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.64 219.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.00 203.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.33 160.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.61 196.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.93 172.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.41 208.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.59 177.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 81.97 177.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.31 135.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.17 193.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.97 238.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.59 175.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.70 200.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.25 211.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.81 241.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.80 174.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.59 199.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.19 249.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.36 159.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.70 199.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.95 192.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.57 185.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.76 229.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.25 217.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.63 212.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.96 188.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.09 221.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.22 165.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.98 201.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.18 281.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.03 223.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.82 156.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.58 202.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.05 187.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.41 230.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.63 155.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.36 189.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.99 221.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.81 232.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.21 208.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.89 185.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.74 215.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.63 214.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.33 206.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.83 182.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.27 204.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.14 176.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.47 204.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.40 196.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.45 212.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.51 210.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.59 186.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.64 208.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.65 206.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.70 183.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.01 188.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.93 208.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.18 238.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.59 184.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.29 175.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.64 222.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.10 141.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.43 159.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.59 260.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.97 204.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.13 241.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.71 204.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.12 196.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.67 224.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.63 211.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.91 190.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.86 207.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.68 192.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.42 303.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.71 225.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.60 184.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.89 206.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.94 212.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 338.86 146.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.88 245.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.46 191.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.03 184.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.43 202.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.63 228.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.08 196.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.85 201.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.49 200.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.23 192.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.99 207.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.43 187.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.29 231.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.01 161.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.08 206.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.78 181.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.00 202.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.07 206.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.97 222.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.58 225.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.10 203.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.82 216.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.54 209.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.01 246.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.78 207.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.85 190.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.88 194.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.25 185.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.97 250.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.04 220.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.81 215.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.05 187.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.88 206.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.70 247.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.46 188.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.42 204.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.12 224.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.59 203.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.07 183.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.77 228.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.02 191.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.86 224.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.21 199.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.31 181.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.39 202.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.61 188.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.89 208.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.65 202.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.20 218.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.74 194.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.44 201.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.75 191.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.09 202.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.68 181.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.07 141.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.27 235.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.23 183.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.92 178.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.65 184.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.78 260.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.34 205.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.52 183.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.26 162.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.26 222.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.06 198.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.25 178.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.45 202.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.15 205.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.17 170.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.44 168.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.56 193.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.31 209.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.63 226.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.41 204.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.02 202.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.34 171.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.53 173.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.18 208.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.44 216.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.31 252.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.48 199.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.32 177.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.85 199.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.30 243.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.30 202.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.19 217.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.06 239.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.46 209.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.40 185.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.63 235.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.14 205.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.88 213.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.42 213.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.59 195.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.89 189.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.82 198.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.98 235.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.24 163.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.30 181.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.97 224.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 322.56 331.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.10 224.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.15 161.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.77 199.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.80 191.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.93 180.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.01 190.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.24 181.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.13 195.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.74 189.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.64 134.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.78 187.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.83 180.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.71 199.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.58 213.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.84 214.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.67 184.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.43 196.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.40 182.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.27 199.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.93 201.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.74 112.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.94 208.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.79 207.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.89 189.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 308.12 289.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.25 201.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.48 213.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.23 134.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.84 288.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.03 198.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.77 192.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.45 211.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.45 131.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.55 204.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.45 244.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.40 168.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.81 196.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.90 160.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.05 265.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.00 198.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.38 206.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.97 211.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.88 204.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.90 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.04 202.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.46 181.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.88 212.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.40 188.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.78 186.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.88 195.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.36 158.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.21 175.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.32 238.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.03 212.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.94 227.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.31 227.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.08 235.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.75 199.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.94 222.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.79 308.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.58 169.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.53 206.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.00 195.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.24 195.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.61 213.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.09 185.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.42 209.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.18 220.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.12 165.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.08 220.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.00 195.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.12 158.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.06 199.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.48 188.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.38 201.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.16 222.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.97 153.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.35 203.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.69 204.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.66 200.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.67 207.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.84 205.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.24 208.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.52 218.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.85 167.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.81 195.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.53 202.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.92 214.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.96 190.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.08 205.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.10 198.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.06 172.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.55 225.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.16 196.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.55 213.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.72 185.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.05 198.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.48 213.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.47 183.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.51 149.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.48 171.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.43 189.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.61 226.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.99 201.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.15 213.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.64 194.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.41 194.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.07 169.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.13 198.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.15 194.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.43 213.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.98 210.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.97 230.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.43 246.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.90 229.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.96 216.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.88 167.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.23 202.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.90 207.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.14 225.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.40 220.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.53 221.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.28 205.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.83 183.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.78 220.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.98 207.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.12 198.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.79 215.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.65 241.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.83 197.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.72 184.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.17 287.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.71 188.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.33 219.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.80 198.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 81.24 180.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.53 187.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.11 199.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.45 187.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.85 206.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.39 241.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.54 220.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.39 191.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.31 208.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.59 208.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.44 206.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.18 198.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.41 193.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.11 216.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.26 194.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.76 194.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.37 160.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.55 94.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.54 172.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.61 219.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.13 202.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.02 193.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.23 181.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.27 217.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.54 197.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.78 223.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.41 224.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.64 201.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.47 183.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.39 185.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.54 167.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.37 170.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.94 184.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.39 194.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.28 193.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.73 204.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.21 180.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.77 190.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.68 200.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.12 218.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.13 218.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.24 181.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.38 201.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.78 221.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.68 208.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.87 191.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.92 204.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.38 190.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.78 179.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.07 232.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.96 204.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.93 207.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.32 172.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.64 182.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.21 190.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.67 202.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.50 201.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 91.41 182.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.80 172.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.65 207.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.42 192.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.01 134.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.65 204.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.95 219.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.15 225.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.69 214.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.60 214.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.16 204.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.92 193.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.37 201.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.45 191.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.34 194.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.90 208.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.17 212.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.53 206.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.43 222.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.20 178.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.75 190.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.84 191.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.30 192.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.07 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.70 209.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.02 230.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.18 186.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.99 217.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.58 191.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.54 185.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.14 194.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.32 199.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.22 198.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.61 213.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.50 202.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.95 231.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 81.79 189.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.39 229.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.28 196.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.51 202.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.61 221.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.04 261.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.73 186.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.58 151.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.68 199.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.47 225.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.27 203.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.48 204.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.10 204.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.18 200.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.19 185.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.48 170.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.01 190.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.55 177.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.13 223.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.90 203.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.31 183.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.90 211.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.87 208.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.16 200.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.42 191.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.62 199.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.32 194.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.85 210.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.26 198.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.22 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.03 210.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.82 188.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.20 191.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.44 156.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.66 212.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.83 172.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.84 199.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.02 207.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 79.99 200.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.40 189.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.41 185.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.09 203.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.80 197.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.53 198.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.27 180.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.42 207.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.81 202.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.80 186.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.05 190.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.43 190.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.63 166.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.20 169.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.57 179.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.17 191.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.83 182.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.76 168.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.72 198.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.03 164.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.06 205.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.51 194.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.86 171.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.12 214.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.60 234.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.57 194.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.83 193.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.78 195.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.09 204.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.32 189.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.89 199.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.30 243.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.27 233.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.42 206.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.80 181.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.47 195.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.42 252.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.19 198.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.59 191.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.29 244.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.72 147.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.65 173.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.83 187.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.71 212.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.72 222.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.96 213.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.37 202.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.69 201.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.58 188.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.22 192.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.99 192.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.21 163.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.72 202.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.68 182.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.41 186.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.03 213.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.24 212.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.00 194.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.26 130.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.29 213.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.87 197.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.59 169.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.02 236.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.59 217.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.62 175.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.79 169.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.56 194.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.48 217.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.15 208.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.94 211.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.84 191.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.09 165.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.83 159.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.63 205.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.61 198.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.03 184.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.10 152.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.30 190.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.27 184.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.50 186.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.32 214.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.35 208.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.87 197.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.12 165.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.11 162.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.97 233.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.11 208.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.32 194.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.72 177.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.01 205.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.32 198.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.17 212.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.57 164.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.47 177.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.67 205.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.57 197.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.01 187.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.14 236.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.07 214.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.53 203.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.68 205.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.06 187.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.32 253.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.44 209.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.44 224.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.78 159.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.65 186.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.48 222.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.19 207.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.30 213.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.35 200.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.94 206.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.66 171.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.04 217.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.37 171.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.45 262.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.72 179.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.84 206.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.70 206.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.87 210.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.22 227.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.19 198.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.84 209.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.98 189.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.54 198.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.52 206.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.42 205.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.10 214.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.13 208.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.54 209.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.89 227.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.58 201.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.58 219.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.12 219.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.47 188.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.24 238.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.59 217.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.41 296.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.22 199.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.89 205.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.93 202.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.93 251.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.73 229.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.04 193.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.83 206.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.35 179.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.19 198.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.23 206.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.38 210.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.79 183.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.60 175.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.71 216.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.99 159.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.53 214.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.25 219.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.08 195.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.61 199.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 75.34 197.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.80 193.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.06 186.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.88 203.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.49 184.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.77 221.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.28 240.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.51 186.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.25 175.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.49 218.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.28 197.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.50 201.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.32 168.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.29 193.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.82 186.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.69 244.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.10 225.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.32 214.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.29 197.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.45 217.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.90 177.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.52 177.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.64 157.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.71 168.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.07 219.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.57 210.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.70 174.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.15 199.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.97 188.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.53 204.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.89 191.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.31 201.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.58 196.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.22 178.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.44 191.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.86 175.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.22 184.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.50 182.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.97 230.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.44 207.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.97 196.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.69 176.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.05 227.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.56 206.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.24 198.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.19 176.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.17 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.65 165.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.24 186.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.10 205.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.95 205.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.10 185.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.54 205.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.33 196.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.98 210.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.30 219.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.97 178.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.87 205.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.99 164.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.52 211.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.88 225.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.84 199.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.61 213.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.23 201.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.72 235.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.35 202.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 91.16 194.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.61 205.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.55 175.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.31 195.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.33 203.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.97 223.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.27 190.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.47 211.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.53 192.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.06 176.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.75 184.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.87 181.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.59 208.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.39 218.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.03 151.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.71 220.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.23 184.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.65 279.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.08 195.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.50 212.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.51 175.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.51 214.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.09 200.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.92 203.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.15 262.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.14 158.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.96 191.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.18 216.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.48 194.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.89 212.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.69 210.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.63 189.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.17 176.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.15 196.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.38 199.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.00 194.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.55 221.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.82 238.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.94 198.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.55 186.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.25 212.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.01 196.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.01 200.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.49 165.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.31 162.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.72 199.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.64 198.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.77 196.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.69 163.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.03 215.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.57 189.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.19 201.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.58 192.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.28 200.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.56 243.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.57 173.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.22 198.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.68 236.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.95 184.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.24 219.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.20 166.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.65 192.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.01 184.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.95 169.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.68 221.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.25 175.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.41 177.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.18 187.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.83 200.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.76 191.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.87 239.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.05 207.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.32 182.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.18 197.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.87 188.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.55 193.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.87 201.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.34 234.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.25 199.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.30 206.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.39 180.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.15 226.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.79 201.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.95 205.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.96 212.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.33 199.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.57 146.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.94 188.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.94 197.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.73 200.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.21 219.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.47 198.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.87 211.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.03 255.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.44 202.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.06 164.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.34 224.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.13 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.99 197.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.87 153.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.04 199.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.06 201.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.02 246.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.00 207.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.62 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.19 174.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.73 186.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.02 191.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.24 195.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.23 186.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.60 190.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.23 173.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.50 270.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.42 202.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.47 169.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.94 194.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.78 209.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.46 164.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.10 217.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.45 193.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.14 170.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.00 182.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.95 184.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.07 196.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.83 208.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.34 209.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.94 206.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.52 215.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.49 207.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.15 200.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.22 155.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.85 204.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.59 181.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.73 197.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.58 190.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.23 222.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.32 200.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.21 181.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.54 207.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.21 169.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.70 214.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.26 161.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.40 178.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.85 168.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.94 200.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.78 190.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.84 197.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.10 202.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.27 227.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.25 160.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.97 170.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.48 195.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.30 212.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.83 236.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.01 166.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.62 211.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.94 212.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.31 182.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.73 200.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 91.44 190.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.87 220.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.81 175.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.30 190.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.66 204.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.67 177.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.70 204.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.86 263.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.13 192.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.89 209.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.87 184.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.10 194.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.44 220.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.12 175.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.16 211.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.15 192.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.89 202.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.03 207.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.81 265.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.52 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.82 199.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.83 178.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.01 196.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.45 189.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.15 223.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.20 221.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.32 174.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 79.28 201.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.11 196.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.13 197.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.23 182.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.94 205.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.70 187.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.04 166.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.96 189.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.30 208.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.33 203.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.30 188.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.72 156.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.32 201.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.90 172.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.87 177.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.57 192.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.29 170.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.90 186.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.44 201.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.75 192.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.08 190.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.01 223.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.06 182.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.55 191.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.03 185.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.64 204.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.39 196.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.03 180.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.94 201.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.13 191.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.91 208.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.80 181.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.43 216.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.68 184.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.20 175.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.77 198.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.61 202.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.75 199.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.68 179.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.27 185.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.96 191.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.31 180.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.24 197.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.11 225.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.60 195.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.01 195.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.93 190.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.74 133.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.90 168.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.77 197.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.62 198.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.14 208.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.96 249.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.44 200.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.01 187.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.26 212.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.00 191.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.29 177.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.97 207.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.69 177.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.77 188.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.63 197.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.57 203.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.62 204.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.27 201.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.03 207.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.45 202.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.21 149.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.85 193.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.15 268.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.99 210.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.24 175.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.08 195.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.32 213.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.06 188.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.53 205.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.22 213.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 351.43 246.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.86 223.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.46 192.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.03 183.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.31 170.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.79 235.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.57 282.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.47 207.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.47 178.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.39 223.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.34 248.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.00 179.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.96 253.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.84 171.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.16 208.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.55 182.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.17 282.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.24 185.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.84 236.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.71 192.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.67 212.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.93 217.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.56 257.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.04 213.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.59 186.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.68 181.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.55 203.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.18 213.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.91 204.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.57 190.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.80 191.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.61 179.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.90 219.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.52 172.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.65 201.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.50 226.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.04 237.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.22 203.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.81 210.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.08 195.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.85 226.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.96 210.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.06 188.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.88 155.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.99 164.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.00 177.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.33 211.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.82 176.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.85 216.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.80 153.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.15 185.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.31 188.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.68 201.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.57 181.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.14 224.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.02 157.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.11 191.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.00 188.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.33 201.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.40 182.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.31 204.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.22 239.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.55 230.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.76 257.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.85 242.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.46 168.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.39 175.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.65 286.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.28 255.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.24 221.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.41 186.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.11 214.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.47 153.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.31 195.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.42 190.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.94 271.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.90 216.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.51 228.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.84 197.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.78 208.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.96 220.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.51 214.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.41 205.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.93 187.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.70 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.46 201.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.54 215.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.47 250.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.44 175.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.07 172.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.18 206.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.35 207.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.24 200.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.78 181.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.63 174.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.49 175.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.70 208.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.19 176.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.82 173.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.60 215.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.45 209.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.00 245.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.22 191.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.30 182.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.73 171.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.24 218.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.18 210.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.31 174.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.37 200.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.50 195.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.61 205.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.70 174.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.59 192.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.82 205.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.70 177.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.43 200.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.37 217.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.34 192.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.00 186.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.59 128.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.72 129.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.59 127.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.31 216.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.46 208.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.76 204.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.94 134.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.67 217.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 74.18 205.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.86 189.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.29 196.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.95 199.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.43 210.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.17 227.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.97 196.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.91 206.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.57 181.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.40 194.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.69 221.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.70 173.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.06 270.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.49 209.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.64 175.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.26 208.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.82 201.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.68 226.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.67 267.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.75 178.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.88 125.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.05 222.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.49 270.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.13 226.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.46 220.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.75 232.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.15 205.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.39 160.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.39 185.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.52 210.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.22 187.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.12 153.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.78 187.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.11 212.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.22 210.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.44 211.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.74 204.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.62 182.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.36 255.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.18 242.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.22 190.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.04 212.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.03 192.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.68 182.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.67 210.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.38 172.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.46 214.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.92 199.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.59 188.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.64 187.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.47 155.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.54 213.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.78 210.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.31 205.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.00 181.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.47 184.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.91 177.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.03 200.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.19 164.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.71 151.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.11 167.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.26 208.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.77 189.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.52 188.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.92 199.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.31 237.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.14 146.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.69 193.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.61 190.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.91 198.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.24 155.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.34 203.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.11 189.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.14 168.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.29 169.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.32 182.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.89 194.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.76 212.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.08 209.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.68 243.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.36 159.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.79 215.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.38 192.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.97 191.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.93 186.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.44 217.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.75 233.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.60 203.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.42 253.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.01 154.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.60 170.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.61 178.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.36 147.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.15 206.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.01 200.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.53 197.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.71 159.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.23 166.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.51 214.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.95 197.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.71 212.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.19 203.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.02 182.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.66 188.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.21 175.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.95 199.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.77 121.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.87 204.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.06 195.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.79 237.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.65 192.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.40 179.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.59 193.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.66 156.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.17 203.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.13 237.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.06 193.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.20 187.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.69 196.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.77 204.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.51 199.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.04 216.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.92 215.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.53 189.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.13 198.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.92 195.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.61 200.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.24 200.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.37 197.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.63 190.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.64 186.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.17 142.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.89 200.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.88 207.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.24 191.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.14 218.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.85 209.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 334.35 284.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.62 185.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.28 217.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.44 196.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.11 202.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.68 215.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.99 179.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.98 210.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.43 201.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.02 204.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.13 236.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.99 229.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.85 220.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.06 164.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.57 183.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.69 201.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.97 193.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.67 219.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.70 195.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.39 183.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.92 211.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.08 208.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.07 221.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.00 202.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.91 193.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.30 196.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.96 170.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.21 212.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.19 204.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.80 209.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.75 215.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.45 199.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.83 204.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.08 201.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.18 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.37 183.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.44 206.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.32 176.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.03 217.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.99 81.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.78 210.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.82 188.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.49 190.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.22 186.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.56 203.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.17 205.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.20 185.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.15 185.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.20 225.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.26 197.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.26 167.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.02 187.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.10 207.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.19 172.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.36 174.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.57 213.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.98 198.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.21 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.65 200.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.85 206.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.95 200.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.43 140.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.61 195.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.21 191.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.44 221.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.33 195.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.41 174.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.95 212.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.23 187.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.46 205.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.53 174.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.06 192.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.45 198.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.83 206.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.24 215.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.42 267.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.97 222.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.60 195.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.97 187.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.59 178.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.29 192.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.97 193.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.53 179.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.00 205.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.30 179.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.81 204.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.29 200.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.28 218.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.58 193.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.61 207.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.35 202.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.90 217.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.71 177.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.06 260.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.58 210.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.35 195.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.43 172.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.16 207.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.72 303.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.13 205.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.94 197.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 86.23 206.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.74 208.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.74 197.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.49 197.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.95 215.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.33 169.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.35 196.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.19 199.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.48 208.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.91 211.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.26 207.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.52 211.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.18 215.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 75.50 196.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.68 201.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.08 204.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.26 188.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.81 214.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.78 208.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.56 184.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.77 227.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.16 205.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.22 183.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.53 192.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.99 210.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.36 206.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.83 207.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.80 207.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.21 185.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.42 171.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.90 199.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.07 223.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.38 215.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.56 192.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.37 199.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.28 186.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.93 203.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.65 171.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.22 206.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.32 204.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.35 217.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.18 231.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.76 195.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.57 176.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.65 210.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.97 245.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.94 209.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.12 214.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.24 207.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.78 204.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.25 194.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.36 203.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.47 165.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.93 162.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.42 208.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.68 180.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.07 181.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.70 197.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.29 190.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.43 211.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.33 212.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.86 178.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.77 212.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.22 186.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.07 215.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.08 217.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.97 191.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.23 198.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.22 215.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.95 194.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.97 216.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.89 258.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.02 204.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.94 200.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.21 190.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.99 173.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.46 205.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.08 253.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.22 212.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.17 200.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.29 185.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.01 142.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.52 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.98 179.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.89 196.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.13 196.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.17 155.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.01 203.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.31 246.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.55 175.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.39 183.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.54 161.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.55 208.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.32 219.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.77 204.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.48 205.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.37 188.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.86 181.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.94 180.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.54 222.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.73 198.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.97 190.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.86 214.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.26 199.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.11 161.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.90 202.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.68 227.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.11 187.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.77 160.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.40 159.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.68 228.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.80 202.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.83 205.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.05 193.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.57 189.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.44 192.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 77.23 195.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.59 174.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.75 186.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.77 199.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.08 208.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.06 194.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.05 197.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.91 183.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.20 160.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.60 208.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.52 195.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.68 155.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.91 193.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.03 213.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.76 197.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.59 203.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.28 184.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.47 199.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.21 169.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.25 159.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 75.08 208.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.13 196.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.86 176.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.82 112.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.39 189.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.55 198.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.82 200.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.51 205.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.46 197.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.00 196.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 352.22 273.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.62 247.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.85 230.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.40 171.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.42 204.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.30 203.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.32 189.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.16 250.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.79 213.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.63 207.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.23 208.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.65 197.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.27 162.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.23 192.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.65 200.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.85 200.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.99 150.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.52 178.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.85 178.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.20 190.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.31 183.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.13 169.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.23 192.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.79 200.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.20 169.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.31 210.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.70 190.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.76 253.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.40 222.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.18 153.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.34 185.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.13 229.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.29 247.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.62 136.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.57 165.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.84 195.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.05 194.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.30 191.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.10 209.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.92 191.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.79 157.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.12 194.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.71 225.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.59 200.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.27 199.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.76 168.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.09 180.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.34 193.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.89 245.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.27 229.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.06 212.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.37 216.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.87 208.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.14 197.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.85 177.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.77 198.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.26 229.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.21 180.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.53 192.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.61 199.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.12 192.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.35 194.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.62 240.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.50 245.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.31 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.85 221.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.78 203.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.08 221.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.03 185.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.27 222.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.17 165.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.73 187.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.76 183.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.17 208.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.02 158.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.06 176.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.83 188.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.10 227.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.45 206.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.38 180.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.51 205.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.33 220.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.10 174.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.06 171.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.02 192.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.51 190.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.05 184.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.40 197.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.47 204.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.85 194.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.51 198.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.69 161.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.00 183.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.57 206.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.45 176.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.04 188.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.17 195.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.67 236.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.56 192.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.96 214.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.91 177.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.39 181.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.07 228.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.43 184.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.47 193.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.57 182.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.05 195.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.65 213.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.48 209.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.84 219.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.99 200.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.15 190.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.33 212.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.38 145.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.62 200.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.82 182.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.63 201.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.38 192.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.43 196.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.17 201.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.80 277.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.50 201.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.58 184.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.05 195.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.41 172.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.42 199.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.08 243.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.42 192.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.54 219.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.47 129.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.29 223.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.06 205.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.01 204.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.45 216.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.78 222.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.09 177.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.87 212.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.08 160.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.89 208.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.20 214.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.10 208.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.02 210.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.50 228.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 68.77 212.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.88 188.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.83 157.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.70 188.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.73 229.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.55 240.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.98 172.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.59 204.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.98 182.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.75 207.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.37 207.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.65 233.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.83 214.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.50 182.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.61 168.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.60 195.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.90 179.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.33 172.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.20 197.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.37 210.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.39 223.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.26 185.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.99 170.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.23 201.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.82 202.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.05 223.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.57 190.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.46 182.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.45 169.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.45 205.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.48 202.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.59 187.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.66 206.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.09 179.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.82 214.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.90 189.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.85 196.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.58 196.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.83 198.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.51 226.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.62 244.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.53 201.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.79 178.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.71 109.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.07 184.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.35 201.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.65 207.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.07 207.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.95 186.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.17 217.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 79.64 181.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 386.10 170.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.71 217.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.54 213.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.75 213.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.36 187.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.87 190.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.20 195.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.45 205.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.21 231.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.59 189.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.07 223.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.35 197.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.87 201.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.32 192.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.05 205.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.56 193.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.78 218.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.86 187.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.38 194.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.64 188.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.95 188.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.34 229.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.52 114.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.53 224.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.50 200.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.73 225.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.48 205.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.46 251.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 88.26 202.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.01 183.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.21 187.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.10 184.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.83 273.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.22 253.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.27 203.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.87 208.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.81 215.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.87 232.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.16 196.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.00 180.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.47 206.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.67 193.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.08 195.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.68 248.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.79 207.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.48 172.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.21 216.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.86 196.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.36 192.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.83 193.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.81 167.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.24 202.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.29 199.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.43 216.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.93 224.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.64 212.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.81 214.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.61 216.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.34 202.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.11 177.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.82 191.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.95 215.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.93 195.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.19 258.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.11 239.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.59 184.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.24 213.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.56 208.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.46 212.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.79 223.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.27 218.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.29 177.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.97 215.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.21 218.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.21 236.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.26 247.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.09 177.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.92 202.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.02 210.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.72 192.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.32 223.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.49 215.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.99 196.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.98 197.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.96 193.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.15 254.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.73 295.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.02 167.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.61 226.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.54 221.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.97 183.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.86 180.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.39 235.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.69 248.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 346.64 273.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.71 271.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.95 217.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.16 250.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.71 194.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.79 231.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.31 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.11 185.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.71 246.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.09 236.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.11 204.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 336.05 295.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.84 176.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.96 228.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.90 192.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.79 164.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.88 207.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.25 239.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.05 229.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.21 211.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.64 186.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.13 187.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.06 199.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.95 195.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.10 204.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.86 202.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.37 211.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.80 213.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.71 242.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.82 174.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.52 196.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.23 165.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.58 169.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.85 177.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.62 179.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.15 205.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.90 210.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.37 213.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.40 182.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.37 284.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.89 187.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.81 122.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.28 212.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.01 201.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.25 206.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.22 221.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.97 208.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.08 195.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.05 207.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.17 180.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.60 222.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.42 218.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.06 177.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.85 222.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.65 213.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.48 151.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.65 205.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.22 210.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.42 249.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.47 216.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.39 201.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.03 217.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.49 221.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.05 201.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.01 189.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.31 190.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.66 164.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.22 201.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.44 188.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.19 204.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.09 225.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.67 213.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.79 195.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.34 210.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.94 208.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.34 222.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.38 219.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.27 172.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.64 216.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.80 213.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.88 192.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.13 181.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.70 231.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.89 199.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.92 145.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.65 225.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.61 244.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.77 205.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.77 201.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.22 218.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.58 234.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.50 214.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.90 145.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.33 238.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.18 237.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.45 290.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.44 192.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.70 213.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.90 208.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.54 189.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.97 262.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.53 205.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.59 345.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.16 348.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.08 205.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.49 190.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.91 219.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.17 170.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.81 230.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.82 303.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 306.94 283.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 338.16 273.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.59 151.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.52 183.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.47 198.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.32 200.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.62 188.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.40 193.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.99 204.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.18 221.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.99 243.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.63 196.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.21 179.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.25 206.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.47 196.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.17 171.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.44 193.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.01 220.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.40 210.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.15 194.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.79 198.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.16 253.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.99 176.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.92 210.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.01 211.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.01 248.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.18 200.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 326.79 282.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.44 199.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.01 264.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.53 211.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.31 142.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.52 226.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.57 183.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.58 195.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.30 188.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.92 199.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.13 189.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.34 207.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.96 220.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.02 222.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.34 234.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.59 224.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.09 299.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.34 232.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.16 192.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.35 193.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.68 238.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.16 199.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.92 186.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.13 210.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.21 206.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.16 206.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.74 206.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.78 210.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.05 200.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.15 178.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.14 195.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.21 186.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.94 227.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.02 203.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.47 185.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.88 191.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.65 304.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.27 228.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.41 141.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.49 193.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.95 258.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.43 220.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.34 212.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.76 204.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.36 211.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.73 232.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.31 203.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.70 208.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.38 198.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.69 189.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.33 205.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.01 244.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.13 281.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.25 186.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.84 282.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.89 173.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.61 202.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.94 189.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.06 208.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.66 192.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.24 208.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.33 212.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.65 191.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.14 262.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.41 193.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.89 232.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.60 193.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.00 208.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.98 239.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.85 202.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.75 217.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.67 205.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.14 158.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.65 202.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.11 214.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.17 245.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.48 194.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.25 208.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.15 183.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.31 218.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.75 226.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.72 204.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.58 206.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.62 210.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.67 206.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.62 181.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.05 177.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.14 185.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.31 174.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.71 183.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.73 202.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.18 194.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.92 179.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.90 234.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.58 244.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.66 201.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.92 162.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.55 213.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.17 211.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.42 194.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.05 138.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.41 208.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.87 250.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.96 148.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.05 179.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.82 174.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.76 165.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.71 196.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.15 192.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.74 192.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.17 205.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.24 202.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.37 206.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.36 216.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.67 209.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.77 278.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.06 198.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.69 175.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.68 204.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.06 182.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.56 189.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.86 196.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.00 224.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 85.65 219.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.81 209.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.71 220.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.15 211.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.06 228.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.69 198.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.22 204.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.84 185.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.52 146.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.65 202.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.37 173.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.35 201.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.07 189.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.92 235.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.09 205.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.90 208.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.47 219.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.50 207.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.73 199.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.88 222.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.17 193.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.09 178.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.86 212.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.08 171.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.55 146.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.74 194.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.53 217.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.13 212.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.35 202.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.08 210.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.68 146.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.94 216.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.33 198.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.17 193.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.50 209.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.51 222.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.48 206.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.83 214.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.89 212.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.51 154.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.98 170.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.20 256.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 97.39 191.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.30 198.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.83 245.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.41 203.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.36 193.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.45 196.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.18 233.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.05 230.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.32 190.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.35 207.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.71 211.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.78 227.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.45 212.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.89 185.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.80 142.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.03 203.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.92 122.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.42 210.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.03 210.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.98 198.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.72 208.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.75 219.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.91 201.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.84 201.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.30 231.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.83 169.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.73 169.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.14 185.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.60 197.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.38 200.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.24 197.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.28 174.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.36 183.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.32 209.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.32 211.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.43 209.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.41 230.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.19 191.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.26 198.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.72 180.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.69 163.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.95 240.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.07 208.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.37 260.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.23 176.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.87 205.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.33 190.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.39 212.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.31 217.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.59 193.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.12 196.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.50 208.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 312.10 240.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.17 207.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.65 234.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.59 219.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.43 230.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.50 275.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.94 277.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.78 276.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.92 196.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.29 238.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.28 174.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.32 217.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.69 214.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.77 212.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.62 233.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.97 203.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.83 218.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.66 203.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.40 210.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.88 200.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.68 197.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.72 185.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.42 231.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.53 198.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.06 132.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.62 207.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.01 250.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.23 209.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.42 203.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.50 216.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 338.64 292.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.05 201.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.31 180.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.87 190.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.53 198.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.15 147.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.53 208.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.75 230.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.21 220.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.38 218.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.44 173.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.24 196.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.69 184.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.50 266.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.19 162.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.01 209.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.44 180.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.71 205.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.06 195.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.76 215.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.57 216.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.01 211.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.80 201.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.11 217.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.39 228.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.48 195.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.17 209.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.05 211.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.05 170.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.28 209.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.06 212.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.77 204.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.84 268.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.10 194.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.26 194.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.66 206.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.40 205.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.42 179.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.14 182.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.46 188.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.81 173.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.51 208.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.60 186.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.38 174.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.81 240.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.87 214.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.96 223.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.35 208.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.11 235.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.53 204.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.99 211.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.23 196.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.37 178.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.99 203.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.08 221.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.79 184.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.18 184.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 302.02 236.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.05 219.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.20 215.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.20 206.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.74 190.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.49 206.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.18 215.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.73 212.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.69 200.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.43 219.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.73 205.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.78 219.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.11 201.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.63 227.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.88 198.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.05 202.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.91 194.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.67 211.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.97 210.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.52 202.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.64 220.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.76 221.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.25 186.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.66 196.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.86 197.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.75 200.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.01 195.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.17 207.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.16 215.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.61 218.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.55 210.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.34 195.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.61 198.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.91 213.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.81 194.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.07 180.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 112.99 201.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.00 212.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.50 185.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.46 209.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.07 199.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.36 208.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.67 198.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.15 194.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.67 149.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.51 200.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.65 203.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.21 215.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.59 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.30 260.53 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 104.47 73.44 m 384.61 73.44 l S 104.47 73.44 m 104.47 66.24 l S 160.50 73.44 m 160.50 66.24 l S 216.53 73.44 m 216.53 66.24 l S 272.55 73.44 m 272.55 66.24 l S 328.58 73.44 m 328.58 66.24 l S 384.61 73.44 m 384.61 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 96.13 47.52 Tm (0.3) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 152.16 47.52 Tm (0.4) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 208.19 47.52 Tm (0.5) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 264.21 47.52 Tm (0.6) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 320.24 47.52 Tm (0.7) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 376.27 47.52 Tm (0.8) Tj ET 59.04 93.29 m 59.04 367.80 l S 59.04 93.29 m 51.84 93.29 l S 59.04 148.19 m 51.84 148.19 l S 59.04 203.09 m 51.84 203.09 l S 59.04 258.00 m 51.84 258.00 l S 59.04 312.90 m 51.84 312.90 l S 59.04 367.80 m 51.84 367.80 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 86.45 Tm (-2) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 141.35 Tm (-1) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 199.76 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 254.66 Tm (1) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 309.56 Tm (2) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 364.46 Tm (3) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 197.82 18.72 Tm (sqrt\(denum\)) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 211.53 Tm (num) Tj ET Q endstream endobj 191 0 obj << /CreationDate (D:20050415164841) /ModDate (D:20050415164841) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 192 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 193 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 199 0 R >> endobj 194 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 199 0 R >> endobj 195 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 199 0 R >> endobj 196 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 199 0 R >> endobj 197 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 198 0 obj 175317 endobj 199 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 190 0 obj << /D [188 0 R /XYZ 72 720 null] >> endobj 127 0 obj << /D [188 0 R /XYZ 130.726 263.81 null] >> endobj 187 0 obj << /Font << /F15 50 0 R /F36 91 0 R >> /XObject << /Im2 163 0 R >> /ProcSet [ /PDF /Text ] >> endobj 202 0 obj << /Length 249 /Filter /FlateDecode >> stream xUPR0 +ttq,b@f!CB!SJ ?Ɩv-M,Uk'G5zt !3:wXj,\ĭyU.h:Z% oQT\xLp{U()vSUmvSYyGЁ&)ѩ0lX뙠09JoK?G^ U Rv<-FY> endobj 164 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mtpvsr.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 205 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 206 0 R /F2 207 0 R /F3 208 0 R /F4 209 0 R /F5 210 0 R /F6 211 0 R >> /ExtGState << >>>> /Length 212 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 1.50 w [] 0 d 1 J 1 j 10.00 M 71.73 84.53 m 71.84 84.53 l 71.94 84.53 l 72.05 84.53 l 72.15 84.53 l 72.25 84.53 l 72.36 84.53 l 72.46 84.53 l 72.57 84.53 l 72.67 84.53 l 72.77 84.53 l 72.88 84.53 l 72.98 84.53 l 73.09 84.53 l 73.19 84.53 l 73.29 84.53 l 73.40 84.53 l 73.50 84.53 l 73.61 84.53 l 73.71 84.53 l 73.81 84.53 l 73.92 84.53 l 74.02 84.53 l 74.13 84.53 l 74.23 84.53 l 74.33 84.53 l 74.44 84.53 l 74.54 84.53 l 74.65 84.53 l 74.75 84.53 l 74.85 84.53 l 74.96 84.53 l 75.06 84.53 l 75.17 84.53 l 75.27 84.53 l 75.37 84.53 l 75.48 84.53 l 75.58 84.53 l 75.69 84.53 l 75.79 84.53 l 75.90 84.53 l 76.00 84.53 l 76.10 84.53 l 76.21 84.53 l 76.31 84.53 l 76.42 84.53 l 76.52 84.53 l 76.62 84.53 l 76.73 84.53 l 76.83 84.53 l 76.94 84.53 l 77.04 84.53 l 77.14 84.53 l 77.25 84.53 l 77.35 84.53 l 77.46 84.53 l 77.56 84.53 l 77.66 84.53 l 77.77 84.53 l 77.87 84.53 l 77.98 84.53 l 78.08 84.53 l 78.18 84.53 l 78.29 84.53 l 78.39 84.53 l 78.50 84.53 l 78.60 84.53 l 78.70 84.53 l 78.81 84.53 l 78.91 84.53 l 79.02 84.53 l 79.12 84.53 l 79.22 84.53 l 79.33 84.53 l 79.43 84.53 l 79.54 84.53 l 79.64 84.53 l 79.74 84.53 l 79.85 84.53 l 79.95 84.53 l 80.06 84.53 l 80.16 84.53 l 80.26 84.53 l 80.37 84.53 l 80.47 84.53 l 80.58 84.53 l 80.68 84.53 l 80.79 84.53 l 80.89 84.53 l 80.99 84.53 l 81.10 84.53 l 81.20 84.53 l 81.31 84.53 l 81.41 84.53 l 81.51 84.53 l 81.62 84.53 l 81.72 84.53 l 81.83 84.53 l 81.93 84.53 l 82.03 84.53 l 82.14 84.53 l 82.24 84.53 l 82.35 84.53 l 82.45 84.53 l 82.55 84.53 l 82.66 84.53 l 82.76 84.53 l 82.87 84.53 l 82.97 84.53 l 83.07 84.53 l 83.18 84.53 l 83.28 84.53 l 83.39 84.53 l 83.49 84.53 l 83.59 84.53 l 83.70 84.53 l 83.80 84.53 l 83.91 84.53 l 84.01 84.53 l 84.11 84.53 l 84.22 84.53 l 84.32 84.53 l 84.43 84.53 l 84.53 84.53 l 84.63 84.53 l 84.74 84.53 l 84.84 84.53 l 84.95 84.53 l 85.05 84.53 l 85.15 84.53 l 85.26 84.53 l 85.36 84.53 l 85.47 84.53 l 85.57 84.53 l 85.68 84.53 l 85.78 84.53 l 85.88 84.53 l 85.99 84.53 l 86.09 84.53 l 86.20 84.53 l 86.30 84.53 l 86.40 84.53 l 86.51 84.53 l 86.61 84.53 l 86.72 84.53 l 86.82 84.53 l 86.92 84.53 l 87.03 84.53 l 87.13 84.53 l 87.24 84.53 l 87.34 84.53 l 87.44 84.53 l 87.55 84.53 l 87.65 84.53 l 87.76 84.53 l 87.86 84.53 l 87.96 84.53 l 88.07 84.53 l 88.17 84.53 l 88.28 84.53 l 88.38 84.53 l 88.48 84.53 l 88.59 84.53 l 88.69 84.53 l 88.80 84.53 l 88.90 84.53 l 89.00 84.53 l 89.11 84.53 l 89.21 84.53 l 89.32 84.53 l 89.42 84.53 l 89.52 84.53 l 89.63 84.53 l 89.73 84.53 l 89.84 84.53 l 89.94 84.53 l 90.05 84.53 l 90.15 84.53 l 90.25 84.53 l 90.36 84.53 l 90.46 84.53 l 90.57 84.53 l 90.67 84.53 l 90.77 84.53 l 90.88 84.53 l 90.98 84.53 l 91.09 84.53 l 91.19 84.53 l 91.29 84.53 l 91.40 84.53 l 91.50 84.53 l 91.61 84.53 l 91.71 84.53 l 91.81 84.53 l 91.92 84.53 l 92.02 84.53 l 92.13 84.53 l 92.23 84.53 l 92.33 84.53 l 92.44 84.53 l 92.54 84.53 l 92.65 84.53 l 92.75 84.53 l 92.85 84.53 l 92.96 84.53 l 93.06 84.53 l 93.17 84.53 l 93.27 84.53 l 93.37 84.53 l 93.48 84.53 l 93.58 84.53 l 93.69 84.53 l 93.79 84.53 l 93.89 84.53 l 94.00 84.53 l 94.10 84.53 l 94.21 84.53 l 94.31 84.53 l 94.41 84.53 l 94.52 84.53 l 94.62 84.53 l 94.73 84.53 l 94.83 84.53 l 94.94 84.53 l 95.04 84.53 l 95.14 84.53 l 95.25 84.53 l 95.35 84.53 l 95.46 84.53 l 95.56 84.53 l 95.66 84.53 l 95.77 84.53 l 95.87 84.53 l 95.98 84.53 l 96.08 84.53 l 96.18 84.53 l 96.29 84.53 l 96.39 84.53 l 96.50 84.53 l 96.60 84.53 l 96.70 84.53 l 96.81 84.53 l 96.91 84.53 l 97.02 84.53 l 97.12 84.53 l 97.22 84.53 l 97.33 84.53 l 97.43 84.53 l 97.54 84.53 l 97.64 84.53 l 97.74 84.53 l 97.85 84.53 l 97.95 84.53 l 98.06 84.53 l 98.16 84.53 l 98.26 84.53 l 98.37 84.53 l 98.47 84.53 l 98.58 84.53 l 98.68 84.53 l 98.78 84.53 l 98.89 84.53 l 98.99 84.53 l 99.10 84.53 l 99.20 84.53 l 99.30 84.53 l 99.41 84.53 l 99.51 84.53 l 99.62 84.53 l 99.72 84.53 l 99.83 84.53 l 99.93 84.53 l 100.03 84.53 l 100.14 84.53 l 100.24 84.53 l 100.35 84.53 l 100.45 84.53 l 100.55 84.53 l 100.66 84.53 l 100.76 84.53 l 100.87 84.53 l 100.97 84.53 l 101.07 84.53 l 101.18 84.53 l 101.28 84.53 l 101.39 84.53 l 101.49 84.53 l 101.59 84.53 l 101.70 84.53 l 101.80 84.53 l 101.91 84.53 l 102.01 84.53 l 102.11 84.81 l 102.22 84.81 l 102.32 84.81 l 102.43 84.81 l 102.53 84.81 l 102.63 84.81 l 102.74 84.81 l 102.84 84.81 l 102.95 84.81 l 103.05 84.81 l 103.15 84.81 l 103.26 84.81 l 103.36 84.81 l 103.47 84.81 l 103.57 84.81 l 103.67 84.81 l 103.78 84.81 l 103.88 84.81 l 103.99 84.81 l 104.09 84.81 l 104.19 84.81 l 104.30 84.81 l 104.40 84.81 l 104.51 84.81 l 104.61 84.81 l 104.72 84.81 l 104.82 84.81 l 104.92 84.81 l 105.03 84.81 l 105.13 84.81 l 105.24 84.81 l 105.34 84.81 l 105.44 84.81 l 105.55 84.81 l 105.65 84.81 l 105.76 84.81 l 105.86 84.81 l 105.96 84.81 l 106.07 84.81 l 106.17 84.81 l 106.28 84.81 l 106.38 84.81 l 106.48 84.81 l 106.59 84.81 l 106.69 84.81 l 106.80 84.81 l 106.90 84.81 l 107.00 84.81 l 107.11 84.81 l 107.21 84.81 l 107.32 84.81 l 107.42 84.81 l 107.52 84.81 l 107.63 84.81 l 107.73 84.81 l 107.84 84.81 l 107.94 84.81 l 108.04 84.81 l 108.15 84.81 l 108.25 84.81 l 108.36 84.81 l 108.46 84.81 l 108.56 84.81 l 108.67 84.81 l 108.77 84.81 l 108.88 84.81 l 108.98 84.81 l 109.09 84.81 l 109.19 84.81 l 109.29 84.81 l 109.40 84.81 l 109.50 84.81 l 109.61 84.81 l 109.71 84.81 l 109.81 84.81 l 109.92 84.81 l 110.02 84.81 l 110.13 84.81 l 110.23 84.81 l 110.33 84.81 l 110.44 84.81 l 110.54 84.81 l 110.65 84.81 l 110.75 84.81 l 110.85 84.81 l 110.96 84.81 l 111.06 84.81 l 111.17 84.81 l 111.27 84.81 l 111.37 84.81 l 111.48 84.81 l 111.58 84.81 l 111.69 84.81 l 111.79 84.81 l 111.89 84.81 l 112.00 84.81 l 112.10 84.81 l 112.21 84.81 l 112.31 84.81 l 112.41 84.81 l 112.52 84.81 l 112.62 84.81 l 112.73 84.81 l 112.83 84.81 l 112.93 84.81 l 113.04 84.81 l 113.14 84.81 l 113.25 84.81 l 113.35 84.81 l 113.45 84.81 l 113.56 84.81 l 113.66 84.81 l 113.77 84.81 l 113.87 84.81 l 113.98 84.81 l 114.08 84.81 l 114.18 85.09 l 114.29 85.09 l 114.39 85.09 l 114.50 85.09 l 114.60 85.09 l 114.70 85.09 l 114.81 85.09 l 114.91 85.09 l 115.02 85.09 l 115.12 85.09 l 115.22 85.09 l 115.33 85.09 l 115.43 85.09 l 115.54 85.09 l 115.64 85.09 l 115.74 85.09 l 115.85 85.09 l 115.95 85.09 l 116.06 85.09 l 116.16 85.09 l 116.26 85.09 l 116.37 85.09 l 116.47 85.09 l 116.58 85.09 l 116.68 85.09 l 116.78 85.09 l 116.89 85.09 l 116.99 85.09 l 117.10 85.09 l 117.20 85.09 l 117.30 85.09 l 117.41 85.09 l 117.51 85.09 l 117.62 85.09 l 117.72 85.09 l 117.82 85.09 l 117.93 85.09 l 118.03 85.09 l 118.14 85.09 l 118.24 85.09 l 118.34 85.09 l 118.45 85.09 l 118.55 85.09 l 118.66 85.09 l 118.76 85.09 l 118.87 85.09 l 118.97 85.09 l 119.07 85.09 l 119.18 85.09 l 119.28 85.09 l 119.39 85.09 l 119.49 85.09 l 119.59 85.09 l 119.70 85.09 l 119.80 85.09 l 119.91 85.09 l 120.01 85.09 l 120.11 85.09 l 120.22 85.09 l 120.32 85.09 l 120.43 85.09 l 120.53 85.09 l 120.63 85.09 l 120.74 85.09 l 120.84 85.37 l 120.95 85.37 l 121.05 85.37 l 121.15 85.37 l 121.26 85.37 l 121.36 85.37 l 121.47 85.37 l 121.57 85.37 l 121.67 85.37 l 121.78 85.37 l 121.88 85.37 l 121.99 85.37 l 122.09 85.37 l 122.19 85.37 l 122.30 85.37 l 122.40 85.37 l 122.51 85.37 l 122.61 85.37 l 122.71 85.37 l 122.82 85.37 l 122.92 85.37 l 123.03 85.37 l 123.13 85.37 l 123.23 85.37 l 123.34 85.37 l 123.44 85.37 l 123.55 85.37 l 123.65 85.37 l 123.76 85.37 l 123.86 85.37 l 123.96 85.37 l 124.07 85.37 l 124.17 85.37 l 124.28 85.37 l 124.38 85.37 l 124.48 85.37 l 124.59 85.37 l 124.69 85.37 l 124.80 85.37 l 124.90 85.64 l 125.00 85.64 l 125.11 85.64 l 125.21 85.64 l 125.32 85.64 l 125.42 85.64 l 125.52 85.64 l 125.63 85.64 l 125.73 85.64 l 125.84 85.64 l 125.94 85.64 l 126.04 85.64 l 126.15 85.64 l 126.25 85.64 l 126.36 85.64 l 126.46 85.64 l 126.56 85.64 l 126.67 85.64 l 126.77 85.64 l 126.88 85.64 l 126.98 85.64 l 127.08 85.64 l 127.19 85.64 l 127.29 85.64 l 127.40 85.64 l 127.50 85.64 l 127.60 85.64 l 127.71 85.64 l 127.81 85.64 l 127.92 85.64 l 128.02 85.64 l 128.13 85.92 l 128.23 85.92 l 128.33 85.92 l 128.44 85.92 l 128.54 85.92 l 128.65 85.92 l 128.75 85.92 l 128.85 85.92 l 128.96 85.92 l 129.06 85.92 l 129.17 85.92 l 129.27 85.92 l 129.37 85.92 l 129.48 85.92 l 129.58 85.92 l 129.69 85.92 l 129.79 85.92 l 129.89 85.92 l 130.00 85.92 l 130.10 85.92 l 130.21 85.92 l 130.31 85.92 l 130.41 85.92 l 130.52 85.92 l 130.62 85.92 l 130.73 85.92 l 130.83 85.92 l 130.93 86.20 l 131.04 86.20 l 131.14 86.20 l 131.25 86.20 l 131.35 86.20 l 131.45 86.20 l 131.56 86.20 l 131.66 86.20 l 131.77 86.20 l 131.87 86.20 l 131.97 86.20 l 132.08 86.20 l 132.18 86.20 l 132.29 86.20 l 132.39 86.20 l 132.49 86.20 l 132.60 86.20 l 132.70 86.20 l 132.81 86.20 l 132.91 86.20 l 133.02 86.20 l 133.12 86.20 l 133.22 86.20 l 133.33 86.20 l 133.43 86.20 l 133.54 86.48 l 133.64 86.48 l 133.74 86.48 l 133.85 86.48 l 133.95 86.48 l 134.06 86.48 l 134.16 86.48 l 134.26 86.48 l 134.37 86.48 l 134.47 86.48 l 134.58 86.48 l 134.68 86.48 l 134.78 86.48 l 134.89 86.48 l 134.99 86.48 l 135.10 86.48 l 135.20 86.48 l 135.30 86.48 l 135.41 86.48 l 135.51 86.75 l 135.62 86.75 l 135.72 86.75 l 135.82 86.75 l 135.93 86.75 l 136.03 86.75 l 136.14 86.75 l 136.24 86.75 l 136.34 86.75 l 136.45 86.75 l 136.55 86.75 l 136.66 86.75 l 136.76 86.75 l 136.86 86.75 l 136.97 86.75 l 137.07 86.75 l 137.18 86.75 l 137.28 86.75 l 137.38 86.75 l 137.49 86.75 l 137.59 86.75 l 137.70 86.75 l 137.80 86.75 l 137.91 86.75 l 138.01 87.03 l 138.11 87.03 l 138.22 87.03 l 138.32 87.03 l 138.43 87.03 l 138.53 87.03 l 138.63 87.03 l 138.74 87.03 l 138.84 87.03 l 138.95 87.03 l 139.05 87.03 l 139.15 87.03 l 139.26 87.03 l 139.36 87.03 l 139.47 87.03 l 139.57 87.31 l 139.67 87.31 l 139.78 87.31 l 139.88 87.31 l 139.99 87.31 l 140.09 87.31 l 140.19 87.31 l 140.30 87.31 l 140.40 87.31 l 140.51 87.31 l 140.61 87.31 l 140.71 87.31 l 140.82 87.31 l 140.92 87.31 l 141.03 87.31 l 141.13 87.31 l 141.23 87.31 l 141.34 87.31 l 141.44 87.31 l 141.55 87.31 l 141.65 87.31 l 141.75 87.31 l 141.86 87.31 l 141.96 87.31 l 142.07 87.31 l 142.17 87.59 l 142.27 87.59 l 142.38 87.59 l 142.48 87.59 l 142.59 87.59 l 142.69 87.59 l 142.80 87.59 l 142.90 87.59 l 143.00 87.59 l 143.11 87.59 l 143.21 87.59 l 143.32 87.59 l 143.42 87.59 l 143.52 87.59 l 143.63 87.59 l 143.73 87.59 l 143.84 87.59 l 143.94 87.59 l 144.04 87.59 l 144.15 87.59 l 144.25 87.59 l 144.36 87.59 l 144.46 87.86 l 144.56 87.86 l 144.67 87.86 l 144.77 87.86 l 144.88 87.86 l 144.98 87.86 l 145.08 87.86 l 145.19 87.86 l 145.29 87.86 l 145.40 87.86 l 145.50 87.86 l 145.60 87.86 l 145.71 87.86 l 145.81 87.86 l 145.92 88.14 l 146.02 88.14 l 146.12 88.14 l 146.23 88.14 l 146.33 88.14 l 146.44 88.14 l 146.54 88.14 l 146.64 88.14 l 146.75 88.14 l 146.85 88.14 l 146.96 88.14 l 147.06 88.14 l 147.17 88.14 l 147.27 88.14 l 147.37 88.14 l 147.48 88.14 l 147.58 88.14 l 147.69 88.42 l 147.79 88.42 l 147.89 88.42 l 148.00 88.42 l 148.10 88.42 l 148.21 88.42 l 148.31 88.42 l 148.41 88.42 l 148.52 88.42 l 148.62 88.42 l 148.73 88.42 l 148.83 88.42 l 148.93 88.42 l 149.04 88.42 l 149.14 88.42 l 149.25 88.42 l 149.35 88.42 l 149.45 88.42 l 149.56 88.42 l 149.66 88.42 l 149.77 88.70 l 149.87 88.70 l 149.97 88.70 l 150.08 88.70 l 150.18 88.70 l 150.29 88.70 l 150.39 88.70 l 150.49 88.70 l 150.60 88.70 l 150.70 88.70 l 150.81 88.70 l 150.91 88.70 l 151.01 88.70 l 151.12 88.70 l 151.22 88.70 l 151.33 88.70 l 151.43 88.98 l 151.53 88.98 l 151.64 88.98 l 151.74 88.98 l 151.85 88.98 l 151.95 88.98 l 152.06 88.98 l 152.16 88.98 l 152.26 88.98 l 152.37 88.98 l 152.47 88.98 l 152.58 88.98 l 152.68 88.98 l 152.78 88.98 l 152.89 89.25 l 152.99 89.25 l 153.10 89.25 l 153.20 89.25 l 153.30 89.25 l 153.41 89.25 l 153.51 89.25 l 153.62 89.25 l 153.72 89.25 l 153.82 89.25 l 153.93 89.25 l 154.03 89.25 l 154.14 89.25 l 154.24 89.25 l 154.34 89.53 l 154.45 89.53 l 154.55 89.53 l 154.66 89.53 l 154.76 89.53 l 154.86 89.53 l 154.97 89.53 l 155.07 89.53 l 155.18 89.53 l 155.28 89.53 l 155.38 89.53 l 155.49 89.53 l 155.59 89.81 l 155.70 89.81 l 155.80 89.81 l 155.90 89.81 l 156.01 89.81 l 156.11 89.81 l 156.22 89.81 l 156.32 89.81 l 156.42 89.81 l 156.53 89.81 l 156.63 89.81 l 156.74 89.81 l 156.84 89.81 l 156.95 89.81 l 157.05 89.81 l 157.15 90.09 l 157.26 90.09 l 157.36 90.09 l 157.47 90.09 l 157.57 90.09 l 157.67 90.09 l 157.78 90.09 l 157.88 90.09 l 157.99 90.09 l 158.09 90.09 l 158.19 90.09 l 158.30 90.36 l 158.40 90.36 l 158.51 90.36 l 158.61 90.36 l 158.71 90.36 l 158.82 90.36 l 158.92 90.36 l 159.03 90.36 l 159.13 90.36 l 159.23 90.36 l 159.34 90.36 l 159.44 90.36 l 159.55 90.64 l 159.65 90.64 l 159.75 90.64 l 159.86 90.64 l 159.96 90.64 l 160.07 90.92 l 160.17 90.92 l 160.27 90.92 l 160.38 90.92 l 160.48 90.92 l 160.59 90.92 l 160.69 90.92 l 160.79 90.92 l 160.90 91.20 l 161.00 91.20 l 161.11 91.20 l 161.21 91.20 l 161.31 91.20 l 161.42 91.20 l 161.52 91.20 l 161.63 91.20 l 161.73 91.20 l 161.84 91.20 l 161.94 91.20 l 162.04 91.20 l 162.15 91.20 l 162.25 91.47 l 162.36 91.47 l 162.46 91.47 l 162.56 91.47 l 162.67 91.47 l 162.77 91.47 l 162.88 91.47 l 162.98 91.47 l 163.08 91.47 l 163.19 91.47 l 163.29 91.47 l 163.40 91.47 l 163.50 91.47 l 163.60 91.47 l 163.71 91.47 l 163.81 91.75 l 163.92 91.75 l 164.02 91.75 l 164.12 91.75 l 164.23 91.75 l 164.33 91.75 l 164.44 91.75 l 164.54 91.75 l 164.64 91.75 l 164.75 91.75 l 164.85 91.75 l 164.96 92.03 l 165.06 92.03 l 165.16 92.03 l 165.27 92.03 l 165.37 92.03 l 165.48 92.03 l 165.58 92.03 l 165.68 92.03 l 165.79 92.31 l 165.89 92.31 l 166.00 92.31 l 166.10 92.31 l 166.21 92.31 l 166.31 92.31 l 166.41 92.31 l 166.52 92.58 l 166.62 92.58 l 166.73 92.58 l 166.83 92.58 l 166.93 92.58 l 167.04 92.58 l 167.14 92.58 l 167.25 92.58 l 167.35 92.58 l 167.45 92.58 l 167.56 92.86 l 167.66 92.86 l 167.77 92.86 l 167.87 92.86 l 167.97 92.86 l 168.08 92.86 l 168.18 92.86 l 168.29 92.86 l 168.39 92.86 l 168.49 92.86 l 168.60 93.14 l 168.70 93.14 l 168.81 93.14 l 168.91 93.14 l 169.01 93.14 l 169.12 93.14 l 169.22 93.14 l 169.33 93.14 l 169.43 93.14 l 169.53 93.42 l 169.64 93.42 l 169.74 93.42 l 169.85 93.42 l 169.95 93.42 l 170.05 93.42 l 170.16 93.42 l 170.26 93.42 l 170.37 93.69 l 170.47 93.69 l 170.57 93.69 l 170.68 93.69 l 170.78 93.69 l 170.89 93.69 l 170.99 93.69 l 171.10 93.69 l 171.20 93.69 l 171.30 93.97 l 171.41 93.97 l 171.51 93.97 l 171.62 93.97 l 171.72 93.97 l 171.82 93.97 l 171.93 93.97 l 172.03 93.97 l 172.14 93.97 l 172.24 94.25 l 172.34 94.25 l 172.45 94.25 l 172.55 94.25 l 172.66 94.25 l 172.76 94.25 l 172.86 94.25 l 172.97 94.53 l 173.07 94.53 l 173.18 94.53 l 173.28 94.53 l 173.38 94.80 l 173.49 94.80 l 173.59 94.80 l 173.70 94.80 l 173.80 95.08 l 173.90 95.08 l 174.01 95.08 l 174.11 95.08 l 174.22 95.08 l 174.32 95.08 l 174.42 95.08 l 174.53 95.08 l 174.63 95.08 l 174.74 95.08 l 174.84 95.08 l 174.94 95.36 l 175.05 95.36 l 175.15 95.36 l 175.26 95.36 l 175.36 95.36 l 175.46 95.36 l 175.57 95.36 l 175.67 95.36 l 175.78 95.64 l 175.88 95.64 l 175.99 95.64 l 176.09 95.64 l 176.19 95.64 l 176.30 95.64 l 176.40 95.64 l 176.51 95.64 l 176.61 95.64 l 176.71 95.64 l 176.82 95.92 l 176.92 95.92 l 177.03 95.92 l 177.13 95.92 l 177.23 95.92 l 177.34 95.92 l 177.44 96.19 l 177.55 96.19 l 177.65 96.19 l 177.75 96.19 l 177.86 96.19 l 177.96 96.19 l 178.07 96.19 l 178.17 96.47 l 178.27 96.47 l 178.38 96.47 l 178.48 96.47 l 178.59 96.47 l 178.69 96.47 l 178.79 96.47 l 178.90 96.47 l 179.00 96.75 l 179.11 96.75 l 179.21 96.75 l 179.31 96.75 l 179.42 96.75 l 179.52 97.03 l 179.63 97.03 l 179.73 97.03 l 179.83 97.03 l 179.94 97.03 l 180.04 97.03 l 180.15 97.03 l 180.25 97.03 l 180.35 97.30 l 180.46 97.30 l 180.56 97.30 l 180.67 97.30 l 180.77 97.30 l 180.88 97.58 l 180.98 97.58 l 181.08 97.58 l 181.19 97.58 l 181.29 97.58 l 181.40 97.58 l 181.50 97.58 l 181.60 97.58 l 181.71 97.58 l 181.81 97.58 l 181.92 97.58 l 182.02 97.58 l 182.12 97.58 l 182.23 97.58 l 182.33 97.86 l 182.44 97.86 l 182.54 97.86 l 182.64 97.86 l 182.75 98.14 l 182.85 98.14 l 182.96 98.14 l 183.06 98.41 l 183.16 98.41 l 183.27 98.41 l 183.37 98.41 l 183.48 98.41 l 183.58 98.41 l 183.68 98.41 l 183.79 98.69 l 183.89 98.69 l 184.00 98.69 l 184.10 98.69 l 184.20 98.69 l 184.31 98.97 l 184.41 98.97 l 184.52 98.97 l 184.62 98.97 l 184.72 99.25 l 184.83 99.25 l 184.93 99.25 l 185.04 99.25 l 185.14 99.52 l 185.25 99.52 l 185.35 99.52 l 185.45 99.52 l 185.56 99.80 l 185.66 99.80 l 185.77 99.80 l 185.87 99.80 l 185.97 99.80 l 186.08 99.80 l 186.18 99.80 l 186.29 100.08 l 186.39 100.08 l 186.49 100.08 l 186.60 100.08 l 186.70 100.08 l 186.81 100.08 l 186.91 100.36 l 187.01 100.36 l 187.12 100.36 l 187.22 100.36 l 187.33 100.36 l 187.43 100.63 l 187.53 100.63 l 187.64 100.63 l 187.74 100.63 l 187.85 100.63 l 187.95 100.63 l 188.05 100.63 l 188.16 100.63 l 188.26 100.63 l 188.37 100.91 l 188.47 100.91 l 188.57 100.91 l 188.68 100.91 l 188.78 100.91 l 188.89 100.91 l 188.99 100.91 l 189.09 100.91 l 189.20 100.91 l 189.30 101.19 l 189.41 101.19 l 189.51 101.19 l 189.61 101.47 l 189.72 101.47 l 189.82 101.47 l 189.93 101.47 l 190.03 101.47 l 190.14 101.75 l 190.24 101.75 l 190.34 101.75 l 190.45 101.75 l 190.55 101.75 l 190.66 101.75 l 190.76 102.02 l 190.86 102.02 l 190.97 102.02 l 191.07 102.02 l 191.18 102.02 l 191.28 102.02 l 191.38 102.02 l 191.49 102.02 l 191.59 102.02 l 191.70 102.02 l 191.80 102.30 l 191.90 102.30 l 192.01 102.30 l 192.11 102.30 l 192.22 102.30 l 192.32 102.58 l 192.42 102.58 l 192.53 102.58 l 192.63 102.58 l 192.74 102.58 l 192.84 102.58 l 192.94 102.86 l 193.05 102.86 l 193.15 102.86 l 193.26 102.86 l 193.36 102.86 l 193.46 102.86 l 193.57 103.13 l 193.67 103.13 l 193.78 103.13 l 193.88 103.13 l 193.98 103.13 l 194.09 103.13 l 194.19 103.41 l 194.30 103.41 l 194.40 103.41 l 194.50 103.41 l 194.61 103.41 l 194.71 103.41 l 194.82 103.41 l 194.92 103.69 l 195.03 103.69 l 195.13 103.69 l 195.23 103.69 l 195.34 103.97 l 195.44 103.97 l 195.55 103.97 l 195.65 103.97 l 195.75 103.97 l 195.86 103.97 l 195.96 103.97 l 196.07 103.97 l 196.17 103.97 l 196.27 104.24 l 196.38 104.24 l 196.48 104.24 l 196.59 104.24 l 196.69 104.52 l 196.79 104.52 l 196.90 104.52 l 197.00 104.80 l 197.11 104.80 l 197.21 104.80 l 197.31 104.80 l 197.42 105.08 l 197.52 105.08 l 197.63 105.08 l 197.73 105.35 l 197.83 105.35 l 197.94 105.35 l 198.04 105.35 l 198.15 105.35 l 198.25 105.35 l 198.35 105.35 l 198.46 105.35 l 198.56 105.63 l 198.67 105.63 l 198.77 105.63 l 198.87 105.63 l 198.98 105.63 l 199.08 105.91 l 199.19 105.91 l 199.29 105.91 l 199.39 105.91 l 199.50 106.19 l 199.60 106.19 l 199.71 106.19 l 199.81 106.19 l 199.92 106.19 l 200.02 106.19 l 200.12 106.19 l 200.23 106.46 l 200.33 106.46 l 200.44 106.46 l 200.54 106.46 l 200.64 106.46 l 200.75 106.46 l 200.85 106.74 l 200.96 106.74 l 201.06 106.74 l 201.16 106.74 l 201.27 106.74 l 201.37 106.74 l 201.48 106.74 l 201.58 107.02 l 201.68 107.02 l 201.79 107.02 l 201.89 107.30 l 202.00 107.30 l 202.10 107.30 l 202.20 107.30 l 202.31 107.30 l 202.41 107.30 l 202.52 107.30 l 202.62 107.30 l 202.72 107.58 l 202.83 107.58 l 202.93 107.58 l 203.04 107.58 l 203.14 107.58 l 203.24 107.58 l 203.35 107.58 l 203.45 107.58 l 203.56 107.85 l 203.66 107.85 l 203.76 107.85 l 203.87 108.13 l 203.97 108.13 l 204.08 108.13 l 204.18 108.13 l 204.29 108.13 l 204.39 108.13 l 204.49 108.41 l 204.60 108.41 l 204.70 108.41 l 204.81 108.41 l 204.91 108.41 l 205.01 108.41 l 205.12 108.69 l 205.22 108.69 l 205.33 108.69 l 205.43 108.69 l 205.53 108.69 l 205.64 108.96 l 205.74 108.96 l 205.85 108.96 l 205.95 108.96 l 206.05 109.24 l 206.16 109.24 l 206.26 109.52 l 206.37 109.52 l 206.47 109.52 l 206.57 109.80 l 206.68 110.07 l 206.78 110.07 l 206.89 110.07 l 206.99 110.07 l 207.09 110.07 l 207.20 110.07 l 207.30 110.35 l 207.41 110.35 l 207.51 110.35 l 207.61 110.63 l 207.72 110.91 l 207.82 110.91 l 207.93 110.91 l 208.03 110.91 l 208.13 110.91 l 208.24 110.91 l 208.34 111.18 l 208.45 111.18 l 208.55 111.46 l 208.65 111.46 l 208.76 111.46 l 208.86 111.46 l 208.97 111.46 l 209.07 111.74 l 209.18 111.74 l 209.28 111.74 l 209.38 111.74 l 209.49 111.74 l 209.59 112.02 l 209.70 112.02 l 209.80 112.02 l 209.90 112.02 l 210.01 112.02 l 210.11 112.02 l 210.22 112.29 l 210.32 112.29 l 210.42 112.29 l 210.53 112.29 l 210.63 112.57 l 210.74 112.57 l 210.84 112.57 l 210.94 112.57 l 211.05 112.85 l 211.15 112.85 l 211.26 112.85 l 211.36 112.85 l 211.46 112.85 l 211.57 113.13 l 211.67 113.13 l 211.78 113.13 l 211.88 113.13 l 211.98 113.40 l 212.09 113.40 l 212.19 113.40 l 212.30 113.68 l 212.40 113.68 l 212.50 113.68 l 212.61 113.68 l 212.71 113.68 l 212.82 113.68 l 212.92 113.96 l 213.02 114.24 l 213.13 114.24 l 213.23 114.24 l 213.34 114.24 l 213.44 114.24 l 213.54 114.24 l 213.65 114.52 l 213.75 114.52 l 213.86 114.52 l 213.96 114.52 l 214.07 114.52 l 214.17 114.52 l 214.27 114.79 l 214.38 115.07 l 214.48 115.07 l 214.59 115.35 l 214.69 115.35 l 214.79 115.35 l 214.90 115.35 l 215.00 115.35 l 215.11 115.63 l 215.21 115.63 l 215.31 115.63 l 215.42 115.63 l 215.52 115.90 l 215.63 115.90 l 215.73 115.90 l 215.83 115.90 l 215.94 116.18 l 216.04 116.18 l 216.15 116.18 l 216.25 116.18 l 216.35 116.46 l 216.46 116.74 l 216.56 116.74 l 216.67 116.74 l 216.77 116.74 l 216.87 117.01 l 216.98 117.01 l 217.08 117.01 l 217.19 117.01 l 217.29 117.01 l 217.39 117.01 l 217.50 117.29 l 217.60 117.29 l 217.71 117.29 l 217.81 117.57 l 217.91 117.57 l 218.02 117.57 l 218.12 117.57 l 218.23 117.85 l 218.33 117.85 l 218.43 117.85 l 218.54 117.85 l 218.64 118.12 l 218.75 118.40 l 218.85 118.40 l 218.96 118.40 l 219.06 118.40 l 219.16 118.68 l 219.27 118.68 l 219.37 118.68 l 219.48 118.68 l 219.58 118.96 l 219.68 119.23 l 219.79 119.23 l 219.89 119.23 l 220.00 119.51 l 220.10 119.51 l 220.20 119.51 l 220.31 119.51 l 220.41 119.51 l 220.52 119.79 l 220.62 119.79 l 220.72 119.79 l 220.83 120.07 l 220.93 120.07 l 221.04 120.07 l 221.14 120.07 l 221.24 120.07 l 221.35 120.07 l 221.45 120.07 l 221.56 120.35 l 221.66 120.35 l 221.76 120.35 l 221.87 120.35 l 221.97 120.62 l 222.08 120.62 l 222.18 120.62 l 222.28 120.62 l 222.39 121.18 l 222.49 121.18 l 222.60 121.18 l 222.70 121.18 l 222.80 121.46 l 222.91 121.46 l 223.01 121.46 l 223.12 121.73 l 223.22 121.73 l 223.33 121.73 l 223.43 121.73 l 223.53 122.01 l 223.64 122.01 l 223.74 122.29 l 223.85 122.29 l 223.95 122.29 l 224.05 122.29 l 224.16 122.57 l 224.26 122.57 l 224.37 122.57 l 224.47 122.84 l 224.57 122.84 l 224.68 122.84 l 224.78 122.84 l 224.89 122.84 l 224.99 122.84 l 225.09 122.84 l 225.20 122.84 l 225.30 123.12 l 225.41 123.12 l 225.51 123.12 l 225.61 123.12 l 225.72 123.12 l 225.82 123.40 l 225.93 123.68 l 226.03 123.95 l 226.13 123.95 l 226.24 123.95 l 226.34 124.51 l 226.45 124.51 l 226.55 124.51 l 226.65 124.51 l 226.76 124.79 l 226.86 124.79 l 226.97 125.06 l 227.07 125.06 l 227.17 125.06 l 227.28 125.34 l 227.38 125.34 l 227.49 125.34 l 227.59 125.34 l 227.69 125.62 l 227.80 125.62 l 227.90 125.62 l 228.01 125.62 l 228.11 125.62 l 228.22 125.62 l 228.32 125.90 l 228.42 125.90 l 228.53 126.17 l 228.63 126.17 l 228.74 126.17 l 228.84 126.17 l 228.94 126.17 l 229.05 126.45 l 229.15 126.45 l 229.26 126.45 l 229.36 126.73 l 229.46 126.73 l 229.57 126.73 l 229.67 127.01 l 229.78 127.01 l 229.88 127.01 l 229.98 127.01 l 230.09 127.01 l 230.19 127.29 l 230.30 127.29 l 230.40 127.29 l 230.50 127.29 l 230.61 127.56 l 230.71 127.56 l 230.82 127.56 l 230.92 127.56 l 231.02 127.56 l 231.13 127.56 l 231.23 127.84 l 231.34 127.84 l 231.44 128.12 l 231.54 128.12 l 231.65 128.12 l 231.75 128.12 l 231.86 128.12 l 231.96 128.40 l 232.06 128.40 l 232.17 128.40 l 232.27 128.40 l 232.38 128.67 l 232.48 128.67 l 232.58 128.95 l 232.69 128.95 l 232.79 128.95 l 232.90 129.23 l 233.00 129.23 l 233.11 129.23 l 233.21 129.23 l 233.31 129.51 l 233.42 129.51 l 233.52 129.78 l 233.63 130.06 l 233.73 130.34 l 233.83 130.34 l 233.94 130.34 l 234.04 130.34 l 234.15 130.62 l 234.25 130.89 l 234.35 130.89 l 234.46 131.17 l 234.56 131.17 l 234.67 131.17 l 234.77 131.45 l 234.87 131.45 l 234.98 131.45 l 235.08 131.45 l 235.19 131.45 l 235.29 131.73 l 235.39 131.73 l 235.50 131.73 l 235.60 131.73 l 235.71 131.73 l 235.81 132.00 l 235.91 132.28 l 236.02 132.28 l 236.12 132.28 l 236.23 132.28 l 236.33 132.28 l 236.43 132.28 l 236.54 132.56 l 236.64 132.84 l 236.75 132.84 l 236.85 132.84 l 236.95 133.12 l 237.06 133.39 l 237.16 133.39 l 237.27 133.39 l 237.37 133.39 l 237.47 133.67 l 237.58 133.67 l 237.68 133.67 l 237.79 133.67 l 237.89 133.67 l 238.00 134.23 l 238.10 134.50 l 238.20 134.78 l 238.31 134.78 l 238.41 134.78 l 238.52 134.78 l 238.62 134.78 l 238.72 134.78 l 238.83 135.06 l 238.93 135.06 l 239.04 135.06 l 239.14 135.06 l 239.24 135.06 l 239.35 135.34 l 239.45 135.34 l 239.56 135.34 l 239.66 135.34 l 239.76 135.61 l 239.87 135.61 l 239.97 135.61 l 240.08 135.89 l 240.18 136.17 l 240.28 136.17 l 240.39 136.17 l 240.49 136.17 l 240.60 136.17 l 240.70 136.17 l 240.80 136.45 l 240.91 136.45 l 241.01 136.45 l 241.12 136.72 l 241.22 136.72 l 241.32 136.72 l 241.43 137.00 l 241.53 137.00 l 241.64 137.00 l 241.74 137.00 l 241.84 137.00 l 241.95 137.00 l 242.05 137.00 l 242.16 137.00 l 242.26 137.28 l 242.37 137.28 l 242.47 137.28 l 242.57 137.28 l 242.68 137.28 l 242.78 137.56 l 242.89 137.56 l 242.99 137.83 l 243.09 137.83 l 243.20 137.83 l 243.30 138.11 l 243.41 138.11 l 243.51 138.39 l 243.61 138.67 l 243.72 138.95 l 243.82 138.95 l 243.93 138.95 l 244.03 139.22 l 244.13 139.22 l 244.24 139.22 l 244.34 139.22 l 244.45 139.22 l 244.55 139.50 l 244.65 139.50 l 244.76 139.50 l 244.86 139.78 l 244.97 139.78 l 245.07 139.78 l 245.17 140.06 l 245.28 140.06 l 245.38 140.06 l 245.49 140.06 l 245.59 140.33 l 245.69 140.33 l 245.80 140.61 l 245.90 140.61 l 246.01 140.61 l 246.11 140.61 l 246.21 140.61 l 246.32 140.61 l 246.42 140.89 l 246.53 140.89 l 246.63 140.89 l 246.73 140.89 l 246.84 140.89 l 246.94 140.89 l 247.05 141.17 l 247.15 141.44 l 247.26 141.44 l 247.36 141.44 l 247.46 141.44 l 247.57 141.44 l 247.67 141.72 l 247.78 141.72 l 247.88 141.72 l 247.98 141.72 l 248.09 142.00 l 248.19 142.28 l 248.30 142.28 l 248.40 142.28 l 248.50 142.83 l 248.61 142.83 l 248.71 143.11 l 248.82 143.11 l 248.92 143.39 l 249.02 143.39 l 249.13 143.39 l 249.23 143.66 l 249.34 143.66 l 249.44 143.94 l 249.54 143.94 l 249.65 144.22 l 249.75 144.22 l 249.86 144.22 l 249.96 144.50 l 250.06 144.50 l 250.17 144.50 l 250.27 144.50 l 250.38 144.77 l 250.48 144.77 l 250.58 144.77 l 250.69 144.77 l 250.79 145.05 l 250.90 145.05 l 251.00 145.33 l 251.10 145.33 l 251.21 145.61 l 251.31 145.61 l 251.42 145.89 l 251.52 145.89 l 251.62 146.44 l 251.73 146.44 l 251.83 146.44 l 251.94 146.44 l 252.04 146.44 l 252.15 146.72 l 252.25 146.72 l 252.35 146.72 l 252.46 146.72 l 252.56 147.27 l 252.67 147.27 l 252.77 147.27 l 252.87 147.55 l 252.98 147.83 l 253.08 147.83 l 253.19 147.83 l 253.29 147.83 l 253.39 147.83 l 253.50 148.11 l 253.60 148.38 l 253.71 148.38 l 253.81 148.38 l 253.91 148.38 l 254.02 148.66 l 254.12 148.94 l 254.23 148.94 l 254.33 148.94 l 254.43 149.49 l 254.54 149.49 l 254.64 149.77 l 254.75 149.77 l 254.85 150.05 l 254.95 150.05 l 255.06 150.60 l 255.16 150.60 l 255.27 150.60 l 255.37 150.60 l 255.47 150.60 l 255.58 150.88 l 255.68 151.16 l 255.79 151.44 l 255.89 151.44 l 255.99 151.44 l 256.10 151.72 l 256.20 151.72 l 256.31 151.72 l 256.41 151.99 l 256.51 151.99 l 256.62 151.99 l 256.72 151.99 l 256.83 151.99 l 256.93 152.27 l 257.04 152.55 l 257.14 152.55 l 257.24 152.55 l 257.35 153.10 l 257.45 153.10 l 257.56 153.38 l 257.66 153.38 l 257.76 153.66 l 257.87 153.66 l 257.97 153.66 l 258.08 153.94 l 258.18 154.21 l 258.28 154.49 l 258.39 154.49 l 258.49 154.77 l 258.60 155.05 l 258.70 155.32 l 258.80 155.32 l 258.91 155.60 l 259.01 155.60 l 259.12 155.88 l 259.22 155.88 l 259.32 156.16 l 259.43 156.16 l 259.53 156.16 l 259.64 156.16 l 259.74 156.16 l 259.84 156.43 l 259.95 156.43 l 260.05 156.43 l 260.16 156.43 l 260.26 156.43 l 260.36 156.43 l 260.47 156.71 l 260.57 156.71 l 260.68 156.71 l 260.78 156.71 l 260.88 156.99 l 260.99 156.99 l 261.09 156.99 l 261.20 157.27 l 261.30 157.27 l 261.41 157.27 l 261.51 157.27 l 261.61 157.55 l 261.72 157.55 l 261.82 157.82 l 261.93 158.10 l 262.03 158.38 l 262.13 158.38 l 262.24 158.38 l 262.34 158.38 l 262.45 158.93 l 262.55 159.21 l 262.65 159.49 l 262.76 159.49 l 262.86 159.49 l 262.97 159.49 l 263.07 159.77 l 263.17 160.04 l 263.28 160.04 l 263.38 160.04 l 263.49 160.04 l 263.59 160.32 l 263.69 160.32 l 263.80 160.32 l 263.90 160.60 l 264.01 160.60 l 264.11 160.60 l 264.21 160.88 l 264.32 161.15 l 264.42 161.15 l 264.53 161.15 l 264.63 161.71 l 264.73 161.71 l 264.84 161.99 l 264.94 161.99 l 265.05 161.99 l 265.15 162.26 l 265.25 162.54 l 265.36 162.82 l 265.46 162.82 l 265.57 163.10 l 265.67 163.10 l 265.77 163.10 l 265.88 163.37 l 265.98 163.65 l 266.09 163.65 l 266.19 163.65 l 266.30 163.93 l 266.40 163.93 l 266.50 163.93 l 266.61 163.93 l 266.71 163.93 l 266.82 163.93 l 266.92 164.21 l 267.02 164.21 l 267.13 164.21 l 267.23 164.76 l 267.34 164.76 l 267.44 165.04 l 267.54 165.60 l 267.65 165.60 l 267.75 165.87 l 267.86 165.87 l 267.96 165.87 l 268.06 166.15 l 268.17 166.15 l 268.27 166.43 l 268.38 166.71 l 268.48 166.71 l 268.58 166.71 l 268.69 166.71 l 268.79 166.98 l 268.90 166.98 l 269.00 167.54 l 269.10 167.54 l 269.21 167.54 l 269.31 167.54 l 269.42 167.54 l 269.52 167.82 l 269.62 168.09 l 269.73 168.09 l 269.83 168.37 l 269.94 168.37 l 270.04 168.65 l 270.14 168.93 l 270.25 168.93 l 270.35 168.93 l 270.46 169.20 l 270.56 169.20 l 270.66 169.20 l 270.77 169.20 l 270.87 169.48 l 270.98 169.76 l 271.08 170.32 l 271.19 170.32 l 271.29 170.59 l 271.39 170.59 l 271.50 170.59 l 271.60 170.87 l 271.71 170.87 l 271.81 171.15 l 271.91 171.15 l 272.02 171.43 l 272.12 171.43 l 272.23 171.43 l 272.33 171.98 l 272.43 171.98 l 272.54 172.26 l 272.64 172.26 l 272.75 172.26 l 272.85 172.54 l 272.95 172.81 l 273.06 173.09 l 273.16 173.37 l 273.27 173.37 l 273.37 173.37 l 273.47 173.65 l 273.58 173.92 l 273.68 173.92 l 273.79 174.20 l 273.89 174.20 l 273.99 174.20 l 274.10 174.20 l 274.20 174.20 l 274.31 174.48 l 274.41 174.48 l 274.51 174.76 l 274.62 174.76 l 274.72 174.76 l 274.83 174.76 l 274.93 174.76 l 275.03 175.31 l 275.14 175.31 l 275.24 175.31 l 275.35 175.31 l 275.45 175.31 l 275.55 175.59 l 275.66 175.59 l 275.76 175.87 l 275.87 175.87 l 275.97 175.87 l 276.08 175.87 l 276.18 175.87 l 276.28 176.14 l 276.39 176.14 l 276.49 176.14 l 276.60 176.14 l 276.70 176.42 l 276.80 176.42 l 276.91 176.98 l 277.01 176.98 l 277.12 176.98 l 277.22 177.26 l 277.32 177.26 l 277.43 177.53 l 277.53 177.53 l 277.64 177.81 l 277.74 177.81 l 277.84 178.09 l 277.95 178.09 l 278.05 178.09 l 278.16 178.37 l 278.26 178.37 l 278.36 178.64 l 278.47 178.64 l 278.57 178.64 l 278.68 178.64 l 278.78 178.92 l 278.88 178.92 l 278.99 178.92 l 279.09 178.92 l 279.20 179.20 l 279.30 179.75 l 279.40 179.75 l 279.51 179.75 l 279.61 180.03 l 279.72 180.31 l 279.82 180.59 l 279.92 180.86 l 280.03 180.86 l 280.13 181.14 l 280.24 181.14 l 280.34 181.14 l 280.45 181.70 l 280.55 181.97 l 280.65 181.97 l 280.76 181.97 l 280.86 182.25 l 280.97 182.25 l 281.07 182.25 l 281.17 182.25 l 281.28 182.25 l 281.38 182.53 l 281.49 182.81 l 281.59 183.09 l 281.69 183.64 l 281.80 183.92 l 281.90 183.92 l 282.01 183.92 l 282.11 184.20 l 282.21 184.75 l 282.32 184.75 l 282.42 184.75 l 282.53 184.75 l 282.63 185.03 l 282.73 185.31 l 282.84 185.31 l 282.94 185.31 l 283.05 185.58 l 283.15 185.86 l 283.25 185.86 l 283.36 186.14 l 283.46 186.14 l 283.57 186.42 l 283.67 186.69 l 283.77 186.69 l 283.88 186.69 l 283.98 186.97 l 284.09 186.97 l 284.19 186.97 l 284.29 186.97 l 284.40 187.25 l 284.50 187.80 l 284.61 188.08 l 284.71 188.08 l 284.81 188.08 l 284.92 188.36 l 285.02 188.36 l 285.13 188.36 l 285.23 188.64 l 285.34 188.64 l 285.44 188.92 l 285.54 189.19 l 285.65 189.19 l 285.75 189.19 l 285.86 189.47 l 285.96 189.47 l 286.06 190.58 l 286.17 190.58 l 286.27 190.86 l 286.38 190.86 l 286.48 190.86 l 286.58 191.14 l 286.69 191.41 l 286.79 191.41 l 286.90 191.97 l 287.00 192.25 l 287.10 192.25 l 287.21 192.25 l 287.31 192.25 l 287.42 192.52 l 287.52 192.52 l 287.62 192.52 l 287.73 193.08 l 287.83 193.08 l 287.94 193.36 l 288.04 193.36 l 288.14 193.36 l 288.25 193.36 l 288.35 193.36 l 288.46 193.36 l 288.56 193.36 l 288.66 193.91 l 288.77 193.91 l 288.87 193.91 l 288.98 193.91 l 289.08 194.19 l 289.18 194.19 l 289.29 194.47 l 289.39 194.47 l 289.50 194.47 l 289.60 194.74 l 289.70 195.02 l 289.81 195.02 l 289.91 195.30 l 290.02 195.30 l 290.12 196.13 l 290.23 196.13 l 290.33 196.69 l 290.43 196.69 l 290.54 196.97 l 290.64 196.97 l 290.75 196.97 l 290.85 196.97 l 290.95 197.24 l 291.06 197.24 l 291.16 197.52 l 291.27 197.80 l 291.37 198.08 l 291.47 198.08 l 291.58 198.08 l 291.68 198.35 l 291.79 198.35 l 291.89 198.35 l 291.99 198.63 l 292.10 198.63 l 292.20 199.19 l 292.31 199.19 l 292.41 199.19 l 292.51 199.46 l 292.62 199.46 l 292.72 199.46 l 292.83 200.30 l 292.93 200.30 l 293.03 200.30 l 293.14 200.57 l 293.24 200.57 l 293.35 200.57 l 293.45 200.85 l 293.55 201.13 l 293.66 201.13 l 293.76 201.41 l 293.87 201.69 l 293.97 201.69 l 294.07 201.96 l 294.18 202.24 l 294.28 202.24 l 294.39 202.24 l 294.49 202.52 l 294.59 203.35 l 294.70 203.63 l 294.80 203.91 l 294.91 203.91 l 295.01 204.18 l 295.12 204.18 l 295.22 204.46 l 295.32 204.46 l 295.43 204.74 l 295.53 205.02 l 295.64 205.29 l 295.74 205.29 l 295.84 205.57 l 295.95 205.85 l 296.05 206.13 l 296.16 206.40 l 296.26 206.40 l 296.36 206.68 l 296.47 206.96 l 296.57 206.96 l 296.68 207.24 l 296.78 207.24 l 296.88 207.51 l 296.99 207.51 l 297.09 207.79 l 297.20 207.79 l 297.30 207.79 l 297.40 207.79 l 297.51 207.79 l 297.61 208.07 l 297.72 208.35 l 297.82 208.63 l 297.92 208.90 l 298.03 208.90 l 298.13 208.90 l 298.24 209.18 l 298.34 209.46 l 298.44 209.46 l 298.55 209.46 l 298.65 209.46 l 298.76 209.46 l 298.86 209.74 l 298.96 209.74 l 299.07 209.74 l 299.17 210.01 l 299.28 210.29 l 299.38 210.29 l 299.49 210.29 l 299.59 210.29 l 299.69 210.57 l 299.80 211.12 l 299.90 211.12 l 300.01 211.12 l 300.11 211.12 l 300.21 211.12 l 300.32 211.12 l 300.42 211.68 l 300.53 211.68 l 300.63 212.23 l 300.73 212.51 l 300.84 212.51 l 300.94 212.79 l 301.05 213.07 l 301.15 213.07 l 301.25 213.34 l 301.36 213.62 l 301.46 213.90 l 301.57 214.18 l 301.67 214.46 l 301.77 214.46 l 301.88 214.73 l 301.98 214.73 l 302.09 215.01 l 302.19 215.01 l 302.29 215.29 l 302.40 215.29 l 302.50 215.29 l 302.61 215.29 l 302.71 215.57 l 302.81 215.84 l 302.92 215.84 l 303.02 216.12 l 303.13 216.12 l 303.23 216.68 l 303.33 216.68 l 303.44 216.68 l 303.54 216.95 l 303.65 216.95 l 303.75 217.23 l 303.85 217.51 l 303.96 217.51 l 304.06 217.51 l 304.17 217.79 l 304.27 217.79 l 304.38 217.79 l 304.48 217.79 l 304.58 217.79 l 304.69 217.79 l 304.79 217.79 l 304.90 218.06 l 305.00 218.34 l 305.10 218.62 l 305.21 218.90 l 305.31 218.90 l 305.42 219.45 l 305.52 219.73 l 305.62 219.73 l 305.73 220.29 l 305.83 220.56 l 305.94 220.84 l 306.04 220.84 l 306.14 220.84 l 306.25 221.12 l 306.35 221.12 l 306.46 221.12 l 306.56 221.40 l 306.66 221.40 l 306.77 221.67 l 306.87 221.67 l 306.98 221.95 l 307.08 221.95 l 307.18 222.23 l 307.29 222.23 l 307.39 222.23 l 307.50 222.23 l 307.60 222.23 l 307.70 222.51 l 307.81 222.51 l 307.91 222.78 l 308.02 223.06 l 308.12 223.06 l 308.22 223.62 l 308.33 223.89 l 308.43 224.45 l 308.54 224.45 l 308.64 224.45 l 308.74 224.45 l 308.85 224.45 l 308.95 225.00 l 309.06 225.28 l 309.16 225.84 l 309.27 225.84 l 309.37 225.84 l 309.47 226.11 l 309.58 226.39 l 309.68 226.39 l 309.79 226.67 l 309.89 226.67 l 309.99 226.95 l 310.10 227.23 l 310.20 227.50 l 310.31 227.50 l 310.41 227.78 l 310.51 227.78 l 310.62 227.78 l 310.72 228.06 l 310.83 228.06 l 310.93 228.06 l 311.03 228.34 l 311.14 228.34 l 311.24 228.89 l 311.35 228.89 l 311.45 229.17 l 311.55 229.17 l 311.66 229.45 l 311.76 229.72 l 311.87 229.72 l 311.97 229.72 l 312.07 230.00 l 312.18 230.00 l 312.28 230.56 l 312.39 230.56 l 312.49 230.56 l 312.59 230.56 l 312.70 230.83 l 312.80 231.11 l 312.91 231.11 l 313.01 231.39 l 313.11 231.67 l 313.22 231.67 l 313.32 231.94 l 313.43 231.94 l 313.53 232.22 l 313.63 232.50 l 313.74 232.50 l 313.84 232.50 l 313.95 232.50 l 314.05 232.50 l 314.16 232.78 l 314.26 233.06 l 314.36 233.33 l 314.47 233.61 l 314.57 233.61 l 314.68 233.89 l 314.78 233.89 l 314.88 234.17 l 314.99 234.17 l 315.09 234.44 l 315.20 234.44 l 315.30 234.44 l 315.40 234.72 l 315.51 234.72 l 315.61 235.00 l 315.72 235.28 l 315.82 235.28 l 315.92 235.55 l 316.03 235.83 l 316.13 236.11 l 316.24 236.66 l 316.34 236.66 l 316.44 236.66 l 316.55 236.66 l 316.65 236.66 l 316.76 236.94 l 316.86 237.22 l 316.96 237.22 l 317.07 237.77 l 317.17 237.77 l 317.28 237.77 l 317.38 237.77 l 317.48 237.77 l 317.59 237.77 l 317.69 238.05 l 317.80 238.05 l 317.90 238.33 l 318.00 238.33 l 318.11 238.61 l 318.21 238.89 l 318.32 238.89 l 318.42 238.89 l 318.53 238.89 l 318.63 238.89 l 318.73 239.16 l 318.84 239.16 l 318.94 239.44 l 319.05 239.44 l 319.15 239.44 l 319.25 239.72 l 319.36 240.00 l 319.46 240.00 l 319.57 240.27 l 319.67 240.27 l 319.77 240.27 l 319.88 240.55 l 319.98 240.83 l 320.09 241.38 l 320.19 241.38 l 320.29 241.66 l 320.40 241.66 l 320.50 241.94 l 320.61 242.49 l 320.71 242.49 l 320.81 242.77 l 320.92 242.77 l 321.02 243.05 l 321.13 243.05 l 321.23 243.33 l 321.33 243.60 l 321.44 243.60 l 321.54 243.60 l 321.65 243.88 l 321.75 243.88 l 321.85 244.16 l 321.96 244.44 l 322.06 244.44 l 322.17 244.44 l 322.27 244.71 l 322.37 244.71 l 322.48 244.99 l 322.58 244.99 l 322.69 245.27 l 322.79 245.27 l 322.89 245.55 l 323.00 245.83 l 323.10 245.83 l 323.21 246.10 l 323.31 246.38 l 323.42 246.66 l 323.52 247.21 l 323.62 247.21 l 323.73 247.49 l 323.83 247.49 l 323.94 247.49 l 324.04 247.77 l 324.14 247.77 l 324.25 248.05 l 324.35 248.05 l 324.46 248.32 l 324.56 248.32 l 324.66 248.60 l 324.77 248.60 l 324.87 248.60 l 324.98 248.60 l 325.08 248.88 l 325.18 248.88 l 325.29 248.88 l 325.39 249.16 l 325.50 249.16 l 325.60 249.16 l 325.70 249.16 l 325.81 249.43 l 325.91 249.71 l 326.02 249.71 l 326.12 249.71 l 326.22 249.99 l 326.33 250.54 l 326.43 250.54 l 326.54 251.38 l 326.64 251.66 l 326.74 251.66 l 326.85 251.93 l 326.95 251.93 l 327.06 252.21 l 327.16 252.49 l 327.26 252.49 l 327.37 252.49 l 327.47 252.49 l 327.58 253.04 l 327.68 253.32 l 327.78 253.32 l 327.89 253.32 l 327.99 253.60 l 328.10 253.60 l 328.20 253.60 l 328.31 254.15 l 328.41 254.15 l 328.51 254.43 l 328.62 254.71 l 328.72 254.71 l 328.83 254.71 l 328.93 254.99 l 329.03 254.99 l 329.14 254.99 l 329.24 255.26 l 329.35 255.26 l 329.45 255.82 l 329.55 255.82 l 329.66 255.82 l 329.76 256.10 l 329.87 256.10 l 329.97 256.10 l 330.07 256.10 l 330.18 256.10 l 330.28 256.65 l 330.39 256.65 l 330.49 256.93 l 330.59 257.21 l 330.70 257.21 l 330.80 257.48 l 330.91 257.48 l 331.01 257.76 l 331.11 257.76 l 331.22 257.76 l 331.32 258.04 l 331.43 258.32 l 331.53 258.32 l 331.63 258.60 l 331.74 258.60 l 331.84 258.60 l 331.95 258.87 l 332.05 258.87 l 332.15 259.15 l 332.26 259.43 l 332.36 259.43 l 332.47 259.43 l 332.57 259.98 l 332.67 260.26 l 332.78 260.54 l 332.88 260.82 l 332.99 260.82 l 333.09 261.09 l 333.20 261.09 l 333.30 261.37 l 333.40 261.37 l 333.51 261.37 l 333.61 261.65 l 333.72 261.65 l 333.82 261.65 l 333.92 261.93 l 334.03 261.93 l 334.13 262.20 l 334.24 262.20 l 334.34 262.48 l 334.44 262.48 l 334.55 262.76 l 334.65 263.04 l 334.76 263.04 l 334.86 263.59 l 334.96 263.59 l 335.07 263.87 l 335.17 263.87 l 335.28 264.15 l 335.38 264.15 l 335.48 264.43 l 335.59 264.98 l 335.69 265.26 l 335.80 265.26 l 335.90 265.54 l 336.00 265.54 l 336.11 265.81 l 336.21 265.81 l 336.32 265.81 l 336.42 266.09 l 336.52 266.09 l 336.63 266.09 l 336.73 266.09 l 336.84 266.92 l 336.94 266.92 l 337.04 267.20 l 337.15 267.20 l 337.25 267.20 l 337.36 267.76 l 337.46 268.03 l 337.57 268.31 l 337.67 268.31 l 337.77 268.31 l 337.88 268.59 l 337.98 268.59 l 338.09 268.59 l 338.19 268.87 l 338.29 268.87 l 338.40 268.87 l 338.50 269.14 l 338.61 269.42 l 338.71 269.70 l 338.81 270.26 l 338.92 270.26 l 339.02 270.26 l 339.13 270.53 l 339.23 270.53 l 339.33 270.53 l 339.44 270.53 l 339.54 271.09 l 339.65 271.64 l 339.75 271.92 l 339.85 272.48 l 339.96 273.03 l 340.06 273.31 l 340.17 273.31 l 340.27 273.59 l 340.37 273.86 l 340.48 274.14 l 340.58 274.42 l 340.69 274.42 l 340.79 274.42 l 340.89 274.70 l 341.00 274.70 l 341.10 274.70 l 341.21 274.97 l 341.31 274.97 l 341.41 275.25 l 341.52 275.25 l 341.62 275.53 l 341.73 275.81 l 341.83 276.08 l 341.93 276.08 l 342.04 276.36 l 342.14 276.64 l 342.25 276.64 l 342.35 276.64 l 342.46 276.92 l 342.56 277.20 l 342.66 277.20 l 342.77 277.47 l 342.87 277.75 l 342.98 278.31 l 343.08 278.86 l 343.18 278.86 l 343.29 278.86 l 343.39 279.42 l 343.50 279.69 l 343.60 279.69 l 343.70 279.69 l 343.81 279.97 l 343.91 279.97 l 344.02 279.97 l 344.12 280.25 l 344.22 280.53 l 344.33 280.53 l 344.43 280.53 l 344.54 280.53 l 344.64 280.53 l 344.74 280.80 l 344.85 281.36 l 344.95 281.36 l 345.06 281.64 l 345.16 281.91 l 345.26 281.91 l 345.37 281.91 l 345.47 282.19 l 345.58 282.47 l 345.68 282.75 l 345.78 282.75 l 345.89 282.75 l 345.99 283.03 l 346.10 283.30 l 346.20 283.30 l 346.30 283.30 l 346.41 283.58 l 346.51 283.58 l 346.62 283.86 l 346.72 283.86 l 346.82 283.86 l 346.93 284.14 l 347.03 284.14 l 347.14 284.97 l 347.24 285.25 l 347.35 285.52 l 347.45 285.80 l 347.55 285.80 l 347.66 287.19 l 347.76 287.19 l 347.87 287.19 l 347.97 287.47 l 348.07 287.47 l 348.18 288.02 l 348.28 288.02 l 348.39 288.30 l 348.49 288.58 l 348.59 288.58 l 348.70 289.41 l 348.80 289.41 l 348.91 289.41 l 349.01 289.69 l 349.11 290.52 l 349.22 290.52 l 349.32 290.80 l 349.43 290.80 l 349.53 291.08 l 349.63 291.35 l 349.74 291.35 l 349.84 291.35 l 349.95 291.63 l 350.05 291.63 l 350.15 292.19 l 350.26 292.46 l 350.36 293.02 l 350.47 293.02 l 350.57 293.57 l 350.67 293.85 l 350.78 293.85 l 350.88 293.85 l 350.99 294.13 l 351.09 294.41 l 351.19 294.41 l 351.30 294.68 l 351.40 294.68 l 351.51 295.52 l 351.61 295.52 l 351.71 295.52 l 351.82 296.07 l 351.92 296.07 l 352.03 296.35 l 352.13 296.35 l 352.24 296.35 l 352.34 296.35 l 352.44 296.91 l 352.55 296.91 l 352.65 296.91 l 352.76 297.74 l 352.86 297.74 l 352.96 297.74 l 353.07 298.02 l 353.17 298.02 l 353.28 298.29 l 353.38 298.29 l 353.48 298.57 l 353.59 298.57 l 353.69 298.57 l 353.80 298.85 l 353.90 299.13 l 354.00 299.13 l 354.11 299.13 l 354.21 299.40 l 354.32 299.68 l 354.42 299.68 l 354.52 299.96 l 354.63 299.96 l 354.73 299.96 l 354.84 300.24 l 354.94 300.24 l 355.04 300.51 l 355.15 300.51 l 355.25 300.79 l 355.36 300.79 l 355.46 300.79 l 355.56 300.79 l 355.67 301.07 l 355.77 301.35 l 355.88 301.35 l 355.98 301.35 l 356.08 301.35 l 356.19 302.74 l 356.29 302.74 l 356.40 303.01 l 356.50 303.29 l 356.61 303.57 l 356.71 303.57 l 356.81 303.57 l 356.92 303.85 l 357.02 303.85 l 357.13 304.12 l 357.23 304.40 l 357.33 304.68 l 357.44 304.96 l 357.54 304.96 l 357.65 304.96 l 357.75 304.96 l 357.85 305.23 l 357.96 305.79 l 358.06 305.79 l 358.17 306.34 l 358.27 306.34 l 358.37 306.90 l 358.48 307.18 l 358.58 308.01 l 358.69 308.57 l 358.79 308.57 l 358.89 308.57 l 359.00 308.57 l 359.10 308.84 l 359.21 308.84 l 359.31 309.12 l 359.41 309.40 l 359.52 309.68 l 359.62 309.68 l 359.73 309.68 l 359.83 309.95 l 359.93 309.95 l 360.04 310.79 l 360.14 311.06 l 360.25 311.62 l 360.35 311.62 l 360.45 311.62 l 360.56 311.62 l 360.66 311.90 l 360.77 312.45 l 360.87 312.45 l 360.97 312.73 l 361.08 312.73 l 361.18 312.73 l 361.29 314.12 l 361.39 314.12 l 361.50 314.12 l 361.60 314.12 l 361.70 314.40 l 361.81 314.67 l 361.91 314.95 l 362.02 314.95 l 362.12 314.95 l 362.22 315.51 l 362.33 315.51 l 362.43 315.78 l 362.54 316.06 l 362.64 316.06 l 362.74 316.34 l 362.85 316.89 l 362.95 317.17 l 363.06 317.45 l 363.16 318.00 l 363.26 318.28 l 363.37 318.28 l 363.47 318.28 l 363.58 318.56 l 363.68 318.56 l 363.78 319.67 l 363.89 319.95 l 363.99 319.95 l 364.10 319.95 l 364.20 320.50 l 364.30 320.50 l 364.41 320.50 l 364.51 321.06 l 364.62 321.34 l 364.72 321.34 l 364.82 321.34 l 364.93 321.34 l 365.03 321.61 l 365.14 321.61 l 365.24 321.61 l 365.34 321.89 l 365.45 322.17 l 365.55 322.17 l 365.66 322.45 l 365.76 322.72 l 365.86 322.72 l 365.97 323.00 l 366.07 323.00 l 366.18 323.00 l 366.28 323.56 l 366.39 323.56 l 366.49 323.83 l 366.59 324.39 l 366.70 324.39 l 366.80 324.94 l 366.91 325.22 l 367.01 325.22 l 367.11 325.78 l 367.22 326.05 l 367.32 326.05 l 367.43 326.05 l 367.53 326.33 l 367.63 326.33 l 367.74 326.33 l 367.84 326.33 l 367.95 326.89 l 368.05 326.89 l 368.15 327.17 l 368.26 327.17 l 368.36 327.17 l 368.47 327.44 l 368.57 327.72 l 368.67 327.72 l 368.78 327.72 l 368.88 328.55 l 368.99 328.55 l 369.09 328.83 l 369.19 328.83 l 369.30 329.11 l 369.40 329.11 l 369.51 329.11 l 369.61 329.39 l 369.71 329.39 l 369.82 329.39 l 369.92 330.22 l 370.03 330.22 l 370.13 330.50 l 370.23 330.50 l 370.34 330.50 l 370.44 330.77 l 370.55 331.05 l 370.65 331.61 l 370.75 331.61 l 370.86 331.88 l 370.96 331.88 l 371.07 332.16 l 371.17 332.44 l 371.28 332.44 l 371.38 332.44 l 371.48 332.44 l 371.59 332.72 l 371.69 332.72 l 371.80 332.72 l 371.90 332.72 l 372.00 332.72 l 372.11 333.00 l 372.21 333.00 l 372.32 333.00 l 372.42 333.55 l 372.52 333.83 l 372.63 333.83 l 372.73 334.11 l 372.84 334.38 l 372.94 334.38 l 373.04 334.94 l 373.15 334.94 l 373.25 334.94 l 373.36 335.22 l 373.46 335.22 l 373.56 335.49 l 373.67 335.49 l 373.77 335.49 l 373.88 335.49 l 373.98 335.77 l 374.08 335.77 l 374.19 335.77 l 374.29 336.05 l 374.40 336.05 l 374.50 336.33 l 374.60 336.60 l 374.71 336.88 l 374.81 336.88 l 374.92 336.88 l 375.02 337.16 l 375.12 337.44 l 375.23 337.44 l 375.33 337.99 l 375.44 337.99 l 375.54 338.27 l 375.65 339.10 l 375.75 339.38 l 375.85 340.21 l 375.96 340.21 l 376.06 340.21 l 376.17 340.21 l 376.27 340.49 l 376.37 340.49 l 376.48 340.49 l 376.58 340.77 l 376.69 340.77 l 376.79 341.32 l 376.89 341.88 l 377.00 342.43 l 377.10 342.43 l 377.21 343.27 l 377.31 343.27 l 377.41 343.27 l 377.52 343.27 l 377.62 343.54 l 377.73 343.54 l 377.83 343.54 l 377.93 343.82 l 378.04 343.82 l 378.14 343.82 l 378.25 343.82 l 378.35 343.82 l 378.45 344.10 l 378.56 344.10 l 378.66 344.38 l 378.77 344.38 l 378.87 344.65 l 378.97 344.65 l 379.08 344.93 l 379.18 345.49 l 379.29 345.49 l 379.39 345.77 l 379.49 345.77 l 379.60 346.32 l 379.70 346.60 l 379.81 346.60 l 379.91 346.60 l 380.01 346.60 l 380.12 346.88 l 380.22 346.88 l 380.33 347.15 l 380.43 347.43 l 380.54 347.43 l 380.64 347.43 l 380.74 347.71 l 380.85 347.99 l 380.95 347.99 l 381.06 347.99 l 381.16 347.99 l 381.26 348.26 l 381.37 348.26 l 381.47 348.26 l 381.58 348.82 l 381.68 349.10 l 381.78 349.37 l 381.89 349.65 l 381.99 349.65 l 382.10 349.93 l 382.20 350.21 l 382.30 350.48 l 382.41 351.04 l 382.51 351.04 l 382.62 351.04 l 382.72 351.32 l 382.82 352.43 l 382.93 352.71 l 383.03 352.71 l 383.14 352.71 l 383.24 352.98 l 383.34 353.26 l 383.45 353.26 l 383.55 353.26 l 383.66 353.82 l 383.76 353.82 l 383.86 354.09 l 383.97 354.09 l 384.07 354.65 l 384.18 354.93 l 384.28 355.48 l 384.38 355.48 l 384.49 355.76 l 384.59 356.04 l 384.70 356.04 l 384.80 356.04 l 384.90 356.31 l 385.01 356.31 l 385.11 356.31 l 385.22 356.59 l 385.32 356.59 l 385.43 356.59 l 385.53 356.87 l 385.63 357.15 l 385.74 357.15 l 385.84 357.15 l 385.95 357.15 l 386.05 357.42 l 386.15 357.42 l 386.26 357.70 l 386.36 357.98 l 386.47 358.26 l 386.57 358.26 l 386.67 358.26 l 386.78 358.81 l 386.88 358.81 l 386.99 359.09 l 387.09 359.09 l 387.19 359.37 l 387.30 359.37 l 387.40 359.65 l 387.51 359.65 l 387.61 359.92 l 387.71 359.92 l 387.82 359.92 l 387.92 359.92 l 388.03 360.48 l 388.13 360.48 l 388.23 361.03 l 388.34 361.03 l 388.44 361.03 l 388.55 361.31 l 388.65 361.31 l 388.75 361.59 l 388.86 361.59 l 388.96 361.87 l 389.07 361.87 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 71.63 73.44 m 383.76 73.44 l S 71.63 73.44 m 71.63 66.24 l S 123.65 73.44 m 123.65 66.24 l S 175.67 73.44 m 175.67 66.24 l S 227.69 73.44 m 227.69 66.24 l S 279.72 73.44 m 279.72 66.24 l S 331.74 73.44 m 331.74 66.24 l S 383.76 73.44 m 383.76 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 68.29 47.52 Tm (0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 113.64 47.52 Tm (500) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 162.33 47.52 Tm (1000) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 214.35 47.52 Tm (1500) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 266.37 47.52 Tm (2000) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 318.39 47.52 Tm (2500) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 370.42 47.52 Tm (3000) Tj ET 59.04 84.26 m 59.04 361.87 l S 59.04 84.26 m 51.84 84.26 l S 59.04 139.78 m 51.84 139.78 l S 59.04 195.30 m 51.84 195.30 l S 59.04 250.82 m 51.84 250.82 l S 59.04 306.34 m 51.84 306.34 l S 59.04 361.87 m 51.84 361.87 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 75.92 Tm (0.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 131.44 Tm (0.2) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 186.96 Tm (0.4) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 242.48 Tm (0.6) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 298.00 Tm (0.8) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 353.53 Tm (1.0) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 147.03 18.72 Tm (Number of rejected hypotheses) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 155.09 Tm (Sorted adjusted p-values) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 1.50 w [ 4.50 7.50] 0 d 1 J 1 j 10.00 M 71.73 361.87 m 71.84 361.87 l 71.94 361.87 l 72.05 361.87 l 72.15 361.87 l 72.25 361.87 l 72.36 361.87 l 72.46 361.87 l 72.57 361.87 l 72.67 361.87 l 72.77 361.87 l 72.88 361.87 l 72.98 361.87 l 73.09 361.87 l 73.19 361.87 l 73.29 361.87 l 73.40 361.87 l 73.50 361.87 l 73.61 361.87 l 73.71 361.87 l 73.81 361.87 l 73.92 361.87 l 74.02 361.87 l 74.13 361.87 l 74.23 361.87 l 74.33 361.87 l 74.44 361.87 l 74.54 361.87 l 74.65 361.87 l 74.75 361.87 l 74.85 361.87 l 74.96 361.87 l 75.06 361.87 l 75.17 361.87 l 75.27 361.87 l 75.37 361.87 l 75.48 361.87 l 75.58 361.87 l 75.69 361.87 l 75.79 361.87 l 75.90 361.87 l 76.00 361.87 l 76.10 361.87 l 76.21 361.87 l 76.31 361.87 l 76.42 361.87 l 76.52 361.87 l 76.62 361.87 l 76.73 361.87 l 76.83 361.87 l 76.94 361.87 l 77.04 361.87 l 77.14 361.87 l 77.25 361.87 l 77.35 361.87 l 77.46 361.87 l 77.56 361.87 l 77.66 361.87 l 77.77 361.87 l 77.87 361.87 l 77.98 361.87 l 78.08 361.87 l 78.18 361.87 l 78.29 361.87 l 78.39 361.87 l 78.50 361.87 l 78.60 361.87 l 78.70 361.87 l 78.81 361.87 l 78.91 361.87 l 79.02 361.87 l 79.12 361.87 l 79.22 361.87 l 79.33 361.87 l 79.43 361.87 l 79.54 361.87 l 79.64 361.87 l 79.74 361.87 l 79.85 361.87 l 79.95 361.87 l 80.06 361.87 l 80.16 361.87 l 80.26 361.87 l 80.37 361.87 l 80.47 361.87 l 80.58 361.87 l 80.68 361.87 l 80.79 361.87 l 80.89 361.87 l 80.99 361.87 l 81.10 361.87 l 81.20 361.87 l 81.31 361.87 l 81.41 361.87 l 81.51 361.87 l 81.62 361.87 l 81.72 361.87 l 81.83 361.87 l 81.93 361.87 l 82.03 361.87 l 82.14 361.87 l 82.24 361.87 l 82.35 361.87 l 82.45 361.87 l 82.55 361.87 l 82.66 361.87 l 82.76 361.87 l 82.87 361.87 l 82.97 361.87 l 83.07 361.87 l 83.18 361.87 l 83.28 361.87 l 83.39 361.87 l 83.49 361.87 l 83.59 361.87 l 83.70 361.87 l 83.80 361.87 l 83.91 361.87 l 84.01 361.87 l 84.11 361.87 l 84.22 361.87 l 84.32 361.87 l 84.43 361.87 l 84.53 361.87 l 84.63 361.87 l 84.74 361.87 l 84.84 361.87 l 84.95 361.87 l 85.05 361.87 l 85.15 361.87 l 85.26 361.87 l 85.36 361.87 l 85.47 361.87 l 85.57 361.87 l 85.68 361.87 l 85.78 361.87 l 85.88 361.87 l 85.99 361.87 l 86.09 361.87 l 86.20 361.87 l 86.30 361.87 l 86.40 361.87 l 86.51 361.87 l 86.61 361.87 l 86.72 361.87 l 86.82 361.87 l 86.92 361.87 l 87.03 361.87 l 87.13 361.87 l 87.24 361.87 l 87.34 361.87 l 87.44 361.87 l 87.55 361.87 l 87.65 361.87 l 87.76 361.87 l 87.86 361.87 l 87.96 361.87 l 88.07 361.87 l 88.17 361.87 l 88.28 361.87 l 88.38 361.87 l 88.48 361.87 l 88.59 361.87 l 88.69 361.87 l 88.80 361.87 l 88.90 361.87 l 89.00 361.87 l 89.11 361.87 l 89.21 361.87 l 89.32 361.87 l 89.42 361.87 l 89.52 361.87 l 89.63 361.87 l 89.73 361.87 l 89.84 361.87 l 89.94 361.87 l 90.05 361.87 l 90.15 361.87 l 90.25 361.87 l 90.36 361.87 l 90.46 361.87 l 90.57 361.87 l 90.67 361.87 l 90.77 361.87 l 90.88 361.87 l 90.98 361.87 l 91.09 361.87 l 91.19 361.87 l 91.29 361.87 l 91.40 361.87 l 91.50 361.87 l 91.61 361.87 l 91.71 361.87 l 91.81 361.87 l 91.92 361.87 l 92.02 361.87 l 92.13 361.87 l 92.23 361.87 l 92.33 361.87 l 92.44 361.87 l 92.54 361.87 l 92.65 361.87 l 92.75 361.87 l 92.85 361.87 l 92.96 361.87 l 93.06 361.87 l 93.17 361.87 l 93.27 361.87 l 93.37 361.87 l 93.48 361.87 l 93.58 361.87 l 93.69 361.87 l 93.79 361.87 l 93.89 361.87 l 94.00 361.87 l 94.10 361.87 l 94.21 361.87 l 94.31 361.87 l 94.41 361.87 l 94.52 361.87 l 94.62 361.87 l 94.73 361.87 l 94.83 361.87 l 94.94 361.87 l 95.04 361.87 l 95.14 361.87 l 95.25 361.87 l 95.35 361.87 l 95.46 361.87 l 95.56 361.87 l 95.66 361.87 l 95.77 361.87 l 95.87 361.87 l 95.98 361.87 l 96.08 361.87 l 96.18 361.87 l 96.29 361.87 l 96.39 361.87 l 96.50 361.87 l 96.60 361.87 l 96.70 361.87 l 96.81 361.87 l 96.91 361.87 l 97.02 361.87 l 97.12 361.87 l 97.22 361.87 l 97.33 361.87 l 97.43 361.87 l 97.54 361.87 l 97.64 361.87 l 97.74 361.87 l 97.85 361.87 l 97.95 361.87 l 98.06 361.87 l 98.16 361.87 l 98.26 361.87 l 98.37 361.87 l 98.47 361.87 l 98.58 361.87 l 98.68 361.87 l 98.78 361.87 l 98.89 361.87 l 98.99 361.87 l 99.10 361.87 l 99.20 361.87 l 99.30 361.87 l 99.41 361.87 l 99.51 361.87 l 99.62 361.87 l 99.72 361.87 l 99.83 361.87 l 99.93 361.87 l 100.03 361.87 l 100.14 361.87 l 100.24 361.87 l 100.35 361.87 l 100.45 361.87 l 100.55 361.87 l 100.66 361.87 l 100.76 361.87 l 100.87 361.87 l 100.97 361.87 l 101.07 361.87 l 101.18 361.87 l 101.28 361.87 l 101.39 361.87 l 101.49 361.87 l 101.59 361.87 l 101.70 361.87 l 101.80 361.87 l 101.91 361.87 l 102.01 361.87 l 102.11 361.87 l 102.22 361.87 l 102.32 361.87 l 102.43 361.87 l 102.53 361.87 l 102.63 361.87 l 102.74 361.87 l 102.84 361.87 l 102.95 361.87 l 103.05 361.87 l 103.15 361.87 l 103.26 361.87 l 103.36 361.87 l 103.47 361.87 l 103.57 361.87 l 103.67 361.87 l 103.78 361.87 l 103.88 361.87 l 103.99 361.87 l 104.09 361.87 l 104.19 361.87 l 104.30 361.87 l 104.40 361.87 l 104.51 361.87 l 104.61 361.87 l 104.72 361.87 l 104.82 361.87 l 104.92 361.87 l 105.03 361.87 l 105.13 361.87 l 105.24 361.87 l 105.34 361.87 l 105.44 361.87 l 105.55 361.87 l 105.65 361.87 l 105.76 361.87 l 105.86 361.87 l 105.96 361.87 l 106.07 361.87 l 106.17 361.87 l 106.28 361.87 l 106.38 361.87 l 106.48 361.87 l 106.59 361.87 l 106.69 361.87 l 106.80 361.87 l 106.90 361.87 l 107.00 361.87 l 107.11 361.87 l 107.21 361.87 l 107.32 361.87 l 107.42 361.87 l 107.52 361.87 l 107.63 361.87 l 107.73 361.87 l 107.84 361.87 l 107.94 361.87 l 108.04 361.87 l 108.15 361.87 l 108.25 361.87 l 108.36 361.87 l 108.46 361.87 l 108.56 361.87 l 108.67 361.87 l 108.77 361.87 l 108.88 361.87 l 108.98 361.87 l 109.09 361.87 l 109.19 361.87 l 109.29 361.87 l 109.40 361.87 l 109.50 361.87 l 109.61 361.87 l 109.71 361.87 l 109.81 361.87 l 109.92 361.87 l 110.02 361.87 l 110.13 361.87 l 110.23 361.87 l 110.33 361.87 l 110.44 361.87 l 110.54 361.87 l 110.65 361.87 l 110.75 361.87 l 110.85 361.87 l 110.96 361.87 l 111.06 361.87 l 111.17 361.87 l 111.27 361.87 l 111.37 361.87 l 111.48 361.87 l 111.58 361.87 l 111.69 361.87 l 111.79 361.87 l 111.89 361.87 l 112.00 361.87 l 112.10 361.87 l 112.21 361.87 l 112.31 361.87 l 112.41 361.87 l 112.52 361.87 l 112.62 361.87 l 112.73 361.87 l 112.83 361.87 l 112.93 361.87 l 113.04 361.87 l 113.14 361.87 l 113.25 361.87 l 113.35 361.87 l 113.45 361.87 l 113.56 361.87 l 113.66 361.87 l 113.77 361.87 l 113.87 361.87 l 113.98 361.87 l 114.08 361.87 l 114.18 361.87 l 114.29 361.87 l 114.39 361.87 l 114.50 361.87 l 114.60 361.87 l 114.70 361.87 l 114.81 361.87 l 114.91 361.87 l 115.02 361.87 l 115.12 361.87 l 115.22 361.87 l 115.33 361.87 l 115.43 361.87 l 115.54 361.87 l 115.64 361.87 l 115.74 361.87 l 115.85 361.87 l 115.95 361.87 l 116.06 361.87 l 116.16 361.87 l 116.26 361.87 l 116.37 361.87 l 116.47 361.87 l 116.58 361.87 l 116.68 361.87 l 116.78 361.87 l 116.89 361.87 l 116.99 361.87 l 117.10 361.87 l 117.20 361.87 l 117.30 361.87 l 117.41 361.87 l 117.51 361.87 l 117.62 361.87 l 117.72 361.87 l 117.82 361.87 l 117.93 361.87 l 118.03 361.87 l 118.14 361.87 l 118.24 361.87 l 118.34 361.87 l 118.45 361.87 l 118.55 361.87 l 118.66 361.87 l 118.76 361.87 l 118.87 361.87 l 118.97 361.87 l 119.07 361.87 l 119.18 361.87 l 119.28 361.87 l 119.39 361.87 l 119.49 361.87 l 119.59 361.87 l 119.70 361.87 l 119.80 361.87 l 119.91 361.87 l 120.01 361.87 l 120.11 361.87 l 120.22 361.87 l 120.32 361.87 l 120.43 361.87 l 120.53 361.87 l 120.63 361.87 l 120.74 361.87 l 120.84 361.87 l 120.95 361.87 l 121.05 361.87 l 121.15 361.87 l 121.26 361.87 l 121.36 361.87 l 121.47 361.87 l 121.57 361.87 l 121.67 361.87 l 121.78 361.87 l 121.88 361.87 l 121.99 361.87 l 122.09 361.87 l 122.19 361.87 l 122.30 361.87 l 122.40 361.87 l 122.51 361.87 l 122.61 361.87 l 122.71 361.87 l 122.82 361.87 l 122.92 361.87 l 123.03 361.87 l 123.13 361.87 l 123.23 361.87 l 123.34 361.87 l 123.44 361.87 l 123.55 361.87 l 123.65 361.87 l 123.76 361.87 l 123.86 361.87 l 123.96 361.87 l 124.07 361.87 l 124.17 361.87 l 124.28 361.87 l 124.38 361.87 l 124.48 361.87 l 124.59 361.87 l 124.69 361.87 l 124.80 361.87 l 124.90 361.87 l 125.00 361.87 l 125.11 361.87 l 125.21 361.87 l 125.32 361.87 l 125.42 361.87 l 125.52 361.87 l 125.63 361.87 l 125.73 361.87 l 125.84 361.87 l 125.94 361.87 l 126.04 361.87 l 126.15 361.87 l 126.25 361.87 l 126.36 361.87 l 126.46 361.87 l 126.56 361.87 l 126.67 361.87 l 126.77 361.87 l 126.88 361.87 l 126.98 361.87 l 127.08 361.87 l 127.19 361.87 l 127.29 361.87 l 127.40 361.87 l 127.50 361.87 l 127.60 361.87 l 127.71 361.87 l 127.81 361.87 l 127.92 361.87 l 128.02 361.87 l 128.13 361.87 l 128.23 361.87 l 128.33 361.87 l 128.44 361.87 l 128.54 361.87 l 128.65 361.87 l 128.75 361.87 l 128.85 361.87 l 128.96 361.87 l 129.06 361.87 l 129.17 361.87 l 129.27 361.87 l 129.37 361.87 l 129.48 361.87 l 129.58 361.87 l 129.69 361.87 l 129.79 361.87 l 129.89 361.87 l 130.00 361.87 l 130.10 361.87 l 130.21 361.87 l 130.31 361.87 l 130.41 361.87 l 130.52 361.87 l 130.62 361.87 l 130.73 361.87 l 130.83 361.87 l 130.93 361.87 l 131.04 361.87 l 131.14 361.87 l 131.25 361.87 l 131.35 361.87 l 131.45 361.87 l 131.56 361.87 l 131.66 361.87 l 131.77 361.87 l 131.87 361.87 l 131.97 361.87 l 132.08 361.87 l 132.18 361.87 l 132.29 361.87 l 132.39 361.87 l 132.49 361.87 l 132.60 361.87 l 132.70 361.87 l 132.81 361.87 l 132.91 361.87 l 133.02 361.87 l 133.12 361.87 l 133.22 361.87 l 133.33 361.87 l 133.43 361.87 l 133.54 361.87 l 133.64 361.87 l 133.74 361.87 l 133.85 361.87 l 133.95 361.87 l 134.06 361.87 l 134.16 361.87 l 134.26 361.87 l 134.37 361.87 l 134.47 361.87 l 134.58 361.87 l 134.68 361.87 l 134.78 361.87 l 134.89 361.87 l 134.99 361.87 l 135.10 361.87 l 135.20 361.87 l 135.30 361.87 l 135.41 361.87 l 135.51 361.87 l 135.62 361.87 l 135.72 361.87 l 135.82 361.87 l 135.93 361.87 l 136.03 361.87 l 136.14 361.87 l 136.24 361.87 l 136.34 361.87 l 136.45 361.87 l 136.55 361.87 l 136.66 361.87 l 136.76 361.87 l 136.86 361.87 l 136.97 361.87 l 137.07 361.87 l 137.18 361.87 l 137.28 361.87 l 137.38 361.87 l 137.49 361.87 l 137.59 361.87 l 137.70 361.87 l 137.80 361.87 l 137.91 361.87 l 138.01 361.87 l 138.11 361.87 l 138.22 361.87 l 138.32 361.87 l 138.43 361.87 l 138.53 361.87 l 138.63 361.87 l 138.74 361.87 l 138.84 361.87 l 138.95 361.87 l 139.05 361.87 l 139.15 361.87 l 139.26 361.87 l 139.36 361.87 l 139.47 361.87 l 139.57 361.87 l 139.67 361.87 l 139.78 361.87 l 139.88 361.87 l 139.99 361.87 l 140.09 361.87 l 140.19 361.87 l 140.30 361.87 l 140.40 361.87 l 140.51 361.87 l 140.61 361.87 l 140.71 361.87 l 140.82 361.87 l 140.92 361.87 l 141.03 361.87 l 141.13 361.87 l 141.23 361.87 l 141.34 361.87 l 141.44 361.87 l 141.55 361.87 l 141.65 361.87 l 141.75 361.87 l 141.86 361.87 l 141.96 361.87 l 142.07 361.87 l 142.17 361.87 l 142.27 361.87 l 142.38 361.87 l 142.48 361.87 l 142.59 361.87 l 142.69 361.87 l 142.80 361.87 l 142.90 361.87 l 143.00 361.87 l 143.11 361.87 l 143.21 361.87 l 143.32 361.87 l 143.42 361.87 l 143.52 361.87 l 143.63 361.87 l 143.73 361.87 l 143.84 361.87 l 143.94 361.87 l 144.04 361.87 l 144.15 361.87 l 144.25 361.87 l 144.36 361.87 l 144.46 361.87 l 144.56 361.87 l 144.67 361.87 l 144.77 361.87 l 144.88 361.87 l 144.98 361.87 l 145.08 361.87 l 145.19 361.87 l 145.29 361.87 l 145.40 361.87 l 145.50 361.87 l 145.60 361.87 l 145.71 361.87 l 145.81 361.87 l 145.92 361.87 l 146.02 361.87 l 146.12 361.87 l 146.23 361.87 l 146.33 361.87 l 146.44 361.87 l 146.54 361.87 l 146.64 361.87 l 146.75 361.87 l 146.85 361.87 l 146.96 361.87 l 147.06 361.87 l 147.17 361.87 l 147.27 361.87 l 147.37 361.87 l 147.48 361.87 l 147.58 361.87 l 147.69 361.87 l 147.79 361.87 l 147.89 361.87 l 148.00 361.87 l 148.10 361.87 l 148.21 361.87 l 148.31 361.87 l 148.41 361.87 l 148.52 361.87 l 148.62 361.87 l 148.73 361.87 l 148.83 361.87 l 148.93 361.87 l 149.04 361.87 l 149.14 361.87 l 149.25 361.87 l 149.35 361.87 l 149.45 361.87 l 149.56 361.87 l 149.66 361.87 l 149.77 361.87 l 149.87 361.87 l 149.97 361.87 l 150.08 361.87 l 150.18 361.87 l 150.29 361.87 l 150.39 361.87 l 150.49 361.87 l 150.60 361.87 l 150.70 361.87 l 150.81 361.87 l 150.91 361.87 l 151.01 361.87 l 151.12 361.87 l 151.22 361.87 l 151.33 361.87 l 151.43 361.87 l 151.53 361.87 l 151.64 361.87 l 151.74 361.87 l 151.85 361.87 l 151.95 361.87 l 152.06 361.87 l 152.16 361.87 l 152.26 361.87 l 152.37 361.87 l 152.47 361.87 l 152.58 361.87 l 152.68 361.87 l 152.78 361.87 l 152.89 361.87 l 152.99 361.87 l 153.10 361.87 l 153.20 361.87 l 153.30 361.87 l 153.41 361.87 l 153.51 361.87 l 153.62 361.87 l 153.72 361.87 l 153.82 361.87 l 153.93 361.87 l 154.03 361.87 l 154.14 361.87 l 154.24 361.87 l 154.34 361.87 l 154.45 361.87 l 154.55 361.87 l 154.66 361.87 l 154.76 361.87 l 154.86 361.87 l 154.97 361.87 l 155.07 361.87 l 155.18 361.87 l 155.28 361.87 l 155.38 361.87 l 155.49 361.87 l 155.59 361.87 l 155.70 361.87 l 155.80 361.87 l 155.90 361.87 l 156.01 361.87 l 156.11 361.87 l 156.22 361.87 l 156.32 361.87 l 156.42 361.87 l 156.53 361.87 l 156.63 361.87 l 156.74 361.87 l 156.84 361.87 l 156.95 361.87 l 157.05 361.87 l 157.15 361.87 l 157.26 361.87 l 157.36 361.87 l 157.47 361.87 l 157.57 361.87 l 157.67 361.87 l 157.78 361.87 l 157.88 361.87 l 157.99 361.87 l 158.09 361.87 l 158.19 361.87 l 158.30 361.87 l 158.40 361.87 l 158.51 361.87 l 158.61 361.87 l 158.71 361.87 l 158.82 361.87 l 158.92 361.87 l 159.03 361.87 l 159.13 361.87 l 159.23 361.87 l 159.34 361.87 l 159.44 361.87 l 159.55 361.87 l 159.65 361.87 l 159.75 361.87 l 159.86 361.87 l 159.96 361.87 l 160.07 361.87 l 160.17 361.87 l 160.27 361.87 l 160.38 361.87 l 160.48 361.87 l 160.59 361.87 l 160.69 361.87 l 160.79 361.87 l 160.90 361.87 l 161.00 361.87 l 161.11 361.87 l 161.21 361.87 l 161.31 361.87 l 161.42 361.87 l 161.52 361.87 l 161.63 361.87 l 161.73 361.87 l 161.84 361.87 l 161.94 361.87 l 162.04 361.87 l 162.15 361.87 l 162.25 361.87 l 162.36 361.87 l 162.46 361.87 l 162.56 361.87 l 162.67 361.87 l 162.77 361.87 l 162.88 361.87 l 162.98 361.87 l 163.08 361.87 l 163.19 361.87 l 163.29 361.87 l 163.40 361.87 l 163.50 361.87 l 163.60 361.87 l 163.71 361.87 l 163.81 361.87 l 163.92 361.87 l 164.02 361.87 l 164.12 361.87 l 164.23 361.87 l 164.33 361.87 l 164.44 361.87 l 164.54 361.87 l 164.64 361.87 l 164.75 361.87 l 164.85 361.87 l 164.96 361.87 l 165.06 361.87 l 165.16 361.87 l 165.27 361.87 l 165.37 361.87 l 165.48 361.87 l 165.58 361.87 l 165.68 361.87 l 165.79 361.87 l 165.89 361.87 l 166.00 361.87 l 166.10 361.87 l 166.21 361.87 l 166.31 361.87 l 166.41 361.87 l 166.52 361.87 l 166.62 361.87 l 166.73 361.87 l 166.83 361.87 l 166.93 361.87 l 167.04 361.87 l 167.14 361.87 l 167.25 361.87 l 167.35 361.87 l 167.45 361.87 l 167.56 361.87 l 167.66 361.87 l 167.77 361.87 l 167.87 361.87 l 167.97 361.87 l 168.08 361.87 l 168.18 361.87 l 168.29 361.87 l 168.39 361.87 l 168.49 361.87 l 168.60 361.87 l 168.70 361.87 l 168.81 361.87 l 168.91 361.87 l 169.01 361.87 l 169.12 361.87 l 169.22 361.87 l 169.33 361.87 l 169.43 361.87 l 169.53 361.87 l 169.64 361.87 l 169.74 361.87 l 169.85 361.87 l 169.95 361.87 l 170.05 361.87 l 170.16 361.87 l 170.26 361.87 l 170.37 361.87 l 170.47 361.87 l 170.57 361.87 l 170.68 361.87 l 170.78 361.87 l 170.89 361.87 l 170.99 361.87 l 171.10 361.87 l 171.20 361.87 l 171.30 361.87 l 171.41 361.87 l 171.51 361.87 l 171.62 361.87 l 171.72 361.87 l 171.82 361.87 l 171.93 361.87 l 172.03 361.87 l 172.14 361.87 l 172.24 361.87 l 172.34 361.87 l 172.45 361.87 l 172.55 361.87 l 172.66 361.87 l 172.76 361.87 l 172.86 361.87 l 172.97 361.87 l 173.07 361.87 l 173.18 361.87 l 173.28 361.87 l 173.38 361.87 l 173.49 361.87 l 173.59 361.87 l 173.70 361.87 l 173.80 361.87 l 173.90 361.87 l 174.01 361.87 l 174.11 361.87 l 174.22 361.87 l 174.32 361.87 l 174.42 361.87 l 174.53 361.87 l 174.63 361.87 l 174.74 361.87 l 174.84 361.87 l 174.94 361.87 l 175.05 361.87 l 175.15 361.87 l 175.26 361.87 l 175.36 361.87 l 175.46 361.87 l 175.57 361.87 l 175.67 361.87 l 175.78 361.87 l 175.88 361.87 l 175.99 361.87 l 176.09 361.87 l 176.19 361.87 l 176.30 361.87 l 176.40 361.87 l 176.51 361.87 l 176.61 361.87 l 176.71 361.87 l 176.82 361.87 l 176.92 361.87 l 177.03 361.87 l 177.13 361.87 l 177.23 361.87 l 177.34 361.87 l 177.44 361.87 l 177.55 361.87 l 177.65 361.87 l 177.75 361.87 l 177.86 361.87 l 177.96 361.87 l 178.07 361.87 l 178.17 361.87 l 178.27 361.87 l 178.38 361.87 l 178.48 361.87 l 178.59 361.87 l 178.69 361.87 l 178.79 361.87 l 178.90 361.87 l 179.00 361.87 l 179.11 361.87 l 179.21 361.87 l 179.31 361.87 l 179.42 361.87 l 179.52 361.87 l 179.63 361.87 l 179.73 361.87 l 179.83 361.87 l 179.94 361.87 l 180.04 361.87 l 180.15 361.87 l 180.25 361.87 l 180.35 361.87 l 180.46 361.87 l 180.56 361.87 l 180.67 361.87 l 180.77 361.87 l 180.88 361.87 l 180.98 361.87 l 181.08 361.87 l 181.19 361.87 l 181.29 361.87 l 181.40 361.87 l 181.50 361.87 l 181.60 361.87 l 181.71 361.87 l 181.81 361.87 l 181.92 361.87 l 182.02 361.87 l 182.12 361.87 l 182.23 361.87 l 182.33 361.87 l 182.44 361.87 l 182.54 361.87 l 182.64 361.87 l 182.75 361.87 l 182.85 361.87 l 182.96 361.87 l 183.06 361.87 l 183.16 361.87 l 183.27 361.87 l 183.37 361.87 l 183.48 361.87 l 183.58 361.87 l 183.68 361.87 l 183.79 361.87 l 183.89 361.87 l 184.00 361.87 l 184.10 361.87 l 184.20 361.87 l 184.31 361.87 l 184.41 361.87 l 184.52 361.87 l 184.62 361.87 l 184.72 361.87 l 184.83 361.87 l 184.93 361.87 l 185.04 361.87 l 185.14 361.87 l 185.25 361.87 l 185.35 361.87 l 185.45 361.87 l 185.56 361.87 l 185.66 361.87 l 185.77 361.87 l 185.87 361.87 l 185.97 361.87 l 186.08 361.87 l 186.18 361.87 l 186.29 361.87 l 186.39 361.87 l 186.49 361.87 l 186.60 361.87 l 186.70 361.87 l 186.81 361.87 l 186.91 361.87 l 187.01 361.87 l 187.12 361.87 l 187.22 361.87 l 187.33 361.87 l 187.43 361.87 l 187.53 361.87 l 187.64 361.87 l 187.74 361.87 l 187.85 361.87 l 187.95 361.87 l 188.05 361.87 l 188.16 361.87 l 188.26 361.87 l 188.37 361.87 l 188.47 361.87 l 188.57 361.87 l 188.68 361.87 l 188.78 361.87 l 188.89 361.87 l 188.99 361.87 l 189.09 361.87 l 189.20 361.87 l 189.30 361.87 l 189.41 361.87 l 189.51 361.87 l 189.61 361.87 l 189.72 361.87 l 189.82 361.87 l 189.93 361.87 l 190.03 361.87 l 190.14 361.87 l 190.24 361.87 l 190.34 361.87 l 190.45 361.87 l 190.55 361.87 l 190.66 361.87 l 190.76 361.87 l 190.86 361.87 l 190.97 361.87 l 191.07 361.87 l 191.18 361.87 l 191.28 361.87 l 191.38 361.87 l 191.49 361.87 l 191.59 361.87 l 191.70 361.87 l 191.80 361.87 l 191.90 361.87 l 192.01 361.87 l 192.11 361.87 l 192.22 361.87 l 192.32 361.87 l 192.42 361.87 l 192.53 361.87 l 192.63 361.87 l 192.74 361.87 l 192.84 361.87 l 192.94 361.87 l 193.05 361.87 l 193.15 361.87 l 193.26 361.87 l 193.36 361.87 l 193.46 361.87 l 193.57 361.87 l 193.67 361.87 l 193.78 361.87 l 193.88 361.87 l 193.98 361.87 l 194.09 361.87 l 194.19 361.87 l 194.30 361.87 l 194.40 361.87 l 194.50 361.87 l 194.61 361.87 l 194.71 361.87 l 194.82 361.87 l 194.92 361.87 l 195.03 361.87 l 195.13 361.87 l 195.23 361.87 l 195.34 361.87 l 195.44 361.87 l 195.55 361.87 l 195.65 361.87 l 195.75 361.87 l 195.86 361.87 l 195.96 361.87 l 196.07 361.87 l 196.17 361.87 l 196.27 361.87 l 196.38 361.87 l 196.48 361.87 l 196.59 361.87 l 196.69 361.87 l 196.79 361.87 l 196.90 361.87 l 197.00 361.87 l 197.11 361.87 l 197.21 361.87 l 197.31 361.87 l 197.42 361.87 l 197.52 361.87 l 197.63 361.87 l 197.73 361.87 l 197.83 361.87 l 197.94 361.87 l 198.04 361.87 l 198.15 361.87 l 198.25 361.87 l 198.35 361.87 l 198.46 361.87 l 198.56 361.87 l 198.67 361.87 l 198.77 361.87 l 198.87 361.87 l 198.98 361.87 l 199.08 361.87 l 199.19 361.87 l 199.29 361.87 l 199.39 361.87 l 199.50 361.87 l 199.60 361.87 l 199.71 361.87 l 199.81 361.87 l 199.92 361.87 l 200.02 361.87 l 200.12 361.87 l 200.23 361.87 l 200.33 361.87 l 200.44 361.87 l 200.54 361.87 l 200.64 361.87 l 200.75 361.87 l 200.85 361.87 l 200.96 361.87 l 201.06 361.87 l 201.16 361.87 l 201.27 361.87 l 201.37 361.87 l 201.48 361.87 l 201.58 361.87 l 201.68 361.87 l 201.79 361.87 l 201.89 361.87 l 202.00 361.87 l 202.10 361.87 l 202.20 361.87 l 202.31 361.87 l 202.41 361.87 l 202.52 361.87 l 202.62 361.87 l 202.72 361.87 l 202.83 361.87 l 202.93 361.87 l 203.04 361.87 l 203.14 361.87 l 203.24 361.87 l 203.35 361.87 l 203.45 361.87 l 203.56 361.87 l 203.66 361.87 l 203.76 361.87 l 203.87 361.87 l 203.97 361.87 l 204.08 361.87 l 204.18 361.87 l 204.29 361.87 l 204.39 361.87 l 204.49 361.87 l 204.60 361.87 l 204.70 361.87 l 204.81 361.87 l 204.91 361.87 l 205.01 361.87 l 205.12 361.87 l 205.22 361.87 l 205.33 361.87 l 205.43 361.87 l 205.53 361.87 l 205.64 361.87 l 205.74 361.87 l 205.85 361.87 l 205.95 361.87 l 206.05 361.87 l 206.16 361.87 l 206.26 361.87 l 206.37 361.87 l 206.47 361.87 l 206.57 361.87 l 206.68 361.87 l 206.78 361.87 l 206.89 361.87 l 206.99 361.87 l 207.09 361.87 l 207.20 361.87 l 207.30 361.87 l 207.41 361.87 l 207.51 361.87 l 207.61 361.87 l 207.72 361.87 l 207.82 361.87 l 207.93 361.87 l 208.03 361.87 l 208.13 361.87 l 208.24 361.87 l 208.34 361.87 l 208.45 361.87 l 208.55 361.87 l 208.65 361.87 l 208.76 361.87 l 208.86 361.87 l 208.97 361.87 l 209.07 361.87 l 209.18 361.87 l 209.28 361.87 l 209.38 361.87 l 209.49 361.87 l 209.59 361.87 l 209.70 361.87 l 209.80 361.87 l 209.90 361.87 l 210.01 361.87 l 210.11 361.87 l 210.22 361.87 l 210.32 361.87 l 210.42 361.87 l 210.53 361.87 l 210.63 361.87 l 210.74 361.87 l 210.84 361.87 l 210.94 361.87 l 211.05 361.87 l 211.15 361.87 l 211.26 361.87 l 211.36 361.87 l 211.46 361.87 l 211.57 361.87 l 211.67 361.87 l 211.78 361.87 l 211.88 361.87 l 211.98 361.87 l 212.09 361.87 l 212.19 361.87 l 212.30 361.87 l 212.40 361.87 l 212.50 361.87 l 212.61 361.87 l 212.71 361.87 l 212.82 361.87 l 212.92 361.87 l 213.02 361.87 l 213.13 361.87 l 213.23 361.87 l 213.34 361.87 l 213.44 361.87 l 213.54 361.87 l 213.65 361.87 l 213.75 361.87 l 213.86 361.87 l 213.96 361.87 l 214.07 361.87 l 214.17 361.87 l 214.27 361.87 l 214.38 361.87 l 214.48 361.87 l 214.59 361.87 l 214.69 361.87 l 214.79 361.87 l 214.90 361.87 l 215.00 361.87 l 215.11 361.87 l 215.21 361.87 l 215.31 361.87 l 215.42 361.87 l 215.52 361.87 l 215.63 361.87 l 215.73 361.87 l 215.83 361.87 l 215.94 361.87 l 216.04 361.87 l 216.15 361.87 l 216.25 361.87 l 216.35 361.87 l 216.46 361.87 l 216.56 361.87 l 216.67 361.87 l 216.77 361.87 l 216.87 361.87 l 216.98 361.87 l 217.08 361.87 l 217.19 361.87 l 217.29 361.87 l 217.39 361.87 l 217.50 361.87 l 217.60 361.87 l 217.71 361.87 l 217.81 361.87 l 217.91 361.87 l 218.02 361.87 l 218.12 361.87 l 218.23 361.87 l 218.33 361.87 l 218.43 361.87 l 218.54 361.87 l 218.64 361.87 l 218.75 361.87 l 218.85 361.87 l 218.96 361.87 l 219.06 361.87 l 219.16 361.87 l 219.27 361.87 l 219.37 361.87 l 219.48 361.87 l 219.58 361.87 l 219.68 361.87 l 219.79 361.87 l 219.89 361.87 l 220.00 361.87 l 220.10 361.87 l 220.20 361.87 l 220.31 361.87 l 220.41 361.87 l 220.52 361.87 l 220.62 361.87 l 220.72 361.87 l 220.83 361.87 l 220.93 361.87 l 221.04 361.87 l 221.14 361.87 l 221.24 361.87 l 221.35 361.87 l 221.45 361.87 l 221.56 361.87 l 221.66 361.87 l 221.76 361.87 l 221.87 361.87 l 221.97 361.87 l 222.08 361.87 l 222.18 361.87 l 222.28 361.87 l 222.39 361.87 l 222.49 361.87 l 222.60 361.87 l 222.70 361.87 l 222.80 361.87 l 222.91 361.87 l 223.01 361.87 l 223.12 361.87 l 223.22 361.87 l 223.33 361.87 l 223.43 361.87 l 223.53 361.87 l 223.64 361.87 l 223.74 361.87 l 223.85 361.87 l 223.95 361.87 l 224.05 361.87 l 224.16 361.87 l 224.26 361.87 l 224.37 361.87 l 224.47 361.87 l 224.57 361.87 l 224.68 361.87 l 224.78 361.87 l 224.89 361.87 l 224.99 361.87 l 225.09 361.87 l 225.20 361.87 l 225.30 361.87 l 225.41 361.87 l 225.51 361.87 l 225.61 361.87 l 225.72 361.87 l 225.82 361.87 l 225.93 361.87 l 226.03 361.87 l 226.13 361.87 l 226.24 361.87 l 226.34 361.87 l 226.45 361.87 l 226.55 361.87 l 226.65 361.87 l 226.76 361.87 l 226.86 361.87 l 226.97 361.87 l 227.07 361.87 l 227.17 361.87 l 227.28 361.87 l 227.38 361.87 l 227.49 361.87 l 227.59 361.87 l 227.69 361.87 l 227.80 361.87 l 227.90 361.87 l 228.01 361.87 l 228.11 361.87 l 228.22 361.87 l 228.32 361.87 l 228.42 361.87 l 228.53 361.87 l 228.63 361.87 l 228.74 361.87 l 228.84 361.87 l 228.94 361.87 l 229.05 361.87 l 229.15 361.87 l 229.26 361.87 l 229.36 361.87 l 229.46 361.87 l 229.57 361.87 l 229.67 361.87 l 229.78 361.87 l 229.88 361.87 l 229.98 361.87 l 230.09 361.87 l 230.19 361.87 l 230.30 361.87 l 230.40 361.87 l 230.50 361.87 l 230.61 361.87 l 230.71 361.87 l 230.82 361.87 l 230.92 361.87 l 231.02 361.87 l 231.13 361.87 l 231.23 361.87 l 231.34 361.87 l 231.44 361.87 l 231.54 361.87 l 231.65 361.87 l 231.75 361.87 l 231.86 361.87 l 231.96 361.87 l 232.06 361.87 l 232.17 361.87 l 232.27 361.87 l 232.38 361.87 l 232.48 361.87 l 232.58 361.87 l 232.69 361.87 l 232.79 361.87 l 232.90 361.87 l 233.00 361.87 l 233.11 361.87 l 233.21 361.87 l 233.31 361.87 l 233.42 361.87 l 233.52 361.87 l 233.63 361.87 l 233.73 361.87 l 233.83 361.87 l 233.94 361.87 l 234.04 361.87 l 234.15 361.87 l 234.25 361.87 l 234.35 361.87 l 234.46 361.87 l 234.56 361.87 l 234.67 361.87 l 234.77 361.87 l 234.87 361.87 l 234.98 361.87 l 235.08 361.87 l 235.19 361.87 l 235.29 361.87 l 235.39 361.87 l 235.50 361.87 l 235.60 361.87 l 235.71 361.87 l 235.81 361.87 l 235.91 361.87 l 236.02 361.87 l 236.12 361.87 l 236.23 361.87 l 236.33 361.87 l 236.43 361.87 l 236.54 361.87 l 236.64 361.87 l 236.75 361.87 l 236.85 361.87 l 236.95 361.87 l 237.06 361.87 l 237.16 361.87 l 237.27 361.87 l 237.37 361.87 l 237.47 361.87 l 237.58 361.87 l 237.68 361.87 l 237.79 361.87 l 237.89 361.87 l 238.00 361.87 l 238.10 361.87 l 238.20 361.87 l 238.31 361.87 l 238.41 361.87 l 238.52 361.87 l 238.62 361.87 l 238.72 361.87 l 238.83 361.87 l 238.93 361.87 l 239.04 361.87 l 239.14 361.87 l 239.24 361.87 l 239.35 361.87 l 239.45 361.87 l 239.56 361.87 l 239.66 361.87 l 239.76 361.87 l 239.87 361.87 l 239.97 361.87 l 240.08 361.87 l 240.18 361.87 l 240.28 361.87 l 240.39 361.87 l 240.49 361.87 l 240.60 361.87 l 240.70 361.87 l 240.80 361.87 l 240.91 361.87 l 241.01 361.87 l 241.12 361.87 l 241.22 361.87 l 241.32 361.87 l 241.43 361.87 l 241.53 361.87 l 241.64 361.87 l 241.74 361.87 l 241.84 361.87 l 241.95 361.87 l 242.05 361.87 l 242.16 361.87 l 242.26 361.87 l 242.37 361.87 l 242.47 361.87 l 242.57 361.87 l 242.68 361.87 l 242.78 361.87 l 242.89 361.87 l 242.99 361.87 l 243.09 361.87 l 243.20 361.87 l 243.30 361.87 l 243.41 361.87 l 243.51 361.87 l 243.61 361.87 l 243.72 361.87 l 243.82 361.87 l 243.93 361.87 l 244.03 361.87 l 244.13 361.87 l 244.24 361.87 l 244.34 361.87 l 244.45 361.87 l 244.55 361.87 l 244.65 361.87 l 244.76 361.87 l 244.86 361.87 l 244.97 361.87 l 245.07 361.87 l 245.17 361.87 l 245.28 361.87 l 245.38 361.87 l 245.49 361.87 l 245.59 361.87 l 245.69 361.87 l 245.80 361.87 l 245.90 361.87 l 246.01 361.87 l 246.11 361.87 l 246.21 361.87 l 246.32 361.87 l 246.42 361.87 l 246.53 361.87 l 246.63 361.87 l 246.73 361.87 l 246.84 361.87 l 246.94 361.87 l 247.05 361.87 l 247.15 361.87 l 247.26 361.87 l 247.36 361.87 l 247.46 361.87 l 247.57 361.87 l 247.67 361.87 l 247.78 361.87 l 247.88 361.87 l 247.98 361.87 l 248.09 361.87 l 248.19 361.87 l 248.30 361.87 l 248.40 361.87 l 248.50 361.87 l 248.61 361.87 l 248.71 361.87 l 248.82 361.87 l 248.92 361.87 l 249.02 361.87 l 249.13 361.87 l 249.23 361.87 l 249.34 361.87 l 249.44 361.87 l 249.54 361.87 l 249.65 361.87 l 249.75 361.87 l 249.86 361.87 l 249.96 361.87 l 250.06 361.87 l 250.17 361.87 l 250.27 361.87 l 250.38 361.87 l 250.48 361.87 l 250.58 361.87 l 250.69 361.87 l 250.79 361.87 l 250.90 361.87 l 251.00 361.87 l 251.10 361.87 l 251.21 361.87 l 251.31 361.87 l 251.42 361.87 l 251.52 361.87 l 251.62 361.87 l 251.73 361.87 l 251.83 361.87 l 251.94 361.87 l 252.04 361.87 l 252.15 361.87 l 252.25 361.87 l 252.35 361.87 l 252.46 361.87 l 252.56 361.87 l 252.67 361.87 l 252.77 361.87 l 252.87 361.87 l 252.98 361.87 l 253.08 361.87 l 253.19 361.87 l 253.29 361.87 l 253.39 361.87 l 253.50 361.87 l 253.60 361.87 l 253.71 361.87 l 253.81 361.87 l 253.91 361.87 l 254.02 361.87 l 254.12 361.87 l 254.23 361.87 l 254.33 361.87 l 254.43 361.87 l 254.54 361.87 l 254.64 361.87 l 254.75 361.87 l 254.85 361.87 l 254.95 361.87 l 255.06 361.87 l 255.16 361.87 l 255.27 361.87 l 255.37 361.87 l 255.47 361.87 l 255.58 361.87 l 255.68 361.87 l 255.79 361.87 l 255.89 361.87 l 255.99 361.87 l 256.10 361.87 l 256.20 361.87 l 256.31 361.87 l 256.41 361.87 l 256.51 361.87 l 256.62 361.87 l 256.72 361.87 l 256.83 361.87 l 256.93 361.87 l 257.04 361.87 l 257.14 361.87 l 257.24 361.87 l 257.35 361.87 l 257.45 361.87 l 257.56 361.87 l 257.66 361.87 l 257.76 361.87 l 257.87 361.87 l 257.97 361.87 l 258.08 361.87 l 258.18 361.87 l 258.28 361.87 l 258.39 361.87 l 258.49 361.87 l 258.60 361.87 l 258.70 361.87 l 258.80 361.87 l 258.91 361.87 l 259.01 361.87 l 259.12 361.87 l 259.22 361.87 l 259.32 361.87 l 259.43 361.87 l 259.53 361.87 l 259.64 361.87 l 259.74 361.87 l 259.84 361.87 l 259.95 361.87 l 260.05 361.87 l 260.16 361.87 l 260.26 361.87 l 260.36 361.87 l 260.47 361.87 l 260.57 361.87 l 260.68 361.87 l 260.78 361.87 l 260.88 361.87 l 260.99 361.87 l 261.09 361.87 l 261.20 361.87 l 261.30 361.87 l 261.41 361.87 l 261.51 361.87 l 261.61 361.87 l 261.72 361.87 l 261.82 361.87 l 261.93 361.87 l 262.03 361.87 l 262.13 361.87 l 262.24 361.87 l 262.34 361.87 l 262.45 361.87 l 262.55 361.87 l 262.65 361.87 l 262.76 361.87 l 262.86 361.87 l 262.97 361.87 l 263.07 361.87 l 263.17 361.87 l 263.28 361.87 l 263.38 361.87 l 263.49 361.87 l 263.59 361.87 l 263.69 361.87 l 263.80 361.87 l 263.90 361.87 l 264.01 361.87 l 264.11 361.87 l 264.21 361.87 l 264.32 361.87 l 264.42 361.87 l 264.53 361.87 l 264.63 361.87 l 264.73 361.87 l 264.84 361.87 l 264.94 361.87 l 265.05 361.87 l 265.15 361.87 l 265.25 361.87 l 265.36 361.87 l 265.46 361.87 l 265.57 361.87 l 265.67 361.87 l 265.77 361.87 l 265.88 361.87 l 265.98 361.87 l 266.09 361.87 l 266.19 361.87 l 266.30 361.87 l 266.40 361.87 l 266.50 361.87 l 266.61 361.87 l 266.71 361.87 l 266.82 361.87 l 266.92 361.87 l 267.02 361.87 l 267.13 361.87 l 267.23 361.87 l 267.34 361.87 l 267.44 361.87 l 267.54 361.87 l 267.65 361.87 l 267.75 361.87 l 267.86 361.87 l 267.96 361.87 l 268.06 361.87 l 268.17 361.87 l 268.27 361.87 l 268.38 361.87 l 268.48 361.87 l 268.58 361.87 l 268.69 361.87 l 268.79 361.87 l 268.90 361.87 l 269.00 361.87 l 269.10 361.87 l 269.21 361.87 l 269.31 361.87 l 269.42 361.87 l 269.52 361.87 l 269.62 361.87 l 269.73 361.87 l 269.83 361.87 l 269.94 361.87 l 270.04 361.87 l 270.14 361.87 l 270.25 361.87 l 270.35 361.87 l 270.46 361.87 l 270.56 361.87 l 270.66 361.87 l 270.77 361.87 l 270.87 361.87 l 270.98 361.87 l 271.08 361.87 l 271.19 361.87 l 271.29 361.87 l 271.39 361.87 l 271.50 361.87 l 271.60 361.87 l 271.71 361.87 l 271.81 361.87 l 271.91 361.87 l 272.02 361.87 l 272.12 361.87 l 272.23 361.87 l 272.33 361.87 l 272.43 361.87 l 272.54 361.87 l 272.64 361.87 l 272.75 361.87 l 272.85 361.87 l 272.95 361.87 l 273.06 361.87 l 273.16 361.87 l 273.27 361.87 l 273.37 361.87 l 273.47 361.87 l 273.58 361.87 l 273.68 361.87 l 273.79 361.87 l 273.89 361.87 l 273.99 361.87 l 274.10 361.87 l 274.20 361.87 l 274.31 361.87 l 274.41 361.87 l 274.51 361.87 l 274.62 361.87 l 274.72 361.87 l 274.83 361.87 l 274.93 361.87 l 275.03 361.87 l 275.14 361.87 l 275.24 361.87 l 275.35 361.87 l 275.45 361.87 l 275.55 361.87 l 275.66 361.87 l 275.76 361.87 l 275.87 361.87 l 275.97 361.87 l 276.08 361.87 l 276.18 361.87 l 276.28 361.87 l 276.39 361.87 l 276.49 361.87 l 276.60 361.87 l 276.70 361.87 l 276.80 361.87 l 276.91 361.87 l 277.01 361.87 l 277.12 361.87 l 277.22 361.87 l 277.32 361.87 l 277.43 361.87 l 277.53 361.87 l 277.64 361.87 l 277.74 361.87 l 277.84 361.87 l 277.95 361.87 l 278.05 361.87 l 278.16 361.87 l 278.26 361.87 l 278.36 361.87 l 278.47 361.87 l 278.57 361.87 l 278.68 361.87 l 278.78 361.87 l 278.88 361.87 l 278.99 361.87 l 279.09 361.87 l 279.20 361.87 l 279.30 361.87 l 279.40 361.87 l 279.51 361.87 l 279.61 361.87 l 279.72 361.87 l 279.82 361.87 l 279.92 361.87 l 280.03 361.87 l 280.13 361.87 l 280.24 361.87 l 280.34 361.87 l 280.45 361.87 l 280.55 361.87 l 280.65 361.87 l 280.76 361.87 l 280.86 361.87 l 280.97 361.87 l 281.07 361.87 l 281.17 361.87 l 281.28 361.87 l 281.38 361.87 l 281.49 361.87 l 281.59 361.87 l 281.69 361.87 l 281.80 361.87 l 281.90 361.87 l 282.01 361.87 l 282.11 361.87 l 282.21 361.87 l 282.32 361.87 l 282.42 361.87 l 282.53 361.87 l 282.63 361.87 l 282.73 361.87 l 282.84 361.87 l 282.94 361.87 l 283.05 361.87 l 283.15 361.87 l 283.25 361.87 l 283.36 361.87 l 283.46 361.87 l 283.57 361.87 l 283.67 361.87 l 283.77 361.87 l 283.88 361.87 l 283.98 361.87 l 284.09 361.87 l 284.19 361.87 l 284.29 361.87 l 284.40 361.87 l 284.50 361.87 l 284.61 361.87 l 284.71 361.87 l 284.81 361.87 l 284.92 361.87 l 285.02 361.87 l 285.13 361.87 l 285.23 361.87 l 285.34 361.87 l 285.44 361.87 l 285.54 361.87 l 285.65 361.87 l 285.75 361.87 l 285.86 361.87 l 285.96 361.87 l 286.06 361.87 l 286.17 361.87 l 286.27 361.87 l 286.38 361.87 l 286.48 361.87 l 286.58 361.87 l 286.69 361.87 l 286.79 361.87 l 286.90 361.87 l 287.00 361.87 l 287.10 361.87 l 287.21 361.87 l 287.31 361.87 l 287.42 361.87 l 287.52 361.87 l 287.62 361.87 l 287.73 361.87 l 287.83 361.87 l 287.94 361.87 l 288.04 361.87 l 288.14 361.87 l 288.25 361.87 l 288.35 361.87 l 288.46 361.87 l 288.56 361.87 l 288.66 361.87 l 288.77 361.87 l 288.87 361.87 l 288.98 361.87 l 289.08 361.87 l 289.18 361.87 l 289.29 361.87 l 289.39 361.87 l 289.50 361.87 l 289.60 361.87 l 289.70 361.87 l 289.81 361.87 l 289.91 361.87 l 290.02 361.87 l 290.12 361.87 l 290.23 361.87 l 290.33 361.87 l 290.43 361.87 l 290.54 361.87 l 290.64 361.87 l 290.75 361.87 l 290.85 361.87 l 290.95 361.87 l 291.06 361.87 l 291.16 361.87 l 291.27 361.87 l 291.37 361.87 l 291.47 361.87 l 291.58 361.87 l 291.68 361.87 l 291.79 361.87 l 291.89 361.87 l 291.99 361.87 l 292.10 361.87 l 292.20 361.87 l 292.31 361.87 l 292.41 361.87 l 292.51 361.87 l 292.62 361.87 l 292.72 361.87 l 292.83 361.87 l 292.93 361.87 l 293.03 361.87 l 293.14 361.87 l 293.24 361.87 l 293.35 361.87 l 293.45 361.87 l 293.55 361.87 l 293.66 361.87 l 293.76 361.87 l 293.87 361.87 l 293.97 361.87 l 294.07 361.87 l 294.18 361.87 l 294.28 361.87 l 294.39 361.87 l 294.49 361.87 l 294.59 361.87 l 294.70 361.87 l 294.80 361.87 l 294.91 361.87 l 295.01 361.87 l 295.12 361.87 l 295.22 361.87 l 295.32 361.87 l 295.43 361.87 l 295.53 361.87 l 295.64 361.87 l 295.74 361.87 l 295.84 361.87 l 295.95 361.87 l 296.05 361.87 l 296.16 361.87 l 296.26 361.87 l 296.36 361.87 l 296.47 361.87 l 296.57 361.87 l 296.68 361.87 l 296.78 361.87 l 296.88 361.87 l 296.99 361.87 l 297.09 361.87 l 297.20 361.87 l 297.30 361.87 l 297.40 361.87 l 297.51 361.87 l 297.61 361.87 l 297.72 361.87 l 297.82 361.87 l 297.92 361.87 l 298.03 361.87 l 298.13 361.87 l 298.24 361.87 l 298.34 361.87 l 298.44 361.87 l 298.55 361.87 l 298.65 361.87 l 298.76 361.87 l 298.86 361.87 l 298.96 361.87 l 299.07 361.87 l 299.17 361.87 l 299.28 361.87 l 299.38 361.87 l 299.49 361.87 l 299.59 361.87 l 299.69 361.87 l 299.80 361.87 l 299.90 361.87 l 300.01 361.87 l 300.11 361.87 l 300.21 361.87 l 300.32 361.87 l 300.42 361.87 l 300.53 361.87 l 300.63 361.87 l 300.73 361.87 l 300.84 361.87 l 300.94 361.87 l 301.05 361.87 l 301.15 361.87 l 301.25 361.87 l 301.36 361.87 l 301.46 361.87 l 301.57 361.87 l 301.67 361.87 l 301.77 361.87 l 301.88 361.87 l 301.98 361.87 l 302.09 361.87 l 302.19 361.87 l 302.29 361.87 l 302.40 361.87 l 302.50 361.87 l 302.61 361.87 l 302.71 361.87 l 302.81 361.87 l 302.92 361.87 l 303.02 361.87 l 303.13 361.87 l 303.23 361.87 l 303.33 361.87 l 303.44 361.87 l 303.54 361.87 l 303.65 361.87 l 303.75 361.87 l 303.85 361.87 l 303.96 361.87 l 304.06 361.87 l 304.17 361.87 l 304.27 361.87 l 304.38 361.87 l 304.48 361.87 l 304.58 361.87 l 304.69 361.87 l 304.79 361.87 l 304.90 361.87 l 305.00 361.87 l 305.10 361.87 l 305.21 361.87 l 305.31 361.87 l 305.42 361.87 l 305.52 361.87 l 305.62 361.87 l 305.73 361.87 l 305.83 361.87 l 305.94 361.87 l 306.04 361.87 l 306.14 361.87 l 306.25 361.87 l 306.35 361.87 l 306.46 361.87 l 306.56 361.87 l 306.66 361.87 l 306.77 361.87 l 306.87 361.87 l 306.98 361.87 l 307.08 361.87 l 307.18 361.87 l 307.29 361.87 l 307.39 361.87 l 307.50 361.87 l 307.60 361.87 l 307.70 361.87 l 307.81 361.87 l 307.91 361.87 l 308.02 361.87 l 308.12 361.87 l 308.22 361.87 l 308.33 361.87 l 308.43 361.87 l 308.54 361.87 l 308.64 361.87 l 308.74 361.87 l 308.85 361.87 l 308.95 361.87 l 309.06 361.87 l 309.16 361.87 l 309.27 361.87 l 309.37 361.87 l 309.47 361.87 l 309.58 361.87 l 309.68 361.87 l 309.79 361.87 l 309.89 361.87 l 309.99 361.87 l 310.10 361.87 l 310.20 361.87 l 310.31 361.87 l 310.41 361.87 l 310.51 361.87 l 310.62 361.87 l 310.72 361.87 l 310.83 361.87 l 310.93 361.87 l 311.03 361.87 l 311.14 361.87 l 311.24 361.87 l 311.35 361.87 l 311.45 361.87 l 311.55 361.87 l 311.66 361.87 l 311.76 361.87 l 311.87 361.87 l 311.97 361.87 l 312.07 361.87 l 312.18 361.87 l 312.28 361.87 l 312.39 361.87 l 312.49 361.87 l 312.59 361.87 l 312.70 361.87 l 312.80 361.87 l 312.91 361.87 l 313.01 361.87 l 313.11 361.87 l 313.22 361.87 l 313.32 361.87 l 313.43 361.87 l 313.53 361.87 l 313.63 361.87 l 313.74 361.87 l 313.84 361.87 l 313.95 361.87 l 314.05 361.87 l 314.16 361.87 l 314.26 361.87 l 314.36 361.87 l 314.47 361.87 l 314.57 361.87 l 314.68 361.87 l 314.78 361.87 l 314.88 361.87 l 314.99 361.87 l 315.09 361.87 l 315.20 361.87 l 315.30 361.87 l 315.40 361.87 l 315.51 361.87 l 315.61 361.87 l 315.72 361.87 l 315.82 361.87 l 315.92 361.87 l 316.03 361.87 l 316.13 361.87 l 316.24 361.87 l 316.34 361.87 l 316.44 361.87 l 316.55 361.87 l 316.65 361.87 l 316.76 361.87 l 316.86 361.87 l 316.96 361.87 l 317.07 361.87 l 317.17 361.87 l 317.28 361.87 l 317.38 361.87 l 317.48 361.87 l 317.59 361.87 l 317.69 361.87 l 317.80 361.87 l 317.90 361.87 l 318.00 361.87 l 318.11 361.87 l 318.21 361.87 l 318.32 361.87 l 318.42 361.87 l 318.53 361.87 l 318.63 361.87 l 318.73 361.87 l 318.84 361.87 l 318.94 361.87 l 319.05 361.87 l 319.15 361.87 l 319.25 361.87 l 319.36 361.87 l 319.46 361.87 l 319.57 361.87 l 319.67 361.87 l 319.77 361.87 l 319.88 361.87 l 319.98 361.87 l 320.09 361.87 l 320.19 361.87 l 320.29 361.87 l 320.40 361.87 l 320.50 361.87 l 320.61 361.87 l 320.71 361.87 l 320.81 361.87 l 320.92 361.87 l 321.02 361.87 l 321.13 361.87 l 321.23 361.87 l 321.33 361.87 l 321.44 361.87 l 321.54 361.87 l 321.65 361.87 l 321.75 361.87 l 321.85 361.87 l 321.96 361.87 l 322.06 361.87 l 322.17 361.87 l 322.27 361.87 l 322.37 361.87 l 322.48 361.87 l 322.58 361.87 l 322.69 361.87 l 322.79 361.87 l 322.89 361.87 l 323.00 361.87 l 323.10 361.87 l 323.21 361.87 l 323.31 361.87 l 323.42 361.87 l 323.52 361.87 l 323.62 361.87 l 323.73 361.87 l 323.83 361.87 l 323.94 361.87 l 324.04 361.87 l 324.14 361.87 l 324.25 361.87 l 324.35 361.87 l 324.46 361.87 l 324.56 361.87 l 324.66 361.87 l 324.77 361.87 l 324.87 361.87 l 324.98 361.87 l 325.08 361.87 l 325.18 361.87 l 325.29 361.87 l 325.39 361.87 l 325.50 361.87 l 325.60 361.87 l 325.70 361.87 l 325.81 361.87 l 325.91 361.87 l 326.02 361.87 l 326.12 361.87 l 326.22 361.87 l 326.33 361.87 l 326.43 361.87 l 326.54 361.87 l 326.64 361.87 l 326.74 361.87 l 326.85 361.87 l 326.95 361.87 l 327.06 361.87 l 327.16 361.87 l 327.26 361.87 l 327.37 361.87 l 327.47 361.87 l 327.58 361.87 l 327.68 361.87 l 327.78 361.87 l 327.89 361.87 l 327.99 361.87 l 328.10 361.87 l 328.20 361.87 l 328.31 361.87 l 328.41 361.87 l 328.51 361.87 l 328.62 361.87 l 328.72 361.87 l 328.83 361.87 l 328.93 361.87 l 329.03 361.87 l 329.14 361.87 l 329.24 361.87 l 329.35 361.87 l 329.45 361.87 l 329.55 361.87 l 329.66 361.87 l 329.76 361.87 l 329.87 361.87 l 329.97 361.87 l 330.07 361.87 l 330.18 361.87 l 330.28 361.87 l 330.39 361.87 l 330.49 361.87 l 330.59 361.87 l 330.70 361.87 l 330.80 361.87 l 330.91 361.87 l 331.01 361.87 l 331.11 361.87 l 331.22 361.87 l 331.32 361.87 l 331.43 361.87 l 331.53 361.87 l 331.63 361.87 l 331.74 361.87 l 331.84 361.87 l 331.95 361.87 l 332.05 361.87 l 332.15 361.87 l 332.26 361.87 l 332.36 361.87 l 332.47 361.87 l 332.57 361.87 l 332.67 361.87 l 332.78 361.87 l 332.88 361.87 l 332.99 361.87 l 333.09 361.87 l 333.20 361.87 l 333.30 361.87 l 333.40 361.87 l 333.51 361.87 l 333.61 361.87 l 333.72 361.87 l 333.82 361.87 l 333.92 361.87 l 334.03 361.87 l 334.13 361.87 l 334.24 361.87 l 334.34 361.87 l 334.44 361.87 l 334.55 361.87 l 334.65 361.87 l 334.76 361.87 l 334.86 361.87 l 334.96 361.87 l 335.07 361.87 l 335.17 361.87 l 335.28 361.87 l 335.38 361.87 l 335.48 361.87 l 335.59 361.87 l 335.69 361.87 l 335.80 361.87 l 335.90 361.87 l 336.00 361.87 l 336.11 361.87 l 336.21 361.87 l 336.32 361.87 l 336.42 361.87 l 336.52 361.87 l 336.63 361.87 l 336.73 361.87 l 336.84 361.87 l 336.94 361.87 l 337.04 361.87 l 337.15 361.87 l 337.25 361.87 l 337.36 361.87 l 337.46 361.87 l 337.57 361.87 l 337.67 361.87 l 337.77 361.87 l 337.88 361.87 l 337.98 361.87 l 338.09 361.87 l 338.19 361.87 l 338.29 361.87 l 338.40 361.87 l 338.50 361.87 l 338.61 361.87 l 338.71 361.87 l 338.81 361.87 l 338.92 361.87 l 339.02 361.87 l 339.13 361.87 l 339.23 361.87 l 339.33 361.87 l 339.44 361.87 l 339.54 361.87 l 339.65 361.87 l 339.75 361.87 l 339.85 361.87 l 339.96 361.87 l 340.06 361.87 l 340.17 361.87 l 340.27 361.87 l 340.37 361.87 l 340.48 361.87 l 340.58 361.87 l 340.69 361.87 l 340.79 361.87 l 340.89 361.87 l 341.00 361.87 l 341.10 361.87 l 341.21 361.87 l 341.31 361.87 l 341.41 361.87 l 341.52 361.87 l 341.62 361.87 l 341.73 361.87 l 341.83 361.87 l 341.93 361.87 l 342.04 361.87 l 342.14 361.87 l 342.25 361.87 l 342.35 361.87 l 342.46 361.87 l 342.56 361.87 l 342.66 361.87 l 342.77 361.87 l 342.87 361.87 l 342.98 361.87 l 343.08 361.87 l 343.18 361.87 l 343.29 361.87 l 343.39 361.87 l 343.50 361.87 l 343.60 361.87 l 343.70 361.87 l 343.81 361.87 l 343.91 361.87 l 344.02 361.87 l 344.12 361.87 l 344.22 361.87 l 344.33 361.87 l 344.43 361.87 l 344.54 361.87 l 344.64 361.87 l 344.74 361.87 l 344.85 361.87 l 344.95 361.87 l 345.06 361.87 l 345.16 361.87 l 345.26 361.87 l 345.37 361.87 l 345.47 361.87 l 345.58 361.87 l 345.68 361.87 l 345.78 361.87 l 345.89 361.87 l 345.99 361.87 l 346.10 361.87 l 346.20 361.87 l 346.30 361.87 l 346.41 361.87 l 346.51 361.87 l 346.62 361.87 l 346.72 361.87 l 346.82 361.87 l 346.93 361.87 l 347.03 361.87 l 347.14 361.87 l 347.24 361.87 l 347.35 361.87 l 347.45 361.87 l 347.55 361.87 l 347.66 361.87 l 347.76 361.87 l 347.87 361.87 l 347.97 361.87 l 348.07 361.87 l 348.18 361.87 l 348.28 361.87 l 348.39 361.87 l 348.49 361.87 l 348.59 361.87 l 348.70 361.87 l 348.80 361.87 l 348.91 361.87 l 349.01 361.87 l 349.11 361.87 l 349.22 361.87 l 349.32 361.87 l 349.43 361.87 l 349.53 361.87 l 349.63 361.87 l 349.74 361.87 l 349.84 361.87 l 349.95 361.87 l 350.05 361.87 l 350.15 361.87 l 350.26 361.87 l 350.36 361.87 l 350.47 361.87 l 350.57 361.87 l 350.67 361.87 l 350.78 361.87 l 350.88 361.87 l 350.99 361.87 l 351.09 361.87 l 351.19 361.87 l 351.30 361.87 l 351.40 361.87 l 351.51 361.87 l 351.61 361.87 l 351.71 361.87 l 351.82 361.87 l 351.92 361.87 l 352.03 361.87 l 352.13 361.87 l 352.24 361.87 l 352.34 361.87 l 352.44 361.87 l 352.55 361.87 l 352.65 361.87 l 352.76 361.87 l 352.86 361.87 l 352.96 361.87 l 353.07 361.87 l 353.17 361.87 l 353.28 361.87 l 353.38 361.87 l 353.48 361.87 l 353.59 361.87 l 353.69 361.87 l 353.80 361.87 l 353.90 361.87 l 354.00 361.87 l 354.11 361.87 l 354.21 361.87 l 354.32 361.87 l 354.42 361.87 l 354.52 361.87 l 354.63 361.87 l 354.73 361.87 l 354.84 361.87 l 354.94 361.87 l 355.04 361.87 l 355.15 361.87 l 355.25 361.87 l 355.36 361.87 l 355.46 361.87 l 355.56 361.87 l 355.67 361.87 l 355.77 361.87 l 355.88 361.87 l 355.98 361.87 l 356.08 361.87 l 356.19 361.87 l 356.29 361.87 l 356.40 361.87 l 356.50 361.87 l 356.61 361.87 l 356.71 361.87 l 356.81 361.87 l 356.92 361.87 l 357.02 361.87 l 357.13 361.87 l 357.23 361.87 l 357.33 361.87 l 357.44 361.87 l 357.54 361.87 l 357.65 361.87 l 357.75 361.87 l 357.85 361.87 l 357.96 361.87 l 358.06 361.87 l 358.17 361.87 l 358.27 361.87 l 358.37 361.87 l 358.48 361.87 l 358.58 361.87 l 358.69 361.87 l 358.79 361.87 l 358.89 361.87 l 359.00 361.87 l 359.10 361.87 l 359.21 361.87 l 359.31 361.87 l 359.41 361.87 l 359.52 361.87 l 359.62 361.87 l 359.73 361.87 l 359.83 361.87 l 359.93 361.87 l 360.04 361.87 l 360.14 361.87 l 360.25 361.87 l 360.35 361.87 l 360.45 361.87 l 360.56 361.87 l 360.66 361.87 l 360.77 361.87 l 360.87 361.87 l 360.97 361.87 l 361.08 361.87 l 361.18 361.87 l 361.29 361.87 l 361.39 361.87 l 361.50 361.87 l 361.60 361.87 l 361.70 361.87 l 361.81 361.87 l 361.91 361.87 l 362.02 361.87 l 362.12 361.87 l 362.22 361.87 l 362.33 361.87 l 362.43 361.87 l 362.54 361.87 l 362.64 361.87 l 362.74 361.87 l 362.85 361.87 l 362.95 361.87 l 363.06 361.87 l 363.16 361.87 l 363.26 361.87 l 363.37 361.87 l 363.47 361.87 l 363.58 361.87 l 363.68 361.87 l 363.78 361.87 l 363.89 361.87 l 363.99 361.87 l 364.10 361.87 l 364.20 361.87 l 364.30 361.87 l 364.41 361.87 l 364.51 361.87 l 364.62 361.87 l 364.72 361.87 l 364.82 361.87 l 364.93 361.87 l 365.03 361.87 l 365.14 361.87 l 365.24 361.87 l 365.34 361.87 l 365.45 361.87 l 365.55 361.87 l 365.66 361.87 l 365.76 361.87 l 365.86 361.87 l 365.97 361.87 l 366.07 361.87 l 366.18 361.87 l 366.28 361.87 l 366.39 361.87 l 366.49 361.87 l 366.59 361.87 l 366.70 361.87 l 366.80 361.87 l 366.91 361.87 l 367.01 361.87 l 367.11 361.87 l 367.22 361.87 l 367.32 361.87 l 367.43 361.87 l 367.53 361.87 l 367.63 361.87 l 367.74 361.87 l 367.84 361.87 l 367.95 361.87 l 368.05 361.87 l 368.15 361.87 l 368.26 361.87 l 368.36 361.87 l 368.47 361.87 l 368.57 361.87 l 368.67 361.87 l 368.78 361.87 l 368.88 361.87 l 368.99 361.87 l 369.09 361.87 l 369.19 361.87 l 369.30 361.87 l 369.40 361.87 l 369.51 361.87 l 369.61 361.87 l 369.71 361.87 l 369.82 361.87 l 369.92 361.87 l 370.03 361.87 l 370.13 361.87 l 370.23 361.87 l 370.34 361.87 l 370.44 361.87 l 370.55 361.87 l 370.65 361.87 l 370.75 361.87 l 370.86 361.87 l 370.96 361.87 l 371.07 361.87 l 371.17 361.87 l 371.28 361.87 l 371.38 361.87 l 371.48 361.87 l 371.59 361.87 l 371.69 361.87 l 371.80 361.87 l 371.90 361.87 l 372.00 361.87 l 372.11 361.87 l 372.21 361.87 l 372.32 361.87 l 372.42 361.87 l 372.52 361.87 l 372.63 361.87 l 372.73 361.87 l 372.84 361.87 l 372.94 361.87 l 373.04 361.87 l 373.15 361.87 l 373.25 361.87 l 373.36 361.87 l 373.46 361.87 l 373.56 361.87 l 373.67 361.87 l 373.77 361.87 l 373.88 361.87 l 373.98 361.87 l 374.08 361.87 l 374.19 361.87 l 374.29 361.87 l 374.40 361.87 l 374.50 361.87 l 374.60 361.87 l 374.71 361.87 l 374.81 361.87 l 374.92 361.87 l 375.02 361.87 l 375.12 361.87 l 375.23 361.87 l 375.33 361.87 l 375.44 361.87 l 375.54 361.87 l 375.65 361.87 l 375.75 361.87 l 375.85 361.87 l 375.96 361.87 l 376.06 361.87 l 376.17 361.87 l 376.27 361.87 l 376.37 361.87 l 376.48 361.87 l 376.58 361.87 l 376.69 361.87 l 376.79 361.87 l 376.89 361.87 l 377.00 361.87 l 377.10 361.87 l 377.21 361.87 l 377.31 361.87 l 377.41 361.87 l 377.52 361.87 l 377.62 361.87 l 377.73 361.87 l 377.83 361.87 l 377.93 361.87 l 378.04 361.87 l 378.14 361.87 l 378.25 361.87 l 378.35 361.87 l 378.45 361.87 l 378.56 361.87 l 378.66 361.87 l 378.77 361.87 l 378.87 361.87 l 378.97 361.87 l 379.08 361.87 l 379.18 361.87 l 379.29 361.87 l 379.39 361.87 l 379.49 361.87 l 379.60 361.87 l 379.70 361.87 l 379.81 361.87 l 379.91 361.87 l 380.01 361.87 l 380.12 361.87 l 380.22 361.87 l 380.33 361.87 l 380.43 361.87 l 380.54 361.87 l 380.64 361.87 l 380.74 361.87 l 380.85 361.87 l 380.95 361.87 l 381.06 361.87 l 381.16 361.87 l 381.26 361.87 l 381.37 361.87 l 381.47 361.87 l 381.58 361.87 l 381.68 361.87 l 381.78 361.87 l 381.89 361.87 l 381.99 361.87 l 382.10 361.87 l 382.20 361.87 l 382.30 361.87 l 382.41 361.87 l 382.51 361.87 l 382.62 361.87 l 382.72 361.87 l 382.82 361.87 l 382.93 361.87 l 383.03 361.87 l 383.14 361.87 l 383.24 361.87 l 383.34 361.87 l 383.45 361.87 l 383.55 361.87 l 383.66 361.87 l 383.76 361.87 l 383.86 361.87 l 383.97 361.87 l 384.07 361.87 l 384.18 361.87 l 384.28 361.87 l 384.38 361.87 l 384.49 361.87 l 384.59 361.87 l 384.70 361.87 l 384.80 361.87 l 384.90 361.87 l 385.01 361.87 l 385.11 361.87 l 385.22 361.87 l 385.32 361.87 l 385.43 361.87 l 385.53 361.87 l 385.63 361.87 l 385.74 361.87 l 385.84 361.87 l 385.95 361.87 l 386.05 361.87 l 386.15 361.87 l 386.26 361.87 l 386.36 361.87 l 386.47 361.87 l 386.57 361.87 l 386.67 361.87 l 386.78 361.87 l 386.88 361.87 l 386.99 361.87 l 387.09 361.87 l 387.19 361.87 l 387.30 361.87 l 387.40 361.87 l 387.51 361.87 l 387.61 361.87 l 387.71 361.87 l 387.82 361.87 l 387.92 361.87 l 388.03 361.87 l 388.13 361.87 l 388.23 361.87 l 388.34 361.87 l 388.44 361.87 l 388.55 361.87 l 388.65 361.87 l 388.75 361.87 l 388.86 361.87 l 388.96 361.87 l 389.07 361.87 l S 0.000 0.804 0.000 RG 71.73 84.53 m 71.84 84.53 l 71.94 84.53 l 72.05 84.53 l 72.15 84.53 l 72.25 84.81 l 72.36 84.81 l 72.46 84.81 l 72.57 84.81 l 72.67 84.81 l 72.77 84.81 l 72.88 84.81 l 72.98 84.81 l 73.09 84.81 l 73.19 84.81 l 73.29 84.81 l 73.40 84.81 l 73.50 84.81 l 73.61 84.81 l 73.71 84.81 l 73.81 84.81 l 73.92 84.81 l 74.02 84.81 l 74.13 84.81 l 74.23 84.81 l 74.33 84.81 l 74.44 84.81 l 74.54 84.81 l 74.65 85.09 l 74.75 85.37 l 74.85 85.37 l 74.96 85.37 l 75.06 85.64 l 75.17 85.64 l 75.27 85.64 l 75.37 85.92 l 75.48 86.20 l 75.58 86.20 l 75.69 86.20 l 75.79 86.20 l 75.90 86.75 l 76.00 86.75 l 76.10 86.75 l 76.21 87.03 l 76.31 87.59 l 76.42 88.70 l 76.52 89.25 l 76.62 90.09 l 76.73 90.09 l 76.83 90.09 l 76.94 90.09 l 77.04 90.36 l 77.14 90.64 l 77.25 90.64 l 77.35 90.64 l 77.46 90.64 l 77.56 90.64 l 77.66 90.64 l 77.77 90.64 l 77.87 90.64 l 77.98 90.92 l 78.08 90.92 l 78.18 90.92 l 78.29 90.92 l 78.39 90.92 l 78.50 90.92 l 78.60 91.20 l 78.70 91.20 l 78.81 91.20 l 78.91 92.03 l 79.02 92.03 l 79.12 92.58 l 79.22 92.58 l 79.33 93.14 l 79.43 93.42 l 79.54 93.42 l 79.64 93.42 l 79.74 93.42 l 79.85 93.42 l 79.95 93.42 l 80.06 93.42 l 80.16 93.69 l 80.26 93.69 l 80.37 94.53 l 80.47 94.80 l 80.58 95.36 l 80.68 95.36 l 80.79 95.64 l 80.89 95.64 l 80.99 96.19 l 81.10 96.19 l 81.20 96.75 l 81.31 96.75 l 81.41 97.03 l 81.51 97.30 l 81.62 97.86 l 81.72 98.14 l 81.83 99.52 l 81.93 99.52 l 82.03 99.52 l 82.14 99.52 l 82.24 100.36 l 82.35 100.63 l 82.45 100.63 l 82.55 100.63 l 82.66 101.47 l 82.76 102.58 l 82.87 102.58 l 82.97 103.13 l 83.07 103.13 l 83.18 104.52 l 83.28 105.08 l 83.39 105.08 l 83.49 106.19 l 83.59 106.74 l 83.70 106.74 l 83.80 106.74 l 83.91 108.69 l 84.01 108.69 l 84.11 108.69 l 84.22 108.69 l 84.32 108.96 l 84.43 108.96 l 84.53 110.63 l 84.63 112.02 l 84.74 112.29 l 84.84 116.18 l 84.95 116.74 l 85.05 120.07 l 85.15 120.07 l 85.26 121.18 l 85.36 121.18 l 85.47 121.18 l 85.57 122.84 l 85.68 122.84 l 85.78 123.12 l 85.88 123.40 l 85.99 123.95 l 86.09 124.23 l 86.20 124.79 l 86.30 125.90 l 86.40 125.90 l 86.51 125.90 l 86.61 127.29 l 86.72 127.56 l 86.82 128.40 l 86.92 128.67 l 87.03 129.23 l 87.13 129.78 l 87.24 130.34 l 87.34 132.56 l 87.44 132.84 l 87.55 132.84 l 87.65 135.61 l 87.76 137.00 l 87.86 137.28 l 87.96 137.83 l 88.07 139.78 l 88.17 140.89 l 88.28 140.89 l 88.38 140.89 l 88.48 143.11 l 88.59 143.66 l 88.69 145.89 l 88.80 145.89 l 88.90 146.16 l 89.00 147.00 l 89.11 147.00 l 89.21 149.49 l 89.32 149.77 l 89.42 154.21 l 89.52 154.21 l 89.63 156.16 l 89.73 156.43 l 89.84 156.71 l 89.94 156.71 l 90.05 156.99 l 90.15 158.93 l 90.25 160.60 l 90.36 161.43 l 90.46 161.71 l 90.57 161.71 l 90.67 162.26 l 90.77 162.54 l 90.88 164.76 l 90.98 166.15 l 91.09 173.37 l 91.19 175.31 l 91.29 175.31 l 91.40 175.87 l 91.50 176.14 l 91.61 176.14 l 91.71 176.14 l 91.81 177.26 l 91.92 178.64 l 92.02 178.64 l 92.13 183.09 l 92.23 184.20 l 92.33 184.20 l 92.44 184.20 l 92.54 186.97 l 92.65 187.25 l 92.75 188.36 l 92.85 188.64 l 92.96 190.03 l 93.06 190.30 l 93.17 190.86 l 93.27 191.41 l 93.37 191.69 l 93.48 191.69 l 93.58 193.91 l 93.69 193.91 l 93.79 194.74 l 93.89 196.69 l 94.00 197.80 l 94.10 199.46 l 94.21 199.74 l 94.31 199.74 l 94.41 200.02 l 94.52 200.02 l 94.62 201.13 l 94.73 201.96 l 94.83 202.52 l 94.94 202.52 l 95.04 202.80 l 95.14 203.91 l 95.25 204.46 l 95.35 205.02 l 95.46 206.40 l 95.56 206.40 l 95.66 206.96 l 95.77 208.07 l 95.87 208.07 l 95.98 211.96 l 96.08 212.51 l 96.18 213.34 l 96.29 215.84 l 96.39 217.51 l 96.50 217.51 l 96.60 219.17 l 96.70 219.17 l 96.81 219.17 l 96.91 219.45 l 97.02 220.29 l 97.12 220.56 l 97.22 220.56 l 97.33 221.12 l 97.43 221.40 l 97.54 221.40 l 97.64 221.95 l 97.74 223.34 l 97.85 224.45 l 97.95 224.45 l 98.06 224.45 l 98.16 226.39 l 98.26 229.17 l 98.37 232.22 l 98.47 233.61 l 98.58 235.28 l 98.68 236.11 l 98.78 236.66 l 98.89 238.89 l 98.99 238.89 l 99.10 239.16 l 99.20 239.72 l 99.30 244.44 l 99.41 244.44 l 99.51 244.71 l 99.62 246.38 l 99.72 246.66 l 99.83 246.66 l 99.93 249.16 l 100.03 249.16 l 100.14 249.43 l 100.24 249.71 l 100.35 249.99 l 100.45 250.82 l 100.55 251.66 l 100.66 252.77 l 100.76 253.60 l 100.87 253.60 l 100.97 254.15 l 101.07 255.26 l 101.18 256.93 l 101.28 258.60 l 101.39 258.87 l 101.49 259.15 l 101.59 259.15 l 101.70 259.98 l 101.80 260.54 l 101.91 261.09 l 102.01 261.65 l 102.11 261.65 l 102.22 261.93 l 102.32 262.48 l 102.43 263.31 l 102.53 264.15 l 102.63 264.70 l 102.74 265.26 l 102.84 265.81 l 102.95 266.37 l 103.05 266.65 l 103.15 266.65 l 103.26 268.03 l 103.36 268.59 l 103.47 268.59 l 103.57 268.59 l 103.67 268.59 l 103.78 269.14 l 103.88 272.20 l 103.99 272.20 l 104.09 272.20 l 104.19 274.42 l 104.30 274.97 l 104.40 278.31 l 104.51 280.80 l 104.61 280.80 l 104.72 281.08 l 104.82 281.36 l 104.92 281.64 l 105.03 282.47 l 105.13 283.86 l 105.24 284.41 l 105.34 285.80 l 105.44 287.47 l 105.55 288.58 l 105.65 288.58 l 105.76 289.97 l 105.86 289.97 l 105.96 291.63 l 106.07 291.91 l 106.17 292.74 l 106.28 293.02 l 106.38 293.57 l 106.48 293.85 l 106.59 296.63 l 106.69 296.63 l 106.80 297.74 l 106.90 298.02 l 107.00 298.02 l 107.11 298.02 l 107.21 298.02 l 107.32 298.29 l 107.42 298.29 l 107.52 300.24 l 107.63 300.79 l 107.73 301.35 l 107.84 301.63 l 107.94 301.63 l 108.04 301.90 l 108.15 302.18 l 108.25 302.18 l 108.36 303.85 l 108.46 304.40 l 108.56 304.96 l 108.67 304.96 l 108.77 305.23 l 108.88 306.07 l 108.98 309.40 l 109.09 310.23 l 109.19 310.51 l 109.29 310.51 l 109.40 310.51 l 109.50 310.79 l 109.61 310.79 l 109.71 311.34 l 109.81 311.62 l 109.92 313.28 l 110.02 313.56 l 110.13 313.56 l 110.23 313.84 l 110.33 313.84 l 110.44 315.23 l 110.54 315.23 l 110.65 316.89 l 110.75 316.89 l 110.85 317.17 l 110.96 320.78 l 111.06 320.78 l 111.17 321.06 l 111.27 322.17 l 111.37 322.45 l 111.48 322.45 l 111.58 322.72 l 111.69 323.00 l 111.79 323.00 l 111.89 325.22 l 112.00 325.50 l 112.10 325.78 l 112.21 325.78 l 112.31 325.78 l 112.41 326.61 l 112.52 326.89 l 112.62 327.72 l 112.73 328.00 l 112.83 328.00 l 112.93 328.28 l 113.04 328.83 l 113.14 329.11 l 113.25 329.39 l 113.35 329.94 l 113.45 329.94 l 113.56 330.22 l 113.66 330.77 l 113.77 331.33 l 113.87 331.61 l 113.98 331.88 l 114.08 331.88 l 114.18 331.88 l 114.29 334.66 l 114.39 334.66 l 114.50 334.66 l 114.60 335.49 l 114.70 335.77 l 114.81 335.77 l 114.91 335.77 l 115.02 336.60 l 115.12 337.16 l 115.22 337.16 l 115.33 337.71 l 115.43 337.71 l 115.54 339.66 l 115.64 339.66 l 115.74 340.77 l 115.85 340.77 l 115.95 340.77 l 116.06 340.77 l 116.16 340.77 l 116.26 341.05 l 116.37 341.05 l 116.47 341.05 l 116.58 341.05 l 116.68 341.05 l 116.78 341.05 l 116.89 342.16 l 116.99 343.54 l 117.10 343.82 l 117.20 343.82 l 117.30 344.93 l 117.41 345.21 l 117.51 345.21 l 117.62 345.49 l 117.72 345.77 l 117.82 345.77 l 117.93 345.77 l 118.03 347.15 l 118.14 347.43 l 118.24 347.43 l 118.34 347.43 l 118.45 347.43 l 118.55 347.43 l 118.66 348.82 l 118.76 348.82 l 118.87 348.82 l 118.97 348.82 l 119.07 349.65 l 119.18 349.65 l 119.28 350.21 l 119.39 350.21 l 119.49 350.48 l 119.59 350.48 l 119.70 350.48 l 119.80 351.32 l 119.91 351.32 l 120.01 351.32 l 120.11 351.32 l 120.22 351.60 l 120.32 351.60 l 120.43 351.60 l 120.53 351.60 l 120.63 351.87 l 120.74 352.43 l 120.84 352.43 l 120.95 352.71 l 121.05 352.98 l 121.15 352.98 l 121.26 352.98 l 121.36 353.26 l 121.47 353.26 l 121.57 353.26 l 121.67 353.26 l 121.78 353.54 l 121.88 354.65 l 121.99 355.20 l 122.09 355.20 l 122.19 355.20 l 122.30 355.20 l 122.40 355.20 l 122.51 355.76 l 122.61 356.31 l 122.71 356.31 l 122.82 356.59 l 122.92 356.87 l 123.03 357.15 l 123.13 357.15 l 123.23 357.15 l 123.34 357.15 l 123.44 357.15 l 123.55 357.15 l 123.65 357.15 l 123.76 357.15 l 123.86 357.15 l 123.96 357.15 l 124.07 357.42 l 124.17 357.42 l 124.28 357.42 l 124.38 357.42 l 124.48 357.42 l 124.59 357.42 l 124.69 357.42 l 124.80 357.42 l 124.90 357.42 l 125.00 357.42 l 125.11 357.42 l 125.21 357.42 l 125.32 357.70 l 125.42 357.70 l 125.52 357.70 l 125.63 357.70 l 125.73 357.70 l 125.84 357.98 l 125.94 357.98 l 126.04 357.98 l 126.15 357.98 l 126.25 357.98 l 126.36 357.98 l 126.46 357.98 l 126.56 358.54 l 126.67 358.54 l 126.77 358.54 l 126.88 358.54 l 126.98 358.54 l 127.08 358.54 l 127.19 358.81 l 127.29 358.81 l 127.40 358.81 l 127.50 358.81 l 127.60 358.81 l 127.71 358.81 l 127.81 359.37 l 127.92 359.37 l 128.02 359.37 l 128.13 359.37 l 128.23 359.37 l 128.33 359.37 l 128.44 359.37 l 128.54 359.37 l 128.65 359.37 l 128.75 359.37 l 128.85 359.65 l 128.96 359.65 l 129.06 359.65 l 129.17 359.92 l 129.27 359.92 l 129.37 359.92 l 129.48 359.92 l 129.58 359.92 l 129.69 359.92 l 129.79 359.92 l 129.89 359.92 l 130.00 359.92 l 130.10 359.92 l 130.21 359.92 l 130.31 359.92 l 130.41 359.92 l 130.52 360.20 l 130.62 360.20 l 130.73 360.48 l 130.83 360.48 l 130.93 360.48 l 131.04 360.48 l 131.14 360.48 l 131.25 360.48 l 131.35 360.48 l 131.45 360.76 l 131.56 360.76 l 131.66 360.76 l 131.77 360.76 l 131.87 360.76 l 131.97 360.76 l 132.08 361.03 l 132.18 361.03 l 132.29 361.03 l 132.39 361.03 l 132.49 361.31 l 132.60 361.59 l 132.70 361.59 l 132.81 361.59 l 132.91 361.59 l 133.02 361.59 l 133.12 361.59 l 133.22 361.59 l 133.33 361.59 l 133.43 361.59 l 133.54 361.59 l 133.64 361.59 l 133.74 361.59 l 133.85 361.59 l 133.95 361.59 l 134.06 361.59 l 134.16 361.59 l 134.26 361.59 l 134.37 361.59 l 134.47 361.59 l 134.58 361.59 l 134.68 361.59 l 134.78 361.59 l 134.89 361.59 l 134.99 361.59 l 135.10 361.59 l 135.20 361.59 l 135.30 361.59 l 135.41 361.59 l 135.51 361.59 l 135.62 361.59 l 135.72 361.59 l 135.82 361.59 l 135.93 361.59 l 136.03 361.59 l 136.14 361.59 l 136.24 361.59 l 136.34 361.59 l 136.45 361.59 l 136.55 361.59 l 136.66 361.59 l 136.76 361.59 l 136.86 361.59 l 136.97 361.59 l 137.07 361.59 l 137.18 361.59 l 137.28 361.59 l 137.38 361.59 l 137.49 361.59 l 137.59 361.59 l 137.70 361.59 l 137.80 361.59 l 137.91 361.59 l 138.01 361.59 l 138.11 361.59 l 138.22 361.59 l 138.32 361.87 l 138.43 361.87 l 138.53 361.87 l 138.63 361.87 l 138.74 361.87 l 138.84 361.87 l 138.95 361.87 l 139.05 361.87 l 139.15 361.87 l 139.26 361.87 l 139.36 361.87 l 139.47 361.87 l 139.57 361.87 l 139.67 361.87 l 139.78 361.87 l 139.88 361.87 l 139.99 361.87 l 140.09 361.87 l 140.19 361.87 l 140.30 361.87 l 140.40 361.87 l 140.51 361.87 l 140.61 361.87 l 140.71 361.87 l 140.82 361.87 l 140.92 361.87 l 141.03 361.87 l 141.13 361.87 l 141.23 361.87 l 141.34 361.87 l 141.44 361.87 l 141.55 361.87 l 141.65 361.87 l 141.75 361.87 l 141.86 361.87 l 141.96 361.87 l 142.07 361.87 l 142.17 361.87 l 142.27 361.87 l 142.38 361.87 l 142.48 361.87 l 142.59 361.87 l 142.69 361.87 l 142.80 361.87 l 142.90 361.87 l 143.00 361.87 l 143.11 361.87 l 143.21 361.87 l 143.32 361.87 l 143.42 361.87 l 143.52 361.87 l 143.63 361.87 l 143.73 361.87 l 143.84 361.87 l 143.94 361.87 l 144.04 361.87 l 144.15 361.87 l 144.25 361.87 l 144.36 361.87 l 144.46 361.87 l 144.56 361.87 l 144.67 361.87 l 144.77 361.87 l 144.88 361.87 l 144.98 361.87 l 145.08 361.87 l 145.19 361.87 l 145.29 361.87 l 145.40 361.87 l 145.50 361.87 l 145.60 361.87 l 145.71 361.87 l 145.81 361.87 l 145.92 361.87 l 146.02 361.87 l 146.12 361.87 l 146.23 361.87 l 146.33 361.87 l 146.44 361.87 l 146.54 361.87 l 146.64 361.87 l 146.75 361.87 l 146.85 361.87 l 146.96 361.87 l 147.06 361.87 l 147.17 361.87 l 147.27 361.87 l 147.37 361.87 l 147.48 361.87 l 147.58 361.87 l 147.69 361.87 l 147.79 361.87 l 147.89 361.87 l 148.00 361.87 l 148.10 361.87 l 148.21 361.87 l 148.31 361.87 l 148.41 361.87 l 148.52 361.87 l 148.62 361.87 l 148.73 361.87 l 148.83 361.87 l 148.93 361.87 l 149.04 361.87 l 149.14 361.87 l 149.25 361.87 l 149.35 361.87 l 149.45 361.87 l 149.56 361.87 l 149.66 361.87 l 149.77 361.87 l 149.87 361.87 l 149.97 361.87 l 150.08 361.87 l 150.18 361.87 l 150.29 361.87 l 150.39 361.87 l 150.49 361.87 l 150.60 361.87 l 150.70 361.87 l 150.81 361.87 l 150.91 361.87 l 151.01 361.87 l 151.12 361.87 l 151.22 361.87 l 151.33 361.87 l 151.43 361.87 l 151.53 361.87 l 151.64 361.87 l 151.74 361.87 l 151.85 361.87 l 151.95 361.87 l 152.06 361.87 l 152.16 361.87 l 152.26 361.87 l 152.37 361.87 l 152.47 361.87 l 152.58 361.87 l 152.68 361.87 l 152.78 361.87 l 152.89 361.87 l 152.99 361.87 l 153.10 361.87 l 153.20 361.87 l 153.30 361.87 l 153.41 361.87 l 153.51 361.87 l 153.62 361.87 l 153.72 361.87 l 153.82 361.87 l 153.93 361.87 l 154.03 361.87 l 154.14 361.87 l 154.24 361.87 l 154.34 361.87 l 154.45 361.87 l 154.55 361.87 l 154.66 361.87 l 154.76 361.87 l 154.86 361.87 l 154.97 361.87 l 155.07 361.87 l 155.18 361.87 l 155.28 361.87 l 155.38 361.87 l 155.49 361.87 l 155.59 361.87 l 155.70 361.87 l 155.80 361.87 l 155.90 361.87 l 156.01 361.87 l 156.11 361.87 l 156.22 361.87 l 156.32 361.87 l 156.42 361.87 l 156.53 361.87 l 156.63 361.87 l 156.74 361.87 l 156.84 361.87 l 156.95 361.87 l 157.05 361.87 l 157.15 361.87 l 157.26 361.87 l 157.36 361.87 l 157.47 361.87 l 157.57 361.87 l 157.67 361.87 l 157.78 361.87 l 157.88 361.87 l 157.99 361.87 l 158.09 361.87 l 158.19 361.87 l 158.30 361.87 l 158.40 361.87 l 158.51 361.87 l 158.61 361.87 l 158.71 361.87 l 158.82 361.87 l 158.92 361.87 l 159.03 361.87 l 159.13 361.87 l 159.23 361.87 l 159.34 361.87 l 159.44 361.87 l 159.55 361.87 l 159.65 361.87 l 159.75 361.87 l 159.86 361.87 l 159.96 361.87 l 160.07 361.87 l 160.17 361.87 l 160.27 361.87 l 160.38 361.87 l 160.48 361.87 l 160.59 361.87 l 160.69 361.87 l 160.79 361.87 l 160.90 361.87 l 161.00 361.87 l 161.11 361.87 l 161.21 361.87 l 161.31 361.87 l 161.42 361.87 l 161.52 361.87 l 161.63 361.87 l 161.73 361.87 l 161.84 361.87 l 161.94 361.87 l 162.04 361.87 l 162.15 361.87 l 162.25 361.87 l 162.36 361.87 l 162.46 361.87 l 162.56 361.87 l 162.67 361.87 l 162.77 361.87 l 162.88 361.87 l 162.98 361.87 l 163.08 361.87 l 163.19 361.87 l 163.29 361.87 l 163.40 361.87 l 163.50 361.87 l 163.60 361.87 l 163.71 361.87 l 163.81 361.87 l 163.92 361.87 l 164.02 361.87 l 164.12 361.87 l 164.23 361.87 l 164.33 361.87 l 164.44 361.87 l 164.54 361.87 l 164.64 361.87 l 164.75 361.87 l 164.85 361.87 l 164.96 361.87 l 165.06 361.87 l 165.16 361.87 l 165.27 361.87 l 165.37 361.87 l 165.48 361.87 l 165.58 361.87 l 165.68 361.87 l 165.79 361.87 l 165.89 361.87 l 166.00 361.87 l 166.10 361.87 l 166.21 361.87 l 166.31 361.87 l 166.41 361.87 l 166.52 361.87 l 166.62 361.87 l 166.73 361.87 l 166.83 361.87 l 166.93 361.87 l 167.04 361.87 l 167.14 361.87 l 167.25 361.87 l 167.35 361.87 l 167.45 361.87 l 167.56 361.87 l 167.66 361.87 l 167.77 361.87 l 167.87 361.87 l 167.97 361.87 l 168.08 361.87 l 168.18 361.87 l 168.29 361.87 l 168.39 361.87 l 168.49 361.87 l 168.60 361.87 l 168.70 361.87 l 168.81 361.87 l 168.91 361.87 l 169.01 361.87 l 169.12 361.87 l 169.22 361.87 l 169.33 361.87 l 169.43 361.87 l 169.53 361.87 l 169.64 361.87 l 169.74 361.87 l 169.85 361.87 l 169.95 361.87 l 170.05 361.87 l 170.16 361.87 l 170.26 361.87 l 170.37 361.87 l 170.47 361.87 l 170.57 361.87 l 170.68 361.87 l 170.78 361.87 l 170.89 361.87 l 170.99 361.87 l 171.10 361.87 l 171.20 361.87 l 171.30 361.87 l 171.41 361.87 l 171.51 361.87 l 171.62 361.87 l 171.72 361.87 l 171.82 361.87 l 171.93 361.87 l 172.03 361.87 l 172.14 361.87 l 172.24 361.87 l 172.34 361.87 l 172.45 361.87 l 172.55 361.87 l 172.66 361.87 l 172.76 361.87 l 172.86 361.87 l 172.97 361.87 l 173.07 361.87 l 173.18 361.87 l 173.28 361.87 l 173.38 361.87 l 173.49 361.87 l 173.59 361.87 l 173.70 361.87 l 173.80 361.87 l 173.90 361.87 l 174.01 361.87 l 174.11 361.87 l 174.22 361.87 l 174.32 361.87 l 174.42 361.87 l 174.53 361.87 l 174.63 361.87 l 174.74 361.87 l 174.84 361.87 l 174.94 361.87 l 175.05 361.87 l 175.15 361.87 l 175.26 361.87 l 175.36 361.87 l 175.46 361.87 l 175.57 361.87 l 175.67 361.87 l 175.78 361.87 l 175.88 361.87 l 175.99 361.87 l 176.09 361.87 l 176.19 361.87 l 176.30 361.87 l 176.40 361.87 l 176.51 361.87 l 176.61 361.87 l 176.71 361.87 l 176.82 361.87 l 176.92 361.87 l 177.03 361.87 l 177.13 361.87 l 177.23 361.87 l 177.34 361.87 l 177.44 361.87 l 177.55 361.87 l 177.65 361.87 l 177.75 361.87 l 177.86 361.87 l 177.96 361.87 l 178.07 361.87 l 178.17 361.87 l 178.27 361.87 l 178.38 361.87 l 178.48 361.87 l 178.59 361.87 l 178.69 361.87 l 178.79 361.87 l 178.90 361.87 l 179.00 361.87 l 179.11 361.87 l 179.21 361.87 l 179.31 361.87 l 179.42 361.87 l 179.52 361.87 l 179.63 361.87 l 179.73 361.87 l 179.83 361.87 l 179.94 361.87 l 180.04 361.87 l 180.15 361.87 l 180.25 361.87 l 180.35 361.87 l 180.46 361.87 l 180.56 361.87 l 180.67 361.87 l 180.77 361.87 l 180.88 361.87 l 180.98 361.87 l 181.08 361.87 l 181.19 361.87 l 181.29 361.87 l 181.40 361.87 l 181.50 361.87 l 181.60 361.87 l 181.71 361.87 l 181.81 361.87 l 181.92 361.87 l 182.02 361.87 l 182.12 361.87 l 182.23 361.87 l 182.33 361.87 l 182.44 361.87 l 182.54 361.87 l 182.64 361.87 l 182.75 361.87 l 182.85 361.87 l 182.96 361.87 l 183.06 361.87 l 183.16 361.87 l 183.27 361.87 l 183.37 361.87 l 183.48 361.87 l 183.58 361.87 l 183.68 361.87 l 183.79 361.87 l 183.89 361.87 l 184.00 361.87 l 184.10 361.87 l 184.20 361.87 l 184.31 361.87 l 184.41 361.87 l 184.52 361.87 l 184.62 361.87 l 184.72 361.87 l 184.83 361.87 l 184.93 361.87 l 185.04 361.87 l 185.14 361.87 l 185.25 361.87 l 185.35 361.87 l 185.45 361.87 l 185.56 361.87 l 185.66 361.87 l 185.77 361.87 l 185.87 361.87 l 185.97 361.87 l 186.08 361.87 l 186.18 361.87 l 186.29 361.87 l 186.39 361.87 l 186.49 361.87 l 186.60 361.87 l 186.70 361.87 l 186.81 361.87 l 186.91 361.87 l 187.01 361.87 l 187.12 361.87 l 187.22 361.87 l 187.33 361.87 l 187.43 361.87 l 187.53 361.87 l 187.64 361.87 l 187.74 361.87 l 187.85 361.87 l 187.95 361.87 l 188.05 361.87 l 188.16 361.87 l 188.26 361.87 l 188.37 361.87 l 188.47 361.87 l 188.57 361.87 l 188.68 361.87 l 188.78 361.87 l 188.89 361.87 l 188.99 361.87 l 189.09 361.87 l 189.20 361.87 l 189.30 361.87 l 189.41 361.87 l 189.51 361.87 l 189.61 361.87 l 189.72 361.87 l 189.82 361.87 l 189.93 361.87 l 190.03 361.87 l 190.14 361.87 l 190.24 361.87 l 190.34 361.87 l 190.45 361.87 l 190.55 361.87 l 190.66 361.87 l 190.76 361.87 l 190.86 361.87 l 190.97 361.87 l 191.07 361.87 l 191.18 361.87 l 191.28 361.87 l 191.38 361.87 l 191.49 361.87 l 191.59 361.87 l 191.70 361.87 l 191.80 361.87 l 191.90 361.87 l 192.01 361.87 l 192.11 361.87 l 192.22 361.87 l 192.32 361.87 l 192.42 361.87 l 192.53 361.87 l 192.63 361.87 l 192.74 361.87 l 192.84 361.87 l 192.94 361.87 l 193.05 361.87 l 193.15 361.87 l 193.26 361.87 l 193.36 361.87 l 193.46 361.87 l 193.57 361.87 l 193.67 361.87 l 193.78 361.87 l 193.88 361.87 l 193.98 361.87 l 194.09 361.87 l 194.19 361.87 l 194.30 361.87 l 194.40 361.87 l 194.50 361.87 l 194.61 361.87 l 194.71 361.87 l 194.82 361.87 l 194.92 361.87 l 195.03 361.87 l 195.13 361.87 l 195.23 361.87 l 195.34 361.87 l 195.44 361.87 l 195.55 361.87 l 195.65 361.87 l 195.75 361.87 l 195.86 361.87 l 195.96 361.87 l 196.07 361.87 l 196.17 361.87 l 196.27 361.87 l 196.38 361.87 l 196.48 361.87 l 196.59 361.87 l 196.69 361.87 l 196.79 361.87 l 196.90 361.87 l 197.00 361.87 l 197.11 361.87 l 197.21 361.87 l 197.31 361.87 l 197.42 361.87 l 197.52 361.87 l 197.63 361.87 l 197.73 361.87 l 197.83 361.87 l 197.94 361.87 l 198.04 361.87 l 198.15 361.87 l 198.25 361.87 l 198.35 361.87 l 198.46 361.87 l 198.56 361.87 l 198.67 361.87 l 198.77 361.87 l 198.87 361.87 l 198.98 361.87 l 199.08 361.87 l 199.19 361.87 l 199.29 361.87 l 199.39 361.87 l 199.50 361.87 l 199.60 361.87 l 199.71 361.87 l 199.81 361.87 l 199.92 361.87 l 200.02 361.87 l 200.12 361.87 l 200.23 361.87 l 200.33 361.87 l 200.44 361.87 l 200.54 361.87 l 200.64 361.87 l 200.75 361.87 l 200.85 361.87 l 200.96 361.87 l 201.06 361.87 l 201.16 361.87 l 201.27 361.87 l 201.37 361.87 l 201.48 361.87 l 201.58 361.87 l 201.68 361.87 l 201.79 361.87 l 201.89 361.87 l 202.00 361.87 l 202.10 361.87 l 202.20 361.87 l 202.31 361.87 l 202.41 361.87 l 202.52 361.87 l 202.62 361.87 l 202.72 361.87 l 202.83 361.87 l 202.93 361.87 l 203.04 361.87 l 203.14 361.87 l 203.24 361.87 l 203.35 361.87 l 203.45 361.87 l 203.56 361.87 l 203.66 361.87 l 203.76 361.87 l 203.87 361.87 l 203.97 361.87 l 204.08 361.87 l 204.18 361.87 l 204.29 361.87 l 204.39 361.87 l 204.49 361.87 l 204.60 361.87 l 204.70 361.87 l 204.81 361.87 l 204.91 361.87 l 205.01 361.87 l 205.12 361.87 l 205.22 361.87 l 205.33 361.87 l 205.43 361.87 l 205.53 361.87 l 205.64 361.87 l 205.74 361.87 l 205.85 361.87 l 205.95 361.87 l 206.05 361.87 l 206.16 361.87 l 206.26 361.87 l 206.37 361.87 l 206.47 361.87 l 206.57 361.87 l 206.68 361.87 l 206.78 361.87 l 206.89 361.87 l 206.99 361.87 l 207.09 361.87 l 207.20 361.87 l 207.30 361.87 l 207.41 361.87 l 207.51 361.87 l 207.61 361.87 l 207.72 361.87 l 207.82 361.87 l 207.93 361.87 l 208.03 361.87 l 208.13 361.87 l 208.24 361.87 l 208.34 361.87 l 208.45 361.87 l 208.55 361.87 l 208.65 361.87 l 208.76 361.87 l 208.86 361.87 l 208.97 361.87 l 209.07 361.87 l 209.18 361.87 l 209.28 361.87 l 209.38 361.87 l 209.49 361.87 l 209.59 361.87 l 209.70 361.87 l 209.80 361.87 l 209.90 361.87 l 210.01 361.87 l 210.11 361.87 l 210.22 361.87 l 210.32 361.87 l 210.42 361.87 l 210.53 361.87 l 210.63 361.87 l 210.74 361.87 l 210.84 361.87 l 210.94 361.87 l 211.05 361.87 l 211.15 361.87 l 211.26 361.87 l 211.36 361.87 l 211.46 361.87 l 211.57 361.87 l 211.67 361.87 l 211.78 361.87 l 211.88 361.87 l 211.98 361.87 l 212.09 361.87 l 212.19 361.87 l 212.30 361.87 l 212.40 361.87 l 212.50 361.87 l 212.61 361.87 l 212.71 361.87 l 212.82 361.87 l 212.92 361.87 l 213.02 361.87 l 213.13 361.87 l 213.23 361.87 l 213.34 361.87 l 213.44 361.87 l 213.54 361.87 l 213.65 361.87 l 213.75 361.87 l 213.86 361.87 l 213.96 361.87 l 214.07 361.87 l 214.17 361.87 l 214.27 361.87 l 214.38 361.87 l 214.48 361.87 l 214.59 361.87 l 214.69 361.87 l 214.79 361.87 l 214.90 361.87 l 215.00 361.87 l 215.11 361.87 l 215.21 361.87 l 215.31 361.87 l 215.42 361.87 l 215.52 361.87 l 215.63 361.87 l 215.73 361.87 l 215.83 361.87 l 215.94 361.87 l 216.04 361.87 l 216.15 361.87 l 216.25 361.87 l 216.35 361.87 l 216.46 361.87 l 216.56 361.87 l 216.67 361.87 l 216.77 361.87 l 216.87 361.87 l 216.98 361.87 l 217.08 361.87 l 217.19 361.87 l 217.29 361.87 l 217.39 361.87 l 217.50 361.87 l 217.60 361.87 l 217.71 361.87 l 217.81 361.87 l 217.91 361.87 l 218.02 361.87 l 218.12 361.87 l 218.23 361.87 l 218.33 361.87 l 218.43 361.87 l 218.54 361.87 l 218.64 361.87 l 218.75 361.87 l 218.85 361.87 l 218.96 361.87 l 219.06 361.87 l 219.16 361.87 l 219.27 361.87 l 219.37 361.87 l 219.48 361.87 l 219.58 361.87 l 219.68 361.87 l 219.79 361.87 l 219.89 361.87 l 220.00 361.87 l 220.10 361.87 l 220.20 361.87 l 220.31 361.87 l 220.41 361.87 l 220.52 361.87 l 220.62 361.87 l 220.72 361.87 l 220.83 361.87 l 220.93 361.87 l 221.04 361.87 l 221.14 361.87 l 221.24 361.87 l 221.35 361.87 l 221.45 361.87 l 221.56 361.87 l 221.66 361.87 l 221.76 361.87 l 221.87 361.87 l 221.97 361.87 l 222.08 361.87 l 222.18 361.87 l 222.28 361.87 l 222.39 361.87 l 222.49 361.87 l 222.60 361.87 l 222.70 361.87 l 222.80 361.87 l 222.91 361.87 l 223.01 361.87 l 223.12 361.87 l 223.22 361.87 l 223.33 361.87 l 223.43 361.87 l 223.53 361.87 l 223.64 361.87 l 223.74 361.87 l 223.85 361.87 l 223.95 361.87 l 224.05 361.87 l 224.16 361.87 l 224.26 361.87 l 224.37 361.87 l 224.47 361.87 l 224.57 361.87 l 224.68 361.87 l 224.78 361.87 l 224.89 361.87 l 224.99 361.87 l 225.09 361.87 l 225.20 361.87 l 225.30 361.87 l 225.41 361.87 l 225.51 361.87 l 225.61 361.87 l 225.72 361.87 l 225.82 361.87 l 225.93 361.87 l 226.03 361.87 l 226.13 361.87 l 226.24 361.87 l 226.34 361.87 l 226.45 361.87 l 226.55 361.87 l 226.65 361.87 l 226.76 361.87 l 226.86 361.87 l 226.97 361.87 l 227.07 361.87 l 227.17 361.87 l 227.28 361.87 l 227.38 361.87 l 227.49 361.87 l 227.59 361.87 l 227.69 361.87 l 227.80 361.87 l 227.90 361.87 l 228.01 361.87 l 228.11 361.87 l 228.22 361.87 l 228.32 361.87 l 228.42 361.87 l 228.53 361.87 l 228.63 361.87 l 228.74 361.87 l 228.84 361.87 l 228.94 361.87 l 229.05 361.87 l 229.15 361.87 l 229.26 361.87 l 229.36 361.87 l 229.46 361.87 l 229.57 361.87 l 229.67 361.87 l 229.78 361.87 l 229.88 361.87 l 229.98 361.87 l 230.09 361.87 l 230.19 361.87 l 230.30 361.87 l 230.40 361.87 l 230.50 361.87 l 230.61 361.87 l 230.71 361.87 l 230.82 361.87 l 230.92 361.87 l 231.02 361.87 l 231.13 361.87 l 231.23 361.87 l 231.34 361.87 l 231.44 361.87 l 231.54 361.87 l 231.65 361.87 l 231.75 361.87 l 231.86 361.87 l 231.96 361.87 l 232.06 361.87 l 232.17 361.87 l 232.27 361.87 l 232.38 361.87 l 232.48 361.87 l 232.58 361.87 l 232.69 361.87 l 232.79 361.87 l 232.90 361.87 l 233.00 361.87 l 233.11 361.87 l 233.21 361.87 l 233.31 361.87 l 233.42 361.87 l 233.52 361.87 l 233.63 361.87 l 233.73 361.87 l 233.83 361.87 l 233.94 361.87 l 234.04 361.87 l 234.15 361.87 l 234.25 361.87 l 234.35 361.87 l 234.46 361.87 l 234.56 361.87 l 234.67 361.87 l 234.77 361.87 l 234.87 361.87 l 234.98 361.87 l 235.08 361.87 l 235.19 361.87 l 235.29 361.87 l 235.39 361.87 l 235.50 361.87 l 235.60 361.87 l 235.71 361.87 l 235.81 361.87 l 235.91 361.87 l 236.02 361.87 l 236.12 361.87 l 236.23 361.87 l 236.33 361.87 l 236.43 361.87 l 236.54 361.87 l 236.64 361.87 l 236.75 361.87 l 236.85 361.87 l 236.95 361.87 l 237.06 361.87 l 237.16 361.87 l 237.27 361.87 l 237.37 361.87 l 237.47 361.87 l 237.58 361.87 l 237.68 361.87 l 237.79 361.87 l 237.89 361.87 l 238.00 361.87 l 238.10 361.87 l 238.20 361.87 l 238.31 361.87 l 238.41 361.87 l 238.52 361.87 l 238.62 361.87 l 238.72 361.87 l 238.83 361.87 l 238.93 361.87 l 239.04 361.87 l 239.14 361.87 l 239.24 361.87 l 239.35 361.87 l 239.45 361.87 l 239.56 361.87 l 239.66 361.87 l 239.76 361.87 l 239.87 361.87 l 239.97 361.87 l 240.08 361.87 l 240.18 361.87 l 240.28 361.87 l 240.39 361.87 l 240.49 361.87 l 240.60 361.87 l 240.70 361.87 l 240.80 361.87 l 240.91 361.87 l 241.01 361.87 l 241.12 361.87 l 241.22 361.87 l 241.32 361.87 l 241.43 361.87 l 241.53 361.87 l 241.64 361.87 l 241.74 361.87 l 241.84 361.87 l 241.95 361.87 l 242.05 361.87 l 242.16 361.87 l 242.26 361.87 l 242.37 361.87 l 242.47 361.87 l 242.57 361.87 l 242.68 361.87 l 242.78 361.87 l 242.89 361.87 l 242.99 361.87 l 243.09 361.87 l 243.20 361.87 l 243.30 361.87 l 243.41 361.87 l 243.51 361.87 l 243.61 361.87 l 243.72 361.87 l 243.82 361.87 l 243.93 361.87 l 244.03 361.87 l 244.13 361.87 l 244.24 361.87 l 244.34 361.87 l 244.45 361.87 l 244.55 361.87 l 244.65 361.87 l 244.76 361.87 l 244.86 361.87 l 244.97 361.87 l 245.07 361.87 l 245.17 361.87 l 245.28 361.87 l 245.38 361.87 l 245.49 361.87 l 245.59 361.87 l 245.69 361.87 l 245.80 361.87 l 245.90 361.87 l 246.01 361.87 l 246.11 361.87 l 246.21 361.87 l 246.32 361.87 l 246.42 361.87 l 246.53 361.87 l 246.63 361.87 l 246.73 361.87 l 246.84 361.87 l 246.94 361.87 l 247.05 361.87 l 247.15 361.87 l 247.26 361.87 l 247.36 361.87 l 247.46 361.87 l 247.57 361.87 l 247.67 361.87 l 247.78 361.87 l 247.88 361.87 l 247.98 361.87 l 248.09 361.87 l 248.19 361.87 l 248.30 361.87 l 248.40 361.87 l 248.50 361.87 l 248.61 361.87 l 248.71 361.87 l 248.82 361.87 l 248.92 361.87 l 249.02 361.87 l 249.13 361.87 l 249.23 361.87 l 249.34 361.87 l 249.44 361.87 l 249.54 361.87 l 249.65 361.87 l 249.75 361.87 l 249.86 361.87 l 249.96 361.87 l 250.06 361.87 l 250.17 361.87 l 250.27 361.87 l 250.38 361.87 l 250.48 361.87 l 250.58 361.87 l 250.69 361.87 l 250.79 361.87 l 250.90 361.87 l 251.00 361.87 l 251.10 361.87 l 251.21 361.87 l 251.31 361.87 l 251.42 361.87 l 251.52 361.87 l 251.62 361.87 l 251.73 361.87 l 251.83 361.87 l 251.94 361.87 l 252.04 361.87 l 252.15 361.87 l 252.25 361.87 l 252.35 361.87 l 252.46 361.87 l 252.56 361.87 l 252.67 361.87 l 252.77 361.87 l 252.87 361.87 l 252.98 361.87 l 253.08 361.87 l 253.19 361.87 l 253.29 361.87 l 253.39 361.87 l 253.50 361.87 l 253.60 361.87 l 253.71 361.87 l 253.81 361.87 l 253.91 361.87 l 254.02 361.87 l 254.12 361.87 l 254.23 361.87 l 254.33 361.87 l 254.43 361.87 l 254.54 361.87 l 254.64 361.87 l 254.75 361.87 l 254.85 361.87 l 254.95 361.87 l 255.06 361.87 l 255.16 361.87 l 255.27 361.87 l 255.37 361.87 l 255.47 361.87 l 255.58 361.87 l 255.68 361.87 l 255.79 361.87 l 255.89 361.87 l 255.99 361.87 l 256.10 361.87 l 256.20 361.87 l 256.31 361.87 l 256.41 361.87 l 256.51 361.87 l 256.62 361.87 l 256.72 361.87 l 256.83 361.87 l 256.93 361.87 l 257.04 361.87 l 257.14 361.87 l 257.24 361.87 l 257.35 361.87 l 257.45 361.87 l 257.56 361.87 l 257.66 361.87 l 257.76 361.87 l 257.87 361.87 l 257.97 361.87 l 258.08 361.87 l 258.18 361.87 l 258.28 361.87 l 258.39 361.87 l 258.49 361.87 l 258.60 361.87 l 258.70 361.87 l 258.80 361.87 l 258.91 361.87 l 259.01 361.87 l 259.12 361.87 l 259.22 361.87 l 259.32 361.87 l 259.43 361.87 l 259.53 361.87 l 259.64 361.87 l 259.74 361.87 l 259.84 361.87 l 259.95 361.87 l 260.05 361.87 l 260.16 361.87 l 260.26 361.87 l 260.36 361.87 l 260.47 361.87 l 260.57 361.87 l 260.68 361.87 l 260.78 361.87 l 260.88 361.87 l 260.99 361.87 l 261.09 361.87 l 261.20 361.87 l 261.30 361.87 l 261.41 361.87 l 261.51 361.87 l 261.61 361.87 l 261.72 361.87 l 261.82 361.87 l 261.93 361.87 l 262.03 361.87 l 262.13 361.87 l 262.24 361.87 l 262.34 361.87 l 262.45 361.87 l 262.55 361.87 l 262.65 361.87 l 262.76 361.87 l 262.86 361.87 l 262.97 361.87 l 263.07 361.87 l 263.17 361.87 l 263.28 361.87 l 263.38 361.87 l 263.49 361.87 l 263.59 361.87 l 263.69 361.87 l 263.80 361.87 l 263.90 361.87 l 264.01 361.87 l 264.11 361.87 l 264.21 361.87 l 264.32 361.87 l 264.42 361.87 l 264.53 361.87 l 264.63 361.87 l 264.73 361.87 l 264.84 361.87 l 264.94 361.87 l 265.05 361.87 l 265.15 361.87 l 265.25 361.87 l 265.36 361.87 l 265.46 361.87 l 265.57 361.87 l 265.67 361.87 l 265.77 361.87 l 265.88 361.87 l 265.98 361.87 l 266.09 361.87 l 266.19 361.87 l 266.30 361.87 l 266.40 361.87 l 266.50 361.87 l 266.61 361.87 l 266.71 361.87 l 266.82 361.87 l 266.92 361.87 l 267.02 361.87 l 267.13 361.87 l 267.23 361.87 l 267.34 361.87 l 267.44 361.87 l 267.54 361.87 l 267.65 361.87 l 267.75 361.87 l 267.86 361.87 l 267.96 361.87 l 268.06 361.87 l 268.17 361.87 l 268.27 361.87 l 268.38 361.87 l 268.48 361.87 l 268.58 361.87 l 268.69 361.87 l 268.79 361.87 l 268.90 361.87 l 269.00 361.87 l 269.10 361.87 l 269.21 361.87 l 269.31 361.87 l 269.42 361.87 l 269.52 361.87 l 269.62 361.87 l 269.73 361.87 l 269.83 361.87 l 269.94 361.87 l 270.04 361.87 l 270.14 361.87 l 270.25 361.87 l 270.35 361.87 l 270.46 361.87 l 270.56 361.87 l 270.66 361.87 l 270.77 361.87 l 270.87 361.87 l 270.98 361.87 l 271.08 361.87 l 271.19 361.87 l 271.29 361.87 l 271.39 361.87 l 271.50 361.87 l 271.60 361.87 l 271.71 361.87 l 271.81 361.87 l 271.91 361.87 l 272.02 361.87 l 272.12 361.87 l 272.23 361.87 l 272.33 361.87 l 272.43 361.87 l 272.54 361.87 l 272.64 361.87 l 272.75 361.87 l 272.85 361.87 l 272.95 361.87 l 273.06 361.87 l 273.16 361.87 l 273.27 361.87 l 273.37 361.87 l 273.47 361.87 l 273.58 361.87 l 273.68 361.87 l 273.79 361.87 l 273.89 361.87 l 273.99 361.87 l 274.10 361.87 l 274.20 361.87 l 274.31 361.87 l 274.41 361.87 l 274.51 361.87 l 274.62 361.87 l 274.72 361.87 l 274.83 361.87 l 274.93 361.87 l 275.03 361.87 l 275.14 361.87 l 275.24 361.87 l 275.35 361.87 l 275.45 361.87 l 275.55 361.87 l 275.66 361.87 l 275.76 361.87 l 275.87 361.87 l 275.97 361.87 l 276.08 361.87 l 276.18 361.87 l 276.28 361.87 l 276.39 361.87 l 276.49 361.87 l 276.60 361.87 l 276.70 361.87 l 276.80 361.87 l 276.91 361.87 l 277.01 361.87 l 277.12 361.87 l 277.22 361.87 l 277.32 361.87 l 277.43 361.87 l 277.53 361.87 l 277.64 361.87 l 277.74 361.87 l 277.84 361.87 l 277.95 361.87 l 278.05 361.87 l 278.16 361.87 l 278.26 361.87 l 278.36 361.87 l 278.47 361.87 l 278.57 361.87 l 278.68 361.87 l 278.78 361.87 l 278.88 361.87 l 278.99 361.87 l 279.09 361.87 l 279.20 361.87 l 279.30 361.87 l 279.40 361.87 l 279.51 361.87 l 279.61 361.87 l 279.72 361.87 l 279.82 361.87 l 279.92 361.87 l 280.03 361.87 l 280.13 361.87 l 280.24 361.87 l 280.34 361.87 l 280.45 361.87 l 280.55 361.87 l 280.65 361.87 l 280.76 361.87 l 280.86 361.87 l 280.97 361.87 l 281.07 361.87 l 281.17 361.87 l 281.28 361.87 l 281.38 361.87 l 281.49 361.87 l 281.59 361.87 l 281.69 361.87 l 281.80 361.87 l 281.90 361.87 l 282.01 361.87 l 282.11 361.87 l 282.21 361.87 l 282.32 361.87 l 282.42 361.87 l 282.53 361.87 l 282.63 361.87 l 282.73 361.87 l 282.84 361.87 l 282.94 361.87 l 283.05 361.87 l 283.15 361.87 l 283.25 361.87 l 283.36 361.87 l 283.46 361.87 l 283.57 361.87 l 283.67 361.87 l 283.77 361.87 l 283.88 361.87 l 283.98 361.87 l 284.09 361.87 l 284.19 361.87 l 284.29 361.87 l 284.40 361.87 l 284.50 361.87 l 284.61 361.87 l 284.71 361.87 l 284.81 361.87 l 284.92 361.87 l 285.02 361.87 l 285.13 361.87 l 285.23 361.87 l 285.34 361.87 l 285.44 361.87 l 285.54 361.87 l 285.65 361.87 l 285.75 361.87 l 285.86 361.87 l 285.96 361.87 l 286.06 361.87 l 286.17 361.87 l 286.27 361.87 l 286.38 361.87 l 286.48 361.87 l 286.58 361.87 l 286.69 361.87 l 286.79 361.87 l 286.90 361.87 l 287.00 361.87 l 287.10 361.87 l 287.21 361.87 l 287.31 361.87 l 287.42 361.87 l 287.52 361.87 l 287.62 361.87 l 287.73 361.87 l 287.83 361.87 l 287.94 361.87 l 288.04 361.87 l 288.14 361.87 l 288.25 361.87 l 288.35 361.87 l 288.46 361.87 l 288.56 361.87 l 288.66 361.87 l 288.77 361.87 l 288.87 361.87 l 288.98 361.87 l 289.08 361.87 l 289.18 361.87 l 289.29 361.87 l 289.39 361.87 l 289.50 361.87 l 289.60 361.87 l 289.70 361.87 l 289.81 361.87 l 289.91 361.87 l 290.02 361.87 l 290.12 361.87 l 290.23 361.87 l 290.33 361.87 l 290.43 361.87 l 290.54 361.87 l 290.64 361.87 l 290.75 361.87 l 290.85 361.87 l 290.95 361.87 l 291.06 361.87 l 291.16 361.87 l 291.27 361.87 l 291.37 361.87 l 291.47 361.87 l 291.58 361.87 l 291.68 361.87 l 291.79 361.87 l 291.89 361.87 l 291.99 361.87 l 292.10 361.87 l 292.20 361.87 l 292.31 361.87 l 292.41 361.87 l 292.51 361.87 l 292.62 361.87 l 292.72 361.87 l 292.83 361.87 l 292.93 361.87 l 293.03 361.87 l 293.14 361.87 l 293.24 361.87 l 293.35 361.87 l 293.45 361.87 l 293.55 361.87 l 293.66 361.87 l 293.76 361.87 l 293.87 361.87 l 293.97 361.87 l 294.07 361.87 l 294.18 361.87 l 294.28 361.87 l 294.39 361.87 l 294.49 361.87 l 294.59 361.87 l 294.70 361.87 l 294.80 361.87 l 294.91 361.87 l 295.01 361.87 l 295.12 361.87 l 295.22 361.87 l 295.32 361.87 l 295.43 361.87 l 295.53 361.87 l 295.64 361.87 l 295.74 361.87 l 295.84 361.87 l 295.95 361.87 l 296.05 361.87 l 296.16 361.87 l 296.26 361.87 l 296.36 361.87 l 296.47 361.87 l 296.57 361.87 l 296.68 361.87 l 296.78 361.87 l 296.88 361.87 l 296.99 361.87 l 297.09 361.87 l 297.20 361.87 l 297.30 361.87 l 297.40 361.87 l 297.51 361.87 l 297.61 361.87 l 297.72 361.87 l 297.82 361.87 l 297.92 361.87 l 298.03 361.87 l 298.13 361.87 l 298.24 361.87 l 298.34 361.87 l 298.44 361.87 l 298.55 361.87 l 298.65 361.87 l 298.76 361.87 l 298.86 361.87 l 298.96 361.87 l 299.07 361.87 l 299.17 361.87 l 299.28 361.87 l 299.38 361.87 l 299.49 361.87 l 299.59 361.87 l 299.69 361.87 l 299.80 361.87 l 299.90 361.87 l 300.01 361.87 l 300.11 361.87 l 300.21 361.87 l 300.32 361.87 l 300.42 361.87 l 300.53 361.87 l 300.63 361.87 l 300.73 361.87 l 300.84 361.87 l 300.94 361.87 l 301.05 361.87 l 301.15 361.87 l 301.25 361.87 l 301.36 361.87 l 301.46 361.87 l 301.57 361.87 l 301.67 361.87 l 301.77 361.87 l 301.88 361.87 l 301.98 361.87 l 302.09 361.87 l 302.19 361.87 l 302.29 361.87 l 302.40 361.87 l 302.50 361.87 l 302.61 361.87 l 302.71 361.87 l 302.81 361.87 l 302.92 361.87 l 303.02 361.87 l 303.13 361.87 l 303.23 361.87 l 303.33 361.87 l 303.44 361.87 l 303.54 361.87 l 303.65 361.87 l 303.75 361.87 l 303.85 361.87 l 303.96 361.87 l 304.06 361.87 l 304.17 361.87 l 304.27 361.87 l 304.38 361.87 l 304.48 361.87 l 304.58 361.87 l 304.69 361.87 l 304.79 361.87 l 304.90 361.87 l 305.00 361.87 l 305.10 361.87 l 305.21 361.87 l 305.31 361.87 l 305.42 361.87 l 305.52 361.87 l 305.62 361.87 l 305.73 361.87 l 305.83 361.87 l 305.94 361.87 l 306.04 361.87 l 306.14 361.87 l 306.25 361.87 l 306.35 361.87 l 306.46 361.87 l 306.56 361.87 l 306.66 361.87 l 306.77 361.87 l 306.87 361.87 l 306.98 361.87 l 307.08 361.87 l 307.18 361.87 l 307.29 361.87 l 307.39 361.87 l 307.50 361.87 l 307.60 361.87 l 307.70 361.87 l 307.81 361.87 l 307.91 361.87 l 308.02 361.87 l 308.12 361.87 l 308.22 361.87 l 308.33 361.87 l 308.43 361.87 l 308.54 361.87 l 308.64 361.87 l 308.74 361.87 l 308.85 361.87 l 308.95 361.87 l 309.06 361.87 l 309.16 361.87 l 309.27 361.87 l 309.37 361.87 l 309.47 361.87 l 309.58 361.87 l 309.68 361.87 l 309.79 361.87 l 309.89 361.87 l 309.99 361.87 l 310.10 361.87 l 310.20 361.87 l 310.31 361.87 l 310.41 361.87 l 310.51 361.87 l 310.62 361.87 l 310.72 361.87 l 310.83 361.87 l 310.93 361.87 l 311.03 361.87 l 311.14 361.87 l 311.24 361.87 l 311.35 361.87 l 311.45 361.87 l 311.55 361.87 l 311.66 361.87 l 311.76 361.87 l 311.87 361.87 l 311.97 361.87 l 312.07 361.87 l 312.18 361.87 l 312.28 361.87 l 312.39 361.87 l 312.49 361.87 l 312.59 361.87 l 312.70 361.87 l 312.80 361.87 l 312.91 361.87 l 313.01 361.87 l 313.11 361.87 l 313.22 361.87 l 313.32 361.87 l 313.43 361.87 l 313.53 361.87 l 313.63 361.87 l 313.74 361.87 l 313.84 361.87 l 313.95 361.87 l 314.05 361.87 l 314.16 361.87 l 314.26 361.87 l 314.36 361.87 l 314.47 361.87 l 314.57 361.87 l 314.68 361.87 l 314.78 361.87 l 314.88 361.87 l 314.99 361.87 l 315.09 361.87 l 315.20 361.87 l 315.30 361.87 l 315.40 361.87 l 315.51 361.87 l 315.61 361.87 l 315.72 361.87 l 315.82 361.87 l 315.92 361.87 l 316.03 361.87 l 316.13 361.87 l 316.24 361.87 l 316.34 361.87 l 316.44 361.87 l 316.55 361.87 l 316.65 361.87 l 316.76 361.87 l 316.86 361.87 l 316.96 361.87 l 317.07 361.87 l 317.17 361.87 l 317.28 361.87 l 317.38 361.87 l 317.48 361.87 l 317.59 361.87 l 317.69 361.87 l 317.80 361.87 l 317.90 361.87 l 318.00 361.87 l 318.11 361.87 l 318.21 361.87 l 318.32 361.87 l 318.42 361.87 l 318.53 361.87 l 318.63 361.87 l 318.73 361.87 l 318.84 361.87 l 318.94 361.87 l 319.05 361.87 l 319.15 361.87 l 319.25 361.87 l 319.36 361.87 l 319.46 361.87 l 319.57 361.87 l 319.67 361.87 l 319.77 361.87 l 319.88 361.87 l 319.98 361.87 l 320.09 361.87 l 320.19 361.87 l 320.29 361.87 l 320.40 361.87 l 320.50 361.87 l 320.61 361.87 l 320.71 361.87 l 320.81 361.87 l 320.92 361.87 l 321.02 361.87 l 321.13 361.87 l 321.23 361.87 l 321.33 361.87 l 321.44 361.87 l 321.54 361.87 l 321.65 361.87 l 321.75 361.87 l 321.85 361.87 l 321.96 361.87 l 322.06 361.87 l 322.17 361.87 l 322.27 361.87 l 322.37 361.87 l 322.48 361.87 l 322.58 361.87 l 322.69 361.87 l 322.79 361.87 l 322.89 361.87 l 323.00 361.87 l 323.10 361.87 l 323.21 361.87 l 323.31 361.87 l 323.42 361.87 l 323.52 361.87 l 323.62 361.87 l 323.73 361.87 l 323.83 361.87 l 323.94 361.87 l 324.04 361.87 l 324.14 361.87 l 324.25 361.87 l 324.35 361.87 l 324.46 361.87 l 324.56 361.87 l 324.66 361.87 l 324.77 361.87 l 324.87 361.87 l 324.98 361.87 l 325.08 361.87 l 325.18 361.87 l 325.29 361.87 l 325.39 361.87 l 325.50 361.87 l 325.60 361.87 l 325.70 361.87 l 325.81 361.87 l 325.91 361.87 l 326.02 361.87 l 326.12 361.87 l 326.22 361.87 l 326.33 361.87 l 326.43 361.87 l 326.54 361.87 l 326.64 361.87 l 326.74 361.87 l 326.85 361.87 l 326.95 361.87 l 327.06 361.87 l 327.16 361.87 l 327.26 361.87 l 327.37 361.87 l 327.47 361.87 l 327.58 361.87 l 327.68 361.87 l 327.78 361.87 l 327.89 361.87 l 327.99 361.87 l 328.10 361.87 l 328.20 361.87 l 328.31 361.87 l 328.41 361.87 l 328.51 361.87 l 328.62 361.87 l 328.72 361.87 l 328.83 361.87 l 328.93 361.87 l 329.03 361.87 l 329.14 361.87 l 329.24 361.87 l 329.35 361.87 l 329.45 361.87 l 329.55 361.87 l 329.66 361.87 l 329.76 361.87 l 329.87 361.87 l 329.97 361.87 l 330.07 361.87 l 330.18 361.87 l 330.28 361.87 l 330.39 361.87 l 330.49 361.87 l 330.59 361.87 l 330.70 361.87 l 330.80 361.87 l 330.91 361.87 l 331.01 361.87 l 331.11 361.87 l 331.22 361.87 l 331.32 361.87 l 331.43 361.87 l 331.53 361.87 l 331.63 361.87 l 331.74 361.87 l 331.84 361.87 l 331.95 361.87 l 332.05 361.87 l 332.15 361.87 l 332.26 361.87 l 332.36 361.87 l 332.47 361.87 l 332.57 361.87 l 332.67 361.87 l 332.78 361.87 l 332.88 361.87 l 332.99 361.87 l 333.09 361.87 l 333.20 361.87 l 333.30 361.87 l 333.40 361.87 l 333.51 361.87 l 333.61 361.87 l 333.72 361.87 l 333.82 361.87 l 333.92 361.87 l 334.03 361.87 l 334.13 361.87 l 334.24 361.87 l 334.34 361.87 l 334.44 361.87 l 334.55 361.87 l 334.65 361.87 l 334.76 361.87 l 334.86 361.87 l 334.96 361.87 l 335.07 361.87 l 335.17 361.87 l 335.28 361.87 l 335.38 361.87 l 335.48 361.87 l 335.59 361.87 l 335.69 361.87 l 335.80 361.87 l 335.90 361.87 l 336.00 361.87 l 336.11 361.87 l 336.21 361.87 l 336.32 361.87 l 336.42 361.87 l 336.52 361.87 l 336.63 361.87 l 336.73 361.87 l 336.84 361.87 l 336.94 361.87 l 337.04 361.87 l 337.15 361.87 l 337.25 361.87 l 337.36 361.87 l 337.46 361.87 l 337.57 361.87 l 337.67 361.87 l 337.77 361.87 l 337.88 361.87 l 337.98 361.87 l 338.09 361.87 l 338.19 361.87 l 338.29 361.87 l 338.40 361.87 l 338.50 361.87 l 338.61 361.87 l 338.71 361.87 l 338.81 361.87 l 338.92 361.87 l 339.02 361.87 l 339.13 361.87 l 339.23 361.87 l 339.33 361.87 l 339.44 361.87 l 339.54 361.87 l 339.65 361.87 l 339.75 361.87 l 339.85 361.87 l 339.96 361.87 l 340.06 361.87 l 340.17 361.87 l 340.27 361.87 l 340.37 361.87 l 340.48 361.87 l 340.58 361.87 l 340.69 361.87 l 340.79 361.87 l 340.89 361.87 l 341.00 361.87 l 341.10 361.87 l 341.21 361.87 l 341.31 361.87 l 341.41 361.87 l 341.52 361.87 l 341.62 361.87 l 341.73 361.87 l 341.83 361.87 l 341.93 361.87 l 342.04 361.87 l 342.14 361.87 l 342.25 361.87 l 342.35 361.87 l 342.46 361.87 l 342.56 361.87 l 342.66 361.87 l 342.77 361.87 l 342.87 361.87 l 342.98 361.87 l 343.08 361.87 l 343.18 361.87 l 343.29 361.87 l 343.39 361.87 l 343.50 361.87 l 343.60 361.87 l 343.70 361.87 l 343.81 361.87 l 343.91 361.87 l 344.02 361.87 l 344.12 361.87 l 344.22 361.87 l 344.33 361.87 l 344.43 361.87 l 344.54 361.87 l 344.64 361.87 l 344.74 361.87 l 344.85 361.87 l 344.95 361.87 l 345.06 361.87 l 345.16 361.87 l 345.26 361.87 l 345.37 361.87 l 345.47 361.87 l 345.58 361.87 l 345.68 361.87 l 345.78 361.87 l 345.89 361.87 l 345.99 361.87 l 346.10 361.87 l 346.20 361.87 l 346.30 361.87 l 346.41 361.87 l 346.51 361.87 l 346.62 361.87 l 346.72 361.87 l 346.82 361.87 l 346.93 361.87 l 347.03 361.87 l 347.14 361.87 l 347.24 361.87 l 347.35 361.87 l 347.45 361.87 l 347.55 361.87 l 347.66 361.87 l 347.76 361.87 l 347.87 361.87 l 347.97 361.87 l 348.07 361.87 l 348.18 361.87 l 348.28 361.87 l 348.39 361.87 l 348.49 361.87 l 348.59 361.87 l 348.70 361.87 l 348.80 361.87 l 348.91 361.87 l 349.01 361.87 l 349.11 361.87 l 349.22 361.87 l 349.32 361.87 l 349.43 361.87 l 349.53 361.87 l 349.63 361.87 l 349.74 361.87 l 349.84 361.87 l 349.95 361.87 l 350.05 361.87 l 350.15 361.87 l 350.26 361.87 l 350.36 361.87 l 350.47 361.87 l 350.57 361.87 l 350.67 361.87 l 350.78 361.87 l 350.88 361.87 l 350.99 361.87 l 351.09 361.87 l 351.19 361.87 l 351.30 361.87 l 351.40 361.87 l 351.51 361.87 l 351.61 361.87 l 351.71 361.87 l 351.82 361.87 l 351.92 361.87 l 352.03 361.87 l 352.13 361.87 l 352.24 361.87 l 352.34 361.87 l 352.44 361.87 l 352.55 361.87 l 352.65 361.87 l 352.76 361.87 l 352.86 361.87 l 352.96 361.87 l 353.07 361.87 l 353.17 361.87 l 353.28 361.87 l 353.38 361.87 l 353.48 361.87 l 353.59 361.87 l 353.69 361.87 l 353.80 361.87 l 353.90 361.87 l 354.00 361.87 l 354.11 361.87 l 354.21 361.87 l 354.32 361.87 l 354.42 361.87 l 354.52 361.87 l 354.63 361.87 l 354.73 361.87 l 354.84 361.87 l 354.94 361.87 l 355.04 361.87 l 355.15 361.87 l 355.25 361.87 l 355.36 361.87 l 355.46 361.87 l 355.56 361.87 l 355.67 361.87 l 355.77 361.87 l 355.88 361.87 l 355.98 361.87 l 356.08 361.87 l 356.19 361.87 l 356.29 361.87 l 356.40 361.87 l 356.50 361.87 l 356.61 361.87 l 356.71 361.87 l 356.81 361.87 l 356.92 361.87 l 357.02 361.87 l 357.13 361.87 l 357.23 361.87 l 357.33 361.87 l 357.44 361.87 l 357.54 361.87 l 357.65 361.87 l 357.75 361.87 l 357.85 361.87 l 357.96 361.87 l 358.06 361.87 l 358.17 361.87 l 358.27 361.87 l 358.37 361.87 l 358.48 361.87 l 358.58 361.87 l 358.69 361.87 l 358.79 361.87 l 358.89 361.87 l 359.00 361.87 l 359.10 361.87 l 359.21 361.87 l 359.31 361.87 l 359.41 361.87 l 359.52 361.87 l 359.62 361.87 l 359.73 361.87 l 359.83 361.87 l 359.93 361.87 l 360.04 361.87 l 360.14 361.87 l 360.25 361.87 l 360.35 361.87 l 360.45 361.87 l 360.56 361.87 l 360.66 361.87 l 360.77 361.87 l 360.87 361.87 l 360.97 361.87 l 361.08 361.87 l 361.18 361.87 l 361.29 361.87 l 361.39 361.87 l 361.50 361.87 l 361.60 361.87 l 361.70 361.87 l 361.81 361.87 l 361.91 361.87 l 362.02 361.87 l 362.12 361.87 l 362.22 361.87 l 362.33 361.87 l 362.43 361.87 l 362.54 361.87 l 362.64 361.87 l 362.74 361.87 l 362.85 361.87 l 362.95 361.87 l 363.06 361.87 l 363.16 361.87 l 363.26 361.87 l 363.37 361.87 l 363.47 361.87 l 363.58 361.87 l 363.68 361.87 l 363.78 361.87 l 363.89 361.87 l 363.99 361.87 l 364.10 361.87 l 364.20 361.87 l 364.30 361.87 l 364.41 361.87 l 364.51 361.87 l 364.62 361.87 l 364.72 361.87 l 364.82 361.87 l 364.93 361.87 l 365.03 361.87 l 365.14 361.87 l 365.24 361.87 l 365.34 361.87 l 365.45 361.87 l 365.55 361.87 l 365.66 361.87 l 365.76 361.87 l 365.86 361.87 l 365.97 361.87 l 366.07 361.87 l 366.18 361.87 l 366.28 361.87 l 366.39 361.87 l 366.49 361.87 l 366.59 361.87 l 366.70 361.87 l 366.80 361.87 l 366.91 361.87 l 367.01 361.87 l 367.11 361.87 l 367.22 361.87 l 367.32 361.87 l 367.43 361.87 l 367.53 361.87 l 367.63 361.87 l 367.74 361.87 l 367.84 361.87 l 367.95 361.87 l 368.05 361.87 l 368.15 361.87 l 368.26 361.87 l 368.36 361.87 l 368.47 361.87 l 368.57 361.87 l 368.67 361.87 l 368.78 361.87 l 368.88 361.87 l 368.99 361.87 l 369.09 361.87 l 369.19 361.87 l 369.30 361.87 l 369.40 361.87 l 369.51 361.87 l 369.61 361.87 l 369.71 361.87 l 369.82 361.87 l 369.92 361.87 l 370.03 361.87 l 370.13 361.87 l 370.23 361.87 l 370.34 361.87 l 370.44 361.87 l 370.55 361.87 l 370.65 361.87 l 370.75 361.87 l 370.86 361.87 l 370.96 361.87 l 371.07 361.87 l 371.17 361.87 l 371.28 361.87 l 371.38 361.87 l 371.48 361.87 l 371.59 361.87 l 371.69 361.87 l 371.80 361.87 l 371.90 361.87 l 372.00 361.87 l 372.11 361.87 l 372.21 361.87 l 372.32 361.87 l 372.42 361.87 l 372.52 361.87 l 372.63 361.87 l 372.73 361.87 l 372.84 361.87 l 372.94 361.87 l 373.04 361.87 l 373.15 361.87 l 373.25 361.87 l 373.36 361.87 l 373.46 361.87 l 373.56 361.87 l 373.67 361.87 l 373.77 361.87 l 373.88 361.87 l 373.98 361.87 l 374.08 361.87 l 374.19 361.87 l 374.29 361.87 l 374.40 361.87 l 374.50 361.87 l 374.60 361.87 l 374.71 361.87 l 374.81 361.87 l 374.92 361.87 l 375.02 361.87 l 375.12 361.87 l 375.23 361.87 l 375.33 361.87 l 375.44 361.87 l 375.54 361.87 l 375.65 361.87 l 375.75 361.87 l 375.85 361.87 l 375.96 361.87 l 376.06 361.87 l 376.17 361.87 l 376.27 361.87 l 376.37 361.87 l 376.48 361.87 l 376.58 361.87 l 376.69 361.87 l 376.79 361.87 l 376.89 361.87 l 377.00 361.87 l 377.10 361.87 l 377.21 361.87 l 377.31 361.87 l 377.41 361.87 l 377.52 361.87 l 377.62 361.87 l 377.73 361.87 l 377.83 361.87 l 377.93 361.87 l 378.04 361.87 l 378.14 361.87 l 378.25 361.87 l 378.35 361.87 l 378.45 361.87 l 378.56 361.87 l 378.66 361.87 l 378.77 361.87 l 378.87 361.87 l 378.97 361.87 l 379.08 361.87 l 379.18 361.87 l 379.29 361.87 l 379.39 361.87 l 379.49 361.87 l 379.60 361.87 l 379.70 361.87 l 379.81 361.87 l 379.91 361.87 l 380.01 361.87 l 380.12 361.87 l 380.22 361.87 l 380.33 361.87 l 380.43 361.87 l 380.54 361.87 l 380.64 361.87 l 380.74 361.87 l 380.85 361.87 l 380.95 361.87 l 381.06 361.87 l 381.16 361.87 l 381.26 361.87 l 381.37 361.87 l 381.47 361.87 l 381.58 361.87 l 381.68 361.87 l 381.78 361.87 l 381.89 361.87 l 381.99 361.87 l 382.10 361.87 l 382.20 361.87 l 382.30 361.87 l 382.41 361.87 l 382.51 361.87 l 382.62 361.87 l 382.72 361.87 l 382.82 361.87 l 382.93 361.87 l 383.03 361.87 l 383.14 361.87 l 383.24 361.87 l 383.34 361.87 l 383.45 361.87 l 383.55 361.87 l 383.66 361.87 l 383.76 361.87 l 383.86 361.87 l 383.97 361.87 l 384.07 361.87 l 384.18 361.87 l 384.28 361.87 l 384.38 361.87 l 384.49 361.87 l 384.59 361.87 l 384.70 361.87 l 384.80 361.87 l 384.90 361.87 l 385.01 361.87 l 385.11 361.87 l 385.22 361.87 l 385.32 361.87 l 385.43 361.87 l 385.53 361.87 l 385.63 361.87 l 385.74 361.87 l 385.84 361.87 l 385.95 361.87 l 386.05 361.87 l 386.15 361.87 l 386.26 361.87 l 386.36 361.87 l 386.47 361.87 l 386.57 361.87 l 386.67 361.87 l 386.78 361.87 l 386.88 361.87 l 386.99 361.87 l 387.09 361.87 l 387.19 361.87 l 387.30 361.87 l 387.40 361.87 l 387.51 361.87 l 387.61 361.87 l 387.71 361.87 l 387.82 361.87 l 387.92 361.87 l 388.03 361.87 l 388.13 361.87 l 388.23 361.87 l 388.34 361.87 l 388.44 361.87 l 388.55 361.87 l 388.65 361.87 l 388.75 361.87 l 388.86 361.87 l 388.96 361.87 l 389.07 361.87 l S 0.000 1.000 1.000 RG 1.50 w [ 0.00 6.00] 0 d 71.73 87.16 m 71.84 87.16 l 71.94 87.16 l 72.05 87.16 l 72.15 87.16 l 72.25 87.16 l 72.36 87.16 l 72.46 87.16 l 72.57 87.16 l 72.67 87.16 l 72.77 87.16 l 72.88 87.16 l 72.98 87.16 l 73.09 87.16 l 73.19 87.16 l 73.29 87.16 l 73.40 87.16 l 73.50 87.16 l 73.61 87.16 l 73.71 87.16 l 73.81 87.16 l 73.92 87.16 l 74.02 87.16 l 74.13 87.16 l 74.23 87.16 l 74.33 87.16 l 74.44 87.16 l 74.54 87.16 l 74.65 87.16 l 74.75 87.16 l 74.85 87.16 l 74.96 87.16 l 75.06 87.16 l 75.17 87.16 l 75.27 87.16 l 75.37 87.16 l 75.48 87.16 l 75.58 87.16 l 75.69 87.16 l 75.79 87.16 l 75.90 87.16 l 76.00 87.16 l 76.10 87.16 l 76.21 87.16 l 76.31 87.16 l 76.42 87.16 l 76.52 87.16 l 76.62 87.16 l 76.73 87.16 l 76.83 87.16 l 76.94 87.16 l 77.04 87.16 l 77.14 87.16 l 77.25 87.16 l 77.35 87.16 l 77.46 87.16 l 77.56 87.16 l 77.66 87.16 l 77.77 87.16 l 77.87 87.16 l 77.98 87.16 l 78.08 87.16 l 78.18 87.16 l 78.29 87.16 l 78.39 87.16 l 78.50 87.16 l 78.60 87.16 l 78.70 87.16 l 78.81 87.16 l 78.91 87.16 l 79.02 87.16 l 79.12 87.16 l 79.22 87.16 l 79.33 87.16 l 79.43 87.16 l 79.54 87.16 l 79.64 87.16 l 79.74 87.16 l 79.85 87.16 l 79.95 87.16 l 80.06 87.16 l 80.16 87.16 l 80.26 87.16 l 80.37 87.16 l 80.47 87.16 l 80.58 87.16 l 80.68 87.16 l 80.79 87.16 l 80.89 87.16 l 80.99 87.16 l 81.10 87.16 l 81.20 87.16 l 81.31 87.16 l 81.41 87.16 l 81.51 87.16 l 81.62 87.16 l 81.72 87.16 l 81.83 87.16 l 81.93 87.16 l 82.03 87.16 l 82.14 87.16 l 82.24 87.16 l 82.35 87.16 l 82.45 87.16 l 82.55 87.16 l 82.66 87.16 l 82.76 87.16 l 82.87 87.16 l 82.97 87.16 l 83.07 87.16 l 83.18 87.16 l 83.28 87.16 l 83.39 87.16 l 83.49 87.16 l 83.59 87.16 l 83.70 87.16 l 83.80 87.16 l 83.91 87.16 l 84.01 87.16 l 84.11 87.16 l 84.22 87.16 l 84.32 87.16 l 84.43 87.16 l 84.53 87.16 l 84.63 87.16 l 84.74 87.16 l 84.84 87.16 l 84.95 87.16 l 85.05 87.16 l 85.15 87.16 l 85.26 87.16 l 85.36 87.16 l 85.47 87.16 l 85.57 87.16 l 85.68 87.16 l 85.78 87.16 l 85.88 87.16 l 85.99 87.16 l 86.09 87.16 l 86.20 87.16 l 86.30 87.16 l 86.40 87.16 l 86.51 87.16 l 86.61 87.16 l 86.72 87.16 l 86.82 87.16 l 86.92 87.16 l 87.03 87.16 l 87.13 87.16 l 87.24 87.16 l 87.34 87.16 l 87.44 87.16 l 87.55 87.16 l 87.65 87.16 l 87.76 87.16 l 87.86 87.16 l 87.96 87.16 l 88.07 87.16 l 88.17 87.16 l 88.28 87.16 l 88.38 87.16 l 88.48 87.16 l 88.59 87.16 l 88.69 87.16 l 88.80 87.16 l 88.90 87.16 l 89.00 87.16 l 89.11 87.16 l 89.21 87.16 l 89.32 87.16 l 89.42 87.16 l 89.52 87.16 l 89.63 87.16 l 89.73 87.16 l 89.84 87.16 l 89.94 87.16 l 90.05 87.16 l 90.15 87.16 l 90.25 87.16 l 90.36 87.16 l 90.46 87.16 l 90.57 87.16 l 90.67 87.16 l 90.77 87.16 l 90.88 87.16 l 90.98 87.16 l 91.09 87.16 l 91.19 87.16 l 91.29 87.16 l 91.40 87.16 l 91.50 87.16 l 91.61 87.16 l 91.71 87.16 l 91.81 87.16 l 91.92 87.16 l 92.02 87.16 l 92.13 87.16 l 92.23 87.16 l 92.33 87.16 l 92.44 87.16 l 92.54 87.16 l 92.65 87.16 l 92.75 87.16 l 92.85 87.16 l 92.96 87.16 l 93.06 87.16 l 93.17 87.16 l 93.27 87.16 l 93.37 87.16 l 93.48 87.16 l 93.58 87.16 l 93.69 87.16 l 93.79 87.16 l 93.89 87.16 l 94.00 87.16 l 94.10 87.16 l 94.21 87.16 l 94.31 87.16 l 94.41 87.16 l 94.52 87.16 l 94.62 87.16 l 94.73 87.16 l 94.83 87.16 l 94.94 87.16 l 95.04 87.16 l 95.14 87.16 l 95.25 87.16 l 95.35 87.16 l 95.46 87.16 l 95.56 87.16 l 95.66 87.16 l 95.77 87.16 l 95.87 87.16 l 95.98 87.16 l 96.08 87.16 l 96.18 87.16 l 96.29 87.16 l 96.39 87.16 l 96.50 87.16 l 96.60 87.16 l 96.70 87.16 l 96.81 87.16 l 96.91 87.16 l 97.02 87.16 l 97.12 87.16 l 97.22 87.16 l 97.33 87.16 l 97.43 87.16 l 97.54 87.16 l 97.64 87.16 l 97.74 87.16 l 97.85 87.16 l 97.95 87.16 l 98.06 87.16 l 98.16 87.16 l 98.26 87.16 l 98.37 87.16 l 98.47 87.16 l 98.58 87.16 l 98.68 87.16 l 98.78 87.16 l 98.89 87.16 l 98.99 87.16 l 99.10 87.16 l 99.20 87.16 l 99.30 87.16 l 99.41 87.16 l 99.51 87.16 l 99.62 87.16 l 99.72 87.16 l 99.83 87.16 l 99.93 87.16 l 100.03 87.16 l 100.14 87.16 l 100.24 87.16 l 100.35 87.16 l 100.45 87.16 l 100.55 87.16 l 100.66 87.16 l 100.76 87.16 l 100.87 87.16 l 100.97 87.16 l 101.07 87.16 l 101.18 87.16 l 101.28 87.16 l 101.39 87.16 l 101.49 87.16 l 101.59 87.16 l 101.70 87.16 l 101.80 87.16 l 101.91 87.16 l 102.01 87.16 l 102.11 88.41 l 102.22 88.41 l 102.32 88.41 l 102.43 88.41 l 102.53 88.41 l 102.63 88.41 l 102.74 88.41 l 102.84 88.41 l 102.95 88.41 l 103.05 88.41 l 103.15 88.41 l 103.26 88.41 l 103.36 88.41 l 103.47 88.41 l 103.57 88.41 l 103.67 88.41 l 103.78 88.41 l 103.88 88.41 l 103.99 88.41 l 104.09 88.41 l 104.19 88.41 l 104.30 88.41 l 104.40 88.41 l 104.51 88.41 l 104.61 88.41 l 104.72 88.41 l 104.82 88.41 l 104.92 88.41 l 105.03 88.41 l 105.13 88.41 l 105.24 88.41 l 105.34 88.41 l 105.44 88.41 l 105.55 88.41 l 105.65 88.41 l 105.76 88.41 l 105.86 88.41 l 105.96 88.41 l 106.07 88.41 l 106.17 88.41 l 106.28 88.41 l 106.38 88.41 l 106.48 88.41 l 106.59 88.41 l 106.69 88.41 l 106.80 88.41 l 106.90 88.41 l 107.00 88.41 l 107.11 88.41 l 107.21 88.41 l 107.32 88.41 l 107.42 88.41 l 107.52 88.41 l 107.63 88.41 l 107.73 88.41 l 107.84 88.41 l 107.94 88.41 l 108.04 88.41 l 108.15 88.41 l 108.25 88.41 l 108.36 88.41 l 108.46 88.41 l 108.56 88.41 l 108.67 88.41 l 108.77 88.41 l 108.88 88.41 l 108.98 88.41 l 109.09 88.41 l 109.19 88.41 l 109.29 88.41 l 109.40 88.41 l 109.50 88.41 l 109.61 88.41 l 109.71 88.41 l 109.81 88.41 l 109.92 88.41 l 110.02 88.41 l 110.13 88.41 l 110.23 88.41 l 110.33 88.41 l 110.44 88.41 l 110.54 88.41 l 110.65 88.41 l 110.75 88.41 l 110.85 88.41 l 110.96 88.41 l 111.06 88.41 l 111.17 88.41 l 111.27 88.41 l 111.37 88.41 l 111.48 88.41 l 111.58 88.41 l 111.69 88.41 l 111.79 88.41 l 111.89 88.41 l 112.00 88.41 l 112.10 88.41 l 112.21 88.41 l 112.31 88.41 l 112.41 88.41 l 112.52 88.41 l 112.62 88.41 l 112.73 88.41 l 112.83 88.41 l 112.93 88.41 l 113.04 88.41 l 113.14 88.41 l 113.25 88.41 l 113.35 88.41 l 113.45 88.41 l 113.56 88.41 l 113.66 88.41 l 113.77 88.41 l 113.87 88.41 l 113.98 88.41 l 114.08 88.41 l 114.18 89.64 l 114.29 89.64 l 114.39 89.64 l 114.50 89.64 l 114.60 89.64 l 114.70 89.64 l 114.81 89.64 l 114.91 89.64 l 115.02 89.64 l 115.12 89.64 l 115.22 89.64 l 115.33 89.64 l 115.43 89.64 l 115.54 89.64 l 115.64 89.64 l 115.74 89.64 l 115.85 89.64 l 115.95 89.64 l 116.06 89.64 l 116.16 89.64 l 116.26 89.64 l 116.37 89.64 l 116.47 89.64 l 116.58 89.64 l 116.68 89.64 l 116.78 89.64 l 116.89 89.64 l 116.99 89.64 l 117.10 89.64 l 117.20 89.64 l 117.30 89.64 l 117.41 89.64 l 117.51 89.64 l 117.62 89.64 l 117.72 89.64 l 117.82 89.64 l 117.93 89.64 l 118.03 89.64 l 118.14 89.64 l 118.24 89.64 l 118.34 89.64 l 118.45 89.64 l 118.55 89.64 l 118.66 89.64 l 118.76 89.64 l 118.87 89.64 l 118.97 89.64 l 119.07 89.64 l 119.18 89.64 l 119.28 89.64 l 119.39 89.64 l 119.49 89.64 l 119.59 89.64 l 119.70 89.64 l 119.80 89.64 l 119.91 89.64 l 120.01 89.64 l 120.11 89.64 l 120.22 89.64 l 120.32 89.64 l 120.43 89.64 l 120.53 89.64 l 120.63 89.64 l 120.74 89.64 l 120.84 90.89 l 120.95 90.89 l 121.05 90.89 l 121.15 90.89 l 121.26 90.89 l 121.36 90.89 l 121.47 90.89 l 121.57 90.89 l 121.67 90.89 l 121.78 90.89 l 121.88 90.89 l 121.99 90.89 l 122.09 90.89 l 122.19 90.89 l 122.30 90.89 l 122.40 90.89 l 122.51 90.89 l 122.61 90.89 l 122.71 90.89 l 122.82 90.89 l 122.92 90.89 l 123.03 90.89 l 123.13 90.89 l 123.23 90.89 l 123.34 90.89 l 123.44 90.89 l 123.55 90.89 l 123.65 90.89 l 123.76 90.89 l 123.86 90.89 l 123.96 90.89 l 124.07 90.89 l 124.17 90.89 l 124.28 90.89 l 124.38 90.89 l 124.48 90.89 l 124.59 90.89 l 124.69 90.89 l 124.80 90.89 l 124.90 92.07 l 125.00 92.07 l 125.11 92.07 l 125.21 92.07 l 125.32 92.07 l 125.42 92.07 l 125.52 92.07 l 125.63 92.07 l 125.73 92.07 l 125.84 92.07 l 125.94 92.07 l 126.04 92.07 l 126.15 92.07 l 126.25 92.07 l 126.36 92.07 l 126.46 92.07 l 126.56 92.07 l 126.67 92.07 l 126.77 92.07 l 126.88 92.07 l 126.98 92.07 l 127.08 92.07 l 127.19 92.07 l 127.29 92.07 l 127.40 92.07 l 127.50 92.07 l 127.60 92.07 l 127.71 92.07 l 127.81 92.07 l 127.92 92.07 l 128.02 92.07 l 128.13 93.19 l 128.23 93.19 l 128.33 93.19 l 128.44 93.19 l 128.54 93.19 l 128.65 93.19 l 128.75 93.19 l 128.85 93.19 l 128.96 93.19 l 129.06 93.19 l 129.17 93.19 l 129.27 93.19 l 129.37 93.19 l 129.48 93.19 l 129.58 93.19 l 129.69 93.19 l 129.79 93.19 l 129.89 93.19 l 130.00 93.19 l 130.10 93.19 l 130.21 93.19 l 130.31 93.19 l 130.41 93.19 l 130.52 93.19 l 130.62 93.19 l 130.73 93.19 l 130.83 93.19 l 130.93 94.24 l 131.04 94.24 l 131.14 94.24 l 131.25 94.24 l 131.35 94.24 l 131.45 94.24 l 131.56 94.24 l 131.66 94.24 l 131.77 94.24 l 131.87 94.24 l 131.97 94.24 l 132.08 94.24 l 132.18 94.24 l 132.29 94.24 l 132.39 94.24 l 132.49 94.24 l 132.60 94.24 l 132.70 94.24 l 132.81 94.24 l 132.91 94.24 l 133.02 94.24 l 133.12 94.24 l 133.22 94.24 l 133.33 94.24 l 133.43 94.24 l 133.54 95.31 l 133.64 95.31 l 133.74 95.31 l 133.85 95.31 l 133.95 95.31 l 134.06 95.31 l 134.16 95.31 l 134.26 95.31 l 134.37 95.31 l 134.47 95.31 l 134.58 95.31 l 134.68 95.31 l 134.78 95.31 l 134.89 95.31 l 134.99 95.31 l 135.10 95.31 l 135.20 95.31 l 135.30 95.31 l 135.41 95.31 l 135.51 96.22 l 135.62 96.22 l 135.72 96.22 l 135.82 96.22 l 135.93 96.22 l 136.03 96.22 l 136.14 96.22 l 136.24 96.22 l 136.34 96.22 l 136.45 96.22 l 136.55 96.22 l 136.66 96.22 l 136.76 96.22 l 136.86 96.22 l 136.97 96.22 l 137.07 96.22 l 137.18 96.22 l 137.28 96.22 l 137.38 96.22 l 137.49 96.22 l 137.59 96.22 l 137.70 96.22 l 137.80 96.22 l 137.91 96.22 l 138.01 97.25 l 138.11 97.25 l 138.22 97.25 l 138.32 97.25 l 138.43 97.25 l 138.53 97.25 l 138.63 97.25 l 138.74 97.25 l 138.84 97.25 l 138.95 97.25 l 139.05 97.25 l 139.15 97.25 l 139.26 97.25 l 139.36 97.25 l 139.47 97.25 l 139.57 98.02 l 139.67 98.02 l 139.78 98.02 l 139.88 98.02 l 139.99 98.02 l 140.09 98.02 l 140.19 98.02 l 140.30 98.02 l 140.40 98.02 l 140.51 98.02 l 140.61 98.02 l 140.71 98.02 l 140.82 98.02 l 140.92 98.02 l 141.03 98.02 l 141.13 98.02 l 141.23 98.02 l 141.34 98.02 l 141.44 98.02 l 141.55 98.02 l 141.65 98.02 l 141.75 98.02 l 141.86 98.02 l 141.96 98.02 l 142.07 98.02 l 142.17 98.80 l 142.27 98.80 l 142.38 98.80 l 142.48 98.80 l 142.59 98.80 l 142.69 98.80 l 142.80 98.80 l 142.90 98.80 l 143.00 98.80 l 143.11 98.80 l 143.21 98.80 l 143.32 98.80 l 143.42 98.80 l 143.52 98.80 l 143.63 98.80 l 143.73 98.80 l 143.84 98.80 l 143.94 98.80 l 144.04 98.80 l 144.15 98.80 l 144.25 98.80 l 144.36 98.80 l 144.46 99.70 l 144.56 99.70 l 144.67 99.70 l 144.77 99.70 l 144.88 99.70 l 144.98 99.70 l 145.08 99.70 l 145.19 99.70 l 145.29 99.70 l 145.40 99.70 l 145.50 99.70 l 145.60 99.70 l 145.71 99.70 l 145.81 99.70 l 145.92 100.50 l 146.02 100.50 l 146.12 100.50 l 146.23 100.50 l 146.33 100.50 l 146.44 100.50 l 146.54 100.50 l 146.64 100.50 l 146.75 100.50 l 146.85 100.50 l 146.96 100.50 l 147.06 100.50 l 147.17 100.50 l 147.27 100.50 l 147.37 100.50 l 147.48 100.50 l 147.58 100.50 l 147.69 101.20 l 147.79 101.20 l 147.89 101.20 l 148.00 101.20 l 148.10 101.20 l 148.21 101.20 l 148.31 101.20 l 148.41 101.20 l 148.52 101.20 l 148.62 101.20 l 148.73 101.20 l 148.83 101.20 l 148.93 101.20 l 149.04 101.20 l 149.14 101.20 l 149.25 101.20 l 149.35 101.20 l 149.45 101.20 l 149.56 101.20 l 149.66 101.20 l 149.77 101.95 l 149.87 101.95 l 149.97 101.95 l 150.08 101.95 l 150.18 101.95 l 150.29 101.95 l 150.39 101.95 l 150.49 101.95 l 150.60 101.95 l 150.70 101.95 l 150.81 101.95 l 150.91 101.95 l 151.01 101.95 l 151.12 101.95 l 151.22 101.95 l 151.33 101.95 l 151.43 102.72 l 151.53 102.72 l 151.64 102.72 l 151.74 102.72 l 151.85 102.72 l 151.95 102.72 l 152.06 102.72 l 152.16 102.72 l 152.26 102.72 l 152.37 102.72 l 152.47 102.72 l 152.58 102.72 l 152.68 102.72 l 152.78 102.72 l 152.89 103.46 l 152.99 103.46 l 153.10 103.46 l 153.20 103.46 l 153.30 103.46 l 153.41 103.46 l 153.51 103.46 l 153.62 103.46 l 153.72 103.46 l 153.82 103.46 l 153.93 103.46 l 154.03 103.46 l 154.14 103.46 l 154.24 103.46 l 154.34 104.22 l 154.45 104.22 l 154.55 104.22 l 154.66 104.22 l 154.76 104.22 l 154.86 104.22 l 154.97 104.22 l 155.07 104.22 l 155.18 104.22 l 155.28 104.22 l 155.38 104.22 l 155.49 104.22 l 155.59 104.89 l 155.70 104.89 l 155.80 104.89 l 155.90 104.89 l 156.01 104.89 l 156.11 104.89 l 156.22 104.89 l 156.32 104.89 l 156.42 104.89 l 156.53 104.89 l 156.63 104.89 l 156.74 104.89 l 156.84 104.89 l 156.95 104.89 l 157.05 104.89 l 157.15 105.63 l 157.26 105.63 l 157.36 105.63 l 157.47 105.63 l 157.57 105.63 l 157.67 105.63 l 157.78 105.63 l 157.88 105.63 l 157.99 105.63 l 158.09 105.63 l 158.19 105.63 l 158.30 106.33 l 158.40 106.33 l 158.51 106.33 l 158.61 106.33 l 158.71 106.33 l 158.82 106.33 l 158.92 106.33 l 159.03 106.33 l 159.13 106.33 l 159.23 106.33 l 159.34 106.33 l 159.44 106.33 l 159.55 107.20 l 159.65 107.20 l 159.75 107.20 l 159.86 107.20 l 159.96 107.20 l 160.07 107.98 l 160.17 107.98 l 160.27 107.98 l 160.38 107.98 l 160.48 107.98 l 160.59 107.98 l 160.69 107.98 l 160.79 107.98 l 160.90 108.59 l 161.00 108.59 l 161.11 108.59 l 161.21 108.59 l 161.31 108.59 l 161.42 108.59 l 161.52 108.59 l 161.63 108.59 l 161.73 108.59 l 161.84 108.59 l 161.94 108.59 l 162.04 108.59 l 162.15 108.59 l 162.25 109.14 l 162.36 109.14 l 162.46 109.14 l 162.56 109.14 l 162.67 109.14 l 162.77 109.14 l 162.88 109.14 l 162.98 109.14 l 163.08 109.14 l 163.19 109.14 l 163.29 109.14 l 163.40 109.14 l 163.50 109.14 l 163.60 109.14 l 163.71 109.14 l 163.81 109.78 l 163.92 109.78 l 164.02 109.78 l 164.12 109.78 l 164.23 109.78 l 164.33 109.78 l 164.44 109.78 l 164.54 109.78 l 164.64 109.78 l 164.75 109.78 l 164.85 109.78 l 164.96 110.49 l 165.06 110.49 l 165.16 110.49 l 165.27 110.49 l 165.37 110.49 l 165.48 110.49 l 165.58 110.49 l 165.68 110.49 l 165.79 111.22 l 165.89 111.22 l 166.00 111.22 l 166.10 111.22 l 166.21 111.22 l 166.31 111.22 l 166.41 111.22 l 166.52 111.85 l 166.62 111.85 l 166.73 111.85 l 166.83 111.85 l 166.93 111.85 l 167.04 111.85 l 167.14 111.85 l 167.25 111.85 l 167.35 111.85 l 167.45 111.85 l 167.56 112.46 l 167.66 112.46 l 167.77 112.46 l 167.87 112.46 l 167.97 112.46 l 168.08 112.46 l 168.18 112.46 l 168.29 112.46 l 168.39 112.46 l 168.49 112.46 l 168.60 113.09 l 168.70 113.09 l 168.81 113.09 l 168.91 113.09 l 169.01 113.09 l 169.12 113.09 l 169.22 113.09 l 169.33 113.09 l 169.43 113.09 l 169.53 113.74 l 169.64 113.74 l 169.74 113.74 l 169.85 113.74 l 169.95 113.74 l 170.05 113.74 l 170.16 113.74 l 170.26 113.74 l 170.37 114.35 l 170.47 114.35 l 170.57 114.35 l 170.68 114.35 l 170.78 114.35 l 170.89 114.35 l 170.99 114.35 l 171.10 114.35 l 171.20 114.35 l 171.30 114.94 l 171.41 114.94 l 171.51 114.94 l 171.62 114.94 l 171.72 114.94 l 171.82 114.94 l 171.93 114.94 l 172.03 114.94 l 172.14 114.94 l 172.24 115.59 l 172.34 115.59 l 172.45 115.59 l 172.55 115.59 l 172.66 115.59 l 172.76 115.59 l 172.86 115.59 l 172.97 116.33 l 173.07 116.33 l 173.18 116.33 l 173.28 116.33 l 173.38 117.06 l 173.49 117.06 l 173.59 117.06 l 173.70 117.06 l 173.80 117.55 l 173.90 117.55 l 174.01 117.55 l 174.11 117.55 l 174.22 117.55 l 174.32 117.55 l 174.42 117.55 l 174.53 117.55 l 174.63 117.55 l 174.74 117.55 l 174.84 117.55 l 174.94 118.14 l 175.05 118.14 l 175.15 118.14 l 175.26 118.14 l 175.36 118.14 l 175.46 118.14 l 175.57 118.14 l 175.67 118.14 l 175.78 118.64 l 175.88 118.64 l 175.99 118.64 l 176.09 118.64 l 176.19 118.64 l 176.30 118.64 l 176.40 118.64 l 176.51 118.64 l 176.61 118.64 l 176.71 118.64 l 176.82 119.27 l 176.92 119.27 l 177.03 119.27 l 177.13 119.27 l 177.23 119.27 l 177.34 119.27 l 177.44 119.86 l 177.55 119.86 l 177.65 119.86 l 177.75 119.86 l 177.86 119.86 l 177.96 119.86 l 178.07 119.86 l 178.17 120.40 l 178.27 120.40 l 178.38 120.40 l 178.48 120.40 l 178.59 120.40 l 178.69 120.40 l 178.79 120.40 l 178.90 120.40 l 179.00 121.05 l 179.11 121.05 l 179.21 121.05 l 179.31 121.05 l 179.42 121.05 l 179.52 121.58 l 179.63 121.58 l 179.73 121.58 l 179.83 121.58 l 179.94 121.58 l 180.04 121.58 l 180.15 121.58 l 180.25 121.58 l 180.35 122.20 l 180.46 122.20 l 180.56 122.20 l 180.67 122.20 l 180.77 122.20 l 180.88 122.50 l 180.98 122.50 l 181.08 122.50 l 181.19 122.50 l 181.29 122.50 l 181.40 122.50 l 181.50 122.50 l 181.60 122.50 l 181.71 122.50 l 181.81 122.50 l 181.92 122.50 l 182.02 122.50 l 182.12 122.50 l 182.23 122.50 l 182.33 123.15 l 182.44 123.15 l 182.54 123.15 l 182.64 123.15 l 182.75 123.83 l 182.85 123.83 l 182.96 123.83 l 183.06 124.36 l 183.16 124.36 l 183.27 124.36 l 183.37 124.36 l 183.48 124.36 l 183.58 124.36 l 183.68 124.36 l 183.79 124.96 l 183.89 124.96 l 184.00 124.96 l 184.10 124.96 l 184.20 124.96 l 184.31 125.59 l 184.41 125.59 l 184.52 125.59 l 184.62 125.59 l 184.72 126.22 l 184.83 126.22 l 184.93 126.22 l 185.04 126.22 l 185.14 126.84 l 185.25 126.84 l 185.35 126.84 l 185.45 126.84 l 185.56 127.34 l 185.66 127.34 l 185.77 127.34 l 185.87 127.34 l 185.97 127.34 l 186.08 127.34 l 186.18 127.34 l 186.29 127.87 l 186.39 127.87 l 186.49 127.87 l 186.60 127.87 l 186.70 127.87 l 186.81 127.87 l 186.91 128.43 l 187.01 128.43 l 187.12 128.43 l 187.22 128.43 l 187.33 128.43 l 187.43 128.83 l 187.53 128.83 l 187.64 128.83 l 187.74 128.83 l 187.85 128.83 l 187.95 128.83 l 188.05 128.83 l 188.16 128.83 l 188.26 128.83 l 188.37 129.23 l 188.47 129.23 l 188.57 129.23 l 188.68 129.23 l 188.78 129.23 l 188.89 129.23 l 188.99 129.23 l 189.09 129.23 l 189.20 129.23 l 189.30 129.86 l 189.41 129.86 l 189.51 129.86 l 189.61 130.40 l 189.72 130.40 l 189.82 130.40 l 189.93 130.40 l 190.03 130.40 l 190.14 130.90 l 190.24 130.90 l 190.34 130.90 l 190.45 130.90 l 190.55 130.90 l 190.66 130.90 l 190.76 131.23 l 190.86 131.23 l 190.97 131.23 l 191.07 131.23 l 191.18 131.23 l 191.28 131.23 l 191.38 131.23 l 191.49 131.23 l 191.59 131.23 l 191.70 131.23 l 191.80 131.76 l 191.90 131.76 l 192.01 131.76 l 192.11 131.76 l 192.22 131.76 l 192.32 132.24 l 192.42 132.24 l 192.53 132.24 l 192.63 132.24 l 192.74 132.24 l 192.84 132.24 l 192.94 132.72 l 193.05 132.72 l 193.15 132.72 l 193.26 132.72 l 193.36 132.72 l 193.46 132.72 l 193.57 133.19 l 193.67 133.19 l 193.78 133.19 l 193.88 133.19 l 193.98 133.19 l 194.09 133.19 l 194.19 133.62 l 194.30 133.62 l 194.40 133.62 l 194.50 133.62 l 194.61 133.62 l 194.71 133.62 l 194.82 133.62 l 194.92 134.16 l 195.03 134.16 l 195.13 134.16 l 195.23 134.16 l 195.34 134.49 l 195.44 134.49 l 195.55 134.49 l 195.65 134.49 l 195.75 134.49 l 195.86 134.49 l 195.96 134.49 l 196.07 134.49 l 196.17 134.49 l 196.27 135.03 l 196.38 135.03 l 196.48 135.03 l 196.59 135.03 l 196.69 135.61 l 196.79 135.61 l 196.90 135.61 l 197.00 136.14 l 197.11 136.14 l 197.21 136.14 l 197.31 136.14 l 197.42 136.71 l 197.52 136.71 l 197.63 136.71 l 197.73 137.06 l 197.83 137.06 l 197.94 137.06 l 198.04 137.06 l 198.15 137.06 l 198.25 137.06 l 198.35 137.06 l 198.46 137.06 l 198.56 137.54 l 198.67 137.54 l 198.77 137.54 l 198.87 137.54 l 198.98 137.54 l 199.08 138.05 l 199.19 138.05 l 199.29 138.05 l 199.39 138.05 l 199.50 138.44 l 199.60 138.44 l 199.71 138.44 l 199.81 138.44 l 199.92 138.44 l 200.02 138.44 l 200.12 138.44 l 200.23 138.86 l 200.33 138.86 l 200.44 138.86 l 200.54 138.86 l 200.64 138.86 l 200.75 138.86 l 200.85 139.23 l 200.96 139.23 l 201.06 139.23 l 201.16 139.23 l 201.27 139.23 l 201.37 139.23 l 201.48 139.23 l 201.58 139.77 l 201.68 139.77 l 201.79 139.77 l 201.89 140.09 l 202.00 140.09 l 202.10 140.09 l 202.20 140.09 l 202.31 140.09 l 202.41 140.09 l 202.52 140.09 l 202.62 140.09 l 202.72 140.41 l 202.83 140.41 l 202.93 140.41 l 203.04 140.41 l 203.14 140.41 l 203.24 140.41 l 203.35 140.41 l 203.45 140.41 l 203.56 140.94 l 203.66 140.94 l 203.76 140.94 l 203.87 141.34 l 203.97 141.34 l 204.08 141.34 l 204.18 141.34 l 204.29 141.34 l 204.39 141.34 l 204.49 141.73 l 204.60 141.73 l 204.70 141.73 l 204.81 141.73 l 204.91 141.73 l 205.01 141.73 l 205.12 142.17 l 205.22 142.17 l 205.33 142.17 l 205.43 142.17 l 205.53 142.17 l 205.64 142.65 l 205.74 142.65 l 205.85 142.65 l 205.95 142.65 l 206.05 143.21 l 206.16 143.21 l 206.26 143.73 l 206.37 143.73 l 206.47 143.73 l 206.57 144.34 l 206.68 144.71 l 206.78 144.71 l 206.89 144.71 l 206.99 144.71 l 207.09 144.71 l 207.20 144.71 l 207.30 145.22 l 207.41 145.22 l 207.51 145.22 l 207.61 145.82 l 207.72 146.18 l 207.82 146.18 l 207.93 146.18 l 208.03 146.18 l 208.13 146.18 l 208.24 146.18 l 208.34 146.73 l 208.45 146.73 l 208.55 147.14 l 208.65 147.14 l 208.76 147.14 l 208.86 147.14 l 208.97 147.14 l 209.07 147.54 l 209.18 147.54 l 209.28 147.54 l 209.38 147.54 l 209.49 147.54 l 209.59 147.89 l 209.70 147.89 l 209.80 147.89 l 209.90 147.89 l 210.01 147.89 l 210.11 147.89 l 210.22 148.34 l 210.32 148.34 l 210.42 148.34 l 210.53 148.34 l 210.63 148.78 l 210.74 148.78 l 210.84 148.78 l 210.94 148.78 l 211.05 149.17 l 211.15 149.17 l 211.26 149.17 l 211.36 149.17 l 211.46 149.17 l 211.57 149.60 l 211.67 149.60 l 211.78 149.60 l 211.88 149.60 l 211.98 150.08 l 212.09 150.08 l 212.19 150.08 l 212.30 150.42 l 212.40 150.42 l 212.50 150.42 l 212.61 150.42 l 212.71 150.42 l 212.82 150.42 l 212.92 150.99 l 213.02 151.32 l 213.13 151.32 l 213.23 151.32 l 213.34 151.32 l 213.44 151.32 l 213.54 151.32 l 213.65 151.64 l 213.75 151.64 l 213.86 151.64 l 213.96 151.64 l 214.07 151.64 l 214.17 151.64 l 214.27 152.21 l 214.38 152.73 l 214.48 152.73 l 214.59 153.10 l 214.69 153.10 l 214.79 153.10 l 214.90 153.10 l 215.00 153.10 l 215.11 153.51 l 215.21 153.51 l 215.31 153.51 l 215.42 153.51 l 215.52 153.92 l 215.63 153.92 l 215.73 153.92 l 215.83 153.92 l 215.94 154.33 l 216.04 154.33 l 216.15 154.33 l 216.25 154.33 l 216.35 154.89 l 216.46 155.29 l 216.56 155.29 l 216.67 155.29 l 216.77 155.29 l 216.87 155.59 l 216.98 155.59 l 217.08 155.59 l 217.19 155.59 l 217.29 155.59 l 217.39 155.59 l 217.50 156.04 l 217.60 156.04 l 217.71 156.04 l 217.81 156.44 l 217.91 156.44 l 218.02 156.44 l 218.12 156.44 l 218.23 156.84 l 218.33 156.84 l 218.43 156.84 l 218.54 156.84 l 218.64 157.39 l 218.75 157.78 l 218.85 157.78 l 218.96 157.78 l 219.06 157.78 l 219.16 158.17 l 219.27 158.17 l 219.37 158.17 l 219.48 158.17 l 219.58 158.71 l 219.68 159.15 l 219.79 159.15 l 219.89 159.15 l 220.00 159.48 l 220.10 159.48 l 220.20 159.48 l 220.31 159.48 l 220.41 159.48 l 220.52 159.91 l 220.62 159.91 l 220.72 159.91 l 220.83 160.13 l 220.93 160.13 l 221.04 160.13 l 221.14 160.13 l 221.24 160.13 l 221.35 160.13 l 221.45 160.13 l 221.56 160.51 l 221.66 160.51 l 221.76 160.51 l 221.87 160.51 l 221.97 160.88 l 222.08 160.88 l 222.18 160.88 l 222.28 160.88 l 222.39 161.84 l 222.49 161.84 l 222.60 161.84 l 222.70 161.84 l 222.80 162.26 l 222.91 162.26 l 223.01 162.26 l 223.12 162.63 l 223.22 162.63 l 223.33 162.63 l 223.43 162.63 l 223.53 163.10 l 223.64 163.10 l 223.74 163.46 l 223.85 163.46 l 223.95 163.46 l 224.05 163.46 l 224.16 163.88 l 224.26 163.88 l 224.37 163.88 l 224.47 164.02 l 224.57 164.02 l 224.68 164.02 l 224.78 164.02 l 224.89 164.02 l 224.99 164.02 l 225.09 164.02 l 225.20 164.02 l 225.30 164.32 l 225.41 164.32 l 225.51 164.32 l 225.61 164.32 l 225.72 164.32 l 225.82 164.84 l 225.93 165.36 l 226.03 165.76 l 226.13 165.76 l 226.24 165.76 l 226.34 166.68 l 226.45 166.68 l 226.55 166.68 l 226.65 166.68 l 226.76 167.14 l 226.86 167.14 l 226.97 167.54 l 227.07 167.54 l 227.17 167.54 l 227.28 167.88 l 227.38 167.88 l 227.49 167.88 l 227.59 167.88 l 227.69 168.11 l 227.80 168.11 l 227.90 168.11 l 228.01 168.11 l 228.11 168.11 l 228.22 168.11 l 228.32 168.56 l 228.42 168.56 l 228.53 168.84 l 228.63 168.84 l 228.74 168.84 l 228.84 168.84 l 228.94 168.84 l 229.05 169.23 l 229.15 169.23 l 229.26 169.23 l 229.36 169.62 l 229.46 169.62 l 229.57 169.62 l 229.67 169.90 l 229.78 169.90 l 229.88 169.90 l 229.98 169.90 l 230.09 169.90 l 230.19 170.23 l 230.30 170.23 l 230.40 170.23 l 230.50 170.23 l 230.61 170.45 l 230.71 170.45 l 230.82 170.45 l 230.92 170.45 l 231.02 170.45 l 231.13 170.45 l 231.23 170.89 l 231.34 170.89 l 231.44 171.15 l 231.54 171.15 l 231.65 171.15 l 231.75 171.15 l 231.86 171.15 l 231.96 171.48 l 232.06 171.48 l 232.17 171.48 l 232.27 171.48 l 232.38 171.91 l 232.48 171.91 l 232.58 172.29 l 232.69 172.29 l 232.79 172.29 l 232.90 172.61 l 233.00 172.61 l 233.11 172.61 l 233.21 172.61 l 233.31 173.04 l 233.42 173.04 l 233.52 173.53 l 233.63 174.01 l 233.73 174.33 l 233.83 174.33 l 233.94 174.33 l 234.04 174.33 l 234.15 174.81 l 234.25 175.24 l 234.35 175.24 l 234.46 175.60 l 234.56 175.60 l 234.67 175.60 l 234.77 175.85 l 234.87 175.85 l 234.98 175.85 l 235.08 175.85 l 235.19 175.85 l 235.29 176.10 l 235.39 176.10 l 235.50 176.10 l 235.60 176.10 l 235.71 176.10 l 235.81 176.58 l 235.91 176.76 l 236.02 176.76 l 236.12 176.76 l 236.23 176.76 l 236.33 176.76 l 236.43 176.76 l 236.54 177.24 l 236.64 177.60 l 236.75 177.60 l 236.85 177.60 l 236.95 178.07 l 237.06 178.37 l 237.16 178.37 l 237.27 178.37 l 237.37 178.37 l 237.47 178.60 l 237.58 178.60 l 237.68 178.60 l 237.79 178.60 l 237.89 178.60 l 238.00 179.60 l 238.10 180.07 l 238.20 180.24 l 238.31 180.24 l 238.41 180.24 l 238.52 180.24 l 238.62 180.24 l 238.72 180.24 l 238.83 180.47 l 238.93 180.47 l 239.04 180.47 l 239.14 180.47 l 239.24 180.47 l 239.35 180.76 l 239.45 180.76 l 239.56 180.76 l 239.66 180.76 l 239.76 181.10 l 239.87 181.10 l 239.97 181.10 l 240.08 181.56 l 240.18 181.72 l 240.28 181.72 l 240.39 181.72 l 240.49 181.72 l 240.60 181.72 l 240.70 181.72 l 240.80 182.07 l 240.91 182.07 l 241.01 182.07 l 241.12 182.40 l 241.22 182.40 l 241.32 182.40 l 241.43 182.44 l 241.53 182.44 l 241.64 182.44 l 241.74 182.44 l 241.84 182.44 l 241.95 182.44 l 242.05 182.44 l 242.16 182.44 l 242.26 182.66 l 242.37 182.66 l 242.47 182.66 l 242.57 182.66 l 242.68 182.66 l 242.78 183.05 l 242.89 183.05 l 242.99 183.39 l 243.09 183.39 l 243.20 183.39 l 243.30 183.78 l 243.41 183.78 l 243.51 184.23 l 243.61 184.69 l 243.72 185.01 l 243.82 185.01 l 243.93 185.01 l 244.03 185.22 l 244.13 185.22 l 244.24 185.22 l 244.34 185.22 l 244.45 185.22 l 244.55 185.55 l 244.65 185.55 l 244.76 185.55 l 244.86 185.87 l 244.97 185.87 l 245.07 185.87 l 245.17 186.14 l 245.28 186.14 l 245.38 186.14 l 245.49 186.14 l 245.59 186.52 l 245.69 186.52 l 245.80 186.66 l 245.90 186.66 l 246.01 186.66 l 246.11 186.66 l 246.21 186.66 l 246.32 186.66 l 246.42 186.80 l 246.53 186.80 l 246.63 186.80 l 246.73 186.80 l 246.84 186.80 l 246.94 186.80 l 247.05 187.24 l 247.15 187.44 l 247.26 187.44 l 247.36 187.44 l 247.46 187.44 l 247.57 187.44 l 247.67 187.69 l 247.78 187.69 l 247.88 187.69 l 247.98 187.69 l 248.09 188.13 l 248.19 188.45 l 248.30 188.45 l 248.40 188.45 l 248.50 189.32 l 248.61 189.32 l 248.71 189.69 l 248.82 189.69 l 248.92 190.01 l 249.02 190.01 l 249.13 190.01 l 249.23 190.38 l 249.34 190.38 l 249.44 190.75 l 249.54 190.75 l 249.65 191.06 l 249.75 191.06 l 249.86 191.06 l 249.96 191.30 l 250.06 191.30 l 250.17 191.30 l 250.27 191.30 l 250.38 191.54 l 250.48 191.54 l 250.58 191.54 l 250.69 191.54 l 250.79 191.91 l 250.90 191.91 l 251.00 192.28 l 251.10 192.28 l 251.21 192.64 l 251.31 192.64 l 251.42 193.01 l 251.52 193.01 l 251.62 193.67 l 251.73 193.67 l 251.83 193.67 l 251.94 193.67 l 252.04 193.67 l 252.15 193.91 l 252.25 193.91 l 252.35 193.91 l 252.46 193.91 l 252.56 194.69 l 252.67 194.69 l 252.77 194.69 l 252.87 195.11 l 252.98 195.28 l 253.08 195.28 l 253.19 195.28 l 253.29 195.28 l 253.39 195.28 l 253.50 195.70 l 253.60 195.93 l 253.71 195.93 l 253.81 195.93 l 253.91 195.93 l 254.02 196.35 l 254.12 196.64 l 254.23 196.64 l 254.33 196.64 l 254.43 197.48 l 254.54 197.48 l 254.64 197.83 l 254.75 197.83 l 254.85 198.18 l 254.95 198.18 l 255.06 198.82 l 255.16 198.82 l 255.27 198.82 l 255.37 198.82 l 255.47 198.82 l 255.58 199.23 l 255.68 199.65 l 255.79 199.93 l 255.89 199.93 l 255.99 199.93 l 256.10 200.21 l 256.20 200.21 l 256.31 200.21 l 256.41 200.36 l 256.51 200.36 l 256.62 200.36 l 256.72 200.36 l 256.83 200.36 l 256.93 200.77 l 257.04 201.05 l 257.14 201.05 l 257.24 201.05 l 257.35 201.87 l 257.45 201.87 l 257.56 202.21 l 257.66 202.21 l 257.76 202.48 l 257.87 202.48 l 257.97 202.48 l 258.08 202.89 l 258.18 203.30 l 258.28 203.64 l 258.39 203.64 l 258.49 204.04 l 258.60 204.45 l 258.70 204.78 l 258.80 204.78 l 258.91 205.12 l 259.01 205.12 l 259.12 205.46 l 259.22 205.46 l 259.32 205.59 l 259.43 205.59 l 259.53 205.59 l 259.64 205.59 l 259.74 205.59 l 259.84 205.65 l 259.95 205.65 l 260.05 205.65 l 260.16 205.65 l 260.26 205.65 l 260.36 205.65 l 260.47 205.85 l 260.57 205.85 l 260.68 205.85 l 260.78 205.85 l 260.88 206.12 l 260.99 206.12 l 261.09 206.12 l 261.20 206.32 l 261.30 206.32 l 261.41 206.32 l 261.51 206.32 l 261.61 206.65 l 261.72 206.65 l 261.82 207.04 l 261.93 207.44 l 262.03 207.63 l 262.13 207.63 l 262.24 207.63 l 262.34 207.63 l 262.45 208.49 l 262.55 208.88 l 262.65 209.07 l 262.76 209.07 l 262.86 209.07 l 262.97 209.07 l 263.07 209.46 l 263.17 209.65 l 263.28 209.65 l 263.38 209.65 l 263.49 209.65 l 263.59 209.91 l 263.69 209.91 l 263.80 209.91 l 263.90 210.16 l 264.01 210.16 l 264.11 210.16 l 264.21 210.55 l 264.32 210.80 l 264.42 210.80 l 264.53 210.80 l 264.63 211.58 l 264.73 211.58 l 264.84 211.83 l 264.94 211.83 l 265.05 211.83 l 265.15 212.22 l 265.25 212.60 l 265.36 212.92 l 265.46 212.92 l 265.57 213.17 l 265.67 213.17 l 265.77 213.17 l 265.88 213.55 l 265.98 213.80 l 266.09 213.80 l 266.19 213.80 l 266.30 213.83 l 266.40 213.83 l 266.50 213.83 l 266.61 213.83 l 266.71 213.83 l 266.82 213.83 l 266.92 214.08 l 267.02 214.08 l 267.13 214.08 l 267.23 214.84 l 267.34 214.84 l 267.44 215.22 l 267.54 215.98 l 267.65 215.98 l 267.75 216.22 l 267.86 216.22 l 267.96 216.22 l 268.06 216.53 l 268.17 216.53 l 268.27 216.91 l 268.38 217.07 l 268.48 217.07 l 268.58 217.07 l 268.69 217.07 l 268.79 217.38 l 268.90 217.38 l 269.00 217.92 l 269.10 217.92 l 269.21 217.92 l 269.31 217.92 l 269.42 217.92 l 269.52 218.30 l 269.62 218.60 l 269.73 218.60 l 269.83 218.90 l 269.94 218.90 l 270.04 219.28 l 270.14 219.51 l 270.25 219.51 l 270.35 219.51 l 270.46 219.67 l 270.56 219.67 l 270.66 219.67 l 270.77 219.67 l 270.87 220.04 l 270.98 220.41 l 271.08 221.15 l 271.19 221.15 l 271.29 221.38 l 271.39 221.38 l 271.50 221.38 l 271.60 221.68 l 271.71 221.68 l 271.81 221.97 l 271.91 221.97 l 272.02 222.20 l 272.12 222.20 l 272.23 222.20 l 272.33 222.93 l 272.43 222.93 l 272.54 223.16 l 272.64 223.16 l 272.75 223.16 l 272.85 223.52 l 272.95 223.89 l 273.06 224.25 l 273.16 224.47 l 273.27 224.47 l 273.37 224.47 l 273.47 224.84 l 273.58 225.13 l 273.68 225.13 l 273.79 225.20 l 273.89 225.20 l 273.99 225.20 l 274.10 225.20 l 274.20 225.20 l 274.31 225.49 l 274.41 225.49 l 274.51 225.57 l 274.62 225.57 l 274.72 225.57 l 274.83 225.57 l 274.93 225.57 l 275.03 226.07 l 275.14 226.07 l 275.24 226.07 l 275.35 226.07 l 275.45 226.07 l 275.55 226.36 l 275.66 226.36 l 275.76 226.43 l 275.87 226.43 l 275.97 226.43 l 276.08 226.43 l 276.18 226.43 l 276.28 226.57 l 276.39 226.57 l 276.49 226.57 l 276.60 226.57 l 276.70 226.85 l 276.80 226.85 l 276.91 227.49 l 277.01 227.49 l 277.12 227.49 l 277.22 227.78 l 277.32 227.78 l 277.43 228.06 l 277.53 228.06 l 277.64 228.34 l 277.74 228.34 l 277.84 228.55 l 277.95 228.55 l 278.05 228.55 l 278.16 228.83 l 278.26 228.83 l 278.36 228.97 l 278.47 228.97 l 278.57 228.97 l 278.68 228.97 l 278.78 229.10 l 278.88 229.10 l 278.99 229.10 l 279.09 229.10 l 279.20 229.45 l 279.30 230.08 l 279.40 230.08 l 279.51 230.08 l 279.61 230.43 l 279.72 230.79 l 279.82 231.14 l 279.92 231.41 l 280.03 231.41 l 280.13 231.61 l 280.24 231.61 l 280.34 231.61 l 280.45 232.38 l 280.55 232.58 l 280.65 232.58 l 280.76 232.58 l 280.86 232.64 l 280.97 232.64 l 281.07 232.64 l 281.17 232.64 l 281.28 232.64 l 281.38 232.98 l 281.49 233.33 l 281.59 233.68 l 281.69 234.44 l 281.80 234.64 l 281.90 234.64 l 282.01 234.64 l 282.11 234.98 l 282.21 235.52 l 282.32 235.52 l 282.42 235.52 l 282.53 235.52 l 282.63 235.86 l 282.73 236.06 l 282.84 236.06 l 282.94 236.06 l 283.05 236.40 l 283.15 236.66 l 283.25 236.66 l 283.36 236.93 l 283.46 236.93 l 283.57 237.27 l 283.67 237.46 l 283.77 237.46 l 283.88 237.46 l 283.98 237.58 l 284.09 237.58 l 284.19 237.58 l 284.29 237.58 l 284.40 237.92 l 284.50 238.67 l 284.61 238.86 l 284.71 238.86 l 284.81 238.86 l 284.92 239.04 l 285.02 239.04 l 285.13 239.04 l 285.23 239.30 l 285.34 239.30 l 285.44 239.64 l 285.54 239.83 l 285.65 239.83 l 285.75 239.83 l 285.86 240.09 l 285.96 240.09 l 286.06 241.58 l 286.17 241.58 l 286.27 241.76 l 286.38 241.76 l 286.48 241.76 l 286.58 242.09 l 286.69 242.35 l 286.79 242.35 l 286.90 243.09 l 287.00 243.19 l 287.10 243.19 l 287.21 243.19 l 287.31 243.19 l 287.42 243.37 l 287.52 243.37 l 287.62 243.37 l 287.73 243.90 l 287.83 243.90 l 287.94 243.90 l 288.04 243.90 l 288.14 243.90 l 288.25 243.90 l 288.35 243.90 l 288.46 243.90 l 288.56 243.90 l 288.66 244.41 l 288.77 244.41 l 288.87 244.41 l 288.98 244.41 l 289.08 244.66 l 289.18 244.66 l 289.29 244.84 l 289.39 244.84 l 289.50 244.84 l 289.60 245.16 l 289.70 245.41 l 289.81 245.41 l 289.91 245.66 l 290.02 245.66 l 290.12 246.72 l 290.23 246.72 l 290.33 247.37 l 290.43 247.37 l 290.54 247.46 l 290.64 247.46 l 290.75 247.46 l 290.85 247.46 l 290.95 247.71 l 291.06 247.71 l 291.16 248.03 l 291.27 248.36 l 291.37 248.53 l 291.47 248.53 l 291.58 248.53 l 291.68 248.69 l 291.79 248.69 l 291.89 248.69 l 291.99 248.94 l 292.10 248.94 l 292.20 249.50 l 292.31 249.50 l 292.41 249.50 l 292.51 249.67 l 292.62 249.67 l 292.72 249.67 l 292.83 250.63 l 292.93 250.63 l 293.03 250.63 l 293.14 250.79 l 293.24 250.79 l 293.35 250.79 l 293.45 251.11 l 293.55 251.35 l 293.66 251.35 l 293.76 251.67 l 293.87 251.91 l 293.97 251.91 l 294.07 252.23 l 294.18 252.39 l 294.28 252.39 l 294.39 252.39 l 294.49 252.70 l 294.59 253.81 l 294.70 254.13 l 294.80 254.36 l 294.91 254.36 l 295.01 254.60 l 295.12 254.60 l 295.22 254.84 l 295.32 254.84 l 295.43 255.15 l 295.53 255.46 l 295.64 255.70 l 295.74 255.70 l 295.84 256.01 l 295.95 256.33 l 296.05 256.64 l 296.16 256.87 l 296.26 256.87 l 296.36 257.18 l 296.47 257.41 l 296.57 257.41 l 296.68 257.65 l 296.78 257.65 l 296.88 257.87 l 296.99 257.87 l 297.09 257.87 l 297.20 257.87 l 297.30 257.87 l 297.40 257.87 l 297.51 257.87 l 297.61 258.18 l 297.72 258.49 l 297.82 258.80 l 297.92 258.95 l 298.03 258.95 l 298.13 258.95 l 298.24 259.24 l 298.34 259.24 l 298.44 259.24 l 298.55 259.24 l 298.65 259.24 l 298.76 259.24 l 298.86 259.39 l 298.96 259.39 l 299.07 259.39 l 299.17 259.70 l 299.28 259.76 l 299.38 259.76 l 299.49 259.76 l 299.59 259.76 l 299.69 260.07 l 299.80 260.36 l 299.90 260.36 l 300.01 260.36 l 300.11 260.36 l 300.21 260.36 l 300.32 260.36 l 300.42 260.97 l 300.53 260.97 l 300.63 261.66 l 300.73 261.88 l 300.84 261.88 l 300.94 262.19 l 301.05 262.41 l 301.15 262.41 l 301.25 262.71 l 301.36 263.01 l 301.46 263.32 l 301.57 263.62 l 301.67 263.84 l 301.77 263.84 l 301.88 264.06 l 301.98 264.06 l 302.09 264.28 l 302.19 264.28 l 302.29 264.34 l 302.40 264.34 l 302.50 264.34 l 302.61 264.34 l 302.71 264.64 l 302.81 264.86 l 302.92 264.86 l 303.02 265.07 l 303.13 265.07 l 303.23 265.59 l 303.33 265.59 l 303.44 265.59 l 303.54 265.81 l 303.65 265.81 l 303.75 266.05 l 303.85 266.05 l 303.96 266.05 l 304.06 266.05 l 304.17 266.05 l 304.27 266.05 l 304.38 266.05 l 304.48 266.05 l 304.58 266.05 l 304.69 266.05 l 304.79 266.05 l 304.90 266.35 l 305.00 266.64 l 305.10 266.94 l 305.21 267.15 l 305.31 267.15 l 305.42 267.83 l 305.52 268.04 l 305.62 268.04 l 305.73 268.71 l 305.83 269.01 l 305.94 269.14 l 306.04 269.14 l 306.14 269.14 l 306.25 269.27 l 306.35 269.27 l 306.46 269.27 l 306.56 269.48 l 306.66 269.48 l 306.77 269.69 l 306.87 269.69 l 306.98 269.86 l 307.08 269.86 l 307.18 269.86 l 307.29 269.86 l 307.39 269.86 l 307.50 269.86 l 307.60 269.86 l 307.70 270.07 l 307.81 270.07 l 307.91 270.36 l 308.02 270.57 l 308.12 270.57 l 308.22 271.23 l 308.33 271.52 l 308.43 271.86 l 308.54 271.86 l 308.64 271.86 l 308.74 271.86 l 308.85 271.86 l 308.95 272.52 l 309.06 272.81 l 309.16 273.30 l 309.27 273.30 l 309.37 273.30 l 309.47 273.59 l 309.58 273.79 l 309.68 273.79 l 309.79 274.00 l 309.89 274.00 l 309.99 274.28 l 310.10 274.57 l 310.20 274.77 l 310.31 274.77 l 310.41 274.89 l 310.51 274.89 l 310.62 274.89 l 310.72 275.01 l 310.83 275.01 l 310.93 275.01 l 311.03 275.22 l 311.14 275.22 l 311.24 275.78 l 311.35 275.78 l 311.45 275.99 l 311.55 275.99 l 311.66 276.27 l 311.76 276.39 l 311.87 276.39 l 311.97 276.39 l 312.07 276.59 l 312.18 276.59 l 312.28 276.99 l 312.39 276.99 l 312.49 276.99 l 312.59 276.99 l 312.70 277.27 l 312.80 277.47 l 312.91 277.47 l 313.01 277.75 l 313.11 277.95 l 313.22 277.95 l 313.32 278.15 l 313.43 278.15 l 313.53 278.37 l 313.63 278.37 l 313.74 278.37 l 313.84 278.37 l 313.95 278.37 l 314.05 278.37 l 314.16 278.65 l 314.26 278.93 l 314.36 279.21 l 314.47 279.41 l 314.57 279.41 l 314.68 279.60 l 314.78 279.60 l 314.88 279.80 l 314.99 279.80 l 315.09 279.91 l 315.20 279.91 l 315.30 279.91 l 315.40 280.10 l 315.51 280.10 l 315.61 280.38 l 315.72 280.58 l 315.82 280.58 l 315.92 280.85 l 316.03 281.13 l 316.13 281.41 l 316.24 281.71 l 316.34 281.71 l 316.44 281.71 l 316.55 281.71 l 316.65 281.71 l 316.76 281.98 l 316.86 282.17 l 316.96 282.17 l 317.07 282.39 l 317.17 282.39 l 317.28 282.39 l 317.38 282.39 l 317.48 282.39 l 317.59 282.39 l 317.69 282.58 l 317.80 282.58 l 317.90 282.77 l 318.00 282.77 l 318.11 282.98 l 318.21 282.98 l 318.32 282.98 l 318.42 282.98 l 318.53 282.98 l 318.63 282.98 l 318.73 283.17 l 318.84 283.17 l 318.94 283.28 l 319.05 283.28 l 319.15 283.28 l 319.25 283.55 l 319.36 283.74 l 319.46 283.74 l 319.57 283.84 l 319.67 283.84 l 319.77 283.84 l 319.88 284.11 l 319.98 284.38 l 320.09 284.92 l 320.19 284.92 l 320.29 285.11 l 320.40 285.11 l 320.50 285.38 l 320.61 285.92 l 320.71 285.92 l 320.81 286.11 l 320.92 286.11 l 321.02 286.29 l 321.13 286.29 l 321.23 286.56 l 321.33 286.66 l 321.44 286.66 l 321.54 286.66 l 321.65 286.84 l 321.75 286.84 l 321.85 287.11 l 321.96 287.21 l 322.06 287.21 l 322.17 287.21 l 322.27 287.39 l 322.37 287.39 l 322.48 287.58 l 322.58 287.58 l 322.69 287.76 l 322.79 287.76 l 322.89 288.02 l 323.00 288.21 l 323.10 288.21 l 323.21 288.47 l 323.31 288.74 l 323.42 289.00 l 323.52 289.53 l 323.62 289.53 l 323.73 289.63 l 323.83 289.63 l 323.94 289.63 l 324.04 289.81 l 324.14 289.81 l 324.25 289.99 l 324.35 289.99 l 324.46 290.17 l 324.56 290.17 l 324.66 290.18 l 324.77 290.18 l 324.87 290.18 l 324.98 290.18 l 325.08 290.27 l 325.18 290.27 l 325.29 290.27 l 325.39 290.28 l 325.50 290.28 l 325.60 290.28 l 325.70 290.28 l 325.81 290.54 l 325.91 290.64 l 326.02 290.64 l 326.12 290.64 l 326.22 290.90 l 326.33 291.42 l 326.43 291.42 l 326.54 292.37 l 326.64 292.55 l 326.74 292.55 l 326.85 292.72 l 326.95 292.72 l 327.06 292.98 l 327.16 292.99 l 327.26 292.99 l 327.37 292.99 l 327.47 292.99 l 327.58 293.59 l 327.68 293.68 l 327.78 293.68 l 327.89 293.68 l 327.99 293.77 l 328.10 293.77 l 328.20 293.77 l 328.31 294.29 l 328.41 294.29 l 328.51 294.55 l 328.62 294.63 l 328.72 294.63 l 328.83 294.63 l 328.93 294.72 l 329.03 294.72 l 329.14 294.72 l 329.24 294.89 l 329.35 294.89 l 329.45 295.24 l 329.55 295.24 l 329.66 295.24 l 329.76 295.24 l 329.87 295.24 l 329.97 295.24 l 330.07 295.24 l 330.18 295.24 l 330.28 295.75 l 330.39 295.75 l 330.49 296.00 l 330.59 296.17 l 330.70 296.17 l 330.80 296.34 l 330.91 296.34 l 331.01 296.43 l 331.11 296.43 l 331.22 296.43 l 331.32 296.68 l 331.43 296.85 l 331.53 296.85 l 331.63 296.93 l 331.74 296.93 l 331.84 296.93 l 331.95 297.10 l 332.05 297.10 l 332.15 297.36 l 332.26 297.44 l 332.36 297.44 l 332.47 297.44 l 332.57 298.03 l 332.67 298.28 l 332.78 298.53 l 332.88 298.70 l 332.99 298.70 l 333.09 298.87 l 333.20 298.87 l 333.30 298.95 l 333.40 298.95 l 333.51 298.95 l 333.61 299.03 l 333.72 299.03 l 333.82 299.03 l 333.92 299.19 l 334.03 299.19 l 334.13 299.36 l 334.24 299.36 l 334.34 299.52 l 334.44 299.52 l 334.55 299.77 l 334.65 299.94 l 334.76 299.94 l 334.86 300.44 l 334.96 300.44 l 335.07 300.60 l 335.17 300.60 l 335.28 300.76 l 335.38 300.76 l 335.48 301.01 l 335.59 301.60 l 335.69 301.76 l 335.80 301.76 l 335.90 301.92 l 336.00 301.92 l 336.11 301.99 l 336.21 301.99 l 336.32 301.99 l 336.42 301.99 l 336.52 301.99 l 336.63 301.99 l 336.73 301.99 l 336.84 302.81 l 336.94 302.81 l 337.04 302.89 l 337.15 302.89 l 337.25 302.89 l 337.36 303.47 l 337.46 303.71 l 337.57 303.78 l 337.67 303.78 l 337.77 303.78 l 337.88 303.86 l 337.98 303.86 l 338.09 303.86 l 338.19 303.93 l 338.29 303.93 l 338.40 303.93 l 338.50 304.18 l 338.61 304.42 l 338.71 304.66 l 338.81 305.05 l 338.92 305.05 l 339.02 305.05 l 339.13 305.05 l 339.23 305.05 l 339.33 305.05 l 339.44 305.05 l 339.54 305.62 l 339.65 306.20 l 339.75 306.44 l 339.85 307.01 l 339.96 307.58 l 340.06 307.74 l 340.17 307.74 l 340.27 307.98 l 340.37 308.22 l 340.48 308.46 l 340.58 308.53 l 340.69 308.53 l 340.79 308.53 l 340.89 308.59 l 341.00 308.59 l 341.10 308.59 l 341.21 308.75 l 341.31 308.75 l 341.41 308.90 l 341.52 308.90 l 341.62 309.14 l 341.73 309.38 l 341.83 309.53 l 341.93 309.53 l 342.04 309.77 l 342.14 309.84 l 342.25 309.84 l 342.35 309.84 l 342.46 310.08 l 342.56 310.23 l 342.66 310.23 l 342.77 310.47 l 342.87 310.70 l 342.98 311.27 l 343.08 311.66 l 343.18 311.66 l 343.29 311.66 l 343.39 312.22 l 343.50 312.28 l 343.60 312.28 l 343.70 312.28 l 343.81 312.34 l 343.91 312.34 l 344.02 312.34 l 344.12 312.47 l 344.22 312.47 l 344.33 312.47 l 344.43 312.47 l 344.54 312.47 l 344.64 312.47 l 344.74 312.70 l 344.85 313.17 l 344.95 313.17 l 345.06 313.41 l 345.16 313.47 l 345.26 313.47 l 345.37 313.47 l 345.47 313.70 l 345.58 313.94 l 345.68 314.00 l 345.78 314.00 l 345.89 314.00 l 345.99 314.23 l 346.10 314.29 l 346.20 314.29 l 346.30 314.29 l 346.41 314.44 l 346.51 314.44 l 346.62 314.50 l 346.72 314.50 l 346.82 314.50 l 346.93 314.64 l 347.03 314.64 l 347.14 315.51 l 347.24 315.75 l 347.35 315.98 l 347.45 316.12 l 347.55 316.12 l 347.66 317.46 l 347.76 317.46 l 347.87 317.46 l 347.97 317.60 l 348.07 317.60 l 348.18 318.06 l 348.28 318.06 l 348.39 318.29 l 348.49 318.44 l 348.59 318.44 l 348.70 319.12 l 348.80 319.12 l 348.91 319.12 l 349.01 319.35 l 349.11 320.13 l 349.22 320.13 l 349.32 320.27 l 349.43 320.27 l 349.53 320.50 l 349.63 320.55 l 349.74 320.55 l 349.84 320.55 l 349.95 320.69 l 350.05 320.69 l 350.15 321.24 l 350.26 321.46 l 350.36 321.92 l 350.47 321.92 l 350.57 322.46 l 350.67 322.51 l 350.78 322.51 l 350.88 322.51 l 350.99 322.74 l 351.09 322.88 l 351.19 322.88 l 351.30 323.01 l 351.40 323.01 l 351.51 323.69 l 351.61 323.69 l 351.71 323.69 l 351.82 324.10 l 351.92 324.10 l 352.03 324.10 l 352.13 324.10 l 352.24 324.10 l 352.34 324.10 l 352.44 324.46 l 352.55 324.46 l 352.65 324.46 l 352.76 325.13 l 352.86 325.13 l 352.96 325.13 l 353.07 325.27 l 353.17 325.27 l 353.28 325.40 l 353.38 325.40 l 353.48 325.45 l 353.59 325.45 l 353.69 325.45 l 353.80 325.67 l 353.90 325.72 l 354.00 325.72 l 354.11 325.72 l 354.21 325.94 l 354.32 326.08 l 354.42 326.08 l 354.52 326.12 l 354.63 326.12 l 354.73 326.12 l 354.84 326.25 l 354.94 326.25 l 355.04 326.34 l 355.15 326.34 l 355.25 326.34 l 355.36 326.34 l 355.46 326.34 l 355.56 326.34 l 355.67 326.52 l 355.77 326.52 l 355.88 326.52 l 355.98 326.52 l 356.08 326.52 l 356.19 327.89 l 356.29 327.89 l 356.40 328.11 l 356.50 328.33 l 356.61 328.37 l 356.71 328.37 l 356.81 328.37 l 356.92 328.50 l 357.02 328.50 l 357.13 328.72 l 357.23 328.94 l 357.33 329.11 l 357.44 329.11 l 357.54 329.11 l 357.65 329.11 l 357.75 329.11 l 357.85 329.33 l 357.96 329.77 l 358.06 329.77 l 358.17 330.21 l 358.27 330.21 l 358.37 330.73 l 358.48 330.95 l 358.58 331.78 l 358.69 332.04 l 358.79 332.04 l 358.89 332.04 l 359.00 332.04 l 359.10 332.16 l 359.21 332.16 l 359.31 332.38 l 359.41 332.60 l 359.52 332.63 l 359.62 332.63 l 359.73 332.63 l 359.83 332.76 l 359.93 332.76 l 360.04 333.59 l 360.14 333.80 l 360.25 334.05 l 360.35 334.05 l 360.45 334.05 l 360.56 334.05 l 360.66 334.27 l 360.77 334.70 l 360.87 334.70 l 360.97 334.73 l 361.08 334.73 l 361.18 334.73 l 361.29 335.89 l 361.39 335.89 l 361.50 335.89 l 361.60 335.89 l 361.70 336.10 l 361.81 336.32 l 361.91 336.35 l 362.02 336.35 l 362.12 336.35 l 362.22 336.78 l 362.33 336.78 l 362.43 336.99 l 362.54 337.11 l 362.64 337.11 l 362.74 337.32 l 362.85 337.84 l 362.95 338.05 l 363.06 338.26 l 363.16 338.78 l 363.26 338.81 l 363.37 338.81 l 363.47 338.81 l 363.58 338.93 l 363.68 338.93 l 363.78 340.04 l 363.89 340.07 l 363.99 340.07 l 364.10 340.07 l 364.20 340.40 l 364.30 340.40 l 364.41 340.40 l 364.51 340.85 l 364.62 340.85 l 364.72 340.85 l 364.82 340.85 l 364.93 340.85 l 365.03 340.87 l 365.14 340.87 l 365.24 340.87 l 365.34 341.08 l 365.45 341.20 l 365.55 341.20 l 365.66 341.41 l 365.76 341.53 l 365.86 341.53 l 365.97 341.55 l 366.07 341.55 l 366.18 341.55 l 366.28 341.97 l 366.39 341.97 l 366.49 342.18 l 366.59 342.59 l 366.70 342.59 l 366.80 343.10 l 366.91 343.22 l 367.01 343.22 l 367.11 343.68 l 367.22 343.68 l 367.32 343.68 l 367.43 343.68 l 367.53 343.68 l 367.63 343.68 l 367.74 343.68 l 367.84 343.68 l 367.95 344.09 l 368.05 344.09 l 368.15 344.11 l 368.26 344.11 l 368.36 344.11 l 368.47 344.32 l 368.57 344.34 l 368.67 344.34 l 368.78 344.34 l 368.88 345.05 l 368.99 345.05 l 369.09 345.16 l 369.19 345.16 l 369.30 345.19 l 369.40 345.19 l 369.51 345.19 l 369.61 345.21 l 369.71 345.21 l 369.82 345.21 l 369.92 345.91 l 370.03 345.91 l 370.13 345.93 l 370.23 345.93 l 370.34 345.93 l 370.44 346.14 l 370.55 346.34 l 370.65 346.75 l 370.75 346.75 l 370.86 346.83 l 370.96 346.83 l 371.07 346.83 l 371.17 346.83 l 371.28 346.83 l 371.38 346.83 l 371.48 346.83 l 371.59 346.83 l 371.69 346.83 l 371.80 346.83 l 371.90 346.83 l 372.00 346.83 l 372.11 346.85 l 372.21 346.85 l 372.32 346.85 l 372.42 347.35 l 372.52 347.46 l 372.63 347.46 l 372.73 347.66 l 372.84 347.77 l 372.94 347.77 l 373.04 348.08 l 373.15 348.08 l 373.25 348.08 l 373.36 348.12 l 373.46 348.12 l 373.56 348.12 l 373.67 348.12 l 373.77 348.12 l 373.88 348.12 l 373.98 348.14 l 374.08 348.14 l 374.19 348.14 l 374.29 348.25 l 374.40 348.25 l 374.50 348.45 l 374.60 348.65 l 374.71 348.67 l 374.81 348.67 l 374.92 348.67 l 375.02 348.87 l 375.12 348.98 l 375.23 348.98 l 375.33 349.38 l 375.44 349.38 l 375.54 349.57 l 375.65 350.35 l 375.75 350.55 l 375.85 351.06 l 375.96 351.06 l 376.06 351.06 l 376.17 351.06 l 376.27 351.07 l 376.37 351.07 l 376.48 351.07 l 376.58 351.18 l 376.69 351.18 l 376.79 351.67 l 376.89 352.15 l 377.00 352.55 l 377.10 352.55 l 377.21 352.89 l 377.31 352.89 l 377.41 352.89 l 377.52 352.89 l 377.62 352.89 l 377.73 352.89 l 377.83 352.89 l 377.93 352.89 l 378.04 352.89 l 378.14 352.89 l 378.25 352.89 l 378.35 352.89 l 378.45 353.00 l 378.56 353.00 l 378.66 353.10 l 378.77 353.10 l 378.87 353.21 l 378.97 353.21 l 379.08 353.40 l 379.18 353.79 l 379.29 353.79 l 379.39 353.90 l 379.49 353.90 l 379.60 354.30 l 379.70 354.30 l 379.81 354.30 l 379.91 354.30 l 380.01 354.30 l 380.12 354.40 l 380.22 354.40 l 380.33 354.60 l 380.43 354.61 l 380.54 354.61 l 380.64 354.61 l 380.74 354.72 l 380.85 354.72 l 380.95 354.72 l 381.06 354.72 l 381.16 354.72 l 381.26 354.74 l 381.37 354.74 l 381.47 354.74 l 381.58 355.21 l 381.68 355.41 l 381.78 355.60 l 381.89 355.70 l 381.99 355.70 l 382.10 355.89 l 382.20 356.09 l 382.30 356.28 l 382.41 356.57 l 382.51 356.57 l 382.62 356.57 l 382.72 356.77 l 382.82 357.81 l 382.93 357.82 l 383.03 357.82 l 383.14 357.82 l 383.24 358.01 l 383.34 358.02 l 383.45 358.02 l 383.55 358.02 l 383.66 358.40 l 383.76 358.40 l 383.86 358.50 l 383.97 358.50 l 384.07 358.97 l 384.18 359.16 l 384.28 359.54 l 384.38 359.54 l 384.49 359.73 l 384.59 359.74 l 384.70 359.74 l 384.80 359.74 l 384.90 359.75 l 385.01 359.75 l 385.11 359.75 l 385.22 359.75 l 385.32 359.75 l 385.43 359.75 l 385.53 359.86 l 385.63 359.86 l 385.74 359.86 l 385.84 359.86 l 385.95 359.86 l 386.05 359.96 l 386.15 359.96 l 386.26 360.14 l 386.36 360.33 l 386.47 360.34 l 386.57 360.34 l 386.67 360.34 l 386.78 360.72 l 386.88 360.72 l 386.99 360.81 l 387.09 360.81 l 387.19 360.91 l 387.30 360.91 l 387.40 360.92 l 387.51 360.92 l 387.61 360.92 l 387.71 360.92 l 387.82 360.92 l 387.92 360.92 l 388.03 361.30 l 388.13 361.30 l 388.23 361.58 l 388.34 361.58 l 388.44 361.58 l 388.55 361.68 l 388.65 361.68 l 388.75 361.77 l 388.86 361.77 l 388.96 361.87 l 389.07 361.87 l S 1.000 0.000 1.000 RG 71.73 109.20 m 71.84 109.20 l 71.94 109.20 l 72.05 109.20 l 72.15 109.20 l 72.25 109.20 l 72.36 109.20 l 72.46 109.20 l 72.57 109.20 l 72.67 109.20 l 72.77 109.20 l 72.88 109.20 l 72.98 109.20 l 73.09 109.20 l 73.19 109.20 l 73.29 109.20 l 73.40 109.20 l 73.50 109.20 l 73.61 109.20 l 73.71 109.20 l 73.81 109.20 l 73.92 109.20 l 74.02 109.20 l 74.13 109.20 l 74.23 109.20 l 74.33 109.20 l 74.44 109.20 l 74.54 109.20 l 74.65 109.20 l 74.75 109.20 l 74.85 109.20 l 74.96 109.20 l 75.06 109.20 l 75.17 109.20 l 75.27 109.20 l 75.37 109.20 l 75.48 109.20 l 75.58 109.20 l 75.69 109.20 l 75.79 109.20 l 75.90 109.20 l 76.00 109.20 l 76.10 109.20 l 76.21 109.20 l 76.31 109.20 l 76.42 109.20 l 76.52 109.20 l 76.62 109.20 l 76.73 109.20 l 76.83 109.20 l 76.94 109.20 l 77.04 109.20 l 77.14 109.20 l 77.25 109.20 l 77.35 109.20 l 77.46 109.20 l 77.56 109.20 l 77.66 109.20 l 77.77 109.20 l 77.87 109.20 l 77.98 109.20 l 78.08 109.20 l 78.18 109.20 l 78.29 109.20 l 78.39 109.20 l 78.50 109.20 l 78.60 109.20 l 78.70 109.20 l 78.81 109.20 l 78.91 109.20 l 79.02 109.20 l 79.12 109.20 l 79.22 109.20 l 79.33 109.20 l 79.43 109.20 l 79.54 109.20 l 79.64 109.20 l 79.74 109.20 l 79.85 109.20 l 79.95 109.20 l 80.06 109.20 l 80.16 109.20 l 80.26 109.20 l 80.37 109.20 l 80.47 109.20 l 80.58 109.20 l 80.68 109.20 l 80.79 109.20 l 80.89 109.20 l 80.99 109.20 l 81.10 109.20 l 81.20 109.20 l 81.31 109.20 l 81.41 109.20 l 81.51 109.20 l 81.62 109.20 l 81.72 109.20 l 81.83 109.20 l 81.93 109.20 l 82.03 109.20 l 82.14 109.20 l 82.24 109.20 l 82.35 109.20 l 82.45 109.20 l 82.55 109.20 l 82.66 109.20 l 82.76 109.20 l 82.87 109.20 l 82.97 109.20 l 83.07 109.20 l 83.18 109.20 l 83.28 109.20 l 83.39 109.20 l 83.49 109.20 l 83.59 109.20 l 83.70 109.20 l 83.80 109.20 l 83.91 109.20 l 84.01 109.20 l 84.11 109.20 l 84.22 109.20 l 84.32 109.20 l 84.43 109.20 l 84.53 109.20 l 84.63 109.20 l 84.74 109.20 l 84.84 109.20 l 84.95 109.20 l 85.05 109.20 l 85.15 109.20 l 85.26 109.20 l 85.36 109.20 l 85.47 109.20 l 85.57 109.20 l 85.68 109.20 l 85.78 109.20 l 85.88 109.20 l 85.99 109.20 l 86.09 109.20 l 86.20 109.20 l 86.30 109.20 l 86.40 109.20 l 86.51 109.20 l 86.61 109.20 l 86.72 109.20 l 86.82 109.20 l 86.92 109.20 l 87.03 109.20 l 87.13 109.20 l 87.24 109.20 l 87.34 109.20 l 87.44 109.20 l 87.55 109.20 l 87.65 109.20 l 87.76 109.20 l 87.86 109.20 l 87.96 109.20 l 88.07 109.20 l 88.17 109.20 l 88.28 109.20 l 88.38 109.20 l 88.48 109.20 l 88.59 109.20 l 88.69 109.20 l 88.80 109.20 l 88.90 109.20 l 89.00 109.20 l 89.11 109.20 l 89.21 109.20 l 89.32 109.20 l 89.42 109.20 l 89.52 109.20 l 89.63 109.20 l 89.73 109.20 l 89.84 109.20 l 89.94 109.20 l 90.05 109.20 l 90.15 109.20 l 90.25 109.20 l 90.36 109.20 l 90.46 109.20 l 90.57 109.20 l 90.67 109.20 l 90.77 109.20 l 90.88 109.20 l 90.98 109.20 l 91.09 109.20 l 91.19 109.20 l 91.29 109.20 l 91.40 109.20 l 91.50 109.20 l 91.61 109.20 l 91.71 109.20 l 91.81 109.20 l 91.92 109.20 l 92.02 109.20 l 92.13 109.20 l 92.23 109.20 l 92.33 109.20 l 92.44 109.20 l 92.54 109.20 l 92.65 109.20 l 92.75 109.20 l 92.85 109.20 l 92.96 109.20 l 93.06 109.20 l 93.17 109.20 l 93.27 109.20 l 93.37 109.20 l 93.48 109.20 l 93.58 109.20 l 93.69 109.20 l 93.79 109.20 l 93.89 109.20 l 94.00 109.20 l 94.10 109.20 l 94.21 109.20 l 94.31 109.20 l 94.41 109.20 l 94.52 109.20 l 94.62 109.20 l 94.73 109.20 l 94.83 109.20 l 94.94 109.20 l 95.04 109.20 l 95.14 109.20 l 95.25 109.20 l 95.35 109.20 l 95.46 109.20 l 95.56 109.20 l 95.66 109.20 l 95.77 109.20 l 95.87 109.20 l 95.98 109.20 l 96.08 109.20 l 96.18 109.20 l 96.29 109.20 l 96.39 109.20 l 96.50 109.20 l 96.60 109.20 l 96.70 109.20 l 96.81 109.20 l 96.91 109.20 l 97.02 109.20 l 97.12 109.20 l 97.22 109.20 l 97.33 109.20 l 97.43 109.20 l 97.54 109.20 l 97.64 109.20 l 97.74 109.20 l 97.85 109.20 l 97.95 109.20 l 98.06 109.20 l 98.16 109.20 l 98.26 109.20 l 98.37 109.20 l 98.47 109.20 l 98.58 109.20 l 98.68 109.20 l 98.78 109.20 l 98.89 109.20 l 98.99 109.20 l 99.10 109.20 l 99.20 109.20 l 99.30 109.20 l 99.41 109.20 l 99.51 109.20 l 99.62 109.20 l 99.72 109.20 l 99.83 109.20 l 99.93 109.20 l 100.03 109.20 l 100.14 109.20 l 100.24 109.20 l 100.35 109.20 l 100.45 109.20 l 100.55 109.20 l 100.66 109.20 l 100.76 109.20 l 100.87 109.20 l 100.97 109.20 l 101.07 109.20 l 101.18 109.20 l 101.28 109.20 l 101.39 109.20 l 101.49 109.20 l 101.59 109.20 l 101.70 109.20 l 101.80 109.20 l 101.91 109.20 l 102.01 109.20 l 102.11 119.96 l 102.22 119.96 l 102.32 119.96 l 102.43 119.96 l 102.53 119.96 l 102.63 119.96 l 102.74 119.96 l 102.84 119.96 l 102.95 119.96 l 103.05 119.96 l 103.15 119.96 l 103.26 119.96 l 103.36 119.96 l 103.47 119.96 l 103.57 119.96 l 103.67 119.96 l 103.78 119.96 l 103.88 119.96 l 103.99 119.96 l 104.09 119.96 l 104.19 119.96 l 104.30 119.96 l 104.40 119.96 l 104.51 119.96 l 104.61 119.96 l 104.72 119.96 l 104.82 119.96 l 104.92 119.96 l 105.03 119.96 l 105.13 119.96 l 105.24 119.96 l 105.34 119.96 l 105.44 119.96 l 105.55 119.96 l 105.65 119.96 l 105.76 119.96 l 105.86 119.96 l 105.96 119.96 l 106.07 119.96 l 106.17 119.96 l 106.28 119.96 l 106.38 119.96 l 106.48 119.96 l 106.59 119.96 l 106.69 119.96 l 106.80 119.96 l 106.90 119.96 l 107.00 119.96 l 107.11 119.96 l 107.21 119.96 l 107.32 119.96 l 107.42 119.96 l 107.52 119.96 l 107.63 119.96 l 107.73 119.96 l 107.84 119.96 l 107.94 119.96 l 108.04 119.96 l 108.15 119.96 l 108.25 119.96 l 108.36 119.96 l 108.46 119.96 l 108.56 119.96 l 108.67 119.96 l 108.77 119.96 l 108.88 119.96 l 108.98 119.96 l 109.09 119.96 l 109.19 119.96 l 109.29 119.96 l 109.40 119.96 l 109.50 119.96 l 109.61 119.96 l 109.71 119.96 l 109.81 119.96 l 109.92 119.96 l 110.02 119.96 l 110.13 119.96 l 110.23 119.96 l 110.33 119.96 l 110.44 119.96 l 110.54 119.96 l 110.65 119.96 l 110.75 119.96 l 110.85 119.96 l 110.96 119.96 l 111.06 119.96 l 111.17 119.96 l 111.27 119.96 l 111.37 119.96 l 111.48 119.96 l 111.58 119.96 l 111.69 119.96 l 111.79 119.96 l 111.89 119.96 l 112.00 119.96 l 112.10 119.96 l 112.21 119.96 l 112.31 119.96 l 112.41 119.96 l 112.52 119.96 l 112.62 119.96 l 112.73 119.96 l 112.83 119.96 l 112.93 119.96 l 113.04 119.96 l 113.14 119.96 l 113.25 119.96 l 113.35 119.96 l 113.45 119.96 l 113.56 119.96 l 113.66 119.96 l 113.77 119.96 l 113.87 119.96 l 113.98 119.96 l 114.08 119.96 l 114.18 130.56 l 114.29 130.56 l 114.39 130.56 l 114.50 130.56 l 114.60 130.56 l 114.70 130.56 l 114.81 130.56 l 114.91 130.56 l 115.02 130.56 l 115.12 130.56 l 115.22 130.56 l 115.33 130.56 l 115.43 130.56 l 115.54 130.56 l 115.64 130.56 l 115.74 130.56 l 115.85 130.56 l 115.95 130.56 l 116.06 130.56 l 116.16 130.56 l 116.26 130.56 l 116.37 130.56 l 116.47 130.56 l 116.58 130.56 l 116.68 130.56 l 116.78 130.56 l 116.89 130.56 l 116.99 130.56 l 117.10 130.56 l 117.20 130.56 l 117.30 130.56 l 117.41 130.56 l 117.51 130.56 l 117.62 130.56 l 117.72 130.56 l 117.82 130.56 l 117.93 130.56 l 118.03 130.56 l 118.14 130.56 l 118.24 130.56 l 118.34 130.56 l 118.45 130.56 l 118.55 130.56 l 118.66 130.56 l 118.76 130.56 l 118.87 130.56 l 118.97 130.56 l 119.07 130.56 l 119.18 130.56 l 119.28 130.56 l 119.39 130.56 l 119.49 130.56 l 119.59 130.56 l 119.70 130.56 l 119.80 130.56 l 119.91 130.56 l 120.01 130.56 l 120.11 130.56 l 120.22 130.56 l 120.32 130.56 l 120.43 130.56 l 120.53 130.56 l 120.63 130.56 l 120.74 130.56 l 120.84 141.28 l 120.95 141.28 l 121.05 141.28 l 121.15 141.28 l 121.26 141.28 l 121.36 141.28 l 121.47 141.28 l 121.57 141.28 l 121.67 141.28 l 121.78 141.28 l 121.88 141.28 l 121.99 141.28 l 122.09 141.28 l 122.19 141.28 l 122.30 141.28 l 122.40 141.28 l 122.51 141.28 l 122.61 141.28 l 122.71 141.28 l 122.82 141.28 l 122.92 141.28 l 123.03 141.28 l 123.13 141.28 l 123.23 141.28 l 123.34 141.28 l 123.44 141.28 l 123.55 141.28 l 123.65 141.28 l 123.76 141.28 l 123.86 141.28 l 123.96 141.28 l 124.07 141.28 l 124.17 141.28 l 124.28 141.28 l 124.38 141.28 l 124.48 141.28 l 124.59 141.28 l 124.69 141.28 l 124.80 141.28 l 124.90 151.46 l 125.00 151.46 l 125.11 151.46 l 125.21 151.46 l 125.32 151.46 l 125.42 151.46 l 125.52 151.46 l 125.63 151.46 l 125.73 151.46 l 125.84 151.46 l 125.94 151.46 l 126.04 151.46 l 126.15 151.46 l 126.25 151.46 l 126.36 151.46 l 126.46 151.46 l 126.56 151.46 l 126.67 151.46 l 126.77 151.46 l 126.88 151.46 l 126.98 151.46 l 127.08 151.46 l 127.19 151.46 l 127.29 151.46 l 127.40 151.46 l 127.50 151.46 l 127.60 151.46 l 127.71 151.46 l 127.81 151.46 l 127.92 151.46 l 128.02 151.46 l 128.13 161.07 l 128.23 161.07 l 128.33 161.07 l 128.44 161.07 l 128.54 161.07 l 128.65 161.07 l 128.75 161.07 l 128.85 161.07 l 128.96 161.07 l 129.06 161.07 l 129.17 161.07 l 129.27 161.07 l 129.37 161.07 l 129.48 161.07 l 129.58 161.07 l 129.69 161.07 l 129.79 161.07 l 129.89 161.07 l 130.00 161.07 l 130.10 161.07 l 130.21 161.07 l 130.31 161.07 l 130.41 161.07 l 130.52 161.07 l 130.62 161.07 l 130.73 161.07 l 130.83 161.07 l 130.93 170.10 l 131.04 170.10 l 131.14 170.10 l 131.25 170.10 l 131.35 170.10 l 131.45 170.10 l 131.56 170.10 l 131.66 170.10 l 131.77 170.10 l 131.87 170.10 l 131.97 170.10 l 132.08 170.10 l 132.18 170.10 l 132.29 170.10 l 132.39 170.10 l 132.49 170.10 l 132.60 170.10 l 132.70 170.10 l 132.81 170.10 l 132.91 170.10 l 133.02 170.10 l 133.12 170.10 l 133.22 170.10 l 133.33 170.10 l 133.43 170.10 l 133.54 179.32 l 133.64 179.32 l 133.74 179.32 l 133.85 179.32 l 133.95 179.32 l 134.06 179.32 l 134.16 179.32 l 134.26 179.32 l 134.37 179.32 l 134.47 179.32 l 134.58 179.32 l 134.68 179.32 l 134.78 179.32 l 134.89 179.32 l 134.99 179.32 l 135.10 179.32 l 135.20 179.32 l 135.30 179.32 l 135.41 179.32 l 135.51 187.18 l 135.62 187.18 l 135.72 187.18 l 135.82 187.18 l 135.93 187.18 l 136.03 187.18 l 136.14 187.18 l 136.24 187.18 l 136.34 187.18 l 136.45 187.18 l 136.55 187.18 l 136.66 187.18 l 136.76 187.18 l 136.86 187.18 l 136.97 187.18 l 137.07 187.18 l 137.18 187.18 l 137.28 187.18 l 137.38 187.18 l 137.49 187.18 l 137.59 187.18 l 137.70 187.18 l 137.80 187.18 l 137.91 187.18 l 138.01 195.98 l 138.11 195.98 l 138.22 195.98 l 138.32 195.98 l 138.43 195.98 l 138.53 195.98 l 138.63 195.98 l 138.74 195.98 l 138.84 195.98 l 138.95 195.98 l 139.05 195.98 l 139.15 195.98 l 139.26 195.98 l 139.36 195.98 l 139.47 195.98 l 139.57 202.62 l 139.67 202.62 l 139.78 202.62 l 139.88 202.62 l 139.99 202.62 l 140.09 202.62 l 140.19 202.62 l 140.30 202.62 l 140.40 202.62 l 140.51 202.62 l 140.61 202.62 l 140.71 202.62 l 140.82 202.62 l 140.92 202.62 l 141.03 202.62 l 141.13 202.62 l 141.23 202.62 l 141.34 202.62 l 141.44 202.62 l 141.55 202.62 l 141.65 202.62 l 141.75 202.62 l 141.86 202.62 l 141.96 202.62 l 142.07 202.62 l 142.17 209.31 l 142.27 209.31 l 142.38 209.31 l 142.48 209.31 l 142.59 209.31 l 142.69 209.31 l 142.80 209.31 l 142.90 209.31 l 143.00 209.31 l 143.11 209.31 l 143.21 209.31 l 143.32 209.31 l 143.42 209.31 l 143.52 209.31 l 143.63 209.31 l 143.73 209.31 l 143.84 209.31 l 143.94 209.31 l 144.04 209.31 l 144.15 209.31 l 144.25 209.31 l 144.36 209.31 l 144.46 217.08 l 144.56 217.08 l 144.67 217.08 l 144.77 217.08 l 144.88 217.08 l 144.98 217.08 l 145.08 217.08 l 145.19 217.08 l 145.29 217.08 l 145.40 217.08 l 145.50 217.08 l 145.60 217.08 l 145.71 217.08 l 145.81 217.08 l 145.92 223.96 l 146.02 223.96 l 146.12 223.96 l 146.23 223.96 l 146.33 223.96 l 146.44 223.96 l 146.54 223.96 l 146.64 223.96 l 146.75 223.96 l 146.85 223.96 l 146.96 223.96 l 147.06 223.96 l 147.17 223.96 l 147.27 223.96 l 147.37 223.96 l 147.48 223.96 l 147.58 223.96 l 147.69 229.95 l 147.79 229.95 l 147.89 229.95 l 148.00 229.95 l 148.10 229.95 l 148.21 229.95 l 148.31 229.95 l 148.41 229.95 l 148.52 229.95 l 148.62 229.95 l 148.73 229.95 l 148.83 229.95 l 148.93 229.95 l 149.04 229.95 l 149.14 229.95 l 149.25 229.95 l 149.35 229.95 l 149.45 229.95 l 149.56 229.95 l 149.66 229.95 l 149.77 236.42 l 149.87 236.42 l 149.97 236.42 l 150.08 236.42 l 150.18 236.42 l 150.29 236.42 l 150.39 236.42 l 150.49 236.42 l 150.60 236.42 l 150.70 236.42 l 150.81 236.42 l 150.91 236.42 l 151.01 236.42 l 151.12 236.42 l 151.22 236.42 l 151.33 236.42 l 151.43 243.02 l 151.53 243.02 l 151.64 243.02 l 151.74 243.02 l 151.85 243.02 l 151.95 243.02 l 152.06 243.02 l 152.16 243.02 l 152.26 243.02 l 152.37 243.02 l 152.47 243.02 l 152.58 243.02 l 152.68 243.02 l 152.78 243.02 l 152.89 249.40 l 152.99 249.40 l 153.10 249.40 l 153.20 249.40 l 153.30 249.40 l 153.41 249.40 l 153.51 249.40 l 153.62 249.40 l 153.72 249.40 l 153.82 249.40 l 153.93 249.40 l 154.03 249.40 l 154.14 249.40 l 154.24 249.40 l 154.34 255.98 l 154.45 255.98 l 154.55 255.98 l 154.66 255.98 l 154.76 255.98 l 154.86 255.98 l 154.97 255.98 l 155.07 255.98 l 155.18 255.98 l 155.28 255.98 l 155.38 255.98 l 155.49 255.98 l 155.59 261.71 l 155.70 261.71 l 155.80 261.71 l 155.90 261.71 l 156.01 261.71 l 156.11 261.71 l 156.22 261.71 l 156.32 261.71 l 156.42 261.71 l 156.53 261.71 l 156.63 261.71 l 156.74 261.71 l 156.84 261.71 l 156.95 261.71 l 157.05 261.71 l 157.15 268.12 l 157.26 268.12 l 157.36 268.12 l 157.47 268.12 l 157.57 268.12 l 157.67 268.12 l 157.78 268.12 l 157.88 268.12 l 157.99 268.12 l 158.09 268.12 l 158.19 268.12 l 158.30 274.14 l 158.40 274.14 l 158.51 274.14 l 158.61 274.14 l 158.71 274.14 l 158.82 274.14 l 158.92 274.14 l 159.03 274.14 l 159.13 274.14 l 159.23 274.14 l 159.34 274.14 l 159.44 274.14 l 159.55 281.60 l 159.65 281.60 l 159.75 281.60 l 159.86 281.60 l 159.96 281.60 l 160.07 288.26 l 160.17 288.26 l 160.27 288.26 l 160.38 288.26 l 160.48 288.26 l 160.59 288.26 l 160.69 288.26 l 160.79 288.26 l 160.90 293.58 l 161.00 293.58 l 161.11 293.58 l 161.21 293.58 l 161.31 293.58 l 161.42 293.58 l 161.52 293.58 l 161.63 293.58 l 161.73 293.58 l 161.84 293.58 l 161.94 293.58 l 162.04 293.58 l 162.15 293.58 l 162.25 298.27 l 162.36 298.27 l 162.46 298.27 l 162.56 298.27 l 162.67 298.27 l 162.77 298.27 l 162.88 298.27 l 162.98 298.27 l 163.08 298.27 l 163.19 298.27 l 163.29 298.27 l 163.40 298.27 l 163.50 298.27 l 163.60 298.27 l 163.71 298.27 l 163.81 303.77 l 163.92 303.77 l 164.02 303.77 l 164.12 303.77 l 164.23 303.77 l 164.33 303.77 l 164.44 303.77 l 164.54 303.77 l 164.64 303.77 l 164.75 303.77 l 164.85 303.77 l 164.96 309.89 l 165.06 309.89 l 165.16 309.89 l 165.27 309.89 l 165.37 309.89 l 165.48 309.89 l 165.58 309.89 l 165.68 309.89 l 165.79 316.15 l 165.89 316.15 l 166.00 316.15 l 166.10 316.15 l 166.21 316.15 l 166.31 316.15 l 166.41 316.15 l 166.52 321.54 l 166.62 321.54 l 166.73 321.54 l 166.83 321.54 l 166.93 321.54 l 167.04 321.54 l 167.14 321.54 l 167.25 321.54 l 167.35 321.54 l 167.45 321.54 l 167.56 326.82 l 167.66 326.82 l 167.77 326.82 l 167.87 326.82 l 167.97 326.82 l 168.08 326.82 l 168.18 326.82 l 168.29 326.82 l 168.39 326.82 l 168.49 326.82 l 168.60 332.24 l 168.70 332.24 l 168.81 332.24 l 168.91 332.24 l 169.01 332.24 l 169.12 332.24 l 169.22 332.24 l 169.33 332.24 l 169.43 332.24 l 169.53 337.83 l 169.64 337.83 l 169.74 337.83 l 169.85 337.83 l 169.95 337.83 l 170.05 337.83 l 170.16 337.83 l 170.26 337.83 l 170.37 343.06 l 170.47 343.06 l 170.57 343.06 l 170.68 343.06 l 170.78 343.06 l 170.89 343.06 l 170.99 343.06 l 171.10 343.06 l 171.20 343.06 l 171.30 348.19 l 171.41 348.19 l 171.51 348.19 l 171.62 348.19 l 171.72 348.19 l 171.82 348.19 l 171.93 348.19 l 172.03 348.19 l 172.14 348.19 l 172.24 353.78 l 172.34 353.78 l 172.45 353.78 l 172.55 353.78 l 172.66 353.78 l 172.76 353.78 l 172.86 353.78 l 172.97 360.13 l 173.07 360.13 l 173.18 360.13 l 173.28 360.13 l 173.38 361.87 l 173.49 361.87 l 173.59 361.87 l 173.70 361.87 l 173.80 361.87 l 173.90 361.87 l 174.01 361.87 l 174.11 361.87 l 174.22 361.87 l 174.32 361.87 l 174.42 361.87 l 174.53 361.87 l 174.63 361.87 l 174.74 361.87 l 174.84 361.87 l 174.94 361.87 l 175.05 361.87 l 175.15 361.87 l 175.26 361.87 l 175.36 361.87 l 175.46 361.87 l 175.57 361.87 l 175.67 361.87 l 175.78 361.87 l 175.88 361.87 l 175.99 361.87 l 176.09 361.87 l 176.19 361.87 l 176.30 361.87 l 176.40 361.87 l 176.51 361.87 l 176.61 361.87 l 176.71 361.87 l 176.82 361.87 l 176.92 361.87 l 177.03 361.87 l 177.13 361.87 l 177.23 361.87 l 177.34 361.87 l 177.44 361.87 l 177.55 361.87 l 177.65 361.87 l 177.75 361.87 l 177.86 361.87 l 177.96 361.87 l 178.07 361.87 l 178.17 361.87 l 178.27 361.87 l 178.38 361.87 l 178.48 361.87 l 178.59 361.87 l 178.69 361.87 l 178.79 361.87 l 178.90 361.87 l 179.00 361.87 l 179.11 361.87 l 179.21 361.87 l 179.31 361.87 l 179.42 361.87 l 179.52 361.87 l 179.63 361.87 l 179.73 361.87 l 179.83 361.87 l 179.94 361.87 l 180.04 361.87 l 180.15 361.87 l 180.25 361.87 l 180.35 361.87 l 180.46 361.87 l 180.56 361.87 l 180.67 361.87 l 180.77 361.87 l 180.88 361.87 l 180.98 361.87 l 181.08 361.87 l 181.19 361.87 l 181.29 361.87 l 181.40 361.87 l 181.50 361.87 l 181.60 361.87 l 181.71 361.87 l 181.81 361.87 l 181.92 361.87 l 182.02 361.87 l 182.12 361.87 l 182.23 361.87 l 182.33 361.87 l 182.44 361.87 l 182.54 361.87 l 182.64 361.87 l 182.75 361.87 l 182.85 361.87 l 182.96 361.87 l 183.06 361.87 l 183.16 361.87 l 183.27 361.87 l 183.37 361.87 l 183.48 361.87 l 183.58 361.87 l 183.68 361.87 l 183.79 361.87 l 183.89 361.87 l 184.00 361.87 l 184.10 361.87 l 184.20 361.87 l 184.31 361.87 l 184.41 361.87 l 184.52 361.87 l 184.62 361.87 l 184.72 361.87 l 184.83 361.87 l 184.93 361.87 l 185.04 361.87 l 185.14 361.87 l 185.25 361.87 l 185.35 361.87 l 185.45 361.87 l 185.56 361.87 l 185.66 361.87 l 185.77 361.87 l 185.87 361.87 l 185.97 361.87 l 186.08 361.87 l 186.18 361.87 l 186.29 361.87 l 186.39 361.87 l 186.49 361.87 l 186.60 361.87 l 186.70 361.87 l 186.81 361.87 l 186.91 361.87 l 187.01 361.87 l 187.12 361.87 l 187.22 361.87 l 187.33 361.87 l 187.43 361.87 l 187.53 361.87 l 187.64 361.87 l 187.74 361.87 l 187.85 361.87 l 187.95 361.87 l 188.05 361.87 l 188.16 361.87 l 188.26 361.87 l 188.37 361.87 l 188.47 361.87 l 188.57 361.87 l 188.68 361.87 l 188.78 361.87 l 188.89 361.87 l 188.99 361.87 l 189.09 361.87 l 189.20 361.87 l 189.30 361.87 l 189.41 361.87 l 189.51 361.87 l 189.61 361.87 l 189.72 361.87 l 189.82 361.87 l 189.93 361.87 l 190.03 361.87 l 190.14 361.87 l 190.24 361.87 l 190.34 361.87 l 190.45 361.87 l 190.55 361.87 l 190.66 361.87 l 190.76 361.87 l 190.86 361.87 l 190.97 361.87 l 191.07 361.87 l 191.18 361.87 l 191.28 361.87 l 191.38 361.87 l 191.49 361.87 l 191.59 361.87 l 191.70 361.87 l 191.80 361.87 l 191.90 361.87 l 192.01 361.87 l 192.11 361.87 l 192.22 361.87 l 192.32 361.87 l 192.42 361.87 l 192.53 361.87 l 192.63 361.87 l 192.74 361.87 l 192.84 361.87 l 192.94 361.87 l 193.05 361.87 l 193.15 361.87 l 193.26 361.87 l 193.36 361.87 l 193.46 361.87 l 193.57 361.87 l 193.67 361.87 l 193.78 361.87 l 193.88 361.87 l 193.98 361.87 l 194.09 361.87 l 194.19 361.87 l 194.30 361.87 l 194.40 361.87 l 194.50 361.87 l 194.61 361.87 l 194.71 361.87 l 194.82 361.87 l 194.92 361.87 l 195.03 361.87 l 195.13 361.87 l 195.23 361.87 l 195.34 361.87 l 195.44 361.87 l 195.55 361.87 l 195.65 361.87 l 195.75 361.87 l 195.86 361.87 l 195.96 361.87 l 196.07 361.87 l 196.17 361.87 l 196.27 361.87 l 196.38 361.87 l 196.48 361.87 l 196.59 361.87 l 196.69 361.87 l 196.79 361.87 l 196.90 361.87 l 197.00 361.87 l 197.11 361.87 l 197.21 361.87 l 197.31 361.87 l 197.42 361.87 l 197.52 361.87 l 197.63 361.87 l 197.73 361.87 l 197.83 361.87 l 197.94 361.87 l 198.04 361.87 l 198.15 361.87 l 198.25 361.87 l 198.35 361.87 l 198.46 361.87 l 198.56 361.87 l 198.67 361.87 l 198.77 361.87 l 198.87 361.87 l 198.98 361.87 l 199.08 361.87 l 199.19 361.87 l 199.29 361.87 l 199.39 361.87 l 199.50 361.87 l 199.60 361.87 l 199.71 361.87 l 199.81 361.87 l 199.92 361.87 l 200.02 361.87 l 200.12 361.87 l 200.23 361.87 l 200.33 361.87 l 200.44 361.87 l 200.54 361.87 l 200.64 361.87 l 200.75 361.87 l 200.85 361.87 l 200.96 361.87 l 201.06 361.87 l 201.16 361.87 l 201.27 361.87 l 201.37 361.87 l 201.48 361.87 l 201.58 361.87 l 201.68 361.87 l 201.79 361.87 l 201.89 361.87 l 202.00 361.87 l 202.10 361.87 l 202.20 361.87 l 202.31 361.87 l 202.41 361.87 l 202.52 361.87 l 202.62 361.87 l 202.72 361.87 l 202.83 361.87 l 202.93 361.87 l 203.04 361.87 l 203.14 361.87 l 203.24 361.87 l 203.35 361.87 l 203.45 361.87 l 203.56 361.87 l 203.66 361.87 l 203.76 361.87 l 203.87 361.87 l 203.97 361.87 l 204.08 361.87 l 204.18 361.87 l 204.29 361.87 l 204.39 361.87 l 204.49 361.87 l 204.60 361.87 l 204.70 361.87 l 204.81 361.87 l 204.91 361.87 l 205.01 361.87 l 205.12 361.87 l 205.22 361.87 l 205.33 361.87 l 205.43 361.87 l 205.53 361.87 l 205.64 361.87 l 205.74 361.87 l 205.85 361.87 l 205.95 361.87 l 206.05 361.87 l 206.16 361.87 l 206.26 361.87 l 206.37 361.87 l 206.47 361.87 l 206.57 361.87 l 206.68 361.87 l 206.78 361.87 l 206.89 361.87 l 206.99 361.87 l 207.09 361.87 l 207.20 361.87 l 207.30 361.87 l 207.41 361.87 l 207.51 361.87 l 207.61 361.87 l 207.72 361.87 l 207.82 361.87 l 207.93 361.87 l 208.03 361.87 l 208.13 361.87 l 208.24 361.87 l 208.34 361.87 l 208.45 361.87 l 208.55 361.87 l 208.65 361.87 l 208.76 361.87 l 208.86 361.87 l 208.97 361.87 l 209.07 361.87 l 209.18 361.87 l 209.28 361.87 l 209.38 361.87 l 209.49 361.87 l 209.59 361.87 l 209.70 361.87 l 209.80 361.87 l 209.90 361.87 l 210.01 361.87 l 210.11 361.87 l 210.22 361.87 l 210.32 361.87 l 210.42 361.87 l 210.53 361.87 l 210.63 361.87 l 210.74 361.87 l 210.84 361.87 l 210.94 361.87 l 211.05 361.87 l 211.15 361.87 l 211.26 361.87 l 211.36 361.87 l 211.46 361.87 l 211.57 361.87 l 211.67 361.87 l 211.78 361.87 l 211.88 361.87 l 211.98 361.87 l 212.09 361.87 l 212.19 361.87 l 212.30 361.87 l 212.40 361.87 l 212.50 361.87 l 212.61 361.87 l 212.71 361.87 l 212.82 361.87 l 212.92 361.87 l 213.02 361.87 l 213.13 361.87 l 213.23 361.87 l 213.34 361.87 l 213.44 361.87 l 213.54 361.87 l 213.65 361.87 l 213.75 361.87 l 213.86 361.87 l 213.96 361.87 l 214.07 361.87 l 214.17 361.87 l 214.27 361.87 l 214.38 361.87 l 214.48 361.87 l 214.59 361.87 l 214.69 361.87 l 214.79 361.87 l 214.90 361.87 l 215.00 361.87 l 215.11 361.87 l 215.21 361.87 l 215.31 361.87 l 215.42 361.87 l 215.52 361.87 l 215.63 361.87 l 215.73 361.87 l 215.83 361.87 l 215.94 361.87 l 216.04 361.87 l 216.15 361.87 l 216.25 361.87 l 216.35 361.87 l 216.46 361.87 l 216.56 361.87 l 216.67 361.87 l 216.77 361.87 l 216.87 361.87 l 216.98 361.87 l 217.08 361.87 l 217.19 361.87 l 217.29 361.87 l 217.39 361.87 l 217.50 361.87 l 217.60 361.87 l 217.71 361.87 l 217.81 361.87 l 217.91 361.87 l 218.02 361.87 l 218.12 361.87 l 218.23 361.87 l 218.33 361.87 l 218.43 361.87 l 218.54 361.87 l 218.64 361.87 l 218.75 361.87 l 218.85 361.87 l 218.96 361.87 l 219.06 361.87 l 219.16 361.87 l 219.27 361.87 l 219.37 361.87 l 219.48 361.87 l 219.58 361.87 l 219.68 361.87 l 219.79 361.87 l 219.89 361.87 l 220.00 361.87 l 220.10 361.87 l 220.20 361.87 l 220.31 361.87 l 220.41 361.87 l 220.52 361.87 l 220.62 361.87 l 220.72 361.87 l 220.83 361.87 l 220.93 361.87 l 221.04 361.87 l 221.14 361.87 l 221.24 361.87 l 221.35 361.87 l 221.45 361.87 l 221.56 361.87 l 221.66 361.87 l 221.76 361.87 l 221.87 361.87 l 221.97 361.87 l 222.08 361.87 l 222.18 361.87 l 222.28 361.87 l 222.39 361.87 l 222.49 361.87 l 222.60 361.87 l 222.70 361.87 l 222.80 361.87 l 222.91 361.87 l 223.01 361.87 l 223.12 361.87 l 223.22 361.87 l 223.33 361.87 l 223.43 361.87 l 223.53 361.87 l 223.64 361.87 l 223.74 361.87 l 223.85 361.87 l 223.95 361.87 l 224.05 361.87 l 224.16 361.87 l 224.26 361.87 l 224.37 361.87 l 224.47 361.87 l 224.57 361.87 l 224.68 361.87 l 224.78 361.87 l 224.89 361.87 l 224.99 361.87 l 225.09 361.87 l 225.20 361.87 l 225.30 361.87 l 225.41 361.87 l 225.51 361.87 l 225.61 361.87 l 225.72 361.87 l 225.82 361.87 l 225.93 361.87 l 226.03 361.87 l 226.13 361.87 l 226.24 361.87 l 226.34 361.87 l 226.45 361.87 l 226.55 361.87 l 226.65 361.87 l 226.76 361.87 l 226.86 361.87 l 226.97 361.87 l 227.07 361.87 l 227.17 361.87 l 227.28 361.87 l 227.38 361.87 l 227.49 361.87 l 227.59 361.87 l 227.69 361.87 l 227.80 361.87 l 227.90 361.87 l 228.01 361.87 l 228.11 361.87 l 228.22 361.87 l 228.32 361.87 l 228.42 361.87 l 228.53 361.87 l 228.63 361.87 l 228.74 361.87 l 228.84 361.87 l 228.94 361.87 l 229.05 361.87 l 229.15 361.87 l 229.26 361.87 l 229.36 361.87 l 229.46 361.87 l 229.57 361.87 l 229.67 361.87 l 229.78 361.87 l 229.88 361.87 l 229.98 361.87 l 230.09 361.87 l 230.19 361.87 l 230.30 361.87 l 230.40 361.87 l 230.50 361.87 l 230.61 361.87 l 230.71 361.87 l 230.82 361.87 l 230.92 361.87 l 231.02 361.87 l 231.13 361.87 l 231.23 361.87 l 231.34 361.87 l 231.44 361.87 l 231.54 361.87 l 231.65 361.87 l 231.75 361.87 l 231.86 361.87 l 231.96 361.87 l 232.06 361.87 l 232.17 361.87 l 232.27 361.87 l 232.38 361.87 l 232.48 361.87 l 232.58 361.87 l 232.69 361.87 l 232.79 361.87 l 232.90 361.87 l 233.00 361.87 l 233.11 361.87 l 233.21 361.87 l 233.31 361.87 l 233.42 361.87 l 233.52 361.87 l 233.63 361.87 l 233.73 361.87 l 233.83 361.87 l 233.94 361.87 l 234.04 361.87 l 234.15 361.87 l 234.25 361.87 l 234.35 361.87 l 234.46 361.87 l 234.56 361.87 l 234.67 361.87 l 234.77 361.87 l 234.87 361.87 l 234.98 361.87 l 235.08 361.87 l 235.19 361.87 l 235.29 361.87 l 235.39 361.87 l 235.50 361.87 l 235.60 361.87 l 235.71 361.87 l 235.81 361.87 l 235.91 361.87 l 236.02 361.87 l 236.12 361.87 l 236.23 361.87 l 236.33 361.87 l 236.43 361.87 l 236.54 361.87 l 236.64 361.87 l 236.75 361.87 l 236.85 361.87 l 236.95 361.87 l 237.06 361.87 l 237.16 361.87 l 237.27 361.87 l 237.37 361.87 l 237.47 361.87 l 237.58 361.87 l 237.68 361.87 l 237.79 361.87 l 237.89 361.87 l 238.00 361.87 l 238.10 361.87 l 238.20 361.87 l 238.31 361.87 l 238.41 361.87 l 238.52 361.87 l 238.62 361.87 l 238.72 361.87 l 238.83 361.87 l 238.93 361.87 l 239.04 361.87 l 239.14 361.87 l 239.24 361.87 l 239.35 361.87 l 239.45 361.87 l 239.56 361.87 l 239.66 361.87 l 239.76 361.87 l 239.87 361.87 l 239.97 361.87 l 240.08 361.87 l 240.18 361.87 l 240.28 361.87 l 240.39 361.87 l 240.49 361.87 l 240.60 361.87 l 240.70 361.87 l 240.80 361.87 l 240.91 361.87 l 241.01 361.87 l 241.12 361.87 l 241.22 361.87 l 241.32 361.87 l 241.43 361.87 l 241.53 361.87 l 241.64 361.87 l 241.74 361.87 l 241.84 361.87 l 241.95 361.87 l 242.05 361.87 l 242.16 361.87 l 242.26 361.87 l 242.37 361.87 l 242.47 361.87 l 242.57 361.87 l 242.68 361.87 l 242.78 361.87 l 242.89 361.87 l 242.99 361.87 l 243.09 361.87 l 243.20 361.87 l 243.30 361.87 l 243.41 361.87 l 243.51 361.87 l 243.61 361.87 l 243.72 361.87 l 243.82 361.87 l 243.93 361.87 l 244.03 361.87 l 244.13 361.87 l 244.24 361.87 l 244.34 361.87 l 244.45 361.87 l 244.55 361.87 l 244.65 361.87 l 244.76 361.87 l 244.86 361.87 l 244.97 361.87 l 245.07 361.87 l 245.17 361.87 l 245.28 361.87 l 245.38 361.87 l 245.49 361.87 l 245.59 361.87 l 245.69 361.87 l 245.80 361.87 l 245.90 361.87 l 246.01 361.87 l 246.11 361.87 l 246.21 361.87 l 246.32 361.87 l 246.42 361.87 l 246.53 361.87 l 246.63 361.87 l 246.73 361.87 l 246.84 361.87 l 246.94 361.87 l 247.05 361.87 l 247.15 361.87 l 247.26 361.87 l 247.36 361.87 l 247.46 361.87 l 247.57 361.87 l 247.67 361.87 l 247.78 361.87 l 247.88 361.87 l 247.98 361.87 l 248.09 361.87 l 248.19 361.87 l 248.30 361.87 l 248.40 361.87 l 248.50 361.87 l 248.61 361.87 l 248.71 361.87 l 248.82 361.87 l 248.92 361.87 l 249.02 361.87 l 249.13 361.87 l 249.23 361.87 l 249.34 361.87 l 249.44 361.87 l 249.54 361.87 l 249.65 361.87 l 249.75 361.87 l 249.86 361.87 l 249.96 361.87 l 250.06 361.87 l 250.17 361.87 l 250.27 361.87 l 250.38 361.87 l 250.48 361.87 l 250.58 361.87 l 250.69 361.87 l 250.79 361.87 l 250.90 361.87 l 251.00 361.87 l 251.10 361.87 l 251.21 361.87 l 251.31 361.87 l 251.42 361.87 l 251.52 361.87 l 251.62 361.87 l 251.73 361.87 l 251.83 361.87 l 251.94 361.87 l 252.04 361.87 l 252.15 361.87 l 252.25 361.87 l 252.35 361.87 l 252.46 361.87 l 252.56 361.87 l 252.67 361.87 l 252.77 361.87 l 252.87 361.87 l 252.98 361.87 l 253.08 361.87 l 253.19 361.87 l 253.29 361.87 l 253.39 361.87 l 253.50 361.87 l 253.60 361.87 l 253.71 361.87 l 253.81 361.87 l 253.91 361.87 l 254.02 361.87 l 254.12 361.87 l 254.23 361.87 l 254.33 361.87 l 254.43 361.87 l 254.54 361.87 l 254.64 361.87 l 254.75 361.87 l 254.85 361.87 l 254.95 361.87 l 255.06 361.87 l 255.16 361.87 l 255.27 361.87 l 255.37 361.87 l 255.47 361.87 l 255.58 361.87 l 255.68 361.87 l 255.79 361.87 l 255.89 361.87 l 255.99 361.87 l 256.10 361.87 l 256.20 361.87 l 256.31 361.87 l 256.41 361.87 l 256.51 361.87 l 256.62 361.87 l 256.72 361.87 l 256.83 361.87 l 256.93 361.87 l 257.04 361.87 l 257.14 361.87 l 257.24 361.87 l 257.35 361.87 l 257.45 361.87 l 257.56 361.87 l 257.66 361.87 l 257.76 361.87 l 257.87 361.87 l 257.97 361.87 l 258.08 361.87 l 258.18 361.87 l 258.28 361.87 l 258.39 361.87 l 258.49 361.87 l 258.60 361.87 l 258.70 361.87 l 258.80 361.87 l 258.91 361.87 l 259.01 361.87 l 259.12 361.87 l 259.22 361.87 l 259.32 361.87 l 259.43 361.87 l 259.53 361.87 l 259.64 361.87 l 259.74 361.87 l 259.84 361.87 l 259.95 361.87 l 260.05 361.87 l 260.16 361.87 l 260.26 361.87 l 260.36 361.87 l 260.47 361.87 l 260.57 361.87 l 260.68 361.87 l 260.78 361.87 l 260.88 361.87 l 260.99 361.87 l 261.09 361.87 l 261.20 361.87 l 261.30 361.87 l 261.41 361.87 l 261.51 361.87 l 261.61 361.87 l 261.72 361.87 l 261.82 361.87 l 261.93 361.87 l 262.03 361.87 l 262.13 361.87 l 262.24 361.87 l 262.34 361.87 l 262.45 361.87 l 262.55 361.87 l 262.65 361.87 l 262.76 361.87 l 262.86 361.87 l 262.97 361.87 l 263.07 361.87 l 263.17 361.87 l 263.28 361.87 l 263.38 361.87 l 263.49 361.87 l 263.59 361.87 l 263.69 361.87 l 263.80 361.87 l 263.90 361.87 l 264.01 361.87 l 264.11 361.87 l 264.21 361.87 l 264.32 361.87 l 264.42 361.87 l 264.53 361.87 l 264.63 361.87 l 264.73 361.87 l 264.84 361.87 l 264.94 361.87 l 265.05 361.87 l 265.15 361.87 l 265.25 361.87 l 265.36 361.87 l 265.46 361.87 l 265.57 361.87 l 265.67 361.87 l 265.77 361.87 l 265.88 361.87 l 265.98 361.87 l 266.09 361.87 l 266.19 361.87 l 266.30 361.87 l 266.40 361.87 l 266.50 361.87 l 266.61 361.87 l 266.71 361.87 l 266.82 361.87 l 266.92 361.87 l 267.02 361.87 l 267.13 361.87 l 267.23 361.87 l 267.34 361.87 l 267.44 361.87 l 267.54 361.87 l 267.65 361.87 l 267.75 361.87 l 267.86 361.87 l 267.96 361.87 l 268.06 361.87 l 268.17 361.87 l 268.27 361.87 l 268.38 361.87 l 268.48 361.87 l 268.58 361.87 l 268.69 361.87 l 268.79 361.87 l 268.90 361.87 l 269.00 361.87 l 269.10 361.87 l 269.21 361.87 l 269.31 361.87 l 269.42 361.87 l 269.52 361.87 l 269.62 361.87 l 269.73 361.87 l 269.83 361.87 l 269.94 361.87 l 270.04 361.87 l 270.14 361.87 l 270.25 361.87 l 270.35 361.87 l 270.46 361.87 l 270.56 361.87 l 270.66 361.87 l 270.77 361.87 l 270.87 361.87 l 270.98 361.87 l 271.08 361.87 l 271.19 361.87 l 271.29 361.87 l 271.39 361.87 l 271.50 361.87 l 271.60 361.87 l 271.71 361.87 l 271.81 361.87 l 271.91 361.87 l 272.02 361.87 l 272.12 361.87 l 272.23 361.87 l 272.33 361.87 l 272.43 361.87 l 272.54 361.87 l 272.64 361.87 l 272.75 361.87 l 272.85 361.87 l 272.95 361.87 l 273.06 361.87 l 273.16 361.87 l 273.27 361.87 l 273.37 361.87 l 273.47 361.87 l 273.58 361.87 l 273.68 361.87 l 273.79 361.87 l 273.89 361.87 l 273.99 361.87 l 274.10 361.87 l 274.20 361.87 l 274.31 361.87 l 274.41 361.87 l 274.51 361.87 l 274.62 361.87 l 274.72 361.87 l 274.83 361.87 l 274.93 361.87 l 275.03 361.87 l 275.14 361.87 l 275.24 361.87 l 275.35 361.87 l 275.45 361.87 l 275.55 361.87 l 275.66 361.87 l 275.76 361.87 l 275.87 361.87 l 275.97 361.87 l 276.08 361.87 l 276.18 361.87 l 276.28 361.87 l 276.39 361.87 l 276.49 361.87 l 276.60 361.87 l 276.70 361.87 l 276.80 361.87 l 276.91 361.87 l 277.01 361.87 l 277.12 361.87 l 277.22 361.87 l 277.32 361.87 l 277.43 361.87 l 277.53 361.87 l 277.64 361.87 l 277.74 361.87 l 277.84 361.87 l 277.95 361.87 l 278.05 361.87 l 278.16 361.87 l 278.26 361.87 l 278.36 361.87 l 278.47 361.87 l 278.57 361.87 l 278.68 361.87 l 278.78 361.87 l 278.88 361.87 l 278.99 361.87 l 279.09 361.87 l 279.20 361.87 l 279.30 361.87 l 279.40 361.87 l 279.51 361.87 l 279.61 361.87 l 279.72 361.87 l 279.82 361.87 l 279.92 361.87 l 280.03 361.87 l 280.13 361.87 l 280.24 361.87 l 280.34 361.87 l 280.45 361.87 l 280.55 361.87 l 280.65 361.87 l 280.76 361.87 l 280.86 361.87 l 280.97 361.87 l 281.07 361.87 l 281.17 361.87 l 281.28 361.87 l 281.38 361.87 l 281.49 361.87 l 281.59 361.87 l 281.69 361.87 l 281.80 361.87 l 281.90 361.87 l 282.01 361.87 l 282.11 361.87 l 282.21 361.87 l 282.32 361.87 l 282.42 361.87 l 282.53 361.87 l 282.63 361.87 l 282.73 361.87 l 282.84 361.87 l 282.94 361.87 l 283.05 361.87 l 283.15 361.87 l 283.25 361.87 l 283.36 361.87 l 283.46 361.87 l 283.57 361.87 l 283.67 361.87 l 283.77 361.87 l 283.88 361.87 l 283.98 361.87 l 284.09 361.87 l 284.19 361.87 l 284.29 361.87 l 284.40 361.87 l 284.50 361.87 l 284.61 361.87 l 284.71 361.87 l 284.81 361.87 l 284.92 361.87 l 285.02 361.87 l 285.13 361.87 l 285.23 361.87 l 285.34 361.87 l 285.44 361.87 l 285.54 361.87 l 285.65 361.87 l 285.75 361.87 l 285.86 361.87 l 285.96 361.87 l 286.06 361.87 l 286.17 361.87 l 286.27 361.87 l 286.38 361.87 l 286.48 361.87 l 286.58 361.87 l 286.69 361.87 l 286.79 361.87 l 286.90 361.87 l 287.00 361.87 l 287.10 361.87 l 287.21 361.87 l 287.31 361.87 l 287.42 361.87 l 287.52 361.87 l 287.62 361.87 l 287.73 361.87 l 287.83 361.87 l 287.94 361.87 l 288.04 361.87 l 288.14 361.87 l 288.25 361.87 l 288.35 361.87 l 288.46 361.87 l 288.56 361.87 l 288.66 361.87 l 288.77 361.87 l 288.87 361.87 l 288.98 361.87 l 289.08 361.87 l 289.18 361.87 l 289.29 361.87 l 289.39 361.87 l 289.50 361.87 l 289.60 361.87 l 289.70 361.87 l 289.81 361.87 l 289.91 361.87 l 290.02 361.87 l 290.12 361.87 l 290.23 361.87 l 290.33 361.87 l 290.43 361.87 l 290.54 361.87 l 290.64 361.87 l 290.75 361.87 l 290.85 361.87 l 290.95 361.87 l 291.06 361.87 l 291.16 361.87 l 291.27 361.87 l 291.37 361.87 l 291.47 361.87 l 291.58 361.87 l 291.68 361.87 l 291.79 361.87 l 291.89 361.87 l 291.99 361.87 l 292.10 361.87 l 292.20 361.87 l 292.31 361.87 l 292.41 361.87 l 292.51 361.87 l 292.62 361.87 l 292.72 361.87 l 292.83 361.87 l 292.93 361.87 l 293.03 361.87 l 293.14 361.87 l 293.24 361.87 l 293.35 361.87 l 293.45 361.87 l 293.55 361.87 l 293.66 361.87 l 293.76 361.87 l 293.87 361.87 l 293.97 361.87 l 294.07 361.87 l 294.18 361.87 l 294.28 361.87 l 294.39 361.87 l 294.49 361.87 l 294.59 361.87 l 294.70 361.87 l 294.80 361.87 l 294.91 361.87 l 295.01 361.87 l 295.12 361.87 l 295.22 361.87 l 295.32 361.87 l 295.43 361.87 l 295.53 361.87 l 295.64 361.87 l 295.74 361.87 l 295.84 361.87 l 295.95 361.87 l 296.05 361.87 l 296.16 361.87 l 296.26 361.87 l 296.36 361.87 l 296.47 361.87 l 296.57 361.87 l 296.68 361.87 l 296.78 361.87 l 296.88 361.87 l 296.99 361.87 l 297.09 361.87 l 297.20 361.87 l 297.30 361.87 l 297.40 361.87 l 297.51 361.87 l 297.61 361.87 l 297.72 361.87 l 297.82 361.87 l 297.92 361.87 l 298.03 361.87 l 298.13 361.87 l 298.24 361.87 l 298.34 361.87 l 298.44 361.87 l 298.55 361.87 l 298.65 361.87 l 298.76 361.87 l 298.86 361.87 l 298.96 361.87 l 299.07 361.87 l 299.17 361.87 l 299.28 361.87 l 299.38 361.87 l 299.49 361.87 l 299.59 361.87 l 299.69 361.87 l 299.80 361.87 l 299.90 361.87 l 300.01 361.87 l 300.11 361.87 l 300.21 361.87 l 300.32 361.87 l 300.42 361.87 l 300.53 361.87 l 300.63 361.87 l 300.73 361.87 l 300.84 361.87 l 300.94 361.87 l 301.05 361.87 l 301.15 361.87 l 301.25 361.87 l 301.36 361.87 l 301.46 361.87 l 301.57 361.87 l 301.67 361.87 l 301.77 361.87 l 301.88 361.87 l 301.98 361.87 l 302.09 361.87 l 302.19 361.87 l 302.29 361.87 l 302.40 361.87 l 302.50 361.87 l 302.61 361.87 l 302.71 361.87 l 302.81 361.87 l 302.92 361.87 l 303.02 361.87 l 303.13 361.87 l 303.23 361.87 l 303.33 361.87 l 303.44 361.87 l 303.54 361.87 l 303.65 361.87 l 303.75 361.87 l 303.85 361.87 l 303.96 361.87 l 304.06 361.87 l 304.17 361.87 l 304.27 361.87 l 304.38 361.87 l 304.48 361.87 l 304.58 361.87 l 304.69 361.87 l 304.79 361.87 l 304.90 361.87 l 305.00 361.87 l 305.10 361.87 l 305.21 361.87 l 305.31 361.87 l 305.42 361.87 l 305.52 361.87 l 305.62 361.87 l 305.73 361.87 l 305.83 361.87 l 305.94 361.87 l 306.04 361.87 l 306.14 361.87 l 306.25 361.87 l 306.35 361.87 l 306.46 361.87 l 306.56 361.87 l 306.66 361.87 l 306.77 361.87 l 306.87 361.87 l 306.98 361.87 l 307.08 361.87 l 307.18 361.87 l 307.29 361.87 l 307.39 361.87 l 307.50 361.87 l 307.60 361.87 l 307.70 361.87 l 307.81 361.87 l 307.91 361.87 l 308.02 361.87 l 308.12 361.87 l 308.22 361.87 l 308.33 361.87 l 308.43 361.87 l 308.54 361.87 l 308.64 361.87 l 308.74 361.87 l 308.85 361.87 l 308.95 361.87 l 309.06 361.87 l 309.16 361.87 l 309.27 361.87 l 309.37 361.87 l 309.47 361.87 l 309.58 361.87 l 309.68 361.87 l 309.79 361.87 l 309.89 361.87 l 309.99 361.87 l 310.10 361.87 l 310.20 361.87 l 310.31 361.87 l 310.41 361.87 l 310.51 361.87 l 310.62 361.87 l 310.72 361.87 l 310.83 361.87 l 310.93 361.87 l 311.03 361.87 l 311.14 361.87 l 311.24 361.87 l 311.35 361.87 l 311.45 361.87 l 311.55 361.87 l 311.66 361.87 l 311.76 361.87 l 311.87 361.87 l 311.97 361.87 l 312.07 361.87 l 312.18 361.87 l 312.28 361.87 l 312.39 361.87 l 312.49 361.87 l 312.59 361.87 l 312.70 361.87 l 312.80 361.87 l 312.91 361.87 l 313.01 361.87 l 313.11 361.87 l 313.22 361.87 l 313.32 361.87 l 313.43 361.87 l 313.53 361.87 l 313.63 361.87 l 313.74 361.87 l 313.84 361.87 l 313.95 361.87 l 314.05 361.87 l 314.16 361.87 l 314.26 361.87 l 314.36 361.87 l 314.47 361.87 l 314.57 361.87 l 314.68 361.87 l 314.78 361.87 l 314.88 361.87 l 314.99 361.87 l 315.09 361.87 l 315.20 361.87 l 315.30 361.87 l 315.40 361.87 l 315.51 361.87 l 315.61 361.87 l 315.72 361.87 l 315.82 361.87 l 315.92 361.87 l 316.03 361.87 l 316.13 361.87 l 316.24 361.87 l 316.34 361.87 l 316.44 361.87 l 316.55 361.87 l 316.65 361.87 l 316.76 361.87 l 316.86 361.87 l 316.96 361.87 l 317.07 361.87 l 317.17 361.87 l 317.28 361.87 l 317.38 361.87 l 317.48 361.87 l 317.59 361.87 l 317.69 361.87 l 317.80 361.87 l 317.90 361.87 l 318.00 361.87 l 318.11 361.87 l 318.21 361.87 l 318.32 361.87 l 318.42 361.87 l 318.53 361.87 l 318.63 361.87 l 318.73 361.87 l 318.84 361.87 l 318.94 361.87 l 319.05 361.87 l 319.15 361.87 l 319.25 361.87 l 319.36 361.87 l 319.46 361.87 l 319.57 361.87 l 319.67 361.87 l 319.77 361.87 l 319.88 361.87 l 319.98 361.87 l 320.09 361.87 l 320.19 361.87 l 320.29 361.87 l 320.40 361.87 l 320.50 361.87 l 320.61 361.87 l 320.71 361.87 l 320.81 361.87 l 320.92 361.87 l 321.02 361.87 l 321.13 361.87 l 321.23 361.87 l 321.33 361.87 l 321.44 361.87 l 321.54 361.87 l 321.65 361.87 l 321.75 361.87 l 321.85 361.87 l 321.96 361.87 l 322.06 361.87 l 322.17 361.87 l 322.27 361.87 l 322.37 361.87 l 322.48 361.87 l 322.58 361.87 l 322.69 361.87 l 322.79 361.87 l 322.89 361.87 l 323.00 361.87 l 323.10 361.87 l 323.21 361.87 l 323.31 361.87 l 323.42 361.87 l 323.52 361.87 l 323.62 361.87 l 323.73 361.87 l 323.83 361.87 l 323.94 361.87 l 324.04 361.87 l 324.14 361.87 l 324.25 361.87 l 324.35 361.87 l 324.46 361.87 l 324.56 361.87 l 324.66 361.87 l 324.77 361.87 l 324.87 361.87 l 324.98 361.87 l 325.08 361.87 l 325.18 361.87 l 325.29 361.87 l 325.39 361.87 l 325.50 361.87 l 325.60 361.87 l 325.70 361.87 l 325.81 361.87 l 325.91 361.87 l 326.02 361.87 l 326.12 361.87 l 326.22 361.87 l 326.33 361.87 l 326.43 361.87 l 326.54 361.87 l 326.64 361.87 l 326.74 361.87 l 326.85 361.87 l 326.95 361.87 l 327.06 361.87 l 327.16 361.87 l 327.26 361.87 l 327.37 361.87 l 327.47 361.87 l 327.58 361.87 l 327.68 361.87 l 327.78 361.87 l 327.89 361.87 l 327.99 361.87 l 328.10 361.87 l 328.20 361.87 l 328.31 361.87 l 328.41 361.87 l 328.51 361.87 l 328.62 361.87 l 328.72 361.87 l 328.83 361.87 l 328.93 361.87 l 329.03 361.87 l 329.14 361.87 l 329.24 361.87 l 329.35 361.87 l 329.45 361.87 l 329.55 361.87 l 329.66 361.87 l 329.76 361.87 l 329.87 361.87 l 329.97 361.87 l 330.07 361.87 l 330.18 361.87 l 330.28 361.87 l 330.39 361.87 l 330.49 361.87 l 330.59 361.87 l 330.70 361.87 l 330.80 361.87 l 330.91 361.87 l 331.01 361.87 l 331.11 361.87 l 331.22 361.87 l 331.32 361.87 l 331.43 361.87 l 331.53 361.87 l 331.63 361.87 l 331.74 361.87 l 331.84 361.87 l 331.95 361.87 l 332.05 361.87 l 332.15 361.87 l 332.26 361.87 l 332.36 361.87 l 332.47 361.87 l 332.57 361.87 l 332.67 361.87 l 332.78 361.87 l 332.88 361.87 l 332.99 361.87 l 333.09 361.87 l 333.20 361.87 l 333.30 361.87 l 333.40 361.87 l 333.51 361.87 l 333.61 361.87 l 333.72 361.87 l 333.82 361.87 l 333.92 361.87 l 334.03 361.87 l 334.13 361.87 l 334.24 361.87 l 334.34 361.87 l 334.44 361.87 l 334.55 361.87 l 334.65 361.87 l 334.76 361.87 l 334.86 361.87 l 334.96 361.87 l 335.07 361.87 l 335.17 361.87 l 335.28 361.87 l 335.38 361.87 l 335.48 361.87 l 335.59 361.87 l 335.69 361.87 l 335.80 361.87 l 335.90 361.87 l 336.00 361.87 l 336.11 361.87 l 336.21 361.87 l 336.32 361.87 l 336.42 361.87 l 336.52 361.87 l 336.63 361.87 l 336.73 361.87 l 336.84 361.87 l 336.94 361.87 l 337.04 361.87 l 337.15 361.87 l 337.25 361.87 l 337.36 361.87 l 337.46 361.87 l 337.57 361.87 l 337.67 361.87 l 337.77 361.87 l 337.88 361.87 l 337.98 361.87 l 338.09 361.87 l 338.19 361.87 l 338.29 361.87 l 338.40 361.87 l 338.50 361.87 l 338.61 361.87 l 338.71 361.87 l 338.81 361.87 l 338.92 361.87 l 339.02 361.87 l 339.13 361.87 l 339.23 361.87 l 339.33 361.87 l 339.44 361.87 l 339.54 361.87 l 339.65 361.87 l 339.75 361.87 l 339.85 361.87 l 339.96 361.87 l 340.06 361.87 l 340.17 361.87 l 340.27 361.87 l 340.37 361.87 l 340.48 361.87 l 340.58 361.87 l 340.69 361.87 l 340.79 361.87 l 340.89 361.87 l 341.00 361.87 l 341.10 361.87 l 341.21 361.87 l 341.31 361.87 l 341.41 361.87 l 341.52 361.87 l 341.62 361.87 l 341.73 361.87 l 341.83 361.87 l 341.93 361.87 l 342.04 361.87 l 342.14 361.87 l 342.25 361.87 l 342.35 361.87 l 342.46 361.87 l 342.56 361.87 l 342.66 361.87 l 342.77 361.87 l 342.87 361.87 l 342.98 361.87 l 343.08 361.87 l 343.18 361.87 l 343.29 361.87 l 343.39 361.87 l 343.50 361.87 l 343.60 361.87 l 343.70 361.87 l 343.81 361.87 l 343.91 361.87 l 344.02 361.87 l 344.12 361.87 l 344.22 361.87 l 344.33 361.87 l 344.43 361.87 l 344.54 361.87 l 344.64 361.87 l 344.74 361.87 l 344.85 361.87 l 344.95 361.87 l 345.06 361.87 l 345.16 361.87 l 345.26 361.87 l 345.37 361.87 l 345.47 361.87 l 345.58 361.87 l 345.68 361.87 l 345.78 361.87 l 345.89 361.87 l 345.99 361.87 l 346.10 361.87 l 346.20 361.87 l 346.30 361.87 l 346.41 361.87 l 346.51 361.87 l 346.62 361.87 l 346.72 361.87 l 346.82 361.87 l 346.93 361.87 l 347.03 361.87 l 347.14 361.87 l 347.24 361.87 l 347.35 361.87 l 347.45 361.87 l 347.55 361.87 l 347.66 361.87 l 347.76 361.87 l 347.87 361.87 l 347.97 361.87 l 348.07 361.87 l 348.18 361.87 l 348.28 361.87 l 348.39 361.87 l 348.49 361.87 l 348.59 361.87 l 348.70 361.87 l 348.80 361.87 l 348.91 361.87 l 349.01 361.87 l 349.11 361.87 l 349.22 361.87 l 349.32 361.87 l 349.43 361.87 l 349.53 361.87 l 349.63 361.87 l 349.74 361.87 l 349.84 361.87 l 349.95 361.87 l 350.05 361.87 l 350.15 361.87 l 350.26 361.87 l 350.36 361.87 l 350.47 361.87 l 350.57 361.87 l 350.67 361.87 l 350.78 361.87 l 350.88 361.87 l 350.99 361.87 l 351.09 361.87 l 351.19 361.87 l 351.30 361.87 l 351.40 361.87 l 351.51 361.87 l 351.61 361.87 l 351.71 361.87 l 351.82 361.87 l 351.92 361.87 l 352.03 361.87 l 352.13 361.87 l 352.24 361.87 l 352.34 361.87 l 352.44 361.87 l 352.55 361.87 l 352.65 361.87 l 352.76 361.87 l 352.86 361.87 l 352.96 361.87 l 353.07 361.87 l 353.17 361.87 l 353.28 361.87 l 353.38 361.87 l 353.48 361.87 l 353.59 361.87 l 353.69 361.87 l 353.80 361.87 l 353.90 361.87 l 354.00 361.87 l 354.11 361.87 l 354.21 361.87 l 354.32 361.87 l 354.42 361.87 l 354.52 361.87 l 354.63 361.87 l 354.73 361.87 l 354.84 361.87 l 354.94 361.87 l 355.04 361.87 l 355.15 361.87 l 355.25 361.87 l 355.36 361.87 l 355.46 361.87 l 355.56 361.87 l 355.67 361.87 l 355.77 361.87 l 355.88 361.87 l 355.98 361.87 l 356.08 361.87 l 356.19 361.87 l 356.29 361.87 l 356.40 361.87 l 356.50 361.87 l 356.61 361.87 l 356.71 361.87 l 356.81 361.87 l 356.92 361.87 l 357.02 361.87 l 357.13 361.87 l 357.23 361.87 l 357.33 361.87 l 357.44 361.87 l 357.54 361.87 l 357.65 361.87 l 357.75 361.87 l 357.85 361.87 l 357.96 361.87 l 358.06 361.87 l 358.17 361.87 l 358.27 361.87 l 358.37 361.87 l 358.48 361.87 l 358.58 361.87 l 358.69 361.87 l 358.79 361.87 l 358.89 361.87 l 359.00 361.87 l 359.10 361.87 l 359.21 361.87 l 359.31 361.87 l 359.41 361.87 l 359.52 361.87 l 359.62 361.87 l 359.73 361.87 l 359.83 361.87 l 359.93 361.87 l 360.04 361.87 l 360.14 361.87 l 360.25 361.87 l 360.35 361.87 l 360.45 361.87 l 360.56 361.87 l 360.66 361.87 l 360.77 361.87 l 360.87 361.87 l 360.97 361.87 l 361.08 361.87 l 361.18 361.87 l 361.29 361.87 l 361.39 361.87 l 361.50 361.87 l 361.60 361.87 l 361.70 361.87 l 361.81 361.87 l 361.91 361.87 l 362.02 361.87 l 362.12 361.87 l 362.22 361.87 l 362.33 361.87 l 362.43 361.87 l 362.54 361.87 l 362.64 361.87 l 362.74 361.87 l 362.85 361.87 l 362.95 361.87 l 363.06 361.87 l 363.16 361.87 l 363.26 361.87 l 363.37 361.87 l 363.47 361.87 l 363.58 361.87 l 363.68 361.87 l 363.78 361.87 l 363.89 361.87 l 363.99 361.87 l 364.10 361.87 l 364.20 361.87 l 364.30 361.87 l 364.41 361.87 l 364.51 361.87 l 364.62 361.87 l 364.72 361.87 l 364.82 361.87 l 364.93 361.87 l 365.03 361.87 l 365.14 361.87 l 365.24 361.87 l 365.34 361.87 l 365.45 361.87 l 365.55 361.87 l 365.66 361.87 l 365.76 361.87 l 365.86 361.87 l 365.97 361.87 l 366.07 361.87 l 366.18 361.87 l 366.28 361.87 l 366.39 361.87 l 366.49 361.87 l 366.59 361.87 l 366.70 361.87 l 366.80 361.87 l 366.91 361.87 l 367.01 361.87 l 367.11 361.87 l 367.22 361.87 l 367.32 361.87 l 367.43 361.87 l 367.53 361.87 l 367.63 361.87 l 367.74 361.87 l 367.84 361.87 l 367.95 361.87 l 368.05 361.87 l 368.15 361.87 l 368.26 361.87 l 368.36 361.87 l 368.47 361.87 l 368.57 361.87 l 368.67 361.87 l 368.78 361.87 l 368.88 361.87 l 368.99 361.87 l 369.09 361.87 l 369.19 361.87 l 369.30 361.87 l 369.40 361.87 l 369.51 361.87 l 369.61 361.87 l 369.71 361.87 l 369.82 361.87 l 369.92 361.87 l 370.03 361.87 l 370.13 361.87 l 370.23 361.87 l 370.34 361.87 l 370.44 361.87 l 370.55 361.87 l 370.65 361.87 l 370.75 361.87 l 370.86 361.87 l 370.96 361.87 l 371.07 361.87 l 371.17 361.87 l 371.28 361.87 l 371.38 361.87 l 371.48 361.87 l 371.59 361.87 l 371.69 361.87 l 371.80 361.87 l 371.90 361.87 l 372.00 361.87 l 372.11 361.87 l 372.21 361.87 l 372.32 361.87 l 372.42 361.87 l 372.52 361.87 l 372.63 361.87 l 372.73 361.87 l 372.84 361.87 l 372.94 361.87 l 373.04 361.87 l 373.15 361.87 l 373.25 361.87 l 373.36 361.87 l 373.46 361.87 l 373.56 361.87 l 373.67 361.87 l 373.77 361.87 l 373.88 361.87 l 373.98 361.87 l 374.08 361.87 l 374.19 361.87 l 374.29 361.87 l 374.40 361.87 l 374.50 361.87 l 374.60 361.87 l 374.71 361.87 l 374.81 361.87 l 374.92 361.87 l 375.02 361.87 l 375.12 361.87 l 375.23 361.87 l 375.33 361.87 l 375.44 361.87 l 375.54 361.87 l 375.65 361.87 l 375.75 361.87 l 375.85 361.87 l 375.96 361.87 l 376.06 361.87 l 376.17 361.87 l 376.27 361.87 l 376.37 361.87 l 376.48 361.87 l 376.58 361.87 l 376.69 361.87 l 376.79 361.87 l 376.89 361.87 l 377.00 361.87 l 377.10 361.87 l 377.21 361.87 l 377.31 361.87 l 377.41 361.87 l 377.52 361.87 l 377.62 361.87 l 377.73 361.87 l 377.83 361.87 l 377.93 361.87 l 378.04 361.87 l 378.14 361.87 l 378.25 361.87 l 378.35 361.87 l 378.45 361.87 l 378.56 361.87 l 378.66 361.87 l 378.77 361.87 l 378.87 361.87 l 378.97 361.87 l 379.08 361.87 l 379.18 361.87 l 379.29 361.87 l 379.39 361.87 l 379.49 361.87 l 379.60 361.87 l 379.70 361.87 l 379.81 361.87 l 379.91 361.87 l 380.01 361.87 l 380.12 361.87 l 380.22 361.87 l 380.33 361.87 l 380.43 361.87 l 380.54 361.87 l 380.64 361.87 l 380.74 361.87 l 380.85 361.87 l 380.95 361.87 l 381.06 361.87 l 381.16 361.87 l 381.26 361.87 l 381.37 361.87 l 381.47 361.87 l 381.58 361.87 l 381.68 361.87 l 381.78 361.87 l 381.89 361.87 l 381.99 361.87 l 382.10 361.87 l 382.20 361.87 l 382.30 361.87 l 382.41 361.87 l 382.51 361.87 l 382.62 361.87 l 382.72 361.87 l 382.82 361.87 l 382.93 361.87 l 383.03 361.87 l 383.14 361.87 l 383.24 361.87 l 383.34 361.87 l 383.45 361.87 l 383.55 361.87 l 383.66 361.87 l 383.76 361.87 l 383.86 361.87 l 383.97 361.87 l 384.07 361.87 l 384.18 361.87 l 384.28 361.87 l 384.38 361.87 l 384.49 361.87 l 384.59 361.87 l 384.70 361.87 l 384.80 361.87 l 384.90 361.87 l 385.01 361.87 l 385.11 361.87 l 385.22 361.87 l 385.32 361.87 l 385.43 361.87 l 385.53 361.87 l 385.63 361.87 l 385.74 361.87 l 385.84 361.87 l 385.95 361.87 l 386.05 361.87 l 386.15 361.87 l 386.26 361.87 l 386.36 361.87 l 386.47 361.87 l 386.57 361.87 l 386.67 361.87 l 386.78 361.87 l 386.88 361.87 l 386.99 361.87 l 387.09 361.87 l 387.19 361.87 l 387.30 361.87 l 387.40 361.87 l 387.51 361.87 l 387.61 361.87 l 387.71 361.87 l 387.82 361.87 l 387.92 361.87 l 388.03 361.87 l 388.13 361.87 l 388.23 361.87 l 388.34 361.87 l 388.44 361.87 l 388.55 361.87 l 388.65 361.87 l 388.75 361.87 l 388.86 361.87 l 388.96 361.87 l 389.07 361.87 l S 0.000 0.000 0.000 RG 0.75 w [] 0 d 279.72 195.30 103.60 -86.40 re S 1.50 w [] 0 d 290.52 180.90 m 312.12 180.90 l S 1.000 0.000 0.000 RG 1.50 w [ 4.50 7.50] 0 d 290.52 166.50 m 312.12 166.50 l S 0.000 0.804 0.000 RG 290.52 152.10 m 312.12 152.10 l S 0.000 1.000 1.000 RG 1.50 w [ 0.00 6.00] 0 d 290.52 137.70 m 312.12 137.70 l S 1.000 0.000 1.000 RG 290.52 123.30 m 312.12 123.30 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 322.92 176.59 Tm (rawp) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 322.92 162.19 Tm (Bonferroni) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 322.92 147.79 Tm (maxT) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 322.92 133.39 Tm (BH) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 322.92 118.99 Tm (BY) Tj ET Q endstream endobj 205 0 obj << /CreationDate (D:20050415164845) /ModDate (D:20050415164845) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 206 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 207 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 213 0 R >> endobj 208 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 213 0 R >> endobj 209 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 213 0 R >> endobj 210 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 213 0 R >> endobj 211 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 212 0 obj 243372 endobj 213 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 203 0 obj << /D [201 0 R /XYZ 72 720 null] >> endobj 204 0 obj << /D [201 0 R /XYZ 216.371 263.813 null] >> endobj 200 0 obj << /Font << /F15 50 0 R /F36 91 0 R >> /XObject << /Im3 164 0 R >> /ProcSet [ /PDF /Text ] >> endobj 216 0 obj << /Length 291 /Filter /FlateDecode >> stream xmKO0wY'ԝFItgN]`gg 9{. IU9@72ؓc|aP8(LP܏nwA;_UMÊZZ(> endobj 165 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mtpvst.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 220 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 221 0 R /F2 222 0 R /F3 223 0 R /F4 224 0 R /F5 225 0 R /F6 226 0 R >> /ExtGState << >>>> /Length 227 0 R >> stream q Q q 59.04 73.44 342.72 299.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.72 163.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.85 119.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.20 85.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.99 93.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.93 153.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.77 145.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.56 104.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.26 95.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.21 82.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.28 83.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.22 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.78 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.59 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.18 100.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.59 88.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.03 95.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.40 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.59 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.97 98.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.78 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.32 156.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.81 97.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.01 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.87 109.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.44 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.87 138.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.21 95.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.02 83.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.59 146.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.20 97.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.62 86.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.05 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.12 91.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.91 137.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.50 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.00 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.97 132.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.79 97.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.10 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.10 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.71 170.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.57 134.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.82 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.84 124.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.60 117.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.37 126.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.24 156.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.89 179.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.23 136.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.96 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.86 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.59 105.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.22 164.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.69 113.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.61 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.08 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.07 105.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.50 82.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.10 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.73 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.08 162.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.57 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.10 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.68 133.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.56 123.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.86 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.60 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.30 126.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.48 107.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.40 102.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.01 139.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.19 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.99 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.13 138.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.62 87.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.21 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.86 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.05 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.02 126.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.05 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.28 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.76 158.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.71 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.15 104.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.09 83.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.69 82.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.34 110.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.91 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.64 148.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.98 85.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.43 110.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.70 113.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.19 118.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.92 99.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.10 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.30 112.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.00 134.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.12 85.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.02 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.10 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.24 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.18 82.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.86 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.48 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.82 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.71 145.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.06 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.00 132.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.36 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.22 96.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.38 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.93 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.62 133.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.11 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.54 160.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.47 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.88 90.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.83 95.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.66 131.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.69 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.49 174.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.77 166.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.75 167.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.08 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.56 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.23 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.25 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.51 101.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.82 182.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.60 101.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.57 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.51 89.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.70 111.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.47 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.91 132.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.32 162.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.37 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.80 156.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.44 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.71 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.85 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.04 107.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.20 84.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.19 164.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.53 87.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.66 106.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.99 179.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.39 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.03 82.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.21 213.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.90 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.21 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.17 187.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.55 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.41 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.16 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.86 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.17 151.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.87 117.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.02 128.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.40 108.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.91 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.91 91.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.02 126.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.75 100.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.91 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.70 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.64 102.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.21 87.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.91 213.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.51 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.05 144.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.32 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.94 104.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.79 129.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.24 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.69 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.18 120.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.39 123.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.40 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.29 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.88 92.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.76 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.82 135.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.33 92.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.68 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.41 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.06 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.04 169.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.99 173.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.75 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.56 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.24 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.81 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.00 120.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.88 81.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.24 107.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.65 114.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.23 104.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.61 132.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.73 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.03 119.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.31 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.66 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.45 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.38 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.61 110.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.09 187.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.58 179.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.16 119.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.50 154.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.49 113.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.68 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.34 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.85 124.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.22 93.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.53 190.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.04 92.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.82 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.19 105.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.59 93.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.51 106.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.76 152.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.04 173.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.41 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.32 164.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.66 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.71 167.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.64 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.68 150.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.26 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.44 134.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.18 96.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.36 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.20 98.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.12 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.99 90.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.30 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.57 165.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.39 151.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.54 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.30 167.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.24 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.94 102.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.48 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.12 87.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.63 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.64 128.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.47 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.55 91.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.27 107.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.11 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.96 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.58 99.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.82 113.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.49 88.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.91 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.56 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.99 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.01 192.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.85 104.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.93 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.44 171.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.26 151.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.26 89.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.65 121.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.82 88.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.00 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.62 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.97 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.98 92.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.87 142.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.27 152.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.87 82.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.51 95.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.96 145.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.08 106.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.53 143.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.92 130.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.43 91.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.24 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.20 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.33 82.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.45 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.95 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.52 112.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.14 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.46 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.45 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.26 209.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.45 85.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.33 178.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.75 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.14 176.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.98 130.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.67 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.24 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.28 84.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.92 89.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.21 129.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.80 82.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.28 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.15 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.51 111.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.70 109.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.12 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.19 134.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.00 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.45 203.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.06 99.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.26 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.91 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.93 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.36 96.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.20 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.30 118.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.81 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.33 100.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.43 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.78 146.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.61 155.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.55 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.03 158.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.07 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.60 146.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.58 156.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.01 178.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.29 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.29 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.73 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.28 121.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.60 123.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.99 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.52 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.95 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.57 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.60 117.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.30 117.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.08 88.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.32 98.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.44 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.29 127.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.15 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.66 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.16 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.34 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.35 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.53 112.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.45 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.54 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.53 92.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.21 125.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.90 105.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.28 182.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.42 114.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 121.30 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.99 122.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.36 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.92 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.88 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.03 157.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.75 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.10 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.26 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.39 146.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.65 117.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.40 176.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.88 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.60 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.05 108.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.43 119.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.66 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.35 100.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.17 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.92 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.88 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.52 104.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.63 103.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.96 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.00 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.17 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.37 105.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.44 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.94 114.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.79 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.64 128.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.02 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.75 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.52 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.93 108.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.24 86.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 76.49 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.63 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.23 83.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.13 149.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.60 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.28 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.35 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.77 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.50 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.41 136.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.35 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.90 144.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.66 142.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.22 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.06 87.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.09 102.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.68 88.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.74 91.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.04 94.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.80 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.85 97.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.39 160.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.61 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.18 152.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.79 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.46 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.98 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.45 169.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.67 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.82 199.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.50 93.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.30 84.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.87 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.07 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.00 102.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.97 146.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.66 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.02 114.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.28 154.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.43 84.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.71 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.48 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.49 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.96 140.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.68 127.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.85 102.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.73 130.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.68 160.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.35 87.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.99 147.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.71 101.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.53 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.35 171.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.27 172.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.88 97.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.65 153.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.70 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.18 107.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.42 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.80 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.54 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.58 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.41 135.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.26 94.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.75 85.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.03 109.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.64 168.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.09 138.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.41 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.36 115.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.12 130.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.52 88.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.51 82.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.41 96.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.48 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.97 146.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.01 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.32 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.60 135.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.60 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.48 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.39 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.35 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.02 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.85 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.94 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.07 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.23 158.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.18 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.84 186.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.49 118.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.16 87.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.74 136.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.77 118.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.78 89.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.97 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.83 136.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.34 145.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.71 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.18 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.96 94.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.65 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.52 175.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.95 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.09 92.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.61 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.45 86.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.87 135.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.67 114.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.12 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.70 94.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.74 130.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.28 103.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.87 113.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.59 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.52 105.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.32 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.66 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.46 91.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.65 155.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.12 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.28 191.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.90 107.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.45 162.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.60 175.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.07 199.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.80 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.88 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 80.83 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.35 132.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.71 89.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.50 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.50 156.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.08 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.57 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.60 116.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.11 199.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.84 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.15 140.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.92 156.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.59 143.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.47 141.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.92 85.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.92 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.38 171.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.77 190.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.74 126.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.92 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.06 169.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.52 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.29 85.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.28 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.83 206.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.52 123.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.14 103.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.70 111.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.40 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.84 169.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.73 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.75 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.34 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.17 86.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.79 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.43 143.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.34 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.83 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 85.78 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.92 179.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.68 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.66 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.05 91.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.29 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.06 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.74 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.50 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.35 105.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.00 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.69 100.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.67 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.81 123.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.80 158.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.37 120.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.84 108.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.41 106.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.36 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.69 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.40 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.42 87.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.01 162.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.87 110.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.17 149.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.74 132.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.10 97.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.71 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.16 126.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.52 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.69 136.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.93 115.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.50 141.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.39 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.78 113.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.24 112.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.49 116.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.75 105.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.06 145.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.56 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.71 159.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.02 85.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.89 105.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.64 90.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.28 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.21 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.77 98.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.31 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.22 124.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.41 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.21 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.47 95.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.68 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.76 94.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.44 155.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.54 86.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.50 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.69 152.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.37 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.13 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.54 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.93 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.40 132.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.77 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.15 82.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.54 155.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.69 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.05 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.79 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.40 122.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.39 121.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.17 84.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.72 113.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.36 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.00 96.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.82 92.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.95 115.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.59 83.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.76 114.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.55 192.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.72 91.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.52 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.96 125.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.17 83.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.11 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.09 96.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.67 171.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.44 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.43 86.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.60 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.38 154.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.00 118.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.22 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.59 101.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.83 132.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.59 100.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.13 85.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.92 109.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.43 114.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.88 136.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.38 144.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.79 159.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.11 131.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.60 142.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.47 119.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.45 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.80 90.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.46 100.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.70 179.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.28 106.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.78 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.36 110.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.66 83.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.88 83.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.17 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.51 167.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.10 170.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.82 172.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.83 164.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.09 88.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.80 108.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.12 104.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.17 89.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.35 97.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.15 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.87 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.53 82.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.84 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.36 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.47 101.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.41 105.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.11 114.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.53 162.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.41 123.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.79 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.73 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.39 151.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.42 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.23 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.78 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.22 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.86 112.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 76.99 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.89 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.96 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.75 110.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.37 92.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.34 156.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.64 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.52 153.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.39 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.42 103.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.95 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.52 102.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.46 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.64 127.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 72.89 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.58 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.26 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.07 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.26 92.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.92 86.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.15 167.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.71 122.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.94 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.70 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.69 85.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.75 185.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.35 122.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.38 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.57 99.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.66 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.36 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.91 135.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.46 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.62 113.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.44 86.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.43 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.79 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.06 85.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.92 102.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.66 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.29 114.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.06 166.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.45 84.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.38 98.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.53 97.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.60 152.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.71 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.96 108.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.47 82.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.57 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.52 115.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.15 109.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.15 233.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.51 179.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.42 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.40 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.53 160.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.85 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.51 132.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.92 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.20 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.01 101.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 340.68 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.22 82.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.09 157.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.11 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.77 157.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.00 141.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.33 188.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.06 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.33 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.04 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.22 154.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.66 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.04 102.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.38 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.03 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.67 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.34 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.21 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.59 121.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.56 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.76 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.05 84.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.06 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.61 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.70 95.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.28 106.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.70 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.56 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.92 94.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.43 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.48 88.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.33 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.87 102.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.20 146.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.80 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.55 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.27 142.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.85 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.43 155.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.46 91.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.54 99.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.16 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.75 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.68 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.48 85.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.07 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.17 121.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.90 123.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.98 130.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.74 199.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.97 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.58 145.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.21 137.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.52 129.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.20 95.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.46 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.32 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.53 137.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.98 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.04 122.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.92 81.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.32 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.28 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 372.07 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.97 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.20 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.98 88.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.89 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.08 107.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.44 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.09 119.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.66 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.71 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.93 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.31 116.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.75 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.33 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.92 81.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.86 121.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.06 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.39 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.67 88.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.75 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.81 85.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.36 111.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.47 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.38 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.10 135.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.88 129.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.40 160.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.77 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.76 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.15 86.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.63 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.03 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.25 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.65 90.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.12 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.74 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.63 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.78 149.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.47 125.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.76 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.97 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.26 156.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.44 128.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.28 145.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.32 110.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.93 126.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.38 115.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.99 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.85 91.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.22 96.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.00 145.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.27 109.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.40 138.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.83 155.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.00 132.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.17 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.58 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.53 125.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.24 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.87 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.17 233.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.83 134.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.57 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.05 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.32 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.59 92.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 341.55 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.46 107.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.42 111.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.44 155.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.50 179.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.24 123.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.10 112.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.47 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.94 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.56 191.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.64 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.03 131.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.36 124.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.80 173.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.43 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.53 107.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.80 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.46 86.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.68 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.28 97.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.76 84.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.19 82.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.94 133.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.10 134.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.88 119.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.42 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.84 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.62 94.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.33 158.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.57 86.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.15 115.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.53 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.50 143.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.68 93.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.95 166.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.18 106.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 303.13 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.67 130.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.60 193.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.12 100.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.03 187.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.46 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.52 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.50 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.13 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.46 94.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.59 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.34 105.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.99 95.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.33 193.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.36 86.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.63 146.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.80 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.55 130.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.31 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.86 86.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.11 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.68 87.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.09 121.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.21 133.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.27 85.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.68 157.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.37 119.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.09 84.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.85 118.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.74 92.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.83 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.02 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.87 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.49 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.55 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.30 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 298.10 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.82 119.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.88 213.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.45 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.77 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.89 89.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.20 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.51 92.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.96 110.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.90 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.25 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.55 114.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.16 130.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.72 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.85 92.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.60 93.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.91 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.73 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.08 134.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.38 128.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.74 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.56 88.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.88 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.28 85.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.01 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.32 99.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.96 143.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.27 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.34 151.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.62 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.47 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.62 97.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.78 188.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.49 156.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.15 99.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.22 157.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.45 98.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 280.98 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.24 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.55 170.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.47 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.49 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.72 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.70 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.13 86.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.38 118.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.26 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.78 144.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.42 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.82 106.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.56 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.18 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.43 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.20 214.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.57 84.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.95 150.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.36 147.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.39 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.55 98.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.89 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.57 86.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.70 87.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 91.39 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.46 114.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.67 103.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.93 126.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.52 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.72 86.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.92 143.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 76.94 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.37 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.49 90.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.56 165.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.21 139.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.30 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.77 107.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.82 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.73 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.75 100.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.68 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.48 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.16 95.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.14 94.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.43 150.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.18 96.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.89 134.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.63 90.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.97 131.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.63 105.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.38 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.20 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.32 133.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 93.47 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.45 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.99 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.62 176.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.43 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.71 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 291.67 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.40 85.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.37 171.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 295.02 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.34 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.56 105.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.24 122.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.91 107.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.65 153.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.08 233.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.74 126.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.50 145.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.84 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.43 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.23 108.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.10 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.70 84.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.00 145.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.43 84.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.33 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 89.38 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.11 88.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.95 98.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.22 82.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.63 112.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.80 107.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.24 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.56 150.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.59 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.16 96.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.14 90.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.52 176.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.22 121.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.67 94.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.45 89.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.79 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.13 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.93 91.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.41 120.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.31 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.63 86.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.36 172.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.36 133.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.96 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.25 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.94 128.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.24 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.07 88.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.19 122.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.80 101.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.30 100.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.72 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.82 90.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.24 107.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.35 125.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.92 137.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.35 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.36 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.10 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.08 167.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.59 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.52 92.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.04 150.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.16 170.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.81 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.61 155.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.00 125.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.42 156.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.42 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.32 140.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.82 91.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.28 157.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.75 176.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.07 92.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.58 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.23 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.63 143.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.62 158.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.57 90.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.52 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.05 172.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.41 86.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.75 129.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.20 93.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.64 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.39 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.28 128.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.34 170.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.21 157.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.79 112.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.49 92.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.36 127.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.73 136.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.01 118.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.01 134.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.47 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.63 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.69 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.57 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.34 87.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.26 107.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.47 163.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.51 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.14 90.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.78 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.79 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.21 84.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.26 158.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.56 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.90 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.93 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.48 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.47 94.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.10 161.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.51 110.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.25 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.31 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.53 82.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.40 206.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.74 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.05 183.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.39 85.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.62 161.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.71 131.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.11 145.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.50 103.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.10 156.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.82 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.24 191.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.78 88.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.05 101.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.00 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.34 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.47 175.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.47 86.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.50 84.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.62 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.93 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.03 104.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.46 125.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.33 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.56 97.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.78 167.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.49 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.86 133.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.48 146.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.69 103.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.87 116.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.31 88.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.89 168.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.56 96.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.04 115.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.07 151.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.10 114.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.74 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.80 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.88 145.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.97 119.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.26 108.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.67 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.48 153.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.75 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.99 193.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.49 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.69 127.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.89 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.41 108.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.23 87.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.49 88.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.25 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.30 88.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.56 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.68 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.34 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.52 98.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.39 88.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.64 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.01 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.89 118.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.37 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.81 86.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.27 184.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.57 88.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.23 101.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.05 99.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.29 82.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.57 157.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.51 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.00 139.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.74 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.14 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.28 91.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.80 145.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.89 174.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.69 131.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.27 82.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.71 122.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.93 86.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.78 110.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.89 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.53 95.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.90 173.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.23 143.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.19 149.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.09 129.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.21 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.37 124.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.37 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.98 87.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.73 102.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.27 85.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.69 146.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.01 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.93 96.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.98 109.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.89 89.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.73 209.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.26 157.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.55 98.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.94 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.27 148.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.51 138.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.81 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.46 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.57 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.86 131.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.43 160.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.43 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.39 95.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.17 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.36 96.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.26 112.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.67 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.54 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.66 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.82 120.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.01 108.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.13 112.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.29 103.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.48 121.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.64 84.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.36 176.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.08 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.28 98.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.97 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.51 97.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.87 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.35 90.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.15 122.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.57 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.12 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.19 178.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.26 164.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.56 194.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.38 143.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.78 92.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.33 84.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.07 158.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.96 111.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.96 114.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 119.01 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.66 90.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.84 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.61 180.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.35 126.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.27 158.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.01 126.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 85.15 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.15 172.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.18 95.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.06 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.81 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.22 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.04 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.51 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.65 138.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.27 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.31 112.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.88 163.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.54 96.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.25 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.57 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.92 99.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.18 93.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.20 184.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.36 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.17 143.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.92 199.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.32 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.57 179.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.70 115.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.30 96.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.48 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.40 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.68 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.15 118.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.08 102.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.31 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.32 114.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.71 89.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.59 130.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 102.02 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.01 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.76 135.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.35 98.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.08 146.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.74 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.02 137.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.95 99.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.31 123.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.97 174.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.32 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.41 145.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.15 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.00 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.92 168.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.67 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.09 103.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.19 173.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.62 82.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.64 102.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.46 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.60 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.65 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.25 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.80 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.60 105.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.30 128.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.34 179.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 281.25 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.55 90.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.96 119.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.97 166.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.07 87.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.22 105.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.70 126.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.17 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.20 104.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.31 173.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.06 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.50 90.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.85 174.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.99 133.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.49 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.06 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.01 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.21 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.62 84.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.23 119.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.28 86.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.14 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.15 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.43 104.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.37 140.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.95 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.52 87.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.49 117.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.56 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.40 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.35 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.76 178.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.29 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.70 192.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.93 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.81 101.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.96 83.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.33 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.94 124.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.13 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.62 102.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.50 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.83 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.51 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.46 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.59 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.65 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.93 102.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.26 86.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.02 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.35 136.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.63 127.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 322.95 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.93 190.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.28 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.73 106.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.77 173.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.24 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.98 138.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.37 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.02 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.02 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.18 187.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.76 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.02 83.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.97 129.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.94 110.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.74 109.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.11 84.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.38 111.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.03 188.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.16 128.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.28 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.82 184.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.39 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.39 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.31 151.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.17 97.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.77 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.53 147.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.05 94.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.68 94.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.17 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.91 106.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.38 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.72 95.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.30 93.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.82 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.19 98.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.03 102.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.84 162.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.65 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.49 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.45 98.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.54 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.07 115.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.90 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.01 83.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.08 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.92 86.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.31 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.97 93.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.97 144.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.28 130.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.86 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.26 120.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.71 100.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.00 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.24 168.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.10 141.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.11 127.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.28 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.10 116.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.64 151.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.16 123.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.58 206.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.63 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.95 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.84 194.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.70 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.86 98.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.76 124.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.90 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.20 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.28 82.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.35 98.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.47 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 84.06 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.64 122.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.59 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.41 128.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.41 156.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.82 148.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.45 108.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.25 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.74 99.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.52 87.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.79 103.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.71 143.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.08 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.61 87.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.94 147.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.30 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.23 104.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.47 84.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.30 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.51 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.41 86.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.15 91.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.02 101.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.11 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.07 124.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.98 118.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.02 85.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.75 106.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.52 82.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.56 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.55 186.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.73 92.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 313.25 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.44 191.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.04 155.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.63 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.59 114.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.26 153.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.40 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.69 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.78 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.64 187.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.69 177.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.76 83.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.54 141.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.07 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.39 133.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.55 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.58 93.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.40 143.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.28 101.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.86 85.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.17 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.84 85.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.83 102.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.84 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.33 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.62 88.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.78 104.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.90 156.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.81 87.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 99.87 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.35 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.12 96.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.13 82.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.47 169.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.95 95.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.19 147.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.13 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.84 87.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.37 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.67 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.33 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.71 95.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.33 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.49 84.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.49 89.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.89 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.68 99.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.67 125.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.74 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.21 200.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.20 146.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.17 101.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.33 185.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.38 135.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.84 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.42 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.27 86.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.50 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.14 115.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.09 101.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.64 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.42 132.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.42 105.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.78 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.74 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.74 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.24 112.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.90 111.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.24 139.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.59 127.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.14 184.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.85 115.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.65 83.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.81 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.32 93.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.49 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.43 99.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.83 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.05 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.33 82.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.78 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.02 106.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.42 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.46 202.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.97 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.39 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.16 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.16 82.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.70 169.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.18 91.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.84 96.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.33 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.55 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.98 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.39 101.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.65 167.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.00 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.00 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.31 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.51 143.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.69 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.68 82.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.28 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.41 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.30 168.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.65 169.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.34 112.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.04 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.05 93.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 320.37 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.72 122.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.92 140.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.09 175.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.22 107.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.14 194.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.16 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.41 174.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.52 101.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.31 91.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.22 127.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.37 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.00 117.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.89 89.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.75 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.99 103.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.45 130.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.66 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.03 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.63 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.83 89.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.45 112.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.93 107.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.46 138.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.63 101.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.42 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.52 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.06 137.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.63 114.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.67 95.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.07 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.86 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.81 86.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.73 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.97 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.30 114.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.25 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.48 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.02 86.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.17 119.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.39 113.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.44 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.67 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.32 130.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.46 170.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.90 98.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.69 106.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.70 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.15 86.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.99 139.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.42 113.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.32 153.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.88 163.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.19 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.28 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.21 90.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.37 88.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.66 83.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.48 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.01 142.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.72 149.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.35 186.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.40 101.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.73 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.48 113.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.26 105.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.80 138.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.52 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.22 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.26 109.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.46 84.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.25 98.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.78 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.10 82.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.71 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.08 173.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.88 146.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.60 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.70 90.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.76 164.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.30 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.36 92.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.97 93.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.86 94.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.81 83.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.57 127.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.58 87.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.80 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.02 103.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 307.65 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.83 167.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.11 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.16 104.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.87 137.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.12 128.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.54 104.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.84 109.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.15 156.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.93 145.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.27 115.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.52 155.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.11 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.08 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.81 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.52 102.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.43 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.66 162.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.98 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.63 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.63 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.50 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.11 135.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.33 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.96 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.50 135.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.86 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.74 117.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.55 172.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.81 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.08 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.22 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.24 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.86 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.84 88.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.58 116.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.14 113.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.24 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.37 133.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.18 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.80 146.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.80 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.00 84.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.42 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.79 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.20 92.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.02 192.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.71 106.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.62 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.96 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.79 145.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.94 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.40 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.79 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.52 158.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.02 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.58 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.18 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.18 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.70 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.08 86.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.82 135.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.36 206.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 85.13 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.07 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.90 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.22 86.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.46 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.87 100.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.54 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.19 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.03 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.89 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.23 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.18 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.01 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.97 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.50 176.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.39 183.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.27 150.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 77.25 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.34 111.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.50 157.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.37 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.06 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.77 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.37 91.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.82 167.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.15 126.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.21 122.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.67 101.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.97 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.62 187.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.52 84.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.04 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.99 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.88 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.54 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.40 99.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.16 120.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.76 82.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.05 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.00 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.16 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.10 104.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.41 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.67 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.85 191.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.07 157.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.72 204.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.30 149.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.34 193.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.86 192.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.53 147.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.29 178.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.01 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.69 82.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.91 104.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.10 100.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.57 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.66 153.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.20 121.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.98 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.52 83.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.27 166.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.12 140.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.01 179.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.71 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.39 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.59 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.77 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.20 112.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.26 94.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.97 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.49 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.24 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.24 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.69 97.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.13 82.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.28 168.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.27 233.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.15 109.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.92 105.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.09 190.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.24 135.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.79 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.69 185.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.99 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.34 128.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 122.65 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.44 135.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.87 84.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.58 198.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 297.82 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.45 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.66 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.67 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 319.27 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.36 148.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.14 179.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.69 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.43 126.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.20 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.07 169.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.75 162.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.41 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.83 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.67 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.73 166.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.12 136.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.75 165.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.18 107.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.22 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.68 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.28 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.69 169.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.47 160.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.27 174.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.95 233.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.92 119.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.89 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.52 162.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.77 84.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.85 114.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.12 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.92 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.67 147.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.05 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.74 98.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.73 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.62 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.99 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.42 82.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.37 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.66 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.96 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.25 117.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.53 167.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.75 134.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.77 83.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.32 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.21 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.22 112.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.15 109.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.86 87.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.54 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.34 95.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.36 140.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.97 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.21 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.51 151.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.28 110.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.46 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.07 192.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.37 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.36 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.01 179.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.48 142.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.26 113.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.47 161.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.64 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.08 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.63 95.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.81 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.38 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.45 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.58 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.16 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.97 100.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.87 81.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.71 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.37 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.76 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.12 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.37 87.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.98 126.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.55 100.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.50 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.72 165.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.95 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.10 91.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 71.09 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.08 91.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.15 102.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.01 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.20 107.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.39 144.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.26 141.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 79.17 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.21 90.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.78 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.28 138.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.18 158.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.84 106.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.00 88.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.06 85.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.22 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.69 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.41 200.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.06 92.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.44 107.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.23 82.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.36 82.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.79 92.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.05 179.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.93 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 104.28 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.32 82.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.27 105.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.60 105.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.42 203.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.27 144.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.36 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.90 142.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.55 152.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.81 98.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.90 98.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.68 137.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 139.71 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.59 110.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.31 91.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.84 99.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.31 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.33 183.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.67 148.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.15 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.89 171.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.41 84.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.64 118.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.26 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.06 106.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.49 153.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.08 112.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.28 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.50 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.20 86.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.34 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.62 107.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 126.77 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.89 191.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.90 92.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.87 139.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.49 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.74 83.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.08 124.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.45 88.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.66 103.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.77 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.69 114.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.41 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.71 197.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.89 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.62 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.47 169.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.65 159.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.09 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.73 100.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.06 99.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.94 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.50 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.06 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.97 104.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.45 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.91 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.63 110.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.52 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.85 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.25 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.56 94.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.08 141.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.89 82.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.60 108.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.83 83.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.17 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.32 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.57 102.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.91 157.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.01 95.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.02 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.50 184.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.66 137.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.29 114.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.99 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.70 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.05 91.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.89 114.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.60 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 286.78 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.98 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 182.57 130.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.05 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.14 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.90 121.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.83 126.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.57 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.12 105.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.51 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.96 101.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.50 82.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.02 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.70 106.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.42 104.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.49 86.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.56 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.19 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.61 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.01 131.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.07 93.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 113.72 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.75 96.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 386.10 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.17 105.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.63 91.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.72 167.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.49 108.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.14 103.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.96 98.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.51 109.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 131.82 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.42 94.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.70 84.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.64 130.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.74 150.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.53 170.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.20 174.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.04 116.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.52 123.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.32 88.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.02 102.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.64 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.69 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.90 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.37 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.86 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.34 105.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.87 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.75 136.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.60 119.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.42 103.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.01 135.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.44 112.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.64 149.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.29 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.56 85.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.81 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.96 176.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.63 123.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.02 83.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.74 155.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.85 100.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.34 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.86 105.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.46 101.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.92 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.40 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.24 125.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.60 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.41 125.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 282.65 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.63 142.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.13 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.96 116.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.44 98.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.70 116.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.11 97.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.26 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.84 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.33 108.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.38 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.08 204.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.57 101.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.05 143.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.37 131.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.64 144.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.67 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.09 132.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.59 156.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.23 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.21 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.86 137.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.08 87.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.79 153.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.40 131.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.16 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 322.79 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.88 102.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.93 83.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.06 113.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.73 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.61 134.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.59 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.88 151.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.04 84.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.60 162.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.23 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.87 179.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.92 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.96 85.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.40 100.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.90 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.46 93.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.82 174.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.92 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.78 138.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.35 175.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.75 121.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.88 174.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.05 105.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.41 103.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.53 200.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.33 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.08 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.74 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.64 93.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.03 169.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.85 150.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.72 84.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.83 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.35 92.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.50 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.73 170.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.86 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.01 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.46 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.90 89.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.22 101.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.53 150.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.05 165.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.07 136.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.39 158.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.18 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.63 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.56 85.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.93 123.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.27 101.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.18 95.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.53 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.98 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.92 155.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.97 142.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.58 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.86 113.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.09 147.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.74 99.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.90 89.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.07 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.57 84.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.10 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.81 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.81 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.86 105.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.49 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.95 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.72 169.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.81 92.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.20 82.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.16 138.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.00 99.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.16 99.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.36 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.12 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.75 181.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.71 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.87 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.59 108.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.62 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.50 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.20 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.03 100.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.61 126.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.38 96.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.05 231.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.64 119.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.61 82.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.30 82.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.81 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.84 161.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.40 125.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.22 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.73 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.06 122.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.57 83.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.61 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.50 129.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.03 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.22 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.93 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.83 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.87 214.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.89 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.08 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.29 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 107.65 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.96 103.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.46 111.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.00 125.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.16 108.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.26 126.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.99 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.88 107.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.68 190.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.55 83.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.69 87.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.65 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.71 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.85 158.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.77 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.45 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.41 194.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.36 160.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.38 113.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.01 99.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.84 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.03 87.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.66 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.06 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.84 149.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.57 84.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.04 122.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.45 139.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.42 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.97 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.08 203.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.15 171.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.75 93.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.88 184.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.29 141.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.70 158.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.79 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.71 163.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.83 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.01 113.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.03 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.39 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.65 146.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.54 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.73 115.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.07 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.64 108.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 254.98 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.17 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 98.65 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.87 103.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.82 125.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.90 199.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.43 92.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.69 105.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.97 125.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.80 99.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 128.67 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.23 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.50 127.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.61 193.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.18 158.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.75 137.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 244.62 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.17 126.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.84 119.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.24 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.48 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.84 225.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.05 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.74 128.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.95 150.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.47 106.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.72 132.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.20 160.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.13 201.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.40 82.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.62 116.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.25 132.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 72.28 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.39 82.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.48 168.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.53 86.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.11 128.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.48 98.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.14 83.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.17 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.84 85.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.27 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.13 101.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 142.99 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.86 84.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.33 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.01 118.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.34 191.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.21 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.40 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.10 126.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.01 100.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.83 209.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.39 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.81 180.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.24 214.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.32 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.69 113.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.21 144.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.24 115.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.42 117.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.62 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.96 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.70 182.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 100.01 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.44 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.38 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.98 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.49 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.65 92.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.13 204.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.53 136.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.68 128.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.64 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.00 161.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.08 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.20 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.91 95.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.96 183.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.00 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.45 89.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.86 198.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.54 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.57 113.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.19 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.80 85.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.22 93.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.70 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.72 154.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.36 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.51 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.62 93.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.54 90.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.99 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.76 123.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.72 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.39 146.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.08 189.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.49 101.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.02 91.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.14 89.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.89 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.40 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.14 88.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 171.77 165.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 106.07 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.21 133.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.30 84.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.68 144.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.97 148.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.58 191.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.05 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.34 117.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.92 145.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.13 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.98 112.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.65 110.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.49 126.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.91 98.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.26 106.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.31 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.54 127.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.60 159.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.64 95.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.05 89.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.53 162.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.03 89.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.94 127.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.33 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.92 130.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.22 102.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.58 145.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.93 166.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.32 170.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 73.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.85 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.74 84.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.58 200.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.15 100.62 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.62 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.44 96.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.22 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.69 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.30 161.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.43 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 270.70 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.45 92.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.06 133.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.19 177.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.01 206.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.64 125.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.53 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.66 110.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.26 102.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.96 101.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.98 281.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.62 111.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.78 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.12 159.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.33 103.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.97 113.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.84 134.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.60 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.62 98.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.40 84.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.59 166.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 266.73 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.39 116.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.87 132.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.94 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.78 87.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.13 202.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.69 128.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.11 172.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.03 104.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.26 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.56 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.34 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.67 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.63 114.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.77 148.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.69 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.56 212.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.51 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.35 162.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.85 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.84 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.55 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.51 183.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.00 89.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.16 110.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.62 112.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 236.79 198.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.49 181.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.29 91.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.38 89.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.03 102.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.03 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.66 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.51 191.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.15 132.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.23 174.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.27 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.93 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.63 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.78 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.97 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 257.63 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.80 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.90 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.21 99.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.47 271.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.93 146.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.17 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.55 187.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.88 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.57 91.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.52 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.44 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.45 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.32 129.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.70 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.17 110.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.28 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.69 162.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.90 173.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.19 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.07 175.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.45 86.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.44 120.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.82 116.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.78 84.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.91 127.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.13 142.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.38 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.90 149.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.14 92.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 140.19 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.31 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 146.37 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.91 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.20 97.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.18 126.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.74 164.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.27 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 340.37 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.95 111.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.17 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.88 134.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.37 84.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.17 108.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.63 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.70 145.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.15 134.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.16 132.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.98 147.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.67 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.80 180.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.46 186.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.97 200.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.57 149.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 103.30 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.58 105.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.27 141.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.64 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.19 204.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.04 85.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.19 222.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.63 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.45 85.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.53 154.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.09 120.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.46 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.82 87.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.01 160.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.91 89.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.44 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.36 138.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.37 117.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.65 121.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.21 142.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 273.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.85 163.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.99 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.56 209.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.45 139.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.96 110.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.58 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.38 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.40 84.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 82.57 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.29 133.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.11 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.84 118.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.05 84.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.54 145.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.46 151.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.60 179.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.41 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.45 168.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.50 185.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.98 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.08 125.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.51 140.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.78 161.45 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.82 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.32 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.00 108.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 311.59 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 321.12 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.45 100.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.32 131.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.98 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.55 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.68 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 294.17 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.22 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.65 228.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 108.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.28 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.05 91.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.16 82.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.86 175.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.50 102.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.02 96.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.45 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.39 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.07 101.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.65 224.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.71 108.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.50 95.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.82 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.93 133.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.25 144.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.01 163.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.19 121.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.19 87.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.71 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 135.79 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.43 190.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.76 150.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.84 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.58 84.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.77 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.88 89.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.05 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.14 136.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.50 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.10 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.54 148.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.10 98.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.71 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.20 84.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.96 121.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.94 117.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.56 130.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.40 139.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.70 180.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.84 237.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 276.99 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.75 213.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.71 141.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.15 138.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 246.93 235.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.99 83.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.93 195.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.86 97.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.49 110.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.37 118.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.05 97.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.05 125.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.43 82.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 162.59 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.28 99.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 160.71 221.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.53 174.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.99 97.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.64 148.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.15 111.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.17 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.59 156.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.98 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.25 98.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 242.71 205.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.56 139.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.91 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.70 95.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.43 129.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 275.12 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.34 90.50 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.61 106.60 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.02 86.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.46 163.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.95 99.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.08 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 290.70 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.86 141.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.04 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 129.24 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.11 95.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.65 164.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.40 125.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.22 103.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.05 124.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.87 116.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.58 107.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.71 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.58 113.82 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.93 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.96 136.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.35 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.81 204.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.30 94.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 235.18 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.50 101.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.68 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.86 92.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.93 126.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.56 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.60 121.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.67 121.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.94 196.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.93 176.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 249.86 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.67 104.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.51 107.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.31 124.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.41 108.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.83 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.19 145.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.93 189.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 111.48 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.90 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.49 97.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.82 125.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.00 239.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 250.99 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 264.65 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.68 85.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 118.13 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.19 151.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.96 117.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.94 121.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.29 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.56 147.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 279.51 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 81.03 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 153.12 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.14 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.01 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.33 107.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.21 108.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.34 102.65 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.65 122.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.61 89.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.59 106.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.98 133.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.09 157.05 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.74 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.34 91.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 144.94 266.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.39 96.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.17 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 169.04 182.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.58 100.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.78 202.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 284.51 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.40 176.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.44 141.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.17 153.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.46 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.86 93.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.13 95.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.06 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 91.05 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.37 88.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.16 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.82 87.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 177.29 152.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.77 241.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.02 127.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.45 134.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.56 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.97 113.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.28 86.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.21 199.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 184.97 119.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.48 294.66 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.62 127.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 148.55 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 164.68 192.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 187.18 116.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 272.54 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.98 155.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.26 95.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.20 121.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 77.06 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.79 135.56 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.19 87.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 183.43 125.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.45 100.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.99 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.47 99.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.08 136.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.18 150.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 116.63 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.17 218.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.31 247.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.66 184.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.48 92.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.99 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.27 92.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.07 161.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.09 105.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 255.08 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.20 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.39 165.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.65 128.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.86 142.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.35 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.09 166.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.58 191.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.19 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.95 89.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.53 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 230.01 173.59 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.25 140.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.56 93.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.17 125.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.80 198.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.31 88.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.02 85.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.48 157.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 137.16 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 120.29 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.54 148.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.91 96.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.22 82.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.22 95.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 168.53 183.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.78 116.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.65 106.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.09 148.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 209.26 98.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.27 167.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.31 142.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.24 91.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 152.27 263.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 138.14 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.05 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.43 136.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.85 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.70 303.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 208.35 95.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.38 100.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.71 109.37 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.65 116.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.97 100.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.92 106.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.30 120.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 228.65 168.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.37 129.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 241.95 208.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.80 256.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 248.95 259.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 304.51 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 310.36 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 299.28 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.69 103.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.96 230.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.99 199.87 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 231.23 172.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.92 203.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.62 209.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.40 154.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.84 96.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 240.64 216.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.70 110.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.97 103.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.37 82.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.61 91.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 175.69 156.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 289.32 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.53 92.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 68.77 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 224.20 149.47 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 251.64 245.52 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.58 125.01 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 207.99 95.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.69 123.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.91 253.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.23 87.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.63 226.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.69 140.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.55 91.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 95.37 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.18 125.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.43 287.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.11 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.06 215.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 115.79 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.91 104.51 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.52 139.40 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.75 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 151.45 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.17 116.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 155.92 211.17 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.76 111.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.33 97.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 252.06 275.79 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.40 151.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.23 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.62 87.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.07 220.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 271.91 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.11 99.86 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.87 143.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.16 159.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.15 184.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.87 136.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 219.44 121.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 210.08 103.26 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 262.42 315.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.02 102.72 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 191.59 104.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.94 111.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.95 119.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.49 164.16 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 156.78 243.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.84 207.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.23 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.75 121.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 179.95 136.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.69 250.55 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 268.10 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.75 165.10 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.38 183.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.67 110.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.66 217.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.99 110.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 215.44 117.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 193.22 97.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.99 150.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.88 108.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 222.34 136.02 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.18 203.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.12 214.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 227.56 157.57 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 226.24 149.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 232.31 188.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.62 117.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.49 145.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.37 106.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.87 196.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.20 169.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 200.07 83.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 239.57 209.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.55 113.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.27 191.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.24 86.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 259.14 331.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.09 85.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.40 86.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.59 108.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.85 210.18 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.42 152.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.70 85.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 218.87 119.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 220.08 129.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 174.34 157.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 192.66 99.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 195.08 94.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.09 83.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.73 95.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.42 105.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 214.99 111.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 263.62 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 211.76 105.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 186.60 110.58 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.66 93.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.09 140.77 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 190.25 107.28 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.84 184.88 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 204.05 88.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.28 154.03 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 180.27 138.24 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 217.44 123.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 199.57 84.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 223.19 141.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 196.68 89.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 188.87 111.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 90.74 359.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 201.64 83.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 206.46 92.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 233.18 188.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.75 85.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 258.56 281.15 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 116.35 73.44 m 378.95 73.44 l S 116.35 73.44 m 116.35 66.24 l S 203.88 73.44 m 203.88 66.24 l S 291.42 73.44 m 291.42 66.24 l S 378.95 73.44 m 378.95 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 109.51 47.52 Tm (-5) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 200.55 47.52 Tm (0) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 288.08 47.52 Tm (5) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 372.28 47.52 Tm (10) Tj ET 59.04 84.53 m 59.04 361.87 l S 59.04 84.53 m 51.84 84.53 l S 59.04 130.76 m 51.84 130.76 l S 59.04 176.98 m 51.84 176.98 l S 59.04 223.20 m 51.84 223.20 l S 59.04 269.42 m 51.84 269.42 l S 59.04 315.64 m 51.84 315.64 l S 59.04 361.87 m 51.84 361.87 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 76.19 Tm (0.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 122.42 Tm (0.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 168.64 Tm (1.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 214.86 Tm (1.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 261.08 Tm (2.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 307.30 Tm (2.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 353.53 Tm (3.0) Tj ET 59.04 73.44 m 401.76 73.44 l 401.76 372.96 l 59.04 372.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 194.78 18.72 Tm (Test statistics) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 150.83 Tm (-log\(adjusted p-values,10\)) Tj ET Q q 59.04 73.44 342.72 299.52 re W n 1.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 234.68 88.73 m 238.32 82.43 l 231.04 82.43 l 234.68 88.73 l S 219.81 88.73 m 223.45 82.43 l 216.17 82.43 l 219.81 88.73 l S 202.17 88.73 m 205.80 82.43 l 198.53 82.43 l 202.17 88.73 l S 197.95 88.73 m 201.58 82.43 l 194.31 82.43 l 197.95 88.73 l S 179.89 88.73 m 183.53 82.43 l 176.26 82.43 l 179.89 88.73 l S 181.73 88.73 m 185.37 82.43 l 178.10 82.43 l 181.73 88.73 l S 216.52 88.73 m 220.16 82.43 l 212.89 82.43 l 216.52 88.73 l S 213.22 88.73 m 216.86 82.43 l 209.59 82.43 l 213.22 88.73 l S 204.17 88.73 m 207.81 82.43 l 200.54 82.43 l 204.17 88.73 l S 206.24 88.73 m 209.88 82.43 l 202.61 82.43 l 206.24 88.73 l S 276.18 88.73 m 279.82 82.43 l 272.55 82.43 l 276.18 88.73 l S 253.74 88.73 m 257.38 82.43 l 250.10 82.43 l 253.74 88.73 l S 272.55 88.73 m 276.19 82.43 l 268.92 82.43 l 272.55 88.73 l S 196.15 88.73 m 199.78 82.43 l 192.51 82.43 l 196.15 88.73 l S 200.55 88.73 m 204.18 82.43 l 196.91 82.43 l 200.55 88.73 l S 209.99 88.73 m 213.63 82.43 l 206.36 82.43 l 209.99 88.73 l S 171.37 88.73 m 175.00 82.43 l 167.73 82.43 l 171.37 88.73 l S 249.55 88.73 m 253.19 82.43 l 245.92 82.43 l 249.55 88.73 l S 210.94 88.73 m 214.57 82.43 l 207.30 82.43 l 210.94 88.73 l S 242.74 88.73 m 246.38 82.43 l 239.11 82.43 l 242.74 88.73 l S 229.28 88.73 m 232.92 82.43 l 225.64 82.43 l 229.28 88.73 l S 211.77 88.73 m 215.41 82.43 l 208.14 82.43 l 211.77 88.73 l S 124.97 88.73 m 128.60 82.43 l 121.33 82.43 l 124.97 88.73 l S 191.83 88.73 m 195.47 82.43 l 188.19 82.43 l 191.83 88.73 l S 165.40 88.73 m 169.04 82.43 l 161.77 82.43 l 165.40 88.73 l S 228.84 88.73 m 232.47 82.43 l 225.20 82.43 l 228.84 88.73 l S 197.17 88.73 m 200.81 82.43 l 193.54 82.43 l 197.17 88.73 l S 202.99 88.73 m 206.62 82.43 l 199.35 82.43 l 202.99 88.73 l S 226.55 88.73 m 230.18 82.43 l 222.91 82.43 l 226.55 88.73 l S 196.16 88.73 m 199.80 82.43 l 192.52 82.43 l 196.16 88.73 l S 201.58 88.73 m 205.22 82.43 l 197.94 82.43 l 201.58 88.73 l S 268.01 88.73 m 271.65 82.43 l 264.38 82.43 l 268.01 88.73 l S 199.08 88.73 m 202.72 82.43 l 195.44 82.43 l 199.08 88.73 l S 183.87 88.73 m 187.51 82.43 l 180.23 82.43 l 183.87 88.73 l S 251.46 88.73 m 255.10 82.43 l 247.83 82.43 l 251.46 88.73 l S 247.96 88.73 m 251.60 82.43 l 244.33 82.43 l 247.96 88.73 l S 184.93 88.73 m 188.57 82.43 l 181.29 82.43 l 184.93 88.73 l S 210.75 88.73 m 214.38 82.43 l 207.11 82.43 l 210.75 88.73 l S 148.06 88.73 m 151.70 82.43 l 144.42 82.43 l 148.06 88.73 l S 232.06 88.73 m 235.69 82.43 l 228.42 82.43 l 232.06 88.73 l S 232.67 88.73 m 236.31 82.43 l 229.04 82.43 l 232.67 88.73 l S 223.53 88.73 m 227.17 82.43 l 219.90 82.43 l 223.53 88.73 l S 249.78 88.73 m 253.41 82.43 l 246.14 82.43 l 249.78 88.73 l S 186.80 88.73 m 190.44 82.43 l 183.17 82.43 l 186.80 88.73 l S 219.56 88.73 m 223.20 82.43 l 215.93 82.43 l 219.56 88.73 l S 222.33 88.73 m 225.96 82.43 l 218.69 82.43 l 222.33 88.73 l S 178.20 88.73 m 181.83 82.43 l 174.56 82.43 l 178.20 88.73 l S 173.85 88.73 m 177.49 82.43 l 170.21 82.43 l 173.85 88.73 l S 224.19 88.73 m 227.83 82.43 l 220.55 82.43 l 224.19 88.73 l S 259.92 88.73 m 263.55 82.43 l 256.28 82.43 l 259.92 88.73 l S 156.82 88.73 m 160.46 82.43 l 153.19 82.43 l 156.82 88.73 l S 193.56 88.73 m 197.19 82.43 l 189.92 82.43 l 193.56 88.73 l S 230.18 88.73 m 233.81 82.43 l 226.54 82.43 l 230.18 88.73 l S 189.66 88.73 m 193.29 82.43 l 186.02 82.43 l 189.66 88.73 l S 132.57 88.73 m 136.21 82.43 l 128.93 82.43 l 132.57 88.73 l S 279.05 88.73 m 282.68 82.43 l 275.41 82.43 l 279.05 88.73 l S 215.03 88.73 m 218.66 82.43 l 211.39 82.43 l 215.03 88.73 l S 203.46 88.73 m 207.10 82.43 l 199.83 82.43 l 203.46 88.73 l S 171.06 88.73 m 174.70 82.43 l 167.43 82.43 l 171.06 88.73 l S 246.69 88.73 m 250.33 82.43 l 243.06 82.43 l 246.69 88.73 l S 175.04 88.73 m 178.68 82.43 l 171.40 82.43 l 175.04 88.73 l S 261.53 88.73 m 265.17 82.43 l 257.90 82.43 l 261.53 88.73 l S 171.06 88.73 m 174.70 82.43 l 167.43 82.43 l 171.06 88.73 l S 223.64 88.73 m 227.28 82.43 l 220.00 82.43 l 223.64 88.73 l S 188.52 88.73 m 192.16 82.43 l 184.88 82.43 l 188.52 88.73 l S 122.05 88.73 m 125.69 82.43 l 118.42 82.43 l 122.05 88.73 l S 236.82 88.73 m 240.45 82.43 l 233.18 82.43 l 236.82 88.73 l S 294.56 88.73 m 298.20 82.43 l 290.92 82.43 l 294.56 88.73 l S 187.26 88.73 m 190.90 82.43 l 183.62 82.43 l 187.26 88.73 l S 214.44 88.73 m 218.08 82.43 l 210.81 82.43 l 214.44 88.73 l S 194.36 88.73 m 198.00 82.43 l 190.73 82.43 l 194.36 88.73 l S 225.97 88.73 m 229.61 82.43 l 222.33 82.43 l 225.97 88.73 l S 232.16 88.73 m 235.79 82.43 l 228.52 82.43 l 232.16 88.73 l S 154.96 88.73 m 158.59 82.43 l 151.32 82.43 l 154.96 88.73 l S 182.10 88.73 m 185.73 82.43 l 178.46 82.43 l 182.10 88.73 l S 208.58 88.73 m 212.22 82.43 l 204.94 82.43 l 208.58 88.73 l S 169.17 88.73 m 172.81 82.43 l 165.53 82.43 l 169.17 88.73 l S 153.82 88.73 m 157.46 82.43 l 150.19 82.43 l 153.82 88.73 l S 161.02 88.73 m 164.65 82.43 l 157.38 82.43 l 161.02 88.73 l S 182.98 88.73 m 186.62 82.43 l 179.34 82.43 l 182.98 88.73 l S 144.01 88.73 m 147.65 82.43 l 140.38 82.43 l 144.01 88.73 l S 243.25 88.73 m 246.88 82.43 l 239.61 82.43 l 243.25 88.73 l S 177.72 88.73 m 181.35 82.43 l 174.08 82.43 l 177.72 88.73 l S 140.68 88.73 m 144.31 82.43 l 137.04 82.43 l 140.68 88.73 l S 214.11 88.73 m 217.75 82.43 l 210.48 82.43 l 214.11 88.73 l S 205.05 88.73 m 208.69 82.43 l 201.42 82.43 l 205.05 88.73 l S 203.65 88.73 m 207.29 82.43 l 200.01 82.43 l 203.65 88.73 l S 188.30 88.73 m 191.94 82.43 l 184.66 82.43 l 188.30 88.73 l S 167.87 88.73 m 171.50 82.43 l 164.23 82.43 l 167.87 88.73 l S 227.61 88.73 m 231.24 82.43 l 223.97 82.43 l 227.61 88.73 l S 205.95 88.73 m 209.58 82.43 l 202.31 82.43 l 205.95 88.73 l S 191.39 88.73 m 195.03 82.43 l 187.75 82.43 l 191.39 88.73 l S 190.66 88.73 m 194.29 82.43 l 187.02 82.43 l 190.66 88.73 l S 189.15 88.73 m 192.79 82.43 l 185.51 82.43 l 189.15 88.73 l S 194.88 88.73 m 198.52 82.43 l 191.25 82.43 l 194.88 88.73 l S 101.06 88.73 m 104.70 82.43 l 97.43 82.43 l 101.06 88.73 l S 216.26 88.73 m 219.90 82.43 l 212.62 82.43 l 216.26 88.73 l S 184.96 88.73 m 188.60 82.43 l 181.33 82.43 l 184.96 88.73 l S 206.09 88.73 m 209.72 82.43 l 202.45 82.43 l 206.09 88.73 l S 234.98 88.73 m 238.62 82.43 l 231.35 82.43 l 234.98 88.73 l S 241.06 88.73 m 244.70 82.43 l 237.43 82.43 l 241.06 88.73 l S 155.20 88.73 m 158.84 82.43 l 151.57 82.43 l 155.20 88.73 l S 204.14 88.73 m 207.78 82.43 l 200.50 82.43 l 204.14 88.73 l S 155.82 88.73 m 159.46 82.43 l 152.18 82.43 l 155.82 88.73 l S 264.44 88.73 m 268.08 82.43 l 260.81 82.43 l 264.44 88.73 l S 161.79 88.73 m 165.42 82.43 l 158.15 82.43 l 161.79 88.73 l S 178.67 88.73 m 182.31 82.43 l 175.03 82.43 l 178.67 88.73 l S 313.02 88.73 m 316.66 82.43 l 309.39 82.43 l 313.02 88.73 l S 184.96 88.73 m 188.60 82.43 l 181.33 82.43 l 184.96 88.73 l S 251.32 88.73 m 254.95 82.43 l 247.68 82.43 l 251.32 88.73 l S 197.18 88.73 m 200.81 82.43 l 193.54 82.43 l 197.18 88.73 l S 160.34 88.73 m 163.97 82.43 l 156.70 82.43 l 160.34 88.73 l S 246.89 88.73 m 250.53 82.43 l 243.25 82.43 l 246.89 88.73 l S 184.58 88.73 m 188.21 82.43 l 180.94 82.43 l 184.58 88.73 l S 278.07 88.73 m 281.71 82.43 l 274.43 82.43 l 278.07 88.73 l S 174.50 88.73 m 178.13 82.43 l 170.86 82.43 l 174.50 88.73 l S 157.44 88.73 m 161.07 82.43 l 153.80 82.43 l 157.44 88.73 l S 207.84 88.73 m 211.48 82.43 l 204.20 82.43 l 207.84 88.73 l S 196.80 88.73 m 200.43 82.43 l 193.16 82.43 l 196.80 88.73 l S 183.62 88.73 m 187.26 82.43 l 179.99 82.43 l 183.62 88.73 l S 153.65 88.73 m 157.29 82.43 l 150.02 82.43 l 153.65 88.73 l S 174.45 88.73 m 178.08 82.43 l 170.81 82.43 l 174.45 88.73 l S 172.73 88.73 m 176.37 82.43 l 169.10 82.43 l 172.73 88.73 l S 174.71 88.73 m 178.35 82.43 l 171.08 82.43 l 174.71 88.73 l S 257.04 88.73 m 260.68 82.43 l 253.41 82.43 l 257.04 88.73 l S 117.52 88.73 m 121.16 82.43 l 113.89 82.43 l 117.52 88.73 l S 139.19 88.73 m 142.82 82.43 l 135.55 82.43 l 139.19 88.73 l S 167.21 88.73 m 170.85 82.43 l 163.57 82.43 l 167.21 88.73 l S 212.47 88.73 m 216.11 82.43 l 208.83 82.43 l 212.47 88.73 l S 237.78 88.73 m 241.42 82.43 l 234.14 82.43 l 237.78 88.73 l S 212.56 88.73 m 216.20 82.43 l 208.92 82.43 l 212.56 88.73 l S 216.54 88.73 m 220.17 82.43 l 212.90 82.43 l 216.54 88.73 l S 199.48 88.73 m 203.11 82.43 l 195.84 82.43 l 199.48 88.73 l S 190.66 88.73 m 194.30 82.43 l 187.02 82.43 l 190.66 88.73 l S 139.43 88.73 m 143.07 82.43 l 135.79 82.43 l 139.43 88.73 l S 185.87 88.73 m 189.51 82.43 l 182.24 82.43 l 185.87 88.73 l S 232.28 88.73 m 235.92 82.43 l 228.65 82.43 l 232.28 88.73 l S 150.34 88.73 m 153.97 82.43 l 146.70 82.43 l 150.34 88.73 l S 231.76 88.73 m 235.40 82.43 l 228.12 82.43 l 231.76 88.73 l S 279.40 88.73 m 283.04 82.43 l 275.76 82.43 l 279.40 88.73 l S 275.67 88.73 m 279.31 82.43 l 272.04 82.43 l 275.67 88.73 l S 159.81 88.73 m 163.45 82.43 l 156.18 82.43 l 159.81 88.73 l S 215.01 88.73 m 218.64 82.43 l 211.37 82.43 l 215.01 88.73 l S 202.16 88.73 m 205.80 82.43 l 198.52 82.43 l 202.16 88.73 l S 231.15 88.73 m 234.79 82.43 l 227.51 82.43 l 231.15 88.73 l S 206.50 88.73 m 210.13 82.43 l 202.86 82.43 l 206.50 88.73 l S 193.62 88.73 m 197.26 82.43 l 189.99 82.43 l 193.62 88.73 l S 175.95 88.73 m 179.58 82.43 l 172.31 82.43 l 175.95 88.73 l S 174.35 88.73 m 177.99 82.43 l 170.71 82.43 l 174.35 88.73 l S 203.99 88.73 m 207.63 82.43 l 200.36 82.43 l 203.99 88.73 l S 168.17 88.73 m 171.80 82.43 l 164.53 82.43 l 168.17 88.73 l S 241.86 88.73 m 245.49 82.43 l 238.22 82.43 l 241.86 88.73 l S 142.17 88.73 m 145.81 82.43 l 138.54 82.43 l 142.17 88.73 l S 171.13 88.73 m 174.77 82.43 l 167.50 82.43 l 171.13 88.73 l S 253.51 88.73 m 257.14 82.43 l 249.87 82.43 l 253.51 88.73 l S 165.38 88.73 m 169.01 82.43 l 161.74 82.43 l 165.38 88.73 l S 237.12 88.73 m 240.76 82.43 l 233.49 82.43 l 237.12 88.73 l S 136.82 88.73 m 140.46 82.43 l 133.19 82.43 l 136.82 88.73 l S 179.13 88.73 m 182.76 82.43 l 175.49 82.43 l 179.13 88.73 l S 216.84 88.73 m 220.47 82.43 l 213.20 82.43 l 216.84 88.73 l S 186.98 88.73 m 190.61 82.43 l 183.34 82.43 l 186.98 88.73 l S 215.37 88.73 m 219.00 82.43 l 211.73 82.43 l 215.37 88.73 l S 146.87 88.73 m 150.50 82.43 l 143.23 82.43 l 146.87 88.73 l S 198.88 88.73 m 202.51 82.43 l 195.24 82.43 l 198.88 88.73 l S 221.99 88.73 m 225.62 82.43 l 218.35 82.43 l 221.99 88.73 l S 195.71 88.73 m 199.35 82.43 l 192.08 82.43 l 195.71 88.73 l S 172.87 88.73 m 176.50 82.43 l 169.23 82.43 l 172.87 88.73 l S 265.66 88.73 m 269.30 82.43 l 262.02 82.43 l 265.66 88.73 l S 213.60 88.73 m 217.23 82.43 l 209.96 82.43 l 213.60 88.73 l S 201.17 88.73 m 204.81 82.43 l 197.54 82.43 l 201.17 88.73 l S 162.87 88.73 m 166.50 82.43 l 159.23 82.43 l 162.87 88.73 l S 135.47 88.73 m 139.11 82.43 l 131.84 82.43 l 135.47 88.73 l S 227.01 88.73 m 230.65 82.43 l 223.38 82.43 l 227.01 88.73 l S 138.28 88.73 m 141.92 82.43 l 134.65 82.43 l 138.28 88.73 l S 213.90 88.73 m 217.53 82.43 l 210.26 82.43 l 213.90 88.73 l S 185.76 88.73 m 189.39 82.43 l 182.12 82.43 l 185.76 88.73 l S 151.21 88.73 m 154.84 82.43 l 147.57 82.43 l 151.21 88.73 l S 157.65 88.73 m 161.29 82.43 l 154.02 82.43 l 157.65 88.73 l S 188.14 88.73 m 191.78 82.43 l 184.50 82.43 l 188.14 88.73 l S 187.35 88.73 m 190.99 82.43 l 183.71 82.43 l 187.35 88.73 l S 262.36 88.73 m 266.00 82.43 l 258.73 82.43 l 262.36 88.73 l S 116.26 88.73 m 119.89 82.43 l 112.62 82.43 l 116.26 88.73 l S 208.84 88.73 m 212.48 82.43 l 205.21 82.43 l 208.84 88.73 l S 137.72 88.73 m 141.36 82.43 l 134.09 82.43 l 137.72 88.73 l S 183.78 88.73 m 187.42 82.43 l 180.15 82.43 l 183.78 88.73 l S 198.29 88.73 m 201.92 82.43 l 194.65 82.43 l 198.29 88.73 l S 141.64 88.73 m 145.28 82.43 l 138.01 82.43 l 141.64 88.73 l S 146.37 88.73 m 150.00 82.43 l 142.73 82.43 l 146.37 88.73 l S 164.02 88.73 m 167.66 82.43 l 160.38 82.43 l 164.02 88.73 l S 233.00 88.73 m 236.64 82.43 l 229.36 82.43 l 233.00 88.73 l S 233.96 88.73 m 237.59 82.43 l 230.32 82.43 l 233.96 88.73 l S 127.71 88.73 m 131.35 82.43 l 124.07 82.43 l 127.71 88.73 l S 160.52 88.73 m 164.15 82.43 l 156.88 82.43 l 160.52 88.73 l S 164.21 88.73 m 167.84 82.43 l 160.57 82.43 l 164.21 88.73 l S 150.77 88.73 m 154.41 82.43 l 147.13 82.43 l 150.77 88.73 l S 219.96 88.73 m 223.60 82.43 l 216.32 82.43 l 219.96 88.73 l S 203.85 88.73 m 207.48 82.43 l 200.21 82.43 l 203.85 88.73 l S 192.20 88.73 m 195.84 82.43 l 188.56 82.43 l 192.20 88.73 l S 190.62 88.73 m 194.25 82.43 l 186.98 82.43 l 190.62 88.73 l S 192.19 88.73 m 195.82 82.43 l 188.55 82.43 l 192.19 88.73 l S 184.57 88.73 m 188.21 82.43 l 180.94 82.43 l 184.57 88.73 l S 119.69 88.73 m 123.33 82.43 l 116.05 82.43 l 119.69 88.73 l S 186.99 88.73 m 190.63 82.43 l 183.36 82.43 l 186.99 88.73 l S 128.27 88.73 m 131.91 82.43 l 124.64 82.43 l 128.27 88.73 l S 151.62 88.73 m 155.26 82.43 l 147.98 82.43 l 151.62 88.73 l S 156.41 88.73 m 160.05 82.43 l 152.77 82.43 l 156.41 88.73 l S 155.34 88.73 m 158.97 82.43 l 151.70 82.43 l 155.34 88.73 l S 191.57 88.73 m 195.21 82.43 l 187.94 82.43 l 191.57 88.73 l S 234.05 88.73 m 237.68 82.43 l 230.41 82.43 l 234.05 88.73 l S 174.54 88.73 m 178.18 82.43 l 170.90 82.43 l 174.54 88.73 l S 219.12 88.73 m 222.76 82.43 l 215.49 82.43 l 219.12 88.73 l S 177.47 88.73 m 181.10 82.43 l 173.83 82.43 l 177.47 88.73 l S 190.45 88.73 m 194.09 82.43 l 186.82 82.43 l 190.45 88.73 l S 166.64 88.73 m 170.28 82.43 l 163.00 82.43 l 166.64 88.73 l S 267.30 88.73 m 270.94 82.43 l 263.67 82.43 l 267.30 88.73 l S 220.81 88.73 m 224.45 82.43 l 217.18 82.43 l 220.81 88.73 l S 197.18 88.73 m 200.81 82.43 l 193.54 82.43 l 197.18 88.73 l S 170.49 88.73 m 174.12 82.43 l 166.85 82.43 l 170.49 88.73 l S 209.00 88.73 m 212.64 82.43 l 205.36 82.43 l 209.00 88.73 l S 142.79 88.73 m 146.42 82.43 l 139.15 82.43 l 142.79 88.73 l S 194.15 88.73 m 197.78 82.43 l 190.51 82.43 l 194.15 88.73 l S 198.55 88.73 m 202.18 82.43 l 194.91 82.43 l 198.55 88.73 l S 214.47 88.73 m 218.11 82.43 l 210.83 82.43 l 214.47 88.73 l S 179.72 88.73 m 183.36 82.43 l 176.08 82.43 l 179.72 88.73 l S 174.00 88.73 m 177.63 82.43 l 170.36 82.43 l 174.00 88.73 l S 147.37 88.73 m 151.01 82.43 l 143.74 82.43 l 147.37 88.73 l S 175.29 88.73 m 178.92 82.43 l 171.65 82.43 l 175.29 88.73 l S 146.62 88.73 m 150.26 82.43 l 142.98 82.43 l 146.62 88.73 l S 232.67 88.73 m 236.31 82.43 l 229.04 82.43 l 232.67 88.73 l S 143.61 88.73 m 147.24 82.43 l 139.97 82.43 l 143.61 88.73 l S 228.64 88.73 m 232.27 82.43 l 225.00 82.43 l 228.64 88.73 l S 136.22 88.73 m 139.86 82.43 l 132.58 82.43 l 136.22 88.73 l S 185.40 88.73 m 189.04 82.43 l 181.77 82.43 l 185.40 88.73 l S 211.14 88.73 m 214.77 82.43 l 207.50 82.43 l 211.14 88.73 l S 161.32 88.73 m 164.96 82.43 l 157.69 82.43 l 161.32 88.73 l S 211.16 88.73 m 214.80 82.43 l 207.53 82.43 l 211.16 88.73 l S 146.08 88.73 m 149.71 82.43 l 142.44 82.43 l 146.08 88.73 l S 198.95 88.73 m 202.59 82.43 l 195.32 82.43 l 198.95 88.73 l S 153.26 88.73 m 156.90 82.43 l 149.62 82.43 l 153.26 88.73 l S 177.53 88.73 m 181.16 82.43 l 173.89 82.43 l 177.53 88.73 l S 179.35 88.73 m 182.99 82.43 l 175.71 82.43 l 179.35 88.73 l S 159.50 88.73 m 163.14 82.43 l 155.86 82.43 l 159.50 88.73 l S 232.26 88.73 m 235.89 82.43 l 228.62 82.43 l 232.26 88.73 l S 124.20 88.73 m 127.84 82.43 l 120.56 82.43 l 124.20 88.73 l S 213.91 88.73 m 217.54 82.43 l 210.27 82.43 l 213.91 88.73 l S 118.44 88.73 m 122.07 82.43 l 114.80 82.43 l 118.44 88.73 l S 201.08 88.73 m 204.72 82.43 l 197.44 82.43 l 201.08 88.73 l S 144.59 88.73 m 148.23 82.43 l 140.96 82.43 l 144.59 88.73 l S 185.60 88.73 m 189.24 82.43 l 181.96 82.43 l 185.60 88.73 l S 167.43 88.73 m 171.06 82.43 l 163.79 82.43 l 167.43 88.73 l S 209.51 88.73 m 213.15 82.43 l 205.88 82.43 l 209.51 88.73 l S 215.23 88.73 m 218.87 82.43 l 211.60 82.43 l 215.23 88.73 l S 127.07 88.73 m 130.70 82.43 l 123.43 82.43 l 127.07 88.73 l S 156.92 88.73 m 160.56 82.43 l 153.29 82.43 l 156.92 88.73 l S 195.54 88.73 m 199.17 82.43 l 191.90 82.43 l 195.54 88.73 l S 216.78 88.73 m 220.42 82.43 l 213.15 82.43 l 216.78 88.73 l S 200.45 88.73 m 204.09 82.43 l 196.82 82.43 l 200.45 88.73 l S 144.87 88.73 m 148.51 82.43 l 141.24 82.43 l 144.87 88.73 l S 113.52 88.73 m 117.15 82.43 l 109.88 82.43 l 113.52 88.73 l S 187.95 88.73 m 191.59 82.43 l 184.32 82.43 l 187.95 88.73 l S 237.97 88.73 m 241.61 82.43 l 234.34 82.43 l 237.97 88.73 l S 193.81 88.73 m 197.44 82.43 l 190.17 82.43 l 193.81 88.73 l S 231.89 88.73 m 235.53 82.43 l 228.26 82.43 l 231.89 88.73 l S 232.40 88.73 m 236.04 82.43 l 228.77 82.43 l 232.40 88.73 l S 180.22 88.73 m 183.85 82.43 l 176.58 82.43 l 180.22 88.73 l S 200.22 88.73 m 203.86 82.43 l 196.58 82.43 l 200.22 88.73 l S 219.62 88.73 m 223.25 82.43 l 215.98 82.43 l 219.62 88.73 l S 200.78 88.73 m 204.42 82.43 l 197.14 82.43 l 200.78 88.73 l S 235.96 88.73 m 239.60 82.43 l 232.33 82.43 l 235.96 88.73 l S 147.58 88.73 m 151.22 82.43 l 143.95 82.43 l 147.58 88.73 l S 140.93 88.73 m 144.57 82.43 l 137.29 82.43 l 140.93 88.73 l S 208.95 88.73 m 212.58 82.43 l 205.31 82.43 l 208.95 88.73 l S 181.83 88.73 m 185.47 82.43 l 178.19 82.43 l 181.83 88.73 l S 228.23 88.73 m 231.87 82.43 l 224.60 82.43 l 228.23 88.73 l S 203.83 88.73 m 207.47 82.43 l 200.20 82.43 l 203.83 88.73 l S 197.48 88.73 m 201.11 82.43 l 193.84 82.43 l 197.48 88.73 l S 180.92 88.73 m 184.55 82.43 l 177.28 82.43 l 180.92 88.73 l S 216.04 88.73 m 219.67 82.43 l 212.40 82.43 l 216.04 88.73 l S 180.50 88.73 m 184.13 82.43 l 176.86 82.43 l 180.50 88.73 l S 222.88 88.73 m 226.51 82.43 l 219.24 82.43 l 222.88 88.73 l S 208.39 88.73 m 212.02 82.43 l 204.75 82.43 l 208.39 88.73 l S 135.20 88.73 m 138.84 82.43 l 131.56 82.43 l 135.20 88.73 l S 147.16 88.73 m 150.80 82.43 l 143.52 82.43 l 147.16 88.73 l S 204.29 88.73 m 207.92 82.43 l 200.65 82.43 l 204.29 88.73 l S 158.41 88.73 m 162.05 82.43 l 154.77 82.43 l 158.41 88.73 l S 129.92 88.73 m 133.55 82.43 l 126.28 82.43 l 129.92 88.73 l S 216.48 88.73 m 220.11 82.43 l 212.84 82.43 l 216.48 88.73 l S 140.10 88.73 m 143.74 82.43 l 136.46 82.43 l 140.10 88.73 l S 170.42 88.73 m 174.06 82.43 l 166.78 82.43 l 170.42 88.73 l S 157.41 88.73 m 161.05 82.43 l 153.77 82.43 l 157.41 88.73 l S 165.22 88.73 m 168.86 82.43 l 161.59 82.43 l 165.22 88.73 l S 201.41 88.73 m 205.05 82.43 l 197.78 82.43 l 201.41 88.73 l S 235.29 88.73 m 238.93 82.43 l 231.66 82.43 l 235.29 88.73 l S 167.71 88.73 m 171.34 82.43 l 164.07 82.43 l 167.71 88.73 l S 174.10 88.73 m 177.74 82.43 l 170.46 82.43 l 174.10 88.73 l S 185.95 88.73 m 189.58 82.43 l 182.31 82.43 l 185.95 88.73 l S 128.64 88.73 m 132.27 82.43 l 125.00 82.43 l 128.64 88.73 l S 157.20 88.73 m 160.84 82.43 l 153.56 82.43 l 157.20 88.73 l S 202.25 88.73 m 205.88 82.43 l 198.61 82.43 l 202.25 88.73 l S 207.88 88.73 m 211.52 82.43 l 204.24 82.43 l 207.88 88.73 l S 224.17 88.73 m 227.81 82.43 l 220.54 82.43 l 224.17 88.73 l S 203.76 88.73 m 207.40 82.43 l 200.13 82.43 l 203.76 88.73 l S 243.25 88.73 m 246.88 82.43 l 239.61 82.43 l 243.25 88.73 l S 142.12 88.73 m 145.75 82.43 l 138.48 82.43 l 142.12 88.73 l S 217.47 88.73 m 221.10 82.43 l 213.83 82.43 l 217.47 88.73 l S 191.67 88.73 m 195.30 82.43 l 188.03 82.43 l 191.67 88.73 l S 134.08 88.73 m 137.72 82.43 l 130.45 82.43 l 134.08 88.73 l S 223.15 88.73 m 226.78 82.43 l 219.51 82.43 l 223.15 88.73 l S 132.97 88.73 m 136.60 82.43 l 129.33 82.43 l 132.97 88.73 l S 241.41 88.73 m 245.05 82.43 l 237.77 82.43 l 241.41 88.73 l S 212.02 88.73 m 215.66 82.43 l 208.39 82.43 l 212.02 88.73 l S 157.23 88.73 m 160.86 82.43 l 153.59 82.43 l 157.23 88.73 l S 122.87 88.73 m 126.50 82.43 l 119.23 82.43 l 122.87 88.73 l S 135.89 88.73 m 139.53 82.43 l 132.25 82.43 l 135.89 88.73 l S 210.32 88.73 m 213.96 82.43 l 206.68 82.43 l 210.32 88.73 l S 146.16 88.73 m 149.79 82.43 l 142.52 82.43 l 146.16 88.73 l S 218.26 88.73 m 221.90 82.43 l 214.63 82.43 l 218.26 88.73 l S 170.78 88.73 m 174.41 82.43 l 167.14 82.43 l 170.78 88.73 l S 212.29 88.73 m 215.93 82.43 l 208.65 82.43 l 212.29 88.73 l S 136.39 88.73 m 140.03 82.43 l 132.76 82.43 l 136.39 88.73 l S 227.75 88.73 m 231.38 82.43 l 224.11 82.43 l 227.75 88.73 l S 230.57 88.73 m 234.20 82.43 l 226.93 82.43 l 230.57 88.73 l S 112.51 88.73 m 116.14 82.43 l 108.87 82.43 l 112.51 88.73 l S 177.99 88.73 m 181.63 82.43 l 174.36 82.43 l 177.99 88.73 l S 164.03 88.73 m 167.66 82.43 l 160.39 82.43 l 164.03 88.73 l S 179.56 88.73 m 183.19 82.43 l 175.92 82.43 l 179.56 88.73 l S 178.54 88.73 m 182.18 82.43 l 174.90 82.43 l 178.54 88.73 l S 172.97 88.73 m 176.61 82.43 l 169.34 82.43 l 172.97 88.73 l S 103.26 88.73 m 106.89 82.43 l 99.62 82.43 l 103.26 88.73 l S 138.25 88.73 m 141.88 82.43 l 134.61 82.43 l 138.25 88.73 l S 165.69 88.73 m 169.32 82.43 l 162.05 82.43 l 165.69 88.73 l S 187.24 88.73 m 190.88 82.43 l 183.61 82.43 l 187.24 88.73 l S 187.56 88.73 m 191.20 82.43 l 183.92 82.43 l 187.56 88.73 l S 161.95 88.73 m 165.59 82.43 l 158.31 82.43 l 161.95 88.73 l S 133.48 88.73 m 137.12 82.43 l 129.84 82.43 l 133.48 88.73 l S 158.92 88.73 m 162.55 82.43 l 155.28 82.43 l 158.92 88.73 l S 138.54 88.73 m 142.17 82.43 l 134.90 82.43 l 138.54 88.73 l S 189.56 88.73 m 193.20 82.43 l 185.92 82.43 l 189.56 88.73 l S 219.26 88.73 m 222.90 82.43 l 215.62 82.43 l 219.26 88.73 l S 207.04 88.73 m 210.68 82.43 l 203.40 82.43 l 207.04 88.73 l S 196.28 88.73 m 199.91 82.43 l 192.64 82.43 l 196.28 88.73 l S 145.40 88.73 m 149.04 82.43 l 141.77 82.43 l 145.40 88.73 l S 186.26 88.73 m 189.89 82.43 l 182.62 82.43 l 186.26 88.73 l S 128.11 88.73 m 131.74 82.43 l 124.47 82.43 l 128.11 88.73 l S 102.62 88.73 m 106.26 82.43 l 98.98 82.43 l 102.62 88.73 l S 251.12 88.73 m 254.76 82.43 l 247.49 82.43 l 251.12 88.73 l S 159.31 88.73 m 162.94 82.43 l 155.67 82.43 l 159.31 88.73 l S 172.31 88.73 m 175.95 82.43 l 168.67 82.43 l 172.31 88.73 l S 190.49 88.73 m 194.13 82.43 l 186.86 82.43 l 190.49 88.73 l S 250.41 88.73 m 254.05 82.43 l 246.78 82.43 l 250.41 88.73 l S 241.50 88.73 m 245.14 82.43 l 237.87 82.43 l 241.50 88.73 l S 209.49 88.73 m 213.13 82.43 l 205.85 82.43 l 209.49 88.73 l S 187.17 88.73 m 190.81 82.43 l 183.53 82.43 l 187.17 88.73 l S 192.86 88.73 m 196.49 82.43 l 189.22 82.43 l 192.86 88.73 l S 235.24 88.73 m 238.88 82.43 l 231.61 82.43 l 235.24 88.73 l S 217.38 88.73 m 221.02 82.43 l 213.75 82.43 l 217.38 88.73 l S 124.26 88.73 m 127.90 82.43 l 120.63 82.43 l 124.26 88.73 l S 187.95 88.73 m 191.58 82.43 l 184.31 82.43 l 187.95 88.73 l S 138.32 88.73 m 141.96 82.43 l 134.68 82.43 l 138.32 88.73 l S 162.88 88.73 m 166.51 82.43 l 159.24 82.43 l 162.88 88.73 l S 232.84 88.73 m 236.47 82.43 l 229.20 82.43 l 232.84 88.73 l S 178.99 88.73 m 182.63 82.43 l 175.36 82.43 l 178.99 88.73 l S 156.71 88.73 m 160.35 82.43 l 153.08 82.43 l 156.71 88.73 l S 162.06 88.73 m 165.70 82.43 l 158.43 82.43 l 162.06 88.73 l S 155.22 88.73 m 158.85 82.43 l 151.58 82.43 l 155.22 88.73 l S 180.35 88.73 m 183.99 82.43 l 176.71 82.43 l 180.35 88.73 l S 218.61 88.73 m 222.25 82.43 l 214.97 82.43 l 218.61 88.73 l S 172.36 88.73 m 175.99 82.43 l 168.72 82.43 l 172.36 88.73 l S 154.84 88.73 m 158.48 82.43 l 151.20 82.43 l 154.84 88.73 l S 169.57 88.73 m 173.20 82.43 l 165.93 82.43 l 169.57 88.73 l S 193.01 88.73 m 196.65 82.43 l 189.38 82.43 l 193.01 88.73 l S 220.39 88.73 m 224.03 82.43 l 216.76 82.43 l 220.39 88.73 l S 179.62 88.73 m 183.26 82.43 l 175.98 82.43 l 179.62 88.73 l S 212.31 88.73 m 215.94 82.43 l 208.67 82.43 l 212.31 88.73 l S 248.13 88.73 m 251.77 82.43 l 244.49 82.43 l 248.13 88.73 l S 121.05 88.73 m 124.68 82.43 l 117.41 82.43 l 121.05 88.73 l S 101.89 88.73 m 105.52 82.43 l 98.25 82.43 l 101.89 88.73 l S 316.84 88.73 m 320.47 82.43 l 313.20 82.43 l 316.84 88.73 l S 213.49 88.73 m 217.12 82.43 l 209.85 82.43 l 213.49 88.73 l S 214.59 88.73 m 218.23 82.43 l 210.96 82.43 l 214.59 88.73 l S 252.92 88.73 m 256.55 82.43 l 249.28 82.43 l 252.92 88.73 l S 235.96 88.73 m 239.59 82.43 l 232.32 82.43 l 235.96 88.73 l S 235.14 88.73 m 238.77 82.43 l 231.50 82.43 l 235.14 88.73 l S 215.33 88.73 m 218.97 82.43 l 211.69 82.43 l 215.33 88.73 l S 152.40 88.73 m 156.03 82.43 l 148.76 82.43 l 152.40 88.73 l S 217.90 88.73 m 221.53 82.43 l 214.26 82.43 l 217.90 88.73 l S 171.75 88.73 m 175.38 82.43 l 168.11 82.43 l 171.75 88.73 l S 221.61 88.73 m 225.24 82.43 l 217.97 82.43 l 221.61 88.73 l S 160.99 88.73 m 164.62 82.43 l 157.35 82.43 l 160.99 88.73 l S 274.72 88.73 m 278.35 82.43 l 271.08 82.43 l 274.72 88.73 l S 129.48 88.73 m 133.12 82.43 l 125.85 82.43 l 129.48 88.73 l S 191.89 88.73 m 195.53 82.43 l 188.25 82.43 l 191.89 88.73 l S 201.21 88.73 m 204.84 82.43 l 197.57 82.43 l 201.21 88.73 l S 79.45 88.73 m 83.09 82.43 l 75.82 82.43 l 79.45 88.73 l S 155.59 88.73 m 159.23 82.43 l 151.95 82.43 l 155.59 88.73 l S 203.19 88.73 m 206.83 82.43 l 199.56 82.43 l 203.19 88.73 l S 229.09 88.73 m 232.73 82.43 l 225.46 82.43 l 229.09 88.73 l S 143.56 88.73 m 147.20 82.43 l 139.93 82.43 l 143.56 88.73 l S 143.24 88.73 m 146.88 82.43 l 139.61 82.43 l 143.24 88.73 l S 250.31 88.73 m 253.95 82.43 l 246.68 82.43 l 250.31 88.73 l S 286.73 88.73 m 290.37 82.43 l 283.10 82.43 l 286.73 88.73 l S 159.47 88.73 m 163.10 82.43 l 155.83 82.43 l 159.47 88.73 l S 224.37 88.73 m 228.00 82.43 l 220.73 82.43 l 224.37 88.73 l S 229.31 88.73 m 232.95 82.43 l 225.67 82.43 l 229.31 88.73 l S 225.86 88.73 m 229.50 82.43 l 222.22 82.43 l 225.86 88.73 l S 224.62 88.73 m 228.26 82.43 l 220.99 82.43 l 224.62 88.73 l S 161.18 88.73 m 164.82 82.43 l 157.55 82.43 l 161.18 88.73 l S 201.03 88.73 m 204.66 82.43 l 197.39 82.43 l 201.03 88.73 l S 213.05 88.73 m 216.69 82.43 l 209.42 82.43 l 213.05 88.73 l S 200.64 88.73 m 204.28 82.43 l 197.01 82.43 l 200.64 88.73 l S 198.70 88.73 m 202.34 82.43 l 195.06 82.43 l 198.70 88.73 l S 210.00 88.73 m 213.64 82.43 l 206.37 82.43 l 210.00 88.73 l S 240.77 88.73 m 244.40 82.43 l 237.13 82.43 l 240.77 88.73 l S 195.81 88.73 m 199.45 82.43 l 192.17 82.43 l 195.81 88.73 l S 230.35 88.73 m 233.98 82.43 l 226.71 82.43 l 230.35 88.73 l S 216.57 88.73 m 220.21 82.43 l 212.94 82.43 l 216.57 88.73 l S 228.14 88.73 m 231.78 82.43 l 224.50 82.43 l 228.14 88.73 l S 257.75 88.73 m 261.39 82.43 l 254.12 82.43 l 257.75 88.73 l S 268.42 88.73 m 272.06 82.43 l 264.78 82.43 l 268.42 88.73 l S 256.94 88.73 m 260.58 82.43 l 253.30 82.43 l 256.94 88.73 l S 174.41 88.73 m 178.05 82.43 l 170.77 82.43 l 174.41 88.73 l S 107.64 88.73 m 111.27 82.43 l 104.00 82.43 l 107.64 88.73 l S 168.78 88.73 m 172.42 82.43 l 165.14 82.43 l 168.78 88.73 l S 198.46 88.73 m 202.10 82.43 l 194.83 82.43 l 198.46 88.73 l S 202.27 88.73 m 205.90 82.43 l 198.63 82.43 l 202.27 88.73 l S 141.83 88.73 m 145.47 82.43 l 138.20 82.43 l 141.83 88.73 l S 248.03 88.73 m 251.67 82.43 l 244.40 82.43 l 248.03 88.73 l S 194.97 88.73 m 198.60 82.43 l 191.33 82.43 l 194.97 88.73 l S 179.94 88.73 m 183.57 82.43 l 176.30 82.43 l 179.94 88.73 l S 235.62 88.73 m 239.26 82.43 l 231.98 82.43 l 235.62 88.73 l S 216.99 88.73 m 220.62 82.43 l 213.35 82.43 l 216.99 88.73 l S 229.24 88.73 m 232.88 82.43 l 225.61 82.43 l 229.24 88.73 l S 205.39 88.73 m 209.03 82.43 l 201.76 82.43 l 205.39 88.73 l S 242.67 88.73 m 246.31 82.43 l 239.04 82.43 l 242.67 88.73 l S 165.45 88.73 m 169.08 82.43 l 161.81 82.43 l 165.45 88.73 l S 268.45 88.73 m 272.09 82.43 l 264.81 82.43 l 268.45 88.73 l S 225.92 88.73 m 229.56 82.43 l 222.29 82.43 l 225.92 88.73 l S 221.64 88.73 m 225.28 82.43 l 218.00 82.43 l 221.64 88.73 l S 212.81 88.73 m 216.44 82.43 l 209.17 82.43 l 212.81 88.73 l S 184.69 88.73 m 188.33 82.43 l 181.06 82.43 l 184.69 88.73 l S 177.64 88.73 m 181.28 82.43 l 174.01 82.43 l 177.64 88.73 l S 207.31 88.73 m 210.95 82.43 l 203.68 82.43 l 207.31 88.73 l S 227.95 88.73 m 231.59 82.43 l 224.32 82.43 l 227.95 88.73 l S 212.67 88.73 m 216.31 82.43 l 209.04 82.43 l 212.67 88.73 l S 159.49 88.73 m 163.13 82.43 l 155.86 82.43 l 159.49 88.73 l S 172.31 88.73 m 175.94 82.43 l 168.67 82.43 l 172.31 88.73 l S 173.23 88.73 m 176.87 82.43 l 169.60 82.43 l 173.23 88.73 l S 195.85 88.73 m 199.48 82.43 l 192.21 82.43 l 195.85 88.73 l S 177.61 88.73 m 181.24 82.43 l 173.97 82.43 l 177.61 88.73 l S 263.67 88.73 m 267.30 82.43 l 260.03 82.43 l 263.67 88.73 l S 193.14 88.73 m 196.78 82.43 l 189.51 82.43 l 193.14 88.73 l S 177.38 88.73 m 181.01 82.43 l 173.74 82.43 l 177.38 88.73 l S 141.77 88.73 m 145.40 82.43 l 138.13 82.43 l 141.77 88.73 l S 162.50 88.73 m 166.14 82.43 l 158.87 82.43 l 162.50 88.73 l S 146.54 88.73 m 150.17 82.43 l 142.90 82.43 l 146.54 88.73 l S 224.37 88.73 m 228.01 82.43 l 220.74 82.43 l 224.37 88.73 l S 210.22 88.73 m 213.86 82.43 l 206.59 82.43 l 210.22 88.73 l S 201.72 88.73 m 205.35 82.43 l 198.08 82.43 l 201.72 88.73 l S 186.99 88.73 m 190.63 82.43 l 183.36 82.43 l 186.99 88.73 l S 176.60 88.73 m 180.24 82.43 l 172.97 82.43 l 176.60 88.73 l S 181.05 88.73 m 184.69 82.43 l 177.41 82.43 l 181.05 88.73 l S 113.37 88.73 m 117.01 82.43 l 109.74 82.43 l 113.37 88.73 l S 218.32 88.73 m 221.96 82.43 l 214.69 82.43 l 218.32 88.73 l S 184.08 88.73 m 187.71 82.43 l 180.44 82.43 l 184.08 88.73 l S 200.48 88.73 m 204.12 82.43 l 196.84 82.43 l 200.48 88.73 l S 203.48 88.73 m 207.11 82.43 l 199.84 82.43 l 203.48 88.73 l S 197.37 88.73 m 201.01 82.43 l 193.74 82.43 l 197.37 88.73 l S 157.45 88.73 m 161.08 82.43 l 153.81 82.43 l 157.45 88.73 l S 181.93 88.73 m 185.57 82.43 l 178.30 82.43 l 181.93 88.73 l S 258.97 88.73 m 262.61 82.43 l 255.34 82.43 l 258.97 88.73 l S 245.28 88.73 m 248.91 82.43 l 241.64 82.43 l 245.28 88.73 l S 184.56 88.73 m 188.19 82.43 l 180.92 82.43 l 184.56 88.73 l S 228.57 88.73 m 232.20 82.43 l 224.93 82.43 l 228.57 88.73 l S 232.44 88.73 m 236.08 82.43 l 228.80 82.43 l 232.44 88.73 l S 257.35 88.73 m 260.99 82.43 l 253.72 82.43 l 257.35 88.73 l S 228.32 88.73 m 231.95 82.43 l 224.68 82.43 l 228.32 88.73 l S 244.98 88.73 m 248.62 82.43 l 241.34 82.43 l 244.98 88.73 l S 137.81 88.73 m 141.44 82.43 l 134.17 82.43 l 137.81 88.73 l S 158.91 88.73 m 162.54 82.43 l 155.27 82.43 l 158.91 88.73 l S 242.03 88.73 m 245.67 82.43 l 238.39 82.43 l 242.03 88.73 l S 230.19 88.73 m 233.83 82.43 l 226.55 82.43 l 230.19 88.73 l S 228.14 88.73 m 231.77 82.43 l 224.50 82.43 l 228.14 88.73 l S 237.80 88.73 m 241.44 82.43 l 234.17 82.43 l 237.80 88.73 l S 189.45 88.73 m 193.09 82.43 l 185.82 82.43 l 189.45 88.73 l S 201.12 88.73 m 204.75 82.43 l 197.48 82.43 l 201.12 88.73 l S 183.70 88.73 m 187.34 82.43 l 180.06 82.43 l 183.70 88.73 l S 217.73 88.73 m 221.37 82.43 l 214.10 82.43 l 217.73 88.73 l S 199.74 88.73 m 203.38 82.43 l 196.10 82.43 l 199.74 88.73 l S 129.05 88.73 m 132.69 82.43 l 125.41 82.43 l 129.05 88.73 l S 132.93 88.73 m 136.57 82.43 l 129.30 82.43 l 132.93 88.73 l S 182.80 88.73 m 186.43 82.43 l 179.16 82.43 l 182.80 88.73 l S 181.30 88.73 m 184.93 82.43 l 177.66 82.43 l 181.30 88.73 l S 164.67 88.73 m 168.31 82.43 l 161.03 82.43 l 164.67 88.73 l S 122.15 88.73 m 125.78 82.43 l 118.51 82.43 l 122.15 88.73 l S 209.92 88.73 m 213.55 82.43 l 206.28 82.43 l 209.92 88.73 l S 251.61 88.73 m 255.25 82.43 l 247.98 82.43 l 251.61 88.73 l S 236.48 88.73 m 240.11 82.43 l 232.84 82.43 l 236.48 88.73 l S 277.91 88.73 m 281.55 82.43 l 274.28 82.43 l 277.91 88.73 l S 198.06 88.73 m 201.69 82.43 l 194.42 82.43 l 198.06 88.73 l S 169.57 88.73 m 173.21 82.43 l 165.94 82.43 l 169.57 88.73 l S 206.41 88.73 m 210.05 82.43 l 202.78 82.43 l 206.41 88.73 l S 223.84 88.73 m 227.47 82.43 l 220.20 82.43 l 223.84 88.73 l S 190.63 88.73 m 194.27 82.43 l 187.00 82.43 l 190.63 88.73 l S 146.08 88.73 m 149.71 82.43 l 142.44 82.43 l 146.08 88.73 l S 197.66 88.73 m 201.30 82.43 l 194.02 82.43 l 197.66 88.73 l S 185.70 88.73 m 189.34 82.43 l 182.07 82.43 l 185.70 88.73 l S 195.24 88.73 m 198.87 82.43 l 191.60 82.43 l 195.24 88.73 l S 190.83 88.73 m 194.47 82.43 l 187.20 82.43 l 190.83 88.73 l S 254.56 88.73 m 258.19 82.43 l 250.92 82.43 l 254.56 88.73 l S 193.49 88.73 m 197.12 82.43 l 189.85 82.43 l 193.49 88.73 l S 257.29 88.73 m 260.92 82.43 l 253.65 82.43 l 257.29 88.73 l S 249.62 88.73 m 253.26 82.43 l 245.98 82.43 l 249.62 88.73 l S 209.42 88.73 m 213.06 82.43 l 205.78 82.43 l 209.42 88.73 l S 179.61 88.73 m 183.25 82.43 l 175.98 82.43 l 179.61 88.73 l S 111.08 88.73 m 114.72 82.43 l 107.44 82.43 l 111.08 88.73 l S 169.24 88.73 m 172.88 82.43 l 165.60 82.43 l 169.24 88.73 l S 214.86 88.73 m 218.50 82.43 l 211.22 82.43 l 214.86 88.73 l S 232.41 88.73 m 236.05 82.43 l 228.78 82.43 l 232.41 88.73 l S 231.56 88.73 m 235.20 82.43 l 227.93 82.43 l 231.56 88.73 l S 169.03 88.73 m 172.67 82.43 l 165.39 82.43 l 169.03 88.73 l S 267.76 88.73 m 271.39 82.43 l 264.12 82.43 l 267.76 88.73 l S 123.84 88.73 m 127.48 82.43 l 120.21 82.43 l 123.84 88.73 l S 83.79 88.73 m 87.42 82.43 l 80.15 82.43 l 83.79 88.73 l S 185.31 88.73 m 188.95 82.43 l 181.67 82.43 l 185.31 88.73 l S 198.67 88.73 m 202.30 82.43 l 195.03 82.43 l 198.67 88.73 l S 267.46 88.73 m 271.10 82.43 l 263.82 82.43 l 267.46 88.73 l S 179.46 88.73 m 183.10 82.43 l 175.83 82.43 l 179.46 88.73 l S 252.05 88.73 m 255.68 82.43 l 248.41 82.43 l 252.05 88.73 l S 136.53 88.73 m 140.17 82.43 l 132.89 82.43 l 136.53 88.73 l S 186.56 88.73 m 190.20 82.43 l 182.93 82.43 l 186.56 88.73 l S 240.07 88.73 m 243.71 82.43 l 236.44 82.43 l 240.07 88.73 l S 255.80 88.73 m 259.44 82.43 l 252.17 82.43 l 255.80 88.73 l S 182.11 88.73 m 185.75 82.43 l 178.48 82.43 l 182.11 88.73 l S 228.88 88.73 m 232.51 82.43 l 225.24 82.43 l 228.88 88.73 l S 225.55 88.73 m 229.18 82.43 l 221.91 82.43 l 225.55 88.73 l S 226.43 88.73 m 230.07 82.43 l 222.80 82.43 l 226.43 88.73 l S 205.88 88.73 m 209.51 82.43 l 202.24 82.43 l 205.88 88.73 l S 147.88 88.73 m 151.52 82.43 l 144.25 82.43 l 147.88 88.73 l S 235.34 88.73 m 238.98 82.43 l 231.70 82.43 l 235.34 88.73 l S 240.74 88.73 m 244.37 82.43 l 237.10 82.43 l 240.74 88.73 l S 182.70 88.73 m 186.34 82.43 l 179.07 82.43 l 182.70 88.73 l S 146.88 88.73 m 150.51 82.43 l 143.24 82.43 l 146.88 88.73 l S 174.02 88.73 m 177.66 82.43 l 170.39 82.43 l 174.02 88.73 l S 164.48 88.73 m 168.12 82.43 l 160.85 82.43 l 164.48 88.73 l S 202.25 88.73 m 205.89 82.43 l 198.62 82.43 l 202.25 88.73 l S 102.24 88.73 m 105.88 82.43 l 98.61 82.43 l 102.24 88.73 l S 246.79 88.73 m 250.43 82.43 l 243.15 82.43 l 246.79 88.73 l S 186.48 88.73 m 190.12 82.43 l 182.84 82.43 l 186.48 88.73 l S 213.10 88.73 m 216.73 82.43 l 209.46 82.43 l 213.10 88.73 l S 215.66 88.73 m 219.29 82.43 l 212.02 82.43 l 215.66 88.73 l S 147.36 88.73 m 151.00 82.43 l 143.73 82.43 l 147.36 88.73 l S 170.81 88.73 m 174.44 82.43 l 167.17 82.43 l 170.81 88.73 l S 221.70 88.73 m 225.33 82.43 l 218.06 82.43 l 221.70 88.73 l S 216.71 88.73 m 220.34 82.43 l 213.07 82.43 l 216.71 88.73 l S 167.30 88.73 m 170.93 82.43 l 163.66 82.43 l 167.30 88.73 l S 206.13 88.73 m 209.76 82.43 l 202.49 82.43 l 206.13 88.73 l S 161.76 88.73 m 165.39 82.43 l 158.12 82.43 l 161.76 88.73 l S 226.40 88.73 m 230.03 82.43 l 222.76 82.43 l 226.40 88.73 l S 158.30 88.73 m 161.94 82.43 l 154.67 82.43 l 158.30 88.73 l S 123.80 88.73 m 127.43 82.43 l 120.16 82.43 l 123.80 88.73 l S 88.74 88.73 m 92.37 82.43 l 85.10 82.43 l 88.74 88.73 l S 233.88 88.73 m 237.52 82.43 l 230.25 82.43 l 233.88 88.73 l S 117.64 88.73 m 121.28 82.43 l 114.01 82.43 l 117.64 88.73 l S 176.63 88.73 m 180.26 82.43 l 172.99 82.43 l 176.63 88.73 l S 199.02 88.73 m 202.65 82.43 l 195.38 82.43 l 199.02 88.73 l S 316.25 88.73 m 319.88 82.43 l 312.61 82.43 l 316.25 88.73 l S 167.03 88.73 m 170.66 82.43 l 163.39 82.43 l 167.03 88.73 l S 256.70 88.73 m 260.34 82.43 l 253.07 82.43 l 256.70 88.73 l S 247.46 88.73 m 251.10 82.43 l 243.83 82.43 l 247.46 88.73 l S 193.31 88.73 m 196.95 82.43 l 189.67 82.43 l 193.31 88.73 l S 121.96 88.73 m 125.60 82.43 l 118.32 82.43 l 121.96 88.73 l S 195.65 88.73 m 199.29 82.43 l 192.02 82.43 l 195.65 88.73 l S 169.63 88.73 m 173.26 82.43 l 165.99 82.43 l 169.63 88.73 l S 186.78 88.73 m 190.41 82.43 l 183.14 82.43 l 186.78 88.73 l S 231.76 88.73 m 235.40 82.43 l 228.13 82.43 l 231.76 88.73 l S 220.33 88.73 m 223.97 82.43 l 216.70 82.43 l 220.33 88.73 l S 216.80 88.73 m 220.44 82.43 l 213.17 82.43 l 216.80 88.73 l S 193.37 88.73 m 197.01 82.43 l 189.74 82.43 l 193.37 88.73 l S 168.32 88.73 m 171.96 82.43 l 164.69 82.43 l 168.32 88.73 l S 280.65 88.73 m 284.28 82.43 l 277.01 82.43 l 280.65 88.73 l S 249.36 88.73 m 253.00 82.43 l 245.73 82.43 l 249.36 88.73 l S 201.38 88.73 m 205.02 82.43 l 197.75 82.43 l 201.38 88.73 l S 230.98 88.73 m 234.61 82.43 l 227.34 82.43 l 230.98 88.73 l S 215.83 88.73 m 219.46 82.43 l 212.19 82.43 l 215.83 88.73 l S 228.13 88.73 m 231.77 82.43 l 224.50 82.43 l 228.13 88.73 l S 185.70 88.73 m 189.34 82.43 l 182.07 82.43 l 185.70 88.73 l S 197.06 88.73 m 200.70 82.43 l 193.43 82.43 l 197.06 88.73 l S 245.67 88.73 m 249.31 82.43 l 242.03 82.43 l 245.67 88.73 l S 222.12 88.73 m 225.75 82.43 l 218.48 82.43 l 222.12 88.73 l S 129.48 88.73 m 133.12 82.43 l 125.85 82.43 l 129.48 88.73 l S 183.65 88.73 m 187.29 82.43 l 180.02 82.43 l 183.65 88.73 l S 189.90 88.73 m 193.53 82.43 l 186.26 82.43 l 189.90 88.73 l S 225.46 88.73 m 229.10 82.43 l 221.82 82.43 l 225.46 88.73 l S 245.35 88.73 m 248.99 82.43 l 241.71 82.43 l 245.35 88.73 l S 189.74 88.73 m 193.38 82.43 l 186.11 82.43 l 189.74 88.73 l S 191.20 88.73 m 194.83 82.43 l 187.56 82.43 l 191.20 88.73 l S 217.46 88.73 m 221.09 82.43 l 213.82 82.43 l 217.46 88.73 l S 214.71 88.73 m 218.35 82.43 l 211.08 82.43 l 214.71 88.73 l S 182.02 88.73 m 185.66 82.43 l 178.38 82.43 l 182.02 88.73 l S 243.52 88.73 m 247.16 82.43 l 239.89 82.43 l 243.52 88.73 l S 230.67 88.73 m 234.31 82.43 l 227.04 82.43 l 230.67 88.73 l S 201.98 88.73 m 205.62 82.43 l 198.34 82.43 l 201.98 88.73 l S 193.86 88.73 m 197.49 82.43 l 190.22 82.43 l 193.86 88.73 l S 208.60 88.73 m 212.23 82.43 l 204.96 82.43 l 208.60 88.73 l S 161.24 88.73 m 164.88 82.43 l 157.60 82.43 l 161.24 88.73 l S 247.17 88.73 m 250.81 82.43 l 243.54 82.43 l 247.17 88.73 l S 196.73 88.73 m 200.37 82.43 l 193.10 82.43 l 196.73 88.73 l S 249.27 88.73 m 252.91 82.43 l 245.64 82.43 l 249.27 88.73 l S 187.18 88.73 m 190.82 82.43 l 183.55 82.43 l 187.18 88.73 l S 156.37 88.73 m 160.01 82.43 l 152.74 82.43 l 156.37 88.73 l S 164.17 88.73 m 167.81 82.43 l 160.54 82.43 l 164.17 88.73 l S 210.43 88.73 m 214.06 82.43 l 206.79 82.43 l 210.43 88.73 l S 260.64 88.73 m 264.27 82.43 l 257.00 82.43 l 260.64 88.73 l S 196.72 88.73 m 200.36 82.43 l 193.08 82.43 l 196.72 88.73 l S 179.40 88.73 m 183.04 82.43 l 175.76 82.43 l 179.40 88.73 l S 206.50 88.73 m 210.13 82.43 l 202.86 82.43 l 206.50 88.73 l S 259.46 88.73 m 263.09 82.43 l 255.82 82.43 l 259.46 88.73 l S 228.65 88.73 m 232.29 82.43 l 225.02 82.43 l 228.65 88.73 l S 245.33 88.73 m 248.96 82.43 l 241.69 82.43 l 245.33 88.73 l S 144.09 88.73 m 147.73 82.43 l 140.45 82.43 l 144.09 88.73 l S 108.50 88.73 m 112.13 82.43 l 104.86 82.43 l 108.50 88.73 l S 251.89 88.73 m 255.53 82.43 l 248.26 82.43 l 251.89 88.73 l S 223.36 88.73 m 227.00 82.43 l 219.73 82.43 l 223.36 88.73 l S 259.73 88.73 m 263.37 82.43 l 256.10 82.43 l 259.73 88.73 l S 204.11 88.73 m 207.75 82.43 l 200.47 82.43 l 204.11 88.73 l S 229.50 88.73 m 233.14 82.43 l 225.87 82.43 l 229.50 88.73 l S 140.65 88.73 m 144.29 82.43 l 137.02 82.43 l 140.65 88.73 l S 256.02 88.73 m 259.65 82.43 l 252.38 82.43 l 256.02 88.73 l S 258.75 88.73 m 262.39 82.43 l 255.12 82.43 l 258.75 88.73 l S 220.36 88.73 m 224.00 82.43 l 216.73 82.43 l 220.36 88.73 l S 187.35 88.73 m 190.99 82.43 l 183.71 82.43 l 187.35 88.73 l S 205.13 88.73 m 208.77 82.43 l 201.49 82.43 l 205.13 88.73 l S 220.68 88.73 m 224.32 82.43 l 217.05 82.43 l 220.68 88.73 l S 149.32 88.73 m 152.96 82.43 l 145.69 82.43 l 149.32 88.73 l S 196.96 88.73 m 200.60 82.43 l 193.33 82.43 l 196.96 88.73 l S 198.78 88.73 m 202.42 82.43 l 195.14 82.43 l 198.78 88.73 l S 218.91 88.73 m 222.55 82.43 l 215.28 82.43 l 218.91 88.73 l S 204.56 88.73 m 208.19 82.43 l 200.92 82.43 l 204.56 88.73 l S 190.73 88.73 m 194.36 82.43 l 187.09 82.43 l 190.73 88.73 l S 168.51 88.73 m 172.15 82.43 l 164.88 82.43 l 168.51 88.73 l S 198.68 88.73 m 202.32 82.43 l 195.05 82.43 l 198.68 88.73 l S 251.48 88.73 m 255.11 82.43 l 247.84 82.43 l 251.48 88.73 l S 220.92 88.73 m 224.56 82.43 l 217.29 82.43 l 220.92 88.73 l S 205.14 88.73 m 208.77 82.43 l 201.50 82.43 l 205.14 88.73 l S 151.07 88.73 m 154.71 82.43 l 147.43 82.43 l 151.07 88.73 l S 211.05 88.73 m 214.68 82.43 l 207.41 82.43 l 211.05 88.73 l S 235.64 88.73 m 239.27 82.43 l 232.00 82.43 l 235.64 88.73 l S 105.41 88.73 m 109.04 82.43 l 101.77 82.43 l 105.41 88.73 l S 206.39 88.73 m 210.03 82.43 l 202.76 82.43 l 206.39 88.73 l S 253.56 88.73 m 257.20 82.43 l 249.93 82.43 l 253.56 88.73 l S 178.34 88.73 m 181.98 82.43 l 174.71 82.43 l 178.34 88.73 l S 189.96 88.73 m 193.60 82.43 l 186.32 82.43 l 189.96 88.73 l S 276.19 88.73 m 279.82 82.43 l 272.55 82.43 l 276.19 88.73 l S 193.55 88.73 m 197.19 82.43 l 189.92 82.43 l 193.55 88.73 l S 183.79 88.73 m 187.43 82.43 l 180.16 82.43 l 183.79 88.73 l S 213.55 88.73 m 217.18 82.43 l 209.91 82.43 l 213.55 88.73 l S 202.09 88.73 m 205.73 82.43 l 198.46 82.43 l 202.09 88.73 l S 191.88 88.73 m 195.51 82.43 l 188.24 82.43 l 191.88 88.73 l S 190.39 88.73 m 194.03 82.43 l 186.75 82.43 l 190.39 88.73 l S 182.85 88.73 m 186.48 82.43 l 179.21 82.43 l 182.85 88.73 l S 181.34 88.73 m 184.98 82.43 l 177.71 82.43 l 181.34 88.73 l S 231.75 88.73 m 235.39 82.43 l 228.12 82.43 l 231.75 88.73 l S 185.07 88.73 m 188.71 82.43 l 181.43 82.43 l 185.07 88.73 l S 225.56 88.73 m 229.20 82.43 l 221.93 82.43 l 225.56 88.73 l S 219.44 88.73 m 223.07 82.43 l 215.80 82.43 l 219.44 88.73 l S 251.42 88.73 m 255.05 82.43 l 247.78 82.43 l 251.42 88.73 l S 208.76 88.73 m 212.39 82.43 l 205.12 82.43 l 208.76 88.73 l S 213.42 88.73 m 217.06 82.43 l 209.78 82.43 l 213.42 88.73 l S 235.66 88.73 m 239.30 82.43 l 232.03 82.43 l 235.66 88.73 l S 214.25 88.73 m 217.88 82.43 l 210.61 82.43 l 214.25 88.73 l S 156.74 88.73 m 160.37 82.43 l 153.10 82.43 l 156.74 88.73 l S 191.32 88.73 m 194.95 82.43 l 187.68 82.43 l 191.32 88.73 l S 204.62 88.73 m 208.26 82.43 l 200.99 82.43 l 204.62 88.73 l S 202.85 88.73 m 206.48 82.43 l 199.21 82.43 l 202.85 88.73 l S 130.13 88.73 m 133.77 82.43 l 126.50 82.43 l 130.13 88.73 l S 233.47 88.73 m 237.11 82.43 l 229.84 82.43 l 233.47 88.73 l S 233.06 88.73 m 236.70 82.43 l 229.42 82.43 l 233.06 88.73 l S 174.79 88.73 m 178.42 82.43 l 171.15 82.43 l 174.79 88.73 l S 176.79 88.73 m 180.43 82.43 l 173.15 82.43 l 176.79 88.73 l S 207.05 88.73 m 210.69 82.43 l 203.42 82.43 l 207.05 88.73 l S 192.76 88.73 m 196.40 82.43 l 189.12 82.43 l 192.76 88.73 l S 214.08 88.73 m 217.72 82.43 l 210.44 82.43 l 214.08 88.73 l S 200.13 88.73 m 203.77 82.43 l 196.50 82.43 l 200.13 88.73 l S 211.32 88.73 m 214.95 82.43 l 207.68 82.43 l 211.32 88.73 l S 161.11 88.73 m 164.75 82.43 l 157.48 82.43 l 161.11 88.73 l S 165.83 88.73 m 169.47 82.43 l 162.20 82.43 l 165.83 88.73 l S 203.50 88.73 m 207.13 82.43 l 199.86 82.43 l 203.50 88.73 l S 129.80 88.73 m 133.44 82.43 l 126.16 82.43 l 129.80 88.73 l S 157.32 88.73 m 160.96 82.43 l 153.69 82.43 l 157.32 88.73 l S 194.43 88.73 m 198.07 82.43 l 190.79 82.43 l 194.43 88.73 l S 193.37 88.73 m 197.01 82.43 l 189.73 82.43 l 193.37 88.73 l S 189.07 88.73 m 192.71 82.43 l 185.44 82.43 l 189.07 88.73 l S 177.49 88.73 m 181.12 82.43 l 173.85 82.43 l 177.49 88.73 l S 220.37 88.73 m 224.01 82.43 l 216.74 82.43 l 220.37 88.73 l S 135.75 88.73 m 139.39 82.43 l 132.12 82.43 l 135.75 88.73 l S 157.69 88.73 m 161.33 82.43 l 154.06 82.43 l 157.69 88.73 l S 179.35 88.73 m 182.99 82.43 l 175.72 82.43 l 179.35 88.73 l S 141.38 88.73 m 145.01 82.43 l 137.74 82.43 l 141.38 88.73 l S 249.19 88.73 m 252.83 82.43 l 245.55 82.43 l 249.19 88.73 l S 226.74 88.73 m 230.38 82.43 l 223.11 82.43 l 226.74 88.73 l S 142.18 88.73 m 145.82 82.43 l 138.55 82.43 l 142.18 88.73 l S 190.83 88.73 m 194.46 82.43 l 187.19 82.43 l 190.83 88.73 l S 79.95 88.73 m 83.59 82.43 l 76.31 82.43 l 79.95 88.73 l S 110.85 88.73 m 114.49 82.43 l 107.21 82.43 l 110.85 88.73 l S 244.92 88.73 m 248.55 82.43 l 241.28 82.43 l 244.92 88.73 l S 215.71 88.73 m 219.35 82.43 l 212.07 82.43 l 215.71 88.73 l S 199.33 88.73 m 202.97 82.43 l 195.69 82.43 l 199.33 88.73 l S 177.30 88.73 m 180.94 82.43 l 173.67 82.43 l 177.30 88.73 l S 271.60 88.73 m 275.24 82.43 l 267.97 82.43 l 271.60 88.73 l S 178.49 88.73 m 182.12 82.43 l 174.85 82.43 l 178.49 88.73 l S 150.35 88.73 m 153.99 82.43 l 146.72 82.43 l 150.35 88.73 l S 213.38 88.73 m 217.02 82.43 l 209.75 82.43 l 213.38 88.73 l S 108.91 88.73 m 112.54 82.43 l 105.27 82.43 l 108.91 88.73 l S 194.48 88.73 m 198.12 82.43 l 190.85 82.43 l 194.48 88.73 l S 151.42 88.73 m 155.06 82.43 l 147.78 82.43 l 151.42 88.73 l S 220.60 88.73 m 224.24 82.43 l 216.97 82.43 l 220.60 88.73 l S 75.85 88.73 m 79.48 82.43 l 72.21 82.43 l 75.85 88.73 l S 172.54 88.73 m 176.17 82.43 l 168.90 82.43 l 172.54 88.73 l S 241.22 88.73 m 244.86 82.43 l 237.59 82.43 l 241.22 88.73 l S 152.03 88.73 m 155.67 82.43 l 148.40 82.43 l 152.03 88.73 l S 199.22 88.73 m 202.86 82.43 l 195.59 82.43 l 199.22 88.73 l S 205.88 88.73 m 209.52 82.43 l 202.24 82.43 l 205.88 88.73 l S 231.11 88.73 m 234.75 82.43 l 227.48 82.43 l 231.11 88.73 l S 184.67 88.73 m 188.31 82.43 l 181.04 82.43 l 184.67 88.73 l S 122.90 88.73 m 126.54 82.43 l 119.27 82.43 l 122.90 88.73 l S 147.66 88.73 m 151.30 82.43 l 144.03 82.43 l 147.66 88.73 l S 205.65 88.73 m 209.29 82.43 l 202.02 82.43 l 205.65 88.73 l S 236.72 88.73 m 240.35 82.43 l 233.08 82.43 l 236.72 88.73 l S 222.32 88.73 m 225.95 82.43 l 218.68 82.43 l 222.32 88.73 l S 154.34 88.73 m 157.98 82.43 l 150.70 82.43 l 154.34 88.73 l S 211.53 88.73 m 215.17 82.43 l 207.90 82.43 l 211.53 88.73 l S 246.62 88.73 m 250.26 82.43 l 242.99 82.43 l 246.62 88.73 l S 145.32 88.73 m 148.95 82.43 l 141.68 82.43 l 145.32 88.73 l S 183.87 88.73 m 187.51 82.43 l 180.23 82.43 l 183.87 88.73 l S 295.42 88.73 m 299.06 82.43 l 291.79 82.43 l 295.42 88.73 l S 217.58 88.73 m 221.21 82.43 l 213.94 82.43 l 217.58 88.73 l S 201.40 88.73 m 205.04 82.43 l 197.76 82.43 l 201.40 88.73 l S 97.39 88.73 m 101.02 82.43 l 93.75 82.43 l 97.39 88.73 l S 237.76 88.73 m 241.39 82.43 l 234.12 82.43 l 237.76 88.73 l S 206.02 88.73 m 209.66 82.43 l 202.38 82.43 l 206.02 88.73 l S 194.88 88.73 m 198.51 82.43 l 191.24 82.43 l 194.88 88.73 l S 159.63 88.73 m 163.26 82.43 l 155.99 82.43 l 159.63 88.73 l S 190.25 88.73 m 193.88 82.43 l 186.61 82.43 l 190.25 88.73 l S 235.02 88.73 m 238.65 82.43 l 231.38 82.43 l 235.02 88.73 l S 202.41 88.73 m 206.05 82.43 l 198.78 82.43 l 202.41 88.73 l S 102.06 88.73 m 105.69 82.43 l 98.42 82.43 l 102.06 88.73 l S 211.34 88.73 m 214.98 82.43 l 207.71 82.43 l 211.34 88.73 l S 196.50 88.73 m 200.13 82.43 l 192.86 82.43 l 196.50 88.73 l S 227.56 88.73 m 231.20 82.43 l 223.92 82.43 l 227.56 88.73 l S 257.67 88.73 m 261.31 82.43 l 254.03 82.43 l 257.67 88.73 l S 214.93 88.73 m 218.56 82.43 l 211.29 82.43 l 214.93 88.73 l S 204.43 88.73 m 208.06 82.43 l 200.79 82.43 l 204.43 88.73 l S 161.53 88.73 m 165.16 82.43 l 157.89 82.43 l 161.53 88.73 l S 189.48 88.73 m 193.12 82.43 l 185.84 82.43 l 189.48 88.73 l S 216.11 88.73 m 219.74 82.43 l 212.47 82.43 l 216.11 88.73 l S 252.12 88.73 m 255.75 82.43 l 248.48 82.43 l 252.12 88.73 l S 239.47 88.73 m 243.10 82.43 l 235.83 82.43 l 239.47 88.73 l S 159.38 88.73 m 163.02 82.43 l 155.75 82.43 l 159.38 88.73 l S 238.36 88.73 m 242.00 82.43 l 234.73 82.43 l 238.36 88.73 l S 229.49 88.73 m 233.13 82.43 l 225.86 82.43 l 229.49 88.73 l S 247.81 88.73 m 251.44 82.43 l 244.17 82.43 l 247.81 88.73 l S 224.47 88.73 m 228.10 82.43 l 220.83 82.43 l 224.47 88.73 l S 135.88 88.73 m 139.52 82.43 l 132.25 82.43 l 135.88 88.73 l S 137.16 88.73 m 140.80 82.43 l 133.52 82.43 l 137.16 88.73 l S 212.97 88.73 m 216.61 82.43 l 209.34 82.43 l 212.97 88.73 l S 343.64 88.73 m 347.28 82.43 l 340.01 82.43 l 343.64 88.73 l S 204.18 88.73 m 207.82 82.43 l 200.54 82.43 l 204.18 88.73 l S 230.05 88.73 m 233.69 82.43 l 226.41 82.43 l 230.05 88.73 l S 236.07 88.73 m 239.71 82.43 l 232.43 82.43 l 236.07 88.73 l S 177.73 88.73 m 181.37 82.43 l 174.10 82.43 l 177.73 88.73 l S 181.96 88.73 m 185.60 82.43 l 178.33 82.43 l 181.96 88.73 l S 170.29 88.73 m 173.92 82.43 l 166.65 82.43 l 170.29 88.73 l S 284.02 88.73 m 287.66 82.43 l 280.39 82.43 l 284.02 88.73 l S 246.30 88.73 m 249.93 82.43 l 242.66 82.43 l 246.30 88.73 l S 244.00 88.73 m 247.64 82.43 l 240.36 82.43 l 244.00 88.73 l S 179.18 88.73 m 182.82 82.43 l 175.54 82.43 l 179.18 88.73 l S 156.62 88.73 m 160.26 82.43 l 152.99 82.43 l 156.62 88.73 l S 195.00 88.73 m 198.64 82.43 l 191.37 82.43 l 195.00 88.73 l S 246.34 88.73 m 249.97 82.43 l 242.70 82.43 l 246.34 88.73 l S 249.99 88.73 m 253.63 82.43 l 246.35 82.43 l 249.99 88.73 l S 249.63 88.73 m 253.27 82.43 l 246.00 82.43 l 249.63 88.73 l S 250.30 88.73 m 253.94 82.43 l 246.67 82.43 l 250.30 88.73 l S 243.17 88.73 m 246.81 82.43 l 239.53 82.43 l 243.17 88.73 l S 220.55 88.73 m 224.18 82.43 l 216.91 82.43 l 220.55 88.73 l S 133.52 88.73 m 137.16 82.43 l 129.89 82.43 l 133.52 88.73 l S 308.72 88.73 m 312.36 82.43 l 305.09 82.43 l 308.72 88.73 l S 206.01 88.73 m 209.65 82.43 l 202.38 82.43 l 206.01 88.73 l S 164.02 88.73 m 167.66 82.43 l 160.39 82.43 l 164.02 88.73 l S 264.58 88.73 m 268.21 82.43 l 260.94 82.43 l 264.58 88.73 l S 197.66 88.73 m 201.30 82.43 l 194.02 82.43 l 197.66 88.73 l S 214.24 88.73 m 217.88 82.43 l 210.61 82.43 l 214.24 88.73 l S 284.66 88.73 m 288.30 82.43 l 281.03 82.43 l 284.66 88.73 l S 156.52 88.73 m 160.15 82.43 l 152.88 82.43 l 156.52 88.73 l S 209.88 88.73 m 213.51 82.43 l 206.24 82.43 l 209.88 88.73 l S 167.39 88.73 m 171.03 82.43 l 163.75 82.43 l 167.39 88.73 l S 207.45 88.73 m 211.08 82.43 l 203.81 82.43 l 207.45 88.73 l S 129.29 88.73 m 132.93 82.43 l 125.65 82.43 l 129.29 88.73 l S 212.83 88.73 m 216.47 82.43 l 209.19 82.43 l 212.83 88.73 l S 181.16 88.73 m 184.80 82.43 l 177.53 82.43 l 181.16 88.73 l S 158.76 88.73 m 162.40 82.43 l 155.13 82.43 l 158.76 88.73 l S 116.51 88.73 m 120.14 82.43 l 112.87 82.43 l 116.51 88.73 l S 225.23 88.73 m 228.87 82.43 l 221.59 82.43 l 225.23 88.73 l S 304.82 88.73 m 308.45 82.43 l 301.18 82.43 l 304.82 88.73 l S 178.39 88.73 m 182.03 82.43 l 174.76 82.43 l 178.39 88.73 l S 208.42 88.73 m 212.05 82.43 l 204.78 82.43 l 208.42 88.73 l S 211.50 88.73 m 215.14 82.43 l 207.86 82.43 l 211.50 88.73 l S 130.12 88.73 m 133.76 82.43 l 126.49 82.43 l 130.12 88.73 l S 322.72 88.73 m 326.35 82.43 l 319.08 82.43 l 322.72 88.73 l S 261.64 88.73 m 265.28 82.43 l 258.00 82.43 l 261.64 88.73 l S 202.44 88.73 m 206.07 82.43 l 198.80 82.43 l 202.44 88.73 l S 128.03 88.73 m 131.67 82.43 l 124.40 82.43 l 128.03 88.73 l S 220.13 88.73 m 223.76 82.43 l 216.49 82.43 l 220.13 88.73 l S 186.86 88.73 m 190.50 82.43 l 183.22 82.43 l 186.86 88.73 l S 221.94 88.73 m 225.58 82.43 l 218.31 82.43 l 221.94 88.73 l S 238.70 88.73 m 242.34 82.43 l 235.07 82.43 l 238.70 88.73 l S 228.93 88.73 m 232.57 82.43 l 225.29 82.43 l 228.93 88.73 l S 178.55 88.73 m 182.18 82.43 l 174.91 82.43 l 178.55 88.73 l S 228.18 88.73 m 231.81 82.43 l 224.54 82.43 l 228.18 88.73 l S 222.48 88.73 m 226.12 82.43 l 218.85 82.43 l 222.48 88.73 l S 210.16 88.73 m 213.79 82.43 l 206.52 82.43 l 210.16 88.73 l S 254.42 88.73 m 258.06 82.43 l 250.78 82.43 l 254.42 88.73 l S 237.28 88.73 m 240.92 82.43 l 233.65 82.43 l 237.28 88.73 l S 224.49 88.73 m 228.13 82.43 l 220.85 82.43 l 224.49 88.73 l S 239.95 88.73 m 243.58 82.43 l 236.31 82.43 l 239.95 88.73 l S 188.00 88.73 m 191.63 82.43 l 184.36 82.43 l 188.00 88.73 l S 203.89 88.73 m 207.52 82.43 l 200.25 82.43 l 203.89 88.73 l S 247.28 88.73 m 250.92 82.43 l 243.64 82.43 l 247.28 88.73 l S 151.25 88.73 m 154.88 82.43 l 147.61 82.43 l 151.25 88.73 l S 375.03 88.73 m 378.66 82.43 l 371.39 82.43 l 375.03 88.73 l S 270.94 88.73 m 274.57 82.43 l 267.30 82.43 l 270.94 88.73 l S 259.16 88.73 m 262.79 82.43 l 255.52 82.43 l 259.16 88.73 l S 206.94 88.73 m 210.58 82.43 l 203.31 82.43 l 206.94 88.73 l S 158.85 88.73 m 162.49 82.43 l 155.21 82.43 l 158.85 88.73 l S 189.04 88.73 m 192.68 82.43 l 185.40 82.43 l 189.04 88.73 l S 127.40 88.73 m 131.04 82.43 l 123.77 82.43 l 127.40 88.73 l S 219.05 88.73 m 222.69 82.43 l 215.42 82.43 l 219.05 88.73 l S 154.62 88.73 m 158.26 82.43 l 150.98 82.43 l 154.62 88.73 l S 98.67 88.73 m 102.30 82.43 l 95.03 82.43 l 98.67 88.73 l S 95.89 88.73 m 99.53 82.43 l 92.25 82.43 l 95.89 88.73 l S 189.27 88.73 m 192.91 82.43 l 185.63 82.43 l 189.27 88.73 l S 265.72 88.73 m 269.35 82.43 l 262.08 82.43 l 265.72 88.73 l S 145.29 88.73 m 148.93 82.43 l 141.66 82.43 l 145.29 88.73 l S 203.88 88.73 m 207.51 82.43 l 200.24 82.43 l 203.88 88.73 l S 219.82 88.73 m 223.45 82.43 l 216.18 82.43 l 219.82 88.73 l S 246.02 88.73 m 249.66 82.43 l 242.38 82.43 l 246.02 88.73 l S 136.35 88.73 m 139.99 82.43 l 132.71 82.43 l 136.35 88.73 l S 200.63 88.73 m 204.27 82.43 l 197.00 82.43 l 200.63 88.73 l S 277.71 88.73 m 281.35 82.43 l 274.08 82.43 l 277.71 88.73 l S 113.05 88.73 m 116.69 82.43 l 109.41 82.43 l 113.05 88.73 l S 201.78 88.73 m 205.41 82.43 l 198.14 82.43 l 201.78 88.73 l S 191.33 88.73 m 194.96 82.43 l 187.69 82.43 l 191.33 88.73 l S 156.43 88.73 m 160.07 82.43 l 152.80 82.43 l 156.43 88.73 l S 266.34 88.73 m 269.98 82.43 l 262.70 82.43 l 266.34 88.73 l S 224.07 88.73 m 227.70 82.43 l 220.43 82.43 l 224.07 88.73 l S 223.84 88.73 m 227.48 82.43 l 220.20 82.43 l 223.84 88.73 l S 177.36 88.73 m 181.00 82.43 l 173.72 82.43 l 177.36 88.73 l S 245.73 88.73 m 249.37 82.43 l 242.10 82.43 l 245.73 88.73 l S 152.72 88.73 m 156.36 82.43 l 149.08 82.43 l 152.72 88.73 l S 206.11 88.73 m 209.74 82.43 l 202.47 82.43 l 206.11 88.73 l S 284.59 88.73 m 288.23 82.43 l 280.96 82.43 l 284.59 88.73 l S 250.99 88.73 m 254.62 82.43 l 247.35 82.43 l 250.99 88.73 l S 125.21 88.73 m 128.85 82.43 l 121.57 82.43 l 125.21 88.73 l S 208.61 88.73 m 212.25 82.43 l 204.97 82.43 l 208.61 88.73 l S 154.08 88.73 m 157.72 82.43 l 150.44 82.43 l 154.08 88.73 l S 237.70 88.73 m 241.34 82.43 l 234.06 82.43 l 237.70 88.73 l S 109.59 88.73 m 113.23 82.43 l 105.95 82.43 l 109.59 88.73 l S 178.74 88.73 m 182.38 82.43 l 175.11 82.43 l 178.74 88.73 l S 221.43 88.73 m 225.07 82.43 l 217.79 82.43 l 221.43 88.73 l S 251.72 88.73 m 255.36 82.43 l 248.08 82.43 l 251.72 88.73 l S 236.93 88.73 m 240.56 82.43 l 233.29 82.43 l 236.93 88.73 l S 177.22 88.73 m 180.86 82.43 l 173.59 82.43 l 177.22 88.73 l S 221.41 88.73 m 225.04 82.43 l 217.77 82.43 l 221.41 88.73 l S 226.25 88.73 m 229.88 82.43 l 222.61 82.43 l 226.25 88.73 l S 216.28 88.73 m 219.92 82.43 l 212.64 82.43 l 216.28 88.73 l S 185.89 88.73 m 189.53 82.43 l 182.25 82.43 l 185.89 88.73 l S 218.34 88.73 m 221.97 82.43 l 214.70 82.43 l 218.34 88.73 l S 144.95 88.73 m 148.58 82.43 l 141.31 82.43 l 144.95 88.73 l S 208.81 88.73 m 212.45 82.43 l 205.17 82.43 l 208.81 88.73 l S 197.18 88.73 m 200.81 82.43 l 193.54 82.43 l 197.18 88.73 l S 225.96 88.73 m 229.60 82.43 l 222.33 82.43 l 225.96 88.73 l S 215.23 88.73 m 218.87 82.43 l 211.59 82.43 l 215.23 88.73 l S 183.36 88.73 m 187.00 82.43 l 179.73 82.43 l 183.36 88.73 l S 230.79 88.73 m 234.43 82.43 l 227.16 82.43 l 230.79 88.73 l S 222.97 88.73 m 226.60 82.43 l 219.33 82.43 l 222.97 88.73 l S 149.14 88.73 m 152.77 82.43 l 145.50 82.43 l 149.14 88.73 l S 164.55 88.73 m 168.18 82.43 l 160.91 82.43 l 164.55 88.73 l S 221.50 88.73 m 225.13 82.43 l 217.86 82.43 l 221.50 88.73 l S 282.20 88.73 m 285.84 82.43 l 278.57 82.43 l 282.20 88.73 l S 165.83 88.73 m 169.47 82.43 l 162.20 82.43 l 165.83 88.73 l S 160.13 88.73 m 163.76 82.43 l 156.49 82.43 l 160.13 88.73 l S 222.79 88.73 m 226.43 82.43 l 219.16 82.43 l 222.79 88.73 l S 154.53 88.73 m 158.16 82.43 l 150.89 82.43 l 154.53 88.73 l S 141.01 88.73 m 144.64 82.43 l 137.37 82.43 l 141.01 88.73 l S 275.28 88.73 m 278.92 82.43 l 271.65 82.43 l 275.28 88.73 l S 209.56 88.73 m 213.19 82.43 l 205.92 82.43 l 209.56 88.73 l S 344.51 88.73 m 348.15 82.43 l 340.88 82.43 l 344.51 88.73 l S 215.42 88.73 m 219.06 82.43 l 211.79 82.43 l 215.42 88.73 l S 190.39 88.73 m 194.02 82.43 l 186.75 82.43 l 190.39 88.73 l S 229.40 88.73 m 233.04 82.43 l 225.76 82.43 l 229.40 88.73 l S 234.46 88.73 m 238.10 82.43 l 230.82 82.43 l 234.46 88.73 l S 187.20 88.73 m 190.84 82.43 l 183.56 82.43 l 187.20 88.73 l S 218.06 88.73 m 221.70 82.43 l 214.43 82.43 l 218.06 88.73 l S 188.44 88.73 m 192.07 82.43 l 184.80 82.43 l 188.44 88.73 l S 273.90 88.73 m 277.54 82.43 l 270.27 82.43 l 273.90 88.73 l S 236.52 88.73 m 240.16 82.43 l 232.88 82.43 l 236.52 88.73 l S 164.61 88.73 m 168.24 82.43 l 160.97 82.43 l 164.61 88.73 l S 222.99 88.73 m 226.63 82.43 l 219.35 82.43 l 222.99 88.73 l S 220.32 88.73 m 223.95 82.43 l 216.68 82.43 l 220.32 88.73 l S 170.76 88.73 m 174.40 82.43 l 167.13 82.43 l 170.76 88.73 l S 273.39 88.73 m 277.02 82.43 l 269.75 82.43 l 273.39 88.73 l S 193.49 88.73 m 197.13 82.43 l 189.86 82.43 l 193.49 88.73 l S 168.76 88.73 m 172.39 82.43 l 165.12 82.43 l 168.76 88.73 l S 206.42 88.73 m 210.05 82.43 l 202.78 82.43 l 206.42 88.73 l S 240.64 88.73 m 244.28 82.43 l 237.00 82.43 l 240.64 88.73 l S 196.24 88.73 m 199.87 82.43 l 192.60 82.43 l 196.24 88.73 l S 205.72 88.73 m 209.36 82.43 l 202.08 82.43 l 205.72 88.73 l S 204.16 88.73 m 207.79 82.43 l 200.52 82.43 l 204.16 88.73 l S 184.90 88.73 m 188.53 82.43 l 181.26 82.43 l 184.90 88.73 l S 223.06 88.73 m 226.70 82.43 l 219.43 82.43 l 223.06 88.73 l S 188.84 88.73 m 192.48 82.43 l 185.20 82.43 l 188.84 88.73 l S 248.38 88.73 m 252.02 82.43 l 244.74 82.43 l 248.38 88.73 l S 99.81 88.73 m 103.44 82.43 l 96.17 82.43 l 99.81 88.73 l S 209.58 88.73 m 213.22 82.43 l 205.95 82.43 l 209.58 88.73 l S 177.29 88.73 m 180.93 82.43 l 173.66 82.43 l 177.29 88.73 l S 206.53 88.73 m 210.17 82.43 l 202.90 82.43 l 206.53 88.73 l S 219.12 88.73 m 222.75 82.43 l 215.48 82.43 l 219.12 88.73 l S 238.50 88.73 m 242.13 82.43 l 234.86 82.43 l 238.50 88.73 l S 230.47 88.73 m 234.10 82.43 l 226.83 82.43 l 230.47 88.73 l S 209.64 88.73 m 213.28 82.43 l 206.01 82.43 l 209.64 88.73 l S 233.91 88.73 m 237.55 82.43 l 230.27 82.43 l 233.91 88.73 l S 215.14 88.73 m 218.78 82.43 l 211.50 82.43 l 215.14 88.73 l S 306.09 88.73 m 309.73 82.43 l 302.46 82.43 l 306.09 88.73 l S 222.63 88.73 m 226.27 82.43 l 219.00 82.43 l 222.63 88.73 l S 167.56 88.73 m 171.20 82.43 l 163.93 82.43 l 167.56 88.73 l S 195.08 88.73 m 198.72 82.43 l 191.44 82.43 l 195.08 88.73 l S 170.99 88.73 m 174.63 82.43 l 167.36 82.43 l 170.99 88.73 l S 322.42 88.73 m 326.06 82.43 l 318.79 82.43 l 322.42 88.73 l S 281.48 88.73 m 285.11 82.43 l 277.84 82.43 l 281.48 88.73 l S 239.46 88.73 m 243.10 82.43 l 235.83 82.43 l 239.46 88.73 l S 157.09 88.73 m 160.73 82.43 l 153.46 82.43 l 157.09 88.73 l S 209.42 88.73 m 213.06 82.43 l 205.78 82.43 l 209.42 88.73 l S 264.55 88.73 m 268.18 82.43 l 260.91 82.43 l 264.55 88.73 l S 194.31 88.73 m 197.94 82.43 l 190.67 82.43 l 194.31 88.73 l S 209.95 88.73 m 213.59 82.43 l 206.32 82.43 l 209.95 88.73 l S 240.29 88.73 m 243.93 82.43 l 236.66 82.43 l 240.29 88.73 l S 206.32 88.73 m 209.96 82.43 l 202.69 82.43 l 206.32 88.73 l S 178.59 88.73 m 182.23 82.43 l 174.95 82.43 l 178.59 88.73 l S 256.76 88.73 m 260.39 82.43 l 253.12 82.43 l 256.76 88.73 l S 184.51 88.73 m 188.15 82.43 l 180.88 82.43 l 184.51 88.73 l S 248.28 88.73 m 251.91 82.43 l 244.64 82.43 l 248.28 88.73 l S 201.82 88.73 m 205.46 82.43 l 198.19 82.43 l 201.82 88.73 l S 153.07 88.73 m 156.71 82.43 l 149.43 82.43 l 153.07 88.73 l S 206.64 88.73 m 210.28 82.43 l 203.01 82.43 l 206.64 88.73 l S 187.05 88.73 m 190.69 82.43 l 183.42 82.43 l 187.05 88.73 l S 224.17 88.73 m 227.81 82.43 l 220.54 82.43 l 224.17 88.73 l S 206.23 88.73 m 209.86 82.43 l 202.59 82.43 l 206.23 88.73 l S 229.64 88.73 m 233.27 82.43 l 226.00 82.43 l 229.64 88.73 l S 188.33 88.73 m 191.97 82.43 l 184.70 82.43 l 188.33 88.73 l S 205.05 88.73 m 208.69 82.43 l 201.41 82.43 l 205.05 88.73 l S 188.81 88.73 m 192.44 82.43 l 185.17 82.43 l 188.81 88.73 l S 208.70 88.73 m 212.34 82.43 l 205.07 82.43 l 208.70 88.73 l S 171.79 88.73 m 175.42 82.43 l 168.15 82.43 l 171.79 88.73 l S 130.98 88.73 m 134.62 82.43 l 127.35 82.43 l 130.98 88.73 l S 257.83 88.73 m 261.47 82.43 l 254.20 82.43 l 257.83 88.73 l S 157.45 88.73 m 161.08 82.43 l 153.81 82.43 l 157.45 88.73 l S 155.51 88.73 m 159.14 82.43 l 151.87 82.43 l 155.51 88.73 l S 164.26 88.73 m 167.90 82.43 l 160.62 82.43 l 164.26 88.73 l S 301.06 88.73 m 304.69 82.43 l 297.42 82.43 l 301.06 88.73 l S 218.78 88.73 m 222.42 82.43 l 215.15 82.43 l 218.78 88.73 l S 163.85 88.73 m 167.48 82.43 l 160.21 82.43 l 163.85 88.73 l S 130.41 88.73 m 134.05 82.43 l 126.77 82.43 l 130.41 88.73 l S 235.74 88.73 m 239.37 82.43 l 232.10 82.43 l 235.74 88.73 l S 199.85 88.73 m 203.48 82.43 l 196.21 82.43 l 199.85 88.73 l S 153.17 88.73 m 156.80 82.43 l 149.53 82.43 l 153.17 88.73 l S 208.47 88.73 m 212.10 82.43 l 204.83 82.43 l 208.47 88.73 l S 215.92 88.73 m 219.55 82.43 l 212.28 82.43 l 215.92 88.73 l S 148.86 88.73 m 152.50 82.43 l 145.23 82.43 l 148.86 88.73 l S 171.21 88.73 m 174.85 82.43 l 167.58 82.43 l 171.21 88.73 l S 190.51 88.73 m 194.15 82.43 l 186.88 82.43 l 190.51 88.73 l S 222.12 88.73 m 225.76 82.43 l 218.49 82.43 l 222.12 88.73 l S 259.68 88.73 m 263.32 82.43 l 256.04 82.43 l 259.68 88.73 l S 208.81 88.73 m 212.44 82.43 l 205.17 82.43 l 208.81 88.73 l S 209.56 88.73 m 213.20 82.43 l 205.92 82.43 l 209.56 88.73 l S 97.87 88.73 m 101.51 82.43 l 94.24 82.43 l 97.87 88.73 l S 163.69 88.73 m 167.32 82.43 l 160.05 82.43 l 163.69 88.73 l S 223.04 88.73 m 226.67 82.43 l 219.40 82.43 l 223.04 88.73 l S 221.34 88.73 m 224.97 82.43 l 217.70 82.43 l 221.34 88.73 l S 280.71 88.73 m 284.34 82.43 l 277.07 82.43 l 280.71 88.73 l S 200.52 88.73 m 204.15 82.43 l 196.88 82.43 l 200.52 88.73 l S 166.84 88.73 m 170.47 82.43 l 163.20 82.43 l 166.84 88.73 l S 202.24 88.73 m 205.88 82.43 l 198.60 82.43 l 202.24 88.73 l S 249.97 88.73 m 253.61 82.43 l 246.33 82.43 l 249.97 88.73 l S 212.28 88.73 m 215.91 82.43 l 208.64 82.43 l 212.28 88.73 l S 226.92 88.73 m 230.55 82.43 l 223.28 82.43 l 226.92 88.73 l S 265.23 88.73 m 268.87 82.43 l 261.59 82.43 l 265.23 88.73 l S 229.30 88.73 m 232.94 82.43 l 225.67 82.43 l 229.30 88.73 l S 150.58 88.73 m 154.22 82.43 l 146.94 82.43 l 150.58 88.73 l S 276.43 88.73 m 280.07 82.43 l 272.79 82.43 l 276.43 88.73 l S 210.58 88.73 m 214.22 82.43 l 206.94 82.43 l 210.58 88.73 l S 236.74 88.73 m 240.38 82.43 l 233.10 82.43 l 236.74 88.73 l S 229.45 88.73 m 233.09 82.43 l 225.81 82.43 l 229.45 88.73 l S 195.11 88.73 m 198.75 82.43 l 191.47 82.43 l 195.11 88.73 l S 178.18 88.73 m 181.81 82.43 l 174.54 82.43 l 178.18 88.73 l S 196.41 88.73 m 200.05 82.43 l 192.78 82.43 l 196.41 88.73 l S 283.94 88.73 m 287.58 82.43 l 280.31 82.43 l 283.94 88.73 l S 97.20 88.73 m 100.84 82.43 l 93.56 82.43 l 97.20 88.73 l S 174.51 88.73 m 178.14 82.43 l 170.87 82.43 l 174.51 88.73 l S 239.44 88.73 m 243.07 82.43 l 235.80 82.43 l 239.44 88.73 l S 290.45 88.73 m 294.09 82.43 l 286.81 82.43 l 290.45 88.73 l S 250.69 88.73 m 254.32 82.43 l 247.05 82.43 l 250.69 88.73 l S 139.66 88.73 m 143.30 82.43 l 136.02 82.43 l 139.66 88.73 l S 201.10 88.73 m 204.73 82.43 l 197.46 82.43 l 201.10 88.73 l S 188.34 88.73 m 191.98 82.43 l 184.70 82.43 l 188.34 88.73 l S 133.22 88.73 m 136.86 82.43 l 129.59 82.43 l 133.22 88.73 l S 180.74 88.73 m 184.38 82.43 l 177.11 82.43 l 180.74 88.73 l S 152.38 88.73 m 156.02 82.43 l 148.75 82.43 l 152.38 88.73 l S 193.78 88.73 m 197.41 82.43 l 190.14 82.43 l 193.78 88.73 l S 169.52 88.73 m 173.16 82.43 l 165.88 82.43 l 169.52 88.73 l S 128.14 88.73 m 131.77 82.43 l 124.50 82.43 l 128.14 88.73 l S 168.39 88.73 m 172.03 82.43 l 164.76 82.43 l 168.39 88.73 l S 164.16 88.73 m 167.80 82.43 l 160.52 82.43 l 164.16 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.89 82.43 l 202.53 88.73 l S 227.91 88.73 m 231.55 82.43 l 224.28 82.43 l 227.91 88.73 l S 228.32 88.73 m 231.96 82.43 l 224.68 82.43 l 228.32 88.73 l S 146.35 88.73 m 149.99 82.43 l 142.72 82.43 l 146.35 88.73 l S 195.51 88.73 m 199.14 82.43 l 191.87 82.43 l 195.51 88.73 l S 169.86 88.73 m 173.49 82.43 l 166.22 82.43 l 169.86 88.73 l S 201.54 88.73 m 205.17 82.43 l 197.90 82.43 l 201.54 88.73 l S 206.66 88.73 m 210.29 82.43 l 203.02 82.43 l 206.66 88.73 l S 94.35 88.73 m 97.98 82.43 l 90.71 82.43 l 94.35 88.73 l S 217.42 88.73 m 221.06 82.43 l 213.79 82.43 l 217.42 88.73 l S 213.63 88.73 m 217.26 82.43 l 209.99 82.43 l 213.63 88.73 l S 184.90 88.73 m 188.53 82.43 l 181.26 82.43 l 184.90 88.73 l S 267.48 88.73 m 271.12 82.43 l 263.85 82.43 l 267.48 88.73 l S 206.69 88.73 m 210.32 82.43 l 203.05 82.43 l 206.69 88.73 l S 225.89 88.73 m 229.52 82.43 l 222.25 82.43 l 225.89 88.73 l S 79.91 88.73 m 83.54 82.43 l 76.27 82.43 l 79.91 88.73 l S 269.33 88.73 m 272.96 82.43 l 265.69 82.43 l 269.33 88.73 l S 199.46 88.73 m 203.09 82.43 l 195.82 82.43 l 199.46 88.73 l S 175.53 88.73 m 179.16 82.43 l 171.89 82.43 l 175.53 88.73 l S 225.17 88.73 m 228.81 82.43 l 221.54 82.43 l 225.17 88.73 l S 93.26 88.73 m 96.90 82.43 l 89.63 82.43 l 93.26 88.73 l S 214.73 88.73 m 218.37 82.43 l 211.10 82.43 l 214.73 88.73 l S 250.78 88.73 m 254.42 82.43 l 247.15 82.43 l 250.78 88.73 l S 109.69 88.73 m 113.33 82.43 l 106.06 82.43 l 109.69 88.73 l S 194.71 88.73 m 198.35 82.43 l 191.08 82.43 l 194.71 88.73 l S 157.64 88.73 m 161.27 82.43 l 154.00 82.43 l 157.64 88.73 l S 282.44 88.73 m 286.07 82.43 l 278.80 82.43 l 282.44 88.73 l S 197.13 88.73 m 200.76 82.43 l 193.49 82.43 l 197.13 88.73 l S 213.10 88.73 m 216.74 82.43 l 209.47 82.43 l 213.10 88.73 l S 227.39 88.73 m 231.03 82.43 l 223.76 82.43 l 227.39 88.73 l S 211.14 88.73 m 214.77 82.43 l 207.50 82.43 l 211.14 88.73 l S 179.85 88.73 m 183.49 82.43 l 176.22 82.43 l 179.85 88.73 l S 207.59 88.73 m 211.23 82.43 l 203.96 82.43 l 207.59 88.73 l S 184.93 88.73 m 188.57 82.43 l 181.30 82.43 l 184.93 88.73 l S 214.59 88.73 m 218.23 82.43 l 210.96 82.43 l 214.59 88.73 l S 156.35 88.73 m 159.98 82.43 l 152.71 82.43 l 156.35 88.73 l S 161.16 88.73 m 164.79 82.43 l 157.52 82.43 l 161.16 88.73 l S 184.29 88.73 m 187.92 82.43 l 180.65 82.43 l 184.29 88.73 l S 96.43 88.73 m 100.07 82.43 l 92.79 82.43 l 96.43 88.73 l S 158.42 88.73 m 162.05 82.43 l 154.78 82.43 l 158.42 88.73 l S 272.95 88.73 m 276.59 82.43 l 269.31 82.43 l 272.95 88.73 l S 234.59 88.73 m 238.22 82.43 l 230.95 82.43 l 234.59 88.73 l S 267.39 88.73 m 271.03 82.43 l 263.76 82.43 l 267.39 88.73 l S 236.67 88.73 m 240.31 82.43 l 233.04 82.43 l 236.67 88.73 l S 294.63 88.73 m 298.26 82.43 l 290.99 82.43 l 294.63 88.73 l S 202.36 88.73 m 206.00 82.43 l 198.72 82.43 l 202.36 88.73 l S 234.33 88.73 m 237.97 82.43 l 230.70 82.43 l 234.33 88.73 l S 297.98 88.73 m 301.62 82.43 l 294.35 82.43 l 297.98 88.73 l S 128.31 88.73 m 131.94 82.43 l 124.67 82.43 l 128.31 88.73 l S 213.52 88.73 m 217.15 82.43 l 209.88 82.43 l 213.52 88.73 l S 187.20 88.73 m 190.83 82.43 l 183.56 82.43 l 187.20 88.73 l S 192.87 88.73 m 196.50 82.43 l 189.23 82.43 l 192.87 88.73 l S 227.61 88.73 m 231.25 82.43 l 223.98 82.43 l 227.61 88.73 l S 164.04 88.73 m 167.67 82.43 l 160.40 82.43 l 164.04 88.73 l S 221.70 88.73 m 225.34 82.43 l 218.07 82.43 l 221.70 88.73 l S 230.46 88.73 m 234.10 82.43 l 226.83 82.43 l 230.46 88.73 l S 151.81 88.73 m 155.44 82.43 l 148.17 82.43 l 151.81 88.73 l S 261.39 88.73 m 265.03 82.43 l 257.75 82.43 l 261.39 88.73 l S 192.19 88.73 m 195.82 82.43 l 188.55 82.43 l 192.19 88.73 l S 118.06 88.73 m 121.70 82.43 l 114.43 82.43 l 118.06 88.73 l S 202.66 88.73 m 206.30 82.43 l 199.02 82.43 l 202.66 88.73 l S 180.96 88.73 m 184.60 82.43 l 177.33 82.43 l 180.96 88.73 l S 205.39 88.73 m 209.02 82.43 l 201.75 82.43 l 205.39 88.73 l S 249.29 88.73 m 252.92 82.43 l 245.65 82.43 l 249.29 88.73 l S 92.34 88.73 m 95.97 82.43 l 88.70 82.43 l 92.34 88.73 l S 207.08 88.73 m 210.71 82.43 l 203.44 82.43 l 207.08 88.73 l S 210.91 88.73 m 214.55 82.43 l 207.27 82.43 l 210.91 88.73 l S 204.18 88.73 m 207.82 82.43 l 200.55 82.43 l 204.18 88.73 l S 217.59 88.73 m 221.23 82.43 l 213.96 82.43 l 217.59 88.73 l S 214.76 88.73 m 218.40 82.43 l 211.12 82.43 l 214.76 88.73 l S 227.20 88.73 m 230.84 82.43 l 223.57 82.43 l 227.20 88.73 l S 228.52 88.73 m 232.16 82.43 l 224.88 82.43 l 228.52 88.73 l S 130.55 88.73 m 134.18 82.43 l 126.91 82.43 l 130.55 88.73 l S 196.13 88.73 m 199.76 82.43 l 192.49 82.43 l 196.13 88.73 l S 208.10 88.73 m 211.74 82.43 l 204.46 82.43 l 208.10 88.73 l S 232.48 88.73 m 236.12 82.43 l 228.85 82.43 l 232.48 88.73 l S 187.18 88.73 m 190.82 82.43 l 183.54 82.43 l 187.18 88.73 l S 210.63 88.73 m 214.27 82.43 l 206.99 82.43 l 210.63 88.73 l S 200.41 88.73 m 204.05 82.43 l 196.78 82.43 l 200.41 88.73 l S 132.75 88.73 m 136.39 82.43 l 129.12 82.43 l 132.75 88.73 l S 266.10 88.73 m 269.73 82.43 l 262.46 82.43 l 266.10 88.73 l S 198.90 88.73 m 202.53 82.43 l 195.26 82.43 l 198.90 88.73 l S 218.37 88.73 m 222.00 82.43 l 214.73 82.43 l 218.37 88.73 l S 163.27 88.73 m 166.91 82.43 l 159.64 82.43 l 163.27 88.73 l S 201.59 88.73 m 205.23 82.43 l 197.96 82.43 l 201.59 88.73 l S 233.32 88.73 m 236.95 82.43 l 229.68 82.43 l 233.32 88.73 l S 183.32 88.73 m 186.96 82.43 l 179.69 82.43 l 183.32 88.73 l S 123.92 88.73 m 127.56 82.43 l 120.28 82.43 l 123.92 88.73 l S 116.22 88.73 m 119.85 82.43 l 112.58 82.43 l 116.22 88.73 l S 184.90 88.73 m 188.53 82.43 l 181.26 82.43 l 184.90 88.73 l S 253.20 88.73 m 256.83 82.43 l 249.56 82.43 l 253.20 88.73 l S 207.04 88.73 m 210.67 82.43 l 203.40 82.43 l 207.04 88.73 l S 220.15 88.73 m 223.79 82.43 l 216.51 82.43 l 220.15 88.73 l S 194.76 88.73 m 198.40 82.43 l 191.13 82.43 l 194.76 88.73 l S 195.26 88.73 m 198.89 82.43 l 191.62 82.43 l 195.26 88.73 l S 160.68 88.73 m 164.32 82.43 l 157.05 82.43 l 160.68 88.73 l S 199.78 88.73 m 203.42 82.43 l 196.15 82.43 l 199.78 88.73 l S 192.20 88.73 m 195.83 82.43 l 188.56 82.43 l 192.20 88.73 l S 221.32 88.73 m 224.95 82.43 l 217.68 82.43 l 221.32 88.73 l S 224.88 88.73 m 228.52 82.43 l 221.24 82.43 l 224.88 88.73 l S 258.31 88.73 m 261.94 82.43 l 254.67 82.43 l 258.31 88.73 l S 242.32 88.73 m 245.96 82.43 l 238.69 82.43 l 242.32 88.73 l S 275.06 88.73 m 278.69 82.43 l 271.42 82.43 l 275.06 88.73 l S 233.04 88.73 m 236.68 82.43 l 229.41 82.43 l 233.04 88.73 l S 153.55 88.73 m 157.18 82.43 l 149.91 82.43 l 153.55 88.73 l S 209.48 88.73 m 213.11 82.43 l 205.84 82.43 l 209.48 88.73 l S 228.00 88.73 m 231.63 82.43 l 224.36 82.43 l 228.00 88.73 l S 233.12 88.73 m 236.75 82.43 l 229.48 82.43 l 233.12 88.73 l S 239.77 88.73 m 243.41 82.43 l 236.14 82.43 l 239.77 88.73 l S 227.57 88.73 m 231.21 82.43 l 223.94 82.43 l 227.57 88.73 l S 219.96 88.73 m 223.60 82.43 l 216.32 82.43 l 219.96 88.73 l S 178.39 88.73 m 182.02 82.43 l 174.75 82.43 l 178.39 88.73 l S 257.39 88.73 m 261.02 82.43 l 253.75 82.43 l 257.39 88.73 l S 226.29 88.73 m 229.92 82.43 l 222.65 82.43 l 226.29 88.73 l S 198.78 88.73 m 202.42 82.43 l 195.15 82.43 l 198.78 88.73 l S 231.25 88.73 m 234.88 82.43 l 227.61 82.43 l 231.25 88.73 l S 235.72 88.73 m 239.35 82.43 l 232.08 82.43 l 235.72 88.73 l S 199.03 88.73 m 202.67 82.43 l 195.39 82.43 l 199.03 88.73 l S 172.54 88.73 m 176.17 82.43 l 168.90 82.43 l 172.54 88.73 l S 289.20 88.73 m 292.83 82.43 l 285.56 82.43 l 289.20 88.73 l S 182.59 88.73 m 186.22 82.43 l 178.95 82.43 l 182.59 88.73 l S 230.58 88.73 m 234.22 82.43 l 226.95 82.43 l 230.58 88.73 l S 199.53 88.73 m 203.17 82.43 l 195.90 82.43 l 199.53 88.73 l S 113.49 88.73 m 117.12 82.43 l 109.85 82.43 l 113.49 88.73 l S 175.01 88.73 m 178.64 82.43 l 171.37 82.43 l 175.01 88.73 l S 201.37 88.73 m 205.01 82.43 l 197.73 82.43 l 201.37 88.73 l S 184.72 88.73 m 188.35 82.43 l 181.08 82.43 l 184.72 88.73 l S 209.17 88.73 m 212.80 82.43 l 205.53 82.43 l 209.17 88.73 l S 255.60 88.73 m 259.23 82.43 l 251.96 82.43 l 255.60 88.73 l S 237.35 88.73 m 240.99 82.43 l 233.71 82.43 l 237.35 88.73 l S 185.24 88.73 m 188.87 82.43 l 181.60 82.43 l 185.24 88.73 l S 231.30 88.73 m 234.94 82.43 l 227.66 82.43 l 231.30 88.73 l S 229.17 88.73 m 232.81 82.43 l 225.53 82.43 l 229.17 88.73 l S 216.75 88.73 m 220.39 82.43 l 213.11 82.43 l 216.75 88.73 l S 198.45 88.73 m 202.09 82.43 l 194.81 82.43 l 198.45 88.73 l S 186.32 88.73 m 189.96 82.43 l 182.69 82.43 l 186.32 88.73 l S 223.69 88.73 m 227.32 82.43 l 220.05 82.43 l 223.69 88.73 l S 189.97 88.73 m 193.61 82.43 l 186.33 82.43 l 189.97 88.73 l S 180.97 88.73 m 184.61 82.43 l 177.33 82.43 l 180.97 88.73 l S 144.43 88.73 m 148.07 82.43 l 140.80 82.43 l 144.43 88.73 l S 99.60 88.73 m 103.23 82.43 l 95.96 82.43 l 99.60 88.73 l S 169.65 88.73 m 173.29 82.43 l 166.02 82.43 l 169.65 88.73 l S 260.53 88.73 m 264.16 82.43 l 256.89 82.43 l 260.53 88.73 l S 206.31 88.73 m 209.94 82.43 l 202.67 82.43 l 206.31 88.73 l S 192.22 88.73 m 195.86 82.43 l 188.59 82.43 l 192.22 88.73 l S 175.43 88.73 m 179.06 82.43 l 171.79 82.43 l 175.43 88.73 l S 238.47 88.73 m 242.11 82.43 l 234.84 82.43 l 238.47 88.73 l S 199.10 88.73 m 202.73 82.43 l 195.46 82.43 l 199.10 88.73 l S 280.74 88.73 m 284.38 82.43 l 277.11 82.43 l 280.74 88.73 l S 273.75 88.73 m 277.39 82.43 l 270.11 82.43 l 273.75 88.73 l S 205.17 88.73 m 208.81 82.43 l 201.53 82.43 l 205.17 88.73 l S 178.22 88.73 m 181.86 82.43 l 174.59 82.43 l 178.22 88.73 l S 145.52 88.73 m 149.15 82.43 l 141.88 82.43 l 145.52 88.73 l S 147.86 88.73 m 151.50 82.43 l 144.23 82.43 l 147.86 88.73 l S 159.89 88.73 m 163.53 82.43 l 156.26 82.43 l 159.89 88.73 l S 162.44 88.73 m 166.08 82.43 l 158.80 82.43 l 162.44 88.73 l S 197.43 88.73 m 201.06 82.43 l 193.79 82.43 l 197.43 88.73 l S 177.06 88.73 m 180.70 82.43 l 173.43 82.43 l 177.06 88.73 l S 217.47 88.73 m 221.11 82.43 l 213.84 82.43 l 217.47 88.73 l S 170.21 88.73 m 173.85 82.43 l 166.58 82.43 l 170.21 88.73 l S 167.28 88.73 m 170.91 82.43 l 163.64 82.43 l 167.28 88.73 l S 203.49 88.73 m 207.13 82.43 l 199.85 82.43 l 203.49 88.73 l S 242.36 88.73 m 246.00 82.43 l 238.73 82.43 l 242.36 88.73 l S 242.70 88.73 m 246.33 82.43 l 239.06 82.43 l 242.70 88.73 l S 171.01 88.73 m 174.65 82.43 l 167.38 82.43 l 171.01 88.73 l S 205.35 88.73 m 208.99 82.43 l 201.72 82.43 l 205.35 88.73 l S 230.58 88.73 m 234.21 82.43 l 226.94 82.43 l 230.58 88.73 l S 223.67 88.73 m 227.31 82.43 l 220.04 82.43 l 223.67 88.73 l S 179.07 88.73 m 182.71 82.43 l 175.44 82.43 l 179.07 88.73 l S 213.46 88.73 m 217.10 82.43 l 209.83 82.43 l 213.46 88.73 l S 178.06 88.73 m 181.69 82.43 l 174.42 82.43 l 178.06 88.73 l S 142.78 88.73 m 146.41 82.43 l 139.14 82.43 l 142.78 88.73 l S 239.21 88.73 m 242.84 82.43 l 235.57 82.43 l 239.21 88.73 l S 207.74 88.73 m 211.38 82.43 l 204.10 82.43 l 207.74 88.73 l S 213.01 88.73 m 216.64 82.43 l 209.37 82.43 l 213.01 88.73 l S 179.96 88.73 m 183.60 82.43 l 176.32 82.43 l 179.96 88.73 l S 163.30 88.73 m 166.93 82.43 l 159.66 82.43 l 163.30 88.73 l S 174.43 88.73 m 178.07 82.43 l 170.80 82.43 l 174.43 88.73 l S 206.43 88.73 m 210.07 82.43 l 202.79 82.43 l 206.43 88.73 l S 205.47 88.73 m 209.10 82.43 l 201.83 82.43 l 205.47 88.73 l S 133.58 88.73 m 137.22 82.43 l 129.94 82.43 l 133.58 88.73 l S 156.90 88.73 m 160.53 82.43 l 153.26 82.43 l 156.90 88.73 l S 213.99 88.73 m 217.63 82.43 l 210.36 82.43 l 213.99 88.73 l S 186.42 88.73 m 190.05 82.43 l 182.78 82.43 l 186.42 88.73 l S 126.29 88.73 m 129.93 82.43 l 122.66 82.43 l 126.29 88.73 l S 211.52 88.73 m 215.16 82.43 l 207.88 82.43 l 211.52 88.73 l S 233.75 88.73 m 237.38 82.43 l 230.11 82.43 l 233.75 88.73 l S 272.45 88.73 m 276.09 82.43 l 268.82 82.43 l 272.45 88.73 l S 223.82 88.73 m 227.46 82.43 l 220.19 82.43 l 223.82 88.73 l S 227.44 88.73 m 231.08 82.43 l 223.80 82.43 l 227.44 88.73 l S 213.65 88.73 m 217.28 82.43 l 210.01 82.43 l 213.65 88.73 l S 188.83 88.73 m 192.47 82.43 l 185.20 82.43 l 188.83 88.73 l S 207.27 88.73 m 210.90 82.43 l 203.63 82.43 l 207.27 88.73 l S 172.85 88.73 m 176.49 82.43 l 169.22 82.43 l 172.85 88.73 l S 197.52 88.73 m 201.16 82.43 l 193.88 82.43 l 197.52 88.73 l S 218.00 88.73 m 221.63 82.43 l 214.36 82.43 l 218.00 88.73 l S 228.03 88.73 m 231.67 82.43 l 224.40 82.43 l 228.03 88.73 l S 217.06 88.73 m 220.70 82.43 l 213.43 82.43 l 217.06 88.73 l S 266.70 88.73 m 270.34 82.43 l 263.06 82.43 l 266.70 88.73 l S 155.76 88.73 m 159.40 82.43 l 152.13 82.43 l 155.76 88.73 l S 179.85 88.73 m 183.48 82.43 l 176.21 82.43 l 179.85 88.73 l S 188.94 88.73 m 192.57 82.43 l 185.30 82.43 l 188.94 88.73 l S 193.22 88.73 m 196.86 82.43 l 189.59 82.43 l 193.22 88.73 l S 133.63 88.73 m 137.27 82.43 l 129.99 82.43 l 133.63 88.73 l S 228.44 88.73 m 232.08 82.43 l 224.81 82.43 l 228.44 88.73 l S 255.71 88.73 m 259.34 82.43 l 252.07 82.43 l 255.71 88.73 l S 170.95 88.73 m 174.59 82.43 l 167.31 82.43 l 170.95 88.73 l S 274.45 88.73 m 278.09 82.43 l 270.81 82.43 l 274.45 88.73 l S 185.66 88.73 m 189.29 82.43 l 182.02 82.43 l 185.66 88.73 l S 163.85 88.73 m 167.49 82.43 l 160.22 82.43 l 163.85 88.73 l S 192.37 88.73 m 196.01 82.43 l 188.73 82.43 l 192.37 88.73 l S 201.19 88.73 m 204.83 82.43 l 197.55 82.43 l 201.19 88.73 l S 200.45 88.73 m 204.09 82.43 l 196.82 82.43 l 200.45 88.73 l S 238.21 88.73 m 241.85 82.43 l 234.58 82.43 l 238.21 88.73 l S 207.26 88.73 m 210.90 82.43 l 203.63 82.43 l 207.26 88.73 l S 247.52 88.73 m 251.16 82.43 l 243.88 82.43 l 247.52 88.73 l S 155.64 88.73 m 159.28 82.43 l 152.00 82.43 l 155.64 88.73 l S 244.30 88.73 m 247.93 82.43 l 240.66 82.43 l 244.30 88.73 l S 196.48 88.73 m 200.11 82.43 l 192.84 82.43 l 196.48 88.73 l S 207.35 88.73 m 210.98 82.43 l 203.71 82.43 l 207.35 88.73 l S 271.60 88.73 m 275.23 82.43 l 267.96 82.43 l 271.60 88.73 l S 248.97 88.73 m 252.61 82.43 l 245.33 82.43 l 248.97 88.73 l S 189.85 88.73 m 193.49 82.43 l 186.21 82.43 l 189.85 88.73 l S 120.33 88.73 m 123.97 82.43 l 116.70 82.43 l 120.33 88.73 l S 201.77 88.73 m 205.41 82.43 l 198.13 82.43 l 201.77 88.73 l S 239.23 88.73 m 242.87 82.43 l 235.59 82.43 l 239.23 88.73 l S 207.53 88.73 m 211.17 82.43 l 203.89 82.43 l 207.53 88.73 l S 213.19 88.73 m 216.83 82.43 l 209.56 82.43 l 213.19 88.73 l S 212.01 88.73 m 215.65 82.43 l 208.38 82.43 l 212.01 88.73 l S 204.25 88.73 m 207.89 82.43 l 200.61 82.43 l 204.25 88.73 l S 178.53 88.73 m 182.17 82.43 l 174.90 82.43 l 178.53 88.73 l S 136.47 88.73 m 140.11 82.43 l 132.84 82.43 l 136.47 88.73 l S 181.96 88.73 m 185.60 82.43 l 178.32 82.43 l 181.96 88.73 l S 160.70 88.73 m 164.34 82.43 l 157.07 82.43 l 160.70 88.73 l S 234.10 88.73 m 237.74 82.43 l 230.47 82.43 l 234.10 88.73 l S 208.24 88.73 m 211.88 82.43 l 204.61 82.43 l 208.24 88.73 l S 179.76 88.73 m 183.39 82.43 l 176.12 82.43 l 179.76 88.73 l S 231.85 88.73 m 235.49 82.43 l 228.21 82.43 l 231.85 88.73 l S 222.65 88.73 m 226.29 82.43 l 219.01 82.43 l 222.65 88.73 l S 204.24 88.73 m 207.87 82.43 l 200.60 82.43 l 204.24 88.73 l S 186.67 88.73 m 190.31 82.43 l 183.03 82.43 l 186.67 88.73 l S 201.89 88.73 m 205.53 82.43 l 198.26 82.43 l 201.89 88.73 l S 190.74 88.73 m 194.38 82.43 l 187.10 82.43 l 190.74 88.73 l S 246.85 88.73 m 250.49 82.43 l 243.22 82.43 l 246.85 88.73 l S 197.49 88.73 m 201.13 82.43 l 193.86 82.43 l 197.49 88.73 l S 234.86 88.73 m 238.49 82.43 l 231.22 82.43 l 234.86 88.73 l S 227.19 88.73 m 230.83 82.43 l 223.55 82.43 l 227.19 88.73 l S 180.15 88.73 m 183.79 82.43 l 176.52 82.43 l 180.15 88.73 l S 186.05 88.73 m 189.69 82.43 l 182.42 82.43 l 186.05 88.73 l S 101.17 88.73 m 104.81 82.43 l 97.54 82.43 l 101.17 88.73 l S 222.33 88.73 m 225.97 82.43 l 218.70 82.43 l 222.33 88.73 l S 155.34 88.73 m 158.97 82.43 l 151.70 82.43 l 155.34 88.73 l S 200.94 88.73 m 204.58 82.43 l 197.30 82.43 l 200.94 88.73 l S 213.69 88.73 m 217.33 82.43 l 210.06 82.43 l 213.69 88.73 l S 202.23 88.73 m 205.87 82.43 l 198.59 82.43 l 202.23 88.73 l S 180.66 88.73 m 184.29 82.43 l 177.02 82.43 l 180.66 88.73 l S 155.98 88.73 m 159.61 82.43 l 152.34 82.43 l 155.98 88.73 l S 210.89 88.73 m 214.53 82.43 l 207.26 82.43 l 210.89 88.73 l S 191.95 88.73 m 195.58 82.43 l 188.31 82.43 l 191.95 88.73 l S 199.85 88.73 m 203.49 82.43 l 196.22 82.43 l 199.85 88.73 l S 165.69 88.73 m 169.33 82.43 l 162.06 82.43 l 165.69 88.73 l S 230.22 88.73 m 233.86 82.43 l 226.58 82.43 l 230.22 88.73 l S 211.51 88.73 m 215.15 82.43 l 207.88 82.43 l 211.51 88.73 l S 164.90 88.73 m 168.54 82.43 l 161.26 82.43 l 164.90 88.73 l S 180.23 88.73 m 183.87 82.43 l 176.60 82.43 l 180.23 88.73 l S 181.47 88.73 m 185.10 82.43 l 177.83 82.43 l 181.47 88.73 l S 155.77 88.73 m 159.41 82.43 l 152.13 82.43 l 155.77 88.73 l S 148.42 88.73 m 152.06 82.43 l 144.78 82.43 l 148.42 88.73 l S 149.53 88.73 m 153.17 82.43 l 145.90 82.43 l 149.53 88.73 l S 184.82 88.73 m 188.46 82.43 l 181.19 82.43 l 184.82 88.73 l S 176.39 88.73 m 180.03 82.43 l 172.76 82.43 l 176.39 88.73 l S 127.39 88.73 m 131.02 82.43 l 123.75 82.43 l 127.39 88.73 l S 197.35 88.73 m 200.99 82.43 l 193.72 82.43 l 197.35 88.73 l S 158.13 88.73 m 161.77 82.43 l 154.50 82.43 l 158.13 88.73 l S 210.32 88.73 m 213.96 82.43 l 206.68 82.43 l 210.32 88.73 l S 191.22 88.73 m 194.86 82.43 l 187.59 82.43 l 191.22 88.73 l S 141.64 88.73 m 145.27 82.43 l 138.00 82.43 l 141.64 88.73 l S 247.50 88.73 m 251.14 82.43 l 243.86 82.43 l 247.50 88.73 l S 251.63 88.73 m 255.26 82.43 l 247.99 82.43 l 251.63 88.73 l S 185.78 88.73 m 189.42 82.43 l 182.14 82.43 l 185.78 88.73 l S 191.97 88.73 m 195.61 82.43 l 188.34 82.43 l 191.97 88.73 l S 191.09 88.73 m 194.73 82.43 l 187.45 82.43 l 191.09 88.73 l S 213.25 88.73 m 216.88 82.43 l 209.61 82.43 l 213.25 88.73 l S 188.44 88.73 m 192.08 82.43 l 184.81 82.43 l 188.44 88.73 l S 202.60 88.73 m 206.24 82.43 l 198.97 82.43 l 202.60 88.73 l S 243.32 88.73 m 246.96 82.43 l 239.69 82.43 l 243.32 88.73 l S 258.04 88.73 m 261.67 82.43 l 254.40 82.43 l 258.04 88.73 l S 212.24 88.73 m 215.88 82.43 l 208.60 82.43 l 212.24 88.73 l S 159.93 88.73 m 163.57 82.43 l 156.29 82.43 l 159.93 88.73 l S 196.47 88.73 m 200.11 82.43 l 192.83 82.43 l 196.47 88.73 l S 259.83 88.73 m 263.46 82.43 l 256.19 82.43 l 259.83 88.73 l S 199.31 88.73 m 202.95 82.43 l 195.68 82.43 l 199.31 88.73 l S 187.11 88.73 m 190.75 82.43 l 183.47 82.43 l 187.11 88.73 l S 281.54 88.73 m 285.17 82.43 l 277.90 82.43 l 281.54 88.73 l S 132.49 88.73 m 136.13 82.43 l 128.86 82.43 l 132.49 88.73 l S 164.09 88.73 m 167.72 82.43 l 160.45 82.43 l 164.09 88.73 l S 171.15 88.73 m 174.78 82.43 l 167.51 82.43 l 171.15 88.73 l S 233.22 88.73 m 236.86 82.43 l 229.59 82.43 l 233.22 88.73 l S 239.53 88.73 m 243.16 82.43 l 235.89 82.43 l 239.53 88.73 l S 226.34 88.73 m 229.98 82.43 l 222.71 82.43 l 226.34 88.73 l S 208.74 88.73 m 212.37 82.43 l 205.10 82.43 l 208.74 88.73 l S 205.29 88.73 m 208.93 82.43 l 201.66 82.43 l 205.29 88.73 l S 179.03 88.73 m 182.67 82.43 l 175.39 82.43 l 179.03 88.73 l S 190.93 88.73 m 194.56 82.43 l 187.29 82.43 l 190.93 88.73 l S 189.93 88.73 m 193.56 82.43 l 186.29 82.43 l 189.93 88.73 l S 121.97 88.73 m 125.61 82.43 l 118.34 82.43 l 121.97 88.73 l S 208.62 88.73 m 212.25 82.43 l 204.98 82.43 l 208.62 88.73 l S 153.80 88.73 m 157.44 82.43 l 150.17 82.43 l 153.80 88.73 l S 172.57 88.73 m 176.21 82.43 l 168.93 82.43 l 172.57 88.73 l S 221.31 88.73 m 224.94 82.43 l 217.67 82.43 l 221.31 88.73 l S 230.23 88.73 m 233.86 82.43 l 226.59 82.43 l 230.23 88.73 l S 186.97 88.73 m 190.61 82.43 l 183.34 82.43 l 186.97 88.73 l S 88.11 88.73 m 91.75 82.43 l 84.47 82.43 l 88.11 88.73 l S 234.12 88.73 m 237.75 82.43 l 230.48 82.43 l 234.12 88.73 l S 197.14 88.73 m 200.78 82.43 l 193.51 82.43 l 197.14 88.73 l S 137.03 88.73 m 140.66 82.43 l 133.39 82.43 l 137.03 88.73 l S 250.77 88.73 m 254.40 82.43 l 247.13 82.43 l 250.77 88.73 l S 263.18 88.73 m 266.82 82.43 l 259.54 82.43 l 263.18 88.73 l S 145.00 88.73 m 148.64 82.43 l 141.37 82.43 l 145.00 88.73 l S 157.47 88.73 m 161.11 82.43 l 153.84 82.43 l 157.47 88.73 l S 182.61 88.73 m 186.24 82.43 l 178.97 82.43 l 182.61 88.73 l S 238.23 88.73 m 241.86 82.43 l 234.59 82.43 l 238.23 88.73 l S 217.27 88.73 m 220.90 82.43 l 213.63 82.43 l 217.27 88.73 l S 230.84 88.73 m 234.48 82.43 l 227.20 82.43 l 230.84 88.73 l S 196.50 88.73 m 200.14 82.43 l 192.87 82.43 l 196.50 88.73 l S 146.22 88.73 m 149.85 82.43 l 142.58 82.43 l 146.22 88.73 l S 119.54 88.73 m 123.17 82.43 l 115.90 82.43 l 119.54 88.73 l S 212.89 88.73 m 216.52 82.43 l 209.25 82.43 l 212.89 88.73 l S 198.14 88.73 m 201.78 82.43 l 194.51 82.43 l 198.14 88.73 l S 171.16 88.73 m 174.80 82.43 l 167.52 82.43 l 171.16 88.73 l S 125.32 88.73 m 128.95 82.43 l 121.68 82.43 l 125.32 88.73 l S 181.13 88.73 m 184.77 82.43 l 177.49 82.43 l 181.13 88.73 l S 168.88 88.73 m 172.52 82.43 l 165.25 82.43 l 168.88 88.73 l S 171.28 88.73 m 174.91 82.43 l 167.64 82.43 l 171.28 88.73 l S 235.53 88.73 m 239.17 82.43 l 231.90 82.43 l 235.53 88.73 l S 217.67 88.73 m 221.30 82.43 l 214.03 82.43 l 217.67 88.73 l S 197.26 88.73 m 200.89 82.43 l 193.62 82.43 l 197.26 88.73 l S 130.45 88.73 m 134.08 82.43 l 126.81 82.43 l 130.45 88.73 l S 156.36 88.73 m 159.99 82.43 l 152.72 82.43 l 156.36 88.73 l S 245.64 88.73 m 249.28 82.43 l 242.00 82.43 l 245.64 88.73 l S 218.11 88.73 m 221.75 82.43 l 214.48 82.43 l 218.11 88.73 l S 194.04 88.73 m 197.67 82.43 l 190.40 82.43 l 194.04 88.73 l S 164.27 88.73 m 167.90 82.43 l 160.63 82.43 l 164.27 88.73 l S 217.28 88.73 m 220.91 82.43 l 213.64 82.43 l 217.28 88.73 l S 199.67 88.73 m 203.30 82.43 l 196.03 82.43 l 199.67 88.73 l S 223.55 88.73 m 227.19 82.43 l 219.92 82.43 l 223.55 88.73 l S 104.98 88.73 m 108.62 82.43 l 101.34 82.43 l 104.98 88.73 l S 171.97 88.73 m 175.61 82.43 l 168.33 82.43 l 171.97 88.73 l S 223.72 88.73 m 227.36 82.43 l 220.08 82.43 l 223.72 88.73 l S 196.31 88.73 m 199.95 82.43 l 192.68 82.43 l 196.31 88.73 l S 181.04 88.73 m 184.68 82.43 l 177.40 82.43 l 181.04 88.73 l S 254.70 88.73 m 258.34 82.43 l 251.06 82.43 l 254.70 88.73 l S 224.99 88.73 m 228.62 82.43 l 221.35 82.43 l 224.99 88.73 l S 211.91 88.73 m 215.54 82.43 l 208.27 82.43 l 211.91 88.73 l S 221.27 88.73 m 224.90 82.43 l 217.63 82.43 l 221.27 88.73 l S 174.94 88.73 m 178.57 82.43 l 171.30 82.43 l 174.94 88.73 l S 282.29 88.73 m 285.92 82.43 l 278.65 82.43 l 282.29 88.73 l S 225.37 88.73 m 229.00 82.43 l 221.73 82.43 l 225.37 88.73 l S 234.12 88.73 m 237.75 82.43 l 230.48 82.43 l 234.12 88.73 l S 126.96 88.73 m 130.60 82.43 l 123.32 82.43 l 126.96 88.73 l S 174.88 88.73 m 178.52 82.43 l 171.24 82.43 l 174.88 88.73 l S 257.63 88.73 m 261.27 82.43 l 254.00 82.43 l 257.63 88.73 l S 213.05 88.73 m 216.69 82.43 l 209.42 82.43 l 213.05 88.73 l S 234.15 88.73 m 237.79 82.43 l 230.52 82.43 l 234.15 88.73 l S 203.58 88.73 m 207.22 82.43 l 199.94 82.43 l 203.58 88.73 l S 213.60 88.73 m 217.23 82.43 l 209.96 82.43 l 213.60 88.73 l S 157.42 88.73 m 161.06 82.43 l 153.78 82.43 l 157.42 88.73 l S 271.56 88.73 m 275.19 82.43 l 267.92 82.43 l 271.56 88.73 l S 152.62 88.73 m 156.25 82.43 l 148.98 82.43 l 152.62 88.73 l S 279.21 88.73 m 282.84 82.43 l 275.57 82.43 l 279.21 88.73 l S 176.76 88.73 m 180.40 82.43 l 173.13 82.43 l 176.76 88.73 l S 214.56 88.73 m 218.20 82.43 l 210.93 82.43 l 214.56 88.73 l S 221.27 88.73 m 224.90 82.43 l 217.63 82.43 l 221.27 88.73 l S 236.30 88.73 m 239.94 82.43 l 232.67 82.43 l 236.30 88.73 l S 284.21 88.73 m 287.84 82.43 l 280.57 82.43 l 284.21 88.73 l S 199.51 88.73 m 203.15 82.43 l 195.87 82.43 l 199.51 88.73 l S 218.92 88.73 m 222.56 82.43 l 215.29 82.43 l 218.92 88.73 l S 176.93 88.73 m 180.57 82.43 l 173.30 82.43 l 176.93 88.73 l S 201.03 88.73 m 204.67 82.43 l 197.39 82.43 l 201.03 88.73 l S 214.18 88.73 m 217.82 82.43 l 210.55 82.43 l 214.18 88.73 l S 220.66 88.73 m 224.30 82.43 l 217.03 82.43 l 220.66 88.73 l S 229.13 88.73 m 232.76 82.43 l 225.49 82.43 l 229.13 88.73 l S 214.16 88.73 m 217.80 82.43 l 210.53 82.43 l 214.16 88.73 l S 231.28 88.73 m 234.91 82.43 l 227.64 82.43 l 231.28 88.73 l S 272.03 88.73 m 275.66 82.43 l 268.39 82.43 l 272.03 88.73 l S 208.47 88.73 m 212.10 82.43 l 204.83 82.43 l 208.47 88.73 l S 235.81 88.73 m 239.45 82.43 l 232.18 82.43 l 235.81 88.73 l S 222.95 88.73 m 226.59 82.43 l 219.31 82.43 l 222.95 88.73 l S 164.45 88.73 m 168.08 82.43 l 160.81 82.43 l 164.45 88.73 l S 268.02 88.73 m 271.65 82.43 l 264.38 82.43 l 268.02 88.73 l S 239.97 88.73 m 243.61 82.43 l 236.34 82.43 l 239.97 88.73 l S 313.17 88.73 m 316.80 82.43 l 309.53 82.43 l 313.17 88.73 l S 202.58 88.73 m 206.21 82.43 l 198.94 82.43 l 202.58 88.73 l S 219.20 88.73 m 222.83 82.43 l 215.56 82.43 l 219.20 88.73 l S 206.24 88.73 m 209.88 82.43 l 202.61 82.43 l 206.24 88.73 l S 292.10 88.73 m 295.73 82.43 l 288.46 82.43 l 292.10 88.73 l S 265.11 88.73 m 268.75 82.43 l 261.47 82.43 l 265.11 88.73 l S 193.39 88.73 m 197.03 82.43 l 189.76 82.43 l 193.39 88.73 l S 224.34 88.73 m 227.97 82.43 l 220.70 82.43 l 224.34 88.73 l S 165.91 88.73 m 169.55 82.43 l 162.27 82.43 l 165.91 88.73 l S 201.48 88.73 m 205.12 82.43 l 197.85 82.43 l 201.48 88.73 l S 218.46 88.73 m 222.09 82.43 l 214.82 82.43 l 218.46 88.73 l S 228.53 88.73 m 232.16 82.43 l 224.89 82.43 l 228.53 88.73 l S 162.36 88.73 m 165.99 82.43 l 158.72 82.43 l 162.36 88.73 l S 163.31 88.73 m 166.94 82.43 l 159.67 82.43 l 163.31 88.73 l S 233.72 88.73 m 237.36 82.43 l 230.09 82.43 l 233.72 88.73 l S 150.25 88.73 m 153.89 82.43 l 146.62 82.43 l 150.25 88.73 l S 238.66 88.73 m 242.30 82.43 l 235.02 82.43 l 238.66 88.73 l S 255.90 88.73 m 259.53 82.43 l 252.26 82.43 l 255.90 88.73 l S 194.77 88.73 m 198.41 82.43 l 191.13 82.43 l 194.77 88.73 l S 202.93 88.73 m 206.56 82.43 l 199.29 82.43 l 202.93 88.73 l S 188.29 88.73 m 191.93 82.43 l 184.66 82.43 l 188.29 88.73 l S 182.90 88.73 m 186.53 82.43 l 179.26 82.43 l 182.90 88.73 l S 175.09 88.73 m 178.73 82.43 l 171.45 82.43 l 175.09 88.73 l S 213.58 88.73 m 217.22 82.43 l 209.95 82.43 l 213.58 88.73 l S 179.46 88.73 m 183.09 82.43 l 175.82 82.43 l 179.46 88.73 l S 256.79 88.73 m 260.43 82.43 l 253.16 82.43 l 256.79 88.73 l S 259.47 88.73 m 263.11 82.43 l 255.84 82.43 l 259.47 88.73 l S 172.42 88.73 m 176.06 82.43 l 168.78 82.43 l 172.42 88.73 l S 140.56 88.73 m 144.19 82.43 l 136.92 82.43 l 140.56 88.73 l S 241.62 88.73 m 245.25 82.43 l 237.98 82.43 l 241.62 88.73 l S 194.89 88.73 m 198.53 82.43 l 191.25 82.43 l 194.89 88.73 l S 206.22 88.73 m 209.86 82.43 l 202.58 82.43 l 206.22 88.73 l S 105.98 88.73 m 109.62 82.43 l 102.35 82.43 l 105.98 88.73 l S 183.31 88.73 m 186.95 82.43 l 179.68 82.43 l 183.31 88.73 l S 184.59 88.73 m 188.23 82.43 l 180.96 82.43 l 184.59 88.73 l S 325.91 88.73 m 329.55 82.43 l 322.27 82.43 l 325.91 88.73 l S 238.89 88.73 m 242.53 82.43 l 235.26 82.43 l 238.89 88.73 l S 239.24 88.73 m 242.88 82.43 l 235.60 82.43 l 239.24 88.73 l S 191.70 88.73 m 195.33 82.43 l 188.06 82.43 l 191.70 88.73 l S 234.73 88.73 m 238.37 82.43 l 231.10 82.43 l 234.73 88.73 l S 133.21 88.73 m 136.84 82.43 l 129.57 82.43 l 133.21 88.73 l S 182.94 88.73 m 186.58 82.43 l 179.31 82.43 l 182.94 88.73 l S 107.33 88.73 m 110.97 82.43 l 103.69 82.43 l 107.33 88.73 l S 127.98 88.73 m 131.61 82.43 l 124.34 82.43 l 127.98 88.73 l S 243.98 88.73 m 247.62 82.43 l 240.34 82.43 l 243.98 88.73 l S 236.14 88.73 m 239.78 82.43 l 232.50 82.43 l 236.14 88.73 l S 128.72 88.73 m 132.36 82.43 l 125.09 82.43 l 128.72 88.73 l S 202.98 88.73 m 206.62 82.43 l 199.34 82.43 l 202.98 88.73 l S 185.93 88.73 m 189.56 82.43 l 182.29 82.43 l 185.93 88.73 l S 215.91 88.73 m 219.54 82.43 l 212.27 82.43 l 215.91 88.73 l S 191.70 88.73 m 195.34 82.43 l 188.07 82.43 l 191.70 88.73 l S 205.08 88.73 m 208.71 82.43 l 201.44 82.43 l 205.08 88.73 l S 191.34 88.73 m 194.98 82.43 l 187.71 82.43 l 191.34 88.73 l S 170.99 88.73 m 174.63 82.43 l 167.35 82.43 l 170.99 88.73 l S 185.12 88.73 m 188.75 82.43 l 181.48 82.43 l 185.12 88.73 l S 135.24 88.73 m 138.88 82.43 l 131.61 82.43 l 135.24 88.73 l S 171.79 88.73 m 175.42 82.43 l 168.15 82.43 l 171.79 88.73 l S 144.36 88.73 m 147.99 82.43 l 140.72 82.43 l 144.36 88.73 l S 254.35 88.73 m 257.98 82.43 l 250.71 82.43 l 254.35 88.73 l S 227.27 88.73 m 230.90 82.43 l 223.63 82.43 l 227.27 88.73 l S 196.14 88.73 m 199.77 82.43 l 192.50 82.43 l 196.14 88.73 l S 142.73 88.73 m 146.36 82.43 l 139.09 82.43 l 142.73 88.73 l S 227.49 88.73 m 231.13 82.43 l 223.86 82.43 l 227.49 88.73 l S 213.01 88.73 m 216.65 82.43 l 209.38 82.43 l 213.01 88.73 l S 197.65 88.73 m 201.28 82.43 l 194.01 82.43 l 197.65 88.73 l S 149.14 88.73 m 152.77 82.43 l 145.50 82.43 l 149.14 88.73 l S 192.88 88.73 m 196.51 82.43 l 189.24 82.43 l 192.88 88.73 l S 132.05 88.73 m 135.68 82.43 l 128.41 82.43 l 132.05 88.73 l S 161.34 88.73 m 164.98 82.43 l 157.71 82.43 l 161.34 88.73 l S 210.68 88.73 m 214.32 82.43 l 207.04 82.43 l 210.68 88.73 l S 209.27 88.73 m 212.90 82.43 l 205.63 82.43 l 209.27 88.73 l S 148.78 88.73 m 152.41 82.43 l 145.14 82.43 l 148.78 88.73 l S 211.15 88.73 m 214.79 82.43 l 207.52 82.43 l 211.15 88.73 l S 194.99 88.73 m 198.63 82.43 l 191.35 82.43 l 194.99 88.73 l S 231.81 88.73 m 235.44 82.43 l 228.17 82.43 l 231.81 88.73 l S 250.61 88.73 m 254.25 82.43 l 246.98 82.43 l 250.61 88.73 l S 131.45 88.73 m 135.09 82.43 l 127.81 82.43 l 131.45 88.73 l S 211.41 88.73 m 215.04 82.43 l 207.77 82.43 l 211.41 88.73 l S 136.51 88.73 m 140.14 82.43 l 132.87 82.43 l 136.51 88.73 l S 218.03 88.73 m 221.67 82.43 l 214.39 82.43 l 218.03 88.73 l S 270.86 88.73 m 274.49 82.43 l 267.22 82.43 l 270.86 88.73 l S 202.97 88.73 m 206.60 82.43 l 199.33 82.43 l 202.97 88.73 l S 247.04 88.73 m 250.68 82.43 l 243.40 82.43 l 247.04 88.73 l S 205.88 88.73 m 209.51 82.43 l 202.24 82.43 l 205.88 88.73 l S 260.27 88.73 m 263.90 82.43 l 256.63 82.43 l 260.27 88.73 l S 208.93 88.73 m 212.57 82.43 l 205.29 82.43 l 208.93 88.73 l S 179.93 88.73 m 183.56 82.43 l 176.29 82.43 l 179.93 88.73 l S 224.24 88.73 m 227.87 82.43 l 220.60 82.43 l 224.24 88.73 l S 156.82 88.73 m 160.46 82.43 l 153.18 82.43 l 156.82 88.73 l S 188.22 88.73 m 191.85 82.43 l 184.58 82.43 l 188.22 88.73 l S 212.67 88.73 m 216.31 82.43 l 209.04 82.43 l 212.67 88.73 l S 243.96 88.73 m 247.60 82.43 l 240.32 82.43 l 243.96 88.73 l S 174.21 88.73 m 177.84 82.43 l 170.57 82.43 l 174.21 88.73 l S 225.07 88.73 m 228.70 82.43 l 221.43 82.43 l 225.07 88.73 l S 186.07 88.73 m 189.71 82.43 l 182.43 82.43 l 186.07 88.73 l S 162.25 88.73 m 165.88 82.43 l 158.61 82.43 l 162.25 88.73 l S 190.06 88.73 m 193.70 82.43 l 186.43 82.43 l 190.06 88.73 l S 176.60 88.73 m 180.24 82.43 l 172.96 82.43 l 176.60 88.73 l S 220.12 88.73 m 223.76 82.43 l 216.48 82.43 l 220.12 88.73 l S 239.55 88.73 m 243.18 82.43 l 235.91 82.43 l 239.55 88.73 l S 143.59 88.73 m 147.23 82.43 l 139.96 82.43 l 143.59 88.73 l S 250.91 88.73 m 254.55 82.43 l 247.27 82.43 l 250.91 88.73 l S 167.80 88.73 m 171.44 82.43 l 164.16 82.43 l 167.80 88.73 l S 261.66 88.73 m 265.30 82.43 l 258.03 82.43 l 261.66 88.73 l S 195.82 88.73 m 199.46 82.43 l 192.18 82.43 l 195.82 88.73 l S 220.73 88.73 m 224.36 82.43 l 217.09 82.43 l 220.73 88.73 l S 157.86 88.73 m 161.50 82.43 l 154.23 82.43 l 157.86 88.73 l S 248.16 88.73 m 251.80 82.43 l 244.53 82.43 l 248.16 88.73 l S 203.24 88.73 m 206.88 82.43 l 199.60 82.43 l 203.24 88.73 l S 212.31 88.73 m 215.95 82.43 l 208.67 82.43 l 212.31 88.73 l S 268.43 88.73 m 272.07 82.43 l 264.79 82.43 l 268.43 88.73 l S 87.02 88.73 m 90.66 82.43 l 83.38 82.43 l 87.02 88.73 l S 186.60 88.73 m 190.23 82.43 l 182.96 82.43 l 186.60 88.73 l S 235.55 88.73 m 239.19 82.43 l 231.91 82.43 l 235.55 88.73 l S 186.38 88.73 m 190.01 82.43 l 182.74 82.43 l 186.38 88.73 l S 229.37 88.73 m 233.01 82.43 l 225.73 82.43 l 229.37 88.73 l S 227.78 88.73 m 231.42 82.43 l 224.14 82.43 l 227.78 88.73 l S 192.41 88.73 m 196.05 82.43 l 188.78 82.43 l 192.41 88.73 l S 161.21 88.73 m 164.85 82.43 l 157.58 82.43 l 161.21 88.73 l S 195.70 88.73 m 199.34 82.43 l 192.07 82.43 l 195.70 88.73 l S 200.48 88.73 m 204.12 82.43 l 196.84 82.43 l 200.48 88.73 l S 193.75 88.73 m 197.38 82.43 l 190.11 82.43 l 193.75 88.73 l S 227.67 88.73 m 231.30 82.43 l 224.03 82.43 l 227.67 88.73 l S 250.04 88.73 m 253.68 82.43 l 246.41 82.43 l 250.04 88.73 l S 200.57 88.73 m 204.21 82.43 l 196.93 82.43 l 200.57 88.73 l S 180.90 88.73 m 184.54 82.43 l 177.27 82.43 l 180.90 88.73 l S 235.26 88.73 m 238.90 82.43 l 231.62 82.43 l 235.26 88.73 l S 189.20 88.73 m 192.83 82.43 l 185.56 82.43 l 189.20 88.73 l S 205.43 88.73 m 209.07 82.43 l 201.80 82.43 l 205.43 88.73 l S 108.26 88.73 m 111.90 82.43 l 104.63 82.43 l 108.26 88.73 l S 156.47 88.73 m 160.10 82.43 l 152.83 82.43 l 156.47 88.73 l S 201.38 88.73 m 205.01 82.43 l 197.74 82.43 l 201.38 88.73 l S 199.11 88.73 m 202.75 82.43 l 195.47 82.43 l 199.11 88.73 l S 194.98 88.73 m 198.62 82.43 l 191.35 82.43 l 194.98 88.73 l S 148.07 88.73 m 151.71 82.43 l 144.44 82.43 l 148.07 88.73 l S 222.03 88.73 m 225.67 82.43 l 218.39 82.43 l 222.03 88.73 l S 189.94 88.73 m 193.58 82.43 l 186.31 82.43 l 189.94 88.73 l S 205.98 88.73 m 209.62 82.43 l 202.35 82.43 l 205.98 88.73 l S 193.71 88.73 m 197.35 82.43 l 190.07 82.43 l 193.71 88.73 l S 203.48 88.73 m 207.12 82.43 l 199.84 82.43 l 203.48 88.73 l S 256.52 88.73 m 260.15 82.43 l 252.88 82.43 l 256.52 88.73 l S 172.51 88.73 m 176.15 82.43 l 168.87 82.43 l 172.51 88.73 l S 198.69 88.73 m 202.33 82.43 l 195.06 82.43 l 198.69 88.73 l S 316.21 88.73 m 319.85 82.43 l 312.57 82.43 l 316.21 88.73 l S 167.40 88.73 m 171.04 82.43 l 163.77 82.43 l 167.40 88.73 l S 229.01 88.73 m 232.64 82.43 l 225.37 82.43 l 229.01 88.73 l S 127.59 88.73 m 131.23 82.43 l 123.96 82.43 l 127.59 88.73 l S 190.56 88.73 m 194.19 82.43 l 186.92 82.43 l 190.56 88.73 l S 178.23 88.73 m 181.86 82.43 l 174.59 82.43 l 178.23 88.73 l S 167.36 88.73 m 171.00 82.43 l 163.73 82.43 l 167.36 88.73 l S 249.66 88.73 m 253.29 82.43 l 246.02 82.43 l 249.66 88.73 l S 150.74 88.73 m 154.37 82.43 l 147.10 82.43 l 150.74 88.73 l S 169.61 88.73 m 173.24 82.43 l 165.97 82.43 l 169.61 88.73 l S 171.65 88.73 m 175.29 82.43 l 168.01 82.43 l 171.65 88.73 l S 204.72 88.73 m 208.36 82.43 l 201.08 82.43 l 204.72 88.73 l S 181.50 88.73 m 185.14 82.43 l 177.87 82.43 l 181.50 88.73 l S 263.03 88.73 m 266.67 82.43 l 259.40 82.43 l 263.03 88.73 l S 223.36 88.73 m 226.99 82.43 l 219.72 82.43 l 223.36 88.73 l S 157.51 88.73 m 161.15 82.43 l 153.87 82.43 l 157.51 88.73 l S 197.55 88.73 m 201.18 82.43 l 193.91 82.43 l 197.55 88.73 l S 182.37 88.73 m 186.00 82.43 l 178.73 82.43 l 182.37 88.73 l S 193.24 88.73 m 196.88 82.43 l 189.60 82.43 l 193.24 88.73 l S 205.82 88.73 m 209.46 82.43 l 202.18 82.43 l 205.82 88.73 l S 249.14 88.73 m 252.77 82.43 l 245.50 82.43 l 249.14 88.73 l S 201.80 88.73 m 205.44 82.43 l 198.17 82.43 l 201.80 88.73 l S 213.80 88.73 m 217.43 82.43 l 210.16 82.43 l 213.80 88.73 l S 171.80 88.73 m 175.44 82.43 l 168.16 82.43 l 171.80 88.73 l S 251.29 88.73 m 254.93 82.43 l 247.66 82.43 l 251.29 88.73 l S 207.58 88.73 m 211.21 82.43 l 203.94 82.43 l 207.58 88.73 l S 213.74 88.73 m 217.38 82.43 l 210.11 82.43 l 213.74 88.73 l S 230.86 88.73 m 234.50 82.43 l 227.22 82.43 l 230.86 88.73 l S 200.77 88.73 m 204.40 82.43 l 197.13 82.43 l 200.77 88.73 l S 102.83 88.73 m 106.47 82.43 l 99.20 82.43 l 102.83 88.73 l S 165.31 88.73 m 168.95 82.43 l 161.68 82.43 l 165.31 88.73 l S 196.08 88.73 m 199.72 82.43 l 192.45 82.43 l 196.08 88.73 l S 204.09 88.73 m 207.73 82.43 l 200.45 82.43 l 204.09 88.73 l S 232.43 88.73 m 236.07 82.43 l 228.80 82.43 l 232.43 88.73 l S 197.91 88.73 m 201.55 82.43 l 194.27 82.43 l 197.91 88.73 l S 228.15 88.73 m 231.79 82.43 l 224.51 82.43 l 228.15 88.73 l S 249.09 88.73 m 252.73 82.43 l 245.45 82.43 l 249.09 88.73 l S 206.80 88.73 m 210.44 82.43 l 203.16 82.43 l 206.80 88.73 l S 151.33 88.73 m 154.97 82.43 l 147.69 82.43 l 151.33 88.73 l S 254.63 88.73 m 258.27 82.43 l 250.99 82.43 l 254.63 88.73 l S 240.29 88.73 m 243.93 82.43 l 236.66 82.43 l 240.29 88.73 l S 196.68 88.73 m 200.31 82.43 l 193.04 82.43 l 196.68 88.73 l S 95.29 88.73 m 98.93 82.43 l 91.66 82.43 l 95.29 88.73 l S 201.45 88.73 m 205.08 82.43 l 197.81 82.43 l 201.45 88.73 l S 207.45 88.73 m 211.09 82.43 l 203.82 82.43 l 207.45 88.73 l S 277.86 88.73 m 281.49 82.43 l 274.22 82.43 l 277.86 88.73 l S 212.64 88.73 m 216.28 82.43 l 209.00 82.43 l 212.64 88.73 l S 186.64 88.73 m 190.27 82.43 l 183.00 82.43 l 186.64 88.73 l S 155.70 88.73 m 159.34 82.43 l 152.07 82.43 l 155.70 88.73 l S 168.17 88.73 m 171.81 82.43 l 164.53 82.43 l 168.17 88.73 l S 180.16 88.73 m 183.79 82.43 l 176.52 82.43 l 180.16 88.73 l S 194.13 88.73 m 197.77 82.43 l 190.50 82.43 l 194.13 88.73 l S 169.29 88.73 m 172.93 82.43 l 165.66 82.43 l 169.29 88.73 l S 180.34 88.73 m 183.97 82.43 l 176.70 82.43 l 180.34 88.73 l S 132.81 88.73 m 136.44 82.43 l 129.17 82.43 l 132.81 88.73 l S 285.38 88.73 m 289.02 82.43 l 281.75 82.43 l 285.38 88.73 l S 206.23 88.73 m 209.87 82.43 l 202.59 82.43 l 206.23 88.73 l S 162.46 88.73 m 166.10 82.43 l 158.83 82.43 l 162.46 88.73 l S 190.11 88.73 m 193.74 82.43 l 186.47 82.43 l 190.11 88.73 l S 213.05 88.73 m 216.69 82.43 l 209.42 82.43 l 213.05 88.73 l S 132.60 88.73 m 136.24 82.43 l 128.96 82.43 l 132.60 88.73 l S 223.38 88.73 m 227.02 82.43 l 219.75 82.43 l 223.38 88.73 l S 193.38 88.73 m 197.01 82.43 l 189.74 82.43 l 193.38 88.73 l S 171.74 88.73 m 175.38 82.43 l 168.10 82.43 l 171.74 88.73 l S 144.71 88.73 m 148.34 82.43 l 141.07 82.43 l 144.71 88.73 l S 155.70 88.73 m 159.33 82.43 l 152.06 82.43 l 155.70 88.73 l S 191.21 88.73 m 194.84 82.43 l 187.57 82.43 l 191.21 88.73 l S 216.87 88.73 m 220.50 82.43 l 213.23 82.43 l 216.87 88.73 l S 224.20 88.73 m 227.83 82.43 l 220.56 82.43 l 224.20 88.73 l S 221.55 88.73 m 225.19 82.43 l 217.92 82.43 l 221.55 88.73 l S 236.10 88.73 m 239.73 82.43 l 232.46 82.43 l 236.10 88.73 l S 217.82 88.73 m 221.45 82.43 l 214.18 82.43 l 217.82 88.73 l S 204.61 88.73 m 208.24 82.43 l 200.97 82.43 l 204.61 88.73 l S 138.77 88.73 m 142.41 82.43 l 135.13 82.43 l 138.77 88.73 l S 209.28 88.73 m 212.92 82.43 l 205.64 82.43 l 209.28 88.73 l S 165.46 88.73 m 169.09 82.43 l 161.82 82.43 l 165.46 88.73 l S 195.39 88.73 m 199.03 82.43 l 191.75 82.43 l 195.39 88.73 l S 162.79 88.73 m 166.43 82.43 l 159.15 82.43 l 162.79 88.73 l S 260.01 88.73 m 263.65 82.43 l 256.38 82.43 l 260.01 88.73 l S 204.29 88.73 m 207.92 82.43 l 200.65 82.43 l 204.29 88.73 l S 151.74 88.73 m 155.38 82.43 l 148.11 82.43 l 151.74 88.73 l S 213.99 88.73 m 217.62 82.43 l 210.35 82.43 l 213.99 88.73 l S 109.38 88.73 m 113.02 82.43 l 105.74 82.43 l 109.38 88.73 l S 240.42 88.73 m 244.06 82.43 l 236.78 82.43 l 240.42 88.73 l S 97.93 88.73 m 101.57 82.43 l 94.30 82.43 l 97.93 88.73 l S 165.35 88.73 m 168.99 82.43 l 161.72 82.43 l 165.35 88.73 l S 110.12 88.73 m 113.75 82.43 l 106.48 82.43 l 110.12 88.73 l S 204.12 88.73 m 207.76 82.43 l 200.49 82.43 l 204.12 88.73 l S 175.66 88.73 m 179.30 82.43 l 172.03 82.43 l 175.66 88.73 l S 199.14 88.73 m 202.78 82.43 l 195.51 82.43 l 199.14 88.73 l S 210.80 88.73 m 214.44 82.43 l 207.17 82.43 l 210.80 88.73 l S 271.29 88.73 m 274.93 82.43 l 267.66 82.43 l 271.29 88.73 l S 135.51 88.73 m 139.15 82.43 l 131.87 82.43 l 135.51 88.73 l S 144.94 88.73 m 148.57 82.43 l 141.30 82.43 l 144.94 88.73 l S 195.35 88.73 m 198.99 82.43 l 191.72 82.43 l 195.35 88.73 l S 231.62 88.73 m 235.25 82.43 l 227.98 82.43 l 231.62 88.73 l S 289.96 88.73 m 293.60 82.43 l 286.33 82.43 l 289.96 88.73 l S 117.97 88.73 m 121.60 82.43 l 114.33 82.43 l 117.97 88.73 l S 235.27 88.73 m 238.91 82.43 l 231.63 82.43 l 235.27 88.73 l S 227.47 88.73 m 231.11 82.43 l 223.83 82.43 l 227.47 88.73 l S 175.66 88.73 m 179.29 82.43 l 172.02 82.43 l 175.66 88.73 l S 203.64 88.73 m 207.27 82.43 l 200.00 82.43 l 203.64 88.73 l S 165.24 88.73 m 168.88 82.43 l 161.60 82.43 l 165.24 88.73 l S 237.37 88.73 m 241.01 82.43 l 233.74 82.43 l 237.37 88.73 l S 175.26 88.73 m 178.90 82.43 l 171.63 82.43 l 175.26 88.73 l S 174.61 88.73 m 178.25 82.43 l 170.98 82.43 l 174.61 88.73 l S 216.30 88.73 m 219.93 82.43 l 212.66 82.43 l 216.30 88.73 l S 163.01 88.73 m 166.64 82.43 l 159.37 82.43 l 163.01 88.73 l S 209.01 88.73 m 212.65 82.43 l 205.37 82.43 l 209.01 88.73 l S 323.33 88.73 m 326.97 82.43 l 319.70 82.43 l 323.33 88.73 l S 187.68 88.73 m 191.31 82.43 l 184.04 82.43 l 187.68 88.73 l S 225.88 88.73 m 229.52 82.43 l 222.24 82.43 l 225.88 88.73 l S 171.05 88.73 m 174.69 82.43 l 167.42 82.43 l 171.05 88.73 l S 192.18 88.73 m 195.82 82.43 l 188.55 82.43 l 192.18 88.73 l S 240.11 88.73 m 243.74 82.43 l 236.47 82.43 l 240.11 88.73 l S 136.12 88.73 m 139.76 82.43 l 132.49 82.43 l 136.12 88.73 l S 234.37 88.73 m 238.01 82.43 l 230.73 82.43 l 234.37 88.73 l S 194.48 88.73 m 198.12 82.43 l 190.85 82.43 l 194.48 88.73 l S 209.28 88.73 m 212.91 82.43 l 205.64 82.43 l 209.28 88.73 l S 221.18 88.73 m 224.82 82.43 l 217.54 82.43 l 221.18 88.73 l S 285.33 88.73 m 288.97 82.43 l 281.70 82.43 l 285.33 88.73 l S 218.97 88.73 m 222.60 82.43 l 215.33 82.43 l 218.97 88.73 l S 199.85 88.73 m 203.49 82.43 l 196.21 82.43 l 199.85 88.73 l S 160.71 88.73 m 164.35 82.43 l 157.07 82.43 l 160.71 88.73 l S 193.95 88.73 m 197.59 82.43 l 190.31 82.43 l 193.95 88.73 l S 184.41 88.73 m 188.05 82.43 l 180.77 82.43 l 184.41 88.73 l S 257.62 88.73 m 261.25 82.43 l 253.98 82.43 l 257.62 88.73 l S 236.99 88.73 m 240.63 82.43 l 233.36 82.43 l 236.99 88.73 l S 158.59 88.73 m 162.23 82.43 l 154.96 82.43 l 158.59 88.73 l S 207.79 88.73 m 211.43 82.43 l 204.16 82.43 l 207.79 88.73 l S 191.41 88.73 m 195.05 82.43 l 187.78 82.43 l 191.41 88.73 l S 193.89 88.73 m 197.52 82.43 l 190.25 82.43 l 193.89 88.73 l S 183.43 88.73 m 187.06 82.43 l 179.79 82.43 l 183.43 88.73 l S 212.59 88.73 m 216.23 82.43 l 208.96 82.43 l 212.59 88.73 l S 170.38 88.73 m 174.02 82.43 l 166.75 82.43 l 170.38 88.73 l S 141.48 88.73 m 145.12 82.43 l 137.85 82.43 l 141.48 88.73 l S 183.02 88.73 m 186.66 82.43 l 179.39 82.43 l 183.02 88.73 l S 216.60 88.73 m 220.23 82.43 l 212.96 82.43 l 216.60 88.73 l S 210.63 88.73 m 214.27 82.43 l 207.00 82.43 l 210.63 88.73 l S 180.03 88.73 m 183.66 82.43 l 176.39 82.43 l 180.03 88.73 l S 136.82 88.73 m 140.46 82.43 l 133.19 82.43 l 136.82 88.73 l S 206.77 88.73 m 210.41 82.43 l 203.13 82.43 l 206.77 88.73 l S 168.69 88.73 m 172.32 82.43 l 165.05 82.43 l 168.69 88.73 l S 150.93 88.73 m 154.57 82.43 l 147.29 82.43 l 150.93 88.73 l S 190.26 88.73 m 193.89 82.43 l 186.62 82.43 l 190.26 88.73 l S 149.21 88.73 m 152.84 82.43 l 145.57 82.43 l 149.21 88.73 l S 164.44 88.73 m 168.08 82.43 l 160.81 82.43 l 164.44 88.73 l S 206.98 88.73 m 210.62 82.43 l 203.35 82.43 l 206.98 88.73 l S 189.14 88.73 m 192.77 82.43 l 185.50 82.43 l 189.14 88.73 l S 190.35 88.73 m 193.99 82.43 l 186.72 82.43 l 190.35 88.73 l S 248.40 88.73 m 252.04 82.43 l 244.77 82.43 l 248.40 88.73 l S 152.63 88.73 m 156.27 82.43 l 148.99 82.43 l 152.63 88.73 l S 186.29 88.73 m 189.92 82.43 l 182.65 82.43 l 186.29 88.73 l S 173.43 88.73 m 177.06 82.43 l 169.79 82.43 l 173.43 88.73 l S 211.86 88.73 m 215.50 82.43 l 208.22 82.43 l 211.86 88.73 l S 193.66 88.73 m 197.29 82.43 l 190.02 82.43 l 193.66 88.73 l S 162.66 88.73 m 166.30 82.43 l 159.02 82.43 l 162.66 88.73 l S 206.11 88.73 m 209.75 82.43 l 202.48 82.43 l 206.11 88.73 l S 180.95 88.73 m 184.59 82.43 l 177.32 82.43 l 180.95 88.73 l S 217.38 88.73 m 221.02 82.43 l 213.74 82.43 l 217.38 88.73 l S 179.28 88.73 m 182.92 82.43 l 175.65 82.43 l 179.28 88.73 l S 231.84 88.73 m 235.47 82.43 l 228.20 82.43 l 231.84 88.73 l S 151.15 88.73 m 154.79 82.43 l 147.52 82.43 l 151.15 88.73 l S 153.24 88.73 m 156.88 82.43 l 149.60 82.43 l 153.24 88.73 l S 199.17 88.73 m 202.81 82.43 l 195.54 82.43 l 199.17 88.73 l S 207.33 88.73 m 210.96 82.43 l 203.69 82.43 l 207.33 88.73 l S 202.62 88.73 m 206.26 82.43 l 198.98 82.43 l 202.62 88.73 l S 136.45 88.73 m 140.08 82.43 l 132.81 82.43 l 136.45 88.73 l S 181.98 88.73 m 185.61 82.43 l 178.34 82.43 l 181.98 88.73 l S 178.68 88.73 m 182.32 82.43 l 175.05 82.43 l 178.68 88.73 l S 170.32 88.73 m 173.95 82.43 l 166.68 82.43 l 170.32 88.73 l S 191.36 88.73 m 195.00 82.43 l 187.73 82.43 l 191.36 88.73 l S 241.69 88.73 m 245.33 82.43 l 238.06 82.43 l 241.69 88.73 l S 190.44 88.73 m 194.08 82.43 l 186.81 82.43 l 190.44 88.73 l S 193.22 88.73 m 196.85 82.43 l 189.58 82.43 l 193.22 88.73 l S 183.76 88.73 m 187.40 82.43 l 180.13 82.43 l 183.76 88.73 l S 116.48 88.73 m 120.11 82.43 l 112.84 82.43 l 116.48 88.73 l S 168.18 88.73 m 171.82 82.43 l 164.54 82.43 l 168.18 88.73 l S 192.22 88.73 m 195.86 82.43 l 188.59 82.43 l 192.22 88.73 l S 202.42 88.73 m 206.06 82.43 l 198.78 82.43 l 202.42 88.73 l S 212.21 88.73 m 215.84 82.43 l 208.57 82.43 l 212.21 88.73 l S 262.75 88.73 m 266.38 82.43 l 259.11 82.43 l 262.75 88.73 l S 204.07 88.73 m 207.70 82.43 l 200.43 82.43 l 204.07 88.73 l S 180.68 88.73 m 184.31 82.43 l 177.04 82.43 l 180.68 88.73 l S 234.04 88.73 m 237.68 82.43 l 230.40 82.43 l 234.04 88.73 l S 180.85 88.73 m 184.48 82.43 l 177.21 82.43 l 180.85 88.73 l S 148.57 88.73 m 152.20 82.43 l 144.93 82.43 l 148.57 88.73 l S 212.67 88.73 m 216.30 82.43 l 209.03 82.43 l 212.67 88.73 l S 175.72 88.73 m 179.36 82.43 l 172.09 82.43 l 175.72 88.73 l S 156.26 88.73 m 159.90 82.43 l 152.62 82.43 l 156.26 88.73 l S 198.32 88.73 m 201.95 82.43 l 194.68 82.43 l 198.32 88.73 l S 208.93 88.73 m 212.57 82.43 l 205.30 82.43 l 208.93 88.73 l S 209.82 88.73 m 213.46 82.43 l 206.18 82.43 l 209.82 88.73 l S 204.77 88.73 m 208.41 82.43 l 201.14 82.43 l 204.77 88.73 l S 222.53 88.73 m 226.16 82.43 l 218.89 82.43 l 222.53 88.73 l S 206.55 88.73 m 210.18 82.43 l 202.91 82.43 l 206.55 88.73 l S 136.76 88.73 m 140.40 82.43 l 133.12 82.43 l 136.76 88.73 l S 193.98 88.73 m 197.62 82.43 l 190.34 82.43 l 193.98 88.73 l S 310.61 88.73 m 314.25 82.43 l 306.98 82.43 l 310.61 88.73 l S 233.79 88.73 m 237.42 82.43 l 230.15 82.43 l 233.79 88.73 l S 152.07 88.73 m 155.71 82.43 l 148.44 82.43 l 152.07 88.73 l S 194.12 88.73 m 197.75 82.43 l 190.48 82.43 l 194.12 88.73 l S 223.83 88.73 m 227.47 82.43 l 220.19 82.43 l 223.83 88.73 l S 186.08 88.73 m 189.72 82.43 l 182.45 82.43 l 186.08 88.73 l S 213.50 88.73 m 217.13 82.43 l 209.86 82.43 l 213.50 88.73 l S 215.80 88.73 m 219.43 82.43 l 212.16 82.43 l 215.80 88.73 l S 230.11 88.73 m 233.74 82.43 l 226.47 82.43 l 230.11 88.73 l S 226.90 88.73 m 230.53 82.43 l 223.26 82.43 l 226.90 88.73 l S 190.24 88.73 m 193.87 82.43 l 186.60 82.43 l 190.24 88.73 l S 178.48 88.73 m 182.12 82.43 l 174.85 82.43 l 178.48 88.73 l S 132.07 88.73 m 135.70 82.43 l 128.43 82.43 l 132.07 88.73 l S 244.04 88.73 m 247.68 82.43 l 240.41 82.43 l 244.04 88.73 l S 269.77 88.73 m 273.41 82.43 l 266.14 82.43 l 269.77 88.73 l S 217.48 88.73 m 221.12 82.43 l 213.84 82.43 l 217.48 88.73 l S 158.39 88.73 m 162.03 82.43 l 154.76 82.43 l 158.39 88.73 l S 232.62 88.73 m 236.26 82.43 l 228.99 82.43 l 232.62 88.73 l S 253.95 88.73 m 257.58 82.43 l 250.31 82.43 l 253.95 88.73 l S 135.59 88.73 m 139.23 82.43 l 131.96 82.43 l 135.59 88.73 l S 290.59 88.73 m 294.23 82.43 l 286.96 82.43 l 290.59 88.73 l S 175.47 88.73 m 179.10 82.43 l 171.83 82.43 l 175.47 88.73 l S 224.07 88.73 m 227.71 82.43 l 220.44 82.43 l 224.07 88.73 l S 167.29 88.73 m 170.93 82.43 l 163.66 82.43 l 167.29 88.73 l S 321.92 88.73 m 325.55 82.43 l 318.28 82.43 l 321.92 88.73 l S 183.46 88.73 m 187.09 82.43 l 179.82 82.43 l 183.46 88.73 l S 256.82 88.73 m 260.46 82.43 l 253.19 82.43 l 256.82 88.73 l S 188.71 88.73 m 192.34 82.43 l 185.07 82.43 l 188.71 88.73 l S 234.51 88.73 m 238.15 82.43 l 230.88 82.43 l 234.51 88.73 l S 242.77 88.73 m 246.40 82.43 l 239.13 82.43 l 242.77 88.73 l S 268.04 88.73 m 271.67 82.43 l 264.40 82.43 l 268.04 88.73 l S 251.18 88.73 m 254.82 82.43 l 247.54 82.43 l 251.18 88.73 l S 167.20 88.73 m 170.84 82.43 l 163.57 82.43 l 167.20 88.73 l S 146.83 88.73 m 150.46 82.43 l 143.19 82.43 l 146.83 88.73 l S 206.80 88.73 m 210.44 82.43 l 203.17 82.43 l 206.80 88.73 l S 221.55 88.73 m 225.18 82.43 l 217.91 82.43 l 221.55 88.73 l S 217.10 88.73 m 220.73 82.43 l 213.46 82.43 l 217.10 88.73 l S 170.20 88.73 m 173.84 82.43 l 166.56 82.43 l 170.20 88.73 l S 184.33 88.73 m 187.96 82.43 l 180.69 82.43 l 184.33 88.73 l S 164.15 88.73 m 167.78 82.43 l 160.51 82.43 l 164.15 88.73 l S 229.76 88.73 m 233.40 82.43 l 226.12 82.43 l 229.76 88.73 l S 148.76 88.73 m 152.39 82.43 l 145.12 82.43 l 148.76 88.73 l S 204.96 88.73 m 208.60 82.43 l 201.33 82.43 l 204.96 88.73 l S 270.38 88.73 m 274.02 82.43 l 266.74 82.43 l 270.38 88.73 l S 272.75 88.73 m 276.39 82.43 l 269.12 82.43 l 272.75 88.73 l S 209.16 88.73 m 212.80 82.43 l 205.53 82.43 l 209.16 88.73 l S 236.98 88.73 m 240.62 82.43 l 233.34 82.43 l 236.98 88.73 l S 192.67 88.73 m 196.30 82.43 l 189.03 82.43 l 192.67 88.73 l S 242.58 88.73 m 246.22 82.43 l 238.95 82.43 l 242.58 88.73 l S 237.92 88.73 m 241.56 82.43 l 234.29 82.43 l 237.92 88.73 l S 181.75 88.73 m 185.39 82.43 l 178.11 82.43 l 181.75 88.73 l S 136.90 88.73 m 140.54 82.43 l 133.26 82.43 l 136.90 88.73 l S 157.36 88.73 m 160.99 82.43 l 153.72 82.43 l 157.36 88.73 l S 137.75 88.73 m 141.39 82.43 l 134.12 82.43 l 137.75 88.73 l S 230.48 88.73 m 234.12 82.43 l 226.85 82.43 l 230.48 88.73 l S 149.99 88.73 m 153.62 82.43 l 146.35 82.43 l 149.99 88.73 l S 247.54 88.73 m 251.18 82.43 l 243.91 82.43 l 247.54 88.73 l S 112.14 88.73 m 115.77 82.43 l 108.50 82.43 l 112.14 88.73 l S 163.14 88.73 m 166.77 82.43 l 159.50 82.43 l 163.14 88.73 l S 171.66 88.73 m 175.30 82.43 l 168.02 82.43 l 171.66 88.73 l S 206.04 88.73 m 209.68 82.43 l 202.41 82.43 l 206.04 88.73 l S 183.78 88.73 m 187.41 82.43 l 180.14 82.43 l 183.78 88.73 l S 241.32 88.73 m 244.95 82.43 l 237.68 82.43 l 241.32 88.73 l S 88.09 88.73 m 91.72 82.43 l 84.45 82.43 l 88.09 88.73 l S 172.03 88.73 m 175.67 82.43 l 168.40 82.43 l 172.03 88.73 l S 188.86 88.73 m 192.50 82.43 l 185.23 82.43 l 188.86 88.73 l S 206.19 88.73 m 209.82 82.43 l 202.55 82.43 l 206.19 88.73 l S 160.42 88.73 m 164.06 82.43 l 156.79 82.43 l 160.42 88.73 l S 212.83 88.73 m 216.46 82.43 l 209.19 82.43 l 212.83 88.73 l S 265.51 88.73 m 269.14 82.43 l 261.87 82.43 l 265.51 88.73 l S 265.15 88.73 m 268.79 82.43 l 261.51 82.43 l 265.15 88.73 l S 252.99 88.73 m 256.62 82.43 l 249.35 82.43 l 252.99 88.73 l S 250.86 88.73 m 254.49 82.43 l 247.22 82.43 l 250.86 88.73 l S 157.19 88.73 m 160.83 82.43 l 153.56 82.43 l 157.19 88.73 l S 160.15 88.73 m 163.78 82.43 l 156.51 82.43 l 160.15 88.73 l S 306.97 88.73 m 310.60 82.43 l 303.33 82.43 l 306.97 88.73 l S 268.93 88.73 m 272.57 82.43 l 265.29 82.43 l 268.93 88.73 l S 235.46 88.73 m 239.10 82.43 l 231.83 82.43 l 235.46 88.73 l S 172.35 88.73 m 175.99 82.43 l 168.72 82.43 l 172.35 88.73 l S 226.24 88.73 m 229.87 82.43 l 222.60 82.43 l 226.24 88.73 l S 80.21 88.73 m 83.85 82.43 l 76.58 82.43 l 80.21 88.73 l S 187.30 88.73 m 190.94 82.43 l 183.66 82.43 l 187.30 88.73 l S 178.46 88.73 m 182.10 82.43 l 174.82 82.43 l 178.46 88.73 l S 274.33 88.73 m 277.97 82.43 l 270.69 82.43 l 274.33 88.73 l S 245.02 88.73 m 248.66 82.43 l 241.38 82.43 l 245.02 88.73 l S 278.73 88.73 m 282.37 82.43 l 275.10 82.43 l 278.73 88.73 l S 199.33 88.73 m 202.96 82.43 l 195.69 82.43 l 199.33 88.73 l S 231.78 88.73 m 235.42 82.43 l 228.14 82.43 l 231.78 88.73 l S 221.11 88.73 m 224.75 82.43 l 217.48 82.43 l 221.11 88.73 l S 220.18 88.73 m 223.81 82.43 l 216.54 82.43 l 220.18 88.73 l S 212.63 88.73 m 216.27 82.43 l 208.99 82.43 l 212.63 88.73 l S 170.93 88.73 m 174.56 82.43 l 167.29 82.43 l 170.93 88.73 l S 234.59 88.73 m 238.22 82.43 l 230.95 82.43 l 234.59 88.73 l S 205.48 88.73 m 209.12 82.43 l 201.84 82.43 l 205.48 88.73 l S 251.00 88.73 m 254.64 82.43 l 247.37 82.43 l 251.00 88.73 l S 260.95 88.73 m 264.58 82.43 l 257.31 82.43 l 260.95 88.73 l S 165.85 88.73 m 169.48 82.43 l 162.21 82.43 l 165.85 88.73 l S 149.50 88.73 m 153.13 82.43 l 145.86 82.43 l 149.50 88.73 l S 212.37 88.73 m 216.00 82.43 l 208.73 82.43 l 212.37 88.73 l S 221.13 88.73 m 224.76 82.43 l 217.49 82.43 l 221.13 88.73 l S 203.72 88.73 m 207.36 82.43 l 200.09 82.43 l 203.72 88.73 l S 165.01 88.73 m 168.65 82.43 l 161.38 82.43 l 165.01 88.73 l S 119.96 88.73 m 123.60 82.43 l 116.33 82.43 l 119.96 88.73 l S 150.12 88.73 m 153.75 82.43 l 146.48 82.43 l 150.12 88.73 l S 214.06 88.73 m 217.69 82.43 l 210.42 82.43 l 214.06 88.73 l S 169.37 88.73 m 173.00 82.43 l 165.73 82.43 l 169.37 88.73 l S 165.64 88.73 m 169.27 82.43 l 162.00 82.43 l 165.64 88.73 l S 237.81 88.73 m 241.45 82.43 l 234.17 82.43 l 237.81 88.73 l S 230.04 88.73 m 233.67 82.43 l 226.40 82.43 l 230.04 88.73 l S 243.68 88.73 m 247.32 82.43 l 240.05 82.43 l 243.68 88.73 l S 180.26 88.73 m 183.90 82.43 l 176.62 82.43 l 180.26 88.73 l S 161.31 88.73 m 164.94 82.43 l 157.67 82.43 l 161.31 88.73 l S 168.82 88.73 m 172.46 82.43 l 165.19 82.43 l 168.82 88.73 l S 227.49 88.73 m 231.13 82.43 l 223.85 82.43 l 227.49 88.73 l S 236.26 88.73 m 239.89 82.43 l 232.62 82.43 l 236.26 88.73 l S 102.97 88.73 m 106.61 82.43 l 99.33 82.43 l 102.97 88.73 l S 203.65 88.73 m 207.29 82.43 l 200.02 82.43 l 203.65 88.73 l S 193.87 88.73 m 197.51 82.43 l 190.24 82.43 l 193.87 88.73 l S 212.06 88.73 m 215.70 82.43 l 208.43 82.43 l 212.06 88.73 l S 138.53 88.73 m 142.17 82.43 l 134.90 82.43 l 138.53 88.73 l S 178.63 88.73 m 182.26 82.43 l 174.99 82.43 l 178.63 88.73 l S 220.16 88.73 m 223.80 82.43 l 216.53 82.43 l 220.16 88.73 l S 165.94 88.73 m 169.58 82.43 l 162.30 82.43 l 165.94 88.73 l S 204.48 88.73 m 208.12 82.43 l 200.84 82.43 l 204.48 88.73 l S 232.24 88.73 m 235.87 82.43 l 228.60 82.43 l 232.24 88.73 l S 179.08 88.73 m 182.72 82.43 l 175.45 82.43 l 179.08 88.73 l S 172.97 88.73 m 176.61 82.43 l 169.34 82.43 l 172.97 88.73 l S 151.67 88.73 m 155.31 82.43 l 148.04 82.43 l 151.67 88.73 l S 97.35 88.73 m 100.99 82.43 l 93.72 82.43 l 97.35 88.73 l S 111.55 88.73 m 115.19 82.43 l 107.92 82.43 l 111.55 88.73 l S 253.73 88.73 m 257.37 82.43 l 250.10 82.43 l 253.73 88.73 l S 217.16 88.73 m 220.80 82.43 l 213.53 82.43 l 217.16 88.73 l S 210.22 88.73 m 213.86 82.43 l 206.59 82.43 l 210.22 88.73 l S 123.94 88.73 m 127.57 82.43 l 120.30 82.43 l 123.94 88.73 l S 266.45 88.73 m 270.09 82.43 l 262.82 82.43 l 266.45 88.73 l S 230.20 88.73 m 233.84 82.43 l 226.57 82.43 l 230.20 88.73 l S 168.20 88.73 m 171.84 82.43 l 164.57 82.43 l 168.20 88.73 l S 196.65 88.73 m 200.29 82.43 l 193.01 82.43 l 196.65 88.73 l S 203.09 88.73 m 206.73 82.43 l 199.45 82.43 l 203.09 88.73 l S 232.25 88.73 m 235.88 82.43 l 228.61 82.43 l 232.25 88.73 l S 247.23 88.73 m 250.87 82.43 l 243.60 82.43 l 247.23 88.73 l S 188.11 88.73 m 191.75 82.43 l 184.48 82.43 l 188.11 88.73 l S 213.88 88.73 m 217.52 82.43 l 210.25 82.43 l 213.88 88.73 l S 170.05 88.73 m 173.69 82.43 l 166.42 82.43 l 170.05 88.73 l S 184.21 88.73 m 187.84 82.43 l 180.57 82.43 l 184.21 88.73 l S 236.75 88.73 m 240.38 82.43 l 233.11 82.43 l 236.75 88.73 l S 171.65 88.73 m 175.28 82.43 l 168.01 82.43 l 171.65 88.73 l S 302.95 88.73 m 306.59 82.43 l 299.32 82.43 l 302.95 88.73 l S 221.31 88.73 m 224.94 82.43 l 217.67 82.43 l 221.31 88.73 l S 125.61 88.73 m 129.25 82.43 l 121.98 82.43 l 125.61 88.73 l S 223.40 88.73 m 227.04 82.43 l 219.76 82.43 l 223.40 88.73 l S 204.83 88.73 m 208.46 82.43 l 201.19 82.43 l 204.83 88.73 l S 241.54 88.73 m 245.17 82.43 l 237.90 82.43 l 241.54 88.73 l S 300.79 88.73 m 304.42 82.43 l 297.15 82.43 l 300.79 88.73 l S 168.41 88.73 m 172.05 82.43 l 164.77 82.43 l 168.41 88.73 l S 97.62 88.73 m 101.26 82.43 l 93.98 82.43 l 97.62 88.73 l S 273.64 88.73 m 277.27 82.43 l 270.00 82.43 l 273.64 88.73 l S 322.23 88.73 m 325.87 82.43 l 318.59 82.43 l 322.23 88.73 l S 227.32 88.73 m 230.96 82.43 l 223.68 82.43 l 227.32 88.73 l S 235.11 88.73 m 238.74 82.43 l 231.47 82.43 l 235.11 88.73 l S 253.65 88.73 m 257.29 82.43 l 250.02 82.43 l 253.65 88.73 l S 222.39 88.73 m 226.03 82.43 l 218.76 82.43 l 222.39 88.73 l S 99.16 88.73 m 102.80 82.43 l 95.52 82.43 l 99.16 88.73 l S 175.03 88.73 m 178.66 82.43 l 171.39 82.43 l 175.03 88.73 l S 230.72 88.73 m 234.35 82.43 l 227.08 82.43 l 230.72 88.73 l S 165.37 88.73 m 169.00 82.43 l 161.73 82.43 l 165.37 88.73 l S 97.79 88.73 m 101.43 82.43 l 94.15 82.43 l 97.79 88.73 l S 166.63 88.73 m 170.26 82.43 l 162.99 82.43 l 166.63 88.73 l S 231.69 88.73 m 235.33 82.43 l 228.06 82.43 l 231.69 88.73 l S 225.08 88.73 m 228.72 82.43 l 221.45 82.43 l 225.08 88.73 l S 231.71 88.73 m 235.35 82.43 l 228.07 82.43 l 231.71 88.73 l S 215.14 88.73 m 218.78 82.43 l 211.50 82.43 l 215.14 88.73 l S 146.18 88.73 m 149.82 82.43 l 142.55 82.43 l 146.18 88.73 l S 281.64 88.73 m 285.28 82.43 l 278.00 82.43 l 281.64 88.73 l S 242.24 88.73 m 245.87 82.43 l 238.60 82.43 l 242.24 88.73 l S 173.65 88.73 m 177.29 82.43 l 170.02 82.43 l 173.65 88.73 l S 231.43 88.73 m 235.07 82.43 l 227.80 82.43 l 231.43 88.73 l S 174.23 88.73 m 177.87 82.43 l 170.60 82.43 l 174.23 88.73 l S 160.91 88.73 m 164.54 82.43 l 157.27 82.43 l 160.91 88.73 l S 221.88 88.73 m 225.52 82.43 l 218.25 82.43 l 221.88 88.73 l S 142.85 88.73 m 146.49 82.43 l 139.21 82.43 l 142.85 88.73 l S 230.48 88.73 m 234.12 82.43 l 226.85 82.43 l 230.48 88.73 l S 202.73 88.73 m 206.37 82.43 l 199.09 82.43 l 202.73 88.73 l S 189.81 88.73 m 193.45 82.43 l 186.18 82.43 l 189.81 88.73 l S 151.08 88.73 m 154.71 82.43 l 147.44 82.43 l 151.08 88.73 l S 109.88 88.73 m 113.52 82.43 l 106.25 82.43 l 109.88 88.73 l S 227.63 88.73 m 231.27 82.43 l 224.00 82.43 l 227.63 88.73 l S 229.01 88.73 m 232.65 82.43 l 225.37 82.43 l 229.01 88.73 l S 211.70 88.73 m 215.34 82.43 l 208.06 82.43 l 211.70 88.73 l S 137.70 88.73 m 141.33 82.43 l 134.06 82.43 l 137.70 88.73 l S 145.59 88.73 m 149.22 82.43 l 141.95 82.43 l 145.59 88.73 l S 158.95 88.73 m 162.59 82.43 l 155.32 82.43 l 158.95 88.73 l S 204.38 88.73 m 208.02 82.43 l 200.75 82.43 l 204.38 88.73 l S 139.33 88.73 m 142.97 82.43 l 135.70 82.43 l 139.33 88.73 l S 131.62 88.73 m 135.25 82.43 l 127.98 82.43 l 131.62 88.73 l S 153.92 88.73 m 157.55 82.43 l 150.28 82.43 l 153.92 88.73 l S 218.21 88.73 m 221.85 82.43 l 214.57 82.43 l 218.21 88.73 l S 175.50 88.73 m 179.13 82.43 l 171.86 82.43 l 175.50 88.73 l S 178.71 88.73 m 182.35 82.43 l 175.07 82.43 l 178.71 88.73 l S 202.73 88.73 m 206.37 82.43 l 199.10 82.43 l 202.73 88.73 l S 271.28 88.73 m 274.91 82.43 l 267.64 82.43 l 271.28 88.73 l S 141.17 88.73 m 144.81 82.43 l 137.53 82.43 l 141.17 88.73 l S 191.19 88.73 m 194.82 82.43 l 187.55 82.43 l 191.19 88.73 l S 192.11 88.73 m 195.74 82.43 l 188.47 82.43 l 192.11 88.73 l S 200.83 88.73 m 204.46 82.43 l 197.19 82.43 l 200.83 88.73 l S 103.50 88.73 m 107.14 82.43 l 99.87 82.43 l 103.50 88.73 l S 210.31 88.73 m 213.94 82.43 l 206.67 82.43 l 210.31 88.73 l S 182.32 88.73 m 185.96 82.43 l 178.68 82.43 l 182.32 88.73 l S 139.93 88.73 m 143.57 82.43 l 136.29 82.43 l 139.93 88.73 l S 132.17 88.73 m 135.81 82.43 l 128.54 82.43 l 132.17 88.73 l S 178.47 88.73 m 182.11 82.43 l 174.84 82.43 l 178.47 88.73 l S 192.24 88.73 m 195.88 82.43 l 188.61 82.43 l 192.24 88.73 l S 258.42 88.73 m 262.06 82.43 l 254.78 82.43 l 258.42 88.73 l S 237.03 88.73 m 240.67 82.43 l 233.40 82.43 l 237.03 88.73 l S 252.33 88.73 m 255.97 82.43 l 248.69 82.43 l 252.33 88.73 l S 153.32 88.73 m 156.95 82.43 l 149.68 82.43 l 153.32 88.73 l S 234.97 88.73 m 238.61 82.43 l 231.33 82.43 l 234.97 88.73 l S 182.44 88.73 m 186.08 82.43 l 178.81 82.43 l 182.44 88.73 l S 191.22 88.73 m 194.86 82.43 l 187.59 82.43 l 191.22 88.73 l S 176.43 88.73 m 180.07 82.43 l 172.80 82.43 l 176.43 88.73 l S 262.60 88.73 m 266.24 82.43 l 258.96 82.43 l 262.60 88.73 l S 271.04 88.73 m 274.67 82.43 l 267.40 82.43 l 271.04 88.73 l S 211.59 88.73 m 215.22 82.43 l 207.95 82.43 l 211.59 88.73 l S 290.77 88.73 m 294.41 82.43 l 287.13 82.43 l 290.77 88.73 l S 109.34 88.73 m 112.97 82.43 l 105.70 82.43 l 109.34 88.73 l S 146.42 88.73 m 150.05 82.43 l 142.78 82.43 l 146.42 88.73 l S 144.54 88.73 m 148.17 82.43 l 140.90 82.43 l 144.54 88.73 l S 151.12 88.73 m 154.75 82.43 l 147.48 82.43 l 151.12 88.73 l S 211.93 88.73 m 215.57 82.43 l 208.29 82.43 l 211.93 88.73 l S 203.84 88.73 m 207.47 82.43 l 200.20 82.43 l 203.84 88.73 l S 191.67 88.73 m 195.31 82.43 l 188.03 82.43 l 191.67 88.73 l S 146.33 88.73 m 149.97 82.43 l 142.69 82.43 l 146.33 88.73 l S 172.73 88.73 m 176.36 82.43 l 169.09 82.43 l 172.73 88.73 l S 242.08 88.73 m 245.71 82.43 l 238.44 82.43 l 242.08 88.73 l S 200.33 88.73 m 203.97 82.43 l 196.69 82.43 l 200.33 88.73 l S 220.94 88.73 m 224.58 82.43 l 217.31 82.43 l 220.94 88.73 l S 212.52 88.73 m 216.15 82.43 l 208.88 82.43 l 212.52 88.73 l S 151.46 88.73 m 155.09 82.43 l 147.82 82.43 l 151.46 88.73 l S 176.69 88.73 m 180.32 82.43 l 173.05 82.43 l 176.69 88.73 l S 133.91 88.73 m 137.54 82.43 l 130.27 82.43 l 133.91 88.73 l S 199.07 88.73 m 202.70 82.43 l 195.43 82.43 l 199.07 88.73 l S 74.05 88.73 m 77.69 82.43 l 70.42 82.43 l 74.05 88.73 l S 209.05 88.73 m 212.68 82.43 l 205.41 82.43 l 209.05 88.73 l S 195.12 88.73 m 198.75 82.43 l 191.48 82.43 l 195.12 88.73 l S 273.97 88.73 m 277.61 82.43 l 270.34 82.43 l 273.97 88.73 l S 192.16 88.73 m 195.80 82.43 l 188.53 82.43 l 192.16 88.73 l S 181.35 88.73 m 184.99 82.43 l 177.72 82.43 l 181.35 88.73 l S 183.22 88.73 m 186.85 82.43 l 179.58 82.43 l 183.22 88.73 l S 82.14 88.73 m 85.77 82.43 l 78.50 82.43 l 82.14 88.73 l S 210.17 88.73 m 213.81 82.43 l 206.54 82.43 l 210.17 88.73 l S 278.74 88.73 m 282.38 82.43 l 275.11 82.43 l 278.74 88.73 l S 183.24 88.73 m 186.88 82.43 l 179.61 82.43 l 183.24 88.73 l S 177.15 88.73 m 180.78 82.43 l 173.51 82.43 l 177.15 88.73 l S 193.80 88.73 m 197.43 82.43 l 190.16 82.43 l 193.80 88.73 l S 206.96 88.73 m 210.60 82.43 l 203.33 82.43 l 206.96 88.73 l S 202.03 88.73 m 205.66 82.43 l 198.39 82.43 l 202.03 88.73 l S 249.19 88.73 m 252.82 82.43 l 245.55 82.43 l 249.19 88.73 l S 249.66 88.73 m 253.29 82.43 l 246.02 82.43 l 249.66 88.73 l S 167.37 88.73 m 171.01 82.43 l 163.74 82.43 l 167.37 88.73 l S 198.02 88.73 m 201.66 82.43 l 194.38 82.43 l 198.02 88.73 l S 192.40 88.73 m 196.03 82.43 l 188.76 82.43 l 192.40 88.73 l S 204.19 88.73 m 207.83 82.43 l 200.56 82.43 l 204.19 88.73 l S 204.32 88.73 m 207.96 82.43 l 200.69 82.43 l 204.32 88.73 l S 199.75 88.73 m 203.38 82.43 l 196.11 82.43 l 199.75 88.73 l S 174.01 88.73 m 177.65 82.43 l 170.37 82.43 l 174.01 88.73 l S 165.89 88.73 m 169.53 82.43 l 162.26 82.43 l 165.89 88.73 l S 107.24 88.73 m 110.88 82.43 l 103.61 82.43 l 107.24 88.73 l S 204.28 88.73 m 207.91 82.43 l 200.64 82.43 l 204.28 88.73 l S 215.23 88.73 m 218.87 82.43 l 211.59 82.43 l 215.23 88.73 l S 193.57 88.73 m 197.20 82.43 l 189.93 82.43 l 193.57 88.73 l S 238.38 88.73 m 242.02 82.43 l 234.75 82.43 l 238.38 88.73 l S 226.23 88.73 m 229.87 82.43 l 222.59 82.43 l 226.23 88.73 l S 256.32 88.73 m 259.95 82.43 l 252.68 82.43 l 256.32 88.73 l S 181.87 88.73 m 185.50 82.43 l 178.23 82.43 l 181.87 88.73 l S 228.51 88.73 m 232.15 82.43 l 224.88 82.43 l 228.51 88.73 l S 195.77 88.73 m 199.40 82.43 l 192.13 82.43 l 195.77 88.73 l S 211.86 88.73 m 215.49 82.43 l 208.22 82.43 l 211.86 88.73 l S 223.64 88.73 m 227.28 82.43 l 220.00 82.43 l 223.64 88.73 l S 142.67 88.73 m 146.31 82.43 l 139.04 82.43 l 142.67 88.73 l S 216.55 88.73 m 220.18 82.43 l 212.91 82.43 l 216.55 88.73 l S 208.27 88.73 m 211.91 82.43 l 204.64 82.43 l 208.27 88.73 l S 211.80 88.73 m 215.43 82.43 l 208.16 82.43 l 211.80 88.73 l S 261.27 88.73 m 264.90 82.43 l 257.63 82.43 l 261.27 88.73 l S 237.29 88.73 m 240.92 82.43 l 233.65 82.43 l 237.29 88.73 l S 228.63 88.73 m 232.27 82.43 l 225.00 82.43 l 228.63 88.73 l S 167.12 88.73 m 170.75 82.43 l 163.48 82.43 l 167.12 88.73 l S 172.85 88.73 m 176.49 82.43 l 169.22 82.43 l 172.85 88.73 l S 205.38 88.73 m 209.01 82.43 l 201.74 82.43 l 205.38 88.73 l S 188.60 88.73 m 192.24 82.43 l 184.97 82.43 l 188.60 88.73 l S 236.22 88.73 m 239.85 82.43 l 232.58 82.43 l 236.22 88.73 l S 192.02 88.73 m 195.65 82.43 l 188.38 82.43 l 192.02 88.73 l S 178.46 88.73 m 182.09 82.43 l 174.82 82.43 l 178.46 88.73 l S 216.04 88.73 m 219.67 82.43 l 212.40 82.43 l 216.04 88.73 l S 228.24 88.73 m 231.88 82.43 l 224.60 82.43 l 228.24 88.73 l S 251.46 88.73 m 255.10 82.43 l 247.82 82.43 l 251.46 88.73 l S 206.17 88.73 m 209.80 82.43 l 202.53 82.43 l 206.17 88.73 l S 176.31 88.73 m 179.94 82.43 l 172.67 82.43 l 176.31 88.73 l S 192.59 88.73 m 196.22 82.43 l 188.95 82.43 l 192.59 88.73 l S 129.74 88.73 m 133.37 82.43 l 126.10 82.43 l 129.74 88.73 l S 237.85 88.73 m 241.49 82.43 l 234.21 82.43 l 237.85 88.73 l S 209.86 88.73 m 213.50 82.43 l 206.22 82.43 l 209.86 88.73 l S 225.83 88.73 m 229.47 82.43 l 222.19 82.43 l 225.83 88.73 l S 251.45 88.73 m 255.08 82.43 l 247.81 82.43 l 251.45 88.73 l S 202.70 88.73 m 206.34 82.43 l 199.07 82.43 l 202.70 88.73 l S 221.05 88.73 m 224.68 82.43 l 217.41 82.43 l 221.05 88.73 l S 207.42 88.73 m 211.05 82.43 l 203.78 82.43 l 207.42 88.73 l S 194.62 88.73 m 198.26 82.43 l 190.98 82.43 l 194.62 88.73 l S 148.73 88.73 m 152.37 82.43 l 145.09 82.43 l 148.73 88.73 l S 219.65 88.73 m 223.29 82.43 l 216.02 82.43 l 219.65 88.73 l S 163.37 88.73 m 167.00 82.43 l 159.73 82.43 l 163.37 88.73 l S 239.67 88.73 m 243.30 82.43 l 236.03 82.43 l 239.67 88.73 l S 97.85 88.73 m 101.49 82.43 l 94.22 82.43 l 97.85 88.73 l S 227.58 88.73 m 231.22 82.43 l 223.95 82.43 l 227.58 88.73 l S 174.43 88.73 m 178.07 82.43 l 170.79 82.43 l 174.43 88.73 l S 173.61 88.73 m 177.25 82.43 l 169.97 82.43 l 173.61 88.73 l S 163.05 88.73 m 166.69 82.43 l 159.42 82.43 l 163.05 88.73 l S 211.69 88.73 m 215.33 82.43 l 208.05 82.43 l 211.69 88.73 l S 212.02 88.73 m 215.65 82.43 l 208.38 82.43 l 212.02 88.73 l S 162.90 88.73 m 166.54 82.43 l 159.27 82.43 l 162.90 88.73 l S 157.47 88.73 m 161.10 82.43 l 153.83 82.43 l 157.47 88.73 l S 246.02 88.73 m 249.66 82.43 l 242.39 82.43 l 246.02 88.73 l S 193.93 88.73 m 197.57 82.43 l 190.29 82.43 l 193.93 88.73 l S 166.42 88.73 m 170.05 82.43 l 162.78 82.43 l 166.42 88.73 l S 153.87 88.73 m 157.50 82.43 l 150.23 82.43 l 153.87 88.73 l S 215.59 88.73 m 219.23 82.43 l 211.95 82.43 l 215.59 88.73 l S 134.48 88.73 m 138.12 82.43 l 130.84 82.43 l 134.48 88.73 l S 156.81 88.73 m 160.45 82.43 l 153.18 82.43 l 156.81 88.73 l S 243.21 88.73 m 246.85 82.43 l 239.58 82.43 l 243.21 88.73 l S 197.52 88.73 m 201.15 82.43 l 193.88 82.43 l 197.52 88.73 l S 181.04 88.73 m 184.68 82.43 l 177.40 82.43 l 181.04 88.73 l S 203.85 88.73 m 207.49 82.43 l 200.21 82.43 l 203.85 88.73 l S 215.56 88.73 m 219.20 82.43 l 211.93 82.43 l 215.56 88.73 l S 204.80 88.73 m 208.43 82.43 l 201.16 82.43 l 204.80 88.73 l S 131.14 88.73 m 134.77 82.43 l 127.50 82.43 l 131.14 88.73 l S 188.28 88.73 m 191.91 82.43 l 184.64 82.43 l 188.28 88.73 l S 194.53 88.73 m 198.17 82.43 l 190.89 82.43 l 194.53 88.73 l S 229.87 88.73 m 233.51 82.43 l 226.24 82.43 l 229.87 88.73 l S 196.97 88.73 m 200.61 82.43 l 193.34 82.43 l 196.97 88.73 l S 148.98 88.73 m 152.62 82.43 l 145.35 82.43 l 148.98 88.73 l S 235.46 88.73 m 239.10 82.43 l 231.83 82.43 l 235.46 88.73 l S 182.62 88.73 m 186.26 82.43 l 178.99 82.43 l 182.62 88.73 l S 218.25 88.73 m 221.88 82.43 l 214.61 82.43 l 218.25 88.73 l S 144.95 88.73 m 148.59 82.43 l 141.32 82.43 l 144.95 88.73 l S 171.66 88.73 m 175.30 82.43 l 168.02 82.43 l 171.66 88.73 l S 199.01 88.73 m 202.65 82.43 l 195.37 82.43 l 199.01 88.73 l S 217.85 88.73 m 221.49 82.43 l 214.22 82.43 l 217.85 88.73 l S 247.56 88.73 m 251.20 82.43 l 243.92 82.43 l 247.56 88.73 l S 289.74 88.73 m 293.38 82.43 l 286.11 82.43 l 289.74 88.73 l S 260.94 88.73 m 264.57 82.43 l 257.30 82.43 l 260.94 88.73 l S 185.53 88.73 m 189.17 82.43 l 181.90 82.43 l 185.53 88.73 l S 170.01 88.73 m 173.65 82.43 l 166.37 82.43 l 170.01 88.73 l S 134.10 88.73 m 137.74 82.43 l 130.47 82.43 l 134.10 88.73 l S 187.86 88.73 m 191.50 82.43 l 184.23 82.43 l 187.86 88.73 l S 186.79 88.73 m 190.43 82.43 l 183.15 82.43 l 186.79 88.73 l S 173.53 88.73 m 177.16 82.43 l 169.89 82.43 l 173.53 88.73 l S 214.08 88.73 m 217.72 82.43 l 210.45 82.43 l 214.08 88.73 l S 140.47 88.73 m 144.11 82.43 l 136.83 82.43 l 140.47 88.73 l S 212.92 88.73 m 216.56 82.43 l 209.29 82.43 l 212.92 88.73 l S 203.46 88.73 m 207.10 82.43 l 199.83 82.43 l 203.46 88.73 l S 240.99 88.73 m 244.62 82.43 l 237.35 82.43 l 240.99 88.73 l S 192.66 88.73 m 196.30 82.43 l 189.03 82.43 l 192.66 88.73 l S 213.38 88.73 m 217.02 82.43 l 209.74 82.43 l 213.38 88.73 l S 206.45 88.73 m 210.09 82.43 l 202.82 82.43 l 206.45 88.73 l S 238.52 88.73 m 242.15 82.43 l 234.88 82.43 l 238.52 88.73 l S 147.15 88.73 m 150.79 82.43 l 143.51 82.43 l 147.15 88.73 l S 273.58 88.73 m 277.21 82.43 l 269.94 82.43 l 273.58 88.73 l S 222.97 88.73 m 226.61 82.43 l 219.33 82.43 l 222.97 88.73 l S 198.03 88.73 m 201.66 82.43 l 194.39 82.43 l 198.03 88.73 l S 116.68 88.73 m 120.32 82.43 l 113.05 82.43 l 116.68 88.73 l S 210.71 88.73 m 214.34 82.43 l 207.07 82.43 l 210.71 88.73 l S 389.07 88.73 m 392.70 82.43 l 385.43 82.43 l 389.07 88.73 l S 215.13 88.73 m 218.76 82.43 l 211.49 82.43 l 215.13 88.73 l S 199.59 88.73 m 203.22 82.43 l 195.95 82.43 l 199.59 88.73 l S 231.68 88.73 m 235.32 82.43 l 228.04 82.43 l 231.68 88.73 l S 218.45 88.73 m 222.09 82.43 l 214.82 82.43 l 218.45 88.73 l S 195.10 88.73 m 198.74 82.43 l 191.47 82.43 l 195.10 88.73 l S 195.92 88.73 m 199.56 82.43 l 192.29 82.43 l 195.92 88.73 l S 215.47 88.73 m 219.11 82.43 l 211.84 82.43 l 215.47 88.73 l S 134.78 88.73 m 138.42 82.43 l 131.15 82.43 l 134.78 88.73 l S 198.38 88.73 m 202.02 82.43 l 194.74 82.43 l 198.38 88.73 l S 202.66 88.73 m 206.30 82.43 l 199.02 82.43 l 202.66 88.73 l S 221.60 88.73 m 225.24 82.43 l 217.96 82.43 l 221.60 88.73 l S 227.70 88.73 m 231.34 82.43 l 224.07 82.43 l 227.70 88.73 l S 232.49 88.73 m 236.13 82.43 l 228.86 82.43 l 232.49 88.73 l S 232.16 88.73 m 235.79 82.43 l 228.52 82.43 l 232.16 88.73 l S 218.00 88.73 m 221.64 82.43 l 214.37 82.43 l 218.00 88.73 l S 186.49 88.73 m 190.12 82.43 l 182.85 82.43 l 186.49 88.73 l S 208.28 88.73 m 211.92 82.43 l 204.65 82.43 l 208.28 88.73 l S 212.99 88.73 m 216.62 82.43 l 209.35 82.43 l 212.99 88.73 l S 168.61 88.73 m 172.24 82.43 l 164.97 82.43 l 168.61 88.73 l S 235.66 88.73 m 239.29 82.43 l 232.02 82.43 l 235.66 88.73 l S 227.86 88.73 m 231.50 82.43 l 224.23 82.43 l 227.86 88.73 l S 160.33 88.73 m 163.97 82.43 l 156.69 82.43 l 160.33 88.73 l S 279.83 88.73 m 283.46 82.43 l 276.19 82.43 l 279.83 88.73 l S 215.31 88.73 m 218.94 82.43 l 211.67 82.43 l 215.31 88.73 l S 155.83 88.73 m 159.47 82.43 l 152.20 82.43 l 155.83 88.73 l S 182.71 88.73 m 186.35 82.43 l 179.08 82.43 l 182.71 88.73 l S 221.57 88.73 m 225.20 82.43 l 217.93 82.43 l 221.57 88.73 l S 213.38 88.73 m 217.02 82.43 l 209.75 82.43 l 213.38 88.73 l S 222.97 88.73 m 226.61 82.43 l 219.33 82.43 l 222.97 88.73 l S 217.40 88.73 m 221.04 82.43 l 213.77 82.43 l 217.40 88.73 l S 179.60 88.73 m 183.24 82.43 l 175.96 82.43 l 179.60 88.73 l S 165.25 88.73 m 168.89 82.43 l 161.61 82.43 l 165.25 88.73 l S 201.53 88.73 m 205.16 82.43 l 197.89 82.43 l 201.53 88.73 l S 250.78 88.73 m 254.41 82.43 l 247.14 82.43 l 250.78 88.73 l S 233.92 88.73 m 237.56 82.43 l 230.29 82.43 l 233.92 88.73 l S 186.59 88.73 m 190.22 82.43 l 182.95 82.43 l 186.59 88.73 l S 202.99 88.73 m 206.62 82.43 l 199.35 82.43 l 202.99 88.73 l S 178.70 88.73 m 182.33 82.43 l 175.06 82.43 l 178.70 88.73 l S 212.81 88.73 m 216.45 82.43 l 209.17 82.43 l 212.81 88.73 l S 148.30 88.73 m 151.93 82.43 l 144.66 82.43 l 148.30 88.73 l S 213.83 88.73 m 217.46 82.43 l 210.19 82.43 l 213.83 88.73 l S 213.42 88.73 m 217.06 82.43 l 209.78 82.43 l 213.42 88.73 l S 250.88 88.73 m 254.51 82.43 l 247.24 82.43 l 250.88 88.73 l S 277.36 88.73 m 281.00 82.43 l 273.73 82.43 l 277.36 88.73 l S 186.20 88.73 m 189.84 82.43 l 182.56 82.43 l 186.20 88.73 l S 156.56 88.73 m 160.20 82.43 l 152.93 82.43 l 156.56 88.73 l S 220.37 88.73 m 224.01 82.43 l 216.74 82.43 l 220.37 88.73 l S 285.61 88.73 m 289.25 82.43 l 281.97 82.43 l 285.61 88.73 l S 225.59 88.73 m 229.23 82.43 l 221.96 82.43 l 225.59 88.73 l S 243.09 88.73 m 246.73 82.43 l 239.45 82.43 l 243.09 88.73 l S 218.93 88.73 m 222.56 82.43 l 215.29 82.43 l 218.93 88.73 l S 211.40 88.73 m 215.04 82.43 l 207.77 82.43 l 211.40 88.73 l S 189.66 88.73 m 193.29 82.43 l 186.02 82.43 l 189.66 88.73 l S 211.07 88.73 m 214.71 82.43 l 207.43 82.43 l 211.07 88.73 l S 98.22 88.73 m 101.86 82.43 l 94.58 82.43 l 98.22 88.73 l S 133.80 88.73 m 137.43 82.43 l 130.16 82.43 l 133.80 88.73 l S 215.29 88.73 m 218.93 82.43 l 211.65 82.43 l 215.29 88.73 l S 161.34 88.73 m 164.97 82.43 l 157.70 82.43 l 161.34 88.73 l S 170.04 88.73 m 173.68 82.43 l 166.40 82.43 l 170.04 88.73 l S 195.53 88.73 m 199.17 82.43 l 191.90 82.43 l 195.53 88.73 l S 180.01 88.73 m 183.65 82.43 l 176.38 82.43 l 180.01 88.73 l S 222.33 88.73 m 225.96 82.43 l 218.69 82.43 l 222.33 88.73 l S 226.61 88.73 m 230.24 82.43 l 222.97 82.43 l 226.61 88.73 l S 165.63 88.73 m 169.27 82.43 l 161.99 82.43 l 165.63 88.73 l S 223.05 88.73 m 226.69 82.43 l 219.41 82.43 l 223.05 88.73 l S 177.55 88.73 m 181.18 82.43 l 173.91 82.43 l 177.55 88.73 l S 258.19 88.73 m 261.83 82.43 l 254.56 82.43 l 258.19 88.73 l S 247.17 88.73 m 250.81 82.43 l 243.53 82.43 l 247.17 88.73 l S 183.82 88.73 m 187.46 82.43 l 180.18 82.43 l 183.82 88.73 l S 201.04 88.73 m 204.67 82.43 l 197.40 82.43 l 201.04 88.73 l S 227.75 88.73 m 231.39 82.43 l 224.12 82.43 l 227.75 88.73 l S 184.36 88.73 m 188.00 82.43 l 180.72 82.43 l 184.36 88.73 l S 251.12 88.73 m 254.75 82.43 l 247.48 82.43 l 251.12 88.73 l S 325.75 88.73 m 329.39 82.43 l 322.12 82.43 l 325.75 88.73 l S 212.84 88.73 m 216.47 82.43 l 209.20 82.43 l 212.84 88.73 l S 202.90 88.73 m 206.53 82.43 l 199.26 82.43 l 202.90 88.73 l S 191.02 88.73 m 194.66 82.43 l 187.39 82.43 l 191.02 88.73 l S 153.69 88.73 m 157.33 82.43 l 150.05 82.43 l 153.69 88.73 l S 223.57 88.73 m 227.21 82.43 l 219.94 82.43 l 223.57 88.73 l S 252.55 88.73 m 256.19 82.43 l 248.92 82.43 l 252.55 88.73 l S 227.84 88.73 m 231.47 82.43 l 224.20 82.43 l 227.84 88.73 l S 205.00 88.73 m 208.64 82.43 l 201.37 82.43 l 205.00 88.73 l S 176.56 88.73 m 180.19 82.43 l 172.92 82.43 l 176.56 88.73 l S 135.20 88.73 m 138.83 82.43 l 131.56 82.43 l 135.20 88.73 l S 168.84 88.73 m 172.47 82.43 l 165.20 82.43 l 168.84 88.73 l S 158.88 88.73 m 162.52 82.43 l 155.24 82.43 l 158.88 88.73 l S 196.93 88.73 m 200.56 82.43 l 193.29 82.43 l 196.93 88.73 l S 195.36 88.73 m 198.99 82.43 l 191.72 82.43 l 195.36 88.73 l S 144.87 88.73 m 148.50 82.43 l 141.23 82.43 l 144.87 88.73 l S 209.42 88.73 m 213.05 82.43 l 205.78 82.43 l 209.42 88.73 l S 234.79 88.73 m 238.42 82.43 l 231.15 82.43 l 234.79 88.73 l S 132.89 88.73 m 136.52 82.43 l 129.25 82.43 l 132.89 88.73 l S 181.74 88.73 m 185.38 82.43 l 178.11 82.43 l 181.74 88.73 l S 172.31 88.73 m 175.95 82.43 l 168.68 82.43 l 172.31 88.73 l S 219.71 88.73 m 223.34 82.43 l 216.07 82.43 l 219.71 88.73 l S 233.84 88.73 m 237.48 82.43 l 230.21 82.43 l 233.84 88.73 l S 214.02 88.73 m 217.65 82.43 l 210.38 82.43 l 214.02 88.73 l S 213.38 88.73 m 217.01 82.43 l 209.74 82.43 l 213.38 88.73 l S 169.49 88.73 m 173.13 82.43 l 165.86 82.43 l 169.49 88.73 l S 174.30 88.73 m 177.93 82.43 l 170.66 82.43 l 174.30 88.73 l S 153.04 88.73 m 156.68 82.43 l 149.41 82.43 l 153.04 88.73 l S 261.70 88.73 m 265.34 82.43 l 258.07 82.43 l 261.70 88.73 l S 197.61 88.73 m 201.24 82.43 l 193.97 82.43 l 197.61 88.73 l S 175.99 88.73 m 179.63 82.43 l 172.36 82.43 l 175.99 88.73 l S 228.81 88.73 m 232.44 82.43 l 225.17 82.43 l 228.81 88.73 l S 202.68 88.73 m 206.32 82.43 l 199.05 82.43 l 202.68 88.73 l S 160.79 88.73 m 164.43 82.43 l 157.16 82.43 l 160.79 88.73 l S 209.32 88.73 m 212.95 82.43 l 205.68 82.43 l 209.32 88.73 l S 277.47 88.73 m 281.10 82.43 l 273.83 82.43 l 277.47 88.73 l S 175.69 88.73 m 179.33 82.43 l 172.05 82.43 l 175.69 88.73 l S 127.82 88.73 m 131.46 82.43 l 124.18 82.43 l 127.82 88.73 l S 143.97 88.73 m 147.61 82.43 l 140.33 82.43 l 143.97 88.73 l S 243.42 88.73 m 247.06 82.43 l 239.78 82.43 l 243.42 88.73 l S 207.86 88.73 m 211.49 82.43 l 204.22 82.43 l 207.86 88.73 l S 213.19 88.73 m 216.82 82.43 l 209.55 82.43 l 213.19 88.73 l S 178.49 88.73 m 182.13 82.43 l 174.86 82.43 l 178.49 88.73 l S 176.01 88.73 m 179.65 82.43 l 172.38 82.43 l 176.01 88.73 l S 184.03 88.73 m 187.67 82.43 l 180.40 82.43 l 184.03 88.73 l S 177.35 88.73 m 180.98 82.43 l 173.71 82.43 l 177.35 88.73 l S 137.14 88.73 m 140.78 82.43 l 133.51 82.43 l 137.14 88.73 l S 154.60 88.73 m 158.23 82.43 l 150.96 82.43 l 154.60 88.73 l S 201.52 88.73 m 205.16 82.43 l 197.88 82.43 l 201.52 88.73 l S 218.89 88.73 m 222.53 82.43 l 215.26 82.43 l 218.89 88.73 l S 196.23 88.73 m 199.86 82.43 l 192.59 82.43 l 196.23 88.73 l S 197.14 88.73 m 200.77 82.43 l 193.50 82.43 l 197.14 88.73 l S 169.49 88.73 m 173.13 82.43 l 165.86 82.43 l 169.49 88.73 l S 156.94 88.73 m 160.58 82.43 l 153.31 82.43 l 156.94 88.73 l S 228.88 88.73 m 232.52 82.43 l 225.25 82.43 l 228.88 88.73 l S 181.93 88.73 m 185.57 82.43 l 178.30 82.43 l 181.93 88.73 l S 127.54 88.73 m 131.18 82.43 l 123.91 82.43 l 127.54 88.73 l S 190.82 88.73 m 194.46 82.43 l 187.19 82.43 l 190.82 88.73 l S 227.05 88.73 m 230.68 82.43 l 223.41 82.43 l 227.05 88.73 l S 195.70 88.73 m 199.33 82.43 l 192.06 82.43 l 195.70 88.73 l S 207.86 88.73 m 211.50 82.43 l 204.22 82.43 l 207.86 88.73 l S 160.03 88.73 m 163.67 82.43 l 156.40 82.43 l 160.03 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.90 82.43 l 202.53 88.73 l S 156.06 88.73 m 159.69 82.43 l 152.42 82.43 l 156.06 88.73 l S 143.78 88.73 m 147.41 82.43 l 140.14 82.43 l 143.78 88.73 l S 242.77 88.73 m 246.41 82.43 l 239.14 82.43 l 242.77 88.73 l S 193.82 88.73 m 197.45 82.43 l 190.18 82.43 l 193.82 88.73 l S 112.45 88.73 m 116.09 82.43 l 108.81 82.43 l 112.45 88.73 l S 97.91 88.73 m 101.55 82.43 l 94.27 82.43 l 97.91 88.73 l S 174.68 88.73 m 178.32 82.43 l 171.05 82.43 l 174.68 88.73 l S 198.77 88.73 m 202.40 82.43 l 195.13 82.43 l 198.77 88.73 l S 204.16 88.73 m 207.80 82.43 l 200.52 82.43 l 204.16 88.73 l S 225.12 88.73 m 228.76 82.43 l 221.48 82.43 l 225.12 88.73 l S 195.96 88.73 m 199.59 82.43 l 192.32 82.43 l 195.96 88.73 l S 190.13 88.73 m 193.76 82.43 l 186.49 82.43 l 190.13 88.73 l S 245.32 88.73 m 248.96 82.43 l 241.69 82.43 l 245.32 88.73 l S 252.09 88.73 m 255.72 82.43 l 248.45 82.43 l 252.09 88.73 l S 237.72 88.73 m 241.35 82.43 l 234.08 82.43 l 237.72 88.73 l S 135.67 88.73 m 139.31 82.43 l 132.04 82.43 l 135.67 88.73 l S 219.84 88.73 m 223.47 82.43 l 216.20 82.43 l 219.84 88.73 l S 214.56 88.73 m 218.19 82.43 l 210.92 82.43 l 214.56 88.73 l S 158.58 88.73 m 162.22 82.43 l 154.95 82.43 l 158.58 88.73 l S 251.46 88.73 m 255.10 82.43 l 247.83 82.43 l 251.46 88.73 l S 244.16 88.73 m 247.79 82.43 l 240.52 82.43 l 244.16 88.73 l S 211.99 88.73 m 215.63 82.43 l 208.36 82.43 l 211.99 88.73 l S 221.57 88.73 m 225.21 82.43 l 217.94 82.43 l 221.57 88.73 l S 195.34 88.73 m 198.98 82.43 l 191.71 82.43 l 195.34 88.73 l S 159.01 88.73 m 162.65 82.43 l 155.37 82.43 l 159.01 88.73 l S 188.60 88.73 m 192.24 82.43 l 184.96 82.43 l 188.60 88.73 l S 204.58 88.73 m 208.21 82.43 l 200.94 82.43 l 204.58 88.73 l S 203.26 88.73 m 206.90 82.43 l 199.63 82.43 l 203.26 88.73 l S 99.49 88.73 m 103.13 82.43 l 95.86 82.43 l 99.49 88.73 l S 151.77 88.73 m 155.41 82.43 l 148.14 82.43 l 151.77 88.73 l S 175.81 88.73 m 179.44 82.43 l 172.17 82.43 l 175.81 88.73 l S 187.36 88.73 m 191.00 82.43 l 183.72 82.43 l 187.36 88.73 l S 149.18 88.73 m 152.82 82.43 l 145.55 82.43 l 149.18 88.73 l S 140.69 88.73 m 144.33 82.43 l 137.05 82.43 l 140.69 88.73 l S 188.03 88.73 m 191.66 82.43 l 184.39 82.43 l 188.03 88.73 l S 204.53 88.73 m 208.17 82.43 l 200.90 82.43 l 204.53 88.73 l S 128.57 88.73 m 132.21 82.43 l 124.94 82.43 l 128.57 88.73 l S 222.46 88.73 m 226.10 82.43 l 218.82 82.43 l 222.46 88.73 l S 173.00 88.73 m 176.63 82.43 l 169.36 82.43 l 173.00 88.73 l S 253.18 88.73 m 256.82 82.43 l 249.55 82.43 l 253.18 88.73 l S 252.89 88.73 m 256.52 82.43 l 249.25 82.43 l 252.89 88.73 l S 126.79 88.73 m 130.43 82.43 l 123.16 82.43 l 126.79 88.73 l S 163.84 88.73 m 167.47 82.43 l 160.20 82.43 l 163.84 88.73 l S 235.85 88.73 m 239.49 82.43 l 232.21 82.43 l 235.85 88.73 l S 270.04 88.73 m 273.68 82.43 l 266.41 82.43 l 270.04 88.73 l S 135.25 88.73 m 138.89 82.43 l 131.62 82.43 l 135.25 88.73 l S 110.62 88.73 m 114.25 82.43 l 106.98 82.43 l 110.62 88.73 l S 193.92 88.73 m 197.56 82.43 l 190.29 82.43 l 193.92 88.73 l S 192.42 88.73 m 196.06 82.43 l 188.78 82.43 l 192.42 88.73 l S 186.96 88.73 m 190.59 82.43 l 183.32 82.43 l 186.96 88.73 l S 216.12 88.73 m 219.75 82.43 l 212.48 82.43 l 216.12 88.73 l S 186.22 88.73 m 189.86 82.43 l 182.59 82.43 l 186.22 88.73 l S 133.95 88.73 m 137.59 82.43 l 130.31 82.43 l 133.95 88.73 l S 192.84 88.73 m 196.48 82.43 l 189.21 82.43 l 192.84 88.73 l S 237.64 88.73 m 241.27 82.43 l 234.00 82.43 l 237.64 88.73 l S 204.51 88.73 m 208.15 82.43 l 200.88 82.43 l 204.51 88.73 l S 200.65 88.73 m 204.29 82.43 l 197.01 82.43 l 200.65 88.73 l S 140.62 88.73 m 144.25 82.43 l 136.98 82.43 l 140.62 88.73 l S 158.67 88.73 m 162.31 82.43 l 155.04 82.43 l 158.67 88.73 l S 176.81 88.73 m 180.45 82.43 l 173.18 82.43 l 176.81 88.73 l S 258.73 88.73 m 262.36 82.43 l 255.09 82.43 l 258.73 88.73 l S 273.41 88.73 m 277.05 82.43 l 269.78 82.43 l 273.41 88.73 l S 239.37 88.73 m 243.01 82.43 l 235.74 82.43 l 239.37 88.73 l S 231.32 88.73 m 234.96 82.43 l 227.69 82.43 l 231.32 88.73 l S 217.34 88.73 m 220.98 82.43 l 213.71 82.43 l 217.34 88.73 l S 195.97 88.73 m 199.60 82.43 l 192.33 82.43 l 195.97 88.73 l S 158.80 88.73 m 162.44 82.43 l 155.16 82.43 l 158.80 88.73 l S 200.99 88.73 m 204.62 82.43 l 197.35 82.43 l 200.99 88.73 l S 257.62 88.73 m 261.26 82.43 l 253.98 82.43 l 257.62 88.73 l S 143.02 88.73 m 146.66 82.43 l 139.38 82.43 l 143.02 88.73 l S 178.80 88.73 m 182.44 82.43 l 175.17 82.43 l 178.80 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.90 82.43 l 202.53 88.73 l S 187.00 88.73 m 190.63 82.43 l 183.36 82.43 l 187.00 88.73 l S 180.41 88.73 m 184.05 82.43 l 176.78 82.43 l 180.41 88.73 l S 255.38 88.73 m 259.01 82.43 l 251.74 82.43 l 255.38 88.73 l S 250.93 88.73 m 254.57 82.43 l 247.29 82.43 l 250.93 88.73 l S 164.04 88.73 m 167.68 82.43 l 160.40 82.43 l 164.04 88.73 l S 233.11 88.73 m 236.75 82.43 l 229.47 82.43 l 233.11 88.73 l S 209.71 88.73 m 213.35 82.43 l 206.08 82.43 l 209.71 88.73 l S 237.84 88.73 m 241.48 82.43 l 234.20 82.43 l 237.84 88.73 l S 183.26 88.73 m 186.89 82.43 l 179.62 82.43 l 183.26 88.73 l S 231.66 88.73 m 235.29 82.43 l 228.02 82.43 l 231.66 88.73 l S 120.75 88.73 m 124.39 82.43 l 117.12 82.43 l 120.75 88.73 l S 175.67 88.73 m 179.31 82.43 l 172.04 82.43 l 175.67 88.73 l S 144.79 88.73 m 148.43 82.43 l 141.15 82.43 l 144.79 88.73 l S 217.97 88.73 m 221.60 82.43 l 214.33 82.43 l 217.97 88.73 l S 105.99 88.73 m 109.63 82.43 l 102.36 82.43 l 105.99 88.73 l S 138.35 88.73 m 141.98 82.43 l 134.71 82.43 l 138.35 88.73 l S 180.62 88.73 m 184.25 82.43 l 176.98 82.43 l 180.62 88.73 l S 256.50 88.73 m 260.14 82.43 l 252.87 82.43 l 256.50 88.73 l S 217.69 88.73 m 221.33 82.43 l 214.06 82.43 l 217.69 88.73 l S 149.03 88.73 m 152.67 82.43 l 145.39 82.43 l 149.03 88.73 l S 215.60 88.73 m 219.24 82.43 l 211.96 82.43 l 215.60 88.73 l S 257.94 88.73 m 261.58 82.43 l 254.31 82.43 l 257.94 88.73 l S 146.13 88.73 m 149.77 82.43 l 142.50 82.43 l 146.13 88.73 l S 101.61 88.73 m 105.25 82.43 l 97.97 82.43 l 101.61 88.73 l S 193.83 88.73 m 197.47 82.43 l 190.20 82.43 l 193.83 88.73 l S 186.78 88.73 m 190.42 82.43 l 183.14 82.43 l 186.78 88.73 l S 167.86 88.73 m 171.50 82.43 l 164.23 82.43 l 167.86 88.73 l S 198.39 88.73 m 202.03 82.43 l 194.75 82.43 l 198.39 88.73 l S 215.65 88.73 m 219.28 82.43 l 212.01 82.43 l 215.65 88.73 l S 186.93 88.73 m 190.57 82.43 l 183.29 82.43 l 186.93 88.73 l S 195.76 88.73 m 199.40 82.43 l 192.13 82.43 l 195.76 88.73 l S 131.63 88.73 m 135.27 82.43 l 128.00 82.43 l 131.63 88.73 l S 140.20 88.73 m 143.83 82.43 l 136.56 82.43 l 140.20 88.73 l S 221.46 88.73 m 225.10 82.43 l 217.82 82.43 l 221.46 88.73 l S 164.57 88.73 m 168.21 82.43 l 160.94 82.43 l 164.57 88.73 l S 177.14 88.73 m 180.78 82.43 l 173.51 82.43 l 177.14 88.73 l S 182.72 88.73 m 186.35 82.43 l 179.08 82.43 l 182.72 88.73 l S 247.58 88.73 m 251.22 82.43 l 243.94 82.43 l 247.58 88.73 l S 188.14 88.73 m 191.77 82.43 l 184.50 82.43 l 188.14 88.73 l S 218.80 88.73 m 222.44 82.43 l 215.17 82.43 l 218.80 88.73 l S 146.20 88.73 m 149.84 82.43 l 142.57 82.43 l 146.20 88.73 l S 136.44 88.73 m 140.08 82.43 l 132.81 82.43 l 136.44 88.73 l S 245.80 88.73 m 249.44 82.43 l 242.17 82.43 l 245.80 88.73 l S 162.01 88.73 m 165.64 82.43 l 158.37 82.43 l 162.01 88.73 l S 184.70 88.73 m 188.34 82.43 l 181.06 82.43 l 184.70 88.73 l S 179.91 88.73 m 183.55 82.43 l 176.28 82.43 l 179.91 88.73 l S 192.43 88.73 m 196.07 82.43 l 188.80 82.43 l 192.43 88.73 l S 224.69 88.73 m 228.32 82.43 l 221.05 82.43 l 224.69 88.73 l S 230.16 88.73 m 233.80 82.43 l 226.53 82.43 l 230.16 88.73 l S 240.09 88.73 m 243.72 82.43 l 236.45 82.43 l 240.09 88.73 l S 204.36 88.73 m 208.00 82.43 l 200.72 82.43 l 204.36 88.73 l S 189.58 88.73 m 193.21 82.43 l 185.94 82.43 l 189.58 88.73 l S 225.21 88.73 m 228.84 82.43 l 221.57 82.43 l 225.21 88.73 l S 75.24 88.73 m 78.87 82.43 l 71.60 82.43 l 75.24 88.73 l S 203.36 88.73 m 206.99 82.43 l 199.72 82.43 l 203.36 88.73 l S 176.44 88.73 m 180.08 82.43 l 172.81 82.43 l 176.44 88.73 l S 206.50 88.73 m 210.13 82.43 l 202.86 82.43 l 206.50 88.73 l S 186.07 88.73 m 189.70 82.43 l 182.43 82.43 l 186.07 88.73 l S 195.45 88.73 m 199.08 82.43 l 191.81 82.43 l 195.45 88.73 l S 205.10 88.73 m 208.73 82.43 l 201.46 82.43 l 205.10 88.73 l S 260.13 88.73 m 263.77 82.43 l 256.50 82.43 l 260.13 88.73 l S 205.80 88.73 m 209.44 82.43 l 202.16 82.43 l 205.80 88.73 l S 167.23 88.73 m 170.86 82.43 l 163.59 82.43 l 167.23 88.73 l S 195.09 88.73 m 198.73 82.43 l 191.45 82.43 l 195.09 88.73 l S 145.96 88.73 m 149.59 82.43 l 142.32 82.43 l 145.96 88.73 l S 202.82 88.73 m 206.46 82.43 l 199.18 82.43 l 202.82 88.73 l S 260.29 88.73 m 263.92 82.43 l 256.65 82.43 l 260.29 88.73 l S 187.97 88.73 m 191.60 82.43 l 184.33 82.43 l 187.97 88.73 l S 239.30 88.73 m 242.94 82.43 l 235.67 82.43 l 239.30 88.73 l S 123.17 88.73 m 126.81 82.43 l 119.54 82.43 l 123.17 88.73 l S 243.36 88.73 m 247.00 82.43 l 239.73 82.43 l 243.36 88.73 l S 221.06 88.73 m 224.70 82.43 l 217.42 82.43 l 221.06 88.73 l S 212.97 88.73 m 216.61 82.43 l 209.34 82.43 l 212.97 88.73 l S 240.79 88.73 m 244.42 82.43 l 237.15 82.43 l 240.79 88.73 l S 235.35 88.73 m 238.99 82.43 l 231.71 82.43 l 235.35 88.73 l S 172.78 88.73 m 176.41 82.43 l 169.14 82.43 l 172.78 88.73 l S 241.20 88.73 m 244.84 82.43 l 237.56 82.43 l 241.20 88.73 l S 120.28 88.73 m 123.91 82.43 l 116.64 82.43 l 120.28 88.73 l S 216.65 88.73 m 220.29 82.43 l 213.01 82.43 l 216.65 88.73 l S 227.18 88.73 m 230.81 82.43 l 223.54 82.43 l 227.18 88.73 l S 218.20 88.73 m 221.83 82.43 l 214.56 82.43 l 218.20 88.73 l S 221.38 88.73 m 225.02 82.43 l 217.74 82.43 l 221.38 88.73 l S 268.58 88.73 m 272.21 82.43 l 264.94 82.43 l 268.58 88.73 l S 269.92 88.73 m 273.56 82.43 l 266.29 82.43 l 269.92 88.73 l S 169.66 88.73 m 173.30 82.43 l 166.03 82.43 l 169.66 88.73 l S 102.97 88.73 m 106.61 82.43 l 99.33 82.43 l 102.97 88.73 l S 153.40 88.73 m 157.03 82.43 l 149.76 82.43 l 153.40 88.73 l S 253.35 88.73 m 256.98 82.43 l 249.71 82.43 l 253.35 88.73 l S 251.94 88.73 m 255.58 82.43 l 248.30 82.43 l 251.94 88.73 l S 133.45 88.73 m 137.09 82.43 l 129.81 82.43 l 133.45 88.73 l S 208.61 88.73 m 212.25 82.43 l 204.97 82.43 l 208.61 88.73 l S 167.09 88.73 m 170.73 82.43 l 163.46 82.43 l 167.09 88.73 l S 223.50 88.73 m 227.13 82.43 l 219.86 82.43 l 223.50 88.73 l S 221.65 88.73 m 225.28 82.43 l 218.01 82.43 l 221.65 88.73 l S 248.61 88.73 m 252.24 82.43 l 244.97 82.43 l 248.61 88.73 l S 230.96 88.73 m 234.60 82.43 l 227.32 82.43 l 230.96 88.73 l S 156.05 88.73 m 159.68 82.43 l 152.41 82.43 l 156.05 88.73 l S 133.16 88.73 m 136.79 82.43 l 129.52 82.43 l 133.16 88.73 l S 196.87 88.73 m 200.50 82.43 l 193.23 82.43 l 196.87 88.73 l S 170.92 88.73 m 174.56 82.43 l 167.29 82.43 l 170.92 88.73 l S 165.96 88.73 m 169.60 82.43 l 162.33 82.43 l 165.96 88.73 l S 200.42 88.73 m 204.05 82.43 l 196.78 82.43 l 200.42 88.73 l S 237.82 88.73 m 241.46 82.43 l 234.18 82.43 l 237.82 88.73 l S 282.50 88.73 m 286.14 82.43 l 278.86 82.43 l 282.50 88.73 l S 191.53 88.73 m 195.17 82.43 l 187.89 82.43 l 191.53 88.73 l S 123.15 88.73 m 126.78 82.43 l 119.51 82.43 l 123.15 88.73 l S 205.76 88.73 m 209.39 82.43 l 202.12 82.43 l 205.76 88.73 l S 210.18 88.73 m 213.82 82.43 l 206.55 82.43 l 210.18 88.73 l S 246.66 88.73 m 250.30 82.43 l 243.03 82.43 l 246.66 88.73 l S 179.68 88.73 m 183.31 82.43 l 176.04 82.43 l 179.68 88.73 l S 153.32 88.73 m 156.95 82.43 l 149.68 82.43 l 153.32 88.73 l S 149.47 88.73 m 153.11 82.43 l 145.83 82.43 l 149.47 88.73 l S 209.58 88.73 m 213.21 82.43 l 205.94 82.43 l 209.58 88.73 l S 208.51 88.73 m 212.14 82.43 l 204.87 82.43 l 208.51 88.73 l S 161.95 88.73 m 165.59 82.43 l 158.31 82.43 l 161.95 88.73 l S 220.72 88.73 m 224.36 82.43 l 217.08 82.43 l 220.72 88.73 l S 143.68 88.73 m 147.32 82.43 l 140.05 82.43 l 143.68 88.73 l S 226.35 88.73 m 229.98 82.43 l 222.71 82.43 l 226.35 88.73 l S 171.04 88.73 m 174.67 82.43 l 167.40 82.43 l 171.04 88.73 l S 194.45 88.73 m 198.08 82.43 l 190.81 82.43 l 194.45 88.73 l S 198.98 88.73 m 202.61 82.43 l 195.34 82.43 l 198.98 88.73 l S 200.10 88.73 m 203.74 82.43 l 196.47 82.43 l 200.10 88.73 l S 237.85 88.73 m 241.49 82.43 l 234.22 82.43 l 237.85 88.73 l S 274.36 88.73 m 278.00 82.43 l 270.73 82.43 l 274.36 88.73 l S 207.10 88.73 m 210.73 82.43 l 203.46 82.43 l 207.10 88.73 l S 174.73 88.73 m 178.37 82.43 l 171.10 82.43 l 174.73 88.73 l S 109.03 88.73 m 112.67 82.43 l 105.40 82.43 l 109.03 88.73 l S 183.17 88.73 m 186.81 82.43 l 179.54 82.43 l 183.17 88.73 l S 205.26 88.73 m 208.90 82.43 l 201.62 82.43 l 205.26 88.73 l S 226.64 88.73 m 230.28 82.43 l 223.01 82.43 l 226.64 88.73 l S 226.93 88.73 m 230.57 82.43 l 223.30 82.43 l 226.93 88.73 l S 171.54 88.73 m 175.18 82.43 l 167.91 82.43 l 171.54 88.73 l S 240.01 88.73 m 243.65 82.43 l 236.38 82.43 l 240.01 88.73 l S 114.49 88.73 m 118.13 82.43 l 110.85 82.43 l 114.49 88.73 l S 189.30 88.73 m 192.93 82.43 l 185.66 82.43 l 189.30 88.73 l S 228.88 88.73 m 232.52 82.43 l 225.25 82.43 l 228.88 88.73 l S 237.09 88.73 m 240.73 82.43 l 233.45 82.43 l 237.09 88.73 l S 220.94 88.73 m 224.58 82.43 l 217.30 82.43 l 220.94 88.73 l S 191.61 88.73 m 195.25 82.43 l 187.98 82.43 l 191.61 88.73 l S 186.45 88.73 m 190.08 82.43 l 182.81 82.43 l 186.45 88.73 l S 194.87 88.73 m 198.51 82.43 l 191.24 82.43 l 194.87 88.73 l S 214.22 88.73 m 217.85 82.43 l 210.58 82.43 l 214.22 88.73 l S 253.27 88.73 m 256.91 82.43 l 249.63 82.43 l 253.27 88.73 l S 186.50 88.73 m 190.14 82.43 l 182.87 82.43 l 186.50 88.73 l S 229.57 88.73 m 233.20 82.43 l 225.93 82.43 l 229.57 88.73 l S 195.61 88.73 m 199.24 82.43 l 191.97 82.43 l 195.61 88.73 l S 209.01 88.73 m 212.65 82.43 l 205.38 82.43 l 209.01 88.73 l S 177.49 88.73 m 181.13 82.43 l 173.85 82.43 l 177.49 88.73 l S 211.99 88.73 m 215.63 82.43 l 208.35 82.43 l 211.99 88.73 l S 184.90 88.73 m 188.54 82.43 l 181.26 82.43 l 184.90 88.73 l S 259.29 88.73 m 262.93 82.43 l 255.66 82.43 l 259.29 88.73 l S 181.88 88.73 m 185.51 82.43 l 178.24 82.43 l 181.88 88.73 l S 194.18 88.73 m 197.82 82.43 l 190.54 82.43 l 194.18 88.73 l S 179.54 88.73 m 183.18 82.43 l 175.90 82.43 l 179.54 88.73 l S 176.89 88.73 m 180.53 82.43 l 173.26 82.43 l 176.89 88.73 l S 239.29 88.73 m 242.92 82.43 l 235.65 82.43 l 239.29 88.73 l S 76.49 88.73 m 80.12 82.43 l 72.85 82.43 l 76.49 88.73 l S 273.81 88.73 m 277.45 82.43 l 270.18 82.43 l 273.81 88.73 l S 202.70 88.73 m 206.34 82.43 l 199.07 82.43 l 202.70 88.73 l S 240.54 88.73 m 244.18 82.43 l 236.90 82.43 l 240.54 88.73 l S 212.11 88.73 m 215.75 82.43 l 208.48 82.43 l 212.11 88.73 l S 282.59 88.73 m 286.22 82.43 l 278.95 82.43 l 282.59 88.73 l S 210.40 88.73 m 214.04 82.43 l 206.77 82.43 l 210.40 88.73 l S 152.18 88.73 m 155.82 82.43 l 148.54 82.43 l 152.18 88.73 l S 165.65 88.73 m 169.29 82.43 l 162.02 82.43 l 165.65 88.73 l S 177.26 88.73 m 180.90 82.43 l 173.62 82.43 l 177.26 88.73 l S 280.39 88.73 m 284.03 82.43 l 276.76 82.43 l 280.39 88.73 l S 273.66 88.73 m 277.29 82.43 l 270.02 82.43 l 273.66 88.73 l S 208.41 88.73 m 212.05 82.43 l 204.78 82.43 l 208.41 88.73 l S 223.02 88.73 m 226.66 82.43 l 219.39 82.43 l 223.02 88.73 l S 234.15 88.73 m 237.79 82.43 l 230.52 82.43 l 234.15 88.73 l S 241.98 88.73 m 245.61 82.43 l 238.34 82.43 l 241.98 88.73 l S 186.61 88.73 m 190.24 82.43 l 182.97 82.43 l 186.61 88.73 l S 132.49 88.73 m 136.12 82.43 l 128.85 82.43 l 132.49 88.73 l S 216.62 88.73 m 220.26 82.43 l 212.98 82.43 l 216.62 88.73 l S 194.22 88.73 m 197.86 82.43 l 190.58 82.43 l 194.22 88.73 l S 194.92 88.73 m 198.56 82.43 l 191.29 82.43 l 194.92 88.73 l S 256.94 88.73 m 260.58 82.43 l 253.31 82.43 l 256.94 88.73 l S 217.58 88.73 m 221.22 82.43 l 213.94 82.43 l 217.58 88.73 l S 160.74 88.73 m 164.38 82.43 l 157.11 82.43 l 160.74 88.73 l S 230.08 88.73 m 233.72 82.43 l 226.44 82.43 l 230.08 88.73 l S 194.30 88.73 m 197.93 82.43 l 190.66 82.43 l 194.30 88.73 l S 190.93 88.73 m 194.57 82.43 l 187.30 82.43 l 190.93 88.73 l S 184.80 88.73 m 188.43 82.43 l 181.16 82.43 l 184.80 88.73 l S 157.56 88.73 m 161.19 82.43 l 153.92 82.43 l 157.56 88.73 l S 211.58 88.73 m 215.21 82.43 l 207.94 82.43 l 211.58 88.73 l S 202.36 88.73 m 205.99 82.43 l 198.72 82.43 l 202.36 88.73 l S 232.56 88.73 m 236.19 82.43 l 228.92 82.43 l 232.56 88.73 l S 269.70 88.73 m 273.33 82.43 l 266.06 82.43 l 269.70 88.73 l S 218.35 88.73 m 221.99 82.43 l 214.72 82.43 l 218.35 88.73 l S 222.83 88.73 m 226.47 82.43 l 219.20 82.43 l 222.83 88.73 l S 243.90 88.73 m 247.54 82.43 l 240.27 82.43 l 243.90 88.73 l S 206.74 88.73 m 210.38 82.43 l 203.11 82.43 l 206.74 88.73 l S 167.09 88.73 m 170.72 82.43 l 163.45 82.43 l 167.09 88.73 l S 186.65 88.73 m 190.29 82.43 l 183.01 82.43 l 186.65 88.73 l S 235.07 88.73 m 238.71 82.43 l 231.43 82.43 l 235.07 88.73 l S 193.99 88.73 m 197.62 82.43 l 190.35 82.43 l 193.99 88.73 l S 263.22 88.73 m 266.86 82.43 l 259.59 82.43 l 263.22 88.73 l S 244.52 88.73 m 248.16 82.43 l 240.89 82.43 l 244.52 88.73 l S 164.30 88.73 m 167.94 82.43 l 160.66 82.43 l 164.30 88.73 l S 239.63 88.73 m 243.27 82.43 l 236.00 82.43 l 239.63 88.73 l S 217.59 88.73 m 221.23 82.43 l 213.95 82.43 l 217.59 88.73 l S 226.73 88.73 m 230.37 82.43 l 223.10 82.43 l 226.73 88.73 l S 270.65 88.73 m 274.29 82.43 l 267.02 82.43 l 270.65 88.73 l S 242.52 88.73 m 246.16 82.43 l 238.88 82.43 l 242.52 88.73 l S 154.47 88.73 m 158.11 82.43 l 150.83 82.43 l 154.47 88.73 l S 230.31 88.73 m 233.95 82.43 l 226.68 82.43 l 230.31 88.73 l S 232.81 88.73 m 236.45 82.43 l 229.17 82.43 l 232.81 88.73 l S 266.80 88.73 m 270.44 82.43 l 263.16 82.43 l 266.80 88.73 l S 246.51 88.73 m 250.15 82.43 l 242.88 82.43 l 246.51 88.73 l S 169.47 88.73 m 173.10 82.43 l 165.83 82.43 l 169.47 88.73 l S 207.96 88.73 m 211.60 82.43 l 204.32 82.43 l 207.96 88.73 l S 216.12 88.73 m 219.76 82.43 l 212.49 82.43 l 216.12 88.73 l S 190.58 88.73 m 194.22 82.43 l 186.95 82.43 l 190.58 88.73 l S 239.75 88.73 m 243.39 82.43 l 236.12 82.43 l 239.75 88.73 l S 237.46 88.73 m 241.09 82.43 l 233.82 82.43 l 237.46 88.73 l S 199.25 88.73 m 202.89 82.43 l 195.62 82.43 l 199.25 88.73 l S 200.34 88.73 m 203.98 82.43 l 196.70 82.43 l 200.34 88.73 l S 188.00 88.73 m 191.63 82.43 l 184.36 82.43 l 188.00 88.73 l S 263.99 88.73 m 267.62 82.43 l 260.35 82.43 l 263.99 88.73 l S 288.62 88.73 m 292.26 82.43 l 284.99 82.43 l 288.62 88.73 l S 169.47 88.73 m 173.11 82.43 l 165.83 82.43 l 169.47 88.73 l S 223.11 88.73 m 226.75 82.43 l 219.48 82.43 l 223.11 88.73 l S 233.19 88.73 m 236.82 82.43 l 229.55 82.43 l 233.19 88.73 l S 144.24 88.73 m 147.87 82.43 l 140.60 82.43 l 144.24 88.73 l S 160.89 88.73 m 164.52 82.43 l 157.25 82.43 l 160.89 88.73 l S 270.59 88.73 m 274.23 82.43 l 266.96 82.43 l 270.59 88.73 l S 254.74 88.73 m 258.38 82.43 l 251.11 82.43 l 254.74 88.73 l S 246.94 88.73 m 250.57 82.43 l 243.30 82.43 l 246.94 88.73 l S 260.59 88.73 m 264.23 82.43 l 256.96 82.43 l 260.59 88.73 l S 234.76 88.73 m 238.40 82.43 l 231.13 82.43 l 234.76 88.73 l S 256.86 88.73 m 260.50 82.43 l 253.22 82.43 l 256.86 88.73 l S 195.18 88.73 m 198.81 82.43 l 191.54 82.43 l 195.18 88.73 l S 258.43 88.73 m 262.07 82.43 l 254.79 82.43 l 258.43 88.73 l S 180.89 88.73 m 184.53 82.43 l 177.25 82.43 l 180.89 88.73 l S 161.13 88.73 m 164.77 82.43 l 157.50 82.43 l 161.13 88.73 l S 242.51 88.73 m 246.15 82.43 l 238.87 82.43 l 242.51 88.73 l S 243.84 88.73 m 247.47 82.43 l 240.20 82.43 l 243.84 88.73 l S 208.53 88.73 m 212.17 82.43 l 204.90 82.43 l 208.53 88.73 l S 262.48 88.73 m 266.12 82.43 l 258.85 82.43 l 262.48 88.73 l S 153.41 88.73 m 157.04 82.43 l 149.77 82.43 l 153.41 88.73 l S 241.41 88.73 m 245.05 82.43 l 237.78 82.43 l 241.41 88.73 l S 184.29 88.73 m 187.92 82.43 l 180.65 82.43 l 184.29 88.73 l S 144.67 88.73 m 148.30 82.43 l 141.03 82.43 l 144.67 88.73 l S 216.13 88.73 m 219.77 82.43 l 212.50 82.43 l 216.13 88.73 l S 237.24 88.73 m 240.87 82.43 l 233.60 82.43 l 237.24 88.73 l S 232.65 88.73 m 236.29 82.43 l 229.01 82.43 l 232.65 88.73 l S 233.86 88.73 m 237.50 82.43 l 230.22 82.43 l 233.86 88.73 l S 161.16 88.73 m 164.79 82.43 l 157.52 82.43 l 161.16 88.73 l S 173.03 88.73 m 176.66 82.43 l 169.39 82.43 l 173.03 88.73 l S 201.41 88.73 m 205.05 82.43 l 197.78 82.43 l 201.41 88.73 l S 189.40 88.73 m 193.04 82.43 l 185.76 82.43 l 189.40 88.73 l S 217.78 88.73 m 221.41 82.43 l 214.14 82.43 l 217.78 88.73 l S 206.74 88.73 m 210.38 82.43 l 203.10 82.43 l 206.74 88.73 l S 221.87 88.73 m 225.51 82.43 l 218.23 82.43 l 221.87 88.73 l S 227.09 88.73 m 230.72 82.43 l 223.45 82.43 l 227.09 88.73 l S 290.34 88.73 m 293.98 82.43 l 286.70 82.43 l 290.34 88.73 l S 179.86 88.73 m 183.50 82.43 l 176.23 82.43 l 179.86 88.73 l S 198.10 88.73 m 201.74 82.43 l 194.46 82.43 l 198.10 88.73 l S 143.16 88.73 m 146.79 82.43 l 139.52 82.43 l 143.16 88.73 l S 121.27 88.73 m 124.91 82.43 l 117.63 82.43 l 121.27 88.73 l S 149.33 88.73 m 152.97 82.43 l 145.70 82.43 l 149.33 88.73 l S 161.88 88.73 m 165.51 82.43 l 158.24 82.43 l 161.88 88.73 l S 211.16 88.73 m 214.80 82.43 l 207.53 82.43 l 211.16 88.73 l S 221.14 88.73 m 224.78 82.43 l 217.50 82.43 l 221.14 88.73 l S 232.70 88.73 m 236.34 82.43 l 229.07 82.43 l 232.70 88.73 l S 162.24 88.73 m 165.87 82.43 l 158.60 82.43 l 162.24 88.73 l S 343.33 88.73 m 346.97 82.43 l 339.70 82.43 l 343.33 88.73 l S 190.91 88.73 m 194.54 82.43 l 187.27 82.43 l 190.91 88.73 l S 130.13 88.73 m 133.77 82.43 l 126.49 82.43 l 130.13 88.73 l S 223.85 88.73 m 227.48 82.43 l 220.21 82.43 l 223.85 88.73 l S 205.33 88.73 m 208.97 82.43 l 201.70 82.43 l 205.33 88.73 l S 215.13 88.73 m 218.76 82.43 l 211.49 82.43 l 215.13 88.73 l S 248.59 88.73 m 252.23 82.43 l 244.96 82.43 l 248.59 88.73 l S 226.66 88.73 m 230.30 82.43 l 223.02 82.43 l 226.66 88.73 l S 184.11 88.73 m 187.75 82.43 l 180.47 82.43 l 184.11 88.73 l S 222.13 88.73 m 225.76 82.43 l 218.49 82.43 l 222.13 88.73 l S 178.94 88.73 m 182.58 82.43 l 175.31 82.43 l 178.94 88.73 l S 256.63 88.73 m 260.26 82.43 l 252.99 82.43 l 256.63 88.73 l S 236.76 88.73 m 240.40 82.43 l 233.13 82.43 l 236.76 88.73 l S 166.42 88.73 m 170.05 82.43 l 162.78 82.43 l 166.42 88.73 l S 238.93 88.73 m 242.57 82.43 l 235.30 82.43 l 238.93 88.73 l S 227.53 88.73 m 231.17 82.43 l 223.90 82.43 l 227.53 88.73 l S 106.26 88.73 m 109.90 82.43 l 102.63 82.43 l 106.26 88.73 l S 214.54 88.73 m 218.18 82.43 l 210.90 82.43 l 214.54 88.73 l S 227.23 88.73 m 230.86 82.43 l 223.59 82.43 l 227.23 88.73 l S 243.60 88.73 m 247.24 82.43 l 239.97 82.43 l 243.60 88.73 l S 241.15 88.73 m 244.79 82.43 l 237.51 82.43 l 241.15 88.73 l S 206.00 88.73 m 209.64 82.43 l 202.37 82.43 l 206.00 88.73 l S 242.15 88.73 m 245.79 82.43 l 238.52 82.43 l 242.15 88.73 l S 238.59 88.73 m 242.22 82.43 l 234.95 82.43 l 238.59 88.73 l S 205.41 88.73 m 209.05 82.43 l 201.77 82.43 l 205.41 88.73 l S 178.50 88.73 m 182.13 82.43 l 174.86 82.43 l 178.50 88.73 l S 189.05 88.73 m 192.69 82.43 l 185.42 82.43 l 189.05 88.73 l S 121.42 88.73 m 125.06 82.43 l 117.79 82.43 l 121.42 88.73 l S 206.78 88.73 m 210.42 82.43 l 203.15 82.43 l 206.78 88.73 l S 176.97 88.73 m 180.61 82.43 l 173.34 82.43 l 176.97 88.73 l S 207.87 88.73 m 211.51 82.43 l 204.24 82.43 l 207.87 88.73 l S 261.40 88.73 m 265.03 82.43 l 257.76 82.43 l 261.40 88.73 l S 225.32 88.73 m 228.96 82.43 l 221.69 82.43 l 225.32 88.73 l S 188.33 88.73 m 191.97 82.43 l 184.69 82.43 l 188.33 88.73 l S 219.61 88.73 m 223.24 82.43 l 215.97 82.43 l 219.61 88.73 l S 226.18 88.73 m 229.81 82.43 l 222.54 82.43 l 226.18 88.73 l S 276.49 88.73 m 280.12 82.43 l 272.85 82.43 l 276.49 88.73 l S 232.81 88.73 m 236.44 82.43 l 229.17 82.43 l 232.81 88.73 l S 163.95 88.73 m 167.59 82.43 l 160.32 82.43 l 163.95 88.73 l S 240.52 88.73 m 244.16 82.43 l 236.88 82.43 l 240.52 88.73 l S 226.41 88.73 m 230.04 82.43 l 222.77 82.43 l 226.41 88.73 l S 186.92 88.73 m 190.56 82.43 l 183.28 82.43 l 186.92 88.73 l S 140.54 88.73 m 144.17 82.43 l 136.90 82.43 l 140.54 88.73 l S 265.34 88.73 m 268.97 82.43 l 261.70 82.43 l 265.34 88.73 l S 202.36 88.73 m 205.99 82.43 l 198.72 82.43 l 202.36 88.73 l S 85.53 88.73 m 89.17 82.43 l 81.90 82.43 l 85.53 88.73 l S 224.25 88.73 m 227.88 82.43 l 220.61 82.43 l 224.25 88.73 l S 281.07 88.73 m 284.71 82.43 l 277.44 82.43 l 281.07 88.73 l S 218.81 88.73 m 222.44 82.43 l 215.17 82.43 l 218.81 88.73 l S 205.02 88.73 m 208.65 82.43 l 201.38 82.43 l 205.02 88.73 l S 226.50 88.73 m 230.13 82.43 l 222.86 82.43 l 226.50 88.73 l S 234.42 88.73 m 238.05 82.43 l 230.78 82.43 l 234.42 88.73 l S 234.56 88.73 m 238.20 82.43 l 230.93 82.43 l 234.56 88.73 l S 133.37 88.73 m 137.00 82.43 l 129.73 82.43 l 133.37 88.73 l S 236.41 88.73 m 240.05 82.43 l 232.78 82.43 l 236.41 88.73 l S 237.46 88.73 m 241.09 82.43 l 233.82 82.43 l 237.46 88.73 l S 288.95 88.73 m 292.58 82.43 l 285.31 82.43 l 288.95 88.73 l S 186.04 88.73 m 189.68 82.43 l 182.40 82.43 l 186.04 88.73 l S 225.47 88.73 m 229.11 82.43 l 221.84 82.43 l 225.47 88.73 l S 230.74 88.73 m 234.38 82.43 l 227.11 82.43 l 230.74 88.73 l S 190.79 88.73 m 194.42 82.43 l 187.15 82.43 l 190.79 88.73 l S 266.28 88.73 m 269.92 82.43 l 262.65 82.43 l 266.28 88.73 l S 214.97 88.73 m 218.60 82.43 l 211.33 82.43 l 214.97 88.73 l S 314.56 88.73 m 318.19 82.43 l 310.92 82.43 l 314.56 88.73 l S 324.08 88.73 m 327.71 82.43 l 320.44 82.43 l 324.08 88.73 l S 213.41 88.73 m 217.05 82.43 l 209.77 82.43 l 213.41 88.73 l S 184.28 88.73 m 187.91 82.43 l 180.64 82.43 l 184.28 88.73 l S 261.94 88.73 m 265.58 82.43 l 258.30 82.43 l 261.94 88.73 l S 154.52 88.73 m 158.15 82.43 l 150.88 82.43 l 154.52 88.73 l S 263.64 88.73 m 267.27 82.43 l 260.00 82.43 l 263.64 88.73 l S 297.14 88.73 m 300.77 82.43 l 293.50 82.43 l 297.14 88.73 l S 263.18 88.73 m 266.82 82.43 l 259.55 82.43 l 263.18 88.73 l S 248.62 88.73 m 252.25 82.43 l 244.98 82.43 l 248.62 88.73 l S 111.49 88.73 m 115.13 82.43 l 107.86 82.43 l 111.49 88.73 l S 161.24 88.73 m 164.88 82.43 l 157.60 82.43 l 161.24 88.73 l S 198.01 88.73 m 201.65 82.43 l 194.38 82.43 l 198.01 88.73 l S 204.12 88.73 m 207.75 82.43 l 200.48 82.43 l 204.12 88.73 l S 173.82 88.73 m 177.46 82.43 l 170.18 82.43 l 173.82 88.73 l S 194.46 88.73 m 198.10 82.43 l 190.83 82.43 l 194.46 88.73 l S 209.98 88.73 m 213.62 82.43 l 206.34 82.43 l 209.98 88.73 l S 242.41 88.73 m 246.05 82.43 l 238.78 82.43 l 242.41 88.73 l S 259.35 88.73 m 262.99 82.43 l 255.72 82.43 l 259.35 88.73 l S 194.04 88.73 m 197.67 82.43 l 190.40 82.43 l 194.04 88.73 l S 165.62 88.73 m 169.25 82.43 l 161.98 82.43 l 165.62 88.73 l S 216.67 88.73 m 220.31 82.43 l 213.03 82.43 l 216.67 88.73 l S 197.46 88.73 m 201.10 82.43 l 193.83 82.43 l 197.46 88.73 l S 127.78 88.73 m 131.42 82.43 l 124.14 82.43 l 127.78 88.73 l S 183.89 88.73 m 187.53 82.43 l 180.26 82.43 l 183.89 88.73 l S 227.21 88.73 m 230.85 82.43 l 223.58 82.43 l 227.21 88.73 l S 230.97 88.73 m 234.61 82.43 l 227.34 82.43 l 230.97 88.73 l S 188.15 88.73 m 191.79 82.43 l 184.51 82.43 l 188.15 88.73 l S 201.15 88.73 m 204.79 82.43 l 197.52 82.43 l 201.15 88.73 l S 250.67 88.73 m 254.31 82.43 l 247.03 82.43 l 250.67 88.73 l S 138.75 88.73 m 142.39 82.43 l 135.11 82.43 l 138.75 88.73 l S 236.40 88.73 m 240.03 82.43 l 232.76 82.43 l 236.40 88.73 l S 227.72 88.73 m 231.36 82.43 l 224.09 82.43 l 227.72 88.73 l S 242.80 88.73 m 246.44 82.43 l 239.17 82.43 l 242.80 88.73 l S 205.54 88.73 m 209.18 82.43 l 201.90 82.43 l 205.54 88.73 l S 256.74 88.73 m 260.37 82.43 l 253.10 82.43 l 256.74 88.73 l S 199.84 88.73 m 203.48 82.43 l 196.20 82.43 l 199.84 88.73 l S 267.01 88.73 m 270.65 82.43 l 263.38 82.43 l 267.01 88.73 l S 224.10 88.73 m 227.74 82.43 l 220.47 82.43 l 224.10 88.73 l S 86.46 88.73 m 90.10 82.43 l 82.82 82.43 l 86.46 88.73 l S 277.06 88.73 m 280.70 82.43 l 273.42 82.43 l 277.06 88.73 l S 179.50 88.73 m 183.14 82.43 l 175.87 82.43 l 179.50 88.73 l S 196.06 88.73 m 199.69 82.43 l 192.42 82.43 l 196.06 88.73 l S 168.67 88.73 m 172.31 82.43 l 165.03 82.43 l 168.67 88.73 l S 202.16 88.73 m 205.80 82.43 l 198.52 82.43 l 202.16 88.73 l S 186.92 88.73 m 190.56 82.43 l 183.29 82.43 l 186.92 88.73 l S 217.90 88.73 m 221.53 82.43 l 214.26 82.43 l 217.90 88.73 l S 227.52 88.73 m 231.16 82.43 l 223.88 82.43 l 227.52 88.73 l S 224.36 88.73 m 228.00 82.43 l 220.72 82.43 l 224.36 88.73 l S 236.66 88.73 m 240.30 82.43 l 233.02 82.43 l 236.66 88.73 l S 248.80 88.73 m 252.44 82.43 l 245.17 82.43 l 248.80 88.73 l S 279.95 88.73 m 283.58 82.43 l 276.31 82.43 l 279.95 88.73 l S 246.72 88.73 m 250.35 82.43 l 243.08 82.43 l 246.72 88.73 l S 181.67 88.73 m 185.31 82.43 l 178.04 82.43 l 181.67 88.73 l S 183.11 88.73 m 186.75 82.43 l 179.48 82.43 l 183.11 88.73 l S 249.89 88.73 m 253.53 82.43 l 246.26 82.43 l 249.89 88.73 l S 202.95 88.73 m 206.58 82.43 l 199.31 82.43 l 202.95 88.73 l S 167.90 88.73 m 171.53 82.43 l 164.26 82.43 l 167.90 88.73 l S 210.82 88.73 m 214.46 82.43 l 207.19 82.43 l 210.82 88.73 l S 215.45 88.73 m 219.09 82.43 l 211.82 82.43 l 215.45 88.73 l S 218.33 88.73 m 221.97 82.43 l 214.69 82.43 l 218.33 88.73 l S 211.01 88.73 m 214.65 82.43 l 207.37 82.43 l 211.01 88.73 l S 223.01 88.73 m 226.64 82.43 l 219.37 82.43 l 223.01 88.73 l S 204.39 88.73 m 208.03 82.43 l 200.76 82.43 l 204.39 88.73 l S 165.55 88.73 m 169.19 82.43 l 161.92 82.43 l 165.55 88.73 l S 195.24 88.73 m 198.88 82.43 l 191.61 82.43 l 195.24 88.73 l S 163.67 88.73 m 167.31 82.43 l 160.03 82.43 l 163.67 88.73 l S 234.49 88.73 m 238.12 82.43 l 230.85 82.43 l 234.49 88.73 l S 210.95 88.73 m 214.59 82.43 l 207.31 82.43 l 210.95 88.73 l S 179.61 88.73 m 183.24 82.43 l 175.97 82.43 l 179.61 88.73 l S 191.12 88.73 m 194.75 82.43 l 187.48 82.43 l 191.12 88.73 l S 296.13 88.73 m 299.76 82.43 l 292.49 82.43 l 296.13 88.73 l S 230.55 88.73 m 234.19 82.43 l 226.92 82.43 l 230.55 88.73 l S 118.94 88.73 m 122.58 82.43 l 115.31 82.43 l 118.94 88.73 l S 196.21 88.73 m 199.85 82.43 l 192.57 82.43 l 196.21 88.73 l S 245.67 88.73 m 249.30 82.43 l 242.03 82.43 l 245.67 88.73 l S 225.53 88.73 m 229.16 82.43 l 221.89 82.43 l 225.53 88.73 l S 254.87 88.73 m 258.51 82.43 l 251.24 82.43 l 254.87 88.73 l S 210.66 88.73 m 214.29 82.43 l 207.02 82.43 l 210.66 88.73 l S 222.39 88.73 m 226.03 82.43 l 218.76 82.43 l 222.39 88.73 l S 278.09 88.73 m 281.72 82.43 l 274.45 82.43 l 278.09 88.73 l S 208.30 88.73 m 211.94 82.43 l 204.67 82.43 l 208.30 88.73 l S 214.57 88.73 m 218.21 82.43 l 210.93 82.43 l 214.57 88.73 l S 201.98 88.73 m 205.61 82.43 l 198.34 82.43 l 201.98 88.73 l S 175.42 88.73 m 179.05 82.43 l 171.78 82.43 l 175.42 88.73 l S 211.91 88.73 m 215.54 82.43 l 208.27 82.43 l 211.91 88.73 l S 307.04 88.73 m 310.68 82.43 l 303.41 82.43 l 307.04 88.73 l S 293.66 88.73 m 297.30 82.43 l 290.02 82.43 l 293.66 88.73 l S 181.82 88.73 m 185.45 82.43 l 178.18 82.43 l 181.82 88.73 l S 280.00 88.73 m 283.64 82.43 l 276.37 82.43 l 280.00 88.73 l S 132.20 88.73 m 135.84 82.43 l 128.57 82.43 l 132.20 88.73 l S 211.07 88.73 m 214.70 82.43 l 207.43 82.43 l 211.07 88.73 l S 176.61 88.73 m 180.25 82.43 l 172.97 82.43 l 176.61 88.73 l S 221.36 88.73 m 225.00 82.43 l 217.73 82.43 l 221.36 88.73 l S 194.19 88.73 m 197.82 82.43 l 190.55 82.43 l 194.19 88.73 l S 220.02 88.73 m 223.65 82.43 l 216.38 82.43 l 220.02 88.73 l S 218.83 88.73 m 222.47 82.43 l 215.20 82.43 l 218.83 88.73 l S 192.54 88.73 m 196.18 82.43 l 188.91 82.43 l 192.54 88.73 l S 280.68 88.73 m 284.31 82.43 l 277.04 82.43 l 280.68 88.73 l S 189.54 88.73 m 193.18 82.43 l 185.91 82.43 l 189.54 88.73 l S 241.90 88.73 m 245.53 82.43 l 238.26 82.43 l 241.90 88.73 l S 182.92 88.73 m 186.56 82.43 l 179.28 82.43 l 182.92 88.73 l S 230.31 88.73 m 233.94 82.43 l 226.67 82.43 l 230.31 88.73 l S 241.77 88.73 m 245.41 82.43 l 238.14 82.43 l 241.77 88.73 l S 209.26 88.73 m 212.90 82.43 l 205.62 82.43 l 209.26 88.73 l S 238.14 88.73 m 241.77 82.43 l 234.50 82.43 l 238.14 88.73 l S 213.46 88.73 m 217.09 82.43 l 209.82 82.43 l 213.46 88.73 l S 155.64 88.73 m 159.27 82.43 l 152.00 82.43 l 155.64 88.73 l S 208.82 88.73 m 212.45 82.43 l 205.18 82.43 l 208.82 88.73 l S 222.89 88.73 m 226.53 82.43 l 219.26 82.43 l 222.89 88.73 l S 255.52 88.73 m 259.16 82.43 l 251.89 82.43 l 255.52 88.73 l S 188.56 88.73 m 192.20 82.43 l 184.93 82.43 l 188.56 88.73 l S 220.63 88.73 m 224.26 82.43 l 216.99 82.43 l 220.63 88.73 l S 168.90 88.73 m 172.54 82.43 l 165.26 82.43 l 168.90 88.73 l S 234.90 88.73 m 238.53 82.43 l 231.26 82.43 l 234.90 88.73 l S 252.82 88.73 m 256.46 82.43 l 249.18 82.43 l 252.82 88.73 l S 213.64 88.73 m 217.27 82.43 l 210.00 82.43 l 213.64 88.73 l S 214.47 88.73 m 218.10 82.43 l 210.83 82.43 l 214.47 88.73 l S 220.28 88.73 m 223.91 82.43 l 216.64 82.43 l 220.28 88.73 l S 215.37 88.73 m 219.01 82.43 l 211.74 82.43 l 215.37 88.73 l S 167.79 88.73 m 171.42 82.43 l 164.15 82.43 l 167.79 88.73 l S 181.15 88.73 m 184.79 82.43 l 177.52 82.43 l 181.15 88.73 l S 166.89 88.73 m 170.53 82.43 l 163.26 82.43 l 166.89 88.73 l S 114.44 88.73 m 118.08 82.43 l 110.80 82.43 l 114.44 88.73 l S 141.86 88.73 m 145.50 82.43 l 138.22 82.43 l 141.86 88.73 l S 211.45 88.73 m 215.09 82.43 l 207.81 82.43 l 211.45 88.73 l S 187.78 88.73 m 191.42 82.43 l 184.15 82.43 l 187.78 88.73 l S 159.97 88.73 m 163.60 82.43 l 156.33 82.43 l 159.97 88.73 l S 253.96 88.73 m 257.59 82.43 l 250.32 82.43 l 253.96 88.73 l S 267.61 88.73 m 271.25 82.43 l 263.97 82.43 l 267.61 88.73 l S 205.65 88.73 m 209.28 82.43 l 202.01 82.43 l 205.65 88.73 l S 121.09 88.73 m 124.73 82.43 l 117.46 82.43 l 121.09 88.73 l S 227.15 88.73 m 230.78 82.43 l 223.51 82.43 l 227.15 88.73 l S 217.93 88.73 m 221.56 82.43 l 214.29 82.43 l 217.93 88.73 l S 186.90 88.73 m 190.54 82.43 l 183.26 82.43 l 186.90 88.73 l S 133.25 88.73 m 136.89 82.43 l 129.62 82.43 l 133.25 88.73 l S 226.52 88.73 m 230.15 82.43 l 222.88 82.43 l 226.52 88.73 l S 282.47 88.73 m 286.11 82.43 l 278.84 82.43 l 282.47 88.73 l S 84.00 88.73 m 87.63 82.43 l 80.36 82.43 l 84.00 88.73 l S 156.09 88.73 m 159.72 82.43 l 152.45 82.43 l 156.09 88.73 l S 136.10 88.73 m 139.74 82.43 l 132.47 82.43 l 136.10 88.73 l S 153.97 88.73 m 157.60 82.43 l 150.33 82.43 l 153.97 88.73 l S 192.30 88.73 m 195.93 82.43 l 188.66 82.43 l 192.30 88.73 l S 192.17 88.73 m 195.81 82.43 l 188.54 82.43 l 192.17 88.73 l S 194.30 88.73 m 197.94 82.43 l 190.67 82.43 l 194.30 88.73 l S 219.62 88.73 m 223.25 82.43 l 215.98 82.43 l 219.62 88.73 l S 207.57 88.73 m 211.20 82.43 l 203.93 82.43 l 207.57 88.73 l S 215.56 88.73 m 219.19 82.43 l 211.92 82.43 l 215.56 88.73 l S 223.94 88.73 m 227.58 82.43 l 220.31 82.43 l 223.94 88.73 l S 230.05 88.73 m 233.69 82.43 l 226.42 82.43 l 230.05 88.73 l S 308.70 88.73 m 312.34 82.43 l 305.07 82.43 l 308.70 88.73 l S 199.30 88.73 m 202.94 82.43 l 195.66 82.43 l 199.30 88.73 l S 147.91 88.73 m 151.54 82.43 l 144.27 82.43 l 147.91 88.73 l S 211.35 88.73 m 214.99 82.43 l 207.71 82.43 l 211.35 88.73 l S 157.13 88.73 m 160.76 82.43 l 153.49 82.43 l 157.13 88.73 l S 172.00 88.73 m 175.64 82.43 l 168.37 82.43 l 172.00 88.73 l S 194.54 88.73 m 198.17 82.43 l 190.90 82.43 l 194.54 88.73 l S 241.75 88.73 m 245.38 82.43 l 238.11 82.43 l 241.75 88.73 l S 287.47 88.73 m 291.11 82.43 l 283.83 82.43 l 287.47 88.73 l S 234.36 88.73 m 237.99 82.43 l 230.72 82.43 l 234.36 88.73 l S 225.40 88.73 m 229.04 82.43 l 221.77 82.43 l 225.40 88.73 l S 229.14 88.73 m 232.77 82.43 l 225.50 82.43 l 229.14 88.73 l S 240.42 88.73 m 244.06 82.43 l 236.78 82.43 l 240.42 88.73 l S 197.82 88.73 m 201.45 82.43 l 194.18 82.43 l 197.82 88.73 l S 210.09 88.73 m 213.73 82.43 l 206.46 82.43 l 210.09 88.73 l S 166.02 88.73 m 169.66 82.43 l 162.39 82.43 l 166.02 88.73 l S 94.01 88.73 m 97.65 82.43 l 90.38 82.43 l 94.01 88.73 l S 208.33 88.73 m 211.96 82.43 l 204.69 82.43 l 208.33 88.73 l S 170.12 88.73 m 173.76 82.43 l 166.49 82.43 l 170.12 88.73 l S 206.78 88.73 m 210.41 82.43 l 203.14 82.43 l 206.78 88.73 l S 180.25 88.73 m 183.88 82.43 l 176.61 82.43 l 180.25 88.73 l S 251.73 88.73 m 255.37 82.43 l 248.09 82.43 l 251.73 88.73 l S 220.98 88.73 m 224.62 82.43 l 217.35 82.43 l 220.98 88.73 l S 225.42 88.73 m 229.05 82.43 l 221.78 82.43 l 225.42 88.73 l S 258.52 88.73 m 262.16 82.43 l 254.89 82.43 l 258.52 88.73 l S 217.93 88.73 m 221.57 82.43 l 214.30 82.43 l 217.93 88.73 l S 200.24 88.73 m 203.88 82.43 l 196.60 82.43 l 200.24 88.73 l S 240.18 88.73 m 243.81 82.43 l 236.54 82.43 l 240.18 88.73 l S 187.94 88.73 m 191.57 82.43 l 184.30 82.43 l 187.94 88.73 l S 146.44 88.73 m 150.08 82.43 l 142.81 82.43 l 146.44 88.73 l S 222.58 88.73 m 226.22 82.43 l 218.95 82.43 l 222.58 88.73 l S 151.51 88.73 m 155.15 82.43 l 147.88 82.43 l 151.51 88.73 l S 167.65 88.73 m 171.28 82.43 l 164.01 82.43 l 167.65 88.73 l S 190.14 88.73 m 193.77 82.43 l 186.50 82.43 l 190.14 88.73 l S 275.50 88.73 m 279.14 82.43 l 271.86 82.43 l 275.50 88.73 l S 228.95 88.73 m 232.58 82.43 l 225.31 82.43 l 228.95 88.73 l S 210.22 88.73 m 213.86 82.43 l 206.59 82.43 l 210.22 88.73 l S 219.17 88.73 m 222.80 82.43 l 215.53 82.43 l 219.17 88.73 l S 80.02 88.73 m 83.66 82.43 l 76.39 82.43 l 80.02 88.73 l S 223.75 88.73 m 227.39 82.43 l 220.11 82.43 l 223.75 88.73 l S 201.15 88.73 m 204.79 82.43 l 197.51 82.43 l 201.15 88.73 l S 186.39 88.73 m 190.03 82.43 l 182.75 82.43 l 186.39 88.73 l S 212.41 88.73 m 216.04 82.43 l 208.77 82.43 l 212.41 88.73 l S 265.95 88.73 m 269.58 82.43 l 262.31 82.43 l 265.95 88.73 l S 212.43 88.73 m 216.07 82.43 l 208.79 82.43 l 212.43 88.73 l S 223.04 88.73 m 226.68 82.43 l 219.41 82.43 l 223.04 88.73 l S 228.14 88.73 m 231.78 82.43 l 224.51 82.43 l 228.14 88.73 l S 119.60 88.73 m 123.23 82.43 l 115.96 82.43 l 119.60 88.73 l S 159.13 88.73 m 162.77 82.43 l 155.50 82.43 l 159.13 88.73 l S 251.27 88.73 m 254.91 82.43 l 247.64 82.43 l 251.27 88.73 l S 170.63 88.73 m 174.26 82.43 l 166.99 82.43 l 170.63 88.73 l S 198.45 88.73 m 202.08 82.43 l 194.81 82.43 l 198.45 88.73 l S 265.96 88.73 m 269.59 82.43 l 262.32 82.43 l 265.96 88.73 l S 209.24 88.73 m 212.87 82.43 l 205.60 82.43 l 209.24 88.73 l S 177.03 88.73 m 180.67 82.43 l 173.40 82.43 l 177.03 88.73 l S 193.05 88.73 m 196.69 82.43 l 189.42 82.43 l 193.05 88.73 l S 258.05 88.73 m 261.68 82.43 l 254.41 82.43 l 258.05 88.73 l S 281.16 88.73 m 284.80 82.43 l 277.53 82.43 l 281.16 88.73 l S 176.35 88.73 m 179.99 82.43 l 172.72 82.43 l 176.35 88.73 l S 222.61 88.73 m 226.25 82.43 l 218.98 82.43 l 222.61 88.73 l S 225.83 88.73 m 229.46 82.43 l 222.19 82.43 l 225.83 88.73 l S 268.31 88.73 m 271.95 82.43 l 264.68 82.43 l 268.31 88.73 l S 231.05 88.73 m 234.68 82.43 l 227.41 82.43 l 231.05 88.73 l S 168.54 88.73 m 172.18 82.43 l 164.91 82.43 l 168.54 88.73 l S 153.15 88.73 m 156.78 82.43 l 149.51 82.43 l 153.15 88.73 l S 207.91 88.73 m 211.55 82.43 l 204.27 82.43 l 207.91 88.73 l S 126.49 88.73 m 130.13 82.43 l 122.85 82.43 l 126.49 88.73 l S 232.97 88.73 m 236.60 82.43 l 229.33 82.43 l 232.97 88.73 l S 225.21 88.73 m 228.85 82.43 l 221.57 82.43 l 225.21 88.73 l S 198.52 88.73 m 202.15 82.43 l 194.88 82.43 l 198.52 88.73 l S 220.13 88.73 m 223.77 82.43 l 216.50 82.43 l 220.13 88.73 l S 240.76 88.73 m 244.40 82.43 l 237.13 82.43 l 240.76 88.73 l S 207.27 88.73 m 210.91 82.43 l 203.64 82.43 l 207.27 88.73 l S 205.99 88.73 m 209.62 82.43 l 202.35 82.43 l 205.99 88.73 l S 229.45 88.73 m 233.08 82.43 l 225.81 82.43 l 229.45 88.73 l S 140.12 88.73 m 143.76 82.43 l 136.49 82.43 l 140.12 88.73 l S 123.25 88.73 m 126.89 82.43 l 119.61 82.43 l 123.25 88.73 l S 181.50 88.73 m 185.14 82.43 l 177.86 82.43 l 181.50 88.73 l S 196.87 88.73 m 200.51 82.43 l 193.23 82.43 l 196.87 88.73 l S 203.18 88.73 m 206.82 82.43 l 199.55 82.43 l 203.18 88.73 l S 197.18 88.73 m 200.82 82.43 l 193.55 82.43 l 197.18 88.73 l S 171.49 88.73 m 175.12 82.43 l 167.85 82.43 l 171.49 88.73 l S 189.74 88.73 m 193.38 82.43 l 186.10 82.43 l 189.74 88.73 l S 214.61 88.73 m 218.25 82.43 l 210.97 82.43 l 214.61 88.73 l S 227.05 88.73 m 230.68 82.43 l 223.41 82.43 l 227.05 88.73 l S 212.22 88.73 m 215.85 82.43 l 208.58 82.43 l 212.22 88.73 l S 231.23 88.73 m 234.87 82.43 l 227.60 82.43 l 231.23 88.73 l S 181.27 88.73 m 184.91 82.43 l 177.64 82.43 l 181.27 88.73 l S 199.20 88.73 m 202.83 82.43 l 195.56 82.43 l 199.20 88.73 l S 155.23 88.73 m 158.87 82.43 l 151.59 82.43 l 155.23 88.73 l S 141.10 88.73 m 144.74 82.43 l 137.46 82.43 l 141.10 88.73 l S 268.01 88.73 m 271.65 82.43 l 264.37 82.43 l 268.01 88.73 l S 224.39 88.73 m 228.02 82.43 l 220.75 82.43 l 224.39 88.73 l S 251.81 88.73 m 255.45 82.43 l 248.18 82.43 l 251.81 88.73 l S 137.66 88.73 m 141.30 82.43 l 134.03 82.43 l 137.66 88.73 l S 211.31 88.73 m 214.94 82.43 l 207.67 82.43 l 211.31 88.73 l S 195.34 88.73 m 198.98 82.43 l 191.70 82.43 l 195.34 88.73 l S 215.68 88.73 m 219.31 82.43 l 212.04 82.43 l 215.68 88.73 l S 221.61 88.73 m 225.25 82.43 l 217.98 82.43 l 221.61 88.73 l S 194.93 88.73 m 198.57 82.43 l 191.30 82.43 l 194.93 88.73 l S 192.89 88.73 m 196.52 82.43 l 189.25 82.43 l 192.89 88.73 l S 220.27 88.73 m 223.90 82.43 l 216.63 82.43 l 220.27 88.73 l S 231.61 88.73 m 235.25 82.43 l 227.97 82.43 l 231.61 88.73 l S 221.33 88.73 m 224.97 82.43 l 217.69 82.43 l 221.33 88.73 l S 244.91 88.73 m 248.55 82.43 l 241.27 82.43 l 244.91 88.73 l S 254.77 88.73 m 258.40 82.43 l 251.13 82.43 l 254.77 88.73 l S 251.91 88.73 m 255.54 82.43 l 248.27 82.43 l 251.91 88.73 l S 307.48 88.73 m 311.11 82.43 l 303.84 82.43 l 307.48 88.73 l S 313.33 88.73 m 316.96 82.43 l 309.69 82.43 l 313.33 88.73 l S 302.24 88.73 m 305.87 82.43 l 298.60 82.43 l 302.24 88.73 l S 193.65 88.73 m 197.29 82.43 l 190.01 82.43 l 193.65 88.73 l S 248.93 88.73 m 252.56 82.43 l 245.29 82.43 l 248.93 88.73 l S 166.96 88.73 m 170.59 82.43 l 163.32 82.43 l 166.96 88.73 l S 234.19 88.73 m 237.82 82.43 l 230.55 82.43 l 234.19 88.73 l S 241.88 88.73 m 245.52 82.43 l 238.24 82.43 l 241.88 88.73 l S 241.58 88.73 m 245.21 82.43 l 237.94 82.43 l 241.58 88.73 l S 229.36 88.73 m 233.00 82.43 l 225.73 82.43 l 229.36 88.73 l S 210.80 88.73 m 214.44 82.43 l 207.17 82.43 l 210.80 88.73 l S 243.60 88.73 m 247.24 82.43 l 239.97 82.43 l 243.60 88.73 l S 214.67 88.73 m 218.30 82.43 l 211.03 82.43 l 214.67 88.73 l S 213.93 88.73 m 217.57 82.43 l 210.30 82.43 l 213.93 88.73 l S 204.33 88.73 m 207.97 82.43 l 200.70 82.43 l 204.33 88.73 l S 199.57 88.73 m 203.20 82.43 l 195.93 82.43 l 199.57 88.73 l S 178.65 88.73 m 182.29 82.43 l 175.01 82.43 l 178.65 88.73 l S 292.28 88.73 m 295.92 82.43 l 288.65 82.43 l 292.28 88.73 l S 199.49 88.73 m 203.13 82.43 l 195.86 82.43 l 199.49 88.73 l S 71.73 88.73 m 75.37 82.43 l 68.10 82.43 l 71.73 88.73 l S 227.16 88.73 m 230.80 82.43 l 223.52 82.43 l 227.16 88.73 l S 254.61 88.73 m 258.24 82.43 l 250.97 82.43 l 254.61 88.73 l S 220.54 88.73 m 224.18 82.43 l 216.90 82.43 l 220.54 88.73 l S 210.95 88.73 m 214.59 82.43 l 207.32 82.43 l 210.95 88.73 l S 220.66 88.73 m 224.29 82.43 l 217.02 82.43 l 220.66 88.73 l S 259.87 88.73 m 263.50 82.43 l 256.23 82.43 l 259.87 88.73 l S 207.19 88.73 m 210.83 82.43 l 203.55 82.43 l 207.19 88.73 l S 161.60 88.73 m 165.23 82.43 l 157.96 82.43 l 161.60 88.73 l S 181.65 88.73 m 185.29 82.43 l 178.01 82.43 l 181.65 88.73 l S 199.52 88.73 m 203.15 82.43 l 195.88 82.43 l 199.52 88.73 l S 98.34 88.73 m 101.97 82.43 l 94.70 82.43 l 98.34 88.73 l S 221.15 88.73 m 224.78 82.43 l 217.51 82.43 l 221.15 88.73 l S 263.40 88.73 m 267.03 82.43 l 259.76 82.43 l 263.40 88.73 l S 240.07 88.73 m 243.71 82.43 l 236.43 82.43 l 240.07 88.73 l S 242.02 88.73 m 245.66 82.43 l 238.39 82.43 l 242.02 88.73 l S 118.75 88.73 m 122.39 82.43 l 115.11 82.43 l 118.75 88.73 l S 193.87 88.73 m 197.51 82.43 l 190.24 82.43 l 193.87 88.73 l S 182.48 88.73 m 186.12 82.43 l 178.85 82.43 l 182.48 88.73 l S 288.71 88.73 m 292.35 82.43 l 285.08 82.43 l 288.71 88.73 l S 154.42 88.73 m 158.05 82.43 l 150.78 82.43 l 154.42 88.73 l S 218.13 88.73 m 221.77 82.43 l 214.49 82.43 l 218.13 88.73 l S 158.88 88.73 m 162.52 82.43 l 155.25 82.43 l 158.88 88.73 l S 216.72 88.73 m 220.36 82.43 l 213.08 82.43 l 216.72 88.73 l S 196.29 88.73 m 199.92 82.43 l 192.65 82.43 l 196.29 88.73 l S 255.03 88.73 m 258.66 82.43 l 251.39 82.43 l 255.03 88.73 l S 229.36 88.73 m 233.00 82.43 l 225.72 82.43 l 229.36 88.73 l S 240.20 88.73 m 243.83 82.43 l 236.56 82.43 l 240.20 88.73 l S 206.58 88.73 m 210.22 82.43 l 202.94 82.43 l 206.58 88.73 l S 246.03 88.73 m 249.66 82.43 l 242.39 82.43 l 246.03 88.73 l S 274.88 88.73 m 278.51 82.43 l 271.24 82.43 l 274.88 88.73 l S 196.07 88.73 m 199.71 82.43 l 192.43 82.43 l 196.07 88.73 l S 226.83 88.73 m 230.47 82.43 l 223.20 82.43 l 226.83 88.73 l S 230.12 88.73 m 233.76 82.43 l 226.49 82.43 l 230.12 88.73 l S 173.11 88.73 m 176.75 82.43 l 169.47 82.43 l 173.11 88.73 l S 223.84 88.73 m 227.47 82.43 l 220.20 82.43 l 223.84 88.73 l S 222.40 88.73 m 226.04 82.43 l 218.77 82.43 l 222.40 88.73 l S 213.04 88.73 m 216.68 82.43 l 209.41 82.43 l 213.04 88.73 l S 265.38 88.73 m 269.01 82.43 l 261.74 82.43 l 265.38 88.73 l S 194.98 88.73 m 198.61 82.43 l 191.34 82.43 l 194.98 88.73 l S 194.56 88.73 m 198.19 82.43 l 190.92 82.43 l 194.56 88.73 l S 215.90 88.73 m 219.54 82.43 l 212.27 82.43 l 215.90 88.73 l S 218.91 88.73 m 222.54 82.43 l 215.27 82.43 l 218.91 88.73 l S 176.45 88.73 m 180.09 82.43 l 172.82 82.43 l 176.45 88.73 l S 159.75 88.73 m 163.38 82.43 l 156.11 82.43 l 159.75 88.73 l S 166.80 88.73 m 170.43 82.43 l 163.16 82.43 l 166.80 88.73 l S 139.19 88.73 m 142.83 82.43 l 135.56 82.43 l 139.19 88.73 l S 219.71 88.73 m 223.34 82.43 l 216.07 82.43 l 219.71 88.73 l S 182.91 88.73 m 186.55 82.43 l 179.28 82.43 l 182.91 88.73 l S 152.65 88.73 m 156.29 82.43 l 149.02 82.43 l 152.65 88.73 l S 271.06 88.73 m 274.69 82.43 l 267.42 82.43 l 271.06 88.73 l S 232.71 88.73 m 236.35 82.43 l 229.08 82.43 l 232.71 88.73 l S 236.34 88.73 m 239.98 82.43 l 232.71 82.43 l 236.34 88.73 l S 215.63 88.73 m 219.27 82.43 l 211.99 82.43 l 215.63 88.73 l S 241.62 88.73 m 245.25 82.43 l 237.98 82.43 l 241.62 88.73 l S 216.95 88.73 m 220.59 82.43 l 213.31 82.43 l 216.95 88.73 l S 218.40 88.73 m 222.03 82.43 l 214.76 82.43 l 218.40 88.73 l S 196.18 88.73 m 199.82 82.43 l 192.55 82.43 l 196.18 88.73 l S 179.95 88.73 m 183.58 82.43 l 176.31 82.43 l 179.95 88.73 l S 215.84 88.73 m 219.48 82.43 l 212.20 82.43 l 215.84 88.73 l S 225.31 88.73 m 228.94 82.43 l 221.67 82.43 l 225.31 88.73 l S 168.14 88.73 m 171.78 82.43 l 164.50 82.43 l 168.14 88.73 l S 160.08 88.73 m 163.72 82.43 l 156.45 82.43 l 160.08 88.73 l S 230.52 88.73 m 234.16 82.43 l 226.89 82.43 l 230.52 88.73 l S 229.20 88.73 m 232.84 82.43 l 225.57 82.43 l 229.20 88.73 l S 235.27 88.73 m 238.91 82.43 l 231.64 82.43 l 235.27 88.73 l S 217.58 88.73 m 221.22 82.43 l 213.95 82.43 l 217.58 88.73 l S 181.45 88.73 m 185.09 82.43 l 177.81 82.43 l 181.45 88.73 l S 214.33 88.73 m 217.97 82.43 l 210.70 82.43 l 214.33 88.73 l S 236.83 88.73 m 240.47 82.43 l 233.19 82.43 l 236.83 88.73 l S 232.16 88.73 m 235.80 82.43 l 228.53 82.43 l 232.16 88.73 l S 203.03 88.73 m 206.67 82.43 l 199.39 82.43 l 203.03 88.73 l S 242.53 88.73 m 246.17 82.43 l 238.89 82.43 l 242.53 88.73 l S 216.51 88.73 m 220.15 82.43 l 212.88 82.43 l 216.51 88.73 l S 236.23 88.73 m 239.87 82.43 l 232.59 82.43 l 236.23 88.73 l S 206.20 88.73 m 209.84 82.43 l 202.57 82.43 l 206.20 88.73 l S 262.10 88.73 m 265.73 82.43 l 258.46 82.43 l 262.10 88.73 l S 202.05 88.73 m 205.68 82.43 l 198.41 82.43 l 202.05 88.73 l S 206.36 88.73 m 210.00 82.43 l 202.72 82.43 l 206.36 88.73 l S 191.55 88.73 m 195.19 82.43 l 187.91 82.43 l 191.55 88.73 l S 241.81 88.73 m 245.45 82.43 l 238.17 82.43 l 241.81 88.73 l S 228.38 88.73 m 232.02 82.43 l 224.75 82.43 l 228.38 88.73 l S 205.66 88.73 m 209.29 82.43 l 202.02 82.43 l 205.66 88.73 l S 221.83 88.73 m 225.46 82.43 l 218.19 82.43 l 221.83 88.73 l S 223.04 88.73 m 226.68 82.43 l 219.40 82.43 l 223.04 88.73 l S 177.31 88.73 m 180.94 82.43 l 173.67 82.43 l 177.31 88.73 l S 195.62 88.73 m 199.26 82.43 l 191.99 82.43 l 195.62 88.73 l S 198.05 88.73 m 201.68 82.43 l 194.41 82.43 l 198.05 88.73 l S 205.05 88.73 m 208.68 82.43 l 201.41 82.43 l 205.05 88.73 l S 197.69 88.73 m 201.33 82.43 l 194.05 82.43 l 197.69 88.73 l S 214.38 88.73 m 218.02 82.43 l 210.75 82.43 l 214.38 88.73 l S 217.95 88.73 m 221.59 82.43 l 214.32 82.43 l 217.95 88.73 l S 266.59 88.73 m 270.22 82.43 l 262.95 82.43 l 266.59 88.73 l S 214.72 88.73 m 218.35 82.43 l 211.08 82.43 l 214.72 88.73 l S 189.56 88.73 m 193.20 82.43 l 185.93 82.43 l 189.56 88.73 l S 197.62 88.73 m 201.25 82.43 l 193.98 82.43 l 197.62 88.73 l S 226.05 88.73 m 229.69 82.43 l 222.42 82.43 l 226.05 88.73 l S 193.21 88.73 m 196.84 82.43 l 189.57 82.43 l 193.21 88.73 l S 169.80 88.73 m 173.44 82.43 l 166.16 82.43 l 169.80 88.73 l S 207.01 88.73 m 210.64 82.43 l 203.37 82.43 l 207.01 88.73 l S 228.24 88.73 m 231.88 82.43 l 224.60 82.43 l 228.24 88.73 l S 183.23 88.73 m 186.87 82.43 l 179.60 82.43 l 183.23 88.73 l S 220.40 88.73 m 224.03 82.43 l 216.76 82.43 l 220.40 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.89 82.43 l 202.53 88.73 l S 226.16 88.73 m 229.79 82.43 l 222.52 82.43 l 226.16 88.73 l S 199.64 88.73 m 203.28 82.43 l 196.00 82.43 l 199.64 88.73 l S 191.83 88.73 m 195.47 82.43 l 188.19 82.43 l 191.83 88.73 l S 93.70 88.73 m 97.34 82.43 l 90.06 82.43 l 93.70 88.73 l S 204.61 88.73 m 208.24 82.43 l 200.97 82.43 l 204.61 88.73 l S 209.42 88.73 m 213.05 82.43 l 205.78 82.43 l 209.42 88.73 l S 236.14 88.73 m 239.78 82.43 l 232.50 82.43 l 236.14 88.73 l S 205.71 88.73 m 209.35 82.43 l 202.08 82.43 l 205.71 88.73 l S 261.53 88.73 m 265.16 82.43 l 257.89 82.43 l 261.53 88.73 l S 0.000 0.804 0.000 RG 234.68 88.73 m 238.32 82.43 l 231.04 82.43 l 234.68 88.73 l S 219.81 88.73 m 223.45 82.43 l 216.17 82.43 l 219.81 88.73 l S 202.17 88.73 m 205.80 82.43 l 198.53 82.43 l 202.17 88.73 l S 197.95 88.73 m 201.58 82.43 l 194.31 82.43 l 197.95 88.73 l S 179.89 88.73 m 183.53 82.43 l 176.26 82.43 l 179.89 88.73 l S 181.73 88.73 m 185.37 82.43 l 178.10 82.43 l 181.73 88.73 l S 216.52 88.73 m 220.16 82.43 l 212.89 82.43 l 216.52 88.73 l S 213.22 88.73 m 216.86 82.43 l 209.59 82.43 l 213.22 88.73 l S 204.17 88.73 m 207.81 82.43 l 200.54 82.43 l 204.17 88.73 l S 206.24 88.73 m 209.88 82.43 l 202.61 82.43 l 206.24 88.73 l S 276.18 112.23 m 279.82 105.93 l 272.55 105.93 l 276.18 112.23 l S 253.74 88.73 m 257.38 82.43 l 250.10 82.43 l 253.74 88.73 l S 272.55 102.54 m 276.19 96.24 l 268.92 96.24 l 272.55 102.54 l S 196.15 88.73 m 199.78 82.43 l 192.51 82.43 l 196.15 88.73 l S 200.55 88.73 m 204.18 82.43 l 196.91 82.43 l 200.55 88.73 l S 209.99 88.73 m 213.63 82.43 l 206.36 82.43 l 209.99 88.73 l S 171.37 88.73 m 175.00 82.43 l 167.73 82.43 l 171.37 88.73 l S 249.55 88.73 m 253.19 82.43 l 245.92 82.43 l 249.55 88.73 l S 210.94 88.73 m 214.57 82.43 l 207.30 82.43 l 210.94 88.73 l S 242.74 88.73 m 246.38 82.43 l 239.11 82.43 l 242.74 88.73 l S 229.28 88.73 m 232.92 82.43 l 225.64 82.43 l 229.28 88.73 l S 211.77 88.73 m 215.41 82.43 l 208.14 82.43 l 211.77 88.73 l S 124.97 134.35 m 128.60 128.05 l 121.33 128.05 l 124.97 134.35 l S 191.83 88.73 m 195.47 82.43 l 188.19 82.43 l 191.83 88.73 l S 165.40 88.73 m 169.04 82.43 l 161.77 82.43 l 165.40 88.73 l S 228.84 88.73 m 232.47 82.43 l 225.20 82.43 l 228.84 88.73 l S 197.17 88.73 m 200.81 82.43 l 193.54 82.43 l 197.17 88.73 l S 202.99 88.73 m 206.62 82.43 l 199.35 82.43 l 202.99 88.73 l S 226.55 88.73 m 230.18 82.43 l 222.91 82.43 l 226.55 88.73 l S 196.16 88.73 m 199.80 82.43 l 192.52 82.43 l 196.16 88.73 l S 201.58 88.73 m 205.22 82.43 l 197.94 82.43 l 201.58 88.73 l S 268.01 94.32 m 271.65 88.03 l 264.38 88.03 l 268.01 94.32 l S 199.08 88.73 m 202.72 82.43 l 195.44 82.43 l 199.08 88.73 l S 183.87 88.73 m 187.51 82.43 l 180.23 82.43 l 183.87 88.73 l S 251.46 88.73 m 255.10 82.43 l 247.83 82.43 l 251.46 88.73 l S 247.96 88.73 m 251.60 82.43 l 244.33 82.43 l 247.96 88.73 l S 184.93 88.73 m 188.57 82.43 l 181.29 82.43 l 184.93 88.73 l S 210.75 88.73 m 214.38 82.43 l 207.11 82.43 l 210.75 88.73 l S 148.06 89.10 m 151.70 82.80 l 144.42 82.80 l 148.06 89.10 l S 232.06 88.73 m 235.69 82.43 l 228.42 82.43 l 232.06 88.73 l S 232.67 88.73 m 236.31 82.43 l 229.04 82.43 l 232.67 88.73 l S 223.53 88.73 m 227.17 82.43 l 219.90 82.43 l 223.53 88.73 l S 249.78 88.73 m 253.41 82.43 l 246.14 82.43 l 249.78 88.73 l S 186.80 88.73 m 190.44 82.43 l 183.17 82.43 l 186.80 88.73 l S 219.56 88.73 m 223.20 82.43 l 215.93 82.43 l 219.56 88.73 l S 222.33 88.73 m 225.96 82.43 l 218.69 82.43 l 222.33 88.73 l S 178.20 88.73 m 181.83 82.43 l 174.56 82.43 l 178.20 88.73 l S 173.85 88.73 m 177.49 82.43 l 170.21 82.43 l 173.85 88.73 l S 224.19 88.73 m 227.83 82.43 l 220.55 82.43 l 224.19 88.73 l S 259.92 89.18 m 263.55 82.88 l 256.28 82.88 l 259.92 89.18 l S 156.82 88.73 m 160.46 82.43 l 153.19 82.43 l 156.82 88.73 l S 193.56 88.73 m 197.19 82.43 l 189.92 82.43 l 193.56 88.73 l S 230.18 88.73 m 233.81 82.43 l 226.54 82.43 l 230.18 88.73 l S 189.66 88.73 m 193.29 82.43 l 186.02 82.43 l 189.66 88.73 l S 132.57 109.51 m 136.21 103.21 l 128.93 103.21 l 132.57 109.51 l S 279.05 121.15 m 282.68 114.85 l 275.41 114.85 l 279.05 121.15 l S 215.03 88.73 m 218.66 82.43 l 211.39 82.43 l 215.03 88.73 l S 203.46 88.73 m 207.10 82.43 l 199.83 82.43 l 203.46 88.73 l S 171.06 88.73 m 174.70 82.43 l 167.43 82.43 l 171.06 88.73 l S 246.69 88.73 m 250.33 82.43 l 243.06 82.43 l 246.69 88.73 l S 175.04 88.73 m 178.68 82.43 l 171.40 82.43 l 175.04 88.73 l S 261.53 89.38 m 265.17 83.08 l 257.90 83.08 l 261.53 89.38 l S 171.06 88.73 m 174.70 82.43 l 167.43 82.43 l 171.06 88.73 l S 223.64 88.73 m 227.28 82.43 l 220.00 82.43 l 223.64 88.73 l S 188.52 88.73 m 192.16 82.43 l 184.88 82.43 l 188.52 88.73 l S 122.05 148.98 m 125.69 142.68 l 118.42 142.68 l 122.05 148.98 l S 236.82 88.73 m 240.45 82.43 l 233.18 82.43 l 236.82 88.73 l S 294.56 186.31 m 298.20 180.01 l 290.92 180.01 l 294.56 186.31 l S 187.26 88.73 m 190.90 82.43 l 183.62 82.43 l 187.26 88.73 l S 214.44 88.73 m 218.08 82.43 l 210.81 82.43 l 214.44 88.73 l S 194.36 88.73 m 198.00 82.43 l 190.73 82.43 l 194.36 88.73 l S 225.97 88.73 m 229.61 82.43 l 222.33 82.43 l 225.97 88.73 l S 232.16 88.73 m 235.79 82.43 l 228.52 82.43 l 232.16 88.73 l S 154.96 88.73 m 158.59 82.43 l 151.32 82.43 l 154.96 88.73 l S 182.10 88.73 m 185.73 82.43 l 178.46 82.43 l 182.10 88.73 l S 208.58 88.73 m 212.22 82.43 l 204.94 82.43 l 208.58 88.73 l S 169.17 88.73 m 172.81 82.43 l 165.53 82.43 l 169.17 88.73 l S 153.82 88.73 m 157.46 82.43 l 150.19 82.43 l 153.82 88.73 l S 161.02 88.73 m 164.65 82.43 l 157.38 82.43 l 161.02 88.73 l S 182.98 88.73 m 186.62 82.43 l 179.34 82.43 l 182.98 88.73 l S 144.01 90.45 m 147.65 84.16 l 140.38 84.16 l 144.01 90.45 l S 243.25 88.73 m 246.88 82.43 l 239.61 82.43 l 243.25 88.73 l S 177.72 88.73 m 181.35 82.43 l 174.08 82.43 l 177.72 88.73 l S 140.68 93.32 m 144.31 87.02 l 137.04 87.02 l 140.68 93.32 l S 214.11 88.73 m 217.75 82.43 l 210.48 82.43 l 214.11 88.73 l S 205.05 88.73 m 208.69 82.43 l 201.42 82.43 l 205.05 88.73 l S 203.65 88.73 m 207.29 82.43 l 200.01 82.43 l 203.65 88.73 l S 188.30 88.73 m 191.94 82.43 l 184.66 82.43 l 188.30 88.73 l S 167.87 88.73 m 171.50 82.43 l 164.23 82.43 l 167.87 88.73 l S 227.61 88.73 m 231.24 82.43 l 223.97 82.43 l 227.61 88.73 l S 205.95 88.73 m 209.58 82.43 l 202.31 82.43 l 205.95 88.73 l S 191.39 88.73 m 195.03 82.43 l 187.75 82.43 l 191.39 88.73 l S 190.66 88.73 m 194.29 82.43 l 187.02 82.43 l 190.66 88.73 l S 189.15 88.73 m 192.79 82.43 l 185.51 82.43 l 189.15 88.73 l S 194.88 88.73 m 198.52 82.43 l 191.25 82.43 l 194.88 88.73 l S 101.06 232.28 m 104.70 225.99 l 97.43 225.99 l 101.06 232.28 l S 216.26 88.73 m 219.90 82.43 l 212.62 82.43 l 216.26 88.73 l S 184.96 88.73 m 188.60 82.43 l 181.33 82.43 l 184.96 88.73 l S 206.09 88.73 m 209.72 82.43 l 202.45 82.43 l 206.09 88.73 l S 234.98 88.73 m 238.62 82.43 l 231.35 82.43 l 234.98 88.73 l S 241.06 88.73 m 244.70 82.43 l 237.43 82.43 l 241.06 88.73 l S 155.20 88.73 m 158.84 82.43 l 151.57 82.43 l 155.20 88.73 l S 204.14 88.73 m 207.78 82.43 l 200.50 82.43 l 204.14 88.73 l S 155.82 88.73 m 159.46 82.43 l 152.18 82.43 l 155.82 88.73 l S 264.44 90.88 m 268.08 84.58 l 260.81 84.58 l 264.44 90.88 l S 161.79 88.73 m 165.42 82.43 l 158.15 82.43 l 161.79 88.73 l S 178.67 88.73 m 182.31 82.43 l 175.03 82.43 l 178.67 88.73 l S 313.02 273.62 m 316.66 267.32 l 309.39 267.32 l 313.02 273.62 l S 184.96 88.73 m 188.60 82.43 l 181.33 82.43 l 184.96 88.73 l S 251.32 88.73 m 254.95 82.43 l 247.68 82.43 l 251.32 88.73 l S 197.18 88.73 m 200.81 82.43 l 193.54 82.43 l 197.18 88.73 l S 160.34 88.73 m 163.97 82.43 l 156.70 82.43 l 160.34 88.73 l S 246.89 88.73 m 250.53 82.43 l 243.25 82.43 l 246.89 88.73 l S 184.58 88.73 m 188.21 82.43 l 180.94 82.43 l 184.58 88.73 l S 278.07 117.70 m 281.71 111.40 l 274.43 111.40 l 278.07 117.70 l S 174.50 88.73 m 178.13 82.43 l 170.86 82.43 l 174.50 88.73 l S 157.44 88.73 m 161.07 82.43 l 153.80 82.43 l 157.44 88.73 l S 207.84 88.73 m 211.48 82.43 l 204.20 82.43 l 207.84 88.73 l S 196.80 88.73 m 200.43 82.43 l 193.16 82.43 l 196.80 88.73 l S 183.62 88.73 m 187.26 82.43 l 179.99 82.43 l 183.62 88.73 l S 153.65 88.73 m 157.29 82.43 l 150.02 82.43 l 153.65 88.73 l S 174.45 88.73 m 178.08 82.43 l 170.81 82.43 l 174.45 88.73 l S 172.73 88.73 m 176.37 82.43 l 169.10 82.43 l 172.73 88.73 l S 174.71 88.73 m 178.35 82.43 l 171.08 82.43 l 174.71 88.73 l S 257.04 88.77 m 260.68 82.47 l 253.41 82.47 l 257.04 88.77 l S 117.52 166.82 m 121.16 160.52 l 113.89 160.52 l 117.52 166.82 l S 139.19 95.16 m 142.82 88.86 l 135.55 88.86 l 139.19 95.16 l S 167.21 88.73 m 170.85 82.43 l 163.57 82.43 l 167.21 88.73 l S 212.47 88.73 m 216.11 82.43 l 208.83 82.43 l 212.47 88.73 l S 237.78 88.73 m 241.42 82.43 l 234.14 82.43 l 237.78 88.73 l S 212.56 88.73 m 216.20 82.43 l 208.92 82.43 l 212.56 88.73 l S 216.54 88.73 m 220.17 82.43 l 212.90 82.43 l 216.54 88.73 l S 199.48 88.73 m 203.11 82.43 l 195.84 82.43 l 199.48 88.73 l S 190.66 88.73 m 194.30 82.43 l 187.02 82.43 l 190.66 88.73 l S 139.43 94.79 m 143.07 88.49 l 135.79 88.49 l 139.43 94.79 l S 185.87 88.73 m 189.51 82.43 l 182.24 82.43 l 185.87 88.73 l S 232.28 88.73 m 235.92 82.43 l 228.65 82.43 l 232.28 88.73 l S 150.34 88.77 m 153.97 82.47 l 146.70 82.47 l 150.34 88.77 l S 231.76 88.73 m 235.40 82.43 l 228.12 82.43 l 231.76 88.73 l S 279.40 122.15 m 283.04 115.85 l 275.76 115.85 l 279.40 122.15 l S 275.67 110.74 m 279.31 104.44 l 272.04 104.44 l 275.67 110.74 l S 159.81 88.73 m 163.45 82.43 l 156.18 82.43 l 159.81 88.73 l S 215.01 88.73 m 218.64 82.43 l 211.37 82.43 l 215.01 88.73 l S 202.16 88.73 m 205.80 82.43 l 198.52 82.43 l 202.16 88.73 l S 231.15 88.73 m 234.79 82.43 l 227.51 82.43 l 231.15 88.73 l S 206.50 88.73 m 210.13 82.43 l 202.86 82.43 l 206.50 88.73 l S 193.62 88.73 m 197.26 82.43 l 189.99 82.43 l 193.62 88.73 l S 175.95 88.73 m 179.58 82.43 l 172.31 82.43 l 175.95 88.73 l S 174.35 88.73 m 177.99 82.43 l 170.71 82.43 l 174.35 88.73 l S 203.99 88.73 m 207.63 82.43 l 200.36 82.43 l 203.99 88.73 l S 168.17 88.73 m 171.80 82.43 l 164.53 82.43 l 168.17 88.73 l S 241.86 88.73 m 245.49 82.43 l 238.22 82.43 l 241.86 88.73 l S 142.17 91.86 m 145.81 85.56 l 138.54 85.56 l 142.17 91.86 l S 171.13 88.73 m 174.77 82.43 l 167.50 82.43 l 171.13 88.73 l S 253.51 88.73 m 257.14 82.43 l 249.87 82.43 l 253.51 88.73 l S 165.38 88.73 m 169.01 82.43 l 161.74 82.43 l 165.38 88.73 l S 237.12 88.73 m 240.76 82.43 l 233.49 82.43 l 237.12 88.73 l S 136.82 98.55 m 140.46 92.26 l 133.19 92.26 l 136.82 98.55 l S 179.13 88.73 m 182.76 82.43 l 175.49 82.43 l 179.13 88.73 l S 216.84 88.73 m 220.47 82.43 l 213.20 82.43 l 216.84 88.73 l S 186.98 88.73 m 190.61 82.43 l 183.34 82.43 l 186.98 88.73 l S 215.37 88.73 m 219.00 82.43 l 211.73 82.43 l 215.37 88.73 l S 146.87 89.34 m 150.50 83.04 l 143.23 83.04 l 146.87 89.34 l S 198.88 88.73 m 202.51 82.43 l 195.24 82.43 l 198.88 88.73 l S 221.99 88.73 m 225.62 82.43 l 218.35 82.43 l 221.99 88.73 l S 195.71 88.73 m 199.35 82.43 l 192.08 82.43 l 195.71 88.73 l S 172.87 88.73 m 176.50 82.43 l 169.23 82.43 l 172.87 88.73 l S 265.66 91.86 m 269.30 85.56 l 262.02 85.56 l 265.66 91.86 l S 213.60 88.73 m 217.23 82.43 l 209.96 82.43 l 213.60 88.73 l S 201.17 88.73 m 204.81 82.43 l 197.54 82.43 l 201.17 88.73 l S 162.87 88.73 m 166.50 82.43 l 159.23 82.43 l 162.87 88.73 l S 135.47 101.98 m 139.11 95.68 l 131.84 95.68 l 135.47 101.98 l S 227.01 88.73 m 230.65 82.43 l 223.38 82.43 l 227.01 88.73 l S 138.28 96.41 m 141.92 90.11 l 134.65 90.11 l 138.28 96.41 l S 213.90 88.73 m 217.53 82.43 l 210.26 82.43 l 213.90 88.73 l S 185.76 88.73 m 189.39 82.43 l 182.12 82.43 l 185.76 88.73 l S 151.21 88.77 m 154.84 82.47 l 147.57 82.47 l 151.21 88.77 l S 157.65 88.73 m 161.29 82.43 l 154.02 82.43 l 157.65 88.73 l S 188.14 88.73 m 191.78 82.43 l 184.50 82.43 l 188.14 88.73 l S 187.35 88.73 m 190.99 82.43 l 183.71 82.43 l 187.35 88.73 l S 262.36 89.71 m 266.00 83.41 l 258.73 83.41 l 262.36 89.71 l S 116.26 170.95 m 119.89 164.65 l 112.62 164.65 l 116.26 170.95 l S 208.84 88.73 m 212.48 82.43 l 205.21 82.43 l 208.84 88.73 l S 137.72 96.95 m 141.36 90.65 l 134.09 90.65 l 137.72 96.95 l S 183.78 88.73 m 187.42 82.43 l 180.15 82.43 l 183.78 88.73 l S 198.29 88.73 m 201.92 82.43 l 194.65 82.43 l 198.29 88.73 l S 141.64 92.08 m 145.28 85.78 l 138.01 85.78 l 141.64 92.08 l S 146.37 89.38 m 150.00 83.08 l 142.73 83.08 l 146.37 89.38 l S 164.02 88.73 m 167.66 82.43 l 160.38 82.43 l 164.02 88.73 l S 233.00 88.73 m 236.64 82.43 l 229.36 82.43 l 233.00 88.73 l S 233.96 88.73 m 237.59 82.43 l 230.32 82.43 l 233.96 88.73 l S 127.71 124.04 m 131.35 117.74 l 124.07 117.74 l 127.71 124.04 l S 160.52 88.73 m 164.15 82.43 l 156.88 82.43 l 160.52 88.73 l S 164.21 88.73 m 167.84 82.43 l 160.57 82.43 l 164.21 88.73 l S 150.77 88.77 m 154.41 82.47 l 147.13 82.47 l 150.77 88.77 l S 219.96 88.73 m 223.60 82.43 l 216.32 82.43 l 219.96 88.73 l S 203.85 88.73 m 207.48 82.43 l 200.21 82.43 l 203.85 88.73 l S 192.20 88.73 m 195.84 82.43 l 188.56 82.43 l 192.20 88.73 l S 190.62 88.73 m 194.25 82.43 l 186.98 82.43 l 190.62 88.73 l S 192.19 88.73 m 195.82 82.43 l 188.55 82.43 l 192.19 88.73 l S 184.57 88.73 m 188.21 82.43 l 180.94 82.43 l 184.57 88.73 l S 119.69 158.71 m 123.33 152.41 l 116.05 152.41 l 119.69 158.71 l S 186.99 88.73 m 190.63 82.43 l 183.36 82.43 l 186.99 88.73 l S 128.27 122.52 m 131.91 116.22 l 124.64 116.22 l 128.27 122.52 l S 151.62 88.77 m 155.26 82.47 l 147.98 82.47 l 151.62 88.77 l S 156.41 88.73 m 160.05 82.43 l 152.77 82.43 l 156.41 88.73 l S 155.34 88.73 m 158.97 82.43 l 151.70 82.43 l 155.34 88.73 l S 191.57 88.73 m 195.21 82.43 l 187.94 82.43 l 191.57 88.73 l S 234.05 88.73 m 237.68 82.43 l 230.41 82.43 l 234.05 88.73 l S 174.54 88.73 m 178.18 82.43 l 170.90 82.43 l 174.54 88.73 l S 219.12 88.73 m 222.76 82.43 l 215.49 82.43 l 219.12 88.73 l S 177.47 88.73 m 181.10 82.43 l 173.83 82.43 l 177.47 88.73 l S 190.45 88.73 m 194.09 82.43 l 186.82 82.43 l 190.45 88.73 l S 166.64 88.73 m 170.28 82.43 l 163.00 82.43 l 166.64 88.73 l S 267.30 93.64 m 270.94 87.34 l 263.67 87.34 l 267.30 93.64 l S 220.81 88.73 m 224.45 82.43 l 217.18 82.43 l 220.81 88.73 l S 197.18 88.73 m 200.81 82.43 l 193.54 82.43 l 197.18 88.73 l S 170.49 88.73 m 174.12 82.43 l 166.85 82.43 l 170.49 88.73 l S 209.00 88.73 m 212.64 82.43 l 205.36 82.43 l 209.00 88.73 l S 142.79 91.13 m 146.42 84.83 l 139.15 84.83 l 142.79 91.13 l S 194.15 88.73 m 197.78 82.43 l 190.51 82.43 l 194.15 88.73 l S 198.55 88.73 m 202.18 82.43 l 194.91 82.43 l 198.55 88.73 l S 214.47 88.73 m 218.11 82.43 l 210.83 82.43 l 214.47 88.73 l S 179.72 88.73 m 183.36 82.43 l 176.08 82.43 l 179.72 88.73 l S 174.00 88.73 m 177.63 82.43 l 170.36 82.43 l 174.00 88.73 l S 147.37 89.30 m 151.01 83.00 l 143.74 83.00 l 147.37 89.30 l S 175.29 88.73 m 178.92 82.43 l 171.65 82.43 l 175.29 88.73 l S 146.62 89.38 m 150.26 83.08 l 142.98 83.08 l 146.62 89.38 l S 232.67 88.73 m 236.31 82.43 l 229.04 82.43 l 232.67 88.73 l S 143.61 90.66 m 147.24 84.37 l 139.97 84.37 l 143.61 90.66 l S 228.64 88.73 m 232.27 82.43 l 225.00 82.43 l 228.64 88.73 l S 136.22 100.02 m 139.86 93.72 l 132.58 93.72 l 136.22 100.02 l S 185.40 88.73 m 189.04 82.43 l 181.77 82.43 l 185.40 88.73 l S 211.14 88.73 m 214.77 82.43 l 207.50 82.43 l 211.14 88.73 l S 161.32 88.73 m 164.96 82.43 l 157.69 82.43 l 161.32 88.73 l S 211.16 88.73 m 214.80 82.43 l 207.53 82.43 l 211.16 88.73 l S 146.08 89.42 m 149.71 83.12 l 142.44 83.12 l 146.08 89.42 l S 198.95 88.73 m 202.59 82.43 l 195.32 82.43 l 198.95 88.73 l S 153.26 88.73 m 156.90 82.43 l 149.62 82.43 l 153.26 88.73 l S 177.53 88.73 m 181.16 82.43 l 173.89 82.43 l 177.53 88.73 l S 179.35 88.73 m 182.99 82.43 l 175.71 82.43 l 179.35 88.73 l S 159.50 88.73 m 163.14 82.43 l 155.86 82.43 l 159.50 88.73 l S 232.26 88.73 m 235.89 82.43 l 228.62 82.43 l 232.26 88.73 l S 124.20 138.43 m 127.84 132.13 l 120.56 132.13 l 124.20 138.43 l S 213.91 88.73 m 217.54 82.43 l 210.27 82.43 l 213.91 88.73 l S 118.44 163.58 m 122.07 157.28 l 114.80 157.28 l 118.44 163.58 l S 201.08 88.73 m 204.72 82.43 l 197.44 82.43 l 201.08 88.73 l S 144.59 90.20 m 148.23 83.91 l 140.96 83.91 l 144.59 90.20 l S 185.60 88.73 m 189.24 82.43 l 181.96 82.43 l 185.60 88.73 l S 167.43 88.73 m 171.06 82.43 l 163.79 82.43 l 167.43 88.73 l S 209.51 88.73 m 213.15 82.43 l 205.88 82.43 l 209.51 88.73 l S 215.23 88.73 m 218.87 82.43 l 211.60 82.43 l 215.23 88.73 l S 127.07 126.95 m 130.70 120.65 l 123.43 120.65 l 127.07 126.95 l S 156.92 88.73 m 160.56 82.43 l 153.29 82.43 l 156.92 88.73 l S 195.54 88.73 m 199.17 82.43 l 191.90 82.43 l 195.54 88.73 l S 216.78 88.73 m 220.42 82.43 l 213.15 82.43 l 216.78 88.73 l S 200.45 88.73 m 204.09 82.43 l 196.82 82.43 l 200.45 88.73 l S 144.87 90.04 m 148.51 83.74 l 141.24 83.74 l 144.87 90.04 l S 113.52 185.86 m 117.15 179.56 l 109.88 179.56 l 113.52 185.86 l S 187.95 88.73 m 191.59 82.43 l 184.32 82.43 l 187.95 88.73 l S 237.97 88.73 m 241.61 82.43 l 234.34 82.43 l 237.97 88.73 l S 193.81 88.73 m 197.44 82.43 l 190.17 82.43 l 193.81 88.73 l S 231.89 88.73 m 235.53 82.43 l 228.26 82.43 l 231.89 88.73 l S 232.40 88.73 m 236.04 82.43 l 228.77 82.43 l 232.40 88.73 l S 180.22 88.73 m 183.85 82.43 l 176.58 82.43 l 180.22 88.73 l S 200.22 88.73 m 203.86 82.43 l 196.58 82.43 l 200.22 88.73 l S 219.62 88.73 m 223.25 82.43 l 215.98 82.43 l 219.62 88.73 l S 200.78 88.73 m 204.42 82.43 l 197.14 82.43 l 200.78 88.73 l S 235.96 88.73 m 239.60 82.43 l 232.33 82.43 l 235.96 88.73 l S 147.58 89.22 m 151.22 82.92 l 143.95 82.92 l 147.58 89.22 l S 140.93 92.87 m 144.57 86.57 l 137.29 86.57 l 140.93 92.87 l S 208.95 88.73 m 212.58 82.43 l 205.31 82.43 l 208.95 88.73 l S 181.83 88.73 m 185.47 82.43 l 178.19 82.43 l 181.83 88.73 l S 228.23 88.73 m 231.87 82.43 l 224.60 82.43 l 228.23 88.73 l S 203.83 88.73 m 207.47 82.43 l 200.20 82.43 l 203.83 88.73 l S 197.48 88.73 m 201.11 82.43 l 193.84 82.43 l 197.48 88.73 l S 180.92 88.73 m 184.55 82.43 l 177.28 82.43 l 180.92 88.73 l S 216.04 88.73 m 219.67 82.43 l 212.40 82.43 l 216.04 88.73 l S 180.50 88.73 m 184.13 82.43 l 176.86 82.43 l 180.50 88.73 l S 222.88 88.73 m 226.51 82.43 l 219.24 82.43 l 222.88 88.73 l S 208.39 88.73 m 212.02 82.43 l 204.75 82.43 l 208.39 88.73 l S 135.20 102.60 m 138.84 96.30 l 131.56 96.30 l 135.20 102.60 l S 147.16 89.30 m 150.80 83.00 l 143.52 83.00 l 147.16 89.30 l S 204.29 88.73 m 207.92 82.43 l 200.65 82.43 l 204.29 88.73 l S 158.41 88.73 m 162.05 82.43 l 154.77 82.43 l 158.41 88.73 l S 129.92 117.29 m 133.55 110.99 l 126.28 110.99 l 129.92 117.29 l S 216.48 88.73 m 220.11 82.43 l 212.84 82.43 l 216.48 88.73 l S 140.10 94.00 m 143.74 87.70 l 136.46 87.70 l 140.10 94.00 l S 170.42 88.73 m 174.06 82.43 l 166.78 82.43 l 170.42 88.73 l S 157.41 88.73 m 161.05 82.43 l 153.77 82.43 l 157.41 88.73 l S 165.22 88.73 m 168.86 82.43 l 161.59 82.43 l 165.22 88.73 l S 201.41 88.73 m 205.05 82.43 l 197.78 82.43 l 201.41 88.73 l S 235.29 88.73 m 238.93 82.43 l 231.66 82.43 l 235.29 88.73 l S 167.71 88.73 m 171.34 82.43 l 164.07 82.43 l 167.71 88.73 l S 174.10 88.73 m 177.74 82.43 l 170.46 82.43 l 174.10 88.73 l S 185.95 88.73 m 189.58 82.43 l 182.31 82.43 l 185.95 88.73 l S 128.64 121.51 m 132.27 115.21 l 125.00 115.21 l 128.64 121.51 l S 157.20 88.73 m 160.84 82.43 l 153.56 82.43 l 157.20 88.73 l S 202.25 88.73 m 205.88 82.43 l 198.61 82.43 l 202.25 88.73 l S 207.88 88.73 m 211.52 82.43 l 204.24 82.43 l 207.88 88.73 l S 224.17 88.73 m 227.81 82.43 l 220.54 82.43 l 224.17 88.73 l S 203.76 88.73 m 207.40 82.43 l 200.13 82.43 l 203.76 88.73 l S 243.25 88.73 m 246.88 82.43 l 239.61 82.43 l 243.25 88.73 l S 142.12 91.86 m 145.75 85.56 l 138.48 85.56 l 142.12 91.86 l S 217.47 88.73 m 221.10 82.43 l 213.83 82.43 l 217.47 88.73 l S 191.67 88.73 m 195.30 82.43 l 188.03 82.43 l 191.67 88.73 l S 134.08 105.17 m 137.72 98.87 l 130.45 98.87 l 134.08 105.17 l S 223.15 88.73 m 226.78 82.43 l 219.51 82.43 l 223.15 88.73 l S 132.97 108.18 m 136.60 101.89 l 129.33 101.89 l 132.97 108.18 l S 241.41 88.73 m 245.05 82.43 l 237.77 82.43 l 241.41 88.73 l S 212.02 88.73 m 215.66 82.43 l 208.39 82.43 l 212.02 88.73 l S 157.23 88.73 m 160.86 82.43 l 153.59 82.43 l 157.23 88.73 l S 122.87 144.07 m 126.50 137.77 l 119.23 137.77 l 122.87 144.07 l S 135.89 100.77 m 139.53 94.47 l 132.25 94.47 l 135.89 100.77 l S 210.32 88.73 m 213.96 82.43 l 206.68 82.43 l 210.32 88.73 l S 146.16 89.42 m 149.79 83.12 l 142.52 83.12 l 146.16 89.42 l S 218.26 88.73 m 221.90 82.43 l 214.63 82.43 l 218.26 88.73 l S 170.78 88.73 m 174.41 82.43 l 167.14 82.43 l 170.78 88.73 l S 212.29 88.73 m 215.93 82.43 l 208.65 82.43 l 212.29 88.73 l S 136.39 99.49 m 140.03 93.19 l 132.76 93.19 l 136.39 99.49 l S 227.75 88.73 m 231.38 82.43 l 224.11 82.43 l 227.75 88.73 l S 230.57 88.73 m 234.20 82.43 l 226.93 82.43 l 230.57 88.73 l S 112.51 189.64 m 116.14 183.34 l 108.87 183.34 l 112.51 189.64 l S 177.99 88.73 m 181.63 82.43 l 174.36 82.43 l 177.99 88.73 l S 164.03 88.73 m 167.66 82.43 l 160.39 82.43 l 164.03 88.73 l S 179.56 88.73 m 183.19 82.43 l 175.92 82.43 l 179.56 88.73 l S 178.54 88.73 m 182.18 82.43 l 174.90 82.43 l 178.54 88.73 l S 172.97 88.73 m 176.61 82.43 l 169.34 82.43 l 172.97 88.73 l S 103.26 224.49 m 106.89 218.19 l 99.62 218.19 l 103.26 224.49 l S 138.25 96.46 m 141.88 90.16 l 134.61 90.16 l 138.25 96.46 l S 165.69 88.73 m 169.32 82.43 l 162.05 82.43 l 165.69 88.73 l S 187.24 88.73 m 190.88 82.43 l 183.61 82.43 l 187.24 88.73 l S 187.56 88.73 m 191.20 82.43 l 183.92 82.43 l 187.56 88.73 l S 161.95 88.73 m 165.59 82.43 l 158.31 82.43 l 161.95 88.73 l S 133.48 106.65 m 137.12 100.35 l 129.84 100.35 l 133.48 106.65 l S 158.92 88.73 m 162.55 82.43 l 155.28 82.43 l 158.92 88.73 l S 138.54 96.12 m 142.17 89.82 l 134.90 89.82 l 138.54 96.12 l S 189.56 88.73 m 193.20 82.43 l 185.92 82.43 l 189.56 88.73 l S 219.26 88.73 m 222.90 82.43 l 215.62 82.43 l 219.26 88.73 l S 207.04 88.73 m 210.68 82.43 l 203.40 82.43 l 207.04 88.73 l S 196.28 88.73 m 199.91 82.43 l 192.64 82.43 l 196.28 88.73 l S 145.40 89.71 m 149.04 83.41 l 141.77 83.41 l 145.40 89.71 l S 186.26 88.73 m 189.89 82.43 l 182.62 82.43 l 186.26 88.73 l S 128.11 122.99 m 131.74 116.69 l 124.47 116.69 l 128.11 122.99 l S 102.62 225.69 m 106.26 219.39 l 98.98 219.39 l 102.62 225.69 l S 251.12 88.73 m 254.76 82.43 l 247.49 82.43 l 251.12 88.73 l S 159.31 88.73 m 162.94 82.43 l 155.67 82.43 l 159.31 88.73 l S 172.31 88.73 m 175.95 82.43 l 168.67 82.43 l 172.31 88.73 l S 190.49 88.73 m 194.13 82.43 l 186.86 82.43 l 190.49 88.73 l S 250.41 88.73 m 254.05 82.43 l 246.78 82.43 l 250.41 88.73 l S 241.50 88.73 m 245.14 82.43 l 237.87 82.43 l 241.50 88.73 l S 209.49 88.73 m 213.13 82.43 l 205.85 82.43 l 209.49 88.73 l S 187.17 88.73 m 190.81 82.43 l 183.53 82.43 l 187.17 88.73 l S 192.86 88.73 m 196.49 82.43 l 189.22 82.43 l 192.86 88.73 l S 235.24 88.73 m 238.88 82.43 l 231.61 82.43 l 235.24 88.73 l S 217.38 88.73 m 221.02 82.43 l 213.75 82.43 l 217.38 88.73 l S 124.26 137.74 m 127.90 131.45 l 120.63 131.45 l 124.26 137.74 l S 187.95 88.73 m 191.58 82.43 l 184.31 82.43 l 187.95 88.73 l S 138.32 96.41 m 141.96 90.11 l 134.68 90.11 l 138.32 96.41 l S 162.88 88.73 m 166.51 82.43 l 159.24 82.43 l 162.88 88.73 l S 232.84 88.73 m 236.47 82.43 l 229.20 82.43 l 232.84 88.73 l S 178.99 88.73 m 182.63 82.43 l 175.36 82.43 l 178.99 88.73 l S 156.71 88.73 m 160.35 82.43 l 153.08 82.43 l 156.71 88.73 l S 162.06 88.73 m 165.70 82.43 l 158.43 82.43 l 162.06 88.73 l S 155.22 88.73 m 158.85 82.43 l 151.58 82.43 l 155.22 88.73 l S 180.35 88.73 m 183.99 82.43 l 176.71 82.43 l 180.35 88.73 l S 218.61 88.73 m 222.25 82.43 l 214.97 82.43 l 218.61 88.73 l S 172.36 88.73 m 175.99 82.43 l 168.72 82.43 l 172.36 88.73 l S 154.84 88.73 m 158.48 82.43 l 151.20 82.43 l 154.84 88.73 l S 169.57 88.73 m 173.20 82.43 l 165.93 82.43 l 169.57 88.73 l S 193.01 88.73 m 196.65 82.43 l 189.38 82.43 l 193.01 88.73 l S 220.39 88.73 m 224.03 82.43 l 216.76 82.43 l 220.39 88.73 l S 179.62 88.73 m 183.26 82.43 l 175.98 82.43 l 179.62 88.73 l S 212.31 88.73 m 215.94 82.43 l 208.67 82.43 l 212.31 88.73 l S 248.13 88.73 m 251.77 82.43 l 244.49 82.43 l 248.13 88.73 l S 121.05 152.55 m 124.68 146.25 l 117.41 146.25 l 121.05 152.55 l S 101.89 226.92 m 105.52 220.62 l 98.25 220.62 l 101.89 226.92 l S 316.84 301.45 m 320.47 295.15 l 313.20 295.15 l 316.84 301.45 l S 213.49 88.73 m 217.12 82.43 l 209.85 82.43 l 213.49 88.73 l S 214.59 88.73 m 218.23 82.43 l 210.96 82.43 l 214.59 88.73 l S 252.92 88.73 m 256.55 82.43 l 249.28 82.43 l 252.92 88.73 l S 235.96 88.73 m 239.59 82.43 l 232.32 82.43 l 235.96 88.73 l S 235.14 88.73 m 238.77 82.43 l 231.50 82.43 l 235.14 88.73 l S 215.33 88.73 m 218.97 82.43 l 211.69 82.43 l 215.33 88.73 l S 152.40 88.77 m 156.03 82.47 l 148.76 82.47 l 152.40 88.77 l S 217.90 88.73 m 221.53 82.43 l 214.26 82.43 l 217.90 88.73 l S 171.75 88.73 m 175.38 82.43 l 168.11 82.43 l 171.75 88.73 l S 221.61 88.73 m 225.24 82.43 l 217.97 82.43 l 221.61 88.73 l S 160.99 88.73 m 164.62 82.43 l 157.35 82.43 l 160.99 88.73 l S 274.72 107.80 m 278.35 101.50 l 271.08 101.50 l 274.72 107.80 l S 129.48 118.20 m 133.12 111.90 l 125.85 111.90 l 129.48 118.20 l S 191.89 88.73 m 195.53 82.43 l 188.25 82.43 l 191.89 88.73 l S 201.21 88.73 m 204.84 82.43 l 197.57 82.43 l 201.21 88.73 l S 79.45 338.24 m 83.09 331.94 l 75.82 331.94 l 79.45 338.24 l S 155.59 88.73 m 159.23 82.43 l 151.95 82.43 l 155.59 88.73 l S 203.19 88.73 m 206.83 82.43 l 199.56 82.43 l 203.19 88.73 l S 229.09 88.73 m 232.73 82.43 l 225.46 82.43 l 229.09 88.73 l S 143.56 90.66 m 147.20 84.37 l 139.93 84.37 l 143.56 90.66 l S 143.24 90.88 m 146.88 84.58 l 139.61 84.58 l 143.24 90.88 l S 250.31 88.73 m 253.95 82.43 l 246.68 82.43 l 250.31 88.73 l S 286.73 152.55 m 290.37 146.25 l 283.10 146.25 l 286.73 152.55 l S 159.47 88.73 m 163.10 82.43 l 155.83 82.43 l 159.47 88.73 l S 224.37 88.73 m 228.00 82.43 l 220.73 82.43 l 224.37 88.73 l S 229.31 88.73 m 232.95 82.43 l 225.67 82.43 l 229.31 88.73 l S 225.86 88.73 m 229.50 82.43 l 222.22 82.43 l 225.86 88.73 l S 224.62 88.73 m 228.26 82.43 l 220.99 82.43 l 224.62 88.73 l S 161.18 88.73 m 164.82 82.43 l 157.55 82.43 l 161.18 88.73 l S 201.03 88.73 m 204.66 82.43 l 197.39 82.43 l 201.03 88.73 l S 213.05 88.73 m 216.69 82.43 l 209.42 82.43 l 213.05 88.73 l S 200.64 88.73 m 204.28 82.43 l 197.01 82.43 l 200.64 88.73 l S 198.70 88.73 m 202.34 82.43 l 195.06 82.43 l 198.70 88.73 l S 210.00 88.73 m 213.64 82.43 l 206.37 82.43 l 210.00 88.73 l S 240.77 88.73 m 244.40 82.43 l 237.13 82.43 l 240.77 88.73 l S 195.81 88.73 m 199.45 82.43 l 192.17 82.43 l 195.81 88.73 l S 230.35 88.73 m 233.98 82.43 l 226.71 82.43 l 230.35 88.73 l S 216.57 88.73 m 220.21 82.43 l 212.94 82.43 l 216.57 88.73 l S 228.14 88.73 m 231.78 82.43 l 224.50 82.43 l 228.14 88.73 l S 257.75 88.89 m 261.39 82.59 l 254.12 82.59 l 257.75 88.89 l S 268.42 94.83 m 272.06 88.54 l 264.78 88.54 l 268.42 94.83 l S 256.94 88.77 m 260.58 82.47 l 253.30 82.47 l 256.94 88.77 l S 174.41 88.73 m 178.05 82.43 l 170.77 82.43 l 174.41 88.73 l S 107.64 211.49 m 111.27 205.19 l 104.00 205.19 l 107.64 211.49 l S 168.78 88.73 m 172.42 82.43 l 165.14 82.43 l 168.78 88.73 l S 198.46 88.73 m 202.10 82.43 l 194.83 82.43 l 198.46 88.73 l S 202.27 88.73 m 205.90 82.43 l 198.63 82.43 l 202.27 88.73 l S 141.83 91.91 m 145.47 85.61 l 138.20 85.61 l 141.83 91.91 l S 248.03 88.73 m 251.67 82.43 l 244.40 82.43 l 248.03 88.73 l S 194.97 88.73 m 198.60 82.43 l 191.33 82.43 l 194.97 88.73 l S 179.94 88.73 m 183.57 82.43 l 176.30 82.43 l 179.94 88.73 l S 235.62 88.73 m 239.26 82.43 l 231.98 82.43 l 235.62 88.73 l S 216.99 88.73 m 220.62 82.43 l 213.35 82.43 l 216.99 88.73 l S 229.24 88.73 m 232.88 82.43 l 225.61 82.43 l 229.24 88.73 l S 205.39 88.73 m 209.03 82.43 l 201.76 82.43 l 205.39 88.73 l S 242.67 88.73 m 246.31 82.43 l 239.04 82.43 l 242.67 88.73 l S 165.45 88.73 m 169.08 82.43 l 161.81 82.43 l 165.45 88.73 l S 268.45 94.93 m 272.09 88.63 l 264.81 88.63 l 268.45 94.93 l S 225.92 88.73 m 229.56 82.43 l 222.29 82.43 l 225.92 88.73 l S 221.64 88.73 m 225.28 82.43 l 218.00 82.43 l 221.64 88.73 l S 212.81 88.73 m 216.44 82.43 l 209.17 82.43 l 212.81 88.73 l S 184.69 88.73 m 188.33 82.43 l 181.06 82.43 l 184.69 88.73 l S 177.64 88.73 m 181.28 82.43 l 174.01 82.43 l 177.64 88.73 l S 207.31 88.73 m 210.95 82.43 l 203.68 82.43 l 207.31 88.73 l S 227.95 88.73 m 231.59 82.43 l 224.32 82.43 l 227.95 88.73 l S 212.67 88.73 m 216.31 82.43 l 209.04 82.43 l 212.67 88.73 l S 159.49 88.73 m 163.13 82.43 l 155.86 82.43 l 159.49 88.73 l S 172.31 88.73 m 175.94 82.43 l 168.67 82.43 l 172.31 88.73 l S 173.23 88.73 m 176.87 82.43 l 169.60 82.43 l 173.23 88.73 l S 195.85 88.73 m 199.48 82.43 l 192.21 82.43 l 195.85 88.73 l S 177.61 88.73 m 181.24 82.43 l 173.97 82.43 l 177.61 88.73 l S 263.67 90.41 m 267.30 84.11 l 260.03 84.11 l 263.67 90.41 l S 193.14 88.73 m 196.78 82.43 l 189.51 82.43 l 193.14 88.73 l S 177.38 88.73 m 181.01 82.43 l 173.74 82.43 l 177.38 88.73 l S 141.77 91.91 m 145.40 85.61 l 138.13 85.61 l 141.77 91.91 l S 162.50 88.73 m 166.14 82.43 l 158.87 82.43 l 162.50 88.73 l S 146.54 89.38 m 150.17 83.08 l 142.90 83.08 l 146.54 89.38 l S 224.37 88.73 m 228.01 82.43 l 220.74 82.43 l 224.37 88.73 l S 210.22 88.73 m 213.86 82.43 l 206.59 82.43 l 210.22 88.73 l S 201.72 88.73 m 205.35 82.43 l 198.08 82.43 l 201.72 88.73 l S 186.99 88.73 m 190.63 82.43 l 183.36 82.43 l 186.99 88.73 l S 176.60 88.73 m 180.24 82.43 l 172.97 82.43 l 176.60 88.73 l S 181.05 88.73 m 184.69 82.43 l 177.41 82.43 l 181.05 88.73 l S 113.37 186.31 m 117.01 180.01 l 109.74 180.01 l 113.37 186.31 l S 218.32 88.73 m 221.96 82.43 l 214.69 82.43 l 218.32 88.73 l S 184.08 88.73 m 187.71 82.43 l 180.44 82.43 l 184.08 88.73 l S 200.48 88.73 m 204.12 82.43 l 196.84 82.43 l 200.48 88.73 l S 203.48 88.73 m 207.11 82.43 l 199.84 82.43 l 203.48 88.73 l S 197.37 88.73 m 201.01 82.43 l 193.74 82.43 l 197.37 88.73 l S 157.45 88.73 m 161.08 82.43 l 153.81 82.43 l 157.45 88.73 l S 181.93 88.73 m 185.57 82.43 l 178.30 82.43 l 181.93 88.73 l S 258.97 89.01 m 262.61 82.72 l 255.34 82.72 l 258.97 89.01 l S 245.28 88.73 m 248.91 82.43 l 241.64 82.43 l 245.28 88.73 l S 184.56 88.73 m 188.19 82.43 l 180.92 82.43 l 184.56 88.73 l S 228.57 88.73 m 232.20 82.43 l 224.93 82.43 l 228.57 88.73 l S 232.44 88.73 m 236.08 82.43 l 228.80 82.43 l 232.44 88.73 l S 257.35 88.77 m 260.99 82.47 l 253.72 82.47 l 257.35 88.77 l S 228.32 88.73 m 231.95 82.43 l 224.68 82.43 l 228.32 88.73 l S 244.98 88.73 m 248.62 82.43 l 241.34 82.43 l 244.98 88.73 l S 137.81 96.90 m 141.44 90.60 l 134.17 90.60 l 137.81 96.90 l S 158.91 88.73 m 162.54 82.43 l 155.27 82.43 l 158.91 88.73 l S 242.03 88.73 m 245.67 82.43 l 238.39 82.43 l 242.03 88.73 l S 230.19 88.73 m 233.83 82.43 l 226.55 82.43 l 230.19 88.73 l S 228.14 88.73 m 231.77 82.43 l 224.50 82.43 l 228.14 88.73 l S 237.80 88.73 m 241.44 82.43 l 234.17 82.43 l 237.80 88.73 l S 189.45 88.73 m 193.09 82.43 l 185.82 82.43 l 189.45 88.73 l S 201.12 88.73 m 204.75 82.43 l 197.48 82.43 l 201.12 88.73 l S 183.70 88.73 m 187.34 82.43 l 180.06 82.43 l 183.70 88.73 l S 217.73 88.73 m 221.37 82.43 l 214.10 82.43 l 217.73 88.73 l S 199.74 88.73 m 203.38 82.43 l 196.10 82.43 l 199.74 88.73 l S 129.05 119.47 m 132.69 113.18 l 125.41 113.18 l 129.05 119.47 l S 132.93 108.45 m 136.57 102.15 l 129.30 102.15 l 132.93 108.45 l S 182.80 88.73 m 186.43 82.43 l 179.16 82.43 l 182.80 88.73 l S 181.30 88.73 m 184.93 82.43 l 177.66 82.43 l 181.30 88.73 l S 164.67 88.73 m 168.31 82.43 l 161.03 82.43 l 164.67 88.73 l S 122.15 148.44 m 125.78 142.14 l 118.51 142.14 l 122.15 148.44 l S 209.92 88.73 m 213.55 82.43 l 206.28 82.43 l 209.92 88.73 l S 251.61 88.73 m 255.25 82.43 l 247.98 82.43 l 251.61 88.73 l S 236.48 88.73 m 240.11 82.43 l 232.84 82.43 l 236.48 88.73 l S 277.91 117.37 m 281.55 111.07 l 274.28 111.07 l 277.91 117.37 l S 198.06 88.73 m 201.69 82.43 l 194.42 82.43 l 198.06 88.73 l S 169.57 88.73 m 173.21 82.43 l 165.94 82.43 l 169.57 88.73 l S 206.41 88.73 m 210.05 82.43 l 202.78 82.43 l 206.41 88.73 l S 223.84 88.73 m 227.47 82.43 l 220.20 82.43 l 223.84 88.73 l S 190.63 88.73 m 194.27 82.43 l 187.00 82.43 l 190.63 88.73 l S 146.08 89.42 m 149.71 83.12 l 142.44 83.12 l 146.08 89.42 l S 197.66 88.73 m 201.30 82.43 l 194.02 82.43 l 197.66 88.73 l S 185.70 88.73 m 189.34 82.43 l 182.07 82.43 l 185.70 88.73 l S 195.24 88.73 m 198.87 82.43 l 191.60 82.43 l 195.24 88.73 l S 190.83 88.73 m 194.47 82.43 l 187.20 82.43 l 190.83 88.73 l S 254.56 88.73 m 258.19 82.43 l 250.92 82.43 l 254.56 88.73 l S 193.49 88.73 m 197.12 82.43 l 189.85 82.43 l 193.49 88.73 l S 257.29 88.77 m 260.92 82.47 l 253.65 82.47 l 257.29 88.77 l S 249.62 88.73 m 253.26 82.43 l 245.98 82.43 l 249.62 88.73 l S 209.42 88.73 m 213.06 82.43 l 205.78 82.43 l 209.42 88.73 l S 179.61 88.73 m 183.25 82.43 l 175.98 82.43 l 179.61 88.73 l S 111.08 196.66 m 114.72 190.36 l 107.44 190.36 l 111.08 196.66 l S 169.24 88.73 m 172.88 82.43 l 165.60 82.43 l 169.24 88.73 l S 214.86 88.73 m 218.50 82.43 l 211.22 82.43 l 214.86 88.73 l S 232.41 88.73 m 236.05 82.43 l 228.78 82.43 l 232.41 88.73 l S 231.56 88.73 m 235.20 82.43 l 227.93 82.43 l 231.56 88.73 l S 169.03 88.73 m 172.67 82.43 l 165.39 82.43 l 169.03 88.73 l S 267.76 94.14 m 271.39 87.84 l 264.12 87.84 l 267.76 94.14 l S 123.84 139.98 m 127.48 133.68 l 120.21 133.68 l 123.84 139.98 l S 83.79 338.24 m 87.42 331.94 l 80.15 331.94 l 83.79 338.24 l S 185.31 88.73 m 188.95 82.43 l 181.67 82.43 l 185.31 88.73 l S 198.67 88.73 m 202.30 82.43 l 195.03 82.43 l 198.67 88.73 l S 267.46 93.77 m 271.10 87.48 l 263.82 87.48 l 267.46 93.77 l S 179.46 88.73 m 183.10 82.43 l 175.83 82.43 l 179.46 88.73 l S 252.05 88.73 m 255.68 82.43 l 248.41 82.43 l 252.05 88.73 l S 136.53 99.17 m 140.17 92.88 l 132.89 92.88 l 136.53 99.17 l S 186.56 88.73 m 190.20 82.43 l 182.93 82.43 l 186.56 88.73 l S 240.07 88.73 m 243.71 82.43 l 236.44 82.43 l 240.07 88.73 l S 255.80 88.77 m 259.44 82.47 l 252.17 82.47 l 255.80 88.77 l S 182.11 88.73 m 185.75 82.43 l 178.48 82.43 l 182.11 88.73 l S 228.88 88.73 m 232.51 82.43 l 225.24 82.43 l 228.88 88.73 l S 225.55 88.73 m 229.18 82.43 l 221.91 82.43 l 225.55 88.73 l S 226.43 88.73 m 230.07 82.43 l 222.80 82.43 l 226.43 88.73 l S 205.88 88.73 m 209.51 82.43 l 202.24 82.43 l 205.88 88.73 l S 147.88 89.18 m 151.52 82.88 l 144.25 82.88 l 147.88 89.18 l S 235.34 88.73 m 238.98 82.43 l 231.70 82.43 l 235.34 88.73 l S 240.74 88.73 m 244.37 82.43 l 237.10 82.43 l 240.74 88.73 l S 182.70 88.73 m 186.34 82.43 l 179.07 82.43 l 182.70 88.73 l S 146.88 89.34 m 150.51 83.04 l 143.24 83.04 l 146.88 89.34 l S 174.02 88.73 m 177.66 82.43 l 170.39 82.43 l 174.02 88.73 l S 164.48 88.73 m 168.12 82.43 l 160.85 82.43 l 164.48 88.73 l S 202.25 88.73 m 205.89 82.43 l 198.62 82.43 l 202.25 88.73 l S 102.24 225.69 m 105.88 219.39 l 98.61 219.39 l 102.24 225.69 l S 246.79 88.73 m 250.43 82.43 l 243.15 82.43 l 246.79 88.73 l S 186.48 88.73 m 190.12 82.43 l 182.84 82.43 l 186.48 88.73 l S 213.10 88.73 m 216.73 82.43 l 209.46 82.43 l 213.10 88.73 l S 215.66 88.73 m 219.29 82.43 l 212.02 82.43 l 215.66 88.73 l S 147.36 89.30 m 151.00 83.00 l 143.73 83.00 l 147.36 89.30 l S 170.81 88.73 m 174.44 82.43 l 167.17 82.43 l 170.81 88.73 l S 221.70 88.73 m 225.33 82.43 l 218.06 82.43 l 221.70 88.73 l S 216.71 88.73 m 220.34 82.43 l 213.07 82.43 l 216.71 88.73 l S 167.30 88.73 m 170.93 82.43 l 163.66 82.43 l 167.30 88.73 l S 206.13 88.73 m 209.76 82.43 l 202.49 82.43 l 206.13 88.73 l S 161.76 88.73 m 165.39 82.43 l 158.12 82.43 l 161.76 88.73 l S 226.40 88.73 m 230.03 82.43 l 222.76 82.43 l 226.40 88.73 l S 158.30 88.73 m 161.94 82.43 l 154.67 82.43 l 158.30 88.73 l S 123.80 140.13 m 127.43 133.83 l 120.16 133.83 l 123.80 140.13 l S 88.74 310.41 m 92.37 304.11 l 85.10 304.11 l 88.74 310.41 l S 233.88 88.73 m 237.52 82.43 l 230.25 82.43 l 233.88 88.73 l S 117.64 166.54 m 121.28 160.24 l 114.01 160.24 l 117.64 166.54 l S 176.63 88.73 m 180.26 82.43 l 172.99 82.43 l 176.63 88.73 l S 199.02 88.73 m 202.65 82.43 l 195.38 82.43 l 199.02 88.73 l S 316.25 301.45 m 319.88 295.15 l 312.61 295.15 l 316.25 301.45 l S 167.03 88.73 m 170.66 82.43 l 163.39 82.43 l 167.03 88.73 l S 256.70 88.77 m 260.34 82.47 l 253.07 82.47 l 256.70 88.77 l S 247.46 88.73 m 251.10 82.43 l 243.83 82.43 l 247.46 88.73 l S 193.31 88.73 m 196.95 82.43 l 189.67 82.43 l 193.31 88.73 l S 121.96 149.16 m 125.60 142.86 l 118.32 142.86 l 121.96 149.16 l S 195.65 88.73 m 199.29 82.43 l 192.02 82.43 l 195.65 88.73 l S 169.63 88.73 m 173.26 82.43 l 165.99 82.43 l 169.63 88.73 l S 186.78 88.73 m 190.41 82.43 l 183.14 82.43 l 186.78 88.73 l S 231.76 88.73 m 235.40 82.43 l 228.13 82.43 l 231.76 88.73 l S 220.33 88.73 m 223.97 82.43 l 216.70 82.43 l 220.33 88.73 l S 216.80 88.73 m 220.44 82.43 l 213.17 82.43 l 216.80 88.73 l S 193.37 88.73 m 197.01 82.43 l 189.74 82.43 l 193.37 88.73 l S 168.32 88.73 m 171.96 82.43 l 164.69 82.43 l 168.32 88.73 l S 280.65 126.85 m 284.28 120.55 l 277.01 120.55 l 280.65 126.85 l S 249.36 88.73 m 253.00 82.43 l 245.73 82.43 l 249.36 88.73 l S 201.38 88.73 m 205.02 82.43 l 197.75 82.43 l 201.38 88.73 l S 230.98 88.73 m 234.61 82.43 l 227.34 82.43 l 230.98 88.73 l S 215.83 88.73 m 219.46 82.43 l 212.19 82.43 l 215.83 88.73 l S 228.13 88.73 m 231.77 82.43 l 224.50 82.43 l 228.13 88.73 l S 185.70 88.73 m 189.34 82.43 l 182.07 82.43 l 185.70 88.73 l S 197.06 88.73 m 200.70 82.43 l 193.43 82.43 l 197.06 88.73 l S 245.67 88.73 m 249.31 82.43 l 242.03 82.43 l 245.67 88.73 l S 222.12 88.73 m 225.75 82.43 l 218.48 82.43 l 222.12 88.73 l S 129.48 118.20 m 133.12 111.90 l 125.85 111.90 l 129.48 118.20 l S 183.65 88.73 m 187.29 82.43 l 180.02 82.43 l 183.65 88.73 l S 189.90 88.73 m 193.53 82.43 l 186.26 82.43 l 189.90 88.73 l S 225.46 88.73 m 229.10 82.43 l 221.82 82.43 l 225.46 88.73 l S 245.35 88.73 m 248.99 82.43 l 241.71 82.43 l 245.35 88.73 l S 189.74 88.73 m 193.38 82.43 l 186.11 82.43 l 189.74 88.73 l S 191.20 88.73 m 194.83 82.43 l 187.56 82.43 l 191.20 88.73 l S 217.46 88.73 m 221.09 82.43 l 213.82 82.43 l 217.46 88.73 l S 214.71 88.73 m 218.35 82.43 l 211.08 82.43 l 214.71 88.73 l S 182.02 88.73 m 185.66 82.43 l 178.38 82.43 l 182.02 88.73 l S 243.52 88.73 m 247.16 82.43 l 239.89 82.43 l 243.52 88.73 l S 230.67 88.73 m 234.31 82.43 l 227.04 82.43 l 230.67 88.73 l S 201.98 88.73 m 205.62 82.43 l 198.34 82.43 l 201.98 88.73 l S 193.86 88.73 m 197.49 82.43 l 190.22 82.43 l 193.86 88.73 l S 208.60 88.73 m 212.23 82.43 l 204.96 82.43 l 208.60 88.73 l S 161.24 88.73 m 164.88 82.43 l 157.60 82.43 l 161.24 88.73 l S 247.17 88.73 m 250.81 82.43 l 243.54 82.43 l 247.17 88.73 l S 196.73 88.73 m 200.37 82.43 l 193.10 82.43 l 196.73 88.73 l S 249.27 88.73 m 252.91 82.43 l 245.64 82.43 l 249.27 88.73 l S 187.18 88.73 m 190.82 82.43 l 183.55 82.43 l 187.18 88.73 l S 156.37 88.73 m 160.01 82.43 l 152.74 82.43 l 156.37 88.73 l S 164.17 88.73 m 167.81 82.43 l 160.54 82.43 l 164.17 88.73 l S 210.43 88.73 m 214.06 82.43 l 206.79 82.43 l 210.43 88.73 l S 260.64 89.30 m 264.27 83.00 l 257.00 83.00 l 260.64 89.30 l S 196.72 88.73 m 200.36 82.43 l 193.08 82.43 l 196.72 88.73 l S 179.40 88.73 m 183.04 82.43 l 175.76 82.43 l 179.40 88.73 l S 206.50 88.73 m 210.13 82.43 l 202.86 82.43 l 206.50 88.73 l S 259.46 89.10 m 263.09 82.80 l 255.82 82.80 l 259.46 89.10 l S 228.65 88.73 m 232.29 82.43 l 225.02 82.43 l 228.65 88.73 l S 245.33 88.73 m 248.96 82.43 l 241.69 82.43 l 245.33 88.73 l S 144.09 90.41 m 147.73 84.11 l 140.45 84.11 l 144.09 90.41 l S 108.50 209.01 m 112.13 202.71 l 104.86 202.71 l 108.50 209.01 l S 251.89 88.73 m 255.53 82.43 l 248.26 82.43 l 251.89 88.73 l S 223.36 88.73 m 227.00 82.43 l 219.73 82.43 l 223.36 88.73 l S 259.73 89.10 m 263.37 82.80 l 256.10 82.80 l 259.73 89.10 l S 204.11 88.73 m 207.75 82.43 l 200.47 82.43 l 204.11 88.73 l S 229.50 88.73 m 233.14 82.43 l 225.87 82.43 l 229.50 88.73 l S 140.65 93.37 m 144.29 87.07 l 137.02 87.07 l 140.65 93.37 l S 256.02 88.77 m 259.65 82.47 l 252.38 82.47 l 256.02 88.77 l S 258.75 89.01 m 262.39 82.72 l 255.12 82.72 l 258.75 89.01 l S 220.36 88.73 m 224.00 82.43 l 216.73 82.43 l 220.36 88.73 l S 187.35 88.73 m 190.99 82.43 l 183.71 82.43 l 187.35 88.73 l S 205.13 88.73 m 208.77 82.43 l 201.49 82.43 l 205.13 88.73 l S 220.68 88.73 m 224.32 82.43 l 217.05 82.43 l 220.68 88.73 l S 149.32 88.97 m 152.96 82.68 l 145.69 82.68 l 149.32 88.97 l S 196.96 88.73 m 200.60 82.43 l 193.33 82.43 l 196.96 88.73 l S 198.78 88.73 m 202.42 82.43 l 195.14 82.43 l 198.78 88.73 l S 218.91 88.73 m 222.55 82.43 l 215.28 82.43 l 218.91 88.73 l S 204.56 88.73 m 208.19 82.43 l 200.92 82.43 l 204.56 88.73 l S 190.73 88.73 m 194.36 82.43 l 187.09 82.43 l 190.73 88.73 l S 168.51 88.73 m 172.15 82.43 l 164.88 82.43 l 168.51 88.73 l S 198.68 88.73 m 202.32 82.43 l 195.05 82.43 l 198.68 88.73 l S 251.48 88.73 m 255.11 82.43 l 247.84 82.43 l 251.48 88.73 l S 220.92 88.73 m 224.56 82.43 l 217.29 82.43 l 220.92 88.73 l S 205.14 88.73 m 208.77 82.43 l 201.50 82.43 l 205.14 88.73 l S 151.07 88.77 m 154.71 82.47 l 147.43 82.47 l 151.07 88.77 l S 211.05 88.73 m 214.68 82.43 l 207.41 82.43 l 211.05 88.73 l S 235.64 88.73 m 239.27 82.43 l 232.00 82.43 l 235.64 88.73 l S 105.41 217.96 m 109.04 211.67 l 101.77 211.67 l 105.41 217.96 l S 206.39 88.73 m 210.03 82.43 l 202.76 82.43 l 206.39 88.73 l S 253.56 88.73 m 257.20 82.43 l 249.93 82.43 l 253.56 88.73 l S 178.34 88.73 m 181.98 82.43 l 174.71 82.43 l 178.34 88.73 l S 189.96 88.73 m 193.60 82.43 l 186.32 82.43 l 189.96 88.73 l S 276.19 112.23 m 279.82 105.93 l 272.55 105.93 l 276.19 112.23 l S 193.55 88.73 m 197.19 82.43 l 189.92 82.43 l 193.55 88.73 l S 183.79 88.73 m 187.43 82.43 l 180.16 82.43 l 183.79 88.73 l S 213.55 88.73 m 217.18 82.43 l 209.91 82.43 l 213.55 88.73 l S 202.09 88.73 m 205.73 82.43 l 198.46 82.43 l 202.09 88.73 l S 191.88 88.73 m 195.51 82.43 l 188.24 82.43 l 191.88 88.73 l S 190.39 88.73 m 194.03 82.43 l 186.75 82.43 l 190.39 88.73 l S 182.85 88.73 m 186.48 82.43 l 179.21 82.43 l 182.85 88.73 l S 181.34 88.73 m 184.98 82.43 l 177.71 82.43 l 181.34 88.73 l S 231.75 88.73 m 235.39 82.43 l 228.12 82.43 l 231.75 88.73 l S 185.07 88.73 m 188.71 82.43 l 181.43 82.43 l 185.07 88.73 l S 225.56 88.73 m 229.20 82.43 l 221.93 82.43 l 225.56 88.73 l S 219.44 88.73 m 223.07 82.43 l 215.80 82.43 l 219.44 88.73 l S 251.42 88.73 m 255.05 82.43 l 247.78 82.43 l 251.42 88.73 l S 208.76 88.73 m 212.39 82.43 l 205.12 82.43 l 208.76 88.73 l S 213.42 88.73 m 217.06 82.43 l 209.78 82.43 l 213.42 88.73 l S 235.66 88.73 m 239.30 82.43 l 232.03 82.43 l 235.66 88.73 l S 214.25 88.73 m 217.88 82.43 l 210.61 82.43 l 214.25 88.73 l S 156.74 88.73 m 160.37 82.43 l 153.10 82.43 l 156.74 88.73 l S 191.32 88.73 m 194.95 82.43 l 187.68 82.43 l 191.32 88.73 l S 204.62 88.73 m 208.26 82.43 l 200.99 82.43 l 204.62 88.73 l S 202.85 88.73 m 206.48 82.43 l 199.21 82.43 l 202.85 88.73 l S 130.13 116.88 m 133.77 110.58 l 126.50 110.58 l 130.13 116.88 l S 233.47 88.73 m 237.11 82.43 l 229.84 82.43 l 233.47 88.73 l S 233.06 88.73 m 236.70 82.43 l 229.42 82.43 l 233.06 88.73 l S 174.79 88.73 m 178.42 82.43 l 171.15 82.43 l 174.79 88.73 l S 176.79 88.73 m 180.43 82.43 l 173.15 82.43 l 176.79 88.73 l S 207.05 88.73 m 210.69 82.43 l 203.42 82.43 l 207.05 88.73 l S 192.76 88.73 m 196.40 82.43 l 189.12 82.43 l 192.76 88.73 l S 214.08 88.73 m 217.72 82.43 l 210.44 82.43 l 214.08 88.73 l S 200.13 88.73 m 203.77 82.43 l 196.50 82.43 l 200.13 88.73 l S 211.32 88.73 m 214.95 82.43 l 207.68 82.43 l 211.32 88.73 l S 161.11 88.73 m 164.75 82.43 l 157.48 82.43 l 161.11 88.73 l S 165.83 88.73 m 169.47 82.43 l 162.20 82.43 l 165.83 88.73 l S 203.50 88.73 m 207.13 82.43 l 199.86 82.43 l 203.50 88.73 l S 129.80 117.62 m 133.44 111.32 l 126.16 111.32 l 129.80 117.62 l S 157.32 88.73 m 160.96 82.43 l 153.69 82.43 l 157.32 88.73 l S 194.43 88.73 m 198.07 82.43 l 190.79 82.43 l 194.43 88.73 l S 193.37 88.73 m 197.01 82.43 l 189.73 82.43 l 193.37 88.73 l S 189.07 88.73 m 192.71 82.43 l 185.44 82.43 l 189.07 88.73 l S 177.49 88.73 m 181.12 82.43 l 173.85 82.43 l 177.49 88.73 l S 220.37 88.73 m 224.01 82.43 l 216.74 82.43 l 220.37 88.73 l S 135.75 101.04 m 139.39 94.74 l 132.12 94.74 l 135.75 101.04 l S 157.69 88.73 m 161.33 82.43 l 154.06 82.43 l 157.69 88.73 l S 179.35 88.73 m 182.99 82.43 l 175.72 82.43 l 179.35 88.73 l S 141.38 92.47 m 145.01 86.18 l 137.74 86.18 l 141.38 92.47 l S 249.19 88.73 m 252.83 82.43 l 245.55 82.43 l 249.19 88.73 l S 226.74 88.73 m 230.38 82.43 l 223.11 82.43 l 226.74 88.73 l S 142.18 91.86 m 145.82 85.56 l 138.55 85.56 l 142.18 91.86 l S 190.83 88.73 m 194.46 82.43 l 187.19 82.43 l 190.83 88.73 l S 79.95 338.24 m 83.59 331.94 l 76.31 331.94 l 79.95 338.24 l S 110.85 196.66 m 114.49 190.36 l 107.21 190.36 l 110.85 196.66 l S 244.92 88.73 m 248.55 82.43 l 241.28 82.43 l 244.92 88.73 l S 215.71 88.73 m 219.35 82.43 l 212.07 82.43 l 215.71 88.73 l S 199.33 88.73 m 202.97 82.43 l 195.69 82.43 l 199.33 88.73 l S 177.30 88.73 m 180.94 82.43 l 173.67 82.43 l 177.30 88.73 l S 271.60 100.23 m 275.24 93.93 l 267.97 93.93 l 271.60 100.23 l S 178.49 88.73 m 182.12 82.43 l 174.85 82.43 l 178.49 88.73 l S 150.35 88.77 m 153.99 82.47 l 146.72 82.47 l 150.35 88.77 l S 213.38 88.73 m 217.02 82.43 l 209.75 82.43 l 213.38 88.73 l S 108.91 205.18 m 112.54 198.88 l 105.27 198.88 l 108.91 205.18 l S 194.48 88.73 m 198.12 82.43 l 190.85 82.43 l 194.48 88.73 l S 151.42 88.77 m 155.06 82.47 l 147.78 82.47 l 151.42 88.77 l S 220.60 88.73 m 224.24 82.43 l 216.97 82.43 l 220.60 88.73 l S 75.85 338.24 m 79.48 331.94 l 72.21 331.94 l 75.85 338.24 l S 172.54 88.73 m 176.17 82.43 l 168.90 82.43 l 172.54 88.73 l S 241.22 88.73 m 244.86 82.43 l 237.59 82.43 l 241.22 88.73 l S 152.03 88.77 m 155.67 82.47 l 148.40 82.47 l 152.03 88.77 l S 199.22 88.73 m 202.86 82.43 l 195.59 82.43 l 199.22 88.73 l S 205.88 88.73 m 209.52 82.43 l 202.24 82.43 l 205.88 88.73 l S 231.11 88.73 m 234.75 82.43 l 227.48 82.43 l 231.11 88.73 l S 184.67 88.73 m 188.31 82.43 l 181.04 82.43 l 184.67 88.73 l S 122.90 144.07 m 126.54 137.77 l 119.27 137.77 l 122.90 144.07 l S 147.66 89.22 m 151.30 82.92 l 144.03 82.92 l 147.66 89.22 l S 205.65 88.73 m 209.29 82.43 l 202.02 82.43 l 205.65 88.73 l S 236.72 88.73 m 240.35 82.43 l 233.08 82.43 l 236.72 88.73 l S 222.32 88.73 m 225.95 82.43 l 218.68 82.43 l 222.32 88.73 l S 154.34 88.73 m 157.98 82.43 l 150.70 82.43 l 154.34 88.73 l S 211.53 88.73 m 215.17 82.43 l 207.90 82.43 l 211.53 88.73 l S 246.62 88.73 m 250.26 82.43 l 242.99 82.43 l 246.62 88.73 l S 145.32 89.71 m 148.95 83.41 l 141.68 83.41 l 145.32 89.71 l S 183.87 88.73 m 187.51 82.43 l 180.23 82.43 l 183.87 88.73 l S 295.42 189.64 m 299.06 183.34 l 291.79 183.34 l 295.42 189.64 l S 217.58 88.73 m 221.21 82.43 l 213.94 82.43 l 217.58 88.73 l S 201.40 88.73 m 205.04 82.43 l 197.76 82.43 l 201.40 88.73 l S 97.39 243.83 m 101.02 237.54 l 93.75 237.54 l 97.39 243.83 l S 237.76 88.73 m 241.39 82.43 l 234.12 82.43 l 237.76 88.73 l S 206.02 88.73 m 209.66 82.43 l 202.38 82.43 l 206.02 88.73 l S 194.88 88.73 m 198.51 82.43 l 191.24 82.43 l 194.88 88.73 l S 159.63 88.73 m 163.26 82.43 l 155.99 82.43 l 159.63 88.73 l S 190.25 88.73 m 193.88 82.43 l 186.61 82.43 l 190.25 88.73 l S 235.02 88.73 m 238.65 82.43 l 231.38 82.43 l 235.02 88.73 l S 202.41 88.73 m 206.05 82.43 l 198.78 82.43 l 202.41 88.73 l S 102.06 225.69 m 105.69 219.39 l 98.42 219.39 l 102.06 225.69 l S 211.34 88.73 m 214.98 82.43 l 207.71 82.43 l 211.34 88.73 l S 196.50 88.73 m 200.13 82.43 l 192.86 82.43 l 196.50 88.73 l S 227.56 88.73 m 231.20 82.43 l 223.92 82.43 l 227.56 88.73 l S 257.67 88.85 m 261.31 82.55 l 254.03 82.55 l 257.67 88.85 l S 214.93 88.73 m 218.56 82.43 l 211.29 82.43 l 214.93 88.73 l S 204.43 88.73 m 208.06 82.43 l 200.79 82.43 l 204.43 88.73 l S 161.53 88.73 m 165.16 82.43 l 157.89 82.43 l 161.53 88.73 l S 189.48 88.73 m 193.12 82.43 l 185.84 82.43 l 189.48 88.73 l S 216.11 88.73 m 219.74 82.43 l 212.47 82.43 l 216.11 88.73 l S 252.12 88.73 m 255.75 82.43 l 248.48 82.43 l 252.12 88.73 l S 239.47 88.73 m 243.10 82.43 l 235.83 82.43 l 239.47 88.73 l S 159.38 88.73 m 163.02 82.43 l 155.75 82.43 l 159.38 88.73 l S 238.36 88.73 m 242.00 82.43 l 234.73 82.43 l 238.36 88.73 l S 229.49 88.73 m 233.13 82.43 l 225.86 82.43 l 229.49 88.73 l S 247.81 88.73 m 251.44 82.43 l 244.17 82.43 l 247.81 88.73 l S 224.47 88.73 m 228.10 82.43 l 220.83 82.43 l 224.47 88.73 l S 135.88 100.77 m 139.52 94.47 l 132.25 94.47 l 135.88 100.77 l S 137.16 97.94 m 140.80 91.64 l 133.52 91.64 l 137.16 97.94 l S 212.97 88.73 m 216.61 82.43 l 209.34 82.43 l 212.97 88.73 l S 343.64 366.07 m 347.28 359.77 l 340.01 359.77 l 343.64 366.07 l S 204.18 88.73 m 207.82 82.43 l 200.54 82.43 l 204.18 88.73 l S 230.05 88.73 m 233.69 82.43 l 226.41 82.43 l 230.05 88.73 l S 236.07 88.73 m 239.71 82.43 l 232.43 82.43 l 236.07 88.73 l S 177.73 88.73 m 181.37 82.43 l 174.10 82.43 l 177.73 88.73 l S 181.96 88.73 m 185.60 82.43 l 178.33 82.43 l 181.96 88.73 l S 170.29 88.73 m 173.92 82.43 l 166.65 82.43 l 170.29 88.73 l S 284.02 140.56 m 287.66 134.26 l 280.39 134.26 l 284.02 140.56 l S 246.30 88.73 m 249.93 82.43 l 242.66 82.43 l 246.30 88.73 l S 244.00 88.73 m 247.64 82.43 l 240.36 82.43 l 244.00 88.73 l S 179.18 88.73 m 182.82 82.43 l 175.54 82.43 l 179.18 88.73 l S 156.62 88.73 m 160.26 82.43 l 152.99 82.43 l 156.62 88.73 l S 195.00 88.73 m 198.64 82.43 l 191.37 82.43 l 195.00 88.73 l S 246.34 88.73 m 249.97 82.43 l 242.70 82.43 l 246.34 88.73 l S 249.99 88.73 m 253.63 82.43 l 246.35 82.43 l 249.99 88.73 l S 249.63 88.73 m 253.27 82.43 l 246.00 82.43 l 249.63 88.73 l S 250.30 88.73 m 253.94 82.43 l 246.67 82.43 l 250.30 88.73 l S 243.17 88.73 m 246.81 82.43 l 239.53 82.43 l 243.17 88.73 l S 220.55 88.73 m 224.18 82.43 l 216.91 82.43 l 220.55 88.73 l S 133.52 106.52 m 137.16 100.23 l 129.89 100.23 l 133.52 106.52 l S 308.72 238.47 m 312.36 232.17 l 305.09 232.17 l 308.72 238.47 l S 206.01 88.73 m 209.65 82.43 l 202.38 82.43 l 206.01 88.73 l S 164.02 88.73 m 167.66 82.43 l 160.39 82.43 l 164.02 88.73 l S 264.58 90.88 m 268.21 84.58 l 260.94 84.58 l 264.58 90.88 l S 197.66 88.73 m 201.30 82.43 l 194.02 82.43 l 197.66 88.73 l S 214.24 88.73 m 217.88 82.43 l 210.61 82.43 l 214.24 88.73 l S 284.66 142.97 m 288.30 136.67 l 281.03 136.67 l 284.66 142.97 l S 156.52 88.73 m 160.15 82.43 l 152.88 82.43 l 156.52 88.73 l S 209.88 88.73 m 213.51 82.43 l 206.24 82.43 l 209.88 88.73 l S 167.39 88.73 m 171.03 82.43 l 163.75 82.43 l 167.39 88.73 l S 207.45 88.73 m 211.08 82.43 l 203.81 82.43 l 207.45 88.73 l S 129.29 118.70 m 132.93 112.41 l 125.65 112.41 l 129.29 118.70 l S 212.83 88.73 m 216.47 82.43 l 209.19 82.43 l 212.83 88.73 l S 181.16 88.73 m 184.80 82.43 l 177.53 82.43 l 181.16 88.73 l S 158.76 88.73 m 162.40 82.43 l 155.13 82.43 l 158.76 88.73 l S 116.51 169.73 m 120.14 163.43 l 112.87 163.43 l 116.51 169.73 l S 225.23 88.73 m 228.87 82.43 l 221.59 82.43 l 225.23 88.73 l S 304.82 225.69 m 308.45 219.39 l 301.18 219.39 l 304.82 225.69 l S 178.39 88.73 m 182.03 82.43 l 174.76 82.43 l 178.39 88.73 l S 208.42 88.73 m 212.05 82.43 l 204.78 82.43 l 208.42 88.73 l S 211.50 88.73 m 215.14 82.43 l 207.86 82.43 l 211.50 88.73 l S 130.12 117.05 m 133.76 110.75 l 126.49 110.75 l 130.12 117.05 l S 322.72 338.24 m 326.35 331.94 l 319.08 331.94 l 322.72 338.24 l S 261.64 89.42 m 265.28 83.12 l 258.00 83.12 l 261.64 89.42 l S 202.44 88.73 m 206.07 82.43 l 198.80 82.43 l 202.44 88.73 l S 128.03 122.99 m 131.67 116.69 l 124.40 116.69 l 128.03 122.99 l S 220.13 88.73 m 223.76 82.43 l 216.49 82.43 l 220.13 88.73 l S 186.86 88.73 m 190.50 82.43 l 183.22 82.43 l 186.86 88.73 l S 221.94 88.73 m 225.58 82.43 l 218.31 82.43 l 221.94 88.73 l S 238.70 88.73 m 242.34 82.43 l 235.07 82.43 l 238.70 88.73 l S 228.93 88.73 m 232.57 82.43 l 225.29 82.43 l 228.93 88.73 l S 178.55 88.73 m 182.18 82.43 l 174.91 82.43 l 178.55 88.73 l S 228.18 88.73 m 231.81 82.43 l 224.54 82.43 l 228.18 88.73 l S 222.48 88.73 m 226.12 82.43 l 218.85 82.43 l 222.48 88.73 l S 210.16 88.73 m 213.79 82.43 l 206.52 82.43 l 210.16 88.73 l S 254.42 88.73 m 258.06 82.43 l 250.78 82.43 l 254.42 88.73 l S 237.28 88.73 m 240.92 82.43 l 233.65 82.43 l 237.28 88.73 l S 224.49 88.73 m 228.13 82.43 l 220.85 82.43 l 224.49 88.73 l S 239.95 88.73 m 243.58 82.43 l 236.31 82.43 l 239.95 88.73 l S 188.00 88.73 m 191.63 82.43 l 184.36 82.43 l 188.00 88.73 l S 203.89 88.73 m 207.52 82.43 l 200.25 82.43 l 203.89 88.73 l S 247.28 88.73 m 250.92 82.43 l 243.64 82.43 l 247.28 88.73 l S 151.25 88.77 m 154.88 82.47 l 147.61 82.47 l 151.25 88.77 l S 375.03 366.07 m 378.66 359.77 l 371.39 359.77 l 375.03 366.07 l S 270.94 98.50 m 274.57 92.20 l 267.30 92.20 l 270.94 98.50 l S 259.16 89.05 m 262.79 82.76 l 255.52 82.76 l 259.16 89.05 l S 206.94 88.73 m 210.58 82.43 l 203.31 82.43 l 206.94 88.73 l S 158.85 88.73 m 162.49 82.43 l 155.21 82.43 l 158.85 88.73 l S 189.04 88.73 m 192.68 82.43 l 185.40 82.43 l 189.04 88.73 l S 127.40 125.72 m 131.04 119.42 l 123.77 119.42 l 127.40 125.72 l S 219.05 88.73 m 222.69 82.43 l 215.42 82.43 l 219.05 88.73 l S 154.62 88.73 m 158.26 82.43 l 150.98 82.43 l 154.62 88.73 l S 98.67 240.18 m 102.30 233.88 l 95.03 233.88 l 98.67 240.18 l S 95.89 254.75 m 99.53 248.45 l 92.25 248.45 l 95.89 254.75 l S 189.27 88.73 m 192.91 82.43 l 185.63 82.43 l 189.27 88.73 l S 265.72 91.86 m 269.35 85.56 l 262.08 85.56 l 265.72 91.86 l S 145.29 89.71 m 148.93 83.41 l 141.66 83.41 l 145.29 89.71 l S 203.88 88.73 m 207.51 82.43 l 200.24 82.43 l 203.88 88.73 l S 219.82 88.73 m 223.45 82.43 l 216.18 82.43 l 219.82 88.73 l S 246.02 88.73 m 249.66 82.43 l 242.38 82.43 l 246.02 88.73 l S 136.35 99.49 m 139.99 93.19 l 132.71 93.19 l 136.35 99.49 l S 200.63 88.73 m 204.27 82.43 l 197.00 82.43 l 200.63 88.73 l S 277.71 117.13 m 281.35 110.83 l 274.08 110.83 l 277.71 117.13 l S 113.05 186.31 m 116.69 180.01 l 109.41 180.01 l 113.05 186.31 l S 201.78 88.73 m 205.41 82.43 l 198.14 82.43 l 201.78 88.73 l S 191.33 88.73 m 194.96 82.43 l 187.69 82.43 l 191.33 88.73 l S 156.43 88.73 m 160.07 82.43 l 152.80 82.43 l 156.43 88.73 l S 266.34 92.47 m 269.98 86.18 l 262.70 86.18 l 266.34 92.47 l S 224.07 88.73 m 227.70 82.43 l 220.43 82.43 l 224.07 88.73 l S 223.84 88.73 m 227.48 82.43 l 220.20 82.43 l 223.84 88.73 l S 177.36 88.73 m 181.00 82.43 l 173.72 82.43 l 177.36 88.73 l S 245.73 88.73 m 249.37 82.43 l 242.10 82.43 l 245.73 88.73 l S 152.72 88.77 m 156.36 82.47 l 149.08 82.47 l 152.72 88.77 l S 206.11 88.73 m 209.74 82.43 l 202.47 82.43 l 206.11 88.73 l S 284.59 142.66 m 288.23 136.36 l 280.96 136.36 l 284.59 142.66 l S 250.99 88.73 m 254.62 82.43 l 247.35 82.43 l 250.99 88.73 l S 125.21 133.49 m 128.85 127.19 l 121.57 127.19 l 125.21 133.49 l S 208.61 88.73 m 212.25 82.43 l 204.97 82.43 l 208.61 88.73 l S 154.08 88.73 m 157.72 82.43 l 150.44 82.43 l 154.08 88.73 l S 237.70 88.73 m 241.34 82.43 l 234.06 82.43 l 237.70 88.73 l S 109.59 203.05 m 113.23 196.75 l 105.95 196.75 l 109.59 203.05 l S 178.74 88.73 m 182.38 82.43 l 175.11 82.43 l 178.74 88.73 l S 221.43 88.73 m 225.07 82.43 l 217.79 82.43 l 221.43 88.73 l S 251.72 88.73 m 255.36 82.43 l 248.08 82.43 l 251.72 88.73 l S 236.93 88.73 m 240.56 82.43 l 233.29 82.43 l 236.93 88.73 l S 177.22 88.73 m 180.86 82.43 l 173.59 82.43 l 177.22 88.73 l S 221.41 88.73 m 225.04 82.43 l 217.77 82.43 l 221.41 88.73 l S 226.25 88.73 m 229.88 82.43 l 222.61 82.43 l 226.25 88.73 l S 216.28 88.73 m 219.92 82.43 l 212.64 82.43 l 216.28 88.73 l S 185.89 88.73 m 189.53 82.43 l 182.25 82.43 l 185.89 88.73 l S 218.34 88.73 m 221.97 82.43 l 214.70 82.43 l 218.34 88.73 l S 144.95 90.00 m 148.58 83.70 l 141.31 83.70 l 144.95 90.00 l S 208.81 88.73 m 212.45 82.43 l 205.17 82.43 l 208.81 88.73 l S 197.18 88.73 m 200.81 82.43 l 193.54 82.43 l 197.18 88.73 l S 225.96 88.73 m 229.60 82.43 l 222.33 82.43 l 225.96 88.73 l S 215.23 88.73 m 218.87 82.43 l 211.59 82.43 l 215.23 88.73 l S 183.36 88.73 m 187.00 82.43 l 179.73 82.43 l 183.36 88.73 l S 230.79 88.73 m 234.43 82.43 l 227.16 82.43 l 230.79 88.73 l S 222.97 88.73 m 226.60 82.43 l 219.33 82.43 l 222.97 88.73 l S 149.14 89.01 m 152.77 82.72 l 145.50 82.72 l 149.14 89.01 l S 164.55 88.73 m 168.18 82.43 l 160.91 82.43 l 164.55 88.73 l S 221.50 88.73 m 225.13 82.43 l 217.86 82.43 l 221.50 88.73 l S 282.20 132.04 m 285.84 125.75 l 278.57 125.75 l 282.20 132.04 l S 165.83 88.73 m 169.47 82.43 l 162.20 82.43 l 165.83 88.73 l S 160.13 88.73 m 163.76 82.43 l 156.49 82.43 l 160.13 88.73 l S 222.79 88.73 m 226.43 82.43 l 219.16 82.43 l 222.79 88.73 l S 154.53 88.73 m 158.16 82.43 l 150.89 82.43 l 154.53 88.73 l S 141.01 92.87 m 144.64 86.57 l 137.37 86.57 l 141.01 92.87 l S 275.28 109.64 m 278.92 103.35 l 271.65 103.35 l 275.28 109.64 l S 209.56 88.73 m 213.19 82.43 l 205.92 82.43 l 209.56 88.73 l S 344.51 366.07 m 348.15 359.77 l 340.88 359.77 l 344.51 366.07 l S 215.42 88.73 m 219.06 82.43 l 211.79 82.43 l 215.42 88.73 l S 190.39 88.73 m 194.02 82.43 l 186.75 82.43 l 190.39 88.73 l S 229.40 88.73 m 233.04 82.43 l 225.76 82.43 l 229.40 88.73 l S 234.46 88.73 m 238.10 82.43 l 230.82 82.43 l 234.46 88.73 l S 187.20 88.73 m 190.84 82.43 l 183.56 82.43 l 187.20 88.73 l S 218.06 88.73 m 221.70 82.43 l 214.43 82.43 l 218.06 88.73 l S 188.44 88.73 m 192.07 82.43 l 184.80 82.43 l 188.44 88.73 l S 273.90 105.78 m 277.54 99.48 l 270.27 99.48 l 273.90 105.78 l S 236.52 88.73 m 240.16 82.43 l 232.88 82.43 l 236.52 88.73 l S 164.61 88.73 m 168.24 82.43 l 160.97 82.43 l 164.61 88.73 l S 222.99 88.73 m 226.63 82.43 l 219.35 82.43 l 222.99 88.73 l S 220.32 88.73 m 223.95 82.43 l 216.68 82.43 l 220.32 88.73 l S 170.76 88.73 m 174.40 82.43 l 167.13 82.43 l 170.76 88.73 l S 273.39 104.39 m 277.02 98.10 l 269.75 98.10 l 273.39 104.39 l S 193.49 88.73 m 197.13 82.43 l 189.86 82.43 l 193.49 88.73 l S 168.76 88.73 m 172.39 82.43 l 165.12 82.43 l 168.76 88.73 l S 206.42 88.73 m 210.05 82.43 l 202.78 82.43 l 206.42 88.73 l S 240.64 88.73 m 244.28 82.43 l 237.00 82.43 l 240.64 88.73 l S 196.24 88.73 m 199.87 82.43 l 192.60 82.43 l 196.24 88.73 l S 205.72 88.73 m 209.36 82.43 l 202.08 82.43 l 205.72 88.73 l S 204.16 88.73 m 207.79 82.43 l 200.52 82.43 l 204.16 88.73 l S 184.90 88.73 m 188.53 82.43 l 181.26 82.43 l 184.90 88.73 l S 223.06 88.73 m 226.70 82.43 l 219.43 82.43 l 223.06 88.73 l S 188.84 88.73 m 192.48 82.43 l 185.20 82.43 l 188.84 88.73 l S 248.38 88.73 m 252.02 82.43 l 244.74 82.43 l 248.38 88.73 l S 99.81 238.47 m 103.44 232.17 l 96.17 232.17 l 99.81 238.47 l S 209.58 88.73 m 213.22 82.43 l 205.95 82.43 l 209.58 88.73 l S 177.29 88.73 m 180.93 82.43 l 173.66 82.43 l 177.29 88.73 l S 206.53 88.73 m 210.17 82.43 l 202.90 82.43 l 206.53 88.73 l S 219.12 88.73 m 222.75 82.43 l 215.48 82.43 l 219.12 88.73 l S 238.50 88.73 m 242.13 82.43 l 234.86 82.43 l 238.50 88.73 l S 230.47 88.73 m 234.10 82.43 l 226.83 82.43 l 230.47 88.73 l S 209.64 88.73 m 213.28 82.43 l 206.01 82.43 l 209.64 88.73 l S 233.91 88.73 m 237.55 82.43 l 230.27 82.43 l 233.91 88.73 l S 215.14 88.73 m 218.78 82.43 l 211.50 82.43 l 215.14 88.73 l S 306.09 229.51 m 309.73 223.22 l 302.46 223.22 l 306.09 229.51 l S 222.63 88.73 m 226.27 82.43 l 219.00 82.43 l 222.63 88.73 l S 167.56 88.73 m 171.20 82.43 l 163.93 82.43 l 167.56 88.73 l S 195.08 88.73 m 198.72 82.43 l 191.44 82.43 l 195.08 88.73 l S 170.99 88.73 m 174.63 82.43 l 167.36 82.43 l 170.99 88.73 l S 322.42 338.24 m 326.06 331.94 l 318.79 331.94 l 322.42 338.24 l S 281.48 129.75 m 285.11 123.45 l 277.84 123.45 l 281.48 129.75 l S 239.46 88.73 m 243.10 82.43 l 235.83 82.43 l 239.46 88.73 l S 157.09 88.73 m 160.73 82.43 l 153.46 82.43 l 157.09 88.73 l S 209.42 88.73 m 213.06 82.43 l 205.78 82.43 l 209.42 88.73 l S 264.55 90.88 m 268.18 84.58 l 260.91 84.58 l 264.55 90.88 l S 194.31 88.73 m 197.94 82.43 l 190.67 82.43 l 194.31 88.73 l S 209.95 88.73 m 213.59 82.43 l 206.32 82.43 l 209.95 88.73 l S 240.29 88.73 m 243.93 82.43 l 236.66 82.43 l 240.29 88.73 l S 206.32 88.73 m 209.96 82.43 l 202.69 82.43 l 206.32 88.73 l S 178.59 88.73 m 182.23 82.43 l 174.95 82.43 l 178.59 88.73 l S 256.76 88.77 m 260.39 82.47 l 253.12 82.47 l 256.76 88.77 l S 184.51 88.73 m 188.15 82.43 l 180.88 82.43 l 184.51 88.73 l S 248.28 88.73 m 251.91 82.43 l 244.64 82.43 l 248.28 88.73 l S 201.82 88.73 m 205.46 82.43 l 198.19 82.43 l 201.82 88.73 l S 153.07 88.73 m 156.71 82.43 l 149.43 82.43 l 153.07 88.73 l S 206.64 88.73 m 210.28 82.43 l 203.01 82.43 l 206.64 88.73 l S 187.05 88.73 m 190.69 82.43 l 183.42 82.43 l 187.05 88.73 l S 224.17 88.73 m 227.81 82.43 l 220.54 82.43 l 224.17 88.73 l S 206.23 88.73 m 209.86 82.43 l 202.59 82.43 l 206.23 88.73 l S 229.64 88.73 m 233.27 82.43 l 226.00 82.43 l 229.64 88.73 l S 188.33 88.73 m 191.97 82.43 l 184.70 82.43 l 188.33 88.73 l S 205.05 88.73 m 208.69 82.43 l 201.41 82.43 l 205.05 88.73 l S 188.81 88.73 m 192.44 82.43 l 185.17 82.43 l 188.81 88.73 l S 208.70 88.73 m 212.34 82.43 l 205.07 82.43 l 208.70 88.73 l S 171.79 88.73 m 175.42 82.43 l 168.15 82.43 l 171.79 88.73 l S 130.98 113.99 m 134.62 107.70 l 127.35 107.70 l 130.98 113.99 l S 257.83 88.89 m 261.47 82.59 l 254.20 82.59 l 257.83 88.89 l S 157.45 88.73 m 161.08 82.43 l 153.81 82.43 l 157.45 88.73 l S 155.51 88.73 m 159.14 82.43 l 151.87 82.43 l 155.51 88.73 l S 164.26 88.73 m 167.90 82.43 l 160.62 82.43 l 164.26 88.73 l S 301.06 215.06 m 304.69 208.76 l 297.42 208.76 l 301.06 215.06 l S 218.78 88.73 m 222.42 82.43 l 215.15 82.43 l 218.78 88.73 l S 163.85 88.73 m 167.48 82.43 l 160.21 82.43 l 163.85 88.73 l S 130.41 116.16 m 134.05 109.86 l 126.77 109.86 l 130.41 116.16 l S 235.74 88.73 m 239.37 82.43 l 232.10 82.43 l 235.74 88.73 l S 199.85 88.73 m 203.48 82.43 l 196.21 82.43 l 199.85 88.73 l S 153.17 88.73 m 156.80 82.43 l 149.53 82.43 l 153.17 88.73 l S 208.47 88.73 m 212.10 82.43 l 204.83 82.43 l 208.47 88.73 l S 215.92 88.73 m 219.55 82.43 l 212.28 82.43 l 215.92 88.73 l S 148.86 89.01 m 152.50 82.72 l 145.23 82.72 l 148.86 89.01 l S 171.21 88.73 m 174.85 82.43 l 167.58 82.43 l 171.21 88.73 l S 190.51 88.73 m 194.15 82.43 l 186.88 82.43 l 190.51 88.73 l S 222.12 88.73 m 225.76 82.43 l 218.49 82.43 l 222.12 88.73 l S 259.68 89.10 m 263.32 82.80 l 256.04 82.80 l 259.68 89.10 l S 208.81 88.73 m 212.44 82.43 l 205.17 82.43 l 208.81 88.73 l S 209.56 88.73 m 213.20 82.43 l 205.92 82.43 l 209.56 88.73 l S 97.87 240.18 m 101.51 233.88 l 94.24 233.88 l 97.87 240.18 l S 163.69 88.73 m 167.32 82.43 l 160.05 82.43 l 163.69 88.73 l S 223.04 88.73 m 226.67 82.43 l 219.40 82.43 l 223.04 88.73 l S 221.34 88.73 m 224.97 82.43 l 217.70 82.43 l 221.34 88.73 l S 280.71 127.16 m 284.34 120.86 l 277.07 120.86 l 280.71 127.16 l S 200.52 88.73 m 204.15 82.43 l 196.88 82.43 l 200.52 88.73 l S 166.84 88.73 m 170.47 82.43 l 163.20 82.43 l 166.84 88.73 l S 202.24 88.73 m 205.88 82.43 l 198.60 82.43 l 202.24 88.73 l S 249.97 88.73 m 253.61 82.43 l 246.33 82.43 l 249.97 88.73 l S 212.28 88.73 m 215.91 82.43 l 208.64 82.43 l 212.28 88.73 l S 226.92 88.73 m 230.55 82.43 l 223.28 82.43 l 226.92 88.73 l S 265.23 91.43 m 268.87 85.13 l 261.59 85.13 l 265.23 91.43 l S 229.30 88.73 m 232.94 82.43 l 225.67 82.43 l 229.30 88.73 l S 150.58 88.77 m 154.22 82.47 l 146.94 82.47 l 150.58 88.77 l S 276.43 112.95 m 280.07 106.66 l 272.79 106.66 l 276.43 112.95 l S 210.58 88.73 m 214.22 82.43 l 206.94 82.43 l 210.58 88.73 l S 236.74 88.73 m 240.38 82.43 l 233.10 82.43 l 236.74 88.73 l S 229.45 88.73 m 233.09 82.43 l 225.81 82.43 l 229.45 88.73 l S 195.11 88.73 m 198.75 82.43 l 191.47 82.43 l 195.11 88.73 l S 178.18 88.73 m 181.81 82.43 l 174.54 82.43 l 178.18 88.73 l S 196.41 88.73 m 200.05 82.43 l 192.78 82.43 l 196.41 88.73 l S 283.94 139.98 m 287.58 133.68 l 280.31 133.68 l 283.94 139.98 l S 97.20 243.83 m 100.84 237.54 l 93.56 237.54 l 97.20 243.83 l S 174.51 88.73 m 178.14 82.43 l 170.87 82.43 l 174.51 88.73 l S 239.44 88.73 m 243.07 82.43 l 235.80 82.43 l 239.44 88.73 l S 290.45 167.67 m 294.09 161.37 l 286.81 161.37 l 290.45 167.67 l S 250.69 88.73 m 254.32 82.43 l 247.05 82.43 l 250.69 88.73 l S 139.66 94.42 m 143.30 88.12 l 136.02 88.12 l 139.66 94.42 l S 201.10 88.73 m 204.73 82.43 l 197.46 82.43 l 201.10 88.73 l S 188.34 88.73 m 191.98 82.43 l 184.70 82.43 l 188.34 88.73 l S 133.22 107.28 m 136.86 100.98 l 129.59 100.98 l 133.22 107.28 l S 180.74 88.73 m 184.38 82.43 l 177.11 82.43 l 180.74 88.73 l S 152.38 88.77 m 156.02 82.47 l 148.75 82.47 l 152.38 88.77 l S 193.78 88.73 m 197.41 82.43 l 190.14 82.43 l 193.78 88.73 l S 169.52 88.73 m 173.16 82.43 l 165.88 82.43 l 169.52 88.73 l S 128.14 122.90 m 131.77 116.60 l 124.50 116.60 l 128.14 122.90 l S 168.39 88.73 m 172.03 82.43 l 164.76 82.43 l 168.39 88.73 l S 164.16 88.73 m 167.80 82.43 l 160.52 82.43 l 164.16 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.89 82.43 l 202.53 88.73 l S 227.91 88.73 m 231.55 82.43 l 224.28 82.43 l 227.91 88.73 l S 228.32 88.73 m 231.96 82.43 l 224.68 82.43 l 228.32 88.73 l S 146.35 89.38 m 149.99 83.08 l 142.72 83.08 l 146.35 89.38 l S 195.51 88.73 m 199.14 82.43 l 191.87 82.43 l 195.51 88.73 l S 169.86 88.73 m 173.49 82.43 l 166.22 82.43 l 169.86 88.73 l S 201.54 88.73 m 205.17 82.43 l 197.90 82.43 l 201.54 88.73 l S 206.66 88.73 m 210.29 82.43 l 203.02 82.43 l 206.66 88.73 l S 94.35 277.85 m 97.98 271.55 l 90.71 271.55 l 94.35 277.85 l S 217.42 88.73 m 221.06 82.43 l 213.79 82.43 l 217.42 88.73 l S 213.63 88.73 m 217.26 82.43 l 209.99 82.43 l 213.63 88.73 l S 184.90 88.73 m 188.53 82.43 l 181.26 82.43 l 184.90 88.73 l S 267.48 93.82 m 271.12 87.52 l 263.85 87.52 l 267.48 93.82 l S 206.69 88.73 m 210.32 82.43 l 203.05 82.43 l 206.69 88.73 l S 225.89 88.73 m 229.52 82.43 l 222.25 82.43 l 225.89 88.73 l S 79.91 338.24 m 83.54 331.94 l 76.27 331.94 l 79.91 338.24 l S 269.33 96.36 m 272.96 90.06 l 265.69 90.06 l 269.33 96.36 l S 199.46 88.73 m 203.09 82.43 l 195.82 82.43 l 199.46 88.73 l S 175.53 88.73 m 179.16 82.43 l 171.89 82.43 l 175.53 88.73 l S 225.17 88.73 m 228.81 82.43 l 221.54 82.43 l 225.17 88.73 l S 93.26 287.94 m 96.90 281.64 l 89.63 281.64 l 93.26 287.94 l S 214.73 88.73 m 218.37 82.43 l 211.10 82.43 l 214.73 88.73 l S 250.78 88.73 m 254.42 82.43 l 247.15 82.43 l 250.78 88.73 l S 109.69 202.36 m 113.33 196.06 l 106.06 196.06 l 109.69 202.36 l S 194.71 88.73 m 198.35 82.43 l 191.08 82.43 l 194.71 88.73 l S 157.64 88.73 m 161.27 82.43 l 154.00 82.43 l 157.64 88.73 l S 282.44 133.12 m 286.07 126.82 l 278.80 126.82 l 282.44 133.12 l S 197.13 88.73 m 200.76 82.43 l 193.49 82.43 l 197.13 88.73 l S 213.10 88.73 m 216.74 82.43 l 209.47 82.43 l 213.10 88.73 l S 227.39 88.73 m 231.03 82.43 l 223.76 82.43 l 227.39 88.73 l S 211.14 88.73 m 214.77 82.43 l 207.50 82.43 l 211.14 88.73 l S 179.85 88.73 m 183.49 82.43 l 176.22 82.43 l 179.85 88.73 l S 207.59 88.73 m 211.23 82.43 l 203.96 82.43 l 207.59 88.73 l S 184.93 88.73 m 188.57 82.43 l 181.30 82.43 l 184.93 88.73 l S 214.59 88.73 m 218.23 82.43 l 210.96 82.43 l 214.59 88.73 l S 156.35 88.73 m 159.98 82.43 l 152.71 82.43 l 156.35 88.73 l S 161.16 88.73 m 164.79 82.43 l 157.52 82.43 l 161.16 88.73 l S 184.29 88.73 m 187.92 82.43 l 180.65 82.43 l 184.29 88.73 l S 96.43 250.02 m 100.07 243.72 l 92.79 243.72 l 96.43 250.02 l S 158.42 88.73 m 162.05 82.43 l 154.78 82.43 l 158.42 88.73 l S 272.95 103.80 m 276.59 97.51 l 269.31 97.51 l 272.95 103.80 l S 234.59 88.73 m 238.22 82.43 l 230.95 82.43 l 234.59 88.73 l S 267.39 93.73 m 271.03 87.43 l 263.76 87.43 l 267.39 93.73 l S 236.67 88.73 m 240.31 82.43 l 233.04 82.43 l 236.67 88.73 l S 294.63 186.31 m 298.26 180.01 l 290.99 180.01 l 294.63 186.31 l S 202.36 88.73 m 206.00 82.43 l 198.72 82.43 l 202.36 88.73 l S 234.33 88.73 m 237.97 82.43 l 230.70 82.43 l 234.33 88.73 l S 297.98 202.36 m 301.62 196.06 l 294.35 196.06 l 297.98 202.36 l S 128.31 122.34 m 131.94 116.04 l 124.67 116.04 l 128.31 122.34 l S 213.52 88.73 m 217.15 82.43 l 209.88 82.43 l 213.52 88.73 l S 187.20 88.73 m 190.83 82.43 l 183.56 82.43 l 187.20 88.73 l S 192.87 88.73 m 196.50 82.43 l 189.23 82.43 l 192.87 88.73 l S 227.61 88.73 m 231.25 82.43 l 223.98 82.43 l 227.61 88.73 l S 164.04 88.73 m 167.67 82.43 l 160.40 82.43 l 164.04 88.73 l S 221.70 88.73 m 225.34 82.43 l 218.07 82.43 l 221.70 88.73 l S 230.46 88.73 m 234.10 82.43 l 226.83 82.43 l 230.46 88.73 l S 151.81 88.77 m 155.44 82.47 l 148.17 82.47 l 151.81 88.77 l S 261.39 89.38 m 265.03 83.08 l 257.75 83.08 l 261.39 89.38 l S 192.19 88.73 m 195.82 82.43 l 188.55 82.43 l 192.19 88.73 l S 118.06 164.90 m 121.70 158.60 l 114.43 158.60 l 118.06 164.90 l S 202.66 88.73 m 206.30 82.43 l 199.02 82.43 l 202.66 88.73 l S 180.96 88.73 m 184.60 82.43 l 177.33 82.43 l 180.96 88.73 l S 205.39 88.73 m 209.02 82.43 l 201.75 82.43 l 205.39 88.73 l S 249.29 88.73 m 252.92 82.43 l 245.65 82.43 l 249.29 88.73 l S 92.34 294.13 m 95.97 287.83 l 88.70 287.83 l 92.34 294.13 l S 207.08 88.73 m 210.71 82.43 l 203.44 82.43 l 207.08 88.73 l S 210.91 88.73 m 214.55 82.43 l 207.27 82.43 l 210.91 88.73 l S 204.18 88.73 m 207.82 82.43 l 200.55 82.43 l 204.18 88.73 l S 217.59 88.73 m 221.23 82.43 l 213.96 82.43 l 217.59 88.73 l S 214.76 88.73 m 218.40 82.43 l 211.12 82.43 l 214.76 88.73 l S 227.20 88.73 m 230.84 82.43 l 223.57 82.43 l 227.20 88.73 l S 228.52 88.73 m 232.16 82.43 l 224.88 82.43 l 228.52 88.73 l S 130.55 115.61 m 134.18 109.31 l 126.91 109.31 l 130.55 115.61 l S 196.13 88.73 m 199.76 82.43 l 192.49 82.43 l 196.13 88.73 l S 208.10 88.73 m 211.74 82.43 l 204.46 82.43 l 208.10 88.73 l S 232.48 88.73 m 236.12 82.43 l 228.85 82.43 l 232.48 88.73 l S 187.18 88.73 m 190.82 82.43 l 183.54 82.43 l 187.18 88.73 l S 210.63 88.73 m 214.27 82.43 l 206.99 82.43 l 210.63 88.73 l S 200.41 88.73 m 204.05 82.43 l 196.78 82.43 l 200.41 88.73 l S 132.75 109.04 m 136.39 102.74 l 129.12 102.74 l 132.75 109.04 l S 266.10 91.91 m 269.73 85.61 l 262.46 85.61 l 266.10 91.91 l S 198.90 88.73 m 202.53 82.43 l 195.26 82.43 l 198.90 88.73 l S 218.37 88.73 m 222.00 82.43 l 214.73 82.43 l 218.37 88.73 l S 163.27 88.73 m 166.91 82.43 l 159.64 82.43 l 163.27 88.73 l S 201.59 88.73 m 205.23 82.43 l 197.96 82.43 l 201.59 88.73 l S 233.32 88.73 m 236.95 82.43 l 229.68 82.43 l 233.32 88.73 l S 183.32 88.73 m 186.96 82.43 l 179.69 82.43 l 183.32 88.73 l S 123.92 139.70 m 127.56 133.40 l 120.28 133.40 l 123.92 139.70 l S 116.22 170.95 m 119.85 164.65 l 112.58 164.65 l 116.22 170.95 l S 184.90 88.73 m 188.53 82.43 l 181.26 82.43 l 184.90 88.73 l S 253.20 88.73 m 256.83 82.43 l 249.56 82.43 l 253.20 88.73 l S 207.04 88.73 m 210.67 82.43 l 203.40 82.43 l 207.04 88.73 l S 220.15 88.73 m 223.79 82.43 l 216.51 82.43 l 220.15 88.73 l S 194.76 88.73 m 198.40 82.43 l 191.13 82.43 l 194.76 88.73 l S 195.26 88.73 m 198.89 82.43 l 191.62 82.43 l 195.26 88.73 l S 160.68 88.73 m 164.32 82.43 l 157.05 82.43 l 160.68 88.73 l S 199.78 88.73 m 203.42 82.43 l 196.15 82.43 l 199.78 88.73 l S 192.20 88.73 m 195.83 82.43 l 188.56 82.43 l 192.20 88.73 l S 221.32 88.73 m 224.95 82.43 l 217.68 82.43 l 221.32 88.73 l S 224.88 88.73 m 228.52 82.43 l 221.24 82.43 l 224.88 88.73 l S 258.31 88.93 m 261.94 82.64 l 254.67 82.64 l 258.31 88.93 l S 242.32 88.73 m 245.96 82.43 l 238.69 82.43 l 242.32 88.73 l S 275.06 109.24 m 278.69 102.94 l 271.42 102.94 l 275.06 109.24 l S 233.04 88.73 m 236.68 82.43 l 229.41 82.43 l 233.04 88.73 l S 153.55 88.73 m 157.18 82.43 l 149.91 82.43 l 153.55 88.73 l S 209.48 88.73 m 213.11 82.43 l 205.84 82.43 l 209.48 88.73 l S 228.00 88.73 m 231.63 82.43 l 224.36 82.43 l 228.00 88.73 l S 233.12 88.73 m 236.75 82.43 l 229.48 82.43 l 233.12 88.73 l S 239.77 88.73 m 243.41 82.43 l 236.14 82.43 l 239.77 88.73 l S 227.57 88.73 m 231.21 82.43 l 223.94 82.43 l 227.57 88.73 l S 219.96 88.73 m 223.60 82.43 l 216.32 82.43 l 219.96 88.73 l S 178.39 88.73 m 182.02 82.43 l 174.75 82.43 l 178.39 88.73 l S 257.39 88.77 m 261.02 82.47 l 253.75 82.47 l 257.39 88.77 l S 226.29 88.73 m 229.92 82.43 l 222.65 82.43 l 226.29 88.73 l S 198.78 88.73 m 202.42 82.43 l 195.15 82.43 l 198.78 88.73 l S 231.25 88.73 m 234.88 82.43 l 227.61 82.43 l 231.25 88.73 l S 235.72 88.73 m 239.35 82.43 l 232.08 82.43 l 235.72 88.73 l S 199.03 88.73 m 202.67 82.43 l 195.39 82.43 l 199.03 88.73 l S 172.54 88.73 m 176.17 82.43 l 168.90 82.43 l 172.54 88.73 l S 289.20 163.32 m 292.83 157.03 l 285.56 157.03 l 289.20 163.32 l S 182.59 88.73 m 186.22 82.43 l 178.95 82.43 l 182.59 88.73 l S 230.58 88.73 m 234.22 82.43 l 226.95 82.43 l 230.58 88.73 l S 199.53 88.73 m 203.17 82.43 l 195.90 82.43 l 199.53 88.73 l S 113.49 185.86 m 117.12 179.56 l 109.85 179.56 l 113.49 185.86 l S 175.01 88.73 m 178.64 82.43 l 171.37 82.43 l 175.01 88.73 l S 201.37 88.73 m 205.01 82.43 l 197.73 82.43 l 201.37 88.73 l S 184.72 88.73 m 188.35 82.43 l 181.08 82.43 l 184.72 88.73 l S 209.17 88.73 m 212.80 82.43 l 205.53 82.43 l 209.17 88.73 l S 255.60 88.77 m 259.23 82.47 l 251.96 82.47 l 255.60 88.77 l S 237.35 88.73 m 240.99 82.43 l 233.71 82.43 l 237.35 88.73 l S 185.24 88.73 m 188.87 82.43 l 181.60 82.43 l 185.24 88.73 l S 231.30 88.73 m 234.94 82.43 l 227.66 82.43 l 231.30 88.73 l S 229.17 88.73 m 232.81 82.43 l 225.53 82.43 l 229.17 88.73 l S 216.75 88.73 m 220.39 82.43 l 213.11 82.43 l 216.75 88.73 l S 198.45 88.73 m 202.09 82.43 l 194.81 82.43 l 198.45 88.73 l S 186.32 88.73 m 189.96 82.43 l 182.69 82.43 l 186.32 88.73 l S 223.69 88.73 m 227.32 82.43 l 220.05 82.43 l 223.69 88.73 l S 189.97 88.73 m 193.61 82.43 l 186.33 82.43 l 189.97 88.73 l S 180.97 88.73 m 184.61 82.43 l 177.33 82.43 l 180.97 88.73 l S 144.43 90.29 m 148.07 83.99 l 140.80 83.99 l 144.43 90.29 l S 99.60 238.47 m 103.23 232.17 l 95.96 232.17 l 99.60 238.47 l S 169.65 88.73 m 173.29 82.43 l 166.02 82.43 l 169.65 88.73 l S 260.53 89.30 m 264.16 83.00 l 256.89 83.00 l 260.53 89.30 l S 206.31 88.73 m 209.94 82.43 l 202.67 82.43 l 206.31 88.73 l S 192.22 88.73 m 195.86 82.43 l 188.59 82.43 l 192.22 88.73 l S 175.43 88.73 m 179.06 82.43 l 171.79 82.43 l 175.43 88.73 l S 238.47 88.73 m 242.11 82.43 l 234.84 82.43 l 238.47 88.73 l S 199.10 88.73 m 202.73 82.43 l 195.46 82.43 l 199.10 88.73 l S 280.74 127.37 m 284.38 121.07 l 277.11 121.07 l 280.74 127.37 l S 273.75 105.29 m 277.39 98.99 l 270.11 98.99 l 273.75 105.29 l S 205.17 88.73 m 208.81 82.43 l 201.53 82.43 l 205.17 88.73 l S 178.22 88.73 m 181.86 82.43 l 174.59 82.43 l 178.22 88.73 l S 145.52 89.63 m 149.15 83.33 l 141.88 83.33 l 145.52 89.63 l S 147.86 89.18 m 151.50 82.88 l 144.23 82.88 l 147.86 89.18 l S 159.89 88.73 m 163.53 82.43 l 156.26 82.43 l 159.89 88.73 l S 162.44 88.73 m 166.08 82.43 l 158.80 82.43 l 162.44 88.73 l S 197.43 88.73 m 201.06 82.43 l 193.79 82.43 l 197.43 88.73 l S 177.06 88.73 m 180.70 82.43 l 173.43 82.43 l 177.06 88.73 l S 217.47 88.73 m 221.11 82.43 l 213.84 82.43 l 217.47 88.73 l S 170.21 88.73 m 173.85 82.43 l 166.58 82.43 l 170.21 88.73 l S 167.28 88.73 m 170.91 82.43 l 163.64 82.43 l 167.28 88.73 l S 203.49 88.73 m 207.13 82.43 l 199.85 82.43 l 203.49 88.73 l S 242.36 88.73 m 246.00 82.43 l 238.73 82.43 l 242.36 88.73 l S 242.70 88.73 m 246.33 82.43 l 239.06 82.43 l 242.70 88.73 l S 171.01 88.73 m 174.65 82.43 l 167.38 82.43 l 171.01 88.73 l S 205.35 88.73 m 208.99 82.43 l 201.72 82.43 l 205.35 88.73 l S 230.58 88.73 m 234.21 82.43 l 226.94 82.43 l 230.58 88.73 l S 223.67 88.73 m 227.31 82.43 l 220.04 82.43 l 223.67 88.73 l S 179.07 88.73 m 182.71 82.43 l 175.44 82.43 l 179.07 88.73 l S 213.46 88.73 m 217.10 82.43 l 209.83 82.43 l 213.46 88.73 l S 178.06 88.73 m 181.69 82.43 l 174.42 82.43 l 178.06 88.73 l S 142.78 91.13 m 146.41 84.83 l 139.14 84.83 l 142.78 91.13 l S 239.21 88.73 m 242.84 82.43 l 235.57 82.43 l 239.21 88.73 l S 207.74 88.73 m 211.38 82.43 l 204.10 82.43 l 207.74 88.73 l S 213.01 88.73 m 216.64 82.43 l 209.37 82.43 l 213.01 88.73 l S 179.96 88.73 m 183.60 82.43 l 176.32 82.43 l 179.96 88.73 l S 163.30 88.73 m 166.93 82.43 l 159.66 82.43 l 163.30 88.73 l S 174.43 88.73 m 178.07 82.43 l 170.80 82.43 l 174.43 88.73 l S 206.43 88.73 m 210.07 82.43 l 202.79 82.43 l 206.43 88.73 l S 205.47 88.73 m 209.10 82.43 l 201.83 82.43 l 205.47 88.73 l S 133.58 106.34 m 137.22 100.04 l 129.94 100.04 l 133.58 106.34 l S 156.90 88.73 m 160.53 82.43 l 153.26 82.43 l 156.90 88.73 l S 213.99 88.73 m 217.63 82.43 l 210.36 82.43 l 213.99 88.73 l S 186.42 88.73 m 190.05 82.43 l 182.78 82.43 l 186.42 88.73 l S 126.29 129.75 m 129.93 123.45 l 122.66 123.45 l 126.29 129.75 l S 211.52 88.73 m 215.16 82.43 l 207.88 82.43 l 211.52 88.73 l S 233.75 88.73 m 237.38 82.43 l 230.11 82.43 l 233.75 88.73 l S 272.45 102.26 m 276.09 95.96 l 268.82 95.96 l 272.45 102.26 l S 223.82 88.73 m 227.46 82.43 l 220.19 82.43 l 223.82 88.73 l S 227.44 88.73 m 231.08 82.43 l 223.80 82.43 l 227.44 88.73 l S 213.65 88.73 m 217.28 82.43 l 210.01 82.43 l 213.65 88.73 l S 188.83 88.73 m 192.47 82.43 l 185.20 82.43 l 188.83 88.73 l S 207.27 88.73 m 210.90 82.43 l 203.63 82.43 l 207.27 88.73 l S 172.85 88.73 m 176.49 82.43 l 169.22 82.43 l 172.85 88.73 l S 197.52 88.73 m 201.16 82.43 l 193.88 82.43 l 197.52 88.73 l S 218.00 88.73 m 221.63 82.43 l 214.36 82.43 l 218.00 88.73 l S 228.03 88.73 m 231.67 82.43 l 224.40 82.43 l 228.03 88.73 l S 217.06 88.73 m 220.70 82.43 l 213.43 82.43 l 217.06 88.73 l S 266.70 92.74 m 270.34 86.44 l 263.06 86.44 l 266.70 92.74 l S 155.76 88.73 m 159.40 82.43 l 152.13 82.43 l 155.76 88.73 l S 179.85 88.73 m 183.48 82.43 l 176.21 82.43 l 179.85 88.73 l S 188.94 88.73 m 192.57 82.43 l 185.30 82.43 l 188.94 88.73 l S 193.22 88.73 m 196.86 82.43 l 189.59 82.43 l 193.22 88.73 l S 133.63 106.15 m 137.27 99.85 l 129.99 99.85 l 133.63 106.15 l S 228.44 88.73 m 232.08 82.43 l 224.81 82.43 l 228.44 88.73 l S 255.71 88.77 m 259.34 82.47 l 252.07 82.47 l 255.71 88.77 l S 170.95 88.73 m 174.59 82.43 l 167.31 82.43 l 170.95 88.73 l S 274.45 107.09 m 278.09 100.79 l 270.81 100.79 l 274.45 107.09 l S 185.66 88.73 m 189.29 82.43 l 182.02 82.43 l 185.66 88.73 l S 163.85 88.73 m 167.49 82.43 l 160.22 82.43 l 163.85 88.73 l S 192.37 88.73 m 196.01 82.43 l 188.73 82.43 l 192.37 88.73 l S 201.19 88.73 m 204.83 82.43 l 197.55 82.43 l 201.19 88.73 l S 200.45 88.73 m 204.09 82.43 l 196.82 82.43 l 200.45 88.73 l S 238.21 88.73 m 241.85 82.43 l 234.58 82.43 l 238.21 88.73 l S 207.26 88.73 m 210.90 82.43 l 203.63 82.43 l 207.26 88.73 l S 247.52 88.73 m 251.16 82.43 l 243.88 82.43 l 247.52 88.73 l S 155.64 88.73 m 159.28 82.43 l 152.00 82.43 l 155.64 88.73 l S 244.30 88.73 m 247.93 82.43 l 240.66 82.43 l 244.30 88.73 l S 196.48 88.73 m 200.11 82.43 l 192.84 82.43 l 196.48 88.73 l S 207.35 88.73 m 210.98 82.43 l 203.71 82.43 l 207.35 88.73 l S 271.60 100.18 m 275.23 93.88 l 267.96 93.88 l 271.60 100.18 l S 248.97 88.73 m 252.61 82.43 l 245.33 82.43 l 248.97 88.73 l S 189.85 88.73 m 193.49 82.43 l 186.21 82.43 l 189.85 88.73 l S 120.33 154.78 m 123.97 148.48 l 116.70 148.48 l 120.33 154.78 l S 201.77 88.73 m 205.41 82.43 l 198.13 82.43 l 201.77 88.73 l S 239.23 88.73 m 242.87 82.43 l 235.59 82.43 l 239.23 88.73 l S 207.53 88.73 m 211.17 82.43 l 203.89 82.43 l 207.53 88.73 l S 213.19 88.73 m 216.83 82.43 l 209.56 82.43 l 213.19 88.73 l S 212.01 88.73 m 215.65 82.43 l 208.38 82.43 l 212.01 88.73 l S 204.25 88.73 m 207.89 82.43 l 200.61 82.43 l 204.25 88.73 l S 178.53 88.73 m 182.17 82.43 l 174.90 82.43 l 178.53 88.73 l S 136.47 99.23 m 140.11 92.93 l 132.84 92.93 l 136.47 99.23 l S 181.96 88.73 m 185.60 82.43 l 178.32 82.43 l 181.96 88.73 l S 160.70 88.73 m 164.34 82.43 l 157.07 82.43 l 160.70 88.73 l S 234.10 88.73 m 237.74 82.43 l 230.47 82.43 l 234.10 88.73 l S 208.24 88.73 m 211.88 82.43 l 204.61 82.43 l 208.24 88.73 l S 179.76 88.73 m 183.39 82.43 l 176.12 82.43 l 179.76 88.73 l S 231.85 88.73 m 235.49 82.43 l 228.21 82.43 l 231.85 88.73 l S 222.65 88.73 m 226.29 82.43 l 219.01 82.43 l 222.65 88.73 l S 204.24 88.73 m 207.87 82.43 l 200.60 82.43 l 204.24 88.73 l S 186.67 88.73 m 190.31 82.43 l 183.03 82.43 l 186.67 88.73 l S 201.89 88.73 m 205.53 82.43 l 198.26 82.43 l 201.89 88.73 l S 190.74 88.73 m 194.38 82.43 l 187.10 82.43 l 190.74 88.73 l S 246.85 88.73 m 250.49 82.43 l 243.22 82.43 l 246.85 88.73 l S 197.49 88.73 m 201.13 82.43 l 193.86 82.43 l 197.49 88.73 l S 234.86 88.73 m 238.49 82.43 l 231.22 82.43 l 234.86 88.73 l S 227.19 88.73 m 230.83 82.43 l 223.55 82.43 l 227.19 88.73 l S 180.15 88.73 m 183.79 82.43 l 176.52 82.43 l 180.15 88.73 l S 186.05 88.73 m 189.69 82.43 l 182.42 82.43 l 186.05 88.73 l S 101.17 232.28 m 104.81 225.99 l 97.54 225.99 l 101.17 232.28 l S 222.33 88.73 m 225.97 82.43 l 218.70 82.43 l 222.33 88.73 l S 155.34 88.73 m 158.97 82.43 l 151.70 82.43 l 155.34 88.73 l S 200.94 88.73 m 204.58 82.43 l 197.30 82.43 l 200.94 88.73 l S 213.69 88.73 m 217.33 82.43 l 210.06 82.43 l 213.69 88.73 l S 202.23 88.73 m 205.87 82.43 l 198.59 82.43 l 202.23 88.73 l S 180.66 88.73 m 184.29 82.43 l 177.02 82.43 l 180.66 88.73 l S 155.98 88.73 m 159.61 82.43 l 152.34 82.43 l 155.98 88.73 l S 210.89 88.73 m 214.53 82.43 l 207.26 82.43 l 210.89 88.73 l S 191.95 88.73 m 195.58 82.43 l 188.31 82.43 l 191.95 88.73 l S 199.85 88.73 m 203.49 82.43 l 196.22 82.43 l 199.85 88.73 l S 165.69 88.73 m 169.33 82.43 l 162.06 82.43 l 165.69 88.73 l S 230.22 88.73 m 233.86 82.43 l 226.58 82.43 l 230.22 88.73 l S 211.51 88.73 m 215.15 82.43 l 207.88 82.43 l 211.51 88.73 l S 164.90 88.73 m 168.54 82.43 l 161.26 82.43 l 164.90 88.73 l S 180.23 88.73 m 183.87 82.43 l 176.60 82.43 l 180.23 88.73 l S 181.47 88.73 m 185.10 82.43 l 177.83 82.43 l 181.47 88.73 l S 155.77 88.73 m 159.41 82.43 l 152.13 82.43 l 155.77 88.73 l S 148.42 89.10 m 152.06 82.80 l 144.78 82.80 l 148.42 89.10 l S 149.53 88.93 m 153.17 82.64 l 145.90 82.64 l 149.53 88.93 l S 184.82 88.73 m 188.46 82.43 l 181.19 82.43 l 184.82 88.73 l S 176.39 88.73 m 180.03 82.43 l 172.76 82.43 l 176.39 88.73 l S 127.39 126.02 m 131.02 119.73 l 123.75 119.73 l 127.39 126.02 l S 197.35 88.73 m 200.99 82.43 l 193.72 82.43 l 197.35 88.73 l S 158.13 88.73 m 161.77 82.43 l 154.50 82.43 l 158.13 88.73 l S 210.32 88.73 m 213.96 82.43 l 206.68 82.43 l 210.32 88.73 l S 191.22 88.73 m 194.86 82.43 l 187.59 82.43 l 191.22 88.73 l S 141.64 92.08 m 145.27 85.78 l 138.00 85.78 l 141.64 92.08 l S 247.50 88.73 m 251.14 82.43 l 243.86 82.43 l 247.50 88.73 l S 251.63 88.73 m 255.26 82.43 l 247.99 82.43 l 251.63 88.73 l S 185.78 88.73 m 189.42 82.43 l 182.14 82.43 l 185.78 88.73 l S 191.97 88.73 m 195.61 82.43 l 188.34 82.43 l 191.97 88.73 l S 191.09 88.73 m 194.73 82.43 l 187.45 82.43 l 191.09 88.73 l S 213.25 88.73 m 216.88 82.43 l 209.61 82.43 l 213.25 88.73 l S 188.44 88.73 m 192.08 82.43 l 184.81 82.43 l 188.44 88.73 l S 202.60 88.73 m 206.24 82.43 l 198.97 82.43 l 202.60 88.73 l S 243.32 88.73 m 246.96 82.43 l 239.69 82.43 l 243.32 88.73 l S 258.04 88.89 m 261.67 82.59 l 254.40 82.59 l 258.04 88.89 l S 212.24 88.73 m 215.88 82.43 l 208.60 82.43 l 212.24 88.73 l S 159.93 88.73 m 163.57 82.43 l 156.29 82.43 l 159.93 88.73 l S 196.47 88.73 m 200.11 82.43 l 192.83 82.43 l 196.47 88.73 l S 259.83 89.18 m 263.46 82.88 l 256.19 82.88 l 259.83 89.18 l S 199.31 88.73 m 202.95 82.43 l 195.68 82.43 l 199.31 88.73 l S 187.11 88.73 m 190.75 82.43 l 183.47 82.43 l 187.11 88.73 l S 281.54 129.75 m 285.17 123.45 l 277.90 123.45 l 281.54 129.75 l S 132.49 109.58 m 136.13 103.28 l 128.86 103.28 l 132.49 109.58 l S 164.09 88.73 m 167.72 82.43 l 160.45 82.43 l 164.09 88.73 l S 171.15 88.73 m 174.78 82.43 l 167.51 82.43 l 171.15 88.73 l S 233.22 88.73 m 236.86 82.43 l 229.59 82.43 l 233.22 88.73 l S 239.53 88.73 m 243.16 82.43 l 235.89 82.43 l 239.53 88.73 l S 226.34 88.73 m 229.98 82.43 l 222.71 82.43 l 226.34 88.73 l S 208.74 88.73 m 212.37 82.43 l 205.10 82.43 l 208.74 88.73 l S 205.29 88.73 m 208.93 82.43 l 201.66 82.43 l 205.29 88.73 l S 179.03 88.73 m 182.67 82.43 l 175.39 82.43 l 179.03 88.73 l S 190.93 88.73 m 194.56 82.43 l 187.29 82.43 l 190.93 88.73 l S 189.93 88.73 m 193.56 82.43 l 186.29 82.43 l 189.93 88.73 l S 121.97 149.16 m 125.61 142.86 l 118.34 142.86 l 121.97 149.16 l S 208.62 88.73 m 212.25 82.43 l 204.98 82.43 l 208.62 88.73 l S 153.80 88.73 m 157.44 82.43 l 150.17 82.43 l 153.80 88.73 l S 172.57 88.73 m 176.21 82.43 l 168.93 82.43 l 172.57 88.73 l S 221.31 88.73 m 224.94 82.43 l 217.67 82.43 l 221.31 88.73 l S 230.23 88.73 m 233.86 82.43 l 226.59 82.43 l 230.23 88.73 l S 186.97 88.73 m 190.61 82.43 l 183.34 82.43 l 186.97 88.73 l S 88.11 310.41 m 91.75 304.11 l 84.47 304.11 l 88.11 310.41 l S 234.12 88.73 m 237.75 82.43 l 230.48 82.43 l 234.12 88.73 l S 197.14 88.73 m 200.78 82.43 l 193.51 82.43 l 197.14 88.73 l S 137.03 98.15 m 140.66 91.85 l 133.39 91.85 l 137.03 98.15 l S 250.77 88.73 m 254.40 82.43 l 247.13 82.43 l 250.77 88.73 l S 263.18 90.25 m 266.82 83.95 l 259.54 83.95 l 263.18 90.25 l S 145.00 90.00 m 148.64 83.70 l 141.37 83.70 l 145.00 90.00 l S 157.47 88.73 m 161.11 82.43 l 153.84 82.43 l 157.47 88.73 l S 182.61 88.73 m 186.24 82.43 l 178.97 82.43 l 182.61 88.73 l S 238.23 88.73 m 241.86 82.43 l 234.59 82.43 l 238.23 88.73 l S 217.27 88.73 m 220.90 82.43 l 213.63 82.43 l 217.27 88.73 l S 230.84 88.73 m 234.48 82.43 l 227.20 82.43 l 230.84 88.73 l S 196.50 88.73 m 200.14 82.43 l 192.87 82.43 l 196.50 88.73 l S 146.22 89.42 m 149.85 83.12 l 142.58 83.12 l 146.22 89.42 l S 119.54 158.94 m 123.17 152.64 l 115.90 152.64 l 119.54 158.94 l S 212.89 88.73 m 216.52 82.43 l 209.25 82.43 l 212.89 88.73 l S 198.14 88.73 m 201.78 82.43 l 194.51 82.43 l 198.14 88.73 l S 171.16 88.73 m 174.80 82.43 l 167.52 82.43 l 171.16 88.73 l S 125.32 133.12 m 128.95 126.82 l 121.68 126.82 l 125.32 133.12 l S 181.13 88.73 m 184.77 82.43 l 177.49 82.43 l 181.13 88.73 l S 168.88 88.73 m 172.52 82.43 l 165.25 82.43 l 168.88 88.73 l S 171.28 88.73 m 174.91 82.43 l 167.64 82.43 l 171.28 88.73 l S 235.53 88.73 m 239.17 82.43 l 231.90 82.43 l 235.53 88.73 l S 217.67 88.73 m 221.30 82.43 l 214.03 82.43 l 217.67 88.73 l S 197.26 88.73 m 200.89 82.43 l 193.62 82.43 l 197.26 88.73 l S 130.45 116.16 m 134.08 109.86 l 126.81 109.86 l 130.45 116.16 l S 156.36 88.73 m 159.99 82.43 l 152.72 82.43 l 156.36 88.73 l S 245.64 88.73 m 249.28 82.43 l 242.00 82.43 l 245.64 88.73 l S 218.11 88.73 m 221.75 82.43 l 214.48 82.43 l 218.11 88.73 l S 194.04 88.73 m 197.67 82.43 l 190.40 82.43 l 194.04 88.73 l S 164.27 88.73 m 167.90 82.43 l 160.63 82.43 l 164.27 88.73 l S 217.28 88.73 m 220.91 82.43 l 213.64 82.43 l 217.28 88.73 l S 199.67 88.73 m 203.30 82.43 l 196.03 82.43 l 199.67 88.73 l S 223.55 88.73 m 227.19 82.43 l 219.92 82.43 l 223.55 88.73 l S 104.98 220.02 m 108.62 213.73 l 101.34 213.73 l 104.98 220.02 l S 171.97 88.73 m 175.61 82.43 l 168.33 82.43 l 171.97 88.73 l S 223.72 88.73 m 227.36 82.43 l 220.08 82.43 l 223.72 88.73 l S 196.31 88.73 m 199.95 82.43 l 192.68 82.43 l 196.31 88.73 l S 181.04 88.73 m 184.68 82.43 l 177.40 82.43 l 181.04 88.73 l S 254.70 88.73 m 258.34 82.43 l 251.06 82.43 l 254.70 88.73 l S 224.99 88.73 m 228.62 82.43 l 221.35 82.43 l 224.99 88.73 l S 211.91 88.73 m 215.54 82.43 l 208.27 82.43 l 211.91 88.73 l S 221.27 88.73 m 224.90 82.43 l 217.63 82.43 l 221.27 88.73 l S 174.94 88.73 m 178.57 82.43 l 171.30 82.43 l 174.94 88.73 l S 282.29 132.64 m 285.92 126.34 l 278.65 126.34 l 282.29 132.64 l S 225.37 88.73 m 229.00 82.43 l 221.73 82.43 l 225.37 88.73 l S 234.12 88.73 m 237.75 82.43 l 230.48 82.43 l 234.12 88.73 l S 126.96 127.47 m 130.60 121.18 l 123.32 121.18 l 126.96 127.47 l S 174.88 88.73 m 178.52 82.43 l 171.24 82.43 l 174.88 88.73 l S 257.63 88.85 m 261.27 82.55 l 254.00 82.55 l 257.63 88.85 l S 213.05 88.73 m 216.69 82.43 l 209.42 82.43 l 213.05 88.73 l S 234.15 88.73 m 237.79 82.43 l 230.52 82.43 l 234.15 88.73 l S 203.58 88.73 m 207.22 82.43 l 199.94 82.43 l 203.58 88.73 l S 213.60 88.73 m 217.23 82.43 l 209.96 82.43 l 213.60 88.73 l S 157.42 88.73 m 161.06 82.43 l 153.78 82.43 l 157.42 88.73 l S 271.56 100.07 m 275.19 93.77 l 267.92 93.77 l 271.56 100.07 l S 152.62 88.77 m 156.25 82.47 l 148.98 82.47 l 152.62 88.77 l S 279.21 121.69 m 282.84 115.39 l 275.57 115.39 l 279.21 121.69 l S 176.76 88.73 m 180.40 82.43 l 173.13 82.43 l 176.76 88.73 l S 214.56 88.73 m 218.20 82.43 l 210.93 82.43 l 214.56 88.73 l S 221.27 88.73 m 224.90 82.43 l 217.63 82.43 l 221.27 88.73 l S 236.30 88.73 m 239.94 82.43 l 232.67 82.43 l 236.30 88.73 l S 284.21 141.45 m 287.84 135.15 l 280.57 135.15 l 284.21 141.45 l S 199.51 88.73 m 203.15 82.43 l 195.87 82.43 l 199.51 88.73 l S 218.92 88.73 m 222.56 82.43 l 215.29 82.43 l 218.92 88.73 l S 176.93 88.73 m 180.57 82.43 l 173.30 82.43 l 176.93 88.73 l S 201.03 88.73 m 204.67 82.43 l 197.39 82.43 l 201.03 88.73 l S 214.18 88.73 m 217.82 82.43 l 210.55 82.43 l 214.18 88.73 l S 220.66 88.73 m 224.30 82.43 l 217.03 82.43 l 220.66 88.73 l S 229.13 88.73 m 232.76 82.43 l 225.49 82.43 l 229.13 88.73 l S 214.16 88.73 m 217.80 82.43 l 210.53 82.43 l 214.16 88.73 l S 231.28 88.73 m 234.91 82.43 l 227.64 82.43 l 231.28 88.73 l S 272.03 101.04 m 275.66 94.74 l 268.39 94.74 l 272.03 101.04 l S 208.47 88.73 m 212.10 82.43 l 204.83 82.43 l 208.47 88.73 l S 235.81 88.73 m 239.45 82.43 l 232.18 82.43 l 235.81 88.73 l S 222.95 88.73 m 226.59 82.43 l 219.31 82.43 l 222.95 88.73 l S 164.45 88.73 m 168.08 82.43 l 160.81 82.43 l 164.45 88.73 l S 268.02 94.32 m 271.65 88.03 l 264.38 88.03 l 268.02 94.32 l S 239.97 88.73 m 243.61 82.43 l 236.34 82.43 l 239.97 88.73 l S 313.17 277.85 m 316.80 271.55 l 309.53 271.55 l 313.17 277.85 l S 202.58 88.73 m 206.21 82.43 l 198.94 82.43 l 202.58 88.73 l S 219.20 88.73 m 222.83 82.43 l 215.56 82.43 l 219.20 88.73 l S 206.24 88.73 m 209.88 82.43 l 202.61 82.43 l 206.24 88.73 l S 292.10 174.87 m 295.73 168.57 l 288.46 168.57 l 292.10 174.87 l S 265.11 91.22 m 268.75 84.92 l 261.47 84.92 l 265.11 91.22 l S 193.39 88.73 m 197.03 82.43 l 189.76 82.43 l 193.39 88.73 l S 224.34 88.73 m 227.97 82.43 l 220.70 82.43 l 224.34 88.73 l S 165.91 88.73 m 169.55 82.43 l 162.27 82.43 l 165.91 88.73 l S 201.48 88.73 m 205.12 82.43 l 197.85 82.43 l 201.48 88.73 l S 218.46 88.73 m 222.09 82.43 l 214.82 82.43 l 218.46 88.73 l S 228.53 88.73 m 232.16 82.43 l 224.89 82.43 l 228.53 88.73 l S 162.36 88.73 m 165.99 82.43 l 158.72 82.43 l 162.36 88.73 l S 163.31 88.73 m 166.94 82.43 l 159.67 82.43 l 163.31 88.73 l S 233.72 88.73 m 237.36 82.43 l 230.09 82.43 l 233.72 88.73 l S 150.25 88.77 m 153.89 82.47 l 146.62 82.47 l 150.25 88.77 l S 238.66 88.73 m 242.30 82.43 l 235.02 82.43 l 238.66 88.73 l S 255.90 88.77 m 259.53 82.47 l 252.26 82.47 l 255.90 88.77 l S 194.77 88.73 m 198.41 82.43 l 191.13 82.43 l 194.77 88.73 l S 202.93 88.73 m 206.56 82.43 l 199.29 82.43 l 202.93 88.73 l S 188.29 88.73 m 191.93 82.43 l 184.66 82.43 l 188.29 88.73 l S 182.90 88.73 m 186.53 82.43 l 179.26 82.43 l 182.90 88.73 l S 175.09 88.73 m 178.73 82.43 l 171.45 82.43 l 175.09 88.73 l S 213.58 88.73 m 217.22 82.43 l 209.95 82.43 l 213.58 88.73 l S 179.46 88.73 m 183.09 82.43 l 175.82 82.43 l 179.46 88.73 l S 256.79 88.77 m 260.43 82.47 l 253.16 82.47 l 256.79 88.77 l S 259.47 89.10 m 263.11 82.80 l 255.84 82.80 l 259.47 89.10 l S 172.42 88.73 m 176.06 82.43 l 168.78 82.43 l 172.42 88.73 l S 140.56 93.50 m 144.19 87.20 l 136.92 87.20 l 140.56 93.50 l S 241.62 88.73 m 245.25 82.43 l 237.98 82.43 l 241.62 88.73 l S 194.89 88.73 m 198.53 82.43 l 191.25 82.43 l 194.89 88.73 l S 206.22 88.73 m 209.86 82.43 l 202.58 82.43 l 206.22 88.73 l S 105.98 216.97 m 109.62 210.67 l 102.35 210.67 l 105.98 216.97 l S 183.31 88.73 m 186.95 82.43 l 179.68 82.43 l 183.31 88.73 l S 184.59 88.73 m 188.23 82.43 l 180.96 82.43 l 184.59 88.73 l S 325.91 338.24 m 329.55 331.94 l 322.27 331.94 l 325.91 338.24 l S 238.89 88.73 m 242.53 82.43 l 235.26 82.43 l 238.89 88.73 l S 239.24 88.73 m 242.88 82.43 l 235.60 82.43 l 239.24 88.73 l S 191.70 88.73 m 195.33 82.43 l 188.06 82.43 l 191.70 88.73 l S 234.73 88.73 m 238.37 82.43 l 231.10 82.43 l 234.73 88.73 l S 133.21 107.35 m 136.84 101.05 l 129.57 101.05 l 133.21 107.35 l S 182.94 88.73 m 186.58 82.43 l 179.31 82.43 l 182.94 88.73 l S 107.33 212.35 m 110.97 206.05 l 103.69 206.05 l 107.33 212.35 l S 127.98 123.18 m 131.61 116.88 l 124.34 116.88 l 127.98 123.18 l S 243.98 88.73 m 247.62 82.43 l 240.34 82.43 l 243.98 88.73 l S 236.14 88.73 m 239.78 82.43 l 232.50 82.43 l 236.14 88.73 l S 128.72 121.15 m 132.36 114.85 l 125.09 114.85 l 128.72 121.15 l S 202.98 88.73 m 206.62 82.43 l 199.34 82.43 l 202.98 88.73 l S 185.93 88.73 m 189.56 82.43 l 182.29 82.43 l 185.93 88.73 l S 215.91 88.73 m 219.54 82.43 l 212.27 82.43 l 215.91 88.73 l S 191.70 88.73 m 195.34 82.43 l 188.07 82.43 l 191.70 88.73 l S 205.08 88.73 m 208.71 82.43 l 201.44 82.43 l 205.08 88.73 l S 191.34 88.73 m 194.98 82.43 l 187.71 82.43 l 191.34 88.73 l S 170.99 88.73 m 174.63 82.43 l 167.35 82.43 l 170.99 88.73 l S 185.12 88.73 m 188.75 82.43 l 181.48 82.43 l 185.12 88.73 l S 135.24 102.48 m 138.88 96.18 l 131.61 96.18 l 135.24 102.48 l S 171.79 88.73 m 175.42 82.43 l 168.15 82.43 l 171.79 88.73 l S 144.36 90.29 m 147.99 83.99 l 140.72 83.99 l 144.36 90.29 l S 254.35 88.73 m 257.98 82.43 l 250.71 82.43 l 254.35 88.73 l S 227.27 88.73 m 230.90 82.43 l 223.63 82.43 l 227.27 88.73 l S 196.14 88.73 m 199.77 82.43 l 192.50 82.43 l 196.14 88.73 l S 142.73 91.17 m 146.36 84.88 l 139.09 84.88 l 142.73 91.17 l S 227.49 88.73 m 231.13 82.43 l 223.86 82.43 l 227.49 88.73 l S 213.01 88.73 m 216.65 82.43 l 209.38 82.43 l 213.01 88.73 l S 197.65 88.73 m 201.28 82.43 l 194.01 82.43 l 197.65 88.73 l S 149.14 89.01 m 152.77 82.72 l 145.50 82.72 l 149.14 89.01 l S 192.88 88.73 m 196.51 82.43 l 189.24 82.43 l 192.88 88.73 l S 132.05 110.81 m 135.68 104.51 l 128.41 104.51 l 132.05 110.81 l S 161.34 88.73 m 164.98 82.43 l 157.71 82.43 l 161.34 88.73 l S 210.68 88.73 m 214.32 82.43 l 207.04 82.43 l 210.68 88.73 l S 209.27 88.73 m 212.90 82.43 l 205.63 82.43 l 209.27 88.73 l S 148.78 89.01 m 152.41 82.72 l 145.14 82.72 l 148.78 89.01 l S 211.15 88.73 m 214.79 82.43 l 207.52 82.43 l 211.15 88.73 l S 194.99 88.73 m 198.63 82.43 l 191.35 82.43 l 194.99 88.73 l S 231.81 88.73 m 235.44 82.43 l 228.17 82.43 l 231.81 88.73 l S 250.61 88.73 m 254.25 82.43 l 246.98 82.43 l 250.61 88.73 l S 131.45 112.81 m 135.09 106.51 l 127.81 106.51 l 131.45 112.81 l S 211.41 88.73 m 215.04 82.43 l 207.77 82.43 l 211.41 88.73 l S 136.51 99.17 m 140.14 92.88 l 132.87 92.88 l 136.51 99.17 l S 218.03 88.73 m 221.67 82.43 l 214.39 82.43 l 218.03 88.73 l S 270.86 98.45 m 274.49 92.15 l 267.22 92.15 l 270.86 98.45 l S 202.97 88.73 m 206.60 82.43 l 199.33 82.43 l 202.97 88.73 l S 247.04 88.73 m 250.68 82.43 l 243.40 82.43 l 247.04 88.73 l S 205.88 88.73 m 209.51 82.43 l 202.24 82.43 l 205.88 88.73 l S 260.27 89.22 m 263.90 82.92 l 256.63 82.92 l 260.27 89.22 l S 208.93 88.73 m 212.57 82.43 l 205.29 82.43 l 208.93 88.73 l S 179.93 88.73 m 183.56 82.43 l 176.29 82.43 l 179.93 88.73 l S 224.24 88.73 m 227.87 82.43 l 220.60 82.43 l 224.24 88.73 l S 156.82 88.73 m 160.46 82.43 l 153.18 82.43 l 156.82 88.73 l S 188.22 88.73 m 191.85 82.43 l 184.58 82.43 l 188.22 88.73 l S 212.67 88.73 m 216.31 82.43 l 209.04 82.43 l 212.67 88.73 l S 243.96 88.73 m 247.60 82.43 l 240.32 82.43 l 243.96 88.73 l S 174.21 88.73 m 177.84 82.43 l 170.57 82.43 l 174.21 88.73 l S 225.07 88.73 m 228.70 82.43 l 221.43 82.43 l 225.07 88.73 l S 186.07 88.73 m 189.71 82.43 l 182.43 82.43 l 186.07 88.73 l S 162.25 88.73 m 165.88 82.43 l 158.61 82.43 l 162.25 88.73 l S 190.06 88.73 m 193.70 82.43 l 186.43 82.43 l 190.06 88.73 l S 176.60 88.73 m 180.24 82.43 l 172.96 82.43 l 176.60 88.73 l S 220.12 88.73 m 223.76 82.43 l 216.48 82.43 l 220.12 88.73 l S 239.55 88.73 m 243.18 82.43 l 235.91 82.43 l 239.55 88.73 l S 143.59 90.66 m 147.23 84.37 l 139.96 84.37 l 143.59 90.66 l S 250.91 88.73 m 254.55 82.43 l 247.27 82.43 l 250.91 88.73 l S 167.80 88.73 m 171.44 82.43 l 164.16 82.43 l 167.80 88.73 l S 261.66 89.42 m 265.30 83.12 l 258.03 83.12 l 261.66 89.42 l S 195.82 88.73 m 199.46 82.43 l 192.18 82.43 l 195.82 88.73 l S 220.73 88.73 m 224.36 82.43 l 217.09 82.43 l 220.73 88.73 l S 157.86 88.73 m 161.50 82.43 l 154.23 82.43 l 157.86 88.73 l S 248.16 88.73 m 251.80 82.43 l 244.53 82.43 l 248.16 88.73 l S 203.24 88.73 m 206.88 82.43 l 199.60 82.43 l 203.24 88.73 l S 212.31 88.73 m 215.95 82.43 l 208.67 82.43 l 212.31 88.73 l S 268.43 94.88 m 272.07 88.58 l 264.79 88.58 l 268.43 94.88 l S 87.02 321.96 m 90.66 315.66 l 83.38 315.66 l 87.02 321.96 l S 186.60 88.73 m 190.23 82.43 l 182.96 82.43 l 186.60 88.73 l S 235.55 88.73 m 239.19 82.43 l 231.91 82.43 l 235.55 88.73 l S 186.38 88.73 m 190.01 82.43 l 182.74 82.43 l 186.38 88.73 l S 229.37 88.73 m 233.01 82.43 l 225.73 82.43 l 229.37 88.73 l S 227.78 88.73 m 231.42 82.43 l 224.14 82.43 l 227.78 88.73 l S 192.41 88.73 m 196.05 82.43 l 188.78 82.43 l 192.41 88.73 l S 161.21 88.73 m 164.85 82.43 l 157.58 82.43 l 161.21 88.73 l S 195.70 88.73 m 199.34 82.43 l 192.07 82.43 l 195.70 88.73 l S 200.48 88.73 m 204.12 82.43 l 196.84 82.43 l 200.48 88.73 l S 193.75 88.73 m 197.38 82.43 l 190.11 82.43 l 193.75 88.73 l S 227.67 88.73 m 231.30 82.43 l 224.03 82.43 l 227.67 88.73 l S 250.04 88.73 m 253.68 82.43 l 246.41 82.43 l 250.04 88.73 l S 200.57 88.73 m 204.21 82.43 l 196.93 82.43 l 200.57 88.73 l S 180.90 88.73 m 184.54 82.43 l 177.27 82.43 l 180.90 88.73 l S 235.26 88.73 m 238.90 82.43 l 231.62 82.43 l 235.26 88.73 l S 189.20 88.73 m 192.83 82.43 l 185.56 82.43 l 189.20 88.73 l S 205.43 88.73 m 209.07 82.43 l 201.80 82.43 l 205.43 88.73 l S 108.26 209.82 m 111.90 203.52 l 104.63 203.52 l 108.26 209.82 l S 156.47 88.73 m 160.10 82.43 l 152.83 82.43 l 156.47 88.73 l S 201.38 88.73 m 205.01 82.43 l 197.74 82.43 l 201.38 88.73 l S 199.11 88.73 m 202.75 82.43 l 195.47 82.43 l 199.11 88.73 l S 194.98 88.73 m 198.62 82.43 l 191.35 82.43 l 194.98 88.73 l S 148.07 89.10 m 151.71 82.80 l 144.44 82.80 l 148.07 89.10 l S 222.03 88.73 m 225.67 82.43 l 218.39 82.43 l 222.03 88.73 l S 189.94 88.73 m 193.58 82.43 l 186.31 82.43 l 189.94 88.73 l S 205.98 88.73 m 209.62 82.43 l 202.35 82.43 l 205.98 88.73 l S 193.71 88.73 m 197.35 82.43 l 190.07 82.43 l 193.71 88.73 l S 203.48 88.73 m 207.12 82.43 l 199.84 82.43 l 203.48 88.73 l S 256.52 88.77 m 260.15 82.47 l 252.88 82.47 l 256.52 88.77 l S 172.51 88.73 m 176.15 82.43 l 168.87 82.43 l 172.51 88.73 l S 198.69 88.73 m 202.33 82.43 l 195.06 82.43 l 198.69 88.73 l S 316.21 301.45 m 319.85 295.15 l 312.57 295.15 l 316.21 301.45 l S 167.40 88.73 m 171.04 82.43 l 163.77 82.43 l 167.40 88.73 l S 229.01 88.73 m 232.64 82.43 l 225.37 82.43 l 229.01 88.73 l S 127.59 124.63 m 131.23 118.33 l 123.96 118.33 l 127.59 124.63 l S 190.56 88.73 m 194.19 82.43 l 186.92 82.43 l 190.56 88.73 l S 178.23 88.73 m 181.86 82.43 l 174.59 82.43 l 178.23 88.73 l S 167.36 88.73 m 171.00 82.43 l 163.73 82.43 l 167.36 88.73 l S 249.66 88.73 m 253.29 82.43 l 246.02 82.43 l 249.66 88.73 l S 150.74 88.77 m 154.37 82.47 l 147.10 82.47 l 150.74 88.77 l S 169.61 88.73 m 173.24 82.43 l 165.97 82.43 l 169.61 88.73 l S 171.65 88.73 m 175.29 82.43 l 168.01 82.43 l 171.65 88.73 l S 204.72 88.73 m 208.36 82.43 l 201.08 82.43 l 204.72 88.73 l S 181.50 88.73 m 185.14 82.43 l 177.87 82.43 l 181.50 88.73 l S 263.03 90.08 m 266.67 83.78 l 259.40 83.78 l 263.03 90.08 l S 223.36 88.73 m 226.99 82.43 l 219.72 82.43 l 223.36 88.73 l S 157.51 88.73 m 161.15 82.43 l 153.87 82.43 l 157.51 88.73 l S 197.55 88.73 m 201.18 82.43 l 193.91 82.43 l 197.55 88.73 l S 182.37 88.73 m 186.00 82.43 l 178.73 82.43 l 182.37 88.73 l S 193.24 88.73 m 196.88 82.43 l 189.60 82.43 l 193.24 88.73 l S 205.82 88.73 m 209.46 82.43 l 202.18 82.43 l 205.82 88.73 l S 249.14 88.73 m 252.77 82.43 l 245.50 82.43 l 249.14 88.73 l S 201.80 88.73 m 205.44 82.43 l 198.17 82.43 l 201.80 88.73 l S 213.80 88.73 m 217.43 82.43 l 210.16 82.43 l 213.80 88.73 l S 171.80 88.73 m 175.44 82.43 l 168.16 82.43 l 171.80 88.73 l S 251.29 88.73 m 254.93 82.43 l 247.66 82.43 l 251.29 88.73 l S 207.58 88.73 m 211.21 82.43 l 203.94 82.43 l 207.58 88.73 l S 213.74 88.73 m 217.38 82.43 l 210.11 82.43 l 213.74 88.73 l S 230.86 88.73 m 234.50 82.43 l 227.22 82.43 l 230.86 88.73 l S 200.77 88.73 m 204.40 82.43 l 197.13 82.43 l 200.77 88.73 l S 102.83 225.69 m 106.47 219.39 l 99.20 219.39 l 102.83 225.69 l S 165.31 88.73 m 168.95 82.43 l 161.68 82.43 l 165.31 88.73 l S 196.08 88.73 m 199.72 82.43 l 192.45 82.43 l 196.08 88.73 l S 204.09 88.73 m 207.73 82.43 l 200.45 82.43 l 204.09 88.73 l S 232.43 88.73 m 236.07 82.43 l 228.80 82.43 l 232.43 88.73 l S 197.91 88.73 m 201.55 82.43 l 194.27 82.43 l 197.91 88.73 l S 228.15 88.73 m 231.79 82.43 l 224.51 82.43 l 228.15 88.73 l S 249.09 88.73 m 252.73 82.43 l 245.45 82.43 l 249.09 88.73 l S 206.80 88.73 m 210.44 82.43 l 203.16 82.43 l 206.80 88.73 l S 151.33 88.77 m 154.97 82.47 l 147.69 82.47 l 151.33 88.77 l S 254.63 88.73 m 258.27 82.43 l 250.99 82.43 l 254.63 88.73 l S 240.29 88.73 m 243.93 82.43 l 236.66 82.43 l 240.29 88.73 l S 196.68 88.73 m 200.31 82.43 l 193.04 82.43 l 196.68 88.73 l S 95.29 266.30 m 98.93 260.00 l 91.66 260.00 l 95.29 266.30 l S 201.45 88.73 m 205.08 82.43 l 197.81 82.43 l 201.45 88.73 l S 207.45 88.73 m 211.09 82.43 l 203.82 82.43 l 207.45 88.73 l S 277.86 117.29 m 281.49 110.99 l 274.22 110.99 l 277.86 117.29 l S 212.64 88.73 m 216.28 82.43 l 209.00 82.43 l 212.64 88.73 l S 186.64 88.73 m 190.27 82.43 l 183.00 82.43 l 186.64 88.73 l S 155.70 88.73 m 159.34 82.43 l 152.07 82.43 l 155.70 88.73 l S 168.17 88.73 m 171.81 82.43 l 164.53 82.43 l 168.17 88.73 l S 180.16 88.73 m 183.79 82.43 l 176.52 82.43 l 180.16 88.73 l S 194.13 88.73 m 197.77 82.43 l 190.50 82.43 l 194.13 88.73 l S 169.29 88.73 m 172.93 82.43 l 165.66 82.43 l 169.29 88.73 l S 180.34 88.73 m 183.97 82.43 l 176.70 82.43 l 180.34 88.73 l S 132.81 108.78 m 136.44 102.48 l 129.17 102.48 l 132.81 108.78 l S 285.38 146.87 m 289.02 140.58 l 281.75 140.58 l 285.38 146.87 l S 206.23 88.73 m 209.87 82.43 l 202.59 82.43 l 206.23 88.73 l S 162.46 88.73 m 166.10 82.43 l 158.83 82.43 l 162.46 88.73 l S 190.11 88.73 m 193.74 82.43 l 186.47 82.43 l 190.11 88.73 l S 213.05 88.73 m 216.69 82.43 l 209.42 82.43 l 213.05 88.73 l S 132.60 109.44 m 136.24 103.14 l 128.96 103.14 l 132.60 109.44 l S 223.38 88.73 m 227.02 82.43 l 219.75 82.43 l 223.38 88.73 l S 193.38 88.73 m 197.01 82.43 l 189.74 82.43 l 193.38 88.73 l S 171.74 88.73 m 175.38 82.43 l 168.10 82.43 l 171.74 88.73 l S 144.71 90.12 m 148.34 83.82 l 141.07 83.82 l 144.71 90.12 l S 155.70 88.73 m 159.33 82.43 l 152.06 82.43 l 155.70 88.73 l S 191.21 88.73 m 194.84 82.43 l 187.57 82.43 l 191.21 88.73 l S 216.87 88.73 m 220.50 82.43 l 213.23 82.43 l 216.87 88.73 l S 224.20 88.73 m 227.83 82.43 l 220.56 82.43 l 224.20 88.73 l S 221.55 88.73 m 225.19 82.43 l 217.92 82.43 l 221.55 88.73 l S 236.10 88.73 m 239.73 82.43 l 232.46 82.43 l 236.10 88.73 l S 217.82 88.73 m 221.45 82.43 l 214.18 82.43 l 217.82 88.73 l S 204.61 88.73 m 208.24 82.43 l 200.97 82.43 l 204.61 88.73 l S 138.77 95.83 m 142.41 89.53 l 135.13 89.53 l 138.77 95.83 l S 209.28 88.73 m 212.92 82.43 l 205.64 82.43 l 209.28 88.73 l S 165.46 88.73 m 169.09 82.43 l 161.82 82.43 l 165.46 88.73 l S 195.39 88.73 m 199.03 82.43 l 191.75 82.43 l 195.39 88.73 l S 162.79 88.73 m 166.43 82.43 l 159.15 82.43 l 162.79 88.73 l S 260.01 89.22 m 263.65 82.92 l 256.38 82.92 l 260.01 89.22 l S 204.29 88.73 m 207.92 82.43 l 200.65 82.43 l 204.29 88.73 l S 151.74 88.77 m 155.38 82.47 l 148.11 82.47 l 151.74 88.77 l S 213.99 88.73 m 217.62 82.43 l 210.35 82.43 l 213.99 88.73 l S 109.38 205.18 m 113.02 198.88 l 105.74 198.88 l 109.38 205.18 l S 240.42 88.73 m 244.06 82.43 l 236.78 82.43 l 240.42 88.73 l S 97.93 240.18 m 101.57 233.88 l 94.30 233.88 l 97.93 240.18 l S 165.35 88.73 m 168.99 82.43 l 161.72 82.43 l 165.35 88.73 l S 110.12 200.37 m 113.75 194.07 l 106.48 194.07 l 110.12 200.37 l S 204.12 88.73 m 207.76 82.43 l 200.49 82.43 l 204.12 88.73 l S 175.66 88.73 m 179.30 82.43 l 172.03 82.43 l 175.66 88.73 l S 199.14 88.73 m 202.78 82.43 l 195.51 82.43 l 199.14 88.73 l S 210.80 88.73 m 214.44 82.43 l 207.17 82.43 l 210.80 88.73 l S 271.29 99.23 m 274.93 92.93 l 267.66 92.93 l 271.29 99.23 l S 135.51 101.87 m 139.15 95.57 l 131.87 95.57 l 135.51 101.87 l S 144.94 90.00 m 148.57 83.70 l 141.30 83.70 l 144.94 90.00 l S 195.35 88.73 m 198.99 82.43 l 191.72 82.43 l 195.35 88.73 l S 231.62 88.73 m 235.25 82.43 l 227.98 82.43 l 231.62 88.73 l S 289.96 165.98 m 293.60 159.68 l 286.33 159.68 l 289.96 165.98 l S 117.97 164.90 m 121.60 158.60 l 114.33 158.60 l 117.97 164.90 l S 235.27 88.73 m 238.91 82.43 l 231.63 82.43 l 235.27 88.73 l S 227.47 88.73 m 231.11 82.43 l 223.83 82.43 l 227.47 88.73 l S 175.66 88.73 m 179.29 82.43 l 172.02 82.43 l 175.66 88.73 l S 203.64 88.73 m 207.27 82.43 l 200.00 82.43 l 203.64 88.73 l S 165.24 88.73 m 168.88 82.43 l 161.60 82.43 l 165.24 88.73 l S 237.37 88.73 m 241.01 82.43 l 233.74 82.43 l 237.37 88.73 l S 175.26 88.73 m 178.90 82.43 l 171.63 82.43 l 175.26 88.73 l S 174.61 88.73 m 178.25 82.43 l 170.98 82.43 l 174.61 88.73 l S 216.30 88.73 m 219.93 82.43 l 212.66 82.43 l 216.30 88.73 l S 163.01 88.73 m 166.64 82.43 l 159.37 82.43 l 163.01 88.73 l S 209.01 88.73 m 212.65 82.43 l 205.37 82.43 l 209.01 88.73 l S 323.33 338.24 m 326.97 331.94 l 319.70 331.94 l 323.33 338.24 l S 187.68 88.73 m 191.31 82.43 l 184.04 82.43 l 187.68 88.73 l S 225.88 88.73 m 229.52 82.43 l 222.24 82.43 l 225.88 88.73 l S 171.05 88.73 m 174.69 82.43 l 167.42 82.43 l 171.05 88.73 l S 192.18 88.73 m 195.82 82.43 l 188.55 82.43 l 192.18 88.73 l S 240.11 88.73 m 243.74 82.43 l 236.47 82.43 l 240.11 88.73 l S 136.12 100.39 m 139.76 94.09 l 132.49 94.09 l 136.12 100.39 l S 234.37 88.73 m 238.01 82.43 l 230.73 82.43 l 234.37 88.73 l S 194.48 88.73 m 198.12 82.43 l 190.85 82.43 l 194.48 88.73 l S 209.28 88.73 m 212.91 82.43 l 205.64 82.43 l 209.28 88.73 l S 221.18 88.73 m 224.82 82.43 l 217.54 82.43 l 221.18 88.73 l S 285.33 146.70 m 288.97 140.40 l 281.70 140.40 l 285.33 146.70 l S 218.97 88.73 m 222.60 82.43 l 215.33 82.43 l 218.97 88.73 l S 199.85 88.73 m 203.49 82.43 l 196.21 82.43 l 199.85 88.73 l S 160.71 88.73 m 164.35 82.43 l 157.07 82.43 l 160.71 88.73 l S 193.95 88.73 m 197.59 82.43 l 190.31 82.43 l 193.95 88.73 l S 184.41 88.73 m 188.05 82.43 l 180.77 82.43 l 184.41 88.73 l S 257.62 88.81 m 261.25 82.51 l 253.98 82.51 l 257.62 88.81 l S 236.99 88.73 m 240.63 82.43 l 233.36 82.43 l 236.99 88.73 l S 158.59 88.73 m 162.23 82.43 l 154.96 82.43 l 158.59 88.73 l S 207.79 88.73 m 211.43 82.43 l 204.16 82.43 l 207.79 88.73 l S 191.41 88.73 m 195.05 82.43 l 187.78 82.43 l 191.41 88.73 l S 193.89 88.73 m 197.52 82.43 l 190.25 82.43 l 193.89 88.73 l S 183.43 88.73 m 187.06 82.43 l 179.79 82.43 l 183.43 88.73 l S 212.59 88.73 m 216.23 82.43 l 208.96 82.43 l 212.59 88.73 l S 170.38 88.73 m 174.02 82.43 l 166.75 82.43 l 170.38 88.73 l S 141.48 92.39 m 145.12 86.09 l 137.85 86.09 l 141.48 92.39 l S 183.02 88.73 m 186.66 82.43 l 179.39 82.43 l 183.02 88.73 l S 216.60 88.73 m 220.23 82.43 l 212.96 82.43 l 216.60 88.73 l S 210.63 88.73 m 214.27 82.43 l 207.00 82.43 l 210.63 88.73 l S 180.03 88.73 m 183.66 82.43 l 176.39 82.43 l 180.03 88.73 l S 136.82 98.55 m 140.46 92.26 l 133.19 92.26 l 136.82 98.55 l S 206.77 88.73 m 210.41 82.43 l 203.13 82.43 l 206.77 88.73 l S 168.69 88.73 m 172.32 82.43 l 165.05 82.43 l 168.69 88.73 l S 150.93 88.77 m 154.57 82.47 l 147.29 82.47 l 150.93 88.77 l S 190.26 88.73 m 193.89 82.43 l 186.62 82.43 l 190.26 88.73 l S 149.21 89.01 m 152.84 82.72 l 145.57 82.72 l 149.21 89.01 l S 164.44 88.73 m 168.08 82.43 l 160.81 82.43 l 164.44 88.73 l S 206.98 88.73 m 210.62 82.43 l 203.35 82.43 l 206.98 88.73 l S 189.14 88.73 m 192.77 82.43 l 185.50 82.43 l 189.14 88.73 l S 190.35 88.73 m 193.99 82.43 l 186.72 82.43 l 190.35 88.73 l S 248.40 88.73 m 252.04 82.43 l 244.77 82.43 l 248.40 88.73 l S 152.63 88.77 m 156.27 82.47 l 148.99 82.47 l 152.63 88.77 l S 186.29 88.73 m 189.92 82.43 l 182.65 82.43 l 186.29 88.73 l S 173.43 88.73 m 177.06 82.43 l 169.79 82.43 l 173.43 88.73 l S 211.86 88.73 m 215.50 82.43 l 208.22 82.43 l 211.86 88.73 l S 193.66 88.73 m 197.29 82.43 l 190.02 82.43 l 193.66 88.73 l S 162.66 88.73 m 166.30 82.43 l 159.02 82.43 l 162.66 88.73 l S 206.11 88.73 m 209.75 82.43 l 202.48 82.43 l 206.11 88.73 l S 180.95 88.73 m 184.59 82.43 l 177.32 82.43 l 180.95 88.73 l S 217.38 88.73 m 221.02 82.43 l 213.74 82.43 l 217.38 88.73 l S 179.28 88.73 m 182.92 82.43 l 175.65 82.43 l 179.28 88.73 l S 231.84 88.73 m 235.47 82.43 l 228.20 82.43 l 231.84 88.73 l S 151.15 88.77 m 154.79 82.47 l 147.52 82.47 l 151.15 88.77 l S 153.24 88.73 m 156.88 82.43 l 149.60 82.43 l 153.24 88.73 l S 199.17 88.73 m 202.81 82.43 l 195.54 82.43 l 199.17 88.73 l S 207.33 88.73 m 210.96 82.43 l 203.69 82.43 l 207.33 88.73 l S 202.62 88.73 m 206.26 82.43 l 198.98 82.43 l 202.62 88.73 l S 136.45 99.23 m 140.08 92.93 l 132.81 92.93 l 136.45 99.23 l S 181.98 88.73 m 185.61 82.43 l 178.34 82.43 l 181.98 88.73 l S 178.68 88.73 m 182.32 82.43 l 175.05 82.43 l 178.68 88.73 l S 170.32 88.73 m 173.95 82.43 l 166.68 82.43 l 170.32 88.73 l S 191.36 88.73 m 195.00 82.43 l 187.73 82.43 l 191.36 88.73 l S 241.69 88.73 m 245.33 82.43 l 238.06 82.43 l 241.69 88.73 l S 190.44 88.73 m 194.08 82.43 l 186.81 82.43 l 190.44 88.73 l S 193.22 88.73 m 196.85 82.43 l 189.58 82.43 l 193.22 88.73 l S 183.76 88.73 m 187.40 82.43 l 180.13 82.43 l 183.76 88.73 l S 116.48 169.73 m 120.11 163.43 l 112.84 163.43 l 116.48 169.73 l S 168.18 88.73 m 171.82 82.43 l 164.54 82.43 l 168.18 88.73 l S 192.22 88.73 m 195.86 82.43 l 188.59 82.43 l 192.22 88.73 l S 202.42 88.73 m 206.06 82.43 l 198.78 82.43 l 202.42 88.73 l S 212.21 88.73 m 215.84 82.43 l 208.57 82.43 l 212.21 88.73 l S 262.75 89.96 m 266.38 83.66 l 259.11 83.66 l 262.75 89.96 l S 204.07 88.73 m 207.70 82.43 l 200.43 82.43 l 204.07 88.73 l S 180.68 88.73 m 184.31 82.43 l 177.04 82.43 l 180.68 88.73 l S 234.04 88.73 m 237.68 82.43 l 230.40 82.43 l 234.04 88.73 l S 180.85 88.73 m 184.48 82.43 l 177.21 82.43 l 180.85 88.73 l S 148.57 89.05 m 152.20 82.76 l 144.93 82.76 l 148.57 89.05 l S 212.67 88.73 m 216.30 82.43 l 209.03 82.43 l 212.67 88.73 l S 175.72 88.73 m 179.36 82.43 l 172.09 82.43 l 175.72 88.73 l S 156.26 88.73 m 159.90 82.43 l 152.62 82.43 l 156.26 88.73 l S 198.32 88.73 m 201.95 82.43 l 194.68 82.43 l 198.32 88.73 l S 208.93 88.73 m 212.57 82.43 l 205.30 82.43 l 208.93 88.73 l S 209.82 88.73 m 213.46 82.43 l 206.18 82.43 l 209.82 88.73 l S 204.77 88.73 m 208.41 82.43 l 201.14 82.43 l 204.77 88.73 l S 222.53 88.73 m 226.16 82.43 l 218.89 82.43 l 222.53 88.73 l S 206.55 88.73 m 210.18 82.43 l 202.91 82.43 l 206.55 88.73 l S 136.76 98.60 m 140.40 92.31 l 133.12 92.31 l 136.76 98.60 l S 193.98 88.73 m 197.62 82.43 l 190.34 82.43 l 193.98 88.73 l S 310.61 243.83 m 314.25 237.54 l 306.98 237.54 l 310.61 243.83 l S 233.79 88.73 m 237.42 82.43 l 230.15 82.43 l 233.79 88.73 l S 152.07 88.77 m 155.71 82.47 l 148.44 82.47 l 152.07 88.77 l S 194.12 88.73 m 197.75 82.43 l 190.48 82.43 l 194.12 88.73 l S 223.83 88.73 m 227.47 82.43 l 220.19 82.43 l 223.83 88.73 l S 186.08 88.73 m 189.72 82.43 l 182.45 82.43 l 186.08 88.73 l S 213.50 88.73 m 217.13 82.43 l 209.86 82.43 l 213.50 88.73 l S 215.80 88.73 m 219.43 82.43 l 212.16 82.43 l 215.80 88.73 l S 230.11 88.73 m 233.74 82.43 l 226.47 82.43 l 230.11 88.73 l S 226.90 88.73 m 230.53 82.43 l 223.26 82.43 l 226.90 88.73 l S 190.24 88.73 m 193.87 82.43 l 186.60 82.43 l 190.24 88.73 l S 178.48 88.73 m 182.12 82.43 l 174.85 82.43 l 178.48 88.73 l S 132.07 110.81 m 135.70 104.51 l 128.43 104.51 l 132.07 110.81 l S 244.04 88.73 m 247.68 82.43 l 240.41 82.43 l 244.04 88.73 l S 269.77 96.80 m 273.41 90.50 l 266.14 90.50 l 269.77 96.80 l S 217.48 88.73 m 221.12 82.43 l 213.84 82.43 l 217.48 88.73 l S 158.39 88.73 m 162.03 82.43 l 154.76 82.43 l 158.39 88.73 l S 232.62 88.73 m 236.26 82.43 l 228.99 82.43 l 232.62 88.73 l S 253.95 88.73 m 257.58 82.43 l 250.31 82.43 l 253.95 88.73 l S 135.59 101.59 m 139.23 95.29 l 131.96 95.29 l 135.59 101.59 l S 290.59 167.96 m 294.23 161.66 l 286.96 161.66 l 290.59 167.96 l S 175.47 88.73 m 179.10 82.43 l 171.83 82.43 l 175.47 88.73 l S 224.07 88.73 m 227.71 82.43 l 220.44 82.43 l 224.07 88.73 l S 167.29 88.73 m 170.93 82.43 l 163.66 82.43 l 167.29 88.73 l S 321.92 338.24 m 325.55 331.94 l 318.28 331.94 l 321.92 338.24 l S 183.46 88.73 m 187.09 82.43 l 179.82 82.43 l 183.46 88.73 l S 256.82 88.77 m 260.46 82.47 l 253.19 82.47 l 256.82 88.77 l S 188.71 88.73 m 192.34 82.43 l 185.07 82.43 l 188.71 88.73 l S 234.51 88.73 m 238.15 82.43 l 230.88 82.43 l 234.51 88.73 l S 242.77 88.73 m 246.40 82.43 l 239.13 82.43 l 242.77 88.73 l S 268.04 94.37 m 271.67 88.07 l 264.40 88.07 l 268.04 94.37 l S 251.18 88.73 m 254.82 82.43 l 247.54 82.43 l 251.18 88.73 l S 167.20 88.73 m 170.84 82.43 l 163.57 82.43 l 167.20 88.73 l S 146.83 89.34 m 150.46 83.04 l 143.19 83.04 l 146.83 89.34 l S 206.80 88.73 m 210.44 82.43 l 203.17 82.43 l 206.80 88.73 l S 221.55 88.73 m 225.18 82.43 l 217.91 82.43 l 221.55 88.73 l S 217.10 88.73 m 220.73 82.43 l 213.46 82.43 l 217.10 88.73 l S 170.20 88.73 m 173.84 82.43 l 166.56 82.43 l 170.20 88.73 l S 184.33 88.73 m 187.96 82.43 l 180.69 82.43 l 184.33 88.73 l S 164.15 88.73 m 167.78 82.43 l 160.51 82.43 l 164.15 88.73 l S 229.76 88.73 m 233.40 82.43 l 226.12 82.43 l 229.76 88.73 l S 148.76 89.01 m 152.39 82.72 l 145.12 82.72 l 148.76 89.01 l S 204.96 88.73 m 208.60 82.43 l 201.33 82.43 l 204.96 88.73 l S 270.38 97.74 m 274.02 91.44 l 266.74 91.44 l 270.38 97.74 l S 272.75 103.11 m 276.39 96.81 l 269.12 96.81 l 272.75 103.11 l S 209.16 88.73 m 212.80 82.43 l 205.53 82.43 l 209.16 88.73 l S 236.98 88.73 m 240.62 82.43 l 233.34 82.43 l 236.98 88.73 l S 192.67 88.73 m 196.30 82.43 l 189.03 82.43 l 192.67 88.73 l S 242.58 88.73 m 246.22 82.43 l 238.95 82.43 l 242.58 88.73 l S 237.92 88.73 m 241.56 82.43 l 234.29 82.43 l 237.92 88.73 l S 181.75 88.73 m 185.39 82.43 l 178.11 82.43 l 181.75 88.73 l S 136.90 98.45 m 140.54 92.15 l 133.26 92.15 l 136.90 98.45 l S 157.36 88.73 m 160.99 82.43 l 153.72 82.43 l 157.36 88.73 l S 137.75 96.95 m 141.39 90.65 l 134.12 90.65 l 137.75 96.95 l S 230.48 88.73 m 234.12 82.43 l 226.85 82.43 l 230.48 88.73 l S 149.99 88.89 m 153.62 82.59 l 146.35 82.59 l 149.99 88.89 l S 247.54 88.73 m 251.18 82.43 l 243.91 82.43 l 247.54 88.73 l S 112.14 190.64 m 115.77 184.34 l 108.50 184.34 l 112.14 190.64 l S 163.14 88.73 m 166.77 82.43 l 159.50 82.43 l 163.14 88.73 l S 171.66 88.73 m 175.30 82.43 l 168.02 82.43 l 171.66 88.73 l S 206.04 88.73 m 209.68 82.43 l 202.41 82.43 l 206.04 88.73 l S 183.78 88.73 m 187.41 82.43 l 180.14 82.43 l 183.78 88.73 l S 241.32 88.73 m 244.95 82.43 l 237.68 82.43 l 241.32 88.73 l S 88.09 310.41 m 91.72 304.11 l 84.45 304.11 l 88.09 310.41 l S 172.03 88.73 m 175.67 82.43 l 168.40 82.43 l 172.03 88.73 l S 188.86 88.73 m 192.50 82.43 l 185.23 82.43 l 188.86 88.73 l S 206.19 88.73 m 209.82 82.43 l 202.55 82.43 l 206.19 88.73 l S 160.42 88.73 m 164.06 82.43 l 156.79 82.43 l 160.42 88.73 l S 212.83 88.73 m 216.46 82.43 l 209.19 82.43 l 212.83 88.73 l S 265.51 91.69 m 269.14 85.39 l 261.87 85.39 l 265.51 91.69 l S 265.15 91.26 m 268.79 84.96 l 261.51 84.96 l 265.15 91.26 l S 252.99 88.73 m 256.62 82.43 l 249.35 82.43 l 252.99 88.73 l S 250.86 88.73 m 254.49 82.43 l 247.22 82.43 l 250.86 88.73 l S 157.19 88.73 m 160.83 82.43 l 153.56 82.43 l 157.19 88.73 l S 160.15 88.73 m 163.78 82.43 l 156.51 82.43 l 160.15 88.73 l S 306.97 236.83 m 310.60 230.54 l 303.33 230.54 l 306.97 236.83 l S 268.93 95.78 m 272.57 89.48 l 265.29 89.48 l 268.93 95.78 l S 235.46 88.73 m 239.10 82.43 l 231.83 82.43 l 235.46 88.73 l S 172.35 88.73 m 175.99 82.43 l 168.72 82.43 l 172.35 88.73 l S 226.24 88.73 m 229.87 82.43 l 222.60 82.43 l 226.24 88.73 l S 80.21 338.24 m 83.85 331.94 l 76.58 331.94 l 80.21 338.24 l S 187.30 88.73 m 190.94 82.43 l 183.66 82.43 l 187.30 88.73 l S 178.46 88.73 m 182.10 82.43 l 174.82 82.43 l 178.46 88.73 l S 274.33 106.71 m 277.97 100.41 l 270.69 100.41 l 274.33 106.71 l S 245.02 88.73 m 248.66 82.43 l 241.38 82.43 l 245.02 88.73 l S 278.73 119.73 m 282.37 113.44 l 275.10 113.44 l 278.73 119.73 l S 199.33 88.73 m 202.96 82.43 l 195.69 82.43 l 199.33 88.73 l S 231.78 88.73 m 235.42 82.43 l 228.14 82.43 l 231.78 88.73 l S 221.11 88.73 m 224.75 82.43 l 217.48 82.43 l 221.11 88.73 l S 220.18 88.73 m 223.81 82.43 l 216.54 82.43 l 220.18 88.73 l S 212.63 88.73 m 216.27 82.43 l 208.99 82.43 l 212.63 88.73 l S 170.93 88.73 m 174.56 82.43 l 167.29 82.43 l 170.93 88.73 l S 234.59 88.73 m 238.22 82.43 l 230.95 82.43 l 234.59 88.73 l S 205.48 88.73 m 209.12 82.43 l 201.84 82.43 l 205.48 88.73 l S 251.00 88.73 m 254.64 82.43 l 247.37 82.43 l 251.00 88.73 l S 260.95 89.34 m 264.58 83.04 l 257.31 83.04 l 260.95 89.34 l S 165.85 88.73 m 169.48 82.43 l 162.21 82.43 l 165.85 88.73 l S 149.50 88.93 m 153.13 82.64 l 145.86 82.64 l 149.50 88.93 l S 212.37 88.73 m 216.00 82.43 l 208.73 82.43 l 212.37 88.73 l S 221.13 88.73 m 224.76 82.43 l 217.49 82.43 l 221.13 88.73 l S 203.72 88.73 m 207.36 82.43 l 200.09 82.43 l 203.72 88.73 l S 165.01 88.73 m 168.65 82.43 l 161.38 82.43 l 165.01 88.73 l S 119.96 156.48 m 123.60 150.18 l 116.33 150.18 l 119.96 156.48 l S 150.12 88.85 m 153.75 82.55 l 146.48 82.55 l 150.12 88.85 l S 214.06 88.73 m 217.69 82.43 l 210.42 82.43 l 214.06 88.73 l S 169.37 88.73 m 173.00 82.43 l 165.73 82.43 l 169.37 88.73 l S 165.64 88.73 m 169.27 82.43 l 162.00 82.43 l 165.64 88.73 l S 237.81 88.73 m 241.45 82.43 l 234.17 82.43 l 237.81 88.73 l S 230.04 88.73 m 233.67 82.43 l 226.40 82.43 l 230.04 88.73 l S 243.68 88.73 m 247.32 82.43 l 240.05 82.43 l 243.68 88.73 l S 180.26 88.73 m 183.90 82.43 l 176.62 82.43 l 180.26 88.73 l S 161.31 88.73 m 164.94 82.43 l 157.67 82.43 l 161.31 88.73 l S 168.82 88.73 m 172.46 82.43 l 165.19 82.43 l 168.82 88.73 l S 227.49 88.73 m 231.13 82.43 l 223.85 82.43 l 227.49 88.73 l S 236.26 88.73 m 239.89 82.43 l 232.62 82.43 l 236.26 88.73 l S 102.97 225.69 m 106.61 219.39 l 99.33 219.39 l 102.97 225.69 l S 203.65 88.73 m 207.29 82.43 l 200.02 82.43 l 203.65 88.73 l S 193.87 88.73 m 197.51 82.43 l 190.24 82.43 l 193.87 88.73 l S 212.06 88.73 m 215.70 82.43 l 208.43 82.43 l 212.06 88.73 l S 138.53 96.12 m 142.17 89.82 l 134.90 89.82 l 138.53 96.12 l S 178.63 88.73 m 182.26 82.43 l 174.99 82.43 l 178.63 88.73 l S 220.16 88.73 m 223.80 82.43 l 216.53 82.43 l 220.16 88.73 l S 165.94 88.73 m 169.58 82.43 l 162.30 82.43 l 165.94 88.73 l S 204.48 88.73 m 208.12 82.43 l 200.84 82.43 l 204.48 88.73 l S 232.24 88.73 m 235.87 82.43 l 228.60 82.43 l 232.24 88.73 l S 179.08 88.73 m 182.72 82.43 l 175.45 82.43 l 179.08 88.73 l S 172.97 88.73 m 176.61 82.43 l 169.34 82.43 l 172.97 88.73 l S 151.67 88.77 m 155.31 82.47 l 148.04 82.47 l 151.67 88.77 l S 97.35 243.83 m 100.99 237.54 l 93.72 237.54 l 97.35 243.83 l S 111.55 192.73 m 115.19 186.43 l 107.92 186.43 l 111.55 192.73 l S 253.73 88.73 m 257.37 82.43 l 250.10 82.43 l 253.73 88.73 l S 217.16 88.73 m 220.80 82.43 l 213.53 82.43 l 217.16 88.73 l S 210.22 88.73 m 213.86 82.43 l 206.59 82.43 l 210.22 88.73 l S 123.94 139.55 m 127.57 133.26 l 120.30 133.26 l 123.94 139.55 l S 266.45 92.56 m 270.09 86.26 l 262.82 86.26 l 266.45 92.56 l S 230.20 88.73 m 233.84 82.43 l 226.57 82.43 l 230.20 88.73 l S 168.20 88.73 m 171.84 82.43 l 164.57 82.43 l 168.20 88.73 l S 196.65 88.73 m 200.29 82.43 l 193.01 82.43 l 196.65 88.73 l S 203.09 88.73 m 206.73 82.43 l 199.45 82.43 l 203.09 88.73 l S 232.25 88.73 m 235.88 82.43 l 228.61 82.43 l 232.25 88.73 l S 247.23 88.73 m 250.87 82.43 l 243.60 82.43 l 247.23 88.73 l S 188.11 88.73 m 191.75 82.43 l 184.48 82.43 l 188.11 88.73 l S 213.88 88.73 m 217.52 82.43 l 210.25 82.43 l 213.88 88.73 l S 170.05 88.73 m 173.69 82.43 l 166.42 82.43 l 170.05 88.73 l S 184.21 88.73 m 187.84 82.43 l 180.57 82.43 l 184.21 88.73 l S 236.75 88.73 m 240.38 82.43 l 233.11 82.43 l 236.75 88.73 l S 171.65 88.73 m 175.28 82.43 l 168.01 82.43 l 171.65 88.73 l S 302.95 221.09 m 306.59 214.80 l 299.32 214.80 l 302.95 221.09 l S 221.31 88.73 m 224.94 82.43 l 217.67 82.43 l 221.31 88.73 l S 125.61 132.04 m 129.25 125.75 l 121.98 125.75 l 125.61 132.04 l S 223.40 88.73 m 227.04 82.43 l 219.76 82.43 l 223.40 88.73 l S 204.83 88.73 m 208.46 82.43 l 201.19 82.43 l 204.83 88.73 l S 241.54 88.73 m 245.17 82.43 l 237.90 82.43 l 241.54 88.73 l S 300.79 213.24 m 304.42 206.94 l 297.15 206.94 l 300.79 213.24 l S 168.41 88.73 m 172.05 82.43 l 164.77 82.43 l 168.41 88.73 l S 97.62 241.97 m 101.26 235.67 l 93.98 235.67 l 97.62 241.97 l S 273.64 105.17 m 277.27 98.87 l 270.00 98.87 l 273.64 105.17 l S 322.23 338.24 m 325.87 331.94 l 318.59 331.94 l 322.23 338.24 l S 227.32 88.73 m 230.96 82.43 l 223.68 82.43 l 227.32 88.73 l S 235.11 88.73 m 238.74 82.43 l 231.47 82.43 l 235.11 88.73 l S 253.65 88.73 m 257.29 82.43 l 250.02 82.43 l 253.65 88.73 l S 222.39 88.73 m 226.03 82.43 l 218.76 82.43 l 222.39 88.73 l S 99.16 238.47 m 102.80 232.17 l 95.52 232.17 l 99.16 238.47 l S 175.03 88.73 m 178.66 82.43 l 171.39 82.43 l 175.03 88.73 l S 230.72 88.73 m 234.35 82.43 l 227.08 82.43 l 230.72 88.73 l S 165.37 88.73 m 169.00 82.43 l 161.73 82.43 l 165.37 88.73 l S 97.79 240.18 m 101.43 233.88 l 94.15 233.88 l 97.79 240.18 l S 166.63 88.73 m 170.26 82.43 l 162.99 82.43 l 166.63 88.73 l S 231.69 88.73 m 235.33 82.43 l 228.06 82.43 l 231.69 88.73 l S 225.08 88.73 m 228.72 82.43 l 221.45 82.43 l 225.08 88.73 l S 231.71 88.73 m 235.35 82.43 l 228.07 82.43 l 231.71 88.73 l S 215.14 88.73 m 218.78 82.43 l 211.50 82.43 l 215.14 88.73 l S 146.18 89.42 m 149.82 83.12 l 142.55 83.12 l 146.18 89.42 l S 281.64 130.20 m 285.28 123.90 l 278.00 123.90 l 281.64 130.20 l S 242.24 88.73 m 245.87 82.43 l 238.60 82.43 l 242.24 88.73 l S 173.65 88.73 m 177.29 82.43 l 170.02 82.43 l 173.65 88.73 l S 231.43 88.73 m 235.07 82.43 l 227.80 82.43 l 231.43 88.73 l S 174.23 88.73 m 177.87 82.43 l 170.60 82.43 l 174.23 88.73 l S 160.91 88.73 m 164.54 82.43 l 157.27 82.43 l 160.91 88.73 l S 221.88 88.73 m 225.52 82.43 l 218.25 82.43 l 221.88 88.73 l S 142.85 91.13 m 146.49 84.83 l 139.21 84.83 l 142.85 91.13 l S 230.48 88.73 m 234.12 82.43 l 226.85 82.43 l 230.48 88.73 l S 202.73 88.73 m 206.37 82.43 l 199.09 82.43 l 202.73 88.73 l S 189.81 88.73 m 193.45 82.43 l 186.18 82.43 l 189.81 88.73 l S 151.08 88.77 m 154.71 82.47 l 147.44 82.47 l 151.08 88.77 l S 109.88 202.36 m 113.52 196.06 l 106.25 196.06 l 109.88 202.36 l S 227.63 88.73 m 231.27 82.43 l 224.00 82.43 l 227.63 88.73 l S 229.01 88.73 m 232.65 82.43 l 225.37 82.43 l 229.01 88.73 l S 211.70 88.73 m 215.34 82.43 l 208.06 82.43 l 211.70 88.73 l S 137.70 96.99 m 141.33 90.70 l 134.06 90.70 l 137.70 96.99 l S 145.59 89.54 m 149.22 83.25 l 141.95 83.25 l 145.59 89.54 l S 158.95 88.73 m 162.59 82.43 l 155.32 82.43 l 158.95 88.73 l S 204.38 88.73 m 208.02 82.43 l 200.75 82.43 l 204.38 88.73 l S 139.33 94.88 m 142.97 88.58 l 135.70 88.58 l 139.33 94.88 l S 131.62 112.15 m 135.25 105.86 l 127.98 105.86 l 131.62 112.15 l S 153.92 88.73 m 157.55 82.43 l 150.28 82.43 l 153.92 88.73 l S 218.21 88.73 m 221.85 82.43 l 214.57 82.43 l 218.21 88.73 l S 175.50 88.73 m 179.13 82.43 l 171.86 82.43 l 175.50 88.73 l S 178.71 88.73 m 182.35 82.43 l 175.07 82.43 l 178.71 88.73 l S 202.73 88.73 m 206.37 82.43 l 199.10 82.43 l 202.73 88.73 l S 271.28 99.23 m 274.91 92.93 l 267.64 92.93 l 271.28 99.23 l S 141.17 92.70 m 144.81 86.40 l 137.53 86.40 l 141.17 92.70 l S 191.19 88.73 m 194.82 82.43 l 187.55 82.43 l 191.19 88.73 l S 192.11 88.73 m 195.74 82.43 l 188.47 82.43 l 192.11 88.73 l S 200.83 88.73 m 204.46 82.43 l 197.19 82.43 l 200.83 88.73 l S 103.50 224.49 m 107.14 218.19 l 99.87 218.19 l 103.50 224.49 l S 210.31 88.73 m 213.94 82.43 l 206.67 82.43 l 210.31 88.73 l S 182.32 88.73 m 185.96 82.43 l 178.68 82.43 l 182.32 88.73 l S 139.93 94.19 m 143.57 87.89 l 136.29 87.89 l 139.93 94.19 l S 132.17 110.33 m 135.81 104.03 l 128.54 104.03 l 132.17 110.33 l S 178.47 88.73 m 182.11 82.43 l 174.84 82.43 l 178.47 88.73 l S 192.24 88.73 m 195.88 82.43 l 188.61 82.43 l 192.24 88.73 l S 258.42 88.93 m 262.06 82.64 l 254.78 82.64 l 258.42 88.93 l S 237.03 88.73 m 240.67 82.43 l 233.40 82.43 l 237.03 88.73 l S 252.33 88.73 m 255.97 82.43 l 248.69 82.43 l 252.33 88.73 l S 153.32 88.73 m 156.95 82.43 l 149.68 82.43 l 153.32 88.73 l S 234.97 88.73 m 238.61 82.43 l 231.33 82.43 l 234.97 88.73 l S 182.44 88.73 m 186.08 82.43 l 178.81 82.43 l 182.44 88.73 l S 191.22 88.73 m 194.86 82.43 l 187.59 82.43 l 191.22 88.73 l S 176.43 88.73 m 180.07 82.43 l 172.80 82.43 l 176.43 88.73 l S 262.60 89.79 m 266.24 83.49 l 258.96 83.49 l 262.60 89.79 l S 271.04 98.71 m 274.67 92.41 l 267.40 92.41 l 271.04 98.71 l S 211.59 88.73 m 215.22 82.43 l 207.95 82.43 l 211.59 88.73 l S 290.77 167.96 m 294.41 161.66 l 287.13 161.66 l 290.77 167.96 l S 109.34 205.18 m 112.97 198.88 l 105.70 198.88 l 109.34 205.18 l S 146.42 89.38 m 150.05 83.08 l 142.78 83.08 l 146.42 89.38 l S 144.54 90.25 m 148.17 83.95 l 140.90 83.95 l 144.54 90.25 l S 151.12 88.77 m 154.75 82.47 l 147.48 82.47 l 151.12 88.77 l S 211.93 88.73 m 215.57 82.43 l 208.29 82.43 l 211.93 88.73 l S 203.84 88.73 m 207.47 82.43 l 200.20 82.43 l 203.84 88.73 l S 191.67 88.73 m 195.31 82.43 l 188.03 82.43 l 191.67 88.73 l S 146.33 89.38 m 149.97 83.08 l 142.69 83.08 l 146.33 89.38 l S 172.73 88.73 m 176.36 82.43 l 169.09 82.43 l 172.73 88.73 l S 242.08 88.73 m 245.71 82.43 l 238.44 82.43 l 242.08 88.73 l S 200.33 88.73 m 203.97 82.43 l 196.69 82.43 l 200.33 88.73 l S 220.94 88.73 m 224.58 82.43 l 217.31 82.43 l 220.94 88.73 l S 212.52 88.73 m 216.15 82.43 l 208.88 82.43 l 212.52 88.73 l S 151.46 88.77 m 155.09 82.47 l 147.82 82.47 l 151.46 88.77 l S 176.69 88.73 m 180.32 82.43 l 173.05 82.43 l 176.69 88.73 l S 133.91 105.66 m 137.54 99.36 l 130.27 99.36 l 133.91 105.66 l S 199.07 88.73 m 202.70 82.43 l 195.43 82.43 l 199.07 88.73 l S 74.05 338.24 m 77.69 331.94 l 70.42 331.94 l 74.05 338.24 l S 209.05 88.73 m 212.68 82.43 l 205.41 82.43 l 209.05 88.73 l S 195.12 88.73 m 198.75 82.43 l 191.48 82.43 l 195.12 88.73 l S 273.97 106.03 m 277.61 99.73 l 270.34 99.73 l 273.97 106.03 l S 192.16 88.73 m 195.80 82.43 l 188.53 82.43 l 192.16 88.73 l S 181.35 88.73 m 184.99 82.43 l 177.72 82.43 l 181.35 88.73 l S 183.22 88.73 m 186.85 82.43 l 179.58 82.43 l 183.22 88.73 l S 82.14 338.24 m 85.77 331.94 l 78.50 331.94 l 82.14 338.24 l S 210.17 88.73 m 213.81 82.43 l 206.54 82.43 l 210.17 88.73 l S 278.74 119.91 m 282.38 113.61 l 275.11 113.61 l 278.74 119.91 l S 183.24 88.73 m 186.88 82.43 l 179.61 82.43 l 183.24 88.73 l S 177.15 88.73 m 180.78 82.43 l 173.51 82.43 l 177.15 88.73 l S 193.80 88.73 m 197.43 82.43 l 190.16 82.43 l 193.80 88.73 l S 206.96 88.73 m 210.60 82.43 l 203.33 82.43 l 206.96 88.73 l S 202.03 88.73 m 205.66 82.43 l 198.39 82.43 l 202.03 88.73 l S 249.19 88.73 m 252.82 82.43 l 245.55 82.43 l 249.19 88.73 l S 249.66 88.73 m 253.29 82.43 l 246.02 82.43 l 249.66 88.73 l S 167.37 88.73 m 171.01 82.43 l 163.74 82.43 l 167.37 88.73 l S 198.02 88.73 m 201.66 82.43 l 194.38 82.43 l 198.02 88.73 l S 192.40 88.73 m 196.03 82.43 l 188.76 82.43 l 192.40 88.73 l S 204.19 88.73 m 207.83 82.43 l 200.56 82.43 l 204.19 88.73 l S 204.32 88.73 m 207.96 82.43 l 200.69 82.43 l 204.32 88.73 l S 199.75 88.73 m 203.38 82.43 l 196.11 82.43 l 199.75 88.73 l S 174.01 88.73 m 177.65 82.43 l 170.37 82.43 l 174.01 88.73 l S 165.89 88.73 m 169.53 82.43 l 162.26 82.43 l 165.89 88.73 l S 107.24 213.24 m 110.88 206.94 l 103.61 206.94 l 107.24 213.24 l S 204.28 88.73 m 207.91 82.43 l 200.64 82.43 l 204.28 88.73 l S 215.23 88.73 m 218.87 82.43 l 211.59 82.43 l 215.23 88.73 l S 193.57 88.73 m 197.20 82.43 l 189.93 82.43 l 193.57 88.73 l S 238.38 88.73 m 242.02 82.43 l 234.75 82.43 l 238.38 88.73 l S 226.23 88.73 m 229.87 82.43 l 222.59 82.43 l 226.23 88.73 l S 256.32 88.77 m 259.95 82.47 l 252.68 82.47 l 256.32 88.77 l S 181.87 88.73 m 185.50 82.43 l 178.23 82.43 l 181.87 88.73 l S 228.51 88.73 m 232.15 82.43 l 224.88 82.43 l 228.51 88.73 l S 195.77 88.73 m 199.40 82.43 l 192.13 82.43 l 195.77 88.73 l S 211.86 88.73 m 215.49 82.43 l 208.22 82.43 l 211.86 88.73 l S 223.64 88.73 m 227.28 82.43 l 220.00 82.43 l 223.64 88.73 l S 142.67 91.22 m 146.31 84.92 l 139.04 84.92 l 142.67 91.22 l S 216.55 88.73 m 220.18 82.43 l 212.91 82.43 l 216.55 88.73 l S 208.27 88.73 m 211.91 82.43 l 204.64 82.43 l 208.27 88.73 l S 211.80 88.73 m 215.43 82.43 l 208.16 82.43 l 211.80 88.73 l S 261.27 89.38 m 264.90 83.08 l 257.63 83.08 l 261.27 89.38 l S 237.29 88.73 m 240.92 82.43 l 233.65 82.43 l 237.29 88.73 l S 228.63 88.73 m 232.27 82.43 l 225.00 82.43 l 228.63 88.73 l S 167.12 88.73 m 170.75 82.43 l 163.48 82.43 l 167.12 88.73 l S 172.85 88.73 m 176.49 82.43 l 169.22 82.43 l 172.85 88.73 l S 205.38 88.73 m 209.01 82.43 l 201.74 82.43 l 205.38 88.73 l S 188.60 88.73 m 192.24 82.43 l 184.97 82.43 l 188.60 88.73 l S 236.22 88.73 m 239.85 82.43 l 232.58 82.43 l 236.22 88.73 l S 192.02 88.73 m 195.65 82.43 l 188.38 82.43 l 192.02 88.73 l S 178.46 88.73 m 182.09 82.43 l 174.82 82.43 l 178.46 88.73 l S 216.04 88.73 m 219.67 82.43 l 212.40 82.43 l 216.04 88.73 l S 228.24 88.73 m 231.88 82.43 l 224.60 82.43 l 228.24 88.73 l S 251.46 88.73 m 255.10 82.43 l 247.82 82.43 l 251.46 88.73 l S 206.17 88.73 m 209.80 82.43 l 202.53 82.43 l 206.17 88.73 l S 176.31 88.73 m 179.94 82.43 l 172.67 82.43 l 176.31 88.73 l S 192.59 88.73 m 196.22 82.43 l 188.95 82.43 l 192.59 88.73 l S 129.74 117.70 m 133.37 111.40 l 126.10 111.40 l 129.74 117.70 l S 237.85 88.73 m 241.49 82.43 l 234.21 82.43 l 237.85 88.73 l S 209.86 88.73 m 213.50 82.43 l 206.22 82.43 l 209.86 88.73 l S 225.83 88.73 m 229.47 82.43 l 222.19 82.43 l 225.83 88.73 l S 251.45 88.73 m 255.08 82.43 l 247.81 82.43 l 251.45 88.73 l S 202.70 88.73 m 206.34 82.43 l 199.07 82.43 l 202.70 88.73 l S 221.05 88.73 m 224.68 82.43 l 217.41 82.43 l 221.05 88.73 l S 207.42 88.73 m 211.05 82.43 l 203.78 82.43 l 207.42 88.73 l S 194.62 88.73 m 198.26 82.43 l 190.98 82.43 l 194.62 88.73 l S 148.73 89.05 m 152.37 82.76 l 145.09 82.76 l 148.73 89.05 l S 219.65 88.73 m 223.29 82.43 l 216.02 82.43 l 219.65 88.73 l S 163.37 88.73 m 167.00 82.43 l 159.73 82.43 l 163.37 88.73 l S 239.67 88.73 m 243.30 82.43 l 236.03 82.43 l 239.67 88.73 l S 97.85 240.18 m 101.49 233.88 l 94.22 233.88 l 97.85 240.18 l S 227.58 88.73 m 231.22 82.43 l 223.95 82.43 l 227.58 88.73 l S 174.43 88.73 m 178.07 82.43 l 170.79 82.43 l 174.43 88.73 l S 173.61 88.73 m 177.25 82.43 l 169.97 82.43 l 173.61 88.73 l S 163.05 88.73 m 166.69 82.43 l 159.42 82.43 l 163.05 88.73 l S 211.69 88.73 m 215.33 82.43 l 208.05 82.43 l 211.69 88.73 l S 212.02 88.73 m 215.65 82.43 l 208.38 82.43 l 212.02 88.73 l S 162.90 88.73 m 166.54 82.43 l 159.27 82.43 l 162.90 88.73 l S 157.47 88.73 m 161.10 82.43 l 153.83 82.43 l 157.47 88.73 l S 246.02 88.73 m 249.66 82.43 l 242.39 82.43 l 246.02 88.73 l S 193.93 88.73 m 197.57 82.43 l 190.29 82.43 l 193.93 88.73 l S 166.42 88.73 m 170.05 82.43 l 162.78 82.43 l 166.42 88.73 l S 153.87 88.73 m 157.50 82.43 l 150.23 82.43 l 153.87 88.73 l S 215.59 88.73 m 219.23 82.43 l 211.95 82.43 l 215.59 88.73 l S 134.48 104.39 m 138.12 98.10 l 130.84 98.10 l 134.48 104.39 l S 156.81 88.73 m 160.45 82.43 l 153.18 82.43 l 156.81 88.73 l S 243.21 88.73 m 246.85 82.43 l 239.58 82.43 l 243.21 88.73 l S 197.52 88.73 m 201.15 82.43 l 193.88 82.43 l 197.52 88.73 l S 181.04 88.73 m 184.68 82.43 l 177.40 82.43 l 181.04 88.73 l S 203.85 88.73 m 207.49 82.43 l 200.21 82.43 l 203.85 88.73 l S 215.56 88.73 m 219.20 82.43 l 211.93 82.43 l 215.56 88.73 l S 204.80 88.73 m 208.43 82.43 l 201.16 82.43 l 204.80 88.73 l S 131.14 113.62 m 134.77 107.32 l 127.50 107.32 l 131.14 113.62 l S 188.28 88.73 m 191.91 82.43 l 184.64 82.43 l 188.28 88.73 l S 194.53 88.73 m 198.17 82.43 l 190.89 82.43 l 194.53 88.73 l S 229.87 88.73 m 233.51 82.43 l 226.24 82.43 l 229.87 88.73 l S 196.97 88.73 m 200.61 82.43 l 193.34 82.43 l 196.97 88.73 l S 148.98 89.01 m 152.62 82.72 l 145.35 82.72 l 148.98 89.01 l S 235.46 88.73 m 239.10 82.43 l 231.83 82.43 l 235.46 88.73 l S 182.62 88.73 m 186.26 82.43 l 178.99 82.43 l 182.62 88.73 l S 218.25 88.73 m 221.88 82.43 l 214.61 82.43 l 218.25 88.73 l S 144.95 90.00 m 148.59 83.70 l 141.32 83.70 l 144.95 90.00 l S 171.66 88.73 m 175.30 82.43 l 168.02 82.43 l 171.66 88.73 l S 199.01 88.73 m 202.65 82.43 l 195.37 82.43 l 199.01 88.73 l S 217.85 88.73 m 221.49 82.43 l 214.22 82.43 l 217.85 88.73 l S 247.56 88.73 m 251.20 82.43 l 243.92 82.43 l 247.56 88.73 l S 289.74 164.90 m 293.38 158.60 l 286.11 158.60 l 289.74 164.90 l S 260.94 89.34 m 264.57 83.04 l 257.30 83.04 l 260.94 89.34 l S 185.53 88.73 m 189.17 82.43 l 181.90 82.43 l 185.53 88.73 l S 170.01 88.73 m 173.65 82.43 l 166.37 82.43 l 170.01 88.73 l S 134.10 105.17 m 137.74 98.87 l 130.47 98.87 l 134.10 105.17 l S 187.86 88.73 m 191.50 82.43 l 184.23 82.43 l 187.86 88.73 l S 186.79 88.73 m 190.43 82.43 l 183.15 82.43 l 186.79 88.73 l S 173.53 88.73 m 177.16 82.43 l 169.89 82.43 l 173.53 88.73 l S 214.08 88.73 m 217.72 82.43 l 210.45 82.43 l 214.08 88.73 l S 140.47 93.64 m 144.11 87.34 l 136.83 87.34 l 140.47 93.64 l S 212.92 88.73 m 216.56 82.43 l 209.29 82.43 l 212.92 88.73 l S 203.46 88.73 m 207.10 82.43 l 199.83 82.43 l 203.46 88.73 l S 240.99 88.73 m 244.62 82.43 l 237.35 82.43 l 240.99 88.73 l S 192.66 88.73 m 196.30 82.43 l 189.03 82.43 l 192.66 88.73 l S 213.38 88.73 m 217.02 82.43 l 209.74 82.43 l 213.38 88.73 l S 206.45 88.73 m 210.09 82.43 l 202.82 82.43 l 206.45 88.73 l S 238.52 88.73 m 242.15 82.43 l 234.88 82.43 l 238.52 88.73 l S 147.15 89.30 m 150.79 83.00 l 143.51 83.00 l 147.15 89.30 l S 273.58 105.05 m 277.21 98.75 l 269.94 98.75 l 273.58 105.05 l S 222.97 88.73 m 226.61 82.43 l 219.33 82.43 l 222.97 88.73 l S 198.03 88.73 m 201.66 82.43 l 194.39 82.43 l 198.03 88.73 l S 116.68 169.73 m 120.32 163.43 l 113.05 163.43 l 116.68 169.73 l S 210.71 88.73 m 214.34 82.43 l 207.07 82.43 l 210.71 88.73 l S 389.07 366.07 m 392.70 359.77 l 385.43 359.77 l 389.07 366.07 l S 215.13 88.73 m 218.76 82.43 l 211.49 82.43 l 215.13 88.73 l S 199.59 88.73 m 203.22 82.43 l 195.95 82.43 l 199.59 88.73 l S 231.68 88.73 m 235.32 82.43 l 228.04 82.43 l 231.68 88.73 l S 218.45 88.73 m 222.09 82.43 l 214.82 82.43 l 218.45 88.73 l S 195.10 88.73 m 198.74 82.43 l 191.47 82.43 l 195.10 88.73 l S 195.92 88.73 m 199.56 82.43 l 192.29 82.43 l 195.92 88.73 l S 215.47 88.73 m 219.11 82.43 l 211.84 82.43 l 215.47 88.73 l S 134.78 103.92 m 138.42 97.62 l 131.15 97.62 l 134.78 103.92 l S 198.38 88.73 m 202.02 82.43 l 194.74 82.43 l 198.38 88.73 l S 202.66 88.73 m 206.30 82.43 l 199.02 82.43 l 202.66 88.73 l S 221.60 88.73 m 225.24 82.43 l 217.96 82.43 l 221.60 88.73 l S 227.70 88.73 m 231.34 82.43 l 224.07 82.43 l 227.70 88.73 l S 232.49 88.73 m 236.13 82.43 l 228.86 82.43 l 232.49 88.73 l S 232.16 88.73 m 235.79 82.43 l 228.52 82.43 l 232.16 88.73 l S 218.00 88.73 m 221.64 82.43 l 214.37 82.43 l 218.00 88.73 l S 186.49 88.73 m 190.12 82.43 l 182.85 82.43 l 186.49 88.73 l S 208.28 88.73 m 211.92 82.43 l 204.65 82.43 l 208.28 88.73 l S 212.99 88.73 m 216.62 82.43 l 209.35 82.43 l 212.99 88.73 l S 168.61 88.73 m 172.24 82.43 l 164.97 82.43 l 168.61 88.73 l S 235.66 88.73 m 239.29 82.43 l 232.02 82.43 l 235.66 88.73 l S 227.86 88.73 m 231.50 82.43 l 224.23 82.43 l 227.86 88.73 l S 160.33 88.73 m 163.97 82.43 l 156.69 82.43 l 160.33 88.73 l S 279.83 123.47 m 283.46 117.17 l 276.19 117.17 l 279.83 123.47 l S 215.31 88.73 m 218.94 82.43 l 211.67 82.43 l 215.31 88.73 l S 155.83 88.73 m 159.47 82.43 l 152.20 82.43 l 155.83 88.73 l S 182.71 88.73 m 186.35 82.43 l 179.08 82.43 l 182.71 88.73 l S 221.57 88.73 m 225.20 82.43 l 217.93 82.43 l 221.57 88.73 l S 213.38 88.73 m 217.02 82.43 l 209.75 82.43 l 213.38 88.73 l S 222.97 88.73 m 226.61 82.43 l 219.33 82.43 l 222.97 88.73 l S 217.40 88.73 m 221.04 82.43 l 213.77 82.43 l 217.40 88.73 l S 179.60 88.73 m 183.24 82.43 l 175.96 82.43 l 179.60 88.73 l S 165.25 88.73 m 168.89 82.43 l 161.61 82.43 l 165.25 88.73 l S 201.53 88.73 m 205.16 82.43 l 197.89 82.43 l 201.53 88.73 l S 250.78 88.73 m 254.41 82.43 l 247.14 82.43 l 250.78 88.73 l S 233.92 88.73 m 237.56 82.43 l 230.29 82.43 l 233.92 88.73 l S 186.59 88.73 m 190.22 82.43 l 182.95 82.43 l 186.59 88.73 l S 202.99 88.73 m 206.62 82.43 l 199.35 82.43 l 202.99 88.73 l S 178.70 88.73 m 182.33 82.43 l 175.06 82.43 l 178.70 88.73 l S 212.81 88.73 m 216.45 82.43 l 209.17 82.43 l 212.81 88.73 l S 148.30 89.10 m 151.93 82.80 l 144.66 82.80 l 148.30 89.10 l S 213.83 88.73 m 217.46 82.43 l 210.19 82.43 l 213.83 88.73 l S 213.42 88.73 m 217.06 82.43 l 209.78 82.43 l 213.42 88.73 l S 250.88 88.73 m 254.51 82.43 l 247.24 82.43 l 250.88 88.73 l S 277.36 116.16 m 281.00 109.86 l 273.73 109.86 l 277.36 116.16 l S 186.20 88.73 m 189.84 82.43 l 182.56 82.43 l 186.20 88.73 l S 156.56 88.73 m 160.20 82.43 l 152.93 82.43 l 156.56 88.73 l S 220.37 88.73 m 224.01 82.43 l 216.74 82.43 l 220.37 88.73 l S 285.61 148.44 m 289.25 142.14 l 281.97 142.14 l 285.61 148.44 l S 225.59 88.73 m 229.23 82.43 l 221.96 82.43 l 225.59 88.73 l S 243.09 88.73 m 246.73 82.43 l 239.45 82.43 l 243.09 88.73 l S 218.93 88.73 m 222.56 82.43 l 215.29 82.43 l 218.93 88.73 l S 211.40 88.73 m 215.04 82.43 l 207.77 82.43 l 211.40 88.73 l S 189.66 88.73 m 193.29 82.43 l 186.02 82.43 l 189.66 88.73 l S 211.07 88.73 m 214.71 82.43 l 207.43 82.43 l 211.07 88.73 l S 98.22 240.18 m 101.86 233.88 l 94.58 233.88 l 98.22 240.18 l S 133.80 105.90 m 137.43 99.61 l 130.16 99.61 l 133.80 105.90 l S 215.29 88.73 m 218.93 82.43 l 211.65 82.43 l 215.29 88.73 l S 161.34 88.73 m 164.97 82.43 l 157.70 82.43 l 161.34 88.73 l S 170.04 88.73 m 173.68 82.43 l 166.40 82.43 l 170.04 88.73 l S 195.53 88.73 m 199.17 82.43 l 191.90 82.43 l 195.53 88.73 l S 180.01 88.73 m 183.65 82.43 l 176.38 82.43 l 180.01 88.73 l S 222.33 88.73 m 225.96 82.43 l 218.69 82.43 l 222.33 88.73 l S 226.61 88.73 m 230.24 82.43 l 222.97 82.43 l 226.61 88.73 l S 165.63 88.73 m 169.27 82.43 l 161.99 82.43 l 165.63 88.73 l S 223.05 88.73 m 226.69 82.43 l 219.41 82.43 l 223.05 88.73 l S 177.55 88.73 m 181.18 82.43 l 173.91 82.43 l 177.55 88.73 l S 258.19 88.93 m 261.83 82.64 l 254.56 82.64 l 258.19 88.93 l S 247.17 88.73 m 250.81 82.43 l 243.53 82.43 l 247.17 88.73 l S 183.82 88.73 m 187.46 82.43 l 180.18 82.43 l 183.82 88.73 l S 201.04 88.73 m 204.67 82.43 l 197.40 82.43 l 201.04 88.73 l S 227.75 88.73 m 231.39 82.43 l 224.12 82.43 l 227.75 88.73 l S 184.36 88.73 m 188.00 82.43 l 180.72 82.43 l 184.36 88.73 l S 251.12 88.73 m 254.75 82.43 l 247.48 82.43 l 251.12 88.73 l S 325.75 338.24 m 329.39 331.94 l 322.12 331.94 l 325.75 338.24 l S 212.84 88.73 m 216.47 82.43 l 209.20 82.43 l 212.84 88.73 l S 202.90 88.73 m 206.53 82.43 l 199.26 82.43 l 202.90 88.73 l S 191.02 88.73 m 194.66 82.43 l 187.39 82.43 l 191.02 88.73 l S 153.69 88.73 m 157.33 82.43 l 150.05 82.43 l 153.69 88.73 l S 223.57 88.73 m 227.21 82.43 l 219.94 82.43 l 223.57 88.73 l S 252.55 88.73 m 256.19 82.43 l 248.92 82.43 l 252.55 88.73 l S 227.84 88.73 m 231.47 82.43 l 224.20 82.43 l 227.84 88.73 l S 205.00 88.73 m 208.64 82.43 l 201.37 82.43 l 205.00 88.73 l S 176.56 88.73 m 180.19 82.43 l 172.92 82.43 l 176.56 88.73 l S 135.20 102.60 m 138.83 96.30 l 131.56 96.30 l 135.20 102.60 l S 168.84 88.73 m 172.47 82.43 l 165.20 82.43 l 168.84 88.73 l S 158.88 88.73 m 162.52 82.43 l 155.24 82.43 l 158.88 88.73 l S 196.93 88.73 m 200.56 82.43 l 193.29 82.43 l 196.93 88.73 l S 195.36 88.73 m 198.99 82.43 l 191.72 82.43 l 195.36 88.73 l S 144.87 90.04 m 148.50 83.74 l 141.23 83.74 l 144.87 90.04 l S 209.42 88.73 m 213.05 82.43 l 205.78 82.43 l 209.42 88.73 l S 234.79 88.73 m 238.42 82.43 l 231.15 82.43 l 234.79 88.73 l S 132.89 108.58 m 136.52 102.28 l 129.25 102.28 l 132.89 108.58 l S 181.74 88.73 m 185.38 82.43 l 178.11 82.43 l 181.74 88.73 l S 172.31 88.73 m 175.95 82.43 l 168.68 82.43 l 172.31 88.73 l S 219.71 88.73 m 223.34 82.43 l 216.07 82.43 l 219.71 88.73 l S 233.84 88.73 m 237.48 82.43 l 230.21 82.43 l 233.84 88.73 l S 214.02 88.73 m 217.65 82.43 l 210.38 82.43 l 214.02 88.73 l S 213.38 88.73 m 217.01 82.43 l 209.74 82.43 l 213.38 88.73 l S 169.49 88.73 m 173.13 82.43 l 165.86 82.43 l 169.49 88.73 l S 174.30 88.73 m 177.93 82.43 l 170.66 82.43 l 174.30 88.73 l S 153.04 88.73 m 156.68 82.43 l 149.41 82.43 l 153.04 88.73 l S 261.70 89.42 m 265.34 83.12 l 258.07 83.12 l 261.70 89.42 l S 197.61 88.73 m 201.24 82.43 l 193.97 82.43 l 197.61 88.73 l S 175.99 88.73 m 179.63 82.43 l 172.36 82.43 l 175.99 88.73 l S 228.81 88.73 m 232.44 82.43 l 225.17 82.43 l 228.81 88.73 l S 202.68 88.73 m 206.32 82.43 l 199.05 82.43 l 202.68 88.73 l S 160.79 88.73 m 164.43 82.43 l 157.16 82.43 l 160.79 88.73 l S 209.32 88.73 m 212.95 82.43 l 205.68 82.43 l 209.32 88.73 l S 277.47 116.48 m 281.10 110.18 l 273.83 110.18 l 277.47 116.48 l S 175.69 88.73 m 179.33 82.43 l 172.05 82.43 l 175.69 88.73 l S 127.82 123.85 m 131.46 117.55 l 124.18 117.55 l 127.82 123.85 l S 143.97 90.45 m 147.61 84.16 l 140.33 84.16 l 143.97 90.45 l S 243.42 88.73 m 247.06 82.43 l 239.78 82.43 l 243.42 88.73 l S 207.86 88.73 m 211.49 82.43 l 204.22 82.43 l 207.86 88.73 l S 213.19 88.73 m 216.82 82.43 l 209.55 82.43 l 213.19 88.73 l S 178.49 88.73 m 182.13 82.43 l 174.86 82.43 l 178.49 88.73 l S 176.01 88.73 m 179.65 82.43 l 172.38 82.43 l 176.01 88.73 l S 184.03 88.73 m 187.67 82.43 l 180.40 82.43 l 184.03 88.73 l S 177.35 88.73 m 180.98 82.43 l 173.71 82.43 l 177.35 88.73 l S 137.14 97.94 m 140.78 91.64 l 133.51 91.64 l 137.14 97.94 l S 154.60 88.73 m 158.23 82.43 l 150.96 82.43 l 154.60 88.73 l S 201.52 88.73 m 205.16 82.43 l 197.88 82.43 l 201.52 88.73 l S 218.89 88.73 m 222.53 82.43 l 215.26 82.43 l 218.89 88.73 l S 196.23 88.73 m 199.86 82.43 l 192.59 82.43 l 196.23 88.73 l S 197.14 88.73 m 200.77 82.43 l 193.50 82.43 l 197.14 88.73 l S 169.49 88.73 m 173.13 82.43 l 165.86 82.43 l 169.49 88.73 l S 156.94 88.73 m 160.58 82.43 l 153.31 82.43 l 156.94 88.73 l S 228.88 88.73 m 232.52 82.43 l 225.25 82.43 l 228.88 88.73 l S 181.93 88.73 m 185.57 82.43 l 178.30 82.43 l 181.93 88.73 l S 127.54 125.02 m 131.18 118.72 l 123.91 118.72 l 127.54 125.02 l S 190.82 88.73 m 194.46 82.43 l 187.19 82.43 l 190.82 88.73 l S 227.05 88.73 m 230.68 82.43 l 223.41 82.43 l 227.05 88.73 l S 195.70 88.73 m 199.33 82.43 l 192.06 82.43 l 195.70 88.73 l S 207.86 88.73 m 211.50 82.43 l 204.22 82.43 l 207.86 88.73 l S 160.03 88.73 m 163.67 82.43 l 156.40 82.43 l 160.03 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.90 82.43 l 202.53 88.73 l S 156.06 88.73 m 159.69 82.43 l 152.42 82.43 l 156.06 88.73 l S 143.78 90.54 m 147.41 84.24 l 140.14 84.24 l 143.78 90.54 l S 242.77 88.73 m 246.41 82.43 l 239.14 82.43 l 242.77 88.73 l S 193.82 88.73 m 197.45 82.43 l 190.18 82.43 l 193.82 88.73 l S 112.45 189.64 m 116.09 183.34 l 108.81 183.34 l 112.45 189.64 l S 97.91 240.18 m 101.55 233.88 l 94.27 233.88 l 97.91 240.18 l S 174.68 88.73 m 178.32 82.43 l 171.05 82.43 l 174.68 88.73 l S 198.77 88.73 m 202.40 82.43 l 195.13 82.43 l 198.77 88.73 l S 204.16 88.73 m 207.80 82.43 l 200.52 82.43 l 204.16 88.73 l S 225.12 88.73 m 228.76 82.43 l 221.48 82.43 l 225.12 88.73 l S 195.96 88.73 m 199.59 82.43 l 192.32 82.43 l 195.96 88.73 l S 190.13 88.73 m 193.76 82.43 l 186.49 82.43 l 190.13 88.73 l S 245.32 88.73 m 248.96 82.43 l 241.69 82.43 l 245.32 88.73 l S 252.09 88.73 m 255.72 82.43 l 248.45 82.43 l 252.09 88.73 l S 237.72 88.73 m 241.35 82.43 l 234.08 82.43 l 237.72 88.73 l S 135.67 101.26 m 139.31 94.96 l 132.04 94.96 l 135.67 101.26 l S 219.84 88.73 m 223.47 82.43 l 216.20 82.43 l 219.84 88.73 l S 214.56 88.73 m 218.19 82.43 l 210.92 82.43 l 214.56 88.73 l S 158.58 88.73 m 162.22 82.43 l 154.95 82.43 l 158.58 88.73 l S 251.46 88.73 m 255.10 82.43 l 247.83 82.43 l 251.46 88.73 l S 244.16 88.73 m 247.79 82.43 l 240.52 82.43 l 244.16 88.73 l S 211.99 88.73 m 215.63 82.43 l 208.36 82.43 l 211.99 88.73 l S 221.57 88.73 m 225.21 82.43 l 217.94 82.43 l 221.57 88.73 l S 195.34 88.73 m 198.98 82.43 l 191.71 82.43 l 195.34 88.73 l S 159.01 88.73 m 162.65 82.43 l 155.37 82.43 l 159.01 88.73 l S 188.60 88.73 m 192.24 82.43 l 184.96 82.43 l 188.60 88.73 l S 204.58 88.73 m 208.21 82.43 l 200.94 82.43 l 204.58 88.73 l S 203.26 88.73 m 206.90 82.43 l 199.63 82.43 l 203.26 88.73 l S 99.49 238.47 m 103.13 232.17 l 95.86 232.17 l 99.49 238.47 l S 151.77 88.77 m 155.41 82.47 l 148.14 82.47 l 151.77 88.77 l S 175.81 88.73 m 179.44 82.43 l 172.17 82.43 l 175.81 88.73 l S 187.36 88.73 m 191.00 82.43 l 183.72 82.43 l 187.36 88.73 l S 149.18 89.01 m 152.82 82.72 l 145.55 82.72 l 149.18 89.01 l S 140.69 93.32 m 144.33 87.02 l 137.05 87.02 l 140.69 93.32 l S 188.03 88.73 m 191.66 82.43 l 184.39 82.43 l 188.03 88.73 l S 204.53 88.73 m 208.17 82.43 l 200.90 82.43 l 204.53 88.73 l S 128.57 121.69 m 132.21 115.39 l 124.94 115.39 l 128.57 121.69 l S 222.46 88.73 m 226.10 82.43 l 218.82 82.43 l 222.46 88.73 l S 173.00 88.73 m 176.63 82.43 l 169.36 82.43 l 173.00 88.73 l S 253.18 88.73 m 256.82 82.43 l 249.55 82.43 l 253.18 88.73 l S 252.89 88.73 m 256.52 82.43 l 249.25 82.43 l 252.89 88.73 l S 126.79 128.00 m 130.43 121.71 l 123.16 121.71 l 126.79 128.00 l S 163.84 88.73 m 167.47 82.43 l 160.20 82.43 l 163.84 88.73 l S 235.85 88.73 m 239.49 82.43 l 232.21 82.43 l 235.85 88.73 l S 270.04 96.95 m 273.68 90.65 l 266.41 90.65 l 270.04 96.95 l S 135.25 102.43 m 138.89 96.13 l 131.62 96.13 l 135.25 102.43 l S 110.62 197.86 m 114.25 191.56 l 106.98 191.56 l 110.62 197.86 l S 193.92 88.73 m 197.56 82.43 l 190.29 82.43 l 193.92 88.73 l S 192.42 88.73 m 196.06 82.43 l 188.78 82.43 l 192.42 88.73 l S 186.96 88.73 m 190.59 82.43 l 183.32 82.43 l 186.96 88.73 l S 216.12 88.73 m 219.75 82.43 l 212.48 82.43 l 216.12 88.73 l S 186.22 88.73 m 189.86 82.43 l 182.59 82.43 l 186.22 88.73 l S 133.95 105.60 m 137.59 99.30 l 130.31 99.30 l 133.95 105.60 l S 192.84 88.73 m 196.48 82.43 l 189.21 82.43 l 192.84 88.73 l S 237.64 88.73 m 241.27 82.43 l 234.00 82.43 l 237.64 88.73 l S 204.51 88.73 m 208.15 82.43 l 200.88 82.43 l 204.51 88.73 l S 200.65 88.73 m 204.29 82.43 l 197.01 82.43 l 200.65 88.73 l S 140.62 93.41 m 144.25 87.11 l 136.98 87.11 l 140.62 93.41 l S 158.67 88.73 m 162.31 82.43 l 155.04 82.43 l 158.67 88.73 l S 176.81 88.73 m 180.45 82.43 l 173.18 82.43 l 176.81 88.73 l S 258.73 89.01 m 262.36 82.72 l 255.09 82.72 l 258.73 89.01 l S 273.41 104.39 m 277.05 98.10 l 269.78 98.10 l 273.41 104.39 l S 239.37 88.73 m 243.01 82.43 l 235.74 82.43 l 239.37 88.73 l S 231.32 88.73 m 234.96 82.43 l 227.69 82.43 l 231.32 88.73 l S 217.34 88.73 m 220.98 82.43 l 213.71 82.43 l 217.34 88.73 l S 195.97 88.73 m 199.60 82.43 l 192.33 82.43 l 195.97 88.73 l S 158.80 88.73 m 162.44 82.43 l 155.16 82.43 l 158.80 88.73 l S 200.99 88.73 m 204.62 82.43 l 197.35 82.43 l 200.99 88.73 l S 257.62 88.85 m 261.26 82.55 l 253.98 82.55 l 257.62 88.85 l S 143.02 90.92 m 146.66 84.62 l 139.38 84.62 l 143.02 90.92 l S 178.80 88.73 m 182.44 82.43 l 175.17 82.43 l 178.80 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.90 82.43 l 202.53 88.73 l S 187.00 88.73 m 190.63 82.43 l 183.36 82.43 l 187.00 88.73 l S 180.41 88.73 m 184.05 82.43 l 176.78 82.43 l 180.41 88.73 l S 255.38 88.77 m 259.01 82.47 l 251.74 82.47 l 255.38 88.77 l S 250.93 88.73 m 254.57 82.43 l 247.29 82.43 l 250.93 88.73 l S 164.04 88.73 m 167.68 82.43 l 160.40 82.43 l 164.04 88.73 l S 233.11 88.73 m 236.75 82.43 l 229.47 82.43 l 233.11 88.73 l S 209.71 88.73 m 213.35 82.43 l 206.08 82.43 l 209.71 88.73 l S 237.84 88.73 m 241.48 82.43 l 234.20 82.43 l 237.84 88.73 l S 183.26 88.73 m 186.89 82.43 l 179.62 82.43 l 183.26 88.73 l S 231.66 88.73 m 235.29 82.43 l 228.02 82.43 l 231.66 88.73 l S 120.75 153.35 m 124.39 147.05 l 117.12 147.05 l 120.75 153.35 l S 175.67 88.73 m 179.31 82.43 l 172.04 82.43 l 175.67 88.73 l S 144.79 90.04 m 148.43 83.74 l 141.15 83.74 l 144.79 90.04 l S 217.97 88.73 m 221.60 82.43 l 214.33 82.43 l 217.97 88.73 l S 105.99 216.97 m 109.63 210.67 l 102.36 210.67 l 105.99 216.97 l S 138.35 96.36 m 141.98 90.06 l 134.71 90.06 l 138.35 96.36 l S 180.62 88.73 m 184.25 82.43 l 176.98 82.43 l 180.62 88.73 l S 256.50 88.77 m 260.14 82.47 l 252.87 82.47 l 256.50 88.77 l S 217.69 88.73 m 221.33 82.43 l 214.06 82.43 l 217.69 88.73 l S 149.03 89.01 m 152.67 82.72 l 145.39 82.72 l 149.03 89.01 l S 215.60 88.73 m 219.24 82.43 l 211.96 82.43 l 215.60 88.73 l S 257.94 88.89 m 261.58 82.59 l 254.31 82.59 l 257.94 88.89 l S 146.13 89.42 m 149.77 83.12 l 142.50 83.12 l 146.13 89.42 l S 101.61 229.51 m 105.25 223.22 l 97.97 223.22 l 101.61 229.51 l S 193.83 88.73 m 197.47 82.43 l 190.20 82.43 l 193.83 88.73 l S 186.78 88.73 m 190.42 82.43 l 183.14 82.43 l 186.78 88.73 l S 167.86 88.73 m 171.50 82.43 l 164.23 82.43 l 167.86 88.73 l S 198.39 88.73 m 202.03 82.43 l 194.75 82.43 l 198.39 88.73 l S 215.65 88.73 m 219.28 82.43 l 212.01 82.43 l 215.65 88.73 l S 186.93 88.73 m 190.57 82.43 l 183.29 82.43 l 186.93 88.73 l S 195.76 88.73 m 199.40 82.43 l 192.13 82.43 l 195.76 88.73 l S 131.63 112.01 m 135.27 105.71 l 128.00 105.71 l 131.63 112.01 l S 140.20 93.91 m 143.83 87.61 l 136.56 87.61 l 140.20 93.91 l S 221.46 88.73 m 225.10 82.43 l 217.82 82.43 l 221.46 88.73 l S 164.57 88.73 m 168.21 82.43 l 160.94 82.43 l 164.57 88.73 l S 177.14 88.73 m 180.78 82.43 l 173.51 82.43 l 177.14 88.73 l S 182.72 88.73 m 186.35 82.43 l 179.08 82.43 l 182.72 88.73 l S 247.58 88.73 m 251.22 82.43 l 243.94 82.43 l 247.58 88.73 l S 188.14 88.73 m 191.77 82.43 l 184.50 82.43 l 188.14 88.73 l S 218.80 88.73 m 222.44 82.43 l 215.17 82.43 l 218.80 88.73 l S 146.20 89.42 m 149.84 83.12 l 142.57 83.12 l 146.20 89.42 l S 136.44 99.28 m 140.08 92.98 l 132.81 92.98 l 136.44 99.28 l S 245.80 88.73 m 249.44 82.43 l 242.17 82.43 l 245.80 88.73 l S 162.01 88.73 m 165.64 82.43 l 158.37 82.43 l 162.01 88.73 l S 184.70 88.73 m 188.34 82.43 l 181.06 82.43 l 184.70 88.73 l S 179.91 88.73 m 183.55 82.43 l 176.28 82.43 l 179.91 88.73 l S 192.43 88.73 m 196.07 82.43 l 188.80 82.43 l 192.43 88.73 l S 224.69 88.73 m 228.32 82.43 l 221.05 82.43 l 224.69 88.73 l S 230.16 88.73 m 233.80 82.43 l 226.53 82.43 l 230.16 88.73 l S 240.09 88.73 m 243.72 82.43 l 236.45 82.43 l 240.09 88.73 l S 204.36 88.73 m 208.00 82.43 l 200.72 82.43 l 204.36 88.73 l S 189.58 88.73 m 193.21 82.43 l 185.94 82.43 l 189.58 88.73 l S 225.21 88.73 m 228.84 82.43 l 221.57 82.43 l 225.21 88.73 l S 75.24 338.24 m 78.87 331.94 l 71.60 331.94 l 75.24 338.24 l S 203.36 88.73 m 206.99 82.43 l 199.72 82.43 l 203.36 88.73 l S 176.44 88.73 m 180.08 82.43 l 172.81 82.43 l 176.44 88.73 l S 206.50 88.73 m 210.13 82.43 l 202.86 82.43 l 206.50 88.73 l S 186.07 88.73 m 189.70 82.43 l 182.43 82.43 l 186.07 88.73 l S 195.45 88.73 m 199.08 82.43 l 191.81 82.43 l 195.45 88.73 l S 205.10 88.73 m 208.73 82.43 l 201.46 82.43 l 205.10 88.73 l S 260.13 89.22 m 263.77 82.92 l 256.50 82.92 l 260.13 89.22 l S 205.80 88.73 m 209.44 82.43 l 202.16 82.43 l 205.80 88.73 l S 167.23 88.73 m 170.86 82.43 l 163.59 82.43 l 167.23 88.73 l S 195.09 88.73 m 198.73 82.43 l 191.45 82.43 l 195.09 88.73 l S 145.96 89.46 m 149.59 83.16 l 142.32 83.16 l 145.96 89.46 l S 202.82 88.73 m 206.46 82.43 l 199.18 82.43 l 202.82 88.73 l S 260.29 89.22 m 263.92 82.92 l 256.65 82.92 l 260.29 89.22 l S 187.97 88.73 m 191.60 82.43 l 184.33 82.43 l 187.97 88.73 l S 239.30 88.73 m 242.94 82.43 l 235.67 82.43 l 239.30 88.73 l S 123.17 142.66 m 126.81 136.36 l 119.54 136.36 l 123.17 142.66 l S 243.36 88.73 m 247.00 82.43 l 239.73 82.43 l 243.36 88.73 l S 221.06 88.73 m 224.70 82.43 l 217.42 82.43 l 221.06 88.73 l S 212.97 88.73 m 216.61 82.43 l 209.34 82.43 l 212.97 88.73 l S 240.79 88.73 m 244.42 82.43 l 237.15 82.43 l 240.79 88.73 l S 235.35 88.73 m 238.99 82.43 l 231.71 82.43 l 235.35 88.73 l S 172.78 88.73 m 176.41 82.43 l 169.14 82.43 l 172.78 88.73 l S 241.20 88.73 m 244.84 82.43 l 237.56 82.43 l 241.20 88.73 l S 120.28 155.41 m 123.91 149.11 l 116.64 149.11 l 120.28 155.41 l S 216.65 88.73 m 220.29 82.43 l 213.01 82.43 l 216.65 88.73 l S 227.18 88.73 m 230.81 82.43 l 223.54 82.43 l 227.18 88.73 l S 218.20 88.73 m 221.83 82.43 l 214.56 82.43 l 218.20 88.73 l S 221.38 88.73 m 225.02 82.43 l 217.74 82.43 l 221.38 88.73 l S 268.58 95.16 m 272.21 88.86 l 264.94 88.86 l 268.58 95.16 l S 269.92 96.90 m 273.56 90.60 l 266.29 90.60 l 269.92 96.90 l S 169.66 88.73 m 173.30 82.43 l 166.03 82.43 l 169.66 88.73 l S 102.97 225.69 m 106.61 219.39 l 99.33 219.39 l 102.97 225.69 l S 153.40 88.73 m 157.03 82.43 l 149.76 82.43 l 153.40 88.73 l S 253.35 88.73 m 256.98 82.43 l 249.71 82.43 l 253.35 88.73 l S 251.94 88.73 m 255.58 82.43 l 248.30 82.43 l 251.94 88.73 l S 133.45 106.71 m 137.09 100.41 l 129.81 100.41 l 133.45 106.71 l S 208.61 88.73 m 212.25 82.43 l 204.97 82.43 l 208.61 88.73 l S 167.09 88.73 m 170.73 82.43 l 163.46 82.43 l 167.09 88.73 l S 223.50 88.73 m 227.13 82.43 l 219.86 82.43 l 223.50 88.73 l S 221.65 88.73 m 225.28 82.43 l 218.01 82.43 l 221.65 88.73 l S 248.61 88.73 m 252.24 82.43 l 244.97 82.43 l 248.61 88.73 l S 230.96 88.73 m 234.60 82.43 l 227.32 82.43 l 230.96 88.73 l S 156.05 88.73 m 159.68 82.43 l 152.41 82.43 l 156.05 88.73 l S 133.16 107.41 m 136.79 101.11 l 129.52 101.11 l 133.16 107.41 l S 196.87 88.73 m 200.50 82.43 l 193.23 82.43 l 196.87 88.73 l S 170.92 88.73 m 174.56 82.43 l 167.29 82.43 l 170.92 88.73 l S 165.96 88.73 m 169.60 82.43 l 162.33 82.43 l 165.96 88.73 l S 200.42 88.73 m 204.05 82.43 l 196.78 82.43 l 200.42 88.73 l S 237.82 88.73 m 241.46 82.43 l 234.18 82.43 l 237.82 88.73 l S 282.50 133.24 m 286.14 126.94 l 278.86 126.94 l 282.50 133.24 l S 191.53 88.73 m 195.17 82.43 l 187.89 82.43 l 191.53 88.73 l S 123.15 142.81 m 126.78 136.52 l 119.51 136.52 l 123.15 142.81 l S 205.76 88.73 m 209.39 82.43 l 202.12 82.43 l 205.76 88.73 l S 210.18 88.73 m 213.82 82.43 l 206.55 82.43 l 210.18 88.73 l S 246.66 88.73 m 250.30 82.43 l 243.03 82.43 l 246.66 88.73 l S 179.68 88.73 m 183.31 82.43 l 176.04 82.43 l 179.68 88.73 l S 153.32 88.73 m 156.95 82.43 l 149.68 82.43 l 153.32 88.73 l S 149.47 88.93 m 153.11 82.64 l 145.83 82.64 l 149.47 88.93 l S 209.58 88.73 m 213.21 82.43 l 205.94 82.43 l 209.58 88.73 l S 208.51 88.73 m 212.14 82.43 l 204.87 82.43 l 208.51 88.73 l S 161.95 88.73 m 165.59 82.43 l 158.31 82.43 l 161.95 88.73 l S 220.72 88.73 m 224.36 82.43 l 217.08 82.43 l 220.72 88.73 l S 143.68 90.66 m 147.32 84.37 l 140.05 84.37 l 143.68 90.66 l S 226.35 88.73 m 229.98 82.43 l 222.71 82.43 l 226.35 88.73 l S 171.04 88.73 m 174.67 82.43 l 167.40 82.43 l 171.04 88.73 l S 194.45 88.73 m 198.08 82.43 l 190.81 82.43 l 194.45 88.73 l S 198.98 88.73 m 202.61 82.43 l 195.34 82.43 l 198.98 88.73 l S 200.10 88.73 m 203.74 82.43 l 196.47 82.43 l 200.10 88.73 l S 237.85 88.73 m 241.49 82.43 l 234.22 82.43 l 237.85 88.73 l S 274.36 106.84 m 278.00 100.54 l 270.73 100.54 l 274.36 106.84 l S 207.10 88.73 m 210.73 82.43 l 203.46 82.43 l 207.10 88.73 l S 174.73 88.73 m 178.37 82.43 l 171.10 82.43 l 174.73 88.73 l S 109.03 205.18 m 112.67 198.88 l 105.40 198.88 l 109.03 205.18 l S 183.17 88.73 m 186.81 82.43 l 179.54 82.43 l 183.17 88.73 l S 205.26 88.73 m 208.90 82.43 l 201.62 82.43 l 205.26 88.73 l S 226.64 88.73 m 230.28 82.43 l 223.01 82.43 l 226.64 88.73 l S 226.93 88.73 m 230.57 82.43 l 223.30 82.43 l 226.93 88.73 l S 171.54 88.73 m 175.18 82.43 l 167.91 82.43 l 171.54 88.73 l S 240.01 88.73 m 243.65 82.43 l 236.38 82.43 l 240.01 88.73 l S 114.49 180.78 m 118.13 174.48 l 110.85 174.48 l 114.49 180.78 l S 189.30 88.73 m 192.93 82.43 l 185.66 82.43 l 189.30 88.73 l S 228.88 88.73 m 232.52 82.43 l 225.25 82.43 l 228.88 88.73 l S 237.09 88.73 m 240.73 82.43 l 233.45 82.43 l 237.09 88.73 l S 220.94 88.73 m 224.58 82.43 l 217.30 82.43 l 220.94 88.73 l S 191.61 88.73 m 195.25 82.43 l 187.98 82.43 l 191.61 88.73 l S 186.45 88.73 m 190.08 82.43 l 182.81 82.43 l 186.45 88.73 l S 194.87 88.73 m 198.51 82.43 l 191.24 82.43 l 194.87 88.73 l S 214.22 88.73 m 217.85 82.43 l 210.58 82.43 l 214.22 88.73 l S 253.27 88.73 m 256.91 82.43 l 249.63 82.43 l 253.27 88.73 l S 186.50 88.73 m 190.14 82.43 l 182.87 82.43 l 186.50 88.73 l S 229.57 88.73 m 233.20 82.43 l 225.93 82.43 l 229.57 88.73 l S 195.61 88.73 m 199.24 82.43 l 191.97 82.43 l 195.61 88.73 l S 209.01 88.73 m 212.65 82.43 l 205.38 82.43 l 209.01 88.73 l S 177.49 88.73 m 181.13 82.43 l 173.85 82.43 l 177.49 88.73 l S 211.99 88.73 m 215.63 82.43 l 208.35 82.43 l 211.99 88.73 l S 184.90 88.73 m 188.54 82.43 l 181.26 82.43 l 184.90 88.73 l S 259.29 89.10 m 262.93 82.80 l 255.66 82.80 l 259.29 89.10 l S 181.88 88.73 m 185.51 82.43 l 178.24 82.43 l 181.88 88.73 l S 194.18 88.73 m 197.82 82.43 l 190.54 82.43 l 194.18 88.73 l S 179.54 88.73 m 183.18 82.43 l 175.90 82.43 l 179.54 88.73 l S 176.89 88.73 m 180.53 82.43 l 173.26 82.43 l 176.89 88.73 l S 239.29 88.73 m 242.92 82.43 l 235.65 82.43 l 239.29 88.73 l S 76.49 338.24 m 80.12 331.94 l 72.85 331.94 l 76.49 338.24 l S 273.81 105.60 m 277.45 99.30 l 270.18 99.30 l 273.81 105.60 l S 202.70 88.73 m 206.34 82.43 l 199.07 82.43 l 202.70 88.73 l S 240.54 88.73 m 244.18 82.43 l 236.90 82.43 l 240.54 88.73 l S 212.11 88.73 m 215.75 82.43 l 208.48 82.43 l 212.11 88.73 l S 282.59 133.49 m 286.22 127.19 l 278.95 127.19 l 282.59 133.49 l S 210.40 88.73 m 214.04 82.43 l 206.77 82.43 l 210.40 88.73 l S 152.18 88.77 m 155.82 82.47 l 148.54 82.47 l 152.18 88.77 l S 165.65 88.73 m 169.29 82.43 l 162.02 82.43 l 165.65 88.73 l S 177.26 88.73 m 180.90 82.43 l 173.62 82.43 l 177.26 88.73 l S 280.39 126.02 m 284.03 119.73 l 276.76 119.73 l 280.39 126.02 l S 273.66 105.17 m 277.29 98.87 l 270.02 98.87 l 273.66 105.17 l S 208.41 88.73 m 212.05 82.43 l 204.78 82.43 l 208.41 88.73 l S 223.02 88.73 m 226.66 82.43 l 219.39 82.43 l 223.02 88.73 l S 234.15 88.73 m 237.79 82.43 l 230.52 82.43 l 234.15 88.73 l S 241.98 88.73 m 245.61 82.43 l 238.34 82.43 l 241.98 88.73 l S 186.61 88.73 m 190.24 82.43 l 182.97 82.43 l 186.61 88.73 l S 132.49 109.64 m 136.12 103.35 l 128.85 103.35 l 132.49 109.64 l S 216.62 88.73 m 220.26 82.43 l 212.98 82.43 l 216.62 88.73 l S 194.22 88.73 m 197.86 82.43 l 190.58 82.43 l 194.22 88.73 l S 194.92 88.73 m 198.56 82.43 l 191.29 82.43 l 194.92 88.73 l S 256.94 88.77 m 260.58 82.47 l 253.31 82.47 l 256.94 88.77 l S 217.58 88.73 m 221.22 82.43 l 213.94 82.43 l 217.58 88.73 l S 160.74 88.73 m 164.38 82.43 l 157.11 82.43 l 160.74 88.73 l S 230.08 88.73 m 233.72 82.43 l 226.44 82.43 l 230.08 88.73 l S 194.30 88.73 m 197.93 82.43 l 190.66 82.43 l 194.30 88.73 l S 190.93 88.73 m 194.57 82.43 l 187.30 82.43 l 190.93 88.73 l S 184.80 88.73 m 188.43 82.43 l 181.16 82.43 l 184.80 88.73 l S 157.56 88.73 m 161.19 82.43 l 153.92 82.43 l 157.56 88.73 l S 211.58 88.73 m 215.21 82.43 l 207.94 82.43 l 211.58 88.73 l S 202.36 88.73 m 205.99 82.43 l 198.72 82.43 l 202.36 88.73 l S 232.56 88.73 m 236.19 82.43 l 228.92 82.43 l 232.56 88.73 l S 269.70 96.75 m 273.33 90.45 l 266.06 90.45 l 269.70 96.75 l S 218.35 88.73 m 221.99 82.43 l 214.72 82.43 l 218.35 88.73 l S 222.83 88.73 m 226.47 82.43 l 219.20 82.43 l 222.83 88.73 l S 243.90 88.73 m 247.54 82.43 l 240.27 82.43 l 243.90 88.73 l S 206.74 88.73 m 210.38 82.43 l 203.11 82.43 l 206.74 88.73 l S 167.09 88.73 m 170.72 82.43 l 163.45 82.43 l 167.09 88.73 l S 186.65 88.73 m 190.29 82.43 l 183.01 82.43 l 186.65 88.73 l S 235.07 88.73 m 238.71 82.43 l 231.43 82.43 l 235.07 88.73 l S 193.99 88.73 m 197.62 82.43 l 190.35 82.43 l 193.99 88.73 l S 263.22 90.25 m 266.86 83.95 l 259.59 83.95 l 263.22 90.25 l S 244.52 88.73 m 248.16 82.43 l 240.89 82.43 l 244.52 88.73 l S 164.30 88.73 m 167.94 82.43 l 160.66 82.43 l 164.30 88.73 l S 239.63 88.73 m 243.27 82.43 l 236.00 82.43 l 239.63 88.73 l S 217.59 88.73 m 221.23 82.43 l 213.95 82.43 l 217.59 88.73 l S 226.73 88.73 m 230.37 82.43 l 223.10 82.43 l 226.73 88.73 l S 270.65 98.04 m 274.29 91.75 l 267.02 91.75 l 270.65 98.04 l S 242.52 88.73 m 246.16 82.43 l 238.88 82.43 l 242.52 88.73 l S 154.47 88.73 m 158.11 82.43 l 150.83 82.43 l 154.47 88.73 l S 230.31 88.73 m 233.95 82.43 l 226.68 82.43 l 230.31 88.73 l S 232.81 88.73 m 236.45 82.43 l 229.17 82.43 l 232.81 88.73 l S 266.80 92.87 m 270.44 86.57 l 263.16 86.57 l 266.80 92.87 l S 246.51 88.73 m 250.15 82.43 l 242.88 82.43 l 246.51 88.73 l S 169.47 88.73 m 173.10 82.43 l 165.83 82.43 l 169.47 88.73 l S 207.96 88.73 m 211.60 82.43 l 204.32 82.43 l 207.96 88.73 l S 216.12 88.73 m 219.76 82.43 l 212.49 82.43 l 216.12 88.73 l S 190.58 88.73 m 194.22 82.43 l 186.95 82.43 l 190.58 88.73 l S 239.75 88.73 m 243.39 82.43 l 236.12 82.43 l 239.75 88.73 l S 237.46 88.73 m 241.09 82.43 l 233.82 82.43 l 237.46 88.73 l S 199.25 88.73 m 202.89 82.43 l 195.62 82.43 l 199.25 88.73 l S 200.34 88.73 m 203.98 82.43 l 196.70 82.43 l 200.34 88.73 l S 188.00 88.73 m 191.63 82.43 l 184.36 82.43 l 188.00 88.73 l S 263.99 90.54 m 267.62 84.24 l 260.35 84.24 l 263.99 90.54 l S 288.62 160.83 m 292.26 154.53 l 284.99 154.53 l 288.62 160.83 l S 169.47 88.73 m 173.11 82.43 l 165.83 82.43 l 169.47 88.73 l S 223.11 88.73 m 226.75 82.43 l 219.48 82.43 l 223.11 88.73 l S 233.19 88.73 m 236.82 82.43 l 229.55 82.43 l 233.19 88.73 l S 144.24 90.29 m 147.87 83.99 l 140.60 83.99 l 144.24 90.29 l S 160.89 88.73 m 164.52 82.43 l 157.25 82.43 l 160.89 88.73 l S 270.59 97.89 m 274.23 91.59 l 266.96 91.59 l 270.59 97.89 l S 254.74 88.73 m 258.38 82.43 l 251.11 82.43 l 254.74 88.73 l S 246.94 88.73 m 250.57 82.43 l 243.30 82.43 l 246.94 88.73 l S 260.59 89.30 m 264.23 83.00 l 256.96 83.00 l 260.59 89.30 l S 234.76 88.73 m 238.40 82.43 l 231.13 82.43 l 234.76 88.73 l S 256.86 88.77 m 260.50 82.47 l 253.22 82.47 l 256.86 88.77 l S 195.18 88.73 m 198.81 82.43 l 191.54 82.43 l 195.18 88.73 l S 258.43 88.93 m 262.07 82.64 l 254.79 82.64 l 258.43 88.93 l S 180.89 88.73 m 184.53 82.43 l 177.25 82.43 l 180.89 88.73 l S 161.13 88.73 m 164.77 82.43 l 157.50 82.43 l 161.13 88.73 l S 242.51 88.73 m 246.15 82.43 l 238.87 82.43 l 242.51 88.73 l S 243.84 88.73 m 247.47 82.43 l 240.20 82.43 l 243.84 88.73 l S 208.53 88.73 m 212.17 82.43 l 204.90 82.43 l 208.53 88.73 l S 262.48 89.71 m 266.12 83.41 l 258.85 83.41 l 262.48 89.71 l S 153.41 88.73 m 157.04 82.43 l 149.77 82.43 l 153.41 88.73 l S 241.41 88.73 m 245.05 82.43 l 237.78 82.43 l 241.41 88.73 l S 184.29 88.73 m 187.92 82.43 l 180.65 82.43 l 184.29 88.73 l S 144.67 90.12 m 148.30 83.82 l 141.03 83.82 l 144.67 90.12 l S 216.13 88.73 m 219.77 82.43 l 212.50 82.43 l 216.13 88.73 l S 237.24 88.73 m 240.87 82.43 l 233.60 82.43 l 237.24 88.73 l S 232.65 88.73 m 236.29 82.43 l 229.01 82.43 l 232.65 88.73 l S 233.86 88.73 m 237.50 82.43 l 230.22 82.43 l 233.86 88.73 l S 161.16 88.73 m 164.79 82.43 l 157.52 82.43 l 161.16 88.73 l S 173.03 88.73 m 176.66 82.43 l 169.39 82.43 l 173.03 88.73 l S 201.41 88.73 m 205.05 82.43 l 197.78 82.43 l 201.41 88.73 l S 189.40 88.73 m 193.04 82.43 l 185.76 82.43 l 189.40 88.73 l S 217.78 88.73 m 221.41 82.43 l 214.14 82.43 l 217.78 88.73 l S 206.74 88.73 m 210.38 82.43 l 203.10 82.43 l 206.74 88.73 l S 221.87 88.73 m 225.51 82.43 l 218.23 82.43 l 221.87 88.73 l S 227.09 88.73 m 230.72 82.43 l 223.45 82.43 l 227.09 88.73 l S 290.34 167.38 m 293.98 161.08 l 286.70 161.08 l 290.34 167.38 l S 179.86 88.73 m 183.50 82.43 l 176.23 82.43 l 179.86 88.73 l S 198.10 88.73 m 201.74 82.43 l 194.46 82.43 l 198.10 88.73 l S 143.16 90.88 m 146.79 84.58 l 139.52 84.58 l 143.16 90.88 l S 121.27 151.01 m 124.91 144.71 l 117.63 144.71 l 121.27 151.01 l S 149.33 88.97 m 152.97 82.68 l 145.70 82.68 l 149.33 88.97 l S 161.88 88.73 m 165.51 82.43 l 158.24 82.43 l 161.88 88.73 l S 211.16 88.73 m 214.80 82.43 l 207.53 82.43 l 211.16 88.73 l S 221.14 88.73 m 224.78 82.43 l 217.50 82.43 l 221.14 88.73 l S 232.70 88.73 m 236.34 82.43 l 229.07 82.43 l 232.70 88.73 l S 162.24 88.73 m 165.87 82.43 l 158.60 82.43 l 162.24 88.73 l S 343.33 366.07 m 346.97 359.77 l 339.70 359.77 l 343.33 366.07 l S 190.91 88.73 m 194.54 82.43 l 187.27 82.43 l 190.91 88.73 l S 130.13 117.05 m 133.77 110.75 l 126.49 110.75 l 130.13 117.05 l S 223.85 88.73 m 227.48 82.43 l 220.21 82.43 l 223.85 88.73 l S 205.33 88.73 m 208.97 82.43 l 201.70 82.43 l 205.33 88.73 l S 215.13 88.73 m 218.76 82.43 l 211.49 82.43 l 215.13 88.73 l S 248.59 88.73 m 252.23 82.43 l 244.96 82.43 l 248.59 88.73 l S 226.66 88.73 m 230.30 82.43 l 223.02 82.43 l 226.66 88.73 l S 184.11 88.73 m 187.75 82.43 l 180.47 82.43 l 184.11 88.73 l S 222.13 88.73 m 225.76 82.43 l 218.49 82.43 l 222.13 88.73 l S 178.94 88.73 m 182.58 82.43 l 175.31 82.43 l 178.94 88.73 l S 256.63 88.77 m 260.26 82.47 l 252.99 82.47 l 256.63 88.77 l S 236.76 88.73 m 240.40 82.43 l 233.13 82.43 l 236.76 88.73 l S 166.42 88.73 m 170.05 82.43 l 162.78 82.43 l 166.42 88.73 l S 238.93 88.73 m 242.57 82.43 l 235.30 82.43 l 238.93 88.73 l S 227.53 88.73 m 231.17 82.43 l 223.90 82.43 l 227.53 88.73 l S 106.26 215.06 m 109.90 208.76 l 102.63 208.76 l 106.26 215.06 l S 214.54 88.73 m 218.18 82.43 l 210.90 82.43 l 214.54 88.73 l S 227.23 88.73 m 230.86 82.43 l 223.59 82.43 l 227.23 88.73 l S 243.60 88.73 m 247.24 82.43 l 239.97 82.43 l 243.60 88.73 l S 241.15 88.73 m 244.79 82.43 l 237.51 82.43 l 241.15 88.73 l S 206.00 88.73 m 209.64 82.43 l 202.37 82.43 l 206.00 88.73 l S 242.15 88.73 m 245.79 82.43 l 238.52 82.43 l 242.15 88.73 l S 238.59 88.73 m 242.22 82.43 l 234.95 82.43 l 238.59 88.73 l S 205.41 88.73 m 209.05 82.43 l 201.77 82.43 l 205.41 88.73 l S 178.50 88.73 m 182.13 82.43 l 174.86 82.43 l 178.50 88.73 l S 189.05 88.73 m 192.69 82.43 l 185.42 82.43 l 189.05 88.73 l S 121.42 150.63 m 125.06 144.33 l 117.79 144.33 l 121.42 150.63 l S 206.78 88.73 m 210.42 82.43 l 203.15 82.43 l 206.78 88.73 l S 176.97 88.73 m 180.61 82.43 l 173.34 82.43 l 176.97 88.73 l S 207.87 88.73 m 211.51 82.43 l 204.24 82.43 l 207.87 88.73 l S 261.40 89.38 m 265.03 83.08 l 257.76 83.08 l 261.40 89.38 l S 225.32 88.73 m 228.96 82.43 l 221.69 82.43 l 225.32 88.73 l S 188.33 88.73 m 191.97 82.43 l 184.69 82.43 l 188.33 88.73 l S 219.61 88.73 m 223.24 82.43 l 215.97 82.43 l 219.61 88.73 l S 226.18 88.73 m 229.81 82.43 l 222.54 82.43 l 226.18 88.73 l S 276.49 113.17 m 280.12 106.88 l 272.85 106.88 l 276.49 113.17 l S 232.81 88.73 m 236.44 82.43 l 229.17 82.43 l 232.81 88.73 l S 163.95 88.73 m 167.59 82.43 l 160.32 82.43 l 163.95 88.73 l S 240.52 88.73 m 244.16 82.43 l 236.88 82.43 l 240.52 88.73 l S 226.41 88.73 m 230.04 82.43 l 222.77 82.43 l 226.41 88.73 l S 186.92 88.73 m 190.56 82.43 l 183.28 82.43 l 186.92 88.73 l S 140.54 93.59 m 144.17 87.29 l 136.90 87.29 l 140.54 93.59 l S 265.34 91.43 m 268.97 85.13 l 261.70 85.13 l 265.34 91.43 l S 202.36 88.73 m 205.99 82.43 l 198.72 82.43 l 202.36 88.73 l S 85.53 338.24 m 89.17 331.94 l 81.90 331.94 l 85.53 338.24 l S 224.25 88.73 m 227.88 82.43 l 220.61 82.43 l 224.25 88.73 l S 281.07 128.11 m 284.71 121.81 l 277.44 121.81 l 281.07 128.11 l S 218.81 88.73 m 222.44 82.43 l 215.17 82.43 l 218.81 88.73 l S 205.02 88.73 m 208.65 82.43 l 201.38 82.43 l 205.02 88.73 l S 226.50 88.73 m 230.13 82.43 l 222.86 82.43 l 226.50 88.73 l S 234.42 88.73 m 238.05 82.43 l 230.78 82.43 l 234.42 88.73 l S 234.56 88.73 m 238.20 82.43 l 230.93 82.43 l 234.56 88.73 l S 133.37 106.96 m 137.00 100.67 l 129.73 100.67 l 133.37 106.96 l S 236.41 88.73 m 240.05 82.43 l 232.78 82.43 l 236.41 88.73 l S 237.46 88.73 m 241.09 82.43 l 233.82 82.43 l 237.46 88.73 l S 288.95 162.31 m 292.58 156.01 l 285.31 156.01 l 288.95 162.31 l S 186.04 88.73 m 189.68 82.43 l 182.40 82.43 l 186.04 88.73 l S 225.47 88.73 m 229.11 82.43 l 221.84 82.43 l 225.47 88.73 l S 230.74 88.73 m 234.38 82.43 l 227.11 82.43 l 230.74 88.73 l S 190.79 88.73 m 194.42 82.43 l 187.15 82.43 l 190.79 88.73 l S 266.28 92.39 m 269.92 86.09 l 262.65 86.09 l 266.28 92.39 l S 214.97 88.73 m 218.60 82.43 l 211.33 82.43 l 214.97 88.73 l S 314.56 287.94 m 318.19 281.64 l 310.92 281.64 l 314.56 287.94 l S 324.08 338.24 m 327.71 331.94 l 320.44 331.94 l 324.08 338.24 l S 213.41 88.73 m 217.05 82.43 l 209.77 82.43 l 213.41 88.73 l S 184.28 88.73 m 187.91 82.43 l 180.64 82.43 l 184.28 88.73 l S 261.94 89.50 m 265.58 83.20 l 258.30 83.20 l 261.94 89.50 l S 154.52 88.73 m 158.15 82.43 l 150.88 82.43 l 154.52 88.73 l S 263.64 90.41 m 267.27 84.11 l 260.00 84.11 l 263.64 90.41 l S 297.14 197.86 m 300.77 191.56 l 293.50 191.56 l 297.14 197.86 l S 263.18 90.25 m 266.82 83.95 l 259.55 83.95 l 263.18 90.25 l S 248.62 88.73 m 252.25 82.43 l 244.98 82.43 l 248.62 88.73 l S 111.49 193.81 m 115.13 187.51 l 107.86 187.51 l 111.49 193.81 l S 161.24 88.73 m 164.88 82.43 l 157.60 82.43 l 161.24 88.73 l S 198.01 88.73 m 201.65 82.43 l 194.38 82.43 l 198.01 88.73 l S 204.12 88.73 m 207.75 82.43 l 200.48 82.43 l 204.12 88.73 l S 173.82 88.73 m 177.46 82.43 l 170.18 82.43 l 173.82 88.73 l S 194.46 88.73 m 198.10 82.43 l 190.83 82.43 l 194.46 88.73 l S 209.98 88.73 m 213.62 82.43 l 206.34 82.43 l 209.98 88.73 l S 242.41 88.73 m 246.05 82.43 l 238.78 82.43 l 242.41 88.73 l S 259.35 89.10 m 262.99 82.80 l 255.72 82.80 l 259.35 89.10 l S 194.04 88.73 m 197.67 82.43 l 190.40 82.43 l 194.04 88.73 l S 165.62 88.73 m 169.25 82.43 l 161.98 82.43 l 165.62 88.73 l S 216.67 88.73 m 220.31 82.43 l 213.03 82.43 l 216.67 88.73 l S 197.46 88.73 m 201.10 82.43 l 193.83 82.43 l 197.46 88.73 l S 127.78 123.94 m 131.42 117.65 l 124.14 117.65 l 127.78 123.94 l S 183.89 88.73 m 187.53 82.43 l 180.26 82.43 l 183.89 88.73 l S 227.21 88.73 m 230.85 82.43 l 223.58 82.43 l 227.21 88.73 l S 230.97 88.73 m 234.61 82.43 l 227.34 82.43 l 230.97 88.73 l S 188.15 88.73 m 191.79 82.43 l 184.51 82.43 l 188.15 88.73 l S 201.15 88.73 m 204.79 82.43 l 197.52 82.43 l 201.15 88.73 l S 250.67 88.73 m 254.31 82.43 l 247.03 82.43 l 250.67 88.73 l S 138.75 95.83 m 142.39 89.53 l 135.11 89.53 l 138.75 95.83 l S 236.40 88.73 m 240.03 82.43 l 232.76 82.43 l 236.40 88.73 l S 227.72 88.73 m 231.36 82.43 l 224.09 82.43 l 227.72 88.73 l S 242.80 88.73 m 246.44 82.43 l 239.17 82.43 l 242.80 88.73 l S 205.54 88.73 m 209.18 82.43 l 201.90 82.43 l 205.54 88.73 l S 256.74 88.77 m 260.37 82.47 l 253.10 82.47 l 256.74 88.77 l S 199.84 88.73 m 203.48 82.43 l 196.20 82.43 l 199.84 88.73 l S 267.01 93.32 m 270.65 87.02 l 263.38 87.02 l 267.01 93.32 l S 224.10 88.73 m 227.74 82.43 l 220.47 82.43 l 224.10 88.73 l S 86.46 338.24 m 90.10 331.94 l 82.82 331.94 l 86.46 338.24 l S 277.06 114.83 m 280.70 108.53 l 273.42 108.53 l 277.06 114.83 l S 179.50 88.73 m 183.14 82.43 l 175.87 82.43 l 179.50 88.73 l S 196.06 88.73 m 199.69 82.43 l 192.42 82.43 l 196.06 88.73 l S 168.67 88.73 m 172.31 82.43 l 165.03 82.43 l 168.67 88.73 l S 202.16 88.73 m 205.80 82.43 l 198.52 82.43 l 202.16 88.73 l S 186.92 88.73 m 190.56 82.43 l 183.29 82.43 l 186.92 88.73 l S 217.90 88.73 m 221.53 82.43 l 214.26 82.43 l 217.90 88.73 l S 227.52 88.73 m 231.16 82.43 l 223.88 82.43 l 227.52 88.73 l S 224.36 88.73 m 228.00 82.43 l 220.72 82.43 l 224.36 88.73 l S 236.66 88.73 m 240.30 82.43 l 233.02 82.43 l 236.66 88.73 l S 248.80 88.73 m 252.44 82.43 l 245.17 82.43 l 248.80 88.73 l S 279.95 123.85 m 283.58 117.55 l 276.31 117.55 l 279.95 123.85 l S 246.72 88.73 m 250.35 82.43 l 243.08 82.43 l 246.72 88.73 l S 181.67 88.73 m 185.31 82.43 l 178.04 82.43 l 181.67 88.73 l S 183.11 88.73 m 186.75 82.43 l 179.48 82.43 l 183.11 88.73 l S 249.89 88.73 m 253.53 82.43 l 246.26 82.43 l 249.89 88.73 l S 202.95 88.73 m 206.58 82.43 l 199.31 82.43 l 202.95 88.73 l S 167.90 88.73 m 171.53 82.43 l 164.26 82.43 l 167.90 88.73 l S 210.82 88.73 m 214.46 82.43 l 207.19 82.43 l 210.82 88.73 l S 215.45 88.73 m 219.09 82.43 l 211.82 82.43 l 215.45 88.73 l S 218.33 88.73 m 221.97 82.43 l 214.69 82.43 l 218.33 88.73 l S 211.01 88.73 m 214.65 82.43 l 207.37 82.43 l 211.01 88.73 l S 223.01 88.73 m 226.64 82.43 l 219.37 82.43 l 223.01 88.73 l S 204.39 88.73 m 208.03 82.43 l 200.76 82.43 l 204.39 88.73 l S 165.55 88.73 m 169.19 82.43 l 161.92 82.43 l 165.55 88.73 l S 195.24 88.73 m 198.88 82.43 l 191.61 82.43 l 195.24 88.73 l S 163.67 88.73 m 167.31 82.43 l 160.03 82.43 l 163.67 88.73 l S 234.49 88.73 m 238.12 82.43 l 230.85 82.43 l 234.49 88.73 l S 210.95 88.73 m 214.59 82.43 l 207.31 82.43 l 210.95 88.73 l S 179.61 88.73 m 183.24 82.43 l 175.97 82.43 l 179.61 88.73 l S 191.12 88.73 m 194.75 82.43 l 187.48 82.43 l 191.12 88.73 l S 296.13 192.73 m 299.76 186.43 l 292.49 186.43 l 296.13 192.73 l S 230.55 88.73 m 234.19 82.43 l 226.92 82.43 l 230.55 88.73 l S 118.94 161.81 m 122.58 155.51 l 115.31 155.51 l 118.94 161.81 l S 196.21 88.73 m 199.85 82.43 l 192.57 82.43 l 196.21 88.73 l S 245.67 88.73 m 249.30 82.43 l 242.03 82.43 l 245.67 88.73 l S 225.53 88.73 m 229.16 82.43 l 221.89 82.43 l 225.53 88.73 l S 254.87 88.73 m 258.51 82.43 l 251.24 82.43 l 254.87 88.73 l S 210.66 88.73 m 214.29 82.43 l 207.02 82.43 l 210.66 88.73 l S 222.39 88.73 m 226.03 82.43 l 218.76 82.43 l 222.39 88.73 l S 278.09 117.70 m 281.72 111.40 l 274.45 111.40 l 278.09 117.70 l S 208.30 88.73 m 211.94 82.43 l 204.67 82.43 l 208.30 88.73 l S 214.57 88.73 m 218.21 82.43 l 210.93 82.43 l 214.57 88.73 l S 201.98 88.73 m 205.61 82.43 l 198.34 82.43 l 201.98 88.73 l S 175.42 88.73 m 179.05 82.43 l 171.78 82.43 l 175.42 88.73 l S 211.91 88.73 m 215.54 82.43 l 208.27 82.43 l 211.91 88.73 l S 307.04 236.83 m 310.68 230.54 l 303.41 230.54 l 307.04 236.83 l S 293.66 183.24 m 297.30 176.94 l 290.02 176.94 l 293.66 183.24 l S 181.82 88.73 m 185.45 82.43 l 178.18 82.43 l 181.82 88.73 l S 280.00 123.94 m 283.64 117.65 l 276.37 117.65 l 280.00 123.94 l S 132.20 110.26 m 135.84 103.96 l 128.57 103.96 l 132.20 110.26 l S 211.07 88.73 m 214.70 82.43 l 207.43 82.43 l 211.07 88.73 l S 176.61 88.73 m 180.25 82.43 l 172.97 82.43 l 176.61 88.73 l S 221.36 88.73 m 225.00 82.43 l 217.73 82.43 l 221.36 88.73 l S 194.19 88.73 m 197.82 82.43 l 190.55 82.43 l 194.19 88.73 l S 220.02 88.73 m 223.65 82.43 l 216.38 82.43 l 220.02 88.73 l S 218.83 88.73 m 222.47 82.43 l 215.20 82.43 l 218.83 88.73 l S 192.54 88.73 m 196.18 82.43 l 188.91 82.43 l 192.54 88.73 l S 280.68 126.85 m 284.31 120.55 l 277.04 120.55 l 280.68 126.85 l S 189.54 88.73 m 193.18 82.43 l 185.91 82.43 l 189.54 88.73 l S 241.90 88.73 m 245.53 82.43 l 238.26 82.43 l 241.90 88.73 l S 182.92 88.73 m 186.56 82.43 l 179.28 82.43 l 182.92 88.73 l S 230.31 88.73 m 233.94 82.43 l 226.67 82.43 l 230.31 88.73 l S 241.77 88.73 m 245.41 82.43 l 238.14 82.43 l 241.77 88.73 l S 209.26 88.73 m 212.90 82.43 l 205.62 82.43 l 209.26 88.73 l S 238.14 88.73 m 241.77 82.43 l 234.50 82.43 l 238.14 88.73 l S 213.46 88.73 m 217.09 82.43 l 209.82 82.43 l 213.46 88.73 l S 155.64 88.73 m 159.27 82.43 l 152.00 82.43 l 155.64 88.73 l S 208.82 88.73 m 212.45 82.43 l 205.18 82.43 l 208.82 88.73 l S 222.89 88.73 m 226.53 82.43 l 219.26 82.43 l 222.89 88.73 l S 255.52 88.77 m 259.16 82.47 l 251.89 82.47 l 255.52 88.77 l S 188.56 88.73 m 192.20 82.43 l 184.93 82.43 l 188.56 88.73 l S 220.63 88.73 m 224.26 82.43 l 216.99 82.43 l 220.63 88.73 l S 168.90 88.73 m 172.54 82.43 l 165.26 82.43 l 168.90 88.73 l S 234.90 88.73 m 238.53 82.43 l 231.26 82.43 l 234.90 88.73 l S 252.82 88.73 m 256.46 82.43 l 249.18 82.43 l 252.82 88.73 l S 213.64 88.73 m 217.27 82.43 l 210.00 82.43 l 213.64 88.73 l S 214.47 88.73 m 218.10 82.43 l 210.83 82.43 l 214.47 88.73 l S 220.28 88.73 m 223.91 82.43 l 216.64 82.43 l 220.28 88.73 l S 215.37 88.73 m 219.01 82.43 l 211.74 82.43 l 215.37 88.73 l S 167.79 88.73 m 171.42 82.43 l 164.15 82.43 l 167.79 88.73 l S 181.15 88.73 m 184.79 82.43 l 177.52 82.43 l 181.15 88.73 l S 166.89 88.73 m 170.53 82.43 l 163.26 82.43 l 166.89 88.73 l S 114.44 181.18 m 118.08 174.88 l 110.80 174.88 l 114.44 181.18 l S 141.86 91.86 m 145.50 85.56 l 138.22 85.56 l 141.86 91.86 l S 211.45 88.73 m 215.09 82.43 l 207.81 82.43 l 211.45 88.73 l S 187.78 88.73 m 191.42 82.43 l 184.15 82.43 l 187.78 88.73 l S 159.97 88.73 m 163.60 82.43 l 156.33 82.43 l 159.97 88.73 l S 253.96 88.73 m 257.59 82.43 l 250.32 82.43 l 253.96 88.73 l S 267.61 93.96 m 271.25 87.66 l 263.97 87.66 l 267.61 93.96 l S 205.65 88.73 m 209.28 82.43 l 202.01 82.43 l 205.65 88.73 l S 121.09 152.55 m 124.73 146.25 l 117.46 146.25 l 121.09 152.55 l S 227.15 88.73 m 230.78 82.43 l 223.51 82.43 l 227.15 88.73 l S 217.93 88.73 m 221.56 82.43 l 214.29 82.43 l 217.93 88.73 l S 186.90 88.73 m 190.54 82.43 l 183.26 82.43 l 186.90 88.73 l S 133.25 107.28 m 136.89 100.98 l 129.62 100.98 l 133.25 107.28 l S 226.52 88.73 m 230.15 82.43 l 222.88 82.43 l 226.52 88.73 l S 282.47 133.12 m 286.11 126.82 l 278.84 126.82 l 282.47 133.12 l S 84.00 338.24 m 87.63 331.94 l 80.36 331.94 l 84.00 338.24 l S 156.09 88.73 m 159.72 82.43 l 152.45 82.43 l 156.09 88.73 l S 136.10 100.44 m 139.74 94.14 l 132.47 94.14 l 136.10 100.44 l S 153.97 88.73 m 157.60 82.43 l 150.33 82.43 l 153.97 88.73 l S 192.30 88.73 m 195.93 82.43 l 188.66 82.43 l 192.30 88.73 l S 192.17 88.73 m 195.81 82.43 l 188.54 82.43 l 192.17 88.73 l S 194.30 88.73 m 197.94 82.43 l 190.67 82.43 l 194.30 88.73 l S 219.62 88.73 m 223.25 82.43 l 215.98 82.43 l 219.62 88.73 l S 207.57 88.73 m 211.20 82.43 l 203.93 82.43 l 207.57 88.73 l S 215.56 88.73 m 219.19 82.43 l 211.92 82.43 l 215.56 88.73 l S 223.94 88.73 m 227.58 82.43 l 220.31 82.43 l 223.94 88.73 l S 230.05 88.73 m 233.69 82.43 l 226.42 82.43 l 230.05 88.73 l S 308.70 238.47 m 312.34 232.17 l 305.07 232.17 l 308.70 238.47 l S 199.30 88.73 m 202.94 82.43 l 195.66 82.43 l 199.30 88.73 l S 147.91 89.18 m 151.54 82.88 l 144.27 82.88 l 147.91 89.18 l S 211.35 88.73 m 214.99 82.43 l 207.71 82.43 l 211.35 88.73 l S 157.13 88.73 m 160.76 82.43 l 153.49 82.43 l 157.13 88.73 l S 172.00 88.73 m 175.64 82.43 l 168.37 82.43 l 172.00 88.73 l S 194.54 88.73 m 198.17 82.43 l 190.90 82.43 l 194.54 88.73 l S 241.75 88.73 m 245.38 82.43 l 238.11 82.43 l 241.75 88.73 l S 287.47 155.20 m 291.11 148.90 l 283.83 148.90 l 287.47 155.20 l S 234.36 88.73 m 237.99 82.43 l 230.72 82.43 l 234.36 88.73 l S 225.40 88.73 m 229.04 82.43 l 221.77 82.43 l 225.40 88.73 l S 229.14 88.73 m 232.77 82.43 l 225.50 82.43 l 229.14 88.73 l S 240.42 88.73 m 244.06 82.43 l 236.78 82.43 l 240.42 88.73 l S 197.82 88.73 m 201.45 82.43 l 194.18 82.43 l 197.82 88.73 l S 210.09 88.73 m 213.73 82.43 l 206.46 82.43 l 210.09 88.73 l S 166.02 88.73 m 169.66 82.43 l 162.39 82.43 l 166.02 88.73 l S 94.01 287.94 m 97.65 281.64 l 90.38 281.64 l 94.01 287.94 l S 208.33 88.73 m 211.96 82.43 l 204.69 82.43 l 208.33 88.73 l S 170.12 88.73 m 173.76 82.43 l 166.49 82.43 l 170.12 88.73 l S 206.78 88.73 m 210.41 82.43 l 203.14 82.43 l 206.78 88.73 l S 180.25 88.73 m 183.88 82.43 l 176.61 82.43 l 180.25 88.73 l S 251.73 88.73 m 255.37 82.43 l 248.09 82.43 l 251.73 88.73 l S 220.98 88.73 m 224.62 82.43 l 217.35 82.43 l 220.98 88.73 l S 225.42 88.73 m 229.05 82.43 l 221.78 82.43 l 225.42 88.73 l S 258.52 89.01 m 262.16 82.72 l 254.89 82.72 l 258.52 89.01 l S 217.93 88.73 m 221.57 82.43 l 214.30 82.43 l 217.93 88.73 l S 200.24 88.73 m 203.88 82.43 l 196.60 82.43 l 200.24 88.73 l S 240.18 88.73 m 243.81 82.43 l 236.54 82.43 l 240.18 88.73 l S 187.94 88.73 m 191.57 82.43 l 184.30 82.43 l 187.94 88.73 l S 146.44 89.38 m 150.08 83.08 l 142.81 83.08 l 146.44 89.38 l S 222.58 88.73 m 226.22 82.43 l 218.95 82.43 l 222.58 88.73 l S 151.51 88.77 m 155.15 82.47 l 147.88 82.47 l 151.51 88.77 l S 167.65 88.73 m 171.28 82.43 l 164.01 82.43 l 167.65 88.73 l S 190.14 88.73 m 193.77 82.43 l 186.50 82.43 l 190.14 88.73 l S 275.50 110.26 m 279.14 103.96 l 271.86 103.96 l 275.50 110.26 l S 228.95 88.73 m 232.58 82.43 l 225.31 82.43 l 228.95 88.73 l S 210.22 88.73 m 213.86 82.43 l 206.59 82.43 l 210.22 88.73 l S 219.17 88.73 m 222.80 82.43 l 215.53 82.43 l 219.17 88.73 l S 80.02 338.24 m 83.66 331.94 l 76.39 331.94 l 80.02 338.24 l S 223.75 88.73 m 227.39 82.43 l 220.11 82.43 l 223.75 88.73 l S 201.15 88.73 m 204.79 82.43 l 197.51 82.43 l 201.15 88.73 l S 186.39 88.73 m 190.03 82.43 l 182.75 82.43 l 186.39 88.73 l S 212.41 88.73 m 216.04 82.43 l 208.77 82.43 l 212.41 88.73 l S 265.95 91.91 m 269.58 85.61 l 262.31 85.61 l 265.95 91.91 l S 212.43 88.73 m 216.07 82.43 l 208.79 82.43 l 212.43 88.73 l S 223.04 88.73 m 226.68 82.43 l 219.41 82.43 l 223.04 88.73 l S 228.14 88.73 m 231.78 82.43 l 224.51 82.43 l 228.14 88.73 l S 119.60 158.71 m 123.23 152.41 l 115.96 152.41 l 119.60 158.71 l S 159.13 88.73 m 162.77 82.43 l 155.50 82.43 l 159.13 88.73 l S 251.27 88.73 m 254.91 82.43 l 247.64 82.43 l 251.27 88.73 l S 170.63 88.73 m 174.26 82.43 l 166.99 82.43 l 170.63 88.73 l S 198.45 88.73 m 202.08 82.43 l 194.81 82.43 l 198.45 88.73 l S 265.96 91.91 m 269.59 85.61 l 262.32 85.61 l 265.96 91.91 l S 209.24 88.73 m 212.87 82.43 l 205.60 82.43 l 209.24 88.73 l S 177.03 88.73 m 180.67 82.43 l 173.40 82.43 l 177.03 88.73 l S 193.05 88.73 m 196.69 82.43 l 189.42 82.43 l 193.05 88.73 l S 258.05 88.89 m 261.68 82.59 l 254.41 82.59 l 258.05 88.89 l S 281.16 128.54 m 284.80 122.24 l 277.53 122.24 l 281.16 128.54 l S 176.35 88.73 m 179.99 82.43 l 172.72 82.43 l 176.35 88.73 l S 222.61 88.73 m 226.25 82.43 l 218.98 82.43 l 222.61 88.73 l S 225.83 88.73 m 229.46 82.43 l 222.19 82.43 l 225.83 88.73 l S 268.31 94.79 m 271.95 88.49 l 264.68 88.49 l 268.31 94.79 l S 231.05 88.73 m 234.68 82.43 l 227.41 82.43 l 231.05 88.73 l S 168.54 88.73 m 172.18 82.43 l 164.91 82.43 l 168.54 88.73 l S 153.15 88.73 m 156.78 82.43 l 149.51 82.43 l 153.15 88.73 l S 207.91 88.73 m 211.55 82.43 l 204.27 82.43 l 207.91 88.73 l S 126.49 128.65 m 130.13 122.35 l 122.85 122.35 l 126.49 128.65 l S 232.97 88.73 m 236.60 82.43 l 229.33 82.43 l 232.97 88.73 l S 225.21 88.73 m 228.85 82.43 l 221.57 82.43 l 225.21 88.73 l S 198.52 88.73 m 202.15 82.43 l 194.88 82.43 l 198.52 88.73 l S 220.13 88.73 m 223.77 82.43 l 216.50 82.43 l 220.13 88.73 l S 240.76 88.73 m 244.40 82.43 l 237.13 82.43 l 240.76 88.73 l S 207.27 88.73 m 210.91 82.43 l 203.64 82.43 l 207.27 88.73 l S 205.99 88.73 m 209.62 82.43 l 202.35 82.43 l 205.99 88.73 l S 229.45 88.73 m 233.08 82.43 l 225.81 82.43 l 229.45 88.73 l S 140.12 93.96 m 143.76 87.66 l 136.49 87.66 l 140.12 93.96 l S 123.25 142.51 m 126.89 136.21 l 119.61 136.21 l 123.25 142.51 l S 181.50 88.73 m 185.14 82.43 l 177.86 82.43 l 181.50 88.73 l S 196.87 88.73 m 200.51 82.43 l 193.23 82.43 l 196.87 88.73 l S 203.18 88.73 m 206.82 82.43 l 199.55 82.43 l 203.18 88.73 l S 197.18 88.73 m 200.82 82.43 l 193.55 82.43 l 197.18 88.73 l S 171.49 88.73 m 175.12 82.43 l 167.85 82.43 l 171.49 88.73 l S 189.74 88.73 m 193.38 82.43 l 186.10 82.43 l 189.74 88.73 l S 214.61 88.73 m 218.25 82.43 l 210.97 82.43 l 214.61 88.73 l S 227.05 88.73 m 230.68 82.43 l 223.41 82.43 l 227.05 88.73 l S 212.22 88.73 m 215.85 82.43 l 208.58 82.43 l 212.22 88.73 l S 231.23 88.73 m 234.87 82.43 l 227.60 82.43 l 231.23 88.73 l S 181.27 88.73 m 184.91 82.43 l 177.64 82.43 l 181.27 88.73 l S 199.20 88.73 m 202.83 82.43 l 195.56 82.43 l 199.20 88.73 l S 155.23 88.73 m 158.87 82.43 l 151.59 82.43 l 155.23 88.73 l S 141.10 92.70 m 144.74 86.40 l 137.46 86.40 l 141.10 92.70 l S 268.01 94.32 m 271.65 88.03 l 264.37 88.03 l 268.01 94.32 l S 224.39 88.73 m 228.02 82.43 l 220.75 82.43 l 224.39 88.73 l S 251.81 88.73 m 255.45 82.43 l 248.18 82.43 l 251.81 88.73 l S 137.66 97.14 m 141.30 90.84 l 134.03 90.84 l 137.66 97.14 l S 211.31 88.73 m 214.94 82.43 l 207.67 82.43 l 211.31 88.73 l S 195.34 88.73 m 198.98 82.43 l 191.70 82.43 l 195.34 88.73 l S 215.68 88.73 m 219.31 82.43 l 212.04 82.43 l 215.68 88.73 l S 221.61 88.73 m 225.25 82.43 l 217.98 82.43 l 221.61 88.73 l S 194.93 88.73 m 198.57 82.43 l 191.30 82.43 l 194.93 88.73 l S 192.89 88.73 m 196.52 82.43 l 189.25 82.43 l 192.89 88.73 l S 220.27 88.73 m 223.90 82.43 l 216.63 82.43 l 220.27 88.73 l S 231.61 88.73 m 235.25 82.43 l 227.97 82.43 l 231.61 88.73 l S 221.33 88.73 m 224.97 82.43 l 217.69 82.43 l 221.33 88.73 l S 244.91 88.73 m 248.55 82.43 l 241.27 82.43 l 244.91 88.73 l S 254.77 88.73 m 258.40 82.43 l 251.13 82.43 l 254.77 88.73 l S 251.91 88.73 m 255.54 82.43 l 248.27 82.43 l 251.91 88.73 l S 307.48 236.83 m 311.11 230.54 l 303.84 230.54 l 307.48 236.83 l S 313.33 277.85 m 316.96 271.55 l 309.69 271.55 l 313.33 277.85 l S 302.24 217.96 m 305.87 211.67 l 298.60 211.67 l 302.24 217.96 l S 193.65 88.73 m 197.29 82.43 l 190.01 82.43 l 193.65 88.73 l S 248.93 88.73 m 252.56 82.43 l 245.29 82.43 l 248.93 88.73 l S 166.96 88.73 m 170.59 82.43 l 163.32 82.43 l 166.96 88.73 l S 234.19 88.73 m 237.82 82.43 l 230.55 82.43 l 234.19 88.73 l S 241.88 88.73 m 245.52 82.43 l 238.24 82.43 l 241.88 88.73 l S 241.58 88.73 m 245.21 82.43 l 237.94 82.43 l 241.58 88.73 l S 229.36 88.73 m 233.00 82.43 l 225.73 82.43 l 229.36 88.73 l S 210.80 88.73 m 214.44 82.43 l 207.17 82.43 l 210.80 88.73 l S 243.60 88.73 m 247.24 82.43 l 239.97 82.43 l 243.60 88.73 l S 214.67 88.73 m 218.30 82.43 l 211.03 82.43 l 214.67 88.73 l S 213.93 88.73 m 217.57 82.43 l 210.30 82.43 l 213.93 88.73 l S 204.33 88.73 m 207.97 82.43 l 200.70 82.43 l 204.33 88.73 l S 199.57 88.73 m 203.20 82.43 l 195.93 82.43 l 199.57 88.73 l S 178.65 88.73 m 182.29 82.43 l 175.01 82.43 l 178.65 88.73 l S 292.28 175.57 m 295.92 169.27 l 288.65 169.27 l 292.28 175.57 l S 199.49 88.73 m 203.13 82.43 l 195.86 82.43 l 199.49 88.73 l S 71.73 338.24 m 75.37 331.94 l 68.10 331.94 l 71.73 338.24 l S 227.16 88.73 m 230.80 82.43 l 223.52 82.43 l 227.16 88.73 l S 254.61 88.73 m 258.24 82.43 l 250.97 82.43 l 254.61 88.73 l S 220.54 88.73 m 224.18 82.43 l 216.90 82.43 l 220.54 88.73 l S 210.95 88.73 m 214.59 82.43 l 207.32 82.43 l 210.95 88.73 l S 220.66 88.73 m 224.29 82.43 l 217.02 82.43 l 220.66 88.73 l S 259.87 89.18 m 263.50 82.88 l 256.23 82.88 l 259.87 89.18 l S 207.19 88.73 m 210.83 82.43 l 203.55 82.43 l 207.19 88.73 l S 161.60 88.73 m 165.23 82.43 l 157.96 82.43 l 161.60 88.73 l S 181.65 88.73 m 185.29 82.43 l 178.01 82.43 l 181.65 88.73 l S 199.52 88.73 m 203.15 82.43 l 195.88 82.43 l 199.52 88.73 l S 98.34 240.18 m 101.97 233.88 l 94.70 233.88 l 98.34 240.18 l S 221.15 88.73 m 224.78 82.43 l 217.51 82.43 l 221.15 88.73 l S 263.40 90.29 m 267.03 83.99 l 259.76 83.99 l 263.40 90.29 l S 240.07 88.73 m 243.71 82.43 l 236.43 82.43 l 240.07 88.73 l S 242.02 88.73 m 245.66 82.43 l 238.39 82.43 l 242.02 88.73 l S 118.75 162.56 m 122.39 156.26 l 115.11 156.26 l 118.75 162.56 l S 193.87 88.73 m 197.51 82.43 l 190.24 82.43 l 193.87 88.73 l S 182.48 88.73 m 186.12 82.43 l 178.85 82.43 l 182.48 88.73 l S 288.71 161.32 m 292.35 155.02 l 285.08 155.02 l 288.71 161.32 l S 154.42 88.73 m 158.05 82.43 l 150.78 82.43 l 154.42 88.73 l S 218.13 88.73 m 221.77 82.43 l 214.49 82.43 l 218.13 88.73 l S 158.88 88.73 m 162.52 82.43 l 155.25 82.43 l 158.88 88.73 l S 216.72 88.73 m 220.36 82.43 l 213.08 82.43 l 216.72 88.73 l S 196.29 88.73 m 199.92 82.43 l 192.65 82.43 l 196.29 88.73 l S 255.03 88.77 m 258.66 82.47 l 251.39 82.47 l 255.03 88.77 l S 229.36 88.73 m 233.00 82.43 l 225.72 82.43 l 229.36 88.73 l S 240.20 88.73 m 243.83 82.43 l 236.56 82.43 l 240.20 88.73 l S 206.58 88.73 m 210.22 82.43 l 202.94 82.43 l 206.58 88.73 l S 246.03 88.73 m 249.66 82.43 l 242.39 82.43 l 246.03 88.73 l S 274.88 108.58 m 278.51 102.28 l 271.24 102.28 l 274.88 108.58 l S 196.07 88.73 m 199.71 82.43 l 192.43 82.43 l 196.07 88.73 l S 226.83 88.73 m 230.47 82.43 l 223.20 82.43 l 226.83 88.73 l S 230.12 88.73 m 233.76 82.43 l 226.49 82.43 l 230.12 88.73 l S 173.11 88.73 m 176.75 82.43 l 169.47 82.43 l 173.11 88.73 l S 223.84 88.73 m 227.47 82.43 l 220.20 82.43 l 223.84 88.73 l S 222.40 88.73 m 226.04 82.43 l 218.77 82.43 l 222.40 88.73 l S 213.04 88.73 m 216.68 82.43 l 209.41 82.43 l 213.04 88.73 l S 265.38 91.47 m 269.01 85.18 l 261.74 85.18 l 265.38 91.47 l S 194.98 88.73 m 198.61 82.43 l 191.34 82.43 l 194.98 88.73 l S 194.56 88.73 m 198.19 82.43 l 190.92 82.43 l 194.56 88.73 l S 215.90 88.73 m 219.54 82.43 l 212.27 82.43 l 215.90 88.73 l S 218.91 88.73 m 222.54 82.43 l 215.27 82.43 l 218.91 88.73 l S 176.45 88.73 m 180.09 82.43 l 172.82 82.43 l 176.45 88.73 l S 159.75 88.73 m 163.38 82.43 l 156.11 82.43 l 159.75 88.73 l S 166.80 88.73 m 170.43 82.43 l 163.16 82.43 l 166.80 88.73 l S 139.19 95.12 m 142.83 88.82 l 135.56 88.82 l 139.19 95.12 l S 219.71 88.73 m 223.34 82.43 l 216.07 82.43 l 219.71 88.73 l S 182.91 88.73 m 186.55 82.43 l 179.28 82.43 l 182.91 88.73 l S 152.65 88.77 m 156.29 82.47 l 149.02 82.47 l 152.65 88.77 l S 271.06 98.81 m 274.69 92.51 l 267.42 92.51 l 271.06 98.81 l S 232.71 88.73 m 236.35 82.43 l 229.08 82.43 l 232.71 88.73 l S 236.34 88.73 m 239.98 82.43 l 232.71 82.43 l 236.34 88.73 l S 215.63 88.73 m 219.27 82.43 l 211.99 82.43 l 215.63 88.73 l S 241.62 88.73 m 245.25 82.43 l 237.98 82.43 l 241.62 88.73 l S 216.95 88.73 m 220.59 82.43 l 213.31 82.43 l 216.95 88.73 l S 218.40 88.73 m 222.03 82.43 l 214.76 82.43 l 218.40 88.73 l S 196.18 88.73 m 199.82 82.43 l 192.55 82.43 l 196.18 88.73 l S 179.95 88.73 m 183.58 82.43 l 176.31 82.43 l 179.95 88.73 l S 215.84 88.73 m 219.48 82.43 l 212.20 82.43 l 215.84 88.73 l S 225.31 88.73 m 228.94 82.43 l 221.67 82.43 l 225.31 88.73 l S 168.14 88.73 m 171.78 82.43 l 164.50 82.43 l 168.14 88.73 l S 160.08 88.73 m 163.72 82.43 l 156.45 82.43 l 160.08 88.73 l S 230.52 88.73 m 234.16 82.43 l 226.89 82.43 l 230.52 88.73 l S 229.20 88.73 m 232.84 82.43 l 225.57 82.43 l 229.20 88.73 l S 235.27 88.73 m 238.91 82.43 l 231.64 82.43 l 235.27 88.73 l S 217.58 88.73 m 221.22 82.43 l 213.95 82.43 l 217.58 88.73 l S 181.45 88.73 m 185.09 82.43 l 177.81 82.43 l 181.45 88.73 l S 214.33 88.73 m 217.97 82.43 l 210.70 82.43 l 214.33 88.73 l S 236.83 88.73 m 240.47 82.43 l 233.19 82.43 l 236.83 88.73 l S 232.16 88.73 m 235.80 82.43 l 228.53 82.43 l 232.16 88.73 l S 203.03 88.73 m 206.67 82.43 l 199.39 82.43 l 203.03 88.73 l S 242.53 88.73 m 246.17 82.43 l 238.89 82.43 l 242.53 88.73 l S 216.51 88.73 m 220.15 82.43 l 212.88 82.43 l 216.51 88.73 l S 236.23 88.73 m 239.87 82.43 l 232.59 82.43 l 236.23 88.73 l S 206.20 88.73 m 209.84 82.43 l 202.57 82.43 l 206.20 88.73 l S 262.10 89.54 m 265.73 83.25 l 258.46 83.25 l 262.10 89.54 l S 202.05 88.73 m 205.68 82.43 l 198.41 82.43 l 202.05 88.73 l S 206.36 88.73 m 210.00 82.43 l 202.72 82.43 l 206.36 88.73 l S 191.55 88.73 m 195.19 82.43 l 187.91 82.43 l 191.55 88.73 l S 241.81 88.73 m 245.45 82.43 l 238.17 82.43 l 241.81 88.73 l S 228.38 88.73 m 232.02 82.43 l 224.75 82.43 l 228.38 88.73 l S 205.66 88.73 m 209.29 82.43 l 202.02 82.43 l 205.66 88.73 l S 221.83 88.73 m 225.46 82.43 l 218.19 82.43 l 221.83 88.73 l S 223.04 88.73 m 226.68 82.43 l 219.40 82.43 l 223.04 88.73 l S 177.31 88.73 m 180.94 82.43 l 173.67 82.43 l 177.31 88.73 l S 195.62 88.73 m 199.26 82.43 l 191.99 82.43 l 195.62 88.73 l S 198.05 88.73 m 201.68 82.43 l 194.41 82.43 l 198.05 88.73 l S 205.05 88.73 m 208.68 82.43 l 201.41 82.43 l 205.05 88.73 l S 197.69 88.73 m 201.33 82.43 l 194.05 82.43 l 197.69 88.73 l S 214.38 88.73 m 218.02 82.43 l 210.75 82.43 l 214.38 88.73 l S 217.95 88.73 m 221.59 82.43 l 214.32 82.43 l 217.95 88.73 l S 266.59 92.70 m 270.22 86.40 l 262.95 86.40 l 266.59 92.70 l S 214.72 88.73 m 218.35 82.43 l 211.08 82.43 l 214.72 88.73 l S 189.56 88.73 m 193.20 82.43 l 185.93 82.43 l 189.56 88.73 l S 197.62 88.73 m 201.25 82.43 l 193.98 82.43 l 197.62 88.73 l S 226.05 88.73 m 229.69 82.43 l 222.42 82.43 l 226.05 88.73 l S 193.21 88.73 m 196.84 82.43 l 189.57 82.43 l 193.21 88.73 l S 169.80 88.73 m 173.44 82.43 l 166.16 82.43 l 169.80 88.73 l S 207.01 88.73 m 210.64 82.43 l 203.37 82.43 l 207.01 88.73 l S 228.24 88.73 m 231.88 82.43 l 224.60 82.43 l 228.24 88.73 l S 183.23 88.73 m 186.87 82.43 l 179.60 82.43 l 183.23 88.73 l S 220.40 88.73 m 224.03 82.43 l 216.76 82.43 l 220.40 88.73 l S 202.53 88.73 m 206.17 82.43 l 198.89 82.43 l 202.53 88.73 l S 226.16 88.73 m 229.79 82.43 l 222.52 82.43 l 226.16 88.73 l S 199.64 88.73 m 203.28 82.43 l 196.00 82.43 l 199.64 88.73 l S 191.83 88.73 m 195.47 82.43 l 188.19 82.43 l 191.83 88.73 l S 93.70 287.94 m 97.34 281.64 l 90.06 281.64 l 93.70 287.94 l S 204.61 88.73 m 208.24 82.43 l 200.97 82.43 l 204.61 88.73 l S 209.42 88.73 m 213.05 82.43 l 205.78 82.43 l 209.42 88.73 l S 236.14 88.73 m 239.78 82.43 l 232.50 82.43 l 236.14 88.73 l S 205.71 88.73 m 209.35 82.43 l 202.08 82.43 l 205.71 88.73 l S 261.53 89.38 m 265.16 83.08 l 257.89 83.08 l 261.53 89.38 l S 0.000 1.000 1.000 RG 230.86 136.41 m 238.50 136.41 l S 234.68 132.59 m 234.68 140.23 l S 215.99 106.88 m 223.63 106.88 l S 219.81 103.06 m 219.81 110.70 l S 198.35 86.52 m 205.98 86.52 l S 202.17 82.70 m 202.17 90.34 l S 194.13 91.07 m 201.77 91.07 l S 197.95 87.26 m 197.95 94.89 l S 176.08 129.05 m 183.71 129.05 l S 179.89 125.23 m 179.89 132.87 l S 177.92 124.57 m 185.55 124.57 l S 181.73 120.75 m 181.73 128.39 l S 212.71 97.18 m 220.34 97.18 l S 216.52 93.36 m 216.52 101.00 l S 209.40 92.06 m 217.04 92.06 l S 213.22 88.24 m 213.22 95.87 l S 200.36 84.67 m 207.99 84.67 l S 204.17 80.85 m 204.17 88.49 l S 202.43 85.35 m 210.06 85.35 l S 206.24 81.53 m 206.24 89.17 l S 272.37 253.26 m 280.00 253.26 l S 276.18 249.44 m 276.18 257.08 l S 249.92 180.35 m 257.56 180.35 l S 253.74 176.53 m 253.74 184.17 l S 268.73 267.66 m 276.37 267.66 l S 272.55 263.84 m 272.55 271.48 l S 192.33 94.90 m 199.96 94.90 l S 196.15 91.08 m 196.15 98.72 l S 196.73 87.82 m 204.37 87.82 l S 200.55 84.00 m 200.55 91.63 l S 206.17 92.40 m 213.81 92.40 l S 209.99 88.58 m 209.99 96.22 l S 167.55 151.16 m 175.18 151.16 l S 171.37 147.34 m 171.37 154.98 l S 245.73 196.81 m 253.37 196.81 l S 249.55 192.99 m 249.55 200.63 l S 207.12 93.97 m 214.75 93.97 l S 210.94 90.15 m 210.94 97.79 l S 238.92 169.68 m 246.56 169.68 l S 242.74 165.86 m 242.74 173.49 l S 225.46 131.49 m 233.10 131.49 l S 229.28 127.67 m 229.28 135.31 l S 207.96 93.62 m 215.59 93.62 l S 211.77 89.80 m 211.77 97.44 l S 121.15 267.66 m 128.79 267.66 l S 124.97 263.84 m 124.97 271.48 l S 188.01 100.27 m 195.65 100.27 l S 191.83 96.45 m 191.83 104.09 l S 161.58 168.98 m 169.22 168.98 l S 165.40 165.16 m 165.40 172.80 l S 225.02 119.58 m 232.65 119.58 l S 228.84 115.77 m 228.84 123.40 l S 193.35 92.04 m 200.99 92.04 l S 197.17 88.23 m 197.17 95.86 l S 199.17 85.12 m 206.81 85.12 l S 202.99 81.31 m 202.99 88.94 l S 222.73 124.78 m 230.37 124.78 l S 226.55 120.96 m 226.55 128.60 l S 192.34 93.09 m 199.98 93.09 l S 196.16 89.27 m 196.16 96.91 l S 197.76 86.77 m 205.40 86.77 l S 201.58 82.95 m 201.58 90.58 l S 264.20 234.47 m 271.83 234.47 l S 268.01 230.65 m 268.01 238.29 l S 195.26 89.67 m 202.90 89.67 l S 199.08 85.86 m 199.08 93.49 l S 180.05 118.41 m 187.69 118.41 l S 183.87 114.60 m 183.87 122.23 l S 247.65 200.52 m 255.28 200.52 l S 251.46 196.71 m 251.46 204.34 l S 244.15 183.29 m 251.78 183.29 l S 247.96 179.48 m 247.96 187.11 l S 181.11 115.33 m 188.75 115.33 l S 184.93 111.51 m 184.93 119.15 l S 206.93 93.10 m 214.57 93.10 l S 210.75 89.28 m 210.75 96.92 l S 144.24 222.51 m 151.88 222.51 l S 148.06 218.69 m 148.06 226.33 l S 228.24 142.11 m 235.88 142.11 l S 232.06 138.29 m 232.06 145.93 l S 228.86 141.37 m 236.49 141.37 l S 232.67 137.55 m 232.67 145.19 l S 219.72 116.50 m 227.35 116.50 l S 223.53 112.68 m 223.53 120.32 l S 245.96 196.81 m 253.60 196.81 l S 249.78 192.99 m 249.78 200.63 l S 182.98 110.02 m 190.62 110.02 l S 186.80 106.20 m 186.80 113.83 l S 215.74 105.72 m 223.38 105.72 l S 219.56 101.90 m 219.56 109.54 l S 218.51 111.40 m 226.15 111.40 l S 222.33 107.58 m 222.33 115.22 l S 174.38 131.16 m 182.02 131.16 l S 178.20 127.35 m 178.20 134.98 l S 170.03 147.76 m 177.67 147.76 l S 173.85 143.94 m 173.85 151.58 l S 220.37 118.03 m 228.01 118.03 l S 224.19 114.21 m 224.19 121.85 l S 256.10 242.83 m 263.74 242.83 l S 259.92 239.01 m 259.92 246.65 l S 153.00 188.89 m 160.64 188.89 l S 156.82 185.07 m 156.82 192.71 l S 189.74 98.07 m 197.37 98.07 l S 193.56 94.26 m 193.56 101.89 l S 226.36 136.96 m 234.00 136.96 l S 230.18 133.14 m 230.18 140.78 l S 185.84 103.06 m 193.47 103.06 l S 189.66 99.24 m 189.66 106.88 l S 128.75 267.66 m 136.39 267.66 l S 132.57 263.84 m 132.57 271.48 l S 275.23 267.66 m 282.86 267.66 l S 279.05 263.84 m 279.05 271.48 l S 211.21 97.95 m 218.85 97.95 l S 215.03 94.14 m 215.03 101.77 l S 199.64 84.84 m 207.28 84.84 l S 203.46 81.02 m 203.46 88.66 l S 167.24 157.61 m 174.88 157.61 l S 171.06 153.79 m 171.06 161.43 l S 242.87 180.35 m 250.51 180.35 l S 246.69 176.53 m 246.69 184.17 l S 171.22 135.31 m 178.86 135.31 l S 175.04 131.49 m 175.04 139.13 l S 257.71 242.83 m 265.35 242.83 l S 261.53 239.01 m 261.53 246.65 l S 167.24 149.55 m 174.88 149.55 l S 171.06 145.73 m 171.06 153.37 l S 219.82 115.75 m 227.46 115.75 l S 223.64 111.93 m 223.64 119.57 l S 184.70 109.68 m 192.34 109.68 l S 188.52 105.87 m 188.52 113.50 l S 118.24 267.66 m 125.87 267.66 l S 122.05 263.84 m 122.05 271.48 l S 233.00 150.13 m 240.64 150.13 l S 236.82 146.31 m 236.82 153.95 l S 290.74 267.66 m 298.38 267.66 l S 294.56 263.84 m 294.56 271.48 l S 183.44 111.64 m 191.08 111.64 l S 187.26 107.83 m 187.26 115.46 l S 210.63 99.33 m 218.26 99.33 l S 214.44 95.52 m 214.44 103.15 l S 190.54 96.53 m 198.18 96.53 l S 194.36 92.71 m 194.36 100.34 l S 222.15 120.07 m 229.79 120.07 l S 225.97 116.25 m 225.97 123.89 l S 228.34 136.61 m 235.97 136.61 l S 232.16 132.79 m 232.16 140.43 l S 151.14 205.15 m 158.77 205.15 l S 154.96 201.33 m 154.96 208.97 l S 178.28 119.68 m 185.91 119.68 l S 182.10 115.86 m 182.10 123.50 l S 204.76 87.19 m 212.40 87.19 l S 208.58 83.37 m 208.58 91.00 l S 165.35 159.34 m 172.99 159.34 l S 169.17 155.52 m 169.17 163.15 l S 150.00 205.15 m 157.64 205.15 l S 153.82 201.33 m 153.82 208.97 l S 157.20 178.15 m 164.83 178.15 l S 161.02 174.33 m 161.02 181.97 l S 179.16 111.28 m 186.80 111.28 l S 182.98 107.46 m 182.98 115.10 l S 140.19 234.47 m 147.83 234.47 l S 144.01 230.65 m 144.01 238.29 l S 239.43 168.39 m 247.06 168.39 l S 243.25 164.57 m 243.25 172.21 l S 173.90 132.60 m 181.54 132.60 l S 177.72 128.78 m 177.72 136.41 l S 136.86 222.51 m 144.49 222.51 l S 140.68 218.69 m 140.68 226.33 l S 210.29 97.37 m 217.93 97.37 l S 214.11 93.55 m 214.11 101.18 l S 201.24 85.31 m 208.87 85.31 l S 205.05 81.49 m 205.05 89.12 l S 199.83 84.62 m 207.47 84.62 l S 203.65 80.80 m 203.65 88.43 l S 184.48 100.83 m 192.12 100.83 l S 188.30 97.01 m 188.30 104.64 l S 164.05 164.11 m 171.69 164.11 l S 167.87 160.30 m 167.87 167.93 l S 223.79 126.17 m 231.42 126.17 l S 227.61 122.35 m 227.61 129.99 l S 202.13 86.57 m 209.76 86.57 l S 205.95 82.75 m 205.95 90.39 l S 187.57 100.70 m 195.21 100.70 l S 191.39 96.88 m 191.39 104.52 l S 186.84 102.94 m 194.48 102.94 l S 190.66 99.12 m 190.66 106.76 l S 185.33 105.88 m 192.97 105.88 l S 189.15 102.06 m 189.15 109.70 l S 191.06 94.51 m 198.70 94.51 l S 194.88 90.70 m 194.88 98.33 l S 97.24 267.66 m 104.88 267.66 l S 101.06 263.84 m 101.06 271.48 l S 212.44 102.02 m 220.08 102.02 l S 216.26 98.20 m 216.26 105.84 l S 181.15 116.63 m 188.78 116.63 l S 184.96 112.81 m 184.96 120.45 l S 202.27 86.55 m 209.90 86.55 l S 206.09 82.73 m 206.09 90.37 l S 231.16 148.03 m 238.80 148.03 l S 234.98 144.22 m 234.98 151.85 l S 237.24 159.34 m 244.88 159.34 l S 241.06 155.52 m 241.06 163.15 l S 151.38 210.76 m 159.02 210.76 l S 155.20 206.94 m 155.20 214.58 l S 200.32 84.75 m 207.96 84.75 l S 204.14 80.94 m 204.14 88.57 l S 152.00 205.15 m 159.64 205.15 l S 155.82 201.33 m 155.82 208.97 l S 260.62 253.26 m 268.26 253.26 l S 264.44 249.44 m 264.44 257.08 l S 157.97 173.74 m 165.60 173.74 l S 161.79 169.92 m 161.79 177.56 l S 174.85 124.52 m 182.49 124.52 l S 178.67 120.70 m 178.67 128.34 l S 309.20 267.66 m 316.84 267.66 l S 313.02 263.84 m 313.02 271.48 l S 181.14 115.33 m 188.78 115.33 l S 184.96 111.51 m 184.96 119.15 l S 247.50 202.94 m 255.14 202.94 l S 251.32 199.12 m 251.32 206.76 l S 193.36 92.88 m 201.00 92.88 l S 197.18 89.06 m 197.18 96.70 l S 156.52 188.89 m 164.16 188.89 l S 160.34 185.07 m 160.34 192.71 l S 243.07 181.37 m 250.71 181.37 l S 246.89 177.55 m 246.89 185.19 l S 180.76 116.36 m 188.40 116.36 l S 184.58 112.54 m 184.58 120.18 l S 274.25 267.66 m 281.89 267.66 l S 278.07 263.84 m 278.07 271.48 l S 170.68 133.74 m 178.32 133.74 l S 174.50 129.92 m 174.50 137.55 l S 153.62 222.51 m 161.25 222.51 l S 157.44 218.69 m 157.44 226.33 l S 204.02 88.85 m 211.66 88.85 l S 207.84 85.03 m 207.84 92.67 l S 192.98 92.24 m 200.61 92.24 l S 196.80 88.42 m 196.80 96.05 l S 179.80 115.05 m 187.44 115.05 l S 183.62 111.23 m 183.62 118.87 l S 149.84 200.52 m 157.47 200.52 l S 153.65 196.71 m 153.65 204.34 l S 170.63 143.67 m 178.27 143.67 l S 174.45 139.85 m 174.45 147.49 l S 168.91 137.88 m 176.55 137.88 l S 172.73 134.06 m 172.73 141.69 l S 170.90 139.09 m 178.53 139.09 l S 174.71 135.27 m 174.71 142.90 l S 253.23 227.88 m 260.86 227.88 l S 257.04 224.06 m 257.04 231.69 l S 113.70 267.66 m 121.34 267.66 l S 117.52 263.84 m 117.52 271.48 l S 135.37 267.66 m 143.01 267.66 l S 139.19 263.84 m 139.19 271.48 l S 163.39 164.11 m 171.03 164.11 l S 167.21 160.30 m 167.21 167.93 l S 208.65 95.62 m 216.29 95.62 l S 212.47 91.80 m 212.47 99.44 l S 233.96 149.15 m 241.60 149.15 l S 237.78 145.33 m 237.78 152.97 l S 208.74 95.45 m 216.38 95.45 l S 212.56 91.64 m 212.56 99.27 l S 212.72 101.53 m 220.35 101.53 l S 216.54 97.71 m 216.54 105.35 l S 195.66 88.77 m 203.29 88.77 l S 199.48 84.95 m 199.48 92.59 l S 186.84 101.75 m 194.48 101.75 l S 190.66 97.93 m 190.66 105.56 l S 135.61 253.26 m 143.25 253.26 l S 139.43 249.44 m 139.43 257.08 l S 182.05 115.33 m 189.69 115.33 l S 185.87 111.51 m 185.87 119.15 l S 228.46 135.07 m 236.10 135.07 l S 232.28 131.25 m 232.28 138.89 l S 146.52 222.51 m 154.15 222.51 l S 150.34 218.69 m 150.34 226.33 l S 227.94 131.16 m 235.58 131.16 l S 231.76 127.35 m 231.76 134.98 l S 275.58 267.66 m 283.22 267.66 l S 279.40 263.84 m 279.40 271.48 l S 271.85 253.26 m 279.49 253.26 l S 275.67 249.44 m 275.67 257.08 l S 155.99 198.49 m 163.63 198.49 l S 159.81 194.68 m 159.81 202.31 l S 211.19 99.03 m 218.82 99.03 l S 215.01 95.21 m 215.01 102.84 l S 198.34 85.85 m 205.98 85.85 l S 202.16 82.03 m 202.16 89.67 l S 227.33 136.73 m 234.97 136.73 l S 231.15 132.91 m 231.15 140.55 l S 202.68 87.58 m 210.31 87.58 l S 206.50 83.77 m 206.50 91.40 l S 189.80 98.21 m 197.44 98.21 l S 193.62 94.39 m 193.62 102.03 l S 172.13 147.76 m 179.77 147.76 l S 175.95 143.94 m 175.95 151.58 l S 170.53 142.11 m 178.17 142.11 l S 174.35 138.29 m 174.35 145.93 l S 200.18 84.67 m 207.81 84.67 l S 203.99 80.85 m 203.99 88.49 l S 164.35 170.27 m 171.99 170.27 l S 168.17 166.45 m 168.17 174.09 l S 238.04 157.96 m 245.68 157.96 l S 241.86 154.14 m 241.86 161.78 l S 138.36 234.47 m 145.99 234.47 l S 142.17 230.65 m 142.17 238.29 l S 167.31 152.28 m 174.95 152.28 l S 171.13 148.46 m 171.13 156.10 l S 249.69 227.88 m 257.33 227.88 l S 253.51 224.06 m 253.51 231.69 l S 161.56 176.34 m 169.19 176.34 l S 165.38 172.53 m 165.38 180.16 l S 233.31 155.86 m 240.94 155.86 l S 237.12 152.04 m 237.12 159.68 l S 133.00 234.47 m 140.64 234.47 l S 136.82 230.65 m 136.82 238.29 l S 175.31 127.86 m 182.95 127.86 l S 179.13 124.05 m 179.13 131.68 l S 213.02 105.56 m 220.65 105.56 l S 216.84 101.74 m 216.84 109.38 l S 183.16 112.92 m 190.80 112.92 l S 186.98 109.10 m 186.98 116.74 l S 211.55 99.81 m 219.19 99.81 l S 215.37 95.99 m 215.37 103.63 l S 143.05 210.76 m 150.69 210.76 l S 146.87 206.94 m 146.87 214.58 l S 195.06 90.03 m 202.69 90.03 l S 198.88 86.21 m 198.88 93.85 l S 218.17 111.50 m 225.80 111.50 l S 221.99 107.68 m 221.99 115.32 l S 191.90 95.23 m 199.53 95.23 l S 195.71 91.41 m 195.71 99.05 l S 169.05 148.03 m 176.69 148.03 l S 172.87 144.22 m 172.87 151.85 l S 261.84 234.47 m 269.48 234.47 l S 265.66 230.65 m 265.66 238.29 l S 209.78 96.51 m 217.42 96.51 l S 213.60 92.69 m 213.60 100.32 l S 197.35 87.25 m 204.99 87.25 l S 201.17 83.44 m 201.17 91.07 l S 159.05 170.27 m 166.69 170.27 l S 162.87 166.45 m 162.87 174.09 l S 131.66 267.66 m 139.29 267.66 l S 135.47 263.84 m 135.47 271.48 l S 223.19 123.54 m 230.83 123.54 l S 227.01 119.72 m 227.01 127.36 l S 134.46 253.26 m 142.10 253.26 l S 138.28 249.44 m 138.28 257.08 l S 210.08 97.29 m 217.72 97.29 l S 213.90 93.47 m 213.90 101.11 l S 181.94 113.58 m 189.57 113.58 l S 185.76 109.76 m 185.76 117.40 l S 147.39 218.05 m 155.02 218.05 l S 151.21 214.23 m 151.21 221.86 l S 153.84 213.95 m 161.47 213.95 l S 157.65 210.13 m 157.65 217.77 l S 184.32 107.29 m 191.96 107.29 l S 188.14 103.47 m 188.14 111.11 l S 183.53 109.68 m 191.17 109.68 l S 187.35 105.87 m 187.35 113.50 l S 258.54 222.51 m 266.18 222.51 l S 262.36 218.69 m 262.36 226.33 l S 112.44 267.66 m 120.08 267.66 l S 116.26 263.84 m 116.26 271.48 l S 205.03 90.19 m 212.66 90.19 l S 208.84 86.37 m 208.84 94.00 l S 133.90 267.66 m 141.54 267.66 l S 137.72 263.84 m 137.72 271.48 l S 179.97 117.68 m 187.60 117.68 l S 183.78 113.86 m 183.78 121.49 l S 194.47 90.47 m 202.11 90.47 l S 198.29 86.65 m 198.29 94.29 l S 137.83 242.83 m 145.46 242.83 l S 141.64 239.01 m 141.64 246.65 l S 142.55 222.51 m 150.19 222.51 l S 146.37 218.69 m 146.37 226.33 l S 160.20 180.35 m 167.84 180.35 l S 164.02 176.53 m 164.02 184.17 l S 229.18 140.52 m 236.82 140.52 l S 233.00 136.70 m 233.00 144.34 l S 230.14 142.88 m 237.77 142.88 l S 233.96 139.06 m 233.96 146.70 l S 123.89 242.83 m 131.53 242.83 l S 127.71 239.01 m 127.71 246.65 l S 156.70 182.26 m 164.34 182.26 l S 160.52 178.44 m 160.52 186.08 l S 160.39 169.68 m 168.02 169.68 l S 164.21 165.86 m 164.21 173.49 l S 146.95 227.88 m 154.59 227.88 l S 150.77 224.06 m 150.77 231.69 l S 216.14 107.33 m 223.78 107.33 l S 219.96 103.52 m 219.96 111.15 l S 200.03 84.55 m 207.66 84.55 l S 203.85 80.73 m 203.85 88.37 l S 188.38 98.90 m 196.02 98.90 l S 192.20 95.08 m 192.20 102.72 l S 186.80 103.13 m 194.43 103.13 l S 190.62 99.31 m 190.62 106.95 l S 188.37 97.18 m 196.01 97.18 l S 192.19 93.36 m 192.19 101.00 l S 180.75 115.14 m 188.39 115.14 l S 184.57 111.32 m 184.57 118.95 l S 115.87 267.66 m 123.51 267.66 l S 119.69 263.84 m 119.69 271.48 l S 183.17 106.51 m 190.81 106.51 l S 186.99 102.69 m 186.99 110.33 l S 124.46 267.66 m 132.09 267.66 l S 128.27 263.84 m 128.27 271.48 l S 147.80 218.05 m 155.44 218.05 l S 151.62 214.23 m 151.62 221.86 l S 152.59 186.17 m 160.23 186.17 l S 156.41 182.36 m 156.41 189.99 l S 151.52 195.07 m 159.16 195.07 l S 155.34 191.25 m 155.34 198.88 l S 187.75 100.73 m 195.39 100.73 l S 191.57 96.92 m 191.57 104.55 l S 230.23 152.74 m 237.87 152.74 l S 234.05 148.92 m 234.05 156.55 l S 170.72 147.46 m 178.36 147.46 l S 174.54 143.64 m 174.54 151.27 l S 215.30 106.56 m 222.94 106.56 l S 219.12 102.74 m 219.12 110.37 l S 173.65 130.08 m 181.28 130.08 l S 177.47 126.26 m 177.47 133.90 l S 186.63 102.96 m 194.27 102.96 l S 190.45 99.14 m 190.45 106.78 l S 162.82 162.21 m 170.46 162.21 l S 166.64 158.39 m 166.64 166.02 l S 263.49 234.47 m 271.12 234.47 l S 267.30 230.65 m 267.30 238.29 l S 216.99 110.28 m 224.63 110.28 l S 220.81 106.47 m 220.81 114.10 l S 193.36 91.00 m 201.00 91.00 l S 197.18 87.18 m 197.18 94.82 l S 166.67 154.61 m 174.31 154.61 l S 170.49 150.79 m 170.49 158.43 l S 205.18 90.23 m 212.82 90.23 l S 209.00 86.41 m 209.00 94.05 l S 138.97 242.83 m 146.60 242.83 l S 142.79 239.01 m 142.79 246.65 l S 190.33 97.95 m 197.97 97.95 l S 194.15 94.14 m 194.15 101.77 l S 194.73 91.05 m 202.37 91.05 l S 198.55 87.23 m 198.55 94.87 l S 210.65 98.64 m 218.29 98.64 l S 214.47 94.82 m 214.47 102.46 l S 175.90 128.94 m 183.54 128.94 l S 179.72 125.12 m 179.72 132.76 l S 170.18 142.88 m 177.82 142.88 l S 174.00 139.06 m 174.00 146.70 l S 143.55 242.83 m 151.19 242.83 l S 147.37 239.01 m 147.37 246.65 l S 171.47 136.96 m 179.10 136.96 l S 175.29 133.14 m 175.29 140.78 l S 142.80 267.66 m 150.44 267.66 l S 146.62 263.84 m 146.62 271.48 l S 228.85 139.09 m 236.49 139.09 l S 232.67 135.27 m 232.67 142.90 l S 139.79 218.05 m 147.42 218.05 l S 143.61 214.23 m 143.61 221.86 l S 224.82 127.17 m 232.46 127.17 l S 228.64 123.35 m 228.64 130.99 l S 132.40 267.66 m 140.04 267.66 l S 136.22 263.84 m 136.22 271.48 l S 181.58 116.63 m 189.22 116.63 l S 185.40 112.81 m 185.40 120.45 l S 207.32 92.80 m 214.96 92.80 l S 211.14 88.98 m 211.14 96.61 l S 157.50 180.35 m 165.14 180.35 l S 161.32 176.53 m 161.32 184.17 l S 207.34 93.73 m 214.98 93.73 l S 211.16 89.91 m 211.16 97.54 l S 142.26 222.51 m 149.90 222.51 l S 146.08 218.69 m 146.08 226.33 l S 195.13 89.39 m 202.77 89.39 l S 198.95 85.58 m 198.95 93.21 l S 149.44 227.88 m 157.08 227.88 l S 153.26 224.06 m 153.26 231.69 l S 173.71 137.66 m 181.35 137.66 l S 177.53 133.85 m 177.53 141.48 l S 175.53 127.86 m 183.17 127.86 l S 179.35 124.05 m 179.35 131.68 l S 155.68 175.46 m 163.32 175.46 l S 159.50 171.64 m 159.50 179.27 l S 228.44 139.09 m 236.08 139.09 l S 232.26 135.27 m 232.26 142.90 l S 120.38 253.26 m 128.02 253.26 l S 124.20 249.44 m 124.20 257.08 l S 210.09 96.53 m 217.72 96.53 l S 213.91 92.71 m 213.91 100.34 l S 114.62 267.66 m 122.26 267.66 l S 118.44 263.84 m 118.44 271.48 l S 197.26 87.19 m 204.90 87.19 l S 201.08 83.37 m 201.08 91.00 l S 140.77 242.83 m 148.41 242.83 l S 144.59 239.01 m 144.59 246.65 l S 181.78 112.85 m 189.42 112.85 l S 185.60 109.03 m 185.60 116.67 l S 163.61 164.11 m 171.25 164.11 l S 167.43 160.30 m 167.43 167.93 l S 205.70 90.03 m 213.33 90.03 l S 209.51 86.21 m 209.51 93.85 l S 211.41 99.27 m 219.05 99.27 l S 215.23 95.45 m 215.23 103.09 l S 123.25 267.66 m 130.89 267.66 l S 127.07 263.84 m 127.07 271.48 l S 153.10 196.81 m 160.74 196.81 l S 156.92 192.99 m 156.92 200.63 l S 191.72 94.30 m 199.36 94.30 l S 195.54 90.48 m 195.54 98.12 l S 212.97 102.94 m 220.60 102.94 l S 216.78 99.12 m 216.78 106.76 l S 196.63 87.82 m 204.27 87.82 l S 200.45 84.00 m 200.45 91.64 l S 141.05 234.47 m 148.69 234.47 l S 144.87 230.65 m 144.87 238.29 l S 109.70 267.66 m 117.34 267.66 l S 113.52 263.84 m 113.52 271.48 l S 184.14 106.75 m 191.77 106.75 l S 187.95 102.93 m 187.95 110.56 l S 234.15 156.14 m 241.79 156.14 l S 237.97 152.33 m 237.97 159.96 l S 189.99 97.29 m 197.63 97.29 l S 193.81 93.47 m 193.81 101.11 l S 228.08 134.60 m 235.71 134.60 l S 231.89 130.79 m 231.89 138.42 l S 228.58 141.57 m 236.22 141.57 l S 232.40 137.75 m 232.40 145.39 l S 176.40 127.96 m 184.04 127.96 l S 180.22 124.15 m 180.22 131.78 l S 196.40 88.34 m 204.04 88.34 l S 200.22 84.52 m 200.22 92.15 l S 215.80 108.37 m 223.43 108.37 l S 219.62 104.55 m 219.62 112.19 l S 196.96 88.02 m 204.60 88.02 l S 200.78 84.20 m 200.78 91.83 l S 232.15 148.92 m 239.78 148.92 l S 235.96 145.10 m 235.96 152.74 l S 143.77 227.88 m 151.40 227.88 l S 147.58 224.06 m 147.58 231.69 l S 137.11 242.83 m 144.75 242.83 l S 140.93 239.01 m 140.93 246.65 l S 205.13 90.13 m 212.76 90.13 l S 208.95 86.32 m 208.95 93.95 l S 178.01 121.91 m 185.65 121.91 l S 181.83 118.10 m 181.83 125.73 l S 224.41 128.94 m 232.05 128.94 l S 228.23 125.12 m 228.23 132.76 l S 200.02 84.56 m 207.65 84.56 l S 203.83 80.74 m 203.83 88.38 l S 193.66 92.40 m 201.29 92.40 l S 197.48 88.58 m 197.48 96.22 l S 177.10 124.35 m 184.74 124.35 l S 180.92 120.53 m 180.92 128.16 l S 212.22 98.48 m 219.86 98.48 l S 216.04 94.66 m 216.04 102.30 l S 176.68 122.70 m 184.31 122.70 l S 180.50 118.88 m 180.50 126.52 l S 219.06 114.30 m 226.70 114.30 l S 222.88 110.48 m 222.88 118.12 l S 204.57 89.74 m 212.21 89.74 l S 208.39 85.92 m 208.39 93.56 l S 131.38 242.83 m 139.02 242.83 l S 135.20 239.01 m 135.20 246.65 l S 143.34 218.05 m 150.98 218.05 l S 147.16 214.23 m 147.16 221.86 l S 200.47 84.82 m 208.11 84.82 l S 204.29 81.01 m 204.29 88.64 l S 154.59 191.78 m 162.23 191.78 l S 158.41 187.96 m 158.41 195.60 l S 126.10 267.66 m 133.73 267.66 l S 129.92 263.84 m 129.92 271.48 l S 212.66 101.97 m 220.30 101.97 l S 216.48 98.15 m 216.48 105.79 l S 136.28 267.66 m 143.92 267.66 l S 140.10 263.84 m 140.10 271.48 l S 166.60 151.16 m 174.24 151.16 l S 170.42 147.34 m 170.42 154.98 l S 153.59 193.36 m 161.23 193.36 l S 157.41 189.54 m 157.41 197.18 l S 161.40 167.66 m 169.04 167.66 l S 165.22 163.84 m 165.22 171.48 l S 197.60 86.57 m 205.23 86.57 l S 201.41 82.75 m 201.41 90.39 l S 231.47 146.39 m 239.11 146.39 l S 235.29 142.57 m 235.29 150.21 l S 163.89 159.34 m 171.53 159.34 l S 167.71 155.52 m 167.71 163.15 l S 170.28 144.77 m 177.92 144.77 l S 174.10 140.95 m 174.10 148.58 l S 182.13 114.13 m 189.76 114.13 l S 185.95 110.31 m 185.95 117.95 l S 124.82 267.66 m 132.45 267.66 l S 128.64 263.84 m 128.64 271.48 l S 153.38 195.07 m 161.02 195.07 l S 157.20 191.25 m 157.20 198.88 l S 198.43 85.85 m 206.06 85.85 l S 202.25 82.03 m 202.25 89.67 l S 204.06 88.28 m 211.70 88.28 l S 207.88 84.46 m 207.88 92.10 l S 220.36 113.40 m 227.99 113.40 l S 224.17 109.58 m 224.17 117.22 l S 199.95 84.57 m 207.58 84.57 l S 203.76 80.76 m 203.76 88.39 l S 239.43 168.98 m 247.06 168.98 l S 243.25 165.16 m 243.25 172.80 l S 138.30 253.26 m 145.93 253.26 l S 142.12 249.44 m 142.12 257.08 l S 213.65 101.46 m 221.29 101.46 l S 217.47 97.65 m 217.47 105.28 l S 187.85 100.59 m 195.48 100.59 l S 191.67 96.77 m 191.67 104.41 l S 130.26 267.66 m 137.90 267.66 l S 134.08 263.84 m 134.08 271.48 l S 219.33 117.09 m 226.97 117.09 l S 223.15 113.27 m 223.15 120.91 l S 129.15 267.66 m 136.78 267.66 l S 132.97 263.84 m 132.97 271.48 l S 237.59 163.44 m 245.23 163.44 l S 241.41 159.62 m 241.41 167.26 l S 208.20 94.84 m 215.84 94.84 l S 212.02 91.02 m 212.02 98.66 l S 153.41 181.37 m 161.04 181.37 l S 157.23 177.55 m 157.23 185.19 l S 119.05 267.66 m 126.69 267.66 l S 122.87 263.84 m 122.87 271.48 l S 132.07 253.26 m 139.71 253.26 l S 135.89 249.44 m 135.89 257.08 l S 206.50 92.54 m 214.14 92.54 l S 210.32 88.72 m 210.32 96.36 l S 142.34 234.47 m 149.98 234.47 l S 146.16 230.65 m 146.16 238.29 l S 214.45 105.86 m 222.08 105.86 l S 218.26 102.04 m 218.26 109.68 l S 166.96 154.22 m 174.59 154.22 l S 170.78 150.40 m 170.78 158.04 l S 208.47 95.14 m 216.11 95.14 l S 212.29 91.32 m 212.29 98.95 l S 132.58 267.66 m 140.21 267.66 l S 136.39 263.84 m 136.39 271.48 l S 223.93 125.01 m 231.56 125.01 l S 227.75 121.19 m 227.75 128.83 l S 226.75 130.50 m 234.39 130.50 l S 230.57 126.68 m 230.57 134.32 l S 108.69 267.66 m 116.33 267.66 l S 112.51 263.84 m 112.51 271.48 l S 174.17 132.87 m 181.81 132.87 l S 177.99 129.05 m 177.99 136.69 l S 160.21 164.11 m 167.85 164.11 l S 164.03 160.30 m 164.03 167.93 l S 175.74 124.63 m 183.38 124.63 l S 179.56 120.81 m 179.56 128.45 l S 174.72 131.59 m 182.36 131.59 l S 178.54 127.78 m 178.54 135.41 l S 169.15 146.74 m 176.79 146.74 l S 172.97 142.92 m 172.97 150.56 l S 99.44 267.66 m 107.08 267.66 l S 103.26 263.84 m 103.26 271.48 l S 134.43 253.26 m 142.07 253.26 l S 138.25 249.44 m 138.25 257.08 l S 161.87 162.21 m 169.51 162.21 l S 165.69 158.39 m 165.69 166.02 l S 183.42 108.37 m 191.06 108.37 l S 187.24 104.55 m 187.24 112.19 l S 183.74 109.68 m 191.38 109.68 l S 187.56 105.87 m 187.56 113.50 l S 158.13 175.46 m 165.77 175.46 l S 161.95 171.64 m 161.95 179.27 l S 129.66 253.26 m 137.30 253.26 l S 133.48 249.44 m 133.48 257.08 l S 155.10 205.15 m 162.73 205.15 l S 158.92 201.33 m 158.92 208.97 l S 134.72 227.88 m 142.35 227.88 l S 138.54 224.06 m 138.54 231.69 l S 185.74 105.36 m 193.38 105.36 l S 189.56 101.54 m 189.56 109.18 l S 215.44 105.60 m 223.08 105.60 l S 219.26 101.78 m 219.26 109.42 l S 203.22 87.76 m 210.86 87.76 l S 207.04 83.95 m 207.04 91.58 l S 192.46 94.29 m 200.10 94.29 l S 196.28 90.47 m 196.28 98.11 l S 141.58 234.47 m 149.22 234.47 l S 145.40 230.65 m 145.40 238.29 l S 182.44 111.66 m 190.07 111.66 l S 186.26 107.85 m 186.26 115.48 l S 124.29 267.66 m 131.93 267.66 l S 128.11 263.84 m 128.11 271.48 l S 98.80 267.66 m 106.44 267.66 l S 102.62 263.84 m 102.62 271.48 l S 247.30 196.81 m 254.94 196.81 l S 251.12 192.99 m 251.12 200.63 l S 155.49 177.23 m 163.12 177.23 l S 159.31 173.41 m 159.31 181.05 l S 168.49 142.11 m 176.13 142.11 l S 172.31 138.29 m 172.31 145.93 l S 186.67 102.27 m 194.31 102.27 l S 190.49 98.46 m 190.49 106.09 l S 246.60 173.74 m 254.23 173.74 l S 250.41 169.92 m 250.41 177.56 l S 237.69 168.39 m 245.32 168.39 l S 241.50 164.57 m 241.50 172.21 l S 205.67 90.10 m 213.31 90.10 l S 209.49 86.28 m 209.49 93.92 l S 183.35 111.02 m 190.99 111.02 l S 187.17 107.20 m 187.17 114.84 l S 189.04 97.90 m 196.68 97.90 l S 192.86 94.08 m 192.86 101.71 l S 231.42 149.15 m 239.06 149.15 l S 235.24 145.33 m 235.24 152.97 l S 213.56 103.16 m 221.20 103.16 l S 217.38 99.35 m 217.38 106.98 l S 120.45 267.66 m 128.08 267.66 l S 124.26 263.84 m 124.26 271.48 l S 184.13 108.77 m 191.77 108.77 l S 187.95 104.95 m 187.95 112.59 l S 134.50 267.66 m 142.14 267.66 l S 138.32 263.84 m 138.32 271.48 l S 159.06 177.23 m 166.70 177.23 l S 162.88 173.41 m 162.88 181.05 l S 229.02 143.12 m 236.66 143.12 l S 232.84 139.30 m 232.84 146.94 l S 175.17 132.25 m 182.81 132.25 l S 178.99 128.43 m 178.99 136.07 l S 152.90 196.81 m 160.53 196.81 l S 156.71 192.99 m 156.71 200.63 l S 158.25 172.95 m 165.88 172.95 l S 162.06 169.14 m 162.06 176.77 l S 151.40 181.37 m 159.04 181.37 l S 155.22 177.55 m 155.22 185.19 l S 176.53 124.78 m 184.17 124.78 l S 180.35 120.96 m 180.35 128.60 l S 214.79 105.32 m 222.43 105.32 l S 218.61 101.50 m 218.61 109.14 l S 168.54 144.77 m 176.18 144.77 l S 172.36 140.95 m 172.36 148.58 l S 151.02 227.88 m 158.66 227.88 l S 154.84 224.06 m 154.84 231.69 l S 165.75 162.21 m 173.38 162.21 l S 169.57 158.39 m 169.57 166.02 l S 189.19 99.39 m 196.83 99.39 l S 193.01 95.58 m 193.01 103.21 l S 216.57 106.62 m 224.21 106.62 l S 220.39 102.80 m 220.39 110.44 l S 175.80 126.56 m 183.44 126.56 l S 179.62 122.74 m 179.62 130.37 l S 208.49 95.14 m 216.13 95.14 l S 212.31 91.32 m 212.31 98.95 l S 244.31 193.36 m 251.95 193.36 l S 248.13 189.54 m 248.13 197.18 l S 117.23 267.66 m 124.87 267.66 l S 121.05 263.84 m 121.05 271.48 l S 98.07 267.66 m 105.70 267.66 l S 101.89 263.84 m 101.89 271.48 l S 313.02 267.66 m 320.66 267.66 l S 316.84 263.84 m 316.84 271.48 l S 209.67 97.47 m 217.30 97.47 l S 213.49 93.65 m 213.49 101.29 l S 210.78 97.07 m 218.41 97.07 l S 214.59 93.25 m 214.59 100.89 l S 249.10 202.94 m 256.74 202.94 l S 252.92 199.12 m 252.92 206.76 l S 232.14 148.69 m 239.78 148.69 l S 235.96 144.88 m 235.96 152.51 l S 231.32 148.03 m 238.95 148.03 l S 235.14 144.22 m 235.14 151.85 l S 211.51 98.07 m 219.15 98.07 l S 215.33 94.26 m 215.33 101.89 l S 148.58 205.15 m 156.22 205.15 l S 152.40 201.33 m 152.40 208.97 l S 214.08 103.43 m 221.72 103.43 l S 217.90 99.61 m 217.90 107.25 l S 167.93 148.92 m 175.57 148.92 l S 171.75 145.10 m 171.75 152.74 l S 217.79 112.92 m 225.42 112.92 l S 221.61 109.10 m 221.61 116.74 l S 157.17 205.15 m 164.80 205.15 l S 160.99 201.33 m 160.99 208.97 l S 270.90 267.66 m 278.53 267.66 l S 274.72 263.84 m 274.72 271.48 l S 125.67 267.66 m 133.30 267.66 l S 129.48 263.84 m 129.48 271.48 l S 188.07 99.44 m 195.71 99.44 l S 191.89 95.62 m 191.89 103.25 l S 197.39 87.02 m 205.02 87.02 l S 201.21 83.20 m 201.21 90.84 l S 75.64 267.66 m 83.27 267.66 l S 79.45 263.84 m 79.45 271.48 l S 151.77 222.51 m 159.41 222.51 l S 155.59 218.69 m 155.59 226.33 l S 199.38 85.04 m 207.01 85.04 l S 203.19 81.22 m 203.19 88.86 l S 225.28 126.96 m 232.91 126.96 l S 229.09 123.14 m 229.09 130.78 l S 139.74 253.26 m 147.38 253.26 l S 143.56 249.44 m 143.56 257.08 l S 139.42 242.83 m 147.06 242.83 l S 143.24 239.01 m 143.24 246.65 l S 246.50 210.76 m 254.13 210.76 l S 250.31 206.94 m 250.31 214.58 l S 282.92 267.66 m 290.55 267.66 l S 286.73 263.84 m 286.73 271.48 l S 155.65 188.89 m 163.28 188.89 l S 159.47 185.07 m 159.47 192.71 l S 220.55 117.74 m 228.19 117.74 l S 224.37 113.92 m 224.37 121.56 l S 225.49 134.60 m 233.13 134.60 l S 229.31 130.79 m 229.31 138.42 l S 222.04 123.40 m 229.68 123.40 l S 225.86 119.58 m 225.86 127.22 l S 220.80 121.91 m 228.44 121.91 l S 224.62 118.10 m 224.62 125.73 l S 157.37 177.23 m 165.00 177.23 l S 161.18 173.41 m 161.18 181.05 l S 197.21 87.52 m 204.84 87.52 l S 201.03 83.70 m 201.03 91.34 l S 209.24 96.51 m 216.87 96.51 l S 213.05 92.69 m 213.05 100.33 l S 196.83 87.82 m 204.46 87.82 l S 200.64 84.00 m 200.64 91.63 l S 194.88 90.00 m 202.52 90.00 l S 198.70 86.18 m 198.70 93.82 l S 206.18 91.51 m 213.82 91.51 l S 210.00 87.69 m 210.00 95.33 l S 236.95 166.38 m 244.58 166.38 l S 240.77 162.56 m 240.77 170.20 l S 191.99 93.73 m 199.63 93.73 l S 195.81 89.91 m 195.81 97.54 l S 226.53 134.45 m 234.17 134.45 l S 230.35 130.63 m 230.35 138.27 l S 212.75 101.53 m 220.39 101.53 l S 216.57 97.71 m 216.57 105.35 l S 224.32 128.45 m 231.96 128.45 l S 228.14 124.63 m 228.14 132.27 l S 253.93 195.07 m 261.57 195.07 l S 257.75 191.25 m 257.75 198.88 l S 264.60 242.83 m 272.24 242.83 l S 268.42 239.01 m 268.42 246.65 l S 253.12 234.47 m 260.76 234.47 l S 256.94 230.65 m 256.94 238.29 l S 170.59 140.52 m 178.23 140.52 l S 174.41 136.70 m 174.41 144.34 l S 103.82 267.66 m 111.45 267.66 l S 107.64 263.84 m 107.64 271.48 l S 164.96 160.39 m 172.60 160.39 l S 168.78 156.57 m 168.78 164.21 l S 194.65 90.67 m 202.28 90.67 l S 198.46 86.85 m 198.46 94.49 l S 198.45 85.72 m 206.09 85.72 l S 202.27 81.90 m 202.27 89.54 l S 138.01 253.26 m 145.65 253.26 l S 141.83 249.44 m 141.83 257.08 l S 244.22 179.25 m 251.85 179.25 l S 248.03 175.43 m 248.03 183.07 l S 191.15 96.10 m 198.79 96.10 l S 194.97 92.28 m 194.97 99.92 l S 176.12 125.14 m 183.75 125.14 l S 179.94 121.32 m 179.94 128.96 l S 231.80 148.92 m 239.44 148.92 l S 235.62 145.10 m 235.62 152.74 l S 213.17 103.61 m 220.80 103.61 l S 216.99 99.79 m 216.99 107.43 l S 225.43 129.73 m 233.06 129.73 l S 229.24 125.91 m 229.24 133.54 l S 201.58 85.96 m 209.21 85.96 l S 205.39 82.15 m 205.39 89.78 l S 238.86 172.11 m 246.49 172.11 l S 242.67 168.29 m 242.67 175.93 l S 161.63 174.56 m 169.26 174.56 l S 165.45 170.74 m 165.45 178.38 l S 264.63 253.26 m 272.27 253.26 l S 268.45 249.44 m 268.45 257.08 l S 222.11 120.94 m 229.74 120.94 l S 225.92 117.12 m 225.92 124.76 l S 217.82 111.75 m 225.46 111.75 l S 221.64 107.93 m 221.64 115.57 l S 208.99 96.28 m 216.63 96.28 l S 212.81 92.47 m 212.81 100.10 l S 180.87 114.04 m 188.51 114.04 l S 184.69 110.22 m 184.69 117.86 l S 173.82 133.94 m 181.46 133.94 l S 177.64 130.12 m 177.64 137.76 l S 203.50 87.15 m 211.13 87.15 l S 207.31 83.34 m 207.31 90.97 l S 224.14 125.88 m 231.77 125.88 l S 227.95 122.06 m 227.95 129.69 l S 208.85 95.85 m 216.49 95.85 l S 212.67 92.03 m 212.67 99.67 l S 155.68 181.37 m 163.31 181.37 l S 159.49 177.55 m 159.49 185.19 l S 168.49 141.57 m 176.13 141.57 l S 172.31 137.75 m 172.31 145.39 l S 169.41 142.61 m 177.05 142.61 l S 173.23 138.79 m 173.23 146.43 l S 192.03 93.48 m 199.66 93.48 l S 195.85 89.66 m 195.85 97.29 l S 173.79 129.32 m 181.43 129.32 l S 177.61 125.50 m 177.61 133.14 l S 259.85 242.83 m 267.48 242.83 l S 263.67 239.01 m 263.67 246.65 l S 189.33 99.31 m 196.96 99.31 l S 193.14 95.49 m 193.14 103.13 l S 173.56 128.65 m 181.20 128.65 l S 177.38 124.84 m 177.38 132.47 l S 137.95 253.26 m 145.58 253.26 l S 141.77 249.44 m 141.77 257.08 l S 158.69 183.29 m 166.32 183.29 l S 162.50 179.48 m 162.50 187.11 l S 142.72 218.05 m 150.36 218.05 l S 146.54 214.23 m 146.54 221.86 l S 220.55 117.59 m 228.19 117.59 l S 224.37 113.77 m 224.37 121.41 l S 206.40 91.87 m 214.04 91.87 l S 210.22 88.05 m 210.22 95.69 l S 197.90 86.57 m 205.53 86.57 l S 201.72 82.75 m 201.72 90.39 l S 183.17 100.27 m 190.81 100.27 l S 186.99 96.45 m 186.99 104.09 l S 172.78 139.26 m 180.42 139.26 l S 176.60 135.44 m 176.60 143.07 l S 177.23 119.68 m 184.87 119.68 l S 181.05 115.86 m 181.05 123.50 l S 109.56 267.66 m 117.19 267.66 l S 113.37 263.84 m 113.37 271.48 l S 214.51 104.25 m 222.14 104.25 l S 218.32 100.43 m 218.32 108.07 l S 180.26 114.04 m 187.90 114.04 l S 184.08 110.22 m 184.08 117.86 l S 196.66 87.61 m 204.30 87.61 l S 200.48 83.79 m 200.48 91.42 l S 199.66 84.81 m 207.29 84.81 l S 203.48 80.99 m 203.48 88.63 l S 193.55 92.87 m 201.19 92.87 l S 197.37 89.05 m 197.37 96.68 l S 153.63 182.26 m 161.26 182.26 l S 157.45 178.44 m 157.45 186.08 l S 178.12 124.88 m 185.75 124.88 l S 181.93 121.06 m 181.93 128.70 l S 255.15 234.47 m 262.79 234.47 l S 258.97 230.65 m 258.97 238.29 l S 241.46 180.35 m 249.10 180.35 l S 245.28 176.53 m 245.28 184.17 l S 180.74 117.42 m 188.38 117.42 l S 184.56 113.60 m 184.56 121.23 l S 224.75 126.26 m 232.38 126.26 l S 228.57 122.44 m 228.57 130.08 l S 228.62 136.61 m 236.26 136.61 l S 232.44 132.79 m 232.44 140.43 l S 253.54 218.05 m 261.17 218.05 l S 257.35 214.23 m 257.35 221.86 l S 224.50 126.56 m 232.13 126.56 l S 228.32 122.74 m 228.32 130.37 l S 241.16 182.26 m 248.80 182.26 l S 244.98 178.44 m 244.98 186.08 l S 133.99 253.26 m 141.63 253.26 l S 137.81 249.44 m 137.81 257.08 l S 155.09 202.94 m 162.72 202.94 l S 158.91 199.12 m 158.91 206.76 l S 238.21 172.95 m 245.85 172.95 l S 242.03 169.14 m 242.03 176.77 l S 226.37 132.60 m 234.01 132.60 l S 230.19 128.78 m 230.19 136.41 l S 224.32 126.26 m 231.96 126.26 l S 228.14 122.44 m 228.14 130.08 l S 233.99 151.87 m 241.62 151.87 l S 237.80 148.05 m 237.80 155.69 l S 185.63 105.80 m 193.27 105.80 l S 189.45 101.98 m 189.45 109.62 l S 197.30 87.15 m 204.94 87.15 l S 201.12 83.33 m 201.12 90.97 l S 179.88 118.14 m 187.52 118.14 l S 183.70 114.32 m 183.70 121.96 l S 213.91 105.86 m 221.55 105.86 l S 217.73 102.04 m 217.73 109.68 l S 195.92 88.34 m 203.56 88.34 l S 199.74 84.52 m 199.74 92.15 l S 125.23 267.66 m 132.87 267.66 l S 129.05 263.84 m 129.05 271.48 l S 129.12 242.83 m 136.75 242.83 l S 132.93 239.01 m 132.93 246.65 l S 178.98 118.03 m 186.61 118.03 l S 182.80 114.21 m 182.80 121.85 l S 177.48 124.57 m 185.12 124.57 l S 181.30 120.75 m 181.30 128.39 l S 160.85 164.11 m 168.49 164.11 l S 164.67 160.30 m 164.67 167.93 l S 118.33 253.26 m 125.96 253.26 l S 122.15 249.44 m 122.15 257.08 l S 206.10 91.21 m 213.74 91.21 l S 209.92 87.39 m 209.92 95.02 l S 247.79 202.94 m 255.43 202.94 l S 251.61 199.12 m 251.61 206.76 l S 232.66 144.41 m 240.30 144.41 l S 236.48 140.59 m 236.48 148.23 l S 274.09 267.66 m 281.73 267.66 l S 277.91 263.84 m 277.91 271.48 l S 194.24 90.40 m 201.87 90.40 l S 198.06 86.59 m 198.06 94.22 l S 165.76 157.61 m 173.39 157.61 l S 169.57 153.79 m 169.57 161.43 l S 202.59 86.58 m 210.23 86.58 l S 206.41 82.76 m 206.41 90.40 l S 220.02 117.52 m 227.65 117.52 l S 223.84 113.71 m 223.84 121.34 l S 186.81 103.38 m 194.45 103.38 l S 190.63 99.56 m 190.63 107.20 l S 142.26 202.94 m 149.90 202.94 l S 146.08 199.12 m 146.08 206.76 l S 193.84 91.79 m 201.48 91.79 l S 197.66 87.97 m 197.66 95.61 l S 181.89 113.67 m 189.52 113.67 l S 185.70 109.86 m 185.70 117.49 l S 191.42 96.81 m 199.06 96.81 l S 195.24 92.99 m 195.24 100.63 l S 187.01 103.03 m 194.65 103.03 l S 190.83 99.21 m 190.83 106.85 l S 250.74 213.95 m 258.37 213.95 l S 254.56 210.13 m 254.56 217.77 l S 189.67 97.80 m 197.31 97.80 l S 193.49 93.98 m 193.49 101.62 l S 253.47 213.95 m 261.10 213.95 l S 257.29 210.13 m 257.29 217.77 l S 245.80 190.21 m 253.44 190.21 l S 249.62 186.39 m 249.62 194.03 l S 205.60 89.70 m 213.24 89.70 l S 209.42 85.88 m 209.42 93.51 l S 175.79 130.50 m 183.43 130.50 l S 179.61 126.68 m 179.61 134.32 l S 107.26 267.66 m 114.90 267.66 l S 111.08 263.84 m 111.08 271.48 l S 165.42 155.41 m 173.06 155.41 l S 169.24 151.59 m 169.24 159.23 l S 211.04 98.90 m 218.68 98.90 l S 214.86 95.08 m 214.86 102.72 l S 228.59 135.72 m 236.23 135.72 l S 232.41 131.90 m 232.41 139.54 l S 227.75 144.15 m 235.38 144.15 l S 231.56 140.33 m 231.56 147.97 l S 165.21 161.00 m 172.85 161.00 l S 169.03 157.18 m 169.03 164.81 l S 263.94 267.66 m 271.58 267.66 l S 267.76 263.84 m 267.76 271.48 l S 120.02 267.66 m 127.66 267.66 l S 123.84 263.84 m 123.84 271.48 l S 79.97 267.66 m 87.61 267.66 l S 83.79 263.84 m 83.79 271.48 l S 181.49 115.14 m 189.13 115.14 l S 185.31 111.32 m 185.31 118.95 l S 194.85 88.44 m 202.49 88.44 l S 198.67 84.62 m 198.67 92.26 l S 263.64 253.26 m 271.28 253.26 l S 267.46 249.44 m 267.46 257.08 l S 175.64 131.49 m 183.28 131.49 l S 179.46 127.67 m 179.46 135.31 l S 248.23 196.81 m 255.86 196.81 l S 252.05 192.99 m 252.05 200.63 l S 132.71 253.26 m 140.35 253.26 l S 136.53 249.44 m 136.53 257.08 l S 182.75 104.78 m 190.38 104.78 l S 186.56 100.96 m 186.56 108.60 l S 236.26 160.39 m 243.89 160.39 l S 240.07 156.57 m 240.07 164.21 l S 251.98 210.76 m 259.62 210.76 l S 255.80 206.94 m 255.80 214.58 l S 178.29 120.84 m 185.93 120.84 l S 182.11 117.02 m 182.11 124.66 l S 225.06 131.59 m 232.70 131.59 l S 228.88 127.78 m 228.88 135.41 l S 221.73 122.70 m 229.37 122.70 l S 225.55 118.88 m 225.55 126.52 l S 222.62 121.54 m 230.25 121.54 l S 226.43 117.72 m 226.43 125.36 l S 202.06 86.49 m 209.70 86.49 l S 205.88 82.67 m 205.88 90.31 l S 144.07 213.95 m 151.70 213.95 l S 147.88 210.13 m 147.88 217.77 l S 231.52 141.76 m 239.16 141.76 l S 235.34 137.94 m 235.34 145.58 l S 236.92 154.61 m 244.55 154.61 l S 240.74 150.79 m 240.74 158.43 l S 178.88 111.50 m 186.52 111.50 l S 182.70 107.68 m 182.70 115.32 l S 143.06 267.66 m 150.70 267.66 l S 146.88 263.84 m 146.88 271.48 l S 170.20 140.52 m 177.84 140.52 l S 174.02 136.70 m 174.02 144.34 l S 160.67 168.39 m 168.30 168.39 l S 164.48 164.57 m 164.48 172.21 l S 198.43 86.49 m 206.07 86.49 l S 202.25 82.67 m 202.25 90.31 l S 98.42 267.66 m 106.06 267.66 l S 102.24 263.84 m 102.24 271.48 l S 242.97 165.67 m 250.61 165.67 l S 246.79 161.85 m 246.79 169.49 l S 182.66 109.75 m 190.30 109.75 l S 186.48 105.93 m 186.48 113.57 l S 209.28 96.53 m 216.92 96.53 l S 213.10 92.71 m 213.10 100.35 l S 211.84 101.58 m 219.48 101.58 l S 215.66 97.76 m 215.66 105.40 l S 143.54 242.83 m 151.18 242.83 l S 147.36 239.01 m 147.36 246.65 l S 166.99 140.52 m 174.62 140.52 l S 170.81 136.70 m 170.81 144.34 l S 217.88 106.75 m 225.51 106.75 l S 221.70 102.93 m 221.70 110.56 l S 212.89 101.53 m 220.53 101.53 l S 216.71 97.71 m 216.71 105.35 l S 163.48 162.21 m 171.12 162.21 l S 167.30 158.39 m 167.30 166.02 l S 202.31 86.63 m 209.95 86.63 l S 206.13 82.81 m 206.13 90.44 l S 157.94 182.26 m 165.57 182.26 l S 161.76 178.44 m 161.76 186.08 l S 222.58 122.88 m 230.21 122.88 l S 226.40 119.07 m 226.40 126.70 l S 154.49 180.35 m 162.12 180.35 l S 158.30 176.53 m 158.30 184.17 l S 119.98 253.26 m 127.61 253.26 l S 123.80 249.44 m 123.80 257.08 l S 84.92 267.66 m 92.56 267.66 l S 88.74 263.84 m 88.74 271.48 l S 230.06 147.76 m 237.70 147.76 l S 233.88 143.94 m 233.88 151.58 l S 113.83 253.26 m 121.46 253.26 l S 117.64 249.44 m 117.64 257.08 l S 172.81 136.61 m 180.44 136.61 l S 176.63 132.79 m 176.63 140.43 l S 195.20 89.70 m 202.83 89.70 l S 199.02 85.88 m 199.02 93.51 l S 312.43 267.66 m 320.07 267.66 l S 316.25 263.84 m 316.25 271.48 l S 163.21 168.98 m 170.85 168.98 l S 167.03 165.16 m 167.03 172.80 l S 252.88 213.95 m 260.52 213.95 l S 256.70 210.13 m 256.70 217.77 l S 243.64 175.46 m 251.28 175.46 l S 247.46 171.64 m 247.46 179.27 l S 189.49 97.78 m 197.13 97.78 l S 193.31 93.96 m 193.31 101.60 l S 118.14 267.66 m 125.78 267.66 l S 121.96 263.84 m 121.96 271.48 l S 191.83 95.33 m 199.47 95.33 l S 195.65 91.51 m 195.65 99.14 l S 165.81 158.84 m 173.45 158.84 l S 169.63 155.02 m 169.63 162.66 l S 182.96 109.15 m 190.59 109.15 l S 186.78 105.33 m 186.78 112.96 l S 227.94 132.60 m 235.58 132.60 l S 231.76 128.78 m 231.76 136.41 l S 216.51 107.29 m 224.15 107.29 l S 220.33 103.47 m 220.33 111.11 l S 212.99 99.56 m 220.62 99.56 l S 216.80 95.74 m 216.80 103.37 l S 189.55 98.60 m 197.19 98.60 l S 193.37 94.78 m 193.37 102.42 l S 164.50 165.10 m 172.14 165.10 l S 168.32 161.28 m 168.32 168.92 l S 276.83 267.66 m 284.47 267.66 l S 280.65 263.84 m 280.65 271.48 l S 245.55 191.78 m 253.18 191.78 l S 249.36 187.96 m 249.36 195.60 l S 197.56 87.19 m 205.20 87.19 l S 201.38 83.37 m 201.38 91.00 l S 227.16 135.50 m 234.79 135.50 l S 230.98 131.68 m 230.98 139.32 l S 212.01 100.88 m 219.65 100.88 l S 215.83 97.06 m 215.83 104.70 l S 224.31 126.81 m 231.95 126.81 l S 228.13 123.00 m 228.13 130.63 l S 181.88 115.12 m 189.52 115.12 l S 185.70 111.31 m 185.70 118.94 l S 193.25 93.10 m 200.88 93.10 l S 197.06 89.28 m 197.06 96.92 l S 241.85 176.34 m 249.49 176.34 l S 245.67 172.53 m 245.67 180.16 l S 218.30 111.50 m 225.94 111.50 l S 222.12 107.68 m 222.12 115.32 l S 125.66 267.66 m 133.30 267.66 l S 129.48 263.84 m 129.48 271.48 l S 179.83 117.76 m 187.47 117.76 l S 183.65 113.94 m 183.65 121.58 l S 186.08 104.09 m 193.71 104.09 l S 189.90 100.27 m 189.90 107.90 l S 221.64 121.83 m 229.28 121.83 l S 225.46 118.01 m 225.46 125.65 l S 241.53 187.47 m 249.17 187.47 l S 245.35 183.65 m 245.35 191.29 l S 185.92 102.81 m 193.56 102.81 l S 189.74 98.99 m 189.74 106.63 l S 187.38 102.39 m 195.02 102.39 l S 191.20 98.57 m 191.20 106.21 l S 213.64 104.78 m 221.27 104.78 l S 217.46 100.96 m 217.46 108.60 l S 210.89 97.95 m 218.53 97.95 l S 214.71 94.14 m 214.71 101.77 l S 178.20 124.17 m 185.84 124.17 l S 182.02 120.35 m 182.02 127.99 l S 239.70 182.26 m 247.34 182.26 l S 243.52 178.44 m 243.52 186.08 l S 226.85 133.29 m 234.49 133.29 l S 230.67 129.47 m 230.67 137.10 l S 198.16 86.35 m 205.80 86.35 l S 201.98 82.53 m 201.98 90.17 l S 190.04 98.04 m 197.67 98.04 l S 193.86 94.22 m 193.86 101.85 l S 204.78 89.08 m 212.42 89.08 l S 208.60 85.26 m 208.60 92.90 l S 157.42 186.17 m 165.06 186.17 l S 161.24 182.36 m 161.24 189.99 l S 243.35 179.25 m 250.99 179.25 l S 247.17 175.43 m 247.17 183.07 l S 192.91 93.73 m 200.55 93.73 l S 196.73 89.91 m 196.73 97.54 l S 245.46 196.81 m 253.09 196.81 l S 249.27 192.99 m 249.27 200.63 l S 183.36 110.09 m 191.00 110.09 l S 187.18 106.27 m 187.18 113.91 l S 152.56 193.36 m 160.19 193.36 l S 156.37 189.54 m 156.37 197.18 l S 160.35 166.38 m 167.99 166.38 l S 164.17 162.56 m 164.17 170.20 l S 206.61 92.13 m 214.25 92.13 l S 210.43 88.31 m 210.43 95.95 l S 256.82 253.26 m 264.46 253.26 l S 260.64 249.44 m 260.64 257.08 l S 192.90 91.36 m 200.54 91.36 l S 196.72 87.55 m 196.72 95.18 l S 175.58 130.64 m 183.22 130.64 l S 179.40 126.82 m 179.40 134.46 l S 202.68 86.77 m 210.32 86.77 l S 206.50 82.95 m 206.50 90.59 l S 255.64 227.88 m 263.28 227.88 l S 259.46 224.06 m 259.46 231.69 l S 224.83 128.94 m 232.47 128.94 l S 228.65 125.12 m 228.65 132.76 l S 241.51 175.46 m 249.15 175.46 l S 245.33 171.64 m 245.33 179.27 l S 140.27 242.83 m 147.91 242.83 l S 144.09 239.01 m 144.09 246.65 l S 104.68 267.66 m 112.32 267.66 l S 108.50 263.84 m 108.50 271.48 l S 248.08 202.94 m 255.71 202.94 l S 251.89 199.12 m 251.89 206.76 l S 219.54 115.14 m 227.18 115.14 l S 223.36 111.32 m 223.36 118.95 l S 255.92 218.05 m 263.55 218.05 l S 259.73 214.23 m 259.73 221.86 l S 200.29 84.67 m 207.93 84.67 l S 204.11 80.85 m 204.11 88.49 l S 225.68 130.50 m 233.32 130.50 l S 229.50 126.68 m 229.50 134.32 l S 136.84 242.83 m 144.47 242.83 l S 140.65 239.01 m 140.65 246.65 l S 252.20 210.76 m 259.83 210.76 l S 256.02 206.94 m 256.02 214.58 l S 254.93 218.05 m 262.57 218.05 l S 258.75 214.23 m 258.75 221.86 l S 216.55 108.54 m 224.18 108.54 l S 220.36 104.72 m 220.36 112.36 l S 183.53 108.40 m 191.17 108.40 l S 187.35 104.58 m 187.35 112.22 l S 201.31 85.70 m 208.95 85.70 l S 205.13 81.88 m 205.13 89.52 l S 216.86 102.81 m 224.50 102.81 l S 220.68 98.99 m 220.68 106.63 l S 145.51 227.88 m 153.14 227.88 l S 149.32 224.06 m 149.32 231.69 l S 193.15 92.43 m 200.78 92.43 l S 196.96 88.61 m 196.96 96.25 l S 194.96 90.40 m 202.60 90.40 l S 198.78 86.59 m 198.78 94.22 l S 215.10 104.20 m 222.73 104.20 l S 218.91 100.38 m 218.91 108.02 l S 200.74 85.02 m 208.37 85.02 l S 204.56 81.21 m 204.56 88.84 l S 186.91 103.43 m 194.54 103.43 l S 190.73 99.61 m 190.73 107.25 l S 164.69 156.14 m 172.33 156.14 l S 168.51 152.33 m 168.51 159.96 l S 194.87 89.70 m 202.50 89.70 l S 198.68 85.88 m 198.68 93.52 l S 247.66 205.15 m 255.30 205.15 l S 251.48 201.33 m 251.48 208.97 l S 217.11 110.65 m 224.74 110.65 l S 220.92 106.83 m 220.92 114.47 l S 201.32 85.04 m 208.95 85.04 l S 205.14 81.22 m 205.14 88.86 l S 147.25 218.05 m 154.89 218.05 l S 151.07 214.23 m 151.07 221.86 l S 207.23 92.99 m 214.87 92.99 l S 211.05 89.17 m 211.05 96.81 l S 231.82 141.57 m 239.45 141.57 l S 235.64 137.75 m 235.64 145.39 l S 101.59 267.66 m 109.22 267.66 l S 105.41 263.84 m 105.41 271.48 l S 202.58 86.77 m 210.21 86.77 l S 206.39 82.95 m 206.39 90.59 l S 249.75 190.21 m 257.38 190.21 l S 253.56 186.39 m 253.56 194.03 l S 174.53 130.30 m 182.16 130.30 l S 178.34 126.48 m 178.34 134.12 l S 186.14 105.80 m 193.78 105.80 l S 189.96 101.98 m 189.96 109.62 l S 272.37 267.66 m 280.00 267.66 l S 276.19 263.84 m 276.19 271.48 l S 189.74 95.67 m 197.37 95.67 l S 193.55 91.85 m 193.55 99.49 l S 179.98 115.63 m 187.61 115.63 l S 183.79 111.81 m 183.79 119.45 l S 209.73 95.20 m 217.37 95.20 l S 213.55 91.38 m 213.55 99.02 l S 198.28 86.13 m 205.91 86.13 l S 202.09 82.31 m 202.09 89.94 l S 188.06 100.27 m 195.70 100.27 l S 191.88 96.45 m 191.88 104.09 l S 186.57 103.38 m 194.21 103.38 l S 190.39 99.56 m 190.39 107.20 l S 179.03 117.92 m 186.66 117.92 l S 182.85 114.10 m 182.85 121.74 l S 177.52 123.88 m 185.16 123.88 l S 181.34 120.06 m 181.34 127.70 l S 227.94 133.29 m 235.57 133.29 l S 231.75 129.47 m 231.75 137.10 l S 181.25 114.81 m 188.89 114.81 l S 185.07 111.00 m 185.07 118.63 l S 221.74 121.91 m 229.38 121.91 l S 225.56 118.10 m 225.56 125.73 l S 215.62 106.62 m 223.25 106.62 l S 219.44 102.80 m 219.44 110.44 l S 247.60 202.94 m 255.23 202.94 l S 251.42 199.12 m 251.42 206.76 l S 204.94 89.31 m 212.58 89.31 l S 208.76 85.49 m 208.76 93.13 l S 209.60 95.14 m 217.24 95.14 l S 213.42 91.32 m 213.42 98.95 l S 231.84 147.13 m 239.48 147.13 l S 235.66 143.31 m 235.66 150.95 l S 210.43 98.68 m 218.06 98.68 l S 214.25 94.86 m 214.25 102.50 l S 152.92 179.25 m 160.56 179.25 l S 156.74 175.43 m 156.74 183.07 l S 187.50 100.70 m 195.14 100.70 l S 191.32 96.88 m 191.32 104.52 l S 200.80 85.28 m 208.44 85.28 l S 204.62 81.46 m 204.62 89.10 l S 199.03 85.45 m 206.66 85.45 l S 202.85 81.63 m 202.85 89.27 l S 126.31 267.66 m 133.95 267.66 l S 130.13 263.84 m 130.13 271.48 l S 229.65 138.83 m 237.29 138.83 l S 233.47 135.01 m 233.47 142.65 l S 229.24 140.73 m 236.88 140.73 l S 233.06 136.91 m 233.06 144.55 l S 170.97 142.61 m 178.60 142.61 l S 174.79 138.79 m 174.79 146.43 l S 172.97 136.73 m 180.61 136.73 l S 176.79 132.91 m 176.79 140.55 l S 203.24 87.69 m 210.87 87.69 l S 207.05 83.87 m 207.05 91.51 l S 188.94 99.96 m 196.58 99.96 l S 192.76 96.14 m 192.76 103.78 l S 210.26 97.22 m 217.90 97.22 l S 214.08 93.40 m 214.08 101.04 l S 196.31 88.40 m 203.95 88.40 l S 200.13 84.59 m 200.13 92.22 l S 207.50 93.09 m 215.13 93.09 l S 211.32 89.27 m 211.32 96.91 l S 157.30 196.81 m 164.93 196.81 l S 161.11 192.99 m 161.11 200.63 l S 162.01 168.39 m 169.65 168.39 l S 165.83 164.57 m 165.83 172.21 l S 199.68 84.82 m 207.31 84.82 l S 203.50 81.01 m 203.50 88.64 l S 125.98 267.66 m 133.62 267.66 l S 129.80 263.84 m 129.80 271.48 l S 153.50 181.37 m 161.14 181.37 l S 157.32 177.55 m 157.32 185.19 l S 190.61 95.83 m 198.25 95.83 l S 194.43 92.01 m 194.43 99.65 l S 189.55 98.00 m 197.19 98.00 l S 193.37 94.18 m 193.37 101.82 l S 185.25 103.13 m 192.89 103.13 l S 189.07 99.31 m 189.07 106.95 l S 173.67 135.07 m 181.31 135.07 l S 177.49 131.25 m 177.49 138.89 l S 216.56 109.15 m 224.19 109.15 l S 220.37 105.33 m 220.37 112.96 l S 131.93 267.66 m 139.57 267.66 l S 135.75 263.84 m 135.75 271.48 l S 153.88 200.52 m 161.51 200.52 l S 157.69 196.71 m 157.69 204.34 l S 175.53 128.09 m 183.17 128.09 l S 179.35 124.27 m 179.35 131.91 l S 137.56 242.83 m 145.20 242.83 l S 141.38 239.01 m 141.38 246.65 l S 245.37 195.07 m 253.01 195.07 l S 249.19 191.25 m 249.19 198.88 l S 222.93 126.26 m 230.56 126.26 l S 226.74 122.44 m 226.74 130.08 l S 138.37 222.51 m 146.00 222.51 l S 142.18 218.69 m 142.18 226.33 l S 187.01 101.91 m 194.64 101.91 l S 190.83 98.09 m 190.83 105.73 l S 76.13 267.66 m 83.77 267.66 l S 79.95 263.84 m 79.95 271.48 l S 107.03 267.66 m 114.67 267.66 l S 110.85 263.84 m 110.85 271.48 l S 241.10 173.74 m 248.74 173.74 l S 244.92 169.92 m 244.92 177.56 l S 211.89 101.09 m 219.53 101.09 l S 215.71 97.27 m 215.71 104.91 l S 195.51 90.13 m 203.15 90.13 l S 199.33 86.32 m 199.33 93.95 l S 173.48 131.49 m 181.12 131.49 l S 177.30 127.67 m 177.30 135.31 l S 267.79 267.66 m 275.42 267.66 l S 271.60 263.84 m 271.60 271.48 l S 174.67 129.05 m 182.30 129.05 l S 178.49 125.23 m 178.49 132.87 l S 146.54 227.88 m 154.17 227.88 l S 150.35 224.06 m 150.35 231.69 l S 209.56 97.07 m 217.20 97.07 l S 213.38 93.25 m 213.38 100.89 l S 105.09 267.66 m 112.73 267.66 l S 108.91 263.84 m 108.91 271.48 l S 190.67 95.98 m 198.30 95.98 l S 194.48 92.16 m 194.48 99.80 l S 147.60 200.52 m 155.24 200.52 l S 151.42 196.71 m 151.42 204.34 l S 216.79 111.75 m 224.42 111.75 l S 220.60 107.93 m 220.60 115.57 l S 72.03 267.66 m 79.67 267.66 l S 75.85 263.84 m 75.85 271.48 l S 168.72 145.73 m 176.36 145.73 l S 172.54 141.91 m 172.54 149.55 l S 237.41 165.10 m 245.04 165.10 l S 241.22 161.28 m 241.22 168.92 l S 148.22 227.88 m 155.85 227.88 l S 152.03 224.06 m 152.03 231.69 l S 195.40 90.07 m 203.04 90.07 l S 199.22 86.25 m 199.22 93.89 l S 202.06 86.63 m 209.70 86.63 l S 205.88 82.81 m 205.88 90.44 l S 227.29 138.61 m 234.93 138.61 l S 231.11 134.79 m 231.11 142.43 l S 180.86 108.91 m 188.49 108.91 l S 184.67 105.09 m 184.67 112.73 l S 119.08 267.66 m 126.72 267.66 l S 122.90 263.84 m 122.90 271.48 l S 143.85 242.83 m 151.48 242.83 l S 147.66 239.01 m 147.66 246.65 l S 201.84 86.13 m 209.47 86.13 l S 205.65 82.31 m 205.65 89.95 l S 232.90 151.43 m 240.53 151.43 l S 236.72 147.61 m 236.72 155.25 l S 218.50 108.82 m 226.13 108.82 l S 222.32 105.00 m 222.32 112.64 l S 150.52 210.76 m 158.16 210.76 l S 154.34 206.94 m 154.34 214.58 l S 207.71 94.84 m 215.35 94.84 l S 211.53 91.02 m 211.53 98.66 l S 242.80 187.47 m 250.44 187.47 l S 246.62 183.65 m 246.62 191.29 l S 141.50 242.83 m 149.14 242.83 l S 145.32 239.01 m 145.32 246.65 l S 180.05 117.52 m 187.69 117.52 l S 183.87 113.71 m 183.87 121.34 l S 291.60 267.66 m 299.24 267.66 l S 295.42 263.84 m 295.42 271.48 l S 213.76 103.06 m 221.40 103.06 l S 217.58 99.24 m 217.58 106.88 l S 197.58 86.77 m 205.22 86.77 l S 201.40 82.95 m 201.40 90.59 l S 93.57 267.66 m 101.21 267.66 l S 97.39 263.84 m 97.39 271.48 l S 233.94 150.13 m 241.57 150.13 l S 237.76 146.31 m 237.76 153.95 l S 202.20 86.57 m 209.84 86.57 l S 206.02 82.75 m 206.02 90.39 l S 191.06 96.51 m 198.70 96.51 l S 194.88 92.69 m 194.88 100.33 l S 155.81 188.89 m 163.45 188.89 l S 159.63 185.07 m 159.63 192.71 l S 186.43 103.61 m 194.07 103.61 l S 190.25 99.79 m 190.25 107.43 l S 231.20 138.39 m 238.84 138.39 l S 235.02 134.57 m 235.02 142.21 l S 198.60 85.64 m 206.23 85.64 l S 202.41 81.82 m 202.41 89.46 l S 98.24 267.66 m 105.87 267.66 l S 102.06 263.84 m 102.06 271.48 l S 207.53 94.29 m 215.16 94.29 l S 211.34 90.47 m 211.34 98.11 l S 192.68 93.15 m 200.31 93.15 l S 196.50 89.34 m 196.50 96.97 l S 223.74 128.94 m 231.38 128.94 l S 227.56 125.12 m 227.56 132.76 l S 253.85 222.51 m 261.49 222.51 l S 257.67 218.69 m 257.67 226.33 l S 211.11 99.65 m 218.74 99.65 l S 214.93 95.83 m 214.93 103.47 l S 200.61 84.87 m 208.25 84.87 l S 204.43 81.05 m 204.43 88.69 l S 157.71 182.26 m 165.35 182.26 l S 161.53 178.44 m 161.53 186.08 l S 185.66 104.33 m 193.30 104.33 l S 189.48 100.51 m 189.48 108.15 l S 212.29 100.13 m 219.93 100.13 l S 216.11 96.31 m 216.11 103.94 l S 248.30 184.63 m 255.93 184.63 l S 252.12 180.81 m 252.12 188.44 l S 235.65 147.76 m 243.29 147.76 l S 239.47 143.94 m 239.47 151.58 l S 155.57 196.81 m 163.20 196.81 l S 159.38 192.99 m 159.38 200.63 l S 234.54 165.10 m 242.18 165.10 l S 238.36 161.28 m 238.36 168.92 l S 225.68 134.45 m 233.31 134.45 l S 229.49 130.63 m 229.49 138.27 l S 243.99 195.07 m 251.63 195.07 l S 247.81 191.25 m 247.81 198.88 l S 220.65 115.21 m 228.29 115.21 l S 224.47 111.39 m 224.47 119.03 l S 132.07 267.66 m 139.70 267.66 l S 135.88 263.84 m 135.88 271.48 l S 133.34 234.47 m 140.98 234.47 l S 137.16 230.65 m 137.16 238.29 l S 209.15 95.85 m 216.79 95.85 l S 212.97 92.03 m 212.97 99.67 l S 339.83 267.66 m 347.46 267.66 l S 343.64 263.84 m 343.64 271.48 l S 200.36 84.67 m 208.00 84.67 l S 204.18 80.85 m 204.18 88.49 l S 226.23 131.75 m 233.87 131.75 l S 230.05 127.93 m 230.05 135.57 l S 232.25 153.16 m 239.89 153.16 l S 236.07 149.35 m 236.07 156.98 l S 173.91 131.75 m 181.55 131.75 l S 177.73 127.93 m 177.73 135.57 l S 178.14 121.33 m 185.78 121.33 l S 181.96 117.51 m 181.96 125.15 l S 166.47 153.43 m 174.11 153.43 l S 170.29 149.61 m 170.29 157.25 l S 280.20 267.66 m 287.84 267.66 l S 284.02 263.84 m 284.02 271.48 l S 242.48 172.95 m 250.11 172.95 l S 246.30 169.14 m 246.30 176.77 l S 240.18 177.23 m 247.82 177.23 l S 244.00 173.41 m 244.00 181.05 l S 175.36 129.86 m 183.00 129.86 l S 179.18 126.05 m 179.18 133.68 l S 152.81 196.81 m 160.44 196.81 l S 156.62 192.99 m 156.62 200.63 l S 191.19 95.98 m 198.82 95.98 l S 195.00 92.16 m 195.00 99.80 l S 242.52 183.29 m 250.16 183.29 l S 246.34 179.48 m 246.34 187.11 l S 246.17 183.29 m 253.81 183.29 l S 249.99 179.48 m 249.99 187.11 l S 245.81 191.78 m 253.45 191.78 l S 249.63 187.96 m 249.63 195.60 l S 246.49 190.21 m 254.12 190.21 l S 250.30 186.39 m 250.30 194.03 l S 239.35 168.39 m 246.99 168.39 l S 243.17 164.57 m 243.17 172.21 l S 216.73 107.99 m 224.37 107.99 l S 220.55 104.17 m 220.55 111.81 l S 129.71 267.66 m 137.34 267.66 l S 133.52 263.84 m 133.52 271.48 l S 304.91 267.66 m 312.54 267.66 l S 308.72 263.84 m 308.72 271.48 l S 202.20 85.90 m 209.83 85.90 l S 206.01 82.09 m 206.01 89.72 l S 160.20 153.16 m 167.84 153.16 l S 164.02 149.35 m 164.02 156.98 l S 260.76 242.83 m 268.39 242.83 l S 264.58 239.01 m 264.58 246.65 l S 193.84 92.40 m 201.48 92.40 l S 197.66 88.58 m 197.66 96.22 l S 210.42 98.58 m 218.06 98.58 l S 214.24 94.76 m 214.24 102.40 l S 280.85 267.66 m 288.48 267.66 l S 284.66 263.84 m 284.66 271.48 l S 152.70 193.36 m 160.34 193.36 l S 156.52 189.54 m 156.52 197.18 l S 206.06 91.43 m 213.70 91.43 l S 209.88 87.61 m 209.88 95.25 l S 163.57 153.16 m 171.21 153.16 l S 167.39 149.35 m 167.39 156.98 l S 203.63 88.02 m 211.26 88.02 l S 207.45 84.20 m 207.45 91.83 l S 125.47 253.26 m 133.11 253.26 l S 129.29 249.44 m 129.29 257.08 l S 209.01 96.03 m 216.65 96.03 l S 212.83 92.21 m 212.83 99.85 l S 177.35 125.14 m 184.98 125.14 l S 181.16 121.32 m 181.16 128.96 l S 154.94 193.36 m 162.58 193.36 l S 158.76 189.54 m 158.76 197.18 l S 112.69 267.66 m 120.33 267.66 l S 116.51 263.84 m 116.51 271.48 l S 221.41 121.91 m 229.05 121.91 l S 225.23 118.10 m 225.23 125.73 l S 301.00 267.66 m 308.63 267.66 l S 304.82 263.84 m 304.82 271.48 l S 174.57 131.02 m 182.21 131.02 l S 178.39 127.20 m 178.39 134.83 l S 204.60 89.57 m 212.24 89.57 l S 208.42 85.76 m 208.42 93.39 l S 207.68 94.33 m 215.32 94.33 l S 211.50 90.51 m 211.50 98.15 l S 126.30 267.66 m 133.94 267.66 l S 130.12 263.84 m 130.12 271.48 l S 318.90 267.66 m 326.53 267.66 l S 322.72 263.84 m 322.72 271.48 l S 257.82 222.51 m 265.46 222.51 l S 261.64 218.69 m 261.64 226.33 l S 198.62 86.13 m 206.26 86.13 l S 202.44 82.31 m 202.44 89.94 l S 124.22 253.26 m 131.85 253.26 l S 128.03 249.44 m 128.03 257.08 l S 216.31 107.83 m 223.95 107.83 l S 220.13 104.01 m 220.13 111.65 l S 183.04 109.70 m 190.68 109.70 l S 186.86 105.88 m 186.86 113.52 l S 218.12 113.67 m 225.76 113.67 l S 221.94 109.86 m 221.94 117.49 l S 234.89 160.39 m 242.52 160.39 l S 238.70 156.57 m 238.70 164.21 l S 225.11 126.56 m 232.75 126.56 l S 228.93 122.74 m 228.93 130.37 l S 174.73 124.17 m 182.36 124.17 l S 178.55 120.35 m 178.55 127.99 l S 224.36 118.67 m 231.99 118.67 l S 228.18 114.85 m 228.18 122.48 l S 218.66 113.36 m 226.30 113.36 l S 222.48 109.54 m 222.48 117.17 l S 206.34 92.22 m 213.98 92.22 l S 210.16 88.41 m 210.16 96.04 l S 250.60 202.94 m 258.24 202.94 l S 254.42 199.12 m 254.42 206.76 l S 233.46 153.16 m 241.10 153.16 l S 237.28 149.35 m 237.28 156.98 l S 220.67 118.90 m 228.31 118.90 l S 224.49 115.08 m 224.49 122.72 l S 236.13 142.11 m 243.76 142.11 l S 239.95 138.29 m 239.95 145.93 l S 184.18 108.77 m 191.82 108.77 l S 188.00 104.95 m 188.00 112.59 l S 200.07 84.53 m 207.70 84.53 l S 203.89 80.71 m 203.89 88.35 l S 243.46 169.68 m 251.10 169.68 l S 247.28 165.86 m 247.28 173.49 l S 147.43 195.07 m 155.06 195.07 l S 151.25 191.25 m 151.25 198.88 l S 371.21 267.66 m 378.85 267.66 l S 375.03 263.84 m 375.03 271.48 l S 267.12 253.26 m 274.75 253.26 l S 270.94 249.44 m 270.94 257.08 l S 255.34 227.88 m 262.98 227.88 l S 259.16 224.06 m 259.16 231.69 l S 203.12 87.76 m 210.76 87.76 l S 206.94 83.95 m 206.94 91.58 l S 155.03 158.84 m 162.67 158.84 l S 158.85 155.02 m 158.85 162.66 l S 185.22 98.90 m 192.86 98.90 l S 189.04 95.08 m 189.04 102.72 l S 123.59 267.66 m 131.22 267.66 l S 127.40 263.84 m 127.40 271.48 l S 215.23 106.51 m 222.87 106.51 l S 219.05 102.69 m 219.05 110.33 l S 150.80 196.81 m 158.44 196.81 l S 154.62 192.99 m 154.62 200.63 l S 94.85 267.66 m 102.49 267.66 l S 98.67 263.84 m 98.67 271.48 l S 92.07 267.66 m 99.71 267.66 l S 95.89 263.84 m 95.89 271.48 l S 185.45 104.59 m 193.09 104.59 l S 189.27 100.77 m 189.27 108.41 l S 261.90 234.47 m 269.53 234.47 l S 265.72 230.65 m 265.72 238.29 l S 141.47 222.51 m 149.11 222.51 l S 145.29 218.69 m 145.29 226.33 l S 200.06 84.53 m 207.70 84.53 l S 203.88 80.71 m 203.88 88.35 l S 216.00 108.40 m 223.64 108.40 l S 219.82 104.58 m 219.82 112.22 l S 242.20 172.95 m 249.84 172.95 l S 246.02 169.14 m 246.02 176.77 l S 132.53 242.83 m 140.17 242.83 l S 136.35 239.01 m 136.35 246.65 l S 196.82 88.00 m 204.45 88.00 l S 200.63 84.18 m 200.63 91.81 l S 273.90 267.66 m 281.53 267.66 l S 277.71 263.84 m 277.71 271.48 l S 109.23 267.66 m 116.87 267.66 l S 113.05 263.84 m 113.05 271.48 l S 197.96 86.57 m 205.59 86.57 l S 201.78 82.75 m 201.78 90.39 l S 187.51 101.53 m 195.14 101.53 l S 191.33 97.71 m 191.33 105.35 l S 152.61 205.15 m 160.25 205.15 l S 156.43 201.33 m 156.43 208.97 l S 262.52 267.66 m 270.16 267.66 l S 266.34 263.84 m 266.34 271.48 l S 220.25 117.59 m 227.88 117.59 l S 224.07 113.77 m 224.07 121.41 l S 220.02 113.36 m 227.66 113.36 l S 223.84 109.54 m 223.84 117.17 l S 173.54 134.19 m 181.18 134.19 l S 177.36 130.37 m 177.36 138.01 l S 241.91 181.37 m 249.55 181.37 l S 245.73 177.55 m 245.73 185.19 l S 148.90 205.15 m 156.54 205.15 l S 152.72 201.33 m 152.72 208.97 l S 202.29 86.84 m 209.93 86.84 l S 206.11 83.03 m 206.11 90.66 l S 280.77 253.26 m 288.41 253.26 l S 284.59 249.44 m 284.59 257.08 l S 247.17 191.78 m 254.81 191.78 l S 250.99 187.96 m 250.99 195.60 l S 121.39 242.83 m 129.03 242.83 l S 125.21 239.01 m 125.21 246.65 l S 204.79 89.10 m 212.43 89.10 l S 208.61 85.28 m 208.61 92.92 l S 150.26 202.94 m 157.90 202.94 l S 154.08 199.12 m 154.08 206.76 l S 233.88 151.16 m 241.52 151.16 l S 237.70 147.34 m 237.70 154.98 l S 105.77 267.66 m 113.41 267.66 l S 109.59 263.84 m 109.59 271.48 l S 174.92 126.96 m 182.56 126.96 l S 178.74 123.14 m 178.74 130.78 l S 217.61 110.73 m 225.25 110.73 l S 221.43 106.91 m 221.43 114.54 l S 247.90 195.07 m 255.54 195.07 l S 251.72 191.25 m 251.72 198.88 l S 233.11 153.16 m 240.75 153.16 l S 236.93 149.35 m 236.93 156.98 l S 173.41 131.59 m 181.04 131.59 l S 177.22 127.78 m 177.22 135.41 l S 217.59 112.33 m 225.22 112.33 l S 221.41 108.52 m 221.41 116.15 l S 222.43 124.27 m 230.06 124.27 l S 226.25 120.45 m 226.25 128.09 l S 212.46 101.14 m 220.10 101.14 l S 216.28 97.32 m 216.28 104.96 l S 182.07 111.28 m 189.71 111.28 l S 185.89 107.46 m 185.89 115.10 l S 214.52 103.94 m 222.16 103.94 l S 218.34 100.12 m 218.34 107.76 l S 141.13 253.26 m 148.77 253.26 l S 144.95 249.44 m 144.95 257.08 l S 204.99 89.70 m 212.63 89.70 l S 208.81 85.88 m 208.81 93.51 l S 193.36 92.43 m 201.00 92.43 l S 197.18 88.61 m 197.18 96.25 l S 222.15 124.57 m 229.78 124.57 l S 225.96 120.75 m 225.96 128.39 l S 211.41 100.40 m 219.05 100.40 l S 215.23 96.58 m 215.23 104.22 l S 179.55 119.53 m 187.18 119.53 l S 183.36 115.71 m 183.36 123.35 l S 226.97 130.50 m 234.61 130.50 l S 230.79 126.68 m 230.79 134.32 l S 219.15 115.12 m 226.78 115.12 l S 222.97 111.31 m 222.97 118.94 l S 145.32 222.51 m 152.95 222.51 l S 149.14 218.69 m 149.14 226.33 l S 160.73 182.26 m 168.36 182.26 l S 164.55 178.44 m 164.55 186.08 l S 217.68 110.94 m 225.31 110.94 l S 221.50 107.12 m 221.50 114.76 l S 278.39 253.26 m 286.02 253.26 l S 282.20 249.44 m 282.20 257.08 l S 162.02 173.74 m 169.65 173.74 l S 165.83 169.92 m 165.83 177.56 l S 156.31 184.63 m 163.95 184.63 l S 160.13 180.81 m 160.13 188.44 l S 218.98 117.09 m 226.61 117.09 l S 222.79 113.27 m 222.79 120.91 l S 150.71 202.94 m 158.35 202.94 l S 154.53 199.12 m 154.53 206.76 l S 137.19 267.66 m 144.83 267.66 l S 141.01 263.84 m 141.01 271.48 l S 271.47 267.66 m 279.10 267.66 l S 275.28 263.84 m 275.28 271.48 l S 205.74 90.47 m 213.37 90.47 l S 209.56 86.65 m 209.56 94.29 l S 340.70 267.66 m 348.33 267.66 l S 344.51 263.84 m 344.51 271.48 l S 211.60 98.90 m 219.24 98.90 l S 215.42 95.08 m 215.42 102.72 l S 186.57 101.79 m 194.20 101.79 l S 190.39 97.98 m 190.39 105.61 l S 225.58 130.82 m 233.22 130.82 l S 229.40 127.00 m 229.40 134.63 l S 230.64 147.76 m 238.28 147.76 l S 234.46 143.94 m 234.46 151.58 l S 183.38 109.15 m 191.02 109.15 l S 187.20 105.33 m 187.20 112.96 l S 214.25 101.97 m 221.88 101.97 l S 218.06 98.15 m 218.06 105.79 l S 184.62 106.75 m 192.25 106.75 l S 188.44 102.93 m 188.44 110.56 l S 270.09 242.83 m 277.72 242.83 l S 273.90 239.01 m 273.90 246.65 l S 232.70 155.41 m 240.34 155.41 l S 236.52 151.59 m 236.52 159.23 l S 160.79 174.56 m 168.42 174.56 l S 164.61 170.74 m 164.61 178.38 l S 219.17 114.81 m 226.81 114.81 l S 222.99 111.00 m 222.99 118.63 l S 216.50 110.38 m 224.14 110.38 l S 220.32 106.56 m 220.32 114.20 l S 166.95 143.39 m 174.58 143.39 l S 170.76 139.58 m 170.76 147.21 l S 269.57 242.83 m 277.21 242.83 l S 273.39 239.01 m 273.39 246.65 l S 189.67 98.90 m 197.31 98.90 l S 193.49 95.08 m 193.49 102.72 l S 164.94 158.33 m 172.58 158.33 l S 168.76 154.51 m 168.76 162.14 l S 202.60 87.02 m 210.24 87.02 l S 206.42 83.20 m 206.42 90.84 l S 236.82 157.96 m 244.46 157.96 l S 240.64 154.14 m 240.64 161.78 l S 192.42 93.52 m 200.06 93.52 l S 196.24 89.70 m 196.24 97.34 l S 201.90 85.85 m 209.54 85.85 l S 205.72 82.03 m 205.72 89.67 l S 200.34 84.69 m 207.97 84.69 l S 204.16 80.87 m 204.16 88.50 l S 181.08 115.83 m 188.72 115.83 l S 184.90 112.01 m 184.90 119.65 l S 219.24 116.44 m 226.88 116.44 l S 223.06 112.62 m 223.06 120.26 l S 185.02 106.75 m 192.66 106.75 l S 188.84 102.93 m 188.84 110.56 l S 244.56 179.25 m 252.20 179.25 l S 248.38 175.43 m 248.38 183.07 l S 95.99 267.66 m 103.62 267.66 l S 99.81 263.84 m 99.81 271.48 l S 205.77 91.53 m 213.40 91.53 l S 209.58 87.71 m 209.58 95.35 l S 173.47 132.71 m 181.11 132.71 l S 177.29 128.89 m 177.29 136.52 l S 202.71 86.91 m 210.35 86.91 l S 206.53 83.09 m 206.53 90.73 l S 215.30 104.14 m 222.93 104.14 l S 219.12 100.32 m 219.12 107.96 l S 234.68 148.69 m 242.31 148.69 l S 238.50 144.88 m 238.50 152.51 l S 226.65 123.00 m 234.28 123.00 l S 230.47 119.18 m 230.47 126.82 l S 205.82 90.77 m 213.46 90.77 l S 209.64 86.95 m 209.64 94.59 l S 230.09 138.39 m 237.73 138.39 l S 233.91 134.57 m 233.91 142.21 l S 211.32 98.78 m 218.96 98.78 l S 215.14 94.96 m 215.14 102.60 l S 302.27 267.66 m 309.91 267.66 l S 306.09 263.84 m 306.09 271.48 l S 218.82 114.30 m 226.45 114.30 l S 222.63 110.48 m 222.63 118.12 l S 163.74 156.58 m 171.38 156.58 l S 167.56 152.76 m 167.56 160.39 l S 191.26 95.37 m 198.90 95.37 l S 195.08 91.56 m 195.08 99.19 l S 167.17 152.74 m 174.81 152.74 l S 170.99 148.92 m 170.99 156.55 l S 318.61 267.66 m 326.24 267.66 l S 322.42 263.84 m 322.42 271.48 l S 277.66 267.66 m 285.30 267.66 l S 281.48 263.84 m 281.48 271.48 l S 235.64 155.86 m 243.28 155.86 l S 239.46 152.04 m 239.46 159.68 l S 153.27 227.88 m 160.91 227.88 l S 157.09 224.06 m 157.09 231.69 l S 205.60 91.43 m 213.24 91.43 l S 209.42 87.61 m 209.42 95.25 l S 260.73 253.26 m 268.37 253.26 l S 264.55 249.44 m 264.55 257.08 l S 190.49 97.73 m 198.13 97.73 l S 194.31 93.91 m 194.31 101.55 l S 206.13 92.09 m 213.77 92.09 l S 209.95 88.27 m 209.95 95.91 l S 236.47 156.58 m 244.11 156.58 l S 240.29 152.76 m 240.29 160.39 l S 202.50 86.87 m 210.14 86.87 l S 206.32 83.06 m 206.32 90.69 l S 174.77 125.01 m 182.41 125.01 l S 178.59 121.19 m 178.59 128.83 l S 252.94 207.47 m 260.58 207.47 l S 256.76 203.65 m 256.76 211.28 l S 180.70 113.88 m 188.33 113.88 l S 184.51 110.06 m 184.51 117.70 l S 244.46 190.21 m 252.09 190.21 l S 248.28 186.39 m 248.28 194.03 l S 198.00 86.58 m 205.64 86.58 l S 201.82 82.76 m 201.82 90.40 l S 149.25 218.05 m 156.89 218.05 l S 153.07 214.23 m 153.07 221.86 l S 202.83 87.15 m 210.46 87.15 l S 206.64 83.33 m 206.64 90.97 l S 183.23 108.28 m 190.87 108.28 l S 187.05 104.46 m 187.05 112.10 l S 220.35 116.07 m 227.99 116.07 l S 224.17 112.26 m 224.17 119.89 l S 202.41 86.49 m 210.05 86.49 l S 206.23 82.67 m 206.23 90.31 l S 225.82 132.25 m 233.46 132.25 l S 229.64 128.43 m 229.64 136.07 l S 184.51 106.88 m 192.15 106.88 l S 188.33 103.06 m 188.33 110.70 l S 201.23 85.58 m 208.87 85.58 l S 205.05 81.76 m 205.05 89.40 l S 184.99 106.37 m 192.63 106.37 l S 188.81 102.55 m 188.81 110.19 l S 204.89 90.07 m 212.52 90.07 l S 208.70 86.25 m 208.70 93.89 l S 167.97 153.87 m 175.61 153.87 l S 171.79 150.05 m 171.79 157.69 l S 127.17 253.26 m 134.80 253.26 l S 130.98 249.44 m 130.98 257.08 l S 254.02 213.95 m 261.65 213.95 l S 257.83 210.13 m 257.83 217.77 l S 153.63 207.47 m 161.27 207.47 l S 157.45 203.65 m 157.45 211.28 l S 151.69 202.94 m 159.33 202.94 l S 155.51 199.12 m 155.51 206.76 l S 160.44 183.29 m 168.08 183.29 l S 164.26 179.48 m 164.26 187.11 l S 297.24 267.66 m 304.88 267.66 l S 301.06 263.84 m 301.06 271.48 l S 214.97 106.62 m 222.60 106.62 l S 218.78 102.80 m 218.78 110.44 l S 160.03 170.27 m 167.66 170.27 l S 163.85 166.45 m 163.85 174.09 l S 126.59 267.66 m 134.23 267.66 l S 130.41 263.84 m 130.41 271.48 l S 231.92 148.03 m 239.55 148.03 l S 235.74 144.22 m 235.74 151.85 l S 196.03 88.48 m 203.67 88.48 l S 199.85 84.66 m 199.85 92.30 l S 149.35 205.15 m 156.98 205.15 l S 153.17 201.33 m 153.17 208.97 l S 204.65 90.34 m 212.29 90.34 l S 208.47 86.53 m 208.47 94.16 l S 212.10 101.29 m 219.74 101.29 l S 215.92 97.47 m 215.92 105.11 l S 145.05 213.95 m 152.68 213.95 l S 148.86 210.13 m 148.86 217.77 l S 167.40 157.61 m 175.03 157.61 l S 171.21 153.79 m 171.21 161.43 l S 186.69 103.06 m 194.33 103.06 l S 190.51 99.24 m 190.51 106.88 l S 218.31 113.76 m 225.94 113.76 l S 222.12 109.95 m 222.12 117.58 l S 255.86 222.51 m 263.50 222.51 l S 259.68 218.69 m 259.68 226.33 l S 204.99 90.13 m 212.63 90.13 l S 208.81 86.32 m 208.81 93.95 l S 205.74 90.59 m 213.38 90.59 l S 209.56 86.77 m 209.56 94.40 l S 94.05 267.66 m 101.69 267.66 l S 97.87 263.84 m 97.87 271.48 l S 159.87 172.11 m 167.51 172.11 l S 163.69 168.29 m 163.69 175.93 l S 219.22 117.09 m 226.86 117.09 l S 223.04 113.27 m 223.04 120.91 l S 217.52 112.33 m 225.16 112.33 l S 221.34 108.52 m 221.34 116.15 l S 276.89 267.66 m 284.52 267.66 l S 280.71 263.84 m 280.71 271.48 l S 196.70 87.64 m 204.34 87.64 l S 200.52 83.82 m 200.52 91.46 l S 163.02 159.34 m 170.66 159.34 l S 166.84 155.52 m 166.84 163.15 l S 198.42 86.11 m 206.06 86.11 l S 202.24 82.29 m 202.24 89.93 l S 246.15 186.17 m 253.79 186.17 l S 249.97 182.36 m 249.97 189.99 l S 208.46 94.57 m 216.10 94.57 l S 212.28 90.76 m 212.28 98.39 l S 223.10 122.79 m 230.74 122.79 l S 226.92 118.97 m 226.92 126.61 l S 261.41 253.26 m 269.05 253.26 l S 265.23 249.44 m 265.23 257.08 l S 225.48 127.96 m 233.12 127.96 l S 229.30 124.15 m 229.30 131.78 l S 146.76 253.26 m 154.40 253.26 l S 150.58 249.44 m 150.58 257.08 l S 272.61 253.26 m 280.25 253.26 l S 276.43 249.44 m 276.43 257.08 l S 206.76 93.06 m 214.40 93.06 l S 210.58 89.24 m 210.58 96.88 l S 232.92 153.43 m 240.56 153.43 l S 236.74 149.61 m 236.74 157.25 l S 225.63 131.16 m 233.27 131.16 l S 229.45 127.35 m 229.45 134.98 l S 191.29 94.78 m 198.93 94.78 l S 195.11 90.96 m 195.11 98.59 l S 174.36 132.25 m 182.00 132.25 l S 178.18 128.43 m 178.18 136.07 l S 192.59 94.29 m 200.23 94.29 l S 196.41 90.47 m 196.41 98.11 l S 280.12 267.66 m 287.76 267.66 l S 283.94 263.84 m 283.94 271.48 l S 93.38 267.66 m 101.02 267.66 l S 97.20 263.84 m 97.20 271.48 l S 170.69 141.37 m 178.33 141.37 l S 174.51 137.55 m 174.51 145.19 l S 235.62 153.87 m 243.25 153.87 l S 239.44 150.05 m 239.44 157.69 l S 286.63 267.66 m 294.27 267.66 l S 290.45 263.84 m 290.45 271.48 l S 246.87 210.76 m 254.50 210.76 l S 250.69 206.94 m 250.69 214.58 l S 135.84 242.83 m 143.48 242.83 l S 139.66 239.01 m 139.66 246.65 l S 197.28 87.02 m 204.91 87.02 l S 201.10 83.20 m 201.10 90.84 l S 184.52 105.86 m 192.16 105.86 l S 188.34 102.04 m 188.34 109.68 l S 129.40 267.66 m 137.04 267.66 l S 133.22 263.84 m 133.22 271.48 l S 176.92 123.88 m 184.56 123.88 l S 180.74 120.06 m 180.74 127.70 l S 148.57 242.83 m 156.20 242.83 l S 152.38 239.01 m 152.38 246.65 l S 189.96 98.54 m 197.60 98.54 l S 193.78 94.72 m 193.78 102.36 l S 165.70 157.96 m 173.34 157.96 l S 169.52 154.14 m 169.52 161.78 l S 124.32 253.26 m 131.96 253.26 l S 128.14 249.44 m 128.14 257.08 l S 164.57 157.96 m 172.21 157.96 l S 168.39 154.14 m 168.39 161.78 l S 160.34 171.18 m 167.98 171.18 l S 164.16 167.36 m 164.16 175.00 l S 198.71 85.84 m 206.35 85.84 l S 202.53 82.02 m 202.53 89.66 l S 224.09 127.08 m 231.73 127.08 l S 227.91 123.26 m 227.91 130.89 l S 224.50 125.35 m 232.14 125.35 l S 228.32 121.54 m 228.32 129.17 l S 142.54 227.88 m 150.17 227.88 l S 146.35 224.06 m 146.35 231.69 l S 191.69 93.93 m 199.33 93.93 l S 195.51 90.11 m 195.51 97.75 l S 166.04 154.22 m 173.67 154.22 l S 169.86 150.40 m 169.86 158.04 l S 197.72 86.77 m 205.35 86.77 l S 201.54 82.95 m 201.54 90.59 l S 202.84 87.33 m 210.48 87.33 l S 206.66 83.51 m 206.66 91.14 l S 90.53 267.66 m 98.17 267.66 l S 94.35 263.84 m 94.35 271.48 l S 213.61 103.38 m 221.24 103.38 l S 217.42 99.56 m 217.42 107.20 l S 209.81 96.65 m 217.45 96.65 l S 213.63 92.83 m 213.63 100.47 l S 181.08 111.36 m 188.71 111.36 l S 184.90 107.54 m 184.90 115.18 l S 263.66 218.05 m 271.30 218.05 l S 267.48 214.23 m 267.48 221.86 l S 202.87 86.78 m 210.50 86.78 l S 206.69 82.96 m 206.69 90.60 l S 222.07 122.79 m 229.70 122.79 l S 225.89 118.97 m 225.89 126.61 l S 76.09 267.66 m 83.72 267.66 l S 79.91 263.84 m 79.91 271.48 l S 265.51 234.47 m 273.15 234.47 l S 269.33 230.65 m 269.33 238.29 l S 195.64 89.01 m 203.27 89.01 l S 199.46 85.19 m 199.46 92.83 l S 171.71 137.66 m 179.34 137.66 l S 175.53 133.85 m 175.53 141.48 l S 221.36 120.07 m 228.99 120.07 l S 225.17 116.25 m 225.17 123.89 l S 89.44 267.66 m 97.08 267.66 l S 93.26 263.84 m 93.26 271.48 l S 210.92 98.94 m 218.55 98.94 l S 214.73 95.13 m 214.73 102.76 l S 246.97 188.89 m 254.60 188.89 l S 250.78 185.07 m 250.78 192.71 l S 105.88 267.66 m 113.51 267.66 l S 109.69 263.84 m 109.69 271.48 l S 190.89 95.23 m 198.53 95.23 l S 194.71 91.41 m 194.71 99.05 l S 153.82 181.37 m 161.46 181.37 l S 157.64 177.55 m 157.64 185.19 l S 278.62 267.66 m 286.26 267.66 l S 282.44 263.84 m 282.44 271.48 l S 193.31 92.13 m 200.94 92.13 l S 197.13 88.31 m 197.13 95.95 l S 209.29 91.76 m 216.92 91.76 l S 213.10 87.94 m 213.10 95.58 l S 223.58 127.24 m 231.21 127.24 l S 227.39 123.42 m 227.39 131.06 l S 207.32 93.03 m 214.96 93.03 l S 211.14 89.21 m 211.14 96.85 l S 176.03 116.44 m 183.67 116.44 l S 179.85 112.62 m 179.85 120.26 l S 203.77 89.00 m 211.41 89.00 l S 207.59 85.18 m 207.59 92.82 l S 181.11 115.05 m 188.75 115.05 l S 184.93 111.23 m 184.93 118.87 l S 210.78 98.07 m 218.41 98.07 l S 214.59 94.26 m 214.59 101.89 l S 152.53 196.81 m 160.16 196.81 l S 156.35 192.99 m 156.35 200.63 l S 157.34 193.36 m 164.98 193.36 l S 161.16 189.54 m 161.16 197.18 l S 180.47 116.15 m 188.10 116.15 l S 184.29 112.34 m 184.29 119.97 l S 92.61 267.66 m 100.25 267.66 l S 96.43 263.84 m 96.43 271.48 l S 154.60 200.52 m 162.23 200.52 l S 158.42 196.71 m 158.42 204.34 l S 269.13 253.26 m 276.77 253.26 l S 272.95 249.44 m 272.95 257.08 l S 230.77 145.00 m 238.40 145.00 l S 234.59 141.18 m 234.59 148.82 l S 263.57 267.66 m 271.21 267.66 l S 267.39 263.84 m 267.39 271.48 l S 232.85 148.69 m 240.49 148.69 l S 236.67 144.88 m 236.67 152.51 l S 290.81 267.66 m 298.45 267.66 l S 294.63 263.84 m 294.63 271.48 l S 198.54 86.13 m 206.18 86.13 l S 202.36 82.31 m 202.36 89.94 l S 230.52 141.57 m 238.15 141.57 l S 234.33 137.75 m 234.33 145.39 l S 294.16 267.66 m 301.80 267.66 l S 297.98 263.84 m 297.98 271.48 l S 124.49 267.66 m 132.12 267.66 l S 128.31 263.84 m 128.31 271.48 l S 209.70 97.90 m 217.34 97.90 l S 213.52 94.08 m 213.52 101.71 l S 183.38 108.91 m 191.02 108.91 l S 187.20 105.09 m 187.20 112.73 l S 189.05 99.13 m 196.69 99.13 l S 192.87 95.31 m 192.87 102.94 l S 223.80 129.16 m 231.43 129.16 l S 227.61 125.34 m 227.61 132.98 l S 160.22 184.63 m 167.86 184.63 l S 164.04 180.81 m 164.04 188.44 l S 217.89 111.40 m 225.52 111.40 l S 221.70 107.58 m 221.70 115.22 l S 226.64 124.52 m 234.28 124.52 l S 230.46 120.70 m 230.46 128.34 l S 147.99 207.47 m 155.62 207.47 l S 151.81 203.65 m 151.81 211.28 l S 257.57 253.26 m 265.21 253.26 l S 261.39 249.44 m 261.39 257.08 l S 188.37 99.60 m 196.01 99.60 l S 192.19 95.78 m 192.19 103.42 l S 114.25 267.66 m 121.88 267.66 l S 118.06 263.84 m 118.06 271.48 l S 198.84 85.60 m 206.48 85.60 l S 202.66 81.78 m 202.66 89.42 l S 177.14 124.52 m 184.78 124.52 l S 180.96 120.70 m 180.96 128.34 l S 201.57 85.85 m 209.21 85.85 l S 205.39 82.03 m 205.39 89.67 l S 245.47 191.78 m 253.11 191.78 l S 249.29 187.96 m 249.29 195.60 l S 88.52 267.66 m 96.16 267.66 l S 92.34 263.84 m 92.34 271.48 l S 203.26 87.59 m 210.89 87.59 l S 207.08 83.77 m 207.08 91.41 l S 207.09 93.96 m 214.73 93.96 l S 210.91 90.14 m 210.91 97.78 l S 200.36 84.69 m 208.00 84.69 l S 204.18 80.87 m 204.18 88.50 l S 213.77 101.92 m 221.41 101.92 l S 217.59 98.10 m 217.59 105.74 l S 210.94 98.84 m 218.58 98.84 l S 214.76 95.02 m 214.76 102.66 l S 223.38 126.26 m 231.02 126.26 l S 227.20 122.44 m 227.20 130.08 l S 224.70 127.08 m 232.34 127.08 l S 228.52 123.26 m 228.52 130.89 l S 126.73 253.26 m 134.37 253.26 l S 130.55 249.44 m 130.55 257.08 l S 192.31 92.92 m 199.94 92.92 l S 196.13 89.10 m 196.13 96.74 l S 204.28 89.08 m 211.92 89.08 l S 208.10 85.26 m 208.10 92.90 l S 228.66 144.77 m 236.30 144.77 l S 232.48 140.95 m 232.48 148.58 l S 183.36 108.04 m 191.00 108.04 l S 187.18 104.22 m 187.18 111.85 l S 206.81 91.53 m 214.45 91.53 l S 210.63 87.71 m 210.63 95.35 l S 196.60 88.40 m 204.23 88.40 l S 200.41 84.59 m 200.41 92.22 l S 128.93 253.26 m 136.57 253.26 l S 132.75 249.44 m 132.75 257.08 l S 262.28 253.26 m 269.91 253.26 l S 266.10 249.44 m 266.10 257.08 l S 195.08 89.67 m 202.71 89.67 l S 198.90 85.86 m 198.90 93.49 l S 214.55 107.33 m 222.19 107.33 l S 218.37 103.52 m 218.37 111.15 l S 159.45 177.23 m 167.09 177.23 l S 163.27 173.41 m 163.27 181.05 l S 197.77 86.77 m 205.41 86.77 l S 201.59 82.95 m 201.59 90.58 l S 229.50 142.31 m 237.14 142.31 l S 233.32 138.49 m 233.32 146.13 l S 179.50 116.28 m 187.14 116.28 l S 183.32 112.46 m 183.32 120.10 l S 120.10 253.26 m 127.74 253.26 l S 123.92 249.44 m 123.92 257.08 l S 112.40 253.26 m 120.03 253.26 l S 116.22 249.44 m 116.22 257.08 l S 181.08 112.85 m 188.72 112.85 l S 184.90 109.03 m 184.90 116.67 l S 249.38 234.47 m 257.02 234.47 l S 253.20 230.65 m 253.20 238.29 l S 203.22 87.69 m 210.85 87.69 l S 207.04 83.88 m 207.04 91.51 l S 216.33 108.77 m 223.97 108.77 l S 220.15 104.95 m 220.15 112.59 l S 190.95 95.83 m 198.58 95.83 l S 194.76 92.01 m 194.76 99.65 l S 191.44 95.25 m 199.08 95.25 l S 195.26 91.43 m 195.26 99.06 l S 156.86 188.89 m 164.50 188.89 l S 160.68 185.07 m 160.68 192.71 l S 195.96 89.14 m 203.60 89.14 l S 199.78 85.32 m 199.78 92.96 l S 188.38 98.98 m 196.02 98.98 l S 192.20 95.17 m 192.20 102.80 l S 217.50 111.10 m 225.14 111.10 l S 221.32 107.28 m 221.32 114.92 l S 221.06 118.53 m 228.70 118.53 l S 224.88 114.71 m 224.88 122.35 l S 254.49 253.26 m 262.13 253.26 l S 258.31 249.44 m 258.31 257.08 l S 238.51 153.87 m 246.14 153.87 l S 242.32 150.05 m 242.32 157.69 l S 271.24 253.26 m 278.88 253.26 l S 275.06 249.44 m 275.06 257.08 l S 229.23 138.61 m 236.86 138.61 l S 233.04 134.79 m 233.04 142.43 l S 149.73 207.47 m 157.37 207.47 l S 153.55 203.65 m 153.55 211.28 l S 205.66 90.34 m 213.30 90.34 l S 209.48 86.53 m 209.48 94.16 l S 224.18 127.08 m 231.82 127.08 l S 228.00 123.26 m 228.00 130.89 l S 229.30 141.37 m 236.94 141.37 l S 233.12 137.55 m 233.12 145.19 l S 235.95 157.61 m 243.59 157.61 l S 239.77 153.79 m 239.77 161.43 l S 223.76 131.02 m 231.39 131.02 l S 227.57 127.20 m 227.57 134.83 l S 216.14 110.73 m 223.78 110.73 l S 219.96 106.91 m 219.96 114.54 l S 174.57 131.16 m 182.20 131.16 l S 178.39 127.35 m 178.39 134.98 l S 253.57 253.26 m 261.20 253.26 l S 257.39 249.44 m 257.39 257.08 l S 222.47 120.54 m 230.10 120.54 l S 226.29 116.72 m 226.29 124.36 l S 194.97 90.00 m 202.60 90.00 l S 198.78 86.18 m 198.78 93.82 l S 227.43 132.06 m 235.06 132.06 l S 231.25 128.24 m 231.25 135.88 l S 231.90 144.77 m 239.54 144.77 l S 235.72 140.95 m 235.72 148.58 l S 195.21 90.21 m 202.85 90.21 l S 199.03 86.39 m 199.03 94.03 l S 168.72 148.69 m 176.36 148.69 l S 172.54 144.88 m 172.54 152.51 l S 285.38 267.66 m 293.01 267.66 l S 289.20 263.84 m 289.20 271.48 l S 178.77 122.79 m 186.41 122.79 l S 182.59 118.97 m 182.59 126.61 l S 226.76 132.87 m 234.40 132.87 l S 230.58 129.05 m 230.58 136.69 l S 195.72 89.04 m 203.35 89.04 l S 199.53 85.22 m 199.53 92.86 l S 109.67 267.66 m 117.30 267.66 l S 113.49 263.84 m 113.49 271.48 l S 171.19 142.61 m 178.83 142.61 l S 175.01 138.79 m 175.01 146.43 l S 197.55 86.67 m 205.19 86.67 l S 201.37 82.85 m 201.37 90.49 l S 180.90 113.14 m 188.54 113.14 l S 184.72 109.32 m 184.72 116.95 l S 205.35 91.05 m 212.98 91.05 l S 209.17 87.23 m 209.17 94.87 l S 251.78 207.47 m 259.42 207.47 l S 255.60 203.65 m 255.60 211.28 l S 233.53 154.22 m 241.17 154.22 l S 237.35 150.40 m 237.35 158.04 l S 181.42 112.68 m 189.06 112.68 l S 185.24 108.86 m 185.24 116.50 l S 227.48 141.37 m 235.12 141.37 l S 231.30 137.55 m 231.30 145.19 l S 225.35 132.25 m 232.99 132.25 l S 229.17 128.43 m 229.17 136.07 l S 212.93 102.46 m 220.57 102.46 l S 216.75 98.64 m 216.75 106.28 l S 194.63 90.07 m 202.27 90.07 l S 198.45 86.25 m 198.45 93.89 l S 182.50 111.77 m 190.14 111.77 l S 186.32 107.95 m 186.32 115.59 l S 219.87 117.76 m 227.51 117.76 l S 223.69 113.94 m 223.69 121.58 l S 186.15 106.43 m 193.79 106.43 l S 189.97 102.61 m 189.97 110.25 l S 177.15 116.63 m 184.79 116.63 l S 180.97 112.81 m 180.97 120.45 l S 140.61 253.26 m 148.25 253.26 l S 144.43 249.44 m 144.43 257.08 l S 95.78 267.66 m 103.41 267.66 l S 99.60 263.84 m 99.60 271.48 l S 165.84 153.16 m 173.47 153.16 l S 169.65 149.35 m 169.65 156.98 l S 256.71 218.05 m 264.35 218.05 l S 260.53 214.23 m 260.53 221.86 l S 202.49 87.04 m 210.12 87.04 l S 206.31 83.22 m 206.31 90.86 l S 188.40 99.08 m 196.04 99.08 l S 192.22 95.27 m 192.22 102.90 l S 171.61 136.21 m 179.25 136.21 l S 175.43 132.40 m 175.43 140.03 l S 234.66 158.33 m 242.29 158.33 l S 238.47 154.51 m 238.47 162.14 l S 195.28 89.27 m 202.92 89.27 l S 199.10 85.46 m 199.10 93.09 l S 276.93 267.66 m 284.56 267.66 l S 280.74 263.84 m 280.74 271.48 l S 269.93 267.66 m 277.57 267.66 l S 273.75 263.84 m 273.75 271.48 l S 201.35 85.70 m 208.99 85.70 l S 205.17 81.88 m 205.17 89.52 l S 174.40 132.38 m 182.04 132.38 l S 178.22 128.56 m 178.22 136.20 l S 141.70 253.26 m 149.34 253.26 l S 145.52 249.44 m 145.52 257.08 l S 144.05 267.66 m 151.68 267.66 l S 147.86 263.84 m 147.86 271.48 l S 156.07 187.47 m 163.71 187.47 l S 159.89 183.65 m 159.89 191.29 l S 158.62 176.34 m 166.26 176.34 l S 162.44 172.53 m 162.44 180.16 l S 193.61 91.83 m 201.25 91.83 l S 197.43 88.01 m 197.43 95.65 l S 173.24 134.89 m 180.88 134.89 l S 177.06 131.07 m 177.06 138.70 l S 213.65 100.70 m 221.29 100.70 l S 217.47 96.88 m 217.47 104.52 l S 166.40 157.96 m 174.03 157.96 l S 170.21 154.14 m 170.21 161.78 l S 163.46 157.96 m 171.09 157.96 l S 167.28 154.14 m 167.28 161.78 l S 199.67 84.84 m 207.31 84.84 l S 203.49 81.02 m 203.49 88.66 l S 238.55 165.67 m 246.18 165.67 l S 242.36 161.85 m 242.36 169.49 l S 238.88 164.11 m 246.52 164.11 l S 242.70 160.30 m 242.70 167.93 l S 167.19 149.82 m 174.83 149.82 l S 171.01 146.00 m 171.01 153.64 l S 201.53 86.04 m 209.17 86.04 l S 205.35 82.22 m 205.35 89.85 l S 226.76 134.68 m 234.40 134.68 l S 230.58 130.86 m 230.58 138.49 l S 219.85 114.39 m 227.49 114.39 l S 223.67 110.57 m 223.67 118.21 l S 175.25 124.52 m 182.89 124.52 l S 179.07 120.70 m 179.07 128.34 l S 209.65 97.00 m 217.28 97.00 l S 213.46 93.18 m 213.46 100.82 l S 174.24 131.49 m 181.88 131.49 l S 178.06 127.67 m 178.06 135.31 l S 138.96 242.83 m 146.60 242.83 l S 142.78 239.01 m 142.78 246.65 l S 235.39 155.41 m 243.02 155.41 l S 239.21 151.59 m 239.21 159.23 l S 203.92 88.10 m 211.56 88.10 l S 207.74 84.28 m 207.74 91.92 l S 209.19 95.55 m 216.83 95.55 l S 213.01 91.73 m 213.01 99.37 l S 176.14 128.65 m 183.78 128.65 l S 179.96 124.84 m 179.96 132.47 l S 159.48 176.34 m 167.12 176.34 l S 163.30 172.53 m 163.30 180.16 l S 170.62 144.15 m 178.25 144.15 l S 174.43 140.33 m 174.43 147.97 l S 202.61 86.77 m 210.25 86.77 l S 206.43 82.95 m 206.43 90.58 l S 201.65 85.64 m 209.28 85.64 l S 205.47 81.82 m 205.47 89.46 l S 129.76 267.66 m 137.40 267.66 l S 133.58 263.84 m 133.58 271.48 l S 153.08 190.21 m 160.71 190.21 l S 156.90 186.39 m 156.90 194.03 l S 210.17 97.56 m 217.81 97.56 l S 213.99 93.75 m 213.99 101.38 l S 182.60 110.65 m 190.24 110.65 l S 186.42 106.83 m 186.42 114.47 l S 122.48 267.66 m 130.11 267.66 l S 126.29 263.84 m 126.29 271.48 l S 207.70 93.73 m 215.34 93.73 l S 211.52 89.91 m 211.52 97.54 l S 229.93 138.83 m 237.56 138.83 l S 233.75 135.01 m 233.75 142.65 l S 268.63 242.83 m 276.27 242.83 l S 272.45 239.01 m 272.45 246.65 l S 220.00 116.28 m 227.64 116.28 l S 223.82 112.46 m 223.82 120.10 l S 223.62 124.63 m 231.26 124.63 l S 227.44 120.81 m 227.44 128.45 l S 209.83 96.91 m 217.47 96.91 l S 213.65 93.09 m 213.65 100.73 l S 185.01 105.05 m 192.65 105.05 l S 188.83 101.23 m 188.83 108.87 l S 203.45 87.69 m 211.09 87.69 l S 207.27 83.88 m 207.27 91.51 l S 169.04 139.80 m 176.67 139.80 l S 172.85 135.99 m 172.85 143.62 l S 193.70 92.75 m 201.34 92.75 l S 197.52 88.94 m 197.52 96.57 l S 214.18 104.20 m 221.82 104.20 l S 218.00 100.38 m 218.00 108.02 l S 224.22 127.86 m 231.85 127.86 l S 228.03 124.05 m 228.03 131.68 l S 213.24 103.13 m 220.88 103.13 l S 217.06 99.31 m 217.06 106.95 l S 262.88 253.26 m 270.52 253.26 l S 266.70 249.44 m 266.70 257.08 l S 151.94 198.49 m 159.58 198.49 l S 155.76 194.68 m 155.76 202.31 l S 176.03 124.57 m 183.66 124.57 l S 179.85 120.75 m 179.85 128.39 l S 185.12 106.75 m 192.75 106.75 l S 188.94 102.93 m 188.94 110.56 l S 189.41 99.86 m 197.04 99.86 l S 193.22 96.04 m 193.22 103.67 l S 129.81 267.66 m 137.45 267.66 l S 133.63 263.84 m 133.63 271.48 l S 224.63 129.05 m 232.26 129.05 l S 228.44 125.23 m 228.44 132.87 l S 251.89 227.88 m 259.53 227.88 l S 255.71 224.06 m 255.71 231.69 l S 167.13 156.58 m 174.77 156.58 l S 170.95 152.76 m 170.95 160.39 l S 270.63 242.83 m 278.27 242.83 l S 274.45 239.01 m 274.45 246.65 l S 181.84 111.96 m 189.47 111.96 l S 185.66 108.14 m 185.66 115.77 l S 160.03 180.35 m 167.67 180.35 l S 163.85 176.53 m 163.85 184.17 l S 188.55 99.69 m 196.19 99.69 l S 192.37 95.87 m 192.37 103.51 l S 197.37 87.25 m 205.01 87.25 l S 201.19 83.44 m 201.19 91.07 l S 196.63 87.69 m 204.27 87.69 l S 200.45 83.88 m 200.45 91.51 l S 234.39 169.68 m 242.03 169.68 l S 238.21 165.86 m 238.21 173.49 l S 203.45 88.13 m 211.08 88.13 l S 207.26 84.32 m 207.26 91.95 l S 243.70 165.10 m 251.34 165.10 l S 247.52 161.28 m 247.52 168.92 l S 151.82 202.94 m 159.46 202.94 l S 155.64 199.12 m 155.64 206.76 l S 240.48 162.21 m 248.12 162.21 l S 244.30 158.39 m 244.30 166.02 l S 192.66 94.14 m 200.30 94.14 l S 196.48 90.32 m 196.48 97.95 l S 203.53 87.76 m 211.17 87.76 l S 207.35 83.95 m 207.35 91.58 l S 267.78 253.26 m 275.42 253.26 l S 271.60 249.44 m 271.60 257.08 l S 245.15 169.68 m 252.79 169.68 l S 248.97 165.86 m 248.97 173.49 l S 186.03 106.30 m 193.67 106.30 l S 189.85 102.49 m 189.85 110.12 l S 116.51 267.66 m 124.15 267.66 l S 120.33 263.84 m 120.33 271.48 l S 197.95 86.91 m 205.59 86.91 l S 201.77 83.09 m 201.77 90.72 l S 235.41 150.80 m 243.05 150.80 l S 239.23 146.98 m 239.23 154.62 l S 203.71 87.69 m 211.35 87.69 l S 207.53 83.87 m 207.53 91.51 l S 209.38 95.73 m 217.01 95.73 l S 213.19 91.91 m 213.19 99.55 l S 208.20 94.54 m 215.83 94.54 l S 212.01 90.73 m 212.01 98.36 l S 200.43 84.84 m 208.07 84.84 l S 204.25 81.02 m 204.25 88.66 l S 174.72 131.88 m 182.35 131.88 l S 178.53 128.06 m 178.53 135.70 l S 132.65 242.83 m 140.29 242.83 l S 136.47 239.01 m 136.47 246.65 l S 178.14 119.92 m 185.78 119.92 l S 181.96 116.11 m 181.96 123.74 l S 156.89 181.37 m 164.52 181.37 l S 160.70 177.55 m 160.70 185.19 l S 230.29 148.69 m 237.92 148.69 l S 234.10 144.88 m 234.10 152.51 l S 204.42 89.57 m 212.06 89.57 l S 208.24 85.76 m 208.24 93.39 l S 175.94 124.27 m 183.58 124.27 l S 179.76 120.45 m 179.76 128.09 l S 228.03 143.67 m 235.67 143.67 l S 231.85 139.85 m 231.85 147.49 l S 218.83 114.70 m 226.47 114.70 l S 222.65 110.88 m 222.65 118.51 l S 200.42 84.82 m 208.05 84.82 l S 204.24 81.01 m 204.24 88.64 l S 182.85 108.61 m 190.49 108.61 l S 186.67 104.79 m 186.67 112.43 l S 198.07 86.58 m 205.71 86.58 l S 201.89 82.76 m 201.89 90.40 l S 186.92 100.70 m 194.56 100.70 l S 190.74 96.88 m 190.74 104.52 l S 243.04 196.81 m 250.67 196.81 l S 246.85 192.99 m 246.85 200.63 l S 193.67 92.04 m 201.31 92.04 l S 197.49 88.23 m 197.49 95.86 l S 231.04 143.39 m 238.68 143.39 l S 234.86 139.58 m 234.86 147.21 l S 223.37 122.88 m 231.01 122.88 l S 227.19 119.07 m 227.19 126.70 l S 176.33 126.42 m 183.97 126.42 l S 180.15 122.60 m 180.15 130.23 l S 182.24 113.25 m 189.87 113.25 l S 186.05 109.43 m 186.05 117.06 l S 97.35 267.66 m 104.99 267.66 l S 101.17 263.84 m 101.17 271.48 l S 218.51 110.38 m 226.15 110.38 l S 222.33 106.56 m 222.33 114.20 l S 151.52 191.78 m 159.15 191.78 l S 155.34 187.96 m 155.34 195.60 l S 197.12 87.25 m 204.76 87.25 l S 200.94 83.44 m 200.94 91.07 l S 209.87 96.51 m 217.51 96.51 l S 213.69 92.69 m 213.69 100.32 l S 198.41 86.38 m 206.05 86.38 l S 202.23 82.56 m 202.23 90.20 l S 176.84 124.78 m 184.47 124.78 l S 180.66 120.96 m 180.66 128.60 l S 152.16 195.07 m 159.79 195.07 l S 155.98 191.25 m 155.98 198.88 l S 207.08 92.80 m 214.71 92.80 l S 210.89 88.98 m 210.89 96.61 l S 188.13 100.65 m 195.76 100.65 l S 191.95 96.83 m 191.95 104.47 l S 196.03 88.66 m 203.67 88.66 l S 199.85 84.84 m 199.85 92.48 l S 161.87 167.66 m 169.51 167.66 l S 165.69 163.84 m 165.69 171.48 l S 226.40 131.75 m 234.04 131.75 l S 230.22 127.93 m 230.22 135.57 l S 207.70 94.29 m 215.33 94.29 l S 211.51 90.47 m 211.51 98.11 l S 161.08 164.11 m 168.72 164.11 l S 164.90 160.30 m 164.90 167.93 l S 176.42 126.17 m 184.05 126.17 l S 180.23 122.35 m 180.23 129.99 l S 177.65 119.53 m 185.29 119.53 l S 181.47 115.71 m 181.47 123.35 l S 151.95 210.76 m 159.59 210.76 l S 155.77 206.94 m 155.77 214.58 l S 144.60 227.88 m 152.24 227.88 l S 148.42 224.06 m 148.42 231.69 l S 145.71 253.26 m 153.35 253.26 l S 149.53 249.44 m 149.53 257.08 l S 181.01 114.46 m 188.64 114.46 l S 184.82 110.65 m 184.82 118.28 l S 172.58 134.45 m 180.21 134.45 l S 176.39 130.63 m 176.39 138.27 l S 123.57 267.66 m 131.21 267.66 l S 127.39 263.84 m 127.39 271.48 l S 193.54 92.14 m 201.17 92.14 l S 197.35 88.32 m 197.35 95.96 l S 154.32 187.47 m 161.95 187.47 l S 158.13 183.65 m 158.13 191.29 l S 206.50 92.95 m 214.14 92.95 l S 210.32 89.13 m 210.32 96.77 l S 187.41 101.91 m 195.04 101.91 l S 191.22 98.09 m 191.22 105.73 l S 137.82 242.83 m 145.45 242.83 l S 141.64 239.01 m 141.64 246.65 l S 243.68 186.17 m 251.32 186.17 l S 247.50 182.36 m 247.50 189.99 l S 247.81 195.07 m 255.44 195.07 l S 251.63 191.25 m 251.63 198.88 l S 181.96 107.72 m 189.60 107.72 l S 185.78 103.90 m 185.78 111.54 l S 188.15 99.62 m 195.79 99.62 l S 191.97 95.80 m 191.97 103.44 l S 187.27 101.84 m 194.91 101.84 l S 191.09 98.02 m 191.09 105.66 l S 209.43 96.65 m 217.07 96.65 l S 213.25 92.83 m 213.25 100.47 l S 184.62 107.78 m 192.26 107.78 l S 188.44 103.97 m 188.44 111.60 l S 198.78 85.63 m 206.42 85.63 l S 202.60 81.81 m 202.60 89.45 l S 239.50 145.40 m 247.14 145.40 l S 243.32 141.58 m 243.32 149.21 l S 254.22 253.26 m 261.86 253.26 l S 258.04 249.44 m 258.04 257.08 l S 208.42 93.73 m 216.06 93.73 l S 212.24 89.91 m 212.24 97.54 l S 156.11 195.07 m 163.75 195.07 l S 159.93 191.25 m 159.93 198.88 l S 192.65 93.24 m 200.29 93.24 l S 196.47 89.42 m 196.47 97.06 l S 256.01 242.83 m 263.65 242.83 l S 259.83 239.01 m 259.83 246.65 l S 195.50 88.98 m 203.13 88.98 l S 199.31 85.16 m 199.31 92.80 l S 183.29 108.91 m 190.93 108.91 l S 187.11 105.09 m 187.11 112.73 l S 277.72 242.83 m 285.36 242.83 l S 281.54 239.01 m 281.54 246.65 l S 128.68 267.66 m 136.31 267.66 l S 132.49 263.84 m 132.49 271.48 l S 160.27 176.34 m 167.90 176.34 l S 164.09 172.53 m 164.09 180.16 l S 167.33 146.39 m 174.97 146.39 l S 171.15 142.57 m 171.15 150.21 l S 229.40 136.96 m 237.04 136.96 l S 233.22 133.14 m 233.22 140.78 l S 235.71 157.05 m 243.34 157.05 l S 239.53 153.23 m 239.53 160.87 l S 222.53 122.70 m 230.16 122.70 l S 226.34 118.88 m 226.34 126.52 l S 204.92 90.07 m 212.56 90.07 l S 208.74 86.26 m 208.74 93.89 l S 201.48 85.85 m 209.11 85.85 l S 205.29 82.03 m 205.29 89.67 l S 175.21 132.60 m 182.85 132.60 l S 179.03 128.78 m 179.03 136.41 l S 187.11 101.63 m 194.74 101.63 l S 190.93 97.81 m 190.93 105.45 l S 186.11 103.38 m 193.75 103.38 l S 189.93 99.56 m 189.93 107.20 l S 118.15 267.66 m 125.79 267.66 l S 121.97 263.84 m 121.97 271.48 l S 204.80 89.10 m 212.44 89.10 l S 208.62 85.28 m 208.62 92.92 l S 149.98 227.88 m 157.62 227.88 l S 153.80 224.06 m 153.80 231.69 l S 168.75 148.31 m 176.39 148.31 l S 172.57 144.50 m 172.57 152.13 l S 217.49 111.36 m 225.13 111.36 l S 221.31 107.54 m 221.31 115.18 l S 226.41 132.71 m 234.05 132.71 l S 230.23 128.89 m 230.23 136.52 l S 183.15 111.36 m 190.79 111.36 l S 186.97 107.54 m 186.97 115.18 l S 84.29 267.66 m 91.93 267.66 l S 88.11 263.84 m 88.11 271.48 l S 230.30 142.31 m 237.93 142.31 l S 234.12 138.49 m 234.12 146.13 l S 193.32 92.42 m 200.96 92.42 l S 197.14 88.60 m 197.14 96.24 l S 133.21 234.47 m 140.85 234.47 l S 137.03 230.65 m 137.03 238.29 l S 246.95 179.25 m 254.59 179.25 l S 250.77 175.43 m 250.77 183.07 l S 259.36 253.26 m 267.00 253.26 l S 263.18 249.44 m 263.18 257.08 l S 141.18 202.94 m 148.82 202.94 l S 145.00 199.12 m 145.00 206.76 l S 153.66 187.47 m 161.29 187.47 l S 157.47 183.65 m 157.47 191.29 l S 178.79 119.68 m 186.43 119.68 l S 182.61 115.86 m 182.61 123.50 l S 234.41 154.22 m 242.05 154.22 l S 238.23 150.40 m 238.23 158.04 l S 213.45 101.91 m 221.09 101.91 l S 217.27 98.09 m 217.27 105.73 l S 227.02 136.21 m 234.66 136.21 l S 230.84 132.40 m 230.84 140.03 l S 192.68 92.71 m 200.32 92.71 l S 196.50 88.89 m 196.50 96.53 l S 142.40 222.51 m 150.03 222.51 l S 146.22 218.69 m 146.22 226.33 l S 115.72 253.26 m 123.35 253.26 l S 119.54 249.44 m 119.54 257.08 l S 209.07 94.54 m 216.70 94.54 l S 212.89 90.73 m 212.89 98.36 l S 194.32 90.85 m 201.96 90.85 l S 198.14 87.03 m 198.14 94.67 l S 167.34 150.41 m 174.98 150.41 l S 171.16 146.60 m 171.16 154.23 l S 121.50 234.47 m 129.14 234.47 l S 125.32 230.65 m 125.32 238.29 l S 177.31 123.14 m 184.95 123.14 l S 181.13 119.32 m 181.13 126.96 l S 165.07 161.00 m 172.70 161.00 l S 168.88 157.18 m 168.88 164.81 l S 167.46 153.87 m 175.10 153.87 l S 171.28 150.05 m 171.28 157.69 l S 231.71 147.46 m 239.35 147.46 l S 235.53 143.64 m 235.53 151.27 l S 213.85 103.88 m 221.48 103.88 l S 217.67 100.07 m 217.67 107.70 l S 193.44 92.87 m 201.08 92.87 l S 197.26 89.05 m 197.26 96.68 l S 126.63 267.66 m 134.26 267.66 l S 130.45 263.84 m 130.45 271.48 l S 152.54 187.47 m 160.18 187.47 l S 156.36 183.65 m 156.36 191.29 l S 241.82 166.99 m 249.46 166.99 l S 245.64 163.17 m 245.64 170.81 l S 214.29 105.86 m 221.93 105.86 l S 218.11 102.04 m 218.11 109.68 l S 190.22 96.07 m 197.86 96.07 l S 194.04 92.25 m 194.04 99.89 l S 160.45 188.89 m 168.09 188.89 l S 164.27 185.07 m 164.27 192.71 l S 213.46 103.38 m 221.10 103.38 l S 217.28 99.56 m 217.28 107.20 l S 195.85 88.41 m 203.49 88.41 l S 199.67 84.59 m 199.67 92.23 l S 219.73 114.13 m 227.37 114.13 l S 223.55 110.31 m 223.55 117.95 l S 101.16 267.66 m 108.80 267.66 l S 104.98 263.84 m 104.98 271.48 l S 168.15 149.55 m 175.79 149.55 l S 171.97 145.73 m 171.97 153.37 l S 219.90 117.59 m 227.54 117.59 l S 223.72 113.77 m 223.72 121.41 l S 192.49 93.93 m 200.13 93.93 l S 196.31 90.11 m 196.31 97.75 l S 177.22 125.14 m 184.86 125.14 l S 181.04 121.32 m 181.04 128.96 l S 250.88 198.49 m 258.52 198.49 l S 254.70 194.68 m 254.70 202.31 l S 221.17 118.41 m 228.80 118.41 l S 224.99 114.60 m 224.99 122.23 l S 208.09 94.78 m 215.73 94.78 l S 211.91 90.96 m 211.91 98.59 l S 217.45 109.50 m 225.09 109.50 l S 221.27 105.68 m 221.27 113.31 l S 171.12 143.90 m 178.76 143.90 l S 174.94 140.08 m 174.94 147.71 l S 278.47 267.66 m 286.10 267.66 l S 282.29 263.84 m 282.29 271.48 l S 221.55 124.57 m 229.19 124.57 l S 225.37 120.75 m 225.37 128.39 l S 230.30 157.61 m 237.93 157.61 l S 234.12 153.79 m 234.12 161.43 l S 123.14 267.66 m 130.78 267.66 l S 126.96 263.84 m 126.96 271.48 l S 171.06 139.26 m 178.70 139.26 l S 174.88 135.44 m 174.88 143.07 l S 253.82 207.47 m 261.45 207.47 l S 257.63 203.65 m 257.63 211.28 l S 209.24 96.63 m 216.87 96.63 l S 213.05 92.82 m 213.05 100.45 l S 230.33 142.88 m 237.97 142.88 l S 234.15 139.06 m 234.15 146.70 l S 199.76 84.70 m 207.40 84.70 l S 203.58 80.88 m 203.58 88.52 l S 209.78 96.44 m 217.42 96.44 l S 213.60 92.62 m 213.60 100.26 l S 153.60 205.15 m 161.24 205.15 l S 157.42 201.33 m 157.42 208.97 l S 267.74 267.66 m 275.38 267.66 l S 271.56 263.84 m 271.56 271.48 l S 148.80 198.49 m 156.43 198.49 l S 152.62 194.68 m 152.62 202.31 l S 275.39 253.26 m 283.03 253.26 l S 279.21 249.44 m 279.21 257.08 l S 172.94 136.61 m 180.58 136.61 l S 176.76 132.79 m 176.76 140.43 l S 210.75 98.07 m 218.38 98.07 l S 214.56 94.26 m 214.56 101.89 l S 217.45 112.61 m 225.09 112.61 l S 221.27 108.79 m 221.27 116.43 l S 232.49 147.76 m 240.12 147.76 l S 236.30 143.94 m 236.30 151.58 l S 280.39 267.66 m 288.03 267.66 l S 284.21 263.84 m 284.21 271.48 l S 195.69 89.00 m 203.33 89.00 l S 199.51 85.18 m 199.51 92.82 l S 215.11 106.51 m 222.74 106.51 l S 218.92 102.69 m 218.92 110.33 l S 173.12 137.88 m 180.75 137.88 l S 176.93 134.06 m 176.93 141.69 l S 197.21 87.15 m 204.85 87.15 l S 201.03 83.33 m 201.03 90.97 l S 210.36 97.92 m 218.00 97.92 l S 214.18 94.10 m 214.18 101.73 l S 216.84 111.64 m 224.48 111.64 l S 220.66 107.83 m 220.66 115.46 l S 225.31 128.65 m 232.95 128.65 l S 229.13 124.84 m 229.13 132.47 l S 210.34 97.24 m 217.98 97.24 l S 214.16 93.42 m 214.16 101.06 l S 227.46 142.88 m 235.09 142.88 l S 231.28 139.06 m 231.28 146.70 l S 268.21 267.66 m 275.84 267.66 l S 272.03 263.84 m 272.03 271.48 l S 204.65 88.81 m 212.28 88.81 l S 208.47 84.99 m 208.47 92.63 l S 232.00 143.67 m 239.63 143.67 l S 235.81 139.85 m 235.81 147.49 l S 219.13 116.36 m 226.77 116.36 l S 222.95 112.54 m 222.95 120.18 l S 160.63 174.56 m 168.27 174.56 l S 164.45 170.74 m 164.45 178.38 l S 264.20 242.83 m 271.84 242.83 l S 268.02 239.01 m 268.02 246.65 l S 236.15 165.10 m 243.79 165.10 l S 239.97 161.28 m 239.97 168.92 l S 309.35 267.66 m 316.99 267.66 l S 313.17 263.84 m 313.17 271.48 l S 198.76 85.82 m 206.40 85.82 l S 202.58 82.00 m 202.58 89.64 l S 215.38 106.95 m 223.01 106.95 l S 219.20 103.13 m 219.20 110.77 l S 202.43 87.02 m 210.06 87.02 l S 206.24 83.20 m 206.24 90.84 l S 288.28 267.66 m 295.92 267.66 l S 292.10 263.84 m 292.10 271.48 l S 261.29 227.88 m 268.93 227.88 l S 265.11 224.06 m 265.11 231.69 l S 189.58 97.13 m 197.21 97.13 l S 193.39 93.31 m 193.39 100.95 l S 220.52 120.54 m 228.15 120.54 l S 224.34 116.72 m 224.34 124.36 l S 162.09 168.98 m 169.73 168.98 l S 165.91 165.16 m 165.91 172.80 l S 197.67 87.02 m 205.30 87.02 l S 201.48 83.21 m 201.48 90.84 l S 214.64 105.36 m 222.27 105.36 l S 218.46 101.54 m 218.46 109.18 l S 224.71 126.26 m 232.34 126.26 l S 228.53 122.44 m 228.53 130.08 l S 158.54 186.17 m 166.18 186.17 l S 162.36 182.36 m 162.36 189.99 l S 159.49 169.68 m 167.13 169.68 l S 163.31 165.86 m 163.31 173.49 l S 229.90 146.39 m 237.54 146.39 l S 233.72 142.57 m 233.72 150.21 l S 146.43 234.47 m 154.07 234.47 l S 150.25 230.65 m 150.25 238.29 l S 234.84 156.14 m 242.48 156.14 l S 238.66 152.33 m 238.66 159.96 l S 252.08 210.76 m 259.71 210.76 l S 255.90 206.94 m 255.90 214.58 l S 190.95 95.55 m 198.59 95.55 l S 194.77 91.73 m 194.77 99.37 l S 199.11 85.48 m 206.75 85.48 l S 202.93 81.66 m 202.93 89.30 l S 184.48 101.53 m 192.11 101.53 l S 188.29 97.71 m 188.29 105.35 l S 179.08 110.02 m 186.72 110.02 l S 182.90 106.20 m 182.90 113.83 l S 171.27 143.12 m 178.91 143.12 l S 175.09 139.30 m 175.09 146.94 l S 209.76 96.07 m 217.40 96.07 l S 213.58 92.25 m 213.58 99.89 l S 175.64 126.26 m 183.28 126.26 l S 179.46 122.44 m 179.46 130.08 l S 252.97 202.94 m 260.61 202.94 l S 256.79 199.12 m 256.79 206.76 l S 255.66 222.51 m 263.29 222.51 l S 259.47 218.69 m 259.47 226.33 l S 168.60 148.69 m 176.24 148.69 l S 172.42 144.88 m 172.42 152.51 l S 136.74 253.26 m 144.37 253.26 l S 140.56 249.44 m 140.56 257.08 l S 237.80 164.11 m 245.43 164.11 l S 241.62 160.30 m 241.62 167.93 l S 191.07 96.53 m 198.71 96.53 l S 194.89 92.71 m 194.89 100.34 l S 202.40 86.77 m 210.04 86.77 l S 206.22 82.95 m 206.22 90.59 l S 102.16 267.66 m 109.80 267.66 l S 105.98 263.84 m 105.98 271.48 l S 179.49 118.28 m 187.13 118.28 l S 183.31 114.46 m 183.31 122.10 l S 180.78 111.75 m 188.41 111.75 l S 184.59 107.93 m 184.59 115.57 l S 322.09 267.66 m 329.73 267.66 l S 325.91 263.84 m 325.91 271.48 l S 235.07 154.61 m 242.71 154.61 l S 238.89 150.79 m 238.89 158.43 l S 235.42 151.16 m 243.06 151.16 l S 239.24 147.34 m 239.24 154.98 l S 187.88 98.58 m 195.51 98.58 l S 191.70 94.76 m 191.70 102.40 l S 230.91 143.39 m 238.55 143.39 l S 234.73 139.58 m 234.73 147.21 l S 129.39 253.26 m 137.02 253.26 l S 133.21 249.44 m 133.21 257.08 l S 179.12 119.58 m 186.76 119.58 l S 182.94 115.77 m 182.94 123.40 l S 103.51 267.66 m 111.15 267.66 l S 107.33 263.84 m 107.33 271.48 l S 124.16 267.66 m 131.80 267.66 l S 127.98 263.84 m 127.98 271.48 l S 240.16 172.95 m 247.80 172.95 l S 243.98 169.14 m 243.98 176.77 l S 232.32 152.74 m 239.96 152.74 l S 236.14 148.92 m 236.14 156.55 l S 124.90 267.66 m 132.54 267.66 l S 128.72 263.84 m 128.72 271.48 l S 199.16 85.12 m 206.80 85.12 l S 202.98 81.31 m 202.98 88.94 l S 182.11 113.40 m 189.75 113.40 l S 185.93 109.58 m 185.93 117.22 l S 212.09 101.29 m 219.72 101.29 l S 215.91 97.47 m 215.91 105.11 l S 187.89 100.54 m 195.52 100.54 l S 191.70 96.73 m 191.70 104.36 l S 201.26 85.72 m 208.89 85.72 l S 205.08 81.90 m 205.08 89.54 l S 187.53 101.63 m 195.16 101.63 l S 191.34 97.81 m 191.34 105.45 l S 167.17 153.43 m 174.81 153.43 l S 170.99 149.61 m 170.99 157.25 l S 181.30 112.68 m 188.94 112.68 l S 185.12 108.86 m 185.12 116.50 l S 131.42 253.26 m 139.06 253.26 l S 135.24 249.44 m 135.24 257.08 l S 167.97 150.80 m 175.60 150.80 l S 171.79 146.98 m 171.79 154.62 l S 140.54 234.47 m 148.17 234.47 l S 144.36 230.65 m 144.36 238.29 l S 250.53 198.49 m 258.17 198.49 l S 254.35 194.68 m 254.35 202.31 l S 223.45 127.96 m 231.09 127.96 l S 227.27 124.15 m 227.27 131.78 l S 192.32 93.09 m 199.95 93.09 l S 196.14 89.27 m 196.14 96.91 l S 138.91 227.88 m 146.55 227.88 l S 142.73 224.06 m 142.73 231.69 l S 223.67 125.22 m 231.31 125.22 l S 227.49 121.40 m 227.49 129.04 l S 209.19 91.39 m 216.83 91.39 l S 213.01 87.57 m 213.01 95.21 l S 193.83 91.76 m 201.47 91.76 l S 197.65 87.94 m 197.65 95.58 l S 145.32 200.52 m 152.95 200.52 l S 149.14 196.71 m 149.14 204.34 l S 189.06 98.64 m 196.70 98.64 l S 192.88 94.82 m 192.88 102.46 l S 128.23 267.66 m 135.87 267.66 l S 132.05 263.84 m 132.05 271.48 l S 157.52 187.47 m 165.16 187.47 l S 161.34 183.65 m 161.34 191.29 l S 206.86 92.28 m 214.50 92.28 l S 210.68 88.46 m 210.68 96.09 l S 205.45 90.67 m 213.09 90.67 l S 209.27 86.85 m 209.27 94.49 l S 144.96 253.26 m 152.60 253.26 l S 148.78 249.44 m 148.78 257.08 l S 207.33 93.94 m 214.97 93.94 l S 211.15 90.13 m 211.15 97.76 l S 191.17 96.03 m 198.81 96.03 l S 194.99 92.21 m 194.99 99.85 l S 227.99 135.72 m 235.62 135.72 l S 231.81 131.90 m 231.81 139.54 l S 246.80 186.17 m 254.43 186.17 l S 250.61 182.36 m 250.61 189.99 l S 127.63 234.47 m 135.27 234.47 l S 131.45 230.65 m 131.45 238.29 l S 207.59 94.14 m 215.23 94.14 l S 211.41 90.32 m 211.41 97.95 l S 132.69 267.66 m 140.32 267.66 l S 136.51 263.84 m 136.51 271.48 l S 214.21 104.01 m 221.85 104.01 l S 218.03 100.19 m 218.03 107.83 l S 267.04 242.83 m 274.68 242.83 l S 270.86 239.01 m 270.86 246.65 l S 199.15 85.12 m 206.79 85.12 l S 202.97 81.31 m 202.97 88.94 l S 243.22 188.89 m 250.86 188.89 l S 247.04 185.07 m 247.04 192.71 l S 202.06 86.77 m 209.70 86.77 l S 205.88 82.95 m 205.88 90.59 l S 256.45 213.95 m 264.09 213.95 l S 260.27 210.13 m 260.27 217.77 l S 205.11 90.63 m 212.75 90.63 l S 208.93 86.81 m 208.93 94.45 l S 176.11 123.28 m 183.75 123.28 l S 179.93 119.46 m 179.93 127.10 l S 220.42 114.18 m 228.06 114.18 l S 224.24 110.36 m 224.24 118.00 l S 153.00 195.07 m 160.64 195.07 l S 156.82 191.25 m 156.82 198.88 l S 184.40 107.29 m 192.04 107.29 l S 188.22 103.47 m 188.22 111.11 l S 208.85 95.34 m 216.49 95.34 l S 212.67 91.52 m 212.67 99.16 l S 240.14 186.17 m 247.78 186.17 l S 243.96 182.36 m 243.96 189.99 l S 170.39 139.80 m 178.03 139.80 l S 174.21 135.99 m 174.21 143.62 l S 221.25 121.54 m 228.88 121.54 l S 225.07 117.72 m 225.07 125.36 l S 182.25 111.75 m 189.89 111.75 l S 186.07 107.93 m 186.07 115.57 l S 158.43 177.23 m 166.06 177.23 l S 162.25 173.41 m 162.25 181.05 l S 186.24 104.84 m 193.88 104.84 l S 190.06 101.02 m 190.06 108.66 l S 172.78 128.29 m 180.42 128.29 l S 176.60 124.48 m 176.60 132.11 l S 216.30 109.70 m 223.94 109.70 l S 220.12 105.88 m 220.12 113.52 l S 235.73 165.67 m 243.36 165.67 l S 239.55 161.85 m 239.55 169.49 l S 139.77 234.47 m 147.41 234.47 l S 143.59 230.65 m 143.59 238.29 l S 247.09 191.78 m 254.73 191.78 l S 250.91 187.96 m 250.91 195.60 l S 163.98 157.05 m 171.62 157.05 l S 167.80 153.23 m 167.80 160.87 l S 257.85 253.26 m 265.48 253.26 l S 261.66 249.44 m 261.66 257.08 l S 192.00 94.02 m 199.64 94.02 l S 195.82 90.20 m 195.82 97.83 l S 216.91 109.96 m 224.54 109.96 l S 220.73 106.14 m 220.73 113.78 l S 154.05 205.15 m 161.68 205.15 l S 157.86 201.33 m 157.86 208.97 l S 244.35 191.78 m 251.98 191.78 l S 248.16 187.96 m 248.16 195.60 l S 199.42 84.87 m 207.06 84.87 l S 203.24 81.05 m 203.24 88.69 l S 208.49 94.12 m 216.13 94.12 l S 212.31 90.30 m 212.31 97.94 l S 264.61 218.05 m 272.25 218.05 l S 268.43 214.23 m 268.43 221.86 l S 83.20 267.66 m 90.84 267.66 l S 87.02 263.84 m 87.02 271.48 l S 182.78 108.68 m 190.42 108.68 l S 186.60 104.86 m 186.60 112.50 l S 231.73 151.16 m 239.37 151.16 l S 235.55 147.34 m 235.55 154.98 l S 182.56 112.61 m 190.19 112.61 l S 186.38 108.79 m 186.38 116.43 l S 225.55 131.49 m 233.19 131.49 l S 229.37 127.67 m 229.37 135.31 l S 223.96 126.17 m 231.60 126.17 l S 227.78 122.35 m 227.78 129.99 l S 188.60 99.62 m 196.23 99.62 l S 192.41 95.80 m 192.41 103.44 l S 157.40 191.78 m 165.03 191.78 l S 161.21 187.96 m 161.21 195.60 l S 191.88 94.74 m 199.52 94.74 l S 195.70 90.93 m 195.70 98.56 l S 196.66 87.58 m 204.30 87.58 l S 200.48 83.77 m 200.48 91.40 l S 189.93 96.56 m 197.57 96.56 l S 193.75 92.75 m 193.75 100.38 l S 223.85 122.79 m 231.49 122.79 l S 227.67 118.97 m 227.67 126.61 l S 246.23 187.47 m 253.86 187.47 l S 250.04 183.65 m 250.04 191.29 l S 196.75 87.33 m 204.39 87.33 l S 200.57 83.51 m 200.57 91.14 l S 177.08 125.88 m 184.72 125.88 l S 180.90 122.06 m 180.90 129.69 l S 231.44 148.92 m 239.08 148.92 l S 235.26 145.10 m 235.26 152.74 l S 185.38 97.56 m 193.01 97.56 l S 189.20 93.75 m 189.20 101.38 l S 201.61 85.85 m 209.25 85.85 l S 205.43 82.03 m 205.43 89.67 l S 104.45 267.66 m 112.08 267.66 l S 108.26 263.84 m 108.26 271.48 l S 152.65 198.49 m 160.29 198.49 l S 156.47 194.68 m 156.47 202.31 l S 197.56 86.91 m 205.19 86.91 l S 201.38 83.09 m 201.38 90.72 l S 195.29 89.77 m 202.93 89.77 l S 199.11 85.96 m 199.11 93.59 l S 191.16 95.62 m 198.80 95.62 l S 194.98 91.80 m 194.98 99.44 l S 144.25 253.26 m 151.89 253.26 l S 148.07 249.44 m 148.07 257.08 l S 218.21 109.96 m 225.85 109.96 l S 222.03 106.14 m 222.03 113.78 l S 186.12 106.04 m 193.76 106.04 l S 189.94 102.22 m 189.94 109.86 l S 202.16 86.57 m 209.80 86.57 l S 205.98 82.75 m 205.98 90.39 l S 189.89 98.33 m 197.53 98.33 l S 193.71 94.51 m 193.71 102.15 l S 199.66 84.70 m 207.30 84.70 l S 203.48 80.88 m 203.48 88.52 l S 252.70 202.94 m 260.34 202.94 l S 256.52 199.12 m 256.52 206.76 l S 168.69 151.87 m 176.33 151.87 l S 172.51 148.05 m 172.51 155.69 l S 194.87 90.18 m 202.51 90.18 l S 198.69 86.36 m 198.69 94.00 l S 312.39 267.66 m 320.03 267.66 l S 316.21 263.84 m 316.21 271.48 l S 163.58 155.01 m 171.22 155.01 l S 167.40 151.19 m 167.40 158.83 l S 225.19 130.64 m 232.82 130.64 l S 229.01 126.82 m 229.01 134.46 l S 123.77 267.66 m 131.41 267.66 l S 127.59 263.84 m 127.59 271.48 l S 186.74 103.24 m 194.37 103.24 l S 190.56 99.42 m 190.56 107.05 l S 174.41 129.05 m 182.05 129.05 l S 178.23 125.23 m 178.23 132.87 l S 163.54 159.34 m 171.18 159.34 l S 167.36 155.52 m 167.36 163.15 l S 245.84 200.52 m 253.47 200.52 l S 249.66 196.71 m 249.66 204.34 l S 146.92 218.05 m 154.56 218.05 l S 150.74 214.23 m 150.74 221.86 l S 165.79 152.74 m 173.42 152.74 l S 169.61 148.92 m 169.61 156.55 l S 167.83 145.98 m 175.47 145.98 l S 171.65 142.16 m 171.65 149.80 l S 200.90 85.31 m 208.54 85.31 l S 204.72 81.49 m 204.72 89.12 l S 177.68 121.33 m 185.32 121.33 l S 181.50 117.51 m 181.50 125.15 l S 259.22 213.95 m 266.85 213.95 l S 263.03 210.13 m 263.03 217.77 l S 219.54 115.83 m 227.17 115.83 l S 223.36 112.01 m 223.36 119.65 l S 153.69 210.76 m 161.33 210.76 l S 157.51 206.94 m 157.51 214.58 l S 193.73 90.98 m 201.37 90.98 l S 197.55 87.16 m 197.55 94.80 l S 178.55 122.88 m 186.18 122.88 l S 182.37 119.07 m 182.37 126.70 l S 189.42 95.67 m 197.06 95.67 l S 193.24 91.85 m 193.24 99.49 l S 202.00 86.13 m 209.64 86.13 l S 205.82 82.31 m 205.82 89.95 l S 245.32 202.94 m 252.96 202.94 l S 249.14 199.12 m 249.14 206.76 l S 197.98 86.55 m 205.62 86.55 l S 201.80 82.73 m 201.80 90.37 l S 209.98 96.28 m 217.61 96.28 l S 213.80 92.47 m 213.80 100.10 l S 167.98 172.11 m 175.62 172.11 l S 171.80 168.29 m 171.80 175.93 l S 247.48 205.15 m 255.11 205.15 l S 251.29 201.33 m 251.29 208.97 l S 203.76 87.64 m 211.40 87.64 l S 207.58 83.82 m 207.58 91.46 l S 209.93 97.22 m 217.56 97.22 l S 213.74 93.40 m 213.74 101.04 l S 227.04 131.29 m 234.68 131.29 l S 230.86 127.47 m 230.86 135.11 l S 196.95 87.25 m 204.59 87.25 l S 200.77 83.44 m 200.77 91.07 l S 99.01 267.66 m 106.65 267.66 l S 102.83 263.84 m 102.83 271.48 l S 161.50 165.10 m 169.13 165.10 l S 165.31 161.28 m 165.31 168.92 l S 192.27 93.03 m 199.90 93.03 l S 196.08 89.21 m 196.08 96.85 l S 200.27 84.56 m 207.91 84.56 l S 204.09 80.74 m 204.09 88.38 l S 228.61 140.04 m 236.25 140.04 l S 232.43 136.22 m 232.43 143.86 l S 194.09 92.40 m 201.73 92.40 l S 197.91 88.58 m 197.91 96.22 l S 224.33 125.22 m 231.97 125.22 l S 228.15 121.40 m 228.15 129.04 l S 245.27 174.56 m 252.91 174.56 l S 249.09 170.74 m 249.09 178.38 l S 202.98 87.58 m 210.62 87.58 l S 206.80 83.77 m 206.80 91.40 l S 147.51 200.52 m 155.15 200.52 l S 151.33 196.71 m 151.33 204.34 l S 250.81 210.76 m 258.45 210.76 l S 254.63 206.94 m 254.63 214.58 l S 236.48 166.38 m 244.11 166.38 l S 240.29 162.56 m 240.29 170.20 l S 192.86 92.40 m 200.49 92.40 l S 196.68 88.58 m 196.68 96.22 l S 91.48 267.66 m 99.11 267.66 l S 95.29 263.84 m 95.29 271.48 l S 197.63 85.58 m 205.27 85.58 l S 201.45 81.76 m 201.45 89.40 l S 203.64 88.25 m 211.27 88.25 l S 207.45 84.43 m 207.45 92.07 l S 274.04 267.66 m 281.67 267.66 l S 277.86 263.84 m 277.86 271.48 l S 208.82 94.85 m 216.46 94.85 l S 212.64 91.03 m 212.64 98.67 l S 182.82 110.86 m 190.45 110.86 l S 186.64 107.04 m 186.64 114.68 l S 151.88 207.47 m 159.52 207.47 l S 155.70 203.65 m 155.70 211.28 l S 164.35 161.61 m 171.99 161.61 l S 168.17 157.79 m 168.17 165.43 l S 176.34 124.88 m 183.98 124.88 l S 180.16 121.06 m 180.16 128.70 l S 190.32 95.41 m 197.95 95.41 l S 194.13 91.59 m 194.13 99.22 l S 165.47 151.43 m 173.11 151.43 l S 169.29 147.61 m 169.29 155.25 l S 176.52 117.68 m 184.16 117.68 l S 180.34 113.86 m 180.34 121.49 l S 128.99 253.26 m 136.62 253.26 l S 132.81 249.44 m 132.81 257.08 l S 281.56 267.66 m 289.20 267.66 l S 285.38 263.84 m 285.38 271.48 l S 202.41 86.78 m 210.05 86.78 l S 206.23 82.96 m 206.23 90.60 l S 158.64 182.26 m 166.28 182.26 l S 162.46 178.44 m 162.46 186.08 l S 186.29 103.74 m 193.92 103.74 l S 190.11 99.92 m 190.11 107.56 l S 209.24 95.87 m 216.87 95.87 l S 213.05 92.05 m 213.05 99.68 l S 128.78 267.66 m 136.42 267.66 l S 132.60 263.84 m 132.60 271.48 l S 219.56 115.12 m 227.20 115.12 l S 223.38 111.31 m 223.38 118.94 l S 189.56 98.07 m 197.20 98.07 l S 193.38 94.26 m 193.38 101.89 l S 167.92 148.92 m 175.56 148.92 l S 171.74 145.10 m 171.74 152.74 l S 140.89 213.95 m 148.52 213.95 l S 144.71 210.13 m 144.71 217.77 l S 151.88 200.52 m 159.52 200.52 l S 155.70 196.71 m 155.70 204.34 l S 187.39 102.07 m 195.02 102.07 l S 191.21 98.25 m 191.21 105.89 l S 213.05 101.53 m 220.68 101.53 l S 216.87 97.71 m 216.87 105.35 l S 220.38 120.29 m 228.02 120.29 l S 224.20 116.47 m 224.20 124.11 l S 217.73 111.96 m 225.37 111.96 l S 221.55 108.14 m 221.55 115.77 l S 232.28 150.80 m 239.92 150.80 l S 236.10 146.98 m 236.10 154.62 l S 214.00 103.88 m 221.63 103.88 l S 217.82 100.07 m 217.82 107.70 l S 200.79 85.10 m 208.43 85.10 l S 204.61 81.28 m 204.61 88.91 l S 134.95 234.47 m 142.59 234.47 l S 138.77 230.65 m 138.77 238.29 l S 205.46 90.59 m 213.10 90.59 l S 209.28 86.77 m 209.28 94.40 l S 161.64 181.37 m 169.27 181.37 l S 165.46 177.55 m 165.46 185.19 l S 191.57 94.36 m 199.21 94.36 l S 195.39 90.54 m 195.39 98.18 l S 158.97 191.78 m 166.61 191.78 l S 162.79 187.96 m 162.79 195.60 l S 256.20 213.95 m 263.83 213.95 l S 260.01 210.13 m 260.01 217.77 l S 200.47 84.75 m 208.11 84.75 l S 204.29 80.94 m 204.29 88.57 l S 147.92 210.76 m 155.56 210.76 l S 151.74 206.94 m 151.74 214.58 l S 210.17 98.21 m 217.80 98.21 l S 213.99 94.39 m 213.99 102.03 l S 105.56 267.66 m 113.20 267.66 l S 109.38 263.84 m 109.38 271.48 l S 236.60 162.74 m 244.24 162.74 l S 240.42 158.92 m 240.42 166.56 l S 94.11 267.66 m 101.75 267.66 l S 97.93 263.84 m 97.93 271.48 l S 161.53 166.38 m 169.17 166.38 l S 165.35 162.56 m 165.35 170.20 l S 106.30 267.66 m 113.94 267.66 l S 110.12 263.84 m 110.12 271.48 l S 200.30 84.67 m 207.94 84.67 l S 204.12 80.85 m 204.12 88.49 l S 171.85 140.52 m 179.48 140.52 l S 175.66 136.70 m 175.66 144.34 l S 195.33 89.47 m 202.96 89.47 l S 199.14 85.65 m 199.14 93.28 l S 206.99 92.87 m 214.62 92.87 l S 210.80 89.05 m 210.80 96.68 l S 267.48 253.26 m 275.11 253.26 l S 271.29 249.44 m 271.29 257.08 l S 131.69 242.83 m 139.33 242.83 l S 135.51 239.01 m 135.51 246.65 l S 141.12 234.47 m 148.76 234.47 l S 144.94 230.65 m 144.94 238.29 l S 191.53 95.85 m 199.17 95.85 l S 195.35 92.03 m 195.35 99.67 l S 227.80 138.83 m 235.43 138.83 l S 231.62 135.01 m 231.62 142.65 l S 286.14 267.66 m 293.78 267.66 l S 289.96 263.84 m 289.96 271.48 l S 114.15 267.66 m 121.78 267.66 l S 117.97 263.84 m 117.97 271.48 l S 231.45 145.73 m 239.09 145.73 l S 235.27 141.91 m 235.27 149.55 l S 223.65 123.14 m 231.29 123.14 l S 227.47 119.32 m 227.47 126.96 l S 171.84 136.61 m 179.47 136.61 l S 175.66 132.79 m 175.66 140.43 l S 199.82 84.75 m 207.46 84.75 l S 203.64 80.94 m 203.64 88.57 l S 161.42 169.68 m 169.06 169.68 l S 165.24 165.86 m 165.24 173.49 l S 233.56 155.86 m 241.19 155.86 l S 237.37 152.04 m 237.37 159.68 l S 171.45 139.80 m 179.08 139.80 l S 175.26 135.99 m 175.26 143.62 l S 170.79 140.04 m 178.43 140.04 l S 174.61 136.22 m 174.61 143.86 l S 212.48 101.92 m 220.12 101.92 l S 216.30 98.10 m 216.30 105.74 l S 159.19 176.34 m 166.82 176.34 l S 163.01 172.53 m 163.01 180.16 l S 205.19 90.67 m 212.83 90.67 l S 209.01 86.85 m 209.01 94.49 l S 319.51 267.66 m 327.15 267.66 l S 323.33 263.84 m 323.33 271.48 l S 183.86 108.91 m 191.50 108.91 l S 187.68 105.09 m 187.68 112.73 l S 222.06 120.84 m 229.70 120.84 l S 225.88 117.02 m 225.88 124.66 l S 167.23 144.15 m 174.87 144.15 l S 171.05 140.33 m 171.05 147.97 l S 188.37 99.31 m 196.00 99.31 l S 192.18 95.49 m 192.18 103.13 l S 236.29 157.05 m 243.92 157.05 l S 240.11 153.23 m 240.11 160.87 l S 132.30 267.66 m 139.94 267.66 l S 136.12 263.84 m 136.12 271.48 l S 230.55 143.90 m 238.19 143.90 l S 234.37 140.08 m 234.37 147.71 l S 190.66 95.67 m 198.30 95.67 l S 194.48 91.85 m 194.48 99.49 l S 205.46 90.00 m 213.09 90.00 l S 209.28 86.18 m 209.28 93.82 l S 217.36 112.02 m 225.00 112.02 l S 221.18 108.20 m 221.18 115.84 l S 281.52 267.66 m 289.15 267.66 l S 285.33 263.84 m 285.33 271.48 l S 215.15 105.56 m 222.78 105.56 l S 218.97 101.74 m 218.97 109.38 l S 196.03 88.66 m 203.67 88.66 l S 199.85 84.84 m 199.85 92.48 l S 156.89 183.29 m 164.53 183.29 l S 160.71 179.48 m 160.71 187.11 l S 190.13 96.91 m 197.77 96.91 l S 193.95 93.09 m 193.95 100.73 l S 180.59 113.88 m 188.23 113.88 l S 184.41 110.06 m 184.41 117.70 l S 253.80 222.51 m 261.44 222.51 l S 257.62 218.69 m 257.62 226.33 l S 233.18 150.13 m 240.81 150.13 l S 236.99 146.31 m 236.99 153.95 l S 154.77 196.81 m 162.41 196.81 l S 158.59 192.99 m 158.59 200.63 l S 203.98 88.77 m 211.61 88.77 l S 207.79 84.95 m 207.79 92.59 l S 187.60 102.46 m 195.23 102.46 l S 191.41 98.64 m 191.41 106.28 l S 190.07 99.08 m 197.71 99.08 l S 193.89 95.27 m 193.89 102.90 l S 179.61 119.53 m 187.24 119.53 l S 183.43 115.71 m 183.43 123.35 l S 208.78 95.65 m 216.41 95.65 l S 212.59 91.83 m 212.59 99.47 l S 166.56 158.33 m 174.20 158.33 l S 170.38 154.51 m 170.38 162.14 l S 137.66 253.26 m 145.30 253.26 l S 141.48 249.44 m 141.48 257.08 l S 179.21 118.80 m 186.84 118.80 l S 183.02 114.99 m 183.02 122.62 l S 212.78 103.38 m 220.41 103.38 l S 216.60 99.56 m 216.60 107.20 l S 206.82 92.02 m 214.45 92.02 l S 210.63 88.20 m 210.63 95.84 l S 176.21 126.56 m 183.85 126.56 l S 180.03 122.74 m 180.03 130.37 l S 133.00 253.26 m 140.64 253.26 l S 136.82 249.44 m 136.82 257.08 l S 202.95 86.91 m 210.59 86.91 l S 206.77 83.09 m 206.77 90.72 l S 164.87 157.61 m 172.51 157.61 l S 168.69 153.79 m 168.69 161.43 l S 147.11 213.95 m 154.75 213.95 l S 150.93 210.13 m 150.93 217.77 l S 186.44 103.54 m 194.08 103.54 l S 190.26 99.72 m 190.26 107.36 l S 145.39 218.05 m 153.03 218.05 l S 149.21 214.23 m 149.21 221.86 l S 160.63 173.74 m 168.26 173.74 l S 164.44 169.92 m 164.44 177.56 l S 203.16 87.02 m 210.80 87.02 l S 206.98 83.20 m 206.98 90.84 l S 185.32 106.88 m 192.95 106.88 l S 189.14 103.06 m 189.14 110.70 l S 186.54 102.94 m 194.17 102.94 l S 190.35 99.12 m 190.35 106.76 l S 244.58 182.26 m 252.22 182.26 l S 248.40 178.44 m 248.40 186.08 l S 148.81 210.76 m 156.45 210.76 l S 152.63 206.94 m 152.63 214.58 l S 182.47 113.88 m 190.10 113.88 l S 186.29 110.06 m 186.29 117.70 l S 169.61 141.37 m 177.24 141.37 l S 173.43 137.55 m 173.43 145.19 l S 208.04 93.93 m 215.68 93.93 l S 211.86 90.11 m 211.86 97.75 l S 189.84 98.21 m 197.47 98.21 l S 193.66 94.39 m 193.66 102.03 l S 158.84 181.37 m 166.48 181.37 l S 162.66 177.55 m 162.66 185.19 l S 202.29 86.77 m 209.93 86.77 l S 206.11 82.95 m 206.11 90.59 l S 177.13 120.07 m 184.77 120.07 l S 180.95 116.25 m 180.95 123.89 l S 213.56 102.81 m 221.20 102.81 l S 217.38 98.99 m 217.38 106.63 l S 175.46 129.05 m 183.10 129.05 l S 179.28 125.23 m 179.28 132.87 l S 228.02 136.21 m 235.66 136.21 l S 231.84 132.40 m 231.84 140.03 l S 147.34 205.15 m 154.97 205.15 l S 151.15 201.33 m 151.15 208.97 l S 149.42 200.52 m 157.06 200.52 l S 153.24 196.71 m 153.24 204.34 l S 195.36 89.10 m 202.99 89.10 l S 199.17 85.28 m 199.17 92.92 l S 203.51 87.69 m 211.15 87.69 l S 207.33 83.87 m 207.33 91.51 l S 198.80 85.58 m 206.44 85.58 l S 202.62 81.76 m 202.62 89.40 l S 132.63 253.26 m 140.26 253.26 l S 136.45 249.44 m 136.45 257.08 l S 178.16 122.16 m 185.79 122.16 l S 181.98 118.34 m 181.98 125.98 l S 174.86 126.96 m 182.50 126.96 l S 178.68 123.14 m 178.68 130.78 l S 166.50 151.87 m 174.14 151.87 l S 170.32 148.05 m 170.32 155.69 l S 187.54 95.45 m 195.18 95.45 l S 191.36 91.64 m 191.36 99.27 l S 237.87 159.34 m 245.51 159.34 l S 241.69 155.52 m 241.69 163.15 l S 186.62 102.67 m 194.26 102.67 l S 190.44 98.85 m 190.44 106.49 l S 189.40 97.84 m 197.04 97.84 l S 193.22 94.02 m 193.22 101.66 l S 179.94 119.29 m 187.58 119.29 l S 183.76 115.48 m 183.76 123.11 l S 112.66 267.66 m 120.30 267.66 l S 116.48 263.84 m 116.48 271.48 l S 164.36 162.21 m 172.00 162.21 l S 168.18 158.39 m 168.18 166.02 l S 188.40 100.06 m 196.04 100.06 l S 192.22 96.25 m 192.22 103.88 l S 198.60 85.82 m 206.24 85.82 l S 202.42 82.00 m 202.42 89.64 l S 208.39 93.96 m 216.03 93.96 l S 212.21 90.14 m 212.21 97.78 l S 258.93 234.47 m 266.57 234.47 l S 262.75 230.65 m 262.75 238.29 l S 200.25 84.67 m 207.88 84.67 l S 204.07 80.85 m 204.07 88.49 l S 176.86 126.26 m 184.49 126.26 l S 180.68 122.44 m 180.68 130.08 l S 230.22 142.88 m 237.86 142.88 l S 234.04 139.06 m 234.04 146.70 l S 177.03 125.14 m 184.66 125.14 l S 180.85 121.32 m 180.85 128.96 l S 144.75 253.26 m 152.38 253.26 l S 148.57 249.44 m 148.57 257.08 l S 208.85 89.00 m 216.48 89.00 l S 212.67 85.18 m 212.67 92.82 l S 171.90 136.96 m 179.54 136.96 l S 175.72 133.14 m 175.72 140.78 l S 152.44 202.94 m 160.08 202.94 l S 156.26 199.12 m 156.26 206.76 l S 194.50 90.14 m 202.14 90.14 l S 198.32 86.32 m 198.32 93.96 l S 205.11 90.61 m 212.75 90.61 l S 208.93 86.79 m 208.93 94.43 l S 206.00 91.36 m 213.64 91.36 l S 209.82 87.55 m 209.82 95.18 l S 200.96 85.58 m 208.59 85.58 l S 204.77 81.76 m 204.77 89.40 l S 218.71 111.77 m 226.35 111.77 l S 222.53 107.95 m 222.53 115.59 l S 202.73 87.42 m 210.36 87.42 l S 206.55 83.60 m 206.55 91.24 l S 132.94 253.26 m 140.58 253.26 l S 136.76 249.44 m 136.76 257.08 l S 190.16 96.86 m 197.80 96.86 l S 193.98 93.04 m 193.98 100.68 l S 306.79 267.66 m 314.43 267.66 l S 310.61 263.84 m 310.61 271.48 l S 229.97 139.09 m 237.61 139.09 l S 233.79 135.27 m 233.79 142.90 l S 148.25 183.29 m 155.89 183.29 l S 152.07 179.48 m 152.07 187.11 l S 190.30 97.33 m 197.94 97.33 l S 194.12 93.51 m 194.12 101.15 l S 220.01 118.80 m 227.65 118.80 l S 223.83 114.99 m 223.83 122.62 l S 182.26 112.85 m 189.90 112.85 l S 186.08 109.03 m 186.08 116.67 l S 209.68 97.53 m 217.32 97.53 l S 213.50 93.71 m 213.50 101.35 l S 211.98 100.65 m 219.62 100.65 l S 215.80 96.83 m 215.80 104.47 l S 226.29 131.59 m 233.93 131.59 l S 230.11 127.78 m 230.11 135.41 l S 223.08 124.17 m 230.71 124.17 l S 226.90 120.35 m 226.90 127.99 l S 186.42 103.81 m 194.06 103.81 l S 190.24 99.99 m 190.24 107.63 l S 174.67 130.82 m 182.30 130.82 l S 178.48 127.00 m 178.48 134.63 l S 128.25 253.26 m 135.89 253.26 l S 132.07 249.44 m 132.07 257.08 l S 240.23 181.37 m 247.86 181.37 l S 244.04 177.55 m 244.04 185.19 l S 265.96 242.83 m 273.59 242.83 l S 269.77 239.01 m 269.77 246.65 l S 213.66 96.51 m 221.30 96.51 l S 217.48 92.69 m 217.48 100.32 l S 154.57 191.78 m 162.21 191.78 l S 158.39 187.96 m 158.39 195.60 l S 228.80 135.31 m 236.44 135.31 l S 232.62 131.49 m 232.62 139.13 l S 250.13 196.81 m 257.77 196.81 l S 253.95 192.99 m 253.95 200.63 l S 131.77 267.66 m 139.41 267.66 l S 135.59 263.84 m 135.59 271.48 l S 286.78 253.26 m 294.41 253.26 l S 290.59 249.44 m 290.59 257.08 l S 171.65 134.60 m 179.28 134.60 l S 175.47 130.79 m 175.47 138.42 l S 220.25 117.42 m 227.89 117.42 l S 224.07 113.60 m 224.07 121.23 l S 163.48 157.61 m 171.11 157.61 l S 167.29 153.79 m 167.29 161.43 l S 318.10 267.66 m 325.74 267.66 l S 321.92 263.84 m 321.92 271.48 l S 179.64 117.68 m 187.28 117.68 l S 183.46 113.86 m 183.46 121.49 l S 253.00 210.76 m 260.64 210.76 l S 256.82 206.94 m 256.82 214.58 l S 184.89 105.50 m 192.52 105.50 l S 188.71 101.68 m 188.71 109.32 l S 230.70 142.31 m 238.33 142.31 l S 234.51 138.49 m 234.51 146.13 l S 238.95 164.11 m 246.59 164.11 l S 242.77 160.30 m 242.77 167.93 l S 264.22 242.83 m 271.86 242.83 l S 268.04 239.01 m 268.04 246.65 l S 247.36 195.07 m 255.00 195.07 l S 251.18 191.25 m 251.18 198.88 l S 163.38 166.99 m 171.02 166.99 l S 167.20 163.17 m 167.20 170.81 l S 143.01 234.47 m 150.64 234.47 l S 146.83 230.65 m 146.83 238.29 l S 202.98 87.82 m 210.62 87.82 l S 206.80 84.00 m 206.80 91.63 l S 217.73 105.09 m 225.36 105.09 l S 221.55 101.27 m 221.55 108.91 l S 213.28 103.06 m 220.92 103.06 l S 217.10 99.24 m 217.10 106.88 l S 166.38 153.87 m 174.02 153.87 l S 170.20 150.05 m 170.20 157.69 l S 180.51 116.07 m 188.15 116.07 l S 184.33 112.26 m 184.33 119.89 l S 160.33 173.74 m 167.96 173.74 l S 164.15 169.92 m 164.15 177.56 l S 225.94 125.01 m 233.58 125.01 l S 229.76 121.19 m 229.76 128.83 l S 144.94 218.05 m 152.58 218.05 l S 148.76 214.23 m 148.76 221.86 l S 201.15 85.58 m 208.78 85.58 l S 204.96 81.76 m 204.96 89.40 l S 266.56 267.66 m 274.20 267.66 l S 270.38 263.84 m 270.38 271.48 l S 268.93 267.66 m 276.57 267.66 l S 272.75 263.84 m 272.75 271.48 l S 205.35 90.19 m 212.98 90.19 l S 209.16 86.37 m 209.16 94.00 l S 233.16 156.14 m 240.80 156.14 l S 236.98 152.33 m 236.98 159.96 l S 188.85 98.21 m 196.49 98.21 l S 192.67 94.39 m 192.67 102.03 l S 238.76 186.17 m 246.40 186.17 l S 242.58 182.36 m 242.58 189.99 l S 234.10 155.86 m 241.74 155.86 l S 237.92 152.04 m 237.92 159.68 l S 177.93 124.27 m 185.57 124.27 l S 181.75 120.45 m 181.75 128.09 l S 133.08 267.66 m 140.72 267.66 l S 136.90 263.84 m 136.90 271.48 l S 153.54 180.35 m 161.18 180.35 l S 157.36 176.53 m 157.36 184.17 l S 133.94 253.26 m 141.57 253.26 l S 137.75 249.44 m 137.75 257.08 l S 226.66 132.71 m 234.30 132.71 l S 230.48 128.89 m 230.48 136.52 l S 146.17 202.94 m 153.81 202.94 l S 149.99 199.12 m 149.99 206.76 l S 243.73 186.17 m 251.36 186.17 l S 247.54 182.36 m 247.54 189.99 l S 108.32 267.66 m 115.96 267.66 l S 112.14 263.84 m 112.14 271.48 l S 159.32 168.98 m 166.96 168.98 l S 163.14 165.16 m 163.14 172.80 l S 167.84 151.16 m 175.48 151.16 l S 171.66 147.34 m 171.66 154.98 l S 202.22 86.91 m 209.86 86.91 l S 206.04 83.09 m 206.04 90.73 l S 179.96 117.68 m 187.60 117.68 l S 183.78 113.86 m 183.78 121.49 l S 237.50 165.67 m 245.14 165.67 l S 241.32 161.85 m 241.32 169.49 l S 84.27 267.66 m 91.91 267.66 l S 88.09 263.84 m 88.09 271.48 l S 168.21 149.55 m 175.85 149.55 l S 172.03 145.73 m 172.03 153.37 l S 185.05 106.75 m 192.68 106.75 l S 188.86 102.93 m 188.86 110.56 l S 202.37 87.02 m 210.00 87.02 l S 206.19 83.20 m 206.19 90.84 l S 156.60 179.25 m 164.24 179.25 l S 160.42 175.43 m 160.42 183.07 l S 209.01 95.15 m 216.65 95.15 l S 212.83 91.33 m 212.83 98.97 l S 261.69 218.05 m 269.32 218.05 l S 265.51 214.23 m 265.51 221.86 l S 261.33 253.26 m 268.97 253.26 l S 265.15 249.44 m 265.15 257.08 l S 249.17 182.26 m 256.81 182.26 l S 252.99 178.44 m 252.99 186.08 l S 247.04 196.81 m 254.67 196.81 l S 250.86 192.99 m 250.86 200.63 l S 153.38 191.78 m 161.01 191.78 l S 157.19 187.96 m 157.19 195.60 l S 156.33 168.39 m 163.96 168.39 l S 160.15 164.57 m 160.15 172.21 l S 303.15 267.66 m 310.79 267.66 l S 306.97 263.84 m 306.97 271.48 l S 265.11 242.83 m 272.75 242.83 l S 268.93 239.01 m 268.93 246.65 l S 231.64 145.40 m 239.28 145.40 l S 235.46 141.58 m 235.46 149.21 l S 168.54 149.82 m 176.17 149.82 l S 172.35 146.00 m 172.35 153.64 l S 222.42 127.17 m 230.05 127.17 l S 226.24 123.35 m 226.24 130.99 l S 76.39 267.66 m 84.03 267.66 l S 80.21 263.84 m 80.21 271.48 l S 183.48 101.79 m 191.12 101.79 l S 187.30 97.98 m 187.30 105.61 l S 174.64 131.75 m 182.28 131.75 l S 178.46 127.93 m 178.46 135.57 l S 270.51 253.26 m 278.15 253.26 l S 274.33 249.44 m 274.33 257.08 l S 241.20 178.15 m 248.84 178.15 l S 245.02 174.33 m 245.02 181.97 l S 274.91 242.83 m 282.55 242.83 l S 278.73 239.01 m 278.73 246.65 l S 195.51 90.03 m 203.15 90.03 l S 199.33 86.21 m 199.33 93.85 l S 227.96 138.61 m 235.60 138.61 l S 231.78 134.79 m 231.78 142.43 l S 217.29 111.64 m 224.93 111.64 l S 221.11 107.83 m 221.11 115.46 l S 216.36 108.45 m 224.00 108.45 l S 220.18 104.63 m 220.18 112.27 l S 208.81 95.65 m 216.45 95.65 l S 212.63 91.83 m 212.63 99.47 l S 167.11 148.92 m 174.75 148.92 l S 170.93 145.10 m 170.93 152.74 l S 230.77 152.28 m 238.40 152.28 l S 234.59 148.46 m 234.59 156.10 l S 201.66 85.58 m 209.30 85.58 l S 205.48 81.76 m 205.48 89.40 l S 247.18 205.15 m 254.82 205.15 l S 251.00 201.33 m 251.00 208.97 l S 257.13 218.05 m 264.77 218.05 l S 260.95 214.23 m 260.95 221.86 l S 162.03 155.86 m 169.66 155.86 l S 165.85 152.04 m 165.85 159.68 l S 145.68 234.47 m 153.32 234.47 l S 149.50 230.65 m 149.50 238.29 l S 208.55 94.70 m 216.18 94.70 l S 212.37 90.88 m 212.37 98.52 l S 217.31 107.14 m 224.94 107.14 l S 221.13 103.32 m 221.13 110.96 l S 199.90 84.57 m 207.54 84.57 l S 203.72 80.76 m 203.72 88.39 l S 161.20 181.37 m 168.83 181.37 l S 165.01 177.55 m 165.01 185.19 l S 116.15 267.66 m 123.78 267.66 l S 119.96 263.84 m 119.96 271.48 l S 146.30 205.15 m 153.94 205.15 l S 150.12 201.33 m 150.12 208.97 l S 210.24 97.33 m 217.88 97.33 l S 214.06 93.51 m 214.06 101.15 l S 165.55 158.84 m 173.19 158.84 l S 169.37 155.02 m 169.37 162.66 l S 161.82 169.68 m 169.45 169.68 l S 165.64 165.86 m 165.64 173.49 l S 233.99 155.01 m 241.63 155.01 l S 237.81 151.19 m 237.81 158.83 l S 226.22 131.88 m 233.85 131.88 l S 230.04 128.06 m 230.04 135.70 l S 239.87 164.43 m 247.50 164.43 l S 243.68 160.61 m 243.68 168.25 l S 176.44 126.42 m 184.08 126.42 l S 180.26 122.60 m 180.26 130.23 l S 157.49 156.58 m 165.12 156.58 l S 161.31 152.76 m 161.31 160.39 l S 165.00 156.14 m 172.64 156.14 l S 168.82 152.33 m 168.82 159.96 l S 223.67 125.22 m 231.31 125.22 l S 227.49 121.40 m 227.49 129.04 l S 232.44 146.74 m 240.07 146.74 l S 236.26 142.92 m 236.26 150.56 l S 99.15 267.66 m 106.79 267.66 l S 102.97 263.84 m 102.97 271.48 l S 199.84 84.62 m 207.47 84.62 l S 203.65 80.80 m 203.65 88.43 l S 190.05 97.67 m 197.69 97.67 l S 193.87 93.85 m 193.87 101.49 l S 208.24 94.90 m 215.88 94.90 l S 212.06 91.08 m 212.06 98.72 l S 134.72 253.26 m 142.35 253.26 l S 138.53 249.44 m 138.53 257.08 l S 174.81 129.32 m 182.44 129.32 l S 178.63 125.50 m 178.63 133.14 l S 216.35 107.78 m 223.98 107.78 l S 220.16 103.97 m 220.16 111.60 l S 162.12 174.56 m 169.76 174.56 l S 165.94 170.74 m 165.94 178.38 l S 200.66 85.09 m 208.30 85.09 l S 204.48 81.28 m 204.48 88.91 l S 228.42 138.39 m 236.05 138.39 l S 232.24 134.57 m 232.24 142.21 l S 175.27 121.09 m 182.90 121.09 l S 179.08 117.27 m 179.08 124.91 l S 169.15 147.46 m 176.79 147.46 l S 172.97 143.64 m 172.97 151.27 l S 147.85 218.05 m 155.49 218.05 l S 151.67 214.23 m 151.67 221.86 l S 93.53 267.66 m 101.17 267.66 l S 97.35 263.84 m 97.35 271.48 l S 107.74 267.66 m 115.37 267.66 l S 111.55 263.84 m 111.55 271.48 l S 249.91 218.05 m 257.55 218.05 l S 253.73 214.23 m 253.73 221.86 l S 213.35 102.34 m 220.98 102.34 l S 217.16 98.52 m 217.16 106.16 l S 206.41 91.25 m 214.04 91.25 l S 210.22 87.43 m 210.22 95.06 l S 120.12 267.66 m 127.75 267.66 l S 123.94 263.84 m 123.94 271.48 l S 262.63 253.26 m 270.27 253.26 l S 266.45 249.44 m 266.45 257.08 l S 226.39 134.60 m 234.02 134.60 l S 230.20 130.79 m 230.20 138.42 l S 164.38 157.96 m 172.02 157.96 l S 168.20 154.14 m 168.20 161.78 l S 192.83 93.24 m 200.47 93.24 l S 196.65 89.42 m 196.65 97.06 l S 199.27 84.93 m 206.91 84.93 l S 203.09 81.11 m 203.09 88.74 l S 228.43 139.80 m 236.07 139.80 l S 232.25 135.99 m 232.25 143.62 l S 243.41 184.63 m 251.05 184.63 l S 247.23 180.81 m 247.23 188.44 l S 184.30 100.54 m 191.93 100.54 l S 188.11 96.73 m 188.11 104.36 l S 210.07 97.95 m 217.70 97.95 l S 213.88 94.14 m 213.88 101.77 l S 166.23 154.61 m 173.87 154.61 l S 170.05 150.79 m 170.05 158.43 l S 180.39 117.29 m 188.02 117.29 l S 184.21 113.47 m 184.21 121.10 l S 232.93 148.03 m 240.57 148.03 l S 236.75 144.22 m 236.75 151.85 l S 167.83 151.43 m 175.47 151.43 l S 171.65 147.61 m 171.65 155.25 l S 299.13 267.66 m 306.77 267.66 l S 302.95 263.84 m 302.95 271.48 l S 217.49 112.76 m 225.12 112.76 l S 221.31 108.95 m 221.31 116.58 l S 121.80 267.66 m 129.43 267.66 l S 125.61 263.84 m 125.61 271.48 l S 219.58 117.52 m 227.22 117.52 l S 223.40 113.71 m 223.40 121.34 l S 201.01 85.60 m 208.65 85.60 l S 204.83 81.78 m 204.83 89.42 l S 237.72 159.80 m 245.36 159.80 l S 241.54 155.98 m 241.54 163.62 l S 296.97 267.66 m 304.60 267.66 l S 300.79 263.84 m 300.79 271.48 l S 164.59 149.55 m 172.23 149.55 l S 168.41 145.73 m 168.41 153.37 l S 93.80 267.66 m 101.44 267.66 l S 97.62 263.84 m 97.62 271.48 l S 269.82 253.26 m 277.45 253.26 l S 273.64 249.44 m 273.64 257.08 l S 318.41 267.66 m 326.05 267.66 l S 322.23 263.84 m 322.23 271.48 l S 223.50 126.01 m 231.14 126.01 l S 227.32 122.19 m 227.32 129.83 l S 231.29 147.13 m 238.92 147.13 l S 235.11 143.31 m 235.11 150.95 l S 249.84 205.15 m 257.47 205.15 l S 253.65 201.33 m 253.65 208.97 l S 218.58 111.42 m 226.21 111.42 l S 222.39 107.60 m 222.39 115.24 l S 95.34 267.66 m 102.98 267.66 l S 99.16 263.84 m 99.16 271.48 l S 171.21 140.28 m 178.85 140.28 l S 175.03 136.46 m 175.03 144.09 l S 226.90 135.50 m 234.53 135.50 l S 230.72 131.68 m 230.72 139.32 l S 161.55 166.99 m 169.19 166.99 l S 165.37 163.17 m 165.37 170.81 l S 93.97 267.66 m 101.61 267.66 l S 97.79 263.84 m 97.79 271.48 l S 162.81 166.99 m 170.45 166.99 l S 166.63 163.17 m 166.63 170.81 l S 227.87 137.88 m 235.51 137.88 l S 231.69 134.06 m 231.69 141.69 l S 221.27 117.76 m 228.90 117.76 l S 225.08 113.94 m 225.08 121.58 l S 227.89 137.66 m 235.53 137.66 l S 231.71 133.85 m 231.71 141.48 l S 211.32 99.18 m 218.96 99.18 l S 215.14 95.37 m 215.14 103.00 l S 142.36 234.47 m 150.00 234.47 l S 146.18 230.65 m 146.18 238.29 l S 277.82 267.66 m 285.46 267.66 l S 281.64 263.84 m 281.64 271.48 l S 238.42 154.22 m 246.06 154.22 l S 242.24 150.40 m 242.24 158.04 l S 169.84 140.28 m 177.47 140.28 l S 173.65 136.46 m 173.65 144.09 l S 227.61 134.45 m 235.25 134.45 l S 231.43 130.63 m 231.43 138.27 l S 170.42 143.67 m 178.05 143.67 l S 174.23 139.85 m 174.23 147.49 l S 157.09 184.63 m 164.73 184.63 l S 160.91 180.81 m 160.91 188.44 l S 218.06 106.92 m 225.70 106.92 l S 221.88 103.11 m 221.88 110.74 l S 139.03 222.51 m 146.67 222.51 l S 142.85 218.69 m 142.85 226.33 l S 226.67 135.72 m 234.30 135.72 l S 230.48 131.90 m 230.48 139.54 l S 198.91 85.64 m 206.55 85.64 l S 202.73 81.82 m 202.73 89.46 l S 186.00 103.48 m 193.63 103.48 l S 189.81 99.67 m 189.81 107.30 l S 147.26 210.76 m 154.90 210.76 l S 151.08 206.94 m 151.08 214.58 l S 106.06 267.66 m 113.70 267.66 l S 109.88 263.84 m 109.88 271.48 l S 223.81 125.72 m 231.45 125.72 l S 227.63 121.90 m 227.63 129.54 l S 225.19 134.60 m 232.83 134.60 l S 229.01 130.79 m 229.01 138.42 l S 207.88 94.12 m 215.52 94.12 l S 211.70 90.30 m 211.70 97.94 l S 133.88 267.66 m 141.51 267.66 l S 137.70 263.84 m 137.70 271.48 l S 141.77 267.66 m 149.40 267.66 l S 145.59 263.84 m 145.59 271.48 l S 155.13 175.46 m 162.77 175.46 l S 158.95 171.64 m 158.95 179.27 l S 200.57 84.76 m 208.20 84.76 l S 204.38 80.94 m 204.38 88.57 l S 135.51 234.47 m 143.15 234.47 l S 139.33 230.65 m 139.33 238.29 l S 127.80 267.66 m 135.44 267.66 l S 131.62 263.84 m 131.62 271.48 l S 150.10 191.78 m 157.74 191.78 l S 153.92 187.96 m 153.92 195.60 l S 214.39 105.56 m 222.03 105.56 l S 218.21 101.74 m 218.21 109.38 l S 171.68 139.09 m 179.31 139.09 l S 175.50 135.27 m 175.50 142.90 l S 174.89 116.44 m 182.53 116.44 l S 178.71 112.62 m 178.71 120.26 l S 198.91 85.51 m 206.55 85.51 l S 202.73 81.69 m 202.73 89.33 l S 267.46 267.66 m 275.10 267.66 l S 271.28 263.84 m 271.28 271.48 l S 137.35 234.47 m 144.99 234.47 l S 141.17 230.65 m 141.17 238.29 l S 187.37 102.21 m 195.00 102.21 l S 191.19 98.39 m 191.19 106.02 l S 188.29 100.27 m 195.93 100.27 l S 192.11 96.45 m 192.11 104.09 l S 197.01 87.19 m 204.64 87.19 l S 200.83 83.37 m 200.83 91.01 l S 99.68 267.66 m 107.32 267.66 l S 103.50 263.84 m 103.50 271.48 l S 206.49 92.13 m 214.12 92.13 l S 210.31 88.31 m 210.31 95.95 l S 178.50 121.09 m 186.14 121.09 l S 182.32 117.27 m 182.32 124.91 l S 136.11 253.26 m 143.75 253.26 l S 139.93 249.44 m 139.93 257.08 l S 128.35 253.26 m 135.99 253.26 l S 132.17 249.44 m 132.17 257.08 l S 174.66 127.96 m 182.29 127.96 l S 178.47 124.15 m 178.47 131.78 l S 188.43 100.85 m 196.06 100.85 l S 192.24 97.04 m 192.24 104.67 l S 254.60 222.51 m 262.24 222.51 l S 258.42 218.69 m 258.42 226.33 l S 233.22 156.14 m 240.85 156.14 l S 237.03 152.33 m 237.03 159.96 l S 248.51 198.49 m 256.15 198.49 l S 252.33 194.68 m 252.33 202.31 l S 149.50 210.76 m 157.14 210.76 l S 153.32 206.94 m 153.32 214.58 l S 231.15 147.13 m 238.79 147.13 l S 234.97 143.31 m 234.97 150.95 l S 178.63 122.16 m 186.26 122.16 l S 182.44 118.34 m 182.44 125.98 l S 187.41 103.06 m 195.04 103.06 l S 191.22 99.24 m 191.22 106.88 l S 172.61 134.89 m 180.25 134.89 l S 176.43 131.07 m 176.43 138.70 l S 258.78 242.83 m 266.42 242.83 l S 262.60 239.01 m 262.60 246.65 l S 267.22 242.83 m 274.86 242.83 l S 271.04 239.01 m 271.04 246.65 l S 207.77 92.06 m 215.41 92.06 l S 211.59 88.24 m 211.59 95.87 l S 286.95 267.66 m 294.59 267.66 l S 290.77 263.84 m 290.77 271.48 l S 105.52 267.66 m 113.16 267.66 l S 109.34 263.84 m 109.34 271.48 l S 142.60 210.76 m 150.23 210.76 l S 146.42 206.94 m 146.42 214.58 l S 140.72 227.88 m 148.36 227.88 l S 144.54 224.06 m 144.54 231.69 l S 147.30 227.88 m 154.94 227.88 l S 151.12 224.06 m 151.12 231.69 l S 208.11 95.02 m 215.75 95.02 l S 211.93 91.21 m 211.93 98.84 l S 200.02 84.55 m 207.65 84.55 l S 203.84 80.73 m 203.84 88.37 l S 187.85 101.53 m 195.49 101.53 l S 191.67 97.71 m 191.67 105.35 l S 142.51 234.47 m 150.15 234.47 l S 146.33 230.65 m 146.33 238.29 l S 168.91 145.73 m 176.54 145.73 l S 172.73 141.91 m 172.73 149.55 l S 238.26 177.23 m 245.90 177.23 l S 242.08 173.41 m 242.08 181.05 l S 196.51 87.25 m 204.15 87.25 l S 200.33 83.44 m 200.33 91.07 l S 217.12 111.40 m 224.76 111.40 l S 220.94 107.58 m 220.94 115.22 l S 208.70 94.98 m 216.33 94.98 l S 212.52 91.16 m 212.52 98.80 l S 147.64 207.47 m 155.28 207.47 l S 151.46 203.65 m 151.46 211.28 l S 172.87 137.13 m 180.50 137.13 l S 176.69 133.32 m 176.69 140.95 l S 130.09 267.66 m 137.73 267.66 l S 133.91 263.84 m 133.91 271.48 l S 195.25 90.03 m 202.88 90.03 l S 199.07 86.21 m 199.07 93.85 l S 70.23 267.66 m 77.87 267.66 l S 74.05 263.84 m 74.05 271.48 l S 205.23 90.00 m 212.86 90.00 l S 209.05 86.18 m 209.05 93.82 l S 191.30 96.53 m 198.93 96.53 l S 195.12 92.71 m 195.12 100.34 l S 270.15 267.66 m 277.79 267.66 l S 273.97 263.84 m 273.97 271.48 l S 188.34 98.98 m 195.98 98.98 l S 192.16 95.17 m 192.16 102.80 l S 177.53 124.00 m 185.17 124.00 l S 181.35 120.18 m 181.35 127.82 l S 179.40 121.83 m 187.04 121.83 l S 183.22 118.01 m 183.22 125.65 l S 78.32 267.66 m 85.95 267.66 l S 82.14 263.84 m 82.14 271.48 l S 206.36 88.98 m 213.99 88.98 l S 210.17 85.16 m 210.17 92.80 l S 274.93 267.66 m 282.56 267.66 l S 278.74 263.84 m 278.74 271.48 l S 179.43 119.39 m 187.06 119.39 l S 183.24 115.57 m 183.24 123.21 l S 173.33 132.60 m 180.96 132.60 l S 177.15 128.78 m 177.15 136.41 l S 189.98 98.21 m 197.62 98.21 l S 193.80 94.39 m 193.80 102.03 l S 203.15 88.00 m 210.78 88.00 l S 206.96 84.18 m 206.96 91.81 l S 198.21 86.23 m 205.84 86.23 l S 202.03 82.42 m 202.03 90.05 l S 245.37 193.36 m 253.01 193.36 l S 249.19 189.54 m 249.19 197.18 l S 245.84 198.49 m 253.47 198.49 l S 249.66 194.68 m 249.66 202.31 l S 163.55 161.61 m 171.19 161.61 l S 167.37 157.79 m 167.37 165.43 l S 194.20 90.40 m 201.84 90.40 l S 198.02 86.59 m 198.02 94.22 l S 188.58 99.27 m 196.22 99.27 l S 192.40 95.45 m 192.40 103.09 l S 200.37 84.84 m 208.01 84.84 l S 204.19 81.02 m 204.19 88.66 l S 200.50 84.78 m 208.14 84.78 l S 204.32 80.96 m 204.32 88.60 l S 195.93 90.05 m 203.57 90.05 l S 199.75 86.23 m 199.75 93.86 l S 170.19 147.13 m 177.83 147.13 l S 174.01 143.31 m 174.01 150.95 l S 162.08 172.11 m 169.71 172.11 l S 165.89 168.29 m 165.89 175.93 l S 103.43 267.66 m 111.06 267.66 l S 107.24 263.84 m 107.24 271.48 l S 200.46 84.82 m 208.10 84.82 l S 204.28 81.01 m 204.28 88.64 l S 211.41 98.12 m 219.05 98.12 l S 215.23 94.30 m 215.23 101.94 l S 189.75 98.12 m 197.38 98.12 l S 193.57 94.30 m 193.57 101.94 l S 234.57 163.44 m 242.20 163.44 l S 238.38 159.62 m 238.38 167.26 l S 222.41 123.54 m 230.05 123.54 l S 226.23 119.72 m 226.23 127.36 l S 252.50 188.89 m 260.14 188.89 l S 256.32 185.07 m 256.32 192.71 l S 178.05 122.56 m 185.68 122.56 l S 181.87 118.75 m 181.87 126.38 l S 224.69 128.94 m 232.33 128.94 l S 228.51 125.12 m 228.51 132.76 l S 191.95 93.94 m 199.59 93.94 l S 195.77 90.13 m 195.77 97.76 l S 208.04 94.29 m 215.68 94.29 l S 211.86 90.47 m 211.86 98.11 l S 219.82 119.01 m 227.46 119.01 l S 223.64 115.20 m 223.64 122.83 l S 138.86 253.26 m 146.49 253.26 l S 142.67 249.44 m 142.67 257.08 l S 212.73 100.78 m 220.37 100.78 l S 216.55 96.96 m 216.55 104.60 l S 204.46 89.77 m 212.09 89.77 l S 208.27 85.96 m 208.27 93.59 l S 207.98 94.33 m 215.62 94.33 l S 211.80 90.51 m 211.80 98.15 l S 257.45 227.88 m 265.09 227.88 l S 261.27 224.06 m 261.27 231.69 l S 233.47 149.82 m 241.11 149.82 l S 237.29 146.00 m 237.29 153.64 l S 224.81 126.28 m 232.45 126.28 l S 228.63 122.46 m 228.63 130.09 l S 163.30 164.11 m 170.94 164.11 l S 167.12 160.30 m 167.12 167.93 l S 169.03 141.57 m 176.67 141.57 l S 172.85 137.75 m 172.85 145.39 l S 201.56 85.85 m 209.19 85.85 l S 205.38 82.03 m 205.38 89.67 l S 184.78 106.30 m 192.42 106.30 l S 188.60 102.49 m 188.60 110.12 l S 232.40 150.13 m 240.04 150.13 l S 236.22 146.31 m 236.22 153.95 l S 188.20 98.54 m 195.84 98.54 l S 192.02 94.72 m 192.02 102.36 l S 174.64 129.51 m 182.27 129.51 l S 178.46 125.69 m 178.46 133.33 l S 212.22 102.34 m 219.86 102.34 l S 216.04 98.52 m 216.04 106.16 l S 224.42 128.65 m 232.06 128.65 l S 228.24 124.84 m 228.24 132.47 l S 247.64 193.36 m 255.28 193.36 l S 251.46 189.54 m 251.46 197.18 l S 202.35 86.77 m 209.99 86.77 l S 206.17 82.95 m 206.17 90.59 l S 172.49 134.60 m 180.12 134.60 l S 176.31 130.79 m 176.31 138.42 l S 188.77 99.31 m 196.40 99.31 l S 192.59 95.49 m 192.59 103.13 l S 125.92 267.66 m 133.55 267.66 l S 129.74 263.84 m 129.74 271.48 l S 234.03 155.41 m 241.67 155.41 l S 237.85 151.59 m 237.85 159.23 l S 206.04 90.21 m 213.68 90.21 l S 209.86 86.39 m 209.86 94.03 l S 222.01 120.42 m 229.65 120.42 l S 225.83 116.60 m 225.83 124.23 l S 247.63 213.95 m 255.27 213.95 l S 251.45 210.13 m 251.45 217.77 l S 198.88 85.38 m 206.52 85.38 l S 202.70 81.56 m 202.70 89.20 l S 217.23 110.19 m 224.87 110.19 l S 221.05 106.37 m 221.05 114.01 l S 203.60 88.02 m 211.23 88.02 l S 207.42 84.20 m 207.42 91.84 l S 190.80 96.56 m 198.44 96.56 l S 194.62 92.75 m 194.62 100.38 l S 144.91 218.05 m 152.55 218.05 l S 148.73 214.23 m 148.73 221.86 l S 215.83 103.66 m 223.47 103.66 l S 219.65 99.85 m 219.65 107.48 l S 159.55 173.74 m 167.19 173.74 l S 163.37 169.92 m 163.37 177.56 l S 235.85 159.34 m 243.49 159.34 l S 239.67 155.52 m 239.67 163.15 l S 94.04 253.26 m 101.67 253.26 l S 97.85 249.44 m 97.85 257.08 l S 223.76 126.56 m 231.40 126.56 l S 227.58 122.74 m 227.58 130.37 l S 170.61 140.04 m 178.25 140.04 l S 174.43 136.22 m 174.43 143.86 l S 169.79 133.06 m 177.43 133.06 l S 173.61 129.25 m 173.61 136.88 l S 159.23 179.25 m 166.87 179.25 l S 163.05 175.43 m 163.05 183.07 l S 207.87 95.37 m 215.51 95.37 l S 211.69 91.56 m 211.69 99.19 l S 208.20 94.85 m 215.84 94.85 l S 212.02 91.03 m 212.02 98.67 l S 159.09 181.37 m 166.72 181.37 l S 162.90 177.55 m 162.90 185.19 l S 153.65 198.49 m 161.28 198.49 l S 157.47 194.68 m 157.47 202.31 l S 242.20 174.56 m 249.84 174.56 l S 246.02 170.74 m 246.02 178.38 l S 190.11 97.11 m 197.75 97.11 l S 193.93 93.29 m 193.93 100.93 l S 162.60 166.38 m 170.23 166.38 l S 166.42 162.56 m 166.42 170.20 l S 150.05 222.51 m 157.69 222.51 l S 153.87 218.69 m 153.87 226.33 l S 211.77 100.73 m 219.41 100.73 l S 215.59 96.92 m 215.59 104.55 l S 130.66 253.26 m 138.30 253.26 l S 134.48 249.44 m 134.48 257.08 l S 152.99 198.49 m 160.63 198.49 l S 156.81 194.68 m 156.81 202.31 l S 239.39 187.47 m 247.03 187.47 l S 243.21 183.65 m 243.21 191.29 l S 193.70 91.53 m 201.34 91.53 l S 197.52 87.71 m 197.52 95.35 l S 177.22 121.33 m 184.86 121.33 l S 181.04 117.51 m 181.04 125.15 l S 200.03 84.57 m 207.67 84.57 l S 203.85 80.76 m 203.85 88.39 l S 211.74 99.60 m 219.38 99.60 l S 215.56 95.78 m 215.56 103.42 l S 200.98 84.95 m 208.61 84.95 l S 204.80 81.14 m 204.80 88.77 l S 127.32 253.26 m 134.95 253.26 l S 131.14 249.44 m 131.14 257.08 l S 184.46 106.75 m 192.10 106.75 l S 188.28 102.93 m 188.28 110.56 l S 190.71 95.98 m 198.35 95.98 l S 194.53 92.16 m 194.53 99.80 l S 226.05 132.25 m 233.69 132.25 l S 229.87 128.43 m 229.87 136.07 l S 193.16 92.40 m 200.79 92.40 l S 196.97 88.58 m 196.97 96.22 l S 145.16 198.49 m 152.80 198.49 l S 148.98 194.68 m 148.98 202.31 l S 231.65 150.41 m 239.28 150.41 l S 235.46 146.60 m 235.46 154.23 l S 178.80 118.80 m 186.44 118.80 l S 182.62 114.99 m 182.62 122.62 l S 214.43 103.38 m 222.07 103.38 l S 218.25 99.56 m 218.25 107.20 l S 141.13 253.26 m 148.77 253.26 l S 144.95 249.44 m 144.95 257.08 l S 167.84 153.87 m 175.48 153.87 l S 171.66 150.05 m 171.66 157.69 l S 195.19 90.03 m 202.83 90.03 l S 199.01 86.21 m 199.01 93.85 l S 214.03 103.31 m 221.67 103.31 l S 217.85 99.49 m 217.85 107.13 l S 243.74 188.89 m 251.38 188.89 l S 247.56 185.07 m 247.56 192.71 l S 285.93 267.66 m 293.56 267.66 l S 289.74 263.84 m 289.74 271.48 l S 257.12 242.83 m 264.76 242.83 l S 260.94 239.01 m 260.94 246.65 l S 181.71 114.13 m 189.35 114.13 l S 185.53 110.31 m 185.53 117.95 l S 166.19 148.69 m 173.83 148.69 l S 170.01 144.88 m 170.01 152.51 l S 130.28 242.83 m 137.92 242.83 l S 134.10 239.01 m 134.10 246.65 l S 184.05 108.37 m 191.68 108.37 l S 187.86 104.55 m 187.86 112.19 l S 182.97 111.64 m 190.61 111.64 l S 186.79 107.83 m 186.79 115.46 l S 169.71 148.92 m 177.35 148.92 l S 173.53 145.10 m 173.53 152.74 l S 210.27 97.95 m 217.90 97.95 l S 214.08 94.14 m 214.08 101.77 l S 136.65 253.26 m 144.29 253.26 l S 140.47 249.44 m 140.47 257.08 l S 209.11 95.73 m 216.74 95.73 l S 212.92 91.91 m 212.92 99.55 l S 199.64 84.81 m 207.28 84.81 l S 203.46 80.99 m 203.46 88.63 l S 237.17 158.84 m 244.80 158.84 l S 240.99 155.02 m 240.99 162.66 l S 188.85 98.60 m 196.48 98.60 l S 192.66 94.78 m 192.66 102.42 l S 209.56 97.53 m 217.20 97.53 l S 213.38 93.71 m 213.38 101.35 l S 202.63 86.77 m 210.27 86.77 l S 206.45 82.95 m 206.45 90.59 l S 234.70 158.84 m 242.34 158.84 l S 238.52 155.02 m 238.52 162.66 l S 143.33 234.47 m 150.97 234.47 l S 147.15 230.65 m 147.15 238.29 l S 269.76 253.26 m 277.39 253.26 l S 273.58 249.44 m 273.58 257.08 l S 219.15 114.39 m 226.79 114.39 l S 222.97 110.57 m 222.97 118.21 l S 194.21 91.00 m 201.85 91.00 l S 198.03 87.18 m 198.03 94.82 l S 112.87 267.66 m 120.50 267.66 l S 116.68 263.84 m 116.68 271.48 l S 206.89 92.82 m 214.53 92.82 l S 210.71 89.00 m 210.71 96.64 l S 385.25 267.66 m 392.89 267.66 l S 389.07 263.84 m 389.07 271.48 l S 211.31 98.00 m 218.95 98.00 l S 215.13 94.18 m 215.13 101.82 l S 195.77 89.54 m 203.41 89.54 l S 199.59 85.72 m 199.59 93.36 l S 227.86 138.61 m 235.50 138.61 l S 231.68 134.79 m 231.68 142.43 l S 214.63 99.39 m 222.27 99.39 l S 218.45 95.58 m 218.45 103.21 l S 191.29 96.76 m 198.92 96.76 l S 195.10 92.94 m 195.10 100.57 l S 192.10 93.80 m 199.74 93.80 l S 195.92 89.98 m 195.92 97.62 l S 211.66 100.34 m 219.29 100.34 l S 215.47 96.52 m 215.47 104.16 l S 130.96 267.66 m 138.60 267.66 l S 134.78 263.84 m 134.78 271.48 l S 194.56 91.25 m 202.20 91.25 l S 198.38 87.43 m 198.38 95.06 l S 198.84 85.85 m 206.48 85.85 l S 202.66 82.03 m 202.66 89.67 l S 217.78 113.88 m 225.42 113.88 l S 221.60 110.06 m 221.60 117.70 l S 223.89 127.17 m 231.52 127.17 l S 227.70 123.35 m 227.70 130.99 l S 228.67 141.04 m 236.31 141.04 l S 232.49 137.22 m 232.49 144.85 l S 228.34 143.90 m 235.98 143.90 l S 232.16 140.08 m 232.16 147.71 l S 214.18 104.70 m 221.82 104.70 l S 218.00 100.89 m 218.00 108.52 l S 182.67 109.68 m 190.30 109.68 l S 186.49 105.87 m 186.49 113.50 l S 204.46 87.66 m 212.10 87.66 l S 208.28 83.84 m 208.28 91.48 l S 209.17 96.51 m 216.80 96.51 l S 212.99 92.69 m 212.99 100.32 l S 164.79 164.11 m 172.42 164.11 l S 168.61 160.30 m 168.61 167.93 l S 231.84 149.55 m 239.47 149.55 l S 235.66 145.73 m 235.66 153.37 l S 224.05 128.65 m 231.68 128.65 l S 227.86 124.84 m 227.86 132.47 l S 156.51 187.47 m 164.15 187.47 l S 160.33 183.65 m 160.33 191.29 l S 276.01 267.66 m 283.64 267.66 l S 279.83 263.84 m 279.83 271.48 l S 211.49 97.78 m 219.12 97.78 l S 215.31 93.96 m 215.31 101.60 l S 152.02 207.47 m 159.65 207.47 l S 155.83 203.65 m 155.83 211.28 l S 178.89 117.74 m 186.53 117.74 l S 182.71 113.92 m 182.71 121.56 l S 217.75 106.92 m 225.39 106.92 l S 221.57 103.11 m 221.57 110.74 l S 209.56 96.53 m 217.20 96.53 l S 213.38 92.71 m 213.38 100.35 l S 219.15 117.16 m 226.79 117.16 l S 222.97 113.34 m 222.97 120.97 l S 213.58 102.14 m 221.22 102.14 l S 217.40 98.32 m 217.40 105.96 l S 175.78 126.96 m 183.42 126.96 l S 179.60 123.14 m 179.60 130.78 l S 161.43 168.39 m 169.07 168.39 l S 165.25 164.57 m 165.25 172.21 l S 197.71 86.57 m 205.34 86.57 l S 201.53 82.75 m 201.53 90.39 l S 246.96 198.49 m 254.59 198.49 l S 250.78 194.68 m 250.78 202.31 l S 230.11 144.77 m 237.74 144.77 l S 233.92 140.95 m 233.92 148.58 l S 182.77 109.70 m 190.41 109.70 l S 186.59 105.88 m 186.59 113.52 l S 199.17 85.12 m 206.80 85.12 l S 202.99 81.31 m 202.99 88.94 l S 174.88 131.02 m 182.52 131.02 l S 178.70 127.20 m 178.70 134.83 l S 208.99 94.93 m 216.63 94.93 l S 212.81 91.11 m 212.81 98.75 l S 144.48 205.15 m 152.12 205.15 l S 148.30 201.33 m 148.30 208.97 l S 210.01 97.95 m 217.64 97.95 l S 213.83 94.14 m 213.83 101.77 l S 209.60 95.68 m 217.24 95.68 l S 213.42 91.87 m 213.42 99.50 l S 247.06 205.15 m 254.70 205.15 l S 250.88 201.33 m 250.88 208.97 l S 273.55 242.83 m 281.18 242.83 l S 277.36 239.01 m 277.36 246.65 l S 182.38 110.94 m 190.02 110.94 l S 186.20 107.12 m 186.20 114.76 l S 152.74 207.47 m 160.38 207.47 l S 156.56 203.65 m 156.56 211.28 l S 216.55 110.86 m 224.19 110.86 l S 220.37 107.04 m 220.37 114.68 l S 281.79 267.66 m 289.43 267.66 l S 285.61 263.84 m 285.61 271.48 l S 221.77 122.29 m 229.41 122.29 l S 225.59 118.47 m 225.59 126.11 l S 239.27 176.34 m 246.91 176.34 l S 243.09 172.53 m 243.09 180.16 l S 215.11 104.67 m 222.74 104.67 l S 218.93 100.85 m 218.93 108.48 l S 207.58 93.96 m 215.22 93.96 l S 211.40 90.14 m 211.40 97.78 l S 185.84 105.09 m 193.48 105.09 l S 189.66 101.27 m 189.66 108.91 l S 207.25 93.11 m 214.89 93.11 l S 211.07 89.29 m 211.07 96.93 l S 94.40 267.66 m 102.04 267.66 l S 98.22 263.84 m 98.22 271.48 l S 129.98 242.83 m 137.62 242.83 l S 133.80 239.01 m 133.80 246.65 l S 211.47 99.96 m 219.11 99.96 l S 215.29 96.14 m 215.29 103.78 l S 157.52 188.89 m 165.16 188.89 l S 161.34 185.07 m 161.34 192.71 l S 166.22 164.43 m 173.86 164.43 l S 170.04 160.61 m 170.04 168.25 l S 191.72 95.55 m 199.35 95.55 l S 195.53 91.73 m 195.53 99.37 l S 176.19 123.00 m 183.83 123.00 l S 180.01 119.18 m 180.01 126.82 l S 218.51 114.39 m 226.15 114.39 l S 222.33 110.57 m 222.33 118.21 l S 222.79 123.28 m 230.42 123.28 l S 226.61 119.46 m 226.61 127.10 l S 161.81 166.38 m 169.45 166.38 l S 165.63 162.56 m 165.63 170.20 l S 219.23 115.12 m 226.87 115.12 l S 223.05 111.31 m 223.05 118.94 l S 173.73 131.29 m 181.37 131.29 l S 177.55 127.47 m 177.55 135.11 l S 254.38 222.51 m 262.01 222.51 l S 258.19 218.69 m 258.19 226.33 l S 243.35 182.26 m 250.99 182.26 l S 247.17 178.44 m 247.17 186.08 l S 180.00 119.01 m 187.64 119.01 l S 183.82 115.20 m 183.82 122.83 l S 197.22 87.19 m 204.86 87.19 l S 201.04 83.37 m 201.04 91.01 l S 223.94 129.16 m 231.57 129.16 l S 227.75 125.34 m 227.75 132.98 l S 180.54 115.05 m 188.18 115.05 l S 184.36 111.23 m 184.36 118.87 l S 247.30 196.81 m 254.94 196.81 l S 251.12 192.99 m 251.12 200.63 l S 321.94 267.66 m 329.57 267.66 l S 325.75 263.84 m 325.75 271.48 l S 209.02 95.98 m 216.66 95.98 l S 212.84 92.16 m 212.84 99.80 l S 199.08 85.41 m 206.71 85.41 l S 202.90 81.59 m 202.90 89.22 l S 187.21 102.81 m 194.84 102.81 l S 191.02 98.99 m 191.02 106.63 l S 149.87 198.49 m 157.51 198.49 l S 153.69 194.68 m 153.69 202.31 l S 219.76 116.44 m 227.39 116.44 l S 223.57 112.62 m 223.57 120.26 l S 248.73 190.21 m 256.37 190.21 l S 252.55 186.39 m 252.55 194.03 l S 224.02 127.86 m 231.66 127.86 l S 227.84 124.05 m 227.84 131.68 l S 201.18 85.60 m 208.82 85.60 l S 205.00 81.78 m 205.00 89.42 l S 172.74 135.31 m 180.38 135.31 l S 176.56 131.49 m 176.56 139.13 l S 131.38 267.66 m 139.01 267.66 l S 135.20 263.84 m 135.20 271.48 l S 165.02 147.46 m 172.65 147.46 l S 168.84 143.64 m 168.84 151.27 l S 155.06 193.36 m 162.70 193.36 l S 158.88 189.54 m 158.88 197.18 l S 193.11 86.57 m 200.74 86.57 l S 196.93 82.75 m 196.93 90.39 l S 191.54 95.33 m 199.18 95.33 l S 195.36 91.51 m 195.36 99.14 l S 141.05 242.83 m 148.68 242.83 l S 144.87 239.01 m 144.87 246.65 l S 205.60 90.77 m 213.24 90.77 l S 209.42 86.95 m 209.42 94.59 l S 230.97 143.90 m 238.60 143.90 l S 234.79 140.08 m 234.79 147.71 l S 129.07 267.66 m 136.70 267.66 l S 132.89 263.84 m 132.89 271.48 l S 177.93 119.53 m 185.56 119.53 l S 181.74 115.71 m 181.74 123.35 l S 168.49 144.41 m 176.13 144.41 l S 172.31 140.59 m 172.31 148.23 l S 215.89 107.99 m 223.53 107.99 l S 219.71 104.17 m 219.71 111.81 l S 230.03 143.90 m 237.66 143.90 l S 233.84 140.08 m 233.84 147.71 l S 210.20 98.07 m 217.83 98.07 l S 214.02 94.26 m 214.02 101.89 l S 209.56 96.60 m 217.19 96.60 l S 213.38 92.78 m 213.38 100.42 l S 165.67 161.61 m 173.31 161.61 l S 169.49 157.79 m 169.49 165.43 l S 170.48 145.73 m 178.11 145.73 l S 174.30 141.91 m 174.30 149.55 l S 149.23 200.52 m 156.86 200.52 l S 153.04 196.71 m 153.04 204.34 l S 257.88 234.47 m 265.52 234.47 l S 261.70 230.65 m 261.70 238.29 l S 193.79 91.07 m 201.42 91.07 l S 197.61 87.26 m 197.61 94.89 l S 172.18 140.28 m 179.81 140.28 l S 175.99 136.46 m 175.99 144.09 l S 224.99 127.08 m 232.63 127.08 l S 228.81 123.26 m 228.81 130.89 l S 198.87 85.85 m 206.50 85.85 l S 202.68 82.03 m 202.68 89.67 l S 156.98 181.37 m 164.61 181.37 l S 160.79 177.55 m 160.79 185.19 l S 205.50 90.23 m 213.13 90.23 l S 209.32 86.41 m 209.32 94.05 l S 273.65 267.66 m 281.28 267.66 l S 277.47 263.84 m 277.47 271.48 l S 171.87 140.73 m 179.51 140.73 l S 175.69 136.91 m 175.69 144.55 l S 124.00 253.26 m 131.64 253.26 l S 127.82 249.44 m 127.82 257.08 l S 140.15 227.88 m 147.79 227.88 l S 143.97 224.06 m 143.97 231.69 l S 239.60 172.95 m 247.24 172.95 l S 243.42 169.14 m 243.42 176.77 l S 204.04 88.77 m 211.68 88.77 l S 207.86 84.95 m 207.86 92.59 l S 209.37 95.83 m 217.00 95.83 l S 213.19 92.01 m 213.19 99.65 l S 174.67 127.17 m 182.31 127.17 l S 178.49 123.35 m 178.49 130.99 l S 172.19 137.13 m 179.83 137.13 l S 176.01 133.32 m 176.01 140.95 l S 180.21 117.76 m 187.85 117.76 l S 184.03 113.94 m 184.03 121.58 l S 173.53 132.71 m 181.17 132.71 l S 177.35 128.89 m 177.35 136.52 l S 133.32 267.66 m 140.96 267.66 l S 137.14 263.84 m 137.14 271.48 l S 150.78 210.76 m 158.41 210.76 l S 154.60 206.94 m 154.60 214.58 l S 197.70 86.44 m 205.34 86.44 l S 201.52 82.62 m 201.52 90.26 l S 215.08 109.59 m 222.71 109.59 l S 218.89 105.77 m 218.89 113.41 l S 192.41 95.55 m 200.05 95.55 l S 196.23 91.73 m 196.23 99.37 l S 193.32 92.22 m 200.96 92.22 l S 197.14 88.41 m 197.14 96.04 l S 165.68 157.61 m 173.31 157.61 l S 169.49 153.79 m 169.49 161.43 l S 153.12 195.07 m 160.76 195.07 l S 156.94 191.25 m 156.94 198.88 l S 225.06 130.64 m 232.70 130.64 l S 228.88 126.82 m 228.88 134.46 l S 178.12 121.91 m 185.75 121.91 l S 181.93 118.10 m 181.93 125.73 l S 123.73 234.47 m 131.36 234.47 l S 127.54 230.65 m 127.54 238.29 l S 187.00 102.51 m 194.64 102.51 l S 190.82 98.69 m 190.82 106.33 l S 223.23 125.88 m 230.87 125.88 l S 227.05 122.06 m 227.05 129.69 l S 191.88 94.74 m 199.52 94.74 l S 195.70 90.93 m 195.70 98.56 l S 204.04 88.40 m 211.68 88.40 l S 207.86 84.59 m 207.86 92.22 l S 156.21 190.21 m 163.85 190.21 l S 160.03 186.39 m 160.03 194.03 l S 198.71 85.81 m 206.35 85.81 l S 202.53 81.99 m 202.53 89.62 l S 152.24 198.49 m 159.88 198.49 l S 156.06 194.68 m 156.06 202.31 l S 139.96 234.47 m 147.59 234.47 l S 143.78 230.65 m 143.78 238.29 l S 238.95 168.98 m 246.59 168.98 l S 242.77 165.16 m 242.77 172.80 l S 190.00 97.80 m 197.64 97.80 l S 193.82 93.98 m 193.82 101.62 l S 108.63 267.66 m 116.27 267.66 l S 112.45 263.84 m 112.45 271.48 l S 94.09 267.66 m 101.73 267.66 l S 97.91 263.84 m 97.91 271.48 l S 170.86 140.04 m 178.50 140.04 l S 174.68 136.22 m 174.68 143.86 l S 194.95 90.07 m 202.59 90.07 l S 198.77 86.26 m 198.77 93.89 l S 200.34 84.67 m 207.98 84.67 l S 204.16 80.85 m 204.16 88.49 l S 221.30 119.58 m 228.94 119.58 l S 225.12 115.77 m 225.12 123.40 l S 192.14 94.67 m 199.78 94.67 l S 195.96 90.85 m 195.96 98.49 l S 186.31 94.51 m 193.94 94.51 l S 190.13 90.70 m 190.13 98.33 l S 241.51 169.68 m 249.14 169.68 l S 245.32 165.86 m 245.32 173.49 l S 248.27 193.36 m 255.90 193.36 l S 252.09 189.54 m 252.09 197.18 l S 233.90 148.69 m 241.53 148.69 l S 237.72 144.88 m 237.72 152.51 l S 131.85 242.83 m 139.49 242.83 l S 135.67 239.01 m 135.67 246.65 l S 216.02 106.75 m 223.65 106.75 l S 219.84 102.93 m 219.84 110.56 l S 210.74 99.60 m 218.37 99.60 l S 214.56 95.78 m 214.56 103.42 l S 154.76 196.81 m 162.40 196.81 l S 158.58 192.99 m 158.58 200.63 l S 247.64 188.89 m 255.28 188.89 l S 251.46 185.07 m 251.46 192.71 l S 240.34 177.23 m 247.98 177.23 l S 244.16 173.41 m 244.16 181.05 l S 208.18 94.87 m 215.81 94.87 l S 211.99 91.05 m 211.99 98.69 l S 217.75 111.50 m 225.39 111.50 l S 221.57 107.68 m 221.57 115.32 l S 191.53 92.61 m 199.16 92.61 l S 195.34 88.79 m 195.34 96.43 l S 155.19 183.29 m 162.83 183.29 l S 159.01 179.48 m 159.01 187.11 l S 184.78 106.75 m 192.42 106.75 l S 188.60 102.93 m 188.60 110.56 l S 200.76 84.84 m 208.39 84.84 l S 204.58 81.02 m 204.58 88.66 l S 199.45 84.84 m 207.08 84.84 l S 203.26 81.02 m 203.26 88.66 l S 95.67 267.66 m 103.31 267.66 l S 99.49 263.84 m 99.49 271.48 l S 147.95 210.76 m 155.59 210.76 l S 151.77 206.94 m 151.77 214.58 l S 171.99 134.89 m 179.62 134.89 l S 175.81 131.07 m 175.81 138.70 l S 183.54 110.69 m 191.18 110.69 l S 187.36 106.87 m 187.36 114.51 l S 145.37 234.47 m 153.00 234.47 l S 149.18 230.65 m 149.18 238.29 l S 136.87 267.66 m 144.51 267.66 l S 140.69 263.84 m 140.69 271.48 l S 184.21 108.54 m 191.84 108.54 l S 188.03 104.72 m 188.03 112.36 l S 200.71 85.09 m 208.35 85.09 l S 204.53 81.28 m 204.53 88.91 l S 124.76 253.26 m 132.39 253.26 l S 128.57 249.44 m 128.57 257.08 l S 218.64 113.58 m 226.28 113.58 l S 222.46 109.76 m 222.46 117.40 l S 169.18 149.55 m 176.81 149.55 l S 173.00 145.73 m 173.00 153.37 l S 249.36 207.47 m 257.00 207.47 l S 253.18 203.65 m 253.18 211.28 l S 249.07 205.15 m 256.71 205.15 l S 252.89 201.33 m 252.89 208.97 l S 122.97 267.66 m 130.61 267.66 l S 126.79 263.84 m 126.79 271.48 l S 160.02 171.18 m 167.65 171.18 l S 163.84 167.36 m 163.84 175.00 l S 232.03 150.13 m 239.67 150.13 l S 235.85 146.31 m 235.85 153.95 l S 266.23 242.83 m 273.86 242.83 l S 270.04 239.01 m 270.04 246.65 l S 131.43 234.47 m 139.07 234.47 l S 135.25 230.65 m 135.25 238.29 l S 106.80 267.66 m 114.43 267.66 l S 110.62 263.84 m 110.62 271.48 l S 190.10 96.60 m 197.74 96.60 l S 193.92 92.78 m 193.92 100.42 l S 188.60 101.53 m 196.24 101.53 l S 192.42 97.71 m 192.42 105.35 l S 183.14 111.10 m 190.78 111.10 l S 186.96 107.28 m 186.96 114.92 l S 212.30 99.86 m 219.94 99.86 l S 216.12 96.04 m 216.12 103.67 l S 182.41 111.40 m 190.04 111.40 l S 186.22 107.58 m 186.22 115.22 l S 130.13 267.66 m 137.77 267.66 l S 133.95 263.84 m 133.95 271.48 l S 189.03 99.18 m 196.66 99.18 l S 192.84 95.37 m 192.84 103.00 l S 233.82 154.61 m 241.46 154.61 l S 237.64 150.79 m 237.64 158.43 l S 200.69 85.09 m 208.33 85.09 l S 204.51 81.28 m 204.51 88.91 l S 196.83 87.52 m 204.47 87.52 l S 200.65 83.70 m 200.65 91.34 l S 136.80 253.26 m 144.43 253.26 l S 140.62 249.44 m 140.62 257.08 l S 154.86 178.15 m 162.49 178.15 l S 158.67 174.33 m 158.67 181.97 l S 172.99 132.87 m 180.63 132.87 l S 176.81 129.05 m 176.81 136.69 l S 254.91 218.05 m 262.55 218.05 l S 258.73 214.23 m 258.73 221.86 l S 269.59 253.26 m 277.23 253.26 l S 273.41 249.44 m 273.41 257.08 l S 235.55 157.61 m 243.19 157.61 l S 239.37 153.79 m 239.37 161.43 l S 227.51 134.45 m 235.14 134.45 l S 231.32 130.63 m 231.32 138.27 l S 213.52 103.03 m 221.16 103.03 l S 217.34 99.21 m 217.34 106.85 l S 192.15 94.57 m 199.79 94.57 l S 195.97 90.76 m 195.97 98.39 l S 154.98 182.26 m 162.62 182.26 l S 158.80 178.44 m 158.80 186.08 l S 197.17 87.25 m 204.81 87.25 l S 200.99 83.44 m 200.99 91.07 l S 253.80 213.95 m 261.44 213.95 l S 257.62 210.13 m 257.62 217.77 l S 139.20 253.26 m 146.84 253.26 l S 143.02 249.44 m 143.02 257.08 l S 174.98 126.56 m 182.62 126.56 l S 178.80 122.74 m 178.80 130.37 l S 198.72 85.90 m 206.35 85.90 l S 202.53 82.09 m 202.53 89.72 l S 183.18 108.61 m 190.82 108.61 l S 187.00 104.79 m 187.00 112.43 l S 176.59 120.29 m 184.23 120.29 l S 180.41 116.47 m 180.41 124.11 l S 251.56 207.47 m 259.20 207.47 l S 255.38 203.65 m 255.38 211.28 l S 247.11 227.88 m 254.75 227.88 l S 250.93 224.06 m 250.93 231.69 l S 160.22 163.44 m 167.86 163.44 l S 164.04 159.62 m 164.04 167.26 l S 229.29 141.57 m 236.93 141.57 l S 233.11 137.75 m 233.11 145.39 l S 205.89 91.01 m 213.53 91.01 l S 209.71 87.19 m 209.71 94.83 l S 234.02 150.41 m 241.66 150.41 l S 237.84 146.60 m 237.84 154.23 l S 179.44 121.83 m 187.07 121.83 l S 183.26 118.01 m 183.26 125.65 l S 227.84 132.60 m 235.48 132.60 l S 231.66 128.78 m 231.66 136.41 l S 116.93 242.83 m 124.57 242.83 l S 120.75 239.01 m 120.75 246.65 l S 171.86 136.41 m 179.49 136.41 l S 175.67 132.59 m 175.67 140.23 l S 140.97 222.51 m 148.61 222.51 l S 144.79 218.69 m 144.79 226.33 l S 214.15 102.81 m 221.79 102.81 l S 217.97 98.99 m 217.97 106.63 l S 102.18 267.66 m 109.81 267.66 l S 105.99 263.84 m 105.99 271.48 l S 134.53 227.88 m 142.17 227.88 l S 138.35 224.06 m 138.35 231.69 l S 176.80 125.14 m 184.43 125.14 l S 180.62 121.32 m 180.62 128.96 l S 252.68 242.83 m 260.32 242.83 l S 256.50 239.01 m 256.50 246.65 l S 213.87 104.14 m 221.51 104.14 l S 217.69 100.32 m 217.69 107.96 l S 145.21 207.47 m 152.85 207.47 l S 149.03 203.65 m 149.03 211.28 l S 211.78 99.56 m 219.42 99.56 l S 215.60 95.74 m 215.60 103.37 l S 254.13 213.95 m 261.76 213.95 l S 257.94 210.13 m 257.94 217.77 l S 142.32 242.83 m 149.95 242.83 l S 146.13 239.01 m 146.13 246.65 l S 97.79 267.66 m 105.43 267.66 l S 101.61 263.84 m 101.61 271.48 l S 190.01 97.04 m 197.65 97.04 l S 193.83 93.22 m 193.83 100.86 l S 182.96 110.80 m 190.60 110.80 l S 186.78 106.99 m 186.78 114.62 l S 164.05 160.39 m 171.68 160.39 l S 167.86 156.57 m 167.86 164.21 l S 194.57 90.23 m 202.21 90.23 l S 198.39 86.41 m 198.39 94.05 l S 211.83 97.78 m 219.47 97.78 l S 215.65 93.96 m 215.65 101.60 l S 183.11 111.02 m 190.75 111.02 l S 186.93 107.20 m 186.93 114.84 l S 191.94 94.84 m 199.58 94.84 l S 195.76 91.02 m 195.76 98.66 l S 127.81 253.26 m 135.45 253.26 l S 131.63 249.44 m 131.63 257.08 l S 136.38 253.26 m 144.01 253.26 l S 140.20 249.44 m 140.20 257.08 l S 217.64 111.66 m 225.28 111.66 l S 221.46 107.85 m 221.46 115.48 l S 160.76 156.58 m 168.39 156.58 l S 164.57 152.76 m 164.57 160.39 l S 173.32 132.38 m 180.96 132.38 l S 177.14 128.56 m 177.14 136.20 l S 178.90 118.90 m 186.53 118.90 l S 182.72 115.08 m 182.72 122.72 l S 243.76 190.21 m 251.40 190.21 l S 247.58 186.39 m 247.58 194.03 l S 184.32 111.36 m 191.95 111.36 l S 188.14 107.54 m 188.14 115.18 l S 214.99 106.92 m 222.62 106.92 l S 218.80 103.11 m 218.80 110.74 l S 142.39 210.76 m 150.02 210.76 l S 146.20 206.94 m 146.20 214.58 l S 132.62 267.66 m 140.26 267.66 l S 136.44 263.84 m 136.44 271.48 l S 241.98 179.25 m 249.62 179.25 l S 245.80 175.43 m 245.80 183.07 l S 158.19 186.17 m 165.83 186.17 l S 162.01 182.36 m 162.01 189.99 l S 180.88 112.76 m 188.52 112.76 l S 184.70 108.95 m 184.70 116.58 l S 176.09 127.17 m 183.73 127.17 l S 179.91 123.35 m 179.91 130.99 l S 188.62 98.27 m 196.25 98.27 l S 192.43 94.46 m 192.43 102.09 l S 220.87 115.41 m 228.50 115.41 l S 224.69 111.59 m 224.69 119.23 l S 226.35 133.74 m 233.98 133.74 l S 230.16 129.92 m 230.16 137.55 l S 236.27 162.21 m 243.91 162.21 l S 240.09 158.39 m 240.09 166.02 l S 200.54 84.84 m 208.18 84.84 l S 204.36 81.02 m 204.36 88.66 l S 185.76 104.67 m 193.40 104.67 l S 189.58 100.85 m 189.58 108.48 l S 221.39 115.41 m 229.03 115.41 l S 225.21 111.59 m 225.21 119.23 l S 71.42 267.66 m 79.06 267.66 l S 75.24 263.84 m 75.24 271.48 l S 199.54 84.84 m 207.17 84.84 l S 203.36 81.02 m 203.36 88.66 l S 172.62 139.26 m 180.26 139.26 l S 176.44 135.44 m 176.44 143.07 l S 202.68 86.77 m 210.31 86.77 l S 206.50 82.95 m 206.50 90.59 l S 182.25 112.40 m 189.89 112.40 l S 186.07 108.58 m 186.07 116.22 l S 191.63 94.12 m 199.26 94.12 l S 195.45 90.30 m 195.45 97.94 l S 201.28 85.58 m 208.92 85.58 l S 205.10 81.76 m 205.10 89.40 l S 256.32 210.76 m 263.95 210.76 l S 260.13 206.94 m 260.13 214.58 l S 201.98 86.13 m 209.62 86.13 l S 205.80 82.31 m 205.80 89.95 l S 163.41 164.11 m 171.05 164.11 l S 167.23 160.30 m 167.23 167.93 l S 191.27 95.55 m 198.91 95.55 l S 195.09 91.73 m 195.09 99.37 l S 142.14 210.76 m 149.77 210.76 l S 145.96 206.94 m 145.96 214.58 l S 199.00 85.58 m 206.64 85.58 l S 202.82 81.76 m 202.82 89.40 l S 256.47 242.83 m 264.11 242.83 l S 260.29 239.01 m 260.29 246.65 l S 184.15 106.37 m 191.79 106.37 l S 187.97 102.55 m 187.97 110.19 l S 235.48 155.01 m 243.12 155.01 l S 239.30 151.19 m 239.30 158.83 l S 119.35 267.66 m 126.99 267.66 l S 123.17 263.84 m 123.17 271.48 l S 239.55 176.34 m 247.18 176.34 l S 243.36 172.53 m 243.36 180.16 l S 217.24 111.50 m 224.88 111.50 l S 221.06 107.68 m 221.06 115.32 l S 209.16 95.25 m 216.79 95.25 l S 212.97 91.43 m 212.97 99.06 l S 236.97 167.66 m 244.61 167.66 l S 240.79 163.84 m 240.79 171.48 l S 231.53 145.73 m 239.17 145.73 l S 235.35 141.91 m 235.35 149.55 l S 168.96 148.31 m 176.59 148.31 l S 172.78 144.50 m 172.78 152.13 l S 237.38 171.18 m 245.02 171.18 l S 241.20 167.36 m 241.20 175.00 l S 116.46 267.66 m 124.10 267.66 l S 120.28 263.84 m 120.28 271.48 l S 212.83 102.94 m 220.47 102.94 l S 216.65 99.12 m 216.65 106.76 l S 223.36 123.40 m 230.99 123.40 l S 227.18 119.58 m 227.18 127.22 l S 214.38 104.09 m 222.02 104.09 l S 218.20 100.27 m 218.20 107.90 l S 217.56 105.50 m 225.20 105.50 l S 221.38 101.68 m 221.38 109.32 l S 264.76 267.66 m 272.40 267.66 l S 268.58 263.84 m 268.58 271.48 l S 266.11 267.66 m 273.74 267.66 l S 269.92 263.84 m 269.92 271.48 l S 165.85 149.15 m 173.48 149.15 l S 169.66 145.33 m 169.66 152.97 l S 99.15 267.66 m 106.79 267.66 l S 102.97 263.84 m 102.97 271.48 l S 149.58 200.52 m 157.22 200.52 l S 153.40 196.71 m 153.40 204.34 l S 249.53 218.05 m 257.16 218.05 l S 253.35 214.23 m 253.35 221.86 l S 248.12 227.88 m 255.76 227.88 l S 251.94 224.06 m 251.94 231.69 l S 129.63 253.26 m 137.27 253.26 l S 133.45 249.44 m 133.45 257.08 l S 204.79 90.40 m 212.43 90.40 l S 208.61 86.59 m 208.61 94.22 l S 163.28 164.43 m 170.91 164.43 l S 167.09 160.61 m 167.09 168.25 l S 219.68 117.76 m 227.32 117.76 l S 223.50 113.94 m 223.50 121.58 l S 217.83 112.33 m 225.46 112.33 l S 221.65 108.52 m 221.65 116.15 l S 244.79 188.89 m 252.43 188.89 l S 248.61 185.07 m 248.61 192.71 l S 227.14 134.89 m 234.78 134.89 l S 230.96 131.07 m 230.96 138.70 l S 152.23 202.94 m 159.86 202.94 l S 156.05 199.12 m 156.05 206.76 l S 129.34 267.66 m 136.98 267.66 l S 133.16 263.84 m 133.16 271.48 l S 193.05 92.04 m 200.69 92.04 l S 196.87 88.23 m 196.87 95.86 l S 167.10 149.82 m 174.74 149.82 l S 170.92 146.00 m 170.92 153.64 l S 162.14 169.68 m 169.78 169.68 l S 165.96 165.86 m 165.96 173.49 l S 196.60 88.28 m 204.23 88.28 l S 200.42 84.46 m 200.42 92.10 l S 234.00 159.80 m 241.64 159.80 l S 237.82 155.98 m 237.82 163.62 l S 278.68 267.66 m 286.32 267.66 l S 282.50 263.84 m 282.50 271.48 l S 187.71 102.67 m 195.35 102.67 l S 191.53 98.85 m 191.53 106.49 l S 119.33 267.66 m 126.97 267.66 l S 123.15 263.84 m 123.15 271.48 l S 201.94 86.49 m 209.58 86.49 l S 205.76 82.67 m 205.76 90.31 l S 206.36 90.98 m 214.00 90.98 l S 210.18 87.16 m 210.18 94.80 l S 242.85 172.95 m 250.48 172.95 l S 246.66 169.14 m 246.66 176.77 l S 175.86 129.73 m 183.50 129.73 l S 179.68 125.91 m 179.68 133.54 l S 149.50 198.49 m 157.14 198.49 l S 153.32 194.68 m 153.32 202.31 l S 145.65 253.26 m 153.29 253.26 l S 149.47 249.44 m 149.47 257.08 l S 205.76 90.89 m 213.40 90.89 l S 209.58 87.07 m 209.58 94.70 l S 204.69 89.39 m 212.32 89.39 l S 208.51 85.58 m 208.51 93.21 l S 158.13 186.17 m 165.77 186.17 l S 161.95 182.36 m 161.95 189.99 l S 216.90 109.40 m 224.54 109.40 l S 220.72 105.59 m 220.72 113.22 l S 139.87 227.88 m 147.50 227.88 l S 143.68 224.06 m 143.68 231.69 l S 222.53 124.78 m 230.17 124.78 l S 226.35 120.96 m 226.35 128.60 l S 167.22 153.87 m 174.86 153.87 l S 171.04 150.05 m 171.04 157.69 l S 190.63 95.55 m 198.27 95.55 l S 194.45 91.73 m 194.45 99.37 l S 195.16 90.03 m 202.80 90.03 l S 198.98 86.21 m 198.98 93.85 l S 196.28 88.74 m 203.92 88.74 l S 200.10 84.92 m 200.10 92.56 l S 234.03 155.86 m 241.67 155.86 l S 237.85 152.04 m 237.85 159.68 l S 270.54 267.66 m 278.18 267.66 l S 274.36 263.84 m 274.36 271.48 l S 203.28 87.59 m 210.92 87.59 l S 207.10 83.77 m 207.10 91.41 l S 170.91 137.37 m 178.55 137.37 l S 174.73 133.55 m 174.73 141.19 l S 105.22 253.26 m 112.85 253.26 l S 109.03 249.44 m 109.03 257.08 l S 179.36 116.36 m 186.99 116.36 l S 183.17 112.54 m 183.17 120.18 l S 201.44 85.78 m 209.08 85.78 l S 205.26 81.96 m 205.26 89.60 l S 222.83 123.28 m 230.46 123.28 l S 226.64 119.46 m 226.64 127.10 l S 223.12 126.26 m 230.75 126.26 l S 226.93 122.44 m 226.93 130.08 l S 167.72 155.01 m 175.36 155.01 l S 171.54 151.19 m 171.54 158.83 l S 236.20 164.11 m 243.83 164.11 l S 240.01 160.30 m 240.01 167.93 l S 110.67 267.66 m 118.31 267.66 l S 114.49 263.84 m 114.49 271.48 l S 185.48 105.36 m 193.12 105.36 l S 189.30 101.54 m 189.30 109.18 l S 225.06 124.27 m 232.70 124.27 l S 228.88 120.45 m 228.88 128.09 l S 233.27 153.16 m 240.91 153.16 l S 237.09 149.35 m 237.09 156.98 l S 217.12 101.91 m 224.76 101.91 l S 220.94 98.09 m 220.94 105.73 l S 187.79 101.09 m 195.43 101.09 l S 191.61 97.27 m 191.61 104.91 l S 182.63 111.40 m 190.27 111.40 l S 186.45 107.58 m 186.45 115.22 l S 191.06 94.29 m 198.69 94.29 l S 194.87 90.47 m 194.87 98.11 l S 210.40 98.39 m 218.04 98.39 l S 214.22 94.57 m 214.22 102.21 l S 249.45 202.94 m 257.09 202.94 l S 253.27 199.12 m 253.27 206.76 l S 182.68 111.85 m 190.32 111.85 l S 186.50 108.03 m 186.50 115.67 l S 225.75 133.29 m 233.38 133.29 l S 229.57 129.47 m 229.57 137.10 l S 191.79 92.42 m 199.42 92.42 l S 195.61 88.60 m 195.61 96.24 l S 205.19 88.48 m 212.83 88.48 l S 209.01 84.66 m 209.01 92.30 l S 173.67 135.31 m 181.31 135.31 l S 177.49 131.49 m 177.49 139.13 l S 208.17 88.67 m 215.81 88.67 l S 211.99 84.85 m 211.99 92.49 l S 181.08 111.75 m 188.72 111.75 l S 184.90 107.93 m 184.90 115.57 l S 255.48 242.83 m 263.11 242.83 l S 259.29 239.01 m 259.29 246.65 l S 178.06 114.13 m 185.70 114.13 l S 181.88 110.31 m 181.88 117.95 l S 190.36 96.44 m 198.00 96.44 l S 194.18 92.62 m 194.18 100.26 l S 175.72 124.17 m 183.36 124.17 l S 179.54 120.35 m 179.54 127.99 l S 173.08 137.88 m 180.71 137.88 l S 176.89 134.06 m 176.89 141.69 l S 235.47 141.37 m 243.11 141.37 l S 239.29 137.55 m 239.29 145.19 l S 72.67 267.66 m 80.31 267.66 l S 76.49 263.84 m 76.49 271.48 l S 270.00 253.26 m 277.63 253.26 l S 273.81 249.44 m 273.81 257.08 l S 198.88 85.63 m 206.52 85.63 l S 202.70 81.81 m 202.70 89.45 l S 236.72 161.61 m 244.36 161.61 l S 240.54 157.79 m 240.54 165.43 l S 208.29 95.23 m 215.93 95.23 l S 212.11 91.41 m 212.11 99.05 l S 278.77 267.66 m 286.40 267.66 l S 282.59 263.84 m 282.59 271.48 l S 206.59 92.92 m 214.22 92.92 l S 210.40 89.10 m 210.40 96.74 l S 148.36 210.76 m 156.00 210.76 l S 152.18 206.94 m 152.18 214.58 l S 161.83 172.11 m 169.47 172.11 l S 165.65 168.29 m 165.65 175.93 l S 173.44 134.68 m 181.08 134.68 l S 177.26 130.86 m 177.26 138.49 l S 276.58 267.66 m 284.21 267.66 l S 280.39 263.84 m 280.39 271.48 l S 269.84 267.66 m 277.48 267.66 l S 273.66 263.84 m 273.66 271.48 l S 204.60 90.40 m 212.23 90.40 l S 208.41 86.59 m 208.41 94.22 l S 219.20 115.75 m 226.84 115.75 l S 223.02 111.93 m 223.02 119.57 l S 230.34 145.73 m 237.97 145.73 l S 234.15 141.91 m 234.15 149.55 l S 238.16 165.67 m 245.79 165.67 l S 241.98 161.85 m 241.98 169.49 l S 182.79 110.69 m 190.43 110.69 l S 186.61 106.87 m 186.61 114.51 l S 128.67 253.26 m 136.31 253.26 l S 132.49 249.44 m 132.49 257.08 l S 212.80 100.85 m 220.44 100.85 l S 216.62 97.04 m 216.62 104.67 l S 190.40 96.46 m 198.04 96.46 l S 194.22 92.64 m 194.22 100.27 l S 191.11 95.55 m 198.74 95.55 l S 194.92 91.73 m 194.92 99.37 l S 253.12 218.05 m 260.76 218.05 l S 256.94 214.23 m 256.94 221.86 l S 213.76 101.63 m 221.40 101.63 l S 217.58 97.81 m 217.58 105.45 l S 156.93 176.34 m 164.56 176.34 l S 160.74 172.53 m 160.74 180.16 l S 226.26 133.06 m 233.90 133.06 l S 230.08 129.25 m 230.08 136.88 l S 190.48 97.00 m 198.11 97.00 l S 194.30 93.18 m 194.30 100.82 l S 187.12 102.87 m 194.75 102.87 l S 190.93 99.05 m 190.93 106.69 l S 180.98 116.69 m 188.62 116.69 l S 184.80 112.87 m 184.80 120.51 l S 153.74 190.21 m 161.38 190.21 l S 157.56 186.39 m 157.56 194.03 l S 207.76 93.84 m 215.40 93.84 l S 211.58 90.02 m 211.58 97.66 l S 198.54 85.85 m 206.18 85.85 l S 202.36 82.03 m 202.36 89.67 l S 228.74 138.39 m 236.37 138.39 l S 232.56 134.57 m 232.56 142.21 l S 265.88 267.66 m 273.51 267.66 l S 269.70 263.84 m 269.70 271.48 l S 214.53 104.91 m 222.17 104.91 l S 218.35 101.10 m 218.35 108.73 l S 219.01 115.12 m 226.65 115.12 l S 222.83 111.31 m 222.83 118.94 l S 240.08 175.46 m 247.72 175.46 l S 243.90 171.64 m 243.90 179.27 l S 202.92 87.02 m 210.56 87.02 l S 206.74 83.21 m 206.74 90.84 l S 163.27 162.74 m 170.91 162.74 l S 167.09 158.92 m 167.09 166.56 l S 182.83 112.40 m 190.47 112.40 l S 186.65 108.58 m 186.65 116.22 l S 231.25 142.61 m 238.89 142.61 l S 235.07 138.79 m 235.07 146.43 l S 190.17 97.22 m 197.81 97.22 l S 193.99 93.40 m 193.99 101.04 l S 259.40 242.83 m 267.04 242.83 l S 263.22 239.01 m 263.22 246.65 l S 240.71 172.95 m 248.34 172.95 l S 244.52 169.14 m 244.52 176.77 l S 160.48 177.23 m 168.12 177.23 l S 164.30 173.41 m 164.30 181.05 l S 235.82 155.86 m 243.45 155.86 l S 239.63 152.04 m 239.63 159.68 l S 213.77 103.48 m 221.41 103.48 l S 217.59 99.67 m 217.59 107.30 l S 222.91 126.17 m 230.55 126.17 l S 226.73 122.35 m 226.73 129.99 l S 266.83 253.26 m 274.47 253.26 l S 270.65 249.44 m 270.65 257.08 l S 238.70 169.68 m 246.34 169.68 l S 242.52 165.86 m 242.52 173.49 l S 150.65 190.21 m 158.29 190.21 l S 154.47 186.39 m 154.47 194.03 l S 226.50 135.50 m 234.13 135.50 l S 230.31 131.68 m 230.31 139.32 l S 228.99 136.61 m 236.63 136.61 l S 232.81 132.79 m 232.81 140.43 l S 262.98 253.26 m 270.62 253.26 l S 266.80 249.44 m 266.80 257.08 l S 242.70 175.46 m 250.33 175.46 l S 246.51 171.64 m 246.51 179.27 l S 165.65 149.82 m 173.29 149.82 l S 169.47 146.00 m 169.47 153.64 l S 204.14 88.48 m 211.78 88.48 l S 207.96 84.66 m 207.96 92.30 l S 212.31 100.70 m 219.94 100.70 l S 216.12 96.88 m 216.12 104.52 l S 186.77 102.02 m 194.40 102.02 l S 190.58 98.20 m 190.58 105.84 l S 235.94 159.80 m 243.57 159.80 l S 239.75 155.98 m 239.75 163.62 l S 233.64 148.92 m 241.27 148.92 l S 237.46 145.10 m 237.46 152.74 l S 195.43 89.57 m 203.07 89.57 l S 199.25 85.76 m 199.25 93.39 l S 196.52 88.17 m 204.16 88.17 l S 200.34 84.35 m 200.34 91.99 l S 184.18 96.51 m 191.81 96.51 l S 188.00 92.69 m 188.00 100.33 l S 260.17 253.26 m 267.81 253.26 l S 263.99 249.44 m 263.99 257.08 l S 284.81 267.66 m 292.44 267.66 l S 288.62 263.84 m 288.62 271.48 l S 165.65 155.41 m 173.29 155.41 l S 169.47 151.59 m 169.47 159.23 l S 219.30 115.12 m 226.93 115.12 l S 223.11 111.31 m 223.11 118.94 l S 229.37 143.67 m 237.01 143.67 l S 233.19 139.85 m 233.19 147.49 l S 140.42 267.66 m 148.05 267.66 l S 144.24 263.84 m 144.24 271.48 l S 157.07 198.49 m 164.71 198.49 l S 160.89 194.68 m 160.89 202.31 l S 266.78 267.66 m 274.41 267.66 l S 270.59 263.84 m 270.59 271.48 l S 250.92 193.36 m 258.56 193.36 l S 254.74 189.54 m 254.74 197.18 l S 243.12 178.15 m 250.75 178.15 l S 246.94 174.33 m 246.94 181.97 l S 256.78 202.94 m 264.41 202.94 l S 260.59 199.12 m 260.59 206.76 l S 230.95 142.11 m 238.58 142.11 l S 234.76 138.29 m 234.76 145.93 l S 253.04 222.51 m 260.68 222.51 l S 256.86 218.69 m 256.86 226.33 l S 191.36 94.67 m 198.99 94.67 l S 195.18 90.85 m 195.18 98.49 l S 254.61 210.76 m 262.25 210.76 l S 258.43 206.94 m 258.43 214.58 l S 177.07 124.88 m 184.71 124.88 l S 180.89 121.06 m 180.89 128.70 l S 157.31 178.15 m 164.95 178.15 l S 161.13 174.33 m 161.13 181.97 l S 238.69 152.28 m 246.33 152.28 l S 242.51 148.46 m 242.51 156.10 l S 240.02 195.07 m 247.66 195.07 l S 243.84 191.25 m 243.84 198.88 l S 204.72 89.47 m 212.35 89.47 l S 208.53 85.65 m 208.53 93.28 l S 258.66 205.15 m 266.30 205.15 l S 262.48 201.33 m 262.48 208.97 l S 149.59 205.15 m 157.22 205.15 l S 153.41 201.33 m 153.41 208.97 l S 237.60 168.39 m 245.23 168.39 l S 241.41 164.57 m 241.41 172.21 l S 180.47 113.36 m 188.10 113.36 l S 184.29 109.54 m 184.29 117.17 l S 140.85 267.66 m 148.48 267.66 l S 144.67 263.84 m 144.67 271.48 l S 212.31 100.83 m 219.95 100.83 l S 216.13 97.01 m 216.13 104.64 l S 233.42 143.12 m 241.06 143.12 l S 237.24 139.30 m 237.24 146.94 l S 228.83 135.72 m 236.47 135.72 l S 232.65 131.90 m 232.65 139.54 l S 230.04 143.39 m 237.68 143.39 l S 233.86 139.58 m 233.86 147.21 l S 157.34 188.89 m 164.97 188.89 l S 161.16 185.07 m 161.16 192.71 l S 169.21 144.15 m 176.85 144.15 l S 173.03 140.33 m 173.03 147.97 l S 197.60 86.67 m 205.23 86.67 l S 201.41 82.85 m 201.41 90.49 l S 185.58 107.14 m 193.22 107.14 l S 189.40 103.32 m 189.40 110.96 l S 213.96 104.97 m 221.60 104.97 l S 217.78 101.15 m 217.78 108.79 l S 202.92 85.85 m 210.56 85.85 l S 206.74 82.03 m 206.74 89.67 l S 218.05 111.96 m 225.69 111.96 l S 221.87 108.14 m 221.87 115.77 l S 223.27 122.56 m 230.91 122.56 l S 227.09 118.75 m 227.09 126.38 l S 286.52 267.66 m 294.16 267.66 l S 290.34 263.84 m 290.34 271.48 l S 176.04 126.81 m 183.68 126.81 l S 179.86 123.00 m 179.86 130.63 l S 194.28 90.40 m 201.92 90.40 l S 198.10 86.59 m 198.10 94.22 l S 139.34 227.88 m 146.97 227.88 l S 143.16 224.06 m 143.16 231.69 l S 117.45 267.66 m 125.09 267.66 l S 121.27 263.84 m 121.27 271.48 l S 145.51 195.07 m 153.15 195.07 l S 149.33 191.25 m 149.33 198.88 l S 158.06 180.35 m 165.69 180.35 l S 161.88 176.53 m 161.88 184.17 l S 207.35 93.73 m 214.98 93.73 l S 211.16 89.91 m 211.16 97.54 l S 217.32 111.42 m 224.96 111.42 l S 221.14 107.60 m 221.14 115.24 l S 228.88 136.73 m 236.52 136.73 l S 232.70 132.91 m 232.70 140.55 l S 158.42 178.15 m 166.05 178.15 l S 162.24 174.33 m 162.24 181.97 l S 339.52 267.66 m 347.15 267.66 l S 343.33 263.84 m 343.33 271.48 l S 187.09 101.40 m 194.73 101.40 l S 190.91 97.58 m 190.91 105.22 l S 126.31 267.66 m 133.95 267.66 l S 130.13 263.84 m 130.13 271.48 l S 220.03 116.82 m 227.67 116.82 l S 223.85 113.00 m 223.85 120.63 l S 201.52 85.81 m 209.15 85.81 l S 205.33 81.99 m 205.33 89.62 l S 211.31 99.81 m 218.95 99.81 l S 215.13 95.99 m 215.13 103.63 l S 244.77 190.21 m 252.41 190.21 l S 248.59 186.39 m 248.59 194.03 l S 222.84 124.52 m 230.48 124.52 l S 226.66 120.70 m 226.66 128.34 l S 180.29 116.63 m 187.93 116.63 l S 184.11 112.81 m 184.11 120.45 l S 218.31 115.51 m 225.94 115.51 l S 222.13 111.69 m 222.13 119.33 l S 175.13 125.72 m 182.76 125.72 l S 178.94 121.90 m 178.94 129.54 l S 252.81 227.88 m 260.45 227.88 l S 256.63 224.06 m 256.63 231.69 l S 232.94 148.31 m 240.58 148.31 l S 236.76 144.50 m 236.76 152.13 l S 162.60 151.87 m 170.24 151.87 l S 166.42 148.05 m 166.42 155.69 l S 235.11 161.61 m 242.75 161.61 l S 238.93 157.79 m 238.93 165.43 l S 223.72 126.81 m 231.35 126.81 l S 227.53 123.00 m 227.53 130.63 l S 102.44 267.66 m 110.08 267.66 l S 106.26 263.84 m 106.26 271.48 l S 210.72 98.04 m 218.36 98.04 l S 214.54 94.22 m 214.54 101.85 l S 223.41 121.33 m 231.05 121.33 l S 227.23 117.51 m 227.23 125.15 l S 239.79 151.16 m 247.42 151.16 l S 243.60 147.34 m 243.60 154.98 l S 237.33 164.43 m 244.97 164.43 l S 241.15 160.61 m 241.15 168.25 l S 202.19 86.44 m 209.82 86.44 l S 206.00 82.62 m 206.00 90.26 l S 238.33 177.23 m 245.97 177.23 l S 242.15 173.41 m 242.15 181.05 l S 234.77 157.96 m 242.41 157.96 l S 238.59 154.14 m 238.59 161.78 l S 201.59 86.11 m 209.23 86.11 l S 205.41 82.29 m 205.41 89.93 l S 174.68 129.73 m 182.31 129.73 l S 178.50 125.91 m 178.50 133.54 l S 185.23 107.72 m 192.87 107.72 l S 189.05 103.90 m 189.05 111.54 l S 117.61 267.66 m 125.24 267.66 l S 121.42 263.84 m 121.42 271.48 l S 202.96 87.49 m 210.60 87.49 l S 206.78 83.67 m 206.78 91.31 l S 173.16 133.74 m 180.79 133.74 l S 176.97 129.92 m 176.97 137.55 l S 204.06 88.30 m 211.69 88.30 l S 207.87 84.48 m 207.87 92.12 l S 257.58 222.51 m 265.22 222.51 l S 261.40 218.69 m 261.40 226.33 l S 221.51 119.53 m 229.14 119.53 l S 225.32 115.71 m 225.32 123.35 l S 184.51 105.60 m 192.15 105.60 l S 188.33 101.78 m 188.33 109.42 l S 215.79 108.37 m 223.43 108.37 l S 219.61 104.55 m 219.61 112.19 l S 222.36 122.43 m 229.99 122.43 l S 226.18 118.61 m 226.18 126.25 l S 272.67 267.66 m 280.31 267.66 l S 276.49 263.84 m 276.49 271.48 l S 228.99 136.41 m 236.63 136.41 l S 232.81 132.59 m 232.81 140.23 l S 160.14 175.46 m 167.77 175.46 l S 163.95 171.64 m 163.95 179.27 l S 236.70 167.66 m 244.34 167.66 l S 240.52 163.84 m 240.52 171.48 l S 222.59 120.42 m 230.23 120.42 l S 226.41 116.60 m 226.41 124.23 l S 183.10 100.83 m 190.74 100.83 l S 186.92 97.01 m 186.92 104.64 l S 136.72 242.83 m 144.36 242.83 l S 140.54 239.01 m 140.54 246.65 l S 261.52 253.26 m 269.16 253.26 l S 265.34 249.44 m 265.34 257.08 l S 198.54 85.85 m 206.18 85.85 l S 202.36 82.03 m 202.36 89.67 l S 81.72 267.66 m 89.35 267.66 l S 85.53 263.84 m 85.53 271.48 l S 220.43 116.07 m 228.07 116.07 l S 224.25 112.26 m 224.25 119.89 l S 277.25 267.66 m 284.89 267.66 l S 281.07 263.84 m 281.07 271.48 l S 214.99 106.04 m 222.62 106.04 l S 218.81 102.22 m 218.81 109.86 l S 201.20 85.64 m 208.83 85.64 l S 205.02 81.82 m 205.02 89.46 l S 222.68 124.57 m 230.32 124.57 l S 226.50 120.75 m 226.50 128.39 l S 230.60 128.29 m 238.24 128.29 l S 234.42 124.48 m 234.42 132.11 l S 230.75 147.46 m 238.38 147.46 l S 234.56 143.64 m 234.56 151.27 l S 129.55 242.83 m 137.19 242.83 l S 133.37 239.01 m 133.37 246.65 l S 232.60 139.48 m 240.23 139.48 l S 236.41 135.67 m 236.41 143.30 l S 233.64 151.16 m 241.28 151.16 l S 237.46 147.34 m 237.46 154.98 l S 285.13 267.66 m 292.76 267.66 l S 288.95 263.84 m 288.95 271.48 l S 182.22 110.69 m 189.86 110.69 l S 186.04 106.87 m 186.04 114.51 l S 221.66 120.84 m 229.29 120.84 l S 225.47 117.02 m 225.47 124.66 l S 226.92 134.68 m 234.56 134.68 l S 230.74 130.86 m 230.74 138.49 l S 186.97 101.53 m 194.60 101.53 l S 190.79 97.71 m 190.79 105.35 l S 262.46 253.26 m 270.10 253.26 l S 266.28 249.44 m 266.28 257.08 l S 211.15 99.65 m 218.78 99.65 l S 214.97 95.83 m 214.97 103.47 l S 310.74 267.66 m 318.37 267.66 l S 314.56 263.84 m 314.56 271.48 l S 320.26 267.66 m 327.90 267.66 l S 324.08 263.84 m 324.08 271.48 l S 209.59 95.20 m 217.23 95.20 l S 213.41 91.38 m 213.41 99.02 l S 180.46 114.46 m 188.10 114.46 l S 184.28 110.65 m 184.28 118.28 l S 258.12 242.83 m 265.76 242.83 l S 261.94 239.01 m 261.94 246.65 l S 150.70 193.36 m 158.33 193.36 l S 154.52 189.54 m 154.52 197.18 l S 259.82 267.66 m 267.46 267.66 l S 263.64 263.84 m 263.64 271.48 l S 293.32 267.66 m 300.95 267.66 l S 297.14 263.84 m 297.14 271.48 l S 259.37 267.66 m 267.00 267.66 l S 263.18 263.84 m 263.18 271.48 l S 244.80 181.37 m 252.43 181.37 l S 248.62 177.55 m 248.62 185.19 l S 107.68 267.66 m 115.31 267.66 l S 111.49 263.84 m 111.49 271.48 l S 157.42 166.99 m 165.06 166.99 l S 161.24 163.17 m 161.24 170.81 l S 194.20 89.57 m 201.83 89.57 l S 198.01 85.76 m 198.01 93.39 l S 200.30 84.67 m 207.94 84.67 l S 204.12 80.85 m 204.12 88.49 l S 170.00 144.15 m 177.64 144.15 l S 173.82 140.33 m 173.82 147.97 l S 190.64 95.98 m 198.28 95.98 l S 194.46 92.16 m 194.46 99.80 l S 206.16 92.44 m 213.80 92.44 l S 209.98 88.63 m 209.98 96.26 l S 238.60 172.11 m 246.23 172.11 l S 242.41 168.29 m 242.41 175.93 l S 255.53 242.83 m 263.17 242.83 l S 259.35 239.01 m 259.35 246.65 l S 190.22 95.65 m 197.85 95.65 l S 194.04 91.83 m 194.04 99.47 l S 161.80 178.15 m 169.43 178.15 l S 165.62 174.33 m 165.62 181.97 l S 212.85 99.62 m 220.49 99.62 l S 216.67 95.80 m 216.67 103.44 l S 193.64 92.18 m 201.28 92.18 l S 197.46 88.37 m 197.46 96.00 l S 123.96 253.26 m 131.60 253.26 l S 127.78 249.44 m 127.78 257.08 l S 180.08 115.75 m 187.71 115.75 l S 183.89 111.93 m 183.89 119.57 l S 223.40 123.88 m 231.03 123.88 l S 227.21 120.06 m 227.21 127.70 l S 227.16 136.41 m 234.79 136.41 l S 230.97 132.59 m 230.97 140.23 l S 184.33 107.78 m 191.97 107.78 l S 188.15 103.97 m 188.15 111.60 l S 197.34 87.04 m 204.97 87.04 l S 201.15 83.22 m 201.15 90.86 l S 246.85 205.15 m 254.49 205.15 l S 250.67 201.33 m 250.67 208.97 l S 134.93 253.26 m 142.57 253.26 l S 138.75 249.44 m 138.75 257.08 l S 232.58 154.61 m 240.21 154.61 l S 236.40 150.79 m 236.40 158.43 l S 223.90 127.08 m 231.54 127.08 l S 227.72 123.26 m 227.72 130.89 l S 238.98 165.10 m 246.62 165.10 l S 242.80 161.28 m 242.80 168.92 l S 201.72 85.64 m 209.36 85.64 l S 205.54 81.82 m 205.54 89.46 l S 252.92 242.83 m 260.55 242.83 l S 256.74 239.01 m 256.74 246.65 l S 196.02 88.67 m 203.66 88.67 l S 199.84 84.85 m 199.84 92.49 l S 263.19 253.26 m 270.83 253.26 l S 267.01 249.44 m 267.01 257.08 l S 220.28 117.81 m 227.92 117.81 l S 224.10 113.99 m 224.10 121.63 l S 82.64 267.66 m 90.28 267.66 l S 86.46 263.84 m 86.46 271.48 l S 273.24 253.26 m 280.88 253.26 l S 277.06 249.44 m 277.06 257.08 l S 175.69 126.01 m 183.32 126.01 l S 179.50 122.19 m 179.50 129.83 l S 192.24 93.89 m 199.88 93.89 l S 196.06 90.07 m 196.06 97.70 l S 164.85 153.16 m 172.49 153.16 l S 168.67 149.35 m 168.67 156.98 l S 198.34 85.84 m 205.98 85.84 l S 202.16 82.02 m 202.16 89.66 l S 183.10 108.40 m 190.74 108.40 l S 186.92 104.58 m 186.92 112.22 l S 214.08 105.32 m 221.72 105.32 l S 217.90 101.50 m 217.90 109.14 l S 223.70 113.88 m 231.34 113.88 l S 227.52 110.06 m 227.52 117.70 l S 220.54 119.78 m 228.18 119.78 l S 224.36 115.96 m 224.36 123.60 l S 232.84 148.03 m 240.48 148.03 l S 236.66 144.22 m 236.66 151.85 l S 244.98 187.47 m 252.62 187.47 l S 248.80 183.65 m 248.80 191.29 l S 276.13 267.66 m 283.77 267.66 l S 279.95 263.84 m 279.95 271.48 l S 242.90 170.27 m 250.53 170.27 l S 246.72 166.45 m 246.72 174.09 l S 177.86 121.54 m 185.49 121.54 l S 181.67 117.72 m 181.67 125.36 l S 179.30 119.29 m 186.93 119.29 l S 183.11 115.48 m 183.11 123.11 l S 246.08 186.17 m 253.71 186.17 l S 249.89 182.36 m 249.89 189.99 l S 199.13 85.43 m 206.77 85.43 l S 202.95 81.62 m 202.95 89.25 l S 164.08 157.96 m 171.71 157.96 l S 167.90 154.14 m 167.90 161.78 l S 207.00 93.10 m 214.64 93.10 l S 210.82 89.28 m 210.82 96.92 l S 211.63 100.70 m 219.27 100.70 l S 215.45 96.88 m 215.45 104.52 l S 214.51 105.88 m 222.15 105.88 l S 218.33 102.06 m 218.33 109.70 l S 207.19 93.06 m 214.83 93.06 l S 211.01 89.24 m 211.01 96.88 l S 219.19 110.65 m 226.83 110.65 l S 223.01 106.83 m 223.01 114.47 l S 200.58 84.82 m 208.21 84.82 l S 204.39 81.01 m 204.39 88.64 l S 161.73 168.98 m 169.37 168.98 l S 165.55 165.16 m 165.55 172.80 l S 191.42 94.85 m 199.06 94.85 l S 195.24 91.03 m 195.24 98.67 l S 159.85 176.34 m 167.49 176.34 l S 163.67 172.53 m 163.67 180.16 l S 230.67 143.67 m 238.31 143.67 l S 234.49 139.85 m 234.49 147.49 l S 207.13 93.73 m 214.77 93.73 l S 210.95 89.91 m 210.95 97.54 l S 175.79 126.28 m 183.42 126.28 l S 179.61 122.46 m 179.61 130.09 l S 187.30 101.58 m 194.94 101.58 l S 191.12 97.76 m 191.12 105.40 l S 292.31 267.66 m 299.95 267.66 l S 296.13 263.84 m 296.13 271.48 l S 226.74 131.49 m 234.37 131.49 l S 230.55 127.67 m 230.55 135.31 l S 115.12 253.26 m 122.76 253.26 l S 118.94 249.44 m 118.94 257.08 l S 192.39 94.29 m 200.03 94.29 l S 196.21 90.47 m 196.21 98.11 l S 241.85 165.10 m 249.49 165.10 l S 245.67 161.28 m 245.67 168.92 l S 221.71 120.07 m 229.34 120.07 l S 225.53 116.25 m 225.53 123.89 l S 251.05 242.83 m 258.69 242.83 l S 254.87 239.01 m 254.87 246.65 l S 206.84 92.08 m 214.48 92.08 l S 210.66 88.26 m 210.66 95.90 l S 218.57 113.36 m 226.21 113.36 l S 222.39 109.54 m 222.39 117.17 l S 274.27 253.26 m 281.90 253.26 l S 278.09 249.44 m 278.09 257.08 l S 204.48 89.10 m 212.12 89.10 l S 208.30 85.28 m 208.30 92.92 l S 210.75 98.58 m 218.39 98.58 l S 214.57 94.76 m 214.57 102.40 l S 198.16 86.64 m 205.80 86.64 l S 201.98 82.82 m 201.98 90.46 l S 171.60 136.21 m 179.24 136.21 l S 175.42 132.40 m 175.42 140.03 l S 208.09 94.30 m 215.73 94.30 l S 211.91 90.48 m 211.91 98.12 l S 303.23 267.66 m 310.86 267.66 l S 307.04 263.84 m 307.04 271.48 l S 289.84 267.66 m 297.48 267.66 l S 293.66 263.84 m 293.66 271.48 l S 178.00 121.39 m 185.64 121.39 l S 181.82 117.57 m 181.82 125.21 l S 276.19 253.26 m 283.82 253.26 l S 280.00 249.44 m 280.00 257.08 l S 128.38 253.26 m 136.02 253.26 l S 132.20 249.44 m 132.20 257.08 l S 207.25 92.36 m 214.89 92.36 l S 211.07 88.54 m 211.07 96.18 l S 172.79 136.96 m 180.43 136.96 l S 176.61 133.14 m 176.61 140.78 l S 217.55 110.65 m 225.18 110.65 l S 221.36 106.83 m 221.36 114.47 l S 190.37 97.04 m 198.00 97.04 l S 194.19 93.22 m 194.19 100.86 l S 216.20 109.96 m 223.83 109.96 l S 220.02 106.14 m 220.02 113.78 l S 215.02 104.91 m 222.65 104.91 l S 218.83 101.10 m 218.83 108.73 l S 188.72 98.90 m 196.36 98.90 l S 192.54 95.08 m 192.54 102.72 l S 276.86 267.66 m 284.49 267.66 l S 280.68 263.84 m 280.68 271.48 l S 185.72 103.03 m 193.36 103.03 l S 189.54 99.21 m 189.54 106.85 l S 238.08 174.56 m 245.71 174.56 l S 241.90 170.74 m 241.90 178.38 l S 179.10 117.81 m 186.74 117.81 l S 182.92 113.99 m 182.92 121.63 l S 226.49 134.60 m 234.13 134.60 l S 230.31 130.79 m 230.31 138.42 l S 237.95 164.43 m 245.59 164.43 l S 241.77 160.61 m 241.77 168.25 l S 205.44 91.51 m 213.08 91.51 l S 209.26 87.69 m 209.26 95.33 l S 234.32 155.86 m 241.96 155.86 l S 238.14 152.04 m 238.14 159.68 l S 209.64 95.55 m 217.28 95.55 l S 213.46 91.73 m 213.46 99.37 l S 151.82 180.35 m 159.46 180.35 l S 155.64 176.53 m 155.64 184.17 l S 205.00 90.47 m 212.64 90.47 l S 208.82 86.65 m 208.82 94.29 l S 219.08 111.64 m 226.71 111.64 l S 222.89 107.83 m 222.89 115.46 l S 251.70 193.36 m 259.34 193.36 l S 255.52 189.54 m 255.52 197.18 l S 184.74 108.04 m 192.38 108.04 l S 188.56 104.22 m 188.56 111.85 l S 216.81 108.08 m 224.45 108.08 l S 220.63 104.27 m 220.63 111.90 l S 165.08 158.84 m 172.72 158.84 l S 168.90 155.02 m 168.90 162.66 l S 231.08 145.40 m 238.71 145.40 l S 234.90 141.58 m 234.90 149.21 l S 249.00 205.15 m 256.64 205.15 l S 252.82 201.33 m 252.82 208.97 l S 209.82 97.11 m 217.45 97.11 l S 213.64 93.29 m 213.64 100.93 l S 210.65 99.18 m 218.29 99.18 l S 214.47 95.37 m 214.47 103.00 l S 216.46 110.38 m 224.09 110.38 l S 220.28 106.56 m 220.28 114.20 l S 211.55 99.96 m 219.19 99.96 l S 215.37 96.14 m 215.37 103.78 l S 163.97 166.99 m 171.61 166.99 l S 167.79 163.17 m 167.79 170.81 l S 177.34 124.27 m 184.97 124.27 l S 181.15 120.45 m 181.15 128.09 l S 163.08 154.22 m 170.71 154.22 l S 166.89 150.40 m 166.89 158.04 l S 110.62 253.26 m 118.26 253.26 l S 114.44 249.44 m 114.44 257.08 l S 138.04 253.26 m 145.68 253.26 l S 141.86 249.44 m 141.86 257.08 l S 207.63 93.27 m 215.27 93.27 l S 211.45 89.45 m 211.45 97.09 l S 183.96 110.80 m 191.60 110.80 l S 187.78 106.99 m 187.78 114.62 l S 156.15 188.89 m 163.78 188.89 l S 159.97 185.07 m 159.97 192.71 l S 250.14 213.95 m 257.77 213.95 l S 253.96 210.13 m 253.96 217.77 l S 263.79 227.88 m 271.43 227.88 l S 267.61 224.06 m 267.61 231.69 l S 201.83 86.38 m 209.46 86.38 l S 205.65 82.56 m 205.65 90.20 l S 117.28 253.26 m 124.91 253.26 l S 121.09 249.44 m 121.09 257.08 l S 223.33 127.86 m 230.97 127.86 l S 227.15 124.05 m 227.15 131.68 l S 214.11 105.32 m 221.74 105.32 l S 217.93 101.50 m 217.93 109.14 l S 183.08 108.04 m 190.72 108.04 l S 186.90 104.22 m 186.90 111.85 l S 129.44 253.26 m 137.07 253.26 l S 133.25 249.44 m 133.25 257.08 l S 222.70 125.54 m 230.34 125.54 l S 226.52 121.72 m 226.52 129.35 l S 278.65 267.66 m 286.29 267.66 l S 282.47 263.84 m 282.47 271.48 l S 80.18 267.66 m 87.81 267.66 l S 84.00 263.84 m 84.00 271.48 l S 152.27 207.47 m 159.90 207.47 l S 156.09 203.65 m 156.09 211.28 l S 132.28 253.26 m 139.92 253.26 l S 136.10 249.44 m 136.10 257.08 l S 150.15 213.95 m 157.79 213.95 l S 153.97 210.13 m 153.97 217.77 l S 188.48 99.18 m 196.11 99.18 l S 192.30 95.37 m 192.30 103.00 l S 188.35 99.75 m 195.99 99.75 l S 192.17 95.93 m 192.17 103.57 l S 190.49 96.39 m 198.12 96.39 l S 194.30 92.57 m 194.30 100.20 l S 215.80 109.05 m 223.43 109.05 l S 219.62 105.24 m 219.62 112.87 l S 203.75 88.48 m 211.39 88.48 l S 207.57 84.66 m 207.57 92.30 l S 211.74 98.44 m 219.37 98.44 l S 215.56 94.63 m 215.56 102.26 l S 220.13 116.28 m 227.76 116.28 l S 223.94 112.46 m 223.94 120.10 l S 226.24 131.75 m 233.87 131.75 l S 230.05 127.93 m 230.05 135.57 l S 304.88 267.66 m 312.52 267.66 l S 308.70 263.84 m 308.70 271.48 l S 195.48 90.00 m 203.12 90.00 l S 199.30 86.18 m 199.30 93.82 l S 144.09 207.47 m 151.72 207.47 l S 147.91 203.65 m 147.91 211.28 l S 207.53 92.54 m 215.17 92.54 l S 211.35 88.72 m 211.35 96.36 l S 153.31 200.52 m 160.95 200.52 l S 157.13 196.71 m 157.13 204.34 l S 168.19 149.55 m 175.82 149.55 l S 172.00 145.73 m 172.00 153.37 l S 190.72 95.33 m 198.36 95.33 l S 194.54 91.51 m 194.54 99.14 l S 237.93 162.74 m 245.57 162.74 l S 241.75 158.92 m 241.75 166.56 l S 283.65 267.66 m 291.29 267.66 l S 287.47 263.84 m 287.47 271.48 l S 230.54 144.77 m 238.18 144.77 l S 234.36 140.95 m 234.36 148.58 l S 221.58 121.83 m 229.22 121.83 l S 225.40 118.01 m 225.40 125.65 l S 225.32 129.16 m 232.95 129.16 l S 229.14 125.34 m 229.14 132.98 l S 236.60 150.13 m 244.24 150.13 l S 240.42 146.31 m 240.42 153.95 l S 194.00 90.68 m 201.64 90.68 l S 197.82 86.86 m 197.82 94.50 l S 206.28 92.02 m 213.91 92.02 l S 210.09 88.20 m 210.09 95.84 l S 162.21 166.38 m 169.84 166.38 l S 166.02 162.56 m 166.02 170.20 l S 90.20 267.66 m 97.83 267.66 l S 94.01 263.84 m 94.01 271.48 l S 204.51 87.69 m 212.15 87.69 l S 208.33 83.88 m 208.33 91.51 l S 166.31 155.86 m 173.94 155.86 l S 170.12 152.04 m 170.12 159.68 l S 202.96 87.25 m 210.60 87.25 l S 206.78 83.44 m 206.78 91.07 l S 176.43 128.73 m 184.07 128.73 l S 180.25 124.92 m 180.25 132.55 l S 247.91 190.21 m 255.55 190.21 l S 251.73 186.39 m 251.73 194.03 l S 217.17 112.12 m 224.80 112.12 l S 220.98 108.30 m 220.98 115.94 l S 221.60 117.09 m 229.23 117.09 l S 225.42 113.27 m 225.42 120.91 l S 254.71 222.51 m 262.34 222.51 l S 258.52 218.69 m 258.52 226.33 l S 214.11 103.06 m 221.75 103.06 l S 217.93 99.24 m 217.93 106.88 l S 196.42 86.69 m 204.06 86.69 l S 200.24 82.87 m 200.24 90.51 l S 236.36 161.00 m 244.00 161.00 l S 240.18 157.18 m 240.18 164.81 l S 184.12 106.62 m 191.75 106.62 l S 187.94 102.80 m 187.94 110.44 l S 142.63 227.88 m 150.26 227.88 l S 146.44 224.06 m 146.44 231.69 l S 218.76 112.23 m 226.40 112.23 l S 222.58 108.41 m 222.58 116.05 l S 147.70 222.51 m 155.33 222.51 l S 151.51 218.69 m 151.51 226.33 l S 163.83 155.86 m 171.46 155.86 l S 167.65 152.04 m 167.65 159.68 l S 186.32 105.05 m 193.96 105.05 l S 190.14 101.23 m 190.14 108.87 l S 271.68 253.26 m 279.32 253.26 l S 275.50 249.44 m 275.50 257.08 l S 225.13 131.02 m 232.76 131.02 l S 228.95 127.20 m 228.95 134.83 l S 206.41 92.22 m 214.04 92.22 l S 210.22 88.41 m 210.22 96.04 l S 215.35 107.92 m 222.98 107.92 l S 219.17 104.10 m 219.17 111.74 l S 76.21 267.66 m 83.84 267.66 l S 80.02 263.84 m 80.02 271.48 l S 219.93 117.52 m 227.57 117.52 l S 223.75 113.71 m 223.75 121.34 l S 197.33 87.42 m 204.97 87.42 l S 201.15 83.60 m 201.15 91.24 l S 182.57 110.80 m 190.21 110.80 l S 186.39 106.99 m 186.39 114.62 l S 208.59 95.34 m 216.23 95.34 l S 212.41 91.52 m 212.41 99.16 l S 262.13 242.83 m 269.77 242.83 l S 265.95 239.01 m 265.95 246.65 l S 208.61 94.81 m 216.25 94.81 l S 212.43 90.99 m 212.43 98.62 l S 219.23 117.74 m 226.86 117.74 l S 223.04 113.92 m 223.04 121.56 l S 224.32 127.17 m 231.96 127.17 l S 228.14 123.35 m 228.14 130.99 l S 115.78 267.66 m 123.41 267.66 l S 119.60 263.84 m 119.60 271.48 l S 155.32 174.56 m 162.95 174.56 l S 159.13 170.74 m 159.13 178.38 l S 247.45 195.07 m 255.09 195.07 l S 251.27 191.25 m 251.27 198.88 l S 166.81 150.41 m 174.44 150.41 l S 170.63 146.60 m 170.63 154.23 l S 194.63 90.34 m 202.26 90.34 l S 198.45 86.53 m 198.45 94.16 l S 262.14 267.66 m 269.77 267.66 l S 265.96 263.84 m 265.96 271.48 l S 205.42 90.05 m 213.05 90.05 l S 209.24 86.23 m 209.24 93.86 l S 173.22 134.60 m 180.85 134.60 l S 177.03 130.79 m 177.03 138.42 l S 189.23 98.16 m 196.87 98.16 l S 193.05 94.34 m 193.05 101.98 l S 254.23 234.47 m 261.86 234.47 l S 258.05 230.65 m 258.05 238.29 l S 277.34 267.66 m 284.98 267.66 l S 281.16 263.84 m 281.16 271.48 l S 172.53 137.66 m 180.17 137.66 l S 176.35 133.85 m 176.35 141.48 l S 218.79 112.61 m 226.43 112.61 l S 222.61 108.79 m 222.61 116.43 l S 222.01 122.43 m 229.64 122.43 l S 225.83 118.61 m 225.83 126.25 l S 264.50 234.47 m 272.13 234.47 l S 268.31 230.65 m 268.31 238.29 l S 227.23 138.09 m 234.87 138.09 l S 231.05 134.27 m 231.05 141.91 l S 164.73 155.01 m 172.36 155.01 l S 168.54 151.19 m 168.54 158.83 l S 149.33 168.39 m 156.97 168.39 l S 153.15 164.57 m 153.15 172.21 l S 204.09 88.66 m 211.73 88.66 l S 207.91 84.84 m 207.91 92.48 l S 122.67 267.66 m 130.31 267.66 l S 126.49 263.84 m 126.49 271.48 l S 229.15 143.12 m 236.79 143.12 l S 232.97 139.30 m 232.97 146.94 l S 221.39 121.18 m 229.03 121.18 l S 225.21 117.36 m 225.21 124.99 l S 194.70 90.61 m 202.34 90.61 l S 198.52 86.79 m 198.52 94.43 l S 216.32 110.69 m 223.95 110.69 l S 220.13 106.87 m 220.13 114.51 l S 236.94 159.80 m 244.58 159.80 l S 240.76 155.98 m 240.76 163.62 l S 203.46 88.02 m 211.09 88.02 l S 207.27 84.20 m 207.27 91.83 l S 202.17 86.46 m 209.80 86.46 l S 205.99 82.64 m 205.99 90.28 l S 225.63 132.06 m 233.26 132.06 l S 229.45 128.24 m 229.45 135.88 l S 136.31 242.83 m 143.94 242.83 l S 140.12 239.01 m 140.12 246.65 l S 119.43 267.66 m 127.07 267.66 l S 123.25 263.84 m 123.25 271.48 l S 177.68 126.28 m 185.32 126.28 l S 181.50 122.46 m 181.50 130.09 l S 193.05 92.43 m 200.69 92.43 l S 196.87 88.61 m 196.87 96.25 l S 199.36 84.84 m 207.00 84.84 l S 203.18 81.02 m 203.18 88.66 l S 193.37 92.28 m 201.00 92.28 l S 197.18 88.46 m 197.18 96.09 l S 167.67 149.82 m 175.31 149.82 l S 171.49 146.00 m 171.49 153.64 l S 185.92 105.05 m 193.56 105.05 l S 189.74 101.23 m 189.74 108.87 l S 210.79 98.44 m 218.43 98.44 l S 214.61 94.63 m 214.61 102.26 l S 223.23 126.17 m 230.87 126.17 l S 227.05 122.35 m 227.05 129.99 l S 208.40 93.94 m 216.04 93.94 l S 212.22 90.13 m 212.22 97.76 l S 227.42 139.09 m 235.05 139.09 l S 231.23 135.27 m 231.23 142.90 l S 177.45 122.29 m 185.09 122.29 l S 181.27 118.47 m 181.27 126.11 l S 195.38 89.60 m 203.02 89.60 l S 199.20 85.78 m 199.20 93.42 l S 151.41 205.15 m 159.05 205.15 l S 155.23 201.33 m 155.23 208.97 l S 137.28 253.26 m 144.92 253.26 l S 141.10 249.44 m 141.10 257.08 l S 264.19 253.26 m 271.83 253.26 l S 268.01 249.44 m 268.01 257.08 l S 220.57 117.74 m 228.21 117.74 l S 224.39 113.92 m 224.39 121.56 l S 247.99 196.81 m 255.63 196.81 l S 251.81 192.99 m 251.81 200.63 l S 133.84 234.47 m 141.48 234.47 l S 137.66 230.65 m 137.66 238.29 l S 207.49 92.42 m 215.13 92.42 l S 211.31 88.60 m 211.31 96.24 l S 191.52 95.28 m 199.16 95.28 l S 195.34 91.46 m 195.34 99.10 l S 211.86 100.27 m 219.49 100.27 l S 215.68 96.45 m 215.68 104.09 l S 217.80 104.67 m 225.43 104.67 l S 221.61 100.85 m 221.61 108.48 l S 191.12 94.87 m 198.75 94.87 l S 194.93 91.05 m 194.93 98.69 l S 189.07 98.68 m 196.71 98.68 l S 192.89 94.86 m 192.89 102.50 l S 216.45 107.20 m 224.08 107.20 l S 220.27 103.38 m 220.27 111.02 l S 227.79 139.26 m 235.43 139.26 l S 231.61 135.44 m 231.61 143.07 l S 217.51 113.47 m 225.15 113.47 l S 221.33 109.65 m 221.33 117.29 l S 241.09 166.99 m 248.73 166.99 l S 244.91 163.17 m 244.91 170.81 l S 250.95 200.52 m 258.58 200.52 l S 254.77 196.71 m 254.77 204.34 l S 248.09 202.94 m 255.73 202.94 l S 251.91 199.12 m 251.91 206.76 l S 303.66 267.66 m 311.29 267.66 l S 307.48 263.84 m 307.48 271.48 l S 309.51 267.66 m 317.14 267.66 l S 313.33 263.84 m 313.33 271.48 l S 298.42 267.66 m 306.06 267.66 l S 302.24 263.84 m 302.24 271.48 l S 189.83 96.95 m 197.47 96.95 l S 193.65 93.13 m 193.65 100.77 l S 245.11 182.26 m 252.74 182.26 l S 248.93 178.44 m 248.93 186.08 l S 163.14 161.00 m 170.77 161.00 l S 166.96 157.18 m 166.96 164.81 l S 230.37 142.11 m 238.01 142.11 l S 234.19 138.29 m 234.19 145.93 l S 238.06 163.44 m 245.70 163.44 l S 241.88 159.62 m 241.88 167.26 l S 237.76 167.66 m 245.40 167.66 l S 241.58 163.84 m 241.58 171.48 l S 225.54 130.30 m 233.18 130.30 l S 229.36 126.48 m 229.36 134.12 l S 206.98 92.54 m 214.62 92.54 l S 210.80 88.72 m 210.80 96.36 l S 239.78 172.95 m 247.42 172.95 l S 243.60 169.14 m 243.60 176.77 l S 210.85 100.70 m 218.48 100.70 l S 214.67 96.88 m 214.67 104.52 l S 210.11 96.63 m 217.75 96.63 l S 213.93 92.82 m 213.93 100.45 l S 200.52 84.84 m 208.15 84.84 l S 204.33 81.02 m 204.33 88.66 l S 195.75 89.64 m 203.39 89.64 l S 199.57 85.82 m 199.57 93.46 l S 174.83 131.16 m 182.47 131.16 l S 178.65 127.35 m 178.65 134.98 l S 288.47 267.66 m 296.10 267.66 l S 292.28 263.84 m 292.28 271.48 l S 195.68 90.18 m 203.31 90.18 l S 199.49 86.36 m 199.49 94.00 l S 67.91 267.66 m 75.55 267.66 l S 71.73 263.84 m 71.73 271.48 l S 223.34 126.62 m 230.98 126.62 l S 227.16 122.80 m 227.16 130.44 l S 250.79 193.36 m 258.42 193.36 l S 254.61 189.54 m 254.61 197.18 l S 216.72 110.55 m 224.36 110.55 l S 220.54 106.74 m 220.54 114.37 l S 207.13 92.08 m 214.77 92.08 l S 210.95 88.26 m 210.95 95.90 l S 216.84 109.20 m 224.47 109.20 l S 220.66 105.38 m 220.66 113.02 l S 256.05 198.49 m 263.69 198.49 l S 259.87 194.68 m 259.87 202.31 l S 203.37 87.25 m 211.01 87.25 l S 207.19 83.44 m 207.19 91.07 l S 157.78 180.35 m 165.41 180.35 l S 161.60 176.53 m 161.60 184.17 l S 177.83 121.09 m 185.47 121.09 l S 181.65 117.27 m 181.65 124.91 l S 195.70 89.57 m 203.33 89.57 l S 199.52 85.76 m 199.52 93.39 l S 94.52 267.66 m 102.15 267.66 l S 98.34 263.84 m 98.34 271.48 l S 217.33 111.10 m 224.96 111.10 l S 221.15 107.28 m 221.15 114.92 l S 259.58 222.51 m 267.21 222.51 l S 263.40 218.69 m 263.40 226.33 l S 236.25 173.74 m 243.89 173.74 l S 240.07 169.92 m 240.07 177.56 l S 238.21 172.11 m 245.84 172.11 l S 242.02 168.29 m 242.02 175.93 l S 114.93 267.66 m 122.57 267.66 l S 118.75 263.84 m 118.75 271.48 l S 190.05 97.37 m 197.69 97.37 l S 193.87 93.55 m 193.87 101.18 l S 178.66 120.07 m 186.30 120.07 l S 182.48 116.25 m 182.48 123.89 l S 284.89 267.66 m 292.53 267.66 l S 288.71 263.84 m 288.71 271.48 l S 150.60 213.95 m 158.23 213.95 l S 154.42 210.13 m 154.42 217.77 l S 214.31 105.09 m 221.95 105.09 l S 218.13 101.27 m 218.13 108.91 l S 155.07 168.98 m 162.70 168.98 l S 158.88 165.16 m 158.88 172.80 l S 212.90 101.53 m 220.54 101.53 l S 216.72 97.71 m 216.72 105.35 l S 192.47 93.37 m 200.11 93.37 l S 196.29 89.55 m 196.29 97.19 l S 251.21 213.95 m 258.84 213.95 l S 255.03 210.13 m 255.03 217.77 l S 225.54 128.29 m 233.18 128.29 l S 229.36 124.48 m 229.36 132.11 l S 236.38 158.33 m 244.01 158.33 l S 240.20 154.51 m 240.20 162.14 l S 202.76 87.34 m 210.40 87.34 l S 206.58 83.53 m 206.58 91.16 l S 242.21 175.46 m 249.85 175.46 l S 246.03 171.64 m 246.03 179.27 l S 271.06 267.66 m 278.69 267.66 l S 274.88 263.84 m 274.88 271.48 l S 192.25 94.81 m 199.89 94.81 l S 196.07 90.99 m 196.07 98.62 l S 223.01 122.70 m 230.65 122.70 l S 226.83 118.88 m 226.83 126.52 l S 226.30 133.29 m 233.94 133.29 l S 230.12 129.47 m 230.12 137.10 l S 169.29 150.80 m 176.93 150.80 l S 173.11 146.98 m 173.11 154.62 l S 220.02 117.74 m 227.65 117.74 l S 223.84 113.92 m 223.84 121.56 l S 218.58 107.99 m 226.22 107.99 l S 222.40 104.17 m 222.40 111.81 l S 209.22 96.63 m 216.86 96.63 l S 213.04 92.82 m 213.04 100.45 l S 261.56 242.83 m 269.20 242.83 l S 265.38 239.01 m 265.38 246.65 l S 191.16 96.44 m 198.80 96.44 l S 194.98 92.62 m 194.98 100.26 l S 190.74 97.11 m 198.37 97.11 l S 194.56 93.29 m 194.56 100.93 l S 212.09 101.53 m 219.72 101.53 l S 215.90 97.71 m 215.90 105.35 l S 215.09 106.56 m 222.73 106.56 l S 218.91 102.74 m 218.91 110.37 l S 172.64 136.61 m 180.27 136.61 l S 176.45 132.79 m 176.45 140.43 l S 155.93 191.78 m 163.57 191.78 l S 159.75 187.96 m 159.75 195.60 l S 162.98 166.38 m 170.62 166.38 l S 166.80 162.56 m 166.80 170.20 l S 135.38 267.66 m 143.01 267.66 l S 139.19 263.84 m 139.19 271.48 l S 215.89 107.92 m 223.53 107.92 l S 219.71 104.10 m 219.71 111.74 l S 179.10 117.92 m 186.73 117.92 l S 182.91 114.10 m 182.91 121.74 l S 148.84 196.81 m 156.47 196.81 l S 152.65 192.99 m 152.65 200.63 l S 267.24 267.66 m 274.88 267.66 l S 271.06 263.84 m 271.06 271.48 l S 228.89 137.13 m 236.53 137.13 l S 232.71 133.32 m 232.71 140.95 l S 232.53 150.13 m 240.16 150.13 l S 236.34 146.31 m 236.34 153.95 l S 211.81 100.78 m 219.45 100.78 l S 215.63 96.96 m 215.63 104.60 l S 237.80 173.74 m 245.44 173.74 l S 241.62 169.92 m 241.62 177.56 l S 213.13 100.85 m 220.77 100.85 l S 216.95 97.04 m 216.95 104.67 l S 214.58 105.64 m 222.22 105.64 l S 218.40 101.82 m 218.40 109.46 l S 192.36 93.20 m 200.00 93.20 l S 196.18 89.38 m 196.18 97.02 l S 176.13 127.44 m 183.77 127.44 l S 179.95 123.62 m 179.95 131.26 l S 212.02 99.44 m 219.66 99.44 l S 215.84 95.62 m 215.84 103.25 l S 221.49 117.74 m 229.12 117.74 l S 225.31 113.92 m 225.31 121.56 l S 164.32 164.11 m 171.96 164.11 l S 168.14 160.30 m 168.14 167.93 l S 156.26 171.18 m 163.90 171.18 l S 160.08 167.36 m 160.08 175.00 l S 226.71 132.06 m 234.34 132.06 l S 230.52 128.24 m 230.52 135.88 l S 225.38 126.42 m 233.02 126.42 l S 229.20 122.60 m 229.20 130.23 l S 231.45 153.43 m 239.09 153.43 l S 235.27 149.61 m 235.27 157.25 l S 213.77 105.60 m 221.40 105.60 l S 217.58 101.78 m 217.58 109.42 l S 177.63 124.52 m 185.27 124.52 l S 181.45 120.70 m 181.45 128.34 l S 210.52 98.72 m 218.15 98.72 l S 214.33 94.91 m 214.33 102.54 l S 233.01 158.33 m 240.65 158.33 l S 236.83 154.51 m 236.83 162.14 l S 228.34 140.28 m 235.98 140.28 l S 232.16 136.46 m 232.16 144.09 l S 199.21 85.02 m 206.85 85.02 l S 203.03 81.21 m 203.03 88.84 l S 238.71 167.66 m 246.35 167.66 l S 242.53 163.84 m 242.53 171.48 l S 212.70 102.81 m 220.33 102.81 l S 216.51 98.99 m 216.51 106.63 l S 232.41 155.01 m 240.05 155.01 l S 236.23 151.19 m 236.23 158.83 l S 202.39 86.77 m 210.02 86.77 l S 206.20 82.95 m 206.20 90.59 l S 258.28 253.26 m 265.92 253.26 l S 262.10 249.44 m 262.10 257.08 l S 198.23 86.57 m 205.87 86.57 l S 202.05 82.75 m 202.05 90.39 l S 202.54 86.77 m 210.18 86.77 l S 206.36 82.95 m 206.36 90.59 l S 187.73 99.90 m 195.37 99.90 l S 191.55 96.08 m 191.55 103.72 l S 237.99 168.39 m 245.63 168.39 l S 241.81 164.57 m 241.81 172.21 l S 224.56 128.65 m 232.20 128.65 l S 228.38 124.84 m 228.38 132.47 l S 201.84 86.20 m 209.48 86.20 l S 205.66 82.39 m 205.66 90.02 l S 218.01 106.92 m 225.65 106.92 l S 221.83 103.11 m 221.83 110.74 l S 219.22 113.40 m 226.86 113.40 l S 223.04 109.58 m 223.04 117.22 l S 173.49 131.88 m 181.12 131.88 l S 177.31 128.06 m 177.31 135.70 l S 191.80 94.47 m 199.44 94.47 l S 195.62 90.65 m 195.62 98.29 l S 194.23 91.25 m 201.86 91.25 l S 198.05 87.43 m 198.05 95.06 l S 201.23 85.43 m 208.87 85.43 l S 205.05 81.62 m 205.05 89.25 l S 193.87 92.08 m 201.51 92.08 l S 197.69 88.26 m 197.69 95.90 l S 210.56 97.92 m 218.20 97.92 l S 214.38 94.10 m 214.38 101.73 l S 214.13 101.33 m 221.77 101.33 l S 217.95 97.52 m 217.95 105.15 l S 262.77 267.66 m 270.40 267.66 l S 266.59 263.84 m 266.59 271.48 l S 210.90 97.90 m 218.54 97.90 l S 214.72 94.08 m 214.72 101.71 l S 185.75 100.95 m 193.38 100.95 l S 189.56 97.13 m 189.56 104.76 l S 193.80 91.00 m 201.44 91.00 l S 197.62 87.18 m 197.62 94.82 l S 222.24 121.09 m 229.87 121.09 l S 226.05 117.27 m 226.05 124.91 l S 189.39 98.94 m 197.03 98.94 l S 193.21 95.13 m 193.21 102.76 l S 165.98 150.80 m 173.62 150.80 l S 169.80 146.98 m 169.80 154.62 l S 203.19 87.69 m 210.83 87.69 l S 207.01 83.88 m 207.01 91.51 l S 224.42 129.73 m 232.06 129.73 l S 228.24 125.91 m 228.24 133.54 l S 179.41 119.29 m 187.05 119.29 l S 183.23 115.48 m 183.23 123.11 l S 216.58 109.68 m 224.22 109.68 l S 220.40 105.87 m 220.40 113.50 l S 198.71 85.60 m 206.35 85.60 l S 202.53 81.78 m 202.53 89.42 l S 222.34 121.33 m 229.97 121.33 l S 226.16 117.51 m 226.16 125.15 l S 195.82 88.77 m 203.46 88.77 l S 199.64 84.95 m 199.64 92.59 l S 188.01 101.75 m 195.65 101.75 l S 191.83 97.93 m 191.83 105.56 l S 89.88 267.66 m 97.52 267.66 l S 93.70 263.84 m 93.70 271.48 l S 200.79 85.31 m 208.42 85.31 l S 204.61 81.49 m 204.61 89.12 l S 205.60 90.18 m 213.24 90.18 l S 209.42 86.36 m 209.42 94.00 l S 232.32 153.16 m 239.96 153.16 l S 236.14 149.35 m 236.14 156.98 l S 201.90 86.13 m 209.53 86.13 l S 205.71 82.31 m 205.71 89.95 l S 257.71 218.05 m 265.34 218.05 l S 261.53 214.23 m 261.53 221.86 l S 1.000 0.000 1.000 RG 230.86 84.53 m 238.50 84.53 l S 234.68 80.71 m 234.68 88.35 l S 215.99 84.53 m 223.63 84.53 l S 219.81 80.71 m 219.81 88.35 l S 198.35 84.53 m 205.98 84.53 l S 202.17 80.71 m 202.17 88.35 l S 194.13 84.53 m 201.77 84.53 l S 197.95 80.71 m 197.95 88.35 l S 176.08 84.53 m 183.71 84.53 l S 179.89 80.71 m 179.89 88.35 l S 177.92 84.53 m 185.55 84.53 l S 181.73 80.71 m 181.73 88.35 l S 212.71 84.53 m 220.34 84.53 l S 216.52 80.71 m 216.52 88.35 l S 209.40 84.53 m 217.04 84.53 l S 213.22 80.71 m 213.22 88.35 l S 200.36 84.53 m 207.99 84.53 l S 204.17 80.71 m 204.17 88.35 l S 202.43 84.53 m 210.06 84.53 l S 206.24 80.71 m 206.24 88.35 l S 272.37 166.87 m 280.00 166.87 l S 276.18 163.05 m 276.18 170.69 l S 249.92 93.96 m 257.56 93.96 l S 253.74 90.14 m 253.74 97.78 l S 268.73 181.27 m 276.37 181.27 l S 272.55 177.45 m 272.55 185.09 l S 192.33 84.53 m 199.96 84.53 l S 196.15 80.71 m 196.15 88.35 l S 196.73 84.53 m 204.37 84.53 l S 200.55 80.71 m 200.55 88.35 l S 206.17 84.53 m 213.81 84.53 l S 209.99 80.71 m 209.99 88.35 l S 167.55 84.53 m 175.18 84.53 l S 171.37 80.71 m 171.37 88.35 l S 245.73 110.42 m 253.37 110.42 l S 249.55 106.60 m 249.55 114.24 l S 207.12 84.53 m 214.75 84.53 l S 210.94 80.71 m 210.94 88.35 l S 238.92 84.53 m 246.56 84.53 l S 242.74 80.71 m 242.74 88.35 l S 225.46 84.53 m 233.10 84.53 l S 229.28 80.71 m 229.28 88.35 l S 207.96 84.53 m 215.59 84.53 l S 211.77 80.71 m 211.77 88.35 l S 121.15 181.27 m 128.79 181.27 l S 124.97 177.45 m 124.97 185.09 l S 188.01 84.53 m 195.65 84.53 l S 191.83 80.71 m 191.83 88.35 l S 161.58 84.53 m 169.22 84.53 l S 165.40 80.71 m 165.40 88.35 l S 225.02 84.53 m 232.65 84.53 l S 228.84 80.71 m 228.84 88.35 l S 193.35 84.53 m 200.99 84.53 l S 197.17 80.71 m 197.17 88.35 l S 199.17 84.53 m 206.81 84.53 l S 202.99 80.71 m 202.99 88.35 l S 222.73 84.53 m 230.37 84.53 l S 226.55 80.71 m 226.55 88.35 l S 192.34 84.53 m 199.98 84.53 l S 196.16 80.71 m 196.16 88.35 l S 197.76 84.53 m 205.40 84.53 l S 201.58 80.71 m 201.58 88.35 l S 264.20 148.08 m 271.83 148.08 l S 268.01 144.26 m 268.01 151.90 l S 195.26 84.53 m 202.90 84.53 l S 199.08 80.71 m 199.08 88.35 l S 180.05 84.53 m 187.69 84.53 l S 183.87 80.71 m 183.87 88.35 l S 247.65 114.13 m 255.28 114.13 l S 251.46 110.31 m 251.46 117.95 l S 244.15 96.90 m 251.78 96.90 l S 247.96 93.08 m 247.96 100.72 l S 181.11 84.53 m 188.75 84.53 l S 184.93 80.71 m 184.93 88.35 l S 206.93 84.53 m 214.57 84.53 l S 210.75 80.71 m 210.75 88.35 l S 144.24 136.12 m 151.88 136.12 l S 148.06 132.30 m 148.06 139.93 l S 228.24 84.53 m 235.88 84.53 l S 232.06 80.71 m 232.06 88.35 l S 228.86 84.53 m 236.49 84.53 l S 232.67 80.71 m 232.67 88.35 l S 219.72 84.53 m 227.35 84.53 l S 223.53 80.71 m 223.53 88.35 l S 245.96 110.42 m 253.60 110.42 l S 249.78 106.60 m 249.78 114.24 l S 182.98 84.53 m 190.62 84.53 l S 186.80 80.71 m 186.80 88.35 l S 215.74 84.53 m 223.38 84.53 l S 219.56 80.71 m 219.56 88.35 l S 218.51 84.53 m 226.15 84.53 l S 222.33 80.71 m 222.33 88.35 l S 174.38 84.53 m 182.02 84.53 l S 178.20 80.71 m 178.20 88.35 l S 170.03 84.53 m 177.67 84.53 l S 173.85 80.71 m 173.85 88.35 l S 220.37 84.53 m 228.01 84.53 l S 224.19 80.71 m 224.19 88.35 l S 256.10 156.44 m 263.74 156.44 l S 259.92 152.62 m 259.92 160.26 l S 153.00 102.50 m 160.64 102.50 l S 156.82 98.68 m 156.82 106.32 l S 189.74 84.53 m 197.37 84.53 l S 193.56 80.71 m 193.56 88.35 l S 226.36 84.53 m 234.00 84.53 l S 230.18 80.71 m 230.18 88.35 l S 185.84 84.53 m 193.47 84.53 l S 189.66 80.71 m 189.66 88.35 l S 128.75 181.27 m 136.39 181.27 l S 132.57 177.45 m 132.57 185.09 l S 275.23 181.27 m 282.86 181.27 l S 279.05 177.45 m 279.05 185.09 l S 211.21 84.53 m 218.85 84.53 l S 215.03 80.71 m 215.03 88.35 l S 199.64 84.53 m 207.28 84.53 l S 203.46 80.71 m 203.46 88.35 l S 167.24 84.53 m 174.88 84.53 l S 171.06 80.71 m 171.06 88.35 l S 242.87 93.96 m 250.51 93.96 l S 246.69 90.14 m 246.69 97.78 l S 171.22 84.53 m 178.86 84.53 l S 175.04 80.71 m 175.04 88.35 l S 257.71 156.44 m 265.35 156.44 l S 261.53 152.62 m 261.53 160.26 l S 167.24 84.53 m 174.88 84.53 l S 171.06 80.71 m 171.06 88.35 l S 219.82 84.53 m 227.46 84.53 l S 223.64 80.71 m 223.64 88.35 l S 184.70 84.53 m 192.34 84.53 l S 188.52 80.71 m 188.52 88.35 l S 118.24 181.27 m 125.87 181.27 l S 122.05 177.45 m 122.05 185.09 l S 233.00 84.53 m 240.64 84.53 l S 236.82 80.71 m 236.82 88.35 l S 290.74 181.27 m 298.38 181.27 l S 294.56 177.45 m 294.56 185.09 l S 183.44 84.53 m 191.08 84.53 l S 187.26 80.71 m 187.26 88.35 l S 210.63 84.53 m 218.26 84.53 l S 214.44 80.71 m 214.44 88.35 l S 190.54 84.53 m 198.18 84.53 l S 194.36 80.71 m 194.36 88.35 l S 222.15 84.53 m 229.79 84.53 l S 225.97 80.71 m 225.97 88.35 l S 228.34 84.53 m 235.97 84.53 l S 232.16 80.71 m 232.16 88.35 l S 151.14 118.76 m 158.77 118.76 l S 154.96 114.94 m 154.96 122.58 l S 178.28 84.53 m 185.91 84.53 l S 182.10 80.71 m 182.10 88.35 l S 204.76 84.53 m 212.40 84.53 l S 208.58 80.71 m 208.58 88.35 l S 165.35 84.53 m 172.99 84.53 l S 169.17 80.71 m 169.17 88.35 l S 150.00 118.76 m 157.64 118.76 l S 153.82 114.94 m 153.82 122.58 l S 157.20 91.76 m 164.83 91.76 l S 161.02 87.94 m 161.02 95.58 l S 179.16 84.53 m 186.80 84.53 l S 182.98 80.71 m 182.98 88.35 l S 140.19 148.08 m 147.83 148.08 l S 144.01 144.26 m 144.01 151.90 l S 239.43 84.53 m 247.06 84.53 l S 243.25 80.71 m 243.25 88.35 l S 173.90 84.53 m 181.54 84.53 l S 177.72 80.71 m 177.72 88.35 l S 136.86 136.12 m 144.49 136.12 l S 140.68 132.30 m 140.68 139.93 l S 210.29 84.53 m 217.93 84.53 l S 214.11 80.71 m 214.11 88.35 l S 201.24 84.53 m 208.87 84.53 l S 205.05 80.71 m 205.05 88.35 l S 199.83 84.53 m 207.47 84.53 l S 203.65 80.71 m 203.65 88.35 l S 184.48 84.53 m 192.12 84.53 l S 188.30 80.71 m 188.30 88.35 l S 164.05 84.53 m 171.69 84.53 l S 167.87 80.71 m 167.87 88.35 l S 223.79 84.53 m 231.42 84.53 l S 227.61 80.71 m 227.61 88.35 l S 202.13 84.53 m 209.76 84.53 l S 205.95 80.71 m 205.95 88.35 l S 187.57 84.53 m 195.21 84.53 l S 191.39 80.71 m 191.39 88.35 l S 186.84 84.53 m 194.48 84.53 l S 190.66 80.71 m 190.66 88.35 l S 185.33 84.53 m 192.97 84.53 l S 189.15 80.71 m 189.15 88.35 l S 191.06 84.53 m 198.70 84.53 l S 194.88 80.71 m 194.88 88.35 l S 97.24 181.27 m 104.88 181.27 l S 101.06 177.45 m 101.06 185.09 l S 212.44 84.53 m 220.08 84.53 l S 216.26 80.71 m 216.26 88.35 l S 181.15 84.53 m 188.78 84.53 l S 184.96 80.71 m 184.96 88.35 l S 202.27 84.53 m 209.90 84.53 l S 206.09 80.71 m 206.09 88.35 l S 231.16 84.53 m 238.80 84.53 l S 234.98 80.71 m 234.98 88.35 l S 237.24 84.53 m 244.88 84.53 l S 241.06 80.71 m 241.06 88.35 l S 151.38 124.37 m 159.02 124.37 l S 155.20 120.55 m 155.20 128.19 l S 200.32 84.53 m 207.96 84.53 l S 204.14 80.71 m 204.14 88.35 l S 152.00 118.76 m 159.64 118.76 l S 155.82 114.94 m 155.82 122.58 l S 260.62 166.87 m 268.26 166.87 l S 264.44 163.05 m 264.44 170.69 l S 157.97 87.35 m 165.60 87.35 l S 161.79 83.53 m 161.79 91.17 l S 174.85 84.53 m 182.49 84.53 l S 178.67 80.71 m 178.67 88.35 l S 309.20 181.27 m 316.84 181.27 l S 313.02 177.45 m 313.02 185.09 l S 181.14 84.53 m 188.78 84.53 l S 184.96 80.71 m 184.96 88.35 l S 247.50 116.55 m 255.14 116.55 l S 251.32 112.73 m 251.32 120.37 l S 193.36 84.53 m 201.00 84.53 l S 197.18 80.71 m 197.18 88.35 l S 156.52 102.50 m 164.16 102.50 l S 160.34 98.68 m 160.34 106.32 l S 243.07 94.98 m 250.71 94.98 l S 246.89 91.16 m 246.89 98.80 l S 180.76 84.53 m 188.40 84.53 l S 184.58 80.71 m 184.58 88.35 l S 274.25 181.27 m 281.89 181.27 l S 278.07 177.45 m 278.07 185.09 l S 170.68 84.53 m 178.32 84.53 l S 174.50 80.71 m 174.50 88.35 l S 153.62 136.12 m 161.25 136.12 l S 157.44 132.30 m 157.44 139.93 l S 204.02 84.53 m 211.66 84.53 l S 207.84 80.71 m 207.84 88.35 l S 192.98 84.53 m 200.61 84.53 l S 196.80 80.71 m 196.80 88.35 l S 179.80 84.53 m 187.44 84.53 l S 183.62 80.71 m 183.62 88.35 l S 149.84 114.13 m 157.47 114.13 l S 153.65 110.31 m 153.65 117.95 l S 170.63 84.53 m 178.27 84.53 l S 174.45 80.71 m 174.45 88.35 l S 168.91 84.53 m 176.55 84.53 l S 172.73 80.71 m 172.73 88.35 l S 170.90 84.53 m 178.53 84.53 l S 174.71 80.71 m 174.71 88.35 l S 253.23 141.48 m 260.86 141.48 l S 257.04 137.67 m 257.04 145.30 l S 113.70 181.27 m 121.34 181.27 l S 117.52 177.45 m 117.52 185.09 l S 135.37 181.27 m 143.01 181.27 l S 139.19 177.45 m 139.19 185.09 l S 163.39 84.53 m 171.03 84.53 l S 167.21 80.71 m 167.21 88.35 l S 208.65 84.53 m 216.29 84.53 l S 212.47 80.71 m 212.47 88.35 l S 233.96 84.53 m 241.60 84.53 l S 237.78 80.71 m 237.78 88.35 l S 208.74 84.53 m 216.38 84.53 l S 212.56 80.71 m 212.56 88.35 l S 212.72 84.53 m 220.35 84.53 l S 216.54 80.71 m 216.54 88.35 l S 195.66 84.53 m 203.29 84.53 l S 199.48 80.71 m 199.48 88.35 l S 186.84 84.53 m 194.48 84.53 l S 190.66 80.71 m 190.66 88.35 l S 135.61 166.87 m 143.25 166.87 l S 139.43 163.05 m 139.43 170.69 l S 182.05 84.53 m 189.69 84.53 l S 185.87 80.71 m 185.87 88.35 l S 228.46 84.53 m 236.10 84.53 l S 232.28 80.71 m 232.28 88.35 l S 146.52 136.12 m 154.15 136.12 l S 150.34 132.30 m 150.34 139.93 l S 227.94 84.53 m 235.58 84.53 l S 231.76 80.71 m 231.76 88.35 l S 275.58 181.27 m 283.22 181.27 l S 279.40 177.45 m 279.40 185.09 l S 271.85 166.87 m 279.49 166.87 l S 275.67 163.05 m 275.67 170.69 l S 155.99 112.10 m 163.63 112.10 l S 159.81 108.28 m 159.81 115.92 l S 211.19 84.53 m 218.82 84.53 l S 215.01 80.71 m 215.01 88.35 l S 198.34 84.53 m 205.98 84.53 l S 202.16 80.71 m 202.16 88.35 l S 227.33 84.53 m 234.97 84.53 l S 231.15 80.71 m 231.15 88.35 l S 202.68 84.53 m 210.31 84.53 l S 206.50 80.71 m 206.50 88.35 l S 189.80 84.53 m 197.44 84.53 l S 193.62 80.71 m 193.62 88.35 l S 172.13 84.53 m 179.77 84.53 l S 175.95 80.71 m 175.95 88.35 l S 170.53 84.53 m 178.17 84.53 l S 174.35 80.71 m 174.35 88.35 l S 200.18 84.53 m 207.81 84.53 l S 203.99 80.71 m 203.99 88.35 l S 164.35 84.53 m 171.99 84.53 l S 168.17 80.71 m 168.17 88.35 l S 238.04 84.53 m 245.68 84.53 l S 241.86 80.71 m 241.86 88.35 l S 138.36 148.08 m 145.99 148.08 l S 142.17 144.26 m 142.17 151.90 l S 167.31 84.53 m 174.95 84.53 l S 171.13 80.71 m 171.13 88.35 l S 249.69 141.48 m 257.33 141.48 l S 253.51 137.67 m 253.51 145.30 l S 161.56 89.95 m 169.19 89.95 l S 165.38 86.13 m 165.38 93.77 l S 233.31 84.53 m 240.94 84.53 l S 237.12 80.71 m 237.12 88.35 l S 133.00 148.08 m 140.64 148.08 l S 136.82 144.26 m 136.82 151.90 l S 175.31 84.53 m 182.95 84.53 l S 179.13 80.71 m 179.13 88.35 l S 213.02 84.53 m 220.65 84.53 l S 216.84 80.71 m 216.84 88.35 l S 183.16 84.53 m 190.80 84.53 l S 186.98 80.71 m 186.98 88.35 l S 211.55 84.53 m 219.19 84.53 l S 215.37 80.71 m 215.37 88.35 l S 143.05 124.37 m 150.69 124.37 l S 146.87 120.55 m 146.87 128.19 l S 195.06 84.53 m 202.69 84.53 l S 198.88 80.71 m 198.88 88.35 l S 218.17 84.53 m 225.80 84.53 l S 221.99 80.71 m 221.99 88.35 l S 191.90 84.53 m 199.53 84.53 l S 195.71 80.71 m 195.71 88.35 l S 169.05 84.53 m 176.69 84.53 l S 172.87 80.71 m 172.87 88.35 l S 261.84 148.08 m 269.48 148.08 l S 265.66 144.26 m 265.66 151.90 l S 209.78 84.53 m 217.42 84.53 l S 213.60 80.71 m 213.60 88.35 l S 197.35 84.53 m 204.99 84.53 l S 201.17 80.71 m 201.17 88.35 l S 159.05 84.53 m 166.69 84.53 l S 162.87 80.71 m 162.87 88.35 l S 131.66 181.27 m 139.29 181.27 l S 135.47 177.45 m 135.47 185.09 l S 223.19 84.53 m 230.83 84.53 l S 227.01 80.71 m 227.01 88.35 l S 134.46 166.87 m 142.10 166.87 l S 138.28 163.05 m 138.28 170.69 l S 210.08 84.53 m 217.72 84.53 l S 213.90 80.71 m 213.90 88.35 l S 181.94 84.53 m 189.57 84.53 l S 185.76 80.71 m 185.76 88.35 l S 147.39 131.65 m 155.02 131.65 l S 151.21 127.84 m 151.21 135.47 l S 153.84 127.56 m 161.47 127.56 l S 157.65 123.74 m 157.65 131.38 l S 184.32 84.53 m 191.96 84.53 l S 188.14 80.71 m 188.14 88.35 l S 183.53 84.53 m 191.17 84.53 l S 187.35 80.71 m 187.35 88.35 l S 258.54 136.12 m 266.18 136.12 l S 262.36 132.30 m 262.36 139.93 l S 112.44 181.27 m 120.08 181.27 l S 116.26 177.45 m 116.26 185.09 l S 205.03 84.53 m 212.66 84.53 l S 208.84 80.71 m 208.84 88.35 l S 133.90 181.27 m 141.54 181.27 l S 137.72 177.45 m 137.72 185.09 l S 179.97 84.53 m 187.60 84.53 l S 183.78 80.71 m 183.78 88.35 l S 194.47 84.53 m 202.11 84.53 l S 198.29 80.71 m 198.29 88.35 l S 137.83 156.44 m 145.46 156.44 l S 141.64 152.62 m 141.64 160.26 l S 142.55 136.12 m 150.19 136.12 l S 146.37 132.30 m 146.37 139.93 l S 160.20 93.96 m 167.84 93.96 l S 164.02 90.14 m 164.02 97.78 l S 229.18 84.53 m 236.82 84.53 l S 233.00 80.71 m 233.00 88.35 l S 230.14 84.53 m 237.77 84.53 l S 233.96 80.71 m 233.96 88.35 l S 123.89 156.44 m 131.53 156.44 l S 127.71 152.62 m 127.71 160.26 l S 156.70 95.87 m 164.34 95.87 l S 160.52 92.05 m 160.52 99.69 l S 160.39 84.53 m 168.02 84.53 l S 164.21 80.71 m 164.21 88.35 l S 146.95 141.48 m 154.59 141.48 l S 150.77 137.67 m 150.77 145.30 l S 216.14 84.53 m 223.78 84.53 l S 219.96 80.71 m 219.96 88.35 l S 200.03 84.53 m 207.66 84.53 l S 203.85 80.71 m 203.85 88.35 l S 188.38 84.53 m 196.02 84.53 l S 192.20 80.71 m 192.20 88.35 l S 186.80 84.53 m 194.43 84.53 l S 190.62 80.71 m 190.62 88.35 l S 188.37 84.53 m 196.01 84.53 l S 192.19 80.71 m 192.19 88.35 l S 180.75 84.53 m 188.39 84.53 l S 184.57 80.71 m 184.57 88.35 l S 115.87 181.27 m 123.51 181.27 l S 119.69 177.45 m 119.69 185.09 l S 183.17 84.53 m 190.81 84.53 l S 186.99 80.71 m 186.99 88.35 l S 124.46 181.27 m 132.09 181.27 l S 128.27 177.45 m 128.27 185.09 l S 147.80 131.65 m 155.44 131.65 l S 151.62 127.84 m 151.62 135.47 l S 152.59 99.78 m 160.23 99.78 l S 156.41 95.96 m 156.41 103.60 l S 151.52 108.67 m 159.16 108.67 l S 155.34 104.86 m 155.34 112.49 l S 187.75 84.53 m 195.39 84.53 l S 191.57 80.71 m 191.57 88.35 l S 230.23 84.53 m 237.87 84.53 l S 234.05 80.71 m 234.05 88.35 l S 170.72 84.53 m 178.36 84.53 l S 174.54 80.71 m 174.54 88.35 l S 215.30 84.53 m 222.94 84.53 l S 219.12 80.71 m 219.12 88.35 l S 173.65 84.53 m 181.28 84.53 l S 177.47 80.71 m 177.47 88.35 l S 186.63 84.53 m 194.27 84.53 l S 190.45 80.71 m 190.45 88.35 l S 162.82 84.53 m 170.46 84.53 l S 166.64 80.71 m 166.64 88.35 l S 263.49 148.08 m 271.12 148.08 l S 267.30 144.26 m 267.30 151.90 l S 216.99 84.53 m 224.63 84.53 l S 220.81 80.71 m 220.81 88.35 l S 193.36 84.53 m 201.00 84.53 l S 197.18 80.71 m 197.18 88.35 l S 166.67 84.53 m 174.31 84.53 l S 170.49 80.71 m 170.49 88.35 l S 205.18 84.53 m 212.82 84.53 l S 209.00 80.71 m 209.00 88.35 l S 138.97 156.44 m 146.60 156.44 l S 142.79 152.62 m 142.79 160.26 l S 190.33 84.53 m 197.97 84.53 l S 194.15 80.71 m 194.15 88.35 l S 194.73 84.53 m 202.37 84.53 l S 198.55 80.71 m 198.55 88.35 l S 210.65 84.53 m 218.29 84.53 l S 214.47 80.71 m 214.47 88.35 l S 175.90 84.53 m 183.54 84.53 l S 179.72 80.71 m 179.72 88.35 l S 170.18 84.53 m 177.82 84.53 l S 174.00 80.71 m 174.00 88.35 l S 143.55 156.44 m 151.19 156.44 l S 147.37 152.62 m 147.37 160.26 l S 171.47 84.53 m 179.10 84.53 l S 175.29 80.71 m 175.29 88.35 l S 142.80 181.27 m 150.44 181.27 l S 146.62 177.45 m 146.62 185.09 l S 228.85 84.53 m 236.49 84.53 l S 232.67 80.71 m 232.67 88.35 l S 139.79 131.65 m 147.42 131.65 l S 143.61 127.84 m 143.61 135.47 l S 224.82 84.53 m 232.46 84.53 l S 228.64 80.71 m 228.64 88.35 l S 132.40 181.27 m 140.04 181.27 l S 136.22 177.45 m 136.22 185.09 l S 181.58 84.53 m 189.22 84.53 l S 185.40 80.71 m 185.40 88.35 l S 207.32 84.53 m 214.96 84.53 l S 211.14 80.71 m 211.14 88.35 l S 157.50 93.96 m 165.14 93.96 l S 161.32 90.14 m 161.32 97.78 l S 207.34 84.53 m 214.98 84.53 l S 211.16 80.71 m 211.16 88.35 l S 142.26 136.12 m 149.90 136.12 l S 146.08 132.30 m 146.08 139.93 l S 195.13 84.53 m 202.77 84.53 l S 198.95 80.71 m 198.95 88.35 l S 149.44 141.48 m 157.08 141.48 l S 153.26 137.67 m 153.26 145.30 l S 173.71 84.53 m 181.35 84.53 l S 177.53 80.71 m 177.53 88.35 l S 175.53 84.53 m 183.17 84.53 l S 179.35 80.71 m 179.35 88.35 l S 155.68 89.06 m 163.32 89.06 l S 159.50 85.25 m 159.50 92.88 l S 228.44 84.53 m 236.08 84.53 l S 232.26 80.71 m 232.26 88.35 l S 120.38 166.87 m 128.02 166.87 l S 124.20 163.05 m 124.20 170.69 l S 210.09 84.53 m 217.72 84.53 l S 213.91 80.71 m 213.91 88.35 l S 114.62 181.27 m 122.26 181.27 l S 118.44 177.45 m 118.44 185.09 l S 197.26 84.53 m 204.90 84.53 l S 201.08 80.71 m 201.08 88.35 l S 140.77 156.44 m 148.41 156.44 l S 144.59 152.62 m 144.59 160.26 l S 181.78 84.53 m 189.42 84.53 l S 185.60 80.71 m 185.60 88.35 l S 163.61 84.53 m 171.25 84.53 l S 167.43 80.71 m 167.43 88.35 l S 205.70 84.53 m 213.33 84.53 l S 209.51 80.71 m 209.51 88.35 l S 211.41 84.53 m 219.05 84.53 l S 215.23 80.71 m 215.23 88.35 l S 123.25 181.27 m 130.89 181.27 l S 127.07 177.45 m 127.07 185.09 l S 153.10 110.42 m 160.74 110.42 l S 156.92 106.60 m 156.92 114.24 l S 191.72 84.53 m 199.36 84.53 l S 195.54 80.71 m 195.54 88.35 l S 212.97 84.53 m 220.60 84.53 l S 216.78 80.71 m 216.78 88.35 l S 196.63 84.53 m 204.27 84.53 l S 200.45 80.71 m 200.45 88.35 l S 141.05 148.08 m 148.69 148.08 l S 144.87 144.26 m 144.87 151.90 l S 109.70 181.27 m 117.34 181.27 l S 113.52 177.45 m 113.52 185.09 l S 184.14 84.53 m 191.77 84.53 l S 187.95 80.71 m 187.95 88.35 l S 234.15 84.53 m 241.79 84.53 l S 237.97 80.71 m 237.97 88.35 l S 189.99 84.53 m 197.63 84.53 l S 193.81 80.71 m 193.81 88.35 l S 228.08 84.53 m 235.71 84.53 l S 231.89 80.71 m 231.89 88.35 l S 228.58 84.53 m 236.22 84.53 l S 232.40 80.71 m 232.40 88.35 l S 176.40 84.53 m 184.04 84.53 l S 180.22 80.71 m 180.22 88.35 l S 196.40 84.53 m 204.04 84.53 l S 200.22 80.71 m 200.22 88.35 l S 215.80 84.53 m 223.43 84.53 l S 219.62 80.71 m 219.62 88.35 l S 196.96 84.53 m 204.60 84.53 l S 200.78 80.71 m 200.78 88.35 l S 232.15 84.53 m 239.78 84.53 l S 235.96 80.71 m 235.96 88.35 l S 143.77 141.48 m 151.40 141.48 l S 147.58 137.67 m 147.58 145.30 l S 137.11 156.44 m 144.75 156.44 l S 140.93 152.62 m 140.93 160.26 l S 205.13 84.53 m 212.76 84.53 l S 208.95 80.71 m 208.95 88.35 l S 178.01 84.53 m 185.65 84.53 l S 181.83 80.71 m 181.83 88.35 l S 224.41 84.53 m 232.05 84.53 l S 228.23 80.71 m 228.23 88.35 l S 200.02 84.53 m 207.65 84.53 l S 203.83 80.71 m 203.83 88.35 l S 193.66 84.53 m 201.29 84.53 l S 197.48 80.71 m 197.48 88.35 l S 177.10 84.53 m 184.74 84.53 l S 180.92 80.71 m 180.92 88.35 l S 212.22 84.53 m 219.86 84.53 l S 216.04 80.71 m 216.04 88.35 l S 176.68 84.53 m 184.31 84.53 l S 180.50 80.71 m 180.50 88.35 l S 219.06 84.53 m 226.70 84.53 l S 222.88 80.71 m 222.88 88.35 l S 204.57 84.53 m 212.21 84.53 l S 208.39 80.71 m 208.39 88.35 l S 131.38 156.44 m 139.02 156.44 l S 135.20 152.62 m 135.20 160.26 l S 143.34 131.65 m 150.98 131.65 l S 147.16 127.84 m 147.16 135.47 l S 200.47 84.53 m 208.11 84.53 l S 204.29 80.71 m 204.29 88.35 l S 154.59 105.39 m 162.23 105.39 l S 158.41 101.57 m 158.41 109.21 l S 126.10 181.27 m 133.73 181.27 l S 129.92 177.45 m 129.92 185.09 l S 212.66 84.53 m 220.30 84.53 l S 216.48 80.71 m 216.48 88.35 l S 136.28 181.27 m 143.92 181.27 l S 140.10 177.45 m 140.10 185.09 l S 166.60 84.53 m 174.24 84.53 l S 170.42 80.71 m 170.42 88.35 l S 153.59 106.97 m 161.23 106.97 l S 157.41 103.15 m 157.41 110.79 l S 161.40 84.53 m 169.04 84.53 l S 165.22 80.71 m 165.22 88.35 l S 197.60 84.53 m 205.23 84.53 l S 201.41 80.71 m 201.41 88.35 l S 231.47 84.53 m 239.11 84.53 l S 235.29 80.71 m 235.29 88.35 l S 163.89 84.53 m 171.53 84.53 l S 167.71 80.71 m 167.71 88.35 l S 170.28 84.53 m 177.92 84.53 l S 174.10 80.71 m 174.10 88.35 l S 182.13 84.53 m 189.76 84.53 l S 185.95 80.71 m 185.95 88.35 l S 124.82 181.27 m 132.45 181.27 l S 128.64 177.45 m 128.64 185.09 l S 153.38 108.67 m 161.02 108.67 l S 157.20 104.86 m 157.20 112.49 l S 198.43 84.53 m 206.06 84.53 l S 202.25 80.71 m 202.25 88.35 l S 204.06 84.53 m 211.70 84.53 l S 207.88 80.71 m 207.88 88.35 l S 220.36 84.53 m 227.99 84.53 l S 224.17 80.71 m 224.17 88.35 l S 199.95 84.53 m 207.58 84.53 l S 203.76 80.71 m 203.76 88.35 l S 239.43 84.53 m 247.06 84.53 l S 243.25 80.71 m 243.25 88.35 l S 138.30 166.87 m 145.93 166.87 l S 142.12 163.05 m 142.12 170.69 l S 213.65 84.53 m 221.29 84.53 l S 217.47 80.71 m 217.47 88.35 l S 187.85 84.53 m 195.48 84.53 l S 191.67 80.71 m 191.67 88.35 l S 130.26 181.27 m 137.90 181.27 l S 134.08 177.45 m 134.08 185.09 l S 219.33 84.53 m 226.97 84.53 l S 223.15 80.71 m 223.15 88.35 l S 129.15 181.27 m 136.78 181.27 l S 132.97 177.45 m 132.97 185.09 l S 237.59 84.53 m 245.23 84.53 l S 241.41 80.71 m 241.41 88.35 l S 208.20 84.53 m 215.84 84.53 l S 212.02 80.71 m 212.02 88.35 l S 153.41 94.98 m 161.04 94.98 l S 157.23 91.16 m 157.23 98.80 l S 119.05 181.27 m 126.69 181.27 l S 122.87 177.45 m 122.87 185.09 l S 132.07 166.87 m 139.71 166.87 l S 135.89 163.05 m 135.89 170.69 l S 206.50 84.53 m 214.14 84.53 l S 210.32 80.71 m 210.32 88.35 l S 142.34 148.08 m 149.98 148.08 l S 146.16 144.26 m 146.16 151.90 l S 214.45 84.53 m 222.08 84.53 l S 218.26 80.71 m 218.26 88.35 l S 166.96 84.53 m 174.59 84.53 l S 170.78 80.71 m 170.78 88.35 l S 208.47 84.53 m 216.11 84.53 l S 212.29 80.71 m 212.29 88.35 l S 132.58 181.27 m 140.21 181.27 l S 136.39 177.45 m 136.39 185.09 l S 223.93 84.53 m 231.56 84.53 l S 227.75 80.71 m 227.75 88.35 l S 226.75 84.53 m 234.39 84.53 l S 230.57 80.71 m 230.57 88.35 l S 108.69 181.27 m 116.33 181.27 l S 112.51 177.45 m 112.51 185.09 l S 174.17 84.53 m 181.81 84.53 l S 177.99 80.71 m 177.99 88.35 l S 160.21 84.53 m 167.85 84.53 l S 164.03 80.71 m 164.03 88.35 l S 175.74 84.53 m 183.38 84.53 l S 179.56 80.71 m 179.56 88.35 l S 174.72 84.53 m 182.36 84.53 l S 178.54 80.71 m 178.54 88.35 l S 169.15 84.53 m 176.79 84.53 l S 172.97 80.71 m 172.97 88.35 l S 99.44 181.27 m 107.08 181.27 l S 103.26 177.45 m 103.26 185.09 l S 134.43 166.87 m 142.07 166.87 l S 138.25 163.05 m 138.25 170.69 l S 161.87 84.53 m 169.51 84.53 l S 165.69 80.71 m 165.69 88.35 l S 183.42 84.53 m 191.06 84.53 l S 187.24 80.71 m 187.24 88.35 l S 183.74 84.53 m 191.38 84.53 l S 187.56 80.71 m 187.56 88.35 l S 158.13 89.06 m 165.77 89.06 l S 161.95 85.25 m 161.95 92.88 l S 129.66 166.87 m 137.30 166.87 l S 133.48 163.05 m 133.48 170.69 l S 155.10 118.76 m 162.73 118.76 l S 158.92 114.94 m 158.92 122.58 l S 134.72 141.48 m 142.35 141.48 l S 138.54 137.67 m 138.54 145.30 l S 185.74 84.53 m 193.38 84.53 l S 189.56 80.71 m 189.56 88.35 l S 215.44 84.53 m 223.08 84.53 l S 219.26 80.71 m 219.26 88.35 l S 203.22 84.53 m 210.86 84.53 l S 207.04 80.71 m 207.04 88.35 l S 192.46 84.53 m 200.10 84.53 l S 196.28 80.71 m 196.28 88.35 l S 141.58 148.08 m 149.22 148.08 l S 145.40 144.26 m 145.40 151.90 l S 182.44 84.53 m 190.07 84.53 l S 186.26 80.71 m 186.26 88.35 l S 124.29 181.27 m 131.93 181.27 l S 128.11 177.45 m 128.11 185.09 l S 98.80 181.27 m 106.44 181.27 l S 102.62 177.45 m 102.62 185.09 l S 247.30 110.42 m 254.94 110.42 l S 251.12 106.60 m 251.12 114.24 l S 155.49 90.84 m 163.12 90.84 l S 159.31 87.02 m 159.31 94.65 l S 168.49 84.53 m 176.13 84.53 l S 172.31 80.71 m 172.31 88.35 l S 186.67 84.53 m 194.31 84.53 l S 190.49 80.71 m 190.49 88.35 l S 246.60 87.35 m 254.23 87.35 l S 250.41 83.53 m 250.41 91.17 l S 237.69 84.53 m 245.32 84.53 l S 241.50 80.71 m 241.50 88.35 l S 205.67 84.53 m 213.31 84.53 l S 209.49 80.71 m 209.49 88.35 l S 183.35 84.53 m 190.99 84.53 l S 187.17 80.71 m 187.17 88.35 l S 189.04 84.53 m 196.68 84.53 l S 192.86 80.71 m 192.86 88.35 l S 231.42 84.53 m 239.06 84.53 l S 235.24 80.71 m 235.24 88.35 l S 213.56 84.53 m 221.20 84.53 l S 217.38 80.71 m 217.38 88.35 l S 120.45 181.27 m 128.08 181.27 l S 124.26 177.45 m 124.26 185.09 l S 184.13 84.53 m 191.77 84.53 l S 187.95 80.71 m 187.95 88.35 l S 134.50 181.27 m 142.14 181.27 l S 138.32 177.45 m 138.32 185.09 l S 159.06 90.84 m 166.70 90.84 l S 162.88 87.02 m 162.88 94.65 l S 229.02 84.53 m 236.66 84.53 l S 232.84 80.71 m 232.84 88.35 l S 175.17 84.53 m 182.81 84.53 l S 178.99 80.71 m 178.99 88.35 l S 152.90 110.42 m 160.53 110.42 l S 156.71 106.60 m 156.71 114.24 l S 158.25 86.56 m 165.88 86.56 l S 162.06 82.74 m 162.06 90.38 l S 151.40 94.98 m 159.04 94.98 l S 155.22 91.16 m 155.22 98.80 l S 176.53 84.53 m 184.17 84.53 l S 180.35 80.71 m 180.35 88.35 l S 214.79 84.53 m 222.43 84.53 l S 218.61 80.71 m 218.61 88.35 l S 168.54 84.53 m 176.18 84.53 l S 172.36 80.71 m 172.36 88.35 l S 151.02 141.48 m 158.66 141.48 l S 154.84 137.67 m 154.84 145.30 l S 165.75 84.53 m 173.38 84.53 l S 169.57 80.71 m 169.57 88.35 l S 189.19 84.53 m 196.83 84.53 l S 193.01 80.71 m 193.01 88.35 l S 216.57 84.53 m 224.21 84.53 l S 220.39 80.71 m 220.39 88.35 l S 175.80 84.53 m 183.44 84.53 l S 179.62 80.71 m 179.62 88.35 l S 208.49 84.53 m 216.13 84.53 l S 212.31 80.71 m 212.31 88.35 l S 244.31 106.97 m 251.95 106.97 l S 248.13 103.15 m 248.13 110.79 l S 117.23 181.27 m 124.87 181.27 l S 121.05 177.45 m 121.05 185.09 l S 98.07 181.27 m 105.70 181.27 l S 101.89 177.45 m 101.89 185.09 l S 313.02 181.27 m 320.66 181.27 l S 316.84 177.45 m 316.84 185.09 l S 209.67 84.53 m 217.30 84.53 l S 213.49 80.71 m 213.49 88.35 l S 210.78 84.53 m 218.41 84.53 l S 214.59 80.71 m 214.59 88.35 l S 249.10 116.55 m 256.74 116.55 l S 252.92 112.73 m 252.92 120.37 l S 232.14 84.53 m 239.78 84.53 l S 235.96 80.71 m 235.96 88.35 l S 231.32 84.53 m 238.95 84.53 l S 235.14 80.71 m 235.14 88.35 l S 211.51 84.53 m 219.15 84.53 l S 215.33 80.71 m 215.33 88.35 l S 148.58 118.76 m 156.22 118.76 l S 152.40 114.94 m 152.40 122.58 l S 214.08 84.53 m 221.72 84.53 l S 217.90 80.71 m 217.90 88.35 l S 167.93 84.53 m 175.57 84.53 l S 171.75 80.71 m 171.75 88.35 l S 217.79 84.53 m 225.42 84.53 l S 221.61 80.71 m 221.61 88.35 l S 157.17 118.76 m 164.80 118.76 l S 160.99 114.94 m 160.99 122.58 l S 270.90 181.27 m 278.53 181.27 l S 274.72 177.45 m 274.72 185.09 l S 125.67 181.27 m 133.30 181.27 l S 129.48 177.45 m 129.48 185.09 l S 188.07 84.53 m 195.71 84.53 l S 191.89 80.71 m 191.89 88.35 l S 197.39 84.53 m 205.02 84.53 l S 201.21 80.71 m 201.21 88.35 l S 75.64 181.27 m 83.27 181.27 l S 79.45 177.45 m 79.45 185.09 l S 151.77 136.12 m 159.41 136.12 l S 155.59 132.30 m 155.59 139.93 l S 199.38 84.53 m 207.01 84.53 l S 203.19 80.71 m 203.19 88.35 l S 225.28 84.53 m 232.91 84.53 l S 229.09 80.71 m 229.09 88.35 l S 139.74 166.87 m 147.38 166.87 l S 143.56 163.05 m 143.56 170.69 l S 139.42 156.44 m 147.06 156.44 l S 143.24 152.62 m 143.24 160.26 l S 246.50 124.37 m 254.13 124.37 l S 250.31 120.55 m 250.31 128.19 l S 282.92 181.27 m 290.55 181.27 l S 286.73 177.45 m 286.73 185.09 l S 155.65 102.50 m 163.28 102.50 l S 159.47 98.68 m 159.47 106.32 l S 220.55 84.53 m 228.19 84.53 l S 224.37 80.71 m 224.37 88.35 l S 225.49 84.53 m 233.13 84.53 l S 229.31 80.71 m 229.31 88.35 l S 222.04 84.53 m 229.68 84.53 l S 225.86 80.71 m 225.86 88.35 l S 220.80 84.53 m 228.44 84.53 l S 224.62 80.71 m 224.62 88.35 l S 157.37 90.84 m 165.00 90.84 l S 161.18 87.02 m 161.18 94.65 l S 197.21 84.53 m 204.84 84.53 l S 201.03 80.71 m 201.03 88.35 l S 209.24 84.53 m 216.87 84.53 l S 213.05 80.71 m 213.05 88.35 l S 196.83 84.53 m 204.46 84.53 l S 200.64 80.71 m 200.64 88.35 l S 194.88 84.53 m 202.52 84.53 l S 198.70 80.71 m 198.70 88.35 l S 206.18 84.53 m 213.82 84.53 l S 210.00 80.71 m 210.00 88.35 l S 236.95 84.53 m 244.58 84.53 l S 240.77 80.71 m 240.77 88.35 l S 191.99 84.53 m 199.63 84.53 l S 195.81 80.71 m 195.81 88.35 l S 226.53 84.53 m 234.17 84.53 l S 230.35 80.71 m 230.35 88.35 l S 212.75 84.53 m 220.39 84.53 l S 216.57 80.71 m 216.57 88.35 l S 224.32 84.53 m 231.96 84.53 l S 228.14 80.71 m 228.14 88.35 l S 253.93 108.67 m 261.57 108.67 l S 257.75 104.86 m 257.75 112.49 l S 264.60 156.44 m 272.24 156.44 l S 268.42 152.62 m 268.42 160.26 l S 253.12 148.08 m 260.76 148.08 l S 256.94 144.26 m 256.94 151.90 l S 170.59 84.53 m 178.23 84.53 l S 174.41 80.71 m 174.41 88.35 l S 103.82 181.27 m 111.45 181.27 l S 107.64 177.45 m 107.64 185.09 l S 164.96 84.53 m 172.60 84.53 l S 168.78 80.71 m 168.78 88.35 l S 194.65 84.53 m 202.28 84.53 l S 198.46 80.71 m 198.46 88.35 l S 198.45 84.53 m 206.09 84.53 l S 202.27 80.71 m 202.27 88.35 l S 138.01 166.87 m 145.65 166.87 l S 141.83 163.05 m 141.83 170.69 l S 244.22 92.86 m 251.85 92.86 l S 248.03 89.04 m 248.03 96.68 l S 191.15 84.53 m 198.79 84.53 l S 194.97 80.71 m 194.97 88.35 l S 176.12 84.53 m 183.75 84.53 l S 179.94 80.71 m 179.94 88.35 l S 231.80 84.53 m 239.44 84.53 l S 235.62 80.71 m 235.62 88.35 l S 213.17 84.53 m 220.80 84.53 l S 216.99 80.71 m 216.99 88.35 l S 225.43 84.53 m 233.06 84.53 l S 229.24 80.71 m 229.24 88.35 l S 201.58 84.53 m 209.21 84.53 l S 205.39 80.71 m 205.39 88.35 l S 238.86 85.72 m 246.49 85.72 l S 242.67 81.90 m 242.67 89.54 l S 161.63 88.17 m 169.26 88.17 l S 165.45 84.35 m 165.45 91.99 l S 264.63 166.87 m 272.27 166.87 l S 268.45 163.05 m 268.45 170.69 l S 222.11 84.53 m 229.74 84.53 l S 225.92 80.71 m 225.92 88.35 l S 217.82 84.53 m 225.46 84.53 l S 221.64 80.71 m 221.64 88.35 l S 208.99 84.53 m 216.63 84.53 l S 212.81 80.71 m 212.81 88.35 l S 180.87 84.53 m 188.51 84.53 l S 184.69 80.71 m 184.69 88.35 l S 173.82 84.53 m 181.46 84.53 l S 177.64 80.71 m 177.64 88.35 l S 203.50 84.53 m 211.13 84.53 l S 207.31 80.71 m 207.31 88.35 l S 224.14 84.53 m 231.77 84.53 l S 227.95 80.71 m 227.95 88.35 l S 208.85 84.53 m 216.49 84.53 l S 212.67 80.71 m 212.67 88.35 l S 155.68 94.98 m 163.31 94.98 l S 159.49 91.16 m 159.49 98.80 l S 168.49 84.53 m 176.13 84.53 l S 172.31 80.71 m 172.31 88.35 l S 169.41 84.53 m 177.05 84.53 l S 173.23 80.71 m 173.23 88.35 l S 192.03 84.53 m 199.66 84.53 l S 195.85 80.71 m 195.85 88.35 l S 173.79 84.53 m 181.43 84.53 l S 177.61 80.71 m 177.61 88.35 l S 259.85 156.44 m 267.48 156.44 l S 263.67 152.62 m 263.67 160.26 l S 189.33 84.53 m 196.96 84.53 l S 193.14 80.71 m 193.14 88.35 l S 173.56 84.53 m 181.20 84.53 l S 177.38 80.71 m 177.38 88.35 l S 137.95 166.87 m 145.58 166.87 l S 141.77 163.05 m 141.77 170.69 l S 158.69 96.90 m 166.32 96.90 l S 162.50 93.08 m 162.50 100.72 l S 142.72 131.65 m 150.36 131.65 l S 146.54 127.84 m 146.54 135.47 l S 220.55 84.53 m 228.19 84.53 l S 224.37 80.71 m 224.37 88.35 l S 206.40 84.53 m 214.04 84.53 l S 210.22 80.71 m 210.22 88.35 l S 197.90 84.53 m 205.53 84.53 l S 201.72 80.71 m 201.72 88.35 l S 183.17 84.53 m 190.81 84.53 l S 186.99 80.71 m 186.99 88.35 l S 172.78 84.53 m 180.42 84.53 l S 176.60 80.71 m 176.60 88.35 l S 177.23 84.53 m 184.87 84.53 l S 181.05 80.71 m 181.05 88.35 l S 109.56 181.27 m 117.19 181.27 l S 113.37 177.45 m 113.37 185.09 l S 214.51 84.53 m 222.14 84.53 l S 218.32 80.71 m 218.32 88.35 l S 180.26 84.53 m 187.90 84.53 l S 184.08 80.71 m 184.08 88.35 l S 196.66 84.53 m 204.30 84.53 l S 200.48 80.71 m 200.48 88.35 l S 199.66 84.53 m 207.29 84.53 l S 203.48 80.71 m 203.48 88.35 l S 193.55 84.53 m 201.19 84.53 l S 197.37 80.71 m 197.37 88.35 l S 153.63 95.87 m 161.26 95.87 l S 157.45 92.05 m 157.45 99.69 l S 178.12 84.53 m 185.75 84.53 l S 181.93 80.71 m 181.93 88.35 l S 255.15 148.08 m 262.79 148.08 l S 258.97 144.26 m 258.97 151.90 l S 241.46 93.96 m 249.10 93.96 l S 245.28 90.14 m 245.28 97.78 l S 180.74 84.53 m 188.38 84.53 l S 184.56 80.71 m 184.56 88.35 l S 224.75 84.53 m 232.38 84.53 l S 228.57 80.71 m 228.57 88.35 l S 228.62 84.53 m 236.26 84.53 l S 232.44 80.71 m 232.44 88.35 l S 253.54 131.65 m 261.17 131.65 l S 257.35 127.84 m 257.35 135.47 l S 224.50 84.53 m 232.13 84.53 l S 228.32 80.71 m 228.32 88.35 l S 241.16 95.87 m 248.80 95.87 l S 244.98 92.05 m 244.98 99.69 l S 133.99 166.87 m 141.63 166.87 l S 137.81 163.05 m 137.81 170.69 l S 155.09 116.55 m 162.72 116.55 l S 158.91 112.73 m 158.91 120.37 l S 238.21 86.56 m 245.85 86.56 l S 242.03 82.74 m 242.03 90.38 l S 226.37 84.53 m 234.01 84.53 l S 230.19 80.71 m 230.19 88.35 l S 224.32 84.53 m 231.96 84.53 l S 228.14 80.71 m 228.14 88.35 l S 233.99 84.53 m 241.62 84.53 l S 237.80 80.71 m 237.80 88.35 l S 185.63 84.53 m 193.27 84.53 l S 189.45 80.71 m 189.45 88.35 l S 197.30 84.53 m 204.94 84.53 l S 201.12 80.71 m 201.12 88.35 l S 179.88 84.53 m 187.52 84.53 l S 183.70 80.71 m 183.70 88.35 l S 213.91 84.53 m 221.55 84.53 l S 217.73 80.71 m 217.73 88.35 l S 195.92 84.53 m 203.56 84.53 l S 199.74 80.71 m 199.74 88.35 l S 125.23 181.27 m 132.87 181.27 l S 129.05 177.45 m 129.05 185.09 l S 129.12 156.44 m 136.75 156.44 l S 132.93 152.62 m 132.93 160.26 l S 178.98 84.53 m 186.61 84.53 l S 182.80 80.71 m 182.80 88.35 l S 177.48 84.53 m 185.12 84.53 l S 181.30 80.71 m 181.30 88.35 l S 160.85 84.53 m 168.49 84.53 l S 164.67 80.71 m 164.67 88.35 l S 118.33 166.87 m 125.96 166.87 l S 122.15 163.05 m 122.15 170.69 l S 206.10 84.53 m 213.74 84.53 l S 209.92 80.71 m 209.92 88.35 l S 247.79 116.55 m 255.43 116.55 l S 251.61 112.73 m 251.61 120.37 l S 232.66 84.53 m 240.30 84.53 l S 236.48 80.71 m 236.48 88.35 l S 274.09 181.27 m 281.73 181.27 l S 277.91 177.45 m 277.91 185.09 l S 194.24 84.53 m 201.87 84.53 l S 198.06 80.71 m 198.06 88.35 l S 165.76 84.53 m 173.39 84.53 l S 169.57 80.71 m 169.57 88.35 l S 202.59 84.53 m 210.23 84.53 l S 206.41 80.71 m 206.41 88.35 l S 220.02 84.53 m 227.65 84.53 l S 223.84 80.71 m 223.84 88.35 l S 186.81 84.53 m 194.45 84.53 l S 190.63 80.71 m 190.63 88.35 l S 142.26 116.55 m 149.90 116.55 l S 146.08 112.73 m 146.08 120.37 l S 193.84 84.53 m 201.48 84.53 l S 197.66 80.71 m 197.66 88.35 l S 181.89 84.53 m 189.52 84.53 l S 185.70 80.71 m 185.70 88.35 l S 191.42 84.53 m 199.06 84.53 l S 195.24 80.71 m 195.24 88.35 l S 187.01 84.53 m 194.65 84.53 l S 190.83 80.71 m 190.83 88.35 l S 250.74 127.56 m 258.37 127.56 l S 254.56 123.74 m 254.56 131.38 l S 189.67 84.53 m 197.31 84.53 l S 193.49 80.71 m 193.49 88.35 l S 253.47 127.56 m 261.10 127.56 l S 257.29 123.74 m 257.29 131.38 l S 245.80 103.82 m 253.44 103.82 l S 249.62 100.00 m 249.62 107.64 l S 205.60 84.53 m 213.24 84.53 l S 209.42 80.71 m 209.42 88.35 l S 175.79 84.53 m 183.43 84.53 l S 179.61 80.71 m 179.61 88.35 l S 107.26 181.27 m 114.90 181.27 l S 111.08 177.45 m 111.08 185.09 l S 165.42 84.53 m 173.06 84.53 l S 169.24 80.71 m 169.24 88.35 l S 211.04 84.53 m 218.68 84.53 l S 214.86 80.71 m 214.86 88.35 l S 228.59 84.53 m 236.23 84.53 l S 232.41 80.71 m 232.41 88.35 l S 227.75 84.53 m 235.38 84.53 l S 231.56 80.71 m 231.56 88.35 l S 165.21 84.53 m 172.85 84.53 l S 169.03 80.71 m 169.03 88.35 l S 263.94 181.27 m 271.58 181.27 l S 267.76 177.45 m 267.76 185.09 l S 120.02 181.27 m 127.66 181.27 l S 123.84 177.45 m 123.84 185.09 l S 79.97 181.27 m 87.61 181.27 l S 83.79 177.45 m 83.79 185.09 l S 181.49 84.53 m 189.13 84.53 l S 185.31 80.71 m 185.31 88.35 l S 194.85 84.53 m 202.49 84.53 l S 198.67 80.71 m 198.67 88.35 l S 263.64 166.87 m 271.28 166.87 l S 267.46 163.05 m 267.46 170.69 l S 175.64 84.53 m 183.28 84.53 l S 179.46 80.71 m 179.46 88.35 l S 248.23 110.42 m 255.86 110.42 l S 252.05 106.60 m 252.05 114.24 l S 132.71 166.87 m 140.35 166.87 l S 136.53 163.05 m 136.53 170.69 l S 182.75 84.53 m 190.38 84.53 l S 186.56 80.71 m 186.56 88.35 l S 236.26 84.53 m 243.89 84.53 l S 240.07 80.71 m 240.07 88.35 l S 251.98 124.37 m 259.62 124.37 l S 255.80 120.55 m 255.80 128.19 l S 178.29 84.53 m 185.93 84.53 l S 182.11 80.71 m 182.11 88.35 l S 225.06 84.53 m 232.70 84.53 l S 228.88 80.71 m 228.88 88.35 l S 221.73 84.53 m 229.37 84.53 l S 225.55 80.71 m 225.55 88.35 l S 222.62 84.53 m 230.25 84.53 l S 226.43 80.71 m 226.43 88.35 l S 202.06 84.53 m 209.70 84.53 l S 205.88 80.71 m 205.88 88.35 l S 144.07 127.56 m 151.70 127.56 l S 147.88 123.74 m 147.88 131.38 l S 231.52 84.53 m 239.16 84.53 l S 235.34 80.71 m 235.34 88.35 l S 236.92 84.53 m 244.55 84.53 l S 240.74 80.71 m 240.74 88.35 l S 178.88 84.53 m 186.52 84.53 l S 182.70 80.71 m 182.70 88.35 l S 143.06 181.27 m 150.70 181.27 l S 146.88 177.45 m 146.88 185.09 l S 170.20 84.53 m 177.84 84.53 l S 174.02 80.71 m 174.02 88.35 l S 160.67 84.53 m 168.30 84.53 l S 164.48 80.71 m 164.48 88.35 l S 198.43 84.53 m 206.07 84.53 l S 202.25 80.71 m 202.25 88.35 l S 98.42 181.27 m 106.06 181.27 l S 102.24 177.45 m 102.24 185.09 l S 242.97 84.53 m 250.61 84.53 l S 246.79 80.71 m 246.79 88.35 l S 182.66 84.53 m 190.30 84.53 l S 186.48 80.71 m 186.48 88.35 l S 209.28 84.53 m 216.92 84.53 l S 213.10 80.71 m 213.10 88.35 l S 211.84 84.53 m 219.48 84.53 l S 215.66 80.71 m 215.66 88.35 l S 143.54 156.44 m 151.18 156.44 l S 147.36 152.62 m 147.36 160.26 l S 166.99 84.53 m 174.62 84.53 l S 170.81 80.71 m 170.81 88.35 l S 217.88 84.53 m 225.51 84.53 l S 221.70 80.71 m 221.70 88.35 l S 212.89 84.53 m 220.53 84.53 l S 216.71 80.71 m 216.71 88.35 l S 163.48 84.53 m 171.12 84.53 l S 167.30 80.71 m 167.30 88.35 l S 202.31 84.53 m 209.95 84.53 l S 206.13 80.71 m 206.13 88.35 l S 157.94 95.87 m 165.57 95.87 l S 161.76 92.05 m 161.76 99.69 l S 222.58 84.53 m 230.21 84.53 l S 226.40 80.71 m 226.40 88.35 l S 154.49 93.96 m 162.12 93.96 l S 158.30 90.14 m 158.30 97.78 l S 119.98 166.87 m 127.61 166.87 l S 123.80 163.05 m 123.80 170.69 l S 84.92 181.27 m 92.56 181.27 l S 88.74 177.45 m 88.74 185.09 l S 230.06 84.53 m 237.70 84.53 l S 233.88 80.71 m 233.88 88.35 l S 113.83 166.87 m 121.46 166.87 l S 117.64 163.05 m 117.64 170.69 l S 172.81 84.53 m 180.44 84.53 l S 176.63 80.71 m 176.63 88.35 l S 195.20 84.53 m 202.83 84.53 l S 199.02 80.71 m 199.02 88.35 l S 312.43 181.27 m 320.07 181.27 l S 316.25 177.45 m 316.25 185.09 l S 163.21 84.53 m 170.85 84.53 l S 167.03 80.71 m 167.03 88.35 l S 252.88 127.56 m 260.52 127.56 l S 256.70 123.74 m 256.70 131.38 l S 243.64 89.06 m 251.28 89.06 l S 247.46 85.25 m 247.46 92.88 l S 189.49 84.53 m 197.13 84.53 l S 193.31 80.71 m 193.31 88.35 l S 118.14 181.27 m 125.78 181.27 l S 121.96 177.45 m 121.96 185.09 l S 191.83 84.53 m 199.47 84.53 l S 195.65 80.71 m 195.65 88.35 l S 165.81 84.53 m 173.45 84.53 l S 169.63 80.71 m 169.63 88.35 l S 182.96 84.53 m 190.59 84.53 l S 186.78 80.71 m 186.78 88.35 l S 227.94 84.53 m 235.58 84.53 l S 231.76 80.71 m 231.76 88.35 l S 216.51 84.53 m 224.15 84.53 l S 220.33 80.71 m 220.33 88.35 l S 212.99 84.53 m 220.62 84.53 l S 216.80 80.71 m 216.80 88.35 l S 189.55 84.53 m 197.19 84.53 l S 193.37 80.71 m 193.37 88.35 l S 164.50 84.53 m 172.14 84.53 l S 168.32 80.71 m 168.32 88.35 l S 276.83 181.27 m 284.47 181.27 l S 280.65 177.45 m 280.65 185.09 l S 245.55 105.39 m 253.18 105.39 l S 249.36 101.57 m 249.36 109.21 l S 197.56 84.53 m 205.20 84.53 l S 201.38 80.71 m 201.38 88.35 l S 227.16 84.53 m 234.79 84.53 l S 230.98 80.71 m 230.98 88.35 l S 212.01 84.53 m 219.65 84.53 l S 215.83 80.71 m 215.83 88.35 l S 224.31 84.53 m 231.95 84.53 l S 228.13 80.71 m 228.13 88.35 l S 181.88 84.53 m 189.52 84.53 l S 185.70 80.71 m 185.70 88.35 l S 193.25 84.53 m 200.88 84.53 l S 197.06 80.71 m 197.06 88.35 l S 241.85 89.95 m 249.49 89.95 l S 245.67 86.13 m 245.67 93.77 l S 218.30 84.53 m 225.94 84.53 l S 222.12 80.71 m 222.12 88.35 l S 125.66 181.27 m 133.30 181.27 l S 129.48 177.45 m 129.48 185.09 l S 179.83 84.53 m 187.47 84.53 l S 183.65 80.71 m 183.65 88.35 l S 186.08 84.53 m 193.71 84.53 l S 189.90 80.71 m 189.90 88.35 l S 221.64 84.53 m 229.28 84.53 l S 225.46 80.71 m 225.46 88.35 l S 241.53 101.07 m 249.17 101.07 l S 245.35 97.26 m 245.35 104.89 l S 185.92 84.53 m 193.56 84.53 l S 189.74 80.71 m 189.74 88.35 l S 187.38 84.53 m 195.02 84.53 l S 191.20 80.71 m 191.20 88.35 l S 213.64 84.53 m 221.27 84.53 l S 217.46 80.71 m 217.46 88.35 l S 210.89 84.53 m 218.53 84.53 l S 214.71 80.71 m 214.71 88.35 l S 178.20 84.53 m 185.84 84.53 l S 182.02 80.71 m 182.02 88.35 l S 239.70 95.87 m 247.34 95.87 l S 243.52 92.05 m 243.52 99.69 l S 226.85 84.53 m 234.49 84.53 l S 230.67 80.71 m 230.67 88.35 l S 198.16 84.53 m 205.80 84.53 l S 201.98 80.71 m 201.98 88.35 l S 190.04 84.53 m 197.67 84.53 l S 193.86 80.71 m 193.86 88.35 l S 204.78 84.53 m 212.42 84.53 l S 208.60 80.71 m 208.60 88.35 l S 157.42 99.78 m 165.06 99.78 l S 161.24 95.96 m 161.24 103.60 l S 243.35 92.86 m 250.99 92.86 l S 247.17 89.04 m 247.17 96.68 l S 192.91 84.53 m 200.55 84.53 l S 196.73 80.71 m 196.73 88.35 l S 245.46 110.42 m 253.09 110.42 l S 249.27 106.60 m 249.27 114.24 l S 183.36 84.53 m 191.00 84.53 l S 187.18 80.71 m 187.18 88.35 l S 152.56 106.97 m 160.19 106.97 l S 156.37 103.15 m 156.37 110.79 l S 160.35 84.53 m 167.99 84.53 l S 164.17 80.71 m 164.17 88.35 l S 206.61 84.53 m 214.25 84.53 l S 210.43 80.71 m 210.43 88.35 l S 256.82 166.87 m 264.46 166.87 l S 260.64 163.05 m 260.64 170.69 l S 192.90 84.53 m 200.54 84.53 l S 196.72 80.71 m 196.72 88.35 l S 175.58 84.53 m 183.22 84.53 l S 179.40 80.71 m 179.40 88.35 l S 202.68 84.53 m 210.32 84.53 l S 206.50 80.71 m 206.50 88.35 l S 255.64 141.48 m 263.28 141.48 l S 259.46 137.67 m 259.46 145.30 l S 224.83 84.53 m 232.47 84.53 l S 228.65 80.71 m 228.65 88.35 l S 241.51 89.06 m 249.15 89.06 l S 245.33 85.25 m 245.33 92.88 l S 140.27 156.44 m 147.91 156.44 l S 144.09 152.62 m 144.09 160.26 l S 104.68 181.27 m 112.32 181.27 l S 108.50 177.45 m 108.50 185.09 l S 248.08 116.55 m 255.71 116.55 l S 251.89 112.73 m 251.89 120.37 l S 219.54 84.53 m 227.18 84.53 l S 223.36 80.71 m 223.36 88.35 l S 255.92 131.65 m 263.55 131.65 l S 259.73 127.84 m 259.73 135.47 l S 200.29 84.53 m 207.93 84.53 l S 204.11 80.71 m 204.11 88.35 l S 225.68 84.53 m 233.32 84.53 l S 229.50 80.71 m 229.50 88.35 l S 136.84 156.44 m 144.47 156.44 l S 140.65 152.62 m 140.65 160.26 l S 252.20 124.37 m 259.83 124.37 l S 256.02 120.55 m 256.02 128.19 l S 254.93 131.65 m 262.57 131.65 l S 258.75 127.84 m 258.75 135.47 l S 216.55 84.53 m 224.18 84.53 l S 220.36 80.71 m 220.36 88.35 l S 183.53 84.53 m 191.17 84.53 l S 187.35 80.71 m 187.35 88.35 l S 201.31 84.53 m 208.95 84.53 l S 205.13 80.71 m 205.13 88.35 l S 216.86 84.53 m 224.50 84.53 l S 220.68 80.71 m 220.68 88.35 l S 145.51 141.48 m 153.14 141.48 l S 149.32 137.67 m 149.32 145.30 l S 193.15 84.53 m 200.78 84.53 l S 196.96 80.71 m 196.96 88.35 l S 194.96 84.53 m 202.60 84.53 l S 198.78 80.71 m 198.78 88.35 l S 215.10 84.53 m 222.73 84.53 l S 218.91 80.71 m 218.91 88.35 l S 200.74 84.53 m 208.37 84.53 l S 204.56 80.71 m 204.56 88.35 l S 186.91 84.53 m 194.54 84.53 l S 190.73 80.71 m 190.73 88.35 l S 164.69 84.53 m 172.33 84.53 l S 168.51 80.71 m 168.51 88.35 l S 194.87 84.53 m 202.50 84.53 l S 198.68 80.71 m 198.68 88.35 l S 247.66 118.76 m 255.30 118.76 l S 251.48 114.94 m 251.48 122.58 l S 217.11 84.53 m 224.74 84.53 l S 220.92 80.71 m 220.92 88.35 l S 201.32 84.53 m 208.95 84.53 l S 205.14 80.71 m 205.14 88.35 l S 147.25 131.65 m 154.89 131.65 l S 151.07 127.84 m 151.07 135.47 l S 207.23 84.53 m 214.87 84.53 l S 211.05 80.71 m 211.05 88.35 l S 231.82 84.53 m 239.45 84.53 l S 235.64 80.71 m 235.64 88.35 l S 101.59 181.27 m 109.22 181.27 l S 105.41 177.45 m 105.41 185.09 l S 202.58 84.53 m 210.21 84.53 l S 206.39 80.71 m 206.39 88.35 l S 249.75 103.82 m 257.38 103.82 l S 253.56 100.00 m 253.56 107.64 l S 174.53 84.53 m 182.16 84.53 l S 178.34 80.71 m 178.34 88.35 l S 186.14 84.53 m 193.78 84.53 l S 189.96 80.71 m 189.96 88.35 l S 272.37 181.27 m 280.00 181.27 l S 276.19 177.45 m 276.19 185.09 l S 189.74 84.53 m 197.37 84.53 l S 193.55 80.71 m 193.55 88.35 l S 179.98 84.53 m 187.61 84.53 l S 183.79 80.71 m 183.79 88.35 l S 209.73 84.53 m 217.37 84.53 l S 213.55 80.71 m 213.55 88.35 l S 198.28 84.53 m 205.91 84.53 l S 202.09 80.71 m 202.09 88.35 l S 188.06 84.53 m 195.70 84.53 l S 191.88 80.71 m 191.88 88.35 l S 186.57 84.53 m 194.21 84.53 l S 190.39 80.71 m 190.39 88.35 l S 179.03 84.53 m 186.66 84.53 l S 182.85 80.71 m 182.85 88.35 l S 177.52 84.53 m 185.16 84.53 l S 181.34 80.71 m 181.34 88.35 l S 227.94 84.53 m 235.57 84.53 l S 231.75 80.71 m 231.75 88.35 l S 181.25 84.53 m 188.89 84.53 l S 185.07 80.71 m 185.07 88.35 l S 221.74 84.53 m 229.38 84.53 l S 225.56 80.71 m 225.56 88.35 l S 215.62 84.53 m 223.25 84.53 l S 219.44 80.71 m 219.44 88.35 l S 247.60 116.55 m 255.23 116.55 l S 251.42 112.73 m 251.42 120.37 l S 204.94 84.53 m 212.58 84.53 l S 208.76 80.71 m 208.76 88.35 l S 209.60 84.53 m 217.24 84.53 l S 213.42 80.71 m 213.42 88.35 l S 231.84 84.53 m 239.48 84.53 l S 235.66 80.71 m 235.66 88.35 l S 210.43 84.53 m 218.06 84.53 l S 214.25 80.71 m 214.25 88.35 l S 152.92 92.86 m 160.56 92.86 l S 156.74 89.04 m 156.74 96.68 l S 187.50 84.53 m 195.14 84.53 l S 191.32 80.71 m 191.32 88.35 l S 200.80 84.53 m 208.44 84.53 l S 204.62 80.71 m 204.62 88.35 l S 199.03 84.53 m 206.66 84.53 l S 202.85 80.71 m 202.85 88.35 l S 126.31 181.27 m 133.95 181.27 l S 130.13 177.45 m 130.13 185.09 l S 229.65 84.53 m 237.29 84.53 l S 233.47 80.71 m 233.47 88.35 l S 229.24 84.53 m 236.88 84.53 l S 233.06 80.71 m 233.06 88.35 l S 170.97 84.53 m 178.60 84.53 l S 174.79 80.71 m 174.79 88.35 l S 172.97 84.53 m 180.61 84.53 l S 176.79 80.71 m 176.79 88.35 l S 203.24 84.53 m 210.87 84.53 l S 207.05 80.71 m 207.05 88.35 l S 188.94 84.53 m 196.58 84.53 l S 192.76 80.71 m 192.76 88.35 l S 210.26 84.53 m 217.90 84.53 l S 214.08 80.71 m 214.08 88.35 l S 196.31 84.53 m 203.95 84.53 l S 200.13 80.71 m 200.13 88.35 l S 207.50 84.53 m 215.13 84.53 l S 211.32 80.71 m 211.32 88.35 l S 157.30 110.42 m 164.93 110.42 l S 161.11 106.60 m 161.11 114.24 l S 162.01 84.53 m 169.65 84.53 l S 165.83 80.71 m 165.83 88.35 l S 199.68 84.53 m 207.31 84.53 l S 203.50 80.71 m 203.50 88.35 l S 125.98 181.27 m 133.62 181.27 l S 129.80 177.45 m 129.80 185.09 l S 153.50 94.98 m 161.14 94.98 l S 157.32 91.16 m 157.32 98.80 l S 190.61 84.53 m 198.25 84.53 l S 194.43 80.71 m 194.43 88.35 l S 189.55 84.53 m 197.19 84.53 l S 193.37 80.71 m 193.37 88.35 l S 185.25 84.53 m 192.89 84.53 l S 189.07 80.71 m 189.07 88.35 l S 173.67 84.53 m 181.31 84.53 l S 177.49 80.71 m 177.49 88.35 l S 216.56 84.53 m 224.19 84.53 l S 220.37 80.71 m 220.37 88.35 l S 131.93 181.27 m 139.57 181.27 l S 135.75 177.45 m 135.75 185.09 l S 153.88 114.13 m 161.51 114.13 l S 157.69 110.31 m 157.69 117.95 l S 175.53 84.53 m 183.17 84.53 l S 179.35 80.71 m 179.35 88.35 l S 137.56 156.44 m 145.20 156.44 l S 141.38 152.62 m 141.38 160.26 l S 245.37 108.67 m 253.01 108.67 l S 249.19 104.86 m 249.19 112.49 l S 222.93 84.53 m 230.56 84.53 l S 226.74 80.71 m 226.74 88.35 l S 138.37 136.12 m 146.00 136.12 l S 142.18 132.30 m 142.18 139.93 l S 187.01 84.53 m 194.64 84.53 l S 190.83 80.71 m 190.83 88.35 l S 76.13 181.27 m 83.77 181.27 l S 79.95 177.45 m 79.95 185.09 l S 107.03 181.27 m 114.67 181.27 l S 110.85 177.45 m 110.85 185.09 l S 241.10 87.35 m 248.74 87.35 l S 244.92 83.53 m 244.92 91.17 l S 211.89 84.53 m 219.53 84.53 l S 215.71 80.71 m 215.71 88.35 l S 195.51 84.53 m 203.15 84.53 l S 199.33 80.71 m 199.33 88.35 l S 173.48 84.53 m 181.12 84.53 l S 177.30 80.71 m 177.30 88.35 l S 267.79 181.27 m 275.42 181.27 l S 271.60 177.45 m 271.60 185.09 l S 174.67 84.53 m 182.30 84.53 l S 178.49 80.71 m 178.49 88.35 l S 146.54 141.48 m 154.17 141.48 l S 150.35 137.67 m 150.35 145.30 l S 209.56 84.53 m 217.20 84.53 l S 213.38 80.71 m 213.38 88.35 l S 105.09 181.27 m 112.73 181.27 l S 108.91 177.45 m 108.91 185.09 l S 190.67 84.53 m 198.30 84.53 l S 194.48 80.71 m 194.48 88.35 l S 147.60 114.13 m 155.24 114.13 l S 151.42 110.31 m 151.42 117.95 l S 216.79 84.53 m 224.42 84.53 l S 220.60 80.71 m 220.60 88.35 l S 72.03 181.27 m 79.67 181.27 l S 75.85 177.45 m 75.85 185.09 l S 168.72 84.53 m 176.36 84.53 l S 172.54 80.71 m 172.54 88.35 l S 237.41 84.53 m 245.04 84.53 l S 241.22 80.71 m 241.22 88.35 l S 148.22 141.48 m 155.85 141.48 l S 152.03 137.67 m 152.03 145.30 l S 195.40 84.53 m 203.04 84.53 l S 199.22 80.71 m 199.22 88.35 l S 202.06 84.53 m 209.70 84.53 l S 205.88 80.71 m 205.88 88.35 l S 227.29 84.53 m 234.93 84.53 l S 231.11 80.71 m 231.11 88.35 l S 180.86 84.53 m 188.49 84.53 l S 184.67 80.71 m 184.67 88.35 l S 119.08 181.27 m 126.72 181.27 l S 122.90 177.45 m 122.90 185.09 l S 143.85 156.44 m 151.48 156.44 l S 147.66 152.62 m 147.66 160.26 l S 201.84 84.53 m 209.47 84.53 l S 205.65 80.71 m 205.65 88.35 l S 232.90 84.53 m 240.53 84.53 l S 236.72 80.71 m 236.72 88.35 l S 218.50 84.53 m 226.13 84.53 l S 222.32 80.71 m 222.32 88.35 l S 150.52 124.37 m 158.16 124.37 l S 154.34 120.55 m 154.34 128.19 l S 207.71 84.53 m 215.35 84.53 l S 211.53 80.71 m 211.53 88.35 l S 242.80 101.07 m 250.44 101.07 l S 246.62 97.26 m 246.62 104.89 l S 141.50 156.44 m 149.14 156.44 l S 145.32 152.62 m 145.32 160.26 l S 180.05 84.53 m 187.69 84.53 l S 183.87 80.71 m 183.87 88.35 l S 291.60 181.27 m 299.24 181.27 l S 295.42 177.45 m 295.42 185.09 l S 213.76 84.53 m 221.40 84.53 l S 217.58 80.71 m 217.58 88.35 l S 197.58 84.53 m 205.22 84.53 l S 201.40 80.71 m 201.40 88.35 l S 93.57 181.27 m 101.21 181.27 l S 97.39 177.45 m 97.39 185.09 l S 233.94 84.53 m 241.57 84.53 l S 237.76 80.71 m 237.76 88.35 l S 202.20 84.53 m 209.84 84.53 l S 206.02 80.71 m 206.02 88.35 l S 191.06 84.53 m 198.70 84.53 l S 194.88 80.71 m 194.88 88.35 l S 155.81 102.50 m 163.45 102.50 l S 159.63 98.68 m 159.63 106.32 l S 186.43 84.53 m 194.07 84.53 l S 190.25 80.71 m 190.25 88.35 l S 231.20 84.53 m 238.84 84.53 l S 235.02 80.71 m 235.02 88.35 l S 198.60 84.53 m 206.23 84.53 l S 202.41 80.71 m 202.41 88.35 l S 98.24 181.27 m 105.87 181.27 l S 102.06 177.45 m 102.06 185.09 l S 207.53 84.53 m 215.16 84.53 l S 211.34 80.71 m 211.34 88.35 l S 192.68 84.53 m 200.31 84.53 l S 196.50 80.71 m 196.50 88.35 l S 223.74 84.53 m 231.38 84.53 l S 227.56 80.71 m 227.56 88.35 l S 253.85 136.12 m 261.49 136.12 l S 257.67 132.30 m 257.67 139.93 l S 211.11 84.53 m 218.74 84.53 l S 214.93 80.71 m 214.93 88.35 l S 200.61 84.53 m 208.25 84.53 l S 204.43 80.71 m 204.43 88.35 l S 157.71 95.87 m 165.35 95.87 l S 161.53 92.05 m 161.53 99.69 l S 185.66 84.53 m 193.30 84.53 l S 189.48 80.71 m 189.48 88.35 l S 212.29 84.53 m 219.93 84.53 l S 216.11 80.71 m 216.11 88.35 l S 248.30 98.23 m 255.93 98.23 l S 252.12 94.42 m 252.12 102.05 l S 235.65 84.53 m 243.29 84.53 l S 239.47 80.71 m 239.47 88.35 l S 155.57 110.42 m 163.20 110.42 l S 159.38 106.60 m 159.38 114.24 l S 234.54 84.53 m 242.18 84.53 l S 238.36 80.71 m 238.36 88.35 l S 225.68 84.53 m 233.31 84.53 l S 229.49 80.71 m 229.49 88.35 l S 243.99 108.67 m 251.63 108.67 l S 247.81 104.86 m 247.81 112.49 l S 220.65 84.53 m 228.29 84.53 l S 224.47 80.71 m 224.47 88.35 l S 132.07 181.27 m 139.70 181.27 l S 135.88 177.45 m 135.88 185.09 l S 133.34 148.08 m 140.98 148.08 l S 137.16 144.26 m 137.16 151.90 l S 209.15 84.53 m 216.79 84.53 l S 212.97 80.71 m 212.97 88.35 l S 339.83 181.27 m 347.46 181.27 l S 343.64 177.45 m 343.64 185.09 l S 200.36 84.53 m 208.00 84.53 l S 204.18 80.71 m 204.18 88.35 l S 226.23 84.53 m 233.87 84.53 l S 230.05 80.71 m 230.05 88.35 l S 232.25 84.53 m 239.89 84.53 l S 236.07 80.71 m 236.07 88.35 l S 173.91 84.53 m 181.55 84.53 l S 177.73 80.71 m 177.73 88.35 l S 178.14 84.53 m 185.78 84.53 l S 181.96 80.71 m 181.96 88.35 l S 166.47 84.53 m 174.11 84.53 l S 170.29 80.71 m 170.29 88.35 l S 280.20 181.27 m 287.84 181.27 l S 284.02 177.45 m 284.02 185.09 l S 242.48 86.56 m 250.11 86.56 l S 246.30 82.74 m 246.30 90.38 l S 240.18 90.84 m 247.82 90.84 l S 244.00 87.02 m 244.00 94.65 l S 175.36 84.53 m 183.00 84.53 l S 179.18 80.71 m 179.18 88.35 l S 152.81 110.42 m 160.44 110.42 l S 156.62 106.60 m 156.62 114.24 l S 191.19 84.53 m 198.82 84.53 l S 195.00 80.71 m 195.00 88.35 l S 242.52 96.90 m 250.16 96.90 l S 246.34 93.08 m 246.34 100.72 l S 246.17 96.90 m 253.81 96.90 l S 249.99 93.08 m 249.99 100.72 l S 245.81 105.39 m 253.45 105.39 l S 249.63 101.57 m 249.63 109.21 l S 246.49 103.82 m 254.12 103.82 l S 250.30 100.00 m 250.30 107.64 l S 239.35 84.53 m 246.99 84.53 l S 243.17 80.71 m 243.17 88.35 l S 216.73 84.53 m 224.37 84.53 l S 220.55 80.71 m 220.55 88.35 l S 129.71 181.27 m 137.34 181.27 l S 133.52 177.45 m 133.52 185.09 l S 304.91 181.27 m 312.54 181.27 l S 308.72 177.45 m 308.72 185.09 l S 202.20 84.53 m 209.83 84.53 l S 206.01 80.71 m 206.01 88.35 l S 160.20 84.53 m 167.84 84.53 l S 164.02 80.71 m 164.02 88.35 l S 260.76 156.44 m 268.39 156.44 l S 264.58 152.62 m 264.58 160.26 l S 193.84 84.53 m 201.48 84.53 l S 197.66 80.71 m 197.66 88.35 l S 210.42 84.53 m 218.06 84.53 l S 214.24 80.71 m 214.24 88.35 l S 280.85 181.27 m 288.48 181.27 l S 284.66 177.45 m 284.66 185.09 l S 152.70 106.97 m 160.34 106.97 l S 156.52 103.15 m 156.52 110.79 l S 206.06 84.53 m 213.70 84.53 l S 209.88 80.71 m 209.88 88.35 l S 163.57 84.53 m 171.21 84.53 l S 167.39 80.71 m 167.39 88.35 l S 203.63 84.53 m 211.26 84.53 l S 207.45 80.71 m 207.45 88.35 l S 125.47 166.87 m 133.11 166.87 l S 129.29 163.05 m 129.29 170.69 l S 209.01 84.53 m 216.65 84.53 l S 212.83 80.71 m 212.83 88.35 l S 177.35 84.53 m 184.98 84.53 l S 181.16 80.71 m 181.16 88.35 l S 154.94 106.97 m 162.58 106.97 l S 158.76 103.15 m 158.76 110.79 l S 112.69 181.27 m 120.33 181.27 l S 116.51 177.45 m 116.51 185.09 l S 221.41 84.53 m 229.05 84.53 l S 225.23 80.71 m 225.23 88.35 l S 301.00 181.27 m 308.63 181.27 l S 304.82 177.45 m 304.82 185.09 l S 174.57 84.53 m 182.21 84.53 l S 178.39 80.71 m 178.39 88.35 l S 204.60 84.53 m 212.24 84.53 l S 208.42 80.71 m 208.42 88.35 l S 207.68 84.53 m 215.32 84.53 l S 211.50 80.71 m 211.50 88.35 l S 126.30 181.27 m 133.94 181.27 l S 130.12 177.45 m 130.12 185.09 l S 318.90 181.27 m 326.53 181.27 l S 322.72 177.45 m 322.72 185.09 l S 257.82 136.12 m 265.46 136.12 l S 261.64 132.30 m 261.64 139.93 l S 198.62 84.53 m 206.26 84.53 l S 202.44 80.71 m 202.44 88.35 l S 124.22 166.87 m 131.85 166.87 l S 128.03 163.05 m 128.03 170.69 l S 216.31 84.53 m 223.95 84.53 l S 220.13 80.71 m 220.13 88.35 l S 183.04 84.53 m 190.68 84.53 l S 186.86 80.71 m 186.86 88.35 l S 218.12 84.53 m 225.76 84.53 l S 221.94 80.71 m 221.94 88.35 l S 234.89 84.53 m 242.52 84.53 l S 238.70 80.71 m 238.70 88.35 l S 225.11 84.53 m 232.75 84.53 l S 228.93 80.71 m 228.93 88.35 l S 174.73 84.53 m 182.36 84.53 l S 178.55 80.71 m 178.55 88.35 l S 224.36 84.53 m 231.99 84.53 l S 228.18 80.71 m 228.18 88.35 l S 218.66 84.53 m 226.30 84.53 l S 222.48 80.71 m 222.48 88.35 l S 206.34 84.53 m 213.98 84.53 l S 210.16 80.71 m 210.16 88.35 l S 250.60 116.55 m 258.24 116.55 l S 254.42 112.73 m 254.42 120.37 l S 233.46 84.53 m 241.10 84.53 l S 237.28 80.71 m 237.28 88.35 l S 220.67 84.53 m 228.31 84.53 l S 224.49 80.71 m 224.49 88.35 l S 236.13 84.53 m 243.76 84.53 l S 239.95 80.71 m 239.95 88.35 l S 184.18 84.53 m 191.82 84.53 l S 188.00 80.71 m 188.00 88.35 l S 200.07 84.53 m 207.70 84.53 l S 203.89 80.71 m 203.89 88.35 l S 243.46 84.53 m 251.10 84.53 l S 247.28 80.71 m 247.28 88.35 l S 147.43 108.67 m 155.06 108.67 l S 151.25 104.86 m 151.25 112.49 l S 371.21 181.27 m 378.85 181.27 l S 375.03 177.45 m 375.03 185.09 l S 267.12 166.87 m 274.75 166.87 l S 270.94 163.05 m 270.94 170.69 l S 255.34 141.48 m 262.98 141.48 l S 259.16 137.67 m 259.16 145.30 l S 203.12 84.53 m 210.76 84.53 l S 206.94 80.71 m 206.94 88.35 l S 155.03 84.53 m 162.67 84.53 l S 158.85 80.71 m 158.85 88.35 l S 185.22 84.53 m 192.86 84.53 l S 189.04 80.71 m 189.04 88.35 l S 123.59 181.27 m 131.22 181.27 l S 127.40 177.45 m 127.40 185.09 l S 215.23 84.53 m 222.87 84.53 l S 219.05 80.71 m 219.05 88.35 l S 150.80 110.42 m 158.44 110.42 l S 154.62 106.60 m 154.62 114.24 l S 94.85 181.27 m 102.49 181.27 l S 98.67 177.45 m 98.67 185.09 l S 92.07 181.27 m 99.71 181.27 l S 95.89 177.45 m 95.89 185.09 l S 185.45 84.53 m 193.09 84.53 l S 189.27 80.71 m 189.27 88.35 l S 261.90 148.08 m 269.53 148.08 l S 265.72 144.26 m 265.72 151.90 l S 141.47 136.12 m 149.11 136.12 l S 145.29 132.30 m 145.29 139.93 l S 200.06 84.53 m 207.70 84.53 l S 203.88 80.71 m 203.88 88.35 l S 216.00 84.53 m 223.64 84.53 l S 219.82 80.71 m 219.82 88.35 l S 242.20 86.56 m 249.84 86.56 l S 246.02 82.74 m 246.02 90.38 l S 132.53 156.44 m 140.17 156.44 l S 136.35 152.62 m 136.35 160.26 l S 196.82 84.53 m 204.45 84.53 l S 200.63 80.71 m 200.63 88.35 l S 273.90 181.27 m 281.53 181.27 l S 277.71 177.45 m 277.71 185.09 l S 109.23 181.27 m 116.87 181.27 l S 113.05 177.45 m 113.05 185.09 l S 197.96 84.53 m 205.59 84.53 l S 201.78 80.71 m 201.78 88.35 l S 187.51 84.53 m 195.14 84.53 l S 191.33 80.71 m 191.33 88.35 l S 152.61 118.76 m 160.25 118.76 l S 156.43 114.94 m 156.43 122.58 l S 262.52 181.27 m 270.16 181.27 l S 266.34 177.45 m 266.34 185.09 l S 220.25 84.53 m 227.88 84.53 l S 224.07 80.71 m 224.07 88.35 l S 220.02 84.53 m 227.66 84.53 l S 223.84 80.71 m 223.84 88.35 l S 173.54 84.53 m 181.18 84.53 l S 177.36 80.71 m 177.36 88.35 l S 241.91 94.98 m 249.55 94.98 l S 245.73 91.16 m 245.73 98.80 l S 148.90 118.76 m 156.54 118.76 l S 152.72 114.94 m 152.72 122.58 l S 202.29 84.53 m 209.93 84.53 l S 206.11 80.71 m 206.11 88.35 l S 280.77 166.87 m 288.41 166.87 l S 284.59 163.05 m 284.59 170.69 l S 247.17 105.39 m 254.81 105.39 l S 250.99 101.57 m 250.99 109.21 l S 121.39 156.44 m 129.03 156.44 l S 125.21 152.62 m 125.21 160.26 l S 204.79 84.53 m 212.43 84.53 l S 208.61 80.71 m 208.61 88.35 l S 150.26 116.55 m 157.90 116.55 l S 154.08 112.73 m 154.08 120.37 l S 233.88 84.53 m 241.52 84.53 l S 237.70 80.71 m 237.70 88.35 l S 105.77 181.27 m 113.41 181.27 l S 109.59 177.45 m 109.59 185.09 l S 174.92 84.53 m 182.56 84.53 l S 178.74 80.71 m 178.74 88.35 l S 217.61 84.53 m 225.25 84.53 l S 221.43 80.71 m 221.43 88.35 l S 247.90 108.67 m 255.54 108.67 l S 251.72 104.86 m 251.72 112.49 l S 233.11 84.53 m 240.75 84.53 l S 236.93 80.71 m 236.93 88.35 l S 173.41 84.53 m 181.04 84.53 l S 177.22 80.71 m 177.22 88.35 l S 217.59 84.53 m 225.22 84.53 l S 221.41 80.71 m 221.41 88.35 l S 222.43 84.53 m 230.06 84.53 l S 226.25 80.71 m 226.25 88.35 l S 212.46 84.53 m 220.10 84.53 l S 216.28 80.71 m 216.28 88.35 l S 182.07 84.53 m 189.71 84.53 l S 185.89 80.71 m 185.89 88.35 l S 214.52 84.53 m 222.16 84.53 l S 218.34 80.71 m 218.34 88.35 l S 141.13 166.87 m 148.77 166.87 l S 144.95 163.05 m 144.95 170.69 l S 204.99 84.53 m 212.63 84.53 l S 208.81 80.71 m 208.81 88.35 l S 193.36 84.53 m 201.00 84.53 l S 197.18 80.71 m 197.18 88.35 l S 222.15 84.53 m 229.78 84.53 l S 225.96 80.71 m 225.96 88.35 l S 211.41 84.53 m 219.05 84.53 l S 215.23 80.71 m 215.23 88.35 l S 179.55 84.53 m 187.18 84.53 l S 183.36 80.71 m 183.36 88.35 l S 226.97 84.53 m 234.61 84.53 l S 230.79 80.71 m 230.79 88.35 l S 219.15 84.53 m 226.78 84.53 l S 222.97 80.71 m 222.97 88.35 l S 145.32 136.12 m 152.95 136.12 l S 149.14 132.30 m 149.14 139.93 l S 160.73 95.87 m 168.36 95.87 l S 164.55 92.05 m 164.55 99.69 l S 217.68 84.53 m 225.31 84.53 l S 221.50 80.71 m 221.50 88.35 l S 278.39 166.87 m 286.02 166.87 l S 282.20 163.05 m 282.20 170.69 l S 162.02 87.35 m 169.65 87.35 l S 165.83 83.53 m 165.83 91.17 l S 156.31 98.23 m 163.95 98.23 l S 160.13 94.42 m 160.13 102.05 l S 218.98 84.53 m 226.61 84.53 l S 222.79 80.71 m 222.79 88.35 l S 150.71 116.55 m 158.35 116.55 l S 154.53 112.73 m 154.53 120.37 l S 137.19 181.27 m 144.83 181.27 l S 141.01 177.45 m 141.01 185.09 l S 271.47 181.27 m 279.10 181.27 l S 275.28 177.45 m 275.28 185.09 l S 205.74 84.53 m 213.37 84.53 l S 209.56 80.71 m 209.56 88.35 l S 340.70 181.27 m 348.33 181.27 l S 344.51 177.45 m 344.51 185.09 l S 211.60 84.53 m 219.24 84.53 l S 215.42 80.71 m 215.42 88.35 l S 186.57 84.53 m 194.20 84.53 l S 190.39 80.71 m 190.39 88.35 l S 225.58 84.53 m 233.22 84.53 l S 229.40 80.71 m 229.40 88.35 l S 230.64 84.53 m 238.28 84.53 l S 234.46 80.71 m 234.46 88.35 l S 183.38 84.53 m 191.02 84.53 l S 187.20 80.71 m 187.20 88.35 l S 214.25 84.53 m 221.88 84.53 l S 218.06 80.71 m 218.06 88.35 l S 184.62 84.53 m 192.25 84.53 l S 188.44 80.71 m 188.44 88.35 l S 270.09 156.44 m 277.72 156.44 l S 273.90 152.62 m 273.90 160.26 l S 232.70 84.53 m 240.34 84.53 l S 236.52 80.71 m 236.52 88.35 l S 160.79 88.17 m 168.42 88.17 l S 164.61 84.35 m 164.61 91.99 l S 219.17 84.53 m 226.81 84.53 l S 222.99 80.71 m 222.99 88.35 l S 216.50 84.53 m 224.14 84.53 l S 220.32 80.71 m 220.32 88.35 l S 166.95 84.53 m 174.58 84.53 l S 170.76 80.71 m 170.76 88.35 l S 269.57 156.44 m 277.21 156.44 l S 273.39 152.62 m 273.39 160.26 l S 189.67 84.53 m 197.31 84.53 l S 193.49 80.71 m 193.49 88.35 l S 164.94 84.53 m 172.58 84.53 l S 168.76 80.71 m 168.76 88.35 l S 202.60 84.53 m 210.24 84.53 l S 206.42 80.71 m 206.42 88.35 l S 236.82 84.53 m 244.46 84.53 l S 240.64 80.71 m 240.64 88.35 l S 192.42 84.53 m 200.06 84.53 l S 196.24 80.71 m 196.24 88.35 l S 201.90 84.53 m 209.54 84.53 l S 205.72 80.71 m 205.72 88.35 l S 200.34 84.53 m 207.97 84.53 l S 204.16 80.71 m 204.16 88.35 l S 181.08 84.53 m 188.72 84.53 l S 184.90 80.71 m 184.90 88.35 l S 219.24 84.53 m 226.88 84.53 l S 223.06 80.71 m 223.06 88.35 l S 185.02 84.53 m 192.66 84.53 l S 188.84 80.71 m 188.84 88.35 l S 244.56 92.86 m 252.20 92.86 l S 248.38 89.04 m 248.38 96.68 l S 95.99 181.27 m 103.62 181.27 l S 99.81 177.45 m 99.81 185.09 l S 205.77 84.53 m 213.40 84.53 l S 209.58 80.71 m 209.58 88.35 l S 173.47 84.53 m 181.11 84.53 l S 177.29 80.71 m 177.29 88.35 l S 202.71 84.53 m 210.35 84.53 l S 206.53 80.71 m 206.53 88.35 l S 215.30 84.53 m 222.93 84.53 l S 219.12 80.71 m 219.12 88.35 l S 234.68 84.53 m 242.31 84.53 l S 238.50 80.71 m 238.50 88.35 l S 226.65 84.53 m 234.28 84.53 l S 230.47 80.71 m 230.47 88.35 l S 205.82 84.53 m 213.46 84.53 l S 209.64 80.71 m 209.64 88.35 l S 230.09 84.53 m 237.73 84.53 l S 233.91 80.71 m 233.91 88.35 l S 211.32 84.53 m 218.96 84.53 l S 215.14 80.71 m 215.14 88.35 l S 302.27 181.27 m 309.91 181.27 l S 306.09 177.45 m 306.09 185.09 l S 218.82 84.53 m 226.45 84.53 l S 222.63 80.71 m 222.63 88.35 l S 163.74 84.53 m 171.38 84.53 l S 167.56 80.71 m 167.56 88.35 l S 191.26 84.53 m 198.90 84.53 l S 195.08 80.71 m 195.08 88.35 l S 167.17 84.53 m 174.81 84.53 l S 170.99 80.71 m 170.99 88.35 l S 318.61 181.27 m 326.24 181.27 l S 322.42 177.45 m 322.42 185.09 l S 277.66 181.27 m 285.30 181.27 l S 281.48 177.45 m 281.48 185.09 l S 235.64 84.53 m 243.28 84.53 l S 239.46 80.71 m 239.46 88.35 l S 153.27 141.48 m 160.91 141.48 l S 157.09 137.67 m 157.09 145.30 l S 205.60 84.53 m 213.24 84.53 l S 209.42 80.71 m 209.42 88.35 l S 260.73 166.87 m 268.37 166.87 l S 264.55 163.05 m 264.55 170.69 l S 190.49 84.53 m 198.13 84.53 l S 194.31 80.71 m 194.31 88.35 l S 206.13 84.53 m 213.77 84.53 l S 209.95 80.71 m 209.95 88.35 l S 236.47 84.53 m 244.11 84.53 l S 240.29 80.71 m 240.29 88.35 l S 202.50 84.53 m 210.14 84.53 l S 206.32 80.71 m 206.32 88.35 l S 174.77 84.53 m 182.41 84.53 l S 178.59 80.71 m 178.59 88.35 l S 252.94 121.07 m 260.58 121.07 l S 256.76 117.26 m 256.76 124.89 l S 180.70 84.53 m 188.33 84.53 l S 184.51 80.71 m 184.51 88.35 l S 244.46 103.82 m 252.09 103.82 l S 248.28 100.00 m 248.28 107.64 l S 198.00 84.53 m 205.64 84.53 l S 201.82 80.71 m 201.82 88.35 l S 149.25 131.65 m 156.89 131.65 l S 153.07 127.84 m 153.07 135.47 l S 202.83 84.53 m 210.46 84.53 l S 206.64 80.71 m 206.64 88.35 l S 183.23 84.53 m 190.87 84.53 l S 187.05 80.71 m 187.05 88.35 l S 220.35 84.53 m 227.99 84.53 l S 224.17 80.71 m 224.17 88.35 l S 202.41 84.53 m 210.05 84.53 l S 206.23 80.71 m 206.23 88.35 l S 225.82 84.53 m 233.46 84.53 l S 229.64 80.71 m 229.64 88.35 l S 184.51 84.53 m 192.15 84.53 l S 188.33 80.71 m 188.33 88.35 l S 201.23 84.53 m 208.87 84.53 l S 205.05 80.71 m 205.05 88.35 l S 184.99 84.53 m 192.63 84.53 l S 188.81 80.71 m 188.81 88.35 l S 204.89 84.53 m 212.52 84.53 l S 208.70 80.71 m 208.70 88.35 l S 167.97 84.53 m 175.61 84.53 l S 171.79 80.71 m 171.79 88.35 l S 127.17 166.87 m 134.80 166.87 l S 130.98 163.05 m 130.98 170.69 l S 254.02 127.56 m 261.65 127.56 l S 257.83 123.74 m 257.83 131.38 l S 153.63 121.07 m 161.27 121.07 l S 157.45 117.26 m 157.45 124.89 l S 151.69 116.55 m 159.33 116.55 l S 155.51 112.73 m 155.51 120.37 l S 160.44 96.90 m 168.08 96.90 l S 164.26 93.08 m 164.26 100.72 l S 297.24 181.27 m 304.88 181.27 l S 301.06 177.45 m 301.06 185.09 l S 214.97 84.53 m 222.60 84.53 l S 218.78 80.71 m 218.78 88.35 l S 160.03 84.53 m 167.66 84.53 l S 163.85 80.71 m 163.85 88.35 l S 126.59 181.27 m 134.23 181.27 l S 130.41 177.45 m 130.41 185.09 l S 231.92 84.53 m 239.55 84.53 l S 235.74 80.71 m 235.74 88.35 l S 196.03 84.53 m 203.67 84.53 l S 199.85 80.71 m 199.85 88.35 l S 149.35 118.76 m 156.98 118.76 l S 153.17 114.94 m 153.17 122.58 l S 204.65 84.53 m 212.29 84.53 l S 208.47 80.71 m 208.47 88.35 l S 212.10 84.53 m 219.74 84.53 l S 215.92 80.71 m 215.92 88.35 l S 145.05 127.56 m 152.68 127.56 l S 148.86 123.74 m 148.86 131.38 l S 167.40 84.53 m 175.03 84.53 l S 171.21 80.71 m 171.21 88.35 l S 186.69 84.53 m 194.33 84.53 l S 190.51 80.71 m 190.51 88.35 l S 218.31 84.53 m 225.94 84.53 l S 222.12 80.71 m 222.12 88.35 l S 255.86 136.12 m 263.50 136.12 l S 259.68 132.30 m 259.68 139.93 l S 204.99 84.53 m 212.63 84.53 l S 208.81 80.71 m 208.81 88.35 l S 205.74 84.53 m 213.38 84.53 l S 209.56 80.71 m 209.56 88.35 l S 94.05 181.27 m 101.69 181.27 l S 97.87 177.45 m 97.87 185.09 l S 159.87 85.72 m 167.51 85.72 l S 163.69 81.90 m 163.69 89.54 l S 219.22 84.53 m 226.86 84.53 l S 223.04 80.71 m 223.04 88.35 l S 217.52 84.53 m 225.16 84.53 l S 221.34 80.71 m 221.34 88.35 l S 276.89 181.27 m 284.52 181.27 l S 280.71 177.45 m 280.71 185.09 l S 196.70 84.53 m 204.34 84.53 l S 200.52 80.71 m 200.52 88.35 l S 163.02 84.53 m 170.66 84.53 l S 166.84 80.71 m 166.84 88.35 l S 198.42 84.53 m 206.06 84.53 l S 202.24 80.71 m 202.24 88.35 l S 246.15 99.78 m 253.79 99.78 l S 249.97 95.96 m 249.97 103.60 l S 208.46 84.53 m 216.10 84.53 l S 212.28 80.71 m 212.28 88.35 l S 223.10 84.53 m 230.74 84.53 l S 226.92 80.71 m 226.92 88.35 l S 261.41 166.87 m 269.05 166.87 l S 265.23 163.05 m 265.23 170.69 l S 225.48 84.53 m 233.12 84.53 l S 229.30 80.71 m 229.30 88.35 l S 146.76 166.87 m 154.40 166.87 l S 150.58 163.05 m 150.58 170.69 l S 272.61 166.87 m 280.25 166.87 l S 276.43 163.05 m 276.43 170.69 l S 206.76 84.53 m 214.40 84.53 l S 210.58 80.71 m 210.58 88.35 l S 232.92 84.53 m 240.56 84.53 l S 236.74 80.71 m 236.74 88.35 l S 225.63 84.53 m 233.27 84.53 l S 229.45 80.71 m 229.45 88.35 l S 191.29 84.53 m 198.93 84.53 l S 195.11 80.71 m 195.11 88.35 l S 174.36 84.53 m 182.00 84.53 l S 178.18 80.71 m 178.18 88.35 l S 192.59 84.53 m 200.23 84.53 l S 196.41 80.71 m 196.41 88.35 l S 280.12 181.27 m 287.76 181.27 l S 283.94 177.45 m 283.94 185.09 l S 93.38 181.27 m 101.02 181.27 l S 97.20 177.45 m 97.20 185.09 l S 170.69 84.53 m 178.33 84.53 l S 174.51 80.71 m 174.51 88.35 l S 235.62 84.53 m 243.25 84.53 l S 239.44 80.71 m 239.44 88.35 l S 286.63 181.27 m 294.27 181.27 l S 290.45 177.45 m 290.45 185.09 l S 246.87 124.37 m 254.50 124.37 l S 250.69 120.55 m 250.69 128.19 l S 135.84 156.44 m 143.48 156.44 l S 139.66 152.62 m 139.66 160.26 l S 197.28 84.53 m 204.91 84.53 l S 201.10 80.71 m 201.10 88.35 l S 184.52 84.53 m 192.16 84.53 l S 188.34 80.71 m 188.34 88.35 l S 129.40 181.27 m 137.04 181.27 l S 133.22 177.45 m 133.22 185.09 l S 176.92 84.53 m 184.56 84.53 l S 180.74 80.71 m 180.74 88.35 l S 148.57 156.44 m 156.20 156.44 l S 152.38 152.62 m 152.38 160.26 l S 189.96 84.53 m 197.60 84.53 l S 193.78 80.71 m 193.78 88.35 l S 165.70 84.53 m 173.34 84.53 l S 169.52 80.71 m 169.52 88.35 l S 124.32 166.87 m 131.96 166.87 l S 128.14 163.05 m 128.14 170.69 l S 164.57 84.53 m 172.21 84.53 l S 168.39 80.71 m 168.39 88.35 l S 160.34 84.78 m 167.98 84.78 l S 164.16 80.97 m 164.16 88.60 l S 198.71 84.53 m 206.35 84.53 l S 202.53 80.71 m 202.53 88.35 l S 224.09 84.53 m 231.73 84.53 l S 227.91 80.71 m 227.91 88.35 l S 224.50 84.53 m 232.14 84.53 l S 228.32 80.71 m 228.32 88.35 l S 142.54 141.48 m 150.17 141.48 l S 146.35 137.67 m 146.35 145.30 l S 191.69 84.53 m 199.33 84.53 l S 195.51 80.71 m 195.51 88.35 l S 166.04 84.53 m 173.67 84.53 l S 169.86 80.71 m 169.86 88.35 l S 197.72 84.53 m 205.35 84.53 l S 201.54 80.71 m 201.54 88.35 l S 202.84 84.53 m 210.48 84.53 l S 206.66 80.71 m 206.66 88.35 l S 90.53 181.27 m 98.17 181.27 l S 94.35 177.45 m 94.35 185.09 l S 213.61 84.53 m 221.24 84.53 l S 217.42 80.71 m 217.42 88.35 l S 209.81 84.53 m 217.45 84.53 l S 213.63 80.71 m 213.63 88.35 l S 181.08 84.53 m 188.71 84.53 l S 184.90 80.71 m 184.90 88.35 l S 263.66 131.65 m 271.30 131.65 l S 267.48 127.84 m 267.48 135.47 l S 202.87 84.53 m 210.50 84.53 l S 206.69 80.71 m 206.69 88.35 l S 222.07 84.53 m 229.70 84.53 l S 225.89 80.71 m 225.89 88.35 l S 76.09 181.27 m 83.72 181.27 l S 79.91 177.45 m 79.91 185.09 l S 265.51 148.08 m 273.15 148.08 l S 269.33 144.26 m 269.33 151.90 l S 195.64 84.53 m 203.27 84.53 l S 199.46 80.71 m 199.46 88.35 l S 171.71 84.53 m 179.34 84.53 l S 175.53 80.71 m 175.53 88.35 l S 221.36 84.53 m 228.99 84.53 l S 225.17 80.71 m 225.17 88.35 l S 89.44 181.27 m 97.08 181.27 l S 93.26 177.45 m 93.26 185.09 l S 210.92 84.53 m 218.55 84.53 l S 214.73 80.71 m 214.73 88.35 l S 246.97 102.50 m 254.60 102.50 l S 250.78 98.68 m 250.78 106.32 l S 105.88 181.27 m 113.51 181.27 l S 109.69 177.45 m 109.69 185.09 l S 190.89 84.53 m 198.53 84.53 l S 194.71 80.71 m 194.71 88.35 l S 153.82 94.98 m 161.46 94.98 l S 157.64 91.16 m 157.64 98.80 l S 278.62 181.27 m 286.26 181.27 l S 282.44 177.45 m 282.44 185.09 l S 193.31 84.53 m 200.94 84.53 l S 197.13 80.71 m 197.13 88.35 l S 209.29 84.53 m 216.92 84.53 l S 213.10 80.71 m 213.10 88.35 l S 223.58 84.53 m 231.21 84.53 l S 227.39 80.71 m 227.39 88.35 l S 207.32 84.53 m 214.96 84.53 l S 211.14 80.71 m 211.14 88.35 l S 176.03 84.53 m 183.67 84.53 l S 179.85 80.71 m 179.85 88.35 l S 203.77 84.53 m 211.41 84.53 l S 207.59 80.71 m 207.59 88.35 l S 181.11 84.53 m 188.75 84.53 l S 184.93 80.71 m 184.93 88.35 l S 210.78 84.53 m 218.41 84.53 l S 214.59 80.71 m 214.59 88.35 l S 152.53 110.42 m 160.16 110.42 l S 156.35 106.60 m 156.35 114.24 l S 157.34 106.97 m 164.98 106.97 l S 161.16 103.15 m 161.16 110.79 l S 180.47 84.53 m 188.10 84.53 l S 184.29 80.71 m 184.29 88.35 l S 92.61 181.27 m 100.25 181.27 l S 96.43 177.45 m 96.43 185.09 l S 154.60 114.13 m 162.23 114.13 l S 158.42 110.31 m 158.42 117.95 l S 269.13 166.87 m 276.77 166.87 l S 272.95 163.05 m 272.95 170.69 l S 230.77 84.53 m 238.40 84.53 l S 234.59 80.71 m 234.59 88.35 l S 263.57 181.27 m 271.21 181.27 l S 267.39 177.45 m 267.39 185.09 l S 232.85 84.53 m 240.49 84.53 l S 236.67 80.71 m 236.67 88.35 l S 290.81 181.27 m 298.45 181.27 l S 294.63 177.45 m 294.63 185.09 l S 198.54 84.53 m 206.18 84.53 l S 202.36 80.71 m 202.36 88.35 l S 230.52 84.53 m 238.15 84.53 l S 234.33 80.71 m 234.33 88.35 l S 294.16 181.27 m 301.80 181.27 l S 297.98 177.45 m 297.98 185.09 l S 124.49 181.27 m 132.12 181.27 l S 128.31 177.45 m 128.31 185.09 l S 209.70 84.53 m 217.34 84.53 l S 213.52 80.71 m 213.52 88.35 l S 183.38 84.53 m 191.02 84.53 l S 187.20 80.71 m 187.20 88.35 l S 189.05 84.53 m 196.69 84.53 l S 192.87 80.71 m 192.87 88.35 l S 223.80 84.53 m 231.43 84.53 l S 227.61 80.71 m 227.61 88.35 l S 160.22 98.23 m 167.86 98.23 l S 164.04 94.42 m 164.04 102.05 l S 217.89 84.53 m 225.52 84.53 l S 221.70 80.71 m 221.70 88.35 l S 226.64 84.53 m 234.28 84.53 l S 230.46 80.71 m 230.46 88.35 l S 147.99 121.07 m 155.62 121.07 l S 151.81 117.26 m 151.81 124.89 l S 257.57 166.87 m 265.21 166.87 l S 261.39 163.05 m 261.39 170.69 l S 188.37 84.53 m 196.01 84.53 l S 192.19 80.71 m 192.19 88.35 l S 114.25 181.27 m 121.88 181.27 l S 118.06 177.45 m 118.06 185.09 l S 198.84 84.53 m 206.48 84.53 l S 202.66 80.71 m 202.66 88.35 l S 177.14 84.53 m 184.78 84.53 l S 180.96 80.71 m 180.96 88.35 l S 201.57 84.53 m 209.21 84.53 l S 205.39 80.71 m 205.39 88.35 l S 245.47 105.39 m 253.11 105.39 l S 249.29 101.57 m 249.29 109.21 l S 88.52 181.27 m 96.16 181.27 l S 92.34 177.45 m 92.34 185.09 l S 203.26 84.53 m 210.89 84.53 l S 207.08 80.71 m 207.08 88.35 l S 207.09 84.53 m 214.73 84.53 l S 210.91 80.71 m 210.91 88.35 l S 200.36 84.53 m 208.00 84.53 l S 204.18 80.71 m 204.18 88.35 l S 213.77 84.53 m 221.41 84.53 l S 217.59 80.71 m 217.59 88.35 l S 210.94 84.53 m 218.58 84.53 l S 214.76 80.71 m 214.76 88.35 l S 223.38 84.53 m 231.02 84.53 l S 227.20 80.71 m 227.20 88.35 l S 224.70 84.53 m 232.34 84.53 l S 228.52 80.71 m 228.52 88.35 l S 126.73 166.87 m 134.37 166.87 l S 130.55 163.05 m 130.55 170.69 l S 192.31 84.53 m 199.94 84.53 l S 196.13 80.71 m 196.13 88.35 l S 204.28 84.53 m 211.92 84.53 l S 208.10 80.71 m 208.10 88.35 l S 228.66 84.53 m 236.30 84.53 l S 232.48 80.71 m 232.48 88.35 l S 183.36 84.53 m 191.00 84.53 l S 187.18 80.71 m 187.18 88.35 l S 206.81 84.53 m 214.45 84.53 l S 210.63 80.71 m 210.63 88.35 l S 196.60 84.53 m 204.23 84.53 l S 200.41 80.71 m 200.41 88.35 l S 128.93 166.87 m 136.57 166.87 l S 132.75 163.05 m 132.75 170.69 l S 262.28 166.87 m 269.91 166.87 l S 266.10 163.05 m 266.10 170.69 l S 195.08 84.53 m 202.71 84.53 l S 198.90 80.71 m 198.90 88.35 l S 214.55 84.53 m 222.19 84.53 l S 218.37 80.71 m 218.37 88.35 l S 159.45 90.84 m 167.09 90.84 l S 163.27 87.02 m 163.27 94.65 l S 197.77 84.53 m 205.41 84.53 l S 201.59 80.71 m 201.59 88.35 l S 229.50 84.53 m 237.14 84.53 l S 233.32 80.71 m 233.32 88.35 l S 179.50 84.53 m 187.14 84.53 l S 183.32 80.71 m 183.32 88.35 l S 120.10 166.87 m 127.74 166.87 l S 123.92 163.05 m 123.92 170.69 l S 112.40 166.87 m 120.03 166.87 l S 116.22 163.05 m 116.22 170.69 l S 181.08 84.53 m 188.72 84.53 l S 184.90 80.71 m 184.90 88.35 l S 249.38 148.08 m 257.02 148.08 l S 253.20 144.26 m 253.20 151.90 l S 203.22 84.53 m 210.85 84.53 l S 207.04 80.71 m 207.04 88.35 l S 216.33 84.53 m 223.97 84.53 l S 220.15 80.71 m 220.15 88.35 l S 190.95 84.53 m 198.58 84.53 l S 194.76 80.71 m 194.76 88.35 l S 191.44 84.53 m 199.08 84.53 l S 195.26 80.71 m 195.26 88.35 l S 156.86 102.50 m 164.50 102.50 l S 160.68 98.68 m 160.68 106.32 l S 195.96 84.53 m 203.60 84.53 l S 199.78 80.71 m 199.78 88.35 l S 188.38 84.53 m 196.02 84.53 l S 192.20 80.71 m 192.20 88.35 l S 217.50 84.53 m 225.14 84.53 l S 221.32 80.71 m 221.32 88.35 l S 221.06 84.53 m 228.70 84.53 l S 224.88 80.71 m 224.88 88.35 l S 254.49 166.87 m 262.13 166.87 l S 258.31 163.05 m 258.31 170.69 l S 238.51 84.53 m 246.14 84.53 l S 242.32 80.71 m 242.32 88.35 l S 271.24 166.87 m 278.88 166.87 l S 275.06 163.05 m 275.06 170.69 l S 229.23 84.53 m 236.86 84.53 l S 233.04 80.71 m 233.04 88.35 l S 149.73 121.07 m 157.37 121.07 l S 153.55 117.26 m 153.55 124.89 l S 205.66 84.53 m 213.30 84.53 l S 209.48 80.71 m 209.48 88.35 l S 224.18 84.53 m 231.82 84.53 l S 228.00 80.71 m 228.00 88.35 l S 229.30 84.53 m 236.94 84.53 l S 233.12 80.71 m 233.12 88.35 l S 235.95 84.53 m 243.59 84.53 l S 239.77 80.71 m 239.77 88.35 l S 223.76 84.53 m 231.39 84.53 l S 227.57 80.71 m 227.57 88.35 l S 216.14 84.53 m 223.78 84.53 l S 219.96 80.71 m 219.96 88.35 l S 174.57 84.53 m 182.20 84.53 l S 178.39 80.71 m 178.39 88.35 l S 253.57 166.87 m 261.20 166.87 l S 257.39 163.05 m 257.39 170.69 l S 222.47 84.53 m 230.10 84.53 l S 226.29 80.71 m 226.29 88.35 l S 194.97 84.53 m 202.60 84.53 l S 198.78 80.71 m 198.78 88.35 l S 227.43 84.53 m 235.06 84.53 l S 231.25 80.71 m 231.25 88.35 l S 231.90 84.53 m 239.54 84.53 l S 235.72 80.71 m 235.72 88.35 l S 195.21 84.53 m 202.85 84.53 l S 199.03 80.71 m 199.03 88.35 l S 168.72 84.53 m 176.36 84.53 l S 172.54 80.71 m 172.54 88.35 l S 285.38 181.27 m 293.01 181.27 l S 289.20 177.45 m 289.20 185.09 l S 178.77 84.53 m 186.41 84.53 l S 182.59 80.71 m 182.59 88.35 l S 226.76 84.53 m 234.40 84.53 l S 230.58 80.71 m 230.58 88.35 l S 195.72 84.53 m 203.35 84.53 l S 199.53 80.71 m 199.53 88.35 l S 109.67 181.27 m 117.30 181.27 l S 113.49 177.45 m 113.49 185.09 l S 171.19 84.53 m 178.83 84.53 l S 175.01 80.71 m 175.01 88.35 l S 197.55 84.53 m 205.19 84.53 l S 201.37 80.71 m 201.37 88.35 l S 180.90 84.53 m 188.54 84.53 l S 184.72 80.71 m 184.72 88.35 l S 205.35 84.53 m 212.98 84.53 l S 209.17 80.71 m 209.17 88.35 l S 251.78 121.07 m 259.42 121.07 l S 255.60 117.26 m 255.60 124.89 l S 233.53 84.53 m 241.17 84.53 l S 237.35 80.71 m 237.35 88.35 l S 181.42 84.53 m 189.06 84.53 l S 185.24 80.71 m 185.24 88.35 l S 227.48 84.53 m 235.12 84.53 l S 231.30 80.71 m 231.30 88.35 l S 225.35 84.53 m 232.99 84.53 l S 229.17 80.71 m 229.17 88.35 l S 212.93 84.53 m 220.57 84.53 l S 216.75 80.71 m 216.75 88.35 l S 194.63 84.53 m 202.27 84.53 l S 198.45 80.71 m 198.45 88.35 l S 182.50 84.53 m 190.14 84.53 l S 186.32 80.71 m 186.32 88.35 l S 219.87 84.53 m 227.51 84.53 l S 223.69 80.71 m 223.69 88.35 l S 186.15 84.53 m 193.79 84.53 l S 189.97 80.71 m 189.97 88.35 l S 177.15 84.53 m 184.79 84.53 l S 180.97 80.71 m 180.97 88.35 l S 140.61 166.87 m 148.25 166.87 l S 144.43 163.05 m 144.43 170.69 l S 95.78 181.27 m 103.41 181.27 l S 99.60 177.45 m 99.60 185.09 l S 165.84 84.53 m 173.47 84.53 l S 169.65 80.71 m 169.65 88.35 l S 256.71 131.65 m 264.35 131.65 l S 260.53 127.84 m 260.53 135.47 l S 202.49 84.53 m 210.12 84.53 l S 206.31 80.71 m 206.31 88.35 l S 188.40 84.53 m 196.04 84.53 l S 192.22 80.71 m 192.22 88.35 l S 171.61 84.53 m 179.25 84.53 l S 175.43 80.71 m 175.43 88.35 l S 234.66 84.53 m 242.29 84.53 l S 238.47 80.71 m 238.47 88.35 l S 195.28 84.53 m 202.92 84.53 l S 199.10 80.71 m 199.10 88.35 l S 276.93 181.27 m 284.56 181.27 l S 280.74 177.45 m 280.74 185.09 l S 269.93 181.27 m 277.57 181.27 l S 273.75 177.45 m 273.75 185.09 l S 201.35 84.53 m 208.99 84.53 l S 205.17 80.71 m 205.17 88.35 l S 174.40 84.53 m 182.04 84.53 l S 178.22 80.71 m 178.22 88.35 l S 141.70 166.87 m 149.34 166.87 l S 145.52 163.05 m 145.52 170.69 l S 144.05 181.27 m 151.68 181.27 l S 147.86 177.45 m 147.86 185.09 l S 156.07 101.07 m 163.71 101.07 l S 159.89 97.26 m 159.89 104.89 l S 158.62 89.95 m 166.26 89.95 l S 162.44 86.13 m 162.44 93.77 l S 193.61 84.53 m 201.25 84.53 l S 197.43 80.71 m 197.43 88.35 l S 173.24 84.53 m 180.88 84.53 l S 177.06 80.71 m 177.06 88.35 l S 213.65 84.53 m 221.29 84.53 l S 217.47 80.71 m 217.47 88.35 l S 166.40 84.53 m 174.03 84.53 l S 170.21 80.71 m 170.21 88.35 l S 163.46 84.53 m 171.09 84.53 l S 167.28 80.71 m 167.28 88.35 l S 199.67 84.53 m 207.31 84.53 l S 203.49 80.71 m 203.49 88.35 l S 238.55 84.53 m 246.18 84.53 l S 242.36 80.71 m 242.36 88.35 l S 238.88 84.53 m 246.52 84.53 l S 242.70 80.71 m 242.70 88.35 l S 167.19 84.53 m 174.83 84.53 l S 171.01 80.71 m 171.01 88.35 l S 201.53 84.53 m 209.17 84.53 l S 205.35 80.71 m 205.35 88.35 l S 226.76 84.53 m 234.40 84.53 l S 230.58 80.71 m 230.58 88.35 l S 219.85 84.53 m 227.49 84.53 l S 223.67 80.71 m 223.67 88.35 l S 175.25 84.53 m 182.89 84.53 l S 179.07 80.71 m 179.07 88.35 l S 209.65 84.53 m 217.28 84.53 l S 213.46 80.71 m 213.46 88.35 l S 174.24 84.53 m 181.88 84.53 l S 178.06 80.71 m 178.06 88.35 l S 138.96 156.44 m 146.60 156.44 l S 142.78 152.62 m 142.78 160.26 l S 235.39 84.53 m 243.02 84.53 l S 239.21 80.71 m 239.21 88.35 l S 203.92 84.53 m 211.56 84.53 l S 207.74 80.71 m 207.74 88.35 l S 209.19 84.53 m 216.83 84.53 l S 213.01 80.71 m 213.01 88.35 l S 176.14 84.53 m 183.78 84.53 l S 179.96 80.71 m 179.96 88.35 l S 159.48 89.95 m 167.12 89.95 l S 163.30 86.13 m 163.30 93.77 l S 170.62 84.53 m 178.25 84.53 l S 174.43 80.71 m 174.43 88.35 l S 202.61 84.53 m 210.25 84.53 l S 206.43 80.71 m 206.43 88.35 l S 201.65 84.53 m 209.28 84.53 l S 205.47 80.71 m 205.47 88.35 l S 129.76 181.27 m 137.40 181.27 l S 133.58 177.45 m 133.58 185.09 l S 153.08 103.82 m 160.71 103.82 l S 156.90 100.00 m 156.90 107.64 l S 210.17 84.53 m 217.81 84.53 l S 213.99 80.71 m 213.99 88.35 l S 182.60 84.53 m 190.24 84.53 l S 186.42 80.71 m 186.42 88.35 l S 122.48 181.27 m 130.11 181.27 l S 126.29 177.45 m 126.29 185.09 l S 207.70 84.53 m 215.34 84.53 l S 211.52 80.71 m 211.52 88.35 l S 229.93 84.53 m 237.56 84.53 l S 233.75 80.71 m 233.75 88.35 l S 268.63 156.44 m 276.27 156.44 l S 272.45 152.62 m 272.45 160.26 l S 220.00 84.53 m 227.64 84.53 l S 223.82 80.71 m 223.82 88.35 l S 223.62 84.53 m 231.26 84.53 l S 227.44 80.71 m 227.44 88.35 l S 209.83 84.53 m 217.47 84.53 l S 213.65 80.71 m 213.65 88.35 l S 185.01 84.53 m 192.65 84.53 l S 188.83 80.71 m 188.83 88.35 l S 203.45 84.53 m 211.09 84.53 l S 207.27 80.71 m 207.27 88.35 l S 169.04 84.53 m 176.67 84.53 l S 172.85 80.71 m 172.85 88.35 l S 193.70 84.53 m 201.34 84.53 l S 197.52 80.71 m 197.52 88.35 l S 214.18 84.53 m 221.82 84.53 l S 218.00 80.71 m 218.00 88.35 l S 224.22 84.53 m 231.85 84.53 l S 228.03 80.71 m 228.03 88.35 l S 213.24 84.53 m 220.88 84.53 l S 217.06 80.71 m 217.06 88.35 l S 262.88 166.87 m 270.52 166.87 l S 266.70 163.05 m 266.70 170.69 l S 151.94 112.10 m 159.58 112.10 l S 155.76 108.28 m 155.76 115.92 l S 176.03 84.53 m 183.66 84.53 l S 179.85 80.71 m 179.85 88.35 l S 185.12 84.53 m 192.75 84.53 l S 188.94 80.71 m 188.94 88.35 l S 189.41 84.53 m 197.04 84.53 l S 193.22 80.71 m 193.22 88.35 l S 129.81 181.27 m 137.45 181.27 l S 133.63 177.45 m 133.63 185.09 l S 224.63 84.53 m 232.26 84.53 l S 228.44 80.71 m 228.44 88.35 l S 251.89 141.48 m 259.53 141.48 l S 255.71 137.67 m 255.71 145.30 l S 167.13 84.53 m 174.77 84.53 l S 170.95 80.71 m 170.95 88.35 l S 270.63 156.44 m 278.27 156.44 l S 274.45 152.62 m 274.45 160.26 l S 181.84 84.53 m 189.47 84.53 l S 185.66 80.71 m 185.66 88.35 l S 160.03 93.96 m 167.67 93.96 l S 163.85 90.14 m 163.85 97.78 l S 188.55 84.53 m 196.19 84.53 l S 192.37 80.71 m 192.37 88.35 l S 197.37 84.53 m 205.01 84.53 l S 201.19 80.71 m 201.19 88.35 l S 196.63 84.53 m 204.27 84.53 l S 200.45 80.71 m 200.45 88.35 l S 234.39 84.53 m 242.03 84.53 l S 238.21 80.71 m 238.21 88.35 l S 203.45 84.53 m 211.08 84.53 l S 207.26 80.71 m 207.26 88.35 l S 243.70 84.53 m 251.34 84.53 l S 247.52 80.71 m 247.52 88.35 l S 151.82 116.55 m 159.46 116.55 l S 155.64 112.73 m 155.64 120.37 l S 240.48 84.53 m 248.12 84.53 l S 244.30 80.71 m 244.30 88.35 l S 192.66 84.53 m 200.30 84.53 l S 196.48 80.71 m 196.48 88.35 l S 203.53 84.53 m 211.17 84.53 l S 207.35 80.71 m 207.35 88.35 l S 267.78 166.87 m 275.42 166.87 l S 271.60 163.05 m 271.60 170.69 l S 245.15 84.53 m 252.79 84.53 l S 248.97 80.71 m 248.97 88.35 l S 186.03 84.53 m 193.67 84.53 l S 189.85 80.71 m 189.85 88.35 l S 116.51 181.27 m 124.15 181.27 l S 120.33 177.45 m 120.33 185.09 l S 197.95 84.53 m 205.59 84.53 l S 201.77 80.71 m 201.77 88.35 l S 235.41 84.53 m 243.05 84.53 l S 239.23 80.71 m 239.23 88.35 l S 203.71 84.53 m 211.35 84.53 l S 207.53 80.71 m 207.53 88.35 l S 209.38 84.53 m 217.01 84.53 l S 213.19 80.71 m 213.19 88.35 l S 208.20 84.53 m 215.83 84.53 l S 212.01 80.71 m 212.01 88.35 l S 200.43 84.53 m 208.07 84.53 l S 204.25 80.71 m 204.25 88.35 l S 174.72 84.53 m 182.35 84.53 l S 178.53 80.71 m 178.53 88.35 l S 132.65 156.44 m 140.29 156.44 l S 136.47 152.62 m 136.47 160.26 l S 178.14 84.53 m 185.78 84.53 l S 181.96 80.71 m 181.96 88.35 l S 156.89 94.98 m 164.52 94.98 l S 160.70 91.16 m 160.70 98.80 l S 230.29 84.53 m 237.92 84.53 l S 234.10 80.71 m 234.10 88.35 l S 204.42 84.53 m 212.06 84.53 l S 208.24 80.71 m 208.24 88.35 l S 175.94 84.53 m 183.58 84.53 l S 179.76 80.71 m 179.76 88.35 l S 228.03 84.53 m 235.67 84.53 l S 231.85 80.71 m 231.85 88.35 l S 218.83 84.53 m 226.47 84.53 l S 222.65 80.71 m 222.65 88.35 l S 200.42 84.53 m 208.05 84.53 l S 204.24 80.71 m 204.24 88.35 l S 182.85 84.53 m 190.49 84.53 l S 186.67 80.71 m 186.67 88.35 l S 198.07 84.53 m 205.71 84.53 l S 201.89 80.71 m 201.89 88.35 l S 186.92 84.53 m 194.56 84.53 l S 190.74 80.71 m 190.74 88.35 l S 243.04 110.42 m 250.67 110.42 l S 246.85 106.60 m 246.85 114.24 l S 193.67 84.53 m 201.31 84.53 l S 197.49 80.71 m 197.49 88.35 l S 231.04 84.53 m 238.68 84.53 l S 234.86 80.71 m 234.86 88.35 l S 223.37 84.53 m 231.01 84.53 l S 227.19 80.71 m 227.19 88.35 l S 176.33 84.53 m 183.97 84.53 l S 180.15 80.71 m 180.15 88.35 l S 182.24 84.53 m 189.87 84.53 l S 186.05 80.71 m 186.05 88.35 l S 97.35 181.27 m 104.99 181.27 l S 101.17 177.45 m 101.17 185.09 l S 218.51 84.53 m 226.15 84.53 l S 222.33 80.71 m 222.33 88.35 l S 151.52 105.39 m 159.15 105.39 l S 155.34 101.57 m 155.34 109.21 l S 197.12 84.53 m 204.76 84.53 l S 200.94 80.71 m 200.94 88.35 l S 209.87 84.53 m 217.51 84.53 l S 213.69 80.71 m 213.69 88.35 l S 198.41 84.53 m 206.05 84.53 l S 202.23 80.71 m 202.23 88.35 l S 176.84 84.53 m 184.47 84.53 l S 180.66 80.71 m 180.66 88.35 l S 152.16 108.67 m 159.79 108.67 l S 155.98 104.86 m 155.98 112.49 l S 207.08 84.53 m 214.71 84.53 l S 210.89 80.71 m 210.89 88.35 l S 188.13 84.53 m 195.76 84.53 l S 191.95 80.71 m 191.95 88.35 l S 196.03 84.53 m 203.67 84.53 l S 199.85 80.71 m 199.85 88.35 l S 161.87 84.53 m 169.51 84.53 l S 165.69 80.71 m 165.69 88.35 l S 226.40 84.53 m 234.04 84.53 l S 230.22 80.71 m 230.22 88.35 l S 207.70 84.53 m 215.33 84.53 l S 211.51 80.71 m 211.51 88.35 l S 161.08 84.53 m 168.72 84.53 l S 164.90 80.71 m 164.90 88.35 l S 176.42 84.53 m 184.05 84.53 l S 180.23 80.71 m 180.23 88.35 l S 177.65 84.53 m 185.29 84.53 l S 181.47 80.71 m 181.47 88.35 l S 151.95 124.37 m 159.59 124.37 l S 155.77 120.55 m 155.77 128.19 l S 144.60 141.48 m 152.24 141.48 l S 148.42 137.67 m 148.42 145.30 l S 145.71 166.87 m 153.35 166.87 l S 149.53 163.05 m 149.53 170.69 l S 181.01 84.53 m 188.64 84.53 l S 184.82 80.71 m 184.82 88.35 l S 172.58 84.53 m 180.21 84.53 l S 176.39 80.71 m 176.39 88.35 l S 123.57 181.27 m 131.21 181.27 l S 127.39 177.45 m 127.39 185.09 l S 193.54 84.53 m 201.17 84.53 l S 197.35 80.71 m 197.35 88.35 l S 154.32 101.07 m 161.95 101.07 l S 158.13 97.26 m 158.13 104.89 l S 206.50 84.53 m 214.14 84.53 l S 210.32 80.71 m 210.32 88.35 l S 187.41 84.53 m 195.04 84.53 l S 191.22 80.71 m 191.22 88.35 l S 137.82 156.44 m 145.45 156.44 l S 141.64 152.62 m 141.64 160.26 l S 243.68 99.78 m 251.32 99.78 l S 247.50 95.96 m 247.50 103.60 l S 247.81 108.67 m 255.44 108.67 l S 251.63 104.86 m 251.63 112.49 l S 181.96 84.53 m 189.60 84.53 l S 185.78 80.71 m 185.78 88.35 l S 188.15 84.53 m 195.79 84.53 l S 191.97 80.71 m 191.97 88.35 l S 187.27 84.53 m 194.91 84.53 l S 191.09 80.71 m 191.09 88.35 l S 209.43 84.53 m 217.07 84.53 l S 213.25 80.71 m 213.25 88.35 l S 184.62 84.53 m 192.26 84.53 l S 188.44 80.71 m 188.44 88.35 l S 198.78 84.53 m 206.42 84.53 l S 202.60 80.71 m 202.60 88.35 l S 239.50 84.53 m 247.14 84.53 l S 243.32 80.71 m 243.32 88.35 l S 254.22 166.87 m 261.86 166.87 l S 258.04 163.05 m 258.04 170.69 l S 208.42 84.53 m 216.06 84.53 l S 212.24 80.71 m 212.24 88.35 l S 156.11 108.67 m 163.75 108.67 l S 159.93 104.86 m 159.93 112.49 l S 192.65 84.53 m 200.29 84.53 l S 196.47 80.71 m 196.47 88.35 l S 256.01 156.44 m 263.65 156.44 l S 259.83 152.62 m 259.83 160.26 l S 195.50 84.53 m 203.13 84.53 l S 199.31 80.71 m 199.31 88.35 l S 183.29 84.53 m 190.93 84.53 l S 187.11 80.71 m 187.11 88.35 l S 277.72 156.44 m 285.36 156.44 l S 281.54 152.62 m 281.54 160.26 l S 128.68 181.27 m 136.31 181.27 l S 132.49 177.45 m 132.49 185.09 l S 160.27 89.95 m 167.90 89.95 l S 164.09 86.13 m 164.09 93.77 l S 167.33 84.53 m 174.97 84.53 l S 171.15 80.71 m 171.15 88.35 l S 229.40 84.53 m 237.04 84.53 l S 233.22 80.71 m 233.22 88.35 l S 235.71 84.53 m 243.34 84.53 l S 239.53 80.71 m 239.53 88.35 l S 222.53 84.53 m 230.16 84.53 l S 226.34 80.71 m 226.34 88.35 l S 204.92 84.53 m 212.56 84.53 l S 208.74 80.71 m 208.74 88.35 l S 201.48 84.53 m 209.11 84.53 l S 205.29 80.71 m 205.29 88.35 l S 175.21 84.53 m 182.85 84.53 l S 179.03 80.71 m 179.03 88.35 l S 187.11 84.53 m 194.74 84.53 l S 190.93 80.71 m 190.93 88.35 l S 186.11 84.53 m 193.75 84.53 l S 189.93 80.71 m 189.93 88.35 l S 118.15 181.27 m 125.79 181.27 l S 121.97 177.45 m 121.97 185.09 l S 204.80 84.53 m 212.44 84.53 l S 208.62 80.71 m 208.62 88.35 l S 149.98 141.48 m 157.62 141.48 l S 153.80 137.67 m 153.80 145.30 l S 168.75 84.53 m 176.39 84.53 l S 172.57 80.71 m 172.57 88.35 l S 217.49 84.53 m 225.13 84.53 l S 221.31 80.71 m 221.31 88.35 l S 226.41 84.53 m 234.05 84.53 l S 230.23 80.71 m 230.23 88.35 l S 183.15 84.53 m 190.79 84.53 l S 186.97 80.71 m 186.97 88.35 l S 84.29 181.27 m 91.93 181.27 l S 88.11 177.45 m 88.11 185.09 l S 230.30 84.53 m 237.93 84.53 l S 234.12 80.71 m 234.12 88.35 l S 193.32 84.53 m 200.96 84.53 l S 197.14 80.71 m 197.14 88.35 l S 133.21 148.08 m 140.85 148.08 l S 137.03 144.26 m 137.03 151.90 l S 246.95 92.86 m 254.59 92.86 l S 250.77 89.04 m 250.77 96.68 l S 259.36 166.87 m 267.00 166.87 l S 263.18 163.05 m 263.18 170.69 l S 141.18 116.55 m 148.82 116.55 l S 145.00 112.73 m 145.00 120.37 l S 153.66 101.07 m 161.29 101.07 l S 157.47 97.26 m 157.47 104.89 l S 178.79 84.53 m 186.43 84.53 l S 182.61 80.71 m 182.61 88.35 l S 234.41 84.53 m 242.05 84.53 l S 238.23 80.71 m 238.23 88.35 l S 213.45 84.53 m 221.09 84.53 l S 217.27 80.71 m 217.27 88.35 l S 227.02 84.53 m 234.66 84.53 l S 230.84 80.71 m 230.84 88.35 l S 192.68 84.53 m 200.32 84.53 l S 196.50 80.71 m 196.50 88.35 l S 142.40 136.12 m 150.03 136.12 l S 146.22 132.30 m 146.22 139.93 l S 115.72 166.87 m 123.35 166.87 l S 119.54 163.05 m 119.54 170.69 l S 209.07 84.53 m 216.70 84.53 l S 212.89 80.71 m 212.89 88.35 l S 194.32 84.53 m 201.96 84.53 l S 198.14 80.71 m 198.14 88.35 l S 167.34 84.53 m 174.98 84.53 l S 171.16 80.71 m 171.16 88.35 l S 121.50 148.08 m 129.14 148.08 l S 125.32 144.26 m 125.32 151.90 l S 177.31 84.53 m 184.95 84.53 l S 181.13 80.71 m 181.13 88.35 l S 165.07 84.53 m 172.70 84.53 l S 168.88 80.71 m 168.88 88.35 l S 167.46 84.53 m 175.10 84.53 l S 171.28 80.71 m 171.28 88.35 l S 231.71 84.53 m 239.35 84.53 l S 235.53 80.71 m 235.53 88.35 l S 213.85 84.53 m 221.48 84.53 l S 217.67 80.71 m 217.67 88.35 l S 193.44 84.53 m 201.08 84.53 l S 197.26 80.71 m 197.26 88.35 l S 126.63 181.27 m 134.26 181.27 l S 130.45 177.45 m 130.45 185.09 l S 152.54 101.07 m 160.18 101.07 l S 156.36 97.26 m 156.36 104.89 l S 241.82 84.53 m 249.46 84.53 l S 245.64 80.71 m 245.64 88.35 l S 214.29 84.53 m 221.93 84.53 l S 218.11 80.71 m 218.11 88.35 l S 190.22 84.53 m 197.86 84.53 l S 194.04 80.71 m 194.04 88.35 l S 160.45 102.50 m 168.09 102.50 l S 164.27 98.68 m 164.27 106.32 l S 213.46 84.53 m 221.10 84.53 l S 217.28 80.71 m 217.28 88.35 l S 195.85 84.53 m 203.49 84.53 l S 199.67 80.71 m 199.67 88.35 l S 219.73 84.53 m 227.37 84.53 l S 223.55 80.71 m 223.55 88.35 l S 101.16 181.27 m 108.80 181.27 l S 104.98 177.45 m 104.98 185.09 l S 168.15 84.53 m 175.79 84.53 l S 171.97 80.71 m 171.97 88.35 l S 219.90 84.53 m 227.54 84.53 l S 223.72 80.71 m 223.72 88.35 l S 192.49 84.53 m 200.13 84.53 l S 196.31 80.71 m 196.31 88.35 l S 177.22 84.53 m 184.86 84.53 l S 181.04 80.71 m 181.04 88.35 l S 250.88 112.10 m 258.52 112.10 l S 254.70 108.28 m 254.70 115.92 l S 221.17 84.53 m 228.80 84.53 l S 224.99 80.71 m 224.99 88.35 l S 208.09 84.53 m 215.73 84.53 l S 211.91 80.71 m 211.91 88.35 l S 217.45 84.53 m 225.09 84.53 l S 221.27 80.71 m 221.27 88.35 l S 171.12 84.53 m 178.76 84.53 l S 174.94 80.71 m 174.94 88.35 l S 278.47 181.27 m 286.10 181.27 l S 282.29 177.45 m 282.29 185.09 l S 221.55 84.53 m 229.19 84.53 l S 225.37 80.71 m 225.37 88.35 l S 230.30 84.53 m 237.93 84.53 l S 234.12 80.71 m 234.12 88.35 l S 123.14 181.27 m 130.78 181.27 l S 126.96 177.45 m 126.96 185.09 l S 171.06 84.53 m 178.70 84.53 l S 174.88 80.71 m 174.88 88.35 l S 253.82 121.07 m 261.45 121.07 l S 257.63 117.26 m 257.63 124.89 l S 209.24 84.53 m 216.87 84.53 l S 213.05 80.71 m 213.05 88.35 l S 230.33 84.53 m 237.97 84.53 l S 234.15 80.71 m 234.15 88.35 l S 199.76 84.53 m 207.40 84.53 l S 203.58 80.71 m 203.58 88.35 l S 209.78 84.53 m 217.42 84.53 l S 213.60 80.71 m 213.60 88.35 l S 153.60 118.76 m 161.24 118.76 l S 157.42 114.94 m 157.42 122.58 l S 267.74 181.27 m 275.38 181.27 l S 271.56 177.45 m 271.56 185.09 l S 148.80 112.10 m 156.43 112.10 l S 152.62 108.28 m 152.62 115.92 l S 275.39 166.87 m 283.03 166.87 l S 279.21 163.05 m 279.21 170.69 l S 172.94 84.53 m 180.58 84.53 l S 176.76 80.71 m 176.76 88.35 l S 210.75 84.53 m 218.38 84.53 l S 214.56 80.71 m 214.56 88.35 l S 217.45 84.53 m 225.09 84.53 l S 221.27 80.71 m 221.27 88.35 l S 232.49 84.53 m 240.12 84.53 l S 236.30 80.71 m 236.30 88.35 l S 280.39 181.27 m 288.03 181.27 l S 284.21 177.45 m 284.21 185.09 l S 195.69 84.53 m 203.33 84.53 l S 199.51 80.71 m 199.51 88.35 l S 215.11 84.53 m 222.74 84.53 l S 218.92 80.71 m 218.92 88.35 l S 173.12 84.53 m 180.75 84.53 l S 176.93 80.71 m 176.93 88.35 l S 197.21 84.53 m 204.85 84.53 l S 201.03 80.71 m 201.03 88.35 l S 210.36 84.53 m 218.00 84.53 l S 214.18 80.71 m 214.18 88.35 l S 216.84 84.53 m 224.48 84.53 l S 220.66 80.71 m 220.66 88.35 l S 225.31 84.53 m 232.95 84.53 l S 229.13 80.71 m 229.13 88.35 l S 210.34 84.53 m 217.98 84.53 l S 214.16 80.71 m 214.16 88.35 l S 227.46 84.53 m 235.09 84.53 l S 231.28 80.71 m 231.28 88.35 l S 268.21 181.27 m 275.84 181.27 l S 272.03 177.45 m 272.03 185.09 l S 204.65 84.53 m 212.28 84.53 l S 208.47 80.71 m 208.47 88.35 l S 232.00 84.53 m 239.63 84.53 l S 235.81 80.71 m 235.81 88.35 l S 219.13 84.53 m 226.77 84.53 l S 222.95 80.71 m 222.95 88.35 l S 160.63 88.17 m 168.27 88.17 l S 164.45 84.35 m 164.45 91.99 l S 264.20 156.44 m 271.84 156.44 l S 268.02 152.62 m 268.02 160.26 l S 236.15 84.53 m 243.79 84.53 l S 239.97 80.71 m 239.97 88.35 l S 309.35 181.27 m 316.99 181.27 l S 313.17 177.45 m 313.17 185.09 l S 198.76 84.53 m 206.40 84.53 l S 202.58 80.71 m 202.58 88.35 l S 215.38 84.53 m 223.01 84.53 l S 219.20 80.71 m 219.20 88.35 l S 202.43 84.53 m 210.06 84.53 l S 206.24 80.71 m 206.24 88.35 l S 288.28 181.27 m 295.92 181.27 l S 292.10 177.45 m 292.10 185.09 l S 261.29 141.48 m 268.93 141.48 l S 265.11 137.67 m 265.11 145.30 l S 189.58 84.53 m 197.21 84.53 l S 193.39 80.71 m 193.39 88.35 l S 220.52 84.53 m 228.15 84.53 l S 224.34 80.71 m 224.34 88.35 l S 162.09 84.53 m 169.73 84.53 l S 165.91 80.71 m 165.91 88.35 l S 197.67 84.53 m 205.30 84.53 l S 201.48 80.71 m 201.48 88.35 l S 214.64 84.53 m 222.27 84.53 l S 218.46 80.71 m 218.46 88.35 l S 224.71 84.53 m 232.34 84.53 l S 228.53 80.71 m 228.53 88.35 l S 158.54 99.78 m 166.18 99.78 l S 162.36 95.96 m 162.36 103.60 l S 159.49 84.53 m 167.13 84.53 l S 163.31 80.71 m 163.31 88.35 l S 229.90 84.53 m 237.54 84.53 l S 233.72 80.71 m 233.72 88.35 l S 146.43 148.08 m 154.07 148.08 l S 150.25 144.26 m 150.25 151.90 l S 234.84 84.53 m 242.48 84.53 l S 238.66 80.71 m 238.66 88.35 l S 252.08 124.37 m 259.71 124.37 l S 255.90 120.55 m 255.90 128.19 l S 190.95 84.53 m 198.59 84.53 l S 194.77 80.71 m 194.77 88.35 l S 199.11 84.53 m 206.75 84.53 l S 202.93 80.71 m 202.93 88.35 l S 184.48 84.53 m 192.11 84.53 l S 188.29 80.71 m 188.29 88.35 l S 179.08 84.53 m 186.72 84.53 l S 182.90 80.71 m 182.90 88.35 l S 171.27 84.53 m 178.91 84.53 l S 175.09 80.71 m 175.09 88.35 l S 209.76 84.53 m 217.40 84.53 l S 213.58 80.71 m 213.58 88.35 l S 175.64 84.53 m 183.28 84.53 l S 179.46 80.71 m 179.46 88.35 l S 252.97 116.55 m 260.61 116.55 l S 256.79 112.73 m 256.79 120.37 l S 255.66 136.12 m 263.29 136.12 l S 259.47 132.30 m 259.47 139.93 l S 168.60 84.53 m 176.24 84.53 l S 172.42 80.71 m 172.42 88.35 l S 136.74 166.87 m 144.37 166.87 l S 140.56 163.05 m 140.56 170.69 l S 237.80 84.53 m 245.43 84.53 l S 241.62 80.71 m 241.62 88.35 l S 191.07 84.53 m 198.71 84.53 l S 194.89 80.71 m 194.89 88.35 l S 202.40 84.53 m 210.04 84.53 l S 206.22 80.71 m 206.22 88.35 l S 102.16 181.27 m 109.80 181.27 l S 105.98 177.45 m 105.98 185.09 l S 179.49 84.53 m 187.13 84.53 l S 183.31 80.71 m 183.31 88.35 l S 180.78 84.53 m 188.41 84.53 l S 184.59 80.71 m 184.59 88.35 l S 322.09 181.27 m 329.73 181.27 l S 325.91 177.45 m 325.91 185.09 l S 235.07 84.53 m 242.71 84.53 l S 238.89 80.71 m 238.89 88.35 l S 235.42 84.53 m 243.06 84.53 l S 239.24 80.71 m 239.24 88.35 l S 187.88 84.53 m 195.51 84.53 l S 191.70 80.71 m 191.70 88.35 l S 230.91 84.53 m 238.55 84.53 l S 234.73 80.71 m 234.73 88.35 l S 129.39 166.87 m 137.02 166.87 l S 133.21 163.05 m 133.21 170.69 l S 179.12 84.53 m 186.76 84.53 l S 182.94 80.71 m 182.94 88.35 l S 103.51 181.27 m 111.15 181.27 l S 107.33 177.45 m 107.33 185.09 l S 124.16 181.27 m 131.80 181.27 l S 127.98 177.45 m 127.98 185.09 l S 240.16 86.56 m 247.80 86.56 l S 243.98 82.74 m 243.98 90.38 l S 232.32 84.53 m 239.96 84.53 l S 236.14 80.71 m 236.14 88.35 l S 124.90 181.27 m 132.54 181.27 l S 128.72 177.45 m 128.72 185.09 l S 199.16 84.53 m 206.80 84.53 l S 202.98 80.71 m 202.98 88.35 l S 182.11 84.53 m 189.75 84.53 l S 185.93 80.71 m 185.93 88.35 l S 212.09 84.53 m 219.72 84.53 l S 215.91 80.71 m 215.91 88.35 l S 187.89 84.53 m 195.52 84.53 l S 191.70 80.71 m 191.70 88.35 l S 201.26 84.53 m 208.89 84.53 l S 205.08 80.71 m 205.08 88.35 l S 187.53 84.53 m 195.16 84.53 l S 191.34 80.71 m 191.34 88.35 l S 167.17 84.53 m 174.81 84.53 l S 170.99 80.71 m 170.99 88.35 l S 181.30 84.53 m 188.94 84.53 l S 185.12 80.71 m 185.12 88.35 l S 131.42 166.87 m 139.06 166.87 l S 135.24 163.05 m 135.24 170.69 l S 167.97 84.53 m 175.60 84.53 l S 171.79 80.71 m 171.79 88.35 l S 140.54 148.08 m 148.17 148.08 l S 144.36 144.26 m 144.36 151.90 l S 250.53 112.10 m 258.17 112.10 l S 254.35 108.28 m 254.35 115.92 l S 223.45 84.53 m 231.09 84.53 l S 227.27 80.71 m 227.27 88.35 l S 192.32 84.53 m 199.95 84.53 l S 196.14 80.71 m 196.14 88.35 l S 138.91 141.48 m 146.55 141.48 l S 142.73 137.67 m 142.73 145.30 l S 223.67 84.53 m 231.31 84.53 l S 227.49 80.71 m 227.49 88.35 l S 209.19 84.53 m 216.83 84.53 l S 213.01 80.71 m 213.01 88.35 l S 193.83 84.53 m 201.47 84.53 l S 197.65 80.71 m 197.65 88.35 l S 145.32 114.13 m 152.95 114.13 l S 149.14 110.31 m 149.14 117.95 l S 189.06 84.53 m 196.70 84.53 l S 192.88 80.71 m 192.88 88.35 l S 128.23 181.27 m 135.87 181.27 l S 132.05 177.45 m 132.05 185.09 l S 157.52 101.07 m 165.16 101.07 l S 161.34 97.26 m 161.34 104.89 l S 206.86 84.53 m 214.50 84.53 l S 210.68 80.71 m 210.68 88.35 l S 205.45 84.53 m 213.09 84.53 l S 209.27 80.71 m 209.27 88.35 l S 144.96 166.87 m 152.60 166.87 l S 148.78 163.05 m 148.78 170.69 l S 207.33 84.53 m 214.97 84.53 l S 211.15 80.71 m 211.15 88.35 l S 191.17 84.53 m 198.81 84.53 l S 194.99 80.71 m 194.99 88.35 l S 227.99 84.53 m 235.62 84.53 l S 231.81 80.71 m 231.81 88.35 l S 246.80 99.78 m 254.43 99.78 l S 250.61 95.96 m 250.61 103.60 l S 127.63 148.08 m 135.27 148.08 l S 131.45 144.26 m 131.45 151.90 l S 207.59 84.53 m 215.23 84.53 l S 211.41 80.71 m 211.41 88.35 l S 132.69 181.27 m 140.32 181.27 l S 136.51 177.45 m 136.51 185.09 l S 214.21 84.53 m 221.85 84.53 l S 218.03 80.71 m 218.03 88.35 l S 267.04 156.44 m 274.68 156.44 l S 270.86 152.62 m 270.86 160.26 l S 199.15 84.53 m 206.79 84.53 l S 202.97 80.71 m 202.97 88.35 l S 243.22 102.50 m 250.86 102.50 l S 247.04 98.68 m 247.04 106.32 l S 202.06 84.53 m 209.70 84.53 l S 205.88 80.71 m 205.88 88.35 l S 256.45 127.56 m 264.09 127.56 l S 260.27 123.74 m 260.27 131.38 l S 205.11 84.53 m 212.75 84.53 l S 208.93 80.71 m 208.93 88.35 l S 176.11 84.53 m 183.75 84.53 l S 179.93 80.71 m 179.93 88.35 l S 220.42 84.53 m 228.06 84.53 l S 224.24 80.71 m 224.24 88.35 l S 153.00 108.67 m 160.64 108.67 l S 156.82 104.86 m 156.82 112.49 l S 184.40 84.53 m 192.04 84.53 l S 188.22 80.71 m 188.22 88.35 l S 208.85 84.53 m 216.49 84.53 l S 212.67 80.71 m 212.67 88.35 l S 240.14 99.78 m 247.78 99.78 l S 243.96 95.96 m 243.96 103.60 l S 170.39 84.53 m 178.03 84.53 l S 174.21 80.71 m 174.21 88.35 l S 221.25 84.53 m 228.88 84.53 l S 225.07 80.71 m 225.07 88.35 l S 182.25 84.53 m 189.89 84.53 l S 186.07 80.71 m 186.07 88.35 l S 158.43 90.84 m 166.06 90.84 l S 162.25 87.02 m 162.25 94.65 l S 186.24 84.53 m 193.88 84.53 l S 190.06 80.71 m 190.06 88.35 l S 172.78 84.53 m 180.42 84.53 l S 176.60 80.71 m 176.60 88.35 l S 216.30 84.53 m 223.94 84.53 l S 220.12 80.71 m 220.12 88.35 l S 235.73 84.53 m 243.36 84.53 l S 239.55 80.71 m 239.55 88.35 l S 139.77 148.08 m 147.41 148.08 l S 143.59 144.26 m 143.59 151.90 l S 247.09 105.39 m 254.73 105.39 l S 250.91 101.57 m 250.91 109.21 l S 163.98 84.53 m 171.62 84.53 l S 167.80 80.71 m 167.80 88.35 l S 257.85 166.87 m 265.48 166.87 l S 261.66 163.05 m 261.66 170.69 l S 192.00 84.53 m 199.64 84.53 l S 195.82 80.71 m 195.82 88.35 l S 216.91 84.53 m 224.54 84.53 l S 220.73 80.71 m 220.73 88.35 l S 154.05 118.76 m 161.68 118.76 l S 157.86 114.94 m 157.86 122.58 l S 244.35 105.39 m 251.98 105.39 l S 248.16 101.57 m 248.16 109.21 l S 199.42 84.53 m 207.06 84.53 l S 203.24 80.71 m 203.24 88.35 l S 208.49 84.53 m 216.13 84.53 l S 212.31 80.71 m 212.31 88.35 l S 264.61 131.65 m 272.25 131.65 l S 268.43 127.84 m 268.43 135.47 l S 83.20 181.27 m 90.84 181.27 l S 87.02 177.45 m 87.02 185.09 l S 182.78 84.53 m 190.42 84.53 l S 186.60 80.71 m 186.60 88.35 l S 231.73 84.53 m 239.37 84.53 l S 235.55 80.71 m 235.55 88.35 l S 182.56 84.53 m 190.19 84.53 l S 186.38 80.71 m 186.38 88.35 l S 225.55 84.53 m 233.19 84.53 l S 229.37 80.71 m 229.37 88.35 l S 223.96 84.53 m 231.60 84.53 l S 227.78 80.71 m 227.78 88.35 l S 188.60 84.53 m 196.23 84.53 l S 192.41 80.71 m 192.41 88.35 l S 157.40 105.39 m 165.03 105.39 l S 161.21 101.57 m 161.21 109.21 l S 191.88 84.53 m 199.52 84.53 l S 195.70 80.71 m 195.70 88.35 l S 196.66 84.53 m 204.30 84.53 l S 200.48 80.71 m 200.48 88.35 l S 189.93 84.53 m 197.57 84.53 l S 193.75 80.71 m 193.75 88.35 l S 223.85 84.53 m 231.49 84.53 l S 227.67 80.71 m 227.67 88.35 l S 246.23 101.07 m 253.86 101.07 l S 250.04 97.26 m 250.04 104.89 l S 196.75 84.53 m 204.39 84.53 l S 200.57 80.71 m 200.57 88.35 l S 177.08 84.53 m 184.72 84.53 l S 180.90 80.71 m 180.90 88.35 l S 231.44 84.53 m 239.08 84.53 l S 235.26 80.71 m 235.26 88.35 l S 185.38 84.53 m 193.01 84.53 l S 189.20 80.71 m 189.20 88.35 l S 201.61 84.53 m 209.25 84.53 l S 205.43 80.71 m 205.43 88.35 l S 104.45 181.27 m 112.08 181.27 l S 108.26 177.45 m 108.26 185.09 l S 152.65 112.10 m 160.29 112.10 l S 156.47 108.28 m 156.47 115.92 l S 197.56 84.53 m 205.19 84.53 l S 201.38 80.71 m 201.38 88.35 l S 195.29 84.53 m 202.93 84.53 l S 199.11 80.71 m 199.11 88.35 l S 191.16 84.53 m 198.80 84.53 l S 194.98 80.71 m 194.98 88.35 l S 144.25 166.87 m 151.89 166.87 l S 148.07 163.05 m 148.07 170.69 l S 218.21 84.53 m 225.85 84.53 l S 222.03 80.71 m 222.03 88.35 l S 186.12 84.53 m 193.76 84.53 l S 189.94 80.71 m 189.94 88.35 l S 202.16 84.53 m 209.80 84.53 l S 205.98 80.71 m 205.98 88.35 l S 189.89 84.53 m 197.53 84.53 l S 193.71 80.71 m 193.71 88.35 l S 199.66 84.53 m 207.30 84.53 l S 203.48 80.71 m 203.48 88.35 l S 252.70 116.55 m 260.34 116.55 l S 256.52 112.73 m 256.52 120.37 l S 168.69 84.53 m 176.33 84.53 l S 172.51 80.71 m 172.51 88.35 l S 194.87 84.53 m 202.51 84.53 l S 198.69 80.71 m 198.69 88.35 l S 312.39 181.27 m 320.03 181.27 l S 316.21 177.45 m 316.21 185.09 l S 163.58 84.53 m 171.22 84.53 l S 167.40 80.71 m 167.40 88.35 l S 225.19 84.53 m 232.82 84.53 l S 229.01 80.71 m 229.01 88.35 l S 123.77 181.27 m 131.41 181.27 l S 127.59 177.45 m 127.59 185.09 l S 186.74 84.53 m 194.37 84.53 l S 190.56 80.71 m 190.56 88.35 l S 174.41 84.53 m 182.05 84.53 l S 178.23 80.71 m 178.23 88.35 l S 163.54 84.53 m 171.18 84.53 l S 167.36 80.71 m 167.36 88.35 l S 245.84 114.13 m 253.47 114.13 l S 249.66 110.31 m 249.66 117.95 l S 146.92 131.65 m 154.56 131.65 l S 150.74 127.84 m 150.74 135.47 l S 165.79 84.53 m 173.42 84.53 l S 169.61 80.71 m 169.61 88.35 l S 167.83 84.53 m 175.47 84.53 l S 171.65 80.71 m 171.65 88.35 l S 200.90 84.53 m 208.54 84.53 l S 204.72 80.71 m 204.72 88.35 l S 177.68 84.53 m 185.32 84.53 l S 181.50 80.71 m 181.50 88.35 l S 259.22 127.56 m 266.85 127.56 l S 263.03 123.74 m 263.03 131.38 l S 219.54 84.53 m 227.17 84.53 l S 223.36 80.71 m 223.36 88.35 l S 153.69 124.37 m 161.33 124.37 l S 157.51 120.55 m 157.51 128.19 l S 193.73 84.53 m 201.37 84.53 l S 197.55 80.71 m 197.55 88.35 l S 178.55 84.53 m 186.18 84.53 l S 182.37 80.71 m 182.37 88.35 l S 189.42 84.53 m 197.06 84.53 l S 193.24 80.71 m 193.24 88.35 l S 202.00 84.53 m 209.64 84.53 l S 205.82 80.71 m 205.82 88.35 l S 245.32 116.55 m 252.96 116.55 l S 249.14 112.73 m 249.14 120.37 l S 197.98 84.53 m 205.62 84.53 l S 201.80 80.71 m 201.80 88.35 l S 209.98 84.53 m 217.61 84.53 l S 213.80 80.71 m 213.80 88.35 l S 167.98 85.72 m 175.62 85.72 l S 171.80 81.90 m 171.80 89.54 l S 247.48 118.76 m 255.11 118.76 l S 251.29 114.94 m 251.29 122.58 l S 203.76 84.53 m 211.40 84.53 l S 207.58 80.71 m 207.58 88.35 l S 209.93 84.53 m 217.56 84.53 l S 213.74 80.71 m 213.74 88.35 l S 227.04 84.53 m 234.68 84.53 l S 230.86 80.71 m 230.86 88.35 l S 196.95 84.53 m 204.59 84.53 l S 200.77 80.71 m 200.77 88.35 l S 99.01 181.27 m 106.65 181.27 l S 102.83 177.45 m 102.83 185.09 l S 161.50 84.53 m 169.13 84.53 l S 165.31 80.71 m 165.31 88.35 l S 192.27 84.53 m 199.90 84.53 l S 196.08 80.71 m 196.08 88.35 l S 200.27 84.53 m 207.91 84.53 l S 204.09 80.71 m 204.09 88.35 l S 228.61 84.53 m 236.25 84.53 l S 232.43 80.71 m 232.43 88.35 l S 194.09 84.53 m 201.73 84.53 l S 197.91 80.71 m 197.91 88.35 l S 224.33 84.53 m 231.97 84.53 l S 228.15 80.71 m 228.15 88.35 l S 245.27 88.17 m 252.91 88.17 l S 249.09 84.35 m 249.09 91.99 l S 202.98 84.53 m 210.62 84.53 l S 206.80 80.71 m 206.80 88.35 l S 147.51 114.13 m 155.15 114.13 l S 151.33 110.31 m 151.33 117.95 l S 250.81 124.37 m 258.45 124.37 l S 254.63 120.55 m 254.63 128.19 l S 236.48 84.53 m 244.11 84.53 l S 240.29 80.71 m 240.29 88.35 l S 192.86 84.53 m 200.49 84.53 l S 196.68 80.71 m 196.68 88.35 l S 91.48 181.27 m 99.11 181.27 l S 95.29 177.45 m 95.29 185.09 l S 197.63 84.53 m 205.27 84.53 l S 201.45 80.71 m 201.45 88.35 l S 203.64 84.53 m 211.27 84.53 l S 207.45 80.71 m 207.45 88.35 l S 274.04 181.27 m 281.67 181.27 l S 277.86 177.45 m 277.86 185.09 l S 208.82 84.53 m 216.46 84.53 l S 212.64 80.71 m 212.64 88.35 l S 182.82 84.53 m 190.45 84.53 l S 186.64 80.71 m 186.64 88.35 l S 151.88 121.07 m 159.52 121.07 l S 155.70 117.26 m 155.70 124.89 l S 164.35 84.53 m 171.99 84.53 l S 168.17 80.71 m 168.17 88.35 l S 176.34 84.53 m 183.98 84.53 l S 180.16 80.71 m 180.16 88.35 l S 190.32 84.53 m 197.95 84.53 l S 194.13 80.71 m 194.13 88.35 l S 165.47 84.53 m 173.11 84.53 l S 169.29 80.71 m 169.29 88.35 l S 176.52 84.53 m 184.16 84.53 l S 180.34 80.71 m 180.34 88.35 l S 128.99 166.87 m 136.62 166.87 l S 132.81 163.05 m 132.81 170.69 l S 281.56 181.27 m 289.20 181.27 l S 285.38 177.45 m 285.38 185.09 l S 202.41 84.53 m 210.05 84.53 l S 206.23 80.71 m 206.23 88.35 l S 158.64 95.87 m 166.28 95.87 l S 162.46 92.05 m 162.46 99.69 l S 186.29 84.53 m 193.92 84.53 l S 190.11 80.71 m 190.11 88.35 l S 209.24 84.53 m 216.87 84.53 l S 213.05 80.71 m 213.05 88.35 l S 128.78 181.27 m 136.42 181.27 l S 132.60 177.45 m 132.60 185.09 l S 219.56 84.53 m 227.20 84.53 l S 223.38 80.71 m 223.38 88.35 l S 189.56 84.53 m 197.20 84.53 l S 193.38 80.71 m 193.38 88.35 l S 167.92 84.53 m 175.56 84.53 l S 171.74 80.71 m 171.74 88.35 l S 140.89 127.56 m 148.52 127.56 l S 144.71 123.74 m 144.71 131.38 l S 151.88 114.13 m 159.52 114.13 l S 155.70 110.31 m 155.70 117.95 l S 187.39 84.53 m 195.02 84.53 l S 191.21 80.71 m 191.21 88.35 l S 213.05 84.53 m 220.68 84.53 l S 216.87 80.71 m 216.87 88.35 l S 220.38 84.53 m 228.02 84.53 l S 224.20 80.71 m 224.20 88.35 l S 217.73 84.53 m 225.37 84.53 l S 221.55 80.71 m 221.55 88.35 l S 232.28 84.53 m 239.92 84.53 l S 236.10 80.71 m 236.10 88.35 l S 214.00 84.53 m 221.63 84.53 l S 217.82 80.71 m 217.82 88.35 l S 200.79 84.53 m 208.43 84.53 l S 204.61 80.71 m 204.61 88.35 l S 134.95 148.08 m 142.59 148.08 l S 138.77 144.26 m 138.77 151.90 l S 205.46 84.53 m 213.10 84.53 l S 209.28 80.71 m 209.28 88.35 l S 161.64 94.98 m 169.27 94.98 l S 165.46 91.16 m 165.46 98.80 l S 191.57 84.53 m 199.21 84.53 l S 195.39 80.71 m 195.39 88.35 l S 158.97 105.39 m 166.61 105.39 l S 162.79 101.57 m 162.79 109.21 l S 256.20 127.56 m 263.83 127.56 l S 260.01 123.74 m 260.01 131.38 l S 200.47 84.53 m 208.11 84.53 l S 204.29 80.71 m 204.29 88.35 l S 147.92 124.37 m 155.56 124.37 l S 151.74 120.55 m 151.74 128.19 l S 210.17 84.53 m 217.80 84.53 l S 213.99 80.71 m 213.99 88.35 l S 105.56 181.27 m 113.20 181.27 l S 109.38 177.45 m 109.38 185.09 l S 236.60 84.53 m 244.24 84.53 l S 240.42 80.71 m 240.42 88.35 l S 94.11 181.27 m 101.75 181.27 l S 97.93 177.45 m 97.93 185.09 l S 161.53 84.53 m 169.17 84.53 l S 165.35 80.71 m 165.35 88.35 l S 106.30 181.27 m 113.94 181.27 l S 110.12 177.45 m 110.12 185.09 l S 200.30 84.53 m 207.94 84.53 l S 204.12 80.71 m 204.12 88.35 l S 171.85 84.53 m 179.48 84.53 l S 175.66 80.71 m 175.66 88.35 l S 195.33 84.53 m 202.96 84.53 l S 199.14 80.71 m 199.14 88.35 l S 206.99 84.53 m 214.62 84.53 l S 210.80 80.71 m 210.80 88.35 l S 267.48 166.87 m 275.11 166.87 l S 271.29 163.05 m 271.29 170.69 l S 131.69 156.44 m 139.33 156.44 l S 135.51 152.62 m 135.51 160.26 l S 141.12 148.08 m 148.76 148.08 l S 144.94 144.26 m 144.94 151.90 l S 191.53 84.53 m 199.17 84.53 l S 195.35 80.71 m 195.35 88.35 l S 227.80 84.53 m 235.43 84.53 l S 231.62 80.71 m 231.62 88.35 l S 286.14 181.27 m 293.78 181.27 l S 289.96 177.45 m 289.96 185.09 l S 114.15 181.27 m 121.78 181.27 l S 117.97 177.45 m 117.97 185.09 l S 231.45 84.53 m 239.09 84.53 l S 235.27 80.71 m 235.27 88.35 l S 223.65 84.53 m 231.29 84.53 l S 227.47 80.71 m 227.47 88.35 l S 171.84 84.53 m 179.47 84.53 l S 175.66 80.71 m 175.66 88.35 l S 199.82 84.53 m 207.46 84.53 l S 203.64 80.71 m 203.64 88.35 l S 161.42 84.53 m 169.06 84.53 l S 165.24 80.71 m 165.24 88.35 l S 233.56 84.53 m 241.19 84.53 l S 237.37 80.71 m 237.37 88.35 l S 171.45 84.53 m 179.08 84.53 l S 175.26 80.71 m 175.26 88.35 l S 170.79 84.53 m 178.43 84.53 l S 174.61 80.71 m 174.61 88.35 l S 212.48 84.53 m 220.12 84.53 l S 216.30 80.71 m 216.30 88.35 l S 159.19 89.95 m 166.82 89.95 l S 163.01 86.13 m 163.01 93.77 l S 205.19 84.53 m 212.83 84.53 l S 209.01 80.71 m 209.01 88.35 l S 319.51 181.27 m 327.15 181.27 l S 323.33 177.45 m 323.33 185.09 l S 183.86 84.53 m 191.50 84.53 l S 187.68 80.71 m 187.68 88.35 l S 222.06 84.53 m 229.70 84.53 l S 225.88 80.71 m 225.88 88.35 l S 167.23 84.53 m 174.87 84.53 l S 171.05 80.71 m 171.05 88.35 l S 188.37 84.53 m 196.00 84.53 l S 192.18 80.71 m 192.18 88.35 l S 236.29 84.53 m 243.92 84.53 l S 240.11 80.71 m 240.11 88.35 l S 132.30 181.27 m 139.94 181.27 l S 136.12 177.45 m 136.12 185.09 l S 230.55 84.53 m 238.19 84.53 l S 234.37 80.71 m 234.37 88.35 l S 190.66 84.53 m 198.30 84.53 l S 194.48 80.71 m 194.48 88.35 l S 205.46 84.53 m 213.09 84.53 l S 209.28 80.71 m 209.28 88.35 l S 217.36 84.53 m 225.00 84.53 l S 221.18 80.71 m 221.18 88.35 l S 281.52 181.27 m 289.15 181.27 l S 285.33 177.45 m 285.33 185.09 l S 215.15 84.53 m 222.78 84.53 l S 218.97 80.71 m 218.97 88.35 l S 196.03 84.53 m 203.67 84.53 l S 199.85 80.71 m 199.85 88.35 l S 156.89 96.90 m 164.53 96.90 l S 160.71 93.08 m 160.71 100.72 l S 190.13 84.53 m 197.77 84.53 l S 193.95 80.71 m 193.95 88.35 l S 180.59 84.53 m 188.23 84.53 l S 184.41 80.71 m 184.41 88.35 l S 253.80 136.12 m 261.44 136.12 l S 257.62 132.30 m 257.62 139.93 l S 233.18 84.53 m 240.81 84.53 l S 236.99 80.71 m 236.99 88.35 l S 154.77 110.42 m 162.41 110.42 l S 158.59 106.60 m 158.59 114.24 l S 203.98 84.53 m 211.61 84.53 l S 207.79 80.71 m 207.79 88.35 l S 187.60 84.53 m 195.23 84.53 l S 191.41 80.71 m 191.41 88.35 l S 190.07 84.53 m 197.71 84.53 l S 193.89 80.71 m 193.89 88.35 l S 179.61 84.53 m 187.24 84.53 l S 183.43 80.71 m 183.43 88.35 l S 208.78 84.53 m 216.41 84.53 l S 212.59 80.71 m 212.59 88.35 l S 166.56 84.53 m 174.20 84.53 l S 170.38 80.71 m 170.38 88.35 l S 137.66 166.87 m 145.30 166.87 l S 141.48 163.05 m 141.48 170.69 l S 179.21 84.53 m 186.84 84.53 l S 183.02 80.71 m 183.02 88.35 l S 212.78 84.53 m 220.41 84.53 l S 216.60 80.71 m 216.60 88.35 l S 206.82 84.53 m 214.45 84.53 l S 210.63 80.71 m 210.63 88.35 l S 176.21 84.53 m 183.85 84.53 l S 180.03 80.71 m 180.03 88.35 l S 133.00 166.87 m 140.64 166.87 l S 136.82 163.05 m 136.82 170.69 l S 202.95 84.53 m 210.59 84.53 l S 206.77 80.71 m 206.77 88.35 l S 164.87 84.53 m 172.51 84.53 l S 168.69 80.71 m 168.69 88.35 l S 147.11 127.56 m 154.75 127.56 l S 150.93 123.74 m 150.93 131.38 l S 186.44 84.53 m 194.08 84.53 l S 190.26 80.71 m 190.26 88.35 l S 145.39 131.65 m 153.03 131.65 l S 149.21 127.84 m 149.21 135.47 l S 160.63 87.35 m 168.26 87.35 l S 164.44 83.53 m 164.44 91.17 l S 203.16 84.53 m 210.80 84.53 l S 206.98 80.71 m 206.98 88.35 l S 185.32 84.53 m 192.95 84.53 l S 189.14 80.71 m 189.14 88.35 l S 186.54 84.53 m 194.17 84.53 l S 190.35 80.71 m 190.35 88.35 l S 244.58 95.87 m 252.22 95.87 l S 248.40 92.05 m 248.40 99.69 l S 148.81 124.37 m 156.45 124.37 l S 152.63 120.55 m 152.63 128.19 l S 182.47 84.53 m 190.10 84.53 l S 186.29 80.71 m 186.29 88.35 l S 169.61 84.53 m 177.24 84.53 l S 173.43 80.71 m 173.43 88.35 l S 208.04 84.53 m 215.68 84.53 l S 211.86 80.71 m 211.86 88.35 l S 189.84 84.53 m 197.47 84.53 l S 193.66 80.71 m 193.66 88.35 l S 158.84 94.98 m 166.48 94.98 l S 162.66 91.16 m 162.66 98.80 l S 202.29 84.53 m 209.93 84.53 l S 206.11 80.71 m 206.11 88.35 l S 177.13 84.53 m 184.77 84.53 l S 180.95 80.71 m 180.95 88.35 l S 213.56 84.53 m 221.20 84.53 l S 217.38 80.71 m 217.38 88.35 l S 175.46 84.53 m 183.10 84.53 l S 179.28 80.71 m 179.28 88.35 l S 228.02 84.53 m 235.66 84.53 l S 231.84 80.71 m 231.84 88.35 l S 147.34 118.76 m 154.97 118.76 l S 151.15 114.94 m 151.15 122.58 l S 149.42 114.13 m 157.06 114.13 l S 153.24 110.31 m 153.24 117.95 l S 195.36 84.53 m 202.99 84.53 l S 199.17 80.71 m 199.17 88.35 l S 203.51 84.53 m 211.15 84.53 l S 207.33 80.71 m 207.33 88.35 l S 198.80 84.53 m 206.44 84.53 l S 202.62 80.71 m 202.62 88.35 l S 132.63 166.87 m 140.26 166.87 l S 136.45 163.05 m 136.45 170.69 l S 178.16 84.53 m 185.79 84.53 l S 181.98 80.71 m 181.98 88.35 l S 174.86 84.53 m 182.50 84.53 l S 178.68 80.71 m 178.68 88.35 l S 166.50 84.53 m 174.14 84.53 l S 170.32 80.71 m 170.32 88.35 l S 187.54 84.53 m 195.18 84.53 l S 191.36 80.71 m 191.36 88.35 l S 237.87 84.53 m 245.51 84.53 l S 241.69 80.71 m 241.69 88.35 l S 186.62 84.53 m 194.26 84.53 l S 190.44 80.71 m 190.44 88.35 l S 189.40 84.53 m 197.04 84.53 l S 193.22 80.71 m 193.22 88.35 l S 179.94 84.53 m 187.58 84.53 l S 183.76 80.71 m 183.76 88.35 l S 112.66 181.27 m 120.30 181.27 l S 116.48 177.45 m 116.48 185.09 l S 164.36 84.53 m 172.00 84.53 l S 168.18 80.71 m 168.18 88.35 l S 188.40 84.53 m 196.04 84.53 l S 192.22 80.71 m 192.22 88.35 l S 198.60 84.53 m 206.24 84.53 l S 202.42 80.71 m 202.42 88.35 l S 208.39 84.53 m 216.03 84.53 l S 212.21 80.71 m 212.21 88.35 l S 258.93 148.08 m 266.57 148.08 l S 262.75 144.26 m 262.75 151.90 l S 200.25 84.53 m 207.88 84.53 l S 204.07 80.71 m 204.07 88.35 l S 176.86 84.53 m 184.49 84.53 l S 180.68 80.71 m 180.68 88.35 l S 230.22 84.53 m 237.86 84.53 l S 234.04 80.71 m 234.04 88.35 l S 177.03 84.53 m 184.66 84.53 l S 180.85 80.71 m 180.85 88.35 l S 144.75 166.87 m 152.38 166.87 l S 148.57 163.05 m 148.57 170.69 l S 208.85 84.53 m 216.48 84.53 l S 212.67 80.71 m 212.67 88.35 l S 171.90 84.53 m 179.54 84.53 l S 175.72 80.71 m 175.72 88.35 l S 152.44 116.55 m 160.08 116.55 l S 156.26 112.73 m 156.26 120.37 l S 194.50 84.53 m 202.14 84.53 l S 198.32 80.71 m 198.32 88.35 l S 205.11 84.53 m 212.75 84.53 l S 208.93 80.71 m 208.93 88.35 l S 206.00 84.53 m 213.64 84.53 l S 209.82 80.71 m 209.82 88.35 l S 200.96 84.53 m 208.59 84.53 l S 204.77 80.71 m 204.77 88.35 l S 218.71 84.53 m 226.35 84.53 l S 222.53 80.71 m 222.53 88.35 l S 202.73 84.53 m 210.36 84.53 l S 206.55 80.71 m 206.55 88.35 l S 132.94 166.87 m 140.58 166.87 l S 136.76 163.05 m 136.76 170.69 l S 190.16 84.53 m 197.80 84.53 l S 193.98 80.71 m 193.98 88.35 l S 306.79 181.27 m 314.43 181.27 l S 310.61 177.45 m 310.61 185.09 l S 229.97 84.53 m 237.61 84.53 l S 233.79 80.71 m 233.79 88.35 l S 148.25 96.90 m 155.89 96.90 l S 152.07 93.08 m 152.07 100.72 l S 190.30 84.53 m 197.94 84.53 l S 194.12 80.71 m 194.12 88.35 l S 220.01 84.53 m 227.65 84.53 l S 223.83 80.71 m 223.83 88.35 l S 182.26 84.53 m 189.90 84.53 l S 186.08 80.71 m 186.08 88.35 l S 209.68 84.53 m 217.32 84.53 l S 213.50 80.71 m 213.50 88.35 l S 211.98 84.53 m 219.62 84.53 l S 215.80 80.71 m 215.80 88.35 l S 226.29 84.53 m 233.93 84.53 l S 230.11 80.71 m 230.11 88.35 l S 223.08 84.53 m 230.71 84.53 l S 226.90 80.71 m 226.90 88.35 l S 186.42 84.53 m 194.06 84.53 l S 190.24 80.71 m 190.24 88.35 l S 174.67 84.53 m 182.30 84.53 l S 178.48 80.71 m 178.48 88.35 l S 128.25 166.87 m 135.89 166.87 l S 132.07 163.05 m 132.07 170.69 l S 240.23 94.98 m 247.86 94.98 l S 244.04 91.16 m 244.04 98.80 l S 265.96 156.44 m 273.59 156.44 l S 269.77 152.62 m 269.77 160.26 l S 213.66 84.53 m 221.30 84.53 l S 217.48 80.71 m 217.48 88.35 l S 154.57 105.39 m 162.21 105.39 l S 158.39 101.57 m 158.39 109.21 l S 228.80 84.53 m 236.44 84.53 l S 232.62 80.71 m 232.62 88.35 l S 250.13 110.42 m 257.77 110.42 l S 253.95 106.60 m 253.95 114.24 l S 131.77 181.27 m 139.41 181.27 l S 135.59 177.45 m 135.59 185.09 l S 286.78 166.87 m 294.41 166.87 l S 290.59 163.05 m 290.59 170.69 l S 171.65 84.53 m 179.28 84.53 l S 175.47 80.71 m 175.47 88.35 l S 220.25 84.53 m 227.89 84.53 l S 224.07 80.71 m 224.07 88.35 l S 163.48 84.53 m 171.11 84.53 l S 167.29 80.71 m 167.29 88.35 l S 318.10 181.27 m 325.74 181.27 l S 321.92 177.45 m 321.92 185.09 l S 179.64 84.53 m 187.28 84.53 l S 183.46 80.71 m 183.46 88.35 l S 253.00 124.37 m 260.64 124.37 l S 256.82 120.55 m 256.82 128.19 l S 184.89 84.53 m 192.52 84.53 l S 188.71 80.71 m 188.71 88.35 l S 230.70 84.53 m 238.33 84.53 l S 234.51 80.71 m 234.51 88.35 l S 238.95 84.53 m 246.59 84.53 l S 242.77 80.71 m 242.77 88.35 l S 264.22 156.44 m 271.86 156.44 l S 268.04 152.62 m 268.04 160.26 l S 247.36 108.67 m 255.00 108.67 l S 251.18 104.86 m 251.18 112.49 l S 163.38 84.53 m 171.02 84.53 l S 167.20 80.71 m 167.20 88.35 l S 143.01 148.08 m 150.64 148.08 l S 146.83 144.26 m 146.83 151.90 l S 202.98 84.53 m 210.62 84.53 l S 206.80 80.71 m 206.80 88.35 l S 217.73 84.53 m 225.36 84.53 l S 221.55 80.71 m 221.55 88.35 l S 213.28 84.53 m 220.92 84.53 l S 217.10 80.71 m 217.10 88.35 l S 166.38 84.53 m 174.02 84.53 l S 170.20 80.71 m 170.20 88.35 l S 180.51 84.53 m 188.15 84.53 l S 184.33 80.71 m 184.33 88.35 l S 160.33 87.35 m 167.96 87.35 l S 164.15 83.53 m 164.15 91.17 l S 225.94 84.53 m 233.58 84.53 l S 229.76 80.71 m 229.76 88.35 l S 144.94 131.65 m 152.58 131.65 l S 148.76 127.84 m 148.76 135.47 l S 201.15 84.53 m 208.78 84.53 l S 204.96 80.71 m 204.96 88.35 l S 266.56 181.27 m 274.20 181.27 l S 270.38 177.45 m 270.38 185.09 l S 268.93 181.27 m 276.57 181.27 l S 272.75 177.45 m 272.75 185.09 l S 205.35 84.53 m 212.98 84.53 l S 209.16 80.71 m 209.16 88.35 l S 233.16 84.53 m 240.80 84.53 l S 236.98 80.71 m 236.98 88.35 l S 188.85 84.53 m 196.49 84.53 l S 192.67 80.71 m 192.67 88.35 l S 238.76 99.78 m 246.40 99.78 l S 242.58 95.96 m 242.58 103.60 l S 234.10 84.53 m 241.74 84.53 l S 237.92 80.71 m 237.92 88.35 l S 177.93 84.53 m 185.57 84.53 l S 181.75 80.71 m 181.75 88.35 l S 133.08 181.27 m 140.72 181.27 l S 136.90 177.45 m 136.90 185.09 l S 153.54 93.96 m 161.18 93.96 l S 157.36 90.14 m 157.36 97.78 l S 133.94 166.87 m 141.57 166.87 l S 137.75 163.05 m 137.75 170.69 l S 226.66 84.53 m 234.30 84.53 l S 230.48 80.71 m 230.48 88.35 l S 146.17 116.55 m 153.81 116.55 l S 149.99 112.73 m 149.99 120.37 l S 243.73 99.78 m 251.36 99.78 l S 247.54 95.96 m 247.54 103.60 l S 108.32 181.27 m 115.96 181.27 l S 112.14 177.45 m 112.14 185.09 l S 159.32 84.53 m 166.96 84.53 l S 163.14 80.71 m 163.14 88.35 l S 167.84 84.53 m 175.48 84.53 l S 171.66 80.71 m 171.66 88.35 l S 202.22 84.53 m 209.86 84.53 l S 206.04 80.71 m 206.04 88.35 l S 179.96 84.53 m 187.60 84.53 l S 183.78 80.71 m 183.78 88.35 l S 237.50 84.53 m 245.14 84.53 l S 241.32 80.71 m 241.32 88.35 l S 84.27 181.27 m 91.91 181.27 l S 88.09 177.45 m 88.09 185.09 l S 168.21 84.53 m 175.85 84.53 l S 172.03 80.71 m 172.03 88.35 l S 185.05 84.53 m 192.68 84.53 l S 188.86 80.71 m 188.86 88.35 l S 202.37 84.53 m 210.00 84.53 l S 206.19 80.71 m 206.19 88.35 l S 156.60 92.86 m 164.24 92.86 l S 160.42 89.04 m 160.42 96.68 l S 209.01 84.53 m 216.65 84.53 l S 212.83 80.71 m 212.83 88.35 l S 261.69 131.65 m 269.32 131.65 l S 265.51 127.84 m 265.51 135.47 l S 261.33 166.87 m 268.97 166.87 l S 265.15 163.05 m 265.15 170.69 l S 249.17 95.87 m 256.81 95.87 l S 252.99 92.05 m 252.99 99.69 l S 247.04 110.42 m 254.67 110.42 l S 250.86 106.60 m 250.86 114.24 l S 153.38 105.39 m 161.01 105.39 l S 157.19 101.57 m 157.19 109.21 l S 156.33 84.53 m 163.96 84.53 l S 160.15 80.71 m 160.15 88.35 l S 303.15 181.27 m 310.79 181.27 l S 306.97 177.45 m 306.97 185.09 l S 265.11 156.44 m 272.75 156.44 l S 268.93 152.62 m 268.93 160.26 l S 231.64 84.53 m 239.28 84.53 l S 235.46 80.71 m 235.46 88.35 l S 168.54 84.53 m 176.17 84.53 l S 172.35 80.71 m 172.35 88.35 l S 222.42 84.53 m 230.05 84.53 l S 226.24 80.71 m 226.24 88.35 l S 76.39 181.27 m 84.03 181.27 l S 80.21 177.45 m 80.21 185.09 l S 183.48 84.53 m 191.12 84.53 l S 187.30 80.71 m 187.30 88.35 l S 174.64 84.53 m 182.28 84.53 l S 178.46 80.71 m 178.46 88.35 l S 270.51 166.87 m 278.15 166.87 l S 274.33 163.05 m 274.33 170.69 l S 241.20 91.76 m 248.84 91.76 l S 245.02 87.94 m 245.02 95.58 l S 274.91 156.44 m 282.55 156.44 l S 278.73 152.62 m 278.73 160.26 l S 195.51 84.53 m 203.15 84.53 l S 199.33 80.71 m 199.33 88.35 l S 227.96 84.53 m 235.60 84.53 l S 231.78 80.71 m 231.78 88.35 l S 217.29 84.53 m 224.93 84.53 l S 221.11 80.71 m 221.11 88.35 l S 216.36 84.53 m 224.00 84.53 l S 220.18 80.71 m 220.18 88.35 l S 208.81 84.53 m 216.45 84.53 l S 212.63 80.71 m 212.63 88.35 l S 167.11 84.53 m 174.75 84.53 l S 170.93 80.71 m 170.93 88.35 l S 230.77 84.53 m 238.40 84.53 l S 234.59 80.71 m 234.59 88.35 l S 201.66 84.53 m 209.30 84.53 l S 205.48 80.71 m 205.48 88.35 l S 247.18 118.76 m 254.82 118.76 l S 251.00 114.94 m 251.00 122.58 l S 257.13 131.65 m 264.77 131.65 l S 260.95 127.84 m 260.95 135.47 l S 162.03 84.53 m 169.66 84.53 l S 165.85 80.71 m 165.85 88.35 l S 145.68 148.08 m 153.32 148.08 l S 149.50 144.26 m 149.50 151.90 l S 208.55 84.53 m 216.18 84.53 l S 212.37 80.71 m 212.37 88.35 l S 217.31 84.53 m 224.94 84.53 l S 221.13 80.71 m 221.13 88.35 l S 199.90 84.53 m 207.54 84.53 l S 203.72 80.71 m 203.72 88.35 l S 161.20 94.98 m 168.83 94.98 l S 165.01 91.16 m 165.01 98.80 l S 116.15 181.27 m 123.78 181.27 l S 119.96 177.45 m 119.96 185.09 l S 146.30 118.76 m 153.94 118.76 l S 150.12 114.94 m 150.12 122.58 l S 210.24 84.53 m 217.88 84.53 l S 214.06 80.71 m 214.06 88.35 l S 165.55 84.53 m 173.19 84.53 l S 169.37 80.71 m 169.37 88.35 l S 161.82 84.53 m 169.45 84.53 l S 165.64 80.71 m 165.64 88.35 l S 233.99 84.53 m 241.63 84.53 l S 237.81 80.71 m 237.81 88.35 l S 226.22 84.53 m 233.85 84.53 l S 230.04 80.71 m 230.04 88.35 l S 239.87 84.53 m 247.50 84.53 l S 243.68 80.71 m 243.68 88.35 l S 176.44 84.53 m 184.08 84.53 l S 180.26 80.71 m 180.26 88.35 l S 157.49 84.53 m 165.12 84.53 l S 161.31 80.71 m 161.31 88.35 l S 165.00 84.53 m 172.64 84.53 l S 168.82 80.71 m 168.82 88.35 l S 223.67 84.53 m 231.31 84.53 l S 227.49 80.71 m 227.49 88.35 l S 232.44 84.53 m 240.07 84.53 l S 236.26 80.71 m 236.26 88.35 l S 99.15 181.27 m 106.79 181.27 l S 102.97 177.45 m 102.97 185.09 l S 199.84 84.53 m 207.47 84.53 l S 203.65 80.71 m 203.65 88.35 l S 190.05 84.53 m 197.69 84.53 l S 193.87 80.71 m 193.87 88.35 l S 208.24 84.53 m 215.88 84.53 l S 212.06 80.71 m 212.06 88.35 l S 134.72 166.87 m 142.35 166.87 l S 138.53 163.05 m 138.53 170.69 l S 174.81 84.53 m 182.44 84.53 l S 178.63 80.71 m 178.63 88.35 l S 216.35 84.53 m 223.98 84.53 l S 220.16 80.71 m 220.16 88.35 l S 162.12 88.17 m 169.76 88.17 l S 165.94 84.35 m 165.94 91.99 l S 200.66 84.53 m 208.30 84.53 l S 204.48 80.71 m 204.48 88.35 l S 228.42 84.53 m 236.05 84.53 l S 232.24 80.71 m 232.24 88.35 l S 175.27 84.53 m 182.90 84.53 l S 179.08 80.71 m 179.08 88.35 l S 169.15 84.53 m 176.79 84.53 l S 172.97 80.71 m 172.97 88.35 l S 147.85 131.65 m 155.49 131.65 l S 151.67 127.84 m 151.67 135.47 l S 93.53 181.27 m 101.17 181.27 l S 97.35 177.45 m 97.35 185.09 l S 107.74 181.27 m 115.37 181.27 l S 111.55 177.45 m 111.55 185.09 l S 249.91 131.65 m 257.55 131.65 l S 253.73 127.84 m 253.73 135.47 l S 213.35 84.53 m 220.98 84.53 l S 217.16 80.71 m 217.16 88.35 l S 206.41 84.53 m 214.04 84.53 l S 210.22 80.71 m 210.22 88.35 l S 120.12 181.27 m 127.75 181.27 l S 123.94 177.45 m 123.94 185.09 l S 262.63 166.87 m 270.27 166.87 l S 266.45 163.05 m 266.45 170.69 l S 226.39 84.53 m 234.02 84.53 l S 230.20 80.71 m 230.20 88.35 l S 164.38 84.53 m 172.02 84.53 l S 168.20 80.71 m 168.20 88.35 l S 192.83 84.53 m 200.47 84.53 l S 196.65 80.71 m 196.65 88.35 l S 199.27 84.53 m 206.91 84.53 l S 203.09 80.71 m 203.09 88.35 l S 228.43 84.53 m 236.07 84.53 l S 232.25 80.71 m 232.25 88.35 l S 243.41 98.23 m 251.05 98.23 l S 247.23 94.42 m 247.23 102.05 l S 184.30 84.53 m 191.93 84.53 l S 188.11 80.71 m 188.11 88.35 l S 210.07 84.53 m 217.70 84.53 l S 213.88 80.71 m 213.88 88.35 l S 166.23 84.53 m 173.87 84.53 l S 170.05 80.71 m 170.05 88.35 l S 180.39 84.53 m 188.02 84.53 l S 184.21 80.71 m 184.21 88.35 l S 232.93 84.53 m 240.57 84.53 l S 236.75 80.71 m 236.75 88.35 l S 167.83 84.53 m 175.47 84.53 l S 171.65 80.71 m 171.65 88.35 l S 299.13 181.27 m 306.77 181.27 l S 302.95 177.45 m 302.95 185.09 l S 217.49 84.53 m 225.12 84.53 l S 221.31 80.71 m 221.31 88.35 l S 121.80 181.27 m 129.43 181.27 l S 125.61 177.45 m 125.61 185.09 l S 219.58 84.53 m 227.22 84.53 l S 223.40 80.71 m 223.40 88.35 l S 201.01 84.53 m 208.65 84.53 l S 204.83 80.71 m 204.83 88.35 l S 237.72 84.53 m 245.36 84.53 l S 241.54 80.71 m 241.54 88.35 l S 296.97 181.27 m 304.60 181.27 l S 300.79 177.45 m 300.79 185.09 l S 164.59 84.53 m 172.23 84.53 l S 168.41 80.71 m 168.41 88.35 l S 93.80 181.27 m 101.44 181.27 l S 97.62 177.45 m 97.62 185.09 l S 269.82 166.87 m 277.45 166.87 l S 273.64 163.05 m 273.64 170.69 l S 318.41 181.27 m 326.05 181.27 l S 322.23 177.45 m 322.23 185.09 l S 223.50 84.53 m 231.14 84.53 l S 227.32 80.71 m 227.32 88.35 l S 231.29 84.53 m 238.92 84.53 l S 235.11 80.71 m 235.11 88.35 l S 249.84 118.76 m 257.47 118.76 l S 253.65 114.94 m 253.65 122.58 l S 218.58 84.53 m 226.21 84.53 l S 222.39 80.71 m 222.39 88.35 l S 95.34 181.27 m 102.98 181.27 l S 99.16 177.45 m 99.16 185.09 l S 171.21 84.53 m 178.85 84.53 l S 175.03 80.71 m 175.03 88.35 l S 226.90 84.53 m 234.53 84.53 l S 230.72 80.71 m 230.72 88.35 l S 161.55 84.53 m 169.19 84.53 l S 165.37 80.71 m 165.37 88.35 l S 93.97 181.27 m 101.61 181.27 l S 97.79 177.45 m 97.79 185.09 l S 162.81 84.53 m 170.45 84.53 l S 166.63 80.71 m 166.63 88.35 l S 227.87 84.53 m 235.51 84.53 l S 231.69 80.71 m 231.69 88.35 l S 221.27 84.53 m 228.90 84.53 l S 225.08 80.71 m 225.08 88.35 l S 227.89 84.53 m 235.53 84.53 l S 231.71 80.71 m 231.71 88.35 l S 211.32 84.53 m 218.96 84.53 l S 215.14 80.71 m 215.14 88.35 l S 142.36 148.08 m 150.00 148.08 l S 146.18 144.26 m 146.18 151.90 l S 277.82 181.27 m 285.46 181.27 l S 281.64 177.45 m 281.64 185.09 l S 238.42 84.53 m 246.06 84.53 l S 242.24 80.71 m 242.24 88.35 l S 169.84 84.53 m 177.47 84.53 l S 173.65 80.71 m 173.65 88.35 l S 227.61 84.53 m 235.25 84.53 l S 231.43 80.71 m 231.43 88.35 l S 170.42 84.53 m 178.05 84.53 l S 174.23 80.71 m 174.23 88.35 l S 157.09 98.23 m 164.73 98.23 l S 160.91 94.42 m 160.91 102.05 l S 218.06 84.53 m 225.70 84.53 l S 221.88 80.71 m 221.88 88.35 l S 139.03 136.12 m 146.67 136.12 l S 142.85 132.30 m 142.85 139.93 l S 226.67 84.53 m 234.30 84.53 l S 230.48 80.71 m 230.48 88.35 l S 198.91 84.53 m 206.55 84.53 l S 202.73 80.71 m 202.73 88.35 l S 186.00 84.53 m 193.63 84.53 l S 189.81 80.71 m 189.81 88.35 l S 147.26 124.37 m 154.90 124.37 l S 151.08 120.55 m 151.08 128.19 l S 106.06 181.27 m 113.70 181.27 l S 109.88 177.45 m 109.88 185.09 l S 223.81 84.53 m 231.45 84.53 l S 227.63 80.71 m 227.63 88.35 l S 225.19 84.53 m 232.83 84.53 l S 229.01 80.71 m 229.01 88.35 l S 207.88 84.53 m 215.52 84.53 l S 211.70 80.71 m 211.70 88.35 l S 133.88 181.27 m 141.51 181.27 l S 137.70 177.45 m 137.70 185.09 l S 141.77 181.27 m 149.40 181.27 l S 145.59 177.45 m 145.59 185.09 l S 155.13 89.06 m 162.77 89.06 l S 158.95 85.25 m 158.95 92.88 l S 200.57 84.53 m 208.20 84.53 l S 204.38 80.71 m 204.38 88.35 l S 135.51 148.08 m 143.15 148.08 l S 139.33 144.26 m 139.33 151.90 l S 127.80 181.27 m 135.44 181.27 l S 131.62 177.45 m 131.62 185.09 l S 150.10 105.39 m 157.74 105.39 l S 153.92 101.57 m 153.92 109.21 l S 214.39 84.53 m 222.03 84.53 l S 218.21 80.71 m 218.21 88.35 l S 171.68 84.53 m 179.31 84.53 l S 175.50 80.71 m 175.50 88.35 l S 174.89 84.53 m 182.53 84.53 l S 178.71 80.71 m 178.71 88.35 l S 198.91 84.53 m 206.55 84.53 l S 202.73 80.71 m 202.73 88.35 l S 267.46 181.27 m 275.10 181.27 l S 271.28 177.45 m 271.28 185.09 l S 137.35 148.08 m 144.99 148.08 l S 141.17 144.26 m 141.17 151.90 l S 187.37 84.53 m 195.00 84.53 l S 191.19 80.71 m 191.19 88.35 l S 188.29 84.53 m 195.93 84.53 l S 192.11 80.71 m 192.11 88.35 l S 197.01 84.53 m 204.64 84.53 l S 200.83 80.71 m 200.83 88.35 l S 99.68 181.27 m 107.32 181.27 l S 103.50 177.45 m 103.50 185.09 l S 206.49 84.53 m 214.12 84.53 l S 210.31 80.71 m 210.31 88.35 l S 178.50 84.53 m 186.14 84.53 l S 182.32 80.71 m 182.32 88.35 l S 136.11 166.87 m 143.75 166.87 l S 139.93 163.05 m 139.93 170.69 l S 128.35 166.87 m 135.99 166.87 l S 132.17 163.05 m 132.17 170.69 l S 174.66 84.53 m 182.29 84.53 l S 178.47 80.71 m 178.47 88.35 l S 188.43 84.53 m 196.06 84.53 l S 192.24 80.71 m 192.24 88.35 l S 254.60 136.12 m 262.24 136.12 l S 258.42 132.30 m 258.42 139.93 l S 233.22 84.53 m 240.85 84.53 l S 237.03 80.71 m 237.03 88.35 l S 248.51 112.10 m 256.15 112.10 l S 252.33 108.28 m 252.33 115.92 l S 149.50 124.37 m 157.14 124.37 l S 153.32 120.55 m 153.32 128.19 l S 231.15 84.53 m 238.79 84.53 l S 234.97 80.71 m 234.97 88.35 l S 178.63 84.53 m 186.26 84.53 l S 182.44 80.71 m 182.44 88.35 l S 187.41 84.53 m 195.04 84.53 l S 191.22 80.71 m 191.22 88.35 l S 172.61 84.53 m 180.25 84.53 l S 176.43 80.71 m 176.43 88.35 l S 258.78 156.44 m 266.42 156.44 l S 262.60 152.62 m 262.60 160.26 l S 267.22 156.44 m 274.86 156.44 l S 271.04 152.62 m 271.04 160.26 l S 207.77 84.53 m 215.41 84.53 l S 211.59 80.71 m 211.59 88.35 l S 286.95 181.27 m 294.59 181.27 l S 290.77 177.45 m 290.77 185.09 l S 105.52 181.27 m 113.16 181.27 l S 109.34 177.45 m 109.34 185.09 l S 142.60 124.37 m 150.23 124.37 l S 146.42 120.55 m 146.42 128.19 l S 140.72 141.48 m 148.36 141.48 l S 144.54 137.67 m 144.54 145.30 l S 147.30 141.48 m 154.94 141.48 l S 151.12 137.67 m 151.12 145.30 l S 208.11 84.53 m 215.75 84.53 l S 211.93 80.71 m 211.93 88.35 l S 200.02 84.53 m 207.65 84.53 l S 203.84 80.71 m 203.84 88.35 l S 187.85 84.53 m 195.49 84.53 l S 191.67 80.71 m 191.67 88.35 l S 142.51 148.08 m 150.15 148.08 l S 146.33 144.26 m 146.33 151.90 l S 168.91 84.53 m 176.54 84.53 l S 172.73 80.71 m 172.73 88.35 l S 238.26 90.84 m 245.90 90.84 l S 242.08 87.02 m 242.08 94.65 l S 196.51 84.53 m 204.15 84.53 l S 200.33 80.71 m 200.33 88.35 l S 217.12 84.53 m 224.76 84.53 l S 220.94 80.71 m 220.94 88.35 l S 208.70 84.53 m 216.33 84.53 l S 212.52 80.71 m 212.52 88.35 l S 147.64 121.07 m 155.28 121.07 l S 151.46 117.26 m 151.46 124.89 l S 172.87 84.53 m 180.50 84.53 l S 176.69 80.71 m 176.69 88.35 l S 130.09 181.27 m 137.73 181.27 l S 133.91 177.45 m 133.91 185.09 l S 195.25 84.53 m 202.88 84.53 l S 199.07 80.71 m 199.07 88.35 l S 70.23 181.27 m 77.87 181.27 l S 74.05 177.45 m 74.05 185.09 l S 205.23 84.53 m 212.86 84.53 l S 209.05 80.71 m 209.05 88.35 l S 191.30 84.53 m 198.93 84.53 l S 195.12 80.71 m 195.12 88.35 l S 270.15 181.27 m 277.79 181.27 l S 273.97 177.45 m 273.97 185.09 l S 188.34 84.53 m 195.98 84.53 l S 192.16 80.71 m 192.16 88.35 l S 177.53 84.53 m 185.17 84.53 l S 181.35 80.71 m 181.35 88.35 l S 179.40 84.53 m 187.04 84.53 l S 183.22 80.71 m 183.22 88.35 l S 78.32 181.27 m 85.95 181.27 l S 82.14 177.45 m 82.14 185.09 l S 206.36 84.53 m 213.99 84.53 l S 210.17 80.71 m 210.17 88.35 l S 274.93 181.27 m 282.56 181.27 l S 278.74 177.45 m 278.74 185.09 l S 179.43 84.53 m 187.06 84.53 l S 183.24 80.71 m 183.24 88.35 l S 173.33 84.53 m 180.96 84.53 l S 177.15 80.71 m 177.15 88.35 l S 189.98 84.53 m 197.62 84.53 l S 193.80 80.71 m 193.80 88.35 l S 203.15 84.53 m 210.78 84.53 l S 206.96 80.71 m 206.96 88.35 l S 198.21 84.53 m 205.84 84.53 l S 202.03 80.71 m 202.03 88.35 l S 245.37 106.97 m 253.01 106.97 l S 249.19 103.15 m 249.19 110.79 l S 245.84 112.10 m 253.47 112.10 l S 249.66 108.28 m 249.66 115.92 l S 163.55 84.53 m 171.19 84.53 l S 167.37 80.71 m 167.37 88.35 l S 194.20 84.53 m 201.84 84.53 l S 198.02 80.71 m 198.02 88.35 l S 188.58 84.53 m 196.22 84.53 l S 192.40 80.71 m 192.40 88.35 l S 200.37 84.53 m 208.01 84.53 l S 204.19 80.71 m 204.19 88.35 l S 200.50 84.53 m 208.14 84.53 l S 204.32 80.71 m 204.32 88.35 l S 195.93 84.53 m 203.57 84.53 l S 199.75 80.71 m 199.75 88.35 l S 170.19 84.53 m 177.83 84.53 l S 174.01 80.71 m 174.01 88.35 l S 162.08 85.72 m 169.71 85.72 l S 165.89 81.90 m 165.89 89.54 l S 103.43 181.27 m 111.06 181.27 l S 107.24 177.45 m 107.24 185.09 l S 200.46 84.53 m 208.10 84.53 l S 204.28 80.71 m 204.28 88.35 l S 211.41 84.53 m 219.05 84.53 l S 215.23 80.71 m 215.23 88.35 l S 189.75 84.53 m 197.38 84.53 l S 193.57 80.71 m 193.57 88.35 l S 234.57 84.53 m 242.20 84.53 l S 238.38 80.71 m 238.38 88.35 l S 222.41 84.53 m 230.05 84.53 l S 226.23 80.71 m 226.23 88.35 l S 252.50 102.50 m 260.14 102.50 l S 256.32 98.68 m 256.32 106.32 l S 178.05 84.53 m 185.68 84.53 l S 181.87 80.71 m 181.87 88.35 l S 224.69 84.53 m 232.33 84.53 l S 228.51 80.71 m 228.51 88.35 l S 191.95 84.53 m 199.59 84.53 l S 195.77 80.71 m 195.77 88.35 l S 208.04 84.53 m 215.68 84.53 l S 211.86 80.71 m 211.86 88.35 l S 219.82 84.53 m 227.46 84.53 l S 223.64 80.71 m 223.64 88.35 l S 138.86 166.87 m 146.49 166.87 l S 142.67 163.05 m 142.67 170.69 l S 212.73 84.53 m 220.37 84.53 l S 216.55 80.71 m 216.55 88.35 l S 204.46 84.53 m 212.09 84.53 l S 208.27 80.71 m 208.27 88.35 l S 207.98 84.53 m 215.62 84.53 l S 211.80 80.71 m 211.80 88.35 l S 257.45 141.48 m 265.09 141.48 l S 261.27 137.67 m 261.27 145.30 l S 233.47 84.53 m 241.11 84.53 l S 237.29 80.71 m 237.29 88.35 l S 224.81 84.53 m 232.45 84.53 l S 228.63 80.71 m 228.63 88.35 l S 163.30 84.53 m 170.94 84.53 l S 167.12 80.71 m 167.12 88.35 l S 169.03 84.53 m 176.67 84.53 l S 172.85 80.71 m 172.85 88.35 l S 201.56 84.53 m 209.19 84.53 l S 205.38 80.71 m 205.38 88.35 l S 184.78 84.53 m 192.42 84.53 l S 188.60 80.71 m 188.60 88.35 l S 232.40 84.53 m 240.04 84.53 l S 236.22 80.71 m 236.22 88.35 l S 188.20 84.53 m 195.84 84.53 l S 192.02 80.71 m 192.02 88.35 l S 174.64 84.53 m 182.27 84.53 l S 178.46 80.71 m 178.46 88.35 l S 212.22 84.53 m 219.86 84.53 l S 216.04 80.71 m 216.04 88.35 l S 224.42 84.53 m 232.06 84.53 l S 228.24 80.71 m 228.24 88.35 l S 247.64 106.97 m 255.28 106.97 l S 251.46 103.15 m 251.46 110.79 l S 202.35 84.53 m 209.99 84.53 l S 206.17 80.71 m 206.17 88.35 l S 172.49 84.53 m 180.12 84.53 l S 176.31 80.71 m 176.31 88.35 l S 188.77 84.53 m 196.40 84.53 l S 192.59 80.71 m 192.59 88.35 l S 125.92 181.27 m 133.55 181.27 l S 129.74 177.45 m 129.74 185.09 l S 234.03 84.53 m 241.67 84.53 l S 237.85 80.71 m 237.85 88.35 l S 206.04 84.53 m 213.68 84.53 l S 209.86 80.71 m 209.86 88.35 l S 222.01 84.53 m 229.65 84.53 l S 225.83 80.71 m 225.83 88.35 l S 247.63 127.56 m 255.27 127.56 l S 251.45 123.74 m 251.45 131.38 l S 198.88 84.53 m 206.52 84.53 l S 202.70 80.71 m 202.70 88.35 l S 217.23 84.53 m 224.87 84.53 l S 221.05 80.71 m 221.05 88.35 l S 203.60 84.53 m 211.23 84.53 l S 207.42 80.71 m 207.42 88.35 l S 190.80 84.53 m 198.44 84.53 l S 194.62 80.71 m 194.62 88.35 l S 144.91 131.65 m 152.55 131.65 l S 148.73 127.84 m 148.73 135.47 l S 215.83 84.53 m 223.47 84.53 l S 219.65 80.71 m 219.65 88.35 l S 159.55 87.35 m 167.19 87.35 l S 163.37 83.53 m 163.37 91.17 l S 235.85 84.53 m 243.49 84.53 l S 239.67 80.71 m 239.67 88.35 l S 94.04 166.87 m 101.67 166.87 l S 97.85 163.05 m 97.85 170.69 l S 223.76 84.53 m 231.40 84.53 l S 227.58 80.71 m 227.58 88.35 l S 170.61 84.53 m 178.25 84.53 l S 174.43 80.71 m 174.43 88.35 l S 169.79 84.53 m 177.43 84.53 l S 173.61 80.71 m 173.61 88.35 l S 159.23 92.86 m 166.87 92.86 l S 163.05 89.04 m 163.05 96.68 l S 207.87 84.53 m 215.51 84.53 l S 211.69 80.71 m 211.69 88.35 l S 208.20 84.53 m 215.84 84.53 l S 212.02 80.71 m 212.02 88.35 l S 159.09 94.98 m 166.72 94.98 l S 162.90 91.16 m 162.90 98.80 l S 153.65 112.10 m 161.28 112.10 l S 157.47 108.28 m 157.47 115.92 l S 242.20 88.17 m 249.84 88.17 l S 246.02 84.35 m 246.02 91.99 l S 190.11 84.53 m 197.75 84.53 l S 193.93 80.71 m 193.93 88.35 l S 162.60 84.53 m 170.23 84.53 l S 166.42 80.71 m 166.42 88.35 l S 150.05 136.12 m 157.69 136.12 l S 153.87 132.30 m 153.87 139.93 l S 211.77 84.53 m 219.41 84.53 l S 215.59 80.71 m 215.59 88.35 l S 130.66 166.87 m 138.30 166.87 l S 134.48 163.05 m 134.48 170.69 l S 152.99 112.10 m 160.63 112.10 l S 156.81 108.28 m 156.81 115.92 l S 239.39 101.07 m 247.03 101.07 l S 243.21 97.26 m 243.21 104.89 l S 193.70 84.53 m 201.34 84.53 l S 197.52 80.71 m 197.52 88.35 l S 177.22 84.53 m 184.86 84.53 l S 181.04 80.71 m 181.04 88.35 l S 200.03 84.53 m 207.67 84.53 l S 203.85 80.71 m 203.85 88.35 l S 211.74 84.53 m 219.38 84.53 l S 215.56 80.71 m 215.56 88.35 l S 200.98 84.53 m 208.61 84.53 l S 204.80 80.71 m 204.80 88.35 l S 127.32 166.87 m 134.95 166.87 l S 131.14 163.05 m 131.14 170.69 l S 184.46 84.53 m 192.10 84.53 l S 188.28 80.71 m 188.28 88.35 l S 190.71 84.53 m 198.35 84.53 l S 194.53 80.71 m 194.53 88.35 l S 226.05 84.53 m 233.69 84.53 l S 229.87 80.71 m 229.87 88.35 l S 193.16 84.53 m 200.79 84.53 l S 196.97 80.71 m 196.97 88.35 l S 145.16 112.10 m 152.80 112.10 l S 148.98 108.28 m 148.98 115.92 l S 231.65 84.53 m 239.28 84.53 l S 235.46 80.71 m 235.46 88.35 l S 178.80 84.53 m 186.44 84.53 l S 182.62 80.71 m 182.62 88.35 l S 214.43 84.53 m 222.07 84.53 l S 218.25 80.71 m 218.25 88.35 l S 141.13 166.87 m 148.77 166.87 l S 144.95 163.05 m 144.95 170.69 l S 167.84 84.53 m 175.48 84.53 l S 171.66 80.71 m 171.66 88.35 l S 195.19 84.53 m 202.83 84.53 l S 199.01 80.71 m 199.01 88.35 l S 214.03 84.53 m 221.67 84.53 l S 217.85 80.71 m 217.85 88.35 l S 243.74 102.50 m 251.38 102.50 l S 247.56 98.68 m 247.56 106.32 l S 285.93 181.27 m 293.56 181.27 l S 289.74 177.45 m 289.74 185.09 l S 257.12 156.44 m 264.76 156.44 l S 260.94 152.62 m 260.94 160.26 l S 181.71 84.53 m 189.35 84.53 l S 185.53 80.71 m 185.53 88.35 l S 166.19 84.53 m 173.83 84.53 l S 170.01 80.71 m 170.01 88.35 l S 130.28 156.44 m 137.92 156.44 l S 134.10 152.62 m 134.10 160.26 l S 184.05 84.53 m 191.68 84.53 l S 187.86 80.71 m 187.86 88.35 l S 182.97 84.53 m 190.61 84.53 l S 186.79 80.71 m 186.79 88.35 l S 169.71 84.53 m 177.35 84.53 l S 173.53 80.71 m 173.53 88.35 l S 210.27 84.53 m 217.90 84.53 l S 214.08 80.71 m 214.08 88.35 l S 136.65 166.87 m 144.29 166.87 l S 140.47 163.05 m 140.47 170.69 l S 209.11 84.53 m 216.74 84.53 l S 212.92 80.71 m 212.92 88.35 l S 199.64 84.53 m 207.28 84.53 l S 203.46 80.71 m 203.46 88.35 l S 237.17 84.53 m 244.80 84.53 l S 240.99 80.71 m 240.99 88.35 l S 188.85 84.53 m 196.48 84.53 l S 192.66 80.71 m 192.66 88.35 l S 209.56 84.53 m 217.20 84.53 l S 213.38 80.71 m 213.38 88.35 l S 202.63 84.53 m 210.27 84.53 l S 206.45 80.71 m 206.45 88.35 l S 234.70 84.53 m 242.34 84.53 l S 238.52 80.71 m 238.52 88.35 l S 143.33 148.08 m 150.97 148.08 l S 147.15 144.26 m 147.15 151.90 l S 269.76 166.87 m 277.39 166.87 l S 273.58 163.05 m 273.58 170.69 l S 219.15 84.53 m 226.79 84.53 l S 222.97 80.71 m 222.97 88.35 l S 194.21 84.53 m 201.85 84.53 l S 198.03 80.71 m 198.03 88.35 l S 112.87 181.27 m 120.50 181.27 l S 116.68 177.45 m 116.68 185.09 l S 206.89 84.53 m 214.53 84.53 l S 210.71 80.71 m 210.71 88.35 l S 385.25 181.27 m 392.89 181.27 l S 389.07 177.45 m 389.07 185.09 l S 211.31 84.53 m 218.95 84.53 l S 215.13 80.71 m 215.13 88.35 l S 195.77 84.53 m 203.41 84.53 l S 199.59 80.71 m 199.59 88.35 l S 227.86 84.53 m 235.50 84.53 l S 231.68 80.71 m 231.68 88.35 l S 214.63 84.53 m 222.27 84.53 l S 218.45 80.71 m 218.45 88.35 l S 191.29 84.53 m 198.92 84.53 l S 195.10 80.71 m 195.10 88.35 l S 192.10 84.53 m 199.74 84.53 l S 195.92 80.71 m 195.92 88.35 l S 211.66 84.53 m 219.29 84.53 l S 215.47 80.71 m 215.47 88.35 l S 130.96 181.27 m 138.60 181.27 l S 134.78 177.45 m 134.78 185.09 l S 194.56 84.53 m 202.20 84.53 l S 198.38 80.71 m 198.38 88.35 l S 198.84 84.53 m 206.48 84.53 l S 202.66 80.71 m 202.66 88.35 l S 217.78 84.53 m 225.42 84.53 l S 221.60 80.71 m 221.60 88.35 l S 223.89 84.53 m 231.52 84.53 l S 227.70 80.71 m 227.70 88.35 l S 228.67 84.53 m 236.31 84.53 l S 232.49 80.71 m 232.49 88.35 l S 228.34 84.53 m 235.98 84.53 l S 232.16 80.71 m 232.16 88.35 l S 214.18 84.53 m 221.82 84.53 l S 218.00 80.71 m 218.00 88.35 l S 182.67 84.53 m 190.30 84.53 l S 186.49 80.71 m 186.49 88.35 l S 204.46 84.53 m 212.10 84.53 l S 208.28 80.71 m 208.28 88.35 l S 209.17 84.53 m 216.80 84.53 l S 212.99 80.71 m 212.99 88.35 l S 164.79 84.53 m 172.42 84.53 l S 168.61 80.71 m 168.61 88.35 l S 231.84 84.53 m 239.47 84.53 l S 235.66 80.71 m 235.66 88.35 l S 224.05 84.53 m 231.68 84.53 l S 227.86 80.71 m 227.86 88.35 l S 156.51 101.07 m 164.15 101.07 l S 160.33 97.26 m 160.33 104.89 l S 276.01 181.27 m 283.64 181.27 l S 279.83 177.45 m 279.83 185.09 l S 211.49 84.53 m 219.12 84.53 l S 215.31 80.71 m 215.31 88.35 l S 152.02 121.07 m 159.65 121.07 l S 155.83 117.26 m 155.83 124.89 l S 178.89 84.53 m 186.53 84.53 l S 182.71 80.71 m 182.71 88.35 l S 217.75 84.53 m 225.39 84.53 l S 221.57 80.71 m 221.57 88.35 l S 209.56 84.53 m 217.20 84.53 l S 213.38 80.71 m 213.38 88.35 l S 219.15 84.53 m 226.79 84.53 l S 222.97 80.71 m 222.97 88.35 l S 213.58 84.53 m 221.22 84.53 l S 217.40 80.71 m 217.40 88.35 l S 175.78 84.53 m 183.42 84.53 l S 179.60 80.71 m 179.60 88.35 l S 161.43 84.53 m 169.07 84.53 l S 165.25 80.71 m 165.25 88.35 l S 197.71 84.53 m 205.34 84.53 l S 201.53 80.71 m 201.53 88.35 l S 246.96 112.10 m 254.59 112.10 l S 250.78 108.28 m 250.78 115.92 l S 230.11 84.53 m 237.74 84.53 l S 233.92 80.71 m 233.92 88.35 l S 182.77 84.53 m 190.41 84.53 l S 186.59 80.71 m 186.59 88.35 l S 199.17 84.53 m 206.80 84.53 l S 202.99 80.71 m 202.99 88.35 l S 174.88 84.53 m 182.52 84.53 l S 178.70 80.71 m 178.70 88.35 l S 208.99 84.53 m 216.63 84.53 l S 212.81 80.71 m 212.81 88.35 l S 144.48 118.76 m 152.12 118.76 l S 148.30 114.94 m 148.30 122.58 l S 210.01 84.53 m 217.64 84.53 l S 213.83 80.71 m 213.83 88.35 l S 209.60 84.53 m 217.24 84.53 l S 213.42 80.71 m 213.42 88.35 l S 247.06 118.76 m 254.70 118.76 l S 250.88 114.94 m 250.88 122.58 l S 273.55 156.44 m 281.18 156.44 l S 277.36 152.62 m 277.36 160.26 l S 182.38 84.53 m 190.02 84.53 l S 186.20 80.71 m 186.20 88.35 l S 152.74 121.07 m 160.38 121.07 l S 156.56 117.26 m 156.56 124.89 l S 216.55 84.53 m 224.19 84.53 l S 220.37 80.71 m 220.37 88.35 l S 281.79 181.27 m 289.43 181.27 l S 285.61 177.45 m 285.61 185.09 l S 221.77 84.53 m 229.41 84.53 l S 225.59 80.71 m 225.59 88.35 l S 239.27 89.95 m 246.91 89.95 l S 243.09 86.13 m 243.09 93.77 l S 215.11 84.53 m 222.74 84.53 l S 218.93 80.71 m 218.93 88.35 l S 207.58 84.53 m 215.22 84.53 l S 211.40 80.71 m 211.40 88.35 l S 185.84 84.53 m 193.48 84.53 l S 189.66 80.71 m 189.66 88.35 l S 207.25 84.53 m 214.89 84.53 l S 211.07 80.71 m 211.07 88.35 l S 94.40 181.27 m 102.04 181.27 l S 98.22 177.45 m 98.22 185.09 l S 129.98 156.44 m 137.62 156.44 l S 133.80 152.62 m 133.80 160.26 l S 211.47 84.53 m 219.11 84.53 l S 215.29 80.71 m 215.29 88.35 l S 157.52 102.50 m 165.16 102.50 l S 161.34 98.68 m 161.34 106.32 l S 166.22 84.53 m 173.86 84.53 l S 170.04 80.71 m 170.04 88.35 l S 191.72 84.53 m 199.35 84.53 l S 195.53 80.71 m 195.53 88.35 l S 176.19 84.53 m 183.83 84.53 l S 180.01 80.71 m 180.01 88.35 l S 218.51 84.53 m 226.15 84.53 l S 222.33 80.71 m 222.33 88.35 l S 222.79 84.53 m 230.42 84.53 l S 226.61 80.71 m 226.61 88.35 l S 161.81 84.53 m 169.45 84.53 l S 165.63 80.71 m 165.63 88.35 l S 219.23 84.53 m 226.87 84.53 l S 223.05 80.71 m 223.05 88.35 l S 173.73 84.53 m 181.37 84.53 l S 177.55 80.71 m 177.55 88.35 l S 254.38 136.12 m 262.01 136.12 l S 258.19 132.30 m 258.19 139.93 l S 243.35 95.87 m 250.99 95.87 l S 247.17 92.05 m 247.17 99.69 l S 180.00 84.53 m 187.64 84.53 l S 183.82 80.71 m 183.82 88.35 l S 197.22 84.53 m 204.86 84.53 l S 201.04 80.71 m 201.04 88.35 l S 223.94 84.53 m 231.57 84.53 l S 227.75 80.71 m 227.75 88.35 l S 180.54 84.53 m 188.18 84.53 l S 184.36 80.71 m 184.36 88.35 l S 247.30 110.42 m 254.94 110.42 l S 251.12 106.60 m 251.12 114.24 l S 321.94 181.27 m 329.57 181.27 l S 325.75 177.45 m 325.75 185.09 l S 209.02 84.53 m 216.66 84.53 l S 212.84 80.71 m 212.84 88.35 l S 199.08 84.53 m 206.71 84.53 l S 202.90 80.71 m 202.90 88.35 l S 187.21 84.53 m 194.84 84.53 l S 191.02 80.71 m 191.02 88.35 l S 149.87 112.10 m 157.51 112.10 l S 153.69 108.28 m 153.69 115.92 l S 219.76 84.53 m 227.39 84.53 l S 223.57 80.71 m 223.57 88.35 l S 248.73 103.82 m 256.37 103.82 l S 252.55 100.00 m 252.55 107.64 l S 224.02 84.53 m 231.66 84.53 l S 227.84 80.71 m 227.84 88.35 l S 201.18 84.53 m 208.82 84.53 l S 205.00 80.71 m 205.00 88.35 l S 172.74 84.53 m 180.38 84.53 l S 176.56 80.71 m 176.56 88.35 l S 131.38 181.27 m 139.01 181.27 l S 135.20 177.45 m 135.20 185.09 l S 165.02 84.53 m 172.65 84.53 l S 168.84 80.71 m 168.84 88.35 l S 155.06 106.97 m 162.70 106.97 l S 158.88 103.15 m 158.88 110.79 l S 193.11 84.53 m 200.74 84.53 l S 196.93 80.71 m 196.93 88.35 l S 191.54 84.53 m 199.18 84.53 l S 195.36 80.71 m 195.36 88.35 l S 141.05 156.44 m 148.68 156.44 l S 144.87 152.62 m 144.87 160.26 l S 205.60 84.53 m 213.24 84.53 l S 209.42 80.71 m 209.42 88.35 l S 230.97 84.53 m 238.60 84.53 l S 234.79 80.71 m 234.79 88.35 l S 129.07 181.27 m 136.70 181.27 l S 132.89 177.45 m 132.89 185.09 l S 177.93 84.53 m 185.56 84.53 l S 181.74 80.71 m 181.74 88.35 l S 168.49 84.53 m 176.13 84.53 l S 172.31 80.71 m 172.31 88.35 l S 215.89 84.53 m 223.53 84.53 l S 219.71 80.71 m 219.71 88.35 l S 230.03 84.53 m 237.66 84.53 l S 233.84 80.71 m 233.84 88.35 l S 210.20 84.53 m 217.83 84.53 l S 214.02 80.71 m 214.02 88.35 l S 209.56 84.53 m 217.19 84.53 l S 213.38 80.71 m 213.38 88.35 l S 165.67 84.53 m 173.31 84.53 l S 169.49 80.71 m 169.49 88.35 l S 170.48 84.53 m 178.11 84.53 l S 174.30 80.71 m 174.30 88.35 l S 149.23 114.13 m 156.86 114.13 l S 153.04 110.31 m 153.04 117.95 l S 257.88 148.08 m 265.52 148.08 l S 261.70 144.26 m 261.70 151.90 l S 193.79 84.53 m 201.42 84.53 l S 197.61 80.71 m 197.61 88.35 l S 172.18 84.53 m 179.81 84.53 l S 175.99 80.71 m 175.99 88.35 l S 224.99 84.53 m 232.63 84.53 l S 228.81 80.71 m 228.81 88.35 l S 198.87 84.53 m 206.50 84.53 l S 202.68 80.71 m 202.68 88.35 l S 156.98 94.98 m 164.61 94.98 l S 160.79 91.16 m 160.79 98.80 l S 205.50 84.53 m 213.13 84.53 l S 209.32 80.71 m 209.32 88.35 l S 273.65 181.27 m 281.28 181.27 l S 277.47 177.45 m 277.47 185.09 l S 171.87 84.53 m 179.51 84.53 l S 175.69 80.71 m 175.69 88.35 l S 124.00 166.87 m 131.64 166.87 l S 127.82 163.05 m 127.82 170.69 l S 140.15 141.48 m 147.79 141.48 l S 143.97 137.67 m 143.97 145.30 l S 239.60 86.56 m 247.24 86.56 l S 243.42 82.74 m 243.42 90.38 l S 204.04 84.53 m 211.68 84.53 l S 207.86 80.71 m 207.86 88.35 l S 209.37 84.53 m 217.00 84.53 l S 213.19 80.71 m 213.19 88.35 l S 174.67 84.53 m 182.31 84.53 l S 178.49 80.71 m 178.49 88.35 l S 172.19 84.53 m 179.83 84.53 l S 176.01 80.71 m 176.01 88.35 l S 180.21 84.53 m 187.85 84.53 l S 184.03 80.71 m 184.03 88.35 l S 173.53 84.53 m 181.17 84.53 l S 177.35 80.71 m 177.35 88.35 l S 133.32 181.27 m 140.96 181.27 l S 137.14 177.45 m 137.14 185.09 l S 150.78 124.37 m 158.41 124.37 l S 154.60 120.55 m 154.60 128.19 l S 197.70 84.53 m 205.34 84.53 l S 201.52 80.71 m 201.52 88.35 l S 215.08 84.53 m 222.71 84.53 l S 218.89 80.71 m 218.89 88.35 l S 192.41 84.53 m 200.05 84.53 l S 196.23 80.71 m 196.23 88.35 l S 193.32 84.53 m 200.96 84.53 l S 197.14 80.71 m 197.14 88.35 l S 165.68 84.53 m 173.31 84.53 l S 169.49 80.71 m 169.49 88.35 l S 153.12 108.67 m 160.76 108.67 l S 156.94 104.86 m 156.94 112.49 l S 225.06 84.53 m 232.70 84.53 l S 228.88 80.71 m 228.88 88.35 l S 178.12 84.53 m 185.75 84.53 l S 181.93 80.71 m 181.93 88.35 l S 123.73 148.08 m 131.36 148.08 l S 127.54 144.26 m 127.54 151.90 l S 187.00 84.53 m 194.64 84.53 l S 190.82 80.71 m 190.82 88.35 l S 223.23 84.53 m 230.87 84.53 l S 227.05 80.71 m 227.05 88.35 l S 191.88 84.53 m 199.52 84.53 l S 195.70 80.71 m 195.70 88.35 l S 204.04 84.53 m 211.68 84.53 l S 207.86 80.71 m 207.86 88.35 l S 156.21 103.82 m 163.85 103.82 l S 160.03 100.00 m 160.03 107.64 l S 198.71 84.53 m 206.35 84.53 l S 202.53 80.71 m 202.53 88.35 l S 152.24 112.10 m 159.88 112.10 l S 156.06 108.28 m 156.06 115.92 l S 139.96 148.08 m 147.59 148.08 l S 143.78 144.26 m 143.78 151.90 l S 238.95 84.53 m 246.59 84.53 l S 242.77 80.71 m 242.77 88.35 l S 190.00 84.53 m 197.64 84.53 l S 193.82 80.71 m 193.82 88.35 l S 108.63 181.27 m 116.27 181.27 l S 112.45 177.45 m 112.45 185.09 l S 94.09 181.27 m 101.73 181.27 l S 97.91 177.45 m 97.91 185.09 l S 170.86 84.53 m 178.50 84.53 l S 174.68 80.71 m 174.68 88.35 l S 194.95 84.53 m 202.59 84.53 l S 198.77 80.71 m 198.77 88.35 l S 200.34 84.53 m 207.98 84.53 l S 204.16 80.71 m 204.16 88.35 l S 221.30 84.53 m 228.94 84.53 l S 225.12 80.71 m 225.12 88.35 l S 192.14 84.53 m 199.78 84.53 l S 195.96 80.71 m 195.96 88.35 l S 186.31 84.53 m 193.94 84.53 l S 190.13 80.71 m 190.13 88.35 l S 241.51 84.53 m 249.14 84.53 l S 245.32 80.71 m 245.32 88.35 l S 248.27 106.97 m 255.90 106.97 l S 252.09 103.15 m 252.09 110.79 l S 233.90 84.53 m 241.53 84.53 l S 237.72 80.71 m 237.72 88.35 l S 131.85 156.44 m 139.49 156.44 l S 135.67 152.62 m 135.67 160.26 l S 216.02 84.53 m 223.65 84.53 l S 219.84 80.71 m 219.84 88.35 l S 210.74 84.53 m 218.37 84.53 l S 214.56 80.71 m 214.56 88.35 l S 154.76 110.42 m 162.40 110.42 l S 158.58 106.60 m 158.58 114.24 l S 247.64 102.50 m 255.28 102.50 l S 251.46 98.68 m 251.46 106.32 l S 240.34 90.84 m 247.98 90.84 l S 244.16 87.02 m 244.16 94.65 l S 208.18 84.53 m 215.81 84.53 l S 211.99 80.71 m 211.99 88.35 l S 217.75 84.53 m 225.39 84.53 l S 221.57 80.71 m 221.57 88.35 l S 191.53 84.53 m 199.16 84.53 l S 195.34 80.71 m 195.34 88.35 l S 155.19 96.90 m 162.83 96.90 l S 159.01 93.08 m 159.01 100.72 l S 184.78 84.53 m 192.42 84.53 l S 188.60 80.71 m 188.60 88.35 l S 200.76 84.53 m 208.39 84.53 l S 204.58 80.71 m 204.58 88.35 l S 199.45 84.53 m 207.08 84.53 l S 203.26 80.71 m 203.26 88.35 l S 95.67 181.27 m 103.31 181.27 l S 99.49 177.45 m 99.49 185.09 l S 147.95 124.37 m 155.59 124.37 l S 151.77 120.55 m 151.77 128.19 l S 171.99 84.53 m 179.62 84.53 l S 175.81 80.71 m 175.81 88.35 l S 183.54 84.53 m 191.18 84.53 l S 187.36 80.71 m 187.36 88.35 l S 145.37 148.08 m 153.00 148.08 l S 149.18 144.26 m 149.18 151.90 l S 136.87 181.27 m 144.51 181.27 l S 140.69 177.45 m 140.69 185.09 l S 184.21 84.53 m 191.84 84.53 l S 188.03 80.71 m 188.03 88.35 l S 200.71 84.53 m 208.35 84.53 l S 204.53 80.71 m 204.53 88.35 l S 124.76 166.87 m 132.39 166.87 l S 128.57 163.05 m 128.57 170.69 l S 218.64 84.53 m 226.28 84.53 l S 222.46 80.71 m 222.46 88.35 l S 169.18 84.53 m 176.81 84.53 l S 173.00 80.71 m 173.00 88.35 l S 249.36 121.07 m 257.00 121.07 l S 253.18 117.26 m 253.18 124.89 l S 249.07 118.76 m 256.71 118.76 l S 252.89 114.94 m 252.89 122.58 l S 122.97 181.27 m 130.61 181.27 l S 126.79 177.45 m 126.79 185.09 l S 160.02 84.78 m 167.65 84.78 l S 163.84 80.97 m 163.84 88.60 l S 232.03 84.53 m 239.67 84.53 l S 235.85 80.71 m 235.85 88.35 l S 266.23 156.44 m 273.86 156.44 l S 270.04 152.62 m 270.04 160.26 l S 131.43 148.08 m 139.07 148.08 l S 135.25 144.26 m 135.25 151.90 l S 106.80 181.27 m 114.43 181.27 l S 110.62 177.45 m 110.62 185.09 l S 190.10 84.53 m 197.74 84.53 l S 193.92 80.71 m 193.92 88.35 l S 188.60 84.53 m 196.24 84.53 l S 192.42 80.71 m 192.42 88.35 l S 183.14 84.53 m 190.78 84.53 l S 186.96 80.71 m 186.96 88.35 l S 212.30 84.53 m 219.94 84.53 l S 216.12 80.71 m 216.12 88.35 l S 182.41 84.53 m 190.04 84.53 l S 186.22 80.71 m 186.22 88.35 l S 130.13 181.27 m 137.77 181.27 l S 133.95 177.45 m 133.95 185.09 l S 189.03 84.53 m 196.66 84.53 l S 192.84 80.71 m 192.84 88.35 l S 233.82 84.53 m 241.46 84.53 l S 237.64 80.71 m 237.64 88.35 l S 200.69 84.53 m 208.33 84.53 l S 204.51 80.71 m 204.51 88.35 l S 196.83 84.53 m 204.47 84.53 l S 200.65 80.71 m 200.65 88.35 l S 136.80 166.87 m 144.43 166.87 l S 140.62 163.05 m 140.62 170.69 l S 154.86 91.76 m 162.49 91.76 l S 158.67 87.94 m 158.67 95.58 l S 172.99 84.53 m 180.63 84.53 l S 176.81 80.71 m 176.81 88.35 l S 254.91 131.65 m 262.55 131.65 l S 258.73 127.84 m 258.73 135.47 l S 269.59 166.87 m 277.23 166.87 l S 273.41 163.05 m 273.41 170.69 l S 235.55 84.53 m 243.19 84.53 l S 239.37 80.71 m 239.37 88.35 l S 227.51 84.53 m 235.14 84.53 l S 231.32 80.71 m 231.32 88.35 l S 213.52 84.53 m 221.16 84.53 l S 217.34 80.71 m 217.34 88.35 l S 192.15 84.53 m 199.79 84.53 l S 195.97 80.71 m 195.97 88.35 l S 154.98 95.87 m 162.62 95.87 l S 158.80 92.05 m 158.80 99.69 l S 197.17 84.53 m 204.81 84.53 l S 200.99 80.71 m 200.99 88.35 l S 253.80 127.56 m 261.44 127.56 l S 257.62 123.74 m 257.62 131.38 l S 139.20 166.87 m 146.84 166.87 l S 143.02 163.05 m 143.02 170.69 l S 174.98 84.53 m 182.62 84.53 l S 178.80 80.71 m 178.80 88.35 l S 198.72 84.53 m 206.35 84.53 l S 202.53 80.71 m 202.53 88.35 l S 183.18 84.53 m 190.82 84.53 l S 187.00 80.71 m 187.00 88.35 l S 176.59 84.53 m 184.23 84.53 l S 180.41 80.71 m 180.41 88.35 l S 251.56 121.07 m 259.20 121.07 l S 255.38 117.26 m 255.38 124.89 l S 247.11 141.48 m 254.75 141.48 l S 250.93 137.67 m 250.93 145.30 l S 160.22 84.53 m 167.86 84.53 l S 164.04 80.71 m 164.04 88.35 l S 229.29 84.53 m 236.93 84.53 l S 233.11 80.71 m 233.11 88.35 l S 205.89 84.53 m 213.53 84.53 l S 209.71 80.71 m 209.71 88.35 l S 234.02 84.53 m 241.66 84.53 l S 237.84 80.71 m 237.84 88.35 l S 179.44 84.53 m 187.07 84.53 l S 183.26 80.71 m 183.26 88.35 l S 227.84 84.53 m 235.48 84.53 l S 231.66 80.71 m 231.66 88.35 l S 116.93 156.44 m 124.57 156.44 l S 120.75 152.62 m 120.75 160.26 l S 171.86 84.53 m 179.49 84.53 l S 175.67 80.71 m 175.67 88.35 l S 140.97 136.12 m 148.61 136.12 l S 144.79 132.30 m 144.79 139.93 l S 214.15 84.53 m 221.79 84.53 l S 217.97 80.71 m 217.97 88.35 l S 102.18 181.27 m 109.81 181.27 l S 105.99 177.45 m 105.99 185.09 l S 134.53 141.48 m 142.17 141.48 l S 138.35 137.67 m 138.35 145.30 l S 176.80 84.53 m 184.43 84.53 l S 180.62 80.71 m 180.62 88.35 l S 252.68 156.44 m 260.32 156.44 l S 256.50 152.62 m 256.50 160.26 l S 213.87 84.53 m 221.51 84.53 l S 217.69 80.71 m 217.69 88.35 l S 145.21 121.07 m 152.85 121.07 l S 149.03 117.26 m 149.03 124.89 l S 211.78 84.53 m 219.42 84.53 l S 215.60 80.71 m 215.60 88.35 l S 254.13 127.56 m 261.76 127.56 l S 257.94 123.74 m 257.94 131.38 l S 142.32 156.44 m 149.95 156.44 l S 146.13 152.62 m 146.13 160.26 l S 97.79 181.27 m 105.43 181.27 l S 101.61 177.45 m 101.61 185.09 l S 190.01 84.53 m 197.65 84.53 l S 193.83 80.71 m 193.83 88.35 l S 182.96 84.53 m 190.60 84.53 l S 186.78 80.71 m 186.78 88.35 l S 164.05 84.53 m 171.68 84.53 l S 167.86 80.71 m 167.86 88.35 l S 194.57 84.53 m 202.21 84.53 l S 198.39 80.71 m 198.39 88.35 l S 211.83 84.53 m 219.47 84.53 l S 215.65 80.71 m 215.65 88.35 l S 183.11 84.53 m 190.75 84.53 l S 186.93 80.71 m 186.93 88.35 l S 191.94 84.53 m 199.58 84.53 l S 195.76 80.71 m 195.76 88.35 l S 127.81 166.87 m 135.45 166.87 l S 131.63 163.05 m 131.63 170.69 l S 136.38 166.87 m 144.01 166.87 l S 140.20 163.05 m 140.20 170.69 l S 217.64 84.53 m 225.28 84.53 l S 221.46 80.71 m 221.46 88.35 l S 160.76 84.53 m 168.39 84.53 l S 164.57 80.71 m 164.57 88.35 l S 173.32 84.53 m 180.96 84.53 l S 177.14 80.71 m 177.14 88.35 l S 178.90 84.53 m 186.53 84.53 l S 182.72 80.71 m 182.72 88.35 l S 243.76 103.82 m 251.40 103.82 l S 247.58 100.00 m 247.58 107.64 l S 184.32 84.53 m 191.95 84.53 l S 188.14 80.71 m 188.14 88.35 l S 214.99 84.53 m 222.62 84.53 l S 218.80 80.71 m 218.80 88.35 l S 142.39 124.37 m 150.02 124.37 l S 146.20 120.55 m 146.20 128.19 l S 132.62 181.27 m 140.26 181.27 l S 136.44 177.45 m 136.44 185.09 l S 241.98 92.86 m 249.62 92.86 l S 245.80 89.04 m 245.80 96.68 l S 158.19 99.78 m 165.83 99.78 l S 162.01 95.96 m 162.01 103.60 l S 180.88 84.53 m 188.52 84.53 l S 184.70 80.71 m 184.70 88.35 l S 176.09 84.53 m 183.73 84.53 l S 179.91 80.71 m 179.91 88.35 l S 188.62 84.53 m 196.25 84.53 l S 192.43 80.71 m 192.43 88.35 l S 220.87 84.53 m 228.50 84.53 l S 224.69 80.71 m 224.69 88.35 l S 226.35 84.53 m 233.98 84.53 l S 230.16 80.71 m 230.16 88.35 l S 236.27 84.53 m 243.91 84.53 l S 240.09 80.71 m 240.09 88.35 l S 200.54 84.53 m 208.18 84.53 l S 204.36 80.71 m 204.36 88.35 l S 185.76 84.53 m 193.40 84.53 l S 189.58 80.71 m 189.58 88.35 l S 221.39 84.53 m 229.03 84.53 l S 225.21 80.71 m 225.21 88.35 l S 71.42 181.27 m 79.06 181.27 l S 75.24 177.45 m 75.24 185.09 l S 199.54 84.53 m 207.17 84.53 l S 203.36 80.71 m 203.36 88.35 l S 172.62 84.53 m 180.26 84.53 l S 176.44 80.71 m 176.44 88.35 l S 202.68 84.53 m 210.31 84.53 l S 206.50 80.71 m 206.50 88.35 l S 182.25 84.53 m 189.89 84.53 l S 186.07 80.71 m 186.07 88.35 l S 191.63 84.53 m 199.26 84.53 l S 195.45 80.71 m 195.45 88.35 l S 201.28 84.53 m 208.92 84.53 l S 205.10 80.71 m 205.10 88.35 l S 256.32 124.37 m 263.95 124.37 l S 260.13 120.55 m 260.13 128.19 l S 201.98 84.53 m 209.62 84.53 l S 205.80 80.71 m 205.80 88.35 l S 163.41 84.53 m 171.05 84.53 l S 167.23 80.71 m 167.23 88.35 l S 191.27 84.53 m 198.91 84.53 l S 195.09 80.71 m 195.09 88.35 l S 142.14 124.37 m 149.77 124.37 l S 145.96 120.55 m 145.96 128.19 l S 199.00 84.53 m 206.64 84.53 l S 202.82 80.71 m 202.82 88.35 l S 256.47 156.44 m 264.11 156.44 l S 260.29 152.62 m 260.29 160.26 l S 184.15 84.53 m 191.79 84.53 l S 187.97 80.71 m 187.97 88.35 l S 235.48 84.53 m 243.12 84.53 l S 239.30 80.71 m 239.30 88.35 l S 119.35 181.27 m 126.99 181.27 l S 123.17 177.45 m 123.17 185.09 l S 239.55 89.95 m 247.18 89.95 l S 243.36 86.13 m 243.36 93.77 l S 217.24 84.53 m 224.88 84.53 l S 221.06 80.71 m 221.06 88.35 l S 209.16 84.53 m 216.79 84.53 l S 212.97 80.71 m 212.97 88.35 l S 236.97 84.53 m 244.61 84.53 l S 240.79 80.71 m 240.79 88.35 l S 231.53 84.53 m 239.17 84.53 l S 235.35 80.71 m 235.35 88.35 l S 168.96 84.53 m 176.59 84.53 l S 172.78 80.71 m 172.78 88.35 l S 237.38 84.78 m 245.02 84.78 l S 241.20 80.97 m 241.20 88.60 l S 116.46 181.27 m 124.10 181.27 l S 120.28 177.45 m 120.28 185.09 l S 212.83 84.53 m 220.47 84.53 l S 216.65 80.71 m 216.65 88.35 l S 223.36 84.53 m 230.99 84.53 l S 227.18 80.71 m 227.18 88.35 l S 214.38 84.53 m 222.02 84.53 l S 218.20 80.71 m 218.20 88.35 l S 217.56 84.53 m 225.20 84.53 l S 221.38 80.71 m 221.38 88.35 l S 264.76 181.27 m 272.40 181.27 l S 268.58 177.45 m 268.58 185.09 l S 266.11 181.27 m 273.74 181.27 l S 269.92 177.45 m 269.92 185.09 l S 165.85 84.53 m 173.48 84.53 l S 169.66 80.71 m 169.66 88.35 l S 99.15 181.27 m 106.79 181.27 l S 102.97 177.45 m 102.97 185.09 l S 149.58 114.13 m 157.22 114.13 l S 153.40 110.31 m 153.40 117.95 l S 249.53 131.65 m 257.16 131.65 l S 253.35 127.84 m 253.35 135.47 l S 248.12 141.48 m 255.76 141.48 l S 251.94 137.67 m 251.94 145.30 l S 129.63 166.87 m 137.27 166.87 l S 133.45 163.05 m 133.45 170.69 l S 204.79 84.53 m 212.43 84.53 l S 208.61 80.71 m 208.61 88.35 l S 163.28 84.53 m 170.91 84.53 l S 167.09 80.71 m 167.09 88.35 l S 219.68 84.53 m 227.32 84.53 l S 223.50 80.71 m 223.50 88.35 l S 217.83 84.53 m 225.46 84.53 l S 221.65 80.71 m 221.65 88.35 l S 244.79 102.50 m 252.43 102.50 l S 248.61 98.68 m 248.61 106.32 l S 227.14 84.53 m 234.78 84.53 l S 230.96 80.71 m 230.96 88.35 l S 152.23 116.55 m 159.86 116.55 l S 156.05 112.73 m 156.05 120.37 l S 129.34 181.27 m 136.98 181.27 l S 133.16 177.45 m 133.16 185.09 l S 193.05 84.53 m 200.69 84.53 l S 196.87 80.71 m 196.87 88.35 l S 167.10 84.53 m 174.74 84.53 l S 170.92 80.71 m 170.92 88.35 l S 162.14 84.53 m 169.78 84.53 l S 165.96 80.71 m 165.96 88.35 l S 196.60 84.53 m 204.23 84.53 l S 200.42 80.71 m 200.42 88.35 l S 234.00 84.53 m 241.64 84.53 l S 237.82 80.71 m 237.82 88.35 l S 278.68 181.27 m 286.32 181.27 l S 282.50 177.45 m 282.50 185.09 l S 187.71 84.53 m 195.35 84.53 l S 191.53 80.71 m 191.53 88.35 l S 119.33 181.27 m 126.97 181.27 l S 123.15 177.45 m 123.15 185.09 l S 201.94 84.53 m 209.58 84.53 l S 205.76 80.71 m 205.76 88.35 l S 206.36 84.53 m 214.00 84.53 l S 210.18 80.71 m 210.18 88.35 l S 242.85 86.56 m 250.48 86.56 l S 246.66 82.74 m 246.66 90.38 l S 175.86 84.53 m 183.50 84.53 l S 179.68 80.71 m 179.68 88.35 l S 149.50 112.10 m 157.14 112.10 l S 153.32 108.28 m 153.32 115.92 l S 145.65 166.87 m 153.29 166.87 l S 149.47 163.05 m 149.47 170.69 l S 205.76 84.53 m 213.40 84.53 l S 209.58 80.71 m 209.58 88.35 l S 204.69 84.53 m 212.32 84.53 l S 208.51 80.71 m 208.51 88.35 l S 158.13 99.78 m 165.77 99.78 l S 161.95 95.96 m 161.95 103.60 l S 216.90 84.53 m 224.54 84.53 l S 220.72 80.71 m 220.72 88.35 l S 139.87 141.48 m 147.50 141.48 l S 143.68 137.67 m 143.68 145.30 l S 222.53 84.53 m 230.17 84.53 l S 226.35 80.71 m 226.35 88.35 l S 167.22 84.53 m 174.86 84.53 l S 171.04 80.71 m 171.04 88.35 l S 190.63 84.53 m 198.27 84.53 l S 194.45 80.71 m 194.45 88.35 l S 195.16 84.53 m 202.80 84.53 l S 198.98 80.71 m 198.98 88.35 l S 196.28 84.53 m 203.92 84.53 l S 200.10 80.71 m 200.10 88.35 l S 234.03 84.53 m 241.67 84.53 l S 237.85 80.71 m 237.85 88.35 l S 270.54 181.27 m 278.18 181.27 l S 274.36 177.45 m 274.36 185.09 l S 203.28 84.53 m 210.92 84.53 l S 207.10 80.71 m 207.10 88.35 l S 170.91 84.53 m 178.55 84.53 l S 174.73 80.71 m 174.73 88.35 l S 105.22 166.87 m 112.85 166.87 l S 109.03 163.05 m 109.03 170.69 l S 179.36 84.53 m 186.99 84.53 l S 183.17 80.71 m 183.17 88.35 l S 201.44 84.53 m 209.08 84.53 l S 205.26 80.71 m 205.26 88.35 l S 222.83 84.53 m 230.46 84.53 l S 226.64 80.71 m 226.64 88.35 l S 223.12 84.53 m 230.75 84.53 l S 226.93 80.71 m 226.93 88.35 l S 167.72 84.53 m 175.36 84.53 l S 171.54 80.71 m 171.54 88.35 l S 236.20 84.53 m 243.83 84.53 l S 240.01 80.71 m 240.01 88.35 l S 110.67 181.27 m 118.31 181.27 l S 114.49 177.45 m 114.49 185.09 l S 185.48 84.53 m 193.12 84.53 l S 189.30 80.71 m 189.30 88.35 l S 225.06 84.53 m 232.70 84.53 l S 228.88 80.71 m 228.88 88.35 l S 233.27 84.53 m 240.91 84.53 l S 237.09 80.71 m 237.09 88.35 l S 217.12 84.53 m 224.76 84.53 l S 220.94 80.71 m 220.94 88.35 l S 187.79 84.53 m 195.43 84.53 l S 191.61 80.71 m 191.61 88.35 l S 182.63 84.53 m 190.27 84.53 l S 186.45 80.71 m 186.45 88.35 l S 191.06 84.53 m 198.69 84.53 l S 194.87 80.71 m 194.87 88.35 l S 210.40 84.53 m 218.04 84.53 l S 214.22 80.71 m 214.22 88.35 l S 249.45 116.55 m 257.09 116.55 l S 253.27 112.73 m 253.27 120.37 l S 182.68 84.53 m 190.32 84.53 l S 186.50 80.71 m 186.50 88.35 l S 225.75 84.53 m 233.38 84.53 l S 229.57 80.71 m 229.57 88.35 l S 191.79 84.53 m 199.42 84.53 l S 195.61 80.71 m 195.61 88.35 l S 205.19 84.53 m 212.83 84.53 l S 209.01 80.71 m 209.01 88.35 l S 173.67 84.53 m 181.31 84.53 l S 177.49 80.71 m 177.49 88.35 l S 208.17 84.53 m 215.81 84.53 l S 211.99 80.71 m 211.99 88.35 l S 181.08 84.53 m 188.72 84.53 l S 184.90 80.71 m 184.90 88.35 l S 255.48 156.44 m 263.11 156.44 l S 259.29 152.62 m 259.29 160.26 l S 178.06 84.53 m 185.70 84.53 l S 181.88 80.71 m 181.88 88.35 l S 190.36 84.53 m 198.00 84.53 l S 194.18 80.71 m 194.18 88.35 l S 175.72 84.53 m 183.36 84.53 l S 179.54 80.71 m 179.54 88.35 l S 173.08 84.53 m 180.71 84.53 l S 176.89 80.71 m 176.89 88.35 l S 235.47 84.53 m 243.11 84.53 l S 239.29 80.71 m 239.29 88.35 l S 72.67 181.27 m 80.31 181.27 l S 76.49 177.45 m 76.49 185.09 l S 270.00 166.87 m 277.63 166.87 l S 273.81 163.05 m 273.81 170.69 l S 198.88 84.53 m 206.52 84.53 l S 202.70 80.71 m 202.70 88.35 l S 236.72 84.53 m 244.36 84.53 l S 240.54 80.71 m 240.54 88.35 l S 208.29 84.53 m 215.93 84.53 l S 212.11 80.71 m 212.11 88.35 l S 278.77 181.27 m 286.40 181.27 l S 282.59 177.45 m 282.59 185.09 l S 206.59 84.53 m 214.22 84.53 l S 210.40 80.71 m 210.40 88.35 l S 148.36 124.37 m 156.00 124.37 l S 152.18 120.55 m 152.18 128.19 l S 161.83 85.72 m 169.47 85.72 l S 165.65 81.90 m 165.65 89.54 l S 173.44 84.53 m 181.08 84.53 l S 177.26 80.71 m 177.26 88.35 l S 276.58 181.27 m 284.21 181.27 l S 280.39 177.45 m 280.39 185.09 l S 269.84 181.27 m 277.48 181.27 l S 273.66 177.45 m 273.66 185.09 l S 204.60 84.53 m 212.23 84.53 l S 208.41 80.71 m 208.41 88.35 l S 219.20 84.53 m 226.84 84.53 l S 223.02 80.71 m 223.02 88.35 l S 230.34 84.53 m 237.97 84.53 l S 234.15 80.71 m 234.15 88.35 l S 238.16 84.53 m 245.79 84.53 l S 241.98 80.71 m 241.98 88.35 l S 182.79 84.53 m 190.43 84.53 l S 186.61 80.71 m 186.61 88.35 l S 128.67 166.87 m 136.31 166.87 l S 132.49 163.05 m 132.49 170.69 l S 212.80 84.53 m 220.44 84.53 l S 216.62 80.71 m 216.62 88.35 l S 190.40 84.53 m 198.04 84.53 l S 194.22 80.71 m 194.22 88.35 l S 191.11 84.53 m 198.74 84.53 l S 194.92 80.71 m 194.92 88.35 l S 253.12 131.65 m 260.76 131.65 l S 256.94 127.84 m 256.94 135.47 l S 213.76 84.53 m 221.40 84.53 l S 217.58 80.71 m 217.58 88.35 l S 156.93 89.95 m 164.56 89.95 l S 160.74 86.13 m 160.74 93.77 l S 226.26 84.53 m 233.90 84.53 l S 230.08 80.71 m 230.08 88.35 l S 190.48 84.53 m 198.11 84.53 l S 194.30 80.71 m 194.30 88.35 l S 187.12 84.53 m 194.75 84.53 l S 190.93 80.71 m 190.93 88.35 l S 180.98 84.53 m 188.62 84.53 l S 184.80 80.71 m 184.80 88.35 l S 153.74 103.82 m 161.38 103.82 l S 157.56 100.00 m 157.56 107.64 l S 207.76 84.53 m 215.40 84.53 l S 211.58 80.71 m 211.58 88.35 l S 198.54 84.53 m 206.18 84.53 l S 202.36 80.71 m 202.36 88.35 l S 228.74 84.53 m 236.37 84.53 l S 232.56 80.71 m 232.56 88.35 l S 265.88 181.27 m 273.51 181.27 l S 269.70 177.45 m 269.70 185.09 l S 214.53 84.53 m 222.17 84.53 l S 218.35 80.71 m 218.35 88.35 l S 219.01 84.53 m 226.65 84.53 l S 222.83 80.71 m 222.83 88.35 l S 240.08 89.06 m 247.72 89.06 l S 243.90 85.25 m 243.90 92.88 l S 202.92 84.53 m 210.56 84.53 l S 206.74 80.71 m 206.74 88.35 l S 163.27 84.53 m 170.91 84.53 l S 167.09 80.71 m 167.09 88.35 l S 182.83 84.53 m 190.47 84.53 l S 186.65 80.71 m 186.65 88.35 l S 231.25 84.53 m 238.89 84.53 l S 235.07 80.71 m 235.07 88.35 l S 190.17 84.53 m 197.81 84.53 l S 193.99 80.71 m 193.99 88.35 l S 259.40 156.44 m 267.04 156.44 l S 263.22 152.62 m 263.22 160.26 l S 240.71 86.56 m 248.34 86.56 l S 244.52 82.74 m 244.52 90.38 l S 160.48 90.84 m 168.12 90.84 l S 164.30 87.02 m 164.30 94.65 l S 235.82 84.53 m 243.45 84.53 l S 239.63 80.71 m 239.63 88.35 l S 213.77 84.53 m 221.41 84.53 l S 217.59 80.71 m 217.59 88.35 l S 222.91 84.53 m 230.55 84.53 l S 226.73 80.71 m 226.73 88.35 l S 266.83 166.87 m 274.47 166.87 l S 270.65 163.05 m 270.65 170.69 l S 238.70 84.53 m 246.34 84.53 l S 242.52 80.71 m 242.52 88.35 l S 150.65 103.82 m 158.29 103.82 l S 154.47 100.00 m 154.47 107.64 l S 226.50 84.53 m 234.13 84.53 l S 230.31 80.71 m 230.31 88.35 l S 228.99 84.53 m 236.63 84.53 l S 232.81 80.71 m 232.81 88.35 l S 262.98 166.87 m 270.62 166.87 l S 266.80 163.05 m 266.80 170.69 l S 242.70 89.06 m 250.33 89.06 l S 246.51 85.25 m 246.51 92.88 l S 165.65 84.53 m 173.29 84.53 l S 169.47 80.71 m 169.47 88.35 l S 204.14 84.53 m 211.78 84.53 l S 207.96 80.71 m 207.96 88.35 l S 212.31 84.53 m 219.94 84.53 l S 216.12 80.71 m 216.12 88.35 l S 186.77 84.53 m 194.40 84.53 l S 190.58 80.71 m 190.58 88.35 l S 235.94 84.53 m 243.57 84.53 l S 239.75 80.71 m 239.75 88.35 l S 233.64 84.53 m 241.27 84.53 l S 237.46 80.71 m 237.46 88.35 l S 195.43 84.53 m 203.07 84.53 l S 199.25 80.71 m 199.25 88.35 l S 196.52 84.53 m 204.16 84.53 l S 200.34 80.71 m 200.34 88.35 l S 184.18 84.53 m 191.81 84.53 l S 188.00 80.71 m 188.00 88.35 l S 260.17 166.87 m 267.81 166.87 l S 263.99 163.05 m 263.99 170.69 l S 284.81 181.27 m 292.44 181.27 l S 288.62 177.45 m 288.62 185.09 l S 165.65 84.53 m 173.29 84.53 l S 169.47 80.71 m 169.47 88.35 l S 219.30 84.53 m 226.93 84.53 l S 223.11 80.71 m 223.11 88.35 l S 229.37 84.53 m 237.01 84.53 l S 233.19 80.71 m 233.19 88.35 l S 140.42 181.27 m 148.05 181.27 l S 144.24 177.45 m 144.24 185.09 l S 157.07 112.10 m 164.71 112.10 l S 160.89 108.28 m 160.89 115.92 l S 266.78 181.27 m 274.41 181.27 l S 270.59 177.45 m 270.59 185.09 l S 250.92 106.97 m 258.56 106.97 l S 254.74 103.15 m 254.74 110.79 l S 243.12 91.76 m 250.75 91.76 l S 246.94 87.94 m 246.94 95.58 l S 256.78 116.55 m 264.41 116.55 l S 260.59 112.73 m 260.59 120.37 l S 230.95 84.53 m 238.58 84.53 l S 234.76 80.71 m 234.76 88.35 l S 253.04 136.12 m 260.68 136.12 l S 256.86 132.30 m 256.86 139.93 l S 191.36 84.53 m 198.99 84.53 l S 195.18 80.71 m 195.18 88.35 l S 254.61 124.37 m 262.25 124.37 l S 258.43 120.55 m 258.43 128.19 l S 177.07 84.53 m 184.71 84.53 l S 180.89 80.71 m 180.89 88.35 l S 157.31 91.76 m 164.95 91.76 l S 161.13 87.94 m 161.13 95.58 l S 238.69 84.53 m 246.33 84.53 l S 242.51 80.71 m 242.51 88.35 l S 240.02 108.67 m 247.66 108.67 l S 243.84 104.86 m 243.84 112.49 l S 204.72 84.53 m 212.35 84.53 l S 208.53 80.71 m 208.53 88.35 l S 258.66 118.76 m 266.30 118.76 l S 262.48 114.94 m 262.48 122.58 l S 149.59 118.76 m 157.22 118.76 l S 153.41 114.94 m 153.41 122.58 l S 237.60 84.53 m 245.23 84.53 l S 241.41 80.71 m 241.41 88.35 l S 180.47 84.53 m 188.10 84.53 l S 184.29 80.71 m 184.29 88.35 l S 140.85 181.27 m 148.48 181.27 l S 144.67 177.45 m 144.67 185.09 l S 212.31 84.53 m 219.95 84.53 l S 216.13 80.71 m 216.13 88.35 l S 233.42 84.53 m 241.06 84.53 l S 237.24 80.71 m 237.24 88.35 l S 228.83 84.53 m 236.47 84.53 l S 232.65 80.71 m 232.65 88.35 l S 230.04 84.53 m 237.68 84.53 l S 233.86 80.71 m 233.86 88.35 l S 157.34 102.50 m 164.97 102.50 l S 161.16 98.68 m 161.16 106.32 l S 169.21 84.53 m 176.85 84.53 l S 173.03 80.71 m 173.03 88.35 l S 197.60 84.53 m 205.23 84.53 l S 201.41 80.71 m 201.41 88.35 l S 185.58 84.53 m 193.22 84.53 l S 189.40 80.71 m 189.40 88.35 l S 213.96 84.53 m 221.60 84.53 l S 217.78 80.71 m 217.78 88.35 l S 202.92 84.53 m 210.56 84.53 l S 206.74 80.71 m 206.74 88.35 l S 218.05 84.53 m 225.69 84.53 l S 221.87 80.71 m 221.87 88.35 l S 223.27 84.53 m 230.91 84.53 l S 227.09 80.71 m 227.09 88.35 l S 286.52 181.27 m 294.16 181.27 l S 290.34 177.45 m 290.34 185.09 l S 176.04 84.53 m 183.68 84.53 l S 179.86 80.71 m 179.86 88.35 l S 194.28 84.53 m 201.92 84.53 l S 198.10 80.71 m 198.10 88.35 l S 139.34 141.48 m 146.97 141.48 l S 143.16 137.67 m 143.16 145.30 l S 117.45 181.27 m 125.09 181.27 l S 121.27 177.45 m 121.27 185.09 l S 145.51 108.67 m 153.15 108.67 l S 149.33 104.86 m 149.33 112.49 l S 158.06 93.96 m 165.69 93.96 l S 161.88 90.14 m 161.88 97.78 l S 207.35 84.53 m 214.98 84.53 l S 211.16 80.71 m 211.16 88.35 l S 217.32 84.53 m 224.96 84.53 l S 221.14 80.71 m 221.14 88.35 l S 228.88 84.53 m 236.52 84.53 l S 232.70 80.71 m 232.70 88.35 l S 158.42 91.76 m 166.05 91.76 l S 162.24 87.94 m 162.24 95.58 l S 339.52 181.27 m 347.15 181.27 l S 343.33 177.45 m 343.33 185.09 l S 187.09 84.53 m 194.73 84.53 l S 190.91 80.71 m 190.91 88.35 l S 126.31 181.27 m 133.95 181.27 l S 130.13 177.45 m 130.13 185.09 l S 220.03 84.53 m 227.67 84.53 l S 223.85 80.71 m 223.85 88.35 l S 201.52 84.53 m 209.15 84.53 l S 205.33 80.71 m 205.33 88.35 l S 211.31 84.53 m 218.95 84.53 l S 215.13 80.71 m 215.13 88.35 l S 244.77 103.82 m 252.41 103.82 l S 248.59 100.00 m 248.59 107.64 l S 222.84 84.53 m 230.48 84.53 l S 226.66 80.71 m 226.66 88.35 l S 180.29 84.53 m 187.93 84.53 l S 184.11 80.71 m 184.11 88.35 l S 218.31 84.53 m 225.94 84.53 l S 222.13 80.71 m 222.13 88.35 l S 175.13 84.53 m 182.76 84.53 l S 178.94 80.71 m 178.94 88.35 l S 252.81 141.48 m 260.45 141.48 l S 256.63 137.67 m 256.63 145.30 l S 232.94 84.53 m 240.58 84.53 l S 236.76 80.71 m 236.76 88.35 l S 162.60 84.53 m 170.24 84.53 l S 166.42 80.71 m 166.42 88.35 l S 235.11 84.53 m 242.75 84.53 l S 238.93 80.71 m 238.93 88.35 l S 223.72 84.53 m 231.35 84.53 l S 227.53 80.71 m 227.53 88.35 l S 102.44 181.27 m 110.08 181.27 l S 106.26 177.45 m 106.26 185.09 l S 210.72 84.53 m 218.36 84.53 l S 214.54 80.71 m 214.54 88.35 l S 223.41 84.53 m 231.05 84.53 l S 227.23 80.71 m 227.23 88.35 l S 239.79 84.53 m 247.42 84.53 l S 243.60 80.71 m 243.60 88.35 l S 237.33 84.53 m 244.97 84.53 l S 241.15 80.71 m 241.15 88.35 l S 202.19 84.53 m 209.82 84.53 l S 206.00 80.71 m 206.00 88.35 l S 238.33 90.84 m 245.97 90.84 l S 242.15 87.02 m 242.15 94.65 l S 234.77 84.53 m 242.41 84.53 l S 238.59 80.71 m 238.59 88.35 l S 201.59 84.53 m 209.23 84.53 l S 205.41 80.71 m 205.41 88.35 l S 174.68 84.53 m 182.31 84.53 l S 178.50 80.71 m 178.50 88.35 l S 185.23 84.53 m 192.87 84.53 l S 189.05 80.71 m 189.05 88.35 l S 117.61 181.27 m 125.24 181.27 l S 121.42 177.45 m 121.42 185.09 l S 202.96 84.53 m 210.60 84.53 l S 206.78 80.71 m 206.78 88.35 l S 173.16 84.53 m 180.79 84.53 l S 176.97 80.71 m 176.97 88.35 l S 204.06 84.53 m 211.69 84.53 l S 207.87 80.71 m 207.87 88.35 l S 257.58 136.12 m 265.22 136.12 l S 261.40 132.30 m 261.40 139.93 l S 221.51 84.53 m 229.14 84.53 l S 225.32 80.71 m 225.32 88.35 l S 184.51 84.53 m 192.15 84.53 l S 188.33 80.71 m 188.33 88.35 l S 215.79 84.53 m 223.43 84.53 l S 219.61 80.71 m 219.61 88.35 l S 222.36 84.53 m 229.99 84.53 l S 226.18 80.71 m 226.18 88.35 l S 272.67 181.27 m 280.31 181.27 l S 276.49 177.45 m 276.49 185.09 l S 228.99 84.53 m 236.63 84.53 l S 232.81 80.71 m 232.81 88.35 l S 160.14 89.06 m 167.77 89.06 l S 163.95 85.25 m 163.95 92.88 l S 236.70 84.53 m 244.34 84.53 l S 240.52 80.71 m 240.52 88.35 l S 222.59 84.53 m 230.23 84.53 l S 226.41 80.71 m 226.41 88.35 l S 183.10 84.53 m 190.74 84.53 l S 186.92 80.71 m 186.92 88.35 l S 136.72 156.44 m 144.36 156.44 l S 140.54 152.62 m 140.54 160.26 l S 261.52 166.87 m 269.16 166.87 l S 265.34 163.05 m 265.34 170.69 l S 198.54 84.53 m 206.18 84.53 l S 202.36 80.71 m 202.36 88.35 l S 81.72 181.27 m 89.35 181.27 l S 85.53 177.45 m 85.53 185.09 l S 220.43 84.53 m 228.07 84.53 l S 224.25 80.71 m 224.25 88.35 l S 277.25 181.27 m 284.89 181.27 l S 281.07 177.45 m 281.07 185.09 l S 214.99 84.53 m 222.62 84.53 l S 218.81 80.71 m 218.81 88.35 l S 201.20 84.53 m 208.83 84.53 l S 205.02 80.71 m 205.02 88.35 l S 222.68 84.53 m 230.32 84.53 l S 226.50 80.71 m 226.50 88.35 l S 230.60 84.53 m 238.24 84.53 l S 234.42 80.71 m 234.42 88.35 l S 230.75 84.53 m 238.38 84.53 l S 234.56 80.71 m 234.56 88.35 l S 129.55 156.44 m 137.19 156.44 l S 133.37 152.62 m 133.37 160.26 l S 232.60 84.53 m 240.23 84.53 l S 236.41 80.71 m 236.41 88.35 l S 233.64 84.53 m 241.28 84.53 l S 237.46 80.71 m 237.46 88.35 l S 285.13 181.27 m 292.76 181.27 l S 288.95 177.45 m 288.95 185.09 l S 182.22 84.53 m 189.86 84.53 l S 186.04 80.71 m 186.04 88.35 l S 221.66 84.53 m 229.29 84.53 l S 225.47 80.71 m 225.47 88.35 l S 226.92 84.53 m 234.56 84.53 l S 230.74 80.71 m 230.74 88.35 l S 186.97 84.53 m 194.60 84.53 l S 190.79 80.71 m 190.79 88.35 l S 262.46 166.87 m 270.10 166.87 l S 266.28 163.05 m 266.28 170.69 l S 211.15 84.53 m 218.78 84.53 l S 214.97 80.71 m 214.97 88.35 l S 310.74 181.27 m 318.37 181.27 l S 314.56 177.45 m 314.56 185.09 l S 320.26 181.27 m 327.90 181.27 l S 324.08 177.45 m 324.08 185.09 l S 209.59 84.53 m 217.23 84.53 l S 213.41 80.71 m 213.41 88.35 l S 180.46 84.53 m 188.10 84.53 l S 184.28 80.71 m 184.28 88.35 l S 258.12 156.44 m 265.76 156.44 l S 261.94 152.62 m 261.94 160.26 l S 150.70 106.97 m 158.33 106.97 l S 154.52 103.15 m 154.52 110.79 l S 259.82 181.27 m 267.46 181.27 l S 263.64 177.45 m 263.64 185.09 l S 293.32 181.27 m 300.95 181.27 l S 297.14 177.45 m 297.14 185.09 l S 259.37 181.27 m 267.00 181.27 l S 263.18 177.45 m 263.18 185.09 l S 244.80 94.98 m 252.43 94.98 l S 248.62 91.16 m 248.62 98.80 l S 107.68 181.27 m 115.31 181.27 l S 111.49 177.45 m 111.49 185.09 l S 157.42 84.53 m 165.06 84.53 l S 161.24 80.71 m 161.24 88.35 l S 194.20 84.53 m 201.83 84.53 l S 198.01 80.71 m 198.01 88.35 l S 200.30 84.53 m 207.94 84.53 l S 204.12 80.71 m 204.12 88.35 l S 170.00 84.53 m 177.64 84.53 l S 173.82 80.71 m 173.82 88.35 l S 190.64 84.53 m 198.28 84.53 l S 194.46 80.71 m 194.46 88.35 l S 206.16 84.53 m 213.80 84.53 l S 209.98 80.71 m 209.98 88.35 l S 238.60 85.72 m 246.23 85.72 l S 242.41 81.90 m 242.41 89.54 l S 255.53 156.44 m 263.17 156.44 l S 259.35 152.62 m 259.35 160.26 l S 190.22 84.53 m 197.85 84.53 l S 194.04 80.71 m 194.04 88.35 l S 161.80 91.76 m 169.43 91.76 l S 165.62 87.94 m 165.62 95.58 l S 212.85 84.53 m 220.49 84.53 l S 216.67 80.71 m 216.67 88.35 l S 193.64 84.53 m 201.28 84.53 l S 197.46 80.71 m 197.46 88.35 l S 123.96 166.87 m 131.60 166.87 l S 127.78 163.05 m 127.78 170.69 l S 180.08 84.53 m 187.71 84.53 l S 183.89 80.71 m 183.89 88.35 l S 223.40 84.53 m 231.03 84.53 l S 227.21 80.71 m 227.21 88.35 l S 227.16 84.53 m 234.79 84.53 l S 230.97 80.71 m 230.97 88.35 l S 184.33 84.53 m 191.97 84.53 l S 188.15 80.71 m 188.15 88.35 l S 197.34 84.53 m 204.97 84.53 l S 201.15 80.71 m 201.15 88.35 l S 246.85 118.76 m 254.49 118.76 l S 250.67 114.94 m 250.67 122.58 l S 134.93 166.87 m 142.57 166.87 l S 138.75 163.05 m 138.75 170.69 l S 232.58 84.53 m 240.21 84.53 l S 236.40 80.71 m 236.40 88.35 l S 223.90 84.53 m 231.54 84.53 l S 227.72 80.71 m 227.72 88.35 l S 238.98 84.53 m 246.62 84.53 l S 242.80 80.71 m 242.80 88.35 l S 201.72 84.53 m 209.36 84.53 l S 205.54 80.71 m 205.54 88.35 l S 252.92 156.44 m 260.55 156.44 l S 256.74 152.62 m 256.74 160.26 l S 196.02 84.53 m 203.66 84.53 l S 199.84 80.71 m 199.84 88.35 l S 263.19 166.87 m 270.83 166.87 l S 267.01 163.05 m 267.01 170.69 l S 220.28 84.53 m 227.92 84.53 l S 224.10 80.71 m 224.10 88.35 l S 82.64 181.27 m 90.28 181.27 l S 86.46 177.45 m 86.46 185.09 l S 273.24 166.87 m 280.88 166.87 l S 277.06 163.05 m 277.06 170.69 l S 175.69 84.53 m 183.32 84.53 l S 179.50 80.71 m 179.50 88.35 l S 192.24 84.53 m 199.88 84.53 l S 196.06 80.71 m 196.06 88.35 l S 164.85 84.53 m 172.49 84.53 l S 168.67 80.71 m 168.67 88.35 l S 198.34 84.53 m 205.98 84.53 l S 202.16 80.71 m 202.16 88.35 l S 183.10 84.53 m 190.74 84.53 l S 186.92 80.71 m 186.92 88.35 l S 214.08 84.53 m 221.72 84.53 l S 217.90 80.71 m 217.90 88.35 l S 223.70 84.53 m 231.34 84.53 l S 227.52 80.71 m 227.52 88.35 l S 220.54 84.53 m 228.18 84.53 l S 224.36 80.71 m 224.36 88.35 l S 232.84 84.53 m 240.48 84.53 l S 236.66 80.71 m 236.66 88.35 l S 244.98 101.07 m 252.62 101.07 l S 248.80 97.26 m 248.80 104.89 l S 276.13 181.27 m 283.77 181.27 l S 279.95 177.45 m 279.95 185.09 l S 242.90 84.53 m 250.53 84.53 l S 246.72 80.71 m 246.72 88.35 l S 177.86 84.53 m 185.49 84.53 l S 181.67 80.71 m 181.67 88.35 l S 179.30 84.53 m 186.93 84.53 l S 183.11 80.71 m 183.11 88.35 l S 246.08 99.78 m 253.71 99.78 l S 249.89 95.96 m 249.89 103.60 l S 199.13 84.53 m 206.77 84.53 l S 202.95 80.71 m 202.95 88.35 l S 164.08 84.53 m 171.71 84.53 l S 167.90 80.71 m 167.90 88.35 l S 207.00 84.53 m 214.64 84.53 l S 210.82 80.71 m 210.82 88.35 l S 211.63 84.53 m 219.27 84.53 l S 215.45 80.71 m 215.45 88.35 l S 214.51 84.53 m 222.15 84.53 l S 218.33 80.71 m 218.33 88.35 l S 207.19 84.53 m 214.83 84.53 l S 211.01 80.71 m 211.01 88.35 l S 219.19 84.53 m 226.83 84.53 l S 223.01 80.71 m 223.01 88.35 l S 200.58 84.53 m 208.21 84.53 l S 204.39 80.71 m 204.39 88.35 l S 161.73 84.53 m 169.37 84.53 l S 165.55 80.71 m 165.55 88.35 l S 191.42 84.53 m 199.06 84.53 l S 195.24 80.71 m 195.24 88.35 l S 159.85 89.95 m 167.49 89.95 l S 163.67 86.13 m 163.67 93.77 l S 230.67 84.53 m 238.31 84.53 l S 234.49 80.71 m 234.49 88.35 l S 207.13 84.53 m 214.77 84.53 l S 210.95 80.71 m 210.95 88.35 l S 175.79 84.53 m 183.42 84.53 l S 179.61 80.71 m 179.61 88.35 l S 187.30 84.53 m 194.94 84.53 l S 191.12 80.71 m 191.12 88.35 l S 292.31 181.27 m 299.95 181.27 l S 296.13 177.45 m 296.13 185.09 l S 226.74 84.53 m 234.37 84.53 l S 230.55 80.71 m 230.55 88.35 l S 115.12 166.87 m 122.76 166.87 l S 118.94 163.05 m 118.94 170.69 l S 192.39 84.53 m 200.03 84.53 l S 196.21 80.71 m 196.21 88.35 l S 241.85 84.53 m 249.49 84.53 l S 245.67 80.71 m 245.67 88.35 l S 221.71 84.53 m 229.34 84.53 l S 225.53 80.71 m 225.53 88.35 l S 251.05 156.44 m 258.69 156.44 l S 254.87 152.62 m 254.87 160.26 l S 206.84 84.53 m 214.48 84.53 l S 210.66 80.71 m 210.66 88.35 l S 218.57 84.53 m 226.21 84.53 l S 222.39 80.71 m 222.39 88.35 l S 274.27 166.87 m 281.90 166.87 l S 278.09 163.05 m 278.09 170.69 l S 204.48 84.53 m 212.12 84.53 l S 208.30 80.71 m 208.30 88.35 l S 210.75 84.53 m 218.39 84.53 l S 214.57 80.71 m 214.57 88.35 l S 198.16 84.53 m 205.80 84.53 l S 201.98 80.71 m 201.98 88.35 l S 171.60 84.53 m 179.24 84.53 l S 175.42 80.71 m 175.42 88.35 l S 208.09 84.53 m 215.73 84.53 l S 211.91 80.71 m 211.91 88.35 l S 303.23 181.27 m 310.86 181.27 l S 307.04 177.45 m 307.04 185.09 l S 289.84 181.27 m 297.48 181.27 l S 293.66 177.45 m 293.66 185.09 l S 178.00 84.53 m 185.64 84.53 l S 181.82 80.71 m 181.82 88.35 l S 276.19 166.87 m 283.82 166.87 l S 280.00 163.05 m 280.00 170.69 l S 128.38 166.87 m 136.02 166.87 l S 132.20 163.05 m 132.20 170.69 l S 207.25 84.53 m 214.89 84.53 l S 211.07 80.71 m 211.07 88.35 l S 172.79 84.53 m 180.43 84.53 l S 176.61 80.71 m 176.61 88.35 l S 217.55 84.53 m 225.18 84.53 l S 221.36 80.71 m 221.36 88.35 l S 190.37 84.53 m 198.00 84.53 l S 194.19 80.71 m 194.19 88.35 l S 216.20 84.53 m 223.83 84.53 l S 220.02 80.71 m 220.02 88.35 l S 215.02 84.53 m 222.65 84.53 l S 218.83 80.71 m 218.83 88.35 l S 188.72 84.53 m 196.36 84.53 l S 192.54 80.71 m 192.54 88.35 l S 276.86 181.27 m 284.49 181.27 l S 280.68 177.45 m 280.68 185.09 l S 185.72 84.53 m 193.36 84.53 l S 189.54 80.71 m 189.54 88.35 l S 238.08 88.17 m 245.71 88.17 l S 241.90 84.35 m 241.90 91.99 l S 179.10 84.53 m 186.74 84.53 l S 182.92 80.71 m 182.92 88.35 l S 226.49 84.53 m 234.13 84.53 l S 230.31 80.71 m 230.31 88.35 l S 237.95 84.53 m 245.59 84.53 l S 241.77 80.71 m 241.77 88.35 l S 205.44 84.53 m 213.08 84.53 l S 209.26 80.71 m 209.26 88.35 l S 234.32 84.53 m 241.96 84.53 l S 238.14 80.71 m 238.14 88.35 l S 209.64 84.53 m 217.28 84.53 l S 213.46 80.71 m 213.46 88.35 l S 151.82 93.96 m 159.46 93.96 l S 155.64 90.14 m 155.64 97.78 l S 205.00 84.53 m 212.64 84.53 l S 208.82 80.71 m 208.82 88.35 l S 219.08 84.53 m 226.71 84.53 l S 222.89 80.71 m 222.89 88.35 l S 251.70 106.97 m 259.34 106.97 l S 255.52 103.15 m 255.52 110.79 l S 184.74 84.53 m 192.38 84.53 l S 188.56 80.71 m 188.56 88.35 l S 216.81 84.53 m 224.45 84.53 l S 220.63 80.71 m 220.63 88.35 l S 165.08 84.53 m 172.72 84.53 l S 168.90 80.71 m 168.90 88.35 l S 231.08 84.53 m 238.71 84.53 l S 234.90 80.71 m 234.90 88.35 l S 249.00 118.76 m 256.64 118.76 l S 252.82 114.94 m 252.82 122.58 l S 209.82 84.53 m 217.45 84.53 l S 213.64 80.71 m 213.64 88.35 l S 210.65 84.53 m 218.29 84.53 l S 214.47 80.71 m 214.47 88.35 l S 216.46 84.53 m 224.09 84.53 l S 220.28 80.71 m 220.28 88.35 l S 211.55 84.53 m 219.19 84.53 l S 215.37 80.71 m 215.37 88.35 l S 163.97 84.53 m 171.61 84.53 l S 167.79 80.71 m 167.79 88.35 l S 177.34 84.53 m 184.97 84.53 l S 181.15 80.71 m 181.15 88.35 l S 163.08 84.53 m 170.71 84.53 l S 166.89 80.71 m 166.89 88.35 l S 110.62 166.87 m 118.26 166.87 l S 114.44 163.05 m 114.44 170.69 l S 138.04 166.87 m 145.68 166.87 l S 141.86 163.05 m 141.86 170.69 l S 207.63 84.53 m 215.27 84.53 l S 211.45 80.71 m 211.45 88.35 l S 183.96 84.53 m 191.60 84.53 l S 187.78 80.71 m 187.78 88.35 l S 156.15 102.50 m 163.78 102.50 l S 159.97 98.68 m 159.97 106.32 l S 250.14 127.56 m 257.77 127.56 l S 253.96 123.74 m 253.96 131.38 l S 263.79 141.48 m 271.43 141.48 l S 267.61 137.67 m 267.61 145.30 l S 201.83 84.53 m 209.46 84.53 l S 205.65 80.71 m 205.65 88.35 l S 117.28 166.87 m 124.91 166.87 l S 121.09 163.05 m 121.09 170.69 l S 223.33 84.53 m 230.97 84.53 l S 227.15 80.71 m 227.15 88.35 l S 214.11 84.53 m 221.74 84.53 l S 217.93 80.71 m 217.93 88.35 l S 183.08 84.53 m 190.72 84.53 l S 186.90 80.71 m 186.90 88.35 l S 129.44 166.87 m 137.07 166.87 l S 133.25 163.05 m 133.25 170.69 l S 222.70 84.53 m 230.34 84.53 l S 226.52 80.71 m 226.52 88.35 l S 278.65 181.27 m 286.29 181.27 l S 282.47 177.45 m 282.47 185.09 l S 80.18 181.27 m 87.81 181.27 l S 84.00 177.45 m 84.00 185.09 l S 152.27 121.07 m 159.90 121.07 l S 156.09 117.26 m 156.09 124.89 l S 132.28 166.87 m 139.92 166.87 l S 136.10 163.05 m 136.10 170.69 l S 150.15 127.56 m 157.79 127.56 l S 153.97 123.74 m 153.97 131.38 l S 188.48 84.53 m 196.11 84.53 l S 192.30 80.71 m 192.30 88.35 l S 188.35 84.53 m 195.99 84.53 l S 192.17 80.71 m 192.17 88.35 l S 190.49 84.53 m 198.12 84.53 l S 194.30 80.71 m 194.30 88.35 l S 215.80 84.53 m 223.43 84.53 l S 219.62 80.71 m 219.62 88.35 l S 203.75 84.53 m 211.39 84.53 l S 207.57 80.71 m 207.57 88.35 l S 211.74 84.53 m 219.37 84.53 l S 215.56 80.71 m 215.56 88.35 l S 220.13 84.53 m 227.76 84.53 l S 223.94 80.71 m 223.94 88.35 l S 226.24 84.53 m 233.87 84.53 l S 230.05 80.71 m 230.05 88.35 l S 304.88 181.27 m 312.52 181.27 l S 308.70 177.45 m 308.70 185.09 l S 195.48 84.53 m 203.12 84.53 l S 199.30 80.71 m 199.30 88.35 l S 144.09 121.07 m 151.72 121.07 l S 147.91 117.26 m 147.91 124.89 l S 207.53 84.53 m 215.17 84.53 l S 211.35 80.71 m 211.35 88.35 l S 153.31 114.13 m 160.95 114.13 l S 157.13 110.31 m 157.13 117.95 l S 168.19 84.53 m 175.82 84.53 l S 172.00 80.71 m 172.00 88.35 l S 190.72 84.53 m 198.36 84.53 l S 194.54 80.71 m 194.54 88.35 l S 237.93 84.53 m 245.57 84.53 l S 241.75 80.71 m 241.75 88.35 l S 283.65 181.27 m 291.29 181.27 l S 287.47 177.45 m 287.47 185.09 l S 230.54 84.53 m 238.18 84.53 l S 234.36 80.71 m 234.36 88.35 l S 221.58 84.53 m 229.22 84.53 l S 225.40 80.71 m 225.40 88.35 l S 225.32 84.53 m 232.95 84.53 l S 229.14 80.71 m 229.14 88.35 l S 236.60 84.53 m 244.24 84.53 l S 240.42 80.71 m 240.42 88.35 l S 194.00 84.53 m 201.64 84.53 l S 197.82 80.71 m 197.82 88.35 l S 206.28 84.53 m 213.91 84.53 l S 210.09 80.71 m 210.09 88.35 l S 162.21 84.53 m 169.84 84.53 l S 166.02 80.71 m 166.02 88.35 l S 90.20 181.27 m 97.83 181.27 l S 94.01 177.45 m 94.01 185.09 l S 204.51 84.53 m 212.15 84.53 l S 208.33 80.71 m 208.33 88.35 l S 166.31 84.53 m 173.94 84.53 l S 170.12 80.71 m 170.12 88.35 l S 202.96 84.53 m 210.60 84.53 l S 206.78 80.71 m 206.78 88.35 l S 176.43 84.53 m 184.07 84.53 l S 180.25 80.71 m 180.25 88.35 l S 247.91 103.82 m 255.55 103.82 l S 251.73 100.00 m 251.73 107.64 l S 217.17 84.53 m 224.80 84.53 l S 220.98 80.71 m 220.98 88.35 l S 221.60 84.53 m 229.23 84.53 l S 225.42 80.71 m 225.42 88.35 l S 254.71 136.12 m 262.34 136.12 l S 258.52 132.30 m 258.52 139.93 l S 214.11 84.53 m 221.75 84.53 l S 217.93 80.71 m 217.93 88.35 l S 196.42 84.53 m 204.06 84.53 l S 200.24 80.71 m 200.24 88.35 l S 236.36 84.53 m 244.00 84.53 l S 240.18 80.71 m 240.18 88.35 l S 184.12 84.53 m 191.75 84.53 l S 187.94 80.71 m 187.94 88.35 l S 142.63 141.48 m 150.26 141.48 l S 146.44 137.67 m 146.44 145.30 l S 218.76 84.53 m 226.40 84.53 l S 222.58 80.71 m 222.58 88.35 l S 147.70 136.12 m 155.33 136.12 l S 151.51 132.30 m 151.51 139.93 l S 163.83 84.53 m 171.46 84.53 l S 167.65 80.71 m 167.65 88.35 l S 186.32 84.53 m 193.96 84.53 l S 190.14 80.71 m 190.14 88.35 l S 271.68 166.87 m 279.32 166.87 l S 275.50 163.05 m 275.50 170.69 l S 225.13 84.53 m 232.76 84.53 l S 228.95 80.71 m 228.95 88.35 l S 206.41 84.53 m 214.04 84.53 l S 210.22 80.71 m 210.22 88.35 l S 215.35 84.53 m 222.98 84.53 l S 219.17 80.71 m 219.17 88.35 l S 76.21 181.27 m 83.84 181.27 l S 80.02 177.45 m 80.02 185.09 l S 219.93 84.53 m 227.57 84.53 l S 223.75 80.71 m 223.75 88.35 l S 197.33 84.53 m 204.97 84.53 l S 201.15 80.71 m 201.15 88.35 l S 182.57 84.53 m 190.21 84.53 l S 186.39 80.71 m 186.39 88.35 l S 208.59 84.53 m 216.23 84.53 l S 212.41 80.71 m 212.41 88.35 l S 262.13 156.44 m 269.77 156.44 l S 265.95 152.62 m 265.95 160.26 l S 208.61 84.53 m 216.25 84.53 l S 212.43 80.71 m 212.43 88.35 l S 219.23 84.53 m 226.86 84.53 l S 223.04 80.71 m 223.04 88.35 l S 224.32 84.53 m 231.96 84.53 l S 228.14 80.71 m 228.14 88.35 l S 115.78 181.27 m 123.41 181.27 l S 119.60 177.45 m 119.60 185.09 l S 155.32 88.17 m 162.95 88.17 l S 159.13 84.35 m 159.13 91.99 l S 247.45 108.67 m 255.09 108.67 l S 251.27 104.86 m 251.27 112.49 l S 166.81 84.53 m 174.44 84.53 l S 170.63 80.71 m 170.63 88.35 l S 194.63 84.53 m 202.26 84.53 l S 198.45 80.71 m 198.45 88.35 l S 262.14 181.27 m 269.77 181.27 l S 265.96 177.45 m 265.96 185.09 l S 205.42 84.53 m 213.05 84.53 l S 209.24 80.71 m 209.24 88.35 l S 173.22 84.53 m 180.85 84.53 l S 177.03 80.71 m 177.03 88.35 l S 189.23 84.53 m 196.87 84.53 l S 193.05 80.71 m 193.05 88.35 l S 254.23 148.08 m 261.86 148.08 l S 258.05 144.26 m 258.05 151.90 l S 277.34 181.27 m 284.98 181.27 l S 281.16 177.45 m 281.16 185.09 l S 172.53 84.53 m 180.17 84.53 l S 176.35 80.71 m 176.35 88.35 l S 218.79 84.53 m 226.43 84.53 l S 222.61 80.71 m 222.61 88.35 l S 222.01 84.53 m 229.64 84.53 l S 225.83 80.71 m 225.83 88.35 l S 264.50 148.08 m 272.13 148.08 l S 268.31 144.26 m 268.31 151.90 l S 227.23 84.53 m 234.87 84.53 l S 231.05 80.71 m 231.05 88.35 l S 164.73 84.53 m 172.36 84.53 l S 168.54 80.71 m 168.54 88.35 l S 149.33 84.53 m 156.97 84.53 l S 153.15 80.71 m 153.15 88.35 l S 204.09 84.53 m 211.73 84.53 l S 207.91 80.71 m 207.91 88.35 l S 122.67 181.27 m 130.31 181.27 l S 126.49 177.45 m 126.49 185.09 l S 229.15 84.53 m 236.79 84.53 l S 232.97 80.71 m 232.97 88.35 l S 221.39 84.53 m 229.03 84.53 l S 225.21 80.71 m 225.21 88.35 l S 194.70 84.53 m 202.34 84.53 l S 198.52 80.71 m 198.52 88.35 l S 216.32 84.53 m 223.95 84.53 l S 220.13 80.71 m 220.13 88.35 l S 236.94 84.53 m 244.58 84.53 l S 240.76 80.71 m 240.76 88.35 l S 203.46 84.53 m 211.09 84.53 l S 207.27 80.71 m 207.27 88.35 l S 202.17 84.53 m 209.80 84.53 l S 205.99 80.71 m 205.99 88.35 l S 225.63 84.53 m 233.26 84.53 l S 229.45 80.71 m 229.45 88.35 l S 136.31 156.44 m 143.94 156.44 l S 140.12 152.62 m 140.12 160.26 l S 119.43 181.27 m 127.07 181.27 l S 123.25 177.45 m 123.25 185.09 l S 177.68 84.53 m 185.32 84.53 l S 181.50 80.71 m 181.50 88.35 l S 193.05 84.53 m 200.69 84.53 l S 196.87 80.71 m 196.87 88.35 l S 199.36 84.53 m 207.00 84.53 l S 203.18 80.71 m 203.18 88.35 l S 193.37 84.53 m 201.00 84.53 l S 197.18 80.71 m 197.18 88.35 l S 167.67 84.53 m 175.31 84.53 l S 171.49 80.71 m 171.49 88.35 l S 185.92 84.53 m 193.56 84.53 l S 189.74 80.71 m 189.74 88.35 l S 210.79 84.53 m 218.43 84.53 l S 214.61 80.71 m 214.61 88.35 l S 223.23 84.53 m 230.87 84.53 l S 227.05 80.71 m 227.05 88.35 l S 208.40 84.53 m 216.04 84.53 l S 212.22 80.71 m 212.22 88.35 l S 227.42 84.53 m 235.05 84.53 l S 231.23 80.71 m 231.23 88.35 l S 177.45 84.53 m 185.09 84.53 l S 181.27 80.71 m 181.27 88.35 l S 195.38 84.53 m 203.02 84.53 l S 199.20 80.71 m 199.20 88.35 l S 151.41 118.76 m 159.05 118.76 l S 155.23 114.94 m 155.23 122.58 l S 137.28 166.87 m 144.92 166.87 l S 141.10 163.05 m 141.10 170.69 l S 264.19 166.87 m 271.83 166.87 l S 268.01 163.05 m 268.01 170.69 l S 220.57 84.53 m 228.21 84.53 l S 224.39 80.71 m 224.39 88.35 l S 247.99 110.42 m 255.63 110.42 l S 251.81 106.60 m 251.81 114.24 l S 133.84 148.08 m 141.48 148.08 l S 137.66 144.26 m 137.66 151.90 l S 207.49 84.53 m 215.13 84.53 l S 211.31 80.71 m 211.31 88.35 l S 191.52 84.53 m 199.16 84.53 l S 195.34 80.71 m 195.34 88.35 l S 211.86 84.53 m 219.49 84.53 l S 215.68 80.71 m 215.68 88.35 l S 217.80 84.53 m 225.43 84.53 l S 221.61 80.71 m 221.61 88.35 l S 191.12 84.53 m 198.75 84.53 l S 194.93 80.71 m 194.93 88.35 l S 189.07 84.53 m 196.71 84.53 l S 192.89 80.71 m 192.89 88.35 l S 216.45 84.53 m 224.08 84.53 l S 220.27 80.71 m 220.27 88.35 l S 227.79 84.53 m 235.43 84.53 l S 231.61 80.71 m 231.61 88.35 l S 217.51 84.53 m 225.15 84.53 l S 221.33 80.71 m 221.33 88.35 l S 241.09 84.53 m 248.73 84.53 l S 244.91 80.71 m 244.91 88.35 l S 250.95 114.13 m 258.58 114.13 l S 254.77 110.31 m 254.77 117.95 l S 248.09 116.55 m 255.73 116.55 l S 251.91 112.73 m 251.91 120.37 l S 303.66 181.27 m 311.29 181.27 l S 307.48 177.45 m 307.48 185.09 l S 309.51 181.27 m 317.14 181.27 l S 313.33 177.45 m 313.33 185.09 l S 298.42 181.27 m 306.06 181.27 l S 302.24 177.45 m 302.24 185.09 l S 189.83 84.53 m 197.47 84.53 l S 193.65 80.71 m 193.65 88.35 l S 245.11 95.87 m 252.74 95.87 l S 248.93 92.05 m 248.93 99.69 l S 163.14 84.53 m 170.77 84.53 l S 166.96 80.71 m 166.96 88.35 l S 230.37 84.53 m 238.01 84.53 l S 234.19 80.71 m 234.19 88.35 l S 238.06 84.53 m 245.70 84.53 l S 241.88 80.71 m 241.88 88.35 l S 237.76 84.53 m 245.40 84.53 l S 241.58 80.71 m 241.58 88.35 l S 225.54 84.53 m 233.18 84.53 l S 229.36 80.71 m 229.36 88.35 l S 206.98 84.53 m 214.62 84.53 l S 210.80 80.71 m 210.80 88.35 l S 239.78 86.56 m 247.42 86.56 l S 243.60 82.74 m 243.60 90.38 l S 210.85 84.53 m 218.48 84.53 l S 214.67 80.71 m 214.67 88.35 l S 210.11 84.53 m 217.75 84.53 l S 213.93 80.71 m 213.93 88.35 l S 200.52 84.53 m 208.15 84.53 l S 204.33 80.71 m 204.33 88.35 l S 195.75 84.53 m 203.39 84.53 l S 199.57 80.71 m 199.57 88.35 l S 174.83 84.53 m 182.47 84.53 l S 178.65 80.71 m 178.65 88.35 l S 288.47 181.27 m 296.10 181.27 l S 292.28 177.45 m 292.28 185.09 l S 195.68 84.53 m 203.31 84.53 l S 199.49 80.71 m 199.49 88.35 l S 67.91 181.27 m 75.55 181.27 l S 71.73 177.45 m 71.73 185.09 l S 223.34 84.53 m 230.98 84.53 l S 227.16 80.71 m 227.16 88.35 l S 250.79 106.97 m 258.42 106.97 l S 254.61 103.15 m 254.61 110.79 l S 216.72 84.53 m 224.36 84.53 l S 220.54 80.71 m 220.54 88.35 l S 207.13 84.53 m 214.77 84.53 l S 210.95 80.71 m 210.95 88.35 l S 216.84 84.53 m 224.47 84.53 l S 220.66 80.71 m 220.66 88.35 l S 256.05 112.10 m 263.69 112.10 l S 259.87 108.28 m 259.87 115.92 l S 203.37 84.53 m 211.01 84.53 l S 207.19 80.71 m 207.19 88.35 l S 157.78 93.96 m 165.41 93.96 l S 161.60 90.14 m 161.60 97.78 l S 177.83 84.53 m 185.47 84.53 l S 181.65 80.71 m 181.65 88.35 l S 195.70 84.53 m 203.33 84.53 l S 199.52 80.71 m 199.52 88.35 l S 94.52 181.27 m 102.15 181.27 l S 98.34 177.45 m 98.34 185.09 l S 217.33 84.53 m 224.96 84.53 l S 221.15 80.71 m 221.15 88.35 l S 259.58 136.12 m 267.21 136.12 l S 263.40 132.30 m 263.40 139.93 l S 236.25 87.35 m 243.89 87.35 l S 240.07 83.53 m 240.07 91.17 l S 238.21 85.72 m 245.84 85.72 l S 242.02 81.90 m 242.02 89.54 l S 114.93 181.27 m 122.57 181.27 l S 118.75 177.45 m 118.75 185.09 l S 190.05 84.53 m 197.69 84.53 l S 193.87 80.71 m 193.87 88.35 l S 178.66 84.53 m 186.30 84.53 l S 182.48 80.71 m 182.48 88.35 l S 284.89 181.27 m 292.53 181.27 l S 288.71 177.45 m 288.71 185.09 l S 150.60 127.56 m 158.23 127.56 l S 154.42 123.74 m 154.42 131.38 l S 214.31 84.53 m 221.95 84.53 l S 218.13 80.71 m 218.13 88.35 l S 155.07 84.53 m 162.70 84.53 l S 158.88 80.71 m 158.88 88.35 l S 212.90 84.53 m 220.54 84.53 l S 216.72 80.71 m 216.72 88.35 l S 192.47 84.53 m 200.11 84.53 l S 196.29 80.71 m 196.29 88.35 l S 251.21 127.56 m 258.84 127.56 l S 255.03 123.74 m 255.03 131.38 l S 225.54 84.53 m 233.18 84.53 l S 229.36 80.71 m 229.36 88.35 l S 236.38 84.53 m 244.01 84.53 l S 240.20 80.71 m 240.20 88.35 l S 202.76 84.53 m 210.40 84.53 l S 206.58 80.71 m 206.58 88.35 l S 242.21 89.06 m 249.85 89.06 l S 246.03 85.25 m 246.03 92.88 l S 271.06 181.27 m 278.69 181.27 l S 274.88 177.45 m 274.88 185.09 l S 192.25 84.53 m 199.89 84.53 l S 196.07 80.71 m 196.07 88.35 l S 223.01 84.53 m 230.65 84.53 l S 226.83 80.71 m 226.83 88.35 l S 226.30 84.53 m 233.94 84.53 l S 230.12 80.71 m 230.12 88.35 l S 169.29 84.53 m 176.93 84.53 l S 173.11 80.71 m 173.11 88.35 l S 220.02 84.53 m 227.65 84.53 l S 223.84 80.71 m 223.84 88.35 l S 218.58 84.53 m 226.22 84.53 l S 222.40 80.71 m 222.40 88.35 l S 209.22 84.53 m 216.86 84.53 l S 213.04 80.71 m 213.04 88.35 l S 261.56 156.44 m 269.20 156.44 l S 265.38 152.62 m 265.38 160.26 l S 191.16 84.53 m 198.80 84.53 l S 194.98 80.71 m 194.98 88.35 l S 190.74 84.53 m 198.37 84.53 l S 194.56 80.71 m 194.56 88.35 l S 212.09 84.53 m 219.72 84.53 l S 215.90 80.71 m 215.90 88.35 l S 215.09 84.53 m 222.73 84.53 l S 218.91 80.71 m 218.91 88.35 l S 172.64 84.53 m 180.27 84.53 l S 176.45 80.71 m 176.45 88.35 l S 155.93 105.39 m 163.57 105.39 l S 159.75 101.57 m 159.75 109.21 l S 162.98 84.53 m 170.62 84.53 l S 166.80 80.71 m 166.80 88.35 l S 135.38 181.27 m 143.01 181.27 l S 139.19 177.45 m 139.19 185.09 l S 215.89 84.53 m 223.53 84.53 l S 219.71 80.71 m 219.71 88.35 l S 179.10 84.53 m 186.73 84.53 l S 182.91 80.71 m 182.91 88.35 l S 148.84 110.42 m 156.47 110.42 l S 152.65 106.60 m 152.65 114.24 l S 267.24 181.27 m 274.88 181.27 l S 271.06 177.45 m 271.06 185.09 l S 228.89 84.53 m 236.53 84.53 l S 232.71 80.71 m 232.71 88.35 l S 232.53 84.53 m 240.16 84.53 l S 236.34 80.71 m 236.34 88.35 l S 211.81 84.53 m 219.45 84.53 l S 215.63 80.71 m 215.63 88.35 l S 237.80 87.35 m 245.44 87.35 l S 241.62 83.53 m 241.62 91.17 l S 213.13 84.53 m 220.77 84.53 l S 216.95 80.71 m 216.95 88.35 l S 214.58 84.53 m 222.22 84.53 l S 218.40 80.71 m 218.40 88.35 l S 192.36 84.53 m 200.00 84.53 l S 196.18 80.71 m 196.18 88.35 l S 176.13 84.53 m 183.77 84.53 l S 179.95 80.71 m 179.95 88.35 l S 212.02 84.53 m 219.66 84.53 l S 215.84 80.71 m 215.84 88.35 l S 221.49 84.53 m 229.12 84.53 l S 225.31 80.71 m 225.31 88.35 l S 164.32 84.53 m 171.96 84.53 l S 168.14 80.71 m 168.14 88.35 l S 156.26 84.78 m 163.90 84.78 l S 160.08 80.97 m 160.08 88.60 l S 226.71 84.53 m 234.34 84.53 l S 230.52 80.71 m 230.52 88.35 l S 225.38 84.53 m 233.02 84.53 l S 229.20 80.71 m 229.20 88.35 l S 231.45 84.53 m 239.09 84.53 l S 235.27 80.71 m 235.27 88.35 l S 213.77 84.53 m 221.40 84.53 l S 217.58 80.71 m 217.58 88.35 l S 177.63 84.53 m 185.27 84.53 l S 181.45 80.71 m 181.45 88.35 l S 210.52 84.53 m 218.15 84.53 l S 214.33 80.71 m 214.33 88.35 l S 233.01 84.53 m 240.65 84.53 l S 236.83 80.71 m 236.83 88.35 l S 228.34 84.53 m 235.98 84.53 l S 232.16 80.71 m 232.16 88.35 l S 199.21 84.53 m 206.85 84.53 l S 203.03 80.71 m 203.03 88.35 l S 238.71 84.53 m 246.35 84.53 l S 242.53 80.71 m 242.53 88.35 l S 212.70 84.53 m 220.33 84.53 l S 216.51 80.71 m 216.51 88.35 l S 232.41 84.53 m 240.05 84.53 l S 236.23 80.71 m 236.23 88.35 l S 202.39 84.53 m 210.02 84.53 l S 206.20 80.71 m 206.20 88.35 l S 258.28 166.87 m 265.92 166.87 l S 262.10 163.05 m 262.10 170.69 l S 198.23 84.53 m 205.87 84.53 l S 202.05 80.71 m 202.05 88.35 l S 202.54 84.53 m 210.18 84.53 l S 206.36 80.71 m 206.36 88.35 l S 187.73 84.53 m 195.37 84.53 l S 191.55 80.71 m 191.55 88.35 l S 237.99 84.53 m 245.63 84.53 l S 241.81 80.71 m 241.81 88.35 l S 224.56 84.53 m 232.20 84.53 l S 228.38 80.71 m 228.38 88.35 l S 201.84 84.53 m 209.48 84.53 l S 205.66 80.71 m 205.66 88.35 l S 218.01 84.53 m 225.65 84.53 l S 221.83 80.71 m 221.83 88.35 l S 219.22 84.53 m 226.86 84.53 l S 223.04 80.71 m 223.04 88.35 l S 173.49 84.53 m 181.12 84.53 l S 177.31 80.71 m 177.31 88.35 l S 191.80 84.53 m 199.44 84.53 l S 195.62 80.71 m 195.62 88.35 l S 194.23 84.53 m 201.86 84.53 l S 198.05 80.71 m 198.05 88.35 l S 201.23 84.53 m 208.87 84.53 l S 205.05 80.71 m 205.05 88.35 l S 193.87 84.53 m 201.51 84.53 l S 197.69 80.71 m 197.69 88.35 l S 210.56 84.53 m 218.20 84.53 l S 214.38 80.71 m 214.38 88.35 l S 214.13 84.53 m 221.77 84.53 l S 217.95 80.71 m 217.95 88.35 l S 262.77 181.27 m 270.40 181.27 l S 266.59 177.45 m 266.59 185.09 l S 210.90 84.53 m 218.54 84.53 l S 214.72 80.71 m 214.72 88.35 l S 185.75 84.53 m 193.38 84.53 l S 189.56 80.71 m 189.56 88.35 l S 193.80 84.53 m 201.44 84.53 l S 197.62 80.71 m 197.62 88.35 l S 222.24 84.53 m 229.87 84.53 l S 226.05 80.71 m 226.05 88.35 l S 189.39 84.53 m 197.03 84.53 l S 193.21 80.71 m 193.21 88.35 l S 165.98 84.53 m 173.62 84.53 l S 169.80 80.71 m 169.80 88.35 l S 203.19 84.53 m 210.83 84.53 l S 207.01 80.71 m 207.01 88.35 l S 224.42 84.53 m 232.06 84.53 l S 228.24 80.71 m 228.24 88.35 l S 179.41 84.53 m 187.05 84.53 l S 183.23 80.71 m 183.23 88.35 l S 216.58 84.53 m 224.22 84.53 l S 220.40 80.71 m 220.40 88.35 l S 198.71 84.53 m 206.35 84.53 l S 202.53 80.71 m 202.53 88.35 l S 222.34 84.53 m 229.97 84.53 l S 226.16 80.71 m 226.16 88.35 l S 195.82 84.53 m 203.46 84.53 l S 199.64 80.71 m 199.64 88.35 l S 188.01 84.53 m 195.65 84.53 l S 191.83 80.71 m 191.83 88.35 l S 89.88 181.27 m 97.52 181.27 l S 93.70 177.45 m 93.70 185.09 l S 200.79 84.53 m 208.42 84.53 l S 204.61 80.71 m 204.61 88.35 l S 205.60 84.53 m 213.24 84.53 l S 209.42 80.71 m 209.42 88.35 l S 232.32 84.53 m 239.96 84.53 l S 236.14 80.71 m 236.14 88.35 l S 201.90 84.53 m 209.53 84.53 l S 205.71 80.71 m 205.71 88.35 l S 257.71 131.65 m 265.34 131.65 l S 261.53 127.84 m 261.53 135.47 l S 0.000 0.000 0.000 RG 195.13 269.42 87.40 -86.40 re S BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 202.97 252.43 Tm (l) Tj 0 Tr ET 1.000 0.000 0.000 RG 205.93 244.82 m 209.56 238.52 l 202.29 238.52 l 205.93 244.82 l S 0.000 0.804 0.000 RG 205.93 230.42 m 209.56 224.12 l 202.29 224.12 l 205.93 230.42 l S 0.000 1.000 1.000 RG 202.11 211.82 m 209.75 211.82 l S 205.93 208.00 m 205.93 215.64 l S 1.000 0.000 1.000 RG 202.11 197.42 m 209.75 197.42 l S 205.93 193.60 m 205.93 201.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 222.13 250.71 Tm (rawp) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 222.13 236.31 Tm (Bonferroni) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 222.13 221.91 Tm (maxT) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 222.13 207.51 Tm (BH) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 222.13 193.11 Tm (BY) Tj ET Q endstream endobj 220 0 obj << /CreationDate (D:20050415164845) /ModDate (D:20050415164845) /Title (R Graphics Output) /Producer (R 2.1.0) /Creator (R) >> endobj 221 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 222 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 228 0 R >> endobj 223 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 228 0 R >> endobj 224 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Oblique /Encoding 228 0 R >> endobj 225 0 obj << /Type /Font /Subtype /Type1 /Name /F5 /BaseFont /Helvetica-BoldOblique /Encoding 228 0 R >> endobj 226 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj 227 0 obj 957679 endobj 228 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 217 0 obj << /D [215 0 R /XYZ 72 720 null] >> endobj 218 0 obj << /D [215 0 R /XYZ 169.779 264.116 null] >> endobj 214 0 obj << /Font << /F15 50 0 R /F36 91 0 R >> /XObject << /Im4 165 0 R >> /ProcSet [ /PDF /Text ] >> endobj 229 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 172 0 obj << /Length1 1267 /Length2 7929 /Length3 532 /Length 8727 /Filter /FlateDecode >> stream xUX\۶!%C(48TBpw )5Bw IpϽg}~W9sbQ`;Cd`.@@JISrpqIb00H!f.P Dd!OO/ ZYJHCP 3@b@ qH P8Cn0C-\+( /'_aAOR5O`' Tvxyr˺)ߝfP;pwtuJ`:)APWUp1ZH v ϿPgY uX9CC`4yҚJAa.?3~j0z2)OFQLf¬ ^>nt@a`dspyx׾8=! 8v$yH)op7 p8U!SpjCO4MOGz1Y\O%  JZO5[B״l')?|Nd>Y9O?I|p4\' T|73+)x Z0+DA%;j C`.]<}͖ЧoX`,:X$Ԇd!3;S& W' sƟ׍iB^@q*~[Jxyipa2g&k[?Oı@XzHwí.?0pnodu3L(gΏ9l~KΕIe$t3Iw\?G0) i84nIN]T66iPV59ƧK.8?!eE94jM"|gjՈGi˂N1*4OKt!jc+2˚a E/G(%9Zw"*%D V]'Z(;MS UoLrW@HL?ߕru ׎Fhjj拱xI{2h4t}7kYwkI%=ۃNwzB-o>?/L?uxE=pC71NB ^6mI!u[> O/ ,@,lL[lAss݀m$?],4oǒrkzܦiF0?J}L|㰙ëFJ -?w5ff֘RU  pgC` -0څ́3HFstŴ{Y=Ns":5Q\)|XA2_$YZG;(߽< j[E;s[X< /t}2ް? N|4 |%Wertv9YF vQMo16z *ݲǠ~rg- 1Rueuq$5gaΜ5;K!{ab{5=rݿYVyIo`JU^E§wH+ELhJg~bA4@/yi߅`@L+g_. +j\lP&Qrm] }F148sQW Wx8mndG%G!}(J8.\5'- =wإif%H"*NcO9 B5v2Ey(p͟X4wOI-jz#nmͭ6aGML+>UK9t8,{q|)d$j4X=x]QkQI|LuQ!azn/Mu~X^3ېug$7-ѧ%-<9'Q`& ܍?pg_РZnhtl2{EpUM[Ϳ:8ۓ7{1 %iI' N0N.w-XNVAX7<+ne-Y^(^-K.{C[uWi}hk EprJ|ou#T$lV} KӳJ?V5]m ЊJGE]hAKL׌:Gޕk|*[쇻֮zAKAD *u`£)jFWg,%Vue7ңx QA"uȩXY m9-Jq[ +.RWy픍4F3B+hj7 @,-;(Ō+<=/X{$NЌ,'yJ8u'1=]uj9̠X7VR㱜ʫ7rBa"Z8)`W8{iidٵđ`saib*2i߈"noMG .4ڼDIN=ZGdEsB|7 P,K`X6boTnv jE#Uq%[ty_+47K bfs,˅aeruj tnXjvlv7bYU碬a"E.JZ 5) ۡS-$͇չ!j$rcdD#]#2 BPNm'>(_o;W OrODk ¹Z豈>uc/ r2ϸ_KQ),4$7[Z <'pH_: n8|-oؐlr+:ˋ|͆rϜ 6L9a;` Rb{@*uYx7g(IsʛAu/Fv`2]>$CTu-jRmqp8-=sqEXţ#TsM Zcb_uKX#<ǷgwOGY[+dxtZ8YqHPbly#KʁsЪ 49+s6 ]wx""$Sk;t&pSV]VOPQzw-7EXӂUgqi^G:!߀ُ7H"ިbLbM:sA /\۫,?Mװ^n>!S+D`Kya&!C>HZN &b ENSuZ2~qߖLr6^/TMv|<'Z&fJKkW(1>ķi {Yۃ#LIN]UTSjejS"9'LS,SMNnR,Z3#bc鋌1\q {ӄ;oj -7PW5VNd%QQ&dmC);鄢}桽;n?OeS'd?I GgVr ч\nM /䄓ZZtbJzAj&d=,R\e1SA6ȍk>/jS*ic,LN (R6j98 I SA WVw}L^:?tZNOVw8*류qd\綯kbDJ"d|Ͼ]AI <>p@Q]7=ą{@D:>wORg hw5DOͭb}i7VkzoEL8} <0=}A@{ Wq} t!&HZ|W6VuޯFAV/ny'Ǘ ,_3F{M+-_T; k頎5'H]ݱ 7XS\\!K.|pm}i:UiwQV0LE8tk09rjdY6VLs$9֠<I54hW.LmԣhbFIUH/PӏN/ #ˋ* Í $` :Nj|x8@fY3b8V`؅fos8Ly03ׄlŁXOwЖNЙ}Y5BzJ T[ޮY;SK:7+݋:g3ØߧZȶk61cL+hz%9eD=%v~>4>k͙x(tqp>B;Mmiϐ&(QL?c~y0!喹F[[!?Y[<7C>^[?)Qr%?0X;䍸x.;[  jm~s6Z-D|?Vr]qiϡUdWq%w_;N\ԭUs2WjhnܺI h~\/NQm3Vs}VbnʷP!sn1P'%,@ҁx7DijCh|͊;xͥE+HǗEp&}6ǵ̄yR8R:[)NB&gOl M[YN'S*.(WOsIWt@ cE٫ً&/-YQ+^4\(^=8$͙|NTǪ”Gf0̈fwAQYVAE\.Tw|%R: -+1)rtn,;,> endobj 171 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /TDTSMS+CMTI10 /ItalicAngle -14 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/hyphen/period/colon/A/B/E/J/P/R/S/T/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/x/y) /FontFile 172 0 R >> endobj 230 0 obj [358 307 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 743 704 0 0 678 0 0 0 0 525 0 0 0 0 0 678 0 729 562 716 0 0 0 0 0 0 0 0 0 0 0 0 511 460 460 511 460 307 460 511 307 307 460 256 818 562 511 511 0 422 409 332 537 460 0 464 486 ] endobj 231 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef] >> endobj 118 0 obj << /Length1 1060 /Length2 3926 /Length3 532 /Length 4628 /Filter /FlateDecode >> stream xya8anb&MO!`>p'Z>K?}}u8OpV=gӖ2^Y2oظ=M䢀!+͵rYݒ}g sI($ r^0Ëv9#)awc6^jIDZ \O>Hͬ>#L݆a:+:t!\grJamݗvZMEerծF׋_.kv\KA\=g[ȃmY6|8iԶJa=COD~wjxz:1ZSASLJ]s`B2؋ETLKC5x=QjG0pԾL6鍢,udέWCwLN|a#>opFa [Sc}ZNוNi]I93 u=@ `lfWyhq8 7ҡZR* FӅ.z t.DcnމmfLкW4%= &{X؎6ϣ^ܮS8 , {h^rK}xNa"Μ WZR>>H٘}ժhcqvNZ-y\2J7E3mg_S")o.,T0174T=vx?g>؊Iя`N"ڹ[kkQ(~R'4!z3Hgb/u'Ε0JgH(9Q=yzs϶yx?W&%Bb5AIqmvoF:j/JiH}9= /Swg>8;zKMIA( |@WzjcpHk.rFޑ+UU2pfZֹWcBSЃfi^o5"Lҕ*:7N2L sg=Z]-)ӳfpr1\f$HN/%^m^:T4(i:r:jrqL 3K쮝yV>.gъ h@}oIn:]75%_kueSjTHߞ[):G*8Ubvc #@-wO.w]֖G4?UR=`qJlZ0JfT7:AL>vtt/ۃŝPmo2;l;/0DsK,ee{LxR)YHtJ]*zUE ϶|kuU7B }RX*;ris n9&U.2%soH[;'R+E]+yH}Gk0B8;9zݢ`ޱXID٢Gőky|ff\d6= Mr{>mNr܂fXa]he3åY#W$uL 8Svz@ViJІG}OFѿ)b(+XHω|g?>m6ZuA>;Uf[[k.,P 'zƖ46G2?ۼY+p7L8լZtٳRn!>e\s ^(`ux@?UwU SYMR S.27M+DZWKLG]O; Gs9NEx U/A(>_kmld6[B2hxq ݾBPvNsbiGGy]!FZR|^3۰LaL,:p\CSP[)}x,?eUƦ!3<TP>QZypQ43c;r_{K7%;?N[< XH[cnڞ:n.}v/˽N:Zuz^*ɤ O|/7YCIvMTWJ7QR.l;j~09x LL1_ھ$}rfe0U7)iJhaxǢM#ɣz7DUHR)"hx:և抰y77o-DPU7IsN }=|g@k|7Tu{kN$^vsF~K7LT7KSRs~'Q3v}\mor#!$^(LbQO9ʸ UԢeX vReKJ.+0^Vtxmߓg˻/㬺>^1ָ~S݋uugek`D at30])pzf ]jeiB^Z`f8y@=Yr+S/V1X`mox[t/xD4zn eud-' d6rb8{];\Jj.PAPi^Vk^ bW^$L@GwM VU^||jS ,oDͱZf/pWˌ^JDpߙGK"\&}2X -Udq>F4܄Hvy^?K㷴[u%ekG;\ ֳz/ *tTHawO j.)|(0&<#RBSUv b8\{WEِmr"&X}LuSw/\`g"aTv0W}x_I)`1ͩfHNT8'% &dļQm5sӅc^m)~HTހ׮ 8@c?Ҽ_ŷL[C75>bQҹ7@l[;֞,7gts}_$AZLJ.H8 E{0^ Jendstream endobj 119 0 obj << /Type /Font /Subtype /Type1 /Encoding 231 0 R /FirstChar 46 /LastChar 120 /Widths 232 0 R /BaseFont /ASWAFC+CMTT12 /FontDescriptor 117 0 R >> endobj 117 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /ASWAFC+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/period/two/P/T/a/c/d/e/i/j/l/m/n/o/p/r/s/t/u/w/x) /FontFile 118 0 R >> endobj 232 0 obj [515 0 0 0 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 515 0 0 0 515 0 0 0 0 0 0 0 0 0 0 0 0 515 0 515 515 515 0 0 0 515 515 0 515 515 515 515 515 0 515 515 515 515 0 515 515 ] endobj 233 0 obj << /Length 155 /Filter /FlateDecode >> stream x313R0P0U0S01CB.cI$r9yr\`W4K)YKE!P E ?0? J!DH" @ l%r38 H.WO@.Eendstream endobj 107 0 obj << /Type /Font /Subtype /Type3 /Name /F63 /FontMatrix [0.011 0 0 0.011 0 0] /FontBBox [ 0 0 40 40 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 136 /LastChar 136 /Widths 234 0 R /Encoding 235 0 R /CharProcs 236 0 R >> endobj 234 0 obj [45.2 ] endobj 235 0 obj << /Type /Encoding /Differences [136/a136] >> endobj 236 0 obj << /a136 233 0 R >> endobj 237 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie 197/.notdef] >> endobj 105 0 obj << /Length1 783 /Length2 1294 /Length3 532 /Length 1873 /Filter /FlateDecode >> stream xRiXSWȈ聊@6H"K0Kr!/ ("0 LE6` bgϙ_̹}yX9v >yĎL ;&[ oi Fwrd''T{g0Ѩ8 %i=G`,D<pP I!s'(C|L|'aF9KH8 |i~֚V6$EDqv߰T$C+EqPqTa! }ƂTi[<"A@ 9|ўp,gsE|B:7N;csaDyLk#XD Z dC0"* p1'i(T*'C&T=$p*DDxbڗښX^Îeh􋲪tv X_]kp!r[sʔ [Nr0,Ɉ<ω:j[5IL'[ZԲP{)FEyyz+^ZZ`E ǐY%>1=H+ 7'wߴg 2u*,ɡFS9l#2 o2wfF:[6P7Ϋ55>MBY]njyLcY՚?H|eRe3UqpYmO51٬gl`剅8p~iCcsosåXRm*QWl7KH<1vO%r/wemvv]d~n7<6F.59*ũvÅOq1 *b_pendstream endobj 106 0 obj << /Type /Font /Subtype /Type1 /Encoding 237 0 R /FirstChar 105 /LastChar 106 /Widths 238 0 R /BaseFont /GQINYU+CMMI8 /FontDescriptor 104 0 R >> endobj 104 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /GQINYU+CMMI8 /ItalicAngle -14 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/i/j) /FontFile 105 0 R >> endobj 238 0 obj [362 430 ] endobj 239 0 obj << /Type /Encoding /Differences [ 0 /minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft 129/.notdef 161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus 171/.notdef 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade 197/.notdef] >> endobj 102 0 obj << /Length1 812 /Length2 898 /Length3 532 /Length 1483 /Filter /FlateDecode >> stream xRkPWmQDVŀ^Iv#Q l0Dh&&`T$ j-`+ (:>PJ Ea1*Ng?=ߵ u(G3E=O@h}(8Ib4; @q#7=!ctL K1`t4T1RL BI)iJh,jHA@Ki8 8re8HS`&c0e$x$3 2N SC4Je L>•w R!H0\ЮƔTH(8.\dmWZ( ii4cJ5!!jo/`_$`3 z.{F?LJ. yE&" '/pEa:sJP2P8q f&D ')ZSF=|(i<ưPfk?Mjݕ1Mw@/ 26 A4&gJY 3uUDjF^>`v!4i.K  UЅ=%:+gxuFO?R/ ߶Np{+۠qbuytY O/#^ysӢoOrk8`DޯӞ&\+}T(~z:<سvV<)պJ7.h6QZ5&'ܼcƾ~Fqm(y益ZCVu m$S.͎~52'0{imrUKCtMڟ[{[>_H.<3q9y9Kt >[{FV4%ϲK3]kS}2zڐ3 ̯DFEG4bYgFXɍ֫]KJWߓp֏ݒa;J淟;4.wDǮ͒]Br5u͏f;S|cm-_ݘ# EQW&0+#m#Ro,xE&ĩr).32y)0.yILϮB8.uME v5N:̇_Gr4w 7>q4 /ekIM}Q9Gnz_xj/F%Bk*h9&q=N|k̪k1dDW&O f6+rWVI_^<,oj I}ʉk~"N6gyw^(X+LE'sw_yeG`gcB{ڟw0QA ڸJ1|>`6B>R%(Taj֟h*endstream endobj 103 0 obj << /Type /Font /Subtype /Type1 /Encoding 239 0 R /FirstChar 0 /LastChar 20 /Widths 240 0 R /BaseFont /MZLJEI+CMSY10 /FontDescriptor 101 0 R >> endobj 101 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /MZLJEI+CMSY10 /ItalicAngle -14 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/lessequal) /FontFile 102 0 R >> endobj 240 0 obj [778 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 ] endobj 97 0 obj << /Length1 1741 /Length2 10019 /Length3 532 /Length 11029 /Filter /FlateDecode >> stream xUT\۶h\C!NAn5xp'έ}d'^{O1OYT*Lbf`4Ι `cfEp;v@~@d@H=AZ xb@G@h ajlP1_O8ԀN@GW32 d 0ZYr3x6s+ "H f`;E ߐ.66Jƶ: c[ǿr.@G" hߩ)@.=*ll299I܁f* gSK a{@V,ʒ:b o?UAv@0o,#I3 '`h 9"x@vf@wlv<׾rpX\@3FmlqXv6@sQE,N9Yr@rm\~ Mƿ#\K{KDRl; `:,`;quv=tt4DGD 3_6fܐ.6@ᆴ:^GnHcNܐ9&oLKo⁴Mʲ RE7A(M+yN7Af SMOqy7A"GcSk>y Wm&Hiӿ2O?Eڸ?LBV8Y)?be!o/+?bB@r!V. XFȏI\yrTy Nj?4@.@9I ~;rAt"/΁MRC| &h qτjzB`n L†M% %-^N0G:xOӼzMTI{ 0!(>lY|+}vS?qn<ˀF;<5golGͅ2詔0&w @P{0[_E86o%)\+YsZb(HҼ`DscK1#ed䨖xүg' ]ƭ VG>g,F1AlFi`!ƎZm$Y.(--au4B71RS*ƈ bOkX3WAhRG3 Ob^ 7}z-7/f0KeE׶I5ŒuM x@ɪuqm^+RʚogAC #%'7'1pI W>&E&y F([COD{70(QMyLm*O ЋW+zb36*P ,Yj+{g0  }"TnwjPh.Hq>/}為+P؊mU4mST}uuEb;R[RfxNloaҚrnXzqnPx`l7M ,v9`u*t*T`[%N֗g 렂 ξZ=] y@] S9P\Bg5 ]wV.05[J3$ .Ԧ8+Ǵ$ݻӋc*M!V#<7zڣ˛_ӲE&u|<^?g1MfBFk|#8v>?~i~(|сԼ z{JnDZd@*6t_~6u'<`blai1^EWg~F]j'=}h;}N @BMcـ?,fNlKC~J)SNVc@!?L$D~O)AKkC1ljޔ4Iu`2thE*w]"*;>06sB5BQsI6ʐ`|ςlFL7{Xg. "mL$]>p!?".?č ;4G3DQV?]tt6fGM |qrt! ]/|`1;tlŲ)CG1q+Xv{ld˜0ёVwnAN~MYUFE'ԑ#\[ ט}K濆G1qTA=1oxw(.J,b_K Vk K'o8-@mtQ,q~[U%WVX'ZՑb=tbEwj*;grB OjrfDo7PT^>י " '"ZKP}1݋nrWY2Й:ptN#Q?WFʚ.7|HM=3Ecy%y~gӴpi?^Niz.#_cy2{Ø`hE% %  M=?l)f8uQ|-4g/~Tnc`r 멩C6b= s0>0fF8?U/2<2tpbu!lU^F\<"mDҏK2$|ڃ`PI{:wUzK;1CF{D Q3o̡ZS-i0RC'ɵz8,,*Q+c]-0t3/)u^縙Ų(`(8xHKX jӛo;X߽$߲/$[V%%ij*]A>r\ m~%Y7艵B2Nãz"OdP\ ۜYv{ŸØ]wSa81&%_}u;~qUZ}0 t'I L7'$$=~vy{Z-B c׀Ƹ,Gx5[M >JjXkMD( :ħ/*~[A-#\QtRi F7v ي JU.)'`oe;OdHw# F P 4GIfT9XK*}p;Rl~9rM x,نbX㤚 s/di&SƵ6,JoBa`M@)c\Jyl*JyMԚ'Myi!) i{_lVZ Ab|DX6ԳU$Ψ!stWp>#i"nor A>ĒZ1fϓP1,׬0#19h({l!WK 7+oT Ć\boK鲆µDS-{RqQO:БBˠv.a\: +mVW=#1( 78ExU:NZBMa/zC wwݕ4fs)eXOm$ {E ,r> 3s@@wtDd)o'KZT{$b)iє@MLg,gX GG0]pj=/ &[~|xb \wBG߆ A_nr5?+(h*,Jad%_Y|$u&mE^S mK/su}䄦R/eAk ~ fD7[KR9cVo&Zl2'hc$G~$:K52Ϟ\@%YuME*UjA#+nHj#~ tu^0xUR rrD :ڼgeqddN~ irahӕgMNlt̺YulTN)UެIa\Apl"X6Vc|Of _lPm_r _&vY)sS?hϨpTʥ'u`yXqo\* D6 - [pF:> Leכx9jYXDθ̰E^~" JzL8irƝ/,x۾=\~gbOЫmĄLQՕRˏ9XZ_P9xdcC(/"]^h8*LP/qQ FH#`9":w͢ K}첎(*F({9片܅<3/>HfbHOlQja">P[I^ː.)֋` eߓvH8 8fȆ]܇Mh,26.@{ToWp&TX<Q lU:qս{Yu ''Dd)ztTiq\U2." %b[kg4t(=.6_ ӆB,煎Z7FYN{C]tc HyKr7x/oSWoѶ=i %|xJkEgTUșyUGUy?ɓ8:Ez0|YĻ]I[O.z<2:1!u&$ئؤS٩Y~3}QUEw?%ɐUjvZW9݄H4?o0T _aa:|;jMߜ4 JH铬$&L bD{>$U.#%`[kx- 仦#['1BL2*wSk1ox Y7 G\ Un؀+>3JAմ%s,c]% rJ0 Dm7/S=4Ɲ؆_w̄i%0J ayOra5;  4OhLQW} 1 l}EAQ؊;qxHK\Lfwʭm>xSCESUbQÖ <76Ϯ7Da%|%5R  3z e$9~s[샍^P3aujN&&Au8N}^Yl>nqdD}3U_"L}ۆ#GK9uКOoXa6c@"y P*2*p)No,շ%* 90Pd.2L1 ڰxMzHg\#*b] uQvٵF3Ӭrns)w$3G[n R$8Nk&̭&ɭ7_;/A&:}̋C|1@kwVsaw7H\ziQ|UV^}DKEm-d}לqPDe-8jZ"Dn#S ?WO0$ѐzXժ5#+E>3B^Lq/ven{=xl.%Fj`u*c,3 c?0U:juhIKc9wNWj&\a CTwP 8M-0l`tUfLqߧ /N [uf@G$>0?E^pa ,cǰi }(`f0BI7[Qیg݋̼A6L6ZO q3n^Ajs5/) Rט# Oit^\L/*ޜ$Š$.ymVGѸY#fNƽ +t&}sƻV$)z#¤cBX 2%H3OhK-`R52'LPpt2 9)L7Ԯ>wțQćd[D8:60oXJ}sF'~GO: zmKh\AoGr b6 *D]>uzOO@ei ;9W.IdS`yyٰ6ߨgvR`k ɯb!m֘t֖cx>^WdbId0uG}qhr]R?4T"#%ŌKUЦZK$6IX|_f6pˊGJM6 y潒[ZLC" KoeI),\s'm Rްz ̵1,E*|W^ |:w#fUt?yUrDLBJ_Ap,vVLkGN ]S/oS51uZQjvXxyB;-<}F*- *&[T'=_JE P' KaQK&" *^[m!A $ѷs0vЛ)y"fq0œb IK"X7zmv;6$?"߅3~E7E.Ś\'9^Z2b9 !*'"*teVhF2zt\|m7@n]7NC7 mw7%\#6GR;:\&^|O6Ceήi<*Q1au*F>Iݶf+]8?G" Qk ܪ(wQiJYn2&bNC6/|'KI ͢D-퉣PfM$ZsE-avKy#%S5@zJ; g>-=Fuϒ~cy?iM.D1b˲DI.>I+`[:c+q29kV3BGސHr8A绠t=|-2Cժ4j=I7̽r1&\8JܮN#XNJr:SG-NLkkz)P8T "b*x@*gY3la2QUf'bA"GDB5Vn.,Jsjkkmݞac -Zs mx8EIktY;(4w. ~˿͗Bvg}[:<5f#>r.%FGI/X;H-{=pH ފTA+ۢ&iZq|4=N@^k>j8j/pYEReړx8pf tuQ`9v?[t*m ;;Xڑ S:p\SIjsU!@\\Mu*+鳎ӯ@y.iq*U>˩X N5^J~qA"ϛy C[C('hdןԫaXg1"}C=%u\N xez6NR5zVixV}R𾳟zlL5A-bzK1yVyPU-3;D*,,)İ˟E"%\jKZ2g0ܡfGJ%BR(kz̹. 8r) pGVԘ?zN97,dQakEY:ݗ|ɾO~gǾy$q8CPKntu3g? ^ͧZ-ʹa6^29YZKo0"R*ᬐ^yDI*.?!d;jU/0r/?:LvW.oIw$djbkWgȐzӾ (w-$1 zS҆Eo2i,̪mb%`J ~7[6J&.]]X[L |81:W-2Q`meb+#zi=3FdNTGڎ$9+D#FljiXҾT~=^'=o\%F2u+Fnųަ$yE jWH,q{>QKB숑z=ӸA ; 7k#֍nj8bNp̥2X6ǦOpくl7[YOq۝7G<**($AxZ)#H93mxFy\B{tFUUeeN$ߡc+ ʥB`eUF9]UÌ0"Ʌc$v"ȑeA}T⏨.ĺ$4>qts+Q~G]~_J[/(ޯVsm]Xs Հ("!OAV7u'\9 7Zw c~?SgE-8IeQk%5~H:";{R;ZL>fAgURGcܖQŔFO}FvTvT89nx#\3HT" q)נ_?<-@3Iv`U!DS?SsU]ُ`BJn]0wO#5E܅ۗE ghB۫Œ$ڇtK\zD%'4̠}& GM7VaeIġXlui'捄9yYn>8j?V%qKb%HJZzY D _^y&( ?Qh 5vFkendstream endobj 98 0 obj << /Type /Font /Subtype /Type1 /Encoding 231 0 R /FirstChar 34 /LastChar 121 /Widths 241 0 R /BaseFont /ODXHAH+CMSLTT10 /FontDescriptor 96 0 R >> endobj 96 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /ODXHAH+CMSLTT10 /ItalicAngle -9 /StemV 69 /XHeight 431 /FontBBox [-20 -233 617 696] /Flags 4 /CharSet (/quotedbl/dollar/parenleft/parenright/asterisk/plus/comma/hyphen/period/zero/one/two/three/four/five/six/colon/less/equal/greater/A/B/D/E/F/H/L/N/Q/R/S/T/U/Y/bracketleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 97 0 R >> endobj 241 0 obj [525 0 525 0 0 0 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 0 0 0 525 0 525 525 525 0 0 525 525 0 525 525 525 0 525 0 0 0 525 0 525 0 0 525 525 525 525 525 0 0 0 525 0 525 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 ] endobj 90 0 obj << /Length1 961 /Length2 3391 /Length3 532 /Length 4065 /Filter /FlateDecode >> stream xWWXS붥ETa!$ґޛ!!z+R7Rw.MW&"goާݵ^1ߜa-!~#SIUZ'IBJU}}( !U"AZ **]O -@dABU/BDnh" ڍ\$MTq8g`@() 0Hp?=4A6)Mx/B;mh [, ~թ#08)n$4'D??QOFuHwơIDO㡉A0$ yh1.)F+/%wn.>Z7WDݬWJH",@8[TWpwKqbg(uFպNtb P&wkW\Kȡxct(E7}/&C9e;#Lr?5.{>D8N]/!8넖'=F]$CalF9L*V%—[8Z]1fr2%"(PYnŬB(֥5$G> |w{}MPQUv8hiJ5tm/K o*SNX%NՖ4y2?|ҷ10(lkؑ3 9e-8 # wAmxnKS{!qxJY fw9I~G\O-9Eim·q=. zB{CUj͒{C9"jb.[ OkKXPE"!HzbC^-"5qɼ2EN?Upش|:f6=5>Ug@_$hJ[m^찎-96P4L#Y[wVUBv|Nad+.nñQ;K!yZՊHg^qܶKUNa})Aa! R@UasW 0̭YF9kfݺW 2嘶ћ;7DVqW.t=7qrc+XaLovC?|ԢqALi{ϿguRN U>,WEaq#,smiV隂OWƾhh䯺1;g}`K]ԽV q܏4!KȌ \˦CTk9Q[|($0-i =ԗx]t=ҸR=F\ pI3Rωr~buVW`T7u1tBn]/Y)(LpR/u @uln"\^ә45t溷Rԟ mWL+qȇ Cƺ.]gT- Js;!?~߭)w'F߬E`i+p2QʇY/\]Quaiy2F{K)/H*d>UU?:+x/؈Opl؉XE[X<9IbVxjI_[z?wR&^PUQ|e1'\A?QX!9`f^o͜1542TSNj;H95N.+>0h%q/䶞^5жjJ̆Yo_m:-Jι['A#P_D z{x=pfﶲsVKLnTLGe#͸fl ̾祖SV߉W^S`U΄ڰࣵk^z;ᏇgF (p' ُ `EGli5iwX&t>6|,´ f)׭RZ{%pi82~eP- ;@/c{,hJ>4'vk5K㉭qRLW07=lꥪs,eKau7lMI,,],y^d[1/#z bzU3h;ϳ|4ۯ_ڵ> G7d er0)בqd-oڵ7y0Gesoլ~dSKo(-jK=}4(<: V[)#5Z&(k߭Uc"sQ j&8'ek;mf%ײ>Tm82sxLII1\0ULK.]Ə" *xլpVphF2!j ,T 8D/=ݘX!bUtsyHKީu4V[2Pų/mWvBYN`4# Ms4|S vJes ŋ)LzP\=Ifgԍ찅Dw+, E2Ҩ\UvgSL3n4\{䇉+_Ծx]߄hޏgAj aÔ,'EYS|L׎m\dC'ᥟBz̷`7RlcWEvbL2Dh&2Fo$FϪ|3t5ynZz֏h cHNܚN歞sƜxvЈb_H vDَBqatr{x뽨2$sLT߉H(pxN3 Ml1g/.\"ʩ 9 FU :1,(*ܡYev+*ͽ%[J4HA$D,Cendstream endobj 91 0 obj << /Type /Font /Subtype /Type1 /Encoding 237 0 R /FirstChar 11 /LastChar 120 /Widths 242 0 R /BaseFont /RRASPH+CMMI10 /FontDescriptor 89 0 R >> endobj 89 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /RRASPH+CMMI10 /ItalicAngle -14 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/alpha/period/comma/slash/B/F/X/i/j/n/p/t/x) /FontFile 90 0 R >> endobj 242 0 obj [640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 278 0 500 0 0 0 0 759 0 0 0 643 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 828 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 345 412 0 0 0 600 0 503 0 0 0 361 0 0 0 572 ] endobj 243 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 58 0 obj << /Length1 1471 /Length2 9062 /Length3 532 /Length 9941 /Filter /FlateDecode >> stream xUX\˶q4h4x @pw'x ݂; zzJ>>vǬQ5RMUl;rq %89lhR.@3WQ(͡П/-@ q0H15 tY9\mfMh5B.@K64NN%`9$h+lߧ܁.oMFThZՀPZ\^w7s{{P[]s._r`UFd!hmp+ȂꣲαO{{H.ҕvn^\ªN &:;ScG^2tדMPMM\ꁝ:gȼ|nuý+@Mx2ey6Toz-? ﷐9uc앤RMF͵wҫÝfcDu~Ͷ? ~NKAiC ӫG5*\̫{'bjGA|,HbkbCS.}>RFk/'yaQOU0e6*wU2~E0 ҴH社kar;\Kq| Ht*b:Ep ]*7Z+dCcz5]I "y!h5* }˯vB1l7m}Y4ᛨR3 T+yr;3.DUNR9PtV #Y/stt|Ҏ l4Cx '@=E=Xҏ78ĭ7^<ݯy5 -`M^Up/9V#}gjfy&Fl{RĹ´ z u0Ac(+=g(9avsO>^#h[aV*]L]^! 1wEn xn[Y*%{6>{^HL}G쭪Z Z"vYѤ1ZA_[0)[vfւ\ V3bSή@?X㑓}\鉻;R2#4<|qڮưV\]zz{U:*)R%^r/G_Is1"WvlZ:RayeLNg O h"uL"逈[P50]_߀w(ݒLԁuuV\ orϮ{8|ObfXYQH$\BRjY7%(f2W=ySDH6QHa5g ۫(YZӃ[|r{F'0dZ&90YގZ;EdHxXA\^姌v;e5[8ƣa,װM%;=KH.b :T^|*E3w!E_f׍ ˠpRYaX@sd> @vqt_.&T쮗>,gFU1J;W*$޺]*Z Mb>uܳ 6Ĩ|uFyE0gz&u#",fcO2$,&'#7ZE_ESZ$xTÃ6wzƑC5]HCAaCb\<BLlCIywSAme SHu"{skjɦȰɀF -+C~SS+el(NħDe)ܲt P]d.NyLJsP FOp\B% r.f˪6_b xM;<0qm/竷h~9|qׇv9f?<@Wt!mRW+rmcH,>x,"33U/OTenc/f=TS~qkݐnU Kbc$kx%OBU52Q@]5}Ml̶>SC&m9V.$O+ŐIS/"cy%ٯ1Jo: _#Hf{\*n1 Ǿ{۫`T~R)˼ WE{׬u0¢@^uvncAPܘOQgJ8>yjHv(V^x| 1)!,rɲ՝( &e9% L EV"LmUHR :gF8Hޔyb쭌RMsci }U)|U2qX<ލ"F: ])9ciʏX lE|O>y/ryX~uqyAܰ},3.Qj'(gB{+F 6+ctjϝdm]3KgJ^u*A+C_^@KH8d "YIP& uI.':鎑']XWѮŬ_+LM8i4#j7U˱ͤ|#sL'?<͐NSpOv DK|x e*uG x"^;m- ""L}8'(QwnK'[viVꤗ 2>̡eZ%n#xʚ߫Cq~Qk,-5|f+Rns[A)+Wʍo-q ZBt,pF*K-lΔqWgWEv=ቸ<:ro}io(c QaÆĤ/Bܼ4Dc#f8`ℸ#Y}*#ޟVRq;XL={wx~[ع;4% t##'Z}VaJXҿZiK:JtBsL f2 ze>sY^p9G"ЯsSV*~7kiսϖ? ޼XsS n4UzN,:1Żtcg.-:z/ಬ U{\fG $$;**Kf8"Cnhk[.9بCµVN6͐N: {kYi*j2U lS7E&Ѳ&"F]E6Ե#<^/Tr+{ݜQ}@n_jd!\rǶ6~N۬Wϲ MFUEy|Eja@'}A*o/;| N^,<E_YOk6 3&1!:c$ǣ[?'"ͶuU!؇*&!!{5ŠsD5U pEc֭-ֹlQRycU& /5AOg_'v_HA/?(!vd+&m0Ii^IGv/F핻;_4^gs~}P]Za䩔vd! &L5.۵s~5×Kl K_~ZG>}?!1U%.5Oz֪97$Z UK5(9aVǹXldw>{28Bbcc|m"4u4b?6g7R~32Q8}"b m0ZQ;Gƶ=ZwaH$)g*jd_{y ^&Palm?3Ib˹ЉR[Wȕ'62H};3[xxY:̗%xg4)p35"sp9D+ %uF|:VM 억f3mlx;R@my[ԃw~hD㎾GV4˳Jz=1b"N~T("Cj~"\3L~YeD:}A-ۈ {@E;- O[֫=>,-%~rZ\ X-j#-ٿ8*:&?ZE=-}8¥52'3ܵ(9lDhᬒ/NF2HTtҿdl"_hŧtU-aZo]Z1MND63^ʮaJ`Um+#_i{B 󤪩ޤMZC f ).$#|`DGWbʪmyZ)4M MxLmlYRsغɢ7%ߢtg~8CTP0mP恌INXJjMșMPo騢u^Ǐ3i*ʿeЃ:錐wxX:NJ}K~|zԍyk^ CX&_ZIqv**̴^C뉑J_B?TWKdy#9(LXWQɿai<-3WD$ˆ;as@ #N8\l7-_;<,-t\|dr^t(2Fnۦ;7K~b8LIYvĘ O'\sxl1\, / rƫY$)urW%$ǟX́ \ת|Z:':,rTnYYыɸsk$ gه>%wl{EZ)v:7T/_ywR9e*τEV,8NlI8{F[ Ӵh n 768E,wZw@5aԋl%<ӜRf>\C@;+{Sc\쑅#Ze/qTַDQ͏.WhZcם}NnzY嶐>m9^_a¯Dk6?Z,61yy|e%%*R%vc$8E3 ?iUX8%5F S3ΏO2u<;p|mCM/RV|KH Eŭ&>j+ˁ̣"S:,a:}dĭꢉࠟ[2K 0\zIFiС $ږvRwɍWB:9tSm'?opصztѐߕB,' :V29=66pQs Z trP8w*@+,4:Q-V˾WpX R& eu2youDbHϯa.[0-J-:x^k3ib)3l{(wNIJ]tDC/v1y/p iy_f76:$pd |`ҰK[bҷckN ":+l <|7 v!_?N {s l&ō4%,:,ٗ%Dpˊ jB,tslNf7ÍC2n+R?I _mdͲg{F?A1F"smWfnסT [F ́мGkjT[gOlu6x*o"2:2 ?1hœ_NM.aKF"{(v\ǔ>@zM&wwR;2,O;1sW w5%;bwQ"*mѵ^n vܿJOHfOV ٛkK|-A_3Hp7Hz#W8TЄecf21(k;Ff ia7&P uK,5ŗ B򺋨C>CD<8z7gF2zQ} AGrr%:UA?#_ "w>y1GΛIJ1_r27q g?r38a;ԎnS(gI3).Ļ^ ;18E ew3g[Wy fJ2cgX 2o8ez} 005[N!lgE~eDxpvSxW!mbԨTl+/Q[Dp) h:GoKEN캹 *x^f(MIG壽M:@}yIRu-5CgC.>/>Cc&ğ^O:5r8CN@'#iUc7i\b'f?ioG{Q4x5Gׂ@xeNN~#m*iWh :$b.  [$,ar^>KVL%ov* `p#f7&VcU|Ƅap˸A Mh9>Q~=g`J-9"+0(TQqrșm:Uxրq5誅lB'abf>aBC@K W_r46*A 檸~QJQGp.=̥o*%e< 3 QZ}D+["WcP&!45ÃR,~؍?7!?6M܇uT_-fh44̹Mm Y#=֮#Lp bUv+B-=[%{<>*.a?vd@t~PkQ#d\wV*#YްG]Jpp5TP؋J]xJ W'aK{t9Cj_f}l+Fzh(?}eʻ ^krWy#}Y] hYg[ vY%/HҥWU_x /;٨:=5J"K\ ^g&3A\E@QeՓd2H2ZتfoO-kŅ (z ֻe4o&^Z]feO*%HBN1d]oDBŹ AIj򡬖 jyYi\ `EĘqsꔷma5H9I)^ gkjPY3ȄPu7T>Ϳז0c\Fړ!6kRBեldxy`jR,-v:itӴ=cܠGGTޫUHվ:7e{x ծ4DKzFw X:Y۫aCxdzt⑫-࿎&:zz Q}suZv謶$`/4`XC:?O$\ ڢendstream endobj 59 0 obj << /Type /Font /Subtype /Type1 /Encoding 243 0 R /FirstChar 12 /LastChar 121 /Widths 244 0 R /BaseFont /LSWRLV+CMBX10 /FontDescriptor 57 0 R >> endobj 57 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /LSWRLV+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/fi/parenleft/parenright/period/slash/one/two/three/four/five/six/seven/eight/nine/colon/A/C/G/H/I/L/M/O/T/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 58 0 R >> endobj 244 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 0 319 575 0 575 575 575 575 575 575 575 575 575 319 0 0 0 0 0 0 869 0 831 0 0 0 904 900 436 0 0 692 1092 0 864 0 0 0 0 800 0 0 0 0 0 0 0 0 0 0 0 0 559 639 511 639 527 351 575 639 319 0 607 319 958 639 575 639 0 474 454 447 639 607 831 0 607 ] endobj 53 0 obj << /Length1 1939 /Length2 12315 /Length3 532 /Length 13412 /Filter /FlateDecode >> stream xUX\ͺ wwHw !ͫ!Hk!Hi!y:r`#kجu(`GWv0?$AMClӿ'B_i_ !M !N!D/XAȑjB@!/hށB4B_p B4`Wst#bM*.]qCYJI8mb <w¶Orq ,]2o[*S!h:Gz#vmїˎg,>R_#me:YpC%e61enG\y_u?O7>8(Wc)lwo;= ~*C'rz[2ABL ,4'o(\d?_ 븪֣,7?aLs̷g,Vgrp|6E:(RyL$8g!wif7qXsρ. Bt~d)~,md)DWEƙ CBǖ)t?ZT!6dňZ7rONwGm2 K'79%3sužUY +vL4&Ziib=7ܦt̚uH&l~ݣ!rMP_[HUo 83j42*˼`(޷_Qp|.6HOn߂טqۣ -qA+h?spô7(UgDOWޝ>t:@ZDeJ? J~= veF&~ gޱeV<+.22ehçSe쩧wdtp΃}l@ˀ2%tjT5~Sd8 şD&zƢlW Vr θʱ*L vs ^fH[,&[m!Aw2չODܩr睶#K YȢVTZx 5'&jž8EylصL$ P͑5˨ej1[l;xݽa%oӎύ?G^c;2ᜓwQ<@ |{yS'ف{O?nTh=倚&*ŕ̅faNy3qަ'ī駟blɛ]Ђ$b@F@RP‡g3ސ1g ,Z,/;IQ9JcXk .Xq{&XA Rim $oXcgf N/nyԿepƧs1W*3{{I<`'Y?t%,Vdqcf&Bc?ީY#P6XOlCII;x1= +f;Cs^F$^ugiK% ӮHA!ޡt\b 4!h }+&hz t$FsFEWh/_ླӠvۃUY<+k\Ò_j Мa ׋ȱoMlIYS=2d}J])V~>m\~&IF9.ֺ'~:UHZ|_09Όgmg:j{9/O,0;-~Bp,iIleJnV +L̆,w )=h @bcp;Fm]+ ~%g&Lc|O_u+6hrPa],It%YJt)>)kR^ƕm.O\(@WܶRϡi#1Co \d2dUj34[T CpZ(F1/pD#. A3T*va(?jZje)/L#:CJ's# )NnŸch6<޲ ;\s,&,7ZOSyH δjTkMp7E8F/~*~>[qg-[¦nTy.AyK\ڑϫolN]B(x8꟎0kw=OU3;#Fv;izDsyF8N(Ѵ`l{ՠ+j|Yir *-%,w 5Ia0Fkifrc_Hq2ORi{f{=C; Ǘn,U 7k>&,=?gEzpU "rn|N~ţu0p86oWs~#;EZTfL"SjM|̔~:&dp꠱Dr'oa9VDkA6Uzk%EԻcMx3zHį:N+-K~tt)4i?_Z_~:1@!t!1MU7pfg\ӳ/NQSr<עW w8I]6HnnHvSć Ɋ li]G1ׯ!m۳eCvpqEdIK7f>z{K < /bbtC>,9-z`p\B/\|{#N+ٵ]Q$fa #/Qd`&*Ӈ>ʍq?߯Bqj>4J+(l.JI,0|WnP:<5' ~,1B̠֬5.ue4ҡ'ycUFdF$BքtD i[?t\mGet>2o+="ِk.m&f҉uIIG%~P!-җ(so͝L.9mPPuslq+Mf"~[*k֙v;/v)#IlZMں\26筐5w\|k(ZS yCgo2^Vs՘{΢yi.ly"b_'>_iibCq{xz37iq't_^=bO=NC‹퀂Vf*|WM{W,;aҖ+Dj&3'xYT~U&^UM=¤P)ź(e'G4b~0/ /c0wUtC{0K}2wWή217B|,΢'ʬ#T.h`Ԇt]=Z$F<ǽw2Q$Ƞ$0Ćz<>Tfr:6XQ9ڟ1y:,\փ{GlM*ܵ!-4Z2%  -fDd ݗ?%# 0:;΄=u%euti{ekƖU 9r+07&Gz dJƺQصP(|pj( X9^ !~Z5p-kVUCtP+1Yl>74sG*ఝ~ d[ ?LE=2 +5߈d<F:h]?h4d uч6+'ғ*3F/р(wɤp]0]-WV|Ҳ :uWmn6& a` 9ҩ6ʯ[c1>`Iors^=,M0&]^$:25mL{hmK[DM`τ ,ݦlZgiNpBׇDĥg ş NJVXj,ɈʈoLߍֈ2l g<#ThkPkTyD1]dg(PD 6w=p /^pvEN1־Q Dׂv,G08mqk2" -#7xǀ^{'_a͊mvl4R '5'0>U>.A)+,~{~=&pr 7+Pom3Hň8"%y-YgX*߇Oaҽ򌶲&!s=o6bL:Eè o!)e)4 gHrax89慟lp"ǎ /|'-I+W`7fvg:'_9Μ=gzW;0 ?&SyG;gHUup3Z>l [XcoPSA݄>g-,z,*՘vEGhgoZ^w\Ww>g|T Ԯ'h?Op+`+jyQU91J̴ weD2w"_zZ~'zc1^x9a!>V- v6 a/͉!{aS byGPS\] Pt+ #"X;cp t.?"oǼ]A ڦy%)&/ʊ:m_%YYO\AXUJ~'2g/u w9=,-J?}?'U1s` r4n.K*K̈́pA^O"ѹn,Ga߬0%i$n(,U70Pe0t~?xfX6,r#Kyɼ>k#2]wY;8uދ zXԳikuߵݎ Wev!1}iel&.6y\He~xغ6'iD]7@N >?ѣ o1ӼF [O+c 63|n>8A,\cRu4:߃)UgmrTIs:2t3|L'f'ۯ#mC Rgfr> "R/}YdY:2V,cY9(MзK_-itF+:c?Qy]"+ S1 lEVܽl'TmN +Ь犮4*:ļYSGۭQSQTNs'Jgò"΁O@=􉝴Ɩ/t w'l+Ŵ.ďe=߯ /˄޾gWҧ˅W `dM3/Ԧ"^r!2}kZ,(vxlɑ lRfSBؚ^g)Xx)fo \n}kWFݟ_sI\0;}\Z8<-hnvgKҮ<{ͥȕ6&Wϖ(d^ Ъ}@(ޭbdgч|b-7Y姟LٛɋјDόZJõ  pk1̏ԙ+*;k6D!~i%Ju?G8GZ5LE%?$3~LwƤEXAw.y4\kk`k&-d{"G{KW;rve 'S$i䨝1-9$yEhj8rfn1fh~yعJ9"n_Y1=e%wb:"˙,y:l$zywnI_ ;vZO&sOg0~]wƖlE(F%{5%#moχĴI rB*Ks"IJQq,h \PE2.QɒLvjߧ[43Dž!ۿdIn%.'ҍu ml؆#?mr5vG|j^Y\&%"KH!y#xID1~)4SOaQT*[Z.WIl+Ta2[Zjݘd]ć!Wcc(}a s][ن1 Fr̠ΌL^5vgq;)ho8"w0fډJEϯ>) m:.+1 caaMĻ.>“6̮:@; %Dt Q#,pI?`;;.ƶk}_.ts?KQݢm3ORTm<5<1#NxyW*%׏|^j+d36ˡO{|Q:Y;eszv2pc_y9 rPui;/[94:rr~)̥Vi 0;qsTC»e{?D7Xb7%Ӳqu#YqUyUR/3pd/^7L>!17[{iگ '=mrǣKXcDL3˘䃒U 90YRRQfՕtX 粛dgIYrّ3^ùGEe.AWȚֻ~躖C1\=)`@ؘ(b a}mS^6devXv9Ws/B^W&֋UHg3=`!T`\yK1&܈v^씼NR6Rpq!  hXM8X0e 4JTVU[r9Lsz.883(ҽ?Ř=wP?O?-78hdunAQ^ޓq@݂R}gs  e>'ߪF>kc#HgIm+]fyǖ~yD!w{GI7.߶m׆fqͪq$ef )YO\&,*o v'qPR F@0AD o:փm1R5aQu>8Y͗ =݈Umケk7tnev:wOsQ_4};5Q8s0Jm5^§ h43D.*AV.d>;^UynԒE+C b#f_D(E|p+hHc%UzR<%Br2RB@3 sB IT߰CơΫ6g?{Z:78BG=΀0M15lф*-w{SZו:F~1$ bC'.)2Nz7]V ,{-°O!rZ} .406\c&Z ,eh7y,X۔\'$WIt 'OEދ MJm 0zyc9Zl:e9!}^*}W;}S{!cUxBikjxHy*:F#^Ho s;tW`;C"3 MՓgOIFHz׵P6n-m3 өZ$s\9f煙>_h!4#MжSOssf(є5JBhNixp[ެ1-ug|%N*VJtrl.2.ՔJ6ψc CMޞͦRff$VvPVy0 3ײoOQ .y\H=VO^A~}O0>\=؉邓 ׉Ux"yIr谳aَMQʺ#{׹iHK9~lG.XҍQ{]`ϑnR5G2xJZMb}HWdR5*`kA6Ɋz]BMLgT5R6Qg|wxaD_X[C&A$p *zZM\1#Wɰr>&l2R / FLh+$': 7S܁!ZA;_'()j; 43_)Kz?66UOuo ݎ~[`-odux1?QHz[͵)M*nKxaSDjj =,W@]C4Aˉ-V  1yjlt>Mk_BL2xv⒫ O,9yU5y)D du4ġxV$Qģ(b7hB1eSr!}Rćv8A1uf>.~^BS`Թ ߺ_[&Ox+sDӫ<qm*J? HkP-_2vnN(00{Nj}md@"k,߈{k8.⇺5,q4XtwKC{{DHIae5fߣda|oD` 3 o1_DʞH㞏`FP3W7T(ߕYݧI\`s K_ۏu?#ĩsa\A/uhSuK&+3  >h ?eX5TLS_o'tH"2Dk)Z]*5$7c$=4M ۡa@|lA*eٿ+biA/~I [mw43M-\boaq@1I7$mY&l=^)1,{[Rz+Km[ܘ,_c#N:yU1F3Q-4㕟6Du)s_&Gn)T#k9k":fNew*g@ t"&Iu|*_PK8C60Fm ]>z,ʔy48} $ex̦ eZ[(h“}B>P*?/{[V,ui!7RS=缊!,ք_89~|l2̞RwS1-O?#>~%7s506It(ED qO0PԹfy ֱ"- ^w# &%*&n2e C|Gԛʻx}~2ɱ x5T ݒlmvnl\k/{2/sȇ(M^פq\&/LlF`'iiendstream endobj 54 0 obj << /Type /Font /Subtype /Type1 /Encoding 231 0 R /FirstChar 34 /LastChar 126 /Widths 245 0 R /BaseFont /WJTODC+CMTT10 /FontDescriptor 52 0 R >> endobj 52 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /WJTODC+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quotedbl/dollar/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/equal/question/at/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/R/S/T/U/V/X/Y/Z/bracketleft/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z/asciitilde) /FontFile 53 0 R >> endobj 245 0 obj [525 0 525 0 0 0 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 0 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 0 525 525 525 525 525 0 525 525 525 525 0 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 0 0 0 525 ] endobj 49 0 obj << /Length1 1952 /Length2 14325 /Length3 532 /Length 15414 /Filter /FlateDecode >> stream xeTݶ`) A wwCp .]$գkgF+ ly"rLf&&a8rrG3>zR e6/u?#XbkgdNax2#f ‘ ${f 8Y8uq"b`Q7//uȌ*6p,A6ƺLVg"N{L-d?Y,gn$%ɫLOcJ v|K_e1bO56 zmq:IKUe޴gXI;8Ҡ"r/5}.` f&Cv4kSh$f Q`;'=KP* (ᓹ8]8W+G'ݾ4o+ 4uy@LJZ$.WX ~Hʤ;u@{%\?οmNIlqa LsMըi=/zu):׋-6*U3Lϱ>DmXd`VKBfL2/D)jI D}P?!mjw3X=抇7 gcxJ+A"l%ztc|;7_vBFt"/ &g`kp~|lw O7L,w益6o oԅV(3&a}?!7W+ Ѝ* ipBox5W+x+7q`Я\t?64mǢlr,M \w.s"`^+q GhT3<[x_7.Czn^|̧<;B-eneYџ+E>._W DNTb~ ZѶ8^9Vanʪ; =`>f쓶]J yAsg%L]՟@,~hO4E4f|osW81NUMq Õ)+{`[ZI%v![OM"$5تlmXЮ BjP%eцE@a(L,zΦ$WX^²U=-K1&)V%E,ZE,+_UocOIkB5+k6|ivR]W_z8_Z1wnyg.+0Λ YS4}f|?$E!iTXW'UfxG?>p*o;S{ !A#$#. -blv.Ƃ ,.DiiB&ġwF7op/lk$7oF#5L/Zu|Oz(h@:~d+_R'La?nY^CGDUNAk;[" PoRZlCn,C^_%CXtyILVGl?|!F12LlWp_ڷw4~J-%Ysd66fHM/7Tܞ\+\s/:wyan>kTU*5` F]u&,5+U?BفCAPl|_QOK{}|68ܸn׳|vG[zi Wi^xy{-K#nP#_@о\LdimuRaCj4Ҷ C )CH'.a,?䐅.:f&Х(бoM[#Rt#w }ڢ_z?)5aJ=ND.PC|F O7[ѝ\S^)91ވH\`6OvE~+*zt`f^ ri]ذ,J萶6~.Lf]GOJ~@x<!^Җcf+5>Ek"uo<ٚzgӛ`:/>mA<<~JN}d:S7,hn0Yn*n隘K2S=AG"; U!0{:{LJ]o܊WCsdv YAC|5ߵ3)ww8(SlKKshVb`r$EF̝EdLX^&\GP"Οڂ#hvF3gSt}#]P9~ Ey[Xu $Rb|mDVc򻟁.&/ z'7^v.9ya#u"Ƿ~LË^;ϊL8_{EشAyI9$;qN J̩QE; |#;32=ל"#s|qgG -yhʟA=ToKѥd"6X3vvk}3OZMRrVB]U&sCZ뛢&5Ub(]nkqT9K;05kG$}\T~|"ꠀBqs c~6lC||n%Kx24&iǤm% f-)(/ڢ!|ƀGO@ ^"Sci~WFp0z4Ig@`ӗ]^tR By{W=g_󧴀篌w:ɳE'#̝r"t.f7? 3SC+]!ߢg=5zIcqũB` '1> cLpv5݃~]H;O]E{'+j)١rI,Rd9cg@*QBM$#jq_ihF@.}ą_T }4 Yuݤq؏Y=ۓ"&sjTRzΑGĢۖRUiĂ=v^Tu/.snVs=.ń7lJ̿<CL2 U4]vaYVKXX&nf97 6xe!h1BJwr(^L;)5ӈa'MM#m>cLKi7}8 pk#}tnQұ+R2q3p#|׈ss~ލIݛ3A.$ī%ɤy!*6=FO к{ُ@@fb3d̅5BdC Q)fpnIEO GӴCZGS5KO`-\_B?%n _gpvOp+cp(MԁfF'7͸4ޢ[3=Y<@kYH8u>!^Qznl@N&մ-:|~,:^LqQNԚZOYzq^ߊM <( +`4*.j0:F4+CM(a/?fZǵxm0 k)a+2X"'VydM#a52~{^bl@Ɂ6s=ϸ)16; lWUӳ. ̓hCuYzNFhtTNu¥*,a g L@:qS~Wv`CK7nZBɼ.WG]ا|WKZD~fxpS{ceE9{1P`o?f & S0J1ۑV\fXZVk(eB, ͡7Onl]*j:&#L@~ {<jrK"asU/ "8lj8Wg'j/vB@R3Bv^U&KT̐+쟈\_\+<~D=DN ;=|xUnjd4j2'^ˀzyRG#1G~LKw "zYC  *n=pTdAMX˽[߳2$SoK` :>KYːkG>^ ,TX%{Y|WgvקmW엙@690fY%\[~b`KOb@e]wk1X].Uv=5jb%.7 4iSMLcV ?q?y!AE@-tb60+)DNXvS 1ɝ⠫e^ș~g "n%`֍_P'QkRU(IQV~~Y![#.Xc3{fc5bNg QJCfJXxn3ۺzQL/΢HG $Ɛ z:L ڑ Zi/b>5MQ‘uKEy 0 /C1͕ l:syX_ILpj}zLѩ7dG%dv)yfy?^E֊B i%)'& O< x@?/'FUFә[̳hiKGG33zA RXB}]MnZ=,G og\҂$D]s4M߄ < %BXlU:ȓCJ\S UƐf&p{⸟3n7׫'9yNa-;L{C\1$}t=DeCGh'uRkyT;*}JD^b߲7UwS<ɲ9O]z5ʜǚ4[v7ӷ(%'enfl<~>Vkis ,Xw~Y(WߖӎH#=ԻGO*_uGVA~RC/ӌL"F#Z֣ gЦ䬄 ޷=uiL ۑא[3U/Aj:~פ&m%b4AzyAϝ0SCk @bNd@Og(f+AQZMqG}8s ux^Q=3rСͅkҸi7]f75r6"fH08$SUdƱ ^f!d;O T\EEwI***#a[D^;):0kGP´ʺeݗ %_ mq8hmC* ;T1 \JnlfCpI/EF/ [uqzoNC%* ֻ\v~J/֗Ku}I?9c}[8eOHCT }#n37dqQvœuf~k2@5xute0NG-X.Ơ'{"YhE[w]LDv+/wS4tcހ_'MHPLSޞuDt%<>ܐ b7Mg>RS(j ۼЊ- #C¶Jc mw U*(VM{s pssZOEsd #\K A VR1~knG^MP/LE*gGni=h 7޲G'WScc1DS ZNQJ3H`7x(߿ņhG\\0UCgs$#6D;ffM '0"ȍ SГgR_ |O0#BPb!;hl$? q%YLlUM12Uw|IƸe i LM4ڼmo$5nep=B΂"S+"Z'R HaN}5(il[l!c^V񌂨_a͒d祮u؆W#fY(UeZy ׆+\ eJ6*"oIkR I8.ZhVqJ}k<(i rO4AIN,ꇕSR:|Q_I #C٢|MO~<,IԻsRs"M(cBU10DSWS=pqJjqEG'yl4L*w$HۥV#h;y[U1uOd-F'OԵGŹnA^X(mݏW &%I D)*`}<,=t|Ia_.\тi׽#2}KӊƅŵgV>e`5FFKŴ_:0`3m28 l4M7OΦyƘq2u7m;HƸZfp0d\֦&QlzWTuje~Z̍Ή_)w? s>4,|rLz!U߅^~2_x@-,) UfVKЭ) KLvWeg|otMmpvrѱVggZLd|5 &6Xk3kvx~ȦڪMא$#Sg]]c[zLtOF^w|֚i噍 LpU:1ă~B՝"*xAf6 ᛨ`̩=+!#oU~:ŵ::dϵ-;$O7K !_k:4e,r:I\ >ԁ w ?"$wt~VSS9,˗TVEF22tXaҶj$V.,sj-ējtr>* ަeh[ Lb-7I0+<&C(@I\[ nys,eҶ',!BCu"psF^KYޫ?Qf e?_^ż0d> XdsQ݆6)L2V7jXUC 1u}! P}6t.nֲ. * /iupH ׺y- S8oGBȌ[1!bT̙v-ӢK4L^b 7&M}ˮNtdsЩ-cxSY.+ FG|8ur[ |A,HS0_KElKhB9 Ñf-@t sS\`T?>-`$2J.wdp37&u#'%_]4fL':G Ϊ_bq= Ӱ7& ʯn P`JvxWH<{{oQS}h`)',fXfpYg ]JB1nQ ~L= ;8|hgUxڥkRT2*+۬M9L4aJA #mXny牛?ySXywM$︙e豜@BEdVBIZ֔ VѓS,/ LstJ ̱8_pBf * Ɋ@Y#f)=ݮRX-W|MTՕ?!MS_?|Ac>)ޣ?K$s0R6uE anv~ir~O@ѕ[CMxm Wɟp/qTЏia^+rsMT*sv@*\cՋԻH S| nZܹM B?ñD;Jg=ub'trD(K/J!_Y-Y^,AzFoլbJ.iv*Spߔ`҉}Wh*vrG쨌|T']#痱IU0εQi8ds;~*R1T-_8ad)Ocp*8=0-"F*4ω&VlzT5ȒTp2U̸l-`g8 iǏq4 u6I3zJKA3.}RbHYo`,{0 ?~n5t@'Pm#7$4H+FUU.gw3Cb;a=|Q *aʇ F$Wh N2BރxGc7!73rȽ< yL#|xbHHd ߥԖX6e0XgLBrk:|3ii23N§o,Q7&K_*!rj]喴R9a{Eq}Unv]xh3H!zZ.Ө]=EmET&CřM[8Ly'b$1>![Amops>O"_81?o{tuݴcu0:ő涷+FY*câwM'g^, 7m+vONa?ŲAieO}oUqC&>ІSd9B{d_F:V <652w<?yTDfQ, 푴Xxon R~x99֐B-iǫVtr#6^%}C|ƣ= PKCuZ.ћ;eA?`_tڿ%q Ά\#?%Sn,fdM" QsC/T-P-vRvu[綪tˆ,ЭBDjȩȲ#\o4sN§:wt:xa_ ^HHDҴΩERpzA +SMmƽtֽX i~tT>,9nX'F|r!𢡄2ff&hP糙.1(QO6OYXÊt\䡤Y|T"/_KZ*lXĦ IcR edLEsENӾnmAC{.qA}/W_&фN %eH7NXggKm]ee#o#\ceōNш!-E#]~%4[ 3}( yb[\дV"r%4Au͸z螰 bי6-(lǵCgM_ Y*UL#Nq3Sf h1 #Z 'w!qvgMIx;wC<،}/ >Gcōs1|cH8F'$aX:L7}v뗴cE:"Zk:J2j  _+iܺ (£CZ37ZpP.'1;)0A;"Qt|oj?׼;:懐+=VY˄KMVbv>qWVfŜR͐Aw'<bW3Zʈ 5dLd`ƏQo^>aCCƴ!Xe`52H"ƈO10[r\2)?N%e-!"C?io1s("kd5%{3ePT̍|0F׋S 83z]> endobj 48 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /QRPLIS+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/fl/quotedblright/numbersign/ampersand/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/A/B/C/D/E/F/G/H/I/J/K/L/M/N/P/Q/R/S/T/U/W/Y/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 49 0 R >> endobj 246 0 obj [583 556 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 833 0 0 778 0 389 389 0 0 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 0 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 0 681 778 736 556 722 750 0 1028 0 750 0 0 500 0 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 46 0 obj << /Length1 773 /Length2 1206 /Length3 532 /Length 1774 /Filter /FlateDecode >> stream xRmk,)#9Y#=dzhDcT\# }{ >Cߤ[꧗f64.-V1s赨3Gd{T7(xWIɘA&\.LezIN}ңկk‘!;U9lRxRIbk#Wڦ2*(%;%u^pS:X]?B?((Ãn㙷~!]ad$TNI!ZQ%\6*3^h^%Ti-rTvEIw15CY#I4nL/KE`=91"٤qljW|no1__kːj8 ?T ˼)pC%o oF]iЮر}A澦<0цҠ$1{z_g4=e·YuYMşfR\Ť-*ʠ΁[0#_BÇؘpӯVendstream endobj 47 0 obj << /Type /Font /Subtype /Type1 /Encoding 243 0 R /FirstChar 49 /LastChar 50 /Widths 247 0 R /BaseFont /LWAPFU+CMR8 /FontDescriptor 45 0 R >> endobj 45 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /LWAPFU+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/one/two) /FontFile 46 0 R >> endobj 247 0 obj [531 531 ] endobj 43 0 obj << /Length1 1105 /Length2 4697 /Length3 532 /Length 5424 /Filter /FlateDecode >> stream xe\T N A"1tH %  at#ҝJ(ҩtI9s{ߵ~bc呅`J( $ȫ/?<v `6?&bQh )Hu0P00EA0^@t~pt`0Sp `#~RAZѿPWS'$E!fMħ8aJ&4?(GWPGAahK]Uq#Y ;+aP- #aaHM`>% 5=9_9-01A~^~~_{)"!((aF=0!aP;sE\0KLOk (1 PH?, | D>߄SDA?$Y0CiJC ~QY?sF?cb!~#1ʨ?Ps1?Pә?s׿𿏇ݓGPbb0];T0+ qEaH#fp̜`0WD.?G1kMuFyp#x$6"ӽ2óoo--vݫ)"aSjoUXrsA^_5r)94۝cݞc#CSAoiEk[~2vA@7k3>v5SW,蟦kCMhGE̐}c_7!nd%]% VG$ G"5wF*R|x_MNWs-[~hϩ=Lp(9m]W0'L'P$♾L.NN n[꽸oQCx?dJ9CxX`2_k7z=$)bb[j#īV*<۸sTlKlB3 CGO4Egv8I;)~2zToe6;)yűYÛuP#49mكj4΀{]H@W ̙RvNߩbmԾuz@! uy!c3tKY5Bl x'^tN@ؖ+8X|I0 T^_.OfGX/$f l(Y Ù3:v%sn)NפeKTyI|W 84?`XTap[&Y Pe^Ql= 򸚭Lj7>&~WR#'MotI" EteɝQ;GT pGhqG^\]_1c+Pn0,Gq͂MȷFB'X H=,*jЍQp}d(Yڶ73DyqظxJ.|\i~\AvqtB>"B&e[>rth]y[G} }OM^H,?%ڋlq%7Z<\7]qno,:Sb~n}jv=LE oa_,ِb֖kѺWL90d/ o9(5[8`T^ڀg%gen`yF1υ"}AW znUqNbb;[]彲o O|bɻӿ->J h/2R/b驝̺t$%{8/_r +'KZXg _\7"v-;Fw&|Ps (syK_{'pvբ3HHv ~)m]jtf1$\ѷ;M+9x<:hT7ˮI[[f⟞[Y8s̰ɦnRȞ=o6;EO{3\2>a5Q|̤ZQ:]{[5"$NΠ^DN%̱gz@yу[ˏ%i U%k CYA aΖdW6}<@M#nz$ܨڇGU>_mѓ1[KSXH5sR?@Qm6k#Tv42'br5aΎif5)(_{ȥCꘗd$sےn`-TiR9JjDNd@myy8_,/09oz5N>vǸ='S+ hW(zf88NN\k 4;0\s^F|`נBG6xMTFS9L6z/9Wr3^`lc'\I䂮wF{N x;zHu^[gT]qKKnSz4 \UCן !G^0FRt-κV􃼲9s jr6#ϱt .Q<Ŀ?|.0j^2fG!lzq(,DKӘ]jP=FO_y_lKAQ'4/C2CI9!vFr~ۦE1s!M)X꽵Sxmv*P/O`_8<4u (N׿ Eڐ -g8VC,f"267.p\A ڐrwa*5NBMbg =g3/[Ɩ~ug!5E+ejaektPc] :E p58wl4&8]k/r~DgF\0XƔqs:3Ox3jWx[H5|aҚxkχ֙ ZTDәOFʡ7#)Dυ%2gG,$z~t HpH.Nۨq<& 3W7s{ǏkUF{P]5ݥյQͺiԋv@E&/9tyAɂf}i%&DGP6Nm{lPsM"``ؑHu]b\]%y`%|vjY7"`G|νUnve^^F&Fhr^ k X#P ݉k)~%Djhfs&_#cc9\q/Ja=TS/ zԦN𡋅u=^U|A$3">@pM;^^ϕkɜ{Nfi^r敁q~\y'FbIoMrpFoض[k2=xS~5z^&gzr0Qzy$@U=t8q//TK)+i&lYo =Axh-qzQJ؄{Zry.xqs Qg{lrxKKL%gagbv"<^*a~APF{jPY [x Ĭ=b <` $׬ 3Rz-I>>^)®oIxG2(lOu|tf+tü}DJ揧W ['?t[pץڪ58`ܟ~ O0 R+=dن@=Rz7%i?,d^9lL6e^40n^l_gl>跹dJ{t+FI Tvɠ6?uI}x5+ճ #);Q(\uGBv! NP- <8Ξ3J J ZOb_&mxG%* =dBdO⦚su|lqdd({/ˎkr6SBґPzoBI>\;QśHV7>K@X.^@@I>ohb9ڰrT&vwZ׈8KYtfIV$-S˳FT9b2h`p+W֙@A {@J2f p٭s. _ѝ{ttv#d,-gɋnP>tOo }1)qú>Hfj[OƋwhy;#DLJG@00FT endstream endobj 44 0 obj << /Type /Font /Subtype /Type1 /Encoding 243 0 R /FirstChar 44 /LastChar 117 /Widths 248 0 R /BaseFont /FRNLTB+CMR12 /FontDescriptor 42 0 R >> endobj 42 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FRNLTB+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/zero/one/two/five/A/D/G/S/Y/a/c/d/e/g/h/i/l/n/o/p/r/t/u) /FontFile 43 0 R >> endobj 248 0 obj [272 0 0 0 490 490 490 0 0 490 0 0 0 0 0 0 0 0 0 0 0 734 0 0 748 0 0 768 0 0 0 0 0 0 0 0 0 0 0 544 0 0 0 0 0 734 0 0 0 0 0 0 0 490 0 435 544 435 0 490 544 272 0 0 272 0 544 490 544 0 381 0 381 544 ] endobj 40 0 obj << /Length1 1456 /Length2 7587 /Length3 532 /Length 8458 /Filter /FlateDecode >> stream xe\])i);nDjaHn$EPJ@A:$%^0ux9݁z8@&ULu? 5„Oo[';p[ P̿^' o߽-r8͡`'*ex$tu0w A0a6PN+lW3[p $gMܢoG&xoVD7MC;i,~aAnNP{9ݎP:²`p[ g.kTqKBîn'2,UgC֦G|Sk)Ž9'}L2:{h+]]!rY |<|W}J|؏,|AtbKɷqtY1=+͍hҢtB* Xmiûĉ1Af.]ylRLL#ro#SVU0j~/el"DFÕtl "\ED:z]sXh"3b.q=̢nS nr!J#< L i :X-J}IGsMz^3`z8[JH$Hi\1ñfwCMIŨ {@9|>fM;9@YlOF %#7 kFpB` |Ǿɐk;AH<R]$8϶9A RL}M>f:F9cL/i/qjƼギz9e)itOfʶ)ߏG! #xlUDK@;B'E1xgCOl4!]7$J#}_{g_4K45y]Eb':jљzH]uAi8P {vcxTo#°UKjqnݎiQ7xϮ4, N&CRQ ZE(.yKfEok!lW}'nHi2BnIVY~he>cPp8z2HAÖ)@(L/%oT伩;Bfy,PQQ7tS7 sH:6A_/^HT-ˊ.L i,3lUa 4[/R (M|0. nq^B#w!Tϛds͆;[*?[iJؕ"Q9J\\wma/D 'g /ѝ)T9 ! EeRBiz:3ɀ_誝N#RR-ϞD₝n3W-<eX T|E;_J)li=)b֭M-m@h ʛv`5.nV Wa 拎msqjoZ^Fo寧Ƃ85y'G/m՞"0[05XVGY p~}Q1<ة'.ubU#j ,!ulm5dE2@D5)MqiO(m3OYZY\NqQJĻ #ɑJA~cg3Vǹ$  ZfR\e`Y~ &ayZVDW).Ʃ#oi(g]X̱\~G[?&czּFܙHVIq<} ?0 ;ҵzVw'/4*N!Wn LN/Ml4w8GWCVҜ}0ԩ0 S\ @-Oq1؉r4e&8$[SU^<>`ȵ>ea4c,W_5~ Sދb]Eꤚ=#=^L& ?ŠҼ<r~,P_9?mm[ܭ-la'ʸP,-o7,_0C@R^B .l^f,z xǷ2m񄐦oq_ Ċd_%5K\hMLɚ-}}\%~B#HƧt܊JG,Ƀ"Ͳ$1YGl0]ÕfGGj`77W##^D\v@^NE|S(Cgqnɕoy53 Wװ.a'y9aǰ6E`nB;(#Y k8٠[}*j7n\<&0N*{g9V"H L*_Qc7qC`%7zՊ2Կ83a/-!Ӟ`5MQX}HTAgΌu-êTgG6Y>uwԫ֚RFȤ43,e.* ¼cQoF5P}>m(wWw|9@lbﻘ'>y,vqRNWm=F)D_T~0Ǽ83p^:Tzi5qSaoeFqo2b+͜K*nsG֯m"ifۓc %yӇw+eMl{ʃgBC6_'Y4VqTp9asZ!j@0_nKUQtb!*OC'qpUqQ%# /\BjQr2?5ܦ:W\H |v>4ل‚b+GKɅP"L!re*R=@Muꋅ {A+_ .@j8k;fy=]6f\?SWSH'b; ( Ww"]!MN㡒N~W_zbkgVKQxYQ*;fSKBHxF&&H(]&]=6depU XM@UkpA B"q$ v/;u K`ql;A=@r8=>n ˇb^"0,wRc/T'P #LТHq}y1E&pл!4-8 {Y\0)wr}!Hg`vrFW*6X^IRƃ |=$x/6*J>`:2h~C䄇QaK_ /~.}Jp4nEp$?L2Z_Q2qH$)_ϥ5BH4ۨ4tY:RI߲di-%*X[cmk9lٛٸ(/`7`q's(^?dZZWf#Bb Q z65ݑ~B|0;4 s6`zyb#r2LȁyުRA8sk d L(QlD&Sc:aId6w84O]<|;0UZ,<ȍ,AJt4/.:t"UK_% `q0'X:͡097endstream endobj 41 0 obj << /Type /Font /Subtype /Type1 /Encoding 243 0 R /FirstChar 39 /LastChar 121 /Widths 249 0 R /BaseFont /EFMIPJ+CMBX12 /FontDescriptor 39 0 R >> endobj 39 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /EFMIPJ+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/quoteright/parenleft/parenright/period/slash/one/two/three/four/five/six/seven/nine/colon/A/B/C/G/L/M/O/R/T/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/y) /FontFile 40 0 R >> endobj 249 0 obj [313 438 438 0 0 0 0 313 563 0 563 563 563 563 563 563 563 0 563 313 0 0 0 0 0 0 850 800 813 0 0 0 884 0 0 0 0 676 1067 0 845 0 0 839 0 782 0 0 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 0 460 444 438 625 594 813 0 594 ] endobj 74 0 obj << /Type /Pages /Count 6 /Parent 250 0 R /Kids [34 0 R 80 0 R 114 0 R 121 0 R 129 0 R 146 0 R] >> endobj 153 0 obj << /Type /Pages /Count 6 /Parent 250 0 R /Kids [150 0 R 155 0 R 167 0 R 175 0 R 188 0 R 201 0 R] >> endobj 219 0 obj << /Type /Pages /Count 1 /Parent 250 0 R /Kids [215 0 R] >> endobj 250 0 obj << /Type /Pages /Count 13 /Kids [74 0 R 153 0 R 219 0 R] >> endobj 251 0 obj << /Type /Outlines /First 7 0 R /Last 31 0 R /Count 7 >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 251 0 R /Prev 27 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 251 0 R /Prev 23 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 251 0 R /Prev 19 0 R /Next 27 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 251 0 R /Prev 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 251 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 251 0 R /Prev 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 251 0 R /Next 11 0 R >> endobj 252 0 obj << /Names [(Doc-Start) 38 0 R (cite.Benjamini&Hochberg95) 109 0 R (cite.Benjamini&Yekutieli01) 110 0 R (cite.Dudoit&Shaffer02) 76 0 R (cite.Ge&Dudoit) 111 0 R (cite.Golubetal) 112 0 R (cite.Hochberg88) 77 0 R (cite.Holm79) 78 0 R (cite.Shaffer95) 75 0 R (cite.Westfall&Young93) 108 0 R (figure.1) 126 0 R (figure.2) 127 0 R (figure.3) 204 0 R (figure.4) 218 0 R (page.1) 37 0 R (page.10) 177 0 R (page.11) 190 0 R (page.12) 203 0 R (page.13) 217 0 R (page.2) 82 0 R (page.3) 116 0 R (page.4) 123 0 R (page.5) 131 0 R (page.6) 148 0 R (page.7) 152 0 R (page.8) 157 0 R (page.9) 169 0 R (section*.1) 55 0 R (section*.2) 170 0 R (section.1) 6 0 R (section.2) 10 0 R (section.3) 14 0 R (section.4) 18 0 R (section.5) 22 0 R (section.6) 26 0 R (section.7) 30 0 R] /Limits [(Doc-Start) (section.7)] >> endobj 253 0 obj << /Kids [252 0 R] >> endobj 254 0 obj << /Dests 253 0 R >> endobj 255 0 obj << /Type /Catalog /Pages 250 0 R /Outlines 251 0 R /Names 254 0 R /PageMode /UseOutlines /URI<> /ViewerPreferences<<>> /OpenAction 33 0 R /PTEX.Fullbanner (This is pdfTeX, Version 3.14159-1.10b) >> endobj 256 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.10b)/Keywords() /CreationDate (D:20050415164800) >> endobj xref 0 257 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000005619 00000 n 0001693373 00000 n 0000000054 00000 n 0000000080 00000 n 0000011527 00000 n 0001693287 00000 n 0000000125 00000 n 0000000209 00000 n 0000013119 00000 n 0001693199 00000 n 0000000255 00000 n 0000000325 00000 n 0000019700 00000 n 0001693111 00000 n 0000000371 00000 n 0000000415 00000 n 0000019752 00000 n 0001693023 00000 n 0000000461 00000 n 0000000513 00000 n 0000021942 00000 n 0001692935 00000 n 0000000559 00000 n 0000000600 00000 n 0000026749 00000 n 0001692860 00000 n 0000000646 00000 n 0000000685 00000 n 0000002743 00000 n 0000005673 00000 n 0000000735 00000 n 0000005463 00000 n 0000005514 00000 n 0001691777 00000 n 0001683039 00000 n 0001691617 00000 n 0001682569 00000 n 0001676866 00000 n 0001682410 00000 n 0001676638 00000 n 0001674588 00000 n 0001676481 00000 n 0001673718 00000 n 0001658024 00000 n 0001673559 00000 n 0000002975 00000 n 0001657198 00000 n 0001643505 00000 n 0001657038 00000 n 0000005565 00000 n 0000003158 00000 n 0001642826 00000 n 0001632605 00000 n 0001642666 00000 n 0000003307 00000 n 0000003457 00000 n 0000003607 00000 n 0000003756 00000 n 0000003906 00000 n 0000004056 00000 n 0000004206 00000 n 0000004362 00000 n 0000004518 00000 n 0000004681 00000 n 0000004844 00000 n 0000005001 00000 n 0000005157 00000 n 0000005310 00000 n 0001692401 00000 n 0000029884 00000 n 0000029582 00000 n 0000029764 00000 n 0000029824 00000 n 0000011582 00000 n 0000009341 00000 n 0000005803 00000 n 0000011476 00000 n 0000009546 00000 n 0000009709 00000 n 0000009872 00000 n 0000010039 00000 n 0000010206 00000 n 0000010374 00000 n 0001631154 00000 n 0001626810 00000 n 0001630994 00000 n 0000010540 00000 n 0000010696 00000 n 0000010852 00000 n 0000011008 00000 n 0001626064 00000 n 0001614752 00000 n 0001625902 00000 n 0000011164 00000 n 0000011319 00000 n 0001614461 00000 n 0001612699 00000 n 0001614301 00000 n 0001610813 00000 n 0001608658 00000 n 0001610651 00000 n 0001607293 00000 n 0000029944 00000 n 0000029460 00000 n 0000029521 00000 n 0000029642 00000 n 0000029703 00000 n 0000013175 00000 n 0000012955 00000 n 0000011751 00000 n 0000013066 00000 n 0001606603 00000 n 0001601692 00000 n 0001606441 00000 n 0000014968 00000 n 0000014476 00000 n 0000013307 00000 n 0000014915 00000 n 0000014615 00000 n 0000014766 00000 n 0000207515 00000 n 0000384886 00000 n 0000019807 00000 n 0000017325 00000 n 0000015063 00000 n 0000019647 00000 n 0000017552 00000 n 0000017705 00000 n 0000017858 00000 n 0000018015 00000 n 0000018172 00000 n 0000018340 00000 n 0000018506 00000 n 0000018673 00000 n 0000018841 00000 n 0000019009 00000 n 0000019172 00000 n 0000019335 00000 n 0000019492 00000 n 0000021998 00000 n 0000021778 00000 n 0000019939 00000 n 0000021889 00000 n 0000024300 00000 n 0000024135 00000 n 0000022130 00000 n 0000024247 00000 n 0001692515 00000 n 0000026805 00000 n 0000025868 00000 n 0000024407 00000 n 0000026696 00000 n 0000026024 00000 n 0000026192 00000 n 0000026358 00000 n 0000026527 00000 n 0000030579 00000 n 0000208160 00000 n 0000385499 00000 n 0000630934 00000 n 0000030004 00000 n 0000029238 00000 n 0000026937 00000 n 0000029350 00000 n 0000029403 00000 n 0001600151 00000 n 0001591141 00000 n 0001599989 00000 n 0000207576 00000 n 0000030467 00000 n 0000030136 00000 n 0000207462 00000 n 0000206462 00000 n 0000206606 00000 n 0000206691 00000 n 0000206791 00000 n 0000206896 00000 n 0000207004 00000 n 0000207116 00000 n 0000207195 00000 n 0000207219 00000 n 0000384947 00000 n 0000208048 00000 n 0000207687 00000 n 0000384833 00000 n 0000383833 00000 n 0000383977 00000 n 0000384062 00000 n 0000384162 00000 n 0000384267 00000 n 0000384375 00000 n 0000384487 00000 n 0000384566 00000 n 0000384590 00000 n 0000630340 00000 n 0000385387 00000 n 0000385058 00000 n 0000630225 00000 n 0000630278 00000 n 0000629225 00000 n 0000629369 00000 n 0000629454 00000 n 0000629554 00000 n 0000629659 00000 n 0000629767 00000 n 0000629879 00000 n 0000629958 00000 n 0000629982 00000 n 0001590082 00000 n 0000630822 00000 n 0000630451 00000 n 0001589967 00000 n 0001590020 00000 n 0001692632 00000 n 0001588967 00000 n 0001589111 00000 n 0001589196 00000 n 0001589296 00000 n 0001589401 00000 n 0001589509 00000 n 0001589621 00000 n 0001589700 00000 n 0001589724 00000 n 0001590193 00000 n 0001600432 00000 n 0001600674 00000 n 0001606846 00000 n 0001607058 00000 n 0001607538 00000 n 0001607563 00000 n 0001607626 00000 n 0001607663 00000 n 0001611014 00000 n 0001611042 00000 n 0001614684 00000 n 0001626492 00000 n 0001631393 00000 n 0001631659 00000 n 0001643172 00000 n 0001657670 00000 n 0001674191 00000 n 0001676838 00000 n 0001682823 00000 n 0001692124 00000 n 0001692709 00000 n 0001692786 00000 n 0001693445 00000 n 0001694258 00000 n 0001694297 00000 n 0001694335 00000 n 0001694561 00000 n trailer << /Size 257 /Root 255 0 R /Info 256 0 R >> startxref 1694716 %%EOF