PWMEnrich/.Rinstignore0000644000175100017510000000014714614305422015675 0ustar00biocbuildbiocbuildinst/doc/Makefile inst/doc/PWMEnrich.tex inst/doc/references.bib inst/doc/PWMEnrich-plots.pdf .roxygen PWMEnrich/build/0000755000175100017510000000000014614351234014470 5ustar00biocbuildbiocbuildPWMEnrich/build/vignette.rds0000644000175100017510000000035714614351234017034 0ustar00biocbuildbiocbuilduP 0 @ vSZg7j擫nC+ɗKcBM(EQdKD|S*T,ONycNqb$'ÐzCPI~Q?X@2wn "ar#uk`JdR }bոVhH߮; PWMEnrich/DESCRIPTION0000644000175100017510000000271714614351235015107 0ustar00biocbuildbiocbuildPackage: PWMEnrich Type: Package Title: PWM enrichment analysis Version: 4.40.0 Date: 2015-09-25 Author: Robert Stojnic, Diego Diez Maintainer: Diego Diez LazyLoad: yes Description: A toolkit of high-level functions for DNA motif scanning and enrichment analysis built upon Biostrings. The main functionality is PWM enrichment analysis of already known PWMs (e.g. from databases such as MotifDb), but the package also implements high-level functions for PWM scanning and visualisation. The package does not perform "de novo" motif discovery, but is instead focused on using motifs that are either experimentally derived or computationally constructed by other tools. License: LGPL (>= 2) Depends: R (>= 3.5.0), methods, BiocGenerics, Biostrings Imports: grid, seqLogo, gdata, evd, S4Vectors Suggests: MotifDb, BSgenome, BSgenome.Dmelanogaster.UCSC.dm3, PWMEnrich.Dmelanogaster.background, testthat, gtools, parallel, PWMEnrich.Hsapiens.background, PWMEnrich.Mmusculus.background, BiocStyle, knitr biocViews: MotifAnnotation, SequenceMatching, Software VignetteBuilder: knitr RoxygenNote: 7.1.1 Encoding: UTF-8 git_url: https://git.bioconductor.org/packages/PWMEnrich git_branch: RELEASE_3_19 git_last_commit: fc31a1e git_last_commit_date: 2024-04-30 Repository: Bioconductor 3.19 Date/Publication: 2024-04-30 NeedsCompilation: no Packaged: 2024-05-01 05:26:53 UTC; biocbuild PWMEnrich/inst/0000755000175100017510000000000014614351234014346 5ustar00biocbuildbiocbuildPWMEnrich/inst/doc/0000755000175100017510000000000014614351234015113 5ustar00biocbuildbiocbuildPWMEnrich/inst/doc/PWMEnrich.pdf0000644000175100017510000552121614614351234017416 0ustar00biocbuildbiocbuild%PDF-1.5 % 78 0 obj << /Length 2604 /Filter /FlateDecode >> stream xr@V7dލ7ƱH倶IȴBˤPwcY2KדFHHRhDa%J`L.w)q먡2ؑE2e$2Ӧ?b_$O?`)(Upi B ?Dz;7˞ؾw[Wጤ0_7S sJ7wYٜOX.'4/ff2RmoFeTwnvD}ݯzԿiYں,wKt78uC FR~ۋ2/Z~^[|•q[4 8񃞼|{'{^q,yLyyJvnCFB:5ZeZ;Jӫ ܪt*xAN$ʀ?)`G̈́VNٱvy,kV~.j4A³Ί檬&,K?g17 p2 2T0"s 7MA~T*}=IYP1r!)p6PɨRRHA~S^v>-'L>%˘8 Մ9J_:TaIS\ШP:`߶Cnw?Shewk2`vZP_ nJM5cc86ޱq~2UC۲|KN(*h8̓)T Es0 6sXuhdZvAsBأ(S2ǂ̽^ԪEi9 F*cmOsq!>>h(4}cWe|?/DK^W6XjfW3R #aBk\2Px"GcD:dA]Ӆ<\6u |^^%;FxJ$pʶ_gW_H|w)%E__!{4#xƷQ,&6bk,XKHJWMށZyljJGWTM__QF0ԫվi:* VrdɱqܗZ^NDK4ba#(GGy8yRnkqiYp`w!k0L{HFGûJ޵70˘c*qM+e>ڧ&S-1sm|{W5`tT7c0E|k)z3 *~- _}0`Mx7wɟ'6M$lxjN% >M"^$O53<'ے%S|T}2\rBEOvI,0㠫P ֽ֗׫PkL=i/Ͼ}&3p R׃\{%2# os[bl- !ߠŹ܆kق[`_V/x.d@?ŕ4@;rS9y.mn m_UZOŷ@5%S&fvXӾϸg(ާJ-:}N"\b&Rq9"tMEVE=kG^דn5)8$NL#^qxDA@oNYnBI@;(ܐ7 @*$̩l9 tI.QiuN(7ɤ %h2*4^G,hvfop m9o>v,1ALqFz/m<\u)AsԎbe7srUTX ̴]SWD8f.AY *N3Ya.Gk zǒvc(%X_gWUƱ&%~qUTG`N *"x. HMLZepaJ|I^V#!Ր.hύYm7+-^t 9х\}2#{#D郳 ;`mUlyY,뛅ehVeSP**烈!E/ppu$1DZ qb7[^զJ ]CG-ychbzB&!lTGypf/c9Szw6+[oao%LG!r C E48GaBʍdž/}O :,t7/2A%fi/~b =0" OD z` (0j[6d}y^Zg d K++RnqD5r݆z/AQr$Zn (^/Blí2ԫI I"1-ovZj&&d_YCKiKSf=ʆqѤ௚gWOX̓[. endstream endobj 104 0 obj << /Length 4195 /Filter /FlateDecode >> stream xMwB"_6n^ҦInś(]TEjI^;G|bM~xj=BOi*&FXY5OG|ʷWS΢OE~œj*L ^1zO86%7-Z7+{ǠgƂu6JcnfS+NU0J ;@LZ՘(s>.S~^4ٵE]]1q4F㑫Ѡyz X4T?z~*,sԶ9h9 v[%3; d뜊nvGXšjۢq~*~Bf]T$|v[gմQ>+>0fT5nj̷y5"Y%L aIjk43*:4鄫X*-+`VX *ẏ'FE?7eΫwOwV.k7EE;{$`vOhNN͗0 %_5/% Tn7  9GΝ<-weKzrcV$UZ1 BrNFC\N#vT sN L|INq"= -ʱ`f^"˽MM򕗗A@z/]+5z] 0wTtӪrtWT4|ASb}"EEcUVtC{P D֑&k:'*4E>hXAkɢ߯HqJc'Rz6ţ=Ю ǂsLg&̳3886_n.N?ÒuVBV9Gs2%Ʒ d9O/28h -~ȟ6+$ m]UQπi4a+Oow)Ɗփr>Q1Ow*fWs? 2҈:+$(7 Ho[3qtZEDꂟKM G@ Z&p46/ﯩ΋#w%Ki"1q Y-(E\ƖKXw׏11y*V"=6RX>Q~)twDBJ% :KVdb46陌=)Yzd߁" D ֩*wW^!UIB@)SeՐ9u6;9.]룏dx9%@g͋1T= /a/@*Ҧ@1J=yI0bѣiؠ. _T햴($O< *"1h#e_&\&1769&V rH2י3hQ{1ͻ;RSw( #/>ֆal )^Jl,@B MTq9ʼnyN@,4n^Ow W%k4A`+V%ddj~p?l6M>&" &Qq r?LʣʦYoWάmܹp=|pN=B;~lR@9XPn OiCݽIw`ƹ.dQGi`n|h0֝ +r|FC~HoXqa)@c=@`ZÁH=1\@j sr;D2u`[ΩTsEU(uY*f~6# %\S|Dg'@FXKwmFdF![}(dJ/*PRc!t9w>DQ9B:9!} }lN-di(3G$̒kEq!Wr;,HD0vokkC@+ SbUg*fM]jC*k>%(o;&zG07/掂)}-#(TP\<ϻRqb.gRq eeu+(61[ `cbQgƂN z1V*^/z0B'(}Q\D;]{ 4>^ z82xh% LPI?=VIǘ1!v`g)vcެOzTl 15F2h! .q)N aCl2ʟܺkfݟFs=tJi.A>"8xgYy GXP9U QP9 S C\;7HőkNVp<A:+^x̺ i,#)xXL̲&o}J}5vAش=Lم)S;,vZo-%lwI"% N W}*;:*6ENm* W=J4'\jk()晴;.EV5~#/O~;]{&`ö{/y#!|^6v8ZQ?X7hQ/_6zr Q.', &Si`n:rE1Jo({(¼1buC%xvU3Аo$'i`-L^7`; J< K|&ֵ{cQ)!DYN?Va0?GD[JW.g /mV5m  ՑpQ$ϗhH'] /#cM)Q9G+cQdntho01jlA".C" iw@9V]dv5z\b|\խٛ͛w<~Xt1Bw7YbFITvkɑa3,; !?GYqv$o,gѨ%J{T#\tG\'Lх^ F_;f"^ބۖ{G ¹[>,E@dƽF5 e2M0E 1 endstream endobj 111 0 obj << /Length 2295 /Filter /FlateDecode >> stream xZ[s6~/L3}P|liL١%ZZ"],ʶ,QZ?Xs;$ddxvtG:'kyb$#d4I>og4)SmύMl.яDwR00DfE1XqYȾ2Oe Kl4̐oOw((R+-'L L '4@ !F&}N,'hZKABt^LJ<ϳJGVA" :Aה݊ribU""e/#۴iS+?Oq&n/ENpq@Vf%泻rYXaYQN¨A'L.q8A^^d8BH#NE%jl6eW*4yXѫ.yل%KhyU%.3P_qOVvY󺚇ѳ1 V &!L֝ߡģ&,ML&;9o8>$Ui.E9C0KUSӖ6 ihOThԫ{['rMaK <3L<0*"a;h |4[4:7D0hmꀤfEj̛D $LCT RE i]]c0Ԥ9`[$14]seBf]y6AWv : G$Сteȕd:%NB><#@<:`a `EDKH6}<1J(jLR^xP&z*;p!6V Ju${;P~, ܛ>p;'0 ҝZ tr,[ȆP5­>‡RrjX +ݩ<jG1AtVe00us&=_$D38yZji_$ioi7Md;<\/|F;'" Ȳ$uYwA)%ѐ6ֻ:;Qv0õ>("̙DqM( ?Ai D$@>h8u' BulegYw;n[JU/ٶ][{2Ӽ5ZmSONѲ+ WQ|RtY>ieבYx]O{0ؚ҇7OLĦ[س&Ǘ6pQ' 㨪 8\Kٛ"u{[SL㣟 ^NfNG<r՜xA~۠q^(\s~2nYD'72_65HZ>ZzGk/[$8^Zq>,PE5[N3q;,/E=veDy'-%֦e6O!GgTZhpxxhx8 Bh8 G`8CTMM51$1VۖkFza)bo7zz:XUy^qc{&7V_fraM#qUݿ!:xlB^t]l{c{Dl߅dG|Əg"'*̻nf +bO2-HpK|R 0Yxjc?v~~[bنJFyܘqB4,,%BA\R'Iѳ0LDeZGs["~iXp#us쀃SZsp.Жs} \5] ;'NSr,LmXiȊj-"v|msm3 M{qN0t1\# 1wp)FK^v:.0*hݥ9c.3 P*H1ZsAN|1h; PQ͌R*)}(}3 OK?>I> stream x]۸}y")RT>5W]C.(d kKI޽|P8ANX!-9(m)Nj$Nj/am*]o"TRy]?}sI|_Ki˅\\oxn럀)6 l̊Œ_yj% <`S9ᱻbutpϿ8=%9Qϯ/_H]h:UjOד*#dEGsd͚(IaE uVd&h.6QqL'"Ir;Ycb )>&|X~\:iS !PkN[?Aÿ2Z>ZO76Ks$ٶF`uEC(0Pv7 ^C pr490ɞifi}+&&i]toyxfh} Lt VЗ3ъ6h5Ɋ!!y}{vF$?='?k{&Xx#}.%3})#va-BX)AHKs˽js~ʻd^Sѱ 95&SeL/ !oժ+ŞW_3l%cSKT4zPTHKB a $ˎ9܇t:}.KDQ&T3ɂA,PE=@ԉ} ̅% 妎2gC90;Br!-Vh*-S' ̸^VD8/PUx+61{gu q_Ք0+(n}5QzU3Lِ3*a/[øQ[_y*ǧe[ؾd@0EEخ]~Y/f]}Qv'^)"sqӖ{",?ral*tSm@m 24\? vͫKAj-ΓXlB.d `2/ ½ $/v@o'xq0jkIsJ9竧hr)IrvY>jMOFTng(ЏRЋXR],Whx5cNwa"I+n mPV:[q'ڏQq 5: !x.z+ڰ6 / 恄wh Hȟ>r4lCp pB>cSs27 N߈LjEs!/|n5Be๮e/.syv)8?z^1RACxv $'$j$J͢Hai`&0OW)Lp3qyd\ ![m/pr1^)V@iI/(yZ{L@ EauoU"rX8]՚ZfbQvF`rs> h8[]txM=@Cyؑu#raQ䍫3%>lox >/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream x+2T0BC] ˥kO endstream endobj 121 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/simple-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 122 0 R /BBox [ 0 0 576 360] /Resources << /ProcSet [/PDF/Text] /Font << /F2 123 0 R /F3 124 0 R >> /ExtGState << >> /ColorSpace << /sRGB 125 0 R >> >> /Length 924444 /Filter /FlateDecode >> stream xĽMe;7_îR  7 Pۖ!d}svEUovUMennn2 ~߿??.}O)}Ͽs}ٿo?_ϑ}WҷoE~o?^wתu}OۿisU]y7O_*u|/Co*_|}ZE^VKw:G+U^?ۇa\w˿|\gb/}/Y,}XzƖҫWK/Vb-=[h:ܿ寮qUӸ(alٞy2^-}Yi2X7W後qRnfϫGoGଌF6y/rRN~I?9>q78)/-c{?3|>^Q_sY}/˾ײ{/kj܍rNlG{{~1bWox(w+?~c=oYoKߒ{} 8ʷMߓ2 0PxD01ޑo\18g\r-[Y7Þ7yӞ;=Ud\r.{lVem)߱g[Ye/=^6'<,i/+|ܕWL|3&?M~2-g>I6{3&|o:x%㡬 >n+5e޿wߜ޻}/zxXǰ<=V,Yzt.~?-}Ze~:>MSJnKT,%oe.1[={a?<ʿGRo&L>cyf{7-?mf}?l'Ɨ[zjŞ_|} V}M,G%rQVd}U,_7&_M|D?N7w}7{ {5>>+9{r|/rgrƖ/r߃}:IyeYGUM׮\r%)_6燓4Yf\r1M9 Ӿ$/i@ ƣ+KL[񇐥+Ix{{t'|2_6e~lyw[wZy?^,4up,hKyϔΉ2a^X8;h|ĿY<[7x=>OٚunWo5>k`^YYcACYxaK<Ӟ,G6Oi>i/~[~}ly`mL-'\~ײ{-<-+[Wlc?\yw?wK>,}oZ%ǃՏן]ng&_L\m~(1e3'ۏ3gEw.FK^s4_:wΖO:H󩭽9/~'OiqRpmE=pSorқ7K^-/[CÑCAɡaЇ-M|5j䳕'FitC[{( @ -d%ɏ y5e|/03oc˿jkiᑓ-IyeeԿYd7paB&fB?qȽ(7ZqnI32c(w6q1K9}ɜAWSUY3X3`r?g乔8'\-b')?= 5gS}BA! y iiMo|Їbڔ'c{C 7y+祌xxqG㋵Uq1M`xϋa/]Ie^GUMY{=%)עܪrc(ϥ%/Ut:VYyZ~)o)o󧜍T͸x 7_p6.U܍>'r[[}v2kWnMk=v+o#.CY>k<֟\,rʥ+W˯Y~떟on//{ϻX;7+x ϡRx CYs/.x)W{^|?wK>,},ecTF$eW=oa=r6lɗ68)c@ &-nM{}T7w,|V~g WcwOi܍q1N|lC sf8i23[}'ɾW{cw㩌Hg=;#;q76y2Oz;y*O{޴-+m~EdaΉYd?;'fu{^t}'f^˞M~sN"lKWx+}鯯ʈG!/eoGEbnr%oeYd|?gZy工|,rpN"k<ĬR.MYWybYwg+^,;Zo-ija'l/fһk<6O:l>-}Yo{?,rN?ΉYGĬ[YsbYsba{0ьM~gZU'¯Ѹ"ʈ I/{n<뇜3Fs_+9D泧bN?sZ+SB5SZz<}%p>gLYh OyD-|M$w8~> ?IwЛ0aÏEYonYY\Sl,^hW͜qR7gi%.E[zf-+alKR]9m;?fWe׿9+a%ݞ7˯Y~+_-to9~OrV$Kꛋę$<\MVb%)g?G9/xMc&?L~|7f/&M>xӾdYEX7UN'X_,q/_,j/~ryoXr~~u'b<ѷoiw.Mo69c,ϛrk?ˉi0NRu~sS^<-}zzRu7geWmOXֹ܌3*˺㛇,qqonYyqoJ"On\=xMø_pg_s/㧾کOrl\!m/0^~p<!j}G^,}[tcrC9}:Q䭌w˯[~_d)yx|x+h_Oe/K煽Wp3wo-=Ex+{Þ#-n oZ~ۖߖhsW.U9i239F=`WO9W和r5f&Sy<瓇r6be(W[|/&?4ϓWSJǟ@x(bkSn_ߎK92or7硿-v3_͟|0acnv?pø4Eqۇ|φ88)nfڬ4OܗG^E>>o*oagS8+LkW.8+cN+ɫ+G/ 1a$?껒Y9Er|/rg2V;\yٞxScv8)G"G#MƱ>*Xs㹔VI׬\sQN´/n8 r6N_2Q^pc2<߄~ GWUejg?I{ȫ)Ϫ,=_Nu+@^My܍[Q8gtϷxi<{Un1 V` 9+ϢU8x椬cςm9){R2'`q!)sM-(7˯ڋk7Nҋ۾|sV%?ȷ}欼q36)3$W<j\qg ?~Gye=q5ᭌ밬7{KnƲtiEg8ܕFj鲏C,t}sx(c})s)fb?S,@ƫqn+q` ƈK˹ġeÞ˾ +K8읋%.ŲňFR›Z<مy {bxXr'ed8rg9q6\b.^fdO9c- ZkZ\b;ع]KV-)w.F}e_M7[~뷾bӇeJu,B?,tǟx܍2bݟ.Fl<ұ^|1b;qx(c-bځe-c2@~K `?â/Z~ia75xu1'k,bc<>`e}7c;{bŇs1OX0bM^v`5kyHXأ׭ػ#6I {⒕kUFl#P oɯq1_3 ,V % 󹋳V.u)7cϦ{oXvb%j'\[V~'o屔T^CY;{m>i9,vg 4ˋ t[r-]<'~󮬱͛K,Xw(\䩬['VoyXx}%=pM=qqu{ްM=x?ș{bo<=Ş b^-aMoY~ے_a|\Rxk/3+/Y[?K?㜍~/]Lc&?M~2m[}f}om2y*m䵽x?'ܼsS.x(WnMYMg| xX~򛖟n;≇C5^zX4/wossy{6梜0w^(qQ^<`rRwoysQF fv.XTB\Z{{;t**cAg_,Ʊ&Y7c"geh{0?2f3 ܉3-NM)䘽1!Ǎbߓap#O52Urd6x!QU0ɫ)Ϯoa#ZpR9g:8r7ѐ,?CN ;x:'a n8f[l'y/&oeDC|pȯ[_^hp0b/8}*Ƈ!G{;W1>j89އ=Q~rDz7oX]/8*dqUG.="G"GO{M,!#9VɱzH}SW0/8V>'83五VF{M#!&GYUП--\׌Hy+/-6;Lj܆rhlrDGdR\0N7m\o};9:|MOMi1\{7l.rKt9ۛx9K|t` #z-\M #{x~[~?;|pVz~oZ~[~ {b9^u(7˿[?1-br7.F7,ṡn6f&?M~6-J=np5ywM^f#/eDt뾭jW7*\2W_-q/Ix)j5^8>9e7ϰewlew m7[zn4ّf'/nK%M1g ܌2vߌK<7oeG7שܲq3^m{Շ0ag9_7N$ЫtlR.+aѳ,ٰڱlrl,jؽog ՗fUs2z{n97߻5{CNúNa\ޣi{]iާi{z4CRϡ{[܍zF&wK,Yz<#Xb9)gKO8ޭ1;G_0+9+a;tvFӂ4ʵ+Ktz촆I9<rQ^]Y7W1r7y 䫕ܔ2&?M~0nצ\L|6d^6jbb[.IdMbWnYh͒rfafWDxHz>;,/._nyׇDkJdg&~߆r7gҔ4NIsV'eiGS,glźr=geWrRN>[pS^I갥K{ҽΆ&$^ uwcS88,n6r3ʸq5˃gno2㜝Da.p6NrjyՄgc8V;x+Yt>j|qx߫O{gkKO{;\S3gI}/p!X8D,/b@? ܌2ݠ/ ^,}K7W8,ah䩌[V]TFxxDw2Vɷ</Fi[ e`D#~[~5=f2.2dxX~߲$z {bצh)D'} !WDornWo&L^fMVF/=O y)k{ly3 { {g߻&xӏd쮦wMAm\Of{]U{x?a{~3Ey#ݖw1\+%yc7xwc]r1?<}7r|gO`|_}+\=f]OV$+q7 x.1PݾuU.E9ge@gƨp5>#'{n}:n!0[N.y߻?G:_̯|O# ׮\}{\e7ͷ=2xYKq=5,;9>NE}C1y7aWnk㰷W0䐟j,s?@E>ht=8W~i>|f8sXc]S+ d{ߋ~^X"<O`W{辡L㜍zsWhqhʡwgC_]T0ס$b=\`XBXO?1x$YM0d.;w} ƻq"{#>gaTpċ,W--A8͒StJ0NczVx'r,쭋#~`!ق#>E8=<=8=tM0N~8z(oɿ{Xi/k'O$'~駜r1Ζ3KyO5pklҕqkxTYy+\;{<ƻ;Vx%QOʽ(bVS9iџ d7y)t ±V =e7oeoŰ'xi%Xve=S-Y6kwƖ.S bin 6+/&OGn}w Ų$[/Hlgza;wp٣@c_1?G"?-a;F01g<9.Fyb/b/u.9׭ku~q|+ڃ?˲:-M$kONu_e6~;_g W S{ NO{?S ?Gszx_<=^7?=^'_)~ Bk3W˴3˭S*?4cGPEϨy&3 /˳mQ!OALUV^G'=QX(Oxգ}eD^ԙ+-+}G{aߢh#k}}gܶY?ei}Gh;@}G`` }1~|&h }5P?{p}90^>E'G~33>' a;2O{N;1M31N|/'ƋO'Ƌo'?f5^Og'0c_i_\a_/|/S g^N䷞/o=5 {k=6џ^hOaM#w#(φ}Q {5?߰W-xD{ho^w^^=M{{=~/a_#џv_qW.Kש܌󭋧w}|YfRɋ[Oژ|^^b>e7̧1ߞ 8/hߘϣc O&O' #WLxß1ބy1QDŽ|ҟ ?3C?n}τ0AE;G֯GA_5o քPÿ6/xڄ?1m3f̯?a|o= zs<11f3_ }gΰ7W  jyk?=Es~s/'_ğ hܖ8簧aoAO1>^z؇oͱ0yW0_+FDZ1O;쫛-_zh_qFg wF~XhpAj|AyS}]Qyߊ|8oo{~gzk/}Оn'1_w?пs3?8;NvgۨQQvWΏ8D}N䟞?UA|]蛅8㌧Q_o.3^_O}߷>Lh/mX˥3%wS 8ڰ웰'|K1'1ȴb{-_rC\SތpƻQϐr 1_ W{)構 r)gUgS?3m\&-rh#r׌3+>!wioqo&N=~1}1Oߢaw|5_=mWwǥV~GBsa-O_{cɄb=X}hMu"??oo<;࿨1wk\/;gGyhҿu& Zg}؇7DTO(BSB~2WaeDEw}W^(}u̗O{?>=_sO#wOʋ?:;~8c=0X?;A//G7y )?ןŸM-Oj~vY_Rc=h>_,XO^\)X `j@~? _> io hoSL{#>Ihhe(|e{%ϸHo>]苆; *ֻ2/y8Y.ER_HGy#iߵߓ2>WO-_Fv]eWyǫG<왈bT:C_z??~{.a} xb!>^~\OaK0&߫|*G{-IO2}}KS~ǫ#~x|lqx1_8c/&#|3.x_0M0xOʻg}1ߍ-bZm{1^w:w7m|ﳓ G0>6AVC"~?&?D 13~ecWCF{ox~K3rz3>:gзoE<.sy?"J=v/+޵]}D{.╸E\x d= b|ooK1ßVƳ?hoo.=ێZnO'3>͌tzJAO92דBG*(x SG<)ibg_ɛcK~zxWf_MZytr?܌rg{~8)apQˇ-[zfҫWK/^,=[_?Yt*Ey y͞yZ?\,le/Y>w~pQu*r3y?I_pV^&?&M|T/&M>oS^8)Ϣ<,\-} Ζ385}*mW|ʗ|IG2}<~4nofr%{ޭ_5M~0a)χo.؞qQNx|IyYi҇{~EM|GU{^n߽Cߑ|x7c}RH,br_ /iCeҷo=_sr.KT\y͞'7,}Xi_~ҷՏ7_zx*b>0.S7';0.ڞW涌-Zzbҳ=?[T?n9e2}L-ΗȖ߰t<<; jϯ&_L>|6$fL&߷}|gnoj ϋ藦$?G|8)<2,f׬\yZ1 5w?|y{Wcgpʨoa39)7㚕KQIޯr~ٔq͸bWS^]yVe곰q}`(禜>3oZ_-b'ɟ}P]yTeMpMY[y5gWM\q.Ix^xTn܌kS.]9$=_x=z̿\-{b塜r2?{?_R{YYWC[~_Ɩ-=_0d{Uymnlel'wf\6Ɩ_8}͘$ =)gj,5x+#>f:l cgc,s2 Ȗ^,XzjϿ_.}A!5>"OOח_0R.}L.}N#|\ ϸ#qQ~pʵ)܍~=0^fOL7#i4{g=4^fOoF|^GUsً-ϧI.Y֔{WSyZ[/xpu)<,YWW 9b\[Wƣ)OU0{\q-)w*rʷa~۞ys1OGao&M[yg^/%k:S:cm#N 8` o99 -\̙Fr{s-'X׾Y7c{ޚZ.i}`}evTS:nQI 'Y+|eY-yJBǩ\TbiEr;=ǩ 9JZY~*k8;N}`SؿT)q Z& LBd A68 >ǩf ?ƃSM&nx~ <x[z06w ,108MSA, 4;1F{27藍7eoRé)ke8HG^_Ir`D=ߟW"G{&8{#rӕQY+#gz[b{,سq 9N .^ï\rOџɡ>?NCW֕hxUп dr1Y5'y+i/ Ǝ^TEriw蟺wL_qqN_-{zY}CLץ }Gy'](?]үGݼ>?+5] }OY9iG u1П}1~؞S/oO鯌wLhNjܒGkdž@m)SK/n?^?8+Ӱ|SOޢ?<1˞x?ǣGc|<a~۫\o{q 8+Ug}'Gh:ŕ{6Y^7_7F}N,ǹ~B{B?$۞2~ω,(_5n<iw72؄i\N\rߕO{@N;콼9cIq矇 ^Dq&G4ۣc>U9s5ܠB_ܛrӡi_-8ޟ8OC#iCuqV^&x8Y9 d/g&DO9<}+ܔ~}dWp؋d'.-Uw=8'c~1 }1 <'~o[?$YM>&WOb0JV0p:g?D?XK#)=6޷¿g-Ѿr n޴O+1<[.̿E߂=|g[X9y5cMqĩ]ΞBW\ZO/[:NFSS_M덍с.4'7339ې 멇#5zyPƇQGTxW???A#nWxx`ߑuxs}P" !N'KbO0~. %<KLV ?`Eʰx[[,x+}ўIߋ;rGp}`(!pW~q$ň͖_q#G|a/&_M|3nIR񜇗2mx_O4e/`/&cio/A}K^ҟx/X_-2p_Y8n9"#^{27AǭOrx3o}ڡ O.Pѿx[Z'|?U+9c {W?/8%/5ҟys?3?E<=gDmB1_,9gCE7~1nzSǭ2(賎?Wry)΅Sa\-EwEr][^=}%_烿K:jǓlƓ+9w|/Z'jU!W}yGʫv#{xڏ8I|ġ>Js1vĐM>#\0.y=?Y~I's*eܔ#'Q2|'a0қW˿ZҋgKO~8UyME9'Y4f[LXyɧm, Vk4a7o&_M|1y}e}cT8)_>r_r? ?rREyX~k_W,l%/I~{X>kU.C9o㢜n}ܰ4i&ߋ?=vULc/[~2~p}-]}]i҇KnI>ʕW6E'O&<ٻMN^a܌-eA-i^#>;_|/sV_sX}þװ9{-mmo[yWr5KlGW+OC_,'`r3g<-}Ze۞Gs2ʨm GxxF#<3x3s1e({l {%=feSlX6{-=ffٓl(yY~ےar.aOu*-a|,ݿbWolסL|7a/_&on{m}9&Wor~x*ϪAx*jnv[oєGܻܶ$Y}jBy4dAӠg ##*$/172ާZ[94jz#^ʧE|߾UWNV:y_п#|3=޾Gv~s iR >>C_ʽV^ E}f žlS/6~ ~_nZ?u <>@{ FxCxCxEx-bO7/XƳvSYG1/OU c,rExExAxaJ'.! &X%Yy w0>CsC}oh|++½;W,g^g|/mA\_}xP0^'MxT0^wS{݋N`>x͡`{% <[U`M;؛$lo\۞Lx#";`{"x5eMDz w;׫܋hs(\r})oCZ>x!5}&Pwx(ޘ17kQnA|g7kWnMGU,BWW `-J(NOՕwS=/E~;צ (w'^2?W tOLBzd?gKO~}8KU0;;'{˃(T0s{,uc1߼‘9K}%7G$Kٽ( .ʣ*+Vcx/嵕'xe/F.1j8oy}5ƹ}5ƹ˯teMo8{~:{{sjs}yM9ǻ~VcU.R?r5&NTݕWSZqnG"" 'WcgS?_1\s5wU^ M[W0ƟjUgWC{ }|}OM]M=p8N{an7x | o7pQՁՃՅՇne[hXhX;՛d#w{6w#?6k#?7{<<y^_M0>7g{~uo֞++­[?o:`믒-ٟ;[[l}OYH>VVׂ=qZ+x<~[Er<`W8 nU=}lL[ 6{%%` 6{-`==Ξ+\r/ʣ)ϡ#M 徔Q^зte-rW+Xѕ'X 1_ 8{(7U`Ϙ/^g*K~|:v֔;xTei^GYc/#*$`K`|E5oJ>ƻOWU^Ky?? P9o1''W_=OC߅OҟpßoGw;mo?<>>~ozFi7zDtJpQo@~@~@|nj_\xr"9ࡼ/xy:,x.pUߡ!!"\xsKg^`ta<6*ܠA_ }ECqz3).ʻ+ s(? ߑVȗ 8|.  m>Xqi yz\Pސߐ_?!??y;GrWn }=>'K42^& 񋽔 b1킡5zߍq'$Op_ %7pQ|Kׯ eE<|<& %/Q }^߂e=*kpnWK|||WwV"?URGy#|# "~iơ04 Ix05W Yx06 ix|`Y?.{}&[o^|{ٿVQiE]9mQξ_@߁>E9צCE9/y[;y[TUooKy@~@~B~A~A~C@@^{/{/7or y-ߘ[|ʧڿ?"VVn|; 7oB?(40⻈O#_po]bv/ g`ٯ\ x׮r`o ۞zzB^_H˾\?_?W9ѐ?RO/?k=}HVݧfoY-V[}?j}.?5o?m M#.R*7 T }E[?]pS>?]y0§qܔ+kU .o?S7 {Z`7όܡC_ }ϔ-Ygk~d6k}yWp+ߣ?sސ__ގ}\>e)m(r}(7Яע{>[J߼:<򀾾#}1񅋲GAy|OA{+KwrC|UW[nOU@~0T2(.+ F|x])07wS{]y'Q9j}AAABB*_/yH<E@9`g#y 2?XObylַ`[} ykKy"_$C-F| "Jx [_>G#&~s /8VQl@Uu6{#x!6;`}S+ }+<*`g#=/\O)> 7O$s ;U__ߐ??"\! ;1N Z1_>8 ڿL/''gc7}_dPXh !]xWo 'yFFAʷ%|x`_|eNlpG|b7XOo"gA~C~CFz6.pUC@@^o,ߗoCE}ocp//?HY?:1_ nj_Ϋ+ ||||Ezt<67'~??ް6s{6ga|]j[' `1=^>>pQ鼛/9O嶔+W$}1 ^Uy6]P.i_:,u<-[;ЧQRɗW_!'e#!!"\K/#}Ey\0_S_`~{?#x'x #yui=^ ~, >? y]?,|ula=3###| | ͫ(X?K_Lʲ(ePޟ9^|w( ^Cy5Gcx\ =ǝ#pK^ξ'9~g_owCYғqؓ(+ n]GS`ϘU_ඔT!K:q"KYg;5_|dK/?xc~n^|ƟK< ?!?! !`ދ ppG|/ǿ`ُ~՞JvB`[Oz@ Jo2\11oA8O}NKf;'%խ9vyk17vkܗoJi}}chF{[w %PjB Za 5py%lNggoXp~KFVf\}[[ <}*\" |cГ fl#m\c|l3 Xp7p=33wWl/f̰Q|[೔PQ{Q_z`ϻ?INyxPn]˻LVs*maEjaEjaEjaEjaEjaE҃ul6d{Mgpʞ~g+X&Wyk?=`/bOCܔ[{#"<\+W(x y+R+R+R+R9e[AI`םm>0~Ex Ƿ_rnF~mA~Ay'V;x[zs{V`=$oekOWww[{>]{W ogAleU_:[|m<8[Nj`=[ǣdK/V=X 2x8 K+-/ {^g졇^ `ǂ^ 6{.+y8V{S]6co~^6{:+Mekf[ W_r<|W8sܺr<1_lU8u+l1'XCOU, uE]m*K IU^Gy#'*ܡo@߀)V~K=/V8i ?_{=&'_pҟ[6~[{M}'Xr|;~ayB'x_wpyş'!o'wJ,| q,9N%7ӕ#|I{v>pবAP dr~ܕ7o"q ܆r=q6+.{( !ߑ֔Le`o//OwCB?a|̏}@ +k 'vI} >lVn\+W$= (#n]y,~MM*+-?>PVS OPwe?j/hOm=n׍pC^↽e0ς~~%<[[]ξ~}}=*z'Ml૬1%e߿˹x0/ `O,wN=|͞ >WNL㰧kWn|}=yLe/?%ž q[=|~y8ޔu?aio?H1H>:5wȏWBA^w{c> 9|<8^ʷ?!VQnCR:/ зoI+ig)Xۅȹ&v9pݏd~#|#7u;~Jw@ʽ'*^޿gU *3|G#vo[vv<9?f9]>k)+-?)-nIY[򂼜rS[ y?\yoq*YnMo*U }rx5!xrU[ܔ''w}_?y}pWWK\5ЋzD|?EYN}XN})W'no%[ܔ[Wo8eA S |XN~  rJx-|2*nSܠBWcnhʐZ}& נB_>y* L(?- ),݇e|kʏBẔ + [f y_? /J|XƟ/Weޡjyz̗"}ÇTqu=:G^_Uy.pSO|fYuo _"=~+s9`WККК|@JњZњrۿ2YL/yx*(ϊ]o~է>r+>oeoWCCȭ_$#[JF|??[?Ն5?JseG[Yn.Xn2rkWYn>XnL{!Xw{6;״k_eu6`5d[з@߅+zpOқ|~-|(X|,|&y+wO//o_[уr|*< /|;X9['^ʭd7oA߆ }R|Rߔ|=w^d//xP.(2=~F-}!'x H@&7ӧaŹOW /lwNW$,g:gE?ޜ} n9W+/|g GQM!|O2y_pQ^Uy6ѕ; wGy]I.,k߁kS.i_:ԇ8Oܖrr;k~nmom#}[gȿKcWlT]yT}S ݕ=|EY(Wį3 ԧG8Oh*_W7x5}]K3]_uۖ q:n7o ojΗ{ IT+*OUOj6bayU?,P~(77WW/,+_| ʢo+z_઼.x'SQO^]#L3~R|oA~WA~wAyWAyu=^X },kww1ٟoķO^5,X^-0Xonunz+zaCuLz~#.Xx<)o~=,Ҟ`M_pWBޱRBVp[啄~ gMDz@ڛ*Hګ+/WJ^6{:':+i+i|Js7/_qo7XӛI[UQ'*/`y%u* 9`y5$jH >vR`y$jMCl?dW,^YeUceYsE7֛-G0 'wXQ>w?1?/UQtOL,e~O_:u/Kq2''ҷ>yU.B_jzBoGe\= }/ӽxk/PH;c%?_?N݂ zQM{[\C/ogU&*\^^^'w^vi-CWcVvANN ]PHljz_1(<}(o~? 6XrU0os)x޽`T}XXXXXXy&7UOpQno1^|gz7U@`Ȼ}Ol=\N_gElM'&VGr/sw{ۣ=$Oea)D{hDl//e믒K`~g돃~?{ٿ_h:$_e/U w0_rtb5&x+Vc+5`M_+̄3aMKԄ5aMk܄7aN؋dp=Yګ~H1^4L{8`Y^K{=`y!1x~|y"`M$s>\*w(ʓ|ǘ,/|9N6{W`yA/9ʚGסܺroʣ#1޿`5&XL{~c5&W0 'w|S㒷rʭrx`_CR }bk/e3bO?{=O'?ӟ<ͱ^kCKݾ`{nI|oIn"opUܕKq`r9`OpQ> \77K{<*FxCx+޿; $s]lpUk]>yMy,0ukנB_"WO|MFz/"a_ xy::m0+oowΏxo>=N\_/N'WӕT^7oB߀} *U+ҞsUY_ܾ</Pܺ_yD_)nH2=~]mpU \뺎yIAy#y{J2ËKy{K\,Q.x)8nI^@<,(E%/?a[ߜ_/_[,?Q,AQ_;xr}oWCC~k^}1x)zWT`ķA7Ӂv?~`</Ɠ1'z\,*pɐu>ZWÝGW7oA߆} {7N֕}oz Z1_H1%׮ x+wO//o_dVooKC_?3?!Rn |P7oB߄}&9^߃UW^ʽ>sP0uvb2oO{L>ʵ߽~`oo[yTez___'(}'*_ȝBg,}[?6G˲r8>/RTiO{,IsDN+58f?M!<"s%nEԟWevdoq/'eMypW[S_. r CYn᣷NxI9a??y?5! _"=rKznl}dl=?a9,?지ԝs,?\DW5>,\T喀-(7WJ0TWB>a9a9;pn:sa˩/O:u`Ε\T[x7S#oqp`9=p-7=>hϦGC Wp>KYNxuY7/GA~Yn9O:XN5X܌Gگbzj'=o!p`=%~Wu> ;8)꣯|뻳?}-1}TW8ƩS;npߡCVo}Ţ啉o+lKoQ1%}mx)10+~p~?'WT{]Y^ϰW7m|L઼S_ ˚r+x?O >;5=P5Q{} ^`{} Y{U|##C~{7UV"aQKٿ߹[ }r6Ǔ`9'Q׹e9ax1vqx} s7pyMg?|ߜRSO{+ov[:z{)kzp?`9Ws6`9'(|w!nUYo퉗?6(m*{ F@@D|{/w0ïWR~k xr}ۯ~ `ɯ!?!?)}=C*U+H_--/wsCy_& Fx=\Ib\dPӗD|?_㡯C_} ee<φWFb3*m*WW1+> /;?8,+ϩ/xG_Wt^!;佽VggoK`Wk^Q0 =W_}%_;c^EV&&-[з>oox+[eݏD|-ħ劮=T?)˭i˫:i+:iO[з@߁+=,7=|u?a eE_o/k|(r+ǂ77/u@ |||o̗'~W^b=Z_@IERD -/JR3/}TW^/7^˟*w~9//ooĿ~o꼔e˟|e?_ܡC_ O죗?:///ooo?}b>S|O.q4+G$Txt`ZS}%9*ɉ=rb=[Bߠ<3( FDD@@xG 7twpϿ=mrU =:`7}5W;G䮼(/{ FLpCz++w<-  yގގ͝7 CO,`-<%~#l~s?ṟOx!7$/e?FBg/mk|./xdpa.*ˋ9^$oM[зo#}ނ!9?7x,7 =,/=<D| mo@t>ܨTИX؜\`}転鍒i,/Ȥ,/Ƥ_n@2_?ZGY'Cɐs> !! !E7|4 riΧoדס7?!(kMзoA߆>&?EBKoOVp> x*OO//ooĿߙŭ&_CG(b?:y+///ooogӟ;ܩ\C$A#}˓]y]*Ex_\'At_gLNrWECA޿:7e?䆼'źW_nLϓ^MY';g!=O,/I`yq O%ec=) y/X^ɓP4L.ʣ* y1X^ȓb(wpʕ\兊<|G ($mp\E<)gנORyR:X^ʓbBn_H #N窱~I`y%OKIG8 y?'czd}%oп/W(/ y_ Q'*zfW.ϔ1#O9gE F|d?`]޺%`Y^8D?(Njd:1 Wx70x;0x?` Dk?pS洗}9?OgTӔ5=U_0I{3eyuPO@ofXoc*ϭ>͏{7,7{z@UyPWQ`ϡ7~*ˍ9_]5UyU^Gyoe]Hҟ (>>~eYۃeZ/o2>ݾɅ{^{@߾@O?\P[ܔ喢!/VW|_0ͣ@~@~C^niy˂:6 y?x@>KYn<_np&%`[~B}]z }:ukЧ1O!NmNm-'~/͗{UkNr6,~x_pS^KyB^Ɵ˭_7kW"}+_E/ekWpyvUyV `C_} z5^wpQT>_o̳ < [zW{z;{;#:#cs'zէ`^'CU׫CC^=xoB߄՟#\N54Y~?t*[Yֲr9$C,x-?SB^Rx\*,kiO$#L{(X/\'{o{3]nL{9(' 2\r|/`OO/oo__\|5A]y9[`1O>{( rwJ/nCC_}&-[зoC|S]GY?.x"\H_27V> pY+Jqӻ|] /m0u7O죗Y___ߐH~ckF \.xq7@Kzʗ(}U\M]& w|Xj}+^5t/h@MG_u\׻_yOpU{b]\0?^^/o0~/{\g]߆ۯxxGC~5gE~WGEyUgEye/,mE_e}`Y/eϔ/&oe|} F|t83[oX{28+vuGwEuF1+R9U`yu/`y1/ nz G8%+<Ǵ}JZ< iڃ*UړW WҞ 漡ow?_wWG^]yNeyetҜO߳J}<(oU>`y*{ܶr:|9_WQs *,ľK:,XkgU$!c*ϡF|迢?)~ J Wҟ+ O󒷲*,v?2(,};w]KYW_0Ŷ9Wy 0'~?!|me| Xӧ?6~k!b3_9[9AkUǘ;T?~sb$g7Szo,75O!?Om z3#(|ٶ';?m7qa{(|짴6}ٹC'%D+Gy`׋ߔv}sBf>`Oδo4+ ~tlӜ"&yl`Nq56+'ckQM;n0 Y[5YG'O{[$[zG2-3e_fjl~c[N.ʖ[/<<=]جlam2F`JV4YzrS6/GrQy~7e?f&[uc/EyB޿?vjޒrRE>sy s|||||wgް“߬ 8l$L录mIVQ?cܷn5٬#w{]Z{*{yKQ{?)P?(gu lJ.ֿ,<=8!l__>l3ly$}z%` V^Yy'{[>QΦo[~&[YϿϿY|߽|q}Ou)/Ot/,W[ŻM~_?>>=#|Ǔ ~j΋}&+K{͖~V q 6}+Le_}OQn˸ekV\r||G Gx`<{s|8X7y)o[;|>;Xڟ^9/WO!njw |glta^\5؋M^mo^uoFA/^~K/:gywyklk> 6{n9=|}6[$7|ǯO<^x~>N~?sao^/_˯O>n[\/$Q5^Rnggݹ$ulqsѿ`nj { x֍w<31b迷sS 1I{l;}x7>)Eo{{7wz{4{,(=7 qzmbWo`O?yluٕ-[1~/ek_f[ž(Exxz=V_r+ϡ< l=Op2 ^ E+/x6|'Xz{ >R_e߿P]jGGk_<]S4`iV>M'Xw'`+ >tޙ?*W=^|Ɨ'#5|;{rU {s?=?Zvkv=ϬcRXSS+mwOobϯ?5O}ۗky~4Oثk:ֿ5߷j٫koc|4o?<=xzY=KVc=BOg]Y]6g]&x Upy7C▞{+?w~zMs;c=(^]^CnywW~ok>[:>[O:>[ ӼYa7[<Ѿl=3ڗG ۗNlOWqX~__ޯb?HbO8ۮsOֳ^ej>~xq-NzhXˋ >T`1 ,y:^WOٺbh?*-6no)KYnE_ p{zߒ,=b!+HHbt{ž#O%;2~+BtS~+ñ\rw2*^|ȿ/x>Turjv=ݖr /ܤN=Y~KKĎG *,SΞrkÎ(XnpO;Ɵ`aY^¹_ҟ/;_üm/ݛk|rߋ}3}?si?s\)OrJN 'kşfKw}`C϶[ѶV϶~?o{kNjimv_fϿ/$bxzċ}Gl{~N.n{fcȣk0[Y6r[vܽ?fsEΦ|St1+[:sJ&k/.'g,{!3>-ov6Hۓ^?׬a^/?5'zkOx'O+Og֏ᆗ*^ǹW/͋x{zmUow/ߛt ʵu\ص彊tZ>Vō]BVZz5c?Vm+cm{o^wtOҺ>*>_u} 6[=þ+q0^]W~ټV!V__]xo쒫'W}vnc>^ox>lb{uozf5>^Oyz;m۬❫^VQYQG3?^wUV]wج`ߕ;falcq䳕tSvwyET=v*3 6cy~YWw,)fV?[mo3v_c^+xOzͻx3)O{;3|kÖv/1U|W]㮯G_]Unjߏw~z**_?4ݵp8-v-Lc_>ƶ*3:̒N,V[_wᑯjj_}C7y7/ەͱ@|3/5f<ޚm󻧷='|xz> )gw 5v}f%UGu}f^v۴. 6~m̫<~ˣ+cy;=?eCo3kޗ{e?X^O~F?O}lgu?i~Gt{{vfz{|{~{fƋg67ۼ>ml^6mx}x|m^6noo6nl<6z{h~{h}gbv{C3Ng?u`^;i=_=x|<5{}6==_=ٳٻ^~}7_ܞ[fgU^]y?cm>bˏ_W^\rK/ൔ|^|o{*w|2/]6_OyG}7Ow}I@o{In_O8Gx{uggl߱mp/)wٵtG9FM:TJ7Ԁ)@h ^r3,ODTVeA8ߦ/t:/?-+kcVsφe=ZS +Q+[VCg-o eO[ϥm=xs'>?0. 9GKS7b?) g.9~>>}ηW?p'N{_>?}sK G|x-a_>:ׅ^l!}iNȧ#>'{ g1?ϘI崷?>uGt\t~|??ѓfO_Oz}=/>NO~j_9^dyr<)}oJ}GUE.ǹ^WO|oXmm8?<ág8 |2ПqBz{7秂)Οo0xxiW~ǧo9_`>O:;xX0;0HOHOG)=t3~|`a}|`_+ ϛ7K{*_rg>R\R?/7=ooWs3?q3~ٿS9{g~EϸՕc\X3]J/孯 Wڋ 볹ٰmbdž(ol?x`}םџֳ_{ ?7_[x9c}e}:}GO!񩟆Gڋ/~UڗAG>w}Z,DI1iOO/Gh팁|e's[+e?Ҿ۹^hOy*{=+0bD7[zmCˣW-ϘZѴ>h}}KI{O{$o~_QlShy~l?-cq6ϟ?gm"=8~~~?wǟ/O?}qԎ!<'a~(a y _Yog܏o~}'ߟr?rW~Ws~<+?BWx"omEy ?W|G[|7QIogyb>[Xު_‚/O6Ϣ `?y1ϛ-/_M#y9ϳ]GXb/7ׅ!<@-~+番oQalau[;xL~8od=p2^܏h?޲'g~˙_rwa.K{+ 弥{y헯.<bȓj?|Ue~F?yM|ϣ'=:s></g>=)o8[Q~o}oK'8G9ӿKrG/~}׿?_H{ PK?)Oy#i?-[RMiNO;?:_! ~t˿=Q“S+dO|uKUS0&o|wpǷ;#~CӸ)w&M3fmqQ+>a\eq;d >,[xf«Zm˖w)w94_^}}1ʇ\q;dӇ ;%0r(-|Z͡,oA@~oŇ{qQ&/ootF6_7Ӹ o]㪌MC pxo㣌^Vk[}no;q[{%w\q360ycLGa!OiM·o ?qz8^_5r4,n_w>#˛$/6?\rF~x|fo~Hx7{ܫQ$/ӷ-}w$}ɵ+G(j|Rew16g^!jlaw&?4evovor=|{S&壼W GK\Q=,?CoZ!E;,|Xi—[+/#{kO(/&nw &?Moo#(KyVQvYʏo]&q(clҞc}faa⯖b/_7qUOC>L>L|5"Yfp5"cg\YEMEyjʨ/03n[UFҕQ?ʰ?r2ʟ#nѕH:/6|Gy8nܪog{_ WWc(w6ø)kCy5e 7/}ɕ7Xc\/_D?yNSy ٔ?7//O,o|ƯMq eycløCN^x^w}7w8L),o4佌|sI?|;9_Q?a<^6>´8r3ƣ+O5`?I`7c #=`|$~ڛ-q<2x#iokWܶ(YbWu*q3CyϮwS>\k(qʽ(,~=߁g?|ۦc^{o wcϏ_usA&Bhʢs8OCroD`sD_R_`+,׼r[tez^=o]-@VIs 叾[ls aoy8Kn巙/_p*7D~q[O~s\z8ok[UqwΖ:;nGme0],['jO>1 o>˟Λg:je}_.->ysE9?-[r֗y8/D#`_.2o[j5 ٍڕ7c|YmșyW[(-Eg|8_On%Mw W 8J@UrW3Cy52 OrޢN68fu2ʋ3iWn}T ̯ԐT^^ DPqpT-uܗhy~>N'0y]3^p;=(?=~3p~łTW>rWZ;f{[ )!g_Lw|E_~чsJEꛯV Td_|B%EGj1Uoe>˟VyU gp GW.7@|%Q^N}HH~'|U|R?3s*P|mpdx,~5Lb~4S;'_|3 ed|8q7WxL?Ѿgh_d{!O_io=p\?9_9#W7s=X y2K'zp |e퍜g>jϐ}8rrU.497wra܌PƳ+/ݔ0_#P&˯Q9* ]rotcOWy G^ RīGd$gQ|[9P^M}ˋ-D:{yW/o{8zr~s7 >οw>_k8h8_5_ a?ߜ/g/g|7G3NCi0)_{O{{9O*9OE~ oH{ir0Urtǣv^On#U9|+uxW _&׷<^ݸĞ*by&byy=M媜Mp=aD( _ޞ=qpUYǃφ2r{/r<7X>䪌W?z/.;|L|5"~7ӯ or5EW?di1y5e'౔^~ |u\-﫤|x{᫨X:6a*|e_}7e_n/Xey2_]6~-/g8kqƏKdGnegn{w>= (GW>xV_Ԍ?Ewc^ߤt9 ?x՞x3qqw~y*毺q U, _A ,'^i1ac<@{) K9σC#sQTr'彔q~U\8O7{g]>{8G/'9 L8!뉇7w}560fyLYϱs6c; |嶔{S&?4yJ8J)y+^>y&C-|k8^|흼=W=ᲅg<_g~?e z~q^ ,ΗGlᘯxwN>[ޱz8ܗr{_NiьSq>|=V&Cjsʫ)k ?XOt%OݸU0E7%oU05hʵ+w<6| W>W ܂&ϪU'aV^a٬GjV+Uo{oG{$+h?Q^-<,<,\xǃ w<|Qմg<#o?&D%-e"4u> 0y+ߩGSƫ*n<4^ƻ(anD7{=^fϐ1WxWXx< eMϰW>L{\r+Z><oѿ+m*Y?}->-bStŦjd|?q(i\WS˸*-.`q(W/X䷭߶ί}&?M~|7n5-~VEyѕo?LTj^^Ey4}uץ+obo|':al<߆ {򫀗->_/3O?L~?s=Gnʱvyu՟~M_UMz_/ _>-|Z?rUY/>P/&_o aq7wWxOa܍o8~ߙe?0(>WVdL1}r^ګO{%7a?M>L>L,=/_]xa<"~=/E—o 5d~_'Oe!/֌-n9_^{/dz>2け_p/߰ŷ8o{9w[Y ^{Bn雦om;0YgeN~+zQ&&&ߦr7nO_&M~߱/f3|x5emWƗ jfoa^,IciyTןEpayޙ2rfz޺sy-|i/?z>u;/yuK/Oe?V{/erI=hɏjl&?]~E pH3??'N f)?Iy\]rQ&?L>`5ݸ(76B6tyr+M9×qQ>-<ǘU[xf  ^,E1rn p9s\~9G]Ň|aUWM_y9r(i\WS˸*-n&j&LY2|7faa/|y?e:Ey~/f\Z\W(O7L_7}5b:52y-c a }[|:t_A^e>>ˡ,\nlEYZqqS^,|ZaeWrUnu})\eGd&_L|~>܅3a\Q_i܍M6}_ɦ 8n~^? p7xeǶV꛼;퍼^܌?_&_M>L>LN^/}.w㣜孼,|Ym??srY,K9Qo9]6lm||ؑqy+BN{iH.o:Ӟ#Pa[om=LܖrOӯy3~\\>T&M~4io;c=czLWczR^MY+c=oAx)G3>uM0}ISy'O3~믺|Pbl›j< e-o?|zSnȦ/rkƖnw&wcl_ }y\~{0Vw$k7iEy cif;$f«}y$_4MY{G4} 7rÞjE9?!?_UyuiafKH(c|睐@.+Q_`gp7c"Wjw {*V8kw,Ȱy8`Q޼311s#AưXρù(Wޑ%P^x4nܺrס\_nʚ^q&ky4Yw;"xGʣ+Pn"yGjZCýCO?;{jxr7nU9kQ.|WUx}` #}_GS]ģ^ke]_?d]oמYU-j;ɏcܔ2)rj‹?o\=@Eyj&?7r.qQxwcӇe_ ?/Ga1VkX}oA@n&MlhQ^-<,<,\T;t 2ϐ4}_"oe_v#`_ _CYb[`=jٝ2;$MxGxTLl#L{\*7Ly=C^i/MON{kNVN{92;]9sNRGʣ+g!/ӿE?mr m*#&Μ\CYƓ!ܧ[C>"[Y><~~/k1^ѕ|zd{d(;O]v/[xf» CyZk];YΧ]=G6}#c9#ͣ[>ͅoC(u?[W|ޢO߇ m3d}˟?_?h)uOkKƾcpUO?5|?%O|wgW? =OE:_j5 o?o'>t?T+Gӱ?|/G"?<\ߟ-_}*KI;s_2?>󕧯i*O}jk'ߚ_&_L|y̴e܍$l_$Or?,Yxl\q(-S~mkٔ26nɇWKO9ezyPanLN:2 {ywexnqMf5.\wU^<ݸ W$}ۿ~ᢼgU܍}twpExϩϏ7#3#3{Lmnk3^Od Gl_G^om\(Rn]G1T^٬orH?M>1x##8[Wx5yˣ^V{U<5=U-{SG=RGyVevW>f\cp74^Cy\cpa9?Q>R^sp>TnCY'k*k{G<\ϩIV/y(OY|GY{Yeϲe?e'nx)w&?L~2ea;T܇5~Y|(w >,|Xi/K߲jl?ɯV&_M||Hz4nEYO#0awKO7KU9,~mIEYefO a~-YxZx6 ܔ]?}Η=` WMYn:],/iWa,a:/p%X|vU4iwo&mfmRaEX{oXwӯ] תTZ\S{sLPW-}:|qQ(VS ;CEO?8,jUUyer],f_Z6~Lc _BY~m܍rLG_l&_MZXy}ߋϏ]>WV~mo`Gr3?M>L|3f?x;Yu'iV[߶o ?w%[x (܋G7 e孌c8pZr GY {iMoY|~&d}{!Qzó[zg# ;v>/bX ={zaO4e/Kϲ'? #@˫r3.ʙ?L[zz(gM֪5}*gKܔ]E9[e=r(o Mymc >-|c n›?,«=ܓseX;?ˡE9W>d5L_jP\i&s)i\WW˸*sOn0jWD{?=e&MY~Ss瞬=,aKeMa>Z{瞼Eyr7}m)1UK_s(k}b)'wPOb-=UyGsOCY'i\OlOil·/ _r=e2y/eL/ܓWj/Vsezr//a܌ø(oӟyߋox/m|Qʻ[}tn٭qR܌S߰F{$7c=;la7G&OaxA6}7<0^M~,Ho^x)c'e`'doX|a>/K?Cɟ7?| 8/G![|{oSڔes>G(blYmڳ\ϵ=G1/ӿ-GyP&L|?O_&M~$janaɏ=-}b=fR&?/_M㣼_\'/|1b啯n&,߽@^ƠdA-YxҧOjoG)s9>Mlc|7f䫥GmѲ"/`11BWWL_}F]%/ ="e9w`9Otrt>%d!x&ߗ8[Wxedocs%0^47)MYyY/ Y-fg0NKp edBMRyiaJ\oq,f܍7PG,єqay_|ߗx~)TnCY2O7ʻ*b,/ $T,OW<-em/s2|,ad~^"Ow~zq\r4e=<'&L~Yz<5K;w~v> g?-[a§ſ,}/<w^.ojɇc\=mo׋lR;xcr(O&?M~0aU9o<^nyCr_U.P7.㢜7.We2a»w,faab^UY˫~ŧM_3}aUWM_y}*﮼q(ϡ7YBnx+W}K[!OLM?;y+c [oCyY|[m 1x)kyw#雦oealG{cQk_ौ_Q=m?kOk5>ʱaρ{Soiۦ# C92ip/[yLi덟qmQr3nO&L~6#w=I^c*7oGcuV]Y|Ob<#ru7L0}-ӷL>>|M\ ܪw KY_>-|eo ~,/$oKYKd>n[oXO&L~2-?OflVf_۸evdOC֟Urfaa髖>?7|šqQ^oYP&-faaGt~ma 2}~^쉯WeǾ#ӧj}qU{kb??9~?ڋ_W-")5ŅǸ(}8_D$WxmysQƭ*q "|K6^]y>qLj\~:Yӻ8<Xw;`-Sc9GSUjp~﮼rQnG9r| V#XjWrne<5}M_,듰6>Ko;l} [?{YE'?e꿫X۰O܆^-%}a\ɫ'[Ӹ1^]Qؿo?OX~#3#3~B6c{DgR_vXG1x^2}_m?z;<3ů ;?sQG||| ?e^j܌+ՕxVՔ5=sIpʭ(s][_{\C9r})6}Gg[5W0xX|xkzzw=Qq/(O㵕R>/?epѕ[S#?<Q>|ڕ}>/oNemOƿ '#om?'??矛_mj?-|ZOK>v_ǟOr^~yg?\W7sG_dN cx?8?_$9;%S5ڿhz\}zOJ󥬧̾;1gˠfV5O ܌?7sZ}[eB_9us%CΛr޼Ї \/[xI^Yޗ3#Enx9&Ἱu*h r(7GΛ|)3ΰ/e?xQb\&^p}/]pUM}0n!XPwӏw2^Z:M# ay) h˗aۊ f,/}{s,/Ž)x:dG܍%H@!ߗdGaّzx"ّz/Ɏ嗼Xޥ/Oc0^i-ޤ%𰗅^2 ayi/jxX^Ɔ+쥺|22]t},KZ;~FGΛe<3}\7ΛʘyC"8ʍ3E01#0s###rQN{,dG $|9Χ?e8:aĔ3}i ygA;Ӟ"EN{9r30aړloєCޢ49ْ'g'=O'y\O$sSaz<,i5\%s=7SQq/(O㵕R>/2ʭ)iw=OpAN9;(_ّz8r[2\ YƿI?M[5>{Uge?d./ڕϮ? O?ɯfK/?c/\婌Cw G}ˎ>-|_(/wr׾/<|?ݏơ=_v+9n~㩌.r܍pލ%1d/Ke奜壬Ü/s2GYay<0 F~G)o=gR2)rG ~8 7MKdq|^KC92Croe=A{Lzz\rL|7a/&M<דr50Q|P^&ݕO5~'1?a;\婌4}-';>^R2Mrh䩌w>KY[W?ﲅw>Bm/?3_O c獛R܍G}y+O&?R_~y~{'F` )ܓRLs_+D~ M?R+N{o=e<^앧m _+y/+vƌd3c~WŽy/3XEb+ssC<y3rSΛŇC\w o,<,-7ɳ)܎rlj'KޡbpTv4=?xPcfոomos-)ei /V^Ǹ*wm!2ඍr4j/|icODe_&?q(c>"Η7^-\/nkj*Q㋾P^&_X܍rq u0nո(㋧ 9oe2;<װVcX}MiM>h/i8'H^/LG+_,F|YxB/g~ӏqy+1^/-ˇ k7}w=3dܻ|0ɂs"y7Że.q3ƚ{-9Zds;dS5_,ߎ{Uw(kz=~pʱQUyՕE_سN+2Ƀq{`{ƽ}6}G5ϸq3}x*w(WR uӇ O/{x7ew>m?|c*܋ɏw>9Woey+ހG"gl» >_{sQ^x+^%Oc׾|/ w\M|5Xhx7c\&?M~0aғߤ>i\髦Lci.7彍:ҟ&< -[x[xMXxy;.W=\61r7}5/L_5}W754-~w]~sjeO+&?M~0n[U&_M_q;!ehc(wL3UOXUWs!۵2k6xs92e~<0.b}q(7VP7a/Cilo\[+0nո(#maup q q q wa,5#3ɦReGQF{&㭌BWVF'OedӇl2w/#Ҍ-䣌e2_,AGY=ȦO&/Ϙ_^6$P~4y)|x#v~<y)P~8Gyiۦo>=o<M9BC&x+:`9_˦_o<~Ƶowal/Re_laO_a9G{ kO0jG{'O_||3-=M0}MKߴa<#[d a6Ň;MG;w$Z?&M~0io?&DX~_ɇQ{Ks%;o޿H H 0 |ތZ'3 v*QA.քEd7f:~t.Of_Lg3go)soL.OZ5a 3K>$|&3&, L6Lo*el`0!4厗x 34pz26s0a̔M.B/aW.S+'c=s0c0뢯fοw6sMC&S*s3k܌J\MDzs}2i5aRM/tovtttGt?vCkt_3o+䎯d~rD}M5W~_In=UUOUSWG-7f?l`gVGh^ke{uWǝ%Wfό(پE?ٯdI&KڷU0Iv), WfMWg>?hѓEHy)"YQ%-[oJϭ\dLO{w w_$$*L_&WcnUX~&y)\xeD.ﲿ~OwM~ /M@rn]gg ^J{*?{-y,湙Waړu03%Mvѿy~u2[g9d\>Ko6&E Y]y3/M%/&wa_[3nKxwɵ27^7-s2`^CpVIo3?dØK|Koҟdןty1L.ofޯx?]̴rsyvOwɴ#/.qIϒv/˓)ˮ8K8?>CO '{'Ofڟ}['$Oa'YH~=@;*imjp8 398΃=۷h [7q>8uMw +#Z+OxWp;f{ɒ! $&]»7я}# 3p;3FʌN_$*{gౙ͙ovfΏ/=c2`5*S}3S}ܜ?ss`*yO w|ϕ܄.4LvzΘ4q-,MwD_}1L`reWic 7f¢$>|:۫sdy0N`0v$]x opl´|d:w^J70vl`Z!^2bpړɵ3cGOfʟk&מn\^O*̴okan]Y0է;Jv̛$/&wa3!L;R|6y ;_Nʛ;_OL;H? ;3wHz7ՙ?ḍ1OoJ|.-vi_.OT>%K~edZ!˛L"?Ey,I?ˤo ϽR^U=q&|*Gpe^_ߟ$͘f]^"""7@-olaohܼxʍ|Sn[xG\<^%%%|J<$}l cSn$.kI|*?Xv~;ˎF/¢y Մ5>IKO>73%?\%?]ۥ<\˥<];Y$[ߒ*l$&hSkE}C?J6a%%|I-·WnY=wa$!wwLF<^X9^'Q?ɛm{`OWt~oLWcU`=U{C5x>on2ݯn5Oxĵ瓧wѿDv_^\>]ʧ;_J67yy%K7ɛ||Gd+"3'<7܂MߐCCi\egoH%}.[ߒɏ)qynbsÒidp!C§O w wIߒ/ ̼;_h3~ߚk..}!'{'wI[>yJ0j⹿-.ﻸrkewwˆ>+[=,C‡w $}M_%S'ܙs)\7$>:x%>s*C~83ޓz<`ԗ{p"M;-dzO܃֙o~z{0-\3E_}Mq\"zW__}~?d=x sy{<Ʌy<>2q>Yo>_g~1/ _>%|jxaQͅ;s뢯>[9ޛ,_{aW<0y•[~/e܄pa~KO<,}=MI~4ɯ&$GjRM;YO}jRߒw&hO"D~ !蛒)K8GD3a )|gI"<^y3.,7D}Ә]"$-x0}?ɦ\{a?Ds=u?[~5߫'í o6{|OLۤ/݇Q>Mn&GS_Szc;^\>]'Cw77yy%K7ɛ||Z/؊sso%m0ߑ+y_}0sy,雒>oI|Kԟ̏7s̭Kx“$$|H)S]]ҷ$Kx҇k›>}yofW&7}ߣ|sep BnG+3-\GʮϴE+Hwfc</h_``Ʌ[77 c6>p̅g¾ܕ s¥[~s0lw;@W=z@c<69sMQr|sIdܩ=O2S{}o3<͙0'$wJM/a?yp¯?ey`N7E%&=? spWq˝ym)ܘ]]]~qs .\QߒEdя.+ ƧlCx zͯ"Y$G*RE;y KO{P2f-7 ]̼9yҽY(re=o?Y(y1Wzn/"O ofڏ,Bɛy>}?Y(O~Tf?,'9s9B`,DÛ,$'%6c#=0?7 =0[13bܛ3dyn_yŒ 7 3p-M+~y 7 6?,fCxvfoKxSw`fnsx iޙ9C;%w'3Y%<%)ķD?{^^̜~tw?sfY{/,5'3'\}f!S]}^_:|o8?沿Yܛ3 JBMx1B[mGY |*I³}imgC }yv~|_hyѢQ 8f@u]:Uf[_[wI퉑gW~0jN6LwXțțțwI5!,#z}xgvͻ3=pgdc!CMM»w o$J|_麟HYLg?\9l%>+I|?yp}MUI_Q~lkYWf/kʵk IzWKrY˺w]]"o"E|*K{•y5f{-%o|X9\E?S`j`zsyMnk5nI!-\]~?C~?& >\[gk/gߗe}&eܿ~X[IˤU1*]rv}[&1/ V<>,S§:-^w_}M[\U"EI5_-_ l]X-ѷ/.H]J[?>LwA=.R^.R-ۢ~zcr›^O}Kfn"O)?_$!폧J\]—/ )ɋ}fn^_~I|&譔gKĿ$%tݒ\Eufz{'zc$ofwK~Zco^Kvf=Sڛ`}KmJߵw3=`z]Ǔ7p)]/I{|g>(x)..Kn-߻{|'<.g>A|3s}—Cb<F3Sy?0}oI}S7%}Jto:,?*p‹f%$$|H)S]]ҿ|!9??D_}MuE>"?D~)顷a`r=u$_"O6 w7f}>o!ߐLo%Kx*WH>~ʼ3WS?xI]7"Oo]3oQC>K~oO֧EC߁O9*&y*R.U2xKwoc.>d}qcGz/fzdm;S&Lw7aE{q0/az{ګtZ>$>0r_2-uoHa9eQM~3gg'诤H~ Lo|4y3_=??]X&;ނپ7L&c[P&o|7.<~Q>y~mGƟob㷽~0ϯ̿ϛo} ^.oE-KbX'{jcdU?ּ9Y«W /^(ꇇpefba{uȣ>;2]X~OoOX 7$=CΧ_,~M//ǔS{JyL))9%=Wd=zҭ-Q{n{H^̵ K8Wiɛףo&7>g<4/OC1؅& 7>MxL) {;|)0-010Ø` Iϐs7fÙ_~඘0<;̜9_I wg6!)ck0o-|1 [c³2*›yՙdyɣ3L} ɛ{`LKK|SsԞPb7IW%;3ߏ? {w|zqɴ~\ye[.EDD~R0o²k-ö۲lǟ,&&C‡?$)韒~o“ǟQ0 SXȿ˾'o1e{$eY"9+iL[rgKm-tL烷Org! $&]»<-sKҺ-ÖcKﲥ;].ØMM"D|Bٻ_n%yv!7-ߖqet2n[F-`źHjX'ɜnX?X)b}%lsUGƈy0Sz~MY;}2O&܅b…뮾3S}VcdvLY_2ƀf1.诤H~;Ø3Ssɕ$=&1II}JF .L$syw&y zi<ީdwre^%S\[~]5W%t.n>&-ܘ}0};L\j2?q;3qU« /a{z/Wfz/\e>oYٲe5fj̖՘-1[V/nlY5Kpn]؄S⛢>NP_O"D~~rn{=%Kx&]»ďO_M[}0'{aο{0Uf `Op![cly8>dn0G} tq1s^y4.&ܝل.3ﴶnT{@`kCxVf0~x釩|aj?Lm073:??a}ǣdoJ|>ķI3I?W]ҳ=_0Ƿ{:ra.l•y,a"o"o"o"%=]߶|o}UUWD_}t==u1|>o}{xHpp.]›7 *W\qz_~[0?pza8 wpzeW%}EGӝ/f?gH+6Syb0^OV"_HϓܙȻȻO"?DD|&U{|+3r^e~}|?NWLOpl&J }7r߳~~M~]0\s1~$Wf)SʤZn}|_?'0.ܘ/ w w >%{{Km!\E_}m KW|"5 'pol{$[oua_]sIK>ǿ2O؅fr[eĿ$-ۢoSo}ۢ.O͌}k?q[!b$ɛ<֣^ý-*m._%-*6fzuf)3y߽-*y>wo.-*7p¥<\e?眷E%s,yoJ[^Ƚ-*y)..Kn-߻{|}o YyO1{vf7ˋٿZdkE%ۢ.)雒>",mJ~Tُ{$/fjE]pp!C§O w mQ_'v{K4y3~ n&DG"?E~ߞ}A޺A9I$1x?/w~FΟqN`@n}j<(Rś):>1,ǘo;e#o훒xWk>G3>Aprqk}ߗC|}K+HϷ_3oߴܿ7r#~k'|I߀j.~َ'}n." θh<'O*ⷓ ~Xg\ۑ/Ho=WܐwSw >~']} w>~2׎sw}g}5ź@|'|wt7Jp'Ǿ omu>O-8kp?GcN~7hhԟ|O%~ g=8Ï[;zN`XGX7`;٧홟}~~~0;%%90[p﹞VZ~9cd><ʛ_?χ1O%?1ɇ}.ߑn׃N9c rE`] ˂}5QKNՃ~}ԾcfpHϱ^v{v>;~h>\ñ2N| ^ÂOȯ 9c]Gp~pӭq?%8ֵc]wkh}1~x;^~!5 {z׎r~8w! 1Ohg~G8)ÞBx/}#a7\<@ Aꗏ=~Ow#>?ѿ_د w7ڳ^ӌȇ3~پܠ~ié|ٚ0ى?[x2{^yb=˙NgSz={_3G}rԗO O~;W2>oyYԇsO}qO~c̏u3?ѿ߷>/쫌E{X/^K$Bq=ya<:/'B{hXWٟ-߭3pD_џ3g~@~c`cb?d̀g6[Wėi?v>O7cR(,aߨala/lF#/{ױwzC?`/}[9ޢ{ð.^c}<"="=1?;䇏}yþm'g? {v <c/汧{ O?=r;?˳2ɟQ>3_yN&/<>k.g>wn~3_|׷||e~b>:[g>aG}̇?E~vKG+30>;>l'D7ў^‡?қ=zhgr{;>?7Ny+_?gcDrQ==kM>ewz/:c9ˀ2ܨ/ןُ||όK8 ''^}ό }s}Mw{k?\=na@_[׾IaOMÞoa=OSc?oY(ǿ#o}=}ثް?+C~Ε-Oa?.O?8A!^ϖGya_k#r󴇅j|c(>Ϸ~cOc~[D}}Go}䷣D:Ƈi!=,'?hqN9w=ՐRP1o*7~(aoP=zU=/OcgX'>Y'?׿p~4|8"ada}%ϻB5?b!!'A>]zMK1^W" ,,G%{^nՎ}vV {G؏þtc?;/'zTğ=دW'7['jgU t?|oGėo(w;Q K?˄ O{KXCX Ǽg"-18gyXϱ-}CcB{a붏ImюbY7G~zD'[ߌ۟X/XOl,e}ˁb?\x\v?!_c^ҟ~֗Ɨ~֣sFhs\lf~<}k/?O^,XO/;b^w>z]{.O{.=i*UU/I_EzI_g B_QG'BG2_O~㘯<\|a|_țʏb^1ފq|o8b~ߛ[s99孯yyo0לϯ'\7+j\h'Ewt?#> gNs?Qx?)ρhwE}riC_Oߢ?N;?ϰ1џ-{-+-k>xH|qb|5'6~=a?oK{SWL ?Q6mG (?{>P_>Pͳ_*׏Ʌ*:3\Y)-Op~WgeaA_$J3g~hqvVxļ߳-G>yCGsfz|#v'!Cql"o"o8O,諢pc^S0{g.\1ď~0naNnUQI~)G""?E~yy.M.%ߛ=/[0OяV/J 7)3gTg 7c,a7?#O݅1=!3r"na Ƨjyj9Y"?3?Tvrgn.,諅ƛ6..S§-,Œ\>>=\%U/"_$=h__˵6>!܄+3_&,C,]%>:3n- " )7{[^CsHy'-[/܅bMX7o"dI{ ۟|{_7%.%xIv'{;{L 73C;|Mw<&dF7$>3+N3^Þ:|ŌÞlD}S[oM= ڏ=3`~.[x$o*Ml"o"?D~y%K|[·] \s+%K8O%KS-%wS4~M^d5ݡ-U8ٙW_tȿTdTyJ& ?!,k pev*oc2βsa&{ÕۃI{_%Ix*UGW+KVvxY_;Z0f3.]W"O͜@Lk[?Q{ڃ`Tj-mM뢟MM/oߺ`fSU<22?w|J6*U[il䏼'W&,\ 90 2)lM /K|(_dZ /͌1^0/4o0)/4)o0Nz߭O%"7zC o*U›*z 0y}诒-~{S0ܪ;3_7xUe<#֙1^MxT)¼=¼?`NߵWJ0 a/x6fNϐ\{7u3ly.66f}2bE\>wœ;[g\~K{k`|\ sS]WS'̔|\;sk]*3{3ޔS|ɛ/f{=Luk߭5׮)y1wgva)w/=灩f]ț;73dѷE?Lǚ/{%KII!雒>ޟo';¢o>cC!듞ɅoƧFwIC#/CK 9]!q))pol+7pxz|8rSYnq+r+^@H)ň[Po쮓 DϭEx5Pܺh95 pj έnq -nBSo7,nACSw,nECW8o5Cgq EFSWq*.N <5kԯTeSVtNb\)R;8)Z{YS4u#4K`\Ϲ==Na //^+WX,:qVwua8GCߌ[A^ozՑLD+x{'[ {5VDOFDϷ<-y?hpyo 4o#t9:.Z'ﶟo~~=:ˊ[ :|?pO?q5_A|ܒܩr[?WK?t5oCOa?ÆNa?wg9-98džYHߊ[/r[/Jc<[cO0Xw[Kk Fqkcs9+eVJ0WaOn }qcs{%nlWg~nlf ܚ\þ[!;s ]þĭװGsث-q+hqKfa-2:pm>9n-Np: U8җ܅O}wzڷܺE܂aw/;?[X~YzsBqka>͇ƭ>b[1G|y>}[o@{? g3p =h)_oYoU/5A?=Z]_R{[=9c]a5:W`OtE8qpÞ"։7/W* V^n*N41U7LSc=b>zń43&OwLԟ87qf>6 |67%yNĺ]K}sM9p}5/ס^{/afSN)=dBVg:W 7߰ڠ(<b>y?Cpvw|Op:VOz ƿo,1_^/s?#'G=;鏏DO~ }tn4O1s }*>?w\l6^dO9W?a'sp =V/7(,gs߶pc"D>ױߛM&Q} Iwor̿aOc'ߓ)?@{+3P>6_+@ nƽqo?"Us6p_D#W;}Y/g?& ~;ܫ8؞Ofs84^'^rfwž+cIiܛ3^Lg}uؗ֏ҟotU]?1a{`?[uk 6݋4Qs})^xE"קՉƫW+r+w},8;)K_ -lx%``<2sJ{'?=_7]{t}cbc}#ؿߧu<;Xoy^id/bIJ{XoUphd?^ؗOy5xAc͌tJ\E|?\*s/7?^h4_|y峤v s|or*{y)_I-뭯OritU|'9ks0mO_zw=aw="^̱(7_'/>hc`Lƻ+@ (C/ ^="TG3#W_WF|4 >UW_hwkWѹ6_S/F< ]oJowpE?>];1OGw}1z㵧wjJ߆O59ݷ\??/t឵7QZ3~TT?o?S)?O8-?J#ݲO;|8m#~ⰿy6Y]zѭE?*ٻMB0RyZ=>l_._8'H{iOJt3b~G4~yaG>1L]I=)5<|8"Eˑv3Ļ @,<-pgKؘ#.G.]5?L%FO<;s"o"Cl3{3*sm0WчA9]k'^ƌ>֘G(\>raF#_`7 &sJIzsavS37fF7j̅{Vx C؜ 7ol1zywfϖ kY?U싙l!{٨~֯KV էxMf7fn%*s/U_xۂdv91pn am%<`6>;^LOY9#^s2v0[cB,X09ǃ߀} 7)dOlK1w\X«^-@v;CSXC?f+pψ]xɿDϿ}`7%=&.咟.<ג\R[C[>n[aWn/ў.Kxhq{?|vb^"Gar73zK2${&G7sgH?8<^&h?.7qɨ+ #&{y3oCΧdxUw?"Nߑ˛9-Կ\M~ﹼs7}_ezNjo'*Q֙{vfgoL^M?58'3ןŌMM‡=uݗsس39&k?Qe=!9.|&Xبߍp.1l"?D~A;ܘQ_pe&{zO03wo21ڃw]1/ _ٗOjO3n{.]‘ɍJxܟLoG9?ܙ݅ߐl .k:2?#ĝyMLj^+y["%M[c"_ w$-,.S77"{|oZՙ{oE~*Zך 0'5<m KPzrejEK2M澅sW%K? 2/gazWǟ7f|o;>\_pclJbW%K]½1O~ퟏi pa)ܘ+ QrgE|* Srg/a}Wc| >_] fᏌeO~/دx .ݥQ\]1x Osx^%+rcFL^y^.̑<} |yW`Gph.wO\^:k"ED6)S]/$˛|F'VE>)ә]W̻ SIBr^_܋dFyNLJ蛢o>}Ne{.oMi.Ofo_7=8s./fp!4\& g`p%a%wJL gN{›^{a%wag=uٗE>r'AߞYǝF.Wf'}}\^~'<,revO;+9ǒ%$^ 'A^𶄩\\I&e}Pgg.LN ,~gr}{$1}&Wfٿ f'8gH7?a'Gy%G}N[8+9gr?9#9泃nz=p>#~%G{K6蟓dNhzF0;b<\]8$pԏ&Wr!N2y p7C8N&w&\s-Ieޙ9?$r2/;U<)싙+Ob'[g~S Ʒ5ݘ=_`̽0,.<x_rn M/aWҟ-G&93'gSV27E<xc5nH?݄rc.?7m\ft2ٞM"k J7 ,3`Wq_M5'C#y3&@\MG\θY pw~㜞_3^̯˛ G&Lz{$nɓ 9ǒq{.FzHODao&lܔB`,t,Fy`=`,M8`}Y)&_qn܅MxH|Sf!pn [cœ9_M^T_raIpu6c>l<=? yQ{JejH$6p[ѿ~Zcov=nzs&r3S}a/-8q7sGr{dz&4^d27]y_Cc?\K;_e?~d|2wϒ7Ӯ?:yH[Όg믯ϯ˻p9gYXo,,.O.<%`?{fk?^}_}y^0g6 ?Υ\o.89;!z!ߔ.91ǍbHo8;6Gso8te02 09Ai:و%~(C‡w Gme 7 os&[xkyo/7f_•yM<%!q[˒^L3IJzU+o}-߆_ޙ c | Frc6xWo/\&vn/a_"?E~.]țțW/wr'fw0we%.7c6IJ3׿y ) IoϷm0b[Xңɾ+jS?$~.&UɯH~փ5Cu̍\ߞ닁-\pa.~~m oœ]]—/ /SyLac&Z_f (y _%*W(e%G';3+xJKʼ%MƯ6f+‹|.CO_"""I'syyMf"?LXy=ٙނ7ͧk/cO"<̈́u.uIoHzCқޒGco*G= \ܪw ۧ%|IKw|]_?dg&i~ɒ[%.R!)ScNvf6r>.SoXp.K[yNaɏCe>u|+Ixpp̼>vY?'M֛)\7]<snMMMүxmd̴}XO?$>` ς1 re9yH]ҏ39gI~U+T䘯k Y1܄3W)_y+.yn\0~ؿ q.C8]܄CH巜U]Xўo\<$s-u<h̽2\%}ߟ`μ3͇y0l\%]ӥ<חkHݘ \MJcj]ufu2|{ɕky|n|1{gՅ%>Ϭ}%%t~a:_0-2!\MM«WI,a*=%+p%k 7a?0K W {B K(oto^]ڳK{7&դ?7%>KoxL&;M;!y0c>%Kx&]|)o=I&y2cJ|nb`$~]/q0o4Ό<1/af ϫ$܄p/y >1S_J}*9ǒC_Ky5f.ϐ>\^}RM^)ԧ1[cn/汙WevIoSs6a._707k=\27^f˙}1y9f̭1wa4=fx iHw$S^{Id^K~ Sڋڛ.of'|Y`Z{X3d灭 ;s]"?D~J{'؋dF}).]k^{obn&,]» ػ'3{_{:؋pv-mI}Ad&>f}LJ/o!th2X ǜ̳"D~g׺z٘mfp{k]\/n_t ܅E~<~59g'CŒۍ%KnG~Q of%ܧ>S;=n]O-% vO''OX\֋d%ʻ\̱^]̱޹$6&~]w?$xHqy3G;^/,u]8kpU، waOg]8OpKɡO%%$R'3+3G]}E_vѧ]dkm0>ur.yK&Py<\27^f4$|J|^<wag=?Y}LG$o>|_$/-%)S"ES{.aIJz՘ Sr< }ݕ$|I8R}]<$|Hx.7ɿIIfಅ}znϓ+…yv! c^gIzUҫϮ\3/69O%<ܞ辮\m`_"D~!]777"_x6_'xI}uy%f&WI/__ޘ|ݟ3sLҫ^H_?H-\WcH!ߖpa6ɯJ~ޯSVIfQ~"Oˍuޙ$=h_\ &..K—fҗ[6fҏc.fGɍٶ0o7 3.\ K~E+?kAKx7*\]wI?ˑ|]u_sSx ofwh_MSvx]tukr^̘Mx o&M|2ߓEdz<$?w`O{| zdz/b~dY-ٯ& $ofa~|y3៑{gU8E%_CuYoTr›`^7%%鹤%M饾\5fٿa瓗˔_lEx17"E~)K]]7yb"o"o|] <Ykf:s7$!w}z%'Wż0 W'^{Uܪw g])=dv w ExcLvfK3ߏ=6=7y1*܅,SO_"{:_W9/◪][[_-v8>y|fe{{|K^F?y_O/[ȣ~8 sG7#j_qo ͯ巿FHoDJ;~}9~[|p9cP̅U9odį"~SR?ǯ"3~ņN;~!3{ז[K8~?ryvނC_M,q/\3"_d|1ok?L_ov`/.\w"pɍ_K~_PnE6Xe Kz}ec`Mxћ,C‡w $ɍ$=":|= 7浄+Å5}0"*U {Nn.KO"?D|&&U乾.]R?Ƽ:1]>oWI7}Ƽ\_POKߴ$|pa\h~ iC\ğH!oK]lun~(}}.\E%,/"/.%f"E _4/Q%]KkI{.i%_.`"3^#- 1 O͌7;MaKy6!aNvf#?_؀%%%|K\x hbګ~IvfaNM-y3ӛ$ӛO$ ;͌;7.]o?M{?0ꓼ$=6iOvfYMpk̽ ofR-;wn`<$sq[CO_"DE~l^pg..L]o0GvYқ|ݲ}} W&&&ͯ-\x٘_[0ƃc~ f |7f`!pһ]tf`Cra>/I~cOpa&&L>}0ÇL>W8G.Tޏ~$L߰[߄C .DiOa|C܅9s.ɾ`>`gI9QM|Ufo>~wuf3Jc|k1<:so͘M'a1k1<`n´<륧Ot /)LclÞ\ed7f>/T2M&sOaob`cfE~W֧?m 7f{9ߨW ^x}W<_f¼D_L)bWfc_$,p6<߇ǯ GyԧK}GjҞMڻI4&i]x1x2!y` ؅egSxkrpq_izd'^v;3ewY;g"ML3L7r:~w?K?؄cL^%›8*lMxOaܧFN}*V`'`FQ0Fylf̭3H.p}>Ewד'ƌ[F{1y%Prs2/a̛xKy0slՂ@?3WN~)|+>?C݈o_!>}h?~g Ʒ+Nk` `|;qϽcga {0HHr+`UV/\aRNa{a|-߭;>S.c0p> ;؄pY/i~>_;LJge~B~[~+]iK ?xn{#z)dv% y nxQ^k= 7ǂc }C]([; ow ,M>B~(rʻQrGLcG S+#oG?1~C8}˂ۣ}wt|£CvzOS[z>V }˧|{{~qx'3hq,+I?[IOǙ?8'G_Ho'=Gz>癜%փ}ח8 }חyeW|$ݎ{8;=^n1z^nXw|+|o9`Ol_'V ُ>gea矣O}[Vp~:I}~ 8ٯa{Q }/ʳ_} ΃GU;W|yY'T|sB>?!ue+)Ч>qϷM_>~~r/_|>u2poyy!<<}y99Ozwa== =e`Orc~},w=}V0iioX?1ߟr'ٿyەzﴗnÞao8=v_si.iϰ^a {}3;={?)K7֋nӞǞ~G}c>}cmWc~>£q_޸|Yy#_ۤ{тu'6sH2aovu-6z}>;>ς>sףF+jiڿ=/ xi^x1-['A'Ӱ^[c=7{<{b=Hw=h1֛3֣{whbwuooc=睴۸磯4~ic<GD{,;q>[iwoQon~c=?=Y7:(OS?+<u\By觻2{߰~<;s; *sy/D}/Wfy/=lY_q˅9}ѿ17O$W0~7[X6g1^7oaظq4*;^+R;oy4' 菼AG&;Ni>!Ї>BBWރ2`y?ai?J} _> ~`x/9aZާ1a#& {IςǥzcB}';9!Þ4 Jң|O>CЧ 85~4PЏ:#Џ:ҫG!` }v7'`i`fwowW=D?nkc/_o{w;I'ʿN~y K(:o nK1…N.O5洷F} w11_vys:?-yI+o?'گwx$ooˉs9?ü!r>#,gO5i/nqݎX_q߸1{!}!Mz]Ǟn:ԙN|x`J 3;y~[s ܯON~ G?5^#w <*rqrGb׊= kg~r}xO{!B|'H{;['#=;{?ĂW?W]-Xz @ߌ,Yovc_?DvoB? 8&/ '#菉eqy3;õ |Fã >- ^UbG'_^o/yyp= I}q1^~Χ'| {Cǁd<࿚Oi0Poo>;i>&~? z'9ߤ}-cT¿y^AƵׅOz>:uϝN{]+.ګ#wL{؟{sg׈ݿ^:=8Iցҟ ] w+'Aʧ|NގÞCJ{wSd/#|35o|w7K> wVW9=c=*q>M ̑o|9ylH6Ou蠆CX:6ވ5mMvƄۜ%1}Ƙ[YAiga#qב18!BgDyc P*~a41gqGa :smCc $|YrDptgϴc.N T1dXD߆5fi?{PG>:LG_C>:zC|;ooD VQpgIA? b~}?{pEz&"= Azv_?kqoN/|{ߎߞ86moYok҇@v~R;f20g},q֗q8:uXOxX s|>Dqfx3h5?<^8Oc<_6ƙ0GM փ7jř, YaSE#l~0#&o6O~+O3;OyܙwmOY=۞"s;Zo,z{{~7_+|ZП C'ug{B{ǝ#܏#;\<΋XXbX玾~IGq'Վ7#>bw_' e~9|1 |O|4 |>'|H |Rj|9[sq#׶s𱁾sBџk)_x}Ǜї_7;շ':On/ǛNw|}U8ʗ܄{c“os޻y΃/[y'oў/8 wdw'`= -=>lػ*ֿ't"hE&Ga >gś´wXð^av藰mG!~`/0 c}73c=53G>>BɄ0W_‡>U`7(NVxlxiݏ>{n>ÇbxK{x ~ȇ>5 >i{81p<=|=|=>eik/jʻO =#֧X迸XX_goǝewΟ_.mA[}ۮ͠_\N[ y}I/ԧQ1ѿ9t1: ͞ˇO@zxӂ|@z1_&ҋLyy_=wxz~8?~竕t׃[bYi]oJbH+8_~ӱG~u-ܠ~ᓚ@O;=6X6x}%gBN}g8\})W"~Rk!>T?/+>_|CO~2 ICYD>M."_H~A%6ym<%(;بJU&ZEe BEW'g5߀y/<1L>iq?QGcj<[^#y17Sއ.Wby؟Ǜ@G离O^o0 OGǞ<wo~qcG|!Eo:O6|uڋȯ/: .ȗSG}SAo=9 xC!o(:>S>ݰ?=A>P4/ A>LXǛCf >l%iG_/r=<&7y{;5^b'{|7ωmxc>NA7 o,w7|y|,F"ɧ9KAOkԥ=ȇO憼{nt}C6;ob=m?/&ԁu}w#_}f?ֱ_Y>Z}.?!~ǽ_Ӂ?*˸vC?|A}/Dއѯ~ ҇3ҟOf>ЗovAO7&C7IJHH/=Cç%|֡_~τJPXП-9𙇾0 3G$煇}1/Kf"o"<݄E` z*>_I-[5rvȔW@ߒֳ֔理_V=ny~_4&z;r_MX?Z 1v}b$*}vٗPHf h9ĝyI)S‡ n\ؘm Wf_ra.l> 7+w$?q^$ykU䫔9[ؘ`"?E~t澄 s򙔯J~2s/efԯ~ไ ]7$I*/xc>bF%W!dL`s[G/%\{5^%Agy~_{HoZ\țfn"MX`UؙWgv)K[ߔ޵.Ub?ބ7 >%^ v w M{nb&ؓLX^u)!W>n Ma[xW"S{[pgj0/x+ 3qI~UҫP o+N^yVfn% 3oy.&U WOU[Uڿ¾b .2 eSw="Gٰ$S$k8$wIOE}x`://ٽ<{gn&\%~!^|^.Kʷ|Z˰dK&3EG/Rz[ek}ly&$L,C;fLr&᤟jbbeZ{CIn"D7ل%t)܅<ЧSJ.g,+ G}GҞ]ڻKt.٥E~3'3&go%.#g'zz|~WoL-z ި›yJk1cT/U w!v)*-19~L:WHE"J}SD*/ѧ[E"Z}<+To&l"E~yMo'[an<׷I}P<\Y3]yf̛ʓڙm0k3o*oW0krSx fT<'WaKoI{-i%`2]2\35_]{P ۵7km2kO/I~/xy_~}`{`[̴=d?wWvfc_{-c{/{qd&}G'o)W{`pͼ>LsM#H~!d^N\$eǿyHTooMjgR{1i=3nh˝9zrWy$/ _39FNޝ1{.}UC{cvW^D\6f%$:&1ɱUD}a-z <0Ϋw/fXqcr L+J~m-oc687yMFq(/؄0Շm ؅ .܄M{x/ax6܄ac| cm{μ13/61c~kzƀi{nc]Ou'k}2^v_MnccHv&9֣\3X/m'I}&":sCO%c?m6ُɱ'~1F,9gCI$9wrSɛ>l߹̨&)̡&w"?EE~|V[g"mRO&}^\2WBm>yu90ɯ$|ȯ$*V/U~!۷__HnLC2:y f^=[i…C[8y5 W (?L)]x3SCu9sH{!5?w"_܄f|yy^KdrMw?$S/x\f&/77$i’ﴇ\MK{K2%Us.o&|Ic0*؟uK[ߔ^ے뒭 Dxٙ$of?)S—/ w w ߯p&\{o2/UkO܅%f’^kȏ.ȿߺy79 +KLްS?ϝ˿kDd<]07ɿIz&除W|UW%"}uq%lK/?%|JQ`n[1spWO¼$+3.㫟=&&&Uhpȏ`&f'0\X3 .[sG/¼$C%~M-, ů9+jS.]{~!3î\<ފGlµ3s}2<զwLvwpm\^braGcМ†p x}-^m<sI&[e_ wfgL%K~&Yc^%H86r=H…gFdIҞCƏ76rLgH KMګIzMڧI}ߤM2IZ޿WCKS{?0K K|G0kr%K_"RGoI}zXO%$$IMw=OUx1oEb"oUؙ`&7%%]?2[v6{g$}O2"0o]G`?> n4^}L`W̴<p{g4xN%i>?10<&>ss}s/%>Oy;y3lcz/%ϗk/Iv*4{ |.C䧔ۥ]ػ)!Ӓ'3H'&P'=Wg{&إ<ޯ4O 2^)CǞ,uɯKz]ސ ))Oҟ[e~~ٶ[-7mKmx1xs.粞.)Ї%=Jx/i{c/KӒ.>p<>%/x2g0%}M3_Uxzz)^ U.E?τpnºV Oa. } Ч[G0sF{џ඘m2\ܙ?Ƽ*,}37g{RB鿒:x|͘f.|ek3a~0s$}iaou\lh|XOI~`r^W )?d~یv%܅^nrfrb9pn'\;hy>Z_}{]{J.顿N&;^'3<1ٙL;_]»wHS7K[&.]oſYOf]oɛlM )]My[0?Lxs0<%?y 0< gǒxS|pp%gGLo?zG!WN)><"fEy Ŀ}ܟ*<,7MU{KL9m*57zγ`w{!hs|y*l4~{xO%6?q0!)o]{wd=~Yɛ;^{xK~ܾמ"c/L7:4a>^L.k&4{<$)MIoIR-[oi-[7}IzM#}H~/o=e31'x~\Hu%$܍I~V=Һk1w֭.܄M W?ֹd…yl̴?_bro>y\Wz1O~.uIk}N6 7 ^%*+R~9w!y wa_ᲤWdn"?D?4n&]䩾}vf[}3OIUf7M-pyܝs^\ y s5/y\McO)]cWa5? ~c/: &5I>#u)lC䇤7D/_\.MoIz&U)_UɯH~ܟ鲄x2!qH{!0sˍ/_%WɯJ~ɴ˅}ݗ<swaɿ|"ry⾮L6=?k c_g_ty|mљ} %`H.onaU>N}Å s<J<ESy2ϯ"Hd=b||fʅ[!ud.x_?H^.\}{gnI&WIPK{cf='n<~1~rq2=o}k+LHLI2)%?>9~y;"߯\…퍢ܯl|WO]XIQrayHt K/z),i~6OoO+ ( ^CsH{!5?w7C;$?s&g$$}_̛6fO{ɛyOg^٥|ޏ> &WS>:ؕ73 Vx`gK?zS`R~/y\Mx3s}y%>x>Y.]o7s&ٿc/ɏy< K~.|dg"O׀w"?D~Jy]+G= %Mמٿ&ofLX_7$!R)S}P(/L ]cb/oRiI}oX\'w<"E7 96p ߟ ۭ/y6QEo2CwsJ֏^{~'q~y{R:>f=a-[Oɾ(6oF}JQUf]mÍ>,d aLglS2W ^$P}0o-ܘ{pe1l"o"_E|\_O浅%Csj`ZWioYϊYÅUطw0O{*}XC{ܼ0lC 7ajdg鹆0~O9N IwlY}۱waaUΞ:läg9Ya/|Va̤[00m~$}ogLg"G 0Og[l2^5Mߤ?9&5>{0UmdrVaض8+f{y}p_vzU#[߼0^t)?om?w;62C?/vb8ӘIζnݝ;K0kɕ3[nSқ<$|H8|>܅ Iz&W>pS?\߻ϙDžן'G>R-[kKODbn"ߺ3wIKz뼗%|J%ǯׇ׷/]]/|%S/w}8~78a(? < =\ʇޙׁ ˙l+~:m0C_KzV[g7r~>^H|-Qgc^y|ǯ'DXK乽{:2{^xׯǯ-'?l<>< 317a?axx /aڹ ܅u*~͙azcس^3;`o{%y{)"T=X !d@B#!]z'_WHg&0ǘrG|<4E9m[{70gy[ާQL)gJ%Ms}-[n( H|\_[k%[%r&MOq$=KoI#yd|8qxq|7m'3?G+/f }bfIϑ'' UW;fӋ/17%)| }wbop^Gg[aWW2[o ^#vzv)x$9ߕ(LrGhn 昏4LIy{ ӓgpelpaF n̐V;s|o*1[gv ngpg4\zq?$.o~J̓+k2OQ1$z%}\+F0ג/I\>Gpݱ\;)lxG܅p.q x&<sn ݾnKK~`0)syuF>;)lyT^a.ކӯ{2s5?e+]kUSw0j^6A0;x!?oBz vVpTksy1`뾣^𨿮{=Mpo_fm2cm0W5CKx &o_7.fOֵ \9W48󺖥%*qʼM0<|7nIc 7.u &ߤ|*W%*KOWL/a|^O6%,5 IxrV&,%Otc Kxd*t576fnW"XwqOx,oǷZh`H/t;;7-||i>s[zK-x.f}!=,]y!,\y#xJt3t{Ctum+o_y-6d0v`Dvw•x0mٝ~0i{z!=Ư1lm,z),cV0Y%L[F`qף> ‡c^]ȻW0-" w!雒)Rbr{=1KI&K_I&˚I\-os{:&sܒ~yz &W L5x1'{I &KI_ &y+雃<,o&}8&߻|}w*#0~+'K| 9OaSXܓĽÕ,%Al,pa6II|C.&ߛ|"i}'n[syNpa>ؓ =7$>TŚΞR>;{=ْ侧=+3<Ž{Cwq%=M{_L]q>D~lgD~"/cߐT"5_zgwo-/?,U4O$o\?חȯ-&i>K؄ׅYkR?=Ὑot|V:ݳU}玮d}d}TyHzHz"ޕ1Y~^%Ƿpa&kpu/^uGЙR,ɣd<}]7q_}%Ý%Z&ߧ|}%oIߖߡe?`E 0n>#h O3ٯ9xlޔoK]y 'y Ŋ'+rެy+Pz< 듼 VIo}W^/Ὑ`jIy^yaޒ>..z*x37;3փ)ti?=֫/i Ҟm&} 9?;|KKz<^ܿMg?hrcS/qGה`J~|gy/ ^&ᙄ7%}Kҷ$}[i}-Lg&ߛ|w:?`:`_80/Iϒķ%-?##y'ۃ**t{.?ܐ>P)@\v .{x#Tbq2ݍ˞~gM7^u-}.Ƽ;ʳ果0nrgFyH2U2wf[UiL ; q2~ Wfqv|b&ad(se 0Pfصy&M v@V3f MW_0wI(ٙMÎWf-Î Gk -`'XN؄ׅa7 \ X̜vf0̰C TP{)Q`n?%f#\svl%_tS^N4v&q`f soM£y&"+'t$̅y?hj{w;C4W!}b̿<MVenn7|\ݮerKv&\!l'eoZFC#Mtbi3{|g<==ߘ˞))oa/%嵤^^>v?>:x ^><Ľ{*-U0|e2wi vy#a0a;޾=`>.)0g'] nH/#|zpM<ë -Rp-›ޙcly%9?]OWc={0s iO7?z?xn‡P }Dp-‹wC.S]rYOq[ܟ*yM˓u/xӂ~/f>dN0}}\}M7廷c//f“ya/f./fgG'|{9|w/x$,$⹅syމw.M̝S=7)p"qsk!} !xQ y(˅ٲ<,+s;3݂s*k2CB{ v9n2% nR ɵ`?fxGߙ F1?90c6a`/&\ q/a, %FeĐwȲPb7YJYJa' eqRØ>}|_\s6{2/clK3WrvwghMWc.>- #9ȲPb',.YJ3OdO|+[i,ɌG(f쏢>/彋1x<Fyb oYKO,$2X O9 @h0nˆ`se!e!p=̽043, `>'ku1܅}ܓM'%Nw&ƻ^[GW&܅0Y-/WLX^}MUѾ!L_}T0Σy2ӻWVD_VDWw(_8:1~ofn9c~x FC?w33X̘E{;>a}W_|oΣ_}e >*|:v.o߻_qy3$On.B*1里N13Y/:Ʒ% vΓ睇cܙpe^^I|6%C3{]7{UgL̝9[pcV2>\M3/[%&5I_e+Uծ=_~{&Ofo6pT5nł.̫1sVaJV>,⿐BV>\wg^YMc⿋"u}eCÕݑ<%|&+D_܅*B%V޾xvf&B_LV}s\[bpaf+t `NX9bU#V|ɪӹVdUU+S\.lrJyOI+UGV+X b5dK#+fvja})M|]%du J{ ayazw[;,Ko%~G0`z3=օ%<фŽ)Oq$={0I%vVϷ`W^"|Ѿ}2c6o6%oK{EpM3^ẏ|pC=?)=y=s/›y\y,s~zף\;s⿋!i̫1oos}5F/;&k[qkNkGṇ /fޔ𖄷$}[җ߬ FysMwC|7IIg̫ /]%=[;ߡ;xoZ//o?\7g|iIy-)k qK|CsY$|X7{I_R䷇=\4^`;y.ߌnY …g2>_<$!u IUgc$}Ưt%w`B,g|^o`] WBBs610_Yʻx hYMς}\(E٫|is0[gWVKJG̹3uzA=-{3LgΦY? !b⾐%_a<̜%]Rgh|3c?G@M7>{wGQ%fַ̕U+`c1`||w>Da^vruYowY?pm̅ʳIz^GEMWM[M_McYD?h}p Ƽpe^})OH]C^ ̨!,ѿ5IxM$ք5>ڏ pn]x>]~P_&iRC%؄3+*:C|?P_9KL(y'o6ُoQ@y}f>/.-|^[QϚw.141_7J}+Oga^>䙗nwa&$9+[c&^5J˛_iJ.!Mӫ@IӫOIs~SܯkyKј3_9Yz\7s;̣0[e«1|&'<Ԟ>܄6)뒾.y5*wA!mP(.‡k^4po9|~|yc.#|wҫY M0l)T~58뛃s̭y%o`oaί0W~C_iss!f|e#i3qġ0˂GznKl|W{|9NOrӬCo|[RHa>˩?n&@|DQ|_>?)v63)χ4|H_>?^[zMs}{$C]W5O׻O<4\7=zaBoXzgC{k߁7zzRI^ Dp[O y^}'ltqWownmbsoO9?c7g! !-7U<0;[֭Oz֭Ozgw{y,Zn ܦ{&BZnS"{z{X^[)@{Zϰz ?oZIXoD}~amOۤx1^x1^xQ>^nԯۍF}xQ>oى~|[F|1^wwb8ǽ9G71?GO|koWآxƆE{'D޳\o!_|䕝xxt.`<"Rh`|qy@py cks{3+=bJ2|qy@~qyVM w.&nU7=>g}#֓GhXb}zmO^-XS|;_{} '7_:ʫ@?ϡ8t}oqc;~>eC?1_G3?jB߳q}ІEk+?Ck6/1/3>^= ! 1/m%oЇ>nC]'替|6:Wt}↾0߅wV>}}=ΉOkW>Vt/a?|\_ѿ>Fp}95 W>˫sW7~WȫtdA >ߏX}?cA붿-{7 9{;Y/ }s{E 9r㋗$;V 9^;V꯻'v1Go^r{gmmE!E?+">\^qSAch1<~z/qq6cO Ys%g s|J~mև<gC~/uJk?nO+>g^gq6揊{-_^y>X|ko~p7wA+ha<|-\/r\k$pT\RŽ[ ?3~r.LJXR '?^'֛ށװ۰^(ߎ/ߎzX?ݱPCۻS'{{3>ng/Fv16{!~ ymo{5acc= /?o?\pWcXm3 @ѸSםî;V+v^{\ }mOȎՂ~/ 9A7ݮͺQ~ПÆxiʫ{HvGv07=o=Z9cbkb\'ڣD{I`?gО/=?:o{o~:7Na=uVkѿj7kń~ǓߋcWCz}gyAx/1^~rw3뻟^߹1~p|?KAo]}?}|eh>~6 {|_}?[~|y*n~^wȖL{|hCY87BIB+yC!yП>{~3|B_΄~q~/P7\ssqrif l5Aܙ2…ouWfqw1|7>]w{U_%E`wfw2ż`Lސ7/7*_zp8pg^~)1q?}zUpJ߆rtM ⿋&⿐{ %%,GcM˕aʅلGe­1Wa1lc1sU.̅7?`gDzfG2UnӫW5nLxգWc&3xŽ37I_USI~,S6Wpe6q?oG3%,pk LKWSO.6+XK|] q0, K`:v•?,6K @M8f-F<܄p5,.풟.R]ʫKyv).ѥgԞaF{ 6}?$=U}&|1-߷|?~w'3?x1gdi<,L4_\Ko N|_,Iep3.G&bx5f@}`|`|`X >$O"cG#y(,_}=Wl]Xޒ𖄷%-ыWwy2*,߹<jW^h^&MO>“9_ﲾ:0.<[^ҷTȂ}S1>< 5>LM/ ibgpe?d|,!2oc^[8wM^iע^pe/œ_h{J|ES4>/4f̣3*3#bƳ>CӋ,uJL~ RwZ?Mq}~RGS܏R_t]gSxa6?MsWE*u4k\3xTe<^` 36snu1Z/]}#׃%o0O UOK_p4?-E ̴>(w&3g.]{%pa/L?6;I~-/}%1 pe/| f}~W>]21x K}s%kxC؄poIQgRUJ}Vo0ނM0=#`cnUx1w oHxCܛ(9sǻ˴_e0m0[yy{I-Ŗd|Qpn aN_̧I;/?y08-y%m bd3;0fKow?)`0qsȫ37q?Ľ)?>V9y޿fc=љm0Oc^y/C^0OGe<;[=m1waXüw/ء_n]x^[0܄i`Ƽ3?M lWL>-x fGm>0]}\Dy >4تfr>k?>ǻˇ'$k9>x/of&ߧ?%%ߗW~)L~Fpry"V; IUe3l'C~}!^J>ڕ/L|z{KvvpZ#ny[u>rʛs }7P^Hiڸy|:]eֹeݫ/_@=^hqՃWvm_حuX^e؋r+{3w;o¯`}y1Cqz/W,0wd~罅'+ /1.[aMlox=UECb¿H-^mv@6m2Uck+nxe]¼6!c^Y*a]Kx {{Q^6JW0hm@, Ec&cJh_{1<}MWK6O &\WR3{5~V0 F 3t[?_W9V=~T=}>zǣzkHXby<-Xcm0{^0YIcD{H׎ŠLp!lo!+&a%[-Av,sX59A{=[7"xV0>C~7d'5_o?e7?6_O7~Tl*;XU|VRp̭UIqpV+nd^YbPCv+<3fO|VvBq*,ٕ1U`/:Wz<CX̞AȫkgnW*_  3 ;ǷͰrXM n7љm0Oc^y/C+gêOnu/50'e2U&oo1~wa؄a:%3C_CCroa,x {8 >O$n4A؄M7%gBDq c5Ї%~U }5f/c~>V~K#J>kC[M{?àūl1?}qfǠ/E{e=<`X|f+xg~_kGG~}]UA{ar5?oa0^dyw2 [^wqw+sq+seF}AYa5p>1V`Ƨ{X!e=%s +2_npP1C3%L`| rc4-1vKc=μ='ܘ͘8[0{ 8s1> ٙM7ay{˟o;^˾19U .oyQer}_oO});w/| {"岇O2ê~弿wǓB 1eF˙1&wGs0'Lh›=g{~^#x{<̾wc{6g˙ӡ};q#+xb/xx*%?co k>~!ј9?+ =sE{̇kK}h?.GO3"=6 e2`?ty3{5l~I=_Fho&|q}W/ .‡kU?r5Eo3͇7f^=Ϸ!}g7q l}kf~sMf~L矠o}t'2<ȓyG彫ӿFýkW۾o>?? 9÷?7s\>ݟ(w #><~.ɵO-3p|Xjgʎ,IOw.$&$&5O%U⫒~o%xa^M $.w Kx]?$C)!$>SO Iz?^oI:ߡb<,߫|H}#iaoJ|0/cޒ-7Cw> Fh`./f/M%eJ 7{cUX·<%|NS y,63ȋfSx f.&~Bn^B\]G[Pc=\=37m0O?3gH{R޻9? ⿋!MO?[׃}Mya$ل%>ߔ$c[/wq?`I\ߖ,Px[wKxr%0"Tw7WyYO>KoJs//f_/W|yK| KxC!3qoeϖN.m {6\$~*gk fχM0/M·<ϕ\LÅJse.yhw+-Yqs0ba&?W~qWfO7G#ywd<"Onw9BQy<GܤLˤ>-!_"2S*&|Ly^+[ye&"#-)Mq}>ҟJ~e>yDzm^\d=S#Ī⿋>@?^Ĕ?S}1yH4R.GI^~MOa 7*i.Ƿ"|>\i~.Kһ?q}}12y~.Õ3_pe6q?pc&yLN_}dyLON_(b,;_Yjo5_P;XOI뇍5,s}]Ϙ>cpCx o%- ߒ-?^:/sރy?w~y1/qyvIy;;^y;^>S§ww´!l /-;w w\y sɕ7)r%`>y՘|FLU{T9OT%9Uir({>Eqo~-r>${g0qX/Irwڐ;Cp{KW|^ n M'֋|~&֛|nyqSX#na>O%.%嵤g#%}[זrPt^:v~?2`N#ICvY>|}>07|&_[$C+W{Y|~ůr$o]}tuLՇ_6-߷~O_^$ˇIx$YS18~yKʈϱՏ}R Yޥ3 ߆~2&-#͵s,2q+=Ieo ~II- [e^&)h>&\|_}J&ᛤoH|SXk_bs.R>1B~Τ4G˕#e&?}^W٘m0 }z3W%Bo+a/a*+aNoHHUP]%J^ .܄>p! 6Q~`v ;  .ıF{ "ˤb܌BR̫0a/Vx~ͅ+5genp+̅ :x)Mq}܇![%U?4>C=WcNMhxi`O)ƻ ~/U+y=9= 61p2x <7Lհq5%7Wpe^y.aqo~HCCՠ7 sT_?c.]X/q,YJ|沤wJz ^O 7.$!<%<#gIyx6 w`/=>^>S%CEpn aSx oIϡ|\s/̣2[c..oL9!Jp7汘}< T!!<+̔+o&[ay{oza jfg9a<$|;̫0|(= s\>^ yCjp!ly SC~pגZҞ ܟ-ҾgkMƻ 'WL[곂dlyJK_^'} 涘iK_yKw}s/坤/`>Zv.)-o[KG'y5eG*մ ;RM#5gȎ!\TRpGuoP]m{C+ ^})ߧ|7n}!~.ϸAw2s BYR^q0xO¼$ג\R^ICgH&1S_`I?xLww< UWޚb]x3c<c ćL|,mo3?g`:ߖCLn%0y+OG<•gm3}XdMΛ59Zȃc2<ך7`:r`:q!<ĕ0`:/c=u0s~!ˋ.S/|>1ܾ)!y?(I||tJ}Mߔ$Kj.'1y .哾LK%铃y}]}woH,{I{'BH'V R27<!kE5؄+3wfX`̰L߯UƼk KS `X%&UI?ʧ;Ê׊SpaU 0UlߐIpfX ̜kU<'ICK|1OsF}la .% +(`FwaWB<|[x Oa]m*\{gQ`3!sU^n^\^MZ\[ +WݘWeJ1PEꯄ;c2|vb>S{i&o~%Sⱘ17s[_x՘M/m|_+P`_?x4f۵.y[Z-8=<[o[gypa/I#؄{ afX} ^&

Ky=S0ǿ%Wgf;[fp]ܛ6 3ttp=]q_0@^B05C yJލPzc= p}1ly-|rڙpØMxN%3M'^[ՇW&7>x2W>$pGkw S+D`;&,…K]k^𪤯JW$>O ۋI{2io&Ѥiw+Ø\~U.phQ^`"xO¼$<{6co⾉*/Y%w<$.uI|\=_ ང ӘMKM#,`Z>\Wg߶pac|UXD("Sb?H{+R%p>pbbP.}ȉ-0ws{if*/<s$* Iy/}}ΊW_YRK?ά[yW~&׌ Lqn[1O:_X?9EyE b<6Œ&+πCXܛ7 $=(0Coߏץ|KW' fW)0&~Mwv!ԧI}/f&,hCX/q$%|$G;oڅ;ƣ!|Q`dx,-yb>~;߀[ݘ|[&Mo-|I^͌<F/ IΛ%yLՒ<6ṙÕG'/ɳ:|ߕ10o[0y-zL5~ݘGg",û*,sڄ3'Cs~Y[o(>u273><$Yķ%>/W_ǫ!珯0ͿI_,qy69nr^r~q_>98[I<73ɓI|L"=)d -n΍d>|;I,ƴzӌh"#݆?޸cΌ3/i>@r2Q~bZqu~=+ߧl~-;Rʬ'96<=ɍ&q<$! Kx4|1ͫ7f3\EӼny vϥIrON, K|MkW8p{}Y<8\!qX/.侱n)͘9? 7Io&9},WKxf&9},s}Lx:&cxpa^d=r;%S;%&۸r&׸?0%|n&ݾK?OcH!wH˽/HwCc:a.ӥ?w^>\i9:ϿKx&#'WfӍ<&_;x8%Guhnarauh|d{w)OnvſM7$!3$?CR~C{?˿4]x‡$~LG}KxS?KkIK[G߂WV;0훥՘`}9?GH9|8g[?=L`:`:w`I,m+;3S4$}ߤ t5雂z/ք%. ߤ L3C'}ea>Nqҗoڅŝst'\~W,MoJx&ᙄgޒѽoooR&ݤMGL疦IyIys7`} .)eJ{⭻`.' .s2 oHx]k&jNw-\`6cGXcr s K~:OL|3Ox0GwK؄:_ =Y\~o ccwa/exG{PG+0=! .9;wg^t+3S7c{y{cg}E76)19kw{ȹ!箟y=3 !yGyG<ލ...'}Rc;)~X ])Knޮ~R!,o{NLǨ>~+ޒs.o,n̴(xJx߰~Yܻw y_5`:'Q9MxyKxO?,v_;n,Kc]4߃.ddW3`K0`I,vr&I^]$d>Tv5 K$/.odG7`. `Ŝմ]O1۴^޴^ߴݴ^wcdW:KƏ.<*6%='} 7. yH2SM`:_:Cǖ`:_?ILߒ>6Xw?$|:`><%SN9=+G=Hus䩭TZͯK?˲Jf*le)͇*lsd Zm$}xJxSdcoѳ ۬[WUSŽ;6;K}XƉݳtv؆ۇgHzI|MKXOk۬K6a.6ds6۴{<]7_ޅ-bݽ7 k f:Kd}Ϊ=\|Og>ϗu&gx͌bx/֌uffr͌bx/avB7yoӮ03cu6%?b<&U|ٔoe&LgmH6W`*L{l؇lui?b, ~LlǷ^u+{&֤?7~{v%|AeMd|j2W*E[e[^-)s~*}Zj&ިU_W;$<\d&f!7}{.Mܛ_%}U_%EO6aSlkc8e?m6?,ߛ|oIօ5<%)`,ֿwr*}S؄a&GjRM<%o~K[oi{e a_w/.!SܧÌwyx=x1Px1͈)OI0 >xx|FIfސg浘(ke7XӘ1>gKz?Za<<ޓOi!܅Gc+)T> UaۻI{l|{KgItpﹾb~y3l*‹yKzO[%[!,%Gs~!]O }/G#xs'x2q?9=WyYܫWqoN^V0%يlUOɺovI0w6~o,&thG0ƌ`'KpTIb<]3O!܅|FY` hM>)<0܄џ8ޠ ˜C _^3ly~p̅64d^}37 oěw=WaOQgoF>n07.s7iC0>w{0rౘdn^J,lL] [;e}qKG)L0z{^6҃i~g3v17C}3 ˅FlpeÇIޚa#$Ė &[vWL>1滫 =w`zS/.䏫7o {_}sw~z%o^}eq]w9/<eg]X7V7Cic1!<qc{Cd4vWMK/po&5㴎)ݕɍGNy仼Hevq Oo^|{/ zo'h;I&*> -1ӫ\{uv^|{l/]q/+ˍy;0$Llۊ[^&ezȖ->\%}UGdk [^ؓ5l]dk >!&N}nC>ܘl b!9>߾|ȇŖt[uwi] =חnySxH|]^plv]%_k%[^ڕ_0*eHykB:v+>㝼aNo߅o¯q:ܟZʇ=C§pu%-yh@K^Z=g!!⿉*ŷԿג[<ů{|^X"{/X܇qkvZZJ_ZZlMj-~5rnd aI\Ư-yz_[W~&s}PPʎVWt:;`P&y L$oZt&u-5$y7 nœ^])%Lf*ؘi~޲Ca`zeI,ᙤoIoK|[\;[䙤 &Mܻwq'kI_ >LK%Yߖ%G$}$$}{p p¯}¯<\MSyu )as-Ž{*U܋s)oGƇ>[G}= ,pklS,k]LyA` a{EG&:t|3;<8@/d'ɫ^|B⑧3Y zLga>_[, =L=azKӉgF5]$O>KOv]|D^YboEux=eMm/ fߏC^h[[NP-9X^#kA^]ZUG?' zx%.޺u%.yvMIX[5y}pefֶ䵶%-yMwMOM^,9ape&yL'FOq 7.᡾'1M W*%,W Jz_G#XW~!!1RCkH}`!?%=S›oJ}a|^&.90X_bM|54k i>k"K^H- &i>o2߃kgl~!`鵍$πu$5$O|?%sWr˖+ = * &I^Oq0&I~z)erMq0Ƒ9Mx oanO&eZHg$}&izΖ7{1+Iu/c\-os{z-鶜7<%}d0}Uw/iI,7 y#珏yޤ̔7qoŽ6f:73J?\9e3$'n2{~J~JL));NXK|]ܛ7q^Ž{黭re&}wM}Sz;wOSF)ǔe\%=dn+do 3ϸwpWP1};{sۯs:e2;OSf)!x cM }+=+] +*0L[tLWt=E =؄gc~]]JoN1s!VW\:z &w&0' pCg>׼|_pnW!1sy.Iu`ߒ,- 滤 >\;s+‹Q&_uH'OW{y,څŽ{.]܇<1[ߪSXrve{ ʼpg6$<*{{7$!.iĽ{">.7-x˂m0^ mE.KxUW%}7e~"۷ۘy۽|&sﹾ:/vt^̜&I3O!uaZoӃfNpa\}"0*IHyi?a= "]IoWp?_ 8!L'W$}`*k=|  ka$ *ke.yZ7 w}{IJW%&c|oIGI0([%U[|_~< ޛJ:Gt"|q{{[kM0w3K-p{gq֋%s~.%ߴs iOw=|?{n_C>ߒ^z?:#\_$}7%SշK/e2פ>MO4‡柤 6-mSOFGI_ ^Ž{.]ǤyIzķ%-mII;Iw䭋dŧ<7곓4Od1S?Vfpy^re.[xspg )\`ߔI.]ܛ7q^ŝ˷ mpc1re1Y^𚤯J< g$.f_SIO7foLe SyV8{ ՘~+=J*˒*`\wg^V|?&s|U d/Q#\s{|8Gl 7IOU.̅xK7ܾ<`͘0>…yUfk̜EnMS%*?@0m~eI_~JOi/Sa;7`8&[gK2ypc^KXMMܧOq]%27IxYy|Saa;x=nn…yKx[nK[һ%>`wl I~Iy4)&٤GjRM;X;` ;/fȒs17𻤇, ڥ?of %[ܷO/x vWG,^ XOo%كHƝ/D̷.b>-Dȋ8WzЕg.fzȋHG^PV5%oKѕ17a8w`N}L/]y9\syl]\NIlA0{C{ IQ^hlp}|?|oy5-|FF9W&k%x%?"פ|¤ﺼgL[ޒmI_>0c7O&Mܻwq>}MIuͼbUXҳ%# 껃fU8{Y2[ reޔEɗ 3%嵤< `Y7ĝ"}WI_?3`dq4w!~u f&…7e|3xHxC^UIϷCAޗ ֘>wK?1>s!^^ _~֘O؟'zf2l!b^=KEg=)f./s+c2w>W@Og >0 Kxֿ-Ÿk!A~Ă?s3!"?Ə>Q׷y%}]]=LGiF뷇I_DDDD?&/OMS_\pɢnÕyM7,?<+3;x0OIMk&Sb{U w!ƻ|%|(f>/|lƼUp1e007{ <lyI8>^;0<&We=^pk}2sC ^yS<\sCOoyC?RG{$^6̗z'8Z/<; 519փu3< &̇8u27nCx.f^[S{J&܅6aN_uWa.anoCG"|9S;CCjrxI~|σ/9/O\ȿ퉫Ӫ<3}&Sw_z#v7%,v}Gyw̍-X,}{Ooe.wwO ߍ?n{bLY=!O}z^k㶭oOm{M+M{vmPf-Ll-.^Iߵ.ǛN{eƎ4|4|ť{)]!9mkuiaJc}'4j546۳Ic=[ilO2b0)#Yin-{ 殯Y4GNs|4w~Bu>; #giMsZe'گ9!;|`I?WMk d|G}ll4?~}7${{{287医Mϝ.NKԗ3}~#|<o k͙d,^0wg+^1ڹ;Y`{r= s{OO毾+m͏'%[c&2X[& ^s<$>/R6O;x[~O֭xn!x!t>Bw)tB3t#~Cw;t+C#t3Bw+t;C5tC޿Cw?tKStO3Eyr&t1^WOYƦ.ݙ[| 󷤻9P@,Ά۝Bw8_y'tiVIO&}~ ݥ_^O4t>_Э~Ѥ{t>[m/|]kO~B{e K.@Wm.^П\m6׍ڷ oC{m:ź{2C{sݿ~j-ڏ=OEy^w?7bP[o|[F|~1nԿ{Ï?+/O|X1~ØڋχϗӯX_c>>/|>hO>g>.'i$O/.oK.7.G.Ϝ+7^GM_GM_|!7.@|XۛAA_?:\=...&nO./'O]N?4Qgf>(o ?c?WјgX5^}?֓GhWv_>#gO>c=~>cp}~x[Wxy\}E߷@?ѣ?@?ёF{elt@}ÈA [>C;#5![՟7?.ݔ}>uOCmʫ,~Æ#~P^ٿ=ڷ7P~i =NwC^y9P1޸qVnGt!=X`=iw;7?a~cЯdzi}}0_{ozw?FiC~cm_\ =#}Yc|G0 mr}N\{;^'}@a9Z˺w3Wfo_ISxl.$=U9Wޑ~F Όc0=>lW?`?ǻg/Oa[bC_}0wY?m BX;~Я&hﱿoX¶ʾw\~f,;;_dοa&qn;fCNS7|k @}-/7[7ql;c&gC_-7o|[Wv~/8q1{fp|+}>!>{_< ^x䑉 򒟇;j:_|~@?s'x }CbC ϡψq@;Яx.;eB808O9x~*1?Ry \K ͎!~?>ys'Η|N?|ϋwWqya_F]~)盽<'5cM+'נ?/.A϶{~tO?z~k6ZktCV[e+ĭVٽVGؓhߔZؓ2ſm%Oܷ >_r.u/Zꗧp̯~3#<=}96ʌס)C܇wqĽ{WIB/:ܙ_u̇Spgސ𺄇אsE//w%M?'CwO'J okItk_Z 3^O]o}|_E>pa^s 1M&u\|3lʅy ܅[c\3^ٌy 7s;U0ߐ0k1<6s?•ƯWx7y "x5fӘ9z_7I_﫤MÍy!׾ίY<~d*KVznni•Nװ%.A9ΘςG6.\W{׻aC 7* {{%AF|U w!<|q}]&\&),yxW\>./fﯗ%<eq2xڅ;_|]χ73>_}j[ y \sk̽ f_)y+Z0ƟC F&7XӘM!y:6&+ٔ|( U0ј9?KKWg='֓2ǖ&w~CK_yB`/i<}<ſ˘w4^}\'sm3wOg.,񛄷$%m oKx'W_WL'&wq>}ww%_-|IS0.ḽ&w.enpa^%˝y.w I!0X~k"=\d^[1J#ϏK0\'s}5_>ٶ7%!ɌpaF~=9"y5f+0xWòqpKo5,Vr̼>>Ooz 3K_p#GjYe˕EO-,Lz9}07*s^z58˷e|<)\m K|yphSX//;Sx_p"%)lK0cpy^›17C8Ӆ2S0mtO~;8ܪbސQ0[D7wL1^y;NS&6( ܅0/Ӊoq!g:3#do9Vķ%|x9V{g長Ѿ؏9`0lyufGC^ !7!!@U59?`.X<Me{1J_|b<*l֙`>y?pn s/|#x W_\p_}F /|qcfn4]}Pɼ4Zgq <3# ^}^0 xKxt/o:q  Ux3d9w[ ]}[W_}<}I&/qGog!>%<_~I?u9t,{*b~C_ȯn.R۶7NG7R GW oD[͎z4Vvo Ub59h(w[ rH=UbޒBL:˭_ q 2حz0d~iJ 4U=-2Uİ߷<'Uw{ Jfy)1*7F+ O#_ W% 7$[Ho۟3x+{H.JlS_h$%nUd\W0 7&6aoCF}Wgu\㕇=:>F!'n¨ϗ}p~"% Ew>\)} yMfz}07Pgޅٌy!x"WRWg6?3(p>c/_1-`$1'Kbkū5`쯰4Wt5;0>C%sc3ա܄] \zb_bzy1a55BtҋB(aU"W3_u:~` Y^81^j>~_o>Qbuo_]3gJg+˿g^?^݊ IID?N{y#~&믲]"nU⾉8} Ox'^MV&wWu&$&aǷp}ZsI}{{XȯE-B~{{^ރ?,ˢ}`XeAod&`U"'Ǜ3`X}İ:# s`o_0w<Ze{X&ő|sޒWp|> `g#}`O| `+P2IBj͕7}ZL0^+FKf&+9`%Z`:VHLVl AXLhJa'JW=i(Œ>Qbk2sv;s0d^Ƽm*a'xT٘׫0'Řp[]xP>_n/x A w!@R*s-y`]'W i~`ߢ/|绫O|y y/-WE_i(17.@ y-@>`'U<軳äOw<_wC^eW*~% >.{x(߻wcE./^\M5)\s~+μ|{K 3+3WaŲL7qo^kX ̅{ ? =W/Wf./oחx,ʜƽ/Npgп_K7Z._]-LV?o-1c%\-wxl&W_-\|: hpa& qpe.}2?:̦\]5*1êk?SLJྙa~'!aD<l<:?\[c~C`zX/:Oc[8w$MfᅲKje$ I'*.Ib``$1_0ZpgK8ے9aHV`W&[j.gzreYޫa%: Dv}2OaEޟ/{ԅ]?Mv2&Aϗv2{q {|ؿe{{_eo\}DsJyO܄=}9rӋI{Ҟᲇ'0cbU8?x1d<2 /W}eO_ܓž? fGMx3|00c6x3c?Gg=˛O{Ͽ<.@yccG]^ nÌ] vyC ~<^y/L B X(oH&3q.o|393NT>&||^Sq,O=v?p@&fy|ˋyva:`ק]^̞>o@߈7vŽ5|+//,|y^<3!Y`O~@/w,]}/?_/t޵Vw__b//-o?Q.cر(fxxq6 km߂yX8% S'9Ǘkj?gZ߉.T뻅#.__)If=?/ w CXO?%)gs?S2%ܙx"+}= ݙwwy}Cܻwqo&\2z};ZLX'X^W%<.I19o.k0W)`n\9=yaĿS?.Oxޝۤ~;Sdsbk>Sq{Re̶ lC당aI_x*C 3?%lU)$*U9lkgf6iy1#KMkLy~oq}5f[Yyo!\ 7.a x W*G .e ſypn…o%l<$?/؄[k]5/Q+񝏃kh_`.fFI|&-I3<\;3Oavy.`؊gIzw(}!^>u1ɌylPu27 .y&Cc=y0W?wH~c=|Yl738Ϙ o6{6AOK`F 6%ża>_.3 nMX{CQ>.|MM_}^̧ {3/s-#WܺbUx фk?%~g_^K>M0,ߵ/2-<I.$=,-jOG|N'!CY!mO<oG;K ܘY>Ѿ֙Cw?򿝫1c Wpc6~C{0>tfc`' ,W0{0 GXOY ra+[sJߐ < \C .~+}Ycc1w&p)7x{ TMg.PWiJ̣3w ISy fEW s_}@ly!܅[g…x{`Xp7涘!+-߇i}a3fZiY-ʳ叇sb? [/HeÃ'OÇs&Ukg&yag3ya<%gn_qaF}+#؟=&>8>.~Rg0Kwa>O2nCx3.L|Mwq>ĝao.Kx[c?xÌ_ wLg|Rb `D`oOaFz8 7a/xOa0E)"S y,W^K+7=dV{c[͘f>Ӊkgn/q2/ oCO ܅LxM-|}= ܅Gc\^MRN܌O10$ޕ#DPD\MfO>$%IKY:|bny` >s1}a- o n<S_՝w|8䇫 F鼳?!CܧOq7q7l3?`!ûy⿊&[7o{Gទ={1f!Eos=?)]Uƽ75;s>qZ4w?:E?\fbϞcIx .5\E-pɎԒ%;RKvH-pA;˃d5C܇wqfU.wf.7f/{A}ܘ}gG`]w7ّ2ّ2ّ2ّ2ّ2ّ3p0K.!i!9xa %0ÉoH?v 0Hs0{ ^ </ξ#;R(oGwG5> vWapǎT^fSx,.܄f.?ؑ ރyuf.ؑ ŎTp H;R3w I;Rۘ`;R2oc^®1pyw֙p! ^لd® ny<)))) \G4Y,},١Xqy Cdeˊ)<v+.^&5I_9[^{py{y_ ܅=miozyof{s tYܽ?5x`^w fxvd;qT&;@>{}<;V>|E ˇ`၎)'x #qY#y~Tbx'\iG*z)؄d‡8sUu.<jV>̇?u17cy )&1|0GWcn x4YO_>戾>爾aFy~pG]>̮ .;Wˇn濫O #M/n›[/3}gy/)&屫/^6fﯯ|xx..*}?cˎF^G8Œ/)g `u1{{<+3׎[xb^Ƽdnn!n~{7nUkex\2σ;4߂̈́ c Kx]^𪄇c} RwSIн\[XC7g0%xaĿS?.+%S ݙ9M~M¯>_X8@u:˘m ٘TX`L-,8|' .ݙd6*ߏ0aA#n\xyk/>"Nƌ>> K1|}-!dY~b.՘m gZ< 0Y+sM7y /ȧ]0z.\3Kx {x7B .Goa/Nԛss%¾s/n<\6ل3|wy3|ΧK%z|dpaF~ogvyf~l0ѿkgnU0yq^$n͌-$n4f>O|ĕ烗%sIxMw?8S7[ˇ&9Cf\ϤyԟBpOk8 Eؘ՗O $<𖄷h }}}}ec<=_#ޅ|pi};}e~-΋>2/3S̘bVpS0&l̐b֒`+CX/$|Oo__17+{s__3f~{RoryS6\f]|~z{noJf^'jp]Opq?{^ÍĿSO?O\q-3>x$*UI_^}^tpazʼ};3u+N3\Ž{{^l { Wf. {u)q\^$*U {/2pc<{1X?v %a&MO?]7~Ƌ[<^|{[%p:)xHCIU+30Wa7%!u IxU«GjLRSc6%?Su|M_ tڐ ~O4~?n矇+3w2 |Ld>2-[ܗ/u/&/-N^n$=, Y>p7 JUS%E_$"I}5~l_.\ 3;x G/W*_--S}h}y|S;dbට`UR{?K|Mk.?$!~mױ+N3i?Սw `T~99rcoy)QIIR[3򶔷Gy~y^O}A/;3ff7%%-oK}y>%?/oo'SpޙNyߧ#?t]킾|3TA#OoJ~KےߑwS~O%M|OG>ʼ$- )#N %COI$[I$}:1'w*雤o+sY|ZXO;K}zd>#s^`O "2&|2yH~Cߔ%-A+79i<{ʜ 2i<{<_|-o)#ϯߕO/;'dN+{*U)|3'({CR!R)OI$KoI%';}\y waɯH>݇߇H>Gx[ud}-sCː4}?yM7_e9Dt7ۏ_Y6yI~f3CI&WO?{kooHN-d'dο531r}A9<菼ٟS({ܤ*Qv>'%g©|y*C8~'\[#C{1𘙻p[p%@ɹ19mmix53Ϟy]ߟ|F3Y/I|'sR!ҟ=l.ߣ=|og_O( r Y**')>&S2ߟC~?S$~4x9Կx0_VO?-|_*Z.SIr%tgK+I?}\[3yf5aG\poK%s}~#WV3wQ2Oy 9_erȜulx9`o0~rS rj`/!O)o[;R^c"r#أC_I=|q;sSTS<]':K)$9^c9vHďu/ bgy>SOy%}6ɧ6a/ǯ _Κ^o>ߝ oKsJ9cs2YuR mwᒹH{?-3o?.Uys۷CwyyMW~l_rI-sI--o̼ݖ<$=Ck[E:WΐKd̜n3}Oؙ1=y0J~}|v~\3ZLG[&U)q ̫f-3*ڟ3CghUO#"ڭT.0hμY*ڽ#cfme'\__}9՛ssy6zu5s_R}u|F3VIn7jgun*Q|Sf>>%^]oLoLo.܄5yJy %YR%}ǒZҞK{X|%ߛ|/Βg?:ȯ?;̵ O.χNR)W{rn-s¹~O_!S!a/OoWͼ{\)y$̽d5sn|RO&ז}f;w|${M8קּS[[8׌z\[܅G|q;s[>;OaK/I?%SI?p͜O KM__I}|ߝ|pͼk SOy>{Ͼ;ιV2י\$O|pͼpɼ)͖yH~C_W%*Wk32>u^3’>X$}owsKk/[/I$CI%}MWI_֯xw;}ϷqX䟿\3g{w^ߔ7$.5ɯJ~UK~Sǔ/8O)oᒹIyU+R^I'~~s*YNpN;$&%}>\n|[o}^2/)s I?z<~Nqnɾ<%3%!\3#,)@š_|$#%,e{pGg?)=|)SNzENzM?g9xq8]wHC3R<"o)oKy[Wx +aMǚėff7%%-oK8ޜ%=sf{r/;s~)wG~+}fs3OoJ~KےߑwS~O%י9!|2ϓ/z9o{z܊%}~Gz$[I$MzygI2wI˕+W's}O-9%WքO>2oH~Sߒ%$=|}spxmWS.r|O-A^G^|-o)#ϯߕO/;S:̭ O9GK_ҏ=<~Sʟ~I%闤ߒ~K-c<TljrxQҬ3]i8>et?u=6㊛]> 3j[,@Pv^3YMwܟ~)_2I%{|v#m']Ow[x,;bN>[m6ضj6))/G {赻a~Ng.(zx[Mx|hQ.anW}颿LZbz%[?ir%ݘ?4Ԙp\2%|8ZR>̕Q#'JO}8JO~'x Sw!湱&\VZ'8p<sv'߼~xNtN9>`jw|8Z>\[ x+S•Dc~?RՙV>X>}Q|aC=8`Y-ȫ >ﵬ㷠v0o t}"0o dznaXnI?`wK70[;7^6g뇧oύa>,|﷩O >.VP1>Vs >_i>>5з }˦Nlox~jэMD{ͤ~7'fW'ik}&Wp- Ø-Øw~:&Oߴ:_g~q4_|>$^oX}aq>Uxo\;υ={M_hk5}lr<{]{޷[x۟.Ǐ5ikz ,Ϸ 2_8>/?9c#[Lx-6oa1yp Ǐ _sC˲\,7[ |Ȼ?lAg5vi+l/?1L|0[~6_|r}c/Z}7bج|ӏ%0Fynm8#m67}\ ,|7n7}6[?P_0eܩlv'},;>O#ӷ>{؇ f gͨ[a}&=gF}_?6+oߞzWg?L}R@Sӗ?۸m^f>Yq}F^5R'"z%r]p_|[/EOx?[E>=z`_\6^~z6l=w_:z7[Of_m=[sO1O4&;]q6[Оa?оoh/|8cn=bhϡ<6w ]hB O-Wڣ(igڟ{Q~}g;o>=ôǮGnyhﻕ쁷31}39_Oio~0 է}[>|bm,Z~n@{pUjڗL̯9о }D{G}y}pcBb[8߱mdy藬ϵ:s-D}[0?g|IkuBb.^>>^ 0ڻ1ag};-}VA,׬}۫K>y7-~|?>}~nVd߾ٿczooxNy;xc}r){o}/ykq.ׅ5EyP_)QLʓrn|zG{tw>n?Q~[d#[_ǯj=OV~~Oq>b'k'[3i_#3y8v㚹I* q#F\byXOO83>#w?grhr}:~=Jdp7SQcxԧS1~X~-qI5oʣ('ߍ1G3ɏ=v<+SY??*GyKO=~q~} 6_]w/7?}6YyO A+w|v ;w`_nsC'~יRwg^);пh_BUUwaЏ of?2e~ǗWKX~ў{,^ҞypE2}xҿW.e_^<^{6X~nn+烒" b}揾nO?Ӈߖ}Zc?Wx-P^^>{M@\7zx:7?~_{}W};x<Oש!7>} e,X5ꛈhԏب4 H\=* =z%r’I.黤#x'7vB5~m\}aozzuFh>B9OMI{d^Gn}ȴ?l]O{w|yjHN.yC>CɿKxc^-s=Cd.o39r=s#sSd^|sސ\3y>yyC^Dgy^9"{M瞙79̼Ϲd^R޼R޷[}fOo3WɯJ~%WG+I#̻g^[fCK}oR*N鏭f9[-闤_~J!釤I&"KJmy_yI!wɿIfI/~8ٿ M"<$!uɯI~U+_I!9߯yLy߹cN %:p|F-鷤_t{f,Uɯ%ηϨ6[oySO҇K5sҏ9LYc{0#),鋤/;~Iv>9O&,7y } ǜ(op[ ?a^WJ{_7/D"3JޏOf,L  N3W 鱤wLfgy34%x'WG y-Ϗ)ε ǠO8s3T!w"G~SǗ\Wf@-♚Ow>8lpח3M]t}=俋$;'ݹU7I$}_~J%闤ߒH#W^ygjU8w)|3"2&˧="p<n %! oJ~S[#s?Ꮂ g{s<4أL1盹sR_G:3\c .{O{eHzC2)g眛r\1g/~<܄o8Į!9wS;oι~q.)Ew53ϑy]Vs~W32yiJzo)ɟy 73Ȍ O90~_EdM#n ·@³f^[ 4<\پ.ꙷV8UX=Ϟ1畹UayޣCy>s )̧ K~fx gBޮ6-=S3?e7Pgq3=׽w|} ´v"‰@.܁JAMwb‰cr#[bT{X8A;8xwq\.1k(V@WX6ʥC[G;l"wRnr*wQr^=m\玿;2q8_wڎD[7+qG΋y30ޯy;,9/Gu\>ÓzwRs`'8<ќ<]=KDK)0\ qahY 3ƛ3o4&1 9!FE)+J1Mn%s cG^³g}dnuf.7̹rI-!ދ;q3v:C' \R_vi<DEc&s~O_) P}ki_B=h@e};';MV߱ߒ]+0GK~"q]Iv9Oq]~h|I!S9vIOxwB~c~#C?hW~R}bdC.%}OU?!c|巨.M}vkꇴkSݛ%Gi7_5M? g'?np>wpb&ܑOo,_'߁;}-N_;i,`K wW/ 8!᲼xmVXyg ~~'o}ZlvԞ!g>';3ڔWwnV}/N؜1~6_w'?Ѧ|;Ņ8C'MP¨`}8 '>a%y:y)8ݒᦸ3Mf`?!j`3qq LThhhhhh_g?????????(\K|3'7:/ӥ-7o/0#(/|=8Wo1r:ϸc 'W}\>3S;= Xd=J+2ƫ3ŸsxsFXAx"Ο Kz|g-CI%}M}Eҗ?d}K%%&J%qɼSY^?o624~i<338yC`~ύ\z '{ň\}gڏh_Q?a_1iH q_na?g9h׹~\uqF9R_<%|ofoBz&pM;orMXOI$[I$}~fo'3;'3/3#7܌dO[xgF<ěG3zsyE{7-{ϳV=_4Nw|sx1o"x3c waI̟/ߐ_%\3-#N,?3|y-ϗ<_|)χ\2_.O̷K%||D!Cp-’<70)gWcdg93/=2ɹ:ך "|3y2/3u[ܫ<$92/ /C{w>t.)_%#~uܿ8ya)oJy D>=䱤I>ŹaI$}MXϙyUyG{+ߔۜ\z3&|2.|3!,ϗ<_|-ϏT{xםp͜)`=?+ᚹDpH-wXG;s>2w}W}K?LN ߇K#3[-9W)\R>r~Gkd33;(oW&\ Gx /)*dz|pYOI} 'kYY?/+e}rrxzCd>[ K-rN^2oKxwaɟE.fګGOϔNy);=הCǐ5{ΒKrNWfg癹?|Y3^dNGo?ޙS<ϓ'Sy4E^MgSy8E^?SYo3)U͠ agKx ~ΘOsNfΘ1{gGgև }#WZf|c7:7I?$KISz׷[G!vy__/}=\ٹCu%oǜf2:|S}}\[{!٣gS?3f/g<9cv= ̮[g0+*;o%xw&mpFvl?v C;uFt.]uFt!aZƐ!s1SC5Lo \8V:%yc{d^5sn!C>%3_:n I_Rz_=;}w33G;8~: 3 ΰ>`ާ*&$;;o䍉lsd޿s = 7ۣS~"(w+$o ΃qyH#\efkdf}{iOFi |wd̷K1K1#gˌQ݄>I StMOޘGߔvV2?:IMޘ3ycc5Mz,pW>X/^'o/֫];{<ȼwX|oOUSx 4޷'M|Y?Z^pQ~UIQ^'{cxcxcԠkWkyd85ߏofA{$;O0^c|wS{q;x?h|܋0ڃo9#?![{t yi?xɞN?yc"~~1vwD CuOHFzO#?c=߯71>f"G"#~N 'w7xᄏ`d^hGgy>b̐V3K2-3y32 00q\RzGe3K({3rɌ\p͌kwF.O#/O8qn`kuf.~\3OX1>\R=;<^'7sW.[\Kj&ߨ753O29\^_+ɇNW\3OUׇyzŽQ̜gˌ|P\#;sDnϝsk椿t-<$r*w?w,aԗ#꓾ jfx ~| ;3OM/EF';IyU[}oQnn"YNn=qyqF*0Cof(R~?ba<>w ta^݄Wd׹?^+3Q>/K';(w/6aħQ2L3ʧt%3?ro{E9#!x?g|VO:}']ά?xwZݽ537s;I_ oޙMf}(gq?ӢCK^Œ a[iQ)^wݹWyHsd^u3Ӣ~Z㝹E9{h!%_-?+1\9}ya)ߋ 7s~Z7(gwgI$}KOrf${WNz|"iQxKG;_~Zyt8ӢsƋ'{g-Ϸ&3= I]$gyCuQD>83wN <7~ͣ3ϱ񇷍H<qg&7nd$͘3MeڸMtf}~%%oN.4-\\yp&yoI›z˶o-x3nY9۲=ysmAdo-o-U߲W)oZ K_,{,hEKTZ-vhYL͢e2j7I˨<"/&i7gH3D|BLH*gdTp V=OvsGa`D*M?LKd`039a70-},1꬯[zd39bJ1QSp cKXy\`++ΦΦJn3bةc7?AWߙrs:8{xnyRs~p<ܞSC s2}!v<ׯ9CO3}/0gl0υ!ܕN0+`V\I`Z` N;;D \Νv-0w.0w #[yop+޶-̕sChɾ.R~=#1È5Of;IӳV|G 0#* |;;H,natZm'ce푹vz ˃V#}񽠃fC1?FnO/:/ϻ?7YyߛQxj|?_Kf&O7, lQ_ }VGk}}Ȁ>=߰}aB$6v j?a>:=, ҇׾\=?[7ϯ̽ _g͓F.}{ae{\/ׅy ,#h=~>|6>ÇߴM0Å)﬿Bc?Oyq>._7|/jO&/O~Z}7/nw9|wc4q|rKo>\cL|uڛϏ9?~>?NX8?.8?\L66|(M0ӣ>釕,+oS?ٖ~a'0SeP,З~hxX_}_Lo'/x2}tߦ~8MWܐ@z7ϴ`iͣ>}-_d/u7{7X\މ-q\/E՟kz-Y{lA7׋\O{qaWg\s=7t'߸fzt#l=azy?|B{xLG1i<90u=4ӧhocN5WPCyG{i/gOOګV{h{|wc8_о׬>{ߞ=47]^71L]L,}X cgj}Rﴧ~G'?-f/-؋g2 }]OGз:_^iO:xF{vnVJ{ ˛B9f}鿗Y/a}J)_軬[_Kzn{OKo>3pa[~u9ўa}p)/=Xity,=u_?%OX4%a[m=7nY)lW W[X ~Y} ;kxnOOi-ʃnEl0۱~"=cm^-|Fo23aq{>ax_}?wX^ v迀?,kП\|1)w'ՇyA}}<]][~}j?y'/c>SiuegY_>Xޯ^[iOi_{~߿'a-n> 'LO吡} iZ_>5O~5,:짬/췓;?d ,{UW,}g~7W,oAtWT/˴/^+=~__eK{-Ѿ^.%3ψnkՇ>im/'f-8#sSfn+ק\zԑh2s{<!o<ߵ3<[ۯ/Go1l?~aoPWgx_>Ucjn7o>*˄O+|s/?|ƫ,|;?>&O?oGns{xjLxK>_պ;:w=:b5ίd'8?8*hO,o0~󟛾x:3;5Q_7p ;a?0ěᤌ,V.V0O~/@}7c츣>wF;#c>6UfF<y3ޢ^fwfC}xgDuN/k\"ybכ\s=;m+O\/q=I+wgz<>OF:/!냓 ~=>uih) +7/c>L [ s!?a*YgU=J{ԋGo)~3޺1lgCrG^^:̿2|H{#K#?L{)g3'w ;{ƫޙٱSqs| wqnB{iOohoχv5h料E{`} }O۟xOE+|noim7 !SPy=CRoSc! :!t/ ` ɠtK;^1 1c2y,:f˞/?Omp  B,܇[ 11\o>M&p2!-}3kYW' 3ˤhIm0NӋl̵= 6&[ccuIS4#c[se9w :ї'qۃC'32{2[{0OcxӇyS i6g p p#SiiF6}N2b;T0OGNc0TQ?O3i`ge??}ⴏᴒ#Ftzc<3[.{J&d;fe<@t f swmT7yMn<=$vvi%Wfp܍NZg 6VA>O𪙇奄 .f:v.`Ei3#oj`>`08%? yA it7* p 1oNj:1f3N6<7P6l0OC+`Fw} }>%'kvN;uO00ְ#WOӝӧ5;Z|Oo6_E-<P?|+3=PA3frR@Lvao^gi&6}O{N/XX\1X㰼f'˃X^Mk5ä́5bMr)C}9|qxf@ssd[`zL?8l_جX8\cڐ֐6ɕh9lW Va8[ygei%rh_1.T5{\kxeE{]F{^(/cd=.c.c^=/cZ/m\6(ž>ǙZ}^ϧa>G WeAk||-79Cx=$9凘$/r5RѧJyE+ًY;|?|R.k1%k)= Tsc0 }ǘa>3WSY=3=x 9_Q|z*?[|1c8{S9>1a̘ ǀAbc`Ϝ[1tA.c}cy=т>1Y);P*3U} 1;B1@5ӑLy@\rn%3bcWͼgs~͈oL91Σg#}y"#c[<>䞾f䕾W?*cҹf5a==f(1{ƀ>QbL$ >`o{W+6JٌSiJSXhOe=G׺>{)o`={= ͮ1W3f3}~E4bA{szļhwy\YsbhZ_2{| gL } 3.w\{qeG ]}1t1t+}}P}{r(^|=*f#={t| ?|kQ~z/Ng=7۴VOo}}RXqOnryXbyiGp]hqG {]_AA/m>;iv}l0C}~}JS=o=Hpzz̼?TGqɌs53DY{.Ϝ5C_t^%}ȣfS鏨%g/=3ce ]{*X;3& {K쯓^zM苅Q蓅U/iAxt_B~(?K"˫ǓܳFh@ ^s3?6huF>ToѾ5ݿR|}O{7o7ߵq@k8{̿k5_?C}7Oҿ&G(Dž/|Bά^Zqe^"9`zثӷ|bW1},O3= _߻}cwY1w~y-N{Zy3j_~oz t4Oo{0eڧ!ʟ#w{v(iO/#lC:O=oa{=N-o=OӐy1lKoG_؟?\ g| {">8nS)O`Sbτ3gתI{&{ƷQ ?{y3f8y[ý9 Vƿa>u2[_/==X?VSY?㹾=//LeחsRuЇ~z#Řlc?ҍ1<"c©/ GGI~񡾋FF|ȡ{̶~1|^xCBz ͼ5#о@k#qޙ"ssz3v>cg9#^9_Zv/O3L=ގ!>=!nO4^/' ?=knE+;rg3I^]Ȼhz_⑋hz˅֍c@2x{G߳qOxV?{ߋϮGx=$| {ϧW쏈w#cY{Þr<{e^Ob|M/C1 =IK _Cb<5uw=:hc[< =T /~ܛkۺ3iZ~]ol F .="Bz:IxVh SN4ܳZo;Sbm-S׿??`j_lk?'AAYYa/O?P8]<4A5=|̩7m: IYl{YrAz +/C_~H+cko]\O wp#:~7 oנB_>o_۹ 8+{{ ^ `/wJ?Ox\- ;x߷ 25ס#}1~ HD| -orϗ|r.\@_ }Zw:[yT03!/-r^rW y4Vop 6{]y&p#= YHF|[:,.W@_ } 5q/o/^HB7o;x) n੬i_` {/Ok1r^`>Z>QQ?:OG?D3khgGڿU O{;ky{QnU"23KO+8iD}bϤKjJ:J#ùC!o"? sP{2h{orࢼ6x8+O^`7o }7*ßc?Ap=o+x:^^/pO0-[Y}}x#~ߟ,_^^`κ>:~:::>;~;bϹ#>ːO'//y~Yo ^ʥBxdz}#'/~g__y*\3o} wଡ଼O:צ܊rO`1{[Yq]Uo"5>=~9rZ[ ^<ǜ'ҷ[W9wR["|C}(?~!Bx-ߪ_2x)K{{Oe-ߪ-O?B7|?b@zR [6?ėEu+=C&po4?u[ݱc?f~׮Kd02<}D{ड़ '@ɘ0Ğsqqg5G<1lޡg{/'e=_sy+8)rnNo}~/We]` }Մ./gew||B>!}5[{o4=:[m6*'ė$#i^M' ʚw5fٽgYW'ݻ\^1k޽wo"= gO ,sWcݛ܆r\r^`/qB&|]q1ν(\_%'8<ϳW?1 5w5yueg5&N?,dz ~'jgٔ'՘mߔ{\n<{/Ygy \snng1g}OWpoe/(>^{lWw0{{ ޞe5ex W]y@> O_3>c</2Ɠ&c<.O[.8mly)[2VS4};~?奼~ְqy+l\WكV/C٣ ڻ+@|MķbK m(<x*Oo!} ᷄/(o\ x+Wo'/_[9#|yM%T ʣ+O?BKyEr,g] xqi \.xB>!_/72^婜 xx+6x* `7MKYy~'p~y??rN`W6r/e7 ,/3|'\tNy8+'ė_EVE?q2/?~H{hq,#.7pR"} eЗ/A_}1^k\F| X(N  !2\夬ߊ=Ϩl_[jG.C_}I(+e\FxNOv\I#w FݞI #2li\;_{+< *ʳ>i.`סST~?ET&F[2oڹ@_>]_]X]X]XQ{C>!_/7[~gA~g=mQHDz';% ןK9P.W@_ } 5+O_^0/Ow!?3^7oox <>x +~//n ~K}OKPqN. wA.?rn ސ_-^ pS?xn0 סA_>-8%Z6_SEy!~[1w"|Eނ-(|GOA)S NqB җiփoSߟGіg[Q+ gPJ/ 1>&O }S%9Cޚ٣/-Dd"7Nux5YOo"q~kG//|­uNʣ)wT,?[&G;7*$Lܢ0q-%O/D~L?ĭDLOĭ NLOĭ:̿1d J_=t|{Èo w ~-:Pa~XNJ5-5'+S=^k' [މOg!~yimWoٸ1*֍#>}p+OO |@>Dҿ}߿%'KY_[xg>9wy"Dx_r3޸1 nOo;c*Ϯ,d=VלVsEY^zI'/ЯHK^{Y^z`'=gO||+SY3 ^3 }(o"}[HFVg>,>YZ|ٹ!|G'O_^[ p8KXʷt?&OзoC 54?`喪y2>Rg/*_C| :u }C_-Ŵ| /gmo|]/3~/=^_**[pۇQUOpI9}B OH[>EY˷ڿOZ*a#!|Chm*38 >6߆l*ʯ3npge-`w7_G|c_ hUW?d5+^q/xŽC  |c/BW{չB ? ?˽6X5e\23|YYC UW@_}Zz^zIȏHȏ>gRˇd'#= ߯n6^lc6n=ڿ=`Ao W?/m> Igk"D#=H .4/U" /ԏʈŌɈ?r?iz}O(O_r}RnA_Xū O} zKOo_XO+ O{Z\[n_X[X[X\Xo_?/-+Ov]?X_Xūx*~ȹa"|Csk%J5+WsV\}WC!KG!_/u?^x zr+?Y>+g~ߏ8pD| ~Ʌ6ڰ/<`}TsC㕑;W-P￝ /~- fm?;\+\=7\e3{=H~oϕ_ݗQp?דg/w03~7mg/7{_WwpQ^<?~"ܿ?#|G;7|oC6ğܧ 4G_Z^5 Z>5ro :I!hWT3 Gh|9+O'r%A k}.ς,8 O"Ϩ,G~_q3#rvnWB_}i}Kȟ7~%ߨɜ5?#!?SBLhqe =HOKq?EY:ew!o,)o?s=,HoFzKOIY\s~3>4sr. 5 }:S /~WF|e|OFߗC.Oc~0͛Q^Q < >{*y{ F~w5o"D og#[ҿq?w }38F|imq?qnokA=q `;܇^Sy =HBzۈOsW=\+u7o@߄} vKԟSPb\ /WTn yC> CYޟ\ޣeO_nଡ଼!Oqϊg =陈o!= -ķצ=?$gG/}*Ӝ};߷@HD /-x归ǟ<|}+_~A\IYks/W~=@^.Z?>s*O7~"@;ӑ~m_o}߁u=`'FX^^! |@G .u|G:앆j~?d7]}:5kЧ ޣ*q_eğ0~n1ۉ=!|Ex+id o֔' {n>|nVoA2җ>'l/haf|;{oC?9l6_p> )xXkܡOG{tqe'2Y/}ϼd힊;w.#|~/"//̟= ';;^T$+Ϝ=\媬7ؗ~L0{j^ 'aG+aO==7į֡/eߑގ=5Op7O03@|{EO} Fz'~?#t}r`}xωщӉՉ׉#>﯂!w'ҷ~}q!b^n\.Nۇʶ~ 1;Ys\=?rF '!x-0;wަe_pQ_@FI^gkD]Ag_͎\KW I夼yBNsW._" FO_^{_?$w:/֔{OQ[ٿy%PHߖV2^\Yp`Ƚ>Oy|@> }y*/;C/wVίp毽!;y鯐IY_?Yg6o{yM0~{( F; Fzk{)8+ `/_!n ù?o'ߎ:Xq/γ<끾5_q7p?(Zޗ_F|oϾ='x+W}i{<},x+`{/?NCY?o3:?3ƃ%]~. x)7Ƚ|}}3;x _o}G.C ܑ ?&S=3x* } u7oB߄UKyCES`  yA.7er_1 ^/ʷC c/Oe?۰6 rKFz;ӑ g"LķB|߷oK~ϡOeOHW@1?2o_Ǜ'^4'^ʺ~ \H׿dxg>/ߗ~K3WII/Erg \^IKr'e)O|-vge;([Mo3}rGxki-|npge .7ɟ6\/wpVm]{e+C I`.WlkUG`)/gekUF"K 7KrRO=rC 7K-,ː  ypX-;Wl<7k++З/C_}-fJksonޤ\!qŽ 7\~{&sq}Ğ7\~ɜ޾7dϸk?ߛ`of.o1k#n`flyZl{~Z}_CGN`OoY貭-ͯ˶leky_`7W%e=wm^.[xOtch]?]z$XooԼ?_gԵ n۟~o}op /2x*~8C"m< ﯾ~eqկ`OO* {>W}_[S=[yǰ 6{0KǹCX} 6{R{:RkVn ;<ߪ{b3x)l[ ^G#}[~K^`1_oe? оŸ;3x*lcC7x)xܥ M?VB^r.Cs;\!u!xz!x|);XN ltξ/Yzye[/e_<*x(G7 `/^pލ ~ˏ=o|(Ęrlc)WA<_@;bIJA&EfNͶ[>{#E Sgٲ^6ϒ̓畍{ |w`jvޤ;mx 0wYlFp?R;mlfl >ܜ ?x,ݿiu۬sᓞ#/?7{v~l7{z[-~'OOӛu8ϡ,K 6fpw :[{k~?X]ާi\Tϧ<~E{[{ ix}Vgk_^d\=;_^"ᥱ%8ǂOxI}j] :<wxx,OB*u2j/cmwScI>ZK^cM|oKzz&OmZtzS?yvۻaOszO\o9O]{?x/|X {3m?Gɿf^a[ؓfsy</#^䯙g}o[ƶ}[_C_rG9E~!##?e}zy6ߛOzPj'y<<|LfX~dLŰ>L֟YyLJm=[}pԟoGߙ^O}[g]ߧ>K'| ;O|_bg?8o})>ޟpO__=Y~>,>~?x0gǃu 7=?}7/O?|XN W6}{o}ncevKxaO}GQ9;zy{7};> +cO=?񯣯އݞLG_w{2nrwZk;س?ػ,WK|Y;>=^.|3y[^My?VпկMߙO3x۽|ky{>߳lgo-3_泳zq滷 IۙOx۳??V[~1|g]8_a ^Wz_OWx+k?ƃ㏙g9G_ozQ^։/Yܟ9}߳b?0g/gyo}(;;o8/;{~i;ǑOc}-tO,^w~r'ϖ6$|/}o{hr걯Ϟ'͞ ٓo' ~wto7>'Cngߞ|wG747S_w;W}cˮY]wr;>|xkϷ?>?Xm~6ߨlgM6Ҷ[}fY&Iosi6|~Iowa<[M.c}`EV_sz{m*z~4yR}>izK1_?w)7q}?%?LV_~>72˞Oc<(1?w)n_,_0_9_q_&ûÛnjw|ϧ=fwsw7c 5O'|uٷ%wNzY~<| U>X2{1֏?y{W:?K߼\_:f/}3֟}ű~?9wno\'u\'w}%'=e#\SwuNWXZg}dvp~gk\ɯ'?c{컞I{+oir}ǬuC>ѾӳfG;Ѿ~o=_<5_GmY'=%ַmpl3{x_iv[_Ob=ƛGc|Wcgw[m1><dzb|=fG>}|a3gnb|?y}`w=ns?۹}'/[ʶ~_6lau'vScʉ~_|ko~8~c~O>/-m޼>g l|=֔ml/~SyB>!_[ x{;>w|=ևo g35{oA'}-f~o ?x=m?m[OT켁$OOg9r&Cx<>WpV7QWpR7sgef9wpQ7Psge#<8+˛!-qߘ `׌}upQ7p-}Xp'eyYY\65de 䜔却3yzxW#N>hI`˿E_=˸wUNV}wpUvYɻ'8q(ug߳\;[{>>7u#>I{􃓲3 N;{ye돂}~pV>I8sl<}A_Ez g/!$鍛Zw=qlWd\rA|^>8I}~rR<opʥ+Nv&yMxϰ9rR2XX7e_.^>ar~ϼ㯳I9̅OlY`Yqo":צ\6{%rϏ,}u8Wec27Wk7/7fkO)뇓r}g悋9 7NV~@)?\f{[{3UWlٿSr+?{~o:qiem[=f``^D<& oyY` op3bV_5gߛ9nxrlj,/#n7M'[Nj`7Qx1uwLJv`9ɹ Tt<;ȵe୼{G+SR^a_eVau{+?^{2X^hp--r~yl{gǍ^ sʵ)71߀ } ]Hߖ|Rq._"|(o<o3w>΄;<[U/7k^<~I-4ye౴qn}&_ ?nज^^c'Ɨn`21 N^~EA;M~bpQiw&KJ7Mܤ8FG|9)W+rﯷsRΐgIx 2 |B> YaG0i̿㎧YYE{wRqs8)7Wrଜ_F|>+g( | S]) oIvk_7~ y\돰$n\տU*Q?2Ey,\/{ n`YYsrޔ\{\ov<=p3=fo^`דf?g_r{l~鿖O_q9/_sz<2of0 |-~c@tm/Gpyƛ^Sf; IOCpX;&f_1d0YvG¿?{ks5?7vXBV]~g?glݝX~wX r[ƾ/x+XNl7_we>q;+X/.}4 Oo5vk'(n>[ urN1Fi6slgN ;ㅋ`IyB>i0mr}9#7 y̹,pQSK|`X3v .}pV.vWȫ-fkg3.g3i\c\W5A [rV,uƼ\MY}Ru[JsgzwU֟᝻zƻ^vl6 lٹ;_w\~9sׯҳܒ~Wn~_`=,lO^r~wr^~Wo{}u_<˻WNw_/eߝNqpw/weMn -|ːw< 0w{^'.eO}w/x)Sn/Oe?]+97^{3TV-зE_9r`x(w;|Bݐo|2[ː 䵂rI< (3J`ʷ,7r[poß~O\SwP1u=re;x+L/+x*gio .} 71?~{]7`_9p?w[xuݽ|dz`߽燯~g1^ӕbg{j=췟:=`~{fdV]ocS6{2zKe߆qB|m/`=vP_5#ܮ;qo]ﹷ~ ^ʥ+mw>܆rGCOw|9xKo_ _ !o0iKowH|\^KK[I?5CyT6X|e3rz/C^}Z;^~Ow\-rs[RkO~믾W,ïςi__.]׿ w=TXߏwLqŞ~ʩi䯾ߜF_g.#s\3e[\n7τf̖ߜ)ȏ<;iٸ\<ߔy)f=7#,W MGlyz܌)6kh+N"Z^O<>oy`x_>j9/_|-+y[{L|ޚ[j Y/¸i}l;/)k7$8m%;ybw opu>a{8yb/M]>5ɹ~ >\'2|l/w]sU矽Tu{r.[xck-|v.2e\e8)[\/te7M^`K_69E^l5kYl/]ʞŹ)[l\L}O2.We`x2rO~?^^/C> 'e2yB^!/\^\Nʚ3^J }o>.^߂7qyRG2\:+?;^=n~`9sV/ke߿_" >ӿ哾kɯ/CY~|ﵗo-= gs?ٻ=`|xi~uN;ky\>嵋ZޗOz՗giY}llgW$o{d|H~g/^Ir{p}/,|_C9[xrdKgRޟ߿lo[eeay~lwxr l/݈b<ƔG~>޿lrwJW lro,?/e{ekY[sWc^V/[|^z<[/e{^~y(K̗ }[|奜rI\!7| ֟O' V~_.L yRR?wԷ ϻ_o1ãOWD{6Cg/+ड़ŸpI~=\+x5Q/w< i//?{y+[yd_Yy\~ƿ'<^>OVq;ݿkuy+[|'7$/^/6{~oO7cO|ٹdi noT/5V~r}˯}h]}|SQ잁%ao?Ͼ\}npr~ӟ~>񗫲gV^}g|rRN&/~۫oms߱f?ﯱT-/kfTof[~g/ww ˟ZlLʖ'/ge뿚V.e_[\cbe[oq {irA9+[dia&e_|_._|rV= }%3O=x 9bܳrC|Un~`7.GG'SK}n__}Q-8ϗ?)8믨fT7η?W}O ۟~C_۟?`_5_o{|ǧ7>̗tgpU\aWSc~}l6kil*_53?y?7${zM^%O5{ٟ~&Ooz/=uﹱ0k[k[|=_\|}ln$[پluf3gig5gg {l}g p7pp'MDzSw͏5&sVYzx|<)yUOU}'5O-|& g[Uް5c*nOz [O [O|/nO`ۏPbIzeKs=)ze{l7ClCOOC*[{=ζl~[~{;[W|`O%sޥΜׯ8C{b~Жf XV  soZZ:$K0 Va-GeV-1~#|y)%l [9OG,^2Zr{3/OW~^P=aط0aϊ y V79h߂_K{4k)G}F|ga?t7 Ώ? /?{WNأ yi}F5GoG~hp-9}8}Gzސ/ 9{_M^!:a߇9>a߇;'G~ק~9`ϯXTwW=1>N<=@LRK,qƍl8O.ʨ?rVƩtpd/Y~I䤬[>֝/ge70N2ꃜ+Xϖ k[i67KYjM4LşU}-֕2ʗ|9()K{&G8)7˯beO+IYc>S_f7KZZ[6x XITܕ>7uIyV1-~oZy;&ޒO8)|#*i\0E?I|rQnӸ*?qR._[b܌r'_V/wbX-SqVC7-=B<4og<2ʨi5>X^sY{-e-Kj^܌-~gWg2n#7㥌WS[~+od +Y%oƓ2n#)ɸ&yYߒ}%Y+-aMoY~[ rNSYKu^ʿ|ʷ婜-{Kس^%׮܊X_Y[py)gߛ{i xr[yXoC^My'W^{婜V.]fc˯Y~__‡g6疼w·o :^{$9[x^ʥOZr_{ɢ\{<-9W2[-_{WaE̦O>\X dWmfl~_~_,b/V~)~X^~|ø*/,şZqVy+&9)7˿Y^W,l驼4E^UYs2}oYyX~ӗYyYyj7b-Vlʛ{~?4k[ic7n›7 ^=<)nl³y0Nް-fUKZz+^)ׇ8)k}LI}-^0T+O ʛ,<,|YIYaվ5t>y!d+OW,l}opo${ye_Js7<7Յ=mf\r,f5+_Ɩ~xIngk.o?l\p3Ʋs۳[{ŸcKluK[zV>f㑼1x*C^-eAu3K0)͐䥬G_Tzl O|xʃ0_m_v-<[8Ow䩌N^ʻ<ʳ<[xy)kP<şfuK[z޴,mĶr~]Xxj[Yxn‡ cYmҿzg ǟlRYտVa3ʻ<ʳ<ʣ~i!KKXz2\{TKYk#wK[z?:4yiO_kOlWlw_^r7^^?璫0^_߿llJ.Ϡ3=o|%~ϝ{>_6_U.h ej<2ݷ.oI9nj S/o]{77e&^vBkn(upWzzvmv/m)+q*t40xG~8_/ۀ=64 (-.Jˀ&24 (J.*4 (-JӸ6*4 (nJ󸛀>&lwp 8mgqV}~א1re)^e-2l0 6c]6p6-q ߃ =qr0-2{rU^&vM[8fXF}WOxl³' B.xk7,n ^N<=2^<'\*~N@^ojg?'gA'wX<{p![右僼C⮄E|4eĻ&M{#akh|kX0$Ě,.-q!ύ-Zֲ4ﰶGƭ{Zw+yWZֵ]W>]{@;dX?.n 3Bsw{fZ[ye]Hw!"=U8ĸ>ِrDzk.@ٽX7wuwvgko#=⮯Ak)ϐ݊H>ո/啌p3ƖNZ]{R9\n8Qnؾ㡝8I_wIO~IaqÍrc</!o7K,W9s')W_8_E|N8_S G{r'?WnjF8S8_ś`kG8RCI. }bzx=Li~gf݋0>a/̈́}LG{yEyPAyw6>e=7 }rA8k)dQrGȳ]Xb=rOԮ'p 1 w=!%aOy90y{ 9gk˯=m_{]?{u_`ۏn=}x7 ׭̇7kgr_~_;7q5^Tn nG=G= `~{;wC߂=;/XwqZ N3X0wƈ ]C}>گi g'+m[+O%I gB_N8 W9ҋ4G֡鑙 _2&0?UGyɿ<_txOw\>-gz;"{Zs_2#>mD|g,}&|^>;O G{OHiڗWħwKR:Q3.֎?Oد [! 3?}WY/w`z<̧#c'3=8EL=d^o$C)> [Cr[ ag?cRߜFܮ0]}Rn}Qޔ}оYaI}6'+n ZoWpc:sۚ+n󡽙gە}-ڛPoWbPxdmF (_q7.湍7wJuo'xw~V\nx=_ķcZ}ۓOoIW/*o:UoJ|{N߶ay| '񲮼+8bSnW&rlo;\rǯ|[ʧߡ|z V?C}G oBzwt]ѐY:+%'7/1_8??~Ώ[]wWyK+MWggD_9H?ަ~4^ ߅q8{^}近)G³r䇹q<1ܟ2.Gз}C中bi rxn;m|y)w:9n? srx3oc,9\ߥxy}oWڴO%M6 Ϸiq =>^o| "3žǰGp^Dog=!%ןަyӾy}_~ߑxKПx?+kϰ7k J{|=[g~J}G>a_|h?|#3bhOZ}}OI̷:][]aҷh^̷h =!߉b~^H}+yJsߴ?W|^3ap4޾hׇ>))Пr.w3^|ߒDyŸџo]ܿЩwsƽI9{OK؉:(I op;|jgoa8J-"W8>\r8)0y?Xn0l[Ju,ܕ{ŮBEz-rK])Ր\X|8+rUƭ< <2ڛ܌r,d%I/YcɭzAnIYEYyZyH=ʛʋS QO%"]iruI-|Z-\<ֲ\r_~ߓ2nma\24 p3.I9en܌q1ο ?j^oXw{.?b|3 x/`w=G‡ >*-|宗/[xܕK2n[Zx]ʭOe^AVʇk܌ȷk!G{fÞty(KXzOf00ʭO垍?,э/wc,o-~ko=^9WnW^ڣ//嚍~_aO\?W.W㬜>I}vk2ve3'i}EY溜# G۸'2EE9-cU7%kyZa£~/W嘿ϾX]Q20r78+_sް,=GrREs9+COqVşX|ʡů$8[l-r#r2?(ܖqVXb}OI7lʣ+,w;-b媜$}qRYyTޔ_}׻䒕sUNoϼ Kʳ*K/ȏ<)?+il$W>gުM8)}}(m,AHNʲ̃򑜕y妼qQy7qy~r1nQ~oc?ែrs<]KGvJy*'v{+DWޑ Wvsq2yL' mEox*ȝ. C/6ajy[2nsKyy+O2N}2LM&gd2꛾}y+[_Y>Y^Q2Y]TWhzR]Y|#bPW{z{K]o^%_-~+w-O,[Ӟp۵7\ʥ*dۖ>9za\6D\w7ۍiӰ{r71:/Gm}'rHsJ'rHeJM큞ҕ<-|Za_nف,2ꏜckl7tI̮r乍-Nv@Fvq(vr9)vCΖ;o XWY1v:[nůZb?[|޻#I1<2C.؍ r//5=1vٍi<}(=1d˯X~*'n'en r_-bgK?ٍw_yVѕ!_IYǵ+u^w7jzDUeG~&C>{\2#9+{ֹMy-㢌nc[xpOuiݘM9oW߻]2r35/g׺}(|}ױr1Nam7nH] ؽ<//wx<_x;c^Q~ȯrȓQ>ȫGr*e !P`/y2vc.N?|GF}G%O嘏' ]^/s'>@}a>1Mߘ!rKr95rshK9/9I,eoI}:9yX~!o~wsʹ)K,ڕo[Qʫ*o-iůZ֕Xi_[-}/ Rk2"?ܻy{HՕE^^{фwq[97k"G_Qr>§/ _.Gc.[x.S1ߒVk{'^|y)|僽vl菗-~#~8/0Џ2㥌Aof\-~]øg"q'gl~M}t-r3~{r7.?(vWQO?,eSl*ҽ}qSN.q*e{;e ۸)w [7to\>6~6;E.}n>po/EY{mREynalدY/nlb7q5!?:g܍q1NE08v[Gy{ŸG}WkjU=Ov-r3x+Gvz0^=dw<^^#B~Ѯ<<-!gW^~Ѯ<܌R7ܮWN۟|C0܌aG /ej]}ᲅg ,vW!xb*b@ʳ+/<}a7ɡ^%OZr7~TF}2޲o?gg /^,Zxfog&Owx§ϩ,&w=Kr˗-<[x%7\-.Vk ̵wg2nKyU㩼--s/e_~Tq3^ʘOȖ^ʭOe.:\{^ۢ.w<-/,O/N{j~Fx*d,_^ʐd}*w_K%b.ߓ ;!/w<~e/$צP_٣P|_~:% X/KCoO?uwP~˿6KNv?z? OܦŶ6с>}z0^މ >aea~t> "|_<}R7yOy>3_t ΅zp.1=L9eG~?d% !p_aϜ[OM} Yr9&/jZMC;XTL>bYM?RoSy07܏ܶա/AQ?ǂM졫' |3=l"Ә4WIpf|oz9y|~Es<7l_|Ķ}?~Gk秵v}8|dx u-ngaw>2{>ZN~|8:D£ǽ?#Ŀƞ<#8Trt5< Gh_'>3~׀3?i {|dӿW5<^1=GQ|5 {W_>oOx&я^'Џ!??|Ho"q)Fz~#:/>ji|93\we=kz}*Gayή߳~O}kt'ϑ>\|w7O5E6GF#ND'_N my3>x\35sx'~3?̰3 |k'W>|ȁ1z, Qg>X3~=w>ؙG~Ǒ*8~T?%XFBER'ЏPQ:OzZШX}38<ńcIұ%{k!OC^?8Wp5Y~b }v}k]%,Y#NeXfV/qk!mGV߇ﬗ^.]Q~s[pno{χߤe]~8GXFTD9Xk]X,XBBxې17c  a>M]{ʨGe33*_ s `0~N ثb?~+QW} XoF0 yJ }lqp>0Wa?į{ RΈ7F̗G~Sב |읣ĦfCG9Q=kopcGR=8BH/{gؓ`_O'{v:k0c>{a?}~{ȯJ!{#oЏB?fЏid~w<?|#iow>x;D]'gF xQ_ȯH}Ӿ|w݈HpWb{kHjoHǽ}{k'?DZ>'߷^[~s%RBnʟOFxGSi/櫕x71ȇ˕, y3^=5io/W|ϐGH/O~G i|>]~H %1?VDVtï}k? ~p.wgb}'?ӞCO⏣lڏi_:L;ւ}{&[M~4` h ?~Gz` k=oU 0 }p}0y؏< E}'jBz7?}}G{:DŽXs?IدY#?Q~rG~m?\-jӞߓ{s=7+ T>.=XYiϾuڻooBc?i^|[V?!SHo;^5ڛ\ U1_3(ރq ~?Oy2~푑eQ7> {|^y+>p=#Ч>[}?} E{zB_>^?[/ÿ`q? Ȃ>fՇ_w}Oo B9!Ÿ_x2Tn-巬TQߴD}o+0?8࿴a {EȧDHzÂKB~s%uK&>5þ5snß9c?|=+ YO\?E'žeػc~M_{g_w&O||ןc? spwsþ$^מw|{r;eZDʎnj } {>?Ѿ~+h/?Z9Ig_x8EgeUdǓu-<[xdIl^kg=#$9GU]M,.lϙwOC^O?/n8)׮\qSr2EEƑ^ >JE'øG~-'Ӹ7b?'>2N2gNi5>^sY{2 /eGr֟/䮌Fnq!e y@yqy(G{MGaTg8 o+o9Gysr{2l{|8[9xX]0C2N:KQr_'oʇӨoC!j܌0U+9r1}wcgpyx`d/c1hO08`\KUMYowa߲xy|[Br=Oe|/x&cKSyW2rl‹W tї2 y*bC~<|.}ynєW $?CIY?eQf{GjVZ{TkjY0 y*@Ns5^t,~:c߱U?`π5U2+Oqc܇W|7Mp#|H<#=c`/G{C!0rG~HWF~h蟇W o>,|ZQ%ܲ2oJ0ԧ0O?`*[z rnͬ,-e^#+Ϫz\r^%kzW>KSCY^]yKyh/ \rk}({22]{$Y=3Nr[Y^k//ѕ~1^o=~c7n߻w헷c' @^x)b, ~G~~N.'z8㰗ӟ~L9 \L8˝w8wo~_  'X+nBĉQ[Pb /V@~Q' "D+N +k؀~'8.Vܠq'8]\q6Nq\E'x Ɗ WNh\ZqV\Ë{/M Mq~*^܍zqr;NQE 8y';8Qy/b`^8y/j`|'$eލ¾{z8as@})FsyNRoy8n4}iDx!zў!WC}N/.Ƈ,9^`G .M9'xD>Κ_qb'=k0Oc|O',99;eJVH'Yҏu! s=+6 &'Ѵ}"u `<]xb)Nn􏸱q#r_Pڼ1Pa>ݍ/2-w9?'i_xZ?a>]-|1jRHqG09yNj] N|o}xv}8֡Wc~\o/rT8 q䔧!}"p #?}𿼌9-.͏8Q'Zﵞ}YkٴgSk.mϕ F_n4B~[n$`ݲ 7Gec|x1޶Ǎ d7x狄8& Wlȣ7ц< yBDgCܰ DhƄㆮ"c (_bO6U7|!rCEygkEs;Wy/nS1Sފ6nDO!6ps'~AS})^$69GK#?GWk5m-ů&&9ч#>/Fsc er rrLDm'ڶOmh۾/[z3+/K?m'ڶOmh>/g.MJMr`HJֳ[H&`<Q ŰCȇ& Hd @p}5Gw=婰W`K~8**gس+U!o/oq_`{1C>'|{"C1_ʇ2(/12!2qe} {r b>{. {=ؓ'$'~{5'سqTNw|`To؏7>k(_ {Fb?`|_QЏ7}"wbɹwAr{KrHF{xma2Xl&犠I.R_:6nog=I+ ycerțsk$gǢƹ38>p!{r_g|8p|87p{'8w0I9懌1GoɡysC>a^sD4Sqcl-k}8c(9399=I|rz뙿pnO.gQ{Und /r2nܻrjG}嗤SM_Nrp/;p/{K0_;ҕ?`ƽ*mOCYq9ѝ|">C_~NQ7O}*cE~^K7#x({.s~8{h]C {{ho^Пy){|! }[?=90]}Zvպ\~e'G?c<[y{Uzl[-m6l]ۻ}(_Ej(ߔ%؟Vab 1hO?H{tj;EQx0Lڷc yV?='X_ӌ!~(惨LT2|UG˘2دb__6a?ñߔp.5n&R9(|,qE0o-rWN0nQb:+#6)Ob/l o{Uޯه'X=,Q^?S~?-eYoWzXsܫrÿVƋ(#xX>]d738^HR'y/{b}"5fѕKl_4џ+NjEIA/W>r~$Nj? -=W>o/h? }d>L30a_[ܰ/b>}1Y/g>/3?|wSN{k=9책gB{^yڃ Џ̞|9y(]hWuTo/? C-/kg{/Ͽߛd1?oA N0}E[~-AIMΖv6??־|Lr??gpLXn_>ORrKoIUo-iߜg"_,_!!$r7~mWc_qQ8 [˖^ʗ|_ ?*Ť)ܔO >,[xfWqQ.8+G]NI3Q_IyZzY9z2Yc~_,~GI9I]DA.1Xボ$$}_>#&lfj/lO$oՔTjnoCl{-'IZw^ڳZ{-=0~Hџɖ_Kx$/egT<  HzC[ik}lz& ?}5 rQ}9.zXK>U_p2[i~?0(Ol~QMyd~OV+[}fl푭g&~/f,k?gZJ;/Oi_Nߝt-_yJx+?ĕd3l,w>"7nϞ:_cm8|m>6g lF6}$MɦdӇKՔ>>F.EY󧾗?F~|&9Qrw?,[S&\rվ3xTn>/[97ҕPz<[*9\r3MyϮ+OzT͸iu<^BBƭ+wcwD^[ Md?&=V^OJ{孬׿Gk/$,ݵG^wO.eߖߖ}s//Ҕſړɢo]{4򝼕7-i_<}./E_}[Xz>'󷬧0}y7=s#]Q;)i+ZlM9Z{Di;zOU9z6j;t&=Ijҧt&W$ZxNe0ƯYɭ(צ\^Z'Y/Y7Y?Շv~x!./e|Ɛ}OI599=y sC}y祐 >)ȟMrr20MrbXeħM1l71Ɛ1~1u*7Kvc++o)cܔ?{6Xʱ$oi/WX'fܛ0]yo^ٸ=܌0X3%d-dg n] 2ޯ&2Oo岔Pn] }_\2K VSy=מJX^͞۱{9&܊q7C_ʣ)C%GG0Wo݌|4r8!2Nt;r'f,~}{\q3Nғ.ק=.yO7O >,\=Enުr]EL㬌#^ Ey <-aa=]aEP.->$>oEyva<7/'e+26IIye;anojbdOWS=|9+w}عy9+,$7YjSu=~OE_/'咕q.V<}OMytn܆@IʟKb</޾@E8[x;6ʫ*O1^>ogvZYyZ^I.'֔2ʘɯLI[.K8o,Os*e܌2~C>c\xA!'e?(2-r79o?2u23^?cb^Ÿwh{5/w(?KKxoϗ#?p㡌*I-e엑.ƲGyh³=SAKSrOCGv烆t;\~0/X|HݾH{w|]m>6W.INIEv%/av&Y>Vy7oeQ6W(a䜕qM[<_oqͥ*lߛߏYSYIrW}w/o=d_d`wroʣoeߴ\[-䜌-~e+]ʽ+l!+[ߒm rSܪVVηמy§O _,<챗_kϽoe(#˿8SQ )Y_y ɻsi]c'WA6>[<nk·?!pځ7mx~gp_}Tˈƺ<~0;ڍ_}T{_{ q^[ep(DghpvՇg/az3pQN(pQNƧneKxr fzާ< ֞[X;{`w}hS XB-?w~'cLF: dۏgcDbC4!M36 OkǞERٳx n{`lwycO cc~6f* 3aO1 L N P R T V rfLA_}McgCq;Շذnʵ_^y_xyo~'g7ÿ.#z LU}ßt⹻ߗg-p28<ɳ^#|n]꡿Пzo=f,{'|Oy깬s獋5LcΞ5\_%\)\\}WEr|8{v9f> <⹅j(J(/iv95ůY{~U`1V>gU=qY=p_w9{8rMAH}}xs/[Z=yN/ۏ^]zn{ng79>bR]/z9yv9~{@N^a6vg}?'eZ( 8_g7i1pw~ ( ''qyfN[\w/vß(GӫO}W;pݟ0R { grOT0Ξ{ޝX vwgW/^[v{' s{5 }Rx#J=s^ޞ9!`yv!/Kxy&#M'2OzUa< w<_/<kL?p ܊xd3y^8x0vkܪyW3%֓-֫ƣ{_ʿsKǗx{#grPv噽p} cxzͳמeK`Wˌs wyyFoϭ{)p(oηמi{77{ew#Ļ!g髗g/έX'p}X a]žաG_Nim]mCmخ}[]}]%t,jOe3 8)/<v͗8{&Wøz#75Ξ9; &Fƒ[=\On&n3{qgb1~.˽ې9n\tx&wN{L3ΞK?ɽaOvg~r=Zp]p? &a6& n/_j2{V nu\֚z=7X5mxU>9.7 n>-Է÷k*oih?}dB|o1՟/<Ʒƃe=f+wcɃ0<[sXaeIc,}\=0Gdտg<\<=+.oϾhjs}z幍?kH=x{n0xzG~`Oycكe/7{ƞYW_{qˁgc6/Osy3]{YΙqc=*{q ^8.{>ڦx--z\ػ/gI{/wx'oay޶[mg]~V{^.OLJg=w_v>\=;\iom^n|n-h|o;_}kY?6_ymk\Y~>2ɻXX NzKs{^5{t{9OtìO/wf <6asyg?Gfh3cg_V_xiy"uӇ\_}h>ٻ_0&>ek3qD-~iy>.qO8Qg-粮}~M,/;uÞyٿr ,:#H ˿s(/{Yc7֞9ޗU>VSC_gw'y?6WxWu|rg)]yҐOVG>qVLW ?&~yE| Ix vuՐ8yN{4#v;ó3|0ym alۀ0y`>컇3f13y̿{F߃f_2>XAD}}rg<-owSza=\Ͼ?b߭gfpMcy^v|^e~} lvXŊeX>UخVW2|ʟ],,_1*vcpb;˶:_{b{:=*-eO˨M,t>S*K,[[9e.[&/fw=b s~݇y___c<;E,ɱÒoU Ug|n6_YؕX*tzB7Ot>(OVivXc[g45?kYl~[lzo{\ys|ۺ:7zwakEҷNNLh'gֹ֛ N}4}⇏VƇxW>yx^/oOSSп1ѧyGS?~?eFA<?S磏~x|賖yEk>?p/G_ǩ旣zza|ˣxxCu5zWϣgz`= w=ebow=]Ov?YYӿYY3>0~zko`of={'Ϗ_UW732̼>g[^Oُu?/zgro6O4_ab|F#&ˤƷ}ɑa+?l=l~s͞avkzMM_Yl=D}%&QHMw{wf>#3bOBsg_v˱|XlZo &~=K_wdW?k=H?<{pWW/gZk=p[79yNO}3ٳ;Z/}OeSZk}Y姿}szOX^`^w||ד原֟t];?ʇ7_];C濐s0cH>]]?_W~9_y,y +u/K;{٫:w=C|m ٷ̾!?<7+c?^f='g=ۄҗKÔ GNy[KV7}cg=̿'u_zz_ߪ=̾K3 ީm_{??ʅ?}j)?l\?\?eԷʿM7;rZK?߻IC*7˾iޮai+ y[אį!?39m"x^?_y~x"P^Z?m{=m׿=2C{o?쥝??CTKbO0(^mP:?tv?x_g5./aoQ#fwco/|K/+WqMg^)ecއOgY/Y㷳~5Oc=,r]~/fexxyf<ߡg{{ `Mz}C7_{Kci RA?Dq?EfoR<ٛ4 =ko.i/[my=2i+I%,TQ_f|f};̇ow#g2Mŋgē?{)KS^B<~o]?}W ,ycoًoհ'^I?u΅R:g/ɗSi>cX>3&;c4w&ϗ_.V)Y~*&_0Q >G1g?͗;!>~NʳÊ/gR)oaOM17 X*zsn7{~ds4(q|*C~M~ ??~,~{˳Ü9=eKɶt/ sNt{ZaT.S,V9gDY9K<sG&y7΁9W>ky۹f0DœVŜ WɱC^\k{N98i/~q,yڹ{.5^Μ-b%%ߌ%όăe,<=p}mK(?͗;{Lk0-\/gō鿇﹎01 n?6;W~pr KhT0e9q9.&%b$#cg1=7cd=#G^yk8۹G^L{y3͍|3{|M$g'3?ect毜g~˶̇9!|3fg$~ϋ{ʇdp[>?g>~%$f?stPo)9(_S{ǗDS|8:}FZ.;Oc9_+@U1APIyZs.IyW8 Eyg@yړ'eG!l#3{m{@l=mOsyg{,n=fcK},czc]X.lFyc&]O}OúS(O6bG[Zc,)cqZ~MRv{z6x)Ge|k[>j&|&)_6F(c|lN^bƈV>ƎVN^csv~@^Fs66 ll'ؘo1aSc¦f8|M%65Sm|l\l\slnܲ[m{ . }CX{,̖?3<9} ]=je=G=Of5OYi }X6cٔN~ӧMxK~Ѹ$z_c?=KkxOɸdƭz螱kzޮ~1[>\;0͇Z>?o|Olp5^_'d755p{mx?տ-1+ǑWg{&&t&+<.Xޅ|t4 m'Viac*&2aOd>,&M|J7d8{&1·bϭ7ǫ`E_^>Ql{+؋R<=[۰goaϖ|oΞM[ǰ˹Ҝ}a-I_OS~oR?J?G@.v~컖?dc/+|?_8g]U6wl+6W{f| n}Z:e[}2yѰ?wpy-i,p3{yǾ.}r}sn' 3_r#wi.c򝟇gߗ#< c}A5b=7y/D}eh_.%}Q=%lϴ+gbpO'ɩxmyny~ɋ=89Շ`/3wcw k4~5~cҰW7nɅm}dgS~A3=_ߜb%}P_gP̿S_rR_rxQ?~c@O$3##e+9{&b|'$S{1{)?C9_΁ӯ-î`}Ghr2^Sp=ɘ-Ŀ&'#7KGOWSgr.^x!'"a̞,ٛdhenkV<ٻMk/<ÿ#^ y?yy0 _#_f/e<7__eLiއ|ӼX6_fc 4?Z<1n~l Ǚx6g7˿g_oe;ǘCzX9}aɟ=Iޟo%0Kg)SL|;_yG%0 /0K#<G '8۳k%Oϣ{ >v=/ϥ{9Uz)|Xyl~_<x^+6g=3}<{,'E1~7؛h>1 X|t_ˉ=\e{/ "W>;=g%fY:oymӟ_՝qk\~˿6~b͓Oۿ?_#RO/spJ>(ZX@O Vs;Jn8y?8%$SCߑߵnHv=$9L%'ԬJfU]O N\zbVzP3. zW;5;)WU1*/im]{x>=#{Gw>I.MO6E "th. 6p{ :~ t]~G7_\"3p{Yeqہ~=~|~?c׉p\_>:_'v<x89׉]yYc\gYqsv9Gɳ=c.%G ϥ{3(*{sNyWG9瑳8y3?By7,x=O>W,c,ycܗ'5{.>9'/_9=\%V7g 2Y:1OKL4.sm ,(џ`eKYr|Wc~*;p7B_8ͯgbxy=o[o$.s-?_ymWSWcoc>\5\|w_G <̿;_w [>[;k-ybk2Vcocyq\}m>1;kf}p9n__Wf+py{:\wy/?vbUȧ'ϵxyNȗ7olw>\?Ľ{ns|ɫ'Ǚ7^?{`w20|d4M`7y޲gS}|xnSo4^=G,e1.z͟ͳbqx ϒjcb>SG`kwwfo5_ߎcX6ϴO]O֯Gqzar,yss{ػO䧸~8-vUe?^p,%w;{{7{`\Cy9'&>k5|{]vkoG.;}z> c]V?K7^~xxgb<=q!``Ư?y0ʛxʳ߶W>o3zW%`O|`>:a3̟4^4ok1&Bl0ߪ?!?oi 0x0}C<°,a{V_45#7?}8}awr8}ٸYy%}xru!5~kӯyy49O1;sQUG~sĊ ;8.>.#;Eg],.M먅|:c&}1H\G_5y΅^6q*ȋMDP2D&F>˗ӗk V6h7w%>kŷ^o{Ԟ+wa<{3W9}Ϣ\|R('Q*"`WQ-ԟ lP40^ qJ519*qng\_rȃV/G^XɓVrV:/ c9͡Uy*vIb<]͑_GF?[F̩x;IkȟEowS>m~'͏ߜiΏo[C^)'U7&:MrʛUoq;_\?S~O{~Qʦ%}5/G9:룣o}~GK'JF_<׺їغ?,IwG?ZN jC2g>ܺO[O.$.>gJo]OClx\)Z/\g}?_VNAYO\~!ok9yY/\}z~WzU嫿og=ݺ۷.CϬտ2Ek{A^Q^Q;u[֯BOf֙,8cZ EԔ#W8{Zu {X>揁)+_G!Wƙ:#q&f6k+ﱗ1`O0o1@''X~y_ w1KgΗ#OWYao|߄5?7V9S[ SgUaMǾ/V95a?W(}y?)I=U얽U_ xSNj|ca|5cK?((wyLُ&e&q]6ϗf1~އfV{0~~EI}en~弬az%_f^:zv=Ny5>*tD9E?K_[}g=Tgn{]{˧>}ޯ6{ƞ)/m#?7 {櫄=~>"3_'~旄~)L?zy磯~w棌~w`gO2謞GWq5Wo8yΪy;_Y+5p} ϓa'W۬}a #y3㟠=XE}Yfo2?zBߕnŸ;> 1^|۬g%7Qw|zCA>/+_ xb?OSqǑoF܏ڱW`z'k~ױhhK4?6)j߆;~#Xz4!_ +=s>?=\sO\^ž4~F,]"jm#77?${椾E?tN{>^3f;Uwهhy҇ ϓ=`?G=ec_'a<30lP~fo%÷W.==cIo?$ 4{G% kb-~b=p' M/hzMԾɿm}l=wyiFTFT~M?>J|j]g'Xf Xh }XyCk C;;x[`} #%_3lʻMn #z'H,◱w]y@]uaoNg:D߫sS<{$)ʺ'}wucVȍ?c&:_7ݬxxjm Oя''ZZ|  {pF_*ػ7U өIqO?{C3;،gN1t5ts {{ '8qzff'ϣyy=<>3;aڣ3_"g"aq¼qBypbv'Djo7Ξ! Zx^ +y9<i78y^,Gܻ6~5ۻ[O m}B{ZWiLL9v+t㳄o;r[΁lW9=nNgp͞K|ww;<8{fNɳs?[~;x ӟObr^}+ى/ȸyvF}k_qL{zO3;G`Kp%c'=!+Wgg>5o QC{О5w ߣl{_ 7czv:d 0/x7#3.s #c243<Hg=+oi`2Pl?\0sB o0|hX.|j֘g2#0'owg$ DY\-p<ގM_3~3=AG4&C R0>>>>nLƏϯTϵyKP }le2/3n˝+nokvr<#~os25Kꓷէ3l|O 0L%)o B{%ߞX{_gof|~} Nw<][l ǿ׼Oʘxmи x+G###'#7S|g<>ϷCa3Ly{ճnYn9joc_^>v2w\}8kG}ߥoM5jg,f,}ؘ;lǍ{xny-p}G𪁗]ϟ g#sc_ʈ}@av߿wWaF_ac@;|w~ەhwﲱC72 oj~P_l37Qkjv/7rFF}2@XŸ`Gf+CQ;e\qV6n5'L0'N Wcv\ʎځ_\9P\؆=1kr[;Lsr_;bm^ЎD7EӼ Ke!˼I*YN`^T#3wMӎG'7Wpz2^ -ʨnz 'n,eC/Uȁޥ- Do:e7< 27*镜޹NKW Ŝˉ  zi|wsz|2/g~c{2e;טaN$ib1auk{R$?Z>1P=wbMe_SmN2'WgݲXDc'2ؾ !F^'m+_,ͯuW}g؅ֵ6'=8jOWa 8̛'~'!}'q`vj!s!7qj~vbcPƑڑqArO($2HNvP+.e .gWd ut1:-vM|XW;+@3;r=FE%+-}L;m2vD2g7~o.;Mlx'Pϡam'Nf/B&d¯B .d/o;}Ny}z9p=;TK뻚cw^{j̉n9|̎}}dXVW?X72f[-m%N-2~18sK1WƭIƟe2"#r{Z!ǙZoN(̗*y7_}2@Kw`>72^QzU޶}2}O~,A-}'-M28ZFo髖Z, w-Cᗕ4_+yBV`ceNo\ʨi G~j=p^Vece@Cy3{^{<=a2zqy/+㪱2w=T=-C8\}&uﴌy^/ ~D?ꄜ!tۿz KͫqĤm04>_?qF>*no#-NVia^Og'ǘ<2˞cLw<2_7/MyQA_cR֎J^k3y_L7I {2^gy6?׊֧~7+Ӊ`{g}dl^tVdgC?LeO0z~DM'a5}BV$dmEW`2b/D4[ gK3{>= fG}ƻC(e:( L_Y#Zzf*W}8nh:%ӟ3fd゚/:*$[+#vƟq%~}K=3wBɇn2쳯yjL?Ng$7cuS}cd,f_gߙ/D]<_yOLMf?uƟ呡}{6^g[m=}&IgG+oeN$}&oU~Z)۾C$6:M~j˚2BN[zYRM~B_Z׾X[i˪[zlGcͿ/`Ã7zE~r9?%ܫgCqjo٧ɳN1V7։{fQ3QǪaQ^+2_/Ÿ53:&cOq狄~gH;4_7_;b0%!?yKlw>_S4ʫrw1z=m }iw~i5U=jjyx+:߫b=ϑP޼?-_{هD*f]޸M7+~i3^[.oepCW^ Л-2n[ޭ~w%G}^}WPny>PX0+~-('xϫM?!}I37ʳMPqyLnCx͉?=u?&O|kw_y9RrT;WŞX1?m>lZY_XY?{忿g4}߰!:!9$pY:6׿v-=>*(]xӇgP|N_)1yZ^9?yxR]l|kzc.5j.Wmnk*.;p=s=S}̺5E<'Zx^*?sjϯsLէ*_^wkCyէо;SÉ|ٷgC9_kh@w=pk\ w|xY7;[sr*=G{f|Ln_'31W_ xz'x4LO=sm߻8=p,r9L_p <3~5x=U#p}7\|w΍k\=| ~XynG=9{_ng5ʫ^n6.Ovy{xa<0k5ȋxU<<=$ϺW^^iX\gw˜g2|eLl1wX[c3`aum͙\WvbUMe؊m+ ׁE$HA7ֳɿdER@0p7`n]xO%Sk..d+``8`|``W0_0[0gjw*oufw^~HzS[R\XOWlkܞ +󘙧gIyv*OWkޙs{z9[2Ϛ9X g9W7I?I/Io^*9uf~?G噷G}+/-V$K|Exd&k f  zygMG=%%%Ixp+3K]xgf9cZ`ϼRyC-,C‡Z䶄-s>\3d?%IpW63c\Ry{g=sKJq=2\Ry93^2^_x"KKIxI+ϝȣg%V3"9"Xxb=L.YOkWJ?3̜12ϕy`pmgnz`O`֟ $G\Nz_\x{ʔ?>/ʞNKȉv[?l8Iៜڂ45|O~N[ozBܮ'q5NGf=ӉsZ>nn4sm,+׼vvv ƏqE;vn/M 5jӑq{:^(OW7o3mS7K'/Oq{?-ϸkF?l'z1Op=aP3V-veܮn Fq;uvo,??Vl<=\mܖ`<\m ϥq[͹xԣ'tw<{xNJ%T-|XGඐJ?NSWvJ 3-px0T cc|39<0{A'^yt_ ^Lv7;֞!8ى~v9WN/|sP{d=9N~^=kܳ޴S]d=οc ב9-dؙi,d-3?7`y~vr[؉+~N~ۤZص'8Um ?~ƾ/p}0^+@XuE?/l?: ƺm}wac1޾\7 #Ju!OY m|:mmZ3?IGkQ?=ykyx3I2w1[ o^N ﱃx9|x}2|o}x<ؗf g<0I.W?F~`yMq:C?^SM{;IeznW?oguهz=w7N|gz_?vSq]'H/V2q;xv_PN57q|p{}'nm= ˎ6Wx!s? (Ӯ\ǣ:ӯ釅lg{`<9Ǜbp;QÿF-OpKc{v0_{:7ۘx ooG|rPyWf~C>sI0c;wY@>G^{>v)} ީ?};o|WN}7N'S:s.Qԧ wWwCC}ç=sm_')/n{̎&oy%Y/l=>g==z{g':͗W?+zOi1?.~I]?bo /TG;6c8FvȳSczuKמaǵ||k|E{3{vAGyI{Wڣ~Y9}i1|O{iޮ}lO, ȳE!b|Ǒg7R^鍷{i?G~vG)O}>RoǞ[?ǵzC(\o|{{bm)+['r+gC۴ףmϿG {?Cߛ̯q${6bl8/p?'8ng~s|5a~}{?;U2ϓq|b7J}֙~OlaF{0?G{2?KY};{u}O=9~ι=ڟ_a^ܮپ~q?ˑ/3E|T؟wx*,?'fr7(V+oViO\;ua_za1OnwOGw9Oa/)WW~Qcjc~ {>~ZOӷy߯qי_=GӾyiՏ~O;'WOנf'ԙkPDhA0֛Чƙo^=sCyhl~AɌ.˞%,x}fn$*T&mlY3? ?`g>>`3s3r<~+:~ع?sbzkLb= fzuq8{U>ܿ=ĸ>?k̷\߷4VC=Ka_اo0_~E~ ~J<~K/W~#>@~^`ўbhov>yO?~i/uڛ [ؗN[؟N۱z9[ЏEGЏ~T?ڣɿr q/O}/Lo~`/LI2q׃}}םi'FhOOa{1?Y~0~@_q߃{p?ַ޽b?eU1=c]i__ܿ{]ޕ${1˿OJ㡲76c9}A=W㻞 ~^ Lp|gnpU`el:)Ny`~(Bm8BB^͓^czߡ٦eOoz؞WGO[?}{'mS;f@U0h/>NO` 3w?$)-)O./Υ<\S}z,/ze8׋l_쏍apލc0?\zoEl\vW~kӢL)H?Q~Io0?}?i:c0{{`/?iς?񢽨wӿi1q~fz_yA{k~u_>P/^ ,| ^܅r|S?{g7]r6=%[{mWG]GO_dO(+_5~a.|&ca/8+oq n,ڟI۟LǒƏ?Y\goN5nSƻYDÍ;7g*~r.&5iumK?uLը577pO> 6Qg6e: g&ϘM [39Μk^/Ce|ȴa0t2(LJ/tS&Mǜ?>d`|Ȍ)_af!2 (Ξx|~s0zg|A`L3g~=a{WqV)/YQѾÅ70_Oy?*eG<2.AB#cly GSBlVÇ1=! ٛgBY7w!c:YV,d ~ס/lk5po]?s~]lӟ3?}^4wL3^Lƙ3ո/NU.H;0ΔSGo`iF {+kG/`̻e7wS`mDFdmDY.Ք~212 ~ML@,?yV3g=w3:D0@2'8;h?ƻ;Ϟv5xF5BcTP+x1^+b<^gyu1̟d{ؠq'pNj8cS~9]^3O{c p"-ܿ |]Y)_W#xxHp)䷤9>s#gx1x;{xXw wϳG>t1}cYŞ;]>iMps67>|裆vqb)o|^y!| +#Fyw}4w>1>>3F B69}(8|R_}>\7>#٢B3 C,C1DSYE+c􁡾FsG顾H ި}& W_u>OÇk.רF`I/Ogy(>B]҃Ts l`,.X_2|oYze->O[1z]:~]/?a~"yq~J>\ | 9?`V^C1sb>>cg"ўч)Wأ3F{Շ{ {Ӈ-cT>;^3 {_H1 i/=Đ7=2|a3gc<А߰|=5|aouioEk }8C{p^L2ړC9ڣ |hЯp=԰;흍gw~i?Ofybg ~<:dԏOwZOs 7~A'ۛaXoLڋ7ԗQ_xGxأS{(l}<iPgߛct}Ҟ3(5ݏO? _=۟KP2=gcz]?|>LgJN3/: h/G}OWgf|ә~:CS7}dCLM\uAy37~혿 ;=}3;uu~G0M׹ޢ>3?^hd S~-) }3B5֗b\3D5֯_>g?53Ψwc=~Sc|~Kfy̽gƙe߳cAzkRK>1mdf{ ~ FDsf C8C\Пbcƫ{`]03,;>?QX|>w|XS20kn_玑1=|$ yQ8ށg`|T]NﱯT/(kaߣ+3}-% ^=zS۴̣iib?Sb~7{d|G Ƈ~4X>G'N{W9wʱv`mAl./A`Ë3>ű4aIiS a^ i\?l;io8.|/i.qfacA~߷zo|_^3[VϬ{T{Mޕ>qƢ})Oa#Ɵ_ 1gbo3>b,/|W췞&{Wq?+/FqgOeg|ܹ939{Iq/mO玷c?rOg&b>kr>/X/q/w~G}++|" ~eayxaC^ǖ>;!>yOa!r5 }w*~Ce78 B~ ƫOپ (_|שϙ }>7hA_:ٗ}ikuFgOHw8q/b2"Zf3x䷤<,o֭ψ3 dQ = pf~߈;?;fٞ;@^mr|?N3$q} <1|򗁽 [aOm_=;ϋ37aC_3`wgw>i0E'Oghf}V GLg6_߂3LghODڱ=\$> yIG| ?c>HS+yL?/ 䆼}g,iN{2xuC??Fx?}~Ԓ=9+ۧ%{t~E|B73)ٞ^=ž3*_y9ÿs:pZQ/??ݫ_ǿk3ŶOs|b OWͣڙr.z,jY8G6z?%_ߗ?7?p9>ܶp} Kzp\%*!l/w3KBx#[湄=!]~&.^3.~䲅_kafϜkg.GܗenCXsI$=W%ҫ59^=%s$MR*_'f^-\}M璞IyR}ˎp<-s8='8_v)IyJyr}g}K)#sߧS} l_#sʊS-,.[˜ʫ̵e.KpNlO 2}-sžٗp.M3ɯJzI+#?,&]2S ¯~\zW2I.\Kf/Hpvako\ yrSxe\%?s/wfMX~[~%psoW*1/K|Gf'%G;_]1]_%|J%K"ȋ)d".̐g%&uIKzÄwfy/\ޙoC f Y_2+$% }/7>W29>33s)*3^ׯyHzS~?%jߩU#Μ_2HywJKxipS`3aI%&5IKz]ޔt!g)?<_]{N٫Lϯ겄^O _'v}GZ{$=\{噹U.3wIKzCސM’zk3opMxfE؅_.܅gf߻ 7g5S pܗKyt.\2߻e-<%?Wp\~EʗI6&dX4>-.\3\2d1| K&除W%*UIHz%w&\2TyĞylaoH~]R&$?S@&\2[i談K&\2.\3!lMkKy\kRVi";oeNQٹ8v4?]KKIy4yO.^R㽬Яk S§ =G+ϯǥ<~I>~3-,%y,&\3),W<%SORY_pܷvᒹ-.,o]w)??3'C KK~U`ɟWo2g] w!wfqmt ᕙ{~岤`)_5=wg.᝙[MxfJ)oI%񷤿%>3^~ 3UaI/.]?%?gHgJpv0~-]ppۙٞ$Ix~BgC!}z C_*<27_Cқߔ,)lةg/V{f/MXӤ2oH~CߔoI~[ے_&&1 Kz&除^_='8ͯe]xfN,*܅%.[o=k/2*܄g~{wfK]xfn_~?K~YG߻mT9x ?0˝5;Oܚ1|AhdI38x]aqe̖9ez e$8=Wsȯpő _7/%?S2?W?~qy wa9s [&oR&o{߻{cuYo_W ԯHJ*qrK/$SϒyH?LI0yߤ.oF=,JzU+^*5k 7ya<%ޅ%&5ϥ~.gR?J{)OI)/{EڻH{5R>IzMs)KyMSUڣH{<"(sͼpɜگ,ojw 9uS v wI}L«W /kI{-K—%왇[~+%souVWuIyL3ɯJ~U_$"镔ޔy.SC2O?%h|)R&5}߻.?K1$=L3IϤ|&S%i/&&\˯v?8KS[~!,R>oI~<,%=\sIIG7}wɿϐi!M?%Kʷ$[ߩ1_n+sKӒ겤%.yHL)ϔ%_R-ṽC,U«\X»~[s̻ 9WN{z!Ky5?$)M)ϒ.ϒniګJ{z/8ɛ^ N7/i|lp4)OK~CR)MoI~K$-]xg˒Iz.鹤$$/(87]?$Y%)wI%?/Y^{bp׮=ޙ|~Wf%?M]~]!^C?W2K]K!:4>%IxFƧKt|*[yT%gF g*U>[T\̔d`ܷO,o?O%H왧ğ%h57ɯ._'շkdN߷^?7̽gN߳=$٤s x~g#sUWI?쒞KzMkR.ߐ!S§/ _%|a߹/G3Y!_RU%%GO y.ٯ_~[귳?_^I4}~[v'rd'_Xr~pQ?ӐM)ϔYi|߫ҟDz_*5ϻ NHO7$ϛm?oL/^%='v_fJp竿UOo2>\\/=$\/ _%qM^uXrJn)ǞgYm%O^"?/xnR0C Kz)!x ϛOSc^n5Z]XO?%)g?qg&7ɿIz.鹤gR> .~\3/ _>%|J!]»7 o]XgϥMlMI{Wh`ޛӂߛHxfM/d|,除g^WRzA_.yH]&,),oߛdGjʎTžyJt]gn_]7?ݜsWwF} <8ﻂNZ]cR*OZ(K곤>al>}&UWޜENU]yaa,oğ?OUnඅ-stͦ33x3OZ(~q-S§ %Kx5)Oal[X3IJzUҫR"+?~ I߻.,M}Ge9wJzCR~o=vai'd[^7^ڞSX7%)MI%X[ޒ.)ߒowO.<2W_%~M|3^Y|Mw  >%|I-;ʋ9#294|9\<)sm?%%'<+lZ||`=sz.Kn^rS3盒oK>H32",)7moyqrg=@NYO R)噒 ^kϜ#kb̜n&֣!O)%\7 ?qrIz쒞KzM^􆤗ANc/!oo\å?x{z4_?$rc !C§O _$|Kx?3W פZ)W|;Mk_[%! )ߐW{]Xo~g}ﱧ᝹p&7Vf򻤗^'t.c O., IKz}Ken&i&wK>.Y_'ȂW%*2y~)񙟃_I%Wy2Eȧ.|d2_//5~#WI>E٢,oT_YLTS]$?gILSJ{_%qOhD^Owa߇C;}K&z<.5OVi"Udee=%뵩3YYu ﲞk~kIJx"--K—e}?e=?$\]]d=ސOKS+˺>SԵ|+SC%lbϋXK\S^]sYOIH!Ɨw)R&5}ҏ.wߥI_7 ]L3IϤ|&S%sҟ 8%))oKqSpMW?~^={kL/?Nٯ߃%=\sIOg3nu?ϐ'g>i?%Kʷ$[K;xvr?ldWpLu$.=W{+s}U8\ȯO~e>"#OddoqSXq_X^RX~[X^3cLm:fy1F7ˋ1Y^,3&7Y~IY~q`LOSC NdƘ_̿pcy=#u˧}51K\ޑWfس䒙2k 56N{ ~mnfuwNwg>|f|+:Tg湷M.yk qKHk~o% -B_aZlyk9%Կ&~%=VIHyR}m-?[Ⱦg5tr6sr>÷>?.Q6wad<󙅍6Η63Zظ.w{ׄ<aa3쏼aȻ` Y~68?yØ ,_~5+,C_ay cWXC~,WpP;F|'G? 8~;og Ct?>@3q@3qkߩc}_ٺ0Oޙ{anR>WOG}G1,ܞC{=={Nޓ?L2Y_)m2N/a1181^;91"C'1bQ̇b>|gvʝ;9|Y|ᘟ3~,,<>W^|88Ly7}vS)W)Q5GyאڧRލ"|g!Oo,7S_A oOg6S5'm0봯W3{B}31~md oO!O2Cf}㉑בZf̭}7`kY{aYػ> }o^O}]{{E{}}˻b?O~Šw?b|د,3&ˇa.o|?}>;s7׏Oľ^2S {vs=o_sa_y7_a 说G?a1kb<%{y?;{/;^ÖEȷ&\b> ̜( ;w} w3s-syGnJyZOyMaϜ[5HL\?+*`–˞Wޅ~yd.]\ޗ-ž-3mEp dnKyLkR*E+mYo?\pg;[fzqGFW =p}\V` }j9̾!;?~2Þ~k=i}iiQaxǞkZg2WSpMbb^7~ͳ앱f0ɾ8C_-<^{ CA?&G~t>W' Y{3˰Adya<^4Y~>5b?X^W}uO孰_Ѕkoa/G+}2[}2[=rfvk7,oR6r}[nlۻ=ZwvagFr^?#}鳼cy1^x|ҳ?c?.'[.~Ec@1`|t]g1̇a_|4_q cTJypJW(П.c? <+" )qӐ&{[7q/c=Ax>!_dS~?J8YvWUԧOrYS_ߏ%J ;3˯׹<2lɟG9;3{f]7!ƙ˩gp-Mxgf̞=kG2.wg~vgÄGf`_=ekO{Cw^=ٟ7^n뙏/r3{^LaOJܞ9g`ο!yqm#_r{ȳk/<yx?{e=dS5o|~ W`؟օ}ؓ/C?zB?`سc? #` }e_Fz| oTsȧw'ư2akI3?lq>ߔ۽*x7ᚙzKda=}n7܅_K]XO?%| 3ip͜^$g˰C2_>.\2:2<_>$/_w0?X‡ %I8_&:X2x0ڧLp\^s{yNa<%?Kz.ebӧ̗-3#8W=k [fW2Kgx ?L&WɿJys?9),g8g%w3"d~r%{fW%1[fK2o{J)KfoMW^`#G|`Ϝۇ%|ÖyH.I|j|[|&l 9~亄_}53KpNK~~ZC؅K8\3vnB pɜΝW<ǿ:R.[ޙ^]sH{Cא9{\M}e>DY-їS%)_-3kl&,Wٿ<2c f}^᫯מ<3%&k^]",TXo] 3z1]3J_wxۗGj+Iz.鹤$&uIoHzCқ^^rygf{ic.̐gf3a 27 o;sv <)S—'8=\Mx<#/w]xfn&,5I/^( KW)))))))^{& ^Gava$K@!yՐܯn+Iz&鹤^?^6K~yze+={%K·e ^%$$%% <2C,B f4byg/{)睈l9Y؞Sb=yw3Ɲ7cwDsLm뽳ø#eq&N{;H{0{i}C8NxqGAq&ch;@F9=w~ Oct839iwt D3Naq{ cc5ޱ1cLwnL1}{w3fiq\Ιgzw@,r332gG -Qèh9ryF{?wL(qƚ3%/wry$=V\3}G} ^}ǝd~Y74w|OJV~ Bɻw~ :S3>;G3}WAxay,x;X>ITiq̙dΝH}~G~̟}r~ԡ0?<玩N)8W[z2>b0_/睵;nϝ}ĝi\yøuP@qgr!w"psøNk;;?;Y>?@cpdcp'"p`~~w~N;('G}ԯS[ԩ~9k?~_,76 >?3|я[z 9rIĺwFo1~꿘?"{sA)_EX­%K~.ivS}P2lO:m\{|/Ý ~_?myV?mo~>i1xz9_c9xt8^1Ƴs͋lO|쟘Oݜo+_G+;wa뷿g~Ex̯'S;eە(牏{k~GzK9o/;;G}:gS}:pS_;uoYǝ9Ǭ_l߇~C?F}ϊSoZg:uoc=}:G0|ө},ԇQ?3I끗}dn-3߳7z)ʼZ.\^͟z0ŗ=lz4/֫ލp'a=X[h_@Xxg\w}ֹ?\{H{ʇr+a9=(W|{5Î=ڵa> ؓA)Wأbڵ1aCxNx&E/wԯӾYNxO~a?Edl/g6FgWz7+SS6ڣ۷2>מ Sh~ /K+Зb}dvsé^hOw~N}o_~>߹~};_O܏p~?WqҫNzq,^wYS~쿚a9[;~aslN{_6o:Q_0o9w|}:/vxٷ8_ody~aF۟s3}ܹ`1^czodbx=wZsb3}f||MaB~a*,?Ce~=7o+O!BVx{Cz$y9酼nG[OzFf!= Qk^oJyHz%#|O\^y7Zڣ!?ʧ[c}jˇzH|/hDž`ȳ5sknIz.TJ}9 \zO s\7 ނ1O~kߜb}?v׋w}ixY㵟1bs!SY_G~fq|oc~} Mf),{ %{沅G.o+PA{kA쿼s|z3b'Mxcn3|W1~&۵cM3;JZFyQp)I.c?Cz-#C>ߍˍ oy 8oyb{7O~kGx/'R_*'R_Bdԧ]Agx;MuW9SX?l [M8-s1+3 'ygF0`],7$)偿eϒͦ`9_Ÿ9~ g@^N?&j)JrmGc~fyF!+=W?GWWث+ǟ_}{h/F{z=٩ST7N٩Z216;qavȧ̳S>u:wa8t3g>tS:69go8u~=}supQG<}v60G:Y93?IbL3ܡsʇ3'9ޘ| 顏V2=<2d;C&ij}+d$ۏ3l2$g NOG'~ΜtNƇ`TƇ0:3>|;Wg|5ٌw]3'O||gw:gKudtd:߁<2j:uxG '?|d4xt.kx׏fz|ƙ3N"j'xޡ6yLs2N{8ݑ6kUA; g7Y1wyI;Tf;ǻGfN#20䒙w~y5gNw̸ 82Kfs%NF~qt~&whX.byx/o;/؀αXqgt85O\T;^}וWyw~a99sg&ϠAwsS;1?9c7twj tx::lGWL֟gR#:zg\{6ձANݏ]o3a# >cÇ>鑘ϙKʭoZi]Cg}_HQ7:x3z|pFOQ >_3qF8d<ҧfV젼8d{Gw٢;tQ^9 g >*wq]!t `@~9_r|=KRsyS~3|L)+> 8:==3/ OW?9|ȯ>O8N>SWqqfaÙhHN CZxKOIO(||7чʀKe>a~g~<}}FՏ}~2G,e`9䇡OS~Z_O+;nX>a_y3 6ާx }v^G}vpʵ+k^x?LVZߝ?s+{l\d~7]2~~5s=)oxv?O>aL{E=^3 g|/!iX| {K>ܰ#Gi>,=wa* y=_ᘰE csEX(UcK{Y}lz^ %)} { cf^Ș'2%\/W2 LĤC=7-!S!q̉r$N ڗO@‡~Qlg&ۯ>{ygž}7z臰Ç~\<>8/@)>~8O:+*q>cGeL?wzӡ~?ps>wUY风5iϊPЇ3_'OЯ Qǚqh~cÐ>ē1a G<5/|CwOl+z>@}"y>O<(؏L1g/BWC~?Zb3 W _F}cQߘ\6|G XOuy1 GĔ&SߚU~1 ~%ӞiD}bM3L~D"F:~cQدCȨonz˱_DSz9A?)< G{_nʱ1r,}b&`r>i~eٿo?eӎ[_D}`Ly~ 6:Q:?qan'1Ɔx~!1n#!| !>x1yxWp}8w.a,Ā #Ǣ}Oj!c3YbvcP_ _}nLo@C%s?1qO#cy^#1r">$ʼn3ùaMTGH"?{K}cHBC}k`|(b6P>b8a?؎"Fvk/blw1c2FO:Yh]wg11 11 1E #|62YyeMY9${Y+Om\.w~DH*w~Do#&b0fay8MS[!b8Z··SKC~C@p~q1C=q>Ԉy{ʯ>oh>o_;8?cǝ oOȳG%| Mʯ%硓km~ٰ^^imXp'm}<|;l\|cc} ʆX[=|l{3[h1'xs_>_s },̣훡eQNJ<>}oC ?_~ǝwrW0ʏ;!7M_@}loW[?|'Bzy+?^w.5[anXiwt^;w^O~Rx=QoW_;=7È yO_x'xĄ~=]{AۄJL _7>KAWb~ߘ3=dW F=1 tS3{ y ""lD oس\Ԑ_߆/c[{_/z|=%쑈A21}sD%_M{pyc`E $'`υ{/`?}~Ğ f?GgװW#lޝ=8h%ڃCOZyw~&f?ƌpqg&>pA4mVRo017㌿_X gFG^>ja} >9;lEDw^ 7OkCmߴO;ibhI6c`}r޸5;KЈ;ӆǪo|JFLi/)G'_nEw<Տ\^nO[_I7 }pq}GfЏE9_܌rG8.Wϕ8o N YiJWSCylܫro~S>X߂/Ք~{F0CƏ~4CXrgb}7wzpO2ko;Џ;8)z| ,c}:1/y 9oyǎ',wc_~\1Cx? џWx2=ψ(<{g~^QNneo#f3>07񅗻k݌_WSCvO2oxgA<(8"eܹ[>=`osS;X~ӱopr1ؿ7O/!C~yg9ޗKF<-+Ɲ@ԿV{nwsS.E9ї;B}YkC!Ox0奜ri[g-a~Vc+oY}}frV~ʣ;^~y%~x3?`qB7Ȗ_#`x92ϯ.oX [d{^Pn|=nC) i/C]o`O\w}P^)Sy<- /e?R^~{Tޏ{s' ;%Gy<2 mf8x9u.?1;.WbW^Y9u碌܌rxqQ._r3ho_EKy:qV^2 ;9+OK?-I8)wKqQ<"w㬌З/w㬜,$Q(qV~rUߴfRX?X\6Yc+Lc+/[yؿrLIJq*8)nl }է?aK_-jOf{doqQ^O~9+aG7).㪌;uٞ_۟^#/}؞O{>XƯ?^/wG~8+wē~EI#\nY;'97a<#=U}cOyҫ=>/b<}E9~ݸG~'Oqؓѿi/ן}Oqؿi_,L+{忑8&kyv~x3{3 Vf[a#wMqM_ʭ!O^y煓k[E97Gg_y(ÿ܍rRVް { / JW8_{yH7ʥOjU˯>$a Tw./$4,g܌-z{J)<]aKdcw&oe7/{V~D*/_C.3 *~Sĉ?~Fr|o9#d P_TdP5>/Y˧ϙXC#ʱ|б1}5r_E9rl̹r5Rp\OrȐc :k9c k899 ks꜡;'yh!4u)G I9ȜIyhﴃc_'jϫ=fp̟U9C2׀Y9O"rU535pV5rRO=ArRC$8WcC\c^bBhE#|\䤌?LrV^]9tEyXrjդ\l҆z9+O\7ZXjM/gM=>,Chrq__}9)/| 9XF|`b_}.=0=aꧩSWM>d>ir11/XS>||ާ=/+#[z~x|cן='>{Gk^k{^>݆lKrЍO~㱣=bvgrRtΗ=b>vC|'<'!/.'!o. E>/!!sr|$<&8=ߤz1~ ўcGXXȱޑc=^r<s=aOx(KZ~ 7{4{<{õW2h~յ\^^D;rW]!Þ{o"5X` }˼}ô'^zy푗r3;/o尗3z9Yk/HF{|؛c;8=ؗW2Ư>vd{h=Ӟ_r}'\ xGsp#?ڇqzL0~\ߗrx8S^8_!_/wblor3܍G~w|嗫qRxjwUpQ~o?Cam<2IL~;w&\^>p'诐>M.Weoe>u)m܍rV^U9YybNϗEy.㪌&7cOtO–Z~+Vl}OH[3mۿo?i6n}Wf[QOi'rV؞'{^}(-ٞ/{|UZ!i\=G`jZ=i}ii=X/7*ܟ,-ofO,ۇqQa_8+Wp7W҄<\C{< #0#r{#rV~{V'?a~WrF{21.7?C]IZ+sy9y O9KOUe9a\nƧ?kBt9x9yR~98qc>^2ϗhqyCyt9ʣZ!.$%9c*r^:տ_\qle9^v~V%G?@oS_ ltٞ˦oeDzk.fsꓗ9 [w`9ڋ,Է/`?R.Mܕ/In7aAϴ~#y{锌Vx*b/ӸmV /Og嵌q׃6Ɩ~DEG}*gù[I\ yw㬜./W*GWMyWpfk<y*g{Șrv9Vrg2ڋE㤌W˯Zyc=Eyq䤼\ƖxΧc|D`rQ''e4ʣ)el[=W+lc/[}ӛ_ސ*ʳ)K77Uj)V򎿳Nx̋^۸(OcvpQFe氮<\r/yq~g70;<)E[zy^Nʥ)w=ʓ rzֳ2Gkp]M͇qVQ.i؇_νqke/`<'mяsG\ƧI9ӂ7RǗO{-x3tG}roXeOwyٿ>;=.Yr5>.GUr1>e?b<]^17'=#;9(Ӷv9ң?bs>_*!/.G%%XOKI4ܡѝ6\^ʈ&sՌk^ʹKt8OȈ%e#^뗣|Fߒ7zE=OȈ#Z%/eX3S0䭌!0/~0nKvs0N~0iYVm}!I^k-?XNWz[V_~ [9wRrmʰr?ʟV򥿱x.􂼕sWF2N#K5eG1^ʳoe܎Ft+Ns/O\ryo5?=y]`/{xaϧ=G{`D듗}Sw~_;_^ʵ/r3ʸR䥌Ia_EqW߮=r3Q__n8^a5ݸg&Syj>~їrb/ߴ__8)aG˅r7.үw?<s|%[z r5N* Xnp3yWen,eoدwU^۸'e3rQևr򺕇>׏{;.\q7y[yr ٗqR^8+a\4eliVW˯Xyꓭ'=u)_Uy,c{ۥz{~\7o+yE7Nٞg{yEz|O{>zڢO͖ed/-?-'8㢜q3N ,a7q>x'aG$>'n\E?ʓ_ЏEl}wj/U08ڣrZQ ͸G{$p6~O+^s/Oc9/ ٞi{_.8Γic<-l\qOw28vy+b~y+wY{,'{/K}?vy*kfop9܊TVް79W2~+U,rƖ_{õe TVO^<=nlg1s+6_//m鷥ߒѵW^ʐj<׳_{4{4{4{4{4{4ʘ|Yi&c|q7Ưw_MƍįdzoqLh4Th݄Fo\I~!ڸ΍ z"%o u(@w<חO,MFOoy??W75%_)~beo?TgI˿_-xj_lk;[ί uäϳ62'upCu?͝Yc: `rpRnӸGY愋gnƖ_>4/KYGnӞO{>ݞw{yUpV;쾜>lc_^_'ex,Y^F{r/U9[lM^^۸(Ϯ<,)c~r_rVNR^IY߯K̅~~_~~_gj߅庌:r]^:N:*KVIڻX U>mXۻ)\O:-K^־Mj+/[:ޏYA8+k{'l&ob7pR.UYןUw}I,ZYyZzYӦa[SV~ʲMV^'{'gqIs7㤌M.g7K,fmVjV^C_J7ոg C^OxVw}kZ{Nki1&[~/`'lw{nuK?,q|c>2y| ٞg{y)SVܚ2-V9ogٶ`_0;Tz Vްc=OޓW_\}\rƖ__} s2e)k_}ܻ0MYۻX}ooq}2w?gKY)>K=TIpW}w/oݯu|> Z[277[:ߧɫi{ҷblUL4p]d+[[[ֿ/'W_^>DV؞{>Ӟ/{m璧/\q3j1׬~-}>섓rƖ>on/]G9&,GhIyiχ-ʃr..">E]X~"?ny,㢼,3+ܧȳ[y~_~D3grr'fGc~򓜤|ȫ*Oє{WnZ߅IIob'/iM_ΦOgӷl<k2'Șbgϐk%[97ҕP~<[*9\epLMy|u~qոwa5"=oW=9Zr7%?ӻ5i_Iyiχ-Úd127vs9+.vs(/Kҥ,>dXC].~_~|XqZӘҝ 79+4 I{ƀu|Ә3{i xvR1?ƀE{yi 4tOcmʳ+nܚr5.ƀ0oe \q=CG[~l\q\^ha=?װӷSy[z'zGr.V;}v:Y\՞c>bc1/T~Ye75c|C_!׮ܦrroj[~O}\O}daG7K-oIO}\rmV{_ c>1u*7<[97ҕP~<[*9\r3MyϮds?>9\q7x|\[W"=iLӘf1Nc4;iv4iLӘf1Nck*w>2'y+,ݵG^wO+w1גs6)dݞw{yu22Ϣ靏7rQ^8)OoX~#+ yF_,=ap$]kٕ~ FOL\rʲ~<U@U%c+[y[y~ޏ׿',7$XkO"˞o?\T%ؓʫk_5_{QSo Ef$xyeά8hAχQG!%cjQ!;d('Sޯw,2gC___>-φf?,oi4-kzvigq?5~Ĭmy9z>wLlL<%y!'C'm6Qhl5hlIľcCk\SmkDz35B~mdkMnrU݇35!s'(e\kcZSm@>tyX3x x++׆ᤌ釫rƯMMUk.9)w[Cᬼ(K5}Q'\-T`~pI9:jɀEpQ'n5+Otut;Xt,:NX~_AmlU2W}~/:5} cNq0l,6KgIk xʌ!h%k5q=,{'喕eKSf:Q~039+Ϫ<2ַܖqRE4e?8mWϻs39`N`yp3~}>ԐqE>x8 r?x Wc\1cc>^KarK0C\!o!FUyxy*<|@<&G]!֋a  #rWϗrce0[9t&zNFr>;8 2c> _c|OӗSi4}m>7M#GOc1OC$cQ_p8mry(ڕq'f !/ooY_"dVem}(T?ܯs?{y+k4OO_^ʱ_'dQ?[o8q>rQ?8'9|T!8rWpJ$| /UrO1?!)9ܓrYg'c+wi_V]9I<ס5Q~w*8Wr{pI)2g7@~?ס9U9cI󕿓w Pn<دKSƐ/㘯IcE~ٸ Q"K~Mէ?\: }9hb_~r{0dor8G"G]CNS|{Yg^|}e8?[r Yؘ{c8^ p>h?AA~c|,%ʋrKyC-XU+E!Y4)o+5L^q'X)z@Gy4^ƸGƸr]O;rg] [2O=72b8_?>_12򅾫H/F^}>ZL_-wb4^z_|1'۟|AgE"~,_,1'dbݏu|p?K/0Y0zd"ݏ w?OF xc%YGq1ƘEx|{R1a_ge77GWÞU`_Z]yȈ,w_{%//ekA_H{f5{'19d=ܲO\{-W7ڃ/oe[-Շ=/~_{v/ؕy ._ JXWߚ)nyE}۩E}OE}}A}}A}yQ|Qa( :s. h9ؠnDE{DM9>Wn'@~_=ԯDp(?)ξ>} >W~hԿ };o'>˩_F|ꗐ>Etީ׾z_>rkKspiX'ʋug?|2*5|~9D W 9XW:ɯGbѮe>E{0"5kY> SLuÈi;|v~vƅ|K$mZ0uW0F3GF\ xzOxM,!ҧW݋(05#xz^m ={3;8qv_aGk#DK9Sܓvϓ㮵 hîӑ_}ʛ&8vM;Wqp~~+#~T;XwQsE}8/]'=;CSlgH%+?\]>\/5|9g+ֻyzQ~\-'wE=W.g=;wcp.w}pi7cnqxޏ>1Z>{ѯΗ[oep؇ss%8OV_u?xS>E_9#>/FynO55o'ֻ`?\ O| w~.@~!r;+|G9=ʩۣ';;Q{\1/snǎ*KԧbD}+[O=޷9ڣb~E{UE{8GE{8WFŢz=g*C)xi?1Ov.dž-kzaް|hX?bOCcssyA|o/!ڕ/| (_)_MWʗw0ɯC~{sehρS~7 gQ|!/~9~O?[Qc/~ ŗ˾&Q/y1?1>|oOq؏qC=1=<`(?+b<^5_"=ð|/sG~1QGԯ<`8+s `cc/0~1 O! G!3GqcQ_Ǣ{qQ6`U)c!;cF|!;k ;aO݄}2Oa?a/aag}Ԏ{k=*"xB(/W2G?Ȱgf/vڻ'hov~?a?兾:Ğߎ=86Wy0<]{ ݧ>K?>vqBuݡ g?ї:0W9aO7G{(Oh'U_c<1~MyGn\O{vTȋD3?~c} ~2?(ȯWԳ^t yV_ {xȇxGzOk/'=!؟+\8kϯQ؟ NJ;tڳ~^밯1߄{W~Wߠ~G}J~ף';W>-|/CO觫* Oc[<X{/Di^879~c*w7X^5.V~9)m"zj?a`?UO3޾ygg`_Nw1>ΟG};/btg9-C<p"{FpY?ؿG~/cƕ_}13!!c˱<gzrKOžR>3B}sدz7aj|o )W2ʏ(?iDIس7K_:ac?^c_/~K;+mEԣTȇЗW_rh\`\'F/ϻ)yS>i0.i ח ֧UqK0o,y\G|*ў}ۻu_<,8.8߈Pz*۩oV`X bGrC>|(w>C?q>}Ϝq^PC7G/wMʗx|o|ywȃ狐/ߑ>ϯO{ 6%q yАÿ }ǟ\Ugf#cOX/aAW_oo>8OZ{9_}/>nO_}9||7?qo$Gc?_n@?ʏt@~G+:}oy|~xп_WN}:| ?N{7D}a} :oЇޟroA/ߐ߂<+^M9y_~'!rK9KG2^_|x?o&O~8o~8gmNdrcſ4c>' 2-ۧ:1;iH{c k^o^Mz%wx(/_y^2ӕGפ{1w%x^)>W x Xw%ؓD{] {^~m|u//_{ݎ3ޙUx>zI{d}//'M/v;{F{5>Nn< ʡ߈=9c`OO!};

P~rB_>1gW/'eD-=4ַxi9n,clIA&mgQMeUy&Ea_rRN"\gWFdJg7"=LzEZz/rU>&a+M/xރ6I$T^62㢌܍-1&5jDCx81rܯE&?-&YbfoniSyu>L{9W和rʭ[yK?DB^7\ʹ+K_r"=ܫ^\{yf㩼yrK䡜=/]=onϻ=|󙍣=x%f˴GWWWgWw}%[2Oqqy(8)k{7`f_rUn*7Ē0ʹ+m,gՕ2.W~8+\qR.UYnn)Yo? c_,?ucEˌ[q_ߛpJM9hrlHxb4Џ*#j\qziSט~p/P<^刜>Cɝ m!_w8B]R43 79#ry9>3 "j1T!q@zω>"B9`N(')#bqw渡Z1sDB.|F+zAD\bZȭ7DB.2B.&#B7e^eFf`/XgDaa]{ F0ƺˆXwA#4c dr1 "9kD"ȫ9Q1b0,8 D('C_qNG}3v9QNzM7B9ᘠwEOL9Qݡ}q6GozȦ_E g\D4^s9љ_Wo݌ f̑ZN՛r D^Lo?7]~99k\*`+r[NאC @=~9w-%ϮY9\r?3ȱw99Ew/ۗ}_G6<;iWOC%6o׮qc=8_.EB'ȏL}Km>'<Ɍ؏< PN׮_@/G~݉5_yL?ׯ]+'g|~۸q G{N'r\n+zazvr=͔vȈ>avˌ&ʋNzQav՜p)odXH~ұ3nD݈NH_ۣeH_HsCADT%"+҇pn1CEG|ǹI='7s/-3P~݈zp3nXgwznJ< B80ʏ/`lsznL[?a_Ρ>lKۊOxQp#@|۳Fh'?Wџ/8qCʟ~='mᆯe>T|a/KTqc j<NJBHEG9R=ɹgBv7'}{ϥq#Q| yU7 q#xOx#o77B^W/!+CAl;n۲T57 7(7ōy\o~$aK(eˎSS:LABm4CZ1̭Bqs͸3$#bIډh'7ym.N|1OjWp4X }'BCWM з>w6O6}n?<3p#ъ+O_7bDi>N_ЯDmbWd+/ߊ~{*g2WEnU7e;rŸk* d;} =dO3xk7=O`|?/؟.NМObNϭf\{~yo_#8~^e{+8q@>^2|_Q>ca3{{y}ӞÞmѐ߸}~$+k'ָ'ҟ}Gtכ>gzg4/w4o&h'<3߾}?ʌi8arXJTE-y}V'7ѻl/3'==g?޾j'SueX퐷QpVwQkvB" vn\?@wol}0!ϱW0'7ׂ2 냅E{kբzd!/v؇.NJ"}}цˎX}y mF>q&>gȟE{C6ޝ_z_ۭ}iEy~{ Jr }o߱7׃qr~aϷJ\. ^'x%כ*B$<}W<7EsBxU=c)\'7ncoWeX$֛6֣{3xG~x͸;|Ᏸos\>Dϭpyε||gBz#ccNqc-ҳ;a0_}cp~sE*7;wKR14`Ƹ[o(+߫qsY*;v?}=/=!CK<ǪBsg*#;Bsk*-;צvY~J{swhsy>͆ߛsjx χZo+dc^fFM]0?y'{V_;1]VaİW?<' <\Wg-WS ϱ؂|]ىo#_i 'J=V?^W7Q~?f7$i毚ϚL+mψGxnT[<ƛxո1!p"5]s菄n&|߄ūs* < ܐb>_v7{?X߆[W8Q` S]̧td> o}m'CzXy6uI@<¦޾tCy @g!}'[ܗlwȏ?2!*nȠ 9Vy'ѕx[< e}$]6eIAUq+Uމ;>a/CW}z+0CʸTȀ"֓[Xe8da9c &{p!K sqƂ=nXo2^/Ii?h?EqiO8ȯwOT^] Rs(K-O؛ _ab<2KCy#ʉXUX{]оY/[9V` P{!㹩 M)x%^oKڍX7bA<=VؓL_cU+ff>~Fg 7z|˟ ??/dG|H/n?/???5}qOz }KlB|TO~]q_oztM{u~2nF#{Q[|jž{KJ?_N;07e~{_]dy^s_f x'''MyĖr-r;ܔM[}pQ.;Hl_H?cpU;qze/~?WJQXvU]7|x$.6?:0}!'HϏ5e]QpS7]y}K\M8G}MyQ_HlЏ;=qU6;~6噸ubWKE{Xr-=wrܭ|hϰ:}I*c;1[}VInhuwOly)|Z~'ޑ[lky$a~vʣ&|<_啞/[9=GQߏﻕ!rz^{zn[jl眞|J|kXD>&rʽ$ʣ&^fϼ+}o)?'TޛJ}Tv+FZOVW[yқ)?xGyKMSz7'EgG'ʐ([oޤ|1.A?{V>5qz"/#^8>{p-{g6y<eӗZ*W[Mމ2S̷8WϞQ_{ta׿&9.VߖY;~`/YsB?wgMG}MoU;/A}<8G#ɃA2"ƃsSn2 gȪO lYw_ySC`"/Hx3= !0%rQ6շ; }l *Eg}ܕ&_Gl˹*~E.{Vl!ƫsS6y;>ҷo&o&O2.}WclsW]P-ި=R$N M>Ky5g}֕T M ~/ñC)8?( U ,5FȦvسNU|C>|v{Tj惏}l%.a~ㆲO每r'W܊|"~a-:G-;}h%JOiy&'w'{,nōlQ?pU>Qۈ1l6' <=Eُ'}M6- ,Y3ϯ 7O&[ƆV_gd(*؈G$[< yh?ƻte'r>(Oз=^g}](lyUFWN)?)+Tk­&N,֓³'k*(|S(#Q~prO{c [yGyG!K;rg}{pwYW^|㳝#o>q=PU G'#c|ݳg*/g/U>3={Ϟ`F}%y0=(ߨ_={rǞ\'xO?~;OƷe?`{\pO61󗼛>n槓7'cRbQ(wJo=WH^{L?%k%_wƪWk?ƃ}k%>6'ƫL~?>&{D!iII_Xϭ_yN}fURyM[z[}flVIQ|swW/;/e[Q6|G,ןy)?;TޛJ~jOȵ$/ףg6g<{⣼Rz+g9ZQ|k8^<egrnOq2< 伕1?G y CUO_G6޿3:[W:e3CgN;͞Qp{sO<?x&Wcg;#w]>dl/'OgDsO,1پd ܹ(}x&5TCK%$.{w2ʋci@ސE>XAܔUh?r9-=?k(>0;=^?/Lϡ?4Qlg?}l)bSrQ> ac~I6}߹*[8e[l&_/\>6IVdKܕN\MO97eMܕQ~rQF5r!z׹)塚n\EﵔߚWR~B~T[Y.Pzr?ru*{;,8~'ߝ/r, 2=%ȳƳ;Ȱwg^!ek{CrUqp{sW|G{aUw,>_itᮼN6s\gb/dZԯ-.UmK?>bž8i#G}Nlgd^j7fOF䌵ssj쿈8ؿY܋,_˟#߱?~?aye0뫧CY6y;kq[Cu1, %YO gp|>Ƨ㝌 D6#!^Ly LyX!lS9Ưd`+m>F׌ [!|Yo/8Gp6"! luʦ/ ӷk+W"gHه)9U_A< Α2q竌4{S|3IޕT^5J{2>$ʧ'7G_o;o:[/'G 䙾Hgkl${HI)cmr뉯27WGgIC~~-{^ d^W=wYntxB2$K)#q<{[yx9:eGb|$h|~n8onOonǓ,;q+{x#~ ݹ9'_rYF>i_ߋ⫛n޸/fO#0ylfXӎ+֨!//^]|o ulO>ӠL@/4m+Z2Ѱ}_bs4lzl& f/i6_MGͩ_?קC0-i=if;c&/[_5}|3i?8ً~v뇿^O/[-=ZzoY}/vW~nb\x/?o䴳)5Q~3[^igcFnQs|c$~QQ>k_]4QޯlCyNlCMlCK\^oN;5ULl+>My{i|<_z*峾y([;[z \m87bܷ߫rKm<5(e}.pW6ܔv[`%q~8=pG? y@a -r-{㠾||N/A ;- 3q rߓA;;MAz~<6o 6k Vx_oͯc;61Qo/}Oyİ o @_B~ӷ m/OcC?H<"}ӏ*7~L?H~E!ߐ~{iH55^ү/ U>꿾w__}uW_z/K#QGy 3Pb+镗13qgI\x&^y_-J]Mcu5^Gc]m]=wlߗ}٩?mԷ;/a~?ϯ<ɾAz6kr<4)lS<|3yq<|3yCyfzWg{E>OG/#/^oeoGyNߓsRymoʏge#oeKyz50#([}woV5'"{D3gQ~ `9wwEA>ž {S/UϰgE^Ay{Y 0 >_b~0r!]֣̏lI{w{?־v_ojlGm~ڟ_7kh{^M{/%o=^kAwN͞;?M'Oބ~j+kЇ/oDW'J`-98Xawp| CH{YCzHO9(/1AWߎBy=^Wّ~w`@wwk`xO&ƛg{ҟdϑi9_/"V[ȯs _l>%~0X}-S^~-Eyo|`CY?l~\oL4n]*wMl߃~awC?J߬lyXПl~ [p.665\QWwU>s+oloy|Ꜿךr')Wȧ)}`ckh__M~n'OO}\Bׅa< y[: `/Qh'2G߆`}<>W_MU|?oVff/‰싶Ho@{G}+jh/+No 5ٛ=l|3{3g뇍M3E{YEyJd#q.hzc%N-qїWOٛwj{٦wc2;{֟*g{+wb{nxii<ѿh!Owb#?'AߺDb]B>x!>/_!g?) ߷ ex%60~a14b_AKŗq>|j OyV?O}/|jZ>W?jc_Ϳ>?~Px?^} _#~'#tї*w~uK:+(l 􇴣l%BkX|V&Vz)[ 7Gkϣ?cy~-Ӿx="  w'u^A>^{J`A ,h2yM6yMѾ{ڷl~}kD {V Wڷ,~-/o8_VݞeE{ڳ0!&ߗ+Wc>i`|{lxρ`l:PIwS;/L}Yҗ8{< 7} }YG3z0Y{\ڿc<o7W{} }}iCO0 J(>}w..)-119_}ӔKeq7Pދ[fq7+nZpUq؍jsM&vew<nomfK|kIݗl; (f ^7zܔ4\Gr H.ʏ[~P^[9i \._r7[. \O oZ~Ef7k)k&1xSMd9njl7=黾f,:Kr&6o:[_7Yj?OxY2nj#ǛVQ`r57orQ.UYx3ߪI,7[J^;q9pUS)n\WxOnG'O⦼۟yRn{-v3w^lUyw嵔I\=r㼼 ܔQr eqW71~)Ip?aσ܆rEYܼ)l3mt|ܐOfĹ)͇`ܬ\"fwpNuhr\o- v⮌ %'~*cIn$ʸzXnpL}չ+Cy3qQ^+qU)?Gz^Oi)5T%֗w'򞉋JMg>{sѿ><io&kߞ!~2an}K{^=Q_3W6gӯ`O2h~ltߣ~p[4~OQQmԨVmdsE.y?fbMljnO&67ʏQ^n/3Q^kgn'yjy[6wOg4m2Nڞh{*&6P^A{+o-{?1kEGKlGqyd>p[>p{GyG}8ƫ&ßI6%x6/ +Ӂ?W]| ^( e#&>{ۇx.|s׸߷yM:Q=~䫌#K. 2ꋼ?}Z(#"m*#.{N)?;wTsoO,YK3Un#Q)]Sy#Q^=VZ5^VGWG\-#qWϞ_' #Ar{sܞ/& <Ұƪ'4)7ӹoǛ@6.(wx|woIm[}ўجw|!pO aqʈc;x&[7w{XmUfGs{Xnmɸ<7e[uz+\3w纕\#ӏ<װ. 8cnX9WerzerfsSF{z7i2M2ؾwN#WFى2Z7x$.ʐlܕM)C/c?)V9P6L\"rGg'n$&S~fϬ{=姥k*OM->JϺZv-{q]sE9=-\wzn~mډ|a먼qe[L\>[_-y䑸(]-#q VArOŸX8['.h 2WһƘ/3q/!M8ߡgؾ׌muމo#}? (Ï[h/M׌$3Ql~l~1R{Ԟcj{;Oy'~G=86q<4F(xv6?3QFg[䕳3yG6y,qh3ۙDly$85K}o|En-RFw'*#N|mII_X5Nsz~sąD}9=yM[zsm4VHϭJ'CGL}9>C>ʭ'ʶ 8gֿJ[3qN٩<')?Z\9WGı?zy)x$?}=N^))=we7y+ߚx&qnp58_eoV{(x%"o^5a|H&N8=y&N p{#qo^W%읦/9o^G}Gy,~l*#{8ɸ5r8 ޼\Obr,9<G}oOg8SC=T#wp<8^IkC%ʧܔ\'U2 MEw(9#؝q Lgz8`2 }w}j.Ș1|7Kܾ:2 ʶؘMM;W:KUB>qrQ} dMyMym=~Y u(/[dEֻP'q3^-_oT9n+}o[G\{WnKEYg+`C.ʻ+c.x񼎎WR6,pJ}2O؛^uN⪼<]us*c{C0SdٗƸf259Kq{s\O&uB&ϸPȇG⢬Owe <mòx&=D@#}qG[NOg;!oe_>c3i+U{`_6s~s {s3o;/X'~詾z>8k{9}.elcډcg||<4^Vƾr/ryA6y ?VJcʳF7x9!_x䓞k|J듿b>>ŸU;2!2}>R2⧒R ܗ2b> ׷Ȧq.49"r/:e 3$~L},\_&<䣌8k _嶕T[>+g)һ}-/cWNV>GIgO|Cz%3oIǝ2{4Oʽ'#}Oƫ+ȫ%>{$'8ȴ8 |H|GrIox#~ ݹ#zsJO6.K.Kn__{I#wvpGjw*vqjzRh굏;VlZUwڝ0[-=ca؝?]v' G!ѽ}HchȯݹV_s"vWEfQ;êxc*f; ^Ts+"ݪ ұڮ3Hϊ}@U0ROeb7I7/&.6{M䍹 lvrMlve+}P^Oh#8%3y8es 6NtGJpKCn%_ƀI\wS^{3_Ɛ2s1nK%O_}XluNxkNQqd:ta]snA&oe[.olwF07̗a>-{a wX1úGNB _`n=;wi];/i; iͬQuuD Z}Oխϸj {º]nwZ;FWN؝fX{Wޖ?zoKz{LwlTw YSs&7oWyo'S~N|w"yIy)!}ʳ+ZYiϑe!=y\>z4v'=}o24xli65hw64_zܭ{fqU?叻K|}C_;WtW"wfY:Y[z܍럃MJ!GzW5+LM|W`끭:_eda˟(| )ӕoz_kWNV[yWyލ|M> n"7Xc=L "0`o*_3"0a|=%AC]NC l't؏l|wڏF'Mt؏FϰgEA4/ ۚcy槿ܑ Xǚ<=ne_lw6Z}>ۏ͇׎n{O1V/}km^kO_gZ{>k=ܞ~a}7/OzŸPYW/ɟpeYGz[L?wmzsLߦ=x';9^jLc=c:Ĺ3֏>]w~yۻiιFsSx{y]׎Ap쾋ܕӢ"(_9_0ͷ=ʳy&Q6s\!+k/|vl<|UYNQ䑸(_NܔMpʦ_9"v:Weo禼Ol_8ggS~ZʏorM婩%G/szc鹭[8]ӢZ:-UП5=qt**O{yejʢ޼Ab:ϒ# {v(D}оU#T8{8?>O⦾DyzKUQ0Id L?rN}uq[=LDM_:ȯC[|ŦGȯϛ=ٯ[N}{C?P}G<9A߈l|ԇշ<陁m|sOv2l|?2[$^OGOX&2 l_{k&ʨ?~O9'MYasr{6(GoXOxU~(d+ߚx {Fu[;K"7c"oeWdn-J||=*#w8(CKa~s0q˾}`=`{90?shK?A~Mt;FbK~B?B~{ߗl#89/Gp_6g@p?s?Cx=4?S鹶WF K,['Gr,[)?;wTޓ Ksl/'#oV/eG𬒷\ʫ$oDʨ2<|"7zF+K"c"Gy{N`Xvao[\؛r|=* d } l q5jmea>DY=!썑WOa| {fgC1^9zf`o~{l`xnaW`lGyų {2؛#GOП`φ~{wdP>vֿLߟ?/'<)ɓg8z2?,5\` y[x_~䳵``'sKO=K? yYw䯉ԟ*ՠ>.2okLӿcCy;sƓ?| Go#ϑ@M]ŝ.ʃH.E<\r }W_M>>k[/i߅}z'AoF=9;En= n_~c-? A#29҇0 ?]"cV/-F }D"}(?[HMBzEq bgc$%rlb>(z8Q;YO<wԷ?~=]p!3.wʮxRׇ8I ?`.NDzvAy_NCyߝQǹ&fz?b'gU3wnx]Z߼2mq=bxe =OѾcgx)b7'<q2>EG/O|9/ub]7#= FE?C ? 7X<7AS毧jOEDe{0?;1 ާlkbӿb}GZM|C?K~&~iA?[y6M*[6#W2?U$7=MxߌW9s*_O <;?}]Z~/UxCڇNw<{(' [8_ Jy].ϟ=)0?<{˳y&i'gb=OZ|E}uG6O_[|D=!So;x J|콌?gF~M=Z㡇#{tq{4⭑?z=m=53}/Ot0>B4I;cwBݣYђ0'_1wK_M˯ÚIVWp2'g6:~v >@^?/u}#o\G}%o}xqᦌi8^ާ@qʈЇ:ۺչ9ÈGW#Z[90o01??yMuɇ[~q^'̣CO$8+aӫ߼};K\q;֔懭Kcn:lӃnGqsXwpS+q zm\瀱n umгKu4^On{*ߪ[Nt.#nܔT7qWFq]t .ى$Nϩjs(Y7.'ue߶AYiYg*8>ay+OYwa3((ڰ:',l[gmml\:kXٺjakO[gmw(_ug{\W-oY v [W-k[W-k[W-إm]/e]? C-?CZo><:jq:"UQWQ"+ _׈u‰}A@}XܐQ: |['r݄}?M#?7̴߇OOq=HmX͒8g6Z9/W+7kմV\C{RY/>ǍJHf}F~NxntJi>n+x<߸>7@`_ O~Q7@guyv?HuyIynOy/S~so{YS~݆lqWW0 nOrO+OD7߹lb> 2a>ƾ̧r}=`T<}@S>qO#`X@< )O[T řUWrCᾘ q9rxbue;8Xs(#5\G|>u\>F\>qg{+~e3%>N <y)~m*(~A, .}=r_GƸW^ʈ'½$J8^B'&WOH" =&gޣگ{=KN,ccBg C~þ}`H֊ų)0<{GϞ'8.q^_ ~Ϟ7|7̷Ϟw o~}ǚپ,ggs{Eylʳ~~qq1{AO no?=hmM}}} vGl#_h#♸;=2nE;Wwy1i=O獨?K}v[1Mv.}xs#7m|u}ɢC>F۸ ؟+HoǏLq5P 7u~~nX_:We!o%ʗUMb \zwrlu3;7eH {2SܔNܕ!1T7e9gV7*o$'EOe'[^,஌iH\m_sUu뵕(YvПx(Yߞ9 sw+=>.ʢc|ÿ1CIW6zއ}\W5Or9Է`Ϲ+q q~>wyc==;qG(V)gPӗcP_ދ򘾻h3{1}q9FdʃsS*T>#6L俈ݙk=fQ7IOSyFj}ܯwOѷO7/='gKI_KNr<5[='sq9[ =_Tg#}0>99J 3bRIeηr,kgg_r+ g9Q6}pN/ңdϑosszsof3=K}![|są#E.ClW?x@x:lVGy<3}oV);T'\O>\c{8W[KY[+_% F%/e7g$>ʈO%0<G J9%{JsFI܃󙞣~+(ػ!we=}:媌L.ʨ/0rSz37Sz .ʶ"[sS{5}*sUCylپwmfll͹+\$\T'qS^yw=׋rKה~+\ ;WӕT^{3}o61Rn'q?\r`O=t=W3~{nʐ_eWepQ>Q3(Ey!1{\^כ+xG+ {7r܋xȗGo8rz>󙞋>G,YAnثH~U?rwA'My%釋މGb{UMaoؗ2nwⰗ#qO_.8Sl{gx+|Qޝcک>O:=ojorO<.7nGb=l{x%`#>|+KlH y㼔M^9Vsz>󙞯` |@c7[+ [y eآK|7͕(oe؆|R)1ڢM_ƙwxG郁h0t$xǡWgQfoM| שܚ2$ex)?+S;wR޷ wfzNy)8[O (;0m=wO?)'ׅkI[K Yo_=OJnJOsrM!m(w繼W'K:GƼ 9ѷwZ\t{ht$"r{gw >,|Z_מwy+f^=w#/ww^^cOfoffffݰd\/џ=r5[Yko^r5~˻@;wW?dB˕ ܗ0n-o'/n\ra,]߁28)Cwn>sj_2h'alX|ݸ(e,򤘼)& \0.y7㤜,$epR^ø(.3rUևqV_׬_W,<嗬al§_._~\nIYO,?brU-MxWHXn朗Rrgq5_8+}h_.I9/allp%8e<ÞL{a38|.+^'s[y sVZ{TkbYx+?7 HK,cwxZ6ޖeux/Kȋx+nq(?->s0޻,y}yoeܕI/s>S7&Ob{&_|21·Sl³ }`k-YʣO^~>zy+NpҔk2-s߰Hee<ʳ^sZ{c?29xxnz.4տJS8)I\6.~?]-/,5/r7<-w/;s`̇!.˹ko zy}عaa9e9\-\ιaa\~sɃuXq{?xMc/vs۹sc\Gk"'eEsո=^$힥9gn','vU{*VX{kl홭='qӲ?^{wo@^د$!~d/Ew<_[Yo3r7rʻip&O'[_0̿a=O^~ꏼ Q[yummߒ{k=R.1,ތ-|XiqN,^B/e )RT 7Gk̵ǫ\{<-կr7^;7cw>x?>.7aw\=9,} +#ȏNǙҿ^;0/x;%ߞ9~:py#_-o S1o)euS37/J?[O?/eoG?*//_$sO_9Nm {;f80OX1̟iE_pL?ڒs9ypprwk>oCtO'?!$ Zħdy]/׿zI;ܾ|^1hדy[*Ir9Wb{zE9E\_gzn़qa%xLc 8,Cf\qR.ϫ̰\)y"mਟIy9@rRG2-~-8Kp?^rO M9ڟ#rW n].~# rV^Uyve|O r_˖^y;NJ7>Aߟrʩ?n:z򚜟sRUFNʐog>MO.__r|'>\?$ '^rȓ勇۫_'C\"|rϣ~%ixWK&G}Ƒ~'/qrOkqgq8SިŶ2snZ{v|c[}m={i{]>7ay,m1k/G|T6a~0kjׇkZrp׶{ڷ8;PC^<~ÇwW^y)yR#+՘/^^^O*lc~ΑzӇk2;_?܇r }hr}'+WrR.[9[D#wa鼺 }2q1-wa<[8Q=܍GQh_ٸsZQ2<򂜓VFC>D{z^G6s*/KKf7|#ɖްf lo3F{%c<[W{|O E~3s&G\1?gD~p`SyT噞W1ʘao yy*̧W>a]9l13i_W6"Q_C?|ຌǛwILcX|8Oc>OnC_.'eG:8)a\~ܶEC/d }r{ʃ[iG{,pl9+|}Y52\_y_/1rm[~Oɖ_BsSNꗙ0ʫ+Ɩ^,jUKs^I9I~|<^~?r{K\/Ig]fsWNXcbn'Y'~֟(\qV.?H$}N\Py6!8+?si?Ѿ\#ȹ)m,la?=G[iFn}_i8+W7.K/q_}]Ӹ^qI97c'.=Cqba}m058ݰgNbkV{pe?{~,3le=܌#}؏"Gzh诗1r|/cG-בc?rć8%w?} *֕cW.}YC.[% %|#n/u =Q`rhS#z?&[||?7,~/[9WISy?_y)9\2_V#d_KY 菔r皍rVް7-i-Ko[z[c+蟖r-SUܻƖߴ/r {KJC9g,8C1_-|XxA/[e+azs5^׆?,PK{èORw[R^x<;/Wco1T=\/Oxy܌_~gwBx^K෥ɋ;3V) JsO_;5q9{oߞިi?8ݸ(|ZfpUs"4 ܍rx^ zڤfx_1].1:.o&}8fM^^Wi1C[{{bI9F9F\,BFeC[#s>(rQ?O/g8mDiw9?C{rVٗ<>>N_Ғ$'bmI0O?]ʫ*Ϯ<,[;܊2x'K?f`{PSY?ّ r0~rV^Ey6ѕ=\-$(xaܳr3%)g$ynd|TGbpV04Y9 !?x\riʐ`w*y>q9)Δo֕T.2dhdkp'w, ~s}'jG^`Oʝj`::<nG{}sP7nr0=rQfZe7_cznke5B܌qoq3>ےe_f}qlEr1QoT_^1^.Gzo1.w#|xlCxʫK9]| yxy*<%m[195yXt |ryBӥ/=d-:_1Q~w7#n`s|oq1͸iq1y{p3ho4k>O8 iwp3/yXz[Eyg2S<\[QeoLi{[Nrzy+zar>:hO \D^qy)?==<)oMD.x*}d˯\6ۗ<=~RӸ=ܷq7a\ec>\/8+c=BnƯ~]oqR^8+i,zG]nh'֍-㬌Y9[xdI'Gd _2gd MM-\qQ.8+c NV$䢼qV]yl-na,\qQK^Bkge]˖^foEZ^ }]P}S}4 |g/[~+ߗO?,[yA.r4lUVտ~K3ٔ6}gf5O'Ҕ6d_{]7e _8+i\Ep7ʨO!7KiC?"[Z2샰g=YC{`Ӹзh/L/'oo7r~)3.'[ןV_C2~on{].͸OHQf_njMiz yF=*yue9ԮEY-^Q*^2If~[⺵}X7 gebgK?M?rRsPuk+2҇KkVF'~u|i<ݸ j\<8I'3xUiS~Đ_g_?+//eSd~S2n8B\?JcU;U;sVW|^59ڇ[«S!gor5nx>w^My O}eb\C_%wa[M-b`ܪUUO0-P'\ϐq 8  qy)woH}p=G^E9փw=I&4Z[6?,i/K_\ϓ_rp2ޮ={ye*KGŵr-ܕ=jywAdW~7cW2"=מF.+מw=RM [|{dɒK/羮 [xx+w G}^r~X?ܕ^wRP#x4>ru(m\sWNXWk[)A(w߶qU{ PSr~0{Rg˽AX]]2-YxpOge9^?˹[;/}X썍(?adu㬌܌-+˗ 0sMU}sxa/oOn܌s>~̾>Op?s.X}b=Wd/D8ؿq5{Oiǹo w,熮˲O}AW|=2'y*c1Vew/Oee߷b2 Oߣ~[~W5?W-j5KYz]Iʳ/U~w/O\ri5[~k_7VV%Iտ˯OMdFMSɂKiDr_-]bPbeRb%TBsGO+vꧢyF:δ@x{$%G))$QI! $YA!J I=NHmBx/6{9ޫq<{9ޏl|OxsNZb+6ir(;r߃,{@r/0{G)s4c%y 3qKxxL1ޓ(O=(OMO_G&e%CxzF'ۻhOJ +5WПCJ+E'$1ްxJ+%VXB>`% rsXIC` y8V9J+Wr KBai(~3,T`>%,%%,%`IK ;Xb0Ra)C KQ2[oYa }ÒO~$]-ğ~4`yx徠?7G),%GX" _C{l/,5+%~K,^ܿ\frX,NT4WDk-ײ}?wJb)#?x*'lS[ɸjyTIwWmo}6ȏvir٬''}w;鳽vۻl~~;]qx{')?<9牯^'>{x_<y0C^5g C~ye }c> y1Cϴ~v3~N8}p~p_r?YGc'!ˎO;S̷I+뎝;旁itț:_ďztxRҡ>!B'O.E|O_<%ߢP+{Xo}C }SO<ڟ'ۋz#>Xg}?{y G} p=3aIb|[:<Ӳ3{:aeȇOƛ#_a>1_4|_|=e`Offʓ`{/{܉{a~텥?% /'r`|&7쥘aO76o }C,7`mG';h?ʳ"أyananDyчx7777S <Ex7ț8 `?]C3N"4_ۧ6h_?5YNZqA) ~۫k$nMnh? [+= Cy0CI~G?Q7||'}0$_hcI>N"u _[N:qj?Dqj\yO|ʛugu1^/+;ʯqk=Br򫔷wgucO}vG8٩;ߝ|XOzw<4'){Ʌ=Aا||<壾')7i}R?<EEv}0??FQo2NQSN>ㅜqR~xqroY#N:^LoO_roc^{8=~AOIq#BOz'8>`]N>qڗ!/`?}:g,q"pKs=?7kiߚq~Bܴ0B_ Ӗ0{d?߅9CO^&h(ho\!|otn }/oֈ!'?Xf"ҋWAz[_& #Bq cegq7&׸3n5nifvÛk^̛~ž̛hB6'߬_suwaoIyf? D7p/;'^Sgw֓/b~Ro{ث?[엱~_c/D7SyђHWf_ԛ¸Iʇ7Gy"ȣ{~SBz-^k߮YHo8 )8  $&1_dY(C~7O~T''kx$Ẏexh޴%ܿH'}S^䗡/Tɉ}2~ I|_qC ލBz/q9<}mt~B qQ)#_{Ђ}! !/Yt=ogÞ'+{=#]O[%ڋߌע9h;ߓs/=(_{xkߎǣiho O!f!{2K=CW~ !ySK|o{a=?7|+[Y;Jذҟ6mh}>ow_8{`/7胴gG{vk)ڳGOWgן r3?=ڳCߣ=;i|_f!w?|G~DA~&/)V?MǝS*֠ >r?tHJ GzyӺ;~7\>Y 8^xO0 j/P̌::~GΌ~rGoҏ787XG%Np{&~3 op?z˪g9 B~*2n9ȰSpdF|؉ǹcWpz}>hةFƹ;%_ؽFƺ X7FKF⹽ QuN7E&B~&ȯ๼{>Rp|Bx̿O}{9<3C?<uH~` =p]o{DyCߛ(O{ :c</)8F)Ν N_s&t~Wqñ2oRgc0DzkLk3~?|_B_iTOx+b=<*-%ꣅo=Z3ОKD{ï/=S'}"~i8'cg9_i_9W>Fx%Q̳KiQ~X(o~TO|( Owy c)wFw>{X{7 ۘol|6n;;?~y|:Pxcb>b&&'&#ʄ~|D{>4cC_hЧ&Go͐f7Mos&ڻRFzQ wAM+8'5t}zB }{b}D }}/.c녇q/a鍭-Q$'֛l^^eOׅro0S&ʿ>/g uXϳOyD~QW!ha^Q^_(/^ǐ/ B{4c{~lC5ط)=(k)u}hka9G|wͰgFy}xI/cOX̿Ø71nk!;Io"~{Haτ' =7ӄ=~ΰk ?J;o!H/؃799ڗC}9a_HKH/١mCߣ?=C[ȯ`ǹ6žs\'pk~sR׈-~Lj_~U}9Vďs$ϡrG}s )slxmﹹqu/w|q.z 8g1R޼R Ey1Qva9pnrC>N>)gq#C^9|<0_~AyϽ<]^y?y"酟tEzq"Czzu7oOc0cpϺ#?c=A+(?e _G y)\<{~ sBUy擏c7oqNOc}hr@yc9Q޲#=?1r;C.娏;A\~~_W|/q|C X? 9?}cb}^}/Vys\ ++j|zsx;F9w+*ϑa}wAzy ?~SyNk<XaX" _}`Ĺ?+ 3O^{(k<'WA}$#p.W<׽?Ήnk{eݏINiҞ[02ύ"}[AkW(+8]鈏s-O9{>S8SQ^{A^` ՌQ_wfdOBz9.{N}df{=y笹aqa7}{ 7wh$ϑ]i$1g<9mfT裗=ccdUw?._fzؿ^ؿA{VhoPaOjogJ> oa=xȧ|:q!p<9W㡾h0/s7_g0/7Hl?ć{;;Hr'(gIx#~ܓ+*9ׯAUV׿o߆`=sMڻߋ6P&7s;O^ˍ1ܜFyyAH.B_מW|@{}L{~r?g_@ ~{LiߏH猐~Ya+Xp&+.i n✫ʵK{?l;Eyb.߂ǽ?s8 {isLs@{0{ijbo?8G{mЏ:쭡u~B{r{2sɓC?>/ThEm/8o3L,D.NW:|4Uiq9v"j*ėX ?ʧ {FG^p->)Vx  ]9Yʃu#[|?aGU,k?۸*KXzw~Z/Uy-c ׃e>^-\[=N/\qU/GYKOh˯&n܌->b1>Пjg90nƑ^'xo4qZq5.8SFnow23=ݾ[}ta9ǰ֞ڛ܌RFCF$w㩼1C7^1.7߱|/lC\>{W]!.w吇ǚwRwW_e·|1~12y(|xy*|zy+|Lvw>'~[9r?Û娿-~o]!^0N{jʷ|Gg/Oe|y+>ߣ~^s=l-|YzWo :_\{Y7{Z7{[7{婌7S0_r3^ʡ]|~П.啌T&G^=r3g_ڳ/Wak6~k^Էɒ{rಌ-~Y/r3NiKl_rS^۸9F,,e:ENܖs9)禬-%{gՕ6P?|C>Q\->NΆ|Зg/r;2n$'fL.hy+f7S9G-n5KYz݉]9?9n繜_/9+9rƖ~/Z+WpsOxcm-gr!'gŕp<%k3xnܤyk+$,O4Xf\?ow'wf\r1I m2,c핟RCNX?+פ~zM,5ρZSCk~px}a ȋ:=0՗#q+b0{ ~M^bfﴧN?;WK,?b\>WV#Y{%mϺjZhc_I~n&cK-wVY3y)c.eG<#Oe/Y)/ɻWWdſĝ~?ŧpw>,6_Oͷ~^>ˡOC>B}V.ơ\W_"waIxqj܌0FL.Ƹ-܌q*x}8 \OpעzyZ~Z~ׂ2kSnUgcK_׻ek'z'[z޴,=w!䒌r[~~/ڃ.o5c.gdhrG{]ǍxK=1r}u6?{Z%M?j(`G[/zpI#{޻\:O7?)}׾OK᛺a߱]RlwI#*s}Vewy>{io@a?lm-|Z8CI[8\{3rɯԗ_}dMMy-0n_8Lˑ7bc|^ӸfWs.qf%W+8{X{ m8.ٟ֌Vƫ[ϕt<^x_w!.W㩌W!B]!.OG^C^x-2e _~WC9C[9Sr̷r5u>'~3TIF}#+C[ayYk./e? ,n},eR^wOX/\m=/,/sX]^ʥ)k{sIn^0yZT^߲%?1-P{婬e[K.[yE{ yYm[—Cړ³_ګ.[xڕ[2K/y*lye~e <-|ZxiN?&i;_DM,wI'3rߡϓŏG~ixlQ,!w z0~_ў;?9(ɡ~2gU^=c_hpg1^7{geٔP+?e6;P~0`?WVEy4ޕ=?q031 xܤ?4Sb NG1=!M9|&2乔6ί&3vXlا6ʐװnY&gQq/ge]%IT,dοE?rQ^я> Ǟ6r}_ʯ>GrVzY9-Oop1{-b܍>5دoc?r3ƏW\~ʛ{}oHZ_ck}=װSr1c|/rGa|E%G>;=ix6Ο207g?723b|#{󑇗e򴛼&;)B_Rd|ӱޏWd|9̇dߦny>L}| 2U~=<^9cl\q3>ܯJ!ոn@^My S'g21P2Wt)jlvmᢟ\{2=ڻɸg?屷_+=V8@ʸdבɅoKO?eɟsۚs1N;6]ݘrmr;^·ۻ^n9{rV2v[mw|[ v%9o/z7XEӗqV8={//9҇;_Xc_͇ף:pUz9kXo_pXWOبU<)/Gz|~W5:IA}F,3 OY[r|<mn@蓗CnC7>W;QOk'\,?n=C:'ogKۣnm˧=[|V1e}q)Gn}cQ~guL>0c^0c_p񍷠<BuS} 쐧!/!O;gS9u| y~9ʃݔ~rOt7ocWc>9c~V8'>Ӓѿɪ8`fG#/|o>6L_#j܌C_Ӑ'(x S_%gc ƨ?pwM!o[>9z\cKްgQyBF}\o\kQnXڗEr'ɱ$|GXzriʵ(Xkz}z~z,emI>rK  y!1=x[IS^{|vTDx%Wr&bsڻú˺:]s+>E/vK0r%Oe̿Hr+;죡e>nK9o}47{Y-1nL{nÛ`ty+Gj=o>qėݘ<_Arϱ[^N.?3m>x<->2rmt`G8LywN_=q3~qR-<[x$땉l—O 6_NQ\qUzHQ8+~Mܔ!EyN㬬ܔ2.1/'beK/[zC~ە6ʨ7,nuKsע\,lI9I;?ߏۨo[S\WNXg^i?$yZauW'׳W_qzQȳz~nx9)?Ӟ CmQ/eo-SQ} {<-<n!gȿX }O'2_L,ngy9+G}6-\EԏЏuqRM<}ȑ_?mk\iw\_]WÀ :zkN1ڙuEN?/`0Hİgk)eدu{T3.ư_;m2>[eYj\uR۸;g!Wgcg#sڳX{_N-Jt~܌1_n^y'jlϗ_q5FymQ/w?ʳ3~#O/}u6yM_~|!.볟WVgRp:9\~MȦdW3lP?H2g,;ėw9H_?@0xFk }X<-e-+啾.W?ۢ^ޑ==mQ,zLS\ZZo,nzXGxD=\܂#=$$=Eaɴwl—CٓsW]jGnɸmb/|//+7_+/e܌;˞z;rƯ'-~m6xF8o_~}t:+ㇿ=$cqIs&عLd?k*,VI xd:7WR5:xZtqw/ݞ!oϕ믎7[~zçߜ[J8:r}8ܸ9~[>|[i'(g-?y[Lj/un-r"Ra<;=g9;=ЃzoAp~_(U~O-~~@\"}"Yy싗*;&ȴ-rLn,]qþݯ9z1=_2h_E}PsĹF]jC`|]]kJ>,y%kߔ}Q2;s~sw~lv";93D?c7,I"sV#;gNhk'L+vV2)2'&yXW˯9oOxc] K9GN?'OaY~ij&KܵO"wmD(kL?L~rF?:*<}b`k2?fůw>U~rXη?<_\9pʹJ*[dğ`ى1/0 7v<,?M{#!oaS7mo~|n-OUVv.Z,/e:z ?b.fy6 }q6ˇY>VKH]a|峜׻)8p1Oi -8)<nj-<(==i̿wr~.w>RﴧraoaȿF{02eN'^|WڃQ_b{WwdG~>{b>Y+2[W~"}22ٰ_A}/-eע[v9E>f)_[+ ~wQbȻob*'N8z9m=q~^./W߱>Oqf7Z# m>l{[81?]{^*-r[%2f8w>IoG#6n2.|/qZdW,beK/Yz)'}rZd/9Gn5}U}>9. 6Α{ܦ| Y?nw~^%2ַ˸D2$%r돼O52ۓ}-rz4П+ ?Ȝ?_kk.~KΏΑ97r\9r~,~MW?1%ڻ`/+oA}^Fzܟ~D~D#/ߋc%2 c{콍2~諒XO'{io}/^؋2m~bG9/כ/˞ٌ=?u'\-=bپ'|GO[_Oio}k?F\>_;w/#?/a2}ܲ'-W5?&߇E~> ߋ(W2)S5~_<~gJgcSlp^~m~\~8>{z4pRaa{SM>0!OO9{]_"=2.?FnxFaN=V9"_P7x=aԧ_ޑٞ"7}y!.{!?xyE-rIƖ^,n~["9ܓuG%ȼM;E{+2xGH{Њ΁^~%+:yy>K^^-ڳ<=a߃"w | gdI{OLnq^nD{hWΟr3^K{㙿i/}=3#l _Lu1#{O *1m2%ڑqt9ӿO?oD=Ov/_,[ۿ?ˉ_jK__rTs??ߛ9- ֟sA1^+M}0OƁ}~?mH8]>:.>׈;P?Of#'/!N./ø/,xla\"w߻qܖq3N_-bW)r%2Ol饐^#i\#e܌-a g#r(9^q3Ns7d)|Ox[U"il‡e\#7 o^-Zxby“>.c}&7,nuKYzҫ^􊥗-d7=s#m\#H;=9#s<[伌kd)// _>_yX0u9'~c\y[zK^z \b[|W_Zpcwb"i/r1N)_ø[z?L"ݸS_:9e<ǟp7>߻}GqV_4^;2۫\0^.#a"c<\063ƛr1c!ɋ-y1#C\#^Q^^!/+^_vOĘo.lOq3ޑ1^^|65lw>g ϗwz;~3"j#/o[~_}L}9%[zҫ^-a KoZz[޶vH-<[xƖ_j›w ŇO _3{䜌-Xxi;rbY>aOxca33=W hoy+~ 9/79Xz+^OKܒq3^{6;?,~o=̏x[m,{n"^i/xF.ɸwk5~kd\4/7b"e܍ iwP]+߭t?8G8EG,w__mu79Ǚ侍SfWKyEN~,]WɇSd`_8ȏc~镧./O'2q<[1Sd~me\"wpi4NCIKqxyD?V"~3r1˧EWd/пB#þ2_!]"ÿC %b;2럌$!,_q+rj1ޑۈkd3-+zۓEq*%Zf#O,;R^\ޑ/|"d<#}>.=,myI{32;ri, ^pgWi—/ y_?M<#bl%7gGkod܌s7c˻wO~q?ԇl?r~?O?a?iy8/O{_o񄎾aX.{Io"zy~kLo1b'ZCWq~~Li5ӗSfX3}>LtCC>Ng=2qq7,iy%l"KȽFxFVe[KMqK1ޑoY>"?U-~۵\ޑ/xE;.l_;2 +jaғ+\Z䚌G䖍-?&tyE>-|YzkOe<#blϯ==V yx~ڳq7ޑYJ؍yyF-g[q5e/SWc={՟y:iq\q(o)rYR(sV#wˏ3wvKi—o ~lD6}#>M_ɦdwC32-twEf}wdw4q6~>yyE-2ҫ^-n KoXz[޲s#ޑg /^-Yxnc]1ic}ؿz|=ryK3ޑc}b){efl#k"j<#oodϹ܌W\M.,fEjןoF1SlW2oϫW_oޢҵNJ)nƯ>sq7^Vc}߷Wbbb/<⭋7BkFISgb{9#P]6}Pl.ww30m[ߜOg::%ʁv*;g?7[,Igr/ߟ[>8zo->?:z}8\Ḋ[>|S{?7{8~uo<}na֊Ҩ?kп1K.SvQY0b~'ü10/MJ*ͳ$~=Fu^*1*1XWƾ` {ˋ~dO`Hf1)2b虐\"cyr =A L=旼zdQ"=/[~.2V1g]No%kоQXX$oz37ցωg||Zǟyr>1,@R NYoT`Xg->fi<$hоn픟%n\q[ 'N#3T>Obay0fgɋm3/kSϓ/3삜O?Obd̷ <3g1˧Jg~}"OG`'gU3o|:Xr7Yr?Y }=ɦ>3_dag|T9B}OK_3S~ޕ}i}ϓ'^~NgZ}}އ>}Y~̿O''Hfy)xEOx8/4oq4g|on}gvۯ;;I_7Njoi)gyʫjy3XuW}{|(1^=SSߙ>|ѡp>W8t?NyC|91u1|91v Vǝug|97B<>)otw# ʠ>3ߠ C|}jP_5(_ ף%/-D}rp= }s>}tp }uS}x ˇ}/з[ܑ_+W땗g"l"9~cyԷ{yF^vy՗?U߰VOmgz1s=l/8ixbо_/}VA{ -cc+s(hy>޳#?io|=*gڳ:=wQFyO{:7uk`tOu;g0y;[io촏v/ߋ}4a>}M}뵏}'(ߗSJt=UoɯоMo'B67󇾒{wf菉d1;?M홰S!J++ '闓;'~F ;?~v^^o|~]iF{M?oѾhG`|;|,G>@o4?mk/۟%)e[?DZ_y>۟ۙ 3+Ǐ_߃e?afWOy ]}XLA/ȾXWCU{r}Q9S?5̷\ߔzyIUO>J*_1yI1{.ک/7 G}vbe \\5~#s1j>sdȃN5rodW'оr{GRۿ+~o>ד#h\?5_w<&Oai,/acy/57W~$TrNy<~R>|T~~S|+a}>/Lg>+3-WϱOd|"Dmh?}Ig~ A8ӾP#KW. :]{}偽ڳ^}0/se'wwO=}=}=T)O7d*_N}TU_~O}> O~>|ߟ9|ڟ#WcOi܍ymW\"?_jG~ _9-ϨS>WN~I'}zWzSk'_?OiYڏ?A_o'?G?b/<h,~5ӂ,~7'YWirg+K=Gߗ߰'}XB~ߏ8Ob;'߃>.zy?ra)ap+! /^-o,[x#2I*׳7>ַ#2]zvVoJK'PGe}^QO1'^QZ;ʵW^V' d?ˋ=b?t;ڃ//io=Jȍi|2/:yN{~˩!h4"{_y' 1eO,|G{bw>\Y|dM{)wS˳sg}ϖ}7d߅>C{4$1>\h`料E{^^i_=r?v7=ouwr]g$_>eg"['D婳Ŭ }=mPq'Ӗ}⇩C3؉AO^%۫SI{τTf=cCU>ׇ!62p1̟:9ǜvd@lu *ʌ:ɐ{֜.$:~'C@g,w<)d(Y>,_Q ;k)ΜPuS9ïOjĐgN:Sr欪3%gN:s`o\Q߃49JƟ968csڨ#G':eO#c=:Gmbi,g&k,q~{T+X?p9E52ulr -kM.o BO,?G:uM6uBD{q9q>x !Q'Hd܋l7Nٟ|st&3kIx">ӟAǟ<>D0qS >dag/+}`#) 2}aL*}`,o;k,/l؍Sͻ 6ufދq5fyFxG O>R;V\{Շ|P_VB{kY{{?IonSw~տooq>3K,:{pIB|`=6Ϟ]|\ǞK3Q`O0SgPwqe=gZ(ϰZ~?W3V=p2?oe~s>j߇k8?'A6O{t5?"G|87<{anm Ogy6Q@= |ߠԏ~Щ=ԇޯO(iR~{bѿfDX/<4z7-ү1]^O,[Jy"f{L-^W s+2| &Wd~y?G6^=8'_QF{ /dLCkc0_\L~Qg=fTʻ=- |d_ګ׃>ם1},=2q qohҪ3USɾx«/ΌVom읜|+wW_ VgZRߠa@{pv7QC7vh/o=L{{qS v'߀3_8ߟXގ{&gޮfQ?i_أڲ/9|gbx.o}uI`M?'}(~oL)/1^kWb13ˏ3_{Y֍;>$3rzǗ~1}}B-+rG<pE{]N/WK+^B,w\NSY-Eq~Jy}›c~çUqb³' g}.G.[sXyDžk^W,=,/p92 ߸>52q~[|{9EƝ}- 0>/eYQS/=`}+\.L/ o>+Ȟ$M\$?e/;?%ٷ7C2Ok[7q9dg~/1yh/G{;Ѿ3^È_}Èc>W>X6=xfyYm>bycX -%Io~O.7!=O?dܑ:?|~V]ԇȲO Ny}[sd;q5)rx[ydDy{1{Շ짨/[#wh-׵gn{7Ug /boceUHOHCa/TXx,̿hw<g2$/f"K^㎲,y5/#ލ,$Oi})CY?d){{^l)r?[,'PO0_M8_ ˇߵY~#la[e[?Y~爃OkՙE N}vbS*=r vjb[,_32-QE} wL^_0#j;'1=.יA~gx>-=PS=2'.5w?g\W 뱗-Zxf^w g;ߪFǣ83eh(#2▌;k@!ߖCFd//_~Yә>q+?{>U|+;i5|,\3^ө$tgލ;_v33^Z͞Z=Jiz==;˞ Bu`_Sߜg&Ӥ&ɼ5ޖg(Z93s; LEu {ڽwh%mpLoio9M7hߏrw2m~Ο҅uyb扎}tgg~dGxJ6p9ፕS g,"5I9\ WyLcK䯄{yWcm7.cį,c_,~Fy 2v fȁƗKd%X8E^Ih m܍S2Kd`nM~8-`_)9(c\2[j‹n"g ,<嗡!lAΑO #ÍRd'㲥#?m.kȳE˸D^W-j/7Oq)r'Nq?qUQlc{~]e"C]CA^W7l9;ymfh>ch>!s>ȘOz9G?8G.}=y\Sdmr1N/gtV#M8o{BnWr:/uYzt#NguV7y[91_qC)~Wα>/5Ok=xGkb^|T܍ɸ{4Wdt#>7^܌Ocᠼ{[|_ypx~pq>@<"0dX\8<<_Ba:wyD.׶ώ{d*A}aYyY8>~5c1T{/|W.x}7-e-Kr(^<;ƫrb+^1^/?yX0\e·>P[x;rm,Yx+1#bl+$d܍6>'_j<# OWP/AN'f"Ŗ{#7yn_^[܌->g'j>_GlxFߛxGwcO r5AZ/ոwJfLҷoz?{g|#W0Ծf~8?8G{3Elͤwƣ^mכsmf-<^a|Er܆q?*e />n? }r}8/>~GA].1/ȨJyr\qX)6.5?T7˸D$F\#c|W͗)2_4OgJ)2۟[ag{Kd#1ebKCN"cC1?^.fU+O/Y~)WghFոȹGN!}z9WwųE|wE^3g4N[υ%rCeo/R>K=Ts1~ ӯW<׿_1{/ߛZ؏LVߩԞ>p- aϲZ5~诔̟)iS?Gq4j+3&ۿMe/DyVl9@#~9d_gdh.@?kuq~bL0'xse5#ßp??`G)ϔČ @1' )S F#wK!3/:3?b"-2?aoX[Veۡ<""WߊGQ#dl )d<#_-~l_rGf5ޑŧ|ȔџO<#R#K7KR#ZѿL)^!̧bS'1/dKGdÉU?b oM=|#fmv[y-f~`+?hoC{ lWw?\1^io'~^}R" /hd{rǦ^sos<"#ߜjg|:_}qj9h\Fw~sʆ9S}/gw[~vKb49˿9e3V-bgSzgY~a@·qj9ul'SѱWy6lZ 6_W9k!OۈZ{4}R9i8U7WX9˃ӛhӲ4bzN/&_GK/ 0^j̏/1?Wc~hp2?Ov)e~8zls=*Njdv*e N/Wd~|ca8ȧ<zqzd!QX^,/W,?WӾ߃=xMr7>qlste70$sa»w o<ŬOqN~KNkdG}v ׈.׷}_Y?]rߝQ=9(,o KaQQm@vy? ; 򾳿`>w>{SS_'AyN~3g]m;/;m|X39-?),o3}fyDZ$_ `>48A_Ч;[`68Bh>8ZO~W[2uqQawK_]'uW>.õGnOxD-|X|?-|%s/i;rnoa=pio{O֧֫?MY'o+r/oo\>3OAg 74'˿1~iHߋD '%m{K~{L> {9gH-;+aOI(_ث:yb~o19_y{Y69^}0_>NQ7QB0nOgz%̿Q=ՃSߜk'~cA,_f{`\^,e}e߆Pho?~ڻޙпX~۸+~?2{9=WfQW\)l?`|k>WfUGVƇacq21>oϦgizJl#?VbyEOFja/p%GGnOV~;}^-(+/++3gg7|Dx?W@(}D %'?G#Ȼq+G7Io2tғn3'|~_ B ߯߯c3rʫ8#>KC7n#IEM&|>}jR_kWWħ~SW=?K_yWLW5z|=|#%r?2οZ#9nYk/~/;W?{~|->U^LJs/]MSw/k= zs y}_i|1?_߱^[Ldq z~}dW~Tñʫod^EZ^ Ӂ{7u\{ ]ďqϐ5Ƶ_C>ʾ (w-߂=p>͌_12~ O,z函Nb?GܥH~'iz"ѯӃ>:!?^Z,O>uT'0{Yk|]Y^.[x}Qˑ=e[κkd᩽k;{W-/WWw|-ek.lO>+g~N՟ ۪Y^Vs3˃Mԟ3^W?S2L?W c4II_M_Q%gg_0>^Ȍˌ#Oz)G,?_=}[Aw9^tUj?>p6P~Y.~ sQN_"?gA忀CNzi' emY,6|5{M>ʳWy,RY\nT}+Aq&^~zamGnSw-ߏwd?oWogYoDwDSb|rm{{3?WB>v!?:G+z`ɏJw qy|~Fg\8=?s>yʒ?u}7F}g富<&#oMX>`C{" io,fߣ=ywPߴҟTJ]c 7'hϥG=pr w=ԗ}˔h/F{:hok?5,`?zGokyZy+_r{/4^k33Y |dTIB"?-$yϸ9'=7f{җk乍qC[z<׸9r%21\S-|sNr3'Αn8Ef}-4ހL9\2-K^/[z~ r,jW˟/bo\"-~[bB;.sD۸D=r[9r+_IlP!sr>$9rwK_ C<{1#7t/ Yݝ==)r*/ O>!]I#{iv׽ 䶌ݜ{?yȩlm{7臗ş>͇GL(Αŧ^qs{=1Kp/ֽ3g-Ne >,/Her3NqXzנsp/®W.^]uO8\tW}%On܌; v;x?A1ײ\Vc[{mkm-Ɩ^xj-|YmlwdH='F~o=ܗgaN/w;ߊw#fޠ<ܲ~ޱ>0"[=b)^ˈ\-fuKd F^>GSA#J2Ofɸ9FF߰,?vXRs\ҟGH\^gXq#/+PCxE.=r-Ync[bl?8c_,~uEn-r32}N#dyxƣxDxE.^pg=!ޑw e{xYNe[w{zeo|yG.k5^[1ٟ*Ȝ+^C){;7flWa#b܌1~7ilHݸ[q3.͒_na\s䲌-l 0%]6i9,0~u8/69rƖ^W|ʗK䴌[/k- X-rVni&W+ob-=³}OeɥN^۸E>-|X9\VKyrj‹g+oJ=8E7Nް,fUK/i3~9MްVcX6>O44+O{w܍-Xx-r»ɷk / _8EN{Da\"i\#GX7Y7Z7ke_Α4)r? Mq3Α6i{/7b"sDln {G]N2ø7'}L$wb7scV[}vnѭgA\0^,~ ޑg6O/sj<^ֻ?[I܌Wmin]Aw 1O#s?M;2!|Ol?!_Kl0o+V^+gLS!s5ޑcLà)OKoZzۖ-W"'#W ,Yxn‡7S,|Y8P_[&b k˟\l<"7 o=rO#f"Oi]=ʻ<ʳ򊜋=Ƒk5[6->"d܌W:u L&k'78sx׽#g-~wIܗ0ޑ4w}Gᑍ/W8Oܗ0,q*r_riߏ8G )/yޞr5N/'/k#>-|nlb52[܍sdX/[z|'N^/rltrFf[d?q7N[-/Mlb.e G"O >,|xxl›W ^,xq&C)r?Y/[z^,j顿crFNaB,|u_˽x '3=)r%<9r˳sW_ˈ)a܌#X_nr'/a܍qw60.ȐGO}UZ.yk7 Z_(_wb7VcZ}Me=ײl\q fQzi_wd=;2e>X\˒G->oy1yL6Wd&Or3ޑ.|dgGdG|x+Χb̷CѲ }@ }A }ⲅ7 -;r2n1}MouǺkn9WcG>zyD|"CC~\7-emKo"?Zxf»w >cG>-|Ypˡ^l!ĥY8=|GxES *A>r?鱷\^a<"d܍yؓ.-wcK[z'{yn#/3=e#/Wc|CKS[c/ȼuZ }џ{̉}?cO\m-rL'Y._G>'i.eȯ~"' GwGWl᜿Xuoȅ8Ef}2.!wˉQlK9-=GYKnz\YeķN"^.1şXnoV~m'EŐGN^N!_l_;zD=r[9r+_IlP~$yzN:G'KǣS>Ip1NcIsq򇛅^NSyY6W~<'}Dn~_wq˺r_4N3|u8Gnna"~MI7]`0k[|'Ma~>.>V~V;Vv.۸?sSnM,T7\N/&_֧j&0Si {&7b {"[ySܽ#*zhO,#8|0lx`je{WUK<x\Ad23M@+?_gyGjXb{T^3l[l~_9SOyq[q2}gtLюWhqloq/4djC!=Tm/=7_y>HY_U,mʛ. yS'?,~㭎ś* FE$WjbN蘭P'cKO:'ꘟ>~ӟL;oW\N6Qp?ӱ[(P{ ؟­`Sα'P._^ߨߖ`Vm{׻[ڐߐߑ#_`C=+lh?V૽[*c*k*s6Ox'c,oJӮj>k.zk~5xxgxh:惧5z<᭎J-ro>6uJ_kk>5~|?2/~~᭎/\݆죧[WS?}ݚG=u|l7ԙ)_ЯjjD+Z7?'_ݨ-`zO8x7?_Яz|WYϏHx>ϲd'ϲU~~/cFzC}[^Q߂R}a kC=>>>ޑޙ^mHHLOI7/!Bx& !^CxleOu}և5[~s<'-:vuCx:u7o"D]07o(_7g<}><[;r?vuM :} ~(o>3#na{>oԿcؿz.K{t]v__~v=FIWˏQg]_zؿX/kC~7'M'^Hkv k;}cOwuiE'tUa0(+/ȯ_-aw ׆"@<>ºKO;kepU7ԯ~|"[Xò??zz:\n(<^;ZdWw]߇ v|^#}~_4qL?ׯgg+uf5n7uEyzz1 _)C?) /' Y,_~XП,O'_F"WnpQKe;mÈgw 7E6Ͽ*߯U> w(^۳`{o}{z_"9ptՁٞzdi҆tC#{9cq\W^#l]Ǯ)ս'~R;]ԱR7o 4j>Mo?i;,0[(P-˷?K_Ժ9׋Ǧ*>գ?!jC~G~G-|ɴ+V,w8% wQk~oԵ[ݦZ3(ox>mǨ :akcg!y{^?}n麷{}λU_M/vϯq;n0;׋gʸۅg]_OM#@k]n(.O_M#ݑ_?D<~sy +R^5]Ժ~j~9]k熻ZGgnnWLj ,{Z=0Fwoȯ[Nq]p Fh_טvSWuC*W.|>C-3+/Oz U'+oq~yMD;k-)N-߉$M./Zڏ7/wVk9nuׂ"@>utSOcvWMm h_apWw\m("^E#|.Ζ4uċw.M=QDyO{VwiC!=q6u|C/;R#^GxS1U0mwDTΚ/$ '~R;lBU{єt)+x'SxMul#F-񳿛Sw3,< 3(oDlj]9v^Km~~z[]ݧ~u=ȿm!##513nFwxƱ8% wQ۟3tlnS+(o}~:yiG#}#}KzLWWW7xG'L7Q޺WgxKF~7F[xqҟO^ S/?|gqz8}};~d}6_sM<.(Ls]Վ W4xE=P@KwXۂZ۳E//P03P ԧO moEzE} Go<{a kC=>>>ޑޙ^mHHLq}y!Bx& !^CxleOu}ևe/iHF} uYb\vޗx/5kZǷO4Q^Cy *UīWP?xvwwuu|tU/QBy 'ʟ F s^xU ;l0Ynp^?,//ձo"Dx -/{Czi?yڛV4oɟᱩ~oz G._]c/w(o?iꀷڑHHe|ϕ2wq|s—cOP_G}٨ϖxj]?=^jOxx&-[g爷OODZ_SݐސޑQ^t0և#ݑ.׹=FzEӥ.Hy :6 ]XC} uQG}6b֜!^Cx: 7o3ޖ^ jG~G~G~?^1ߛklV/uQ^Zyw_>h3_(|8gγWu<[ ~_Ygx*!!B gx,;ʏgxYtSdz~;?i Oo }4b+᪎.xV.{n.tUǻöa[o"@Xn(򋬟Kuϳi_Wy0ݑ#l\"E"]EGI?qSZ>|\7X)7MmC}oԲ|5U{ʫ]].>X^ sa{?S1=aWw]]+,ژxw\EXޥs7ay^'' =6㴫8pP޽]`.<!!>nLsp GqWGr8'kVսow~7ӆw 8o x:(oxWuQ޾;_u5W?"jVR{Wo,ϖMZaW7ߑLD 7K{qҺvl÷fxRKqKs_(P!#FtHwo˻#ޭtg[xhXzcyO58M-k8jy5F  k?ou+~_ݟ}n0wn}~ /cu4l۰ϻ\ۻ677_ȿ!?-5j=>߆ |7P~+x ēwaΧjy]-j|y(O-WaM-*~] .w6oE} [$^njyw`+z؊^O㗑>>>.߆~w7ƻwowAn\n[r뷏ƻ*!^C^GǻWAwz?iIOIwK״}{]#ݐw%Wݳxk<m(>U'j3lM-×' WtG{ pUG6xnpQ7ooC}k(ay]3\pQ'և;r;< /᭎!;(7#֒qӵ7 }|uKuvSӎ'1#oooȿ?ǝs;Wu|U31S!`P~Cq5\"^AxEeK\npWFy -7OG}:6tԷ-o#rԱ~H7ǝp|E3h±?ސސ^^^^^ie}z:ڏpWOě7#^Gx ꂱ~Ε}+㪶^ji/ϕfZsO/TԧuAwJa ʟHL/1gz>9#1{Ƚc1r?FrHqSt#!!!BLU'}̴LcG`ԧ_C>3kxnpEMc?տб<Ox~(gM~/tOg /~?1?Mx{QʛDyYH_Hη{8Hwo?_8FzEzEz8K/m?uaPGyln6uV7o!BxEz 5PC}qg-5 kk!^Cxr>9a[?mYz5aoooȿ#xM] vx]w s}:Wu0~_{>o`l#8pQ/_ȿPO_I@;t9Fyi{5О:oΓ>i0 X3<Ա~]=8U/])obU]6x MOE׊UU67_?"@_".o.jhÆzNp;7o_<S7>Ome{'Ӳ|N5WHyu.j;7į7ΓU-y>-5>>djb*q:>61~616161>o29F<7󦕴;<|13ʏWp:~\V^?`:W}<:s? j~`队ܯ?9q2Ǵ?:qt<=96*=>nH7﨟~2!XiSdz~iO_oo>=o !' G_qgtGVoyPvu^`W[oB^(o<jGy.M]!^s_כ?5xm7GBZaW7ߑLD 7o߰ {,o|Ronf!Ǥ 9I{yƋ7 Z7 Wz> Y!ݐHwoW>ItR|3{(oҨBP~xP [sXO Ws?#ݮ7g:<]</g88S5c|هW}??4'nÿziϾw3++QK`_EԿfˉ?^^%V_?ޮW"=.O_ߚ_ ^;0{>>ޑޑP~C*:.X"DZWG⦶#i0ߑ!E}ʆe{>۶^~?P~6 و}u{- [GSw/l.gG\z|Nkx8gSX}|^.ۼk'cumhgP}oYjWY_[|^-`*h ۲} η׷#5r| w緲u{)vm^e}% {}K-[򽾟ok=y}ۿi,m,mo^E~iϟoߖC=o eV2+u[8>e>߆wuȌ{_#pFsm~_߿ln/~{?pAtz紫kM'{a&x’?qx(-!9磁U8g8·8_'Oox>\TR;qu{QG,jY_W0=f7j~W7lòxzljC<->²_;O`j\υ+,uM=a]z5VoY_\ORp^պ?NGR=C³[PpU7Pϗ<+lW{hpS;ҥ[^H_Haa}]x## W^~tzmy[+'ٜ⦖돊3ͼH#^Cx>ʆZۣz?x_7Q߆? m^E,_ўu]3^FwXގھβڋayo N"nb:^[jm*Ϛxڟo;~I-8lQ<[A{\p+8pCyUc蟔?١u Z(! ӂ_EeɑH7c/sz8֟cx:aZ|Wf 6=^|Q-;K4\5?_7u7:ci|/G~G~?60?j` ,,O:㺞s>n߁QT/x{k!muDxH8q!B<Η/G g*T̿Ҙ:>> jH7;X>=?qa4ezuצ1Xo/v'7Q>?/|eǯʝLi8jXǒ:քcM9֤cM;cK9cK;ǞF<+_ΑnjGw9a~ ## W^~t}]m7Z0ʛ(OwdikWO9: 'ȯz*6W$鉅u\ؐ!BwXގ==/-ۯha+4C"nb=WJa[jm*sM6UOۣs%.jۣ`y |Wp~;W*ʫ(IHW#j9\#%aYk%Q~C<9_#=iWPHStG!]?HYxFE=P@yq WuC +W+]1 ~_36xnpQ;(<7Opy>=ۃۋSs _W<>xx?F[X 9HHߒN{ 6uVFyM[SmQF~ٟqVղ]V^By s^﫿v{Kx\寧~Ǯ~#=VWS~hY`W/7wwK8]!^CVO_ȿߐߑߑK< uy7B~ݾy/CϏxBXۗW{ZOxIx"Bxxfjm7xRzu},=\Yiz } }"]?x^7o,LxgXOxircI g8ߙ4_ȿ< OG5>]ղ>i/__/'~kz!lgcX]Oj;;o_EZty۱\'iº8O4wߐ.?|) 7'~?{Wk_3,ayίZZ lϏ_K Ņ/l|q>w\^պ'K>P>阮_AhÎ??5pG"fZ Sw{^jazgzpSy볍3g5 'ڟ.WAO+ʗsR$~zMIte?oHkwTutwޔK-oK,׷Miy1K{rb?&4?u|r&#!-_zHx @n0+uuizKZ&'Ɠq}x)&wx&4~PNlM71ڟӮg ̿4ʟ޿]p*S_ð޿=iXp ]o BaY(vq? k] |s>>qYc\o0~'z|~:#\o :?`HQ S1ߥ曅r `~7V1߯bI+0 4/l:z?gyPxs:lh{Y(A;̗ؿ~OeMωWBa6F=~/)[7 1?. p~,|V5爯8_p|ַ_?s3^v^:BatgtY(ߐPyKú%1bW5(OwG''7P=>q>(Oo]]"E~ϸw|> C)kGgu){!FI\G^/_0WQ>QF]K~t为Q?H~;_0׌Quk<;%߬LDi[}S[{ѷҵo=|}~jGv|D:|Գ䊒Y~<2a~拤8W''O骎tW x*WP"1xE6җM=>Fc5O|pǦ< j[pQ/7Q^@x5īWx}^S=7-3ǨoC~ڹ.X"]e7,lȿ!D;7o_lװ}-M"n_mMě7#^Cx=j9> WnuCyWd紩[Q^Cy H/u76g(/ڻ#ݑ%Zn6u4wG{ώ9q.u?plgy 9~g*]+}GWOěo#ޖxMש(R/7 ?7tV`Sw?"B[䱩+7oKݑo@`Ǯ5 > Zn vux&M[gg'Jo,gxx>YK+t9x1}>Vv;w'|?δkM-k<6|~ o~("B o^q! U.El߁?а;<6uHMSηHww7qhO:ڛ/ .jCxT(#Cnۇ.ys/ 0w|?˓qU{WPG9< ( UWdyrY]m.ؿgwW鯄%_I{U76ueaOxLuRW|Zi][Xwwº,ۇWa[5ճGUwį_3>r\ajWWOx4u\-ߧ6xZGu^\ WM?Zwym`g\z%]UbtU uCzCzEzEbHOXow<`7ta'xO| uOL/`_s\X ca{-lυv>4oߨosq<:4;;D= +/W_ot~iOӱ~sHi|c>Q87'O`czOW5u;6oYg"\Mq'WU[WG}_Ov7;ՎlG?_Ow;|:k\񶬟3+WZ7 6X{z.]VE=^Mot6Խ7xK]GP䌇oDyk 9ʓ~i{}ƋZo:Fx>aǮv~ҦZӝcȿ!>2󌗦7̿Xx1_::vFyt_^j_wݏH~F8M~xԎ:O7Ag\'F!+"NJO">ϲ>!rǽ^z?pQ5/'~w<6{{z\7掑>>ޑޑ DX߸O~%}nqUǞtG +wyi}gyy-O~9/Ws^O?e/x~^gNOn("˓s~Zᢎ+oߙoM?ۧ_v8I{U76uuGaOxLuRW|뼮Kk}03+Z.MgFw-գ;W/ROP[Wp}}qtۇ3.6xuGSw8ǕVc6xT˽OgPGO/<?ړ3g6,_=nxqnHoHHlw[<ڑ?#\xͰp+|?ϸ/:D⾙ᾚᾛ\:Fq?99ws /?"@繤c^\qW?EO*զ.pڻ, 繵2''wߑސފ:p}s;'q>OW-PO7z @x UīgjjsTG*]Nn .zz/n0/_? @ W/;o^7{OO?7uC^/ނ> *Uēy/C7\ uCyI{{ޛO:~HS㸫sC#^&.2^|}޻v; vs\sM-^cO{fڂ;\OxU]Fyq%2 we|>t<nk'5>'^sb{9\/9m8|xJouGO~cQ:oՎtGḞ;qXciSLou|&-[g_oi|=ȍ;tN:7˛Fy s{to=?~gZӝ^z"DxxxnNu ٟO^8gW] lO_ȿߐߑߑK<6uEm;?}7Ϝyᘿ{xBZ̿cW7o"DxxxW1j{{ƫҭKeuu>5BB!|G#=cp{ͼrU]_K#^EH^-Owu|!)=Զa0'';o_CzU,AEtUTX_3ДFy9_d '^7u|-]pAO]m .q|Qj][+ɟwڑߐߐ!D;v,ov,o/狍awu)=#~GulºfO"m]o"@xUīE]dyK~-즶 KڏtQ[]^?_ oȿU^;ukW~r o{7qx6gznxE-x> |F+S|/(HyWOY+\ᢎ5mpf|32O6l2lON#~/)=?'kǣxMZ{akȯ&,_|ګ!]hث o;h~aއ "mM[绍a84;u>N"|c (o N{]ӟ Mu£[=o!!##ޖx]ݚq'/ķvw\o|ZaW9Ci? 7o?w`yw`y\/'9}zzu=o񄴫}9 Fx&-[g?Ei)o=ZX pƻ[ݑ> ^饖/_魖/_x: o~xt/_ȿߐߐPwY?4E//|q~_^0ʛHHHHx}?Pk{ў8 ^9gLpWџr??a=ίz.o,t骞}2o ?qSEe{ W5EP^EyE;oL Ru/䦋zTuo׮wú|uxcE] ñ?sx7+\gX X8Ȱ5@^]=ouCz|/ڇx(ؿ ڟo W/k<G'< asm?^[MݺZοxRo7^ϡ#^^00~rsE=Z/wuCy  ]2~67\ _}of%i_qbO8ձ ca}-υ==&i>?Ǵ_uVsޑsXtڋ̟ڛ!^WiS]]:=NZ?\}8/l'MXo\竰9维': >]h;<_xq}}KO k8Z:ڟU7'}enچKo[US=MOGnpGOx5Z߼^{sJou3WӶ>[<>z:ݚãgzLD}i?'g<$=L=zaf'ouGxW]9 =Mk1 ?60/N#} } }"}"}!}1ex{رyu =`WW_?/> C)瘜_~2(C[pUO~Lu<n[N&-o-8}#óNipU[S _;\T`8G8:gmo6SSzl[ކy icGzT㹶ItQq^{^w u˷>o ozmϼNwk/Ӿ3vUݷ!~E|yH{S[UP"gl&-o59c;i9^Pa}j6Ǟ>5\"αvg.=z~]z,36vWۆz3v{=꨿?1,36lqohu<ŏ{e{e{eѥo:ci}h36z/Ͻ sy+[0soX"F Sܛ96xO}qoqqoqqx+{yv=pUV?=w}?mo? =9^6=8^=٦M:oin=h/7t,?.lmؘ17b܉: ^[yy>J?˟۳:]M=zŸe{-~+`kj};KTg}Ŧ[7My ץn[=z! #~⿯w[npcV;ms| 7#ހ'g`s+-^]=iRToc]ݚãgzL7gr^`WSϥ^(P^rۖw8pVw7>ƻn:{b>guc>>3}~ӏ?^zxw/8+~#v;߯٦㢞?"Mk븪gÎ"^ExgqW?'CmfzQ/9ٿDD@@zg|b=g/:ګmx(oX?x񺴯qQס.Wg>j[pQ/Py9Pߊy~ggڧڐߐ!D;n_"~׷lx;ⷦ~k;!m]z"@xUīE]xwSԶa~I8.}U]Q^Ay.[?w!B_ ;師}>q?d7tCuB|/wOt퓎9O#1tS /x2f:6x?X ߰r~O6װ<_z 1 ^;Xtߪ_gwy=>r|(>aqS= 7o?zw?z"7׏ڑ_3O8vu&Cg; !1&-[g|߉@o2+3nt/mt0;Վtw}<C og:x䫍gxtƣM!|5;O>S?޾~5}+8~y5k'V~<ϟO M?!~/X>y||1,ytQaU-.|`{<_OE}X {P/~(ᢖW)X5?骖? /σ򊔇?CmS?,#/<ay>墖uWA}ws<XjYnpuu{a.yy絧.;>> 5}ú>MI[>u|>5, }1>_3 &؟>?70's`=|a,]nU-g6/:*U-Mg4>?>?Uf%<<4/9ÈQ_ʇkHHc},_1w<#9 Y(o #zW^^ǿY}jװ> ˰> ۰= ˰= ;8ʗ\[8x?kO:R ###@h±}嫽 ,,߿Í2,w4~AqgYcg>E1Z%Ce!T~@g\Zíh#N9i>NOGW+g9wtfy 1^0ݷ 7.İt?p[`!y,yeJ^4= Zs,ɟ= >-ְ3L%|s$?ttg] )LNO6c#|ߕ" s~ߘ/ken|L|%#?|v;/{[{G}S Ra[/omt'+Y^ϒzד`_K|H9o}y_Lo:}_L'3݇S~?pz/$aϑ]wE٫i=E״¾lϮWﱭ&ov"勗d_&%S|*+H Շ*[yƼ%ky#,S§ %ޗZ]W k ST)b> n^ˊ3/`E_}MUWE_}L?\>:޷{X)&M[EJxvx|߯yM"E~)Cwo"_E\322\ߟS=_DzK)%%?<57E}]uD70wD޷SSꟼ7grއ3_=z|Dkp{_lL͸,c`i~,|oKǿ;3ٷaO}]y~n%ܘWw{ \BoS Wfzd6~:э~ Co?=ӄKX{$>WOyO&C?D}S-ߒy6sit~k)æ,t?xoo)oKyΜ'{%{,ߛ=zo%3L'{尧ۏ39eyN%ۢ>گ]g?y?\i?ݔG0=d;oD?8eq|,CO_"E~+27ie:7oh"J{~4o 5_W w8GM8qq>]2~7s›5a >%|J%[·H_I? —vL,<9E~%['wwb'W\oi[Hٿ;FO^#{Љ\d5) UNvFƆ [$ϥr%偗(f/,%(se"?Ef+CXN+<+s5}$.WxwtX•ls,S§{~'nwpOZO\p\gpJƼpaya%\MԨ&.d}wۼ ܘ}yOs֙]BۏQp.y%S"E|y?AbpewD+^_W}+}S E_}M|vxoa{zh]ɺJu&*MUx~Ղy+w?Rb_Siq?V'Kene 4~/sa ?g\=sc;>θ3{~[ ^¯-\pќp~>oz˱=\-=7X_^I<;RS{J}83>7ao`}ZW|=Moނ/)yJ{>Zͼ?ޞ[,V_L+.?pσ/KƓ%͒h`|-6.ZWIA*Ofkx|>#``g7{޲|,זsK%{q=ܾ|^[b {lra6{oQٛ?y돧ÃykV>_nY^9;c;Ǒ9s s3[x{'8o owI91qGn3loާ} ;e39k0#ٞX>䯱Ξ~pa}Z[z7SKl{`=lVKl\<m)`+l 0~xK l'翳`k_[*} W_g/& X\# <*}<s|`ύE_+̜ ̫2E,/Sey $nvfj~Ab/O(2~?\[+%Lw sny{2lE<n2nvPm`Zo)c{2z){a?Xo*Ϻym߼(}3'xZ:32cs7=_O;ly ~g/İO6܄O4)_{fOUf^[=XeGl&lޢU*x{=_ޯ22__҇; w7*[2K|%0|/<Kx#|s|\+s~ag0dge}J'_dߞ PQRSS3sb|ey'.nο|x$0O"AEΫ><+_UUWE_}~DcO¼%sKwC‡w n sp;<2OlO ݿPy|럳 }Ug[~=?^{wf/8ol\~sk8 ޓyaߏܯ 溅 W]u>|D~5c2<>>ܙW溄 s#+OK-K—g{i13+,lcO.UȻtO.\2o?:w>KNU.܄pa~O|[-=]%?Wߝ] V]x >oV߂[}x{,M䭽iC7f$x2[lixK#G¯_ Gm(?^6ofO/Y~1-6c[#VVV/`y͞>+o[`k?`+lq^o-軤.|byY/[)o3O|E~9/"D%!!^w]Gy/-2I+}2*蛇y -#;ۅO_ ", /!C§O _y  xĶke|2/—&뢏'/a[Ÿ &{)CCo)oC2l=7f/[T߮7汅[nx(XU¹/^ܙ?:_'#k3<&s̭1W>pޗ4c3waOp!Ӆ~KGan5f7ſޓyL邽 ny|_gs=\`l#2)/nX~L||}n[>pa^GpeW.%<}_L+"-_.)2~!˼D}-b{y/3Lmx =>-/=>}ga{V>Rc`7pF>{gw >~ggy~zgÞ6 }QggӝfbC we?a^[lK<$0܅`«3|}/=oay,9bݙ}7/iWf/x*o ׍ l(0,0o=6і'y:}+y?!)~;CK/y?±ek?.uV%yHdO/ ^n-¦o9g{50_c i1&r587>bs_kI&sݬ#o|'o|O~bs6/^oms#c៼;BqҜ6C{F0.?}6ʣ6O_ulwo x!C OaWE_}EWH_州oho巃ÃF~X§O WoWo&Me g[Ko1=i|ު}X7{?1Wrn*+?ʏs9?|ƁV{2Lss6<.`,7o*4W>=;-[O"?D|&U9Gһ%|3%0υϙ+րfZ>m}&B [~S~?C~O 3~EE[W-K蟋@]c41\0}/||$H-K—tmcg랎\{^\\E溧×\D"i]ߟ+\paa<9o#|O]x|迢>Z+I܅/#wڄ7ogf_)hm*`ޖ-'j?_ > _6,X7{C)ƻ`ߖK/s֙{~7~y/>2pLwY=,IM}G]\3- U2ͼDG{E?cW\>c>$[)So"DSO_"D~I|.yx'ۗwy'ۧ7쇗;spaTV}0!} xLa %IxW~}z~}șƫ;3'9~&M]^_>Mxm5ՙn.P>:{'E|k3#,˹8׊oܽ70=3=߃Jy\%~ߏ="L}0S|O;=sA|s^n8.l{U~ͼ'>9{{smڋQTf;m汘{1W|k2Lw = ϐ K2#dԟ$3E鼗o%LwG9w?xt:K9]2$3W&&&۰Oėqߋ=}*}yӪ?USUW#/;,1r.Nw[)l9-,^-[觻NA{w-XM Xݛ'?dZ;p7.<"Qg ,G!0~ho&M»w[y/f^8+#L{tߙvx1^c<~™fx 1^%=MO!LgGžib4KM&V{Ğkb9>S3%>71<KI?m0ۅyVf:{0 IϘMw}3))n9|֙hSxU-|e9Aob71Y_R`o) 0 x5)ΦL_گr8/LaCLw[~%>G~'y`,?xHy:{N0 )w/^l??s 1ㅿ<jpޯ=d?wfx}W]?٫3i[S̆=ʋoHvFrk3iX]2.赆f@Xs%zb$]yvΉOx>ɷHWSW%|J!]»7 o^%UW$PLɿ;>۶춃O|,諢"xy`n|pcޓy]<|~pa"X_Z昇sE}Gʼ%~[-,#ߍ?̿g o#|7cIy-)%L;T ›I,Mo"߫}SGk K#t6;Gkbi"D>5x3g[97<{K[~wd{ |l9*|9=&=|$~Ww)~|w^vv{9sw/Koџ}y>|ϸZzπE|.C糾y>E~+ày &Sb^".\_lz'<Կf2ܫfo)[?|{GђXKâ? w >$|J%K·o ?wQ:dds?}fW0s=/> ^yN び_G>9^m\enw…})y܄pj3wg^y{s0J{y?˼63WwB ݕ.=WgyP{)O ERJ=+{_. u/UNܿ+G^w3%3[&s]̅ǟ? fn?.M$w]a g f/]pw)}]uGw=L%{ߣc~&${Ý\),xe'_Kx] wfM7%=S;%?הScJyM))^_#y5^yMnoM›w }^o™wo~_9zjwyK/swxx3?C>GgK{h?F?; =\=⼄}9=lO9kγ1ΜEs2ͼE%+?8,K|&3rw w1[tK{ݝkcn½2 sm—Ӆ?,COϒ~:sz<Ø?9?d.]‡ >K$yYǃ/}G]wE_Wzx'{=g\}1e=W|_.y1)\Gs.}9by펽>; ;;{v&9Kn<(sܷ[}u/x7pQ-~W~v,VOkh}m72}3ኾ!}ۧL*==}[wZ+K\wO[{mw^퉷}o!2}4=ů+ɗ<%<%.o|}[XZ؟M̖8+ud4m>Ml&öJ-~ llZY^-{3Gޏ7={f~pM:-=xuraž8Әpmn[^s2ᾘpY̻34P?q>f51?\~oVߊo=Wg`+7s~K^h,H|WpM|c`5U;%ztc0|47fη׷^)&9m~pMr{ la$KO2_6V_"{ q;7{ -s߽͛ه߿ٛX0{kv{6޷}c?k_r~LZ+\V2͞]_00{`y|oy||ϢDk {}N9_p=8>{ /Nޜ}8?:TӸYbO' N{}:s{^hO#|S"O/j̞ -dީ??g#=Ÿ5f*N<L9aO%]ݟf NyW?Z Yi,V#Ļ ibKo f m OWe6־-f?x&{+ï͞ N\_5{zzO/z@e{57|u6bl=|p2888x&{g2'g2^;[)\sٮCdls#?=]CX>\r}Z(pe?I_yJ{4M­?.tWƫy?q_g<柙+7ή&D/ֿw沄K󳊳.G1lOpポ\-,fU GE~)C=X?̞^|B>ݘd4̿ Wfk: 鯰4M>qy\ES>G0jO9y_lQ|>;737Ϗdv{LV-L"7&IVavi)=iWe38o%3׸["Mqe'}L#In{j[8KUmq.Jlz6-`'o_/;/_ݿxȟmwCe~mfo?zt `O7 nOra^>%]kq~z^#ؾ߹<<֋Pm gofI}&ͶFw%6[{ NR{5хiM0 ~75'-GX_`_fa[Ytv׫6߰m?H'{lq?=l.2:~ l'0~:m/2{z}٣W?[} >/:{8_,f/4fo`ϸ{ UXw"?D~ǤW~Na>"E2k&?fy\KeԞ+0'pOEl^̓' ^^pb?02{<+˫f' ̶n?`qi34^ߘ4&fp?t;otW!l|O-~X#?^iTSc}βڟ,_W?ynݗ)<+w%?3=za %Ix*UW(~h?L?\/S M#hA|{M#ho]_n8LZ6/s^)!{?_.t^}V%=9f?Lb]}\{ts oaƭy&ῘΧqW/##3o{_\p魇Kxv!s%?tnF|} [>V9]h]WOT9_g0y:&/58W>CgH|gpt0:)y/^S+._yϫ?x[SmGgo.}yVje{{"#,K{!]5s*E‹yLJ+7xy-޾"D޷߷{X~?gJ|w}0>|/x+W5>Cz-?זܒ[cKym)--\vy[ÑU«7 oN=Ty!troS|D|~4tm{z_ tp/>48O̙3ǜSgz![{H˰^l `?}a0ݗ [r?p[vejs|u{&o)/`o9y8KmG| s0}1s/k`_8{`/_.*x L/|Okgn L!u>69ƕ>ǀ|aOu9}>] Gw9/szŸ\fz?,CO_uٟ }>V׾\gzO*齬Ov%|H)S$~V;T_|{GGXZO7z0? o!\O!CxZCZ؛%ܘ؞X_D/*WpgRg{x %K齪%C‡wE&U‹W{mwfzL%"%%u[ZD_}UU<ܘ.I+C?DK|7orIZ)KO"?D|&#=X?v{1%|̿Ϸo~=̇H[G|co!뢯*+/w>yoa=Ǥ,LIϤB>UyL3?•Ƨ:4=ǿ {XUǟq;3WU*e#اK8׵`K~t/ )ߧ'kܯ+s]as="_E|"j MX~¢>z?/C/WU5_דߑsJy}W~TWp‡6a"Dg./!2{>[· ?~~;d=SU_ fx^wE+%:X}/N1===.l.1[_Ybijrg<.S[2~ωDVpc:WX/_"?E~.MszHzafW0/9 &[e%9Xpaލy)&+>́g2-,_9:x;s[ }op> [/?E~6f‡ܙy<ކ*XixK%K§|ga3#oܮ#,U/o_ nn{//¢>_A~#!<^KkIy.)oYc5ej֔5)k`SȦMYc7en5Do)|7F9e s5)kSPNYc߅%c ̽ 蛢of)3%y`_lF|o|oZb/-[K%{no)| {lQa6{06f/_WK",gJe"D|_CO_"D~#\~W{%W{%;̧Kfޝ|p~# oօ/s}C 7E}k0S i+*2܊p? ,>^)K/ѿ%|ke>C0.//f?ϕ=OvEx"?E~%K)8.Gx S Bspe[`p̅xK~Og3g`mk2<sUҏ33wg =8.=~̻3/٘pMB;GxW%Lw­3\h%O1G0<;u5: *q'UG18c W.kJxc0l!,6wqMpa^"+w^?U01/ >—#w̴?-띏|#^iXO\=,>鉴Gv{wyȚ2ޚxOH괿%rNzj[ff>;n+ޜg:5 _?3.߾>: `ϧ~ }?qkϣW׿lǹU3ϫU}3^'o?V-S??CO2]l>-;ݺg>ֿޕ,=vӶ$oYӕ#x\ߝ^Dz==U#?k~iOso_moNs=i?FҷGMk_`+aixaqل/xI%G+ 窜oy\KC}0[}[~k5y=,i/o燵~{=ߞҟٞݞ?֟g/֟[?_?~>>m ~glߓxxd<>xl>YKЅ-'%kG#{=cRf}c|=}燰'٣`o>_n7l)x1{~E}GwE%}o/s*6~w >$|Jp?[­?|4x1{S8\c>??aa>?VICۂMOMY e^>k:O:љF"r=L}=֟ _6z}zp{o_`}x# 7{z5G?||t#MƝ_}ƛe?M<)[0w'W:}dzO{7\awg[X/_ʷ㱘nm2#\/_•y6s Ϲ-z~s6ߟ^>_^_Wmw\|\?,չ1o,/x/<)WY`Oso|ÕBY[?[_[[;Oۓ'f߿陞wlo?lcs\`Ou?/͟ ky~/٣k_p/>lIbi0[T_|w;}mf!m񸻽~w/X6,Xo̶>`K;;=7Ge6;`+/oV/XlCg?2{=<:^OeއlKr‡ބ/X̳3"PW?7_ ^"ozy7|{ /hۛ'O— 7v>rNbO(f6j!Tg/f/̾_}_>WXg !Ꮼ<h,`˿>m?KG\v1'/nOn/nx~~a}?Cşl<~߿ܞ'~@}Na:{`=#8ϟ ჱǿ0xӧ|%h]}\1'7Y?=~϶ނ ^nS1zjޅp.{ q.k 2mG3o $-ܘ K27˟\} \}+ܙ>+}C Q '纅+yO?XW>:ܘw"D\Hyz+ՙ+ܘįIįJįP޻ng2ż3g}g9}*qU)0Ƽ;3xaEGn:ɼD}1nܮpeB?H{ 5ixt.]tyz2{Fz=v7=qcK2[)d%Sf;΍n\Wa_ \^ }K]mXy ^_&\^X^CkUؾ~6|%=W{%?nίެЃͯ27!l$Ue>Mp_dy [|5aK7'(,$|Y?^ Myl<?yof󞃧|wy_GuOV]~?V/y{2l#8s{7ĭ3joa-迢r=s-ј~/w`kO`OηX~9{>9} 78O/%Ex3 LpUXs"?E~-[Ono/|2׹V?-f>%|uüxG{} bUx2[=`/֞7~qqbBīgى -?|̷ g.lΛ&<2K%]-L靰ona}߻} ^~fl]čwHؿ%ܙ/_4 i_C@t …+m+\<Կ`| ^^)\c~ ^)\} K|ħI|{~ß/-^xҼ}Kʼ%|K՘!C»܎W ^$Px=p᳅+ ).k"Usoԯy]Oߋ{o _SsJ~\m?<3w!{Xϼ̶܅Cb[Ԟ2k›]̾-Gipޟq)l>>+Wg/ַSؾGYliK}?p>g+> k%JG_'/foAĞ_˼%>Gs{WΗ8~f]X 7E}K-ѷE}G ,U«7 o%of)S—[UX T=X(C2W ua Mx3s>;ǀ%=S$>^̞)|o /Z0_OߕCe̞,ߟy]%|)36s̗]no<Ko}/_'o]_tLvZwo7J)̶ó3 4[3yߺ{>|l_uYg)^Z߳8/m?!s>;p)8i8vlvVwYrm֖6%ς{kϜφ75Bg7V[eg ?Mwf,矝} vV/2>tVGV^F̕ʇw$4Zm`<-}=̕o|ѭ̝J78ou}` h"-KZlgoqa Kxޙ,.X«W /^(z} p᳅++,蛢o.kTgSiEՋ.O񶇳/paރ{A{u>F{+>gӱ{.;fg :s9tYbܕPw{,[2zø!ܽ1xޜ#/ Lg/w7 g y<"xn6<8%>ˆy8K||M޽V_;^doUߪp-l:|{[3X}hޢ[`{j'<)M廕*ʟko{𛞉:'NKV Go~"\۟[Cx Kz]k]]8n\^vWY̽?OMP_6BV /9=ưc̵)Fﳧ/p8laBwLOˏ8Y~uIO0^Vؽ1xc.~ZXp7ޕKkp䍘wن݋zw?ր{w=<|ʿ)yWm|S~^FzaBwj>W%wsݷ^wn]Xwb~w͆݋oC'^F8%x71fovGdޕJ}Ȩ5V2Q?qݰwqe?^#gcKoXzқ޲ox\.[xl‹W 32l» m»/[er/79[8R-9j.LEy66{;{^^Sڛ^nϴg<N{x>m/g~aDZ߮0|y;^p~L1߆arg~=϶{{/#?{מw/]b_Þ}տ=\̻iR=~˯>Xt'ҟK OO([XCO}2=Ծ<u#c譡pDKwpayy<˻oCc9>Y:|z{姾>A_n~&WOAi;t=jdm7 }ߜ_989?sfߦqz曬;W~Oz˼M̧-onWgFȾ4eb cgkS5G˗^>6 G|T]ۙXۂOg铋~HзJmA|Ko-cwS9sV쿓ڡۆNcۓdϿ܌q }4{zk^b}볧Xmh3W=[Xaە?V?XdyПuzx/xMwU/Zmi:mUPpV?ȏ򧅻' 2Gp,6,IX>H~3o|W|L+q:otQȸ[B8Vi" {d~i+!':!h|{8-?i]1N o_8]obtuEA1nYOiE1NCzQFŸ]i}a\A_ݮ$i}1N_q/_b+rv%qGM.ȫEFJbst{n9h=,a趇/gpx=a^=̷[hAq[xv%1co?什E<YC7 {n #i{y<iBG2#iy//g=Q]oa{&~ۢ2%o2L{,į\[]Y׆ە<~B{`o?}?oc?|ķ1=h?] S}蟲Cd^U%}'TG ۏ܏[w|Ʌ~NY6=8Ǽvb'@S*oSOoU?pf ޮW8~rvS2zY]v7K80 ;K׻O]xUv#W>}x~=0?ۻ/w>WUKl7U0g~|Üqw}>~_zc~.QG|cjxUo;Dպ!03x~{U1 x`yPc^ޱ;0s<&˓^;ć_?̪7$j:~UoTća`D՛.Q5Q?NQұS0l~Uȍv ?~UoL]F{ǮQe`|{Tu9_9aŘGp 'jdy6#N/WM=wV+[ ,~ؔF|Or\y9TmqL?i--?g|Ո9Û[5{8>"9p%}5L.f[`)c|$aOWއo03S|HG_fcy7_uȳ9h#?uעs&G~+9>G8=|9_03_E~g+KongpxçEv3~M0^m~̏op /׏wgᗴ>f.,?f)H:VnM~Nh:~̛ }2O, ~S~u >\az#H,L~܅qߟus3}<'Ә>oczmJהN]+>OcG=ٸ-ayXYwX+}ԧPC~qh/B%VlOzv Nck]~:5>6=)O ni+אS?a~oU^}1?g^ț_Oa~h/?a>,ϟ)ϝH>c=Bs|,?'_q}cgW;; 1ڷ{eF{^hg.]rzYzF\^(/#?\?+OA1Fy$_o^ ~Pj}&*~/w>ח-Y8N}Nc /^,<[xdO띯 xYpc5qצq\-bawq }k?bU?ZMrzo>~eGf}\Zx})S^n<-?ڏ@~gPމ+K0i?eM܃|No*0$/,?-A_K/* }h?%o3/׶oϠ}Ne~7aP}?D7303D{W}W,O} =>OC=ǹ9qf8t[MHޔpNs{ql1?Z/{~I1?[X&ù9e<噲WȾwlis[0x]|qJ>qRA^k?TD瓰Zu4q>kOߖ+{:8pwxNcx K/pX^^z=)y/-[c o6_lW<'~0'-cÿ2>~Y53/ȼg 7O==2C<#wK&3xK^^.[ǚ ^-Y8_fXOl‡ɿG^scSr;n9X_^sM){ýpj#w|7א?/od7_xn+ݣ$F%A6^lQ\q>=-܋D{}!7k} k43E{N=d,?$a߮{ɂuONp~[ޥ\K}fbG{v}gP̴gC,g_8ޮLEɅN{[Rn̤7/yb~_`J\9t,ZKW/j׏k~~zǼyU?6]O?Ts ̿%4 ~<[a}'0&2欫틑e Yg8E<|ry}t{П<&Lr?VˈOZdAch]Tr)*d>sd~/ߛ)2ߣ C!.i\1O slO!zqxi ybΡ#c+"ml%rx_5?Zfơ_ bB{ #a|ePXxAt>Wk"W>d ?ދ '"S>zs?[kpn{oYs3ؗO%cI73ԭ3߃`~=Su`~7K{c[mю8闓 veZ>Ivs<=`aX==^<7 LvXu3Gmu6ӯ}ouS`өo/Yn]~4޿撍-byʈ-=e9GjYG ۋ1%phq M~)|N>@ >2~㓾T^?J3G~?/lů%~#~_?}OMWL"?O2O_ew&.0ӏ$__1^.[;sW#_,~ swd}Mf~❍ڏ'^o{_+f$oپ yqyM~>˯{9 qy31El}fJ*.W ~=iV7IEA~&~iCszd}$GO{iCH5ɾWIr7{3Gfʞ1?X^`3=X].o\Mû{Gc!ތ;a|0hWe8?׻>i'r 1 y\{ZJ;zr߬#C^.o|r}aȣo .w~ƭ 2Zxpoao ywDNBxSl—O GKI-2e˿cKXzc}5pơ= xR(Ŭqm"^Uԟq|zO]ޛ\^+/~|Y=E ?E{ȑ{oq}a>l1~|K·)Ϛ?wM>C}ڏYCi?ORI,_[~Y>]>4^,_ `e߂%,g Z<76Ucy%`yxnf߿ja~ݴ_"~OJ裕SWwOl^{)_X)r޿elVl5~O.{GڱҊ̞zlb{^L%_{'xdF|ٿ&=ey~-E?wj>,o?m)r?_b74?_M㌌.X~Cl_/Lx0%Q?=d5{S/ߎwe^;2~32[W=A}`ȏ+2 3l> yEf}xF[e/ Cx{d9 1Zxf-G_ojǸl+{//qOX䜍{qioxU=k3^<_!=Ǽ^;话; ~kg}_|O.W{i{i<<^&CMokw{i|9̿vO>7鿮7?SsMȾspfϓ!h'{S5Gs%g =7R?NjɌ>$yyWyY܍sbK3<}8ENø,|xqȔbKXz˖^RHZ}Uwj2jof"~AȒwnl[O8GZ| .xWs\˚q538-a܌BN/'yy|\1o്4F܍qs·3˟K>q,.i|x=/Sl%[߲dzSqfZbxc^ȟ /K2n"W7^n`d(#2^+2E|W(r4p{yE߳fc ogc >,|Z8^n.A)<0r#ѿ/ {yFKǗwdG1GlMM &FkWdzvr<">+r-Q~3i—eˡ,|ȳ[*3#d܌wRWZgfiVo׼"Gd'-iA)]܌S_<"d柩-n+ri+2o[|W=Ȑ-; /+W?Mdȫ~NxU^qW|(zM\GbKG5=D<|ZSd1٫<=J\zlio}G{) q4ggI rO丞I~q\#i}E8'$,Ѿv@֮~)rm?0~Yd#On+9G0F}}hl̟Sd~yS(/͂t"[~9:r]1Pel0g i\"4?kubr' IR[%rЎ_'#e7'~0 $+Of\SdZywfP)rڿwx+^wE']VkY}nm۞!&nxGƎ{bxFnɸ'8^d g1iA#=pkc<|‹=Ȭ2܋#z| WߊGQ#dl:!I_-~-)y!;DZxؾg\wdʓGxFrI7,aE%u|wdSx[#g #2=awuDn,[8<\pWd'񌼳q7~ڃ_q|?V\ů!Fyh'jN3g~Ɖ7H'\l?qܖq\q7W,<-dItBr7\'f.sK'T/[8kq\-Zxҍ{g OB}De _,|ZaDnfubK/֟'CD9Wx'y,[zk^X?[~ԉ Z%>q-[x" ϫ c -U伌q5N4~YFq79~/n8ՑuCxwf\ï7ןq7rs,#{ݟq3x۞[\0U֍j܍//c=d׈0^tBA7,fIyG<N ->fY-|Y},m߻{6>LRG䚌Y~-n o Ko~?-=ֿ8?/w~ӉxEZjoYyߴJ?Xϴ܍gp"yګ?_r7^w2.޷.=֧ [˓8338 #I[2]-aeYgnv~quٖ'RZx9~ܲ^|s7(Uvi%ll|u ĝ SϟYB_+?3lxgwsNqZ,VͷN{"/~J{&^Yu|17eoIyĥ7(K }ø8qy&'?Y/#*Y4\>ڗ-ҟg@.w[#/w>Kd.[~\n'B岅/ }l¡#!.[8'Α&g+OB~YU"~:: r/,>p+^O?YW_,~^@4~3mXSC&.X/_s 锺8b{&⾌SfX~ 93KzEM,fWK?&N^ouB_gc[zA~akX/MMQ\#i\"a# I rܦq n)r_0>LLO&C.:xgWgŖ޴Ggr3ey.Oc=M__ӿq5Α2~_X~_ž7/Q%:G˸wVWމke_O?q7Α4n)r ![V2n)r􊥗-leK/Yz)-_6n)rX?}8G߰eliVfiVڍ-Xy7[x&Pnk[>qp-[xf«AI;}s n`kް-fȡ!YYz)ikGq<[䱌-n94f)Z]?[xVdr},|Y5#2shߺw$fl˯Xz˖^/{Ыߤ+._UyNf#$/7~qf\SdbKYzk9rƖ~ƖS!p1\7Ifyq1f<2E?q3+2^7|oW1/xF~[~O">ɳ!iW^s29ltaO.=[~ mw>l/[_v-<[8ȬO?.&^wYyg[yvO9֏#r'4}x,|Vce·u׻-<[xy#7 y_+{xXy}ϴN+,+ϲl+Ol+{8k"K/'ua>0qGg=O<-i/[ex6r;\{1b^_~~,nV~*N.E%='-m%Vm_KĶV{Ś4݊-uq-[xfj&z9Eb =8_.)?) ߧYzҫ^􊥗-dVrՍSXC+Mqz܆ZyXxVd)k/ >=øD^Y'mNfɻ#e<-anW6&K)2o{ ԗ-f68,/?e)~p19OK~n}Z}%7a<ܬ)yޮ*ypW-f5+{ۻ+2yZ8'̧/ _-|{q?-<[xk2p/yޏawg~2g9%ȵ[z^7,i-KoYz!B7# /^-Z~f»w >,|Vce·-<%|_O 7 S|_G;{wZy'ȷ|u`9\,bUKZzk^-nK ^e|yG^Yew5a=n"l܌gz{ ڃ_^k6nٳ_7}[ =0n%r~sdZxA\T_5/[egUK֋M/~ )yXno8ǚϚךߚLLOnZݸlB{Ė޴ؿM8/gyle<>寸a?Ox/}]lGJ֞;40o.﹟o7i]: .Jf?6mlnA< Gf[7 ]nw/BGd?F!YLX|ևw,~{WdOGf~پex:v%l?2o'?,fL2ۇ,mn9Yk䞌-aMoY~;|nf+r{1ޑLj<ʷ|-߽Y-~+r[1?vi_񯿤xE?~n:$d<#ux3[ߖ~+s5ޑK\+Bg0_ܛkqBe·^|zog +r3r'7 ݽY貕˽Yh{xG^B-ݛ.r,t{9>yo~)nxE9|_Wx1EgC-0>;gzg<Oz {)}'g-eO_G"Vǯ^U?Ӛ2osG\땿-{%ufTh` ?9cײ5 VVQ2X.Ws+`2~8,UKn\"cWn0{uFƪN0.au܍sdXj'|zJmV92KdX.<=e"=2E>--2W\#J^6D4#"Ȱ/חuV>1r +UM]%2v-K'Ȱ.Ȱ3eħdKy-~ê\*9GƮ8[lS//)2GDf2Α/X|. [K^oxȣG#r,/9rrB~ⵌS#^T0nu%GfY^g|0yȬ2 A~dy+>"cW!y9ja5yڇEn|r\9sd|//띏?\"/lG_: |zSbțƺ2gsYˍqu? +2Կu܌{_ujRC]Fy&#}K-G)gj?nVnCV껯)F{'f/M8σ~0^Ӡf%|4_1]ޑY#Ηb(kbiHC_<#C߀CGw!1;2XعkbsbW }R9^}T } }wQ?gɹF>-xGn+ryll=l<#XzeE=rw?+rk^wyGue/zY||흗gמ*|+n(/Ӝ3rO~\{xеGWgڧ!Ę/.#>Ӱ_ޑaOn˻py#?osWdA{3v^.S二q}˧&.xb~4nxw9ɻo{q|Tf#i&?#yl[zk^W,bal'W- uJJѹp9E\ȏ=}!Q>3?Dz)#O2'%c?f܌1Vlfݬ?4/fؾ菗wdfed\~ƫxo&7v员}nlve'%o+ cqgU-|[~]/_lG|[?\-ȭa|^{xdW>\{f"Sg䝍C~T󿼼"W<"KڳĜO̟ܪ?tqef/ڏ)/^ks<->/Nt✌\{djO^-ٸaO\_+@?3Z>Z3v8_Wyy s%[ssLOSyR?:n'?c7狵ES_ߚ-l{'_:T]ck{& 1q&7yljhklϤ?} `3#?_JMSa%; RkgxKvq.r}AI޿|JI_O,.m~OJߋf\r~`s(ˈ /'l|],>P\3ϔ1)?u0r/:/:')_)_;%11|*Dp"/W~T~"G{T~_#G} n'?X,O3|8cO_߷|^oY~on_?wx;wz\rK_q0b|H_$oW^+ώKh/C>|^z{zLNy_7C8wy0sQ0?Pa>̯ga%OMcR}zLn3èƟgyҟ?N?E}?OW![OhS3;0Nwپ碤ީiٞȷ~}_DŽ;{?&/Csezט^:}ygKG='#o1OzC/}>\=:la/YxG.7"W˿Z-~8怇{}c`~`} w~5 _ٞ=`/i`6ŏꏓu=П'}=0&e#OUIy8xX/p}gq} oRKQZ\@[Է2!s'{Wf-Yo'E}o_HoG}8!?\.|/!зnDz}Ȋ.{/8g#Zf{y뱇G>+o}czۧ^^o7~z߻zcSzXϫc_'˷1~hHou^xbq{z ̯)o?,/aꔯ];{GogA>}>Pi+LG^gm]{'8ОC:P_סd[/i\h\>'{p|N{)'كg6ЗvNGc/^K}1MwIo2?G3ؓ<a쯰WO/`ϞLK_y7~'7'3'族>uyr~=>aO9D~N}xgK[ _E_g!</q<1?0꫟5鏕%3= ۢ >XMK,wi?G?n\ AzqS^oyȲsϗa~~_5Ob7Q=㷜7۞G|OܿlBaߜuy9NCSE9MoO|_ Կ3{S?:WZ}K)ϖ~qosacӞy0MloGåuAK/x?qj% uaIp1l|Ǒׅ~%f\.Nܓn8Rp%0Kͯ>_H}OQ%GQq=[x8Q 4G>.j?W3oogg\)s|o_wDžPk}\H?04+(Ϥ}rʾp7h?|}xG^Y=.}Þ \Zw0|Ek>1'ʲ̲g~}q_{+M{!ϴ'wX˸suj>e~XLG=UΌ]|8?D 0+WTp }=xh\[.{8:hD  (;WIWW~U;Uأ?S_}S_Etoa9O^?׏3~kYK:)_'>.ȩ鴷 ij9P_ig>ܯC{t'W~ڳގWQ魳U:W?N~V~?99_3x~$cKxo/ gʗxOÒ_{gGgK>;?wσ|0ԻE ~7gQ9G#ʯD3o(L9__$~ˇ K Da{@(XP)/R }pNa{A*\@_*\@*@*\?A+\_A_+7>Wh߁W~>XhI,Odzf 諅iWIqamڏ87la{5K\>)|RcG^' G}󗜍1G{~3ƣDFj/@y;YϽo}֋=`nj}Yw X?u֧*{|Xko] 1 㭳dW1i@gR~[ ǃaɾyE{=گ1e߆pIGU/' eG>6 _})=e<} C?OUE߂?}z?ꢿܤQ{.GX^ =ٟ??h_Ybz= w=i_W}yh/o/e?O{i={~~&}urC:Oڟ8vRѷzɅss O;90=(\sppQ8r`GNvی?ȳhE"?IF=7p;^{Μ]s&8g o;B2?~>_ ӏFg~Xt6=L9/sչ.8O?=,+qP{GgY{Ys(o:fd˃,/ ̻$0v <'0}=Wp SbO۸'kD99r/=M\CM_?>S?񎟡sȈy.zeu}Ǻj`|ϑ/ʟ0~1]yuj|k7˗#?r1]{ t\D:"z9O/Dz3qt4\L|\Do+̗'c$9E~AσI|}֙RoD8'2gcO+A+W-de|#9Y\}WCU:awS<|8 {.,"΂jWezט^z+:Q.Ut"qaL *|w9L9N>= [;g#93yA\ox_-cy["<E>Ex.slo``7`W`wy{{r=/_1KJX܁`ƴy_EVi;胾6Y,"/E0`x$.>㙸jnE~&_~+-gE CyJ\1~skaE `>Xw*(ɺ3G;U'?6'||%|.9~yEt[|u uo෇>¾}7?A}w;(o*CM?}x} ?m1 F/>D[0d17*{eGe:׵׏ {uufS1{^'ymU{$q+׵i=8i>^*s[/mgoŏ{,Z E`%.{0~؋~?,E`&{6qػѷkV\i?KGvYq>';q*ݮ}ډF }l9ю~oߧҏ4J>ɰD}3?7iy+~o6q:~$QAf|) s<~'raȯxV㯞W9~^Q+(?sn;v)Ny>'uC~+N_N I|r?m?qr<' }呞8#85p)OÙ;S_xq1q_=78?֞:[ ={(}?j6ӟj~鏟j,w5([\d}x>5oH^N/ bwvG^u}#F퍋877)QgE=WE|[zE~d'fV܄{3?a_܏̯{!gZ_=Wq {$qdj?s2xHG"/1m?4WQUwe5"??/y&_6cO/?g#?_.+/)ʋ9|P~%?Ro4gQO?aoKmG(ۿHryt7Y~7%1~;^'^?"?h-O'?W~%~&?~V姍~e{8}A@O}?vQ"y7ۯ=F Sq8 -jK\8/S~~$/޸~[x$O g7mO>-cztU"XZ|z8^.ޝ=\qf/oe^XƋ5(mXx5ƳO}&ɓi0{y"=5+93=_;-ymƕaoBb".{U1,mՊy4=>&Xb?d~(Kٟ+yq?y7'gIrxSwߊ=c+ wQ_J5?/˿,QLٗ/MywM\jۆUշa/'.bٟyӺכ{#/M#I}.Wٟݶ?(Onɳ{"N\s q1uuSdqGN{>/*V|Y{>sk=b9q>ϓ?yC<O=|8|uJy.92-̛SiÉ?x!~?gYGjnc/9\usgrdxi(ȡO[W}֕3/u7IΪ?v#ϼ9;E^߾(_E'\?l'?: f3*/g~,`%L1}<~S.gcgu~C?zٴyLlƣμ;+x)+bw~¬_~ f} Ow\| x5ācy;{ӌy).sv_>Lq&G3_3zG^ogKS=ԿP 0|󒍿'euL?|HϢ|K"V')Oz<魛I/W~&+*=G+q?<]漢cўbl'n?O;7v@;7Oq!kXy+֙s?z%7_Q+wrx󽌅}{>D7#:oǨEIC$ӎuړqχR{ )P^ݘ9+%ٝ)8)ޝaAN`ApσHb (Oq򈃨y L=&vr}@\İ6SB*<9y<"ey%i9p߇ޗڃڋړ}ڛq|/"E𽉋?A!.D\#qW"E߉`<x!.D\㍸#qWʯ$_MM<2A+-gE OnomQ__6]M~is3(. 1o91o9qm*tgUu~u70 7U'?6|%|.9~yEL[>}?b 7Ca}?>w<_W;>6~k}8m~Id/`>ox|G}e-9Oޘ,V)?LgY+~97%_5U>뵗߸{sއ[/>L\ _b5.;ekƊCZa=Ld=,z>b^:qIf?x㐰7=kG0Wh<#;Gf)v#;g)_߿S>U)_Qа=>},+ *1SGm]{]{1Lj:שNq_fx1{ΗI^'{q'~9 {; {)~S{~wf=?}#xG8{2ͼG<ő_qسލ=} {9qӉN\x V( ,p·v=cCȞrχmO;Bh%7g!2,ϘH^d#yy ϫopn$+8;\_< W.ƧqsGdYoo q?,ﱐWf㷚OK͌dƗ27?g|(N!_mu㙸x?sb7~Vϓ߿wGt[kQw~|wI6_(NSi)y'|V~|헜~<Ϸ gtywo3oév~Sm&_ߏ~φяz{ٗ6y~^ӟgװz?e๞8/j~p<w~GX)`="{ް|:%K߯\pUӧ^}kD~+M\XL0},9G#}GȾyχX(W:k<='#)Oqtäٯ<78?)OIGo3@ƫ3'Q5Í7ۏx$.jy]SӨ*׻8:&_iEJ&_?Sɿs2w7SmG~&X).b?d~(Ć2qW˟.O4F\W{P'/7FM썚_'Q{.zE}5.O\%`ךǙX¾,}Yqo'fݰG6Ͻ<.=?cϖYy~Ϗ7GP髋U'ϽmA-K\Eܿ"_-c(/2~{NJ?5Y}k{ޝKt::u槦ߚN?ONo|-9 C3iȌۆ~{^wޖ=[5mRXXRsFj}7=޹>4VZǞ ߚ~߾i;qPyxSAE}1tE}3>,kQ܋hM pɏe\Gg^SJU,yXb#~X)<=˺N}eO-.Ē$^Os/b+Vظ?:.&6FGt"ϚÜw8>={5k~c?Ll?9?k{[~x Y}x,Ϭ3<ƅu^K8?~<,y#Ʋ)hS5q<b܇.f3G`;VxZ{WL}<އMܞ\( !.zLS0|{\Y,r}.{l63_f;̧|:Œ'g>v>>G +EKJϼO?Gad'go|l<W6?-xr7gҫ_L۬>c3%"%$>a٘X1ƑxbEѷ3ϓ%ia!<yLg=謱bk٬xq|Կ-mŷGZh6|{G{쿧!=?tyryYTLwVü~brWM,xm0u6t"o2{`&_j\gn+_mEM|OL+M+_8Ö'ˊ)ȟmb7ϟ曆)Qnj̏H.GHlQ1Wgf##3f)y8[3ƛOd5&I{l(uViF?ўvF?Q.Č1,OʽS֐uZbX1XzC yl>ƯM]>ӧ'K~X> IbٮPbڍ}~ni=p{Q<+|$ ?ٿ ?wy{i.&O6b{(9;)~;ް7<[,Wg^<1ޏ|(la _<|~BnQ'+^+vs~Ξބ|[>\_ V}l6q{>/orm5G2ʕOJ';bd~],'vTs=L7z1dgrb?ٟu39ۂ=zg=I#e}^9Ug?SUAlվ/wrȾl/T>0{29l{\Gr0շKa0}y㥸9_ߜ9_o{|9{s|9y&'<3p}KNjɁŇLE?g;+{z;>d4O~o9.W^z^̏#pzQחK1ϛ]/d>GCj\y7>gɣ<LJsK_m{V7Ng#j|fo/}}j"̷tM}=;}~ 峾s(?G y8=in.GqCckEÞǠaA?3_썦?IէE?GԷ<9 ,3I#r[W^(NǾGNIٛ ߫a?qިaf//S?ɿ:[}[/8y.?׷ݿoi=JUoϒ}{G{g{g>Yʡeoif)w~Re=WO3?#O/;{gcC_xs/yN_yX}b叇:Ea'0:>1<CeYǸ'GXX g7_o+xzy{/~7p pp4 p~xs Kֿn?W񎯍0󏵘ӳ<\g;^4x GIOQ+?}N{Z7fq%_\^sj/c._w5{mןXL>KL# ◥eoE> Ʋ&Sޞ̾.>olHz" ٺ7&ڭۭv2ޚvY嗷rʎn_Z;Ι ZO+yxy.\V=0gX;6`#M/?l;ipYkHE]VD;&yl2<ۙ(ɳ<l'C\VtX\>g\9@;Ufکr`'@c1V,p*B6=LsЩMD/r0Tٳ`@gι,CfLX᲻-˒Fpxo~yȒ0{y_8Ѿ{Suݕ<+a#kdzrzT3`rz+5J=V%_&- yVM<%E:GcxXqf$4Kg g󰾧YV3=/3_cIb~% }KU뺳ܷkB_²_K[SXڵYG}5%Oi>g@N3.hvTkii'sd2KN;IXZ괓xyXn}6KyY^,UXvuzY~,:%<%[囥,<,ʮu-bd\KYc)/x{k_߻s n}kqw"N{ݝӞw'㴷t{N{N?NԨ?lGe^w~#ғmibVOf;]E6~O{NZU}_=lqԯl'>e@Q?eDe3VG}oۙBse;_+ex.yN_yxy+&xY9,r{UY;`{nIe\gFlO><쌦>V/Oc\rYXո=E %~Z=p pozy{_ooϼitƒǗ|_X>տXx5]^x]x\_=1/o ;x<{؛^^^~7uzJ\3_`o{Xuz< {'kvy?)ʗ3bd~گg2Wte^ۯ'e} bWݯgyX~ߝ*꿗uץߝ?c .կ!HN$rB"t AEYW#+awxLC"1O3 !}"A?-R_E$ H[3[D[$m/[M{R>A$1BFH_WbLB'TtL۩FJs"A{sbȫ<72뫏=Tv<$2|~mF^Ṟ--M7NzD̗:]ԘTm>n?zV{?]pL.>*ODNstW:x-޸s N%WӞƛߤ'W@>sZǺge7n~8oi3W)_=aeGdx8LzG2:g`oGك%?j}2-ܟ%LO޸L>-vz{?Z& ַԧl>ow}C& dXfw}B~3{w=A~3ng__}L$f7M4$2eNyK2'{2[&UpAL.We.ӌ{3՘8L7fN|o'>ӎc=g1{eI.Ͽ+yXf$շ$>7y<}{L iJO,,~oCY}syC~Yf!Dg n վ QG?@C?xC5~c,AY9gէx2 ՐYXtj>,c%nbo,&c˿k,cϟe2΁\]}-q<xn{5~=˟X?7q~,d\KWy?f2z,TCfDybY _nf!cٷʳk5G>B2둿7P>&gcٗ#of!˜=ff;HScNWsK#O7Y&LsR_G[&sKZ&!'iH 7?˿Þn|o?oYշkp}=\z ys\nru_4+e\=x#pܻ Wo5 \^>yu?1z(Z(j(s^䞗jkΞg~ߚggjrZ]LӣyVϾ'{?u~'p pt\L2aڼYٸZ(;p道<oҲ0W|p}#\g0ng gu5^.J(/؇[8ܟXp d<</-p?◧/)p <[28]}>Ξ N2ymkmNΞg>uO(-\=p\g?Ok?8nA&gONp,}޸~?xN_2g;1={鳙gc>y9^Xٳ=鹇sƿqށggbW5^3^5;pjx^<'9?[g<fqMK?YW<=p \8N/ρ;>[=s^yG^]w{L܇6=8yF%qe7Ξgp?WGoco`K|_x;. k(Ͼs`ߞ_M^9ޞ&=(؜rt+cygDy扐!V;?l}Vcj͊uZkƍz3N歓YGͷtXNM*hBx$r6ty}<=B>Z|_֩ v<#>oOտ\o_+Qj//SU|+pO*V(uڹ?S^;˔N2szOWO>T+5O}}çw}TN'jS߯>P\ߥ0/e w)p_(MyyޤQhu,v3|WWO}+-y4pQyHR<XCi3ab=g!-ϴ\BJ_nNW}ۿa}vt5^Noij3]gC_oncOQy?i|U_ekVw=|5;ϯNP+N*+*ya{J~ƷkAIߘ^]ϓg;<}EyU==Ηcʓ۔)/wB߿|IM!}x}쏕t>0!ߏS|S|+E,{G߷T~/|GW{Կo4~_h?Kgiô_>S>Z?T$ӟeO|Oϓ)5ޗOy>ꏲ_vzuI֔JyoʼuSm@߼/w/׿8?[e 4[8Wy7_D~i?GоyNyjNyO<_wd}vZyR|>鿚'I0ϕCjiGh}&뺟S}dWY?ܿx[??,EB_s9czs/{ovՇ5^6Xi~}YSH_sU}۳/Yr5>+o5)xK뽗gڃxOї~ϰ˭?egg;>d#{i>~yw27;e10}&[NLߤ~;JyMI{S<\&7x{E{:zwԱoΞ6_yگ<ɗ~I66w[ȟfΗWo}Skaϊ{ًf/|6{q9abW *f񝩯_O<}sً^<_Q<ً^,qiz?jOW{W{Y3yџN>~mlKÌ>w?~6q/n|.Z/nmg_/ї^U~8yL~4~&}O5p i[}v˵G;aiYw~:Xŋ[[/x?}Uujbl[>+L7{S槏=wZa\n}l=ݡk gs`b?_Z>=_~}Rk}^T *B޼fvOs̏=o~R^H}e<_Jϗx쫛y쳛G^>EyOGߞ'{<ٛ奣KG^|g;ȻM6SUm핯G&5ԧ<ڧ]qu-oq6.3b<nʫ+ˡKekg3޷=8߻sj8Z cפ. ;Mkx£yoǵV bWr޼'Z3??u9 0q'g8)ڭ?kݹA<칅-\z \v/g_7jRm?󜁕*#O67OVm8y&q} 'kˎuy[7Y5;1yWXops3n=is{V+|ox{vy}x?/./ߍ~n>9G`/byz [p~3\_|=7x{5\r̗<ୠo]^]V,L{A+6~[p?8WT+'>x/Oyk#^nwgN_k`W~'08\/z ם~s68=;y[}59ɳeC^pG8o_<3ya}ɸx*oIpr%Y_XX칆K(?[GہgW<Ǹo\sx^r[{G}܆2W<n}{N89cu0{.sw//=˜ NՎ}pzim^~?(g~<#~<[6`n=TF/F6>\=@p|xv|zvx z5X#m\=s>w/{1=xvݬV>^z %._p i-O [C{^5g ]({=s-/vy~/3v"gj3/Ca\/?OWۿusL_'/+ܿ9yr_#0bU`w.x-כQ<x={N^-{'žK\3/ӳsΝh՟3Ѫ?Wڝgת+ơη|_c̟x{{;{z k/ؓz_G ?3_ooo;nw0q?|3.?g'F|O0Vr69>#ɶyy)J#˟pUzfqsb+fhL(&+>ȡ=hSc{vFıet;#Blg.&ߗ7f6e[<_{ [LKgĨ^L];v=non6-S?vG rdowoba<1a<12R{m;xm"֕]W(l<,jo[r^"ɉ,'mE+fC~+giC+goG+$'fG+q~?_9l&+dTNSﳘ?v1_+GlыZ9\7olxg6KKRJ_SZ֦H;kUF)Uy}s_}S`/A~`Ou޲OuGw#ϰlUy)OzS~'&+(/{n9Zy{ڒ~{>rfws{O)`OW {r>7g$5xȯ3bʑ^>f@:srgWdWH:S~{GnΈ>L/gMי-{9ΞONj:ӣng48<3DxԩWgd-{+S_U9]w6ƟއKnfoV{{ ^3:}s& e?}ng!uF0?cG&o14WZLΈYG9—SB錱eT~s?l /5ye3x_&wu)O)E7n~b=қ&y?3?r& +~6{3:K 0W5'6_˹nگo~_5p{9߱1?l^w/?ѱwOwvy'g9`Ao?Oy? =Eypr8w9ܯ|͍~:~y^s5{b_Χb>x>3X ^5״hG2J':o˟Cfwؿ5r~r~r/~/ku2ߍ̇Dg!/69)0S^<|߮?t\OMWQ#wdo濚%]5ɟi%OVV揫4{]{9t6c'mS/.?mGGQfFgecw2 oEҏW?ٝ:З\R^{7~7O}3zۘ笩g&_7{f-pL3׆.'.gwŇ[乨g.|f>+>ۇ?^Ws/7Ξ7O>g._P3c[>Y#OpL>{k0 U< `G}o-gyNO;n<8L_!~Lx1ȇo{\Ξ]..p sqq?{;ٍx1;p }|v>xB{7?ǧ3.hwc`4`T0^ <\Vwk8NKoxux8P(v~\;p]|'Yg xt^~|w`\ga䵱+/YxusNGvXs =|5A3EgwWq0Ư~-p6}ϸxF3~~o}ϸxv}r }0&"LEX/NxX8}as|a1ᒗw>k <=깇{4Ϝoy5;~w5ޞyD _k =Pɀgw҇o\=xvٌoßg3?f =aˡs]؝7zhڣ=zhnavNWΫƿq'ό)Gsu?O5{.+p\<;뵷%]>}/'xV̾Xɳ?G?w?x޿gg ]{=K޶?=Gj.O)xz-LpGl\5=w3WFp~uxx=g7?v3Qnyxx{vGl1w^p p p?={[c=k_q0͐$<H( %Z*nׄdtcf?}-SYpE)^'ːE@? Xq*+wS?a?g<ޞӹ#{Ar`v5_;ev`Ҏb?=ߞ/LܓA_|iYbp5 m\^h06zwuN{_cXOxX5okX=_Yy-pe?4jpQ?\++ 33ʗ&W m'MopUn(OCy+S_Ay2/J>g7w5WS~crʲژs y2eKDފ6+]0M!}EZ `m`Z:uMy rlvV\rज?9;/ğk׹5eчsu=z'Pџ:|8)<*|1-~q[|<{`_yh/ ,K[_nvIY٢}{`6?z*w+;"}}o'&Ne~\V朔ݛK^?+L+޿g@{LD{N^ s{pNj `k12cxl}|࡬Z ~NjWKO=m<}w5 =;<oRt4ϧ/Oeo/.W!OGFSD|_ 7o?㴪r{a?] ~ỎӻSO=/g?-ߖy/x*\^O'G#Dz~dәSYN{̹@^ y u7 oBΚN=W凥=|_~1<+x+,//gg'N\FxFx~s^FxExExCxCxGxGSy"|zm񺧳w?=-}r<[yT#Dr/e Wןÿ^iۂ}zuN<⶝O \/_}Nc?7==Z_MպgrAxAxF7?XN/0½e +mُYYn~왦,W۲מ ߚ[78)woUvRN/Ey*Xn/۟Xn7Xnϩ'nω=I?Y|z\<{¸;ؿs-ʥ*y ,G(zs+yYֿ-`YYnw}X}+nW678+})( ܵ_^{b睿7_z#r}oS|x\x^/_PކTԷ=*ګ= ڻ{|񽃷r{G߂},Xiwgy(o|%~VV[| ~XSYN˺}X_zr烗ϒÇ@9ygymˇ>{yuYO{y/A~^m<޺up8,12VfWܦT]C^^~F-y }Eu_u<[Sŝr|sE|ͳq[ yoݟR8XΧ6VVƼ_2++9y]]~޷ַUB~|-Ey X^/|wrauҔs='!Zew;V;5%gyj~qP;^ ` Fpt?e5u_u9wpAkuY#=`=otk-\_܆޶V78)g^pvMݟ2?1S__S_[3{9gZ]?8{Χk۹( c_,Y8?\*n za, }:W??+_y 6?_p] ~X],߳OdK_qWp[{mF{o|{֤; FzocZ<Cx[e ://p'M~S}lT <ӗ>^} x+?z`/./'{0U̇1_{}m9|~~qfq6{" G^ ^ 6{,x ಔ+;xV^`/`_{9n`ӷl7xm`.H_7C֞'z1%V\rmʶ޴[YCwm=p/oe^UA^y&-[/g_HpI\rCH?>*%TM] Y?2w7]uʳϿ;ᏼן7+~<½=M{s½}g#͗y+~<}> ~돯W+ px+'lWpR/#,1?7}WpR,o8)y Ec'l;rB? FBbxR.η/ \3e=&Xi>WE#4Wv .y%spU^gW y:5ȫW!@^ O^g#}mZX?碜 ;[K/'Q'x vey'?~#C7;,׊7X[WW!@^>>>])r\&e);ge_ ,gspRKp0ޗ%wpWpg̺/ݜ\^ߣ{u|ώl5-;x*/`[TRϗw`@}U ]q}x+{ ^rW^Aw~^/x*=mC |#~奜ϓ-,a\{V^_g$x*˯'_{/kywkSמe/C_{>x!^彑~ςry ț oACw7seyw=*ڣ=*ڣ?z2o"6%{~0x*g.p[!!#b$x"|"|!|AB2_\奜+᥀r,\eבqx) y VOe~흍N_\OΈ?Oey/'~ɍϽԛl%<[~U[2Z2'_r#V~x;<`ɗ:uȳֽHm$_ʦ .L'')OhT//'eӴ>>!!pfrQr~9fIf`/WE#4W_E~䗑_F?5XZ X`5Xz e!A^ y {Nl|\<#}`MY{O>mcRjqj9IyTeR\+WPeO^w}%/񮴃}qo |9+7_!BSlrRzJ.W|{=9>_s4rlː_{z.7OF|osHSM!op7}?x/gpDZ=?H . nӞ#k{_lr[~Elrw/< \m x<y`O.oeGo 6}v+>[Kd[ 6 ?ioqW6]6^ʵOx >[`ry)g^{l^{p^'/K E$TMeVe/(B-cpy){YPX\ :u7 oBނylޱ Gp` nwןuY»_+޿rotK< o@ހ yk\婼3/G|~׾'탛ȋ+8) n`iip?O XOܴܔu|^{;8)CTT noY0‹ {#n|7yl5l9Hˈ?!;3vK^_Lқ~.H_>#Y}/ge~6?wk B^ y ȋ6Nk7MW/wN_;lF}) 9 M`-4Eq9$,7x?$gb}7n7уxR[󫯮?"Ǘ7xeoʽ+Wޗ IN89ޕ;ܗ.gQP~5u⥉EY K+ CIRGpmrX$\^,xr?1^Rڳ%ޞxYrgeK4+8+:1K; ;?,C=.W~W<;kGO_/y;.oe?_}1x)WWُz`~=e:λu>o A ^r~G^ e`^5l+`?_)Ek{$`oo<~>/A/˸?`O6؛ h`6ػ p`O7 x<}(kyBX/BXokBX]BXO3?z7xA ZX7폗T7!oAނ<v\x>[[Q62ҋ[y jxY(87e?O+7o|^.Y[ϟ: lW63m n:~`?[y7x*~K"~E:<#.V7 ݆.sC䯼 v_U%|wKq/H~UvAedS+OI?%Pqڡd9~kI_H'?%CP,ĩݯplJtN_Zىv^r?Srogg^l,<9Wey;𼌇OOp>ݸ [j\l%S>OZՕ~i9[il/We\?%u-~3Ol!Y嗝<핒|t{6[`/c.geӁ{Z8^ܽsV6)l:l`.ge[flsuM 6xqWlkٔ ;{sV;{m98v\N++Ϣȧ}clîO-g>pR?xgL5s\ӝϿ^~_Ϳv =_ݪ^_5}~:l;;ݧ=ayiۯܚ=nQ/'g^YT/_}W|6W/{˗˧ڳyk^>˗N{6/_:u>oFًW;_f?~=iku|/XSX[crXV_#3h~q即qV1ci{ Lڞ3k{ϢcV^svfi-o/_OxZ^ocq{yln6e 'ka{yMm/5}EuLvL_viWvLw.jr}M믾>|w>|N~1W>~͇W>Sk/:Lϯs){}~f/t̞xؾGq{7y~]6ݞzԯl[Ğ{w<^>g/i_Wc/?*Oj[=_<\r{7=[~[o=w.M[Cʳ֣ /z<4^~g/w6%|?/x~xEƹ*{^^џM=ܿݿb V}C_;x,d_~ }Clry|@}ufyOG>3ߺ?|wvO}xc~p5{q{>i߼?m`6{o->z ~\iW?짽?}>?x!;s꜔;'* .lq?3?|.s߆ϧr[l\ hQ_~ 6{rUy:{H_rA~ݾP!8)17[SvApRvgz#8-כ'5oTe|%eE-ez2}VUy-rߋ/;_~be*aWb~vN=a?1fO^:t?_gk/Ͽ~Y6{Gb?gM^ 0{OۗO{OM}'5~^4jr׿y NK'xh}:;i{yg~Փ~'?4/m? E4yx.[| _~~-M^_g_+>.^v^- gE$|S3s}i?e+O߻~-'o`kU?lm5e}Oe;^{xy ͿpSy?~KWrAZ[sG-Ҿri5!A^y~~nteol奬}˲8gP6W\+x)x<eF%lyp^FWo\nOl2c̟vyI./e }֞y>8)3{ROzy{S/Ӽ{s/?wsnɝן}pO>~? Uq{ssa+K[p)9ﴌR|y|7rܷajJ◂<۞wDRJ_ɥlu҃{ͭ/WpRy7_pӹ(NK ù(r ~36( F{sU!!"" ce{{Sܬ FD ~9)M^gܔ SPhp}8ߛYl ncUȫW @^yI%़O8+ȯ!}C*җ>#}7g/'UP{Sn|_q#E91ߗM0/ğ?_}Gw߳9'ei=swN2{S?*/|߲ e/|9+|2З_ -^ N>?7f|8+wsQ~/?7ӿ\Y%/؝>9+KM lM?s޿OT9ky/s< |{T y9a _ %?_?Kr\ /vw~9-2}ѷpQ}\^/gVO.O%g>>?/>aӉ8_^v=lfO{{/'{/ ?8{}UTwF6އ_z՗+x;rO<_KvqYx9x~]~i&eiy-|Ks?Z̷^+-Ƨ;●.wk_K qzRc7%<(w+W?F{m98)u6{~pV| Ԕ?]NKK}m~Zo嬼ׂM}`߃}lY_㘿^N?M?qlu`O`ٿYky4e[|\rUN_k*{K#}WW+'xi3xgU^ O7N:WOwpw|-+`xG׷{WnC1˾y}Qc*zdge>ଜdWu|,4<X%5~Źm_"rᘏ/}_,އ!v_*rU~lsR_ 6{y8ge'w `;=.oe߿A{w|{]Ol齽`ǂ23w)}I2|'?}ՠϚ'߿u 4e?>uGG8E'-϶c>Xmmӕm Yc~woe+}`_=S|Ay9 _aoUc ^-d{: n6{8x{;oǃ3 @p /y!brʦ?./e-ׂEy!]o\r ˧t㗷/ x`Gl-ΧS.s.G]Pǯ{_uy* que0{?_gϻCyw^~95)+㮿7"/e=V?-鼕 XLJa?a=q>AWyfgf}Юso]x!0]5o߻޺/7{ܻJߝKoyʺ|vW'yov)_꿍lyﷻv6n۫=^W\qF V~vW-+v~9)[Wo⿽gcvژv6[Φm7furg`[Y!v뻲Y'vvcuogeONm ^[IY~Z}p$koo!8ulo-ge/i[qd*Cd3^mul3/y, \_gmєxVE+sV6a OwpY#;,z7wslޗ- ^^gq#?zGz]_nG{9?{ׂ}xlue4N>6}m]/oe|lIFl-o|U쭚`{;$㷇m7ce>y+{e7lnl7 \6os2^};b/?om-6KpRl+~򗼐~K~M`?./e-zWׂ6p[};&?xm n#? p9e`!WG,/^/~Rgfp۹e!om<]`ࡼ߷3.~З~.X;C_=v}pCxCxخ|tY{c>m> ޲iו|8x),|lVn?<"D|`ٿ{+8V.k=xy*OX 齾X$./ܔKC^ y :u;'x+{v^sS. ;Jg%a/ܕ}Kxy*qjx=w^^[௽,{#o-Oemu{)x+oOͅ/OݿF/ewbls7?oT?_?6ө~Щ?'ӏ/Ae# f93ׯuɡ |+wSK;.w{񯇧<K;wpg < \?!BO7?9){^ n.̿>/z}ׯ;x'x`F^-- A OQ~GGw_gxH_ }AH_Q|v:|y<[eğ!B{P y*/ kw0 5{m{n{oX4 _pW.wRS$p0W"~E4ԧ>:~] wa.X_F~-䷐B~ xe/+xrF~y+FH Q 7oHߑ#}G?%<2x). y -[ oCކ y6Oǟ ;x_`Fԯ [^z 8) F&QpWpgpR(OEQ+/ȿ __A /#2ꗑ_F'gtYs> Fy'Mț(Dy';Qށ7 o@^y:uk گ*گ{TȫW @^/~h yʓP?`yb0_r~Lp#}G};wHߐ ګ"}E/(Ah2'|$!>?FW_\7!oBD; @@;F;h:{n~ap7pp Fy ӣ>+Wԧ"}C{4oHߐ#H?~ @H?o![BHOy?zrOe폱 +(OAy WQUȫW!A^5ԯ~hy 7 o@ބ y&MD-B-|y 6ʻQލnw<Ϭcc|lOi~y r~':.`'g0+ȯ"UWQ+hϊoȿ iȿ Qӝ՞xǒ!^xbWRۚ . Fy*SQTx/# wOdupWp'e F~1Ns|C~I_}ppR^&+坐7!o(Dy3Ny:5k78+  y +_A2Qʐ!/< I_]O/y+#B'.`HQߎ;7ooCH_"}}=L3`W='s y -[ oBބ<y@?{}so7x< }snȯ~ 7P߆=l'eOc?9kcؾW?/={ FPކv{Z\< egZ㎛n!'/}kUwOg6]-b>\< қr)LTH_Q ѐ!}C;w#@'o"DO| o 7k#Fz?77e.Cނ y&Mț7 \?Iy^\}~  Ny  7@~uב`GC{T|+_0>Qd'> IRk;8+ n< ȿW0oȿ!W_Ay _Fy3ʛ?I|i$`Q^ 'Oğ? A_9`|(_,05]O+?>X? /K@>B/7pC g#?9O8RI/?p?pwOuF<"[G~~ x+nopqe?}Yo!e`/HUγ '8op_ F~ ux*o|F o߈%}YT`5k \`6؋ d ȿ N?B _#BX\^9x*/ av嫈_"~C}Ptԧ>(@7D~-䷐B~ mF{l,\lq:F孢77n癃!}Cu>ؘ6ݗ+xDy&3Q y-[bl/y7#o/[O\  b\ ~돿< Kp#(OAySͅg$}(\_3<+-?#n~t;5? ǻ&<S^菼OߞyɆW^smQ2;Gd6{"dko<3ޖ GԾ_q~zP-ap7p[NʮwpgpR/&گ/ |8)˫F!j<\cW0-.`7hpge:ȯ#[~+1xQ|(_F2ʗP%5%^9n଼!B|5KF+?_`i_╂\'* `䟑F9+'䟐Uym0⯢<>qY^0#rao/P~x+8)f"hW>啺wpK};X9 M[ﳃ+8+ yIr `gS 8)J2;+봿 NOc .X~5wޙ7~#+{2Jd. YCrAE<9}UrCMٍ/p#}Fz9+sKϦ7T}ϊgIIp#~G~6y @~! F0ِ` ~-r)mgCx) !Fs/_o#F-cux+\?zT \[wR(_G:7P 7D~M䷐B[?ŸrX[s.7#}.`Hpn r.RnH*e b^g䟑`w5-j߼?Tק <\ k2^=zब둊^*EջH|G]C(oGy}}ٝ ^z1?C^ y*U+W @^y2ec_70x rwⱧ!oABy0MH?P 쁢w/>H mHО+WԷ"}A} /H>#}F OHPY/o7p'3? }} (ϐ+~ṅ'+ܽwppR><ȯ6YNzWjes\=aO]KN>_/? 7pGrY i?z`3/ O᯾<[~s{{szn% 5f+)if9?yrk>|*:gۻ5^uKyۄ|pď|nɧ [_WzwONӯG߼"ɯyt[:Yd{/dw?SɯzyiN~3G~S3G~#?{|O^~'N$/o;?yyۑ_[ް{mh^zv&_Mgays my~ܗ[wnnIÞ_9/&p\<}kde ḂNwK~!S{7oG?=~75NncwY]'ao{'{gm+ofOy}O질k{t9;~6n_^x>34d\"Y~yuYמn\Χ:S^[?V8߾gO}FoΡ8c-_.s^ʥ~ex5q=&|WH>?^Ǘ}yEpө0uw<-_m}'zeu{x_W~׬|fd]O5k?~<ЏWTG]}z>G~z>G?eXn||N~mG^ȋy߿y1#/w>ݾ>v}w|?k쫟¾kO쫯)O':鋗k;>e]>}US*'}u{/5;KiaYzw{4M٣S)r߼|҇[|_^6{py y/W ^?/WmKEnaKY_S<_O[G,y P>U};-2yE1߱}1Ⱦ$O^b"5G^xdSr6>:Wȯ7YO[ן4q%uG3MgΗ\nߚrz\n/?t]Znu} 6{SO-{Ez_"ɿ?_ß}ڷ?v{??Dzn{ݞΧ| ?{}V{o>}4oZzu[ޞ?l .o˳2|x#{}z7}=7#3ofOE@uޅ~hv<7߯߯<W>ٳ?㧥7ZЧpۓ>;>;_}c~hc(cd9OmәZo?vy;b~'//zJ9 {SN>ʧ|aO_|| N~ߖ,~wX|'}O뾞XEy뾞\|K8+FZ^/'moޱ~+~߳/#o/dzuh~6~|};;;b-~ X7ϰ7}/U/>?}_uyN]y=:\_? nov?'Η;ϺOi囶xMd??kt?/* fl=i^?.ڷ=揌ګ/mO??y+_W?9گsOO>cx-_<"=?9)GϹ*߹(8<|2NW-)vQnv:iE5$W*{m a,/̝uq")1ߏcI帟s2^_$x_9j?yT/aT8?;e/;ߟ^v^K{q9z>yߘov>}v~ϗc=z!OuO}Í_~zyzwԿzy+b8z~zVo=q>m6X=N#V5z(f|aGz8߷z8OzOfbuxH$U*NW8y*Nj~~pG}S˻#{G=nmG~Cr}8>?"?z[^뭾/W|zǟ43qa?~Gw+zZ=F~?Dy?ۿܞկ.ϏZ}k>ۋy{<Ͽʣ/R['Q/-t>]->(ڈ'nG~_"o~==~9M؛7ѿ {X=EQ///_p}wgM^`pܠA_}'/;w@߆MNo0-[7oDSSG  g@~twCAa||w.$OC@@@@~C~C~C~C~A~AsF72F#W.wn'Xr]񍍟 }uߎv moo `p|`s \C<5o [C;2FC<wy~`Cn(w'!,Xߑo>߃;x`w߁?\sa }=Ӻ%'xO;;0E}}}}*询;i&X|*;! prސ;G, >{C/yJ0ǭ, y(Gџ9߄&YgY߂ }6m;A]wB-9}:uw+/I>K}Gd曒 ~͸OB`?ao,[ς,[aoF6mwN 9A& ~|x097'Xn'.㫘_?ft0)))Uq?+wzX/exO{j}gwC_ 5W?\z|^_o y_o y0}>+wހ{:u`^+2^ Q\ Ua;+Wmȯ4_37GC<Ӑj_K TQdu;bGC>!֐k?Ȏ|ey'hwdK;yG'xO?m=\!X/ypϿ~]o1>l yϧ`gok0ß<ἴ<5d/C@=n8?n,)  #$C~~(yW%ށ=uM>o:YrG-HFN|+^7L^ؿƟg|!X |+ 3+Q+)M /т^:Y,Wp _^`7`ožžžs' . F7{ _zȷ%CE>XQOUԯ*W&o0z^E1XQoGV+G8VЊxFD>;k}v˓aoބ {%~MyB Xo(b2c='wd+wn :z1111111111111O Vٿ }E``ۡC_ PF]}ǛcN plK2{!aA~?yT/6CsplK U7`o^{:5k׊BxX`ÿ[o¿QG OV'xT>^o<='ka '+Uh/W^~@ueKp`o}d'xT>n+/g-W C^a_UKd?'Nc&Nc&Nc&Nc&Nc&Nc&Nc&Nc&Nc&Nc&Nc>u x{v&姉}y=;o;x|`+惟| } ~[~Zcc+xmI]Yo.Y |+0[trOV܏la[˅ta]؏|a_Ѿh`k/λrywN3 VWSy[Uߚ,`{`/_{O'ʽ|*@2 3+Q+)MWs`<3ג^9As߅_VW| } &Mo蟢 } } џt77O| `oooo//o_|~|Ϳtg:cG~#ӑW$#ԑ_e>" ס/Un 6oߊxJ#xWnx!kⷆ!~k㹨>xx~`<[CS+x~q=e~o81i~?ß ._ؿa+?O oJ`O;w-*؏}}~> >stuvwxyWß׮!џ  [#^Mʽ!Cro CE(3q='oB߄? ,0> [зoC߆;߁ }.]E`>G!Y }:uשV_P+`+W_~~ZA=uےV݂oA}~\o ^ { YП{ 6m߆m%~|r\7A&[Ã~Z˅\ʠ<˅r_+ }?y+7_OV7c"y\ό_hwύ/Xw(*-ƻ8:Ïw8kB~nyj~bߝݒ&?Y+{2wNٸODM*þ]p,ww]ƕ }w w}fήط1O4}w}hgд д.>OӾ4;FӾ=;GӾ4;HӾ&w.h?~aɾ|7kwm};?lγwG|w2]**1#?\~>;N;O>R6}X5g<׿>볈> ,>Vqy||,B<_ Oޏ㫿E6?=ɏ=%[_v|p;?=gʸݾE[ı}ͷe?xrWn?ar<lb+_[F } V {A.HI?K#k<3i{ʼn~фExymG#6?vl|c1ve}-{xgO ǯe']gl'^?}w ܏j>XϦwhЍNmh[_~0~?ߥc{{[gToozi>O`aVW;{wl>N_ۗG~}Π'>u}_gLoq?_ܞ/n__h>?i/oEEӵxq|+ē;ys?7'[|n}+.K?oq<_<;x;_6^O>ֻ?_r>۟zykb=H/>e|[ηo?=y~ד|>ajñ|rycIv{쩯 v~\ӟXѷK_?f3[o?z|}>z}sG~ȏXX>q7ןwl?~~us-wW(~y}xWڱ?wo_i|_5kxF}Wm'O"xJOOǴk?m_>6O<;'ɮg]zno=w'c_Wܟؗ/7?6@[K?_T}caOxF}=77y<;=;?9}m MӓOho菽ȏ^{3#̏z^?,r3?"yַȏHYF>D7qjwio_.o캭n=ۏ|{_u{F~>F~~x|o?ޟ'=}-[|->n-ZRA'G|c,}|o?WÑ>xO,~G|hgg';/8y~Z<t}t<Λb}X-Ŧ/ɏ.''77C߈_w~|ӳ9cO{<̷s=43cw|bЧO'Hߊxwz؋r<3S_vO|~=)G˯oO'~s}b?jޜX\-gmogngh{=G|O;i#>1}|c?">痈_֣/FFOܿ7'{߈lN6}q^N/x;;x_EhF=F) `oOO{ }\=YsEC=w<7ϋ}/k?o8uyϿ6?۳~[ۖ?q˯_yxwz<>s}^<[-C|W>q|݊|?ﹽyG~[m"dhoh#[(zzysx.[<|O6F>q=8YO~8gO>{]u;g=8z||[޿'cc<ӿOq|C*9˛Wo +U|[T^s'ϸs89_{Οr|[{c~yP|/O?oVzby'ho 9<88ȧW:ukizȏ?3_;_Lwl?4;_#ްو/v/;x·{v~/~ϱtv~x@3<;_xn/&ES{E}>Qab/X=A{Xx쑏zWxbY}^5Qɻ}x'+vW5c?/i#mj}zϹl7ɗxͧr`|+gLCE/yzm뿣%o{=Kֳ xǎ>xfӚvVx>yE>=a@Q?h9 F>^-~|֛o1 їyg'}K|$^O^_ꑏybu{=?^9V/췑z먗||wG>#oQ+x}yG]J>rf~Tmc/ޟg~ȏZȏNoz^Gӿȏ yw zF>tZ}ȗ|GO,_=3?{|s!o\9o9o6Mw+Lou.J행痿yl<N1n%_?yx+UϤYWӯȍ_8{ё& pytg^H}"'~׬ͻg>y֭z:ۇY |-(?+؎|D׸k~{W5xVi~ٿ=˳ϿU5xL|UKq,e?a= _/n睼^]?Izggˁg%߳k0UJ'rma/J/fo77g ~ q[eh+U2>M6߾&/z"E=*/'[e{enMmKfr[e-v|;)K\ms|x!; `ȗ_nd[Y ^`/K~z ^``,_:n}e Vpsw+ڗ_ k͹'/[]lC G5o [0 0"nVy/T^n[W0K$xG [[?/pY[m_ķA'xT>'ok|J+/秤w| 7~<*Kν//Lm>% *_we߿1W_/f ~W?k&?>~%v?#o&Y.z=g%8>u巎w~-ldo~LyAlz[&>2ɦ߯3[2-/O޽N>koew;IJ^GX=Yl>~& ~~f~/m=s7^vl=^l#yNb}ެ]NRo:I^`xvҗS/xa_a_a¾׷ _goNIA;¿ ni? .a { xo7`O`O`O3b>8OloI0+xW ]7`/0}Yb{|ٛOeO%7c|*| o^SzxsoS<k]z|~w߼ֿv$}[Lyo׊+Z7y%+x;x2yx񼎸Xt۰>ۛor ^X[~ }:5kaN߿3,^\0;wZ} } ,пMo S#\Ac@~@~zvwC}po1_'x! zb?nC~C~ 򫬇-rV2\VO"?\_o*^`}sr6[xl9r~C3`}ˍx.Ş79&/=h߳-ngϯyG_}_џOp.x`;?:߱aΏ|>k~y͝~Y 6|כ7+x~Ow/λÜ8_`Ok_ ~'~fOvoؑW~~^oR/]B !oŷx!!C^:^η`o0 }d{ow=߃,uB-^.Y |*;|N~d_<xo@ߠ[{pYoFKo }x^x89wGY~_U?7k|*yoew/6pK|x'Y g?_X?V~`Ov?~k~;92:W揾G揼gʛ7x; $pl{j`W**['yRV7plGV2RYeo6N^2Rv7/>-lV0ukנgg `C߁}lH `[8 W#x~\o\_!!0?l$2#s< S֋Ky}>`o~E^ʓ`OO o_Vl֓~)׫˱7?vܿ6yOe[Ϸ' m?J6}O[y1iʶ_|*[< y*~N`"&io&CwdwLH xoe3.x!_3M[g? =o%ÿm\ }9߃BY2B߅[tT7#jwʣo@߀QևȇK x7|}FfT ~'b櫒'xoe_KdO~[4xϑȗnS7fM! f?$ ^`?E>;̇'+x 9 xT}џ}/ } HHVpKr/=7ς] z"Xo.&#%LrY4 ~kR'UG(Y(NHlYU\Jq&[|I=&/ox*|OV|%y*Klm U_2^__m~%6Xr{Sl$+~<*z& U o y=#?a~+##||+ FSw=Y* F5*;ɣeE'hOx.y V**UUy_my6~>7M$/(d/&d;r; 5~xG $ތl#~o* oǛQ6xěT_?~7X~5r7,f [|],fDry7s844ˑ?xV~v!߱zplCwW,O16}^9/~J~/_կ<5׃yl'|8ףrg._z6yG#r?H~W~"oQG f!_^=*~x`C ~≁xc/:x❁7 % m>$[{/,^K^-KV3'|j6ɻ_}l}J>}V yW-ßR2F߁xLVloV7|`i`/lEr?#ld/}IV#WI>pYO#%Xe| ,"A%op/|`E>2yKj;Oe-tOMVp| MoJ.lON>Wǎ|ur_|w[e[nRR?Rɷ׻?=W}گ_.% ?lφ? /_`=ބ {&7aO?=]`SG_:o^`pܡ<5k׊忠J 0;w@߁ }6mۭ:VC߄ }LO?ESS#GC߀?׷AAa|Zy/3`oooo////ʣs/nu>Np2#eFq `סC_.^]C[ѯ^o+X*;w`sxN)7E"~S 6o }߰%e? ^|O,`O09}_oa {2x C?G} *?LO3ςB<|+  yG|Ƴ?(¿ }&g.B-зF6ѿ;w@߅ }8oї`OpY6yc}|K0yc}X7yc}|_*++++ gL؛`o? -[m߆ 7o߰9j߰| u~ `~ {`SW`O?~A?G_jOsǎn}د6/O? y + o{ 5++o_)onxp?Ɨ,Uhh%FCGߗ\/>4دO3 |j<=>yPg@߀uסC)5``^4o`~yG>_9ϑs<%/8vß;wao3@} ;z~8V+u~$`/_C(r {j"k?߯G}Gh/hhh_y2^ FD:_?< >=^ [3x9`ʽ'V E?𮬐WSS7~D5ڸ^A; .?nܿ_k=oQ_z{_/aO`O``[=5wݐ///)_:_=;o- ^Sy@߀} 7_AC/^k=u泃gg<fބM؛߄I? ,~ʞc/kt#MD_G'%pdo~2}7 [ͳǛg?[), Pg#1:"kO#Pۛנ}xFܻsbn_{ZaN[emmJ6{>GlmKV{e[[7ouNV}7{,;7XvOw~'u`׎!oYYv$+%/0m> #U^ٿa^V|6HP lMVٞm+| Q菠?upb?Gs\S&* xTV GY"+whѾ}CVGD 5g U\M ^`C䲿G5U^`k7"w<(W侓'Xs/<%^ 6ۛ:9w3|p|]^ZǷ57? 6|~;Zo`rV4ɦ绽S*yOe{gH_߼*YOMx#$Y y{GcHWoޕ쇿k|l,K=XO M~@6_Gl(Vw%/0x'Ζd{`[]~%+TlYًm=H^~O++Mh_s;'kzm\߽+0 .ſow^`7`oϏ, >w@/ z}z,`oȟ0c~ .׉!Xx&x}6[›7V0K[V7' >[y5pD|g'XvK* > `N^y]o+ʳX'X+Þ.0쩀Ox+bO0hz ; yb>Xpw EyB~388|L&CD~iF/HV0u}F|En0/w~37x'#n~ > ^g~`7[>3>S3O<︃7o8:Q_ߌ8ϻ8B? y8N`xW;X ~?Ouz.l.SOO/O?OOO_ǻO=8?8_8wy/{d)+oooo{}xDz  >;+^ y7 ^-C>?(¿ }&g.B-зF6?_'xo }.]E_& x7:uסnƻn9/y\77zzxW2++kٯ6껣5xv+x7Vpߣ8yV< KQ|+'w%OR*{}KŋldߚߕDKM|w0-/Z9l{͒ھar}VNEw%?4g:=_46\J::Ƕ?|yk0>X'Oy|'wplu < ?LGa_a_adWWV?y< {Coq\p;wAp}mE:V{[s `;gxOo[oA߄ }&MSSS`\/7@7пu_} bOCl!_s|n^yA߆bvW+ yR֛a}oXϛ' Wß5kנzX }<VyC [п;-[ ~[exx߄s|`= !߳bn= V0[o&o¿ )S'Oo|`7kſ"^ K} /؟?ao>þ: b vѾ߆ ۻ+޿- B5rY_`؛Wr\/0ȗ퟼o'#?֐?kȇ5kWcz"~ /<1[s\'*z|lewyC^xr>1-'xyd`O0热qZosHym9(:uWηs=M~z< y|Gdb؏&lb{=N^?`?h=|=|?XhѾכ7+T[Y?)Xwݰa/_ؿ~<$ʽ[Y_x V0o¿ &[o6oÿ; .!+rgH>G xoe`o0* NO//_rtvK>k}j 'xυ?.]E_SK^XPO,_Է qONZ/-5|v2|4 X xu;˅&mMY3{W|#[keI.Kn$oOl:6;x'X7`ÞOCIVv&C~[cuI`给^ɽ~ }l 9y c4rr3%C^!WW y}[eN'xT',zJo+yGs ,V٢dÿ[o¿ &O? o|Vk+ /_?a~xN}u<3v}CnّձWAWջh~M\^m? 'X@?/dv0y ~ 2~[M ~Ǔ]NVٲlol*[,xt`}Y-6Nג`OSٿZV=&Tס~*ֳ`=#>e>$Y |+e&y!o2 9/˒7V yp\ ?\sy;҃|A roVG<x cWW3_,`Oo𭬰p:%Y_V|5wƯo7x'XgŸ (kQ:O+0 앯B 9p9půb(s~փϒajXz.46y!!_㩆x+~ Ux@+ yB^!/ |ɟV+l5?3[{p̆anXVS+}|~< {rW0))))7ѿ_2 ^ >[y50YsoO~x/y?vw|>3x<< #__? (QW؟?q}&O؛7aoB/oA 7oc6=w@߁}.]~< [w0=^YΧ;@^ /+ ygy_x;>?=`B nO>+xOסo0sa~f0 O?ESOOoB߄ }&-[зoA߂ }W >/ >g>)T /_ `_'+xa 7`o@ W_? j' ^`دz :i`~_'uɸ.b/b.?0_>{OoÎ?xjc6x.` oko//⑋"9Wxp {}`ń/ 1Qo3oK<_~G=߆4/ xx~|/;| |¾¾yϣ?`zy} G [q+K񼦸~Vh2o_gBUb<UܿUUܿVbWϊY|_ |C~!VA<#_ ~)IH/ C _`o^' O0߂?qoe`w? /ς?l߰aG\[Wp>,8?/ !4ϯ[q>8?W(#/q>= /~ { { {U'B_6yxrR+oRlsxO*{` o߰aW>0E>w'T]y@^`GEo¿ [ojB=zz?ϻwa߬?M*YQ^E^^y@^ W+_~u~jjjc?66F|܈_2 wq.Bgs泃`K<`Ooʣx|=Eǰ<`6_xh;vOl5>7-ݽ껡qT%c:/RD݅JfuP{}ȷǃ_>NyzMp34} G̿*u7G,V~M`o׊Xxl{]; 'Xз߂ -oB߄?L\?? -+wwDl?x!_Qc{s ,`۰aoނ{ M؛7aOxGe o:whПҟYiϞg>?+Vpς '+++ ?p;wm0VW䎂s䮒~? Ob<㩸Ha U8;]8[]8{]8]8]8M? p xT>@~_Ooe_B-z^+xoyO!/===O} F8σ7|s>hE޲ƕlMwO'Z'$ߑ;wUylA$;:`?^0õ#roo#o'' $$$"""_?;^yȅ50iԧQF}:::&&&66=9|5#r_C|xGn7z0&~$M&~&~i ;{8> 7x&_&_&_.0sɟx7 yvr+l|S{V~`Z`a2aq|ggeeeee%ȗh߄~=48p+\`kпg;l Ay="7^Guz ^CWѫUگ{~Q= z^F/SL2K/Q^_p)Z0z ?`w>68܉wۉoԷ߈oW+J|!_/g3'/%cOO51ԘjύnDo7գ;@㷣㿅ӝ:<7N++SSS.0~~Ჿ9._7~a}'=?/9_0ԧ9/xG~0:::0O|D?\ow[-zq۽f=Ow֯;۝xg7B|0J|%_o7N|'iA7~&~/O^s#%sp| Շ+zJ*kԯQFz ^G z@o7ћc{,z ·fS/:\`[%~p+#DGOW/~ ?whF|=J{V+- -g+' )Sv7On<%yx)S˛7O=o<*ˎcx;}o޼%d)S;}oZ<վy+Dw0JBWum<|xw{o|&~^ћgQE{,six|fzvyx;rx+ z^EWѫUz ^Cu:zw~6tDw_/ogiM{~퐯į$͗np`G,\OJ|a|a<6_~~ύz0{oSM=7}""""^|I&@^u:z ^CQJ}+Է_hKIGaB|Ev^oc<@>}WhϏOe}//|5m|7U9|%m||DWS~0`Se<_(q?_~{f~`q^ܟ;w[q?|8_D(ڳGdɗȗWx/8Y,b~iq,_X|b^/[o+^?~0]dz?x0o_!_||W /ܾp_}Ƿߏxx m&,듋hpzzxGM&zD/o/ֿ㋷/o_E{\o׋ìƷboނ +;?Yu}g׫]ovG>(}Zyƃ;L=<"WxF &##''' od'76C} xG⦅<"~ݯ_________~Ikt~Q|| q_Oߺ?qO&cٯ\|aO7OOOG z;菉ON' "ߢ}6ɷ&&&Oq|e?o _O.5?5q9{CX5|$}˱v<w.0~~~V<7$DR@??W}:~;zﯤ<ȯ;Br?L}2D|">B:_pS5aW<7<wwo㷓RJ{Vڳ///////g9ZpKIIiyxlN}zo{LTgg''{w~)r8eʇ>ם\"www7774WWWڧОϴ8e%%̾]p w\"Ox^^0~z@o ;{v)rCῑQF?*g8E~W /\wr>;s<p_o__O'''_:Y=z營p;pBp|/w_'#7???^Go7 ;N?;џ/ |YٷzVc.W VcNBb<ʹG_~gedd$$$''ƫ#[wxnpɷȷ~N~<џO'@?hߎ^;k5z^EW+ z^F/ez }S}WoFoMΑ'q}JwK@o7O'SF6шWڳ_o!_o!>^L|&>OOGl6G,f~f3l6Gf~jm>0ө_Gᯡh߆߆8̏n[7,S`ags}\?o繌0~ /B{ w<;s?W'G \O/e|<&~?< ȝttïn0z ^EWѫʄ;\0hx~8/xnpɗ6L4`% }@=Oxnp }s=y9_ _xC?w7O'yC_x8^/\ 7{>nnp9/ލ0F WF|p^C _Kz;׃z? `1 +`3 K>M&~9{Njg%;a Kw|yEW×fxk6F3@oo>Ϣ~-m6zK~r;s8gF/W+ zeE .p^CۨG7F&Ya7ɷȷȷȷ" ;{xG.pgdv"~??<w??#&< pSNNayrOobҟLѫU*zK?xpnpS䄟3΂;\aE"?ap܉'xx&_!߳{8GKKK!op6LEI9 c >t{n75UUSO&&&=SwD^ np<'L{Ôm?h|>\"WWWgW8ENnpU|ymx &$$>s_W*/Me~r?Qߨ_*z\nxzoe pW*naYyY?3yx|aǟ_r7U_wWUn_ɬ_=g~8a֯0_z ޑpLC|8Vo+뻕peW:aO'ӟ=<8n8Qzc#?;Rw?O<#rNpWȍ|at&&  ;܏^ns?|y;r!_!_!_%_%_%_<|>7LA$~wwg~gߎɇ+9 %)c|eg>3̗ٙvS7z ^[e2~w>͗'"3~|ca?ڙ?f?,p;<`O]86 ҙ{OՇM9}SJ~X ߭7{l.pSׯy¯O뿎p:/Oï|%/ȯ;\{y.;\W+ zw>ѫwȯW8ğ,E~]/wEsZ}D~]/~f F/`3 FO+*** ՘9r&_&_&_&_"_"_ jW{0}0wSg59{n75UUSO&&&=S8>jk Α?S1`wvw67Bsf?.wٟ)r٥+?[׆p;o\agv<8Ena|tfO/7)s|pOΑ_x= 8ïՌ /x ՙW\#ҿ9ǯ\uy;xW}I/_.p;O]Α;x?1σSL|">Q 7E"~BqޞpxNOǂ\9O\n0~:~~Tc1՘:o縌^EW+ w8\K.yp L0;oW8aVnW k^_~ ?g~ٯr8Wf=jawp_vp;wB|xӇ+\977KA~'\`z Bo7ћM&z1W8GFiԯQFkU*~*~j= z?L|&>Ѿp|y%p_ćwxy?OA ߩ'Sp|0x;S;c)[w;Ňee&[oXeapx+:߱=ymx0xRp3"ǯ&<rx0w o!x|+vx;\pΗޑp+LEEEMMMWy_Y|gUW O}y+֑Fy ෠W+UUU[ժ+pߑ&9?O'E"~&~S×;<#W" eѫ54ڣ5 ^OO};Ϡ~@ogRI&o[-zFoޙ\^F/3syG.0zQC}.WFo7;r0ԧoPAA^ޑ[|7;}? ? ? ?a<7iχ<woW+gq .p\WK?||-zw8E.i9o=\9W|%^B/gn7s0wnpSIs~&~?;;F?0χ[g=d Α$#+LDD+oNFFJJ}j= |dhD{pS}34mÔo/9S>S>S>Q>Q>7o9;Lp=x:\9omsG +/po78??Z-'az)rj:a|+\ONG&++䋯sf>3歹OKp_U&'/s f=ٿqg=0qaӞ륋[o?7>xb}yX^_/ַߋ_&~???zո5wazٸ6qzݸ7@cO4BBg3/;#7?yStz}wREM/wxEKL0FVawwwwA5hI}&[[[[_90 *{qK.Wx;r/p'L ~t`'E"~Mm3_y~0z^A9>gr;< ?į &_#_*Ν\wx^<H;<QwM;9<-pܒcx=b.]c\p+\yKxe477=g5f3X Vc1՘j`5r ~wvow. |8eg''ʧg73{tvg 78G 0:&wr3wvrK 㧠W{p ~pz3~y o>ܾp\M~r7ki_r<;՘~s w^E/+a;>L ~?~uiUs\&׻r#?o8֘sa S>SykO\^[x(:uk{)yƋgI&~'[]xrW\$ _ok|||>}G^gRe~s?~yF pWWWW;q||-VwRus.OA0-w2E"~ׯ;_xv;/ JwpMp+a;rCk~K=p;< g?0s ;`LL p|.}p+Laߨ_>J}*~E__o|> O-oӂz ؿ'!qH3ŷ69Bo7ћM&zշ }u:z?5ר_~ ^OOͿ^_A''7zy+ɛnby+歸n|pI$~?;w;';\aC=6?ю?m3.ye2z&ꛨoB?~xb\n0̝"/#| 㹱xm뼝3\np0c/<~g}_?a}俁?^9 f9/`˞.oooog>fY?~p8ì7>CN{ ;bq?zfzf?{f<<oo |;$$$$$$??aLs|ԧQFF;ߩOOOϠ=F7iIN>e ?&s>__ȗɗɗ^~ ~B?з?; "[-;\yggg=?SF|>FJ|%%_!~ʹ ||z~ob1pgˊ?ǫ_ox>y~OO;)gNNԿP777S>Q>Q>ϕ·<(((*ׇFrV['TN+QW/- [|\f~*3/KeR_U Wr/\akr? lyg~=o|n_~9Zom߫{6~;r\W  ? ? ?||o>m\߭Vև+Ǖse}~]Y߮W+&woooR~R~R~oo?If?CsKP(_:d?W^77xE~Ƴ;#?y&9/`KWZ   3_ ?#q?OK_3v?'?s;<#?oooj?uߩo'???ߤ'Y> ? ? ?Fo~fr|a2 / F?߾WWWW_%%%%%???u?5qg^=|{V$o]<_:뉑?#/R~!^ϗHn>rKٽ4Z^K$wKؚ5{'<7srSM'<///yS}yS fnp[7kl7k9Y\/gL7xMx7 ޴w.opsI?ON'YwDNMKKoo޾c%+" 7   9hr9)9r'''}ϕp%o|w2>+o\AAAWJ755N8\+oMwn29|_pw/^os Џo,Y-\np ynx~;k- /\!_\!c'9^X{xw|:LM|=}p'^F/{Ç𫽟\Wa^&s;rq=]\ozq=?:/7xFޔߔߡ\n)))_(g6~Lxo^n^ $""";? g䜿p/ &_0y.       ;o7\ 9>6F|#ߩo'??η^g+y%YYm6z|޳w8~ɇg3q|sWa|w| &%]0~Zsa /xp+FFF~ۯq6swN|'߈o7+J+{?o_Fݘi׍_7oUrk3_mz jp;` uw?9w.p^ ۯܿ /xGa='W# /֟n0럓|ʗ*_λaq^oDv=;\O^F/ׯۍxclc}gߨO#߉w;A ~?_F;r?w^se2~\+RZWkiiԯQF9^;_|o zw>pDon6z^~_xxx/W=A=}/㗾|a/Їkkԯgq<7 s`<7 sw>++}e⏿W'񩚕S7?xnpSSSS pSS?x O)`%J[9>R\` U\auuoxjrTJ++ů\k5z ^EWѫUگ{~Q= z^F/SDK/Q/D7On2<l=TLϤ>A}W06Ooyx ÍF}J|%_/ L|&>iD|_<-_!ZOU/^+Do7ћMwPA}7ǯN,:-p||a<^<5xz0 S_C.矶/ڿ{'o.pL}*++~~~~ש@P@??&~'~z BowSM}wnWL|p/ &_W+-䛷o~Ǔw[7o]߼U};>#OWnx0񭓛Vnjy7~mlvt0z+rxa z^~UW_~ ПޑW z@/o1<y[]]]o7~7~7~;\wx+rF?oɗLL} +/ԯҾWT44*g<w6ȟȟ/?ڴ7B_?9& כ;\9|%OF|OO%J|!_/g3L'/1~،6`1YWEIIIAAAANN|Tcxc|xAǟs(1ucŷ"'&ޟ '>wޏ}ܯ?SLLQ+ﵸ_[|u`|g)?(?7sUW|aSWWWȗɗɗ_~|Ob>(df23M&Kdj25oo?џ|o0=z|ޞMNawY_~/< /xGP߁AI^:YO qv;YO֏'˓dz~oǷl/狷/_yXqB_`~{=;LJFFbՏ[W4?׿]_w=~RIy|p7~pg^yxG~~#qǻWNNAAAIIIwƿ{:9|~0 3r}'4777vt5ٟȷu?_/~ڏ%c?/W+J|#ߨ#SNu;ffff~~ϛm>0]onn7+"o݇3\wx |W'ה5?BW8W6~Z?R? Αׂ\aMMM uuu5錻 ///S>Q>Q>+~ϋEIyL?͗_____ȟ&|ojp}=.ȋ”www{.T9Oħ<W8E;o{YMMMM'}/g>2J||ep=q{ L|<33 }z[[[[womu:QgNY'u։g?????99\p\ ;`TT ??////Q8w|J|Kqv}8<B?g/h_qf3?̏o1ZO-bx|_:\O^?v?xxEa z^~UW_~ ^Cu:z@o7Mo{L~1=z ߅߅߅ߍFwwϗ;gz;~xdW|aSgeSWWWW_!߽?woɇ xiiy'򯟩WOϲOħηw9~;oxykkkԯRJ{eee%%%7F;\"q|catߨo;NAAAII&[[]ݴ&~7ep ;p&> x< ;w2||W:?Η::|37;|ί1_|;_O>?\/p=#\p=(/1o ?I:_Mf>c>ԏmW?ɷȷ9~;{gstyaϝGc>oGc{~ǣs~WG1^Ac>>z=3z 8~|s/>B//qdޠ~NtiGPJ|B +~A3U'J^+ye|S9+cx~>Kutc=+XoAcXA^7XX!=|}?Sߏ"d|' 5p®gri{|koϷ?W)?z+zzğۏkq<1^p<~ 3W8^b<1^rG_g_~w_~}p>#p~C/Akq$盜r>2络s4|y9o:|w:|η:|:5?曝vl绝w?ηޟmg*NV_O.Z./xp+\9'''''??H w&""0VO'L'Lݝ%ۍ#~Q!s4s ̲̬0; @? F ^CWѫU*z^AW+e2z^F/KѿJf&zW77녉)_`O`(O~W+[/3'+a?Wg}VS|2W󽓿 &A6/7o/n7 FA|@/7u7 LoR?g":^m.pگ3 }žΓgӛ cF{NyA!w>isw;w?;ПOO'O<_[go֙|;< ???w>{3<_o/ aۋ[Q?z~:uugvN{o:3tN r3w;~P_Az^Ck5*孔R_!B/;Gk9/c>q>#|||??sR!>S\%׃c}zt}zp=z}<ߩ쟨w2O>ouM~`_y~?7|7a͇<'[1(3SϼsYX/I\a\X;Mwa=SR ~)B{*UX[a(|RO Gp^8,+ =p /\^8O[>|_o`{=J|A~GSN@o7 {RIy'x yr_YxyE{y{O|{<~/>A'3y~Qgy~Iﯜq?1>~ z})gyNע<<?}7/z?G|?H| }IWq{'|x'.q/&_?bޯ䋱/s=Y/uWgӹ?u7O#F>< @/u:픷SA P'57I}M-ʷ(< 3>㯿\8폿11{ϟ e~Er;r/R4.wH\NY_k|1W6}hs_c_X\~+Wnp Nq󄉧OWh  54+UѫU*z^AWe2+SK_"DIww~w{ǹ~؟o}ǾcoL7&F< ^E_% //++333ē'O/\^8y}l/ghW۳`ڟW=dzxxxxxxxcw>18Q~|z$^y̷̧Ǐ ?\q}ϻ^r=z~\={Կzx].ˉczc=zu>/</+ z었c?~?<~d?w?o~0_? |g<CO)|5O2d>|,]wO#ȧoӞ|G|GG4?j|R虏}k5l>{G6m|rǛ7'xygO|1Of[GdX8p=`8pK_:zA<6 o {/PJ<y)3c(|~7K/O_ڿw}=`?8!>#ӈOCq~^EW{ȟPG1{7O柈?/Q?G~/#=m?|I6H/^|y7GVo޿ll{?_O7w 919:^::Sxxx|||||||j||zϻx׻^q=)rzx\﹞tz&WY]?ˮ]{^z< '/~r~=tQg=e߻_w?~ Gg>0b|1|=曼v~b>|2i̗{3g>|H3w5_k>|Xs6m~|hw7_}nϛ>ůpO9'n;p a3g+|???(ߠu; <~CC߈Q?~+V- -[7S^F/K%zGW7w+Fo7 t6w) _CW)_%}<}> g>Qބ}hN78|g<C̗O1C>摯1c|>IG2_f>|2i3hM+g4j|Vk5lfg6n|{>sM\O'N_۔ަ< 7㼀ğ؏Q??GNcϻ7_`~{y?1b|ğOQ?LO/3hF ?؟+0h=h`?>h/ҠK!+zJ|*梨_/_ϔ7O&L|4̷iO|#g>I#W5j>|T>s6M=W6n>|tכǿ/}Q4fT_w755ڏ^)>M:͌uwq:_ }"կ/OH##w_'< 8܉O'NQDþҾ 'O'gߺ}ǾcAFۀoK'WXNo>x]\trpe%KWC+\`'s ߹+ z~+ L|:ug\_&2egV>Sm^'_us~W&A|&MOOOOO/--]fC7gxnpW++W)o:|ۤmʷM*2|ˤ-ʷK*.|ʷ+&|^m~`?O'/_؟h|Ʒi|NX_\/pEO%Jy*2L| F6\Nf k׈|32I?Q_騯cdg4p|e?Yy?/<|#pq|3'O<  AaRga/U |CaWx߅ +/ ￐?)_ B~J>o,KaRX/e2z3Vȷq|]+aw o4/O}?qg'yW{yZj0qygAA>=my➯7S>sxt'.|x*{6sz\x>(ϵ_L;թNy7o$I|=rzo<$YWWWWWWwX}>ם/oǾSގ~`?OO~Q_s|y:ss߷;#;s~_|};߼Nn_k0k  O/F>cNi1?ߏ1֓Ϗ9_ W$}Rxӏ>%"w""׈onp &hWA env_&W7_ތJ  q-q17q5wq9q=y!7y%wnp3g`?(OǾc߱A}?p>jߛ.p:jt`]{uqn7ǀL|:u k׈|32I?Q_騯ڛsɁ+l3W-<_(_L2gO<2_N'ϟkݜN>j /o7 z7 zfU7W+2z^F/8Oc}7Ww p &_nyS.p Ox}7 ?/W\ ~F/6W+*z5^.>5l<67WxQE^Y/xy>|_멛yk=v3y}oZ/`7wPAxo7 K<}_K07W< 7o$I|on89'Á}o/~`?g? Uဉ/|wx^F/+z~_:_\ѯF_;:ߕOڌFX pc~t8WwE'<\aw_4tr___|  J*Jy*~A__Og91'xӡ{coz3z@o7 :z9+p zxkRJ*zx*”_A/c'O>QDϮ78<؟~w n~`?w;>7Ow'n>x^+weTUxq39\+J͔7QD>oM |*09`M;'s=WXs\aVXܜ_:u S^_|r's_v[_wn/< 90e 3o A|&'''m3w3xwo>xs+<6wx z^!B|V[)oEO#FVV>W! c߱~b?)~Qyqߣq^o_|GlWRkW*T⩔R-koP@)_| 7 &zDo[-zoM>y)h|c6's0>u/ی~Eo7o7  (___|߂[~ ow{s/ ~1o {z0^1:_P?gOOO>_X߿`Snp}8ny>ޏ^ OxGPޠ5N8r\p+1;u׈_#J|*+W_&L||a1zjs9ls?O{O/[_xoLx5zt?Ry:9_a3'_/|xp~<8_?Χ׃=n&kN_5m'_f:::=_'=7o$I|&-[ٟ? +u}|qr_|ş?=b߰o۰o7ǾA Ϡ3gDo~̗n}|w}|wxg3~0|w>WWW(_y?>s>r?9 g{  K-&}^_H?2߯eS:\{ YGm,ח7yÝi!iaiܯY: 8bsBK#'ӡGpћM&z@N3N'~)cK93~)cp3 }%}P}27S&MK>V7\N>ĴKL/%/K//- 2^L|A|A|5W_!B| eė/l/uMä=L,7O5c~3~J fě|_/ N$8σ/ 6˵7/7迃9x;#____F|}럏 g/}<Kу/c!tud37\ ?џ{}7N'O3gT0{ п/ _Spy Ox|GNP;' ms9wN;'̝{{xy|g B./_ś }þb_W_/_ yx2?SD]3pp w{ /x:j|!f׉O'?W_ 2t3xc߱wo`?~ahE{rF/a͔hhh~t3kz^u)_|@o7 &坔wRIy']-z =O|7NGWm'|f3~A_?''?}#7TUS(_z3_yGo.pp//>o]߬\GR7''<`)S__Nϔ??////QDop+D?џ0 o'Nx@/ ^CkU*z^EWxQxy^F/O|%ʗkvs+O>G\N 锧c)O>Qކ} }žb_/ }>cO_>Qx^ 0~|9<'pg9>\hy͔SNy; ~#~#F   빲 p3N. /L|S&R_pMykޟ}؞loo?d?~k<\ 7o x|~'NN|xzDoREy]wQus6W8yrNp}`_W+}þa߰ wz/`Rމ/"Ey<~jsar+^AO|UW)_Ek5z^z^Gux1x1xIx'NO.]/xA O0sWп|/PB ߊJ+TS˾sߩםyK'aIēxXע~x_9yD?io'N^' Ay4iӈϣoge9_8;?0L||uۋys+Nwkr5^n&J| +ė/_&D||cs+Nㅱww'o?w}=^l񦣽=mvny |'C̟||#w2UgT'+Wϔ/Q}"s3LȬg2L{ɬ_2AdGKfi_yww;wu#wwp py _s[/~ G U h3}{ی?wW7/u)yx` ާ˵^+ϓ{77w5k׉_'?Ky|>U/}Yz{O}þa(;jp*X;_x: g77oߤN'N]Ļ_/|ֹڙ:s:z>8??O}uosJci<Μ+S˲l>8]1__np|>92<ǡ/m}EvFw?q#ύ6-:p϶WwۼN'_W?ē'??qs .p>y.D殯op'__5<`:z܈O#Fϓ |WW Fپ_9͝x:ts_KO7sɛ. :3\a33778c}v XL{,B*B{,oege%%%ʗ(~FhimO'9^4Ɠ7Lx;z}ۉo'@/ @k15~hU z%`+ȹojRcXO4)_|(_}~e?ox 锧c)O>`6mWW+|R?*Ee~7c?^ɯG"r߅R!?-rs{& 9\ sa|. sa|~ xx@C#?/>s\a=WXowls3Lf zx*嫔RJ*z ^C @/ :z^G=7Fe7_C?~W߃qWWW(_|Eox*Tߕ J_iW47INqWk+_ME޿gQ1W86Ox]???7_GS~GS@?? @k5z^W )ē>cO'ӧ}ڿ4us䣿|c}uk~:7&_/7WWW)_}_!L|2%Kėl/2瓏\N>Ǥ}L0}_PFoW 7\N>砿eԛyx;7oއˤ=m:j3\O @?(O'^G =(祿I<~|^'`ތZ`777N{aO;|~l3_G wx|E]^E]{?*5k׈///ooob?wRExO\g3}hO wx܈O#^C/ @/u)o;y_oQ L~&G#~gߏO  D pt~tD9cFz@ﱾp땂^AOv=c=^FYrcbX_^]]N&zx\ch8h|@'G@|D_3{O3?CUꯢ_ѯ)擈/~(e+/SG >g7q^8OK|2<f銿Jy+U=/o?S_|}:z=#7 oPOijƢ,rIIO_}3ޯ9:g{y>'y?cgzޗgP޿M}E,zg\G?>e2zteW+=yA*zGl5ky_2{ܯ9}Ύ'vgO'O'3.KO&}k?g7ώ\z\Rjts p3Nɛ'L|x$Iē>- w88<7777+Iƀg?w;;~ oۈoCWѫU*z^AW+e2z^F/K%ҡ76_Wr4O{x3 9ˤuza xi7ӰoWb_y? -g3}>a?{'z}:yb}0l8`ǝɸ@/ z ^CGUR~E_/_/B)+W_|fē'O>%Kě /l~ɝn}}{?o~loG۫g؟oGx-׏=||O^x'\oq-c\s=zMף7]bzc=z<}/<o?r~s_t?Uw_v?~/0?a| O̯/1b=5|A'=MW2f|4m4_h>|O4i>|Tך5k>|d~g6n|v[دijQI''Mߠ>:u;AA}z ^CЫU*孔 WO/7LJxd<=gOΧo%{{ﱾ}<+8 zXﹾd=X_d8o`z?`5ߏE|>a5~0| 'C̟J|"KǨGGugg}?wߝz'?ߝ;^:AtiOӾ~dQކ~COVn&Jy*+]__ _%j|pY/<_x[^~~mۓxml{?_O?>xxxxco?^ǿ~=O|e߳}/g؏_}o'~y{_i-O+g1_b>cט6m>|[%72f G|= O4i|SKͧo5k>|^W6m|nכ7n>||yo/}Q4FT ?6"FwV_h]~ZL'~^ lU;=W8>~ec#ߞk呩׿ei{-EYOU瓯yp :yoPN;:::: ~C'_kp Nr'+-ě7o^B/KC1k0zsnp@o)_|u)_k&F|J*x )ʓ}>2&M؟~/[\aZh8o~`ˡ;gܿTzsɁ}Lyx(O;K7;^EW+JyF?7OğO_:68WN'_3g&Ipy_?k<7|ow/jO x`ʳ"Ex\d\  //O7Ǜ// _fU*z ^Co|7Xu <<I}, uדa3<`Kƾ&yr#ކ}/^OP>щ_| A< 7)Do7ћ-ʷ(ߢ|~^F/e zϓs6Wѫ[o#F1#p~G7>u(0ooRSQsX>sϺ67>gcmp 0;1`F s<Ƌ`< ƛ`~K z^Ae2z47l1>/zϛ`c?noj7\tr#ކFx+VUʗ/o|~䳽k;ϟ>*>z{s<0*S(&L r7ד[x\돛'ws77m<_)_ <'ʛuqW8<777?i&ɿdÙM&dKf?eSU&ese Bfyw3Uo# Gӯ9?+_~61n󣫾~W}9߹g7sޔ9fη2g='wxœVU+y9ǣϙu|;s9Ϝgd~3AI}{>xoo3|{8;]G[yf/<_y|vOA}w w w w w w{ w+n+-]z O`׉SA}?x~Iy&YgQo>o6oog>WWWWw>>q}[ތ ށ~b?/|uٸܗ |~jp5 g};zqEWѫUz s_|uy_:O}7gwÃw>3(8y-q)دs|߲ܻ?_gimw!uE:N\e])xYwk|Az(78o.28npnp:Q77 o7+_#ys_# z^F/}`75|̀7O3np9yb?Oc;e_m;ts_+|____|  W7\N pc*>*c67 c_W_|{M9x>7xoJ*W/<_jg6|trp`gn|;w1 1 }0}`؟z&~ɬ_2뗝!9\ѫ]ng'RDjp"58H NuBup;p+\ ߙ~_'(?qx _U?k}\Ox՞''R7W8Ox\WOƃ_n0z x:o'd~2L|2onxy5=q6WWNs37o<^pq<޻9yzf❔o: 'N.0bɁտ7SN|:'O?oͼuggon89'^'UUUU/N:1|Q~b?_/`>|$_8'޼N. z^EWѫ]O W0~|X|pzg|_<k>9<<w8?ϻ~v.9/@}] SU Pr +WP߂`o - 8GNSW0K!?!2ў˰272O)9ggU=}^e+rCyҷ C^Gy:h o~Mg<B-[ o~ۨFbm迾޿ y2eː!@^"ߠs~v97#2G}}I!C~?>g}&a>w ^53/:/俘F[s ՍC)ϛlgeMs_~ʾ<[6n۸l(p S= <\ȿ#;ȿ#t 7א_C~:#ԙ0Wȯ_ @~,q V[6n]ظa㖇8g7)[}{M"ǯ,? y Mț7!oBބy sA^y i_E*WQ y S7ː>< 퓐>>['W&4џ'SH?~v0:_'NNZ8:q vjm> }>s)(OAy e'<h%K(_~׹|{<\ k! p#V''x;+@_do|ׁ[^+|k%?/%KݪK wsϱ^^[9 QM[DK'+xwt 3ӭΐ[VM \ lq>#|t;x! O:C^Ey*SQ5< H[EauKTauk\av؋davثl{^/7#nKWp!B^Ey*SxEn < ihoy3P o~&Mț oAނy 6mې!oy1 <+r7~MQނ@~Vȯ_!B~ 7O #{gp7p#v '׭Y\<=Wsp߇x+s+ȯ"p'  || ߆7ߘ6揭=LW?]9GtF;wHߑ^5Soq.(/SU spR\"k<" n`o|(_G:Q5| (_<_73˨OBShqyMps@wPVx}rw/Oy ϯ N7p?W€a`7};q}9>"}g?4X g;#//70y9EN&'O&+ky 81'q OCk߳V|_?r7pcLWV_CjY/̐!?~Ud ^g`x`x`y`y`z`z >i`{`| u>o A|047 Q|09[wwyw/s3x2wW& e<^7卷=뼐B #w{+rÍ_%#}E*ox>sF;k3PMo| [(BʷQů~l|c__}F7;r-^[W#} ԍuFH?~ Dc#/WpO0xO"{/70}+ʯ=;r`א_Gٻq+3,1u#/P'ǶsVb.gplwy'1ۻ\#[ﹼNmt\`ȷ70:Fa@{\ΑM h5߀vОu@h!orWp#}F~I 嫿# ny0?rS6<_JspNSx޽//<|{9XF~w>޵%r`oHߐ^wҹ,k/]N5}xoM ~띾ڳ׻}y-?H97ppC؍q։_ۉqC{5X}_qWpwpƎ;?_pc41&xn,i&%!O7znp^usCnp7>;E?+n/87pÝ |0/ ‚=`o,\`<_ntnn0uᏟO/[؍؍\S.p3}pA?3uT!O\n .o0ȿ#{]]NOp70kȯn0>o< A_/`n|r _ϷiQބ^ӑKZ y -[ oBބ y& 7 o@^ Α5kPUԯ~W!<èo y3ʓ> g<?Og?'F_']O:#@HQ-r\7x;SzB_Oqsxč7 p0} ko\o_oHa.OwpWp7βߜ7<V+ gp7a e3^޿ga_ro/yGr+m?MJ#k?}?vn`'*n@}:o/C]fxwdŋ9WpO0/Ŀ=9OO_|ywdv(OCy:+>F'OWwFzwgH~#}\t{#;KWp!B^Ey*SxEn < ihoy3P o~&Mț oAނy 6mې񈺽"%p7C^{=;xw-(oAy x/\ < 7o mEawC?y F#''_^y&pp709}=_X }129ſHPSgYk_vqq~"ŵv8qs~Ǡ׳A ~snĿ؆_pBT݇7\"ԎO| i(OCySQ+?.ȯ W_A~+/C~F2mpSr )ȯ~ys oBDy';QYy !moC5_y*UȫWQԯ ګ@^d'~ K_p(7p~ p#}-)@H?;ګ#}C WH_Q/H_3gϨOOOByʓBy2cF/^WHo(9:Q˼!oQ^<x'O? íF~ӑ_G{uQ;m(OCyPhFy[QxWՏ[43|ܾ`GC}Qw(OGy:QW}"^=W} /_(yCކ y-$BRp I-$Ugw<)(OAUqF4oOC;wH?~?~"DO_h FQz¹ y9+bz̹*U<_C5k C^uo~5^Mț7!oBޤ x3҇~M(o*39wp6x+ ny| 7_G~u| W*گ SPd/|K(_pH 5rn`?@wߑC 7_EqςYW3ʛ||_9c<_xO813~_x~AO̿%rn`W }2 {'þɰo蜐>/Kawpp}Ǘ?Q~7Y< \)_2;7<$w/޿g/\. nF';Qމ-g< /俐B~ߐQ w(7؍:!}<;s0K;< Wȿ"}E7_N\Fy;o(D&ʷ ogw{rP w{23ٓxE6{z3DO俐B oCܿ9#}n`'s\ (_CP;x~>@f_޾<#ޑwwp\#ݠݟ\_A(oEV"}`oHߐ#}Gw(@@OhLg< -[!oCކ yvu`o]4vc.WpW_A~A ȿ"Z(O );ϓ 8S <(_CP4<W_l߆ox_ }7п_CeQ ?o]>i~3 }Seߜoo̷?ߴ o~|?Qy !C^G};P߆khy *UȫW!~+_A{W y(OFPԿa6[8 A/ {A/O_zo s @vhKoH߸^E?gZ?3@y wl~G/ o )/E b1?wfK3~e:ڧ#ȿ~wߙ?P4< 7 '97<+?[X㗜 w=Pw(_Gy:#}I 3C)}߄?_yg?F!oCކ yq```````` <cw> Ӑ!}G;(@OH?!B~o7ǻpC^%9Ưs0Uȫ(OEy*WQ5k A^y@k ț7!oBބIyB}~ oCކnČ7A_70>wn/ a4ޠSxjj_*ȯ~5Pڳ!oCy:Qh5ow m; '_ 5]qd Xro 0I9,a]H?pͿ?c?}aa_?Ԗ_ьSwgs1/l>9/Ah[o,rO>H+uʇpr OٔlqK}-NGG'/Jzُ4xw2>odu\q;%؞..p6m`W|XM|EM||S\#L)O~ob ߋq߳~OmO6Y*>Y˪ON)On֧.+b}KSziKd_ij ni4OyS7b'$xsFz_/ۈ5>_F+NAYf +rC{֣OW"{o[#.'4pzq]o6޲Ʒxw<s~GvOv}% .}/Q3~_鴿M|0%?~L?^?2m̯i|\3aJͿ>k?Sye_FU^JKѱR=^fMgxů·`?\*>5왦T?MД;7{g)OWySO~]ʿ샮59;ϡ;աm>?O3Y ܿoG^)wXUb}Wzl5b{{>vk>w{+)V֟GK@uWߧwiZex5ަgiYu>x5ާ[iVb>ooշ~W9]ߖz~m~_~sjuu:O0̫_ɿ|<_5#jJG~ ԯjUW=Q56Oa|xFKdl=W_m=ls>nZ}xҿ>V&ڑ?oy堯cs\ǫ_~>p?"~Os=l;_,_gu\_Khӹg>nT͞qjӹ]ԗwgX{ӌle,GhGW~?[/}&򛽓U^k,d&pz#.Bt<)߇SRc!HޞvDy?"B}[HO؞i!j-?O%U_[?w9}eG] ןvk/`G` ʿk`*x1k<1moPdh|X>~lsh|ZƯϡ=9}L;[O߿9OV)eu9ϧ?5_XN'lKU}4oiL}^߰lyiK 6{m~=`sg3ާssl3lSgwΦߜM99~%P#Gn3r6Z{T%+E_#YW FzƓ 3{}jk)0S{RS6>'H2_})>o??t3i=㏚^wg>3\g͟[wOl_g]f^Arki_zj;}=xt#۔gO?G/4ܿ5wg? .ouC+oH_,%?ث|/%]SU|aڮq>lw?_ޒo+dooY*ŏ,w\m?fOT^[)TymfNp+c;Fh)W߱={|>}kTmc*3ɷxmU[{޿m)<ޣJx;>mǧ_J|<+瑾Yo|w,}d37KiZPҗ>ۥ_<()?KW+@AG|5mq߲|mV/_<ǜx.35S[VI7;I!3t̞Z_MO'{y%k|?X<~N wXū`O:zч="⫆'VUP6{a ϫz)K.#rQ^#yo4OO5rnK\۞G_<^P j<_|ү-/g< Q p?G~Rl!~[O?]m~IuG{0fW;kѡ'j8lKNg⚗[X*җTz?T=WW]͎?pmn5c]';P=<%.ykg6q?Mm޳Z5upuov@u;sU}9' :*?{UYc>g봣ߢ/E{/yƏGo`[}q6x+g^E_}/YX#?-CobKc8myxy:knlLlͧKW[:gpܚLngo-ezK>z_ƏWU:|OhzH6?泭iݾU;U?m7N~[I5?~]:uMg>?f՝?,$x(G^~퍚?=aG~qɛG~y(i|{òҩOO~UWIs}NU4I~c/~XS)_}NnMpn)}\eS{ek_[&"}][\>녗3s[Lj<~fKz1꿗EizCE Oֻl=x>z=z׽z/xh|Xo?jޗ L?oy_?f_y>b=˿s\j?ήJf?\?*:ǖu-y<\}u6@}us]$4ȟ_:;URm[9gnKs5/Ǚ?uk5~gW=moo">}eS^KwXo?zR~i-g_ {\,ߤkIW>Շ|Z[,Jo(ӟ3V,Z>+gL?>l_Z>|?l=oҵX>aO_gO5oM۴>ٴ޳״,}g~UZ]4ߒ~m}g[kwʹ3;WU7q}1:}zjao9W^W/Vok{Vy^*/3^R~9=]_:ץ}喝}oov/~ɹ I{S*yiq3[G~yRzEVQ{G[?7\t=ҹ.:w>svn;}S~ٖ7_+ZI=V/8)on?E# 3,{7O}dȯ=a߿8%٫<QIkeZ'wL{#8tiZZr/*;Z{/| ?r/{髇.rޡ݇>ޫ3r[o{ǤLP;?Otz^-M_?koW݀oQgY/Ƌz}|(^]"@{Ǜ|jo͓c?f?Ld%%=otIobh8{؁v?i猪vnlM`l->EKǐ<<ŷIO9BuEjŷɟK/+\)\vU׹ =~s/P|Z{~sWkΑ 9wСsβ-)&lUq\D;3w{MuϺWv.vصsClU>P~:?fO7+?[du)ŝOV^py^D26t恞8zg?7ьunM/%ck.yvK.y䙞u>۞U3ovK$vۺI~z{ҺT_IΣwt ~[O?뼞_3tō~ӓwi[#3.y]<m<+<<9ryAs =|r^9qSQ#9gէ﹂} s-SyM?!ܮqs9ng꼮X~!Y6dGXnguc;wpw:wp*oQVުUYyxl]uͿrjcG|GG.;u?YYnש|߻g*_zk؊_6~T[`s?TzZ<>t>Yٹ=^U{Po.Nݪ߇= =od=o*z+)z޾P}/y`OZ}gjU[s|تv?ɿ𙟛/~΁߱Z:>[ѹгNkE~W{O<*|v_XR{T++|vH?W$󪒧sU~?>VdS7/etgi lyz~v܌+QFW"TP}u.Bsj/P{jGsz:}#OֹPѹ'PӹGhc}83|MH>a&oteqjI,]Y~)gHT~vWny;Tq{h*=yCu9=oC۹#qt/,i>Ҿ+ťj>ӹwWհso9 _7q}${!پw۷O-n:>eoX\Y~ Cng%Y\{U}EqfOy[mqfy\{7n-qfOzٛ`qfzܼٻ/[ycKo({x}My㥸k\5En{Q#O+wV{zˊzQCQ}ëgqOtչj_`e?5]SZ7NWkooh毨}Gk/6u?s+Y}egq}g +2Qչrʿ^j8h$>?l_]| ھ:{qi?o_Ϳu6_)I}>6? _g>ߩ8)C[t[f VߵjZ\^ݟlM'\͊Ò?Z"9q`Yjw&)?Ooڹ=oqP[ϯcZo/[Wfl?s!Uo"a&*)\k5fs_ֻΙ}|ӹ gXka|w}>ҿ?s<;W%,y6Kԛ+[+si~揦s6~΅}{sK;voC۹ġL/;'828Y;Ƕ4~\l4lؾs~Ut}f8c,}gq۾cqwcv┋+b7;bk>ƚ߬|Q-.\c17n']7ݾ8e c8~.q=xS:W߶%8\Wعg9K\ACGؿvNyGlwfuCzdZε ;I~nD1Cx߆_]A{]ZOxZ?9xs7>:'!_9 9 9 D~!Zӹw1Veo=/},ruzǿϧ>sy?dŪs?X右_gsm=ݔ_ `?{=YwҲ[}~9f+i=cs֞v챖tn_e)EsoI̿tnI纭28 6%9 ?g휄ٹ"yOsvNuI\sE^c+>ylp}ˣs*E>Uٹй׼E}\ޗE}SRV$|{?\E?\Eh<(JEOO:ɿ{Ye}~GN?_u߸~]~|{CYWnU+G|`nCQL|`(ˌcq}NܬϏh\,OO8]xE|"sf/xWgl0{EhDq㨫}b '.(B `Q?bq_a~A0{̛Kɯ=qfoz\٣~.U7{q#y7{ps O9_^R[Ot.CjӇ{c/}hvdI뿙>>z֛OkU?<[z7[O[o{P|}|(^]"xǛ|30000\O?f?f1/?6srϽm,?nM_oo=oI[h_|%{"|mx&p~6lѹ׺=0]=oH/ev7%y??㹻ˊ'W~7?$~:g^盽Z?_"xzY?vn?Sy->vnwOwEo:9E"O̿Xss?;%=_On([bN;=n şdr>ǔl%KGk}6_mc/:j%-N[]߾?T߼:+HmBnV0WvnkxWl/)XY;ۮl5-6Y&oΞg|SnW~bqV^Vg[i{d;^_"yXއskfb jg%O7pWp[8vY'p[Ӹ3X4nX4|,n)wV{u4_N~"^ijGlnpVD''K%r#vd7\mFVyqkX)k>O65gcoκgptwpyƛ힖f,agebleתq+^OZՅӳZj}]>gbg#O3ɰծ~g]7}U~]*'P PSm]7|EZ N; ޿~˱W[e /v%w֟l[?x?%-ӎl-v-?/w6u?n-/+Jl,^u~ga柸ؿ~R}mø?w+_r9=2l͗[>,gkm/}6&疾cqClop5/m~#[|r?덯G.!r,}s?/Nvxn2}V\?>q<ƊL .uwEq~sNvS?/pU?qAz 9)k59'sG#WH%fo#?gmE`a)r x;γD5r}\{8#6{r<,U^q~g8pCG_t'O lSj]/֟/[~?6.O6޺ƏH;W\_8d7ΊWS{Xp^aJ˖u>wV|_ykVlMY[m/b>uIǯV?g?.m럷{l_;{dy?8b9Elxtyz);ҷF3gO!<{N'}pA9r Gqx+s# .xpYyF~o;zdz X/s3AZ,}"w<O< <{|1_0mQ>>2xE-b%֭b}uyG6!t-r)kȱ;r6/3tށN\"p͑ȃ#OZ{o ޑˌ\ȱ>xȳF^H3ux},n7H?~"0|[{"ιF. "0x~'ʷP=/ȹG.x>W>?^|qe3gU'𵗜G\{ 7.>3xD^ ;G;w+s5<}:otоM "n>w[inckouΑs68{9w ޷x՟o_a􌗌$x>xk:z_y wx/VxuιF.x_x~GqIc}?ȑ#^|xz8+n5roGK9#yȳE^\f ocF/x8 xہOq^ 8;V<4=lW7;^ˌ0/9Qaՠ!%RZ B%K+3NQ Sza;bES=z"e~{\ݺccgepd̏k=oh]}W󓇶ZWu>|DDB {~u/Χo .3~ߟ7ox#s oё_O??W_ _neA-NxcZGS:sAk>1}(瑌Ǚeo״-Aw|C|A6}@vzn_m_N|=>|=|==7}Sz`> 9+ ^K=+/}ceaC+ wgg,l.j_6V_s,=ʶ#¾S5˱}+;>cy+Ӿ}}=kXXc,ux3Vfs zlS+ҷ;1VA}mngf]zԶ^ċ]z2V XgU_o_ַ>d[},֣2VUo6{Oc#^<}>Vd6Ϗgdlb=xF*ڳcuۙ~Eelۿχ=?~g[OtXƦ^F|W=Y5̮;|*v>= ת{ŶzwgҼǮ-ceü޷e~~~qn떱iEw+V^߭<9~[ysPϟWgYyce(/|}]Q|iO6CmxwW; WyvZlz mnQS}m_nnMQUd%})o[R/Q˞7C}`>,uVZy~U߼ᱝ/,~='C]}.O&k|Ka+s_خr ?Eʼ|-Ͻ?| o{lc5>O}^(֟^wOY+gWz?i}վsSmdW݇_|П|?َ7P>9n~?ڳak+]-xEZl{~m<`{~b>oڞWu-M]<$Sx~ I=塿ؾvxEmS~s.^\~|n+jOTؿۿ>|mspU]d^bX{_z£;ܚE$|-'lC}Į;\V\as/z-_/1q~O:EW=a7 v|CG{||o2w?v~޿#| 3sƮtw_{6/|mo7R|mUmOS0Y~xذc|ޒF{&lgbm._zm=}ӛ=f̥7cIДצzm^_V/uo 2_pϨzHُߣ/3m5~}e7/`˿6ד]ay~KYG~o(z<~Ymxx{Ѣp}lZ^m-Wm ϭ*aot}<{}>KU56!߻wgz{}~_K#¶׍wa?=%|75~er}-^i-P᫶hGSZ^a~i 3JGݰZ^<<==PZ̤]s-UOl_Y+ʣ*s,oyAafS27[ߓ3^'?-~ޟ&O3- 14+L[gkZGm lxeS7W❇d}iy oo7ƿO7q:O~('s<8Ow/;oGs?/_9q7@Ի?r> _%0{|Vħ 7?`>)Fy˸ώ'C;z|~E"_7wQjLlxwKlwS /olX#|ׁ'\{/0~Ox\xU_xEm_˂|>a~~l3~nn?mE].<^="tpQn`_C| UWoP|Lݯ^.H#~a_$%pUk@:ko0HMz.WuG~SE~x~^ρzcϪCW-~uu]j)>nw-O'0/\~7\^^"֗iYq,ˊD mpWwk-W =}[f? ox־ _rOxv7 iKr|'=߫+]aKϯjޖ_?v=7lb{zuOk>~N^Yy^j+OҖgVJow+ʿ%p+gV^n?_G}'aoVݴ [}2vZ_zMjkolGvڏmQ/t u[{4s[p ?Ve>_G{/z*V_A_I?rz5u7xoH]>aI/cSׄT{y^j/[=ٟN77U^%ai.3 nᮞ ב6O֡\=7pUkpQO uGxGxCxVoExyˇ|5_ #\x77¥e+Dj+̈ZNn:蟊p[}76;,w۟g{}50^^*o?n[O#/<'<[WpwožgH_j_n7^Q^Xƿ~H/~'Y/}|+olyey[alU;-닰_᭶(t|`7Ϗ oG/ϷA}>P [Fϟ 9_#v} }sK}k:!6lOP|h{z4x'3ーB|m sq8U`z[x@~қ\[Ho#-WΗ5+K] <`_C|uKoQ O|oK__>>Za?V/{'6 O?UW< _~G_JY?`[GdfEJ x`{+i$[IpU/loW梶4VlpQkZKQS\gv鮶$=ࢶFH#=?[K*]~> z/z.3᪶j׆y`l?@zo4o(8_r>I%gU+.q=Dz` 'o*t_oO颞 ~iH7u?SdOH~˞SfOOzU}@4z[{bKpU ߃-1Ep-}i|mGl/= 'OvW/\_ׯ\a;WGU髶cK~}v= 4z}v5=a_zaK+OVޤ-Xy,`KO$|_̬0¯y^[{5++>]0­ Oz^p^÷籷__V^୞< m^+|ָV Ou/ 7~} kW;~K}Ezr{륶@z!{NQ.AگXyaG+<c{/^TWxo޾/}[= aC}Qöϴ/lC3o{/o{h?LגSZw5MOX~AjoBnG\&ɝ\#~ />U|Qˣ鞰tW7ME]'l0^k{i~7^~XypkpS[0|gJߐ7[{.=^7OvO/UmaLpW[y;ОʙCmC;oHߏ?ڗ F^tUY0(<_C~%Ώφz7{܏;cz;o?^K-ky7V.~}J'+ xyXv1Ss3? /;Ou=f*^QmwSTx#ܟ|%+i~#WO[x~ [WUm,AmJ+۞Z^c_'MVymJ3-akX灰oJ<XHϧ_/̱2Qk=~eIoQp6~s|mg񮥿w⏕6lMҖ_Y /+i~CRb._-mrS?}|_1nߍ2>+ >Еip[Kn/+ }BX/l7m~őj|뭶 Wl&bzmf񜫶Zau|V `+i<`İ/VZLWlSGLJ|Q|pfNo' `~M؏uvmuG|Mϯ۟J~+7VJ/ukUB飞C;3շTce\5V {s;j+ãK=ܯ93 <է[}B+ [M/o[ceDD\[qu|eYoOK{/W}U1_;lGz,cėQ[־xsBiY2x-O%iMo[9Yy-g^H8F3c=M\։uv_{_S9q>l^o,{?E.Ϙ7$=:mƻWn_>#>_?_wDzm_a3 5 {sDž/үHvu>~G'j_#.ji`Ų^ W9;A3־E~{)ŐFޞ #=J'8~ؿ 8_s|9{_/>ϯ'_oO~SK] ˃#]-/o{yQ^~~e헨/[3|-k @[N4z[kD{a=1h W3흁@{i=5h sU׭nؿ7(0Sz#?xOòOòO>[<]+'7~iY'g"җyjy+}u罰eϋ魖ohx!nEzMz~#⛈o"QK!iEzW8C*{meO Qٟ^_??-S].kecux{eRK ogbOyo{w{}x 7ߐ~;^`%>| mky'⛈O1'Z ?߱G wZ뫪k~GFzHo :#!TςOѵh?j=|}m퇂E0o tx*|/9 WEEڮk^>?q`wwO4WW<ooBj)o?fxQkAAATG^CzUA|Iӿ><|{ӿsal/o/ # /ݱ=U{xF|E]=H"++,/y~߫lWK7ߐ_a{u_G|~?Vܯ _^^7/ml;`u<`3냂_xz #t`|80қHo"= F"JxgooG5'}燄狅Ze{{ ̟xX_d{>=:/^~!6s߃98ދq|Ux Ou+wx3&3Bz ǿ~˓? <૾_U#k#_ 󉛖OU?,{_lWյ>|ݵ;gh0Ho }'"/?<,ķ۞ͷ.r\Rz0⛈ϿLz` ?wߑj]_}^x.jNNlolza nj M#җfM" +jW & W.jMm-4қHϿFz q|5p| Uǿ.ODK0z w.U%^ F~@|u# Sq|'tU|JDq`wwO4W׷|'ٴ-I9|~ k͞tQWuG~;ӐҫH +H|;zmdOR7~w /n_sF_GSؿcU{xF|~"~qxHO=i_q|1\ _?ě?Oxj^H!z #눯#~~<7'"IwxHoc7?_%Q/ܧڿ*^k~V[}FzMgux!|!??8^_ L 5\~~hګ饶nz?rk u/T /D~_o#x|\9_3µS < g"LoAz-/?!|;ޏ_U#k#>#F`/^߫k}Z/3=᣶Rz Fz //O?D/_KF~ۈOS9>3ӈ!>}M4ؿ` H}~75oĿB~<~vky2P G7iI(Iw'MtQ Kxpm/śbr u.=Ho"T #⫈ >=&dP7ya?6;oH_+l~]p wP=ިүF~xM\t7{4b~MsOɞnyܣTo++^ob>G K O SKr4⫈J\T^t'b%tUOHoKqpz!>003a_z~ȟnq>7{mw~,qq?;2%ˋUw@|:0ax!|!|#\,?<|~eB魖Ty42?#뻰̧yw2?'4HwhL&퍉D{e=3ޙhM&SD{m=7K_u{Sc9ի7ZMZFF[1iOC~ݚGE=R}\n*ҫHOʫ`7_~bYcxwC|nPNJ7R.yXjĈ>>>@:ȱZVh />~&~'aĿ̵1V<#wg=:~߳v0p>`/%`I/RwsHo"=^ >wqiyj,|^G}jv ouG| 7D|>slvٞNs!Ws>wֽBzB{q=\h.Wڳ ȏOu[S#[wȯo/[݆Z?ߵd'_ F~7?H p pF| 7D|-ķ rgJ"==]˫IO_ ^_?H +^Z _uQwyxG=[jiO<_!|WZpQ1W$«\ܨϻaKy<0ׄz"\? R\k]^Ez|}O]-ȵѿ ȵK{)gZGOUI;۱G wwGpQ˻#ב^Ez._)Z֦x~߳OxG-k=c5{0⓵>=3IxWUxleGngk?f}^j:,㲾O_ۜAϟr|_G{(\.粽FxGxG@,T/^ #x|e{:}:ZٞZ<-'s^kNx#z`X֞ɰߪkjX| 7t,Fzw]O05#Zg~!눯#t>p0aqt/VZO\_luؾbZ;=a#w`'H-?XxcSSJHpz ?`;ؿc7]{JN/E]}E;5=`lol;ׂ_alo%ixUݑߎҷ"]kT Q\xˆo#>~?\M7@zup| 50+O-P.8 7039~HWuC~x GyO">n]kE-g>/-8rn-I:/5ᢞU=RfOE!? 5" O0{z ~3Ӕ0_^O^KӖjieO^I({ o wE0⯈zrH" ?3oK?x'qp~:=~kH!d%߯a{OIxBz ]0gA}z~AzG]v}'|ս@zM",#?翚>j?a Nۀ>nT/hzz #x|e{:}u[WxG9`l:6ȏϪ_>kZooƅگpQtSO?@wߐ~~1 g{5 WQ{ߑ[_y{wE}zOyCݑ4v~ns= ,upS7W^EzR^='>~c~Vj}ppUK}io?ci+MZos%BBDJjZZ^ϕD҈Orl+X_pQ 7c?8VI/xn00kod)}׼p c|-υ{,^ ވ#~&Ub^aC ~LxGyZdyݭQޅ'қ ,yzoe<cg<*u7ԷF}Qo큍F{bhlg6;Rx!6;_/k|pV`?+DxT{y ~pԽo 9~>"z<6zWߍ? 3nF| 7D|-'SO"==]˫g-{­K-W7DWXv4e]ׅ/u~/ Oe~]g{@z|ΏV lA_l'G&|Ե7ߐ~:>3o.<[E.rkWA;+r;~dM&ՊM{>]Ͱ5k7V~=\_x'Wxv]_{/gjJ7qLOO[PpyI[~~477­u=J4;­u'm/_7M+\j׊aM'\6$_C|UW$磹fjE-_)uH!HHktUlk=^_[WυZ~E-w!?_yxMOo-~෼6uE-ޛ>n3f㦻zbY~=i[̘gx[~֗33Կ3ٝFBBf|S<<\yq7$<ࢮo.^xM-LxӈW*<[~iۃ Or7>l_ym~+/])W}{'w^mzuxuҸӲ:2uOn [렢[(O޻^_қ7;4o7.Q_6۶O[F6K[|hl6 ɷ-ݺA G.RlP _u{6h{_j?{ѷ=n~=B~6G}E~xmkn>գG-=j}W}ڏ?&}`@|ZJGZN%iwޕI焽v_K-dշ|477[e^4ïZFw?2,ٟMߧ~V O񭷽_۟_m~t^ǧ7/?= cY>#^C^goχ\O13<.a/߱+Fݝߝ w>Yޥ{x>OXNx`_-a /0pU KyP^MmxE]_E|W$5f?Zf|<᪖FwDz͢Ho :!*"짏%lZf<z-e6~#4x*=?=_Nu6W>?[f}<m7fcx+-0z!|!\_E=&\}MS'Kw}룏'\ޞ OɅܞr WnqUOlݣonnk_GJoہ,;S.j>pQwOX6^_x8髶+]a/'Uxv~z`_:׽7xGk~x\7~c}rn}ϖEzzѯUQpԗa_j>p~e{%-I#""!G{>>ϟaR'zMu/R #?~!6ߍ98ރqq|VoσZ _uQwב=ȏ_}ԫ[=ғ=+Zg~!w|Iwoztxu>q[_dXx7x^[G]_ԇٟQ{V{)2>Wa c/>U෽?3Jza{+Ҷ}Ӓ0=?{lW .ji҈ 5E}jPpU[M&ҳFeuM) #=_g댄%h饻x'\kU=~H#? 8-8=_$nખOJy'tW#!5u0 [>n]4.j)ϳ'"~>]]({JU3otO}=9>Ȟ􀱽ѓ?ઞzҮtZy.jo{-{^_7ϞE~6 O⏞WS9<׎7_E_[~j}ן}G~&kO? ﰄ[{5++|z |\0T#ܮR ޞb~lWT[^j[m[Ho#?8=8J~j\6 Qa7&[Fzm{|Zw[ޟ+ {|գ[=^jzcc {/ ׏O/~jom/U ciG [|1q~d&7|LUw7& 9z/X{o#Cn_Ggᦖ򺪵Q sI?"?,w'm07½w½7{{)ʟ ;ʻtN7yU[3VO񓢶5lm+⫈H|5G؎W罰Շ鮶O7uG 7FEҏjX؞Mm퍰G{gG!ZK/wU-Ix77"?ϻa?pSo쿰rf@37Zʫ? |;sןᮖ;W?[uܽP+ES7|+]F|%c|ZV<_-=YYuS[~?oF{W^X#_[_~Ͼ[~}%־h^؎GVy<{Cx>.~B/K_Sm.=J+mWWmKoS|3;)WJOX+cee<4VJreewa|8VRxs,XYz\Y(|A̿3 Љ^_w{[ߵ?;K _(ƿ|WK}~a;Xi1cRcX+ zБ^8V _uXY(,ߥΕ\Y(񍕅\Y(,͕W-ߡ̕҈o!?w"Y&6+ ; }ΕWݧZ+ 'j}W}ڏ_M;91ޏ+V wJK-k {+-Oa+ u-rnؿ +VJ#|"|"|A>ҟ~̯|+ e>a,PXBa}\Y(>8o˕:_y|wK}R,^U\Y(-ǧree|,te<;,W x@i?\1M}Z]2xL׷%oKIǎqZVUWVXf_Q-\վseE>>.j_%\ղ"M]|ŌB."K|wxe%ig"?ב8-8Ϻz>W|VػM{ZWz}w" |7Vq {7V8tWW ,-+wf_/p_񳸛zm-pW=Џ'\=njgOnO}vԇԯW|_^{sq7g~V~Gayn~6|4yn~ɴw߫ Wy.r#bc[+,mXz?vX+= ?^o!؏ߋxm\?x_ ?j~km _K|:{ż|C~ז??^giu._9~U~y\9.y]yS籄uԎy~>od}QX%mN~>R}6-`6Xy??ǯ.cwkϳ <7!^?8e6hxl?ljﴄ_O[L#!6/aH{@͛>>p ۼ;^S}W|Mʟm^^ʋR[ykclp?n7_Gg#ʃ?ï7oDyYXOZ3iφ~Ïo|~y?=N-;i bs~2^{~>IWÅڮ>K[QM=ǷPߦʋVu.j{!M7]/a+o]m9~Qv}MWۏ?^G{gJ۞w{a{I{ =O [}n| nV{W[}~{~wڏ'zwח?j{^XߗEGT[y??ѧd>يu3)Wiz՗ϟ+% +j/>_.ƧW|/oc})_[ V߉),Ϗ6!Ƌڿpk_a:_Аzd_p1/`!;mE{{GW/V`>Œ [z1am>l#[?W$|#./4:խG#翥zv ;ra|A__G1_Tsx뫶a_ⱯP>OW}%翦S>AxN}-/w~A@I~~N^ߧ~߼'O8 jޟ?)_Ҙ?;bg|IAs1x3?7x~ɰ̿E~g/>t~|=1?~zx/W 1{O>x#^wqx딋91ǿX3O7$*ȧW?'cO]g&wu]R$5ƏQiSaYXW] GY|5K~ОU?V`/욘K!O.GalJ JV#g?v]a1c~a>/v1[]ǘ'X<  w}[}rk%cS ~"GԴȣF.N|t|:>/ e|me|ge|8y>A6Ƈug9?03?G͗*~x_\u㶗tl/~CeU߶UmSLNhLoZ1>3.-~t?G~t?̗~`_81nO8Up`cWju+N5lz©~Zi SLO[./)Gbܚx$>Kվs^[q赇:C9xG{zОjRxKo1|77W6+o}ŧ_nSvUO/Bo~}7߯<).?٥'ݥ.Ҋ`O/?s^V'Kepe|Ǿ_^|gy/S*N}SawߩO5|>TwϵByeއO^}VMl飭kꇩ_~3}75f~r=RJbkM#7/Ӧ{=m=z2vhYw_ן^Vzlb=7Xk|{A+aOxAW+Zߴw\a|[.P^sihޝ=Ҟ{ѥ$Oڛ(_iҞ8nƿ ?fo/a~a!_Ax>//r=!0표OiзhϼЯihM{酾N{}Kdgv7OОK}K{d~dOohoC{r|ž}9:Gўq2}R|lq>n' 39Q|l gRB{]g? ol`Gf_38ïxfxf!)O2'X%̿+[y?_Ǿk|B6tm߇1I@k%h[?}hϰ>! KWKWɦ%-_O??By>kYzߦw(Q?\->ͯo\O'j,}aSݘF|W>է|K}G޶>U4,}Sҗ{fK?k:"P~pa[i?-V J\~ͣE#rKהZ"]}ksuʧo^~v˂Ǿ&/[OF^ܗ)\A?>\\m_߷pk1e_@u~QDlooc5o'_zE6oon`z( iE>lu;-,o`Z߰~_&dXZ2F}ޱh/CY%ʢpa|o7}u+5o~B,o끽~L{kmN_ߓF/.*}d^>e} K:+ZfOW2}{ӋkY|[-wأ}=yʏ m}7};þ.%}/Kö?q{䓾ʳ_}N쯄خ>?sc\s\^ a\6mzbr|lK??G^د O}?hq\7qwrߢYdq/Ouʟ!3yF ʻ- uazSXo ~-?b=16 ͟xK8:~3Ok'JߠDi&n=~4N1r$>-f^ЩE̷2qd>?^_GNm&}^8:??e}Sk@W?U}y _݂I}3}޺xk#5[Cݪ+WFd~)>O|# r=WG5kZsSX/}Tџn8;.x x\5Xϫc{N>^|,߼n^SgѭSku'?`OYݡ} 'Q.ã]?pa/\doGgfh?4M fcF{zpMϡ~5qC{~y?4C?|aۿ0}[+Ma!#7cꌐޫ3Db=q\J~_B:cx&F'8)NqYR¯L-=yu{dޏgZ]<.KJ[{̭G^Jg>>,xgvɸ3qύڼ=2h7r).q&S=S|-WS|5WR|%WUs8*xs'N鏔~O~Kה~MTb{D^'q ?gq{_KՔߒ+>scy4D^-r򌲸)?-姦ߗ~TsRyNp5*}ѝ /Go7Ϥ?nόS¯~A~D#r;S5滳ug'{0}E+q}&E{M<u%Nq|gb/x$NO fQ/gj>3qO+SlC{'\s~&nΔW_WD % џ&W%w~;Z'2l;_xk>SȐ'GwQ=ʻ;+}_Nw~R'1+7bދ ^y8S|#7R|/S;g` gp'W,/y'L魔NX>{`郏O"^#~ȫE)?;'GYgF/z@S|#7yV}cקּ'?)Z=^C|=q{K|"y;J鯔N韔Iߐ~ŵ%>[zoFoVovM#8룧=G\kb/_[}D+}_Nw~R'g/|{#z)))){ٓŻ'Nw Z73,{)Z3q={qK<;=q̏8fӳ>O^)~gO~3?Sg܉SWOz/❇ש&^L'q+X=\X55e^M>^KRwǖ|[)7˞&FOyCO}s?t1Fc,7Y+q?Nx<#Ls;J#1¯(I8$/夙ङ⤙䤙$؟}3ݑ}s؟}331_%X[tӄȨ5rxij`ir{sȨ-2!=Sz-工Sq-މqk%%{<7+{M߫o%{J$I,'YOZiWsi%/{{ v` uޓ ?' Ax,/;m?,/A<5I++!s˿,X=Fzr?x{X]#<ˏwxgK;iG;%Ɲޙvۙ=bS19 1yƏScxEzyr>Eq|{@72q~= ⓾οD_ cFF}iḧ$=[ryE^5q{.y'2K|Sv xF=YWȐ+xg y ^)#ߝ{RyO+'{\kõ?׳1ȣ%^Czuǰ=ޑ_cw7x>!_/7i<ȘQ2_<'Ϯz"/?z#O/i|"I{/NJ72ˤ=72CڣpC=~=ӳi|#C_7d-{g^<~1:Q=?$޳Ǜ>HO{0z+'RF'7,9|hOt<}QI ^I "c8|<~œ*7CDܽ|u|}&^⤍=s!J!,~>Od8qxF..kG?_Ř71ssBC~SwSX2{d|GXI;%2 |w|)߽M[ yp>IV~*1?c3>}{3OZ;Zv{'o+fykdwJss=ݲwwi;,=EioGm٫KdW'qsZ?~\"s}m^\6a=ś*~@+ NM6dY~}ipqO-ٯX4"-^7Y_7`?B?N?앓)!oR^?M/N'b؃_n=xuKg~1?uߙ_ȷb47Mn}r;l䙘a?q)YđS~+QG곶XzQKlrc{zQjoOEbLs'BB~fO_w?RY1[)x/8).cɯ%_b/?@&7f{u࿠Nx(;$|KퟶĈ+o{ͯ/C'fdcp~W?15?dQI/~GFd#,l8K=2򿘑ѾOAp\At9MbqbYyĬV1oZ鉛ʶrtv5:~R*:x{e;oSy_x%[dG FoH<ݿ"^{#q3q Rx52 𼟄.-2zZ )뺯kKd%ww?"ng>G=}{Kk|5}gwߙG>;/ì/qI~GLx ZjƿG>;qGd["H~O鷔~MT_>+Nwvyc{J_M-'gf^o^7q?}g}7[OM)'ߗ[X+~~*r[kJ};ȫ/gDt?+qLB\"}3}HGJ/&kߗ)IO\#x%WJ_)ȜJ"^G➸%˯ye@i%9ĴR!*H725JӊL+x%N?g$ޑoIһ! o< .R<ܕzK"H鱿}Dy8}NY۳7r[I"wu||||||>>!_|#d)?/=|Rz'wSz^^9{ȭ$N{M"}3};r󏳧wM"$e/|<ȵ'ޑ[K"^OqW[MO]-nKyfO\#x'N)?=~J~Rk* / /+qO_+ks')Nw R~V Rg ?{q-rO3qoK鷔~M -{N3q|vN.J"ϓ87Rz#7R{JZ*_KՔ^SJO )aU=r&.L3W┟S)R~k*OI+}.?N\#D ϋR7qS~{*OK[^[RyK~:~/G3ׇ_M<~t|R~[OMՔ+)Y"k%rd_ܲS~3/~Qz׏~پ|52_)>qK\"?-8WRz%p=:*'#L)5實kJu'7sqZ8ߏsmGy&{r~;)7Z7r=iX夽;/?L|#{87ߋ}? 6q~/}q^z"8}{OH|#=H}OO7r[I<# /g ?S|+R~vN٩'IuS~no {1?#z^oW3R~FJo扼Rz+SvJoNJݔ!s 7g_K_O_nOR{gWI<eo{|"')MoOEx%kK<ȭ&Sz-Sz={9{F5qO<޿g]~{xz\@o:q%3λGNk=+#Nd㙸'Jh#;H"{QB"㦎{TUC[dx%Qڣ݉G7{'qo⑸D^3q\S~N{ZOK<%s|vy%?O!Ɠُ֨GO85yLYaO|W6o=r|$cΏy?GS٠<%^Dy^SSGzvlw8Qx&qTSGG%rxyꥊ=mԞGˇ z*/TȨϛnlVb{?kIRk?_[b=x&މx'N+RC^$O[-uK\|M|o>x|y"8_=472'2CçoFyI2====bWҧ{ҷ{Kb$Ȑy3ŷRz+gT{R}`&)?wz\KFѭgŽ%^GH)қ'J魔N)=79= x&xG5Lk)>`y<Ȝ+<{r󅳇=ޑwM'>)IᏛߜ=H='^|-Cԗ#VLH<^?r;̛=1OqdqK<$<i (O"Kˇ&<#qgĐԏ;oN_̛x~=};pqMYጜX/;=9rEf}KdO1_{cPc~C>ٿ){G>;qL;[d){dKү)}_"yG^;qlOkz;;q|~ )ݡxpW+2|Qj?DϢx8c Mg8ϺH̗lҙ,oЇ<8# c<|d. q[;;߳Q:c[ȼ^gzGdGgKmD)~#}go~){Cx1ךDםGwq&οyȧ$ޑqYwY~zb7~ ;S|kD%|<1C|<Σ7r)3=^#};wdqo07qN}B<=^8O({dIʒ왅Hc{I<_x$g}e~<;N_rjq_{5g/]#N_x$vۏӟ^;tx31:%3 *m/WC͖i_Ӹ?-Hw_3ӬZ?l@Y;?͆嗿%3B_>܌+ wqKeKo7WZ症13e[^a2i,߰iW ..2>X.a;_x>1g-ѵ>V hwrF8c w[g%[~C g0~nHnfgôV-aV|[KFv}g}e?0Mmi:ax;f9L2>CN%;l Vު#7`,0-p҇ q?*ݨaJ牾 '@';!Nq"Q~1Oti2oX0cGKO+k?[jWxo1K|Ň)_>'_',>ɗnI|Y+/&>,h-~}I-j7a}?e},]U7O>}jƜ>7?JoH>~͏o7?Nǭmnv|*M(bkK_*~K?ҏG>VU ;GkGWw*(OL_l铭?oG[1}W8Lmí?aOO>}-?1l7wz>5ϞF^3NwR~Y^Z\}az0uM֣j_WX~Uozuwן^VzZ3?\7Xk|* >LBG|7axBVIu|D[>LĵKyEfiNy=i=ה8 {T>}l໷w};ӛ{>3=sP_d;Ҿu|ᯕ2'{Wgﬦ\'MO6Chn3>-OgLZ&ӟI?߲-|g_to[+w,F>;0kU{|ҞOY/op?*.#.8g\˰qxY-qq>4}ٯx6lxn~r?;Iz|?Ek_僾.u۟?s}F|6ٿ9\oٿö~#<6(xm\ gN?˃Fy2d|GA^-y?VoYXmo~͵6dG|O^̱mhzÐoVRԟWIPU[Oq}W+j?1O|-w/=cH{M?)XM*O'q }s ~Fǜ_OA_Rj*OMYc\s$|?ӵo쯗%'OżUzm4_˥|_o֋ۍ'9>My~aY.?}:Y{a|~rU=P~jN}NorNyw!}rdQH_pwǞqT~1/s{u釡1 MZU5 =eӾye/ُo6{-~i~h~hqOMh2}GWA?Zm~/uL벿Y|jj5W->oUO_Ї^0>Eejy^|e߆w~֡} ^ۑγ^XKKI=F#x -Ru>{-ڔMo|ۿ9)?6_Dٴo?mCxCxx4ŧ,>3٧>Ʒ_~/57jaj쏪=1mQcmwYxς-~䭅:a?tӿޟW~棺h?|UY|#_cͯ8?r*?>*;]>oU AyIJtzA6" ?oߗ?:)/OIfg1-g^߬`Sf~>.k1􏠽tjOvba['k)L۩<;=^>Xқpg_x?^?`B7'߰~U_~aS+=e?2~`~-wd/o~}7Nͯ/&ﴟ"r ;؃=Eh?߇Qʞ՜|=/ O*gi>=GòY`{'g/ CZÿH_ўQ/_ p7쥚aO0h%{+KwA{/h?== h^쯝m^ G=JߙigY|UO_i f srj'׶Oyv~sҺ1ny&1|H߿HQ3:S35}ׇ?7ÿۿNu7 _R/Js8_oV_n;&q.OS 7KX/DYO m ڶ_o/ާʣ|~W/-~?n6wׯ&.vK‡5:>1}4Js|t|w>]|ysloΰN2/02ÿv˯ިݼK7,f;und.]Z_ƅ\|[U-*LY|U_gzי^+^czUSzTy l펎nwFx~kwZtŒ`}QvB7̂YZzs7?ZnW2͘aw Y~l׽@+ŷ;=->/(B>Y%Kt;#Z۰ҟoXqs1'/~0bA3Z܇r05FyG~пM)b0ڻ3nٝQݴ-Lۙ~ҙ~nwXU>|,?)/ w z 6sZƏ+^Xh_w{f^ Wpq]xLv7~e~mb?1C3a*Ø'ɣvpqkuWrYxmַ|%wk8y6QG9~{?\64#*/X~-O/|lw5s`=ܖ/MNe ?001|;|씁neSҷzglC۝Vt>||6?7/h_C`a|gC}^Ʒ,A+?6m~?l/;S gNՠʛi}`4`u1a{@:o4}6M+{ᗙ4uLY׬ _?ŝh,o,>X_y)Q r|.+R/'åDOTo<|}aYʣ,|U_X~."ˑUS|ɯ=L)Wp|1/ Byt^owKo{aD>az.ӣz<8ӿ+'y[i$Oq+MH~GmIɶj>›pDZuSY biAy6C?>w9~]/jq`ӸQ{/|oq/`ۿiqڜg /; ~ #0i<_f|wp`ΏxrVI}䀥?XM7 LcZOa/kRh֞}b~c|~8 7֗u+ߢVj_ws?ȻF^?UK%_~#3?X|ZQؿelC.zmk%Y^U{p?6x\cOQ^Q^v~n|C#{mnи쏝߽}]mFChA+%8y@>cWo Oi_yLc}se2}Оđq[4?Xi?~ۦ˖>0>E{j}{z[We*w~i_#ڠ~v{ط.귛}޸}6N}k;-N} ix_a_a\4{c~V`+?_W1/gmrߚ7>l>3;f/٧}j{{y=1mWƷ>^Wg'R|paBۑSW- >>o=О<7]Ƈ4{_?ꏶSo[LchINoo?ƣ0^忄Cm'ʦ<ܯ޿FDGeQȿf;%7y*۷>=(?)?O?S0_6寡+Hy/^L_S;/hi6ߖIyeqo~e|oۏA~&_KR?~ 5tޛܯʶv|7ȃ>U7ߠ+3~^o?d[_r>*C/,J!W Ȃ>[7I})ӅoJAṟQ=zsK~"[)]#v{932ڣp׷/[yF,o+=z2ӱ}^Uc=nmczY iG ߴz =տ8=e>{>o% .{;?w'y?{C>~OU}7=g߾$O؛$_a*(e_1W1cҗ}X?>Ba}eoU?]e 7+=Syw>V>X>Z{L8ڃ1}c?_ˇmx3> C{0G/wi_8Ӄ?VazoczjL|ӞOwo//O{>1ո,oj!_/`~O/ߓ ޜr(c+ 5\罋8:.~r2q:gdZgn@`<}Y/_sucKzpw8a;7׮\B!W'7w _g}(])Ln~ ڣ|wmƮwr^ٕr0<8e=6byo6/n6on;yuM6n6/B=]=W/W vް.]+e~m|u%?,6l<kq]WK=:7Ml _=0gg:̟uh0I?ֵ֦mz+M/^v浩^6. .akL_ҳuZ&O&zNJ_-Ks|fd5Ce_uuZ7ע> v hМn_^oT˯Vg{t xB,/c?GnZGa5ʟ댯U?ifXovUY607ʪ0"6C^U5&ӃBpgݲD$?We3<k|3*\'_`I>%ma2ۼ?Os:֘A1=cL犾:Wd5߹lvͩsEߗ'߱[uw{떩uw?Ν>769 >xveߦ擹Mߢ?7|6qv񹣾:]}nu9n5azX],eQ Wm_0j(ۗhع3b*b>퓠>8L]N2'GS_+9>=K=Z,X^>ono˱=oۓ~lo ?pߐOwDӾ$-_}OwN3P}PwxӾ,ƣm1^}_w ChBʐ'wѾ4! y}o;Cj|\Bn}\BwK|s sC/0_ȯ0/0_ɯ0/&!X.C20o:0BOU@[;!#["3{#C򛁾$S򻁾%cYϐoOo Ջԧ Si]Aߖ_q`7A?&dym:ؚO _|RY^ ?F10w=1ۃU#?,`\\}ڇwϐU!r:?~ӯ_/R}= ?y`| Ən0~`^Q {F+~+b|ӟ=X`/ֹؓެs G:{=-} pc\:w{esK?=_>`׹ t Wߠs)؏йW\ ;t.f}\|s&EcįS|N*F?)7e8d:绰:C}YyKN(qwCXu'˟^`zW W՟_;Cw?=Ek/y~cbC>8_=y1ϩ[ygD ɯۯy$=\==_ U0~ E}|tiO柪s״Gwny3=cشTXE{ }~ uexwʞ@NcaA}cο{bK\*Fyh8h_}r+s/C)Lj쳗=0`^8ǡ -{~О,ߌoY|_qeSxoӇ^^e*ӛr3{{X5;lOO{ފ{V(/b}^/b}j{W'%c{2k{؟x/Mcj?8PnSڟ-tmϺ]A^;;݋y#4#A^iLA>CGB^?S y{!yPsKu[@l/t!b#bҽཌto#Ct/+=7w.ϸui~w=ce={ƛۏM.0^7K h/G@> \/7hA#~ )Ҿ{߂~ dZ{}aozQ>/>ZF YL?1bm'MSCޯ82_r Za:E\) K$Wq׿o5z{T}a9{2|yF-$x4{R*[ jUu1VysvczxlL2=HhʓUZ $Q߅mI{Uj/I֪njjWK]+pI{[3J5V1cpFZk~޺or}31-+Ǜ N,Ƈ4&K^j԰^e[{ZCQ|x9/B5?n3ޟ >s'V8K LWp}{yXl8_7uL+ C:gHxOrpc|%$1޴x up2?w0~(\` vԷO( ߣ{e={_G X;ޣl6h~*NV |/c>`inwi~PޟnJ&}X`/NZyBZr`xXH?*W+f|TEWbŤwRӅ>raA+\WaAg|d fѯ'8_1bÉ ̧'60 Oh`<{ܑh@Yxރ#*Vp1YDƏ)}r qRy#^ߊ wy) OFy)O+OLbM70a|_k=2_jE7^Lrzwp=LHOG\Òax`wG/40<A`|~~hjGziA{u+pS|kLo8>6͟rwcE_af}<(yiF'|ĉB W￐%yIh K] nOrŲtB+~`ON/ά?З4|!o ϪiyB$K|Ϗ#cupd[bK2 XϑG6! CDyk.o0ח=̘~d.ofq4d_N|G1\Gef*}cN`h*#Ƴ2i{|Cٯ?,r>yG,4A#SF6/?ܯ7]Wm?rb]g|u/܏v{(/~ ]oDۯ.}0S3^|3,.ӋkW|?QdGfu Qh%]?2çǃ ')}(){@'e/(# eG]qCkYĻ~ ]gtc3~I3d)Ae'T2US٫ʈ*{VSe*ae\_3_4b}Ce~bP}-ڏЗ9ʰ+Ϣsgf.3s̊+cxX_r3#f-qYm}P:eO(Cpuh|V2&>G?ɟόO2/[4~ |`u_d?_8_=`)2ó)?ToO ?orJT=yek<u߷ǘAck?s<ӌ,~kӹxC=>HӗG;DSO=?葿x|_Op} ?_0G>![ΐ _w ?۟&맟7=G(]-{o|i#iDkw0, ?ng0o1v+xŔ)/|x_o/0|XB/J5]P73]"O%yP ۩n|Ple4+0a8L?j\l‘AUaC҈#."OHX*ߵa1 Ʉ1Ԅm$(JMUPfjCjP{3ޒA~Lj6A-l *\>FhĆ6bxn%ۓ8x[0EH"脷(EH5H8nWv;烫+C6zBqָ\7ώđ,Ėf,pdޔѓH`Q+#{Fnr, 2뮋CqgD_9"h1bZB:ox!D0s\'!;GiD26֑88OMw¶X'Hj%>2) WF 8J–oqlMUSCGB6p>rƀ MIaP)YԱB>׈'hd7"j%0 r3D W;bSXP-͇-f#k>^\N a@`3ĵF9T8PBaG•gb=MW$'! r4,V1*uٜE#1%a$`dQ`l7pFd`Kd`n2lS$ca#8[P8 n}ljp!n}-Ə$ؓl,F` #. fjGړȼAرC'q%Z[ $Ɂ/ʔ3@M(Vdp[ɦZ[j[rS5퍦j3-TTo{Fϕ35~R{QR׍:v2+3СuP0TFHSljxcN o ѩ<SScjwsjsQ9L-!fI72+A zRC ;%U+C4z8a #,xC 30>27&덖Lbt>K+:kao z&aKӽ$# n-!o ǖ%gžGh#Q:o[{Z=|3D3aI9ٹR;քxPԿKBH W-Lq-!#,-ߖ[X;{'Kq gX 1r K,k$%?`IQ9_JS?J'##i: ٱ¾B;4a%J OeΎ9` @šӥpLBjkIk16c{&LbSa\%L~vO>m$!$p?Q䓑'9Xr_ $^rϕ< QSn4;B< Wݑ̭r8{]PdvFJXSޞ=2°k#vȏr 1ބоCj#yE >IGh{"s{nQ]M|OZ]MxxՄjÏX3o}P;wd[ -76R紞ԱRZIZz&`0T5C!~Yav[ чxZ]2\aL!(-lY88.=> mQMDHvdđ pD̉{zgKF$b@Hw8[hoǓ:`] {%a&Dy"ȇ:;bޑ1Tao×FQDKNiĎʸCHh@de`xh G֢pe;ȍu*XwkƓp䒱o%LM 9 (ԧ;! l=ߎۙ9ȱ1gZb#VQR'.x2bA+GDws$\-c sdfrw0P 0sیΐpFIVxINĕwiP |Pq\ [ *`W6$Dɓ =>%龋hOúau.LJ|lwu>p7#V%V<g(r`P[Wߟ!1cAv4[ōp~$'Tn9zZ{Џ碠j ~C՚P3f;2pԆȘ4#~s|!/k~L)߶<6|-tmC.^{|q#PԉߴYZ=ǻ&ƢϢ5؛On=-E>j%[|<͏ȃ͏Jq~}, m6k5%ƩXކCƝЋ hP,Jb!?fbhЄ!n"i|nqwEUcSS00r5~:1c s7'LuUUEan S{]/bԄ}To-cg~R5FI ?VqR͒:v2Gzes:4DKXl@Zfˇ(qMv fw7o f쳻jLfw5-g-JЫ~^-\b5G!sٍbzg:d-2riCOȦq/H>DiCBT&Q%bP1&QOI=$I2@wLj$([8\yXR?$F"rT7`8H0&ø]K# d <(6mBakseK~ 뭆-crLD=p&0\MRؓ-aO‘q+#^o!#C:'ȿe? 1}&OO]4}}'rr:ptfZxF< %m@ mLR:I+Ki4K*_Z: LY8#YSΙRީO\EC+)U*;1=\qig;TU1&KtIrtXb+6ljt=()l7oװrQ1x&nC}UNţ$p9z]8$S ZAatz:^Iw=9^ܛ%e5 r39ٻ6hh_ RkPCxܢ& =& Y2|v)y4}W65aMPϝ&l=} j|nK`W˥7E=PȒh34rF+x`~0GV=8*@J#p1vp9p>dMԢϧR5znJokrm-F{s7Z ^bݥ\5'ؿŚYzP[mJJj`ݩuΩ=u]-cI^K)#R M>6B YJ8!R5v!z{h<ƉX:M%t”-PP`TQ+֦`ȡbv# 62JK`O>cW˷HmyS<P ՄPp)>NHaf8c:sZڋJS\RcS=)QYgV4#b7| }Z9V͓ɰY2Sv*Nt[+/ ^Ј"oioutȃQzA#$+9CS<5:R΃ʧJj d љ(SJ[ A-eM+h&'Fw֖L){^ܗe%tf V<'+G.Ɯ 9xWl܆?t8=2sQO=Ęϥ#=/eʵD+q$'nޙqg=zVq_=0T2OB|=ӈJ/ۀZc9st#PnxTf6Bэ&SqՍKT<ۃgFQ?  HQ-NRT ݿ@P&ωf?Ε1KR+_jѿĹԿ/RgŅk~iI֋Q?[E)UؗQp|+Uعš i:e\b %ODJ~6{qkҪ~ډIAʅ-휦[g,ݐ(.}.oH2wEGK'u-Ɂw Nm#oqFH)̈́Uun[[TQ[fB#$D֒:nw#Ό'})%X"C1Iщ̱̈́u$'$SB@9B"9B9u~%VFD# SotJVxMJ 8J–oRP{$dg3!Gr(g$-Lq[\G(\G)f ) OeτQ@!uDReGbiI$9 d$p8ܵҊG?ԡhDrD=Hr6E3miX$Y?RH~=">#mlL%1CiQn0xf§ytPÛ$cil!q4lLCiCF`|v3gO `'j2L36lrL2c ezI7;thv9gxww @ / G6Ұqjhtq"wWyVzhϾrQhpGz>JE#P~hd7#78WxNϞqGs}kg,V|^p#ZD+Hw4r {HA0_]Ɔ{\9;|=F5!Ѻpso1xV`#yaDٍ|$.Fl')KBJњthq k[=@ʈPаKB t9.q5a <'ۑ4"[1vߎ4ҚFQ咰ߖ[g$;!_cM8oJO[3aj¯Ē{Z<"!nĝq3㰄, [MX3ر-skL83-,9aIXhd'Y}ml$NX` t$dpHh&|;1B$NX*I/܀ħ5|2c#9kH}ǨvK N'𷛲S:͎ [}Xss ) N'XAE~ wh^'<%Ryr AGM16Rߗ C6^>[5>ƭ6}ɭaL>D|?fX ѻ@箝Q `X[b ăZƚ+Ysr?;uCl(R{)xe3P| ^C/* }P1)3S0bkƷJFŨt5Lɑ'M!$UB GI^ՕlH^᥌,K@A9Db}% rq$a}:GQI:O C5!Vm-Lvv;!#&WF#GvB ȀjĖ%ٓ•q'cX)ر׌'%ϑp.K04gdÝ05aR8ۻp'3l Wʿ'∝hq#'.x2bA1TGw9BN6{&CΛRWMXnqNzb'[Eam[PпC;ʺjTT1Br6=j@;~^\B\Dtlo}noѓE]E~鷈1:o6pLy4^]A1;pOʽ@L)GNe 2*/^/RKޛ9*}XJG҃zktEqXKK{Hu@4Etv]7O}<`uqUgQ 2do|>(+qondnxIdNvo܌GYևll|#n4v8|7J5TWG, 7}QҪdum檢>Ic+ր$]'T6D͐sv,*j&L=hܒʺ6n2nq{fGus+vh_Xkk 9V$oYEꡢ~݊F})V4EZ-B?:[TQyAvd Oo7m% [8}9a_$ȏTilcJ~P3ޢ\|nT_|E>ɓPnU#shG~E2hJ \!>W0~RfI֝[ 9tݢJ,V+MqJ|GէDu$U.&&%[b>(m5o͵׃W1P^VM/mz4xI|]Aiv4Cr׍$M4H &YwO0U3D>dc Mc':W> v0dP! j YPV{,}1s;!A=nlQTrD%MTrҚ$SDO:FIm 1>}{ LzOY -߸EMD `.ZgcZLalL0փ3,P1EkoaRkoX,i},yRNV)ZUTA j* *l9n&#%c .ǵE]ԏ@i/wH}09(ۗnFW4/ حu4Єr:GΦL7[I͟Yֹrr0/jֻQTo#{#.U5S`]/_8XivKn m# `.y zJ-߼8Uj5UTuv{JUkuvݒ_@Yv0KY(:Ps}K-/cvqː;wlwnHxe2vB fxۏ\9Ƣvw ^,bn-= ]w_?/ѭE <+ޥ}i1ŷ/g5ړ]h;~@w 0=r3iY7r, >k>n.û*$W /i^AK@}$p;Xnir7y{J=VҞ^JZҸ\r!t+ gQ JQr/2㛮bn\GQuXk]p*9<62w j[W|JյIq݉n,d|URh7U^\RU] EקjjoX_421FZXʍlr~q1]؞9TԱFW'z\ǚa08S+xo>+cIǫTPɣ G.Aݱ~X{躣c>n?(^7OʎzV/b0}2CF0MaT0҃2}l}ӘoNdzF "%"b*s.fU3L]E8U險8jŰ klwkl ߎvS o}+Շ9:,stx 謧ڊGp}05;:/xtJ(T隡hLDd h eud(y*!urctTE3=*Q/!GpС,BgDr0<eYjtrG`evxn(#d }s0/7ƅ3l=pL;uڤk9wA mVX"ݧ>#ǔZՔtltp;CS\.pwљ4ۃ-qQ~Me0{>!TY!Xu~uxAttN' pIp( YG)l:JWzMO$G6w݌]/Q}18؄!` NpF#M9q /tR.y>Ѣ%'sĘɐOċs={nҏ5Z!6T+ĺ=Eb@\9[R.jKF`KA<~^4\1w eGըazk%QxMa Cc u(NX uda;U2Vu0q~* ETl ADuXxd Bצp{imޮ v=ۥP߮jE]J+D\ʨfyo?k) p㵒[KP8BZJ'l!Z %_ q<, O^JvB6}#cxPXB.% xB/+]7O$9|G#Zwg7`=JND:Trv\sO8S>yjF^ۢN{a*>qGa(O ƈrn#iG8Q4so> Su녁OcRxa oKxzFP{= |0p_<  t?aGN:xeaxݾa*af>q|L *v]gJ;8iat)qINQa1A[2aPcnaAL_%۱1%۱QJqDv"= Tp?x0p'+(6kO؍*ҒXҰa Q-B4,b~;ۏ੥&E8ٮj0TExU0?<ƉGtxU6 `y`,L&˂AA0<ƘmT]r 3ⰦOTrD%g0/} gD!fmDt8bBt6Qwߣ%\; OT+ QXD!'a]C+cZ=K98  -Z0h9-ZRFX9r3zrأ-X~3esJv86_Jc/ @hQ7-j3 0 sT2j4wT2QSɈd*1/UuLrX t/d q t'SQ NzНN8N'Aw:;p T9D+/ N6c 0-ݕ8 Jsw%oql1Ι@"y! lJFpuEGpz8ӂu[20jOݡμYڪ*h!l/h{{: :7uB0xR5UIUGTI$T]0WXhoEz7R(:ǀyU &nG ݍD*jAa5c_f{uCfs&ƳStY-B婬qbofںM8vf N)#hg[f1tㅁoD) |+~ o,= #W}1K!w US_2xa _8R^8Rm8R|;QP+w#2tJTruZˋ]Bw Pޥ%b65%K ñeYO^Kr3ZBZ 2%lbRX Qt+)Zq';dk(V ^vܱ"? y06wt`g{GT'VXZ1*\+>DQZ-8ݥ gD; ']UT [UQZY3*󅁯6=«{!셁/Ũ]O.yN7Wiρ|vo)Gn%XǝNiT@=c@wXi8S2jʍƳz 9\.wx3>R* 3c= ax)Wax>wTzLcGo+Ňo`z8a(o>y zZȐ!лC*M^</ {2XorgO>tsQ2")V݌Tr3 G+/"C%hEY..DUD"le3JkrDw;⋋?]RjkbH'66ïMEhlUQHZUTNX|;ڋcE%#+҅C?8BȲ#D"p4@tS!X^ŗJn/x`EiD<0C{ _KO?+~ 辥1EzTҚBd[jB/PޜD/"Bs$2+ < j!Jg%ȐM\'!/xe DшEDtY+~d1D&2"/Ob\DK(pՄŖ_ Z2}%֓yY Dѧ/;*BXB,!N_ߌg]%>(' qs$& p䈝t:6 m3x$ϰO ވM";X^ANm&&0b"A@}Jؠ Ilds |,LI7g:Δ~A5BX1X֙b8Uã ؄zJ <* pa[J`Ih'$63-UB4}1ݢ!OC }T5Rq#0&æ" bȝ:> gXAl_ ׏=~v|[Y_ݭ͊)آDd@oqu#8}F{M]u CEM2~C2~%}Pzh-@0mMq'-3=NwQW)34P=|zco[cM no /0p0a]L~A`6 ʔE>̐hؚث؍Z mBt'Τ Q1oUc* w$LGհγPF6)6Msl(^(P|"D""IyܣH=5bH0"}`DТw:GfExxKSUV4'S5ic+tAY-TЁ?yK#}Ws˹v>9 |/"6VazQd6xM!۬!lcD2^Dž6aFpNívGY#NQ`F<5O^$:|3{}g'\.":p8b^opQi"xɢ%-NlpG\E\K`D>TxX0S҈:  J#ڙcRe;蜮~;>%ׄ_ә{9OADԪkW A WCC/:C_78!Mȍ>R.+ Q *Sơ[ v t^KJZ+`.&DGhVW|r'3jrvs +ן=O\%##\8{Tir)g[ f[]&_f{\#-"vMνͯ9-gqJNcn*nZ-LE#PETQ}$L܅̔xgy2Bih"%K֮ШC;CijvuO5!n^sܷɮsa^NTt^ U5Ƚ0zݵˡ=&?0[kUsp%[]Ňoy0%hؕϰ%9}xLZ cU a]UkJV}w0eE%ȍblyzwIYv%ƹ{ZwL:«-#3ޯIwcH,w7W^rrr-w;lסkxz0̕;+ H ?mFszA.Gn *2vȟ ydh._]M 0!JƤG77T2dS00Jora 5۫{Bxuj*^J ɪ1&JF"3_#}n'\p :||Tɽqdlw.G8S5NO]*|贗@)v {O+특K=5 =W AħDO:dyfIW]JܢM:McR÷9IwޤÉn=O.kjDO:dפ!=EzQ@7MM@ &dbM"7f<}UyR +/ŵMUfd"1sO8AܞTO tűQZ܈TjDݦNPIbT+jeq/usߑI&9pdؠΎ؅?sf ۲Gv c -8"xxCFEX2VFFX Gl81}^X@Ko Fȍuʸwo YgW .""T5˖ gʿ]lrNOh5 Xu/"CEǀH~4KƓ1Or-)z[x)+h14Qa`l Q成*\;9`!1SL$,ƩǦǘ ;v, c,%<3ʢEaQ1Ktvyȫ *,*_})7d`ڡ`Z,%5H!}`r9ܕ\fpguBУP$]E\pmLdB9nɵ{4ٱ{<##~7fCk'^}x[NeĘq~ru#Q^A6|GXLU;߅:h} 7!oF_P~?_~Z+.5~姿o??WI?_?>v^B P/.SbO7¾fcf2zՒAe+azcՕ';1_\p {Ֆ}嘯^Kr:{g X\1r5z~{%a 9a[&<3ᶌ=E\\K11׹Zkd -*&Xp23v%a [~PqxXp23<#g–ono.on%ajNҬlMX e G.jz.墢/[ 1?Փ0_=+cMowWW$> 3cIHQ1Mr>|p GƒK:8%gFeG~[qeDQ&lKBNgǝqe}`Xbw@>跰~h`osΌ+h ʰ/ȸ2'urQ'!ggPȸbJ.L؇;!&Ù$y\ŗ#Ócq'W!vI$z|JIBy9B=b眤49Pw“* xh L-#`D=|ofl(CfCKV1?hYn$v\IJnl;֞oq%-c~ g.jV͸\m On Ó57_ Ag3?hp[tr,Lg_h w%Lն1_Wg˸|u;_WO~.8gBW-atr-N8r5F~AQKh wϸF݆+;ΌfpwÙ1\k|s7|3WFK؃߇;%#s1v֌=#ۅ;%\i|+x?l4}qdlsQBM߱g̿ݹ;vە0s%qekq2z~P7|s0.jo.HXG+cOx,c;߼gƚp#cϝ#?wܾ3ܖr{knBE\TEXT uKJ~ E1,G5{¤JV%+͒Uj du\v7|%\-~˘|u+_㹘$c:Ց|-_mjWX|5 rP,7aZ?y7$QPJu'wѢF8r5FFՈ-gƚ0dNo*X|{e a˖-o^35a4NVZ~2F_t eGƖ1UsQ5Ug\[NX,ɸ2Ό#cϘQ[K?QT/s~ [ƞ1=\OFKXKƖg;c.GƝ\TWƓpߎۑ;B0 #NJƞq%oo>擫af <SgFKX{\TE\TE\TE\X g82ROއ=y=ܓwxe< In[aG83Qh W83Qúa> Oɿ='?o-قE.և-ȸ2j.5vL7}ʉ.FqDBs예(NxBFC3cx«o5J&[]〟y?bX/z83An ul e3?~pzXBoQ%DCܼ}2ޑnpf ",+Ų򱬚,+.u&J|82⹊P BQ?sQ!#OƑ$<+c.j`DkBZ{Bvc.jz. #LJέ|5?%_-ˎ2;_WWxn?WG:՞|/hkʾr, K8"j&AA4]O==cyzAMpbT933 8Yt EKI NDgUL&:"n[D=j~kQZF~ktE%7f^S{1T?x^c{F1Tzf P ч(CeoFGDټ3ޢڋI7@Lɇ3OgGLv?QP[. rY%~jƇY͇Pu䇷KayeE@X~`hf Ko;mqΛ;onqD4P 2Gwlq'<[ h[:ֱ ۭ1_jWGe+_]WwzՓZJ9"zcWj+xq' Zabp'\ڹ;we\ -esXbx46b. KڀdwBvcV\d;/^{d< w8ܠ! Õў#bftD nx)t1How =yDKՒ I|js'#\pӒs]gF x?8\3Ö&D jǵdDQQT90-L2]2P™opz8sMH*Q{o -t0KY="9\PZMX8]kBz`0Lޱ{C U:U(:M{Bn 2FE>23#KTǎxP<!i37`n̲ 5W!ۏ$:!JAؾb%dl oa[C Y=x֓xԎTjt]FԳ/dW_jxdU$'x%–-PPׁHw/H+8{W>i]uvqG8^;sF^d}ELz-!>h@=?И81Qr:?UϿ.1 V;N&ތ5qPCMP+|x[c%^4 =P{ @QZ;z,<(]4P}NP[21&UJZzT@u vhէKr` ;"w8 pi;oU~2P[#,8(iac掄:AF3Gm`]zjDxp}8`Q=mwKQ`OHD47,<#Q="fB06ETv“DQ=QcЭSVS꾻4Fˆ.a-n5mxޢ(L%ƒ*%H7br" ste'0eװ{D 3xQ=2&0ߵ׎?r=Lm^Vc!@S\rco[a{;P^GZ8'Z/c]q6: :Ǣr\?b6[] ILAS[GXJ""kW'Nvؼ-"o6] \N,@8L\R]pv"'l:p+wbnT.'C{dXv)2RU`6Jaw)-\H.-)ݔ'Av@mKa\bep/bSZ?aZk6 Pʌ*3{;pobE,9bg!јQeKRa\؀ f4 w`cF _7^ owuSC&^L8Xo'XAȅ`!n$"5_ E8" _W,/\"N6dO>G6@B6:C`#2|{ry]1\uA\DN5~d  ܄0؉xna''!a):6"` kсT5jPդIUU-Vp;y+T>9O.& 9 Wx+<R) 8*ItQ(ݔnJRPz)VJVmuV+2Yxfp(˜6ZQQUFU:U T5jRդ챕~ ,x?dU8|+w% 2q.ݱ5"7&Lܙ3`ăfLx1qvA cNd63[&xy}I>o0{QUFU*U*TUXEww qUo'Xt+? l+&N"5wj44Fn*w9'qWl5Yg2/~FƑAEDBFd=_Nxցy ?`e⺈Zl@۩jPՠIU&U%&\t,Sp.B.?+u[#R) 8*ItQ(ݔnJRPz)VJVmuV+2Yx脇;[ҷ-JJ̹acpXU5jTթSՠAU&UM[=60_aU8|+w% 2qD&niCCv&Lܙx0`y|C&^Lxm.Nd63f$#6LoloV"[Qh,Fob,V>MLKp~XyNNw oJ&vbT?dyEyJ ~ÆK\ xXy  pSզV5@{dX6YrF`gF6C2^( ,\H"~'ƆGT(ݔnJ]ItPjWV)يKBa Rh4GHhȌ:3Pʌ*3?> pr7"\,dc13,sɿ +P0?X'3h`ƌ*35K+x1dă;w&nL\Yڀ%uᅭ /Fi'^n~؁s*կ\vfԘQJ)v{_18r pbIW:?,AULd&.B@`"vbM ,̨dӟ[x؈9zrx؈%6Oo4*O?__ ~FP+&v4 m_~=h# ^[OU#>yj_=3ztu %N~}]&?=jN~ӤbՎ[pl͊ÿc(]>&⍏-8CD|O7.l䙣 _?f0h2zI HU}d o`M ,BĜ|.b'00ěXL&&2AUUuTըQUckTV2ŒSQ(8MtDJ۩S(mVJ+[%Kh0iqwqS p ݀ !̨9lpCfTQ`K=w\XsU Tթ̍e,3'fn DgXKˎxn, -7q Fpı%r؀9Z @hFVOp N+AR~0},@21+0Oc ؀coFUU,UeFm!~9wc{gktc{,9:f1K@\`"јJguRal4  po$2.!25TjRd&K5yJdM7+(,BFADj.fy-"UmTYR +0_aftɅ6p2q] 2th[Nf4IpMT(=|c \ڈ:;3h0Ɍ&U-ʱTV? /X qw&̂oϼM#olth0Ɍ&3ӏp 3C(=,5[5 3J8JvxTH͛MP*7虆70{ V; f4jPդIUU-ڬf7 &>lWyfI`ADfԘQcF!b9Edeb ʫOv}p>\!b,v񷋿o'<27?q<\ 3,dgF ۘ1q^9ϡ0qr8yNOLkL9-uxv3uXJUV[,]6Cc$\ UmTjQկm~].dFUµ̕$.\.WeP)ݔ_[JmNiQZ)J˯i{:/׮msUwr89LĠ4KBg1: Xƌ3lʌ 3*o ްbP|4&2bē'c96 QgF5%[oo+,s-b*~a Ke^m;HV}sEgsD\"+78|b%6b'" yX);q+5FDxd Kbt3v;Xf4dFO ;1d>d Ю2N'k4X|; ٙoc6ַRUeַ*l>͇uEMU6U-Z87!N"UuTը̍e,se|Ŝb?yB;pQ(NJNiQ(VJ 袾Uz؁"DJ7蓾{88)8U,Fg!јQcFQQaF-F [0p+p qxm"/&LG@YR\H؉\6 RU=R5mgw̃h2ɌڰeT7p3fb{uoL@(@{T*qw"3ȦrɌ&3Z%e16Y a!C)6LVJ+FiS:(NJ'EtS* ғ[2 tpl8ؙ/Z2-HU&U-Z,f7˼Y}aUB hlKk!f6c|0Y|']wn&,B &>L&Adĕ_0:.`g}YR jT>09`$ p󷛿@oqYCUU˼gVXKI Kp~8RMd1[S7 g؉(L,Ly3f1K\ SL\)T5jPUNUU5Fe+3*̨e59X<URpCѬSsQ~ϔVP_8_S Af\hhsh` ؀u:ceFfTrF~aC8'pPՠNUX2b eQ}q&DfTYȒ =6LbF5 xOprQ4܉L'_u6VcA5\l./eA;_~H)9wc{c{޹\vS:~!јJgE,&Iaדƥ6xXX7=CkopjQդRMjRd'3qσ^6ݐd17t ;eM>@fy-"UmTYR +0_aftѯXܝߝ198P>_\,ƢtS)J=9~Dz1y`gF f4ѤEUY*T9;<&J&d}cH̓'O&㞬£sU2/ C} )1/ hF=vfa?MFՋfr۳jSզ*a#/M ol9\tdF&&;-۾$ _|]^|wgD?hK}j7N@X. j7n V`oN,@ˁ`$2qa9tdЙ(3ae~0_gr LW/>Xk;p"UMʷ Ź;-`&mO۞i37{JaG<",OAWRnRjןcNJ'A ,F]@ݱ'~2q+кY``8b c0Ό:3j̨2# քCX:5HU&UM+y |V0#T?:Coq;M,~5=M}#nn;?Q` D#ÇlL7B8Kn}$_'a`P lh_ OSitÓ'@C&%D`gb* tyċ7;*<]=@}qu'\ o>n.M739ZOX'Ph`/_q;d.c{NVY}LF`@Ta9y|(5'^<[DMz`@k8pR:)].J7{%n* <,u#CJu}8RpލN>8|䦰@%7pW"UmĴfsId%L;qpTbZPY\wae[0t?MTUny-z|qHib*$PVk`MF,@oV۝և q;'3hVȋm6ElLܘ1qe%2ü'EL, ߥ{Xkd!1>odc;"U9vXuPUU-flbbYkqj[}q̃eB mV*,3ٽR* MtQ:)JNiQZ)X|"-b Ҁ Řbػ;N1 +U+<<ӓǓx؁rL,L@؉6q+0/r pc[["6.EF,@&6q; A7 *p'q;1[k{oh_qw(_.V? 1kt8G'|^G}QrWr]|V؉f*v"009KKw:1y`7V$&'.`TdLm*w0&p7&oSy`6U,WޡcB,?&'KɅgrQddzHiS:(NJ'EtS* ғ$~Hi'HU b8j22umѱm7DJJ:8Dl 0!6U5T'񵼍V$`tlb 替_C'&?90'3qg+1aW(ܢ>&QqW!v"fvv#ڏLJC~|h?>pa"vb6&nLܘ2qebOx /bKIdb2N@"2BvܸuJ|؁J@bC BUJV (؁'U-T5j̃e,s oؘoRUaξ~HP*nJ7EtR:(vJ;FiNbJK~C}Ri@  \BDcN"a\BĀJUu+Ǎ C~|h?>ڏ۽Ԉ pm V7 =Ͱ[qm?MNlw7EAv1 ՕXa9_Q.OcP+a%6b'C|d4ۏ3`+D7.Xt$n{!f .G%v$o؉߮JDe;qPXXnWB3vj~F OF\@} >Y42DSx҈ x*1Ks^$_lZpX>NitP:(NJMT(J'KuIJP'HU gtT5dW'nDT%T%TuX˼Ok#RUFU:UI̽}7 g%N"UF\]| {B#/5d<ډL w&L%f18 7K{ob#N"{o@~q>HU5h˼3K8iAe ܨ3bjgsθX_Syl8H &.y٣1R P6!pz:ÉpZ<>8ڔ:ЦUP 5{JsT5z$JRDrT6ItPj3lO(fZ pqvBf_;->#[,`13̨3ƌ*3u O7}h}#M'\T5jRM3:a_ [YŒPn^}=_O> X615> F &x\8+lLwx ; 4n?}E͗ā8{^l7 łdAdĺth*r \Bhu`&f d5+F,@fhu]q=ZxX寰cpgkXOq aPJ!6 tQ=O!6bHOFq<$FZ-yT+16-6zxTYijz<݈J>RxxT*FF9'L֗Q=턗Q=QQ=WT0o< #Hdb LlQ=3ڢz8ZT@&^Lb`#;*Hha^6]^&8F݁#p-C8J3#Q8J/ET@ }[\f4Yy,@*UmV{CD7oD*#Pkw!N x1#z ;z8 o ItQ)(y`ғ!62G`eVqzxvӬ:|8O34AU vK^U Uéxjx--P;x1nR顧xԬQֶ Ymˬ@52o cݶo[[WU\xF'g4 u}WB6lC6; #jAFoc6z/v 6֩)Ff㳍v»Pܒv{] dw]U8࿝y^O-Ƭ_m88tzFM ?H}yl&ޞSO\T ޯ=˭26\q{ }~Wm,la?_j>@Ռ||T#'X=j>Ը}>k!ëj}UMWnZTUy*]-Wjqܡf$jތU"P\ռo+]o^'_y??Ubzlu?`o8Fnc5nVpTt4װR|{H>@R>^A/OW~P/*mE.o/X*ԽRU5TrU-/OoJ~0[|-F4o+0"';H~ 3| n|ƹC4.݁Q9wؔK;`)&n_~ȸc1|z]ÝD>#{1[|c7ߘD>ϷID忕jy-Պ*sK1t:/!hD_oF;M|Qt*H==⪴c|T2/l>蚵aca=y*S5oi.>J=RoR_|jԗUiy]ieމ*mU g'R( A ? Rէf\HU'֒շK?M32dq(#n2݈Ozwv.=RWבu3ݖ>y7-w+ewaڻ38Kw7tk@7: [}ĭ6542\7354\AC!ͧk 拄k*yc5Y8y0|qM4|\> =4/{Fat9޼pMRoXtn;w7q@Wt eo翭70W s>0WQ =} tTq@5B:a뫓LoEq RO^3T׈%l+-l-\0W.]AQy+,TURQj *.k T6^5T*DӉu$FeՉȮ@LO_?멁Z宲]^ ]t/k$yxFkEizF:OHWkF55rUcu?誺I,4N6kŦɫx%GwssU+Sjn>tuOGwXŘ{T cWg>8PҰ+ ;SgT~ \i/zJ1i$FotiQHǭ:a-y|lUA?m<#g$τ)ZR}gjdn6q3_\ϰ(ogy Go]$ ߴun: t>2*hry2ڹߌkF^ Y'*_p]j 7_K ClȪY*}w-CRv4u{w@<^w_UHjT=#QuZ0 kk+nO06bځpVzt͆0,foX>WK~u[7O bjaFluHDdkMFK3,6: iH7# G:ԇS'^ތz6k5Uu Öc{m^<#AzYf:6lؒVPU,-lKu=]R %5-lm,}h!i\lamÛaC}Q\lkSL{X[rUb Jƽ# GVrFX"zGC륫R?.n!jbuUU W*5NJ&R| l ZVu EP~5>QoKA^9X}9U7QE jGOVlm?B%J+󿳧bk'8kVM>'*H.3l=sȠ.b Ԉ;ӝIOp]egj|Zq_}$mZ_]Qw\o;[,wo#jG`CLdu^GJq 7ăL?LT~plb"6] o—9ꨏn I }Vt -aו pMbA p+PQU*mA.GbVX&MtQ(NJҞ`JiM]s tuze\6zaLL%/||LaE4zJJL!%Bb,\): SX Ⱦ3luĖ=OծD<ˀ@Vn )xKN^c Nqw>WPPz`N/sI!x,Ih|1ERCTL-M Yso&V} !R Їj2떫yu{!SB7b'z!u'qWb ỵo N4`Îf2,x3~'ηK239:y{3zf=v!6:N_oU-ow/[/_:}?ƸqC2ˬCC5xt^6U0 WytP}6 Z%<0KBzkEzkvyk_^}5u.BW_;0/]jWY^_m՗C1U{Tj;k:Tgz bRķTv* mpGC۷5HձϠ Ers/tma[GȎyZ=ߑz3}b;B‹>ڗ(#ݻx/Nb#?^Jdo/z~Ix9]Cslǜ WSTZOK=j }={J#0 fvQ(+(~1Y\@uCi;{㮠6gQJT@yiqFZ52 a\7P:0mA}3oj \CcoL8|=toDj>aG%&zfrNh~a- Xṷ.c0@BÊ*-yߛQ"zn98NkǙnf!e=#wEC'LVa֞6d5ҼNʹ4ls36]׶ϒaU~}7Il@]yW>>\&8\mĻ&v`^ Xc; `[DhLm9N<vtSj a+NJ'AiS{X)ꆶ4 }255N`Md11Qg13j̨2ʌm%_ I`af5F`TթQU*_-~9\-1mwu,w](џ8;čk~oŖf@&P6v!v` ̨i¿dkSj B6\KZGG6UÍE -_p1-P6q}Cȷ +W6gN 6f䛨U|E+N$+j_Uq6na.|(G&|ô؉ f^{_fgox fw(u12|`|8)ݔ $|1MlN"S9=mqtz(%Ň Ǫ-&/.`eb]`6&LK5&pv= h G{xu[B`FMfZhW}h]4Paou Q8jRբoyx̆0O`FMf4bFmHs1|n/o+U)xAtR(] !L%)JC㤛wRZq}qwS`/A<@5v=dFY2l7pW"U1;̆0YĜ؍Q7ڈ(VѸ`oADv#XPfrkxIs16b.U88 h]%px!6]wN888 ؙQ_N,R?9%І@&L\0qɉ=A,@abD&·ǽx\888;̷3߶TURUBU%>Nb&RզMU;G_8T5G[lbb:uT%Kw@JRtS)]5 "VtP7JiPZ$؁Bi޳>PP}("68ؘQcFU؆I$,'E{p-a+p qpb^~F؅v󷍿myλRUMrBIDmA+1gPP0WO_0;BLװ>PY Mf ݯl؈Tղ3t;o;Wt 2٣:\8u 7P*E$f_&Df'"[#RU>8:qSxL偫'p P*<*JiQ)iʗypR:)]H͛MP*JOvxb;RZ6&XX o.U -9jSզMUBUBUUe\ļtqFE]y^巛r{꯭*Z@ʼnP#"edT~h DVty:J"P^aԠx4Aj\p( 3[=L ;nuMoW~uk8Jo>~Q`x^2|NBO~טzh]hB_fx1TK0؀{v%1Oqu4`WP'2E(kM!؋]P(#EmP%;q0紐t䳙[]52LZ&+3婟҃ٹޅyEth2'xv]a5(i2˒;R.&G[ u,J1f έڵBM3VUriF۫.ˬũ=h}ˬTQ;y7hé[Bm)ϣ-j-qζ*LUԃ5_۷58[γ%y(<>wFL̅Iɪ5uyVSc\G8`cx. \2ΒZ;#W|3,"M{_Bs|gZ5f/C6-d8k" ;#+ݗS΂)K)t7{TTd<nځSHndPwyf%\Y^~Q@-sPKH{gd%4rWVRQ kBbH[TUdW֣VO/l[˞Jlw*v#5Vv=_CHom ~ɞEdd^$#`Jq/dGM2Mb+2^1s1Z 蹐-[Ӂu^xz<4L~0Vˆsy㩑mf4n9ݖG./ȕ0ok\V.ۯt{JV B/W6vy 4 y> y\yzmyyyfy[z1}A ڛR{o{þVƆ8/,vװ 9[uC\t^$:$.AY![33՛ Bf7W+UĤTRȺ r`dP{3D+Ȱ3dxLwg睑uuG\2H:l~by-pv!k] Y漫|=ukλ,-{Dg 9(~,'x|,} U!giU9u*Ĝ7]%k Z"y5;ߦ0{ygD>qqx3Ő 6d)ͼ0U\>xmO̢.kE?rPmjCzjS#⩑nzsgzW\ 3;#._1A CifU뙰f{q>ҏ6۴ `h)Jn 3X}p1َY]waîVjJ߉+ӺߗmOyHJk wvE|WkpH?*fmN36gD#Ɛ+i|v~.I~ 1;ę]yD[?iPM_\&Y[Sim/d3ۗwpeV<~JSoCGIw]dYs^6A8oOwF=iWq[9)jiIy3ygĜido)[Ws";98!1GT'"xj[w=0i1ĵ)g a\vY& ~xIae0y=*Ŷʎ`35bezpfNSf?خj~_&W5Hftft5ק5r^GkMJ&%NIRɜ:nl`""F%4{idсRܡElvܮ|jzu_!"YдG|jkQKENezPUzzjehPgOf|;oV6Itr%o^|>x~ߒxv<`7=x/`CZ_^>xn4 +,bELT]^R\U_4Ӱ;%kAŃ9Ǜ>Yy>t,)xNʊōv}M}9tiRrmrkRruo:tv1I{⢿u_z>(#dQ֧_>Gju)Y>[Z4A8>j%ãWF̾cʮh_\:蚯d[md*lZ*SK%i/S.QBGQWQ5TYCu eECE*dPd,49=ve:]Om tj]Zr=|hkqAZ qPɚU wZUq9}hܡ905^#LQ_9-s6aoחsTI꼅zXRВzq&%gO:8?M8ĞhU0ϟVbm{h4|Қ}T#6߲o|/6rk[-8a@rxgYgX:[fđUڴZE]מIAV|$3a?8> z&*N2^ɰ4R"_4!GBP9*_x*jyD*q֓5z2q#)WP| QcաUԲyDw*Oh%s\U>Ø礵TjqȩwVmI9wO1lOFZ'j$5l}`TGWyUUC~8M+x5m<6R%ji'֌[3Y M9Ю6vϱ{P{GZMDQCۥGjo&@jj)UQմ?*x2*''irjtv)8`Jjly.>tU<\HV_7R{:~]T?H ଥΚnL>֌vv㹞ON2ugb$YW7q{Jw҉'[_>+ؓZ*˙VU{cBFM=o: HavlYTN#̪#ͬ=ѵ@6k4A'Ԭ=GkڳLT܋`A,h#kdLcF,mZfiɤ?ì`OԢ>hּgI]jSMڽ\Y.-Y5,C*OI'rפ2B?&UEQsQ]jlcUoWddvddvQQl.ڷi_ǤAM![1]tEG fORfpORfp^OR6k0FlsEo׉ՠяҁ$Kw,,:֌tM׏l(fNm)׶(Ee.tM'?cY\W֬SƕIcvʘߎh;*q@j۾L~Q3km1UOWF{7a.UnҵMѡah165s;[y,`ųrTpjxe`HlYx:%75)dguY>QS}ֵ{tz<([gC2V飭5/џ[b|$|eyJHlZnj钖J*ؚ,[ 6ۦ%7 KSNߤnE/x$CRQ;ܹ&*jOgVZ}<o c{rRy::R|aY^Gz?h}<=wJGcgvJ[WX|VX,l&jޜ 8m,7_Fj夛~ju 2Fm2YMRܚ1CJOθWV>W>O}^%e2;'rț]#NdqPӅDz8xH}4]D|9=zgYIlYl[)Cjv}_?;^8K^/5@Rp]66"(frqު_QlQS]Ulħhk(Tb387;;>{vy*Kռ>Gn睕{VK%7#ZzS3gڣz( C C+C~mIE&5jt\ 'Pq)orj^WspF9M/e=v7PkfYoͲ8/zzFmuiVyy6sfn>;OX@ͲQ`fIzޏH;H"Y0jKJ^V'7=} tK+'jK19~,r:~z{ЭF?%5uu[+%֊N5⽣AԼbm:YXܰ.k& ~*0gׅ373|$p\GN3|~FnVbvXw>8xJAu1"2:DFn|jbz7l4d-<} tf}âXe+pnb'fuM lȤ*L2¤ L*3̤:2CzFvbA,Q FdRII;#w66VV=0uQ]dbbd1 ~j$m+PYD $20Ɏ=؀>'~fwm8~XILX74 ,n-K[\ ̌Wش¦_{7b p6 ѩi'OJFKqd ;,q7ħqnog/Ŏ(j^U,:KEɨ+b'JSdŹXrgӯP;Ep'p_MU~WX8+Q^54A|lwtE) (^8Q 'Q2NXR#p&we;N: 彁[y0P\>s;?$'ɋM÷}C\lZK?5;q|r˓Cy5l*2 7Vgw9,;q/>ŐQ0h8Nx!cgS 4/xtꑽS#:?#T=7 vXCcEġM ]5FnC9U.qуsl82/G6XcًrZ $xdUՏ^{xʉf-^zP|/.TP/>=Ց@ dP:7.23җ E@usXS#(9 QC-7pTIm:\@qO 5`gRLYh13͕k8g843lD@b<9F >T/24WjXZZD"C4p0z3+mlYw:w&z S%z_.s]>Dj83aV6t̕{CA>1lW?U&ddA\zg:혣z'c6~;8jEQk?vg6ޏy֤>IǼE>=̧zOScp.泽+_^akY#ėztzd1ajc˕&/$vb%f"D]K.VbV򷕿mbO"vb!&`FdFɭ\ ]ueA\܂W*Idgl2`ݭ٥ư !#U,؈ xܑ t,DA +pmb'2ɤ&Lj0:L1ƤL2).N<[tߒ gdP4! C C3C3CC #6om:ŵ8:::7м!dwu30`^D1^o؉NeX؟w6KaEl '5k#WF+ll؈ve&Nb#-yFtoɛ'Sps'C0pl6n v+,_ ;gZu6lgwv@DBttqp{WMlx_~b#NvYBl_ ̅`LCFĦbȍ;#1& [: 8 ѝutP:OJ͋\sNf_@Q.24:*q'C'CCCw!΋]t*2%"C C C+C+C5\U_7pn.6%ubX27V6&՘TcRIu&5p6~PbRIafb'.`.-Ft8p"# 8#y8hf8#/y3 0gb#N`qk.v5AtK /V 򷝿WHv$n(FDg7BDwѷtlX їkb&#}+iPCӡz"upQTu1؉ܽi:T 31rkD/bMDL4* %DŴT0R)xzPylbvv6LΊs_dhahahfhfS\ ] XXڳ < 6¦a/l`bFg/֨(fXXu$z8bjڃy,L3 ;}~b$4hXÚc֡=80DIJ{-`ODb O' BDž*..`.DdD􎡓~&/zj A2ѹt]]Vr$ˢa)W 5P٬x }dU] s!2Ve~( Nq W<* (j^ة"v*e)l38( S# <5R(!x(~ ̕IU&UT+Du3չ287p`Ë qK%n`mƌ_ZM_Bd1\o 3,DdhahahehuW/Tr=nhDwŌ?Ћz3+LNb.dfj2̕]Ԍv7.s ן̸wgsO2(DF=zqW&zX];Yb%vCVsBlDlK"uy|㙭~C x&I' [\9skҨg ̞, W۶ZO<S=r4p}SLu~.tC7%)?0;SSlg jٟvxɴ~򍴬#&s A_Rqo;EtBP.ҁ׋~{,1'p?] rN['Z.E@R~9,OkE{[5aR+>D4̅;8<%{<P:zѡ K9tnn;xjd8FF(CPp[o剅+q L2l͔LJD ܾnݘ<[K X*qk|:fBd|Jl=nfL# Z*cxsG6ٮ!tǼpVzQ_*D}/^w8+ztLa'j +[jIgLE}eLfo)qIkVNB|iWhQ~" e.\|ս>7(T渿2q09.Vb!:\r8k$f`[ᚽbEC 3,bwCfyG+0L؉šlA\|yl y2˨Y0]4 ."# ,؜+)A,@鲋 d7.vbJ\dRI &5TgRI5e XI&UivHw2tɿAIq;Y{y*1NDGR$_菱91X݉:4;\[5°'"#32;\8CQ?2q8/SK=Ѿ/pdj-8Kկ\d95EJ\qGq% ţydhfhfhahXt1jUvvNNY3c#.`.D&usqk%N`cRޯlJLj0ɤ&ZLj1Ť /Mq}4D [C/ ~Bd1hx<y: Dp1bw]y;c(Ǚps&<CÒ=oq4+qlj l 31zQNu9X 8~b%J>coP/y/ȬϿ/_??O?J#ÿr2ںO_0^ױÝ?l9gkB d$&_xH9^Ux?|V-נ/s91|sVvvU!}n 4_t߮*dQͱ?<짞?RX &32ȕ S.,Fa12˜ 01z6YNL58::& m m ,seKE,B&`LED_X7LL9-UY}~>؀ Xofg4ْ q0)42&$|ecascbF~'`2 \4X - -L93Re9F~ ntN\RS :D}lk{ოߢ;Vĵ,hDjנ7Aa[D;z{P l!l.#lLP7ba6Da6Sa6ba6qa62l<ö4lZÖ6lxv8lV:l6#6l6at d !R,L4;LCpJLR`Yhs `F F` `kj6 F`r j `fRte ` hY8Ist4V3`f`$gFύQAJYVQ)#'FN((6 ΁D5WXdRI TgR-H VfT|\V?) \i#,m v`6F"24,%,54ؽuhC`Uy܁5fTČJ0G5J,s4GSu E/~a _()j-'sy ߢ3ݛuT0SU{١B5q<'>Qbk"&e}G6}3aisiڴnm Ѵ1D?Ȥ*L0hoČR/"CCa0-|`u0-բuk(t HZ9i%MpU2-ZN&yF֦jĒ&t4i#*i4 &MTէI{엡l0# I/ih}{bkkӍfo];4tw *a a!Kpas҅88”)EA8j B& W9_EzEԇkHr SX,E3,a qXR3PI*DP0&=A) *SP%A j^PȠ^3Aq jmPzJl'A0eS[Aۇ[1 ۖvo& f M = ǰ6Ō–6lxv8Zԃw7a_j`XFjИƐjH/F`2N0P0R0:T4XC2‚,т-T0^0E`1 d09emCh4:Fl0xL{{-빷kT_ψ%mYZW4AθȌ 3ʌ93rbG֡yp bElD&5`RIu&%"b'UfTXg#34hg::::*q7.^􃡲q*GxC 3U 1T0ؘQcFuQaF5ʬQbOJU:cCUC1L3ƤL2Gl3Rp-bNݝ9uSaaYAݮ\,B&B5q<bF5Jn !ob%Qb%NX Fbu+QۜvۘTcRIU&Uf0LQ3s\dbbdd``}3\L@?̜dZfȤ ,sf2#'O3]BL@?̘x]dsdRIL`3`Б|1a:^XZt[ JHqARwt)̲08”)EE#AT_Q1*6]z|-a KLX/,a KjXpr바oj) T ~$.A jOPnmj}:aP䂚"2A iP\Zޠo*ۉz{P*%?l!l"l=$l[¦&ly†hs畸/ [̍XئM\ `cZgؖMk҆ oK_ ϯ[``XFjИƐjH/F`2N0P0R0:T4XLaPhMpL*q/a022613E9I9X6gi h]݋}.+1$6"3̨2re” QX2L+,⚩ "]2WnR2Lhqjql=us}8uJfFNA23 EIԠPA0R^)Z6f4s ]\fϤI83}jѢ*6 F3Ɣk03̔3hN4=3o0QAo'Nn1Z:SuI.qOlK/Vn 1.5؁FҖK 4J`@ۅ4w曙o Ɵ`ۤ9 U@n eNTo+m_23JOu0qk*Z=`ؙJi H{"S7TeNL9qI #/F^LJъ-Ӧʵ;qcbm\dʃ5!}=XZ8aCNo;0T¨c hO)ax ӪN:d  F "( >QNfAuAԇ ,a KҖ+,ma bX4Òܰ:VO"(U9 |U{Uo*[Ak\P^Ƞ^~)A5 kPkT0-@Ô B>EzD4a#e.L0̤2B;ϻY?eg\ -|M`oÇ?XY)rr}>>2 )~-?ffz5 wS_; #7FL2ra3#]Ve3P^ʫkQmbbLGQcFe -,Ff12CC_4^ ܆ ]s+pl"3L3Τj,U+ȕ+Soa1J#̙efB&61ĶJL*|Q[ENlgj^g6}|wYa0aƤ0 8oF8aZB aQE#L* m 6ffV\oc(ZҖ bLc1Ō0 pQ8y2dʋ7#o+ظKm6;<Ό35֨:SJl89&]9Dmk ͤP4 M2ʤjL3ΤPV՟ " ,+b\Aū"}ѡW_N%d"'XU\P3i[2iQ?{7Skӌ^aK _Wpș,36r(`rNC;w.oG_j} B_E ?p 88y1bd ur\+kRL2Ƥ:L5)Nf4l$ ']'#TKkb5ƌ3 h 6dgI9XijFh8Нvk?{PZWؙzufvrn w+n5؉x^zJhɋ8y0`ʝ;q.(61ʤ*LT(3sЇYc3b !UfTTaRI%&\R& &2dȃ;#EڀewVXՀEz}V[h2@?&MG2L3)?L73D/L 3 SN_0m>X2yv]t`fF~.f~11킢>CS,L*3A^K$[zqm2JĤcܨXli؉XZھp1uGo؈uj+0.Pj0+NRn CthDRˉaeF) L*˜ذ3%Q"uzCUHP!̺eX0rad#.f׾h8:::ڙo |ǬTaR~Ě03̔3YČ1N\Kٽ/vb#Vbyw|kk.4w. ; 00cFa̔S#L:넝= (|!- + ` b3 r@: ╸E$,1a SX,E3,(sX바>AI*|U?r_/LUTjhjb&Ί؉C'񨵊ۣĊxiţl+6QIMf pgoIz(DmS '"38jSM ,X1 Ұi [ڰ aLhmxؤ-|0A0,C0JlF L%,L4;LCpU`t6IU0gcW0CY0#[0]0|5 W~1H~+13:!4I5Xi ` h 6d*uFc5#Cw49q&,!2g,eɹfYgȍj,Ueȕ)F.,Fdl fFPr AQ.E8)'3h0NC(Xօ`e! C C3C3C:hf AKo3䘜T' &e1-̴!c f)vfԙfP\ VC&әI%ځw]W~g;7M-6DTN:UÂZ=XFmBUkލ{mύRQl6܇V֨FrVvYbc7 #W\̙Q.+Z(wcַpLk-P솾a!P(6h9AWE&ՙT`Fe6MĤRH*6V` 4mv}`[b35j3^vS,th00cRqAz7 S#N0 e!e0ك("p.ɤ +"9h}]2Ą(,Oa K[X²M ~-aKyXB#A9 KPlڳ}oPu+(cAU \PTĠ@2(A5 zޠ9A}kԄ-ORLV؈mZą-^a/h/ϑ[ Cff8k1} CF<`btF,sc['5* YoeIV!TJ,UbFgdfQ}ZZZZXRe&&8^1L@ɤT +bD(,FfF%f[nj + ؘTcRIU&UTfRI%&'NkbNշ ,.(*&uB :tB ^VؘQeFd&k4z/>#ׅ:X !:8D!9C;ghgva^)dhchcheheha ͬQb}[m ?X* 6"#F<ekY6MdϊS3nEAdb}w|_?_n5{eCQeʍ)7V̍B n!9D7A2ΤLj2ɤ0C7gƈ@ տ[KE_-5dF5fԙQgF7pX,f1l Dkdk0\Z m m  ,d&CC[c50r &5In_Kd"3̨2#d,;CTw0ȓU8p-bnRh:z.`gFMf p33[-<kAx7)EW@!&Oq|FO+h 'N Go_ű`[ ~C,L2ʤ0DOO#oysꢘ?9'+8YY6819q&gd4R18]F5Z9#vvHwq/rAݬCtsnrLj0&L 3tsnػ4Z*&%z~yI5fԙQgFnb1Y /ۯqp% ']ׂ[chchghg``&K5\ ]@ k22XZ`}{H6Tw0ȓUzwwx3|\|\p~03̌K?91r;np ?)N@`I &ՙTgRI5&wb댝!`f3ot^1 W:o'~?B_ Cۙrghchc , _~Q C 7^q8v ׏>Ȍ^6fTQeFfY# SRW;/;uPAL3ΤL2¤Jz+=V;a=͛2{ ,Bbx At(?켖gwbkX#~a XYRFΌ7M7o1n^o`ۼ>1D?|L2)/ZmWot2t2t2t0t03Txk7 0Œ L*̉J|ON>|gk?xmW&|2s@>Ry0߻`HM+%|/xzkta+;*;p`0D&5,o|1eIg8+K"6V[TcRYΌ:3,`ddbbfLn`@4-Oh+[3L3Lje_5p3#F.\1r@W)2\@?e~\EN1'=xKƌPeȔ^Bnѫl+ ,wؙTgRI &5bRIm&}Uvh 4ŒL2)Tկ~ewW8wKkȌ3hFps!N`a8`PF0F CDdCf_%gɖ帖-ؕhOq0A s7 y~Ttr.@, d(&NhɑJ7>ep-fbRIm&uaRտeΡ \DF\22zaq}^@fԙȿ=ݔUf|wCD~؁#7\YbTlbwsٜe\'V v: ۓT?7fo=ٰ[Ąeƨ[&  |-NX "o2?sa14BnEmo+[oe]Cxpb L3Ƥ**9.)Hx.}#Ly0Δ;SF;9rˬ pW@sc;ǥ7a7Pڄ(s$U+8) Ko-t]tEp1 pe(Z>%K;'q6bnq1S~'z܃?%р(A,}sOYy,OATo;ۘoªYf Ǵ}pp,Y"2ɤV FagF)W[Y2CA7eFlBhl&blɡ.v1Ť?I.s_p=志j>Փ߀& L2hSm0^w򷇿=F/#{_4PyS#p/ШM@Le-?(LiIm3ä0b?M`39'դQd醧d0^to&8>Uҷ<%[psExa)XSH 72ei2i2S6ps^ϵ=ů&FS=?s #wFLyŘ,sƞvqoK+S=Qo{3ՙk=БIV?nQ'3_GTtduIl@@#7FnLŨ,M9_MŇX6h C'C';`hg-ea20RK!pob |#Kdȕ+#Y D'[hlbv񷕿-̷2K < Qw>& Є藚+D5)ܙrg(sg%;69nmՁs:K,Ò#26pQHVba5݅MCr lJ, `x@"N l:%P ̳;+ 08 D!VP [rFR6Eup 5 Dnl>{6*lWT~ 5Z"2ɤFB)A,I6 eA|y3彈.v.&TN + {/?p^ƹlˆlN o7{|mApOB hS ^M̨33t0t0|KXmfteR7@6Ɍl5}hC%k$ CmOЫ /`ʳ38p3|oĀ:m;pqO )sB \MdgBmi`_ACCl}QHt:zf2P!L`@S/p0幀)u|ȔQ恙@Yև8dRIm&aR:?"r Joo^TCxY8rW%;#wF<y1 >0 !!h/M`/Df4*s ͔C|Y,P@fl`IdR;y0b cY{ [wT&N`VfTmd@ dR<,o{|"2~9$ X;[!vۙ`R<)Ɍ&3Z,bffaae(ixx qIlm34?4O&5bRIm&͢b+p #7F<&7,_Cd 0+o!=@TU>UZU֨F54^HxYHE5M5Qc'. *0D8dRI-&aRI]&?QL3)T~gwwZvā70ˌn&}ghl a6; 0bz8R &GNn:i[;:NŌZLj3ͤ:L*6| fi$+#WF 0. <@tQgF/^У7׶.LJ_Mm\E~={73{ ^hFkwVZo#c8?o־Ar t\_F } ]I/妤)üoƯoʷIۿ۾|>bG}ޱhw_/t/c|Х ]-TW+T.wGr~ h[ؾW SL "/#Ӈc˗TS5j]X>,R:_vE.R]fq uӹ-]W`rUfDy[74pml~[mJ䔭lJʖLJʖ[HK_~]ю6>B0[ziUGlY,9s:v:c-_5p*_|lֿ/e[s*%+؎6ڗ>_HV@+ble}l4a'Y[6[GYZ;ۤ[M^xXІJ`'6&e{JrY7p~k"Q1lv(˷xx_p~BkUklwTЖ\eԿ*rZ=UE=)r)i(_o6gnW3WOI US1L~^BMe4THоB#ę_Lu_[BW_Ft?1q}5BZ"|?}gQCo+1ky3#uU3U_kƩ4kMW]Tf ]0d#t/c0 _1R_K0dBy+) _b 'M?x5ǗU9 ?aMݤn~Ʊɾh_w2U?noSj@XT,}K*/}?oa}ZǗr,}V$QWRWZo~%ۏl@*i"/6η-MswRwe6J AߞMx?Ѿb Ř0oWߩ.$~PpI_db(nGk%%# CI_p8.ClM1Lb(@D%}%v$|Q7Ce(s1,zoO`ql+pg.&֡GSIF/s`Q8fj{t\Z k hau>+Axt= xwx|i{w:xA5&u2oIB)wU}U}d}dEKgE5%Lpaj~;|B/:^k>%tOs,wn7w&dG2;Srބ54T$@iwӺa:;qP oiJjc)u콎˱]I:>Dܕ CI&lscV`,.+Z7]no-3\)oo}o|q"t%sҖjRkg&h|%غuGsl8[ZㄐPbQ[%tYQ=崷/'tYߊpk2 qkf'tMgF66m]U&O&-a{^h?lMdFe.;:zغh7޿:/F6w)vSqƱe3N@6b5^w.Ӫ}gdw&΃i& )tl3-#ClT%/Pݻ,6D6CN'׫8Y/8w[%e3.m*]v]* EOռ[hȴE֫*uwL{gaط/QX"e'uK+edQFs%y~MW5bMRWF"4'nRMYBR+TdE6-Pe4"QW++{|CSd#/)`UOsTkDJU%"ק]ŕW9v6'"ҸwD6$V`|"ɺEvnbG1f* V_DN}oآ.+uzJ/\cCys7Tf9K\ﻆ B;]M:r"ۣ-fk:YW7~'l}"̄ly$Gby$`d E|Ne$VX )ŤeXxKOba2٢lɵJ,jm %v068m2P郠m@i c>D}Y_F'madU%R} ϴYmч-['yJFX:Fo o!ɜgebTF>+)LfXSV jv3 k0\NYYTIh$uuӻ}+mBw݀ӍژWp3?)p pt'{ ׮ueݫ@$`tY +Cρ?#?LoO}̷nF[$N`s:.Ї<|:!;ֿMWN~'o ae%W0.tG%(B4ߖ۪\{0w.vn_) 0B(*waw>~;)ɼ Ǖ2e:'%?!GV p2e#J'1#kŒJ>zJxp;ub+Qq" ilƎg+ ?8؉X%M=ukU'B)i[wxYz8+3*0;nb wNLkp\0] 0] (6>ɘ݀l2̭}00Kf&0I2;\K&>-T7] L}zN8@I^mH hCo5uұM-)5vWSMgïFqҥzy+QP@SQvZna@<&:aUa)І 6nM]SNjj:V7ЦTKڄ6''RR`}<2ZXmg,“nŒ; O.nU<Ж|Q*h52Pl@km *%Xm|eK۱mK;mvY/ڨ 4!`8J lDn('pqф1Z`%6 87;Tx3؈&Ӂh3%o// 6GNf 17Dgvu lp0ɔS^L˼Τ:`<ؘ h;N)4Cu0B`-lmOU;n@P.oʟX'}!N>G8zxeFR t }[V)5i@)U?1}?z~oYjRFRF\@/hM,PZ$aBY=B&|J]+qvtZZ&KJJ2A@-؀ psQ=Lg85?!V5&y2!+GOLjkgC4}el@c_h@e8:j>fVZM&&XVhC+䍇JhCfT1eCLѾ*8'p\"L3Ƥ*L0:87 Ō m[7qݬFTGpL`gF5fT71pzl%0^DF^iU%7۔|ms rΖX61+Cz00[oLv hi8-ڲJJ,ʔ*0ц+b_."+@85z6q&PC-+ІWff]X&)/qAf;Ѿ{Jh>+Uxxt_̶[~EKםOt]e@W0|8ŗ|m_~t'-N_#QFvh8'/r7˭nb-Tˑ{|V;ENo qˤzoMs}(憐oz[n yyS~\JeqJ %/벡o K{=KR[fvJׯ\Ihnl]tu*+_V lX/m0*'\bڭ.fdTǯKl@sDsÒ *8!ԿvH>?>O3=ҘܺmGx`{܎i{`~p~t3qa<^n ~2x`ѭzZ8!j+CF6D] T_]k3Ԝ b ތ~ oKV9=-ʷEwUtUIubԯTrwaE~Vxnc( :3NB9w7\it^ }I#5i$&LLI#3%v@¶>Ү~sW{Wcr£ Z?W(?Wj%:t㹉0%h80ń2j6.x? ljzc~.bl8ER*cêcgu4ZhfuJxҶ.E&pmmnc0*_.."0E&AO~C461) ~sS#<~̃ ,r&ZF; Eli)8PXFv}Wpc ԮZF+ⶫo 0љߚż' 7![k;R1F&v"3%wbym@ɶrz[>hb4CZ>h>vXstxW%ǏJ2ݴP)Mm$!ag"!<e^v,Ui dʄJF2'U2{d.gvFݵc7iv82_ć2 J>_|g?^@s$ 4d- Hl _ 8/TD@&|%纓@sAhկT''w[0Ɔ $;Z0gƖƤZcۑ6Ցv`)vjVGlll-?roX\R"SY#nu3eHf* uGNN&%L)al1y;IL5xMqK·)b0U)Ίǔ]Ta=,6/S0JZr*e7Umq*efܿ?ϫ)wMV93blr!rW7m0ef3U" yԤ!uWn*pg ]ۜr<Jy0~\dwRr[fc0{z? _}z'p^>D"$ L_C3H\2W_ye[6wƐ[Heot15f3.z*:Ӫ2qJra}O՗Fm/z`q=kR۝#c-.:صNC[ۛ|ojݍ-gvbU]rdjW7ܜxno.|ծ> 'oU1ǭ{išc-ӧ@|Bo^m/YڮlK?=JsЖ+iN[is5Zr_{z~Bl@)'쵓Sc:ɫǖ?dԎ]a‰9mIR`/.02lvh:O=SB<@"i'О7N`F^L k+ sf 7^N#3X[Gz.ذ1"i:fc2'Ngݮ\˯1qjlL+8Ώ희MsOd)s߮`}wq38;-D~CNg(`ͣ8VPZHa*k>Co>Cjkt2ֿu3lopXK?;*O|gXmU wյxBObEK_lUd ٤ܣv8lg28NyK^L&\3%RsהCDb/:Kbmf07N3qywE:܌Dk^=[al^wcc 2y+N^5=.E6_?S>Ye]0WZ;{by}D!wzZ_mq;nڎ͉q qjڎyë?ؚHH0#mzVܬ#oh?Ш1ӷ!2}z~z~ )8^=NՖ^vYUq͐^=ͣaF|6};(2nzp80?|^=, _}k7]TfY7zcQjY8n̆qXQX(këǡ@3>qR>:KZfytx47H9z>9>qtf:a_gc)~t#|Lg[JRgO9%{覔ffW`m8"E5ܣ6f֕˨e)3}URfcHMƵ%g<=;N:'u֒{s!C WIV#L7\X=J0mra9[*V{1Y+Wz5zy;U k6yMQFL|UF{$SUUF'W0*%W0-n[*GVʶKtåK^>uchx.^#EwR|FTdq>h)/\]TH23GV22d(#{o(jw٤&LE6idT& E7.7VdkvMT佟dc~*7"ɹ"^'U[w{k[黩fB[)ڏkO1kȾ wG#{}f3-'葶Dߔ*Y+L%e1}JL :郼mA W*KY. 6~I%`dD`˖ѕ$&BhMdڲe=vz|ބ-+#ܣ|o'21o„gqpI =Lph5T􀼉j<@_кvf/p0dP#D}xNZW?ܩa: [G@Ûu?:df7DC׫@7v44Lu:p8ѷgc7,[zT%M$Ձ4*#d ՁΤ 24UIuWV?3Yb2QH -MSlg7_G2Y[MGC˴߾`*5Laejݞ Κ.Tpeym˼*)3zz*8UA =FN`JM)$#\]b4rByDaА7LMͦD gSn!0l6 ǔatuˇk޺w "#݇; Ğ-%|뫊$(oUnWtA(j7YUuQYVt/Pp>"0y}l>CCsum*[F+*YG.E) aVdkȶ2E6o7oO81lm;^3)Uk~o,lpYVw1qM_#99w-3hW/XQPRfn}ň}Ъ䰤BoIi{_R/جʿ⣀`Ш|BW'B|y?id~)?Yl<H!xEV@+sT6r\j^@?R 8 پ οab̡&m{& D'~'0}P|g-MqP)ZaV4&<߈= 7ڏ]R]/ =y\/UKW86C%U TMs”~8I8d]s@O[Bkktt]+dC2)#[t_w:LvC݊PeH(촨#M.y3p(,-D qHkrw׌-[?hgLNY~)kA;㸡PUj$P)Ԯ!^.8^ҽXtG7YAwWc#' Kv3>j~6FtePWE:fSߔTjCPFhOfr.uԵӗ8"9a_U{]ǝT8]o繥-f2uN}8w `>L2#t-]$.GPrj/ e}i?.!{G.%L/SM E˟ϖטdUjYdÌA-Paa3[nϰm[o̾,O5c%7lAζ\n[ú-+GMwȾ|c?2؏p[j&ߪPBE@|Z5o7m([ի-՜edFGQF7r|.Xޙw|Y6L If; I_$s&xI_9"L[;L\zDĵMYłY$|.=Fz?,!;p8Oe< 60)2a+6֟z!/ЛNlCh>OzgJ=m0 fzeĭ3 4;L˾nWAB;vX^iWzU8YR捧mͣ{?f sUiZ7C_t{Ud,̓vڤ CfL7|ڒMO[[3|mUz$7o͞}TRk\Mz$5zRv-]r2UسsMtr93TpJj+ tYCqCVn*M!IW^KCh{Qd3:|Ig5,dZ^ī$#Jgw)=9nRM.W]MPf=o&2OJGNk>> ?'ϔv?g`״<-}I2ˆ5[T~]z8 hW.bIP.bF?V1Ƥ}!KU=vhzzjl~؀z?@E1#{!2ʤJJ\F`X=!#<y0ȝ#W9W\ukVNv򷃿wY k]D65&IM&5`R 6uKraD/6b˼X2/yXrSs! o+~l l$2t2t2t0|;K՟ vX #\$<'+\C';>AWB.Va_lŦ[lf_.[Fh5Bx>7p0)VBth1t1t3t3|}9\dO`ZtK@FLy2bx}3:&"Dbܞy ـ-2}vl77 \DHC\{؈8(UgBVbND[I4Op DHRx3J`D;_Lj1݀_ < u0 Du 8*1`kSZub3)qXV R)T ~`RI TmO?a'`Ar̨I]a7EFsLl$]%{QWM< ,e1̑;0ؼ؈NdFuF<`bLyNbyKPJ\Sxz r CBdhYŌ6aRI5b;:~< ȋSx0͑C <::j7Nj)'MD؁\"v`cdYks Iq;Gs= i pbs@!~8$`gv~P{ O];nd CCC7C4K_ ~=J؀8h׎?~8>pi%C9P;%C1c6&UTeRI\lQOVt ߱3m-PwR߮D.aDfԘQe!Kzp zanF^ٻL{m1 3O@F;3eB=MU`μz7Wc2}fEyZV~*p];ozp ,TohIIm;1=UH&tid -8Vf}"^x#lĒPo&+\A縊u@{٫ 7딦+&+څfHW T8/p UجDkˆlN]p:C״B4ql =DKJ'CmV'kiM6ZM/Ӓ'o LO%u%.-}͇1 2mx6ىh[.MxpQѽm<\ȋ{j 6&N r#k$4!0hʖ M 430#[˲JZ[7$o8o3ڕȤ:L աF<6PLj2)T:<iN1uuԁ7VF@LX ^큘RH0TY *4ʐy%"!CCC;C}Ӭ /H%pw%.r`+mR {ް̀ c1KRW>\DF4"5 heQ86څ*)~n]%\ n1U|UM UO=L2RŋsϘYs_Z!XW4N+h@kzAՃH#~ݫ$)13G񓰽Fo?|}z*pO`oJg(s~RjnƱ%(nQ7XO-n-Z0բ8+1.dżB@,M$kY]W 4@QsCK9.'e+SQ 4@3pYHHh67  ͬ>Ьn7ܫV9^}AER]a!+,^;*,%ffyx3ʽJ`%Ah|^A7L{ݐ@4ܫܰ@Yv偽G%^dk7S>x)o 4{Xez/,4@ 42;hU>6BہOrr?!&ܫz뼿Ыx7VUnE( =/2p43/ײJO*' =%Y70[I,(d"X-Rno _6P*>dMJ,dOj(QNb2" j7o(.b) eu.w]ndJ@tßvIaZDI}kɬ59~xS!|5Zii@Xy1dȓ1X vV5m̷IU&UXKۛM/<,|/Ҵ$pމ D;W\XKвW+ށ =XuVp5\kSp{Yb42Œz?Ծҩ>/}_ ,:L1Ƥ**L* Xh𷃥mXO׃bdxnVpjuÃv]7sݸ%[7_e˺ك5ڬfk0] CF^<y2`|g.Vp]KCD ubmk{SF;0?dFs:X  w dRIM&5bRIm&_8>z߁W{e}.,f1qzY F`xjal m   ],b7CVmE?^J*0Q@jlu)ʄWd[썸Jd.F^y3fbBd+xXȲSv8|lZ`fϒ?Ap%|G#F> wcuGPX`?~8ZZ?=I9%F`f }'p2L*{ kp X7#g ہ L`~hfʌc*zp/\maۀ6]"QY'~;BHv=7~Dang6.\*a.s(s [ѷoYIߐo ̯' vfԈu+2ukE)Y7٘ucQ[ۨm6ƍ*?`1 9X Vqna}SlCYfGo /D L+S,\8Lj3ͤe'uӄ ̡_-UԸ@ ͺvcܷ0fȇ)b!sav6ao3oN&5bRI '\9-rz cO?!Ax^H?8p'q7oƭVbkNI/?S_aJ̯?Y_¶gp߿os G̗rŁHxѹ2z1a~yp0ɔSe~@|Sk0;,^`gRc}G,a1.fol*"'SYSa_>)pt) ;8 ddXrlN滘bRIm&uX-6TRQڳqGA<,P=6 dʦ37Q8a8xt=$nv&e ="^dd6"LʦUtzzs&Cz-2M˗-AЖhK_ظl6.Knܴy}eWoy-/񷶉zZLj1ͤK]iږB z } } X;q%i)x3JT D;q'Mތk+DN4q:p}MP7<tx(5<\MA,`^8dʋ)2DZ!S51 8p6*xXb[Q,}G#^dFmfӒ [9r6Js!pʮ|ZLj/TpރTA̡R BdhchchghG;} m"pfRI&ul*@HT?̑c+&^oT;I7q\"v"3hbCdȓ'#Gs1taCL2R\*my8x&"6 S؀;p0t0331122%9@E]k% wh,FeFVqΏ[[ ܗ8p.b&ՙTgRI5&UTaR%'k`luX \dF,Uoq<<\8>\^{v}V:h ,a1C/qefzjl)*2/y3t/U=TRaY70((p3ΤNayݝ>M(O0oґ:'@"@0_b]gկ\znMG˻.ed#/Fތy'"^mI̮2 ǵ5k5/_`;\:{ \9[2W׬XQީ> k~JDG!q5Y+k]{Ix-3ET/?5hV??mχ[7D?k.|8}Kr Ϟ޲ϭfۼ?AˠOOR{o?=_S>{"[=`7$9?_22訿wWK;/imnbc!Nb'oc;IlDn V`aFѷ+ \NR dzț7#KdՀ$V8Ad!;׿@؀I&UrR <؁-f\,`1:.RVu@4;p0t03311^=l@4]n&bRIM&5TgRI5&՘TeRIo\ Z m ms,x`و *qw!"qXb\ftsF2Y<I5&՘Ta94<8bDBF>|9Ͽa{xpЌq[!2ƌ3&؈7R7 l8+΋_aM~;'tON]eX7#DoЂHG:CupvрXmQeFA߱'+Y1500t3t3t1t1tny?VK.t5  3*9 zkZRGbs#vW?]2| !y8 %2zbȓ#F,W؀^Ab$7#/F5п~ &"KU?cE]T.g̨-`eF[4=+ ߺ 0p,Laְ3 0 [_bPV X.1؟Ac!V8zl(;#uYºeaj+Kl:%@Yp/b: ˒dPX{mAM/iEUPUaҐTKfT %. Vo]sAl tȤ"f[nh}X_@'1o7a^ol|Ȥ[rWy8Fļp;be .1`7`bSbP"hk8Bdf^Sx1m4@ ![#2ΤF%nddv.  =bJ}xuJGk$+/x/WC)6/ Ȕ ѽ".*򹨚.*jһ/*̋t 3 ZؘTo  8; ,a#h!X'5by.F^0a䛋 *yz8;.滙N+Lp c t ̲.`FFh2+=d߇}z=~Uja~]e~x颟ӆqy ti_R|&E ޏ0J8$P_FZyW*uŎV .8ց~{i Zh5lڰZtCriـ}%5l?_&(Zė haS|m 0h{)&6aZpBq*DCKJM'Hl ~㜇u@ïqz^T~+jh5 {`X@BSNMuqbЊ=\ԭ_<+M P ^9'4Ťhbz; mhޜZؘTo 48; ,|O(ZN`k <y0L}2/p3a8lx>p?\ϵ 4ahL,͠p&1䍈fHyx- 0<\QIihpiV4:m$fڲ 9TfhZ4i4aFFFy%֑%f҇V*oMs t!0=a]4.~lwM ILz]ZF/16bE@Ɲ"XRv:!$vbppcbz;kXWL ɸx0)u鱁hCFI$vh}NbCiXIEl@ׁG?؀p=L,s4=@_vA,I5DɳsplbyP7v>iM2[=¶.QcףѬzhذ?#y &gp/Gl_ae+7,l†-h2}8ݐoJhaP'|>uhVnIK&5b(&n=$  v$T$v$Owj[v ^`Gɫkצ = uPMǝuT޵Wn}` 8 Bc7p5z^)T=|*q= UlȤ:Lj0ɤf [x"L椤#^`ehehDf::::sjp7C7CC Nb1X><бpUfOX?<Ӊx+1 0Yt̽lL6_lBdRE^8+q/{l`bœ.OŒp/#_F׮{]҈\P¨p7ec3Nt088qMvm>lŰI=8fF7#/F^yev%3_;e #sFS%;p3t3t1t1t2|CC"V`XXȒ 98 <hg2ŤLj0P} DWѕVov?#w.F<y0rgȍ+ˌ vV}Cӥsޟ.cv1{ KUYR\G \8/FD1 `eFB]s.~N3êJ"Ȕ;SnL2R vdŤ&C^B˘~5Y%6`h,ȓ4G` #7+0|؁gp/b.f p2t&^c23W`[؁QI2X$2}؉h1.r1߬^b{l"b'6b%??Uhcaem~E<@*n0_2B9U$^` lL-`Df4 ŗp1t1ԛ=pa7rM\X+}Bс'#/y3ao# t,*og#k,FSu[x){>̈́@ބ| ]5zG 8 nft&P7ŲE8pT,a.Kusb&ȍѯb(8y2bț#_F?H ,?p4{d.滙fRI]&usRaH <,랉&p{%.hDc2t2t = = &DXmUl(̨# \x0+rψ7#oF>|/|Y3x'mmĤ":!."7`MĿ+[[X2ܯTNb ~E @FF~CF^Ly2d'#Vp0`kMd!{61|䠐A:4LljT`^9t1Ō6Ͽ8`1 XbTbo {2,bnn.L86Βshc鑗@4]c56 , P +;lMWȤ&Lj0Τ:jL1ʤ BG*lB补ͤWm벿-ߖiL7j>d1QYbַmz\.iCF\ ͪo|  /q Kkϥ-RtiG2]L?+&bh_?%2fȋ"e,s (o;[|Tf3iد; ^!n"u8jT?hqs30wLN&2шv򷓿-6_|l(dF7#oF>|eIOlNbr'rr/&@fԙхћXBnbˢЩ&Ԁ 7KK_ *XblE]f5/uPKaD&5dRI-&fRI&u8}o44:l456N[2t2t2t1t-`vx8aa(\_bL8t sugd!XymftX9ftQvoxƐxL1Ƥ:s3 /:M:k: \Xț܌0ȇ/#_hb:~&E@43p[!򷍿m-mg;_}pwr;;wKv/X\L%=U̮Éj?l@k8[U!O8. ք@$6EdțIbȋ)OF6i4ZvbhVk!*L$vIh1Ō&3h`F@;kl,Fc1*Ca%-$lx@+TW;ށ=d``hgwQ7] C+C+C CK &VuLj2ɤL3ƤL0)t(x-Q p3\,&6 FY(Ӓa,Fe1!X$?l ] ]w21'1Max؀yJ`0May807My1bdo+,؀󷝿23uƤ!~ e|؉Xnw!n"7W`հ#N"n5lc7~OAqQcF)wMn"WTׁoN\Dfy3fȇ/oǑ0ޱ ^Ȥm!3h Nc2t1t = oBt Eu6]gip1:GYB.cft:!|CA<,ÀؙT އY!w2ȋ\YțS>|2.< eT|8x'q[!򷍿m-mg;s} l$vbNbK\U5pdȋ#/F؀)hq-EI('6T esF:;p3t3t1t1g%lPρ' ]  uxa tȤZLj2BCԇ~]V_6ad/'#OF3rc2lܛXޟ.Tj,Ue KUrBud:TANÜ>,Ӏb6Cdʝ)7\r.s}X.&5To.c??ߖ[{~؀YU~Xk'#OF9O|2X%̓qpa°̈́y 3Z8:eC++;C{žiٴmZ6HV&]ภe +0mȶh++uAlLy2ىhK:?O_bVb#v .&|'{8x;xɻZށ1Gְz8͝} 'p"C'C'CCC7,G%rQ}[L`l qGNFfs4qM8}?vv[߆ 0  ldNf͆,ބR>M5 $WhYp3#*~?:s~'5Ҳ%p.b6KYR]RiX+1 -ѯx <y2bț#_FZhJ6ptN滘bIm&ueR7'%Cb44J\@xMMzM_Mzg`zzz.D.:L|p[!vfOEEoE_Eg-yZ!V&]0adx..z./'a'fgk!6cy{f-Sqy+L}!_|?rK([1`O7׿\|潮={m=r}ya?w-m 4h]4]aj}prMM8g$6"\D[4^G_NE>X dk뱛8ɜc-%&;+lb!S$VIc}XL~8ɮl"}?Ll}dЇ,'1 aja}}hK&0ޥa n?р}ZZZ`!CCOIǁ|Lj0:jL1ʤ*Ɨ^Ցs7 `[*߸"10a,xd:!TI/ }a_!qsaaCL.aA,iN)ڠ izf&Iolrg|nfSydJZ"OG-vc;ML:+Ж ѴL5=hT5XpC)ְΤ^Nj {{WhVT y+FUYo zG- yowh؇_:>ï- Z1oe[7ku‡k%cRx߃n>2ΚX9c/(x߫d-M \1A i{}tἡ_k3.ڛCS5CڛCSde=Xt҂5h!_Ri h=vf'ɇОRlJ@"< b{M˄7Mg`RIM&5bRIm&u/Co7n Շ m m  Gg%2t寯sl0- E./iV KG/MxP8 qo{ t֒.F G.NM8%&$N@f2mtahs/пB6e@eUۓx 릿hӱh;1in \z3:3nv8Y*M /T5Sܴ\'ѓցI[l\hsCXR}9pFBz Wd[42\Ğ:fGU_T8eBuokUMd{yXEP tU &.4Nh7dT6QZƂσBSZ5ʬ\{hm5aCrjhŐ'~AhבVȺM@Ħu h_V@pM<|8?2=_'#ۋK3}@#p 4Ú&hanF*^&(M2aj" ”xp3)CdF3̨VViR} J8'пrXWUGXr.*4yXmQ8d)a2|"}pXYP?+!'~tQ/@_Ӆt?N$X|k^qx\/9=NF^xRosZ FPzô[Xp/Hh[w2xB&;'z8rݲ#0{mn8J8A7:%}c =ّn *zrws#[›OGɒj`:Bt~e,^ľB x!*Q" Cp_ F.OuKu_'כ!fف.1L3"yiΛqT']ո'[X'&aN͇ Su"t&px~#|p`ڄa2vN] RaJ?98D+Fu%Y`%6F%UQ8;R`z %z6r@Fg݄ag-ԩSLv`I8R0?9 wۧ =dȃcswx}N:uag#ϹN>]q2_XQe!ғoFO>=*3Г>ώxl̨n`a%wgzdRI((>O"B"HC,@71bV'~؀ٴ1uDĥwC%.Nx؁')8-u-MmES[` .6<0 LHI2_Go9Bs ,lNTF^3鄃ڡsIln&Nb:?|ɸxda:p--lJLGի _LǴ-#-# &KG4 k|ЇiEW VfGȏx g:.FB4G Ь F'  b!Ck:*1]`O΁~+j$Ơ!.tf>@?$ȍmj3RL|cHкC_t__;p'OJBVh.}c}W軹Ux{:9v|x~XN=@O9 2 3Wk1 lpL`Sr|GdF)7hGZO?N?>W!2fȇU J݁uf #wF<y2b1# s.`DF8ۤfU]22F85]e[Bp 0MR`8!2Y8VmbK,,Fň۬C1~Po m mXYВCNJnikbȇO/aAc!T5jL2¤JNqxGo1H3p1)hzx*=5}QK^ ?,:eO;lbn4 NN,Yɰ ,So56p0t0t2t2t1} d(`8}ּ+fQYTUEjQZTUEEnQ[TU7^:J|xu[!2Τ:Lj2ɤV#nffaa\dhehehch|`&b#wIGɞC.c|ӈxzsbBcP։qG%N"3,dF+sG.AӉxeR7 s.s`'n l@P-`b* &L;ȣ{V?[9*  e$ >Y㌃؈TXq'J%˥G Юcja"=M\D&(Lf+l aW8Xtk{h3-4 ;>h ]#umX7{؈V#:tU jo%7N 2#BfP &7p/Яɕʄ~Yq Z~zZgx8Z&M17>_!fJd``MC3*\ ] t:$ .t](T/кY_'~kD 0'%lhIUG\=M4e!Z폸~o`.-si󐡍m{!2t0t- 2t1tDFЛǂ' ^`Ġq pd! |x^0wdR^0<@~$J\cbdz8<y0Ͽ@48y1f"݈x'2u>\z OBovb֯QyFN,3ң91WA<\Ğ !NbVFh$fIo=Ĭ\IG. ,u<~a,܎O pOb5uCh 3ѥ ZA C+CM@;8pop!R8$$OBP3U^4)OZ$c?{,@c |z}#7F\لnHF #{EdȃMnV5XE8x[= . 'ؙr;ʌ* YrF:[= :v[=2V`F}3#i0woB <e!2Ǡv,ځ>cExp^0Ja"Wf6\SOY\vsJX~LUMhvQݑ`C3u7=*E4f#c#ZFjg: R YX ?D۹8hfo%П-D97&ח脁ЀyvZojՉwb=Li1`..^*U;LP@U։>c \2$T5F恧-|SƛPSLTS ݟ!{gs< n&?wNzXzV&czB<@^",LV*c~u BCz2e/,!էp|퇶w3-97VNu{w~k2n}c׬GZJK_' *O~|`҅g>hw}j4>U}/R!y틼fEm1E}2fOY6y\7*vtfX6]7(TkMsly}jL,:~I5%oT%T%UUUql|}:\U'F+k{~\l%x|-og4[ګ,uǮ'j]czXҫ~*_Zas`OʦR.xT*[?Q!muTHzh*M1%2Ԧ%;Ya6ږ'L/~_l|?ê>R]2~8*_{'n20_@R.6 +q4mhػS7v(M>Y$s7 7 M̺JԽ5uozs˻hSؽ:S;hO+FW#c~US|$C26 f71M4&xC@p=񵺾'~2\KCEKlEQ>CE_R]_R=dT%55|$ʛbVllriubLS5[5 YB5ݎŽoۭYZ =i_]:R;Wb/*5Mꚏ>d甯U9FZBk!L_R~nH~>U퇡}U)T{*%U/b/54K~'+Oq^_qlx} p?..&+ xzꍣޕ[gjo(B x\j:Zϩiyʷx|[Zn-<_'?Lc%˛.tolXŸ3 QEH5od{D:$vt(etMolj+e[e6Qe 1QɫL/%e~))KIZJ$LT fӛ !#[)FF6k!MCm#MO2ټn[~koSc93̕+s+WAUyTD$֗Q S秫l oW22ޱ̕~ҞG*4R]ӯwY"S!ԭ-:"Z!ЪiU~+ſо}~D. }CTn*{?OGڟ꾲{TF)#)K8z}p>}F'(u*וI[?]KPIdgx~ULW5M4g"ٔ6vEYr(rBCo. t,IZeCk8lp 4qof/G%CZ#ݱPN~[B2 |i^I7kL}5yTgj>3oHg$9&0/rEV"k*9/r ܤMUI9LYUI_k49|rcj>+~R ,YzN ?{6񫂯?k%?`R}S,UĒjd {^˖G%OI_ _7xaWh*F$ה޽_|)Y3e9ѣa4ou76~[,-/,lۤ, &vB ŗovM-E6QٖS)ۚn*b\Nk4¬d>N' եYϖ _lh*S/e(y9\}j+Vad33Lpw/[/TW¦j+:e"Z~P t#]9Pf'j3PXUdsr}dd񩪐i*:|V ˧yuX),f&?QLjp12l=f W[3O~ 22#[dRybX-!7eK tCwyenBa>MMrv뢟v/O'9J[RC%"4睬UOX\0<.mh BPkDCodbHQG};ţ}Kǟwxd;xTqU */n4Puh_䥤]IcKI䃸ܕ&*XJ5i>#7%ύr;IPRڕyvl_+e;&bJK㾏6n=h>ͻGi`MWhʨ2ɷuUZW|LMWאgO>{{;WNkg{䭻Quf ͵wI0mTZTH!!ZKYZ2Z`82t2t2t0t?s UȤJ{j}X;7"U k Ŧwr2ñ"{r&Qͽ}~Տ1]eMI1Bޗ=~pX2r<zWmJٔ2th?UffbS%wUmFw5JO@EOO'kt``֑aZom:oWߺZ7;*s}&k|[7dY44gŦ_{QF^{m~d3>49vBn~gޑ{{ϱɺ6T*SՆJRl<y狿KUX٬w57_TTbD6Oq'#򷕿TUBFr;U>>RJXW-GT}dZ5؛{9_3:|Nޑ\fm^ f:{N} +UC򐬚ɒ `o:LPPvѪm2́4mO L0$WcW!g{{&r\C\ ~8`>6m"~k^w3M"?T}ͯnJs7y=G2qܚp[rI3vImJ}^w߄k;y&p<@D^ĉS%T7 m}_SNT7HuECs3Gj4j_VbsTG8@(c-#j>Jet%%ќc/6`Ъs 4gQ 8:jQ#sMxޒJn߱<,[je4X< 4XKZ: XKvIL~^Sr\?ooqohlw*ʺ*H?gue(yn2\"L%3$2ǝ<5 #| 7e4Gu}2Z-#w0~€@Jp=1j \OYx t9z&#[}>.fd[M{]Iҕ}Lc*)ia6i*>@LcʥCf|:/X!ͫF76~NRamk Ur95ՇI:X&u|l妫l/ct7jl_섧~ٴv+iC[RNu﨡ȦLE6A1"Ʃ>l"ɄStAO4Aq̿MR܂i2GL|L/y<{UJ9U*(Ty?YT'lQM'?O66X%{NxAWct6[y3B!n;ͦ}m[#f}?Ǐ. Blo)v@ v(+f ;zϛqsU0&sea/>z>?q*%|oC}7n*hgBȡ#?l@;-ʉy>{O Ўm{%6bC|Vl3barOdtj4:N3ÿX.j);x\: nH ƊUMS=aC?/s4GHт{f7'Lj0i009IY0l_Y}^ߚ[0)1Gjd+0zn~&0I%+"4l*u9 xnڔW[^k誅v/C'-S3zK?pٮ;,|">kTsԺIٮ)) G#T\ej27i;/d^2j_ئIݟv\U[Ũ[ps|ILj&v i.{3\m6 s㟱<I,E-*ɫFoMW^Ro>.+sG E2*;RdO_%7w:oH:{uTa\PmeiTߕ=ɪΐ #U$dwGuc^\PZno{c^zPmShH`< <6tkCvMAo95λ{Φ;"r[ɵm>ߚ&c;P w'_l MùsϘpWz!dvpeNk 1OY6T6͏?4M WS{j0(dMe 'ZSy~{R>j᭷7kȦ/UJ~FrK9զ| 5)Ǧӭ7o]wLy5{ D.[7$k-kE\~`bm?V6*_m ^q7~bxZt{o.v G#E+ܑHV+>r+pWF;uqxW73~vU(I&'˳~nH[Oܱa=6'c>+諾 L[oeV5U6nw5Ք#5cef .3efp2#[Pj& i=Wed\5µ]EхU|jtg$=̕iG2S7BC03efD #3N|tn)rK.FfLSd)'ޣ3x[{LSpP<א͔J"\z\nBnBKU.$s xLP L2~*i5{|=G-cO':gDO5ú|oq(l; ſܡl:a~k-oc8I[\׿L>ז W'DT ;*1Q1lmU *ڻU|oq7֨'_,%eލcJ:3TI>=+~_['萐 &!Jy's{KޮM.w<7ɄuٜR4ҹJ\qM{6ed´)|4eQI>G |9i,-wթi{G |C..bU*wVL>G i=Z;dQ|aIoCeӿ^ 4-Gl? Df~f'l̨^bMI x.1ğxC ¿pO8OY0F%SEwlS7[9S|’rYW4qْ*L>>Šz+ğI|;v3q_^h,|F4ݬӔrK>g])t$%:EXSX tBgj)EO@{T1f?:0ۑ||pQ۞|ϐ:ߚmK>G ~[O.[O>ެ' 7nv]zwݻhwv]g0ğͺ;{U|OSj%]U*J>3'ğo,|OKU+"lM}1"'c?'aDN?ĝP>meS!#U;OÑN*ްfO'OPfw{WOw${7OwB{OwN>CܽZ$ z)J(:%(urˮͮ!{xxXXxx;q<'N+ω.?_Wrt1L+9PdΖgrwo(gFċ'vhJN6ns;/=k/=/]r1Cm#%Q/Y\D"Q/1q!Ёi7Ⱥ_[ɉO ~%'^/ ۞1Yrbc3}ʖ]rⵓeOZ~ϸImo{>#Ux%'^;E%]QtQv"Y/~p|/(%'^k8e$868kH3Ze El3ڵ} d ds 'BCySA.Vrax`yꭨOOx |KNx\4W}-8%'^uj5JN]<XAUx{±u{ĻRrE,E ,Ꮈ/:eɉc/(o=-ߥ e['t͢~'N/)QPJN-#xJN|kڠu%'=>j`ؾ\uV &pu{Xr^r杦)>#]f^m'ねSr 0&o3C˲BG0*~K$˾ ;ʐdr/9\Xb-92m/le͈#*9i+/NWɉw1^yaQGOx̭w]ak ݉0lkr ^^}Β/"6vI/cA>]rexɗj?9KNxWm Β/}3Me%'^m3%'^ωCbh"{lVrE{n/R#]Fs#敜xo#'I=Wr+<^ K`ғ9H1߳˫]f9Ae![IɉOoe+9aqnosmzNnωsPx;<'^{=oh$< :x?= {.+Yr=%gmɞ"ßEPrٞLfw >)Q+}ͅqǣ3=VJNSzި/>Ukc%[UrB='^<\Qr='^/@sIzLmω ߖ|KN^4#T/[Ifwx{*y:vro -98X򑁔xOɴ9Dۓwſ{?'0'JNv"X;Tpݭ9dE*v"Yy->`ځ|k^F6v>#u2% Oɉn햌kznP|%\|`_?R)oNj?ps!JNĐKނNqjqP/>y_7+;=4KNWᕜx AWgex乭[2GnS >:Ⱥl.GgoDA[Y!h,QJC~5|RS[HP,s5%'wɉΖ̽<23oɉx mωװx :mɨZ+9ڞ9ڞ@Y\4 Wc\EmgKN蔑5lKTKf HFz+#S٤_[^x FƑX?x^R4x='^CSIóv(o$jHy{NZğKNk(;:.='ނ&d!tO{͉?iNi"eqjͿ:o-|4 ''E\;[pd2IΨǧ.eW979@S?ImNjwp]3~'88,|ZXj~@ݒIVbFr\Ʌ\u![a,(Bw珒\|';6C[VO?6R9@9eʇ7+oV^\`ʽm#7RikT}{=luN*F_;8#µh;g8VgtxoUw8})8)cI|y؟l3MA|yZ9 p5r5AgdӚ a KK_d6Z9x9Hhze"rx9^/^ eyxI :W'壦 j'!@ojJpprRڜ~A_w2_.wM3:匄3zuG^7I7pX#m q^]*] N 868ʋ7+eʏ_V`كyp򷓿oW/M$Yy?o%Nvr<{?:`{쥁 ~\کrHV^Vƙu!ɅܜBz:7,&;8/9I Nj4rMz &( StĴ#7cs16clO 9Y:Yڹ -)?#^^o Ħn:5K'KKG ٸqZ`G?'9I-NjrR8.ƭ='.Y'uYvx3D\X\ 8ax"di|^Cp_rXfh3er!'5̝KչTEm3ȶ[~'rEv>3o{ߞ\~;$;)/Ny]3ZZ$k-rZ?b{r!/)n$cs3ڜO}bhp|${ +\q'f rg~A<5=4NC\vM^yH]3 V0)W=!Ljel~Z$2Ǐ;8YdemF#lI]ȅ)j&Š6M6v@SԆ<9yH:. A)3eS9.ꆵAzBd^,;[2YKc"^^o Mdbbdd`h?s!m1~,'m$'u8ImNjqR A&'.Y'7CJAY},Kvpo+,,|lRQXmtPX2ߠ/KyUm[1~?~?rCJf $_T3!N~q/UEN>*Ot< VY߲[)˾,[p-WəoQ?3 j FV|;_~>8A|=[[O}8گ3GwN8.YH>6v8eAݡ÷WPIx 7N>POYǕ'_m.(M8a'OJO$O%Ȭ_n&h\J}4_ j7kXo{K_LPUǕݽԗ惺:#x>JnІ/^5㱯(& n%K/_W̏\,*hԅB!# "iy /v 05~\[#7jоs?Imԇkd uPlԖ} NN..nn.6}[7ء K$.H,,:j>NIpT7]p7[uӭUh@A_=;B:QDM>P[˃0:U6lpc2z)F.RmR&_\5<`UyHVxqVIθy򁝕u=P<d2@§&V^RA.Rh@qorN;̂Lyژ=ɺd]ݞ(j> ڱ٧vlEjO{y '64Tf?+G9Ce2 o'9-d6}Z@6_)+PɼZ{mc,+v jiϏa g)M66N 9@m0GaQ=*uRC6G젶9R#XߠA={{|YY䝄 `eݡl06#Ftx2uNPOK5TNؠ^k7Av-*\txP]蓭aV%x7hR~dm#J|\_+75H*S#y W*pT1?8%ח>>hG19C4֚9O^>AKjd,8Დ=8]Cgwz1}`Z/+zLZdzgGMXdh2=g.]iG{R+A"6)Wn!{U>nYGE󂺐ͨ\F>G=8| 9&5Z F?:Ie">hk6B^,F?> 7ytt1nؤ>2),D|8Fz0 wRză?Ǥ͏I=ZO)y$3$Gx~Y8GО jwОF&5[Z[Gxƶړtoc9{>Q=;-PJ<Z>P(Q=Z7*u{tjD输 tfI$\ꓝ&;/^Z]pSHNjrR˖szW\d'ꤚ3_\d!;x.9@K r1s1ù/|R۰vd)yRt8nn..No digio?ynLrvx9INjsRZԬLSRN/qR#Z$-(l]Gv`IvZ8X3WVK_&,i;xYz6Z`˦OCvp]rv\"89^rU`7LrR{'lͻs.+H"fic#p 򀛓ڜ.ׅ+%7)`MpVdG(,yHV~de.IӲAŠIRoe 4y.v~NgNU;BT"X߆%˶'YbP=X9uAV8Sz2}dyCOtMvp!%u{QrjRaKwqsp]r<%UϹ Esl ڛꁴݏdCAoD7h/1#A/+.ʮoR|]7dʃG%[@$+kX@nr l?I[NY ^X``)G)r~scC6NIWrF[ڹ7B6p𷽾cu vAd&0,t~BC\deܗֻ*[]~w>CrۛA<,:8#8Hw,eZA-tj]/~Kǵ  K_yW-|8^1z/=b{6g!/T'o78*$?6N>n ;wXeAɁnrw'7?䁔ԥa>x<d\d}"']>M[|ֶ$Om .t6A T6r!,`MɈFsxuA5rVA1;)`JrԽpF͟F XGPOj{%Zc8I-jA N`i-F@~nhm;;`qZxIM h{oy|eT򂝕G'\dʇm<ޖ6A jeN Yytq\`=#8V - C4y =ܑ,-aJלN{GX)h96A KE+YK=PIV IC%X"l=ƸhA$k 0iPYe|dof79ɚ<̮ZgW-#&dM\R}O~{G7#yFǤq|OeNi_Xֻo'1ص2*nj#>6Y/ߔ /9h:9vVI7N3kr,P+se +_V>|XP\d}'7wpkԑY'u%;(rg9X\Ř\ }, ٹ ٸ 4ږ TGhInn.jC4+qA;ܜ'59I NjpR\5R?rr GNpsF3gY{w.8ѹ}^,NNPde- r|q[i&;X~Q/W~q9#Oه/n/+_N}99n!7ߖq}q]}뷎xM.r r S1$:\$d#R?s:? p\&)mwuJp|IR)rVA [dwւ|YYX|4:6_SM_rF5N|:./Ktx: KK__,>rڙpmpsR:.'%pR`toYY:X:X:Y:YXܓdaae齠  qdigih"8Y:\`=&=x yq.+f,FZ#)}4xI NjpR|w'9pkrPXr,,,X+ &yIJ3<$;Nv rn?̜Xdploo\ܿ{U28^V\.cy28@ >M83ty;͗`Q|qHڀmP@aanKmxqC6s1lx>V@#9INjsRwjSl|;9_M7/h뼬|Yfʋ'+OVbrgV+7ߡڐNpisp{KNVVg$5 Yj<9)NsX_k'|O m ^x f3l6A BD,A Yh{s일`}$9ڟMXHzY ڑB-O9y./N{|JGg#ciSp):e~\fg'h+hGӶvj8P0sN~ Nj87Xy.*nj F)nĂV:_m1"%r1awħ&3B6iPf t3L|`M|lPRsrvsz3~7=<{Mx0xL'3;\vWmW7~&C#G??2bl Cl!'Y(Ϻ&b'9^Vlߦ8\7AbFPq&@*Qn$m~?$Z$rك,,,=, Npb_N ;ha`;k v| INpRZ>^i2#'xd A[_f'Yfʋ'+OV\ʶh+l# ݓadOJ2%h_KvW$K%85MvzArbp!u1h,=,=,,ΰRMhksm6S/%&vx e1hGNP qp4RfhFi98m0G:T.)?2}:T8A89M/,pʯN2;.7gt8@^ш1]~ Nj87Xyf3WU6GwRʓ'+ nVެ|Xee)Wn {'/8&8yz[ppop󽜯]4Q6XL}Mpv3ozFC{,=|eeT+er [}, &@/X{LGB|&YY3;EM>оlϠcH1~/`u򁽓moc#>YBro;^7DO5}H6]ru/ =8~4PzLǃF7P+Vƹ$;.9AMvhp T'8V'o6%;X#Llq(qQp]rSG~+Bv.dB6.d]rrI^ !YYYX8hnx{4x7x9ImNjqR'[#MPAp/8T`=mbҌ[6*NNPdeekX}pmD2t)5tq915~$X1BoA V>|&-.bm]tGv`,E֨r0!uF|D l=Px:?h--k7]r<2PInGLxNd8$kϼ)@q9N/+ +&Y+?%yAF׶ϗzrD:\7a3~>cd<_&/#cRuuu>t dٿ(nk__/ߐP?zg\???o_?\Ϝ׹5AEs3Y9Xf0?qg|=͉sǔ}o?7מ/],}.6[ƯFS+nj>+3#nߔlro~E=Oʵ:$YY.W|<u'=u ꁐd!usSBpكR VI.CԶtv.RaλIA\dd{HԚKm(o Ke ,)-?rSPƤNe{ _6חySRa^7z2-K 4P^H;Aҍ9Idtlꑓ\j$+kG../;) ;n+ ;-''2_NYۜ$K#Y7߶$/7DA]J 8Y:]LnTX*|~Ûdigig``d,s'7ҳ^v#ɛ[J0Krp dc&Mnvy .R0e2<4\a#;ʶrLNR+o yAK'I5xo'mK:8Jꋇ\d{_ksr lu]n˽prFzl߿N9$+n7s zJY۫~fU;'.Y*6l^GC6ZiIpֱ vPu]B{.|N2'xXyfe=q+wVl+x#n˫v.|5i{0 .e0F)Bv rn: NN k;ũG'So9 V8 dbʸAp ޼)pnrmpp}Y9b)`=%'h}o<`/'#{d7x7ף`md5@tҨ~f -v`pG~`zYlOIg+<q`!k|x/Y _Q K'Kg:!k0}`{d׵0XP6t]dVBH.Bs|H/'$ĩcÇ\~JnM֧x$YYEo M_M du.7^*݀X}P `${!]vl=.bjKdtzc 뜤A=ԃ!Noao|"-[7< .pʯn:b&87&[j/U૫77AmU]o{@^96|y\mvGx'+/VEeea7ҊF%XerivY/'@˄qޚBݏ`f(,,YAS}dd骉r Fnfz 4x;ɚ._#k~4NaX@!63ep $'ظ.d:RAovse89uC6ppF3 Dڭgl5^˚u,,,=,=|7Kъ6? Ķjp.:g7I5.sRT_C2\dfrIVZ$9𷇿ݜ>$ysR)/Nyq!g8#?<9AhF?."7yH.blWq$)INJ/{^WO$Y8=V~r4E ;Irf4E>vhPR)NL$Y*,>:_%Y@g#hU9]NrRI 'ꤼc`h 88\˅V~je{#Yydʋ7+ dpݓo[,<` ۴8Ŗow, KK_-V~jeH&yI3;:>Nd;A7:#.z [$ NXa'quCr/<5-'/e\RU=~N6[ҳIѮ) ڶ q :'ոT.?rKvPxde^:7+oV^h/-RBvq;){A4+rsXen< 8u;w\;|/9INjsR瀗K%\*;ch-Ӗi1NNpb\X\H^/)|uӛ|`'\?l7IGwRq@lg!J>p󷇿*,~|~| rN򷋿ő7I )ѫ3:)~ ȃv{ d;$YeH@:LO:L^0KHNR@yh(ImNjsp.g$lf:7nRx0a0}f x9]NJe.|+#ՃM "V'/8JO5M^2{|?jsGZs~~3_cgݽӝcfo=$ ͌% BDg #vOPN*_5{R0GDywr$"R{,Qd,&YuM.R+_MbQ%jƼoڅ)9H2h8OS\Pp!G]տ8Na]S.D\>G64ӆ 0> >+G6Vt{~LO`œNxJ&uІ  8@[^.cіiԎM6S;EAm(zv'u1 "'ト`'m! "h AmԎkP"^9Njw:8IF5h.pFo=zc;oj~C|o;xlM\ `8T28;M~K<nPWg7Am'ooj`!Yy4j0$XՖ,SVlz&8)\*-{`5%YAiKm`ل!`gig}Cup &7XDcufj"B@ED\咋dea"xܤ<${jHrI]TaԌ $9I d)5M_q'8npvnΝҹ:w(INrhYІFM'&~''O"/JPɚ5 Er5kț&[Rˆ F.RgI xXz.X?Xf$KK_yzv\<}8 ٌq#y;I '%TBtlqpt6Lfglّo'ʏ_ TX*,},}4.m A~w:yO^'/nd'a 1~LvN&.nOPW?)7Yp!ށ + +Z;vV«/;IrF3Kp\ͥ\ͥ:\^|^a#c7Z9I}g4[ 8k)[@aT]Smlul3988IuNqRN# Z)ʛ7+/V<;+7V~M٠]<܏l:՟F:v. F)B򷇿uN n?z*lo8 w\$;#xM /~ zLzO ;}!sc}G÷m)o78)ON<=fs90KP6˄u<uWIhrF3feO⾬ƤY1`D$'{s^S V}`Wc;h_<68^!7<ԍCM.rl~%h 0r +gq-n>S&w nRh&!Cj|P+NS2xAdw4~DSdffᔑ9`6 6`:619{Sg~ ڧ5ɇ g$ѫ3 _R~@H;@VipZzS8e_w?ZX}%Z5 iR28mX$m!I-!`p7>жһ~A.rx&x;NMbb߮FXU8쇫et[L 788yU\w8%{6WO:IO>+62^V,,\W[jcP@;'9I! ,M䌄3Bvl!`.ߎEtf9F1ygPgp^NrRI$/X2;%7Ere:Ig4Qz`'_Fm2SY~7~3zT|,ZX5AM򷺝3~z\%drz<'u<ϔ,KNP$ggw2,b"-WAaT[Mj-dyݟL&{d_%x'xhqQ2Y؟=dko6sM&=dos/:SNrscm?AByG*Yː(3-lEu5XdQE(iN} ԛRX T>|mZnl;h4N.)N[3h2zv$ nB¤1aU?FuϖK\N/ɈU'22f̼݉]z3 |`%۳v}$I;0_]uV`"z؁$VZDLZ;11220 M{Խ :0q0 e:8);05)2u-bKdɝ37fFa3p33 o8;sǁ,;VmፓD⍯qF; zN ny`a5Jγ?daafSLl1== p E/jO:xXuJ3ZY3M5 V:E䳋Ϻ4hIE8.qzbh+4_o`,ca'}L~x/ȒW%"泛n7oĐǞE%aܰB&UP 2^x7pE/Zԝw5̌=k)/2scg܅*8o*,yoa9@|n-[yx'3/DN3hy8r`ejejcjcjgjg*:҆d2uUnB 07V$^ d G/Ǒ  8:|ff>a729K!v"^`mA_l|?hldˏVm%V+ {ּ*~>,a~7m=Y6fSnh?_;W1~8Z?eKe*j[.Ue.q}([h չdE%(>ql2ioA+J%WQkԯկv蛶yr<~ߝUo\nS?åUÄ1ߥ6h|Үam/1R*T kإ=v_ǟ?RU kɥj4KU5‹_U~T쎠qZdYDK:,Uʷ}CKc|x l_~2Z7{}_%~9 l@k'S%pVܘ1sef*8ovKxr.|cbKw3M>[HGw_t敔n+ 2s<F#t;{?h,:{HBfzoI^M[/2" [/5 _5.1>? aa7qIcxkhRfoNA5LwMm?X7>sJ̒caslͰ?̓U?}/B4U7Ԁi?j~i6u:&~ g|fYt;ΦlǯCϚ " Ugҳ{s2?wd>~,C?,p-y|E@G_G/_G_%*i᪒{Ջ4sCUn*1:EYsUbh/Sn-vϏb]骄5l}]٫}*IhJϱZ%sW 7 U̺JT%U+Uʺhu;pD]]S_%lhU~N{]gXU~]{]gHU~ḻ\| ࢠ㗹I^/s*_5d]$6Wj}|{oj_Q=ͦ&TdܦdI+0q4ћ0oW4̦&ftM"pŜ.eTԱTuƄ[ k-3l~TnMfدa]|}lo*-3*35ыa*EGSI9W^{4uAU+JT~Ծx2n7O殩Sfװ@PZ߶̪(h~Q৸ӱ`D˼Jd9~ \#22?;m{E 07ݷ 2R+cgj ~}*uoi \WkX iI}Zw 4z 7p2 o䷄MrP.E&p]je12.Ebrc6y=HOl^#a۲XmY{\Uf lƟצW07&ln093IŬa WԔYi MaPhu$75+硒Mg|9ԍ{u3750d.>17ɱzY\? a~`!ԺwˆPn&mȍDnbm\Y]a]O)rn(*POv=8R]z{O^Ukү~ۥA LM PL|,'kFѾɻJo* zѲ."E3E#iEmUrRMc7iV&6D:z.1W b3_ojkFiGUTjUTj'(ٹK"V0b{o SB@5TͿ#9D2_橒eqUcdӯB5UgamSl j6sӠ¢> [}^|E;/y>ٖtJnWמ =+md/g,{Vz={ ~߳G UՑ2fJÒPdg@ ІտA|Q#օZ˕@)GM:/,ٗ;<5}G mtoJO}cp5lvwcgJlCCQX^ɕװ?/4$?g2Z26$c o2-#? 3XB~B# I!)㏍..O p=:-Ni^_7k'à-d Z+3&ѵՋ|aa\ _M4W}oE b+2jb+52ΰy̧oO {|PGs}ΦfSsr[:CW撴Ѥ]a}Z ad2)J1V>'?36cfܫ3@3*iVU*jd&n\QTMϑ{VEg|/CEMlRlWdɕ%Wj<ϙlla~~HpKj5lаf͈{"{OS#mXg( 9ft/ƍuo EϛŻwl'5m6H)7mc5q "ܩhXNY~#6߶7r_WyTI=l;Gs`+le;m6wye۔+] qcZeL?{"_ؚl;8ul{4f+sh07)8T=k%M֦O*eŦEI0˛y^)'&ĴhC~;a` n~a37[pCI -rH͗/@ %hUrˢn~[j2el0 wTh+Âp_teXn ?·d 6/֘;}.7IB34Mi"7&c7lI G2+󂙤~PE<8d82;d8yppts1ymʌlC>TfK2]̡H k!F3 2py$ܓf a]6q}/ɈG܋=ǍEɧW/ىr"rqIY̆]>Eױ(3xMJ-HCE4Ce 2܄P9Ѻ^7Ã<]?ӳ(e nE*`kd^?H6$z8gM=ĚPq"3f>| pob|p&hJA,@"ZY ԒSaI,@;l{OKvwzX8Ƣ,jB;g%gKjr+t 0%wbJ_a*Z`Y8p%`# ,h7斨QJnVrK> kt$8ZRe:4p]bf!KXrcQEe9``|vgs5_b˦4z\1M^s&V^Dp^"S=9SAt%bafU "%2ɧ>؈|o0 \AdQ~/ dɦ'S8֋??J'k,;CURK\@ne3sgfScAhS |.YMmJ}xE 5YbQ渂S[9J1R9T]*JR)T*JuRT*J5R T^ *)3;@aKJ%؈qp<,VbjX|o೓ 7bxV|X<>gJ䳹{r8pV(E 8ؙy$f,dd73f> x10J։,,j(ˌ0M|a{Yrg7p ^DVcE/Z,j͢ۇx+o,AZ8|Q㳭]]&׳Xl ,|oYN/j̇3 ̼y̫y摢xYa^MX`M/Ȣ*kUYZ<`c<؀UK-:d%SS;S;BOhLmLLL-L UtMW4w2u3`m ۪Զ X 7ָj\Ȣ&ʂYZe=g5?oթ0;00u3u3u1u1u2u2$E$V`V0悮cDUYTaQEP6iF4M& tIޤoBgy-pb@ֶ礙t?6b5XԘDjJK&*+Z֯w ?J'+xYD5Yb%kⳛn[3>61`.^fvfVFIƢ,ZA&_4p1u1u^ޜЁX'foj@_谨ˢnԞ/Nf O f%3gPM_t-!37fܙy0l.XD ֲŽѴyp+ ̍˴TtX..n7bxƩp~xWWC*۪*:R,sGa*+ty3SƟ@xu6Ju2I V'g#.*N{73AdJf>|Ye3w a|U0>_q Լ_‹ǐL2>Ŝw:F}4c䓗=/qާNBY6 (e5}]qv dC~nX:d]Î cPx=&C~%q3GSHr:UO}4iQ;@qj]N(ҩڙ=r3.=e,=#]q,&Tq.ץԸ,Wr:tg؎j;>d?a쳓,?8KV6+XvU獖H-U҃C#p<VMI,4:#GB<JnzMuZ$&p残%YK8jgR,ov2cVZ` Sk ep1:R<Β;Kn\cgC~Q6!?ǟRp3/c>S?xGCCXRv_jhLƑ5|%}߼krccݯk80c:vT+o!%g~Ig G-=J"DVwSdC$`⸤blӓ;{gT ܪWs,'[4J3TmhLoE%+Zfc{2t+yQ=݈2fS]0CM1T&8θG3obia_lg|G<&i*dCfaqkͧè8p^xèeaGxt]ʂ܅؈Wdɛ%jV -htwa/Q?[;C}߂G_xx-Pt~<:1~ oђz2G{u_{u@o qbj6!.fO@E|_KɄ۬ *jj㬚,nPM&rg Y5R,vHYyѡl"UgWhYʦY|d1&Y|tϋo_Diq*xM?&e]H6Ϫ1qa$%aVM^ۻU,FU5juƻ4TY5~-̶S~PYk0e,Œ"f5¹f/6pwE/^܅7ELX;=oR8y_K^,قa?dꙨ-ĔVZp`kD[* ≮Re=_'e)0u`[74l)M2\|CҖƯ-ctq ƾ2fAEV1E#CB$dRB%aBfg*Iy'B\ihg PO)3IŬaS̜3|1SXLOf(h1-&>3M-c%|sb5TC3 tlfé+n̨S0,I ps&1ʾaL&GwmčM X)6n[ctӮT&7V_>YXW 7SM~?)*0}8~e5w`o>*_a+$/Ak#_*}{pǻpy@[EU*j&-+:$sTHzxbHQQ(WEYWj+ WmU6bg;|_mY ԢN7GN`21bJ;[F l<zNMB /]w&S}@{Vl@)=dq XYiPQ|Mw<@.']`ɝ+hq6Rfm"f>Dg:;mn3ة܇)aa>R%2Fz3acVv9/B-9+Ad6;WN].s!6&Rd>,I91/=/N_U͖K*7=ͩPTfWE~pUfX1Lã}aj6k+7h _Ml=kk 7 ݂g͠lҳ-ۂ* Wf ŁxJguTSh+BqZ܋T-*F3cq 3-ƬkeqJuZP Y"S^d*<F.&&J؉"3Go+Z8 sΎ?S .vt[DJ,5t-mOtfy0ٕM/;RQ֮m7}"D0/vfoE7p66`4$C7|hH7|sّ ѽLS.$ގ!Fw=k.7Sףj&rt! {IbG>Dp>`!UUvfJVY^%/^Skb@rYeEi6 -2Z@a~WVbs 8Rxh?~(\ƊSp6FEx@;q5Kf5Y!%9/ AuEV.XX 7]7E8`5 #f79*Ej1'cJd 3$43KI+ܣYB]7ëH WĵW϶iK]/6SGa\zV<<}Ns S޳i~PaىwXme.U7É Z'VK~%6`>ξ+B4 vkEg7u.z`#KL%w{EatGS`DVjDx&p/`<"0pV`ɝ% Ta )k#DDHi[,\|6慥;όu`cf DXrD؀e9AObͥy0},lavv6AXeG8xٺw|p_"*~lpъnGO><į &(_9=Ob,6fn6GdT ܁|ֻ_]7vNhQCڰz^QhHڀ}6ZjxT(n* 4h|hEI 4);yM6<@f֑"M|^PMǁEO؎6?<@ֽMpX+zGSMPxa(r/@\=x/ 8[v;^ B50 ;V ~BC߈EC>{_ALJ&Q8j4pb)x:N%|`l3OfI^A#ta[I&Gw8 ;BW'+]/0տoL(C4Æq/1z}lnU|8I IӉ hpo U-&%0 mISؒ؉XlD>k*!X(?8 x.q;p3Ο{(ZIdyXc;>񅵶&v.,I5%fAѡƿ*SW d8LLmLmLLX.1g!2u3u3u1u1u2J86yAuCI,@L@S S8S8՝=6\֪󽝙3Wf̌R <y7by<3s̭+Qa%K^Y+/>w`MŢ&,j"`$̶#M5g+p3u3u15V?Md`j~, 8&1M؁'16 efM#ۦ N>y3qz8 8n gm|؉VlP 47q'1ہ.+l>vΟ8MٰQ?Y MUvFMgkH <܄vFIM[Q>E!kp ' 'akw%200dFxqqeL/vȘ. *p 5aYH*D to@O'JQ`@8\ҳyQj@.Vr3f%3RUp?LJoJؘ3sg̳ 蝟 |/M,.S^*_Ar z|;n,;Se{|T,2u3u30025LL%|`gjg`j7 7p1u-Dfw0<|oa Y'fQ^dvYTgQE 5Y4Ӆ$^f潈 A^ov\YY. hD4V`_YQóq?K };RO}kփ\DzYDm wOwp Jl|hKuB;=>fl6 Y5@Zj :Szlm; -Rnڊ8jmeҷβ=dY[KhǦZj3`ɩ:7\f@o@Ml@ea k̍+3Wf.9sQ6<@yՓU[h[؁-E U^C#nFX<3e~N!Wt)jt3WUO"qk=)FV%K$փcq-5;el,cG&&E,; n[3w4%P@zuqx[QkEv6)ł0;o٬yC Uנl p8a:Yh#fI l4g ltpU%oE s FT F s+F:FI c'{dZ=hyLdZ=h $ffݍ%f&fEqɶad/LٜpUIgUb'N&pb#":L4aÞf6|;Ao|Dg-y2Gf QfKU|l>k:ϲ_|!8>d\l}[ 2I]Էtsa3cς=caB-b0C͢BS="[5ia#O6BQD4ޝ5ޓzm/@Mm/TnMS#q%yE {lUwXӎF}TMk_8n'Sv|;; Ңئ [kvĭE @l-F37AFk0J$F݅b-ɍ0J +S/afstaQgTo30B\i(BԛY)&p3b0U)[AgLaSq7PGr kzV&FH/_3 NlbféڍyjGvI{wI-2dfml2'ko-=[Ǜkr#g}&wC}bkʼe^G[~.]RQ_ɵ$CW̍.ٺ$GSoe(d^L9Kua̤tK*9p^GJة'UnP%]IP5A`!\[%`L*;-y ‣.곆:)zIѫ>imu"S]^4evbeW/k_b>tɖ6얐$ kw"Huv2(ڹ 8_^EMؼUհؼUE}{#UGf[ f|v+oEo].i_4K/z)iYHod/28)Tyׂ2VEnML!T`ƒIۉŒЮy h,|h|:d VEuN¤`mXZ;]e)8|7\MKKs y-vӊ v7F=M-3A<,z8YKVmHV-}qk o;3 dC@fv:d˞q?!a81X+c}6(,,[>ƍy![+, [cc-au/V[vN`t?_;R0-@g %a([Me?vLB^8oYS 73t=[eB7x./CR-RDG"4U2ꒂL؀֑"r-"J1z9<͏lMf=NN7(la<ĺ~t/ Vw,ʍl՘g3&.<`9IěՅC_ 3,=MMEe`ܐk=-G?żocjtos<'Ы ]Ykfr׺]qץ@i]ZF츄+3W@$|M h%<%8COKHXV]^Qh^w@sZ d<|UD!'0.;iށO~~FÓ~1Xr09 nL'=:V@LƂ3ۆdy<3Sdz0 n֒a!BQb肆-Z` ɦZҋQboŚc7ww†F0\f">D=ɕ%Pw[ 7 D3Qqf7<& f[#oOȾ/2O) dNS#KȚ{0섖[ăg'{O"zIv !lAt*棣MY N`3bL{vkWt^U7.]7< !7GMl63xxG<\|UyVWOޡ\2>]k̨~7??ONy 'N%^l?8Dܣ!\_?<RLߟ vΤw7g5t8O\/$z+lĸAegLa=O0sXq dfk+p.bǤO&,@o a9t(<7spسp(V`̽3Wf\R|?R.tL>gp]K6/*|J?x60=a3􍄃ώ |6:q +`+0e?qP7NlX0?qSx;Uc7b_X 08}*p *YYJ t`Ƀj3,~ 1tG8Xr@HѢ:`j K+}{_ [z‡)Ǿ'⾒kOiC8RL|nbCL&Uz7 0ܛ8qm"#3N̑"s!.b0s-6ba?pO6dM6b/~OA;ظ'ϞWvvp#a~EFv(4AF@p1՚=% [(!qm90418 zbm ٘|*8pɢ&25vCIh ԏubpL Ձє@97Լ@8FJ I DoI(8[;nZ>{$V6>pg}ohxN~-U 았ǂm9p1$~"-k!n`fXp!C ̼y"3H^fYmMhJu[!.`oD5XdQ3M"a4gF<ӉLLufk+ ZZu"S{#/p IM #jAOX؀Β^ h [j%XFK2f;w!88٥ЧIl~|o#eI@6`=8yƬ؀;p_,]V``jlLmLLL-L-9u`ar,0d?42u-bNN(_ S] Kdjaj^E{Գ SWI,`:Kܘ2sef. zX7&> M"3 o%<2c!Vm=N5YEUv zNnbEB SS7S7SWb gXc7!6 ڤSA PviF4]. t滸0 pM؎ vbN>;+p\&N"K;}TW8"N Bz#?a`6W8y >J'89v$w@>nNߜ8mM FQA<@'IDA<ވ8*/{|!W!2u3u3002؆k#n *4Y&f _4Y-ȯzk G<\ڈ&Ww2̛ st=P\;C}̍;3wf<˯8%Jdi e5]Zh-S3hyqSS/Ss djejejcjc*'} ex' 2t^(Teiaؿ@<ֈ qY`QL!ϏQ qyW"3/wkWfÇyf faSgh&m46X MV|go"ga4bK6`į=@k؉%>j\+>Cf>̼y3u%uχXmXڠy8/ڏǁAYTeQ&BM;2ڏNjExPmc!LqEƹE~&sXwOX6bٴoڏ7/>;q7JgJI<@ޛ$ huV2 lbdkB ^M=&f ׁQjSt8=^ޜZ=~ѦMQ 7E/2#[7m ??JM@P9ћYx+>?Xxܙ6`8p'sId;wCGp#W8!աsɵBЀ$k}> ,q`=bspsA~؀k'BدsKlyZ:b~xa461q!S$&$?GB;bR"taf#ۦ NCfvbBIl͕R?Nb'/x1[z0aoBo(꿋f~? /p }h܋a<7:vfƒU1#0ŀ}bQ, )0p1umD8x 1Æȝg߀ׁwṫ;Bw ]iN|9æ@,:pɢܽ;]sbЁucЛ=^M @ߔ` a3/ěPj^oJJá|zgnfJX6QD8w5:|ֽdb9Zlgi!E\7?Wg`D>;pv*DCR xp>ХJ/vf<̑Q.fޅ>Ry!,ʝd0I<),Y2^4%a>Y.2`$ 3{ )qwvJt,ÜBU s;X=)^4 yV_ M}~kIc n{w;168B?E:x+UQe۟/l؉Xm=l " Ц|yd(EX7m}8}؀p6`ajy!SSS%V`h.+ߝ4;#ԥ,:Cl=sʗ+ah\`̝37f6)haM} TpE/|H($\.C䳋N>;೽!)Mܥ1h8Qf ܗX O/Yr Kp 4&f>XfP!a;FwQ]{*`'xCI hΒzr%a ܇g 8|O˕[ \ ܛL*ć80 233=A,@+lS~Ҥ}"3f!p;~Vp;YdQ'V6M<FbןѫX8ְ;Q6? dQEm>鰛 N^fCC #0_:l EbQ4F(x0Blz@ 䶰1sca HBY"̷[7?1J./;b~xP~ aɗ%,RN f?Be K0U-0G 5/0C 1sxP>1 JT%؉9H,7Y9N,L^`Kgs XLN>F'q1<|xu[Z>|Y,x^bH5*|/ /:q' 3Of^!Z@)# # xm;,j( d} ܕ72g{T46MFse1p_@K&V`0]Lx2e)8[`'."mٯo$vb?䳵l{mapN`E̼y̋՘<'M<DV O `]DUXT 7.I, 5>f+:DNV͵Ƶ|?eD djcjcj] ,Lcg p3u3u1u1u2u\vvbAPXZlbN卤?XhƙlXKq~E֪󽍙3Wf.̌\)6̼y]"3<:33Fw l@|0NXbQE,:M];0_y4%KFpyR;p1u1UUM8:J->6!E/*''-,+p3f͒~VEn>kA>_E%쏱7q'q;+Nv=+;q'q7៻3.&^dQEM5lyC#̤x'O%2a˒/3\'[#n` |Nμǧirb*'r*'irҬR+'r+'݄$F<=EuYEI) {!.`q{@nV0/ŽnT@OK6$E϶N⑱ţ'^_&5&רNb|X73/y'hGA,|3Q Ƣj,ʢ ;CI, 7|E~~9pSK1Evv66zK~XZr&̇L=Xh+);2ջsdL6ԴƙlHR-Y6fn\03ZCjx9Df̼.fWŢa6fX%WR \,jɢ&,ށ-/-g!c,Yl6 U-SS!vbbdɓ%R*c lzE̓L;'1+'2= ̼ydt8|ceo؀7E 5*;K6Se~i?wڏ;ǝ~oW_a%?lVx84|wmxG @Ȣ&g]|o./5d̗%_f6!3d/~80#b38/SNN΁f3kpjIspJpn8pE/2!,(S]_RMez˛CU A8y5"3oV0/9ڇXU"3wf[&%,Yz.;}9}TzsHXo=GXI"= X7iy\HCE@sPb@[ mxVڱXXTEI+6 'p]"3%l1)E|. >kB X.6k%6:_g6m9PW}|'kF>ɨ>1GIFxѺ@qa'_ ~Β_XXr5t14&:X8O`W:Kf\}QI Dp`Đq#{ XXTEps}|vYyrW\U%uL<03kXOB5^$ Vk ﰾ:ؘJ-:X61)$6`6EȄ̼YN}#.>-^+6x8X mbwq /qkf(l|N^W \ <8]P?[QUV'bމ`LLLLL]8;oJN@hWFTK\6f}v }>O B!Y)մęqc SB?;(DÒ/KcLnF#M,<~La~['/O oƈ!z%8pv"<ěQDlv8\@9zgon8xuC8 'OXCxFTپ9;7 WC2zn͒!z`ֈp0`̋3oV0aoJCh` lYTgQEa^MF /|.FY2^ޗ tZZژ?ogr4Hv+;7pE/Z,j7syۇ/3_Tg~{&:{or#Ru]\$[oO#j;Y>a!u'Ӌߴ }#Pv#CF\;qٳoqDt1/Gˇ3ٱVL<-WfvVu7<}|Ô&{@׼#s,ףOݞ5zx|)rNI-,Ū&Kk/̋3/f<"y߷F^VrA_6PXµ*iU L/}gᚤsLT^215M[Tajajɩ;}mLLM޽0ĕ_}uM2u,}}KUcɕ+3 3fވI{̼:8y 8'>l:e4f~U}P@\ #Vs,εj\Ƶ䂄 *bybZ:+Js"..NNvU/>ldۄ/ErA, ;Y̻̼y%`坜e% 8vvȂ5Z#I\Pe_/Kx@r]c7wA\gPeDr"d'[;V6O.NV𷅿-mAIsd73of̼yS,!Y`QEu뜇AP*IT񙕻S\Lܦ5e#A*]N00& t0t NVc9* 6B0\9';/s 3wn<(yqay=s94$r$[%ؙG~# Bpڤ&vڜ&$MXFisT;SN*tC)3ەdTE&(Bnv258 Mt 1r `WpqAytVтySg2U*"lxy<2ao EMXV%3of>|9w"m=X}AV4cŽ>ȼ#' .@~zx_>c1Xh/L~זFʇaw5ҽ8 q|.IIr w9Hf^̼Y^%"&DL>|1 bA䃈ן A3.Y@aUA.5%Sm ue^|`0b 'A9ԖE\-`9غ-`=تͿd̕%k_c'2O q{@`j5/ {|`ޢK>߲:؇{ǃ}`{W>gzNⒿջ 6۰ȺA!K|,& ld dkp3} q>{$ Y@\h0z1|kE\TCᱜA FcH顬:A9$3f.iYp:m55R b"&DL>|1C6A>RD[GyO' HNVpRrJJp7X| bAE=[ ($+Vmid :6FG{̋3Of\#fQ e!)`rs=dQ_^ƻG ܇dэs\\ԖoK S%z'ᒩcLLL{`+S+Seߤd*v78sL`_ߒkXre̅7-^$3{/̌*Vfџ< <:}) ߵ]VpN#+)0smpAyAjgo_渊Ծ6N(sp),, >C8=LA'\̼XF.+YHv𷃿9C9.;YI\2f6BXcGߛ 򀺁_2Gc˅{9I.zq G!Y=-~_VrQ4NrAi2{_.036y%3YMVP՗=rUBvr 3>/8:zʛr@`q  .hrAs7RnG:E蝢k%7؅d̓+9Ίi-Z|ޠ0se̍;3G%:Yb:Z|P6]d*y{``dj}LLL=L=9og(LVV6:d`X$S܅$7A  Nsy6!YTcQke BvrSHf\̌qv=lx;d2KPe#'AۘUN~=:{)Za^ƀ=q6 ^%_v;So_yjeL HUojUY@Y rHt2%S +9Fp-3OL=9u Nh}l` \&X3x$YfQ'e J l 셜`flw +ys3;A+37fnwr]LۖajqCt%պdjZ;S;Su18:wNSVTajSS;Sh%Fp1uu++\ؓ8 VUYTeQE5YTgQEEr "w̛7K\u>LMyB/;J%F~/r_GA6-mI6{d̋%|u4|_$ɱN(Fg1ibR',\T41 P|̹87YA)hcUuը\Pd, {ũVNT9rvfnܘ20p5̝|Vgi6v 88&5.rAb[ 0OUu 򷃿mo!+E|e J1>wOy-Σ8]87 [|N \8;ܼq;Ğܓs^A|ypOO`%^>1bヨ,`8';[ܖ޴ -K2qo> pnON9QӇv.311225 V0ܤ/0GCa0Zc1.ȟiEAsdQE0d. -_n>ls9aXEFEq"]N#F65>|P1&.`Tl 5'Q\2u05ry8p6xB\On`SpqA :ɿܢɧÓν96e1OJ݀`W;AVG$(iGc'ӻyA۱Nw ]Q\$wa Y'H?h o%)2m`ܶsn؟tAi`ɻ. b.7{6 ' +#7̕ 3p)40*7GpWp񷓿m'o؟K.rAwyl{\,j6p,Ru66V=FYdsCu C3/j˭ W+aʰeؿ2_ _~(+ٹ XnP+_pn򀶁]Wc+w{A56vv쨠ۃ; ھ 梼B\UGg!uNpt06>y;XTgQq*$K;U.w]{)< wƂq2Ď.be{YVv\+.qe9(]pA;y pX,>t[˴q7DM[`ބM k0nC|[Vu ߎ K2n :\INE[䡃`k$3wf\WÃ՗ F)d#/+Y@Y rȼs1. +fe# [y}dɓWc0:wfνѸ˭,ʢE *,(#ǮPA:l *(A7V9HjQA;ި H*@Zpo7S7S"+8:::}UX{|L7D`PF`Ήwy)`>=`nkո̸kp1b9̸-ݼi|I7/Jƭ3U  ,j:,VA߅!+̛?Q*hmd'S'SK,3357O13@n\ J T\`(l0P6F Eʼn]d<'I&[3}`r"ΝEuXTcQkոEV3͈K! X"\-*S wln/<(\r ,Eu5X`Qk57&;#%xUA2f̛3Q䃪%@rENnU \P: `L9.Yfɇ'd,J#7X; 9@a+p}F|4|;zdQ~r)ib XHi=bټrU=:`ѧRef-o~oƀ;Ox% 󜑿w?O?ːVǿÿ/]%γ9w,Ϸg%D+\isu,Hs x͝VA"هDH\i-6O˾ 9Z|W=w{22Se^ygm~oJ1v>@܌e:-RWCY]4&K"÷T m|~&S.gSNcd]g w{;K}ܺUcYml[2rcn`p/p-YA=Aݢв!+Өp)w2waS4䥀] :;uJo%ⵘ^eAN=sz;XuW] j}%\pT;+),dnrs ld%~oX[@uNpXgSXTY4s |n38S``-`ɧJ''[xz?s]V@9fQY .r{oldMUP9~P%s{}uӡ`'ۼ~(.N`gnu{f=_렞Ho=5Ϸ: CVP=ڔ? ܤn4jEkA{+'C0w]=u{Leuޗ~1SRϭL;گ}5FԢQK<ԒQES{r[q.-j)ѻz@[[i Z\܄ < v]Pwl˷^qzГR{COKWvғ?FJ/^V#%9 6JhPJ+ j%3:K8p6W_LpAB큯?g+2KP[#,ms_y\y3:h|dɋ%ٖdReEUfnܙ(f/!]w}~l}0c8_߹g+w?]LKy ϻѴ٭ZѪ]Uoބ^=F@/̃G?h:#A6.;)`[dhD+XҍÞ(~{d(6yo뒩v+8:m{&ZREiɽl^s\FS[A ڝeE UR\H{g!O1]8̵e9! E2b̓3wfܘ2sefa29X|C_7p.ki%w*XYdUP5ɢ,Ƣj ݺK#:!\ oG~'" X(1bN$܇dy,4 v :{!YP&YEk4ZX4s3u3u1uNBm.8 ..5d[ >l`=$58 N1#ld~ERN! %$?toY?= _4n9u;Vnl Qpw?c8U.)O0 vRpz_6rLcrJNP+`Uwz<[gwS JUn 4 *r84ȢVz*mGAxy@`~mПsy9<*:ݏ`ec3 ژ)@qGW-xEy2( l E,y-a'( \`c̝3Of̼y3f3+3 6fΣe1Gčgp3oZoiGt-ĭtP 9Z )q\npvpEm!xƖF 2Z 6!S$S'S'SK^P%SO!y=@wFDp3 v- pd Jq@D J2dfԝN=6Ar6,̙m .+_5Z\̧Yc4%`cj~yRi볚d26(ܹbl8WP}`[ u榼Ygc~Ce%1F6Yߎ4$)`m^- R<`~;aU6P:X8wh4m,9Qy` H/N^*F{{98>lVR۔`ɌWi7MldgNj3]M'oW o?iYpMpp4 X[Ɓw{y,`;`~o;zYUoߕ.2ܤjv^rV22WШ"'98Olc[]336<(`c݉T T%5 XrB0 \̼όc0ult[PNbQ2PBƕg-e>p6vRÕ~_v- .2X}4zxYW%^WԢLSܕ܄ A c+?x.u(d' C?E/(qRpB!(qY]2k~AU0 ~ hOĂW24Eb%ha7?D]UV@+#?ywZ7쿍Aa0[ ̧w[4xhQX|X@+*>N(V_pJ`lk|c3mv؈lUNnBsN>X+5OG>"MƠU-3oCgjoz n6u6o5֋G?CoIx](qYb[TYdx4n{ɖLF/i!qi4:S.}XvSP;1ӡvoy(C?^zvG߃2Sؿ|WrC_ION_IPx(+o./JdWs˷l(jra5JM8xgb眝vE;V/:=(2LU;> W* =/+=/+= Czʽʻ qY[T'4a.|A/+UT/%7 qYw:e5^zԽdݓ=s=(Phfʛyxm&oC6u{G6k*Z\N+dGնhֻG]v@GzG Ja.ޔCo ۣfqkRů߷|wuQzcUnƺ)fԵ-.~].XwRw!Zzyw! 3tA!8{b zu9NQzN gutNPFpjɩ{Q?X(ޣx;z6tAz OOvrvrpASŶhJ:Oz2(dIǪV# ApS 1Si7-zӚ5j{vPO']VzޤgY ~\z{k j ,dZЌzs" h\VBG]t.:˭ 5a2ǸpNTZCCQk਋]3]АT6EY]U]i(,' yea4ټ7;oC--=9v](e\ߝc1MSSؿ{¤anN9|3ul,< /2EXX;T mSnXXH\W7ί=?dMcԻw7'E3{`_w#yoQ[v]7!sY5U.]F[ik\GEԮeUOep4K9Akd,E-3Of̬ވ ؘ2sefaf?;~h-wK3>sSfj K2c4p7P;~㐒Niؠv]G(QҠ(|ؙކ%v kvmZE*Hά9d1ʣ&Է/W/[l$S/Hv7]зwM7y7۴U׵4K4:@4:@:#A:_A;߈"@k}ؔ+x[ZcOzP|Ԑ =Qם4*FSdf< 95M}Q=w,5fֺ洪vUD #kݢ>i-1TARGu[PYԧŧjY*H]gA}ԣPM iS'c ;ǜ|Ei`-3wfֱy%^m,$3/f̼zG!YM\fp|A,i2L;U |xP+ɗƱ֪}GA AMjc>uNQQ {VDUPW >DA#4.׭[Tn,$T!)PXj(&nOAL+V_ɓm%-|Wn`P*nkr6^8'{`iκc[/c sG5fl 66`'9khB{PZ}3w߯_esp.R3WguK,IV: :q6P9ȷ(GOOꂖA= :d3wN ؙڙtXTd6gMԉ2SNY ?6Y: *,9c6!e'3Uv.Wnd:@afa3C̼y1d֛̃ XYYY|Mp G08V 8dX+dH Ix)jdQE|>艭u|I̽@7o© j̵YYY.urԢ:&,bfmm.h:2!;h5vme2ui8eoqHBTg7H3%y9Ht*ᄇט9A.`-ZIvR]?Ә;8n^7ͿCy޷ 36g%u5Ե_P&|EÝs;VEpP.+hͿyZo9%|zKN5H Ӈ2#L3Hgdg:JܕL_/3}0{U!㓩8o`GЃ \;]0&kRlS֔'B.P_Ӡu!2xo}6;6>ϐu{[,&R<7Rs/hqPV{3( L{4s}%Ow Ki4c)Bnjv\n3$3Of^̼y3a3wO|M\be̍u'aY/W!'ykaGv\Vÿp⬅`$, YuH\LSDX#fm@JW<`Kյ28::Ӵa .Neiӳ9mӴa?d晦Fjh9$=uE[ԈOh;KYgiv G6xʹ6zPL}~v|{T\8O`D)f8^ .*ghg[m8dn7rK3 JS`Is@v2aqZ3ZؤENkZh qu:&gM\>:T~^eg ۔ εfKmv9VRҷv?M&7QC,>)Bpc 'Ev,0JV9XTeQW3:Wg>?9S9e%*)'aQ g",/&/v|5; 8) {*yݖF6s{1,r#UOxB(N7q{2t3=?6Z] &o[vS'M8v!2Oed`K ׌'-5ę'A `M1*$ubLo.4sst&>l0XcZ:N77Ar^S- ؿFJVnBnKua0v{<2? (D}`t|{$Oz3oI[g@Ӟ^I]GQCPJlٴ.L馏E<A&N}໽*%,BV%j3s'GG`ub~|,SО{FlP >R,MeI!ủ~鿳VޅDmSDu`LPψoP j;UK,QP/dz-Lԇj%mzuDJP nurQ>+ YƢ:9HʂJ6evXɶm NrMpduNi |NZ_pnp-p gJ.+E7qʷV- rj3ԑ0ZoX!h":@T6<)xnMhaDS48SkD=V yen̝v(x)b#dt| U0<c{6㢭ypáǻ.cc)nfPYX8sz2pN'-Xs:P;Ç]jݨ-w~Gf{u8r.p.oQw2o"'O*b?ux<엣ؽs'8պq3:zgk#}lz#g[ߞRxO }9'uLof]b~z;3F.2"Wf!ʹi@r'{VPAeJ.gv,uwra]SINmlG܃l t;t*6*@7;g-yU}^Z ]g[,7ѳV_]Ta/m]boJjEp]Я\w)F$y+Z ieW>2rL=_OEseژ준;3[?bl`=$+(!Ƀ-`&;h7Ap25m?mP6H\o߶ŻExe0kY+q6P)_VpOsE&8l\+(l;3o<9!y1d̃;3wfn\236ps77p;Ohs%vXreU@a%h*x@{M9X6@y S 3)<̬#JIMj<J BޗOJ`d.p:ģMudM]&DۄmȃsŢ6,䢖 Ju(uXpɒW!Yfg|m/(\2s`g̃'3Of^̼y33nnP]Hf{ \ !Stmx6YްCsBNpW :\Iha.(g$A66;d\LN6^F NnІ;WCðk%  F.!N2,}Xw'q}&G*yXؽdM;Y#^60SpA ӻtd )0U 9:&@T>f_C6p6Qlܘٺ.(,`ik3Z:58H풯6AknOT#=Q|֡ pU^ eAmۗ)  ` u VRXo?MZs} (6n8i-s]g JAk7Βłks% K.d8;IxomnPXe%vWVW'9*&U(,ͧR-*;!mv{źN頝 Tor1Αo=*C+R+n_ :;Km"~DlD,D\E< L^2uzE1%SKŝH0ъ=:>zR,\!GvbO. 8rMMPcYI!5ZH}w6ϸ;Sfڄ ƝӰvŎ BjQCv4s=.h8.C?E/g/!(qY+Sk~|7-{c;oECd.7G,_&<`[ W"p݁Ip/P'q ok[;9,&.rP' ie8ikKrSZ{;ĹHnr ٍ^RqN{ip!SNf2h/^4Ư7Z#ZK ΝK^~PRA dQE#_Zm98YEnޕQ H8'&htI>=( l+̧w N tYUu @U[G>A}vH\܅ܠ]9╛JӐ}$ vuNo}ɃNAB.QR \`g#6-9|g`id?1Z)B桧1v=)g!^m_ywwrI0e!`k}"8' ƥ%p2|c?ҿit+F9Οrף{3ݖA_]歌G|Æ \_oG˰}OvR2kĿ?ʧTȏ_ˏw0A)/7?_ǿ_eGZ]w,~9{>~%wXԉIO5iM'=onUYElVsu~^̛$y1bs\sc \nעSMv T&Y6\}LmLmI'֧m)d'4 wnaE5UYTeQ¢Ea/^:d+qptoR6z _ Aw&ypovUcQ+)dQy:ֹYU1|CVuܛ,o;uC.rAJl[E˫\byHf/{ә=*+UgeQE *L5hqVpORԕZ矜d``_d&;YU.HXT_ׯl9:8 Z*NVO"H! h} K,j drʷ,q-~͕ld' .r"h'Ro{\;. 1. 3%yz9_NPK.(d.?WPOK..nn.WkWԆ ĥ.ț'mb.SPʦl+&l+ʦTv*Rת: j璿-Rz*(`oݼKvLPkv/UA0oBtk",j|E-v1aWRc75Zb{,n˝\ŕ\\r{r3`cQEu5X`Q3]q 9-O#Sak!'+{%:::MXL]L,yDr"sa Fr5:Թ ,jɢ&jF3/y3fg9o/;@)d#zn7l3K&{,S_;܅s3ZUY p!'Q8+aL \(AllLfc򷃿b; q)QP:5s\56ؼɑeY*p1<5E0ⳕcMDmL1ʤ*L0)>;bGX<;p"- 4AA:u &%TªKGEWļ վQ?5l؈HAuܙrg:LjMV۹(w 7sy3aʇO\8:k' U"M^4)6i2%fCzXXߔw~21oy:::'p"Cp34A= ]5u{N`ޅwq4'17\P0,arTV]ER[%N`/Ad61(h2"\)hQPPf6 :6n`p703a3Τ:Lj0)S6:[6b6 _Ho$\y373y02\^;b;'79JDB^!xp-6`G!Ro6LGv򷓿]brYG7*aulj_ےҙ vfpE﬘>PmXo !FM,mf7Ԧ8&p[B뎁țu׀:tnVb P!3pNr;6&@8p P'M\X{+P}@ 4AA:u jK KT)2UWr6L ܓX ly0AAdc XYU ~`n!V`+_v8I,qXVr6+=q580|L/+0VnTp,ȤƌAc700m#/FIqR`'Fh oGv 4u:sN^ٯ(i2fc*qqUVbx[w   Uu֕Nm z*;Еa+ 앸8bŤf xX+lAXQ' 24-A<@Dފu\CArEzBD&՘TcRIu&ՙ`RIܐF7nT$2nDFæa'G6sV`X+q {#2WQA2p6@v򷋿Uk Q؉IrAlĜIsvNo&5_sv,BmD!f;]((IL""& q=֮l87n ֯w8BQ+'QyR =In$;FgVK2밎;6PCd8qW%Žŝ}pK׆-ǻ帀wQIM&uٔF<{(gXFw`p:nƉQ h=N({cr{PЦ).Zx@|7'7~#=JvBIوC{nlLj0ɤI +0ə,Ḁdq[pQb&ݔ{(f O&}xȤ:Lj0ɤ&ZLJLDN̂V%㭎 x: p4"C'C'C^4#C(ГC`+נ+7wG%RPvrt҈x;{4#éuu!L8߶n^8qkǿ 8._pwvWB/y?o`}-O2Ƕ~igt4Z?uWd2=<ݔEߣnoW*jTuп97k-?ߊih]ڴ1qUW$ 6`9EDg)8xUJIdLAT8vb^Qkc\ʌ L*{p LbOVff m/:..NNI,|!`pB_ l W2mnR[f6yt]m^pVC\m1ą|~5!ټ-i[# o^jCs> 1Mz`|j5Ge"4kԅ4->oN"CCA' 2CA ٹڍ! PaNCO5UVAL݌(ވ 8 q7p&7:MJ I9q3iF cR{xJ*7`>&Ns98SvSv"n`/Ĥb[gǕs$vbN&5qp#W]7쇸m[HA5.b'` Dpc @Fތ,6v:7\lu\HyLm)Qn̰Br69v>A,@Y̾RФ94(hPPg:5 j,QlTV]+k;p `vmv)_ԙL6/|bE,@y;d$c @"41220Y9 w6Ylv&vbh~VZlZN6*V[b,L0LOf3"6000ȋr`N!NbfmAv b6i#BNƤ#kp!nbv+c'6b%SWelx!'Vb#v Nbvx{`FxcdhLfY?dheheha(*g]=Pa0t-b`1о1ͪRPʤ**L*邑 [vѱ PYYy1b61ܝzwh#]ٻ`Of@ekW2ʔ+3Y)RPej:}mg1Ueݏ ׿?*KUG}Vl#v Fe66 jԘrcʝ%,Bg&;3Wo;Iy^,EA Jy3fȇ8F~rk:yΧ ks\Τ:ʯwqRP>jSj !̆LffaɡB2221133t0t,DF0T6pw惗|N`Ubމ8qs~EF^LjQ0Lnaʗ<衾 d6ra 1)h256mDITwDmn:plL1)sH шHr'.](WX^ay73y3a(ǹӓF@BD j)SP_ڈ+Nvr'.w1ȗ lLhnc&1>Ȕz9&rDŽ<&aW\f:Ұ˳pbnσ]î ddadtqrpC@18 2v9Z jL1WYJA aCaf@s$9t2\u3At9Yw8#|s^؜p@^b>fIAlՙטTeRI&U _E CuusVʭd&?jCdd.*U{SCL1I5Kܻ游0Y\MSڊhFc6*Q<\C7ho ߎ5JAh6fdaday 3!ְ Mn8rdRIU&S} .̣ʃ ],z.Z0[c6h9Y4,b]--FEB8"#M\N,@oV(7k.j dREXLy5"39)hȪ/$Dya7.q7ǂ7@&%Lj3oMV\{17{|;DI{OU; >9.fc1T* LySa6jR][WSZ5{֎ 8maPY(w3a#TX^'CIA [Sⓙ"1W!n,f6Jcց`Rs~Ťr| NΤ;8.`nuqlbq )L.ܓ6%ccRIu&5`RI-&08x(~g;~=ԍ!yqC`8LN.. C3.z Ḇ$`NA &5dR'6tH7#oF>|_a]vҟpyɍƎF^~fvlFy;̞?vGks(p3aNfޛ90qO6:Ό_nqsAoE o(D6?6HOy[܇țy1S8(w,"ދ :9vXpc *Y w!2t1t1t2t2t0t0W mBl{EaY\~Oa~u GbEIAcTgRI5&UTeRIůl/`:"+QnL- Vdd4~[VpPP?D&՘ʤr[`kA\"_G:ؙl4f2(flU"lA_6` n ,<渍RP F`|8nFFF^X8E,[TeRI'v؁yTq#>bަ3['Cv@Cڗ&+U&qh ~ 2EV[or!jRpow_Q/$D[|V]?'[7;/hovŎ8\vX q{!2|Y A4_ϑPah~[!d; zZ o)ư3Lj2Wݘ4)w3a#TnXáBwrb(hQ{sP)eX9ߎ  Pp3EװN`^Lj09bRD@0܅HAqs%a@SX9 p1rr73)7 ODy}IkؘTgRI &5dRI-&%L*08 YQ109aH1 ͷt^0>xyw* nn0WysT&09Nv 4(hP`RIͤoq70N܌y3a'gcB ï"`mD mFy%G{v$v"ʏ3ɆAd1r;ۙ<7+3Y)RPBAhf66 ddadada6#S jy \DfSn:5GQ|qicGcfSkPPI 7E=Cu4jAB5}fFPlj-BwIq]T\'5*PTl4f,~a6 U:E>&\z,.yC'W1C3ٹz m m - -\x4C7C7CviO6 M\(RPeRI&UrR*-N,@adadaȋXd$y&)h𷝿m[1d+sUrX"q;+!n|opoQu۾~~|nf2r5 {'c#NpcNvRdL 2$, 6|p3܌y3a6=bv\FLL1Ƥ:L lsqs_rlin~p nQ1;204;k {03t0;ڮn9~3`EAm]GP/"y?WRk+̎9\.(pnfC"l;Hّ KC"8zUdF, xi0>\TO/) _}Vg^Q'!ؘTcRp[m àaFwFgFWFGM78R\ayFfȇ#tv a(3 N^79v"5 )/vh#ato';Iy^by˻lz._g=t<؀<8P$vbfc0mO']=؉؄8X)(8;nxCΎp#7ܞ 'd|< P9ǝ ΆTl8Q<n ΆӪi8vfSn|Jg6 Efըlx6b٘Gf 'IbX& )SPc5f."f+8Cb +&0}l # X`c&PY|4@"=W3`6}L>r64w Ǽo0Du`vP1.._[W90:bgyaއ@曝}0fΎ>8gpQqVޫȤÆ 7#F>9Mew;^1xwHk(hQPoooEpځ۾pV^WCa6ļx]uȤ.&x3ڲ:GDym1Kqew!Rܓ6I_ u"Lj0&Lj1))܍PAM*q(ى* f?(7:9Y X q0{: 1_;Ǒ5)-]15 (:)wgY7: 0ad8NN<fa m~7юY C# az׎3ۆFM8=_w|rG\ny^% |;j#𭫹Q~I~}Q;rZQdFhώ5rCOq~4+zY`j:j|u|sGjFԑp, >&gGPSFnj؀f uuE?u߀: QX@&u{ j؁[x0+@؁ToX9fy&~0;vb|\UgRL ^sx/ڒ0;V nmq5cym2Sk{mbNvlS12nI,1@Qm%FBo8N!VZNy:v`K[lj.j RӓۑXcs U`9ԭ[i6t PA|h^/78/[uު3j4;ꈴ6T<[mhcD >jCk)_l@ +GXuT{fc o* M6mM4Pk;-¶Юح6;ݶJdFJv@K[GF_(m :9ylAq3TxuُBt4qx`!PZ9fGomG)QOB3L?! <䓐qU w9v` 8pV."<-B2g"Ljoop3a&Qj(&uA"#N<97P(wSܓ.<ڤ.ZlȤKisEzŤD݈x>Q"c- 1\@] 8f`Q4\Q* Չth:4X39+pu1yQM;A7.uj6<4*Yo: PM5PjfETlRMYx[ƎW8;<7e&BLڦطYUIpI5uoGս8S6mVӱX=Wlsy qXǫ{;2mf<8ybgj„qjn@<plH#~؁ڼ'1-,؁Wsx`Ny4NI;6A,IAwz$@ *]L)u:p!Nb"63t8`[lSPFc&PYT9n@p ( \XsSt#c?D66V,I҇ (iݎk ֕o5؀= ~ViO6U]x~`Rܰ؁a;"6dW؀ZLk;p2V5!6bc;1)T~kD"oru3?tpj4~@5f4UuF:-NovNDDX@!f;?q لOհ/ `վQ?e,ٰMQR 0PSpw=rX8jYk &n9Mޓ A(Mɡor`6}#TO'7qu"f5iT9Nʏu#OM%+qOIE92t3toe,2222:V.; !݈ C.xp27p{% p4"1WdՉ$$f6 YllA(ڈ eZAd6Fvճţ ̭($)hSNʗၒЖx`ɢU$ `RڻC6p6" <̀3%؉܌ T3:9Bd#k~8.`eU& q ?G5 v$ ?GP- xU*q7;'tzvfp~R7|g;qEvA3G׋/+O+& fY-h;^^GIXIux!huLvuӨ:fCr/e؉X۲+$ea쨹 xt`G5r5lupn V`]~!.bf6;ཋ1`~6AL~ޏ؀0?*^}k˞E9XN .Ԏ (xp 0?`KX a<8rXUUNfco8y0NAhde* XX?f؁gӝ )ܛ@k*ƈ ĺHjĞ +-1^^Sf$f]6زFnf\8c֪d}fVWwਖGZjsɦ9ݤV9%}OFopL_PĆ ԝ40XxcLސN7@MjCpnXm\GݾЎe9jV9cV91;0⸲ A6}` Lۓ>:/br`5جQX+1{u$r8&g݌-pg!fR`u :245PI8T!C>rжkn`[sc1TGJ\옜U5n`*q^ xu8WdŤ !̤{7rPuWZl:1*qFCe nDJ%R& niĕЖ#/k#.uE`Ŏĩ:|Sl8bP0\V^Ǽ]wT Lk jW:|`mdىlWYhfв5afe'Y*s^ ;<췓Z`>6B{>؉)Un 1a+D +ª|w53[kyIV|u/-̎(_qEq %Up•\'?-xW/\ô"H'&\ofӊ.kJ~uޤuAf]rPQldh' a#vmqa(W`790v+br~![g÷tӖ[$=Mڼp ./TE=;^fsh~Ya3z3Vߋ _5+F~_5>dejO~-@ב#(Vӧ5_jNᎸؓoc/%38]f +ž`9#22ol~uxk}{u rWMʎ :S;[[Z5"kRӹiP&6`*pǨ:5Yd/U'spjHx_tLBz}Upخf%yAMRsٕkЕk+Pfk@T7uk mnrt+:'IUuLuL`OoUq+q%f!nRf4Issst`:lǖNa7fz:0vaf#Ɯ;֫}rڟbتX}WвWвٿ+~#>7>7"7DzqߥO"TfL"Oc<ȴOS4w94cy>ٴ/S۴ID'iN>NNӆ/pt:6d=sT>mщ~jGij*3򆺞S5Yrέi)7ϮDRjzPӠ oM.4~er br /(Y6K[9wUn* [j+]97|}fC p֯ȋI AfC6p7ڮW]ebu1P{b֤PawqEcCk*wh .-݅ŲЕ3kE{ kgiЊVb}|Ry뻄{6a&5p ava)k=w`r -e,ڞYYRw`ڛ%YRKXKJjIז~ G34r6:dt1k\ ~7:Ɍlt e6y]3ڸj5 2 nI t.|7\yP췪T93u͸r 䌉$g5Wkj#3:MamRͤQ:5rP{vRufZPY[q[W{Cy:CyjXbL_m`=::i0 \&LMt!Hu$kZ&J~TvtN1;N6K9ixI*ÒadXR:LKJiIUd4M Mniw֞u.yl~C}AGc]cz^wq!D} y]Lyχr!6`Q@Hw]kXխc_З-#z}"wڿzwssUL{݆!=6AmZў,ڗ08YVk{/m;l鵾mu _c1-%nx#!EG"6Uc\bcdN -wkrU}ܪ1φjDuQs[WP3AҒp^#[5?a%F^ OqsmI)|-˒]ԋ?ZkI͙vcz;zRjR^XW)7hH*BO }-~h{4QS7GifO ARCMs^cU'6n8ߊ,y({OnMt$mci2 tnPlȠ*B[O{|3Bޢݗ>֍=q/PY>Nip\,^(uR@MyMyze}kF}l9XmFzo5:>[|]sҔN|ᄆ'Yv}+'$7ݧTIhvfٍ˴|woN|QJYAܸ"M{MU腪jy-T/Onp\eruzZfS41Znչ{t 9nKJ=W-3s=uk kbuqZ :I[wWr*TLE̤\fVrzWfRVe&eUٽեJ{'k$fVYk[&v]׾zv3MѰ\%wzncn% wq' {9T[W.ج~qWvE^'7kڟܶ+Q ivQ j6E+JFjڶ;$m0~|`T`uیsnct˵ >5!XW]8yql$V`O*m IL*`A,x0ͻd_CL$m{XQ؁ ؀Cq)np + sM^,v#$^ !6d&g;ԘLV/)rPurp;&vJ-Gidž=9#C{Zʱff&5]esS= 6NEnޖouLcl^n'k?o~KzILv=z؁;M|bCŞ L=NbRĞ l,NW.^mQ5m؀W9BL]L7`[gGM/ώ:**^mXӕ2"Xm[;"wԔ6! .Q߱KnD+~I }&xX9U.j?%040ᰩo &[of-jM40];0] ,f0.tzK[osLw|[V!|՘⒆5;tP@[jC<NIKQoKCnƓnh:p_~y޳xR> ~6ӵI<.M|@d3=jS6 Q3i5V92dS־#tR ի=zRֱ113TwK=zh C'CM4Pq.N @; <|P PªyE挽P{v?Gd&(h1L7 Y*vUxw*q{!RЭX[xj lTsrKKZ־@ފuD&j {+YNJ#.`-#2޻j' G%Ԑ1j[R븀AUP;m (wz23I) 25ħ&8$+ոt 3FTlWqLJ35 7jS5Qkٰ̻z^n:t3tVuݰP*=1k\+̫\wtݭ=aM^BLaPrkvs0,1ރ]r".PǜaÈ2-fX<>U kDqQ(ywnD+8n^}Zǹ!j_e UMp(tO ;,&ldj8mQ[]`y @mHm f`jM%&`ufԤlsL``jcpԁ1Gr-(u` ,@ #*^m{' u8yo8(`cRL|(XDrAm1VXl-ao#t;Dm_~_;迲m2ܱA: oK _"6ţ%oX7En[pqBUcPC0d+uG:^uL,+cZMȺZ݆ye֏uQǜl9YJ9.jVV5= 9VZ%~o.'.b}M{ <;vz3Eb.$%)22f>#9H_=+XWzF.cy^xDz"t<Ӈbסl6tOMʎBL l4"-~)AFՉb|r|/OM^,ϒ[ƖwFey>E;0yhe~#۲=> `Þ=ti7Kt9l'Ձ벝eCimY̛1Y1|u7ܷ**QԭsbBsV1ߵ\ބQ::w8^GmuT^3V 1GU8b PTB jnҕȪeώ8'/J%-aYތ7zܻ){+2\"] dFI=@lȽӕ uk]IF(@} {븀S? 7o2<.~FUw}5djvv!{*.`Ml{4ӱubzCD )@4cy+ j8Lﭨ cQc0r r>Voܪs5qäu2ܘ4wQ .訩<6D;{[Hͳ͝iy9h7/3Gl7fb=0%ۍz:uS_;5_lUv f{G& w]>fiW#{M' Ky=r,wFԨO5KtS+yS=3&Zw=1ᘞZ:Qy4; [һLg^4q]'15ޅ\DFFFtv[؀X9 8ؘHj;Þro87RNPv5>؀q!\ ] 3%:21U`]D7A `> {0=eXk)hRРр==1Ml¤JNNQ8Ml0:Ej )QnJ%=ʫXxc:8YOv1L&URRcYlb8bma6rOE,F#7:݃ k,H F(ȋ'#6 6"2:,P1M{T;w7 qY^ l7B-^:8'PQIFm@!fӈm6bdݶ5l w TJ,5_aeR!N@!n*D4A'Qc i 6&:]i <|w^\Uɟ5l8$ 2Y|ec CН|v<-a68B'zm >6x/&MGiDFތ|6O3(l([@Q8)hQP~CW7.`o{%ouDr\.;JּbavӖ1%$6j_Zqp<@)*p'Zj1@}-!QN\@ah}4 )::ʀ ] ] =B,3Niz8uJ3rBnv$2ܝFŇxKX޼MCE"8%4 ?T%v8k_a!*&*%n"EqJ~8ITb*X=CDZOy؁ v[7vRMT؀[Y^J8P^PQt+~sh`IQxqfTQ[O8/q`B)=D%bEƄZFb)"vDfc2G2*eBL 3YoSyJƺ,Q.\ 熒8Z[ݹPt%233bYDJdah'2'|6`sN1&E@F-'#&sh91[MTbjUWܛH݀«:Iō̉'QQE):;IT"+f!(t0q'r7%6`ĵ. ߲?_aڟqun&ln Bqt~xV(ĺ &4FHt7D%N";lt燋xSxLmR0CaJoxpimD%n`DFW0=<@-l = J~yz&^FukT8؅ȨQ&DeTZ5PG0<-W ]Xe${rlyVQ.t[J%*qYӉvX6ep*H7@;G3[~ moe?P|N>[Vu**Z휀N\@4|f# ;gnvgCp3u4c3T;ӄmi඘ݲyД((1KCW1bsyOi~V7Yzq>M7oT9}Ueajo.ol6_',4 h|*hQ^؇\5^hky3ʼnPE>W F;W*.5`z < +'>tŵ9'P:qUl“Q-&d7q3<,a+V/ 7wbL8h=y ɗkeiҞ}I[q&5|)]qKEzUP|$m iqTBA Ò xրD h;M4֞7 7| WH=dߍNh"79|МVBp 7q?)'-LQ4yqMIK LIK h Fwo[&֊j Ǎ]W) CݺRQW*ހX jꥸn۳^2ՊWm5ъBuEܸÛYg䵍Mt;Z\_>@ZƈnUyl3"WF9v$ #ȕ+p 9O5:(CoD&{DhdDŽ`g9/f#VG`'?,aoۛ8D -F߮t6Pr[%1gGy'Z]h_x޹kh/-6MUQEku; h)ݜ6 ;hQoa+ؽhӉ:C b h ]zCZy&Z_x؁Iov;dXцDӁMm(obĒ\ $ |;Zq颉Z@( z4O\hpDzt.`tޱ`Ξ^F;~پ.{(o9;J& i:a) i+m>/rv-QPP\_iơw_L[V|vp='/;֞Szωώhs9a{MKŠ;swdТ嫶Qs}%p7ы:mhZVhבnFy\a㳛)hn5 FL"]WBӚ7J$dC}[9l-#]k=1cfxIب˕:C^gF?Z=Ɵo$/(j6YƉ jN?0*{9%ir&q.t߀Kt7}Jfݴ]?YkLߑy,H6vm*]i;y=š8xmJRK])+sɺFnTMb#lr-1FW9w`tv)>rρdܝ#Ǻ^CYwXŏl`zq.gnrٓX!D*7,2ORvan7b<8;<9zIهHK"{O=tVw`P/r=}[ lxkJQSMyxv;'K7ur 5W zinDFн EL,'_|&/3|X?hooKii Fŷ-W忬ⷀ};yk{>hFB6;H%RbmAQ([|eE~AUf_w`{#ó4~=;Ai=;/>cy_|}( _|uhomG;rGvG;r"!y}NHG m[+8o{NV@a;wqUe"r ,u}z8.B+h?/CJ,-}pCY_|Q?X}eAN8wI;ۨ9Pg@; 2@ʄ:@aT~s`;3OQxp*wU8<+ZcSgaH>v<`Ʊgsn帼:FTkyN&A67漦fW!Q1l%*}ә瓐>CI8F)2͊om  : O X vaE}?΅PA>xOc ֐V4<_aٞ!7+kWMhn5:݈ٺ:`y>C|#god #3;672|F5da׌9fT 3چ 36)6X,ۀ*~1gQ}jc֛>&fO]aNt?l+&d+T ڿ|V+._%სX}j;^g_c1䫜 sWu|p~Z[+Qj#V]F;4._EPgW]h ׿ %p~{" YNQMut'tQ+µW~ sE@oW'[LV@F7DN,z':_.Eb +B,/ "NW7u1r1/-?ٸЗwʛZ//bY[̎ V NOF5#*Ur[n7DwӁ.S]ܰʭ#~[7YKfC  a> Hh~k iƟrڳsJZ{lIk87w8!| CY0Sfš6mF0܌`_w3L4fܛ~o5 3 3ܝv9rOf3fΰșs72C4;̤vˆ:m 7 #p-#~ ݯvOah^7=aYM%}atmlg*ۭǷ#06lGzSU]Jb#!j䖯`_哩WA椆cx6UFc7mI[7,c(MT þmdtCw@>Q׽+:cAĵklxl #i˽;Q@ #Q,|GjB7/DrNuʈ٪\/|g]/q5~d}o&8 7:F5CUڐgc{]|5o]HhV3վ"],C}J-hRVωV;2ik f[T/vv}h}ZV;,ּ6v\e*#RX2!a6L%jVwEpRÞ%3G7*8VW+W,Ll^lV1~G~Q=VZ3n?q(٭b6x|+MkW.[(92Zr!2Cf_Ts"W>0F6Jmߺm$=چH׭.[=lE(o[#};0ߓGN^a+T.F1tf!LJ*szѐ;h9ە׮bHp|'6F4,'h6F$5mDr۞ f=5ͭ~&8C7L|i45fU:w} qӾ kDͯо };#Mn#WiUv`DL([ ΁7(v~D-(5gɆFUYZ@y;bkon4[Jl Ykퟏ"7P8JXsK1HfT$/kHPw#C2o̯yK-y-ߨy lv&.mYr̩;7uedv#)y(.z;Bf=xywT9vA9v3?m[`$ 97n4wܥle;-fIo$d7(C|Z!>iIROqsrç=fS.r%=-7\hOϱRϱVW\Mzυcy*6RhԞ3WS^$d{C9j^:LtwugXk~7 Ӯ_x4ނ~$qG N&pRx2ńauE,??d\!]|G]L4tm&Z3<:by跞a{a'0] ,Zl,i[,O\X,v~^naa"Ųbh0g`7ܝvY| 9= 2aho;b6WS!-E~Hft|#*i{F0 gtit2? 3:F`flzJ}w)Z?L#6mJ;.؅fߦ˼z/1և8BdTQ#C%vgn؁ߚC!69>D&.+pP x(|(|())"*|N!Rؿoa>dtۙn/^lŃw|8 xQmFU}r{pp;p2Ʉ̳2!eBʄ -[S<@Dz&*p] 2٘X?"Q)fEhXnx&z_p$6v!*p0tP7P@rC[ =Q9 = = է;sDNNց KfRI+P' CK\2}؁‹‹““U9iETb!N"8]I\AbvFUQ}Q.qKL_T;ﭥ߄G3Xu;Xe ~ϝx8g"_~(A\DFU^|N$k8^}CPHEMMM#Ds},*;7$33TjJQL:uuP9&Fderh*7+e!%NN OFb6na?e6nF,bs17PډȄQ[].K2ńZLhD &te]֨bp{#+"E@UND;d.f_OJ\CCCKKpҌp)5w7PQxʄ\I\Ģ'(A\DFnfav`/:R/N;bZnbd#I`js R}Ӎb" p\$v`UA&P.q*} 1VA16q%NbnnrEDPe2ԕ@ h۶sF]4S[bzȄ&Lh0dQrըr:N@ovCzKdT;LW0]m;M}22D@@60LR/?=QMF58P6ѷ F=hl@;pӽp} ؀u<ձ6R*GTXגii[vŨ8u*Cuvu8 fމHC᳈6y' *q3_ITbj=/. *cOp\+cQx ;YwVNg5Vlc7~OA%YB$nCFTbqPɮx8U8ú .- 2ͽD^ ŜxO&)΁ޮb˛ D¾ۣN<@M;%J@DV[Fx>PEHoTv6UDSK&Z|xQ2nСaqE8xF t7=L2&sњ ˛iJ`T".%^7ӈL2:Ȥv&@m   ] ] +J X]p{utJI@UNsw.jD%nஞa&}pjty8JӮ;(Ti4)7:-'q/P<]lý)1_o]˕q_5B~N}I D 4T/f{Ư쥎= 0}+v+V:Bc;xU>D ^1 @8 GN:a+OضSaU >oE2(M'Qhl(@om}*+aBԗsQ 6qkBqIo_}Ha&Rͩn}K/؀nMNd&ݸ|P@HU3n%Nb7Qp2Ʉ&< >v}I@߆I`D-w?<؁{6l fr̟P)J0,Bc[)~Ɣ؀g%*p"C&vo$v2T*؀Dnn.e4`ցCT\$6`g6:jLV,S/.7›2w=lI9h(@-JQA$* $.$*sc̮ɌID% [ph٘M\&\D+ނYuYe~M<ވDMzNT$nzKvb?a!Ln P"m@NW"k&J}诨$2!(I3ѿB.d[CCxP)vF=j*  5UzL=%6 lu:Q(V:QP@XN*+dDU+jYiB )|kF&v>ETbEpQ 83NXᬟ8._a_GT}1vs~86o 朲9lGՎͫ3<9KnΡ3C+&蕓@ tLk#Q<@o9:(Cz؀g!ZTh.C[=@71V a M5)<@{2Ѿoy6bxۯ2V ^>ÑRd}ڛf!Ћx-0bWuɇj̟p2Z"[ TL0ly%Ї'Px:7p2t3K˱c3^UP%^7пoSО*Ngt.!V Lȋ_/n`PqX/p0t0t2t2t G7C7C/bxM1fz8bhbωLpEB\o5 p7ІEI0seE('f&."mmaD=xh_f4~8?~[|+ Qہ)i$O4+C)^g&NըEP" P[Zumn"+Y9 &bm9N6)x7D  yy)j/KaN AwD%ցB8H|@9A n85y*\$6A ;Vq2Ʉ<2!eBR8vR؁}6N^-Al3Qky`& ʨ љ"4ۉW`b {cdHT:Dbe}c8P m m5D$1Y:p."Ch+q\oOЮrꊭ>z;G_ 5EeJ[Az.HIY-c;Bc8HpyC%b'*]M7*&Q؀v=;~8ٹ7{ȈPlD~Ie/&U q[-@=.cy88;=e,D o S2ӉG=.c91S<_l'M$^yw<?B? B:~[;o'gӕhźdig t*S_ݿ=nIppp+¶[j3_]uLj!CC.G*l s܋Ȩ&RxPX) wf]b/YY)Wܗ(Nvҝ@@d^cG &8/1*cFWT{`E>HGvQ 2!CdCʨ7m+<SѢP18Q  C;CmU+zETD ߄ D%6MdTD;g8{Y]~DC"ӽU8a ~JpkгW5tӧwcLA<:0QPF X4f&Nj2t()f66|^W75Ds;y?D O O<)D..ZW~P ^ Peۏf@7$i?tb& p-"L@eTʨQuFbJ|@7Ln?tHbN {y)@NaM&VKRTPY4 7Jq7@P~Șc3Qڏ ~x&p/:J7P.vbIqbbHqoWNv0]D L3Vg?NC}^e̥CEl@@aTuMcC&ԘP4ӈ򐡇UWINbUN,h 6`B )rm$rw<[+'mm醹ED!6M O?+8ECʙɊɏ2&?hϝIވ<1;BaRX)]2q;'8 ڏ}8(ڏ/Co ́. p<Їi"Qh!CЮ 7.&i@--߿B~ ŭR.Jh{⍫o|]Cw)F]]Gō UW4րVu9qy6حUR^ }~C{Uy~oUL6Xy. / / O O O  A,}NCS{@IdTQu־Wv$6Y .dh Ed0TO`2h$*Іy \Lh2!F2*aT¨:ꌪJNXyy  Kv M¹8Q&?M,;o1$*q}7P UFB\ՉfBy> oKoPM\@ o^ooHdTQ-F#IJ&i1oڛNdB m&tT]R >2]*T֥2v]*rQ]FU]SLÔϊ*ш8p1͘O^|k_E F@puޱ~){Jz&J.<n <Fxc[JF\zN-['2ɨ&Zj3ͨǏ!%1gI\@-c3 ɞ)p1t1t3tCCo#Nb.39 L8:qj#LHEEEMMMSp QQU<$8~u;np-%m]HӒйHG%ޫ( uTSX5;C{M&\$hioCZ(sxp=;A%7r=;%qW_Y9ʪSVڕEɔ4dS 8U8hN@[Q.([%28x7P4#7bU vxC_L򷃿~p7\]4}1Ir7\?4fSEhk8!^mhbCl­؉jCd "W~'%ΉG5{bNTtoՁ[IٔIP!Ks6o.zCٳe銇QZsD!"W<"GL____lS8pނx'Pۢ`mi~xi cf>Ձ];[/p2zUZ\OX7޽jډj0ɨkӘXiꫦ4뵦Wk*ĩbjK3Zb̋»".q0h898ǘ G3p0tTE 4FL2[u:qU 0c^~ߟ&R7~w7_pwu+6*}|8.phh閶@*[q0t0襧T>l@ YDPQLSFn$_ƺJa0f?7[4?'Co;۱n+UE7f}EovX?p2X趾@aB Z4]DKw9z tf@@7F&qo؀(.V1p'qLe;iD&K rf@U pMT@e̝14 Z7g7q)p(ށb&.T z3ٿ؂*ntb6W3پ jOU"<.z*ڹ^"vNbQz dhg^I M&&vࡰ+\qSk2ֻv7q-bvbڠڋ'l&MCiVz}P'p0AIao9xQO#.0Ff:w1L3W&::::ړۇxq*Q[07p}HJQ/>Io'''G:{vn'QuFؘVs;o\J-2`nnMdd``tPa|NK, m(Zg;p/bLh p0Q FUgTXŤ؁g! pM`^HZ^;m7MI=`v cs1=-l"7'Bapp[_Mjqq4q2cV chx؁G6%/Q ꌪ3Qy;p+p񷓿` (L3:0ک%Rv'yNWJ0:Ju تI1iڍCC7Co fx"!b&*P.J@jsob!."jՈ*aLTb'6o7$2fHdBnb]@? _'q7o#(l&l J\m[$ـوJ\ T +cy08Ξ'p7 ^aa譻i10<5P:q8wND$9tN@=z·iƴRNڈ8pv"ZLh3b;8P]{'^_X]RJj2Ũ6:2[ 2O(P%p3fe,59vJ#nRxPxPxRxQxQxSPPVἌ%q;²JaA)D ^BT@4t2P,{#.5N!bTQmFUǍ4w$^%ք:]1̒'Pq::6nNaJCl:'ei{x](eO T%n`Tcj#LHEEE\Mxu-z٢lw2bq-B1-Vo?.|sǍq6pqAY{&Zpt/(B[ >XzK,zЈO~'gf,iZ׈KG9i0d;0rqNiz _Xy ,x.tz~\m8vݢAVt'9 ve_G{ᷮqc6qsY}k#N;s#ߜKWvF|CSCҐH@k@۱%+26%{9Z;ZyXgA؈% iEi:Cm D,Qowsk-gSD_F3Ö[IoIo $[z-HO6ԓ}GY= B\=J;G&uѦWڹmzmHW.|ˮ+;Wyn2l2ʰ1Gɍ@>->`Upnh(N5f_2g,$7\CH,;H ?.aV7g5؈Y $~FYMD!mkAwgӥp鄦5j)L8՟5w3EIv@Wat"rƓ!8..K}. hj8ׁ.nrYd4-*4 [hr#=U 5pJsS}r_"&KN,c?9ʖ#uln6$ۗW3} h˺Kc{Il #i Ñzpۗwyh, @>-kb!\cKzj ,|`H-b4#`E,@ㄇ' haIqJ !H ;LKlW h}&sY_64]v xx3fē'*g!V`cĕM56•}˼go*oQ`!oT]^Z'|;CuE&Nc.mM[=̣Lw= B1l53.z,ayX Fwhxk ok` 7z؟N7>eՂB@VXɂ`bXDY+iu4x72'1.]:C )fUf8&*hC+*h ^ >rKnjȫvu~hYLy>73hW#ga_gTqE7-dBoo{Ek {>J'{6i34|CtNX4u#;14FY;6Ġ{N~[cApmWUp% c$s4Ahrge?͇:"[/rzoe ¨ S*G^}MUZ|n21_.e8V[ګ t0>YîSp$5zzkVܢ%^:x.e? K|v6_O&,i汴'0HNحYp FXq0oXq0 .^7ͫlXyUHM7>ϋۢg.R`K`=" !_qV vbkJ,fnr8UgVVK0H\3~m?7zϩKbB~4 CZ81[?MCDஎY 06; avR/&NwȈ.ں80{vPnX0?n<|Yqmp p8dͪ i> X61"K3bqu`:dj.p]b:|ƹ܁|Ɠj&.b:WЧ9)l_?!WQȇ?LnhV 4~i!>wI+UnM{> ՁFJ@_ 8êkhؠ{6`mU's}@ @"p7mA&nS0>.@&m, 4Qx6PR"[Z 8~ =%TJsP*Aul˒T^h3@)7 hs:[h5'}p]M9.dumTpw_k›s6VGP \/欎؈Y $]PS;?^!ތmuՁm;q, N{cnj l^8w  ! KD+ҭ/\4&L2,uhd/lo7R0p<<>p3 px[]nٛĢ^ 4g']pLdb=)o]t7raRr||he|xpJFQv.i 4W~`7 'ptn@ ' ׭#%Vg~8L|7)͇yVXi@ R@x.͎u1yY 8`VYuf՘URH "&FB }p\"lys%> ,Qu=/Y5fUbG W0կfAAw`[]vgDg{ xx';gU.?I[}&.&&iNJcg}5F`.>]QT q( Lo؁~.bV&w} VfyF, BNnNs=+ID{V[N#Vb5?S_;AQ(pP8))}8y1B]#= )+:EN<|cHVYxrRa!da!* |YOfps_>70'A)@-J^&)@2f`V Ye/E_h & <Ϳk:u,^86pNbVYmfuYɀ {^+86U0gP-^`]Ľx0dċ74] _~#M2qcvG#21zp 9`D;6̪3j%N݈x:o}Hy O;;O.>|70Qp i/B2> J`۰ҩXrtHֈQx '!/&)%_#R~n6X; SwA {D| mcf{훳{'7.Jn%O y-'X?J?Uoa}ThUm>=ڶ#EMlߜm^mHǶ]" %^ommA `]rޕղRe2WJe.$^_cvtcsQ෭L_~К?$v`m74[Ak؇8|W5ؾ[R* SU|Ϙ8h?ۊxGٞ=mTOE{gٮh/*}Լ߬젴m#eJӫ8-x&p_ⷭ$ZT= `CXva`9ĜVt׶-(cn&^Lx2]h|č+&.Ag@-`=,-}c0;po]몟}b=ڰzXSo ²)G <= ɢ~%f\ V =)_&T Y;] \,O5 U$u\²S5u *)u]>O[-J-;J`OK. xvWn8^%U4[̲0#a7N̄Xv΅ YvϘlestY2?hmT*FaHX{tMhR5ɤbTKbTKbqU5?ڹTft|_M_g#Q"}"kN<Ɏbi2JS/han|i~>βb[ˎi~n# þ{ےQ2ćxZ,ZhtawA>[ŰϽo|;Î`YOZGNoOou>ihX?1R/:6pa6no1a6aՀ51rU*2W2tU]T&ܺ$. lKO ܞ$$G\wI`]D}6E%MM$߬fU5ַUjbKUUȽޛ_@6(t5[,^*^7}ѤM*زҚpo?&Dm[VzftWn$Od hȴc ux&~2dB -`Vд _=@k9ߖ ?lLܘ3`v~Cb֯loNÓ&1ɇ ZSJg?Ý$92I&?I‡+ afÓ$IX瓱8@vO;$ݭ0wIIk*zǝ]yլ򔗻:l ]iVE~BS"ӰuǠ 6JnCW5"W[#ru5,p^:MzUfs^\n?'7L=*9$:ŧxK|u)5\ɾڦ裾fD[ٙv||;>ѕՅ%}}۝]z-zu`>y]TwkuXU U0yUU 9WΪ/ХqA"qu$d.ѭ%lI o 'C/rg|\v$pWluʵJLcFwH v#S"=:p@X C4gh'*L*Фِp3clHGyyJlZ@eS<%`41%KI8ݎo@SS9JZ#Fʔ@3; dX!7q}lsZ2Д,&M^N8E/XX6@듁&6  aэ>4 HP}h9DځV-mO8s.> yh}SZytxjfm-кʌiycI=͘]|iox9`eȿqדfzncGx\~B,)@^Gspu'?X_ Ϸͧq/(h3Mvsibd5IJ07ccz4urUpgJd0e3TDՋF2lVZ>~^Բj$֋l%}_W^Tm\SF`供ttWDs(g{rHڼ,vJ:pN7r^ىjq{v9WnNL",F,(`FDGG㌆ }OA{|o1rUrԔI. r.:pUo/y9I?hV ngʹ峈PݡkdQހAh`2 ؓ7\@ŪR8d]oyER]0jŦm]jEV] kŵV]kE}*ko󎥷Zꖦ2XwK; T(ni: ر ťb+G c0;@[g_2!TK6, d3XI-C/0jZ`LEv&[0 o(b{P;V}RS=)Z#:eӀr>J]@ 3 1xnBŜ6b \#nnތm5OM,,N,t婁xsϙ 릏{@LxZpZr 4jq)nioA&. ? $;2'F’[„mhrgJ$ "9NIQw$I{Gٝ?0wǑD6ۄqwT;]\kt2x#מt]Ei:T* ?am2aD+]j?h%ipZVg {ޗ$w瞵epϺbdظ{%om2ܵ۞{v"w 5#0f{N[\ Go򊛓 =Clov-;80-x(Yb_xcGm7g'۰X|fǖ{??c7MWg#&9b[~lNz5$6up;p0`;_ SbEl¬JO釓h/g+p_? ɧOv>|NjzV`RN~؁v+\X/|5ݙջsvW?$~CT]dK|`bo 72qw?a&އċ'O&LYč+W&F+x.w./4~9F+2gG=,@tB&pn ̪T,Uɥ*#³[o87Bw lX/*|QꮄLx=%;)^bz;?Y`|T" :9]CSYJDj&=Cxx2jI<,VQ`MĔ\ A {}p_ 2Ŭ /U !iΧ0?Ml@ E8#qob*8TOa B .%p`ڕ[F`z{w @+P({ȅ%gtg{`ޥOC,t^fa/{ȅg\8Яv @)2`d8KOuj{qN lJ,qLUhXrU] \Ʃnlvܘs9p)/{la.V ^`y;{Nbe==!|%CՁ8}ۓ_!__ _w%n44`Rm_ƬX.=³ÍEYtb&̪egג_EXil~%Nb '%. fG98V*'h-`vΫJAKjq-q5 ux;1{?|A&ohlaO;7 V%(2+-.9BO*kwto7΁Y\ن~8L\8E|ӟ72;")_s 4Y߬pr/?ߥ;+qş%E_C+5egW#Nߎii'Ǧ;?Emfdž $cg f7|1_L<اăNjjo؁!5ao!!` j h(hȧO;s̹i{ ,8ʢ~؁g0}_4/IM@KdVYUfURVqt 5x݁k+p{ l؀%GQsLx1băw&nLܘ ͇7Dn M!/ÙY (# { /ߜX*5{NzUvh5#7WO&%ao@T/?1YfusV[W: kڥ/Юe i9/ 9|/2qc}&Lx1fć.+xY ^VaagQL/IXMiwB\ۈi4Rtw#1>vԐWܮ vEotj]Wb⢍'7LYTiUu u>d&-)4]ST*F \W;6i Iһ[sGl7Ԏմo~k˥ߚοK5g)rު0jn)-inI^s ՛VsIbW=P=V/~%V1o`KQ\kz-fxr7ۿF 5Eηb=]4mۿjA~YhnZ7\5"C:p’1Aw /tЛ.yJXs}inѺY$tۿ* 5"w*r{GtY[F p7KC#:45bp4n:3l BhjETv}0&'o:4;bz#*:RNz!jnoŢv\/n׫_ GUG2U޴PvU[ ?nn.I|nꃚ^_EۿU}#]Է~ɰ1/b=clU>7].reX_ <qʽaOUDUA?Vw;lQMܓn~s{[X(~ՌW?78ֽӭ{RkǢmݚ:wykoAa؍`?q1{uOWm?"|Qg1F._e*٪`(~MJk"Lno|j(=- |TsYgZ2^;į׍/F&^Oֽzu^gCcl 5 A7mߧ1~?viykcoc}a~Y]#d[V-?jj9T~QX$58հ&6T թ>i"wJi@&لK%ݠ&E05MML5)馸̡߽KKovVS||&ofu^ߖKB Ũ%qmɲ e,#3l$=KEKLK 1+}oKn4B[2\Wf".c3 KΌ%SL@3\ĦKބ[ff0'\t}> ȏ6HvI\GZæ<6!RVRT+>hMbNצxmd0R'KOU=֧>Uo#&IJkD[ʧt>I_rUuE-֋6}w=/W`.& (ww)_)zd>d+OErҝ0n6lEU"Ykw 9.-9JZVS>sgM9a53Wԓ;ʤ܍6f1'۔_\pSE>ν.ڽUN6S|U79`M9B%+bx!͞fG wuKvG;eknǮ246#pXܥ݃kِ [#}V>^&qLb6!'wRi}eηT+3]@ Iwɧe0&bM v|0ֽܳACOScͱqu)Xs,i}a75b׌Db;=i8%Nc~~j%AQ.igӓ*r5=40Ӓ+BXb6a^'ZtI&kĪ̀o%71̏sn%3p|f7l$o`sF}|-U.:4Ö&Sǿo.jx= M6&nLl[f?K,+h_0桁oXSKn7{(0fPubo@t=+u^O%usؘRZoh,H<] I+'ݶ:ƾ`{Ò!dlw )턝cCڮUVAޱA͎wl{k rϖ0zvهְ=a#R_Lz}2d3>V OڙaDgu?OIfjhdo L3UihHSjdHSLVʚFcĉ~¯cG7q0(gua&uV_q8䚫3#TI#՜J|.Y-%__'9o|0 9F$wt`O.i+5_qIlz/ a9(dĚ*4حM3RI}kئHK'-A[y:C{_fVHM#ԺYkt_|6G 27$L-6p8d<$ X p5 :EAӺsCr޴Y\P>-cu_z;឵tM"ج8-ȭZPlϓ ¼J>?*tnG&bOI3l J\7#jo⯆Ṱ/<ɕfA5 왾zإ-,QS-Z:%B܄o~G}+ֈP5YA"a,ow'0[ -F(Xj6 o1 Nn/ʍ*l@nu>4@[~3/CY=sًݻ/Ђ=+7&nLly%ݍx-6JotUU5lxRW_2e#Zb!"i?e0bz>/$CKt>IߞFOk ots =)]AШ/;oŝ$UP.#b?IѦHܳ=a,!#q"5fv+Ei^hՃZWx)z@lLMS^`i𛙼 U~:ԝ{mQ4'6|q 9$ipH~?YdbCU4k$΅0kDh7M2'jyG 7qӝ[XUZlgǿO_7q%ko_5W/V\?o'QO_}q(}a?|u7|C%ߑyAo_ל{dק׏pgq;?fuaMdą Kܾhee<؀UXkp"l8X%+v`=D>--Wj{Y2çO7.>]|:Ԛ?hM??Sk Xd`YĒqѺ~zkE}XX撳 s+L\Ȭ&j0ά:jOXK~ףbncQA+ YXȒ_Tԟg 5*q؀&1~>1qe%%.y =!7$\UP]4 I- lXCY?ͧOWR.$Lh_ .h!jܬueAp'FAlDvo؈q4pqEW؉Xbh_z1o3:"nj=lA\oW֑6 nu>i$8E.ІC&hn QM<@AB@z8haͧO>|j<+ 4pM=hZ \j1ͬLh:z w&6dG f<@݁^AhƘLX'5 |s /k$ =VhQt?a |ѸɬZj3ͬdʛj" q; \mḣ/:|VNCRS|j>h!.>]|t'I|zr<ډؒ"Q4=8鰚tgM:&]aS^&.6YfuM9wB9"W&vk70[#&}b}heE)x)7poO=3$փpF\v}s΁9(sHs'v"ȟp]oV?%<[: -^4%}#zo: 걇n"hhsm9~7Gߒְ&76ʖ2hᷭ4{XJnIo[#J~ρ&Zhz!{}+4ΰLilb%Vi@Kx6iߚf_t/Wh6RP tv4[%Ы *V`V_b =݅nn{%Z!V.tB/X%n~tuĜ\bEm e4"lĒn!9.$bFĒ:pqTB/|/N& of^#o<,@H[19 4VM=|2+9[5ְSOG h *kҡzkhŐmob_w{h6=%^ćd CYNuTSX%Y}5=rϺA~E4L^bkXgkɇ}6[+u*p_F7\mѕC+k}7K5~^ֿYBŖ5tߪfh9畚~W2{c-ބցLu[AW'UnU މTnt=ՠh\h^%ZK>$LhϏv`LhѴ5WhUa }Q}he%o/X;Ыnrz2 WhZ:dB  #z戅Uޞ8M&S ؉VI\D =ތf^& Qh1p ތfl'6YD!u{_2w쁵/пov'8D漙ʜ#2^ MZD vƞkMxM#ԧ <ڰ  w;d@0 (wwdd] Il&iI+XG t5wR] x)Uz0&0'w%xs\BoD|jOha̸6o! ?*_TqlF{QvfDQvgD{-Z7{hƧ"*[ /pkJ6E\ȥ  !Y/:Xv^>4j>%c'+3aCL݁61y؀9W2NbGyИ h!R%bȧOdON>|MCSo|Z+ЕfYH<؁p-bΙ$x؁}-bU!欚s` ܗ؁kdVY fՙUgVm !`/abnv-Dv *Xe6`e! {? pw :pQpL o7 L\ľG; 翁g ޏ]4p\b$}{6XJ&wgΟ=!n>٭t|O]fU=0vVhj}.k2{lhH2'O(a#fQp 4C.Α-|GF+UxqEk7䯃._p*dypgr0xcy؈#-7(P2>U<iCBli%[OBrʸ$Xm>|" un`)X=<)°W^ a,O7X/޼lX^`0^냁7-D0U˲Y'< hyXuK`ͱL:%M`găgZu'@RXZ+ ш7t] ;𷇅:%'앸/8bVYmfaVYtyxu[!2άP0X&>C.n<?09pp0ֈ|j>Ia,;;%.>]|t'I<˧7?a,SF sh,']7p5ap<=˸7i8aa,1Y*qC&Hċ>#<< b}yN";G&YGt57q{ڵ@D8kݣUl؛v|bڨ`![QaզnaO)N_Swd&b76IdbMؙ3q9M'lka`YĖPbI|׎q\8Yô40eli_ l|&=4 ,|M]II5m[m%؁n aE:G¥~؀g+pOJA~T7sm l̪1ʬ**9v QOlGh27`oK.`}t^߮ 862؟GzIX7cv}2\D&L'1v}Ƽ(4 ,ic.d5ɫt_]4OaE,5NSm%f0]hڟ0+͊ivQƳhȮ.q-hM%f`h 0Š2KLf]lB6$ZVW؈%6֮ .b oorA=M؈KpW 6b+\b,6fn6G^~t/Ư/j.}K1ށ3bZji}؉V|Hf\=JL.d.ִDp2]Xsq/C z;gEpJJ$ \i +{O!./פR9˕u6=-7L쁊ě}Bw<#( zG/s3/@:|Zir2btN>)\)&p:@'+-ALQd w%k!>\l("2LQ3Mq^/p1Ĵѝ;qqkÔMT^="괯p?had2 We-E]uQԫvN/R1ç'^O؀kEM`z^$m-阣 b{'o Ts x89isô3mb,iKH!Eە"^Awގ v6 5yXz6 h_!̅9aȆ2]Ui%9Có}x7+{ıؘUJ*w.A *Vbر%3/#.$bϝ#4iki`8p,1ݛv)1U5``oU2Vn19DiA͞τyBM9ON gţGYށ-{!B NV`ЃDsq+ЭdNWŇB5| VTS؀p'['?89CSz}$:jMU<\_7<PY4a69h\'KX 5 a.kdu>8rՉ™"FɄOwZ1G%_EJ\%yh:p{^Z-Zj WxWgKE3:N!ڋFOr%c0b1}uX8ҩc\hOɖTiZ 7DW )zo@?50֎+ e ZbX؉O lqpzM؈6p{ptgT,m`%ц^AEbV/: x+&\>̊  hADI%Ʀc\^(l p0Yˬ3?m4:90vm? :1M"b +BZz\+} @ B'I# P )q=(ϘAAp宰8p&.u^<⑺UfVAz n҄=5]_M8+1T];W#hΨΘ"wVRye@ 4(TxC`hIϢo.#ZKX5d;*Xq,tfńS[ޯ_>CQ嗚9Ny+&2*{v%ؙ7E2 ofYZ6*$(*ި~ʂVi&JM޺ /@<䭻 Jvr\&yFF#0).8V'4}Czv9'.f@xHūn䊖+<\ѭy`R ys7ysGYI R$n]8܅*ItY{#78:8‹[U&"p, oփ`__’Yuf5dVV>T6|deꭩ£:4C428UvYMfU%gH /wsͅ7s>܌I}k{0Mc司;[/{'\;6=zlqȅyra;I63 w; 6#geL=L.j%ãV< h%RʫGH"eV¬P?6J~]\x2\sa˒A?ɺU礀oaN2 ؅ 'dVc %s8싇}q3쟽'ۜ@g^aоA'ȟpIeV()\ {=e[eg\$I%Eq2Z$;K6TD!{k(c#6)sL1VhOδܛlo%΅\XJ"jψܣg 鑩42(`mPel39HH+qlŁ'dI#AvRHl1G[ VoCy`7I9:4ۓsH"bVYME#F&5{K}1S@e8}}TsEi;/wuQhN..yR&O EJ2#/WtKQ>w|Q\'LLB.p*yXl֬}\QwV̀FBglt6]:6͞FQgAj#w{&WgGpEnd4k7Xne9ߎN\:֬7j"j0&//ǃgrE6)\`חIܰ7lw:[/o3h)u? oy < 8鯝WcişGG@pO xʕr]?Tp_r\<5ృ .cGlڨ^;$uׇ C*ɓMdOxa"X| ..Cvp0u'4J2ULm55gMħ i1]ApOk]O ѹ"fW$\OGp ^}z餀>[CЇ$UgVY)f%̪1V&%O \ۮnI%70)P6:` <\x/+I.\{b->^E$`&KgFVí&[Mn59j"~'='&~Q J07vAt# x69\xqYb;#%A 8i;pJ6P/Y; tCpd; >3~@Y?}<;7O,}8t\m)K[s\f}#y@==5y@њ7.yAﮒ‹ {w}~;'A+Ff\uV(rzpQe@+Tj'efT7hGrFkUL]ҪYU TIR~4:iUw:JZ#q _.|ktIJ#I]Yln6z?, uhrrqz19IknaM.:5\ kVUFzq`Κ}M~}vxаbY>āMuCSyB;OwST)Bf q5V8ɣdUd y;]Hj}LOϗWNBEc}Kfv"7yk7Q+zeEB 嫷 zw|BzҴωd-A`MV/n#PFCtIvr\&y+f_Ȇ\RI7$cnM֏`dՙ.Jzg Dp~ϏJ.=+ZWTL#'_צ/p0ɜs^̹~0KGY~uN },d>'7V ;<~-=e$< L(yA/(۪QR<`~U/&#x:jyf`qTejK8ÕSd5Y; e6Yg{pI.|kV?. KA h]䣸1Dj?Ϊ :-|:OE~7 E<6GA^u{x=^ᝲdq;YH Sv(U>2qYl7aeurѲ(cV?*Q?ja Irv. ZQ@v=dL"7aͰfz5aN p 6C ٯ~Bώp2gz?)osvYosvwd'sorEr /ϸNrpEJe9ȹAv.ٓ2u"'9ʭ[f'Ͱf3فPALݎ.Zfl$Kq䜠ѩФIځi¬ 'N:4[ j"YGIk #rѼGB:,-">&SF xŌ^>vp\E1Èd0{"kޤ]*'cȋE8.Zq3нoV7GGb 2;Ǐ?}#7wasw0Nz{ oZH%m,lqeVi+;l8>6iskTFƑtRH]hsFA!JP[%5_ؿ{$Qn !7hJejhH<൜0}|/ ~[sk۲ )YY(mzBp6p U9F:lR?C 'MkؿPH%9uM MJkJ"Foap6v?HSG[{I?tQV#³@3nwwR/p0ɜs^̹n?{)p{6~n7?JQ{MVh}/IkpW2x`Py@o;;+<RD|ZVPHULP]WRQkk8pvTO'Hn!7,;Iհ+FN+`N3ՏF fMT;8-bKIkE0s7rv+KCʕkrp WҚjigerJU 4\.KK.c*;85ZSqA K 9 r'),^6zrJ\9I6.QzP'c)\L]LLwSS;S;Sp+l-IX%F6p d&#W ኤXqnTmCvpmR9qIfՙUgVʬY j̪լNU'.vqEsmWP[dq~7wpGEpp-7|o(y&7S ||ls\x _>6s|\ye[)c}zr,"e_=J?GW233UK(Mvp֌z0 GԃFJɹY:.i zk$Ʌ=o.q|<ֹ| uu&l%3{np9R;d,dK*9#\{dtBvXfUy~ڟK#Vlbm LT؊=1}gmtͩol` 2^L2{:\NA{; v`.ؽ?G8:l`S2愼I&::s/cinNI6P F~Xݘ?ic"X݅QIwaP/u՝I 7.H;cX%\é` cY Nf5;0N{uƬH1NЛ̹Μ9c;9r#?o 8+stLeV)y,z_`n`H nḷam{[tAC׼Q줒8-JCnrA7*8~A%76' QݿX _ K6PluE9p Zd\ o{N>%luh6CGz0/I']89}T-s:=1ՏF': K. :Z5˖준٣d:c󒇴48N*)\/`VF ;8gMþxRO ޼>8.`os'wa~Fcm:OްImٓ]%=Yz`lw}pY>^Чg }}b|=yA/`5X V|6-TVI?GANwOJ?< 2U6l*l$<^PN NrIf*)յ$7x[ϤpMҿ\!o,II8t\9j9q~~:[>%;9c&5%Rpyɬ0ìp~K6Tɠk Req2@-ww} .cKп I[8CBrNgГ4\?&ɅzllrCr݇'ewgl^\bVYТ$< ')PIH"`cjs<2ͯ"%'ɜ;ڙڙ0Ul%p DY|uH'W4+\Q犔+RH"ZhM '.ɬ&j0ά:RfJOlVpe|rRNv\ +z<;hq&=jܣ=jD vnr6?Znn~ʄ'49Ep3ͬv3/Ѡ_I%s+ K%y@˜4 $%FQPTTr4rߣL.r-ߴ&zzzz+DY%L+;y1ɬ&Zj1$eHЌ!P&Br΅s \܍VwKίDr}C b{&=Ecu  f5լJPSW# '4Ē̪Xȇ+Z\6W]QJnw<'L=bʰ#S'Sar92쪗< GIUr^&'89HhrEsY-fj!\`H7xd]/;d0S~ _4:{`yu- ώk7D)<{3 9ޮZۏl?ꃨhl5~NG/W׃cZ_KP}`_CWx]+Õo6{=q}:~WVzMfc_o e6UmՉ]IN-*;xb'_\*hӔ#~bldmFv?(㜴*NFѿ6PZbnvyv\v$6:}RR3V~ݨ^V~䎣aS$<~ξ֋lMBdS{;61*ʦ`K OxmGmn0 o=(]0+;hd< 8UgVY)Rf%'ڍ %v?h$!\o__ManRO\'4Y/7{ozlmGA#[I۵y[9Jz;ǬC;~<S .za().Q9y/~X~/s(cQZ3 荄E7! FDGmh %Ι LaC6xHkShͼkX`E4{yAߣQpvjm0%]y@;GF;e\]&K4_K4'xdVY 5vCuCJk>WV^=Nw&Vx+/xcҕ󦳇B%" r@qf|aHJJ hTW|y0r)㕓RC4ީkbYE.iYrLM7HyI9"ۣv!%rosз9 59hb y@?I:@?U}Ilĵ\ N78; MZ$NwCLk& 3%/i ϡgn+/\-cqwcnSFv>s|tkcCm#_GJQedswvd=ltΔW/V [N9lF/GΎgXQS:Ra}DCԃzPb3'%Y~<"9{Μa/:E[Fpؐhd0աd"2"gUjTO4OOrK/_AE"CD#g u3T,)1"r+Y%:#ZHfRQɐrpF"=3vf%`،ù on +v?'3ءӍ];N N6PtKl] iDv!$v:NKEvǍO J(YL-lһK0CeZ_-wY/ ' F9˵9ONAuS|ߎw}㹢?CWgؿw^{`:Z޻Qޕ{Q/qKxWo=췵hFa]mxSs|f^}M9_s4k*qw?)#}W4j`_f?ViCGJmbGnWɤ~cۜ#n"m[ *'5iW{MB۪mIV~;I{3*^)~JڋfNIٕ\!K?)I3[MڷC!'mZחz`{@믒ON[lj tw#*nT͵uqMV"!qNw/rs)- 㖼 ,X+Z"0 /`!g`v! ^@kW C%Qy %JBTWlި%g6\D(=4Sކ+Nv/*[e;b\53Q+"rх,"r+"rvwDoYguv f0ͰjfJ~:zwkXEgmXw(_ET8dvsn^rn^4Gz- rkO&YZv׳]v7kѳaV?c`Egw@~ 5U(յi_o/;I*X&+\QB>L …eCo9e"\`KBr܌Pn2U*LmLmoG2TP2D9 7RnY=bWA`;d]Qcڭd7^\xqH.ܹ2gh\;qʂ1ueE$ 5ɬ&TsE(; ajfZ=N{Mvpr38:݇cl`_$Krama\frYH. y\kK%=yMNr>?Rp3?r<<*9EB3 q글A,ErE w.&IbVYmfxU~'Roaȃ`a>XV`%2X V@X>cЧK.0ìnͪש_e.½ N._ i $uQ2y@?Aq\ }"Wtnd4z *볌'/8O\oWdVYf]<ȓ% `VYMf__x|.Wtk ArqCzr s7˫v:[S$Te23O[G9z=ȀUr HpEWɚUy@s/J. Nr΅\xp͘YTN*B<߈H6psa7Y6“ Oot7$מr6.&d+<҉ )IKCڱ~.()Ab'C^9e]x닌w'}]8H.\X'yA!g#'Z(,(7xHJBnIn|wf9 dxeyoeSo҅Zά|GU*57qƨ2@? 8_j#Y0=I! 'HlUVE#0) I?VIO4Nlv6;̝vO8zNC=:LG?8@xA@,ߗxb˜q`R6on6ons( fuխYŃvR:+6? Ar-p𷇿EᎤtQ^e“ keǧj"G3˅op%Yk-i%Y&U/4tOKjQ"|\Jpwǚu(C0ig3M(Ҡz N%Ʌk V[w e'<`d ]t=?,1xRpo͐UlأI*hjuN.<w+qʬUyWlҎv/<¸V]6JAru&9i-#<IHڥ\saV=Ѐ^dG=\o';[fC h퍤vVI.$\j2zPa7~~س3sٷ9CVsΰG?/PIaV2C.r*8.Vy2?낓d'Uc% nxOvR;(3hQ8UɈo$QFl$'hq0gLgvKd^"EyH&:أV[[/"#e#^(^E*xFDݎc$U+z~TF ~Y1*Gی\$i+ȶwQaAN[pp/hm }T~7DIɅ|oxAm qvnV$t?Vū +dOPI?tI* U+V0>ra+TV>fD6"}2I!vNvҏU$ܤ[ 椐Nvɬ׻<ţɁ6CM+8dk9^|kb7ys7ys6=ÏDݯtP<_*A/2 .vR% DᎤtȍ} o.|·T@`PA( m6Cp;eZa҂{ܝd#9ejmd03T!'yA?V o~y\kȽp"F|Bq-@68QqEvs΅;rsdģ…eCFXE8\&Wga'.$SVSct#SO)Knnz>T?VCvP7p#fD{q9%F= g8qHdY f՘UnpE+\ѭ+ޤ@Ur#xdr_*I STe* $G#K]9\f zÆCV h (BNVT|\$ .<.`7E1&1b=lgcN_,d#:۸ޡܫaק]bd_W_au,K[]oux#lW(i%cIq6 8K tӁ:гұS}>Zk3v: l֙"c2  }2/E9ǼU%h뼑c:'hȯЇd9)U1E_sb]5(`unR=R*cTbspm}>n( NBЮIgicKZ N; I̒v=F.]WIC2"S'}t6}Va%OZYHh$5qp\2VDJrs$]AvZ/v1H2z$&9˽ E'Iל`+feƐ`e,/q,Q3O\͍aGlv7Sćϒ3'K.mJ~:4o}fWb+Փd:봷l~ѧ 2WχeR *Ѣ/J7$?36բvsM&Q4 wDK[ҐU@Yl(->[5^7/KlN)B5Pl:hbZ4VIUeaf_f:JVy?zx<oB*ٱy'vn={DU:OTŁiv/VIbU2/V inXT~}.5.$Ye&=]%*!ָ>w7اev,Vbߡ@KQPH԰VHԒݿ*QnF~FYg(QA{n=Ha?lc)ΨqIaTj qQDz/7&KY.$ˍY)QÖoF*Qi?{_IqF#AzI̤m͏B!KP\}kL.i۫Ekvr MB;6\?y:k7c@ǿ18IS?oo]э(H F|p+7yAJ21鱶Z#م}w7iYN6wosЃz Z4A/`qQj} {ƃTjng/7dBRw.$ (wFˆp݃^)QK&UQrCC}l3iU@ U"`@98Km}\j [T|+/G| :{տÆTP_P5ƒUQj uFӊUOm{ #+s$vVImvէQ?=hAkӪT`f+qM<*[~le-^Y'̑kWϠdHy優_fx (d+=T*%1dx-w|[5/Ѥ}#!iG-q~߃QہMvˢL2՞&2,lFݣ*G(kds/wRA-> l5]UV&$gGVl5p ЮGY)f՘UYEgF;nUou oo=);v05:.)'ݝ٪)*3=J|r Zi(h%Cb}fh`f쑇:̌3%E>c,(%HnGkvGDz3V4 )Z!YX}2>Q2OYA1t"vA7YD*ށ~y  'ŌYo|q3P 2 _|{xS{1/FO~b^@%/BvXyYYz[Y:vzq]ʋs|%KsN&K|Ono4 H>S~,UEX%׷t).Vu%&#q y oHi4;֩^=`Qh|BATES1YqyUcCRy5E ]m>"^!5ԫXrbɁ%X!U)%m߶G)^婽օjb vR3=]W^ORBRU1(; U?֝D6"JѦH$ժJl{ 0dG> T%&TuBvn[hBB7_Oh?H~P xЄtzƞЂNj7Yݪ-~R߻C⎳(jA9xw~?ݪ퇗6OEKG.GBkf&tր;"/vvK2)iЬR*C6L*vCv}V:"rӭYXR44%pVU’K^,y˒LrL)XcɁ%'ϵ4iWr$uCJ;t:BDjЬHH;H;ۋGŸ MHSuu Y55[Vx*}< Tzy@%~U2S a kXCF^Mј*SUC`}Kҳ#XOz"*!.yD}%nڠMTuw_NVk}oFknT} Cm6Gm Q?=kHm?~lrqWΉL?_j/\ 6~ү~}ݮu{zY߯Un~ k\m_jP` Y6E^~ *{XmjCYW2?Yf); $`NؖX+"NeeU㯉n!/.\1'#."]]3*C#X:jēJWxBO&]7MGp .ճ#:xnxh^z}ގ|9'liLeY˲,9\ڽb s+'owUs/XŜ =׹CyңB"@d^wQH!-yy4|Ҥ4B SHcIC4^ I i !-!nW_rh尖B:Y1j$GG]rĺf<wb،RXG 82k+5CRkĺ-KFv{b-:+։#kuLkԘ.MmkԴMkױqSyqs&5y2^qG\0x.r B΢s6#^J,\?F=#K\IZSI"-iy/Fi䝃I/wy_~oy>*r(?}9S'Iy3,~VOKE2~u/gKggYzsrɵ ¯'{'qQy/Z(K&_ɖm݉/RϽzH-!Av r _3=^ڝŜ=MWU/ėdKOOؗJ R>a_*'+K)OW/LqF:_9T~!K4Y'4wdrߩW {&iK}Dr9n|w2nahSVka}ed\r{y)}LIqV}kkjWZuju]aZio><^{ ogRg\dt׊LԦ\̨g4WR3R\+S/;l9‹Exxr& Wl޹NG)6<K5G>24E+6G!9G1OQsxxr~|wǗT [Exgz4ftKxLExWK nH?LVX_gAgzh} |iՒ=M%ΥG[y;@Yсs ,K[>bjp68~<,oo-v#{/SqF]{"\%gfx>6'ܨ/}KZM3ե[ m?@p[ӧ竟>Rӭ껮 V5ˮ3v_4f gڻq]hhZ|F;CNyJ3/ͭi;],{kE{:m-V{{YCf?dl>wXja_\Zjh,{/_-ucZeXz|am>,KJV~<㥭qJ&xi,Y xu!MW4JFC/i"c9O&4)MajHـܢD['AUu^nWK}1k=qmqw-gk˾w޲_}qW.GGܣwUqV{ָ;}9㾟df{5aj_aggYqgQ5='ڻ4f'\-.B}} ~˓k'KoۃXs7&cʄiǝӜ>j}-#{njm9O$Xszi[Sː> dHN2mwr{i+LZVq|Hz=JuOLw}7vi||?YxF} ɟS;?+'m7R"{/J󘟎\0l{~Kvdڝsg,g{?e07^|9(ɣiOM K1}oϺ9R>\?4S58ӧ*D~n+L+/nԃ7M!ANwˋӏ96S܉NIr7]F}RNR}7aP7{nkwK=F}"WuhroԗO7t~7g*gިWQ側yR,~T69yVRy[\,+nyﱺe!#(5Dz<9voԯyL|T/*ςz,,,81I_=63{}u:gGuF:?Q-gx6ƽ?|'ZʝG|v*wYΕwk<Q??]̌g2ʟ|Hxr]s]8ۤOxř!˒Y!9q9Nl϶ x^M?R^MݓV?vQ?ִZgC3+Crm0uA);;4ǐJ/ߛH7_^l+o'huIQCO6 }ߴ-R" )䦐#-/gOD Ɍh )40)Q4(ANNFu\dQK"Az)HӈPcQ*RiTeqmԑDZB")T 9)PHrTސ_>Di)m}7vF!H E5c;_BZSCov$xڏ(^z=E{5$,D)gDB9 ~e/ 9Bax{Mth,=pu$(=JV:ߙ+ X3PPLQGQH;?$kw(4EH;7]rbmCZŃRϺAv?[3BJ:N!;lo6~f mD iQ*vI)%$$LH6$jH1W $>TڳX5ZDBMDi"!mܘ;QCMDޯ]:HQ?P'DH5*J-VҦxEIU4 Eh#AhMh#MM)ɔdF2eS97}Ch"!5_RhE3)iPHB*T .)zOA/J:/^@E f$ (T̐%z<>)ʙL ")j7IuE~-N%TA%Z E;ҁR_ADc# \H "a9Er8ZEmaHXw )3weSt ]=:H *H:śD6RM%۔Áj>WE r.MEND!B. (HB6=(:Hݐ H2f#TRQ*QYʲ(M9lE:$;{E$qdI4H6H&$ VlD <]$D(MTMe9ߡYV,R;$ZHQrJ>0$H\wQN:ׅ!5ʡQ`UT aԶv[ҢBd&QCjԓzy"O(T2(AtJӷ7"M~]D ߡ4Fޙ2 Sf.)&lRdBAANNF2yki%MMMEE2#y%il$X1 $ g,YքPM~Hf geR~B!B )d B YvPD!BbKYH" 9!uAj0RջAF@8;~$TRʤTĈҠ:c jb_[ڋdddF2SkRꥑ /ѬP:/;קs3tktܑ)䦐#MDBD9`(Q<Ԉ{wnuy6)0)98$۴_Ҕg "!DJdDTI+委RJi*i F˟=Hh#YUEáEh#9(Ei'ҤL*ˤr}E i "mmV2E$ E= f'ZHJ+`âT)MHeЙ. FdH2ҤBbKedJ)䡐B auXD! )rRHLx*)%D$۔Pku_D2$t=W\$Jԑ g{6G i+P/E3"+'9O|"G)هH:ҞHkQȰ֒B* ]wR+n8)FNQC/ʻ~IR$D I)I9ߠ HQx J;ݨ/ZSCov-v_*_,-H%ˊ&jH;IFt&PC*jLP펄{aad" E^pQ_7VdIS:`PLQGQծL2D.`ޮI> i4"Je$x47iMZcF٤m6iMZj?)+ԘECB ݍh!ngR_D>]AtBh1;E)J3lQCRCiH3wBr&D:R͑tbT% RQ'%EɒdIJI(ިt:HB4BHX{p ޽Q_;FyW Rk>xY5i&ƛoRԋ?)ʼwHv{9_,.-\gW7}ѦTjiS nM5U6XJM=E " y^E$HR I r)ɔdÔh A4"!OSHcm$q괣.K=ݤՈ6Ry&@6R7!Hq MJE)KZTMinJ@w/4&nnΕ$Mkhw#-> #IkȈVCL7\/A$4TL&HQpjB&j"O'aM(ՄRQ!iG;CDi rPN7 ceoZ%IF!BbKk%$;E vR/mR5O5s-Sԑp } }POBZQОVnàkVH='456m&&""`FJ)I8[y$D! aPRJTt'OGP6rS8Ow=R`AM";WDBDLJeRY&eRJ6АBo*~+ -E5vV1jHhQ*FzkeQE^UEæB⢷QȐpcǠDEP*B2,pBҴI։HHHIIvH'sy };=:Hpv$gGh!`RMlJ@*Z!A{Z3$tdMIw-M!7}J3iu 9(䠐ת͵&Hؚ׺o.NшIH&4;ɔdwdddF5aTF5AgKR'Y' LH=䮄dJ2!z]?R݈&A:TjS痊Noţ{R$IDeQ*RYbT(6TM!<&,YAЬ}5 "%HB3Lé $xqcEw< I(䦐{QE!(CDiR~J6)?//f CD-"!E>!+L}tQ&&ɄJ-TAANNF2x᣼E$$$[h ɌdJ2xE$ICL ^(/fRM(ՄRM3 kB&7(/f >(/fPA!{By1!E!BĖN/fҜHB!#aۦ(/fO/fQG^"JE)T b&,pL3Q rMy166k_ɌdJ2H8[z^hu>RCà:)N<=hv M!7ܔnHkMds;C6:REHRDTIi% D I//d5]Z&:I4'ծR+Rh"!4Q*F,z+x1i!/&H@Er(D)4Q"P*BV,ZHJ9(PDM=ilg룢4 E$x(ܕrW("mJeS* ɐk6R7-IJ)4*Y|_Ңm )䁐n"N!RiRI!UL։(EiI7[En#NшIH&4;ɔdҾZB"""QMՄQMaIIcz]KLH6BR)ɬ"ugIt@+E w"%:HXgl_V!VLJZHډ jDrQ~Bn*٦BJ@ IF#x1 $O(xqɈ#u)NzCj)qfiQM!5eD^/H Ih @B9FU$qS|ڑEillm"AB=h6h(Ո(]@Q_$xw OA2CZT2EQAV+&t&]7꓄BN N!4_!ʓ(䦐r_E ~mnNIx)CCgF})<C R7Ӈ ~n$UQ$$buh!Itݨ/Y+2$8X¢t:$z.&;MQ"!R4:FTjewXB,*ϛH7_Nz}srjAI]sP|O*qv I> G=?Oۯڟ~ZF>-J3^3$?]4gd[R7~4ܕGG_/t|Ce\M_>o|4槺=5gzG_u.qH`}q !96M Ow(CI?Z4 9fg!ǗdFl57E-Oa.}>/,U+moOW{RϤ;Jd9&im|hg|gae4Sqf*LŽQ&ə*sf*L(<2j8z<E쒯e^r/A=dF9I7Ͽad~*CIO.mm_rB'y.L 6=e2—i̢V|Lڊ$/uM"=EԀ,f Bтz[Τaj`Q,,m[ ?m?q{F ޣ%*>Ŋh30j죄Ɯ%LKvG149?ucsU1n?5=EfyԌ'O|22?/enQhiWf>C{~+hOy2$ydj-C7 9VI[#{kٗ|_ƷylO#uֈHvRYtfb>g*堙JәԚ?d[ =ݚuW9;sy:j϶ZA{:p>{|ܲҤ/H}!G>K֠O=D,3}kLprQμʝ)[ZJR`_w_J>J֒Z5ɾ," X&BIO*"=˿v9Mgb~¾N2:'9}kח~׻^//KB_K?KˡB_ș#}ij/w3:4}o|?Q/Oak,urZRn,k"9յe \Yj,kEK5e}ඬO״͇vs m9R]{[֮kvZr`#}k/Z|^-N\CrgvφZgJHgؕmﺫ]ĬR3XygJʭ-:ĭ3[+JVZ:ng/wtֳtΗH;}'iYu'VIZVi^ү~唴)$r#*WH8"GwMV,B6ZH;[H">kFծBk.UOέ\su!Zo5Y:[}V}D[jpJĨ߶7:|#'V9bպvslJ8msL z/Wv}3g'SQb5owC:+³`5 Qx+Rc'#ix9ZH:ҿQ_W%uyx\Z፱6fzG"<<9 ϐ>^#=9>ҟ?/];+5NSsxxr~fKٶnk{5[s2v[#}Y<_HZ:VKx.Ӷ /HxJ5=n RaU33;xu{M MObx#{)sL2^߯dbR몟V֡;Z{~qR˗5ۡpFs+w޶s7lն-lݾ+s7M3]/;Sqsg*󫥝/.U}_J=TV)ao#ӭMka;XZV'4JKۊfU4w9 b*|?tY lZᲚEW {>}ma< ZJ s/륬Gtg|օfzV;4#-|Fx4o[V"GeVӏL3ED D2E{L- 5hkkӞweLU[ RzE/{۶,kU>d&|Z]Wo͑k o/Zx{ƭ~~=gӵF|Vg4F\zV|>[]e*2Zzf}9yrҴ, Ko<>u筘_Kk{f+lʟsNƓ#3wx__|ϐ\Qz* #Y^^̔F}ӫgIX=v}d2Nڽ~'Cq3[oM]?q7m݁:ⷭgJ䫮|SOl?Zzf<߹w#@}(SܫّdQHo>U7R]d!5/jV^A>jI^M5W^Ty6寍>o֔F`_=D^闦V/^' i_󹟽Fjw/៯Qx5֗*ym?|rQ 5pGx/iH-PO#Z7 Hhr>^:og|li9Tsr꾗3=Hx# zMu$fvB&$iSxsy*TooNdN~dfN cc-e?Rx˯y-3wuFkj-9;=GZ҉{(d짦{򣅤:HHlSɼ55Aoqw;A Ϋ56ڱG[=*$Z|^ٱ_\g@o냾Fo-꽠֢}pbLh#^rLwZ{HE]թoL6=Dr O85W'|7~f~rl_x'cMw~/MDE4oXw$l_ \{Euk:H!D )^ I)~EdqOHd dEf,.jH~>x ԑ&b\}G ?H Rq!ΪڈjE"[Cڥ" )ncd).߮x4>QxԐLrCѼݓWx4UZ!클(Qo%o% AIQYҁR۶I}" xck_DܿSȢ i w:ѫ oAGx&SgAP:uҠx$v*Zh#mE:rx+.V@QHB΅2a&-%HBFO:> P͢w(W8.E-$זo%{;&*l=8@5BZHdqB2$!^a-_/:H*D5|xzVBx$"_#$$z~Ih!F~w"-QD ~m}>i-/i 4I6I&$Cm{\ `Nzo IIHfh")ɔddsjEG$wc&J$ G;AQC$[h"\/+>&x3M)M4SHv+<M!u]rEZZ :Pȱr`mZԐD?H5$ߺ ވ.'t][c'5$x ]ם`m&Q$H/ɌdF2}3Bv!D ^BD˵XD=E m5yx?J!%GIo}'JKw.HޛWz_~ԑtoMo,D in.j<A^vKM+s$%$KkR"' ՄP- ՠPA2Ŋz+DȞ/]'8)|EBd[/_.D i1␌ ؛Pڍ0ک00<;):Hqh!e|@ء1 <llllRz㣃4-<;Ϣ*:H#drX$I@q&4"۷ڤ16LΪhzR|_5" m)$"_&OBD! )rRHF2J(5H4"8 i"C$ i "AM}hl$hX- ë4;27R<5"!ZHBI8/?D2꺈B8e)8O ɈR"ρNP#H8WGkbN5K^"xH'E׋)RY4vA'jS@N@MMJ@#5AANNFw',Z$sߝ $SM["Hd1^Azb>jHdM$# ng$PBv )$|{z1 Ҧ,CӋY-^GI(D zyz1ɣ|ԐBºi ?{7k,$AEԑJ/:ib =ScS` HHf$ g$EM$/#Sҟ tz1<F!ˋrCYhu$YJ#0ėM"'^"R~hyw6"Iֿ:N K~&c-=:H^: y~J+FٚFsylx۹h-$Um#$J#\i+iGAHk{Oj"nɵ#6-rMh#y{W{--mū42F3d4svxEQ/E gf|F(:[ubk}z2BF&m 飣PH{[(䠐B!BN HFizJ/,zR'Yu+G$!Hd AKjHf$[+C+ŢNNAA2! ID2Ṻ.2!H1ދ&6%y6{+{9BӦA!ZHR>+2(EBf(=Drw"OB~D!޴GoN/(fI9s4AD*Id{'/󗏄g:)xDF)gO5OhAݳ&{~ {&QGEl<h={"?H`kYe} FZ~ԑ66$d)t]֨:RDy ŷ瀕8~h >jH'iEH)䤐BV\1!u ꒺@ys'x5$טE[>HnF)݂@*p!클(QDu$ܻƏ# yk%<ߡeȈ;yi''?a>r_Zz~[|y*YE wny;B B;Bv*n/~ܑ#ukM"س#d {RWk]MT;]&Ԋv&HiAZBR3(t#Z4ꌬ m$ |;WA{?GZ>y]E9ˣ_K cU2b)ZDI'FjcT#HR,IQYRYе*DD>&?5 iSH J#' iRh#gQ)WSzז\uzSAW7-BY W7^lx:w_v#4`%P˩ܥ=e;"!Hu%x!E4 #a$ $ ȈiQE!i(wc$HhL(?RʠT:)N4_$ Z{ERnQG2E}&KlHoI LH6H6HI/u&9G ˗kio"--ɌdJ2|նdB2HÈH!5u76ɰ&:D̢FL"PA!;{Ac#mEZr $z(4$m&uF%k%+ִCkQ*F(ʤT&"FԐ{ïmlZHSHHf$3JS)?%$oO.D i(Srh-?R)DrQEi.")Sr*/N&١IyHII6H6Xvd7Sz4OȐM"G m*˦w(ᐐ³ -HM"#:H3~J2}sW"kwq -x;<,r:]_!{&yFr,G*ˑ#Wo#or_9R}yۖ}KYYNDEV5rv=<:<o/ܩ 4=dj}_l@{vj}!Evߩ}uV3^xuby~0_jRO+˝v"ﭧ ɣ}yJCZ ^EӐ|߹,,QU#箤BL)J. "_6oSӂԉ@ّ7:HQ:Leٔæxg=g(kY=(J]Dvm -=b8:鵉.N'{b$4BޚFD)FUݫRG }vf3Fo藢5ctJkĊ=<o5}<ރ"/Ȑ|?r|bIgۤW$/g[v##[[km>8 S#4|?W2Q{_בv?^4X/J(x;cxdD*mE34f:dKm㽼uQGn@ +W h1&6%WJԐv7%fE3PQ5W )tHΔ> uo!lĘ~$H>-%EE2#Yy'^""L:G$SLr-wMM2wy@rgH"PA!;AcQGP{@2 # 9 ɵFtA-jH}"2=.Hڇ荣qԑLr 4qk!y-Z=[}b5Ҵ|uPF]dw]\$_q箫[\OѡwSc 'W`؂mC'YoNcƪ眼Y5ZQxg+W.!bHWt;Zx&? U) Obu/jKԢhۚnM򏶽OO %)7H|7odh(J'8$v;sޘSEz0qq{ƣwG(سGG;kcr5&2w4 rsG:(G='/!dAd+HΤ R*φҞESN=>%HT(%TݕߗGIKOA)J&ŠuR:L G]ixQSڧ6AS hhVhVh6h Q@S <̖B]s3'ACBvN} پd'لlYnKMli@?) q}YAv:߿4 o{n>a`Hqi) h(eQw-i3yA=r z3[qIQ-JA{nϚLn=^V+=kPni{bw ]й3kX3E0Յ[X2hc{5ںw}[_$Nꠢ$B?tQwL}i4h4'4x[iM37jvKC. uO%GPUʐ妔HdnJ1!&dao-(+JJ 5(\ r%!>p6'~ѻ)cއAYAB" Mܳ_տʺ^YW1=JJ*TQBJ)e.I͚z:\ Hב!x}QE22e_/E#f7SDѕPUPJ;E7&Ws Z/CL JJ76ڣ$x MIkQe$;87J@I!O4.aO nssN6!@tRwz E JLДlzǠdMI}M|!36xZ JJtyd4=ƕ6]}Hr]*()9<y*Jco"T+:*oG j 7ܟW/X_Tk+Z*Zu+ZT< 28n"%3zAsAsI/Zxz6MACB&1A֑#@]&9)-$RJYِQcFp KSN S*C"\:re ٕ*-g+ + }+ SPJ5+Yш= m3zgPJ5)5PJu13SZw3h)7&!ֺu{~仞 Gm~vwT3PL|Wyԡ -?co oиv͉<'4 \_4T&[$J!\*riE밪8|Y@dقly%,JAeȲ) LV1ACI4WXJe"\&r1: i+4AK)P!]I I7!h2iy~aa!*Hj=tJC4xbs^54y,M<RE*ʫ(OֻB.d%. uI},*Jw(&) F%;j k1^ ,C!K%5][C+لlBT8. .M9t!JS YL+Q Ӗh `dTߧTYYŊI{ T0(OUEVn''}oycr̿oO3clw=k|n torƛ1*f'2_F6cKwJJA6! dhK$u c]X. =ܿ!Q.f5Jyc Z,J ֦KԺ3IPV 0PBGt:k z6ҐK+ ԥ"ϊUYE RT (aJKg7@4@ZJ l(4 !N#\{UP!|g2zNT2`(AONN#T@E|$r*ȥ \*r޻wBc J&d2 [魖/>;9i+eȸqw$1kјaCfD'9EP$itLM}7;|EM=.IRp'FmsXq:UhVh6h u@3 J uY VRígp%FMP'pRCK mΜ 2lA&'ٱS ,C!+*dA%!56o؝fA^^aY840!mX+=NP|6,.N 4ԥ.ua By}BsfMAsAsASyڭpAdJ>~A(!/%}FȠHj^bET׳sKaP^:~F3 AsBsBsBśzvhRE*ʫ(O3P$wyT4)"/ ca50vuØo sa1107GdلlB&߫7C!k|ҔkRJ|-2m|]4 7vuO.yVhhfhfhow|}d~A50_k?J 2_ɗ|O(%AifkPPG.蛜&߽YPtv{ 2F| 2lB6! :duiY0_@PF $䒐nxTAдAs"OIN4 A(5P y*;l{mslvn e @tMD= %J0قzyȀG831Z 03lpc82Β L3(p@8c VY vL6@(J83:, rYR_]4HXp&$IUy:4 ʏiUiAso!οA@BBAo+ TZ˒ocp YL[w/N 2}dY@S 3dKdS ,C!+*d2:ڥ]:ڥ : Zk_"r[G]F . u騋(90EiOhN̠i4h.h.}yڭpgȔr5JKW$B{73H˻w:!]B tr>wֆ` l 0F{'7#\:riȥ.:z0Wad7{ҽ*i N(m61^Oq~b w w w w w w w w 4+4+,LRώ_t}VģQBC %Ԭ7\?GR?dSi. Hאetf>7A-x%t+i+zo*d\_TfSޕ22H{,+sSoJZe%%I.H,W]nԐ odB=Ƃv.Gsi?K\ڞs铞Kȹaid4/磢)+}d51k@.2o#dAty2Qτߐd~ȏ*() hN9;(Bt \櫄 %tS_I2R(o<!N-Jz:oVPZ\ԓ ӓA$ѫ rA]%d: eS)9e| bRsiYِƨ$'1[C:=L8O8Yͩ \rȥ#\$48កA83zf`pz3h">D젉B1&M*c4h"DlIAdUi G=b8TRh*4QC:3%-7</R*HWRCtZmxQ8bAKu{#nYPAAH׆RJ#P*av10  3p?dv- nv 20N $E[֎[+KE.4ґKG.zGg{&J_ْgtd2? {ܺ' w+ . w2@4P@.L2.zp/p?pŭ,pKiR"n} B:s"~u_H|VAq@wtpO}E¾]X_a5ωغP;+WŜ~W©)=&kdoSZky'Nv|NFz~i bkO'g7bh/Mɱ1~ݔgoUPVJH:'*x_d]I>ze"E xe1[YWH_)q +ݸkAUi>O|$[{9;Iե&*dY Ie%kVAk% sDs$Ⱥo0!Yl!Bt %%_oI'T@ AdJ坖x*O,ȔΓBtq:oVP= h*ԕN j P!gC&VmfM%$L)79> uGGт0f d a3̆0ϰAK3sX"|F$ˈ WA(ftCbS+ZSW_Bʠ i)U>ߒ9h< W>jo#SHxl]O.xY/xg.+H|}wh*;1ɱ>}d(PHN) Ȕ- R$^nx\r֭1A%oXxTZ=Rd Y읛=WPWz'ϚԳ/j ꠥ4 h(YU[\\sIn XY= kP ҕVA^.%dE:g*J@TAIiBsBs ́;4;~Qk Ԭ r)ȥ[TtUiz޽&Xkө#(-N@uku kꍁ5e yJY,1A"z`yX5% لl@6 i e篡7>+U =CFXYͰPV2Lf.dr.Y.PUҙJhhfhjW0uЄX hԠ٪R ϶m-#%}]4\rȥ#\*rUI5-,Z}c9-ޮ"!3Ȧd&)AsGcSQje2AE)f%dH~C'cΘZF&4'4gQ 4@ :uHQ^C6A^}bAMNBy5ϩ"JʏATA A-TXP5lȳ!ώ\:rȥ#-B:&Z2% h4\ДS5RN2%VGnN5hMRC&iB6!3isAD泓SNT2h*I E%| B Îٔ,B.Xy3RJ2VAaDUXC 53h~avܾ8Uq_q>fffDUs#gs!i RL.$2=uMb!kI襱˂dA-1܈;i4vaMT!ӱnb=vN:K <ӄLO 4jP3"dJrTKE. 4ҐĽO~@yC?<햨 hZAӨ Kk(%>dMD>:(F*w%7Ľ2@E) Y,IwAf2[,̷.4:()3*' J \rI˽+ï5>NL(Ng5Ԡ٠YYYyz9A[:/()i @E*J(Ha7\V۪d]iukHאty*t-볰.PVZw=-UYHI)}~QAV&Hy[AR]HX5AڂzڂjSҚUJhȳ""= ҽY\~mU%J@H7Nwgu(cWcW]РM]'Mv>;7>4; ]}YU}re%]%Ը*Jbr@TAIi҉}?޹jPRj/H=7T@ A϶-к -TXre"D1[Ȕ44##9ޑH8=5BV!k5:d#̠d 3;A zNz&gDNZ/I ZybNޅSC. zi!υ<;xQTRmJ*t7IAӐN7&|!<**£ީ#z๻Gu%D?x?ݣީtu*ԑ/1&jf(P’ܣ>Ȕ7~{;աԠ٠١999QAPOE #ZJ+URKC.:^GQZACIxs YXGPԕ=ZJP@ % 2Qw_1,*h*-h.h.VAa }ADa}}4@{}n_~}#Oj?R|IQObӞUѿ̾A<٣9Y4ssy]S669Om/Jqw?Cxr~5#~;+;ho[oP|dS\:sf5P~TJ&h٩(BiММ|qD>oJ7{S!|*=OMMuPRzq6eѺIdYs|2려T?C3+ P/J*UyC+rWJBQdSi>.7?ԳR+JZuԬlg_:FAIiєSJy>xRCYɚJ^:wkjU*C)/D:;}2@YiF܋MI}qC@UAld/ʦZ#:(?ʺ JdTA[Uomjui[қ ()oo k˦ {vC#MWHza/ֱؙu:igᏧ&(%-x@S$޺7rm]x u@ $no|Y- kq-FGn'(`L7QPq#(0B/ #¨t·|>oENִB%zk;8@ .W J@H*ssB['<$rCsBsBs@ũOPڔ@U\2rxl[Knmꠤ4(+ Bjn9@M,d Y,1Afd ـlTn d w[~SQ*{a }dI55@Ui>AEouȳ@@3C3ASPk lJCõOz=۽J(塤oN~GᠬuÛԑKC.2\d=5>HJhF}GEi-O"52{X:d@UBV޶NRӟJJMUXm D;8q" () S%fj W [+U"*HeQُؗ4~һ;A$*_w<'2H'hL'r9 7Qu)A $+=Ћ = #å<|DMY#ѣT2/ŨȔ7hb 4d ل {_Yf=2+b zKQWoY4_w42~~dEҐ* C)BzM}ѹ+ MVq pbu8rXUN8'V+ՉU 'Ǫ9h X?ZJ֔1m%KqIIؽ>y}Bϼ}:vy> JuPR:!D*uPRCMPQo?BVRY 2dY=_|AvN)כ  YAvΎR@vNvRk%ȴ%&Zb TP< 4 4344{zdM}GYCS^ ծTvَ{!HzUpPV4 T%\riKE]*R:%>/ѭaky҄lB6 o?{d%ȚR6PR*fcPJĊ$TC))tˌUPRМ v=ݺt:()BtSqX*tf y]ʠ#S0?G/'ô/*) :%Sy|T@ <[:h* H{@+9EJSiG5D:h)%ngPW:oAPMAvC.N[A6!dٞe٣;;=ZJ{V+SgG]􇠩tZ"Ȕ:J(aA!C.{QĊtW^#S:}ZJwCKZdKdwyae2dY~w׏( f %KƬk=ґoGCi[2uR*4Ψ\l4z5TaJL h.h<햶6z =jZJ IWux+t 钴D5ʹ_AEɠiʝϽ$o򾓫AYMrzcȹWAI)CR7ꟻJY% PxitAM)\ ƞUx 4G=?ښnOž {m=o>*J{'%w҉hopJ̏5tukHW"]J钁ң{Nޅ# Y[~}ނJS])IϹ [q0wƐ'JU])I.UGTo?rt֊n zS:ջ}BEvfJ _)X>~cA)ue[<( S,7PRRkL&*!+%%R(âamʰDkKpOMP1.ϽO PU]Y%tmڌB/#C.?#M * v-ȔFж{1AKiddd*d8dFdTܷ3ZstNBv2[Hw<\A/; ҐKG.9$؅)pR:aJN) Ϗt<Diǣ];CQAfNfN tΓvfN$=ꝲ)PJMi@Hg]ioARAAK!кNt 鴭ݣ)7ATvz@Sit%UQVF^ k}4rS*ͽ>w׏LCs@sL AsU3ȔJ-\rڭ* @Kiv%֟Ao^qҙ!]IuR[̂ZMA[%/H$^k#S#4e KiK-m}}trv[H|WNq_s@g\H&v]a{"~í]oܑw 8CkA?{K?5뫳(UP?>Scrz)k,@4n4 '^uF'8 [o\F)\Wc Jh  ?>M&d< y.4b᝝MM$Nϔa7reJǻJx$▯<RnJ%DңԡٗҀD&4 aAs]92 N=Ƞ4QބLiA&w {ю]#j YL"N*h@6 MȤ%| ["GeȤOTUd2d2=hB& d_P3 bRq- ARKE.4ҐrX 4GASb*h*4 < /}Y.&h)꠷ +cPL/t v鷏uԳ1+h*()I54'4'$5?@I!}1i 2QzLG9dلLm6KX^1;9LYrzTPBA iC%ѫu@Ei ^4+4+4 4343Jh%eW(4RJmPBE %opJ %AIɊDt:5HW$|ay_Ye%kJ'0PRUIjUY@Z}_ 4 %X!ةrUJJ q2D yGU.PRYܔ4"̔dݧ(J)5PRA%+媤XAId7ɿcutwֱsu:Ns~#% O7]~0PUy*dY,ͣdM>$6 +NSaUXk<~ aVPR/x S;XWF+W=[2()2Ɵ𕆆o/:ˠrohĂ@.3nͿTġ4 ɳᄣ靅9NY^{o|4*dYCQި SrwGGCI0r3zqqqxgG/$A;1=tw z߱Rȥ!}f!O3sQ]%WA-R7ӞaJi SiA'ik_}h)M+Π *CZ9+ꠉ<) zWA)I{!":8I㖉D:CtKݝTP.T6%y'|ԇҨJҫ|dMieqq )R*CV44;4;44'J4SQ//"h(K$Lr3h*%4+h)J7drƭM ːev[LIV,Hoav+ܣB % 2PωzNE92h*-h  eҠ2@t9dz}Nq_~;:Zdn)zXn=4ϯPz~+`ՂڍDS_kd8T=%,* ǽ JyE7M(x^^#W]D嵬-߲>V=ڹx'߂&'JBhu[b~٢7tc7>н^hˊGg}-[(G=Ju`G=v>JQ1h$OhA{b_:O Ɍh*dО}ҍ3WОՂi)2hϢA{Ҟ}h)}K8tګR+ݞAWWHCBž,TAcO - :m&(CwAUyO : Byx^?zWA)I{!"]Ju}4ΐn!ݒtw'5|?GKLs Pڣ}UASɚi|G{zv-87N;=A;3 ȺEAZ,֊Kƀb?@=knjV2ʐjAzT@*J%Nu(@3C3C3+N 1:4{{>|BeRnJ@ {bNreQzwRTR~T_5 JF7 >; f%-+(+7͘:AE>|5OP\&%{+%T&4[]%@tVJ{[Q9zJ+ͭ#=-.'JwPmaXxRY G@bg-UԚTk ZpnHx*OD/%RCoh{{TA& os zUXJKɠ'?S;j> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 132 0 obj << /Length 1197 /Filter /FlateDecode >> stream xZoF篰>З%'M@QBPl'{88 M)dv̮ٙ luчλAK)#2L#4R nx4D6 mקJwө,nmo4?դ S|@Ȁ"N/\]$|ٷ^SFoqq9nVi5<+6 ΋ASTڏTQ$)= DO0WQfi׃l}`i)dJ ,aCKjn!%]q:e4U > FrךYepZ{B<)lfN/'x`'@O8Й7QI ?lVx*gL0#pğX#Ks6D'f<)GBq4"`rkWEHi /_jkлYHy_. ԳYQYL8b?K_te}ۇg`6) Z/_O*~Jg ,J z!2(·R/m:&vߒITaչЉe{fР kd\qė3ۮ޳x]sY@]}7aϲLZu?dl*y>!.P#V WniJNmom}=geDm M_*{uWAb.6z c2_UÆÐGB1=hKxpLucsHFaƲ{P}]˜6k`R_J NfUh4yS!!p(aBS*! t#U R7R%eJjaэTT25טRkPieUbkxْ*bε0BiвJd`VUR9@yBJF{*"/|8o EdKwWi>//}.I=>+SK'u{3skh\}[} v2{owrKг lÚKBgF+VεxëZ_WEZ> stream xrίVqn |,Q8]:: @0yVQDRm- zN~Y"\ꇋ|$LeIV׷8TijV.*ʢf.?\uܗRڸ4hnv?)W)H~7#?eq w[r*҄9g+ +_]_h\*UbvUT\h?K&0ONueV/^'u}=AO'i2"N9Ê?˵"8BND OMHHg}r$U)yn"DB4йnQ_[zr*A+dJxI\"~$I89(@2IL}Y2\ѩʤљD yASD*ޙ$q*z&I|ptKknuѕM-tyY7C7WE=Ey>/v219fwqA\[7< jcULP4cU}>5%$Yk@4R݋9sɌDS(#D,N{Kr$x;!rATiJ ]'=ouq} i#M#)^`26ј1hLsRA/\5s@#pEգZNH9J(5aP7Қ%rB` ;?k@]I1EdnPّ2BcFf+->ݦjD{4h<1@r=Cڈ5 5 ܔHiPm}Y{aNCT"B+ ]Wwpӻ {pZ`ǦQ~ATɺ"=K2S]y( bb?UT9e %?pXۥZKt?a)6<FNC2:<=*(a54}ʙ:Cv JL+KdzP5?0DO4jɣ:JTf7xOl7˩#U~;,=<jK+G-1j{ xL#?v7%d~C$Ǒy nЗ!iӹ48{dQ<<ݐ4Ho,ڣ ejr߫}='pWlHquFD9[҉ bl&߽;3wz[֛lyïaDLZB+! Mگs%"H4$lkH2+G<_g YB endstream endobj 128 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpI8rDCv/Rbuild3eb7ab24bd6991/PWMEnrich/vignettes/figure/stripe2visual-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 141 0 R /BBox [0 0 264 227] /Resources << /XObject << /Im1 142 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream x+2T0BC]C]cc\.}\C|@._G endstream endobj 142 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/stripe2visual-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 143 0 R /BBox [ 0 0 288 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 144 0 R >> /ExtGState << /GS1 145 0 R /GS2 146 0 R /GS257 147 0 R /GS258 148 0 R >> /ColorSpace << /sRGB 149 0 R >> >> /Length 991 /Filter /FlateDecode >> stream xVn\7 ߯rf1.Z HqFԽzPcŌ9IBuPݩߗGiz2B?>V>-?RϏ oY7՟˫7Jw k-X}Vh2۽_0EH?.Ƕ!(x=Q7lًQ}8oޜHq|7"oDR652*e¢g :&9mh`@5%ͮV(Ϻ+(!Qh9X 'H5lXN 6ٷi}kr:7ODf.TZQz(k86|`E=QB&Xa`kA#gr\~Pnt~FtӕP+mX,s(Xُ6nH*B㙅4gH.iz d+ F ā*C$@ t}A;w*xfBECXVXoqhխ%4d`Tr'GcOޮ(ݰ gY>ZxǺ>hF?kquZݤ^[b:~o򵮑ځޅF^޼SwA^oNٿ3FԠA>|a[t^pa?*/vCj_^Yv쉊jwÞڄٿQv^ՉsDo?^.o endstream endobj 151 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 837 /Length 2676 /Filter /FlateDecode >> stream x[moF_r_$N5pk)f#*I鿿gHMIV.ܝyegfIF0 SY&f ?dbJ 0γ=GRb3L&$GUF6뉰pNr#zƉL ʎdR:4H)ޢ f@5i<+  o˙2k%S67D0 7XdRb1ո 64/S#ǙB0̝$syѕgP1Ղ<91.w#1HgCv0[ (`᠁~LNaF ҃ &xǸd\p +p 0`#`U/!ZpGBH%!asa2:°ʅH*\Ѡt4b Xl{Bpa {\Ih܉7Dɑ%,ZE+<V1PB?p*ƺF!dՎ4k7ٺ^ʄI-AVK?zX8.X|TYZ,G>*g>r5ԿfFMMMIMA͘5iw7ӭl̩PucY^![.OE,UנPu#iTurBW.@fӮWJ$dIKG.lȋ+V?ק,2_7gXv2l۞{ֹm2p%VZ[lW\Pr|LrmQjokOUo uw7 ;sm&owkTm6UE7o7mUrQ1`ڏl(ja{QʮsE7(_U nJvs|i'L܅*^xO ڬ2ۭۧH:g V9ǪUZr6} "V-S6َ=\]#%n12vX:Xs27ƕc[~#B(>smrgŬfuCMGYU,4,،y>p XA3y2_b.ɬ'e6Kd+V x;<͎^>w0Ō٬d۩mgζk;v]ZbZ*Z*'.iQ?ůg"ǚ'f4t2tWWHki5Ư٧ IW`䓺xTYYGU]>pfHg#gS6XW5ru=ǧy"2*x?U7ge^l{Ɉ5U=0JF@8=< Z`d{@\C"U$یdxm8:z[=y7p[^Fv#$Gڮ!1>z7u7HbNDȩ]$DLsIWH܍ |DOHػAb'ܬX9o@֑kp8G¬>2$]- |subIaytdpNҊ(58=vH/ P6=} l1lڙ0EcD$gӽ/P|6H_FRFbymWkǼV620o/ƻ|ϼ_^~ B"}A_x;WK+1JRӛ{+=LSWhKЪ( bVߴh(I/ZU{/) Q{4!=fi:FEҳik:eF i^go '^KD2ʼmխn #iK/ؐ'9mƸjO@/k+3G)MW}U]GU })҇J"5;+WXz0T+ C T2;}I_j?-EFgl7h鶕#ʎRcUR\)5[K !FR>hJ]:n"%d!X B5 BZZjů[(o3L)&|M|Zn'=fi`乿$X='w{pHr9!?p)My6FI=~>z۝&a9+-ge֌m J¨K#adb8 }4O*KK*6Bإ9K-MwKuyQvP.*k1(W2{{3Ƨ㟲d?yjl?Içdճgd wkڭgOfU}ey64-*?EMjx\@Ue9tQgqbz6ɾu>g4IK2,Is*,%N&XΓr1$:.΋Y)N=f$IwӛV$\PX [> E?N#&VAUk*JRͫR冦5hZΣ_G.R|W8>a<2\ LkVck;~ARɵ\*eΤdzxϦP{;= endstream endobj 156 0 obj << /Length 2147 /Filter /FlateDecode >> stream x]oݿHP~s!/]6M -Q[ԑ%RNk;|єpzލ.h{K:$cxIF:N~_%}Y,JKg-7WE1iibAO~Xjko^Tp:W Nޝ,H V(gQ~|,Z&aAu >ۀJ2bV 6d*@mnTk v{1RS~S3~Wr<2;lO]'UtFχ˪[՚0${e&ば2K13?,K^%8|_ DRZB \@Ox(H ;SmM]! ]ӗn˾Co'/ϫC} o5lAx)eTO5cC?j0}Y\{Sͪʷ/\\uE՜~]QwcceB>s(nȍgvtQ2Lɇ晵S)ϪUvZh̗G2G0w(JH( 4lԿkj(CT1e78==pޱTr*XzDzƝOٜJ\_~f֬yz_EۦO|A(5 2Li\@!TL!l:R k\r{ҹ$ֆ/E uD& 6С+ZLAǦbϒHlh^2($KD#č#e9K5T!T!Q);*CxHDFb{{sW}\E+\ۗmʫ@r|'aTBbۃ[+K:rBGBH2>~{1Mviב@-~ H@ a>u?M%H6bb: h j;#ڢ?uy^w2Dĵ ٱ%BN5\b)qRO+\%ö\m=}N#`O yWxg⟿"YI&CwVv3G"4s'd>jP`dm0ޙc ~8>b5.b0qn1@%TCL{"`Q7Џ XhQ3Y 0C9^>6R8 ja k}TYr}@ρxcfn8GsnGAymbx#wy0 vgsp°`diYpn%;vIxc`ϴ1tg N݌ J`gHbI`&XI٩(+Sر*"LO5Wr3*d\U9;/#|P])@ޏAt=~ɽ5!=k|V_v* sX2c\L]G tqվ5ynLȮK6 p$6 wVR}Aqz~z`{i0HcG$ V_QDdDܮ3pZ~7e,%I8̿EE,5Tj4`̘?GkXW&p/T3Jɱ.@l˜plr.AE>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream x+2T0BC]C]c\.}\C|@._H endstream endobj 161 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/motifEcdf-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 162 0 R /BBox [ 0 0 288 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 163 0 R >> /ExtGState << /GS1 164 0 R /GS2 165 0 R /GS257 166 0 R /GS258 167 0 R >> /ColorSpace << /sRGB 168 0 R >> >> /Length 369 /Filter /FlateDecode >> stream xRMO!+{mD&lcl]?hר?_`ժ00<`XY ;e5a<)M Aw>p"~rxVm7q9č`C[ N~'q$X,9| _eu # x8MTeqm.mR['aY)>i BX=ړ㽡3497ﰋ_b=9&k1Py*YKP&éJLfÎjqo=nŰK~*xingRcv!`\)fbZcu>-K4KqԤ1K?Al,ЖkJ^6%O*ghu%]i)g;I endstream endobj 170 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 175 0 obj << /Length 2203 /Filter /FlateDecode >> stream xkoF~poߏ&NpEz@hXSBRv;Ñwky,e>oNqr(J剑H'I>hGMYJoG76mϋ(Ix-F`3~ۛ-#=<`e>q^o%+vv:FSc,m LI<1l')'4ڏG8zVv)wgX chpH ` ID`NzD߮P[MW/&*D e rس VAIA\P}y40D{tɗK&GSA^ʟW0 zV?P! M豀=^S/~9 e7a%XċPd kE qBE^` (sg8e|5^.zޣV1D} ao襷F_ӧ;Byݍrۧ${sY tw (Hcmf9/<$42R9ة8HE@kK4h<|v ::" [fC!l|[x fQd02lje^PX4he Q,_ `O}YQ7 h*_fUOZspUQCCF7>h >N{ BU$A٘fՁ0#m^uMl Q:јu%Y5>3q\ĥmTuy^Hsfr:(EBxԔXnUUA/l*wE$?N c>(}BsC#0H؏pOAiL)e\ȋaU wfPBmb,UUwGPJ8#g墨Z)>)# O\M-"!eI|A`V*&ѬnE^׍G~^}?O6,y-Z-KЖm=h| ?NOA./f}NOdr ̿YWoNó1wD;LuAXVwJu> zˊ2TrJu,Vl;KN2ֳ0_&/.E^WU{ڌܾZ{7n aB_I+>i&dq_^}LD'8?0aT /?Ic5pE>dӫf5T8GԦJSTnj!ԊJJ)xJ`YRYED"2|Q6}#AE01<0iicaA=^o~idfx^kaXb3f˲(\i åQ\S%F 1K”RC0?wؾ^3m}9\~}~qdN-)d [`qH"] |)YiϾ(*qIyȖJc9c8!jjtDLf`ے[neZhhvy3 8ԃ :BwC2ڌ|> stream xko6{~ Y).pmZEz@[dYu%$'7áugSu]$pf8O*I#. DW}em♷&W׉,d`j~w[mUNI&S鲴__ H?¡ G~YBחu[8c2&n&/&79[" y߰W.D] r2)A&6NLOG@:F<yP#R/F_9&ܘ.j7`Fv4bİ9>w%! e"0Fw Wu԰/>f/at=C{K ;f L5NUOJ9|*^LF^:Yzjv}QFa3\18ɑ6c(< Y,s>}!>:溉x+AZdYA2/.lKWחQ\0rvH؁~p#AMHh#E+L9tٕ)wKd>h@  mK&ݕe]hc T12ԣF+݇֠ ٣2>#ʴ-&|3%wfy[ `PoJdOV6oG 7r}n+EAaN@BhN ojKZ]]6orJs, A?H+ ~hϜˎTE#wc|ux}>܄K jW¹ʝ7W+D- v[˶AMt$Nv^WuBp&jU[v D&Щu^E1DPWB]& վ΋h" YFEoLeaҲȜ>đw4 v6b^s|hhh'ap'f]sAE'5.Ϗ2.~IDmHODK >7S< eWWϫ#/tfP>Ghw6vsj̧Ԣ3͡6I|tѯ>YrNe2xq Q}/DnYS/tڋ:VS/Vw:*XI"9m [ŝYȵ|'E E%{PX҅+wx"p8j AMA5qQ<7@G)s:8bGNH "J؛E!3pt ^/f{6~p 61m UMm3oYMm)HG]u׆K/HTOMvUXi @2늦-)":sW2I}7&4-X{ 6*5\y> X] I&ddBF&zLF.JI2ŽP‹Lzm̩Dj@"B/ ԝTt /JHτl9I1^h3RGLf(s(USR!}ڈ(y!0z-+܀sTI0* 2nk-ܫ(O!F;?R=]*smL@>D g'| endstream endobj 178 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpI8rDCv/Rbuild3eb7ab24bd6991/PWMEnrich/vignettes/figure/tinman-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 184 0 R /BBox [0 0 556 351] /Resources << /XObject << /Im1 185 0 R >>/ProcSet [ /PDF ] >> /Length 35 /Filter /FlateDecode >> stream x+2T0BC]s]C\.}\C|@.T endstream endobj 185 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/tinman-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 186 0 R /BBox [ 0 0 576 360] /Resources << /ProcSet [/PDF/Text] /Font << /F2 187 0 R /F3 188 0 R >> /ExtGState << >> /ColorSpace << /sRGB 189 0 R >> >> /Length 322024 /Filter /FlateDecode >> stream xĽˮn?OU xt_ d7 7 d[,*Y~}3 Ǩ̝U1ȝOrr`D?ŏ?|O~S%w+_㗑~Ԗ_/_??G=R?VG?$O?g*6K*{__KO?c!_ʒ}Zdm_cg-KnK?)G㗴>'=R;)!3헽/oweeO9~s[?拿KkH|2_x./K77~?姚ggS)sN6~}0Ouhx5qV˸Gy][r7wK-}4p7_M\rQ~ ˸*m܍= *mܔ= 'nϻ=G{gpRbϋ=<^C9`*i\c]h/rRnVjV^+/go{R.!.'Oa ˯[~k_jV.]9oc{4%qQ8)Uj+~I~_~8)anoV~W}~|l=2#(ܗoZGVD%E9xn3y<ҐqS˸(+]夬GW$i`+>Pԧc*>zb 5Yu)v,X41z ̂kX˃00~bŮI0bWlbVL1KcMl M_7mM׵a6{׏哭!XT7B,Mq*o{%cb$2$]Q`'Q bS\!S0"܀K$S쐹y!ӷms¶9cCGcιc"ǜvy*ǜΙS1^^/s&ǜ~Gڰ*DC NrK?-=Û~Թ/[ȡ]~߇J^m{\K2W}~y4i/oi[{rDx+˯Z~u)5#ycoZ~[߶5孬k\k1^ʭ)=]yXya O+oZ}blxo`!]bϫ=f^M?ʳs6ld[?.w㭌G^aܛr3蟴'xw<'Gp7nMܕӸܢ &@J$mm . 3|c~V=Xg=E-Mg.Z[|azԈr fbg|K*ؖ⣫a݊M5yT %w&4䋃F\kBN<̕1 P[`S5C`MZɬ~ItsK'c{jg8n%vbU|n'$VȹK&vAĝMU'X>U"eP3}|W0D7 s`d" )Yq pfv@MLR2ic+c:guٚ8yÖz1n85ңxpaD8wc܌m"#:\^ܔKWCM~OYZk9g㭬nC7aO+%c+Krʵ(d݇:CMl,_vKSEौ9h "&8?񱶐xp7=x<&gW!oev 2rX.[ڕDњG~xy(O)X#Ti$k%l[-dQd{^撡L5DDX)RFy(OئRtY"im'#ŽlZOD\^ʯx&cm0-Qu&ysةnxv* '_o?Q:`Ά :ޯrQQ a;\ÖW>Q?W{^{ٞxю!@{|y(GH߰5aK/ y8ڇ\qo&ڃqs']8+}a-F `r.*-x"/Qd [(9l%g_p9+;c^Nʨ?8ldQkx}0†#$Xb9}QP7SmB<[T(6'ćf1-`l(x/!=7Nsm<3M-Q?p3Ͽd8=HơmclC[]hvɡ MC&G#NBmwyXi/+_ 9g\rm(ZBI +O/i#/5Z5͚LkWʗ*ִF]Yz|N5cM3W?Jr[a]ޗ2(X:=JX{/sXVѶk0k59كf? XCE9q|k܍C/UroCGdyO-;;^nY&ݸ(m,?}3f[.kr71 Xk5NdO媜q7oGZU9y.ÞnzRnjϫ=/"_bٞg{˜o/s+Ey 㬌"'erEL 6/S\CLȳ)e\-fU/ 2 W/We[dɯRIy4*W_lM夬[{?.Y~_Ek]0]146.Co>A.WK_riʘ?Y{(/ѷrU8+w/rSeJ迗r/͟jXnvW|f}5`=*ɂh(`D7 ' R`5sGZK1)Rl={̃S1 +Wh=:iy k^4-bTĪXܰDƼ0l01\71^!OPq*Fag N׽nFl,ݛ&8p頫:$OV3 #+)u}.+Tj2 P0\sF9V9C>Tx+/{y-sp›NPLg(S9$tbd@NDF#2Թ./eD(0*d<g()/o=ufr.ʡs9aNO{|cDiF/efqMT4s5ʥ+WXM'<7-e-o[~[%OZrkh7D>&Qfqy*#B5•6{{{ٰZlŞ{^yMe{yÞ p.hLeh܍;9K1h_ƶWܲD #W)Ɩ!KܿRO oVCl{M߿,^>scW ϱ7x r'wh__ϭ Nn\ca\r젻܌-}/>[}?Yol N؂}FdQrx܍b9vt]׭_\W,be/Y~g+*i\=|aO|sQn\/˸'ҍr-4~򡃇q5Nhr3ʐd+oZy~?x&G~4C!{yC/?q.8kY{.kecZ=}o?,aMoZ~߶NnS\~gPɸO咍Or3^!/O/ÞO{>˞oߖs>8r̗-fu˯[~P^~Y[S/&ܚ2fZ3}Ll/6'QrW}]~<ʟeos=@Ms]RVHViMoY\5[^ʹ+llU˯Z~_7,i-oY~K^@X6yMўqy)j{S37{.m>tٞg{ye(llϛ=._xy)yd'ےVx(d\jEy;%j<2ar7^#KyUr׻ํ7>,7W嶍qQ-b~ZE?欬/& +xeϧ=Yy 㤬#*iKWΖ_dէJ蛳Kb|M㤌}.ra\~?r7[UETVl7Z8C~\NX}j˿XG/8+ܬڔrW(Ϫ~U椼,?|}f5˯/.lϳ=Oײr2{荟 w㬬Yϗ-c=8 V{uB܌qVzl4ø:<>;}^sX{ݾW{~ȖY&oe-79^Ɉ:՞W{.BWސ}Ky4i[T^O!Kb2y5y_m>6_TO7Qz+2[u$禌p--onV_џ"L}q5<wa<巅կ[1;0]r6 nǂϓ{r=p"zc\-}c)yK,kOy*zܪr/[yZ09和rm(xz<-i/_䜍rk_RCY {k R.ZE_{[y~Ze闥ߒ|z텗2#/[~k_$SʛVYi,ϫ'_{29g\[Mxk/'7WǧTɸ[i?>ٹ SB̘~OrsfsCM%}k$y/YzZwUmˑ׻gq߼1O~--}sfd2utc\>9gw9wysfەdJrH2W15MMHOF{ߛJFO!ɸ|?g~فȑ~CCٍ9fQvٗO®@Mw!vB}`q_-p_ ,-1qiôa0플L%m|'ΠL'MD2WUgUM6R]Ζ^y X\[Q%+礬-y8[=P.Ƹщ\ݓlʸ %q3]Y/ rud :O0گuܜ_y|?R+߯ui z{Oe|oDC~BFGg/2?` ҮnuɄ59{XCC#WI2.+ n՗uroC >hޘޞ4OGo^3Jrge| //8ޚh oR˧g=b|m?.'x/x'{7e$㳍^?rC.8]^ʸgp 8޷`nL|k8[2xΗ<̷|0+SqwL As]}ޗC9c{_}C~g؟FLػoRya O1/$/aǍϗ> FO?cw˯\>IE5v׼\7_<\-}~wNz8mW/w=@{4K]r\]ʡ_^H8/칬7/Aސ=/E9Oc>2w݃O{3ew䪌ELcY/lIY[W2/9+w>ܧqVn_W,be/Y~rC9vsH}ese䤌n__>[yI7x^'9+<~?]{@Ysw^X?{*xt後rku}wБPNX7^L6C1*i1`Me2Wr{ nT/g|5N'yN{'e4-ӫ{;/{UNy9MfZB^hY9QӢ^7gY9{$ȟ8q~c?`/XӠb|9rO_Ly#Gyh8mr2Uhosq0ڛr'/Gyh'_~iQ2G<#>`?{UaO={#(rnqsF5ރEIMoZ~덯^{Z孜rƖ_,nuoX~vZye㩼Eɸ+=`o(S9./V2!ɸ+O{E]E]~{Z(r.C=-T/Tn 'oe7m/ǣޝ `$Z_L]F$d.\wZY +v4uWAD" v{l171u'Wc0߹ m&\7o?u įWSjS:~1+w%7[Evx`\-_~ֻ|EMeM$_P]Վ{9*ڤdcmrzc+c/36+c/gonIy䛋2b'+'刍<r[푭k8)\wd{Z;ƹM6veϗ=.9Uya%rJn؞W\qRnN_]{. ݑ{VpRFl4/܆W_6yg_lo,7Grlc>-fU˯Z~6i1u7*c/'afo{}d{']ԫvW^8)Ϫ<ҿ9+,½Yr~:32 0ޯ2/xLcYP e,kEl 'eIyEyOłgW^0r]S26uL]Yvs9pw/wW*or8+P_7U`nob~ݛQx[r>;(+3=w~9|Oh{)?>g푭r~Ƃ16 nX2bؿ"5{&y׌%VsX,`l+ 1`x݀yYb]y Odz1D'W{.wkC,Ɠ䭌Xz/[{0 6<.Ẏ+ ^{,wbF:.XC]GrK2x}0€N^{'o2#R+c9O吇MC5hl_-gTd}l1==a oZ~}+cɻ 9b/OR-؋C{kKy4iAXkI,=CP݋TUJժ{`zx{jսh9=^ʹg~ջ *O }+_~B~_up X-KEWpe@4g4c?%CBrxrx01r|ߗ")G Oo1o%r|rO/r G:ߒC_!!&G_QoBP߽"1p ^`C>b#bmρ|Dl2!|D6!e{o<;`x@w-e] ζ7?70J0|o'.6ߎsy+}эq1#xlNwr6) }iwŒ gc5 38ay2+:&G0R3[!=xY7?_^88[ {2^rYzծ{`/d_׽^^/#x_kI^ʳ/K&߽~d/fw/o73z0ޜw grăwr~_#^,{Yo-GzF<Їٹmms̍/}hy~g/ V; s;B6hOk9Oh]e}'ww3}vvˇ?ч7'}[_|7~ՇiяK~o>~}#tʯxtgxD\8NO :!Gf<_ԧqޯǸQ^Fy-z#?rÏ\0+fOOaNy >%SgfKD$NqzƼ~-Ҏu9歍1ڎu9r̋;7ݷWݧZ| >ryʣL<{=~=E/ٶog?tr>pbWݜ⾘}%އV~OQ?Luy*/^.)ɸЃ'S_C =@Y3?IyfQ^u(rRNg0s+ܧrʨoAMNa{X?x~8ːuh?&=agXo]a/yxe<v}}@_˾2| 6Wy~MGn>y )RSװk!} 7`~a\w{p>e.|xw,wrg=v;?䝿Ǯyc'ı^}U>rFף՗O!T}؍>v]zG;v]}c0W]~c0kԟ#=k'l z3G87Ç8xr_7W:M9N.}ǯaaNy3/.xq:ig~rC?`9o^ɏ~z߳O9>>)r|>'=877N}W0'.-# cFC|>9?臎"o23:7Eewm|H#ң_"sE{OaKܗs>+O>;}|ߛ;~n1փo}c^0>GW;0ݜOagCw> 's_k085[;\?~Co[/~;.$OG{O$_>Wpnʥ+G{$}*{ɕ5C~egzѱ\yUO=&cz=$s<+_=c/1G{هa'a~cϻ}f?j|{ba{$S+3m=4%P߰w ~iw }~' }kh! {Sأ^a?з@=F}:Qt^žN}!?V>k?}3M| y}*9Dl2>ݷ"=)HP_>kzߐG_:j/Ͼsiߎ!Boo}eOlg_~w~o_?xαR[޴_;xtK|=>=J9?&+*ڏv$Cc}s޿.W_y]zα}Q} l㪜+98}o!ó)G\3c]N1!/[~a!}rUt9\Iy+띇4N!W]9spW27Yᜋ c%ž1?]x>:}PΏ8F\ysΕPΏ|:R\yvέk!Gs3= _K{҂.<'(7=}|MT^=}yQ<(AsB߽.stʿDS9Uguwit܍qy{a,y_G1 O7 ?{$^g4yn)oJIw_B w>b_NWbLyCGNa y߿>X>VQWV/oh{UģѿޏhE{.Ǒ7̗|;x<?x8?S>hFEA~|7K},87*ޗx֔{!$yt'7_Ca, mrȣQ>ヺ3~3Tҕ䥌 x(il+Oe򎜳 t})x/O&G^?@|=)m >EsS3^;ޘ9ZўxJgxﰧb M쵌g|TC{rK=9=d O^[a9Ì~`o~~ުʝ/ܸVcŹp鞊E<5=c9Ά>my/jO{>ߠ'\cnlM/>^PrUeqR^N=/wdOG.Onɞ}OO8vڂ\Nq6yX~_b/g_Nʱ-}I߽䤼r#c8rV@ɱrQ.lO$O?2Qc/ߏ-fU˯Z~ @<+qREyT8K!"Qpmlrk(Y䱍rʭ(^fr򳕟ȗʳ_3.V~^Zߊ4MWem_} ړ,菼ܗr3e*g$m<4K7Y$'圕U~q~'<&Ϧyȃ0j[g%u9eK,}㈹&yRo<+yMbϳ=UO<}(?c7.}َmz뛳2+CnV^2tE ^˸(z-au˯[~k_Wriv$gՔ2.?ѕ׶Z~\6~?~߷Rނ4N~߳rs,p>ܷqQVyWLarVd?}k|)IY?rV^Wy8S_m ٞaq6zWe9{%9)alm,]|-}ҫ>8_{p0n8)c<-?| .bv6]07r. ?܍ß./=.fn #\x#0_u y[f雥Y72" 7<-g]? Okv孜y#^|qٞ~Px)ʛV޲O,:s<oHң-=wK?,iYVCa>vy)#L07y*7+~`xw49g\r߷blѕg^V-qty+zRzP$yX~߲C9\,kWnx*w+[yCπ<2?y(b\{奜7{.jϫ=WyG{e{>DO=|󵔡˴]9w\d~@`ܒ,nn%>{;3WcK,oeor7}Ɠ p3~wOϞ _oN3N@I3v3&3v/3N{͌7-1tԌhoQb_j[Vi>=a^]ܪ9P5t~q)-qZĭt-[F<z>ZF-_jQ?*{j{2$4I2­JVTDVVFǭbdҏ[fQeqkxl2<6zCouL[\1S3+-)ƭinq kgV۳{ 3MVpQuP;n%G<㹊0#=E9nmw9+x#-˼ErV^My.s][ym𥉉_~IG[~Ry9+z8 yK[wVj .E9x1^*<Q={mpQKw+*<[|#W`ƭbN y)3RP揌񫖐y--BK 绌Q?"/;%8f*?P=Ē4r?V]FvF{&,_`Y[X$̟ǭ˸z2NP^ȇ%{{ K`q:,3N/%s:t8R:4YXRgKha]qZ,+N%w 8Rp@XNKia^a^ؽR2vSҌ^ʫٸj}k3uj{ԭղg+ޭhٖ~ﻳ?t-GKxr _?/ȗzy_t+O)~]yR#=I?e<+?I?Q^?ߏGz7N{L7N)Oi?ʏy[_(Oiʓu[\WDY)C݌t?!{mr~1<K)^71@I"7O= v$ yӡ?>-Sس׵O>Mt7Oچ~ }gNL}ܟG~GG}x$h~5_};;!?S;)S?ݲS;90> ;A0S;I0;Q ?S;Y  ;a S3G4N ?A?A2m[P^.Z9)(CrІnCWVV"=Se oOmk~;6g a|9ߧ΋ {5=o^Nvо׿r/gԇxr?ѝs iH8'`d@UuNʇܾKʡO 1_=+>Nیq;/9͗nr++_3F{>z2n='2n7oWȡFmeV17})m/cIoE6F |=wOvo;Yh_~I푬LM;?Ul={y*}#A=q09~_C/e(G#^x= a+!lyG5ݐy<Gy瓈Wd>*-ox"?_d_͘/#$_|꛹Soz~ϔd {YFO/0O#KH?KO 9-OLDn[q}|?'$oG$?$"od, +Gd(G$#v#RxqglW^Ʊs`A"G}]^x8NR!GR~d!r!G68Yhqx2ʱS `NU9OFdPm' 7|Y7#7qІ " 2'+w|d!rZ>OtYD _h|L7yN'핟 I)5njδG}"W=0wx"'}k)Oa}0>8D kf쁈E{(oK1ÞxF {- so }sm(o'Cшwm_EgDb/{:99󤤈ߤ?!OHo|''ǟƧ1?!3OxУ?v.ܿ}Ɍ_˜02c'9^{{(=1 oչi)}f ʹK`mX\w_Q-#{8jN7NsNq7OoxnX9ȇOnGb*um,pQ5(cy7㬌]o܌r7K_-}إ .OrU[G[[FF{r7k幌aɮuWFI~wF)bϋ=ߒeW9-aܛB웻+VbVlK#W5n[h}'~~_b>2^HrR?9~>[^.p~ϡsGwy)={-˾7y+/l-nm܌2#gK_,b<,fAޑ~V^|P=_|-9_\ٞTV0N#oenédoX~Veۖ~K'8Տl鋥Zf{էx_0Na%oe Ʃ~*xE2N=0ޏlo]~~^NA<9W咍~Ϲ'c(V޴O[z-9rSY/דjb{Sュ?s|귬~'@ ;5ɹ/Ҕ_{Yy"ϮRx+flWWXty(g{yŞW{^y͞dl|4ϮQ-j̕Z;~~Z/U`wd9EΗ2rƝrɈ7o rNy+Wf܍4^[YN5L/v'nj7} jk6uOYZ[9w?~rk]Ou[o=o$ڳnc^~VްDVүW~j<}sA)+e;8"H=v^y:/NW߯r/}9w<;ӒxcN_xoZS{v*}xGksbstoۤÆ4Wt"cycȲJ oOHO2vYmܕCzWS][wv\3wqVkq74N1;kw$cg59+cfe#rh.ȡ}dW;!}xph?8L튌錎8/v9)G$vHJyv"^-9_r/})GO샋D=9rz G!mGVF{[9ת\OR>Wo乔qorʵ+^\|_nɫ(Ϭ<\cNuWe<;ޯ܌1N0o 9cu l֙Kܻr|SZ9+C":\kZ^陿-{RȵmƜZ.g~`ZY=Z/Y77cεIEߺˡ߉7/WdˡO=$0v> Ëspw"Nvo˧;cW{$˛vr8Yޅߓ&A^DN-,㒌WpԷT}b{=Wڞ>SGY.G~+'ad /N Ix_\Ho7/7ga|x'{`|9p*'uA<1qS 8gS9N*kqsaypqHpSܔyr|E8 $RqLa7mx'!!?7I7't݅M'qbt8GpI>8y$%oo-܍1nx DE-'%8;9#wHQ{-b,7A~觇qRxc談iõ*no--!4:RkVnx+dFʳ+[9/44x9NdcX<&fi/xce=zCEzeoQ~~>)=%C[0n2&oQ/gF\}߰\YoͲp~ǝOח|$/G]/=g_y Cgq1w!ς3o.goWDC_[t=<_S&7_aE=TpfUcq>68_Xm9n/}狗^L}^v{vxsS۫aK㫿b*ו4SsNyqz'粯_oHyf)ܸ>.{*e!e_ {qJ{ҞeOM׿ /?^y{y1ó;˛`G)N4.A^ ~-ݿvuyHi>ܰO˾~ 6n&^̾p}awܫfޢ6n-#/ϗ[Tp~]oQ?Uv‹Ex3&[Ōa_[gF}G|-o>EL7k\oQUG}{G$}O~d.UX«^+‹7A%E,u =3s~>߿L^{ /wˋG'W'g'اGž_}.ជ_qwsrn%a&{navKpsF, 7-˨,iɜ( -܉2Zͦgwސ6ۜ9|lvlf S2uM̄q2q3ڼ wŒ<+s*y&X™dss`y>C33΃|p`:=}p<䌻Ϝϋgܵf+?Z}:=Wyt ?S\|ף~3κ ̸.Y™yVј`y\%"gIom0Jq0{7J|E+9K|W s2ܷpbnJE ӛc<Ŝ's"Nq噢?Sp̜^;'LC 7*\[9Vgq7& 7XQഄɟLdc1C_8.9o̜781<3GLٌ r^~y_Gg]ƽ(0_r.u.wyЇ|66ח؍qB|`xg=o&?o K3<./foze~DCy=DCƃ!Ő${h<x<_\3[c£20vg8, *܄K]}/8 \?܅!w ^ơ/gak(0/MDp"W efNo̗byI\p.|1.6{g}p{0wǃkft]_%s^\Ku0_t5'KG~5s^$+%ayC)w|!!!`?=2Ta Jx- ^%#^LG|C}y0uݗ73ݏt5 wL']{eyK]>?b-9o[NU|&14)=׿pb^y.<%+s^𲄗%$qy){NpeS81ܗpaH(<_qeO$'/<_>7&WE}}~Sȃ<+>J|U+_̜͗?}ohx3ߟ N̥1g?KIVL|ܘI_2yB_ 侬Nǒ37]4Hz辗>OwaySޟ>߿8:>;11;cypbzB>))'NX ^2UHN))5%=}0y>^yyAKoy,=Ϛ)֘_S{6F֔c;n$c q>xYYƏu=%^A|+##^etyYx^cv/~l^+LG=_B/+xH_̹|OwOr?87Mv/6ýNy>g?sñʾ/Ϸ~M>dRcsyͷ9_þ7/O6}#!dSdQx{,~KFoi(yf6#7x!_͆q1&,f9{YS8s&/Wh*ouym63~Mi{\V6eq?tuFug3~jAAz=7_L_ϦgM7_)c'ﯾr y~8-kP^r\n} ]SxD)W~x-?zgg{ʋ\MdG\ym(7?W< ^Mv'sÚvyYz6_ǩh>w9䡍CxxÑo</x;6ke~lkǿiﱆl? ſ0>0#9 vdxs}(ϫ}R/F% /es2껾qc7?>= v׫鷄>{/g/O |K?3/u#i2{+7ykIxzc_^|>w{/gMpY0M^֯W[|>q&ޞgo{m6?~c~gN~:3>xs\3W߳3>3_y;;q֞ "ov{ZfgTN[ӿ]?y0M1_8Sc{!n^^y8|ۻ&gCx._;sj <' oZYw}{X,k+񽁧2 ~7ɰÆo9Ѿww;iy8VaCsy^,}Rr8UfS-<:{J,зc`[O(aO>X?{0fke.?KNa&^?3Os8͟Jx|+k^aMQwO4XOmo i>[2O޾1?i#|OnɃqvW̿q3k_a>|y|(8 Qyf>=aO&_ W#GG>y9&Sػl|ر+m6^L|SomYÞjEx{9aL6y}hy} z|Gǝ;1G@>q{ڰ a?֏\_||n>~=953W\jrhߦ,̽kr{y~2GTxz[<A^^ g[M} ^ 4oj?W!Aֻ|ES!iN._How=cjh_M4Pb[Uytc#O|ѷ>'#ͯKayt<9.oco}ϷW NjW*Y)w_|~gI/lK Ô oцty_y>6}maOϣ}S]oc=(y _ѺO2q&xętc`\~ѝ㌥qy3__& ȸEp?a~k g?3}qso1WVa< {ѷ?nq+,mʇ{nX<­`y0n `g{r VֶX/xoUÙXO*q &[5 Gc>[1_uuo;oB~/,3/.[|wwu ~Ki۽?]{Ϟu' *y`h_~pҿPG9|- }> _h?>P\>8[W+_[z7Ƌ6>dO_oewķ,H߶W>LĻ1 ) X_;`a_ ̍g +υ}u~=|}O=v>aOO^ܞg x? vo;| ޞb_]Jʼn|}4lYmZ7lY0vtsr;6Q/7y_~Ɯ^~s.8ӛ8'w}<wл܄3s%|ܵ1rk fJOH^n]wyy稏nreODz8j[/'fO]MN6dpƉˉ#ౄ= `w|g>- ՘`[t>3n!?h`?w93O ^y.汅33JcEpė$D52<{ nnaH~bѬ?k-I%pyw&l5jC~3.\J~GRۭoQbߣx{]‹sCr^`ﯗKh.O vyty0<,<'s:+`xH ^/x+3<ofx<C7 Fn|Yx 6`x7aa#tg7qCqSU w!L>L74^}28 G%o>L7V^}8<\}ڹGa!q< Ǵ; Ε<͌\=&\0`Ywxy3%7j0y4`htS[ߦ?0= &sq13WcfykO fw0<(o&Ӎ|^tY$++n`p./fx\$oR-<g)oa5:?4q\pZjO53*wyMޯ~?`/ rbf_X! y,5~,ϋxn., N}]G n™+}pbsٗ}:?]x1G=)ݍsr [I߁[Rpf؅krbޙ[-ݖ-rm ނe{.'/D`$vnJ%Ͻ]]" H%f2k c<3A|;fr3{qΝ9-ao1 ^S8?fc ]x0˷_̙iX XX.WaɸLOXB.gfȳoa [iXz.s$ϽؙICX.'-pea vKe1O,}X]I/Dt^XR7YZq,/a;ےDBy_>Y_;?gwZžOOKoK`/.[yf),qғ+gw=|ˋzx(oCrGaSr'$|/<U/.7`v=)lބcY/%]^{*S6xC~\}o0,܅i|2~ng!wMx1;Wq ^I C n¯{UXI Wpvq;{9p /] $-}෾prQ}O,/'=^n8I0ɏ|pޟL 'a wg.8Bb}em<_}'&'&<9Ч3Cc% ΌJVf&?V`|#` ]5,rf v$e?I˳`Oz/'f1>o ?33dJߝ`'s[u KE;9|%Vka"8 s6ȧ๘dm0s7ȗܘq>' % 7*\?^D\=ɇG=(< {HpF=|0;e]|_ݝ>W> \y"4?s_f,2R{pG !E)`GӷcAB&} F (ǫØT;c71_I`“O-^2yz(ؗv?ZžӅݞ<>r Fy "}=q~.zG*\^}}%syqףSTwijG{¾^~Yh#ᲇ# g`<>"*fس3oϱygƌ!{Ðdoxr= gO׳P/ xx= c ~]B Д3>_B߯gY(`bp؏{4_sGo(w,t~= ]nY?z ~.+v= G>'{1陀<ǡ|»s-%0NH~p/|^ >,1- 7 I,/^ܾRZstl.춎`Ղ}q93{ELh=7yJx3gnKһgfvܟKbf/Uo]ʯnMaEgwh2[]vqė(&H_xNfN[Vvh<9i|G%y|2sTos{}<s<[>U\/"ϒ,e O/Iyѭ@ĩ&\]"H>px a o׿_ %QY;K}d,%) ,&,,ܙW%<5.y>%)[%R^kR~W^Eޯ%A7{noMwǫ%?].$,>.H/ C)7շYsљ\~W_-W/0rv`.ͷ\^}?3 m2{/v>7%U)|'9EKxC›ޔ-Iߦ~x|_&߿k,;~ͼˍ,ylڙ[^̜FkO oJxKҷ$}뤏Xpƒ"ϫ<~>](’)M oJxK[%7?w="x1sѾ/oKے6MoH|C~&i~Wo 'IG Z•yn<9GyS[pMWy^yEgyyeOY[R~# 3ˏ,QR^G?TIO/K|Is¼pbސ%.5 JxU+^•9Maolbb_224)M⫒"͙LLT!~C}|_R|0{{ɤ|柕y fLߔMjqy?Y53wH}gǾ -ܘJW$,\#}sžž֥_/!%,.i_+U«*+~,gIO')$M=WyԤb~,%Մ%>MKľ'H+m>sW뇼s+I}&_On ףWuo`>Y.]㺬uYTo$֏u=Y%<^/.֯%}S[|IoH}~w<E\b~w<ߐt?’-ImJߔRSߔ6}M`N?ex~E3_}G><|[bI}.Y?^"%hKm'W^U [oҿ-[%w>~90'M"|3Xސ𦄷$%m eo:XLK|M$^{FG~%ْ/Y|-R>kOWy^l.χ<\Jt?+_+ҾxkO x?П-EXs~ n&k%?CgIwI~u[9Sqw dN.T]I~%7>'^9!կ+Ñsgy7ߞxvNFG. {)^Ֆ@=|y;8o;9\n;N?s6vA'W__5KA:׺r0qZ58Dz=HOs9«| j+?Gxٞw,}qx׫WOGTkfgF~zaiZzڣ'}\_ *?Y+!,o9oO޿zx s{x#ˣ4-%U4ʳBpe3!`U*+K81œͿ-O'FyjԿc<7ړσ<9ڣϣ<;ڳã<=?<[?џ!NqI[zKW$!܎r䟅7G싴ӄ|u;N_Tt߻<7?}10~g~z@ϡ}d1-KF|kev3>?*1~0w<*yMhϺ,Oؗ[}kչ-0;a,ğ-%+w#}Ǖٹm<O1|W?yҬwO﨟fnGo&;w3yџ۬uG3>.#7p̫/]Ǜ>[')q@ǀ9n}l?c[|Q~G{N@{N,x}}u?G o)>|~F~y,$OǶ˛(|R .G˻>4!/>N!o'4;|sy ww>L/oߪWo^ SYܣCoҳ߰O0V1-g^ϗx /]XBu}b}0>$Bv}hA_t} ^?O-/׷?~&}oA~>ﹾ>]\'o.8@=ǹ D\~ٿn_psI‹ӹU构y4)*gm/|b>0#}[1_}y{TB{zzȯ;?o=|}a~}9|G{Gˣ^Q^0v{|9GH!%.?ž%-Ƨ,'^L_{2aY6=hְ- ]s)װG {gMg5FAӦao=n~ym)}۶_mߞu8}7Y|lϺ}qH;~t^{oqfWO_a?y/a÷ ^iw\Ia?[~þL6}7ѾC[Gyk˫nۄ<(Əh9[x9CD.R }z#1,X~x,Xi~x[gx/[wbugʧ?pC[_~<,e;AxO~Ιx5iXO}_?8K9rUny9tny9(o?|ԯ죽9Ø_~ۛ?v۫8 mG 8q瘯ݏAװl̏c9,=3}_y~Ba GaW3qw v823s?¾Oa_\ho ߹0=>!y# ׌>yrS1j('7ՅM<OnзK:WWO`۰/V[ޫ?01Ho𢼒o I~zcۃW{س;|NC7vˏbkULއX}{Gʜ":KzOϲ||?Tl޶^Pֳڧ/Nd}џEO}f Qh**H~%j ys_L}羿a~,[]xϷ7׫C~zqsf߇<_瞿V1`=ǻa|`}ӂmOg<.>^~uW[m+αo}>S0S]*п\_*]*WJα9;c'<}>ѝްt~| ՂlnzyP?c{y%36?_$~Ts^u\|==SG' >|x?r2w˵rS̗˵7|n(`/gw(ŗ\_n¼pbyxx\N(pjf.9{~2)_K^^[0!Gc/XoJﳤ7v@D~1),w/'R|۞Kԧyͷ?e/љQ_\!s]™<?.We@2a<xyW~e/wqCLKwgw0N;a!Gj˶+Q_dl:Wr,Ѱ ў,F&0x.s}Zs|La1񲅷1cc1~߯# hSsb׹2I}N:U{ub:UdF種gy]o~5|DG:˓HNpO}Ϝ)ߟ9Ûs<l7sh5构(m-`Eگϙ̩̹_!./f$fry6-6˝m:. yM|Xyy]&6Ə]6fwƿ]3l&`ctem]sMm]MmQDeτM l^}>ǵp沫Q(=>ן9 9=^} jw?y~Bo#}Tǎַ9cC~x{ r!O\noݡ!H߅V@"HgEW]~og̅'u:_V'Nݲ9s sK>v܀s  <==c SXX|fMx&fIV5wӃIi-6~~kO涅-kR=5@קu91<<) :b[83{qKD_^C}_sğ(}E[>gfQ]Ve1{ N潄ggm܄k{F Oa«{{aF`@`(a??s˸+ǾuoTm9b"#Ogr{7;rzi>s׈Cڷ~L-ݚl["3T5=_>1Ɏr2\hyTpv(GnQzyڣi]f;O`OX}G\ ˛ϷƎ٘>`}Yxú3zִWawKXy܊dMך8iG肼PX3a%XGL L;ښ`9Uu;ڂiXX{!.vۛk[vZ:#vl;#g׭Y]C7P[̐p"%V-[jȿ gֹt*Y]u ׻B런kX0]9<8ea99Vpsv߿eyS\mT"VZqLQkS k}zXj]X~i,{?DN\wM%k4VѰ&-ﻅ7Z,wx^ '+zِ @j*2@!)@j!*@+"@j¡+*@.wh +p8 +pXQa e|TYJ ^Z뮩l{h]\'9uz(9cm:FgԆCap8Qbu`Q81jg>Fd/`XXY=LzՒ?5ͫ5D|5 ό= ϖ *YLoDspu¡4jZ/@+诮5?Ho:yyxY|DVbvIGe\`xqnc gfo?=mxy5ٙd:/՗K N*܄03ͷ~ ok'tFcF}YĞ퓬2k5aEYn'ф|$&xg M^n O\*wCtK\b% *سI0͹ 1ܣ(z>㾣E%>C5L+gE}XDez[b%tJV!촮wO݊-",rO(cbkA gfPFwƵP]Iy|sr+8cfF{ٷ:`45e}WCL-XѰ,; :H M IwQfAo2Nh'Ffa&7[gr e&V8?-@LQeBF}2Uk4~!VۆսdXoC+8n#):]鲅NW,?/ZA,2VK$("h*jvb7?WP|,s5!ASVוL},!c\>3qjXD8&5,"|mu8qe6)1ł@fkCt?lwМ9『l+C;ȖFwͥN60S3*q1dmegh[9NXz wf{bcX~t| ΂٣ifh˟1TN,!ۂ٫i/,횶|ٴ?m񷫍\s}?%%# œ~ӢFxߏ֖kך푬#<šJ f kY;gk k^߱k u!okx _kZg;􏾑a:b_0  p℄3떾k2+ Z*-o_-k6DTbyע'N,nq4,O~RhA߮HoG]ljo/!?NTSCU+81~@*mv zYCX]^ί<('.}%xzLJ{xU対' ;4ߕ]-H},hk(˙Kg+[;V7>>^.s'f׷ }&\%}.YқD9qb^- e|mO 7o5Nt}OW }1XpsFJ.WϘ/{"y\<2\yC|o'6W"ox1r{@xA I|)h|1w1w|2WK#C ?~Gó CY ") #91CN8mq_%aE4R\úkX8 (;| YLa0s]y2`0dTQr3-mC6nd֊eWj[݈[`s: `X"e) OIn҆Kd·Q4c`kE %½z;caLAMjr2f")FStܱҟb;;N|Ŧ=0eiǚ/zVKC#>~e5(3Zpg97 {vo˯%n ^ɸ%˵cԆF+J"c3?{eiݓY {^/K+0   祥|K2XyYZ#ǎdw!^bXBID苵ᑗ9s,}2+e WjR0֠x+yvĕ;2Is#-40ߊjuS4x-_b[cBe_ ځgs;҂y_Eg{ : q3*|;|}; ̛P's›w ^^K`Tea7+ ˆ{ycs쒅tȳ sk^5lkط^B>tl&ycoKaW A;P>-L8_9 Z؈+vt؈\>QQWȋR:mW8< 8[c}ݹ aFGyǑ.=n=>7erDq> qjp^nx!pyz83%  'fx~ϯт%pb>\9Npe3#jy˙rb&i9~=?YKWpǎϛڸTKOpa×s\\hO9Qk˕=81y`܇$*U H~'K~ǝ(GKไ|&s~7y<28ߗmeGgev[cœ;sZo, 7XW)+3x61}Ǟm gf.~rb<3e/3x w)q^<Isǿ2#2F\fw\)|UFr|79>!#~I>(#3+X`X:-Dw5QFtrgsmyݑ<>3Vn=~g;~ߟ+~[c|;k}k߆I%R^));>=ԧQ9߸ z܇(2GyS[qҞ*s|w0nx{M1??A(s8|Oz~󛞋,V-qzC{^`D|<-2 -홑gy)x$Fzn߭gboqz<'8mՑrwb| ||<#oo瞸>,A{M^_ <=ocywXߋ뜞ouϝU,~瑞C_ZI-ѹ(רr3Fܪ|r;L}CЯ7egd#gߙt|4(/Q(dȯ!711 :c䌸)U!>d܏@}\1:C_qqDv™'do0>_Ϝ1EyWՔgWf9`/18s<8ep@]uV>KnS\bgt>=HUn?6*Թ'_pv{87iqI\k\O6I.GS[xq=v@g3k]EǹQ_jSnrp}k|{8d|_-6> ;#Qnov6Ygl'Ş<ܾ {0ۣHA{<cسY̿c|?EY<-|4[[1cR{<~,]1k#߻PEg۰oJX 9c?NK`_op QlkoED`s<ߙ9;_|Oi/e|yηG~ 0g|/Wɼ7ļ_PI\ļρH<۾8pf50Wbpt`8l d?gWvrMףܶR`޿B^>U=#N֕{S5U!3!?>^J,w?G_ҙ(=:y<_GioG>ʬrMwd}&>xWd_h 2(_?iߤ0{f`Χg[b]~/~9gi_>A?"(/ߖ8[9'i߯=13w{o/w>C7(?3ߓ o|x6B6s桌~8WKfmݭ/#~g_~_ b613{LQch{,ovaM7.t>GA؅-C_3=p\ue?¸t\'wp˸w\/}޸yg}8ϫq^y?0>o|-Wy^.'r^yFbWbڝ(_i݊iypڽt6xuq~q~sOB>Tp}#Ǵ"Ps}ve?!v3Ůzٞ~^&gWE gFLN#D s Cصwb(^0.ndzЇgo]@Hc®1Lakm7Wrwؗxc6b+`,6c>ce34e6cR?>q_GS *qh7>1ǎ^^\_q_nWfW|޾{w'eߗ}oE픿ϝ(Czsckףjྙ;d߿1ps:˓\?Cb09L0_VQ~+6)q7>bO:v0ϱKi `_({QCĕ\oE}SkWYܷGE1+b/MSo+_g( ol덟Qn[u3SWޞSb{z.2ws"+7b{`=aG{ QXzv/w`=W iXo}yX=L|\c{/˱gW3>,Lhq{ɞ܇>0i_I@>}3{g|ܧB}&Mψ&G}b=vCA^'큓-@O_h7?{ߞ_fܓ{8BXJOʧmχ~3}33njg=N{>h^V?Bp߻}vCߡ}{^㹆M.س7`=a_0! {~gi_~@~olO s agn};wa/V?xC{x(߯(/}&/h?G؞vvyrsS;K[?}pCߏܻ8O )!sc~t8W采sg~~8[[|#νmU\ܦ&ͽ47?yb7^q'X8׈io1ՓpZ"?\vA{Ng(:?i9koX>us>¹Z? 6cgGZs{pn}6ClCw\*qs{Ps{h+_\Ȍl@e97w/o̗tc=I{\ ~8۹&OO\g*c<./7Ʊp)$O-p=7x˳WX\o#,'Wm?!ąpϾbq%>UB\ g[ b^D\ ?q=0 qIh@[cݾV?cj_Y>OqQ=wt8[N/'\.>2KG|>hoߤ=X~3ƥOg[Om+VN{ڶ{;NjPs}˳;4<i~q8Uf/a ~Ӏ=}fvmyc\8>-nٷ-n縓[/+s˿y\) {qEןg|v,O ~NGε5b{շ_9c{L~JyxǑ~ G X~ޟygˋ;^*g9d+1uZSۗwFƸpolq?3Z-?Zӧ~q)WK)pw[zhܡ5Q^'Dޖ'{_k?W> - ߇ؕ8VM3[c_>o\.{np.o_߽%|ıO?hد7~0|q8V;ccu߹=zwܿqncu9>nN mP}+_~6,ע>NJ{cu9//2Q}w+ous:XX/_09(v%g\T=o*#U6QG߳~CIXF\\V((Sow[qINJyc8VX]oۣ +XG }#0}}\pJ\=cy8V{?#H;tN{>rQ |O_}I\Wr?a7C ư Y¾8` {4_F,<~SR6xBf?Wsw3_*:QĬyfc춳m{j`>?+M#@&w|x ÆG -Šaa/݋;B෯b}k\+ng{4V%Cۊ+fz~F|hfA ~K"V[16<*$m瞼7y˯IHsrã,{Da}A+?W|$:UƉq7kcz j\!5Q̴VT{ЃVP8nD: j[%op 3 `01ÊdjX ٘54 9FuǍvq͸oijڶm-64رĉ ?;̏71=` o`5>oQ>ȏ:WG la<5z{5pya X<1p{gܸWYx;3"U ~z 7o0`\1{{V@hL_n~chq|8yRmE Ar8AVx"ߐ^xn9i'7mrP؅[kku)l|{+tOX*'É`t~H+ws!m>^@_mM|7c>`Gt%ގҎ~;X#}v|j a(LLez7֧A'?Y_Lgܬ_lEfGT'4zQcGǺ%{;NksV ;lpZv-q3 ܁tI;rWXipfat<9<*yn͟h9Y~x/zwחVl߯>=Cܟ`/}}}}}-^.{{))OПNv ,(菇;0_XO?1w0^OB_x; i/x=χ_ȃJȋӞ|ȓӞ<țVȣZȫ^ȳO~O塇G$aT 3^V.O=.p7a~VSeաG.C^w=1_Iׄ홰`>>|}L0h>p}Wo[ПoC_9 >sYOߪV>1},/з~lP^B_J}?ޡ<>x6eϦ>o\y6w髇AϞ黇~?/;_Iy'}zxqRJbw[M5>G^z+\߬kss=xzlO[nbz}_[֧ ^᳹>o>/[o?_}m6 fwm] 0/hyjay=0{Yfo9_G{YlON\F7η|}}t{,Os?>6PڟC}xG;v"|4w'g{[ 6'~1+M 3/G]/? ?/k6a~O:߯~q~^>̣0"g!kWbDm'[`zޟ>֗d_;:<sW_O^zPQўFH{3Ky;ސ;/wg-o疷q,Xz۶6enZ|>g2_\^}bխS؃ԟ>/v[Joe;:_aMWYjH-_gѩ~saY>;ioW A3Þml 3y<"l_\tz^~zibz{q}t[s9>{ \V_u{>kr|]ڻ?uEn_pLO'@>D{ĥ^a,Ͼ!hx8<[yhӀO ;=֡<̯|lL|v{}1~~U|^m~;ln;60i׆扊5~0,<Ѱc #0{ѿ&~·Sh9/k8[ӾO{̤?;p|қџu1b-k>{̈́|ňt֟'`Y7Oگi.+'aaӾ#ӟC{zoa0?M3i_??ee#‘ψ,φ)S}&~s̡N W%҉}i >nskg8+|La8˂OɎM葭݈MM=gk>GtX}+֞hfڸWy&ko}idgq:q6A=ٚ|2=Lԓ5d=,N ̿XHV?K8aU|8v8p -ߕU}-Xi/7~ta?/Nyh _>{qPw؃ӷL?0N.Xܞna]WtbyptgltHa[y\~#凳Uhpܹ6Nۛ.to0=t{xt{xt-L70g?clf8mm{xt{~qX^|O[3%Ιmngӝm`f<}Ͻy}ȿa۫pgn;[+}tu ʳ3:xY}o]< nkX爎|8ףl>#Mnۼ,lnnђ 'W-'+%4ܫϽ;GeLo*lWwizME/[{q6ig_ ڢ>p։i<]NS^7{'7Ƀ햜yV+Q_`t$ G }U--!F7ijԧ.|momK}hA볦VPl巩?voߦ>{nck?_xYa>/l@BYy ~Zs|ׄk/vX\/YxַsF(gwXndϾ=Hawq}_,}s=W^/+1{p΢}i_VS#k=}*;[IFߞ+(_Wg/eӞ 0e7s Um/,߶/&;6? 5^x=7#ϳV+OjU>o_C{쩛γW챛=ws޻i=xs^~',ۛ7;ћknзX79Vշ0cy#)k>9^i~ʴiž^~3(ڦ'c|{{>{t 7A`}{PB_ #-=ۣq6Po)v)^߅Ybǵ}rl+!=X8vM-O> ^\4YϷ;XyGV7}.jMp|o\]?ҿ7eo߰7?,P~ߟ@}ZFW 6c8HX~nYF,`q}|vְD}v//vq=ǖu}z( _~)6]W_wP}󻾊g#+kO/׏חs]ozz~?^m<,׃i/`1˸O>AWA=t{6> >en&@|~5ڻ0?}wu:_hDKҾaz?7cٗ[o}->۳k՝><3ü|>}_6u2ŇMj2X0ԇ񽻵ߦMoE{5ڃa2_X-o#EyoW^:'ӧ<ɰG3?xto)͞y<}y7&;[yϟy Mo6Qbyx[*/2-cI{pϼy[oO)~O6flxZ쟈=7? |???+b߱6e8p˕TD_|| { Q>ٜy!o?ζ|ȸe;c? _lǾ_'?mO{g 7.zlr{")qf~pÈb~W06 ̇21_o/u~r =v'k|gy0߯qb b~صOڨL+u0CU[ܿ ?'>֦X~6^|_0bs& L{//}ׇ5 3}B+'"oywJY^J{zJq=F_~\-~꯽^#jo=i!zgܟn?{>_~o}ן^fzzsg6Y;\Oks=/ ҿWoX & gi@i#6wczY=iY^˓g,{,稏ۣPMGQeh_^7XXv޶n|h/DFb }+#_HL>ZCΒ=4# J{v1}^K8{yvĢ7'pXx>c[n?Xezw2Nknow{z߹X/?`la}}747Kϸ?}Ώ ywǐ?t^a1L/3?o_qSW/jSgx?o?wO?Mk_ǩ8?mbO3_?09Ye<_cfPm5oې}=\'S,q?"+H\?C^x&n++?3?#gG*GErKӐד+x&W 7sw}啞(|#=yO{zEgSpz7Sͯnk%^3Syzʯ_MT" ՄYQ f")ϕ87Rz=׫2 ]Ēߍ|n⦼W⢼<+TT"7pQqKgH{vfd߽Ae5w 4ǚwMrN~OTW5EI㷤[-=ډLʳ_<+I$,\pQQsxF b^tm&8Pb hhR]Z殥jr|\)W-FZ}N[q*vŪX9}5)-|xxxBVjVj\m {ٯ~%jFWS5nN`ߢ;A Gͨ]_rחANMjiRKT[3Bg=Ht O}2ݹ[s㣌9U<+R~N*MR6{zGJ}LFt*\2:3t[y߳~~w*IW~:smʭ$N+y~5w=6bM||#}O_39מ*^O<WK);)һ_e߾&U4ggn3x=q*M"m6-=oyO{z>|+=_yN鹶J6}x&ʵ'>ʭ%NiqL|gKޟWyWzwzw*I?#J1Zr9gb)<OzOz_|} x%YUi|4~o7;7ߛśɛM&}$v}>e8~EyqT+5_:mGdvx#}>"k}PS~-Wk}߯,g{UϹ(>H.R7:WӔP^KyGJ_?Sd-=~Ey7ՕP)[ʿkU. =Vg[J?ZoD#|H<C|][tM$dۓIꩽ\vnS/展WzO_Z_emO_-9{5SE:>8(+巇IߚX_T~_;kW*[RV2VN鏔ϯLWiʳfݏ2L|ozo|YG9*a5߾Tœr^y<2__k6Y/ bq+֎BW 0c&8ؿOh04kIxy?6@)1|1Fy&NI>G⢌hMy)?D)}Mg{KzȘ>)塚Nb|?3Aܛr5xr>[yUy 幔rOi)yR><>~`e(?Hr %pZ~P(寮#׷rKהE+{*<<})~M)_Km4U?`X۳xHB`ޕsOrv*^|+L&+K% <5eLF hnl޹'ѝW$®8-6漦N mokkS\Cttm)0agV~'[Vg^?)-VkM|=}<+S$N_Wu*ܛ2Z?u^Kye2ǒ֝u4wk\+kTw|n-q%Vr7XkGIP^5Q);Wڥ'5Z0khr.5R);=q*ߕ8Z:5չyO{JG~~Hhv^ʻ$Sz'wf|f9Xe3(QJnmu6s#qU'L[) 'qzTe_{VMה^I)|Eʷ(П?9򾉇JL\gz>󑞏==oyKkz^"񣉁Ǚ w|D3qQC_Ki)+7SMEy[)қ))^T7qoى% YyEy yGW|:NjsM-F㢬m{7_8=u~_Nb53Y򾉛j_M+{ȣsUVp>ng)|W)1{*_Ok)2>gq 6TԧG*>][ F>-QUm(U_rbPqA`b x|&nũbCDyʷ%g\{Z0GsGM<i=JNN9A!6m*ߠ*S"~+??%Alu[} 9pO\%I}ì"+qSA>H3qUQNc/M|9=?Iwz#{#LEA<2ܕy90yDԹ+sNXd*ޟ3\Ҏd%%葻W~Hۇ=r ߊ^zЊׇ,G #UOX֫ԫ:ԫG hN)o)җ#&Ly߹*3?yH|}rd?Nj#u}1$r$#~kz_bvY+wyHh=qʵ(k{N=b^gӏH/#ʿ/XB<ԩjԑאK4#u.ECAMb$=[ʳ_|˥7{cEw[WCY6a9|x e2l;Wޕ[1ǏsU|b\%(Ţ?|*~ Z\% 燋rK%vy p0b}YS㙸*3F=WgEgg2y%FWe'1ڋ^Bԯg|+M幩7~@=áqK<y+0, {{X /G>VEs䫌M;r8âx* rz ﳢ 3y+>,eGyhrQ"E&Qj|q /ugXat%WK;{8|Gy -1^<;I]#=1Lk#\<T3ۋ 3'C\3Hϥs>MJԞ'ݹ->GWMyU)=.w0П|U[y,eOS;R2h(/Wm%<>k)S>O"h/ \k+Q{WyICqzO97"'=ηw=_e@8x)w7=qqz^>D{tE{w`g/!W[ywO<{8Gӿ{Yr݉w;qU>+qzs'2vTzog|)*י8G[ى&37Sz#Sz;UNrKzsU>SyMyEy)oo8oqU>Cy߯~?H'q}KW,ҿY>y75I))֕~3=3?YHO;ϝ*S=Rz={sG̹+)|>9=LGz>R~\N<J&^E<O╸'Na_{'TrKدX#W#5c *x%>qE^=U);)_]Q<[M{Kzտ67W*JQv|z!1Aozaڣ-=oK A iϋ|WO|e1I9)?Ж^WKYڻY/'GN>gGog'*⑉m WZy%o%7-M_d|)u`W>50|Cd"w Tһ. j'Eo`Mi}/}:뗚ڀq|#B?>")F'wKүj噬OOWf}ȑhq3}eKϢcPޖEàE9~&F~2,H(O@drn"&u?G#hp貯l$6\0/yFyK;1<1~Fjp>P_hSpe_7h~B;eGMˏX^"kr9=f=''N&f_g؄u+Caĭ,3xe~0Do3-8?b!ׯyϓ3 y09_B^Dtʓf'گe_er> '+ty9ˋ7܁=29`>,?{?dr|Z ηhm8vKo|k9Kor~Ew}lxoSkI`(ʾJ`%\S[~OFʨsCGy y *{~Rwn-T(ϔ*~ۿQ>SYa}|Tn=ǯ3㫌<_gWyK?_ogΘ8/V-Ӑ@?c}<6[c}04gE} ">Qxw(ox{89>:Ͻ Y`y/I'ﯮs8>:`y0&]ߍyȋ__`qQ|sXxN1qM4cԧ؟9sshSlo7{N x.0_[>)oogȻ3 ~|~(_=og3g|Cy8CѸO񽎟3}sǜ}ogGgQ!>31;C_Iz\!WFr\NlS|vuK["(R~Εs{bogg“Ys|{~K%~|^-ǗHLFǓ}xfIR>Q>=v{ q (K3A8>=>k%/1}z6os|G\{@Y,OE>%cPh`o28Ro?8.ns}y0`\)1~;+Qo=J\/H?1NQ>?7W_5\_O[Uͅ㻲>>q`f~E>=p@X?z"ȓG/4NH>Iŭ-qsb}|?p~M7[${-q|i6-q|pj19ϒOB?7||E& c]?wOo _H>'O}C痊&US4,/sh'n$ԧJܧl孾lU8(:Ws`ϵu++Ϧjb'}Sdΐߏo쟗JΘ Od8ß*a8,ըowQ>^@=})xq0?ADyH{Q`ԧz+QWwcyVO~?9OpNwG~p?O.O?O>q`zptKiS0ߔ>\y&ԻGq<7Ox$<Ogx /=ޗߒA>'qWRSJ/f;*-GnEݹ'nS,|K{w*,ף\oIJ<8~qO"Nm/y'[Hs.Dh+ڴ4j/[/XfK()QNYEYIL}2OAGzu0O;ec\OSxnף<ʌ*My]yE-52Cթ ǜ2H# X3L<K%ϪĈ'weߗQ靷22;Q|Fyy+QWG2oQF9gF?Q-G?X:Qɬ/Q7Eִ댨Έ ތrkf1}_eDqn3J3:'10J3~KsO<+N苁kbDmFiQ_o8# 33ۋ<ϭ7G-wγ+S'|oשܺroʣ&(N[ПGMuf cs2h1]߳?O'9(|92^xMGq=2Uq~>>^ʽ%6(|ԷQ|Oz{ݫۯ[ouL 0nEy[MuQf:x!}Ӈ9}\;˭C斧gs[9_E˔'$IQ7egLMÿP5էo=$(~?GַjH.ȑI\wW^3~VCϼ,OYswzEyޭ9EpzM7mng%;_M ,q}~K̨Wd:G8 NI_yz:_e[KS~+q)Z?8q<O߿(\9Zߚ[}<=ɳ$^+<^_qh`Or6 9\kt$AwidX]V޴򖕷y­<5֣E򎜳\W[䖌G^WaM+oZYշN{;279ܚ@{5[zn|yZeҷO{˯?m/[z#2xG| ƇٟBnlѿCޢB^ɸwollor3;2z Ssf4eO`W, (v9痿ʟ >ۺq`_ 7럷7QX3Vvv.hx; bwp|Xm;G'^;gC-/a|Xm{6r&p+=r52'ys~~|pzp)rz ?w/ȳF|arϕ\"9u1vAkG6P^Qx֌>$0W#im<5F<%5=\_h zl6~(V=ޥ>-a\i-Mk{Zۨ?КG}>#R_ 3R?5Էhͤ>Fk'5ZC5 r6:5(O6ۇe}z,ki;^kFhfͮZ^Ol YEqO N,xzQӍ C%ӘrbtuzTN:*'6F42ޑwoWS}e)3>oY?jUsZbGU{|u]N*\O-^T.x]0\`0Ic{:~tԯvVa>VOsz^@T' IySmi: yȈ#0ڧ!>`h}Obh=h'=/ k|3^|Ɨ܏`=\S\3zvoq}uƧN/t_b\>{kϿ>F2Op+x<\g˧Ň+)N/^T;vzQi-MD<36Đ'~Bx&yw}=~-.=2W"}{菬WQWd_֌N/^T;vzÌEgm/g}^"oӋzXd_;2[7k_D^zK{fEYi/׾8dz2>{oQfA`/>C{2ڛOgS/C ikR^v~^}_;Bѕ&7X?5_^}_s}N+i|Lʏ_nr~#Fxҿ3DW|<2C ֡|e=Œ\!Ӡ7Gy>$_JZ?M+$~q|Rԧ8__F~ΟƎ`X9^XZ5c-k7Vp+1"c)k9|>S"Vwg+ƪ%7b4dx1c=J/bݯ9>}#.w^N/+`"#?Eg%2by6wGSd"Ȉ(FP1ѕF,]1ѕ^Ny7_s|#x}Fn#r ̻ɼ]"}ky8mG.?RcK/F1b]߯ B3*٘@{u}gLcĦ̴X=ўBL{ W ѕf]?ۖgڣڵϢR{>=ŵ]p[9\h=}:2QtCX+D}SXb4##5ѕdoN_=Id}Wg"{V~A__\k`!{"{`5B졬+ɾ٤3:L{kFh86ك<~y5o߳|C4 ٫_C{x${b,ci8y[}lϣCx^E;B$/EgB*:;P4+hZ8oZ.7΋~uv3G5W.ߓ/X>V/:?l<|y;_ E? ѕtS[MQ_^#DWp] ͝:ycW4%K7:By_yLzK^{ XC8KTOx:? ۃ-W69Wur|ӟ5DWzU+h P?O~V?%pqP?Ƙ1i 0GD}Y~Yq~5/}-_>0~.͸#c[Ζ?eFC!_V?+2u?ƣ@R#c=/g/x(gdbc1ox#!Z4;&y@{ ƷKE?]"Kړ|?G^E|/GFyBt%'ǽO/'JOo9WݤyH`ޯjpʨ.paEi8rEy;WءeiIm6Ńl)'v|s~g^7Mg'3v#kܩ>ܑҡ|SN˾!E{>*Uj|]tƮCZhiǍ #<=-aAtЂTHU#IWɂVSUO//wU^-RW )qĪtμk']'=I?V-yq׀TЪ/N'H-|`jB}`Uߑ384y;V_hߣյl3 n=3#mN{ɪ~0Vk1?o4e!l2?؃)Yq9?ZE[26yvՕe_ڦSNNI|iu|iU,V&./c1VKrZW[[yj>7gV&$<__E<@VZߕVe4ߪaȋy'H}k׫ZӃ_+<'M7 S{ݲNY,r1?oc~X%1/S׳ 8|Ս[Y_ `%8El;v}a_/?ހˑx7w֟>]>sϮS\O6y5X?8z]> }wm]n >qQ盷=3iVu..7N٥N.jEub3׭tױb/z?JXen>:M/ǛVu~%37nB:V0~֓~3L03?Ӏ;i)Ow~xbϯoU?,uȓ݇j|Y^`y}X-)>/O\/_ji~Gã^yQ)>Mʏ#oۤU$u~q? yQٞzghgg=iclK}oQ?8U|z?]höqJ>~?۶zN}ίmS9@|6OM7>ZN }lIL<ǣ}>ܨ%0|>fڄsѾߏ<}c>G?fg+=]KPOgw0cpg I˝1/Ow3xgS1ZwƄ/?1V/ww\ߺٟݯ8_gw;cb3ow{g?۹cC ;_{~3~̏4hMű} N};'hON} cf;{iϰykx=3Li'> }Oi/ɟi#>}hoMѧ3`/oožCާ臰7ao/<#y>O.>'G|t3'wv/}{_Ӿ+{W|ɧ~ٛi:|\x>W<ϝr)ӟg"}ɿl&xlOfE*=a?1_A|Ay 88y:XGa4t꛴7۸}Ǣ|xޒg~'g~''=3}qҋ LG~|>_ُi\?)#ߴ#λ~kӎO-yM{:k3?k3?=1f6_=m}3gȲ O}Og(}Bpd__lsW?S^eyAGB픧zk<_#MYi#_.?v|~7Wv@y;z?[p?5Y^?yo~R*=ߗz;c82k<zxB_ПX^PzʳBȷXJ|y'G>w|*S 櫟}8Ao:?^ȭ}(D{W9}=MIǞ|~S^Oog˾:?Og>ؾ,{\:u񱇷`_jHMw3^=_/y剧~y]\܌q)GO˫j?gw{Cj{S-oُ>dbotCq~4̧{yʻWxMw|sKd|dyg=co'|4٫O~ͧžBG.ٷ៦yu>#_؄ϳZ=n:_O=:k'=i})|vXL']vweo?Nuyn}oZO}U8s,)/=I{s}_yZpu}jEquABF=%H_̧}i'W=Üg/2|/Q\:/Xo>}&د>a :O8ٯ#i~7|߬GW~ϳ;~t):/?O_1J=^ao>S_=ʇAiOTٯ&/o+&G,/1^xO''/Uد?طIoLPcX:_3}w}::=kg??t?2 o,/nO>b~!gc^nv;w\nr3>_I9 o[\#;B92n/oj6%0nw\"O}g$b+n)2o+]asd.yN?#K/nYct{`K۸EۢɼKdޮ.Αy8EG/ȼ=[vi2orۦ)2oc&aq\<,/[R(o6Ly8G%2oSȭ~_b<)F-NW{4y,)~5#m\"9>t{:\q\^9~)r ny۵y'kdʳEΑkn]Ͽg9_G1ټ7vx\"i2nG:2ಌ1?y#"MnJy/3+ח˧?iR)o /n\OGiJu_wr1F"CR/0O~mpWr;>Z|=٬ۈ27؟bx|OG1k51~Or^F~ g1{

@\!:eGyywyF?b'}P]tAyi߱|g31;1]/(9syEz??eb7x6JWˏr<뮾tyE1/6X'>?'W}_Oo>/52e}}{2c~_}xmσX9q3rV^Z1^{]{d)\^ޛ+VLKcX_I\YSqDwG\V'hLz :xn`OyUp^!}[b'0aWz~ڏt~K}X=sKX(_b2`/βWXڷɴ3.+ Ji>/+χyy!?Z=8+9E;x2cFc]=ZK|QN8b>.?8|Cots.y%7er}^ŒWd'b:_:?NI;ĸC~$ i1kd^2}0x<ɯ>)?2D~2껌M}j}퇿i/1~y?i[+Ϗñ?_{-!:Oj~:eK'q?L_"cC9~iOf;2b_1o};2bu/J+2DPs6^+OIL!~g)O^&|gD{ u ŵEG+w=gR Z_^iòfڻOɗN{7^.k~^L7ڻg3fdGez}Mҧ7ԍLfy((N:)q&G[dW}_~Ww:)Bҭshϗj#?BMŚhy|&ޑ29iVޕW4wt[^ǗF>VgfjwS^agW8Bنo?32r3'μad};R&4Y084Y:Yyʄg @k h?7c\O*>ߐo2\oN ov꛺A7wǒ6MޱXN8_'c+&g=봯a HF|My6Ru큛t,މ;yRֹaqN%Gw;WๅuLϚ1Gc=٬1@glOzcB Tw1`LAF)F̅ '#FB7@zh۸tb_s`)ss [z'w1lj3bbj1 f~2MM~TG\ؾo>,^޻3O<ϼ[^eP4|yxS-7?[ g￝uzĜ}_vbȍF}\=pK?53ZS?N~xn?O~Ynߘ %'Ŝ|k>?bbWĔn?]1!Zg/7 yԸ?:s3J1K5xzX3bb=UL_X1k^+=.XD>?bz/K'cAhGJ۴|o_}m|?wTcL}hnL`S_gh_~mspŶ;~ܯ F(X?1]?_I}m_|> x_u UqFb} \~~'.Zy-P1Iܟ?18_gwN y'7;~mQglo;~G܍;;o;jOyԙ;GkOhG#4_ah {G{HxNSڦ}xQqfc> L=`nٿӻ>Lq5 `LB{bgXX?/18띬S{=/{>'qcΩS|S޵_d%jTw$x$쭊i {lcMkO;`#Bhw:և;dǝq[p[Kå^:Ǟx'5&{*~{~t1fu3F5 Z>8o8h W4!؟SD/*S~ڎ>UOߙ1eFm|.x~7^_9pLby?> #||_%}ϯ@}x~5)Kyi~S߁|;"xG_{:bN}.%1;A{v?G0&< |= t윟!o=w 5g']*h'<w Iz=Ͱ2lgv18~s3c^~K|#IlLl︤;032iS_3++p(җN}%SSs3tW͘wVL/3wf5>{pCc}G<שS^zSŝbeǝ`w}.ܯq9c}dO;{īz~2y(#__wv_xg;ã|w5 ÝkMݚxKԧ*з ?w͏D?ϙq[f~W3%7qf{ 6scs}gqytqOϡ_MCC iOgz|O;HˇO$Y߶g۴ciyY_uOzg:ӯ}e'?}3yyssרnwqJ>|SS^b9l8Ub{p>q~y:=ӾuW٧{M2[-p[:灋 W |d.Nw@篼fz>Ĩ,1]9m\iOO{*׿a=՝(G~<׊\1WGGqǁ }w>H'Eq;&߳u}^w@wR^;:.Ιr3,~(xۧ;wһߺWtg wp~%Q!oyMEwrh ,52u'㭾r1~ow~wTwwKq q˼:y~h_;c?_#|,m=? ;a# :(dY󑯰GLEO쉐G $bW+__cLKӞ-oH3s139u;8E|_7ȔdD#Y;1]VRl\IѤȔ߿ȈqWŔG/pz9[sG}k*e b"yXyʛV޴򖕷߽"$c+ZykV^z<Ռwd[fM/ߖ<I_N^nil/~[H*#aܯr<6K二[d̴׍sd%2F6IMl4e)$6IMn$6I)!/Ȑ<$`Jm%9KJ#MA␮Lr|wWR1V92V)2Vzq)I\Fy MD MryYys[yV^׬jU+C#CKӽ\#3ȎGG >S}yo0o.ȥD=rZơ>D+ d|>wˏ;EM;9rVmm)2Y2Y:YBYJYYZYbvh,~ޯv~oXNK?rXO҇4FyrpO(r>Zk\{Z0nGʴ$<9X_nƧY'8Exwў7<<ӞyY,ew|WY}/io 'Q/Ș%t<#ck\0/Ȑ ytA]/Kg;25y\M^WRnGn|ڧ/F6g1>_G;޾_د_1^ }a-?r_r_r_r_r0YY_gdor;2/G^"N{G /ȐGjof"O=滘w=;~p~oq>#2%W"+oXy"y'xE-rIV^׬n0xFy?徘徘徘^b&)/ȜVcKoA^poƖ>,}X }i>IdK~g\Gdtэw~)3{O܌WdS 푘♌qGd܌-͗^}շu+2_ C y[ _ ?ܭS?9mO"9&B-r R/i E܍[oUE.8.& ?4=H܃<=D\wy7D*h9h&c/>+{p#$["`HG/%o%hIߓk$9{R>&xB}jo1п+#y#< }~^~OOW.5#j<ŞX_3ߗq޴e(14?uǫ@/ y屿x'o1F:kcKBYhS~K snY鋑#w#~F˸DkV^?\q)o䵍K#s|^r)r՗lOE }<ԷG|ZyV^ 8GGc_yk<owc<Ø:,}UuWs<"EG/}^K\G6#3?e}K✍w?~i/Y;ԯ8ȥE%r;r7U#o+K=A\#-}DV޴ʯ^#xE.jo6#ydcoZ}[;%{8?ctO>+~>V򦕷}ڷC}H#b=W\,XzͿsq=LClVߴ?-!.wՇ/\xȳl[c䳿7_l}kyVU/~]Kb݄,nE \sތH!b}=ΗggĘR:t7Izߏc{Y0wcϯ=OD;"k׭sa| {ҳgKOV>C?{d52r"wYylwm|.qB&^۸DF9^K"rq՗)Pu %2֜Aw|/W+XyK}rI-߬|D˘ao0k&s|óDF4qoՇbg?[_{ÇWuG.+r6NyK]<<{dDVz܌qq <_48oXFgm=C[6^3\]N{bߦ6/7/ysF+))rˈ>D#䱸Fчd~x}[Ɩ^}QSҍsd(/=[吿(~vپló6^3r._o5O{i;?״Dz}.{b7e;+{+Fft.qVp0xEc1oSȌ&/KmFy*]y,d9w׃K#c=c|-Ww<#yYY6ߓl)|Wd}w&oM8.dۓ'oP6ߡlE|&e]07͸C_O5"鮾*f r1%90f=2_ϋqf~a~I_}~P#oZFO}k#ri~{;cψ+oZyڷ}|o4{G>[pK3WEշǞ&_T#ĖX#K~o})~=Rn/zGΏ>sҋWK=rKƞS=LC<"S2{6{6{=|uy[~7qȯпy D~ۣqH6%ƖXnY{o9Wߞ"a\"elm܍].2~W[aһ7Ko^-Zzbҳ r[ߎ>qFSݒ7:o)*~’| i"92/+xM9N}v== Y3.?[lCyxD^8E59r6nZʳ)y[~*X/[#a]%2n)r yV^}Ay,c_,b }r1oq5(OUxwf\q6F?[5O^+2gm莧jM\>%z-zW_-tbyOr3^yxF[=xQ(/[:o3ұވyxEZpPL)LJ#.}/z"Cb#s>%gן.ȹG.5rM3r[w~~累s\\F~"Oշvo]s5ޑ_g?xyEn-~Tb4r3N0V:kf"sd?q\e\#'KO!Ԣ/WrOKg0N{ܶq\Sbq?\^nc)j2F$߬j9^Ė?[{O!#ilX՞L9ƿ8G%sSQ#mZ9[y)'׈{^-r՗q/Ij#/c+Y/V~6~;^/p΀cG,{ N5o呂njGwkEg*pݟ3 ۻ==(kzx}xG=:o:z|[(B#?M9 ˜luL#~EV/? @~ 7{~oO xOGUlHɺ攮[Ra0~n?7 sz$.{\LL|虞6XǕ67oĿW8Z\|H7#oM3}˷&ߚ:xm)d^6oKߞBᷧ)SJ#|#|37;{U 3H`9^ѓOSH#&37@zuא^Ezz~ŝZZ_|*`ĝhZꇸM0u?P7-os [C©ӔExw*N8{NS0)lPctttttt*۩w1XJM;> KaSiʛoSٔUY~^9o1s}B}u<ؔ;ԇ#'G-SL}L3!G#^Wz} u/ThV{5(< -AzGҋ^ys^;;F!>>/Gq]s9j=:ίkM#7xT[> l0ga{7g=R՘1࣮;꒞jH#6ߞ {U/0 Ϩy+WįK9ݨ\"#؅(XYR#_, 2~slʧkK|F>l""] %8My҅Y[=NϹ~W5r|ĮslMI3æ8LOB5m[tM..)g`9VШFs(5n[Cp6ǒJYr gYoR-741٤yrS49Em4is7G3k.M[u_ź ?ތiu]f9 } V$ hxV{>'=ڐD~ >~[[ݑ@zm'ʳ {w|q퍻pao/Nk7ox97+SmoG=M9_:FO[]}F~L= eĜL飏~=a?·Wu.Dgt;ԭ6^>OOyzl{^~)n ; Tߦ|O,ݘ\ ^!W]\~W@z\c+}y|)''.ԋ-ρ<=5W7ꌗLͅSS"T~};/0k_ +(_/'6<ઞ jC Qu/-6wW+aڏOΗ]lpQ W|Yˆ3Qpa{++`{wėz-pC@@xpW77_Ԇ)\adqo#=CzH#ҫ9+[GKnC~z=V?OFy+ʫK-m|kU=>~GAQ~H!*`m/#Fׁ<ઞ~ 7䯋,8bxF":X4`}x|?m,rp< p< ;< #C~ Fz3y0~/Qq ,ga"~V6ajCz&қHo!6;^ nY$oOϟK[*<ॖEQ 7{'~?Q)kkE7;0~ F}P_,Y ۈc~0\Z-'+ # 7PupG˅_?LG'7Fωp_ }]j?H뻅1{UL=޻>۞z ;⮈_Q"WF`ğo;;{D],5sEm]=k(_wAzE䃢]t~=6zU7W_yjՆF k+꓂\ Z/㗫zo}+~_?M_nijC|C;wGH{+1BTlO굟A oHٟu{ݭjC~ mwd~!|uw7ںzʅga~Bp>xmXx{5xu>\7Zg뀗Z绡<#wx _c~[ۍn7O)޲rA[zwo}~{q+<.ȯ " Ma OxXx"?EQS`)B+T mG- K#Sg<7VFzm|񥿒i"~t wxNUm~};ʯ/?Kop njoY?'6<ઞ jC Quא^C*W* ?=>E1p<ꯁm`LW̠Ay On|Ϭ}a #|#|7Z0'' no#WCпk5Whς iא^Czu"onj/TCcXt, E]^$o |Q[} +|0QW!Ff;Ho ^&i^M}*U'oV1O;; /V|OʻQ#?ɰ>ajCz&қHo!6;^ w7>?]Xx"|"|!|!|#|c Kxܯ^|Ѹw|ԁ-[8?09^(lpQ]/慅R7ߐ_"5SzH! I|5kqtUϡ;WHcKwWk{Q @]!wjy#%^q>P wDD!ܐpQ Wu[p^Ez W "o?r m'06=04\?䣖.?a5φp<Wl8{>J ~Ϸ0~k9 ҈ߐ^?9~@wOg"|!|!|#o?uz}ڿcH#=@sWaC'/H<~۞k ?*{o%{ [>0@k?6_ Ł@s?>~G;VSmo"zD|鍮/_W~s)a{~2pjX Oğ[L#^Oq xEz'ϩwxLG_c<(IpoVk>xXx"VQ~xaSM-OMuxg Fz -FV##c&]uא^Cz U쟊-"W0_-j;E=>Z AM]^`{Ǽ47P#|"|"n9}tww77W ʣԺĭPq?Fzuא^E*`{loxD3j^('ʳǟg/F:?,eU/f}!3a^Gz 7P>0#:_a>Y|!!z _:/SY(F~L/ouB|Mo!&[Ho|{zBݭ GytZx"|"|!|!|#|o:n؟qq?FG5o9?/lj ףa>3g,C=(ϑxLzuPuIHo =jG_>|gnZ#=Èצ|(_@yMg9V?ͿW3ָo.3i w~ |fQK,|ֈm< =W=0]HJ=ȯ!{ ngu\鮾u@o^4:,=`֑iw ;HiƤQ:ڸU'Է Nw0c(<(oGy;۰=S=E£FFu`O׾?.jwAy|z!UMԷHH- wuY k܃zm炑!?6awa{ʳFywZo>nC <գ[Ӹjަ>^룮w###| |05sOO//t7K #".uk0{z |ZGh?s؞Y(l9R;zkU`;,D1c:fի!{ˆP#xK{ޯ8^a_qx w[=@~(Ilg y>l0/D{6; ;۰ׂzkfqu7 #Kq}kU=\ԣ;PUu{{Է^M=Z_S~ܐC~w!z-L\(pyku>@yj/T=<:KڟG!F&Bza <۽Q~?ǚG={|;&HHQXk/jC~ocͣGuGzK=zU(Aϰ1-pŚGQa7ğ?zz#F#cͣVWo5~ںz"jF’B}{ԭS>,Qxx> #|7xu~ayFE7ƚGnQuo|쟺u[yV[X/;>?޾_5ȯ!gsͣ ~o.j_'G緎֗[վ6Ix;Lۋ+(-TAaSl/K[eއk.FGџt:KVGџ H~_mTZ8_ w'kQu%4қHo| (FzGҋT5R77ww 啵~/~dmM#"\[=czVԫ(By7ʳQރ)OǤʵ|u[-Jp/0Ho 3iړ$«SKK}H߆83+uG禗ڏgj_{)xwxxxyxzzon g{ࢮ p}/ ,|o+ Fz= 7mxHoHv[= ZۋnmOڛk+ֵF!}ߵ~YzmmenjY,W[}Mkg͈3Co][_jE}vwGvW{}27F 'ۆz ~GvNcoenyooe쯆}f.jW{+W-ߚ_0uE--7w&wxvGX_~[½z j=z|k#;֋ "sɽڿ#ථ"OFwua+vCyE{Q #!@z^qZum_{EY[޽`&6WFA@p'n?c;,vov~\{;\ pɹsz m?xO<ỽa_i6x<|-dž5-|zHOuE|c^i/£Sm7y~Y >iE}[QW՟h­K='O_;Oc*>"t s|Qu|Ϗ?AVџU+ɊfEZџMorks~Mn~~ևa>㸟?Tw7 6Գ[PmH~~2m{z"xx#A#s$ [V/Q/~ox K}a饞p?^ۘ_7u>Ay0_`>igVwVVVZ'_lT/qoa +iVVgyD~~GW%Ms>_!]AW.>__?>Wmz*¶j7y[Un6W'~]ү~V˖ݜ3 Sį?a~Y` yYIb {}oz1 ~Y aOg=w8wJq߯ȻB~] K 箜'R'pݕwwxvWJ ߕkL+t_we]'|W辿*ݟ›?;} ]I&)_k4F]ywW -],|W2jCx|Wbi8>CvJ!zX,|W ߕh^?9#^ڳt}ۿ+ۅկ#g~iicחD'\ {Gt!#̯?7d:c o}{ʈۿ7}g}-?':x?!E{'R[|O8^ |0y^Od>{_rmU= |kT{}?!uFچzVxʿQ}}?xk uVSx57o3V^!/ˏoV{ڷ [ex|0zۃOKo%[ګ #O^K1.w16?xmzMϷx71EǓxYNϷ?x7@^I۟yyNJ/؞z|)#]w%ov 7X`n{=o|'};^.oXlϔ^o?S㙟Mn}O۟|?`{n?>ٺ?ӟmKG>zsn׽y\G|zN>^' 瑾|~XƏuԇe؟Ooc||}gm}>^=_·=Bck<ߍ |h/᷽|2xp-0o{7½S={w:CTnOqbj^j>'<|K#QVjFzGҋT!!##| | n(07·M븟M#"\N'4»̇@XjkTxDxExFw[xJZI,_|o^o>~V|d=)޾ YeF|㫥o1z9@X;xrzxw /7xw_Q~F+zē)?̮_TX[Jf9bUʶx8=ম}-j+5l֒xK,<׾U-7B|Y[a<<࢖.XHߺײ }+⭨5FoWR4w}:}]j_5:< ^&ՆpY:}2p_8|Ծj{"g{jY0ۛbWa_:*{!B|jH_ >~޷oWtWqu|wo}UMUM[= |Ԇ+owd~"}nJτ{ZSi7B~mw$~/ZW܏ZaC\_q>jF!RaY>;6Գ('WwoSk=1>jR7WQPڿz񼴴1~s<1V}Zʑa_9<վ?{K-_]Q﷿'Gx{+1_/y/{q7dž F~'p-xM-w^ȯJD{.<`߈#B%Yᦶ \c__} #܏8~aZV9ZoVo^F~s]m(< ._u|Sp_[/KԯX {o'' ?ݾ?oo/`q~ׁDzHo :kH" ғЈUC9p}n3zrW #<--RW=__c|*VNXڻ*jۂ`W^Ea0 #F%᪖ZjnEm2>Ow~?&j?0H!lV'~sRwx y0=`ėnY3l<:<>_"<6'g{^~~$<4++e_I?ڿ^j_ag#|/vHOCD8}Ծ?ܾ?Ho!6;HHz}A p3h4XΟM#"\><@^9m,lBy7g9(|%/jo?$}ZxS#:Ho =Cz=hO~#^{ A{WZGxouxrxsz~?{OxNE:pϤj<=<̏$}|%÷:E}תG-?XU}6ط9omp<{'ʻ '7_\]z<ҟLz·<i={'=\q=|}g} 9^۷'雟[o}9J?9S<Dkx/7=ol'⽅|m/]#VH#pԥޟ_y}㳂Ey晨M}WH<\[|Jv7繊xt}'қHo!6;HHz~>>n؞?c[i0+¿ #ǀz]?yGw$no}yOJ,=+ח?g-{^}__lm_﷽J_oo85|ۇw'ާo5w{cxރv/U}>¾n'~;|h|M}}MWo,]^OS}z!=a;pSSwב_C~kmxw2n}ګEݑC~zӞ_^r ߆Ƿi~?ݚr{xXmZt￧zHӣp{}} )EWz͏O_5ۊwbvSﴷ}koE{~]~y}qj7Y$:%jq̦6_1>OԸ?qY_>=w<8}[}[Ƿx_NZOx,3-7,%;}ݤ>%wƷ㖌_o6ܪ)o߭X'o:L7gݧo:R7'<C˓+^7ݞg{g1/;? ۖzxTż|go?}y<>]ïWkq= >}RXW:zQϺO[e>R'=|YN}{L?x~7u}{|>|7#+S]/ OQKKuaIޞoO|cnyϿ[^V|/imd-}{Tx'|w/ޓ;~'|*[c/>zQuXzqu`yԻuu{fRSco"6HEZt:noy}>5[qKa[E+t/y=Ko~={>ox|M+w~Czu/[xqxJq$^_ {'z㍏;_+w>w>1~:w~~x'|<ݟOo4wNr{=>}1ޞw ?O??sx0yB{<"}e>?+މx7kicrNk>>^^^흱?{M-߫7|t37@z6~v|fԿn=,G7^pU/Si>MrW7_0ʣ]~],ۈŽ>>.O7FpUwu;q^=}.-˗z!'媖hlۿrQ;`{:c]pQAu}!~/X&,!Y^gs=^ڏ\8a'~okx[Czm\aZ֛{ꋰou=҈g K/~Y߆}=T^j_i{$æ //ooz_G pߟaSzǣL׾oxe=/^G2I5u7@z MBzmw$Cxݺ=6OlX87'§w!|#|# ӯ7ίtz{ڿSغ~nG|} og<9(o[e=/ k}7VO(0Hϐ!=;j_?; /iGi[} #|+c>j@ww'w7wGwWx|/6^0s=Vw{^/i=/W|O/OE#B뽞sW|mV̪yE-Y5!首bVmOf[qoo{n<^گO};oO}n5a?jW_l:_)ǴG-s ,s$,s>*p}aN|QߧﳽxVTGUE{VUo|>Kxo!n4= ߧp|/r~|4G;yVQH緹}>0_HG'?Q/99%>ۿ'珸:>_*xGڐn_ /Fʧl 7 >1ağI? µÈ_73S[Wz77JOխGMgx RϷ=477WMG~L#\xhXxjX㱟B׆z /aQ#|#OO|O_-,yC?<_F)mL᯿7˗4nIO'fK3z=[ O3%/i伋Ut9}yA>9m<+o}ϮYuuvmN3wr>f9ws? \Sϵ~vϵ~ ԧP睫Oݓd}&wҟ/ ԍ;3߁gQzx<}|S5gs~׸@]s;bwOۦ;3tgd|Id^{.~Zڽ\S?x6H?nS]7\oȼF=fpQK-|g67ԯ~+w^+!,ﵹXW<^ wlAL\mPsg1끫< oS;~oʪsL< g̷=o>~= 7bo>9B aw}o#=6ss~7|N|:s{~1;U*s~/iw7l}w;-f/{`;7X޿{d}M{_{=>ǒ}&W%s4}ߛPHǗ{#_{>~o9^֝Wesly}}N.Vuu / - ^>lӰt{e[e{}^_sy}eܟ7R9x9؝7-9q8^ot~otd{qotDs go{u{뿦9Y=9aqϳ{|c'M?_91|~cƻ9F|s9>|]ޓϙ+Ss({;gl./>glPΙu7CgSHL=fj}(s>j{Ι;as,c9u>{spDyۏ7wP?r=X9j {Z4Gސ޷gq/ϡnH텏1w~/yڤ9û>S^P)zGOr,Wz}dz{^O{e󇏷^+{~`9x㝯ox6>}~Ss_s4xpW||ys6xsxwOP7:r<}!s,y`~  0')zPY1g\Mꢖoxs? 7lR7|#g{i~Eϊ9? tU? \{H^?h>zO\~"wLXWN\CװSo8Z@xs.j& +nOxm~Ì|j!n/囁_M#>w; xE"^,wt7ۂB~M7@~5KѴ8׌P3+ܾ? |04,e%.o7 # =ԆI>~OqM߄?1~`9 &@qF-`_ 7F}|H=Z{sy'-=&gËڿ&|/ۿG=;uE߬>9w:jgyMo7?u++ޅ\u}c^;}ϳ$|7[R)]ϧGmu€|ZӯO߹qc>,S>;վ~/wOO؟/uk|wtϻb/3go#HۿQF!wD|!xxZP#߈ď? <]!Qޞg{<7D>j)/yԧmyw./VY3.<1^^jƀzKx[x][Mm~Aao?rȰ?7;GiS7ݨ9j>~#NjxsOba9׻,~CwUۄa,_?~7aH?.j3ׁ>{xE-\}?㮖YXZa_ވo,/WW!!bo>b?l~3a9_|OcCݑ#|/|b?OQV̇ 72Xӈ|q]<`ZMtF 7(=Wz wU-oi= ^{?>X`}]1ϏWt{O' O>&ǎ52yw<|y<}>Rw~l/};_dgi qomG{^e~l;q>|ᣖe|tߩUuOHېN|}o | ǀ۟Ioo)|$o k@p8ПoGفnzoE;|}'Fy_Vx>ԳZPmYq8p=>jz5GW#BzCz3FMZxQw 9Է?6|C>xOms(}u[7ms<,}s}T↸a<wOuE/OM{Po!M7{9^/OwXx|90/6x .}gVc cy_?wX_hx ]o7oɧ0Vᢞ qw~y+8Kl-+è_y۴\DC-xEW{#+GtԷ!P߆V+OM F7OtÈxC!^CY]/o :ȯ!*+OkX߅uaba~~?l^r{? Q%??>JES/U*[ZE.QAy>{ cy/Yw77777Ƿ/Ͽu\:ϝɏ#yq?H_~k~f5m:x=_51ֻ _]>q?b-Ϸy1>zzocmHo黴1{qs]}.m{ }|wz|ppO=8ʁ'\9=='=v[^ϱׂzGx< 6[-̈́,X⷏vpW/ޤ;xC"^5<~g%]շہZןo :?XoÁ,-o_Ee_~G=x wueE{#tK6 #0)SH^#홏yx{/ܟpy>tLg"Lw=roc~=1YpU[#^1{5/?}SxiBn'雟17c{÷c-o=U~?D}饿w^Vt{G, g_-1td|u{u/_uoy~7w8ӷ>~#]g|>g+OoϤA蠿껾ҷ>߹V3|:wo>^;o OGA~g_k_C!׋aߟˆo7q?||A^Wīq=f 1^5էW9Qe޹ /=^xWxTx>Oo ;6_9xbOs2|99xkǦW"r? ^ YR /ut_?@ߡx-ۯݟZ/?;"ME,=[g_;6ۿwt=w|׷=w^uy'RHq:N|G7.h=gޯ'ાߡ+quy܊t} yws u.]wll{%+yJܣWc.w^yw޾/k᦮H_Hg1|KWW>#Eߝ Kߝ772~g^.Yգ;o}̿..WnwoyUΫX♼yyK-zۃߕϦ./nnO{b^𝧲xxy=;Qao ק=bN *׳׳s w1^ק^YHx>H?> V;֣~g+2"}#o 2QGpol~r?__^_3s cZ?i12|?#wo:x磼{?O"sC~7L{~~_߻;,D{Pq>wy8;I|x7}껿;6M0|{??|ǿy^oƽ?;^XwOzw}{{=_;@ ڢ᭾RI}ݿݟw}'7|{z,j}q? )@6Q?g3w9\!}CS}Wq79~b=9}ZxHV|(|Q{룞#S}s?s -<Co~{p{Ұ?|ڟOб<'sy%Njt'r:E__{k9^ϳx9:,g]~}^?<]ܟ-?W,Y?݇>_sʔyg72>e~!Qg]|*J_9ܫ_hV{^wMW|:Ԭy|W6Y-;\2 (Hy5 O~#!!!B}/< FwQ~CUo'\gC<᪖Yw^(ouDyE=PxG}:;V+[{׎_;~W+#'r^ D|">w; ~$:v [Yݲ~\k熛z :kȯ!*+a*{\6պ?ևa}ևW (Obc i{1S~ϊÈ/X/#><1 j9|TWQ^E~WVzM7<6dS*bՔz`7Q,?Po_wG_G~roxp\᢮>̢/4o0l/4l0Q~G}7xoa,? {{F 3H~#eXf6ljoF~ 5בooo0(ϷWpF|#~?B+i}8^j-lj- Y>m_4̒1+,([ 4o &o!?C~vZg9%'^xE\KxG| >O#߈e4qe/ӈ /OO瀏z P_C}6Q~=9ROWwQ o~r>y /P|CzH~#Ar<5<`S^Q `,;X~?ί<;\X#W /X1k\xU~#FzCzCzC}K쇥Q@~u'-|RpA\fy #||7ec qC|'⳪?qQK ;pSWw|W:?݆o"???}VpW7P~Ez_’uxې~!B-v3{mU-btQZ;Էd1j؏wMZj};fQ uuu{Or<~\Ժ},9uߑC+᪶^o"FS'OXg>~ƣi35cHߑ!z:q?1Y?nj#.'ev'gz:n7<`,oX~|Uc?ίڷox/x(g5ϽQ'`7|2=&nϐo79Ǯ#=[xG-G=ǻ[z 'aQWay=t/D{'WIXwQn}$QMϗ?~_i8߇k-u,?Qjjߞa䧿'cխ{z,o7+Պlp؟A:ܫz'[(Ϧz Ҧ+#Kݑ^|Cm䧿xRX 7׎O@y 1FVo7q}޶y W+K-xkGQDyc:8̓c>8چmm;·mI#m omAxv߳dmszE}tUWw-xxҷ~s_qCnꉸO=·on۷I7 7--7D~o) 7_/;-)o#!B7|o+җ7}^ۤ^5]Q5ԯ~+wq^K/EQ~Cyuu{AxouExN@ywߐEE_9c'l]S@~PK{c_i,_d[Kj{K7aHߐCԢ.:NM\xJBycxpQj˱OO7_7{>X~m3Wo_97tp^{cvy[Oxw}y:؞g>I6]ҷ|G',Q{{sgH/<=᣾iM+{#ْKWQ];;LzIHg O_HƝ=)|ggI}gKu[X~;Pغڷg淮Hnݾ}o'!?9?xQॾ%M-ˆ} oF|#~?{e+VQ{{!㹏G}V#F7o>^V cydozWovXdXUu~_>.("Uw^7N%xlHoHoHSa_U= pQ;(UړM3]exη} W--z̢@>mC-ߍ~l %k'cD| >w q^ qŽն^C=7 'uSu EȽ j0Onʓu7ԧ>)YX? gE23"mx >&\}U-qEyIy-u3?nj_UmHoHoH~g*ލ:X~|߾Նe|8VJ7~Txߟ <',17U~/`k{\^^pQ^G3.=`ڟzi,?B~?s~#Fzqcu0wb\u}/o0(ϷW/Fwa\^飮Wû.6 Y>mǰ~6ώK:o ?_nVwk |aK]xG| >Ob.4GmF|#?1W>Zt˹½K-_09Wx P_C}6Q7J/9WZOzȹrȹ[R/PB #FrϹ{};n( ~g9WGyw"~_tr;\,_|G/pU`g޿>C/;C?#t/g!B}pS?oi}pWf\߈o qC\ޟ<[>>WԷ>EkM\~ii1[aycԯW_Q/Z}B1/H?~ Ϗ.+vbc >﵄z}~wpE**U~eD{붦 ߷O_O̷.e{^j3:pQϦ(OuCW_$ɶ8E-wD~>+S|~ `>b/>nj}-=?l/1ǨOAN=1_ʞ؞kXWz~`y|u>F#ޛZ4=>CxE]P.n7<`,P}6_x_6b>pY~<7M}{~|oY_sb}Ol5='w`'{=[^F?H$}yx|iOބ۫0B||C7|}.¦>js #@'/oo}nXc凩'Px7ꣿ'cZn_ߐvתnn-gMQ>z]|z= lj}Z3o~;R Zz7gz!!!FG n?|/@q23FnQiױx[ogk9?_e}~\Բ~7^sr`Wȯ!*+OvEZ#6+6361(<90SOcO16/g<_(_Ǐ K'3~apW0[Q^Eyr^s`{Q(#}zpLO,?Q:x677H~>~ݞ8:?y<盰(On2<Ն_ܳB}3PFyy쯆MuG~ 7D~ G<r<덟^ #^7̂z-D|"_[z#?>s=Uz>r<>n]+ B}~B} 5g>9<k'uRMx#M-g.ʗ3^67א~#F##y[6<| 5P^}g<<xcGy0)2IZ􀛺aXp-. +R^i 7>ސސސ~!B}OwwԷunnK}-yzU}馶 By 孢 F}3PtxC}+[G} ~Ox-XI#nঞOxG!޺nSZgòfO?]sǁQ_Y_ynȯ" +_\izy)ú>J3߈↸_r$"<@|4u7#1颮(aW$iJ7s$+a7_H~!D}bccccccccccccccccccc><;O3xG{a{,lIi>jF?@~~Q'X~= Ðސސ~#wzmx[]kȯoﰩ(ϷWjC} F ~$RWī[?Cj__aSj nSݑ_G~ 7B~kmw{Oo\WԽB|!n^F ~\/uCmu0>+gpOm[lw o?&?0ȯ# oZׅQB=G'Q_C7?ϑw=?=aSg<8|ԭ6c;(颮~Mp,/|S!=07_Bkoo :k_j=M4r>8uBi qC| <0c]AG3X|߰~MtU(.껿\ǛH4/H?~ }G}F'\"}oڦzmP~ _E[{M5j}rX_.e{fu࢞M=P^+ȿHozj^Y(}BaC 5,Ϥ_8yx8K-G={5'o=My{SyCB\Ox Q +,<ϰC|s>s?~"B~LiS3 0ܱ|x p-Q7Sx'_!CZG8\xROP5Fz%\|m{WZ~_^Q?C6Q#4O'epj9~H?zNB QF_^>QVay1ǻ[-=inG罞>F|#~AQWʁ/X9@yM'ϻ=*|30?H}>v_|VW,/O=30Зuws9&?wCtyߖޖȫygoN8zN?ڭwmkc6-y>Z}Z~ms~4c`{oُ^pE pU|˿|YN<,F_^0oH;\tw;+_Fz.<~g2P~CWW_A~ɯɬ!_~f1g pU<+6OG}:LPߊxE} [$dZomC=xQ #^ċ_y^o"ƂQ_]_EfrSWW߻~>=mpU~ezQ^C}*~_E} Sx7,.X?6 B2 Lje֢OeYX7fì^Ǣ} wu=,Y&1H~!Ȭ?zlx=X[}I wU_UW{n뿳k_x 6xG}g֯[}4szG}4wx 5=`S awۛmF=l]tu u0kȯ-u/0([}χ|^mF #Gi4g; RC /PӦ>?R{jo/ 7;-*l6;w4xC!k@|">_/ĭ[߈ďlN#^-z x>cF}6sPޑb<(=ᣮ6uC~ 5ב_G~ {Q/_ Fz0#fzPGxlzOMwx[*<`,ߎc;(gcOE]6 /,,{i 7!!!B k}q> O;ȯ!6ࢮ(`9_ oٷF|#n \pUĵ?4|E M+\_ǽ9 o¾~o! .o( axo /H?~ } +!\^g/GMznPwQUԯ~EW={Ku࢞(otnx-\M]PϪzw Ziq`ߛ!俣?jzU=/u0]]dy=fpQ~__n [WW+KM,Ko>^ꉸ-2ӿ򀋺.ˆ_,,yzL_fڷGu/x .joa/ў+\~|l?o 7^V_!֯N|sWrsNsOiIհT.|%+rW =IuGܟ'sW/_^lO+ۊ8 D{~z <{oQEZ8; Kyjngc_ o ?_\Xg`xTO俐![۟p]{~>/(oMg"PejC\/4q}^tyϬ 1>jߟ0^{g7}oO/䷐Ug<;exzz߯>iy>^􄷺>~Dz?ϛ _(9ec|@̏0޷XD&Qץݘۂ1i,ɬjwޓ޻fѽ/=a_Hqߣ'>Sݣwl=]}[na:onK#|zˆ/OWD1awcC}n.(= Grg^ w0[g 7ܭ~3~xOK]ސ~!BzI ǁ@3ܐ!}EM{LON7C FWQ_~iqu^.FW˙: ﮶^K=M=owqc!&˟K6\յ,3O{gsϥn_ѭtWWgZ ѷtSWMzax">_yF7C|k]wN7u{F}鮾ۉ1ҷ>~瞟 wtO {w"|p* og= V[Qma s9[_x )-xL 4xo{mOGUg˻'ⷽ A{q饾}^o3|>{>3G=O|3F?|y/[חnLWN %|ߑf{ b'_ߐ}pzR]=zuz_z"|7~^Iu]&르P o [z/5l&snϩ^Hސ~#FxBzP7o]}CK/Ƅ}ֿxMԻG}$OJ/=wxVxXxx}#6!no7;||4xkO]o]>>;l{<'?w3n{[z[;|nݘ4owx}^k?wWvJZ[ pUm>xN/E] p{o/׻_/ޯ7EmHoH_ M=wƋ0xAH<>pWk!/7D~F}u}馮ȯox{?6gEzn(/5ԧU_2>?7!n/ӾF| >xE\|.;,}Ø=%l0/_OJ4xU۫^`tQ{{}=(]~av~C?Nxn??+^X ka}aznp'l_1/)୞X~XE{ڟ ?ϓ=Y؟/ /)pu=6/~G{Wa n@/y?Fܟ'z7a_ #2П K#5?jox7(Ohx[@~~ z#z%xE"owu}Zx >O qVo7q}^y|]- #3 G3t<3<򎔗_'|i񨰯#xgQ|·x`zHoF]`L%}Ǧ'lZ?g<9|;{3C|h}s"5^tǑ]+'m< Ϧ}8 5[k_Wy$k/3%b/9jl_f翷b8WS̏]S̏Y<|-X?9n,?eh`ᷯ>dUY?~Rvw˷?ۄ|Cx(=z}u.tJF /7D&7P޸k~n#^7"uj76qCܪz-TO.s!w nW'G\{moMݟ]=P@F/#!B{;~o#}Cu6Ez.8pSwԯ~g^}Q-.Yn(<=+ǂSTFwߐֿ|]= e!|OWZV->mw=}rĦ&^U85Cs~O{ΪYUͪhVoBӨitititjtjolxYݔ]nAr*n&~{G5qEs.Od9w~Y:r(5Ytjq;.orQSNSWU7uN]S7M6uNNhV#-͜M9[軷SWM4禉[zH:~8Ms*FMѭѭͦs om6%Ь|ml=85i9oM|yZztP~`ʇvvv!v0v?z'@gw4{ Wx-!Vk+[Gm(o/wM7z.B}C}P#޸z ˁ\='Ӱ FGquHߐ!޸O/Dyk[Q߃'魮O3Τ7xx {2xG(*llGꛣoa+`Sws~GS,Q{{6w{Uk&rE~Z_]-䷐D~ ב_G~ UWuX_KzȀFS4Z3%·n= O+1HV .R[[24ttґv"|ڇU3>jt-?'tz <ґMc=;RoM (Mh^r(\JjjV/jhCsɩr/9.+-}O~וuu]]W{׍uuݠ#Zr459/EKZMs(uYeuN-hAMs(5qr. ӄިVmrG車ӄK--Hnz1V|Y3xE"oG>3VLYJ¦^Mz+ {uMϠUmt:n FyȯaSO[B 3PFoPAz=`xH_=Vڷ_ >(o``,? /,P_hֿ;%iS91֟+}gZ?V9x]_k}[uScGUw,n(ꆿ)i/>~#Fo pQ=>'ʟ({P-x=hiWPop}gtSo< 5ᢞD}oGmׯG=x=4xQfB|">;58\_,uL-䷐D~ ב_G~ WbqjpS/QqOG}:`H?j=Јӛ2.,¹U8LZPׂ4|pTVaʡ|C&Sy{P/9ДCYK]epnH: KJyL4R0,o oy󇮜nڧnl}o$}gxo=Ԃ<5gE.VS)vC]t٭KzS`P8ldC&y0:MQԇ74M۹SFqjtk5|'O4ΚoGScG ZOqOxGD~ -gϐF~;*+} Q_w;F|">e{6<񍸮E3x-_Wwjz >zVq]GK&oF|lG3pQG]խ(O흌<6{ֈQ[R[Q?CoQA|3HO9Ǩ #}MQzX~ͧ:W{+O˿.e/o.M#yOD 30eOwpB24nV^Iyq8NK܌Uynnl+<fU`?l*/櫘eIr˖>-}f1rm[}g E{ϐr,/K~9)<39ܬfW{>K.ऌ'{>㏼=?a{ C_=1rV^MyNS8BJ\|Gqqj&u6.T|mn6"`W,p#fGE_#M(*z<b|<8cSb7XbSE_hm [ً~,E)Mv;p ԇ>ԇ13$]X; v~]q X;DM]4ߌC^>{<9c(AF LXV܂܁];ܡZ:c{=͍sy+-;\-f2|@_kRg?c[UVްVV[g2F ?RVCyX}f2ʫ)oߖ1Yߗve(kcr=ߏvȳ)/{~[okb{^ߗv.nG8,Ky5坌]dM$c˯Z~xXޕǬc\Azyp-=[zRgl%c!]Y}kVʛ!~`ONX|kr3=6a:Nx)llWk-W~vӂ̢t0e ({_1r)?}œ#J2Wυ[5enB|Dǥ_.?Bw=6h!#ߜ=)/ Dr5YwjZ܌rph˓؞!3=CrQ!r3N{OUY.ȓo/{zRCVdIChyH !<=UE 0+2/9+AszUY.pVC?<,?w+_f7@og{>ޟy=/?l{>՞/|>7H#Wx2rD$]$"lIdH" X',_ы rW`zlլ\lE9C#mb/~[/?C'OI\\Ð` rWK8RcV|X/>vh|s4>n7_n;C)o:'K~˯>rV}$ݘ.a1_4pQnӸ*w܌2wpUFr7.ɞPK4~i܌khi*JrZiڮ & x#ۓq1f +s6.}{܍2{^x+o/۹e؞1b<]1nx&:cȋS9겥`C^^/S^_*1\1\b>"}Ac>%|{Ǘrd/9ʃ~9 r?tӇKnV7}6x)G&>H}߇,-S%Gɥ*Lnx)w+/ڟz jlfo>ݸg徍q377W^\r8+e܍r%_|a\=ٞ˸g1rշ[oV~y rrYU3r7KR^͇8)z1>ӭ>қMO!.'ҍ-=[ziK:Cn]e(il҇wK,Y:-*K/K?OYyv屍-nu˯Y~_嗇o9^EYʳ+mܔuKn][~߰,emɯ! \\,bҫ7+OeK>,}ZecgcI$-=[6z\-]Q7//^-]۳Y{6WU5gw5{y(l܍rV^גq3-n2FKyn=,Moto)-=DNz痩)]eѿɡ]aһwKo,=4UXzV^M}d@U^8+J[Ȗ_,jU˯HJqRNWkgٕ%w+O#W>u|J|J,=I:--}Y)UEOܖq3NU[Zze7㤜-l|OK22nl/{~aix7>0dГ߰7-e-oK~AC3.jқ'wbK>-}Zekd=pܕ% WK2^efm)x7]y 䙍2[}Gǫ]nz1d 2k yk/"K`ko"d܌-nu˯[O-]{\/]^/omeq@. K{K//eOf<ߣ Ȩ?Tد!dO+oYy[r^s_ʽ*Ϙ~,t귥~,ty+硬ߋtr=єg6=:L0)l<=㋑x_pPx+ DtѾ]E>ѾMx*jl=iȽOQ2E"? r+YY貥gKϖ^,VWnju)j<\{,y$f-?p3~k_=T/Rj2ȏ>=_)ˢ]\< o~i ⹹!/Ð[8(8 ;ɬ`2_j+P/^y^x|oy挋ϯxI_n(Tx\)o?(:'e95a^ ƭfqʍbMq+Dge9,N?܍-nu˯Y~Su`EYɖC.ғ(dK_,},Q˽`*T-(+XyKV^x嬌˸(-NrKCz+51/gxr(`DY$G~gʓ[[:BEl孌(E塌$/Ҕ:]ݞGH=?e#J%rxk2Ғr2r#J"x`|ԧcdr}9rkʈz Fw叨=QzudK^u*ܭaI_%'ȈO\VsKhu귭~ɹ*z\r|<=ihk g{Ş[TUyc(bl/+[}?MLb{E!-\Ra@{yXyʓG^V5}`LҳgKG!j+d܌Dѽ'oeG=,Ռ2ڛlCޞ/嗻=q3ʢ/V^>n<_}ӿqRҳOI~o5![tY~ml҇wK,]۳ll^-=9Y}=g[O?m\%~Y۫r=JW-be_MI޷x-jpS{LJV^t<ӟ$dK/VRgCyO_˖,}Y<,]G,,<pVO9~mϦe/c,?鏉 ˞_؞_%_qVxWc[r䓧q7[ >lU+5(q?p㟸waW,F\y}_׬~f,evĝuΧ-/[zKXztحWi4ӇK /o$/e\}TF+Tgpo /n oX~Ve}տ[9߹$cK^-YztkaҧOK_ڒޭ=%gKWQ/[voܕ{2I{YY7n-'^r|=R[d,\{e+On(r,nuo$c{a;}̇W1ܒr r K緲#=d{^k/OjV?gl܌m+wV>ѿ~>9g"nNT-0~O7!m<d~Vz_Wlũ2r<^8̑r*mlϯ,[zfڞDҫK/>ڞ/gՕ%fRlU˯Z~Vl}/Wr䵍Ǖ$yL㬬xJ\Oҳ'oQ Ȗ,}Y-˸)mI \էXy[~ˢ_dp-Uu˞_؞Da(Zcjl$ߋqR<QQݸ㤌G'Qg%zҒߌq7o=.oeO/Wnl5+[rϗVSw<]K;^/[e=yD).c{>W7*ĕǗVFܓ[{r[yl>\6_.OyΓoI|~Ѿ\,X:rt+gZ}JO7/Oey+#J =P~<0[~ߴon{_w rsIƖ^-ZzVmeK>-}YZkKzz-=OR-f,x6Gȣ/Y3C;[}ԇKYP^{dnlIԠk"7˯Y~"i/#d܌2oeϯaloi\,^{jx*C0^kV^7ow, ص%*ص[Ӹ>}xr78+'+Oݓ7j*˞_8+i\g44SF!W+ZyE!|sKbQI#esgaOh?rUx&eV^Ǔh2x.'sRrRFcJ硿1YN| ^؞=ߛ՞/|Iʹ*'i$\`|_rV 'eozO^.ʹIIaIYߓޔWTվOZ|?&䭬;V 'P_^ꯐ̟!ݟ$on+;C&U<_|MFyR.CVfoNMG{>Ex+\rkدlOY[Vj>|Hз11!O!/o-s=A?r)[Z~*d/GGp˖k_xc0C ڦjR[Vcg<_[ت?\emצkÝz?,g d9Kuo\w볲rvcӷ,w\!?p8{a;=ײ\k|IF{F|hOrmu[ސ/Gy1^16AS9<|96y!B\A_y5>i@x@.Q^瓇kSnQW|+_|n/|r~KU8;)ux?2l2Քk]>rԧRCUe->Ϧ/7֟TFE~UTDCy+\-ro#/)빗;ri5/֕=!9/oeo{~Kr.Ưud{5垌y›ɳ+2#C)x$!/a?*[v喍Eއ=dI{2=eKG{>Yr-S~O>G1`>Bnơ^][w_{_{na܌CpGy(S9  a߾܌_}߷|p7Y9|yB}r5a?uW\D_W^.a߻=߹w(r7%7܆qQ"&yrRrQΖ_ /m,m@I6c~\!?@~2c܇qQnӸ*e,SgKϞS7c}IҧK-ك4jҋKϖ=9Lh<㟜[W+ڇ$J{(/ɮ,}rQnӸ*C?} 9)asN.7㤜D/}ioc_ l/їC*}a܍_"e~CrV6qػ)䤌/yg~jpgE'=t;)g}?{Vid{̭2~p~ĆVFb/<__;.W7Zl;>qV\e0k+.WM }%F^#fq6A"!`w+#/K-rvSXzrG5^8kAh/o8ʣhOCc˯Z~ @W9+h0y(laP<K^-YznG)~e;lOgKWalM۰8؞xY˄nѾd䡌܌-fI/7㥬 q=G,C };Wcy٫k%|۵^}x*k/<ľI0^^>ax?g9WrLLPR+qZ,av zKM܅@ΰtx=W7=9f}9ezI*-57 m yƇf;9ݍ|Ya8a;i7Oogj|z,wt}z,ng4r?ex4KOy <__:WX_yw/>ia3:sw{ӻ{aHyޗ4~|̰~ian/W[>˩oF'훐>Ph_ٽܣ ?yߐGۜ ˣ΄{ՙ`]<8aø~w#HgO7N8|V+.h?zS=jѿP^vt;71^w|Y qVF~! ;+aL[\1++5ʏc-9 k̘_a8:ŕg!1xaŕZaXwIX[>'^|<[I y݀kgK(/zW~Q^m|Y3aǚ6 惂#=u|k;Ӻw=kX+?kͼرv XC?w'~W`GHQ^?ox~݌B?_;|w/>LSG;#?ݝz6ȗc͞zKz᳡k݋ˆq~w+~WcZO/~8nxo\[^x!lxyt~o{|dz^nV={s77e@^DPy۸T:q|qGy0ǩ8nCWOݽ;!o|0_b1L- 3uO|>B|Пb>\w':}ۅ{ @G;ҡo>݌H_N:w?yy)h };փ/-ЧvwCZuE[-.|? }s_}6O! | }y?N~t/D§~Y~Zʻ y뉇sObkTn~{ySڻ~Z.M~Xzuo'׿e~zz_oXo36ʫ߱g>xܰ7u؛)rʣW=jŝݰW-w򯾻sA_ {z0e yX<כxk H{ߌI}b~/{vz˰GNWkMy_c=w^_o9o|N>ё_M+>@k=w7 AnD2ݡ/yi~;ڻ7ӏyW6>z[90ݳ9+NC4NK8MaӞqcΰi {qcqQT?ND7 rM]B?x~:댏vچ*83e4w|6Wl߆.1;ʏ?P~F_j՟i+i+i+7oe}CX'^I~4wpiw{n%G}Oڗy3}|_.ya ;7Y 4JXӎ+{q%iɕ|>=FO{.N/|}vYn}7qG{ԏ7$Z˩/6.s/+wN[ #6[uO= 띴0֣;?)yʛ\oii iۿ+xOtwԿ!+7W=_Pп O㧼|}Wh +]{O7ϯ|͘?h\G;y=y!}=7g{~1_ys흱DY')_D?']%3}(O HGX4w=rLzh&sa*AȈGzu_ٯ>Fq~bGY FW9a=z##:OGoce4SDYOr>>?5| agїN~і~c?g}DZط%hϋhE|~}]b~M91M2r_x_췠=ZGhVgn{h|zkͳ?5>_u:5*wc? #ʓ؟2޸@^x-cWQ==16Կi 7]rs] Xg{Q?ˋ7Ck` {XBy&8[{EnhVIJaĺ-?Z0b"_K|Z_",/bsc=/ }-j ݍjeĪm^=G{t?buw?ώ1?c>xcd: g/vX=Wm ZXD4VXm|vwZ:'[֟_7WL/'K-;GKoɿA kpC}o׎ }5^\ѿZfc7 XOVެo{ ~Tg&קXiXb4ȣ9cwb}y>U"BM=!'9x[_/w FžݶG&? ?P)ga7>KՂ|,OGڷS?]FػjyI?+BywE{sw/>t#H=3g>%쑘Oa왘a {(oK1Þ?X~{- so޻yho|S{z͡~} ڛio}}އhڛw<~ }ts?a~Es裰S^~)`,#V/W_X`cgOOmC}; -myQ߂x}*Cyڿmo|9߻\6F{)Ԟ6yyF{wzG~Χ}C~綎~‚)3> q-:{tmq|s~yk[ 1Psо~>-|ț&r}]^~Aۏn!EyYc%描5cpU=gЗ5#짨oK~~ߓhO _pĢi}?xӴְ_s*ܿ:/wK싈F;rx.gq:`~cWcW9ӷwͯ[=+mӸbx=8^{դ߳,OPp|DcI4{=;/i?Wpڦ|=ʛy.%l 8ˁbr~?E ww-|wr>mgMoyUq?|7Ο3~_,|ww5ߑ"h"ۛ?xq7}g\{~\{/"ns ڋ^_*ܸJB?)os5>g~or\F{A [9V&ÿ, \޿s\bҫWKo,[zjlң?Yol1 ֓hOc׵˯?)/r{D{Vߣ=/wXa>{ܸ-{%ަ-b-myc{(X+w=(/?Oo#(1-7S~}O߄Fy1r'VݴѯOK<'{h}srq+bs]|YMn?ևno6qoM>wr}us\D[O};b_ӯp;_o C~ ;8`(m\[Ⱦu6kX YY<9rz r>} #Zn#mtʯ?Z9s{qv#"}ӈ{ϓ(ok;Q^杽9QֆxvO(/֞ ޵X&UlY$x8kQ^芧D2zdH\[нr$] c.t sB]kYz憑pD}BvO'dD3W0|oQ&޳U#a.sgh <[]}s㝻F{ Ȩ597cnu9DٞmSٳBS7!G8RGX]_]U9RpzuN]; ]Qx igYy/}U6+mmG8?G:E= moUaX(/ByX{! uB̟'剳3?w^ ?"ǽ8kWB/G>ѯmI?^#deF~7QcA}6OqO2~R%@ޡiX=Ї+޽qab/:5VYt7;Y:|B ^P9~W0~>N'lxcp.eEUy6\<^/c/0x!I{D{"6{g#r{N=_(_=/vQ>A_=| {םg1Oa<·M#}# ʑ_wW^3fFG~G~?_w{(|7!L7r!rA^Wwl_w~ _ T_^_(7/|wW6m7^N_w`cZ/3c:c|Ț >57 }gk:φdgC2ΨO5Wп|tT8}/> _{7[}C%HV=8O.L}8CYp/F"ُ[9JzM9\=onFLSy5-?XY$2ֻHq?ߺ}2z`X{\,ms|!=A^8Byq6<+_6o=$$?ȫMxLwW^y {Ζ {/UϰgA~ޅ'A^4E q_`[8߳gul큘?a)Hr^v=و n}}aO{+|/a{-qڊȠ>:Px}={ķhV^ A}0rg;ϲugY Cwϧ? fe>KthO},γL3^;.ZҾߓq6.G6>&yO}}bx},߄?cdcg3|1_]ق}qD~ S/[:kh{=Sd [|.@|xX:f0|'WK^,Xzli˃ ^˸(al g^On8)Wރ\>u't~{6wO2Xb|;:Ϛ;^;b}ܲ2'g@tWhkoKimП 7gK S_VCq|dzA90tԯ]oose={oP$gW?K8 ήr?'ړB_) {W| {f\i ^߫p?(Π5򠠼Uggwh(/毌؏+Ōb5_iOYgP>w( qq~6ϑE{s`qpv ;>?wlї^}Ou9?E~?9ʣ?ÿ'K9!bis<%:Aɳyw%玠3A2;s8F: I0qpH;CL!fD3aw$!&I;B򎤐wX$*c)$LRwJwq' X3SLI3 |f>wDa& |WZ\hM(jOo'IGӓ$+G$7Kǝb^ҋKϖ-=H8'y-<h=ޱ+=$G +gvk]џV1>k㭣=xrw$|sGI?-OK uk) }y|-wԧ4+X>N`Z>Z"ZgθsiI;yҤy$%tɏiy}z'n菴ǝ˴r-Wr;Ò;< DLƴï~jvrw0-`{߸SnZ߱X?)'>{p"w:{ғqg"CJ~»sCޝoRDzw;ݝ-ǝ~Weԟ_?w)<B^T7w!>'q';w>_!Oҩ:O{r?+CP ? i]|eZֿ߳ڝFc~·S,̓ΝoE:[.y}J -DqʩqޏV=C~^O>ծ>%'A?LS.\:Q -ņ?>yAx-'K^Oȏ18S=*K9Id<~眍-䷼X=\-Zzt^h?rO7_*d{z]{v[cݮ=Է?/7r-o_g/H=; !hoHBOfogW>,OxK[濰P-7w+CyjVؿBUؓJ{F{W5,o߂bkn6?-џiy}r矰Dz篍)݆G7 ]g>ތqc߰|ϓ =;Lg>_>#?_= {i$ڇCIw^Oq?GWHk/ ok/?o{Sɧ=9)$dsyWy>yAO\rYY97K^8)ϢwN*܆rxII^X~H{{ǻ^od֛o$߃21^s=dw<~O$/G ?Tw'1އxz>|u)J$|g/~Gc=~1_x/u=[^?)cz㙿#]?#cz䍤q/1FZaX0Pا_̟Y F. JgLr9FZʡʃb=)쉈뉁/`X0OW h0rP3"Fz 3YڇO3Oؗf>coL6ӏ=Yh۞l~lnӍ=߬jad/#񀋾o7RP1>\~P~خw׵-G)вۀZ  @BeB\1FD}UmrqK0$#b{U׊3zZo?_[[ѓծiГHÑCE}x''wx~~&Ƨ*ѓخ[Q5=p`/g?Qs!;PN 3zzy$~;kpiv>g,;sxܿyf3nEѳW̳ͶɃ3)Y̳Ўʺhoz'MyMD,>a,S/nwxxU*;Wi={[:~|v>*OK|!Oߗ7?3yR3q>Nǃ='prB=`-ߝ=#YғnA=S:ڻIo^s5 OOsWzA?=/O_M'!S$؏|c8 70>;7mx~#s΀"a8CGx={ϑi<ݸ%lo!ǓbEl~o.x=lQHxX5sͮbsQd.06`}Y%~?ion%w'¯~6GeVl]׸: k [yGe5Olg K#G(ƫgKX%?2Ccm>Gf#sl}ceWXޯUy*WƯxnw>.g}Vng{yNn#?LW[^olx'2Ӆ|l!l^da&O_`~=-8[:ʼn+$yp#ԇŵ"[bJWl~P +DISdq寘O @UWd Cmqޙ-X>a~ofk }ԑ淥B8dDkfm$!l1f-N䂟q-Y?Z?-19VfT>WM|)i UdnR#yy~1o27$g.J-yK3M{aO+'}ɞyg6?O5k ` Hޑ7Gؓ[rr^=.+"V?"7ȯ{$WIq3g8Þ9FƓ{O۫Qr{8qmogˏ[;[~=9ꗾ<5ftW\'y X~zعdS $nQ??%܅SU'pp@’cyK~[Y.XO%͹gWxY8} ᒹ%yQ0m~pQ7zo[fGG O\3c=FnAٹgWxdnަp/|AsJ?-’%}KtȘO6g>$Kz&MҫWI/Wx'۹f6pό#KySRH95s"hO 'E{eF}k9^/~G͢#K:9ɷ C$H Svͼ$}I:Ydߚدs~6ߐ[f2Kȃ=ޏ553Kr7ཅ-+7܄t^lσCf諒m }K5}o)Mt~wPfOu67K)l?}}o˟s5O ?ퟬ ~,=v|3[{owo2L |c9G I?dR%I|2uw` <yfF}}1'3/oN 6뇼3 8UxgRސ򦔷%m)oKyGʻRGc_o\?NK؏pw܄cw;7a{>7_8\@% /aD}TԟcoڰfY<"3vV;MuX4쇨Q8߭*oݪ/+ӷ]m'z?l`㖼]mhm_8 mpk]}Yԍ[3֐ *29[G&gx+o-mrL[S&'7{[vrmg5Bv5=C^m0QVo܆xy+ɍ[s6nxy$xkVcžy!q_آ&ع[dϊ$wKyYqJztWqչf(&}oa1S}oU6ω~޷؟65} ^2?rx\"2n[8xG$\s: P)\-7mlmؙl컘W >8-=ډ(lcg7ڡv}P`'=Oٹvs/gAtwBE/6kbx^[xWބ ;yIv]ݎjQ7h([k|O;EྃEH*Fz^ Y+͋߼U+~YC|]*]Cv&M؉7Y_ݼDqG;{q_> 2Nr_y c[6/f^񼀵syܧ0,:ŋvh 79~q^bKn5~/>μ7f^~osy=0=a^? o-xm<1_xIq_eOK^7xFɼrէcoǶc} V?#وg}tc7}u}C }fҗ7;ӧ7F}xxx/f>VYkngFtd=֗Xcޱl=*+Pc#mЬ}߶gvG>;ʷ}`8ziX{h6㾊ˇYi_Q`c_ī=g `^~ڳl=g#۳Vgt a/[no=k^Wnoa> ~iO罘K[<TܳzXI}Sh}Mpn{7Џӯh_6/մ/nڗͫ8exUGy{>~?a7~u y-w^1Gۗal {90q.x}vk4[}p?=l=e\>{/#wOf/|GaMCy덷>{x|{>>= Ev=yF}4lcc݃>d6=*'vϊ++w@?@y;}0wyof/;Oۇ?t{myп=}L?Ly{^~{c;A߳_y71W+[xKy?.?{9_ ywaˇ'/I#T=s~/shQ+uǺ//\ޛ_y޴[wF_y=;]w|~=5髁{ty_-s~2~K>+yG^W(y[S}Yu~ܽ},j ݓ}?{[?7>/~oa|mC q=?`O0y땗'+|=~> ٲ('M{~ _׀|}p~q?ky %}mswWO|sXy%sk{B-bSE?%XVEY/~M̾D-f:(3^_[x^3LgϏGv XT {chD}}a (Q({ɱ(R OهQdwٗݯгӯE%sQϞٷgr2?Gkx+_i28 {^05/{:dzoX_ܿiR]jO/؞-{S~l W:'_y{yz[e#mGxDWzE85(jOc&O˯/)ۿ_vޅ ^<*N|ͳ~~yyدy짔taD}>ODmiqq?u|bqb}~od><'<#*|27)ac{}X߭}f\=^g_\oz]77l-ݓ8~>[h_Xz}: {8'?-q|ؽ^EN{‚} fx5{:n~ M|yq|0{ɺ޲($ 2{{>@{>d~.C_qD}}L~e]у7{B9>o#J g޷϶by2Y}0_}WytFa/:SqV߅=Մ`;G{E`Ghy8nX?v~qAE}ܢM_~tJ|LGԧOs=}ӼwX>ccv8o9Q/pnfƭCrwu.G؞_]DF~|6x:?^xK#*ؼ)\3-%n>k\2(({Ћ.HzIl;oIߒLzE~C5E%p.9E8ZB2%\"WW0꧂[fx'v+<)>l_%s/䔿g K-ST[d@H~^rp \%}1"v˓R[52-\2(QFMޯUy"WwʜsMWG^ 9EIpɜgCޓ2 '\2c"{Eyؓ/8G%hr~)Ȗ(#/{ˑ9/{y [6WX1_.QڃgFT+r?p raX- j^, (yaӧrN^o:5y 5O9|y?/{N^XU@弄|Ks(0&Ty'&l*y/R)ly/QV_"Og{>%}J:@X}gfǶ2&[:Ȝ5zU o^d>2m̗V>/o6mvޑ9ߓMӨ*!G!0-cӇhO͌yL}\{=;=M}l"9E5r}l(HG?>L6}z^3"|3Oyޒ0~s3ufnR^IOG:Uҫ*T!|3C^M߁}^Sf6yl=zYo=ygJ~D~z.<>]x 1Ir^>/!\3C$~ Źe,o{|K e nGoɟX~ez,^-soCx #_OSƋ<2[f~9Q^ᥛ<%?t?Ë:d"y Ȕπk7sZ<ɐf|4d2LNǜ/O-[ҏIt\%Jz:wȣ 85'3738@ޙQ?#:̭ Ky]Rސ򦔇ƨ07Wt sp3Uҫ",%}HH/I_~3!,Gҏ_IA^v*Iyy")|3.3R^?q 9hr?H[?J+^iO봷:̵w%|3=y .OQp^潂x.>Ϥ&w{ vVZ*gsFȇQ^[u(ϼ7gxOCyҏkWʆgy F7<[6btX}:[z1SXқ7{Kf.^4=[}:{;u ^#yy80/ b}d7IX[?m?bu63Xc|`u>6ro)?;ǿ!(6hǠ|1;|$gfG[β0QONCܥEmiDfG|`v&EťʼnJF ٹA;csQLG-flv}- ܍~+S<>n2"{۫?aloXY>x^8ϫ|o_敌e^^yE{u^==<>yOx^~y>׼Q~9ET4y /p}w!+yy+i>ho|(5gW| /yoz|{ x1(Ϣ g} ޓx^>/W{w~3=o{ތ>dZx·^M_0U"[Zo{M;V]H|3٢FW*U-$}X_^%+WL7ؾ5Y;b_"#?m=kuo[ϳzq__fO'+yU8a|?foA.c `=guǬd/6ž4e.ۣۣino an*y6+ u g= o}·7b=Q`=~{gb?^ڃͿڃ׼GRh}JMX^1MاM?y_?Ѿ~?h~w?5ߓ=^gaoGT?;G$Q:i?P?#0v_L2AV(=c{{(nT{,ޟ:ˋL(o؟;w  pO擆A>ѣy0/v[o+ӎ(s[[p?b>BQ?{\p5r? y>/&.Ɠ>yptym^)7ynᇹ|^y+2r~x 9/E(W-?Go 5~9S_՜Eu>,?O}cQy{ϙX~<߾w{{x_}R-yu߰^~f{[߆hQ<9+2י٢$9_Oϼg2(R%~u5UX߇ڎ?ޣg={d?gzwҢ\MwqZ^Ǜ)x4?`<gvzl9O@b~t@ (_yM~ޟL*яX|pnϛaQz/?텶^=?)?_59+{p}%f_(Oy<[X{ ؟7Pٌ:\>=ٷQH!ǃ)'1όgdž>n~p(Ggw/=?;n/-9id~~>cᱨ߻>ٯ7={_g烈=~泧%L?I.5+uVcn[C}&?wl^m?~/EO/8bh {ik'uxYnx_\=2R/({0^Kڏnx~8pj&yQ\;pg@t<?tn/A>r[)K(uvy~^`y܏K=&{py;o-;_]_1gdY=Dհü'aQ2{^> * ;}<`^+7+~o{ ~o^KD/ aJԷM{wC}.>~Ģ><|EA8?G+y4{u|L`r'Fe<"("Egfڐ<3ufnREmذ٢Tgdީ.ľ'Dy'}By?Dń'7Eߧ,Yg{ %dC{,O0^P'ϰO '-u;U=Q8^Cy{;`ϲE,;a2y?"u;sižety6_,<Ϣ^nta?B|ώD·tݾ[_WyҎȏR<_==wOFkN; {1Nw< po%onO؏SUmp1;7DR(Q8 7~5wws~uNzQ&wxuCfNȷQ7_Q7{&s [iw 8y%Eƭ9rό(xk[^{%?%-&<2'ףNoƸF}{䖽[{`xY'WcG0fƭ\pDc0nɒkf5G QrGc<%vkN«n :MW_%78gb2zkeJ+QFDet+oY{υ%9E8W~ s\|B>+ޙ.g$=ym9CN^_^a^cΤA.Ke>!J[jsFzsFqy G>.SԍC}Rԍ3 /=C9E8#G87|FRT3łl$˟u+F;=epK׷ =^z Yߣ܄=UǓ_9my#wnzף;sHY89E!Qq{ޙwۻL–;Q9܅KlnΨԾz<[yw-[oɿ$qzCgtykML^d>*_0{oIߒZ xJ!CһwIozz%HzA[TRyIyfNQKΥGMu.ף&U)JyEC\29G9;\_s# cdN=s#QI>cI>e '%#[ҷ/I_qIQ6v{c8u Q_op˜l-8/}_?Ep<^g!y a=߶53@D /)܅* 7/x)=a>x9=?드vx{87aۯSSx -!)*W-|3./y47SXɏCg/STI:9Osy2# yAߙE2c,K5",Gҏ_I)s`_8Kz*MS _o9K!Sҧ/I_|$H|yQUyԚOޅ%}+*SfCd>>G$.|2c ̭a)Ky|ȣ i>q{ɼ?H#|Rt>nuޙSTyڃo[X~ߣ~n%|3now胿Q6F ߞp1r#AyNG~y_E |4n<= uy -AfOm~_b\{ф><>Fy')D~uGz[sgzZmG[e{![i3sO:2ڛ܎{ j%sl#cCfS}oya{4F%oOI܏plm{ޕ %s–WakfΒ%}K-xH.]қaI/^b:t_qˌL{ ?ӞBy6s==P̌FWRy'֐nџqad#3cZcFIk5%\< !r|fQޒKװDMɨ l4?90y65ηA<| y=lVΖ6`Φfl†gq 1lMښ~~~H>6}am f#p`6qSsϢș;pޏi3?N{ȵ׿=uį>UwOw==_{՛۳}~oWd+?)D8>b﷨i[lAg{>cWx)?NfyGm [~i–goky~E6yr5yٞym+#=ȯ~yp4$1Y{wtwKtwF6}!ZwfyOa˞–=-{ 4fQ_d{ 4̨}?V᝹vKy֟l7d#ƣcYҫWIovބ%}H)SMQߙw^I~cz9 CfnNfG ;+*a|ޱeOa˞–={68̷ G{:6 l "C{&©~'vaw,؞|N#d%C䝐&J۠|Ý2>CP^ pҟp'pMzp>4 4t:!ɝ)l憐:[:Ƌ/#3< l96_t'%fs?kH't'$}?loQ>̦ߑM[2?d0ߘ\3[yg6q1r|$DžyJ)m<-glᒹI*m~X9 _-5w~5o_-k;LG>Wf-};vKZ3geޱq2hO0WLo~2Lp }d-%K|zd?5/LGJ`'u|=0X ayD@kc4|>KWF8}a%'3F?f_ }{^#f_x?\K.\#mJYKQJn/4 ;Y l= 0^8x#'4^9y> ΃8I܏>?M8Oȟ@Et|=O= 0}8XyRfK/[i–Z{Aޟw fu3O[/>̶Mv'Ð{&|V{dۯ&y~EMx!3ӑOf'x#[OYm;7'֛kȽK!M^(ߒ%w3d럴om f{{HkѾ 䝟uޑ;ڛ>S /u癝WfΗQ̐͛Æ 쁑yA#C΋ {iqz2%;3WK<8syx>3g<<=P3;v> a~>-?s:>y | x^b;>֞dȯ>{ lZ%Y36G<@QDZ?Eo{ IȶyZ?3xZ^Gub"Y1pWxVӗpɌ[_d}~ۇ-/Oaɿ$-/闧ץ<2ƸUM%3ړ\3r,GҏoIߒ[ 2V$f(&`*@F1nՒ[fF(%`#̨Wq+2>%38Fr͌["/)?o!~5Q)>R|YO?$vk$UۭH^cT-Oycd[XޯUy"W@ޒ.v/>rɌD<[泄j9yd>{fDKzN^e[䖹 ^E=3[P.\2W;9?ɨ0d=aJfD /5RtnU؞"_sb? ^N)5>X^KsI{Zp^77Efx&+ ye8W!wI7yE],ofx&K:Zyd>X2_,O_Œ /`x$K~xy>%|3|MnL}HBM}K"xѾ`x1'OҸFF?M8?O:/.\3ËY~߆F%sSEjI^©"/.\2oɿ%_>3*FyGx} MfR^J7QkI4zM' Oayޒ-y=aO.זl^eq |oIߒ<%}J!]һm Kz*EKJw'>Wg[f^Rޔ7oB}2W)Jy~+3G}5vɼFy[!ϋwKҋ\pKȒ~p˼%} =<’>$} Od:gBNQ\Nm7r997ԃ’}K s  ^]fWX~߇}̈@S K'aK>[x Oa>d{Ϲ/xO%l]=W.lxF"&<]X~HgCy1D88Dɂ<#|yeNQ"\:5=9䕹ay^<yna$/IQ$ʄ#GQ|"Spto"̈:FWfΌZdy%y蟢C!}u>;Dq^@ig)ovay%﷫|#+(!WI$Iz\_\I>%}I݅O#GүMΓrMv^}r^|3!|22A^MXgny-s}ϕ{{IyMkR^򺔇O'3#_ͼ$Z’wa??^꼄S~c\pN<,!!!!!!!39C!tnJ,ICK{+JzґN_ (wcֻ9޿ksu9/pdbŒ݋'vlfꍑJe Op) .\2[٣4 dovoºo![f<}Ev/"[6>N5zk/ݏs-~3i-[wGf/l%/皹Jݷ&xqN3~ɖ>[wOI>$KzWI^$tJ\8KʛRޔo-sWBj2r|pͼ]2?4㗫5s_%3^ hM#mu)oI_|5&I Ap|GkT`䞹ְ5?6%3{X˳y G!&F^Kv/^,d-f?X yl&o˔&OxZm)lMfÆ~鼅?-6BX]{#V6 '6 =ח6 #ǖҞ{vN _=kE }O|3Ӗe<'o"܅_ /H6h/'#ʧ<-]ޟ1^lko)|3|f28ߑm>t%O#6_'2 gIk;l2#ygߝcdȦ9̦:̨}_ڽ\ $i"0⟦݋Rgy%g|#+zYҫWIo$Kz/C҇OI$}I'#Woa=,U Kz/Sfa{3#yeUx _?|2=犽=芽1pQdd)q;!|| :)|3/ɏ>^]XҹGGGO' S_) /a_^bn.~-2:o)X?~]8菉F}&Ꮜ9 gɻRy2\ԗ=Has܃<NNz|AnGo8ݦ,^`\3C !0+0C#3Ǒ[f0?@BC?"̨o`g`[+pl 1ιFkdx>)?1H~DF|tz#07\"~/-ޕslcd[XޯUy?PEf < :̳e=s\w"ϏOϼG2[yLt->h.>>x?r͌yMokf] D>skf<]~d} u[旯 5g_.KXқF:dY\_Gz 'P"58K7Oo0߾sO?soN>:_ޑ>+EN 9ه'wg+|EQ?w@N:Ol\9^/Y';m"vNW/ߜk}l D'p^)) i9RސM])0'"/ON|^Bp!dgf|4dɻR`-?W?m>%ovfw|).oK9.ro6of[o=6^:S{o 7sOޕf6;|0ޟcll*rGly6[y+7s][܋2Vf 8_mw *%}'ߔ><)ZC8ߥ=vv=w>;p:ErG~=/yW܅ք{On.Ŀ|!{g@,O[^-Í|.,JFVqݪom)##n([/o?sGgoo߰.|oѺgL2go/*y j3>Y?>qSW Ӳ$)}%gx fnGx =J!\3_,_e!\2%lߍ?jf)\3-,M+pɌ%h?r{\z{"ҿɖe>[Xҷ>}3cg+sw/ql7֠0ڵ5aə ۇ-cPmk~@c2 V9pdlKBk]ω;S#c%#}srf*2sWj2IhMrW9#N}|ēк71g=283ބ6$|m8WBߣ.(7 bNֿY|,n}7 Ƈ.T&r'k Y@'!jc){l' uouQb|cfN@4i|J m:&ބhnÙkj5 UՏ+vsECJ=S'igdH7Odl)ySy|睕S;\{'v3̶z )o2y̹}2ꋌ%meCSꔼG#)5VWV;sf^3n'A1''s[ץ< ̌'̻ 'L=:F~OdZߜ%Jz&ygWfg y-M3>AU Y2=yeEޯwdZ䯒;o_.$}Hztm kpP_TOrɌ#,J}-<O]yW`$r|+p? 5ԓSfmfƒpFs֥3;cOΌ%aEEZ澅%ឹJzto҄Ȧ)E#GK=%Y%)C҇wI53+YӅ$ȕ\2i%xKy]R^򪔗"_(??GZIFnk_,I+);˄zeiSV`\.qN ;{YOGI@FpxrɭepHARe K5švWk u@)aM Bjh# .  [ $Ȱ&obn [6-MPd; {x.aIJX N7AM3JQ}QW'Cܨ G3'ISTe[1zgxot3 b bpVZ# 2#kd60u` B V7 dBN ?7}YQs+׌a7Zw&viV֟U0a>V|a8>*r|3U5SB;c28>İ1!?so?s*w|3gܿ?(~>}?i?O{?~Sv<3ku4kv2O;3EE|3O;_a-j8qk~˃Gb}GΘ㝢6#>COF.Us<|\|p^zgT|q<3|3 Hy,Z;^x<2h{~S vb/մ 8^?d\\k幞$KY zpxOkk?8Wxpx$y8_zpe2˥>ZZ'SVMG]fD2OY=~q͘PdL{3w2~$FTFxH6}'2~&|/wax\_O?C-Kx_a0\_롿532%3+q2mq}ށ+탥q~Jqx֌Gϸ<{=3^+co C> U3} l RaKpIDx{cM-/1IKh4 [F k19 'aޓ$-y_WVaK O0Xέ;FXP":#5C2(1j}g9MHpf5@pfIŭCi`+7yFuiC إ]0RK)aIk<͟!\ ip{E+2}2 >wi2 JL0:4EOtŚ6 Ӳ 2zhKX$Ĕ(F穄`nk'Exr+=- ֒ x'wab2tǤ z< |1hF~ؖ f  o5ִq3@&J nN։1߂͌s?[+֕13a~bXw7_֡1/oˑ1WaX°~ߌ9Đj7=_ֹ0Vp'<72^Ovyӿݗp~_ުq~~!syG+c s}^_;^C`w{ŞT/\iq׃D /r3~oPM]kd##%ק=Ǩs3O;5q)\;cûRW`o'ǃS FT;\Ϙއn?6|2=q~?m8o/FIqCuyfMۑj?HvezCÁSL1ߚ_8v!_eӺ4<؅߿W8 /fqekF]TeVR5&0wؠu8R\0~_ǃcH] ԼqY~p8jԥ߷Ռ)u>82rS >8ԩF|9Nu/AM`I=*hT9Ye33idܣYW, Nf}0Db_ߧr q͸hWW-c!s<9xd(Cq2ITE&5q&KYCTaBmOF~pxm׌:-UE?8R~_S{>8nc~p}pҷEf9߿mk|ߔYE5o&\`q?p08P}Vn8f6&}3C0hà*{ b93Ȋg7zӾ8'*(A 2wK*=}|vuxgw1n5ޚ/̗֟voquz8/֋caގ/~ף߳8?ɑi])o!z[Ky yy)_!O#o/-|<1G2P`~_}2ݶ/|߽2>q/|]wF }=h@\NΌ`Ȟi+v/}e<ڃm|d`~Y7m=sw#枈aqlWic|{xxgoywtVm>c0kxg<}=iOyjO{}ڱ[yqs<|3#Ay&(s$`OXSiNir|(輦`qoQ~N;UIOu|>\w'SDxD>/`"o>F'>qҟ#/ҒL7ggSKɗ?uOp?y>O}p~t {w;fL~Ǜ=X땎xWxCsWa\9t]|eJG ߖ)M>פeu>^'M{bYek3Wq'ߓGlq7[=Þtvgأ0Ʒrl_x6G ؾ'WQ3_g0^<'< }Ӓs #(O1Ã(_<~|d#0K~;ÞOq=f_w\2_{ .-oVf. d {M[q{W<+?+3׸;q5S䳰jA_o>?'g3~Yr~?8Q[?Dqilb/`OxFOؿr(O {/C?ٟ|aQe8|~I~DGyn^#bm>|>R8/=In|~Ns\~?sΑgYx)||%џP)||UOkLPyc|L9QOs}Tzk\ S|kze|ҁ|>Pa II)Y5*C2D7imwyxe(PTѪ$}"VE0O2O1K>딿~Dˣ_7$ʘI?۰1#c%9A"#hE<8#{(cєx81>L\(!]ڃoO; !`oan#o!hy j# ڡt{xo̦F-cm[ iI/1;iG-7fK~?Mo̒7g mњ۶h}# o̢5o̢5[# z1,ezZ'xaxcVN`g#0m#yz7Fۃ- o0U6S93cxc׌1߅ፙc~ Mv27f& .Jꏼ1§g#;<3q\25]q<# # o|{,eOkZo,\O7f)z3yc1 蟕S%dK(/<7f+vG*o! }vo} og/9݌fxc o^wuo 7o; o䇼\yg`ߐ]\W>.vyg`y#GdW{zNg?a?m<Ŷ~l'6'-vzyg{]ؓ7f(6/~bO6bao{{''1?ܻa'{Cg|1~<.Ye{~_fx7goy=S=|k&oz|Y/}Nvs}riAz޾qz k=x]l{Uמߓ<^VN* ٓ>X}y6v?euHhl3럲&>Zl멏_c3-cw&} ?ʎMey/~`}=n\6RK K3R|^xdO|pڋf|wčVc~NޘOsg`O s>9;n3ܿ?+3^O8_g7owƐY3^#ηAy8_ic0ʼ;J|rK#^QF>EeHMG/F(Ou<\|)~?F >J|Ǡ ɗQO ߶`_~!_GC>|@7+'V>%_I}K>sߴ?zCɗRO]l. XOxY˷)S6@W/\[|sߚ1||@TE}wƷׅo"o ~1|//1rx׽7q?,wEqh}e8^RzdY\/}Vc9nq~,ꯪPw~jIw9iQ3|y0֏{iR;qMڛ'~5z'+a|Ϧ胖1GKف˳7?s<|QO~ogKh1[G>8ގG=ǘqq7#=0W8~voac[ԗW?iOxN)3nO{{ ~L˳/n׌ay}sƻ 3c71qgV3i~6znqWpj<xzgypc?UUJr)ܒ}U9>”oc|)K=nLՔh˫3QJ7W~+?U<D(Dծzҷ*vD](ߪ1K~-dE#/OEc}cmhK>֣* ]%~r?g\a~|w&_UI0L~3/Th MoU\դ=_5u{?U+U3"iS$T jjK/=fxgxǸ[07r2F(wܞ?ix>i_OzӾxZIɀo}pjWC@Yק=ųx(3G9NdTx:q=*~^W(7Ur||Q(I>)^qo%jH! jLOS?փoǔ>x@;>Q?M{UϢ~QMx颾w~sE}MӢ^GJբF }iEN{Si`_ oF3C51EU}/WCn??H L{x^w%x&)G|KNEa5l*i^v#~ ct;1~߈B R|##fM>gl{lӔl>ŦlO4eD۞A+,`d>lONQ?>3T<dwְ`b;hز5ho3TdNM58#NU`d ,7iMwO'```::Xd#3L4c-ؖN 8f AbЉkHlXqT$1֟6ub1O Nmz xGlS}dp&.מ13Z e.12:KfEbf t gs\2-cf.92N3YՕaL\kTx!՘!/ '&濟A\cNM] LW?c3CYFy'nl`dB|'yUub|:!/1CI\L7030-~)?EX:0O`Xх Oʖm%Wl6XсYgGyr&pq eE@>oDꄁacyCFh/yh?~xnp9ɛGOR1GdĜq+S1gDfv>e`SNK{@Ε9kq>G}icAHa!Gr}H0GXcMIc=0|ʘ5! Þ%I{7V Βw3 ߌ,πGGڃo1k^%&K Nx}k~^S󍸧?ɡ:z6>O_~^/8D7L i}/\Y|K~c'|ƭ>Q=w;P}RkjGH>*jW#怓W +MyzĿ%ilu70!(vc/SOeYBRp6KeOp,QoeҞh?/{d"hfMGi/F>}\#>$O7/`rh@{V Ϡ}Ln.M{k|\O /\c޺gs~u; i/ 3z?C b>O} 8}SwsyQLX0S`& j>WܟϸUI5¨AXk73-'[DZJN3ʿG|7kC~9QNDŽcMx;X/[Y> 8+K1i|fR5>sd?5Oп0=j`A^5#ٯ(/U#k_-c֬#ABbǚYD}!>b_~Fb$}'>d}X̨s:+w߁gK?8~ד_0NW'K~";O<"?[_$߫D}'~/ ODa`߃?7&{G_)>|7Y'O|ɿE?L_rVH'P^(>oz'\/5'H3D$ewy_Ϥd'g$?'yYwOKD {|o{w ^9ޭDb| /I+:h#%5=1ړ=':<85 ۃO'{.`tS9c|N!f1pG{Ig6X7c$̊)pпf\︕?iOx%}=;opjOY>9^t2s?vƽ>xe yֹx s= ϸ&S:/#zgW<*)x'I~g+;_:Q^.a菑?Ga(O:?!~Y>>Q(upRX'p'^w*w=FDe&5`-ſoGoqoYO}}8K^ć |b~ɩ@ X\̤$plU]7b]Ǟzȅa,~S#q1}'.cǃ[5Ƹzp0W#S1c`q&.`.``Xǃc}t2)=¸_'.#q˸>%S/Q)J}q\2 xʕ1s{<1#׷dS>yj=R.}=iO{:E{ޟ9 fpx(:-<~c|7kcfS?k8>K!2>i}T?a Gr"xH$2N9s!K)GOY5쐗1ig .3ID}$τcfNp˘㷉{xx<8r s`z}q;9_0ǣ=/x_ߟpzz0 czz.s\^Lɛ`p77cȫ 9RtRyS=ϧ& N1cd(g{08U<3>\ԧЗ'lu|3fF{aq]p{ӎkG"8`貇xj:x%{-m>9ڋўxedܟCř C^8>c<1'MWƵޞ}a' c;3Ň g}/>zpApx0G>pv>y>|1 W;>绅gė;1q<r??8p9%q|G&}@?56|pGd]ɋLHx~CC+ՉK'XW>j 8NՕ|5Tê{*j g}r}Q}p81kp&1Zhwc|9~Q1'ytI7HYqq(1f 0j&_23;Fϰ^y1'. &f̘C?C~9.C?G1 5c a8 ӿqIox}px֌>2n'SLC!߅{׌=pÞ.iu_||TCE|}py%cK+goQDyLa/a~ Ϥ_#D$~qONJD$ZUƣ<|AL}H~@8G$엢bBQ /ߏ#ߏ1@Ĵ~5EOIx~B8j?œFYs΃2gB9'*f9)㦚U)fL﫜\cS57٧9P11Ϙ<<ۃӟ' Nxdz<mzjvjg>U'o>_+q\%C'j=Uo+ 'kVfS|Ef =?3I^k| G2߇MĬ(|?x_f̚_-ִ> #jW(멯vϘ5)@RlqNG|2F<ȡ?'xC-"|Gqg.֤u|3>530ɘS|z}xQG`au||mNjS>IP^:Q g1/WG5oIN M>1w/*x%SY|h!Ix$/Ux&A|cēmN̲7xhͅqڃap<GL{Ëh9^(YL݄a/>J<O|XþUg0acx~qpw=,/QKy?90%3ո~ϸ}+(7ٟn(ל7Bq]- ކἾt s]eee\e" :ə?7BqȃA| ~$ߔ_ʵ{qwq4^q@r+ݯ\߮Gk?k9־'}zkuYzo3zq3zs3zu3zw3.zy{R)Z ۫=z^qcn!8xӎ~$]<.`'lgy<:/$?W澜1s߮yt9}q~y޽6ףy"PhȢl -^1&2(d~QY ? /vCbQ>'?Ѩ~Vܲ캏o+?k,ݯdX~3K7F}'mPGpw<>~}=_qa}KOwjb43kgsv8twL_4x~$Xc!~]?[~?f,_ڛ4Lgcqcn,vvɛc|<~h,~&rw|Lޏy~}0}o{wwGy@>?KXv,]/uGo@?c|n1nd~p`_<>#q滞7۞/Xe|=1.gh>4߉ܐ4{胣8N#z GWpeɷ!qiOўC|>1{}\rlf0ykK~"~W|3n+o/E}ma9/oAs%~k~տgzϗWxy|eq?l?>g_]/~`D?ѐi|8OK|GO X߼~zV‡ȇ'r)?F[qXGqS>vS'U<$1xPGj|+/e0}" T>ll//=ھQ7)kϵ]kK'r}i|Vk۠#G6#:KCqڱ1>w,'{O/UW9>'1{K~cqR_>ߵ>&scz^WL|O7>d/6ٗ7>ϣJώ?g_g6/i=>gO~ZaUm< ;q:Y4xO1!ڞ_Hy]c~on#v-q~Z٘?=g[ -mW/s@U^X}0"uS>toAW8V/(o,qϳDZ\{_{EBI_6mqthQ~)-u i=1[ߖ-kHuW_:נ/=Xjl폪|L+%' YiycsYؔv9ٟfh-o߿ܯ?8>ϯ+ΧUb]onؾv%#>Cu<[ڟc<<|ȑNr_Q~X݈!D4W˜QY݊;G;|.?iu7Ƣl/b]k'+V?Lu/wOߕ{@ ROߍ@k >$>~T"ؗSu`;v}Q*KKYW;A_9g^f󼎏^uwPu`+M9>kw0Y0~Znߖ.Vy^Wm_{oo_yz\7Ⱥcֈ߳:Ϳ?x%]8Wgwo韁=pU읢K+^aojw>g}7ħ:Z|qyJa<%1N]?I%Qt"_x? )ÝGg?iSc}?C}P߳?'F3KƣQ#;==S7S7S7}O>=Ni~X:{B5ߍee.>oXQaTaJTn\vu˜j|2߯[Uu{^,sy͞f75|2f}x0gѭ45}xu|1Ϳ={1s|R!L1͗L4O|vio|2!5_٥2c&39ޘH*+#rL:͟mz??lvoOdmbْZy=}wdF72hO2r|=ph/w܏0i>c<a13i/#_̌o}M}Xy|6?iOq<ן0+8ދi?=~EO0 9OFOk>nfʸ87+) Ȥƃo\O`<;gL_Z[gF9?;?xw!P߁穑_4A,V|=\0ޕ^/%> ;YX⳨O<l#_PC% ˰_"~e7_6J=g/痑/~eV&* ppPY8!|[D-Rcx}a 6=YX0f}i>vf}j[P?&q ^?x= +T>a}7>FfA?v>򾳿?L~OTIBy8{ߗd $WA;?ǎ.~Y87g<&/%/) y)y*ypAe%3{^w;CDPC]?[Ǩ\UP)B^#Gaeq}H7Dyp鳂YYT'P)R#2RߣRW:"yhOSho}!F&{ /"1=DB>O}mD0"z5J(ħgS~U~ܿ1"Cg"7w;-4̾=_~_H1=`+k;ߎ/,~JqK~$>Z3 xU~~/W| !WlA>~}Q7ڳW+-%Nŏžv~ ĿrQyorSw^'փ*+5^kTQy=)jVV&'*;n 1\c!{q5Un~b1 eh~0Of`+* |*o̼g 1_fVΫߎ>!8y?EXn 2QSx5ce*߱xpQSG{vxSXOШ|&OޓY/BǁM 7_4c?ap^?ONzT<֫*㣆7:{VH~ A_S,$ϗ:/g;apI'?-^@#O'&}}uNvk?_81InTv=OrT^`&xă_?8-3P[R<ge .T!{61VЦ oX =V4'a[h!${͇NV_+>Vd̊')^'`VWqUQxD Ɖ ­gNGR~q~˃wOℂlc)t7)ix.N,i?2 Q{O޸Ol?E~Y'lj:|8<(dzv)Z/{:z!~j[T0*gu7y00Sg8}_wOcxbBco Gy+Fx 7œNpp G`#ϑ#>lNGc3|6:|z||E<{?PF@1{JĻ?{G#~n(@,~/Gf.ou2)ÀC?!aŸϡ9sYuN Jv&vcuUE<ϑvo fX~opsʯu N_sirqWƲ#&c9nMc ܉U_'熶wU L͚So]Fwêoﻑoޠ~pߛgg𓸄|zn۪TUk15[|a^ne +q!-ɤF}Sؿ]oRqփ6m׮mRuz6:6.^|D?,lޝc}o獿G>Ze^{З[e6Qߛ!wW`y`7ǺdM+Kiu96h]w~vdw֟PJaK^=|>Ca.YxE6y`#/$6{hZ|F .fe(3#ʇOQ@URԋY+yD 67E{qK?DM$axmѿ-V3 #ʩ3q3iy?F:dRu6y=ۢ¬,ʇvZL`x)11)~-zհmG/Z_,zy;o~ZwXX;֣]֟䙼X^n/(ou!;dYS Xxed &+/a[Q"l[*VЗk|'x\,vk|0}_U0}_9>U^5LW>؜T0}ߨ?i1t^>2liawV }}Hc *zUZyAyO=^>q5[~:nb{Zuiyr>GL i|ud &V>̇If }45 }5>d0}8JA_f[c=֮7 'İ&+^s~6{cN'G&9^3Yww&&5^Þ {k;cSz̰r8ۻŞgU؛sQ=: {u2k d2)ymdT(eӓQٰ'aOFu^b=?ޟj~`2 m67eߌ1>O>~k21_ۯMF`?e=Ox1;~?ۏ\?hYOF`>m= Wwk~\'tk/Ƴ/!Ooh|Ĝ/_1 fym[Q~2 e2k|̜ο\O'{^#VyU5y% .Ms8 o}p;n/3}@|dmsM{~=~˞_ /"/>qҫQ|;v]?z}{_:{WMȷꇏm| AfE؞ow{^K}f|^fMfo ~oCzoέ(]?ݿZ񧿋~|W7ݿO?Dz'۲}~XVz7 oB {no>o~ch g_lfm~(aiwW|?O|Wi&/~.3mQaYR_i>87v5y¬]oYIm䳷7d(|Njڶ&nB8$$ȧQ>O2n;O޿͌>i >y|# ߖ e/^tsR77|8~vah?|,%>k|U|}L_:qm=o7"~'F#X{M7(|^kA-Ҝd=eq"8zM~o|7YiIՃOZ蹝_?ħC?tޯU_σ>,_~qp?O(ɪ=ߔ^_#2'oUV&YUaX߃zQOFIIg:#޿f {kfoMo5~ V؋WxpuF~*l%>7;1Fl7 {pY=Y_(aU,?,|>\|7:<Χ1yWp<'Y2tsn%bxEy$\S}XqZ+84\\{QuQ$<}]/M37yү#,ʷa! '/]gp~\~,~ȊQzMgpax|G<7C<ͲnG"RV ^@ߩa7XEcYazF:sP5OkX;e@3^(K[笢 JYY1ZU*ϐeV@pQ|^k**TeW'rZ_'Gd)U/7f)V?ee!-U=n{:b`+.*sdUĘW'#~(z'cDWcŬ 엔^GeQ?C .g)K =,'g}odt̪߿*ܯ~1ÙE1ˎ߉,jvf;bxR D86ş#KFAY#U Qw(QOuYT_⿑xWY|_seK~ӟLU>)|,dJwrOUvV!_Y| EI~Sěn^}zy=΃*)G_ɧ]TZZϚ?l'8u~ݞ(oCk%\cmc6?.&Ƿ7=tQl~[Y̭S/4;V=~a~UV7 |޴ܱvGqvP]yG;goۘOK;׳͎gf3&\{6Oⱂ]{6yM `-Pwn rr< 4;خ-nUyǪy+,iT>yO:Gt=x^{N89C^F!/xcKq p.xϽ>hlnw@_j7^xg3@U{8U{_,sW/ql~V3jx3>={~pg:~Nx?+xxf~:4͚?<'qpώ<Wq`>+]yXzQ֓8ޔǁ<Wq`=+]y〼P8 oy<+q@)NyT8 oy8?k!ϕy<ťB_(Dy7>R8ϔ}<Cq@_*NTyз>V8ϕ}<〽g〽<#〽8l3〽<C〽<S<c8ïvub^os<{LjAyq3g^e)e^ϼ< BC|~x1+ ?5m`?1:_j;-q`?~Myixb?~Qq9O*M}?G}_U~Wy+e75V~]ykc<_< ߠ>By+>Cy;>DyK$?(|8(|8HQ q/R$qoR(mR,qR0q/S4qoS8q\ő7q ,݉|87J_TJqTNq_<㸊뺑UZsWyXyYyࣕZyೕ[yÕ\yӕ]y㕷qgť~N`ĵ]b?iyw2z5^< yx?ީ8<^yAyC`^wTa-b[/C^Se;0?3c=x>gM6#ov#/G`??yvAWYy=.;}38&ߍ<AFQeqeZ^6.y??6;Q̎r_p]:S1!)sa؍9aw>R)EFy؏ Gy8-ϔays6.y IqLƃUFB7Y[D\uA>ȫ|UF~8F{۰)E-֯۰$_#Cq=h<:vNJZu}<yn_'<yv<h9W]8`EHq6<)DZ"y+;/aE8Vę8C8~̃ٻȓXy|xWnOrtqLL#ziA?8tq|t׌??Gnjjௗ*#4h|ؿ\B(?Kgs /'| iMyk>G_W;8fTv||CW?!ys^5@4FކGTwlo+oC~#o+O^C%>q{{OڟyG=O ɲh?G^m ̸ySy=ĥ]^q>>q;8fT{0+Xw=4qL׭~㘕 '-?gDnjjq8f oa;c,y3;cy?\N\u<;c^o\ioڇOٸk>qh>``>`{{}uǡ<qh=9CyZzuֳ8ޝǡ<qh?9Cqzڏ㘻NsCc;nPyq8!}<3qH9Cyҗ>u8!}<sqH;C8d/j ̱t;Fxe;^@8`Dx=FO!hq|ԱROqgDܻOZw/s(WjyݾPnSH7(\$6 rb.:yyy:Oy{a<<לǡK=ϧ΃yy:O:CM?o%p*UUi7$οq|j~py⻜!>y˜!>yۜ!>y!>y!>y !>q7:/|ETwSյy[!>yk!>y{wrX7o%ƣT2/S&ͧK:1>n?nzX9UXZOn5GXg:Ma u[,[Bc-G7-$r 8XguX#uOn\8X9s qwN$)bG~XgUc,qn6dtZoύs175aoO&ܿóߘ rRoΊχOs&zc՜Ia׵~X5;_gG00zSɌ\=n*^X㗭|>sG^>4:'{/KN<~4q`o?cwϖK:Tb ̷tM'Ws:|Ua?W7|SU[꛿1~*GKe2u[ߙOlQ#$>lE _1ͷ6->x&o^1_|`>Yf?eV߰W4|~s7/p?w졆 /Eϗ?||Ş"{[U㫬ﺱKxXb#&7y?ŞMs}i=XW*j x\-#/&ZOc}ƒ_9o9Svډ) s||{Xq^\nqqd{XwǮs.c|pqxˍk|=aO{<6f?7f~)ݸxscAU{~|OyX<>?>+G{8~2?^|}qq[>ls^ana>|dm|?[|G|Hx?:x?:1j7Cɾ&o<釽d>H4d_1*kWW`Wf>w / XBI_)oӿ_6(2+O>ӟ]Zi}ٟnf>>gl!ӿOpry_I뜯zY|*d{3t~o?9y,е5`ٿ4-^jZW_:~O u~ȻAU~<[__HwZe?/eMv[jO⇚qų]"쏯,sg/}O߫2>_ǓQ_Ǎ5Z0y81Ea8]+OO刯=t`.{n~_ٍxzc;؟iLÞl/{3\ƒƊX_P>xXoo?;T+8{8q|ϋA|ljKNܶ|1r`;9 |_1-/'X_I:q| ̧9>Xϭ_x ?dB~w]XXƊj}_]|Ӌ㕌<|^㍯{+ޱ?HE7߷_|+kgca|]ŗ;O6`|{Ͽ | Qe<#3Ys{r=[ܖΙۓ*\_bvU/9`&}޺2`jLn bU7|^le}VVrB`}yG+KL~8O5ۚYg5=UGy^ݖIt[nKi|,-^ohS scߍ#6|~}bɗˍt~9 [_l|c'pX_>Im'^> #l'Snq$[ޯ>}2f?2^b~mᓲoYRnm1[Zh~,h~D̼姙 RbC)j0Z?bLδ>}NOfR=gf%6S?43',ozALt䥪8"g&PL{]̣֧JͿM?3]Ye&?yYfj[W;#쳝!bf>Lv LLʹy0gع=ʷgA3Urמe73џG f2Ef6Sf^uZp`31?~gw9< `K휏ux _KQB) Ӳg$S=ڞ㱧&GmOPViZg*ޯ^Nk{W){ҸL}lU0-ysk>{Lnx%<&{=xqF+cb<뒷5PxL'w;LggtT >a3Q1Ϊ }VoF#~;xY[w$~g>U:&fnW_"i{mVm&?M}+ď}SUEd훖*#*_e<ݘ%X({>臰7أ?*xaϞ8r7.1\7i'sbݺi<6G^7֭m=}~OuKZ;ܟ^S<[MG9o*S#Q\_74uk 7g??/k>wHz4|G[> ?S/-l~Ck~Cޚ-y~!ᓐMW(/|U}v֯3tK3J>;Aߙ 3_C?d+ep+e/#+a߮|1g͇."5ŗ.YHSU؊fǶ7."{+輘Epž/{r>2_6Ӟ׶ws6/ОۓPeўnt$ߍ|ǾyN(O'rP;_ Z ~a93c(SkgvȔ}Yٰgns7c{:SC~%ۮ'ٙ% {&;se])(_q7wKgR>ؓa?5^W~%o[?dxHs%}5/' gjx:/U;3~,^l/hMϕ|dZ>JR,TӮ_g-__~hlbwџ%>xq>;2Uz8ەqq~Jٕy87.8Q _<${ĕtpeߩQt^p!'\9H'쏇u|x^}d?.]dIݰ]iGK0x^ p啋T+z򥍪"ӕ[ćҋ2LxR͂kJAa櫲S)vM|2Q'ߕ?D4NtcW;\n3q~.0_h>'S=ٟ6='Q{D=;d$+uC5];WΒ華5S<~+!?oJ<=JavA\)Hp,.+Ǖ/x?|ʳ*˖_?V_[ YL]n8?vM;FJ@p&MS+5=oNT°X9*G8FJ6|Q%iKTpf* 9PB(GvwWr*a8SOW U řyL<>ݙ ^?[]Y;!*mӟQ|˳+ 5IUjؓ,쯈3Qˍ5~Tc*?2,d,wƪ,dJ;ƪ7ؕ6^7Nƪ,d\7ƪ~sTro Gw YUYȕ(TY񯪤+M-?w }_r8|v_vem~Gee9xdUZWxߕxTYȕ{|QI(ty'W;[b&W'ПGWBGUe؆J?\=_dWWrJUWe!/7ǻ?Vhϕ{BcW|w/{e}vcW2ҭ(JIKmx}d/.*)pOPܺ 痿awW 3ύ7~n>/?7ίzt^縱܏ yh%\.~G q:Y ?޿ o+XS>?|Oyf.n|闇ygZ_L."t>|Oy]llm+)wE?bkzNz lZ&ٲvGVZlr`UGK0~aa ,YihYkZ]CֆƬ54fIAJ RrtjRS|osh'U0}yRp4]&_0 ߉~ 6#-5eF%U4*IQi1,JzoiTFkPQ$?|rz #qx ^0Ǒ`rr0KL]>gbs(9X>Y >hϝ"`1`X*9,$ 2ne`X9{,,,T?G$ [#Wb[PcKjf9\l"G|!bj"HW"rF_9;mC-1ElPՌΔ=~G$Oƚj#/f)41-y5u\k7߭_ˍz{m\7^q*n?ij+׸{O{|oδ~c~^uf>Ly=%67|h?6cvcG7)?]OcoNѻ$7n<엍?Ks1)I91_` sN}:Ig=mNә穿:2_x*%xt6'9,EO/oϧ%Cz0[5~m_}k|Z/佾b>=sK~TƣS֧dUƧRoe|6mO1>ٓg}쯅*5-߆Wg![$'Q2' ]n/'g0ƛ3~>OFh|ֿ}:ZOOHw>)}}2c~@q /ym5O.{X|tT25_G?}]쭉Aac>|coclj~oگ?X1ymOk}m-8}'^ndC ՍӍ~ m3Kq>?g>k}?փq|}~4~./ҷXr6\>דs9f| !0ݷ<[YP VW>-|pKAXZFB½J9pS/*8?q[[[kfb"%xrjՇyk+597J ~de##y}pF&k,kY6`_h k/-Uú_6Q[]x,W~QEʌ*W߷#m-WssXk``{Sj[AvYдw>'=WRG󤖭ד:NIH,IRGdIIϸ!;7,7L+ָa?ˢ{xsqwqL,N#eg>>(vc1VF?*-3Y`Mt,`fgW#zqpi[ 8{>$NEmX #<6O}V1,sE%˜ur_ #HF`)6BUNqD|d#@OB#W(J$ٿ!#}_\%D~UE:T[E˸h`NkHY`Q3փ||<&ȑ8d@zVMpbK%H5u`/aMVtR/˓l>X.mc{_?XX~{cy+p|S֝q7n1V(y~|ڟV|Ɗx8+'7{m/729,k>9*Xju6鈽tp`u f`v1V\؈k}g)vcl-2lO6jX?_ĺylv޸lRlfgG^ɗU̖%IDoضCKW`Pwt)!huJezxe6 [|%" vVrE9@,DAxa0mvė#uGnGp[wƧAaO":#ČH> 2p[@}r[xd:e^#*|o{> xA_{dvoOnf_^3/cd^cXCF6K^}.H hVoWw߫]}ww[)}=HKvh[ޮ ~E:p7,҃Z.m^Ӷ/n.Q[ҭG-˖^%/1sa$=ѿ֓NTr>n?yOy9^ NFsgf=4ӧOf> ͬL~z<W_œ K=b}VO|9^a0#p,0G l߆g_Ʒh_~ <}3ȗ*WLUx{5Sז>!MYdS EN:Ir:_R J8h-:>Dg6-_VSҖEMۋ=z͎x t):bOE7e`k;0 ƻS T GʪfPU6*ᕊL`GIm7s2=v3^!= /SڮBv`--g?pNT 1r!d>DPv@Tv3sU#Goq?xx-6SuOM;?h~$}&>590Bf?FM>P"i̡bRsYhjWފ/5}P˗J3uP[þ_;k槎6^̐Ỏ*/]N&k$u"ZI}GRvRߑ#)μ,w|TXci`eXsi`M,3r&m=&?Ohޝ}xfd&#a 'ZNw'k)޷`mx?Yalog_׻}{V4suOe>e]iiG|Uwt9qZKO\~CqZL'i2QP4-i4[c=$=g@EqZN'iz8mD=B߅$]5؂d6-؄D@ lĖVl!w&ė3#c>#lԐ&9b硫a+SkoUKn&9ꎤa8r_C6{+Lc{a[|Z69] 9kx퍲睿}/#,;Gh.h%1Ǚ 3lkɑ'"'" HD[7! oC:2AԿlfvfs#ƷET~{?k~˾vgd$UzI=W+-a;F3{r?Gd%EY[OgQ*w5Tv532oQHM-ub8qd s]"_>i~̱~/3i+{1No> C:\yL[|㔇 :`q"0;Ҙqf&vFǙ%s@,^u n{__Zo335Cd~.#s4͆K=|G-۱2gؓU<_d0q$ ??q 7AXvcb ;2O??S=?ٽ3f}"s|lR_mԶ`[~(b=(UT3Z;(Qr| wG9wE$2Տ d\cc|#c|6dήLܞdlF(ګ0~4tf"ՊF8mp:"ޚm_ņ{ ~Wlf 6ޯ`c!#V1BhGT~l簱"𲳗ˍq7ƼǷډ+Xϸq*|T#2g_sZ3\p|G}+!1h>}o(s'U3zS5+._؏֫}\f6'Qv~k̇i>Q4_G(gC#f8#oH2kڎx|)Ϻ#hjF3W5BՌ,_;銐!?wsPzn_ĝjM~g|3-͐"yGl>2g*i&'8DA>(eo ؇jFy}dfdR1d0!~U34q?lNXVϻ]=Eȸ>0OHHGAD)0y 8{8~5r_r ?NX?-);pĚq=zW&)tjjy㺅%tG'O:{Fy$s{>Cf87|{N stAͲaN8V{g_,s=p燰z zKB8 Q1?O$}CF'l{MA~c?iq]IDi%?6 *w`}cocǐύS1,g7Ӎ+?k=qg~s3X9l4ƭXXӘ;>??o<9[q7.Ӎs{>Q߳}ub+zY ڍvw_ddJ=a=O܋{b`z9òל3wΰ֛s33:`|ҿ՘,p?x]~ߕX/g-k>W{{~/_?0>xpVrƧ0>?O5EƧ"MϵN'50 ~ jr O9nIj0^jf0^jf0^U)2gM)53@S#y}b@ߨBFߨ7o rjb<3jd-PWnέo֯bүƪ%}[\|V=q`j|\ȁ%%}oS# %}] Q'f|؋a`n]j`R#$[*:p`լ2f"V9֟^|[1Ɩ1UHx~sz`1{Kq-7n=}}O7yL<<`nq~cSfx<lƌ q`nQS>Xŷ oC/>xy_%}b1_`FUgWi?x_S?x ЇV Z}3O z`‡fOc)y?縱j^/>Yc > {%?|gͻl໥X~>^Tٷvn|9Qc~p;ix/.xk>ۥ~5 yqbig쳆`5(4>->ٸܸFƟ%|4>O]瓅a<5jxn|w吗wVnoS'רuޚԔ8>ͫӍe=qYkZOƪqq?O{ϧ=?:/tnL[|cs㫦cr?Oy'sSotYo<>??ʍu^߷#o}cyxk5Ƶ޸\s1~.[ɳr[U7W HH8kٿ !8Y$\8%Bo\O\\#dS?&7O':ckϜA5O{/mX?7}hin>a>Lǭ>a=eV4k5~q?`?߼l+્>x?W|4_cO0+~~+k郿1=_c-Xs|6V6V{gcc/dA/8gghGKX?[9Ӑg'yV?<j͇77>8~g~4k[7V|,8k7&ҧO67zWmo<O{^5^7VLiY]g9^̇Ɗ?x޸^c9h0n<|Ǎ5 ~q^͎''n|ų'{3 >IJs^_s_|?o|'Ʋoŗ p? 뿨ad짨(e}0ΚD>԰ 1Mq)!l~YD'=y`(Nol8MgRFQ̒4(ʐQq.ʀn5 8GQwJ(c2C1ۋ2 X:wF;T4&g<-~4]ɨw0.;!tAK'2Ns1kt2ܟ*9#cVZ!SzۥŞ Vi԰6T*(5Qxʭ!;X]7%<û^*{Z15Z;ء?XlW-n{Qoi`ɴ!,4A cMK DP ޲dٽLWt_О*Άɜ&:.k:ؔٓ*LN[^%MC.m;:|Ӻ+;ں 4WOKuz/G6?7571Vڷ5[p=O7֞qXtF:\Yg'{mM q^9ٴXosy:: F${m {TrhF{}}gȫ>FtuÃ3@Ua \QJIFG*y؇?\GJTyV ޖ+u$OHyQ)|KQJXߪa+Uʸqco,xsƹ3҉۞/|*JdWE뜏x|QT{QAy#jː6ٟ$y{[ȓXq`G2ϿdSZoAɾ~ͰwlAl} -~"{Bo2U~%/s<͙Tq.Ds7!3wIG C_"]$7̶>ʕ*>gw*҇җ*ҧ~6SH87Cܶߴ`?ߧ!_T;=Lצg~>T=^] SylVac~@Z-ZB؃yl{g/f*~ȞT/d {7 pٻ53@dOg)aog*&<|FM;~{?qȓ-γyGe:N{3봧8?'ϓ7Bny?d*/j">!cOoTۯ3_gߑ($>$s+n>%进o}5%S1L-ƓgzE#ϐ>g=|γ2ge*~T J~/oT+Hu?xgf>~a|d-Q;@gfԋg}|k >YI[3Uom֟~VNa ~{W~_a/eŒwwgegag[gq3?|kab^.Oyӟ#Oy׈ʉoo|ߖ%?/#|ZlBD?{>Я?o{||a -.J|ŭ0Q\"/ߕyblNdgh)Lj%>|:^x l\) `r'wI38[e8['~}y7.NN ?̇l7a=,#~QcW}s2c}sdgn+w"p-Gt훼XߍZ_|Y9qΓ>y˭Nya?e_{=;ɿy|?K|!jGj<_鿄|*:k[rɖ=nLi|FI+?!z=b5w)rkG7˺n2'n yoYúAw]v'ɺww薧 [&J+&EڿѦE }EPpVKW_O_|5VoE=n2_ѷKAn~1~ɗyd_^lk?չ&׾e \'ϟp7^sr_~}+J?x[ݘ|_[sc~${zV%O`Z֣h_mZޱϞwXh?=?z'[~~֗tGc||%(>l?O[3^Mfv'3YnYkTq/SaOnͮ(*H'}0O;X7`4nVK_?n>>?ѿ+hin==%do!{eϸbW=?r_m>c"/a"-{ED񷎯ԍ F}|wXy(~|SaM/.'ek**_Aw}w~K})~_{Y󬟈rT|b\ џnlU|;vnh0x## a?cўH?gbEc|1Iwo[>뎷{jׄ~beNQn!{~_Z=U`E7weӝ+hG#WN{Wew`Hh~ &ezt䉣]:Zؒ7Z[uWJR`?o]`eז1ΈҜ?7VjXSA殆M֏1w?7.,]"`n;c\].6|6|EjiΝ7n!|Nߑ/^Z'#SsmXocKbs}]DW|k5P܏5*)ZT |Z'=wx*!Zelյ^p?kմJnX~Vpkp<"<ڙP.SsmԂvM]ֶf+O-j0Q;ζ<3`. 2N2BLmAz_}LO)a='}{K7)ۑSؓߟ'3ْ-ak?&Þ>m? ~~1ʆlߕߕ- ouSd]fz{yq{dj&$?ٴ%}WvTqcǿǟ{ vp8]y,yǪ|u'lٳQlu~~&]+ `[dY}lNz?_2i߳8غ<(b\vy{<] ".@^!`ߐwd nof98-"f"?ywd7qCݥO/ѿ]<%Oͦi=K@_O}K42?5Os+{{hh쉎T=/gŊ=RuCa_Ma_*칮c H49$yMcأaS3)r:/f^4l+6/+{m0_'a?o\ʍu?i|5;m'?'l4=8j=·bߍ{?Λ~ v}p7u|>x0246-sgr^Y_}}|A|o9#| 7_!oo| >2| Y݀A^ {wA] l5$'|>÷;Ðe4ۨ&~n- }8e?LAfoրo\|'3P7|i7*x^W/whY]>>on?eN?̟ __7>ž4.sy?eҞtL{?o}C>4!y&ORLUόG,۟,4_0#{~~gi5k ~+=ki5U;h/۟O+߰GѢ~G˲E6#)Z%͏Um;+>E8٣G~NѲ)4?IM#_mUgP52|/|Tl 3x05'~}<7zq[>83?~{Һ3};{<^O;'ٱ|k])o>y| y{ O`U~>''w y!\5k)=|7~˺7 /}MI9qtQ-nj+ܕ}W1w˛{nEu2챴E/ݶݶ=e]gX_+ .{5x&^.:U3cr!u=zDܵwBK1wVƟe]:Oxx}އ9*X_% lǓq"y55ZZ/.Oǥs-ҎnjߊzXw:/ @gj;"Drg<܍xx 3ҿGw3ia~F.>(_|MW(#'gxU~4G.?GiS硟^ ;wNڣ1?s]|eŸo~qxg2*MQ祥{wH㗯{yoU|8|yf?dMxS휈盽ȠxYx΄}R[jD֦ϫ?sd>F6'~G6o6B|3!ǾۡF}I852:: ΐs}b|{+q$>IƧC01b|^O1+G*~1^ݿCW%L6CXUL TbCDƺ/Έ2xGxb;s(uTbɩ4_ƚ*&YXgVbGcuM" / s&!Qi8ݘGX1k>BG0VL1Z/?7V 1-si8X7f-~>Q1ߗkokK^:g|= Ϲ䃹ϵsÉ4rBY !Xi?;GGF\~%ٌC>rȆ\ly#ߪuo}{9ם;dYj.O_16+y٘z3|>Ɲ- пH~ec{zދhk=qg`nj<!_>9߬_! /! 3?ONy+G(#ߔC-_c|# &N OT,߮ITKL.yKg<}⳨J 0J٠\S`3jo1?M>!npj$jֿ!Y=槡kUC3>G|ZxaoX3^yedCCg${}m}qFrlqc|'/~K|Oc6^7Ⰼ6^7||qjy맿oܮ3gg덕C17P}9Okn}>xx^gčO{q׊<q`!o\.a71ȣ)\9b}%.ʸ!|/C/\N_C?Y{][:ϧ8vKy4MAbπeٰaCkf1"b{ߪUYYyE@o ꉜ7rz%[̩C3PK9SOO1ci/P=A=^HP}B>ɴo7Mzus=p﬇7׿L˃Qz8O!ОE0&xa:?bLh,oOp>x?|4x}ا/+i꿍c=~ѿeoק}`ثo~Q7Z_ޯnlw6}"Ga{=uPaAΫvx+@L c\p}{>ffFa'O_?_L(k\06~W/E^1b, )r 5sȌ%t>2F/f΍fy"uDYq1"Iﳰ?/6=dU{+f5W}kK`O36Ƈ8r|/X8>PW|ҳ9Qq|Z9E\a[vG98>=؃+ybm/ž=InO^qr[\_1@_]O..`B_Y\CY>, 'cy=˃ףbnRs=ɰ+97Ü {zao@ʹh?cGQ^),#͓ey_z@|<=b5kqs}߇bgy~OPELtOz1FzK^2˃xWR#沰#沰oUxx#'.\[#sz_k|Z#,,?62|^V|Ĝ/jw|[G!B$k߄^83wxpT9P12g" ?Găȟ1= נ s*xs:%II9+i1`_u#oϩJ9@iO2Gh'#ў_xF9YɈi?aT#}6+:Q_ٞ/_~ZB Ku~r(1'9VɈw>wDʡJ=,bG[?Voz}|OloXOf}+>g}++dxܓ^UE0v ,1G2z1_z2Y7s^3DxQ׻g˙Vz'&ԣ8RbjYwq<;|@=9pqWW.O1GVN#˒5J[s//G/GSMw~ȱ|2>N,稗>x{xߨ'+>z=\ԯ_/k>B}8 bvūυ1^z>G?+?S|x=Wv.~>0&̹\'<-]7_XRk+۾T/G,u˛"caT*1u= .^gE+)b}|[ m\Bs#&M-6`+m6}kp~_v.CDWlUe#ծ+ѯve pkf]]6]=#&9(oe=w1ܱsc+ciㆿ.cbabշ vوu"|/lF+Fܫn"ފvp<=FLB z+`\6VjEY%̀G_a\>ͨG^?\ }"y}Z}a-Z?\qV>Vp""a7x}C{G:]+ՙ "Y_owX,sx\!m0 bd+Ӵb`WA5y=~Շx=U1V4>W~yeym?eZ=8N-O+([AG'6_v1\} ߏTK_:EY*x~;HNY;N=Y>d5rlfdueo|[#Kء2y>`|dA VY#6OYU{+Ϋl+KVrqY^Ǝ",/"*[c֟}C`_zl_#:a0xw;O+*_<̻7s!TD"cMxS{\ ^F wo?to?vߺ/DP}!"A 3o`P;v\ ,#p<rV~՞OφY GVxʬwo[Wdʬ~ p_upjp|68W~xx=2NͿZ0XTH̒Yi۴u|ޘqz(5{zzj͡}oGL{ CVȓ1f60Оck{r}e~xi" 䥽,)>`ڧ#f٤_̢M{Z {YP@C}Y[ p^ =xޡ8l;Ro?h<^3\O_I'ԓ4~^>1~W gԻ8SxO4~z۠^Zzcz'}iW Ċ]c%H^^9\OZVr^:T~ezp=-=Ǔ̬ԋ;d7ԛiPf\՝"V#tK?7{rK?IGĴ?w1<O`~G!"~`߈}̰׻crgQ/Rv_wo#{yr|8#Q`k~?pvzy.ZՏq_wXOh:5П>G#sA_蟜R_'~3hG9 q)/Ϳ-g0kyϳ9>WŰ/*Ǖ rh`~l&{Od@4/ _}\O KYɨɋ|G2rɌy1 s {˹,b皙UgwLA/={ޕ9_\lb_0ffz}Cz`o\J?g3iW**\(q\Wp=6?z:*Ux#C-8BxݸRO%M?.!_)5O;PC= ̟?0J}%F^F v,J);'~76J_oR_W _A}RvlIÎ`YQߝ3G7;{H6mҞ};4O\aGoE;XO=[{bp/b~~Z=}1_bSc|q,y}\3KL\^?<_3Ҟ@ROw}e7 'd/T_X++=S^98wp@M;hy =F Ӿ?Ⱦy/0ň@⎰3rFΣ7ٳ Okaxg~y1v\wϕ|~g.N_~zfg9Xq>AR|ĈqNs)ckZ/o`{& +xپ^xV^x&f .χy#>V J?aX's+RV/9qSۦxǣcK8.IJJ@U_ 9Xۓ0^SCiP?0^xqLzdu}dSnx[?鵨_鵈GIObuCkkk$=W"}9SoU=xj[^Q6?uC_D0 {dyY߻ĸsq׎+2^rˌ]f W |u,FL6f P (w0lN1lR1ޟ3|2vUĈ*S] Qx1s͌ F,ƮIbh_530bhObx-ƞ18%ܿ5{e^;_U1>>NhE|I/#bA@̆v-5m6՞bGӮnYn33bsZ`Gb2 jxأ#fy/Y, {zPO>@;,7ϟF5U e =^wpELKWE{܃w;/b`y>cV&~|Z=w|qtU Կbޜ1E5GdLާs#1 D`߿{^%_O1Y/QW=;tO~1WJ~z{j_B=b/hVx{/̊=/* aA3 Qq`<9|~s|/n[34TԀ9S&1߯^b/ĘO.{715_·?gbj_SǯR8GYCȉf8cHF`bL!uIS%/h,%Y>Reo/{~٫˞&|]%,W_/53DQ_=O/5vqCLy:]|ݟfWZ7sO3 {`ɫg-_|3tϑֳk> _|3v珰G3GzA`f$d'\W/D9~Q_3|bA.|2s<#yAO3s*rqI |)AOKoao8-OA09PxK>D2}C$0T R=K_l9o'_s#F {PУaH_=塾M_>WD=,Yւ?,dث|2cY|b+yח)W^unWzȊS^v_b}-tS9Wb<2`?_\#k}t,_u||g䒹}o_kc2K1!4U|bG- 5_\2c(iZoZ\3~\z,-Y_\2뭯뭯Ř%▹}]/dq j8}5*ǘ8TSdqyr~|eN1Q3c|%3)r} qd⳿dIةy)+kfwﻓ}3R7/~}qɼ^,5 [53Iq~2|a>⚙Y욙EY>Wbk/ӫ{q͌aDSr.*08/x^YJde^+Gӝs θ?u_bW}͑l}>g9^W{o)禷!*;3c_' i|Bvha<coOoƧG~09?xx/0^wx_]9I_q7]x~ +g ̜ѿWf$|ͯPg|sיq>|~e {F̜S%O❙| >2̱eo/{T#߯ߟ߯/!{\2!>SV_O83A_gY/7/w6Čz/>3X_[_[__;_;_׋9zwX;1^& by/W!wfqӒD_!3Kj_zQғڗԩ1~< R% BAo_cNo]_O^|2C]Wکb`?df/=7;}󋃽pgS{$ySHF۹S/3{q,KSgxSllmᓠcLjo_99 ljh#5i155}m|;~}`>Pyׇ6 1_Oa'>__81,=cl1h>0F-ưekHqp4F.1v8xaxkO@%}9f9fgۘRH'a>q2NsdbhQh)h hF?m-`ښX6 1m*cS+^vӓOak6Ga^lM&>ҡ>G>j)L<5٘{:`c<QgU{3uU`cG.<ߏ\V2זL~qf*^Z#Mc 5#1Xqh1XM9ƛ_k5/ֈk-"WoZNj.ynGZNjLXOj^{5| 7ozhhԌƟԼHIPx{ SXh K#YԀ=6 ^o`~G΢ gQC#ZӨKiL1Р634{2n[צF lmF~X]Cfd¦@<:~IC<#k4fKlv| ' |X{=_P+lcyy&B,/4ӐkOc_Р/41ϟ_ ۋiU{LqMҰ?F}9j5|ob̊=/_<S5`} UQ5Ā1/˳!zy*Y >6\ߖ®v}O{=fkӞ+#^jO>ڽ}S޿>v_WjvU=~E{cI[;o>/˴M^3UxWO><O=3o<:}|v\SOCg>"O~Xg3G>GNm3<./O1?{ 13_E.>uSǫ/3#_7Oᇷk} uѧo;V?kV̈Ҿ{u~ً='v{co{G}dekos`o^k}{{'d{= }f]{gypӿfȵ{}p=z`٧䇹D}hݾ]s=ao<lo\OW?u3fl\ϳs_PWID ' #_W||vK%?|XyϨe7g{&X?1͎Kx'=_GՠG Ǽ?Q/Kj8˻0(/v|+FǏO+zaԙgH>_R}өW_;t-=,{8{̾pG[Η;-ېeK]veKFsm[Q=Fwُz7>vk /ٛG{ `a^jO9>K9*S={$*=Ǣ?}=UsMko4z k=owǣ7i8ZO{<Ǥ}N&`|[{I{z0^3>q_gia~$'1Q_#{j7_|푸v?ɮ=\=/^;?yHo>:lY=zܧá^n{a{=n =~z~~8vA@6go]X!|ҾtizizizݧK@v|5O7]^/3vQ~׵ٴώo:vs𡽶7G{~`;i_V{x?loቼviz_:]uj>;aۃ2&pWsǻ^sz5_!z1{޸^_}k=<1?гp}~i{uz~p]G{,?fAzġf9=NQPÀs|8@A6J^WX$ү߼[Gc~9 v!ccLq}l>SL T#a^rn03Gsxp}uy s\E 0g1ƜG9Q`-YxirRΤaXeaE9^}7W9V+<؛3Y>Pj׫,ǫ_`?|ʩsWkzk{|Cʹ9|{ӫ=}<C돠[ PUWV8(s:m{˜"K09j4?J 94_ zQ\Wyt^GU8x`PUr'yt8_ TOծ_bٿ'=Ǒ W1&$rm 6#>G?Mʡ<#W1wofݯr,oqt`|Ǧ<fO0'G1r;y{dT'w?y8wJ95Uߵ|]_]Kg$5b#}r;+b#}q;?;A)bĸG7;Xh;ڳF{ 9)G{4`ڃ/?/گ;:y0Q}Gs5ڧioaNc{B#~g9 I\?t{= ;`1oP_+^]9oL0|j  2o;pa#քnT3cKS "'|'bҢ͔./f*bM_X$HfGvAkB{7(WhjĒpv ;cOF8څlEb["|>cC O>zZVf)D\G]Ėp#5`T kº2%E]Yx:NX|ZHQkfBkfDzDT%+cMhٱ$#uXx:ggl=|U|'|renOONbD1+x 7cKWB5"֝&Z~-!Fa #C¡@Xƺ8b 1<0 ňegl:\9^4uQs[4R״u/jE44~E,sA-&̠Fm%2l#3Q6œlب L7|̮LB"+-sw==>jw s~DQI5Y齣糷yD6dx>3 ޻J}#]<{[ቬ|QO44$NtRSd6Gk۱VG|cvo:P{zGl5-oNVw{­Ыٙ7R3czS{GjQ(лJ+>zUm#~lGZtaj֞I*ўUpV qWYϪEhUxލ:'AkB GMf5NhoC"JhN&P@=Oh'@4.IX-=Jx"[J5J- gx|Ԇm-"ƣA|h1ʖѕ|tm 'M#ad`J8+("ބ-J{؉^bL4GƓКYjv]3N(ڼ45QS/B=;\II-b]x6)E4b5`G;f~GZ;RA[FTГЬJޠUg/H;ѱ%7\ <6fvơ]D챞M_f\GF'*;c 6'zưfk7 M,͑h/[XiBGT7cS%CqJeBL|R.N18fa|֞V}P!@Ih`Oʱ&43`әh's`h'sȵ[h=tp-~h^[B܆&&?B~c5=po9+s {əޑޑ$cNq J浩Mh/ű$ڵ f k.FhX|3θ2ΞpdHX3}Ax2pWV1G~Q1Tc[]acj%YFUa$6µ1ֱ$Dٖq^#́ռ-D%`HR:C+ @tH5 6G:fK[C;V $_\R&ٻDoљ\ϸ3[ytF6ԟM+('-UԴ:(Y-Ԡiy^xlL3pao*B]IEqJ$dDɠcd" JfEoqO"D7t(x/ǟ:`y-Q_ ]j ns`o>оX-k=~5ɣeӼ%Ӄ =\zϡ7iӽC\ pz6&F@hG F"1JrFbt[#e1ߋɞv`gp"F}$ŌaI7w?83g&ѫ3xWH8YK1*4'˵d]rDs`la@h5i?XcV8EYE_5ZCόk%"7b=[F r=9hvx~7R L'xZSux$-VXLhCAx2Gj'# jʿA3\ MES#oh q`[uK9a&v%B^pD:$2XM"C;Czcɸ5R6x5 {*>իW6LidX7[+nm +}jGDO6V6MǓXVlvY-,V)IkBTe=cI8=X83{>ލ%, m&qKB{B[9.ta9%YvMJr)83քsel ΘoOƑn\ KBђpltGO>zѝ|tyÚp3hBlO-mىB'x[L{“F|4U̕3GX\H8';cKIX#Y$O^;?KžOnOO.$&u24-a_cgxBš0 FcOxvƖ0 AFy3dl Θ8s5-hG+DG{vƞp#cIf8YlTVq܌3y1 gƚ[>d{ƒ$pflK@GqbXdq3c2քf@ZZ6oqe?_=?B+FXǖg BOƛК]yfx:[кcϘkΒ\K:ΌO.|qoBwB(a ‘$Sp1eJXQSJb"d|ԢgrJ YZcl +!_xZpՌd '\Op;nyi"l%c>G>yg>yW>Hёp֌GW>ѝ|7Ff΄dG[>Fƛ$=cT7bWU3Ό7O“ot⬱82l+MI8iֳ$5̘O4Sr82wWF( w82#T IaMAd {ƒpX-h8Nƙ&M6nFt, S>82ef=!;3ɒι1 }ل#Ll TΝ¾2քm&7Z(c }% hbk_+!MaO8vƒ0@ĒO.͹!oF C=WXV!n-ߨ|D5X[l"[{GžomNq̿ŎrVKq #3?̏ 5rD qĭpQX܋)=aFšDVTɸW•qb;7ICKZqZW~+͞pK6jıb5!, ?8TsaҜ&8r0 e-ϕ‚1$0ECS%/< zfiaREFq:.|@aIXLqos2;X2E>q+ IE%)*7)c> r"gdgaǞX.WƑуIhGqܮq+PSbu/\Ȓ,=ggYjw;Г_ɍr~MZQFcpEk8v .LW3pZ'O>zL,| eQX2}$L.쒃Jv:DžGϕ0Kvʗ첧obqb/Iɻ8-sb/ z xy!D{xx"ҸHnebN A2LXKƑ1MVp%%c<pԌ3c>yKI#$G;gIَ=$;z\Ћ?}r.߿տ0?F燐sx?ş*EژrY8Ӡ&'CG"h.XC|d`gpp?e!/L$ٿgٿePD$D۴; D䉌6KI"^+sBV '2!͞d>&;{1ޑ0o#d!LhhPTIKFBfF“q+ (3eaψ2kI@_eu0 hHKh"Rq@?eN~ g˭{)jr0نA(YLPbehROI C.eu הo閂Zw5(/?ķRtTmY߼+P/ d)c60,^Fi;jmIaSY_I_Xh(b7 KZ_6/9ytQ~)@ht-̈^>4!{Д^~:e(shf~vSthח[Mپ>npS/|fOCQ3Fڝ1]3뷘/ujW*9G}Oqn}2UoU޶bm} ]5]Mğ䝯Œyʝ0ޕ;abЭv69ߥ&绔zO6^&d];x){Gr-hȭ̋VEEjr8ޥ|};_쿋 ;h;h^wx/hyeq_NmS[{aj 6{80}=] @7~PozWqWz)6`WF,<⃊7>eGfu.[aV7?n&A-DY$|j4{Fcld-Bv01y+ p{aH;v+xjq~7a] Qfbo GxZ-&<+Skɸ+{˴IoMeқ[xF#hoxޞ߂[[Gl-t>ȥtߡexYC|Kxﰛ]2,wetKU>XDd'[HQbrǮ }yK!QrHx0{ttEz%8t86>'p#?-C0kf8HgV2D3@ Q%Ipg$8%' jc3;F6.>ma*ET7L[0Z] h &ލfXwh$ ^7{LUv?+;eW=D63Yѻ`qabyU֭=[h B% RILps!|FiBkh[hr,ZKtwKBc6WP!W’v6,RKqKK5`TsXV ,L0k4N@Rkq}* 9iV9RpYmG`u5B8V4!/!D2!|P16P20#!$۲F*EEr;l=x#EodScf*i=` X>+UPYuC\ORﷅr|PɤޥS+`c2* r=;o(Ǿ.VsxRoKB儱`lCn`ӭ\W =wvK$9̏ 1PR'0WΪM;sϕ^ʜB?z݀d,tF ˥Y[ ^+_z#Cd,;l-mA2Nw  zaXwX42w'!k>5 AL!;"Hct0Xn$u}d,nTmC2yN,}kJˆ#%cq̷xd,W)Ƣ;_;ܘLILr͜vtq2ˑJ܂?X&&c9 d,';MZe{3y#L4e#;L븍NBsd8 LƲs2B ͿQхd,B |2BYqa>OraĕВ8+3IGƛp䣳d @ q;G̓=cV9f f%cah1fd,(dRVd,7ȳ#6˳c]<{o%Ϛ ̭_TgTv +QB F}pp Y`N(h<Oa+R0+jf}(Y0`KXB.s0lVy:= Qpc3aN;:͑?nư'f9¸gagAaa}i13+؄[ nTlcڰpd|7WߍLđcKh;Hl9ShQھǑ'-.5'|U'Gۺyl|Ԛ696 8Q#;c>j;l> m mgcIϧ Q]& tv^|w9akB롎%!>rCk>K<`sl O>K&Lf™OOF?x@!0l; mc7?GD6} Gݝ[x^a!1ί8:V';:c;TX|Дpy6Þ7 w}Na׮=°;1äWH0bsl*`M> F 9!Kϰt~1'E?|92ZD#`HA&G"De>BT>he{H69ڥ-&Y(0$?`IXCΏ9ܚSXfIc!c;G9srdkȹX3 t:2TȚ\wz@GuRԛT-W{k8^(>͍J*QMА"ڕYvr;Q>wDneeYf$\a^f2=`z S2!9I`#>-GNAվ<8@ULnAvhr#mTHD;IYDnG;絚t L;-G>ԈuHh]ъq֞FhM&4vƆ?GۡKK$d؜ldLt4`a {aĮbb'F`@tOd`2Jv@xT)-M=p&r;+|߽F47,8Ǚ6 {͸6< 8Q4Kڀ6ɋ ^TaeQl/ě-nQ7Im0@ mrGRI@s8N'!D>B68aqPY)b IVJf$mbO^"N# t4!E>Bh'rMx6bHCώVfV }fQ nv4;w`@y6l+C4I#LN ?+ 3VP%cpv#Ʒ0e |eXBS|݇B#4 ,=' #a:!7YhɌw$?XX7hBꀝC S0 YL>bal^VGnO=ͫ'#ndvFЪgd8df&>%wfQ!WhC9jM=np#&O(epɬOhoPhH~ d&Ƭk@ =ɉ# M mN_Hp, {KonC#buX}#Y XL'R6  }KD~v[x2+T]? BD {Ɩ#<cvNhV8Bxk4kLwv'@y'\$a,Cg?ҙCVWl#%F!3D}ğ탹%Y%y$-jg,q73KFl>i փX| ]f&FAcP`!Q&Ky¼Rg`nT&@#uWt8hz'AՀ]bTz:<Z%ŀNbӢ,Y_!U!7Qc1| Ň)~ɨfFboK13=BKO_ZRCɡЙj37+25:$oLhf!q_N?N'Xpsd(!g-szGl xrd?TUtbFYT3DYt~[U-8m\E7B{+=H<d92-99[YsyFqc'[}=By #q:hL^ _ޑ R_ vh~xAڼBs̄,v|أB:x Vh;iрxK#WF 3ވ~M2ߢXX!,u:+9:\j0۱'u:ao 93]xƶN= Jh.f m>\h[ppՌ-#tvHTpD6IhO$1׌LJ/HD bHcJ0*^TXÐ y'EN;0_ٰ)#E1_:9eHԯ*0= ՙ ?!h "9 u/jVb L QG@Dvvj3ƚ*, GXo>RrC|H &; 2rH㉙1D AV 3͏#U<[f@Ro{z{Jo/]7^ ߍF8zZQ =ɺ$[﷽Olk7;{?{p4zooyxXYz|08"@hݱAm.,B߽ٙ[|PtUF.%|dKu.BWc jX8ژ;67aMfnlowT=;oS-@~oq{cn i l\QytUFGۻT}-ٕ7Tn A .< Sei#u +" m> ҳ;Zlev&kl) }SbTMOt`3TN8ϡ5=n7ʫ4 gT 30羽wTJ2,S=wwD2K!>í/S[p jrg@FGvp᳻>epD- Դ=\{tɨy(KkfrD ]J~;*-Ԥjdx:=w#U =PK2Kyz_1o|;y|˼>.T ;Рw)9>!4>Mx443E[# O͞-5oi]x=8OttXn Gw6otv&PplmW~u9vl`OT}=LlS tht|* M&G`$|08"Ng+8"&gNLy='3NT7+WKjR] )ch=#Ȅx4f^~P2V? ؀YAGđ % ?-6 Qfh~`Oņ2h=-jQ؂HUg%U-:[j-BLȖiz%JXQ ɖjfyv~w/Ѩ7Uj}ejiL;88_'BTTͮ{ƛ襋 ]t>#A\no ZE׻t.%]tKIi  )+Rg;l'nRm0ysf$tF*A`-jwڳYl9=ZN})ڬPpZoE,^y=nػo UV;Dsg9![x&ײbvv _: nݬk޷j`lmo7/d3Ե5x*Tz v툺v&Ɍ}KޝĴyb(|bh⛶";Ii*6hv ҐՄ-;Wk;Nq9m [QZw1YZn'r}xZta^`wwSic?i`{}x:%}_)60'xk3?ߞBLb3ag93Cmh~-aW|S5T0} {?AklWKnQ~e5B|:=Nï}>Ӷ0>L?m;lai۽-[ @no7sFۮ}}=K7AUk!(6@dRo2\>o`T3?{d5\}]`H3 q+]Yjr !Xf fV+J/ρP˂r$PMT]  /cYL.SƖ#:Qu1EN#)Lqs2U쐙Ô@f}i{|%DeC"Ny.LTm|!)ګa2xR^*K)KB]Yy;Z SwbwȞrxk!zJ/1/Ka^ne^KB=o}c>XӍ[Ű2\fpPv?U7u#^<"j+!P })J{7f6y79]J)|͡=?R=Y&S@yvSGace3p哑 7c 9\I՗]{۶= bDQ^*f3[q2H9lM0ȶ?>yrZ nE8a*SiE .yQp$L"-[ 6yhWo͟{1[gQ}FYmK6kcBȱ5.i2֯OQ \LLc k"wA$@7E+4!PB؝j#49N ]SH1I6방is"#'S6Pq7U ndBc`TSFC"}y Co>yf4M 0/|iGc.-0z࣎<،7>`WPcqC2 5Tk@) oz:Ѫcw jiNQ辺ׅKYe7ۓ;,fa ҏuhDzR71 NkJci?f5խvc8$3'_F6JJ\A>I.+)CE)S dM炖:'RJ6om E;{E=ڌG>Р.|6 .6l ș1}$QcSM$Qs*4 8C6bh+.ٙ7DH^IS#3Ni;Ѫ>Hp`~pyB>}G sz8ׅg_)[](Ϲkϩ!uߤ7C?}ȽzP_Yכ]|{Z&$"u ]p3EV] ]<WOz\CZ?FߺWof{۔0]6夊b r&3oM gN2G1֘mu%>Q1͘6cUIۊB( {5p dY=6f<<{zq]{K&)Ʒi^[\K uH{[=uB$u:ϛ-=^,鴰A|2]/51wzd'dH,|abd:8*Fc$ F'a&(; r&UI>盱_P=1nNN˳zxvYt4;9&j$O uu_WG@3I&z\tM Bo¼c3n& Mv?if!Yf:Kw|FCTQ`Qk ͻ -6LPSZ`2ut<2`g;Sr8M[Gأ;f=j]lb.5 :]g۴.pnAG%?080|a oGO&i>cd@KKAXSEXI$V8ݧh"5of3?I3Wc5K_ل.O,+Zu4ň% rS*HcƛK D^ [Ku*!<-r0TE ȣ`RG=fJɅVufaEp3BBi㡙TQXpkQ4͂kBE[=՛paTIijٻQY}T_}n<:>yA8{ku+RHW<QcC>ޔX8zSἠJ޼=S%ЛڨǙm@ Tq`tRgB|,1Jmng{qEPPCgF_b@: CQU@X ܀م 40ew7b$ټ7rof؛q#9o0'R B8AWzp*Iy;v5?&q 5-#ܣ[7{4Yx!,+6ʂBGo$Ά|m-y5yBWx_!'pOfzlqxHMlv.ͺmb3eps~os~T@ 'y#ة|ok_Ɏy41xmCa܌͇cY.TIq [*A>E8 D X"yN^1s~mp'zsP=ᕨrPf0Y+|=36DsCarE1lg짚ގ `OO>lW̴5'];kmNkwO60KO IS}) IQXOdR~i݇[ @ 2?_!9)E 6WO; <`(H"~|*cVUm7-HC37h|r߼*7ol6ÛҾ›S)큍\SwA|~^XQ{Q;;vǪ תQ(G4(#|8}(]{31!= ,=oKx"  Q!B) Qڅ~o LR,I$)pc>`e:rd67U飰֩}K |P@Y/> N+ 6n|٣M_a_aj+,{Wjf UcmYLEx-Iۂ}N"zrϼN &t>sy%/*"gGAneB^Ty㣼|FAMrqsuL5GMԳ)&x6jEgV(!|" k+{-  ߋrʺ*!5!TeM~Q+FWR|,(|Ԗ(A K6t0l)/ ȷidʑ0$-: cKT0伀%=T1\KN3s<9 -5dr;̵`2 +ͅc6\t_o`.ÏFu+i0P퍰}5ڶ9i}dCDb/a>7>{?hrX<"fɰġz|/LoYpnرN $QLONBh.śo87C0n {cyϖS/w&TF[׀py%r}j. 6xBz;~ P<ʤQp+&EoЛ;qn܎ޢ^7ػj{Oz1q{hI;Z6gmթźS ;0jCcfoDٶ2m;HE8Hh̓xG46ذo޹ jOyo% -p2jī0k_MF=e<Oj&n*̌2f"WG/@6rI~P)GMɟllKpD[|hL}Ƹ]FU`gG `TRD,]}@ &Z##^NBgYlbJ:hI.17pb s6hi/fS吟\aq$<艹 .-OP91H_nTѲ%y`OH$ոTi'J0Q1>?*W|u4<*(R8MDqmAj9B؛bEzO;H& S <"=;<=)IɎ\CCoG˃z`{BBK#4eEe.}+ZJ'F )IѣT Bg2)LY :Ƴ/ E}d5wk3ܒEY1 S:?au t QVPnTt,Sզa uYrUۡrmxpwx{1cGr= |#s[v+=[Y DGā5g*Cm/N/qZ]p#̒ZA8 .8YO$s-9.Cm>WXWn0ׂ9˲i9r͗\tvW䛡^'aI kkߨY*F; 0RBVX ڑ2-ΐq^Ky|UKBY('ɋUT'D."5:{٣>QCDNȎ!SQLITP R6y3&oBYp78P([d&Rl'e*nCzc\&ҕc*7Q<3s[{4u^MH9.o|*w> iB2Ԯ=#OpEJp9o8r]/N )Ǭ/K. 9%M' GpՓetqGڣ/_aǿ)O;˟ۿ?#_?O>S}yR?sW,]銥)0,8OGhVp+TR*)^Z ~ G6Uacj<K8 MR7oUaOPWK$lMn} N >hxT3oBmȊ nTS%@ mpWf=AX6 8 WAdzu׫W%֫^Wz4 SaՖj1b\z!Yz! Sa/9`+`VhY O}z7zmQoi9{${+7K:8{{^@ wY` {Z:ɠ C8 4Q'i[}AÙD^`$ s2޳ j)DMW[r Ze]sgjZFu{6;LUr ͌>mcdJGqi#M|e4+zZ 26нw-13USV:ju5ۯ[`9gvn=: z,Ŀ ۭGd=a9oP7QH>VA;ڑh #AQ7xytϖ,_̑a̳qڲYf#y;^^իUH\e5W#9 'B2:JkDq&m-OBJ3nHЖR1!}n!Mµ$7RHT8ա=T,K`S]zgTx lTUx |7A ^ U362|S ǡE^O6D-",oQ-כn@|_޼ASo>f7cnJoV<|zu wWx \BI '[W!+ |<'S`W{:Ց\ Uzu( OzUWE_OPIO2*.g"WX$'Ad(bmDP3g$̷M3f^M!qEE*UuGZ,]sI-Jd]7r ^m&:,(C " p! / ? ۉGg@I/6Uה蚨h\E|4&}ˏ}A٣*i]rI3Mo1Ӗ נpoQC8ܐj50'BgGhRVCS~0CxH.+  puc4MPPt[E4{ fCH% %CX_D}/[knTQ/^@7qt+b#UC|@9b 5DC^o'r`b:jsq](\tCV} Tx*ܳUpAp2 x*ZBH3ent[f  1t,J˪qITs+M85H7\uDqc+ 3&A aked͸k*Ql$=Ag.!C2gh*z>1Xsedq]+[F6~}BvD nXUX@* ԇ!\@P`xi4E#nY;HeVz(iR61[NX뎍 CfO e<@i`c.C!pށlZ 3rX R`사-c4 f+uɭ'۾HG<-|{fETYv!m8RDJD3S1^rFwBObu0F$@|;VNXq W sn_l&YDI $"I0Mt(Iģ&1-,k4`^P&(0o$!c@Nh giC,x;fh@bY㭢 k<|"rP;!}2y8G8Maz kk VkwB޾v?X_l W{ |WݻӠ:P(4ZTAY{XЧe d2k7|:Ǒ T8 D/TX zܻ'4d [[*\{Az7z7h΀@DE<&ilVBa+ GR!Q]aww\ 8 \R,p WU@u(V`W[O0az[J*WO]HT  Xzuԫ}h|[4#dXSa/p [6r Q9jzmdlf}J@7z7Y7z7z7zs7|KPVXoyN~GT @{E2 f\;^0˺AQxVU8 \" 9 ^`W{ULoS@ـ[Y W-i,q@3׫0M;7^7Cƚm[a2ؤ]0(֛W { F^SpV8*ċĠo[9  Ĭ{?/oBG "5' x*1UpO› h@4NQ'C,BvEK2`yԛQEA[ Hz3DC(ԕqvi8B0\U܀R u|>)VP"QШ)P_iK(܀@,R/2Bn$8ha~8S {O}7a0ŻTs4JXtGyԛgy՛WyכOԛ֛ot/).@@)p owW[Syj#6Rj#ozk#_W|zL:g:|K{WO*ԫ^W_J .gDRWǪ8y \B)p O'k;?RCGJNAI\fE+gRh ce{wUo^Uo٢ ]P gWd;l@h_aMnO:ʭTX++- wUo^̞ [TǀV`K=-GpX,Wn4ݠOz]S^Up {EMpg- 0GCT#AxcON[(t8 ;{pLzͭBMhP> Gϛо^*1@[=|COU;oGY}k&! w9.Gq .Z׭8k3FmFh^ ex*Yର[4 ͟l#<n)̍I9Wa+[YYe548_ L$@y,pGֵR|*[ JEGhza+PӪ3ժ٪[B#{V I,dGa*$QW0Le)bp&fW᮰ _+*r* gƂ W%B#B<9JoW*Doa҅S!S2]>JS!"s: S6O pW S/ n S/؀ᢠUAѪqR EPc{0e)-FOZ9jxXB)"eV!_SʫU֪kU-:x7U[ 7+>R#&W)%cж8 V+в*g@$?ZmK/C{BK \QP* )C[o{xfR!6fЙr[Ra,)ox;WX{O/9]ۙpWx ,KW=,(H;$dHY8<ͫ޼&+ *E**_$QEᰯ _6' gNm"p ][H^z sf&Iŀ) ɀROlu8Fg x \]auZ8ர|]tt@)PZByx{=Gǡg*[+O )nM?zi /Ȳ8V2NZH-g;_XM FvjC}mӷln,ll^l.u'myƞ }5>j]5G9ϯVuЧ/\O_d^XhX<"a"߳j*'ƹoL1f/{|$ '_=x|$ s!ee z ]<&U\G>|o.1L[Aa3r1סf(Wv 7*qf?E [I$V8С~Si[[2bR5)N-7ȡ*}M=rnW?`*ñ rۢ)a:W!0 Bzn];.8lnw8V' 3 %׫* ,pV8ѷr2_fN!4 sQX¢ ((~CmIo1te;>tmI.m>? dnܼ$a:LTYa#f0q?JJ + d*/Œ|e-W|c:4WG fgߜ=P])e}h4 ik>k:Fʹq⇛n}}6'>yJskV ’*¢HfҞ❘<3&p7ĜcmŠXsh|Nm<&FU }GWp۵.r1#2/!cn[^R4ȷ7d;Co枣7mft8CkuߎnlI[VEGr!Esk^b& 5uf'Cesnoτgs)ٓv[#)g/ 3)sw z)8iq 1̼r{T9/ӕb~٠pI7K"tnX\K#`i=K[EFd2W̪7ZƴRmf`tsadaT$|h4`4\L.A6:2FWlT-OlBn[eB2䚵`O +/ʵ :B~';l>{.lG߸f{ R6 fKSH0=ӶD\.}7ml;_h{]3\FHGMKots 7IpXxr=DnՋ {@lxIPs {B䮰'Pb,.͎䣲:r3ϓw%+ހuh Ms[*s[ivPkHb+Xb^ bBQHYm^ ,@*yq+ 8 lktxVԛOԛ,Ta:f bTן`.i7:HFL=Ms]2Kpe59%~Q=)r1 g =MsB>R[f9np&99Lyݼce,nw׃v[5zØz=ia :ߓƪ9Cιz 300I-v3#AWw(_#l.fn< O_2|")'c9~kіN,XdlhH(- "D.?rp#kȉTEЉ⋶D˄\&o䥙0@fB%|ngk\.:"~UPT0c|Dd*AS@ z:F[4|$S| DZad30VOxf+Q\a{`X)ڲ 8,̏S+exR wZdB"ZLS &CH7_l͞> BIm&]8\z32olJgpxͷ9%<K@)p o9 W[; <ʨP ld[E^^M̙'h?;'VK~ ܽ“Zpp_tDA t>XR0IB)s1 w2bc3KJ,٣{RMDJXdwN$+6t#3$Ϗdl7PR5d(MU\) H!Ϛ8G`%-yM{zb,/t=`/|`]_ɕK3Liɢ'S|5r9=+t ={=Qt :={[Ojo:˦+*siK Q~ Gy.c|A[~(v Iq7OF})~{*w~P*ޅN6+,1;*(0T}@y'L#y5g@:g*Q0~0LZugFٗ88'`y_{v  O 8 ka~>yz }ARfA1|CB7` /C;.౳ 籓ML#yqbT+C|nc&x֍ӏSp6Ns0·ZFy#)-W ܡ~esnno}i$@Iwޔ-"lpin.1,t]. v9LT6nc VKmN62stCba@* V]mB}dsmf+6T ) ifY+ j+vaK)PnIU}Qv+lAQ>v*mDl[rv>aN{WqNۉ|Y%y=Iۉ&a! fvEBTt;]vM(T!RQ\ QR; ^D q-T"m&iNb풕w5I۶.v~U#0m3,3ۧ\Î !Tb٬ nt)[ \<ݒAAΑ3KͰmW1!G3{X!֠C,f|n3Xg7-֛7?ఏ _<UO(FrX՗XVaoOfX+ר^i-քp^zU|6wWwxWgyWW ^~tXδK~MU~P*f#ި:#R2!'pUaڢxESmϤS7VOh'PON9D2r{WB:A0urϡ$`T 8!y*]9}}۴ gXӳ´[#HNҳ0IXGv3 W{\{md_msFc(nqv#_awj_pM–ބ#ͺe̦貓Ul>3Յmؼl 6rʾؗrmΖZ.ۜw'l/یYg2v!lIz#u>A+ NBS"b8Qq[|\9aO-T僽Ɵdaˈp歰GDn'FZ)SO .DZ !Wa/ЂV*i {DHH]Fo+'949 DN˚{Zշ .8}+lk>jI _`}oː D•> 6e8*DCt{*sIl WS|Fi#- $~ff,yD=Ó<wy[*X\гR%Ԑvh)Qkzn FTSfv'M9ϩ! >I94 Zc({NP@sg x]t͠z_,%-wy2 XXd!*(تLI/lQCl/lU R)F4i_MVg0&㾦`,۬ܬ|ݬlK6ØF~c X̀ |R?pJQD$vߘO6{A.xkWf[BNj[xˣ橰6c gv28㖡Rv2c2fdc:8vd X ߻SufN0ǀ8;k#Nf6a)6#%((+HLA E(E%E<)fS.&J9&VHRhuYޡ(b7RցkYo&.q2vѦZ4SyYjGEBm@Ca 9 !}xs&Gdu >G#{|%89/" }qP,/F!!+>[@\= F`џl@&8U!f tV2%| o!fCXfg{.^+3!9 Ģ x㣘#ڰ;s XW !40_LosxDrC$ XXt' 5 IASq IPFw$Q,,f0IQh(c@6'܈#z2<0*AK#uRQa ޜ7AOLISFyಔGR8&\T\L*f-a9nTXL&hVpRƑSmεm 8FrⷱV؞m~9xRN8E:,՝44xp$ywVڢQTw;гE M%2}oR_ V*Zxi;m=d(%7O kQ׌cWF̿N:X`/gS SOog>~7_ ,d_?Wj""A.ھQ^Bv1?8/I hFq⫬lz՗'^|jzU}ԁ/c~\Ne:q41yզOͦmtEϒLS=sXM=AM=,`y?|=WZQɣPBf~#~fWԨ-&7E 0Л7(7Y@gIJnf[pY^,fvk-/CIc =9/E*́VL3[V-iv ߨ"X,KmJYYdymPU [DFY,Jb6;EOh>7$ 9lQQʡX"D)_Qa Ei )Dh^|$Z\$+6}AV1On~$dT 7">S!1kpi(Oď?dЙxg)U?3FR3Vjžb)k6?`FWj`to`W4\'s64No27UR,H)MJ&ah}zf'Ɖ-3[V'fN $5,7r6o[,vcetLP@S넬^S|_A"/T2L&]`d ),GX "wD)uOomM+)$]ocFp:7T;03u׍]>8 4_nk/ .C墡u.'ΊE|#dIFº3X]_}㣞19YrfϢhȿ cl@zH8d}/1֣1r=jX5>Hrhf2/ף^Ps d֮%#L妋K:+e8 Wǔ+@ p[pj>HK ":K>p>ՍG)_N_xƹEΣO$>xvzdznjK]Kux׋ܺ, h+N;azЛ 9.uMvX7Kqc.;;>yur6 $a]7tp&g䏋kPCF I~^]̓::sSztu"Q[G-InlwZEo{;t>( 8v{q`fZth 6Zi9kfb)W| .% ;B|%P&l^-v- :$' n<\p}ᘀBYϋt!ubm_D܋1Ӆe/D}3(q>dyw02HKRއ~AϿ8p,EGLҲBƉBI4Tj Eɛ[e32T r-m}TGKj Q[T6rWEy枦6y1\E5" =7'33`~Og¦wfɵ =}--|/Yڌl~f|A;B{΂Cy~dFp ‰$= O3KmzQ=g3.g8>0{`ZҲ27 QWJk0}fڡg`e"ol-y9)3DJ#8A42 h<;i25m&%tCJ NjH1ҩEḡ5j|8Qh (qdDǂFkQxJ [UjsFΉu'AA;Nݜ ʑNt3GToEU{jSË450 LgE Gn@K&~{TҰsvkރ?}[/x'Zrެ \!]@:$w*)ʟqH(ߺ7w@oxqto{ԣytD@nBӏ@V8l1~3,_>:-n[L^T7,vBy ȸe^TEe[fi&ƹ;AXTO:D%ly6FF"o =L"iEezrQCyhX D㸞[&GU/K,r0—to9ݘ;K+\AbN>l|2GW6vrXkvo'vA0䚞Mlh$B43E3wݑkIOn=YE'*b S6sK3EČǫ/²OXi"·N`I"f{a+_cqQ0%CP3Cma䘕W_uoK΃=jwc3^ N08(B˱OڅFmd狐k!۶ m8Ķk\o3mpC ݶ>L mj#ҦEN&9ɲe6͖upQoWA~P?U[3vd|/&?,7.b9ֲnBk G9a AJ,~j4dbe3p~TS9gMkB>Pnlvdh0t”$yp!Sgp" eI ltסHCq03^ۥb3Z#ER˗/0]x3ƛA {G`ǪW <ԠziA$#=SS[ -:J=eDxX,"$c$鴊$ ̉ -LDzaZ@;K3K=Rr 2Jњ$$4E8E"C3N~G٣^Q@+)iFRGz>oE~>v!lmt!{էawz*8&Ҧi;NB}NÈL$Cߊ/˥3{DYt{݌`9oxط* 4^G@f ͝ _{Qp۬ѷWzIl'߫wH?ڪK=jZ"~P@A=mƉ6Pmh(}BiL}U?o3 *us>4VfxzK4@o& <FfLD[°Û>JhL}Suib37Ff(LͼRTE[906w0Tg!Gf޾djnF8 rPUrs.\{an&¬ܲw_2n>l:7_GPMPڬ~3_nKtPmpybp!Sw)V}i{^7}#u .޾=̍nIl2t, j&5tYDY(/uB2H͂+ &p{ ټO w&p;QO^|t~fjV}lW7yOc%Q??0]88'jg٣tӞJn#˫=ћP[%rڊ{$ri@_YÒej lқ67^<݂Sg{'Lcṕ^bon`tl½Gjfo] eJ M սUpML4,Ww1m$䪋-WzQ[꼚m1]]zҼtn35!|勚yӀ~>odΣ|fHv Iƒ<3A2Sov(T< B@f*ό=OQ#0]i0'N!Iro$@rIu( IヴЅni 6px$-ơ8lUǣ>"Z)T7V(R"ҋVi2ڬɂgpoC3m|T{it3jaaT /laֲo2 ^+M$5gu؛-J)XtK.NkOJoѹ g;XXhwm{MN7-I?J$D>3D'iAfn$0$T̀uT峿۩i%H~'BNFo:Nգ8D: $aM7HXA9M:Ռ|xCEmx6 +a%A6}s} ~L0QLeQyށ@~@3M@.cuG4R3¬jD#˛Z_(j(pnf#| 6G}516`B }k0wz^dv?nsb+mnM,s`0hj70f^(F vş*Np$-pJ&][Gb ЭcK0쾁w⓭4tsn`La(DZN6, E ȧL/Ps][eyO a,'Rr$R|.W^8UFBDWJTfo4_ΝW]Iy uG~I[$2 B-[e5'%==N"rݟA]9nOsr ]y5b-~SL1龄;ezd6`j{m7ܯ7lOnyGN[\ݳw,}3+ڞ=D 1c[ʇҠW,Hj&s=== hnCdd39Hi&CTnƟ^V/:%jS%ԩٽOypDRX=%x=%Y1+y5{]͢NMΛa.e>'۶ kxCAX>D7H̨ˢhYx@w۷Zؙ  2![iqfp0ay?zIw[-J$>Jb CKJ"L[V@#>K.^fG}rX-W [eEz_nCxa< mm}=_b->JboEDT1Yn͜<d]QQ5Fs ! y"$ƫŀDn0@n Ӑ)#SJvզ:wj]PUS̺UN^1v -9R2&^pt1Kl6k^Bbܳ#bc$0hl8h&Gq|>ŘiHbK~!ԼL*F#yup)-,nVSqk>Eb\Yx4Y\s"&:gAX-7FS c<+ßmړwP C?_бFEܛ>2&Q'4YF*Ѝ= Aoՠ*Ej*6Ɣ', -&*}n1~:3x/NBq6p3mY RCĶ}5ˇJUlťz _t}-7C|#h[.+LM-gp«>Rw5BRFVFv(ɥp)Wweށnǵ(h/Ń`BBwp;v!+P2 'y4rH>|%rv9nߊ鬳8qoVrƽY+n߾>usEw"^T.>jEt7Ӈr4\[8`]yL[/2Y>YֹN;,fSBt]ŇW <ܒJ#޽{(wv~҆^{ 9ulbvࡴ#,JZf~VrYac볣T*1BQKB9ߡ6a~rܒ+]^Qepq8nɺ?%tUMnE}/xoW_p򂛕Wya~xv`k6.['rtÂN}}ߣ{(7AQ)**EE>2~M1ޭb򷻘@~(SoEnkGb묳N@XlzzئM^ػFݭ3wk[MFJJA+[R37\,GwK2fy6 ]:n}8^튝+wP0 =zQA_ k+)5+u+'5jЭe'tK-D|_hDE\|%}g3\»=Jn a_A>K82Su/roB ;b_App?9R :{h:ȴa UtB?d Yށ.׮;V#Ѡ݌j'\zƴ/ ]vF`uhRo\ڶ\F܉z˿7iSA|,er&bE|*zmE|hp Fn< sTE.XU Q׼sT9督:N\h\hJnRjK*+ǖl: +:l%=v:USk5; nY;LaܻR%~=>J.|ģfTNxAU^訊 UWRDˬL[-P^IUkrz(@y_S2פnWSk:|n Z wO(wR]7R2/q''%L8JX-cΩ/(&MefR+oe΋zA)qWmrIvC_}ej_|98Yg7.u,pN?\Jod*/Fpt\~b\]i:آҰeaӞӴz4YlZUBE瓥#u>Y:RcUl*6d鶱2B4]c%EVDVdh8]s6=][~պ4X'Y +Y Q.+W_ g84-Zl'ͯ4-1nCj_]fv8͕mׯs{w݃0hc-"Nw>)N(^'%& l M2>Z2z> .'G+ m&Vz&tP;UM=bxkp8CW/ ZXC.:uSsyQr_xFGSoP|ޭG||\E 15$bk8 - g>(ph'e"3ڈ|#fQ 9 1邎4-8mev7X4ΉJ`jA@pLږPw2\PqޞQ}a24W3DŲx{l.[$,梦X= X[UtAZfan"`֋eZܣaxYo3D8=n!9J]T*9, |V>F^Zv7|n3vI5SX3WJFDF3q|}3 I-,K7+aqӱy+Yhn*!`ŝHAL7%'/OY'(CT`AHE8.kL2U޷2U}5p/| SEԍ+%Wnr3UmŴH#DMzh(͍>jkj[DT+y;h ,DQe%%DCa5~[X pY pY pXaA[P#  j(w 1-a?bMXf@zj54ka /h}yAн5B ơho6Ljexߐ7$l?tiWOt2t#VCv6!x'daս5[tH XF:ػKu`J0R-OLw"1I]F!L0Η2gN`ll' U)T "o6ߣoa f=\:~Cdmk:y5ZAfIUS*C{t:nn~W0zpRI.!ˉ^;XnKUu)/Ql^.37:j5f>j4UUժk_REN*ifRNhU\H^%oSKjTqmUk3kX38ZYoIrA=.=*EZWzcgc=NPu)T#WY(xEz%=A \--Z;`keIK8UҍʒwwS؉PGT#U,J$_Ff@$BΣQ}fN.e y@bU?0#/!P=PT@&ﺒiHkiH}Ejw JuD* "HW$-oT"IjMZF5RMP:}O;J4{'j#RMTUפhP4)~w/T"~ii~KIFT;R;>p9TIŎ wS(-a:@lC +bbLU]\PLf^\-TL0 v/T>#ӏAT:C#3ÃxpT#ޝ:'] r&:b[^ ŞΡ'uL.'E}u2~u.Ŝu*rpu&mZL-M#zVW%wk7Ԯ5ҵuQ!:vk 0vZk 0Drpޣa>:cE-^MwIbquJ[̤M4ƆȅNCk_]lj }lz3NJZ/fxBjЈ%4>3>f?xnWޡ:Ҿė'l{zgN~fgqv2tnfxkA{{wnZRR]JW뻃@'{MyESD XvzbLĠDa}ʣuxw}Ø@Ǫch2xT>^ k Rً(}&%"*11̇^|?'gN@/ -. F!hv%zqW#DMH(FrSMi$VFBSjt#iHNJ?tҍ\$wZkԚ4k;KNMtb fY GFG|zKt}MUaics7ڑHӡ\е t([t}ߡuy u(6"]IڕT=$zWtIi6dU"N(jdB,I&Scd6=fDӡٛ.z;`a8ۚ}`qfviۃ=Ҷ[Ӥv`6cFl{Nʇm{ж[,j'k a=NZC7k [f=lMϹmO,p!R"ViFHTݗX!j=wX5( JaK` TO`'HT/MN{|izob4s˧|aw0+QQȑz$,7"ui\4@RCjDj4i3qF3͔&4g"S6Օ(>1H'hDZ)mHe3;QũF^T"a5*7QHkK9Hg'jӞVz檑f9RΑrTϖr%,!gL1$vʹRzV72{M"`ȁQfIcj$ m΢Ptds7k1RElnq.XqYi$D#53\]X\r2rM6LN6a+Av|kk4Al{*=2[΍V?W-CF .U{dN00қ6Q&ۭVh뭖׶XZ_0X,w4\æƬhh5-+@Z a 0N0#Xh*:++x=KhqCS5ء dyo|1#!.БF ]egԧ;yg:0 C0^%_fsg@%vp @l E!VO*v־ : -ۖ$DTJAH|8_aV0$D9&ڑ0{M2zXg$IćWwSdB}CFʵݱ%k>"G rJ9odPmDQK9[SΑrSSΕrSY]::5ɁzmJigmt7M+.ի zmw 9 ^JƦ|ndC;[(mh e6Kr+I= _ / ~*bn],FVdKȆ$nO!3ȷjB7(zfg.٬ [u鯞uy5eCh)Db]X3t)*|Z$gb擳{J;|L=BRB{) F0ʑ*qR_Uzid?Yk`=atz%z%sU ,%Ɔ#g둍Io1m u=)_V<1[#]#6rrn1 z j22TT#|NIq#lZdWJ$d2w#|#jn*-}C;j$A#bQqT"aL0T"g)M15֢)-T#FjT"aHJH5^R~GC.H'nVhH=Q'7H%nDChŅ(~.2f*J$l&iJJMd[m#UCiH :8vk:H$ctZEd#A(Uʞ*}}Pe:H8D\d䨼.29:PPDՙDBLqQ3#tfyL&klX"/ 3lA\Oξ<\*2k?BRtM|+ZBV4h YtH\i0•oYzw}\|X:Z|[ayɇaTJgDJ)-J)Iu 2P|_dWy&!LcEV2%}*df\ޝ .%D "`+A+Pj%B}H#ѻbEhVvw-7А63ZwJvk V]:tɍ ҍ>h$$ DB4Z=NjKȅKN7ҒcY#Abް $+@6BN$Zyv,%` Hէ#i 9XF:>ⶎ*SF?IށkFwH'#m6GæEB$ Rx"1;2vGʦEHUM`Ӫel,eFg6ŋ|i,se/t5 [#Xk۳Lĝ9iwdknt.n}6@I`C f, ZU8y:X'咺X5œ:XCRJIԬuY|g] ;낙[܉#ci[y9V ֵZsLt7b^%xHaT%HD4r+F9ǩX/r[ F^*^ԬU hXorٜ4"mbVB)T#A fsl '&FhyHt-iHĖnTR$ f,5Ni*ϖF)m4HK5x ΩU-)Ag-2AS;H'L&(S[¨Fts*AvJi>20ƜRJYѐQetvi+\)F9RΞrSR=RىBήoD7iH2kkIԼw'J4(ͮc:gti n+#m'xE;.">5%VϺUMg[V*ik -1̞}@U]+Fٗ+}ٚ[qD{2߲֐|fvZ ۗlQEf͞n#h2Y9d'X7[51s-5;Zq w-<?X;ᙴ7ڐ0Y_ 5wf zo[w" cfȑ`lj=NX2kz-QZlZo]ښ:_6jb_ԋ K]0S7˥gmus'ptpt`R_F2r 2">Tzo(no S-[T=nUɥi$"" Qݎy|'F$f nsTrrޑƹlopE~ܲcGB-GۡzՀӵ,d<΢?mľ̤>ͪ# i]RIJm?f^0}M'Rc鲇4d9H9:Ouvڑz9RΑrΔSvBn#4<) 9O;ZpPiGgt"T"s7eGiFi"hG:) r膽)tr]UF4aFJlVJ[atߌSJ;aMiA Im=#E<4zDz|N˳-)NVr.15ھS/@"c4\oK6l:#=˨93B{nZОN#Sη`#*=(l;ş!XkWY1/Fw߽wӍCg"Me3ԋ΋އq]1Zځᤥ1ߢ]v`2_ pϷ\;#Ӽ_N\f|9^Oi+E~(y[XRʛ7lLF 1.tq}1h2א[Q+ݽ#_ =Ț~m3+Q&u4;4^(О%W.2xqRWY"3ڬx%}rK++JG@Z^By2PCkv)+ڬfYN55\ V"w+f2蘆N#s>:PP3j(G;QTVA tvik{=31=΅hK@ Ի'Hſ@er;5'G{HB;:`ŴE[u4Xғ+KoGUYY^ c^Xcxo~-X1Mj4|V!Qe\Zd։&ϚymͻoX4Ś$-ֳ@'kE{`w늴~^Ɋ(w^}Ĥ}wX{|-heD)f*YJ܎h3`F0{ $Ym0^ kl1I(vM f} ٳ`Km*A y_yъC`ڜ7abXFmmŰ{mQe={yB3J0/9hd _ ۚh]sSR:-|9nM4VO '&A;I u:n N+桦gpS*|*_aQk2f||_ }3kgg}OYp#QVƕ|ZWlW~gʋVr <_kފic|]~M˯ p9w@j\(GIO\=vUB]yHq y}znE%{ydTd/m^]7QWVWkl?lw{lm&{hżn ݯtWY[f/{fsw {ʦ&46Wz|^pr^k 'K!]khO^N|`$B`żA+v$|?qiG>xJ醜Szw"ՖhGs:z*_54V׵{|Mi7o]B9wݿ8-9}j)PC|il{֒4.'X1B~ ~m'FΒQnY}AźQA-}b)K +o [zmD:tݎbHъyމa6 J-Vrju w`h9n9eQe%?l:g#=˼!C:Tc=x^i|l%#)hj)n3X.WgPH.#o1{ݫg1{{B[zZY{pLnA#3t0[߹λC?sw̋sYyɚ/(k-~|?!"WQ="~lkYW֫o+~QGZϲ/ouz^v~x?_ }o:QݏYtzCcTO5Fܦ3F3ǥەtX&΢,a>qor/Taw(ǎ?T}-TIT^OgSJMkqf&|<CvZ5QMLhDe@&`:5$ dgkq߂[$CTcz{PAQQgxA3^/4Ip7 4W&ZnYG| RQmnyHhAo¾p}rHa!r7'! ^Z[_e&x_ǫNv~-OS?#^PW0W0W8Of#D<wK2Ό#f7:SׯKlX8$ycͿ vζ;tξa't$fݬ\zlצm%0p<!2jkk`@!UMs<'=(=֖cPl zs3Kpr[ h7.ЬK.S ) "p0qU_͜0A-n TCXV_NȰ(| w;ݎ6czPbe]Վ7ST3MHr$UT8JM>~53|S1j5#?ޞڳ 3avpl&G9~<,{7?PءjVfJ$XqQ"Op3oDf %6[S n?c/l{V]~Wk{ =k^?asWJ`Įv#Ŝd,ؼk8>1hԕsIF6l٘v\W,wּ9fcL6^VA-wqqJ78slq 1s$~[yUp>s|mwul[ ڶM`ێ SDoR8AnRD3Cgp{f7k Z zPOg_mᶁz^y}-l3F$eK5{j sn}f~ byպR׺pA onԗpS"-}JtjH }HiZ$88:h }p>XzZi1s%tn KHǿZ59֕߅ϖ4'>aGxrrbQG&W`aTKw0-qѩ-_]-Gjr2v\:"f8o ֋eƑѸhKL_]+/pd̄;4W3! f ̾MH#8\qw3 <m -t9\qUf> KcGc pb3 B:Myp4apJӹ؎7w9#R8oep\ n3v'Z. )FT:Nb|]50tF-5+1Rc/EAD]])/z_xq@MØ#m b{ܿ yF3Q8ٍV"-^# I#Q9MH!zgwҸ";yH#_ũDB4w+)̨Hq*,#,a 5R$&AII&F. oX|O5Q 5NhH3Q~MjTW2D{E}L6'RJ$iTkz>G#iD%RކHe;u郺aܥ&J$֥:Ln]FGBMd^љ5¤0紦Rxzd=DUWq"mSJ;O4ok%BZ5:i&r-CN#4VrBE:I3J$!3 OP.dc#XUN/Ia 2ӋR.xb毩XTj}ĖpHRlA'-4-|@VJ%GzHq{gE`##yɁ$Ѵ<2:m#*i2y`5FM#Y<6 ,JH7ZQh[4nn,6HH7Q5ʳyLތ#=ӱ(>2[=>M#li{!֑qUԚ0dI0RoNDy3 QF23CH4H0h3-(JW3#@KKic$mFF"DZ$Ot"I$znF7yR >in*ҏF$D7R_hīt#~GT[]fTCoe,M>"(qQ$P%ю$#UVӲt#I PR,rA ;+HF#D$X2"HuF 2n{ L~׹iFhC sX"H2kSdO[ WWVhk7R|f"<%X#HfDiP,vZXC#A H9SuNì=r36JԽ.Eb$L"m؋xN=QB{*N%L9C^b^T[3RN[vD5R }Ih&~;Gj4Hf*'Z$+F=8vUȨ6H5Քb+ټ9NJ)mҖŔl?"(&t(՝E*)zJL 5+u4j#Ɉ3jJT#|O5W3WZ--gF')nV9SسD)gK9kY{r릾D)|ʹ q4nI_XF$jf|VgːҩG'QvrpFJk>ZJ>4mTRZߺfO]|l]d5jVtH!b|j 2*FK=ٞFt6 6,ā7 HT#Uz4ȣ?*Mh$Lj񍚜F[/XGeh&kI3Th-XZl]/o$6ch=+ҍqh&r UFC3[t0:tU7htJJ]=4th̐BJ")&^8RveD:=э}X%9Jdt" D0M  "Ҏ$f,78ի~l$ZjYor()L9g ]I-QyRNy#sj4#(=sD;L>3iD;T3!6(Ѿk#Ֆ(D)-~i2qJi3(#9'vRMi7]y՗F M5$܉uBV]IF8}kHT"!hgnJJ+3t ¬-ρvJ.ŧ:RJ3ށ^"I" hGJIYpTݍj$w{H$'*#B)gO9TەZ$$դMސF~N%A5œZ9 P_M3QMwHaDͷ-#hFNwgFХZzt7#jzIT"Ife$6&0!|QK=D%4:v"DKΨH%$+RS#h:F=A]DF*#IkGm$Ȩ16#I4p>R$ɬ֣k]F.[W=2xY-er1+rjZ2O$R]Yw]jD=OΪ3R :t5 -ZTv֨򜮝1?;Q_i'v 6=lA5ىj!d_3v祝۳SԂLn;u0#Xڎ1?d,v'/_Pj]t JN넝vN$ {N'RОjc޺.Fov= k#D:a'FGƳs/ʳ#ՔVU}_'FMtvhvKv-[!5r/${=Ӊz#V32N$伂g/f5}<|##|#}Cn$g}ܵVFX]O m0`͞ium&<4fЂD̠Y51'AH5'snamt@zި&j?щgXO=Qt#I tZJt=QoT{VH=nHuD +@#J*-ƨD7R #@=FMt#aohH|9mqet["ՖzިD)pDӍRDI-ma 53RDSH|K_+z'wzNю4Zn$i;Ҫ/Z Ӊmw:DDA|RTJͳ-r?LL +6Te&;_%hF˺1GY G׭AjE^YGnmWa7E6A;Ӡ֪-rj ~Y-*7IV7ϫumdW-?3}D^jFΨT5^°5"fPw֫=*' 3Ъ[>sv! ce4.i -4?|T^Nj7*rʩ6C%Zb'זXǣgX֒=גyh;Э66_9S om?nMYK>e5CbIbZwКʹz2CՍ2߰77_iKrg}h-]~.uYb]p M;k}Rܩ|z+)'Z4N,>K7U-Ծ~M*MxJrRF<@C~+|>i蹾?J+Z{.siإ{ݕþnw>F=IGZ";>/cJ{ªsNʂI  Aɇ5T,o4UDm>w ";)HT)o^"_z^ $o;dFJ$KJOX 013DŽqLL29{rʷWd]>&cIyeb Qd~}ʥ z stL ,rm ~Io4HwzU ;2-ĺ` QeN={wO8\)WQju kE'|yP;ȔM]|_9B],:l ;t4oN~,9>tN! fzʰ6݄&=Tc1 [ǽVV٢sTh16Q!~t',qs3(vF֮B[:R+ʀ KmW+Uҽe3:UxKg >\s Ts8 PnkI֟aw1)RIn g.A޲q}ւ_mpI(&&Tb2ag,~taܑٞ<@$-e:h$sEc`%Hb,QxF2?5 ~&gFj 0Eއ6C?nST۶a2.o6ЧpF#sP-yfj hoq *d:ͳ4[BǑ}LhGJNW1D*]W#'Ff cQ8U|#QlM-Z ?^5ryщyUgTlD.*|uL*xfruZ mAG[].: W8\vGV/fؐeG6{Pj, Nmv8o4E%":WLmE$~m6W,෕U y1x +.a񫍃D?ۉ { 3ld6b@hfumv`Emi"!$ vd +J۬L,.QQDieybs)E%?:j\NvoaP\oHVjnTP}MGlh364+4 Ċf߷Q s3Gs#Eiё(dvo ,[sё.F.&6+h&r1p C),h82U|ɯOv ՅuqʬٰMY_ YI6]AjcAO %/Vv؋aFZ fD!c3FR7&. j#-S0C\vVoR+mHmUE"Հ| ?fQxm2ri2aF&>lm_M.*r3oCb8|T+ ITrɲ35 E%0_Ēp'ϝZRuṩ]^T˒v\yek \kHguʕͥ%K*cݶC7k f@ݸ> [ɰb@ 3oTpeZ%J͵a#~b3 rvXTRp N@(QVAW|r|\WU9Ɓa(¼FIxR`ɹ&u%:-q1ےs "Pm_斄y3!_Gh6_Agm1X ;[$XbU+,@e̬9fV{m@ϙ4ӎt5ڑh_+Gۑ W/tUN G+͉lZr¤Pzibd,fz@#[jM#hM>FTqشI\3^DMqؾn ^=\m8uNqq?rjs$FFp:%Ak ?͇F v7:`/'|2fA֧*]tc碲V[5OzXzO¯hZB;S64RX +HvjvVEwyQeL1IXDP F*"d[㻿GPEbS]6ہGy9lL䭙 z=iǬU =˿tL!os|CEv2b:|}ef Dw|s`%Y?u8mϷi5[o[tmN_f*wl3(uhR}WJ3 ϯI*ⷅ>8bTMjQe%`+ؕ_N3:]l.|}9x}_I '&9܌j؞]GN3=#'"[A]\tyNod7-ħ{t,m5/ֹ&iKzZba|5H sbźlJ໇խC|ise=˧7e٢2#u7|&Aw] tAwn.<3ƕWyiNǍbLq2)k^fiCVI*1i_@(P4* F3hfaZ)[ =Ǜ7ܜeG4H+ns R 30R H")DBq&RND-0*'LTl#h&JO);=ew0*JJJ'JJEJ$7pJi1ީ:id vRIi;픶RJi3͔6RHi=fJhO/pSSib)J-i'RSZuK5f5լ>1S#E)J9W9gr-l)gM9KYBNdh7Fz#x;),ƈwT^MzzޯUU" ~?)J7evVSZMi%Ҍ$IiG'ш瀦bT#9Kan:jD%RK9[RΚr֑(^R=KgiB ULH(=大R"IT0LiTg2JIܪJ?PkICחc=m[jZlu[jJK_(wR '=Sz馧"=D'FHJher=9R=+$2Z5Lt#eF'ڑn*4N)ZJk)~"F 89H&ڑNOt#cq6 q8SBt6jN+JTN9OKrSF)gK9[SΑrs+\)g|h71h[1mkZQFI4#TL5[)mTjvRNJf7ZWKF$ZJk)-dF\$6RLi3RNi;vRMiO\]v9]Nj];H=)JR"h$v*aN*D)7=%jqN8?Fj=QKsY-fN7lfiD#NJةJw;3h$VJ[=Q4wT>5SuV3J9{:VD穱r(wO2hIVJ)mFKOu)-}T" vJy(F5ҙMSVzLO5jzRy-+RI9Kș"Ϛ3J9wʹNiztYkQ"#T d^QkYtOi߭~7F]Okw!fğ[ڳJ")֚1(zi1j*Tz hH+L4N%^nZp "DGGGļG{=Ϯ7QkSzYqTN"4[n\oI$Jό% FDwśĨD+"ZxHa5jZ8Vn5jpkZ|WJzJkWR?KVd(I|kfzLeZ4}ШDvlH%ٗJ=d*fYh% v> n7Sݛ$ZF(?D:sLiFii&iiiviiVii6iiii5;R$wkIzYtI{ wE]gڎH=QH5ShH'|ifjv"D#ܑVH[RبD7Rۑ[F)+S's/#D+H֕Jw'ŶQ-N6#F; #NWN'RJvnȩ+oH-l)gO)8f߈xZ;)7=%dZN|(x3Rc[i0jVJ[)mNJ;.7&@kLt#ՑD #9EZFI)L9kAx'ZN]vݶKl3&ͳsfzn"twpgJ"![޳#DIk:HmҩG`Ҥ}9Li36Z$i`_$ˁpf\ŨmT#iD)+=ey[ B wXOH}ը%S[N#D38z(SBv -8R{ "Dď1jTBK{]%&iD5 cEUHuG*'Qqj*HG_x͓(=3J0!fvzII&WҤ"I}9R4SΑr"}9Prk=05Ȩ=F&ꑶ-iM4ΝU]yNG%m lNf64{*ը1z_WԥT(Lc YMG!TBN$I*[RْʒT*Ls ԏ`b &&&~&>f_jBPL I*GR9T#>m%4PjB؛~忊e/Pd@M )PzV1i mt%+~ Ԅab~JmM?$1GBi6{u1t:L mۄ(EF"#{QLk.a0.t`ZEh2*$HR|r%fs]2dVBvp-%-oKӄ$楒=*2U$f]b9$攘Kb.O4剦)u,Hi}RhÚ2\ |=د /qK/C:a≾V>e^D%nz2krv>)*vݕn籠{e's))^wʽs$kH!XYXb&Rxaw!}ޭ ~%!€ޝ!>@r 0Bd fC}_I ">AbE0hdp5$12~>C4҇xHJI G3*}Z9 2>[A$ӧ2Hh<M!3$9}tϭGu}ʆdrn @H !S70 sDP4D-Pun@|!HV7 VD_$gu rnAl>HѺMZ7!c$DnԄۡu#nB\[H a^7!V 'TKk} Z?5+-0]Siޱ@y2űXɊUD}Ig_?;rfNh_AJld} 0"r)pH_ ؾtM! Wnܾd!e}Jb̆T!$ tȌ}ߗ(u?)ys@ twD@Vݽ]w$ݿvw~@=#{w ݧxw@Fߞ7dDw|{ nz5UՒ*ᑪ6=]rIp$ ;Z{]=]-Lbw}`xM#E;yZBGka߮ըXa*w_ 8 pУۤ[1^cv΍?f)!GM^SKQ~ 5;e[y}(<Tmo%|~ݶ˛%?y>Nst&ckGGی1rNcYCz}u|EI WҾTnj%#nhDu!B=AP]<@";R}ىQ4\A׿a_ O*-ĉBbCcqNe_N2oN@wszvszv9X-Y 7Zo~;"toa, [eoa [WE~naiFbݰ'\xc#0S Y#:n؄ӊqV)#$Z1n [#,Ox8_?NR ʼV} [M_k3Xgl7ULw Ea/po.^ۈ٩!~7< ~R̻P筱D~9K,iX~<6ضKi'V&N.ҫ"jD6xG㍓1n V;G˒ꑔp K'sr@>~ {P?l+='oKI[)& xlz:(ۃS=fpLùK^5_7Z&m Hza۰ي(s5goU~=Cn۸=>xcl^hQ+Cp`մހf#нj-Rf{T_evoވ'r__恼Qߥ7V&^]~}Ycz:vf-_w=s=1¡؈uGc'5/_>!lT9r.8`e1e JŘYw#GxG A^9#^u=>W{ϖSm-{eԞ‹读eCyM%Vސjz}.Ϥ&E tq(.m^.Ɗ2T$ҦBo Mَ]xm6c@,v#3hX:qƬ{\1&>pCc-4Fmc#>˷y\i[iE9m>9A>t^ MPm3jFn?8m9CL#w)JK.0b4N۷?5skw|gŰ{XfS_ú6kgYΗ_ ~'*6 6 XO~ ہ;;I|[[Xf7'{m_4k; +jI{᷶/λ-}eWϊNB܉Kg4C䘷ϻe$V~_@,:*\v*N[OMp݁CB-߃b+6޹PcIG⊅[edƷ| Ǎ-Gcjϥj5ܬ֏-w{}8^5waт{V==/x yF~^Hb88#F0\c;ƫkwĞ{JFԧQ*uK3ӕfu3ë|L^i_*;:y5hZTw)Uqx]T1je~6}PB :o7c'ziPBSh YY1ͤ.4ZVRZBiz~dd='i &Wz^|YOBFdMFGoKLAh2HdaG$ 6%lIؒ-a6ˀlz 7;lJ:IoKLʃZL]RʐTlF7ۃHLAf]$&oa*O$1sHٙ\sK#1ļVefgXD~0LSҜ[MHJ%lӅ.?{g+ PZL Iؐqf%^iKؖ#aG´&.5&5VI;[ZJ%Kؐqf%ak3&rtgt1*#t'#i3%BI*MRJT:#xx6,BC0*4$斘9:Uhm&yPZB7y`%# Bzn4SBB5޼4_;Mtf}$&'^D=`=\Bilԯ6*S]BVh4ko.! ;v ӞB4wIKӀ:B/;I~PT}3F´_;8Q]b6$f غ{"Pc:yQՙbW2Tq*Bﺨs*ӖU\?ԋy_-% %DVB0d`>=!C&^+w$ۄhƷgz*(wAMxIit4i`IiwSӥ]%vPuىzJ@D2>-L |jjgR.S?Lc1MI%A^ ['ݤ$ ۷|gδl>yɜ{TaB4 IgU!hL%9x Aw'UOjcjE04:ӬB򻵘~w\Gze $hn&a:6!ʡ VLɟ!hH!1\sI-16~g&=V!!:3;m<1Dk0"4r΁gtM:OJXskΕEh]}{힇.i1x$>8dS$1et:y+xOA |-׫WLz3|:2Ǜ7iRa2\Kd$Lz*LANhNɄ#Q^B6'$oa*L.˹sd"Z*/WL%PAC웸H.Ut3ӂ ˿*LSb9 2(Ek_l, 环Pc:)_4)I&*+_ˠ=bGH~7:STRdĥ.R=TFcJ)RɑbB$eꇩ TRV.ˠAN 4T790rAُ_n_n_n_n_n8ڙ|<Ét0 ڝiM&H2 < c2I,[JIo9yR|&2|`=<03ǣ)"19[>1姖ͷ~^3 ~ݘV X72wiudiwk=$x4|6ぬg_fTB{cdZ2[Oi ]rf}29OTZRq5?;9%Y*Qg/k3jZHMi3ji&k3jZ9z@Wuf=djE-Y[ыK2YKz^l?i3{xܾdMW瑩7J'otX2b.M 7 >/٨cfdodϰe321ڌeuLe27mY̓lYy9#nҳ @f]l %ˠgY=@U4 YM%2y5 BfłhL%9x ]'L bh!XVw]~7wm+E]S^Ukҍ.v&yfgS_ [\߃@KZL ݤ:L OQ6_~ƀ`EhLObQZ+UH| ϷAM̖ZEh]&}C76lBKB'-LBJLBfY6){ Ҥ!d|F$ ZIȥ@SgÅ#Afy$M~}%i ud򽯖[IJ' ZGHb.in#JRa[3yۥ*۟tQT-l!+YdvARc~$s30IYO~$IX03NT(zkMLGŽm f2olo zu!af!L4IšTPa*Sʫs:>B-gZH|U&j+0$&iVY$&{}_δ$撘Sb9$fLMb6Y%f&Vr61ŴPg[2 ZkK">PeJT @lʴC5)aZIºu k<.%Ԙe2SgW?Oľ=`z'{tW&. Y&%B_3-diҗL]翫Pa- /v>-M~*F-% )dV.Aw0M!K3ޑA N/d-9;[BizUa}=0702lHL6xw Ŗ1%nSBCнIؐ0;b$aK–m,(i3&D;[oLu2̰.G;&ӬBwIA^Lf]?,ͫObILԊsH!1'Z>k%kb&IKf U; Ӑd w%lӅ.?{g+ PJg%i3&$aCa]HL[¶ ;XE&Q[}&&]B%cd:0.$aKf!!t'ӍD M$F7&i ]&}?aZUN6>/hW!%u5BtyxsE Mdc/yJY*_}>hq:M$Y;5Aof]OKT. m'w[w:ԃ2O:D89|n% b +?_?ɉ,?KSZ)ϰɦ-c.__S?O?~׿5+'||_UKo`8}wtM endstream endobj 191 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 195 0 obj << /Length 1902 /Filter /FlateDecode >> stream xZ[o6~>h K@[ f ! XsgiF%rfD|<1% YBOժo_+Wg?_R%VJ.H`DX\\%?>lhqϘLofs&-ݬهP)"BDV"ͻEYP: ug:sVYD0> y|CZ_}Ƽ﬍Кb#@fupTy<Ќ0 L4 D`IECwٜS#7ka,wMJM1Zh pEUJjf%HñC8ͪH,\ZA/8/?pI=)G L$O#dTs&  3'ξ#ȤcN_()qm[=Q" FXE)eY{1з)dW6%WQ 0 ւ G)\eb4p@I\ Rm  q^QT2ךS "JI3N|2A )&C\jA`(ԇ#K6R`Z΍R#U9UhUCc8ՍrER,>RpL.4 fJq{]#R|/֛z6ԦUV\Ǣ_!! *Ϯu8)w@Ңy2EYkbmmW'nEg^XVkѸ ~%٤y4ܸG8i mzPw(Ml)67Wlڦu!/yC.s5<U6 d3i^*:6Y~([z2C֏zjr8O.z] ΅ Ȋ"RȊG7nD} gw3u9?RXqEm_ *oUG|.l_nx8j!$W!/dD0INH :8o(~YL5Q0cN\Wǜ3+@xoqYL bKFw/@d`Ŵ>83QK̎n|’˚MS˦}SN}.(Wy+=62J Fibms '~=n}>S^l?ɫe omjWϘOn&҆qt(OrSl[WzQR>bݮrU]fUUhTyt>ŋEq惐m+r v vky o޽08f˲u> stream x[ݏ6_!I )f-̻wv.Pw#/m)&*? ?L(MoTQXD9rV# V,:Kw94( '#]D <:) KD2/0HA̘L$L/ !tYԶb 3##$1gԳU-p'>ItY$ٲ|ÄxY`]t|9U:e^lUJ-ַKmiwיvN#2ʡ^HEza{ӇV}֙rL "",@_gb)-Z0sc3. fX81+ Px(sXN r֠Ecƭ.*cIc&V)8!D;$hOb@6#>m:,}]ݜ~׀nPpas9e߻ef<]w7O6b v3NoZB\)ux[((Q# mtVA>}OnCDIuEC߮+j!ܶ0 (g$x󫢁Z "<5ؕܰ}bPU?-lLCd;!oܽ?ټ-o wa>?،sN|5ȣvCfACw\ yG/(tkO9KlK}CɞFVZ/_@ḵ3`cƳ62`L!+0'9+$Q2VPj"ϚWOw`;zyڋ<2,xt_=tu`q@|Srg`*72y≞ -@aB)300-[ #Ȅɹ-Rr _g2G8"6csֺr*ք(32;Z`L+\nрV ӑkjz&Ou$2Z4 li.裤C'ϱHu3LD>ԅ۵~wEh7&%igRARa,N"LR6 f|a 붷ooڟKbc,C-$" ~Jd)~9F3aJsF1"4n]g{s9e$QPถw!oRrXn3=بBA .AdL&L:>%8Q.GAH9gNݖyXXF 񜰳6U܆9L(c. 3q2 !K2>;2f\ې1cMx XZn'R Id#LS=N(mVd0\ȅAѫ  O":ףVxOtݴ>ϻcofzsɰ ȪOR_d]rAEC<2/M_7#JOGѱB =s{@ o֮nO_{ %) I`͈=Q`b"oY:V d}aJ/Kg c+*J_UӕCgH ^>y5CG-zM8>╀lċG!t7CBQ< Kdre&JU# w4Dpq/XX['b4)ͮV4@wY˖F]zsx0VwZC`jyJI1cdXjp|:hĈZL M-]Hd1at%?n?T[_ug+8팼2rR!)P5[)06Չc\N*}ƪȄ^7Xvn o۱vTczloܴ(Q! Bε~x*lK_W"^RؤwXy![oo=:D j3C$-Tڲvw awSn|Op@]f> +Pu勛4u:tPq3zy㡣6{g)m)xmQ!%1@3^G:raC߀fC/%|2V(DbQ)g8K> stream xn۸=_!tAb"u)Їl@{R/![02DWwxӭQpn$GcY;ѿ8 X9CQDbDc,΅fs7a$rJ̾,>yv*[%? PaT!㯏gE&3}eph\Exk̈^sZq&o-b}`y, /  i#`F%9;sFf"|Bǘۺ)MZC?lq+m` "ȧN]|% }W8rnܡ"'s>֨M K|@zvX~biu(QkТ.9g F.5߿z]b9SLܼlҕLJ/R]3~ັIXq$r[ő \J^ՃuYx#e\j1%`ܥ4ze͋k4q%M33`rJ10toR 0juS[ dsn^4f[Qŀ]=팖1jbb3즅nVe]nҌ hYDJNP.넰uA-I\mĘeTr] $67W7XrN"=9ϼPɧԨ|TP2|DޯrqtLp>f;5sW:e6HQ cJƪGpN13 #x0az渳 A (@,("DA^V{:H1nWm.2^k^7B,<ć,Z ˞Ufx}hJCBk•h>G4/no$ :5WKr ! G[2W![ ?Tu5[Oo2XZ+8BQ'J+BoN|qz܄)uxD# DLίpRGaG~(w,VSWWR!]2#/p/1i!h  Z(l^vTpGwt0qB;1bcE.3}ƦD?@؍׶̴Դc2dц<`qǑP0d}! f pv,hѩ; {8z:THWVun##D<2DGG1ԴC4~ [NˡrM8Ge 2QK~ Ēd AwqG.ZIY܈€9o2%sr)-dNB]Jx<#ထ $9֢R*u+$ <^W{6?YSNmBs7Mf;YӳC_ޗ 灓Yi>nRg; 7Öm\?}3?"+˧g5h9KoåXmHPwl]Visɥ=ԯd=Uj3E#%|JعUՃʗ$ķDljMi[5r KMZI7JVlzG/d2f'zJٔrl=;Ppj ۧs͒ 4e0{#V%\ljro Ia6h4N2^nq vF!xqxnëc(Evfs?mݡ7H &xԵL{ʄ Qg #0ߋbF FX*IgC<Ml1J}Z(LmÝS՜g[\-,#]X =c]ZO=nf$hUu)b mZLH?2.lk<O<ԴMMM2[ YhL~ ˷3]-b vv.LU7]5&=^c8DHUt۶on"bQ H/Q{.!kl*lI^€ 6Ϸ`Kryq[cڻlA/qq7fĉDꍐUi--d3 Jxݬw;,㈩zu=mQe-]Y?x&WX ;+𖾂qţ.V&[J,.g?}E9ZN(u}1Nh endstream endobj 211 0 obj << /Length 2288 /Filter /FlateDecode >> stream xZ[o~ϯ}%)J n 9}H,ӶNd+?3Jn:<ؼ|3xOg/ξ1q%Jw.߮M3  33 dzIa6w?qhj{ MچogڵAJ3ɇj,I_eXoeGf&ezP;H%@iۈ|\ۙ~So4-*Tg{5u*?RjQykCB 6ebVQ -.1?("(")LE G13Fwvޭ5mWlδldYd7TS ݕ&H#LF<4D' gʑ|( %K`~DD^T! I5[灣#% qXsT3_VhabheUeT*aPEwHi} v%=FJX)%S Uqh#ta[=3EiAXN]0/]lC3 ]U wo҃lo%p$= gn\y+r_-%uVټtI).mq`||X~)vXD0vSMD3X:1[_68̥.]K9RT ( D4 7 9|J;kZkkMVژ/S"*%zQJ) QimDTq]ɚ\*Sk!1(:S]"Oe-!m$Ami]584+C pp]5-s>!FnjהsjzӺAOlº!w6~}t$g`VN?<"&@@1$A=i1;{j`_{Df۲pTT]=}[_磌`}6cs΋%N:uOI#w%>nIx`L>-Ϥ_r $zY*:Z;=6r-SjxՉ}x {y<vƝ'CYfDUz :''nԸm3ӓ0fUEqz6ru^6Y^y|$y?~L<2;~$bQ*&<̄z xKH`OEB$Y]JRp3"Ne$V }>xz6&&=&hbHI2?љ0'z0w I"4aRD^AiqT/)طmx xr郌Mֿ{d_G/a_^4?CZAp#iL%?:$k HN9]R\"FDsw9ztsH9AmEme^ByA,XD8ZLO endstream endobj 218 0 obj << /Length 2313 /Filter /FlateDecode >> stream xYYs۶~ϯУ4B n,ˎse$iҹCQU._EMimuś"[{#bԿv_|-V[:m ,t\ZEv7?_Nx*RZȱͱ] sF3zpEvD x7 h4|fm6"Y$D!(Ѩvc{~8 FzEZEax,H8= ;\_LP=>^|Dy킿G >7LB}d Wqh";&zqqwWpU=}-'vCa{Fqz:-$@'/&sOΓ|t>:[ ^dvP<:F]U Q?]Dfb2ܼjB\NFrrxd޿;;/NAዳhqq}%=-{@jau_,Hl-m&6(exxE1/ #ۏ^&rZ)y]$>akYl`l{&e̅l֜3|ENcG&n5ji "_1쵡^^U;a{]'Un`:(@ڼ\RR ݐL4A? av][Bu:bS>Ns}"\:h|C)x>F'c O6ܛmb}7^wӒ>yYU~YVґdȰ%aSЁ!ht{ NcQ Q'Ƅ9oTySM ch~9$18J+tbKxrC'Ti$^yȫ*Nt%Fx$3=8]X։ss'I%inq hy5t-},YJ7@m').ө*y؁斣$yc=҄Eh(,ʹI( O"İZ=mFE^t~+Yi*^>\%ޯ@X ❩dFyϩ.4 +b3JنgW哂Dٰcς `o6[XV!mժhH2)~j'a ~'e갿}cvECm5=ɜfrHml($E%Vwm\x| A!?AsG7ĤN]\L9?w{&dCQI.oG{,϶|b Ll:Iޠ47U!]ɑ쌣϶c]Zpz5UmFQ촸8Zj!_X 9̆\L۳VR>'hah~`};6Pw} S6̹ζp:k>9!VieH:L&^Ub>^]*Z|!#f*dɸ)[uǼ4n|YI z6L5Q<^׼YS. 8J(6Xw&VB3=-,(Z5 <OWu"d$OJIusP#|h4"vxs<؀~ 6(NPϵ?0)s7йKL⾞eV6اRlęV4cYД(v'+uN+`]HǥE(jRDvZ3UٽLX%$`_+']um hWivR,n d6Ti>7~PH ض]غ{ϡ0.oLLor endstream endobj 236 0 obj << /Length1 1365 /Length2 6491 /Length3 0 /Length 7430 /Filter /FlateDecode >> stream xڍtTTo.% H HݍH CA)!J C Jt]u:}~~~.v#S!e'#T@ Ee& Q C\P' _Uh,Nx q HJ$-+* aN@}ap"P0W4-> HFFZw8P A> uÞÁH G ^yW4]VDG)D( }`hW :5 4At& ?s yCrQIQe y7  >+C-DuyW A5<5`P'#-T!FHOد P;ayuxb)*G# H_Q(;dNj @a b :#Q_A H B=z2 Go-Z|'0j:%,=lubjQ@i"`Dg&ct+og!f2SZ }_I+6c6MɞG#+eR$oB16C\َ h!"~_A_tAyN<91P p%ЏM}c{M*rJBxM, fn-o-eFLX^XMc0-hM.eYktV?hvyB+zHMsYtWgG/뎻,]|@QSi,/aнxMPm ϯ#vUN@ n_kaޒ ܍ *1hPن_K\9~z*7;Mi3c hP8FdgNXЏM/aArl3OB[uy+&LE9KBkU*m2Nk EE*vߑ';%>OTͤ#6n4LT{{8JxkLśݭٝަ>m5.qvmZ߅(==h0<ŹN1Ǖ2˾bI妩[s8zٿ ,rKl%jr1)xnŐ;1QQ53>ʕiC=*7(mhs yghF3/g(=SiS1Cs YtǦ sVMsjf#:nF1.ʸF2Gzb8֙?c#A(pyh:+%PgGɖSP]+鐗 _oPAcp[ KnZ7h L܏)&uАLzk3*i,߷d Vha Qʕnە'c3];3Y%C޽KSbtPܗN^#ɺfqhe9TJmMJ ],\,R ]R10t:re3bSW"a(nf]s+h&Y=}V=ϼfFl[x]w2̾Y O2k ?Q`e%y*f(:hTJۈ~F(~κa}}DĨ3-XH1E PX+!%G-EW2 frt | _츼Fp+.}my 4[iH\r2QI0<g)˶vۃ][M%HL򟧛 VH͓O]>3bHL,BQ Zۖ!lh,ىO(ibȢAZ4.Z|W\ N'OoEiH!_2F{ VC[R)G.WORׯe'&8fŲeY-LUDV1t[L٣ \i&[ucw!48q^D0C&P6.[9*_"IG_ZR^27-]Ie5љlDJl ]~R!.݊hS1'E-: P1 g*A| L;'aۡ3&Tt5ty 5b;1 Fk z!oZjr C{ͤ,S Q*2O9i5V%64IQmuf 4JjGŕs,n9M(8寏6b;u5߳魌|3RUuHo\ڸh4F m  GF22b=e8,n&,Od 6:=:ٔo۱XNGrIPIV8,+|#?o8^,s}MkʯAe;-c\N+EM ~̌n7vxdȔA2" kT^yA;4|F^јcӟ> \s71;MZ1<U ȵ\9KWM|m܍Y}߭x&-ZwyfSD:zt$DJլ/*]i3-6rl&ٸOfVH$ F)_myi7ϟNQ2Q) o]U-:B$l|6(=d=ЀaYP'r8ڇiNڒ?8uxWv?~觘P=!ޏǭwq9sɓ\|ٯ5LmFK)9#UF'%gxUGi$ݘ=*T[? s>6ъ̢ qRnRuŠC\ `51(/e"ip,qWr_)g/ Ztvog{M,  S7R>Xcw-zm&*v,&*`uYVe+[4Qש>W .89>4㐴m҉Y1[I5Jރ-'bUC)n B[H ׄH/GN$T=̤L.ց]f)hۇ)B{#7|M>dT]7eaW{ &)Ʒ}:f\_^\aG3ڝL L7cK^h*(nP%#~[^Rt?HT9څg*K"^?λ;XIZ2^qs7ԕƵFǸKIxŚ}jo[mY@Hc`lb 6ѐrkF]5HzYYmۛ!#:JWkGz+將K?$PJp_U ٖp .:RI2$azv p@^ݥuEOZmT2`EEa,냗69[4;,jCpL寮'l@8C34˜m-1ev?EAL{ε0ǯ#OEgֿX,L,Yq>v"ƪ*֎$dh~oVvQWoɇh}{ :5dS1<) ,7kUJ,a NWѤ(C}#-q+ypoM:#O:YJxYs˕F-Io^msّ>wȨJ[t?>Qro< hl{~1m;qzi\ŷj4l-~gѰh'S(ZkҔ}2uφX+iX?wJ)ֻ$ GG: xPc"vp&Lkآgw HvUv4$5ӮWޞEbH.b{vsOA%'gj A+WNӂv\[m1orE> QaV0␖ֽoTV(,jb'XOє7օ0iܮ:ׅ2C^WD 2 mfໜK>.] í|ozth&_ߧh7A]Y8Ϳ~9ʟ@;ra=_`)0Y8 7'w ^{U5"J}oS܏w_rx%xW̶DVjѽT~=("Gy |sS3 J9=2C_w<\~r@Fgoo'St gooי4&kb-#b^}۸ 'j?QMP9H6^0e2|zkTD_֪bWÍ֓` z' MAU:Ob9;BVC\טvⓓ{jhGPԴkcJ -](\z8۴P|YWw7//%kOn祟PG}s+luzO$PR@_S"GIqc2ޞg`dXPNp)uTl3fح>EY|Ȏ)XNc:6SXK  !'䁄_ЍAӔWQQM=:-l{__X<xufQi=5#o|W lbR"p5WNiqJTRqx{XL&GH[{5KvD5>ڨH;vTI|#nzK9e'm՛"OBBR6_{=QLBӖyFѽM6SzԷX7,*4;w"N&uK r n&-T ӰCަ F-:8nJR96s\kpYNL8VM9Qb~ P> %mP:^7ѓt Aم5yt]Js 37){K9{hr@n80 N,nh"I>zT3S}}2cZdFظ9I]Oy;AS2}E cI\/HR.sƃ Jί,\ ӥl:ץfcٵG؅IC8Iu,a )ۀPS힪b-r~UG|4_G3Z*t{u y35/;bh>uxN0"g=ik~SxwʘI^2@.'>{h^M4.hX$wD}&4K>sV"Y(ŷu]QS[8M&J=rB8WKf!(ޮ\y0:s1^ێDi>լeigje(кR [,u bS7Ĉ+Sxmex}:Y4g2J{tnyʶC[Zi ˯m*#'`FRXIQJAUw$j nc^+y:0B0^Dx.!WC75Ec49rࢾ'CE43omwC"bt>Pf1 `b~k endstream endobj 238 0 obj << /Length1 1359 /Length2 6003 /Length3 0 /Length 6940 /Filter /FlateDecode >> stream xڍvTS.MJE鲥(= UPz]BDPD U"t ҤH.MH珞s}o#{9לk~dj!uAhc1x $D02 iID $$d{!n p(,F8 OiD7#,TN*R¿8E@r$}, zPnx)Zp /'PC#p(8 4D8 Q|?R_wIWsSPxw#\04Oc !phB_bgz7_W@%NwD(̟`E{0A(Dy!mCI| ^a\;¼|x? s!:)h0bw ǡ񾒾(!^UF#0x_4Q8xA?c`0HW?oۃhD^ |D ;e7m&JzHb PA|0!B (8pA0d'ȿPMxPʁ-W,+? V53!uul @$d!*%b C]?z$PX-`/0D2Cp{,NOݿ?hyyA CƉ|o%*߮ֈjpEÈPøyQڨ@) w*٭~ Ab}Q?(/*'KA?%%+p8X8bN @2tEa0`^(@IC ~AH 3zQ1FkwPŪZy;/ bȉOȍ۞5BY>~WLsXtۋ'>E,-3=.,*vPa~J/(V Kf~(ttnFpKK)&NAN;^]O _ySC~1_HtFhQ$6k#]:bDV71d7a- ywOń \RRڽo wܟOyOg3Rό^]X;-/ UԜ 2eUk=qMw,I! ^bg,M]!^4Ha\gfx⢓JO]aD|M\4<[cؽz ydBO,ڣTAy Bɂu!a#dc[fUw~C#NWvvǽgt76 /7y<=697U4kX`7WXoz#7O4UGvYƍR9 n0te~hFig [( lɯ0>~V,}:x 4zebHQyA=3ǦzF,}7={ZTMM˹oWrW/D(ub OvI[y!]v᦯Ճ \9HJWhIgW/MaA6$RB.ɾJB`M" \Ͽn&<ެDrRc1(p4DI>4|'>`Ԉ'M^(JZ{VT'؟gmݦJ/PTʁ-ōOv6/d:$?&ȍ@x?XK6_KQyYiNna~\";:Pk}B|4lij f,yxRޮ}E)vUO+7&,K*JC>T:(]%3("yk&pVt‹ wYQ \v@(Ή<3 bXH:~,0 -By9_oGAJ_k]ea^lV֠Qϰ>"9ޑّXC 抩Ǔq*5HV娸KoR&cUE/cV1bͳO+OBG٪q4?o2L:v*}V.PelY]i2I$ d/SVB& M|̛ޤ}o%|2uUpy!ri O; E- _[SpC𥉌,K^*B~9j&֎$EWO rtc #mˏ,fUHXHNR*0?*Wgu&*|_+-#nG$51{9wRRʝOyCrhtԕWȋT-bղjeOB iZ{k#hcZEa6ִ/iS1yc⬽I,g9tLnz~=hkΨ|"%œR^WY55nj>-L1rh ov8~l?\t8dC s_ >ξX-q1pŝbLA[Rќ)jxULRY6V]J,#,oS]^RΛ7l26$?6+jlòrq +wF11 RzhڽEmǐһg|4G|![ôm/`c5xĒM 8lYToU&ׅ?k fi?_ ψ^}! 1itVPRqC=~>D7G!c=;חK鐊 lâ }AҐhEr5l]8ab3d컴3)]^'H.uQKݻ/kHg<4(lHQPp˧,27?{ 'XH5KyRfZxPY({XTEЫ8J)R[lƻɵH>5)&ef7.ʣ_>Z!/RJ&LN("锜lhʰz9ծ'tG*gLHɍ:GѼ~ ݚc!v*w*`_Е3Y3~%(Z_TwrgV."]խ+_Im/m12պ.oRB Е ;0Bi 沠g{ uwRblEfoJ%&~Қ y,= ݄Q[Se4YlQR{Hdo{D2otljy[Dƿ/~Y2n,emVhFzؿi?Z$!y#*j|jCm6DŽ{VB (`|}~¦ ;mkTtU*;,gKlɏwbRIu7,o1nLmI7+ UxqX| jq˜qyEI棱EOtWU!*nVO}]ƾo_:U y!V&6 :Oי$TPr8Ohs$7>`f} f!*4ݯ"/]ȿy!`GT.Qg~=4J8 u0ޝ>ۢb.o{K`?q%9 {>4֖I_ވR{}S}0C)/r)1vb[$$S&f4KXS xl S=q 'HcbTIgGzoXkh3j%g5jܿh 9A(+#$P!6z}X,6f_r݀dFPrC# W%䂙z;9Ⱦ3J.,3R_:/$Cs}?kpI{uGqIk#7 4~O)MZ r {Oen!dkFI搶T=z5BDc-|{L) }Zv3k\([s(]픴MRO?q6>o4G"8V՞n#w0YM &"9/JQMp(k*ϼ wI)zU:ELݩ?=˳% Aj]Ožկh'c/{`.jU-Ь(Z 1~bc)g'_t܎(L?>a*Cjyyo}ȑnWdFH _;ߢvRR,6r\*x5ңb{ኼk]n2,ɾB̈7g > ̯#p )2(%uSJN)0cŋU7K)HWvѲ$4/Ho3M΀ְ@H?fOtӊ*}a6|~p$3ԫPP2}9C_k;#-ӟE +~})K2Zzrv+b8i(̹.ZϬv`G49I`Öm>pƯ%>Y㪧br>SET04tM, WJ>uT}!JȌy u-۔R endstream endobj 240 0 obj << /Length1 2053 /Length2 7559 /Length3 0 /Length 8692 /Filter /FlateDecode >> stream xڍe\[iZJA`b&(iAS@:$TF)IA;>p~|x1|^{VLZϸeE8 ' @@0ց;`>>>>>"f'A(8@ PŬ ED||BG} 4d??D+(@aDTU`pv+@H?XjQP0䎀آl`?KwDa68rT``@AB.+vp9bbO?*(, q6AP7hf=AHkM AHK+ׄ#A%Yw~7"1``f @ȝ3C /PLBn^pBpџ L0WDOH+Eb^HxE^+*_ W0jWQW"a5Ũk]FO0zϮH{Eu+¨_F0WQ70HB (YYj&ae!(5/0 ;`>RcqtJsyAALVp& UP_֝ k[0Z_mk u2}]bs 1y^e-vc^CLVvxkiUv˜uLp%ĂaU00埫ZJk~4&&.~~LNW '`cX1)8A`욫_6(jxB&:9Ə8_t GA,!(# w}mB"Dw$*LHZLW1lk'(W 諏s"pD1u\PbTݯ!f(W9c"y@gKW tݝy1k0 `üuN_\rrp7 n [s1_׿h@bek(f`L4KJMF7?oSctp;/k/j}z,o<*(״J56vnh D״/>A-svb˥Fv9R̦t5M=|8l%/E׳JCXD+BkY>PQ }M/<p0讚DVwß^eޅ+fHn-l[nD"::/`\ y~ 7zS3%M/Ԫ J[)ڌs8e= Ȩh%{ynTSTEfS@:|'E @.ޖ)w*HcUoERLyOfӓg[[TQ)?cCe(< *QNlx?Ȗ_nSH5~Y4 9 3w ҷ]\4s'zAro5@KVs 4(籓_8%vώOi/i^E;=z5ڀ,R1֧QfXO98MəZKWA-n&NaSx?.{ѵn~.ZXNG 4ff/OKB %:3܃g,"X(Osdޭe̒-}G̹y{Nx?\x`Y}eά$A,ZMg;V',"YΕz$~ s=0ۘ@H †L@o(qUq1X4ԝC*BOME}bI| m&SăisL[!w]FN-dt->~TyIs)6?ԥ{+vn[f&E o7 ~Nai-E k(+x_]rǷ7'Ea D_E1w_oT4:k:%DJFPyjD>LdWP#dȡ~'}cWl |P!*2߫'~$&Ǎ{b:IIƗD]t![a){o({*3*+UWRXtm6"릗c?>|lҽM[&fLl{6oW!az3VcracArqʛn^AgPH`UZ3w9E*FYc͑&;sίԽ7c'K yI?D}1ET/Z!)4\޴Z4(ê {?wlؑߢGMPG$ԁ#ǼkUhZ ǚ*&( iiV3,i`P}mB6.i$~ Q65P&'"&zZI8_Lx lSSϝ C#߮=9w7\/:|E.3m_8Z3! E5a/#"f}i~%.dW".m㘬W 0!bd2z:|pMGJ_\-r|%fB?/qc)_#RU1V2+NҜm%Wv8d<|7_tvQ-L،08Ro?hEtk6wJF},ܲ{K )yr֧;u M#:y¾*Q7ԍ]`?vAibp=iP{)] yFp4H3NmRI$'pmw=*FK*/9zPf$l?U~ ɿu>?NeIs]J6DŽgc7WSV h"-nxk*^@k(KVK&K_;Bamb=6JuvJ<(Ih.PZ1Mkfx+:;\Nx1ZXq^(;CRjhX/ u +G).IFfx$EuY،9MVv׈N 闗瓗?22Y/(%w[4jB*Ȕ˽e^K~r6S'ܿu첲w :k :Ml34#X~Խ@6g:=arb#2ցlJ65[4˺OͲ9!TKH*sH}QG'$c!1+v[&XbPL_"~У쇈c8ojCS#8+OFODZՎrՅcW.#FA\͉JjKX-$鰤Ӻ5,}3*臥2ܦȃS,M)g:GrUtU˾mFf}wG)τ*"o4q<ȼmzW{ⓡ~zub4q@jW"\.#N.l\o:ǎ¶4\Z|yMx{nU0k0 yyH&b*=JeO,A3#;&J^u^bfoߑa\ ɽS0 45t[v6:YlQn&9m﶑:xLJ['j3F~-N8=hMUC 4h/QDA[I̓]M2Wn1ɲ<)7Q$/OFl@gy ƭ&guА ϔ=o4'Z,f6uѳ}S} JZ&XɊɻgJj"ÐO(vn@ӫG.`zۇ0u!>k~o ?(ZdqvMr חHxSo(A;e>!7vq*sc;C~mڅ XPRT#6_'L{k7J9?*rO345a*h5Y9AhbXUQBѓfui|i^k$]9tG+ͅo~aIzvD':K6}b)[<:.Kڰ>(#zIFYz:򯡠L|Der7yއO5T\oDLa)ړKU ²v(Dr"^ ܢ7+ zFo%Q$5eI|Fg;T58J: hMAR>޳HН;Wq.CϞRO3ww|ľ|h^$;DMU?JNaY\t3 pO8 hW Σgm] Ѭ?ez`pg,M6hi̧dP U&!D.ݖ4S5Ԣ\X~̐6gmM) %gtk{?A yqOtdjv8T)y7ߖJzyI{\;pl a&' {T]$|=*%\Ι{@I>lz&ռXU[Д*zk_GVt}+>xH_Oj-tq"/pYJ^Qa3`?؝%NiOӸoNsL qrڃ1p9 L&nKEL(YtZ(!WPݾ5\Fl$`ٌR? Y~ swz6ͶڃsK!uGA /o?4a}y`l9k$?4>GLry\!]%Qq̡=:F.#03F|#یEqax{1 "Wwˆh=5]++Lf_GdѶiF;LJ)E˼H\Ȥ5Z«6dx)\SHǖ#ň#3Ӡ/-.z/NB'I:[Gyl^q5NRJ`R~q5/ VߨksҾPOTZ {fty!֋"ŷwCő#tRRnCN=pq.BvVNK 5[I!ݣk9^(ʎj, MNpIVp2K&LcGʋ: g4GSg-Yn6> stream xmu\ǑR) I]c 0R$DJ@钐C@;n9ygl+׵hhsHY!,8- p ps8 e\` [W2  a?͋ SsEm01@E`jpF[: t;; wXA1`G(fр?V0J( "q8(c!ah \0[۬ 8P g3 n p( K E.`[v̞VΥl%cM!+]\c0(3'¤\Q>k E.H%M?$i\Kx\:ׄ0&A5  / x Ĝ+.pAA̠` ?ȇAo1ii{-['[(Fio feb:9~̀71׵y0ᮎ͍Ʌ)ڍ)v֨k+VO?f~C)و h1S z-厸ٗ bfsF&}1=cR=./Gx8aޱ7Y rn[`\Iii!px1 H fӨ7_a^( |G@D%GPxP@BJt-Q!8 ^/&z-0EYG Muu]&;,1jyQ+2g=A"ݚګ>fsk: U j_MwQBAq-eҽu^ ICxD* ?5kOӬEk4CaGC'TD^4T88S㛿n@g x l2՜֥S/d{'Wg4ʂf45̞1$b|Hkɰ`1ӧF G:QWi1u{^le͍:$ʷ?!jI9r:$qԕ\}{KD^B{_RN  )$ExHmRhr/*csƤďw[L冕KP?qS3}  :ԧW=rƣ/?,HgjdZ;KFyf"?dKjZ(6jyƗr捗ם9[@f=6ꧤcfjfaEsL#Mի`zJYXCehH.ZM-:Z69jC!ۣX-fްI$C'O/ B Ā*2b:H f_Œ xYe\?alR#?9~ڗUǷj?G)rO^i\H2_P"D4|,V=u)>zcAṺ Eb?>4uۭGXaʿ2W% 5uw=MD uT/ }h y+"37n;տudmv'zZFǢك!V w?ei߲_^F1/4TRqv& (F5Q#҉`2 A#jWZUa 2:?'R5)$S\R3A%̹Mc%F2+S+ ]& V4[O}-X22(OygĩeRRTCcZUl7ޡoN˝ &u ]=ਣJo:qQvhVZċTF% cq{fN9@u򤚃VQ_xEkYO/R0L%$#/W6dϗc۾_}Vaɯߤ^sû4;{#eEoXx8rk$.bo.h$opjMڥ==ô{/v_/":1m2 0nd=X]T3<r~dCL*~甄|?w0;P1BX~Rhd1sv~7EoK@̏ؓdgQ$v7&%I(9R;q$VQu,M ;2:sh ɾ꣇qeZ-gA5,"4o lL,q?s{$4S>0 <mo|XkDv}&eS ۪3F5'4;_.|~hAKc@o]s83d6#e ،9ҫS?o4H޹ 'R4m.zJ2.y'L$GKL)󵋞x3A",bՒȐ\Wsb=TcLW s'dwZ j+6.*c;45o@qÞTyMVS㐡3UÅ7 (_fKX9=뉉 rE57@q/bq)].[(_uo5>nh3P; rasViIԔ_=},h=Q[b siAsG4[gw4U(OS͋ 8eմT-6)B)ZNӉ Ǐu}M\A.|FiOy #m;=9Qjoڽ?549Ef)+Mu.`엂:kf#¸8Ze{KFey@{ce6X˯|B_!D#h\[J.2fXY=VQ!8b D[axxa+1֞3..Cu<.ID_/ =t.TNU͋8y#$3SY/EȢ&|g]b.cOy>#A$SCowc/&/5{"Xzdyif_X/W^/l(< '^Y"h6ʩt(U|\e!YӐ䖚lmCnYT˨UғLQV+S'qT/ Qɂ4 ~5ڬg&=< "OW!NI0]I=>rS듯gѸ!z1I OHeBuǾX(y?RW*$hkfKϺK1f4ܖc~9ʤ`OiZ^eґ~p*0aP^]oAx 5,L]v:?J礞WxG}L~-IVrgu,$ⵖ= #Һ-=$T@W-@-=PY?%+b2aaڕh5_iaJgg)W1&ǮM1*+s.,Jb xؖY^jK1V[D|o <|ٷ'yiYaҒ36u[>1C_9}r9#Y)1Mrʛf`:f;QjGӌ"!R^/Cb endstream endobj 244 0 obj << /Length1 2889 /Length2 23660 /Length3 0 /Length 25302 /Filter /FlateDecode >> stream xڴuX>Lw) Jww7 ݝ t7(%)--߸{{Y\EYl\Y v6f53 ZhjIesWH*$ !N @jdЙT.f.7deCR^6V֮kp23;[ gjnp,r,,%hf@kS{KhKՔ5UY E\]CS !! j155~ J>銒*쬿`]l~n4f? `]]XY=<?]tW 5 Hw?]t u Hw"~Hw?gA Jfΐ-]9kdw?!&"nHs=dcmqpC ⿐N qaS7nH X# "!fio*;'`X7[Pl5@B,dS !$,Rrkr:u7/ - 9ɂlfX;!Yotܐp?m!T\&xqCj @G۟ bv^pth37oUd3mcyx#Dr6= w;j@GӇ fNȐsq .ޅߏ 4GYZ ڦ4KLS|ґ[Jj{C M. j ̠)+'P?7'O^[+b P\ ,?-hk!hu>DsLLaPڲy"QũvhחOM{DfMF;C,Xȍj ә%L}B_#ؠLC# npՃ(#E$~id:LG[R*CN-lШ_Ou9l<7³ہx,X7' [G>8-d:Z\4zdohI5>+䌈2Zcv_/4zw7'W<6* Sk͚:Rz$7ekNy4?dűF}|@BW(Z"ƚx¤:=ͩ1c΃tTt'k=ARr&Q{y$_m*~q7{Q_Sb.l5dr Nj8{* iE|xyfiv˴R$ .Iw+Ho%J4@>]c2??Q1k>"Qv/4iR Ѿ^a o r}~`N ]4҅f)avLNMÅ6-qqT&ڦ#f{qsCS46qN>^zj o/0E5* ]3Be#GB2* #8-V8_gZS^Q ޓXk, 1VR[+\rm#\@Ο"(E=P/ӵa&9ҟ‡r&1ڄQ?ax?lRVލ5P^2Q\x{ <7n;-p/KMwng9z@\b ÃAjA1޲BCeˍ{VMmG>S?׻^J=w=V1=Z5\ ZhawD.Mn![/T I<\`Ẅ́/e82 {@)Xٵ(4;!"<]"ӗNZ_'`hzި/0*/SJYo.xXW3nb+&IxVXC TSmꥸQ%}ivDvjgՙaPZkocÔlXT AГ[id>uAgj( bT٠9# |{RJy"^LuUg`U:X}&yYI0"|9<0ߏ-1¹Y|#6|< W. ӉPA 5`~2s?8jpIAgfIL H@S+4LQZc@(eֶhiڅFs0zf{J"#űTbDH1; ݛMRt]?^_~XWm_ in)o\k9дz7U!kH/,eẺ.y@u%u(wU˪~!apE&94DHk`w8.|htZSMqڃfmak-Zz/"m9[$a>JM`u4A]Չ(cMcOs`Y4>zظ5;C}έ2.K>e2ڂ<9`?/%Kԭ%נn{v/-یCʂtFeҀەWЁMY}&+}۟nRܱs ^,G& hVq]LϣUS6k-u~Dd<2L3z~d 8- i{D:e+F!g$V&Y,z,ZVœy1( %x62k>Π/[Lhj!uvzծTMS7|e>똅դQu"i9BJ,Nl?w ogEth$y,J^6'zy1aH|N8}%77̢$Zi`~)jW;Vҍ{`|w8MZX{(cRca>:=G||ss^I ܄к/{H{'yV?ћʟ808XMQӗqJmsYSE[8unC6+=GEL~>N;HrN;-K M Q+^֧&bH7 );h;{ן4\4mV" euݳq0L4Ǘ Oc}TދHwx*}oȘlNDCwYgFdZ'YΔ@ %hg(&f!a<~*F0ORU<ƁbqӪ7ceη0V$KƟm{EO+צsֹ2/Ntwo,H}{f&2^;:_mв{vZ:z  l19Eܑ7Zz e-=\֭ce !qf;R1~m>3Fj} Ή 쭉H>ne.TZI^3AumdRGxP TsƑ%7 ]-l9.|ɭ}`Kf$ܷpYf*i%فiO².۽o_d4^@fei]6hnga9oB6Kx&F[n%@Ƚ&׍ڏ`!0iNQOBVUpoѦcorqfvE+q', j6^lۖI+5IrmkMJ-,\ú/` Gkl1 eޡ ـIiΆX[3|~s5yޮВGjxIZJיXw@04l B,KG#ʁgSj~LVaR2KYօ"V/LAB_hN Y `QFEiiot21׊nlIrHQMAl;٘ZŴ0 C}tw{it >FEíǽ2nQ:. MY+Z*ˎ:74| zd4]j^~jʉƈVG!5TU*XWiCI)m[ؑ4&> vS% e:2ݘiZic>J_2ac- !& U%Fh~/1yL[>mxӲ \5[ Wyƴȧ;R-kK]S<<<$:5{3Y_ߕg W=\-}zԺ`adG7sy<7Zaw 3wޏhDT{_ح3!ib?BYfFJyq<_sn<Ņ+Dyz  ۶Y,ƶ,q1cxvsCZԯj'-aT0zt޼3,ًNbt_<ȷټ4X$`߀ׁ72א[f<ZdPGϽnc!msj59aF)4Ңĩo$Lތ؈-zD{¹sB`}^R|VTRJ cVatCF9%]]%o_cup$WL6s*@iKu W(o8άi4o 49uK:UՋ;&oʮ) KFGb )V]evž 񔛆B(4-[މN4KƲC%AN -TMHvo?TTKzJPnߎ`EQ{7*[1A^5 oùuK zR|&2ƕTt?ݟ C(}ZiEr"ˤ"`AE=b+?T+8< HI8:C]X;qA!AջcnaӮ4g^S ;m M众ך(}>M:-'dѽ+Ld&א+$vLJev.`:Cd QE\1άw0־-5mAô!`99MI ?|R{"\U?;6"Nd-MV.Tƴ_dl{b7u{A%k*MTp w'tY{զ<'fU6[4A͹6N}/ZE+:KSl2,@w`{`y!W=Qa&:%{U#s~3QF `z=km"0'='>'Wn^zbҖDW w8pćSܡdJWֿ(߂P1ެAV46gr+Mݗz<-w#i )߻|yb(Z5BOof^qFZD5?u`'gLG2"k)aT5'NE0NJ]sko\, t+UնRP *0Ҵ197iP:^ǵWF IsyM'?0's[>O'V, OC_x3 |ce9ZִJco%*|;=R? MƷFt.'̈8 gbYLSyKjG5C„};43s04}"2G:(A8z(S>5/=Y9VE|!֘#(ꥵm6 GFǕ6K Kdy토V..PtАleQ[E4o#AlkᄒY jE^/,7}y8QZ,Ø+MjJ+4O {R3KqVs{gkZL7dVr۔V)@ndgnnjM WM3AZ9^x=Fm7pH"4soOcpZ;V!ͽ-n_˩g̳J{&yZ;}_GD`;+#gk*T7$[ho7p*.$ϱ}6A4I% =+OP"2)FMl4s髗Li8Lރ𠞕w|+VN 1%ET]ar 's’2) ݖ.S wY"n h5ūn "oVȧ|}w@Ȫ kH;!`ø$gP痢spsuen섳'{l904ʸj.̅UAJOށCV6Ũ=Mvx [2(*E\ZN :mGt(7rJ# i UpF#; inGLM'w4,nKˁG@Cc9k8Nvz[=c~CewNs}4? )2r,ao6 ԓc1bll8ƴ0k:GӿkBE؋?[yTWU`Nzis-Yzc,{+_iz8 gY٠;lB]݋#Do7NXCF%ϹY"M-,.Up !n<_D"]B\.}/NJ\c|m3p}BK Ci@%$zADw0~a63ɿ1Lc_UIEd*xeC"G,L׉`0ˋ=3Fc2ٕ&XQq6t3bSboCƷjyo&,RB(,Ƌ9쯛Qe)4 T2 lt`&'t /VJ^JD&^8ZՏ~Ϋ$qu`햇:Bs] [6jj Lۊ1* ~E|1 ^[ӜvN=0vf2TXs걊ݍy=QIPϴVx1HLyLpAi:y{06 E(DsHPd9迺|2sUtA;:1}60y#d/ǡ@PO Op!2΀CXMM.?IvPB'+k q'FQ3֩ѹ`q]؅% |.ہ=A8b#l:zYXd勾؂tgQʕIZNcO-.֊AY)AϠQ-\#6p'>i~iŶvd);XrUgLD2y݄Wo%fU)}0_V0?.N)$^=B=QRdDy !a}#Өp۳oOـXj(^bV M VMCflu%:=]M'\ZEf 3VoAMgj5ך幂>uYthoʭNOx'ZNva]wHŞ@ڢ>~@0Q_hO73_ܑX Vۄ< !o3LJPDclt5!O rW%h˗BEײKGz=hD Nj , ,\(uuMx06U0`Cj.Xû#^+5n":(|+,R8Кu25[MhʼnV.Ό/M^D-xEBoʈ^r ȔC9x`]=7pi7o6e~cn̳c`GEvʨ[̤vfMLD*StK.;QTl+^ʼKWHm3VqJOKY-$͖T.h mۉvx5o;,4O&j< T-Qb֫۬!O<. }6Il.ew}K5fs\lFPmvF G 1GevnZR"e= T[ \^GӠTȏj,8JXl`P`RapG6/ 94v{ioNn毗hh6M)xV)OB-CTRj@X,`WIFJ6@Y5 ^B8ѫXnd[H܋zQ{&;շ+SaB뾍lf7%;}׼wwQV.wmղQE g5 ⧗9s[EY8{hob͙WU ]rÛKT׃㥦2<n0{Q_5ߙdPdW9N֝Ujlk<~y8[T_账eL֕N{t-+fQ/ˤ`,;׶FVuAt670ٳT ƒ) E0oOG7q D"JV>G|$Β8p ayOU۠ E(c'%H1lK85uz7]f-]y[WiOd4Wh>CLgK Vqϳ'\D%wYrb[qbϑRc;. EcrX?|3:SR׸FJS: a9|<5uazuYGrcmQikJUL*BѤJnzf'Y|S>@"wK }8鱍B@FГK7m[&g3gXA =ʦ؂)6c?]zxvr[|ھ>k)שJTr^j.J~D;[_|ßPP y$éܧ<Ҙ%u 1~E4Ԍ8b 3n^=-Zm/]jU)CP"`]#5Ws^D]H>DM :\].y Ӓ/#*ޤ5lէtU_>RV!|\hjf~ ״YUve*|{7P}33ޙO a\ԝ$]ŋ[#Ѝŕ:xwH@r}HR(k]D3[ծOkX˓UE(NG)cH~Ta`x+.O|~ \H5㽱A4kQx"%8w/XB*Rrr3{La;_XZǀ-UJ񁜤m4x˖ O~A`3܂ SBo 7VW `셟e׷wM#[As% ˡ:Bi[%tô]5&~y QݨO'j81\ܼ f\E]zcƁU7Aäҭ Л}dj(mZ[ٜ79B{Nb\ |s}X}JBdaO%0?w>t"L<:Jߥiե=6ǜD+*p눳)u {"7.&"PtG*YfOI+G+}?urY '5=muI597om)a_>QI\w>mз832FQCRۀ5|)'ZP A)b{̅ 7lx|("PBa]o5.6.J{U: Zo"ҕ`aacS~ .EY+A iITmXe%7ד_VS8#,2]i ۏi7Typťp9ؓbJ=8}~AbUԘʟ/h\2NJL$݋ D1Œl_ȋ裧yA*|)y*Ǧ_2xmW;:3I:wاɡp)0ҳ<2LI61#2?S_H80nsYEa'?+.'&C 7=-2|=[Tw Lyr;fBg=O`-JHȮܨsK@44ru[0:E"qkP͈T:J8pV"Z%@xj1diQ{C8E0]U`}$yoK@*,7ElD:risKQZDC/g]彂R~9Gx )Q!SWaQ Ǯ&IumJ gdIA6hRIܧW(8~+<“ꯐ? 9UҶ.ik䡎|0t/nk?h+ʱOf77/ _k\f|#UO:EJѶSt*f`ڮf2;fǑ2Иbtg( Cjr򕂘0'uqС.`03CwBގPAo13ytl4>Ij!@275l.Η&!}7nCT5Tx\D VY`iз^^mZ&h.GPϝ3n"RÅDWGNq8-g^ 9BjBwԣ⑽jlrPMV_ ~_xea]TIux]qy2\mMaJIyzg\ݬCfh51) 6ift4JrшPt궲{Uw涙ƘjQO_mEO{; &_ؕ ha8<ٶm5aɶm۶ɶl۶qΗ|:bu}jF~~z8FW mg|O9ZʑEp6G!J0s n[la5ФJEN͢AA.[oP (A9jaEehYϻ%;Cn#ץ:I-#Q2'4K f͑ m%*g)Qlɨenu-ʋz:llJwZCoO&.,xE^ dbY8Vh6)=f̡@-. Ǖ},i4=~c>e@(/ǣq%jaurV˿w3I|P68i|[ڊũ"!jDEQ>&WJ/#ZXj#BhbZGIzPfE{hHV&4pΫoF_J"C1 颅D,4xUs Nq*/D$Z%_J`~D"@,$<9S'}`4KA}LnߝY4l?JQ1t?Ff 넶bjZ|9u\0UaGZԻO91m@b[ٮr-^O]~~4\)&Bz{v?PD$/iqOn6?V2$F"VLxN"I v%Á|R4dɇ] FS)7Λ__¼;n ]B;H1-0@L-@u{(5GC7:R̺j w̎cƦm{9|%%/YLI̭t.GOY-(Uy\DUmREWJX I]bQ>"/ w%Nd,<ﯹKOj׹xrjm-ڐa, Y ) D2QY'QޑN'K3]o X$o` th* z7\$Wv)qQӇ޲zSN l" z'85zWU(|P)5nhP62mYJ\~i:ZBzUVcV "ੰW6 {8/| X;_I҅6VZf7zv?TD >ߍ ()K㔰ZDnCT. sVVJ4~.Dؗ`n%+x\π[ Ԩt jm#aLhgP_4 &o$ڌhLbTtJߴ+á7h(F( a<)i{CY$%1CEU>,t|T^*O"GH;(U.D8{^14Bj0hV;ؚJL[pjQ<?l! =po35W!;Rjk(,-q%\˓$4%!sլhwbXCeOeMVCbcyn(dK0&'.xe{d]^ B?i=09Yҏ-~x[;HnGʕ?quB5Z3eg*h|=[[&UW3xzѼ[X$.(-KlHD4S{OQ6VξJ0*u6 'H=LיW|e= ˿ryX|id4e.KwЅ񈞫q莃GKt<5'p y;!!m i[4Wѥ nN?TmSy/Rq~:(B8\#V|f(V};>fQ)ބj`خqf$+S'$̕av{ܡj^NȜWDZ#N <{sq#oJ/9Hb0`6+-5kZK6515}rdބ+Mu=fᾠdU†!+="9+rKb#gݕ! 1Fbf;<ĒbDTWWAtVAH>W){HpV(|ր'6q^֋Bz-cvktM~-CH4a+ǢɍA/ݝA^W)| &8|7eֈ9&O>O K73^(=RHtq,Mh*&ˋw*".MiYW"qh f/  rI;:1Qu~ĶAVe}V5yOWۚq 4|~X|j>iJؓ۔B?NJV%ǛPIro lDCj/S6C}||O(Ct R[iT3d H SkXUhG NKȊԔU9}73'-ۀDrijFÒG,-5q{ um^zecpOKu%;QsC <4X-Au6zoH~pfiPʴZRTϭn`/.\艻 < i#h@7]1||7Dna,MْEf֝=zhdlx-gmGꓡ<(*vJmTǹnکK rEjWvZ*|%abZU+J l_P#gfA=2Yx0a;@fK*~u/3q:U2l<`llaEnL a&@]VH 9f`ˬ]!k A_nO(m`B;忢Q_@E]Zɲ#sKcfO (h[VQzOy-̵/g4ZI:x͹T׭V$qmiT"cv>#9%_Fp0MZSߤ,?N{"G~.fWW Ryn#y^}"tҕ*I{{5] ?:]4 XzuyU.X`8A Dž;$@>E \숣ٲDV罞 ؍MYz|'0mv;Z!1EU +oi,Ş"o"Ϝ]`4PJп7?P Lh#MJK!ݯG[N!. mew cAvpNu %4.Vm͆Ͳ^̡K;ܭEs,|tRB\d:$[{iVgtH^{0M(,p@Ä  `@R؎)\γ|ѕY[WꜴ3d wk}#_^/0JCXfSٶ0¾=n<# |1bܓ< -J[eS"&/dy+Iˎd9d.X6bOa6ХKK3FO- s_<+MXqdN2`7Fg G^ e+ט9lHc16Ki}k G[[u#4Q[?s3j'SCe>I xmoұRڳ2^1XYlN۪J\bLx{xAb(_Z~[ GMX̩?|ijb:I-2)8tUN<[_zx\w=<83RF|x^̶ˁTi<6^LDbnR2譒^=ы]Cg8>_$ӐC ޺bL폓_LZT'-8Ė8m^A!ꚙh>e$YQ =쮟y [6,,ݰIv\t#;(:s>-9nBQ+$'Fݧݽ qԺpʒ&(o$8jF>-ԧL֐<0bv}fmhXwqؼQi[uP!Yzmx[˹S@_G(g3*e_@_R {Pu.}^'1H"9Ru4E^-=KͧJzF Os ѽy ]0ٮzA.ӟyÜv|W =]8ѿ/=T֧C쁖 j ޸:GYN rYm̓q>eP&s=0f E%V g٪SzגJЌEz>,3GM]+LcQtf&ty]BsSkѧItsRͼS tD.SbQCX1e+1Qf$߰t8 THb`_h~N~=Mq4igB$J*Ƀg8RU Z"XepɁe_X( fv>O/ܗ뿮D6^ghOR3y&tlRh6[(g86Wg;x~jP~ ACZ٢hɵy9AQPyBd3_J)|C,o$vmݸQ- rxUvf,AǾ!\(_HV!3.,XʢY2mDJG-l3!~9*l?utĔeuY 4X^#los~pg7B:~rm[H j+] tzu!)io%zs,X)!h0_vpL΍Iٕ8ov9iD)oh[C}`&vqMjOƘrx<*$+Ƒ]Y? o*xYQ. i1ꠄL' {U~"\Mfdy l/4>@a &_1. b xH -d u &8LS3k&/>-7ʆPAȮo>^6hoՠX u%(ugp218n,Ihp@1יU<-'w/>S"k6+'& h|AyKg?6e= k m[Kd+3(Ġ~fQJKG>َ#VA1om:WZW.v.ȝvMly}uL99͏wlAYސ˴p{!rwVj 4#BШJ̭6#!W9ZVnkAOse>"ID|yփ@ FMzZU{m #Ls=<ϡ75Č.z]FV4N\߾_HRn U&p`$W?9i.PAjy tom&O>o+bC06V?ݥCȼډmZ8Fq7[ltH #``B-/]Psѥ#HT&iZUPK ^ |UNrgNː*Ҽʸ,25_polToi~(7]41NJQ \F mI-y* |W*] Hb&"EVk(\xR@wŖPӡGfXΕŒ61c9MZ`*pj2Fu6]VR endstream endobj 246 0 obj << /Length1 2288 /Length2 16861 /Length3 0 /Length 18266 /Filter /FlateDecode >> stream xڴeT[5Sk; Cp;ww |}N}Gd^{?EE$b2J윙ؘY jvNL@ cG;3++'# d'n 8[L3#XYR@; `P:{e3ӻhgae{O{8ZYX:`b'[ klj rsۙd wd0Zۘ@u6@CMBU FNbor?-bjRqEu P Sh߂S=O˟5@G'?eG2SAZ:;󳰸1[893-mҧnip9Z޿6bgNgK @h$ Iv{oN*ciW<hglgl0K  ¿])o颠}1v3sqGo{٦ ;'+'g1V6?왕_6EI 5u&cRwǎ?|"^Vn'}H%@瞧OO Gkk;lnegff.,vV.@ ~7!m:X@ԒOf叙 >^ {d 8;}o02u~9/oh:tg dg0#(ǁS?$]llm 3gh(U9Ihllj.l>"v6-ˤ(ټc0i|o}EQqYu $LAfVvv.nsq טX@){g9VrsXD,#߈" `qXdFrw;;Eo΢7zg{GwN;r|# o;8,A\d ]lK,-,&_%6wE6rmlR.7{,oikt-] 3Gw?"w^wwMn$?\U <}< X> 9;ZVf`zۻ_U ٢ w/&1qw\=!Ot",/L~Ni .>] M|V#-mOH^_7]6Wl׍Ċ;3ƾ ("cٚ KtDzy:Eq$1(7dOknlMX6KhKoOX1ƽ"sFy8c0=]p$)hi0ϫ#ǡ.fbio{1ڗ~bLUP7޳?R#Eb[aN] 5^LZW˚ݬDLM,uhvצ=I0B_> +Kw8Czh0?Cl e/ɇ~gb*L/@ Y Qvo-eVV1 +=#ELK׍InxxgB9OָJX&Ԧta;E.saa4ѻ3Zo0eW{'WE-*'X| c3Wx/O1Y %[qOn`>&a[y;vhw@T$h=k.n;``XcJ;D@wA1']54F[Pw}lb F5h/tBZ b }Y7%-k3X-B0uY؃X-ZZ)K~L/az /$7YxJ'01}7}dv_VK^YO{R.qNk6جk*93Jdѓ;9 R'WRO|.2~|8ʥœas%?'m [+bB :>//%uЀTs5T1^RͳNrb#[1 Cel J .d4K}ǦfQBFX!r٫OIwŲత#/^!a)UFۤȩxh#dqs_(~ pV]eSJ1]8FFN@7mlҥs|NQ25B%] u'voqټz'von\ 8/c/;qϑN, YMۦtfUdƲORqNz)?+R Ԑx mw_Mx3z!}T*=V_JymYM2totyb-F*-`ߡI*GM[Ϟ@,aֹק/ 0.m3GU)':H_Zyg`nZkl(wxRn 2?:Q{ODLE)ğ<63G\qiw|XI/f}_B*0YQv]6+c0ف=6 j jm&B 4Σe,7 F|IACW/ĕ,#/[?Y&|Hobkh* Wjf[ޱcMY}:.`=C+۷Z5`n^!>\l=>!e D@5buBuLg4*J}|b; YƠUW"*Fr& w~Ztqa6M7s:2y˷ё3ZkĕtR#R]tD]/t6db+t3je #tFq., \jzCH˾vi?*7R:uK~[P֍d֔|Ή#츬MĒ-^5Oo(qƪH>V?5v"9upa|:enP~sDIjI(pbۧvgv򜪸fp $-}ZADqM|د6g}|QdGoA(k6!\ cq ï-u 'VvxUCyOƕ@7 teҍ,fC*$ϴWj3YN,Ȩl':a#Q슨~~ryzdiU;u <2Yđ}? k;˙Pqoh~pK>&H bi`AyM%}/)y>T޲H-Rɋ*u]Ib)c`ҌVɐ,tt"n@}tp4+2!pM&}+ѡxT6Lڋ BZ >Շŭn ۸H vTc li zTzA KU#r%df*K>'ɶx$\RA0_ٝO 7ٶ<؛x<}uBQ9Ό"P8{T/gTMYX/"{ݬtK1f5j#Ɔ5_lCl&1OKQw(.>>,8XI*<+έ$w `Y85Kc'N.:%/H8p6]}n<'rX~x60YDcgYg-bDjjWbp䢙ajT ~{} @vLF%BI~Feʦh ($h<%@J@? R @"lE䘢kG|6|N!_BƻIR`)sXX$?.u9\P-gw޷cت^6am埌gvvFlT/-Ūuz8# ;XBbk TעL|xCbmvCP9VW"[Q6lW-Jf߃9,l\9e#]_.-\k'tI?Tn$ r7N3c͞% WD_$e@)iŤY7dz } JEeQ }A=ڎ\\G iLEΣgڄ ᫟kWdHa<26/~q 1R ])FMгXO5:? ZO/d?3lpKXSxҪ5Nv\J| m6zГ>k;kR8 A$;(\G/b%ZX6T?~o\ zt'%툀jz޹)1vIDpUz~`5|O˃zR}ZJсRN^3":>荋Ð[l/4 l嚣' pdS`5Oho/ Ud~#"AiP+Shk78~ &o(c)]8 P8OE9㗳LGXY(lGӋ6AiAB;HvmXdOQs-eBQ~ !EHn+Cw9(\kzV5Ly"L$ E䅽2^a}~loxL]{ ps8!mq-iSMԦ GWE e^tF:ߦMtj5'~kpB!@xvIՠpwERTAѭAz-8gWaHJ ̩W.}%ԥ#63@k7[4b!3~9ZxQQΛ_!i~/`E1!WG`td,wQ΂KGj 'X0qg{B+q ]~ ol2j GvIe6(p}Aa^Ҝ{d o2tן'F]lljbmY_YX8oX:w]_,!! աJ/c^dg0DjڃOzD?%&}ŀΠWJZ Ah;j++"ݧ.oHgɸ@D^K<_DR:V:('N.:u0RÈrMM*ni&9{DŖ*T0LR);źf3k5z]$A=ӵxNޣ!K9 P#tf)DBu{N Tu ߬?GL_%˛zJ5:WD7wۚ=E!K%_O$*½F)IV$xPP^V|FL!=lN୯WLQ/[z),3QU뛁Iѷ+/wvTކnN;3넼a8Cc-eUw@)ww1vfLIXE!gS 4mqC3'J^Fq XES 7֍A|/G-2g]dIKF #{*~aUEO|=YR$bUR87 QN g

%oq.zG:ǒY N=9E35kfmtɈcb8"d/oiM^c;@Gyry ›ERCzLl,p 3si(&3m*;BJr3p<( vEHhI\U4!| &63قȃE>1h i>-lî<\)"Ν,vki6,؊uU4c`D;hD Cρ/;HnH9'?C)JY 0~Xs4Đ!FUe{a5kм\g޵uobϪ ?2&VrmK$cݕ^k̦ixy1#EGgU_îЋ~kMIL%`ɘ"` _X KۍyVƿf+S줟ΤDX#`t%'kY@: .x1۾cl9jY(s*.32. L1/gBżplG89=Cֿ`~\\A[bŪ\V/‹!?#w:Y4Dߡl~XJ|,?(1׳#1}qLDRNӏ;oLċ*Un\<>OD rleO>|L$tR[fQc.>-,9lsm+"z7hT~~+>_(w+tZdZ[09?oNw P.V2t0ſ%GilәN"YCZF+ʪºz f!8u̬p!A:c=hm-k: սޢ(/ʺR&.$Yu1"z,J`(%:zBOҏ~aQ)!yt^w 6^ v(~0ˈ*u?hCu7?@BAcsǖPN1;ի=^3bz,4!u7I#ѳ~wŸS3dTm2eZ,э3ؠ  ̻akONe`-flj5>=eAq]{ȘHR'#Ėdp:R"4yy"h˜)}CZUJӯιmQ~Xz#+ 1vdMJd~lp.0LU808.Li|QQԩQHU&kbYntFsGY$/" )`Gh8e9U,e\Zv9Lj"o͸' 9 }P5cT_HQ۩9<d YDSXRQR|nQ3!k4+oV3$պ0V:C՝Kq<?IGDR[MRQja^ɼa @V$Td:`z'a*fUs5]D嬰+^*JO5 /W\۝}} І۝zq±P>x7ɖ6++ [SeIwMZ9'i@ha^RL^թ=}f^M*`L`m1R0h/^ ?(!,U={ ʮW!!\:DyIZ-D^9`v,]Q٩v޿Pe?f֝ ӿ~$yvݶRGXI dz 6vN!(9, jyv|EQ :_$x~xcvb#*S[ʆ}rߛV[v}A~B:S"DڜpJfAx.sHd Hr)~2Z_uN 1,R'"ZWneOKN׹vߎBpχc)0ä{1چ4ԟ|HMUInZ%]:Q 0~I>W<2>*oYm@_Ob|#` jD 'Wc[k8_$I/1 #wG[>:k1&k WN#t?rK0t|4HKEadا(ovAƓ>֨sZhjz߹ 7gX(;UUf*W!O9v\H P0B:BUļ|}pW ]TzrŋCwo|SxԘ&o<%^\C*IۢG%Mg*;OO|N-E ^F xfnnZE\19Lċz9W Mi@\)gi>]Kd&6 H'F{8`W ]Qړ-(|%=`CZZv9{WגX4lU"P@Oi::ן&frClt<9uE!=D@h`ޔI@0J$?^({յD*ikp!1I&zxL%9wU<[3Ǎzp+hPS05>y]M6gcӷXKQȱo;XÃvZ{V!CRZ^,i,5IP4>oa'k)vؚZƳ ثya?@/,Y/jkGpSVKG*h|N'[bh^ҞrКQŅ3 LHN3UNRCa1 |N-68h`" uTv|KlfΕzH=wQjdNIFYw=5Q\ګT(7r*ϾQZOI["f8&\m F"v4i{(r kq)d85Vx 9/ܫt|SLz{~0;f?|t{ İfR!N rVb@?-$M9=4[6Q_%fqWZPnXpC3,EZ!Ί{]CRXkq>A0ZFˢc ^4)|הW s-H%K$t9JdL0%[x#{7nSVEMA&]pa|x 5LjluN(SwoͤUPhw#E{ZЃt/j$>ƙkr۩na TE-ZEeV0~.^[~Ծr:oZn.ħbƅ5%"|OP!VTB,9n_=7ըuuQ Ztt@bzg<1I+ x͘|RI&Ѭtax %FWt쥛sD\Ş,׊O.wU1ķfN53y j7u.^hZyn׵Bl"@#+`'q t $~<< i9yZз #3`+LdmXFzۖcU$lQK1Yw&GȔ X 8Ʊ_3 0FA 0M_E;Oxw#Gcayf{Bosa=^Uol2y0P;qHݼ9jDN o[Q)CۧJc}chdv sle}B=d^}INE ~!@ĠC憃-i87M4®V n~SWw'nlʍ[[8T㰒!˥3P@Lʝ[F~B'ϲvNN;G TTLM`|Qe!b;gv3]c#$+c'XfO$ss^cTNrzd2r8ȃaS [75`qY]kЯnQajq)8$rTJl/K3m緫RQh1MU +}nVل7 S`9 X2~n«!]B,ɩ? |a_) #N$$7×% 2BCF;W8#+"Fb&igm ul7}xy6^VABArXqh4> =X?Q2nݣB?퐉70=e1v^]-8Dy `Doh Ĺ9!k_'-br96^/ic8 ~ ٔ{CJ g\̛uъ0uIcZ5AҖؠnSKi~ ׍ f6K`c{QHe3Ey"GE}yHgW- s ^wh:I[Bl-~!遬mzޓϐP4pF v}@Ioи~o wC:RMR7CMlC 1vp7ΎݧQRQ6k9> x$)FW8@Bј{ڃZ/[4ne xňv1UZN(xuك1UBA.BL"5ya"H`:DLF_ % " h[q !T8%fB쨊*QaTn܊|}:q^#}h7;^Nj ůQ&)hC?ZN/ ֦ kU+g42-(.Zeo* CY3[~{߂v$r*,4"):7]YK ]946 )}+auIbs)>~KY)j|F^@O׍4q:i0.b,e>yH{嶨/*< C.c9(^ II&ܓ)#%Ǹ -L.{^mp5MCFSޛTey?0iN㏤=ʘ%RQSVT~-mꖡ~ H=y!u#}* |1ԱJ˂8i SH 6DZR6AOw`kڂlߐGX/{W|!`)Y!^!7ߺ 3{mU +wˊ{J2v6Μl#WyhIs1K➮eƒh1 C~IZ Zi"Lv]^IW ]#W`̆' O1gmK:%0'1·6~zh(;!֓٘C;΄~շW}(8*lx)ԁH] tܦGEX^S͓_l+7~ĕʩI]•(\f|ni6j+OUg;-C-#P`؛:!&,zP6e%}#xUZ#%M4lDbπ)l+rQ7fV tE_j8v8%/\ ^xgQt#m:-!K 紐`I\'k/51w=3W0|[8 pVB !fgʉ8*ۀDEX%dahyo4EBMҷOȿ,5>s|Um[ ިbܓV {+Yr_S,SzUõ}Gzh/j*xo$hod$lR9cHܦO):Åj@)dp!IEM!w @+E@j 7^`$uIQm|qW"{tŨn8d #٢|OY(͊v1MB2e7OxbQ~!xMr A OչƇ-sUۡsW.=TDjP2^Iߧ>V{.p70Rɥ&,C>Z#&{7b=?Lt-F}mzAa`MuUttգ\1w]5)FKV14\w44FwBp6h,ؘo`}̼qYǕṗ)9{l7_Ĥ%XægQrܓBOHx 's yD ?"]35G悗ʈ_&שX0;d{|D›賶nֻXOg -W\8> ҕy}!. b#2zq'Q-+aLY58~J&TU bw1V/eہˑ]a Ƞ~XBi V]X; t['kp ]+l,g$%E|#@zYYnKQx5 "sAo7~%ދsDcV[Iuwe*ҒYdػJYVC =x%7FJ:L2̖UM}sOR=[K' Sp޲Y*1j>{XWc f*w (luTMs|m v,ߏxc1ve\Z+쵥o{ͩ7 =Ǝ+ 4u)qk%E\ Ѵhv-V^Oo*ā6*m$·ⵑd_0]3@98#9^+O(~q; v<6'Ek<,|7B /gj(FT4ZYhPxyDfKk4[;~G-|$1,F=')< +Ե@XQ8:W5oϷ  [s4 lPv5S1xG?]8 *P:V WgW̴c Owdŷy]C6$j fdYxבi,I$utxQ?M۪/Ms(o`:RӽZn"V]2tuTJ?B q" SGN#Ī.R J'bxR }JOe14a'e7W*+OL?#W=*Tprcdm飭1$] eD_o%76`g@#z']gWw6="SwS79cF}љ?S%#m *s>9 Ax|;4b[ZDs&"N>PJ/^`^ܩGkH=L*|旻wA1wb<K6 x<[hՅ G@5ě HRP҇s~؛fivvN}\; >ܯq~Qm_p-3@> stream xڴst]?7vFil۶&LN667۶m>|5kk?g9k֡$UVc1% FV&^ șQlgdjg 1p RR9M\ q / df`caAHA@79t1QphL".&ob }3;x8Y[ZkQ&-`22)0noLk 0ZYu6@CMBU FXX5"&@JCMSzoPT\AB]D]GYO@'g?a 2Z8 rqqefvssctuva;Y29Ovv 2Ko& om9IڿO`opou3aLWV؛X\ ٛ3/hN7@ @O Eo#ӷ1q3:{[nsf` k;OADQFRBMQ@ 쀘\]OD\ `\ loOĭv`m dng]5@x2gB`@w3+?a?l?tx9&v@k  wR\sk3kĿˀ,oH!Raiߺ -.oAOW,IW;;E{ J[yih$Β@sek3S7_ D@v@#+L?eVoeM_4o/o$&/&K?k/U d ` 0qr2@dy+^o5ntbL ˛ `vB3lf?)v?)n?)6v UT.hܿDP!>>GG;R[S| 4.(FG1hȁ@;xYFm+ Z u/,\H OO~ 3{{qL(`Hu,a@{~tAڏ|؀D@vXGo~?}$NiU oI,n@,A8l@DuIK֬/I*\z}FӴɯaN W-ղ7ݫ!ǨX'n@ ˓Ȩ aU<%pgq͚H_jJ`JW5-D>4oFVa;*DPˑ,|M~S^ \;Xߎ|WTlY45fGQf ~N0lR؋*AggvWɚyZ/&y$Xcq꫚B58Bm ž&v+#Wᶦ% pA"GN ~(jb2\ٿ>7X5u'WOVM28l76q~[{9yotS4 /۾ɣ5oBC󁪅M1e *)@14ۃ[o:P2oh} ,W5Rr?_藏VۮZd~Ho9@3}j~d&ͫU> s#M oX➮:r[K0ɅCqN2g]G\6n+øIߣ*K)SCRp 'S`WU!WD֖33EMwSl=toaQ/*Y.<#_6(/jQ+|w1lQ n02&ɝFʩS xyOc7W*<8߫tZ4'ɋ5.abZʁ|;F:g nYo:lu- ۓ8}/ 6ґ6fS_ ?=9pE_|%sT9U l^YTslR:k~(~S5U͊=_ {(Nyv-_0^O 1!!M]o@Uq hU\%]x z-+Dh< 3]羞icD*taS17)ȯ >vJmW`+^W𺺧TP`2ZDC 3E=wE=*{w╜F. zj1AYUbO^<֐짇;I;%f] }ku_cP~婣2B᰺PL y8p< }_5a"h2tٿY8ܧ&B<_IrSD'[Kȫӣ\l2irzH_W9*[V N0)ٿ^裗|QWtGUQ3z5E_HkIV^:I0PSt_pa FgUVtϦ;Pk z{_u؍H2nh1UWF}w9EQ1ʬ)pw?Ӗ_2jͧy9M$)jb[PXR^XܻN/x^ '˕~jXqw%ﵴt{z"E6#ʯao~3UL1-s0S:FO8Q |n?[CqqWUи׬F >| F!PPp×mf><#ZMi:E@L`Mq휈C2 Nq\NCó)ލCFV†-Anlm!\L7`x!"}fՀ&'7tCصyưn 5FЯ"9:\1Pn2Y*\+fwd>9~|9~6uÆ8E:[#4۱<֐>ԽڒTG~@`eI 4zN,˞ɟ".|&]q-m-p|81)!XJQĪD]r's*4(8p& 4f32n~{44v$& :'@9-ִ_{TCPG9OTJk&uE4C[0dX1m^4Ď愂LQVǏLWҮ}%?}&iHK,3|% Am&9WTj2_^z"6!b$njr+نQE˓F6 x- zKE?|{IQEr:f׈d_لb칅B죳uB 2XIVQGG3p|$-Bksli(R_^7%jM7>vK> S,:_,6yw6i&:sNؗ=r )Tf<n&qHqΠN^LwTeJw9ﱴNlXH1OfxHu?ԥ|QL-:B+/JƃsD]pm~<}t"[j=Fzӡ~Cdܪ [G*\¦"-K}A"Ϭ > nO"F xLׯBB ܡ؆p:ykP=rUJ8)>Qh ITpbՅЛmkY`5`gΌPsr-,A]{d8Ր>kCOC̏}8kkj?Ab:e*`ͅfqg="%̓՞4WĺPsjGY2S&'ˎF1ZP>HiT:Ai#/E2Tp[DY|YA=0icB. dBߤ@O/2Ui*+;S1Emޯg'~Q1}jo7^c[o+2TObRb vb;*=B sitwG R? 9' ڊ~g5Tkr*Ei~T-Nr]ZޒN%E#;Z<lVr.XyhfʫB^tRD>hq$klɕbm{_&aoDnҲ^JC]#y{,h/VlARϒ*4ԓ^I}6|Y_,!:Y fBi'L0ώcT]\=ZeO=gQ+jvιs6 ȩ%:@ Uɵ>vJjQ})|2;yuQ O兴=ҮDdeQFzQDki_.l+'^v%)IJ!&qp)7(tp̮lNb2+ҍTV(ɚFS8%V}j=zOC4sFuD3e/Pբ a[/jz̮dsh9sR\סz֝׋2+LFoDeyMhV/>Q$dGxND~8(?<3pI,k!r r=[;UfLvv荜Զl~GzryG)8z$O7֑R)v͝t<6d[gxټE*uVx9jks64W55dN3>abPj+Vh}]SGn/\Bd|;2^ {Xexj#IN"N>0Ax︕L_QwzKĩd$%!^{elX-?6pL) )@gamxFTɊ!IMh'Q fM.?D5niv.;j/JWFf<Ƣ3ml GpLt#r_RэݜԢ ]MNzW (x }[EWTSZEn(Y[Ul(w#bw$kS/ J*:Wo֌ #)mYej5C [SlG`;~Q8烍MêS~EHY%լ%7"=JGV_L s zqtCb H*aod?ҥ ܾ76bytFƱoPk#ocr<@B;rdC?Yk҄ɸ, dz|Y]*h~ +MKۻe3Jfwh+U7oeR_tDDyg+hY̠ gcbt08 5p].|He 4БХf#_fՈd|*._HI9 $ũJW!m>: dU)әG#`ǜ5@%&]Ars-WSG&HNIfD..o;}C얶8=FJbo.$=2ktmN)6uIWu58'nKne/9 YSo=Y{hB (j_{>8Ymų@c 1>Tgd6Pc"n`Q M%B]H=0gLMKf#ۜICC\H&냾|eh'cE'֝ w7/c'+.g4x@@p,Ovi:?ɏR)X[\L(f~Xrnnz{9>QL634z)k#zGcy+Hi, 5xHDq;F>/ZwVD8R3U6((a=06ɉV?~&WB$t| P{2r<#:~~|_u%9G",.^IWhD$)gB3NA9V0mv5bPq(X227}_P]qQ!cq,9tp%E7ch/O{;x)ABİ1[xF%w8\(pD%|aÁߡ^P1.;&~Z 5Q[ˏ}] Ccg-eҴYvlŌ^'k ɇ$v<.@S Fv&J'LpTtvtʚK=0 a@CǦb78C\J# 1>[n)3_1| A*BkQIDuڮ8&E: V KOF]zQX>ׇO%|8f@~|䤀saOq2Hxԏ3鏬;f9hXXI_zh_wDl1%:3"3>IԀ7MMKo+8,w? >2rIN#8,fWGg7%f]K'zb$Sh-SRrd7&ktA)3\91{[bA@1:o,pc+ItQ-  \FUo}R`S(܎GoD_&+LC4kڏyC)1\>=Ia p*lgۃHzEɸS10 ]aRStJ]8, &xI8p;0M_+ ]Lj*5"y0w=kEbQpBw ww{` $ w&Z78;M4+f Wnllw} Qt OTDq+Ǟ3_UquV|^Fp:*+ôؽrNkr?zGʶ1r"ڷVͭ ư/6 U4ҵ.y37(Ս07 {Nc5j-.-ժzǼջ@5Ktv]n>0 V|"(< q?n,̢+>vc꨻19l[DkDM26S].m:XU|P*)Q#k~EQDy"JXJWϋ곂p5xK~Gy F ьRq{Pv0ZSV[& ߚ"Xc{3X9=lW6'<Vʢ{y}dG̾1Sr+L{ܟJ{1(;L@zLz6[A}~_oyf4Q4$bpDȂF#)ӈùbXu&=ԥ GVy֢n +{DJ*\~dVT{MxW2#㓔<?CcÒqICiL2hKsiުjgNxZqp>KV|h&v[Dab9p*~F`/RXiFlZHK@N%OTE0u]Z{mK}tAREȵiYyӢcQS3y!H"WzCyB¬ll)4Ŵekk _4˹US h\nxKql5jjՑ<7Uf 謹FXO ~]FldQs080":_~6h#DN);[8{nkNy :(CQa`KɟPu`lu*˳&h%4C/K^:<;rϘI뫃dѭ̱fiX{k)%DRYxAsV;Nk]DFg<!ͼ*qk}R{NAN,k9A{ Wy8B8=Q ŬY@:lXctk$Uqr/ޑ@# dИ ~@]7fR2X.wcuHҋLY&ɋ|:pӡɧ̈\m*/\(vJnx]%qI e01qu]}F[f4:4>pp0&uƆuZӫ>8GL|!D~ICOղ^HRD5{h0'JpB?ZVzJy&8ө׳}Lf!*gt;UC*uӧ,z|FQZLGNr)3Bw4>+t~db(IhVv\23SA-B;=wcYʱ~-I U/ 8*Ґg;w*qݞ8Y{/#U \LL){xQ)_y#XqjtWi/PGe`XG$L"k~7&d$~ʴ،-B]zUnO Ƽ>N +pu g輰qΏe E+ASae.=d)^՝hI]EѸXҴZmˀy[hs*9=IKfeMMO[ ӷ*Yң*IѮ;tEegEʕ <\JfCp&˸Ogp3J&0>/Ӿ㹁S}=>6E:BQ5q0X_OboNh֡+e(pHɝHqd..GzG~]^}^FoҀEpTM,=GY3T՚s]F}z˟S:a5 ar/umY(O z:G\mgT'>̉.&ƅgv_VD 'wOr8vɍyup,N0֙iQ+od1(MFYK;Ej]eieD*,.Aԧ,e>wvizR4 4xڈޱ$[I t Pu`UNHdݸ+T#D=vR}B љ6DMPK_NjZL %؊)YN-|~1+46K}گCy26P|pWd$H\Tڔdf Tɋ|f!7j * {|"e"nh'%0jUI=uaӅ:oDS'$(<6αU zb{hq<I3GԪ %-VthJ1qy Ms1pyZF2ס|VE*ٚGͷ< NhIJq,]|KxY$]>$ 0.0fx<:j֧>)$f1֧%o]l ¥2u8[Y7sY;dn^ˌtl'J`֡Qc۳)UUR[Fx#(vNCsߔ(ZR `|bHA͌u"% ?5^H;!F !X&3vlğ ;Y7^~sxs~f~q;0H*#{#(JV\w5w=On>Rټ u18DM+0|0 $fݨg;Ί  ۔J}1\~Xwj1M=9x$Mn· DkٖW0V:; m J^ؙR1)=ג wpv1_GꈹErRREEf6~9$LvfpeQ^\ m&d@_FC{{b#4GvK-<{]8ŋII}=&EYI #j)1j"H:?t_za{B8+XnUP3̨ꇩcD*G>(O1d4c(# "pfYY4sޝS\}D9uk ݷg`-Ҥx='KT(*Ct/&θ@V hTK|f|P$./ a3I*w {5~gͼ{ qᆰ93ݭۭmn6{uL&L&{ΚvF9NM5NgY>c$D!²<_Mnm+]L'jt] uFƃ8Csxhaj"]Y!,Yl{ZV% %kA`HhUy)RضSFR@6P`8[W9bJ`rTa7bv5gNNި{5ƶ` Ac{jDl>k .G-wZ&"Z.#WۈԊ)[C82βb Ig wEw5WbW3iˢ) %xK;(߾|pi\ߢDT aXogZo)^ħ5ouۘ5v<ŽYc[⦏eiPA䐋va,\!5$97RJNp+m4Yㅿx-X.tI1[u7e1f*M#runaC?n^JARNjR wj[w^d`{e˪% <3Ǡ6^*t+V8RB伍rላ~`:ƅWH ]{kgt>kӘ3I]K&|{v-/-#MʮCL.~)p.޸mO"e-T8ډve-z?b=_|bǜr2E1a: DP*m]XʿtEq0 5ADa*uo73"3ȥOm t|(t*yTx͸EKYb԰3stwZ+g×c_X#p] %+uL5:<plNWkHe ‡_o K3,ځd遫mZ0)D.u!?3;(Quыuw u]^MK\l1ByLxh{<8 eBEVXƒKG^Od9y&}*o{(?A,vFfkSx3~ B6gRHE'J~~qmB>Q-# βTݎ'ѽOkv@H]Μz%ŢUshE8fyZoø.#ޭ;+}^a?_oD\r7FB kt: 8ޕg#XFQLA ҞJ0)4%Uvт ?K-`SR +չU㺽NEɘ㝇肖KL/iw/&sq?sσ8&x~Jp=s_u]1 \iv{KgWŰ.坓Ζw1i>T=r5WpAʄSطQ 6 ,")c⦿A#n@Jw! I&/" ^3T>p?d&rSm{X<#%,ypBe 4YM ^iҙ<&=0w~[Ϟ_Ul'Ga1DO5SL]ΝYhIP26*;_v*y9 m$+0 d}KL+In*rikBڈnj_o êlqVwmR3َ7^)3\IbŽehW( vNDS(@ 0V\ ~DQ|j$."VQ5z?P!1)*5pr9F~@` .'+ Q ͎B:+꧶ӿME=`xRTOP 8]hZ4R牔Z2<<,t޵>?=܁x3֡oO*T#a膅}IyNHR[}jeBW&"8Cl!Rw{YaZ*UJӏiG9Pރ^'"X0jbl̸^Eor|(A`wN6OvrXpD2Klkj3 YpDG򚎛u]Pu˅  ^/:vjc xm萶au;Hw#[J0 #0T(bKQ=s9{3^ԍ5[XV@b-#_5?۷D<~ pMT,)֟DO`j} ci-p{ݥGf%KEuԋIjFQee{q VB,x͏ax|J%酞/IUm\ m,:vIfh ;r(\`в[ϸDrsLUs!iG.p7bԊ5OYՙ͘-0t{YSqy9Q&'6OnsȒ1Q\TO' VgoP_(0.gMXeŹ8zbjiܹ9NfXN:xG:$1,ahzNk/0eoLq/ lIbQ%8;7KMzƥlMjh+hAmXI݄Ь /{vqU9QY`v_9P㐸ɘ=C/wK;zJBM]d(9HCӖ^gc} ؆S:c+(j E,PY#ISP/<|*CM|޾@J@ .J#I9LA2ǰbi5 pzkOܢZ $)CzbaʝRRrJן A}Fcy^u'.=v9FPu(۸!{ DMIY@St޵ fknڏ6/Ӫn}A l< hS)5Rv0l JR&at|gt| ;4).'8N57 $ c}1t8`,:-兕4'q߻&s<t2pdeLnjo{wTY"֔ho<چ_ݯ4|Xxf1Tn]NqD!k{r"?QNb0FxB(4MT4t*T6ZG2z^6_ʉ`ET?I2Ew=Ӹ祳: ?c' Lu+==Տ \\Goް]CŦAfS3HP>1ZOؼf2דXl#Ыŝ[5$ N*ߔP:R8EeЗ]GV1xYFV ѽP%^C؝8&n,LI~0dg59517!Ï4$dr[V;=BX͂C$ 7Q4ȧo:'ɚ.\o~G .5Aeba2L<q{ pEe Ì %;< V\RKTOˤӪ9`b^'dlBXn%HیVz&~+7)QO.ipS5bc#VrP'aXR<:W!RA~cØv62{z~ͨ4<9L4l-rjewz!d QNMWChM{]ɵPH-1n1 Ğ@t6.bՆSP|q|ZTpGJaaUd<Ĝ7F2|Ks7ej+d6^!*+HeɆZo.:" y@;t5dZZJV֘Oonxά|Z$!+pS,_JPtA':1:ΪL,8}O'6+vGrN“vK6C J=X Lejngw.uG)>sʡa&R G)nPx*x。ASbcU\.'ѷe] 9I0Ezh& k0ӧ9Yp-1ʖ>M;Cղ4DW烈́bf?4U&G-#eud(=JB?9YwF^Y|Kв{\߱ c%Q~mL |]ޣ:g<+Ow +8L=I>| AK(NYѩEۢC |l%%Zo>ʍR9Ub(]7# -ͽKNfNnB(-8 vok))UWNSƙFn15Ʒaec.~Ѽ/=3 Wx @xc-Nx=m'j`o0Ag6 W4l3}B6#L`NOEp|>,@tBy͏_h3]z1Lf;6MoHOf[Hڅ{b5iJeUPjoZ@J7UxJ!^nr#{ӿ,CKAT{U]%E$'(an_4|= . b/v$0AܤQ<}uXTk"4;0T|WBiɁ ~]޿IeXe)g;/W_tua:CG!5{Id7^zSQEVY|2}, 2˒Ʀ. q >I5į:ݏ ]39ЫV6fc=#7xΟ$Tv"Io{!Dx/\4aB+]\ Q"ixE-bbb]{n2T0c< 2 k 55I>NÕCdFS( P̠ \+TʢB MOɊ#-^Wt}<><}*ѣ#Vf\6/ :W sG3Fo[ R%}نe^ ISM$#Ilp=LXlA1sLiBZh%Ex^x@"5>_=˙@IDw1̇?`Fj|t+H /O_)o’G& #B:ی\y8Y} ;ظ_Cw? UӽYTWUų.)e`V~c  zg2t#g:]ɂWf endstream endobj 250 0 obj << /Length1 1731 /Length2 19346 /Length3 0 /Length 20478 /Filter /FlateDecode >> stream xڴePܖ5 Ak4Np`ݝNwwTTŘp:9[m2g? .. .N6St;Y>ߝ6jg9N  7I_NQ~&}.Cs.k+ G #reeFv.@;#;@#Wg?hJ/@rr6M]se6^>Fwnj\M-]U0ew,TTd?gG'g9;zp2X"3d w|srwdOQ[ٻyM],]R 3@GĂotf `fd 4~x9.N@O `ji)cOu);3{׿O&ͧR}OS{;O) AS KFHAF6"4R?r--=.&p)O ٙ?Hc1ߧMN\ cK!BZ'F0rr2a3SŦ@`wL8`"A/i `0T6fӿC v0\fbf0x; /UG^|*.N@ K[8Yz0~ʏ|Ozр'e {xѱ3?`bba\]BHs{@ ʢ OUJshXL9i%t'O3#14T?vN%G@&|QAɓSkB51(4K̡wXހ4z^]R Vūd ᲂ_hďҞiȦ~sr DjhM $=eX~" UJd`0,ԫb,W~i쮫yءcǗC K/?* I R&!ѯh_[ܥՑK/89C/釔js>?lUI^sSF<1Wg6숸+&Y\cx3\˂ͪSQNAγO b0:{$>9n̋eu+&H7Iv J n4Gɏ6Tb:X 47 +Hm!ڰ1u7 R4#6f5p);@w+_IiK2 ๴м/9D S%H{@t /)@9Y{2w{A*;x0c5( lok !} k^R<"B 6C x *;'7]cۙ01R9n=Hzy?š)`q:Ƴԥ %amy%J0sCU~uD[O:nбfSGBe5jX*֭Eᖸk*)&}Vȑ჻_닧SgZ ld[Y VUI2`/}w@ga(z' .sg*tE\oW75ɑmng݊4Et?N/37x$G?p*6ӷ\1"j|p/oa;KŔ` V,>T3Bw1o6|~{E˅Z3Q(^2q7m,M~:Q`$!(=wMj9_6W/@VI.߸rljbѼSSxţx4ƿ;RВjh?c3iL;4AZv=~[^fl/v/旨W0Ρ5fW) ܬ =ٹ=Ak)z󂰍@[Vu줻e`v־ yўvl f+B |{}m<׸&ʝ#%ަ+[5 *1bq'ϔrsۣpT.",KH E#<װ]ԬO&4= Qم)[3@ xqF>4pjɛh|ˍJRͤ$T:.0{څ)K!>U_λJHBy3ٳUp5]7[ 5/bHBL4ً݌c+u 4t3~1v8u #>b^Z%| 7wAz#M ?<9;"boMx߸~)wmGp$F lHRHdCqIKjʉv6f|Ȉ f0Ä& :_&^{ [npW7ʎGSEpL6t#2^fIax \)Dc9F2∓Gʹe,CZeX)ŏ iYN giA\hs9./C7TzM #23ppaVF?A'R&CG$L&"z8& W;k">G<#(pIr.ܰ?c, 0swjQ迳Vjzp1޸DV61a4 22oD_`h҆W*غKBBbRp޼]z<{S'6H4n u5Ji}=]Ө hFA½ !FV|F""xLᤏ[yfV=_ +'g[)cd^B$\1DNs7|fjga 5;^T^I8?.(ˍ/}36|x=Gɘ(Ӫ i~o\25!LE}gl~6ժ4֙ں_5NvT9ݘυ4L^UEZ:8_ ǁ,7=);6H{\  N|GF¢>@\Lj h83 n]STʐ3ۙ_w%_3%Q껌^ԢbBY=fq$A1 {FֱMA7qJdĦ<$lG۩9(5 *y:BF;K$ KcOIǔRd=;ϦgIM캥ꁋeBZWԸ2A/h.&]y(_'4aVY焊kʢH\&DB-cц7{D<_yzs|J:Ut+3U~pAhYRW!1q eTo>ǎ 2 $CyC"1Y; PbCmlu}9E/A?S5wB-O$H1a̦UV_(#*,Ğ w׮pC[ 6ʳ~CvSnԐZR>xbP5!xi G̮ET}Q`oUƇ8< ֵFTQ9%9ɌWY{lu%Böms$aE!c-18'ūՋ(tHiU_Y*3K6MXL8wlph#L!qk Kеi暝|ե %BEC;% FL@Bu;V~lmԫQ$zTn"7((NXՠ.>G,AEG]&lτf]l5dm"ZXTJRݙ4yGz#R?G0~C'W|İi=gؼK$kh/ؐX[&'멖+9Qe˙daCCt{dTF eFVNGhy.W1sɐ(}:^A%CԐ{U[OAy |,khdd @19C}|t}{+_&C΍:7&69Iܙ4DgDJsMz7/_~Pj| k<,%#2O|a\3Q]>?ӕG`tZxT 'uN+CqEdcw~f< 8bYlm9~W PƆ +F'9^Ik= k#)\sx%>TtZ^l52\gVn{jrL6ıT' LDGKN#!KoPhDmP3|gu@^Ztİ#XVFkVCh Vԋ@'cؖ?FO00*FUY.)lǪm:NBnl/s!DGZ:Z[3bP¢iCbW/K䴽d!W3v,٣`f. n= G]%z^tJ~52YZEZ]1p6[&ϱ:JVcD!X=[/d_T)C &v' 8i,0.T li<7]V2KqV~2i B7s~O!Z6H0&mW !Bh*FVR~ V'Po/|ĵl}%lg(oc;? G2b`tehW{1[ {N<Z)%\pFopY_Nop_̞,((u<4(io8$΄f k[>/V~zroѣp6`71%rS;i<%M׎KfY`\=( |8Z$ t-~⍙j8Zmmhc6, uީ %OYf h|a<;VLw pr6^>LM3ڽ~c%\V&Њp)^[7[JtVcsL)Xr8XA ]|{[rwEaxlfewql?2|#u\4c>D;p^rf %`J9P3mШ>, Sk?|-3H0+b!ߡ,DG*^x$em>ViYR cK_zZmV9q( -QU|Ժ3칉NiQSe-㟅ܴɳ|bϊ>w<=""MG[CAPQ@9,&*P7ם^TƲ~KK00%„¢?5*bj'YXZ)ƣi `2~2 b!\,x۰tzIJkӇri,N{ҽ^dxvEZNc9 aXI?-\[!cg|tMcR6WŊl20rv  4CB̽[LD̀W0dSغ:ș@hl9/?u/g^,22Ar3Ҍybju0?mWE~OO}i'5#dT{~7q)DWĉnjf1::\Rg:,OS)@ VzWq~C(_NtlcaK' #Nx^蔓zVGR {DWf nE-%WjEo8G!-ڞ,_iEqpz^S8]_p[a=ZhH'Dq@DxrX vdo},Lz!JX<5<쎋+򚢹ţ4}Y*С\  ܣ ]FXZ5 =,XfLɶ=a`ii7Kc<Yiۙ ዣ@ez`4Ɨk~28rR5LAP)cɃK Ec"θix_13QY\P;n%T #UP+9;{讀?V<J鹟h!eCOoX5hZg k5҅ebff}&9HT.;O.*2O",2Β~@ڑO\ۮe!%IRIB1K^76рUӾ.7qstD&2w*_ 6KȺţ hj{ ꨢm*QTN1{[6biU%$c<ؼfBx{aބϞb/*~0 EADKjԌF`@׌H'Qܦt~ѽ|Q|i :-TWF tTQь^P7\Įf lRb"zdJ 0w!Jc`~r)PP Dҗ5Ka#ܵc{^GPuf6 - h3b(1;%JL2 NDd{j~+u@1rMhn2RgVa6RaB? (+\xl>fHJ#;& eqϯ: G~&YqXpfc=%2oA5Y*!0%3 w?*{1?\Y+oX!B{ _gB<Ć/7ڳq__C'WRЁۑI(_K=!`ߣRQ=,Ҳ#X[8f;*f/Tߦ"@vjٷp{ⵘ+RUl#3p"zR]KOL؀0LS"#FEQ$H!Q`Is&\^%GRb).G]RR\qz~myŦ%PXc`=.^љhl[k2*Ir[ uZ ShZ{%-E=J2o~(hnӋW><%|W6p2|Qhr4}J#tirj5~5HR{jJNT:#$[^?vFcQ/!bmAK3}ɤADW)y U_[l"ط 8C&Q{E=ü.R#q_R)WQiذ~-u.}/UЌ}~dmcYb8R`w%aDS7@Hвqtr|s,q4D*?h0%Q4y?*mþfz-.wiY a}FvO9їq))WڹF:hđٳ卦WC0O˧;w<>^OoXwK&V4AaIjnoVhjpLSu+ 6#I=$|ET.,b ]Е_oemug=z<=XRTr%G*agp⾩UE{5U.8~ d54k\nhr:Rq ׼K;o&#gIuJZ[F|˙K=z+bAUDJw:F"(ɰ}1*OhմY2.1UjZH V+b G5R!f#AsT'YRՉiЈYH劐^X_,X=:C{faЏKf:/&ͪEUE2ƱV'M$n+&*G^ vZri PGiN3 xgm %sXl)" EQ?ft{w 'WS58Z1 >^`S)N#g" w b)QUP#\HI!CW>Il;"5Y2˦ND< %NVBtd+2+|~bFIW% ev;}BZ$Z̹>7vֲA`wh `LgvpW^W3xwQ &; 5APjP( BWboQˆU#NvLavB2ZRUF'rO d,H0ؚeX9\1`sn+8m6m"Kj*&@8y oe՗,p$P iMw:l&056E`2i,(ok_o킑,\>h>Mc)Z!@+K.>ZY|LPs#wʖB3SG Ϸ8Y uƇ( GɛU}( ,Oڌ%#(Mbk ,@!Fb` vF0 . ;+@ mqD~@˥NHԌ̶KcOۮBT=յw3/:acBJg X.۔Ђ4E+VJxS%Z١@X՟tvw{Ժ&w{xqEV~Vb{'[d_a:ѧ \n9-YF }\T4 .B%%Sl2}&zryIgqQX8 F2{`X%R_I?c)|+A4[Ef}dke3i-GG?h4CWEHcBs$j+OcQ=еa:u5Ա3~;}l'2PVbi'ï5ڷOqvxMQg'q_I~1Mq~UHb6+FlT3@ȗ:R#b8vkˁ7{byx _]m|'EB7;hW9@![ 96f+w9FۥBg*B#SR|ۉ "fst9 :|Npvw1PMv!W!MWkW ".(َŒˏSC BslWID2JEӒ/B3G>hwm>܍K"8ĭG=ۖ_=^Puk Q@| OcS^ >Szd'f]?&剴-eE@h'OPbDϭ4̔"[FGe]VYl l4m]%&((f[שzg^B51fl^"@H^x7lmSCN5U߹gzא.FȽ?3_Ϫi%-* դݮnXoσ%j*"Y^bZLݫ;U=jOY-doFRxk4s '\%[t?:ѶavPJ*?"'J)­Zm'C LOylG8ky-\PdwJwX!;X>:n֛7K"%="bdsE(mZB-v)S'2=ͭD[ )<&f'إ0`g{Id_IYCdvʆXJ#NPE[@@uM_Eڞʾo< <9̂@Qd O7ɫyiP 7ަ%ROWnpjƘƹ(<ˋVc](LmsP8rtN}+ժb`0χX& A;ȋn>&Jt;Ǐtw2|!6/`gQ |;BoM?ALy UM7=ܿtquK0O>kj=pPO@XnCj .Q@:\ ,]8|[[?Ѧ?{zYHsgOM %b}{l;.nzk#؍x9NW`KXd@3B\սH:b 52uLB9e(K #ws]So+ /6,Ɏ 'kdW Gг]3IOdԢ"5[X#R+1\ 6?28\raf^Mi#O̖5tR6@ yЏfg]ޛVC fԭ8a!GE!4,Dgڛ:'O^۴C$}Voۖ=*݊PsՎo`h2cpemaG8C"a^ $(G_}]L0m5wk輧`Q&IYm?h+ĞLh*06q~^;]W* #>lHBg 7p> ]CkAķVx]H&{%yM;28=`&Shu]'e? ]r%'$te+Dxs@:1n@r~(S,c8BaTp%ae* \L[cl1.sCei׹Rs9 C* k{l:@*v*s>ܫKN3etVw fV{*"ZLťO I終W4e6q牓_ 7`^ȅ 4`BI!80~mTA?~hX|~x `V5'G G LYlMs )Z`b=C;7}C#kH(K.Avhã#WNS`Y?cy 'CH¾sfwq8QH70U5b0bG%%"r'^)R1iXvtsk?0L'gw?a41N<-}f2{xlP{0\QP~.6ih"7L(.$tOi?@쵸#!9\ Vw[ Q{F4llEfw:&ﳩ7Ck("@wt[~n1WYSI*M\;C<\SGmhnv,ɗvÄeԷM)b}@6PT[ilM |Vb-0K _$$s3Ԇ/NUPK}pgE,!)-$3JѓE_P(6vg(4B=z!%D,\Btz!uxe)2peqAyAJM6@*S.A˝0d9*q Wn̵%8(tw.j"=Wcg](K6sD%foB Z}:B#oJ9p;J"N=E /d=H0Z>^nq3'`sU!-8K=5LypR'^\> WΧ[ə=[ʯҪ: G 3'XHO ރj!qlQG2kX˴/e1RWʔ8Cl(Grt qS*bIIJ/'`CYY|$OHzX mBE2YQ^р%G(h3Wdv/&YH㚄K`ۑxB"+6&xj7IZC!xQoĔ 0Gʠ",h޺y<䞩=8IZe&Y"0r\4*|dԪC*z L)XB]E5T"¯d]r5mÏͰE-rv1[ -\yV?ۥM̘9Dm1R2+Wu% y {F7ou @>u9JFLTՐwnβ`g|l0P"(O.~OskQ CO &"NBJ6Wb! [V RqެXfy`,ZjGʙ0wkFX1 &JdQY-! vRXGQ HnZH=쐨qjbǐ$Hz81>?^WeqA5B6s*?].x 7­3$l~S}^66jjION6@Z>0|{̀;LP$`]Ҷ1Lpx GNuiIpU `4HMzsjV%5k*ʒ8S"rH,֖6dO@x:8%2\M 82iŪBS$zd$!91W6w8+h)Jia 3=l1hi@X"!̴l zxGP J h0ޮzg;ŧ8͒~J}cMLUibg`` C`]j:"ck?{* 5?7 58l:#`K/[F !Ѽ veN>aaGfg,J[QxN9mAn`0S/,e ЖMӢvl+uH$}2:p{ԱRH^HdkZ0b(Kmm1cs:ǎorD-#v^Bl`FB$=["2HQ}t>VA&:sz/X3aOiʍہ3|ZѦ6|)ڽ4d"V+CZ\r&${__ċW(f}&?Ag>Lj۰\m'|15=LAwQrZAnߗ,\uTq"lo=72$⿇OCIXq%ESmlGsMIfg.1*6}tì{-DXG)b&'Q%: PZ˶Yuu>?)g)at;Fi0D|kٯSIpp.&B l}Tl-0h1!)ь8YQ">j Ơ̟mރ"k::,:/R󕧇^gDz,r͘.cTV|tY1 N'BK&ʌi%$ Ϲ>gѸ&1r30ҁvAU (v0hDlL#j@Vζy"0#{Rf)=Gӡ=-(7+:+k4R?s*aPV[խ gڲo bD )rV')'TϾ /j!rrKt2Roո WIbP!rj@i|_>Ir7khFSAy.sZN Ң *ZjC;5|g*YK9ay%*2] O}d&KbwAo]_N-@ %rE8Mǖ?L"iˠ)zv޳ pKR![,ABcKצ1/ p%˜)ņ6$߈ By.9j=^KNfḳPnfw8'Nf8?J :Nx2Jz^G _) 2ilz(Bǁ80Ml5j='3 !zgkuer6<6m.]T#nFI f4n}0Ү$PO.%Q( E"b /R}K?3d8JERWzI9Lj%:$x)hnӍqAZ$~Mu2@zF|0C^i= U 6Q%9uz*Sz20 DڐjZ(3Ὺ҃fp6rpݿ2Gr2➖3v02%4<[lO4i5)`A^a'sAr=q]1WLCwS ˾zR! |~`%J`rj# w}{~@F9t 6}<:dgS.S bMa:q#QXSݬуJ M2b?3~Hyc:dg~(eUd͗ G2ٔD B wc46 endstream endobj 252 0 obj << /Length1 2216 /Length2 23229 /Length3 0 /Length 24586 /Filter /FlateDecode >> stream xڴweT۲-  nӸKpw ]Cp <Ͻgs7z,UV}J¦v@ ;3=3@N^Dhlc001:-@bF@@ GJS@ladP윜鍍@%H"jghin'+=HE2F&vnN֖#)@A`.Pف@ #3@ PWWQH(+R3Vus.jt1a5qP ] zoNPP{n]^\MX83W埴ōojfv%PY8;02189393O fh xtj s(9K I_JV;˝MbG #|唔F g dnl0K4A @OU9;R{LOg&v 'K'gE,m;93K_2yai qU5z۽wxbr<.&37}HAvיִOOvgAvn +7鼩=:LZEṕ&t7`i#f#~o= ci|r2r]>^T'cZ8e+4/;UPuQo` 4cTs~?rI(mgdkie ÕJtN@S%Kg5_rig,P6},,wއtr17(waA&v s ;}X^Sm tkV ;wyr8޳b#n'3QoEoEo `T7b0*X*#V=;2447bfzOaonlf;@6ſ!{@?,e<߉3;Sۿ!{b~gjFhw=}`~/?໇?{.eVNLO<ªΎv@MK?L䍜-uW G?EDܽ8 ~zc_=fZkW݁&pKv&AV_B| fAs3U` hCta [2( x|AZA6[IӷBFxH9 +~ߺH.aho#rwt?FLL!ֶV}oeSlQ*ͼa~ }o7xTJ!;ֹfLw+uBuϐSݎr5k0c 7jv_Q$Xco s,fZЂ"l7l3=pa0ܝo1{}n& `О'z>{3Vi%oZV 7C0l|@>]e_$L&'X"|F~Ӷ{I( <>CX fЧRBlo ٽG;էgw ppB٩H#C<_qWR2:ɑ6d+ g0ë1pR*FniRhѲi60sn2^HWҥ`9D E= \{yP'X aL 9IF˙VLq >;e1`'4?=Ta|s(m`[-b8N{|ޯ V2>R; 79Rh2ZR+Q\L,&S~-M9̍Bo⫣_ΆLrZb&@ [fK97W#fL2Z m[Yv7+oPFߩ&ҕm${6u^%fIsOVg~p̨X$4ơ=@})1kwywi't6r9/ uT*s+tki3: c, P &i_0o,㠑ڥ*;Y5RB+Ѭe'ƲMP*7췓D,cO}JcUdhvWD\q__J܁N؍ܷ7LaĈSW5cv.é,SaT*8*F^Ce#?Ul()TT3S#rL4;gǀIJX}!×NұeK R=DiDDg#":"?6:qU72[q-6y"6`i"\{4dLubknҺ5#h;'b}:hO-^e\oW' ]=M#76v˹9L/42u" 4db_r\=\t:_(2<ryn, <ѻ̬|/elD`NવвS_e\ȭPJHdٯSl(~Qf]"UF:AC\0xI[H32ꍣo|t_+#ֈ:Hpl5Je` Fblws^ϰA^b #O5\A¢&驍H:4NCl1e VzA2Nuwy FQy›Bv= _82ިQA٧S 3b ƪ)jR V?*K{VҬ7t:3JoL.h}|`FdgΦ3X3[3e ]!Hdf2gB7 b"Xk#H;'I5 ]FwZ <:DލȦg8Đq~{ʂ-1xJqsH\%ts8 <#Up,ke1=>@c, UBσ}lH1ۜջTJ5P-6*GyS; sS)Q{|w#f K 9ѳ$ʤ[ Eם)ܶ=2;I@rF,S#,RyS.NWhwZdk.*8~7~m#|J uaልOø¦o+Q88Y6Ɨb-2oUd5hNvr܈D^(t_n{牗 K]uȟlSU/$e&Tgu)7gQ8k5W>X z'e`=^^IV|ØފXOԶQ;͋EpFF;]F_E*{9+g0ڗp(>B`SP`¼-bzyEGd$!Y:S>oQsΤ#]bY'#b-Iw~M,Ћd&nСYKX`~ kɸ#P8[w$['/Q;z;cъb[+NiS>|_v%7gdc\Db*jÑ~5O|aIzs2RYƌRe5S \;r!_0 mRwrIB9Oس 3hgUV'{V*-ҁPR-î KuacIuO Qꉻd(,`g V~sb+S 0bj& 0%.xDq8с 9:MQi@sKxZqԇ o:w1IN8ֹKQvg(Zo h=˲܃74yMQ8Pɨ]{.Y8T{Mr{A!$ z1ZEJb/L?n+m1 A޾+;"Mb?Fê~dS SZɼ[(>]~G1qM9wq@* J]y.vs< 4;l-2J_;%}̗$dDr٬Pp IO$|\ BlI={cZDw>o@h}%OMowٴhc+*]mX%u%H<V הK6sr3 ?^҉zCc.Hj ʄ6md~ؗb%ؙOs>|ݔ\'h?#UMtB}-KOg{ C7vR)bN_d_Gefm;jw#}va2 d0^fz(t{_rlbQv&Z쵞 b)p" :Yn)((Z!ΔIVL3#Ϫ_  %(i-j{LqY "MۀMXue~~L@g'vyR2HQ^cȿKE ;rg^ˑ>/BLEbyjS5l  HMQS5x09ĭ4Ĺ&7P Vge ϊ>@oہ2B_e6ZP?gɎA7SYu"wNxR(((j3DP]M|7(79yd% )st K|5O61y|sq.Jr+a$?Eڰj1s @ rwY՛BT@##9jd%8Y>3?Dݭ9s.S1m7 sZ?g5/6tn"F^NW438^+s7[&­F?O+.կӑeE nu,F1y8![o~L  mӹA\3Z~/qZJ$< Ayup"=s7QUK#i[ḷkOϲy3̗!ǨDdEb +~2Y~K= h;ܡ(򜠛~uk79 d?Y "!i)(nXa?޹_uϖ(Q*wtWB%ꪠcgڎB"'qq\y)Jh6 ŷ=?9l#vin@DEg:/zP?^ۼNK]?7(r4ᅐͦymAԑ?ÏWw-u&@y*=hh#{*CwZJ5 7H~zzzL"טQV'ިU8;r5NzⰃ#9G\(?GvSH-#nhIی*gve#I7g2*TG[$з>vW$8`wF|[,:i`3me彁E\ߧ,s˘ zgCN(bOߛҒ"%|J+[_I?et=o ;X]s5@go;مμfc]gZ.wS$vi/`@"pih H1kg@pWBc"9~29 [K˔q:#.6$)yuCP\'4,}QeAT"?S8NI!;UuL_X'r6DV2UWAt] Eɑ>t6|%Հkf|p&>{ǹw-uqL2wAWDǸKr+++/M\BN(i)A'9xernO57|xEtnjK֭y{xZNhAQ \j;Et&YgDfѷK˱}0ME5W?qBBdb2sOۡ3¸lOLi(- /m=\͍L.pĴHm+@Ahr *tSi[,IDj#CP~fXhHqd9aEJ-;0mIG`?dtC4f 4%raYt/8mC}wIбx$NjKӰȫz\=<]H%Y@)si[&:cOҭ ie݉c\MO cK)1?[X>Yu4`0KXmlgQC,Iuj8Tpal &m%)Y1nx:t=.#D-@p#q2%f'f9bcmO?uei~Cm0G^H{q~8-Sn+9U$P0$$2ZEΒoEz=?B׊`R|=Iysÿu! nZr-JXQmbO8[vnou7qWc^0b}1w$›jJLϠ&ؾe9rNo}+=KDj[x{΃h/mP> D[9_[fR|8v̧ f.xJQ,*1 ?nwL5:=V *Oj`)1R(gmd| .i}uZ6ӕU=!ް݈ #_^KkUk,,_H:O/vlC|`ύC qI6 Ϣ} 7 4vQp/,Űq[ &!N3pF$ 9f𕅑J=U˂#F +XeL _gh-0 Vd$^7z"4^{^#CJ R|OQpZKR}IB7܉d%EԱ H&.>@ѮTL8ʚ8|_)b{Mv<EGo2* mʭ?3;>(ޤ L .myj7Dr2 _&zLbw34CÐ$7Cׂ'”bR FR>d޽TNܡ=hݱPTo1?$ύ Zd~񂿴& bt6S/"%i 1(@ԖW}k9/]ԧЫe+!alC.6-@EXn&p!P, /ROY[(iBfap`V9s+gSUoR9% . 1:X&"~KV6aMԭHƆ|, 8Jݍ`h;:D 0Byg}:zH{'?gL4tuZ'`Tizk]1E$7® ɯx~$'` 'T*^wra$x3:[vJIAWEW'0VzjU^2%$.D]*]qCmvw?BCxj^B:[DGSpUym}"W?AcHʂqČU*ⴘ[Ee~W̬ zp"U5Q*}h԰77U KF! %Z<V4!ҀM{@EPxT! Sϻk{cC0Bچܽ<5+1 ɹ,Ӌtb_c0+1ev2܉L x*^uR;5 t Ԧx1As̖iD:}P~ʾ6C>𹾡u- dw@'/ X7*hĺbO0:K1nuE]xv& MȃÝʟɨw $y~6ٲp28 ѼI绒`8W Vp  iϤ6?e(M8"ʹ6ZsMG!syS<wB;si~_Ը+F5 ~!.hn?̖V"ڑR?t_ŨWG;Yq/'Vy9 HO@0$q5m?|Ēe=>tshzؚ 0_uX,04GJ*iӍZߺ!ˇnAgUr8~0u!?5\ڧS x|akʋPLuĶGUtmwQ\ ?b;l=^ XrLE+t X|6I/*g۲bSpzC{z Y`%Jr?HK*rfQS^lNм/e݆,q8N\æۯ)E. C6aZg4d6ktV@)'_'[QWfP+>uK nlUՌ{6 EWO"E1RNѼ?TWYl‹,:RHam*d0D dI'3x#],)1!5B2>z{ϟlr`& iMF=@ -(('MEI~@B<6tnXl l-~4C4|U(nZ[ͩgX{xoL\52mZ@1ًdW vh7Gjp@s5--G@g2ьsR ^*͌0\+-<~{f wSERZ,^o;=m@ZNW$G5gǠpMChohj1<)Wn3S sFN/ih6]>H_5YK,"A"m,~J%$RJAao%q76; c{3X6iں d9iˆFq˗JGpv<[ԖDKϼTL^tIiC7T/ jW,Gw7cUgzņ_v,ox[HxTp\_ՉЫ0Vx;HXoC/2}6 V$+1"ZP&CT;(I oKz?~[9`'FYA:$Ey}q+lCMwߑ4pLZ(جr,DPorۨwg y L-aqa'HԘ] 0n(byrQ'$swtD7|ĤB{8*Uk8cvT/Z;o-${!HPNr=XWs` Uc+1XzN m!QB**⶿Rb&ѧ]<)899uH ?!؋(>Wu;6'nY, ~gkP %~V~tMY+WPDW2ޜR 'nuw" NeO91FKPöΞ0G @pNaό/ Y=~pFXM'xG_'hIRe8kc ?L~0D6NGD×⃛7PiNuG%1$١.y}=҅>k1F[ɴPbi-Gytx=;tQNn裕$=`Ie:K) >57nP$hkĀtj_wS[7mn&̟ڔ(d a}:~Hκo|E'{ 4+h|.Q; ^{ܮUTzΑK =2rGJ9 hQ[K'MQnբmD$m)r…m.V>v: H˥Nu!HRJs1nƞAfFfs%Sb;з)&СPÕrCK;nF $/~;Kæ4WQz3{aoo0Z\o JV=+.-]D+;N@m[Ҷi^ܮ->X24pJ92_O_?A@B"*mLkb xv#9d')׭RٞB S*uK\m;d{Y_A(&bOLF:5)"ȯC{xԻLiyЄ7m?t #6EO] >*@;j^'fѭzavΧ;\=ڡ-]~R_/] 2fgJVP{G'L\ҧpaڌɽ$& cP_ g$y~6kE6O5*hYuZ^&KwEƁ5 l?9ѥU-vnR/` mKLfȪ-yC4bg- JJ'!+K2/dH@ R5=='~cr^=xO̸s^3MIm]O՜)HB^tv~,\6aYעMhGj7:'%|we-n] =^"Ws4RyG虍pn,^MaC`1cB;PElUsQ05*Rغݯٗ6qU SD8Z"%.>5a*Jy`F?psyA jC!Կ2ñ8jiET9|] ilM._ȹq: qDy\j$!-ePR#1kU!Dnob_l*CW:h&hS*G% (J>u\]rűl!㰟xmҿ幉]{gyNيmlRKoS}צȑ>ʫweDtmω?tW/_`s\bLriwK\vgSpnBqjD]}m=F ᐃmez Y; ý~\Mq>ji2M@[ s > Y'W@0{XNqc)WAtF;i~<]/rFR!Q,̴tnY/y${+[L$oKaxn=qyϹp]%8*=^]I~12F k^HBdQF~i*Lr׋>[pH8RY=S+GPNk Džx(\6Q 8c]N瞧H,SY=1 Tǽ٨rPcZ(K׉%lu 5~+V>ܔ ӇT h0A^H7UmY;֡M")n%*'V_(U1Ỷh8D` ͖xh](0G3vΔ%?Մ,: (=x^U Um0vNFpB_IC_9:ؖ`YK|`I[.Rao~lޅGI' ]"_P%#@*c_mbFZVh5lCDHoK{}15z8& 0 `:]ܽm􁆅JrզF.= _=c4j[sطn4쮗%eKYKvs3j~Ѕ(M%>(H'Si ?FG*xI^|B7fj[/iY[$W6ȝs =hp7שkPFBjplsg+zCOx^MȰӓ*_"\=oGEQtxi\|"X[J Nu[x"߆]HSܒkv~, f[- zAS{s\sb)-, U# 4ˊ,m$FH0~\ {K#wA#b(K֧5CwCUg3# g; 4<>yp {ZGYrH q`:S~hFWb2&uL 37H`ūvI΄L,zZǿԐ]6?KQBIihp]mԌi,gPB"IsBBg r@/>I;7#"}dԧ*3&\cEZqze @!5[z0lB9$K)aYY' O$d`UFUH kAb E֍G8iE k:WF,V˺0QmXk "D@mޞ+Gcyũ zae|( RbÇHT4*8<p(*O+}4Kfu$ctlHpNngH|~VԿ ʖQ_keLjh;[ZoI']z,JUkۖWVYJZZ p4۰dlMKLE-?-'m|# (jfY`>}3K?Ajy\vQx\B~L} S|Iv P\ %ɫ1hJ`&}XTqq3+ҭA}8͐1O!0zw`]9Q!@5e?hB'Y\1,xXh50dTR/' Bg1D'ie3<#8V-ں׭.w XN]0[r|wޡW`*Rû[%\i? TQ[)X<}GMNmF3;twSk`ѽP`o:=%ӱ>}IEܛnobd" ` #JM->UƛʣaMih,g$'fLR8;[DҌ2Ȳh')+ b˷bjlyod.J:(L9UUqo}:Â}qub2F1˶*zİOgvTJ2 ޤ]2E4UvTϢK͐&"P~~zC~yT/+:E!A񃭜Q4e#\Ԡź|{]ch@?&zyJB Pv/maR^|Mٟ )_.Fo[59Ԧp’1pOy4"z6ʱ< qfE+w͌?e.s( h+i0ɵcE/%Tf$]xPPC #m鴝0>3CQ!:tZ3gO=ڕeV%лYLbxiFޒ d;zXݧ 'wZ禐">3 -_"dBWۛA"eVCleur5M#{~|8̵HU%Q-?x ~s{9F'C$:֫I>/9!|gVߦ%[6 }U|'˧ʰ/4b2j;z~n?yw!5ܥ0#jH0&soGO$2Ӛq=}KHpx2c/ӜAHGnK!b> &;;{!Kg$85r02(q]EH%rxNW&'1/4+/?KʾDp0AWT2R!tYOd$3Ezi5￁$Fɹ(hW_W/RGc?PT={R4=%ޯ3xO^f3KL4D&[y41% %bTXAЁ+ *2+L̅fָYeN ј1%G,XF7z{^#W'#@Hʊ?vt5P{a;*bS.Ͳ0{χv2mq:TKs?SZb c4Nq|t2Oq9#N ;%Z&=`J0˜>q4qK=K 5c1B}`2O%bM]Oj,F4T wJޢxZe۝E(Q0n 8) i*)+O8oiqr`/u|utS#mQ-cjMd|Kr,GwZy%4W8#V`'LHWteLKD)Ъ#1;aOs.Cդ>{f93{)FZGt#]C 79"WTMRZ KSMį?[1AJYiaU.;MwmPOn?y@;Vo^WO{e~j旄8Man]g$i}(C(%.gniQ ?#\6Jk 9T4B/FQ>GMOeWZ(ϴaw#)v>;,?(1Vf $:$=AvWD9HJJM4a5~ a_E$L8$`F-ѶCb.>%':X ;ʕ׫lK ,2*D:=*HRР0Dt'kKV!0~sy|u0%ȵ?̫.b$ Ԝ跿[0wU}"#Bvĸ]}B?sQ^$X>=Z0v!daiyť3e,qKSt'CL&+jg"AfͧLL(V8\cǟ}ˋjzJ4П+-!0 [x%.Teb:2:}e' WnVds^pp'` -Ve h5ݟ ?z k4f@?;- C־2| T4 V>ɘlS/<㳳sA W)j*HGa~pJq gFW(X}& X8?S+Nr,aK\95D WHWeo2LZijE][݌kaK1%6t&AU:AWAօlbRd`/Pm_זÌ_cLQP~ :I_ ` YRtS7MeǁoXE(dZ(ܽv[bz.Q ,8R M3~ڈu*)3=7R3- v f_=` @H5=W%pfsTp]˿- 0\>fBk^G2B⹥Bִ`"m9 [p )|F W9yƌtwihmcļ\ջ1u0rQU8Ls`}!4&F^)&tײ1v ^+絊9!نWE(̓~y%>ࡇ9/ "鿂cR!o}TՓXqiT,Jz0rI4oW nhawSc289RtJg.&7@y{9ֽ>M Az.N"%@S2YДr/XBDS_zy)[}=<MǶR7Gz,a=aY_ƆLWo4݇Ih-p~j@ȱS;(o_ރK *vC !;"A*#X-5Ƽebg|G/I`@u/+=K-lbx?xoKFu"Zܗ=n)^ܽc:D%Aҭu|<)b"MW^9j(Y- >PV VSivR(c캨z>N{n8ʤ/‘<gg+Ncf^Mh1O62v=seK@#L̋8VZEACl\L*z-(:s9ϽsrL^Ő +!(IhWy)9B* JPه8Cwj<0 #O0\^P<$e*ڜ MICĥ=9Ġ" kw1(NљAge "e H 3J Nahe 6frS<3[vf=A.䆗G/]SVĒ_?,Cz: _& IH #o'R8E-kV~rG;'i'ei:VYG'RF*(j"ߤ־@>0MYUdɫ$ܸj!}|rZ 3N YvcbD&k(F.j<4YRU &ψYQAxɸV_x{`<WDUR3uXC3ڽC׿\<+qL*hOqcۇLV@R*X#`a>@+sm5TSЈyݵg]!S[UI#lE36L`RLg ;5ޣ{6Ai߂-~n|=\@1 9CCCyknCO`V1bĚ 0I؜~+uYbq\PM.NIƮ~*nl&i5U5AҖ<Ҹ g([H/j v)ƺ{+E<6^,(C(|u1xnF.Icx䱋 3u3F@IVIe?H-:$iv/45_$\K;W[9\,vޜf]2%WX#B??$ :%R3z/38$pT[e s@ȇn6M6VgUYZtLcI| Sx{*ʭ-(-2\نa[,DAL::WV"mdge%촒^q۵26!v(/qViLA꘧`|];b8ge31Zm0UO厒C4w50p's!r[{ 6Xt&Z d?j1(#g߻` K=|ЉҘV4|hɂH'eH҅oUk3hL/~y>I=EՉb$h8DK/3ͤhGO 7xn$}2(Дqc2sъpXl8SSqav ٟ:%p|fIg&sʅ=%>#?̮d0cKoY`F;Uq%#+,1^2q̫$> -N;G5Cp3jVi|ѧs(P'~υ"vF6 Hr]Q*|S2ɇ[٥ްۢ>U3]R% nt;Xi(5W #ֳ4v񚌨sɨ6 \7ʍ9QPvr8(Xlx8%@{ߝIB#$7`ᄍF-rNDDԸea0A q/ݤƃ;ꁹ|ke< u.o9A?4szO^#BuN_׎ VS8xCaBۢ?>͗aV4|/yʟ#J`@GʼnV q~t}RPYZu/5FKZ#냌৒aWem , ?"_׮ٛͿ騚cY865]Z8gzJjGH/Ԛ.\~r7NOi2J#n3*0\&%v U`'vvi tx[՛3]װf^n[4cp[c%(Nk.?u"i׌isI}%E-I5|IxF0zrUzLC؆-*j?u{WaBl`~RgV !d =Y!TPj}o D . uǰn-jl_iP\x%TJ47]|)+6Ikhгa+)z, endstream endobj 254 0 obj << /Length1 1608 /Length2 7384 /Length3 0 /Length 8189 /Filter /FlateDecode >> stream xڭVuT[@@i;TRB@``Innn=׽Y}w 36s "y$`{ '9T[xrp9 ʛ#A} r078 `gw 5r AP=6@ڀV` i`SR( 9d[ ( % n s0 @c WK#0` 7"gPK7{!8>>v C pp_US^/Hs},~'vsE]s`pN0_ p9!0ؿ>{s۟Ӱ?YF"@+<~`(EQZ|N9{gIaPU!Ko*DH?"Oܿk?.>Z Q7_ ~1+ q7O߁(#j}/_N0B j6+su@3F7b:6`K; 3o^=W8ҼWpOx !+ sxp D/ @\H/9v72'Hs(~ts[gA W%R26!9YL/ȍ][kIY7) )qkUc1)Ƌ%K(?=0^-zuE;X'?get%c:s X6Kk{OWgG!f*5gj$.9wC, ~Rf˅P"%&p粈 c93Z=iw3rT?UiKL>V4pV+]e)3s,xEc[3S c)KˆmЭ=߆FScm7oiqu )oj=?_߾L=?&O1p6Z?3/i cUmB94"J]X ܨNJp"FiFG E:`"W@L@sΐ5' ~ET۴Sg58Ru5Iaxrd GhO^8MKH/S SOeIXZz|} aHM|[a崡/ngVQ4YW``sAV"3EqE|q$8o\'?gof;j#"3؆O[k*O*Rɦ> @No#g4l<aPZREDJaS6Gයe$cُ+S_Vq3T2OZD{@ɏ [\cx|,pB:|exEaZ1QN+'Mdw}N+ƒqF)OWJѭa1)u@ao:fhrJ}9/{%^TFv Kސ31ټ ZÊ(A{h Eb+*N`,{?zf7@lPmiAy<gLyMV%_~ϓt'_jD;RKq9߮^C$'jn8Zi˨؛ȋZGoW K.^k? OVfeQȊN)w?}l-)rVKb%`nD Lj!^T/FxU8#)O9ccZlD'wf [J VR)z{M /Hs3sEQ\?cS#kF*3[6u-sw$_Sχ`:"T޳YnvݝC I`^-Y&ϗJ>w5)N4xWqcey@us zkի *o܅4?=1(A AC;A(`_l"e_%)T*`(kzaS=[atJҙm甙v6M ?eT+)nTj>Cc~\J˺ y~bKE AHAA=ֱ5GJu@ Nh|JUQ!ʋj.a4#|Iv{#?$gU?2qH`c7)f/rξ彠bƗ6`q|wA)o Ac#4RxλtYIDgGJS~d$$DesK[S_?߯,[n8*qh_0+q-(ճ?jS9y? e(!J[LD<'7}yRrQW勚˴Sf 埃T0B!唋ns G;7"ݧς@ԖGx$9iv?U6WzԤ;1^UXVQJ{k0PtQ|AY_3oPyV{F{NlBDE5AW5sug%vK҉'o_VO gtZDk3k+@.L?!Vs&4㘧szpYƭׅ,l8Mdgc[E|oB Bib>Ƕjvc.櫚oHÕnf^h W{,6Ʒ/:(n{SiAH8RШ~4~яng=xBM~Wn34W +z[at~OMKd-Ew"O2(7,G~ 8)*PQ2QҾ<ꍚdPIVjz\uZjEfV.xޒNҕTGQPu:8]ގfY U~3"ӳ"b-#=g=:b0+teP0|^jdyYQ(/ͳqŰ(8c)OmnL .O'I lJW_Rׯ?`X\P=O{}z3IF8Wۋ}S)piPywj5~»bMm70./*$Z⪔>@L[)4 :}-}vֳ@UIl5C8iλ'+.Mr9r3fe^3s"3.-(O?~aPQ h8 1bp|lR` >m!E;ۈ^>pgW˃+~B>jtN'/ֱDck72ٓkg͞#R6[Q݈If%+ Ҍ[j0g/~{++9 je1'tV<+92fy;y\x%cezuHD||'Dqؼ;-JsJ/ ;%׳}v6^"QmW1LGk>) P#ϝ bQ}*؍@nu;пb&^3MiYDQٱ c+X$?yju2<&m'QU^/'RC:]-KIYYf"Pp#P[$6mBtr|"p٘¶(\ܽw1SI+юڪ՞[V }"&[Ɨ>zk"S<1dشGQ ʿ|{mPhCOFʺm_A nwj4ުn6"ag(gZ=lu8yzW 2G(q9s0U4Sf @AuxUS&-=o &Z#5hio'aբ;CY+9Výi/LXMIR4߀?T'd-I0|+FclIm]G I0 3qd%oAxWH !R=vBkHnrNH7RʦAX&d|S%9vI5}Q̻EG{̾ G+oVH]Nw0؋ex&y gI1A ]7= E~,$À;O.jeRR" .62LZQOAc,ߏ,Zӎͫ Bݜ}55F`^{el{d7_ m`ksQ\QP"0*7b]Kṅʀ4g =&~X_[Rk9ڤ@ŧKmS _mgZ>seȈ.kh40TSY]2!G[2ѫw1Í%56-,1S{^Z_pQ WBܨp(o.l }92hdN꓉0iA T*W?\OAH+ɍjƋxz!]]Mjv)"Bs v((ɍi-Xs|j3{_4݈9C1_{gtr=+v|m7Cû_<ӭ놛UK;oorGjʛeϽ5)om1w]W0ܧx_EWo,,ќ!4pg1|V<ˊsāApX5Pwiv(ښ)TX!k Vi(D7jMnԑQ#f \{X- bNu,ɉԻZAaj-sg x4MߖsԄ6zu`EFw]d=K CyYWkay=.Q--iV??ciW,ȋ]һ}r`'ߕ< ZZ UzTWF ]voASTtғ{WoUoٌm5quf9e/|5e^^'|)yO_b{d,S#Z@y4FvRO#LNZ$NƈIn2R mw#icR2gF=.&wtN>O=-_VhLeMJ[؃ؚ,IoUbC1Ӝܵ&dn{(D_Jat 5LKcfܔ9n}/wAk9j/m5jz|H3JS:3Va EwRM>%G3s򗪤k0 ܨ.C_dK Bt¤{ -&q_ qaK]?u5I1ؔSZT A5-`:j`5W^ǯ16f|͜?B? +UU>81֐`0hW޸NGNKy}ҭ?sg|vVbFBq8Rхui޸CZ=) GԢQS V;o 8V1imqV[qnn0Ѓ?'}dݠU_6Duy%'$O鮺;K;ܷu 2WaS$4KkT\ ^,]`#x cwY3e"6$oUˮ5b<s09\],РNg!o>Jzٴ!-*VGv#?"q nϯo8ߚwOs#<$*vϙ4/$塥 љ+ゎ*FI85l|J} "D2yfE>}-Q>d: 5 /fm2RgY&9ڭA&3[x _fj܌׹rhb2sZ ڧ~'$K&"tPsmNVpZ#"P䝉W[dAHYQe&lqWׯER`Cj[3FSVG|z@Zx endstream endobj 256 0 obj << /Length1 1625 /Length2 4583 /Length3 0 /Length 5384 /Filter /FlateDecode >> stream xڭTy*(G!pG!Д0??d<&)X$"0>#+ <G`2H""h< d]C'N:MDS`JD>G%(4Gc O:h"䦐 2|h_ d N@bPD"}ԝz8 / hqc(Pr"Hnh,Ѳa]qE~7Hhg$)"H Q8%% MY7ˆ+7ܿ.>Z1{QG2D8zg?!p/4&hC߱?unBD}? C+Cioe,E(P vG#4:rk>IM7^494Y]`rpEa[smȬ:y<4C'hnvZ:rHLi~`Y?#mcE:+:w-~*_F}KQbcN(Z07g?#7})y;ј:?l_뱘Yv.NsGpү܅ ,:Y+ jh?hXp1`r/5pٽu-c6 b6lc#>otom l83u'z>u.˃,SvO >O')Zm5&DBJ6u-ѷvw9E!. 3y 5^l6X!yţnF]1'}VÝ6w+}gCKK儥t~RrAuKǘp 42}UKAX(*)u1sg\D;0a1җ{)Qev݋uyն$]:V.Ms;猂7U_BEkDw ~໭b .NRB&z|Oе_,3jhNmk!4ٵk&ItEBw)~a򵫒SX}OVaݺ'fe,bxߓ;zAN/|o*H1aiWP'$;lЧ_?sX1S C"4B^'m]H3r&;C1o/yIMҨHo Ojo*T\f*,aؓ^ %!w"BEHp"©ܥcz ԕӒ]/|`;3LbjQ| gA~6ƣǹrn@__]@88J\%>Nq7WUkT]`#ؐhOƷnYa$R.,cĝށ/ X0Fَtkb Vc CCy?^ELADRosk{` aVڨ ])bkݛ1x810֜8 hwnE^L W1sĿpkc`m}<3*uyT,[xQ>+Hmf2knL񃪋p r~ j2P_KEcdAͳ-{&R+_g'"^12=fF_]^[lSg+ͽ7c>hvQ ,Gr"3`W /Pew%d=OtKy_'TnOlGd - +짼[ȜhqF6\xf쑭Q_{9 ]=EرkϳӽgW0uEPGX])hHPg*אZ8yiY}2?gCܡJcS~#wbOQ}8."y> |fSҳCE^3=>kҷ;=wF_",CYts}1,^Vi˳-mqCh{`q'QjJtO`%]9;QE'TbYgsv>[?mʺ^aSKZ3kdFIe~ƗDX4+]Bhy#nVZ7FLb N@jRdWO>iH`?URy8]*5y.qM?15N!juRaݞ\"Ny:bLfhX~%.JCٓnFya `f~?$S.򴢁>ZYyzeeb^rӄ6ĤcK n/pKbl\eu8TJnI-.z8n ]Cb`Ul @iV_SqվTT]XP\jiq1,~Ɏiб* })fa4?<_4Edk{K87䖹+2S[SE/~oQ)Ƨ_y뵀UD"ԹSn5.Q z"7{Z{?=qPʽ/?tw=ٌ|rU0cN &J❃C[ N[>Fi_uvb|1һmq$*sTi*g]X;\+x^9JF e - 8"`.cW1gYLB_|񻾞ueASCc% $}̘[&jn8^E5#呐p7Lᱸh{Db/ jD0)P;5xLݸ~ncY^|l7fMu~-'}{f/%tp_aK (ȡx mp{Ktb!ߺ_ihPAc0/!lͤ,ql4ESX~"ozh[k R-1!; endstream endobj 258 0 obj << /Length1 1144 /Length2 6680 /Length3 0 /Length 7443 /Filter /FlateDecode >> stream xusw<6!Qb [Fo2щ6!{ JD&z&щW~~Zu.Z}~B@@m>_nEvvB #PHe o`ԂB $ ߬A D%4 h'RFx8Ñ..N8L@$7wVwrs%$$>bp7q;\~gP#蛢ac!Pw@.{wwIAA[(p@o UA”Pοg@mn(/$ϖ`.H\Co ߘ(IpW ^wJ$7 E\P.@[<a ܠp;@h o`_{-; 4 @` ͅPH'õpc](EEԍ$?X ȍSn%D""߇5(_L_{n7.riXn*i6p &y?iPprt| ݻ_Pgq|p:!lvNM A6/ !(77 #lp7ITAڠ`PP4oϟts_{[Mp70= sxrZ@p8'[iK=OT ViF$ҫĉy9J( RPSR֖$= 9uҽdo*3* QGO7\uWlLpKМ;J)BcHÞq>2#ysBYJa5>ѥxG$h,B ޴TLm]ܾUS 0:s ɯ}o Ή#)JcW Q2.g2!h;Mwy*aE+%UJF} EBd[D`VAyq0uT3&: ΩIbqǪ(-9zv~ kqXIT.~,Iu؀H*EO~hK.&pI|0M3:?nd޷aތru%ub0FeTrB֭=eƲ؂ѿmD&,3Z\Բ|YstUDfXF?gOz kz )e_W w }WX߽a8 MXࠜ4/B> Z(3d?i`zM9JOC6I|kjA"2fY&EGw2LE-EbtĮrgjL<˯^(52dd@/|%7?K \|e })IXUXٕ&j Jgyy[fj֡Ѷr+ДUI@ZJX|lLK1^8rGךƏ#9E;|E6P]X^YԴIh"ųT7"񢜮R#ynQŖg=ib\AN ΌǸݬރ*!쑃0=qMѼs7uolM57shfY,&mBNL*HQfEp/^1ߜR-hO/c>C۔lQu: f+6ACkࡼg?6 6.97O FHFe#|(0 xڏ{$7gVr!0B&`ޡ QE?c뙯)GR{w0d?4FUv{+hyCT6[hָʝ,dw/Iyz,ErJ @2 Bʐ"5A5P*Go?C6bZwYN*^@=_{W:K&x\$+U۝ذjx*>]T^='a#78󽾆SLjconu.9 ^l.홲{*\d))琦8V?{g\+o{%7h׍t< q0W%qѥ/cXtE V6nGkҠ;ouod^1/YUҜav$n3IJ6h ʞԏ\ xp-Wv%&ULT5Ķڌh+'XucxhqLӗesimU/ >+8)hzr^)S\@IUi7+)V,W3 Ly^vsƷA OFL'2 O].Vg(쩝q\ϜOH׎W)2zMzThMI|#ܜPo6EޯuqFٍP [ ݝ5vԻ[z/;ZvfmOQW=!!uJsNj Yʴ]gxm57*wm[UƮFRLS./uLI3]Xf| U(P ; 1A_0g:D$$`(uإh\l>aѷȇJ[jq-"==Zd;Na(~yqz/=s Yiy1JHpk3l6HR|7~ŻzZ^@Je/Xv@YzzЉ)_0t}K.Y$uez]tP;êX!_Sݐ"k"o](&^H\dFRj5Hfb73 fC I1_{Fdϵ@vOC,psfC;yA{c}ۖS *{;QW6t4,r,JDZksX·O=ay"1Y]$½>qxL}L%N$Ъ6шLC<;#=)q fH 5ޥdGtXٖBX9d䘋oB֑_7a}'u}eM!)?#lP<1dחq[f̊2*PwB\0In )B+[$&ӬK{J1룭'YI m7zA 7]:uaqX JuϘF08I׺⹺}1n+N;?l뼆 _HTql<;k,y)-xZ&K,sb-3GRr(ĕhƟ^PT~"i|Yohd] c ߔ$~_PG:=R`q A^ ~FuSRȊru8QưCDYK?eeBu>9%LXеʋ-kk \6攓 ҚNjx_܋i}D\/Ÿ.~m+2 bʹGzVd*}^w*ǘz})>ZJcn!TsӭjkVNǐA󈟭Fѥ=P{nkQ[(oIpƤ_vl#cKhhOg?LVs8Ep'yq6 4|*8A9j6gATO"mӬ1 ߾{:R}tkH=\:S1Y?ocrxJn8/ eMrXuy5όutY䤠37{" QKgp(:ACt 4{& prdk~jhyCSlȔ'UYx]6uzGPዚ zcH$yk%e|-Q2tf.6n7;W{&)|gN! H0$h*e cŋ6a8ͣH*u Ȃ>Y)Ebp+>;`څ%>j+'~{T*fz/L xm(ncHYi𼨺zif3!1QvFYG.{ZJ MnOd&^h"[ask^ * ’rmt}eH/§糦=! 8a=lL>X:Wװ CS#,x~db\fJ nC"93+#_G ĸ\ rɘS2(\;Zs]Iw+Ͷ:t. 11oԍ/WߡυOhsӇ x1`g%hJRXXpϋex[h몋f׏_pGw* >ZYp?aRhgIyJe)/ 즽~hq|ۋ=%b;a=e:];:~;+IuuDi&cjKj[]!十wEŪUQ IuWyxõ\7˩mV _, QA!o^!8] >ے\!cc[( ۘzny;V/Ls(eϙS <}/D/ !|-7Ug%/]Jp(4S W<"vD1| cHj(y ~o@l=Y ^|i endstream endobj 260 0 obj << /Length 739 /Filter /FlateDecode >> stream xmUMo0WxvHUdCmU^!1H#x?gx]OTm$|͜s_Iss :L;<Sz==׾f`*_`ɫڟk3'iѴ}=M;7rfnj-eSӵOLg~8 )ok A8 $`I\3`Af<Z]! xNky"7 _㓧q H`nḱRONH=CpB:# =%888QA~!*zƜАT?!~> tw8y*sύ }nFE>7*QύR>7G];~<6OIyktg>O:yұϓN|I/|yIg>O:y҅ϓ.}2 L> stream xmUMo0WxvH UdC۪TBb B8߯{ .@=/ۙڽs{K;K.k6/k+[M'ҷ>dyӔKe'$cS`vfSfK}fƁVGGf\bu<19w|擬CTAW $rG]IyMsh$aW7y̟u? sK-`θtJ!'c83?NaO<Dg!;IX 0z)rЃ@kpBQ]^Z7! / U <ɉ#W m/%]cX! gȀhID8QN~ACT/sQQRs 穅ύ>7: F+}n4eE=zG~<6OɈy2kLd>O&y2ϓQ>OfdV>OF<dR'<>O)yJS*}𗏿tx>z{O->tՍ]*3>cC~ endstream endobj 262 0 obj << /Length 843 /Filter /FlateDecode >> stream xmUMo0+J! ᫊"RVmk N7R$ݪ70W?g_,ɍehܬ=WWU\;;׺v7MOtҺ=po>fv8 | G՗_n}w̭][GL2sQ擾ݾk^!00jYV%H~~v}\; C}h{ϗC`Rރѩc~^ON6[7ݛ ZԲW/{FR^ww?U4H6!L@@B@q\s *G|F/+>㹴3Z~Z83f3[:٭ ߬Lg3t33 ~!>CO!>S 33>IY ?BXIAup*Çq G潪N$p|eO_:q;:'dE_kCvW endstream endobj 263 0 obj << /Length 842 /Filter /FlateDecode >> stream xmUn0CƆ"RVmk N7R$L̛O3 /~\k4~VzhO{|wޝn8O.oN?'uRG]>3dX;ҷ*נ_~vC̵:}W {1Esgq]ߍG@]dbڣH~z~ohTǰ9wxΏU]~NÛ Ju~*6{y~?xڰvtش~>ZjR˦YE3=sׁpuRA)`*R2$!`8li9UEХGSj043`4`4Ý(?Q  rt\e #q5p眛[q>x \iEܰpNMk l4\? 皞c:gN5^ ELOup3%M6`^ۘ1ل150ym 1F}3&ԗ0 bKl+֌>oRa Oѷ`)w`)?\֟agYg ֙P.L(ulgYˉx/N|N|&ٝ N|N'>cv'>7'>S} ~)>_Sϔ+>cR|&L|'a9i0K)cR{XTG5;)NͽRPs> stream xuUMo@Wla_BZXʡIW ld!fm웙7շĶM[؟McpuUӃsk/zfN꺼Ɠfn݅R^w}9qdMoXj_v}EQ>>pø;en>ڲ?`1&5vaj UkNAm<}\MxHM0}Z7WuI]ǽBnz/_ N{y;:ڰox\7nXw.kP^k3^Kյ u/A )`JbD>`2$`TY'``9&Dkx+0*NXXQQ3c w"]j~1F60aG+gıcW c rn q9Qܗ8% DMq.5Sh]`4$a]~9Vk ]8 IncT5obY:socsOPcYB?9Os֙3\Q.4ٰX3Z9#>^Z} ?L[ V|V|oV|3[: } B|)W|L| ,Y a!SMV,鸞:?8C8G潪N$ĸ<ޏ< Nuν_B,u7zl endstream endobj 265 0 obj << /Length 846 /Filter /FlateDecode >> stream xuUMo@Wla_BZXʡMW ldiof<ۻW_W7nzrc7)U7Nߜk]{7+wR}uN7|5s. )裮ݏk&8n~iyQqE0N[,g IM/*D@f`B9xczOpm`>W'9WRzL E]PwWqD`PދoSφ}= imX]ӷn<7̵^y]/׵Il/ܥ: ل0%1 " 0Z{q́0R0r0QK5<T`,if,1L.S5?׃[#M cL#F3X1+N978Nsk`q KpN8q )q4ϮEp O.5Ypc.Y7ь1O*ezl,d mY%0ymȋ,aYʘ8 xA} 3/Y1<*T71މf 97g19w(g1?\֟`g Yg 9LsQ.(ulgYˊx/V|V|&٭ V|N+>cv+>7+>S} ~!>_Sϔ+>cB|&LOr`B,&+jwRP{xᇣI^U E'b\o|s C:].cDܛX=oNܙ endstream endobj 266 0 obj << /Length 845 /Filter /FlateDecode >> stream xuUMo@+H.ȲrhQիԒ ؇6jo73o{q3mfѭVOn/Cf)rtskzf꺼Ɠpi?p>fv8coJ?< a9(})suזÌ\$qATh L}s6G 7o],jotuþ{UןtptZ|MÏѩNN6[7ݫ ZԲWO&suB`ilB =@ )U 9yI(ѥ S*043``MSiv|kiCXc, pDˆzA:x0)ljsn l9u}SrI4"nXCA8%&ٵ6AI cMϱXS_S/w"': fyRy(#c^g!ch"ƨ-kC^d cRx~h K^| МQV14Nd5cY9Y?C9돡'g ?%>O:ShYggΈrYgDg>[bghX|&^V|{ig33qgng3tZ[Yog,g-g B|B|\3gg3?f)O5[TT+&GUP#a#7a/c?w:'dEgtdbP2ڂ endstream endobj 267 0 obj << /Length 665 /Filter /FlateDecode >> stream xmTMk0WhFG*! miʲV6vFrBbތf}\xM}qV'7t羋<]swrո:܉Ǿ-w$mm o\1A+Z7!؛~B?Fߗb n;nX7U{[LG5 @@N,Gw͡ 1}ԿhWWq}QEݹ-r*FNL7uY~~l+l+7tE )b,#TTHy9)9>*QKr7P:MȡQ^s$LD6aȑ*s.$S56`>ƄmÁ#TL 5kd}WXssc*{Rh/#? bE$L|ږ8^y>eSQc̯bV̯cNa'O;Q~{5pX2]$\^snaK??q FqMyc0=) &l(mi,s|d &\cV ]͸&ӈ9w{d :mB Ƈ\..Ա g~n59&\pe[N 8\4<[n6|kq_]~&)a endstream endobj 268 0 obj << /Length 666 /Filter /FlateDecode >> stream xmTn0C6U@"mTt@Կyct+%13nU틛ķR<=]tuUӽsƷÝxrN:ۦ>P)Εrus ~v?'Ǿ5~D !8뇺mRn=MuSxHiQ)YiH޽'w66Z,^DӇr}ݼ-w{s d\{?:1 kmn_~߼h!R,6ew*ؔb%k e+Kӄ$a"1x*s.$S56P>Ƅm„A Fs 5577vر׾+uaя6R:!,əCxg+ѧy*JcL|*m:fvui0ܓ`†›F2g'I`2e?fyx0j5F̹k#n'im7>T20P-9[A˲,p~nE8|p9j7o-kݸJv?ƏVR`c endstream endobj 269 0 obj << /Length 665 /Filter /FlateDecode >> stream xmTMk0WhFG*! miʲVZCcYy#9톅ļ{3񼛤es^7箰 nn8l=hzI-._뫦~^JIu]f `tTsr*o8{&X,dew+mWos~X(2X.EiTz}ܟ^7uY~lVNMєo R.bY.֔O9؄b%9vsr(MXa#D$ar bqMDs!FKRLDP0.BEHQ#͸FuŎ577v}QȕanOd$g;A,əCR;6+ѧx**Ę$90q'oקfQ%n;5pX2]$^q~+s"F!CyhIh~CMnOf1$#h)r~hмj5F̹k#ni<7>Tsa>s\8s&wsaY1:+r1\ut[ZM,k4w6_%aJ endstream endobj 270 0 obj << /Length 666 /Filter /FlateDecode >> stream xmTn0CB*D rضj^pZ;olvR3ތm~<&i$͹+$o)'[֖wkuͷu5P.Υ/U} ~'C $D !8Rˬ9zLU]vރ8QBQVW,N4$  1}н`Еq}Eܶo KQ#U~'+xZZ9?ESھ/6XHfغ)Pb$b ab4aeILD!ID bq&"Q\H&(61*"TDDi5RH׮+&ElƮ}G= WA?Пe aLL\ږq8^9>eSQ!$"VFN??5J195wkdY]$^q~+s~"F!CyhIx~CMnOf1$#x)r<qh|utgmZdGGMYcu endstream endobj 158 0 obj << /Type /ObjStm /N 100 /First 898 /Length 4028 /Filter /FlateDecode >> stream x[[s8~ׯ&5q#Vvd6W۹khr()?_LJ"%ɞ!h4 ư.K2-=3&÷f߆eV;c6*o,`Eu' iȄLb@J0K-::.g,¨SVypԚ^@%5`\ƤIY&31 Ϥ#>EGBT($Rt2G3|^2e1e=mc:%2|4H6ZK`@CJ DAh`V Ӑ@F\?mP,d"0A{&Eʌ2ARdk3@}Ɔ5軰X|FL@IRx(f萠# L+҄Gi٭qzG$:M "0rT瓂;EC1Ld;[ pG/bA>C>ώNi^UDE9fD,1f*̨d3bٿFXK>(>B e^6{O.E>6XD%`nϤuL7dCvl]1{:\M'=d:I|h+?NO=$9 ÏŤ=~eu5麃ާ ǶwY V"I{ACmdfN;UVwqy=_dY6c3a:lB^#~<.y,xޟN /lX|r8(eޯG? `I=rxǠ85}p/y^O/tG磪xn _tE< AQONOK, r%!*ArC&dVw2w=>*?/ub2;?`odTsg̟z|mڐCp7oJ [gS;eH~+PYנȠ70RTn.1J䒁r_, ?Ui쟧4rih8o;{WSY(ي7GLo7J^LfDrD_ֹ:6KwkUO莌ʲ$3*ݱL+v4ը. *cv\: ^}t'txcs^>sg&pB,R%[q?CX%8$Jˍ`qI* ; { QF斌Ld?Ȅnndo75Dhe2?6';w($u}ϋdPA*Mko\i A+IgL9XhDl.@>mzj+m`93&465fu46H$\Z;Nt!J%PpA#ZZZ}|H"1X:*iAeDUCg4CKgE0lr= @B\TE0񰮁k7ψKg>9$>@piӞ_dMqfM N kž1W:Γ ` o|ݦ dAؚ0NGG3Ðwv4 ma6E5)Y!!&N6Lm[kV 2. nVΡc Z tLJYRVkuQOHXp(\$¿pVi$Wy Qz^Vy00Ml$" m [o{ngᯑD+Hjʛ|H2d4ˢ!q4pCv;̳٥Qin&s*xr&%M~itzpvЙd E% C߅p-$*q2b?~K6nML}f8ecRe$㑑!ň?AX)FLҢ)/ih V"*1]27̄^ȓq!BĊvWnDƥQ!yPӊD:*! R;Ofb?' |~]^MFu;z/{Ea~>f:;I;:e;ҤhVӟT^~(/&{vA'߭·IqzuF+yM nqKn/o?yx7"m =GbװrQE 3^?y~ݢΏjxTvGyu3kAZY5c֊6c0c8g`L3m|}~?#?O3~ȏ1_W5s'E]|Oiza֯ipTFa^"xa?+?l49.79= /yū*x5# \p3zq竢I p:aKr\~a>k2^>j=S]6ý7][xz:,?LXodaG b'տO6Oa~9]Gm]m/Ӈ"_F<޳_=&qt8WH^L0Zi[鵬Uŵ׵6aN^W ġ:<|3<緊zns5z|Ѽu+;H _L(s.iEoUQS-u`*G?{ڳ񺵡L{JhK?i_-!gb-gr&?BI<5t*8|e{YkownTBe+} 뉦}C5[ǯ^lA3Mұk]ys -*Rt*]n^>{v/OB|f~φ )?N®2NJLf!+2S'׭(ގ%Il`}Nj2"V6vFzVNPbVJ^(^AZ$]^ >zr*>57R.˧V6R Hэ^j@J=ro5BĻ~!$xZvYϔ*F)UppAaa'1d@  N7J,R#vT'!i:O-8ֶBbaȼhW ̫NsiVNL['~hGXl)I 2ԕg%Sz (=.g%.̗č:{K^m O6yAE`~ xB@=[?^8@G/4{_hӹH_"G-r29b{rVHf4&MPѦ毐;K]yY$vIJwm RMUܰHlS+6XoOT#I++&p"jn}Z[MͶvݝECXZgz^Lݞw)^R+lB۞gEsX cڭ26!oOC"K,گn,7 ΓgR endstream endobj 271 0 obj << /Length 665 /Filter /FlateDecode >> stream xmTMk0WhFG*! miʲVZCcYy#9햅ļ{3񸟤e&Oo]&C]]Mq>zwt߉Ǯ)n.pCx?nڽVgx=itO"i [\l\WM}'ԭ̚t4pXeȉeU oq yM\-CnCW_Ey}wP dZz891euB)] W-\v\]~[S!8&+Zce"'2Ɍ5I@|"B2AQhSlLء28a}ɑFq5ҍnnbfǮCG= Wܢe$g;A,:sx l=NOTƘ$0_س/vЧQ%~Zx pX2]$^qnaK??q FqMyc0=) &l(mi,3|d &\c ]͹&ӈ9w{d-tx\ \cΜekqLJs?<@>qhx .׷8wl~1V<*m"mmDa endstream endobj 273 0 obj << /Length 701 /Filter /FlateDecode >> stream xuTn0+Cl m8(zu$:`K$Q4pufn}f)ɻ|tùA<]u6m;O޴\+$ޚv}qff0(h$iƃ}E>.>ttPRJ(:X/rߴu&^!3PZM5^F$o߇7 V+1ؿһ`׮o7qIݞO!Znz/~N̿Z䄦buUWᴫ\k\r-Ve\[3sB A `ehHiJ }*>`!â)dHUA^UwEZK5h"uS/g bρ#)p̹18yi r<ܗ8-pN(T1 PUF9a*~0'ujE5z4jgǺ4QSkj sE8-_ZQY\2=<"NNL>9fѓ@D9{&&gnI0䑱Ӊ3 hxRE"7Yp/hJXCKH eR3ə$Sޛ{cYrwDz~ !G9Kûq_nY3/Bu{XcD~ӺԝE?zO,Fez~ endstream endobj 285 0 obj << /Producer (pdfTeX-1.40.22) /Author()/Title(\376\377\000O\000v\000e\000r\000v\000i\000e\000w\000\040\000o\000f\000\040\000t\000h\000e\000\040\000P\000W\000M\000E\000n\000r\000i\000c\000h\000\040\000p\000a\000c\000k\000a\000g\000e)/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20240501012651-04'00') /ModDate (D:20240501012651-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2022/dev/Debian) kpathsea version 6.3.4/dev) >> endobj 272 0 obj << /Type /ObjStm /N 30 /First 239 /Length 984 /Filter /FlateDecode >> stream xڝVmo8_ᏬPN !:KQUI˿qIC<3ό^#R RЅP*'X cDF-2әȥE^ iэP2!3'Q?$HH9ICS И nd PČ-B "4$Ӏ@M1ѐgF23d{+oK뮟2UZ^!OϫC{Y볏vwHzkn})`AHxoMJ'u'KnZkzlzGrȧs]hI/ЋC컷Y]<]'-r?UX-,˳ &rө\9{Ql,ẂđËro*Gm"s7Jc_ Z;`1M+>ntO5 )áj%|X,>$8UwkK:+h p!?;GQfTT,1er%~=6G`%Q MUPTf.0CMez"zp~T!ð  {dz?8 b?3} pc73[a+`ޑ4BU9VfNN>/,]"O^7ˮw azKdSuُ}\mmg7]WtͩG6?jgΞUm-ـ$VeW6=J1;#í鵷ڇGɇ{[n endstream endobj 286 0 obj << /Type /XRef /Index [0 287] /Size 287 /W [1 3 1] /Root 284 0 R /Info 285 0 R /ID [<19889CEC41385192444B2F68A68EE338> <19889CEC41385192444B2F68A68EE338>] /Length 728 /Filter /FlateDecode >> stream x%KQYSZ̙R;%gK2󖗼v9jEH!QdADH!P@z!zޣwaߞ33g<{Ip;cvsN$CYȴC34H\ r2 ӡYd,7AY Yr30i)-bed|·ne/k9OUklmdudyOVOf_Cv("J`^}FvڡUfU6ٲxŏ,ٲz݅uWA X6G$86HQ " -|NÄws^Yi/6IDmWImpjJ( b++Uh mP[mݠ-p4LC g-uI-)ZZm$|vRGMJ2ztRiR=-pvRBUHmIڤ~YY-!`ߜ)m %NG:-0N[r)MT:+CŸvN %Q'%Zz$jgV~+џW6IbMXI4 qkJ\iP$NbƓ+S%7R[K;798 >i a+l<ȇI_s7# endstream endobj startxref 1482421 %%EOF PWMEnrich/inst/doc/PWMEnrich.R0000644000175100017510000001132114614351231017025 0ustar00biocbuildbiocbuild## ----include=FALSE------------------------------------------------------------ library(knitr) opts_chunk$set( echo=TRUE,eval=TRUE,cache=FALSE,tidy=FALSE ) ## ----include=FALSE------------------------------------------------------------ library(knitr) opts_chunk$set( tidy=FALSE,dev='pdf', message=FALSE, warning=FALSE ) ## ----style-knitr, eval=TRUE, echo=FALSE, results="asis"-------------------- BiocStyle::latex() ## ----simple,echo=TRUE------------------------------------------------------ library(PWMEnrich) library(PWMEnrich.Dmelanogaster.background) # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel) # load the stripe2 sequences from a FASTA file for motif enrichment sequence = readDNAStringSet(system.file(package="PWMEnrich", dir="extdata", file="stripe2.fa")) sequence # perform motif enrichment! res = motifEnrichment(sequence, PWMLogn.dm3.MotifDb.Dmel) report = sequenceReport(res, 1) report # plot the motif with P-value < 0.05 plot(report[report$p.value < 0.05], fontsize=7, id.fontsize=6) ## ----stripe2visual,echo=TRUE,fig.width=4,fig.height=4,fig.align='center'---- # extract the 3 PWMs for the TFs we are interested in ids = c("bcd_FlyReg_FBgn0000166", "gt_FlyReg_FBgn0001150", "Kr") sel.pwms = PWMLogn.dm3.MotifDb.Dmel$pwms[ids] names(sel.pwms) = c("bcd", "gt", "Kr") # scan and get the raw scores scores = motifScores(sequence, sel.pwms, raw.scores=TRUE) # raw scores for the first (and only) input sequence dim(scores[[1]]) head(scores[[1]]) # score starting at position 1 of forward strand scores[[1]][1, "bcd"] # score for the reverse complement of the motif, starting at the same position scores[[1]][485, "bcd"] # plot plotMotifScores(scores, cols=c("green", "red", "blue")) ## ----motifEcdf,echo=TRUE,fig.width=4,fig.height=4,fig.align='center'------- library(BSgenome.Dmelanogaster.UCSC.dm3) # empirical distribution for the bcd motif bcd.ecdf = motifEcdf(sel.pwms$bcd, Dmelanogaster, quick=TRUE)[[1]] # find the score that is equivalent to the P-value of 1e-3 threshold.1e3 = log2(quantile(bcd.ecdf, 1 - 1e-3)) threshold.1e3 # replot only the bcd motif hits with the P-value cutoff of 1e-3 (0.001) plotMotifScores(scores, cols="green", sel.motifs="bcd", cutoff=threshold.1e3) # Convert scores into P-values pvals = 1 - bcd.ecdf(scores[[1]][,"bcd"]) head(pvals) ## ----tinman,echo=TRUE------------------------------------------------------ library(PWMEnrich.Dmelanogaster.background) # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel) sequences = readDNAStringSet(system.file(package="PWMEnrich", dir="extdata", file="tinman-early-top20.fa")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) report = groupReport(res) report plot(report[1:10], fontsize=7, id.fontsize=5) ## ----tinman-alt,echo=TRUE-------------------------------------------------- report.top = groupReport(res, by.top.motifs=TRUE) report.top ## ----tinman2,echo=TRUE----------------------------------------------------- res # raw scores res$sequence.nobg[1:5, 1:2] # P-values res$sequence.bg[1:5, 1:2] ## ----parallel,echo=TRUE---------------------------------------------------- registerCoresPWMEnrich(4) ## ----parallel-stop,echo=TRUE----------------------------------------------- registerCoresPWMEnrich(NULL) ## ----bigmem,echo=TRUE------------------------------------------------------ useBigMemoryPWMEnrich(TRUE) ## ----bigmemoff,echo=TRUE--------------------------------------------------- useBigMemoryPWMEnrich(FALSE) ## ----readmotifs,echo=TRUE-------------------------------------------------- library(PWMEnrich.Dmelanogaster.background) motifs.denovo = readMotifs(system.file(package="PWMEnrich", dir="extdata", file="example.transfac"), remove.acc=TRUE) motifs.denovo # convert count matrices into PWMs genomic.acgt = getBackgroundFrequencies("dm3") pwms.denovo = toPWM(motifs.denovo, prior=genomic.acgt) bg.denovo = makeBackground(pwms.denovo, organism="dm3", type="logn", quick=TRUE) # use new motifs for motif enrichment res.denovo = motifEnrichment(sequences[1:5], bg.denovo) groupReport(res.denovo) ## ----bg-investigate,echo=TRUE---------------------------------------------- bg.denovo bg.denovo$bg.mean ## ----custombg,echo=TRUE---------------------------------------------------- library(PWMEnrich.Dmelanogaster.background) data(dm3.upstream2000) # make a lognormal background for the two motifs using only first 20 promoters bg.seq = dm3.upstream2000[1:20] # the sequences are split into 100bp chunks and fitted bg.custom = makeBackground(pwms.denovo, bg.seq=bg.seq, type="logn", bg.len=100, bg.source="20 promoters split into 100bp chunks") bg.custom ## ----sessionInfo,echo=FALSE,results='asis'--------------------------------- toLatex(sessionInfo()) PWMEnrich/inst/doc/PWMEnrich.Rnw0000644000175100017510000005173414614305422017407 0ustar00biocbuildbiocbuild%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Overview of the 'PWMEnrich' package} %\VignetteKeywords{Motif enrichment, PWM} %\VignettePackage{PWMEnrich} \documentclass{article} \usepackage{float} \usepackage{a4wide} <>= library(knitr) opts_chunk$set( echo=TRUE,eval=TRUE,cache=FALSE,tidy=FALSE ) @ <>= library(knitr) opts_chunk$set( tidy=FALSE,dev='pdf', message=FALSE, warning=FALSE ) @ <>= BiocStyle::latex() @ %% colors \usepackage{color} \definecolor{Red}{rgb}{0.7,0,0} \definecolor{Blue}{rgb}{0,0,0.8} \hypersetup{% hyperindex = {true}, colorlinks = {true}, linktocpage = {true}, plainpages = {false}, linkcolor = {Blue}, citecolor = {Blue}, urlcolor = {Blue}, pdfstartview = {Fit}, pdfpagemode = {UseOutlines}, pdfview = {XYZ null null null} } \author{Robert Stojni\'{c}\footnote{ e-mail: \email{robert.stojnic@gmail.com}, Cambridge Systems Biology Institute, University of Cambridge, UK} } \begin{document} \title{Overview of the \Biocpkg{PWMEnrich} package} \maketitle \tableofcontents \section{Introduction}\label{sec:intro} The main functionality of the package is Position Weight Matrix (PWM)\footnote{In this vignette we use "PWM", "DNA motif" and "motif" interchangeably.} enrichment analysis in a single sequence (e.g. enhancer of interest) or a set of sequences (e.g. set of ChIP-chip/seq peaks). Note that this is not the same as \textit{de-novo} motif finding which discovers novel motifs, nor motif comparison which aligns motifs. The package is built upon \Robject{Biostrings} and offers high-level functions to scan for DNA motif occurrences and compare them against a genomic background. There are multiple packages with pre-compiled genomic backgrounds such as \Robject{PWMEnrich.Dmelanogaster.background}, \Robject{PWMEnrich.Hsapiens.background} and \Robject{PWMEnrich.Mmusculus.background}. In these packages the genomic distribution is calculated for motifs from the \Robject{MotifDb} database. The \Robject{PWMEnrich} package contains all the functions used to create these packages, so you can calculate your own background distributions for your own set of motifs. In this vignette we will use the \textit{Drosophila} package, but the other background packages are used in the same way (see Section \ref{sec:human} for minor human-specific differences). \subsection{Implemented algorithms} \Robject{PWMEnrich} uses the PWM scanning algorithm implemented by the package \Robject{Biostrings}. This package returns PWM scores at each position on one strand of a sequence. \Robject{PWMEnrich} extends this with a higher-level functions which automatically scans both strands for multiple motifs and sequences. The main goal of the package is to assess the enrichment of motif hits in a sequence (or group of sequences) compared to a genomic background. The traditional way of doing this is to use a threshold for the PWM score and count the number of motif hits in the sequence(s) of interest. Since this converts the sequence into a binary bound/not-bound string, the enrichment of binding events can be assessed using a binomial formula. The \Robject{PWMEnrich} package implements this algorithm, but by default uses a lognormal threshold-free approach \cite{stojnic_2012} which is related to the score used in Clover \cite{frith_detection_2004}. In the lognormal threshold-free approach average affinity is calculated over the whole sequence (or set of sequences) and compared to the average affinity of length-matched sequences from the genomic background. This approach performs better or same as the best threshold approach \cite{stojnic_2012}, with the added benefit of not having to choose a threshold or compare the results for multiple thresholds. We will use this threshold-free approach in all of our examples. Please consult the reference manual on how to use the fixed-threshold algorithms. \subsection{S4 class structure and accessors} As the \Biocpkg{PWMEnrich} package builds upon the \Biocpkg{Biostrings} package it uses the classes from this package to represent DNA sequences (\Robject{DNAString} and \Robject{DNAStringSet}). FASTA files can be loaded using functions from \Biocpkg{Biostrings} such as \Robject{readDNAStringSet}. The package introduces a new class \Robject{PWM} to represent a PWM together with the frequency matrix and other parameters (background nucleotide frequencies and pseudo-counts). All motif scoring is performed by the \Biocpkg{Biostrings} package which is why the \Biocpkg{PWMEnrich} package also returns log2 scores instead of more common log base \textit{e} scores. The results of motif scanning are stored in objects of class \Robject{MotifEnrichmentResults} and \Robject{MotifEnrichmentReport}. The package also introduces a number of classes that represent different background distributions: \Robject{PWMLognBackground}, \Robject{PWMCutoffBackground}, \Robject{PWMEmpiricalBackground}, \Robject{PWMGEVBackground}. In all cases, the classes are implemented with a list-like interface, that is, individual pieces of information within the objects are accessibly using \Rfunction{names(obj)} and \Rfunction{obj\$prop}. \section{Use case 1: Finding enrichment motifs in a single sequence} One of the most well-known example of combinatorial control by transcription factors in \textit{Drosophila} is the \textit{even skipped (eve)} stripe 2 enhancer. This well-studied enhancer has a number of annotated binding sites for TFs \textit{Kr}, \textit{vfl}, \textit{bcd}, \textit{hb} and \textit{gt}. We will use this enhancer as an example as we already know its functional structure. In order to predict which TFs are likely to functionally bind to the stripe 2 enhancer, we will calculate motif enrichment for a set of experimentally derived motifs from the \Biocpkg{MotifDb} database. We will do this by comparing the average affinity of each motif in the stripe 2 enhancers to the affinity over all \textit{D. melanogaster} promoters\footnote{For more information see \cite{stojnic_2012}}. These background distributions are already pre-calculated in the \Robject{PWMEnrich.Dmelanogaster.background} package which we will simply load and use. See the last section of this vignette for using your own motifs and background sequences. <>= library(PWMEnrich) library(PWMEnrich.Dmelanogaster.background) # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel) # load the stripe2 sequences from a FASTA file for motif enrichment sequence = readDNAStringSet(system.file(package="PWMEnrich", dir="extdata", file="stripe2.fa")) sequence # perform motif enrichment! res = motifEnrichment(sequence, PWMLogn.dm3.MotifDb.Dmel) report = sequenceReport(res, 1) report # plot the motif with P-value < 0.05 plot(report[report$p.value < 0.05], fontsize=7, id.fontsize=6) @ The main function we used is \Robject{motifEnrichment} which took our sequence and calculated motif enrichment using the lognormal affinity background distribution (fitted on a set of 10031 \textit{D. melanogaster} 2kb promoters). This function returns a set of scores and P-values for our sequence. We then used the \Robject{sequenceReport} function that create a ranked list of motifs, which we then plot using \Robject{plot}. The first column is the rank, the second shows the target name, which is either a gene name, an isoform name (such as ttk-PF), or a dimer name (such as tgo\_sim not present in this list). The next column in the plot is the PWM logo, and after that the motif ID. This ID comes from the \Robject{MotifDb} package and can be used to look up further information about the motif (such as the motif source). The next-to-last column is the raw affinity score, and the last column is the P-value of motif enrichment. As we can see, the top of the list is dominated by motifs similar to bcd. By further examining the list, we find we recovered the Kr, bcd and gt motifs, but not the vfl and hb motifs. These two TFs (vfl and hb) have the smallest number of annotated binding sites out of the five TFs in the stripe 2 enhancer. As a result, this affinity is not large enough to be picked up by motif enrichment. However, the other three motifs were picked up. We find this to be the typical case for many enhancers. \section{Use case 2: Examining the binding sites} We continue with our example of the eve stripe 2 enhancer from the previous section. We now want to visualise the binding sites for Kr, bcd and gt. <>= # extract the 3 PWMs for the TFs we are interested in ids = c("bcd_FlyReg_FBgn0000166", "gt_FlyReg_FBgn0001150", "Kr") sel.pwms = PWMLogn.dm3.MotifDb.Dmel$pwms[ids] names(sel.pwms) = c("bcd", "gt", "Kr") # scan and get the raw scores scores = motifScores(sequence, sel.pwms, raw.scores=TRUE) # raw scores for the first (and only) input sequence dim(scores[[1]]) head(scores[[1]]) # score starting at position 1 of forward strand scores[[1]][1, "bcd"] # score for the reverse complement of the motif, starting at the same position scores[[1]][485, "bcd"] # plot plotMotifScores(scores, cols=c("green", "red", "blue")) @ Here we used the \Robject{motifScores} function to obtain the raw scores at each position in the sequence. The result of this function is a list of matrices, each element of the list corresponding to an input sequence. In this case we had only one input sequence, and as a result we get a list of length 1. The matrix of scores is a 968 x 3 matrix, where the rows correspond to the two strands (2 x 484) and the columns correspond to motifs. It is important to remember that the scores are in real and not log space. In other words, a conventional PWM log2 score of 3 is represented as number 8 ($2^3$). The scores for the two strands are concatenated one after the other. Therefore, row 1 has the scores for the motif starting at position 1, and row 485 has the score at the same position, but with the reverse complement of the motif (i.e. motif score on the reverse strand). Note that there will be some NA values at the end of the sequence (e.g. position 484) because we do not support partial motif matches. Finally we use the \Robject{plotMotifScores} function to plot the log2 scores over the sequence. We colour-code the motifs with green, red and blue. The motif hits are shown as rectangles with the base being the length of the motif, and the hight being the log2 score of the motif hit. By default we show all motif hits with log2 scores larger then 0. The forward strand hits are shown on the top, and the reverse strand hits are shown on the bottom. We next might be interested in finding the P-value for individual motif hits so we can get an idea which sites are the most important. To do this we need to calculate the empirical PWM score distribution for single sites. We did not provide these values precalculated because they take up a very large amount of memory. To calculate it based on a set of promoter, we will need the \textit{D. melanogaster} genome sequence. Because the objects are so large, in this example we will determine the P-value only for the hits of the bcd motif, using only a small subset of promoters (controlled by the parameter \Robject{quick=TRUE}). <>= library(BSgenome.Dmelanogaster.UCSC.dm3) # empirical distribution for the bcd motif bcd.ecdf = motifEcdf(sel.pwms$bcd, Dmelanogaster, quick=TRUE)[[1]] # find the score that is equivalent to the P-value of 1e-3 threshold.1e3 = log2(quantile(bcd.ecdf, 1 - 1e-3)) threshold.1e3 # replot only the bcd motif hits with the P-value cutoff of 1e-3 (0.001) plotMotifScores(scores, cols="green", sel.motifs="bcd", cutoff=threshold.1e3) # Convert scores into P-values pvals = 1 - bcd.ecdf(scores[[1]][,"bcd"]) head(pvals) @ Here we have used the \Robject{motifEcdf} function to create an empirical cumulative distribution function (ECDF) for the bcd motif score on Drosophila promoters. This function returns an \Robject{ecdf} object which is part of base R. We can then use the quantile function to find which scores correspond to a P-value of 0.001, or we can use it to convert all the scores into P-values (not shown above). To plot the individual motif hits with P-values smaller than 0.001 we again use the \Robject{plotMotifScores} function, but now we apply the threshold so that only those motif hits above the threshold are drawn. In the last line we find out the positions of those motif hits where the P-value is smaller then 1e-3. Note that the values larger than the sequence length (484) indicate the reverse strand. Therefore, we find the four strong motif hits at positions 90 on the forward strand and 110, 354 and 475 on the reverse strand. Note that \Robject{plotMotifScores} can also plot multiple sequences on a single plot, and that the \Robject{cutoff} parameter can contain a vector of values if we wish to apply different cutoff to different motifs. \section{Use case 3: Finding enriched motifs in multiple sequences} So far we have only looked at motif enrichment in a single sequence, which was able to recover some but not all of the truly functional motifs. The power of the motif enrichment approach can be significantly boosted by performing it jointly on multiple sequences. For this example we are going to use the top 20 ChIP-chip peaks for transcription factor Tinman in \textit{Drosophila} \cite{jin_genome-wide_2013}. We are going to scan these 20 ChIP-chip peaks with all the motifs and then compare their enrichment to genomic background. Running on the whole set of peaks (i.e. thousands) is also possible but can take a long time (i.e. tens of minutes). The speed can be improved by using multiple CPU cores (see next section). <>= library(PWMEnrich.Dmelanogaster.background) # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel) sequences = readDNAStringSet(system.file(package="PWMEnrich", dir="extdata", file="tinman-early-top20.fa")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) report = groupReport(res) report plot(report[1:10], fontsize=7, id.fontsize=5) @ As in Use case 1, the main function is \Robject{motifEnrichment} which took our sequences and calculated motif enrichment using the lognormal affinity background distribution (fitted on a set of 10031 \textit{D. melanogaster} 2kb promoters). We then applied the \Robject{groupReport} function to calculate the enrichment over the whole group of sequences. This produced a ranked list of motifs according to the estimated P-values. Then we used \Robject{plot} to plot the top 10 enriched motifs. The first three motifs are very similar and correspond to the tinman, which is the transcription factor for which the ChIP-chip experiment was performed. The first five columns are the same as before (see Use case 1). The sixth column gives the estimate P-value. The last column indicates the breadth of enrichment using a 5\% ranking threshold. This column helps to differentiate cases where the motif enrichment is strongly focused to a small subset of sequences (in which case breadth is small), versus being more widespread but weaker (in which case breadth is bigger). We can also sort by this column: <>= report.top = groupReport(res, by.top.motifs=TRUE) report.top @ This ranks motifs by breadth of enrichment, which is calculated by comparing enrichment \textit{between motifs} in individual sequences. This measure only makes sense when applied to a large number of sequence and when scanning with a large number of motifs (>20). The object returned by \Robject{motifEnrichment} has more information in it, as can be seen below: <>= res # raw scores res$sequence.nobg[1:5, 1:2] # P-values res$sequence.bg[1:5, 1:2] @ In these two matrices the rows correspond to the different input sequences and the columns correspond to motifs. The first matrix (sequence.nobg) contains the raw affinity scores, while the second (sequence.bg) contains the corresponding P-values. If you are using a fixed threshold background (e.g. scanning with \Robject{PWMPvalueCutoff1e3.dm3.MotifDb.Dmel}) the first matrix will contain the number of motif hits, and the second the corresponding Z-scores. \section{Using PWMEnrich on human sequences}\label{sec:human} Starting from PWMEnrich version 4.0 (October 2014) a new algorithm is used to better fit the background distributions in human sequences. The only difference from the usage perspective is in creating new background files - please make sure to set the parameter \Robject{algorithm="human"} in \Robject{makeBackground()} (and other related functions for creating backgrounds). This will instruct the function to fit separate parameters for different sequence lengths. The sequence lengths are obtained by multiplying the parameters \Robject{bg.len} and \Robject{bg.len.sizes}. The defaults are \Robject{bg.len=250bp} and \Robject{bg.len.size=c(1, 2, 4, 8, 16)}. This means that the P-values are the most accurate for sequences that are in the range of 250bp - 4000bp and the closest in size to 250bp, 500bp, 1000bp, 2000bp and 4000bp. \section{Speeding up execution} \subsection{Parallel execution} Motif scanning is the most time consuming operation. Because of this, the package has a support for parallel motif scanning using the \R{parallel} core package. Note that parallel execution is currently not supported on Windows. To turn on parallel scanning, simply register a number of cores available to the package: <>= registerCoresPWMEnrich(4) @ After this command is executed, all further calls to \Biocpkg{PWMEnrich} functions are going to be run in parallel using 4 cores (if possible). To turn off parallel execution call the function with parameter NULL: <>= registerCoresPWMEnrich(NULL) @ \subsection{Large memory backend} Motif scanning can be further speeded up by using large amount of memory. If you have an access to a machine with a lot of RAM, you can switch to the "big memory" backend: <>= useBigMemoryPWMEnrich(TRUE) @ From this point on, all motif scanning will be done using the optimised big memory backend. The memory requirement depends on the number of sequences scanned, and might require tens of GB of RAM. To turn it off: <>= useBigMemoryPWMEnrich(FALSE) @ \section{Customisation} \subsection{Using a custom set of PWMs}\label{sec:custom-pwm} Background motif distributions for a custom set of PWMs can be easily calculated for all model organisms. We will illustrate this by creating a new lognormal background for two \textit{de-novo} motifs in Drosophila. To load in the motifs the package provides functions to read standard JASPAR and TRANSFAC formats. <>= library(PWMEnrich.Dmelanogaster.background) motifs.denovo = readMotifs(system.file(package="PWMEnrich", dir="extdata", file="example.transfac"), remove.acc=TRUE) motifs.denovo # convert count matrices into PWMs genomic.acgt = getBackgroundFrequencies("dm3") pwms.denovo = toPWM(motifs.denovo, prior=genomic.acgt) bg.denovo = makeBackground(pwms.denovo, organism="dm3", type="logn", quick=TRUE) # use new motifs for motif enrichment res.denovo = motifEnrichment(sequences[1:5], bg.denovo) groupReport(res.denovo) @ We load in the count matrices and then convert them into PWMs using the genomic distributions of the A, C, G, T nucleotides. Next we use these PWMs to calculate the properties of the affinity distribution on the set of \textit{D. melanogaster} promoters. In this example we used \Robject{quick=TRUE} for illustrative purposes. This fits the parameters quickly on a reduced set of 100 promoters. We strongly discourage the users to use this parameter in their research, and instead only use it to obtain rough estimates and for testing. The resulting object \Robject{bg.denovo} can be used same as before to perform motif enrichment. The background object \Robject{bg.denovo} contains the two PWMs and their background distribution parameters. All of these can be accessed with the \$ operator. <>= bg.denovo bg.denovo$bg.mean @ %$ \subsection{Using a custom set of background sequences}\label{sec:custom-bg} Low-level functions are available for constructing custom backgrounds. We start with the two de-novo motifs from previous section and fit the background to first 20 \textit{D. melanogaster} promoters. <>= library(PWMEnrich.Dmelanogaster.background) data(dm3.upstream2000) # make a lognormal background for the two motifs using only first 20 promoters bg.seq = dm3.upstream2000[1:20] # the sequences are split into 100bp chunks and fitted bg.custom = makeBackground(pwms.denovo, bg.seq=bg.seq, type="logn", bg.len=100, bg.source="20 promoters split into 100bp chunks") bg.custom @ The resulting \Robject{bg.custom} object can be used as before for motif enrichment with the \Robject{motifEnrichment} function (as described before). \section{Session information} <>= toLatex(sessionInfo()) @ %\bibliographystyle{apalike} %\bibliography{references} \bibliography{references} \end{document} PWMEnrich/inst/extdata/0000755000175100017510000000000014614305422015776 5ustar00biocbuildbiocbuildPWMEnrich/inst/extdata/bg.seq-test.RData0000644000175100017510000025113114614305422021052 0ustar00biocbuildbiocbuild Gu0\=;ZVC궬-XK}Zd˖j̬ٙl\B$@ $!܄&r}!'@B@_UwtJ+g~W^zUuݶ6!DHhgޱ! #&a뉁L%wZfi1s`X=|v(g?v m-MrT*fBRNu^ 1݆_0S]D2e%J%d2LOd²%R Jvece҉ND,x,$A X6~*4R~P ؔб_&!䛂G g'7I po'@l)v.ɤ[P3҃(k},5@)I++K! dr(˔SNG) c '%9;T6ea)6;dRNar)i9Q@~vbH)ج$A&o]>(#g9RR/_(S@X 8UYKA$r!6tTˑ*)XR`:rdmٔuѻ,0n9j;قAU82w'(8ҀRӖ65-'!)w s447d.dBS2)tHZOJ6JR'KKXp4IGc%pJ++ $J LIQ@Zh G!&>!I$e2,|9qG:RR+PN:Eͱ.=:X G-?)G[ASzZM9#y998/'{Yvh@IQ8 :y%%%Pꎕt J#!4rVj!: S`e}F[MmBpK&QN dqDR>Jq9 X6rR#֞LHͤJCg%v̤l+ KNvשYl",gJ*)N":[ )GJc8:0A1/0QOX*Rwl&CPĶ4K݄B6v! jq `sK9hc;>%vf@:D!+BK$QR8rlVU)ir-HIݥcɝh7EtJҩmeII{hSe9 {*+9}N\$,/:>u{i84#ބcR4hIḺ3$CqD"E &䄎˂\'ؘ$_R_n%E崰hd˓hI_S)I@GLccaOaɖ);W &\%6+U!D\K#EE@3L0pzo|;IDR: N#|XOΑY4yB ON{I6 M;)ʙhl8 OI9ƥ}LR4S_KFniNz$VUʚ|^<҄6zK'}㔜#+!LI#w^Iv4e-&0~LrTDѽ=,IqJeOəٔƖM&Qxq&-r'e. GrC8i+S5  ǒn//O¯WIZP$UR Cw=ҀHY&S8K^6$ZL`'}@q1AUv˯uF$4ul )o8.8l&-wV M4I$ -iALys8vܣJӜq%JRN~)I# 9Ern!"{$gtlPIR1.Ө7Ф0>%pp ozӳ 9䨌4a2ٷ;fpF)&eQ˛\Y͔Rd͡a{N?ߘKYr^ -:nDl9l*P9L+*_l,+[ҢQND~* )T6p\/Nj8ta)h))-EpJI&JG/ٴ$nBNSS$YFS&5刖rT$G O2ΆXZ$!),2h,=P$N/}IZ8CDOUꇴSLg[{ M9BxݽޓK'V%uI!1Lj\ddVex@k.f3.W+%I|1_ݙ+^;E t쟿ԢZ2|Pfmx#ParxR%r$X7ilR6t6,Odm{1\܄6Fc'7 xoiNrwcހ 9 ?;v7܆Žh-Ű iFZ0] b{)/TV }bz;TfEkXTyj=%K4̎qJՐ;Ðޓ5d@-Jw+\\V5!\q\@EVg)!\?- @Z͝r%j +dz({_v Jŕ|1-ݷt?Jz!t/׷\;BV] 5->z1]yK|c}[8C[ӛ9RYa+墁!TjiHÝ.sK߳띗㟖@]+\UOle4v. a}Pӥ*b^n~mB!;T!W"""y5J;K(>H Km[픐Ru,L,R33yS*VԄϟ[Uei#{a'-J} <ϳ9%g3 w#}nͺ?(ve9/N C[W]3C]ž,?dS^-ZOI'+f@oX湔O|;"/]EE<=#B:EyLϋ<&`وۍiA1]xl-qB2.hɏNs WYRyf6 r%{|ڜo]a ϳ$o(bMMLؾL>/M'Nӛ+F.Jӛr6.%hf=8OM37b>`<@|Gr:b`{ 0l f2o ( 8$drŠxʗ>ze|VE (.ۤ!>r\-ӓCӓPe "1gΞ(伌252e2Xk|~8K5[Uҥ#k_dAgK>@Ǧn$xJ~]DV;/}` Z5> FU&W" k $bS+#H `^; A;7y+lHZ^W &X6 ^H ^VI՛v8$e13߳ZcǍJfr6ɗuZʥj*VLyͧ2^nc2> ["PJl/w*Q*Tgy+&%Qu|"ť-V툤xOOfXkޓY#!ĚuwG+P=Rwӂ(NW}FreNլ=~B0seJ7er!2jw՞xʶ }RdEPpc8`gLԭ}aLzip`,Vs.nK9{E]0{^\- e,(.-P.f CU`'j znՠ_}G&T j9OE-gBF'oGkP+t-s?Zw'Je2*+{ X ~Xne[đ\zۓpvX49L*1ܠU L˳?^8y /ш}2e`qJ NVo9zR}$ęƽ4WdO̹SɁ$J ٍI.BNCJ9w;#\~sC7 <|$X٩ lVVMK4k8M`/^DWj9rbZ\9 #Pk ђ-`w rk5΃;U+jfyieKc;t>: 6<0| ƩKoj*&㜇mΜwD?]&{jPk .CB]O\kW7 `SQXYFhAm[^6{[0oa5 iMeD[x O~7eMxsFF?Ob[.@E.F,B2Ĺ+1\xQ7UqވMBz|Bw:!}m)KD"mn7ey;kj=?mښ Lta[m u>^Hn1mxm-Q6Wۡ О$Z!ϯSݥ?T:]\mb>LY=^FHXh;ji&t]&Pzm+Zqږ|gMNuՇX-{J6t -5lL;y|Aϸf =㦒Ux+hSMf OE,h#-YmhyM3sP6ud=YZ&@/ (wsnx.է%mXu-EҴG$wPě"~KWXl]d|=OL !ߎWF |e땖,+z!~ѾCu@x !?EBYkK;Ω QSqjCtCI͔V䑏L ɀzB(dSo3 h +ր ǀ!.v'GwXDCc,^Kv@y&̅?~?Mkl_,N dT3YI~_~֚s2&ɾ_r8m- ^TB}H'>a4LkԩE*DWwE[˼藟WyEY b kr#W҄l%+N`E쨑l~9`Ϧ%eUe铹"jDlo^IjI^x^%$ Z"^)tj!(H{swf^WeZ!<ᾚ~Q|O *s֙t`RqAY&0Z'8~}Jg֞qo!|wh3_'l9. &܁-F[W>za`!_r8|O،[rbwd #b~ijOױ߇v1z߈Bvuw$#Svߍt7h]CܩRKhjeoq2t u-L  ;A`B/mp&b$f;0^^7f 훘g훽g훼+{g 9I~NUTBS Q|rݠsp$(-cE#z&s+>Yn#'ߥ甈7)_tDoEy1):Plk ULow2:֦|JH}:%0??^xn|Gƍ(u󿖥 yqw둟5 60'!,o4(zZ~Cu@UM1w:c+-;572;E̮Ʋ>o2tފ0iмOt~1MLԳsLg=W˖*NWO}#o؏K~P}%?{K~xc,/J ?Rw8*kJ{4ٿ9P|Ien8Qa ]S=NPA_=xmrmx׍v'GLkWe!*C"92_فSka4E۱z3BI:E96qyE'#iJ/{6paGғ/rOc~l(sΟ8[Y*oX*i8TRqe17OArs*/e`y򕌗:,(& T7ꯜ̖s}jJ7vRm6Um%ԗsLRsˮv8iH)ZCzy/CAz *7Fg -P %5Δ%?eӡan@*>kBeNCC>7kl9-::]M✺KYCL!!#ff'3CT|ځ)z*:ܠCU|H}v$;\zLsɕp7l%ѫ;bpjd+!-_dtN+8.ME<-Dh|xy-v 3cDZfZm>hgk; DR' D}q,]C^i)l0lBNMe}eO}߳gks߳'xO3l G=ߵA|09]gڸ z mrN3ԽY)u.0c˱Mak}9Ʃ7trYic~N q39;hisXu^&a҇r8 ;3k~M,ͺ/oKyzR>Ws΋vv;ON]SrP=L?Lw?MsiC^iW9?={;/W-Zg[h9,?_=+kq\%L ey]ʳܣ讧kj;+%gsA棵O1:iGM L_2T+eʹR7_D.xy(ri(W1U9ɹ{k?IX ~Q׶aP׷Sz $}wPלϓ͛$6[#B301-w_/CÛ0\nDL>6z l4;l1fG2%O;mmz>?.pnE)k ̡M'<ߐS+ȳWb%)d[xҥwmVx`Bzyaد?ewmayg_lYX۰XGCޏuURGȯmBaUIflz Owvdw"0 | j[}zN3i!/@GBh?4@^=v̦R%"׶Ɉ$>8/C/g|9o`W/&OM{eeǬΠ}[`~-<=]u,mX mDt6#ͣiLm-6UȽdHc}Baw`?D ՏDV(wm:!Զ^Vvʧ34Wh}8$<(ob$,$15y{G mI G^\.%|)W6/BO#g篑gV;#llw]B56|YȾKZzϠ5>xKpz lBo"z;Bշc0N)߉`}a {>)Cw||8@˅*O? vV@?Ey|zl1c>pue& OYoa凴w >2? |ϟ ~a+5i7!]Ζ{E>~{ {^qĎI%Z-2+)[4~BrW0kyK^.Ja^ekW7.pehՁ/oΧ"E`;7 ieZ$?q5yI\/Y?n7vn]h_wH<, gTIUwkP:5ȲykZ@]CHgJWqŨSKE(K[-0Ske%IG|~:o-IlP9"$.qkۃ B*59vmF2F'?τczcdH'o I&'y!]Ɇl¸ZI9NJ}i:?;J F?zr{[Xܲg8Vbxepi 9yGq1` 1ԑ#6oeN#X:ݘ& L{P|}Oc6yqe~?$)yzu2C١߱۲s?у+Iwy''tyfh ɷÙ)Zz7URMK V[*v8.nDZC0>Wxyt$_& >- k 2VV@j+ /Kf0%4_ A~!=ķJqk[H}RyRTeP\ԩ/4)"^^p/^h]*s}aܰwWO;eL/VV54~W2/,JХ`VpIt*{ oj`2:Ț*n5^_EOqDx Reo!0-}68CM?_K( ԹTS8,MM>uT/\Kl=ΩM9d2ޒc$GaͿ;wSr2/PxZ0r M ^KjFdaK(LMt}JoZz)3Ɏ7 nJ|+\>+競_. )5^- \kp oT"/z!Ŀ\iw|.|g\{>"qgO7f /FjMʩQ(tzgf.!5tBׇ:y\sR㿯7SP~қi5^s઻8?Q}gx0A\Z=H0XY6[y3.JNuv} s_h s}// D? H# +jqDWU: LVIBm( T\7V)OsS=&ADNFϜgƺIGmI/yI(גyrpe~y!\-W;-q,T8= C)N{4|g;yvrhd.'0 91.=Fc۪Xcӗ<.y,&?.hX F#_ T1\" b+0\2 bBx=+<ޝڌoR)z^M=0F.ߡp|-zk0ke\Jw|o1LG;'{#K!n;y|~ qky«hZF 8LE>9 qf(6 ߨY ,0ۄF YDո#) OQ֠. cI)b9nS)Whp Û1܍-Wē^qAI/#}2);"',GOEj 2=$82t0ⶏcxbx;0;e1[{z| =߅aAzy,X;֭ HžS`y:b-*4;0o4yZ8U"S*B88m٤3Hc +g6u US 9B!,O(QKL*wxOtM +§ߨ'E ѽP}yezds'3(=wuP=ָ(Szƒ? (>$?o\/N52_W~ 1VjX[ sN[=锨mj}=-#ֈʳ> $1|xGjM|eD\4~Gkrd$O bm5@ ?1| /P;xB ŒG|ç/7DmԂ_)o h;#ߌW/EF;×c*V)"s8 V a0OZ3["i@Z>4j1z".U<^ zkE}k(8|G܍%}fy~^'s^@i?Rm?DwJt?0= _1} M"aidQ`F,39[VQoVܴOn_<.Ԍ]v&Ǹ3k.o|?6w y w waN H4fG۬z~Uy}>m'~|zsɍ DW@!^,< r-Zcd4}H?,KO9\-BnU@~?Ə%Oȏ's?IGegG0s ?_`~BsNP5|*!05 LEBt:͏/p(^;^ºp/X]$g! Zh#j#?R؀*/sq'qD>/#N_y9³{ pQޡQCK f!/ 6j#'qלs4/AƄoҥeGՌdrip.jg"BA/#gC_`K~:hA0_OÈC3W`q\h, G5:9XQw]|GXcDpFm #E3e|-jcRFP.w]q\| ZC`5a n;T3jl;܈0Ga)2,cpg+2kFVipcD`=F6!lf@[lE&Y+;B ] v2؍@{ bp =ap18&v۵q:p3 មp^9 { 0@yj@ xlG;`2Y"<@fH<@x  vR/ W0x9o 7^ * ^E]ҼBM ^@o70 #{qDiH@ E ,SBo/2—;2 |5f 2z@ @{5G. ߟ gGE''=3¿0 z&NA 3#/4~/tH ^YJ2YC@bЉ0A7´:T3C`6Ma029 g.d \3.WY==r Հ ",3Rn9+C oSk% *糮8FcF!\_\ZǍ Fd>6"\5&-q[lF8*mv0 |zf]- }:8p5N¿=5!p~5oA2LT;lXur }ɖٳ2m/#u{ecDTZ*`f8@tz&>s|/1{2[VsYDؽB/Vs.nK9{yBQi)Z&Eυlq`8;@LO˥",p_*f CU`'jw.p YZM<;gWp9g=RV,߶)7ABӯu+I.ne;}2JeQѕ NÅmo/Jx`~2B_MZ 0]o8+:5Jl/ BX& U}oeׇ$kُ`B\dNGOYJϕ~PȨ/2]w0zN9"[?P 3]7"4D@ıy:~=@ӅI/ioр2t)xu`ײtv|8™{z>_p nypq:HOt_Rxi?aCߢ;k~&=q* Lz}71Ջtv脕[sB=xVp7 ^}z<'DI.ū) 5Y+/a(0:?;'%4n Šp[az^ԥDhewMmml5]tٚ.[]6m"igL3x|`f{1ML7/Yo25GUT|ptQ5- ]H`\0[K@ GK!^Û Ta?v ϕ' ok#4ͅHg* &ky㙬LTF(F̃ܡوa4g>G4,`eZ,`|.F%Bu]N BV [_t+?W!?ă5Z'Vk?% w=-+4. L\V27"Mv}˾EH/l1:7xvy'}߅x`l!\E!WDzy|#XV$-q;1aV8w"#g1]50Oi@Z텘rB˙o!A WA X13ȫ!S0kwXGUYCnߠ};+V,A1߇|l(N.<<=={̦v3, {~*a jiDq_r O"O/P չAf9+˰춝K|_xS{Pm>o"DZlk:B^yC ZkD>67_<6;Ax yNLa-~pq[,[wq{VfA"~. ߍ#,;1{X1yxz/?#v~i@ȶ}ؑ0dSvxPgX}}yr~ÿ1LӯObڿ4g0,CFOX>vy!>1_b2M\ވy|Վ,5_&tη1 =Ux ~:=xC,k6)I++>,؉Ly)SRXw))!_jL16C9+6E3Mצx8u(SX@MTwAP~|0af=NW).s~&go9=z~SU5Dwʿۜ>=i1" 3|gkYjf9A98T>/3ߣ?Wקj\ <5~kAt1 3.5> x[cTzb5Vq\"M_*:/a|e/WuZ]!zpBXVƔCFd7rZϮ 0/sM ~W߫51kU|o{P ; ZgVՐfe~ r[575ʷ\>C"{E:?~QdZj: $"Xߝmi#1H9U|}_}j0 xw]MP膅Nan`7 cXbF9:"\"`0qސ2zl垸u{Jjez57;PLkfh Xܜ5z[3T ?_Dlv?d!?12Ko!\ż@UQazj+ΡRWm3H =6iTPo$X|_nr y/fSVM-ņr2+XZm\}2CK GkKx9!. Z$j{RDx|m%!sP63͠ɡk65 {d8r+ap:=iSmp <Êi98>mJbjz䧽XطccEG#z8xqksǿrhd:@w +c/л\xJ]B9;D~lKxȕlq?6f96|ލ[\5&z]]hpC̊@younƁ@*z0܊6 w`-ތN wcx \Qy0yIy6>d VW>&oJw.K"sԛ]'Mc$@$EWYo +=oxoL4. y5h%/'!z\_T{0Cpj( 5X`+uHޅ['sqN>ց򥿰֤(G^'rBz,yϭc߭iDO9 =e4ཝFF49).s* q/ ð( C{y}IҼ"JkҗEZ[=V"EU+a c8,ϤU OcxcP{n;L3γ<j1v9YѸzzg0|bx Çd(cx.ns [w7=_cRǭdz~<\E;";c4 [E zo{S(/6Pq'0|/9S#z)B]B> [шixP`H՗6q~9Z >SO6)I@A3`~uBWa C`!XʀF,A+ 0Xp5*A32ca: 6`-!];lC2- `/> v#`@|a=5("c58b J[@xPJ (!r 0x^  obi7k@oa@KocVz~wF?f 'z~Ԁ#{?E0"'| 1S _d# A7b|dž"?B`꘸״s%l] w:~;0 gHW(Wڴs{]i$tTI՚*58Lٳ[Br)J` $m9܉k/B(/5I6 a+!֒uUre'QىgY0gv k.TH[v9BOe ùrnՓP|=߽ݰp c[o~ }r)=,ߟΖ |%;cUxf!ɉ|L:}I&TT̵! r6#^ykΠ^TnMJп"}b p4\K Nj!%˸<=l{Ƹɼ*.je7eW/eq[,b:5C9ӶDNkCd6s6륛l/-'ΫDh*ŶLuGQ,_ #8y;#j-Qe'ևi2@Jk "hxlRk;s+ Ne5)Jn*vP=/cix#1Eͱ##\048d7\6='\%_)=^fSQ|8F@xNeZ=dc?~_ 2}- \Pg5nqg !M],䪞Kb(SiH`FQBD/c^uTU[U\u2?pre%oRٕgn\uh̪̪lblԯK4Q*|CqvV!=Jiܛۮش8NcT\D? j'{"We# Dǟ.p9ۛ1\셞'}de2}4AЃ}(1fsoso=~)N(92vf97Tse⍓ 'qQ|'mjO%ڞݫ"%okr4dzKCgA'6c7Q+zeʌ3}9g}TW={yʹR7_(Y@NCT=;Dh3/)JMu?/;ss8Tľ&s2bN ӜwonjaGI\|ln.vKCc[i{pq^9bmWOTp5Gj<ઈԅՓlEִR2,vPOՕC;ښMl5ƲUW>Tn*%ML8U$;&>=ӑ|X*f mE"S|}AeL_z_(ؖS^wHH9g9kOd+זʼjDk$QW=͐~k ,d:ժ7r* y:`Ԇ6>juTrv8/Wd*tcNfe`&W:C&KmF,=:Ze9[dL3bh}[4'@a0S.x6ۆTtî(ICXn[v=tۄvl4]s!+ En峊qdS䝶+p[.m,gցNڶGa+]3uH3^֓*٫iS,gɛPCS*ƴ̾\/ġʁHɴzׅso=6onkR\v49udAmd>뙒]onLϚAW߸g95'ȕ57Rzg\edO٩ 'N~mQl Ng{xG:Ő񝙪SI l_YG')vAP]eX3)O$o8nTUMsQ;ns ~FkшSm{ͮǙs VP:-o[l#gڠ9j;(zSplczQr7SMLR\aPdL.%!'r]8T$cfj|2kF_;jKwFglDqUkq3+I%rT4J^SUSIh.=*SXdg>]撍!g}J-R|Pn:-+DΖRYOW&{={uHiyÁ>\n_;h_:ssjf\wro_Ǟ->8YVҺv98,dÞG+䋹l9@OmMCI eHRi{iL+8syݔ՚SeN2b uf!U8-R !앆ߙ,F`@޳"S2{⚵ͺY4ڛ-jx7o*9pCT 0SOff9wu+SɁʉr V* `)`@8 !$>uߌ[#*yi+-p۰|xü!GLoݮg;[y#<'$5H/Sg;| sIQKqNgd'åal{m9ڝ^O5d2mV)W3O3VJe ݞ93ԧݭ./ WN6k( S~2LʝI>EjSqn ug)SwMGg zqo6"5#]_+w癴N3?oГҖϻ*wZ#ɩ!EvFw!iطO,5ӷNw@fAZUl5Wu~w`SS%1Ñ:>Y}^}fb͝sgRs\ɟr:F2-3<穐]h<~\@s>6>{?=x46=㪠gKpz鄪Ru9tUò>"q~b=J=˕I}֭tV[k?b`69m'ON f=gO<:ludR޻FD~Avh7uRϽiT4uǖg0;owCn٩vŏq[KHf>9je t~E2.ͱ8Q:i\!?>u i;ԱZmޤ3G\ReWp2ϝwӂ2xy/UT1w:Qډ|JNR>hSѝ -ѵ=E %_s@_R72CBs9FD B':IFݦLm]meM z|+VWD-gv6cFI;|:\/>mKCMfrWrc>{[*xdm)n3Sκe;Pl!5\1'v.WBg*N+5Ч[omޓR%g2\+A"z(u?+|W,ⶈVW0-e{ 節{gWOjvx8k&VSPvHw6hX uh7W}h_.)P̟?[+ds6gsꉃPfn:iܥ@'C^[9.KsStUBsþ ߳6GHkCT _\]ʤ/\ksWz-&:Ƨg? )z&u]ʢmӕ8TJg?P. +MΖzS5)۳ es_o S*I̳כW^6Hwu6Л-*L{fW񤮂ӰKڦWa~f 4!ѫbK^@{OU:Y,{*Ump̛ÙC Lخ.Lkۜκ69h xP+*DDSFA:;fw*W>2MTh+!PKR/WfZc2 Jeq(g\Wα]~U.d05kwЕ[:Ṍl f;amUQ'La!R.rNN8F=l##ťb&b7dm7Nu>}L!dW;rT[6¸*;Rb5[LSȝ>r45_܋ˇO˻HAW$wyo#@\3Q\N&H[*lZi[~5G8G(]>.A-~`VS-kSmtoLޛ4Ѵˌ3TXk/`F}BVw檕@v'!"V:;6VQ\'3߼Ng68p[ʶ̕ v(sH6\eN.+DڜØMxF|1Ҷ1cfe3ru)PE=af\1&sLيgq;70;iXUVFNĕʼ;Wo}rvؓ}\>rE_;[w\Wb_omkoUrvD9w4[+YprHIDόxj :ufk1+5>cv/L}C^o6us}|2=22"#vJ8.ѩWF6j92b~O9/jwZ+˭\۲N,pnUM{%ԞjP̪;]Dw]L;-Wgiɉ]Euix~LֵB. 6O[,њ!@-qe} i\ك\vNӑzvabv#ݲ9l91w)G;6m-OaK6ΝelgqKU* T#rI|Ζɪ >c;Gp4'ܙ5RfJgJwۭrw;ü~lCIӐxL>1wwB}:# ۟k;t*uqf~!%.YqJ/&quܤaoV=5ΚO'tN:7k"FTNqVx#_m\jf8Glt._Tꎾt.ߙtz ١4噶4VsFa6 iElsP1g8yZlyvf+_tdS\grޓ l5]̹vDlBGKo:P"!%)vր3S[G)"uO/R"J+ǚZB #J֛ӥ|P)UCG)6~?']W"DV&Jnȯ5#Z7gpΙKemZMiwt{J˂րgfþv`Xw^Ib (2܆UkwMUPLje޸eI;͎ ځxN[*S0#$cT~J&zvBqu,[0?+П/WOD}ls+Z]&NJT yM#N,mofy0nLĆ h7@ -(N/XYE]DZ4]tRx+EJd_x?z''GϰnPa?h3f'B<>`|%[чފ-%*M\$r‡ari"gDy5'g!qK e*t슟x֑5ʎ&dK# m^V+,+}FTمu_jQ~-6eA]2 {EZˁ>>4= گԈ¯}iEUo6"qz4@m }_7h;}+ڠuDXOTRܺ[χjRPr!knCM?6i^$W  ֵ2Xb{IV[B&OՈRVig)ߟ^m_ 8i AƻOg!8H57~!fAݎk* ԺCb.eQvLSu oY }([=Xm=0^=d\6ul5<}I"{ 긌kԼhGKza,O pK/XXڔ'55Б!|=_xummH o`Z=&W#4}1zاz}v4Bn~̥~=Z8 3}16LI sxvY!U|,3bk=Jrc`Z u]o. 0416ݏJ%Dh'.1+dXy]C A lZzN[+UVriX+ԏw6ZѦjڭ^V. XqضZdb5-֥jgZNRC^k.~Hux 4-cÅKaˈDzc4|]sѓym%ƀʌg(yG@i]ܑV۬К&A$#%h]y^N. Z,ulZźT-,*= Z٬. s{dNT#[Qk51֌Z7 Tq&\:mkj5sji^\lBX c܌1F6iÞ6z],~[4bZc~bZ5sZI%Ni jƋsڴaM\aeh-ESx窑\7a.Mմ_e)z]+n;4,bƓj.C%]MO;𢩋dS.KcNXvu8HUHG-#4%%^iHDmCR̞Sf.i?yP"@Rx%NV>$32c˖F4Cg!x̷XXd̸l{řSwGcnoTvTk5f/`]V;C]O&t1ko24͹'C;*ÃmTtn z~Wb\pwak2uZۗd@zUka;֡kM\5 ͺ8T^a 9Ry(~iR7UI4*c28PltƠ4215O2{s<6W<ɌDQǮ\nr{/aPvK7^H~7bCAХ6o- ber1nVviǞvLU Y=ұd˖{Oq ٴ^M\^eⶓKjGdti~5s~)^(2~k\;4lmK,NgX[6^.JB&\1mΥ(.JGX: 3Ba{*:u\Bc3˾,FmK7(tӁMaǐ+øo7/:ҥ\A`6ydA4/]&D0y]+f+D-Vrpl@b:1lpD7}7p1TY7miv#1hTY#R݆F91S,EHZsӌ"sq,6v)ڰ(p=Es`& bYKg88L{q2Yw}:g|afTUoiP1]ĶS0!uc"@~P}N(TO0qi WGų#8PST*% |K/iۍFz^J.UU( 7-rٴXMXYxҰX7<8$7Y Mմ[e*{]ƫriX0K$L/o7D.@j]s~%Ә(\[ccaDzcl5Ss/\uESLm$m]40JR7-F\%:JnV6skN]n4jy]*V 4,bޥ̥WcivR[³[-SQ"LIU< M̩lBL3 `Й h7~+#e.kyDry\ő]kRk 9Y n6iq :G"-}`f!_T=K&M/VNܛ뭮X`yzʴst}'sŴDJVҎJWҥbl:ߟ^,sH;Dٞ^AYHmEb.bt =ױ6Z9)vjun۶}Ǯ}۷mfU/9R59ieFfbʈVκ;;'vXeT ̻)ΓOCc`\oQsD$ڈ(LN΍>FF#QYμkR&Wizn0&7kYR.f:cޜ$@A&1ආxN܅03Z< ?ؗ;#bô] c GϛMml5}њ>ZG?A=q#w >lw1}zP`18:@w_?_ ;\J r; ډ H`|0KԭRߊvJ#Mk0[/U'B6Hg* &kkLV&*#m#AlĿ q03#Nq2-B~0>#&'mXf,':/҆ [_t+?W!?ă5Z'zRnEodc d&{W+&>ߌߊe"la>FaGPېN?N.n˸eoÏ>s2{P0G=Q~Zzi܆ioq i&#s7YLwW|0!~/o`Gt{!>`k"U3ȫ!S0kwaXGUYCnߠ};+V,A1߇|l(N.<<=={̦v3, {~*a jiDq_r{z$b A@?f9+˰춝K|_xS{Pm>o"DZlk:B^yC ZkD>67_<6;Ax yNLa-~pq[,[wq{VfA"~. ߍ#,;1{X1yxz/?#v~i@ȶ}ؑ0S!~+.Oϰ(g8c/_Ĵi`Y ?4><@Hz},C}̗1cd :e-<}Y&+nk.<[M ؝oc;@{t&t4zX &% mRBVVZvbSZ)'mJ+6խצ曦~|1ŵ #|4=^OP/7e 趩tNTP#@=w0zvC:ݬש;eod LM1GoƔZwߧ?-F?]0asL?Klc!Dsσ:sqV}^fοGOԞ=Sl`[QPJ%_/Po_ܾon9/R[Ms060ؾr?\}jw0jz aԓcAzp VƔCFd7rZϮ 0/sM ~W߫51k|oBP/g.[u5@C 15ʷ\>~C"׷{E:?;u*^=~C9eŶ/U|}?H.k nSyw\|cj\ݰ)faa]"^[Y n1^(;C/˽W_Kx.lX+9DVbk޻R49ԗVe>QӅ%,Qs3!0nm7JzT|}y؞ZvF(V ?At *B7[+[9ᘏZ[_5DS.F';Tk'x^Ċt0v&;.uuw cW+]¨zkޥs0=J55jf}*H_wB4U|}R M,?d`7?CϿ¯>+* | >f>g|'n=f}ZL??[@T~0ryj ^gŐCPy69aY?@rmT0ߣ\>o1ՃntzT'DBvIȰ"^?zhj/6Gڠ-2Sj%~L=Gk*Kxe$e'UOW䠯y>=e z{uzl\zNy|vr> # \8gYaA4ݞ(]1h )4M'g?H%}ʇ8{Yg_mZkXF@F oryUz \ t !L 1+nCv?Q aY80܊6 w`-ތN wcx \Qy0y|}yruG++MiE~9Io|v>Uѯ}I!_]'<ǓۑAt'զ;|` j~,9=rsx/3odqã:#p}o>.Lps|^Ε9Nc8&w uzu MԂyU"^!:5:%ߘh]kW e (nwbx2q=;||wc.]u8!v>= z97qg#n3_9['![7_ϻu|/5i- FW cPmK/skwkSO%{:M$;)xo絑.M/b{{ 机 DBm܋a0,Ji7|?ޗ$;,6/}Y4c%*yQ4+ͭXp}?Lz_4g<&Fy#<<˃8vc3N7wa 0|H?>;@||#[?x|xLϡcQI.p/R3F#߰UO (7+ߏb _M}aG/{ab2 N=%b ?"+"kj`-P(_x /T~~E}iG8ߙ+ڀ1d@:"D$`< '8w t 1aY.A:2Xl h$z_ɀW UW#b\p=y-:6 `615X6z.`"C`7OkS2؉p+?V3+@5:G 5ĀB(£!Pep``|Fx9<@/`cp '>3ᾐAuN8"`/3S ^nW0xeoEWi ^& FxdP6oEw0xgDcˀx1@ 0,S|,"|>>E__A?!|#|wl.^S(knC{;xύෳbt5h!/|l ]\^>e)x2w§͇r^ec]x$4P&ǯG.;-wOama-ҏqqK=f }g+gbo,1E108ԈrΈUQu]gӅ73WQ:w=j5=8y`X9ZY~gf._ArS w[eDWsn1}' _3ڛmw(+1R wf 4Cqf{ق򃚠i)bJ+Y_x\ES/:ޭOy\Z>xU۳X'bƙJD?whtZ$0‹BͰp=k*cfHWmj=(k]@IeΔYG հ;|mted!突ݍ ^qw~~ü|yB]oQY e'[`]Rkֵ,+ݖ|h;Ba8ߋN}L5𿠕?iCo`oD7a^6"/gY+eH>P-Brnt6inGv"m0B[WF{ ԋ|N8WpG0<^2r<\(?4;x>oP0NzEμ59ĽLx^tP 1-:?@v &ڸע@@g0,! U z5[9A8+|< eBk?/Eܗ!Γi/|WhNt+v”XϯEŏ}eLRvٲ3xcT&r3{uhZ)U)5^?M쯂5$=]Cvjf d{䴤 E5Dh>$I"]]>TQa#\NU"=i,?siʥjzv(W(t9ԇkIb52%^Tc6=n_?f~ڑk[ft!- 5~8_qh*La6Sw1e{S-b_8M1t-{Av7:/$@ ;OLD/4w n!nO_C x "5Xc]DjW愬ケjzq.9NFw_C ;e"IxyPKdWȣ#=仼1. WAƼʛW2^IVXw2b)LFh%Q> !v *a4:+V1+]=Z5wj5n7Qy\S S?P*:hj WtnԐs0Jy=^jZo?_v-7}{97!ea:y|`. U&~9Z`}. iN,z AUo\+ ڠeɩE"rQofMߤ78, =/G?WpL^+.hSX|b4/Ԯ/-n^>;x!/IX"%z)nz[h`>o*B\Lmig X]L\_d@ʷ2ċNZn{S.2AV I_荚pzʳ^;G)08~uCce64MMmn`F{͖H2:- ұD:@} י(ԓm:Pbs֑@ obe =L-G>yRx^<{/ } } $W yqq/2^dۂuay佮RB:jxH넪ün :dqס̾lq5FVfH/Hs3ڢ!^ېo{7܁eiDZ48 ^ك8X~P|d9x;42a v 푆uvvy|owvoq|#{GJ8ΩK,=b,7 wJ!rw[',7&o}Xϼ߇<oE#{db^x~AG0۴7iooxBiHry97iNmlG%+}|X 8MMVtK^u9EOU}x}c}Tw]=1P2њ1]ſDŽY+h{H}Fs$L|L[JsM]«S`냋R1.v}ly`j(+, m/O@t7L01W̿r-<j1_5ouE/f>}>B3o [$:n wKD DM[Ħ>Za$OW\YuՓ9@kc bAz~Aj[2km|c>=j>Qs}>[)MMXĐH'QnYO|gGD~/5 ~ B{|v/~_#/g\u?<;WK~녷SeVC{oѷ.nN'= 녷0u[X F(,Ҡ= 2Zm Ҹ ގHw^Ɉ{'܍=B/~U#> sߋi@Z텘o!A Wΐޞ0JNaȯMX>OcUQ6g}Fo~[|gC:yNHF2O(1ϐW4 ݫχ;'|\u"} BӋ="rVam;lr|7D>^lX?xuᅤu׵׈`}zm@n@ݿymvl{!i 5~i|y>a< X/yP/c7|t 6[ވy|Վ,5_&tη1 =Ux ~:=xC,k6)I++>,؉r>:5>Җ8SԶžkFbn 0i [ۯTWۇXt]z5WkbMaf=NI2[o"V~S6G4]06|6ӭt|jt>|h{j?kgI\=dbra6A M(|"1> x[{,|WGxmczIL|.FߦktT0y8>OuV"@]m'ǂŗA|ij!#pLo2AtU 9Rg]\rn sM ~W߫51|uϘnj_,ץu5ʯ!˯z tc!{t|1֯W>mq 튴=duAS>}6=:u* $J:e\~|Ŕo!mj?7&ݡ5 9܎n-&%kEE3酲sz|Iړtas NxN&7vsP͞0\IQ#JOݣ¬Ƿzg7ogɜt=!s79ze~_QY59Ss,=q0[j,3jOΪA/` o =_uP 9as~>F}#*~$F=*++~@,yIn^ P݄m2,H׏/Ë f鑾3ߺTZySR%jI9kم!IAբY rjC |vO8&gg!G8p=r?^x!vɬ%Pܓac@~,vR$;7n|v,ws)B=iG=Ne%3w~0<J]"dA_KNb' 0y"&seBtB=؈xjAa*UoxoL4. O~ǵ+2O[|b7;1KD_A xû1V:?;Yz^PO|!xZon|l|qN>F_XkZH# XrT=_4KtIPowRk#yo#]_r 9uA~ڸaXxo!~:/IwsYDJa:olK+QϋY onƪpń+ 1g*1<1AĻw;NH'I`&1@:t#Lc04\9!p}_B힘 h$z FX`55BsZz^FΕ{X6`-!];lC2- Z؋a?§5GDDž~(pր~B/Ԁk\@z~uP;! ᾀx53 ~`@LτB9∠ۃMO1x^!*^ok ; ^g3xCDxoÛ,@xP[?`@,Gx/≞5g8O(# >j?g BtLTD|)|oD*g5߱D{uOiAi9o$Q1tN1Xxu Əy$0 kMoX3YxGҼm PBt<[x[~]H;u ^7%>ebTK1t34=KxǧBL;~nDY﹬ \ޗqaXxwN1퀻 qJ W r9`xDyP}\-5~PosL|dnmO;*Z9XD89y8?׭˜z~Q&5֎{Po0׭vD~au4m1x@> ]wvlz@{~~kfjS -bJ<'Bƹjw8Mgwx= 6 '7 ~$Bu!6N$6BN!?Q . ;,6[k!z|~.Ṍ*,L[0ZPX"x"$ĨQ-.i t>@izci'yig ǿpf;N |e5+JMP#=!ͮE!?EBYk<[i-p )CI͔Dc@ Dd@=!e2)w#̬3 rQ$| k:< qtA6U*muXy8ch^7o5&$g }Z/◯ e45 K7h]*٦n9ExxovQxrߛߔcv {7u9?-nk_rH3Vo1,e[Cd]/dgW ӭꥶukzăZZFz:7,f ÅzzPgG\w\$C a]w'32ۉjIowA,Abe;vĆǴG1mXGrfBoGZbA+N Bv/^m ;Mźڍ n؋[iQM| y]zJ ^+OAx}ț]oj-!w(6x8DUf|5),o9U;g!tlDs&GÚi3ٱ/1L3ٵV]yiˢnNg7F]ءo: R^cZ?wL3o<׾Y)*~5vYEj5Ofc_Z׼(RE1EvͯEu_yOe0sU|EX'E|.LE.\ vbE.fCH m\cTg 4lcqZp=Oނ.Y8eAph[;鸋>Dxu֡x0\ ]kӵzn7>5ހ^.mI5[שs!֏%cg@x{t7pBd@"JW{5㬽kdjߵn) V=/[/FGPېN?NS~e܋ه| 9`ۚ5Ȯ16 ziA o;4!C^1Uqwu܀yU"u F~n:y먊9u7ogE}-'V,A1_]l(N.<<=={̦v3i6֫YxU>.ӈ:U^>67_<6;Ax yNLa<ӴYCZקo=N|C}"n߂*l5V⿝b9ޅựx'yc9^;OEgN!;~^݂p(1ԃo%%V_E,/r~ 듘0_c ?Ƨi@c]w2#}̗AǠl-W2Yq[uٚo@|ӐSː7-} уw?r|O6)h?j?0ݏ!A`'Lք0mAq]Z-H a^"k-GT|W>m4=^;MִN{oAV;mjAj[knlWco0שeϷn{ s~uSUo6mno?aYco UзNװ-p[-#Wco \[.f;O.:ͯ5^n5-R}[] rDErm ;m+a-w[->=ж7h[t=9'}'}keL9dM&(!Uj й\Sr:wz]_WY%\_r}]~u]k>dm?`^=_9z k'OۯW~C"m_^Do83gmߠoV^߫o lTY]Ze\~|Ŕo!mj?7&ݡ5 9=mi{-&״=r76Ō{$zzUXfrtKo|h:_Ls-_ZZ=X}*<~ssr~s9(&p߫v+QjM=\|Gx+ GYoxVP!ߛҕֿ6r=cjOۅѨ*#&+(6""^Ww0v%wF]:w ޣ[SvYaVj^5z| =>GÚ|TsT.4fεX T\ A6O7 -t[ڽҬn9Tz5' *iS'4h.Y-AY2?]Ȝ MoYſ#_g} WTEA:A|V|6iOz:%̖FY5~?#:atA1 c!>l's¨t}DůڨaֿGS}vq%ޚc.r"?,>Ox*&|ha!_;;Y~^l(7{+MA9[eղK {NT*VHY.D 9OG:XHY@i|vb "C.ڕ]䳳ߑh!.z< 尡_ $!Ha4QCc@~,v($p|ug=K(!k2=[>GGtPpD'8 $%=vQZx(A8_th1UVW @&DxYl_2 xP0#,iyhiÍ]%,0ϫccEG#z8xW1~кBiBqh ީJ\Ҙ 6E0P 1R>D)X>LF1˱sO#z7 )[?U&j+Lr51 [/bV܆ ; •Nx]PIx@Mx@Hl2;w tW$:Yρ 5s=ϱ:'AGc 0y"&seBtHB<ivV wxh|`cwix;_y/)|F;1KD_A xû1V:?;Yz^P杍|!xZon|l|qN>ց򥿰֤(G^'"Bz,yϭc߭iDO9 =e4ཝFF49).s q/ ð( Ctz_4c"JkҗEZ[=V"EU+a Wc8,ϤU OcxcP{n;L3γ<j1v9YѸzzg0|bx Çd(cx.ns [w7=_cǭdz~<\E;";c4 [YE zo{S(/6Pq'0|/9+S+#b)B]B> [шixP`HNHiG8ߙN2ܟl H'S$Vg0t t w p !P>`).c)%_@3 V!\-V3XpJ=y-wZ:?~: 6`-!];lCg~.D=~/> v#`@|a=5("c58b J[@xPJ (!r 3ᾐAuN8"`/3S ^nW0xeoEWi ^& FxdP6oEw0xgDcˀx1@ 0,S|,"|>>E__A?!|#|wl.^S(kHn K-P{8{+aD`e#Tb%EGl9w({RpyY*{4%iK4%`>09h5%iKҼy/ m@7%iKBIѼN^y/Fƫ{I~go9$Hg$H2s{IZ^$ U5JoK/_7%Nh3#s^Cvt0o{IDڣ߼D7%{I4%fYO{IZZ^D^ܼD?7%AzmKt_ 0cj|^y/~?{ITToK"h7y/I^_^$D]5%!k0>&?_X94%|D݈a^:v{I-@ڇ{Ią?y'${I_hKcwix{I3zwjKBts^ Ԧ>_}=]"y/I휺мDE>7%4g<&${Iꯟ${I4%SOXjKhK5% ĠC4%Y&l4&[B`hKS4%!($$4x{I^/||X4%!R hKa(7u([U W( м#yGH߼#yG@yGH!;BkyGHүO!`ww(;B57^o"Ӽ#$?S~S5A:3|6Azo"֚w4Q5׼#/ ~!Uj|~ZyGHvҼ#DgѼ#wBNo0k"ox(5!2yG|nҼ#yGH.6+*xBoҼ#DҚw'%w!Z5yG0kaֿGSw8;BLiܼ#D㧽X;Bwhuw4 hd@yG]1ʡyGH3߼#$B@F w!@no6W>{|n".c»">䡀x/ yi,AG0۴7ioox%Ic{=7YF5O S~7Ʃ1ZHGCjG['$ՎOPc#H|]'xP9wp9T~ AH8tf38gӫg 99&>Psk 󦝖LT/dT.=X*`O1]*EXڗΖJ:‚Ў 25> mFvj4Ϙ/Np?__ |f>\Hun# ~_i˂ؤ~]> Hyx`B9端dG9{grHKzq{=dBzB igo_P~ď:(֔ok:S^>""߄0?tt QJq&㴗VpV(CU:^F W#T~'^=sp()~=AV2Ӷ¡y=cTJףuT]ޭ;k)@iz2T1>t Q zU7j)p2(J k T_ w&t Qt[7I l6u\VlYժ8-AO[ AxQC"VZ@Z` Aq[Z dlb[䰍A/XY3`[p} :~nSw1EM ZFǵ' Aofо0V/9}ac  $8 8Ly{[--SZdQ&{l:`ֽޙZv'6?ڭ'!WSg0o!Jށgx.OLrC:[vPnG@0 ogQL'ָZAyA[Va,˓#m%sƐ?(?dc:$֐NWS.:3#QPgy7y?sI;YKru$tl[2jv8CP~ o!_qYds~nW߉zrU:s7@0 v繮 Ӄ~aJ|idu{md7ܦ?71͔-T6[oџ[si;X6fAyEmdkJ:йwPty8sI2(TŶDݕ`?DvrC7tضyX.8Kr+,QN5غVW ['q77Lx>ORuSٜ:^o; C+jHa{6g2M/' -.P]m^;=; y:/y''plɧ' x* kǢ,OSs\/!;܇ѯ#~ʕb|(ʯvxZ8DOD'#Ss.}b|~N\_7 $hyVx.@ן|\,sp,%K/I%?O(_K?||21lE ɿ ~k~tZ1 5 w ƽ*=_q`O&+ Z[tη!h_ߡs; O({=DŽiCy0ǘScdem 6'?ɥkgAwA[F?cP/)|[c|>өO*yq~Mr%=,z3_#|7ОeR^O5_ e[$b9F- 특o'؍lQvlbM(?l*BMen/=”k"Y#6K{Ly HF}Uv[}1?qh~SLڗ~nv$z.&'ޚO1_]!'9ssҾ?lil]v&(2*gz6''>Lc֬cT3=|)[9r=V[[Y֢#ŤyƶF3/g[=ž${b{Cbl'{ B &aXadinB9՚/*3Ϟo9rOr{j3lv4m^_˥cv&_nY1CdݓRbv|(bTREbv{{\gxL m1}Er*yakLT$s63_Pkt9>o+W1?KȸG K(?@cזGY!(H9/yk˃lQqA[n6Hx~"G5‘Ax;HFqb=2._̥Ԏ5)/?[C>L7t~E'Pq*I+! ã/s*}NRqk_8u|>><xv }-AAG$'(R Z4VG`nqZOgeTe3ےl [@σG/81>s £{ZB6ficcTŴr^ ˿PL݃zϢ-a-`\LT(7aJ+QYtg_aZ1Kvw]Է}X&,ĕEuVa!(&Kŭ(b5j&6z96=p-!ؔnMBFU.&b!9^};|H>꤆G)٢SuY.g`D7۪OYV(:C- &=_ANؖN! ٣3ycr1Uw| =BUN] ڧTҷ;Xz4+l zo@ د_\BN}+o_uΐv2_wRx ؟KͰo钮4UWSӽC*WwI_ _mVߩ+9x_ܢx{տI\QQO=3DaFH_]SPmM+ۚb!9DbmCQ 殺]]Qx:>ZP:x'y4/ۖ,DOKK~ޯ͘h}?x7')<ʣ :Ӯʆco:NC ! gq ϥ?\vg0%d|Bǣ/aeǯ*:\.bQ>vfVi;q3d{|f(|ҕ>VҎi=J>g&ש+PKzucR5WoV17Da>TvR}lwlohF꽜/S)@R 1Y0PY*2`E\!y'n M Z^Na%#2gs7x" Kn +r40:ل k :a0BJƠwAv6 HM~ C heо&%@&AۺЙ-?nSpA_2p uK ڟGt{q-Cu}y"%d W>d>g>A>nA<>e ϥijç^ |F@Ƞk,^fxgBJL+ ' k xU/p?'o0|ӂdVJ w ˈ1oxW ?%S9+AEmc0H`HLKɿx 2hڎ@a|{v;:zءG'{RQmikhOKW!&wmR O~| Nө`sqBfݘ">p@K~s^mKٺc__ӾxՔՠF&_ je/Qze5|ҭQei}r&s_\+JJ=jwF7r3aYJmSt^z?ow+e̻"|~K3u}z?ރDO|z)Dϔ#zǘ͖:/ڦ<ߗUS~WHj2߹ܮõO(lLCrq:NP 'ż$;qN Z n^'||'(mwqb8A y */Mȟx8AZ?4?v{8AI} ޭ9NP jk8A܄r5'h(w ׉,T'%~m8AL|m6;NP8AUq:NP nm{'hq[Tf0 p3qau ցE4 z'(Ai x.% Z^ f@NP/dTk܎linsD#ZxCow!7C{xCo q!xuxCon_ 1o84!tq!썴s!gOB&;n8_=.(&SxC"E INogp!:xC,!hX7d:kit78ސtCl؛A38(Js!֗7DoH?e;xCH#`o^t;[8ӿ˦7Do𧼈x7񆈺b?xCo%TPxӬ<8ސ8xC(%Bp!3ge c2oJ V`8D#8p!  8RYp!%up!of[xC8 0C*ږ<<$,ۏ9scq!\18N1Qcq!91ODԽcq!}}s;9Đw!҄ 2sX1Dg7n11v?s`CԻ5C msH|PNfc9$:q!Ÿe1c\_#د `s阯ͦ}s;C M`otC+1X_J8w!"CH֫c!]{=^4sH>ClCL.;w!Ÿ"9"sc(]Ws!Zo=2o1?9$]ԷBR@cɗm"$oEsfǶlCsc_8R9zCfw!}tMғBa5ok1RHY #9$ůߜp!RqBI O(C CscSW3s1sjqY0s p!+-h`XuCC4:1hxڂ+C4Kg11hoc(sWZBFl;ZZ9EЮ(BCC§׮B2Y>eJZ3S 6ͺagE|h߿Rf/ ֊7F+H?z_IlMߘ679u_FqY!gɧD׊21S%Gn5ZۻT'RfyAfV=ڑm$~XK{wTBc`u~eiF!9G7Fi|+A߽ѕ*:{GT\3iyd?Cǖ?bgu-s`>#˙mYGR^G\Į?S>3@w)/JF<_B}qWk܅E"l#!*R/ v<=,z";NSJ fb9JH-ZFGJIw-PoQ!e)m1^:Kx p{s< ؟1^j*/*'onkZc< ᑲG:mIhwh/ͩx{.w4+2pq1^:K:u:c1^R>1^:˒ d(Yw^x9J V`8KD#8Kp1^" 8KRYp%upof[/9Il<_ûڛ:[[:f GBAw! {BA#q!xuBAn_G#1A84!tGq!썴s!gOGB&;n8_=G.(&SB"E#INAgp!:B,!hX7Gd:kitG 8tCl؛A38(Js!֗ DAH?e;BH#`o^tG;[8ӿ˦ DA𧼈x b?GBA%TPxӬ<88GB(%GBp!3Gg&e cG2AJ V`8D#8p!  8RYp!%up!of[B8z@kl;=(a7 }ZJE5=OB2%?wlRB&yف?N/zUJQ̔{ξ =wI~'5{WC} _#Dz-{ ]. _[ߥĎ5js8C{uHً֪a뮡>t6 &A$SF23eo$^AU&$IH(v.2 LLW ;> u6*'zKUMr+HNe2$/3&NǰlMaT>$>7vc?CPZG;?־!?]H|/f)\Fr4—Kɬ _V"7/|{-^O:בOоNIDZuofnpvl#=>H$븍.t`$ :*q3uʏ2!w'7\n 'e3ODiPo^uy"r}zl߬N#{gέ`G(9H|%yd.Bzzd 'sOS$4\&N2tuo'3<9%'d*IKm2]OSAӓ OSJxZe?>Iқx* =-Gf}Oedxߓ\&{2i_$"?Qe_˔5WyqFwBg;M * V|t)bZ!ƇS8RR3F,B]R=L`q\Xu,<K%*Ȃ?ϯo}{coE}{D' qB~_iFӅ5KC]/zkYxVR87/LW~?iuSϣTyE0 d?,pW(G8ؓtEcdVٿQVdyhk:U"$=%1*ÈՆp=࣏#FZ&OɄ 1;L,) z0/ :Qtp,`X+a:a5Χa+5|wM12[eχ.]!wCǰAһh`;s4uxAݖ3!h]K;ncH@g$pqCiS qjAq>.c xr `;e#Pm5MM- .UbցȎwXw s0`PJ+tYM>>A|ͳ< fzh}XZ]j[H]-V&|2n2-B޳uto\f:>= ?h]w)44,v_/7"ϠpkgGwGZ1<~.H׳6v(j` U-m'Zp$/jXO=ZaudAfxjUtLw`]%IrIn+#}C>T %y#A=vQL'^,730_+ XX'GJ0k'y:CLds98nt!9/>2|ਥZ XEDf%}?$WGr^O0?WW@5;|/~C%LK}tr&e+{ޮf3W\N忊 _`ksr_az6گ~'_}^$)MLn3q V_ɣ?+&vlv dgw1Q{tspK:riw ~7yw%ib.'x.t VXlle9[CbՕ q .ϓTGT6yכNCtŸCn@ ɧB'o Tvs?|Fr>c=A{ޥK`^?ŨII*7\27Rz,OSs\/!;܇ѯ#~ʕb|(ʯvxZ8DOD'#Ss.}b|~N\2<=3KbE~q|=ɿD/X ~񧔏/9_f6fWr6^!W!O¯@]8a?՜fntsJCn*"ӫI>ED>¿mwܿsS t||1a>G|1ǘ7Ycüvϓ2xkgAwA[F?cP/)|[c|>өO*yq~Mr%ר`?e\^ʋ_JY^^TYzmh_hk",$EY(Xh=x5QfsOJb܊pVo'صz[orG9Ŀ[Tmm1^&iO%?v{Qٯ*틭0Q~4_?qE)~nv2}.hY.ⷦӶcE]a<ǎ;NH;aJv``'k[!Aں'>9)ffbMO3wts _?kZ{Dmg_϶gDW7^$˶gCx-سAQ8v!Q~XsZ{%eVNsʩL`YTy|ˏ{%;LEg^^u„}d=dd;F=bVBw7v(2Y(t8pgsжbårS~L_eqW)ܿ4X7_egmQb:5 Lr]gz&]oO F_G:E~7Bqmė3D<bԓvWL|m6ϐbO"o>]}#:?zzWu[{u{3Vǚ;ZS-GUc^$?f?/]GW~\< fsfXлssR{ەیt/ҟ(ގox\jni:kMZګPT:Sk#k*}fጴND%[>̖̪Nu pCN֦=!`owިCl؛A32Lo6'[TCx%0DѶ|ӯnT t"TDe+y~ElW\[aeW=`Ҽ*eff\߽ėHGMyyIcnVMyRbC-g=CvbD.S~Z/nc9k={}L OvuL/0D_W\ ~=d=Sm l΀^I!*X8ϛIH܏G./~咑ɽljh[v5Kz&%d\?#E%v$&?OZ܎kSF7'L҆ܿ˦zG]M$ԇi:h`e^VUDU|VuL9 >9^V !YڷU9ڑjyFʋGƻBܨѯ Zoߢ#T|WSSa|${kV[uz{t-+ǩ1l}0Cua%Lk F4(OdQ"7ܭUNcuT 7E]tVJE]_:M5U5/by.dˇ*T}mήYc[mz%m=X崝[)IᎼrq7pb([a=]C׿}\2: ;=*>7,^?̧#t^}@)}UG>VpĀ^)w\UW Io'z'wAZ[y M .MspP{5>L;q}`4Uɠ `K*;u%[T|ooTw5+ =jg3k i[S0GJp]'Q]pA)Hg7>ԗH{(T~ےRizo^£0@:>V$Yyd 1K;EC>H *3K޹"-`vK{֏G3^Pʎ_Uu:~)c\r>;};7ͬvfDz.0/P+_}囥.{)|BL¯SW341c)E+E̿G~Z' !x§R?؟"?Kݱac03"AzJ!=%Pj 2 E, UkX0N" 10݂ 0end71hY}|C-aa>C=a!3,&R%ra9aaJ V`lzт[6[aV- v&`7C#v>7ʀ}2h_GmGLA7)? c &e8gy}?2Z1B\DJAi 0|Ȃ3|$0|4%|܂(y2|ʂgKg8O3L!@NA:Y=.A?3WO:: _&Ni`M7?bx3"!<' ~J )sW _`2/fez5x-PYƞݹĎ^!^7~B2%>KJZS ͺ-gE|h'w|5/mU?y2CiKyZ c'} x̹hK#7T;]}mnhrDKunRkUb|,Pl8޲40:peFpex΃-C4WB/ ͏G] whHqg$ﻏ[evBtbsOeu BܨWYh= _v6J2x(rԳKf3-S_[5 5Q 2[0A #U&-& SÒ(=Pks[Wwzz__oҼžE?ΙwGq۔_! _زΦC-MfjZ,Mk-sW^ o^=xH>8Pqk+lp5jwi _z߮T_1a(W NÉ2 15|t^|c? Us$|Jհ| o}n п{ q=~h2n =c:7GՍ$w c 1w1!_ jKkyt^-O=B[Dr-e6Rἴ?[N巌W0VsV3Yσl-z*W#81W+ dF_P5?!L[&$F[Ifr?tAn<";)|O̯s*)m & wBI7a kv嗋%r'N/F.1e ؎EXew;\}%>N=Ha53|=zE&S|N䵛/ܣ$w 6}Ѥxo&ҷ/[h.h&:n+ݥ9Ҭy_9CN|_[WF3D[a*(Z뤝JS^Rl _1C_ Gڋ48kff`u3+E|L,^&R= V!`3k-2x-DS>D|=d{RSO G"ede= vX;X2*OI\cHd_Q0ӋF;^! _Ac _AH7˔L;nio)/?`oµ`mw5a1/KUg[n?ގ4W7u>~:x4cf~_iGcǻ4hn#˞.¥KV?DJ ELok@GҎZ`W9/6+v _ŴR,ȂmNLd^]z^Yhekg+3WC˃]h5C]Q\[ںtVQS5iZT}s~3-|C2~)M{;ZgXכCW5i^#X^c)LhG<$2 FkD07 ԛ&.H6%$ ZOO˸|>-z^ 6xG+!~,蕅'ɚkuzJdMiuZ~_GB0Ieҕz._IJɢ*\ t/ʌ`VD 7D W}R V>$ Di$d Q85DA*3]Idn`uR ӢnP~˳T1K1k$25ި3){ߤzs U[zgSXK\%?'>Ou*t/>h 8_3o'?U5s3wuTס^޲*޾NߥX+|w]ԷзPvQJ WAφ?+B5PxA=͊8\QVݭ@F USZ.߇ް67mzHO( ,+*FFFF`4õFW«~&t|L g@f3u|.eܙp>i!;"3,`A +2D+V@Q k`@a#M6dAj&)q`; MpВ-wPH !hM@;} "hq҂SC3<nwA{)V 몏_[wZuoqCl9ޱ9;k=[:NbGʏ=\MÐK8Y Jy|W*c(Ӈw8Z'̋\uJzF1xz3 pty[ < Ԑ_Z.U5w4ku({'nP~wWf [Hib.'x.;{In1 QՑmu?kYNonvQ}:ꦲ9Mu7tv75$0Mx}m~uɈKt_}S>d>Y^__q?t~_ñ/ <.'He?||/Q>:LJ+$*Quk0GL6-Uzȍ[%_s|z7ɇ_Q"ߢs AtQ} @ߓ8&LпRޠ(σ9&+clc\o+W-LLhr}bZ:[5hM> noI;~NcĢ-fuaCM8xWKuG9Y^rr̥1CO%>ԭR[M? HyŽKӬ!V_7zD.D]7;z݄ޕ4%Nb] H"һvHߎ5hۡꮣƉsW51ΔF;ک Y8z%+u:lɬh{BlCݝ`jC Mo{B}=6ҽQi&7foe!3=lN驆K`z[m_Xw..",[!}; +d +^ەU /_"5Mhd'mYm7K Qʳn(m#wbD.S~Z/nc9k={}L OvuL/0D_W\ ~=djRc΀^I!*X8ϛIHm]{=^4C%#ݻV_&Ex,=*B1r|q!/639.ڮ',fG#P-o-IxH?e{zϤ~!mljGylWwJ`g /O^ǧS>b'rq>9!?okpBH]h_іQR;wI*Oy.ITqhx:s"8TC#Tq#ܑhJwRqǡ`D8w.NF!CzIlm$O;UCJiJ!y t]bw I۞D[U<>D[CTHylV@PZd=#v op';r9z9`p7n>эw saS:t> ”*УYx|d}P ob~br;G_y+vzsK;) zfX`n PtIWo[*۫)`E!,w<"=AzUwJ&*|/jWzS 'fWT!=y+v[ #a=hNF#Gi5R)ʙR^/nN}/XPx{)lWrjcާ;NNHswBBz._%<1 ~ cn ORxG#fu>c2:ey̜,vWoQ '(|"ov\LQ  e/?3 N]X挥k1i߬bo|PZ m r `ж#t&@ǠAo*|S }?L8 6?Oв0\"CQݞu\>Phk_H 4ˏkliol\ZhCGDI18&.D}'18&$D'"18&ݾI$b;&q~iBID"iDHIMwL"ݚcqL"6{I$\>QM(Z31D y$p8&2?Dt1XBoItfӾcQIDcqL"&7fcqL"PؕD/%;&~LwL" X1G./I$wL"qL"M;&Oycu~I1Iy.9&EYԷD ȟ$.[Bc)1o 6ߢI~Bc[pL"I1^)kBn=rL"Zo;&> [ۚV5)CxG@$׿oN}8&Ktc$YycqL"׏cqL"I1ש+PKID]gID8ݎ,PId8&40:pL"FpL"D΃cA4!%yp :A,!hX7Gd:kitG8BtCl؛A38B(Js ֗D!H?e;BAH#`o^tG;B[8Bӿ˦D!𧼈xb?GA!%TPxӬ<8B8BGA(%GBp 3Gge cG2!J V`8BD#8Bp   8BRYp %up of[A8 $Ay)HIw*dH?w@*ږּ>- T g2ؿqF1~?uo.`{.K3NnuB}.nk8ե ^{Y2خGlx!*R/"' 9NPWmN/<س}FGno0ˇEOdyCs꘼P C,x_á?[LyYIɠet\Hzzq; q@3%ݽt^K{Iw/%SK=㋼{j|`{3Vl%oέ@UsKgۉh:~[!in>v;`TC--aU]^%Ir!<Ms᥅ɆCp矍`^z(/O=m,˓#m%sƓ9m(3 l5w4P4g s:sٴZJw1!s޺X w73cԒ\az=[lx뗮jv:K<#mtr&e+{ޮf3W\N忊 }56kA{ޯ~'_}^$)MLn3q V{[aϭ9CǴ,]<6N;kJ:йwPt%F$s»A_lMt] v)l!Cd5';tضyX.A핂r+,QN5غlM:C[])l 0T6yTp|:+tϻ@ew1sgy)wcS:drõ./OO@(* F,OSs\/!;܇ѯ#~ʕb|(ʯvxZ8DOD'#Ss.}b|~N\2<=3KbE~q|=ɿD/X ~񧔏/9_f6fWr6^!W!O¯@]8a?՜fnt\ӴW!7n|UV_$""E_|~6;t9G)O:G>0M@C~Hz\~>c c̛aF_aULլ6{;LvF x^uJ O1ط57LOd)ftb֖l~րHƶF3/7n?Ӕ{vp~@k;Nc'/怵K&ʾ&S>>~,<{%#Ϟ8=u 7QEd5/ұr; ȞyَQbK-dܒRKԞ?YCͩ#?/H 嗛[dU.+Jq^*S>$Z3]ϛuy^t.Q~m[ƵM_lp]~SOi_s2ٴ?C{>v\l1Vӏim%9_hv^7^7;z݄ޕ4ImWBn3ҽH{;ҷc+qWT:Sk#k*}f9X/XaݨyfGtK{ uwu .6 {HWDLi&7foe!3=lN驆K 5Q FQe m~a_G VXvخ4Jx>w/%QS^ބFvҶA=?vS^忭<;GKof~1~)/@2EK9Vy^N ' 2jW23}LTq>Cf!K; Xu?^ρ)dAE3=ԯ\2ҽl %Yn]Dң(d3/{ rC|qv==+H.0׾*УYx|d}P ob~br;G_y+vzi[gfhBn=R3,0~7([7ͭAto0ŢUI6Uf-*7Ž]M_Z! 3B*'onkZc< ᑲG:mIhwh\#mF*E9_i(^S>D?N?Ct~+ f읏Whx4>qQ_2˥^,[;c'czn*m'nLqPXNJXYq1G)|'$:u:c>"3R߿R{%?Ix§R? ;{R}lwlohF꽜/S)@R 1YwpD.+*2`E\!Xn*t n`O3j:~#A"sj   1,&R%ra9aaJ V`lzт[6[aV- v&`7C#v>7ʀ}2h_GmGLA7)?`8à gYpea`E:%ϣ =븖}:׾<?hxڂ+  3 Mg  J YRY? S/>#_dAK/3D3|!%a&퓎N*× et7i_2|+%ỄewS ̀o2nEk[pyw_x: ,\<ο9w~}:q~ݎ/[XX-XB*T,Z Aݢ -U\f? -\81^vyKjk\KE9٨[~y~.(>;.7N_~B=kk[R˟sa΋yA,\X+|`^ݼ%"㛗s̫WWxnA-G%y)gyuKj~,W[Ot`6SW[_fIZmkn9)-ninjxBd1?Mw}F#^-w>C2?W [uζ;[Ƅ!:2Ft" Z PWMEnrich/inst/extdata/example.fa0000644000175100017510000000106214614305422017740 0ustar00biocbuildbiocbuild>tinD CATGTCAAGTGGCACTAAACATGACCTAATGGACCACACTGACCA GCCACGCCCCGTCGCGAAGGCGGAATATGAATATGCGACCCATAA ACAATTACTGTCTCGTCTTTCAATGTCGGCGGCAATGTTGCGGCG ACGTTTGCCCCTCCGTCGAGGATCCGGGACCCCGGTCTGGAGTCT AGACCGGCGCAGCTCTCAAGTGGAGAATTTGTCATTCCCATATAT CACACGAAGGATCGGGGAGTTGGCGATAAGCCAGGATAGAGTTCG CCCTGGAGCGCCGTTTAATTCATATACCGTTACAGGATCAAAGGT TCAAGAGCCGCTGTCGCAGCTGCGAGCCTCCCACC >tinB-180 GTCAACATGTGTGATTCGCATGTGTGGACCGCCGCACAGGGGCGT CCTTAATTGCCTGATGAGCCATGAAATGATGTCACCATGGATCCT GTCGCGCCAGCAGGAAGTGGGCAAAAAGTCCTCGTCCCAGCTCCC CGGGCTGTGTCCTCCGTGATGCAACATATGGCGGCCATATACGAG ACT PWMEnrich/inst/extdata/example.transfac0000644000175100017510000000303314614305422021153 0ustar00biocbuildbiocbuildAC oligo-analysis.asmb_m1 XX ID tin_like_motif XX DE vkcTCAAGTGgctw PO A C G T 1 12 10 10 5 2 5 7 13 12 3 2 24 6 5 4 1 0 0 36 5 0 36 0 1 6 36 0 1 0 7 37 0 0 0 8 0 1 36 0 9 0 0 0 37 10 0 0 36 1 11 5 6 22 4 12 4 19 7 7 13 8 8 6 15 14 10 4 8 15 XX CC program: feature CC matrix.nb: 1 CC matrix.nb: 1 CC sites: 37 CC consensus.strict: agcTCAAGTGgctt CC consensus.strict.rc: AAGCCACTTGAGCT CC consensus.IUPAC: vkcTCAAGTGgctw CC consensus.IUPAC.rc: WAGCCACTTGAGMB CC consensus.regexp: [acg][gt]cTCAAGTGgct[at] CC consensus.regexp.rc: [AT]AGCCACTTGAG[AC][CGT] XX // AC oligo-analysis.asmb_m2 XX ID gata_like_motif XX DE wmmAGATACam PO A C G T 1 17 7 6 12 2 17 12 6 7 3 13 19 7 3 4 42 0 0 0 5 0 0 42 0 6 42 0 0 0 7 0 0 0 42 8 42 0 0 0 9 0 42 0 0 10 21 5 8 8 11 12 16 5 9 XX CC program: feature CC matrix.nb: 2 CC matrix.nb: 2 CC sites: 42 CC consensus.strict: aacAGATACac CC consensus.strict.rc: GTGTATCTGTT CC consensus.IUPAC: wmmAGATACam CC consensus.IUPAC.rc: KTGTATCTKKW CC consensus.regexp: [at][ac][ac]AGATACa[ac] CC consensus.regexp.rc: [GT]TGTATCT[GT][GT][AT] XX // PWMEnrich/inst/extdata/jaspar-insecta.jaspar0000644000175100017510000004026414614305422022112 0ustar00biocbuildbiocbuild>MA0010.1 br_Z1 A [3 1 5 7 3 6 4 7 1 9 8 5 4 2 ] C [1 1 2 0 0 0 1 0 8 0 0 0 0 3 ] G [4 1 1 1 0 0 4 1 0 0 1 3 0 2 ] T [1 6 1 1 6 3 0 1 0 0 0 1 5 2 ] >MA0011.1 br_Z2 A [ 3 5 0 0 12 1 2 1 ] C [ 1 2 10 1 0 1 0 2 ] G [ 1 1 0 0 0 2 1 1 ] T [ 7 4 2 11 0 8 9 8 ] >MA0012.1 br_Z3 A [ 3 9 10 12 0 4 10 6 6 4 2 ] C [ 1 2 0 0 10 0 0 0 1 3 3 ] G [ 1 1 0 0 1 0 0 4 2 2 5 ] T [ 7 0 2 0 1 8 2 2 3 3 2 ] >MA0013.1 br_Z4 A [1 4 2 1 5 6 5 1 3 5 3 ] C [1 0 0 0 0 0 0 3 0 0 1 ] G [0 0 4 0 1 0 1 1 1 0 0 ] T [4 2 0 5 0 0 0 1 2 1 2 ] >MA0015.1 Cf2_II A [25 1 74 0 78 1 41 2 53 12 ] C [13 2 2 9 2 4 2 9 3 29 ] G [40 1 4 4 0 1 36 1 20 15 ] T [ 2 76 0 67 0 74 1 68 4 24 ] >MA0016.1 usp A [ 0 1 0 0 0 0 35 5 5 6 ] C [ 1 0 0 0 0 36 0 25 8 10 ] G [37 36 38 38 0 1 3 3 22 16 ] T [ 0 1 0 0 38 1 0 5 3 6 ] >MA0022.1 dl_1 A [ 0 0 0 0 1 1 1 0 0 1 1 3 ] C [ 5 0 1 0 1 0 0 0 3 9 9 5 ] G [ 6 12 11 10 3 2 0 0 0 0 1 5 ] T [ 2 1 1 3 8 10 12 13 10 3 2 0 ] >MA0023.1 dl_2 A [0 0 0 0 4 2 0 0 0 1 ] C [1 0 0 0 1 1 0 1 9 8 ] G [7 7 9 8 0 0 0 0 0 0 ] T [1 2 0 1 4 6 9 8 0 0 ] >MA0026.1 Eip74EF A [ 2 5 0 0 17 17 5 ] C [12 12 0 0 0 0 1 ] G [ 2 0 17 17 0 0 10 ] T [ 1 0 0 0 0 0 1 ] >MA0049.1 hb A [ 1 6 9 4 13 16 16 14 15 9 ] C [ 5 8 3 3 1 0 0 0 1 2 ] G [ 8 2 4 1 0 0 0 2 0 2 ] T [ 2 0 0 8 2 0 0 0 0 3 ] >MA0085.1 Su(H) A [ 1 0 0 0 0 3 0 10 10 5 1 1 4 3 4 2 ] C [ 3 4 0 0 0 0 0 0 0 5 7 2 2 1 3 1 ] G [ 3 0 10 0 10 7 10 0 0 0 1 4 2 4 2 2 ] T [ 3 6 0 10 0 0 0 0 0 0 1 3 2 2 1 5 ] >MA0086.1 sna A [ 0 39 3 2 0 0 ] C [39 0 0 0 0 0 ] G [ 1 0 37 38 0 38 ] T [ 0 1 0 0 40 2 ] >MA0094.1 Ubx A [ 3 72 79 1 ] C [ 0 4 1 5 ] G [ 0 3 6 4 ] T [85 9 2 78 ] >MA0126.1 ovo A [10 1 4 20 21 0 7 0 5 ] C [ 4 4 2 0 0 21 5 0 4 ] G [ 0 14 2 0 0 0 3 21 2 ] T [ 7 2 13 1 0 0 6 0 10 ] >MA0165.1 Abd-B A [ 1 0 5 21 0 3 13 ] C [ 0 0 0 0 3 0 0 ] G [ 0 0 0 0 0 11 5 ] T [20 21 16 0 18 7 3 ] >MA0166.1 Antp A [ 1 0 16 16 0 0 15 ] C [ 1 0 0 0 0 0 0 ] G [ 0 0 0 0 0 9 1 ] T [14 16 0 0 16 7 0 ] >MA0167.1 Awh A [ 3 1 33 40 0 0 34 ] C [16 0 0 0 0 0 0 ] G [ 0 0 7 0 1 8 4 ] T [21 39 0 0 39 32 2 ] >MA0168.1 B-H1 A [ 4 0 21 21 8 1 1 ] C [ 4 0 0 0 0 7 0 ] G [ 0 0 0 0 0 0 20 ] T [13 21 0 0 13 13 0 ] >MA0169.1 B-H2 A [ 6 0 21 21 5 3 0 ] C [ 2 0 0 0 0 1 0 ] G [ 1 0 0 0 0 2 21 ] T [12 21 0 0 16 15 0 ] >MA0170.1 C15 A [ 1 0 17 19 6 0 10 ] C [ 1 0 0 0 2 3 0 ] G [ 0 0 0 0 0 6 9 ] T [17 19 2 0 11 10 0 ] >MA0171.1 CG11085 A [ 0 0 13 13 1 2 1 ] C [ 3 0 0 0 0 1 0 ] G [ 0 0 0 0 0 2 12 ] T [10 13 0 0 12 8 0 ] >MA0172.1 CG11294 A [ 0 0 15 15 0 0 15 ] C [ 3 2 0 0 0 0 0 ] G [ 0 0 0 0 0 0 0 ] T [12 13 0 0 15 15 0 ] >MA0173.1 CG11617 A [ 1 0 10 17 0 17 0 ] C [ 0 0 0 0 17 0 0 ] G [ 0 0 3 0 0 0 0 ] T [16 17 4 0 0 0 1 ] >MA0174.1 CG42234 A [ 2 2 6 16 0 0 13 ] C [ 0 0 0 0 0 2 0 ] G [ 0 0 2 0 0 6 3 ] T [14 14 8 0 16 8 0 ] >MA0175.1 CG13424 A [ 2 0 21 21 0 3 8 ] C [ 7 0 0 0 0 0 0 ] G [ 1 0 0 0 0 4 13 ] T [11 21 0 0 21 14 0 ] >MA0176.1 CG15696 A [ 2 2 21 32 0 0 16 ] C [ 3 3 0 0 0 0 0 ] G [ 3 0 6 0 0 2 16 ] T [24 27 5 0 32 30 0 ] >MA0177.1 CG18599 A [ 4 0 25 25 0 0 23 ] C [10 0 0 0 0 1 0 ] G [ 1 0 0 0 0 8 2 ] T [10 25 0 0 25 16 0 ] >MA0178.1 CG32105 A [ 2 2 17 19 0 0 15 ] C [ 4 0 0 0 0 0 0 ] G [ 0 0 0 0 1 1 4 ] T [13 17 2 0 18 18 0 ] >MA0179.1 CG32532 A [ 2 0 23 23 0 0 12 ] C [ 6 0 0 0 0 0 0 ] G [ 2 0 0 0 0 2 10 ] T [13 23 0 0 23 21 1 ] >MA0180.1 Vsx2 A [ 1 2 0 13 13 0 0 10 1 ] C [ 1 2 0 0 0 0 0 0 2 ] G [ 5 0 0 0 0 0 0 3 10 ] T [ 6 9 13 0 0 13 13 0 0 ] >MA0181.1 Vsx1 A [ 1 0 22 22 0 2 15 ] C [ 8 0 0 0 0 0 0 ] G [ 1 0 0 0 0 3 6 ] T [12 22 0 0 22 17 1 ] >MA0182.1 CG4328 A [12 7 13 30 0 0 15 ] C [ 2 1 0 0 0 0 0 ] G [ 3 0 0 0 0 6 15 ] T [13 22 17 0 30 24 0 ] >MA0183.1 CG7056 A [ 7 0 0 21 26 0 7 22 ] C [ 3 7 6 0 0 3 0 0 ] G [ 2 0 7 2 0 3 1 4 ] T [14 19 13 3 0 20 18 0 ] >MA0184.1 CG9876 A [ 2 0 18 20 0 0 14 ] C [ 9 0 0 0 0 0 0 ] G [ 3 0 0 0 0 1 6 ] T [ 6 20 2 0 20 19 0 ] >MA0185.1 Deaf1 A [ 0 0 0 0 0 1 ] C [ 3 0 10 0 0 3 ] G [ 0 0 0 10 5 4 ] T [ 7 10 0 0 5 2 ] >MA0186.1 Dfd A [ 1 0 24 24 0 1 21 ] C [ 4 0 0 0 0 0 0 ] G [ 3 0 0 0 0 19 3 ] T [16 24 0 0 24 4 0 ] >MA0187.1 Dll A [ 1 22 23 0 3 10 1 ] C [ 0 0 0 0 0 0 12 ] G [ 0 1 0 0 3 9 4 ] T [22 0 0 23 17 4 6 ] >MA0188.1 Dr A [ 1 0 21 21 0 0 21 ] C [13 16 0 0 0 0 0 ] G [ 6 0 0 0 0 0 0 ] T [ 1 5 0 0 21 21 0 ] >MA0189.1 E5 A [ 5 3 43 42 1 5 34 ] C [15 0 0 0 0 0 0 ] G [ 6 0 0 0 1 16 9 ] T [17 40 0 1 41 22 0 ] >MA0190.1 Gsc A [ 0 22 22 0 0 0 ] C [ 0 0 0 0 22 14 ] G [ 0 0 0 0 0 2 ] T [22 0 0 22 0 6 ] >MA0191.1 HGTX A [ 4 0 20 20 0 1 15 ] C [ 2 0 0 0 0 0 0 ] G [ 3 0 0 0 0 6 5 ] T [11 20 0 0 20 13 0 ] >MA0192.1 Hmx A [ 1 0 20 20 1 0 4 ] C [ 3 0 0 0 0 3 0 ] G [ 0 0 0 0 0 0 16 ] T [16 20 0 0 19 17 0 ] >MA0193.1 Lag1 A [ 0 0 17 1 0 18 12 ] C [19 9 2 18 12 0 0 ] G [ 0 0 0 0 0 1 4 ] T [ 0 10 0 0 7 0 3 ] >MA0194.1 Lim1 A [ 0 0 18 18 0 0 17 ] C [ 2 0 0 0 0 0 0 ] G [ 0 0 0 0 0 0 1 ] T [16 18 0 0 18 18 0 ] >MA0195.1 Lim3 A [ 3 4 16 20 0 0 16 ] C [ 7 0 0 0 0 2 0 ] G [ 2 0 3 0 0 4 4 ] T [ 8 16 1 0 20 14 0 ] >MA0196.1 NK7.1 A [ 5 0 33 35 4 6 13 ] C [ 5 0 0 0 0 0 0 ] G [ 1 0 2 0 5 7 22 ] T [24 35 0 0 26 22 0 ] >MA0197.1 Oct A [ 2 8 1 22 22 0 2 15 ] C [ 4 3 0 0 0 0 3 1 ] G [ 7 0 0 0 0 0 6 1 ] T [ 9 11 21 0 0 22 11 5 ] >MA0198.1 OdsH A [ 0 0 22 22 0 0 13 ] C [11 0 0 0 0 0 0 ] G [ 4 0 0 0 0 0 8 ] T [ 7 22 0 0 22 22 1 ] >MA0199.1 Optix A [ 0 0 27 0 26 ] C [ 5 0 0 0 0 ] G [ 0 27 0 0 1 ] T [22 0 0 27 0 ] >MA0200.1 Pph13 A [ 6 0 21 21 0 0 13 ] C [ 8 0 0 0 0 1 1 ] G [ 3 0 0 0 0 0 6 ] T [ 4 21 0 0 21 20 1 ] >MA0201.1 Ptx1 A [ 0 0 20 20 0 0 0 ] C [ 5 0 0 0 0 20 19 ] G [ 1 0 0 0 0 0 0 ] T [14 20 0 0 20 0 1 ] >MA0202.1 Rx A [ 3 0 27 27 0 0 17 ] C [13 0 0 0 0 0 0 ] G [ 0 0 0 0 0 0 10 ] T [11 27 0 0 27 27 0 ] >MA0203.1 Scr A [ 3 0 25 25 0 0 23 ] C [ 7 0 0 0 0 0 0 ] G [ 0 0 0 0 0 18 2 ] T [15 25 0 0 25 7 0 ] >MA0204.1 Six4 A [ 0 0 20 0 20 1 ] C [ 0 0 0 7 0 19 ] G [ 0 20 0 4 0 0 ] T [20 0 0 9 0 0 ] >MA0205.1 Trl A [ 4 6 12 0 3 1 13 5 7 9 ] C [22 23 6 64 0 70 0 54 13 33 ] G [ 9 11 30 3 14 0 2 7 11 10 ] T [36 31 23 4 54 0 56 5 40 19 ] >MA0206.1 abd-A A [ 1 0 16 18 1 0 15 ] C [ 3 0 0 0 0 0 1 ] G [ 0 0 0 0 0 6 2 ] T [14 18 2 0 17 12 0 ] >MA0207.1 achi A [ 0 0 23 0 23 3 ] C [ 0 0 0 22 0 0 ] G [ 0 23 0 0 0 12 ] T [23 0 0 1 0 2 ] >MA0208.1 al A [ 0 20 20 0 0 17 18 ] C [ 0 0 0 0 0 0 0 ] G [ 0 0 0 0 0 3 2 ] T [20 0 0 20 20 0 0 ] >MA0209.1 ap A [ 2 1 19 19 0 0 16 ] C [10 0 0 0 0 0 0 ] G [ 0 0 0 0 0 6 3 ] T [ 7 18 0 0 19 13 0 ] >MA0210.1 ara A [14 23 34 0 34 ] C [ 0 0 0 34 0 ] G [ 5 0 0 0 0 ] T [15 11 0 0 0 ] >MA0211.1 bap A [ 0 0 23 23 0 1 7 ] C [ 0 0 0 0 0 0 0 ] G [ 1 0 0 0 23 0 16 ] T [22 23 0 0 0 22 0 ] >MA0212.1 bcd A [ 0 20 22 0 0 0 ] C [ 0 0 0 0 22 21 ] G [ 0 0 0 1 0 0 ] T [22 2 0 21 0 1 ] >MA0213.1 brk A [ 1 0 0 0 0 1 1 0 ] C [ 5 4 0 0 10 0 8 5 ] G [ 4 0 10 10 0 9 0 1 ] T [ 0 6 0 0 0 0 1 4 ] >MA0214.1 bsh A [ 1 0 16 16 0 0 7 ] C [ 3 0 0 0 1 3 0 ] G [ 2 0 0 0 0 6 9 ] T [10 16 0 0 15 7 0 ] >MA0215.1 btn A [ 5 0 22 23 0 0 19 ] C [ 1 0 0 0 1 0 0 ] G [ 4 0 1 0 0 15 3 ] T [13 23 0 0 22 8 1 ] >MA0216.1 cad A [ 3 1 8 37 3 3 18 ] C [ 2 0 0 0 0 0 0 ] G [ 3 0 2 1 0 9 19 ] T [30 37 28 0 35 26 1 ] >MA0217.1 caup A [ 4 14 19 0 19 ] C [ 1 0 0 19 0 ] G [ 2 2 0 0 0 ] T [12 3 0 0 0 ] >MA0218.1 ct A [ 0 1 9 20 17 0 ] C [ 6 2 0 0 0 19 ] G [ 0 0 11 0 1 1 ] T [14 17 0 0 2 0 ] >MA0219.1 ems A [ 3 3 19 19 0 0 14 ] C [ 7 0 0 0 0 1 0 ] G [ 1 0 0 1 0 10 6 ] T [ 9 17 1 0 20 9 0 ] >MA0220.1 en A [ 2 0 23 23 0 0 13 ] C [ 8 0 0 0 0 0 0 ] G [ 2 0 0 0 0 2 10 ] T [11 23 0 0 23 21 0 ] >MA0221.1 eve A [ 3 1 22 22 0 0 17 ] C [10 0 0 0 2 2 0 ] G [ 0 0 0 0 1 11 4 ] T [ 9 21 0 0 19 9 1 ] >MA0222.1 exd A [ 4 1 0 0 0 17 0 11 ] C [ 4 0 0 0 0 0 12 0 ] G [ 4 2 0 0 17 0 0 6 ] T [ 5 14 17 17 0 0 5 0 ] >MA0223.1 exex A [ 0 0 23 23 0 1 20 ] C [ 7 0 0 0 0 1 0 ] G [10 0 0 0 0 0 3 ] T [ 6 23 0 0 23 21 0 ] >MA0224.1 exex A [ 0 0 23 23 0 1 20 ] C [ 7 0 0 0 0 1 0 ] G [10 0 0 0 0 0 3 ] T [ 6 23 0 0 23 21 0 ] >MA0225.1 ftz A [ 1 1 18 18 0 0 14 ] C [ 2 0 0 0 0 0 0 ] G [ 0 0 0 0 0 9 4 ] T [15 17 0 0 18 9 0 ] >MA0226.1 hbn A [ 2 0 17 17 0 0 9 ] C [ 2 0 0 0 0 0 0 ] G [ 2 0 0 0 0 0 7 ] T [11 17 0 0 17 17 1 ] >MA0227.1 hth A [ 0 0 17 0 14 0 ] C [ 0 0 0 17 0 0 ] G [ 0 17 0 0 3 8 ] T [17 0 0 0 0 4 ] >MA0228.1 ind A [ 0 0 21 21 0 0 19 ] C [12 0 0 0 0 0 0 ] G [ 0 0 0 0 1 8 2 ] T [ 9 21 0 0 20 13 0 ] >MA0229.1 inv A [ 4 1 0 16 16 0 0 11 ] C [ 0 9 0 0 0 0 0 0 ] G [ 3 0 0 0 0 0 0 5 ] T [ 9 6 16 0 0 16 16 0 ] >MA0230.1 lab A [ 1 0 16 16 1 0 16 ] C [ 3 0 0 0 0 0 0 ] G [ 0 0 0 0 0 6 0 ] T [12 16 0 0 15 10 0 ] >MA0231.1 lbe A [ 0 22 22 1 4 19 ] C [ 0 0 0 10 5 0 ] G [ 0 0 0 2 3 3 ] T [22 0 0 9 10 0 ] >MA0232.1 lbl A [ 0 23 23 0 1 17 ] C [ 0 0 0 5 3 0 ] G [ 0 0 0 0 7 6 ] T [23 0 0 18 12 0 ] >MA0233.1 mirr A [20 29 41 0 41 ] C [ 1 0 0 41 0 ] G [ 1 2 0 0 0 ] T [19 10 0 0 0 ] >MA0234.1 oc A [ 0 19 19 0 0 0 ] C [ 0 0 0 0 19 17 ] G [ 0 0 0 2 0 1 ] T [19 0 0 17 0 1 ] >MA0235.1 onecut A [ 1 0 0 15 0 0 5 ] C [ 2 0 0 0 0 0 0 ] G [ 0 0 15 0 0 0 4 ] T [12 15 0 0 15 15 6 ] >MA0236.1 otp A [ 1 0 20 20 0 0 15 ] C [ 6 1 0 0 0 1 0 ] G [ 2 0 0 0 0 4 3 ] T [11 19 0 0 20 15 2 ] >MA0237.1 pan A [ 4 2 2 2 0 17 8 7 ] C [10 3 0 0 2 0 0 11 ] G [ 3 0 1 0 20 5 0 3 ] T [ 8 20 22 23 3 3 17 4 ] >MA0238.1 pb A [ 4 0 24 24 0 0 24 ] C [ 9 0 0 0 0 0 0 ] G [ 0 0 0 0 0 11 0 ] T [11 24 0 0 24 13 0 ] >MA0239.1 prd A [10 1 4 20 21 0 7 0 5 ] C [ 4 4 2 0 0 21 5 0 4 ] G [ 0 14 2 0 0 0 3 21 2 ] T [ 7 2 13 1 0 0 6 0 10 ] >MA0240.1 repo A [ 1 1 27 28 0 0 21 ] C [ 4 0 0 0 0 0 0 ] G [ 4 0 0 0 0 0 7 ] T [19 27 1 0 28 28 0 ] >MA0241.1 ro A [ 1 0 23 23 0 0 19 ] C [12 0 0 0 0 0 0 ] G [ 3 0 0 0 0 3 4 ] T [ 7 23 0 0 23 20 0 ] >MA0242.1 run::Bgb A [12 27 28 0 0 5 0 28 20 ] C [ 2 0 0 29 28 1 29 0 0 ] G [ 0 1 1 0 1 23 0 0 9 ] T [15 1 0 0 0 0 0 1 0 ] >MA0243.1 sd A [ 3 8 4 14 1 3 0 3 4 5 5 4 ] C [ 0 1 8 0 1 0 8 5 1 6 1 3 ] G [ 8 1 1 0 0 1 0 3 2 3 7 4 ] T [ 3 4 1 0 12 10 6 3 7 0 1 3 ] >MA0244.1 slbo A [ 9 0 0 3 2 7 6 11 ] C [ 1 1 0 2 10 2 5 1 ] G [ 1 0 3 7 0 2 1 0 ] T [ 1 11 9 0 0 1 0 0 ] >MA0245.1 slou A [ 3 0 22 21 0 2 11 ] C [ 5 1 0 0 0 1 0 ] G [ 1 0 0 1 0 5 11 ] T [13 21 0 0 22 14 0 ] >MA0246.1 so A [ 0 0 27 0 27 0 ] C [ 0 0 0 0 0 10 ] G [ 1 27 0 1 0 0 ] T [26 0 0 26 0 3 ] >MA0247.1 tin A [ 0 1 0 16 16 0 0 3 ] C [ 9 0 11 0 0 0 0 0 ] G [ 3 0 1 0 0 16 0 13 ] T [ 4 15 4 0 0 0 16 0 ] >MA0248.1 tup A [ 4 1 16 16 0 1 2 ] C [ 2 0 0 0 0 0 0 ] G [ 1 0 0 0 2 7 13 ] T [ 9 15 0 0 14 8 1 ] >MA0249.1 twi A [ 1 3 1 0 11 0 7 0 0 1 1 2 ] C [ 4 7 3 14 3 4 1 0 0 0 2 3 ] G [ 3 3 10 1 1 1 5 0 12 2 2 8 ] T [ 7 2 1 0 0 10 2 15 3 12 10 2 ] >MA0250.1 unc-4 A [ 1 0 21 21 0 1 6 ] C [ 5 0 0 0 0 0 1 ] G [ 2 0 0 0 0 0 14 ] T [13 21 0 0 21 20 0 ] >MA0251.1 unpg A [ 1 1 21 21 0 0 14 ] C [ 6 0 0 0 0 0 0 ] G [ 4 0 0 0 0 2 7 ] T [10 20 0 0 21 19 0 ] >MA0252.1 vis A [ 0 0 22 0 22 2 ] C [ 0 0 0 22 0 4 ] G [ 0 22 0 0 0 8 ] T [22 0 0 0 0 2 ] >MA0253.1 vnd A [ 4 1 0 0 19 19 0 2 9 ] C [ 0 8 0 15 0 0 0 0 0 ] G [ 2 1 0 2 0 0 19 0 10 ] T [13 9 19 2 0 0 0 17 0 ] >MA0254.1 vvl A [ 0 11 2 0 3 11 ] C [ 2 0 2 0 8 0 ] G [ 0 0 0 6 0 0 ] T [ 9 0 7 5 0 0 ] >MA0255.1 z A [11 1 1 41 1 8 2 18 10 14 ] C [ 3 7 0 0 0 10 6 7 5 6 ] G [ 5 3 40 0 40 0 29 11 12 2 ] T [22 30 0 0 0 23 4 5 14 19 ] >MA0256.1 zen A [ 2 0 16 16 0 0 16 ] C [ 9 0 0 0 0 0 0 ] G [ 0 0 0 0 0 11 0 ] T [ 5 16 0 0 16 5 0 ] >MA0257.1 zen2 A [ 3 1 26 26 0 0 22 ] C [ 7 0 0 0 1 0 0 ] G [ 5 0 0 0 0 10 4 ] T [11 25 0 0 25 16 0 ] >MA0094.2 Ubx A [ 3 0 0 17 20 0 0 14 ] C [ 5 0 0 0 0 0 0 0 ] G [ 3 0 0 0 0 0 6 6 ] T [ 9 20 20 3 0 20 14 0 ] >MA0443.1 btd A [14 10 4 2 0 0 2 0 0 15 ] C [ 3 0 0 0 0 0 28 0 0 1 ] G [ 7 20 18 28 30 30 0 30 20 10 ] T [ 6 0 8 0 0 0 0 0 10 4 ] >MA0444.1 CG34031 A [ 0 0 22 25 2 7 3 ] C [ 1 0 0 0 0 0 0 ] G [ 1 0 0 0 0 1 22 ] T [23 25 3 0 23 17 0 ] >MA00445.1 D A [ 1 0 0 20 0 0 2 0 1 4 6 ] C [ 8 25 17 0 0 0 0 0 2 10 1 ] G [ 7 0 0 0 0 3 27 0 4 6 1 ] T [13 4 12 9 29 26 0 29 22 9 21 ] >MA0446.1 fkh A [ 3 5 0 0 0 13 4 6 0 23 15 ] C [ 0 0 0 0 0 0 13 7 11 0 4 ] G [ 0 22 0 0 1 14 2 3 2 1 4 ] T [24 0 27 27 26 0 8 11 14 3 4 ] >MA0447.1 gt A [28 0 1 54 0 7 0 55 60 2 ] C [ 5 0 1 0 53 0 6 3 0 25 ] G [25 0 3 6 0 53 0 1 0 5 ] T [ 2 60 55 0 7 0 54 1 0 28 ] >MA0448.1 H2.0 A [ 6 2 16 31 0 8 24 ] C [ 3 1 1 0 0 0 0 ] G [ 4 0 1 0 0 9 7 ] T [19 29 14 1 32 15 1 ] >MA0449.1 h A [ 1 3 1 22 1 2 1 1 7 1 ] C [ 2 7 31 1 30 1 10 1 17 30 ] G [30 17 1 10 1 30 1 31 7 2 ] T [ 1 7 1 1 2 1 22 1 3 1 ] >MA0450.1 hkb A [ 3 8 0 0 0 0 0 0 24 ] C [ 0 0 0 0 32 0 0 0 3 ] G [18 24 32 32 0 32 3 31 2 ] T [11 0 0 0 0 0 29 1 3 ] >MA0451.1 kni A [19 25 16 5 0 21 0 17 1 0 25 5 ] C [ 1 1 0 9 4 0 0 0 3 26 0 12 ] G [ 2 0 0 6 1 5 26 8 18 0 1 7 ] T [ 4 0 10 6 21 0 0 1 4 0 0 2 ] >MA0452.1 Kr A [ 3 11 24 30 18 0 2 2 0 4 20 ] C [17 4 0 0 6 0 0 0 1 0 4 ] G [ 5 10 7 0 7 31 29 29 7 5 3 ] T [ 6 6 0 1 0 0 0 0 23 22 4 ] >MA0453.1 nub A [ 2 29 0 0 0 24 28 28 4 6 19 4 ] C [ 1 0 0 0 19 0 0 0 1 5 5 3 ] G [ 1 0 0 25 1 0 1 0 0 8 1 15 ] T [25 0 29 4 9 5 0 1 24 10 4 7 ] >MA0454.1 odd A [ 7 10 0 12 0 0 15 0 0 11 5 ] C [ 5 5 14 0 0 0 0 0 15 3 4 ] G [ 0 0 1 3 15 0 0 15 0 1 6 ] T [ 3 0 0 0 0 15 0 0 0 0 0 ] >MA0455.1 OdsH A [ 0 0 22 22 0 0 13 ] C [11 0 0 0 0 0 0 ] G [ 4 0 0 0 0 0 8 ] T [ 7 22 0 0 22 22 1 ] >MA0456.1 opa A [ 0 10 1 1 0 0 0 0 4 0 3 2 ] C [ 1 7 16 15 16 18 18 14 0 14 1 0 ] G [15 1 0 1 1 0 0 0 13 2 4 16 ] T [ 2 0 1 1 1 0 0 4 1 2 10 0 ] >MA0457.1 PHDP A [ 4 0 16 17 0 1 8 ] C [ 6 0 0 0 0 0 1 ] G [ 0 0 0 0 0 1 4 ] T [ 7 17 1 0 17 15 4 ] >MA0458.1 slp1 A [ 8 0 3 0 0 0 27 1 17 4 15 ] C [ 3 0 0 0 0 0 0 22 8 13 3 ] G [14 0 38 0 1 2 4 7 15 3 4 ] T [16 41 0 41 40 39 10 11 1 21 19 ] >MA0459.1 tll A [20 29 33 31 0 0 0 33 31 17 ] C [ 4 0 0 1 0 2 33 0 0 10 ] G [ 4 4 0 1 33 0 0 0 1 2 ] T [ 5 0 0 0 0 31 0 0 1 4 ] >MA0460.1 ttk A [10 22 0 0 22 0 21 22 1 ] C [ 8 0 0 0 0 5 0 0 5 ] G [ 3 0 22 22 0 0 0 0 3 ] T [ 1 0 0 0 0 17 1 0 13 ] PWMEnrich/inst/extdata/pfm_vertebrates.txt0000644000175100017510000010452014614305422021731 0ustar00biocbuildbiocbuild>MA0004.1 Arnt 4 19 0 0 0 0 16 0 20 0 0 0 0 1 0 20 0 20 0 0 0 0 20 0 >MA0006.1 Arnt::Ahr 3 0 0 0 0 0 8 0 23 0 0 0 2 23 0 23 0 24 11 1 1 1 24 0 >MA0009.1 T 2 1 40 0 0 0 0 0 1 40 31 28 1 0 0 0 0 0 2 7 0 5 8 0 0 40 40 0 40 0 28 0 0 2 38 0 0 0 40 0 38 4 0 4 >MA0017.1 NR2F1 0 1 12 6 0 0 0 1 2 6 6 1 3 0 0 0 0 7 13 3 2 0 0 4 5 10 6 3 2 12 1 0 0 0 0 0 11 3 1 1 0 3 11 0 0 0 0 10 11 12 0 0 1 1 4 7 >MA0019.1 Ddit3::Cebpa 14 11 18 0 0 4 38 36 0 14 4 0 7 7 3 1 0 33 1 2 6 17 23 26 12 14 15 0 38 0 0 1 0 5 9 6 6 7 3 38 1 2 0 0 33 3 3 7 >MA0025.1 NFIL3 1 0 22 0 2 0 23 22 0 7 5 0 0 0 8 0 0 0 0 11 5 5 0 2 0 0 21 0 0 1 4 7 3 22 21 1 15 0 23 0 0 8 4 10 >MA0027.1 En1 4 5 3 0 4 3 3 2 1 1 1 1 2 0 0 0 0 0 1 3 4 6 2 2 7 2 3 7 0 4 3 1 1 3 1 0 8 3 0 7 3 3 4 2 >MA0028.1 ELK1 7 10 9 5 2 0 1 27 21 13 7 6 4 19 24 0 0 0 5 0 10 6 10 1 1 24 27 1 0 14 4 6 5 3 1 4 0 0 2 1 >MA0029.1 Mecom 14 20 0 27 1 27 26 0 27 0 24 23 6 15 2 1 1 0 10 0 0 0 0 3 1 0 7 6 6 2 25 0 0 0 1 27 0 0 0 4 7 3 5 4 1 0 16 0 0 0 0 24 2 0 7 3 >MA0030.1 FOXF2 1 10 17 13 3 7 0 27 27 27 0 27 16 7 10 7 4 5 11 0 0 0 0 0 25 0 4 4 7 5 2 5 8 20 0 0 0 0 0 0 2 6 9 5 4 5 0 0 27 0 0 0 2 0 5 10 >MA0031.1 FOXD1 1 0 19 20 18 1 20 7 1 0 1 0 1 18 0 2 17 0 0 0 1 0 0 3 1 20 0 0 0 1 0 8 >MA0032.1 FOXC1 4 2 4 6 7 0 0 16 4 5 4 4 3 0 0 0 5 6 3 5 2 16 0 0 3 3 5 1 4 0 16 0 >MA0033.1 FOXL1 7 10 6 13 4 21 0 22 1 4 3 4 10 0 2 1 4 2 6 4 2 2 0 0 11 7 8 2 7 0 21 0 >MA0038.1 Gfi1 9 28 53 53 1 1 31 8 19 7 20 16 0 0 0 52 7 28 11 13 9 7 0 0 1 0 2 11 2 28 15 2 0 0 51 0 13 6 21 5 >MA0040.1 Foxq1 4 13 5 3 0 0 0 0 17 0 6 4 1 2 0 0 0 0 0 0 1 0 3 3 0 0 18 0 0 0 1 4 3 7 1 11 15 0 18 18 18 0 13 9 >MA0041.1 Foxd3 11 30 24 1 12 0 1 5 14 6 1 0 3 2 1 4 0 0 0 0 0 7 2 12 26 0 0 0 34 0 0 10 21 0 4 0 7 15 22 42 1 47 46 32 12 34 40 35 >MA0042.1 FOXI1 6 4 11 0 13 0 0 0 15 0 8 2 1 8 4 0 0 0 0 0 0 0 1 1 14 12 8 0 18 0 0 0 16 7 4 4 10 7 8 31 0 31 31 31 0 24 18 24 >MA0043.1 HLF 1 6 1 0 13 0 6 0 13 15 2 5 4 0 0 0 1 15 0 9 4 0 3 5 8 12 0 3 2 1 12 0 1 1 1 3 5 0 17 15 2 2 0 9 0 2 12 5 >MA0046.1 HNF1A 5 1 1 1 20 16 1 8 14 2 0 13 8 5 0 0 0 0 0 2 0 2 0 0 4 1 8 13 14 20 0 0 0 1 0 4 1 0 0 3 3 0 2 0 20 20 1 2 20 7 6 19 17 4 2 3 >MA0048.1 NHLH1 13 13 3 1 54 1 1 1 0 3 2 5 13 39 5 53 0 1 50 1 0 37 0 17 17 2 37 0 0 52 3 0 53 8 37 12 11 0 9 0 0 0 0 52 1 6 15 20 >MA0051.1 IRF2 0 2 12 11 12 2 0 0 12 12 12 0 0 5 6 6 5 3 4 0 0 0 0 0 6 0 0 0 0 6 7 2 0 1 2 6 7 10 0 0 0 10 0 12 0 0 0 6 2 3 2 1 1 1 1 0 0 1 0 0 6 0 0 0 0 0 3 2 4 4 4 2 >MA0056.1 MZF1_1-4 3 0 2 0 0 18 5 0 0 0 0 0 4 19 18 19 20 2 8 1 0 1 0 0 >MA0057.1 MZF1_5-13 1 2 15 0 0 0 0 3 10 8 4 0 1 0 0 2 0 1 0 2 7 7 0 11 15 14 14 8 4 4 4 7 0 5 1 0 2 4 2 2 >MA0059.1 MYC::MAX 7 15 2 1 21 0 1 0 0 1 3 1 1 9 20 0 20 0 1 0 1 5 9 4 9 0 0 0 20 0 21 18 0 4 1 1 0 0 1 0 20 0 1 13 >MA0063.1 Nkx2-5 7 0 17 17 0 4 2 0 4 0 0 0 2 1 1 0 0 0 7 0 11 9 13 0 0 10 11 3 >MA0066.1 PPARG 3 3 19 0 1 0 2 26 5 5 4 1 2 22 1 0 3 22 5 7 8 0 0 1 0 1 23 1 15 7 2 0 5 5 27 25 12 5 12 0 14 0 9 27 26 4 3 0 4 10 18 2 20 0 0 0 0 0 6 1 3 25 0 0 1 23 0 1 4 6 4 25 1 1 0 3 13 1 5 20 >MA0067.1 Pax2 10 7 3 0 26 2 2 1 7 1 2 28 1 17 0 11 5 21 0 1 3 1 19 11 9 2 26 2 1 11 10 8 >MA0068.1 Pax4 7 20 16 11 13 11 6 9 5 5 6 7 8 6 10 4 3 7 4 9 5 5 7 6 3 7 3 1 6 3 2 0 2 1 1 3 1 1 3 11 11 7 7 5 5 8 6 8 9 6 7 6 11 9 12 9 12 11 11 13 11 1 1 1 3 1 2 1 6 1 4 5 2 1 4 4 4 3 3 2 5 2 0 1 2 2 2 3 1 2 1 0 2 8 4 6 12 10 7 4 0 2 4 9 2 5 8 3 5 4 4 8 3 5 4 3 4 6 3 3 >MA0069.1 Pax6 2 2 4 39 3 1 1 21 1 2 36 11 1 1 4 2 26 2 34 0 37 2 4 14 0 11 5 0 4 0 1 1 1 41 4 2 1 25 6 13 3 17 33 39 12 1 5 1 1 18 37 2 1 8 34 25 >MA0070.1 PBX1 5 3 16 1 0 17 17 0 0 16 12 8 6 9 1 1 18 1 0 0 18 1 0 2 2 3 1 0 0 0 0 1 0 0 1 2 5 3 0 16 0 0 1 17 0 1 5 6 >MA0071.1 RORA_1 15 9 6 11 21 0 0 0 0 25 1 1 12 2 0 0 0 0 25 0 2 0 4 5 4 25 25 0 0 0 7 15 3 7 0 0 0 25 0 0 >MA0072.1 RORA_2 9 17 15 35 23 2 0 28 0 0 0 0 36 15 8 2 0 1 0 12 0 0 0 0 0 36 0 6 8 7 3 0 0 13 0 8 36 36 0 0 0 10 11 10 18 0 13 9 36 0 0 0 36 0 0 5 >MA0073.1 RREB1 3 1 3 0 7 9 8 4 0 11 4 1 3 4 2 4 4 4 1 4 8 10 8 11 4 2 3 6 11 0 7 10 8 6 9 5 5 6 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 3 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 1 0 1 >MA0074.1 RXRA::VDR 3 0 0 0 0 9 4 2 2 5 0 0 1 0 7 0 0 0 0 9 0 2 4 0 0 0 0 0 9 1 7 10 9 0 0 1 0 2 8 5 10 0 0 0 2 0 0 1 10 1 0 4 2 0 0 0 10 9 1 0 >MA0075.1 Prrx2 52 59 0 0 58 2 0 0 0 0 4 0 1 0 1 1 0 58 59 0 >MA0077.1 SOX9 3 8 71 2 7 2 13 9 14 55 38 1 1 0 2 0 7 31 9 6 0 2 4 72 4 6 7 9 24 4 71 65 0 59 54 24 >MA0078.1 Sox17 7 8 3 30 0 0 0 0 0 9 8 18 0 1 0 0 0 17 6 4 1 0 0 0 31 2 10 9 11 9 1 30 31 0 29 4 >MA0081.1 SPIB 31 4 24 2 1 48 47 0 14 16 0 0 0 0 0 29 7 47 47 0 0 18 2 2 0 1 1 2 >MA0084.1 SRY 5 8 15 18 25 0 28 27 7 5 3 0 3 0 26 0 0 0 10 4 3 3 0 0 0 1 2 8 13 10 4 3 2 0 0 19 >MA0087.1 Sox5 23 0 0 1 0 1 8 0 0 0 0 1 1 3 0 1 0 22 0 0 4 0 22 23 0 22 21 8 >MA0088.1 znf143 0 6 2 0 2 1 0 0 9 0 4 6 0 0 0 4 3 2 1 3 3 2 3 3 1 7 10 10 1 1 4 2 0 1 10 5 1 3 1 6 4 1 1 2 0 0 0 0 0 4 2 2 1 6 0 0 1 0 7 1 3 1 4 5 7 2 0 0 0 5 0 0 9 3 0 1 5 5 1 0 >MA0089.1 NFE2L1::MafG 7 29 0 1 34 0 11 2 0 0 0 26 10 3 0 32 0 2 6 0 34 1 0 6 >MA0090.1 TEAD1 1 9 0 12 0 0 0 0 5 1 2 0 6 0 12 0 0 0 12 11 0 7 4 2 1 3 0 0 0 0 0 0 0 4 3 8 4 0 0 0 12 12 0 1 7 0 3 2 >MA0091.1 TAL1::TCF3 13 9 39 20 0 44 0 12 0 0 0 4 14 10 0 24 43 0 1 32 0 0 3 4 8 20 3 0 1 0 11 0 0 43 20 2 9 5 2 0 0 0 32 0 44 1 21 34 >MA0092.1 Hand1::Tcfe2a 4 10 2 0 0 0 0 9 16 5 8 0 2 28 0 0 3 14 0 4 10 15 1 0 0 29 25 1 3 4 7 4 24 1 29 0 1 5 10 16 >MA0101.1 REL 0 0 1 5 6 5 1 2 0 1 5 1 0 1 5 1 0 0 15 16 8 15 15 9 3 1 0 0 0 0 4 1 1 2 3 10 16 15 2 0 >MA0107.1 RELA 0 0 0 11 10 2 0 0 0 0 4 0 0 0 3 0 0 2 18 18 11 17 18 7 4 0 0 0 0 0 3 1 0 0 1 16 18 16 0 0 >MA0108.2 TBP 61 16 352 3 354 268 360 222 155 56 83 82 82 68 77 145 46 0 10 0 0 3 2 44 135 147 127 118 107 101 152 18 2 2 5 0 20 44 157 150 128 128 128 139 140 31 309 35 374 30 121 6 121 33 48 31 52 61 75 71 >MA0109.1 Hltf 16 20 26 0 25 0 24 0 15 12 10 12 33 59 0 0 5 0 14 12 12 5 0 0 0 0 12 22 14 10 13 16 0 0 34 59 18 37 8 15 >MA0111.1 Spz1 9 0 2 0 1 8 6 1 10 0 2 0 2 0 0 0 0 0 9 0 1 8 3 9 10 11 1 0 2 2 2 9 2 0 1 0 1 10 4 4 0 0 2 0 >MA0115.1 NR1H2::RXRA 17 17 20 0 0 0 0 25 24 25 0 0 0 0 25 20 0 5 1 0 0 0 0 25 0 0 0 0 0 0 25 0 1 15 0 5 5 25 24 0 0 0 0 0 25 25 0 0 0 2 6 3 2 0 0 1 25 0 0 1 0 0 0 25 0 0 2 4 >MA0116.1 Zfp423 7 0 16 17 0 0 1 24 13 0 0 0 0 0 11 4 16 17 16 33 33 17 0 0 0 0 0 0 8 22 22 17 0 0 0 0 0 0 16 33 33 17 16 16 0 0 0 0 0 0 0 15 9 4 0 0 16 17 9 0 >MA0117.1 Mafb 0 1 0 1 12 3 3 2 0 12 3 0 2 8 1 5 15 1 1 12 0 1 7 5 0 1 11 2 1 3 4 3 >MA0119.1 TLX1::NFIC 0 0 0 0 14 2 2 7 4 0 0 0 16 14 0 0 0 16 1 8 8 1 3 0 16 16 0 0 0 16 16 0 0 5 4 5 2 16 0 0 0 1 16 0 0 0 1 1 2 3 7 0 0 0 0 1 >MA0122.1 Nkx3-2 4 1 13 24 0 0 6 4 9 7 4 1 0 0 0 0 6 7 4 5 7 0 24 0 18 12 5 9 14 3 0 0 24 0 2 3 >MA0124.1 NKX3-1 13 0 20 0 1 1 19 1 1 0 19 0 0 0 3 0 0 0 0 0 1 3 19 0 1 19 19 0 >MA0125.1 Nobox 0 36 38 1 2 15 4 2 1 0 0 1 0 0 12 13 0 0 0 2 4 22 18 6 37 2 0 34 32 1 4 17 >MA0130.1 ZNF354C 7 3 0 0 16 0 6 2 16 16 0 15 3 0 0 0 0 1 0 11 0 0 0 0 >MA0131.1 HINFP 2 13 20 2 0 0 0 0 0 2 6 1 0 17 0 1 19 18 0 13 5 0 0 1 19 0 0 2 19 1 7 6 0 0 1 19 1 0 1 4 >MA0132.1 Pdx1 1 0 31 31 0 1 19 0 0 0 0 1 5 0 0 0 1 10 6 31 0 0 30 19 >MA0133.1 BRCA1 15 4 41 36 7 19 3 11 35 1 2 29 14 22 10 2 1 4 6 7 15 7 2 0 1 1 3 3 >MA0135.1 Lhx3 9 16 19 0 0 19 20 2 0 16 9 2 2 0 2 0 0 0 0 0 2 1 1 0 8 9 3 2 0 0 0 0 0 0 0 0 3 0 3 8 0 1 20 20 1 0 16 19 3 8 10 6 >MA0136.1 ELF5 12 29 2 14 0 0 0 4 4 9 3 20 0 1 44 44 3 8 3 7 5 1 0 0 0 11 11 20 5 17 29 43 0 0 26 21 >MA0139.1 CTCF 87 167 281 56 8 744 40 107 851 5 333 54 12 56 104 372 82 117 402 291 145 49 800 903 13 528 433 11 0 3 12 0 8 733 13 482 322 181 76 414 449 21 0 65 334 48 32 903 566 504 890 775 5 507 307 73 266 459 187 134 36 2 91 11 324 18 3 9 341 8 71 67 17 37 396 59 >MA0142.1 Pou5f1::Sox2 63 579 11 47 118 415 206 1235 17 10 14 1050 887 1200 198 846 58 50 12 363 18 365 30 5 16 1029 16 68 33 119 66 28 36 79 825 29 186 24 15 1239 129 30 315 75 207 389 701 1270 1231 63 907 612 80 1332 104 196 269 92 53 837 >MA0149.1 EWSR1-FLI1 0 2 104 104 1 2 103 102 0 0 99 105 0 0 100 102 5 3 0 0 0 0 0 0 0 0 0 2 4 0 0 2 3 0 0 3 105 103 1 1 104 102 2 3 104 103 2 0 105 103 0 2 97 97 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 1 3 2 >MA0062.2 GABPA 32 70 0 0 991 989 94 56 154 264 233 768 914 0 0 1 2 32 261 137 262 357 188 4 990 991 1 0 866 37 603 415 224 1 1 1 0 0 2 0 637 96 49 176 >MA0039.2 Klf4 1468 88 14 14 277 22 42 264 123 254 81 9 13 36 1922 15 80 46 130 2858 1022 4237 4304 4281 11 4273 2179 3902 3789 280 1765 6 13 16 2139 34 2042 125 289 932 >MA0138.2 REST 211 58 76 1452 34 122 1575 3 35 913 219 39 20 1406 13 1574 42 205 366 213 179 174 269 1366 30 44 978 7 1586 1481 201 375 7 5 112 1280 9 13 1007 31 933 1114 366 146 50 94 1516 323 12 12 20 162 124 1551 1577 34 233 7 1530 183 688 319 37 840 1124 105 26 10 182 12 5 70 329 886 7 2 51 74 10 9 198 507 125 260 >MA0002.2 RUNX1 287 234 123 57 0 87 0 17 10 131 500 496 485 1072 0 75 127 0 42 400 463 158 696 467 149 7 1872 70 1987 1848 251 81 289 521 814 656 1936 53 1716 13 93 1339 1325 1053 >MA0047.2 Foxa2 1 221 1 1 1 736 2 338 50 417 131 129 1 3 1 3 1 4 725 77 265 6 53 195 1 582 1 36 175 67 2 3 58 24 482 290 805 3 806 769 634 3 81 391 436 360 140 189 >MA0112.2 ESR1 122 107 64 83 134 308 36 19 33 4 398 58 63 64 32 21 305 10 59 26 120 80 173 229 232 28 8 18 41 394 13 250 276 258 19 22 106 436 353 165 154 164 149 65 47 89 387 420 91 53 27 107 53 97 8 426 31 12 2 22 71 117 82 93 57 48 43 18 310 24 37 60 83 56 416 6 33 17 61 262 >MA0065.2 PPARG::RXRA 94 101 390 100 139 145 71 819 522 713 82 41 22 54 676 317 166 23 3 15 129 547 21 48 5 2 9 99 555 58 320 127 368 671 674 395 179 15 270 137 767 693 263 144 47 126 464 79 87 34 193 66 8 23 9 12 120 479 109 81 >MA0151.1 ARID3A 27 0 1 27 27 20 0 0 9 0 0 0 0 0 0 0 0 1 0 27 17 0 0 6 >MA0152.1 NFATC2 3 1 1 0 1 0 18 1 2 1 0 25 26 3 2 2 0 0 0 0 1 20 21 24 26 0 0 4 >MA0153.1 HNF1B 0 0 8 7 0 5 3 0 0 8 9 0 3 3 1 1 0 0 0 0 0 0 0 8 0 0 0 1 0 4 1 1 0 1 0 0 6 6 0 0 9 0 5 8 9 0 0 1 >MA0155.1 INSM1 1 0 0 6 16 0 0 0 0 0 3 10 0 0 8 15 0 0 1 0 0 2 16 0 4 20 3 0 0 24 23 24 24 16 0 12 19 4 13 3 8 0 0 0 0 6 5 2 >MA0156.1 FEV 2 9 0 0 13 12 7 0 9 3 0 0 0 0 0 0 1 1 13 13 0 0 6 0 1 0 0 0 0 1 0 13 >MA0157.1 FOXO3 0 1 3 13 12 13 0 12 0 2 0 0 1 0 12 0 5 10 1 0 0 0 0 0 8 0 9 0 0 0 1 1 >MA0158.1 HOXA5 2 7 0 6 14 14 0 0 13 0 7 0 0 0 0 1 0 5 5 1 0 2 0 6 0 4 4 9 2 0 16 9 >MA0159.1 RXR::RAR_DR5 12 0 1 0 0 22 4 5 5 13 5 17 1 0 2 1 21 0 0 0 0 18 0 7 8 4 1 6 3 1 1 1 17 0 11 23 13 1 3 1 5 9 11 7 12 3 20 16 3 3 1 0 0 9 22 2 0 7 1 3 2 0 0 1 6 17 2 1 >MA0160.1 NR4A2 8 13 0 3 2 0 14 3 1 0 0 0 2 13 0 8 3 1 13 11 0 0 0 2 1 0 1 0 10 1 0 0 >MA0161.1 NFIC 358 81 81 91 1226 3298 1832 67 67 88 5364 981 176 300 6713 6643 160 1186 4546 6464 51 90 162 1447 >MA0163.1 PLAG1 0 3 0 0 0 0 4 12 11 2 0 0 0 2 0 0 0 0 14 15 10 0 5 0 0 0 0 0 18 14 18 17 4 1 1 0 2 14 18 18 16 16 0 1 0 1 0 2 3 6 0 2 0 0 2 0 >MA0164.1 Nr2e3 4 23 23 0 0 0 0 12 0 0 1 23 0 0 2 0 0 22 0 0 0 5 0 0 0 0 23 23 >MA0018.2 CREB1 0 0 11 0 1 0 2 8 1 1 0 9 0 3 7 0 1 10 0 2 10 0 1 1 9 0 0 0 0 8 1 2 >MA0099.2 JUN::FOS 0 0 16 5 3 0 16 1 0 2 12 0 15 0 0 15 0 1 1 3 1 17 3 0 0 14 0 1 >MA0259.1 HIF1A::ARNT 27 10 78 0 0 0 0 18 28 29 2 103 0 0 0 51 49 34 23 0 104 0 104 20 0 31 1 1 0 104 0 15 >MA0442.1 SOX10 0 8 0 0 0 0 19 2 1 0 3 0 0 2 4 0 19 1 3 10 17 22 0 21 >MA0141.2 Esrrb 1055 673 403 260 312 3347 3590 33 12 180 9 3478 801 832 1212 1230 2653 32 2 2 11 43 3394 21 984 1352 1212 449 630 248 60 3597 3622 243 167 128 773 767 807 1702 51 27 6 29 16 3192 85 26 >MA0145.2 Tcfcp2l1 8 285 2437 24 710 402 707 1462 2585 1612 16 253 2199 49 3768 3304 21 98 1380 1183 1630 922 286 212 3811 3324 30 118 255 22 1117 3949 103 253 616 1026 780 1263 223 12 1232 3881 40 465 507 12 1890 2246 1134 681 441 1003 34 491 612 17 >MA0146.2 Zfx 50 59 91 72 10 6 30 191 8 0 0 0 0 84 178 170 151 49 297 361 124 153 2 3 481 480 1 122 179 173 199 297 144 2 183 122 470 477 0 0 0 218 70 75 37 61 30 112 144 15 1 1 0 1 480 56 >MA0461.1 Atoh1 0 7714 0 4249 1557 0 0 0 7714 0 0 3465 0 0 0 4780 0 0 7714 0 0 7714 7714 0 0 0 0 0 6157 0 0 2934 >MA0462.1 BATF::JUN 3082 4782 4519 8258 0 0 10522 586 0 1291 10264 481 553 170 1478 0 0 0 5026 0 8590 0 5136 2889 2219 0 0 10374 0 4910 0 641 0 1823 2298 3614 786 10522 148 0 0 10522 0 258 >MA0463.1 Bcl6 191 35 5 30 0 0 446 142 941 642 615 101 189 369 171 22 80 876 819 0 86 0 0 101 7 92 494 188 245 28 30 24 0 0 404 814 11 175 213 630 116 166 349 871 841 26 137 956 20 0 4 38 121 133 157 233 >MA0464.1 Bhlhe40 1626 4869 0 15804 0 2875 0 0 3859 6629 2028 6868 524 15804 0 14493 1107 0 0 11919 4255 6293 6311 3146 0 0 0 11822 0 15804 26 345 3681 999 7265 0 0 1311 0 15804 0 0 4575 3802 >MA0465.1 CDX2 613 665 308 0 697 1597 0 1597 1597 1597 1013 319 8 136 1048 832 0 0 0 0 0 150 480 502 1153 0 0 0 0 0 0 0 313 185 422 0 549 68 0 1597 0 0 0 121 >MA0466.1 CEBPB 13006 75198 0 0 4556 0 74715 8654 60151 99494 0 10026 5868 0 0 0 99494 5478 51954 39343 0 36038 33617 18428 0 0 75531 0 10015 0 0 0 2043 42845 0 99494 99494 19407 0 9286 38886 0 0 61413 >MA0467.1 Crx 1207 1454 347 943 515 0 1632 0 0 1995 544 297 43 55 222 0 0 465 0 29 0 52 458 417 1470 823 1574 2097 0 0 0 0 1326 135 183 225 109 8 0 0 2097 2068 102 175 >MA0468.1 DUX4 7297 37001 38217 5228 0 0 35278 38217 0 0 33798 2495 0 0 11675 16478 13951 2889 0 0 37408 0 979 1216 0 2002 4981 6127 0 0 0 0 0 27446 0 0 19312 16758 18139 50 0 38217 809 4419 >MA0469.1 E2F3 0 0 0 0 0 0 0 0 365 275 196 811 109 441 305 1400 0 2549 2469 2549 0 2549 1703 1327 903 1495 329 1075 640 718 0 0 0 80 0 2240 0 607 397 742 556 512 582 200 644 1149 2549 0 0 0 309 0 239 460 629 302 274 160 645 259 >MA0470.1 E2F4 272 155 0 0 0 27 15 1803 1253 712 503 370 510 11 1878 0 218 41 0 0 349 393 848 1213 1867 0 1878 1633 1822 75 625 720 616 388 0 0 0 0 0 0 0 0 97 366 >MA0471.1 E2F6 812 442 0 672 7 0 20 2757 1686 988 771 80 406 0 1954 0 0 29 0 0 454 706 1406 1909 2757 0 2750 2757 2708 0 1071 1135 909 459 0 0 131 0 0 0 0 0 180 371 >MA0472.1 EGR2 169 337 168 387 26 448 0 152 0 1059 0 460 0 558 127 572 460 572 722 1186 0 1246 1094 1169 187 1246 0 1041 302 617 291 180 216 65 0 602 0 0 0 0 0 579 114 199 251 214 269 290 72 34 196 0 0 77 0 0 207 91 187 251 >MA0473.1 ELF1 4134 6990 7978 4086 924 8929 0 0 13518 13518 1183 1571 2634 2167 1502 1207 4589 10007 4589 0 0 0 0 0 2094 1735 5587 3563 2318 3111 2587 0 13518 13518 0 0 12335 179 8125 1630 1463 2015 1732 0 0 0 0 0 0 0 9674 1024 >MA0474.1 Erg 9430 1473 16007 0 0 16727 16580 3244 1570 4953 4558 231 10483 693 0 0 0 0 0 4038 1498 2474 5874 4736 27 16727 16727 0 0 13483 2146 8204 8042 1192 35 0 0 0 0 147 0 8973 2072 1653 >MA0475.1 FLI1 1830 295 2712 0 0 3667 3520 620 95 850 1014 205 2815 955 0 0 0 0 0 1001 300 462 1432 557 0 3667 3667 0 0 3047 300 2130 1875 200 0 0 0 0 0 147 0 2271 387 316 >MA0476.1 FOS 7879 7475 0 0 29396 998 0 0 29396 258 4006 712 10177 0 0 0 14079 0 29396 0 5823 8236 9686 10841 0 27108 0 11206 0 0 0 1538 7897 11119 903 29396 2288 0 3113 29396 0 0 21777 9257 >MA0477.1 FOSL1 1791 1568 0 0 5272 124 0 177 5272 37 1184 119 437 0 0 0 3120 0 5095 0 811 1684 2384 3109 0 5272 0 2028 0 0 0 1734 1875 978 158 5272 0 0 0 5272 0 0 2690 529 >MA0478.1 FOSL2 833 1525 2861 0 0 5075 0 0 205 5318 0 994 592 55 0 0 51 3286 0 5113 0 1399 2086 2707 2328 0 5318 192 1838 0 0 0 1933 1405 494 74 5318 0 0 194 5318 0 0 1986 >MA0479.1 FOXH1 939 1578 973 8211 7547 0 2374 1414 8211 0 7138 2840 2333 3261 0 0 0 5773 6797 0 8211 0 1490 2137 3156 0 229 0 0 0 0 0 0 2942 2163 821 0 435 8211 64 0 0 0 1073 >MA0480.1 Foxo1 468 127 87 0 0 0 0 0 1871 0 1072 277 1279 1406 0 0 0 0 0 157 2007 573 478 752 209 0 2490 0 0 287 0 0 71 1267 332 788 2490 0 2490 2490 2203 462 483 774 >MA0481.1 FOXP1 103 131 155 180 138 79 71 311 311 311 16 311 176 243 102 108 57 39 42 6 11 4 0 0 0 278 0 77 18 42 48 55 40 53 88 221 0 0 0 0 10 0 57 23 129 52 68 77 36 79 0 236 0 0 0 7 0 1 27 38 >MA0482.1 Gata4 10 0 0 0 2707 0 0 547 0 601 386 1039 2165 89 0 39 0 2746 0 1240 1004 929 374 306 0 0 0 0 0 0 940 157 682 1323 275 2657 2746 0 2746 0 2199 566 984 749 >MA0483.1 Gfi1b 1124 1761 1759 0 0 1033 61 1116 57 142 740 438 0 0 338 1761 21 1312 0 1 1328 433 104 0 2 28 0 0 388 1 1676 76 130 95 0 0 1395 0 707 0 644 27 215 458 >MA0484.1 HNF4G 3514 3259 4696 1103 1944 1511 0 9343 7889 8464 99 324 225 159 6785 1864 1531 102 201 713 2870 8827 55 82 0 6 143 4338 8377 794 2011 3830 3811 7480 3301 2279 221 54 1481 938 9098 3624 1107 85 556 2063 832 843 668 3494 2792 404 0 0 50 249 5361 3782 831 1317 >MA0485.1 Hoxc9 235 112 88 224 661 0 745 881 879 18 48 567 141 110 171 605 468 3 9 84 0 6 0 715 72 329 401 536 40 1 205 0 35 0 0 0 5 6 160 139 66 152 192 16 876 21 4 0 867 117 240 255 >MA0486.1 HSF1 25 8 3 1 4 128 0 187 186 44 39 13 8 0 6 82 26 11 222 71 7 0 24 6 63 62 16 5 218 88 56 12 8 2 6 89 225 3 15 73 67 9 4 2 18 62 179 203 0 144 1 0 11 18 45 57 187 208 5 113 >MA0488.1 JUN 8141 7116 6496 16526 0 0 20967 0 0 938 6904 20968 203 2792 2938 1903 729 0 0 0 3438 608 3531 14064 0 3704 4894 4985 9682 3713 0 20849 0 4512 20360 0 0 0 1016 5141 5929 2887 0 20968 119 1 13018 0 16499 0 0 16045 >MA0489.1 JUN (var.2) 4852 3927 3726 4396 4146 5930 0 0 10953 382 199 956 10956 376 1250 1324 1127 1122 593 993 0 0 0 5704 0 10000 0 2509 2818 4110 4330 3461 4213 4033 0 10956 0 4090 0 0 0 2645 2036 1595 1773 1977 2004 0 10956 0 3 780 10757 0 0 5426 >MA0490.1 JUNB 3605 5055 8384 0 0 16992 0 0 1256 16992 736 3366 1057 582 0 0 0 9859 0 15736 0 2962 5983 8427 8026 0 16992 0 6281 0 0 0 6117 4038 2453 0 16992 0 0 852 16992 0 0 7177 >MA0491.1 JUND 12389 15163 0 0 38710 0 0 1547 38710 0 5786 759 4824 0 0 0 22857 0 37163 0 5136 14956 13640 18723 0 38710 0 14078 0 0 0 2301 12429 11922 0 38710 0 0 1775 38710 0 0 31273 5539 >MA0492.1 JUND (var.2) 11448 13436 11261 13616 25347 0 0 33631 0 5124 0 8793 33631 267 10255 4326 3228 4836 2452 169 0 0 0 10406 1824 3935 24697 0 5470 10841 7996 8721 8110 15761 8115 0 33511 0 8287 26683 0 141 0 2407 6351 9861 8246 9424 1802 0 33631 120 0 14938 0 29696 0 0 25487 6184 >MA0493.1 Klf1 150 167 67 13 404 0 400 0 0 0 280 76 40 396 461 118 526 0 526 526 508 35 202 305 32 0 0 0 97 0 0 0 0 98 14 31 52 4 0 29 0 0 18 211 >MA0494.1 Nr1h3::Rxra 0 140 738 246 58 78 358 374 794 278 77 559 900 255 117 11 135 281 237 50 30 243 971 1080 313 318 257 0 19 0 77 177 962 1040 502 508 196 290 28 1089 137 0 3 128 343 336 321 903 4 440 192 20 0 42 196 333 439 1191 10 151 52 128 750 250 302 154 69 1188 193 0 32 112 714 430 459 303 >MA0495.1 MAFF 6531 13157 12632 14736 32728 8513 998 3238 53327 387 0 48740 20032 21358 18219 14137 10417 12741 12389 29577 10615 6027 4789 16391 322 50520 0 0 53701 381 7624 3349 4014 7157 11010 10791 26849 2157 2570 21695 5877 25722 313 0 0 47337 0 746 9364 2603 1898 3512 8426 9498 7989 8867 27941 11300 10364 3132 52125 0 431 6034 57 3891 16738 26448 29627 28952 23905 20728 >MA0496.1 MAFK 17128 15239 17367 34765 10333 0 2669 60790 0 0 57894 23471 27164 20865 17282 29664 13278 9271 4862 17432 261 58121 0 0 60742 430 9775 3962 5229 9289 4539 3886 21340 8031 29271 0 0 0 55539 48 0 9853 1268 1575 2699 9459 28387 12812 13132 3754 60529 0 0 5251 0 2466 17691 28396 33121 31520 >MA0497.1 MEF2C 705 733 431 382 0 1616 1706 2107 2131 2135 56 2177 389 975 1009 321 151 196 1412 985 256 32 0 0 0 62 0 120 836 450 676 573 822 78 0 74 241 87 2 4 0 32 1671 148 126 507 752 760 337 1224 263 230 15 76 70 2091 0 29 250 624 >MA0498.1 Meis1 1341 171 121 0 0 85 0 2458 261 334 175 1059 515 472 529 122 759 2411 0 0 50 2607 0 1115 537 1472 547 802 1007 736 499 1414 3 0 2607 0 0 0 1075 263 494 145 696 536 480 645 263 72 2607 0 2472 0 149 156 1473 466 856 594 592 862 >MA0499.1 Myod1 6862 4142 0 24353 0 0 0 0 9 16 5861 1913 4129 5589 6513 24514 0 6423 24514 0 0 9087 11010 7591 11622 7657 5003 11000 0 0 18072 0 0 24514 654 2905 5945 4319 4423 7060 2859 0 161 19 0 24514 0 14764 10583 5117 6660 8305 >MA0500.1 Myog 7838 11572 0 19356 0 67 0 0 2832 5343 4069 2870 331 19356 0 0 16261 0 0 8524 3764 4770 8648 7453 0 0 19356 3028 0 19356 5881 5168 7519 0 0 0 0 0 0 19356 0 2119 5081 2998 >MA0501.1 NFE2::MAF 726 0 0 1090 16 110 80 978 8 0 931 383 361 292 211 26 0 0 0 871 1 937 0 4 1063 17 203 100 102 283 334 0 1082 0 166 12 22 51 1041 22 73 283 130 91 106 4 1090 8 0 37 967 51 61 37 5 69 221 499 605 490 >MA0502.1 NFYB 2965 2816 2821 655 674 2832 3509 0 0 7020 7003 0 413 5454 725 1580 1759 1760 2228 2076 1091 139 7020 7020 0 0 0 4780 97 943 1984 1078 1176 1089 2707 2978 2921 0 0 0 17 0 1709 1457 5136 491 1367 1263 3048 1563 119 451 0 0 0 0 7020 118 12 216 >MA0503.1 Nkx2-5 (var.2) 1790 1282 344 0 2467 0 0 0 2858 2265 502 327 192 1777 3429 6 3429 0 3391 431 3 956 821 1467 1292 0 0 0 0 0 0 825 1795 491 488 16 0 956 0 3429 38 140 336 176 >MA0504.1 NR2C2 129 82 193 0 10 3 6 343 187 324 10 11 0 9 290 126 70 6 8 3 0 309 0 0 0 0 0 27 315 0 90 221 195 366 355 79 54 48 208 71 385 336 89 35 92 50 22 1 21 27 313 26 4 0 0 0 48 279 36 13 >MA0505.1 Nr5a2 645 985 276 122 71 8 1685 1679 39 0 169 0 1437 271 249 224 170 198 378 351 1616 14 0 0 0 584 1568 20 345 693 634 336 990 366 23 74 0 23 1663 1702 61 12 90 740 454 199 211 238 836 1257 4 3 0 0 0 888 122 155 346 306 >MA0506.1 NRF1 602 623 196 0 1514 0 0 0 0 74 2245 375 4001 189 4016 1862 403 0 4338 349 4550 804 3647 0 4239 468 935 528 4624 0 4275 0 1575 0 0 0 140 313 3693 0 286 0 0 0 >MA0507.1 POU2F2 415 530 605 2016 0 256 0 158 0 2257 0 1159 594 635 266 825 19 0 2 0 0 2271 30 2 39 361 402 593 415 1 0 0 0 1997 0 0 0 613 107 835 898 442 251 2287 2029 2287 132 16 0 2285 476 1225 >MA0508.1 PRDM1 1779 1649 3148 3486 4173 422 728 211 4603 4161 4497 159 117 1057 2042 471 298 345 439 0 0 110 0 0 0 0 142 458 498 778 1037 2331 688 442 430 4038 930 4392 0 430 39 4186 520 2239 973 1316 325 422 236 0 143 2835 0 0 12 67 116 3508 809 810 >MA0509.1 Rfx1 290 58 145 421 37 0 1254 138 604 186 287 1793 2082 0 157 222 833 433 1748 2048 402 115 0 0 1710 0 0 2138 1532 377 131 762 96 0 73 96 1534 1952 12 244 56 0 159 1481 1029 522 257 90 409 1789 0 0 129 101 0 0 >MA0510.1 RFX5 343 595 6 181 1189 0 1844 245 0 3057 3692 0 2084 956 871 1572 796 1870 3687 2171 832 1 0 2815 497 176 3868 782 361 1388 561 862 1283 0 61 0 2023 3514 408 314 0 0 0 2184 1239 1392 1615 709 0 447 3036 0 109 645 0 0 0 1002 367 370 >MA0511.1 RUNX2 99 165 151 121 124 75 9 0 15 0 0 0 42 258 126 133 119 79 172 155 392 4 1 3 0 0 132 190 8 126 443 444 426 477 245 133 11 1030 0 1062 1060 90 158 143 462 387 334 406 292 538 462 1038 31 1044 0 2 840 672 653 348 >MA0512.1 Rxra 278 4154 2623 4877 0 0 0 0 5348 1150 1640 4521 418 252 0 0 0 583 5348 0 1070 742 305 9 2473 471 5348 3882 643 0 0 2336 1569 244 767 0 0 0 1466 4122 0 0 792 1397 >MA0513.1 SMAD2::SMAD3::SMAD4 166 196 14 33 0 0 106 211 0 765 30 117 110 432 75 8 45 899 0 231 125 896 19 736 583 214 168 34 877 103 0 0 539 280 3 18 133 47 35 133 594 0 718 0 899 23 283 0 97 0 152 540 >MA0514.1 Sox3 0 0 262 0 0 0 0 0 19 42 1487 1552 0 0 0 144 0 698 853 654 330 0 0 0 0 1923 0 254 22 382 250 515 1805 2067 2067 0 2067 1115 1173 989 >MA0515.1 Sox6 4 0 161 0 0 0 0 0 4 14 139 221 0 0 0 0 0 115 112 76 50 0 0 0 0 249 0 5 0 31 56 28 88 249 249 0 249 129 133 128 >MA0516.1 SP2 160 39 52 0 0 174 0 0 0 206 115 187 226 228 203 253 811 1386 1679 1643 0 1686 1656 1108 1196 971 554 717 794 745 1028 257 1 7 0 1280 0 0 0 0 99 325 401 408 422 245 579 247 0 43 232 0 30 578 284 501 620 342 256 316 >MA0517.1 STAT2::STAT1 69 150 430 3 0 3 3 0 255 107 4 10 4 15 28 63 230 7 148 2 2 13 581 75 111 13 2 170 489 365 77 84 151 467 0 0 4 0 191 161 10 0 4 9 36 411 156 32 2 618 615 600 39 99 241 593 608 442 107 191 >MA0518.1 Stat4 211 12 26 632 307 1450 733 45 2873 2873 1573 486 632 889 1019 2 0 2229 1491 28 0 0 0 0 279 785 721 443 484 0 529 12 72 1223 2134 2828 0 0 833 685 1028 1117 1159 2859 2318 0 1003 172 6 0 0 0 188 917 492 424 >MA0519.1 Stat5a::Stat5b 6172 2073 0 0 0 263 7044 11543 0 14888 14886 2326 3596 0 1600 16341 12795 6137 0 0 93 0 4425 2901 0 0 0 0 0 4140 16507 0 1621 3584 7937 16507 14907 166 3449 3326 824 0 1526 0 >MA0520.1 Stat6 257 665 152 0 13 122 70 664 328 1153 26 1852 1849 621 345 663 328 566 0 0 1680 1204 21 534 3 0 0 0 540 490 482 372 436 0 0 0 0 219 898 416 1796 0 3 398 235 450 487 698 1852 1839 50 578 948 92 280 30 0 0 293 782 >MA0521.1 Tcf12 6170 8820 0 12895 8 184 0 0 1875 3912 2863 1585 124 12895 0 0 10822 0 0 5527 2416 3005 5123 3951 0 0 12887 1889 0 12895 3811 2925 4836 17 0 0 0 0 0 12895 0 1682 3642 2191 >MA0522.1 Tcf3 2717 8100 0 17261 0 0 0 0 0 6957 2351 8489 6433 17261 0 4101 16850 0 0 12529 4204 4115 4689 1756 0 0 12403 411 0 17261 3397 96 6625 1366 972 0 0 757 0 17261 0 1335 6004 4170 >MA0523.1 TCF7L2 1525 1808 3070 85 2795 138 155 4188 4103 4169 303 1035 1398 1782 756 840 136 1947 26 0 3304 0 15 0 37 849 1123 826 1140 1153 559 2008 0 0 729 0 70 19 3848 2008 1210 757 767 387 423 148 1367 4050 0 0 0 0 0 296 457 823 >MA0524.1 TFAP2C 4801 6477 2550 4918 421 0 0 0 1082 16442 191 0 285 4343 8905 6752 4693 4943 2009 6040 18426 14817 9317 14790 0 0 0 7908 9235 3259 2123 3347 2643 6098 11033 0 0 1237 1768 1195 18235 18426 10222 1788 2536 4750 3909 8290 5401 932 0 3609 7872 786 789 0 0 11 3060 3726 >MA0525.1 TP63 3613 2402 4027 19 6536 2926 82 896 2058 437 5045 2812 4726 0 5101 953 225 528 2379 1446 1752 1337 544 9153 1640 255 0 4400 4119 7000 2050 989 198 9632 1856 817 0 5454 4089 3775 2372 3599 3802 102 616 1263 9550 74 998 1417 208 4555 3530 0 66 695 9394 213 408 1621 1895 2294 1259 358 840 5188 0 4262 2457 778 2329 1276 1178 0 2609 7167 13 3437 2756 2790 >MA0526.1 USF2 3976 1495 0 13819 0 0 0 0 10453 0 2184 2073 4490 13819 0 4863 0 0 0 745 9929 6633 7125 1909 0 0 1370 13819 0 13819 2568 729 455 645 5925 0 0 7586 0 13819 0 53 3161 4547 >MA0527.1 ZBTB33 82 6 28 10 0 35 2 0 461 8 416 85 19 79 90 256 66 659 89 705 0 668 0 80 57 94 232 328 145 233 146 32 11 5 0 667 0 705 118 450 141 136 43 109 266 221 601 7 601 0 3 35 0 46 190 54 252 315 372 116 >MA0528.1 ZNF263 2366 4596 11118 453 1011 13919 1569 1552 8113 5132 3096 6598 4175 4106 7943 3823 3132 8305 5226 4067 7264 293 0 0 0 1738 551 844 1427 968 1543 1069 590 620 1618 950 1 0 0 219 650 907 11078 10639 2802 13819 12444 43 11252 11451 5513 7042 9471 6730 8903 9042 4780 9659 11444 5892 8923 9819 6141 1498 0 1315 963 42 722 1570 805 641 1518 1599 1317 1537 469 1562 1752 659 1038 867 699 923 >MA0007.2 AR 6277 6497 0 6462 11206 26 10426 1478 4353 3312 3241 0 2214 2656 1599 1112 0 0 1304 0 11115 0 2976 2096 3249 142 525 1262 2434 7032 3049 4709 11206 1254 0 65 107 4023 2151 3291 305 10681 671 2460 298 768 0 0 2186 0 0 673 2729 2606 1354 7518 0 7059 3656 2277 >MA0102.3 CEBPA 10351 0 0 705 0 11956 2660 12226 15318 0 5804 1332 0 0 0 15318 1274 7654 3092 0 5688 4963 3635 0 0 11304 0 1066 0 0 0 1804 890 0 15318 15318 3309 0 1022 5004 0 0 7826 3661 >MA0024.2 E2F1 259 218 144 0 0 0 0 0 1059 508 305 317 0 274 0 1059 0 337 286 0 0 269 280 628 641 1059 0 1059 722 773 0 551 485 203 213 0 0 0 0 0 0 0 0 0 >MA0154.2 EBF1 4513 0 0 886 0 9191 21366 1085 8427 0 22124 7097 10267 33855 22776 33781 22317 0 0 0 0 2891 12581 2643 0 0 0 0 0 32770 25294 33855 7215 9664 20945 0 10193 74 2347 12489 0 134 0 1625 >MA0162.2 EGR1 1098 1506 1160 1335 233 2911 0 0 0 3652 0 2368 0 3026 5728 6847 6049 10431 11574 0 12256 11852 10154 8361 11952 0 9849 5595 3083 1359 2250 0 0 6840 0 0 611 0 0 6599 1420 1913 2347 2544 2797 490 449 2505 0 404 1491 243 304 3289 987 1722 >MA0076.2 ELK4 298 391 2034 0 8 0 0 0 0 0 290 1458 1905 145 2688 0 0 3427 3427 0 501 1253 886 570 1038 16 0 0 0 0 2915 2843 668 785 561 210 723 3419 3427 0 0 512 83 1216 >MA0258.2 ESR2 5410 429 59 74 0 8098 502 2092 1808 1602 1121 3278 434 1111 834 96 0 0 147 7621 1 4202 3235 2510 975 398 2056 6469 5854 2708 2563 7170 8143 989 533 57 2738 1688 2173 533 6658 1391 363 0 606 174 644 41 7033 89 87 801 1228 1752 5133 66 1518 977 1278 4095 >MA0098.2 Ets1 431 145 263 1179 0 329 0 0 0 0 0 65 146 306 265 668 1160 993 117 1507 0 0 1868 1868 0 329 579 678 542 629 420 244 187 451 4 0 0 0 0 156 1422 62 437 309 472 349 319 425 121 357 1539 1868 0 0 1712 117 1162 607 711 502 >MA0148.3 FOXA1 4328 4659 3062 7135 70 5883 0 0 0 18252 0 9193 827 10702 4807 4827 6851 8558 4317 0 0 0 0 0 0 20556 2655 7296 1 2603 4124 4731 5314 3641 12 16125 0 1292 2859 3756 0 0 1392 63 9415 8729 5767 5074 6915 21926 0 22008 20716 19149 0 1452 10160 12493 11242 5183 >MA0035.3 Gata1 2035 506 0 0 0 17955 0 0 2166 2502 1886 4321 6406 14869 697 0 0 0 17955 0 6166 5072 2530 2792 437 0 0 0 0 0 0 6687 1598 9069 8251 2649 17258 17955 0 17955 0 15789 2600 9399 >MA0036.2 GATA2 1569 1125 1555 1051 32 9 0 51 4380 0 0 1225 104 1256 567 768 729 525 1057 3015 192 0 0 0 4380 0 1765 1185 754 1709 1220 427 765 914 0 0 0 0 0 0 1967 224 1490 778 876 2377 2526 442 4188 4329 0 4380 0 3155 544 1715 >MA0037.2 GATA3 4628 0 4628 0 4628 4628 1290 2796 0 0 0 0 0 0 0 712 0 4628 0 0 0 0 3338 1120 0 0 0 4628 0 0 0 0 >MA0114.2 HNF4A 2766 1731 837 6075 11026 117 26 178 0 864 5270 6119 1156 1870 2070 5971 720 51 1846 4425 16535 1630 2637 173 35 3745 5653 13491 6498 6450 3974 907 15810 8370 329 67 0 367 407 15741 5340 1662 352 415 3001 4057 13410 70 477 988 49 15112 13586 16188 128 2413 3334 1769 7985 5247 >MA0050.2 IRF1 316 251 173 138 735 24 12 0 0 0 913 20 16 7 11 17 513 218 145 198 166 320 284 324 430 101 792 0 31 56 1249 39 787 1 14 58 1023 245 464 186 193 331 266 251 212 148 361 506 0 0 4 0 238 345 0 5 0 28 263 291 114 99 151 460 576 653 646 165 40 1350 1331 1302 113 172 210 1345 1336 1293 294 341 389 917 872 714 >MA0058.2 MAX 12557 13557 5014 0 24565 0 19618 0 0 122 741 1112 3587 24565 0 24565 0 0 0 2889 8243 6781 12571 0 0 0 4947 0 24565 14194 3024 3115 3393 0 0 0 0 24565 0 7360 >MA0052.2 MEF2A 481 169 116 0 1272 1008 1383 1352 1390 6 1472 231 587 530 345 148 149 1179 473 68 0 0 5 0 0 0 49 632 409 449 379 625 32 0 14 119 39 0 0 0 0 1160 112 110 203 465 530 146 1000 119 346 51 116 83 1467 1 33 142 424 476 >MA0100.2 Myb 89 227 979 910 0 53 0 150 30 725 374 452 0 0 979 0 0 416 949 8 190 0 0 69 0 0 979 9 0 0 326 300 0 0 0 926 0 404 0 246 >MA0147.2 Myc 1181 0 5335 0 0 0 0 49 848 82 3650 5335 0 2295 0 0 0 2297 1087 1877 504 0 0 0 5335 0 5335 2081 556 801 0 0 0 3040 0 5335 0 908 2844 2575 >MA0104.3 Mycn 528 0 0 1403 0 168 0 0 146 1135 1403 0 1403 0 0 0 566 268 0 0 0 1235 0 1403 163 0 0 0 0 0 1403 0 >MA0150.2 Nfe2l2 166 401 118 203 488 0 0 726 20 84 65 577 10 4 623 338 78 239 247 28 0 0 0 533 20 549 3 11 699 26 109 159 275 152 205 0 711 0 118 16 46 90 698 19 31 113 88 94 124 5 726 15 0 55 606 66 56 7 4 46 >MA0105.3 NFKB1 570 55 121 3141 2228 0 0 0 0 0 1580 319 0 0 224 1204 0 55 1526 4858 5026 2395 2682 5057 4902 1635 812 0 84 0 0 0 269 1541 0 89 112 868 5112 4973 3586 254 86 868 >MA0060.2 NFYA 4708 1187 3548 1203 1826 192 237 16 222 8555 5 10 29 12 377 460 1537 4261 1515 987 2256 2973 2344 834 7384 993 1018 2 52 5 10 70 2677 3943 4176 1136 983 4580 2168 3978 313 4788 481 242 7181 150 8 5 8720 8683 15 1873 2227 2707 1562 2014 796 614 4285 2954 666 7517 347 61 8703 8748 9 3 5699 2492 828 664 >MA0014.2 PAX5 261 315 308 245 0 39 766 152 9 174 542 537 0 3 317 153 225 587 152 228 59 30 148 169 736 21 163 538 419 8 17 215 751 17 41 6 33 667 333 222 546 336 455 0 83 533 35 294 344 185 679 17 540 155 659 222 25 74 300 12 167 272 121 26 48 314 9 2 157 2 125 22 547 6 54 52 >MA0080.3 Spi1 24957 27071 38966 42251 38682 12577 45356 4801 0 63665 63715 3436 8250 3893 21911 10470 7875 3311 3103 534 8120 3209 0 0 0 0 10145 3223 12038 12028 17557 22021 13786 12032 11483 43018 14683 58914 63715 50 0 50134 3385 45501 21003 10731 6748 7652 6329 13016 0 467 0 0 0 0 0 48857 2283 8773 >MA0143.3 Sox2 0 0 669 0 0 0 0 0 1476 1476 0 0 0 0 0 419 0 0 0 0 0 1476 0 297 0 0 807 1476 1476 0 1476 760 >MA0079.3 SP1 857 0 99 0 0 1359 0 0 0 1054 652 1786 6215 6703 8734 8661 0 8734 8734 6679 6357 4969 4271 642 0 0 0 4624 0 0 0 0 734 1820 1877 1932 0 73 2751 0 0 2055 1323 2379 >MA0083.2 SRF 426 1017 515 270 477 49 0 1767 1184 2226 590 2048 1452 68 15 608 1353 1299 813 446 285 257 681 2144 2105 66 0 0 120 12 10 0 7 864 504 178 281 331 206 1000 533 0 0 23 73 16 16 51 87 2209 2255 441 230 460 757 483 1271 750 586 84 172 421 1020 35 1551 166 728 0 0 364 190 340 >MA0137.3 STAT1 366 0 0 361 109 1739 163 29 3620 3624 1879 731 52 6 3262 2009 0 0 7 0 5 311 785 0 110 6 0 1637 3466 3426 9 0 725 1747 3577 3513 0 1511 253 0 167 0 0 714 >MA0144.2 STAT3 1936 708 250 1006 840 3692 1574 2532 21620 21620 9311 8571 0 346 19585 7780 0 0 0 0 0 962 3801 0 5850 0 0 11456 20046 18686 0 0 6579 7312 20912 15174 1029 13000 6472 0 402 0 0 4768 >MA0140.2 TAL1::GATA1 1114 206 318 4955 0 0 2049 658 963 1191 1778 1038 1352 1885 1381 110 4659 160 2038 807 0 0 0 4955 63 1331 1214 1127 1130 1237 1142 1033 1237 4822 0 890 967 159 0 0 0 0 55 2214 1244 1520 990 1712 1466 820 1884 23 0 3544 836 3783 4637 0 4955 0 2788 752 1534 1117 1057 968 995 1217 453 0 296 361 >MA0003.2 TFAP2A 1387 2141 727 1517 56 0 0 62 346 3738 460 0 116 451 3146 1630 1060 1506 519 1199 5098 4762 1736 2729 236 0 0 1443 3672 690 851 792 884 985 3712 0 0 85 1715 920 4638 5098 3455 465 168 1230 1105 1981 2077 131 0 336 3215 308 204 0 0 84 510 1094 >MA0106.2 TP53 736 3 963 269 0 73 175 80 810 337 837 0 1013 178 36 0 1191 45 11 0 597 818 919 162 45 0 1226 26 43 6 469 5 29 33 1231 0 47 52 87 790 377 3 12 25 1186 26 32 194 918 0 561 191 180 172 59 17 2 180 985 3 >MA0093.2 USF1 4846 1472 43 16573 188 1605 0 0 14762 0 1821 3764 7448 16799 0 10279 595 0 0 0 13166 9926 7162 2983 0 0 932 14642 0 16842 1375 0 1113 1070 4939 0 269 5443 0 16842 0 705 3676 3982 >MA0095.2 YY1 1126 6975 6741 2506 7171 0 11 13 812 867 899 1332 4583 0 99 1117 0 12 0 0 5637 1681 875 4568 801 181 268 3282 0 0 7160 7158 38 2765 4655 391 661 15 63 266 0 7159 0 0 684 1858 742 880 >MA0103.2 ZEB1 856 0 1197 0 3555 0 0 0 0 1455 2991 333 3170 0 3555 3555 0 0 830 0 431 0 0 0 0 0 3555 414 564 1594 385 0 0 0 3555 0 >MA0591.1 Bach1::Mafk 45 14 15 66 2 0 113 0 1 5 108 0 0 98 12 14 36 41 16 1 0 0 94 0 107 1 1 114 4 42 41 46 54 32 0 107 0 20 4 2 3 113 0 6 38 14 18 4 0 111 7 1 0 109 0 2 0 0 6 22 >MA0592.1 ESRRA 17 18 200 198 0 0 6 0 197 23 70 118 174 2 0 0 0 0 205 1 108 54 11 15 6 10 203 207 22 3 10 44 40 62 1 0 0 5 1 180 0 0 33 44 >MA0593.1 FOXP2 330 340 160 59 766 766 766 0 766 297 332 113 7 0 0 0 0 0 757 0 154 124 190 142 606 0 0 0 0 0 0 293 184 133 277 0 707 0 0 0 9 0 22 126 >MA0594.1 Hoxa9 34 12 38 161 0 101 157 171 5 7 131 53 110 117 3 0 58 6 1 0 154 11 81 5 0 8 0 8 0 0 1 0 0 4 45 17 0 172 5 9 0 166 11 30 >MA0595.1 SREBF1 28 0 0 58 0 6 0 2 58 0 14 0 58 0 51 38 44 45 0 26 16 0 0 0 7 13 0 11 0 7 0 58 0 0 0 1 14 0 0 25 >MA0596.1 SREBF2 24 0 0 10 2 2 0 0 47 2 9 0 3 0 10 9 0 0 0 16 14 0 44 37 27 36 0 47 0 2 0 47 0 0 8 0 47 0 0 27 >MA0597.1 THAP1 18 15 20 7 3 58 47 30 116 93 47 0 182 195 136 17 71 34 27 12 137 0 0 1 77 41 17 61 125 42 10 1 4 58 57 32 >MA0598.1 EHF 703 0 0 0 0 0 0 0 724 1427 0 0 1427 1427 0 707 0 0 0 0 0 0 0 720 0 0 1427 1427 0 0 1427 0 >MA0599.1 KLF5 1429 0 0 3477 0 5051 0 0 0 3915 2023 11900 12008 9569 13611 0 13611 13611 13135 5595 7572 0 0 0 0 5182 0 0 0 0 2587 1711 1603 565 0 3378 0 0 476 4101 >MA0600.1 RFX2 373 62 192 431 34 1 1567 164 581 193 214 2095 2312 0 760 588 406 585 620 141 184 736 317 1936 2162 432 222 0 5 1932 8 0 2294 784 403 831 630 668 1716 317 64 910 121 7 41 94 1765 2146 0 170 28 0 539 1178 733 761 678 116 1783 1354 688 255 176 306 1866 0 2 200 73 6 52 263 177 376 370 380 >MA0113.2 NR3C1 248 70 207 401 0 385 152 234 249 108 0 47 120 0 60 0 0 94 0 465 0 136 71 107 0 0 8 162 407 150 150 370 109 36 0 14 177 81 109 19 465 0 0 0 0 67 25 55 28 0 66 0 79 0 338 0 410 183 58 255 PWMEnrich/inst/extdata/stripe2.fa0000644000175100017510000000077514614305422017707 0ustar00biocbuildbiocbuild> eve_stripe2 GGTTACCCGGTACTGCATAACAATGGAACCCGAACCGTAACTGGG ACAGATCGAAAAGCTGGCCTGGTTTCTCGCTGTGTGTGCCGTGTT AATCCGTTTGCCATCAGCGAGATTATTAGTCAATTGCAGTTGCAG CGTTTCGCTTTCGTCCTCGTTTCACTTTCGAGTTAGACTTTATTG CAGCATCTTGAACAATCGTCGCAGTTTGGTAACACGCTGTGCCAT ACTTTCATTTAGACGGAATCGAGGGACCCTGGACTATAATCGCAC AACGAGACCGGGTTGCGAAGTCAGGGCATTCCGCCGATCTAGCCA TCGCCATCTTCTGCGGGCGTTTGTTTGTTTGTTTGCTGGGATTAG CCAAGGGCTTGACTTGGAATCCAATCCCGATCCCTAGCCCGATCC CAATCCCAATCCCAATCCCTTGTCCTTTTCATTAGAAAGTCATAA AAACACATAATAATGATGTCGAAGGGATTAGGGG PWMEnrich/inst/extdata/tinman-early-top20.fa0000644000175100017510000017674414614305422021673 0ustar00biocbuildbiocbuild>tinman-early_885 CCCCCCCGCCGCCACTCAGCGCCGCTTTTCGCCAACAACTACGTACGCATCTGAACCGTGAGATTTTATTTCATGCAAAAAAGCCAACACAAGAGCCACCGAGCAGAGGCGCAGGCAGAAAAAAGTAGAAGTACTCGGCTGCGCATGCGCAACACAGAACGAGACGGCAATTGCGATGGCAGACAGAGAGGGGGCAACATAGTCCGCTGGTCGACCTGTGCAGGTGTTTTGCGCTTGCAACAAGGAAACCAGCATATAAATTATAAGTTCGGCTCACTGCAGTTGCAACCTGGTTTTTTTCGTTTGTTATATGCCCGAATCGTTGGCCGTTAATGGCTTATTAAAAGGGTTCACACGTTGAGGTTGAAGTTTGAAGTTCAATTTGAACTAAGAGCGAAAAGAATCACATTATATGTAATTACATTTTTAGGAAATTTATTAAATAACTATAAATAATGAGACATATTCGGCCTGTAAACTTGAAGATATTATTTATGCCCACGATACACTATAATGGGACGTGACCGTGAACGCGGTTTTCATTAAATGTGATGATTACCTTTTACGAATCGGTGAAGGGGAGATTATTTTTGGAACAGCGAGAGCCAAATTATTTTTTTGCACGCGTATGAATCACTGTGTCTTATCGGTTGATAAGACCGTAAAAACAGTACATAATTATAAGCAACTGCACACAGCTGGGCCTATAATCAACTGGGGTTTTTCCAACTTGCGACAAAATGAGAAAAGATACGCATGCATTAGTATCCTGTTTTGGGACATCGCTTCCAGCGAAACAGGAACCGGCTAAGTGGCCAGTCGAGGATCGCGACATATCCCATTATTCGAGTCGAGTGTCTGGCCCTTAAAAAAACATATTTTCGTCATATTTTTGAGAGCACATAAGAACCGGCTGGCAGGTAAGGAGCTCGCCCACGTCTCAGGTTCGTACTTTGCTTTCTCCTTGCGGAGCAGAGTATCCGATTTCATAAAGGACATGCCACATTTCGTTGAGCTCCGTTCACGGCGGATGCACAGCCCAGAAAGTTCCCATGTCCTTTTAGCTGGAAAATGGAAAACCACTTGAGCTGCATGCGCCAGCCGCATGTCTGTGATTATAGAAGAAGAGCTCACTTGAGAGCCACCAGCATTTCTCGCATCTTGGTTCTCCCACTCAATTGCATTCTATAACTTGAGCATGCTACTGTTACTGTATCTACAAGATACATCTCTGCCCTTTGTTTTTTTGGGAAACGACGCCGCTGCTCTGCACTCCGATTCTCACGTTTGTGGATGGCCAGATGGGAAGTTGGGGGGGCAAAGAGGCCTGCAATCATAAATAATAATCAATTTCCTGTGCCCAAAATGTTTCCCATCGCTCCGCAAGTTTTTCATTTCCATTCTCCAGCTGGATAGCGTATGCAACTGCAAGTTTTTCCTTTCTGCTGAGAAAATGGGAAAAAATAAAATCTGACAGCACAACGCGAGGTGAGGGGCCAATCAGCCGATTGTTTAAAATGTATTTATTGTTTGCCGTTTTCCCTCTGCCACCCGTGCGTCGCTCTCCTCCATCGCTGCGTTTGTTTGATTTGTCGAACATTTGTGCACATTTGTTTCCCCCATTTACATGCGCAGCCCACCACCCCCATCCACCCAAAAATGGAGGCTGCCAATGGGGGCGGCCATCGGCTCGATTCTGAGTGAATCCGCACTGCTTCGGCTCGCTGCCTCGTTTTGTGGCCGCCGCTCGGCTGCGGAGGTTAAGTGTTGGCCCAATCAACGGCTGCCCCATGACGCATGCGTTCTCCTCGTGGAGCCCTAAACTAGCGAACTGATGGAAAGCCCTAAAGACATGGGATTACTTACTATTATTTACTGTTAAATATTTAAAAAGTTGCGTTTAATTTTATAAACAAAGCAATCAACAGTATGTTTGGAATAAATAGCCATTCTTAGATTTTCCTTAACCAAATAAAATTTAAAAAAAAAATGTAAATATCTCATTTAATAGCTTTCTTGCGAGCATTAAAAATATCTTAATCCAGGGTATTCCTCGCTCTTCTACCCACATTCAGCTGCAATTTATTGTTATCACAGGGCATGCAGTCCCCCAAATGTATCTTTTTCCTGGCAACATCTCTGTTTTGTTTATGACTTGGCCAAAAATACGAAAGAAGCAAATTGCGCCAGCTGTTGCCGTCTTGGATGCGATGGCTTGAGATGAGAATGAGTTGCGAAGAGGATTCGATGCGGAGCTGGTGCGATCTCCTTACCCTTTTGCCACATTGTGCGGATCAAGAGATAATGCAATTAGTGAAGGGGGCACTTGCAACATCGACGAGTGTGGGTGGTGTTGCCGCGCGAGGGATGGGGCCTGCACCATATGTCACTTCGGTAAGCTGAGCCCTCGCATCGGATTACCACTTAGCCATAGCTGCTCCCCCCCCCCGCGAGCTCTCTCGATCCTCCGGCCATCAAGCTGGGTGCTGTACCTACATATATGTATGTATGTATATATGTATGTTTCTTCTTGCGCTGCTTCCATAAACATAAATCCAAGCCGGACGAGCTGTTGTTTTTCTTCTTCGCTTGTTTGTTGTTCTCTGACTTTATGCTGCCGAAGGTTCTGGGCCGGAAAACGCCAAAGAGCATAATAAGTTCAGATCCAGCATCGGAATCGGACTTTTAGCGGCAGCGTCAAACAGACAGTGCGCGGCACGAATGTAAGGTCAACGGCGTTGACAGTGATCTTGCATAATTGCAGGGCCACGGAAAAGGTATGGCCCCACCCCGGCTTAAGGTTAAGTTTCCAACGCCCCTCGATCTTTTTTTCGTTTTTTCGTTTTTTTCGTTTTTGCTCGTCTGCTTGAGAGCGAGAGTTAACCCCTTGATGGCCGCGGGGTCAGCAACGGACGCATGTGAATCATTGACAGTTTTTATGAAGCGCCGCATGCATCACTCAACGACATCTCAAGAAGCGCCCGCTGTCGCCTCATGTCGCTCAGTATCCCGCAATGGGTGTGATGAATTCCATGTTGCTACTTCGACACTGTGAGAAATCGGAGCATGGTTGGTATCTTTAGAAAAGATACGCACCTCATTCTGCTGGTTAAGTAACTTAGTGAGCTAAGTTCATAAAATTACCTGGTAAAGTTCA >tinman-early_2150 TGGATGGGGAGATACACTGTTAAAATACATATTCCCAAATATAAATGTTATATATGCTAAACATAAGACGTTTCGCAAAACTGTATCACACCAGCTGCAACTCTCGTAATTTACATACGATACGAAATTTACATACGATAAAATCAAGACTGTATTGCGGGCTGGCAGTTACGAATCATTCTGGCCAAAGTATAATAAAAATGACGAAAAATAAAAAACACGTATTTTTAAACACTGAAAACTTATGGTTAAGTACATATACTTATTTCAAAGACCTTTTTTTCGTGTGCACACACATAGGTGAATGATGCATTTCCGGCGAGAGAACAATACACAATCCCTTTGGCAAAACTCGTTTCCATTTTTTTGGTTTTTGTAAATCACTTCCGCGCAACGAATTGGAGACCCGAAATTGTCATGGACGTCAATTGACAACAGGAGCCGGCCAAAACCAGGGGCGAGAAGACGAGAAGGCGGGAGGGGGCCTGCAGAGCTCTAGGGCTATAGAGTAGAGGGTTAGGTCAAAAGGGAGACCATAGGCAGATCCGGAAGGTAAATTAAAATGGATGACAATGGGATCAGCGAGGGAGGGGGGAGGGGCTGCAGCCAAACGAGCATTAAATGAATTACTGAATGAATAAGTGTGAATAAGTGTCAGTGGTAGTGTGAGTATGTCTGTGAATGGCTCCGAGTGTTCACATGTGTGTGTGTGACTGTGCGTTCGTGGCACGCTGCTCGAGGCTGCTGCAACATGGCCGCCTAATTGTATTCGCGTTAAGCAAACACCTTTTGCCAAATACCTCGATTTTTACGCCTGGCGAGGCGTTTAATTGGGGTTGTTATGTTCGGAGTTCCCGCTCACATATACTCAAATGTATGGGCCGGGTCTTTTGCGCGGTTTGCCTGCGATTAACAGCGTCGATTTGTGACACCCAACATACTTTATTGCATTCGAATGCGAGTGGTTTGGTGCATTGTGTATCTGTCGGATGCGAATGCGATTGGGCCAGCACTGTCACACTTCAAATCAAACTGCCAAAGGACAGCTGGCCCTAACTGTGTAGGAAGGATCCTAATGCGGACTCCAAAGATCCCAGCAGATGGACTTTTATGAACCAGCATTTAATTTTGAATTTCTACTTACATAACTGATATAGAATCTATTGAAACAGCGACTAATTAGCAACACAAAGTGCAAGCTAATTAAAACCATTCGACGATGAAAAGTTTTCGACAAATATAAGAGAGTCAGTGTCAAGTAGACACTTTTAAGTTGAAGAAAACATCTTGCTGTCTTTTCTCATAAACTCTATAGCTGTTTATGTATGTCAGCCGCAAATAGCCCTCTGCTGTCGGTGGACCTCCACCCATTGCAACGCAAATATATTGAAAATGTATTCACAAAAAAATAAAAATAAACTAGGCAGTGCCCAAATCCCTAAAGGCCGAGCAGGAGGACGACAAGGACGAGAGCTACAATTGAAGTTGTTTGTACTTAGAAATAAGCACAAACAAAGTAGTTTGAAGTGCGGAAAATACAGAAGCATGCATACAAAAATAAATAAATACACAAATAAAGGAGCAGAGGGCAATAAAAAACAAACGAGTTTTTGCGGGAATCGAATTGAATTCGTGTGTAATTCGAATGCCAGCGCTCCACACAAACACAGATAAATCCATGAGATACTAAAACTTCCTGCGGAAGCTAAGCCATAACAACAACGGCGACGCACACAAAGGTTTTACTTTGATATTAAATGCAACATCATTATTAAGCCCAATAACAATGGCCAACAACGAACGCCCGGGAAGATGGGCGTGCGCACATGGGAGAAATTTCCCCGAAAAGTCCTTTGGCGTAACCAAAATTTCCCAAACATGCGCGTCAGCGCACGGTGCGCACGGTATAACTCTCCTGCTCGCACGCTCTTCCCATTGGCCAGGCGGCCATGACGCGCCCACTTGACGGCGACGTCGTCGTCGGCAGAGGTTATTACAAGATAAAATTCTACCCCCTCCACTTACCACCTCCATTCCCCCATGGGGAGAATAATGGTGCGAAGTCATGAGCGACAGTGGGGTGCCCACTTTTAGAGGGCGGATGCTCGTGGATAGGGATCATGGAGCTTCCTTCATATACACAACATATATTTATATATATATATATATATATATATATATATATATATATGTATATGCATATTCTGATATATGTATATAGCCCCCAGCCCATATGTAAATGGGGCCAGCCCCAACGGACTCTTGCCATGTTTTCAATTGCCTCGGGCGGATACCCCCAGTTCAGTCTGTCCTGTCGTTTACTGCTCGTGCTGATTATGTATATTCCCATACTTTACTTTCGACCTCCTCGCTCGCACTCTCCCTATCTGTGAGTGTCCGGGGTGTGTCCCGAAGCCACCTCTCAAGGAACGGCGCCATGTATTGGCGTTTGAAGGATCTGCACTAATCACGAGTTGGCTTACGAGTATGAAATCGAAATTCAAATTGCACGAACAGCGACACTCCTTGTACATAAGGCCCCTATGTCAGTGCCAAAGTGGTCTATAACAGTTCCGTTGCACGCAAGAAATTTATTGCAATTCCCAAAGAACGTACCGTGAAGTAAACTAAATGTCCAAGTATAATAGCATACCACTAACACGGCAGAAGAAAATAATGCCTTCGCAAAAATAACGTTCTTTCACCGGTATGGTAATGTGAGAATGCCTTTAAAAGGGTTTTCGCAGTGCGCCTTTTAAGTATTAAAATAATAGTTCGTGGTTCAAAATAAGATTTCGTTGCTGACTAATATAAAATCACAAATATGTGATCAATCCTCCCCAGATCTAATCATGGTTGGTACTCAAAATCTCAAAGTATTACAACCCGACTGGGATTTTAAATGATGAATTGATCTGATTCTTAAATAGCCAACTACATATAGAAAAGGCGAGAGCGTAATTCCAGAAAATTTTTCTTATCGCCCTCGTTCCTCAATAGGATAATGGCTGATATCACCATCTGATATTATCGTGCTAAATGCCGGTCACAATCGCATGTCTTGCCCTGTCCTGTCCTCTCCTTGGACCCACCGCATAGGCGCCACAAGTCGGGGCTGATGTTCCCGCTCCGGAAGTCCAGAGTTGCAGAGAGCTGATAATGATAAATACAATTAAATGACGCGGGGAATGCTGACAACATCAAGTGCAGAGCACTGCTGGAAGAGAACGGCCCAATCCCAGAATCCCTATCTGGGAACGTCAATCCGACGTGCCTGAGGAGGTTCGTGAGGCGCTACAATGGCCTCGCATCCACACTCACTCTCGCGCACACACAAGCAAACATACACAGAGGCTGCAGCACACACACACTCTCACTCAAGTGGCACTCTTGAGAGCGGCAGAGAAAGCAACAGGAAAGAGTTAGAGCGGGATGACGTGCGGCATAAGGACTCGGTTCACATCGTACGTCTCGCTCTGGCGACGAATGGTGGTTGGTTCTCTCGGTGGTTGAATAGGCCACTCACATTGTTGCCGTATCCTTGTTGAAAAGGACATAAGAAGCCACTTAGCGCGCCCAACAAAGCCGAGAGTCTCTCCAGTCTGGCTGTGTGCGTGTGTGTGTTTGTGTATGTGTGTGTGTGTGTGCGACTATCCGAGTATCTGCGTTATGTACCCAATGGCAGAGGGATGCAGATACAGATATGCACCACATACATAGTGATACCCAAAGACACCCCGAGCATACGACCTGGTACTTTTCTGCCGTTGGTTGTTGGGTTTTGGTTATTGGCTGTTCTGAAGCGACTTGGACTCGTGTTGAGTTCTTGATGCCTCGTTAGTTGTTGATGACACTTCAGTTTGGAATGTGTAGAGTGCGCTGCTCCGCGGACCCGTGCAACTGAGAAATCGAGAAACGACTCGCGACCCTTGAACTATCGAACTTTCCCGGTGATAAACTTAAACTTAAGCCTAAATCGAACTATGTCTGGAATTTAAGTTGCCCTACCAGGATACCCGCTTAATTCATCGCAGTGCTACCCAGTAACTACACATAAACATATTTTTTTTCCGTGCTCCGAACACCGTAAAAGCTCCAAAGTGGCGGAGAAACGCAAAAGTCCGCCCACGCCGCCACCCGCGTCGCAGCGTAGTAAATCAAACAGTGGTTCCCCGATATCGCAAAGCGATATGACCACGTCGGCGTCCTTGGAGAGGACCCCCTCAAAGCGGGATCGAGATCGCGAGCGGGACAACAGCAGCGGTCTGGGCAGCGCTGGCAGCTTGCCCGCATCGCCCCAAAGCGCTATCACGGTGAGTCCGTCCTCCCCAGCCACGCCGAAGCGCCCGCTGCGCACCTCAACGCCCTCGCTGGAGCGGAAGAGGGAGCGTGAGGATCGAGAGGACCGGGAGGATCGCAAGGAGCGGCAGGAACGGCACGAGCGAGACAGAGATCACGAGAGATTCGCCGCAGTCTTCAGCACCGCCAGCACCACCGTGCCCACGAACACAAGTTCCAGTTCCGGATTGGCGCCCGAACAGCTCCGCATTCCGACGGGTGCAGCCGCCTTCAGCGGATTTCCGGGGCTCCACAGCATGAGTAGTCTTATGCTTCCATCGTCGGCGGCTGTGGCCGCCGCAGCAGCGGCCCCGTTTCTGCCCTGGTCGCCCATCCTGCTGCCGCCGTGGAACCACGCCCTCCTACCAGCCGCCTTTTATCCGGCGGCCCTGCGAAACGCTTTGCCTGGGTAAGCACAAGGATTCCAATGGAATAATTAAAACATTGATACCTCTGGAGTGGTGAACACAAACCTATGATTCATATGTCTTGGTTACGAAAAGCATATTTTGGTGATACGTTGACACAAGTCCATTCTAGTTCTTCTAATTATGACCTCTGTTTTGTGGGCTATTTATAAACGCTTAAGCATTGGTAACACTTTGATGGCATGGATCTGGCCAAGATATGGATAATAAGGACATGCCTCAGATTGAAACAAAATTACTGACCACCGACAATACGTTTGCCTTTCATGGCTGACCACTTTGTAAAAAACAGATATGGTTTTCAAGGTTTTGGGTTCCCGATTAATTTTCTATGTCTTTCTATTAATTCTCCTAATCTAATAATTTGGAAGATTGGGCGTTGAAAGCAGAATCTGCAGAATACGCAAGACCATTAATTAATTCTCCTAATCTAATAATTTGGAAGATTGGGCGTTGAAAGCAGAATCTGCAGAATACGCAAGACCAGCCATACTTTGCAATTGCCTTCGCCTAAGCTCCGACTTAAAATCACACCCTGCGAGCCTCTGCCTCCATATTAGTGTTTAGATCCCATATAGCTGATGGACTTGTCCGGCTAATCCTGGTAGCTCTTTAAATTAACCAAGCGGGCACAGCGCGCAAGTACAGGACACAGGGTATAATTCCCCGCCTCTTTGATCTGGCAAGTACTCAAGGTCCTGGCGAATGGCGGTTGGGAAATTCTGGCTTGTTGTTCGACCCTGGCTTAGAAATTCCCGTAGGTGAGAGCCAGGGAAACCCCAATCGGGAATGACATGTGTACGACAGACATGGGACTCAGATGCCTTCGAGATACTGGCGTCACACTGTCTGGCAATGGGATTTCCGCTCAGGAGGACGGGGAATGCCCGTGTAGCCTGTCCATAGCGTGGGAAATTCGCGAGTCGGGGTCTTCGGGAAAACTCGAAATGGGAAAACCGGAAGCAAGCAAACTTGCGCCAACATGTGGCACGACCTGTTTCGACCCGTAAAGAGTCCCTGCTGACCTGTGCTGACCTGCACTGACCCGACCAGGTAGCTGCGATCCTTACGAGGCGGATTTGCGTTTAATTGTTGATGGTATTAGGCAAATCAAAACTCGGGGTCTGACCGGGACTAGGTGTCAATAATCCAGCGATTTGGGTGCACTTATTCAAAGTTAATTCCGGGGGAAATGTGCGCGTTTTCGGTTCCGAAGCATGCCTGCAGGATGCACACCCCCCACCTCCTTATCTTCTTAACAACGGCAAGTGCAAAAATCTGTGAAAGTCAGAGCGCTACAGGTAGTGCAGGTAGTTTCCTTTGCATATCCCGACCAACAGGGACCTCCTTTTGTTAAACCTTCCGGCCATTCACAC >tinman-early_280 GCTTAGCACAATCATTTTTTGAGGACTCGCCGCCAATGTACCTAATAATACAAAAGTAAAGAAAAAACAAAGAATAATAATTCTATTTAAAATAATATAGATACATGTTTCAGTAATTATAAAGAAAAAAGAATTCTTGGAAGAGGGGGAAAAATACTTGCCTTGATCATATAACATTTCCTAACAATGCGGGTGGAATCAGCATTCAGAATGAATTCCACCCATTGTTTAAGAGATTTTCATTATATTATATTATATATTATATCATATTATATAGGCGCTAAGTACATTTCATGGTTGAAATCTCCCTATGTGTAGACCTTTAATTCTTTCAACACTTCTGATCCAAAAAGCTTTAAGTAGCCAAATCTATATTACGAAATTATTGCTTGTTGACACTTGTAAGGATATCTATTTAACGCCAGGATTCAAAAATTATAATTTTCAAGGTTTTTTTTCCCTGCCAACCATTGGAAAATTGTATTGTAGTGATGCAACATCGGTATGTTAATTTAGTTATCCACTCCAAGCATGGTTATTTTAATTTCAAGGTCTTGTATCTTTTAACCTATATAAACGAACGATTCCTTCGCTGTCGAAACTAAGTTTTGCAACGTAATGACTATCGTATTAAATCTTCCGGTCTGTGTTTTGTTTTTACTCGGTACTTTGGTACCCAGCAACTCTCAGAAATGGATCCCATATGCGAATCCTTTGGATGAACAGTCGCAGCTACAGGTAAACACAAGAACGCAAAGCAGCTCATAAGCACCTAAAGCACAATCCAATGTTTTAATATTAGGAAATTGGATTAAGCGATCAAAATCCGGATAATTTTGAGCAGTCGCAATCTCAATCACAAGATCAGATAGTTGCGCAGATTCTGCCATCTGATGCTTCTCTAAGTGGAGGGCAACCACCTAATAATATTATACAACTTGTGGATGAAGGGATGGATCGACCTTTGCTCCTACAGCCACAAAATCGCCCAATCGAGACTGTCGATCAATCACAGAACTTAATTCAGAGGAAGTTACAGTCACAGTCGCAGGCACAAGCGCTGGCCGAGTCACAGGCACAGTCACAGGCTCAGTCACAGGCTCAGTCACAGGCTCAGTCACAGGCTCAGTTACAGGCTCAGTTACAGGCTCAGTCACAGGCGCAGTCACAGGCTCAGTCACAGGCTCAGTTACAGTCTCAGTTGCAATCACAGATACAATCACAGTTACAGTCTGATTTACAGTCCCAGTCGCAGTTACAGGCACAACTCCAGTCTCAGTTAGATGCACTTAAACAACAGTCTGGGCTCCAGAAGCTCGCATTTGGTCAGTTGAAACCCCAAGTATCCGATCAACCAATTTTAATCTTAGATTCCATACCAAAACCACGACCTCAGTTTGTACTACTTCCTCCTCAGAATGGGCCAGTTCAGCAGGACCCAAATCTTCGTTACGTGATAATTCCGAGTCCGCCAAAACGTAAACGCCGAATTTCACCTGATAGCAGCACAATTCCCAAGGTTTATATATTGACTCCAGACAAACAGATAAAATCGAACACCAGTATTAATATTGATCAATTACTAAAGTTGTATAAGTACAAAACGGATAAGGAGCGCAAAATTGCCGAATTGAAAAGACAGATAAAGGAACTAAAGAAACAAAATCTTTTTAATTTGGTTCCGGCTCTTCAGCTAAGACCAGCAATCCCAGCCATTGAACTCCAATTACCAGTAGAATCACAGTCCGAAATACAATCCCAAATAGCATCACAGCAATCAGGGTCATTATCCCAATTACAGTCGCAGCAAAATTCAAAGTCTTCGGGATCACAGTCAAACGCTCAATCATCTGGATCACAGTCCCAGTATCAGTTACAGTCAGATTCACAGTCGTCTGGTTCACAGTCCCAGTTGCAGTCACAGTCAAACCCTCAATCATCTGGAACGCAATCCCAATTGCAATCACAGAATAGAAGATTACAATCCCAATTGCAATCACAGAATAGAGGATCACAATCCCAATTGCAATCACAGATAAACCCTCAATCATCTGGATCACAATCCCAATTGCAATCACAGATAAACCCACAATCATCTGGGTCACAATCCCAATTGCAGTCACAGAATAGAGGATCACAATCCCAATTGCAGTCACAGAATAGAGGATCACAATCCCAATTGCAATCAGAGATAAGCCCACAATCATCTGGTTCACAGTCCCAATTGCAATCACAAATAGACTTACACTCTGATGCCTCACAGTCCCAGCTGCAGTCACAGTTAGGCTATGATTCAACTGGATCACAGTCCCAATTGCAGTCACAGTTAGACTCACAATTATCTGGCGCACAGTCTCAGTTGCAGTCACAGTTTAATTCCCAGTCTTCAGAATCACAGTCCCAATTGCAGTCACAGGCCAAATTCCGGTCTTTAGGAGCCCAGTCCCAATCGCAGTCACAGCTTAATTCCCAGTCTTTAGGATCACAGTCGCAATCGCAGTCACAGCTTAATTCCCAGTCTTCAGGATCACAGTCGCAATCGCAGTCACAACTTAATTCCCAATCTTCAGGATCACAGTCGCAATCGCAGTCACAGCTTAATTCCCAGTCTTTAGGATCTCAGTCCCAATCGCAATTACAGATAAGGTCACAGCTAGGAACACAGACTTTAGAGTCACAGTCTCCATCCGAGGTGCTACTACACATTCAGGGGCCTTCCACATATCAGGACAATTTGGCTGAATCGAATATACAGACGCAAAAAAATCGAATCAATGTGGTTACGCCTGAGTACAAAGTATTCAAAACACCAAATTACCTTACCCAGGAGGACATCTTGGATAATACTAAGCTGACAACTGTGAGTTGAAACATCTATTCCTCTGATTCCAATCGCTCCGAATACCTTTTTAACAAATCCAATAGGTTGATCTGATTGAGAAGTACGGCTATCCATCTGAGACCAATTACGTGACCTCCGAAGACGGCTACAGGCTTTGTTTGCATCGTATTCCGCGTCCTGGGGCTGAGCCAGTTTTGTTGGTCCACGGCCTAATGGCCAGCTCTGCCTCATGGGTGGAACTTGGGCCCAAGGATGGACTAGCATATATCCTTTACCGCAAGGGTTACGACGTCTGGATGCTGAATACCCGTGGCAACATATACTCCCGCGAGAATTTGAATAGACGCCTCAAGCCGAATAAGTACTGGGACTTCTCCTTCCACGAGATCGGCAAGTTTGATGTGCCCGCTGCCATTGATCATATTCTGATTCACACACACAAGCCAAAGATCCAATACATTGGCCATTCGCAGGGCTCCACCGTTTTCTTCGTCATGTGCAGTGAGAGACCCAATTATGCACATAAGGTGAATCTAATGCAGGCACTTTCTCCAACGGTTTATTTGCAGGAAAACCGCAGTCCAGTGCTAAAGTTCCTCGGAATGTTCAAGGGAAAGTATTCGGTGAGTGAAAGTCCTTGTTTGGGAGTATATAATTCCACTATCATTAGGATTACCTTATAATTTATAAGATAAGACAATAAGAAGATAACATGACAAAGAGTTGACATATCAGCAATTTTAACTGCTTTACAGCATACTTATTCCGTTTATCTTTATAGATGCTTCTGAACCTCCTGGGCGGTTACGAGATCTCAGCGAAAACGAAGCTTATCCAGCAGTTCCGCCAGCACATATGCT >tinman-early_1353 TTGCAGCTCCTCCTCCGGGCTCGTCTCCCAGGTGATGGCGTTGTCCAGCACCACCTTGAGGTGCTTCATGTCCTTGGCCAGCTGCTCTATTCCCGTCTGAATGCTGCTTGTCAGTTGGACGAACTGGCTCGTCCTCGGATTGAGCTGCTGCCGCTGGTTGAGGTATACCAGCAGCTGATGCCGCAGTCGCTCGCAGCCCTCGTACTCGATGTCCCAGGAATCGTGATCCACCAGCGCCATTTCTCTGCTTTTGCTATGAGTAATTATCAAAAGCAGAAAACTACGCCTCCAGCAATCCAAGTAACAAAAACAAAAACAATAGCCGAGCAACAGCTGATGGCTGGTAGCAAAATAAGTAAGCGCGAGTACGGTCACATTGCCAGTAAGAAGGGATTCGGAAATAATCTTCAATGTTTGAACTGATTTAGATATTATACTTATGTAGCTGTAGATAAGCTGGAAAAATGCACCGCGATTAATCCCCAATCCTTTATCAATTCACCTCGCAGGTGCGTTGCTAGTGTGAACTATTTACTAAATAATTTAAGCTGGTCACTCGAAAATCGTCACTATGATGTGAAGTATGATTATTCGGCCCGAATTCCTGAAACTACTCACAAAAATTAAGAAATGCTTTCCAAATTGCTTCCAATTCTGATTCTGCAAGGTGGCCGAAGAACGTATTCCTTGTGCTCGAGAGATTACACCATCCCCACAAGTAACCACACCCTAACTGGTCAAATTTTAAAGGTTCCAAACCTAAATTCGCAGGAAAGATGTTTTGGTACGCACATTGTTGTCCGGCATAAGAGAGGTCGGTTCTACACCGACATTGGCGAGCTCCGGGCTGTATTGGTATACTCCATCAGGGACGGTGTGATGACCATCAACAGCACCAACGTCCCGGAGGAACTGGGCGGACATGGCATTGGGAAGCTACTGGCCAAGTCGGCACTGGACTACGCACTGTTGAATGGGCACTTCATTATTATAAGGTGTCGGTTTGTCCAGCACTACATCGACAAGTATGAGCCGCAATACGCCAAGTACATATTAAATTAGGGAACCGAAAACAAAACTTCAAAATTGTCGACACAATCAAACTGAACACAAATAAATCCCCCCACTATGCACATAGACACCATACATATAAACGTATATTTGCGTTCAGATTTGTTGAATTCCTTCGGTTTTTGAAAAATTACATGAAAATAATTTGAATTGGCTTATTTTTAAATTATTTCAAAATTTCTAAACCGAAAGGTAACAGATTATATTTAATGACGAAATTACGGTTTCTTATATAAGCTATTTTGTTATGCTTCTAAAAACAAATGTTTTATTACCTCTTTAAAATATGTAAACTAGTTTTCACAATATATTTTAAAAAATTGTTAATTTCCATATATACCACCTTGCATTGTGTGACCACCCTGAAATTAGCAAAGGGCGTTGCCAGACTCCGGCCACCCACGCACATACGATAGTTGGGACCGGCCCGGCGCGGTGGACAAAGTCACGGTATCGATATGGTGACACGATTCACCCACACATGCATGCATTGGGCTACGATGGCTGTGACACAAGGTGTGAAGAAATCACTGGGTTACAATGAGCGCTATTTATAAATATTTTGGAAGTATGCTGCAGGATTTCATAAAAGTAGTATGCAATTGGTATGCTTGATTCATATTGTTTAAAATTTGCTGTGCTACGTCAATTTTGTACTTGAAAAATATGGAGTCGTGACATGCCGCCAAAGCGGTGACTTGTCACGGTGAAATAATCGCGACTAGTAGCAGGTACGCAACTATCGCCCATCGCTAGCTCACACGTACACACAATTTATTTAGTCGTGATTTCTATTTTATTTGTTTCAAATTACAACCAAGAAGGAAACAAATCGCGACCAAAATCCGCTGGCCACAATGCCGAGTGCCTGTACAAGCGTGCGCGAGCATTCCCACTAATCGGAAGCGAGCGCATCCGCCGTTTTGAGCGTTTTCCGCGCGGGAGTGGGAAATCGAAAAGGCAAGGCAAGCCATCGGTCCGCTGCAAAATAGGGATAAATAGGATATAGTAACGTAGTTCAGCACACAATCGGGGGGCCAGCATGGAGCGGCGCGTGAAGCTGAAGACGATCAATCCGCACATAACGTGCAAGATCTGCGGCGGCTACTTCATCGATGCCACCACGGTGACGGAGTGTCTGCACACATGTGAGTTGGTCCGGCATGGAACACTACCTGCCCAATAACGTCAGTGTTTGTTGCAATTACAGTTTGCAAGAGTTGCCTGGTGAAGCACCTGGAGGAGAAGAAGACCTGCCCCACCTGCGACAACATCATCCATCAGTCCCATCCCCTGCAATACATCAGCTTCGATCGCACCATGCAGGACATTGTGTACAAACTGGTGCCGAAACTGCAAGAAGGTTGTCTTGAGCGTGCTATTATTATTATTGTTTCTTCTACTAACTCACTCACACTCCAACCCGAAACATTCCAGATGAATCGCGCCGAGAGCGGGACTTCTACAAGAGCAGGAACATGCCGTGTCCCAAGGATATCACGCAGAACCACGAGGACGACAACGAGAAGGTGATGGACGCCCACGCCGAGTCCGACTTCCATCGCCTGGACGAGCAGGTGAACGTGTGCCTGGAGTGCATTAGCAATAACTTCAAGAACCTGCAGAGGCGATTCATTCGCTGCAGCTCGCAGGCGACGATAACGCATCTCAAGAAGCTGGTGGCCAAGAAGATCCTCAACGGCATCGAAAAGTACAGAGAGGTGAGAGGCGAAAGCCAAGTTTCGGAACAGTAACTGCTCTCAGTGAAAGCTCAGACTGGCTTAGTTACTTGTATACATGGCACATACTTATATGATAACTACGTATCTTATCTTTCAGATCGACATACTGTGCAACGAGGAGCTGCTCGGCAAGGATCACACGCTGAAGTTCGTCTACGTGACGCGCTGGCGCTTCCGGGATCCGCCGCTTCGGCTGCAGTTTCGTCCGCGGGTCGAGCTCTAACCACTGTTTTAGTATAATGCCACAACAAATGATCTATTTTTATAATTTATTGACAATGCGTAAATATCGTAATTAGGAGAGTCGCTAGTGTTAGTCCCCTCGAAACCA >tinman-early_1624 TCGTCTAATCTTTAGGGCGCGAAATTTAAATAATGAACTGTAATTTGTAATTTAATATACAAACAATAATATTCACAAACCAGGGGTTAAACTTTAATGCAACCAATGATTCAATTATTTTTTTTAGTTCTTAATAATGCGTCAAATAGTTTTCTCATAGTAACTTCTGTGTTTTGCGCAATGTATATATTATACGCTTACTTTTGTAATTTTTGATAATAATACAATAGTTGTAGAGTTATTTAAGACAATGAAAAAAACATTAAAAACAACATTAAATAATGTATAAAAAATATGCATTTTATTTTGTTTTAAACCATAAATTATCTAACGACGGCAATATATTTTTATACGTGGGTTTCAATATCAATTTCATACAACATGGATTTGTATGGAATTTCATATGAATATATATGCTCATATGTATATTAACTATGTATGCAAGCAAATTGTCCACATGTGTAATTGATATTTTTACATAAATCCCATGTTCTGTTATTCATCCCCCTAGCCACTACTTTCTTGGGCCGGATGCTGTCTCAATACATATTTATCGCCTGCAGCGAAATTTTAGTATAAACATAAACTGTCAAAACGATACATAAGCCATCGGATGGCCCATGTTCCAAAGCCGTTTGACCAGTTTCGGCTGATGTTGATACAAAAAAGAGTTGAAACCTGTATTCATACAGCTTGTACCTCTTATGCCAATCGAGTTTTCATTATGTATACCGATTTCTTCATGGTTTTTGTTCAACACAAAGGCACATTTATGGATTGTACGAGCGTATTTATAAGTCGACACTCCAGACGACACCCCTAAAAAGAAATCGCTGAAAACCGTTAAGGAACCCATAGGGGTAACACAGAGATTTGGATGCGGTGTCGGCTTTCAAGCGTTCCACACTGCTGGGAATTCCCTGAGTACCATCTATGGGGGGTACGACGATATCGTTACCCCGAATACCCGCCCCCACAATTCACCCGACAAATGGTACTCGTAACGTCCTGATGATGCCGTTCTCCTCGGGATCGCCCCATTCCATTTCCCACTTAACTGCATATGGTTTTTGTTAGTGGTTGTTTCGGGTTTCGGAAATTTCTGCCCGCGTTCGGGACCCTACCCTCCACTTCATCTATTAGCAACGGCTCTGGCAGCTGTTCTACCCTATTAAAAGGTCCCTTAGTTCCTCGATTCCGACTACCTGCATCTGCTGAATGGAAATGCACTGAAAACTTTATCGTATTTTCTTTTTTAAGTATTTTATTACTGTTATTTTGATTAGATTAAATGAATTGCTATGCAAGAAATGTAGATTCTACTGATAGGAAATCTACATCAATATCAATAAATCAATACTTCACGAAAATGATTGCAGGTGCAGTTTTTTAGGGAAAAATAAAACAAATAAAAATCAAGCAGAATTTTTGTTTAGGGTAAAATACTTATTTATCATGATTGCTTACTCTTCTAGGTCTAACTTAAATTTTTTGCAGTGTACAAAGGCATTCCCAGCGTGTGTAACGTACTTTCCAGCCTTAACGAAACCGGGCACCGAAGGGAATTTAGGGTATTCTACCCCTGGAATACCTCCCCTCGCATACCTGTAGCAATTCTGGGCATTGCAGTGAAATCGAATAATAGACAGGAAGTCCCTTCGATGTCTTTTATTCCTTTCAAGAGCCGAGCCGCTCTAGTAGATCATGGTGCAGCGATTGTGTCGACCCATGATGCTGGTCTTTGTTCTGTTTTATCCTAAAACTAAGTTCCTAATGTGGTGGTCCTAGGCATCTGAGCCCGACTCAGGTGGAGTTATCCAGAACAACCACCTGTGTGTTTTGGTATCTTCGCCAGGCACTCTCCGCCCTTTCCAAGTATTCACCGATCTCCTGTCGCTTGTTCAGAAGGTCGTACTTCTCTAGAGCCAACTTCAGGAGTACGTACTCCAGGCTTCGAATGCCTCCGAGATTGTTTGGATCCCTTAGGTTATCGACTAGGATTACGAATTTCTTGAGCAGCTCCACCAGCTGCCCAAAGTTGCTCAAATCGTCCAGATTAGCATCCACCTCGTTGACGTATCGCATACTCTGCTTAATCCTTCTGGCCAAATCGGTGCTCCTGCCAACCAGGGGTGAGAGCTCCGTATTCAGCTGTTGCACCGATCTGCGCGTATCGGTCACCTTCAGCAATGCGTCCTGATTATACTGATCCTGATCTGTCCACTGGGTCATCGGAGCCTTAGTAGTCGCTCCTTCGTTGTCCACCATAGATATCCGATCGTTCTCCACAATAATGGTCTTGTCGATGGTGTCGGATGCATTCGGCGGCTGCTGTACGTGAAAGTCCAAGGTGAAGTGAAACCGCATGCTACCCTATAAGGATTAGAAATTTTGTTAAGAAACATCCAGCAGGCTTGCACAATCGGAAACATGCCTGGACCAAAGTAAATGCTGCTAGGAAAACCAAAATAGTCTTAGAGGACCACATCTTGTCGGTGAACTGGGAAATGTTTGACTGATTCCAAGCTGAAATCTCACGATCAGACCACTTCATGCAATCCAAGCTCGACATCGACGCTTATCAAACCACGGGGTTATCACACATCGTTCCCACTTGACCGATAACAGATTCATTCACATTCAATGAGTTTTCTAGCTATGGGAATACATATTGCCAGACAAAGCGCAAGTCACGTGTTCGCCGAGATGAAAAGTCAATACAGTGAGGTGAGCGATTGCCAACCTAAAACCATTTCAAGGCGCTTGGAATAGCAAGTATTTCAATTTGCTGAAAGCTTCGTATCCAATATGACCTCTATGGAAACTAGTAAGTTCTTTGAACCTGCCGAGGGTATACAGAATTCAGAATTATCTTAAACTGACTAAACGAATGCCATATCATATGTGGTCTATTAATATTAATTAGTGGTAGTTGTATTGTAATAAAACAATGAGTATGCAGATTGTATGCATTATTGAGGGTGATCCAAAAAGCAGTTAATATTAATTGCCTGATATGGATATAGTTCCCATTTGGTATAAAAATTTAAACAATTTAAGAAAAAATGTGTGCTATATAAATATAATCTTAATACATGTGACATAAAAGATGGACTGGTTAATAGCCCGCATGGGTATTTGGAGTCCGTGAATCATCCACCTTTTTTGGGAACCCATTTCACAGAGTCATTTCCGTTACGAACTCAACCGAATTTCCGACTCTCTAAGGGTTAACATCTGCTTGACTACACTACGCTTATCATCCGTCTGAGGTAACAACAACCGCTCTTATCGCTATATATGATGTTTACGCGTGCAATAATAATTATAATGTACACAGAGCCACTATAGCGATAAGGTGCGAATGCTATCAGGGTCCGCAAGTACCCCACATATATGTACATATGTATATGTACACAGTCGAATGTTTGTTTGTGCGAAAGTATGCCTTAATTTAGAAAATGGTATCAAAGCAGGGCAGTTCATGGAAGCGAAGCCATGGCGATAGGGGCAGGCCAAAGAAAAGCATAAAATGTGGGAATACGAATGGGAATCAATAGTAGAAATTGCGCAGCAGAATAAAATTATTCCACTGCCTGAAAATAACAAAAACCGAAAGGAAAAAAAATAAAATAACCGTTGACACACACTCACATGAGATTGCCCATAA >tinman-early_1977 CACGACGGGTGGCAAAATGTGAGTGCAGTGCGCAATAAGCACGGAATTAGCCTAGCCGCAAATCGGAACCCAGCTGTCTGATATAGAAGACGAATTCGGAACAATATCAGCAATAAAATCTCATCTAAATGGTGTGTTTGACCTCCATACCTCAGATTTAACAGGCATTTCATTGTGTTCCTATATCAAAGTAGGCTTACTTTTATCACAAAATAATACCTAGACCAAATATTAAGTGTACTATTAAAGCATTACAAGTTCCGTTTGGTAGAGTTATCTCACATTTTTTCCTAGAATTAGTCATTTATTTGGCGTAAGACTGGGTTTTCACTTCATTTGTGTTGCTAACAATACTAAATGTTAAGTAATTTCTGATTAATCGTGATTAATAAGTCAATATTTCGGTTTTTACAAATAATTTTTAAGTCACTTTGTCACAATGATTCCGATAAGCGAAACTTTCCCAATGATGTATTACAAATTTTGTTACTAGCTTACGGTGTTTGAGGGTTTTCCTTACCTTGCTCATCAAGCGATCCGCTCCGGTGCCTTCCTCGTCGCGGAAAAGGATGTCCCTGTTGTAGTTGGGCACGAGGTCCTTGAATTTGGGCGAGTCCCGACGGATCACACCCTCCAGAGGTCCGGAGGCGCTGTTCGTGTACTCGGATAGATTGGGAATTGTCTGCTTGAGGACCAGCGGATACAGGTTGCGCGCCCTATGACGACCCAATCCTCGGCCAGGACCGCAGCTGTGAGCCGGGCTAAAGACCATCGGCAAGACGATCAGCAGCAGGGCCACCAGAGAGGTCAGCCTGCTGAGGCAACGCTGCGTATGCGCAATGTGGCGCATCGTTTGCGTTTCTTCTTGCGGGATTGCGGAGATGGAGCTCGCTGCGGATTTGGAGCTGGAACTGGAACTGGAACTGTGGCATTTGGCATCCAGGGAGAGACAGGTGACACTGGCGGCACTGGCCCAAGGCACTGAGCTGTGGTTATCCATGATTTATCTAAGACTCGTTGTTTGCTGTTTCTCTTGATTGGATTTTGTATCTCCTTTAATTTTTTTTATTTATTTTTTTGGTTATTTAGCACTTCACTTTTGGCACACAGACACGCTTATTTGGCGACACGTTTGTTATTCAGATTTATGGTATTATTTGGATTTAAACTGGCTAAATCGAAATACTTGAGTCGGCGAAATCGCAGGTCCTAACTGACTTAACTACGGTCTTAACTGTTCTCCGCTGAACTGGCAGTTAGCTCTCGGTTCGGACAACCGTTGCGCTCGCACTGTGATTGACAAATGACATTTCCGAGCGGAGTATCGTGCGCGCAGAGTGTTCGAGTGCGAGTACGAGTACGGCAGCGAATACGAATGCGAGTATAAGTACGAGTACGACGAGGGTGCTTTCAAGAACCCTAGGCCTTTTAGCTCACACAAACACACACGCACACACACACTATCGCCTCGAGTTCATTCCGCGTTGTGATTGTATGCGTATGCCACTCGACGTTCGATCGGCTGTGGTGTTCATTTTTATGCTGCCTTATGCGCAAGGGAAGTGGAAGCGGGACAACCAGATGATGCAGCATACTCACAAGACTGGTTTGCATGTGTTAGTGCCTGAGTCTTCGGCTCTTATGTACAAGCAATGTTGGCAACAGATGTTGGATGGCATTGGCATAGTGTGCTGCGGTCCATTATGGCCATGGATGAAAGTGTGTGCCTGTTGCCAATTGGATGTGTGATAGTGTGCGTTGCTGGCGCAGAAGAGCTGCAGCATCCTCGACTGCAACTGCAATTTCTCTTAACACTTGCACTACTCGGACTCGACTCGACTCGAGTCTTGTGGCTTGTTAGCCGCTTCTGGCCCTGCAACTCCTCCATCGCAGGCCATTGTTCACTTTTTTCCGTTGCCTTTCTTCGTTTTGTTGTTCGTTTCGCTTTATTGCTTGTAAATTAATAATGTTCCGGTTTTTTGTGTATTGTGTGACTCCTGGGCAGCCTTATATATATACATACATATATATGTATATTGTATATGGTATGATATGTGGAGTACATATGGGTTCAATGCTGCTTCCGTTTGCCAGTCTTCAAGGAACGGAAAAAGTGCTTAAAACTAAAGTACTTTATGATCATCGAAGGCTCCGAGCTTATGTCACCCAGTGAGTCATTCATATGCCCCTCAGGTAGTGGTCATGTTCCGATTAGATATCGCCTTAGGACCTACAAATTACTGGTCAATTTAACAATTTCCTTCTCCGCCAGAGGTTCCGTTCAACGCCATGTCAATAATCGCAAATATGTCTATATATATTGCAAAAACCGATAACGATTTTGGCAAATACAATTTGCAATTAGGTACCTTATATTTATGCACAGCAAATAACTAAGTTGCGGATTGATGCCGCACTCTGGAAATCAATAAATTTCCAGTTTTATCTCTGTTGACTTTGGCTAATATAAAATTCCCCACAACTGGGAAATCTCCAATTTAACTTTTTAGCTTTTTCGCACTTTCAGAACTTGGATCTGTGGCAAGCGCTAATCTTTTGTTTTGGCTCTTTTTCCAGACCTTATTTATTTTTTTGCGGTTGCACCAGGTCTATTTGCACTGTCACTTGGCAAGCGCGAATTGTGGAATACGCCCGTCAATGTGTGCCCAAGAAATTGTCACTTTCCAACGGGGTAGAACCAAGGGCCAAGGTGCACCTGCTCATGTAACGGATTCCATGGGGGGGCATAGCATTTTTTTTTTTTTTGGTAACGCTCTGGAATGCAAGGCATAGCATAATAATTTCGACAAAAAACGAAATGAATCGAAGAAAAAAAATAAAACGAATCGAAAGAGGAGAAATACAATAGCTGGTCGTGGCGGCAAAAGATATAAGAGAAGGCAAAACGCCATCAACAAGATACACGGAACCAAATTAAAGATGAAGAAGCTGAAATGGAAGGGGGTATGGAATATACGAGTCTTGGATGCTGGGCCATCGGGCATTCGAGTGTGTGTGCGAGAGTCTATGTGGCTGCCACATAAATTTCTGCCTTCTTTGTGTGCGCACCGAACTCATTACGTTCGTCGCTGTGTGTATCTGTGTGAGTTTCGAATGTGTCTTTGGGCCTCCGCATCTGTATCTGTATCTGTATCTGTGGGGCGGAGCTGCTTAAGGCGCTCATTTGTGAATGAACACACAACACACCGTGAACAAGCCAGATACAGATGCGAAGACCATCCCGGGCCCATGGGCAAACAACAATCGCTCCAGCACTTAATGAGCATGAATAAATGGCATCGCAGACCGTGGAGCAAGCGAGACGGCCAGCGGTCCTCATAATCACGATCATATAGATCGCGCTCTTAGCCGAAACGGCTCACAAAAAATACAGAAAAGAGTTAAAACAAAAAAAAAAGAACACTAAATAAATAAACTAACAAAAAATGCCTTTCCAGGCCCTTCGAGATAAAAAGCCGCAGATTAGTTTCTGTAATTAGATTTGGTCCAGCTTTGATTTATGTGAATATTAATGGGACAACAGCTATAAGTCGAAATTGAATTTTAATGGCAACCTGTAATGCTGCACGGTGAAAAATGTAAAAAAGCAGTTCTTAATGTCAAAACATTAAAAAAAAAAATGAATACA >tinman-early_406 TCTTAACACTTTAAGTTGTCAAAAATTTGCAAAAATATTAAAGAGTAAATTTGTATTTTAAGCTTTTTCATAAATACATATATGAAAAAAAAGTTCCTGCATATATCTATTAAAACAAAAAGCGCATAAAGAAGTTTCGTGTTTTTAAATGAAAGAACAATTATTTTATTTCCTCTTTTTGATTAACATCTGAATAAGGCTGCTCTTCGCCCATGTCAGTACTGTGAGAAGTATAAGGTTAACTACTTAACCTGACAAATTGTTTAGCAGCGCTTGGCTTTCTCCTTGTAGTTTCGATTGAACGTTTGAAGATGAGTTCGACGTTGACTGCGACGATGAATGTGACGATGATTGAGACGACGACTCGGACTTCGACTCCGACTGAGTCTTGGAGCTCGATTGATCTAGTAGCAAGGTATTTCGATTGCCAGCCTCCTGTCGTTGTGCTTCAGACTGTGATGCCTGCGATGACTGTGATGACGAACTCTGCGAGTTTTGTGAGTTACTGTGCGAGCTTGAAGAAGAGGTTTTCTGATCATTTTCCGTCTGAATTCGCAGTTGTTCCTGCTCCTTCAATCGCTGAAGAGCGGCGCTTTGAGATGCAGAACTTTCTGTGCCTTGTAGGGAACTAGTCTGCAGGCCAGTGGATCCAGCTTGAAGACCCTGCTGTGAGCCTTGAGCTCCAGTACTTTGTATATCTTGCTGTAACTTGGTCTGAGAACTAGAGCCAGCAGATGAGGACTGTTGTTTATTGATTGATTCCTGAGCTTGTTGTTCCTTCTGTTGTTGTCCTAGCAACAGCTGTGCGTTTTGTTGTTTTTTAATATCATTTTGTCTACGCTGCAAAAGGCTCAATATATTTTGATGCTTTTTTAATTCTTGCTGTAGACGAAACTGATCTCGGTAATCCGACAAATCATTGAAATCCGGCGATAAAATATACAGTCCTGTTGAAGCTGGCTTGCCAATTAGCCCTCCGCCTGATGGCAATTTGTCCAGTGAACCGGGTTGGGGGACCAGCTTAGGCTCAATTGAAGGACCTTGATTTCCAGGAGCTGGCTTTCCTTCGGAAGGCAATTGTCCGATAATAAATAGATTGGATGGGTTACTTCCCTTTGATATTTCTGCCTGCGACTTCTTTTGGTCTTCCAATTCTTTTAGTTTTAACTGTTTCAATTGGTAGCTCAACTTCTCCTTATTTAGCTGCAGAATATTTTGGTATAGCTCATGTATACGTCGCTGAGAGTCCGATTGGGTTTGTAGCTCAGACTTGCCCTTCTGCAGCAGCTCTCGAATATTTTGCATTTCCAACTTTATTTGTTCCAATTGCCGAAGATTCTGATCCCGCTGCAACTGTAACTGCTCCTGCGATTGTGACTGTGACTGTGACAGTGAGTTAGATTTTGACTCTTGCAACTGGCTTTGGGTTTGTGTATCTGATTTTAGCTGATTCTGCTGAAACTGTAGAAGATTTTGCAGCTGTAACAGAATTTGCTGCTCTAGCTGCCCAGGCGACTGTGATTTTGAACTGGGTCGTAAGGTGGGTTGCTCAGCCAACTGTTTCTGTTGCACTTCTGTAAGTTTCTTTAGTTGCAAAAGGATTTGTTGTTCTAAATCTGATTTCAATGCCGACTGCGTCTTCAATCTGGATTGCAGTAATCGAAGAAGTTGCAAATGTGACTGGATCTGTTGCGCTACCTGTGACTGTGGCTGCGACTGTGAAGCAGATTGCTCATCTAATTGCTTCTGCTGCAGTTGCCGAAGGCTTTGTAATTGCAATTGCATTTGTTGCTCCAGCTGTGACTTGGATTGTGACTGAAACTGTGAAGCAAATTGCTTATCCAACTGATTCTTTTGTAGCTGTGACTGGATTTGCTGTCCCAGCCCTAGCCGTGACTGTGATAGTGAAGACGATAGCTCCTCAAGTTGTTGCAAATTCAACTGTTTTTGTTGCTCTTGCCGTGTCTTGGATTCGGACTGCGACTGTGATGCAGATTTGTCATCTAACTCTTTTTGCTGCAGCCCTTGAAGAATTTGAATTTGTGACTGGATTGGCTTACCTTGCTCTGACTGCGATTGTGATTGTTCTTGTAATTGTAAGTTGGATTGAGAATCCGATTGCCTCTGCGATTGAATCTGAGAAGCAGATTGTGCGGCAGATTGCTCATTTGACTTTTGTTGCAACTGTCGCAGTATTTGCAATTGCGTCTGTATCTGTTGCTGTCGCTGTGACTGCGACTGTGACTGCTTCTGTGACTCGGACTGTGACTGTGACTCTGATTGTGACTGAGATTCTGAAACAGGTGGGTTTTCCAACAGTCGATTGCTTTGCTCCTGTGCCTGGAATTGTGAAGATGCATTTGATTCAGATTGTGAGGCAGATTGTGACTGCGTCTGGGATTGCGACTGAGAATCTGCATATCTCAACAGTTGCAACTGCAATGCAGGTGATATTTTATCTACTTTATCCCGAGAAATCGTTTCCAAACTAGGATTATTTCTTCCTTCTCTTAGTGCTGACACACCGAATCGAATATGTAAGTTATTGTTCTGAACTTGCGTCTGTTTCTGATCTTTGTCTGAGAGCACGTCTTGTGCATTAATTAGTTGTTGATTTGGAATTCCAAGTAAATTGGCTGACGGCAGGAGGGATGGATACTGACTGTACGGCCCATGTATTCCTATCTGATTTTTCGTAGAAATAGTATCGACTTTTGGATAGTAGATAGGCTTAAGTATCACTTGTGGTTGATGTACGTGAATCACTTGTGAAGACTGCAAATATTAATACACTTAGTTTATGGACTCAAGATGGGTGCAGATTGTCTAATTACCTCGGGCTTTGGGGTCACTTTCGGTTGCTGCACTTCAATCAATGGCTGTGGGTTTACTCCAAATATCGGAGGACTAAGAATGTCCCTAAACGATTCGTGAACTTTTTCAAGATTTTTCCTGAAGCAATGCTTGCACAAAAAAGACTCACTGGGCACCAAAGTGCCGAGGAGAATTAGGGCAATAAACTGTTGGCACGTCAAAGTCCACATCTTTGGACCAAGTTCGAGATCAAGTCGAAAATGTGTCTTATATAGGGCATGAGGCCATAACACCGTGAAATAAAATATGCCATGGTTTAAATGGGTTCTCCTACCGAAGATAAGCACATTATTATGCTTTTACATCACAAAAGGTTATAGATCTAGAAACCTTGGCCATAAAAATGTTCTGAAAAGGAAAAAAAAAAATTATTTGCAGAACATTTTAATATTTTAAAAATAAATTGCTTGTTGAAGGAACGGTCAAATATGAATTCATTTACATATCAGTTCATTTTCAACAAAATTGATAAAGTTTC >tinman-early_976 ATTCCCAAAACTAATATACAAGTCGAAATGCAGACATACTTACATACTTACATTCATATATATTCTGATCAAAAACTTACCATTTCAAAGATGTGGTTTATCTTTTTAATAAACACGTACATATATAAACTTAGAGCGTTAACTACGAATTAATGTATCTATCTGTAAGCAGTTTTACAACCATACCCGTGCATTCACAACTACGAACGACGAAGTCGAGGAGAACAACAGCTCAGTCACAGCATTCAAATTCATAGTATGAATTTTATACACATCATCCGTAGGGGCAGTTATCTTCTTTAAGTCTTTGAATTCCGTAAGGAACAGCATGAAAGCGACTCCCCCAAAGGGAAGTGAAATTTGTTTACGTACGTATACAACACAAGAAAAAGTAAATGAACTTTAATAAATACAGATATTACGAAATAAAACACTCTACCATTTTAATACAAGTATGCATTCGGTTTATGATTATGAATTTCGTTCCTACTGCAAATATCTCTCGGGTTGTTTGTTATGCTGCGCTTTTAACTGCGTGCTAGCAGTTCCCTCTTTCTTTTGAGGAATGACCATGCGCACTTCGACTGTCGTGGGATAAAAATGGTAAATCCGGCTTTTTCTTAAAGGTGCCAAATGATGTATTGTAGATAGCCATCCCACAATGCGGGGTTAAGTCGGTAAGGCTGGATGGTAAAAAATTAGAACTAGGTCCCCGATCTTACACATATACTATATACAGGTACGTGAGTGTTAATTAATTACTTTAAAACATTAGGGACTTAGATTGGCATTTATACAAATCAAAGTAGCTCTTTTCGTACTTGTAATTCAAAACCTTTTTCTGTTCTTTTTTATACCATACTATCACTTTAAAGTGGTTTTAACCAAAATGCATACATTTCGTTTTTTGTTTTTCGTTTTCCTTGTCTGCGTCCGCTCTTTGTTTTTTTAACCAAAGTAAATCTGACTCAGGGAAGTCACTCAAAACATGTTTGCCTGAGCTCTCGTATTCCAAATGGAACTCCGGGAAAAATATATGCTCGTATACACTCAAAAGTGGCTCAAAACTGTATCTATTCGTATTTTGATATACACAATAATAAAACTGCTCGAAGAACTCCAATCTGTTACACAATGCCTGGTCATTGTTTACATTTAGCTTACTTGTGTGCTTATATGCACCTATACACATACTATGTGTGTAGATAAAGGATGGCTTATCTTATCACTGACGAAACAGCGGAGCATGCAAGAATGCTGTTTGTCTTTGTACATTGGCTTCGATTAAGTAGTCAAAAAGGAAAACGGTAAACGGCATGCATAGCTTTGCCTCCGCACTCTCTAATCTCTAGGGTCGGACGTTATGACCTGTCCTGCTTTGATAAATCTTTTCTATATTTCGTTTATTTCGCATACTTCCCTACTTATTTCAAATGCACTAATGCGAAAAACATTATTTTTTCAAATCAAACGGTCAAGTGTGCTTCTAATGAAATCTCCGAAAAGGTCTATACTCCTCATACATTTCTGCAGTCGGCAAAAAAGGAGGCACATACTCGTAGAAATTTTTCATCGCTGTGTATATGGATTTGTAAATGGTATAAAAAGCATGTATCAGTATCAGTGTCAGTTCTCTTCCCGCTGCTCTCATTGGGCTCTCTGGGTTGAGCAGTTTTCGAGCCTCTCGAGTTCGAGTTCACCGAGTTCGAGTCGCGGCGGTTCGCCCACTCAGTTTGCCCACAGCTCTGAATGCGAGCGTAACGATCGCAAGCCGCCTGTCTTACAGTGAAGTGCATTTTCTCAAGCCGCTTCCTTGATTTGTATTTGGTTGGACAACAGCCTATAACTTGAACCCGTCTTTAATGCCCGTATCTCTGTGAGAGTGAGTTTCCAATGGCGATTTGGCGAGTGCGCGTGTGCAGGGCACCCCTTCCTGTGTTGTCGTCCGGAGAGGATTCGCGTTGAGTGGAACAGCCGTATAAGAGTGGTTGGGCTAGCGGATTTAAAGGAATGTGGGTGCTGTGCCTTTAAGTTAGGACTCCTTGTGACTCGGGATACGAGAGAAGAGGCTGGATCGCGAGATATTTCTAAAAATATATGGCAATGAATGGGGATATACAAAATGTATCTGCACGAAAACTCATATGCTCGCCAGATGTTTAGCTTGAGTAAAAACTTCCTTAGAATTTCCGTTTTTATTATTTCTGTTTTATTATTTCAGGTTTTAATCAGAGCTTCTTTCCCTTAATGTAATTTCATGTGTGTATTTGCGCAATGTTCGGGCTCCAATTAACAGTGCTCTACAAGTTTTTCTGTTTTTCAGTTTCTGTTTTTTTCCCCTTTTCGTTTTTAATAAAAACATTTTGAAGTTTGATTACACTCTTTCCTATATCTTTCGATTCTATTACCTTTATATATTGGCCTAGACGCGAGGTTTCATCCACTTGAGAGTGAACTATTAGATTTCTTATATTAAGTTGATGTCTTGCGAATTTGATACTCTCCTTCGGTGCCTCAGACACAGAAGTCGAGGACGAAGCTTTAAAAAACACACGACCCGAACAACTAGACATACTTTCGAAAACTGGTGATTGCCGTTTTTTGCATAAGAACGCTTTTTGTTGTTTCGTCAAATTGGAAAAATATTGGTTTTTCTTTAGGTGGGCTTTAGACTTCGCTTTTTCGTTTGCAATAAATATTTTTTTAAGACGTCTGCGTCTGTTCTTTGTGCTGTAATTAATGTAGTTAATCGGGGTGCGCAACAAGATGTGATAACCTGCTTTCGTCTGAAAAATCTCAGATAGTTCGCCATCTTTCAGCAACAAAATGTTTCTCTCAAAGACGAAAGGCGTTTGTGTAAGACTCAAGGGGCCCAAGTCACCGC >tinman-early_417 TTCTGGATGTGAATCTGAATCCGATTCCGATTCCTGCCGATCTGGCTGCGTTCCAATAAATTGCTCTGTTTTATGGCAATTTAAGTAGGCTGCTTTATGGCCCTCCAACCCGTCGCTCTTCCCTCTCACATTCCCCGACTATCCCGCCTAGTTGCGAATCGGGTTCGGATTCTCGCTTCTCGGATCTCAGATCTCGATCTCCATCTCCATCTTCACCTCCATCGGGTAAACCGCATGATTCACTTGCTGATCTGTGTGGTCGGCCGGGGAAGATGTATTACGTGGTCTACCCACTTTTAGGCGGCGACAAAACGCTCGCCGCCAACTTCCTCATAAATTAAAGAAAAATACAAATTCGAAAAAAGGCGGGCAGTCGCTGGAAGATCTGCAAACTCCTCAACTTGTTTGGTCGGTTTTCAGCTCGCCTTGTAGGCAACAATTCAATTTGACATAATGAGCTACATTTTGTTTACAACGGCAAACGCATGGCTGCCAGTTGTTTCTCTTTGTAGTGGGAGGAATTAAGATATGAATTTCATAGGTCCATGTACAATGGCTTGAAGGTTAGCTATGCTGATTCGAAGACGAATCACTTAACTGTCATTGGATCTTAGTAATCCCTGGAAAGCGAATTCGTCTAAAGAAAATGTATCTTATTCAACTTTAGTGGTTTTAGGCAGCTAGAATGCTTCCCACTCGCGAAACAACTTTTGGTGTGATCCAATTTGGGGAGCATTATGACTTCCTATGATTCGTGGCAGACCGAGAAATCAACGGTGTTTTGGACATAAACCAGAGGCAGCAACTTGTTTGGCCTGTTTCCCAGCCACATCCCCTCCTCTGCCCGCAGGTGAATGCCTCTCTTTCCGTCTGGCCGTGTGGCAACATTTCAATTTGACATAATGAGCCGCAAGCCCGGGTTGCAGGTAGAGATGTTTGAGCTGGCTTAGTGGTTGCGACCATTACCATCCGTCGGGATATGCTATCCCGTCAAAATATTGTCAGGTAACTAACGGCAATTGCGGCTACCGACTGGCGACGTGTCTGCCCAAAGTCGCGATCCCTAATATCCATATGTATATATGGTATATATATATAATAACCGAACCGAACGAGTCGCTGAATGAGTCGCCCCGTGGCGCGACAATCGAAATTGGTCTCGCCTTTCGAGACCGGGGTTTTGGGTTCAGTTCATCAGTCTGGTCCTCGGCGGGCGGTCCAACCTGTTGAACACTCCACTTGACATTGAGTGGAGTGGTTCTAAGCGGGCCAACAAGATGGATCTGGTGCACCCCTGAGTGTAATGGGATATGGCCACTGTTGCACTTCAATTCGATCTCGATTTTTTGGTCGGATTGTGCAATCTGCTCAAGTGGCGTCTGGCCTGTGTGATTGGATTCTCCCTCTTGGATTCCAGCTGACGCCAGCGGCAAGTATTTGAAGTCCTCATCCTCACTTTATGGATCTCGCATAAAAGTTTGTTTTTCTAGGCAGCCCGTGGTTGTATCTGTTTTTTTAGGGGTCCTACCTAGGCTCTTTTATTGTCTTTCATGCTTAATTAGTCATTAAAACAAGGGTTATAAAAGTGACACTCATAAAGCCAGCGACTAGAGTGGGTATGGGCCAGAATAAAGCTTTAAAAACGACGCCATTAAAGTGGCCACCGCATGGCATGCAACACGCCAAAATGCCACACGGGAGCTTGGGTATATCCCGGTTGCACCTGAACGGGGCATACATATATGTGGGCTTGCATGTGTACTGGTATTACGTATGTATGTATGTATTTGGCCAGGTGTCATATGGCGCTGCGGGTGCTCCATCGAAAATCCCAGCGGGAAATGCAAAACGCTCGCCACTCTTAATGAGCGCCTGGAGAGAGGCACGAGTTTCCCCCATTTTCCCTTTCGCCTTTCCCTCGATTTCCCGCGCCCTGGAGCTCTGGGGCTCCTCCTGTTTTCCAAGTCCTCACGCGATAAACGGGCGTGGCCGTCAGTTGTTCCCTTATTTTGTGGCCTGGTTAACTCCCGACTAATTTCTGGCCTGCACATTTATCAGTTCTCCGCTTCTCTGGTTTCTCCCTCATGGCTTCTCGCGGCGATTTCCCCAGCTGAAATTTAATATTTTTCTACAGCCGAGCAAACAGTAGCCGCCTCTCACCTTGACAAGCTGCTGACACCTTGAATGAACTTTTCAAAAATGCGAGAGGGAAAAAGGCACGGAGAATTAAAAAAAAAATTTAATTGCACTTTAATAGTCAGGCGGCTGCTTTAATATGCCCAATTCCAGCAGGCGAGGGCTTTAAGAATATCTTGAATTGCATTAATTAGGTTAGAGAGCTTCGACGGAATCACTGGGCTTTAAAAACATTTTAGCTCGAAAATAACATGGAATATGGAATATTTAGCCTTTTTTCGAGTCAGTACTTTAATCAGGTCGAGGCTGTGCAATCACATCGATACTTAAAGTTAGCAGCATCCACTTGACTTAAAGTGCTCGTAAAACTTAAAG >tinman-early_1924 TTAAGCCAACTGACTTATTAAATTAATTCATTGTTTACCAATTTTTCTGGCATACTTATTTTTAACTGCTGCTTATGTATGGTTTATGCTGATTATGTAAGGAATCATGAAATGCATGGCTCACAACCCAGTTTACAACACAGATAGTAACCAATTAACTTTAATCACGTATTTTATTTTAACACATAAATATAAAAGAAAATACATTTTATATTATAAAAATACATGAATACTAATATTGATATTATTTTCAAGAACGGAATAAGCAGCCGTACTTATGAATTTAAATATTTTCTATTTTGTGAGAGACAAAATCAATGCAAACTTAACGTAGAAAAGCACTTGTCCCCATTCAACATTAAAGTGGCACAAGGAGATCAGGTTTCCCAGCCAGATCCATGAATGGTAATGAAAAGCAGGGAAAGGCAAACATTTGAAGTGGCTTTTGATAAACCATTAAATAAAACTCAATACCACAAGGACAACAAGTCTGCAAGAATTCTGGGCGATGGGCATTCGGAAATCAAACAAGAAACTGTCGAATTTAATTGAAAATGCCAATTCATCATAGGGGTGGGATGGATTTACTCGGCCCCCTCCACTTTTATGTAATTGAATACCTGCTCCATTCGAGGGTAATCGCATCAGCAAAAGAAGCTAACAAAATTAGCGACAACACAAGCGGAGAGTCGCGTCTCTTGGGCGCGTGCGTCTGCCACAAGCATCATTATATACTAATTACTCGAGTATTATCGAAACCCATTCAGGCGAAATGGTATAACGAGTAGCAGTTCCTGCCCCGATCCATTCCAATTGCACACCGCACTTGGTCCTGAATTGGTTACTCAAATCTGACCGCAAAACACGGAACCCTCACCCACTCACCCCGCTCACTTCCATCACTTTCGCGCTGGTCTTCCATTGTTGGCTTGACTTTGCGGCGCCCGCGGCTTTAAGAGCCACTGAATTGGCAATAAAAAGATTATAGCCCGAAGGTGTGAAGTGCAGTGGAGAGCAGAAATCGCACCGAGATCCGGAATCAAAAGGCACAAAAGCCACCCCAGGCGGCGAGGCGATGAGAACGCGTGCTCGTTTCGCTCGGATTTGTTCCCAGCATCCGAACATCCCAGCATCCCACATGCCACTCGATTCGAGTGAATCAGTTGAGTGCCTTTCGGACTGAGTGGGCAGCCATGTTGCCACAGCCTCCGGGCATCCAATCAGCGCTCTTTGGGCTCCATGCCAACCAATGAGAAGAACTTACCTTGAGTACTCTTTGAGTGATCTCTGGAATATTTGCCCAGGTTAACTACTTAACCAGTTGCTTATAATGTGAACTATAGTTTCTGAAATCTCAGTCTTAGCCATTTTCGCTGGTTTGATTTAGTTATGTTCATGTTAAAAGCACTATTATTTTAGTTTCATTTGCTTAGTTAATACACATTACGGCCTGTATAAAAAATTATGAAACACTTTGCAAATAAGTGCCTAAATTTTTATCTATTTTAAAACTATAAAACCATCTGTTTTAGATTTTATTTATTAATTTAAAAGCTATGTAAGGTAAATACTTCATATGGCTTTCTTACTTTTCCACCAGCTGGCTGGATTTATTAAAATAATATTTGGTTCAGTAAAATAATTTATAGAATTTTAAGATATTAGCTGCCTAATAATTTGTCATAATGTAAGCAAGTGGCATACGTGATTATATTATGTATTGTAGTTCGAATGCTCGACTTGAAGTAGGCAGCTACGAAGAAATATTTTTGGTTAGACCCATTAAAGTATTGTTTAGTTTTTGGCTAACGATTCCAAACAATCCCATGACCCAACTAACCTACTTACACTAAAAAGTTGGAGTTTACGGTTGATTGTTTCCGAATGATTTAAATTCTAAACAAATCGTTCGTTTAAACAATGAGTTGAGATGGGAATGGGTTTAGTATGTAAACCCATTCGGAGGACTGTACCCAAAATGTGGAAGACAAAACACCGAGGAGCAGTTAGCGGGCTATAAACAATAAACAGGATGCATGCACTCCCCGCGTGTTAAGGCGCACCATACAAGTACGTGGCAGCAACCGTAGCCATTTACGACCGACTTTGTTTACGCACTTGAGAGGAAACTCAAAGGCTCTCCAGCTAGGTTTCGGATCCACCAATGGCAGGAGTCGAATGCCAGTTTCCACCCCCACGGATGCCGGCGAGCCACTTGAGTACGGCGCACATTTCCACTCCGTGAGACCGAGTGAATCTCGCCGGGGATCTCGGCTACTATTTAAAGACAGCCCGGAGCGCCCAGTTGAAGCACATTCGCTGCGCAGCCCTCGAGTCGTGAAGATCGGAAAATCAATAGAAATCCGTAGTGAACAAGTGTCGGAAAGGCCAAAGACAATACCTATATATATATATCCGAAATATTCAGAAAATTCGAAAAATGCTGAATATGGAAAGCGCGGGTGTCAGTGCTGCGATGGCGGGTCTGAGCAAATCGCTCACCACGCCCTTCTCCATCAACGATATCCTAACGCGCAGCAATCCGGAAACACGTCGCATGTCCAGCGTGGACTCCGAACCGGAACCGGAAAAGCTGAAACCCTCCTCCGATCGCGAGCGATCGATCTCCAAGTCGCCGCCACTCTGCTGCCGAGATCTCGGCCTCTACAAGCTGACCCAACCCAAGGAGATCCAACCAAGTGCCAGGCAACCCAGCAACTATCTGCAGTATTATGCGGCGGCGATGGACAACAATAACCACCATCACCAGGCAACGGGCACATCGAACTCCAGTGCCGCCGACTACATGCAGCGCAAATTGGCCTATTTTGGATCCACCCTCGCTGCTCCTTTGGACATGAGACGCTGCACCAGCAACGATTCCGGTAAGTAACCTGCACGAAATTAACGCCATTCAGGCTCTAATGGACTCTGAAAAGAACGCTACTTATTCATTGGCCTTTTGTATAGGATGTATGCTAACTTTTGGTAATTTTCCCTTTACAGACTGCGACTCACCACCGCCATTGAGCAGTTCCCCCTCGGAGTCGCCGCTATCCCACGACGGCAGTGGATTGAGCCGCAAGAAGCGGTCGCGTGCCGCCTTCAGC >tinman-early_778 AAATTTCAATTATAACTTGCTATAACAAGAACATACAAAACAAATTTTAAAATTAATATTTAAAGAAATTATTTGAAAAACAGTTTTAATAATGAATATCTAAGTCATACACTGAGATACATAAAAATATGGAATGGAATCTGATTAAATTATAATGACTTTAAAAAATATATTTAAGAAGCATATTTTACCGTTCGACTTATATTAGTACATTTTCGTGAGTGGTATTTCAAGCCAAAAGCCACACGGTCACACTGTACGTTGGCGTCGGCGTCGCGCGCGGATCGTTTTCGGCTAATTCGCTGCTGAATTTTCGTTGTTCTCGAGTTTTAAAACAAACGAACGAAAGGTGAAGCCAATAAGCGTGGTGAATAGTAATTAAAAAAGCGCGACGCAGTGGCTGTCATCGCATGTACATCGATTATTTGATATAAAATGCACCAGCAGCTGGAGCTCGAAGTGAGTTGAAAGTGCGGGTTACATAGGTGGGGCGGCGAAAGCCTATAAATAACAATATGCATTGCTATTTCGGATTTGGGCGTCGCTATCTTCGTCCATTTGTCGCCCCAAATGCTCCAAGATCCAAGTGGCAAGTGCAATGCGTTGTGCCATTTTTTTTTGTAGTTTGTCGGGGACTGATTACGAAACTACGCCCAAGTGGGTGGTGGGTGGTTGGTTGGTGAGTGGGCGCCACACTTTGCATACAATGAGCTTAGAACCCCAAACGACAGCAAATTGCGTGAGAGTGGCTGCCTGTGTATCCGTGTTTATGTTCGGCTTCCCGTTTTCCGCTTTTCGCGTTCAATTCTATCGATTTATTTCCTCCGCGAAACAAACATTGATTATATTCGAACATACTCGTAAATGTCTCGAAATGTGAATCATCGGGTGGCGGCGGCCAGCGAAACCCACTTGCCACTTCCTTTCGGCGTTAGATCAGGTGATAAGCGGCTTGATAAGAAGATACTCGCAGTCGCAGGCAACGCCTCTGGATTTTTAAGAGCCAGCTGCTGTTGATAAGCACCGCAAAAAACGATGTGCTCCATTCGTATCCCAAATAAATAAAGCATGGAAACACTGCAAAATGTGATATTCATCATTAACTTTGTGGTCTGCCGTTCAAAAATCCAAATGTACTCGTATTACATGCAAGTACTAATTGCAACTTTGCTCTTCTTGGAAATGTAGTGTATATTCTGTAGTATACTACTGTAAAAAAAACCGTCGAATTATTAACATTACATTCCCCAGTCCAAATTCATATCAAGTACGAAGTATTTACTAAATATTCAAACTGCATGCAATTTTCTTTCGGTGCATCTGTTTTGCCCGGACTCGTCCAACAGGATATGTGCGACAGATGTTTTTGAATGCGTTGCCAAGATGCTGAAATGCTGCATTTCAAGGTTTCTCGCCCGTTTCCAATTGCCTTTTGTTCATGCTTATTCCTTGGACTTAAGTACAGCCACTCGACGCAGAAATTGGGTAAGTGGCTCAGTTCTAGGCTCGCTGCTCCGCGACTGGCTGGATGCTCACCAAGTGACCCACTTTGGTGGCTCACATGTGCCATAGATCGCATGTACATATGTATGTATGTACATGTATAAGCAGCTCATGAAACAAATACAAAACACGAGAATAGGAGATGAAAGAAGAAACCCCAGCTCGATTGCTTGGCCTTCCTTGGCATTGTTTTTGTTCAAGCTACTACCCTACAAGTGGGTATTATAATTGCACGCATAAGTTGGCAACGTTATGCTGCAACGGTGAAATCTTAGAAGTCGTATCTTGCATTTGAAACTACTTACATATCTACCTGGCCAAAAATCATGTATCTACCTGTTTTTCCGCGAAAACAGATCTTCAAATCGAAATGCCATCTGTTTAGAAAAAATATGCACAGAACCCAAATTCCGTTTTTCATTTTGTATACAAATTCGGAAGAACCGGAAACGGATGACTATATCACTGGCCTGCCATAAATAACAATTTACGTCTTGTTTATGTGGGAGTATGTTGTGTTTAAGGATGGTATAGGACAAAAGTTGCAAAGATCAAAAGTGGGCTAAAAGTTCTCTTACAAATTGGCTCTGAATGGGATCAGTATAACATAATATATAGAATTGTGCCAATTTTATCTCATAAATAAAGATGTGTTTAGGGTACTCCGCCTTCGATCCTCGAAAGCAGGCTTTCTTGCCTTGCTGCTGCTTTGGCACCTTTCCATTTGTAGTTTCTCTCTTTGTTGTTAACCAGCGTAATTACATGTATTTATTCTGGCATGCATGTGTAAGCAAATAGTTAGACGACTGTCTGATAACGCCCCTCGCTTTTCAATGGGAGATTAGCTAAATGTTTTCCCACTCGTGTAGAAAACCCAAGTCGAAGGCTGATCGTAATAGAGGCTAAGTATTCAGTTTTAATCGCAATCTTTCGAGGCGGTTATTGAACCTGTCAGTTGAATATTTCAATCGCGAATATCACCGGGCGACAGCCACTCGCTTGCCGTTGACCTTGCGAAACGGTCGCTTCTGTAAATATGCATTTCGCCACCCCGCTTTTGAACGGCAAAGAAAGCTGCTCCAGAGATCTTTAACCCCCCTCTTCTAGAGCTGGAGGTCAGTGCGAGTCAGCGAATGGGTTGAACTGCAAATTCCCTTGATGGTCAG >tinman-early_2164 GCCTGACCTACATACATCCACGTCCACATTTACGTCCAACTGCAACAGCACAAATCCGAAAAAGAAAAACCGAAGCCATGGCTTCGCCAGCTGACCTGAATTTTCGCACGCACACGATTTTCGCGCTGGAAGCCGGCTTTTCCCAGCATCGGGAAAACGGAATGGAGAATGAAGAAATCAACTAATTTTAATCAAATTTTCACGCTGCGATTTGAGCAAAGATCTCTCCTGGGCGTGAAGAGGGTAGTCGAACGGAGTGGCCCGGGACAGGAGCTCGCAATTTGCATATGTTGATTGCGAAGCCGGCTAAAAGGGCGTCGTCCTGCCTTGCCCCGCCCCCCCGTTAAAAAATAGTACGTAATGCGGTGAGGATACAAAGCAGATAAGAAGGAGAAGCACGAGGAGGAGGAGGAGAAGGAGAAGGATGCGGATGATGATCGGCTGGTCTGGCAAAGAAACAAAGGAAGAATAGGGGGAATAACAAGGGAACAAGGCCGAAAAGGAAGCCGGAAGTGTGCAGCTGCCGCTCGCCCTACCCCCTCCAGTTCCCTTCCAACCGTTCCGTGTCGTTCTCACACCACAACCCACACCACCACCCCCACCTCATCCTCTTTGCATGGCCAGAGGCACATGGAGCGCACATGGCAGGAACGAATCGGAAGCGAAACCAGCTAGAGTCGCTCTTTAACAACAGAGCAGAACAGAAACAGAAATCGGGTCTCTCTCGCACGAGAGCGGAAAAACAAAATCGGGAGACTGCACTGCGAAACGACTGGCAATGGGCCGACTAGAGGCGGGGCAAAACGAACGAGCAAGAATAGGAATAGGAAGAGCGGTGGAAATTGAAATTTATCCACGCGCTTTTCTCGCCTTTGTATATTGTGTCTCGTCTCGTGTATCCTGCGCTCGATTCCTCATGTCCTAGTCCCATGCAACTGCAAGCGGAACAAACCCCGAGGGCAGGTAAAAACGCCTGGTTTTTAAAGCAAAGGAGGCAATTGAAAGGGGGAAGCCCAGGGAGAGGCAACAAAGGGCACAGTATAGCAAACGCACCCACACACGCACCAAATTCCCAAATAGACACGGCGGTACGGGAATCCGAATCTCGAGTGGATATGCTCGAGTTCCGCTTAAGTGGTACTTGCGACTGGGATTGGTGTCGCAGGCGCAGGAGGAGCCGATTGCAAGTAGTGCCCACACAATAATATGCAGTCGGGGGTACAAACTATGGAATCTCATATGGGGTACTTGGCATTTGTTTACAACTACGAGCAGAGTAGCAGAGTGGGAATGCCTTTGGAGTGGCGCTTGTGTTTATCAATTAGGATCGAGTAGCCAGCTGCATTCCCAATAGCACTAATTTATTGCAGTGTAGGCACATATTAAATGAGTGGTTTTCCGACTTTGCCACATATGAATCATTTACCTACCCCGCCTCTTAACCCAAATGGCTTTCTACTTCTATGCCCAAAGTAACCGTTATGGGCAGTTTCCAACCGCTAAAGGAAAAGATACAATCCATATGCCCTAGTGGTCAAACGCAGAGTTACGTTCGGTCGAAAGGAAAGAGATCTCTGAATCGAATCGAGATCTTTGCCATTCGAACTGTGTGTCTGGATCGAAATGGTGTCAACAGAGTGGGAAATCGCGGCGGTAAGGAACTGTTCCTGAGCATTGGAAACGGACTGGACGGGTACTCACCTCGAGGTAAACATCACTGTCCGGATTAAAGGTGTCGTTAACCCGACGGAATGTGTAATTCACGTGCGGAATCGAGTGCAGGATTTTGACGAGAATGCTCGGCTGTTCCATTTTTGTTGCTATATGTTGATGTGCTTAGTTGTTGTTGTTGGTGCAGTTGCAGTTTCAGTTGTAGTGGTGCGGCTGCCTCGAAACACACACACACATATACACTCGCGTTGCCACAAAGGAATATAAATGTGCTCTCTCTTTAATTTGTTGCTGCTGCTGCTGCTGGCGAAGCTGTTGTCGTTCTTGTTGTTGTTGCTGCTGAGGGGGAGGGTTCTCTTGGTGGGAGTTTCTCTAAGTGTGGTATTGTGTCTGTCAGTGAGCGTGCGTGCGTGTGGGTGTGTGTATGTGTGTGCGTCTGCCAGCGAAGGACGTCGCTGCTTCTGACGTCACAGAACGCTGCCGCCGCTGAGAAAGAGAGAGCCGCTGCTGTAAGAGAGAACAAGGACCGTTAACAAGAGCGTTTGCGAGAGCGTGTGTGCGGGGGAGAGTCCTGCCGAAAAAACAGGAAAAAAAACAACAAAAACAGAAACAACAACGCATGCTCTCACTCCCTTTCTCTCTGTGTTTTAAGCGCGTCCTGCCCGTTGCTCTAAATTTTCACTTTCACTTTTCACCCAAACAAAATATATAAGAAAATTCGTCAAATCGAAAAAAATATGCACACACAGTAAACAGCGCTGCAATTTGCAGCCTTTGATTAAAAAAAATATATATGGTATACTACTAAGTAGTATGCTCCCAAGTCACGCGGCTTACATTCGGCACATTTGATTCAAGCCAATTGCATTCGCCAGATTTTTAGAATTTTTTGATTGGATTTTCACTGCAAGACACCGCGATCGGGGTTTTAGCTCGATTTAGTAGCCGTAAGTCGGGCGTTCAGGGCGTTTTTTCATTTACCGTTTCGTTTCAAGCCGCGACCCGTTTCGTTTCCGATTCGTTCCGATTCGCAACCTCCTCCTGCTTTTCTACTCCTTCCCCAACTTCTACCGTCTGAGGTGCTTAGGAAATATATCAGA >tinman-early_491 GCGTTATCCCCTTTCCGCGTGGATTGCATTTTTGTTCGATCTCTGACCGCCTCCAAATTGGCTTTGTTTATGGTATTGTTGTATCGTGGAACTAAAGGACCTGCGGGTTAATTTCTTAGCGCTACTTAATTCTCGGTTCTCAATCGCCAGCCGGCAGGTACGAATTGCAGCCGAAAGCTTATCAATCCCATTTTGATTTGGATTCTTTGATTAGATGTTTGTGTTACGGTTCTAACGAAATTGTATTGTGTGTTTCTGGAGCCGAACAAGCATTGCAAGTTGTTTTTTGAGATCGTCACGAACAGAAGGAGTTGTCGATACGCTCGATCGCCGATAGTTAGCGCAACAAGGAGAGATAGTAAAATGGCCAGGGATAAGCATTTATGTACATACATTCATTACAAATTGGGAAGCTGGTGAAAGTATTGCTCGAGAGACTTGTTTGCATTTGTGCCAGGAATGCAAAGCAAAATCTGACAGAACCGCATAAGGTGTAAAATTACAACGCAATGACAGATTTTTCCCCTTAATAAGTTATATAATTGGAACAAGGGACTATCTCTGGACGTTAAAATTTCATTTCGCGGCAATATCGGCGGGTATTTTTCGACCCCATTTAGTACAGAAAGCATAAAAACCAGCTGCAACTGTAACGTACGGAACCTTCAAGTGTCTCAGATATGTTAGCGAACAAAAAACGACAAGGACGAAAAATAATCAAAAAATATAACCGAAAGGAAGGCCAAAACATCCTTTCTTCCTGTCCTGCGCTCGAGGACAGTCGACGGCTGAGAGCTGCCAAAACCCAATCCGAATGTGTGTGCGGTGAATTGTTTCAGAACGGCAGGAGGCTGTTTTCCAAAACGGAAAGCGACGCCAAACGAAGGCACACCGCAGCGAAGTGAAGCGAGAGAAAAACGAATTTTTCGTCTATTTCGATGGCAATAATTCAAAATATGAAGACGGCTCGATAGTCATAAATCTGTCAAAAATCCATTTCTTTCATTTTATCCCAAAAGCAGCACCGCCTGGCGTTTCCTTGCCTTTATTGTGTGAGCGCGCCTGCTTGCTAAGCGTATCTTTCAGATACACAAACTGGCACTTCAAAAACGGGCAGAGGGAAAAGAAAATGAAATAGTGTCCGCCTGTCGCCGTCTCTTTTGGGTTCTGTTTTCAAAAGATCCACTTGAGCCAGCAGACTTTCCTCCACCCAGTATGATTTTTCCGAACTACGAAGACGAGAAGAAAACCCATCCATCCAATCAACTCGAGCTGAAACGCAACTGAACTGAAAGTGCACCAAAGTATCTGGTAAGATGCTCGTTTGCTCACTTCAATCCAAAAGATTCCAACCCTCCCGCCACTCAACCAGACCCAAGCAGTTCAAGATGACGGAAAACAGCCATCGCACCATATTTCAGTCAATTAGAACTGTCATAATTCATTCCTCAGAGCTATTTTGTTTTACTGTGCTGCCGATCTTGCTTTTGGGTTATTTCCTATGAACGGCGCAATAATAATGCTCGCCCTCATGATGAGTTCCAGTAAATTCAAACATTTTCGATCTCCCTGAACCCAAAAAATATAAGAAAACTGTTGTAAATGGCTACGTATAAGCGCAAATGAAGGAAGGAATGTTGGAGATGGCGGTTCACCAAGTGGACTCTATGACGATGTGAAACAGTATATCCAATTACGGAAAAAGGTAAATATAATATAATATAAATATAATATAGTTAAATGCATCGACTGTGAAATACCTATTGCACAGCACATCAAGCATACATGAGTATATGTATGTATATGTACATATGTGGTACTATGTATATATGTATGTTCCTATCTACTGGCCATGACCAAGCCTTGCCCTTCGATCCGAAACTTGATGAACTGAATTACATTTGACTCTGACTCATCTCTAACTACATGTGCTCTTGTGGTAATCCTGCCCAAGTTCATTTTCAAAATTAAAACATAATTAATGCAAGTTCTTTTAGTTAAATTACGTTTACTCTAGAACCCCTCCCTACACTACATATTACAAATATTTGAATTACCACTGTATTATCGCTTCCACTCTCTGTGGGGAAGTCAATTATATGAAACTATTAAAGTTGCCACGCGTATCGCCCTCATATAATCCAGCTCGCTGCATAATTCATGTGGCTCCAACTTACTTTAATACCCTTCCATCCATCTATTGTATACCCCCAATGGCTGCCTCCACTTTCCGTCTACAACAAGGACTGGCTATCGAAATTGATGCCGCCAATTAACAGGCGTTGAAAAACATTTCGACCAAATTGCATAAGCCTCAGGACGGAACATAAACTGCTGTGTCGCGGGATCTGGCAGTGGGTGGTGGCAGATGAACACCCCTCAGTCACGGTTCTCCACATCGAAACCACACGCATATCAGCACTCCAAACATCCGACACAATCCGATGTTGATTACCACATAAAAATCCAGCAAAAGGACCTGACTCCTTCCGTCCACTTGCCTGGGTCAACAATTTTTGATTGCCTTTCTGTGTGAGCAAGCGCGGCGTGAAAATTATTCCTAAAACAAATACAAATTCAT >tinman-early_676 TACACTGGATTGTACATTGTAACATATGTAGCTTAAAGTTCTAAATGTTTAATGGTTCGAATGCATTTCTGGTTTCAGTACTAAGCATTCCCCATTCTACAATACAAAAAAACATCTATCGCCAATATCCAAAATGCAATAACACTGAAGATAAAATCTTAAATAACTTTGCAGATTAAACAAAGCGATCCAATTTAATATTTCTACCTGACCATGTTACCCCTTTTTACTAAGCCCGTTTTTATTTGAATATCAGACACCCCAATGTGTAACCACCAGCTTTCCGAACGACTGTCAATTTCAGACTTTGCAGCGGCAGAGTCATAACTTTAAAGCCATACAAGGAGTACGGGTTGCGGGACATGGGAAGACCCACCCCCTGGCGAATAACCCTCGGCCAATATAAATTCTTGTAATTTAATTTCGCTATTGCAAAGCAAGCGCACTCACATACTCGTAATCCGTGCCATACAGCGTCAGCAGTGCCACGTAAAATCTCGCATTTATTTTCCCGGAGAAGAGATATTAAAAGGCAACTGTGATGCTATCGGAGACCACATCCCATTGAAGCCGAAGCCCAGCTTCCTTTGCTTTTTTACCGCCAACCCTCGGAATAACTGTGAAAATGCTCGACATTCCAGGGCCCAAGCAACAATAACAAACGGGGACGGGACGACTATCAGTTTCAGTTTCTACAGACGAGAGGAATGACAAAATTTCGCCTCTGGCCTGTCACTGTATCTGAACCTCGTCGTCTATGCATGTATCCGTATCCGTGTTCGTATATTTGTATCCGTATCTCAGTCTCTGTATCTTTTCGCAGGGCACATCATTTAGCTGGCAACGAATGAAGCCGTTTTGTAGAAGGGCTCTACCAGCATATGTACATAGGTTTTCATATGCCGCCGTGTGGTACATAGGGGAAAATTTCTATATACAACAAAGGCGATACAATTAGTTGAAAAAGCCCAAGTGCGATTCGATGTCGTTATATCTGTGTGTGGAGTATGGTGTGTGTTCTGTGCGAAAGGGAGGGTTGCTCTGCCGACGTCGCTGCTACGAAGGTATTACTTTTTTTTTAGACCAGCAGTACGGGTCTTCATCCTGTTTCGTTAGCGAACAACGGGGCAAAACGAAAAACTGAAAAATGTACATAAAATGGAAATGAGAGGCTTTTGTTGAACGCACGGCGATGGGCGTTTCGGTATATAAATCGACACCGAAACCGAAAACCTTTCTCGAATTTAAAACCCCGGCTCTCGACGCCTACGTCGATCCGGGCAGCGACGCCAGCGCAGGCAGCGCATGAAGCTGTACACTCAGACAAATAGCGCGACCCATTAAAGGCATATAATGCAAAAAATATGAATGCTCCCTAGTAATATTGTGTTTTATATTAATTTGCAATTATGTATCTTGTTATACAAATTATTGTGGATATAATTACATTTCTGAAGAAACTGTATGCAGATAGGAAATTTTTGGCAGTGCATCGCAGGCAATTTGGAAAATAATAATCTCGATCCTTTCTTTGTTATGTAATCTACTCAGATTCAAGTTCGAAATAATTATCTAATTCCTGCAAGTGTAGACGCCAAGCGAAGACTTCGACAGCGCTTCTTCTAATTAGTTTTCGGAGTCTAAAAATAAGTTTTAGTAGATCTGCGGGGCAGCGGGTGCGGTGCGTCTGAGGGTTAGAGTGATATGGTACATGTTTCTCATCTGCTGCGTGATAATTCAATTAGGAATGTGTGAATCAGCAACAACAACAAACAGAGCTGAAGCAGAGTTGCAGCGTTGCAGCGTTGCAGCGGAAGTGCAGGCGAAAGAGGGAGGAAAACAAGCAAAGGGGGCGACGGAAAGCGGGAAAGAGGAAGAGAGGCAAGAAGGAAAAGTGTCTTTCCTCAATAGAAAGACCAGAGTAAAGAGGAATATGCGTGAAGAGAGGGTGAGATAGAGATAGAGAGAGAAACAAGGAGAGAAAGAGTGGGAAGGCGGAAAGAAAAACCATCCATGTCCATGTCCATTCCATGTTGCATGCAACCCTGTTTTGCTTTTTTTTTTCCAACCTGGATGTGGCAGGAACAGAAAGTTGGTGCCTGTGCTATGCTGCTGTTGCTGCTGCTGCCTTTGCCACGGCAACAATTTATGTGCATGTATTTGTGCTCGTACATAAAAATAGCGGTCGAGGCAGCAACGACGCCAGCAGAGCCACAGCCAAAAGCAGAGCAAAAGCAGAGGCGGAGAGGCAGACGCAAATACCCTGTGCCTGTGTCGTGGAAGGGGCACGGGGTGGGGGTGCTGCAGAGTGGAACGCACAGAGGCACAGAGAGTGTGGGAAAGGGGGGTTGAGGGCACTATGTGCGCAGCTTGTGCGCCTCGAAAATACATATTTCAGCATGAAGCATAGGCATGGGACATTGAGTGCGACACAGTGGCGCCGACTAGAGGGGATCACTTTGGTACGGTATCCACTGAATAGCTCTTAAAATATCATTACTAATTTCTTAAAAAAAATAAAATAATTGTTAACTATGCCATAAAACCAATAATCATTTTCATTTATCTAATAATATTATAAAATAAATATTTAAATCTAAAAAAAACTTTTTTATTTTATCCGTTAAATAACTTTGTAATATTAGATGCTAGCCAGAAACCAGAAACCTCTGCTTAACTTATGCTATAGCATGGATATTAACTCTCACCCCAGCACCCTGTTAACCTCGAAGCCACCCCTACCACTGCGCCCCTGGCCGAGTATCTTGTATCTTGCAGTTTGCTGTGCATACACAGGCACATGCGACTTTGTATGTACAAAGTGCCATGTACAGCATTTGGTAGGTAGGTATGTATGTGCACACATATGTGGCTGCATTTACGCTGTGTTCGCTATGTACTCAAGTGTGCGATAGTGTCGAGGACGTTAACGTTGGAAAATGCCAGCAACAACGACAACAACAACAAGAGCCAAGAGTTCGGCAACGGTCGCATTACCAATTTAAATTCCCATCCAATGTCCGCACGTAACGTAACGAAATCGGCGGACGAAAGAGTATTTAATGAGCGCGTTGCCAGAACAACGTGATATATTCGTTTGCCTTTGTTGTTGCCTCCAAGTGGTATATGTATGTATGTATGTATTTGTACGGTATATACGGTACAGCTGTCTGTGTGCGCTATCAAATTAGGTTCATTTGCTGCCTTTGGCAGTACGGCTGCTGACGCTTCTTTGCCTGCCACTCACTCGCCTCATACACTTTCTGTCGCTCCAGTGGCCAAAAGCACCCTTCGTGCAACTGCTCAGCGATGCCCCTACCCCAGTTTTGTTCTTCTTGGACGTCAAGTGGGCGGGCGAATGTGAGTGTGTGCGTGTGTGTGTGTGTGTGTGTACATGAACGTACTTATCGCCTATGTAAACCGCACGGCTCACTGGCTGCGCGTTGCTTTCGTTACTGCCTTCGTCACTGCGGTTTCTGACTTTTTTGTACATGTACTGAGTACATAGAAAGGCATCGCCTGAGTGGTTCACATAGTCGTCAATGAAGAACCCCCACCCCTCGCCAGCTCGTAAAAACAGCCCCTCAAAACGCTGCGGCATGCTGATAATTCAATAAGCAGAGCCCACGAAATAAAGAACTCAGACCCACGTTGATGAGTCGCTCCTGCGTAAATACAGTCATACTTCCAAAGTTGGCTACAAAATGAGGACCCTTTTCATTTTTTTTTTATTCAAAAAAATTGAGCACAAGAAAGACTTTTTTTATAAAAGAAAAAAAAGGCTTAAAATAGGGTGACCATTCCGGCTGACACTTTTATATTAAAAAATATGCAAAAAAATTGAACACAATAAGTAGCAAAACGTGTTATGTTAAACCTTTACAAAGTACAAAAGACAAAAAATTAAATTGGCATCGTAGAAAGCATTTCCATGGATCGTGGATTGCTTATTTAAGACATTGTACAGGGTTTAATTCGAAATTAACACTCACTTTTTTTTTTAGAGTCTATACCATTTTTTCAAGACTTTTTTTCAACCATTGATATCAGTTCTTTTTAAAGGGGGTAAGCTTGTATTATTAGTAAGACTGTGTCCTGAATAAATTAAGCCAATATGAAACCCATGTCCTGAACAAATGTCTAACAATGACCAAATTTCGTACTTCTTGCTGTATAATTTGAAATTCAAAACTTTCAAAATGGAAAAACTTCAAAACTCAAATCTTTGAAGTGCAGGCTACCTCAGACTTTCGGCCTGATGAAGTTCGGGTTATAGAGATGCTAAGGTAAAGCATAACCACAAGAAAAAGCCCAAGTACTTTGTGTGGTCGTTTGGCGTATTCCTTGCGCTTGTGTGGACTCTCGACCCAACACTCGACATCATTATGGCCAAGGGAACGGGAAAAGACTCACTCGGTTCAGACGACTGAGCTGCTGCCTGCAAATAGCAATGTCATGCAGCTGTCTCAGCATCAGCTTCTGCACCACTCCA >tinman-early_1037 ATGAAATAATTCACGATCAAAATTTATCACCATTAAGAACAAAACCGGACCAAAGAAGTTGGACAGATGGGACCAGCTGTGAGTTTTAGCTGAGAACTTTCAGGCTGAAAAAAAAACCGCGAAAACCGTGTCATTATAAAGTCCATGGACAAAGGCATAAATATATGAGCACATGAGTAATTTCAGCATACACTGGCCTACAAAAGAGAGTACAGTTTGCTTGTTCCGAAAATGTATAGCTCAAGTAATTGGAACGCGGAACAGTAGAAGTATCTTCTTGCTGATATTTATATTGAATTTCTATTTTATACCATCTATTGAATGGTTAAAGAGTTTAAGCACTTAATTACTTTTAGATAAACCCCAGCCTAGTGACATAGTGTTCCAGTAGCTCAGCCGACATGTGAGGCAGTTGGTCAATGAAAGCCCTGATAATGATGTTGCGGATGGCGATGATAAAGCAAGGAAGATGCGTCGTAAAACTGAAGCGTCAATTGTCCAGGAGGAAGAGGAAGGGCGGAGGAATATAGCTCCAAATTGGCGTTGCACTATCGCGACGCGTATCTTGTATCTTGTAGATACCCTGTCCATATTGACATGTCAACTGTTGCTCCTCTCGGTGAAACCGCGAAATTTACAACTTTATCTATGTGTGTCGTCTGTAGTGAAGGGGTGGGTAGCAACGGCGGCGGGGGGAGCGGCTTATAACCAGTGGCTCTACAGAGGGGGAGGGCTATATGGTGGGGTAGGGGTCTATAGTTGAGATCTCTGCGTGCCATTTTCTCGTTTGACGGCCTTTTGTATAGCGTCCGATCTCCTCGCTCCTGTCAACCTTAATTGTCCGTTCGTGCCGTCTCTTTCTCTGCAGCATATCCCCCTCTCTTTCGCACTCTCCCATACAGTTTTTTTTTTTTTTTTTTTGTTTCCTGTTTGCAGTCCGCTGATCGCGACTGAGAGACAAAACGCTGCGCACTACTCGCTTATTTATTTATCTGTCTGTCTGCGTGTATCTGTGTGTGCCGCTTTGTTCGCGTGTATTGGTATGTGTATTGTATCTGTGTGTGAGTGTGCGATCAAAAGCCGCGTTTGTAACATGTGAACATCTGCTCCTTTCCTTTCCTTTTATTATTGTTTTCGTTGCCTCGTTTCGTTATTATCGTTATTTTATTGTTGTTCTTATTATATGTATATATATGTGTGTATATGGCATATTGGGCATTTGTTGCTGCTGCTGTTGTTGTTGCCATCGGACGTCTGTATTTGTGTTCTGAGGCCCCGAGAAAATAGCGTCGCAATGTGGAAGCGTCTGTCAATATTGGACATACTCCAAATACCCTGATTATCTGGCGGGGCTTCGAGATTTGCCAACAGTTCGGGGGAAATTGGAACAAGACCTTGGGTAACCGGCATACGAATGAAATTCTAATTTTATGAGGCCCAGCCAATTATAAAGTATGTGGGAAAAGTTTAAGGGTAATCCTAAAACTGGACACCAGTTTACCAAGGAAAGAAATTCTAGTTAAATCGAGTACCATAGACTTTACGACCGTAGGTAGGATTATAAAAAGTCATGTTAGTACCTTCAAATTTAGTATCGTAATATGACTTTTTACGAGAGTCGTTTGTAATAAAGTAAAGTCGTTCTTAAAGAAGTCGTATTTCTTTTAATAAGATACGTACTCCGCTCATTCAACTTTAAAATTGATATGTGTGGAAAATTAAGATGTACACATATCCTTGGCAACAGATCACTTGAAAATCCTTAGTGGTCCTTGGGCCATTGAACTTGTTCTCAAGCCCGCACTTCACCTCGAATCCACCCAATCCAAACTTCAAACTGACGACATGCAGCGCAATTTGAGATCCCAGATTCGGGAACCTTTCACGCACACATGTGCAACCTGATTTCCAAACGCTTAAAGGACACGCTGTGCCTGTGCCAGCGGCATCTTAAGTGATTTCGAAAAGGAGCTGGGAAGCGGTAAAAGTATCTGGAGGATGCGCGGATGTCGGATCTCAGATACTCAGATACAAGAATTCTTGAGTGCACGTCGTACGCAGGCACTTGGGCACACACACACTCCACTCATTGTAGGTTACTAGTTAAATCTGAAATCGAGGCAGCTGGAGAAAGAGACGGCTGCCGCAGGGGCCGACAAAAAGAGACGGGACGAGGCACTTGGCCAAGGAACATCTGTTGCGCTGACATAAATCCTGAGTGACTGACCGCTGGTGCGAAAGACCGCGAATCTCGAATGCGAATGTTCATGTGGATGCGACTTGGCCGCCGGCGCTCGTTTGAGGACCAAAACCAGTTTGCACCGATTCCCAGCTGCCCGTTTGGGTACAGTGGTTCAAAAGGTAATCTATCTGATTCAAATCTTGTCCACCTAACAACAATTTGAAGTCCGAAGATAAAGCTCTTATTTCAATTAAAAAGAATGGCAGGATAGTAGGATAGCAGGAGAAACATTTCATTATTAAATTTGATTATCTACATTACATTTCGTACAGAAAAGAAGTTAAAAGTGATTTAATGCCCGTAAAACCACTGTGCCCGCCAATTTCATTGAGTAACTTTTGCGCTGCCCGTGAATGAATCTGTGGGATACTCCCCACCGCTTTCGTACTTCGATTCGGTGGGACAGGATCTGAGAATGGAAAACCAGTGAGCAGACTTACCTTCTTCTCGGTGAGCTTCTCGCAGCGGCGCTGCTTGCAGATCTGGTGGCTCTTGTCGTTTCGGCAGGGGGCGCACTCCCCACAGTTGTCCTTGCGCTGGCATCCCACGCATTCGCCGCACCGCTTGCGCTTCTTCTTGGACTGGAAAAGAGAGCAGGAAGAGGAGTTGTTGTCGTTGGAGTGGTTGTGGTTGTGGTTCTGGTGGTTATGGTTGTGAGTGGTGGGTGTGATTGTGATTGTGGGTGGTGGCAGTGTCATTGGCGGGTGGTTCAGTGTGGGTGGCGGAAGATGGTGGCGACGACCGTAGTCCTGTTAATCGCAGCGGTTGCCAGTTCGCCCCGTTTCGCAAGTTTATCGGTGGGGTTGTCGAAGATATCCGATATTTATCGATCAAAAACTATTCACTTCTTTTGCTTCTCGTTTGTAATGCAAATGGATCGTACAATCGATATATACCTTCGGCTTCAACATCCCCACCCTTCGATCACCTACCTGCTTGTCGCATCCACTGGCATTGGCATCGTTGCTATCCCCCATGCCCAGGGCACTCAACGGACTCTTGAAGTTGGCCGTGCTGGAGACGGCGTCCACTTGGCCAGGATTGCTGGGGTCTACGTCCATGCCGCTGGCCTCGCTCTCGGCACTGGACTCCAGCGAATTGGGCCGCTGTTTCCGG >tinman-early_1066 AAGCCCTGACGACTGTGTTCCGATGAGGCGGGGTGACCTAAGTCAGGATGACCACCGTTCAAGGTATCCGTGGAGGAGCTGTCGTCGACGGCCACCACTCCCACTGTGGACGCCGCCCCCGCACTGGTGGGCAGTGAGTTGGAAGAGCTAATCTCAAATGTGCTGGACTCGTCGTCCAAAACTACGGCGAAACCATGTTGTGAGTTTGACGACACACACACGTCCTCCACATCCTCCCGCAGCGTTGACATAGATACAAAGGCTTCTCTGCCGGCTCCTACTTCTGCGTCTACTGCTCCTAATCCCGATTCTTCTGATGCTTCTGTTTTTCGGCTGGTTGAGGCCTGACTCTTGACCCACGTGGAGGTGGAGCTGGTGACTGCTGACTGAGTACGCTCCCCTGCACTGGTCACGGATTCACTGCTAGCAGCTGGGCATCCTCTTTCCATAATACTTTACAGGCATTCAAAAGTGGGTAATGCGTTCTCCTGCAAATGTTAAAGATTGGTTATCGAATGGTTGGAAGCTGGTAACACGAGGAAGCACTTATGGAAAAGTGAATAATAGTGTTGAAAATAGACGCTATGAAAATTTCAAACCCAAGGTATGACAAATTTTACACCGCTTACAATGAACGATCCTTTTGTGCCCTGAGAATCCAAGATGATCCGAAATTCCCACGCAACAAGCGCAAACTGATGGTTGCAAAAAAAAATTAAATCCAAGGGAATGAAAAGCAGTGGGAAAAATTTGTTGTAACGACGCTGCCTCTGCCGGCGTCGTTGGAACTCGAAAAAGGAAATCACAAAAGTGCATCGAGGAAGAGGCTAAAACGGCGCGAAGTAGAATGGGCAAAAGAAGACGAAACGGGTATTACAACAAAAACACCACAAACAGACACACACACATACCCTAAAAAGAGAGACAACAGCAAAAGGTATTGTAAAGAGAGTGAAGAGCGAGAAGTAACGGACGTGAGAAGAAGAAGCACCAAAGATACACAGCAGCCGCAGCACCAAACAAGAACAACAATAACAACAACACCACGTACACCTTGCAATTCAAGCCGCTATCTTTTCCCTCCGCTTTTTACTGACTTTCAGAGATGATCAACGCGGGAAAGTCACTGGTGATCGGGAAACAGTCACCGAACTAATAGGAAAAGCCTTCCAAATAATTTTTATACTAAAGAAGTGTATGACCATATTCAAATAGTTTCGACACCCAACTAAAGTTAAAATGTACATTAGTAAATCGTTTTAATAAACTGCGTTGGTTGTTACTAATAGAACTGTGAAATCTATAGTCACGAAACATTTCTTGCTGACTAGAGCTGAGCCAAGCCCAAGCTAAGATTACTTCTGCCAATATGCTGAGTCACAGAGTTGTTGACTTTCCAAAATACATACGTATTAGTCATCCATTTTAAAAAGTTACATTAAAACGTGAGTTTTTTACATGGGCTATATAAAATCGCAAACATTTAGTCGAAACCGAAATTCCAAATAACAAGATATTAGTCATTCTGTAAAACAAATTATTTGTGCAAACTGACTTTCTTTTCCTGGAGAACGGAAAGAAATCATTAATTATTAGGGCTAAGATGTTTGTAAATTGTATGATAGTAGTCCCTATTCTCTAGAAATTCATTGATCCTAGCCAGCTTCCATTCACCGTGACTGAAAAATCGCAGCTGCGCATCTCTGATGTTTGACAGCAGCTTGACTGGCCATCACATCCTACCAGCGCACAGACACACACACGCACCCGAGAGAGTAGAAAAAGGGATCGCCGTAGGCAGAGATTGGAAGATCCAGGGGAGGGGACAAGAAAACCAAGGAGAAGGAGAAGAAGCAAAGATCAGCCATTGCAGCGCAGCATCCGCAGAACAAAAGGGGCGAGATCACAAAGGAATTTTCAGCGCTCCTGCTGTTGCATCACTGCCGAAACAGATCAGATGTGCAGGCATTTCTCCCGAACATTTTCCCATATTCGTATTCATTCTCTTCCCACCCTCCTTCTACTGCTTCTCCTCCTCCTCCTCCTTCCCCACCCCTGGCTCGTGGCCTTTGGCTGTTGACCTCCCGAAAAAACGTAAAATATGTTTTTAGGGTCTCCGCTTTCACACCGCATTTCGATACGCGTTTTTACCTGTGCCACACAGGACACTTTGGTCGAACATCGGGGATGCGCTCGAGAACATTTTCTCTCTGTGGATTTAGCCACGGGTGTGGAGTCGTCATAATCGCTGCATACACACAGACGCACACCAACGCGGATAATGGGCAGAGACCTGTGGTCCCAAATCCCCCAAAAATAGATTACTTTCGTTGCAAATTCAGAGCAGCGATTGCAGCACGCTGAGCGTTCCTTACGGACTCTTTGACCATCCTAACCCCACTTTTCTGCACCTGCAAATGCAGCGGTTGGAACACGGAGGGGATAGCCCCATAATTCGTGGAGCAAACAACAAAAGAAAAATGTGGACATTGTTGTACACACAGGCAGAGTCACGCACACAGACGAACCCACTCGCTCGCTCGCTCGCAGCTAAAGTTTGAGTTCGCGTGGTGCCTTGCACATTGTTTATAAACTTTAAGGGCAGCCAACGTGGAGGGGGCACTAAAAAAACACACCCCACTTTAGCGGGCACAATTTGTTTTCAGGTTTTCAACTGCACATTTAACGCGTGTAAAACTTTTTGCGTTTGGGGCCCACTCTCACACATACAGGCGCAACACAGCACACACACGTTCAATCGAATTTTTCACATACGTTTTAAGGACGTTGCTCCTCGGAGATTGCCTAATTTTTGCGTTTTTCAGATGACTCTGTACCCAGTCTATCTAAATTTCTGGTTTTCAGAT >tinman-early_548 AATGGTTTCGGATGGTCATAAATGTTAAATGTATTAATAAAGCTTAAAATAAAGTTTGATAAAGAATGAAAAAGAATTCATTAAATAACTTTTTAGAACAAAAAATATGTATTGAGATCATAAAATGCAATCGACAATCAAATTAGTAAGAATAACAAGAAACAAGGGGATCTCTAGCCACAAAATTCCACAGAACTTCCCTCGATTTACCTTTTCCCTTGACGACAACAACTGTAAATCCTCCAATAAGTACAGTCATCCCCTAGGGTAAAAATCGAGCCACCGCGAGTCATATCAATTCATAAATGCATATTAATTCCGATAGAGGCTAAAATTAAAACAGGAGTCGCTTTGGAATAATGTGAGAAAAAAACTTTCTCACGATCACCTTGTTGTCGCGCAGACGGCGTTTGGTGGAAATCCACGTGCAAAAGGGGGAAGTTCGGAAGCAAGGAAGGCTGGATGGTAGGAAGGAAGGAAACCACCACCACCAAGCAGGCGGAGTAGGACGCAGGACCCTCTTAATGGTGGTGGTTAGTACCTCCCTCTCCCCCTCCCCCTCTACCAGTGACGATCGCCAGAAGTGCATGAGAATTTAAATTACAAACAAACCGAAACGCAGAGCGCACAATCAACGGGCTTTGTCCGTGTGCGTGTATGCATCGGCATGCGATGACGCGTAGAGGGTGGGGTAGAGAGGGTGCCAGGACGAGGCGTGTGTGGGAACTTTCGACGAGGACACTCGAGCATGAAGCGGGTCAAACGACAGAGGCCAGTTATTATCCAGCTCCTTTTTATGGCACTTCTCACACGCCCACAAGGGGCGTTAGTTAGCTCACTAACCTCTTTCCAAACAGAGTCGAATGGAATTATAGCAAGTGTGAGAGAGAAGCGAAAGTCGAGTTCTCAGCGTCACAATAACAACACCCACGCGACAGAAGCATCTTTAGTTCTCAGCGAGAGAGATAAGCTCAGCTTCCTCTTCTTCTTTCTCTGCTCCTTCTGCTGCTCTCACGGGCATGCGCAACATTGCAACAAAAATTAAAGGGAACCCGTAACCACAAAAGTCATGGGCGTAGTGAACAATTTTATTTAAAAACCCGTTATGGTGTACCATAGAAATTAATTCCCTATAAAAATGGACAAACATAAACTGAAAATGTTTTAAAATAAATATAGTTCGATATGTAGTCAAAAAACCCCTCAGTAATCCACCCCTGCTTAAGGCAAAAGTCAAAGTCATCTAGACGGATAATTTCTTCCTGTGCATCAGCGGGCGATTGTAATGCGATCCGTGGCCACTCCAGTGCAGTCATTCAGGCCAGAAATCTGGAATCCCAAGTGCTGGGACACATGAATGCGTTTCATTGCCTATTTTTAAACATAACATTCCATTTCAAGTGATAAGGCCACCAGAAAATAGTTCTCTTTGCCCGTTTGCATGTGCATTGCTGCGGCAGTATGGGTGCGTGTATCTCTGTGTGTATGTGTCGCATTACTCATGCGCTCTCACTCCAAGCGTCGTTTGGTATATTCGCGGCTCTCGTCCGGTATTTTCCAGGGTCACACTGCGCCTGAGCTGGGGCGTTGTTGTTGCCTGCGAGAGCGGAGCAGAAGTATTTATCGCGTTGCAGCGCACGGTCCTACTGACACAGAAAATGCAAGAAAAGTAAGAGCGTAAAAGAGCTGGCGTAGGCGTGACAAAAGCGGTGAAAAAGCAACGGTTCTGTGCAAGCAAAGTGAATAAATACAGTGAAGCCCACCTGCGAACGAATATCGAAGGCTCAAAGGCGAATTTGGCGCTATTCCAATGAATAGTCCTCGCTCGAACGCGGTTAATGGCGGCAGCGGCGGCGCCATCTCCGCTCTGCCCAGCACTCTGGCCCAACTGGCTCTGCGCGACAAGCAGCAGGCTGCGTCGGCATCGGCGTCCTCTGCCACGAACGGCAGCAGCGGCAGCGAGTCCTTGGTGGGCGTCGGTGGACGACCGCCCAATCAGCCGCCCAGTGTGCCAGTGGCCGCCAGTGGCAAGCTGGACACCAGCGGCGGAGGCGCCTCCAACGGCGACTCGAACAAACTGACCCACGATCTGCAGGAGAAGGAGCACCAGCAGGCGCAGAAGCCACAGAAGCCACCGCTCCCGGTGCGCCAGAAGCCCATGGAGATCGCCGGCTATGTGGGCTTCGCCAACCTGCCCAATCAGGTCTATCGCAAGGCCGTCAAGCGGGGATTCGAGTTCACTCTGATGGTGGTGGGCGCCAGTGGGCTGGGCAAGTCGACGCTGATCAACTCCATGTTCCTGTCGGACATCTACAACGCGGAAC >tinman-early_648 CTCGCGTAGATTTTTTACGGTTCTTCATGGGACGAAGTCGCCTTAACACACCGCACCACAGCAGTTGCTAATTTCGTGGCGTCACAAATGTCTTCTAGAGGAGTGCTACTAAAATACGGAATGTGCCGACATTTTACTCACTTGCTGGATGCAAACCGGCCAAACTGGCGGCCTGGGAAGCGGCCACTGCCATCGTGTTCTGGTGGTGATGGGCTCCCGCCGCAGCCGCCGCTGCTGCTGCCATGGAATAACGGTCATTGGCAGAGGCGCCTCCAGCTTGTGGCAATAAACCCAATCCGGCAGCAGCGGCGGCATTGAACTGCGAGTTGAAGAGCGGATTGGAAGCCGCTGCAGCCGCCGCTCCAGTTGGATCACGTCCCCAGTAAGCTGAAAATGGAAGAAACATTTAAGATCATCATTTGCAACTGAAAAAATATATAATGTCTTACCGAACAGGGAAGCTGCATCTAAAAGGCCGGTGGGGTCGTGTGGCCCCCCGGCTCCACCACCCCCTCCCGCATTCGAGTTTTTGTTTGAGTTTTTGCCATCGCTGCCATCGCCGGCATTTTTGTTCATGTTCAAAATCCCCTAGTTCTTAGGACCAACTATTGTGCGTAACATGCGTTGGGAGTCTGCAAAGGATTTAGAAAATGCAATACTTATAAGATATTTACTTGTATTCTTTTTTTACATATGTTGCCATATGTATAGAATCTTTACAGTAATAGTAACTTAAGTGAATACACAACACTTGTATTTTGAAGATACCATTCATCAATTGGTTTCATTTTTCAACTTCAATCTTCGTTATTACTCCGCTCTCTATGTTGGCAATGCCGCACCGCTTGGGCGAAACTCAAGCATAAAGCGGAATCGGCCGAAATATGGAAAGCAAAACAAAACTAAAAAAAACTACACGCCAGCGAGAGGCCGTACACGCACAAAACGGAAGCAGAAGCTGACTGCTCTCTTTTACCACTACACCTGCACGTCGGCGGAGCGGCGAATTTACCACTCAGCCAAGTCGTCGGCGACGGCGAATTGACAAATTACGCACAATATTGCATTTTGTTTAACAATAAAAGAAAAAAATATCCCTCCTTCAAGGAAAACTTGAACTTTACAAGTCATGCGCAACGTTTACCACATCCACTAATGAAAAAAGGGAAAGAAATAAAAAAGAAAATTCAAGTCACCCACACAAACACATTTACAGACTGCAGTCGGCAACTGCGAAAAGTGATGCATACACAAGCGAAAAAAGAAGAAAAATTCCGTTTACAGCAATTTGCACTCTTTTTCGGCAGTGTTCTTTTTTGTTTGCAAGACTTTAGTAAATTCATTCATGAAATTTGTAAAGTTCTCTTGATTTTTTTTTTGGCCTTTGGAGATTTATAAGACAAACTGTATGTTACTTTTTACTGTTAAGGGCTTTGCTCTTATTACTGCGCTGCGACAGCAGTTAACGGCTGTTGTTTGCACTGGCTATTGCATTTTCCGCGATTCAAATGTACAATTAACAAAAATATTTACAAGCGCCGTTTGGCGACGCGTCCGGCTGTGTTTGTGATTTCGCGGCGAATGAGCGTGTAGAGAGTACGGAGAGCGCAAGAACCGCAAGTGGCGGCGGCGGACCATCGGAAACGAAACGCAAAAGGGAGAGCGCGGGCGGCAGAGAAAGAGAGACAGAGAGGCCCGCTTTACATTTGTTGTTTCCACGCACCGTGGTTGATGATTGCACTTTTTTTTGTCTTTACATGTTTTCTTAGTTTTATTTTTAGGAGTTTTAGCTGTATTAATCACATTAATGAGCCAGCTTTTAGTTTGCCTAAGATGGGTCCACTGTGGCTCGCTAATAACAGTAATTGCGCACTCTTTTTCCTGCTTTCCTTCATTCGGTTTTATTTTTTTGTTGTCACGCATCGGCAGGCGACAGATGTGCGCTCTTACAATGGGGAGGGAGGTGGAAGCCCAGCAGAGAGAATGCGTGAGAGGAGTGGGGAGTCTGCGAAAGAGCTCTGGCAATTTATAACAAGCAAGAAATAAAACAAACGGACAGAACGACTTGGTACAGTGAAGCTTGCTTAATGACAGTCAGCAAAGCAAGCCGTTTTAAAGGAATCTGATTATGGAATTTTACGGGGTTTTTTGAAAATATGTTTTCTGTAATCAAGACGTGTCCATATAATTTCGCACATTTTAATTGGGTTACTATCAGTACTTAGAATAGATAGGCTTCCGCACATTTTAGCACATTTGATTTCATTGTTTAATCCCCTTTTTATTCACTTTCCCAGTTGCATTTGATGTTTAAGCGGAAGTAGCACTGTAAAACTTTGCCTTTTGTCTTCTTCTTCAACTTGGGCTTTTGCCTTTGGGTTCACCGCAAGTGGTATGGGGGCAGGGTGAAAGGTTGAAGGGAGGTAAAGTAGAGGGAGCAAGCAATATGATTCGGGCATTTGTCTTTGACACCGCCACACTTTGCTGCCTTTGCCGTTGCCTCTGTCGGCGTCGCGGGGGCGGCAGCGCAGCCGACGTCGACGCCGGCGATTGAGAAGGTGTGTGCGTTGTTCTTGTTGTTTCTATAT >tinman-early_139 CGGGCAGGCCACAGGACACGAGGGAAATATGCGTGAAGGATGAAAGATGATTTGGCAAATATCCTTGCCAGACAATGCGGCACCAGAAACTGGAAATGCCTAATGTGATTTGAGGATCTTGAGGGATGGCATCAAGATACTGTTATGGATTATGAATTATTAAATTTGTAATTCGACTTAGAATAGGTAGATTAAAAGATTGAACGAATATGTACATATATAAATTAAATTTACAGATACAAAATGATATCAGGTAACAAACAGACTTTTCTTATCGTTACAAAGAGTGATATCAAATTATATAAAATGTATTACAAGTAATCATACAATGCAGAGTGCATAATTCCCCATATCATTTTCATTTCCAGCACACATGTTGCTGCAATTCCGCTTTATAAATAGAAACTCAATAGTGCTTGGGTTGCTTCCGCTTTTAGTGCTTATCGGGCAGATTTTGGAGTCGAGGCAAGTGCCAAGCGGAAATTCTCCGCCGCCTCGTCTTCAGACCCCCAAAAGAAATGGAAATGGTAATAAAAATAATACGAACACGTGCCTCCCACTTCAGGGCGGCTCAAGTGCTCGAAAAACGAACGAATTGAAAACCCCCCTGGATGAAGAAGAACCCTTTTGCAATCGAAGCCCCGGAAAGTGTTATTTGAACTTAAGAAGCGGAAATGCCGCAGACAAAGCAGGGGAATCTCAAGTGAGCAGAGTGAAAAATGAAATTAAAGCCAGCTCAAAACATTAGTTATCTATTGCCGCAAATCATCAATCAAAGTGACCGCCCAGTAAAATTGGAGCAGGAAAATGTATGTCCTTCTTGCTGACCAGAGGAAATTTCCACAGTCCTGTGTCGGCCAAATTCAAAGTGAAAGTATTCGATTACCCAAAGCGATCGTTAAGTGAGAAAGGGAAAAGTATCGAAGAAATTATAAATTGCCGACAAAGCCGAGGGCCAAATACTTGAGATTTCGAGAGGGAAAGGACATAACAAGGAGAAAGTCAAACGAGGACAGTTAGCCGCACTAATTAACAAGCAGAATTGTTTATTTTTACAAGTGCCAAGTGGCCACTTTTTTTTCAGATCGACCGCCCTTTGTTTTCACAACTTGTGTTTTCCTTGGCTTTTGACATTTTGGTGACATACGGGACTGCCACCTAAAAAGACACACATGTAGATGCACAGACAAGGCCAACATATTAGGAACATAGGCTCTTTTTATGAAAGGAAGTGTAAACCTTTTTCTAGAATCAAAGTATGCACTCTACTTTTTAGAACCAGCGTTCTTGTGTCATAAAATTGTATTTAAAGTTATCCCAATCTATAATGCTATCGTCCGTTTTGCTTTTGAATTTGTTAATGCTGATAAAACATTTTATAGCTATCAACTTAACTGCAATTGTAACCAGAACACACACGACGCATCCCTCCCCGTCCACTTTCACCATTTCTCCCAGGGCGAAAGTGTCAAAGTGACATGCCCACTTTGTCGCTACCCGACTTAAAAAATGTCTCAAATTACAAAAATCACACAACAAGACGGTTTGTTCCTCGCACAGGATAAGCGGGATTAGTCAGCTTGTTAGTTAGTTTGGATCTCCGCGTTCCGTTTTTCAGGATCGCAGGATTTCCGTCATGGCAATTGGCAATCCGAGCAATACGTAATGAATGTGACGAACTGTCAGTTGTTTCGAGTTTCCTTGTCGCAGCCGCATTTTCTTTGCATTTTTTAGCGGGTTAATTGGCACTGACAAAGGTCTTGACTTTTGCCTGGGAAACATAACAATTTGTTGACATCTGTAAATATTATGGGGGAATTTTCCAGAGGACTAGCTTCTATCATACAGCGTGTGGAATTGTATATAATTACTAACGGAAAAATATCCCTGTTAACTTTTTGAATCGCCATAATCTAAATTTCATGATCATATCCTCTTGAATATAAAAAAATATAGCTTTACAAATAAAAATGTCTTGACTAATGCTTATAGATATACTATGTTTTCAAATGGACTTCTATAATATGTACTAAGCGAATTGTTTAAAATATGTTCTTCCCTTTACCGAAATAAATTCAAATTGCATATACATTTTAAATAAACTTGTAGTTATTTTCGCACTCTTTATTCATGTTTTTAGAGCACAGAAAAATTTCTCGAGCTCAAACTAATAAATTCCCAACGTCCCATTGCAATAACCTTGACTCAAGGTCCATGTCCTTGCAGATAAATAAGAAAGGAAAAACAACGGGATGCAACTGCAGAAAAAAAACAGAGACATAAAACTCACTCAAAACAGAATTGAGTGAGACACGGAACGTGTTGGAAACGAAATGGAACAGACGGAAGATGGAAGAAAACGTCAGAAGAGGAGATAACAGGAAATGGAATGCGACGACAACGGCGAAAAGTTGTTTAAAAAAAAAGACCAAGAAAAACCGCAAGCAAAACGTTGGCACTTCATAAATGGGCGAGAAAGAGAGGCAAAAATAAAAAGAAAGAGACCTCGCTATGGAGAAATAGAGAGGTGCGAGGGAGAAGGCCAAAAGCGCCGACATTTTTAATTGTAAATGAGTTATGACGCGTTCGTCAGAGAGAGAGGTGAGGCGAAGAAAAGAGAGGGGCGCAAGTTGCTGACAGCGCCGCCTTTCTCTCTGTCGCACGTTCACTCCCCCGCCGATTTTCCAATTGGAAAACGAGAGAGCGAGTGGCGTTTTCACTCAGAGTGTGCGGCTATAGGGCTATCCCGCTTGCACTCGTACTGGCGCGGCTCGCTGTAGGGTGGTCTCGCTTGCACACATAGGGACCATAAGAGGAATAACTGGTTTCCCGAGTTTTGCGCCTGCCGTCGTTTTTGGCTTCTCAGCGGCAACATTTTCCTGACACAATTCAGTTCGTCGTCGCCTGCCTTCCGTTGCGCACACACTCAGTCCGCGAGATTCTCAGTTCGCGTGCGCCAAAGATAAGCAAAAGAAAGCAAGAGAGATATAAAGATACAAGATACTTACACCTTGAAACATACACATACCCCTCGAGTTACCAAAGCTAAAGATGCATCTAGCTTTATAAGTGCCAAGTGTTGAAAAGTGACCAGATACAATACCCCAATACCTTTCCAAGGTATTCCCTAGTTAAAGCCCCATTAAGAACAACATCATACCCTTCAAAATGCTGGTTGGATCTCATCCGTATTTGTGCAACGGGGTGCCCGCCGCCCCTGCAGCACCAAATGCCAGTGGACAGACAACAACAACGGCTAGCAAAAGTGCCGCCGGCTCAGCGACGGACTTTTCCATCGCCGCCATCATGGCTCGCGAAGATGCCTCCAGTCGGGAGTCCTCCATTCGCAGTGCAAGTAAGTTCAGATACATATTGAAAATATCCTTAATAAGAAAGGAATTCTGTGGGAAGCGGCAGAATCATTAATCGGTTGATAGGAACAATTTGTTCTTAAAAATATATTTTTATGCATTAGAAATTTAATGCCTTGAATATTAAGCATTTCGATTATATAGTGATTTTTAAACAAGATTTTTTTAGGCTTAACAGACTTACAGCAAGATTCATTGATGAGAT >tinman-early_2098 AGCCGTTTCCGCTTCCGATTTTGAGCGGCACTTCCAGCGAATTCCTGGCCCATAAAATATGAGCTAGAATTGTAACCTAATCGGAGTTGCACCCGTGAAGTCGCCTGGCAAATTGCAGCCACATTAGCATCGAGAAAAAGGCATTCAACCCCCAGCCTTGATACGAGTATATGTATACCTCGTTTGGAGGCCAGAATCGGGAATTCTGGATTGGGAAGTGCTAGGGCGTCGCCAGGCACTCAGACATGTCTTATCGGGCTCGTGCTGTGAAAGGAGTCTCGGGCCAGGCCGAAGTTCCAGACTCACTGCTCACAGCTAATGGGCACAAAACATTTCGGCTACCTGGACACCTCACCTAATGGGCCTCGCATCGGACTCGGAATCGAAAACTGAATGGGTATGGAAATGGAAACGGATATTAATGCGTGTGCAGTGCATTTCTTCGGGCAGGCTAATAGACACATTTAGCATTTAGCACGCGCCCAAATGCATCGGCAAATGTCGACACTGGGAGAAAATGTGGCAAAGAGATTGAAGTGGGAAGACATTTCCTAGCTTGAAATATAATCATAACAACCACAAAAGAAGCAACAGTTTTTTAATTTCACCATATTTTGAAACATCAAAAAGAATATCTAAAAAGAATATGATAATATTGAAGCACCGATTTCTCCGGATTTTTGTAACTTTAGATGCTTGTTTTTTTCGACCTATGGCACTTGCATTGGGCGCCAATTGGCGTTGGAATCGAAAATGGAAGGGAAATAAACACAGGTAAGCTGTCCGCGTATCTCAGCCCCTGAAAGTCTCTGAATATCAGTGGATTGCGATTGCGGGCGGCCCACAACAGTTTCTCAGTTTCTCCAGATGCCGCTGTGTTGGTATTTATGCCCATGTATCCGTGGGTAAAAACCCCGATGAGTCATCGCCGTCATCCATTTCAGAGTGGCGATGCGTGCCGCGCCACTTTGGCATACATAACACACAAATCGGATTCAAAAGCAACAAAATCCAACATGTGCCCGCTCTCTTGAGTGTTTGCTTTTTGGTTGGGGAGGGAGGAGGGGAGATATGTATCGAGAGAGAATGGAGAAACCAAAACAAAAACGTATCTTCAAGTGGAAAATGTCAACAAACGAGCTGCGCGCCAAATTGCCACTTTGAGTGCATACACATTGAGTTGAGTGGAAAGTGAATCGCACTCGAAATCGAGCCACTATCTATCGGAATTAAAAATCGCATGCGATAACCGCACGACAGCCAATTTGTATCTGTATCTGTGAGATTGTTGCCTCTCTCGCGCTCTCTCATTGGCTCTCCCCCTTTTGCCGCATCATTCTGACAGTTATTGTGTGGTCTCCGCTTCACACCCACATTCGCCAGGGCCGCGAGAATCATGCGGAGCATACGAAAATCGCTCAGCTGGGATTTTCCATGTGGTTTTGTGCGGTTTTATGGACTTTTCGGACTACCGATTGTTTTTCATTGCTTTTGCGCTGGTCAAGGAGATATTTTGGGATGTGTGAAATTCCGTGACGGCTAACGGAAGTGTGGAATTACTTAAAAAGTCAAGGTGCAAATTGGCATTATTAAAACGAAATTAAGTCAAGGGAGTTGCATGTGAAATGAATTCAATGAAGCAGGAAGTTAACATATCTAAGGAATAACAAAAAAATGTAATAAAATAAAAGATTGGATAAAAGCTTAAATTAAGACAATAACATATAATCAATTAGTATTATTAGATAAAAGTGGGCAAAATATTGAAAATCTTTTAATCCATACCTTTCAACAACTTATCAATGATACTATTCTAGTTATAAAGAGTAAGACTTTAAATATCTCTGGCAACTGGTTCCGATTATTTCAATATCTTCTGCATCCCTGGCATCTACGCAACTTGAATTTCCAGGCTTGCCGCTTGTGTGCGTGTATCTGTGTGGGCCGCTCGCAGCTCGCGAGCGTGTGTGTGCGTGTGTATGCGAGGCAATGGCCAAGACGTCACCCGTCTGTTCGCTGCAGTGGGAAAGAGAGAGGAGTGGATAGCGGGAGAGACAGAG PWMEnrich/inst/NEWS0000644000175100017510000000531514614305422015047 0ustar00biocbuildbiocbuildPWMEnrich package Version 4.5.1: o Convert log(P-values) back to P-values for human using a chi-sq distribution Version 4: o New algorithm for human backgrounds o New function: toPWM() that takes both PFMs and PPMs Version 3.5: o After further testing revert back to PWMEnrich 2.x group P-value algorithm o Introduced group sorting by top motifs Version 3.1.4 (devel branch only): o New way of estimating P-value for groups of sequences. Note this will produce different P-values for groups of sequences than PWMEnrich 2.x ! Version 2.4.4: o Vignette update and fix naming of columns in the motif enrichment report Version 2.4.2: o Improve promoter selection for human and mouse genomes (duplicates are now disregarded) Version 2.4.0: o Major update with more functions and small bugfixes o Added sequenceReport() and groupReport() for easier report generation o Visualise motif scores along a sequence with plotMotifScores() o Creation of empirical CDFs for motif scores o Almost complete rewrite of the vignette to emphasize the main use cases o Converted documenation to roxygen2 Version 2.3.2: o Subsetting functions for backgrounds from Diego Diez Version 2.3.1: o Fix a bug with plotTopMotifsSequence() with calling an unknown function o Implement group.only for all background, not only pval in motifEnrichment() o New default to plotMultipleMotifs() so the margins are better Version 2.2: o Bioconductor 2.12 release version (same as 2.0.0) Version 2.0.0: o General cleanup of the code with various small optimisations o A FASTA file name is now also taken as input to motifEnrichment() o The output of motifEnrichment() is now wrapped into a class MotifEnrichmentResults that provides a number of convenience methods for common tasks like ranking and plotting motifs o Functions makeBackground() and getBackgroundFrequencies() can now take BSgenome objects as input. Thanks to Diego Diez for suggesting this and providing the code. o Another version of motifScores() has been implemented that requires large amounts of memory, but is at least 2 times faster than the old motifScores() implementation. Use a new option useBigMemoryPWMEnrich() to switch to this implementation. o PFMtoPWM now accepts a new parameter seq.count so that MotifDb motifs that are expressed as probabilities instead of frequencies can be easily used. Version 1.3.0: o Bioconductor 2.11 release version Version 1.0.2: o Use core package parallel instead of doMC Version 1.0.1: o Fix a typo in test cases and remove doMC as build dependency Version 1.0.0: o Initial release of the package PWMEnrich/inst/tests/0000755000175100017510000000000014614305422015506 5ustar00biocbuildbiocbuildPWMEnrich/inst/tests/test_clover.R0000644000175100017510000000100214614305422020153 0ustar00biocbuildbiocbuildlibrary(PWMEnrich) library(testthat) library(gtools) # test cloverScore scores = cbind(c(1, 5, 10, 2), c(5, 4, 3, 1)) colnames(scores) = c("m1", "m2") clover = PWMEnrich:::cloverScore(scores, lr3=TRUE) clover.mean = colMeans(clover) # calculate manually using all subset combinations s = scores[,1] lr3 = rep(0, 4) for(i in 1:4){ comb = combinations(4, i) lr3[i] = mean(apply(comb, 1, function(x) prod(s[x]))) } # clover scores should match test_that("Clover score", { expect_equal(lr3, clover[,1]) }) PWMEnrich/inst/tests/test_invalidInput.R0000644000175100017510000000100014614305422021325 0ustar00biocbuildbiocbuildlibrary(PWMEnrich) library(testthat) # test for cases when the input is somehow invalid although it looks like a sequence motifs.denovo = readMotifs(system.file(package="PWMEnrich", dir="extdata", file="example.transfac"), remove.acc=TRUE) inseq = list(DNAString("AGTACCGATGACCGATGACC"), DNAString("NNNNNNNNNNNNNNNNNNN")) # this should produce an error on the second sequence test_that("N as input", { expect_error(motifScores(inseq, motifs.denovo)) expect_error(motifEnrichment(inseq, motifs.denovo)) }) PWMEnrich/inst/tests/test_motifEnrichment.R0000644000175100017510000001475314614305422022035 0ustar00biocbuildbiocbuildlibrary(PWMEnrich) library(testthat) # check if two things are numerically equal, e.g. to precision of 1e-8 numEqual = function(x, y, prec=1e-8){ all(abs(x-y) < prec) } motifs.denovo = readMotifs(system.file(package="PWMEnrich", dir="extdata", file="example.transfac"), remove.acc=TRUE) # test that motif reading in works properly test_that("readMotifs", { expect_equal(length(motifs.denovo), 2) expect_equal(names(motifs.denovo), c("tin_like_motif", "gata_like_motif")) }) # create a GATA motif ACGT gata = rbind("A"=c(0, 10, 0, 10), "C"= c(0, 0, 0, 0), "G"=c(10, 0, 0, 0), "T"=c(0, 0, 10, 0) ) gata = t(apply(gata, 1, as.integer)) # GATA PWM and example sequence gata.pwm = PFMtoPWM(gata) s = DNAString("AAAAGATAAA") s1 = DNAString("AAAAAAAAAGATA") sequences = list(s, s1) scores = motifScores(s, gata.pwm, raw.scores=T) scores.count = motifScores(s, gata.pwm, cutoff=log2(exp(5))) scores2 = motifScores(list(s,s1), gata.pwm) test_that("motifScores works properly", { expect_true(numEqual( scores[[1]][5,1], 2^(gata.pwm$pwm["G",1]*4))) # hand-calculate PWM score expect_equal(nrow(scores[[1]]), 20) # one significant motif hit expect_true( all( scores.count == matrix(1) ) ) expect_equal(dim(scores2), c(2,1)) }) # now do something else res.affinity = motifEnrichment(s, gata.pwm) res.cutoff = motifEnrichment(s, gata.pwm, cutoff=log2(exp(5)), score="cutoff") # check affinity and cutoff scores test_that("motifEnrichment for raw affinity and cutoff", { # check if the affinity is right expect_true( numEqual( mean(scores[[1]], na.rm=TRUE), res.affinity$group.nobg[1] )) expect_equal( res.cutoff$group.nobg[1], 1) }) ### # make backgrounds and check scores # load the testing bg.seq object load(system.file(package="PWMEnrich", dir="extdata", file="bg.seq-test.RData")) ## make diferent background distributions and use them to scan bg.logn = makePWMLognBackground(bg.seq, gata.pwm, bg.len=1000) bg.z5 = makePWMCutoffBackground(bg.seq, gata.pwm, cutoff=log2(exp(5))) # check if the Z-score calculation works, on background the z-score should be 0 for the group res.bg.z5 = motifEnrichment(bg.seq, bg.z5) res.z5 = motifEnrichment(sequences, bg.z5) test_that("motifEnrichment Z-score", { expect_true(numEqual(res.bg.z5$group.bg,0)) # both sequence have one binding site expect_equal(as.vector(res.z5$sequence.nobg), c(1,1)) # both have 1 binding site, but first sequence is longer expect_true(res.z5$sequence.bg[1,1] > res.z5$sequence.bg[2,1]) }) # check lognormal results res.logn = motifEnrichment(sequences, bg.logn) # calculate lognormal p-value by hand mx = bg.logn$bg.mean sx = bg.logn$bg.sd * sqrt(1000-3) / sqrt(10-3) # first sequence is 10-4+1 = 7bp long ml = 2*log(mx) - 0.5*log(mx^2+sx^2) sl = sqrt(-2*log(mx) + log(mx^2+sx^2)) # compare lognormal P-value test_that("motifEnrichment P-value", { expect_true(numEqual(res.logn$sequence.bg[1,1], plnorm(res.logn$sequence.nobg[1,], meanlog=ml, sdlog=sl, lower.tail=FALSE))) }) ## other backgrounds test_that("other background produce no error", { bg.p = makePWMEmpiricalBackground(bg.seq, gata.pwm) expect_equal(nrow(bg.p$bg.fwd), 10000) expect_equal(nrow(bg.p$bg.rev), 10000) bg.1e2 = makePWMPvalCutoffBackground(bg.p, 1e-2) expect_equal(length(bg.1e2$bg.cutoff), 1) expect_equal(length(bg.1e2$bg.P), 1) res.bg.1e2 = motifEnrichment(bg.seq, gata.pwm, cutoff=bg.1e2$bg.cutoff, score="cutoff") }) bg.gev = makePWMGEVBackground(bg.seq, gata.pwm, bg.len=seq(200, 1000, 200)) test_that("GEV", { expect_equal(length(bg.gev$bg.loc), 1) expect_equal(class(bg.gev$bg.loc[[1]]), "lm") expect_equal(class(bg.gev$bg.scale[[1]]), "lm") expect_equal(class(bg.gev$bg.shape[[1]]), "lm") }) #### ## Differential enrichment diff.logn = motifDiffEnrichment(s, s1, bg.logn) diff.z5 = motifDiffEnrichment(s, s1, bg.z5) test_that("motifDiffEnrichment", { expect_true(diff.logn$group.bg > 0) expect_equal(diff.z5$group.nobg, 0) expect_true(diff.z5$group.bg > 0) }) ### test priors calculation prior = makePriors(list(DNAString(c("AAAACCCCCC"))), 1) test_that("makePriors", { expect_equal(prior, c("A"=0.2, "C"=0.3, "G"=0.3, "T"=0.2)) }) #### Test MotifEnrichmentResults pfm.all = list(tin_like_motif=motifs.denovo[[1]], gata_like_motif=motifs.denovo[[2]], gata=gata) motifs.all = PFMtoPWM(pfm.all, name=c("tin", "GATA", "GATA")) test_that("PFMtoPWM names", { expect_equal(sapply(motifs.all, function(x) x$name), c(tin_like_motif="tin", gata_like_motif="GATA", gata="GATA")) }) # setup stuff for motifEnrichment bg.logn = makePWMLognBackground(bg.seq, motifs.all) bg.z5 = makePWMCutoffBackground(bg.seq, motifs.all, cutoff=log2(exp(4))) sequences = list(DNAString("AAATTTAAGATAAAATTGCGT"), DNAString("AAAAAGATAAAAAAAA")) res.logn = motifEnrichment(sequences, bg.logn) res.z5 = motifEnrichment(sequences, bg.z5) ### test new methods for motifEnrichmentResults test_that("MotifEnrichmentResults methods for logn", { expect_equal(names(motifRankingForGroup(res.logn)), c("GATA", "GATA", "tin")) expect_equal(names(motifRankingForGroup(res.logn, id=TRUE)), c("gata", "gata_like_motif", "tin_like_motif")) expect_equal(motifRankingForGroup(res.logn, rank=TRUE), c("tin"=3, "GATA"=2, "GATA"=1)) expect_equal(motifRankingForGroup(res.logn, order=TRUE, id=TRUE), c("gata"=3, "gata_like_motif"=2, "tin_like_motif"=1)) expect_equal(names(motifRankingForGroup(res.logn, unique=TRUE)), c("GATA", "tin")) expect_equal(motifRankingForGroup(res.logn, rank=TRUE, unique=TRUE), c("tin"=2, "GATA"=1)) expect_error(motifRankingForGroup(res.logn, order=TRUE, unique=TRUE)) }) test_that("MotifEnrichmentResults methods for z5", { expect_equal(names(motifRankingForGroup(res.z5)), c("GATA", "GATA", "tin")) expect_equal(names(motifRankingForGroup(res.z5, id=TRUE)), c("gata_like_motif", "gata", "tin_like_motif")) expect_equal(motifRankingForGroup(res.z5, rank=TRUE), c("tin"=3, "GATA"=1, "GATA"=2)) expect_equal(motifRankingForGroup(res.z5, order=TRUE, id=TRUE), c("gata_like_motif"=2, "gata"=3, "tin_like_motif"=1)) expect_equal(names(motifRankingForGroup(res.z5, unique=TRUE)), c("GATA", "tin")) expect_equal(motifRankingForGroup(res.z5, rank=TRUE, unique=TRUE), c("tin"=2, "GATA"=1)) expect_error(motifRankingForGroup(res.z5, order=TRUE, unique=TRUE)) }) ### test the new parameter to PWMUnscaled gatan = gata/10 gatan.pwm = PWMUnscaled(gatan, seq.count=10) gatan.pwm2 = PFMtoPWM(gatan, seq.count=10) test_that("seq.count parameter", { expect_equal(gata.pwm$pfm, gatan.pwm$pfm) expect_equal(gata.pwm$pwm, gatan.pwm$pwm) expect_equal(gata.pwm$pfm, gatan.pwm2$pfm) expect_equal(gata.pwm$pwm, gatan.pwm2$pwm) }) PWMEnrich/inst/tests/test_similarity.R0000644000175100017510000000076314614305422021064 0ustar00biocbuildbiocbuildlibrary(PWMEnrich) library(testthat) # test function for motif similarity motifs = readMotifs(system.file(package="PWMEnrich", dir="extdata", file="jaspar-insecta.jaspar"), remove.acc=TRUE) # check if two things are numerically equal, e.g. to precision of 1e-8 numEqual = function(x, y, prec=1e-8){ all(abs(x-y) < prec) } test_that("motifSimilarity", { expect_equal(motifSimilarity(motifs$tin, motifs$tin), 1) expect_true(numEqual(motifSimilarity(motifs$tin, motifs$vnd), 0.8785692, 1e-6)) }) PWMEnrich/man/0000755000175100017510000000000014614305422014142 5ustar00biocbuildbiocbuildPWMEnrich/man/affinitySequenceSet.Rd0000644000175100017510000000071214614305422020407 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{affinitySequenceSet} \alias{affinitySequenceSet} \title{Calculate total affinity over a set of sequences} \usage{ affinitySequenceSet(scores, seq.len, pwm.len) } \arguments{ \item{scores}{affinity scores for individual sequences} \item{seq.len}{lengths of sequences} \item{pwm.len}{lengths of PWMs} } \description{ Calculate total affinity over a set of sequences } PWMEnrich/man/as.data.frame-MotifEnrichmentReport-method.Rd0000644000175100017510000000113114614305422024574 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentReport-methods.R \name{as.data.frame,MotifEnrichmentReport-method} \alias{as.data.frame,MotifEnrichmentReport-method} \alias{as.data.frame} \title{Convert a MotifEnrichmentReport into a data.frame object} \usage{ \S4method{as.data.frame}{MotifEnrichmentReport}(x, row.names = NULL, optional = FALSE, ...) } \arguments{ \item{x}{the MotifEnrichmentReport object} \item{row.names}{unused} \item{optional}{unused} \item{...}{unused} } \description{ Convert a MotifEnrichmentReport into a data.frame object } PWMEnrich/man/cloverPvalue1seq.Rd0000644000175100017510000000156114614305422017675 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/clover.R \name{cloverPvalue1seq} \alias{cloverPvalue1seq} \title{Calculate the Clover P-value as described in the Clover paper} \usage{ cloverPvalue1seq( scores, seq.len, pwm.len, bg.fwd, bg.rev, B = 1000, verbose = TRUE, clover = NULL ) } \arguments{ \item{scores}{the affinity scores for individual sequences} \item{seq.len}{lengths of sequences} \item{pwm.len}{lengths of PWMs} \item{bg.fwd}{the raw score of forward strand} \item{bg.rev}{the raw scores of reverse strand} \item{B}{the number of random replicates} \item{verbose}{if to give verbose progress reports} \item{clover}{the clover scores if already calculated} } \value{ P-value } \description{ This function only take one background sequence as input, it also just calculates the P-value so it is more efficient. } PWMEnrich/man/cloverScore.Rd0000644000175100017510000000130014614305422016711 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/clover.R \name{cloverScore} \alias{cloverScore} \title{Calculate the Clover score using the recursive formula from Frith et al} \usage{ cloverScore(scores, lr3 = FALSE, verbose = FALSE) } \arguments{ \item{scores}{a matrix of average odds scores, where columns are motifs, and rows sequences} \item{lr3}{if to return a matrix of LR3 scores, where columns correpond to motifs, and rows to subset sizes} \item{verbose}{if to produce verbose output of progress} } \value{ the LR4 score, which is the mean of LR3 scores over subset sizes } \description{ Calculate the Clover score using the recursive formula from Frith et al } PWMEnrich/man/colMedians.Rd0000644000175100017510000000040514614305422016506 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{colMedians} \alias{colMedians} \title{Calculate medians of columns} \usage{ colMedians(x) } \arguments{ \item{x}{a matrix} } \description{ Calculate medians of columns } PWMEnrich/man/colSds.Rd0000644000175100017510000000042114614305422015655 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{colSds} \alias{colSds} \title{Calculate standard deviations of columns} \usage{ colSds(x) } \arguments{ \item{x}{a matrix} } \description{ Calculate standard deviations of columns } PWMEnrich/man/concatenateSequences.Rd0000644000175100017510000000067414614305422020600 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{concatenateSequences} \alias{concatenateSequences} \title{Concatenata DNA sequences into a single character object} \usage{ concatenateSequences(sequences) } \arguments{ \item{sequences}{either a list of DNAString objects, or a DNAStringSet} } \value{ a single character string } \description{ Concatenata DNA sequences into a single character object } PWMEnrich/man/cutoffZscore.Rd0000644000175100017510000000115014614305422017102 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{cutoffZscore} \alias{cutoffZscore} \title{Z-score calculation for cutoff hits} \usage{ cutoffZscore(scores, seq.len, pwm.len, bg.P) } \arguments{ \item{scores}{the hit counts for the sequences} \item{seq.len}{the length distribution of sequences} \item{pwm.len}{the length distribution of the PWMs} \item{bg.P}{background probabilities of observing a motif hit at nucleotide resolution (scaled to sequence length, not 2 * length)} } \value{ Z-score } \description{ The Z-score is calculated separately for each sequence } PWMEnrich/man/cutoffZscoreSequenceSet.Rd0000644000175100017510000000121114614305422021245 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{cutoffZscoreSequenceSet} \alias{cutoffZscoreSequenceSet} \title{Z-score calculation for cutoff hits for group of sequences} \usage{ cutoffZscoreSequenceSet(scores, seq.len, pwm.len, bg.P) } \arguments{ \item{scores}{the hit counts for the sequences} \item{seq.len}{the length distribution of sequences} \item{pwm.len}{the length distribution of the PWMs} \item{bg.P}{background probabilities of observing a motif hit at nucleotide resolution} } \value{ Z-score } \description{ The Z-score is calculated as if the sequence came for one very long sequence } PWMEnrich/man/divideRows.Rd0000644000175100017510000000053014614305422016546 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{divideRows} \alias{divideRows} \title{Divide each row of a matrix with a vector} \usage{ divideRows(m, v) } \arguments{ \item{m}{matrix to be divided} \item{v}{the vector to use for division} } \description{ Divide each row of a matrix with a vector } PWMEnrich/man/DNAStringSetToList.Rd0000644000175100017510000000060314614305422020034 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{DNAStringSetToList} \alias{DNAStringSetToList} \title{Convert DNAStringSet to list of DNAString objects} \usage{ DNAStringSetToList(x) } \arguments{ \item{x}{an object of class DNAStringSet} } \description{ as.list doesn't seem to always work for DNAStringSets, so implementing this ourselves. } PWMEnrich/man/dot-inputParamMotifs.Rd0000644000175100017510000000075214614305422020523 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{.inputParamMotifs} \alias{.inputParamMotifs} \title{Normalizes the motifs input argument for multiple functions} \usage{ .inputParamMotifs(motifs) } \arguments{ \item{motifs}{a list of motifs either as frequency matrices (PFM) or as PWM objects. If PFMs are specified they are converted to PWMs using uniform background.} } \description{ Normalizes the motifs input argument for multiple functions } PWMEnrich/man/dot-inputParamSequences.Rd0000644000175100017510000000061614614305422021214 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{.inputParamSequences} \alias{.inputParamSequences} \title{Normalize the sequences input argument} \usage{ .inputParamSequences(sequences) } \arguments{ \item{sequences}{a set of sequences to be scanned, a list of DNAString or other scannable objects} } \description{ Normalize the sequences input argument } PWMEnrich/man/dot-inputPFMfromMatrixOrPWM.Rd0000644000175100017510000000065414614305422021662 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/similarity.R \name{.inputPFMfromMatrixOrPWM} \alias{.inputPFMfromMatrixOrPWM} \title{Check the frequency matrix input parameter for motifSimilarity} \usage{ .inputPFMfromMatrixOrPWM(m) } \arguments{ \item{m}{either a PWM object or a matrix} } \value{ corresponding PFM } \description{ Check the frequency matrix input parameter for motifSimilarity } PWMEnrich/man/dot-normalize.bg.seq.Rd0000644000175100017510000000062714614305422020400 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{.normalize.bg.seq} \alias{.normalize.bg.seq} \title{check consistency of bg.seq input parameter} \usage{ .normalize.bg.seq(bg.seq) } \arguments{ \item{bg.seq}{a set of background sequences, either a list of DNAString object or DNAStringSet object} } \description{ check consistency of bg.seq input parameter } PWMEnrich/man/dot-normargPfm.Rd0000644000175100017510000000073514614305422017332 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{.normargPfm} \alias{.normargPfm} \title{Input parameter normalization for PWMUnscaled} \usage{ .normargPfm(x) } \arguments{ \item{x}{a frequency matrix} } \description{ This function is from Biostrings package. A Position Frequency Matrix (PFM) is also represented as an ordinary matrix. Unlike a PWM, it must be of type integer (it will typically be the result of consensusMatrix()). } PWMEnrich/man/dot-normargPriorParams.Rd0000644000175100017510000000062314614305422021043 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{.normargPriorParams} \alias{.normargPriorParams} \title{Input parameter normalization function for PWMUnscaled} \usage{ .normargPriorParams(prior.params) } \arguments{ \item{prior.params}{Typical 'prior.params' vector: c(A=0.25, C=0.25, G=0.25, T=0.25)} } \description{ This function is from Biostrings package } PWMEnrich/man/empiricalPvalue.Rd0000644000175100017510000000254714614305422017563 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{empiricalPvalue} \alias{empiricalPvalue} \title{Calculate the empirical P-value by affinity of cutoff.} \usage{ empiricalPvalue( scores, seq.len, pwm.len, bg.fwd, bg.rev, cutoff = NULL, B = 10000, verbose = FALSE, exact.length = FALSE ) } \arguments{ \item{scores}{the scores obtained for the sequence} \item{seq.len}{the length of the sequence, if a single value will take a single sequence of given length. If a vector of values, will take sequences of given lengths and joint them together} \item{pwm.len}{the lengths of PWMs} \item{bg.fwd}{raw odds scores for the forward strand of background} \item{bg.rev}{raw odds scores for the reverse strand of background} \item{cutoff}{if not NULL, will use hit count above this cutoff. The cutoff should be specified in log2.} \item{B}{the number of random replicates} \item{verbose}{if to give verbose progress reports} \item{exact.length}{if to take into consideration that the actual sequence lengths differ for different PWMs. For very long sequences (i.e. seq.len >> pwm.len) this make very little difference, however the run time with exact.length is much longer.} } \description{ This is the new backend function for empirical P-values for either affinity or cutoff. The function only works on single sequences. } PWMEnrich/man/empiricalPvalueSequenceSet.Rd0000644000175100017510000000201714614305422021720 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{empiricalPvalueSequenceSet} \alias{empiricalPvalueSequenceSet} \title{Empirical P-value for a set of sequences} \usage{ empiricalPvalueSequenceSet( scores, seq.len, pwm.len, bg.fwd, bg.rev, cutoff = NULL, B = 10000, verbose = FALSE ) } \arguments{ \item{scores}{a matrix of scores, rows for sequences, columns for PWMs} \item{seq.len}{the lengths of sequences} \item{pwm.len}{the lengths of PWMs} \item{bg.fwd}{raw odds scores for the forward strand of background} \item{bg.rev}{raw odds scores for the reverse strand of background} \item{cutoff}{if not NULL, will use hit count above this cutoff. The cutoff should be specified in log2.} \item{B}{the number of random replicates} \item{verbose}{if to give verbose progress reports} } \description{ Calculate empirical P-value for a set of sequences, using either affinity or cutoff. When cutoff is used, the score is a number of motif hits above a certain log-odds cutoff. } PWMEnrich/man/getBackgroundFrequencies.Rd0000644000175100017510000000205014614305422021377 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{getBackgroundFrequencies} \alias{getBackgroundFrequencies} \title{Get the four nucleotides background frequencies} \usage{ getBackgroundFrequencies(organism = "dm3", pseudo.count = 1, quick = FALSE) } \arguments{ \item{organism}{either a name of the organisms for which the background should be compiled (supported names are "dm3", "mm9" and "hg19"), a \code{BSgenome} object, \code{DNAStringSet}, or list of \code{DNAString} objects} \item{pseudo.count}{the number to which the frequencies sum up to, by default 1} \item{quick}{if to preform fitting on a reduced set of 100 promoters. This will not give as good results but is much quicker than fitting to all the promoters (~10k). Usage of this parameter is recommended only for testing and rough estimates.} } \description{ Estimate the background frequencies of A,C,G,T on a set of promoters from an organism } \examples{ \dontrun{ getBackgroundFrequencies("dm3") } } \author{ Robert Stojnic, Diego Diez } PWMEnrich/man/getPromoters.Rd0000644000175100017510000000111714614305422017123 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{getPromoters} \alias{getPromoters} \title{Get the promoter sequences either for a named organism such as "dm3" or a BSgenome object} \usage{ getPromoters(organismOrGenome) } \arguments{ \item{organismOrGenome}{either organism name, e.g. "dm3", or BSgenome object} } \value{ a list of: promoters - DNAStringSet of (unique) promoters; organism - name of species; version - genome version } \description{ Get the promoter sequences either for a named organism such as "dm3" or a BSgenome object } PWMEnrich/man/gevPerSequence.Rd0000644000175100017510000000141214614305422017350 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{gevPerSequence} \alias{gevPerSequence} \title{Apply GEV background normalization per every sequence} \usage{ gevPerSequence(scores, seq.len, pwm.len, bg.loc, bg.scale, bg.shape) } \arguments{ \item{scores}{affinity scores for the PWMs, can contain scores for more than one sequence (as rows), P-values are extracted separately} \item{seq.len}{the length distribution of the sequences} \item{pwm.len}{the lengths of PWMs} \item{bg.loc}{list of linear regression for location parameter} \item{bg.scale}{list of linear regression for scale parameter} \item{bg.shape}{list of linear regression for shape parameter} } \description{ Apply GEV background normalization per every sequence } PWMEnrich/man/groupReport-MotifEnrichmentResults-method.Rd0000644000175100017510000000434314614305422024716 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{groupReport,MotifEnrichmentResults-method} \alias{groupReport,MotifEnrichmentResults-method} \alias{groupReport} \title{Generate a motif enrichment report for the whole group of sequences together} \usage{ \S4method{groupReport}{MotifEnrichmentResults}(obj, top = 0.05, bg = TRUE, by.top.motifs = FALSE, ...) } \arguments{ \item{obj}{a MotifEnrichmentResults object} \item{top}{what proportion of top motifs should be examined in each individual sequence (by default 0.05, i.e. 5\%)} \item{bg}{if to use background corrected P-values to do the ranking (if available)} \item{by.top.motifs}{if to rank by the proportion of sequences where the motif is within 'top' percentage of motifs} \item{...}{unused} } \value{ a MotifEnrichmentReport object containing a table with the following columns: \itemize{ \item 'rank' - The rank of the PWM's enrichment in the whole group of sequences together \item 'target' - The name of the PWM's target gene, transcript or protein complex. \item 'id' - The unique identifier of the PWM (if set during PWM creation). \item 'raw.score' - The raw score before P-value calculation \item 'p.value' - The P-value of motif enrichment (if available) \item 'top.motif.prop' - The proportion (between 0 and 1) of sequences where the motif is within \code{top} proportion of enrichment motifs. } } \description{ Generate a motif enrichment report for the whole group of sequences together } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # produce a report for all sequences taken together r.default = groupReport(res) # produce a report where the last column takes top 1\% motifs r = groupReport(res, top=0.01) # view the results r # plot the top 10 most enriched motifs plot(r[1:10]) } } PWMEnrich/man/keepFinite.Rd0000644000175100017510000000042614614305422016516 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{keepFinite} \alias{keepFinite} \title{Replace all infinite values by 0} \usage{ keepFinite(x) } \arguments{ \item{x}{a vector of values} } \description{ Replace all infinite values by 0 } PWMEnrich/man/logNormPval.Rd0000644000175100017510000000157614614305422016702 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{logNormPval} \alias{logNormPval} \title{Calculate the P-value from lognormal distribution with background of equal length} \usage{ logNormPval(scores, seq.len, pwm.len, bg.mean, bg.sd, bg.len, log = FALSE) } \arguments{ \item{scores}{affinity scores for the PWMs, can contain scores for more than one sequence (as rows), P-values are extracted separately} \item{seq.len}{the length distribution of the sequences} \item{pwm.len}{the leggths of PWMs} \item{bg.mean}{the mean values from the background for PWMs} \item{bg.sd}{the sd values from the background} \item{bg.len}{the length distribution of the background (we currently support only constant length)} \item{log}{if to produce log p-values} } \description{ Calculate the P-value from lognormal distribution with background of equal length } PWMEnrich/man/logNormPvalSequenceSet.Rd0000644000175100017510000000124614614305422021041 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{logNormPvalSequenceSet} \alias{logNormPvalSequenceSet} \title{Lognormal P-value for a set of sequences} \usage{ logNormPvalSequenceSet(scores, seq.len, pwm.len, bg.mean, bg.sd, bg.len) } \arguments{ \item{scores}{a matrix of per-sequence affinity scores} \item{seq.len}{lengths of sequences} \item{pwm.len}{lengths of pwms} \item{bg.mean}{mean background at length of bg.len} \item{bg.sd}{standard deviation of background at length of bg.len} \item{bg.len}{the length for which mean and sd are calculated} } \value{ P-value } \description{ Lognormal P-value for a set of sequences } PWMEnrich/man/makeBackground.Rd0000644000175100017510000000573214614305422017355 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makeBackground} \alias{makeBackground} \title{Make a background for a set of position frequency matrices} \usage{ makeBackground( motifs, organism = "dm3", type = "logn", quick = FALSE, bg.seq = NULL, ... ) } \arguments{ \item{motifs}{a list of position frequency matrices (4xL matrices)} \item{organism}{either a name of the organisms for which the background should be compiled (currently supported names are "dm3", "mm9" and "hg19"), or a \code{BSgenome} object (see \code{BSgenome} package).} \item{type}{the type of background to be compiled. Possible types are: \itemize{ \item "logn" - estimate a lognormal background \item "cutoff" - estimate a Z-score background with fixed log-odds cutoff (in log2) \item "pval" - estimate a Z-score background with a fixed P-value cutoff. Note that this may require a lot of memory since the P-value of motif hits is first estimated from the empirical distribution. \item "empirical" - create an empirical P-value background. Note that this may require a lot of memory (up to 10GB in default "slow" mode (quick=FALSE) for 126 JASPAR motifs and 1000 D. melanogaster promoters). \item "GEV" - estimate a generalized extreme value (GEV) distribution background by fitting linear regression to distribution parameters in log space }} \item{quick}{if to preform fitting on a reduced set of 100 promoters. This will not give as good results but is much quicker than fitting to all the promoters (~10k). Usage of this parameter is recommended only for testing and rough estimates.} \item{bg.seq}{a set of background sequences to use. This parameter overrides the "organism" and "quick" parameters.} \item{...}{other named parameters that backend function makePWM***Background functions take.} } \description{ This is a convenience front-end function to compile new backgrounds for a set of PFMs. Currently only supports D. melanogaster, but in the future should support other common organisms as well. } \examples{ # load in the two example de-novo motifs motifs = readMotifs(system.file(package = "PWMEnrich", dir = "extdata", file = "example.transfac"), remove.acc = TRUE) \dontrun{ # construct lognormal background bg.logn = makeBackground(motifs, organism="dm3", type="logn") # alternatively, any BSgenome object can also be used if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) bg.logn = makeBackground(motifs, organism=Dmelanogaster, type="logn") # construct a Z-score of hits with P-value background bg.pval = makeBackground(motifs, organism="dm3", type="pval", p.value=1e-3) # now we can use them to scan for enrichment in sequences (in this case there is a consensus # Tin binding site). motifEnrichment(DNAString("TGCATCAAGTGTGTAGTG"), bg.logn) motifEnrichment(DNAString("TGCATCAAGTGTGTAGTG"), bg.pval) } } \author{ Robert Stojnic, Diego Diez } PWMEnrich/man/makePriors.Rd0000644000175100017510000000122214614305422016542 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePriors} \alias{makePriors} \title{Make priors from background sequences} \usage{ makePriors(bg.seq, bg.pseudo.count) } \arguments{ \item{bg.seq}{a set of background sequences} \item{bg.pseudo.count}{the total pseudocount shared between nucleotides} } \description{ These priors serve both as background nucleotide frequencies and pseudo-counts for PWMs. } \examples{ # some example sequences sequences = list(DNAString("AAAGAGAGTGACCGATGAC"), DNAString("ACGATGAGGATGAC")) # make priors with pseudo-count of 1 shared between them makePriors(sequences, 1) } PWMEnrich/man/makePWMCutoffBackground.Rd0000644000175100017510000000275314614305422021110 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePWMCutoffBackground} \alias{makePWMCutoffBackground} \title{Make a cutoff background} \usage{ makePWMCutoffBackground( bg.seq, motifs, cutoff = log2(exp(4)), bg.pseudo.count = 1, bg.source = "", verbose = TRUE ) } \arguments{ \item{bg.seq}{a set of background sequences, either a list of DNAString object or DNAStringSet object} \item{motifs}{a set of motifs, either a list of frequency matrices, or a list of PWM objects. If frequency matrices are given, the background distribution is fitted from bg.seq.} \item{cutoff}{the cutoff at which the background should be made, i.e. at which a motif hit is called significant} \item{bg.pseudo.count}{the pseudo count which is shared between nucleotides when frequency matrices are given} \item{bg.source}{a free-form textual description of how the background was generated} \item{verbose}{if to produce verbose output} } \description{ Make a background based on number of motifs hits above a certain threshold. } \examples{ \dontrun{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # make background for MotifDb motifs using 2Kb promoters of all D. melanogaster transcripts # using a cutoff of 5 if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) makePWMCutoffBackground(Dmelanogaster$upstream2000, MotifDb.Dmel.PFM, cutoff=log2(exp(5))) } } } PWMEnrich/man/makePWMEmpiricalBackground.Rd0000644000175100017510000000411714614305422021563 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePWMEmpiricalBackground} \alias{makePWMEmpiricalBackground} \title{Make an empirical P-value background} \usage{ makePWMEmpiricalBackground( bg.seq, motifs, bg.pseudo.count = 1, bg.source = "", verbose = TRUE, ... ) } \arguments{ \item{bg.seq}{a set of background sequences, either a list of DNAString object or DNAStringSet object} \item{motifs}{a set of motifs, either a list of frequency matrices, or a list of PWM objects. If frequency matrices are given, the background distribution is fitted from bg.seq.} \item{bg.pseudo.count}{the pseudo count which is shared between nucleotides when frequency matrices are given} \item{bg.source}{a free-form textual description of how the background was generated} \item{verbose}{if to produce verbose output} \item{...}{currently unused (this is for convenience for makeBackground function)} } \description{ Make a background appropriate for empirical P-value calculation. The provided set of background sequences is contcatenated into a single long sequence which is then scanned with the motifs and raw scores are saved. This object can be very large. } \details{ For reliable P-value calculation the size of the background set needs to be at least seq.len / min.P.value. For instance, to get P-values at a resolution of 0.001 for a single sequence of 500bp, we would need a background of at least 500/0.001 = 50kb. This ensures that we can make 1000 independent 500bp samples from this background to properly estimate the P-value. For a group of sequences, we would take seq.len to be the total length of all sequences in a group. } \examples{ \dontrun{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # make empirical background by saving raw scores for each bp in the sequence. This can be # very large in memory! if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) makePWMEmpiricalBackground(Dmelanogaster$upstream2000[1:100], MotifDb.Dmel.PFM) } } } PWMEnrich/man/makePWMGEVBackground.Rd0000644000175100017510000000305114614305422020273 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePWMGEVBackground} \alias{makePWMGEVBackground} \title{Make a GEV background distribution} \usage{ makePWMGEVBackground( bg.seq, motifs, bg.pseudo.count = 1, bg.len = seq(200, 2000, 200), bg.source = "", verbose = TRUE, fit.log = TRUE ) } \arguments{ \item{bg.seq}{a set of background sequences, either a list of DNAString object or DNAStringSet object} \item{motifs}{a set of motifs, either a list of frequency matrices, or a list of PWM objects. If frequency matrices are given, the background distribution is fitted from bg.seq.} \item{bg.pseudo.count}{the pseudo count which is shared between nucleotides when frequency matrices are given} \item{bg.len}{the length range of background chunks} \item{bg.source}{a free-form textual description of how the background was generated} \item{verbose}{if to produce verbose output} \item{fit.log}{if to fit log odds (instead of odds)} } \description{ Construct a lognormal background distribution for a set of sequences. Sequences concatenated are binned in 'bg.len' chunks and lognormal distribution fitted to them. } \examples{ \dontrun{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # make background for MotifDb motifs using 2kb promoters of all D. melanogaster transcripts if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) makePWMGEVBackground(Dmelanogaster$upstream2000, MotifDb.Dmel.PFM) } } } PWMEnrich/man/makePWMLognBackground.Rd0000644000175100017510000000364114614305422020556 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePWMLognBackground} \alias{makePWMLognBackground} \title{Make a lognormal background distribution} \usage{ makePWMLognBackground( bg.seq, motifs, bg.pseudo.count = 1, bg.len = 250, bg.len.sizes = 2^(0:4), bg.source = "", verbose = TRUE, algorithm = "default" ) } \arguments{ \item{bg.seq}{a set of background sequences, either a list of DNAString object or DNAStringSet object} \item{motifs}{a set of motifs, either a list of frequency matrices, or a list of PWM objects. If frequency matrices are given, the background distribution is fitted from bg.seq.} \item{bg.pseudo.count}{the pseudo count which is shared between nucleotides when frequency matrices are given} \item{bg.len}{background sequences will be split into tiles of this length (default: 250bp)} \item{bg.len.sizes}{background tiles will be joined into bigger tiles containing this much smaller tiles. The default is \code{2^(0:4)}, which with \code{bg.len} translates into 250bp, 500bp, 1000bp, 1500bp, 2000bp, 4000bp. Note this is only used in the "human" algorithm.} \item{bg.source}{a free-form textual description of how the background was generated} \item{verbose}{if to produce verbose output} \item{algorithm}{type of algorithm to use, valid values are: "default" and "human".} } \description{ Construct a lognormal background distribution for a set of sequences. Sequences concatenated are binned in 'bg.len' chunks and lognormal distribution fitted to them. } \examples{ \dontrun{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # make background for MotifDb motifs using 2kb promoters of all D. melanogaster transcripts if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) makePWMLognBackground(Dmelanogaster$upstream2000, MotifDb.Dmel.PFM) } } } PWMEnrich/man/makePWMPvalCutoffBackground.Rd0000644000175100017510000000234514614305422021730 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePWMPvalCutoffBackground} \alias{makePWMPvalCutoffBackground} \title{Construct a cutoff background from empirical background} \usage{ makePWMPvalCutoffBackground(bg.p, p.value = 0.001, bg.source = "") } \arguments{ \item{bg.p}{an object of class PWMEmpiricalBackground} \item{p.value}{the P-value used to find cuttoffs for each of the motifs} \item{bg.source}{textual description of background source} } \value{ an object of type PWMCutoffBackground } \description{ This function takes already calculated empirical background distribution and chooses cutoff for each motif based on P-value cutoff for individual sites. } \examples{ \dontrun{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # make empirical background - here we use only 100 sequences for illustrative purposes if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) bg.p = makePWMEmpiricalBackground(Dmelanogaster$upstream2000[1:100], MotifDb.Dmel.PFM) # use the empirical background to pick a threshold and make cutoff background makePWMPvalCutoffBackground(bg.p, 0.001) } } } PWMEnrich/man/makePWMPvalCutoffBackgroundFromSeq.Rd0000644000175100017510000000261714614305422023227 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makePWMPvalCutoffBackgroundFromSeq} \alias{makePWMPvalCutoffBackgroundFromSeq} \title{Construct a P-value cutoff background from a set of sequences} \usage{ makePWMPvalCutoffBackgroundFromSeq( bg.seq, motifs, p.value = 0.001, bg.pseudo.count = 1, bg.source = "", verbose = TRUE ) } \arguments{ \item{bg.seq}{a set of background sequences, either a list of DNAString object or DNAStringSet object} \item{motifs}{a set of motifs, either a list of frequency matrices, or a list of PWM objects. If frequency matrices are given, the background distribution is fitted from bg.seq.} \item{p.value}{the P-value used to find cuttoffs for each of the motifs} \item{bg.pseudo.count}{the pseudo count which is shared between nucleotides when frequency matrices are given} \item{bg.source}{textual description of background source} \item{verbose}{if to print verbose output} } \value{ an object of type PWMCutoffBackground } \description{ This function creates a P-value cutoff background for motif enrichment. } \examples{ \dontrun{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # use the empirical background to pick a threshold and make cutoff background makePWMPvalCutoffBackground(Dmelanogaster$upstream2000, 0.001) } } } PWMEnrich/man/makeStartEndPos.Rd0000644000175100017510000000103414614305422017473 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{makeStartEndPos} \alias{makeStartEndPos} \title{Divide total.len into fragments of length len by providing start,end positions} \usage{ makeStartEndPos(total.len, len) } \arguments{ \item{total.len}{total available length to be subdivided} \item{len}{size of the individual chunk} } \value{ a data.frame containing paired up start,end positions } \description{ Divide total.len into fragments of length len by providing start,end positions } PWMEnrich/man/matrixShuffleZscorePerSequence.Rd0000644000175100017510000000162314614305422022602 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{matrixShuffleZscorePerSequence} \alias{matrixShuffleZscorePerSequence} \title{Obtain z-score for motif column shuffling} \usage{ matrixShuffleZscorePerSequence(scores, sequences, pwms, cutoff = NULL, B = 30) } \arguments{ \item{scores}{a set of already calculated scores} \item{sequences}{either one sequence or a list/set of sequences (objects of type DNAString or DNAStringSet)} \item{pwms}{a list of PWMs} \item{cutoff}{if NULL, will use affinity, otherwise will use number of hits over this log2 odds cutoff} \item{B}{number of replicates, i.e. PWM column shuffles} } \description{ All PWMs are shuffled at the same time. This function would be too slow to produce empirical P-values, thus we return a z-score from a small number of shuffles. } \details{ The z-scores are calculated for each sequence individually. } PWMEnrich/man/maxAligned.Rd0000644000175100017510000000122114614305422016476 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/similarity.R \name{maxAligned} \alias{maxAligned} \title{Returned the aligned motif parts} \usage{ maxAligned(m1, m2, offset) } \arguments{ \item{m1}{frequency matrix of first motif} \item{m2}{frequency matrix of second motif} \item{offset}{a number of nucleotides by which the first motif is offsetted compared to the second} } \value{ a list of column-trimmed motifs m1, m2 } \description{ This function takes the offset of first motif relative to second and chops off the end of both motifs that are not aligned. It returns a list containing only the columns that align. } PWMEnrich/man/motifDiffEnrichment.Rd0000644000175100017510000001002114614305422020347 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/diff.R \name{motifDiffEnrichment} \alias{motifDiffEnrichment} \title{Differential motif enrichment} \usage{ motifDiffEnrichment( sequences1, sequences2, pwms, score = "autodetect", bg = "autodetect", cutoff = log2(exp(4)), verbose = TRUE, res1 = NULL, res2 = NULL ) } \arguments{ \item{sequences1}{First set of sequences. Can be either a single sequence (an object of class DNAString), or a list of DNAString objects, or a DNAStringSet object.} \item{sequences2}{Second set of sequences. Can be either a single sequence (an object of class DNAString), or a list of DNAString objects, or a DNAStringSet object.} \item{pwms}{this parameter can take multiple values depending on the scoring scheme and background correction used. When the \code{method} parameter is set to "autodetect", the following default algorithms are going to be used: \itemize{ \item if \code{pwms} is a list containing either frequency matrices or a list of PWM objects then the "affinity" algorithm is selected. If frequency matrices are given, they are converted to PWMs using uniform background. For best performance, convert frequency matrices to PWMs before calling this function using realistic genomic background. \item Otherwise, appropriate scoring scheme and background correction are selected based on the class of the object (see below). }} \item{score}{this parameter determines which scoring scheme to use. Following scheme as available: \itemize{ \item "autodetect" - default value. Scoring method is determined based on the type of \code{pwms} parameter. \item "affinity" - use threshold-free affinity scores without a background. The \code{pwms} parameter can either be a list of frequency matrices, \code{PWM} objects, or a \code{PWMLognBackground} object. \item "cutoff" - use number of motif hits above a score cutoff as a measure of enrichment. No background correction is performed. The \code{pwms} parameter can either be a list of frequency matrices, \code{PWM} objects, or a \code{PWMCutoffBackground} object. }} \item{bg}{this parameter determines which background correction to use, if any. \itemize{ \item "autodetect" - default value. Background correction is determined based on the type of the \code{pwms} parameter. \item "logn" - use a lognormal distribution background pre-computed for a set of PWMs. This requires \code{pwms} to be of class \code{PWMLognBackground}. \item "z" - use a z-score for the number of significant motif hits compared to background number of hits. This requires \code{pwms} to be of class \code{PWMCutoffBackground}. \item "none" - no background correction }} \item{cutoff}{the score cutoff for a significant motif hit if scoring scheme "cutoff" is selected.} \item{verbose}{if to produce verbose output} \item{res1}{the output of \code{motifEnrichment} if already calculated for \code{sequences1}} \item{res2}{the output of \code{motifEnrichment} if already calculated for \code{sequences2}} } \description{ Test for differential enrichment between two groups of sequences } \details{ This function calls \code{motifEnrichment} on two groups of sequences and calculates the difference statistics when possible. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ # load the background file for drosophila and lognormal correction data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # get the differential enrichment diff = motifDiffEnrichment(DNAString("TGCATCAAGTGTGTAGTGTGAGATTAGT"), DNAString("TGAACGAGTAGGACGATGAGAGATTGATG"), PWMLogn.dm3.MotifDb.Dmel, verbose=FALSE) # motifs differentially enriched in the first sequence (with lognormal background correction) head(sort(diff$group.bg, decreasing=TRUE)) # motifs differentially enriched in the second sequence (with lognormal background correction) head(sort(diff$group.bg)) } } PWMEnrich/man/motifEcdf.Rd0000644000175100017510000000237314614305422016336 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/background.R \name{motifEcdf} \alias{motifEcdf} \title{Calculate the empirical distribution score distribution for a set of motifs} \usage{ motifEcdf( motifs, organism = NULL, bg.seq = NULL, quick = FALSE, pseudo.count = 1 ) } \arguments{ \item{motifs}{a set of motifs, either a list of frequency matrices, or a list of PWM objects. If frequency matrices are given, the background distribution is fitted from bg.seq.} \item{organism}{either a name of the organisms for which the background should be compiled (supported names are "dm3", "mm9" and "hg19"), or a \code{BSgenome} object (see \code{BSgenome} package).} \item{bg.seq}{a set of background sequence (either this or organism needs to be specified!). Can be a DNAString or DNAStringSet object.} \item{quick}{if to do the fitting only on a small subset of the data (only in combination with \code{organism}). Useful only for code testing!} \item{pseudo.count}{the pseudo count which is shared between nucleotides when frequency matrices are given} } \value{ a list of \code{ecdf} objects (see help page for \code{ecdf} for usage). } \description{ Calculate the empirical distribution score distribution for a set of motifs } PWMEnrich/man/motifEnrichment.Rd0000644000175100017510000002107614614305422017572 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{motifEnrichment} \alias{motifEnrichment} \title{Motif enrichment} \usage{ motifEnrichment( sequences, pwms, score = "autodetect", bg = "autodetect", cutoff = NULL, verbose = TRUE, motif.shuffles = 30, B = 1000, group.only = FALSE ) } \arguments{ \item{sequences}{the sequences to be scanned for enrichment. Can be either a single sequence (an object of class DNAString), or a list of DNAString objects, or a DNAStringSet object.} \item{pwms}{this parameter can take multiple values depending on the scoring scheme and background correction used. When the \code{method} parameter is set to "autodetect", the following default algorithms are going to be used: \itemize{ \item if \code{pwms} is a list containing either frequency matrices or a list of PWM objects then the "affinity" algorithm is selected. If frequency matrices are given, they are converted to PWMs using uniform background. For best performance, convert frequency matrices to PWMs before calling this function using realistic genomic background. \item Otherwise, appropriate scoring scheme and background correction are selected based on the class of the object (see below). }} \item{score}{this parameter determines which scoring scheme to use. Following scheme as available: \itemize{ \item "autodetect" - default value. Scoring method is determined based on the type of \code{pwms} parameter. \item "affinity" - use threshold-free affinity score. The \code{pwms} parameter can either be a list of frequency matrices, \code{PWM} objects, or a \code{PWMLognBackground} object. \item "cutoff" - use number of motif hits above a score cutoff. The \code{pwms} parameter can either be a list of frequency matrices, \code{PWM} objects, or a \code{PWMCutoffBackground} object. \item "clover" - use the Clover algorithm (Frith et al, 2004). The Clover score of a single sequence is identical to the affinity score, while for a group of sequences is an average of products of affinities over all sequence subsets. }} \item{bg}{this parameter determines how the raw score is compared to the background distribution. \itemize{ \item "autodetect" - default value. Background correction is determined based on the type of the \code{pwms} parameter. \item "logn" - use a lognormal distribution background pre-computed for a set of PWMs. This requires \code{pwms} to be of class \code{PWMLognBackground}. \item "z" - use a z-score for the number of significant motif hits compared to background number of hits. This requires \code{pwms} to be of class \code{PWMCutoffBackground}. \item "pval" - use empirical P-value based on a set of background sequences. This requires \code{pwms} to be of class \code{PWMEmpiricalBackground}. Note that PWMEmpiricalBackground objects tend to be very large so that the empirical P-value can be calculated in reasonable time. \item "ms" - shuffle columns of motif matrices and use that as basis for P-value calculation. Note that since the sequences need to rescanned with all of the new shuffled motifs this can be very slow. Also, this also works only no *individual* sequences, not groups. \item "none" - no background correction }} \item{cutoff}{the score cutoff for a significant motif hit if scoring scheme "cutoff" is selected.} \item{verbose}{if to print verbose output} \item{motif.shuffles}{number of times to shuffle motifs if using "ms" background correction} \item{B}{number of replicates when calculating empirical P-value} \item{group.only}{if to return statistics only for the group of sequences, not individual sequences. In the case of empirical background the P-values for individual sequences are not calculated (thus saving time), for other backgrounds they are calculated but not returned.} } \value{ a MotifEnrichmentResults object containing a subset following elements: \itemize{ \item "score" - scoring scheme used \item "bg" - background correction used \item "params" - any additional parameters \item "sequences" - the set of sequences used \item "pwms" - the set of pwms used \item "sequence.nobg" - per-sequence scores without any background correction. For "affinity" and "clover" a matrix of mean affinity scores; for "cutoff" number of significant hits above a cutoff \item "sequence.bg" - per-sequence scores after background correction. For "logn" and "pval" the P-value (smaller is better); for "z" and "ms" background corrections the z-scores (bigger is better). \item "group.nobg" - aggregate scores for the whole group of sequences without background correction. For "affinity" and "clover" the mean affinity over all sequences in the set; for "cutoff" the total number of hits in all sequences. \item "group.bg" - aggregate scores for the whole group of sequences with background correction. For "logn" and "pval", the P-value for the whole group (smaller is better); for "z" and "ms" the z-score for the whole set (bigger is better). \item "sequence.norm" - (only for "logn") the length-normalized scores for each of the sequences. Currently only implemented for "logn", where it returns the values normalized from LogN(0,1) distribution \item "group.norm" - (only for "logn") similar to sequence.norm, but for the whole group of sequences } } \description{ Calculate motif enrichment using one of available scoring algorithms and background corrections. } \details{ This function provides and interface to all algorithms available in PWMEnrich to find motif enrichment in a single or a group of sequences with/without background correction. Since for all algorithms the first step involves calculating raw scores without background correction, the output always contains the scores without background correction together with (optional) background-corrected scores. Unless otherwise specified the scores are returned both separately for each sequence (without/with background) and for the whole group of sequences (without/with background). To use a background correction you need to supply a set of PWMs with precompiled background distribution parameters (see function \code{\link{makeBackground}}). When such an object is supplied as the \code{pwm} parameter, the scoring scheme and background correction are automatically determined. There are additional packages with already pre-computed background (e.g. see package \code{PWMEnrich.Dmelanogaster.background}). Please refer to (Stojnic & Adryan, 2012) for more details on the algorithms. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAGATTGAAGTAGACCAGTC"), DNAString("AGGTAGATAGAACAGTAGGCAATGGGGGAAATTGAGAGTC")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # most enriched in both sequences (lognormal background P-value) head(motifRankingForGroup(res)) # most enriched in both sequences (raw affinity, no background) head(motifRankingForGroup(res, bg=FALSE)) # most enriched in the first sequence (lognormal background P-value) head(motifRankingForSequence(res, 1)) # most enriched in the first sequence (raw affinity, no background) head(motifRankingForSequence(res, 1, bg=FALSE)) ### # Load the pre-compiled background for hit-based motif counts with cutoff of P-value = 0.001 data(PWMPvalueCutoff1e3.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") res.count = motifEnrichment(sequences, PWMPvalueCutoff1e3.dm3.MotifDb.Dmel) # Enrichment in the whole group, z-score for the number of motif hits head(motifRankingForGroup(res)) # First sequence, sorted by number of motif hits with P-value < 0.001 head(motifRankingForSequence(res, 1, bg=FALSE)) } } \references{ \itemize{ \item R. Stojnic & B. Adryan: Identification of functional DNA motifs using a binding affinity lognormal background distribution, submitted. \item MC Frith et al: Detection of functional DNA motifs via statistical over-representation, Nucleid Acid Research (2004). } } PWMEnrich/man/MotifEnrichmentReport-class.Rd0000644000175100017510000000113114614305422022017 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{MotifEnrichmentReport-class} \alias{MotifEnrichmentReport-class} \title{A report class with formatted results of motif enrichment} \description{ The columns stored in this object will depend on the type of the report (either for group of sequences, or individual sequences). } \section{Slots}{ \describe{ \item{\code{d}:}{a DataFrame object that contains the main tabular report data} \item{\code{pwms}:}{a list of \code{PWM} objects corresponding to rows of \code{d}} } } PWMEnrich/man/MotifEnrichmentResults-class.Rd0000644000175100017510000000123014614305422022205 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{MotifEnrichmentResults-class} \alias{MotifEnrichmentResults-class} \title{A wrapper class for results of motifEnrichment() that should make it easier to access the results.} \description{ Note that this is only a wrapper around a list which is the return value in PWMEnrich 1.3 and as such it provides the same interface as a list (for backward compatibility), with some additional methods. } \section{Slots}{ \describe{ \item{\code{res}:}{a list of old results with elements such as: sequence.bg, sequence.nobg, group.bg, group.nobg} } } PWMEnrich/man/motifIC.Rd0000644000175100017510000000211614614305422015763 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{motifIC} \alias{motifIC} \title{Information content for a PWM or PFM} \usage{ motifIC( motif, prior.params = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25), bycol = FALSE ) } \arguments{ \item{motif}{a matrix of frequencies, or a PWM object} \item{prior.params}{the prior parameters to use when a matrix is given (ignored if motif is already a PWM)} \item{bycol}{if to return values separately for each column} } \value{ information content in bits (i.e. log2) } \description{ Information content for a PWM or PFM } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # the nucleotide distribution is taken from the PWM (in this case genomic background) motifIC(MotifDb.Dmel[["ttk"]]) # information content with default uniform background because the input is a matrix, # not PWM object motifIC(MotifDb.Dmel.PFM[["ttk"]]) } } PWMEnrich/man/motifPrAUC.Rd0000644000175100017510000000065614614305422016411 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{motifPrAUC} \alias{motifPrAUC} \title{Calculate PR-AUC for motifs ranked according to some scoring scheme} \usage{ motifPrAUC(seq.res) } \arguments{ \item{seq.res}{a matrix where each column represents a PWM and each row a result for a different sequence.} } \description{ Note that this function asssumes that smaller values are better! } PWMEnrich/man/motifRankingForGroup-MotifEnrichmentResults-method.Rd0000644000175100017510000000410314614305422026474 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{motifRankingForGroup,MotifEnrichmentResults-method} \alias{motifRankingForGroup,MotifEnrichmentResults-method} \alias{motifRankingForGroup} \title{Get a ranking of motifs by their enrichment in the whole set of sequences} \usage{ \S4method{motifRankingForGroup}{MotifEnrichmentResults}( obj, bg = TRUE, id = FALSE, order = FALSE, rank = FALSE, unique = FALSE, ... ) } \arguments{ \item{obj}{a MotifEnrichmentResults object} \item{bg}{if to use background corrected P-values to do the ranking (if available)} \item{id}{if to show PWM IDs instead of target TF names} \item{order}{if to output the ordering of PWMs instead of actual P-values or raw values} \item{rank}{if the output should be rank of a PWM instead of actual P-values or raw values} \item{unique}{if TRUE, only the best rank is taken for each TF (only when id = FALSE, order = FALSE)} \item{...}{currently unused} } \value{ a vector of P-values or raw enrichments sorted such that the first motif is most enriched } \description{ Get a ranking of motifs by their enrichment in the whole set of sequences } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # most enriched in both sequences (sorted by lognormal background P-value) head(motifRankingForGroup(res)) # Return a non-redundant set of TFs head(motifRankingForGroup(res, unique=TRUE)) # sorted by raw affinity instead of P-value head(motifRankingForGroup(res, bg=FALSE)) # show IDs instead of target TF names head(motifRankingForGroup(res, id=TRUE)) # output the rank instead of P-value head(motifRankingForGroup(res, rank=TRUE)) } } PWMEnrich/man/motifRankingForSequence-MotifEnrichmentResults-method.Rd0000644000175100017510000000426614614305422027162 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{motifRankingForSequence,MotifEnrichmentResults-method} \alias{motifRankingForSequence,MotifEnrichmentResults-method} \alias{motifRankingForSequence} \title{Get a ranking of motifs by their enrichment in one specific sequence} \usage{ \S4method{motifRankingForSequence}{MotifEnrichmentResults}( obj, seq.id, bg = TRUE, id = FALSE, order = FALSE, rank = FALSE, unique = FALSE, ... ) } \arguments{ \item{obj}{a MotifEnrichmentResults object} \item{seq.id}{either the sequence number or sequence name} \item{bg}{if to use background corrected P-values to do the ranking (if available)} \item{id}{if to show PWM IDs instead of target TF names} \item{order}{if to output the ordering of PWMs instead of actual P-values or raw values} \item{rank}{if the output should be rank of a PWM instead of actual P-values or raw values} \item{unique}{if TRUE, only the best rank is taken for each TF (only when id = FALSE, order = FALSE)} \item{...}{currently unused} } \value{ a vector of P-values or raw enrichments sorted such that the first motif is most enriched } \description{ Get a ranking of motifs by their enrichment in one specific sequence } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # most enriched in the second sequences (sorted by lognormal background P-value) head(motifRankingForSequence(res, 2)) # return unique TFs enriched in sequence 2 head(motifRankingForSequence(res, 2, unique=TRUE)) # sorted by raw affinity instead of P-value head(motifRankingForSequence(res, 2, bg=FALSE)) # show IDs instead of target TF names head(motifRankingForSequence(res, 2, id=TRUE)) # output the rank instead of P-value head(motifRankingForSequence(res, 2, rank=TRUE)) } } PWMEnrich/man/motifRecoveryAUC.Rd0000644000175100017510000000070614614305422017622 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{motifRecoveryAUC} \alias{motifRecoveryAUC} \title{Calculate Recovery-AUC for motifs ranked according to some scoring scheme} \usage{ motifRecoveryAUC(seq.res) } \arguments{ \item{seq.res}{a matrix where each column represents a PWM and each row a result for a different sequence.} } \description{ Note that this function asssumes that smaller values are better! } PWMEnrich/man/motifScores.Rd0000644000175100017510000000414314614305422016730 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{motifScores} \alias{motifScores} \title{Motif affinity or number of hits over a threshold} \usage{ motifScores( sequences, motifs, raw.scores = FALSE, verbose = TRUE, cutoff = NULL ) } \arguments{ \item{sequences}{a set of sequences to be scanned, a list of DNAString or other scannable objects} \item{motifs}{a list of motifs either as frequency matrices (PFM) or as PWM objects. If PFMs are specified they are converted to PWMs using uniform background.} \item{raw.scores}{if to return raw scores (odds) for each position in the sequence. Note that scores for forward and reverse strand are concatenated into a single long vector of scores (twice the length of the sequence)} \item{verbose}{if to print verbose output} \item{cutoff}{if not NULL, will count number of matches with score above value specified (instead of returning the average affinity). Can either be one value, or a vector of values for each of the motifs.} } \value{ if raw.scores=FALSE, returns a matrix of mean scores (after cutoff if any), where columns are motifs. The returned values are either mean odd scores (not log-odd), or number of hits above a threshold; otherwise if raw.scores=TRUE, returns a list of raw score values (before cutoff) } \description{ Scan a number of sequences either to find overall affinity, or a number of hits over a score threshold. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # affinity scores affinity = motifScores(DNAString("CGTAGGATAAAGTAACTAGTTGATGATGAAAG"), MotifDb.Dmel) # motif hit count with Patser score of 4 counts = motifScores(DNAString("CGTAGGATAAAGTAACTAGTTGATGATGAAAG"), MotifDb.Dmel, cutoff=log2(exp(4))) print(affinity) print(counts) # scanning multiple sequences sequences = list(DNAString("CGTAGGATAAAGTAACTAGTTGATGATGAAAG"), DNAString("TGAGACGAAGGGGATGAGATGCGGAAGAGTGAAA")) affinity2 = motifScores(sequences, MotifDb.Dmel) print(affinity2) } } PWMEnrich/man/motifScoresBigMemory.Rd0000644000175100017510000000212514614305422020541 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{motifScoresBigMemory} \alias{motifScoresBigMemory} \title{This is a memory intensive version of motifScore() which is about 2 times faster} \usage{ motifScoresBigMemory( sequences, motifs, raw.scores = FALSE, verbose = TRUE, cutoff = NULL, seq.all = NULL ) } \arguments{ \item{sequences}{set of input sequences} \item{motifs}{set of input PWMs or PFMs} \item{raw.scores}{if to return scores for each base-pair} \item{verbose}{if to produce verbose output} \item{cutoff}{the cutoff for calling binding sites (in base 2 log).} \item{seq.all}{already concatenated sequences if already available (used to internally speed up things)} } \description{ The parameters and functionality are the same as \code{\link{motifScores}}. Please refer to documentation of this function for detailed explanation of functionality. } \details{ This function is not meant to be called directly, but is indirectly called by motifScores() once a global parameters useBigMemory is set. } \seealso{ \code{\link{motifScores}} } PWMEnrich/man/motifSimilarity.Rd0000644000175100017510000000402514614305422017617 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/similarity.R \name{motifSimilarity} \alias{motifSimilarity} \title{Calculates similarity between two PFMs.} \usage{ motifSimilarity(m1, m2, trim = 0.4, self.sim = FALSE) } \arguments{ \item{m1}{matrix with four rows representing the frequency matrix of first motif} \item{m2}{matrix with four rows representing the frequency matrix of second motif} \item{trim}{bases with information content smaller than this value will be trimmed off both motif ends} \item{self.sim}{if to calculate self similarity (i.e. without including offset=0 in alignment)} } \description{ This function calculates the normalized motif correlation as a measure of motif frequency matrix similarity. } \details{ This score is essentially a normalized version of the sum of column correlations as proposed by Pietrokovski (1996). The sum is normalized by the average motif length of m1 and m2, i.e. (ncol(m1)+ncol(m2))/2. Thus, for two idential motifs this score is going to be 1. For unrelated motifs the score is going to be typically around 0. Motifs need to aligned for this score to be calculated. The current implementation tries all possible ungapped alignment with a minimal of two basepair matching, and the maximal score over all alignments is returned. Motif 1 is aligned both to Motif 2 and its reverse complement. Thus, the motif similarities are the same if the reverse complement of any of the two motifs is given. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # calculate the similarity of tin and vnd motifs (which are almost identical) motifSimilarity(MotifDb.Dmel.PFM[["tin"]], MotifDb.Dmel.PFM[["vnd"]]) # similarity of two unrelated motifs motifSimilarity(MotifDb.Dmel.PFM[["tin"]], MotifDb.Dmel.PFM[["ttk"]]) } } \references{ Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 1996;24:3836-3845. } PWMEnrich/man/operators-MotifEnrichmentReport.Rd0000644000175100017510000000141614614305422022736 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentReport-methods.R \name{names,MotifEnrichmentReport} \alias{names,MotifEnrichmentReport} \alias{names,MotifEnrichmentReport-method} \alias{$,MotifEnrichmentReport-method} \alias{[,MotifEnrichmentReport-method} \title{Names of variables} \usage{ \S4method{names}{MotifEnrichmentReport}(x) \S4method{$}{MotifEnrichmentReport}(x, name) \S4method{[}{MotifEnrichmentReport}(x, i, j, ..., drop = TRUE) } \arguments{ \item{x}{the MotifEnrichmentReport object} \item{name}{the variable name} \item{i}{the row selector} \item{j}{unused} \item{...}{unused} \item{drop}{unused (always FALSE)} } \value{ the names of the variables } \description{ Columns stored in the motif enrichment report } PWMEnrich/man/operators-MotifEnrichmentResults.Rd0000644000175100017510000000115214614305422023121 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{names,MotifEnrichmentResults} \alias{names,MotifEnrichmentResults} \alias{names,MotifEnrichmentResults-method} \alias{$,MotifEnrichmentResults-method} \title{Names of variables} \usage{ \S4method{names}{MotifEnrichmentResults}(x) \S4method{$}{MotifEnrichmentResults}(x, name) } \arguments{ \item{x}{the MotifEnrichmentResults object} \item{name}{the variable name} } \value{ the names of the variables } \description{ Name of different pieces of information associated with MotifEnrichmentResults } PWMEnrich/man/operators-PWM.Rd0000644000175100017510000000106614614305422017113 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWM-methods.R \name{names,PWM} \alias{names,PWM} \alias{names,PWM-method} \alias{$,PWM-method} \alias{length,PWM-method} \title{Names of variables} \usage{ \S4method{names}{PWM}(x) \S4method{$}{PWM}(x, name) \S4method{length}{PWM}(x) } \arguments{ \item{x}{the PWM object} \item{name}{the variable name} } \value{ the names of the variables } \description{ Name of different pieces of information associated with PWM Returns the motif length, i.e. the number of columns in the PWM. } PWMEnrich/man/operators-PWMCutoffBackground.Rd0000644000175100017510000000111114614305422022251 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{names,PWMCutoffBackground} \alias{names,PWMCutoffBackground} \alias{names,PWMCutoffBackground-method} \alias{$,PWMCutoffBackground-method} \title{Names of variables} \usage{ \S4method{names}{PWMCutoffBackground}(x) \S4method{$}{PWMCutoffBackground}(x, name) } \arguments{ \item{x}{the PWMCutoffBackground object} \item{name}{the variable name} } \value{ the names of the variables } \description{ Name of different pieces of information associated with PWMCutoffBackground } PWMEnrich/man/operators-PWMEmpiricalBackground.Rd0000644000175100017510000000114114614305422022733 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{names,PWMEmpiricalBackground} \alias{names,PWMEmpiricalBackground} \alias{names,PWMEmpiricalBackground-method} \alias{$,PWMEmpiricalBackground-method} \title{Names of variables} \usage{ \S4method{names}{PWMEmpiricalBackground}(x) \S4method{$}{PWMEmpiricalBackground}(x, name) } \arguments{ \item{x}{the PWMEmpiricalBackground object} \item{name}{the variable name} } \value{ the names of the variables } \description{ Name of different pieces of information associated with PWMEmpiricalBackground } PWMEnrich/man/operators-PWMGEVBackground.Rd0000644000175100017510000000106114614305422021450 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{names,PWMGEVBackground} \alias{names,PWMGEVBackground} \alias{names,PWMGEVBackground-method} \alias{$,PWMGEVBackground-method} \title{Names of variables} \usage{ \S4method{names}{PWMGEVBackground}(x) \S4method{$}{PWMGEVBackground}(x, name) } \arguments{ \item{x}{the PWMGEVBackground object} \item{name}{the variable name} } \value{ the names of the variables } \description{ Name of different pieces of information associated with PWMGEVBackground } PWMEnrich/man/operators-PWMLognBackground.Rd0000644000175100017510000000107114614305422021727 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{names,PWMLognBackground} \alias{names,PWMLognBackground} \alias{names,PWMLognBackground-method} \alias{$,PWMLognBackground-method} \title{Names of variables} \usage{ \S4method{names}{PWMLognBackground}(x) \S4method{$}{PWMLognBackground}(x, name) } \arguments{ \item{x}{the PWMLognBackground object} \item{name}{the variable name} } \value{ the names of the variables } \description{ Name of different pieces of information associated with PWMLognBackground } PWMEnrich/man/PFMtoPWM.Rd0000644000175100017510000000234314614305422016004 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{PFMtoPWM} \alias{PFMtoPWM} \title{Convert frequencies into motifs using PWMUnscaled} \usage{ PFMtoPWM( motifs, id = names(motifs), name = names(motifs), seq.count = NULL, ... ) } \arguments{ \item{motifs}{a list of motifs represented as matrices of frequencies (PFM)} \item{id}{the set of IDs for the motifs (defaults to names of the 'motifs' list)} \item{name}{the set of names for the motifs (defaults to names of the 'motifs' list)} \item{seq.count}{if frequencies in the motifs are normalized to 1, provides a vector of sequence counts (e.g. for MotifDb motifs)} \item{...}{other parameters to PWMUnscaled} } \description{ Note that this function is deprecated and replaced by \code{toPWM()}. } \examples{ \dontrun{ if (requireNamespace("PWMEnrich.Dmelanogaster.background")) { data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") # convert to PWM with uniform background PFMtoPWM(MotifDb.Dmel.PFM) # get background for drosophila (quick mode on a reduced dataset) prior = getBackgroundFrequencies("dm3", quick=TRUE) # convert with genomic background PFMtoPWM(MotifDb.Dmel.PFM, prior.params=prior) } } } PWMEnrich/man/plot-MotifEnrichmentReport-missing-method.Rd0000644000175100017510000000264314614305422024626 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plot,MotifEnrichmentReport,missing-method} \alias{plot,MotifEnrichmentReport,missing-method} \title{Plot the motif enrichment report} \usage{ \S4method{plot}{MotifEnrichmentReport,missing}( x, y, fontsize = 14, id.fontsize = fontsize, header.fontsize = fontsize, widths = NULL, ... ) } \arguments{ \item{x}{a MotifEnrichmentReport object} \item{y}{unused} \item{fontsize}{font size to use in the plot} \item{id.fontsize}{font size to use for the motif IDs} \item{header.fontsize}{font size of the header} \item{widths}{the relative widths of columns} \item{...}{unused if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # produce a report for all sequences taken together r = groupReport(res) # plot the top 10 most enriched motifs plot(r[1:10]) }} } \description{ Plots a graphical version of the motif enrichment report. Note that all values are plotted, if you want to plot only a subset of a report, first select this subset (see examples). } PWMEnrich/man/plot-PWM-missing-method.Rd0000644000175100017510000000121614614305422020775 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plot,PWM,missing-method} \alias{plot,PWM,missing-method} \title{Plotting for the PWM class} \usage{ \S4method{plot}{PWM,missing}(x, y, ...) } \arguments{ \item{x}{the PWM object} \item{y}{unused} \item{...}{other parameters to pass to seqLogo's \code{plot} function} } \description{ This function produces a sequence logo (via package seqLogo). } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # plot the tinman motif from MotifDb plot(MotifDb.Dmel[["tin"]]) } } PWMEnrich/man/plotMotifScores.Rd0000644000175100017510000000774614614305422017603 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plotMotifScores} \alias{plotMotifScores} \title{Plot the raw motifs scores as returned by motifScores()} \usage{ plotMotifScores( scores, sel.motifs = NULL, seq.names = NULL, cols = NULL, cutoff = NULL, log.fun = log2, main = "", legend.space = 0.3, max.score = NULL, trans = 0.5, text.cex = 0.9, legend.cex = 0.9, motif.names = NULL, seq.len.spacing = 8, shape = "rectangle" ) } \arguments{ \item{scores}{the list of motifs scores. Each element of the list is a matrix of scores for one sequences. The columns in the matrix correspond to different motifs. Each column contains the odds (not log-odds!) scores over both strands. For example, for a sequence of length 5, scores for a 3 bp motifs could be: \code{c(0.1, 1, 4, NA, NA, 1, 0.3, 2, NA, NA)}. The first 3 numbers are odds scores starting at first three bases, and the second lot of 3 numbers is the scores starting at the same positions but with the reverse complement of the motif. The last two values are NA on both strands because we do not support partial motif hits.} \item{sel.motifs}{a vector of motif names. Use this parameter to show the motif hits to only a subset of motifs for which the scores are available.} \item{seq.names}{a vector of sequence names to show in the graph. If none specified, the sequences will be named Sequence 1, Sequence 2, ...} \item{cols}{a vector of colours to use to colour code motif hits. If none are specified, the current palette will be used.} \item{cutoff}{either a single value, or a vector of values. The values are PWM cutoffs after \code{log.fun} (see below). Only motif scores above these cutoffs will be shown. If a single values is specified, it will be used for all PWMs, otherwise the vector needs to specify one cutoff per PWM.} \item{log.fun}{the logarithm function to use to calculate log-odds. By default log2 is used for consistency with Biostrings.} \item{main}{the main title} \item{legend.space}{the proportion of horizontal space to reserve for the legend. The default is 30\%.} \item{max.score}{the maximal log-odds score used to scale all other scores. By default this values is automatically determined, but it can also be set manually to make multiple plots comparable.} \item{trans}{the level of transparency. By default 50\% transparency to be able to see overlapping binding sites} \item{text.cex}{the scaling factor for sequence names} \item{legend.cex}{the scaling factor for the legend} \item{motif.names}{optional vector of motif names to show instead of those present as column names in \code{scores}} \item{seq.len.spacing}{the spacing (in bp units) between the end of the sequence line and the text showing the length in bp} \item{shape}{the shape to use to draw motif occurances, valid values are "rectangle" (default), "line" and "triangle"} } \description{ This function visualises the motif scores for one or more sequences. Sequences are drawn as lines, and scores are plotted as triangles at both sides of the line (corresponding to the two strands). The width of the base of the triangle corresponds to motif width and the height to the motif \code{log(score)} that is positive and greater than the \code{cutoff} parameter (if specified). All scores have the same y-axis, so the heights of bars are comparable between sequences and motifs. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # Load Drosophila PWMs data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # two sequences of interest sequences = list(DNAString("GAAGTATCAAGTGACCAGGTGAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) # select the tinman and snail motifs pwms = MotifDb.Dmel[c("tin", "sna")] # get the raw score that will be plotted scores = motifScores(sequences, pwms, raw.scores=TRUE) # plot the scores in both sequences, green for tin and blue for sna plotMotifScores(scores, cols=c("green", "blue")) } } PWMEnrich/man/plotMultipleMotifs.Rd0000644000175100017510000000231214614305422020303 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plotMultipleMotifs} \alias{plotMultipleMotifs} \title{Plot mulitple motifs in a single plot} \usage{ plotMultipleMotifs( pwms, titles = names(pwms), rows = ceiling(sqrt(length(pwms))), cols = ceiling(sqrt(length(pwms))), xmargin.scale = 0.4, ymargin.scale = 0.4, ... ) } \arguments{ \item{pwms}{a list of PWM objects or frequency matrices} \item{titles}{a characater vector of titles for each of the plots} \item{rows}{number of rows in the grid} \item{cols}{number or cols in the grid} \item{xmargin.scale}{the scaling parameter for the X-axis margin. Useful when plotting more than one logo on a page} \item{ymargin.scale}{the scaling parameter for the Y-axis margin. Useful when plotting more than one logo on a page} \item{...}{other parameters passed to seqLogoGrid()} } \description{ Individual motif logos are plotted on a rows x cols grid. This function is a convenience interface for the \code{seqLogoGrid} function that deals with viewpoint placement in a matrix-like grid layout. } \details{ By default will try to make a square grid plot that would fit all the motifs and use list names as captions. } PWMEnrich/man/plotPFM.Rd0000644000175100017510000000054314614305422015754 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plotPFM} \alias{plotPFM} \title{Plot a PFM (not PWM) using seqLogo} \usage{ plotPFM(pfm, ...) } \arguments{ \item{pfm}{a matrix where rows are the four nucleotides} \item{...}{additional parameters for plot()} } \description{ Plot a PFM (not PWM) using seqLogo } PWMEnrich/man/plotTopMotifsGroup-MotifEnrichmentResults-method.Rd0000644000175100017510000000260014614305422026220 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{plotTopMotifsGroup,MotifEnrichmentResults-method} \alias{plotTopMotifsGroup,MotifEnrichmentResults-method} \alias{plotTopMotifsGroup} \title{Plot the top N enrichment motifs in a group of sequences} \usage{ \S4method{plotTopMotifsGroup}{MotifEnrichmentResults}(obj, n, bg = TRUE, id = FALSE, ...) } \arguments{ \item{obj}{a MotifEnrichmentResults object} \item{n}{the number of top ranked motifs to plot} \item{bg}{if to use background corrected P-values to do the ranking (if available)} \item{id}{if to show PWM IDs instead of target TF names} \item{...}{other parameters passed to \code{plotMultipleMotifs()}} } \description{ Plot the top N enrichment motifs in a group of sequences } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # plot the top 4 motifs in a 2x2 grid plotTopMotifsGroup(res, 4) # plot top 3 motifs in a single row plotTopMotifsGroup(res, 3, row=1, cols=3) } } PWMEnrich/man/plotTopMotifsSequence-MotifEnrichmentResults-method.Rd0000644000175100017510000000272614614305422026705 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{plotTopMotifsSequence,MotifEnrichmentResults-method} \alias{plotTopMotifsSequence,MotifEnrichmentResults-method} \alias{plotTopMotifsSequence} \title{Plot the top N enrichment motifs in a single sequence} \usage{ \S4method{plotTopMotifsSequence}{MotifEnrichmentResults}(obj, seq.id, n, bg = TRUE, id = FALSE, ...) } \arguments{ \item{obj}{a MotifEnrichmentResults object} \item{seq.id}{either the sequence number or sequence name} \item{n}{the number of top ranked motifs to plot} \item{bg}{if to use background corrected P-values to do the ranking (if available)} \item{id}{if to show PWM IDs instead of target TF names} \item{...}{other parameters passed to \code{plotMultipleMotifs()}} } \description{ Plot the top N enrichment motifs in a single sequence } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # plot the top 4 motifs in a 2x2 grid plotTopMotifsSequence(res, 1, 4) # plot top 3 motifs in a single row plotTopMotifsSequence(res, 1, 3, row=1, cols=3) } } PWMEnrich/man/PWM-class.Rd0000644000175100017510000000162514614305422016203 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{PWM-class} \alias{PWM-class} \title{A class that represents a Position Weight Matrix (PWM)} \description{ A class that represents a Position Weight Matrix (PWM) } \section{Slots}{ \describe{ \item{\code{id}:}{a systematic ID given to this PWM, could include the source, version, etc} \item{\code{name}:}{the name of the transcription factor (TF) to which the PWM corresponds to} \item{\code{pfm}:}{Position Frequency Matrix (PFM) from which the PWM is derived} \item{\code{prior.params}:}{Defines prior frequencies of the four bases (A,C,G,T), a named vector. These will be added to individual values for the PFM and at the same time used as background probabilities} \item{\code{pwm}:}{Final Position Weight Matrix (PWM) constructed using prior.params with logarithm base 2} } } PWMEnrich/man/PWMCutoffBackground-class.Rd0000644000175100017510000000136214614305422021350 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{PWMCutoffBackground-class} \alias{PWMCutoffBackground-class} \title{Hit count background distribution for a set of PWMs} \description{ Hit count background distribution for a set of PWMs } \section{Slots}{ \describe{ \item{\code{bg.source}:}{textual description of where the background distribution is derived from} \item{\code{bg.cutoff}:}{the cutoff score used to find significant motif hits (in log2 odds), either a single value or a vector of values} \item{\code{bg.P}:}{the density of significant motif hits per nucleotide in background} \item{\code{pwms}:}{the pwms for which the background has been compiled} } } PWMEnrich/man/PWMEmpiricalBackground-class.Rd0000644000175100017510000000133614614305422022030 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{PWMEmpiricalBackground-class} \alias{PWMEmpiricalBackground-class} \title{Background for calculating empirical P-values} \description{ This object contains raw scores for one very long sequence, thus it can be very large. } \section{Slots}{ \describe{ \item{\code{bg.source}:}{textual description of where the background distribution is derived from} \item{\code{bg.fwd}:}{affinity scores (odds) for the forward strand. PWMs as columns} \item{\code{bg.rev}:}{affinity scores (odds) for the reverse strand. PWMs as columns} \item{\code{pwms}:}{the pwms for which the background has been compiled} } } PWMEnrich/man/PWMEnrich-package.Rd0000644000175100017510000000145414614305422017622 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMEnrich-package.R \docType{package} \name{PWMEnrich-package} \alias{PWMEnrich} \alias{PWMEnrich-package} \title{PWMEnrich: PWM enrichment analysis} \description{ A toolkit of high-level functions for DNA motif scanning and enrichment analysis built upon Biostrings. The main functionality is PWM enrichment analysis of already known PWMs (e.g. from databases such as MotifDb), but the package also implements high-level functions for PWM scanning and visualisation. The package does not perform "de novo" motif discovery, but is instead focused on using motifs that are either experimentally derived or computationally constructed by other tools. } \keyword{internal} PWMEnrich/man/PWMGEVBackground-class.Rd0000644000175100017510000000171414614305422020544 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{PWMGEVBackground-class} \alias{PWMGEVBackground-class} \title{Generalized Extreme Values (GEV) background for P-values} \description{ The three parameters of the GEV distribution are fitted by doing linear regression on log of sequence length. } \section{Slots}{ \describe{ \item{\code{bg.source}:}{textual description of where the background distribution is derived from} \item{\code{bg.loc}:}{linear regression model for estimating the location parameter based on log(L), list of lm objects of PWMs} \item{\code{bg.scale}:}{linear regression model for estimating the scale parameter based on log(L), list of lm objects of PWMs} \item{\code{bg.shape}:}{linear regression model for estimating the shape parameter based on log(L), list of lm objects of PWMs} \item{\code{pwms}:}{the pwms for which the background has been compiled} } } PWMEnrich/man/PWMLognBackground-class.Rd0000644000175100017510000000150514614305422021020 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllDataClasses.R \docType{class} \name{PWMLognBackground-class} \alias{PWMLognBackground-class} \title{Lognormal background distribution for a set of PWMs} \description{ Lognormal background distribution for a set of PWMs } \section{Slots}{ \describe{ \item{\code{bg.source}:}{textual description of where the background distribution is derived from} \item{\code{bg.len}:}{the length to which the background is normalized to. This is a vector of values, can have a different value for each motif.} \item{\code{bg.mean}:}{the mean value of the lognormal distribution at bg.len} \item{\code{bg.sd}:}{the standard deviation of the lognormal distribution at bg.len} \item{\code{pwms}:}{the pwms for which the background has been compiled} } } PWMEnrich/man/PWMUnscaled.Rd0000644000175100017510000000423314614305422016555 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{PWMUnscaled} \alias{PWMUnscaled} \title{Create a PWM from PFM} \usage{ PWMUnscaled( x, id = "", name = "", type = c("log2probratio", "prob"), prior.params = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25), pseudo.count = prior.params, unit.scale = FALSE, seq.count = NULL ) } \arguments{ \item{x}{the integer count matrix representing the motif, rows as nucleotides} \item{id}{a systematic ID given to this PWM, could include the source, version, etc} \item{name}{the name of the transcription factor (TF) to which the PWM corresponds to} \item{type}{the type of PWM calculation, either as log2-odds, or posterior probability (frequency matrix)} \item{prior.params}{the pseudocounts for each of the nucleotides} \item{pseudo.count}{the pseudo-count values if different from priors} \item{unit.scale}{if to unit.scale the pwm (default is no unit scaling)} \item{seq.count}{if x is a normalised PFM (i.e. with probabilities instead of sequence counts), then this sequence count will be used to convert \code{x} into a count matrix} } \value{ a new PWM object representing the PWM } \description{ The PWM function from Biostrings without unit scaling } \details{ By default the Biostrings package scales the log-odds score so it is within 0 and 1. In this function we take a more traditional approach with no unit scaling and offer unit scaling as an additional parameter. See ?PWM from Biostrings for more information on input arguments. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") ttk = MotifDb.Dmel.PFM[["ttk"]] # make a PWM with uniform background PWMUnscaled(ttk, id="ttk-JASPAR", name="ttk") # custom background PWMUnscaled(ttk, id="ttk-JASPAR", name="ttk", prior.params=c("A"= 0.2, "C" = 0.3, "G" = 0.3, "T" = 0.2)) # get background for drosophila (quick mode on a reduced dataset) prior = getBackgroundFrequencies("dm3", quick=TRUE) # convert using genomic background PWMUnscaled(ttk, id="ttk-JASPAR", name="ttk", prior.params=prior) } } PWMEnrich/man/rankingProcessAndReturn.Rd0000644000175100017510000000150514614305422021245 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{rankingProcessAndReturn} \alias{rankingProcessAndReturn} \title{A helper function for motifRankingForGroup and motifRankingForSequence with the common code} \usage{ rankingProcessAndReturn(res, r, id, order, rank, unique, decreasing) } \arguments{ \item{res}{the list of results from MotifEnrichmentResults object} \item{r}{the vector of raw results that needs to be processed} \item{id}{if to return IDs instead of names} \item{order}{if to return the ordering of motifs} \item{rank}{if to return the rank of motifs} \item{unique}{if to remove duplicates} \item{decreasing}{specifies the sorting order} } \description{ A helper function for motifRankingForGroup and motifRankingForSequence with the common code } PWMEnrich/man/readJASPAR.Rd0000644000175100017510000000074214614305422016250 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/readData.R \name{readJASPAR} \alias{readJASPAR} \title{Read motifs in JASPAR format} \usage{ readJASPAR(file, remove.ids = FALSE) } \arguments{ \item{file}{the filename} \item{remove.ids}{if to strip JASPAR ID's from motif names, e.g. "MA0211.1 bap" would become just "bap"} } \value{ a list of matrices representing motifs (with four nucleotides as rows) } \description{ Read motifs in JASPAR format } PWMEnrich/man/readMotifs.Rd0000644000175100017510000000222614614305422016530 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/readData.R \name{readMotifs} \alias{readMotifs} \title{Read in motifs in JASPAR or TRANSFAC format} \usage{ readMotifs(file, remove.acc = FALSE) } \arguments{ \item{file}{the filename} \item{remove.acc}{if to remove accession numbers. If TRUE, the AC entry in TRANSFAC files is ignored, and the accession is stripped from JASPAR, e.g. motif with name "MA0211.1 bap" would become just "bap". If FALSE, botht he AC and ID are used to generate the TRANSFAC name and the original motif names are preserved in JASPAR files.} } \value{ a list of 4xL matrices representing motifs (four nucleotides as rows) } \description{ The format is autodetected based on file format. If the autodetection fail then the file cannot be read. } \examples{ # read in example TRANSFAC motifs without accession codes (just IDs) readMotifs(system.file(package = "PWMEnrich", dir = "extdata", file = "example.transfac"), remove.acc = TRUE) # read in the JASPAR insects motifs provided as example readMotifs(system.file(package = "PWMEnrich", dir = "extdata", file = "jaspar-insecta.jaspar"), remove.acc = TRUE) } PWMEnrich/man/readTRANSFAC.Rd0000644000175100017510000000070314614305422016466 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/readData.R \name{readTRANSFAC} \alias{readTRANSFAC} \title{Read in motifs in TRANSFAC format} \usage{ readTRANSFAC(file, remove.acc = TRUE) } \arguments{ \item{file}{the filename} \item{remove.acc}{if to ignore transfac accession numbers} } \value{ a list of matrices representing motifs (with four nucleotides as rows) } \description{ Read in motifs in TRANSFAC format } PWMEnrich/man/registerCoresPWMEnrich.Rd0000644000175100017510000000177714614305422021002 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/options.R \name{registerCoresPWMEnrich} \alias{registerCoresPWMEnrich} \title{Register than PWMEnrich can use parallel CPU cores} \usage{ registerCoresPWMEnrich(numCores = NA) } \arguments{ \item{numCores}{number of cores to use (default to take all cores), or NULL if no parallel execution is to be used} } \description{ Certain functions (like motif scanning) can be parallelized in PWMEnrich. This function registers a number of parallel cores (via core package parallel) to be used in code that can be parallelized. After this function is called, all further PWMEnrich function calls will run in parallel if possible. } \details{ By default parallel execution is turned off. To turn it off after using it, call this function by passing NULL. } \examples{ \dontrun{ registerCoresPWMEnrich(4) # use 4 CPU cores in PWMEnrich registerCoresPWMEnrich() # use maximal number of CPUs registerCoresPWMEnrich(NULL) # do not use parallel execution } } PWMEnrich/man/reverseComplement-PWM-method.Rd0000644000175100017510000000125514614305422022052 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWM-methods.R \name{reverseComplement,PWM-method} \alias{reverseComplement,PWM-method} \title{Reverse complement for the PWM object} \usage{ \S4method{reverseComplement}{PWM}(x, ...) } \arguments{ \item{x}{an object of type PWM} \item{...}{unused} } \value{ an object of type PWM that is reverse complement of x } \description{ Finds the reverse complement of the PWM } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") reverseComplement(MotifDb.Dmel.PFM[["ttk"]]) # reverse complement of the ttk PWM } } PWMEnrich/man/scanWithPWM.Rd0000644000175100017510000000315214614305422016576 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{scanWithPWM} \alias{scanWithPWM} \title{Scan the whole sequence on both strands} \usage{ scanWithPWM( pwm, dna, pwm.rev = NULL, odds.score = FALSE, both.strands = FALSE, strand.fun = "mean" ) } \arguments{ \item{pwm}{PWM object} \item{dna}{a DNAString or other sequence from Biostrings} \item{pwm.rev}{the reverse complement for a pwm (if it is already pre-computed)} \item{odds.score}{if to return raw scores in odds (not logodds) space} \item{both.strands}{if to return results on both strands} \item{strand.fun}{which function to use to summarise values over two strands (default is "mean")} } \value{ a vector representing scores starting at each position, or a matrix with score in the two strands } \description{ The whole sequence is scanned with a PWM and scores returned beginning at each position. Partial motif matches are not done, thus the last #[length of motif]-1 scores are NA. } \details{ The function returns either an odds average (*not* log-odds average), maximal score on each strand, or scores on both strands. The function by default returns the score in log2 following the package \code{Biostrings}. } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") ttk = MotifDb.Dmel[["ttk"]] # odds average over the two strands expressed as log2-odds scanWithPWM(ttk, DNAString("CGTAGGATAAAGTAACT")) # log2-odds scores on both strands scanWithPWM(ttk, DNAString("CGTAGGATAAAGTAACT"), both.strands=TRUE) } } PWMEnrich/man/seqLogoGrid.Rd0000644000175100017510000000274414614305422016657 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{seqLogoGrid} \alias{seqLogoGrid} \title{Draw a motif logo on an existing viewport} \usage{ seqLogoGrid( pwm, ic.scale = TRUE, xaxis = TRUE, yaxis = TRUE, xfontsize = 10, yfontsize = 10, xmargin.scale = 1, ymargin.scale = 1, title = "", titlefontsize = 15 ) } \arguments{ \item{pwm}{numeric The 4xW position weight matrix.} \item{ic.scale}{logical If TRUE, the height of each column is proportional to its information content. Otherwise, all columns have the same height.} \item{xaxis}{logical If TRUE, an X-axis will be plotted.} \item{yaxis}{logical If TRUE, a Y-axis will be plotted.} \item{xfontsize}{numeric Font size to be used for the X-axis.} \item{yfontsize}{numeric Font size to be used for the Y-axis.} \item{xmargin.scale}{the scaling parameter for the X-axis margin. Useful when plotting more than one logo on a page} \item{ymargin.scale}{the scaling parameter for the Y-axis margin. Useful when plotting more than one logo on a page} \item{title}{to be shown on the top} \item{titlefontsize}{the fontsize of the title} } \description{ This function comes from the seqLogo package. It has been modified to remove some unneccessary code as suggested by W Huber (https://stat.ethz.ch/pipermail/bioconductor/2010-September/035267.html). } \details{ Use this function for more advanced plotting where the viewports are directly set up and maintained (see package \code{grid}). } PWMEnrich/man/sequenceReport-MotifEnrichmentResults-method.Rd0000644000175100017510000000345014614305422025370 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{sequenceReport,MotifEnrichmentResults-method} \alias{sequenceReport,MotifEnrichmentResults-method} \alias{sequenceReport} \title{Generate a motif enrichment report for a single sequence} \usage{ \S4method{sequenceReport}{MotifEnrichmentResults}(obj, seq.id, bg = TRUE, ...) } \arguments{ \item{obj}{a MotifEnrichmentResults object} \item{seq.id}{the sequence index or name} \item{bg}{if to use background corrected P-values to do the ranking (if available)} \item{...}{unused} } \value{ a MotifEnrichmentReport object containing a table with the following columns: \itemize{ \item 'rank' - The rank of the PWM's enrichment in the sequence \item 'target' - The name of the PWM's target gene, transcript or protein complex. \item 'id' - The unique identifier of the PWM (if set during PWM creation). \item 'raw.score' - The raw score before P-value calculation \item 'p.value' - The P-value of motif enrichment (if available) } } \description{ Generate a motif enrichment report for a single sequence } \examples{ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ ### # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") # scan two sequences for motif enrichment sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) # reports for the two sequences r1 = sequenceReport(res, 1) r2 = sequenceReport(res, 2) # view the results r1 r2 # plot the top 10 most enriched motifs in the first, and then second sequence plot(r1[1:10]) plot(r2[1:10]) } } PWMEnrich/man/show-MotifEnrichmentReport-method.Rd0000644000175100017510000000063414614305422023157 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentReport-methods.R \name{show,MotifEnrichmentReport-method} \alias{show,MotifEnrichmentReport-method} \title{show method for MotifEnrichmentReport} \usage{ \S4method{show}{MotifEnrichmentReport}(object) } \arguments{ \item{object}{the MotifEnrichmentReport object} } \description{ show method for MotifEnrichmentReport } PWMEnrich/man/show-MotifEnrichmentResults-method.Rd0000644000175100017510000000064314614305422023345 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MotifEnrichmentResults-methods.R \name{show,MotifEnrichmentResults-method} \alias{show,MotifEnrichmentResults-method} \title{show method for MotifEnrichmentResults} \usage{ \S4method{show}{MotifEnrichmentResults}(object) } \arguments{ \item{object}{the MotifEnrichmentResults object} } \description{ show method for MotifEnrichmentResults } PWMEnrich/man/show-PWM-method.Rd0000644000175100017510000000043614614305422017333 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWM-methods.R \name{show,PWM-method} \alias{show,PWM-method} \title{show method for PWM} \usage{ \S4method{show}{PWM}(object) } \arguments{ \item{object}{the PWM object} } \description{ show method for PWM } PWMEnrich/man/show-PWMCutoffBackground-method.Rd0000644000175100017510000000061014614305422022474 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{show,PWMCutoffBackground-method} \alias{show,PWMCutoffBackground-method} \title{show method for PWMCutoffBackground} \usage{ \S4method{show}{PWMCutoffBackground}(object) } \arguments{ \item{object}{the PWMCutoffBackground object} } \description{ show method for PWMCutoffBackground } PWMEnrich/man/show-PWMEmpiricalBackground-method.Rd0000644000175100017510000000063214614305422023157 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{show,PWMEmpiricalBackground-method} \alias{show,PWMEmpiricalBackground-method} \title{show method for PWMEmpiricalBackground} \usage{ \S4method{show}{PWMEmpiricalBackground}(object) } \arguments{ \item{object}{the PWMEmpiricalBackground object} } \description{ show method for PWMEmpiricalBackground } PWMEnrich/man/show-PWMGEVBackground-method.Rd0000644000175100017510000000056614614305422021701 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{show,PWMGEVBackground-method} \alias{show,PWMGEVBackground-method} \title{show method for PWMGEVBackground} \usage{ \S4method{show}{PWMGEVBackground}(object) } \arguments{ \item{object}{the PWMGEVBackground object} } \description{ show method for PWMGEVBackground } PWMEnrich/man/show-PWMLognBackground-method.Rd0000644000175100017510000000057414614305422022156 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{show,PWMLognBackground-method} \alias{show,PWMLognBackground-method} \title{show method for PWMLognBackground} \usage{ \S4method{show}{PWMLognBackground}(object) } \arguments{ \item{object}{the PWMLognBackground object} } \description{ show method for PWMLognBackground } PWMEnrich/man/subsetting-PWMCutoffBackground.Rd0000644000175100017510000000076014614305422022433 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{[,PWMCutoffBackground-method} \alias{[,PWMCutoffBackground-method} \title{Get the background for a subset of PWMs} \usage{ \S4method{[}{PWMCutoffBackground}(x, i, j, ..., drop = TRUE) } \arguments{ \item{x}{the PWMCutoffBackground object} \item{i}{the indicies of PWMs} \item{j}{unused} \item{...}{unused} \item{drop}{unused} } \description{ Get the background for a subset of PWMs } PWMEnrich/man/subsetting-PWMEmpiricalBackground.Rd0000644000175100017510000000077414614305422023117 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{[,PWMEmpiricalBackground-method} \alias{[,PWMEmpiricalBackground-method} \title{Get the background for a subset of PWMs} \usage{ \S4method{[}{PWMEmpiricalBackground}(x, i, j, ..., drop = TRUE) } \arguments{ \item{x}{the PWMEmpiricalBackground object} \item{i}{the indicies of PWMs} \item{j}{unused} \item{...}{unused} \item{drop}{unused} } \description{ Get the background for a subset of PWMs } PWMEnrich/man/subsetting-PWMGEVBackground.Rd0000644000175100017510000000074414614305422021630 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{[,PWMGEVBackground-method} \alias{[,PWMGEVBackground-method} \title{Get the background for a subset of PWMs} \usage{ \S4method{[}{PWMGEVBackground}(x, i, j, ..., drop = TRUE) } \arguments{ \item{x}{the PWMGEVBackground object} \item{i}{the indicies of PWMs} \item{j}{unused} \item{...}{unused} \item{drop}{unused} } \description{ Get the background for a subset of PWMs } PWMEnrich/man/subsetting-PWMLognBackground.Rd0000644000175100017510000000075014614305422022103 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PWMBackground-methods.R \name{[,PWMLognBackground-method} \alias{[,PWMLognBackground-method} \title{Get the background for a subset of PWMs} \usage{ \S4method{[}{PWMLognBackground}(x, i, j, ..., drop = TRUE) } \arguments{ \item{x}{the PWMLognBackground object} \item{i}{the indicies of PWMs} \item{j}{unused} \item{...}{unused} \item{drop}{unused} } \description{ Get the background for a subset of PWMs } PWMEnrich/man/toPWM.Rd0000644000175100017510000000245014614305422015440 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pwm.R \name{toPWM} \alias{toPWM} \title{Convert motifs into PWMs} \usage{ toPWM( motifs, ids = names(motifs), targets = names(motifs), seq.count = 50, prior = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25), ... ) } \arguments{ \item{motifs}{a list of motifs either as position probability matrices (PPM) or frequency matirces (PFMs)} \item{ids}{the set of IDs for the motifs (defaults to names of the 'motifs' list)} \item{targets}{the set of target TF names for the motifs (defaults to names of the 'motifs' list)} \item{seq.count}{provides a vector of sequence counts for probability matrices (PPMs). Default it 50.} \item{prior}{frequencies of the four letters in the genome. Default is uniform background.} \item{...}{other parameters to PWMUnscaled} } \description{ Convert motifs into PWMs } \examples{ \dontrun{ if (requireNamespace("PWMEnrich.Dmelanogaster.background")) { data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") toPWM(MotifDb.Dmel.PFM) # convert to PWM with uniform background # get background for drosophila (quick mode on a reduced dataset) prior = getBackgroundFrequencies("dm3", quick=TRUE) toPWM(MotifDb.Dmel.PFM, prior=prior) # convert with genomic background } } } PWMEnrich/man/tryAllMotifAlignments.Rd0000644000175100017510000000173614614305422020730 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/similarity.R \name{tryAllMotifAlignments} \alias{tryAllMotifAlignments} \title{Try all motif alignments and return max score} \usage{ tryAllMotifAlignments(m1, m2, min.align = 2, exclude.zero = FALSE) } \arguments{ \item{m1}{frequency matrix of motif 1} \item{m2}{frequency matrix of motif 2} \item{min.align}{minimal number of basepairs that need to align} \item{exclude.zero}{if to exclude offset=0, useful for calculating self-similarity} } \value{ single maximal score } \description{ This function tries all offsets of motif1 compared to motif2 and returns the maximal (unnormalized) correlation score. } \details{ The correlation score is essentially the sum of correlations of individual aligned columns as described in Pietrokovski (1996). } \references{ Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 1996;24:3836-3845. } PWMEnrich/man/useBigMemoryPWMEnrich.Rd0000644000175100017510000000126014614305422020554 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/options.R \name{useBigMemoryPWMEnrich} \alias{useBigMemoryPWMEnrich} \title{If to use a faster implementation of motif scanning that requires abount 5 to 10 times more memory} \usage{ useBigMemoryPWMEnrich(useBigMemory = FALSE) } \arguments{ \item{useBigMemory}{a boolean value denoting if to use big memory implementation} } \description{ If to use a faster implementation of motif scanning that requires abount 5 to 10 times more memory } \examples{ \dontrun{ useBigMemoryPWMEnrich(TRUE) # switch to big memory implementation globally useBigMemoryPWMEnrich(FALSE) # switch back to default implementation } } PWMEnrich/NAMESPACE0000644000175100017510000000437714614305422014621 0ustar00biocbuildbiocbuild# Generated by roxygen2: do not edit by hand export(PFMtoPWM) export(PWMUnscaled) export(getBackgroundFrequencies) export(makeBackground) export(makePWMCutoffBackground) export(makePWMEmpiricalBackground) export(makePWMGEVBackground) export(makePWMLognBackground) export(makePWMPvalCutoffBackground) export(makePWMPvalCutoffBackgroundFromSeq) export(makePriors) export(motifDiffEnrichment) export(motifEcdf) export(motifEnrichment) export(motifIC) export(motifScores) export(motifSimilarity) export(plotMotifScores) export(plotMultipleMotifs) export(readMotifs) export(registerCoresPWMEnrich) export(scanWithPWM) export(seqLogoGrid) export(toPWM) export(useBigMemoryPWMEnrich) exportClasses(MotifEnrichmentReport) exportClasses(MotifEnrichmentResults) exportClasses(PWM) exportClasses(PWMCutoffBackground) exportClasses(PWMEmpiricalBackground) exportClasses(PWMGEVBackground) exportClasses(PWMLognBackground) exportMethods(as.data.frame) exportMethods(groupReport) exportMethods(motifRankingForGroup) exportMethods(motifRankingForSequence) exportMethods(plot) exportMethods(plotTopMotifsGroup) exportMethods(plotTopMotifsSequence) exportMethods(reverseComplement) exportMethods(sequenceReport) import(BiocGenerics) import(Biostrings) import(methods) importFrom(S4Vectors,metadata) importFrom(evd,fgev) importFrom(evd,pgev) importFrom(gdata,trim) importFrom(grDevices,col2rgb) importFrom(grDevices,palette) importFrom(grDevices,rgb) importFrom(graphics,lines) importFrom(graphics,par) importFrom(graphics,polygon) importFrom(graphics,rect) importFrom(graphics,text) importFrom(grid,dataViewport) importFrom(grid,gpar) importFrom(grid,grid.layout) importFrom(grid,grid.newpage) importFrom(grid,grid.polygon) importFrom(grid,grid.text) importFrom(grid,grid.xaxis) importFrom(grid,grid.yaxis) importFrom(grid,plotViewport) importFrom(grid,popViewport) importFrom(grid,pushViewport) importFrom(grid,unit) importFrom(grid,viewport) importFrom(seqLogo,makePWM) importFrom(seqLogo,plot) importFrom(stats,cor) importFrom(stats,dlnorm) importFrom(stats,ecdf) importFrom(stats,lm) importFrom(stats,median) importFrom(stats,na.omit) importFrom(stats,optimize) importFrom(stats,pchisq) importFrom(stats,plnorm) importFrom(stats,predict.lm) importFrom(stats,qlnorm) importFrom(stats,quantile) importFrom(utils,data) PWMEnrich/R/0000755000175100017510000000000014614305422013570 5ustar00biocbuildbiocbuildPWMEnrich/R/AllDataClasses.R0000644000175100017510000001270614614305422016541 0ustar00biocbuildbiocbuild setClassUnion("NumericOrMatrix", c("numeric", "matrix")) #' A class that represents a Position Weight Matrix (PWM) #' #' @aliases PWM-class #' @section Slots: #' \describe{ #' \item{\code{id}:}{a systematic ID given to this PWM, could include the source, version, etc} #' \item{\code{name}:}{the name of the transcription factor (TF) to which the PWM corresponds to} #' \item{\code{pfm}:}{Position Frequency Matrix (PFM) from which the PWM is derived} #' \item{\code{prior.params}:}{Defines prior frequencies of the four bases (A,C,G,T), a named vector. These will be added to individual values for the PFM and at the same time used as background probabilities} #' \item{\code{pwm}:}{Final Position Weight Matrix (PWM) constructed using prior.params with logarithm base 2} #' } #' @export setClass("PWM", representation = representation( id = "character", name = "character", pfm = "matrix", prior.params = "vector", pwm = "matrix" ) ) #' Lognormal background distribution for a set of PWMs #' #' @aliases PWMLognBackground-class #' @section Slots: #' \describe{ #' \item{\code{bg.source}:}{textual description of where the background distribution is derived from} #' \item{\code{bg.len}:}{the length to which the background is normalized to. This is a vector of values, can have a different value for each motif.} #' \item{\code{bg.mean}:}{the mean value of the lognormal distribution at bg.len} #' \item{\code{bg.sd}:}{the standard deviation of the lognormal distribution at bg.len} #' \item{\code{pwms}:}{the pwms for which the background has been compiled} #' } #' @export setClass("PWMLognBackground", representation = representation( bg.source = "character", bg.len = "NumericOrMatrix", bg.mean = "NumericOrMatrix", bg.sd = "NumericOrMatrix", pwms = "list" ) ) #' Hit count background distribution for a set of PWMs #' #' @aliases PWMCutoffBackground-class #' @section Slots: #' \describe{ #' \item{\code{bg.source}:}{textual description of where the background distribution is derived from} #' \item{\code{bg.cutoff}:}{the cutoff score used to find significant motif hits (in log2 odds), either a single value or a vector of values} #' \item{\code{bg.P}:}{the density of significant motif hits per nucleotide in background} #' \item{\code{pwms}:}{the pwms for which the background has been compiled} #' } #' @export setClass("PWMCutoffBackground", representation = representation( bg.source = "character", bg.cutoff = "numeric", bg.P = "numeric", pwms = "list" ) ) #' Background for calculating empirical P-values #' #' This object contains raw scores for one very long sequence, thus it can be very large. #' #' @aliases PWMEmpiricalBackground-class #' @section Slots: #' \describe{ #' \item{\code{bg.source}:}{textual description of where the background distribution is derived from} #' \item{\code{bg.fwd}:}{affinity scores (odds) for the forward strand. PWMs as columns} #' \item{\code{bg.rev}:}{affinity scores (odds) for the reverse strand. PWMs as columns} #' \item{\code{pwms}:}{the pwms for which the background has been compiled} #' } #' @export setClass("PWMEmpiricalBackground", representation = representation( bg.source = "character", bg.fwd = "matrix", bg.rev = "matrix", pwms = "list" ) ) #' Generalized Extreme Values (GEV) background for P-values #' #' The three parameters of the GEV distribution are fitted by doing linear regression #' on log of sequence length. #' #' @aliases PWMGEVBackground-class #' @section Slots: #' \describe{ #' \item{\code{bg.source}:}{textual description of where the background distribution is derived from} #' \item{\code{bg.loc}:}{linear regression model for estimating the location parameter based on log(L), list of lm objects of PWMs} #' \item{\code{bg.scale}:}{linear regression model for estimating the scale parameter based on log(L), list of lm objects of PWMs} #' \item{\code{bg.shape}:}{linear regression model for estimating the shape parameter based on log(L), list of lm objects of PWMs} #' \item{\code{pwms}:}{the pwms for which the background has been compiled} #' } #' @export setClass("PWMGEVBackground", representation = representation( bg.source = "character", bg.loc = "list", bg.scale = "list", bg.shape = "list", pwms = "list" ) ) #' A wrapper class for results of motifEnrichment() that should make it easier to access the results. #' #' Note that this is only a wrapper around a list which is the return value in PWMEnrich 1.3 and as such it #' provides the same interface as a list (for backward compatibility), with some additional methods. #' #' @aliases MotifEnrichmentResults-class #' @section Slots: #' \describe{ #' \item{\code{res}:}{a list of old results with elements such as: sequence.bg, sequence.nobg, group.bg, group.nobg} #' } #' @export setClass("MotifEnrichmentResults", representation = representation( res = "list" ) ) #' A report class with formatted results of motif enrichment #' #' The columns stored in this object will depend on the type of the report (either for group of sequences, or individual sequences). #' #' @aliases MotifEnrichmentReport-class #' @section Slots: #' \describe{ #' \item{\code{d}:}{a DataFrame object that contains the main tabular report data} #' \item{\code{pwms}:}{a list of \code{PWM} objects corresponding to rows of \code{d}} #' } #' @export setClass("MotifEnrichmentReport", representation = representation( d = "data.frame", pwms = "list" ) ) PWMEnrich/R/AllGenerics.R0000644000175100017510000000113214614305422016100 0ustar00biocbuildbiocbuild### define generics, mostly for MotifEnrichmentResults setGeneric("motifRankingForGroup", function(obj, ...) standardGeneric("motifRankingForGroup")) setGeneric("motifRankingForSequence", function(obj, ...) standardGeneric("motifRankingForSequence")) setGeneric("plotTopMotifsGroup", function(obj, ...) standardGeneric("plotTopMotifsGroup")) setGeneric("plotTopMotifsSequence", function(obj, ...) standardGeneric("plotTopMotifsSequence")) setGeneric("groupReport", function(obj, ...) standardGeneric("groupReport")) setGeneric("sequenceReport", function(obj, ...) standardGeneric("sequenceReport")) PWMEnrich/R/background.R0000644000175100017510000010213014614305422016027 0ustar00biocbuildbiocbuild# Functions to create background distributions #' check consistency of bg.seq input parameter #' #' @param bg.seq a set of background sequences, either a list of DNAString object or DNAStringSet object .normalize.bg.seq = function(bg.seq){ # check if the sequences are in the right format if(!inherits(bg.seq, "DNAStringSet")) { if(is.list(bg.seq)) { if(length(bg.seq) > 0 && ! inherits(bg.seq[[1]], "DNAString")) stop("bg.seq needs to be a list of DNAString objects or a DNAStringSet object") } else { stop("bg.seq needs to be a list of DNAString objects or a DNAStringSet object") } } #else { #bg.seq = DNAStringSetToList(bg.seq) #} return(bg.seq) } #' Make priors from background sequences #' #' These priors serve both as background nucleotide frequencies and pseudo-counts #' for PWMs. #' #' @param bg.seq a set of background sequences #' @param bg.pseudo.count the total pseudocount shared between nucleotides #' @export #' @examples #' # some example sequences #' sequences = list(DNAString("AAAGAGAGTGACCGATGAC"), DNAString("ACGATGAGGATGAC")) #' # make priors with pseudo-count of 1 shared between them #' makePriors(sequences, 1) makePriors = function(bg.seq, bg.pseudo.count){ bg.seq = .normalize.bg.seq(bg.seq) # start with the count of the first sequence acgt.count = alphabetFrequency(bg.seq[[1]])[c("A", "C", "G", "T")] acgt.count = acgt.count[c("A", "C", "G", "T")] + acgt.count[c("T", "G", "C", "A")] # add ACGT counts for the rest if(length(bg.seq) > 1 ){ for(i in 2:length(bg.seq)){ cont = alphabetFrequency(bg.seq[[i]])[c("A", "C", "G", "T")] # add the counts on the other strand cont[c("A", "C", "G", "T")] = cont[c("A", "C", "G", "T")] + cont[c("T", "G", "C", "A")] # sum up acgt.count = acgt.count + cont } } # scale to bg.pseudo.count prior = (acgt.count / sum(acgt.count)) * bg.pseudo.count return(prior) } #' Make a lognormal background distribution #' #' Construct a lognormal background distribution for a set of sequences. #' Sequences concatenated are binned in 'bg.len' chunks and lognormal distribution #' fitted to them. #' #' @param bg.seq a set of background sequences, either a list of DNAString object or DNAStringSet object #' @param motifs a set of motifs, either a list of frequency matrices, or a list of PWM objects. If #' frequency matrices are given, the background distribution is fitted from bg.seq. #' @param bg.pseudo.count the pseudo count which is shared between nucleotides when frequency matrices are given #' @param bg.len background sequences will be split into tiles of this length (default: 250bp) #' @param bg.len.sizes background tiles will be joined into bigger tiles containing this much smaller tiles. #' The default is \code{2^(0:4)}, which with \code{bg.len} translates into #' 250bp, 500bp, 1000bp, 1500bp, 2000bp, 4000bp. Note this is only used in the "human" algorithm. #' @param bg.source a free-form textual description of how the background was generated #' @param verbose if to produce verbose output #' @param algorithm type of algorithm to use, valid values are: "default" and "human". #' @export #' @examples #' \dontrun{ #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # make background for MotifDb motifs using 2kb promoters of all D. melanogaster transcripts #' if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) #' makePWMLognBackground(Dmelanogaster$upstream2000, MotifDb.Dmel.PFM) #' } #' } makePWMLognBackground = function(bg.seq, motifs, bg.pseudo.count=1, bg.len=250, bg.len.sizes=2^(0:4), bg.source="", verbose=TRUE, algorithm="default"){ # check if the sequences are in the right format bg.seq = .normalize.bg.seq(bg.seq) # convert to list if a single motif is given if(!is.list(motifs)) motifs = list(motifs) if(bg.len.sizes[1] != 1) stop("First value of 'bg.len.sizes' needs to be 1") if(!(algorithm %in% c("default", "human"))) stop("Parameter 'algorithm' needs to be one of: ['default', 'human']") cat("NOTE: Using the '", algorithm, "' algorithm to infer background parameters,\n ", sep="") if(algorithm == "default"){ cat("appropriate for all organisms except human.\n") } else { cat("appropriate only for human data.\n") } # concatenate all the background sequences into a single long sequence bg.seq.all = concatenateSequences(bg.seq) # generate start and end positions bg.seq.start = seq(1, nchar(bg.seq.all)+1, bg.len) bg.seq.end = bg.seq.start - 1 bg.seq.start = bg.seq.start[1:(length(bg.seq.start)-1)] bg.seq.end = bg.seq.end[2:length(bg.seq.end)] # split into bg.len sequences bg = DNAStringSet(bg.seq.all, start=bg.seq.start, end=bg.seq.end) if(length(bg)<1000) warnings(paste("The number of chunks of size", bg.len, "is smaller than 1000. This might lead to an non-robust estimate of lognormal distribution parameters.")) # convert motifs to PWM format if neccessary if(!inherits(motifs[[1]], "PWM")) { prior = makePriors(list(DNAString(bg.seq.all)), bg.pseudo.count) pwms = PFMtoPWM(motifs, prior.params = prior) } else { pwms = motifs } # finally, do motif scanning and calculate mean and sd bg.res = motifScores(bg, pwms, verbose=verbose) # pwm lengths and base lengths pwm.len = sapply(pwms, length) bg.len.real = bg.len - pwm.len + 1 # do a robust estimate of parameters # dnorm with left-censored data and known meanlog # # x value for which dnorm is needed # cen logical vector if the value is censored # meanlog meanlog parameter # sdlog sdlog parameter dlnorm.lcen = function(x, cen, meanlog, sdlog){ if(sdlog <= 0) -Inf xn = x[!cen] xc = x[cen] sum(dlnorm(xn, meanlog, sdlog, log=TRUE)) + sum(plnorm(xc, meanlog, sdlog, lower.tail=TRUE, log.p=TRUE)) } # Negative log-likelihood of left-censored data # # NOTE: this function assumes xc, cen and meanlog and in environment # # p set of parameters (in this case only sdlog) ll.lcen = function(p){ -dlnorm.lcen(xc, cen, meanlog, p) } if(algorithm == "default"){ # the simple default algorithm bg.mean = colMeans(bg.res) bg.sd = apply(bg.res, 2, sd) } else { # a matrix of inferred values that will be averaged over bg.mean.mat = bg.sd.mat = matrix(0, nrow=length(bg.len.sizes), ncol=ncol(bg.res)) colnames(bg.mean.mat) = colnames(bg.sd.mat) = colnames(bg.res) if(verbose){ cat("Parameter estimation...\n") } # do estimation for different sizes of background for(size.inx in 1:length(bg.len.sizes)){ # current size multiplier cur.mul = bg.len.sizes[size.inx] if(verbose){ cat("Recording distribution properties for", bg.len * cur.mul, "bp tiles (this may take a while...)\n") } # summarise bg.res for the current size max.len = nrow(bg.res) %/% cur.mul * cur.mul group = (0:(max.len-1)) %/% cur.mul # group by the groups and do an average if(cur.mul == 1){ bg.res.size = bg.res } else { # new implementation for faster grouping! out = matrix(0, nrow=length(unique(group)), ncol=ncol(bg.res)) for(i in 1:nrow(out)){ row.inx = (i-1)*cur.mul+1 r = bg.res[row.inx,] for(j in 1:(cur.mul-1)){ r = r + bg.res[row.inx+j,] } out[i,] = r / cur.mul } bg.res.size = out # double-check just in case ! #bg.res.size = by(bg.res[1:max.len,], group, colMeans) #bg.res.size = do.call("rbind", as.list(bg.res.size)) } # consistency check stopifnot(nrow(bg.res.size) == max.len/cur.mul) # do robust estimate for each motif for(i in 1:ncol(bg.res)){ if(verbose){ cat("Estimating parameters for motif", i, "/", ncol(bg.res), "\n") } x = bg.res.size[,i] # censor everything below the 75% quantile b = quantile(x, 0.75) # left-censor data xc = x xc[x<=b] = b cen = rep(FALSE, length(x)) cen[x<=b] = TRUE # meanlog based on median meanlog = median(log(x)) # optimize sdlog p = optimize(ll.lcen, c(1e-8, 1e5)) # transform and save ml = meanlog sl = p$minimum mx = exp(ml + (sl^2)/2) sx = sqrt((exp(sl^2)-1)*exp(2*ml+sl^2)) # save bg.mean.mat[size.inx, i] = mx bg.sd.mat[size.inx, i] = sx } } # record the values bg.mean = bg.mean.mat bg.sd = bg.sd.mat # record the sizes bg.len.real = outer(bg.len.sizes, bg.len.real) rownames(bg.len.real) = NULL } new("PWMLognBackground", bg.source=bg.source, bg.len=bg.len.real, bg.mean=bg.mean, bg.sd=bg.sd, pwms=pwms) } #' Make a cutoff background #' #' Make a background based on number of motifs hits above a certain threshold. #' #' @param bg.seq a set of background sequences, either a list of DNAString object or DNAStringSet object #' @param motifs a set of motifs, either a list of frequency matrices, or a list of PWM objects. If #' frequency matrices are given, the background distribution is fitted from bg.seq. #' @param cutoff the cutoff at which the background should be made, i.e. at which a motif hit is called significant #' @param bg.pseudo.count the pseudo count which is shared between nucleotides when frequency matrices are given #' @param bg.source a free-form textual description of how the background was generated #' @param verbose if to produce verbose output #' @export #' @examples #' \dontrun{ #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # make background for MotifDb motifs using 2Kb promoters of all D. melanogaster transcripts #' # using a cutoff of 5 #' if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) #' makePWMCutoffBackground(Dmelanogaster$upstream2000, MotifDb.Dmel.PFM, cutoff=log2(exp(5))) #' } #' } makePWMCutoffBackground = function(bg.seq, motifs, cutoff=log2(exp(4)), bg.pseudo.count=1, bg.source="", verbose=TRUE){ # check if the sequences are in the right format bg.seq = .normalize.bg.seq(bg.seq) # convert to list if a single motif is given if(!is.list(motifs)) motifs = list(motifs) # make priors and PWMs if(!inherits(motifs[[1]], "PWM")) { prior = makePriors(bg.seq, bg.pseudo.count) pwms = PFMtoPWM(motifs, prior.params = prior) } else { pwms = motifs } # scan with cutoff - this gives motif *hit counts* bg.res = motifScores(bg.seq, pwms, verbose=verbose, cutoff=cutoff) seq.len = sapply(bg.seq, length) pwm.len = sapply(pwms, length) # total length of the scanned sequences for each sequence total.len = sum(seq.len) - length(seq.len)*(pwm.len-1) # total number of hits total.hits = colSums(bg.res) # density of binding sites bg.P = total.hits / total.len new("PWMCutoffBackground", bg.source=bg.source, bg.cutoff=cutoff, bg.P=bg.P, pwms=pwms) } #' Make an empirical P-value background #' #' Make a background appropriate for empirical P-value calculation. The provided set of background #' sequences is contcatenated into a single long sequence which is then scanned with the motifs #' and raw scores are saved. This object can be very large. #' #' For reliable P-value calculation the size of the background set needs to be at least seq.len / min.P.value. #' For instance, to get P-values at a resolution of 0.001 for a single sequence of 500bp, we would need #' a background of at least 500/0.001 = 50kb. This ensures that we can make 1000 independent 500bp samples from #' this background to properly estimate the P-value. For a group of sequences, we would take seq.len to be the #' total length of all sequences in a group. #' #' @param bg.seq a set of background sequences, either a list of DNAString object or DNAStringSet object #' @param motifs a set of motifs, either a list of frequency matrices, or a list of PWM objects. If #' frequency matrices are given, the background distribution is fitted from bg.seq. #' @param bg.pseudo.count the pseudo count which is shared between nucleotides when frequency matrices are given #' @param bg.source a free-form textual description of how the background was generated #' @param verbose if to produce verbose output #' @param ... currently unused (this is for convenience for makeBackground function) #' @export #' @examples #' \dontrun{ #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # make empirical background by saving raw scores for each bp in the sequence. This can be #' # very large in memory! #' if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) #' makePWMEmpiricalBackground(Dmelanogaster$upstream2000[1:100], MotifDb.Dmel.PFM) #' } #' } makePWMEmpiricalBackground = function(bg.seq, motifs, bg.pseudo.count=1, bg.source="", verbose=TRUE, ...){ # check if the sequences are in the right format bg.seq = .normalize.bg.seq(bg.seq) # convert to list if a single motif is given if(!is.list(motifs)) motifs = list(motifs) # make priors and PWMs if(!inherits(motifs[[1]], "PWM")) { prior = makePriors(bg.seq, bg.pseudo.count) pwms = PFMtoPWM(motifs, prior.params = prior) } else { pwms = motifs } # scan one very long sequence that is formed by concatenating all sequences bg.seq.all = DNAString(concatenateSequences(bg.seq)) bg.res = motifScores(bg.seq.all, pwms, raw.scores=TRUE, verbose=verbose) bg.len = length(bg.seq.all) bg.fwd = bg.res[[1]][1:bg.len,] bg.rev = bg.res[[1]][(bg.len+1):(bg.len*2),] if(length(motifs) == 1){ bg.fwd = matrix(bg.fwd, ncol=1, dimnames=list(NULL, names(motifs))) bg.rev = matrix(bg.rev, ncol=1, dimnames=list(NULL, names(motifs))) } new("PWMEmpiricalBackground", bg.source=bg.source, bg.fwd=bg.fwd, bg.rev=bg.rev, pwms=pwms) } #' Construct a cutoff background from empirical background #' #' This function takes already calculated empirical background distribution and chooses #' cutoff for each motif based on P-value cutoff for individual sites. #' #' @param bg.p an object of class PWMEmpiricalBackground #' @param p.value the P-value used to find cuttoffs for each of the motifs #' @param bg.source textual description of background source #' @return an object of type PWMCutoffBackground #' @export #' @examples #' \dontrun{ #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # make empirical background - here we use only 100 sequences for illustrative purposes #' if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) #' bg.p = makePWMEmpiricalBackground(Dmelanogaster$upstream2000[1:100], MotifDb.Dmel.PFM) #' #' # use the empirical background to pick a threshold and make cutoff background #' makePWMPvalCutoffBackground(bg.p, 0.001) #' } #' } makePWMPvalCutoffBackground = function(bg.p, p.value=1e-3, bg.source=""){ # extract stuffs bg.fwd = bg.p@bg.fwd bg.rev = bg.p@bg.rev pwms = bg.p@pwms bg.len = nrow(bg.fwd) if(bg.len * p.value < 1){ stop("The P-value is too small for background of this size. Should have at least 1/p.value nucleotides in the background.") } # get cutoffs cutoff = structure(rep(0, length(pwms)), names=names(pwms)) P = structure(rep(0, length(pwms)), names=names(pwms)) for(i in 1:length(pwms)){ # join both strands all.data = log2(c(bg.fwd[!is.na(bg.fwd[,i]),i], bg.rev[!is.na(bg.rev[,i]),i])) # stop if not all data is finite, because then there is an error! stopifnot(length(is.finite(all.data)) == length(all.data)) # find out the cutoff for 1-p.value cutoff[i] = quantile(ecdf(all.data), 1 - p.value) # work out the actual P value # NOTE: since the distribution is decrete, this won't be exactly the same as 2*P.value but will be quite close P[i] = 2 * (sum(all.data >= cutoff[i]) / length(all.data)) } # final object new("PWMCutoffBackground", bg.source=bg.source, bg.cutoff=cutoff, bg.P=P, pwms=pwms) } #' Construct a P-value cutoff background from a set of sequences #' #' This function creates a P-value cutoff background for motif enrichment. #' #' @param bg.seq a set of background sequences, either a list of DNAString object or DNAStringSet object #' @param motifs a set of motifs, either a list of frequency matrices, or a list of PWM objects. If #' frequency matrices are given, the background distribution is fitted from bg.seq. #' @param p.value the P-value used to find cuttoffs for each of the motifs #' @param bg.pseudo.count the pseudo count which is shared between nucleotides when frequency matrices are given #' @param bg.source textual description of background source #' @param verbose if to print verbose output #' @return an object of type PWMCutoffBackground #' @export #' @examples #' \dontrun{ #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # use the empirical background to pick a threshold and make cutoff background #' makePWMPvalCutoffBackground(Dmelanogaster$upstream2000, 0.001) #' } #' } makePWMPvalCutoffBackgroundFromSeq = function(bg.seq, motifs, p.value=1e-3, bg.pseudo.count=1, bg.source="", verbose=TRUE){ # check if the sequences are in the right format bg.seq = .normalize.bg.seq(bg.seq) # convert to list if a single motif is given if(!is.list(motifs)) motifs = list(motifs) # make priors and PWMs if(!inherits(motifs[[1]], "PWM")) { prior = makePriors(bg.seq, bg.pseudo.count) pwms = PFMtoPWM(motifs, prior.params = prior) } else { pwms = motifs } # pre-calculate the big sequence motifScoresBigMemory() is faster seq.input = .inputParamSequences(bg.seq) seq.all = DNAString(concatenateSequences(seq.input)) # get cutoffs cutoff = structure(rep(0, length(pwms)), names=names(pwms)) P = structure(rep(0, length(pwms)), names=names(pwms)) for(i in 1:length(pwms)){ # get the raw values for this motif only! bg.res = motifScoresBigMemory(bg.seq, pwms[i], verbose=verbose, raw.scores=TRUE, seq.all=seq.all) bg.res = na.omit(unlist(bg.res)) # transform to log2 to get the final data all.data = log2(bg.res) # find out the cutoff for 1-p.value cutoff[i] = quantile(ecdf(all.data), 1 - p.value) # work out the actual P value # NOTE: since the distribution is decrete, this won't be exactly the same as 2*P.value but will be quite close P[i] = 2 * (sum(all.data >= cutoff[i]) / length(all.data)) } # final object new("PWMCutoffBackground", bg.source=bg.source, bg.cutoff=cutoff, bg.P=P, pwms=pwms) } #' Divide total.len into fragments of length len by providing start,end positions #' #' @param total.len total available length to be subdivided #' @param len size of the individual chunk #' @return a data.frame containing paired up start,end positions makeStartEndPos = function(total.len, len){ # make start positions start = seq(1, total.len+1, len) # make end positions end = start - 1 # pair them up start = start[1:(length(start)-1)] end = end[2:length(end)] data.frame(start, end) } #' Make a GEV background distribution #' #' Construct a lognormal background distribution for a set of sequences. #' Sequences concatenated are binned in 'bg.len' chunks and lognormal distribution #' fitted to them. #' #' @param bg.seq a set of background sequences, either a list of DNAString object or DNAStringSet object #' @param motifs a set of motifs, either a list of frequency matrices, or a list of PWM objects. If #' frequency matrices are given, the background distribution is fitted from bg.seq. #' @param bg.pseudo.count the pseudo count which is shared between nucleotides when frequency matrices are given #' @param bg.len the length range of background chunks #' @param bg.source a free-form textual description of how the background was generated #' @param verbose if to produce verbose output #' @param fit.log if to fit log odds (instead of odds) #' @export #' @examples #' \dontrun{ #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # make background for MotifDb motifs using 2kb promoters of all D. melanogaster transcripts #' if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) #' makePWMGEVBackground(Dmelanogaster$upstream2000, MotifDb.Dmel.PFM) #' } #' } makePWMGEVBackground = function(bg.seq, motifs, bg.pseudo.count=1, bg.len=seq(200,2000,200), bg.source="", verbose=TRUE, fit.log=TRUE){ # check if the sequences are in the right format bg.seq = .normalize.bg.seq(bg.seq) # convert to list if a single motif is given if(!is.list(motifs)) motifs = list(motifs) # give automatic names if(is.null(names(motifs))){ names(motifs) = paste("Motif", 1:length(motifs), sep="") } # concatenate all the background sequences into a single long sequence bg.seq.all = concatenateSequences(bg.seq) # convert motifs to PWM format if neccessary if(!inherits(motifs[[1]], "PWM")) { prior = makePriors(list(DNAString(bg.seq.all)), bg.pseudo.count) pwms = PFMtoPWM(motifs, prior.params = prior) } else { pwms = motifs } # GEV parameters that need to be fitted in linear regression params = array(0, dim=c(length(bg.len), 3, length(pwms)), dimnames=list(bg.len, c("loc", "scale", "shape"), names(pwms))) # iterate over background lengths and fit GEV distributions for(i in 1:length(bg.len)){ if(verbose){ message("Scanning background of size ", bg.len[i]) } bg.pos = makeStartEndPos(nchar(bg.seq.all), bg.len[i]) bg = DNAStringSet(bg.seq.all, start=bg.pos$start, end=bg.pos$end) # scan bg.res = motifScores(bg, pwms, verbose=verbose) # fit GEV for each PWM params[i,,] = apply(bg.res, 2, function(x) { if(fit.log) x = log(x) fgev(x, std.err=FALSE)$param[c("loc", "scale", "shape")] }) } ## now fit linear regression for each PWM bg.loc = lapply(names(pwms), function(pwm.name){ loc = params[,"loc",pwm.name] log.len = log(bg.len) lm(loc~log.len) }) names(bg.loc) = names(pwms) bg.scale = lapply(names(pwms), function(pwm.name){ scale = params[,"scale",pwm.name] log.len = log(bg.len) lm(scale~log.len) }) names(bg.scale) = names(pwms) bg.shape = lapply(names(pwms), function(pwm.name){ shape = params[,"shape",pwm.name] log.len = log(bg.len) lm(shape~log.len) }) names(bg.shape) = names(pwms) # return the object new("PWMGEVBackground", bg.source=bg.source, bg.loc=bg.loc, bg.scale=bg.scale, bg.shape=bg.shape, pwms=pwms) } #' Get the promoter sequences either for a named organism such as "dm3" or a BSgenome object #' #' @param organismOrGenome either organism name, e.g. "dm3", or BSgenome object #' @return a list of: promoters - DNAStringSet of (unique) promoters; organism - name of species; version - genome version getPromoters = function(organismOrGenome){ org = organismOrGenome sek = NULL org.valid = c("dm3", "mm9", "hg19") # check if it's a valid UCSC name if(is.character(org)){ if(org %in% org.valid){ sel = org } else { stop(paste("Unrecognised organism name, valid values are:", paste(org.valid, collapse=", "))) } # check for a BSgenome object } else if(is(org, "BSgenome")){ genome <- metadata(org)[["genome"]] if(genome %in% org.valid){ sel = genome } else { stop(paste("Promoter sequences cannot be retrieved automatically for ", genome, ", please provide a set of background sequences explicitely.", sep="")) } } else { stop("The input parameter needs to be a valid genome name ('dm3', 'mm9' or 'hg19') or a set of background sequences.") } e = new.env() # get the promoter sequences from the saved object if(sel == "dm3"){ if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ data("dm3.upstream2000", package = "PWMEnrich.Dmelanogaster.background", envir=e) promoters = e$dm3.upstream2000 organism = "D. melanogaster" version = "dm3" } else { stop("This function requires the 'PWMEnrich.Dmelanogaster.background' package, please install it.") } } else if(sel == "mm9"){ if(requireNamespace("PWMEnrich.Mmusculus.background")){ data("mm9.upstream2000", package = "PWMEnrich.Mmusculus.background", envir=e) promoters = e$mm9.upstream2000 organism = "M. musculus" version = "mm9" } else { stop("This function requires the 'PWMEnrich.Mmusculus.background' package, please install it.") } } else if(sel == "hg19"){ if(requireNamespace("PWMEnrich.Hsapiens.background")){ data("hg19.upstream2000", package = "PWMEnrich.Hsapiens.background", envir=e) promoters = e$hg19.upstream2000 organism = "H. sapiens" version = "hg19" } else { stop("This function requires the 'PWMEnrich.Hsapiens.background' package, please install it.") } } else { stop("Internal error, should never reach this point!") } list(promoters=promoters, organism=organism, version=version) } #' Make a background for a set of position frequency matrices #' #' This is a convenience front-end function to compile new backgrounds for a set of PFMs. #' Currently only supports D. melanogaster, but in the future should support other common organisms as well. #' #' @param motifs a list of position frequency matrices (4xL matrices) #' @param organism either a name of the organisms for which the background should be compiled #' (currently supported names are "dm3", "mm9" and "hg19"), or a \code{BSgenome} object (see \code{BSgenome} package). #' @param type the type of background to be compiled. Possible types are: #' \itemize{ #' \item "logn" - estimate a lognormal background #' \item "cutoff" - estimate a Z-score background with fixed log-odds cutoff (in log2) #' \item "pval" - estimate a Z-score background with a fixed P-value cutoff. Note that this may require a lot of memory #' since the P-value of motif hits is first estimated from the empirical distribution. #' \item "empirical" - create an empirical P-value background. Note that this may require a lot of memory (up to 10GB in #' default "slow" mode (quick=FALSE) for 126 JASPAR motifs and 1000 D. melanogaster promoters). #' \item "GEV" - estimate a generalized extreme value (GEV) distribution background by fitting linear regression to distribution #' parameters in log space #' } #' @param quick if to preform fitting on a reduced set of 100 promoters. This will not give as good results but is much quicker than fitting to all the promoters (~10k). #' Usage of this parameter is recommended only for testing and rough estimates. #' @param bg.seq a set of background sequences to use. This parameter overrides the "organism" and "quick" parameters. #' @param ... other named parameters that backend function makePWM***Background functions take. #' @export #' @author Robert Stojnic, Diego Diez #' @examples #' #' # load in the two example de-novo motifs #' motifs = readMotifs(system.file(package = "PWMEnrich", dir = "extdata", file = "example.transfac"), #' remove.acc = TRUE) #' #' \dontrun{ #' # construct lognormal background #' bg.logn = makeBackground(motifs, organism="dm3", type="logn") #' #' # alternatively, any BSgenome object can also be used #' if(requireNamespace("BSgenome.Dmelanogaster.UCSC.dm3")) #' bg.logn = makeBackground(motifs, organism=Dmelanogaster, type="logn") #' #' # construct a Z-score of hits with P-value background #' bg.pval = makeBackground(motifs, organism="dm3", type="pval", p.value=1e-3) #' #' # now we can use them to scan for enrichment in sequences (in this case there is a consensus #' # Tin binding site). #' motifEnrichment(DNAString("TGCATCAAGTGTGTAGTG"), bg.logn) #' motifEnrichment(DNAString("TGCATCAAGTGTGTAGTG"), bg.pval) #' } #' makeBackground = function(motifs, organism="dm3", type="logn", quick=FALSE, bg.seq=NULL, ...){ # check input parameters valid.types = c("logn", "cutoff", "pval", "empirical", "GEV") if(!(type %in% valid.types)){ stop(paste("Invalid type, please choose from:", paste(valid.types, collapse=", "))) } # make sure we have this defined.... if(!hasArg("bg.source")) bg.source = NULL else bg.source = list(...)$bg.source # use the explicitely set sequences if(!is.null(bg.seq)){ bg.seq = .normalize.bg.seq(bg.seq) } else { # get the promoters for the organism promoters.all = getPromoters(organism) promoters = promoters.all$promoters if(quick){ bg.seq = promoters[seq(1, length(promoters), length.out=100)] if(is.null(bg.source)) bg.source = paste(promoters.all$organism, " (", promoters.all$version, ") 100 unique 2kb promoters", sep="") } else { if(type %in% c("pval")){ bg.seq = promoters[seq(1, length(promoters), length.out=500)] if(is.null(bg.source)) bg.source = paste(promoters.all$organism, " (", promoters.all$version, ") 500 unique 2kb promoters", sep="") } else { bg.seq = promoters if(is.null(bg.source)) bg.source = paste(promoters.all$organism, " (", promoters.all$version, ") ", length(promoters), " unique 2kb promoters", sep="") } } } #bg.seq = DNAStringSetToList(bg.seq) # capture ... as parameters so we can remove bg.source if present # and set the other parameters params = list(...) params$bg.seq = bg.seq params$motifs = motifs params$bg.source = bg.source # select the human algorithm if(type == "logn" && is.character(organism) && organism == "hg19" && !("algorithm" %in% names(params))) params$algorithm = "human" ## now run the appropriate backend function if(type == "logn"){ bg = do.call("makePWMLognBackground", params) } else if(type == "cutoff"){ bg = do.call("makePWMCutoffBackground", params) } else if(type == "pval"){ bg = do.call("makePWMPvalCutoffBackgroundFromSeq", params) } else if(type == "empirical"){ bg = do.call("makePWMEmpiricalBackground", params) } else if(type == "GEV"){ bg = do.call("makePWMGEVBackground", params) } return(bg) } #' Get the four nucleotides background frequencies #' #' Estimate the background frequencies of A,C,G,T on a set of promoters from an organism #' #' @param organism either a name of the organisms for which the background should be compiled #' (supported names are "dm3", "mm9" and "hg19"), a \code{BSgenome} object, #' \code{DNAStringSet}, or list of \code{DNAString} objects #' @param pseudo.count the number to which the frequencies sum up to, by default 1 #' @param quick if to preform fitting on a reduced set of 100 promoters. This will not give as good results but is much quicker than fitting to all the promoters (~10k). #' Usage of this parameter is recommended only for testing and rough estimates. #' @export #' @author Robert Stojnic, Diego Diez #' @examples #' \dontrun{ #' getBackgroundFrequencies("dm3") #' } getBackgroundFrequencies = function(organism="dm3", pseudo.count=1, quick=FALSE){ # bug reported on support.bioconductor.org if (inherits(organism, "DNAStringSet")) { bg.seq = organism } else if (is.list(organism) && length(organism) > 0 && inherits(organism[[1]], "DNAString")) { bg.seq = organism } else { # pick the set of background sequences promoters = getPromoters(organism)$promoters if(quick){ bg.seq = promoters[seq(1, length(promoters), length.out=100)] } else { bg.seq = promoters } } #bg.seq = DNAStringSetToList(bg.seq) makePriors(bg.seq, pseudo.count) } #' Calculate the empirical distribution score distribution for a set of motifs #' #' @param motifs a set of motifs, either a list of frequency matrices, or a list of PWM objects. If #' frequency matrices are given, the background distribution is fitted from bg.seq. #' @param organism either a name of the organisms for which the background should be compiled #' (supported names are "dm3", "mm9" and "hg19"), or a \code{BSgenome} object (see \code{BSgenome} package). #' @param bg.seq a set of background sequence (either this or organism needs to be specified!). Can be a DNAString or DNAStringSet object. #' @param quick if to do the fitting only on a small subset of the data (only in combination with \code{organism}). Useful only for code testing! #' @param pseudo.count the pseudo count which is shared between nucleotides when frequency matrices are given #' @return a list of \code{ecdf} objects (see help page for \code{ecdf} for usage). #' @export motifEcdf = function(motifs, organism=NULL, bg.seq=NULL, quick=FALSE, pseudo.count=1){ if(is.null(organism) && is.null(bg.seq)){ stop("Either the 'organism' or 'bg.seq' parameter need to be specified!") } if(!is.list(motifs)) motifs = list(motifs) if(!is.null(bg.seq)){ # check if the sequences are in the right format bg.seq = .normalize.bg.seq(bg.seq) } else { # take only a single promoter from each of the genes promoters = getPromoters(organism)$promoters if(quick){ bg.seq = promoters[seq(1, length(promoters), length.out=100)] } else { bg.seq = promoters } } # make priors and PWMs if(! inherits(motifs[[1]], "PWM")) { prior = makePriors(bg.seq, pseudo.count) pwms = PFMtoPWM(motifs, prior.params = prior) } else { pwms = motifs } # always use the big memory implementation as it is much faster in typical usage! s = motifScoresBigMemory(bg.seq, pwms, raw.scores=TRUE) # group together distributions for motifs s = lapply(1:length(pwms), function(i) na.omit(unlist(lapply(s, function(x) x[,i])))) # create empirical CDFs and return e = lapply(s, ecdf) names(e) = names(pwms) e } PWMEnrich/R/clover.R0000644000175100017510000000651714614305422015216 0ustar00biocbuildbiocbuild# Calculate the clover score #' Calculate the Clover score using the recursive formula from Frith et al #' #' @param scores a matrix of average odds scores, where columns are motifs, and rows sequences #' @param lr3 if to return a matrix of LR3 scores, where columns correpond to motifs, and rows to subset sizes #' @param verbose if to produce verbose output of progress #' @return the LR4 score, which is the mean of LR3 scores over subset sizes cloverScore = function(scores, lr3=FALSE, verbose=FALSE){ if(is.vector(scores)) return(scores) # LR3 scores clover = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) colnames(clover) = colnames(scores) rownames(clover) = rownames(scores) # iterate over motifs for(m.inx in 1:ncol(scores)){ if(verbose) message(paste("Calculating Clover score for motif", m.inx, "/", ncol(scores))) s = scores[,m.inx] N = length(s) A = matrix(NA, ncol=N+1, nrow=N+1) # load initial values A[1,] = 1 for(i in 2:ncol(A)){ A[i,i-1] = 0 } # calculate the A matrix from the paper (Frith et al, NAR, 2004) for(i in 2:(N+1)){ for(j in 2:(N+1)){ if(j >= i){ # i,j in their formula di = i-1 dj = j-1 # i,j is still used to subscript A A[i,j] = ( di * s[dj] * A[i-1,j-1] + (dj - di) * A[i,j-1] ) / dj } } } clover[,m.inx] = A[2:(N+1),N+1] } # final score (LR4) is the mean of LR3 scores if(lr3) clover else colMeans(clover) } #' Calculate the Clover P-value as described in the Clover paper #' #' This function only take one background sequence as input, it also just calculates the P-value #' so it is more efficient. #' #' @param scores the affinity scores for individual sequences #' @param seq.len lengths of sequences #' @param pwm.len lengths of PWMs #' @param bg.fwd the raw score of forward strand #' @param bg.rev the raw scores of reverse strand #' @param B the number of random replicates #' @param verbose if to give verbose progress reports #' @param clover the clover scores if already calculated #' @return P-value cloverPvalue1seq = function(scores, seq.len, pwm.len, bg.fwd, bg.rev, B=1000, verbose=TRUE, clover=NULL){ if(is.vector(scores)) scores = matrix(scores, nrow=1, dimnames=list(NULL, names(scores))) # length of sequences bg.len = nrow(bg.fwd) if(max(seq.len) > bg.len){ stop("The maximal string length in 'sequences' is greater than the background length") } # original scores for the set of sequences if(is.null(clover)) original.clover = cloverScore(scores) else original.clover = clover # the empricial p-value clover.p = rep(0, ncol(scores)) names(clover.p) = colnames(scores) # do average over strands bg.res = (bg.fwd + bg.rev) / 2 for(i in 1:B){ if(verbose) message("Random sample ", i, " / ", B) # sample background sequences with the same length distribution new.scores = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) colnames(new.scores) = colnames(scores) for(j in 1:nrow(scores)){ # choose a subsequence with matching length start.range = 1:(bg.len - seq.len[j]) start = sample(start.range, 1) # fetch the scores new.scores[j,] = colMeans(bg.res[start:(start+seq.len[j]-1),], na.rm=TRUE) } # calculate scores and clover new.clover = cloverScore(new.scores) clover.p = clover.p + ((new.clover > original.clover) + 0) } return(clover.p / B) } PWMEnrich/R/diff.R0000644000175100017510000001320314614305422014622 0ustar00biocbuildbiocbuild### Functions for differential enrichment #' Test for differential enrichment between two groups of sequences #' #' This function calls \code{motifEnrichment} on two groups of sequences and calculates #' the difference statistics when possible. #' #' @title Differential motif enrichment #' @param sequences1 First set of sequences. Can be either a single sequence #' (an object of class DNAString), or a list of DNAString objects, or a DNAStringSet object. #' @param sequences2 Second set of sequences. Can be either a single sequence #' (an object of class DNAString), or a list of DNAString objects, or a DNAStringSet object. #' @param pwms this parameter can take multiple values depending on the scoring scheme and background correction used. #' When the \code{method} parameter is set to "autodetect", the following default algorithms #' are going to be used: #' \itemize{ #' \item if \code{pwms} is a list containing either frequency matrices or a list of PWM objects then #' the "affinity" algorithm is selected. If frequency matrices are given, they are converted #' to PWMs using uniform background. For best performance, convert frequency matrices to PWMs #' before calling this function using realistic genomic background. #' \item Otherwise, appropriate scoring scheme and background correction are selected based on the #' class of the object (see below). #' } #' @param score this parameter determines which scoring scheme to use. Following scheme as available: #' \itemize{ #' \item "autodetect" - default value. Scoring method is determined based #' on the type of \code{pwms} parameter. #' \item "affinity" - use threshold-free affinity scores without a background. The \code{pwms} #' parameter can either be a list of frequency matrices, \code{PWM} objects, or a #' \code{PWMLognBackground} object. #' \item "cutoff" - use number of motif hits above a score cutoff as a measure of enrichment. #' No background correction is performed. The \code{pwms} #' parameter can either be a list of frequency matrices, \code{PWM} objects, or a #' \code{PWMCutoffBackground} object. #' } #' #' @param bg this parameter determines which background correction to use, if any. #' \itemize{ #' \item "autodetect" - default value. Background correction is determined based on the type #' of the \code{pwms} parameter. #' \item "logn" - use a lognormal distribution background pre-computed for a set of PWMs. #' This requires \code{pwms} to be of class \code{PWMLognBackground}. #' \item "z" - use a z-score for the number of significant motif hits compared to background number of hits. #' This requires \code{pwms} to be of class \code{PWMCutoffBackground}. #' \item "none" - no background correction #' } #' @param cutoff the score cutoff for a significant motif hit if scoring scheme "cutoff" is selected. #' @param res1 the output of \code{motifEnrichment} if already calculated for \code{sequences1} #' @param res2 the output of \code{motifEnrichment} if already calculated for \code{sequences2} #' @param verbose if to produce verbose output #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' # load the background file for drosophila and lognormal correction #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # get the differential enrichment #' diff = motifDiffEnrichment(DNAString("TGCATCAAGTGTGTAGTGTGAGATTAGT"), #' DNAString("TGAACGAGTAGGACGATGAGAGATTGATG"), PWMLogn.dm3.MotifDb.Dmel, verbose=FALSE) #' #' # motifs differentially enriched in the first sequence (with lognormal background correction) #' head(sort(diff$group.bg, decreasing=TRUE)) #' #' # motifs differentially enriched in the second sequence (with lognormal background correction) #' head(sort(diff$group.bg)) #' } motifDiffEnrichment = function(sequences1, sequences2, pwms, score="autodetect", bg="autodetect", cutoff=log2(exp(4)), verbose=TRUE, res1=NULL, res2=NULL){ # check the input param constrains if(!inherits(pwms, c("NULL", "list", "PWMLognBackground", "PWMCutoffBackground"))) { stop("pwms needs to be either a list of frequency matrices, list of PWM objects, or an object of class PWMLognBackground or PWMCutoffBackground.") } if(!(score %in% c("autodetect", "affinity", "cutoff"))){ stop("score needs to be one of: autodetect, affinity, cutoff") } if(!(bg %in% c("autodetect", "logn", "z", "none"))){ stop("score needs to be one of: autodetect, logn, z, none") } # results for both groups if(is.null(res1)) res1 = motifEnrichment(sequences1, pwms, score=score, bg=bg, cutoff=cutoff, verbose=verbose) if(is.null(res2)) res2 = motifEnrichment(sequences2, pwms, score=score, bg=bg, cutoff=cutoff, verbose=verbose) if((res1$score != res2$score) | (res1$bg != res2$bg)) stop("Supplied motif enrichments for sequences1 and sequences2 use different scoring schemes and/or background corrections") # we use the same rules to decided on score and bg.. if(score == "autodetect") score = res1$score if(bg == "autodetect") bg = res1$bg # calculated differential enrichment res = list() res$group.nobg = res1$group.nobg - res2$group.nobg if(bg == "none") res$group.bg = NULL else if(bg == "logn") res$group.bg = res1$group.norm - res2$group.norm else res$group.bg = res1$group.bg - res2$group.bg return(res) } PWMEnrich/R/misc.R0000644000175100017510000000206314614305422014647 0ustar00biocbuildbiocbuild#' Calculate medians of columns #' @param x a matrix colMedians = function(x){ apply(x, 2, median, na.rm=T) } #' Calculate standard deviations of columns #' @param x a matrix colSds = function(x){ apply(x, 2, sd, na.rm=T) } #' Divide each row of a matrix with a vector #' #' @param m matrix to be divided #' @param v the vector to use for division divideRows = function(m, v){ t(apply(m, 1, function(x) x/v)) } #' Convert DNAStringSet to list of DNAString objects #' #' as.list doesn't seem to always work for DNAStringSets, so #' implementing this ourselves. #' #' @param x an object of class DNAStringSet DNAStringSetToList = function(x){ res = list() for(i in 1:length(x)){ res[[i]] = x[[i]] } return(res) } #' Concatenata DNA sequences into a single character object #' #' @param sequences either a list of DNAString objects, or a DNAStringSet #' @return a single character string concatenateSequences = function(sequences){ if(is.list(sequences)){ paste(unlist(sapply(sequences, toString)), collapse="") } else{ paste(sequences, collapse="") } } PWMEnrich/R/MotifEnrichmentReport-methods.R0000644000175100017510000000410214614305422021640 0ustar00biocbuildbiocbuild# methods to extract data from, and subset MotifEnrichmentReport #' Columns stored in the motif enrichment report #' #' @title Names of variables #' @name names,MotifEnrichmentReport #' @aliases names,MotifEnrichmentReport-method #' @param x the MotifEnrichmentReport object #' @return the names of the variables #' @rdname operators-MotifEnrichmentReport setMethod("names", signature=signature(x="MotifEnrichmentReport"), function(x){ c(names(x@d), "pwms") }) #' Access a column by name #' #' @aliases $,MotifEnrichmentReport-method #' @param x the MotifEnrichmentReport object #' @param name the variable name #' @rdname operators-MotifEnrichmentReport setMethod("$", signature=signature(x="MotifEnrichmentReport"), function(x, name){ if(name == "pwms") return(x@pwms) else return(x@d[[name]]) }) #' Subset the report #' #' @aliases [,MotifEnrichmentReport-method #' @param x the MotifEnrichmentReport object #' @param i the row selector #' @param j unused #' @param ... unused #' @param drop unused (always FALSE) #' @rdname operators-MotifEnrichmentReport setMethod("[", signature=signature(x="MotifEnrichmentReport"), function (x, i, j, ..., drop=TRUE){ d = x@d[i, , drop=FALSE] pwms = x@pwms[i] new("MotifEnrichmentReport", d=d, pwms=pwms) }) #' show method for MotifEnrichmentReport #' @param object the MotifEnrichmentReport object setMethod("show", signature=signature(object="MotifEnrichmentReport"), function(object){ d = object@d pwms = object@pwms cat("An object of class 'MotifEnrichmentReport':\n") if(nrow(d) > 20){ # show only the first 10 and the last one dd = rbind(d[1:10, ], "..."=rep("...", ncol(d)), d[nrow(d),]) print(dd) } else { print(d) } }) #' Convert a MotifEnrichmentReport into a data.frame object #' #' @name as.data.frame,MotifEnrichmentReport-method #' @aliases as.data.frame #' @param x the MotifEnrichmentReport object #' @param row.names unused #' @param optional unused #' @param ... unused #' @export setMethod("as.data.frame", signature=signature(x="MotifEnrichmentReport"), function (x, row.names = NULL, optional = FALSE, ...){ x@d }) PWMEnrich/R/MotifEnrichmentResults-methods.R0000644000175100017510000004304114614305422022033 0ustar00biocbuildbiocbuild #' Name of different pieces of information associated with MotifEnrichmentResults #' #' @title Names of variables #' @name names,MotifEnrichmentResults #' @aliases names,MotifEnrichmentResults-method #' @param x the MotifEnrichmentResults object #' @return the names of the variables #' @rdname operators-MotifEnrichmentResults setMethod("names", signature=signature(x="MotifEnrichmentResults"), function(x) names(x@res)) #' Access a property by name #' #' @aliases $,MotifEnrichmentResults-method #' @param x the MotifEnrichmentResults object #' @param name the variable name #' @rdname operators-MotifEnrichmentResults setMethod("$", signature=signature(x="MotifEnrichmentResults"), function(x, name){ x@res[[name]] }) #' show method for MotifEnrichmentResults #' @param object the MotifEnrichmentResults object setMethod("show", signature=signature(object="MotifEnrichmentResults"), function(object){ res = object@res is.group.only = length(grep("sequence[.]", names(res))) == 0 cat("An object of class 'MotifEnrichmentResults':\n") cat("* created with '", res$score, "' scoring function with '", res$bg, "' background correction\n", sep="") cat("* on a set of ", length(res$sequences), " sequence(s) and ", length(res$pwms), " PWMs\n", sep="") cat("Result sets for the group:",paste("$", names(res)[grep("group[.]", names(res))], sep="", collapse=", "), "\n") if(!is.group.only){ cat("Result sets for individual sequences:", paste("$", names(res)[grep("sequence[.]", names(res))], sep="", collapse=", "), "\n") cat("Report methods: groupReport(), sequenceReport()\n") #cat("Methods to extract data: motifRankingForGroup(), motifRankingForSequence()\n") #cat("Methods to plot data: plotTopMotifsGroup(), plotTopMotifsSequence()\n") } else { cat("Report method: sequenceReport()\n") #cat("Methods to extract data: motifRankingForGroup()\n") #cat("Methods to plot data: plotTopMotifsGroup()\n") } }) #' A helper function for motifRankingForGroup and motifRankingForSequence with the common code #' #' @param res the list of results from MotifEnrichmentResults object #' @param r the vector of raw results that needs to be processed #' @param id if to return IDs instead of names #' @param order if to return the ordering of motifs #' @param rank if to return the rank of motifs #' @param unique if to remove duplicates #' @param decreasing specifies the sorting order rankingProcessAndReturn = function(res, r, id, order, rank, unique, decreasing){ if((unique & id) || (unique & order)){ stop("Parameter 'unique' can be set to TRUE only if 'id' and 'order' are FALSE.") } # set either the names or IDs all.ids = sapply(res$pwms, function(x) x@id) all.names = sapply(res$pwms, function(x) x@name) if(id){ names(r) = all.ids } else { if(!all(all.names == "")) names(r) = all.names } # do the required transformation on the results ret = NULL if(rank){ x = base::rank(r) if(decreasing) x = length(x) - x + 1 names(x) = names(r) ret = x } else if(order){ x = base::order(r, decreasing=decreasing) names(x) = names(r)[x] ret = x } else { ret = sort(r, decreasing=decreasing) } # remove duplicates if applicable if(unique){ original.names = names(ret) if(decreasing & !rank) ret = tapply(ret, names(ret), max) else ret = tapply(ret, names(ret), min) if(rank){ # re-rank the ranks... ret = rank(ret) } # unique names with correct ordering uniq.names = c() for(i in 1:length(original.names)){ if(!(original.names[i] %in% uniq.names)) uniq.names[length(uniq.names)+1] = original.names[i] } # re-order in the original ordering ret = ret[uniq.names] } ret } #' Get a ranking of motifs by their enrichment in the whole set of sequences #' #' @name motifRankingForGroup,MotifEnrichmentResults-method #' @aliases motifRankingForGroup #' @param obj a MotifEnrichmentResults object #' @param bg if to use background corrected P-values to do the ranking (if available) #' @param id if to show PWM IDs instead of target TF names #' @param order if to output the ordering of PWMs instead of actual P-values or raw values #' @param rank if the output should be rank of a PWM instead of actual P-values or raw values #' @param unique if TRUE, only the best rank is taken for each TF (only when id = FALSE, order = FALSE) #' @param ... currently unused #' #' @return a vector of P-values or raw enrichments sorted such that the first motif is most enriched #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # most enriched in both sequences (sorted by lognormal background P-value) #' head(motifRankingForGroup(res)) #' #' # Return a non-redundant set of TFs #' head(motifRankingForGroup(res, unique=TRUE)) #' #' # sorted by raw affinity instead of P-value #' head(motifRankingForGroup(res, bg=FALSE)) #' #' # show IDs instead of target TF names #' head(motifRankingForGroup(res, id=TRUE)) #' #' # output the rank instead of P-value #' head(motifRankingForGroup(res, rank=TRUE)) #' } setMethod("motifRankingForGroup", signature=signature(obj="MotifEnrichmentResults"), function(obj, bg=TRUE, id=FALSE, order=FALSE, rank=FALSE, unique=FALSE, ...){ res = obj@res # vector of scores if(bg && "group.bg" %in% names(res)){ r = res$group.bg if(res$score == "cutoff" | res$bg == "ms") decreasing = TRUE else decreasing = FALSE } else { #if(bg) # warning("Parameter 'bg' is TRUE but this MotifEnrichmentResults object has no background correction, ignoring parameter.") r = res$group.nobg decreasing = TRUE } rankingProcessAndReturn(res, r, id, order, rank, unique, decreasing) }) #' Get a ranking of motifs by their enrichment in one specific sequence #' #' @name motifRankingForSequence,MotifEnrichmentResults-method #' @aliases motifRankingForSequence #' @param obj a MotifEnrichmentResults object #' @param seq.id either the sequence number or sequence name #' @param bg if to use background corrected P-values to do the ranking (if available) #' @param id if to show PWM IDs instead of target TF names #' @param order if to output the ordering of PWMs instead of actual P-values or raw values #' @param rank if the output should be rank of a PWM instead of actual P-values or raw values #' @param unique if TRUE, only the best rank is taken for each TF (only when id = FALSE, order = FALSE) #' @param ... currently unused #' #' @export #' @return a vector of P-values or raw enrichments sorted such that the first motif is most enriched #' #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # most enriched in the second sequences (sorted by lognormal background P-value) #' head(motifRankingForSequence(res, 2)) #' #' # return unique TFs enriched in sequence 2 #' head(motifRankingForSequence(res, 2, unique=TRUE)) #' #' # sorted by raw affinity instead of P-value #' head(motifRankingForSequence(res, 2, bg=FALSE)) #' #' # show IDs instead of target TF names #' head(motifRankingForSequence(res, 2, id=TRUE)) #' #' # output the rank instead of P-value #' head(motifRankingForSequence(res, 2, rank=TRUE)) #' } setMethod("motifRankingForSequence", signature=signature(obj="MotifEnrichmentResults"), function(obj, seq.id, bg=TRUE, id=FALSE, order=FALSE, rank=FALSE, unique=FALSE, ...){ res = obj@res if(missing(seq.id)){ stop("Please specify the sequence number with 'seq.id'") } # vector of scores if(bg && "sequence.bg" %in% names(res)){ r = res$sequence.bg[seq.id,] if(res$score == "cutoff" | res$bg == "ms") decreasing = TRUE else decreasing = FALSE } else { #if(bg) # warning("Parameter 'bg' is TRUE but this MotifEnrichmentResults object has no background correction, ignoring parameter.") r = res$sequence.nobg[seq.id,] decreasing = TRUE } rankingProcessAndReturn(res, r, id, order, rank, unique, decreasing) }) #' Plot the top N enrichment motifs in a group of sequences #' #' @name plotTopMotifsGroup,MotifEnrichmentResults-method #' @aliases plotTopMotifsGroup #' @param obj a MotifEnrichmentResults object #' @param n the number of top ranked motifs to plot #' @param bg if to use background corrected P-values to do the ranking (if available) #' @param id if to show PWM IDs instead of target TF names #' @param ... other parameters passed to \code{plotMultipleMotifs()} #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # plot the top 4 motifs in a 2x2 grid #' plotTopMotifsGroup(res, 4) #' #' # plot top 3 motifs in a single row #' plotTopMotifsGroup(res, 3, row=1, cols=3) #' } setMethod("plotTopMotifsGroup", signature=signature(obj="MotifEnrichmentResults"), function(obj, n, bg=TRUE, id=FALSE, ...){ o = motifRankingForGroup(obj, bg, id, order=TRUE) plotMultipleMotifs(obj@res$pwms[o[1:n]], names(o)[1:n], ...) }) #' Plot the top N enrichment motifs in a single sequence #' #' @name plotTopMotifsSequence,MotifEnrichmentResults-method #' @aliases plotTopMotifsSequence #' @param obj a MotifEnrichmentResults object #' @param seq.id either the sequence number or sequence name #' @param n the number of top ranked motifs to plot #' @param bg if to use background corrected P-values to do the ranking (if available) #' @param id if to show PWM IDs instead of target TF names #' @param ... other parameters passed to \code{plotMultipleMotifs()} #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # plot the top 4 motifs in a 2x2 grid #' plotTopMotifsSequence(res, 1, 4) #' #' # plot top 3 motifs in a single row #' plotTopMotifsSequence(res, 1, 3, row=1, cols=3) #' } setMethod("plotTopMotifsSequence", signature=signature(obj="MotifEnrichmentResults"), function(obj, seq.id, n, bg=TRUE, id=FALSE, ...){ o = motifRankingForSequence(obj, seq.id, bg, id, order=TRUE) plotMultipleMotifs(obj@res$pwms[o[1:n]], names(o)[1:n], ...) }) #' Generate a motif enrichment report for the whole group of sequences together #' #' @name groupReport,MotifEnrichmentResults-method #' @aliases groupReport #' @param obj a MotifEnrichmentResults object #' @param top what proportion of top motifs should be examined in each individual sequence (by default 0.05, i.e. 5\%) #' @param bg if to use background corrected P-values to do the ranking (if available) #' @param by.top.motifs if to rank by the proportion of sequences where the motif is within 'top' percentage of motifs #' @param ... unused #' @return a MotifEnrichmentReport object containing a table with the following columns: #' \itemize{ #' \item 'rank' - The rank of the PWM's enrichment in the whole group of sequences together #' \item 'target' - The name of the PWM's target gene, transcript or protein complex. #' \item 'id' - The unique identifier of the PWM (if set during PWM creation). #' \item 'raw.score' - The raw score before P-value calculation #' \item 'p.value' - The P-value of motif enrichment (if available) #' \item 'top.motif.prop' - The proportion (between 0 and 1) of sequences where the motif is within \code{top} proportion of enrichment motifs. #' } #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # produce a report for all sequences taken together #' r.default = groupReport(res) #' #' # produce a report where the last column takes top 1% motifs #' r = groupReport(res, top=0.01) #' #' # view the results #' r #' #' # plot the top 10 most enriched motifs #' plot(r[1:10]) #' #' } setMethod("groupReport", signature=signature(obj="MotifEnrichmentResults"), function(obj, top=0.05, bg=TRUE, by.top.motifs=FALSE, ...){ pwms = obj$pwms res = obj@res # correct ordering of motifs o = motifRankingForGroup(obj, rank=TRUE, bg=bg) targets = sapply(obj$pwms, function(x) x@name) ids = sapply(obj$pwms, function(x) x@id) # construct the initial data frame object df = data.frame(rank=o, target=targets, id=ids, raw.score=obj$group.nobg, stringsAsFactors=FALSE) if(bg && "group.bg" %in% names(obj)){ p.value = obj$group.bg } else { p.value = as.numeric(NA) } if(res$score == "cutoff" | res$bg == "ms"){ df = data.frame(df, z.score=p.value, stringsAsFactors=FALSE) } else { df = data.frame(df, p.value=p.value, stringsAsFactors=FALSE) } # calculate in how many top sequences is the motif present if("sequence.nobg" %in% names(obj)){ pct.top = rep(0, nrow(df)) pct.cutoff = nrow(df) * top num.seq = nrow(obj$sequence.nobg) for(i in 1:num.seq){ os = motifRankingForSequence(obj, i, rank=TRUE, bg=bg) pct.top = pct.top + (os <= pct.cutoff) } pct.top = pct.top / num.seq top.motif = pct.top } else { top.motif = as.numeric(NA) } df = data.frame(df, "top.motif.prop"=top.motif, stringsAsFactors=FALSE) if(by.top.motifs){ if(length(pwms) < 20) warning("You are sorting by top motifs, but this can be unreliable when number of PWMs is small.") df$rank = base::rank(-top.motif) } # sort and return correct.order = order(df$rank) df = df[correct.order,] rownames(df) = NULL pwms = pwms[correct.order] # return a MotifEnrichmentReport object new("MotifEnrichmentReport", d=df, pwms=pwms) }) #' Generate a motif enrichment report for a single sequence #' #' @name sequenceReport,MotifEnrichmentResults-method #' @aliases sequenceReport #' @param obj a MotifEnrichmentResults object #' @param seq.id the sequence index or name #' @param bg if to use background corrected P-values to do the ranking (if available) #' @param ... unused #' @return a MotifEnrichmentReport object containing a table with the following columns: #' \itemize{ #' \item 'rank' - The rank of the PWM's enrichment in the sequence #' \item 'target' - The name of the PWM's target gene, transcript or protein complex. #' \item 'id' - The unique identifier of the PWM (if set during PWM creation). #' \item 'raw.score' - The raw score before P-value calculation #' \item 'p.value' - The P-value of motif enrichment (if available) #' } #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # reports for the two sequences #' r1 = sequenceReport(res, 1) #' r2 = sequenceReport(res, 2) #' #' # view the results #' r1 #' r2 #' #' # plot the top 10 most enriched motifs in the first, and then second sequence #' plot(r1[1:10]) #' plot(r2[1:10]) #' #' } setMethod("sequenceReport", signature=signature(obj="MotifEnrichmentResults"), function(obj, seq.id, bg=TRUE, ...){ if(missing(seq.id)){ stop("Please specify the sequence number with 'seq.id'") } res = obj@res pwms = obj$pwms # correct ordering of motifs o = motifRankingForSequence(obj, seq.id, rank=TRUE, bg=bg) targets = sapply(obj$pwms, function(x) x@name) ids = sapply(obj$pwms, function(x) x@id) # construct the initial data frame object df = data.frame(rank=o, target=targets, id=ids, raw.score=obj$sequence.nobg[seq.id,], stringsAsFactors=FALSE) if(bg && "sequence.bg" %in% names(obj)){ p.value = obj$sequence.bg[seq.id,] } else { p.value = as.numeric(NA) } if(res$score == "cutoff" | res$bg == "ms"){ df = data.frame(df, z.score=p.value, stringsAsFactors=FALSE) } else { df = data.frame(df, p.value=p.value, stringsAsFactors=FALSE) } # sort and return correct.order = order(df$rank) df = df[correct.order,] rownames(df) = NULL pwms = pwms[correct.order] # return a MotifEnrichmentReport object new("MotifEnrichmentReport", d=df, pwms=pwms) }) PWMEnrich/R/options.R0000644000175100017510000000336514614305422015415 0ustar00biocbuildbiocbuild# managing parallel execution of code # this global variable records options, e.g. for parallel execution etc .PWMEnrich.Options = new.env(parent=emptyenv()) #' Register than PWMEnrich can use parallel CPU cores #' #' Certain functions (like motif scanning) can be parallelized in PWMEnrich. This function #' registers a number of parallel cores (via core package parallel) to be used in #' code that can be parallelized. After this function is called, all further PWMEnrich #' function calls will run in parallel if possible. #' #' By default parallel execution is turned off. To turn it off after using it, call this #' function by passing NULL. #' #' @param numCores number of cores to use (default to take all cores), or NULL if no parallel execution is to be used #' @export #' @examples #' \dontrun{ #' registerCoresPWMEnrich(4) # use 4 CPU cores in PWMEnrich #' registerCoresPWMEnrich() # use maximal number of CPUs #' registerCoresPWMEnrich(NULL) # do not use parallel execution #' } registerCoresPWMEnrich = function(numCores=NA){ if (!requireNamespace("parallel")) stop("Parallel execution requires package parallel") if(!is.null(numCores) && is.na(numCores)) numCores = parallel::detectCores() assign("numCores", numCores, pos=.PWMEnrich.Options) } #' If to use a faster implementation of motif scanning that requires abount 5 to 10 times more memory #' #' @param useBigMemory a boolean value denoting if to use big memory implementation #' #' @export #' @examples #' \dontrun{ #' useBigMemoryPWMEnrich(TRUE) # switch to big memory implementation globally #' useBigMemoryPWMEnrich(FALSE) # switch back to default implementation #' } useBigMemoryPWMEnrich = function(useBigMemory=FALSE){ assign("useBigMemory", useBigMemory, pos=.PWMEnrich.Options) } PWMEnrich/R/plot.R0000644000175100017510000004205214614305422014674 0ustar00biocbuildbiocbuild #' Plot a PFM (not PWM) using seqLogo #' #' @param pfm a matrix where rows are the four nucleotides #' @param ... additional parameters for plot() plotPFM = function(pfm, ...){ plot(makePWM(divideRows(pfm,colSums(pfm))), ...) } #' Plotting for the PWM class #' #' This function produces a sequence logo (via package seqLogo). #' #' @aliases plot,PWM,missing-method #' @param x the PWM object #' @param y unused #' @param ... other parameters to pass to seqLogo's \code{plot} function #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # plot the tinman motif from MotifDb #' plot(MotifDb.Dmel[["tin"]]) #' } setMethod("plot", signature=signature(x="PWM", y="missing"), function(x, y, ...){ pfm = x$pfm plot(makePWM(divideRows(pfm,colSums(pfm))), ...) }) #' Plot mulitple motifs in a single plot #' #' Individual motif logos are plotted on a rows x cols grid. This function is a convenience #' interface for the \code{seqLogoGrid} function that deals with viewpoint placement in a #' matrix-like grid layout. #' #' By default will try to make a square grid plot that would fit all the motifs and use #' list names as captions. #' #' @param pwms a list of PWM objects or frequency matrices #' @param titles a characater vector of titles for each of the plots #' @param rows number of rows in the grid #' @param cols number or cols in the grid #' @param xmargin.scale the scaling parameter for the X-axis margin. Useful when plotting more than one logo on a page #' @param ymargin.scale the scaling parameter for the Y-axis margin. Useful when plotting more than one logo on a page #' @param ... other parameters passed to seqLogoGrid() #' @export plotMultipleMotifs = function(pwms, titles=names(pwms), rows=ceiling(sqrt(length(pwms))), cols=ceiling(sqrt(length(pwms))), xmargin.scale=0.4, ymargin.scale=0.4, ...){ if(!is.list(pwms)) pwms = list(pwms) if(length(pwms) != length(titles)) stop("Number of titles in the 'titles' parameter does not match the number of input motifs") # start a new viewport page grid.newpage() pushViewport(viewport(layout = grid.layout(rows,cols))) # use the grid layout for(i in 1:rows){ for(j in 1:cols){ pushViewport(viewport(layout.pos.row = i, layout.pos.col = j)) # work out which PWM to plot inx = (i-1)*cols + j # only plot if available if( inx <= length(pwms) ){ pwm = pwms[[inx]] if(inherits(pwm, "PWM")) pwm = pwm$pfm # use the backend functions to plot seqLogoGrid(divideRows(pwm,colSums(pwm)), xmargin.scale=xmargin.scale, ymargin.scale=ymargin.scale, title=titles[inx], ...) } popViewport() } } popViewport() } #' Plot the motif enrichment report #' #' Plots a graphical version of the motif enrichment report. Note that all values are plotted, if you want to plot only a subset of #' a report, first select this subset (see examples). #' #' @aliases plot,MotifEnrichmentReport,missing-method #' @param x a MotifEnrichmentReport object #' @param y unused #' @param fontsize font size to use in the plot #' @param id.fontsize font size to use for the motif IDs #' @param header.fontsize font size of the header #' @param widths the relative widths of columns #' @param ... unused #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAAGTCCCAGATGA"), DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # produce a report for all sequences taken together #' r = groupReport(res) #' #' # plot the top 10 most enriched motifs #' plot(r[1:10]) #' #' } setMethod("plot", signature=signature(x="MotifEnrichmentReport", y="missing"), function(x, y, fontsize=14, id.fontsize=fontsize, header.fontsize=fontsize, widths=NULL, ...){ d = x@d pwms = x@pwms rows = nrow(d)+1 cols = ncol(d)+1 # some default widths if(is.null(widths)) widths = c(0.05, 0.1, 0.2, 0.36, 0.08, 0.08, 0.08)[1:(ncol(d)+1)] widths = widths / sum(widths) if("z.score" %in% colnames(d)){ names(d) = c("Rank", "Target", "Motif ID", "Raw score", "Z score", "In top\nmotifs")[1:ncol(d)] } else { names(d) = c("Rank", "Target", "Motif ID", "Raw score", "P-value", "In top\nmotifs")[1:ncol(d)] } # start a new viewport page grid.newpage() pushViewport(viewport(layout = grid.layout(rows, cols, widths=widths))) # use the grid layout for(ii in 1:rows){ for(j in 1:cols){ pushViewport(viewport(layout.pos.row = ii, layout.pos.col = j)) # figure out which column to plot if(j <= 2){ inx = j } else { inx = j - 1 } if(ii == 1){ # header if(j == 3) grid.text("PWM", gp=gpar(fontsize=header.fontsize, fontface="bold")) else grid.text(names(d)[inx], gp=gpar(fontsize=header.fontsize, fontface="bold")) } else { # rest of the table i = ii - 1 # 3rd column is PWM if(j == 3){ pwm = pwms[[i]]$pfm # use the backend functions to plot seqLogoGrid(divideRows(pwm,colSums(pwm)), xmargin.scale=0.01, ymargin.scale=0.01, xaxis=FALSE, yaxis=FALSE, ...) } else { if(inx == 6){ grid.text(paste(round(d[i,inx]*100), "%"), gp=gpar(fontsize=fontsize)) } else if(inx == 3){ grid.text(d[i,inx], gp=gpar(fontsize=id.fontsize)) } else if(inx > 3){ grid.text(signif(d[i,inx],3), gp=gpar(fontsize=fontsize)) } else { grid.text(d[i,inx], gp=gpar(fontsize=fontsize)) } } } popViewport() } } popViewport() }) #' Draw a motif logo on an existing viewport #' #' This function comes from the seqLogo package. It has been modified to remove #' some unneccessary code as suggested by W Huber (https://stat.ethz.ch/pipermail/bioconductor/2010-September/035267.html). #' #' Use this function for more advanced plotting where the viewports are directly set up and maintained (see package \code{grid}). #' #' @param pwm numeric The 4xW position weight matrix. #' @param ic.scale logical If TRUE, the height of each column is proportional to its information #' content. Otherwise, all columns have the same height. #' @param xaxis logical If TRUE, an X-axis will be plotted. #' @param yaxis logical If TRUE, a Y-axis will be plotted. #' @param xfontsize numeric Font size to be used for the X-axis. #' @param yfontsize numeric Font size to be used for the Y-axis. #' @param xmargin.scale the scaling parameter for the X-axis margin. Useful when plotting more than one logo on a page #' @param ymargin.scale the scaling parameter for the Y-axis margin. Useful when plotting more than one logo on a page #' @param title to be shown on the top #' @param titlefontsize the fontsize of the title #' @export seqLogoGrid <- function(pwm, ic.scale=TRUE, xaxis=TRUE, yaxis=TRUE, xfontsize=10, yfontsize=10, xmargin.scale=1, ymargin.scale=1, title="", titlefontsize=15){ if (inherits(pwm, "pwm")){ pwm <- pwm@pwm }else if (is.data.frame(pwm)){ pwm <- as.matrix(pwm) }else if (!is.matrix(pwm)){ stop("pwm must be of class matrix or data.frame") } if (any(abs(1 - apply(pwm,2,sum)) > 0.01)) stop("Columns of PWM must add up to 1.0") chars <- c("A","C","G","T") letters <- list(x=NULL,y=NULL,id=NULL,fill=NULL) npos <- ncol(pwm) if (ic.scale){ ylim <- 2 ylab <- "Information content" facs <- pwm2ic(pwm) }else{ ylim <- 1 ylab <- "Probability" facs <- rep(1, npos) } wt <- 1 x.pos <- 0 for (j in 1:npos){ column <- pwm[,j] hts <- 0.95*column*facs[j] letterOrder <- order(hts) y.pos <- 0 for (i in 1:4){ letter <- chars[letterOrder[i]] ht <- hts[letterOrder[i]] if (ht>0) letters <- addLetter(letters,letter,x.pos,y.pos,ht,wt) y.pos <- y.pos + ht + 0.01 } x.pos <- x.pos + wt } bottomMargin = ifelse(xaxis, 2 + xfontsize/3.5, 2) * ymargin.scale leftMargin = ifelse(yaxis, 2 + yfontsize/3.5, 2) * xmargin.scale rightMargin = 2 * xmargin.scale topMargin = 2 * ymargin.scale pushViewport(plotViewport(c(bottomMargin,leftMargin,topMargin,rightMargin))) pushViewport(dataViewport(0:ncol(pwm),0:ylim,name="vp1")) grid.polygon(x=unit(letters$x,"native"), y=unit(letters$y,"native"), id=letters$id, gp=gpar(fill=letters$fill,col="transparent")) # put in the title grid.text(title, y=1.1, vjust=0, gp=gpar(fontsize=titlefontsize)) if (xaxis){ grid.xaxis(at=seq(0.5,ncol(pwm)-0.5),label=1:ncol(pwm), gp=gpar(fontsize=xfontsize)) grid.text("Position",y=unit(-3,"lines"), gp=gpar(fontsize=xfontsize)) } if (yaxis){ grid.yaxis(gp=gpar(fontsize=yfontsize)) grid.text(ylab,x=unit(-3,"lines"),rot=90, gp=gpar(fontsize=yfontsize)) } popViewport() popViewport() } #' Plot the raw motifs scores as returned by motifScores() #' #' This function visualises the motif scores for one or more sequences. Sequences are drawn as lines, and scores are plotted #' as triangles at both sides of the line (corresponding to the two strands). The width of the base of the triangle corresponds to motif width and #' the height to the motif \code{log(score)} that is positive and greater than the \code{cutoff} parameter (if specified). All scores #' have the same y-axis, so the heights of bars are comparable between sequences and motifs. #' #' @param scores the list of motifs scores. Each element of the list is a matrix of scores for one sequences. The columns in the matrix #' correspond to different motifs. Each column contains the odds (not log-odds!) scores over both strands. For example, #' for a sequence of length 5, scores for a 3 bp motifs could be: \code{c(0.1, 1, 4, NA, NA, 1, 0.3, 2, NA, NA)}. The first #' 3 numbers are odds scores starting at first three bases, and the second lot of 3 numbers is the scores starting at the #' same positions but with the reverse complement of the motif. The last two values are NA on both strands because we do not #' support partial motif hits. #' @param sel.motifs a vector of motif names. Use this parameter to show the motif hits to only a subset of motifs for which the scores are available. #' @param seq.names a vector of sequence names to show in the graph. If none specified, the sequences will be named Sequence 1, Sequence 2, ... #' @param cols a vector of colours to use to colour code motif hits. If none are specified, the current palette will be used. #' @param cutoff either a single value, or a vector of values. The values are PWM cutoffs after \code{log.fun} (see below). Only motif scores above these cutoffs will be shown. #' If a single values is specified, it will be used for all PWMs, otherwise the vector needs to specify one cutoff per PWM. #' @param log.fun the logarithm function to use to calculate log-odds. By default log2 is used for consistency with Biostrings. #' @param main the main title #' @param legend.space the proportion of horizontal space to reserve for the legend. The default is 30\%. #' @param max.score the maximal log-odds score used to scale all other scores. By default this values is automatically determined, but it can #' also be set manually to make multiple plots comparable. #' @param trans the level of transparency. By default 50\% transparency to be able to see overlapping binding sites #' @param text.cex the scaling factor for sequence names #' @param legend.cex the scaling factor for the legend #' @param motif.names optional vector of motif names to show instead of those present as column names in \code{scores} #' @param seq.len.spacing the spacing (in bp units) between the end of the sequence line and the text showing the length in bp #' @param shape the shape to use to draw motif occurances, valid values are "rectangle" (default), "line" and "triangle" #' @export #' @examples #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # Load Drosophila PWMs #' data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # two sequences of interest #' sequences = list(DNAString("GAAGTATCAAGTGACCAGGTGAAGTCCCAGATGA"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGAAGCCGATG")) #' #' # select the tinman and snail motifs #' pwms = MotifDb.Dmel[c("tin", "sna")] #' #' # get the raw score that will be plotted #' scores = motifScores(sequences, pwms, raw.scores=TRUE) #' #' # plot the scores in both sequences, green for tin and blue for sna #' plotMotifScores(scores, cols=c("green", "blue")) #' #' } plotMotifScores = function(scores, sel.motifs=NULL, seq.names=NULL, cols=NULL, cutoff=NULL, log.fun=log2, main="", legend.space=0.30, max.score=NULL, trans=0.5, text.cex=0.9, legend.cex=0.9, motif.names=NULL, seq.len.spacing=8, shape="rectangle"){ # subset motifs if(!is.null(sel.motifs)){ scores = lapply(scores, function(x) x[, sel.motifs, drop=FALSE]) } if(length(unique(sapply(scores, ncol)))!=1){ stop("All elements of the 'scores' list need to have matrices with the same number of columns.") } if(!(shape %in% c("line", "triangle", "rectangle"))){ stop("'shape' parameter needs to be 'rectangle', 'line' or 'triangle'") } # reverse the scores for plotting order! scores = rev(scores) # number of sequences num.seq = length(scores) # maximal sequence length seq.len = sapply(scores, nrow)/2 max.seq.len = max(seq.len) # find out the length of each motif by the number of NAs motif.len = apply(scores[[1]], 2, function(x) sum(is.na(x))/2 + 1) num.motifs = length(motif.len) # threshold the signal if(is.null(cutoff)){ cutoff = rep(0, num.motifs) } else if(length(cutoff) == 1) { cutoff = rep(cutoff, num.motifs) } else if(length(cutoff) != num.motifs){ stop("The length of 'cutoff' does not match the number of shown motifs") } # do the log of scores scores = lapply(scores, log.fun) # apply the cutoff to the scores scores = lapply(scores, function(s){ for(i in 1:ncol(s)){ sel = which(s[,i] <= cutoff[i]) if(length(sel) > 0) s[sel,i] = 0 } s }) # the largest score to use to scale all scores if(is.null(max.score)) max.score = max(sapply(scores, function(s) max(s, na.rm=TRUE))) ############# PLOTING ############# if(is.null(cols)){ pal = palette() cols = pal[ (1:num.motifs) %% length(pal) ] } # add transparency cols.rgb = col2rgb(cols) cols.rgb = rbind(cols.rgb, "alpha"=(1-trans)*255) / 255 for(i in 1:length(cols)){ cols[i] = rgb(cols.rgb[1, i], cols.rgb[2, i], cols.rgb[3, i], cols.rgb[4, i]) } # set up the empty plotting area ylim = c(0, 2*num.seq) xlim = c(0, max.seq.len/(1-legend.space)) # allow for extra space for the legend par(mar=c(0,0,2,1)) plot(NULL, xlim=xlim, ylim=ylim, xaxt="n", yaxt="n", ylab="", xlab="", bty="n", main=main) # plot the lines corresponding to the sequences for(i in 1:num.seq){ y = 1+(i-1)*2 lines(c(1, seq.len[i]+1), c(y, y)) # ticks at the dn lines(c(1,1), c(y-0.03, y+0.03)) lines(c(seq.len[i]+1, seq.len[i]+1), c(y-0.03, y+0.03)) } # now plot the signal for(i in 1:num.seq){ s = scores[[i]] # the basic y axis y = 1+(i-1)*2 # iterate over motifs for(j in 1:ncol(s)){ by.strand = matrix(s[,j], ncol=2) for(k in 1:2){ x.start = which(by.strand[,k] > 0) x.end = x.start + motif.len[j] y.start = rep(y, length(x.start)) if(k == 1){ # multiply by 0.8 to leave some space between sequences! y.end = y.start + by.strand[x.start,k] / max.score * 0.8 } else { y.end = y.start - by.strand[x.start,k] / max.score * 0.8 } for(kk in 1:length(x.start)){ if(shape == "triangle"){ polygon(c(x.start[kk], x.end[kk], (x.start[kk]+x.end[kk])/2), c(y.start[kk], y.start[kk], y.end[kk]), col=cols[j], border=cols[j]) } else if(shape == "rectangle"){ rect(x.start[kk], y.start[kk], x.end[kk], y.end[kk], col=cols[j], border=cols[j]) } else { xmid = (x.start[kk]+x.end[kk])/2 rect(xmid-0.5, y.start[kk], xmid+0.5, y.end[kk], col=cols[j], border=cols[j]) } } } } } # find out max scores for each motif separately max.score.motif = sapply(1:num.motifs, function(i){ max(sapply(scores, function(s) max(s[,i], na.rm=TRUE))) }) # set up the legend if(is.null(motif.names)) motif.names = colnames(scores[[1]]) legend = paste(motif.names, " (", round(max.score.motif, 2), " max)", sep="") legend("topright", pch=rep(15, num.motifs), col=cols, legend=legend, cex=legend.cex) # plot sequence names if(is.null(seq.names)){ if(is.null(names(scores))) seq.names = paste("Sequence", 1:length(scores)) else seq.names = names(scores) } seq.names = rev(seq.names) for(i in 1:length(seq.names)){ y = 1+(i-1)*2 + 1 text(1, y, seq.names[i], adj=0, cex=text.cex) } # plot the lengths of sequences for(i in 1:length(seq.len)){ y = 1+(i-1)*2 x = seq.len[i] + seq.len.spacing text(x, y, paste(seq.len[i], "bp"), adj=0, cex=text.cex*0.8) } } PWMEnrich/R/PWM-methods.R0000644000175100017510000000403714614305422016023 0ustar00biocbuildbiocbuild#' Name of different pieces of information associated with PWM #' #' @title Names of variables #' @name names,PWM #' @aliases names,PWM-method #' @param x the PWM object #' @return the names of the variables #' @rdname operators-PWM setMethod("names", signature=signature(x="PWM"), function(x) slotNames(x)) #' Access a property by name #' #' @aliases $,PWM-method #' @param x the PWM object #' @param name the variable name #' @rdname operators-PWM setMethod("$", signature=signature(x="PWM"), function(x, name){ slot(x, name) }) #' Length of the motif #' #' Returns the motif length, i.e. the number of columns in the PWM. #' #' @param x the PWM object #' @aliases length,PWM-method #' @rdname operators-PWM setMethod("length", signature=signature(x="PWM"), function(x){ ncol(x@pwm) }) #' Reverse complement for the PWM object #' #' Finds the reverse complement of the PWM #' #' @aliases reverseComplement,PWM-method #' @param x an object of type PWM #' @param ... unused #' @return an object of type PWM that is reverse complement of x #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' reverseComplement(MotifDb.Dmel.PFM[["ttk"]]) # reverse complement of the ttk PWM #' } #' setMethod("reverseComplement", signature=signature(x="PWM"), function (x, ...) { pfm = reverseComplement(x@pfm) pwm = reverseComplement(x@pwm) new("PWM", id=paste(x@id, "-- reverse complement"), name=x@name, pfm=pfm, prior.params=x@prior.params, pwm=pwm) }) #' show method for PWM #' @param object the PWM object setMethod("show", signature=signature(object="PWM"), function(object){ cat("An object of class 'PWM'\n") cat("ID:", object$id, "\n") cat("Target name:", object$name, "\n") cat("Frequency matrix:\n") cat("$pfm\n") print(object$pfm) cat("Position weight matrix (PWM):\n") cat("$pwm\n") print(object$pwm) cat("With background nucleotide frequencies which also serve as pseudo-count:\n") cat("$prior.params\n") print(object$prior.params) }) PWMEnrich/R/pwm.R0000644000175100017510000016435214614305422014531 0ustar00biocbuildbiocbuild # Globals from Biostrings DNA_BASES = c("A", "C", "G", "T") DNA_ALPHABET = c("A", "C", "G", "T", "M", "R", "W", "S", "Y", "K", "V", "H", "D", "B", "N", "-", "+") #' Input parameter normalization function for PWMUnscaled #' #' This function is from Biostrings package #' #' @param prior.params Typical 'prior.params' vector: c(A=0.25, C=0.25, G=0.25, T=0.25) .normargPriorParams <- function(prior.params) { if (!is.numeric(prior.params)) stop("'prior.params' must be a numeric vector") if (length(prior.params) != length(DNA_BASES) || !setequal(names(prior.params), DNA_BASES)) stop("'prior.params' elements must be named A, C, G and T") ## Re-order the elements. prior.params <- prior.params[DNA_BASES] if (any(is.na(prior.params)) || any(prior.params < 0)) stop("'prior.params' contains NAs and/or negative values") prior.params } #' Input parameter normalization for PWMUnscaled #' #' This function is from Biostrings package. #' A Position Frequency Matrix (PFM) is also represented as an ordinary #' matrix. Unlike a PWM, it must be of type integer (it will typically be #' the result of consensusMatrix()). #' #' @param x a frequency matrix .normargPfm <- function(x) { if (!is.matrix(x) || !is.integer(x)) stop("invalid PFM 'x': not an integer matrix") ## Check the row names. if (is.null(rownames(x))) stop("invalid PFM 'x': no row names") if (!all(rownames(x) %in% DNA_ALPHABET)) stop("invalid PFM 'x': row names must be in 'DNA_ALPHABET'") if (!all(DNA_BASES %in% rownames(x))) stop("invalid PFM 'x': row names must contain A, C, G and T") if (any(duplicated(rownames(x)))) stop("invalid PFM 'x': duplicated row names") ## Check the nb of cols. if (ncol(x) == 0L) stop("invalid PFM 'x': no columns") ## Check the values. if (any(is.na(x)) || any(x < 0L)) stop("invalid PFM 'x': values cannot be NA or negative") if (any(x[!(rownames(x) %in% DNA_BASES), ] != 0L)) stop("invalid PFM 'x': IUPAC ambiguity letters are represented") x <- x[DNA_BASES, , drop=FALSE] x } #' The PWM function from Biostrings without unit scaling #' #' By default the Biostrings package scales the log-odds score so it is within 0 and 1. In this function #' we take a more traditional approach with no unit scaling and offer unit scaling as an additional parameter. #' #' See ?PWM from Biostrings for more information on input arguments. #' #' @title Create a PWM from PFM #' @param x the integer count matrix representing the motif, rows as nucleotides #' @param id a systematic ID given to this PWM, could include the source, version, etc #' @param name the name of the transcription factor (TF) to which the PWM corresponds to #' @param type the type of PWM calculation, either as log2-odds, or posterior probability (frequency matrix) #' @param prior.params the pseudocounts for each of the nucleotides #' @param pseudo.count the pseudo-count values if different from priors #' @param unit.scale if to unit.scale the pwm (default is no unit scaling) #' @param seq.count if x is a normalised PFM (i.e. with probabilities instead of sequence counts), then this sequence count #' will be used to convert \code{x} into a count matrix #' @return a new PWM object representing the PWM #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' ttk = MotifDb.Dmel.PFM[["ttk"]] #' #' # make a PWM with uniform background #' PWMUnscaled(ttk, id="ttk-JASPAR", name="ttk") #' #' # custom background #' PWMUnscaled(ttk, id="ttk-JASPAR", name="ttk", #' prior.params=c("A"= 0.2, "C" = 0.3, "G" = 0.3, "T" = 0.2)) #' #' # get background for drosophila (quick mode on a reduced dataset) #' prior = getBackgroundFrequencies("dm3", quick=TRUE) #' #' # convert using genomic background #' PWMUnscaled(ttk, id="ttk-JASPAR", name="ttk", prior.params=prior) #' } #' PWMUnscaled = function(x, id="", name="", type=c("log2probratio", "prob"), prior.params=c(A=0.25, C=0.25, G=0.25, T=0.25), pseudo.count=prior.params, unit.scale=FALSE, seq.count=NULL){ # convert to PFM if needed if(!is.null(seq.count)){ x = apply(round(x * seq.count), 1:2, as.integer) } # match input params x <- .normargPfm(x) nseq <- colSums(x) type <- match.arg(type) prior.params <- .normargPriorParams(prior.params) # total prior added priorN <- sum(prior.params) # posterior probabilities with unequal number of counts per row postProbs <- divideRows(x + prior.params, nseq + priorN) rownames(postProbs) = rownames(x) colnames(postProbs) = colnames(x) # calculate logodds, or return probabilities if (type == "log2probratio") { if (any(prior.params == 0)) stop("infinite values in PWM due to 0's in 'prior.params'") prior.probs <- prior.params/priorN ans <- log2(postProbs/prior.probs) } else { ans <- postProbs } # if to apply unit.scale if(unit.scale) ans = unitScale(ans) # return an object new("PWM", id=id, name=name, pfm=x, prior.params=prior.params, pwm=ans) } #' Scan the whole sequence on both strands #' #' The whole sequence is scanned with a PWM and scores returned beginning at each position. Partial motif #' matches are not done, thus the last #[length of motif]-1 scores are NA. #' #' The function returns either an odds average (*not* log-odds average), maximal score on each strand, #' or scores on both strands. #' #' The function by default returns the score in log2 following the package \code{Biostrings}. #' #' @param pwm PWM object #' @param dna a DNAString or other sequence from Biostrings #' @param pwm.rev the reverse complement for a pwm (if it is already pre-computed) #' @param odds.score if to return raw scores in odds (not logodds) space #' @param both.strands if to return results on both strands #' @param strand.fun which function to use to summarise values over two strands (default is "mean") #' @return a vector representing scores starting at each position, or a matrix with score in the two strands #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' ttk = MotifDb.Dmel[["ttk"]] #' #' # odds average over the two strands expressed as log2-odds #' scanWithPWM(ttk, DNAString("CGTAGGATAAAGTAACT")) #' #' # log2-odds scores on both strands #' scanWithPWM(ttk, DNAString("CGTAGGATAAAGTAACT"), both.strands=TRUE) #' } #' scanWithPWM = function(pwm, dna, pwm.rev=NULL, odds.score=FALSE, both.strands=FALSE, strand.fun="mean"){ if(is.character(dna)) dna = DNAString(dna) if(!inherits(dna, c("DNAString", "DNAStringSet"))) stop("The input sequence needs to be either of type DNAString or DNAStringSet") if(is.null(pwm.rev)) pwm.rev = reverseComplement(pwm) # extract only the PWM matrices pwm = pwm$pwm pwm.rev = pwm.rev$pwm if(length(dna) < ncol(pwm)){ stop("DNA sequence needs to be at least as long as the PWM") } fwd.motif = PWMscoreStartingAt(pwm, dna, starting.at=1:(length(dna)-ncol(pwm)+1)) back.motif = PWMscoreStartingAt(pwm.rev, dna, starting.at=1:(length(dna)-ncol(pwm)+1)) if(both.strands){ res = cbind(fwd.motif, back.motif) colnames(res) = c("fwd", "rev") res = rbind(res, matrix(NA, nrow=(ncol(pwm)-1), ncol=2)) } else { if(strand.fun == "max"){ res = apply(cbind(fwd.motif, back.motif), 1, max) } else if(strand.fun == "mean"){ res = 2^cbind(fwd.motif, back.motif) res = log2(rowMeans(res)) } else { stop("Unknown strand function", strand.fun, ". Valid values are: mean, max") } # pad out the result so it is of same length as input sequence res = c(res, rep(NA, ncol(pwm)-1)) } if(odds.score) return(2^res) else return(res) } #' Convert frequencies into motifs using PWMUnscaled #' #' Note that this function is deprecated and replaced by \code{toPWM()}. #' #' @param motifs a list of motifs represented as matrices of frequencies (PFM) #' @param id the set of IDs for the motifs (defaults to names of the 'motifs' list) #' @param name the set of names for the motifs (defaults to names of the 'motifs' list) #' @param seq.count if frequencies in the motifs are normalized to 1, provides a vector of sequence counts (e.g. for MotifDb motifs) #' @param ... other parameters to PWMUnscaled #' #' @export #' @examples #' \dontrun{ #' if (requireNamespace("PWMEnrich.Dmelanogaster.background")) { #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # convert to PWM with uniform background #' PFMtoPWM(MotifDb.Dmel.PFM) #' #' # get background for drosophila (quick mode on a reduced dataset) #' prior = getBackgroundFrequencies("dm3", quick=TRUE) #' #' # convert with genomic background #' PFMtoPWM(MotifDb.Dmel.PFM, prior.params=prior) #' } #' } PFMtoPWM = function(motifs, id=names(motifs), name=names(motifs), seq.count=NULL, ...){ if(!is.list(motifs)){ was.list = FALSE motifs = list(motifs) } else { was.list = TRUE } if(is.null(id)) id = rep("", length(motifs)) if(is.null(name)) name = rep("", length(motifs)) if(length(id) != length(motifs)) stop("The number of IDs (parameter 'id') need to be the same as number of motifs (parameter 'motifs')") if(length(name) != length(motifs)) stop("The number of names (parameter 'name') need to be the same as number of motifs (parameter 'motifs')") if(!is.null(seq.count) && length(seq.count) != length(motifs)){ stop("The 'seq.count' vector needs to be of the same length as the list of motifs (parameters 'motifs')") } # call PWMUnscaled res = list() for(i in 1:length(motifs)){ if(is.null(seq.count)){ res[[i]] = PWMUnscaled(motifs[[i]], id=id[i], name=name[i], ...) } else { res[[i]] = PWMUnscaled(motifs[[i]], id=id[i], name=name[i], seq.count=seq.count[i], ...) } } names(res) = names(motifs) # convert back to single object if that's how the input was if(!was.list){ return(res[[1]]) } else { return(res) } } #' Convert motifs into PWMs #' #' @param motifs a list of motifs either as position probability matrices (PPM) or frequency matirces (PFMs) #' @param ids the set of IDs for the motifs (defaults to names of the 'motifs' list) #' @param targets the set of target TF names for the motifs (defaults to names of the 'motifs' list) #' @param seq.count provides a vector of sequence counts for probability matrices (PPMs). Default it 50. #' @param prior frequencies of the four letters in the genome. Default is uniform background. #' @param ... other parameters to PWMUnscaled #' #' @export #' @examples #' \dontrun{ #' if (requireNamespace("PWMEnrich.Dmelanogaster.background")) { #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' toPWM(MotifDb.Dmel.PFM) # convert to PWM with uniform background #' #' # get background for drosophila (quick mode on a reduced dataset) #' prior = getBackgroundFrequencies("dm3", quick=TRUE) #' toPWM(MotifDb.Dmel.PFM, prior=prior) # convert with genomic background #' } #' } toPWM = function(motifs, ids=names(motifs), targets=names(motifs), seq.count=50, prior=c(A=0.25, C=0.25, G=0.25, T=0.25), ...){ if(!is.list(motifs)){ was.list = FALSE motifs = list(motifs) } else { was.list = TRUE } # extend seq.count if needed if(length(seq.count) == 1 && length(seq.count) != length(motifs)) seq.count = rep(seq.count, length(motifs)) # convert each individual motif into integers or multiply with seq.count for(i in 1:length(motifs)){ m = motifs[[i]] mi = apply(m, 1:2, as.integer) if(all(m == mi)){ # can be coersced to an integer matrix, use that motifs[[i]] = mi } else { # if the values is NA use 50 as default if(is.na(seq.count[i])){ motifs[[i]] = apply(round(m * 50), 1:2, as.integer) } else { motifs[[i]] = apply(round(m * seq.count[i]), 1:2, as.integer) } } } if(is.null(ids)) ids = rep("", length(motifs)) if(is.null(targets)) targets = rep("", length(motifs)) if(length(ids) != length(motifs)) stop("The number of IDs (parameter 'ids') need to be the same as number of motifs (parameter 'motifs')") if(length(targets) != length(motifs)) stop("The number of TF target names (parameter 'targets') need to be the same as number of motifs (parameter 'motifs')") # call PWMUnscaled res = list() for(i in 1:length(motifs)){ res[[i]] = PWMUnscaled(motifs[[i]], id=ids[i], name=targets[i], prior.params=prior, ...) } names(res) = names(motifs) # convert back to single object if that's how the input was if(!was.list){ return(res[[1]]) } else { return(res) } } #' Normalizes the motifs input argument for multiple functions #' #' @param motifs a list of motifs either as frequency matrices (PFM) or as PWM objects. If PFMs are specified #' they are converted to PWMs using uniform background. .inputParamMotifs = function(motifs){ # check motifs format and convert to PWM if(!is.list(motifs)) motifs = list(motifs) if(is.matrix(motifs[[1]])) pwms = PFMtoPWM(motifs) else if(inherits(motifs[[1]], "PWM")) pwms = motifs else stop("motifs need to be either frequency matrices or PWM objects") return(pwms) } #' Normalize the sequences input argument #' #' @param sequences a set of sequences to be scanned, a list of DNAString or other scannable objects .inputParamSequences = function(sequences){ if(is.character(sequences)){ sequences = readDNAStringSet(sequences) } # make sure sequences are in the right format if(!is.list(sequences) & !inherits(sequences, "DNAStringSet")) sequences = list(sequences) if(is.list(sequences) & length(sequences)>0){ sequences = lapply(sequences, function(s){ if(is.character(s)) DNAString(s) else s }) } #if(class(sequences) == "DNAStringSet") # sequences = DNAStringSetToList(sequences) return(sequences) } #' Motif affinity or number of hits over a threshold #' #' Scan a number of sequences either to find overall affinity, or a number of hits over a score threshold. #' #' @param sequences a set of sequences to be scanned, a list of DNAString or other scannable objects #' @param motifs a list of motifs either as frequency matrices (PFM) or as PWM objects. If PFMs are specified #' they are converted to PWMs using uniform background. #' @param raw.scores if to return raw scores (odds) for each position in the sequence. Note that scores for forward and reverse #' strand are concatenated into a single long vector of scores (twice the length of the sequence) #' @param verbose if to print verbose output #' @param cutoff if not NULL, will count number of matches with score above value specified (instead of returning the average affinity). #' Can either be one value, or a vector of values for each of the motifs. #' @return if raw.scores=FALSE, returns a matrix of mean scores (after cutoff if any), where columns are motifs. #' The returned values are either mean odd scores (not log-odd), or number of hits above a threshold; #' otherwise if raw.scores=TRUE, returns a list of raw score values (before cutoff) #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # affinity scores #' affinity = motifScores(DNAString("CGTAGGATAAAGTAACTAGTTGATGATGAAAG"), MotifDb.Dmel) #' #' # motif hit count with Patser score of 4 #' counts = motifScores(DNAString("CGTAGGATAAAGTAACTAGTTGATGATGAAAG"), MotifDb.Dmel, #' cutoff=log2(exp(4))) #' #' print(affinity) #' print(counts) #' #' # scanning multiple sequences #' sequences = list(DNAString("CGTAGGATAAAGTAACTAGTTGATGATGAAAG"), #' DNAString("TGAGACGAAGGGGATGAGATGCGGAAGAGTGAAA")) #' affinity2 = motifScores(sequences, MotifDb.Dmel) #' print(affinity2) #' } motifScores = function(sequences, motifs, raw.scores=FALSE, verbose=TRUE, cutoff=NULL){ if(!is.null(.PWMEnrich.Options[["useBigMemory"]]) && .PWMEnrich.Options[["useBigMemory"]]) return(motifScoresBigMemory(sequences, motifs, raw.scores, verbose, cutoff)) # check motifs format and convert to PWM pwms = .inputParamMotifs(motifs) sequences = .inputParamSequences(sequences) # check if any of the sequences is all Ns, if so, produce an error if(is(sequences, "DNAStringSet")){ al = alphabetFrequency(sequences) } else { al = do.call("rbind", lapply(sequences, alphabetFrequency)) } # check if any of the sequences is all Ns all.n = which(al[,"N"] == rowSums(al)) if(length(all.n) >0){ stop(paste("Sequence with index(es):", paste(all.n, collapse=","), "only contain N's. Please remove this sequence as the PWM score cannot be computed for any position.")) } pwms.rev = lapply(pwms, reverseComplement) # always unfold cutoff into a vector of values if(!is.null(cutoff)){ if(length(cutoff) == 1){ cutoff = rep(cutoff, length(pwms)) } else if(length(cutoff) != length(pwms)) { stop("The lengths of cutoff and pwms do not match. Either provide one values for cutoff, or a vector of values, one for each PWM") } } # inner loop function to use for parallel processing motifScoresLoop = function(i){ if(verbose) message(paste("Scanning sequence", i, "/", length(sequences))) s = sequences[[i]] # if using raw scores, record matrix of values; # otherwise a single final value for each pwm if(raw.scores){ r = matrix(0, nrow=length(s)*2, ncol=length(pwms)) colnames(r) = names(pwms) } else { r = rep(0, length(pwms)) names(r) = names(pwms) } for(j in 1:length(pwms)){ # if we are interested in counts, use max over two strands if(raw.scores){ # record raw scores that are averages over strands r[,j] = as.vector(scanWithPWM(pwms[[j]], s, pwms.rev[[j]], odds.score=TRUE, both.strands=TRUE)) } else if(!is.null(cutoff)){ # count number of hits on both strands r.pwm = scanWithPWM(pwms[[j]], s, pwms.rev[[j]], odds.score=FALSE, both.strands=TRUE) r[j] = sum(r.pwm >= cutoff[j], na.rm=TRUE) } else { # do average over both strands and also over all values r[j] = mean(scanWithPWM(pwms[[j]], s, pwms.rev[[j]], odds.score=TRUE), na.rm=TRUE) } } r } ####################################### END OF INNER LOOP ################ # either do it parallel or serial if(!is.null(.PWMEnrich.Options[["numCores"]])){ cat("Parallel scanning with", .PWMEnrich.Options[["numCores"]], "cores\n") # do it in parallel res = parallel::mclapply(1:length(sequences), motifScoresLoop, mc.cores = .PWMEnrich.Options[["numCores"]]) if(is.list(res)){ if( any(sapply(res, is.null)) ){ stop("Parallel scanning failed for some sequences. This could be due to a number of reasons including not enough memory.") } } } else { # do it serial res = lapply(1:length(sequences), motifScoresLoop) } ## return either raw scores, or counts or means if(raw.scores){ names(res) = names(sequences) return(res) } else { if(length(pwms) == 1){ return( matrix(sapply(res, identity), ncol=1, dimnames=list(NULL, names(pwms))) ) } else { r = t(sapply(res, identity)) rownames(r) = names(sequences) colnames(r) = names(pwms) return( r ) } } } #' This is a memory intensive version of motifScore() which is about 2 times faster #' #' The parameters and functionality are the same as \code{\link{motifScores}}. Please refer to documentation of this function #' for detailed explanation of functionality. #' #' This function is not meant to be called directly, but is indirectly called by motifScores() once a global parameters useBigMemory is set. #' #' @param sequences set of input sequences #' @param motifs set of input PWMs or PFMs #' @param raw.scores if to return scores for each base-pair #' @param verbose if to produce verbose output #' @param cutoff the cutoff for calling binding sites (in base 2 log). #' @param seq.all already concatenated sequences if already available (used to internally speed up things) #' #' @seealso \code{\link{motifScores}} motifScoresBigMemory = function(sequences, motifs, raw.scores=FALSE, verbose=TRUE, cutoff=NULL, seq.all=NULL){ # check motifs format and convert to PWM pwms = .inputParamMotifs(motifs) sequences = .inputParamSequences(sequences) pwms.rev = lapply(pwms, reverseComplement) pwms.len = sapply(pwms, length) min.pwm.len = min(pwms.len) # always unfold cutoff into a vector of values if(!is.null(cutoff)){ if(length(cutoff) == 1){ cutoff = rep(cutoff, length(pwms)) } else if(length(cutoff) != length(pwms)) { stop("The lengths of 'cutoff' and 'pwms' do not match. Either provide one values for 'cutoff' or a vector of values, one for each PWM") } # cutoff in odds space cutoff.2 = 2^cutoff } # work on a single sequence that is all concatenated together because it's faster if(is.null(seq.all)) seq.all = DNAString(concatenateSequences(sequences)) seq.len = sapply(sequences, length) # a common error with shorter sequences shorter.seq = which(seq.len < min.pwm.len) if(length(shorter.seq)>0){ stop(paste(length(shorter.seq), "sequence(s) have length shorter than the shortest PWM (", min.pwm.len, "), please identify and remove these sequences.")) } # a grouping data frame seq.len.sum = cumsum(seq.len) seq.group = data.frame("from"=rep(0, length(sequences)), "to"=0) seq.group$from = c(1, 1+seq.len.sum[-length(seq.len.sum)]) seq.group$to = seq.len.sum # inner loop function to use for parallel processing # # @param motif.start the index of the first motif # @param motif.end the index of the last motif motifScoresLoop = function(input.params){ motif.start = input.params[[1]] motif.end = input.params[[2]] if(verbose){ if(motif.start == motif.end){ message(paste("Starting scanning with motif", names(pwms)[motif.start])) } else { message(paste("Starting scanning with motifs from", motif.start, "to", motif.end)) } } # local copy of the sequences and motifs used in the function s = seq.all s.group = seq.group pwms.l = pwms[motif.start:motif.end] pwms.rev.l = pwms.rev[motif.start:motif.end] pwms.len.l = pwms.len[motif.start:motif.end] if(!is.null(cutoff)) cutoff.2.l = cutoff.2[motif.start:motif.end] # create the output structure res = list() for(i in 1:nrow(s.group)){ if(raw.scores){ r = matrix(0, nrow=seq.len[i]*2, ncol=length(pwms.l)) colnames(r) = names(pwms.l) res[[i]] = r } else { r = rep(0, length(pwms.l)) names(r) = names(pwms.l) res[[i]] = r } } ### do the scanning, convert back to individual sequences and do the post-processing for(j in 1:length(pwms.l)){ if(verbose){ message(paste("Scanning all sequences with motif", j, "/", length(pwms.l))) } raw = as.vector(scanWithPWM(pwms.l[[j]], s, pwms.rev.l[[j]], odds.score=TRUE, both.strands=TRUE)) ### split the raw results by sequence for(i in 1:nrow(s.group)){ # selector for this sequence from = seq.group$from[i] to = seq.group$to[i] from.rev = length(raw)/2 + seq.group$from[i] to.rev = length(raw)/2 + seq.group$to[i] sel = c(from:to, from.rev:to.rev) r = raw[sel] # fwd strand r[((seq.len[i]-pwms.len.l[j])+2):seq.len[i]] = NA # rev strand r[((2*seq.len[i]-pwms.len.l[j])+2):(2*seq.len[i])] = NA # save the values if(raw.scores){ res[[i]][,j] = r } else if(!is.null(cutoff)){ # count number of hits on both strands res[[i]][j] = sum(r >= cutoff.2.l[j], na.rm=TRUE) } else { # MeanAffinity res[[i]][j] = mean(r, na.rm=TRUE) } } } res } ######################################## END OF INNER LOOP ###################################### # either do it parallel or serial if(!is.null(.PWMEnrich.Options[["numCores"]]) && length(pwms) >= .PWMEnrich.Options[["numCores"]]){ cores = .PWMEnrich.Options[["numCores"]] sel = round(seq(0, length(pwms), length.out=cores+1)) start = sel[1:cores]+1 end = sel[2:(cores+1)] input = lapply(1:cores, function(i) list(start[i], end[i])) # do it in parallel res.parallel = parallel::mclapply(input, motifScoresLoop, mc.cores = cores) if(is.list(res.parallel)){ if( any(sapply(res.parallel, is.null)) ){ stop("Parallel scanning failed for some sequences. This could be due to a number of reasons including not enough memory.") } } # concatenate results for different motifs if(raw.scores) res = lapply(1:length(sequences), function(i) do.call("cbind", lapply(res.parallel, function(x) x[[i]]))) else res = lapply(1:length(sequences), function(i) do.call("c", lapply(res.parallel, function(x) x[[i]]))) } else { # do it serial res = motifScoresLoop(list(1, length(pwms))) } ## return either raw scores, or counts or means if(raw.scores){ names(res) = names(sequences) return(res) } else { if(length(pwms) == 1){ return( matrix(sapply(res, identity), ncol=1, dimnames=list(names(sequences), names(pwms))) ) } else { r = t(sapply(res, identity)) rownames(r) = names(sequences) colnames(r) = names(pwms) return( r ) } } } #' Information content for a PWM or PFM #' #' @param motif a matrix of frequencies, or a PWM object #' @param prior.params the prior parameters to use when a matrix is given (ignored if motif is already a PWM) #' @param bycol if to return values separately for each column #' @return information content in bits (i.e. log2) #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # the nucleotide distribution is taken from the PWM (in this case genomic background) #' motifIC(MotifDb.Dmel[["ttk"]]) #' # information content with default uniform background because the input is a matrix, #' # not PWM object #' motifIC(MotifDb.Dmel.PFM[["ttk"]]) #' } motifIC = function(motif, prior.params=c(A=0.25, C=0.25, G=0.25, T=0.25), bycol=FALSE){ if(inherits(motif, "PWM")) { p = PWMUnscaled(motif$pfm, type="prob", prior.params=motif$prior.params) bg = motif$prior.params } else { p = PWMUnscaled(motif, type="prob", prior.params=prior.params) bg = prior.params } bg = bg/sum(bg) # normalize to 1 cols = p$pwm * log2(p$pwm/bg) if(bycol) return(colSums(cols)) else return(sum(cols)) } #' Calculate motif enrichment using one of available scoring algorithms and background corrections. #' #' This function provides and interface to all algorithms available in PWMEnrich #' to find motif enrichment in a single or a group of sequences with/without #' background correction. #' #' Since for all algorithms the first step involves calculating raw scores without background correction, the output #' always contains the scores without background correction together with (optional) background-corrected #' scores. #' #' Unless otherwise specified the scores are returned both separately for each sequence (without/with background) and #' for the whole group of sequences (without/with background). #' #' To use a background correction you need to supply a set of PWMs with precompiled background distribution parameters #' (see function \code{\link{makeBackground}}). When such an object is supplied as the \code{pwm} parameter, the scoring #' scheme and background correction are automatically determined. #' #' There are additional packages with already pre-computed background (e.g. see package \code{PWMEnrich.Dmelanogaster.background}). #' #' Please refer to (Stojnic & Adryan, 2012) for more details on the algorithms. #' #' @title Motif enrichment #' @param sequences the sequences to be scanned for enrichment. Can be either a single sequence #' (an object of class DNAString), or a list of DNAString objects, or a DNAStringSet object. #' @param pwms this parameter can take multiple values depending on the scoring scheme and background correction used. #' When the \code{method} parameter is set to "autodetect", the following default algorithms #' are going to be used: #' \itemize{ #' \item if \code{pwms} is a list containing either frequency matrices or a list of PWM objects then #' the "affinity" algorithm is selected. If frequency matrices are given, they are converted #' to PWMs using uniform background. For best performance, convert frequency matrices to PWMs #' before calling this function using realistic genomic background. #' \item Otherwise, appropriate scoring scheme and background correction are selected based on the #' class of the object (see below). #' } #' @param score this parameter determines which scoring scheme to use. Following scheme as available: #' \itemize{ #' \item "autodetect" - default value. Scoring method is determined based #' on the type of \code{pwms} parameter. #' \item "affinity" - use threshold-free affinity score. The \code{pwms} #' parameter can either be a list of frequency matrices, \code{PWM} objects, or a #' \code{PWMLognBackground} object. #' \item "cutoff" - use number of motif hits above a score cutoff. The \code{pwms} #' parameter can either be a list of frequency matrices, \code{PWM} objects, or a #' \code{PWMCutoffBackground} object. #' \item "clover" - use the Clover algorithm (Frith et al, 2004). The Clover score of a single #' sequence is identical to the affinity score, while for a group of sequences is an #' average of products of affinities over all sequence subsets. #' } #' #' @param bg this parameter determines how the raw score is compared to the background distribution. #' \itemize{ #' \item "autodetect" - default value. Background correction is determined based on the type #' of the \code{pwms} parameter. #' \item "logn" - use a lognormal distribution background pre-computed for a set of PWMs. #' This requires \code{pwms} to be of class \code{PWMLognBackground}. #' \item "z" - use a z-score for the number of significant motif hits compared to background number of hits. #' This requires \code{pwms} to be of class \code{PWMCutoffBackground}. #' \item "pval" - use empirical P-value based on a set of background sequences. This requires #' \code{pwms} to be of class \code{PWMEmpiricalBackground}. Note that PWMEmpiricalBackground #' objects tend to be very large so that the empirical P-value can be calculated in reasonable time. #' \item "ms" - shuffle columns of motif matrices and use that as basis for P-value calculation. Note that #' since the sequences need to rescanned with all of the new shuffled motifs this can be very slow. #' Also, this also works only no *individual* sequences, not groups. #' \item "none" - no background correction #' } #' @param cutoff the score cutoff for a significant motif hit if scoring scheme "cutoff" is selected. #' @param verbose if to print verbose output #' @param motif.shuffles number of times to shuffle motifs if using "ms" background correction #' @param B number of replicates when calculating empirical P-value #' @param group.only if to return statistics only for the group of sequences, not individual sequences. In the case of #' empirical background the P-values for individual sequences are not calculated (thus saving time), for other #' backgrounds they are calculated but not returned. #' @return a MotifEnrichmentResults object containing a subset following elements: #' \itemize{ #' \item "score" - scoring scheme used #' \item "bg" - background correction used #' \item "params" - any additional parameters #' \item "sequences" - the set of sequences used #' \item "pwms" - the set of pwms used #' \item "sequence.nobg" - per-sequence scores without any background correction. #' For "affinity" and "clover" a matrix of mean affinity scores; for #' "cutoff" number of significant hits above a cutoff #' \item "sequence.bg" - per-sequence scores after background correction. For "logn" and "pval" the P-value (smaller is better); #' for "z" and "ms" background corrections the z-scores (bigger is better). #' \item "group.nobg" - aggregate scores for the whole group of sequences without background correction. For "affinity" #' and "clover" the mean affinity over all sequences in the set; for "cutoff" the total number of hits in all #' sequences. #' \item "group.bg" - aggregate scores for the whole group of sequences with background correction. For "logn" and "pval", #' the P-value for the whole group (smaller is better); for "z" and "ms" the z-score for the whole set (bigger is better). #' \item "sequence.norm" - (only for "logn") the length-normalized scores for each of the sequences. Currently only implemented #' for "logn", where it returns the values normalized from LogN(0,1) distribution #' \item "group.norm" - (only for "logn") similar to sequence.norm, but for the whole group of sequences #' } #' @export #' @references \itemize{ #' \item R. Stojnic & B. Adryan: Identification of functional DNA motifs using a binding affinity lognormal background distribution, submitted. #' \item MC Frith et al: Detection of functional DNA motifs via statistical over-representation, Nucleid Acid Research (2004). #' } #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' ### #' # load the pre-compiled lognormal background #' data(PWMLogn.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' # scan two sequences for motif enrichment #' sequences = list(DNAString("GAAGTATCAAGTGACCAGTAGATTGAAGTAGACCAGTC"), #' DNAString("AGGTAGATAGAACAGTAGGCAATGGGGGAAATTGAGAGTC")) #' res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) #' #' # most enriched in both sequences (lognormal background P-value) #' head(motifRankingForGroup(res)) #' #' # most enriched in both sequences (raw affinity, no background) #' head(motifRankingForGroup(res, bg=FALSE)) #' #' # most enriched in the first sequence (lognormal background P-value) #' head(motifRankingForSequence(res, 1)) #' #' # most enriched in the first sequence (raw affinity, no background) #' head(motifRankingForSequence(res, 1, bg=FALSE)) #' #' ### #' # Load the pre-compiled background for hit-based motif counts with cutoff of P-value = 0.001 #' data(PWMPvalueCutoff1e3.dm3.MotifDb.Dmel, package = "PWMEnrich.Dmelanogaster.background") #' #' res.count = motifEnrichment(sequences, PWMPvalueCutoff1e3.dm3.MotifDb.Dmel) #' #' # Enrichment in the whole group, z-score for the number of motif hits #' head(motifRankingForGroup(res)) #' #' # First sequence, sorted by number of motif hits with P-value < 0.001 #' head(motifRankingForSequence(res, 1, bg=FALSE)) #' #' } motifEnrichment = function(sequences, pwms, score="autodetect", bg="autodetect", cutoff=NULL, verbose=TRUE, motif.shuffles=30, B=1000, group.only=FALSE){ # detect scoring method if(score == "autodetect"){ if(inherits(pwms, "PWMLognBackground")) { score = "affinity" } else if(inherits(pwms, "PWMCutoffBackground")) { score = "cutoff" } else { score = "affinity" } } if(score == "cutoff" & is.null(cutoff)) cutoff = pwms@bg.cutoff # the PWM* object pwmobj = NULL # detect background correction if(!(bg %in% c("none", "ms"))){ if(inherits(pwms, "PWMLognBackground")) { bg = "logn" pwmobj = pwms pwms = pwmobj@pwms } else if(inherits(pwms, "PWMCutoffBackground")) { bg = "z" pwmobj = pwms pwms = pwmobj@pwms } else if(inherits(pwms, "PWMEmpiricalBackground")) { bg = "pval" pwmobj = pwms pwms = pwmobj@pwms } else if(inherits(pwms, "PWMGEVBackground")) { bg = "gev" pwmobj = pwms pwms = pwmobj@pwms } else { bg = "none" } } if(!is.list(pwms)) pwms = list(pwms) sequences = .inputParamSequences(sequences) # return list res = list(score=score, bg=bg, pwms=pwms, sequences=sequences, params=list()) # apply no-bg scoring if(score == "affinity"){ # lengths of sequences and PWMs seq.len = sapply(sequences, length) pwm.len = sapply(pwms, length) res$sequence.nobg = motifScores(sequences, pwms, verbose=verbose) res$group.nobg = affinitySequenceSet(res$sequence.nobg, seq.len, pwm.len) } else if(score == "clover"){ res$sequence.nobg = motifScores(sequences, pwms, verbose=verbose) res$group.nobg = cloverScore(res$sequence.nobg, verbose=verbose) } else if(score == "cutoff"){ res$params = list(cutoff=cutoff) res$sequence.nobg = motifScores(sequences, pwms, cutoff=cutoff, verbose=verbose) res$group.nobg = colSums(res$sequence.nobg) } else { stop(paste("Unknown scoring algorithm: '", score, "'. Please select one of: 'affinity', 'cutoff', 'clover'", sep="")) } if(verbose){ cat("Calculating motif enrichment scores ...\n") } # apply background correction if needed if(bg == "none"){ res$sequence.bg = NULL res$group.bg = NULL } else if(bg == "logn"){ # lengths of sequences and PWMs seq.len = sapply(sequences, length) pwm.len = sapply(pwms, length) # do it per sequence res$sequence.bg = logNormPval(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.mean, pwmobj@bg.sd, pwmobj@bg.len) colnames(res$sequence.bg) = names(pwms) # convert logn P-values into normalized observations and run Clover on that res$sequence.norm = apply(res$sequence.bg, 1:2, qlnorm, lower.tail=FALSE) if(score == "affinity"){ # and for the group if(is.matrix(pwmobj@bg.mean)){ # convert back to P-values, using the chi-sq distribution res$group.bg = apply(res$sequence.bg, 2, function(x) { pchisq(-2*sum(log(x)), 2*length(x), lower.tail=FALSE) }) #res$group.bg = colMeans(log(res$sequence.bg)) res$group.norm = sapply(res$group.bg, qlnorm, lower.tail=FALSE) } else { res$group.bg = logNormPvalSequenceSet(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.mean, pwmobj@bg.sd, pwmobj@bg.len) res$group.norm = sapply(res$group.bg, qlnorm, lower.tail=FALSE) } } else if(score == "clover"){ # now run Clover on normalized scores res$group.bg = cloverScore(res$sequence.norm, verbose=verbose) } } else if(bg == "z"){ # lengths of sequences and PWMs seq.len = sapply(sequences, length) pwm.len = sapply(pwms, length) res$sequence.bg = cutoffZscore(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.P) res$group.bg = cutoffZscoreSequenceSet(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.P) } else if(bg == "pval"){ seq.len = sapply(sequences, length) pwm.len = sapply(pwms, length) # if to use cutoff usecutoff = NULL if(score == "cutoff") usecutoff = cutoff if(!group.only){ res$sequence.bg = t(sapply(1:length(seq.len), function(i) empiricalPvalue(res$sequence.nobg[i,], seq.len[i], pwm.len, pwmobj@bg.fwd, pwmobj@bg.rev, cutoff=usecutoff, B=B, verbose=verbose))) } # do empirical P-value if(score == "clover") res$group.bg = cloverPvalue1seq(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.fwd, pwmobj@bg.rev, B=B, verbose=verbose, clover=res$group.nobg) else res$group.bg = empiricalPvalueSequenceSet(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.fwd, pwmobj@bg.rev, cutoff=usecutoff, B=B, verbose=verbose) } else if(bg == "ms"){ # if to use cutoff usecutoff = NULL if(score == "cutoff") usecutoff = cutoff res$sequence.bg = matrixShuffleZscorePerSequence(res$sequence.nobg, sequences, pwms, cutoff=usecutoff, B=motif.shuffles) } else if(bg == "gev"){ seq.len = sapply(sequences, length) pwm.len = sapply(pwms, length) res$sequence.bg = gevPerSequence(res$sequence.nobg, seq.len, pwm.len, pwmobj@bg.loc, pwmobj@bg.scale, pwmobj@bg.shape) res$group.bg = NULL } else { stop(paste("Uknown background correction algorithm: '", bg, "', Please select one of: 'none', 'logn', 'z', 'pval', 'ms'", sep="")) } # only store the values for the group, not individual sequences! if(group.only){ seq.n = grep("^sequence[.]", names(res)) if(length(seq.n)>0){ res = res[-seq.n] } } # restore the sequence names if("sequence.nobg" %in% names(res)){ rownames(res$sequence.nobg) = names(sequences) } if("sequence.bg" %in% names(res)){ rownames(res$sequence.bg) = names(sequences) } return(new("MotifEnrichmentResults", res=res)) } #' Obtain z-score for motif column shuffling #' #' All PWMs are shuffled at the same time. This function would be too slow to produce #' empirical P-values, thus we return a z-score from a small number of shuffles. #' #' The z-scores are calculated for each sequence individually. #' #' @param scores a set of already calculated scores #' @param sequences either one sequence or a list/set of sequences (objects of type DNAString or DNAStringSet) #' @param pwms a list of PWMs #' @param cutoff if NULL, will use affinity, otherwise will use number of hits over this log2 odds cutoff #' @param B number of replicates, i.e. PWM column shuffles matrixShuffleZscorePerSequence = function(scores, sequences, pwms, cutoff=NULL, B=30){ # scores from different replicates for each of the sequences scores.matrix = array(0, dim=c(nrow(scores), ncol(scores), B)) dimnames(scores.matrix) = list(rownames(scores), colnames(scores), NULL) # perfom shuffles for(i in 1:B){ cat("Perfoming shuffle", i, "/", B, "\n") pwms.shuffled = pwms for(j in 1:length(pwms)){ p = pwms[[j]] pwms.shuffled[[j]]@pwm = p@pwm[, sample(ncol(p@pwm))] } scores.suffled = motifScores(sequences, pwms.shuffled, cutoff=cutoff, verbose=FALSE) scores.matrix[,,i] = scores.suffled } # work out mean and sd shuffled.mean = apply(scores.matrix, c(1,2), mean) shuffled.sd = apply(scores.matrix, c(1,2), sd) return( (scores - shuffled.mean) / shuffled.sd ) } #' Calculate the P-value from lognormal distribution with background of equal length #' #' @param scores affinity scores for the PWMs, can contain scores for more than one sequence (as rows), P-values are extracted separately #' @param seq.len the length distribution of the sequences #' @param pwm.len the leggths of PWMs #' @param bg.mean the mean values from the background for PWMs #' @param bg.sd the sd values from the background #' @param bg.len the length distribution of the background (we currently support only constant length) #' @param log if to produce log p-values logNormPval = function(scores, seq.len, pwm.len, bg.mean, bg.sd, bg.len, log=FALSE){ if(is.vector(scores)){ scores = matrix(scores, nrow=1, dimnames=list(NULL, names(scores))) } if( length(seq.len) != nrow(scores) ){ stop("The sequence length distribution and number of rows for scores doesn't match") } if( !all(colnames(scores) == names(bg.mean)) ){ stop("The motifs column names in 'scores' and 'bg.mean' do not match") } seq.mean = seq.sd = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) slen = matrix(seq.len, nrow=nrow(scores), ncol=ncol(scores)) - matrix(pwm.len, nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) + 1 # rows (i) - sequences # cols (j) - motifs if(is.matrix(bg.mean)){ # human implementation ... bg.len.min = matrix(bg.len[1,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) bg.len.max = matrix(bg.len[nrow(bg.len),], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) bg.len.all = lapply(1:nrow(bg.len), function(i) matrix(bg.len[i,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE)) # split into three classes min.inx = slen <= bg.len.min max.inx = slen >= bg.len.max int.inx = !min.inx & !max.inx # bg.sd correction factor value bgsd = bg.sd * sqrt(bg.len/matrix(bg.len[1,], nrow=nrow(bg.len), ncol=ncol(bg.len), byrow=TRUE)) bgsd = bgsd / matrix(bgsd[1,], nrow=nrow(bgsd), ncol=ncol(bgsd), byrow=TRUE) bgsd.all = lapply(1:nrow(bgsd), function(i) matrix(bgsd[i,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE)) # smaller if(any(min.inx)){ bg.mean.min = matrix(bg.mean[1,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) bg.sd.min = matrix(bg.sd[1,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) # keep mean, use quadratic for sd seq.mean[min.inx] = bg.mean.min[min.inx] seq.sd[min.inx] = bg.sd.min[min.inx] / sqrt(slen[min.inx]/bg.len.min[min.inx]) } if(any(max.inx)){ bg.mean.max = matrix(bg.mean[nrow(bg.mean),], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) bg.sd.max = matrix(bg.sd[nrow(bg.sd),], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) # keep mean, use quadratic for sd seq.mean[max.inx] = bg.mean.max[max.inx] seq.sd[max.inx] = bg.sd.max[max.inx] / sqrt(slen[max.inx]/bg.len.max[max.inx]) } if(any(int.inx)){ bg.mean.all = lapply(1:nrow(bg.mean), function(i) matrix(bg.mean[i,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE)) bg.sd.all = lapply(1:nrow(bg.sd), function(i) matrix(bg.sd[i,], nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE)) # interpolate! for(k in 1:(nrow(bg.mean)-1)){ a = bg.len.all[[k]] b = bg.len.all[[k+1]] inx = int.inx & slen >= a & slen < b if(any(inx)){ # direct linear interpolation for mean seq.mean[inx] = bg.mean.all[[k]][inx] + (bg.mean.all[[k+1]][inx] - bg.mean.all[[k]][inx])/(b[inx]-a[inx]) * (slen[inx]-a[inx]) # base value of seq.sd seq.sd[inx] = bg.sd.all[[1]][inx] / sqrt(slen[inx]/bg.len.all[[1]][inx]) # this correction factor would ideally be 1 seq.sd[inx] = seq.sd[inx] * (bgsd.all[[k]][inx] + (bgsd.all[[k+1]][inx]-bgsd.all[[k]][inx])/(b[inx]-a[inx]) * (slen[inx]-a[inx])) } } } } else { # default implementation seq.mean = matrix(bg.mean, nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) seq.sd = matrix(bg.sd, nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE) / sqrt(slen / matrix(bg.len, nrow=nrow(scores), ncol=ncol(scores), byrow=TRUE)) } # calculate p-values seq.p = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) colnames(seq.p) = colnames(scores) rownames(seq.p) = rownames(scores) # calculate the mean/sd parameters of the lognormal distribution seq.ml = 2*log(seq.mean) - 0.5*log(seq.mean^2+seq.sd^2) seq.sl = sqrt(-2*log(seq.mean) + log(seq.mean^2+seq.sd^2)) # convert to z-scores so we can streamline... z = (log(scores) - seq.ml) / seq.sl seq.p[,] = plnorm(exp(z), meanlog=0, sdlog=1, lower.tail=FALSE, log.p=log) # convert to log10 P-values if(log) seq.p = seq.p * log10(exp(1)) seq.p } #' Lognormal P-value for a set of sequences #' #' @param scores a matrix of per-sequence affinity scores #' @param seq.len lengths of sequences #' @param pwm.len lengths of pwms #' @param bg.mean mean background at length of bg.len #' @param bg.sd standard deviation of background at length of bg.len #' @param bg.len the length for which mean and sd are calculated #' @return P-value logNormPvalSequenceSet = function(scores, seq.len, pwm.len, bg.mean, bg.sd, bg.len){ # total score for all the sequences s = structure(rep(0, ncol(scores)), names=colnames(scores)) res = structure(rep(0, ncol(scores)), names=colnames(scores)) for(i in 1:ncol(scores)){ # lengths of sequences for this pwm, all of them are shorter by pwm.len-1 seq.len.pwm = seq.len - pwm.len[i] + 1 # sum over sequences then average by total length s[i] = sum(scores[,i] * seq.len.pwm) / sum(seq.len.pwm) if(is.matrix(bg.mean)){ res[i] = logNormPval(s[i], sum(seq.len.pwm)+pwm.len[i]-1, pwm.len[i], bg.mean[,i,drop=FALSE], bg.sd[,i,drop=FALSE], bg.len[,i,drop=FALSE]) } else { res[i] = logNormPval(s[i], sum(seq.len.pwm)+pwm.len[i]-1, pwm.len[i], bg.mean[i], bg.sd[i], bg.len[i]) } } return(res) } #' Replace all infinite values by 0 #' #' @param x a vector of values keepFinite = function(x) { if(any(!is.finite(x))) x[!is.finite(x)] = 0 x } #' Z-score calculation for cutoff hits #' #' The Z-score is calculated separately for each sequence #' #' @param scores the hit counts for the sequences #' @param seq.len the length distribution of sequences #' @param pwm.len the length distribution of the PWMs #' @param bg.P background probabilities of observing a motif hit at nucleotide resolution #' (scaled to sequence length, not 2 * length) #' @return Z-score cutoffZscore = function(scores, seq.len, pwm.len, bg.P){ if(is.vector(scores)) scores = matrix(scores, nrow=1) # actual probability is 1/2 because we have two strands bg.P = bg.P / 2 z = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) rownames(z) = rownames(scores) colnames(z) = colnames(scores) for(i in 1:nrow(scores)){ # actualy length is 2x because we have two strands P.n = 2 * (seq.len[i] - pwm.len + 1) P.mean = bg.P * P.n P.sd = sqrt(P.n * bg.P * (1-bg.P)) # so this would be the poisson approximation # z[i,] = 1 / ppois(scores[i,], P.mean, lower.tail=FALSE) z[i,] = keepFinite( (scores[i,] - P.mean) / P.sd ) } return(z) } #' Z-score calculation for cutoff hits for group of sequences #' #' The Z-score is calculated as if the sequence came for one very long sequence #' #' @param scores the hit counts for the sequences #' @param seq.len the length distribution of sequences #' @param pwm.len the length distribution of the PWMs #' @param bg.P background probabilities of observing a motif hit at nucleotide resolution #' @return Z-score cutoffZscoreSequenceSet = function(scores, seq.len, pwm.len, bg.P){ total.hits = colSums(scores) total.len = sum(seq.len) - length(seq.len)*(pwm.len-1) + pwm.len - 1 # do it seperate for each PWM to make sure the lengths are right res = sapply(1:length(total.hits), function(i) cutoffZscore(total.hits[i], total.len[i], pwm.len[i], bg.P[i])) names(res) = names(total.hits) return(res) } #' Calculate the empirical P-value by affinity of cutoff. #' #' This is the new backend function for empirical P-values for either affinity or cutoff. #' The function only works on single sequences. #' #' @param scores the scores obtained for the sequence #' @param seq.len the length of the sequence, if a single value will take a single sequence #' of given length. If a vector of values, will take sequences of given lengths #' and joint them together #' @param pwm.len the lengths of PWMs #' @param bg.fwd raw odds scores for the forward strand of background #' @param bg.rev raw odds scores for the reverse strand of background #' @param cutoff if not NULL, will use hit count above this cutoff. The cutoff should be specified in log2. #' @param B the number of random replicates #' @param verbose if to give verbose progress reports #' @param exact.length if to take into consideration that the actual sequence lengths differ for different PWMs. #' For very long sequences (i.e. seq.len >> pwm.len) this make very little difference, however #' the run time with exact.length is much longer. empiricalPvalue = function(scores, seq.len, pwm.len, bg.fwd, bg.rev, cutoff=NULL, B=10000, verbose=FALSE, exact.length=FALSE){ # length of sequences bg.len = nrow(bg.fwd) if(max(seq.len) > bg.len){ stop("The length of sequence greater than background!") } if(max(seq.len) * B > bg.len){ warning("The length of the sequence multiplied by number of runs (B) is greater than background length. This might lead to unreliable P-value estimates.") } # the empricial p-value score.p = rep(0, length(scores)) for(i in 1:B){ if(verbose) message("Random sample ", i, " / ", B) # calculate the final score as sum over different seq.len sequences final.score = 0 for(k in 1:length(seq.len)){ # choose a subsequence with matching length start.range = 1:(bg.len - seq.len[k]) start = sample(start.range, 1) # fetch the scores from the two strands score.fwd = bg.fwd[start:(start+seq.len[k]-1),] score.rev = bg.rev[start:(start+seq.len[k]-1),] # simulate that we don't have scores for last pwm.len+1 nucleotides if(exact.length){ for(j in 1:length(pwm.len)){ score.fwd[(nrow(score.fwd)-pwm.len[j]+1):nrow(score.fwd),j] = NA score.rev[(nrow(score.rev)-pwm.len[j]+1):nrow(score.rev),j] = NA } } # append both strands to one long string score.both = rbind(score.fwd, score.rev) if(is.null(cutoff)){ # affinity algorithm new.score = colSums(score.both, na.rm=TRUE) } else { # number of hits above threshold new.score = colSums(score.both >= 2^cutoff, na.rm=TRUE) } final.score = final.score + new.score } # to obtain the mean we divide by twice the length (because it's both strands) final.score = final.score / (2 * sum(seq.len)) score.p = score.p + ((final.score > scores) + 0) } return(score.p / B) } #' Empirical P-value for a set of sequences #' #' Calculate empirical P-value for a set of sequences, using either affinity or cutoff. When cutoff is used, the score #' is a number of motif hits above a certain log-odds cutoff. #' #' @param scores a matrix of scores, rows for sequences, columns for PWMs #' @param seq.len the lengths of sequences #' @param pwm.len the lengths of PWMs #' @param bg.fwd raw odds scores for the forward strand of background #' @param bg.rev raw odds scores for the reverse strand of background #' @param cutoff if not NULL, will use hit count above this cutoff. The cutoff should be specified in log2. #' @param B the number of random replicates #' @param verbose if to give verbose progress reports empiricalPvalueSequenceSet = function(scores, seq.len, pwm.len, bg.fwd, bg.rev, cutoff=NULL, B=10000, verbose=FALSE){ # affinity if(is.null(cutoff)){ # total score for all the sequences s = structure(rep(0, ncol(scores)), names=colnames(scores)) res = structure(rep(0, ncol(scores)), names=colnames(scores)) exact.lengths = structure(rep(0, ncol(scores)), names=colnames(scores)) for(i in 1:ncol(scores)){ # lengths of sequences for this pwm, all of them are shorter by pwm.len-1 seq.len.pwm = seq.len - pwm.len[i] + 1 exact.lengths[i] = sum( seq.len.pwm ) # sum over sequences then average by total length s[i] = sum(scores[,i] * seq.len.pwm) / sum(seq.len.pwm) } # approximate sequence length without all the last positions being matched total.len = seq.len - round(mean(pwm.len)) # run it on mean sequence length res = empiricalPvalue(s, total.len, pwm.len, bg.fwd, bg.rev, cutoff, B, verbose, exact.length=FALSE) return(res) } else { total.hits = colSums(scores) total.len = seq.len - round(mean(pwm.len)) #sum(seq.len) - length(seq.len)*pwm.len # run ti on mean sequence lengths (with pwm.len) res = empiricalPvalue(total.hits, total.len, pwm.len, bg.fwd, bg.rev, cutoff, B, verbose, exact.length=FALSE) return(res) } } #' Apply GEV background normalization per every sequence #' #' @param scores affinity scores for the PWMs, can contain scores for more than one sequence (as rows), P-values are extracted separately #' @param seq.len the length distribution of the sequences #' @param pwm.len the lengths of PWMs #' @param bg.loc list of linear regression for location parameter #' @param bg.scale list of linear regression for scale parameter #' @param bg.shape list of linear regression for shape parameter gevPerSequence = function(scores, seq.len, pwm.len, bg.loc, bg.scale, bg.shape){ if(is.vector(scores)){ scores = matrix(scores, nrow=1, dimnames=list(NULL, names(scores))) } if( length(seq.len) != nrow(scores) ){ stop("The sequence length distribution and number of rows for scores doesn't match") } # calculate the expected sd values for the length distribution for each sequence seq.sd = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) log.seqlen = data.frame("log.len"=log(seq.len)) # predict loc, scale, shape for each PWM loc = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) scale = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) shape = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) for(i in 1:ncol(scores)){ loc[,i] = as.vector(predict.lm(bg.loc[[i]], newdata=log.seqlen)) scale[,i] = as.vector(predict.lm(bg.scale[[i]], newdata=log.seqlen)) shape[,i] = as.vector(predict.lm(bg.shape[[i]], newdata=log.seqlen)) } ## work out the P-values seq.p = matrix(0, nrow=nrow(scores), ncol=ncol(scores)) colnames(seq.p) = colnames(scores) rownames(seq.p) = rownames(scores) for(i in 1:nrow(seq.p)){ for(j in 1:ncol(seq.p)){ # if scale is <0 the GEV approximation is no longer valid if(scale[i,j] < 0) seq.p[i,j] = NA else seq.p[i,j] = pgev(log(scores[i,j]), loc=loc[i,j], scale=scale[i,j], shape=shape[i,j], lower.tail=FALSE) } } seq.p } #' Calculate total affinity over a set of sequences #' #' @param scores affinity scores for individual sequences #' @param seq.len lengths of sequences #' @param pwm.len lengths of PWMs affinitySequenceSet = function(scores, seq.len, pwm.len){ if(is.vector(scores)) scores = matrix(scores, nrow=1, dimnames=list(NULL, names(scores))) # final scores for the group final = structure(rep(0, ncol(scores)), names=colnames(scores)) for(i in 1:ncol(scores)){ # actual length of scanned sequence seq.len.pwm = seq.len - pwm.len[i] + 1 final[i] = sum(scores[,i] * seq.len.pwm) / sum(seq.len.pwm) } return(final) } #' Calculate Recovery-AUC for motifs ranked according to some scoring scheme #' #' Note that this function asssumes that smaller values are better! #' #' @param seq.res a matrix where each column represents a PWM and each row a result for a different sequence. motifRecoveryAUC = function(seq.res){ # calculate the ranks r = t(apply(seq.res, 1, rank)) # previous point needed to calculate AUC-ROC auc = rep(0, ncol(r)) names(auc) = colnames(r) # do it for all whole steps rec = t(sapply(1:ncol(r), function(i) colSums(r<=i))) list("rec"=rec, "auc"=colSums(rec)) } #' Calculate PR-AUC for motifs ranked according to some scoring scheme #' #' Note that this function asssumes that smaller values are better! #' #' @param seq.res a matrix where each column represents a PWM and each row a result for a different sequence. motifPrAUC = function(seq.res){ # calculate the ranks r = t(apply(seq.res, 1, rank)) # previous point needed to calculate AUC-ROC auc = rep(0, ncol(r)) names(auc) = colnames(r) # do it for all whole steps rec = t(sapply(1:ncol(r), function(i) colSums(r<=i))) recall = rec / nrow(r) prec = recall / 1:nrow(rec) list("prec"=prec, "recall"=recall) } PWMEnrich/R/PWMBackground-methods.R0000644000175100017510000001567014614305422020030 0ustar00biocbuildbiocbuild# Methods for the different PWMBackground objects #' show method for PWMLognBackground #' @param object the PWMLognBackground object setMethod("show", signature=signature(object="PWMLognBackground"), function(object){ cat("An object of class '", class(object), "'\n", sep="") cat("Background source:", object$bg.source, "\n") cat("Fitted on a mean sequence length of", round(mean(object$bg.len)), "for a set of", length(object$pwms), "PWMs\n") cat("Lognormal parameters: $bg.mean, $bg.sd\n") cat("PWMS: $pwms\n") }) #' show method for PWMCutoffBackground #' @param object the PWMCutoffBackground object setMethod("show", signature=signature(object="PWMCutoffBackground"), function(object){ cat("An object of class '", class(object), "'\n", sep="") cat("Background source:", object$bg.source, "\n") cat("Fitted for a set of", length(object$pwms), "PWMs\n") cat("Z-score parameters (cutoff is in log2): $bg.cutoff, $bg.P\n") cat("PWMS: $pwms\n") }) #' show method for PWMEmpiricalBackground #' @param object the PWMEmpiricalBackground object setMethod("show", signature=signature(object="PWMEmpiricalBackground"), function(object){ cat("An object of class '", class(object), "'\n", sep="") cat("Background source:", object$bg.source, "\n") cat("Raw scores for a ", nrow(object$bg.fwd), " bp sequence for ", length(object$pwms), " PWMs\n", sep="") cat("Raw scores (odds, not log-odds): $bg.fwd, $bg.rev\n") cat("PWMS: $pwms\n") }) #' show method for PWMGEVBackground #' @param object the PWMGEVBackground object setMethod("show", signature=signature(object="PWMGEVBackground"), function(object){ cat("An object of class '", class(object), "'\n", sep="") cat("Background source:", object$bg.source, "\n") cat("Generalized extreme value (GEV) distribution fitted for", length(object$pwms), "PWMs\n") cat("GEV parameters fitted with linear regressions: $bg.loc, $bg.scale, $bg.shape\n") cat("PWMS: $pwms\n") }) #' Name of different pieces of information associated with PWMLognBackground #' #' @title Names of variables #' @name names,PWMLognBackground #' @aliases names,PWMLognBackground-method #' @param x the PWMLognBackground object #' @return the names of the variables #' @rdname operators-PWMLognBackground setMethod("names", signature=signature(x="PWMLognBackground"), function(x) slotNames(x)) #' Access a property by name #' #' @aliases $,PWMLognBackground-method #' @param x the PWMLognBackground object #' @param name the variable name #' @rdname operators-PWMLognBackground setMethod("$", signature=signature(x="PWMLognBackground"), function(x, name){ slot(x, name) }) #' Name of different pieces of information associated with PWMCutoffBackground #' #' @title Names of variables #' @name names,PWMCutoffBackground #' @aliases names,PWMCutoffBackground-method #' @param x the PWMCutoffBackground object #' @return the names of the variables #' @rdname operators-PWMCutoffBackground setMethod("names", signature=signature(x="PWMCutoffBackground"), function(x) slotNames(x)) #' Access a property by name #' #' @aliases $,PWMCutoffBackground-method #' @param x the PWMCutoffBackground object #' @param name the variable name #' @rdname operators-PWMCutoffBackground setMethod("$", signature=signature(x="PWMCutoffBackground"), function(x, name){ slot(x, name) }) #' Name of different pieces of information associated with PWMEmpiricalBackground #' #' @title Names of variables #' @name names,PWMEmpiricalBackground #' @aliases names,PWMEmpiricalBackground-method #' @param x the PWMEmpiricalBackground object #' @return the names of the variables #' @rdname operators-PWMEmpiricalBackground setMethod("names", signature=signature(x="PWMEmpiricalBackground"), function(x) slotNames(x)) #' Access a property by name #' #' @aliases $,PWMEmpiricalBackground-method #' @param x the PWMEmpiricalBackground object #' @param name the variable name #' @rdname operators-PWMEmpiricalBackground setMethod("$", signature=signature(x="PWMEmpiricalBackground"), function(x, name){ slot(x, name) }) #' Name of different pieces of information associated with PWMGEVBackground #' #' @title Names of variables #' @name names,PWMGEVBackground #' @aliases names,PWMGEVBackground-method #' @param x the PWMGEVBackground object #' @return the names of the variables #' @rdname operators-PWMGEVBackground setMethod("names", signature=signature(x="PWMGEVBackground"), function(x) slotNames(x)) #' Access a property by name #' #' @aliases $,PWMGEVBackground-method #' @param x the PWMGEVBackground object #' @param name the variable name #' @rdname operators-PWMGEVBackground setMethod("$", signature=signature(x="PWMGEVBackground"), function(x, name){ slot(x, name) }) #' Get the background for a subset of PWMs #' #' @aliases [,PWMLognBackground-method #' @name [,PWMLognBackground-method #' @param x the PWMLognBackground object #' @param i the indicies of PWMs #' @param j unused #' @param ... unused #' @param drop unused #' @rdname subsetting-PWMLognBackground setMethod("[", "PWMLognBackground", function(x, i, j, ..., drop = TRUE){ if(is.matrix(x@bg.mean)){ new("PWMLognBackground", pwms=x@pwms[i], bg.mean=x@bg.mean[,i,drop=FALSE], bg.len=x@bg.len[,i,drop=FALSE], bg.sd=x@bg.sd[,i,drop=FALSE], bg.source=paste(x@bg.source, "--subset") ) } else { new("PWMLognBackground", pwms=x@pwms[i], bg.mean=x@bg.mean[i], bg.len=x@bg.len[i], bg.sd=x@bg.sd[i], bg.source=paste(x@bg.source, "--subset") ) } }) #' Get the background for a subset of PWMs #' #' @aliases [,PWMCutoffBackground-method #' @name [,PWMCutoffBackground-method #' @param x the PWMCutoffBackground object #' @param i the indicies of PWMs #' @param j unused #' @param ... unused #' @param drop unused #' @rdname subsetting-PWMCutoffBackground setMethod("[", "PWMCutoffBackground", function(x, i, j, ..., drop = TRUE){ new("PWMCutoffBackground", pwms=x@pwms[i], bg.cutoff=x@bg.cutoff[i], bg.P=x@bg.P[i], bg.source=paste(x@bg.source, "--subset") ) }) #' Get the background for a subset of PWMs #' #' @aliases [,PWMEmpiricalBackground-method #' @name [,PWMEmpiricalBackground-method #' @param x the PWMEmpiricalBackground object #' @param i the indicies of PWMs #' @param j unused #' @param ... unused #' @param drop unused #' @rdname subsetting-PWMEmpiricalBackground setMethod("[", "PWMEmpiricalBackground", function(x, i, j, ..., drop = TRUE) { new("PWMEmpiricalBackground", pwms=x@pwms[i], bg.fwd=x@bg.fwd[,i,drop=FALSE], bg.rev=x@bg.rev[,i,drop=FALSE], bg.source=paste(x@bg.source, "--subset") ) }) #' Get the background for a subset of PWMs #' #' @aliases [,PWMGEVBackground-method #' @name [,PWMGEVBackground-method #' @param x the PWMGEVBackground object #' @param i the indicies of PWMs #' @param j unused #' @param ... unused #' @param drop unused #' @rdname subsetting-PWMGEVBackground setMethod("[", "PWMGEVBackground", function(x, i, j, ..., drop = TRUE) { new("PWMGEVBackground", pwms=x@pwms[i], bg.loc=x@bg.loc[i], bg.scale=x@bg.scale[i], bg.shape=x@bg.shape[i], bg.source=paste(x@bg.source, "--subset") ) }) PWMEnrich/R/PWMEnrich-package.R0000644000175100017510000000136614614305422017106 0ustar00biocbuildbiocbuild#' @keywords internal "_PACKAGE" # The following block is used by usethis to automatically manage # roxygen namespace tags. Modify with care! ## usethis namespace: start #' @import BiocGenerics Biostrings methods #' @importFrom grid grid.newpage grid.text grid.polygon grid.xaxis grid.yaxis grid.layout gpar viewport plotViewport dataViewport pushViewport popViewport unit #' @importFrom grDevices col2rgb palette rgb #' @importFrom graphics lines par polygon rect text #' @importFrom stats cor dlnorm ecdf lm median na.omit optimize pchisq plnorm predict.lm qlnorm quantile #' @importFrom utils data #' @importFrom S4Vectors metadata #' @importFrom seqLogo makePWM plot #' @importFrom evd fgev pgev #' @importFrom gdata trim ## usethis namespace: end NULL PWMEnrich/R/readData.R0000644000175100017510000001121014614305422015413 0ustar00biocbuildbiocbuild## load in motifs #' Read in motifs in JASPAR or TRANSFAC format #' #' The format is autodetected based on file format. If the autodetection fail #' then the file cannot be read. #' #' @param file the filename #' @param remove.acc if to remove accession numbers. If TRUE, the AC entry in TRANSFAC files is ignored, #' and the accession is stripped from JASPAR, e.g. motif with name "MA0211.1 bap" would #' become just "bap". If FALSE, botht he AC and ID are used to generate the TRANSFAC name #' and the original motif names are preserved in JASPAR files. #' @return a list of 4xL matrices representing motifs (four nucleotides as rows) #' @export #' @examples #' #' # read in example TRANSFAC motifs without accession codes (just IDs) #' readMotifs(system.file(package = "PWMEnrich", dir = "extdata", file = "example.transfac"), #' remove.acc = TRUE) #' #' # read in the JASPAR insects motifs provided as example #' readMotifs(system.file(package = "PWMEnrich", dir = "extdata", file = "jaspar-insecta.jaspar"), #' remove.acc = TRUE) readMotifs = function(file, remove.acc=FALSE){ t = readLines(file) if(length(t) == 0){ stop(paste("Non-existing or empty file", file)) } is.transfac = length(grep("^XX", t)) > 0 is.jaspar = length(grep("^>", t)) > 0 if((is.transfac & is.jaspar) | (!is.transfac & !is.jaspar)){ stop("Cannot detect the file format of supplied file. Please look at the JASPAR and TRANSFAC websites for examples of well-formed motif files.") } if(is.jaspar){ return(readJASPAR(file, remove.acc)) } else { return(readTRANSFAC(file, remove.acc)) } } #' Read motifs in JASPAR format #' #' @param file the filename #' @param remove.ids if to strip JASPAR ID's from motif names, e.g. "MA0211.1 bap" would become just "bap" #' @return a list of matrices representing motifs (with four nucleotides as rows) readJASPAR = function(file, remove.ids=FALSE){ t = readLines(file) h = grep("^>", t) # ordering of nucleotides norder = c("A", "C", "G", "T") motifs = list() for(i in 1:length(h)){ # header and motif from jaspar format header = t[h[i]] h.inx = (h[i]+1) motif = t[h.inx:(h.inx+3)] # motif in clover format motif.matrix = t(sapply(strsplit(motif, "[ \t\\[]+"), function(x) as.integer(x[2:(length(x)-1)]))) nucleotides = sapply(strsplit(motif, "[ \t\\[]+"), function(x) x[1]) # in the new version of JASPAR format there is no ACGT... if(!all(nucleotides %in% norder)){ nucleotides = norder motif.matrix = t(sapply(strsplit(motif, "[ \t\\[]+"), function(x) as.integer(x))) } # if the ordering is not the same, re-order into ACGT order motif.matrix = motif.matrix[match(norder, nucleotides), ] rownames(motif.matrix) = norder motifs[[i]] = motif.matrix motif.name = trim(gsub(">", "", header)) if(remove.ids){ motif.parts = unlist(strsplit(motif.name, " +")) if(length(motif.parts)>1){ motif.name = paste(motif.parts[2:length(motif.parts)], collapse="_") } } names(motifs)[i] = motif.name } motifs } #' Read in motifs in TRANSFAC format #' #' @param file the filename #' @param remove.acc if to ignore transfac accession numbers #' @return a list of matrices representing motifs (with four nucleotides as rows) readTRANSFAC = function(file, remove.acc=TRUE){ t = readLines(file) # ordering of nucleotides norder = c("A", "C", "G", "T") # get indicies of different tags ac.inx = grep("^AC", t) id.inx = grep("^ID", t) po.inx = grep("^P[O0]", t) xx.inx = grep("^XX", t) if(length(ac.inx) != length(id.inx) || length(ac.inx) != length(po.inx) || !all(ac.inx < id.inx) || !all(id.inx < po.inx)){ stop("Inconsistent TRANSFAC format. Every motif needs to have exactly one AC, ID and PO/P0 entry (in that order).") } # extract individual motifs motifs = list() for(i in 1:length(ac.inx)){ ac = trim(gsub("^AC", "", t[ac.inx[i]])) # find the id entry that is just after the ac entry id.cur = min( id.inx[id.inx > ac.inx[i]] ) id = trim(gsub("^ID", "", t[id.cur])) # find boundaries of the motif po.cur = min( po.inx[po.inx > ac.inx[i]] ) xx.cur = min( xx.inx[xx.inx > po.cur] ) # check the ordering of nucleotides po = trim(gsub("^P[O0]", "", t[po.cur])) po = unlist(strsplit(po, "[ \t]+")) if(!identical(po, norder)){ stop(paste("In all motifs the nucleotides need to be ordered: A C G T. This is not the case for motif", id)) } # extract motif m = t[(po.cur+1) : (xx.cur-1)] m = strsplit(m, "[ \t]+") m = sapply(m, as.integer)[-1,] rownames(m) = norder # generate the name and save if(remove.acc) name = id else name = paste(ac, id, sep="_") motifs[[name]] = m } motifs } PWMEnrich/R/seqLogoSupp.R0000644000175100017510000000772714614305422016211 0ustar00biocbuildbiocbuild### Almost all of the functions from seqLogo which are not exported but we need to override seqLogo() function ## get information content profile from PWM pwm2ic<-function(pwm) { npos<-ncol(pwm) ic<-numeric(length=npos) for (i in 1:npos) { ic[i]<-2 + sum(sapply(pwm[, i], function(x) { if (x > 0) { x*log2(x) } else { 0 } })) } ic } ## get consensus sequence from PWM pwm2cons<-function(pwm) { if (!is.matrix(pwm)) {warning("pwm argument must be of class matrix")} letters <- c("A", "C", "G", "T") paste(apply(pwm, 2, function(x){letters[rev(order(x))[1]]}), collapse="") } letterA <- function(x.pos,y.pos,ht,wt,id=NULL){ x <- c(0,4,6,10,8,6.8,3.2,2,0,3.6,5,6.4,3.6) y <- c(0,10,10,0,0,3,3,0,0,4,7.5,4,4) x <- 0.1*x y <- 0.1*y x <- x.pos + wt*x y <- y.pos + ht*y if (is.null(id)){ id <- c(rep(1,9),rep(2,4)) }else{ id <- c(rep(id,9),rep(id+1,4)) } fill <- c("green","white") list(x=x,y=y,id=id,fill=fill) } ## T letterT <- function(x.pos,y.pos,ht,wt,id=NULL){ x <- c(0,10,10,6,6,4,4,0) y <- c(10,10,9,9,0,0,9,9) x <- 0.1*x y <- 0.1*y x <- x.pos + wt*x y <- y.pos + ht*y if (is.null(id)){ id <- rep(1,8) }else{ id <- rep(id,8) } fill <- "red" list(x=x,y=y,id=id,fill=fill) } ## C letterC <- function(x.pos,y.pos,ht,wt,id=NULL){ angle1 <- seq(0.3+pi/2,pi,length=100) angle2 <- seq(pi,1.5*pi,length=100) x.l1 <- 0.5 + 0.5*sin(angle1) y.l1 <- 0.5 + 0.5*cos(angle1) x.l2 <- 0.5 + 0.5*sin(angle2) y.l2 <- 0.5 + 0.5*cos(angle2) x.l <- c(x.l1,x.l2) y.l <- c(y.l1,y.l2) x <- c(x.l,rev(x.l)) y <- c(y.l,1-rev(y.l)) x.i1 <- 0.5 +0.35*sin(angle1) y.i1 <- 0.5 +0.35*cos(angle1) x.i1 <- x.i1[y.i1<=max(y.l1)] y.i1 <- y.i1[y.i1<=max(y.l1)] y.i1[1] <- max(y.l1) x.i2 <- 0.5 +0.35*sin(angle2) y.i2 <- 0.5 +0.35*cos(angle2) x.i <- c(x.i1,x.i2) y.i <- c(y.i1,y.i2) x1 <- c(x.i,rev(x.i)) y1 <- c(y.i,1-rev(y.i)) x <- c(x,rev(x1)) y <- c(y,rev(y1)) x <- x.pos + wt*x y <- y.pos + ht*y if (is.null(id)){ id <- rep(1,length(x)) }else{ id <- rep(id,length(x)) } fill <- "blue" list(x=x,y=y,id=id,fill=fill) } ## G letterG <- function(x.pos,y.pos,ht,wt,id=NULL){ angle1 <- seq(0.3+pi/2,pi,length=100) angle2 <- seq(pi,1.5*pi,length=100) x.l1 <- 0.5 + 0.5*sin(angle1) y.l1 <- 0.5 + 0.5*cos(angle1) x.l2 <- 0.5 + 0.5*sin(angle2) y.l2 <- 0.5 + 0.5*cos(angle2) x.l <- c(x.l1,x.l2) y.l <- c(y.l1,y.l2) x <- c(x.l,rev(x.l)) y <- c(y.l,1-rev(y.l)) x.i1 <- 0.5 +0.35*sin(angle1) y.i1 <- 0.5 +0.35*cos(angle1) x.i1 <- x.i1[y.i1<=max(y.l1)] y.i1 <- y.i1[y.i1<=max(y.l1)] y.i1[1] <- max(y.l1) x.i2 <- 0.5 +0.35*sin(angle2) y.i2 <- 0.5 +0.35*cos(angle2) x.i <- c(x.i1,x.i2) y.i <- c(y.i1,y.i2) x1 <- c(x.i,rev(x.i)) y1 <- c(y.i,1-rev(y.i)) x <- c(x,rev(x1)) y <- c(y,rev(y1)) h1 <- max(y.l1) r1 <- max(x.l1) h1 <- 0.4 x.add <- c(r1,0.5,0.5,r1-0.2,r1-0.2,r1,r1) y.add <- c(h1,h1,h1-0.1,h1-0.1,0,0,h1) if (is.null(id)){ id <- c(rep(1,length(x)),rep(2,length(x.add))) }else{ id <- c(rep(id,length(x)),rep(id+1,length(x.add))) } x <- c(rev(x),x.add) y <- c(rev(y),y.add) x <- x.pos + wt*x y <- y.pos + ht*y fill <- c("orange","orange") list(x=x,y=y,id=id,fill=fill) } addLetter <- function(letters,which,x.pos,y.pos,ht,wt){ if (which == "A"){ letter <- letterA(x.pos,y.pos,ht,wt) }else if (which == "C"){ letter <- letterC(x.pos,y.pos,ht,wt) }else if (which == "G"){ letter <- letterG(x.pos,y.pos,ht,wt) }else if (which == "T"){ letter <- letterT(x.pos,y.pos,ht,wt) }else{ stop("which must be one of A,C,G,T") } letters$x <- c(letters$x,letter$x) letters$y <- c(letters$y,letter$y) lastID <- ifelse(is.null(letters$id),0,max(letters$id)) letters$id <- c(letters$id,lastID+letter$id) letters$fill <- c(letters$fill,letter$fill) letters } PWMEnrich/R/similarity.R0000644000175100017510000001312014614305422016076 0ustar00biocbuildbiocbuild## functions to calculate motif similarity metrics #' Returned the aligned motif parts #' #' This function takes the offset of first motif relative to second and #' chops off the end of both motifs that are not aligned. It returns a list #' containing only the columns that align. #' #' @param m1 frequency matrix of first motif #' @param m2 frequency matrix of second motif #' @param offset a number of nucleotides by which the first motif is offsetted compared to the second #' @return a list of column-trimmed motifs m1, m2 maxAligned = function(m1, m2, offset){ if(offset > 0){ # need to cut off beginning of m2 m2 = m2[,(offset+1):ncol(m2)] } else if(offset < 0){ # net to cut off beginning of m1 m1 = m1[,(abs(offset)+1):ncol(m1)] } # make sure we keep matrix if(is.vector(m1)) m1 = matrix(m1, ncol=1) if(is.vector(m2)) m2 = matrix(m2, ncol=1) # maximal number of columns that align max.col = min(ncol(m1),ncol(m2)) m1 = m1[,1:max.col] m2 = m2[,1:max.col] # make sure we keep it in matrix if(is.vector(m1)) m1 = matrix(m1, ncol=1) if(is.vector(m2)) m2 = matrix(m2, ncol=1) list(m1, m2) } #' Try all motif alignments and return max score #' #' This function tries all offsets of motif1 compared to motif2 and returns #' the maximal (unnormalized) correlation score. #' #' The correlation score is essentially the sum of correlations of individual aligned #' columns as described in Pietrokovski (1996). #' #' @param m1 frequency matrix of motif 1 #' @param m2 frequency matrix of motif 2 #' @param min.align minimal number of basepairs that need to align #' @param exclude.zero if to exclude offset=0, useful for calculating self-similarity #' @references Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 1996;24:3836-3845. #' @return single maximal score tryAllMotifAlignments = function(m1, m2, min.align=2, exclude.zero=FALSE){ offset = (-ncol(m1)+min.align):(ncol(m2)-min.align) if(exclude.zero) offset = setdiff(offset, 0) scores = rep(0, length(offset)) for(i in 1:length(offset)){ # get aligned matrices aligned = maxAligned(m1, m2, offset[i]) # convert to probabilities aligned.norm = lapply(aligned, function(x) divideRows(x, colSums(x))) # scores for first alignment (sum of column-wise correlations) scores[i] = sum(sapply(1:ncol(aligned.norm[[1]]), function(i) cor(aligned.norm[[1]][,i], aligned.norm[[2]][,i]))) } max(scores) } #' Check the frequency matrix input parameter for motifSimilarity #' #' @param m either a PWM object or a matrix #' @return corresponding PFM .inputPFMfromMatrixOrPWM = function(m){ if(inherits(m, "PWM")) return(m@pfm) else if(is.matrix(m)) return(m) else stop("Input motif needs to be either of class PWM, or a frequency matrix") } #' Calculates similarity between two PFMs. #' #' This function calculates the normalized motif correlation as a measure of motif #' frequency matrix similarity. #' #' This score is essentially a normalized version of the sum of column correlations #' as proposed by Pietrokovski (1996). The sum is normalized by the average motif #' length of m1 and m2, i.e. (ncol(m1)+ncol(m2))/2. Thus, for two idential motifs #' this score is going to be 1. For unrelated motifs the score is going to be typically #' around 0. #' #' Motifs need to aligned for this score to be calculated. The current implementation #' tries all possible ungapped alignment with a minimal of two basepair matching, and #' the maximal score over all alignments is returned. #' #' Motif 1 is aligned both to Motif 2 and its reverse complement. Thus, the motif #' similarities are the same if the reverse complement of any of the two motifs #' is given. #' #' @param m1 matrix with four rows representing the frequency matrix of first motif #' @param m2 matrix with four rows representing the frequency matrix of second motif #' @param trim bases with information content smaller than this value will be trimmed off both motif ends #' @param self.sim if to calculate self similarity (i.e. without including offset=0 in alignment) #' @references Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 1996;24:3836-3845. #' @export #' @examples #' #' if(requireNamespace("PWMEnrich.Dmelanogaster.background")){ #' data(MotifDb.Dmel.PFM, package = "PWMEnrich.Dmelanogaster.background") #' #' # calculate the similarity of tin and vnd motifs (which are almost identical) #' motifSimilarity(MotifDb.Dmel.PFM[["tin"]], MotifDb.Dmel.PFM[["vnd"]]) #' #' # similarity of two unrelated motifs #' motifSimilarity(MotifDb.Dmel.PFM[["tin"]], MotifDb.Dmel.PFM[["ttk"]]) #' } motifSimilarity = function(m1, m2, trim=0.4, self.sim=FALSE){ # check input types m1 = .inputPFMfromMatrixOrPWM(m1) m2 = .inputPFMfromMatrixOrPWM(m2) # remove any zero-variance columns colSd1 = apply(m1, 2, sd) colSd2 = apply(m2, 2, sd) if(any(colSd1 == 0)) m1 = m1[,colSd1!=0] if(any(colSd2 == 0)) m2 = m2[,colSd2!=0] # trim bases with small motif content ic1 = motifIC(m1, bycol=TRUE) ic2 = motifIC(m2, bycol=TRUE) # find which columns to keep r1 = range(which(ic1 >= trim)) r2 = range(which(ic2 >= trim)) m1 = m1[,r1[1]:r1[2]] m2 = m2[,r2[1]:r2[2]] # get max score if(self.sim){ # we don't want offset=0 because then the score would always be 1 score = tryAllMotifAlignments(m1, m2, exclude.zero=TRUE) } else { score = max(tryAllMotifAlignments(m1,m2), tryAllMotifAlignments(m1,reverseComplement(m2))) } # normalize the max score by mean motif size return(score / mean(c(ncol(m1), ncol(m2)))) } PWMEnrich/tests/0000755000175100017510000000000014614305422014531 5ustar00biocbuildbiocbuildPWMEnrich/tests/test-all.R0000644000175100017510000000010114614305422016371 0ustar00biocbuildbiocbuildlibrary(testthat) library(PWMEnrich) test_package("PWMEnrich") PWMEnrich/vignettes/0000755000175100017510000000000014614351234015401 5ustar00biocbuildbiocbuildPWMEnrich/vignettes/PWMEnrich.Rnw0000644000175100017510000005173414614305422017675 0ustar00biocbuildbiocbuild%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Overview of the 'PWMEnrich' package} %\VignetteKeywords{Motif enrichment, PWM} %\VignettePackage{PWMEnrich} \documentclass{article} \usepackage{float} \usepackage{a4wide} <>= library(knitr) opts_chunk$set( echo=TRUE,eval=TRUE,cache=FALSE,tidy=FALSE ) @ <>= library(knitr) opts_chunk$set( tidy=FALSE,dev='pdf', message=FALSE, warning=FALSE ) @ <>= BiocStyle::latex() @ %% colors \usepackage{color} \definecolor{Red}{rgb}{0.7,0,0} \definecolor{Blue}{rgb}{0,0,0.8} \hypersetup{% hyperindex = {true}, colorlinks = {true}, linktocpage = {true}, plainpages = {false}, linkcolor = {Blue}, citecolor = {Blue}, urlcolor = {Blue}, pdfstartview = {Fit}, pdfpagemode = {UseOutlines}, pdfview = {XYZ null null null} } \author{Robert Stojni\'{c}\footnote{ e-mail: \email{robert.stojnic@gmail.com}, Cambridge Systems Biology Institute, University of Cambridge, UK} } \begin{document} \title{Overview of the \Biocpkg{PWMEnrich} package} \maketitle \tableofcontents \section{Introduction}\label{sec:intro} The main functionality of the package is Position Weight Matrix (PWM)\footnote{In this vignette we use "PWM", "DNA motif" and "motif" interchangeably.} enrichment analysis in a single sequence (e.g. enhancer of interest) or a set of sequences (e.g. set of ChIP-chip/seq peaks). Note that this is not the same as \textit{de-novo} motif finding which discovers novel motifs, nor motif comparison which aligns motifs. The package is built upon \Robject{Biostrings} and offers high-level functions to scan for DNA motif occurrences and compare them against a genomic background. There are multiple packages with pre-compiled genomic backgrounds such as \Robject{PWMEnrich.Dmelanogaster.background}, \Robject{PWMEnrich.Hsapiens.background} and \Robject{PWMEnrich.Mmusculus.background}. In these packages the genomic distribution is calculated for motifs from the \Robject{MotifDb} database. The \Robject{PWMEnrich} package contains all the functions used to create these packages, so you can calculate your own background distributions for your own set of motifs. In this vignette we will use the \textit{Drosophila} package, but the other background packages are used in the same way (see Section \ref{sec:human} for minor human-specific differences). \subsection{Implemented algorithms} \Robject{PWMEnrich} uses the PWM scanning algorithm implemented by the package \Robject{Biostrings}. This package returns PWM scores at each position on one strand of a sequence. \Robject{PWMEnrich} extends this with a higher-level functions which automatically scans both strands for multiple motifs and sequences. The main goal of the package is to assess the enrichment of motif hits in a sequence (or group of sequences) compared to a genomic background. The traditional way of doing this is to use a threshold for the PWM score and count the number of motif hits in the sequence(s) of interest. Since this converts the sequence into a binary bound/not-bound string, the enrichment of binding events can be assessed using a binomial formula. The \Robject{PWMEnrich} package implements this algorithm, but by default uses a lognormal threshold-free approach \cite{stojnic_2012} which is related to the score used in Clover \cite{frith_detection_2004}. In the lognormal threshold-free approach average affinity is calculated over the whole sequence (or set of sequences) and compared to the average affinity of length-matched sequences from the genomic background. This approach performs better or same as the best threshold approach \cite{stojnic_2012}, with the added benefit of not having to choose a threshold or compare the results for multiple thresholds. We will use this threshold-free approach in all of our examples. Please consult the reference manual on how to use the fixed-threshold algorithms. \subsection{S4 class structure and accessors} As the \Biocpkg{PWMEnrich} package builds upon the \Biocpkg{Biostrings} package it uses the classes from this package to represent DNA sequences (\Robject{DNAString} and \Robject{DNAStringSet}). FASTA files can be loaded using functions from \Biocpkg{Biostrings} such as \Robject{readDNAStringSet}. The package introduces a new class \Robject{PWM} to represent a PWM together with the frequency matrix and other parameters (background nucleotide frequencies and pseudo-counts). All motif scoring is performed by the \Biocpkg{Biostrings} package which is why the \Biocpkg{PWMEnrich} package also returns log2 scores instead of more common log base \textit{e} scores. The results of motif scanning are stored in objects of class \Robject{MotifEnrichmentResults} and \Robject{MotifEnrichmentReport}. The package also introduces a number of classes that represent different background distributions: \Robject{PWMLognBackground}, \Robject{PWMCutoffBackground}, \Robject{PWMEmpiricalBackground}, \Robject{PWMGEVBackground}. In all cases, the classes are implemented with a list-like interface, that is, individual pieces of information within the objects are accessibly using \Rfunction{names(obj)} and \Rfunction{obj\$prop}. \section{Use case 1: Finding enrichment motifs in a single sequence} One of the most well-known example of combinatorial control by transcription factors in \textit{Drosophila} is the \textit{even skipped (eve)} stripe 2 enhancer. This well-studied enhancer has a number of annotated binding sites for TFs \textit{Kr}, \textit{vfl}, \textit{bcd}, \textit{hb} and \textit{gt}. We will use this enhancer as an example as we already know its functional structure. In order to predict which TFs are likely to functionally bind to the stripe 2 enhancer, we will calculate motif enrichment for a set of experimentally derived motifs from the \Biocpkg{MotifDb} database. We will do this by comparing the average affinity of each motif in the stripe 2 enhancers to the affinity over all \textit{D. melanogaster} promoters\footnote{For more information see \cite{stojnic_2012}}. These background distributions are already pre-calculated in the \Robject{PWMEnrich.Dmelanogaster.background} package which we will simply load and use. See the last section of this vignette for using your own motifs and background sequences. <>= library(PWMEnrich) library(PWMEnrich.Dmelanogaster.background) # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel) # load the stripe2 sequences from a FASTA file for motif enrichment sequence = readDNAStringSet(system.file(package="PWMEnrich", dir="extdata", file="stripe2.fa")) sequence # perform motif enrichment! res = motifEnrichment(sequence, PWMLogn.dm3.MotifDb.Dmel) report = sequenceReport(res, 1) report # plot the motif with P-value < 0.05 plot(report[report$p.value < 0.05], fontsize=7, id.fontsize=6) @ The main function we used is \Robject{motifEnrichment} which took our sequence and calculated motif enrichment using the lognormal affinity background distribution (fitted on a set of 10031 \textit{D. melanogaster} 2kb promoters). This function returns a set of scores and P-values for our sequence. We then used the \Robject{sequenceReport} function that create a ranked list of motifs, which we then plot using \Robject{plot}. The first column is the rank, the second shows the target name, which is either a gene name, an isoform name (such as ttk-PF), or a dimer name (such as tgo\_sim not present in this list). The next column in the plot is the PWM logo, and after that the motif ID. This ID comes from the \Robject{MotifDb} package and can be used to look up further information about the motif (such as the motif source). The next-to-last column is the raw affinity score, and the last column is the P-value of motif enrichment. As we can see, the top of the list is dominated by motifs similar to bcd. By further examining the list, we find we recovered the Kr, bcd and gt motifs, but not the vfl and hb motifs. These two TFs (vfl and hb) have the smallest number of annotated binding sites out of the five TFs in the stripe 2 enhancer. As a result, this affinity is not large enough to be picked up by motif enrichment. However, the other three motifs were picked up. We find this to be the typical case for many enhancers. \section{Use case 2: Examining the binding sites} We continue with our example of the eve stripe 2 enhancer from the previous section. We now want to visualise the binding sites for Kr, bcd and gt. <>= # extract the 3 PWMs for the TFs we are interested in ids = c("bcd_FlyReg_FBgn0000166", "gt_FlyReg_FBgn0001150", "Kr") sel.pwms = PWMLogn.dm3.MotifDb.Dmel$pwms[ids] names(sel.pwms) = c("bcd", "gt", "Kr") # scan and get the raw scores scores = motifScores(sequence, sel.pwms, raw.scores=TRUE) # raw scores for the first (and only) input sequence dim(scores[[1]]) head(scores[[1]]) # score starting at position 1 of forward strand scores[[1]][1, "bcd"] # score for the reverse complement of the motif, starting at the same position scores[[1]][485, "bcd"] # plot plotMotifScores(scores, cols=c("green", "red", "blue")) @ Here we used the \Robject{motifScores} function to obtain the raw scores at each position in the sequence. The result of this function is a list of matrices, each element of the list corresponding to an input sequence. In this case we had only one input sequence, and as a result we get a list of length 1. The matrix of scores is a 968 x 3 matrix, where the rows correspond to the two strands (2 x 484) and the columns correspond to motifs. It is important to remember that the scores are in real and not log space. In other words, a conventional PWM log2 score of 3 is represented as number 8 ($2^3$). The scores for the two strands are concatenated one after the other. Therefore, row 1 has the scores for the motif starting at position 1, and row 485 has the score at the same position, but with the reverse complement of the motif (i.e. motif score on the reverse strand). Note that there will be some NA values at the end of the sequence (e.g. position 484) because we do not support partial motif matches. Finally we use the \Robject{plotMotifScores} function to plot the log2 scores over the sequence. We colour-code the motifs with green, red and blue. The motif hits are shown as rectangles with the base being the length of the motif, and the hight being the log2 score of the motif hit. By default we show all motif hits with log2 scores larger then 0. The forward strand hits are shown on the top, and the reverse strand hits are shown on the bottom. We next might be interested in finding the P-value for individual motif hits so we can get an idea which sites are the most important. To do this we need to calculate the empirical PWM score distribution for single sites. We did not provide these values precalculated because they take up a very large amount of memory. To calculate it based on a set of promoter, we will need the \textit{D. melanogaster} genome sequence. Because the objects are so large, in this example we will determine the P-value only for the hits of the bcd motif, using only a small subset of promoters (controlled by the parameter \Robject{quick=TRUE}). <>= library(BSgenome.Dmelanogaster.UCSC.dm3) # empirical distribution for the bcd motif bcd.ecdf = motifEcdf(sel.pwms$bcd, Dmelanogaster, quick=TRUE)[[1]] # find the score that is equivalent to the P-value of 1e-3 threshold.1e3 = log2(quantile(bcd.ecdf, 1 - 1e-3)) threshold.1e3 # replot only the bcd motif hits with the P-value cutoff of 1e-3 (0.001) plotMotifScores(scores, cols="green", sel.motifs="bcd", cutoff=threshold.1e3) # Convert scores into P-values pvals = 1 - bcd.ecdf(scores[[1]][,"bcd"]) head(pvals) @ Here we have used the \Robject{motifEcdf} function to create an empirical cumulative distribution function (ECDF) for the bcd motif score on Drosophila promoters. This function returns an \Robject{ecdf} object which is part of base R. We can then use the quantile function to find which scores correspond to a P-value of 0.001, or we can use it to convert all the scores into P-values (not shown above). To plot the individual motif hits with P-values smaller than 0.001 we again use the \Robject{plotMotifScores} function, but now we apply the threshold so that only those motif hits above the threshold are drawn. In the last line we find out the positions of those motif hits where the P-value is smaller then 1e-3. Note that the values larger than the sequence length (484) indicate the reverse strand. Therefore, we find the four strong motif hits at positions 90 on the forward strand and 110, 354 and 475 on the reverse strand. Note that \Robject{plotMotifScores} can also plot multiple sequences on a single plot, and that the \Robject{cutoff} parameter can contain a vector of values if we wish to apply different cutoff to different motifs. \section{Use case 3: Finding enriched motifs in multiple sequences} So far we have only looked at motif enrichment in a single sequence, which was able to recover some but not all of the truly functional motifs. The power of the motif enrichment approach can be significantly boosted by performing it jointly on multiple sequences. For this example we are going to use the top 20 ChIP-chip peaks for transcription factor Tinman in \textit{Drosophila} \cite{jin_genome-wide_2013}. We are going to scan these 20 ChIP-chip peaks with all the motifs and then compare their enrichment to genomic background. Running on the whole set of peaks (i.e. thousands) is also possible but can take a long time (i.e. tens of minutes). The speed can be improved by using multiple CPU cores (see next section). <>= library(PWMEnrich.Dmelanogaster.background) # load the pre-compiled lognormal background data(PWMLogn.dm3.MotifDb.Dmel) sequences = readDNAStringSet(system.file(package="PWMEnrich", dir="extdata", file="tinman-early-top20.fa")) res = motifEnrichment(sequences, PWMLogn.dm3.MotifDb.Dmel) report = groupReport(res) report plot(report[1:10], fontsize=7, id.fontsize=5) @ As in Use case 1, the main function is \Robject{motifEnrichment} which took our sequences and calculated motif enrichment using the lognormal affinity background distribution (fitted on a set of 10031 \textit{D. melanogaster} 2kb promoters). We then applied the \Robject{groupReport} function to calculate the enrichment over the whole group of sequences. This produced a ranked list of motifs according to the estimated P-values. Then we used \Robject{plot} to plot the top 10 enriched motifs. The first three motifs are very similar and correspond to the tinman, which is the transcription factor for which the ChIP-chip experiment was performed. The first five columns are the same as before (see Use case 1). The sixth column gives the estimate P-value. The last column indicates the breadth of enrichment using a 5\% ranking threshold. This column helps to differentiate cases where the motif enrichment is strongly focused to a small subset of sequences (in which case breadth is small), versus being more widespread but weaker (in which case breadth is bigger). We can also sort by this column: <>= report.top = groupReport(res, by.top.motifs=TRUE) report.top @ This ranks motifs by breadth of enrichment, which is calculated by comparing enrichment \textit{between motifs} in individual sequences. This measure only makes sense when applied to a large number of sequence and when scanning with a large number of motifs (>20). The object returned by \Robject{motifEnrichment} has more information in it, as can be seen below: <>= res # raw scores res$sequence.nobg[1:5, 1:2] # P-values res$sequence.bg[1:5, 1:2] @ In these two matrices the rows correspond to the different input sequences and the columns correspond to motifs. The first matrix (sequence.nobg) contains the raw affinity scores, while the second (sequence.bg) contains the corresponding P-values. If you are using a fixed threshold background (e.g. scanning with \Robject{PWMPvalueCutoff1e3.dm3.MotifDb.Dmel}) the first matrix will contain the number of motif hits, and the second the corresponding Z-scores. \section{Using PWMEnrich on human sequences}\label{sec:human} Starting from PWMEnrich version 4.0 (October 2014) a new algorithm is used to better fit the background distributions in human sequences. The only difference from the usage perspective is in creating new background files - please make sure to set the parameter \Robject{algorithm="human"} in \Robject{makeBackground()} (and other related functions for creating backgrounds). This will instruct the function to fit separate parameters for different sequence lengths. The sequence lengths are obtained by multiplying the parameters \Robject{bg.len} and \Robject{bg.len.sizes}. The defaults are \Robject{bg.len=250bp} and \Robject{bg.len.size=c(1, 2, 4, 8, 16)}. This means that the P-values are the most accurate for sequences that are in the range of 250bp - 4000bp and the closest in size to 250bp, 500bp, 1000bp, 2000bp and 4000bp. \section{Speeding up execution} \subsection{Parallel execution} Motif scanning is the most time consuming operation. Because of this, the package has a support for parallel motif scanning using the \R{parallel} core package. Note that parallel execution is currently not supported on Windows. To turn on parallel scanning, simply register a number of cores available to the package: <>= registerCoresPWMEnrich(4) @ After this command is executed, all further calls to \Biocpkg{PWMEnrich} functions are going to be run in parallel using 4 cores (if possible). To turn off parallel execution call the function with parameter NULL: <>= registerCoresPWMEnrich(NULL) @ \subsection{Large memory backend} Motif scanning can be further speeded up by using large amount of memory. If you have an access to a machine with a lot of RAM, you can switch to the "big memory" backend: <>= useBigMemoryPWMEnrich(TRUE) @ From this point on, all motif scanning will be done using the optimised big memory backend. The memory requirement depends on the number of sequences scanned, and might require tens of GB of RAM. To turn it off: <>= useBigMemoryPWMEnrich(FALSE) @ \section{Customisation} \subsection{Using a custom set of PWMs}\label{sec:custom-pwm} Background motif distributions for a custom set of PWMs can be easily calculated for all model organisms. We will illustrate this by creating a new lognormal background for two \textit{de-novo} motifs in Drosophila. To load in the motifs the package provides functions to read standard JASPAR and TRANSFAC formats. <>= library(PWMEnrich.Dmelanogaster.background) motifs.denovo = readMotifs(system.file(package="PWMEnrich", dir="extdata", file="example.transfac"), remove.acc=TRUE) motifs.denovo # convert count matrices into PWMs genomic.acgt = getBackgroundFrequencies("dm3") pwms.denovo = toPWM(motifs.denovo, prior=genomic.acgt) bg.denovo = makeBackground(pwms.denovo, organism="dm3", type="logn", quick=TRUE) # use new motifs for motif enrichment res.denovo = motifEnrichment(sequences[1:5], bg.denovo) groupReport(res.denovo) @ We load in the count matrices and then convert them into PWMs using the genomic distributions of the A, C, G, T nucleotides. Next we use these PWMs to calculate the properties of the affinity distribution on the set of \textit{D. melanogaster} promoters. In this example we used \Robject{quick=TRUE} for illustrative purposes. This fits the parameters quickly on a reduced set of 100 promoters. We strongly discourage the users to use this parameter in their research, and instead only use it to obtain rough estimates and for testing. The resulting object \Robject{bg.denovo} can be used same as before to perform motif enrichment. The background object \Robject{bg.denovo} contains the two PWMs and their background distribution parameters. All of these can be accessed with the \$ operator. <>= bg.denovo bg.denovo$bg.mean @ %$ \subsection{Using a custom set of background sequences}\label{sec:custom-bg} Low-level functions are available for constructing custom backgrounds. We start with the two de-novo motifs from previous section and fit the background to first 20 \textit{D. melanogaster} promoters. <>= library(PWMEnrich.Dmelanogaster.background) data(dm3.upstream2000) # make a lognormal background for the two motifs using only first 20 promoters bg.seq = dm3.upstream2000[1:20] # the sequences are split into 100bp chunks and fitted bg.custom = makeBackground(pwms.denovo, bg.seq=bg.seq, type="logn", bg.len=100, bg.source="20 promoters split into 100bp chunks") bg.custom @ The resulting \Robject{bg.custom} object can be used as before for motif enrichment with the \Robject{motifEnrichment} function (as described before). \section{Session information} <>= toLatex(sessionInfo()) @ %\bibliographystyle{apalike} %\bibliography{references} \bibliography{references} \end{document} PWMEnrich/vignettes/references.bib0000644000175100017510000000171114614305422020176 0ustar00biocbuildbiocbuild@article{frith_detection_2004, title = {Detection of functional {DNA} motifs via statistical over-representation}, volume = {32}, number = {4}, journal = {Nucl. Acids Res.}, author = {Frith, Martin C. and Fu, Yutao and Yu, Liqun and Chen, {Jiang-Fan} and Hansen, Ulla and Weng, Zhiping}, year = {2004}, pages = {1372--1381} }, @article{stojnic_2012, title = {Affinity based {DNA} motif enrichment analysis with {R/Bioconductor} package {PWMEnrich}}, journal = {in preparation}, author = {Stojnic, Robert and Adryan, Boris}, year = {2014} }, @article{jin_genome-wide_2013, title = {Genome-Wide Screens for In Vivo {Tinman} Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures}, volume = {9}, journal = {{PLoS} Genet}, author = {Jin, Hong and Stojnic, Robert and Adryan, Boris and Ozdemir, Anil and Stathopoulos, Angelike and Frasch, Manfred}, year = {2013}, pages = {e1003195}, }