ShortRead/.Rinstignore0000644000126300012640000000003212227066725016340 0ustar00biocbuildphs_compbiodoc/images doc/simon2.bst ShortRead/DESCRIPTION0000644000126300012640000000160712227135273015546 0ustar00biocbuildphs_compbioPackage: ShortRead Type: Package Title: Classes and methods for high-throughput short-read sequencing data. Version: 1.20.0 Author: Martin Morgan, Michael Lawrence, Simon Anders Maintainer: Bioconductor Package Maintainer Description: Base classes, functions, and methods for representation of high-throughput, short-read sequencing data. License: Artistic-2.0 LazyLoad: yes Depends: methods, BiocGenerics (>= 0.1.0), IRanges (>= 1.19.34), GenomicRanges (>= 1.13.43), Biostrings (>= 2.29.18), lattice, Rsamtools (>= 1.13.1) Imports: Biobase, hwriter, zlibbioc, latticeExtra Enhances: Rmpi, parallel Suggests: biomaRt, RUnit, GenomicFeatures, yeastNagalakshmi LinkingTo: IRanges, XVector, Biostrings biocViews: DataImport, Sequencing, HighThroughputSequencing, QualityControl Packaged: 2013-10-15 03:47:07 UTC; biocbuild ShortRead/NAMESPACE0000644000126300012640000001054712227066725015267 0ustar00biocbuildphs_compbiouseDynLib(ShortRead, .registration=TRUE) import(zlibbioc) import(methods) importClassesFrom(Biobase, AnnotatedDataFrame, AssayData, ScalarCharacter, ScalarInteger, ScalarLogical, ScalarNumeric, Versioned, Versions) importClassesFrom(BiocGenerics, connection) importClassesFrom(Biostrings, BStringSet, DNAString, DNAStringSet, PairwiseAlignments, PhredQuality, QualityScaledDNAStringSet, SolexaQuality, XStringQuality, XStringSet) importClassesFrom(GenomicRanges, GAlignments, GRanges, Seqinfo) importClassesFrom(IRanges, characterORNULL, DataFrame, DataTableORNULL, FilterRules, IRanges, RangedData, RangesList, Rle, SimpleList) importClassesFrom(Rsamtools, BamFileList, RsamtoolsFileList) importMethodsFrom(IRanges, Ops, coerce) importMethodsFrom(IRanges, append, as.factor, as.list, as.vector, by, coerce, colnames, "colnames<-", coverage, diff, endoapply, eval, gsub, head, ifelse, "%in%", levels, median, metadata, "metadata<-", narrow, ncol, nrow, paste, pmin, quantile, Reduce, rev, Rle, rownames, "rownames<-", runLength, runValue, score, split, start, sub, t, table, tapply, toupper, unlist, update, Views, which, width, with) importMethodsFrom(Biobase, "dimLabels<-", initialize, pData, phenoData, sampleNames, show, varLabels, varMetadata) importMethodsFrom(BiocGenerics, cbind, density, Filter, get, lapply, Map, mapply, rbind, sapply, strand) importMethodsFrom(Biostrings, alphabet, alphabetFrequency, detail, duplicated, end, match, nchar, pairwiseAlignment, pattern, PDict, quality, reverse, reverseComplement, substr, summary, tail, trimLRPatterns, unaligned, union, vcountPDict) importMethodsFrom(GenomicRanges, as.data.frame, cigar, countOverlaps, left, qnarrow, qwidth, ranges, reduce, right, seqlevels, "seqlevels<-", seqnames, values, "values<-") importMethodsFrom(IRanges, append, as.factor, as.list, as.vector, by, coerce, colnames, "colnames<-", coverage, diff, endoapply, eval, gsub, head, ifelse, "%in%", levels, median, metadata, "metadata<-", narrow, ncol, nrow, order, paste, pmin, quantile, Reduce, rev, Rle, rownames, "rownames<-", runLength, runValue, score, sort, split, start, sub, t, table, tapply, toupper, unique, unlist, update, Views, which, width, with) importMethodsFrom(Rsamtools, isOpen, path, readGAlignmentsFromBam, readGappedReadsFromBam, scanBam, ScanBamParam) importFrom(Biobase, copySubstitute, mkScalar, selectSome, subListExtract) importFrom(Biostrings, BString, BStringSet, DNAString, DNAStringSet, get_seqtype_conversion_lookup, mkAllStrings, QualityScaledDNAStringSet, readDNAStringSet, writeXStringSet) importFrom(GenomicRanges, cigarToQWidth, GAlignments, GRanges) importFrom(grDevices, colorRampPalette, dev.off, jpeg, pdf, png) importFrom(hwriter, hwrite, hwriteImage) importFrom(IRanges, DataFrame, encoding, FilterRules, IntegerList, IRanges, isSingleString, isTRUEorFALSE, RleList, SimpleList, solveUserSEW) importFrom(lattice, dotplot, histogram, levelplot, llines, lsegments, ltext, panel.abline, panel.dotplot, panel.grid, panel.histogram, panel.levelplot, panel.xyplot, strip.custom, xyplot) importFrom(latticeExtra, xyplot.list) importFrom(Rsamtools, BamFileList, bamFlagTest, bamReverseComplement, "bamReverseComplement<-", bamSimpleCigar, "bamSimpleCigar<-", bamWhat, "bamWhat<-") importFrom(stats, approxfun, setNames) importFrom(utils, capture.output, packageDescription, read.csv, read.table, Sweave) importFrom(Biostrings, DNA_ALPHABET) exportClassPattern("^.*$") exportMethods(show, coerce, dim, length, "[", "[[", alphabetFrequency, alphabet, coverage, encoding, narrow, strand, trimLRPatterns, width, append, rbind, "%in%", c, lapply, sapply) export(pData, phenoData, varLabels, varMetadata) exportPattern("^[^\\.]") ShortRead/NEWS0000644000126300012640000002357112227066725014550 0ustar00biocbuildphs_compbioCHANGES IN VERSION 1.19 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o qa(..., type="fastq") uses a sample of n=1000000 reads by default, rather than then entire file; use sample=FALSE to revert to previous behavior. NEW FEATURES o encoding,FastqQuality and encoding,SFastqQuality provide a convenient map between letter encodings and their corresponding integer quality values. o filterFastq transforms one fastq file to another, removing reads or nucleotides via a user-specified function. trimEnds,character-method & friends use this for an easy way to remove low-quality base. BUG FIXES o writeFastq successfully writes zero-length fastq files. o FastqStreamer / FastqSampler warn on incomplete (corrupt) files CHANGES IN VERSION 1.17 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o FastqSampler can return records in the order encountered in the sampled file. o Increase to 10000 the number of reads examined for determining Fastq quality type o as(FastqQuality, "numeric") returns a vector of quality scores concatenated end to end (previously cycle to cycle), without padding to effective equal width BUG FIXES o trimTails, successive=TRUE would return inconsistent results o FastqStreamer, FastqSampler parse fastq files created with '\r' CHANGES IN VERSION 1.15 ----------------------- NEW FEATURES o FastqStreamer accepts IRanges for selecting input records SIGNIFICANT USER-VISIBLE CHANGES o as(ShortReadQ, "matrix") now accepts ShortReadQ instances with heterogeneous widths, returning a matrix x[i, j] with NA values in when j > width()[i]. BUG FIXES o readAligned, type="BAM" correctly adds required 'what' elements o FastqSampler would only randomize first read; introduced 1.13.9 2011-12-02, fixed 1.15.4 2012-04-25 o report(qa, ...) no longer produces obviously confused base calls per cycle o FastqFileList would fail to initialize correctly from a character vector CHANGES IN VERSION 1.13 ----------------------- SIGNIFICANT USER-VISIBLE CHANGES o FastqSampler is considerably faster o FastqSampler and FastqStreamer require explicit close() to avoid warnings about closing unused connections BUG FIXES o qa reports on very large lanes would overflow alphabetFrequency o qa report scales adapaterContamination correctly o FastqSampler would rarely sample fewer than requested reads o FastqSampler supports outputs of >2^31 - 1 total nucleotides o readFastq parses records with 0 width CHANGES IN VERSION 1.11 ----------------------- NEW FEATURES o trimTails to trim low quality trailing nucleotides o trimEnds to remove arbitrary (vectors of) letters from reads or qualities o FastqStreamer to iterate over a fastq file o FastqFile, FastqFileList to represent fastq files SIGNIFICANT USER-VISIBLE CHANGES o writeFastq has argument full, default value FALSE, disabling printing of identifier a second time in '+' line o srapply requires that options(srapply_fapply="parallel") or options(srapply_fapply="Rmpi") to enable parallel processing via fapply BUG FIXES o SolexaRealign, SolexaAlign, and SolexaResult transposed strand information o FastqSampler segfaulted on some files o writeFasta had a semi-documented argument mode; it is now documented and as a consequence dis-allows argument 'append' that would previously have been passed to underlying methods. CHANGES IN VERSION 1.9 ---------------------- NEW FEATURES o Support for HiSeq tile layout o Track reads passing filters, including across logical filter operations CHANGES IN VERSION 1.7 ---------------------- BUG FIXES o qa() represented the per-cycle quality scores incorrectly; this influenced qa[["perCycle"]][["quality"]][["Score"]], but not the qa report. o qa() for type="SolexaExport" transposed the 'aligned' and 'filtered' labels on all elements of SolexaExportQA. Thanks Nicolas Delhomme for the report. o report() failed when each read was unique. Thanks Peng Yu for the report. SIGNIFICANT USER-VISIBLE CHANGES o The perCycleQuality graph in the qa report now includes boxplots for all cycles instead of just the median value. o A depthOfCoverage graph has been added to the qa report for BAM, Bowtie, SolexaExport and SolexaRealign file types. o An adapterContamination measure has been added to the qa report for BAM, Bowtie, SolexaExport, SolexaRealign and Fastq file types. o srorder is now stable (the original order of identical is preservered). NEW FEATURES o Add class BAMQA. qa() can now be called on BAM files. o The param argument in readAligned() and qa() for type="BAM" can now be a single ScanBamParam object or a list of them. o FastqSampler can be used to draw samples from a fastq file. CHANGES IN VERSION 1.5 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o levels(strand(aln)) is c("+", "-", "*") (was c("-", "+", "*")) o Add USE.NAMES argument to srapply, minimum length to (internal) function ..reduce. NEW FEATURES o Optionally retrieve multiplex bar code, paired read number, and id from SolexaExport (contribution from Nicolas Delhomme) o renew() and renewable() provide an interface to updating ShortRead instances o srapply checks for and uses multicore o readIntensities supports Illumina RTA '.cif' / '.cnf' files o readAligned type="BAM" parses BAM files, extracting simple (no indel) cigars BUG FIXES o readIntensities type="IparIntensity" correctly handles multiple tiles CHANGES IN VERSION 1.3 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o coverage,AlignedRead-method has a changed interface (shift/width rather than start/end) and default behavior (return value in genome coordinates, rather than minimal covered region). o readAligned,character-method, type="Bowtie" and readFastq return FastqQuality by default. o coverage,AlignedRead-method now returns an RleList NEW FEATURES o qa reports from _realign.txt, MAQMap files o QualityScoreDNAStringSet coercion methods o qa type="character" now accepts a filter argument with value srFilter() o alphabetByCycle supports variable-width XStringSets o qa,ShortReadQ and qa,list methods for qa on existing objects BUG FIXES o Parse .gz realign files o alphabetScore,FastqQuality-method shifted quality by +1 CHANGES IN VERSION 1.1 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o 454 quality scores are returned as FastqQuality-encoded o For functions accepting dirPath, pattern to name files, allow dirPath to be a vector of file names when pattern is character(). o width() on ShortRead and derived classes (including AlignedRead now returns a vector of widths, of length equal to the length of the object. NEW FEATURES o Add Bowtie as a 'type' value for qa and report o Add dustyScore() and dustyFilter() to identify low-complexity regions o Parse _qseq files (to ShortReadQ or XDataFrame) o Parse IPAR image intensity files _int.txt.p, _nse.txt.p, _pos.txt o Create HTML-based quality assessment reports o Add trimLRPatterns() for ShortRead and derived classes (ShortReadQ, AlignedRead). o Add narrow() for ShortRead, QualityScore, and derived classes. o Use append() to append two objects of the same ShortReadQ or QualityScore and derived classes together o writeFastq for classes derived from ShortReadQ o Input functions support .gz or text files. o readIntensity reads Solexa image intensity files into R, including information about lane, tile, x, and y coordinates of each read. o readPrb returns different types of objects, depending on the 'as' argument of the readPrb,character-method. o readXStringSet gets arguments skip, nrows; argument order changed slightly o New built-in SRFilters positionFilter, uniqueFilter to select reads aligning to particular positions, or to select only unique instances of reads aligning to each position. o readAligned gains a Solexa _results parser (_results files are listed as 'intermediate' in the Solexa manual, and not a good end-point for analysis) o readAligned gains a Bowtie output parser o readAligned gains ability to parse MAQ 0.7 version binary files BUG FIXES o readQual would fail to read 454 quality scores correctly when these spanned more than one line of input per read o coverage treated reads as 1 base longer than they were o FastqQuality got the quality encoding off by one in as(x, "matrix") o qa_solexa.Rnw incorrectly displayed read occurences when lanes were presented out-of-order (an unusual occurence) o readAligned SolexaAlign, etc., updated to parse 'chromsome' and 'position', and 'strand' information correctly o readAligned MAQMapview failed for most chromosome labels CHANGES IN VERSION 1.0 ---------------------- SIGNIFICANT USER-VISIBLE CHANGES o SRFilter allows construction of filters that can be used to subset existing data objects, or filter incoming (readAligned, at the moment) objects. o readAligned for Solexa-based alignments return 'strand' information as factor with levels "-", "+", "*" (strand not relevant), NA (no strand information available). o srorder, srsort, srrank, and srduplicated for AligendRead class now sort based on chromosome, strand, position AND sread; previous behavior can be recovers by extracting the sequences srsort(sread(aln)), etc. o Functions using SolexaPath now search all relevant directories, e.g., in analysisPath, rather than the first BUG FIXES o 'run' in eland_export files is correctly parsed as a factor (start date: 29 September, 2008) ShortRead/R/0000755000126300012640000000000012227066711014235 5ustar00biocbuildphs_compbioShortRead/R/AllClasses-Base.R0000644000126300012640000003002412227066711017255 0ustar00biocbuildphs_compbio## .STRAND_LEVELS needs to be early, to be used in class ## prototypes. C-level code retrieves this value. pileup and ## readAligned,type=MAQMap depend on this ordering .STRAND_LEVELS <- levels(strand()) .toStrand_Solexa <- function(x) factor(.STRAND_LEVELS[match(x, c("F", "R"))], levels=.STRAND_LEVELS) .srValidity <- function(object) TRUE setGeneric(".srValidity") ## Virtual base classes setClass(".ShortReadBase") ## .SRUtil: SRError / SRList / SRVector / SRFilter setClass(".SRUtil", representation=representation("VIRTUAL")) setClass("SRError", contains=".SRUtil", representation=representation( .type="character", .message="character"), prototype=prototype( .type="Unspecified", .message="unknown error"), validity=.srValidity) setClass("SRWarn", contains=".SRUtil", representation=representation( .type="character", .message="character"), prototype=prototype( .type="Unspecified", .message="unknown warning"), validity=.srValidity) setClass("SRList", contains=".SRUtil", representation=representation( .srlist="list"), prototype=prototype( .srlist=list())) setClass("SRVector", contains="SRList", representation=representation( vclass="character"), prototype=prototype( vclass=NA_character_), validity=.srValidity) setClass("SRFilter", contains=c("function", ".SRUtil"), representation=representation( name="ScalarCharacter"), validity=.srValidity) setClass("SRFilterResult", contains=c("logical", ".SRUtil"), representation=representation( name="ScalarCharacter", stats="data.frame")) ## Intensity setClass("IntensityMeasure", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("IntensityInfo", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("Intensity", contains=".ShortReadBase", representation=representation( .hasMeasurementError="ScalarLogical", readInfo="IntensityInfo", intensity="IntensityMeasure", measurementError="IntensityMeasure", "VIRTUAL"), prototype=prototype( .hasMeasurementError=mkScalar(FALSE)), validity=.srValidity) ## Intensity, implementation setClass("ArrayIntensity", contains=c("array", "IntensityMeasure"), prototype=prototype(array(0, c(0, 0, 0)))) ArrayIntensity <- function(intensity=array(0, c(0, 0, 0)), ...) { new("ArrayIntensity", intensity, ...) } setClass("SolexaIntensityInfo", ## AnnotatedDataFrame as prototype does not work, r46984. ## .init is a work-around to identify user-constructed ## objects that should be valid; used in .srValidity-method contains=c("AnnotatedDataFrame", "IntensityInfo"), representation=representation(.init="ScalarLogical"), prototype=prototype(.init=mkScalar(FALSE)), validity=.srValidity) SolexaIntensityInfo <- function(lane=integer(0), tile=integer(0)[seq_along(lane)], x=integer(0)[seq_along(lane)], y=integer(0)[seq_along(lane)]) { new("SolexaIntensityInfo", data=data.frame( lane=lane, tile=tile, x=x, y=y), varMetadata=data.frame( labelDescription=c( "Solexa lane nubmer", "Solexa tile nubmer", "Tile x coordinate", "Tile y coordinate")), .init=mkScalar(TRUE)) } setClass("SolexaIntensity", contains="Intensity", prototype=prototype( readInfo=SolexaIntensityInfo(), intensity=ArrayIntensity(), measurementError=ArrayIntensity()), validity=.srValidity) setClass("RtaIntensity", contains="SolexaIntensity") ## QualityScore setClass("QualityScore", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("NumericQuality", contains="QualityScore", representation=representation( quality="numeric")) NumericQuality <- function(quality=numeric(0)) { # used below new("NumericQuality", quality=quality) } setClass("IntegerQuality", contains="NumericQuality", representation=representation( quality="integer")) setClass("MatrixQuality", contains="QualityScore", representation=representation( quality="matrix")) setClass("FastqQuality", contains="QualityScore", representation=representation( quality="BStringSet"), prototype=prototype( quality=BStringSet(character(0)))) setClass("SFastqQuality", contains="FastqQuality") # Solexa variant ## ShortRead / ShortReadQ setClass("ShortRead", contains=".ShortReadBase", representation=representation( sread="DNAStringSet", id="BStringSet"), prototype=prototype( sread=DNAStringSet(character(0)), id=BStringSet(character(0))), validity=.srValidity) setClass("ShortReadQ", contains="ShortRead", representation=representation( quality="QualityScore"), prototype=prototype( quality=NumericQuality()), validity=.srValidity) ## ExperimentPath (base class for experimental data paths) setClass("ExperimentPath", contains = c(".ShortReadBase"), representation = representation( basePath="character"), prototype = prototype( basePath=NA_character_), validity = .srValidity) ## SRSet (base class for datasets) setClass("SRSet", contains = ".ShortReadBase", representation = representation( sourcePath="ExperimentPath", # for lazy loading readIndex="integer", # for tracking subsets and sorting readCount="integer", # counts of reads in each sample phenoData="AnnotatedDataFrame", # experimental design readData="AnnotatedDataFrame"), # arbitrary read annotations prototype = prototype( sourcePath=new("ExperimentPath"), readIndex=integer(0), readCount=integer(0), phenoData=new("AnnotatedDataFrame"), readData=new("AnnotatedDataFrame")), validity = .srValidity) ## AlignedRead: AlignedDataFrame setClass("AlignedDataFrame", contains="AnnotatedDataFrame", prototype=prototype( new("AnnotatedDataFrame", dimLabels=c("readName", "alignColumn"))), validity=.srValidity) setClass("AlignedRead", contains="ShortReadQ", representation=representation( chromosome="factor", position="integer", strand="factor", alignQuality="QualityScore", alignData="AlignedDataFrame"), prototype=prototype( strand=factor(levels=.STRAND_LEVELS), alignQuality=NumericQuality()), validity=.srValidity) ## .Solexa setClass(".Solexa", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("SolexaPath", contains=c("ExperimentPath", ".Solexa"), representation=representation( dataPath="character", scanPath="character", imageAnalysisPath="character", baseCallPath="character", analysisPath="character"), prototype=prototype( scanPath=NA_character_, dataPath=NA_character_, imageAnalysisPath=NA_character_, baseCallPath=NA_character_, analysisPath=NA_character_), validity=.srValidity) setClass("SolexaSet", contains=".Solexa", representation=representation( solexaPath="SolexaPath", laneDescription="AnnotatedDataFrame"), prototype=prototype( solexaPath=new("SolexaPath"), laneDescription=new("AnnotatedDataFrame", data=data.frame(1:8)[,FALSE], dimLabels=c("laneNames", "laneColumns"))), validity=.srValidity) ### .Roche setClass(".Roche", contains=".ShortReadBase", representation=representation("VIRTUAL")) setClass("RochePath", contains=c("ExperimentPath", ".Roche"), representation=representation( readPath="character", qualPath="character"), prototype=prototype( readPath=NA_character_, qualPath=NA_character_), validity=.srValidity) setClass("RocheSet", contains=c("SRSet", ".Roche"), representation=representation( sourcePath="RochePath"), prototype=prototype( sourcePath=new("RochePath")), validity=.srValidity) ## QA setClass(".QA", contains=c("SRList", ".ShortReadBase"), representation=representation("VIRTUAL")) setClass("ShortReadQQA", contains=".QA") setClass("FastqQA", contains="ShortReadQQA") # synonym setClass("SolexaExportQA", contains=".QA") setClass("SolexaRealignQA", contains=".QA") setClass("MAQMapQA", contains=".QA") setClass("BowtieQA", contains=".QA") setClass("BAMQA", contains=".QA") ## Snapshot setClass("SnapshotFunction", representation=representation( reader="function", viewer="function", limits="integer")) setClass("SnapshotFunctionList", "SimpleList", prototype=prototype(elementType="SnapshotFunction")) setOldClass("trellis") .SpTrellis <- setRefClass("SpTrellis", fields=list(trellis="trellis", .debug_enabled="logical")) .Snapshot <- setRefClass("Snapshot", fields=list( .debug="function", .auto_display="logical", ## ranges .range="GRanges", .orig.range="GRanges", .zin="logical", .pright="logical", ## data .data="data.frame", .data_dirty="logical", .initial_functions="SnapshotFunctionList", .current_function="character", .using_initial_functions="logical", ## more-or-less public ## annotation track files="BamFileList", functions="SnapshotFunctionList", view="SpTrellis", annTrack="ANY", ignore.strand="logical", fac="character")) ## ShortReadFile -- methods elsewhere .ShortReadFile_g <- setRefClass("ShortReadFile", fields=list(con="ANY", path="character"), methods=list( msg = function(txt) { "display 'txt' with status information as a message()" s <- status(update=TRUE) message(txt, " ", paste(names(s), s, sep="=", collapse=" ")) }, status=function(update=FALSE) {}, show = function() { cat("class:", class(.self), "\n") cat(Rsamtools:::.ppath("path", path)) cat("isOpen:", isOpen(.self), "\n") })) .FastqFile_g <- setRefClass("FastqFile", contains="ShortReadFile") .FastqFileReader_g <- setRefClass("FastqFileReader", contains="FastqFile", fields = list( reader = "function", readerBlockSize="integer", .status = "integer", sampler = "externalptr", verbose = "logical"), methods = list( yield = function(...) { stop("'yield' not implemented for class '", class(.self), "'") }, show = function() { cat("class:", class(.self), "\n") nm <- tryCatch({ basename(summary(.self$con)$description) }, error=function(err) { "closed" }) cat("file:", nm, "\n") s <- .self$status() cat("status:", paste(names(s), s, sep="=", collapse=" "), "\n") })) .FastqStreamer_g <- setRefClass("FastqStreamer", contains="FastqFileReader", fields = list( skips="integer", adds = "integer", ith = "integer", recycle = "logical")) .FastqSampler_g <- setRefClass("FastqSampler", contains="FastqFileReader", fields = list( ordered = "logical")) setClass("FastqFileList", contains="RsamtoolsFileList", prototype=prototype(elementType="FastqFile")) setClass("FastqSamplerList", contains="FastqFileList", prototype=prototype(elementType="FastqSampler")) setClass("FastqStreamerList", contains="FastqFileList", prototype=prototype(elementType="FastqStreamer")) ShortRead/R/AllClasses-QA.R0000644000126300012640000000730312227066711016710 0ustar00biocbuildphs_compbiosetClass(".QA2", representation("VIRTUAL", ".ShortReadBase")) ## data sources .QAData <- setRefClass("QAData", fields=list(seq="ShortReadQ", filter="logical"), methods=list(show=function() { cat(class(.self), " ") print(.self$seq) cat(sprintf("filter: %d of %d", sum(.self$filter), length(.self$filter)), "\n") })) setClass("QASummary", representation("VIRTUAL", ".QA2", addFilter="ScalarLogical", useFilter="ScalarLogical", values="DataFrame", flag="integer", html="ScalarCharacter"), prototype=prototype( addFilter=mkScalar(TRUE), useFilter=mkScalar(TRUE))) ## Sources setClass("QASource", representation("VIRTUAL", "QASummary", metadata="DataFrame", data="QAData", flagNSequencesRange="integer"), prototype=prototype( flagNSequencesRange=NA_integer_), validity=function(object) { msg <- NULL if (!(is.na(object@flagNSequencesRange) || 2L == length(object@flagNSequencesRange))) msg <- "'flagNSequencesRange' must be integer(2)" if (is.null(msg)) TRUE else msg }) setClass("QAFastqSource", representation("QASource", con="character", n="ScalarInteger", readerBlockSize="ScalarInteger")) ## setclass("QABamSource", ## representation("QASource", "QASummary", src="BamFile")) ## summaries setClass("QAFlagged", representation("QASummary")) setClass("QAFiltered", representation("QASummary")) setClass("QANucleotideUse", representation("QASummary")) setClass("QAQualityUse", representation("QASummary")) setClass("QASequenceUse", representation("QASummary")) setClass("QAReadQuality", representation("QASummary", flagK="ScalarNumeric", flagA="ScalarInteger")) setClass("QAAdapterContamination", representation("QASummary", Lpattern="ScalarCharacter", Rpattern="ScalarCharacter", max.Lmismatch="ScalarNumeric", max.Rmismatch="ScalarNumeric", min.trim="ScalarInteger")) setClass("QAFrequentSequence", representation("QASummary", n="ScalarInteger", a="ScalarInteger", flagK="ScalarNumeric", reportSequences="ScalarLogical"), prototype=prototype(n=mkScalar(10L)), validity=function(object) { msg <- NULL if (is.finite(object@n) && is.finite(object@a)) msg <- c(msg, "only one of 'n' or 'a' can be defined") else if (!is.finite(object@n) && !is.finite(object@a)) msg <- c(msg, "one of 'n' or 'a' must be defined") if (is.null(msg)) TRUE else paste("\n ", msg) }) setClass("QANucleotideByCycle", representation("QASummary")) setClass("QAQualityByCycle", representation("QASummary")) ## collation setClass("QACollate", representation(".QA2", "SimpleList", src="QASource"), prototype=prototype( src=new("QAFastqSource"), elementType="QASummary")) setClass("QA", representation(".QA2", "SimpleList", src="QASource", filtered="QAFiltered", flagged="QAFlagged"), prototype=prototype( src=new("QAFastqSource"), elementType="QASummary")) ShortRead/R/AllGenerics-Base.R0000644000126300012640000002061512227066711017424 0ustar00biocbuildphs_compbio## new generics setGeneric(".throw", function(object, call=NULL, ...) standardGeneric(".throw"), signature=c("object")) setGeneric("renewable", function(x, ...) standardGeneric("renewable")) setGeneric("renew", function(x, ...) standardGeneric("renew")) countLines <- function(dirPath, pattern=character(0), ..., useFullName=FALSE) { src <- .file_names(path.expand(dirPath), pattern, ...) nLines <- .Call(.count_lines, src) names(nLines) <- if (useFullName) src else basename(src) nLines } setGeneric("countLines", signature="dirPath") alphabetByCycle <- function(stringSet, alphabet, ...) { if (missing(alphabet)) alphabet <- Biostrings::alphabet(stringSet) w <- max(0L, width(stringSet)) .Call(.alphabet_by_cycle, stringSet, w, alphabet) } setGeneric("alphabetByCycle", signature="stringSet") setGeneric("dustyScore", function(x, batchSize=NA, ...) standardGeneric("dustyScore"), signature="x") setGeneric("srorder", function(x, ...) standardGeneric("srorder")) setGeneric("srduplicated", function(x, ...) standardGeneric("srduplicated")) setGeneric("srsort", function(x, ...) standardGeneric("srsort")) setGeneric("srrank", function(x, ...) standardGeneric("srrank")) setGeneric("tables", function(x, n=50, ...) standardGeneric("tables"), signature="x") ## Intensities setGeneric("readIntensities", function(dirPath, pattern=character(0), ...) standardGeneric("readIntensities"), signature="dirPath") ## QualityScore setGeneric("FastqQuality", function(quality, ...) standardGeneric("FastqQuality")) setGeneric("SFastqQuality", function(quality, ...) standardGeneric("SFastqQuality")) setGeneric("readPrb", function(dirPath, pattern=character(0), ...) standardGeneric("readPrb"), signature="dirPath") ## ShortRead / ShortReadQ setGeneric("ShortRead", function(sread, id, ...) standardGeneric("ShortRead")) setGeneric("sread", function(object, ...) standardGeneric("sread")) setGeneric("writeFasta", function(object, file, mode="w", ...) standardGeneric("writeFasta"), signature=signature("object")) setGeneric("ShortReadQ", function(sread, quality, id, ...) standardGeneric("ShortReadQ")) setGeneric("readFastq", function(dirPath, pattern=character(0), ...) standardGeneric("readFastq"), signature="dirPath") setGeneric("writeFastq", function(object, file, mode="w", full=FALSE, ...) standardGeneric("writeFastq"), signature=c("object", "file")) setGeneric("readFasta", function(dirPath, pattern=character(0), ..., nrec=-1L, skip=0L) standardGeneric("readFasta"), signature="dirPath") setGeneric("readQual", function(dirPath, pattern=character(0), ...) standardGeneric("readQual")) setGeneric("read454", function(dirPath, ...) standardGeneric("read454")) setGeneric("readFastaQual", function(dirPath, ...) standardGeneric("readFastaQual")) setGeneric("readBaseQuality", function(dirPath, ...) standardGeneric("readBaseQuality")) setGeneric("readQseq", function(dirPath, pattern=character(0), ..., as=c("ShortReadQ", "DataFrame", "XDataFrame"), filtered=FALSE, verbose=FALSE) standardGeneric("readQseq"), signature="dirPath") setGeneric("trimTails", function(object, k, a, successive=FALSE, ..., ranges=FALSE) standardGeneric("trimTails"), signature="object") setGeneric("trimTailw", function(object, k, a, halfwidth, ..., ranges=FALSE) standardGeneric("trimTailw"), signature="object") setGeneric("trimEnds", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) standardGeneric("trimEnds"), signature="object") setGeneric("clean", function(object, ...) standardGeneric("clean")) setGeneric("srdistance", function(pattern, subject, ...) standardGeneric("srdistance"), signature=c("pattern", "subject")) setGeneric("alphabetScore", function(object, ...) standardGeneric("alphabetScore")) ## SRFilter setGeneric("name", function(x, ...) standardGeneric("name")) setGeneric("stats", function(x, ...) standardGeneric("stats")) setGeneric("srFilter", function(fun, name=NA_character_, ...) standardGeneric("srFilter"), signature="fun") ## AlignedRead setGeneric("readAligned", function(dirPath, pattern=character(0), ...) standardGeneric("readAligned"), signature="dirPath") setGeneric("chromosome", function(object, ...) standardGeneric("chromosome")) setGeneric("id", function(object, ...) standardGeneric("id")) setGeneric("position", function(object, ...) standardGeneric("position")) ## ExperimentPath experimentPath <- function(object, ...) { slot(object, "basePath") } setGeneric("experimentPath") ## *Set setGeneric("qa", function(dirPath, ...) standardGeneric("qa")) report <- function (x, ..., dest = tempfile(), type="html") { func <- switch(type, html=report_html, pdf=.report_pdf, .report_any) func(x, dest, type, ...) } setGeneric("report", signature="x") .report_any <- function (x, dest, type, ...) { .throw(SRError("UserArgumentMismatch", "'%s, type=\"%s\"' not implemented for class '%s'", "report", type, class(x))) } setGeneric("report_html", function(x, dest, type, ...) standardGeneric("report_html"), signature="x", useAsDefault=.report_any) setGeneric(".report_pdf", function(x, dest, type, ...) standardGeneric(".report_pdf"), signature="x", useAsDefault=.report_any) ## SolexaSet setGeneric("SolexaSet", function(path, ...) standardGeneric("SolexaSet")) setGeneric("laneNames", function(object, ...) { standardGeneric("laneNames") }) ## Roche setGeneric("RocheSet", function(path, ...) standardGeneric("RocheSet")) setGeneric("runNames", function(object, ...) standardGeneric("runNames")) ## Snapshot setGeneric("Snapshot", function(files, range, ...) standardGeneric("Snapshot")) setGeneric("SnapshotFunctionList", function(...) standardGeneric("SnapshotFunctionList")) setGeneric("files", function(x, ...) standardGeneric("files")) setGeneric("vrange", function(x, ...) standardGeneric("vrange")) setGeneric("functions", function(x, ...) standardGeneric("functions")) setGeneric("annTrack", function(x, ...) standardGeneric("annTrack")) setGeneric("ignore.strand", function(x, ...) standardGeneric("ignore.strand")) setGeneric("fac", function(x, ...) standardGeneric("fac")) setGeneric("getTrellis", function(x, ...) standardGeneric("getTrellis")) setGeneric("togglez", function(x, ...) standardGeneric("togglez")) setGeneric("togglep", function(x, ...) standardGeneric("togglep")) setGeneric("togglefun", function(x, name, ...) standardGeneric("togglefun")) setGeneric("zoom", function(x, range, ...) standardGeneric("zoom")) setGeneric("pan", function(x, ...) standardGeneric("pan")) setGeneric("view", function(x, ...) standardGeneric("view")) setGeneric("zi", function(x, ...) standardGeneric("zi")) setGeneric("zo", function(x, ...) standardGeneric("zo")) setGeneric("restore", function(x, ...) standardGeneric("restore")) ## ShortReadFile setGeneric(".ShortReadFile", function(g, path, ...) standardGeneric(".ShortReadFile"), signature="path") setGeneric("FastqFileList", function(..., class="FastqFile") standardGeneric("FastqFileList"), signature="...") setGeneric("FastqStreamer", function(con, n, readerBlockSize=1e8, verbose=FALSE) standardGeneric("FastqStreamer"), signature=c("con", "n")) setGeneric("FastqStreamerList", function(..., n, readerBlockSize=1e8, verbose=FALSE) standardGeneric("FastqStreamerList"), signature="...") setGeneric("FastqSamplerList", function(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) standardGeneric("FastqSamplerList"), signature="...") setGeneric("yield", function(x, ...) standardGeneric("yield")) ShortRead/R/AllGenerics-QA.R0000644000126300012640000000102612227066711017046 0ustar00biocbuildphs_compbiosetGeneric(".filter", function(object, useFilter, ...) standardGeneric(".filter"), signature="object") setGeneric(".clone", function(object, ...) standardGeneric(".clone")) setGeneric("QACollate", function(src, ...) standardGeneric("QACollate")) setGeneric("qa2", function(object, state, ..., verbose=FALSE) standardGeneric("qa2"), signature="object") setGeneric("flag", function(object, ..., verbose=FALSE) standardGeneric("flag"), signature="object") ShortRead/R/AllUtilities.R0000644000126300012640000001142512227066711016767 0ustar00biocbuildphs_compbio## public polyn <- function(nucleotides, n) { if (!is.character(nucleotides) || length(nucleotides)==0) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "nucleotides", "character(1) or longer")) if (!all(sapply(nucleotides, nchar) == 1)) .throw(SRError("UserArgumentMismatch", "'%s' must all have %d characters", "nucleotides", 1)) if (!is.numeric(n) || length(n) != 1) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "n", "numeric(1)")) sapply(nucleotides, function(elt) paste(rep(elt, n), collapse="")) } ## Errors .undefined_method_err <- function(class, method) { .throw(SRError("InternalError", "undefined method '%s' for class '%s'", method, class)) } .subset_err <- function() { .throw(SRError("UserSubset", "'[' must be called with only subscript 'i'")) } .arg_missing_err <- function(arg, method, help) { .throw(SRError("UserArgumentMismatch", "argument '%s' required for '%s'\n see %s", arg, method, help)) } .arg_mismatch_type_err <- function(arg, type) { .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", arg, type)) } .arg_mismatch_type_err2 <- function(arg, type, was) { .throw(SRError("UserArgumentMismatch", "'%s' must be '%s', was '%s'", arg, type, was)) } .arg_mismatch_value_err <- function(arg, value, possible_vals) { msg <- sprintf("arugment '%s' had value '%s'\n allowable values: '%s'", arg, value, paste(possible_vals, collapse="' '")) .throw(SRError("UserArgumentMismatch", paste(strwrap(msg, exdent=4), collapse="\n"))) } .check_type_and_length <- function(x, type, len) { name <- deparse(substitute(x)) if (!is(x, type)) .arg_mismatch_type_err2(name, type, class(x)) if (!is.na(len) && sum(length(x) == len)==0) { typelen <- paste(type, paste("(", len, ")", sep=""), sep="", collapse="' '") was <- sprintf("%s(%d)", class(x), length(x)) .arg_mismatch_type_err2(name, typelen, was) } } ## Misc .file_names <- function(dirPath, pattern, ..., full.names=TRUE) { if (!is(pattern, "character") || length(pattern)>1) .arg_mismatch_type_err("pattern", "character(0) or character(1)") if (!isTRUE(full.names)) .arg_mismatch_type_err("full.names", "TRUE") dirPath <- path.expand(dirPath) if (length(pattern) == 0 && all(file.exists(dirPath)) && all(!sapply(dirPath, function(elt) file.info(elt)$isdir))) { return(dirPath) } files <- list.files(dirPath, pattern, ..., full.names=full.names) files <- files[!file.info(files)$isdir] if (length(files)==0) { if (length(pattern)==0) pattern <- "character(0)" .throw(SRError("Input/Output", "no input files found\n dirPath: %s\n pattern: %s\n", paste(dirPath, collapse="\n "), paste(pattern, collapse="\n "))) } files } .show_some <- function(what, obj) { if (length(obj) == 0) cat(what, ": (0 total)\n", sep="") else cat(what, ": ", paste(selectSome(obj), collapse=" "), " (", length(obj), " total)\n", sep="") } ## Class- and method-related .forward_objq <- function(object, ...) callGeneric(quality(object), ...) .forward_xq <- function(x, ...) callGeneric(quality(x), ...) .forward_obj <- function(object, ...) callGeneric(sread(object), ...) .forward_x <- function(x, ...) callGeneric(sread(x), ...) .nameAll <- function(x) { ## Add names to character vector x. Elements of x without names get ## a name matching the element. if (!is.character(x)) stop("argument 'x' must be a character vector") if (length(names(x))) names(x) <- ifelse(nchar(names(x)) == 0, x, names(x)) else names(x) <- x x } .make_getter <- function(slots, where=topenv(parent.frame()), verbose=FALSE) { slots <- .nameAll(slots) nms <- names(slots) ok <- !sapply(nms, exists, where) if (verbose && !all(ok)) .throw(SRError("InternalError", "getter '%s' already exists", paste(nms[!ok], collapse=", "))) slots <- slots[ok] for (i in seq_along(slots)) { func <- eval(substitute(function(object, ...) slot(object, SLOT), list(SLOT=slots[i]))) assign(nms[i], func, where) } } ## Misc .append.factor <- function(x, values) { lvls <- unique(c(levels(x), levels(values))) factor(append(as.character(x), as.character(values)), lvls) } ShortRead/R/GappedReads-class.R0000644000126300012640000001016412227066711017644 0ustar00biocbuildphs_compbio### ========================================================================= ### GappedReads objects ### ------------------------------------------------------------------------- ### setClass("GappedReads", contains="GAlignments", representation( qseq="DNAStringSet" ## TODO: Maybe add the read quality? mismatch information? ) ) ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### Getters. ### setGeneric("qseq", function(x) standardGeneric("qseq")) setMethod("qseq", "GappedReads", function(x) x@qseq) ### Overriding "qwidth" method for GAlignments objects with a faster ### method. setMethod("qwidth", "GappedReads", function(x) width(qseq(x))) ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### Validity. ### .valid.GappedReads.qseq <- function(x) { x_qseq <- qseq(x) if (class(x_qseq) != "DNAStringSet" || !is.null(names(x_qseq))) return("'qseq(x)' must be an unnamed DNAStringSet instance") if (length(x_qseq) != length(cigar(x))) return("'qseq(x)' and 'cigar(x)' must have the same length") if (!identical(width(x_qseq), cigarWidthAlongQuerySpace(cigar(x)))) return(paste("'width(qseq(x))' and", "'cigarWidthAlongQuerySpace(cigar(x))'", "must be identical")) NULL } .valid.GappedReads <- function(x) { .valid.GappedReads.qseq(x) } setValidity2("GappedReads", .valid.GappedReads, where=asNamespace("ShortRead")) ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### Constructors. ### GappedReads <- function(seqnames=Rle(factor()), pos=integer(0), cigar=character(0), strand=NULL, qseq=DNAStringSet(), names=NULL, seqlengths=NULL) { galn <- GAlignments(seqnames=seqnames, pos=pos, cigar=cigar, strand=strand, names=names, seqlengths=seqlengths) new("GappedReads", galn, qseq=qseq) } readGappedReads <- function(file, format="BAM", use.names=FALSE, ...) { if (!isSingleString(file)) stop("'file' must be a single string") if (!isSingleString(format)) stop("'format' must be a single string") if (!isTRUEorFALSE(use.names)) stop("'use.names' must be TRUE or FALSE") if (format == "BAM") { ans <- readGappedReadsFromBam(file=file, use.names=use.names, ...) return(ans) } stop("only BAM format is supported at the moment") } ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### Subsetting. ### ### Supported 'i' types: numeric vector, logical vector, NULL and missing. setMethod(IRanges:::extractROWS, "GappedReads", function(x, i) { if (missing(i) || !is(i, "Ranges")) i <- IRanges:::normalizeSingleBracketSubscript(i, x) x@qseq <- IRanges:::extractROWS(x@qseq, i) callNextMethod() } ) ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### The "show" method. ### ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### Combining. ### setMethod("c", "GappedReads", function (x, ..., recursive = FALSE) { stop("coming soon") } ) ### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ### The "qnarrow", "narrow", and "pintersect" methods. ### setMethod("qnarrow", "GappedReads", function(x, start=NA, end=NA, width=NA) { stop("coming soon") ## ans_cigar <- cigarQNarrow(cigar(x), ## start=start, end=end, width=width) ## ans_start <- start(x) + attr(ans_cigar, "rshift") ## updateCigarAndStart(x, cigar=ans_cigar, start=ans_start) } ) setMethod("narrow", "GappedReads", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { stop("coming soon") ## ans_cigar <- cigarNarrow(cigar(x), ## start=start, end=end, width=width) ## ans_start <- start(x) + attr(ans_cigar, "rshift") ## updateCigarAndStart(x, cigar=ans_cigar, start=ans_start) } ) ShortRead/R/Snapshot.R0000644000126300012640000004143412227066711016165 0ustar00biocbuildphs_compbio.Snapshot$methods( .message = function(fmt, ...) { message(paste(strwrap(sprintf("Snapshot: %s", sprintf(fmt, ...)), exdent=2), collapse="\n")) }, .stop=function(fmt, ...) { stop(paste(strwrap(sprintf("Snapshot: %s", sprintf(fmt, ...)), exdent=2), collapse="\n")) }, .initial_range=function() { h <- scanBamHeader(.self$files[[1]])[["targets"]] if (!length(h)) .stop("header of file '%s' contains no targets", .self$files[[1]]) h <- h[1] GRanges(names(h), IRanges(1, h)) }, .update_range=function(lim) { if (lim[2] < lim[1]) .stop("The end of range must be greater than the start of the range.") if (lim[1] >= start(.self$.orig.range)) { start(.self$.range) <- lim[1] .self$.data_dirty <- TRUE } else .stop("Please make sure the range arguments define the regions within the limits of the original range.") if (lim[2] <= end(.self$.orig.range)) { end(.self$.range) <- lim[2] .self$.data_dirty <- TRUE } else .stop("Please make sure the range arguments define the regions within the limits of the original range.") invisible() }, .update_data=function() { .debug("update_data .current_function='%s'", .self$.current_function) .self$.data <- reader(.self$functions[[.self$.current_function]])(.self) .self$.data_dirty <- FALSE .self$view <- viewer(.self$functions[[.self$.current_function]])(.self) .debug("update_data view limits %.0f-%.0f", .self$view$get.x.limits()[1], .self$view$get.x.limits()[2]) .self }, .get.active_region=function() { 'get the start and end of the active region' c(start(.self$.range), end(.self$.range)) }, .is.initial_function=function() { 'check if initial reader/viwer function is currently in used:TRUE/FALSE' 'assign result to .using_initial_functions' .self$.using_initial_functions <- any(.self$.current_function %in% names(.self$.initial_functions)[1:2]) }, .check_currentFunction=function(currentFunction) { if (missing(currentFunction)) currentFunction <- .self$.current_function lms <- limits(.self$functions[[currentFunction]]) wd <- width(.self$.range) if (wd <= lms[1]) .stop("image width (%.0f) < function limit (%.0f bps)", wd, lms[1]) ## FIXME: suggest to use togglefun to change function else if (wd > lms[2]) .stop("image width (%.0f) > function limit (%.0f bps)", wd, lms[2]) invisible() }, .change_current_function=function(currentFunction) { 'Determine whether currentFunction should be change according to the size of the active region. This function is used by togglefun()' 'If yes, change .current_function and make .data_dirty TRUE' lms <- limits(.self$functions[[currentFunction]]) wd <- .self$view$get.x.limits()[2] - .self$view$get.x.limits()[1] if (wd <= lms[1]) .stop("image width (%.0f) < function limit (%.0f bps)", wd, lms[1]) ## FIXME: suggest to use togglefun to change function else if (wd > lms[2]) .stop("image width (%.0f) > function limit (%.0f bps)", wd, lms[2]) .self$.current_function=currentFunction .self$.data_dirty <- TRUE invisible() }, .zoom_in_xlim=function(){ 'get x limits for zoom in' lim <- .self$view$get.x.limits() center <- mean(lim) width <- (lim[2] - lim[1])/2 if (width > 50) xlim <- c(max(start(.self$.orig.range), center - width/2), min(end(.self$.orig.range), center + width/2)) else xlim <- lim }, .zoom_out_xlim=function() { 'get x limits for zoom out' lim <- .self$view$get.x.limits() center <- mean(lim) width <- diff(lim) xlim <- c(max(start(.self$.orig.range), center-width), min(end(.self$.orig.range), center+width)) }, .pleft_xlim=function() { 'get x limits for pan left' margin <- 50 lim <- .self$view$get.x.limits() by <- 0.8 * diff(lim) xlim <- c(max(lim[1] - by, start(.self$.orig.range)), max(lim[2] - by, start(.self$.orig.range) + margin)) ## if xlim is between the gap of the limits of .self$range ## that of the trellis object limits (.self$view$trellis$orig.x.limits xlim <- c(min(end(.self$.orig.range)-margin, xlim[1]), min(end(.self$.orig.range), xlim[2])) }, .pright_xlim=function() { 'get x limits for pan right' margin <- 50 lim <- .self$view$get.x.limits() by <- 0.8 * diff(lim) xlim <- c(min(lim[1]+by, end(.self$.orig.range) - margin), min(lim[2]+by, end(.self$.orig.range))) ## if xlim is between the gap of the limits of .self$range ## that of the trellis object limits (.self$view$trellis$orig.x.limits xlim <- c(max(start(.self$.orig.range), xlim[1]), max(start(.self$.orig.range)+margin, xlim[2])) }, .reset_active_range=function(xlim) { 'determine wether to reset active range. used by pan and zoom out' win <- .self$view$trellis$orig.x.limits f1 <- xlim[1] < min(start(.self$.range), win[1]) f2 <- xlim[2] > end(.self$.range, win[2]) any(f1,f2) }, .switch_ini_currentFunction=function(xlim) { 'determine wether to switch viewer functions (TRUE/FALSE). used only when the current function is one of default functions (fine_coverage or coarse_coverage)' sw <- FALSE win <-(xlim[2] - xlim[1]) < limits(.self$.initial_functions[["fine_coverage"]])[2] fine <- .self$.current_function == "fine_coverage" if (win) { # limits within fine_coverage limit and viewer is coarse if (!fine) sw <- TRUE } else { # limits over fine_coverage limit and viewer is fine if (fine) sw <- TRUE } return(sw) }, .initialize_currentFunction=function() { if (width(.self$.range) < limits(.self$.initial_functions[["fine_coverage"]])[2]) currentFunction <- "fine_coverage" else currentFunction <- "coarse_coverage" }, .initialize_fac=function(fac) { ## initialize fac and values(.self$fiels)[[.self$fac]] .self$fac <- fac if (is.null(values(.self$files))) .self$fac <- character(0L) if (length(.self$fac) & !is.null(values(.self$files))) { if (length(.self$fac) > 1) .self$fac <- .self$fac[1] if (!(.self$fac %in% names(values(.self$files)))) ## not sure why cannot use values(.self$files) .stop("'%s' is not a column of elementMetadata in the 'files' input arguement", .self$fac) values(.self$files)[[.self$fac]] <- factor(values(.self$files)[[.self$fac]]) } }, initialize=function(..., functions=SnapshotFunctionList(), currentFunction, ignore.strand=FALSE, fac=character(0L), annTrack=NULL, .range, .auto_display=TRUE, .debug=FALSE) { callSuper(...) .self$.debug <- if (.debug) .self$.message else function(...) {} .self$.zin <- TRUE .self$.pright <- TRUE .self$.auto_display <- .auto_display tryCatch({ for (f in as.list(.self$files)) if (!isOpen(f)) open(f) }, error=function(err) { .stop("open BamFile failed: %s", conditionMessage(err)) }) .self$.range <- if (missing(.range)) .initial_range() else .range .self$.orig.range <- .self$.range .self$.initial_functions <- SnapshotFunctionList(fine_coverage=.fine_coverage, coarse_coverage=.coarse_coverage, multifine_coverage=.multifine_coverage, multicoarse_coverage=.multicoarse_coverage) .self$functions <- c(.self$.initial_functions, functions) ## initialize current function if (!missing(currentFunction)) { if (!currentFunction %in% names(.self$functions)) .stop("'%s' is not in SnapshotFunctionList", currentFunction) .self$.check_currentFunction(currentFunction) } else { currentFunction <- .self$.initialize_currentFunction() } .self$.initialize_fac(fac) ## initialize fac and fix values(.self$fiels) .self$annTrack <- annTrack .self$ignore.strand <- ignore.strand .self$.current_function <- currentFunction .self$.is.initial_function() # assign .self$using.initial_function .self$.data_dirty <- TRUE .self$.update_data() .self$display() .self }, set_range=function(range) { 'resetting the active range, called when setting zoom(..., range=)' 'also used for determine the best fit SnapshotFunctions if the initial functions are in used.' # seqlevel must be the same if (!all(seqlevels(range) %in% seqlevels(.self$.range))) .stop("The seqlevel '%s' does not match that of the active data", seqlevels(range)) .self$.update_range(c(start(range), end(range))) .self$.is.initial_function() ## find appropriate reader/viewer if initial functions are in used if (.self$.using_initial_functions) .self$.current_function <- .self$.initialize_currentFunction() .self$.data_dirty <- TRUE .self$.update_data() }, display=function() { .debug("display") if (.data_dirty) .self$.update_data() print(.self$view$view()) }, toggle=function(zoom=FALSE, pan=FALSE, currentFunction) { .self$.debug("toggle: zoom %s; pan %s; fun %s", if (.self$.zin) "in" else "out", if (.self$.pright) "right" else "left", .self$.current_function) if (zoom) .self$.zin <- !.self$.zin if (pan) .self$.pright <- !.self$.pright if (!missing(currentFunction)) { if (!currentFunction %in% names(.self$functions)) .stop("toggle unknown function '%s'", currentFunction) if (currentFunction != .self$.current_function) { .self$.change_current_function(currentFunction) if (.self$.data_dirty) { lim <- .self$view$get.x.limits() .update_range(lim) .self$.update_data() } } } .self }, zoom=function() { .debug("zoom: %s", if (.self$.zin) "in" else "out") if (.self$.zin) { ## zoom in .self$.is.initial_function() if (.self$.using_initial_functions) { # check if need to switch viewer xlim <- .self$.zoom_in_xlim() if (.self$.switch_ini_currentFunction(xlim)) { range <- .self$.range start(range) <- xlim[1] end(range) <- xlim[2] .self$set_range(range) } else # if don't need to swith viewer .self$view$zi() } else # if not using fine_coverage or coarse_coverage .self$view$zi() } else { ## zoom out xlim <- .self$.zoom_out_xlim() if (.reset_active_range(xlim)) { ## expend the active range and .update_data() range <- .self$.range start(range) <- xlim[1] end(range) <- xlim[2] #find appropriate read/viwer funcs .self$set_range(range) } else .self$view$zo() } #.self$.update_range() .self }, pan=function() { .debug("pan: %s", if (.self$.pright) "right" else "left") if (.self$.pright) { ## shift right xlim <- .self$.pright_xlim() if (.reset_active_range(xlim)) { .update_range(xlim) .self$.update_data() } else .self$view$right() } else { ## shift left xlim <- .self$.pleft_xlim() if (.reset_active_range(xlim)) { .update_range(xlim) .self$.update_data() } else .self$view$left() } .self }, restore=function() { f1 <- start(.self$.range)==start(.self$.orig.range) f2 <- end(.self$.range)==end(.self$.orig.range) if (all(f1, f2))#original range is the same as active range .self$view$restore() else .self$set_range(.self$.orig.range) } ) ## Constructors setMethod(Snapshot, c("character", "GRanges"), function(files, range, ...) { if (is.null(names(files))) names(files) <- basename(files) files <- BamFileList(files) .Snapshot$new(files=files, .range=range, ...) }) setMethod(Snapshot, c("BamFileList", "GRanges"), function(files, range, ...) { if (is.null(names(files))) names(files) <- basename(sapply(files@listData, function(fl) path(fl))) ## duplicate names is not preferred fnames <- names(files) if (length(unique(fnames))!=length(fnames)) names(files) <- paste(1:length(fnames), fnames, sep="-") .Snapshot$new(files=files, .range=range, ...) }) setMethod(Snapshot, c("character", "missing"), function(files, range, ...) { if (is.null(names(files))) names(files) <- basename(files) files <- BamFileList(files) .Snapshot$new(files=files, ...) }) ## accessors setMethod(files, "Snapshot", function(x) x$files) setMethod(vrange, "Snapshot", function(x) x$.range ) setMethod(functions, "Snapshot", function(x) x$functions) setMethod(annTrack, "Snapshot", function(x) x$annTrack) setMethod(ignore.strand, "Snapshot", function(x) x$ignore.strand) setMethod(fac, "Snapshot", function(x) x$fac) setMethod(getTrellis, "Snapshot", function(x) x$view$trellis) ## private functions .getData <- function(x) x$.data .currentFunction <- function(x) x$.current_function setMethod(view, "Snapshot", function(x) x$view) ## interface setMethod(togglez, "Snapshot", function(x) { x$toggle(zoom=TRUE) invisible(x) }) setMethod(togglep, "Snapshot", function(x) { x$toggle(pan=TRUE) invisible(x) }) setMethod(togglefun, "Snapshot", function(x, name) { if (!missing(name)) { x$toggle(currentFunction=name) invisible(x) } }) setMethod(zoom, "Snapshot", function(x, range) { if (!missing(range)) ## FIXME: must be able to tell whether .currentFunction is appropriate x$set_range(range) else x$zoom() x$display() ## FIXME: invisible return TRUE on success, FALSE otherwise }) setMethod(pan, "Snapshot", function(x) { x$pan() x$display() ## FIXME: return TRUE on success, FALSE otherwise }) ## show setMethod(show, "Snapshot", function(object) { cat("class:", class(object), "\n") with(object, { cat("file(s):", names(files), "\n") cat("Orginal range:", sprintf("%s:%d-%d", seqlevels(.orig.range), start(.orig.range), end(.orig.range)), "\n") cat("active range:", sprintf("%s:%d-%d", seqlevels(.range), start(.range), end(.range)), "\n") cat("zoom (togglez() to change):", if (.zin) "in" else "out", "\n") cat("pan (togglep() to change):", if (.pright) "right" else "left", "\n") cat("fun (togglefun() to change):", .current_function, "\n") cat(sprintf("functions: %s\n", paste(names(functions), collapse=" "))) }) if (object$.auto_display) object$display() }) ShortRead/R/SnapshotFunction-helpers.R0000644000126300012640000002772312227066711021340 0ustar00biocbuildphs_compbio## get coverage for fine and coarse view .get_fine_coverage <- function(x) { rng <- vrange(x) wd <- width(rng) cvg <- function(aln) { if (identical(0L, length(aln))) numeric(wd) else as.numeric(unlist(coverage(aln, shift=-start(rng)+1, width=wd), use.names=FALSE)) } lst <- lapply(as.list(files(x)), function(fl, param) { aln <- readGAlignmentsFromBam(fl, param=param) seqlevels(aln) <- seqlevels(rng) list(`+`=cvg(aln[strand(aln)=="+"]), `-`=cvg(aln[strand(aln)=="-"])) }, param=ScanBamParam(which=rng)) } .get_coarse_coverage <- function(x) { nbins <- 5000L rng <- vrange(x) wd <- width(rng) breaks <- seq(start(rng), end(rng), length.out=nbins) lst <- lapply(as.list(files(x)), function(fl) { param <- ScanBamParam(which=rng, what=c("pos", "strand")) starts <- scanBam(fl, param=param)[[1]] bins <- lapply(split(starts$pos, starts$strand)[1:2], function(elt) { if (length(elt)) cut(elt, breaks=breaks, labels=FALSE) else integer() }) lapply(bins, tabulate, length(breaks)-1) #nbins = breaks-1 }) } .coverage_as_dataframe <- function(lst, range, ignore.strand=FALSE, resolution.fine=TRUE) { positive <- sapply(lst, "[[", "+") negative <- sapply(lst, "[[", "-") if (is.matrix(positive)) positive <- rowMeans(positive) if (is.matrix(negative)) negative <- rowMeans(negative) if (resolution.fine) pos <- seq.int(start(range), end(range), length.out=length(positive)) else { ## center the pos at the bin delta <- (end(range)-start(range))/(length(positive)) pos <- seq.int(start(range)+delta/2, by=delta, length.out=length(positive)) } if (!ignore.strand) { snames <- c("positive", "negative") group <- factor(rep(snames, each=length(positive)), levels=snames) data.frame(data=c(positive, -negative), group=group, pos=pos) } else { data.frame(data=positive+negative, pos=pos) } } .multiFile_coverage_as_dataframe <- function(lst, range, fac=NULL, ignore.strand=FALSE, resolution.fine=TRUE) { wd <- width(range) positive <- sapply(lst, "[[", "+") negative <- sapply(lst, "[[", "-") nPoints <- length(lst[[1]][[1]]) if (is.null(fac)) { ## phenolev as file names (must be unique) fnames <- names(lst) if (length(unique(fnames))!=length(fnames)) # conform the uniquenss fnames <- paste(1:length(fnames), fnames, sep="-") phenolev <- c(do.call(cbind, lapply(fnames, rep, nPoints))) } else { ## take means of the coverate on each level factor cvlst <- lapply(levels(fac), function(lev) { ps <- rowMeans(positive[, fac == lev, drop=FALSE]) ng <- rowMeans(negative[, fac == lev, drop=FALSE]) list("+"=ps, "-"=ng) }) names(cvlst) <- levels(fac) positive <- sapply(cvlst, "[[", "+") negative <- sapply(cvlst, "[[", "-") phenolev <- c(do.call(cbind, lapply(names(cvlst), rep, nPoints))) } ## define position if (resolution.fine) pos <- seq.int(start(range), end(range)) else { # position should be in the middle of the bin nIntervals <- length(lst[[1]][[1]]) delta <- (end(range)-start(range))/(nPoints) pos <- seq.int(start(range)+delta/2, by=delta, length.out=nPoints) } fnames <- names(lst) if (length(unique(fnames))!=length(fnames)) fnames <- paste(1:length(fnames), fnames, sep="-") file <- c(do.call(cbind, lapply(fnames, rep, nPoints))) if (ignore.strand) { data.frame(data=c(positive+negative), pos=pos, levels=phenolev) } else { snames <- c("positive", "negative") strand <- rep(snames, each=length(positive)) file <- rep(file, 2) data.frame(data=c(positive, -negative), pos=pos, group=strand, levels=phenolev) } } ################### readers ####################### .fine_coverage_reader <- function(x) { ## x: a Snapshot instance ## create a plot of coverage as sum of coverage of all the files lst <- .get_fine_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) .coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, resolution.fine=TRUE) } .coarse_coverage_reader <- function(x) { ## x: a Snapshot instance ## create a plot of coverage as sum of coverage of all the files lst <- .get_coarse_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) .coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, resolution.fine=FALSE) } .multifine_coverage_reader <- function(x) { ## x: a Sanpshot instance ## create a plot of coverage, separate lines for each file lst <- .get_fine_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) if (length(fac(x)) ) gfac <- values(files(x))[[fac(x)]] else gfac <- NULL .multiFile_coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, fac=gfac, resolution.fine=TRUE) } .multicoarse_coverage_reader <- function(x) { ## x: a Sanpshot instance ## create a plot of coverage, separate lines for each file lst <- .get_coarse_coverage(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) if (length(fac(x)) ) gfac <- values(files(x))[[fac(x)]] else gfac <- NULL .multiFile_coverage_as_dataframe(lst, rng, ignore.strand=ignore.strand, fac=gfac, resolution.fine=FALSE) } .update_viewer <- function(x, cv) { ## subset annTrack and validate anntrack anntrack <- annTrack(x) rng <- vrange(x) ignore.strand <- ignore.strand(x) if (any(seqnames(anntrack)@values %in% seqlevels(rng))) { gr <- anntrack seqlevels(gr, force=TRUE) <- seqlevels(vrange(x)) } else { message(paste(strwrap("SnapshotFunction-helper: seqname of 'annTrack' does not match the imported range. Annotation track will not be plotted."), collapse="\n")) return(NULL) } ## if anntrack has no elementMetada value, then return NULL if (ncol(values(anntrack)) < 1) { message(paste(strwrap("SnapshotFunction-helper: at least one column of 'annTrack' elementMetadata is required. Annotation track will not be plotted."), collapse="\n")) return(NULL) } # x: a Snapshot instance if (.currentFunction(x) %in% c("coarse_coverage", "multicoarse_coverage")) ann <- .coarse_annviewer(gr, rng, ignore.strand) if (.currentFunction(x) %in% c("fine_coverage", "multifine_coverage")) ann <- .fine_annviewer(gr, ignore.strand) strip.label <- c(dimnames(cv)$levels, "annotation track") npacket <- length(cv$packet.sizes) ann$x.limits <- cv$x.limits update(c(cv, ann), x.same=TRUE, layout=c(1,npacket+1), xlab=NULL, ylab=NULL, strip=if (!is.null(dimnames(cv)$levels)) strip.custom(factor.levels=strip.label), par.setting=list(layout.heights=list(panel=c(rep(2,npacket),1)))) } ## viewers .coverage_viewer <- function(x) { ## x: a Snapshot instance sp <- .getData(x) # x$.data lty <- rep(seq_len(length(levels(sp$group)) / 2), times=2) ## sp: data.frame with "data", "group", and "pos" column col <- c("#66C2A5", "#FC8D62") scales <- list(y=list(tck=c(1,0)), x=list(rot=45, tck=c(1,0), tick.number=20)) cv <- if (!ignore.strand(x)) xyplot(data ~ pos, data=sp, group=sp$group, col=col, scales=scales) else xyplot(data ~ pos, data=sp, col=col[1], scales=scales) cv <- update(cv, type="s", ylab="Coverage", xlab="Coordinate", panel=function(...) { panel.xyplot(...) panel.grid(h=-1, v=20) panel.abline(a=0, b=0, col="grey") }) if (!is.null(annTrack(x))) { ud <- .update_viewer(x, cv) if (!is.null(ud)) cv <- ud } SpTrellis(trellis=cv) } .multicoverage_viewer <- function(x, ...) { ## x: a Snapshot instance sp <- .getData(x) #x$.data lv <- length(levels(sp$group))/2 lty <- rep(seq_len(lv), times=2) col <- c("#FC8D62", "#66C2A5") #col <- c(rep("#FC8D62", lv) , rep("#66C2A5", lv)) scales <- list(y=list(tck=c(1,0)), x=list(rot=45, tck=c(1,0), tick.number=20)) cv <- if (ignore.strand(x)) xyplot(data ~ pos | levels, data=sp, col=col[2], scales=scales) else xyplot(data ~ pos | levels, data=sp, group=sp$group, col=col, scales=scales) cv <- update(cv, type="s", ylab="Coverage", xlab="Coordinate", layout=c(1, length(levels(factor(sp$levels)))), #key=list(space="top", column=2, cex=0.8, # lines=list(lty=lty, col=col), # text=list(levels(sp$group))), panel=function(...) { panel.xyplot(...) panel.grid(h=-1, v=20) panel.abline(a=0, b=0, col="grey") }) if (!is.null(annTrack(x))) { ud <- .update_viewer(x, cv) if (!is.null(ud)) cv <- ud } SpTrellis(trellis=cv) } ### default annotation track viewer .fine_annviewer <- function(gr, ignore.strand) { ## how to get the window x <- start(gr) x1 <- end(gr) xm <- (x+x1)/2 y <- rep(c(-1.4, -0.7, 0, 0.7, 1.4), length.out=length(x)) col <- c("#66C2A5", "#FC8D62") myCol <- if (ignore.strand) col[1] else col[as.numeric(strand(gr)@values)] mypanel <- function(x,y, genenames, x1, ...) { panel.xyplot(x,y, ..., col="transparent") ltext(x=xm, y=y, genenames, cex=0.45, pos=3) lsegments(x0=x, y0=y, x1=x1, y1=y, col=myCol, alpha=0.5) } ann <- xyplot(y ~ x, genenames=as.character(values(gr)[[1]]), x1=x1, xm=xm, panel=mypanel, xlab=NULL, ylab=NULL, scales=list(y=list(tick.number=0, labels=NULL)), par.settings= list(axis.text=list(alpha=0.5), axis.line=list(alpha=0.5)) ) ann$y.limits[2] = 2.1 ann } .coarse_annviewer <- function(gr, rng, ignore.strand) { ## gr: GRanges for tracks ## rng: range of an Snapshot instance col <- c("#66C2A5", "#FC8D62") nbins=5000L interval <- seq.int(start(rng), end(rng), length.out=nbins) l <- length(interval) ir <- IRanges(start=interval[1:(l-1)], end=interval[2:l]) scales <- list(y=list(alternating=2, tick.number=3,tck=c(0,1)), x=list(tck=c(0,0), labels=NULL)) annview <- if (!ignore.strand) { lst <- list("+" = countOverlaps(ir, ranges(gr[strand(gr)=="+"])), "-" = countOverlaps(ir, ranges(gr[strand(gr)=="-"]))) snames <- c("positive", "negative") group <- factor(rep(snames, each=length(lst[[1]])), levels=snames) cvg <- data.frame(data=c(lst[["+"]], -lst[["-"]]), group=group, pos = (start(ir)+end(ir))/2) xyplot(data ~ pos, data=cvg, groups=group, col=col, scales=scales) } else { lst <- countOverlaps(ir, ranges(gr)) cvg <- data.frame(data=lst, pos=(start(ir)+end(ir))/2) xyplot(data ~ pos, data=cvg, col=col[1], scales=scales) } update(annview, type="h", xlab=NULL, ylab=NULL, par.settings=list(axis.text=list(alpha=0.5), axis.line=list(alpha=0.5))) } ShortRead/R/SnapshotFunction.R0000644000126300012640000000373112227066711017671 0ustar00biocbuildphs_compbioSnapshotFunction <- function(reader, viewer, limits, ...) { if (missing(limits) || length(limits) != 2) stop("limits must have length 2") if ((limits[2] - limits[1]) < 50) stop("limits[2] - limits[1] must be greater than 50 bps") new("SnapshotFunction", reader=reader, viewer=viewer, limits=as.integer(limits), ...) } reader <- function(x, ...) x@reader viewer <- function(x, ...) x@viewer limits <- function(x, ...) x@limits setMethod(show, "SnapshotFunction", function(object) { cat("class:", class(object), "\n") cat("reader:\n") print(head(reader(object))) cat("...\n\n") cat("viewer:\n") print(head(viewer(object))) cat("...\n\n") cat(sprintf("limits: min. %.0f to max. %.0f bps", limits(object)[1], limits(object)[2]), "\n") }) ## SnapshotFunctionList setMethod(SnapshotFunctionList, "ANY", function(...) { if (nargs()) stop("'SnapshotFunctionList' unknown argument type: ", class(..1)) new("SnapshotFunctionList") }) setMethod(SnapshotFunctionList, "SnapshotFunction", function(...) { funs <- list(...) if (is.null(names(funs)) || any(!nzchar(names(funs)))) stop("'SnapshotFunctionList' functions must be named") new("SnapshotFunctionList", listData=funs) }) .fine_coverage <- SnapshotFunction(reader=.fine_coverage_reader, viewer=.coverage_viewer, limits=c(50L, 10000L)) .coarse_coverage <- SnapshotFunction(reader=.coarse_coverage_reader, viewer=.coverage_viewer, limits=c(10000L,.Machine$integer.max)) .multifine_coverage <- SnapshotFunction(reader=.multifine_coverage_reader, viewer=.multicoverage_viewer, limits=c(50L, 10000L)) .multicoarse_coverage <- SnapshotFunction(reader=.multicoarse_coverage_reader, viewer=.multicoverage_viewer, limits=c(10000L,.Machine$integer.max)) ShortRead/R/SpTrellis.R0000644000126300012640000001322112227066711016300 0ustar00biocbuildphs_compbio.SpTrellis$methods( initialize=function(...) { 'initialize SpTrellis' callSuper(...) if (!is.null(.self$trellis)) .self$ini.orig.x.limits(.self$get.x.limits()) .self }, get.trellis = function() { 'get trellis object' .self$trellis }, view = function(window=NULL) { 'view trellis object (in a designated window)' margin=50 if (is.null(window)) .self$trellis else { if (window[2] < window[1]) { message("Invalid window") .self$trellis } else { if ((window[2] - window[1]) < margin) window[2] <- window[1] + margin xlim <- c(max(window[1], .self$trellis$orig.x.limits[1]), min(window[2], .self$trellis$orig.x.limits[2])) .self$trellis$x.limits <- xlim .self$trellis } } }, get.x.limits = function() { 'get x.limits of a trellis object' .self$trellis$x.limits }, get.y.limits = function() { 'get y.limits of a trellis object' .self$trellis$y.limits }, ini.orig.x.limits = function(xlim) { 'set orig.x.limigs of the trellis object' .self$trellis$orig.x.limits <- xlim invisible(xlim) }, set.x.limits = function(xlim) { 'set trellis object x.limits' if (xlim[1] < xlim[2]) stop("Invalid x-axis limits") else .self$trellis$x.limits <- xlim invisible(xlim) }, set.y.limits = function(ylim) { 'set trellis object .limits' if (ylim[1] < ylim[2]) stop("Invalid x-axis limits") else .self$trellis$y.limits <- ylim invisible(ylim) }, .debug = function(fmt, ...) { if (.self$.debug_enabled) message(sprintf("'.SpTrellis' %s", sprintf(fmt, ...))) }, restore = function() { trellis$x.limits <<- trellis$orig.x.limits print(trellis) }, zo = function(by=NULL) { 'zoom out' center <- mean(.self$trellis$x.limits) width <- (.self$trellis$x.limits[2]-.self$trellis$x.limits[1]) xlim <- c(center - width, center + width) xlim[1] <- max(.self$trellis$orig.x.limits[1], xlim[1]) xlim[2] <- min(.self$trellis$orig.x.limits[2], xlim[2]) .self$trellis$x.limits <- xlim .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, zi = function(by) { 'zoom in 50%, change x.limits' center <- mean(.self$trellis$x.limits) width <- (.self$trellis$x.limits[2] - .self$trellis$x.limits[1])/2 if (width > 1) xlim <- c(center - width/2, center + width/2) else xlim <- .self$trellis$x.limits .self$trellis$x.limits <- xlim .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, left = function(by) { 'shift x.limits 80% to the left' margin <- 50 #if (is.missing(by)) ## 80% to the left by <- 0.8 * (.self$trellis$x.limits[2] - .self$trellis$x.limits[1]) .debug("shift left for %.0f bps", by) .self$trellis$x.limits[1] <- max(.self$trellis$x.limits[1] - by, .self$trellis$orig.x.limits[1]) .self$trellis$x.limits[2] <- max(.self$trellis$x.limits[2] - by, .self$trellis$orig.x.limits[1] + margin) .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, right = function(by=NULL) { 'shift x.limits 80% to the right' margin <- 50 #pbs #if (is.null(by)) ## 80% to the left by <- 0.8 * (.self$trellis$x.limits[2] - .self$trellis$x.limits[1]) .debug("shift right for %s bps", by) .self$trellis$x.limits[1] <- min(.self$trellis$x.limits[1] + by, .self$trellis$orig.x.limits[2] - margin) .self$trellis$x.limits[2] <- min(.self$trellis$x.limits[2] + by, .self$trellis$orig.x.limits[2]) .debug("current x limits [%.0f, %.0f]", .self$get.x.limits()[1], .self$get.x.limits()[2]) invisible() }, restore = function() { .self$trellis$x.limits <- .self$trellis$orig.x.limits invisible() }, display = function() { print(.self$trellis) } ) SpTrellis <- function(trellis, debug_enabled=FALSE) { .SpTrellis$new(trellis = trellis, .debug_enabled=debug_enabled) } setMethod(update, "SpTrellis", function(object, ...) { tr <- update(object$trellis, ...) SpTrellis(tr) }) setMethod(show, "SpTrellis", function(object) { cat("class:", class(object), "\n") with(object, { cat("region:", trellis$orig.x.limits, "\n") cat("viewing window:", get.x.limits(),"\n") }) object$display() }) setMethod(zi, "SpTrellis", function(x, by=5) { x$zi(by) x$display() }) setMethod(zo, "SpTrellis", function(x, by=5) { x$zo(by) x$display() }) setMethod(right, "SpTrellis", function(x, by=5) { x$right(by) x$display() }) setMethod(left, "SpTrellis", function(x, by=5) { x$left(by) x$display() }) setMethod(restore, "SpTrellis", function(x) { x$restore() x$display() }) ShortRead/R/filterFastq.R0000644000126300012640000000314512227066711016647 0ustar00biocbuildphs_compbio.filterFastq_check_fnames <- function(files, destinations) { if (missing('destinations')) stop("'destinations' missing") if (length(files) != length(destinations)) stop("'files' and 'destinations' must have same length") if (any(exists <- file.exists(destinations))) stop("'destinations' exist:\n ", paste(destinations[exists], collapse="\n ")) } .filter1 <- function(filter, file, destination, ..., yieldSize) { strm <- FastqStreamer(file, yieldSize) on.exit(close(strm)) tot <- tot1 <- nNuc <- nNuc1 <- 0L while (length(fq <- yield(strm))) { tot <- tot + length(fq) nNuc <- nNuc + sum(width(fq)) fq <- if (is(filter, "FilterRules")) { subsetByFilter(fq, filter) } else filter(fq, ...) tot1 <- tot1 + length(fq) nNuc1 <- nNuc1 + sum(width(fq)) writeFastq(fq, destination, "a") } attr(destination, "filter") <- data.frame(Reads=tot, KeptReads=tot1, Nucl=nNuc, KeptNucl=nNuc1) destination } filterFastq <- function(files, destinations, ..., filter=FilterRules(), yieldSize=1000000L) { if (missing(filter)) warning("'filterFastq' invoked with missing 'filter'") .filterFastq_check_fnames(files, destinations) ## FIXME parallel over files, esp. random numbers x <- Map(.filter1, files, destinations, MoreArgs=list(filter=filter, ..., yieldSize=yieldSize)) stats <- do.call(rbind, lapply(x, attr, "filter")) rownames(stats) <- make.unique(basename(files)) attr(destinations, "filter") <- stats destinations } ShortRead/R/methods-.QA.R0000644000126300012640000000256712227066711016412 0ustar00biocbuildphs_compbiosetMethod(rbind, ".QA", function(..., deparse.level=NA) { lst <- list(...) if (length(unique(sapply(lst, class))) != 1) .throw(SRError("UserArgumentMismatch", "rbind,.QA-method '...' arguments must all be the same class")) f <- function(nm, lst) { elts <- lapply(lst, "[[", nm) if (class(elts[[1]]) == "list") { nms <- names(elts[[1]]) l <- lapply(nms, f, elts) names(l) <- nms l } else { do.call(rbind, unname(elts)) } } nms <- names(.srlist(lst[[1]])) l <- sapply(nms, f, lst, simplify=FALSE) names(l) <- nms new(class(lst[[1]]), .srlist=l) }) setMethod(show, ".QA", function(object) { callNextMethod() .dims <- function(elt) { switch(class(elt), matrix=, data.frame=paste(dim(elt), collapse=" "), length(elt)) } .names <- function(lst, depth=0) { nms <- names(lst) for (i in seq_along(lst)) { fmt <- paste("%", depth*2, "s%s: %s(%s)\n", sep="") cat(sprintf(fmt, "", nms[i], class(lst[[i]]), .dims(lst[[i]]))) if (is.list(lst[[i]]) && !is.data.frame(lst[[i]])) .names(lst[[i]], depth=depth+1) } } cat("QA elements (access with qa[[\"elt\"]]):\n") .names(.srlist(object), depth=1) }) ShortRead/R/methods-.ShortReadBase.R0000644000126300012640000000114112227066711020562 0ustar00biocbuildphs_compbiosetMethod(append, c(".ShortReadBase", ".ShortReadBase"), function(x, values, after=length(x)) { .throw(SRError("UserArgumentMismatch", "'%s' methods not defined for classes '%s', '%s'", "append", class(x), class(values))) }) setMethod(show, signature=signature(object=".ShortReadBase"), function(object) { cat("class: ", class(object), "\n", sep="") }) setMethod(detail, signature=signature(x=".ShortReadBase"), function(x, ...) { cat("class: ", class(x), "\n", sep="") }) ShortRead/R/methods-AlignedDataFrame.R0000644000126300012640000000126412227066711021134 0ustar00biocbuildphs_compbioAlignedDataFrame <- function(data, metadata, nrow=nrow(data)) { if (missing(data)) { data <- data.frame(rep(0L, nrow))[,FALSE] metadata <- data.frame(labelDescription=character(0)) } new("AlignedDataFrame", data=data, varMetadata=metadata) } setMethod(append, c("AlignedDataFrame", "AlignedDataFrame"), function(x, values, after=length(x)) { if (!identical(varMetadata(x), varMetadata(values))) { .throw(SRError("IncompatibleTypes", "'%s' and '%s' have different '%s'", "x", "values", "varMetadata")) } new(class(x), data=rbind(pData(x), pData(values)), varMetadata=varMetadata(x)) }) ShortRead/R/methods-AlignedRead.R0000644000126300012640000002776712227066711020203 0ustar00biocbuildphs_compbio### .AlignedRead_validity <- function(object) { msg <- NULL len <- length(sread(object)) slts <- c("chromosome", "position", "strand", "alignQuality") olen <- c(length(chromosome(object)), length(position(object)), length(strand(object)), length(alignQuality(object))) if (!all(olen==len)) { bad <- olen!=len msg <- c(msg, sprintf("length mismatch: expected %d, found:\n %s", len, paste(slts[bad], olen[bad], sep="=", collapse=", "))) } if (is.null(msg)) TRUE else msg } setMethod(.srValidity, "AlignedRead", .AlignedRead_validity) .AlignedRead_QualityConstructor <- function(sread) { if (length(sread) > 0) unlist(lapply(width(sread), polyn, nucleotides="!")) else character(0) } AlignedRead <- function(sread = DNAStringSet(character(0)), id = BStringSet(character(length(sread))), quality = FastqQuality( .AlignedRead_QualityConstructor(sread)), chromosome = factor(rep(NA, length(sread))), position = rep(NA_integer_, length(sread)), strand = factor(rep(NA_integer_, length(sread)), levels=.STRAND_LEVELS), alignQuality = NumericQuality( rep(NA_real_, length(sread))), alignData = AlignedDataFrame( nrow=length(sread))) { new("AlignedRead", sread=sread, id=id, quality=quality, chromosome=as.factor(chromosome), position=position, strand=strand, alignQuality=alignQuality, alignData=alignData) } .make_getter(c("alignQuality", "alignData")) setMethod(chromosome, "AlignedRead", function(object, ...) slot(object, "chromosome")) setMethod(position, "AlignedRead", function(object, ...) slot(object, "position")) setMethod(strand, "AlignedRead", function(x) slot(x, "strand")) ## coerce setAs("PairwiseAlignments", "AlignedRead", function(from, to) { pat <- pattern(from) quality <- character() if (is(pat, "QualityAlignedXStringSet")) quality <- quality(pat) new("AlignedRead", sread = unaligned(pat), id = names(pat), quality = FastqQuality(quality), position = start(Views(pat)), alignQuality = IntegerQuality(score(from))) }) setAs("AlignedRead", "RangesList", function(from) { chr <- chromosome(from) pos <- position(from) wd <- width(from) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd)) split(IRanges(start=pos[notNA], width=wd[notNA]), chr[notNA]) }) setAs("AlignedRead", "RangedData", function(from) { chr <- chromosome(from) pos <- position(from) wd <- width(from) std <- strand(from) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd) | is.na(std)) GRanges(IRanges(pos[notNA], width=wd[notNA]), space = chr[notNA], id = id(from)[notNA], strand = std[notNA], pData(alignData(from))[notNA,,drop=FALSE]) }) setAs("AlignedRead", "GRanges", function(from) { chr <- chromosome(from) pos <- position(from) wd <- width(from) std <- strand(from) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd) | is.na(std)) GRanges(chr[notNA], IRanges(pos[notNA], width=wd[notNA]), std[notNA], id = id(from)[notNA], pData(alignData(from))[notNA,,drop=FALSE]) }) setAs("AlignedRead", "GappedReads", function(from) { if (length(from) == 0L) cigar <- character(0) else cigar <- paste(width(from), "M", sep="") GappedReads(seqnames=chromosome(from), pos=position(from), cigar=cigar, strand=strand(from), names=id(from), qseq=sread(from)) }) setAs("AlignedRead", "GAlignments", function(from) { as(as(from, "GappedReads"), "GAlignments") }) ## subset setMethod("[", c("AlignedRead", "missing", "missing"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("AlignedRead", "missing", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("AlignedRead", "ANY", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) .AlignedRead_subset <- function(x, i, j, ..., drop=TRUE) { if (0L != length(list(...))) .subset_err() initialize(x, sread=sread(x)[i], id=id(x)[i], quality=quality(x)[i], chromosome=factor(chromosome(x)[i]), position=position(x)[i], strand=strand(x)[i], alignQuality=alignQuality(x)[i], alignData=alignData(x)[i,]) } setMethod("[", c("AlignedRead", "ANY", "missing"), .AlignedRead_subset) setMethod(append, c("AlignedRead", "AlignedRead"), function(x, values, after=length(x)) { initialize(x, chromosome=.append.factor(chromosome(x), chromosome(values)), position=append(position(x), position(values)), strand=.append.factor(strand(x), strand(values)), alignQuality=append(alignQuality(x), alignQuality(values)), alignData=append(alignData(x), alignData(values)), quality=append(quality(x), quality(values)), sread=append(sread(x), sread(values)), id=append(id(x), id(values))) }) ## match, %in% setMethod("%in%", c("AlignedRead", "RangesList"), function(x, table) { ## could use as(x, "RangesList"), but the assumptions here (about ## the definition of notNA, and about split() preserving order) ## make this fragile enough as it is ## ## consider only sensible alignemnts chr <- chromosome(x) pos <- position(x) wd <- width(x) notNA <- !(is.na(chr) | is.na(pos) | is.na(wd)) chr <- chr[notNA] ## find overlap rl <- split(IRanges(start=pos[notNA], width=wd[notNA]), chr) olap <- rl %in% table ## map to original indicies len <- seq_len(length(x)) idx <- unlist(split(len[notNA], chr), use.names=FALSE) len %in% idx[unlist(olap)] }) ## srorder, etc; srsort picked up by generic setMethod(srorder, "AlignedRead", function(x, ..., withSread=TRUE) { if (withSread) order(chromosome(x), strand(x), position(x), srorder(sread(x))) else order(chromosome(x), strand(x), position(x)) }) setMethod(srrank, "AlignedRead", function(x, ..., withSread=TRUE) { .check_type_and_length(withSread, "logical", 1) if (is.na(withSread)) .throw(SRError("UserArgumentMismatch", "'%s' must not be NA", "withSread")) o <- srorder(x) .Call(.aligned_read_rank, x, o, withSread, environment()) }) setMethod(srduplicated, "AlignedRead", function(x, ..., withSread=TRUE) { duplicated(srrank(x, ..., withSread=withSread)) }) ## coverage setMethod(coverage, "AlignedRead", function(x, shift=0L, width=NULL, weight=1L, ..., coords=c("leftmost", "fiveprime"), extend=0L) { ## Argument checking: if(all(is.na(chromosome(x)) == TRUE)) { .throw(SRError("UserArgumentMismatch", "chromosome names are all 'NA' see %s", '?"AlignedRead-class"')) } chrlvls <- levels(chromosome(x)) if (!identical(shift, 0L)) { if (!is.numeric(shift)) { .throw(SRError("UserArgumentMismatch", "if '%s' is not 0L, then it must be a vector of integer values\n see %s", "shift", '?"AlignedRead-class"')) } if (!all(chrlvls %in% names(shift))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') mismatch with 'levels(chromosome(x))'\n see %s", "shift", "start", '?"AlignedRead-class"')) } if (any(duplicated(names(shift)))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') have duplicates\n see %s", "shift", "start", '?"AlignedRead-class"')) } } if (!is.null(width)) { if (!is.numeric(width)) { .throw(SRError("UserArgumentMismatch", "if '%s' is not NULL, then it must be a vector of integer values\n see %s", "width", '?"AlignedRead-class"')) } if (!all(chrlvls %in% names(width))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') mismatch with 'levels(chromosome(x))'\n see %s", "width", "end", '?"AlignedRead-class"')) } if (any(duplicated(names(width)))) { .throw(SRError("UserArgumentMismatch", "'names(%s)' (or 'names(%s)') have duplicates\n see %s", "width", "end", '?"AlignedRead-class"')) } } if (!identical(weight, 1L)) { .throw(SRError("UserArgumentMismatch", "weighting the reads is not supported yet, sorry\n see %s", '?"AlignedRead-class"')) } tryCatch(coords <- match.arg(coords), error=function(err) { vals <- formals(sys.function(sys.parent(4)))[["cvg"]] .throw(SRError("UserArgumentMismatch", "'%s' must be one of '%s'\n see %s", "coords", paste(eval(vals), collapse="' '"), '?"AlignedRead-class"')) }) if (!is.integer(extend) || !(length(extend) == 1 || length(extend) == length(x))) { .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "extend", "integer(n)', n == 1 or length(x)")) } ## end of argument checking. if (coords == "leftmost") { rstart <- position(x) - ifelse(strand(x) == "+", 0L, extend) rend <- position(x) + width(x) - 1L + ifelse(strand(x) == "+", extend, 0L) } else { rstart <- position(x) - ifelse(strand(x) == "+", 0L, width(x) + extend - 1L) rend <- position(x) + ifelse(strand(x) == "+", width(x) + extend - 1L, 0L) } cvg <- RleList(lapply(structure(chrlvls, names = chrlvls), function(chr, ...) { idx <- chromosome(x) == chr chr_rstart <- rstart[idx] chr_rend <- rend[idx] if (identical(shift, 0L)) chr_shift <- 0L else chr_shift <- shift[chr] if (is.null(width)) chr_width <- NULL else chr_width <- width[chr] coverage(IRanges(chr_rstart, chr_rend), shift=chr_shift, width=chr_width, ...) }, ...), compress = FALSE) metadata(cvg) <- list(method="coverage,AlignedRead-method", coords=coords, extend=extend) cvg }) ## show setMethod(show, "AlignedRead", function(object) { callNextMethod() cat("chromosome:", selectSome(chromosome(object)), "\n") cat("position:", selectSome(position(object)), "\n") cat("strand:", selectSome(strand(object)), "\n") cat("alignQuality:", class(alignQuality(object)), "\n") cat("alignData varLabels:", selectSome(varLabels(alignData(object))), "\n") }) setMethod(detail, "AlignedRead", function(x, ...) { callNextMethod() cat("\nchromosome:", selectSome(chromosome(x)), "\n") cat("position:", selectSome(position(x)), "\n") cat("strand:", selectSome(strand(x)), "\n") cat("alignQuality:\n") detail(alignQuality(x)) cat("\nalignData:\n") show(alignData(x)) }) ## summary ## perhaps summary statistics like ShortReadQ except broken down by chromosome, ## strand, and their combination ShortRead/R/methods-BAMQA.R0000644000126300012640000000747212227066711016654 0ustar00biocbuildphs_compbio.BAMQA <- function(x, ...) { new("BAMQA", .srlist=x, ...) } .qa_BAM_lane <- function(dirPath, ..., verbose=FALSE) { if (verbose) message("qa 'BAM' dirPath:", dirPath) rpt <- readAligned(dirPath, type="BAM", ...) fileName <- basename(dirPath) doc <- .qa_depthOfCoverage(rpt, fileName) res <- .srlist(qa(rpt, fileName, ..., verbose=verbose)) flag <- alignData(rpt)[["flag"]] res[["readCounts"]][,c("filter", "aligned")] <- c(sum(!bamFlagTest(flag, "isNotPassingQualityControls")), sum(!bamFlagTest(flag, "isUnmappedQuery"))) c(res, list(depthOfCoverage=doc)) } .qa_BAM <- function(dirPath, pattern, type="BAM", ..., param=ScanBamParam(simpleCigar=TRUE, reverseComplement=TRUE, what=.readAligned_bamWhat(FALSE))) { fls <- .file_names(dirPath, pattern) lst <- srapply(fls, .qa_BAM_lane, ..., param=param, reduce=.reduce(1)) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination") ) .BAMQA(lst) } .report_html_BAMQA <- function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=.html_NA(), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0) ) .report_html_do(dest, sections, values, ...) } setMethod(report_html, "BAMQA", .report_html_BAMQA) ShortRead/R/methods-BowtieQA.R0000644000126300012640000001603212227066711017476 0ustar00biocbuildphs_compbio.BowtieQA <- function(x, ...) { new("BowtieQA", .srlist=x, ...) } .qa_Bowtie_lane <- function(dirPath, pattern, ..., type="Bowtie", verbose=FALSE) { if (verbose) message("qa 'Bowtie' pattern:", pattern) rpt <- readAligned(dirPath, pattern, type, ...) doc <- .qa_depthOfCoverage(rpt, pattern) ac <- .qa_adapterContamination(rpt, pattern, ...) alf <- .qa_alphabetFrequency(sread(rpt), baseOnly=TRUE, collapse=TRUE) bqtbl <- .qa_alphabetFrequency(quality(rpt), collapse=TRUE) rqs <- .qa_qdensity(quality(rpt)) freqtbl <- tables(sread(rpt)) abc <- alphabetByCycle(rpt) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality(abc, quality(rpt), pattern) aqtbl <- table(quality(alignQuality(rpt)), useNA="always") list(readCounts=data.frame( read=NA, filter=NA, aligned=length(rpt), row.names=pattern), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=pattern), readQualityScore=data.frame( quality=rqs$x, density=rqs$y, lane=pattern, type="aligned"), baseQuality=data.frame( score=names(bqtbl), count=as.vector(bqtbl), lane=pattern), alignQuality=data.frame( score=as.numeric(names(aqtbl)), count=as.vector(aqtbl), lane=pattern, row.names=NULL), frequentSequences=data.frame( sequence=names(freqtbl$top), count=as.integer(freqtbl$top), type="aligned", lane=pattern, row.names=NULL), sequenceDistribution=cbind( freqtbl$distribution, type="aligned", lane=pattern), perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer())), depthOfCoverage=doc, adapterContamination=ac ) } .qa_Bowtie <- function(dirPath, pattern, type="Bowtie", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- srapply(basename(fls), .qa_Bowtie_lane, dirPath=dirPath, type=type, ..., reduce=.reduce(1), verbose=verbose, USE.NAMES=TRUE) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination") ) .BowtieQA(lst) } setMethod(report_html, "BowtieQA", function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa, "aligned"), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa, "aligned"), FREQUENT_SEQUENCES_READ=.html_NA(), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0) ) .report_html_do(dest, sections, values, ...) }) setGeneric(".bowtie_mismatches", function(object, ...) standardGeneric(".bowtie_mismatches")) setMethod(.bowtie_mismatches, "AlignedRead", function(object, ...) { adata <- alignData(object) if (!"mismatch" %in% varLabels(adata)) .throw(SRError("UserArgumentMismatch", "'%s' does not contain varLabels '%s'", "AlignedDataFrame", "mismatch")) if (any(c("nmismatch", "mismatchScore") %in% varLabels(adata))) .throw(SRError("UserArgumentMismatch", "'%s' already contains varLabels '%s'", "AlignedDataFrame", "nmismatch', 'mismatchScore'")) mmatch <- adata[["mismatch"]] idx <- which(nzchar(mmatch)) if (any(grepl(":", mmatch, fixed=TRUE))) { anuc <- lapply(strsplit(mmatch[idx], "[:,]"), "[", c(TRUE, FALSE)) cidx <- unlist(lapply(anuc, as.integer)) + 1L } else { anuc <- lapply(strsplit(mmatch[idx], ",", fixed=TRUE), as.integer) cidx <- unlist(anuc) + 1L } len <- sapply(anuc, length) ridx <- rep(idx, len) x <- as(narrow(quality(object)[ridx], cidx, cidx), "matrix") mmscore <- rep(NA_integer_, nrow(adata)) mmscore[idx] <- unlist(lapply(split(x, ridx), sum), use.names=FALSE) lngth <- integer(nrow(adata)) lngth[idx] <- len txt <- "Number of mismatches" adata[["nmismatch", labelDescription=txt]] <- lngth txt <- "Summed quality scores at mismatched nucleotides" adata[["mismatchScore", labelDescription=txt]] <- mmscore initialize(object, alignData=adata) }) ShortRead/R/methods-ExperimentPath.R0000644000126300012640000000402312227066711020755 0ustar00biocbuildphs_compbiosetMethod(.srValidity, "ExperimentPath", function(object) { msg <- NULL if (length(experimentPath(object))!=1) msg <- c(msg, "ExperimentPath 'experimentPath' must be character(1)") if (is.null(msg)) TRUE else msg }) .srPath <- function(path, pattern = character()) { path <- path.expand(path) tryCatch({ res <- list.files(path, pattern=pattern, full.names=TRUE) if (length(res)==0) NA_character_ else res }, warning=function(warn) NA_character_) } .checkPath <- function(path) { nm <- deparse(substitute(path)) if (length(path)==0) { warning(nm, " not defined") } else { for (p in path) if (!file.exists(p)) warning(nm, " '", p, "' does not exist") } } ExperimentPath <- function(experimentPath=NA_character_, ...) { new("ExperimentPath", basePath=experimentPath, ...) } basePath <- function(object, ...) { .Defunct("experimentPath") } setMethod(sampleNames, "ExperimentPath", function(object) { character(0) }) .show_additionalPathSlots <- function(object) { # for derived classes catPath <- function(nm) { vals <- do.call(nm, list(object)) vals <- substr(basename(vals), 1, 15) vals <- paste(vals, ifelse(nchar(vals)==15, "...", ""), sep="") cat(nm, ": ", paste(vals, collapse=", "), "\n", sep="") } slts <- slotNames(object) for (slt in slts[slts!="basePath"]) catPath(slt) } setMethod(show, "ExperimentPath", function(object) { callNextMethod() cat("experimentPath: ", experimentPath(object), "\n", sep="") }) .detail_additionalPathSlots <- function(object) { catPath <- function(nm) { fnms <- do.call(nm, list(object)) cat(nm, ":\n ", paste(fnms, collapse="\n "), sep="") cat("\n") } slts <- slotNames(object) for (slt in slts[slts!="basePath"]) catPath(slt) } setMethod(detail, "ExperimentPath", function(x, ...) { callNextMethod() cat("experimentPath:\n ", experimentPath(x), "\n", sep="") }) ShortRead/R/methods-FastqFile.R0000644000126300012640000000167512227066711017710 0ustar00biocbuildphs_compbioFastqFile <- function(con, ...) { .ShortReadFile(.FastqFile_g, con, ...) } setMethod(readFastq, "FastqFile", function(dirPath, pattern=character(), ...) { if (length(pattern) != 0) .throw(SRWarn("UserArgumentMismatch", "'pattern' ignored for '%s'", "readFastq,FastqFile-method")) callGeneric(path(dirPath), ...) }) setMethod(writeFastq, c("ShortReadQ", "FastqFile"), function(object, file, mode="w", full=FALSE, ...) { if (missing(mode)) tryCatch(mode <- summary(file$con)$mode, error=function(...) NULL) callGeneric(object, path(file), mode=mode, full=full, ...) }) setMethod(FastqFileList, "ANY", function(..., class="FastqFile") { Rsamtools:::.RsamtoolsFileList(..., class=class) }) setMethod(FastqFileList, "character", function(..., class="FastqFile") { fls <- lapply(..1, FastqFile) FastqFileList(fls, class=class) }) ShortRead/R/methods-FastqFileReader.R0000644000126300012640000000027012227066711021021 0ustar00biocbuildphs_compbio.binReader <- function(con, n) ## read 'n' bytes from 'con', returning raw() { readBin(con, raw(), n) } setMethod(yield, "FastqFileReader", function(x, ...) x$yield(...)) ShortRead/R/methods-FastqQA.R0000644000126300012640000001175412227066711017331 0ustar00biocbuildphs_compbio.ShortReadQQA <- function(x, ...) { new("ShortReadQQA", .srlist=x, ...) } .FastqQA <- function(x, ...) { new("FastqQA", .srlist=x, ...) } .qa_ShortReadQ <- function(dirPath, lane, ..., verbose=FALSE) { if (missing(lane)) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "lane", "character(1)")) obj <- dirPath alf <- .qa_alphabetFrequency(sread(obj), baseOnly=TRUE, collapse=TRUE) bqtbl <- .qa_alphabetFrequency(quality(obj), collapse=TRUE) rqs <- .qa_qdensity(quality(obj)) freqtbl <- tables(sread(obj)) abc <- alphabetByCycle(obj) ac <- .qa_adapterContamination(obj, lane, ...) perCycleBaseCall <- .qa_perCycleBaseCall(abc, lane) perCycleQuality <- .qa_perCycleQuality(abc, quality(obj), lane) lst <- list(readCounts=data.frame( read=length(obj), filter=NA, aligned=NA, row.names=lane), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=lane), readQualityScore=data.frame( quality=rqs$x, density=rqs$y, lane=lane, type="read"), baseQuality=data.frame( score=names(bqtbl), count=as.vector(bqtbl), lane=lane), alignQuality=data.frame( score=as.numeric(NA), count=as.numeric(NA), lane=lane, row.names=NULL), frequentSequences=data.frame( sequence=names(freqtbl$top), count=as.integer(freqtbl$top), type="read", lane=lane), sequenceDistribution=cbind( freqtbl$distribution, type="read", lane=lane), perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer(), row.names=NULL)), adapterContamination=ac ) .ShortReadQQA(lst) } setMethod(qa, "ShortReadQ", .qa_ShortReadQ) .qa_fastq_lane <- function(dirPath, pattern, ..., sample=TRUE, type="fastq", verbose=FALSE) { if (verbose) message("qa 'fastq' pattern:", pattern) if (sample) { samp <- FastqSampler(file.path(dirPath, pattern), ...) qa <- qa(yield(samp), pattern, ..., verbose=verbose) close(samp) elts <- .srlist(qa) elts$readCounts$read <- samp$status()[["total"]] initialize(qa, .srlist=elts) } else { fq <-readFastq(dirPath, pattern, ...) qa(fq, pattern, ..., verbose=verbose) } } .qa_fastq <- function(dirPath, pattern, type="fastq", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- srapply(basename(fls), .qa_fastq_lane, dirPath=dirPath, type=type, ..., reduce=.reduce(1), verbose=verbose, USE.NAMES=TRUE) lst <- do.call(rbind, lst) .FastqQA(.srlist(lst)) # re-cast } .report_html_ShortReadQA <- # or FastqQA function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=.html_NA(), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0) ) .report_html_do(dest, sections, values, ...) } setMethod(report_html, "ShortReadQQA", .report_html_ShortReadQA) setMethod(report_html, "FastqQA", .report_html_ShortReadQA) ShortRead/R/methods-FastqSampler.R0000644000126300012640000000536412227066711020433 0ustar00biocbuildphs_compbio.FastqSampler_g$methods( reset = function() { "reopen the connection" if (verbose) msg("FastqSampler$reset()") if (isOpen(con)) { if (verbose) msg("FastqSamper$reset() re-open") s <- summary(con) class <- s$class desc <- s$description close(con) con <<- do.call(s$class, list(desc, "rb")) } else { open(con, "rb") } .self }, status = function(update=FALSE) { "report status of FastqSampler" if (update || !length(.status)) .status <<- .Call(.sampler_status, sampler) .status }, yield = function(...) { "read and sample all records in a connection" if (verbose) msg("FastqSampler$yield()") reset() while (length(bin <- reader(con, readerBlockSize))) { if (verbose) { status(update=TRUE) msg("FastqSampler$yield() reader") } .Call(.sampler_add, sampler, bin) } if (status(update=TRUE)["buffer"]) .throw(SRWarn("IncompleteFinalRecord", "FastqSampler yield() incomplete final record:\n %s", summary(con)$description)) if (verbose) msg("FastqSampler$yield() XStringSet") elts <- .Call(.sampler_as_XStringSet, sampler, ordered) if (verbose) msg("FastqSampler$yield() ShortReadQ") ShortReadQ(elts[["sread"]], elts[["quality"]], elts[["id"]], ...) }, show = function() { callSuper() cat("ordered:", ordered, "\n") }) FastqSampler <- function(con, n = 1e6, readerBlockSize=1e8, verbose=FALSE, ordered=FALSE) { if (length(n) != 1 || !is.finite(n) || n < 0) stop("'n' must be length 1, finite and >= 0") if (is.character(con)) { con <- file(con) open(con, "rb") } else if (is(con, "connection") && summary(con)$opened != "opened") open(con, "rb") sampler <- .Call(.sampler_new, as.integer(n)) .ShortReadFile(.FastqSampler_g, con, reader=.binReader, readerBlockSize=as.integer(readerBlockSize), sampler=sampler, verbose=verbose, ordered=ordered) } setMethod("FastqSamplerList", "ANY", function(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) { FastqFileList(..., class="FastqSampler") }) setMethod("FastqSamplerList", "character", function(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) { listData <- lapply(..1, FastqSampler, n=n, readerBlockSize=readerBlockSize, verbose=verbose, ordered=ordered) new("FastqSamplerList", listData=listData) }) ShortRead/R/methods-FastqStreamer.R0000644000126300012640000001017512227066711020606 0ustar00biocbuildphs_compbio.FastqStreamer_g$methods( add = function(bin) { if (verbose) { status(update=TRUE) msg("FastqStreamer$add()") } .Call(.streamer_add, sampler, bin, c(skips[ith], adds[ith])) status(update=TRUE) }, status = function(update=FALSE) { "report status of FastqSampler" if (update || !length(.status)) .status <<- .Call(.streamer_status, sampler) .status }, yield = function(...) { "read at most n records in a connection" if (verbose) msg("FastqStreamer$yield()") if (!recycle && ith == length(skips)) return (ShortReadQ()) ith <<- ith %% length(skips) + 1L status(update=TRUE) prevTot <- status()["total"] if (status()["current"] != adds[ith]) { ## use C scratch buffer if (verbose) msg("FastqStreamer$yield() reader") add(raw()) } while (0L != (adds[ith] - status()["current"])) { ## fill C buffer if (verbose) msg("FastqStreamer$yield() reader") bin <- reader(con, readerBlockSize) if (!length(bin)) { status(update=TRUE) if ((status()["current"] != status()["n"]) && (0L != status()["buffer"])) .throw(SRWarn("IncompleteFinalRecord", "FastqStreamer yield() incomplete final record:\n %s", summary(con)$description)) break } currTot <- status()["total"] skips[ith] <<- max(0L, skips[ith] - (currTot - prevTot)) prevTot <- currTot add(bin) } if (verbose) msg("FastqStreamer$yield() XStringSet") elts <- .Call(.streamer_as_XStringSet, sampler) if (verbose) msg("FastqStreamer$yield() ShortReadQ") ShortReadQ(elts[["sread"]], elts[["quality"]], elts[["id"]], ...) }) setMethod(FastqStreamer, c("ANY", "missing"), function(con, n, readerBlockSize=1e8, verbose=FALSE) { callGeneric(con, n=1e6, readerBlockSize=readerBlockSize, verbose=verbose) }) setMethod(FastqStreamer, c("ANY", "numeric"), function(con, n, readerBlockSize=1e8, verbose=FALSE) { n <- as.integer(n) if (length(n) != 1L || !is.finite(n) || n < 0L) stop("'n' must be length 1, finite and >= 0") if (is.character(con)) { con <- file(con) open(con, "rb") } else if (is(con, "connection") && summary(con)$opened != "opened") open(con, "rb") streamer <- .Call(.streamer_new, n) .ShortReadFile(.FastqStreamer_g, con, reader=.binReader, readerBlockSize=as.integer(readerBlockSize), skips = 0L, adds = n, ith = 0L, recycle=TRUE, sampler=streamer, verbose=verbose) }) setMethod(FastqStreamer, c("ANY", "IRanges"), function(con, n, readerBlockSize=1e8, verbose=FALSE) { if (is.character(con)) con <- file(con) open(con, "rb") skips <- start(n) - c(1L, end(n)[-length(n)] + 1L) if (any(skips < 0)) { close(con) msg <- "'n' must have all(start(n)[-1] > end(n)[-length(n)])" .throw(SRError("UserArgumentMismatch", msg)) } adds <- width(n) if (any(adds == 0)) { close(con) msg <- "'n' must have non-zero width()" .throw(SRError("UserArgumentMismatch", msg)) } streamer <- .Call(.streamer_new, max(adds)) .ShortReadFile(.FastqStreamer_g, con, reader=.binReader, readerBlockSize=as.integer(readerBlockSize), skips = skips, adds = adds, ith = 0L, recycle = FALSE, sampler=streamer, verbose=verbose) }) setMethod("FastqStreamerList", "ANY", function(..., n, readerBlockSize=1e8, verbose=FALSE) { FastqFileList(..., class="FastqStreamer") }) setMethod("FastqStreamerList", "character", function(..., n, readerBlockSize=1e8, verbose=FALSE) { listData <- lapply(..1, FastqStreamer, n=n, readerBlockSize=readerBlockSize, verbose=verbose) new("FastqStreamerList", listData=listData) }) ShortRead/R/methods-Intensity.R0000644000126300012640000000357512227066711020021 0ustar00biocbuildphs_compbio## IntensityMeasure setMethod(show, "IntensityMeasure", function(object) { callNextMethod() cat(" dim: ", dim(object), "\n") }) setMethod(get("["), c("IntensityMeasure", "ANY", "ANY", "ANY"), function(x, i, j, ..., drop=FALSE) { if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE initialize(x, x@.Data[i,j,...,drop=FALSE]) }) setMethod(get("[["), c("ArrayIntensity", "ANY", "ANY"), function(x, i, j, k, ...) { if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE if (missing(k)) k <- TRUE x@.Data[i,j,k] }) ## IntensityInfo ## Intensity setMethod(.srValidity, "Intensity", function(object) { msg <- NULL if (.hasMeasurementError(object) && !all(dim(intensity(object)) == dim(measurementError(object)))) { msg <- c(msg, "'intensity' and 'measurementError' dimensions differ") } if (nrow(readInfo(object)) != nrow(intensity(object))) { msg <- c(msg, "'intensity' and 'readInfo' read numbers differ") } if (is.null(msg)) TRUE else msg }) measurementError <- function(object, ...) { if (!.hasMeasurementError(object)) .throw(SRError("ValueUnavailable", "'%s' has no value '%s'", class(object), "nse")) slot(object, "measurementError") } local({ slts <- slotNames("Intensity") .make_getter(slts[slts!="measurementError"], verbose=TRUE) }) setMethod(dim, "Intensity", function(x) { dim(intensity(x)) }) setMethod(show, "Intensity", function(object) { callNextMethod() cat("dim:", dim(object), "\n") cat("readInfo:", class(readInfo(object)), "\n") cat("intensity:", class(intensity(object)), "\n") if (.hasMeasurementError(object)) { cat("measurementError:", class(measurementError(object)), "\n") } else { cat("measurementError: not available\n") } }) ShortRead/R/methods-MAQMapQA.R0000644000126300012640000001277212227066711017330 0ustar00biocbuildphs_compbio.MAQMapQA <- function(x, ...) { new("MAQMapQA", .srlist=x, ...) } .maq_reverse <- function(aln) { plus <- strand(aln) == "+" new("AlignedRead", append(aln[plus], aln[!plus]), sread=append( sread(aln)[plus], reverseComplement(sread(aln)[!plus])), quality=append( quality(aln)[plus], FastqQuality(reverse(quality(quality(aln)[!plus]))))) } .qa_MAQMap_lane <- function(dirPath, pattern, type, ..., verbose=FALSE) { if (verbose) message("qa '", type, "' pattern: ", pattern, sep="") rpt <- .maq_reverse(readAligned(dirPath, pattern, type, ...)) alf <- .qa_alphabetFrequency(sread(rpt), baseOnly=TRUE, collapse=TRUE) bqtbl <- .qa_alphabetFrequency(quality(rpt), collapse=TRUE) rqs <- .qa_qdensity(quality(rpt)) freqtbl <- tables(sread(rpt)) abc <- alphabetByCycle(rpt) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality(abc, quality(rpt), pattern) aqtbl <- table(quality(alignQuality(rpt))) list(readCounts=data.frame( read=NA, filter=NA, aligned=length(rpt), row.names=pattern), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=pattern), readQualityScore=data.frame( quality=rqs$x, density=rqs$y, lane=pattern, type="aligned", row.names=NULL), baseQuality=data.frame( score=names(bqtbl), count=as.vector(bqtbl), lane=pattern, row.names=NULL), alignQuality=data.frame( score=as.numeric(names(aqtbl)), count=as.vector(aqtbl), lane=pattern, row.names=NULL), frequentSequences=data.frame( sequence=names(freqtbl$top), count=as.integer(freqtbl$top), type="aligned", lane=pattern, row.names=NULL), sequenceDistribution=cbind( freqtbl$distribution, type="aligned", lane=pattern, row.names=NULL), perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer())) ) } .qa_MAQMap <- function(dirPath, pattern, type, ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- srapply(basename(fls), .qa_MAQMap_lane, dirPath=dirPath, type=type, ..., reduce=.reduce(1), verbose=verbose, USE.NAMES=TRUE) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) })) .MAQMapQA(lst) } setMethod(report_html, "MAQMapQA", function(x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "6000-Alignment.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa, "aligned"), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa, "aligned"), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=hwrite( .freqSequences(qa, "filtered"), border=0), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), ALIGN_QUALITY_FIGURE=.html_img( dest, "alignmentQuality", .plotAlignQuality(qa[["alignQuality"]])) ) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-Misc.R0000644000126300012640000002276612227066711016731 0ustar00biocbuildphs_compbio.abc_BStringSet <- function(stringSet, alphabet, ...) { if (missing(alphabet)) alphabet <- sapply(as.raw(1:255), rawToChar) callNextMethod(stringSet, alphabet=alphabet) } setMethod(clean, "DNAStringSet", function(object, ...) { object[alphabetFrequency(object, baseOnly=TRUE)[,'other']==0] }) setMethod(dustyScore, "DNAStringSet", function(x, batchSize=NA, ...) { doDusty <- function(tripletPDict, x) { tnf <- t(vcountPDict(tripletPDict, x)) - 1L tnf[tnf < 0] <- 0L rowSums(tnf * tnf) } triplets <- DNAStringSet(mkAllStrings(c("A", "C", "G", "T"), 3)) tripletPDict <- PDict(triplets) if (is.na(batchSize) || length(x) <= batchSize) return(doDusty(tripletPDict, x)) n <- as.integer(1L + length(x) / batchSize) i <- seq_len(length(x)) i <- split(i, cut(i, n, labels=FALSE)) unlist(unname(srapply(i, function(idx, tripletPDict, x, ...) { doDusty(tripletPDict, x[idx]) }, tripletPDict, x))) }) setMethod(alphabetByCycle, "BStringSet", .abc_BStringSet) setMethod(srorder, "XStringSet", function(x, ...) { if (length(list(...))!=0) .throw(SRError("UserArgumentMismatch", "argument '%s' not supported", names(list(...)))) .Call(.alphabet_order, x) }) setMethod(srrank, "XStringSet", function(x, ...) { if (length(list(...))!=0) .throw(SRError("UserArgumentMismatch", "argument '%s' not supported", names(list(...)))) .Call(.alphabet_rank, x) }) setMethod(srsort, "XStringSet", function(x, ...) x[srorder(x, ...)]) setMethod(srduplicated, "XStringSet", function(x, ...) { if (length(list(...))!=0) .throw(SRError("UserArgumentMismatch", "argument '%s' not supported", names(list(...)))) .Call(.alphabet_duplicated, x) }) setMethod(writeFasta, "DNAStringSet", function(object, file, mode="w", ...) { append = mode=="a" writeXStringSet(object, file, ..., append=append, format="fasta") }) ## srdistance .srdistance <- function(pattern, subject, distanceFunc,..., verbose=FALSE) { if (verbose) cat(".srdistance", as.character(subject), "\n") substitutionMatrix <- distanceFunc(pattern, subject) -pairwiseAlignment(pattern, subject, substitutionMatrix=substitutionMatrix, gapOpening=0, gapExtension=-1, scoreOnly=TRUE) } .srdistanceDNA <- function(pattern, subject) { m <- matrix(c(1,0,0,0,.5,.5,.5,.0,.0,.0,.3,.3,.3,.0,.25,.25,.25, 0,1,0,0,.5,.0,.0,.5,.5,.0,.3,.3,.0,.3,.25,.25,.25, 0,0,1,0,.0,.5,.0,.5,.0,.5,.3,.0,.3,.3,.25,.25,.25, 0,0,0,1,.0,.0,.5,.0,.5,.5,.0,.3,.3,.3,.25,.25,.25), nrow=4, byrow=TRUE, dimnames=list(DNA_ALPHABET[1:4], DNA_ALPHABET)) patternAlf <- alphabetFrequency(pattern, collapse=TRUE) subjectAlf <- alphabetFrequency(subject) alf <- unique(c(names(patternAlf)[patternAlf!=0], names(subjectAlf)[subjectAlf!=0])) m <- m[, alf] -(1 - t(m) %*% m) } .srdistance_DNAStringSet_character <- function(pattern, subject, ...) { strings <- lapply(subject, DNAString) res <- srapply(strings, .srdistance, pattern=pattern, distanceFunc=.srdistanceDNA, ...) if (length(res) == length(subject)) names(res) <- subject res } setMethod(srdistance, c("DNAStringSet", "character"), .srdistance_DNAStringSet_character) .srdistance_DNAStringSet_DNAString <- function(pattern, subject, ...) { res <- list(.srdistance(pattern, subject, .srdistanceDNA, ...)) names(res) <- as.character(subject) res } setMethod(srdistance, c("DNAStringSet", "DNAString"), .srdistance_DNAStringSet_DNAString) .srdistance_DNAStringSet_DNAStringSet <- function(pattern, subject, ...) { callGeneric(pattern, as.character(subject), ...) } setMethod(srdistance, c("DNAStringSet", "DNAStringSet"), .srdistance_DNAStringSet_DNAStringSet) ## tables .stringset_tables <- function(x, n=50, ...) { if (length(x) == 0) { return(list(top=integer(0), distribution=data.frame( nOccurrences=integer(0), nReads=integer(0)))) } ## FIXME: two sorts srt <- srsort(x) r <- srrank(x) t <- tabulate(r) o <- order(t, decreasing=TRUE) ## n most common sequences n <- min(n, sum(t!=0)) # remove duplicates top <- head(t[o], n) names(top) <- as.character(head(srt[o], n)) ## overall frequency -- equivalent of table(table(sread)) tt <- tabulate(t) nOccurrences <- seq_along(tt)[tt!=0] nReads <- tt[tt!=0] ## results list(top=top, distribution=data.frame( nOccurrences=nOccurrences, nReads=nReads, row.names=NULL)) } setMethod(tables, "XStringSet", .stringset_tables) ## trimTails setMethod(trimTailw, "BStringSet", function(object, k, a, halfwidth, ..., alphabet, ranges=FALSE) { if (missing(alphabet)) alphabet <- sapply(as.raw(0:127), rawToChar) tryCatch({ k <- as.integer(k) if (1L != length(k) || k < 0L) stop("'k' must be integer(1) >= 0L") a <- as.character(a) if (1L != length(a) || 1L != nchar("A")) stop("'", a, "' must satsify 'nchar(a) == 1L'") if (!a %in% alphabet) stop("'", a, "' must be a character with encoding < 128") halfwidth <- as.integer(halfwidth) if (1L != length(halfwidth) || halfwidth <= 0) stop("'halfwidth' must be > 0") }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ a_map <- rev(cumsum(rev(alphabet==a))) # '1' if < a names(a_map) <- alphabet ends <- .Call(.trimTailw, object, k, a_map, halfwidth) }, error=function(err) { .throw(SRError("InternalError", conditionMessage(err))) }) if (ranges) IRanges(1, ends) else narrow(object, 1L, ends)[0L != ends] }) setMethod(trimTailw, "XStringQuality", function(object, k, a, halfwidth, ..., ranges=FALSE) { rng <- callGeneric(as(object, "BStringSet"), k, a, halfwidth, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimTails, "BStringSet", function(object, k, a, successive=FALSE, ..., alphabet, ranges=FALSE) { if (missing(alphabet)) alphabet <- sapply(as.raw(0:127), rawToChar) tryCatch({ k <- as.integer(k) if (1L != length(k) || k < 0L) stop("'k' must be integer(1) >= 0L") a <- as.character(a) if (1L != length(a) || 1L != nchar("A")) stop("'", a, "' must satsify 'nchar(a) == 1L'") if (!a %in% alphabet) stop("'", a, "' must be a character with encoding < 128") successive <- as.logical(successive) if (1L != length(successive) || is.na(successive)) stop("'successive' must be logical(1), not NA") }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ a_map <- rev(cumsum(rev(alphabet==a))) # '1' if < a names(a_map) <- alphabet ends <- .Call(.trimTails, object, k, a_map, successive) }, error=function(err) { .throw(SRError("InternalError", conditionMessage(err))) }) if (ranges) IRanges(1, ends) else narrow(object, 1L, ends)[0L != ends] }) setMethod(trimTails, "XStringQuality", function(object, k, a, successive=FALSE, ..., ranges=FALSE) { rng <- callGeneric(as(object, "BStringSet"), k, a, successive, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimEnds, "XStringSet", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { relation <- match.arg(relation) alphabet <- alphabet(object) if (is.null(alphabet)) alphabet <- sapply(as.raw(0:127), rawToChar) tryCatch({ a <- as.character(a) if (!all(a %in% alphabet)) warning("some 'a' not in alphabet(object)") left <- as.logical(left)[1] right <- as.logical(right)[1] }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ a_map <- alphabet %in% a if ("<=" == relation) a_map <- as.logical(rev(cumsum(rev(a_map)))) # '1' if <= a a <- alphabet[a_map] cls <- sub("(.*)String.*", "\\1", class(object)) xs <- get_seqtype_conversion_lookup(cls, "character") if (is.null(xs)) xs <- 0:127 map <- logical(length(xs)) key <- lapply(a, function(x) as.integer(charToRaw(x))) map[match(unname(unlist(key)), xs)] <- TRUE bnds <- .Call(.trimEnds, object, map, left, right) }, error=function(err) { .throw(SRError("InternalError", conditionMessage(err))) }) if (ranges) IRanges(bnds[["start"]], bnds[["end"]]) else narrow(object, bnds[["start"]], bnds[["end"]]) }) setMethod(trimEnds, "XStringQuality", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(as(object, "BStringSet"), a, left, right, relation, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) ShortRead/R/methods-QA.R0000644000126300012640000006462212227066711016334 0ustar00biocbuildphs_compbio## QAData QAData <- function(seq=ShortReadQ(), filter=logical(length(seq)), ...) { .QAData$new(seq=seq, filter=filter, ...) } setMethod(.filter, "QAData", function(object, useFilter, ...) { if (useFilter) object$seq[!object$filter] else object$seq }) .filterUpdate <- function(object, add, value) { if (add) object$filter <- object$filter | value object } ## QASummary .show_KoverA <- function(object, K=object@flagK, A=object@flagA) { cat(sprintf("flag: K over A = (%.2f x 100)%% over %d\n", K, A)) } .QASummary <- function (class, useFilter = TRUE, addFilter = TRUE, ..., html) { if (missing(html)) html <- file.path(system.file("template", package = "ShortRead"), sprintf("%s.html", class)) if (!is.na(html) && (!file.exists(html) || !nzchar(html))) .throw(SRError("UserArgumentMismatch", "'html' file does not exist:\n %s", html)) new(class, useFilter = mkScalar(as.logical(useFilter)), addFilter = mkScalar(as.logical(addFilter)), html = mkScalar(html), ...) } .QASummaryFactory <- function(summaryName) { function (useFilter = TRUE, addFilter = TRUE, ...) .QASummary(summaryName, useFilter = useFilter, addFilter = addFilter, ...) } setMethod(show, "QASummary", function(object) { callNextMethod() cat(Rsamtools:::.ppath("html template", object@html)) cat("useFilter: ", object@useFilter, "; ", "addFilter: ", object@addFilter, "\n", sep="") }) QAFlagged <- .QASummaryFactory("QAFlagged") QAFiltered <- .QASummaryFactory("QAFiltered") QANucleotideUse <- .QASummaryFactory("QANucleotideUse") QAQualityUse <- .QASummaryFactory("QAQualityUse") QASequenceUse <- .QASummaryFactory("QASequenceUse") QAReadQuality <- function(useFilter=TRUE, addFilter=TRUE, flagK=.2, flagA=30L, ...) { .QASummary("QAReadQuality", useFilter=useFilter, addFilter=addFilter, flagK=mkScalar(flagK), flagA=mkScalar(as.integer(flagA)), ...) } setMethod(show, "QAReadQuality", function(object) { callNextMethod() .show_KoverA(object) }) QAAdapterContamination <- function (useFilter=TRUE, addFilter=TRUE, Lpattern = NA_character_, Rpattern = NA_character_, max.Lmismatch = 0.1, max.Rmismatch = 0.2, min.trim = 9L, ...) { fmt <- "QAAdapterContamination not a DNA sequence\n %s=\"%s\"" if (!is.na(Lpattern)) tryCatch(DNAString(Lpattern), error = function(e) { .throw(SRError("UserArgumentMismatch", fmt, "Lpattern", Lpattern)) }) if (!is.na(Rpattern)) tryCatch(DNAString(Rpattern), error = function(e) { .throw(SRError("UserArgumentMismatch", fmt, "Rpattern", Rpattern)) }) .QASummary("QAAdapterContamination", useFilter=useFilter, addFilter=addFilter, Lpattern = mkScalar(toupper(as.character(Lpattern))), Rpattern = mkScalar(toupper(as.character(Rpattern))), max.Lmismatch = mkScalar(as.numeric(max.Lmismatch)), max.Rmismatch = mkScalar(as.numeric(max.Rmismatch)), min.trim = mkScalar(as.integer(min.trim)), ...) } setMethod(show, "QAAdapterContamination", function(object) { callNextMethod() cat("Lpattern:", object@Lpattern, "\n") cat("Rpattern:", object@Rpattern, "\n") cat("max.Lmismatch: ", object@max.Lmismatch, "; ", "max.Rmismatch: ", object@max.Rmismatch, "; ", "min.trim: ", object@min.trim, "\n", sep="") }) QAFrequentSequence <- function (useFilter = TRUE, addFilter = TRUE, n = NA_integer_, a = NA_integer_, flagK=.8, reportSequences = FALSE, ...) { .QASummary("QAFrequentSequence", addFilter = addFilter, useFilter = useFilter, n = mkScalar(as.integer(n)), a = mkScalar(as.integer(a)), flagK = mkScalar(as.numeric(flagK)), reportSequences = mkScalar(as.logical(reportSequences)), ...) } setMethod(show, "QAFrequentSequence", function(object) { callNextMethod() if (!is.na(object@n)) cat("n: ", object@n, "; ", sep="") else cat("a: ", object@a, "; ", sep="") cat("reportSequences:", object@reportSequences, "\n") .show_KoverA(object, object@flagK, object@a) }) QANucleotideByCycle <- .QASummaryFactory("QANucleotideByCycle") QAQualityByCycle <- .QASummaryFactory("QAQualityByCycle") ## QASource QAFastqSource <- function(con=character(), n=1e6, readerBlockSize=1e8, flagNSequencesRange=NA_integer_, ..., html=system.file("template", "QASources.html", package="ShortRead")) { .QASummary("QAFastqSource", con=as.character(con), n=mkScalar(as.integer(n)), readerBlockSize=mkScalar(as.integer(readerBlockSize)), flagNSequencesRange=as.integer(flagNSequencesRange), ..., html=mkScalar(html)) } setMethod(show, "QAFastqSource", function(object) { callNextMethod() cat("length:", length(object@con), "\n") cat("n: ", object@n, ";", " readerBlockSize: ", object@readerBlockSize, "\n", sep="") }) ## QACollate setMethod(QACollate, "missing", function(src, ...) { QACollate(QAFastqSource(), ...) }) setMethod(QACollate, "QAFastqSource", function(src, ...) { if (1L == length(list(...)) && is(..1, "QACollate")) renew(..1, src=src) else new("QACollate", src=src, SimpleList(...)) }) setMethod(show, "QACollate", function(object) { callNextMethod() cat("source:", class(object@src), "of length", length(object@src@con), "\n") elts <- paste(sapply(object, class), collapse = " ") txt <- paste(strwrap(sprintf("elements: %s", elts), exdent = 2), collapse = "\n ") cat(txt, "\n") }) ## QA QA <- function (src, filtered, flagged, ...) { new("QA", src = src, filtered = filtered, flagged=flagged, ...) } ## .clone setMethod(.clone, "QAData", function (object, ...) { .QAData$new(seq = object$seq, filter = object$filter, ...) }) setMethod(.clone, "QASource", function (object, ...) { object@data <- .clone(object@data) object }) ## values setMethod(values, "QASummary", function(x, ...) { x@values }) setReplaceMethod("values", c("QASummary", "DataFrame"), function (x, ..., value) { x@values <- value x }) ## rbind setMethod(rbind, "QASummary", function(..., deparse.level=1) { class <- class(..1) values <- do.call(rbind, lapply(list(...), values)) renew(..1, values = values) }) ## qa2 setMethod(qa2, "FastqSampler", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,FastqSampler-method") state$seq <- yield(object) state$filter <- rep(FALSE, length(state$seq)) DataFrame(SourceN=object$status()[["total"]], SampleN=length(state$seq)) }) setMethod(qa2, "QAFastqSource", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAFastqSource-method") if (1 != length(object@con)) .throw(SRError("InternalError", "'QAFastqSource' source length != 1")) sampler <- FastqSampler(object@con, object@n, object@readerBlockSize) on.exit(close(sampler)) df <- qa2(sampler, object@data, verbose=verbose) values <- cbind(df, DataFrame(AccessTimestamp=date(), FileName=basename(object@con))) ## Path=dirname(path(object@con)))) metadata(values) <- list(NumberOfRecords=length(object@data$seq)) renew(object, values=values) }) setMethod(qa2, "QAAdapterContamination", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAAdapterContamination-method") obj <- .filter(state@data, object@useFilter) Lpattern <- if (is.na(object@Lpattern)) "" else object@Lpattern Rpattern <- if (is.na(object@Rpattern)) "" else object@Rpattern trim <- trimLRPatterns(Lpattern, Rpattern, sread(obj), object@max.Lmismatch, object@max.Rmismatch, ranges=TRUE) filt <- width(trim) < (width(obj) - object@min.trim) .filterUpdate(state@data, object@addFilter, filt) values <- DataFrame(Contaminants=sum(filt)) metadata(values) <- list(NumberOfRecords=length(filt)) renew(object, values=values) }) setMethod(qa2, "QANucleotideUse", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QANucleotideUse-method") obj <- .filter(state@data, object@useFilter) alf <- .qa_alphabetFrequency(sread(obj), baseOnly=TRUE, collapse=TRUE) values <- DataFrame(Nucleotide=factor(sub("other", "N", names(alf)), levels=c("A", "C", "G", "T", "N")), Count=as.vector(alf)) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QAQualityUse", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAQualityUse-method") obj <- .filter(state@data, object@useFilter) alf <- .qa_alphabetFrequency(quality(obj), collapse=TRUE) alf <- alf[alf != 0] alphabet <- alphabet(quality(obj)) quality <- factor(names(alf), levels=alphabet) q0 <- as(do.call(class(quality(obj)), list(alphabet)), "matrix") values <- DataFrame(Quality=quality, Score=as.integer(q0)[quality], Count=as.vector(alf)) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QASequenceUse", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QASequenceUse-method") obj <- .filter(state@data, object@useFilter) t <- tabulate(tabulate(srrank(sread(obj)))) values <- DataFrame(Occurrences=seq_along(t)[t!=0], Reads=t[t!=0]) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QAFrequentSequence", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAFrequentSequence-method") if (is.finite(object@n)) { n <- thresh <- object@n } else { n <- 10L thresh <- object@a } obj <- .filter(state@data, object@useFilter) r <- srrank(sread(obj)) t <- tabulate(r) ttop <- head(order(t, decreasing=TRUE), n) topCount <- setNames(t[ttop], as.character(sread(obj)[match(ttop, r)])) filt <- if (is.finite(object@n)) { r %in% ttop } else r %in% which(t >= thresh) .filterUpdate(state@data, object@addFilter, filt) values <- DataFrame(Threshold=thresh, Records=length(r), Count=sum(filt), TopCount=IntegerList(topCount)) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QAReadQuality", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAReadQuality-method") obj <- .filter(state@data, object@useFilter) dens <- .qa_qdensity(quality(obj)) values <- DataFrame(Score=dens$x, Density=dens$y) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values) }) setMethod(qa2, "QANucleotideByCycle", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QANucleotideByCycle-method") obj <- .filter(state@data, object@useFilter) abc <- alphabetByCycle(sread(obj)) values <- DataFrame(Cycle=seq_len(ncol(abc))[col(abc)], Base=factor(rownames(abc)[row(abc)]), Count=as.vector(abc), row.names=NULL) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values[values$Count != 0,]) }) setMethod(qa2, "QAQualityByCycle", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QAQualityByCycle-method") obj <- .filter(state@data, object@useFilter) abc <- alphabetByCycle(quality(obj)) alphabet <- rownames(abc) q <- factor(rownames(abc)[row(abc)], levels = alphabet) q0 <- as(do.call(class(quality(obj)), list(alphabet)), "matrix") values <- DataFrame(Cycle=seq_len(ncol(abc))[col(abc)], Quality=q, Score=as.integer(q0)[q], Count=as.vector(abc), row.names=NULL) metadata(values) <- list(NumberOfRecords=length(obj)) renew(object, values=values[values$Count != 0,]) }) .qa2_do_collate1 <- function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QACollate1-method") src <- .clone(object@src) srcelt <- qa2(src, verbose=verbose) # side effect -- populate seq elts <- endoapply(as(object, "SimpleList"), qa2, src, ..., verbose=verbose) names(elts) <- sapply(object, class) renew(object, elts, src=renew(object@src, values=values(srcelt))) } setMethod(qa2, "QACollate", function(object, state, ..., verbose=FALSE) { if (verbose) message("qa2,QACollate-method") qas <- srapply(seq_along(object@src@con), function(i, object, ...) { object@src@con <- object@src@con[i] .qa2_do_collate1(object, ...) }, object, ..., verbose=verbose) ## collapse summary df <- do.call(rbind, Map(function(elt) values(elt@src), qas)) df[["Id"]] <- factor(seq_along(qas), levels=as.character(seq_along(qas))) ncol <- ncol(df) values(object@src) <- df[, c(ncol, seq_len(ncol - 1L))] ## collect NumberOfRecords filtered <- as(t(sapply(qas, function(lst) { sapply(lst, function(elt) { metadata(values(elt))[["NumberOfRecords"]] }) })), "DataFrame") filtered[["Id"]] <- values(object@src)[["Id"]] ncol <- ncol(filtered) filtered <- filtered[,c(ncol, seq_len(ncol - 1L))] ## add Id qas <- Map(function(elt, id) endoapply(elt, function(elt, id) { df <- values(elt) df[["Id"]] <- id ncol <- ncol(df) rotate <- c(ncol(df), seq_len(ncol - 1L)) values(elt) <- df[,rotate] elt }, id), qas, values(object@src)[["Id"]]) ## collapse values <- do.call(Map, c(function(...) { do.call(rbind, list(...)) }, qas)) ## flag object@src <- flag(object@src, verbose=verbose) values <- lapply(values, flag, verbose=verbose) flagged <- Reduce(rbind, Map(function(x) { f <- x@flag if (length(f)) DataFrame(Flag=f, Summary=class(x)) else DataFrame(Flag=integer(), Summary=character()) }, c(list(object@src), values))) QA(object@src, QAFiltered(values=filtered), QAFlagged(values=flagged), do.call(SimpleList, values)) }) ## flag setMethod(flag, ".QA2", function(object, ..., verbose=FALSE) { if (verbose) message("flag,ANY-method") object }) setMethod(flag, "QASource", function(object, ..., verbose=FALSE) { if (verbose) message("flag,QASource-method") rng <- object@flagNSequencesRange x <- values(object)[["SourceN"]] if (1L == length(rng) && is.na(rng)) { ## default -- outliers stats <- stats::fivenum(x, na.rm = TRUE) iqr <- diff(stats[c(2, 4)]) coef <- 1.5 object@flagNSequencesRange <- rng <- c(as.integer(floor(stats[2L] - coef * iqr)), as.integer(ceiling(stats[4L] + coef * iqr))) } object@flag <- which(!is.finite(x) | x < rng[1] | x > rng[2]) object }) setMethod(flag, "QAReadQuality", function(object, ..., verbose=FALSE) { if (verbose) message("flag,QAReadQuality-method") df <- as(values(object), "data.frame") object@flag <- which(unname(unlist(with(df, { Map(function(score, density, A, K) { dx <- diff(score) x <- score[-length(score)] + dx / 2 y <- density[-length(density)] + diff(density) / 2 k <- approxfun(x, cumsum(y * dx))(A) is.na(k) || k < K }, split(Score, Id), split(Density, Id), MoreArgs=list(A = object@flagA, K = object@flagK)) })))) object }) setMethod(flag, "QAFrequentSequence", function(object, ..., verbose=FALSE) { ppn <- values(object)[["Count"]] / values(object)[["Records"]] object@flag <- which(ppn > object@flagK ) object }) ## report .hwrite <- function(df) { hwrite(as(df, "data.frame"), border=0) } setMethod(report, "QASource", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") df$Id <- as.integer(as.character(df$Id)) pal <- c("#D73027", "#4575B4") # brewer.pal(9, "RdYlBu")[c(1, 9)] plt <- dotplot(Id ~ SourceN, df, type = "b", pch = 20, col = .dnaCol, rng = x@flagNSequencesRange, rngcol = pal, panel=function(x, y, ..., rng, rngcol) { panel.dotplot(x, y, ...) yy <- c(min(y), max(y)) llines(rng[1], yy, col=rngcol[1], lty=2) llines(rng[2], yy, col=rngcol[2], lty=2) }) list(SAMPLE_KEY=.hwrite(values(x)), PPN_COUNT=.html_img(dest, "readCounts", plt)) }) setMethod(report, "QAFlagged", function(x, ...., dest=tempfile(), type="html") { list(FLAGGED=.hwrite(values(x))) }) setMethod(report, "QAFiltered", function(x, ..., dest=tempfile(), type="html") { list(FILTERED=.hwrite(values(x))) }) setMethod(report, "QAAdapterContamination", function(x, ..., dest=tempfile(), type="html") { list(ADAPTER_CONTAMINATION=.hwrite(values(x))) }) setMethod(report, "QANucleotideUse", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") df$Id <- as.integer(as.character(df$Id)) plt <- dotplot(Id ~ Count|factor(ifelse(df$Nucleotide == "N", "N", "O")), group=Nucleotide, df, base=df$Nucleotide, type = "b", pch = 20, col = .dnaCol, key = list(space = "top", lines = list(col = .dnaCol), text = list(lab = levels(values(x)[["Nucleotide"]])), columns = 5L), strip=FALSE, scale=list(relation="free"), par.settings=list(layout.widths = list(panel = c(1, 2)))) list(BASE_CALL_COUNT=.html_img(dest, "baseCalls", plt)) }) setMethod(report, "QAQualityUse", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") id <- df[["Id"]] q <- df[["Quality"]] q <- factor(q, levels=levels(q)[min(as.integer(q)):max(as.integer(q))]) df[["Quality"]] <- q df <- df[order(df$Id, df$Quality),] df[["Proportion"]] <- with(df, unlist(Map("/", lapply(split(Count, Id), cumsum), lapply(split(Count, Id), sum)), use.names=FALSE)) pal <- # brewer.pal(9, "RdYlBu") c("#D73027", "#F46D43", "#FDAE61", "#FEE090", "#FFFFBF", "#E0F3F8", "#ABD9E9", "#74ADD1", "#4575B4") col <- colorRampPalette(pal)(length(levels(q))) plt <- dotplot(Id ~ Proportion, group=Quality, df, type = "b", pch = 20, col = col, xlab="Cummulative Proportion", key = list(space = "top", lines = list(col = col, size=3L), text = list(lab = levels(df[["Quality"]])), columns = min(length(col), 10L), cex=.6)) list(QUALITY_SCORE_COUNT=.html_img(dest, "qualityCalls", plt)) }) setMethod(report, "QAReadQuality", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") lvl <- levels(df$Id) flag <- lvl[x@flag] df$Id <- factor(df$Id, levels=c(lvl[!lvl %in% flag], flag)) xmin <- min(df$Score) ymax <- max(df$Density) pal <- # brewer.pal(8, "Set1") c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00", "#FFFF33", "#A65628", "#F781BF") col <- c(rep("gray", length(lvl) - length(flag)), pal[1 + (seq_along(flag) - 1) %% 8]) plt <- xyplot(Density ~ Score, group=Id, df, type = "l", xlab = "Average (calibrated) base quality", nylab = "Proportion of reads", col = col, strip=FALSE, key = list(space = "top", lines = list(col=tail(col, length(flag)), size=3L, lwd=2), text = list(lab=tail(lvl, length(flag))), columns=min(length(col), 10L), cex=.6)) list(READ_QUALITY_FIGURE=.html_img(dest, "readQuality", plt)) }) setMethod(report, "QASequenceUse", function(x, ..., dest=tempfile(), type="html") { df <- with(values(x), { nOccur <- tapply(Occurrences, Id, c) cumulative <- tapply(Occurrences * Reads, Id, function(elt) { cs <- cumsum(elt) (cs - cs[1] + 1)/(diff(range(cs)) + 1L) }) id <- tapply(Id, Id, c) data.frame(Occurrences = unlist(nOccur), Cumulative = unlist(cumulative), Id = unlist(id), row.names = NULL) }) xmax <- log10(max(df$Occurrences)) plt <- xyplot(Cumulative ~ log10(Occurrences) | factor(Id), df, xlab = expression(paste("Number of occurrences of each sequence (", log[10], ")", sep = "")), ylab = "Cumulative proportion of reads", aspect = 2, panel = function(x, y, ..., subscripts, type) { lbl <- unique(df$Id[subscripts]) ltext(xmax, 0.05, lbl, adj = c(1, 0)) type <- if (1L == length(x)) "p" else "l" panel.xyplot(x, y, ..., type = type) }, strip = FALSE) list(SEQUENCE_USE=.html_img(dest, "sequenceUse", plt)) }) setMethod(report, "QAFrequentSequence", function(x, ..., dest=tempfile(), type="html") { thresholdLabel <- if (is.finite(x@n)) "n" else "a" threshold <- as.character(if (is.finite(x@n)) x@n else x@a) freqseq <- if (x@reportSequences) { seqdf <- lapply(with(values(x), { #with() gets wrong env for .hwrite lapply(split(TopCount, Id), function(elt) { data.frame(Sequence=names(elt[[1]]), Count=unname(elt[[1]])) }) }), .hwrite) paste(Map(function(id, seq) { sprintf("

Id: %s

%s", id, seq) }, names(seqdf), seqdf), collapse="\n") } else "" df <- values(x)[, c("Id", "Count")] list(THRESHOLD_LABEL=thresholdLabel, THRESHOLD=threshold, FREQUENT_SEQUENCE_COUNT=.hwrite(df), FREQUENT_SEQUENCES=freqseq) }) setMethod(report, "QANucleotideByCycle", function(x, ..., dest=tempfile(), type="html") { df <- as(values(x), "data.frame") df <- df[df$Base != "N" & df$Base != "-", ] df$Base <- factor(df$Base) xmax <- max(df$Cycle) ymax <- log10(max(df$Count)) plt <- xyplot(log10(Count) ~ as.integer(Cycle) | Id, group = factor(Base), df[order(df$Id, df$Base, df$Cycle),], panel = function(..., subscripts) { lbl <- as.character(unique(df$Id[subscripts])) ltext(xmax, ymax, lbl, adj = c(1, 1)) panel.xyplot(..., subscripts = subscripts) }, type = "l", col = .dnaCol[1:4], key = list( space = "top", lines = list(col = .dnaCol[1:4]), text = list(lab = levels(df$Base)), columns = length(levels(df$Base))), xlab = "Cycle", aspect = 2, strip = FALSE) list(CYCLE_BASE_CALL=.html_img(dest, "cycleBaseCall", plt)) }) setMethod(report, "QAQualityByCycle", function(x, ..., dest=tempfile(), type="html") { calc_means <- function(x, y, z) rowsum(y * z, x)/rowsum(z, x) calc_quantile <- function(x, y, z, q = c(0.25, 0.5, 0.75)) by(list(y, z), x, function(x) { scoreRle <- Rle(x[[1]], x[[2]]) quantile(scoreRle, q) }) df <- as(values(x), "data.frame") Id <- df$Id pal <- c("#66C2A5", "#FC8D62") lvlPal <- c("#F5F5F5", "black") rng <- range(df$Count) at <- seq(rng[1], rng[2], length.out = 512) np <- length(unique(Id)) nrow <- ceiling(np/4) layout <- c(ceiling(np/nrow), nrow) ymin <- min(df$Score) plt <- xyplot(Score ~ Cycle | Id, df, panel = function(x, y, ..., subscripts) { z <- df$Count[subscripts] mean <- calc_means(x, y, z) qtiles <- calc_quantile(x, y, z) sxi <- sort(unique(x)) panel.levelplot(x, y, z, subscripts = TRUE, at = at, col.regions = colorRampPalette(lvlPal)) llines(sxi, mean, type = "l", col = pal[[1]], lwd = 1) llines(sxi, sapply(qtiles, "[[", 1), type = "l", col = pal[[2]], lwd = 1, lty = 3) llines(sxi, sapply(qtiles, "[[", 2), type = "l", col = pal[[2]], lwd = 1) llines(sxi, sapply(qtiles, "[[", 3), type = "l", col = pal[[2]], lwd = 1, lty = 3) lbl <- as.character(unique(df$Id[subscripts])) ltext(1, ymin, lbl, adj = c(0, 0)) }, ylab = "Quality Score", layout = layout, strip = FALSE) list(CYCLE_QUALITY=.html_img(dest, "cycleQualityCall", plt)) }) setMethod(report, "QA", function(x, ..., dest=tempfile(), type="html") { if (any(type != "html")) .throw(SRError("UserArgumentMismatch", "'type' must be 'html'")) dir.create(dest, recursive=TRUE) header <- system.file("template", "QAHeader.html", package="ShortRead", mustWork=TRUE) footer <- system.file("template", "QAFooter.html", package="ShortRead", mustWork=TRUE) sections <- c(header, x@src@html, x@filtered@html, x@flagged@html, sapply(x, slot, "html"), footer) values0 <- c(list(report(x@src, dest=dest), report(x@filtered, dest=dest), report(x@flagged, dest=dest)), lapply(x, report, dest=dest)) values <- setNames(unlist(values0, recursive=FALSE, use.names=FALSE), unlist(lapply(values0, names))) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-QualityScore.R0000644000126300012640000002377012227066711020456 0ustar00biocbuildphs_compbio## interface ## constructors, [, [[, length, width, append, show, detail ## QualityScore .QualityScore_subset <- function(x, i, j, ..., drop=TRUE) { if (0L != length(list(...))) .subset_err() initialize(x, quality=quality(x)[i]) } setMethod("[", c("QualityScore", "ANY", "missing"), .QualityScore_subset) .QualityScore_subset2 <- function(x, i, j, ...) { if (0L != length(list(...))) .subset_err() quality(x)[[i]] } setMethod("[[", c("QualityScore", "ANY", "missing"), .QualityScore_subset2) setMethod(length, "QualityScore", function(x) length(quality(x))) setMethod(width, "QualityScore", function(x) .undefined_method_err(class(x), "width")) setMethod(append, c("QualityScore", "QualityScore"), function(x, values, after=length(x)) { initialize(x, quality=append(quality(x), quality(values))) }) setMethod(detail, "QualityScore", function(x) { callNextMethod() cat("quality:\n") print(quality(x)) }) ## NumericQuality setMethod(width, "NumericQuality", function(x) rep(1, length(x))) setMethod(show, "NumericQuality", function(object) { callNextMethod() .show_some("quality", quality(object)) }) ## IntegerQuality IntegerQuality <- function(quality=integer(0)) { new("IntegerQuality", quality=quality) } ## Import integer qualities from 454 .qual files .readFASTA <- ## from Biostrings; legacy code but handles numeric values function(file, checkComments=TRUE, strip.descs=TRUE) { if (missing(strip.descs)) warning("use 'strip.descs=FALSE' for compatibility with old version\n", " of readFASTA(), or 'strip.descs=TRUE' to remove the \">\"\n", " at the beginning of the description lines and to get\n", " rid of this warning (see '?readFASTA' for more details)") if (is.character(file)) { file <- file(file, "r") on.exit(close(file)) } else { if (!inherits(file, "connection")) stop("'file' must be a character string or connection") if (!isOpen(file)) { open(file, "r") on.exit(close(file)) } } s1 <- scan(file=file, what="", sep="\n", quote="", allowEscapes=FALSE, quiet=TRUE) if (checkComments) { ##comments are supposedly lines beginning with semi-colons comments <- grep("^;", s1) if (length(comments) > 0) s1 <- s1[-comments] } descriptions <- which(substr(s1, 1L, 1L) == ">") numF <- length(descriptions) if (numF == 0) stop("no FASTA sequences found") dp <- descriptions + 1L dm <- descriptions - 1L end <- c(dm[-1], length(s1)) lapply(seq_len(numF), function(i) { desc <- s1[descriptions[i]] if (strip.descs) desc <- substr(desc, 2L, nchar(desc)) if (end[i] >= dp[i]) { seq <- paste(s1[dp[i]:end[i]], collapse="") } else { warning("record \"", desc, "\" contains no sequence") seq <- "" } list(desc=desc, seq=seq) } ) } .readQual <- function(file, reads = NULL) { if (!is.null(reads)) { ## a lot faster if the reads are known nums <- scan(file, integer(0), n = sum(width(reads)), comment.char = ">") inds <- seq_len(length(reads)) scores <- split(nums, factor(rep(inds, width(reads)), inds)) } else { qual <- .readFASTA(file, strip.descs=TRUE) scores <- lapply(strsplit(subListExtract(qual, "seq", TRUE), " +"), as.integer) names(scores) <- subListExtract(qual, "desc", TRUE) } scores } setMethod(readQual, "character", function(dirPath, reads = NULL, pattern=character(), sample = 1, ...) { src <- .file_names(dirPath, pattern)[sample] scores <- do.call(c, lapply(src, .readQual, reads)) FastqQuality(sapply(scores, function(elt) rawToChar(as.raw(elt+33)))) }) ## MatrixQuality MatrixQuality <- function(quality=new("matrix")) { new("MatrixQuality", quality=quality) } .MatrixQuality_subset <- function(x, i, j, ..., drop=FALSE) { if (0L != length(list(...))) .subset_err() initialize(x, quality=quality(x)[i,, drop=FALSE]) } setMethod("[", c("MatrixQuality", "ANY", "missing"), .MatrixQuality_subset) .MatrixQuality_subset2 <- function(x, i, j, ...) { if (0L != length(list(...))) .subset_err() quality(x)[i,] } setMethod("[[", c("MatrixQuality", "ANY", "missing"), .MatrixQuality_subset2) setMethod(dim, "MatrixQuality", function(x) dim(quality(x))) setMethod(length, "MatrixQuality", function(x) nrow(quality(x))) setMethod(width, "MatrixQuality", function(x) rep(ncol(x), nrow(x))) ## FIXME: implement this, when starts are un-equal setMethod(narrow, "MatrixQuality", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { sew <- solveUserSEW(width(x), start = start, end = end, width = width) if (length(unique(width(sew))) != 1) .throw(SRError("UserArgumentMismatch", "%s of %s must be 1", "'length(unique(width()))'", "solved SEW")) if (length(unique(start(sew))) == 1) { idx <- unique(start(sew)) + seq_len(unique(width(sew))) - 1 initialize(x, quality=quality(x)[,idx]) } else { .throw(SRError("UserArgumentMismatch", "%s requires unequal 'start' positions", "'narrow,MatrixQuality-method'")) } }) setMethod(append, c("MatrixQuality", "MatrixQuality"), function(x, values, after=length(x)) { initialize(x, quality=rbind(quality(x), quality(values))) }) ## FastqQuality, SFastqQuality .FastqQuality_missing <- function(quality, ...) { callGeneric(BStringSet(character(0))) } .FastqQuality_character <- function(quality, ...) { callGeneric(BStringSet(quality), ...) } setMethod(FastqQuality, "missing", .FastqQuality_missing) setMethod(FastqQuality, "character", .FastqQuality_character) setMethod(FastqQuality, "BStringSet", function(quality, ...) { new("FastqQuality", quality=quality) }) setMethod(SFastqQuality, "missing", .FastqQuality_missing) setMethod(SFastqQuality, "character", .FastqQuality_character) setMethod(SFastqQuality, "BStringSet", function(quality, ...) { new("SFastqQuality", quality=quality) }) setAs("FastqQuality", "numeric", function(from) { v <- as.vector(t(as(from, "matrix"))) v[!is.na(v)] }) setAs("FastqQuality", "matrix", function(from) { .Call(.alphabet_as_int, quality(from), 0:255-33L) }) setAs("FastqQuality", "PhredQuality", function(from) { as(quality(from), "PhredQuality") }) setAs("SFastqQuality", "matrix", function(from) { .Call(.alphabet_as_int, quality(from), 0:255-64L) }) setAs("SFastqQuality", "SolexaQuality", function(from) { as(quality(from), "SolexaQuality") }) setMethod(width, "FastqQuality", function(x) width(quality(x))) setMethod(narrow, "FastqQuality", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { initialize(x, quality=narrow(quality(x), start, end, width, use.names)) }) setMethod(alphabet, "FastqQuality", function(x, ...) rawToChar(as.raw(32:125), TRUE)) setMethod(encoding, "FastqQuality", function(x) { alf <- alphabet(x) x <- setNames(seq(-1, length.out=length(alf)), alf) x[x >= 0 & x <= 41] }) setMethod(encoding, "SFastqQuality", function(x) { alf <- alphabet(x) x <- setNames(seq(-32, length.out=length(alf)), alf) x[x >= -5 & x <= 41] }) setMethod(show, "FastqQuality", function(object) { callNextMethod() cat("quality:\n") show(quality(object)) }) .FastqQuality_af <- function(x, as.prob=FALSE, ...) { res <- callGeneric(quality(x), as.prob=as.prob, ...) if (is(res, "matrix")) { res <- res[,1+32:125, drop=FALSE] colnames(res) <- alphabet(x) } else { res <- res[1+32:125] names(res) <- alphabet(x) } res } setMethod(alphabetFrequency, "FastqQuality", .FastqQuality_af) .FastqQuality_abc <- function(stringSet, alphabet, ...) { if (missing(alphabet)) alphabet <- Biostrings::alphabet(stringSet) .abc_BStringSet(quality(stringSet), alphabet=alphabet, ...) } setMethod(alphabetByCycle, "FastqQuality", .FastqQuality_abc) .SFastqQuality_ascore <- function(object, score=0:255-64L, ...) { .Call(.alphabet_score, quality(object), as.numeric(score)) } setMethod(alphabetScore, "SFastqQuality", .SFastqQuality_ascore) .FastqQuality_ascore <- function(object, score=0:255-33L, ...) { .Call(.alphabet_score, quality(object), as.numeric(score)) } setMethod(alphabetScore, "FastqQuality", .FastqQuality_ascore) setMethod(trimTailw, "FastqQuality", function(object, k, a, halfwidth, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, halfwidth, ..., alphabet=alphabet(object), ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimTails, "FastqQuality", function(object, k, a, successive=FALSE, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, successive, ..., alphabet=alphabet(object), ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimEnds, "FastqQuality", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(quality(object), a, left, right, relation, ..., alphabet=alphabet(object), ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(srrank, "FastqQuality", .forward_xq) setMethod(srorder, "FastqQuality", .forward_xq) setMethod(srsort, "FastqQuality", .forward_xq) setMethod(srduplicated, "FastqQuality", .forward_xq) .FastqQuality_srduplicated<- function(x, incomparables=FALSE, ...) { callGeneric(x=quality(x), ...) } setMethod(srduplicated, "FastqQuality", .FastqQuality_srduplicated) ShortRead/R/methods-RochePath.R0000644000126300012640000000604512227066711017703 0ustar00biocbuildphs_compbioRochePath <- function(experimentPath=NA_character_, readPath=experimentPath, qualPath=readPath, ..., verbose=FALSE) { if (verbose) { .checkPath(experimentPath) .checkPath(readPath) .checkPath(qualPath) } new("RochePath", ..., basePath=experimentPath, readPath=readPath, qualPath=qualPath) } .make_getter(c("readPath", "qualPath")) .readFasta_RochePath <- function(dirPath, pattern = "\\.fna$", sample = 1, run = 1, ..., nrec=-1L, skip=0L) { dirPath <- .file_names(readPath(dirPath)[run], pattern)[sample] if (any(is.na(dirPath))) .throw(SRError("Input/Output", "'%s' is 'NA' in '%s'", "readPath", "dirPath")) callGeneric(dirPath, ..., nrec=nrec, skip=skip) } setMethod(readFasta, "RochePath", .readFasta_RochePath) .readQual_RochePath <- function(dirPath, reads = NULL, pattern = "\\.qual$", sample = 1, run = 1, ...) { dirPath <- .file_names(qualPath(dirPath)[run], pattern)[sample] if (any(is.na(dirPath))) .throw(SRError("Input/Output", "'%s' is 'NA' in '%s'", "qualPath", "dirPath")) callGeneric(dirPath, ..., reads = reads) } setMethod(readQual, "RochePath", .readQual_RochePath) .readFastaQual_RochePath <- function(dirPath, fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1) { reads <- readFasta(dirPath, fastaPattern, sample, run) quals <- readQual(dirPath, reads, qualPattern, sample, run) ## combine the two new("ShortReadQ", reads, quality=quals) } setMethod(read454, "RochePath", function(dirPath, ...) readFastaQual(dirPath, ...)) setMethod(readFastaQual, "RochePath", .readFastaQual_RochePath) setMethod(readBaseQuality, "RochePath", function(dirPath, ...) .readFastaQual_RochePath(dirPath, ...)) .readFastaQual_character <- function(dirPath, fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1) { callGeneric(RochePath(dirPath), fastaPattern, qualPattern, sample, run) } setMethod(readFastaQual, "character", .readFastaQual_character) .sampleNames_RochePath <- function(object) { path <- readPath(object) if (!is.na(path)) sub("_.*", "", basename(.file_names(path, "\\.fna"))) else callNextMethod() } setMethod(sampleNames, "RochePath", .sampleNames_RochePath) .runNames_RochePath <- function(object) { basename(readPath(object)) } setMethod(runNames, "RochePath", .runNames_RochePath) setMethod(show, "RochePath", function(object) { callNextMethod() .show_additionalPathSlots(object) }) setMethod(detail, "RochePath", function(x, ...) { callNextMethod() .detail_additionalPathSlots(x) }) ShortRead/R/methods-RocheSet.R0000644000126300012640000000174512227066711017544 0ustar00biocbuildphs_compbio.RocheSet_RochePath <- function(path, phenoData, ...) { if (missing(phenoData)) { samples <- sampleNames(path) runs <- runNames(path) df <- data.frame(samples, run=runs, row.names=1) phenoData <- new("AnnotatedDataFrame", data=df, varMetadata=data.frame( labelDescription=c("Names of sequencing runs")), dimLabels=c("sampleNames", "sampleColumns")) } else { if (!is(phenoData, "AnnotatedDataFrame")) { cls <- paste(class(phenoData), collapse=" ") .throw(SRError("UserArgumentMismatch", "expected '%s' as '%s', but got '%s'", "AnnotatedDataFrame", "phenoData", cls)) } dimLabels(phenoData) <- c("sampleNames", "sampleColumns") } new("RocheSet", ..., sourcePath=path, phenoData=phenoData) } setMethod(RocheSet, "RochePath", .RocheSet_RochePath) setMethod(RocheSet, "character", function(path, ...) { .RocheSet_RochePath(RochePath(path), ...) }) ShortRead/R/methods-RtaIntensity.R0000644000126300012640000001175712227066711020471 0ustar00biocbuildphs_compbio## RtaIntensity RtaIntensity <- function(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer()[seq_len(nrow(intensity))]), ...) { .hasMeasurementError <- mkScalar(!missing(measurementError)) new("RtaIntensity", intensity=ArrayIntensity(intensity), measurementError=ArrayIntensity(measurementError), readInfo=readInfo, .hasMeasurementError=.hasMeasurementError, ...) } .readIntensities_RtaIntensity <- function(dirPath, pattern=character(0), ..., lane=integer(0), cycles=integer(0), cycleIteration=1L, tiles=integer(0), laneName=sprintf("L%.3d", lane), cycleNames=sprintf("C%d.%d", cycles, cycleIteration), tileNames=sprintf("s_%d_%d", lane, tiles), posNames=sprintf("s_%d_%.4d_pos.txt", lane, tiles), withVariability=TRUE, verbose=FALSE) { .check_type_and_length(dirPath, "character", 1) .check_type_and_length(pattern, "character", NA) .check_type_and_length(lane, "integer", 1) .check_type_and_length(cycles, "integer", NA) .check_type_and_length(cycleIteration, "integer", 1) .check_type_and_length(tiles, "integer", NA) posFilenames <- file.path(dirPath, posNames) ok <- sapply(posFilenames, file.exists) if (!all(ok)) { msg <- sprintf("%d pos files do not exist\n %s", sum(!ok), paste(selectSome(posFilenames[!ok]), collapse="\n ")) .throw(SRError("UserArgumentMismatch", msg)) } if (verbose) message("reading 'pos' files") readInfo <- do.call(rbind, mapply(function(fl, lane, tile) { cbind(lane=lane, tile=tile, read.table(fl, col.names=c("x", "y"))) }, posFilenames, laneName, tileNames, SIMPLIFY=FALSE, USE.NAMES=FALSE)) readInfo <- do.call(SolexaIntensityInfo, readInfo) laneDirname <- file.path(dirPath, laneName) if (!file.exists(laneDirname)) { msg <- sprintf("unknown lane directory\n %s", laneDirname) .throw(SRError("UserArgumentMismatch", msg)) } cycleDirnames <- file.path(laneDirname, cycleNames) ok <- sapply(cycleDirnames, file.exists) if (!all(ok)) { msg <- sprintf("%d cycle directories do not exist\n %s", sum(!ok), paste(selectSome(cycleDirnames[!ok]), collapse="\n ")) .throw(SRError("UserArgumentMismatch", msg)) } if (verbose) message("reading 'cif' files") cif <- .read_cif_or_cnf(cycleDirnames, tileNames, ".cif") if (withVariability) { if (verbose) message("reading 'cnf' files") cnf <- .read_cif_or_cnf(cycleDirnames, tileNames, ".cnf") RtaIntensity(intensity=cif, measurementError=cnf, readInfo=readInfo) } else { RtaIntensity(intensity=cif, readInfo=readInfo) } } .read_cif_or_cnf_file <- function(fileName) { conn <- file(fileName, "rb") on.exit(close(conn)) ## header id <- rawToChar(readBin(conn, "raw", 3L)) if (id != "CIF") stop("not a CIF / CNF file:\n id: ", id, "\n file: ", fileName) version <- readBin(conn, "integer", 1L, 1L, signed=FALSE) if (version != 1L) stop("unknown CIF / CNF version:\n version: ", version, "\n file: ", fileName) dataType <- readBin(conn, "integer", 1L, 1L, signed=FALSE) firstCycle <- readBin(conn, "integer", 1L, 2L, signed=FALSE, endian="little") numberOfCycles <- readBin(conn, "integer", 1L, 2L, signed=FALSE, endian="little") numberOfClusters <- readBin(conn, "integer", 1L, 4L, signed=FALSE, endian="little") ## data m <- readBin(conn, "integer", 4 * numberOfClusters, dataType, endian="little") if (length(m) != 4 * numberOfClusters) stop("incorrect number of CIF data values:", "\n expected: ", 4 * numberOfClusters, "\n found: ", length(m), "\n file: ", fileName) m } .read_cif_or_cnf <- function(cycleDirs, tileNamesRoot, ext) { res <- lapply(cycleDirs, function(dir, tileNames) { fls <- file.path(dir, tileNames) unlist(lapply(fls, .read_cif_or_cnf_file)) }, paste(tileNamesRoot, ext, sep="")) isNull <- sapply(res, is.null) if (any(isNull)) stop("no CIF or CNF files matching pattern", "\n pattern: '", paste(tileNamesRoot, ext, sep=""), "'", "\n directories:\n ", paste(cycleDirs[isNull], collapse="\n ", sep="")) nClusters <- unique(sapply(res, length)) / 4 if (length(nClusters) != 1L) stop("cluster counts differ between cycles", "\n found: ", paste(nClusters, collapse=" ")) nms <- list(NULL, c("A", "C", "G", "T"), basename(cycleDirs)) array(unlist(res), dim=c(nClusters, 4L, length(cycleDirs)), dimnames=nms) } ShortRead/R/methods-SRError.R0000644000126300012640000000401012227066711017352 0ustar00biocbuildphs_compbio.SRErrorWarning_types <- c("SRVectorClassDisagreement", "Input/Output", "UserSubset", "UserArgumentMismatch") .SRError_types <- c("UnspecifiedError", "InternalError", "RemoteError", "InvalidReadFilter", "IncompatibleTypes", "ValueUnavailable", .SRErrorWarning_types) .SRWarn_types <- c("UnspecifiedWarning", "RemoteWarning", "IncompleteFinalRecord", .SRErrorWarning_types) ## Error setMethod(.srValidity, "SRError", function(object) { msg <- NULL type <- .type(object) if (!type %in% .SRError_types) msg <- c(msg, sprintf("'%s' must be one of '%s'", '.type', paste(.SRError_types, collapse="' '"))) if (is.null(msg)) TRUE else msg }) SRError <- function(type, fmt, ...) { new("SRError", .type=type, .message=sprintf(fmt, ...)) } .make_getter(slotNames("SRError")) setMethod(.throw, "SRError", function(object, call=NULL, ...) { class <- c(.type(object), "SRError", "error", "condition") msg <- paste(.type(object), .message(object), sep="\n ") cond <- structure(list(message=msg, call=call), class=class) stop(cond) }) ## Warning setMethod(.srValidity, "SRWarn", function(object) { msg <- NULL type <- .type(object) if (!type %in% .SRWarn_types) msg <- c(msg, sprintf("'%s' must be one of '%s'", '.type', .SRWarn_types)) if (is.null(msg)) TRUE else msg }) SRWarn <- function(type, fmt, ...) { new("SRWarn", .type=type, .message=sprintf(fmt, ...)) } setMethod(.throw, "SRWarn", function(object, call=NULL, ...) { class <- c(.type(object), "SRWarn", "warning", "condition") msg <- paste(.type(object), .message(object), sep="\n ") cond <- structure(list(message=msg, call=call), class=class) warning(cond) }) ShortRead/R/methods-SRFilter.R0000644000126300012640000001664512227066711017527 0ustar00biocbuildphs_compbiosetMethod(.srValidity, "SRFilter", function (object) { msg <- NULL fmls <- formals(object) if (length(fmls) != 1 || names(fmls)[[1]] != "x") msg <- c(msg, paste("'filter' must have one argument, 'x'")) if (is.null(msg)) TRUE else msg }) setMethod(srFilter, "missing", function(fun, name, ...) { srFilter(function(x) !logical(length(x)), name=name, ...) }) setMethod(srFilter, "function", function(fun, name, ...) { name <- mkScalar(as.character(name)) fmls <- formals(fun) if (length(fmls) != 1 || names(fmls)[[1]] != "x") .throw(SRError("UserArgumentMismatch", "'filter' must have one argument, 'x'")) env <- new.env(parent=environment(fun)) env[[".stats"]] <- NULL fun <- eval(substitute(function(x) { res <- FUN(x) SRFilterResult(res, NAME) }, list(FUN=fun, NAME=name))) environment(fun) <- env new("SRFilter", fun, name=name, ...) }) setMethod(srFilter, "SRFilter", function(fun, name, ...) { slot(fun, ".Data") }) setMethod(name, "SRFilter", function(x, ...) slot(x, "name")) .getAlphabetFrequency <- function(x, ...) { if (is(x, "ShortRead")) alphabetFrequency(sread(x), ...) else alphabetFrequency(x, ...) } idFilter <- function(regex=character(0), fixed=FALSE, exclude=FALSE, .name="idFilter") { .check_type_and_length(regex, "character", 0:1) srFilter(function(x) { .idx <- logical(length(x)) .idx[grep(regex, as.character(id(x)), fixed=fixed)] <- TRUE if (exclude) .idx <- !.idx .idx }, name = .name) } chromosomeFilter <- function(regex=character(0), fixed=FALSE, exclude=FALSE, .name="ChromosomeFilter") { .check_type_and_length(regex, "character", 0:1) srFilter(function(x) { .idx <- logical(length(x)) .idx[grep(regex, chromosome(x), fixed=fixed)] <- TRUE if (exclude) .idx <- !.idx .idx }, name=.name) } positionFilter <- function(min=-Inf, max=Inf, .name="PositionFilter") { .check_type_and_length(min, "numeric", 1) .check_type_and_length(max, "numeric", 1) srFilter(function(x) { !is.na(position(x)) & position(x) >= min & position(x) <= max }, name=.name) } uniqueFilter <- function(withSread=TRUE, .name="UniqueFilter") { msg <- if (withSread) "occurrenceFilter(withSread=TRUE)" else "occurrenceFilter" .Defunct(msg, package="ShortRead") } ## withSread ## TRUE: sread, chromosome, position, strand ## FALSE: chromosome, position, strand ## NA: sread .occurrenceName <- function(min, max, withSread, duplicates) { if (!is.character(duplicates)) { duplicates <- deparse(substitute(duplicates, env=parent.frame())) if (length(duplicates) > 1) duplicates <- "custom" } sprintf("%s\n min=%d max=%d withSread='%s'\n duplicates='%s'", "OccurrenceFilter", min, max, withSread, duplicates) } occurrenceFilter <- function(min=1L, max=1L, withSread=c(TRUE, FALSE, NA), duplicates=c("head", "tail", "sample", "none"), .name=.occurrenceName(min, max, withSread, duplicates)) { .check_type_and_length(min, "numeric", 1L) .check_type_and_length(max, "numeric", 1L) if (missing(withSread)) withSread <- withSread[1] .check_type_and_length(withSread, "logical", 1L) if (is.character(duplicates)) duplicates <- match.arg(duplicates) if (max < min) .throw(SRError("UserArgumentMismatch", "'min' must be <= 'max'")) srFilter(function(x) { rnk <- if (is(x, "AlignedRead")) { if (is.na(withSread)) srrank(sread(x)) else srrank(x, withSread=withSread) } else srrank(x) t <- tabulate(rnk) result <- rnk %in% which(t >= min & t <= max) if (!(is.character(duplicates) && "none" == duplicates)) { q <- which(rnk %in% which(t > max)) if(length(q) != 0L) { x <- tapply(q, rnk[q], duplicates, max, simplify=FALSE) result[unlist(x, use.names=FALSE)] <- TRUE } } result }, name=.name) } strandFilter <- function(strandLevels=character(0), .name="StrandFilter") { .check_type_and_length(strandLevels, "character", NA) srFilter(function(x) strand(x) %in% strandLevels, name=.name) } nFilter <- function(threshold=0L, .name="CleanNFilter") { .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) { .getAlphabetFrequency(x, baseOnly=TRUE)[,"other"] <= threshold }, name=.name) } polynFilter <- function(threshold=0L, nuc=c("A", "C", "T", "G", "other"), .name="PolyNFilter") { .check_type_and_length(threshold, "numeric", 1) .check_type_and_length(nuc, "character", NA) ok <- eval(formals()[["nuc"]]) if (!all(nuc %in% ok)) .arg_mismatch_value_err("nuc", paste(nuc, collapse=", "), ok) srFilter(function(x) { alf <- .getAlphabetFrequency(x, baseOnly=TRUE) apply(alf[,nuc,drop=FALSE], 1, max) <= threshold }, name=.name) } srdistanceFilter <- function(subject=character(0), threshold=0L, .name="SRDistanceFilter") { .check_type_and_length(subject, "character", NA) .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) { .idx <- !logical(length(x)) dist <- srdistance(x, subject) for (i in seq_along(dist)) .idx <- .idx & dist[[i]] >= threshold .idx }, name=.name) } dustyFilter <- function(threshold=Inf, batchSize=NA, .name="DustyFilter") { .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) dustyScore(x, batchSize) <= threshold, name=.name) } alignQualityFilter <- function(threshold=0L, .name="AlignQualityFilter") { .check_type_and_length(threshold, "numeric", 1) srFilter(function(x) quality(alignQuality(x)) >= threshold, name=.name) } alignDataFilter <- function(expr=expression(), .name="AlignDataFilter") { .check_type_and_length(expr, "expression", NA) srFilter(function(x) eval(expr, pData(alignData(x))), name=.name) } compose <- function(filt, ..., .name) { lst <- if (missing(filt)) list(...) else list(filt, ...) for (`filt, ...` in lst) .check_type_and_length(`filt, ...`, "SRFilter", NA) if (missing(.name)) .name <- paste(sapply(lst, name), collapse=" o ") srFilter(function(x) { .idx <- SRFilterResult(!logical(length(x))) for (elt in rev(lst)) .idx <- .idx & elt(x) .idx }, name =.name) } setMethod(show, "SRFilter", function(object) { cat("class:", class(object), "\n") cat("name:", name(object), "\n") cat("use srFilter(object) to see filter\n") }) setAs("SRFilter", "FilterRules", function(from) { exprs <- list(from) names(exprs) <- name(from) FilterRules(exprs) }) setMethod(c, "SRFilter", function (x, ..., recursive = FALSE) { if (missing(x)) args <- unname(list(...)) else args <- unname(list(x, ...)) args <- list(x, ...) rules <- lapply(args, as, "FilterRules") do.call(c, c(rules, recursive = recursive)) }) ShortRead/R/methods-SRFilterResult.R0000644000126300012640000000272212227066711020715 0ustar00biocbuildphs_compbioSRFilterResult <- function(x=logical(), name=NA_character_, input=length(x), passing=sum(x), op=NA_character_) { new("SRFilterResult", x, name=mkScalar(as.character(name)[length(name)]), stats=data.frame(Name=as.character(name), Input=input, Passing=passing, Op=op, stringsAsFactors=FALSE)) } setMethod(name, "SRFilterResult", function(x, ...) slot(x, "name")) setMethod(stats, "SRFilterResult", function(x, ...) slot(x, "stats")) setMethod("Logic", c("SRFilterResult", "SRFilterResult"), function(e1, e2) { x <- callNextMethod() s1 <- stats(e1); s2 <- stats(e2) op <- as.character(.Generic) name <- sprintf("(%s %s %s)", name(e1), op, name(e2)) s <- rbind(stats(e1), stats(e2), data.frame(Name=name, Input=length(x), Passing=sum(x), Op=op, stringsAsFactors=FALSE)) SRFilterResult(x, s$Name, s$Input, s$Passing, s$Op) }) setMethod("!", "SRFilterResult", function(x) { name <- sprintf("!(%s)", name(x)) y <- callNextMethod() s <- rbind(stats(x), data.frame(Name=name, Input=length(y), Passing=sum(y), Op="!", stringsAsFactors=FALSE)) SRFilterResult(y, s$Name, s$Input, s$Passing, s$Op) }) setMethod(show, "SRFilterResult", function(object) { cat("class:", class(object), "\n") cat("name:", name(object), "\n") cat("output:", selectSome(object), "\n") cat("stats:\n") print(stats(object)) }) ShortRead/R/methods-SRList.R0000644000126300012640000000244012227066711017201 0ustar00biocbuildphs_compbioSRList <- function(...) { args <- list(...) if (length(args)==1 && is(args[[1]], "list")) new("SRList", .srlist=args[[1]]) else new("SRList", .srlist=args) } .make_getter(".srlist") setMethod(names, "SRList", function(x) names(.srlist(x))) setReplaceMethod("names", c("SRList", "character"), function(x, value) { lst <- .srlist(x) names(lst) <- value initialize(x, .srlist=lst) }) setMethod(length, "SRList", function(x) length(.srlist(x))) setMethod("[", c(x="SRList", i="ANY", j="missing"), function(x, i, j, ..., drop=FALSE) { initialize(x, .srlist=.srlist(x)[i]) }) setMethod("[[", signature(x="SRList", i="ANY", j="missing"), function(x, i, j, ...) .srlist(x)[[i]]) setMethod(sapply, "SRList", function(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE) { sapply(.srlist(X), FUN, ..., simplify=simplify, USE.NAMES=USE.NAMES) }) setMethod(lapply, "SRList", function(X, FUN, ...) { lapply(.srlist(X), FUN, ...) }) .SRList_show_class <- function(object) { cat("class: ", class(object), "(", length(object), ")\n", sep="") } setMethod(show, "SRList", .SRList_show_class) setMethod(detail, "SRList", function(x,...) { .SRList_show_class(x) .srlist(x) }) ShortRead/R/methods-SRSet.R0000644000126300012640000000504312227066711017023 0ustar00biocbuildphs_compbio.SRSet_validity <- function(object) { msg <- NULL len <- length(readIndex(object)) rlen <- c(readData = nrow(readData(object))) if (!all(rlen==len)) { bad <- rlen!=len msg <- c(msg, sprintf("read length mismatch: expected %d, found:\n %s", rlen, paste(names(rlen)[bad], rlen[bad], sep="=", collapse=", "))) } snames <- sampleNames(sourcePath(object)) slen <- length(snames) oslen <- c(phenoData = nrow(phenoData(object)), readCount = length(readCount(object))) if (!all(oslen==slen)) { bad <- oslen!=slen msg <- c(msg, sprintf("sample length mismatch: expected %d, found:\n %s", slen, paste(names(oslen)[bad], oslen[bad], sep="=", collapse=", "))) } osnames <- sampleNames(object) stest <- snames == osnames if (!all(stest)) msg <- c(msg, sprintf("sample names mismatch:\n %s", slen, paste(snames[!stest], osnames[!stest], sep = "!=", collapse = ", "))) rind <- readIndex(object) if (!all(rind > 0 & rind <= len)) msg <- c(msg, "values in 'readIndex' must be > 0 and <= number of reads") rcount <- readCount(object) if (!all(rcount >= 0)) msg <- c(msg, "values in 'readCount' must be non-negative") if (sum(rcount) != len) msg <- c(msg, sprintf("'sum(readCount)', %d, must equal the number of reads, %d", sum(rcount), len)) if (is.null(msg)) TRUE else msg } setMethod(.srValidity, "SRSet", .SRSet_validity) .make_getter(c("readData", "sourcePath", "readIndex", "readCount")) setMethod(experimentPath, "SRSet", function(object, ...) { callGeneric(sourcePath(object), ...) }) setMethod(sampleNames, "SRSet", function(object) { sampleNames(phenoData(object)) }) setMethod(show, "SRSet", function(object) { callNextMethod() cat("experimentPath(object): ", experimentPath(object), "\n", sep="") }) setMethod(detail, "SRSet", function(x, ...) { callNextMethod() cat("\nsourcePath\n") detail(sourcePath(x), ...) cat("\nphenoData\n") pd <- phenoData(x) cat("pData:\n") print(pData(pd)) cat("varMetadata:\n") print(varMetadata(pd)) }) setMethod(phenoData, "SRSet", function(object) object@phenoData) ## proposed ##setMethod(readSRQ, "SRSet", function(object) readSRQ(sourcePath(object))) ShortRead/R/methods-SRVector.R0000644000126300012640000000215412227066711017532 0ustar00biocbuildphs_compbiosetMethod(.srValidity, "SRVector", function(object) { msg <- NULL cls <- vclass(object) if (length(cls)!=1) msg <- c(msg, "'vclass' must be character(1)") if (!all(sapply(object, is, cls))) msg <- c(msg, sprintf("all elements must satisfy 'is(element, \"%s\")'", cls)) if (is.null(msg)) TRUE else msg }) SRVector <- function(..., vclass) { args <- list(...) if (length(args)>0 && missing(vclass)) vclass <- class(args[[1]]) ok <- sapply(args, is, vclass) if (!all(ok)) { classes <- paste(unique(c(sapply(args, class), vclass)), collapse="' '") .throw(SRError("SRVectorClassDisagreement", "elements and vclass: '%s'", classes), call=match.call()) } new("SRVector", .srlist=args, vclass=vclass) } .make_getter("vclass") setMethod(show, "SRVector", function(object) { callNextMethod() cat("vclass: ", vclass(object), "\n", sep="") }) setMethod(detail, "SRVector", function(x) { .SRList_show_class(x) show(unlist(.srlist(x))) }) ShortRead/R/methods-ShortRead.R0000644000126300012640000001213312227066711017714 0ustar00biocbuildphs_compbio.ShortRead_validity <- function(object) { msg <- NULL if (length(sread(object)) != length(id(object))) msg <- c(msg, sprintf("sread() and id() length mismatch: %d, %d", length(sread(object)), length(id(object)))) if (is.null(msg)) TRUE else msg } setMethod(.srValidity, "ShortRead", .ShortRead_validity) setMethod(sread, "ShortRead", function(object, ...) slot(object, "sread")) setMethod(id, "ShortRead", function(object, ...) slot(object, "id")) setMethod(ShortRead, c("DNAStringSet", "BStringSet"), function(sread, id, ...) { new("ShortRead", sread=sread, id=id, ...) }) setMethod(ShortRead, c("DNAStringSet", "missing"), function(sread, id, ...) { new("ShortRead", sread=sread, id=BStringSet(rep("", length(sread))), ...) }) setMethod(ShortRead, c("missing", "missing"), function(sread, id, ...) { new("ShortRead") }) setMethod(length, "ShortRead", function(x) length(sread(x))) setMethod(width, "ShortRead", function(x) width(sread(x))) ## coerce setMethod(pairwiseAlignment, "ShortRead", function(pattern, subject, ...) { pairwiseAlignment(sread(pattern), subject, ...) }) ## import / export setMethod(readFasta, "character", function(dirPath, pattern=character(0), ..., nrec=-1L, skip=0L) { src <- .file_names(dirPath, pattern) FASTAlist <- lapply(src, readDNAStringSet, nrec=nrec, skip=skip) fasta <- do.call(c, FASTAlist) new("ShortRead", ..., sread=DNAStringSet(fasta, use.names=FALSE), id=BStringSet(names(fasta))) }) setMethod(writeFasta, "ShortRead", function(object, file, mode="w", ...) { dna <- sread(object) names(dna) <- id(object) callGeneric(dna, file=file, mode=mode, ...) }) ## subset setMethod("[", c("ShortRead", "missing", "missing"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortRead", "missing", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortRead", "ANY", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) .ShortRead_subset <- function(x, i, j, ..., drop=TRUE) { if (0L != length(list(...))) .subset_err() initialize(x, sread=sread(x)[i], id=id(x)[i]) } setMethod("[", c(x="ShortRead", i="ANY", j="missing"), .ShortRead_subset) setMethod(append, c("ShortRead", "ShortRead"), function(x, values, after=length(x)) { initialize(x, id=append(id(x), id(values)), sread=append(sread(x), sread(values))) }) ## manip .abc_ShortRead <- function(stringSet, alphabet, ...) { if (!missing(alphabet)) .throw(SRWarn("UserArgumentMismatch", "'alphabet' ignored")) alphabetByCycle(sread(stringSet), ...) } setMethod(alphabetByCycle, "ShortRead", .abc_ShortRead) setMethod(clean, "ShortRead", function(object, ...) { alf <- alphabetFrequency(sread(object), baseOnly=TRUE) object[alf[,'other'] == 0] }) setMethod(dustyScore, "ShortRead", function(x, batchSize=NA, ...) { callGeneric(sread(x), batchSize=batchSize, ...) }) setMethod(srorder, "ShortRead", .forward_x) setMethod(srrank, "ShortRead", .forward_x) setMethod(srsort, "ShortRead", function(x, ...) { x[srorder(x, ...)] }) setMethod(srduplicated, "ShortRead", .forward_x) setMethod(tables, "ShortRead", function(x, n=50, ...) { callGeneric(sread(x), n=n, ...) }) .srdistance_ShortRead_ANY <- function(pattern, subject, ...) { callGeneric(sread(pattern), subject, ...) } setMethod(srdistance, c("ShortRead", "ANY"), .srdistance_ShortRead_ANY) setMethod(narrow, "ShortRead", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { initialize(x, sread=narrow(sread(x), start, end, width, use.names)) }) setMethod(trimLRPatterns, c(subject="ShortRead"), function (Lpattern = "", Rpattern = "", subject, max.Lmismatch = 0, max.Rmismatch = 0, with.Lindels = FALSE, with.Rindels = FALSE, Lfixed = TRUE, Rfixed = TRUE, ranges = FALSE) { ret <- callGeneric(Lpattern, Rpattern, sread(subject), max.Lmismatch, max.Rmismatch, with.Lindels, with.Rindels, Lfixed, Rfixed, ranges=TRUE) if (ranges) ret else narrow(subject, start(ret), end(ret)) }) setMethod(trimEnds, "ShortRead", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(sread(object), a, left, right, relation, ..., ranges=TRUE) if (ranges) rng else narrow(object, start(rng), end(rng)) }) ## show setMethod(show, "ShortRead", function(object) { callNextMethod() wd <- sort(unique(width(object))) if (length(wd)>2) wd <- paste(range(wd), collapse="..") cat("length:", length(object), "reads; width:", wd, "cycles\n") }) setMethod(detail, "ShortRead", function(x, ...) { cat("class: ", class(x), "\n") cat("\nsread:\n") show(sread(x)) cat("\nid:\n") show(id(x)) }) ## summary ## perhaps a 'summary' method with statistics on reads for each sample ShortRead/R/methods-ShortReadFile.R0000644000126300012640000000257712227066711020527 0ustar00biocbuildphs_compbiosetMethod(.ShortReadFile, "character", function(g, path, open="", ...) { path <- .file_names(path, character()) g$new(con=file(path, open, encoding="ASCII"), path=path, ...) }) setMethod(.ShortReadFile, "connection", function(g, path, ...) { descr <- summary(path)$description g$new(con=path, path=descr, ...) }) setMethod(path, "ShortReadFile", function(object, ...) { object$path }) open.ShortReadFile <- function(con, ...) { tryCatch(open(con$con), error=function(err, ...) { .throw(SRError("Input/Output", "error: %s\n%s", conditionMessage(err), Rsamtools:::.ppath(" path", con$path))) }) invisible(con) } close.ShortReadFile <- function(con, ...) { tryCatch(close(con$con), error=function(err, ...) { .throw(SRError("Input/Output", "error: %s\n%s", conditionMessage(err), Rsamtools:::.ppath(" path", con$path))) }) invisible(con) } setMethod(isOpen, "ShortReadFile", function(con, rw="") { tryCatch(isOpen(con$con), error=function(err, ...) { msg <- conditionMessage(err) if (msg != "invalid connection") .throw(SRWarn("Input/Output", "warning: %s\n%s", conditionMessage(err), Rsamtools:::.ppath(" path", con$path))) FALSE }) }) ShortRead/R/methods-ShortReadQ.R0000644000126300012640000002005712227066711020041 0ustar00biocbuildphs_compbio## validity / accessors / constructors setMethod(.srValidity, "ShortReadQ", function(object) { msg <- NULL lenq <- length(quality(object)) lens <- length(sread(object)) if (lenq != lens) { txt <- sprintf("sread and quality length mismatch: %d %d", lenq, lens) msg <- c(msg, txt) } if (!all(width(quality(object)) == width(sread(object)))) { txt <- sprintf("some sread and quality widths differ") msg <- c(msg, txt) } if (is.null(msg)) TRUE else msg }) setMethod(ShortReadQ, c("DNAStringSet", "QualityScore", "BStringSet"), function(sread, quality, id, ...) { new("ShortReadQ", sread=sread, quality=quality, id=id, ...) }) setMethod(ShortReadQ, c("DNAStringSet", "QualityScore", "missing"), function(sread, quality, id, ...) { new("ShortReadQ", sread=sread, quality=quality, id=BStringSet(character(length(sread))), ...) }) setMethod(ShortReadQ, c("DNAStringSet", "BStringSet", "BStringSet"), function(sread, quality, id, ..., qualityType=c("Auto", "FastqQuality", "SFastqQuality"), filter=srFilter(), withIds=TRUE) { if (!missing(filter)) .check_type_and_length(filter, "SRFilter", NA) tryCatch({ qualityType <- match.arg(qualityType) }, error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) tryCatch({ qualityFunc <- switch(qualityType, Auto={ alf <- alphabetFrequency(head(quality, 10000), collapse=TRUE) if (any(alf) && min(which(alf != 0)) < 59) { FastqQuality } else SFastqQuality }, SFastqQuality=SFastqQuality, FastqQuality=FastqQuality) quality <- qualityFunc(quality) srq <- if (withIds) ShortReadQ(sread, quality, id) else ShortReadQ(sread, quality) if (!missing(filter)) srq <- srq[filter(srq)] srq }, error=function(err) { .throw(SRError("IncompatibleTypes", "message: %s", conditionMessage(err))) }) }) setMethod(ShortReadQ, c("DNAStringSet", "BStringSet", "missing"), function(sread, quality, id, ...) { ShortReadQ(sread, quality, BStringSet(character(length(sread))), ...) }) setMethod(ShortReadQ, c("missing", "missing", "missing"), function(sread, quality, id, ...) { ShortReadQ(DNAStringSet(), FastqQuality(), BStringSet(), ...) }) setAs("ShortReadQ", "QualityScaledDNAStringSet", function(from) { q <- quality(from) q <- if (is(q, "SFastqQuality")) as(q, "SolexaQuality") else if (is(q, "FastqQuality")) as(q, "PhredQuality") else as(q, "XStringQuality") QualityScaledDNAStringSet(sread(from), q) }) setMethod(readFastq, "character", function(dirPath, pattern=character(0), ..., withIds=TRUE) { src <- .file_names(dirPath, pattern) tryCatch({ elts <- .Call(.read_solexa_fastq, src, withIds) if (withIds) ShortReadQ(elts[["sread"]], elts[["quality"]], elts[["id"]], ..., withIds=withIds) else ShortReadQ(elts[["sread"]], elts[["quality"]], ..., withIds=withIds) }, error=function(err) { .throw(SRError("Input/Output", "file(s):\n %s\n message: %s", paste(src, collapse="\n "), conditionMessage(err))) }) }) setMethod(writeFastq, c("ShortReadQ", "character"), function(object, file, mode="w", full=FALSE, ...) { if (length(file) != 1) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "file", "character(1)")) if (file.exists(file) && mode != "a") .throw(SRError("UserArgumentMismatch", "file '%s' exists, but mode is not 'a'", file)) file <- path.expand(file) ## FIXME: different quality types max_width <- max(0L, unique(width(id(object))), unique(width(sread(object))), unique(width(quality(object)))) if (!is(quality(quality(object)), "XStringSet")) .throw(SRError("UserArgumentMismatch", "'is(<%s>, \"%s\")' failed", "quality", "XStringSet")) .Call(.write_fastq, id(object), sread(object), quality(quality(object)), file, mode, full, max_width) invisible(length(object)) }) ## coerce setMethod(pairwiseAlignment, "ShortReadQ", function(pattern, subject, ...) { mc <- as.list(match.call()) if (is.null(mc$patternQuality)) mc$patternQuality <- quality(quality(pattern)) do.call(callNextMethod, c(list(pattern, subject), mc)) }) ## subset setMethod("[", c("ShortReadQ", "missing", "missing"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortReadQ", "missing", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) setMethod("[", c("ShortReadQ", "ANY", "ANY"), function(x, i, j, ..., drop=NA) .subset_err()) .ShortReadQ_subset <- function(x, i, j, ..., drop=TRUE) { if (0L != length(list(...))) .subset_err() initialize(x, sread=sread(x)[i], id=id(x)[i], quality=quality(x)[i]) } setMethod("[", c("ShortReadQ", "ANY", "missing"), .ShortReadQ_subset) setMethod(append, c("ShortReadQ", "ShortReadQ"), function(x, values, after=length(x)) { initialize(x, id=append(id(x), id(values)), sread=append(sread(x), sread(values)), quality=append(quality(x), quality(values))) }) setMethod(narrow, "ShortReadQ", function(x, start=NA, end=NA, width=NA, use.names=TRUE) { initialize(x, sread=narrow(sread(x), start, end, width, use.names), quality=narrow(quality(x), start, end, width, use.names)) }) ## manip .abc_ShortReadQ <- function(stringSet, alphabet, ...) { if (!missing(alphabet)) { if (!(is.list(alphabet) && length(alphabet) == 2)) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "alphabet", "list(2)")) if (!all(sapply(alphabet, is, "character"))) .throw(SRError("UserArgumentMismatch", "'%s' list elements must be '%s'", "alphabet", "character()")) } sread <- sread(stringSet) quality <- quality(stringSet) if (missing(alphabet)) alphabet <- list(Biostrings::alphabet(sread), Biostrings::alphabet(quality)) w <- max(0L, width(stringSet)) res <- .Call(.alphabet_pair_by_cycle, sread, quality(quality), w, alphabet[[1]], alphabet[[2]]) dm <- dimnames(res) dm[[3]]<- seq_len(w) names(dm)[[3]] <- "cycle" dimnames(res) <- dm res } setMethod(alphabetByCycle, "ShortReadQ", .abc_ShortReadQ) setMethod(alphabetScore, "ShortReadQ", .forward_objq) setMethod(trimTailw, "ShortReadQ", function(object, k, a, halfwidth, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, halfwidth, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimTails, "ShortReadQ", function(object, k, a, successive=FALSE, ..., ranges=FALSE) { rng <- callGeneric(quality(object), k, a, successive, ..., ranges=TRUE) if (ranges) rng else narrow(object, 1L, end(rng))[0L != width(rng)] }) setMethod(trimEnds, "ShortReadQ", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) { rng <- callGeneric(quality(object), a, left, right, relation, ..., ranges=TRUE) if (ranges) rng else narrow(object, start(rng), end(rng)) }) ## show setMethod(detail, "ShortReadQ", function(x, ...) { callNextMethod() detail(quality(x)) }) ## summary ## perhaps summary stats like ShortRead except with qualities ShortRead/R/methods-SolexaExportQA.R0000644000126300012640000002565412227066711020714 0ustar00biocbuildphs_compbio.SolexaExportQA <- function(x, ...) { new("SolexaExportQA", .srlist=x, ...) } ## qa .qa_lst_as_data_frame <- function(lst) { if (length(lst)==0) return(data.frame()) nms <- names(lst[[1]]) sublst <- sapply(nms, function(nm) { subListExtract(lst, nm, simplify=TRUE) }) names(sublst) <- nms do.call(data.frame, sublst) } .qa_Solexa_tileStats <- function(dirPath, pattern, ...) { .qa_Solexa_tileStats_tile <- function(dirPath, pattern, ...) { lane <- as.numeric(sub("s_([0-9]+)_.*", "\\1", pattern)) tile <- as.numeric(sub("s_[0-9]+_([0-9]+)_.*", "\\1", pattern)) dna <- readXStringColumns(dirPath, pattern, colClasses=list(NULL, NULL, NULL, NULL, "DNAString"))[[1]] list(lane=lane, tile=tile, slane=(lane-1)*3+trunc((tile-1)/100)+1, stile=1+pmin((tile-1)%%200, (200-tile)%%200), nReads=length(dna), nClean=sum(alphabetFrequency(dna, baseOnly=TRUE)[,"other"]==0)) } if (length(pattern)==0) pattern=".*_seq.txt$" lst <- srapply(list.files(dirPath, pattern, full.names=TRUE), .qa_Solexa_tileStats_tile, dirPath=dirPath, ...) .qa_lst_as_data_frame(lst) } .qa_SolexaExport_lane <- function(dirPath, pattern, ..., type="SolexaExport", verbose=FALSE) { if (verbose) message("qa 'SolexaExport' pattern:", pattern) readLbls <- c("read", "filtered", "aligned") rpt <- readAligned(dirPath, pattern, type, ...) doc <- .qa_depthOfCoverage(rpt, pattern) ac <- .qa_adapterContamination(rpt, pattern, ...) df <- pData(alignData(rpt)) filterIdx <- df$filtering=="Y" mapIdx <- !is.na(position(rpt)) nbins <- max(df$tile) tiles <- seq_len(nbins) nReadByTile <- tabulate(df$tile, nbins) nFilterByTile <- tabulate(df$tile[filterIdx], nbins) nMapByTile <- tabulate(df$tile[mapIdx], nbins) qualityScore <- alphabetScore(quality(rpt)) / width(quality(rpt)) qualityDf <- function(qscore) { d <- density(qscore) data.frame(quality=d$x, density=d$y, lane=pattern) } qualityScoreRead <- qualityDf(qualityScore) qualityScoreFiltered <- qualityDf(qualityScore[filterIdx]) qualityScoreAligned <- qualityDf(qualityScore[mapIdx]) abc <- alphabetByCycle(rpt) baseQuality <- apply(abc, 2, sum) alignQuality <- table(quality(alignQuality(rpt))[mapIdx]) tablesRead <- tables(sread(rpt)) tablesFiltered <- tables(sread(rpt)[filterIdx]) tablesAligned <- tables(sread(rpt)[mapIdx]) frequentSequences <- data.frame(sequence=c( names(tablesRead$top), names(tablesFiltered$top), names(tablesAligned$top)), count=c( as.integer(tablesRead$top), as.integer(tablesFiltered$top), as.integer(tablesAligned$top)), type=rep( readLbls, c(length(tablesRead$top), length(tablesFiltered$top), length(tablesAligned$top))), lane=pattern) sequenceDistribution <- cbind(rbind(tablesRead$distribution, tablesFiltered$distribution, tablesAligned$distribution), type=rep( readLbls, c(nrow(tablesRead$distribution), nrow(tablesFiltered$distribution), nrow(tablesAligned$distribution))), lane=pattern) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality(abc, quality(rpt), pattern) list(readCounts=data.frame( read=sum(nReadByTile), filtered=sum(nFilterByTile), aligned=sum(nMapByTile), row.names=pattern), baseCalls=local({ n <- apply(abc, 1, sum) data.frame(A=n["A"], C=n["C"], G=n["G"], T=n["T"], N=n["N"], row.names=pattern) }), readQualityScore=cbind( rbind(qualityScoreRead, qualityScoreFiltered, qualityScoreAligned), type=rep( readLbls, c(nrow(qualityScoreRead), nrow(qualityScoreFiltered), nrow(qualityScoreAligned)))), baseQuality=data.frame( score=as.vector(names(baseQuality)), count=as.vector(baseQuality), lane=pattern, row.names=NULL), alignQuality=data.frame( score=as.numeric(names(alignQuality)), count=as.vector(alignQuality), lane=pattern, row.names=NULL), frequentSequences=frequentSequences, sequenceDistribution=sequenceDistribution, perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=c(nReadByTile, nFilterByTile, nMapByTile), type=rep( readLbls, c(length(nReadByTile), length(nFilterByTile), length(nMapByTile))), tile=rep(tiles, 3), lane=pattern, row.names=NULL), medianReadQualityScore=local({ tidx <- as.character(tiles) data.frame(score=c( tapply(qualityScore, df$tile, median)[tidx], tapply(qualityScore[filterIdx], df$tile[filterIdx], median)[tidx], tapply(qualityScore[mapIdx], df$tile[mapIdx], median)[tidx]), type=rep(readLbls, each=length(tidx)), tile=as.integer(tidx), lane=pattern, row.names=NULL) })), depthOfCoverage=doc, adapterContamination=ac) } .qa_SolexaExport <- function(dirPath, pattern, type="SolexaExport", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- srapply(basename(fls), .qa_SolexaExport_lane, dirPath=dirPath, type=type, ..., reduce=.reduce(1), verbose=verbose, USE.NAMES=TRUE) ## collapse into data frames lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination")) .SolexaExportQA(lst) } ## report setMethod(.report_pdf, "SolexaExportQA", function(x, dest, type, ...) { qa <- x # mnemonic alias to <- tempfile() save(qa, file=to) res <- callGeneric(to, dest, type, ...) unlink(to) res }) setMethod(report_html, "SolexaExportQA", function (x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "5000-PerTile.html", "6000-Alignment.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] perTile <- qa[["perTile"]] readCnt <- perTile[["readCounts"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.htmlReadQuality( dest, "readQuality", qa), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=hwrite( .freqSequences(qa, "filtered"), border=0), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_img( dest, "perCycleQuality", .plotCycleQuality(perCycle$quality)), PER_TILE_HISTOGRAM=local({ cnts <- readCnt[readCnt$type=="read", "count"] hist <- histogram(cnts, breaks=40, xlab="Reads per tile", panel=function(x, ...) { panel.abline(v=quantile(x, .1), col="red", lty=2) panel.histogram(x, ...) }, col="white") .html_img(dest, "perTileHistogram", hist) }), PER_TILE_COUNT_FIGURE=.html_img( dest, "perTileCount", .plotTileCounts(readCnt[readCnt$type=="read",])), PER_TILE_QUALITY_FIGURE=local({ qscore <- perTile[["medianReadQualityScore"]] score <- qscore[qscore$type=="read",] .html_img(dest, "perTileQuality", .plotTileQualityScore(score)) }), ALIGN_QUALITY_FIGURE=.html_img( dest, "alignmentQuality", .plotAlignQuality(qa[["alignQuality"]])), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0)) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-SolexaIntensity.R0000644000126300012640000002121712227066711021166 0ustar00biocbuildphs_compbio## SolexaIntensityInfo setMethod(.srValidity, "SolexaIntensityInfo", function(object) { msg <- NULL reqd <- c("lane", "tile", "x", "y") if (slot(object, ".init")==TRUE && !all(reqd %in% varLabels(object))) { missing <- reqd[!reqd %in% names(object)] msg <- c(msg, sprintf("'%s' must contain columns '%s'", class(object), paste(missing, collapse="' '"))) } if (is.null(msg)) TRUE else msg }) ## SolexaIntensity SolexaIntensity <- function(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer(nrow(intensity))), ...) { .hasMeasurementError <- mkScalar(!missing(measurementError)) new("SolexaIntensity", intensity=ArrayIntensity(intensity), measurementError=ArrayIntensity(measurementError), readInfo=readInfo, .hasMeasurementError=.hasMeasurementError, ...) } .readIntensities_SolexaIntensity <- function(dirPath, pattern=character(0), ..., intExtension="_int.txt", nseExtension="_nse.txt", withVariability=TRUE, verbose=FALSE) { .check_type_and_length(withVariability, "logical", 1) .check_type_and_length(pattern, "character", NA) .check_type_and_length(intExtension, "character", 1) .check_type_and_length(nseExtension, "character", 1) intPattern <- paste(pattern, intExtension, sep="") nrec <- countLines(dirPath, intPattern) crec <- c(0, cumsum(nrec)) if (withVariability) { nsePattern <- paste(pattern, nseExtension, sep="") extrec <- countLines(dirPath, nsePattern) if (length(nrec) != length(extrec)) { .throw(SRError("UserArgumentMismatch", "number of files found differs between 'intensity' (%d) and 'nse' (%d)\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", length(nrec), length(extrec), dirPath, pattern, intExtension, nseExtension)) } if (!all(nrec == extrec)) { .throw(SRError("UserArgumentMismatch", "line counts differ between 'intensity' and 'nse'\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", dirPath, pattern, intExtension, nseExtension)) } } fls <- .file_names(dirPath, intPattern) gz <- gzfile(fls[[1]]); open(gz) tryCatch({ ln <- readLines(gz, 1) }, finally=close(gz)) cycles <- length(gregexpr("\t", ln, fixed=TRUE)[[1]]) - 3L reads <- sum(nrec) what <- c(rep(list(integer()), 4), rep(list(numeric()), cycles * 4L)) int <- array(numeric(), c(reads, 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) df <- data.frame(lane=integer(reads), tile=integer(reads), x=integer(reads), y=integer(reads)) for (i in seq_along(fls)) { tryCatch({ gz <- gzfile(fls[[i]]); open(gz) data <- scan(gz, what, nrec[[i]],..., quiet=!verbose) idx <- (crec[i]+1):crec[i+1] int[idx,,] <- array(unlist(data[-(1:4)]), c(nrec[[i]], 4L, cycles)) df[idx,] <- data[1:4] }, error=function(err) { msg <- sprintf("parsing '%s'\n file: %s\n error: %s", "intPattern", fls[[i]], conditionMessage(err)) .throw(SRError("Input/Output", msg)) }, finally=close(gz)) } if (withVariability) { fls <- .file_names(dirPath, nsePattern) nse <- array(numeric(), c(reads, 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) what <- c(rep(list(NULL), 4), what[-(1:4)]) for (i in seq_along(fls)) { tryCatch({ gz <- gzfile(fls[[i]]); open(gz) data <- scan(gz, what, nrec[[i]], ..., quiet=!verbose) idx <- (crec[i]+1):crec[i+1] nse[idx,,] <- array(unlist(data[-(1:4)]), c(nrec[[i]], 4L, cycles)) }, error=function(err) { msg <- sprintf("parsing '%s'\n file: %s\n error: %s", "nsePattern", fls[[i]], conditionMessage(err)) .throw(SRError("Input/Output", msg)) }, finally=close(gz)) } } readInfo <- SolexaIntensityInfo(df[[1]], df[[2]], df[[3]], df[[4]]) if (withVariability) SolexaIntensity(int, nse, readInfo) else SolexaIntensity(int, readInfo=readInfo) } .read_ipar_int_array <- function(fileNames, nrec, cycles, ..., verbose=FALSE) { reads <- sum(nrec) crec <- cumsum(c(0, nrec)) a <- array(numeric(), c(reads, 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) for (i in seq_along(fileNames)) { tryCatch({ gz <- gzfile(fileNames[[i]]); open(gz) data <- scan(gz, nmax=nrec[[i]] * 4 * cycles, comment.char="#", ..., quiet=!verbose) idx <- (crec[i]+1):crec[i+1] a[idx,,] <- aperm(array(data, c(4L, nrec[[i]], cycles)), c(2,1,3)) }, error=function(err) { msg <- sprintf("parsing: %s\n error: %s", fileNames[[i]], conditionMessage(err)) .throw(SRError("Input/Output", msg)) }, finally=close(gz)) } a } .readIntensities_IparIntensity <- function(dirPath, pattern=character(0), ..., intExtension="_int.txt.p.gz", nseExtension="_nse.txt.p.gz", posExtension="_pos.txt", withVariability=TRUE, verbose=FALSE) { .check_type_and_length(withVariability, "logical", 1) .check_type_and_length(pattern, "character", NA) .check_type_and_length(intExtension, "character", 1) .check_type_and_length(nseExtension, "character", 1) .check_type_and_length(posExtension, "character", 1) intPattern <- paste(pattern, intExtension, sep="") intFiles <- .file_names(dirPath, intPattern) posPattern <- paste(pattern, posExtension, sep="") posFiles <- .file_names(dirPath, posPattern) dims <- .Call(.count_ipar_int_recs, intFiles) # reads, cycles nrec <- dims$reads crec <- cumsum(c(0, nrec)) cycles <- dims$cycles[[1]] if (withVariability) { nsePattern <- paste(pattern, nseExtension, sep="") nseFiles <- .file_names(dirPath, nsePattern) extrec <- .Call(.count_ipar_int_recs, nseFiles)$reads if (length(nrec) != length(extrec)) { .throw(SRError("UserArgumentMismatch", "number of files found differs between 'int' (%d) and 'nse' (%d)\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", length(nrec), length(extrec), dirPath, pattern, intExtension, nseExtension)) } if (!all(nrec == extrec)) { .throw(SRError("UserArgumentMismatch", "read or cycle counts differ between 'intensity' and 'nse'\n dirPath: '%s'\n pattern: '%s'\n intExtension: '%s'\n nseExtension: '%s'", dirPath, pattern, intExtension, nseExtension)) } } int <- .read_ipar_int_array(intFiles, nrec, cycles, ..., verbose=verbose) if (withVariability) nse <- .read_ipar_int_array(nseFiles, nrec, cycles, ..., verbose=verbose) ## lane, tile, x, y lanes <- sub("s_([0-9]+)_.*", "\\1", basename(posFiles)) tiles <- as.integer(sub("s_[0-9]+_([0-9]+)_.*", "\\1", basename(posFiles))) pos <- do.call(rbind, mapply(function(fl, lane, tile) { cbind(lane=lane, tile=tile, read.table(fl)) }, posFiles, lanes, tiles, SIMPLIFY=FALSE, USE.NAMES=FALSE)) readInfo <- SolexaIntensityInfo(pos[[1]], pos[[2]], pos[[3]], pos[[4]]) if (withVariability) SolexaIntensity(int, nse, readInfo) else SolexaIntensity(int, readInfo=readInfo) } setMethod(get("["), c("SolexaIntensity", "ANY", "ANY", "ANY"), function(x, i, j, k, ..., drop=TRUE) { if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE if (missing(k)) k <- TRUE if (.hasMeasurementError(x)) initialize(x, intensity=intensity(x)[i,j,k], measurementError=measurementError(x)[i,j,k], readInfo=readInfo(x)[i,]) else initialize(x, intensity=intensity(x)[i,j,k], readInfo=readInfo(x)[i,]) }) ShortRead/R/methods-SolexaPath.R0000644000126300012640000001017012227066711020070 0ustar00biocbuildphs_compbiosetMethod(.srValidity, "SolexaPath", function(object) { msg <- NULL if (length(experimentPath(object))!=1) msg <- c(msg, "SolexaPath 'experimentPath' must be character(1)") if (is.null(msg)) TRUE else msg }) SolexaPath <- function(experimentPath=NA_character_, dataPath=.srPath(experimentPath, "Data"), scanPath=.srPath(dataPath, "GoldCrest"), imageAnalysisPath=.srPath(dataPath, "^(C[[:digit:]]|IPAR|Intensities)"), baseCallPath=.srPath(imageAnalysisPath, "^(Bustard|BaseCalls)"), analysisPath=.srPath(baseCallPath, "^GERALD"), ..., verbose=FALSE) { if (verbose) { .checkPath(experimentPath) .checkPath(dataPath) .checkPath(scanPath) .checkPath(imageAnalysisPath) .checkPath(baseCallPath) .checkPath(analysisPath) } new("SolexaPath", ..., basePath=experimentPath, dataPath=dataPath, scanPath=scanPath, imageAnalysisPath=imageAnalysisPath, baseCallPath=baseCallPath, analysisPath=analysisPath) } .make_getter(slotNames("SolexaPath")) .readIntensities_SolexaPath <- function(dirPath, pattern=character(0), run, ...) { callGeneric(imageAnalysisPath(dirPath)[run], pattern=pattern, ...) } setMethod(readIntensities, "SolexaPath", .readIntensities_SolexaPath) .readPrb_SolexaPath <- function(dirPath, pattern=".*_prb.txt.*", run, ...) { if (missing(pattern)) pattern <- ".*_prb.txt.*" callGeneric(baseCallPath(dirPath)[run], pattern, ...) } setMethod(readPrb, "SolexaPath", .readPrb_SolexaPath) setMethod(readFasta, "SolexaPath", function(dirPath, pattern=character(0), ..., nrec=-1L, skip=0L) { callGeneric(dirPath=analysisPath(dirPath), pattern=pattern, ..., nrec=nrec, skip=skip) }) .readFastq_SolexaPath <- function(dirPath, pattern=".*_sequence.txt$", run, ..., qualityType="SFastqQuality") { dirPath <- analysisPath(dirPath)[run] if (is.na(dirPath)) .throw(SRError("Input/Output", "'%s' is 'NA' in '%s'", "analysisPath", "dirPath")) callGeneric(dirPath, ..., pattern=pattern, qualityType=qualityType) } setMethod(readFastq, "SolexaPath", .readFastq_SolexaPath) setMethod(readQseq, "SolexaPath", function(dirPath, pattern=".*_qseq.txt.*", run, ..., as="ShortReadQ", filtered=FALSE, verbose=FALSE) { callGeneric(baseCallPath(dirPath)[run], pattern=pattern, ..., as=as, filtered=filtered, verbose=verbose) }) .readBaseQuality_SolexaPath <- function(dirPath, seqPattern=".*_seq.txt.*", prbPattern=".*_prb.txt.*", run, ...) { dirPath <- baseCallPath(dirPath)[run] .readBaseQuality_Solexa(dirPath, seqPattern=seqPattern, prbPattern=prbPattern, ...) } setMethod(readBaseQuality, "SolexaPath", .readBaseQuality_SolexaPath) .readAligned_SolexaPath <- function(dirPath, pattern=".*_export.txt.*", run, ...) { dirPath <- analysisPath(dirPath)[run] .readAligned_character(dirPath, pattern, type="SolexaExport", ...) } setMethod(readAligned, "SolexaPath", .readAligned_SolexaPath) .qa_SolexaPath <- function(dirPath, pattern=character(0), run, ...) { dirPath <- analysisPath(dirPath)[run] if (missing(pattern)) pattern <- ".*_export.txt$" callGeneric(dirPath, pattern, type="SolexaExport", ...) } setMethod(qa, "SolexaPath", .qa_SolexaPath) setMethod(report, "SolexaPath", function (x, ..., dest = tempfile(), type="html") { callGeneric(qa(x, ...), dest=dest, type=type) }) setMethod(show, "SolexaPath", function(object) { callNextMethod() .show_additionalPathSlots(object) }) setMethod(detail, "SolexaPath", function(x, ...) { callNextMethod() .detail_additionalPathSlots(x) }) ShortRead/R/methods-SolexaRealignQA.R0000644000126300012640000001532612227066711021007 0ustar00biocbuildphs_compbio.SolexaRealignQA <- function(x, ...) { new("SolexaRealignQA", .srlist=x, ...) } ## qa .qa_SolexaRealign_lane <- function(dirPath, pattern, ..., type="SolexaRealign", verbose=FALSE) { if (verbose) message("qa 'SolexaRealign' pattern:", pattern) readLbls <- c("read", "aligned") aln <- readAligned(dirPath, pattern, type=type, ...) doc <- .qa_depthOfCoverage(aln, pattern) ac <- .qa_adapterContamination(aln, pattern, ...) df <- pData(alignData(aln)) mapIdx <- alignData(aln)[["nMatch"]] == 1L alf <- .qa_alphabetFrequency(sread(aln), baseOnly=TRUE, collapse=TRUE) abc <- alphabetByCycle(aln) alignQuality <- table(quality(alignQuality(aln))[mapIdx]) tablesRead <- tables(sread(aln)) tablesAligned <- tables(sread(aln)[mapIdx]) frequentSequences <- data.frame(sequence=c( names(tablesRead$top), names(tablesAligned$top)), count=c( as.integer(tablesRead$top), as.integer(tablesAligned$top)), type=rep( readLbls, c(length(tablesRead$top), length(tablesAligned$top))), lane=pattern) sequenceDistribution <- cbind(rbind(tablesRead$distribution, tablesAligned$distribution), type=rep( readLbls, c(nrow(tablesRead$distribution), nrow(tablesAligned$distribution))), lane=pattern) perCycleBaseCall <- .qa_perCycleBaseCall(abc, pattern) perCycleQuality <- .qa_perCycleQuality() malntbl <- table(alignData(aln)[["nMatch"]]) list(readCounts=data.frame( read=length(aln), filtered=NA, aligned=sum(mapIdx), row.names=pattern), baseCalls=data.frame( A=alf[["A"]], C=alf[["C"]], G=alf[["G"]], T=alf[["T"]], N=alf[["other"]], row.names=pattern), readQualityScore=data.frame( score=numeric(0), type=factor(character(0), levels=readLbls)), baseQuality=data.frame( score=numeric(0), count=integer(0), lane=character(0), row.names=NULL), alignQuality=data.frame( score=as.numeric(names(alignQuality)), count=as.vector(alignQuality), lane=pattern, row.names=NULL), frequentSequences=frequentSequences, sequenceDistribution=sequenceDistribution, perCycle=list( baseCall=perCycleBaseCall, quality=perCycleQuality), perTile=list( readCounts=data.frame( count=integer(0), type=character(0), tile=integer(0), lane=character(0)), medianReadQualityScore=data.frame( score=integer(), type=character(), tile=integer(), lane=integer(), row.names=NULL)), multipleAlignment=data.frame( Count=as.vector(malntbl), Matches=as.integer(names(malntbl)), lane=pattern, row.names=NULL), depthOfCoverage=doc, adapterContamination=ac) } .qa_SolexaRealign <- function(dirPath, pattern, type="SolexaRealign", ..., verbose=FALSE) { fls <- .file_names(dirPath, pattern) lst <- srapply(basename(fls), .qa_SolexaRealign_lane, dirPath=dirPath, type=type, ..., reduce=.reduce(1), verbose=verbose, USE.NAMES=TRUE) lst <- list(readCounts=.bind(lst, "readCounts"), baseCalls=.bind(lst, "baseCalls"), readQualityScore=.bind(lst, "readQualityScore"), baseQuality=.bind(lst, "baseQuality"), alignQuality=.bind(lst, "alignQuality"), frequentSequences=.bind(lst, "frequentSequences"), sequenceDistribution=.bind(lst, "sequenceDistribution"), perCycle=local({ lst <- subListExtract(lst, "perCycle") list(baseCall=.bind(lst, "baseCall"), quality=.bind(lst, "quality")) }), perTile=local({ lst <- subListExtract(lst, "perTile") list(readCounts=.bind(lst, "readCounts"), medianReadQualityScore=.bind( lst, "medianReadQualityScore")) }), multipleAlignment=.bind(lst, "multipleAlignment"), depthOfCoverage=.bind(lst, "depthOfCoverage"), adapterContamination=.bind(lst, "adapterContamination")) .SolexaRealignQA(lst) } ## report setMethod(report_html, "SolexaRealignQA", function (x, dest, type, ...) { qa <- .qa_sampleKey(x) dir.create(dest, recursive=TRUE) fls <- c("0000-Header.html", "1000-Overview.html", "1100-Overview-SolexaRealign.html", "2000-RunSummary.html", "3000-ReadDistribution.html", "4000-CycleSpecific.html", "6000-Alignment.html", "7000-MultipleAlignment.html", "8000-DepthOfCoverage.html", "9000-AdapterContamination.html", "9999-Footer.html") sections <- system.file("template", fls, package="ShortRead") perCycle <- qa[["perCycle"]] values <- list(SAMPLE_KEY=hwrite(qa[["keyValue"]], border=0), PPN_COUNT=.html_img( dest, "readCount", .plotReadCount(qa)), PPN_COUNT_TBL=hwrite( .ppnCount(qa[["readCounts"]]), border=0), BASE_CALL_COUNT=.html_img( dest, "baseCalls", .plotNucleotideCount(qa)), READ_QUALITY_FIGURE=.html_NA(), READ_OCCURRENCES_FIGURE=.htmlReadOccur( dest, "readOccurences", qa), FREQUENT_SEQUENCES_READ=hwrite( .freqSequences(qa, "read"), border=0), FREQUENT_SEQUENCES_FILTERED=.html_NA(), FREQUENT_SEQUENCES_ALIGNED=hwrite( .freqSequences(qa, "aligned"), border=0), CYCLE_BASE_CALL_FIGURE=.html_img( dest, "perCycleBaseCall", .plotCycleBaseCall(perCycle$baseCall)), CYCLE_QUALITY_FIGURE=.html_NA(), ALIGN_QUALITY_FIGURE=.html_img( dest, "alignmentQuality", .plotAlignQuality(qa[["alignQuality"]])), MULTIPLE_ALIGNMENT_COUNT_FIGURE=.html_img( dest, "multipleAlignmentCount", .plotMultipleAlignmentCount(qa[["multipleAlignment"]])), DEPTH_OF_COVERAGE_FIGURE=.html_img( dest, "depthOfCoverage", .plotDepthOfCoverage(qa[["depthOfCoverage"]])), ADAPTER_CONTAMINATION=hwrite( .df2a(qa[["adapterContamination"]]), border=0)) .report_html_do(dest, sections, values, ...) }) ShortRead/R/methods-SolexaSet.R0000644000126300012640000000550712227066711017737 0ustar00biocbuildphs_compbiosetMethod(.srValidity, "SolexaSet", function(object) { msg <- NULL nr <- nrow(laneDescription(object)) if (nr!=8) msg <- c(msg, sprintf("'laneDescription' must have 8 rows, but has %d", nr)) if (is.null(msg)) TRUE else msg }) .SolexaSet_SolexaPath <- function(path, laneDescription, ...) { if (missing(laneDescription)) { laneDescription <- new("AnnotatedDataFrame", data=data.frame(1:8)[,FALSE], varMetadata=data.frame(labelDescription=character(0)), dimLabels=c("laneNames", "laneColumns")) } else { if (!is(laneDescription, "AnnotatedDataFrame")) { cls <- paste(class(laneDescription), collapse=" ") .throw(SRError("UserArgumentMismatch", "expected '%s' as '%s', but got '%s'", "AnnotatedDataFrame", "laneDescription", cls)) } dimLabels(laneDescription) <- c("laneNames", "laneColumns") } new("SolexaSet", ..., solexaPath=path, laneDescription=laneDescription) } setMethod(SolexaSet, "SolexaPath", .SolexaSet_SolexaPath) setMethod(SolexaSet, "character", function(path, ...) { .SolexaSet_SolexaPath(SolexaPath(path), ...) }) .make_getter(slotNames("SolexaSet")) setMethod(laneNames, "SolexaSet", function(object, ...) { laneNames(laneDescription(object)) }) setMethod(laneNames, "AnnotatedDataFrame", function(object) { sampleNames(object) }) ## .qa_SolexaSet <- function(dirPath, pattern=character(0), ...) ## { ## dirPath <- analysisPath(dirPath) ## if (missing(pattern)) ## pattern <- ".*_export.txt$" ## callGeneric(dirPath, pattern, type="SolexaExport", ...) ## } ## setMethod(qa, "SolexaSet", .qa_solexa_export) ## .report_SolexaSet <- function(x, run=1, ..., qaFile=tempfile(), ## dest=tempfile(), type="pdf" ) ## { ## report(qa(x, run=run)) ## } ## alignment .readAligned_SolexaSet <- function(dirPath, pattern=".*_export.txt$", run, ...) { dirPath <- analysisPath(solexaPath(dirPath))[run] .readAligned_character(dirPath, pattern, type="SolexaExport", ...) } setMethod(readAligned, "SolexaSet", .readAligned_SolexaSet) setMethod(show, "SolexaSet", function(object) { callNextMethod() cat("experimentPath(solexaPath(object)):\n ", experimentPath(solexaPath(object)), "\n", sep="") cat("laneDescription:\n") print(laneDescription(object)) }) setMethod(detail, "SolexaSet", function(x, ...) { callNextMethod() cat("\n") detail(solexaPath(x), ...) cat("\nclass: AnnotatedDataFrame\n") ld <- laneDescription(x) cat("pData:\n") print(pData(ld)) cat("varMetadata:\n") print(varMetadata(ld)) }) ShortRead/R/pileup.R0000644000126300012640000000022312227066711015653 0ustar00biocbuildphs_compbiopileup <- function ( start, fraglength, chrlength, dir = strand( "+" ), readlength = fraglength, offset = 1 ) { .Defunct("coverage") } ShortRead/R/qa.R0000644000126300012640000000245412227066711014766 0ustar00biocbuildphs_compbio.qa_character <- function(dirPath, pattern=character(0), type=c("SolexaExport", "SolexaRealign", "Bowtie", "MAQMap", "MAQMapShort", "fastq", "BAM"), ...) { tryCatch(type <- match.arg(type), error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) switch(type, SolexaExport=.qa_SolexaExport(dirPath, pattern, type=type, ...), SolexaRealign=.qa_SolexaRealign(dirPath, pattern, type=type, ...), Bowtie=.qa_Bowtie(dirPath, pattern, type=type, ...), MAQMap=.qa_MAQMap(dirPath, pattern, type=type, ...), MAQMapShort=.qa_MAQMap(dirPath, pattern, type=type, ...), fastq=.qa_fastq(dirPath, pattern, type=type, ...), BAM=.qa_BAM(dirPath, pattern, type=type, ...)) } setMethod(qa, "character", .qa_character) setMethod(qa, "list", function(dirPath, ...) { if (length(unique(sapply(dirPath, class))) != 1) .throw(SRError("UserArgumentMismatch", "qa,list-method 'dirPath' arguments must all be of same class")) l <- mapply(qa, dirPath, names(dirPath), MoreArgs=list(...), SIMPLIFY=FALSE) do.call(rbind, l) }) ShortRead/R/qa_utilities.R0000644000126300012640000003543612227066711017067 0ustar00biocbuildphs_compbio.bind <- function(lst, elt) { do.call(rbind, subListExtract(lst, elt, keep.names=FALSE)) } .qa_alphabetFrequency <- function(object, ..., collapse=FALSE, baseOnly=FALSE) { ## avoiding integer overflow in Biostrings::alphabetFrequency if (!collapse) { msg <- "'collapse' must be TRUE for '.qa_alphabetFrequency'" .throw(SRError("InternalError", msg)) } alf <- alphabetByCycle(object) mode(alf) <- "numeric" alf <- rowSums(alf) if (baseOnly && is(object, "DNAStringSet")) { bases <- names(Biostrings:::xscodes(object, baseOnly=baseOnly)) idx <- names(alf) %in% bases alf <- c(alf[idx], other=sum(alf[!idx])) } alf } ## qa summary .qa_sampleKey <- function(qa) ## use numbers to represent samples, updating all elements of { value <-rownames(qa[["readCounts"]]) kv <- data.frame(Key=factor(seq_along(value), levels=seq_along(value)), row.names=value) lst <- c(list(keyValue=kv), Map(function(elt, nm, kv) { switch(nm, readCounts=, baseCalls=, adapterContamination={ rownames(elt) <- kv[rownames(elt), "Key"] elt }, readQualityScore=, baseQuality=, alignQuality=, frequentSequences=, sequenceDistribution={ elt$lane <- kv[elt$lane, "Key"] elt }, depthOfCoverage={ elt$Lane <- kv[elt$Lane, "Key"] elt }, perCycle=, perTile={ Map(function(elt, nm, kv) { elt$lane <- kv[elt$lane, "Key"] elt }, elt, names(elt), MoreArgs=list(kv)) },{ msg <- sprintf("unhandled QA element '%s'", nm) .throw(SRError("InternalError", msg)) }) }, .srlist(qa), names(qa), MoreArgs=list(kv))) initialize(qa, .srlist=lst) } .qa_qdensity <- function(quality) { qscore <- alphabetScore(quality) / width(quality) if (length(qscore) >= 2) { density(qscore) } else { pseudo <- list(x=NA, y=NA, bw=Inf, n=0) class(pseudo) <- "density" pseudo } } .qa_perCycleBaseCall <- function(abc, lane) { if (missing(abc) || dim(abc)[[3]] == 0) { df <- data.frame(Cycle=integer(0), Base=factor(), Count=integer(0), lane=character(0)) return(df) } abc <- apply(abc, c(1, 3), sum) df <- data.frame(Cycle=as.integer(colnames(abc)[col(abc)]), Base=factor(rownames(abc)[row(abc)]), Count=as.vector(abc), lane=lane, row.names=NULL) df[df$Count != 0,] } .qa_perCycleQuality <- function(abc, quality, lane) { if (missing(abc) || dim(abc)[[3]] == 0) { df <- data.frame(Cycle=integer(0), Quality=numeric(0), Score=numeric(0), Count=integer(0), lane=character(0)) return(df) } abc <- apply(abc, 2:3, sum) q <- factor(rownames(abc)[row(abc)], levels=rownames(abc)) q0 <- as(do.call(class(quality), list(rownames(abc))), "matrix") df <- data.frame(Cycle=as.integer(colnames(abc)[col(abc)]), Quality=q, Score=as.integer(q0)[q], Count=as.vector(abc), lane=lane, row.names=NULL) df[df$Count != 0, ] } .qa_depthOfCoverage <- function(aln, lane) { idx <- !is.na(position(aln)) & occurrenceFilter(withSread=FALSE)(aln) if (0L == sum(idx)) { df <- data.frame(Coverage=character(0), Count=integer(0), CumulativePpn=integer(0), Lane=character(0), row.names=NULL) return(df) } aln <- aln[idx] cv <- coverage(aln) cvg <- Filter(function(x) length(x) > 0, cv) if (0L == length(cvg)) { df <- data.frame(Coverage=character(0), Count=integer(0), CumulativePpn=integer(0), Lane=character(0), row.names=NULL) return(df) } ## Each chromosome count <- do.call(rbind, lapply(seq_len(length(cvg)), function(i, cvg) { x <- cvg[[i]] res <- tapply(runLength(x), runValue(x), sum) data.frame(Coverage=as.numeric(names(res)), Count=as.numeric(res), Seqname=names(cvg)[[i]], row.names=NULL) }, cvg)) ## Entire lane, non-zero coverage count <- count[count$Coverage != 0,] res <- tapply(as.numeric(count$Count), count$Coverage, sum) count <- as.vector(res) data.frame(Coverage=as.numeric(names(res)), Count= count, CumulativePpn=cumsum(count) / sum(count), Lane=lane, row.names=NULL) } .qa_adapterContamination <- function(aln, lane, ..., Lpattern="", Rpattern="", max.Lmismatch=.1, max.Rmismatch=.2, min.trim=9L) { if (missing(Lpattern) && missing(Rpattern)) { df <- data.frame(contamination="Not run", row.names=lane) return(df) } trim <- trimLRPatterns(Lpattern, Rpattern, subject=sread(aln), max.Lmismatch=max.Lmismatch, max.Rmismatch=max.Rmismatch, ranges=TRUE) ac <- sum(width(trim) < (width(aln) - min.trim)) / length(trim) data.frame(contamination=ac, row.names=lane) } ## report-generation .dnaCol <- # brewer.pal(6, "Paired")[c(2, 4, 3, 1, 6)] c("#1F78B4", "#33A02C", "#B2DF8A", "#A6CEE3", "#E31A1C") .ppnCount <- function(m) { if(is.null(m) || is.factor(m[,-1])) { "Not available." } else { ## scale subsequent columns to be proportions of first column m[,-1] <- round(1000 * m[,-1] / ifelse(is.na(m[,1]), 1, m[,1])) / 1000 m } } .df2a <- function(df, fmt="%.3g") { a <- if (nrow(df) == 1) as.data.frame(lapply(df, sprintf, fmt=fmt)) else sapply(df, sprintf, fmt=fmt) row.names(a) <- rownames(df) a } .plotReadCount <- function(qa, ...) { df <- qa[["readCounts"]] df1 <- data.frame(Count=unlist(df), Sample=factor(rownames(df), levels=rownames(df)), Census=factor(names(df)[col(df)], levels=names(df))) col <- .dnaCol[c(1, 4, 2)] dotplot(Sample~Count, group=df1$Census, df1, type="b", pch=20, col=col, key=list(space="top", lines=list(col=rev(col)), text=list(rev(names(df))), columns=ncol(df))) } .plotNucleotideCount <- function(qa, ...) { df <- qa[["baseCalls"]] alph <- df / rowSums(df) df1 <- data.frame(Frequency=unlist(alph), Sample=factor(rownames(alph), levels=rownames(alph)), Nucleotide=factor(names(alph)[col(alph)], levels=c("A", "C", "G", "T", "N"))) dotplot(Sample~Frequency, group=df1$Nucleotide, df1, type="b", pch=20, col=.dnaCol, key=list(space="top", lines=list(col=.dnaCol), text=list(lab=names(df)), columns=ncol(df))) } .plotReadQuality <- function(df, ..., strip=FALSE) { xmin <- min(df$quality) ymax <- max(df$density) xyplot(density~quality|lane, df, type="l", xlab="Average (calibrated) base quality", ylab="Proportion of reads", aspect=2, panel=function(..., subscripts) { lbl <- as.character(unique(df$lane[subscripts])) ltext(xmin, ymax, lbl, adj=c(0, 1)) panel.xyplot(...) }, strip=FALSE) } .plotReadOccurrences <- function(df, ..., strip=FALSE) { df <- local({ nOccur <- tapply(df$nOccurrences, df$lane, c) cumulative <- tapply(df$nOccurrences * df$nReads, df$lane, function(elt) { cs <- cumsum(elt) (cs-cs[1] + 1) / (diff(range(cs)) + 1L) }) lane <- tapply(df$lane, df$lane, c) data.frame(nOccurrences=unlist(nOccur), cumulative=unlist(cumulative), lane=unlist(lane), row.names=NULL) }) xmax <- log10(max(df$nOccurrences)) xyplot(cumulative~log10(nOccurrences)|factor(lane), df, xlab=expression(paste( "Number of occurrences of each sequence (", log[10], ")", sep="")), ylab="Cumulative proportion of reads", aspect=2, panel=function(x, y, ..., subscripts, type) { lbl <- unique(df$lane[subscripts]) ltext(xmax, .05, lbl, adj=c(1, 0)) type <- if (1L == length(x)) "p" else "l" panel.xyplot(x, y, ..., type=type) }, ..., strip=strip) } .freqSequences <- function(qa, read, n=20) { cnt <- qa[["readCounts"]] df <- qa[["frequentSequences"]] df1 <- df[df$type==read,] df1[["ppn"]] <- df1[["count"]] / cnt[df1[["lane"]], read] df <- head(df1[order(df1$count, decreasing=TRUE), c("sequence", "count", "lane")], n) rownames(df) <- NULL df } .plotAlignQuality <- function(df) { xyplot(count~score|lane, df, type="l", prepanel=function(x, y, ...) { list(ylim=c(0, 1)) }, panel=function(x, y, ...) { panel.xyplot(x, y/max(y), ...) }, xlab="Alignment quality score", ylab="Number of alignments, relative to lane maximum", aspect=2) } .atQuantile <- function(x, breaks) { at <- unique(quantile(x, breaks)) if (length(at)==1) at <- at * c(.9, 1.1) at } .colorkeyNames <- function(at, fmt) { paste(names(at), " (", sprintf(fmt, at), ")", sep="") } .tileGeometry <- function(tileIndicies) { n <- as.character(max(tileIndicies)) switch(n, "68"=c(8, 4), "100"=c(50, 2), "120"=c(60, 2), "300"=c(100, 3), { warning(n, " tiles; ", "assuming lane geometry with 50 tiles / row", call.=FALSE) c(50, ceiling(as.integer(n) / 50)) }) } .plotTileLocalCoords <- function(tile, nrow) { if (nrow == 8) { ## HiSeq row <- tile %% 20 col <- floor(tile / 20) %% 4 + 1L } else { row <- 1 + (tile - 1) %% nrow col <- 1 + floor((tile -1) / nrow) row[col%%2==0] <- nrow + 1 - row[col%%2==0] } list(row=as.integer(row), col=as.factor(col)) } .plotTileCounts <- function(df, nrow=.tileGeometry(df$tile)[[1]]) { df <- df[df$count != 0,] xy <- .plotTileLocalCoords(df$tile, nrow) df[,names(xy)] <- xy at <- .atQuantile(df$count, seq(0, 1, .1)) levelplot(cut(count, at)~col*row|lane, df, main="Read count (percentile rank)", xlab="Tile x-coordinate", ylab="Tile y-coordinate", cuts=length(at)-2, colorkey=list(labels=.colorkeyNames(at, "%d")), aspect=2) } .plotTileQualityScore <- function(df, nrow=.tileGeometry(df$tile)[[1]]) { df <- df[!is.na(df$score),] xy <- .plotTileLocalCoords(df$tile, nrow) df[,names(xy)] <- xy at <- .atQuantile(df$score, seq(0, 1, .1)) levelplot(cut(score, at)~col*row|lane, df, main="Read quality (percentile rank)", xlab="Tile x-coordinate", ylab="Tile y-coordinate", cuts=length(at)-2, colorkey=list(labels=.colorkeyNames(at, "%.2f")), aspect=2) } .plotCycleBaseCall <- function(df, ..., strip=FALSE) { col <- .dnaCol[1:4] df <- df[df$Base != "N" & df$Base != "-",] df$Base <- factor(df$Base) xmax <- max(df$Cycle) ymax <- log10(max(df$Count)) xyplot(log10(Count)~as.integer(Cycle)|lane, group=factor(Base), df[order(df$lane, df$Base, df$Cycle),], panel=function(..., subscripts) { lbl <- as.character(unique(df$lane[subscripts])) ltext(xmax, ymax, lbl, adj=c(1, 1)) panel.xyplot(..., subscripts=subscripts) }, type="l", col=col, key=list(space="top", lines=list(col=col, lwd=2), text=list(lab=levels(df$Base)), columns=length(levels(df$Base))), xlab="Cycle", aspect=2, strip=strip, ...) } .plotCycleQuality <- function(df, ..., strip=FALSE, strip.left=FALSE) { calc_means <- function(x, y, z) rowsum(y * z, x) / rowsum(z, x) calc_quantile <- function(x, y, z, q=c(.25, .5, .75)) by(list(y, z), x, function(x) { scoreRle <- Rle(x[[1]], x[[2]]) quantile(scoreRle, q) }) Lane <- df$lane pal <- c("#66C2A5", "#FC8D62") # brewer.pal(3, "Set2")[1:2] lvlPal <- c("#F5F5F5", "black" ) rng <- range(df$Count) at <- seq(rng[1], rng[2], length.out=512) np <- length(unique(Lane)) nrow <- ceiling(np / 4) layout <- c(ceiling(np/nrow), nrow) ymin <- min(df$Score) xyplot(Score ~ Cycle | Lane, df, panel=function(x, y, ..., subscripts) { z <- df$Count[subscripts] mean <- calc_means(x, y, z) qtiles <- calc_quantile(x, y, z) sxi <- sort(unique(x)) panel.levelplot(x, y, z, subscripts=TRUE, at=at, col.regions=colorRampPalette(lvlPal)) llines(sxi, mean, type="l", col=pal[[1]], lwd=1) llines(sxi, sapply(qtiles, "[[", 1), type="l", col=pal[[2]], lwd=1, lty=3) llines(sxi, sapply(qtiles, "[[", 2), type="l", col=pal[[2]], lwd=1) llines(sxi, sapply(qtiles, "[[", 3), type="l", col=pal[[2]], lwd=1, lty=3) lbl <- as.character(unique(df$lane[subscripts])) ltext(1, ymin, lbl, adj=c(0, 0)) }, ..., ylab="Quality Score", layout=layout, strip=strip, strip.left=strip.left) } .plotMultipleAlignmentCount <- function(df, ...) { xyplot(log10(Count)~log10(Matches + 1) | lane, df, xlab="log10(Number of matches + 1)", aspect=2, ...) } .plotDepthOfCoverage <- function(df, ..., strip=FALSE) { if (is.null(df)) return(NULL) xmin <- log(min(df$Coverage)) ymax <- max(df$CumulativePpn) xyplot(CumulativePpn~Coverage | Lane, df, type="b", pch=20, scales=list(x=list(log=TRUE)), ylab="Cumulative Proportion of Nucleotides", aspect=2, panel=function(..., subscripts) { lbl <- as.character(unique(df$Lane[subscripts])) ltext(xmin, ymax, lbl, adj=c(0, 1)) panel.xyplot(..., subscripts=subscripts) }, ..., strip=strip) } ShortRead/R/readAligned.R0000644000126300012640000004312712227066711016566 0ustar00biocbuildphs_compbio.read_csv_portion <- function(dirPath, pattern, colClasses, ...) { ## visit several files, then collapse files <- .file_names(dirPath, pattern) lsts <- lapply(files, function(fl, ...) { tryCatch({ read.csv(fl, ...) }, error=function(err) { read.csv(gzfile(fl), ...) }) }, ..., colClasses=colClasses, stringsAsFactors=FALSE) cclasses <- colClasses[!sapply(colClasses, is.null)] lst <- lapply(seq_along(names(cclasses)), function(idx) unlist(lapply(lsts, "[[", idx))) names(lst) <- names(cclasses) lst } .readAligned_SolexaAlign <- function(dirPath, pattern=character(0), ..., quote="", sep="", comment.char="#", header=FALSE, Lpattern="", Rpattern="") { csvClasses <- xstringClasses <- list(sequence="DNAString", alignQuality="integer", nMatch="integer", position="character", strand="factor", refSequence=NULL, nextBestAlignQuality="integer") xstringNames <- "sequence" csvClasses[xstringNames] <- list(NULL) xstringClasses[!names(xstringClasses) %in% xstringNames] <- list(NULL) ## CSV portion lst <- .read_csv_portion(dirPath, pattern, csvClasses, ..., col.names=names(csvClasses), quote=quote, sep=sep, comment.char=comment.char, header=header) idx <- regexpr(":", lst[["position"]], fixed=TRUE) chromosome <- substr(lst[["position"]], 1, idx-1) chromosome[idx==-1] <- NA chromosome <- factor(chromosome) position <- as.integer(substr(lst[["position"]], idx+1, nchar(lst[["position"]]))) df <- data.frame(nMatch=lst$nMatch, nextBestAlignQuality=lst$nextBestAlignQuality) meta <- data.frame(labelDescription=c( "Number of matches", "Next-best alignment quality score")) alignData <- AlignedDataFrame(df, meta) ## XStringSet classes sets <- readXStringColumns(dirPath, pattern, xstringClasses, ..., sep=" \t") len <- length(sets[["sequence"]]) wd <- width(sets[["sequence"]]) q <- paste(rep(" ", max(wd)), collapse="") quality <- BStringSet(Views(BString(q), start=rep(1, len), end=wd)) AlignedRead(sread=sets[["sequence"]], id=BStringSet(character(len)), quality=SFastqQuality(quality), chromosome=chromosome, position=position, strand=.toStrand_Solexa(lst[["strand"]]), alignQuality=NumericQuality(lst[["alignQuality"]]), alignData=alignData) } .readAligned_SolexaResult <- function(dirPath, pattern=character(0), ..., sep="\t", comment.char="#", quote="", header=FALSE) { csvClasses <- xstringClasses <- list(id=NULL, sequence="DNAString", matchCode="factor", nExactMatch="integer", nOneMismatch="integer", nTwoMismatch="integer", chromosome="factor", position="integer", strand="factor", NCharacterTreatment="factor", mismatchDetailOne="character", mismatchDetailTwo="character") xstringNames <- "sequence" csvClasses[xstringNames] <- list(NULL) xstringClasses[!names(xstringClasses) %in% xstringNames] <- list(NULL) ## CSV portion lst <- .read_csv_portion(dirPath, pattern, csvClasses, ..., col.names=names(csvClasses), quote=quote, sep=sep, comment.char=comment.char, header=header) df <- data.frame(matchCode=lst[["matchCode"]], nExactMatch=lst[["nExactMatch"]], nOneMismatch=lst[["nOneMismatch"]], nTwoMismatch=lst[["nTwoMismatch"]], NCharacterTreatment=lst[["NCharacterTreatment"]], mismatchDetailOne=lst[["mismatchDetailOne"]], mismatchDetailTwo=lst[["mismatchDetailTwo"]]) meta <- data.frame(labelDescription=c( "Type of match; see ?'readAligned,character-method'", "Number of exact matches", "Number of 1-error mismatches", "Number of 2-error mismatches", "Treatment of 'N'; .: NA; D: deletion; |: insertion", "Mismatch error 1 detail; see ?'readAligned,character-method", "Mismatch error 2 detail; see ?'readAligned,character-method")) alignData <- AlignedDataFrame(df, meta) ## XStringSet classes sets <- readXStringColumns(dirPath, pattern, xstringClasses, ..., sep=sep) len <- length(sets[["sequence"]]) wd <- width(sets[["sequence"]]) q <- paste(rep(" ", max(wd)), collapse="") sfq <- BStringSet(Views(BString(q), start=rep(1, len), end=wd)) AlignedRead(sread=sets[["sequence"]], quality=SFastqQuality(sfq), chromosome=lst[["chromosome"]], position=lst[["position"]], strand=.toStrand_Solexa(lst[["strand"]]), alignQuality=NumericQuality(rep(NA_integer_, length(sfq))), alignData=alignData) } .SolexaExport_AlignedDataFrame <- function(data) { lbls <- c(run="Analysis pipeline run", lane="Flow cell lane", tile="Flow cell tile", x="Cluster x-coordinate", y="Cluster y-coordinate", filtering="Read successfully passed filtering?", contig="Contig", multiplexIndex="Multiplex index", pairedReadNumber="Paired read number")[names(data)] AlignedDataFrame(data=data, metadata=data.frame(labelDescription=lbls)) } .readAligned_SolexaExport <- function(dirPath, pattern=character(0), ..., withAll=FALSE, withId=withAll, withMultiplexIndex=withAll, withPairedReadNumber=withAll, sep="\t", commentChar="#") { files <- .file_names(dirPath, pattern) .Call(.read_solexa_export, files, sep, commentChar, c(withId, withMultiplexIndex, withPairedReadNumber)) } .readAligned_Maq_ADF <- function(lst) { df <- data.frame(nMismatchBestHit=lst$nMismatchBestHit, mismatchQuality=lst$mismatchQuality, nExactMatch24=lst$nExactMatch24, nOneMismatch24=lst$nOneMismatch24) meta <- data.frame(labelDescription=c( "Number of mismatches of the best hit", "Sum of mismatched base qualities of the best hit", "Number of 0-mismatch hits of the first 24 bases", "Number of 1-mismatch hits of the first 24 bases")) AlignedDataFrame(df, meta) } .maqmap_warning_seen <- local({ seen <- FALSE function() { if (!seen) { seen <<- TRUE FALSE } else seen } }) .maqmap_file_list_error <- function(files, type) { .throw(SRError("UserArgumentMismatch", "%s for '%s' must match 1 file, got\n %s", "'dirPath', 'pattern'", type, paste(files, collapse="\n "))) } .readAligned_MaqMapOld <- function(dirPath, pattern=character(0), records=-1L, ...) { files <- .file_names(dirPath, pattern) if (length(files) > 1) .maqmap_file_list_error(files, "MAQMapShort") lst <- .Call(.read_maq_map, files, as.integer(records), FALSE) AlignedRead(sread=lst[["readSequence"]], id=lst[["readId"]], quality=FastqQuality(lst[["fastqScores"]]), chromosome=lst[["chromosome"]], position=lst[["position"]], strand=lst[["strand"]], alignQuality=IntegerQuality(lst[["alignQuality"]]), alignData=.readAligned_Maq_ADF(lst)) } .readAligned_MaqMap <- function(dirPath, pattern=character(0), records=-1L, ...) { files <- .file_names(dirPath, pattern) if (length(files) > 1) .maqmap_file_list_error(files, "MAQMap") lst <- .Call(.read_maq_map, files, as.integer(records), TRUE) AlignedRead(sread=lst[["readSequence"]], id=lst[["readId"]], quality=FastqQuality(lst[["fastqScores"]]), chromosome=lst[["chromosome"]], position=lst[["position"]], strand=lst[["strand"]], alignQuality=IntegerQuality(lst[["alignQuality"]]), alignData=.readAligned_Maq_ADF(lst)) } .readAligned_MaqMapview <- function(dirPath, pattern=character(0), ..., sep="\t", header=FALSE, quote="") { colClasses <- list(NULL, chromosome="factor", position="integer", strand="factor", NULL, NULL, alignQuality="integer", NULL, NULL, nMismatchBestHit="integer", mismatchQuality="integer", nExactMatch24="integer", nOneMismatch24="integer", NULL, NULL, NULL) ## CSV portion csv <- .read_csv_portion(dirPath, pattern, colClasses, sep=sep, header=header, quote=quote, ...) ## XStringSet components colClasses <- list("BString", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "DNAString", "BString") sets <- readXStringColumns(dirPath, pattern, colClasses, sep=sep, header=header) AlignedRead(sread=sets[[2]], id=sets[[1]], quality=FastqQuality(sets[[3]]), chromosome=csv[["chromosome"]], position=csv[["position"]], strand=factor(csv[["strand"]], levels=.STRAND_LEVELS), alignQuality=IntegerQuality(csv[["alignQuality"]]), alignData=.readAligned_Maq_ADF(csv)) } .Bowtie_AlignedDataFrame <- function(similar, mismatch) { df <- data.frame(similar=similar, mismatch=mismatch, stringsAsFactors=FALSE) meta <- data.frame(labelDescription=c( "if Bowtie >= 0.9.9.3 (May 12, 2009)?: number of alignments aligning to the same reference characters; else 'Reserved'", "Comma-separated mismatch positions")) AlignedDataFrame(df, meta) } .readAligned_Bowtie <- function(dirPath, pattern=character(0), ..., qualityType=c("FastqQuality", "SFastqQuality"), sep="\t", commentChar="#") { tryCatch(qualityType <- match.arg(qualityType), error=function(err) { .throw(SRError("UserArgumentMismatch", conditionMessage(err))) }) files <- .file_names(dirPath, pattern) .Call(.read_bowtie, files, qualityType, sep, commentChar) } .SOAP_AlignedDataFrame <- function(nEquallyBestHits, pairedEnd, alignedLength, typeOfHit, hitDetail) { df <- data.frame(nEquallyBestHits=nEquallyBestHits, pairedEnd=factor(pairedEnd), alignedLength=alignedLength, typeOfHit=typeOfHit, hitDetail=hitDetail, stringsAsFactors=FALSE) meta <- data.frame(labelDescription=c( "Number of equally-best hits", "Paired end, a or b", "Length of read used in alignment", "Integer indicator of match type; 0: exact; 1-100: mismatch; 100+n: n-base insertion; 200+n: n-base deletion", "Detailed description of match")) AlignedDataFrame(df, meta) } .readAligned_SOAP <- function(dirPath, pattern=character(0), ..., qualityType="SFastqQuality", sep="\t", commentChar="#") { files <- .file_names(dirPath, pattern) .Call(.read_soap, files, qualityType, sep, commentChar) } .readAligned_bamWhat <- function(withQname=TRUE) { c(if (withQname) "qname" else NULL, "flag", "rname", "strand", "pos", "mapq", "seq", "qual") } .readAligned_bam <- function(dirPath, pattern=character(0), ..., param=ScanBamParam(simpleCigar=TRUE, reverseComplement=TRUE, what=.readAligned_bamWhat())) { files <- if (!all(grepl("^(ftp|http)://", dirPath))) .file_names(dirPath, pattern) else { if (length(dirPath) != 1 || length(pattern) != 0) { msg <- paste("ftp:// and http:// support requires", "'dirPath' as character(1),", "'pattern' as character(0)", collapse="") .throw(SRError("UserArgumentMismatch", msg)) } dirPath } if (!is(param, "ScanBamParam")) { msg <- "'param' must be a ScanBamParam object." .throw(SRError("UserArgumentMismatch",msg)) } ## FIXME: currently we only deal with cigars without indels if (bamSimpleCigar(param) != TRUE) { msg <- paste("using 'TRUE' for 'bamSimpleCigar(param)'", "(skipping reads with I, D, H, S, or P in 'cigar')") .throw(SRWarn("UserArgumentMismatch", msg)) bamSimpleCigar(param) <- TRUE } if (bamReverseComplement(param) != TRUE) { msg <- "using 'TRUE' for 'bamReverseComplement(param)'" .throw(SRWarn("UserArgumentMismatch", msg)) bamReverseComplement(param) <- TRUE } what <- .readAligned_bamWhat("qname" %in% bamWhat(param)) if (!(length(bamWhat(param)) && all(what %in% bamWhat(param)))) { msg <- sprintf("using at least '%s' for 'bamWhat(param)'", paste(what, collapse="' '")) .throw(SRWarn("UserArgumentMismatch", msg)) bamWhat(param) <- union(bamWhat(param), what) } ## handle multiple files and params result <- mapply(scanBam, files, MoreArgs=list(param=param), ..., SIMPLIFY=FALSE, USE.NAMES=FALSE) ulist <- function(X, ..., recursive=TRUE) unlist(lapply(X, lapply, "[[", ...), recursive=recursive, use.names=FALSE) cxslist <- function(X, ...) do.call(c, ulist(X, ...)) chromosome <- local({ X <- ulist(result, "rname", recursive=FALSE) values <- do.call(c, lapply(X, as.character)) factor(values, levels=unique(unlist(lapply(X, levels)))) }) strand <- local({ X <- ulist(result, "strand", recursive=FALSE) values <- do.call(c, lapply(X, as.character)) strand(values) }) id <- local({ X <- ulist(result, "qname") if (is.null(X)) BStringSet(character(length(strand))) else BStringSet(X) }) AlignedRead(sread=cxslist(result, "seq"), id=id, quality=FastqQuality(as(cxslist(result, "qual"), "BStringSet")), chromosome=chromosome, strand=strand, position=ulist(result, "pos"), alignQuality=NumericQuality(ulist(result, "mapq")), alignData=AlignedDataFrame( data=data.frame(flag=ulist(result, "flag")), metadata=data.frame( labelDescription=c("Type of read; see ?scanBam")))) } .readAligned_character <- function(dirPath, pattern=character(0), type=c( "SolexaExport", "SolexaAlign", "SolexaPrealign", "SolexaRealign", "SolexaResult", "MAQMap", "MAQMapShort", "MAQMapview", "Bowtie", "SOAP", "BAM"), ..., filter=srFilter()) { if (missing(type)) .arg_missing_err("type", "readAligned,character-method", "help(\"readAligned,character-method\")") if (!is.character(type) || length(type) != 1) .arg_mismatch_type_err("type", "character(1)") if (!missing(filter)) .check_type_and_length(filter, "SRFilter", NA) vals <- eval(formals(ShortRead:::.readAligned_character)$type) if (!type %in% vals) .arg_mismatch_value_err("type", type, vals) aln <- tryCatch({ switch(type, SolexaExport=.readAligned_SolexaExport(dirPath, pattern=pattern, ...), SolexaPrealign=, SolexaAlign=, SolexaRealign=.readAligned_SolexaAlign(dirPath, pattern=pattern, ...), SolexaResult=.readAligned_SolexaResult(dirPath, pattern=pattern, ...), MAQMap=.readAligned_MaqMap(dirPath, pattern, ...), MAQMapShort=.readAligned_MaqMapOld(dirPath, pattern, ...), MAQMapview=.readAligned_MaqMapview( dirPath, pattern=pattern, ...), Bowtie=.readAligned_Bowtie(dirPath, pattern, ...), SOAP=.readAligned_SOAP(dirPath, pattern, ...), BAM=.readAligned_bam(dirPath, pattern, ...)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { pat <- paste(pattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "type: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readAligned", paste(dirPath, collapse="'\n '"), paste(pat, collapse="'\n '"), type, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) if (!missing(filter)) aln <- aln[filter(aln)] aln } setMethod(readAligned, "character", .readAligned_character) ShortRead/R/readBaseQuality.R0000644000126300012640000000356112227066711017444 0ustar00biocbuildphs_compbio.readBaseQuality_Solexa <- function(dirPath, seqPattern=character(0), prbPattern=character(0), ...) { prbs <- readPrb(dirPath, pattern=prbPattern, ...) new("ShortReadQ", quality=prbs, sread = readXStringColumns( dirPath, pattern=seqPattern, colClasses=c(rep(list(NULL), 4), list("DNAString")))[[1]], id=BStringSet(as.character(seq_len(length(prbs))))) } .readBaseQuality_character <- function(dirPath, seqPattern=character(0), prbPattern=character(0), type=c("Solexa"), ...) { if (missing(type)) .arg_missing_err("type", "readBaseQuality,character-method", "help(\"readBaseQuality,character-method\")") if (!is.character(type) || length(type) != 1) .arg_mismatch_type_err("type", "character(1)") vals <- eval(formals(ShortRead:::.readBaseQuality_character)$type) if (!type %in% vals) .arg_mismatch_value_err("type", type, vals) tryCatch({ switch(type, Solexa=.readBaseQuality_Solexa(dirPath, seqPattern=seqPattern, prbPattern=prbPattern,...)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { seqpat <- paste(seqPattern, collapse=" ") prbpat <- paste(prbPattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "seqPattern: '%s'", "prbPattern: '%s'", "type: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readBaseQuality", dirPath, seqpat, prbpat, type, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readBaseQuality, "character", .readBaseQuality_character) ShortRead/R/readBfaToc.R0000644000126300012640000000010312227066711016344 0ustar00biocbuildphs_compbioreadBfaToc <- function( bfafile ) .Call( .readBfaToc, bfafile ) ShortRead/R/readIntensities.R0000644000126300012640000000277212227066711017522 0ustar00biocbuildphs_compbio.readIntensities_character <- function(dirPath, pattern=character(0), ..., type=c("SolexaIntensity", "IparIntensity", "RtaIntensity")) { if (missing(type)) { type <- "SolexaIntensity" } else if (!is.character(type) || length(type) != 1) { .arg_mismatch_type_err("type", "character(1)") } else { vals <- eval(formals(ShortRead:::.readIntensities_character)$type) if (!type %in% vals) .arg_mismatch_value_err("type", type, vals) } tryCatch({ switch(type, SolexaIntensity=.readIntensities_SolexaIntensity( dirPath, pattern, ...), IparIntensity=.readIntensities_IparIntensity( dirPath, pattern, ...), RtaIntensity=.readIntensities_RtaIntensity( dirPath, pattern, ...)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { pat <- paste(pattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "type: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readIntensities", paste(dirPath, collapse="'\n '"), pat, type, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readIntensities, "character", .readIntensities_character) ShortRead/R/readPrb.R0000644000126300012640000000734712227066711015752 0ustar00biocbuildphs_compbio.readPrb <- function(file, ..., asSolexa, verbose) { if (verbose) cat(".readPrb", file, "\n") tryCatch({ .Call(.read_prb_as_character, file, asSolexa) }, error=function(err) { .throw(SRError("Input/Output", sprintf("parsing 'prb'\n file: %s\n error: %s", file, conditionMessage(err)))) }) } .readPrb_quality <- function(dirPath, pattern, qclass, ..., asSolexa, verbose) { fls <- .file_names(dirPath, pattern) qclass(unlist(srapply(fls, .readPrb, ..., asSolexa=asSolexa, verbose=verbose))) } .readPrb_IntegerEncoding <- function(dirPath, pattern, ..., verbose) { res <- .readPrb_quality(dirPath, pattern, SFastqQuality, ..., asSolexa=TRUE, verbose=verbose) if (length(unique(width(res)))!=1) .throw(SRError("Input/Output", "reads have different widths") ) as(res, "matrix") } .readPrb_array <- function(dirPath, pattern, ..., verbose=FALSE) { nrec <- countLines(dirPath, pattern) crec <- c(0, cumsum(nrec)) fls <- .file_names(dirPath, pattern) gz <- gzfile(fls[[1]]); open(gz) tryCatch({ ln <- readLines(gz, 1) }, finally=close(gz)) cycles <- length(gregexpr("\t", ln, fixed=TRUE)[[1]]) + 1L a <- array(integer(), c(sum(nrec), 4L, cycles), dimnames=list(NULL, c("A", "C", "G", "T"), NULL)) what <- rep(list(integer()), 4L * cycles) for (i in seq_along(fls)) tryCatch({ gz <- gzfile(fls[[i]]); open(gz) data <- unlist(scan(gz, what, sum(nrec), ..., quiet=!verbose)) a[(crec[i]+1):crec[i+1],,] <- array(data, c(nrec[[i]], 4L, cycles)) }, error=function(err) { .throw(SRError("Input/Output", sprintf("parsing 'prb'\n file: %s\n error: %s", fls[[i]], conditionMessage(err)))) }, finally=close(gz)) a } .readPrb_character <- function(dirPath, pattern=character(0), as=c( "SolexaEncoding", "FastqEncoding", "IntegerEncoding", "array"), ..., verbose=FALSE) { if (missing(as)) { as <- "SolexaEncoding" } else if (!is.character(as) || length(as) != 1) { .arg_mismatch_type_err("as", "character(1)") } else { vals <- eval(formals(ShortRead:::.readPrb_character)$as) if (!as %in% vals) .arg_mismatch_value_err("as", as, vals) } tryCatch({ switch(as, SolexaEncoding=.readPrb_quality( dirPath, pattern, SFastqQuality, ..., asSolexa=TRUE, verbose=verbose), FastqEncoding=.readPrb_quality( dirPath, pattern, FastqQuality, ..., asSolexa=FALSE, verbose=verbose), IntegerEncoding=.readPrb_IntegerEncoding( dirPath, pattern, ..., verbose=verbose), array=.readPrb_array( dirPath, pattern, ..., verbose=verbose)) }, error=function(err) { if (is(err, "SRError")) stop(err) else { pat <- paste(pattern, collapse=" ") txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "as: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readPrb", paste(dirPath, collapse="'\n '"), pat, as, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readPrb, "character", .readPrb_character) ShortRead/R/readQseq.R0000644000126300012640000000715012227066711016130 0ustar00biocbuildphs_compbio.readQseq_ShortReadQ <- function(dirPath, pattern=character(0), ..., filtered=FALSE, verbose=FALSE) { colClasses <- rep(list(NULL), 11) colClasses[9:10] <- c("DNAString", "BString") elts <- readXStringColumns(dirPath, pattern, colClasses, ...) if (filtered) { what <- rep(list(NULL), 11) what[[11]] <- integer(0) filt <- sapply(.file_names(dirPath, pattern), function(fl, ...) { scan(fl, ...)[[11]] == 1 }, what=what, quiet=!verbose) elts[[1]] <- elts[[1]][filt] elts[[2]] <- elts[[2]][filt] } new("ShortReadQ", ..., sread=elts[[1]], quality=SFastqQuality(elts[[2]]), id=BStringSet(rep("", length(elts[[1]])))) } .readQseq_DataFrame <- function(dirPath, pattern=character(0), ..., what=list(machine=character(0), run=integer(0), lane=integer(0), tile=integer(0), x=integer(0), y=integer(0), index=integer(0), readNumber=integer(0), sread=DNAStringSet(character(0)), quality=BStringSet(character(0)), filter=factor(levels=c("N", "Y"))), filtered=FALSE, verbose=FALSE) { if (!is.list(what) || length(what) != 11) .arg_mismatch_type_err("what", "list(1)") xWhat <- what xstrings <- which(sapply(what, class) %in% c("DNAStringSet", "BStringSet")) what[xstrings] <- list(NULL) fls <- .file_names(dirPath, pattern) elts <- lapply(fls, scan, what, ..., quiet=!verbose) data <- do.call(mapply, c(c, elts)) if (length(xstrings) != 0) { xWhat[-xstrings] <- list(NULL) xWhat[xstrings] <- lapply(xWhat[xstrings], function(elt) sub("Set$", "", class(elt))) data[xstrings] <- readXStringColumns(dirPath, pattern, xWhat) } xdf <- do.call(DataFrame, data) if (is.factor(what[[11]])) { xdf[[11]] <- factor(levels(what[[11]])[xdf[[11]] + 1], levels=levels(what[[11]])) if (filtered) xdf <- xdf[xdf[[11]] == "Y", -11] } xdf } .readQseq_character <- function(dirPath, pattern=character(0), ..., as=c("ShortReadQ", "DataFrame", "XDataFrame"), filtered=FALSE, verbose=FALSE) { if (missing(as)) { as <- "ShortReadQ" } else if (!is.character(as) || length(as) != 1) { .arg_mismatch_type_err("as", "character(1)") } else { vals <- eval(formals(ShortRead:::.readQseq_character)$as) if (!as %in% vals) .arg_mismatch_value_err("as", as, vals) } tryCatch({ switch(as, ShortReadQ=.readQseq_ShortReadQ( dirPath, pattern, ..., filtered=filtered, verbose=verbose), DataFrame=.readQseq_DataFrame( dirPath, pattern, ..., filtered=filtered, verbose=verbose), XDataFrame={ .Defunct(msg="Use type='DataFrame' instead") }) }, error=function(err) { if (is(err, "SRError")) stop(err) else { txt <- paste("'%s' failed to parse files", "dirPath: '%s'", "pattern: '%s'", "as: '%s'", "error: %s", sep="\n ") msg <- sprintf(txt, "readQseq", paste(dirPath, collapse="'\n '"), pattern, as, conditionMessage(err)) .throw(SRError("Input/Output", msg)) } }) } setMethod(readQseq, "character", .readQseq_character) ShortRead/R/readXStringColumns.R0000644000126300012640000000313112227066711020151 0ustar00biocbuildphs_compbioreadXStringColumns <- function(dirPath, pattern=character(0), colClasses=list(NULL), nrows=-1L, skip=0L, sep="\t", header=FALSE, comment.char="#") { if (!is.list(colClasses)) .arg_mismatch_type_err("colClasses", "list()") colIndex <- which(!sapply(colClasses, is.null)) colClasses <- sub("Set$", "", colClasses[colIndex]) okClasses <- names(slot(getClass("XString"), "subclasses")) if (!all(colClasses %in% okClasses)) { bad <- colClasses[!colClasses %in% okClasses] .throw(SRError("UserArgumentMismatch", "'colClasses' contains invalid class%s '%s';\n must be one of '%s'", if (length(colClasses)>1) "es" else "", paste(bad, collapse="' '"), paste(okClasses, collapse="', '"))) } files <- .file_names(dirPath, pattern) res <- tryCatch({ .Call(.read_XStringSet_columns, files, header, sep, colIndex, colClasses, as.integer(nrows), as.integer(skip), comment.char) }, error=function(err) { .throw(SRError("Input/Output", "while reading files '%s':\n %s", paste(basename(files), collapse=", "), conditionMessage(err))) }) if (header) { gz <- gzfile(files[[1]]); open(gz) tryCatch({ ln <- readLines(gz, skip+1)[skip+1] }, finally=close(gz)) nms <- strsplit(ln, sep)[[1]] names(res) <- nms[colIndex] } else { names(res) <- names(colIndex) } res } ShortRead/R/renew.R0000644000126300012640000000222612227066711015502 0ustar00biocbuildphs_compbio.renewable_of <- function(x, ...) { cls <- names(getClass(x)@subclasses) sort(cls[!grepl("^\\.", cls)]) } setMethod(renewable, "missing", function(x, ...) { ## classes that are renew-able .renewable_of(".ShortReadBase") }) .renewable_query <- function(x) { if (1L != length(x)) .throw(SRError("UserArgumentMismatch", "'%s' must be '%s'", "x", "character(1)")) if (!x %in% names(getClass(".ShortReadBase")@subclasses)) .throw(SRError("UserArgumentMismatch", "'%s' is not a renewable class", x)) cls <- getClass(x) if (cls@virtual) { subcls <- .renewable_of(x) res <- lapply(subcls, .renewable_query) names(res) <- subcls res } else { getSlots(x) } } setMethod(renewable, ".ShortReadBase", function(x, ...) { structure(list(.renewable_query(class(x))), .Names=class(x)) }) setMethod(renewable, "character", function(x, ...) { res <- .renewable_query(x) if (!is.list(res)) res <- structure(list(res), .Names=x) res }) setMethod(renew, ".ShortReadBase", function(x, ...) { initialize(x, ...) }) ShortRead/R/report.R0000644000126300012640000000713412227066711015700 0ustar00biocbuildphs_compbio## PDF .report_pdf_do <- function(src, dest, symbolValues) { if (!file.exists(dirname(dest))) .throw(SRError("Input/Output", "'dest' directory '%s'\n does not exist", dirname(dest))) if (file.exists(dest)) .throw(SRError("Input/Output", "'dest' file '%s'\n already exists", dest)) tmpdir <- tempfile() if (!dir.create(tmpdir)) .throw(SRError("Input/Output", "failed to create temporary directory '%s'", tmpdir)) cwd <- setwd(tmpdir) on.exit(setwd(cwd)) tmpfile <- file.path(tmpdir, basename(src)) copySubstitute(src, tmpfile, symbolValues) texFile <- Sweave(tmpfile) tools::texi2dvi(texFile, pdf=TRUE) o_pdfFile <- sub(".tex$", ".pdf", texFile) ok <- file.copy(o_pdfFile, dest) if (!ok) .throw(SRError("Input/Output", "failed to copy '%s'\n to '%s'", o_pdfFile, dest)) dest } setMethod(.report_pdf, "character", function(x, dest, type, ...) { src <- system.file("template", "qa_solexa.Rnw", package="ShortRead") if (.Platform$OS.type == "windows") x <- gsub("\\\\", .Platform$file.sep, x) symbolValues <- list(QA_SAVE_FILE=x) .report_pdf_do(src, dest, symbolValues) }) ## HTML .report_html_do <- function(destDir, sections, values, cssFile=c(QA.css=system.file("template", "QA.css", package="ShortRead")), ...) { if (length(cssFile) != 1L || is.null(names(cssFile))) .throw(SRError("UserArgumentMismatch", "'%s' must be named character(1)", "cssFile")) htmlFile <- file.path(destDir, "index.html") biocFile <- "bioclogo-small.gif" values <- c(list(CSS=names(cssFile), DATE=date(), VERSION=packageDescription("ShortRead")$Version), values) toConn <- file(htmlFile, "w") for (sec in sections) { fromConn <- file(sec, open="r") copySubstitute(sec, toConn, values) close(fromConn) } close(toConn) imgDir <- file.path(destDir, "image") if (!file.exists(imgDir)) dir.create(imgDir) file.copy(cssFile, file.path(destDir, names(cssFile))) file.copy(system.file("template", "image", biocFile, package="ShortRead"), file.path(imgDir, biocFile)) htmlFile } .html_NA <- function() "
NA
" .html_img <- function(dir, file, fig, ..., width=750, height=750) { if (is.null(fig)) return(hwrite("Not available.")) imgFile <- paste(file, "jpg", sep=".") pdfFile <- paste(file, "pdf", sep=".") imgDir <- file.path(dir, "image") if (!file.exists(imgDir)) dir.create(imgDir) img <- if (capabilities("png")) png else jpeg img(file.path(imgDir, imgFile), ..., width=width, height=height) print(fig) dev.off() pdf(file.path(imgDir, pdfFile), ...) print(fig) dev.off() hwriteImage(file.path(".", "image", imgFile), link=file.path(".", "image", pdfFile)) } .htmlReadQuality <- function(dir, file, qa, type="read", ...) { df <- qa[["readQualityScore"]] .html_img(dir, file, .plotReadQuality(df[df$type==type,]), ...) } .htmlReadOccur <- function(dir, file, qa, type="read", ...) { df <- qa[["sequenceDistribution"]] .html_img(dir, file, .plotReadOccurrences(df[df$type==type,], cex=.5), ...) } ShortRead/R/spViewPerFeature.R0000644000126300012640000000312612227066711017622 0ustar00biocbuildphs_compbio.checkClass <- function(x, class, length=NULL) { msg <- paste("'", substitute(x), "' must be object of class ", "'", class, "'", sep="") fail <- !any(sapply(class, function(c, y) is(y, c), x)) if (!is.null(length) && length(x) != length) { fail=TRUE msg <- paste(msg, "of length", length) } if (fail) stop(msg) else invisible() } spViewPerFeature <- function(GRL, name, files, #ann.by=c("exon", "transcript"), ignore.strand=FALSE, multi.levels=FALSE, fac=character(0L), ...) { .checkClass(GRL, "GRangesList") .checkClass(name, "character", 1) .checkClass(multi.levels, "logical", 1) .checkClass(files, c("character", "BamFileList")) .checkClass(ignore.strand, "logical", 1) .checkClass(fac, "character") if (!(name %in% names(GRL))) stop(sprintf("element named '%s' does not exist", name)) gr <- GRL[[name]] seqlevels(gr, force=TRUE) <- levels(seqnames(gr)) which <- reduce(range(gr)) annTrack <- gr if (multi.levels & (length(files)>1)) { if (width(which) <= 10000) currentFunction="multifine_coverage" else currentFunction="multicoarse_coverage" Snapshot(..., files=files, range=which, annTrack=annTrack, fac=fac, currentFunction=currentFunction, ignore.strand=ignore.strand) } else ## sigle file Snapshot(..., files=files, range=which, annTrack=annTrack, ignore.strand=ignore.strand, fac=fac) } ShortRead/R/srapply.R0000644000126300012640000000741512227066711016061 0ustar00biocbuildphs_compbio.fapply <- function(...) { catchErrs <- function(FUN) { function(...) { tryCatch({ FUN(...) }, error=function(err) { msg <- paste(capture.output(conditionCall(err)), conditionMessage(err), sep="\n ") if (is.loaded("mpi_comm_size")) SRError("RemoteError", msg) else SRError("UnspecifiedError", msg) }) } } opt <- getOption("srapply_fapply") if (is.null(opt) || !opt %in% c("Rmpi", "parallel")) { function(X, FUN, ..., verbose=FALSE) { CFUN <- catchErrs(FUN) if (verbose) message("using lapply") lapply(X, CFUN, ..., verbose=verbose) } } else if ("Rmpi" == opt) { ## 'get()' are to quieten R CMD check, and for no other reason commSize <- get("mpi.comm.size", mode="function") remoteExec <- get("mpi.remote.exec", mode="function") bcastRobj <- get("mpi.bcast.Robj", mode="function") parLapply <- get("mpi.parLapply", mode="function") function(X, FUN, ..., verbose=FALSE) { CFUN <- catchErrs(FUN) if (commSize()==0) { if (verbose) message("Rmpi loaded, but mpi.comm.size==0; using lapply") lapply(X, CFUN, ..., verbose=verbose) } else { if (verbose) message("using mpi.parLapply") libOk <- remoteExec(require, "ShortRead") if (!all(unlist(libOk))) .throw(SRError("RemoteError", "could not 'require(ShortRead)' on %s ", paste(names(libOk)[!unlist(libOk)], collapse=", "))) wd <- getwd() remoteExec(setwd, wd, ret=FALSE) if (identical(globalenv(), environment(FUN))) bcastRobj(FUN) parLapply(X, CFUN, ..., verbose=verbose) } } } else if ("parallel" == opt) { mcLapply <- get('mclapply', envir=getNamespace('parallel')) function(X, FUN, ..., verbose=FALSE) { CFUN <- catchErrs(FUN) if (verbose) message("using 'mclapply'") nthreads <- .Call(.set_omp_threads, 1L) on.exit(.Call(.set_omp_threads, nthreads)) mcLapply(X, CFUN, ..., verbose=verbose) } } } .reduce <- function(.minimum_length=0L) { function(lst, ...) { errs <- sapply(lst, is, "SRError") if (any(errs)) { elts <- lst[errs] msg <- paste(sapply(elts, .type), sapply(elts, .message), sep=": ", collapse="\n ") type <- if (is.loaded("mpi_comm_size", PACKAGE="Rmpi") | is.loaded("mc_fork", PACKAGE="parallel")) { "RemoteWarning" } else "UnspecifiedWarning" .throw(SRWarn(type, "elements: %s\n %s", paste(which(errs), collapse=" "), msg)) lst <- lst[!errs] } if (.minimum_length > length(lst)) .throw(SRError("ValueUnavailable", "%d elements returned; expected >=%d", length(lst), .minimum_length)) lst } } srapply <- function(X, FUN, ..., fapply=.fapply(), reduce=.reduce(), USE.NAMES=FALSE, verbose=FALSE) { result <- fapply(X, FUN, ..., verbose=verbose) if (USE.NAMES && is.character(X) && is.null(names(result))) names(result) <- X reduce(result) } ShortRead/R/test_ShortRead_package.R0000644000126300012640000000011012227066711020755 0ustar00biocbuildphs_compbio.test <- function(...) BiocGenerics:::testPackage("ShortRead", ...) ShortRead/R/trimEnds.R0000644000126300012640000000142612227066711016150 0ustar00biocbuildphs_compbiosetMethod("trimTails", "character", function(object, k, a, successive=FALSE, ..., destinations, ranges=FALSE) { filterFastq(object, destinations, k=k, a=a, ..., filter=trimTails, ranges=ranges) }) setMethod("trimTailw", "character", function(object, k, a, halfwidth, ..., destinations, ranges=FALSE) { filterFastq(object, destinations, k=k, a=a, halfwidth=halfwidth, ..., filter=trimTailw, ranges=ranges) }) setMethod("trimEnds", "character", function(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., destinations, ranges=FALSE) { filterFastq(object, destinations, a=a, left=left, right=right, relation=relation, ..., filter=trimEnds, ranges=ranges) }) ShortRead/build/0000755000126300012640000000000012227135272015132 5ustar00biocbuildphs_compbioShortRead/build/vignette.rds0000644000126300012640000000037212227135272017473 0ustar00biocbuildphs_compbio‹uQÉŠ1MwÚ¯sÈ´ó " ”v^ƒ)1Ð&Nm¼ùå¶Õ›Kd ªR©í½JÖ}BHH(jHÑ¥c4mÔj@"ÒÃs°89IÈâDe^îó[1©œÑâ¸qR+æ4[í´q pñØz¹þ ËLU…O•-Å÷`½öΠD¾zý´A(i1Sðª"ôgòU»GžJwfÜZ°vÊU°Aî!uçpδi ^jÚuM4“)4t¥»_èr:«Ý ñ©¿ÍY»gt7«‹_» ÉQü÷Ù¤¸„ÿ¼‚;o ö¼onXK÷ShortRead/cleanup0000755000126300012640000000002312227066725015411 0ustar00biocbuildphs_compbiorm -f src/Makevars ShortRead/configure0000755000126300012640000037300212227066725015755 0ustar00biocbuildphs_compbio#! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.65. # # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, # Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH if test "x$CONFIG_SHELL" = x; then as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi " as_required="as_fn_return () { (exit \$1); } as_fn_success () { as_fn_return 0; } as_fn_failure () { as_fn_return 1; } as_fn_ret_success () { return 0; } as_fn_ret_failure () { return 1; } exitcode=0 as_fn_success || { exitcode=1; echo as_fn_success failed.; } as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; } as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; } as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; } if ( set x; as_fn_ret_success y && test x = \"\$1\" ); then : else exitcode=1; echo positional parameters were not saved. fi test x\$exitcode = x0 || exit 1" as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" && test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1 test \$(( 1 + 1 )) = 2 || exit 1" if (eval "$as_required") 2>/dev/null; then : as_have_required=yes else as_have_required=no fi if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then : else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_found=false for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. as_found=: case $as_dir in #( /*) for as_base in sh bash ksh sh5; do # Try only shells that exist, to save several forks. as_shell=$as_dir/$as_base if { test -f "$as_shell" || test -f "$as_shell.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then : CONFIG_SHELL=$as_shell as_have_required=yes if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then : break 2 fi fi done;; esac as_found=false done $as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then : CONFIG_SHELL=$SHELL as_have_required=yes fi; } IFS=$as_save_IFS if test "x$CONFIG_SHELL" != x; then : # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV export CONFIG_SHELL exec "$CONFIG_SHELL" "$as_myself" ${1+"$@"} fi if test x$as_have_required = xno; then : $as_echo "$0: This script requires a shell more modern than all" $as_echo "$0: the shells that I found on your system." if test x${ZSH_VERSION+set} = xset ; then $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should" $as_echo "$0: be upgraded to zsh 4.3.4 or later." else $as_echo "$0: Please tell bug-autoconf@gnu.org about your system, $0: including any error possibly output before this $0: message. Then install a modern shell, or manually run $0: the script under such a shell if you do have one." fi exit 1 fi fi fi SHELL=${CONFIG_SHELL-/bin/sh} export SHELL # Unset more variables known to interfere with behavior of common tools. CLICOLOR_FORCE= GREP_OPTIONS= unset CLICOLOR_FORCE GREP_OPTIONS ## --------------------- ## ## M4sh Shell Functions. ## ## --------------------- ## # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error "cannot create directory $as_dir" } # as_fn_mkdir_p # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith # as_fn_error ERROR [LINENO LOG_FD] # --------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with status $?, using 1 if that was 0. as_fn_error () { as_status=$?; test $as_status -eq 0 && as_status=1 if test "$3"; then as_lineno=${as_lineno-"$2"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $1" >&$3 fi $as_echo "$as_me: error: $1" >&2 as_fn_exit $as_status } # as_fn_error if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits as_lineno_1=$LINENO as_lineno_1a=$LINENO as_lineno_2=$LINENO as_lineno_2a=$LINENO eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" && test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || { # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-) sed -n ' p /[$]LINENO/= ' <$as_myself | sed ' s/[$]LINENO.*/&-/ t lineno b :lineno N :loop s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/ t loop s/-\n.*// ' >$as_me.lineno && chmod +x "$as_me.lineno" || { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; } # Don't try to exec as it changes $[0], causing all sort of problems # (the dirname of $[0] is not the place where we might find the # original and so on. Autoconf is especially sensitive to this). . "./$as_me.lineno" # Exit status is that of the last command. exit } ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -p'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -p' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -p' fi else as_ln_s='cp -p' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi if test -x / >/dev/null 2>&1; then as_test_x='test -x' else if ls -dL / >/dev/null 2>&1; then as_ls_L_option=L else as_ls_L_option= fi as_test_x=' eval sh -c '\'' if test -d "$1"; then test -d "$1/."; else case $1 in #( -*)set "./$1";; esac; case `ls -ld'$as_ls_L_option' "$1" 2>/dev/null` in #(( ???[sx]*):;;*)false;;esac;fi '\'' sh ' fi as_executable_p=$as_test_x # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" test -n "$DJDIR" || exec 7<&0 &1 # Name of the host. # hostname on some systems (SVR3.2, Linux) returns a bogus exit status, # so uname gets run too. ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q` # # Initializations. # ac_default_prefix=/usr/local ac_clean_files= ac_config_libobj_dir=. LIBOBJS= cross_compiling=no subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME= PACKAGE_TARNAME= PACKAGE_VERSION= PACKAGE_STRING= PACKAGE_BUGREPORT= PACKAGE_URL= ac_unique_file=""DESCRIPTION"" # Factoring default headers for most tests. ac_includes_default="\ #include #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H # include #endif #ifdef STDC_HEADERS # include # include #else # ifdef HAVE_STDLIB_H # include # endif #endif #ifdef HAVE_STRING_H # if !defined STDC_HEADERS && defined HAVE_MEMORY_H # include # endif # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_INTTYPES_H # include #endif #ifdef HAVE_STDINT_H # include #endif #ifdef HAVE_UNISTD_H # include #endif" ac_subst_vars='LTLIBOBJS LIBOBJS EGREP GREP CPP OBJEXT EXEEXT ac_ct_CC CPPFLAGS LDFLAGS CFLAGS CC target_alias host_alias build_alias LIBS ECHO_T ECHO_N ECHO_C DEFS mandir localedir libdir psdir pdfdir dvidir htmldir infodir docdir oldincludedir includedir localstatedir sharedstatedir sysconfdir datadir datarootdir libexecdir sbindir bindir program_transform_name prefix exec_prefix PACKAGE_URL PACKAGE_BUGREPORT PACKAGE_STRING PACKAGE_VERSION PACKAGE_TARNAME PACKAGE_NAME PATH_SEPARATOR SHELL' ac_subst_files='' ac_user_opts=' enable_option_checking ' ac_precious_vars='build_alias host_alias target_alias CC CFLAGS LDFLAGS LIBS CPPFLAGS CPP' # Initialize some variables set by options. ac_init_help= ac_init_version=false ac_unrecognized_opts= ac_unrecognized_sep= # The variables have the same names as the options, with # dashes changed to underlines. cache_file=/dev/null exec_prefix=NONE no_create= no_recursion= prefix=NONE program_prefix=NONE program_suffix=NONE program_transform_name=s,x,x, silent= site= srcdir= verbose= x_includes=NONE x_libraries=NONE # Installation directory options. # These are left unexpanded so users can "make install exec_prefix=/foo" # and all the variables that are supposed to be based on exec_prefix # by default will actually change. # Use braces instead of parens because sh, perl, etc. also accept them. # (The list follows the same order as the GNU Coding Standards.) bindir='${exec_prefix}/bin' sbindir='${exec_prefix}/sbin' libexecdir='${exec_prefix}/libexec' datarootdir='${prefix}/share' datadir='${datarootdir}' sysconfdir='${prefix}/etc' sharedstatedir='${prefix}/com' localstatedir='${prefix}/var' includedir='${prefix}/include' oldincludedir='/usr/include' docdir='${datarootdir}/doc/${PACKAGE}' infodir='${datarootdir}/info' htmldir='${docdir}' dvidir='${docdir}' pdfdir='${docdir}' psdir='${docdir}' libdir='${exec_prefix}/lib' localedir='${datarootdir}/locale' mandir='${datarootdir}/man' ac_prev= ac_dashdash= for ac_option do # If the previous option needs an argument, assign it. if test -n "$ac_prev"; then eval $ac_prev=\$ac_option ac_prev= continue fi case $ac_option in *=*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;; *) ac_optarg=yes ;; esac # Accept the important Cygnus configure options, so we can diagnose typos. case $ac_dashdash$ac_option in --) ac_dashdash=yes ;; -bindir | --bindir | --bindi | --bind | --bin | --bi) ac_prev=bindir ;; -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) bindir=$ac_optarg ;; -build | --build | --buil | --bui | --bu) ac_prev=build_alias ;; -build=* | --build=* | --buil=* | --bui=* | --bu=*) build_alias=$ac_optarg ;; -cache-file | --cache-file | --cache-fil | --cache-fi \ | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) ac_prev=cache_file ;; -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) cache_file=$ac_optarg ;; --config-cache | -C) cache_file=config.cache ;; -datadir | --datadir | --datadi | --datad) ac_prev=datadir ;; -datadir=* | --datadir=* | --datadi=* | --datad=*) datadir=$ac_optarg ;; -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \ | --dataroo | --dataro | --datar) ac_prev=datarootdir ;; -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \ | --dataroot=* | --dataroo=* | --dataro=* | --datar=*) datarootdir=$ac_optarg ;; -disable-* | --disable-*) ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=no ;; -docdir | --docdir | --docdi | --doc | --do) ac_prev=docdir ;; -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*) docdir=$ac_optarg ;; -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv) ac_prev=dvidir ;; -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*) dvidir=$ac_optarg ;; -enable-* | --enable-*) ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=\$ac_optarg ;; -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ | --exec | --exe | --ex) ac_prev=exec_prefix ;; -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ | --exec=* | --exe=* | --ex=*) exec_prefix=$ac_optarg ;; -gas | --gas | --ga | --g) # Obsolete; use --with-gas. with_gas=yes ;; -help | --help | --hel | --he | -h) ac_init_help=long ;; -help=r* | --help=r* | --hel=r* | --he=r* | -hr*) ac_init_help=recursive ;; -help=s* | --help=s* | --hel=s* | --he=s* | -hs*) ac_init_help=short ;; -host | --host | --hos | --ho) ac_prev=host_alias ;; -host=* | --host=* | --hos=* | --ho=*) host_alias=$ac_optarg ;; -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht) ac_prev=htmldir ;; -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \ | --ht=*) htmldir=$ac_optarg ;; -includedir | --includedir | --includedi | --included | --include \ | --includ | --inclu | --incl | --inc) ac_prev=includedir ;; -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ | --includ=* | --inclu=* | --incl=* | --inc=*) includedir=$ac_optarg ;; -infodir | --infodir | --infodi | --infod | --info | --inf) ac_prev=infodir ;; -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) infodir=$ac_optarg ;; -libdir | --libdir | --libdi | --libd) ac_prev=libdir ;; -libdir=* | --libdir=* | --libdi=* | --libd=*) libdir=$ac_optarg ;; -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ | --libexe | --libex | --libe) ac_prev=libexecdir ;; -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ | --libexe=* | --libex=* | --libe=*) libexecdir=$ac_optarg ;; -localedir | --localedir | --localedi | --localed | --locale) ac_prev=localedir ;; -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*) localedir=$ac_optarg ;; -localstatedir | --localstatedir | --localstatedi | --localstated \ | --localstate | --localstat | --localsta | --localst | --locals) ac_prev=localstatedir ;; -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*) localstatedir=$ac_optarg ;; -mandir | --mandir | --mandi | --mand | --man | --ma | --m) ac_prev=mandir ;; -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) mandir=$ac_optarg ;; -nfp | --nfp | --nf) # Obsolete; use --without-fp. with_fp=no ;; -no-create | --no-create | --no-creat | --no-crea | --no-cre \ | --no-cr | --no-c | -n) no_create=yes ;; -no-recursion | --no-recursion | --no-recursio | --no-recursi \ | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) no_recursion=yes ;; -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ | --oldin | --oldi | --old | --ol | --o) ac_prev=oldincludedir ;; -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) oldincludedir=$ac_optarg ;; -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) ac_prev=prefix ;; -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) prefix=$ac_optarg ;; -program-prefix | --program-prefix | --program-prefi | --program-pref \ | --program-pre | --program-pr | --program-p) ac_prev=program_prefix ;; -program-prefix=* | --program-prefix=* | --program-prefi=* \ | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) program_prefix=$ac_optarg ;; -program-suffix | --program-suffix | --program-suffi | --program-suff \ | --program-suf | --program-su | --program-s) ac_prev=program_suffix ;; -program-suffix=* | --program-suffix=* | --program-suffi=* \ | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) program_suffix=$ac_optarg ;; -program-transform-name | --program-transform-name \ | --program-transform-nam | --program-transform-na \ | --program-transform-n | --program-transform- \ | --program-transform | --program-transfor \ | --program-transfo | --program-transf \ | --program-trans | --program-tran \ | --progr-tra | --program-tr | --program-t) ac_prev=program_transform_name ;; -program-transform-name=* | --program-transform-name=* \ | --program-transform-nam=* | --program-transform-na=* \ | --program-transform-n=* | --program-transform-=* \ | --program-transform=* | --program-transfor=* \ | --program-transfo=* | --program-transf=* \ | --program-trans=* | --program-tran=* \ | --progr-tra=* | --program-tr=* | --program-t=*) program_transform_name=$ac_optarg ;; -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd) ac_prev=pdfdir ;; -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*) pdfdir=$ac_optarg ;; -psdir | --psdir | --psdi | --psd | --ps) ac_prev=psdir ;; -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*) psdir=$ac_optarg ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) silent=yes ;; -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) ac_prev=sbindir ;; -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ | --sbi=* | --sb=*) sbindir=$ac_optarg ;; -sharedstatedir | --sharedstatedir | --sharedstatedi \ | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ | --sharedst | --shareds | --shared | --share | --shar \ | --sha | --sh) ac_prev=sharedstatedir ;; -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ | --sha=* | --sh=*) sharedstatedir=$ac_optarg ;; -site | --site | --sit) ac_prev=site ;; -site=* | --site=* | --sit=*) site=$ac_optarg ;; -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) ac_prev=srcdir ;; -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) srcdir=$ac_optarg ;; -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ | --syscon | --sysco | --sysc | --sys | --sy) ac_prev=sysconfdir ;; -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) sysconfdir=$ac_optarg ;; -target | --target | --targe | --targ | --tar | --ta | --t) ac_prev=target_alias ;; -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) target_alias=$ac_optarg ;; -v | -verbose | --verbose | --verbos | --verbo | --verb) verbose=yes ;; -version | --version | --versio | --versi | --vers | -V) ac_init_version=: ;; -with-* | --with-*) ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=\$ac_optarg ;; -without-* | --without-*) ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=no ;; --x) # Obsolete; use --with-x. with_x=yes ;; -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ | --x-incl | --x-inc | --x-in | --x-i) ac_prev=x_includes ;; -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) x_includes=$ac_optarg ;; -x-libraries | --x-libraries | --x-librarie | --x-librari \ | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) ac_prev=x_libraries ;; -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) x_libraries=$ac_optarg ;; -*) as_fn_error "unrecognized option: \`$ac_option' Try \`$0 --help' for more information." ;; *=*) ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='` # Reject names that are not valid shell variable names. case $ac_envvar in #( '' | [0-9]* | *[!_$as_cr_alnum]* ) as_fn_error "invalid variable name: \`$ac_envvar'" ;; esac eval $ac_envvar=\$ac_optarg export $ac_envvar ;; *) # FIXME: should be removed in autoconf 3.0. $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null && $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2 : ${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option} ;; esac done if test -n "$ac_prev"; then ac_option=--`echo $ac_prev | sed 's/_/-/g'` as_fn_error "missing argument to $ac_option" fi if test -n "$ac_unrecognized_opts"; then case $enable_option_checking in no) ;; fatal) as_fn_error "unrecognized options: $ac_unrecognized_opts" ;; *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;; esac fi # Check all directory arguments for consistency. for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \ datadir sysconfdir sharedstatedir localstatedir includedir \ oldincludedir docdir infodir htmldir dvidir pdfdir psdir \ libdir localedir mandir do eval ac_val=\$$ac_var # Remove trailing slashes. case $ac_val in */ ) ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'` eval $ac_var=\$ac_val;; esac # Be sure to have absolute directory names. case $ac_val in [\\/$]* | ?:[\\/]* ) continue;; NONE | '' ) case $ac_var in *prefix ) continue;; esac;; esac as_fn_error "expected an absolute directory name for --$ac_var: $ac_val" done # There might be people who depend on the old broken behavior: `$host' # used to hold the argument of --host etc. # FIXME: To remove some day. build=$build_alias host=$host_alias target=$target_alias # FIXME: To remove some day. if test "x$host_alias" != x; then if test "x$build_alias" = x; then cross_compiling=maybe $as_echo "$as_me: WARNING: If you wanted to set the --build type, don't use --host. If a cross compiler is detected then cross compile mode will be used." >&2 elif test "x$build_alias" != "x$host_alias"; then cross_compiling=yes fi fi ac_tool_prefix= test -n "$host_alias" && ac_tool_prefix=$host_alias- test "$silent" = yes && exec 6>/dev/null ac_pwd=`pwd` && test -n "$ac_pwd" && ac_ls_di=`ls -di .` && ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` || as_fn_error "working directory cannot be determined" test "X$ac_ls_di" = "X$ac_pwd_ls_di" || as_fn_error "pwd does not report name of working directory" # Find the source files, if location was not specified. if test -z "$srcdir"; then ac_srcdir_defaulted=yes # Try the directory containing this script, then the parent directory. ac_confdir=`$as_dirname -- "$as_myself" || $as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_myself" : 'X\(//\)[^/]' \| \ X"$as_myself" : 'X\(//\)$' \| \ X"$as_myself" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_myself" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` srcdir=$ac_confdir if test ! -r "$srcdir/$ac_unique_file"; then srcdir=.. fi else ac_srcdir_defaulted=no fi if test ! -r "$srcdir/$ac_unique_file"; then test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .." as_fn_error "cannot find sources ($ac_unique_file) in $srcdir" fi ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work" ac_abs_confdir=`( cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error "$ac_msg" pwd)` # When building in place, set srcdir=. if test "$ac_abs_confdir" = "$ac_pwd"; then srcdir=. fi # Remove unnecessary trailing slashes from srcdir. # Double slashes in file names in object file debugging info # mess up M-x gdb in Emacs. case $srcdir in */) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;; esac for ac_var in $ac_precious_vars; do eval ac_env_${ac_var}_set=\${${ac_var}+set} eval ac_env_${ac_var}_value=\$${ac_var} eval ac_cv_env_${ac_var}_set=\${${ac_var}+set} eval ac_cv_env_${ac_var}_value=\$${ac_var} done # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures this package to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. Configuration: -h, --help display this help and exit --help=short display options specific to this package --help=recursive display the short help of all the included packages -V, --version display version information and exit -q, --quiet, --silent do not print \`checking...' messages --cache-file=FILE cache test results in FILE [disabled] -C, --config-cache alias for \`--cache-file=config.cache' -n, --no-create do not create output files --srcdir=DIR find the sources in DIR [configure dir or \`..'] Installation directories: --prefix=PREFIX install architecture-independent files in PREFIX [$ac_default_prefix] --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX] By default, \`make install' will install all the files in \`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify an installation prefix other than \`$ac_default_prefix' using \`--prefix', for instance \`--prefix=\$HOME'. For better control, use the options below. Fine tuning of the installation directories: --bindir=DIR user executables [EPREFIX/bin] --sbindir=DIR system admin executables [EPREFIX/sbin] --libexecdir=DIR program executables [EPREFIX/libexec] --sysconfdir=DIR read-only single-machine data [PREFIX/etc] --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com] --localstatedir=DIR modifiable single-machine data [PREFIX/var] --libdir=DIR object code libraries [EPREFIX/lib] --includedir=DIR C header files [PREFIX/include] --oldincludedir=DIR C header files for non-gcc [/usr/include] --datarootdir=DIR read-only arch.-independent data root [PREFIX/share] --datadir=DIR read-only architecture-independent data [DATAROOTDIR] --infodir=DIR info documentation [DATAROOTDIR/info] --localedir=DIR locale-dependent data [DATAROOTDIR/locale] --mandir=DIR man documentation [DATAROOTDIR/man] --docdir=DIR documentation root [DATAROOTDIR/doc/PACKAGE] --htmldir=DIR html documentation [DOCDIR] --dvidir=DIR dvi documentation [DOCDIR] --pdfdir=DIR pdf documentation [DOCDIR] --psdir=DIR ps documentation [DOCDIR] _ACEOF cat <<\_ACEOF _ACEOF fi if test -n "$ac_init_help"; then cat <<\_ACEOF Some influential environment variables: CC C compiler command CFLAGS C compiler flags LDFLAGS linker flags, e.g. -L if you have libraries in a nonstandard directory LIBS libraries to pass to the linker, e.g. -l CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if you have headers in a nonstandard directory CPP C preprocessor Use these variables to override the choices made by `configure' or to help it to find libraries and programs with nonstandard names/locations. Report bugs to the package provider. _ACEOF ac_status=$? fi if test "$ac_init_help" = "recursive"; then # If there are subdirs, report their specific --help. for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue test -d "$ac_dir" || { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } || continue ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix cd "$ac_dir" || { ac_status=$?; continue; } # Check for guested configure. if test -f "$ac_srcdir/configure.gnu"; then echo && $SHELL "$ac_srcdir/configure.gnu" --help=recursive elif test -f "$ac_srcdir/configure"; then echo && $SHELL "$ac_srcdir/configure" --help=recursive else $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2 fi || ac_status=$? cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF configure generated by GNU Autoconf 2.65 Copyright (C) 2009 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi ## ------------------------ ## ## Autoconf initialization. ## ## ------------------------ ## # ac_fn_c_try_compile LINENO # -------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; test "x$as_lineno_stack" = x && { as_lineno=; unset as_lineno;} as_fn_set_status $ac_retval } # ac_fn_c_try_compile # ac_fn_c_try_link LINENO # ----------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || $as_test_x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; test "x$as_lineno_stack" = x && { as_lineno=; unset as_lineno;} as_fn_set_status $ac_retval } # ac_fn_c_try_link # ac_fn_c_try_run LINENO # ---------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. Assumes # that executables *can* be run. ac_fn_c_try_run () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then : ac_retval=0 else $as_echo "$as_me: program exited with status $ac_status" >&5 $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=$ac_status fi rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; test "x$as_lineno_stack" = x && { as_lineno=; unset as_lineno;} as_fn_set_status $ac_retval } # ac_fn_c_try_run # ac_fn_c_compute_int LINENO EXPR VAR INCLUDES # -------------------------------------------- # Tries to find the compile-time value of EXPR in a program that includes # INCLUDES, setting VAR accordingly. Returns whether the value could be # computed ac_fn_c_compute_int () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if test "$cross_compiling" = yes; then # Depending upon the size, compute the lo and hi bounds. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= 0)]; test_array [0] = 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=0 ac_mid=0 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid; break else as_fn_arith $ac_mid + 1 && ac_lo=$as_val if test $ac_lo -le $ac_mid; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid + 1 && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) < 0)]; test_array [0] = 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=-1 ac_mid=-1 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= $ac_mid)]; test_array [0] = 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=$ac_mid; break else as_fn_arith '(' $ac_mid ')' - 1 && ac_hi=$as_val if test $ac_mid -le $ac_hi; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else ac_lo= ac_hi= fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext # Binary search between lo and hi bounds. while test "x$ac_lo" != "x$ac_hi"; do as_fn_arith '(' $ac_hi - $ac_lo ')' / 2 + $ac_lo && ac_mid=$as_val cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid else as_fn_arith '(' $ac_mid ')' + 1 && ac_lo=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done case $ac_lo in #(( ?*) eval "$3=\$ac_lo"; ac_retval=0 ;; '') ac_retval=1 ;; esac else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 static long int longval () { return $2; } static unsigned long int ulongval () { return $2; } #include #include int main () { FILE *f = fopen ("conftest.val", "w"); if (! f) return 1; if (($2) < 0) { long int i = longval (); if (i != ($2)) return 1; fprintf (f, "%ld", i); } else { unsigned long int i = ulongval (); if (i != ($2)) return 1; fprintf (f, "%lu", i); } /* Do not output a trailing newline, as this causes \r\n confusion on some platforms. */ return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : echo >>conftest.val; read $3 &5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } >/dev/null && { test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; test "x$as_lineno_stack" = x && { as_lineno=; unset as_lineno;} as_fn_set_status $ac_retval } # ac_fn_c_try_cpp # ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists and can be compiled using the include files in # INCLUDES, setting the cache variable VAR accordingly. ac_fn_c_check_header_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if { as_var=$3; eval "test \"\${$as_var+set}\" = set"; }; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; test "x$as_lineno_stack" = x && { as_lineno=; unset as_lineno;} } # ac_fn_c_check_header_compile cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by $as_me, which was generated by GNU Autoconf 2.65. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { cat <<_ASUNAME ## --------- ## ## Platform. ## ## --------- ## hostname = `(hostname || uname -n) 2>/dev/null | sed 1q` uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown` /bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown` /bin/arch = `(/bin/arch) 2>/dev/null || echo unknown` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown` /usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown` /bin/machine = `(/bin/machine) 2>/dev/null || echo unknown` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown` /bin/universe = `(/bin/universe) 2>/dev/null || echo unknown` _ASUNAME as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. $as_echo "PATH: $as_dir" done IFS=$as_save_IFS } >&5 cat >&5 <<_ACEOF ## ----------- ## ## Core tests. ## ## ----------- ## _ACEOF # Keep a trace of the command line. # Strip out --no-create and --no-recursion so they do not pile up. # Strip out --silent because we don't want to record it for future runs. # Also quote any args containing shell meta-characters. # Make two passes to allow for proper duplicate-argument suppression. ac_configure_args= ac_configure_args0= ac_configure_args1= ac_must_keep_next=false for ac_pass in 1 2 do for ac_arg do case $ac_arg in -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) continue ;; *\'*) ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;; esac case $ac_pass in 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;; 2) as_fn_append ac_configure_args1 " '$ac_arg'" if test $ac_must_keep_next = true; then ac_must_keep_next=false # Got value, back to normal. else case $ac_arg in *=* | --config-cache | -C | -disable-* | --disable-* \ | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \ | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \ | -with-* | --with-* | -without-* | --without-* | --x) case "$ac_configure_args0 " in "$ac_configure_args1"*" '$ac_arg' "* ) continue ;; esac ;; -* ) ac_must_keep_next=true ;; esac fi as_fn_append ac_configure_args " '$ac_arg'" ;; esac done done { ac_configure_args0=; unset ac_configure_args0;} { ac_configure_args1=; unset ac_configure_args1;} # When interrupted or exit'd, cleanup temporary files, and complete # config.log. We remove comments because anyway the quotes in there # would cause problems or look ugly. # WARNING: Use '\'' to represent an apostrophe within the trap. # WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug. trap 'exit_status=$? # Save into config.log some information that might help in debugging. { echo cat <<\_ASBOX ## ---------------- ## ## Cache variables. ## ## ---------------- ## _ASBOX echo # The following way of writing the cache mishandles newlines in values, ( for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #( *${as_nl}ac_space=\ *) sed -n \ "s/'\''/'\''\\\\'\'''\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p" ;; #( *) sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) echo cat <<\_ASBOX ## ----------------- ## ## Output variables. ## ## ----------------- ## _ASBOX echo for ac_var in $ac_subst_vars do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo if test -n "$ac_subst_files"; then cat <<\_ASBOX ## ------------------- ## ## File substitutions. ## ## ------------------- ## _ASBOX echo for ac_var in $ac_subst_files do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo fi if test -s confdefs.h; then cat <<\_ASBOX ## ----------- ## ## confdefs.h. ## ## ----------- ## _ASBOX echo cat confdefs.h echo fi test "$ac_signal" != 0 && $as_echo "$as_me: caught signal $ac_signal" $as_echo "$as_me: exit $exit_status" } >&5 rm -f core *.core core.conftest.* && rm -f -r conftest* confdefs* conf$$* $ac_clean_files && exit $exit_status ' 0 for ac_signal in 1 2 13 15; do trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal done ac_signal=0 # confdefs.h avoids OS command line length limits that DEFS can exceed. rm -f -r conftest* confdefs.h $as_echo "/* confdefs.h */" > confdefs.h # Predefined preprocessor variables. cat >>confdefs.h <<_ACEOF #define PACKAGE_NAME "$PACKAGE_NAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_TARNAME "$PACKAGE_TARNAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_VERSION "$PACKAGE_VERSION" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_STRING "$PACKAGE_STRING" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_URL "$PACKAGE_URL" _ACEOF # Let the site file select an alternate cache file if it wants to. # Prefer an explicitly selected file to automatically selected ones. ac_site_file1=NONE ac_site_file2=NONE if test -n "$CONFIG_SITE"; then ac_site_file1=$CONFIG_SITE elif test "x$prefix" != xNONE; then ac_site_file1=$prefix/share/config.site ac_site_file2=$prefix/etc/config.site else ac_site_file1=$ac_default_prefix/share/config.site ac_site_file2=$ac_default_prefix/etc/config.site fi for ac_site_file in "$ac_site_file1" "$ac_site_file2" do test "x$ac_site_file" = xNONE && continue if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5 $as_echo "$as_me: loading site script $ac_site_file" >&6;} sed 's/^/| /' "$ac_site_file" >&5 . "$ac_site_file" fi done if test -r "$cache_file"; then # Some versions of bash will fail to source /dev/null (special files # actually), so we avoid doing that. DJGPP emulates it as a regular file. if test /dev/null != "$cache_file" && test -f "$cache_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5 $as_echo "$as_me: loading cache $cache_file" >&6;} case $cache_file in [\\/]* | ?:[\\/]* ) . "$cache_file";; *) . "./$cache_file";; esac fi else { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5 $as_echo "$as_me: creating cache $cache_file" >&6;} >$cache_file fi # Check that the precious variables saved in the cache have kept the same # value. ac_cache_corrupted=false for ac_var in $ac_precious_vars; do eval ac_old_set=\$ac_cv_env_${ac_var}_set eval ac_new_set=\$ac_env_${ac_var}_set eval ac_old_val=\$ac_cv_env_${ac_var}_value eval ac_new_val=\$ac_env_${ac_var}_value case $ac_old_set,$ac_new_set in set,) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;} ac_cache_corrupted=: ;; ,set) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;} ac_cache_corrupted=: ;; ,);; *) if test "x$ac_old_val" != "x$ac_new_val"; then # differences in whitespace do not lead to failure. ac_old_val_w=`echo x $ac_old_val` ac_new_val_w=`echo x $ac_new_val` if test "$ac_old_val_w" != "$ac_new_val_w"; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5 $as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;} ac_cache_corrupted=: else { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5 $as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;} eval $ac_var=\$ac_old_val fi { $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5 $as_echo "$as_me: former value: \`$ac_old_val'" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5 $as_echo "$as_me: current value: \`$ac_new_val'" >&2;} fi;; esac # Pass precious variables to config.status. if test "$ac_new_set" = set; then case $ac_new_val in *\'*) ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;; *) ac_arg=$ac_var=$ac_new_val ;; esac case " $ac_configure_args " in *" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy. *) as_fn_append ac_configure_args " '$ac_arg'" ;; esac fi done if $ac_cache_corrupted; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5 $as_echo "$as_me: error: changes in the environment can compromise the build" >&2;} as_fn_error "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5 fi ## -------------------- ## ## Main body of script. ## ## -------------------- ## ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args. set dummy ${ac_tool_prefix}gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_CC+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if { test -f "$as_dir/$ac_word$ac_exec_ext" && $as_test_x "$as_dir/$ac_word$ac_exec_ext"; }; then ac_cv_prog_CC="${ac_tool_prefix}gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_CC"; then ac_ct_CC=$CC # Extract the first word of "gcc", so it can be a program name with args. set dummy gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_ac_ct_CC+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if { test -f "$as_dir/$ac_word$ac_exec_ext" && $as_test_x "$as_dir/$ac_word$ac_exec_ext"; }; then ac_cv_prog_ac_ct_CC="gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi else CC="$ac_cv_prog_CC" fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args. set dummy ${ac_tool_prefix}cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_CC+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if { test -f "$as_dir/$ac_word$ac_exec_ext" && $as_test_x "$as_dir/$ac_word$ac_exec_ext"; }; then ac_cv_prog_CC="${ac_tool_prefix}cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi fi if test -z "$CC"; then # Extract the first word of "cc", so it can be a program name with args. set dummy cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_CC+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else ac_prog_rejected=no as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if { test -f "$as_dir/$ac_word$ac_exec_ext" && $as_test_x "$as_dir/$ac_word$ac_exec_ext"; }; then if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then ac_prog_rejected=yes continue fi ac_cv_prog_CC="cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS if test $ac_prog_rejected = yes; then # We found a bogon in the path, so make sure we never use it. set dummy $ac_cv_prog_CC shift if test $# != 0; then # We chose a different compiler from the bogus one. # However, it has the same basename, so the bogon will be chosen # first if we set CC to just the basename; use the full file name. shift ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@" fi fi fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then for ac_prog in cl.exe do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_CC+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if { test -f "$as_dir/$ac_word$ac_exec_ext" && $as_test_x "$as_dir/$ac_word$ac_exec_ext"; }; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in cl.exe do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if test "${ac_cv_prog_ac_ct_CC+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if { test -f "$as_dir/$ac_word$ac_exec_ext" && $as_test_x "$as_dir/$ac_word$ac_exec_ext"; }; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error "no acceptable C compiler found in \$PATH See \`config.log' for more details." "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out" # Try to create an executable without -o first, disregard a.out. # It will help us diagnose broken compilers, and finding out an intuition # of exeext. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler works" >&5 $as_echo_n "checking whether the C compiler works... " >&6; } ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^ ]*//'` # The possible output files: ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*" ac_rmfiles= for ac_file in $ac_files do case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; * ) ac_rmfiles="$ac_rmfiles $ac_file";; esac done rm -f $ac_rmfiles if { { ac_try="$ac_link_default" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link_default") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # Autoconf-2.13 could set the ac_cv_exeext variable to `no'. # So ignore a value of `no', otherwise this would lead to `EXEEXT = no' # in a Makefile. We should not override ac_cv_exeext if it was cached, # so that the user can short-circuit this test for compilers unknown to # Autoconf. for ac_file in $ac_files '' do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; [ab].out ) # We found the default executable, but exeext='' is most # certainly right. break;; *.* ) if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no; then :; else ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` fi # We set ac_cv_exeext here because the later test for it is not # safe: cross compilers may not add the suffix if given an `-o' # argument, so we may need to know it at that point already. # Even if this section looks crufty: it has the advantage of # actually working. break;; * ) break;; esac done test "$ac_cv_exeext" = no && ac_cv_exeext= else ac_file='' fi if test -z "$ac_file"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { as_fn_set_status 77 as_fn_error "C compiler cannot create executables See \`config.log' for more details." "$LINENO" 5; }; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler default output file name" >&5 $as_echo_n "checking for C compiler default output file name... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5 $as_echo "$ac_file" >&6; } ac_exeext=$ac_cv_exeext rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5 $as_echo_n "checking for suffix of executables... " >&6; } if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # If both `conftest.exe' and `conftest' are `present' (well, observable) # catch `conftest.exe'. For instance with Cygwin, `ls conftest' will # work properly (i.e., refer to `conftest.exe'), while it won't with # `rm'. for ac_file in conftest.exe conftest conftest.*; do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; *.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` break;; * ) break;; esac done else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error "cannot compute suffix of executables: cannot compile and link See \`config.log' for more details." "$LINENO" 5; } fi rm -f conftest conftest$ac_cv_exeext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5 $as_echo "$ac_cv_exeext" >&6; } rm -f conftest.$ac_ext EXEEXT=$ac_cv_exeext ac_exeext=$EXEEXT cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { FILE *f = fopen ("conftest.out", "w"); return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF ac_clean_files="$ac_clean_files conftest.out" # Check that the compiler produces executables we can run. If not, either # the compiler is broken, or we cross compile. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5 $as_echo_n "checking whether we are cross compiling... " >&6; } if test "$cross_compiling" != yes; then { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if { ac_try='./conftest$ac_cv_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then cross_compiling=no else if test "$cross_compiling" = maybe; then cross_compiling=yes else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error "cannot run C compiled programs. If you meant to cross compile, use \`--host'. See \`config.log' for more details." "$LINENO" 5; } fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5 $as_echo "$cross_compiling" >&6; } rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5 $as_echo_n "checking for suffix of object files... " >&6; } if test "${ac_cv_objext+set}" = set; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF rm -f conftest.o conftest.obj if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : for ac_file in conftest.o conftest.obj conftest.*; do test -f "$ac_file" || continue; case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;; *) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'` break;; esac done else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error "cannot compute suffix of object files: cannot compile See \`config.log' for more details." "$LINENO" 5; } fi rm -f conftest.$ac_cv_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5 $as_echo "$ac_cv_objext" >&6; } OBJEXT=$ac_cv_objext ac_objext=$OBJEXT { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if test "${ac_cv_c_compiler_gnu+set}" = set; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if test "${ac_cv_prog_cc_g+set}" = set; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if test "${ac_cv_prog_cc_c89+set}" = set; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for gzeof in -lz" >&5 $as_echo_n "checking for gzeof in -lz... " >&6; } if test "${ac_cv_lib_z_gzeof+set}" = set; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lz $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char gzeof (); int main () { return gzeof (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_z_gzeof=yes else ac_cv_lib_z_gzeof=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_z_gzeof" >&5 $as_echo "$ac_cv_lib_z_gzeof" >&6; } if test "x$ac_cv_lib_z_gzeof" = x""yes; then : cat >>confdefs.h <<_ACEOF #define HAVE_LIBZ 1 _ACEOF LIBS="-lz $LIBS" else as_fn_error "zlib not found" "$LINENO" 5 fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5 $as_echo_n "checking how to run the C preprocessor... " >&6; } # On Suns, sometimes $CPP names a directory. if test -n "$CPP" && test -d "$CPP"; then CPP= fi if test -z "$CPP"; then if test "${ac_cv_prog_CPP+set}" = set; then : $as_echo_n "(cached) " >&6 else # Double quotes because CPP needs to be expanded for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp" do ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CPP=$CPP fi CPP=$ac_cv_prog_CPP else ac_cv_prog_CPP=$CPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5 $as_echo "$CPP" >&6; } ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error "C preprocessor \"$CPP\" fails sanity check See \`config.log' for more details." "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if test "${ac_cv_path_GREP+set}" = set; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" { test -f "$ac_path_GREP" && $as_test_x "$ac_path_GREP"; } || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5 $as_echo_n "checking for egrep... " >&6; } if test "${ac_cv_path_EGREP+set}" = set; then : $as_echo_n "(cached) " >&6 else if echo a | $GREP -E '(a|b)' >/dev/null 2>&1 then ac_cv_path_EGREP="$GREP -E" else if test -z "$EGREP"; then ac_path_EGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in egrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext" { test -f "$ac_path_EGREP" && $as_test_x "$ac_path_EGREP"; } || continue # Check for GNU ac_path_EGREP and select it if it is found. # Check for GNU $ac_path_EGREP case `"$ac_path_EGREP" --version 2>&1` in *GNU*) ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'EGREP' >> "conftest.nl" "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_EGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_EGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_EGREP"; then as_fn_error "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_EGREP=$EGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5 $as_echo "$ac_cv_path_EGREP" >&6; } EGREP="$ac_cv_path_EGREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if test "${ac_cv_header_stdc+set}" = set; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi # On IRIX 5.3, sys/types and inttypes.h are conflicting. for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \ inttypes.h stdint.h unistd.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default " eval as_val=\$$as_ac_Header if test "x$as_val" = x""yes; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of unsigned long" >&5 $as_echo_n "checking size of unsigned long... " >&6; } if test "${ac_cv_sizeof_unsigned_long+set}" = set; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (unsigned long))" "ac_cv_sizeof_unsigned_long" "$ac_includes_default"; then : else if test "$ac_cv_type_unsigned_long" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { as_fn_set_status 77 as_fn_error "cannot compute sizeof (unsigned long) See \`config.log' for more details." "$LINENO" 5; }; } else ac_cv_sizeof_unsigned_long=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_unsigned_long" >&5 $as_echo "$ac_cv_sizeof_unsigned_long" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_UNSIGNED_LONG $ac_cv_sizeof_unsigned_long _ACEOF ac_config_files="$ac_config_files src/Makevars" cat >confcache <<\_ACEOF # This file is a shell script that caches the results of configure # tests run on this system so they can be shared between configure # scripts and configure runs, see configure's option --config-cache. # It is not useful on other systems. If it contains results you don't # want to keep, you may remove or edit it. # # config.status only pays attention to the cache file if you give it # the --recheck option to rerun configure. # # `ac_cv_env_foo' variables (set or unset) will be overridden when # loading this file, other *unset* `ac_cv_foo' will be assigned the # following values. _ACEOF # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space=' '; set) 2>&1` in #( *${as_nl}ac_space=\ *) # `set' does not quote correctly, so add quotes: double-quote # substitution turns \\\\ into \\, and sed turns \\ into \. sed -n \ "s/'/'\\\\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p" ;; #( *) # `set' quotes correctly as required by POSIX, so do not add quotes. sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) | sed ' /^ac_cv_env_/b end t clear :clear s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/ t end s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/ :end' >>confcache if diff "$cache_file" confcache >/dev/null 2>&1; then :; else if test -w "$cache_file"; then test "x$cache_file" != "x/dev/null" && { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5 $as_echo "$as_me: updating cache $cache_file" >&6;} cat confcache >$cache_file else { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5 $as_echo "$as_me: not updating unwritable cache $cache_file" >&6;} fi fi rm -f confcache test "x$prefix" = xNONE && prefix=$ac_default_prefix # Let make expand exec_prefix. test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' # Transform confdefs.h into DEFS. # Protect against shell expansion while executing Makefile rules. # Protect against Makefile macro expansion. # # If the first sed substitution is executed (which looks for macros that # take arguments), then branch to the quote section. Otherwise, # look for a macro that doesn't take arguments. ac_script=' :mline /\\$/{ N s,\\\n,, b mline } t clear :clear s/^[ ]*#[ ]*define[ ][ ]*\([^ (][^ (]*([^)]*)\)[ ]*\(.*\)/-D\1=\2/g t quote s/^[ ]*#[ ]*define[ ][ ]*\([^ ][^ ]*\)[ ]*\(.*\)/-D\1=\2/g t quote b any :quote s/[ `~#$^&*(){}\\|;'\''"<>?]/\\&/g s/\[/\\&/g s/\]/\\&/g s/\$/$$/g H :any ${ g s/^\n// s/\n/ /g p } ' DEFS=`sed -n "$ac_script" confdefs.h` ac_libobjs= ac_ltlibobjs= for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue # 1. Remove the extension, and $U if already installed. ac_script='s/\$U\././;s/\.o$//;s/\.obj$//' ac_i=`$as_echo "$ac_i" | sed "$ac_script"` # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR # will be set to the directory where LIBOBJS objects are built. as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext" as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo' done LIBOBJS=$ac_libobjs LTLIBOBJS=$ac_ltlibobjs : ${CONFIG_STATUS=./config.status} ac_write_fail=0 ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files $CONFIG_STATUS" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5 $as_echo "$as_me: creating $CONFIG_STATUS" >&6;} as_write_fail=0 cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1 #! $SHELL # Generated by $as_me. # Run this file to recreate the current configuration. # Compiler output produced by configure, useful for debugging # configure, is in config.log if it exists. debug=false ac_cs_recheck=false ac_cs_silent=false SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1 ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # as_fn_error ERROR [LINENO LOG_FD] # --------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with status $?, using 1 if that was 0. as_fn_error () { as_status=$?; test $as_status -eq 0 && as_status=1 if test "$3"; then as_lineno=${as_lineno-"$2"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $1" >&$3 fi $as_echo "$as_me: error: $1" >&2 as_fn_exit $as_status } # as_fn_error # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -p'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -p' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -p' fi else as_ln_s='cp -p' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error "cannot create directory $as_dir" } # as_fn_mkdir_p if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi if test -x / >/dev/null 2>&1; then as_test_x='test -x' else if ls -dL / >/dev/null 2>&1; then as_ls_L_option=L else as_ls_L_option= fi as_test_x=' eval sh -c '\'' if test -d "$1"; then test -d "$1/."; else case $1 in #( -*)set "./$1";; esac; case `ls -ld'$as_ls_L_option' "$1" 2>/dev/null` in #(( ???[sx]*):;;*)false;;esac;fi '\'' sh ' fi as_executable_p=$as_test_x # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" exec 6>&1 ## ----------------------------------- ## ## Main body of $CONFIG_STATUS script. ## ## ----------------------------------- ## _ASEOF test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by $as_me, which was generated by GNU Autoconf 2.65. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ on `(hostname || uname -n) 2>/dev/null | sed 1q` " _ACEOF case $ac_config_files in *" "*) set x $ac_config_files; shift; ac_config_files=$*;; esac cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # Files that config.status was made for. config_files="$ac_config_files" _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 ac_cs_usage="\ \`$as_me' instantiates files and other configuration actions from templates according to the current configuration. Unless the files and actions are specified as TAGs, all are instantiated by default. Usage: $0 [OPTION]... [TAG]... -h, --help print this help, then exit -V, --version print version number and configuration settings, then exit --config print configuration, then exit -q, --quiet, --silent do not print progress messages -d, --debug don't remove temporary files --recheck update $as_me by reconfiguring in the same conditions --file=FILE[:TEMPLATE] instantiate the configuration file FILE Configuration files: $config_files Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ config.status configured by $0, generated by GNU Autoconf 2.65, with options \\"\$ac_cs_config\\" Copyright (C) 2009 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." ac_pwd='$ac_pwd' srcdir='$srcdir' test -n "\$AWK" || AWK=awk _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # The default lists apply if the user does not specify any file. ac_need_defaults=: while test $# != 0 do case $1 in --*=*) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'` ac_shift=: ;; *) ac_option=$1 ac_optarg=$2 ac_shift=shift ;; esac case $ac_option in # Handling of the options. -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) ac_cs_recheck=: ;; --version | --versio | --versi | --vers | --ver | --ve | --v | -V ) $as_echo "$ac_cs_version"; exit ;; --config | --confi | --conf | --con | --co | --c ) $as_echo "$ac_cs_config"; exit ;; --debug | --debu | --deb | --de | --d | -d ) debug=: ;; --file | --fil | --fi | --f ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; esac as_fn_append CONFIG_FILES " '$ac_optarg'" ac_need_defaults=false;; --he | --h | --help | --hel | -h ) $as_echo "$ac_cs_usage"; exit ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil | --si | --s) ac_cs_silent=: ;; # This is an error. -*) as_fn_error "unrecognized option: \`$1' Try \`$0 --help' for more information." ;; *) as_fn_append ac_config_targets " $1" ac_need_defaults=false ;; esac shift done ac_configure_extra_args= if $ac_cs_silent; then exec 6>/dev/null ac_configure_extra_args="$ac_configure_extra_args --silent" fi _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 if \$ac_cs_recheck; then set X '$SHELL' '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion shift \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6 CONFIG_SHELL='$SHELL' export CONFIG_SHELL exec "\$@" fi _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 exec 5>>config.log { echo sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX ## Running $as_me. ## _ASBOX $as_echo "$ac_log" } >&5 _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Handling of arguments. for ac_config_target in $ac_config_targets do case $ac_config_target in "src/Makevars") CONFIG_FILES="$CONFIG_FILES src/Makevars" ;; *) as_fn_error "invalid argument: \`$ac_config_target'" "$LINENO" 5;; esac done # If the user did not use the arguments to specify the items to instantiate, # then the envvar interface is used. Set only those that are not. # We use the long form for the default assignment because of an extremely # bizarre bug on SunOS 4.1.3. if $ac_need_defaults; then test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files fi # Have a temporary directory for convenience. Make it in the build tree # simply because there is no reason against having it here, and in addition, # creating and moving files from /tmp can sometimes cause problems. # Hook for its removal unless debugging. # Note that there is a small window in which the directory will not be cleaned: # after its creation but before its name has been assigned to `$tmp'. $debug || { tmp= trap 'exit_status=$? { test -z "$tmp" || test ! -d "$tmp" || rm -fr "$tmp"; } && exit $exit_status ' 0 trap 'as_fn_exit 1' 1 2 13 15 } # Create a (secure) tmp directory for tmp files. { tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" } || { tmp=./conf$$-$RANDOM (umask 077 && mkdir "$tmp") } || as_fn_error "cannot create a temporary directory in ." "$LINENO" 5 # Set up the scripts for CONFIG_FILES section. # No need to generate them if there are no CONFIG_FILES. # This happens for instance with `./config.status config.h'. if test -n "$CONFIG_FILES"; then ac_cr=`echo X | tr X '\015'` # On cygwin, bash can eat \r inside `` if the user requested igncr. # But we know of no other shell where ac_cr would be empty at this # point, so we can use a bashism as a fallback. if test "x$ac_cr" = x; then eval ac_cr=\$\'\\r\' fi ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null` if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then ac_cs_awk_cr='\r' else ac_cs_awk_cr=$ac_cr fi echo 'BEGIN {' >"$tmp/subs1.awk" && _ACEOF { echo "cat >conf$$subs.awk <<_ACEOF" && echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' && echo "_ACEOF" } >conf$$subs.sh || as_fn_error "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_num=`echo "$ac_subst_vars" | grep -c '$'` ac_delim='%!_!# ' for ac_last_try in false false false false false :; do . ./conf$$subs.sh || as_fn_error "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X` if test $ac_delim_n = $ac_delim_num; then break elif $ac_last_try; then as_fn_error "could not make $CONFIG_STATUS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done rm -f conf$$subs.sh cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>"\$tmp/subs1.awk" <<\\_ACAWK && _ACEOF sed -n ' h s/^/S["/; s/!.*/"]=/ p g s/^[^!]*!// :repl t repl s/'"$ac_delim"'$// t delim :nl h s/\(.\{148\}\)..*/\1/ t more1 s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/ p n b repl :more1 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t nl :delim h s/\(.\{148\}\)..*/\1/ t more2 s/["\\]/\\&/g; s/^/"/; s/$/"/ p b :more2 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t delim ' >$CONFIG_STATUS || ac_write_fail=1 rm -f conf$$subs.awk cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACAWK cat >>"\$tmp/subs1.awk" <<_ACAWK && for (key in S) S_is_set[key] = 1 FS = "" } { line = $ 0 nfields = split(line, field, "@") substed = 0 len = length(field[1]) for (i = 2; i < nfields; i++) { key = field[i] keylen = length(key) if (S_is_set[key]) { value = S[key] line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3) len += length(value) + length(field[++i]) substed = 1 } else len += 1 + keylen } print line } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g" else cat fi < "$tmp/subs1.awk" > "$tmp/subs.awk" \ || as_fn_error "could not setup config files machinery" "$LINENO" 5 _ACEOF # VPATH may cause trouble with some makes, so we remove $(srcdir), # ${srcdir} and @srcdir@ from VPATH if srcdir is ".", strip leading and # trailing colons and then remove the whole line if VPATH becomes empty # (actually we leave an empty line to preserve line numbers). if test "x$srcdir" = x.; then ac_vpsub='/^[ ]*VPATH[ ]*=/{ s/:*\$(srcdir):*/:/ s/:*\${srcdir}:*/:/ s/:*@srcdir@:*/:/ s/^\([^=]*=[ ]*\):*/\1/ s/:*$// s/^[^=]*=[ ]*$// }' fi cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 fi # test -n "$CONFIG_FILES" eval set X " :F $CONFIG_FILES " shift for ac_tag do case $ac_tag in :[FHLC]) ac_mode=$ac_tag; continue;; esac case $ac_mode$ac_tag in :[FHL]*:*);; :L* | :C*:*) as_fn_error "invalid tag \`$ac_tag'" "$LINENO" 5;; :[FH]-) ac_tag=-:-;; :[FH]*) ac_tag=$ac_tag:$ac_tag.in;; esac ac_save_IFS=$IFS IFS=: set x $ac_tag IFS=$ac_save_IFS shift ac_file=$1 shift case $ac_mode in :L) ac_source=$1;; :[FH]) ac_file_inputs= for ac_f do case $ac_f in -) ac_f="$tmp/stdin";; *) # Look for the file first in the build tree, then in the source tree # (if the path is not absolute). The absolute path cannot be DOS-style, # because $ac_f cannot contain `:'. test -f "$ac_f" || case $ac_f in [\\/$]*) false;; *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";; esac || as_fn_error "cannot find input file: \`$ac_f'" "$LINENO" 5;; esac case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac as_fn_append ac_file_inputs " '$ac_f'" done # Let's still pretend it is `configure' which instantiates (i.e., don't # use $as_me), people would be surprised to read: # /* config.h. Generated by config.status. */ configure_input='Generated from '` $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g' `' by configure.' if test x"$ac_file" != x-; then configure_input="$ac_file. $configure_input" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5 $as_echo "$as_me: creating $ac_file" >&6;} fi # Neutralize special characters interpreted by sed in replacement strings. case $configure_input in #( *\&* | *\|* | *\\* ) ac_sed_conf_input=`$as_echo "$configure_input" | sed 's/[\\\\&|]/\\\\&/g'`;; #( *) ac_sed_conf_input=$configure_input;; esac case $ac_tag in *:-:* | *:-) cat >"$tmp/stdin" \ || as_fn_error "could not create $ac_file" "$LINENO" 5 ;; esac ;; esac ac_dir=`$as_dirname -- "$ac_file" || $as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_file" : 'X\(//\)[^/]' \| \ X"$ac_file" : 'X\(//\)$' \| \ X"$ac_file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix case $ac_mode in :F) # # CONFIG_FILE # _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # If the template does not know about datarootdir, expand it. # FIXME: This hack should be removed a few years after 2.60. ac_datarootdir_hack=; ac_datarootdir_seen= ac_sed_dataroot=' /datarootdir/ { p q } /@datadir@/p /@docdir@/p /@infodir@/p /@localedir@/p /@mandir@/p' case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in *datarootdir*) ac_datarootdir_seen=yes;; *@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5 $as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;} _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_datarootdir_hack=' s&@datadir@&$datadir&g s&@docdir@&$docdir&g s&@infodir@&$infodir&g s&@localedir@&$localedir&g s&@mandir@&$mandir&g s&\\\${datarootdir}&$datarootdir&g' ;; esac _ACEOF # Neutralize VPATH when `$srcdir' = `.'. # Shell code in configure.ac might set extrasub. # FIXME: do we really want to maintain this feature? cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_sed_extra="$ac_vpsub $extrasub _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 :t /@[a-zA-Z_][a-zA-Z_0-9]*@/!b s|@configure_input@|$ac_sed_conf_input|;t t s&@top_builddir@&$ac_top_builddir_sub&;t t s&@top_build_prefix@&$ac_top_build_prefix&;t t s&@srcdir@&$ac_srcdir&;t t s&@abs_srcdir@&$ac_abs_srcdir&;t t s&@top_srcdir@&$ac_top_srcdir&;t t s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t s&@builddir@&$ac_builddir&;t t s&@abs_builddir@&$ac_abs_builddir&;t t s&@abs_top_builddir@&$ac_abs_top_builddir&;t t $ac_datarootdir_hack " eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$tmp/subs.awk" >$tmp/out \ || as_fn_error "could not create $ac_file" "$LINENO" 5 test -z "$ac_datarootdir_hack$ac_datarootdir_seen" && { ac_out=`sed -n '/\${datarootdir}/p' "$tmp/out"`; test -n "$ac_out"; } && { ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' "$tmp/out"`; test -z "$ac_out"; } && { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined." >&5 $as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined." >&2;} rm -f "$tmp/stdin" case $ac_file in -) cat "$tmp/out" && rm -f "$tmp/out";; *) rm -f "$ac_file" && mv "$tmp/out" "$ac_file";; esac \ || as_fn_error "could not create $ac_file" "$LINENO" 5 ;; esac done # for ac_tag as_fn_exit 0 _ACEOF ac_clean_files=$ac_clean_files_save test $ac_write_fail = 0 || as_fn_error "write failure creating $CONFIG_STATUS" "$LINENO" 5 # configure is writing to config.log, and then calls config.status. # config.status does its own redirection, appending to config.log. # Unfortunately, on DOS this fails, as config.log is still kept open # by configure, so config.status won't be able to write to it; its # output is simply discarded. So we exec the FD to /dev/null, # effectively closing config.log, so it can be properly (re)opened and # appended to by config.status. When coming back to configure, we # need to make the FD available again. if test "$no_create" != yes; then ac_cs_success=: ac_config_status_args= test "$silent" = yes && ac_config_status_args="$ac_config_status_args --quiet" exec 5>/dev/null $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false exec 5>>config.log # Use ||, not &&, to avoid exiting from the if with $? = 1, which # would make configure fail if this is the last instruction. $ac_cs_success || as_fn_exit $? fi if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5 $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;} fi ShortRead/configure.ac0000644000126300012640000000021312227066725016323 0ustar00biocbuildphs_compbioAC_INIT("DESCRIPTION") AC_CHECK_LIB([z], [gzeof], , AC_ERROR([zlib not found])) AC_CHECK_SIZEOF([unsigned long]) AC_OUTPUT(src/Makevars) ShortRead/inst/0000755000126300012640000000000012227066725015016 5ustar00biocbuildphs_compbioShortRead/inst/CITATION0000644000126300012640000000220612227066725016153 0ustar00biocbuildphs_compbiocitEntry(entry="article", title = paste( "{ShortRead}: a {B}ioconductor package for input,", "quality assessment and exploration of high-throughput sequence", "data" ), author = personList( as.person("Martin Morgan" ), as.person("Simon Anders" ), as.person("Michael Lawrence" ), as.person("Patrick Aboyoun" ), as.person("Herv\\'e Pag\\`es" ), as.person("Robert Gentleman" ) ), year = 2009, journal = "Bioinformatics", volume = "25", pages = "2607-2608", doi = "10.1093/bioinformatics/btp450", url = "http://dx.doi.org10.1093/bioinformatics/btp450", textVersion = paste("M. Morgan, S. Anders, M. Lawrence, P. Aboyoun, H. Pag\\`es,", "and R. Gentleman (2009): \"ShortRead: a Bioconductor package", "for input, quality assessment and exploration of", "high-throughput sequence data\".", "Bioinformatics 25:2607-2608. " ) ) ShortRead/inst/doc/0000755000126300012640000000000012227135272015555 5ustar00biocbuildphs_compbioShortRead/inst/doc/Overview.R0000644000126300012640000002347212227135272017516 0ustar00biocbuildphs_compbio### R code from vignette source 'Overview.Rnw' ################################################### ### code chunk number 1: options ################################################### options(width=60) ################################################### ### code chunk number 2: preliminaries ################################################### library("ShortRead") ################################################### ### code chunk number 3: SolexaPath-root ################################################### exptPath <- system.file("extdata", package="ShortRead") ################################################### ### code chunk number 4: SolexaPat ################################################### sp <- SolexaPath(exptPath) sp ################################################### ### code chunk number 5: firecrest ################################################### imageAnalysisPath(sp) analysisPath(sp) ################################################### ### code chunk number 6: readAligned-simple ################################################### aln <- readAligned(sp, "s_2_export.txt") aln ################################################### ### code chunk number 7: filter-egs ################################################### nfilt <- nFilter() cfilt <- chromosomeFilter('chr5.fa') sfilt <- strandFilter("+") ofilt <- occurrenceFilter(withSread=FALSE) ################################################### ### code chunk number 8: readAligned-filter ################################################### chr5 <- readAligned(sp, "s_2_export.txt", filter=cfilt) ################################################### ### code chunk number 9: readAligned-compose-filter ################################################### filt <- compose(cfilt, sfilt) chr5plus <- readAligned(sp, "s_2_export.txt", filter=filt) ################################################### ### code chunk number 10: AlignedRead-filter ################################################### chr5 <- aln[cfilt(aln)] ################################################### ### code chunk number 11: aln-sread-quality ################################################### sread(aln) quality(aln) ################################################### ### code chunk number 12: chromosomes ################################################### whichStrand <- strand(aln) class(whichStrand) levels(whichStrand) table(whichStrand, useNA="ifany") ################################################### ### code chunk number 13: alignData ################################################### alignData(aln) ################################################### ### code chunk number 14: varMetadata ################################################### varMetadata(alignData(aln)) ################################################### ### code chunk number 15: aln-okreads ################################################### mapped <- !is.na(position(aln)) filtered <- alignData(aln)[["filtering"]] =="Y" sum(!mapped) / length(aln) sum(filtered) / length(aln) ################################################### ### code chunk number 16: aln-failed ################################################### failedAlign <- aln[filtered & !mapped] failedAlign ################################################### ### code chunk number 17: sread-filter-fail-subset ################################################### failedReads <- sread(aln)[filtered & !mapped] ################################################### ### code chunk number 18: qa ################################################### qaSummary <- qa(sp) ################################################### ### code chunk number 19: Overview.Rnw:363-364 (eval = FALSE) ################################################### ## save(qaSummary, file="/path/to/file.rda") ################################################### ### code chunk number 20: Overview.Rnw:370-374 (eval = FALSE) ################################################### ## library("Rmpi") ## mpi.spawn.Rslaves(nsl=8) ## qaSummary <- qa(sp) ## mpi.close.Rslaves() ################################################### ### code chunk number 21: Overview.Rnw:378-380 (eval = FALSE) ################################################### ## library(multicore) ## qaSummary <- qa(sp) ################################################### ### code chunk number 22: qa-elements ################################################### qaSummary ################################################### ### code chunk number 23: qa-readCounts ################################################### qaSummary[["readCounts"]] qaSummary[["baseCalls"]] ################################################### ### code chunk number 24: report (eval = FALSE) ################################################### ## report(qaSummary, dest="/path/to/report_directory") ################################################### ### code chunk number 25: export ################################################### pattern <- "s_2_export.txt" fl <- file.path(analysisPath(sp), pattern) strsplit(readLines(fl, n=1), "\t") length(readLines(fl)) ################################################### ### code chunk number 26: colClasses ################################################### colClasses <- rep(list(NULL), 21) colClasses[9:10] <- c("DNAString", "BString") names(colClasses)[9:10] <- c("read", "quality") ################################################### ### code chunk number 27: readXStringColumns ################################################### cols <- readXStringColumns(analysisPath(sp), pattern, colClasses) cols ################################################### ### code chunk number 28: size ################################################### object.size(cols$read) object.size(as.character(cols$read)) ################################################### ### code chunk number 29: fastq-format ################################################### fqpattern <- "s_1_sequence.txt" fl <- file.path(analysisPath(sp), fqpattern) readLines(fl, 4) ################################################### ### code chunk number 30: readFastq ################################################### fq <- readFastq(sp, fqpattern) fq ################################################### ### code chunk number 31: ShortReadQ ################################################### reads <- sread(fq) qualities <- quality(fq) class(qualities) id(fq) ################################################### ### code chunk number 32: ShortReadQ-subset ################################################### fq[1:5] ################################################### ### code chunk number 33: intensity-files ################################################### int <- readIntensities(sp, withVariability=FALSE) int ################################################### ### code chunk number 34: intensities-cycle-2 ################################################### print(splom(intensity(int)[[,,2]], pch=".", cex=3)) ################################################### ### code chunk number 35: tables ################################################### tbls <- tables(aln) names(tbls) tbls$top[1:5] head(tbls$distribution) ################################################### ### code chunk number 36: srdistance ################################################### dist <- srdistance(sread(aln), names(tbls$top)[1])[[1]] table(dist)[1:10] ################################################### ### code chunk number 37: aln-not-near ################################################### alnSubset <- aln[dist>4] ################################################### ### code chunk number 38: polya ################################################### countA <- alphabetFrequency(sread(aln))[,"A"] alnNoPolyA <- aln[countA < 30] ################################################### ### code chunk number 39: readSeq ################################################### seqFls <- list.files(baseCallPath(sp), "_seq.txt", full=TRUE) strsplit(readLines(seqFls[[1]], 1), "\t") colClasses <- c(rep(list(NULL), 4), "DNAString") reads <- readXStringColumns(baseCallPath(sp), "s_1_0001_seq.txt", colClasses=colClasses) ################################################### ### code chunk number 40: readSeq-all ################################################### reads <- readXStringColumns(baseCallPath(sp), "s_1_.*_seq.txt", colClasses=colClasses) ################################################### ### code chunk number 41: calcInt-demo ################################################### calcInt <- function(file, cycle, verbose=FALSE) { if (verbose) cat("calcInt", file, cycle, "\n") int <- readIntensities(dirname(file), basename(file), intExtension="", withVariability=FALSE) apply(intensity(int)[,,12], 2, mean) } ################################################### ### code chunk number 42: calcInt-sapply ################################################### intFls <- list.files(imageAnalysisPath(sp), ".*_int.txt$", full=TRUE) lres <- lapply(intFls, calcInt, cycle=12) ################################################### ### code chunk number 43: srapply-simple ################################################### srres <- srapply(intFls, calcInt, cycle=12) identical(lres, srres) ################################################### ### code chunk number 44: srapply-mpi (eval = FALSE) ################################################### ## library("Rmpi") ## mpi.spawn.Rslaves(nsl=16) ## srres <- srapply(intFls, calcInt, cycle=12) ## mpi.close.Rslaves() ################################################### ### code chunk number 45: srapply-multicore (eval = FALSE) ################################################### ## library(multicore) ## srres <- srapply(intFls, calcInt, cycle=12) ################################################### ### code chunk number 46: sessionInfo ################################################### toLatex(sessionInfo()) ShortRead/inst/doc/Overview.Rnw0000644000126300012640000010151112227066722020055 0ustar00biocbuildphs_compbio%\VignetteIndexEntry{An introduction to ShortRead} %\VignetteDepends{} %\VignetteKeywords{Short read, I/0, quality assessment} %\VignettePackage{ShortRead} \documentclass[]{article} \usepackage{times} \usepackage{hyperref} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpackage}[1]{{\textit{#1}}} \newcommand{\Rmethod}[1]{{\texttt{#1}}} \newcommand{\Rfunarg}[1]{{\texttt{#1}}} \newcommand{\Rclass}[1]{{\textit{#1}}} \newcommand{\Rcode}[1]{{\texttt{#1}}} \newcommand{\software}[1]{\textsf{#1}} \newcommand{\R}{\software{R}} \newcommand{\ShortRead}{\Rpackage{ShortRead}} \newcommand{\ELAND}{\software{ELAND}} \newcommand{\MAQ}{\software{MAQ}} \newcommand{\Bowtie}{\software{Bowtie}} \title{An Introduction to \Rpackage{ShortRead}} \author{Martin Morgan} \date{Modified: 28 September 2010. Compiled: \today} \begin{document} \maketitle <>= options(width=60) @ <>= library("ShortRead") @ The \Rpackage{ShortRead} package aims to provide key functionality for input, quality assurance, and basic manipulation of `short read' DNA sequences such as those produced by Solexa, 454, and related technologies, including flexible import of common short read data formats. This vignette introduces key functionality. Support is most fully developed for Solexa; contributions from the community are welcome. \section{A first workflow} This section walks through a simple work flow. It outlines the hierarchy of files produced by Solexa. It then illustrates a common way for reading short read data into \R{}. \subsection{\Rclass{SolexaPath}: navigating Solexa output} \Rclass{SolexaPath} provides functionality to navigate files produced by Solexa Genome Analyzer pipeline software. A typical way to start a \ShortRead{} session is to point to the root of the output file hierarchy. The \ShortRead{} package includes a very small subset of files emulating this hierarchy. The root is found at <>= exptPath <- system.file("extdata", package="ShortRead") @ %% Usually \Rcode{exptPath} would be a location on the users' file system. Key components of the hierarchy are parsed into \R{} with <>= sp <- SolexaPath(exptPath) sp @ %% \Rfunction{SolexaPath} scans the directory hierarchy to identifying useful directories. For instance, image intensity files are in the `Firecrest' directory, while summary and alignment files are in the analysis directory <>= imageAnalysisPath(sp) analysisPath(sp) @ %% Most functionality in \ShortRead{} uses \Rcode{baseCallPath} or \Rcode{analysisPath}. Solexa documentation provides details of file content. \Rfunction{SolexaPath} accepts additional arguments that allow individual file paths to be specified. Many functions for Solexa data input `know' where appropriate files are located. Specifying \Rcode{sp} is often sufficient for identifying the desired directory path. Examples of this are illustrated below, with for instance \Rfunction{readAligned} and \Rfunction{readFastq}. Displaying an object, e.g., \Robject{sp}, provides hints at how to access information in the object, e.g., \Rfunction{analysisPath}. This is a convention in \ShortRead{}. \subsection{\Rfunction{readAligned}: reading aligned data into \R{}} Solexa \texttt{s\_N\_export.txt} files (\texttt{\_N\_} is a placeholder for the lane identifier) represent one place to start working the short read data in \R{}. These files result from running ANALYSIS eland\_extended in the Solexa Genome Analyzer. The files contain information on all reads, including alignment information for those reads successfully aligned to the genome. \ShortRead{} parses additional alignment files, including \MAQ{} binary and text (\texttt{mapview}) files and \Bowtie{} text files; consult the help page for \Rfunction{readAligned} for details. \ShortRead{} flexibly parses many other Solexa files; aligned reads represent just one entry point. To read a single \texttt{s\_N\_export.txt} file into \R{}, for instance from lane 2, use the command <>= aln <- readAligned(sp, "s_2_export.txt") aln @ %% This illustrates the convention used for identifying files for input into \R{} and used by \ShortRead{}. The function takes a directory path and a pattern (as a regular expression, similar to the \R{} function \Rfunction{list.files}) of file names to match in the directory. Usually, all files matching the pattern are read into a \emph{single} \R{} object; this behavior is desirable for several of the input functions in \ShortRead{}. In the present case the usual expectation is that a single \texttt{s\_N\_export.txt} file will be read into a single \R{} object, so the \Rfunarg{pattern} argument will identify a single file. \subsubsection{Input of other aligned read files} \ELAND{} software provides access to much interesting data, in addition to alignments, but if the interest is in aligned reads then input may come from any of a number of different software packages. Many of these alignments can be input with \Rpackage{ShortRead}. \Bowtie{} is a very fast aligner, taking a few tens of minutes to align entire lanes of reads to reference genomes. Use \Rfunction{readAligned} with the \Rfunarg{type="Bowtie"} argument to input alignments. Reading \Bowtie{} output using \Rfunction{readAligned} produces the same class of object as reading \ELAND{} output. Like \ELAND{}, \Bowtie{} provides information on short read, quality, chromosome, position, and strand; there is no information on alignment quality avaiable from \Bowtie{}. \ELAND{} and \Bowtie{} provide very different auxiliary information. Consult the \Rfunction{readAligned} and help page \Bowtie{} manual for additional detail. \MAQ{} is another poplar aligner. \Rpackage{ShortRead} can input \MAQ{} binary or text formats (see the arguments \Rfunarg{type="MAQMapShort"}, \Rfunarg{"MAQMap"}, and \Rfunarg{"MAQMapview"}). As with \Bowtie{}, \MAQ{} provides essential information about reads and their aligments, plus additional information that differs somewhat from the additional information provided by \ELAND{}. Alignment information may come in a variety of different text-based formats. Not all of these will be supported by \Rpackage{ShortRead}. There are a number of tools available to input this into \R{}. A basic strategy is involves two passes over the data, followed by synthesis of results into an \Rclass{AlignedRead} object. First, input alignment data using functions such as \Rfunction{read.table}. Use the \Rfunarg{colClasses} argument to `mask-out' (i.e., avoid importing) DNA and quality sequences. Next, use \Rfunction{readXStringColumns} or \Rfunction{readFastq} to import the short read and quality information. Finally, use the alignment data and reads as arugments to the \Rfunction{AlignedRead} function to synthesize the input. The following illustrates use of \Rfunction{readXStringColumns} and \Rfunction{readFastq}. These functions receive further attention below. \subsubsection{Cautions} There are several confusing areas of input. (1) Some alignment programs and genome resources start numbering nucleotides of the subject sequence at 0, whereas others start at 1. (2) Some alignment programs report matches on the minus strand in terms of the `left-most' position of the read (i.e., the location of the 3' end of the aligned read), whereas other report `five-prime''matches (i.e., in terms of the 5' end of the read), regardless of whether the alignment is on the plus or minus strand. (3) Some alignment programs reverse complement the sequence of reads aligned to the minus strand. (4) Base qualities are sometimes encoded as character strings, but the encoding differs between `fastq' and `solexa fastq'. It seems that all combinations of these choices are common `in the wild'. The help page for \Rfunction{readAligned} attempts to be explicit about how reads are formatted. Briefly: \begin{itemize} \item Subject sequence nucleotides are numbered starting at 1, rather than zero. \Rfunction{readAligned} adjusts the coordinate system of input reads if necessary (e.g., reading \MAQ{} alignments). \item Alignments on the minus strand are reported in `left-most' coordinates systems. \item \ELAND{} and \Bowtie{} alignments on the minus strand are not reverse complemented. \item Character-encoded base quality scores are intrepreted as the default for the software package being parsed, e.g., as `Solexa fastq' for \ELAND{}. The object returned by \Rfunction{quality} applied to an \Rclass{AlignedRead} object is either \Rclass{FastqQuality} or \Rclass{SFastqQuality}. \end{itemize} Alignment programs sometimes offer the opportunity to custommize output; such customization needs to be accomodated when reads are input using \Rpackage{ShortRead}. \subsubsection{Filtering input} Downstream analysis may often want to use a well-defined subset of reads. These can be selected with the \Rfunarg{filter} argument of \Rfunction{readAligned}. There are built-in filters, for instance to remove all reads containing an \texttt{N} nucleotide, to select just those reads that map to the genome file \texttt{chr5.fa}, to select reads on the \texttt{+} strand, or to `level the playing field' by selecting only a single read for any chromosome, position and strand: <>= nfilt <- nFilter() cfilt <- chromosomeFilter('chr5.fa') sfilt <- strandFilter("+") ofilt <- occurrenceFilter(withSread=FALSE) @ %% Here we select only those reads that map to \texttt{chr5.fa}: <>= chr5 <- readAligned(sp, "s_2_export.txt", filter=cfilt) @ %% Filters can be `composed' to act in unison, e.g., selecting only reads mapping to \texttt{chr5.fa} and on the \texttt{+} strand: <>= filt <- compose(cfilt, sfilt) chr5plus <- readAligned(sp, "s_2_export.txt", filter=filt) @ %% Filters can subset aligned reads at other stages in the work flow, using a paradigm like the following: <>= chr5 <- aln[cfilt(aln)] @ %% Users can easily create their own filter by writing a function that accepts an object of class \Rcode{AlignedRead}, and returns a logical vector indicating which reads in the object pass the filter. See the example on the \Rcode{srFilter} help page for details, and for information about additional built-in filters. \subsection{Exploring \ShortRead{} objects} \Robject{aln} is an object of \Rclass{\Sexpr{class(aln)}} class. It contains short reads and their (calibrated) qualities: <>= sread(aln) quality(aln) @ The short reads are stored as a \Rclass{DNAStringSet} class. This class is defined in \Rpackage{Biostrings}. It represents DNA sequence data relatively efficiently. There are a number of very useful methods defined for \Rclass{DNAStringSet}. Some of these methods are illustrated in this vignette. Other methods are described in the help pages and vignettes of the \Rpackage{Biostrings} and \Rpackage{IRanges} packages. Qualities are represented as \Sexpr{class(quality(aln))}-class objects. The qualities in the \Robject{aln} object returned by \Rfunction{readAligned} are of class \Rclass{BStringSet}. The \Rclass{BStringSet} class is also defined in \Rpackage{Biostrings}, and shares many methods with those of \Rclass{DNAStringSet}. The \Robject{aln} object contains additional information about alignments. Some of this additional information is expected from any alignment, whether generated by Solexa or other software. For example, \Robject{aln} contains the particular sequence within a target (e.g., chromosomes in a genome assembly), the position (e.g., base pair coordinate), and strand to which the alignment was made, and the quality of the alignment. The display of \Robject{aln} suggests how to access this information. For instance, the strand to which alignments are made can be extracted (as a factor with three levels and possibly \Rcode{NA}; the level \Rcode{"*"} corresponds to reads for which strand alignment is intrinsically not meaningful, whereas \Rcode{NA} represents the traditional concept of information not available, e.g., because the read did not align at all) and tabulated using familiar \R{} functions. <>= whichStrand <- strand(aln) class(whichStrand) levels(whichStrand) table(whichStrand, useNA="ifany") @ %% This shows that about %% \Sexpr{format(100*sum(is.na(whichStrand))/ length(whichStrand))}\%{} %% of reads were not aligned (level \Rcode{NA}). The \Robject{aln} object contains information in addition to that expected of all alignments. This information is accessible using \Rfunction{alignData}: <>= alignData(aln) @ %% Users familiar with the \Rclass{ExpressionSet} class in \Rpackage{Biobase} will recognize this as an \Rclass{AnnotatedDataFrame}-like object, containing a data frame with rows for each short read. The \Rclass{AlignedDataFrame} contains additional meta data about the meaning of each column. For instance, data extracted from the Solexa export file includes: <>= varMetadata(alignData(aln)) @ %% Guides to the precise meaning of this data are on the help page for the \Rclass{AlignedRead} class, and in the manufacturer manuals. Simple information about the alignments can be found by querying this object. For instance, unaligned reads have \Rcode{NA} as their position, and reads passing Solexa `filtering' (their base purity and chastity criteria) have a component of their auxiliary \Robject{alignData} set to \Rcode{"Y"}. Thus the fraction of unaligned reads and reads passing filtering are <>= mapped <- !is.na(position(aln)) filtered <- alignData(aln)[["filtering"]] =="Y" sum(!mapped) / length(aln) sum(filtered) / length(aln) @ Extracting the reads that passed filtering but were unmapped is accomplished with <>= failedAlign <- aln[filtered & !mapped] failedAlign @ %% Alternatively, we can extract just the short reads, and select the subset of those that failed filtering. <>= failedReads <- sread(aln)[filtered & !mapped] @ \subsection{Quality assessment} The \Rfunction{qa} function provides a convenient way to summarize read and alignment quality. One way of obtaining quality assessment results is <>= qaSummary <- qa(sp) @ %% The \Robject{qa} object is a list-like structure. As invoked above and currently implemented, \Rfunction{qa} visits all \texttt{s\_N\_export.txt} files in the appropriate directory. It extracts useful information from the files, and summarizes the results into a nested list-like structure. Evaluating \Rfunction{qa} for a single lane can take several minutes. For this reason a common use case is to evaluate \Rfunction{qa} and save the result to disk for later use, e.g., <>= save(qaSummary, file="/path/to/file.rda") @ %% A feature of \ShortRead{} is the use of \Rpackage{Rmpi} or \Rpackage{multicore} and coarse-grained parallel processing when available. Thus commands such as <>= library("Rmpi") mpi.spawn.Rslaves(nsl=8) qaSummary <- qa(sp) mpi.close.Rslaves() @ %% or <>= library(multicore) qaSummary <- qa(sp) @ %% will distribute the task of processing each lane to each of the \Rpackage{Rmpi} workers or \Rpackage{multicore} cores. In the \Rpackage{Rmpi} example, all 8 lanes of a Solexa experiment are processed in the time take to process a single lane. \Rpackage{multicore} may impose significant memory demands, as each core will attempt to load a full lane of data. The elements of the quality assessment list are suggested by the output: <>= qaSummary @ %% For instance, the count of reads in each lane is summarized in the \Robject{readCounts} element, and can be displayed as <>= qaSummary[["readCounts"]] qaSummary[["baseCalls"]] @ %% The \Robject{readCounts} element contains a data frame with 1 row and 3 columns (these dimensions are indicated in the parenthetical annotation of \Robject{readCounts} in the output of \Rcode{qaSummary}). The rows represent different lanes. The columns indicated the number of reads, the number of reads surviving the Solexa filtering criteria, and the number of reads aligned to the reference genome for the lane. The \Robject{baseCalls} element summarizes base calls in the unfiltered reads. Other elements of \Robject{qaSummary} are more complicated, and their interpretation is not directly obvious. Instead, a common use is to forward the results of \Rfunction{qa} to a report generator. <>= report(qaSummary, dest="/path/to/report_directory") @ %% The report includes \R{} code that can be used to understand how \Sexpr{class(qaSummary)}-class objects can be processed; reports are generated as HTML suitable for browser viewing. The functions that produce the report tables and graphics are internal to the package. They can be accessed through calling ShortRead:::functionName where functionName is one of the functions listed below, organized by report section. \begin{description} \item [] Run Summary : .ppnCount, .df2a, .laneLbl, .plotReadQuality \item [] Read Distribution : .plotReadOccurrences, .freqSequences \item [] Cycle Specific : .plotCycleBaseCall, .plotCycleQuality \item [] Tile Performance : .atQuantile, .colorkeyNames, .plotTileLocalCoords, .tileGeometry, .plotTileCounts, .plotTileQualityScore \item [] Alignment : .plotAlignQuality \item [] Multiple Alignment : .plotMultipleAlignmentCount \item [] Depth of Coverage : .plotDepthOfCoverage \item [] Adapter Contamination : .ppnCount \end{description} \section{Using \Rpackage{ShortRead} for data exploration} \subsection{Data I/O} \ShortRead{} provides a variety of methods to read data into \R{}, in addition to \Rfunction{readAligned}. \subsubsection{\Rfunction{readXStringColumns}} \Rfunction{readXStringColumns} reads a column of DNA or other sequence-like data. For instance, the Solexa files \texttt{s\_N\_export.txt} contain lines with the following information: <>= pattern <- "s_2_export.txt" fl <- file.path(analysisPath(sp), pattern) strsplit(readLines(fl, n=1), "\t") length(readLines(fl)) @ % Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality score; there are 1000 lines (i.e., 1000 reads) in this sample file. Suppose the task is to read column 9 as a \Rclass{DNAStringSet} and column 10 as a \Rclass{BStringSet}. \Rclass{DNAStringSet} is a class that contains IUPAC-encoded DNA strings (IUPAC code allows for nucleotide ambiguity); \Rclass{BStringSet} is a class that contains any character with ASCII code 0 through 255. Both of these classes are defined in the \Rpackage{Biostrings} package. \Rfunction{readXStringColumns} allows us to read in columns of text as these classes. Important arguments for \Rfunction{readXStringColumns} are the \Rfunarg{dirPath} in which to look for files, the \Rfunarg{pattern} of files to parse, and the \Rfunarg{colClasses} of the columns to be parsed. The \Rfunarg{dirPath} and \Rfunarg{pattern} arguments are like \Rfunarg{list.files}. \Rfunarg{colClasses} is like the corresponding argument to \Rfunction{read.table}: it is a \Rclass{list} specifying the class of each column to be read, or \Robject{NULL} if the column is to be ignored. In our case there are 21 columns, and we would like to read in columns 9 and 10. Hence <>= colClasses <- rep(list(NULL), 21) colClasses[9:10] <- c("DNAString", "BString") names(colClasses)[9:10] <- c("read", "quality") @ % We use the class of the type of sequence (e.g., \Rclass{DNAString} or \Rclass{BString}), rather than the class of the set that we will create ( e.g., \Rclass{DNAStringSet} or \Rclass{BStringSet}). Applying names to \Robject{colClasses} is not required, but makes subsequent manipulation easier. We are now ready to read our file <>= cols <- readXStringColumns(analysisPath(sp), pattern, colClasses) cols @ % The file has been parsed, and appropriate data objects were created. A feature of \Rfunction{readXStringColumns} and other input functions in the \Rpackage{ShortRead} package is that all files matching \Rfunarg{pattern} in the specified \Rfunarg{dirPath} will be read into a single object. This provides a convenient way to, for instance, parse all tiles in a Solexa lane into a single \Rclass{DNAStringSet} object. There are several advantages to reading columns as \Rclass{XStringSet} objects. These are more compact than the corresponding character representation: <>= object.size(cols$read) object.size(as.character(cols$read)) @ % They are also created much more quickly. And the \Rclass{DNAStringSet} and related classes are used extensively in \Rpackage{ShortRead}, \Rpackage{Biostrings}, \Rpackage{BSgenome} and other packages relevant to short read technology. \subsubsection{\Rfunction{readFastq}} \Rfunction{readXStringColumns} should be considered a `low-level' function providing easy access to columns of data. Another flexible input function is \Rfunction{readFastq}. Fastq files combine reads and their base qualities in four-line records such as the following: <>= fqpattern <- "s_1_sequence.txt" fl <- file.path(analysisPath(sp), fqpattern) readLines(fl, 4) @ % The first and third lines are an identifier (encoding the machine, run, lane, tile, x and y coordinates of the cluster that gave rise to the read, in this case). The second line is the read, and the fourth line the per-base quality. Files of this sort can be read in as <>= fq <- readFastq(sp, fqpattern) fq @ % This resulting object (of class \Sexpr{class(fq)}) contains the short reads, their qualities, and the identifiers: <>= reads <- sread(fq) qualities <- quality(fq) class(qualities) id(fq) @ % Notice that the class of the qualities is \Rclass{SFastqQuality}, to indicate that these are quality scores derived using the Solexa convention, rather than ordinary \Rclass{BStringSet} objects. The object has essential operations for convenient manipulation, for instance simultaneously forming the subset of all three components: <>= fq[1:5] @ \subsubsection{Additional input functions} \ShortRead{} includes additional functions to facilitate input. For instance, \Rfunction{readPrb} reads Solexa \texttt{\_prb.txt} files. These files contain base-specific quality information, and \Rfunction{readPrb} returns an \Rclass{SFastqQuality}-class object representing the fastq-encoded base-specific quality scores of all reads. As a second example, the \texttt{s\_N\_LLLL\_int.txt} files in the \Rfunction{imageAnalysisPath} directory contain lines, one line per read, of nucleotide intensities. Each line contain lane, tile, X and Y coordinate information, followed by quadruplets of intensity values. There are as many quadruplets as there are cycles. Each quadruplet represents the intensity of the \texttt{A}, \texttt{C}, \texttt{G}, and \texttt{T} nucleotide at the corresponding cycle. These (and their error estimates, if available), are input with <>= int <- readIntensities(sp, withVariability=FALSE) int @ %% An interesting exercise is to display the intensities at cycle 2 (below) and to compare these to cycle, e.g., 30. <>= print(splom(intensity(int)[[,,2]], pch=".", cex=3)) @ Additional files can be parsed using standard \R{} input methods. \subsection{Sorting} Short reads can be sorted using \Rfunction{srsort}, or the permutation required to bring the short read into lexicographic order can be determined using \Rfunction{srorder}. These functions are different from \Rfunction{sort} and \Rfunction{order} because the result is independent of the locale, and they operate quickly on \Rclass{DNAStringSet} and \Rclass{BStringSet} objects. The function \Rfunction{srduplicated} identifies duplicate reads. This function returns a logical vector, similar to \Rfunction{duplicated}. The negation of the result from \Rfunction{srduplicated} is useful to create a collection of unique reads. An experimental scenario where this might be useful is when the sample preparation involved PCR. In this case, replicate reads may be due to artifacts of sample preparation, rather than differential representation of sequence in the sample prior to PCR. \subsection{Summarizing read occurrence} The \Rfunction{tables} function summarizes read occurrences, for instance, <>= tbls <- tables(aln) names(tbls) tbls$top[1:5] head(tbls$distribution) @ %% The \Robject{top} component returned by \Robject{tables} is a list tallying the most commonly occurring sequences in the short reads. Knowledgeable readers will recognize the top-occurring read as a close match to one of the manufacturer adapters. The \Robject{distribution} component returned by \Robject{tables} is a data frame that summarizes how many reads (e.g., \Sexpr{tbls[["distribution"]][1,"nReads"]}) are represented exactly \Sexpr{tbls[["distribution"]][1,"nOccurrences"]} times. \subsection{Finding near matches to short sequences} Facilities exist for finding reads that are near matches to specific sequences, e.g., manufacturer adapter or primer sequences. \Rfunction{srdistance} reports the edit distance between each read and a reference sequence. \Rfunction{srdistance} is implemented to work efficiently for reference sequences whose length is of the same order as the reads themselves (10's to 100's of bases). To find reads close to the most common read in the example above, one might say <>= dist <- srdistance(sread(aln), names(tbls$top)[1])[[1]] table(dist)[1:10] @ %% `Near' matches can be filtered from the alignment, e.g., <>= alnSubset <- aln[dist>4] @ A different strategy can be used to tally or eliminate reads that consist predominantly of a single nucleotide. \Rfunction{alphabetFrequency} calculates the frequency of each nucleotide (in DNA strings) or letter (for other string sets) in each read. Thus one could identify and eliminate reads with more than 30 adenine nucleotides with <>= countA <- alphabetFrequency(sread(aln))[,"A"] alnNoPolyA <- aln[countA < 30] @ %% \Rfunction{alphabetFrequency}, which simply counts nucleotides, is much faster than \Rfunction{srdistance}, which performs full pairwise alignment of each read to the subject. Users wanting to use \R{} for whole-genome alignments or more flexible pairwise aligment are encouraged to investigate the \Rpackage{Biostrings} package, especially the \Rclass{PDict} class and \Rfunction{matchPDict} and \Rfunction{pairwiseAlignment} functions. \subsection{The \Rfunction{coverage} function} The \Rfunction{coverage} function provides a way to summarize where reads align on a reference sequence. The idea is that the aligned reads, or under some analyses the extension of those aligned reads by an amount meant to estimate the actual fragment size, `pile up' on top of nucleotide positions in the reference sequence. A convenient summary of the alignment of many reads is thus a vector describing the depth of the pile at each position in the reference sequence. A typical work flow invokes \Rfunction{coverage} on an instance of the \Rclass{AlignedRead} class obtained from \Rfunction{readAligned}; additional methods offering greater control operate on \Rclass{IRanges} directly. The \Rfunction{coverage} methods returns a run-length encoding of the pile-up (or a list of such run length encodings). The run-length encoding returned by \Rfunction{coverage} is a space-efficient representation; the long integer vector can be recovered with \Rcode{as.integer}. There are complicated issues associated with use of \Rfunction{coverage}, relating to how software reports the `position' of an alignment, especially on the minus strand. These issues are illustrated in figure~\ref{fig:coverage}. \begin{figure} \begin{verbatim} 'leftmost': P +++++---------- '+' strand: 5' ....|....|....|....|....|....|.. 3' '-' strand: 3' ....|....|....|....|....|....|.. 5' ----------+++++ P 'fiveprime': P +++++---------- '+' strand: 5' ....|....|....|....|....|....|.. 3' '-' strand: 3' ....|....|....|....|....|....|.. 5' ----------+++++ P \end{verbatim} \caption{Alignment schemes used by \Rfunction{coverage}. \texttt{+++} represents the read and \texttt{---} the extension. \texttt{P} is the alignment position as recorded under the corresponding leftmost or fiveprime schemes.} \label{fig:coverage} \end{figure} In the figure, the two strands are represented by \verb"....|", aligned reads by \verb"+++", and extensions by \verb"---". The idea is that 5-nucleotide reads have been aligned to a reference sequence, and the alignment extended by 10 nucleotides. In the `leftmost' notation (used by \ELAND{}) and assuming that the reference sequence is always numbered in relation to the plus strand and indexed starting at 1 (\Rfunction{readAligned} translates reported alignment positions so they are indexed from 1), the reported position is 15 for the alignments on either the plus or the minus strand. In contrast the `fiveprime' scheme the alignment to the plus strand is 15, and to the minus strand 19. This is the scheme used by \MAQ{}, for instance. The default behavior of \Rfunction{coverage} is to use the `leftmost' coordinate system. This is appropriate for data derived from \ELAND{}. \section{Advanced features} \subsection{The \Rfunarg{pattern} argument to input functions} Most \ShortRead{} input functions are designed to accept a directory path argument, and a \Rfunarg{pattern} argument. The latter is a grep-like pattern (as used by, e.g., \Rfunction{list.files}). Many input functions are implemented so that all files matching the pattern are read into a single large input object. Thus the \texttt{s\_N\_LLLL\_seq.txt} files consist of four numeric columns and a fifth column corresponding to the short read. The following code illustrates the file structure and inputs the final column into a \Rclass{DNAStringSet}: <>= seqFls <- list.files(baseCallPath(sp), "_seq.txt", full=TRUE) strsplit(readLines(seqFls[[1]], 1), "\t") colClasses <- c(rep(list(NULL), 4), "DNAString") reads <- readXStringColumns(baseCallPath(sp), "s_1_0001_seq.txt", colClasses=colClasses) @ %% The more general pattern <>= reads <- readXStringColumns(baseCallPath(sp), "s_1_.*_seq.txt", colClasses=colClasses) @ %% inputs all lane 1 tile files into a single \Rclass{DNAStringSet} object. \subsection{\Rfunction{srapply}} Solexa and other short read technologies often include many files, e.g., one \texttt{s\_L\_NNNN\_int.txt} file per tile, 300 tiles per lane, 8 lanes per flow cell for 2400 \texttt{s\_L\_NNNN\_int.txt} files per flow cell. A natural way to extract information from these is to write short functions, e.g., to find the average intensity per base at cycle 12. <>= calcInt <- function(file, cycle, verbose=FALSE) { if (verbose) cat("calcInt", file, cycle, "\n") int <- readIntensities(dirname(file), basename(file), intExtension="", withVariability=FALSE) apply(intensity(int)[,,12], 2, mean) } @ One way to apply this function to all intensity files in a Solexa run is <>= intFls <- list.files(imageAnalysisPath(sp), ".*_int.txt$", full=TRUE) lres <- lapply(intFls, calcInt, cycle=12) @ %% The files are generally large and numerous, so even simple calculations consume significant computational resources. The \Rfunction{srapply} function is meant to provide a transparent way to perform calculations like this distributed over multiple nodes of an MPI cluster, or across multiple cores of a single machine. Thus <>= srres <- srapply(intFls, calcInt, cycle=12) identical(lres, srres) @ %% evaluates the function as \Rfunction{lapply}, whereas <>= library("Rmpi") mpi.spawn.Rslaves(nsl=16) srres <- srapply(intFls, calcInt, cycle=12) mpi.close.Rslaves() @ %% distributes the calculation over available workers, while <>= library(multicore) srres <- srapply(intFls, calcInt, cycle=12) @ %% distributes tasks across cores of a single machine. The result is a speedup approximately inversely proportional to the number of available compute nodes or cores; memory requirements for the \Rpackage{multicore} approach may be substantial. \section{Conclusions and directions for development} \ShortRead{} provides tools for reading, manipulation, and quality assessment of short read data. Current facilities in \ShortRead{} emphasize processing of single-end Solexa data. Development priorities in the near term include expanded facilities for importing key file types from additional manufactures, more extensive quality assessment methodologies, and development of infrastructure for paired-end reads. %--------------------------------------------------------- % SessionInfo %--------------------------------------------------------- \begin{table*}[tbp] \begin{minipage}{\textwidth} <>= toLatex(sessionInfo()) @ \end{minipage} \caption{\label{tab:sessioninfo}% The output of \Rfunction{sessionInfo} on the build system after running this vignette.} \end{table*} \end{document} ShortRead/inst/doc/Overview.pdf0000644000126300012640000100601512227135272020061 0ustar00biocbuildphs_compbio%PDF-1.4 %ÐÔÅØ 1 0 obj << /S /GoTo /D (section.1) >> endobj 4 0 obj (A first workflow) endobj 5 0 obj << /S /GoTo /D (subsection.1.1) >> endobj 8 0 obj (SolexaPath: navigating Solexa output) endobj 9 0 obj << /S /GoTo /D (subsection.1.2) >> endobj 12 0 obj (readAligned: reading aligned data into R) endobj 13 0 obj << /S /GoTo /D (subsubsection.1.2.1) >> endobj 16 0 obj (Input of other aligned read files) endobj 17 0 obj << /S /GoTo /D (subsubsection.1.2.2) >> endobj 20 0 obj (Cautions) endobj 21 0 obj << /S /GoTo /D (subsubsection.1.2.3) >> endobj 24 0 obj (Filtering input) endobj 25 0 obj << /S /GoTo /D (subsection.1.3) >> endobj 28 0 obj (Exploring ShortRead objects) endobj 29 0 obj << /S /GoTo /D (subsection.1.4) >> endobj 32 0 obj (Quality assessment) endobj 33 0 obj << /S /GoTo /D (section.2) >> endobj 36 0 obj (Using ShortRead for data exploration) endobj 37 0 obj << /S /GoTo /D (subsection.2.1) >> endobj 40 0 obj (Data I/O) endobj 41 0 obj << /S /GoTo /D (subsubsection.2.1.1) >> endobj 44 0 obj (readXStringColumns) endobj 45 0 obj << /S /GoTo /D (subsubsection.2.1.2) >> endobj 48 0 obj (readFastq) endobj 49 0 obj << /S /GoTo /D (subsubsection.2.1.3) >> endobj 52 0 obj (Additional input functions) endobj 53 0 obj << /S /GoTo /D (subsection.2.2) >> endobj 56 0 obj (Sorting) endobj 57 0 obj << /S /GoTo /D (subsection.2.3) >> endobj 60 0 obj (Summarizing read occurrence) endobj 61 0 obj << /S /GoTo /D (subsection.2.4) >> endobj 64 0 obj (Finding near matches to short sequences) endobj 65 0 obj << /S /GoTo /D (subsection.2.5) >> endobj 68 0 obj (The coverage function) endobj 69 0 obj << /S /GoTo /D (section.3) >> endobj 72 0 obj (Advanced features) endobj 73 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 76 0 obj (The pattern argument to input functions) endobj 77 0 obj << /S /GoTo /D (subsection.3.2) >> endobj 80 0 obj (srapply) endobj 81 0 obj << /S /GoTo /D (section.4) >> endobj 84 0 obj (Conclusions and directions for development) endobj 85 0 obj << /S /GoTo /D [86 0 R /Fit ] >> endobj 88 0 obj << /Length 1991 /Filter /FlateDecode >> stream xÚ­XYÛ6~ϯ0ú¨¹¢Hêèl“&è•ÙmzÕÚZÛX[r$¹Ûí¯ï\”)Û»HŠ>È¢ÈáÌp曃þúúÙÅ+“Ot¦íìäúv¢‹BiSLRí”)’Éõbò[tYOg&Ž£o§:ª§Iõm3%.ZìafO¿nhÈúfúÇõw¯¬q6©2z3Ë«UÓöï¦NGÕÔÅQ¹à-I<ÑZÎ%¸e–‚2ÚMfI®òBóÎKÔ’L ŠüÃ'—ð”52›Ì´N”Îp»QÞ¼5O£ÐáþßcmáUá÷gÓ™5&J`˜#Û4ºÂ¥ÊÂÁvšäÑ m¯H¢Aò?ŠY¼@kláÙ‰˜Í‘ŒŸÐnÈ´~-ŸCÔý”Çc#æÌ'…*Ò$%Ó$1øGOfƪÔd|¶¯¦3—†BoÄPÞ`t^‡tˆ?Œì¤su˜C¬á`Z‹€ÌãxYW¬½( ‹ë!3K0½cÁwHSQ. ïÛòAc䣇ri ;„|àaL"ûe:ÈF:èñ½%ˆôüán³=€v:ýEaIþcn¹jØD‘ã+ïfÌçìá9(û½Ö7"æp°îÀªW‘`pÅ h†f»EáÆ™T‘3§®ƒè&;–íÁ÷ÞÆ¨"`¢¢ºÀIÑ¢M©¼|L‰Ñ2S=ÅŠå" ÇÌRej½Ùàû~j$WßqÝrÍ$ߟfNà›h•Çy•½3tAÁ\….‡ÙµÎÁõwžŽ-¹",¡5–+ž-LÖTá|¨0ÀOH\Q¾§ÚXPÑórC©Óíö8õ²…+©_ùZÖJ’¤ ™’Ó ³æñ1©¨°‡Tã#pÒ),z¥ —²YÕüíË;>{òW;¤¨ŽIJ~…ù¡°l­Ò¤€D@‡•ÖWá…· æ©Â‘ÕWCŒyJ®žÇåɹ”HcVÛDå0!ÕöÝ)¨Rea 뜃nÍ*ɱÝÊ”Í|ZaÃäéˆÜÄ*ÕÙÐŒÍþ¶d3Ÿ“f*3Ã>è§´œu‰±0¤ÈÒ£»^rð„gEÁo¿§ˬȕqöðÎ¥õ.ðœ*ÚÊièÉŠ°u9ÓŠHi¥lXûv0h?‚ <”Zln´#D”!ÃeÙWL}ï‚b°÷U}Á¢ØëØóäk$® µ\Þgr²Ð.Y_ì.ÿAJ±q»µT…”sú⸜”›[: AÂ-ƒK¦‘ãkæ5‡ÂDœ9UIàX)z°í)Ip„X °3í¨EìÙìG 岡‡¥f‰Ú7Ê (IR,)Ô°¹’"V:O3õk‰G(=‡ÎU†\‘â ’7BHÉñen·÷U6ö›¡‘‰£Õš½#ö¡fz%%ÞÒÍ¥H¡Xœíß“De¹ýè>Í“ ¾‘N•>J~mØÑóÑÍ øD½ç¨g $uÏyuÈáLÐ þ"g!¶ ±LÁ«äº w‰¥¬€òmÆ¡äC¢Pš<•#¤Ï­w¾š|H‹¡!ëšÃ¿gzŒBevH2÷ë±[Æh«˜2ëiDt\xŽ%˜•ð ¨(x·]#NÑÿ1™û ¼¸¸ã¿ˆ>\ß3„šû¶y-a^Ib;w"‘{!Sþï« ‰ÏpcôW‰ó·Âò—€ÖçOŸeð¯¬Löa–q"ÚÏùõ\æ/>0O\<™šÎ\Ñs×#6xù(±q'‡/å ðyÃËsû½?Ây)¼Ê!™±×ò~DÆ j°æ:2ð¤ð¼’mþ"1Æì“3:Ý8DÂ.›Çå-¥» ÌÚ’/ÎÈ(ÿÛ_Ãðñ?šéx^žùO2-”IñR¨|¸ ݳo®Ÿý ‡ú[ƒ endstream endobj 86 0 obj << /Type /Page /Contents 88 0 R /Resources 87 0 R /MediaBox [0 0 612 792] /Parent 101 0 R >> endobj 89 0 obj << /D [86 0 R /XYZ 132.768 705.06 null] >> endobj 90 0 obj << /D [86 0 R /XYZ 133.768 667.198 null] >> endobj 2 0 obj << /D [86 0 R /XYZ 133.768 432.477 null] >> endobj 6 0 obj << /D [86 0 R /XYZ 133.768 357.218 null] >> endobj 87 0 obj << /Font << /F38 91 0 R /F43 92 0 R /F20 93 0 R /F48 94 0 R /F8 95 0 R /F52 96 0 R /F54 97 0 R /F59 98 0 R /F64 99 0 R /F67 100 0 R >> /ProcSet [ /PDF /Text ] >> endobj 104 0 obj << /Length 2758 /Filter /FlateDecode >> stream xÚíZIoÜȾëW4|I q—Ébq› È3Ö {[B€Ä1ŠMI÷6Í–ç×ç­Åâ"ËJ|È!ªÉZ^½ý}U¥——'/γ|Vš2³Ùìòz'‰É³b–¥¹±I:»\ÎÞÏ/Nãùž5< <ÿ„§‚çò{„çöôÃåÏ/΋€Všš<)fik½mOIêd ’ƒÏt¾„×<lª±s‡¯Ÿy0\5Ò]êS[@›ÍµŸÆóë )5[qš×Ÿåe Ï ¯w¯ms ïH.š»ì8¡vljZøcNiTÌÏO‹yag pǦLEW´P+ó«-RjžŸ.\j©kSÝ€ÈΖÂòÙè”Mƒ¦Ï<ä¯QìTí-7UVZG^Æm×üwx=W}"íú B O¿áQËÞˆ@ã…›¿Éüm´òv§i-êk³!;|&-D}ù+Ôòš$ój-‹Ül7Y Ï’l*~«`8OÃ×ÐO"R'²hÔ¶Üó <ä–.ôKä¸4Yž3Ç¿ËZ^t#}#Ž~&^S‰hQY¨@ B¥‘tíù3æõ{1ëÛØd‘¬ÿFÆð|`>žÁë ¡¹BøýnІÿe>Ï?cÕãÕîž\æ¡ã§Â»¶i!íHçBäÚI`…v#c–2N“ÂQÚT'Jçlj¶Dì< ‘á¤,çûƒ¦EŸIoÀÙ­Ç_âç-sJ‰~oÜZä>¢P5ٽ툩Ôì'´Á8J–—LáL–¸‰Mä䈴åD[¢*L½ ë‰ƪ* `…èW ì’”&e(Ø–UüSï(¥|Â?ýÝùn¦1‹£Ò¤eþD–š$îy*Pu3V±¥àI¢ÈÄPá!C¡ü‚Ò4>ÂñId²¸µ:>^)XƒHí/—å „GhßáYBP‘L€ õVŠKn]’A*Æ ¬+À\Çð‡‹Å€Ë›ûÝTêHKƒQ[˜tÐaœu‡nÆ^”Ä$BGù<¿È¯NÜ6F~yƒ1â$‡¤’{¢ZR5ˈ7eiÔçÞ#ãø÷qÃ2ˆ„+þñ9ªÆEo S, @ü–\þð% D˜Gs¶ ÷M—F‘†0m&i,Pìý©5y<ˆ~>® ÈAqÁ@¡úe™cJ4Ôàáöqñ9܆{¤@!ó1È¿:ë¶#Ò’ôÁLöÎ%ô•íGkš /l©¾àz™J& NÉ£i;fF_–ÕÖÞIëQÑqlòa¼&ȶmÇ)IAprÛ*ê8ûåì5žåýýþÜØ¨3l)ŠO^]žüz‚Þ ¹`fs€]v[K®XoNÞˆfKèúye1»§›YuE\Ï.NÞž¼Ä3ÖP6ßR"är‰¾F7àdö¥`‘$v*èWA¾_ô /rþÃ6p„M#öŽÊþE^ˆúNrѷ֟ȤÉ@…Ã8Œ¬fðc¥µ)²]m#¿Ùô·oЯ¿²¡wu+ Œ¥+*<•š0Ù2´“Î]Ýli§„D æœ(¬4Q¾“îv­—:š8æ 䥜6%k_. ÂŒ)ªÕ@LzçÛøyãmã·›ý*>wÅ«\ ÈÁ2ÂLJVC9\ª2á¾rȽ¤" ހŠº*O‚Ý¡PΡQ[ë;IžáÎ¥—pçb}Ú~s†.õv,™M´åá険Ò;ÈuçÌ+[H˜œ¬w>õèQï>Ø£P÷cn’ JˆíjeòPm¥±ÔG²î"䥇Ǖzä`Áؤ¹G céü²ñü{=gIL‘®"jÞ9w9“i/ï[L)ܽ—ê">€¦€w »Ûìla0•&^Ðn+ŧá³$×>7©3Ö&O›4.È‘ª‚q©+ q©´äs-'BŽ“¶<ÖöU½©¶z øw'¹QÛÑi6ö’ì÷Á™ ߘ4Ý=J/?ù=”àÂÙÝ­$´;Í-ó³í6úÖ`¢CÜïîz›ž‡Ïl.éLÐŒ¢„¤(H0hkýqÀºóï~$¦&ê2×7„’ÙIg=Év!šäabz·dá6¨úS”Ý}¸ýçQ´ÙÜð°µö r´´ÕµrR,{Ölpäç«‚¥xCå6H7_q¿¥ûŠ-þŽ2?½~}îHžw·jEû$+Æ4W¯Z†…yÄú£×1µ?r`ŽðùŽ©|I¬þµÈ'Zó¶2Y³¨ÐÆ«È?“ZålM]÷Áaö€PBw;ôZ t«ƒƒçvŠ·ZHDÓùmƒï¦[ÃìÍèÕˆiL·¸ÒL¥ëšsv£‘K"ÉOå釼§x»à¼ÁCFÑmÀãÙèuÀc.wP…(>¦ŠÎ~hÊÇwÅÓ¦NÃqX§H„7]Rœ*T¶ÌL}ép§0ewÔ'(9”C#`ÒrPd®ÃLlO]ºÿê náR¿ñ„*–O^ÏrùæG2HË-„˜Š‡ÿǃ7U> endobj 105 0 obj << /D [103 0 R /XYZ 132.768 705.06 null] >> endobj 10 0 obj << /D [103 0 R /XYZ 133.768 415.498 null] >> endobj 102 0 obj << /Font << /F67 100 0 R /F8 95 0 R /F48 94 0 R /F52 96 0 R /F54 97 0 R /F70 106 0 R /F71 107 0 R /F59 98 0 R >> /ProcSet [ /PDF /Text ] >> endobj 110 0 obj << /Length 3565 /Filter /FlateDecode >> stream xÚµZ[oã6~ï¯öe VE‘¢$,öaz`mvR`íb«ÄNâÖ¶2V}WµétÆä­i/ žè;n’Ôæ•µZãvðwûhà.¾NúØÖ:m¤)’ÝrøÝIÖÑšŽ'®Ê¼,*䇢2¼¬þŽŸ?ÆqwúÜu[(,XÖ¾E–à÷íeYgÜz½‹*¹ÔLì 1žÚ%jNí…ña¤N&èðQ&´QB'¦¡, PíS‘ûü¾‘'’®Æ®—=U›ñ$uOÇl9®š&Ú ãX‚‰Ðg$JÔiEɪƒÆ·Mz:æ"i;*“ö¯SM²ÖÒZá1}MÖ:Ò–†.ýYm©=©-W<ÿ ÓŽ¶ÂU¶Ò…™ÈZÞ„©û(¥)¶Í›Ð¯ÃF÷4˜Qz€‚g²Ôa¼/c‹µó®=æÍŠ+RÛ—3µMY˜¶ÈM]ÁŽTyS7L‘ÁÖ¥ì?Øc\ƒúÀ"úiÁ÷DFxeÛ‰~°š6k²ªLÑjÉ¥Á`b•²%3;Y}°™a²¾ü ¾E±ýb†¥Uv@廿#"UÏh|ˆÅÄqè=Ù6Q›¥z0¨íno™šPD} x`·Á•bòë¸á4–ê¯øì»T½î®Ò®<)V.×"7AñÓÉ »´õ=¹SDK©9ã@Ð â\øì&±ª,(°Ù]'òˆ©äíYÈ]Å®ºû9©t@4«g~WeÝ <n–£,²ƒW‘*ÑC/Ù:*©œ""ñs®Î3ÑQ vACf¬ÏúUccâŽ0'V'vöØš6¬³ïx›DÌfâ; ÇFU{…:PÍöYócB¾éŒ#žV  ^÷çlkU¥fß«»ˆÐÜ; Óâ2Ö…˜—Þ‡n+–ÓY2ì$úƒ´$ãˆOD`UöSŒõ¨¸“f‚¢;awSæ°£xNð1²žršw¸¶ÙW8ßÏd„f&nWµÝ|€c¤53˜æ^/*˜zÈ Ëq2jœ8í;¡·ãøêõ9&hôy~j¡–gÑEÀ²Ú:/¦&á-ÅËæ8€KEÍzà†ûnÞÛKûë²[:UgŒºâ¿B²ìÃQLD&¥ø$R eÇô¶Ÿ$L´EdpÔÅ  E[ZˆvÊjŒfs$Î6ÙãFÔƒ>ÓHZF­cp+¸gê³KÁú©uÆOÜÛÀ-Îu<§ Cʃ†ÕÅ÷‰¡¦‰€”™ôÇYƒËy¥ìC‚©:0ú7œŒ™AÙ`g~êÁ7%@]3‰ÒÞžÀ]h\»x(¨Ä3ÉáGÌÁÇZZtøhžíUi¾a мá9Þ4`ÄÚÄ›lqC1 %¼ nBÝ Kuyë&éíoz”i߆Ã)[ù6ZÊAų‚ 7Ðô9}˜y÷¸×\Å’{ÞðgÜ"¸ÓÔìh¤‚Pí:øi¡§ /H‚œ‚‘—Ñœ/º§Ê~£~OÁ{·SÈ4Ú›î&c†4½dì'Y2êô˜+¶  s'´m^å™SŸ»²šJ¸)ȉŒ%[d,7k:w\Ø*sHÀî_¸8œõhF– 21(¤IýYªæ99¾Ö&P"vZÁ¶ö“Þ—1)íjôzšÚËØu¦¢åƒh1ù Yv×qG –—ö½6P3&×´'ÆøÐ§&k,Ç5¸5dœV5†ã$ËKksZ¬+@{1N9:"Ao²wIFoÐá¦8ÎÕæTJ—Ö%Læ†1‘#§5#r:ë¼é}îÞÕñym8u…eê;tspÎJœhô˜¿£^Í_ p‰-ð` ¾Gƒ…óž ¨œÏÛ˜ã¸`ˆÓ|®Y!qÅÙ› IE›Ëî)˜©-\ö#y¿9ÀUÄ&{ƒu%äµ,Ç®Ôøb˜†½]P¢~-ÊàØÿoS¬˜þ^nM€ûýã[nÏ (ü®-¬õ”ê…kHs?’ /¹”…kªì›à‚(aÒò!òløêÚ'NwûŸ‚ÏÕüDQäíЭaûÍuÃ\h+ÓŒXœ˜ &ðˆà9ï’ÝG’>Ìì'vZò÷`¤Á·±ËÓ³#íOµuÑ_Üä ˜­ k-s<,ÒŒóÿI[ˆ)m;—Ö3ŸÖû*‰½I}sØÎ81Ë4y«(¿GÖmaMì¤ÖTsAtý#½V1 -5¬‘£Ò¸“³„p¾ïPÏÜw(å¾ÃçÝ!„}§ù>¹¢pýŽèб'gÇð>¹ ¥Qq-á …l‡ä6X2†Ôµ (?:F—D§'Ÿ†6Äý@Éû~›2°E )¼'š¶2W¢iöýž¼Å[¬ßèuçnQ5°œ¦“Ó,çòM$Pȵ^ÝòM"I ®5À£Ðim[E³‰Sº„s$–:®"ŸŠ¬Z)ÀZñL´(®æ¢è縕ÄýÒI‚R‹¥p´J, ËY¥Í iE¡ÛRʶ@‹÷Ê=jžÀ££J¨ãTK²-P¦ÊúÈS2ñôÊ¥©R9J7¹Ë6Yð6E9Výß«³ÁÂp¤ˆwE¶£“ìqÊñG”wAo{ø 7™?:=dðâšîÄ> ’£;†ñn¡Zwä×í8Ðb´§Ì!’÷™}ƒO–VÂp^nvøzÔnr«ƒe]JðŠ-¦Â…#ÆÛS^€J‚l°ìGNR¸Î-U¶|2n ÚΈ€÷cÀ›%§RGÐAÔ‹ôs+².ªg[W ïÕ~®417m'H á”È g$ÉwO:´T½§Sb‚‡ª(ÑJþ ²éx‚“ºÔÆãA$ownËKØŸGõºSj¾vAGjÍber`‰+ +NåÒ²Úc» öøq*\ÔÙÅ wÛ8ÏþÈ 2Ø-ÙyÊ_®F ÇʱÒCHW˜…6%/ÝbÕ'_^ò?0+5 endstream endobj 109 0 obj << /Type /Page /Contents 110 0 R /Resources 108 0 R /MediaBox [0 0 612 792] /Parent 101 0 R >> endobj 111 0 obj << /D [109 0 R /XYZ 132.768 705.06 null] >> endobj 14 0 obj << /D [109 0 R /XYZ 133.768 593.28 null] >> endobj 18 0 obj << /D [109 0 R /XYZ 133.768 226.232 null] >> endobj 108 0 obj << /Font << /F8 95 0 R /F59 98 0 R /F67 100 0 R /F52 96 0 R /F73 112 0 R >> /ProcSet [ /PDF /Text ] >> endobj 115 0 obj << /Length 2589 /Filter /FlateDecode >> stream xÚÕY[sã¶~ß_áÉ‹¥‰à=m2³Û¬§í$™I×oÝN—–(Ù»’¨ˆTç×ç\A¢ÖNÓ—>Hàà\¿¾¹}õÕMqQš2sÙÅíêÂÆ±É³â"KsãâôâvyñÏY[Ïíìgø±±[À_=¿Ž£xÖ¬øyÀ®j ÿ-wT›xYï°É]´›¾y/Kl¡´»¹ËgÇ~…‰pÝj‡ëšùudz÷QÁ[OËtoª¶ç‡˜¬6²d'ÏZ™:ô”m³­’-ÐüëöïÑŵµ¦Låä5`\oK9‹KÊìyíÒh¶@¦ï‘IâtËÕ¦ñ Ó­‘Ë+ɲÙrÙ1•ŠÛãÝð}Í;-q•÷‘yößá’³º›»böˆÜÔ¤#üÍ2F¼ p.y Â•å,³eVÿ‚´Sr/"úp³¿á1ÊlF:¨·ÂW™ó¹p–T› 7Ðzš-rzÇj'–R³k™í*\¥nk-o~Q }uÐñyØ6;žÿÁzaCûû7K<µML™$ãßÞ«ÑDÌ JjÏï{d~-ƒ(£æ€ë|u“åO奱H”–cD1[ÒñkäB¸\‹T[Å,{ݶ~¨ék(Z¡‡7²öšýÔw^èdÒBá561X507[ Ú¿*‚½Ž2´×ÆŸ!C‚nK” €Ûn¼,­ÔHLD¾Qû’Û…õuûÁì\IT­‚ÌŽÃ÷R0âËiïKflj|/ší¸ð…DªS#‰mfŠÜc«w÷,YI@::°ÕÏ»‹ƒÄÚÇ$ÍHñÀ˜<ÁdQ„Èå0;‹ç°aRÌn¨ìê¾D‡#®‡©þ¤'lDd¡q!ú;Ï,HÀÃ2Áäbã©’ad[á´'|Aœ¬ªÙñ(Õó•$."ãàQ’:mÐS}Š¿ë¥TZ #.ø%'1£¶l©“*nØ!°Ã‰Ž àV‘Î8á-°b‰)@«Ñ%/½Q ß©½ÁÈ£ºÔ=Oëæih·Qi •¨¾W2u£y»‚ƒl”˜<ëAžh} €3ï >ÝãMÿµzšCòLƒŒ˜€eÝÞ+Ö)UAûNÌ­õÇ7@œ?!"'q:®yHµ/ ¹bŠ­%tšykæÚ”.˜jññ"çƒnÉ„42EŦDíQdÈùÇ#ÄJ÷Ñ;+$Ѭ9±‹¡Þʽÿx*»Â¸Ü‹Ž1ðBqiPžëaƒÈ‡v§¨gÑqÏÇ>˜²(cLnñjkÔ£ÒÑq±cpŸ¥ê¶ÚsC]2 ®— {M—yxÉHCª«s†žI|%¾Í‹TÂÖJïæFÆžA¾÷‚®lÈS«WVìˆÌ\pŸotYqŠÁ2‡¦WÊ—§|ä&Ï}:•šWïc!fñò£ð·Ã®H¸ÀDÙ7= ÚT¦H贳𮦣¨5ú,/y‚€GjL¤ý8µÙÉ8ñ¾\$Àq5.'¤’‚ù•/ô±ü¼“=»´ÔÅ10OJª}VR^×’ƒTãÏhè ø})Ïg´Õ<ËC#WÅ IO7ÂÏâ%Ú²}Ö©¿ –Ñôú,ƒiö{¡yœa ƒù*á¯>¯‚“=r½Žx9‰¹>ð_Ûa¥Š|íZéWŒõvÊôŸæX_¡öªÑŠœ÷ô`òkþæœA ÐüÚz‡žàЫ··¯~²—åA endstream endobj 114 0 obj << /Type /Page /Contents 115 0 R /Resources 113 0 R /MediaBox [0 0 612 792] /Parent 101 0 R >> endobj 116 0 obj << /D [114 0 R /XYZ 132.768 705.06 null] >> endobj 22 0 obj << /D [114 0 R /XYZ 133.768 393.003 null] >> endobj 113 0 obj << /Font << /F8 95 0 R /F67 100 0 R /F77 117 0 R /F59 98 0 R /F52 96 0 R /F73 112 0 R /F48 94 0 R /F78 118 0 R >> /ProcSet [ /PDF /Text ] >> endobj 121 0 obj << /Length 1788 /Filter /FlateDecode >> stream xÚÝYKs9¾çWpª–ɼ[[[E°qH²^†¬í$‡13ؤˆqÀ‰“¿ý¡Á!›ÓÚ#µ¤Ö×µÚâEñìùI”µr7O‚¤UL[~ºi’µ’8uƒ0nUëóg»¡3iûÎ-Ð(fÖÐìp³„æèèΞÍ„ÿôÞ‹=øèSåÃçCûCqöüD‡âµ:~îzaÆ Æ«÷^µ;‘Ÿ‘ôòŽÛu¹Rû|GNêLb]â–5ÏyìõŒ Þ¢¤Îã/yïù‘‚Y/™wDä#Šœ=ÈFˆürP†„M¿{¢æ,î¶·8Ô/'¾¾—ÍD!P,@Jûn‹å×`ÜÈùX³àNEÎbŠß˜L0'ÕWl¼$Õ¬—„n åtÅâ3ÂÍ@Qfô·´Kêï¸! "%è7Ø;-N&dkÔ-°¼c•p äÁ'åœUøÚÀmd©Å’YdÕJ Nʵ¡oXÈã­BŸÜòš%Á®H}°[à¹iîoÕ‰¼tÜ5My‰ƒ>)W+ë| ʵœ·ÝI’Äá¬Úº g~+?Áßû¹â&[“w„¹›úÊî+ÙñÄ8QŒdÇiQìf~®Ó¸âž·%5oá”@&K»qo›°Rþ-ÕÆ+ˆ‚0 *nˆ h‡ëã1] ÞO¥~hØ\¸øB0«RŽ§É \Ž¡‚c×_ ;âRÜK÷ Ÿ[ç²9â¨ÅZ’L‚ÔM$—ø.L Û f9ÇßÈ; ´¤„{cK@¸a´vzü–| C8·cH•móvö3µ7$Š=Ûñíø1tbtE憙ÏK7‰sÇã*! «=f| Ã,¥,‰_Š÷Øùˆvšˆí‘=Äž<àÌob¯ÛâíìºNjcÆÁZm#o ~‘1™ÓÑbÿtˆ»˜pl|J>„>£¸W†¦éK•­ª~”аý §xdÈ…C·Å|F—çŠ(táv _ãºRªŠn&ŠÁÏ’ÜX„ è±ýΊG{..¹=Õ Þ¤Úæûp7|Ï ü:ã2/W~!ÁG°ê5æø‘à[nÝS̯و¸dcdž^ª»‹SNYÐõM͹,VÂ8kÑ^ÝޚдAâú^°mØGASm/^‰ÜÏ’|@µÌHßXHpyÃy gv]zô ÙµûÚ·×@j¬ÐÖé}ÕV²º_É.Œ5üÕïídƒ;°ã6qN]vaôul…ñU:ö÷Ø¥Ðô(lõÆ;Ê‹¸u{˜Ô³Ø¬gÁ¨cíx»–µ= swÇÞî¨wW³cß°£ÍFæž…á³¾1ßô‘Îßì×€;Þ[ÇXXl®ïÝ5°™>)ö´‹†¶·KÅ@~œúz±oºœm%y™šçB‰Ý}Â=ÃS}ÍK}‹ö¶ö>*vNˆê7œp…?Ýߌº¾‘Ml§ÀvbÍ,dêoFÇFFCä)üÙÓømÑ·á»ÙÒæÃ¢!³v-Ñ×ÛwrrNy:zÆ>Ý=>1ç™üþ»lgG:± ×›§‘E»Qvya·Ö&§o¹bº;k­ÅŽ^“H±³®˜´ÿ;ñæÿ~PÑcȞȊR*®¿h¿‘ükTjE b8oÄa ©} ©ÎkÙ™Ta/þOÕWòdõu)Æ}40¾HC­=°RßW⬄ êŸh|µöTúi›7âiSnh¨¾® y„ß1Ð¥Ö?—¾â…!¼+müJ»ÐúMŸS;—@y ½9°úŠÎG"w({ ÷²÷‰ÆëÊ÷HÆO´¶šsªùçk©âøÀêë šgšÝò}+6¹|‚F‚Oõÿ‘µc÷ZHÉ|+6?ìCjV}™vjq8Lº½†P׳É`ì¿¶úJ~¸úºÒ¢Ú¤K£=6NˆÞ©ñŽ´S5Ð<øFÆÎ$bÇ[Ñ·z8þCÈÔU?ñ*BG,t*tþ“ÕׯÂü£<=+ê4úÉêëP¼¦K NïKiŒ¬=–ŒÀßÿX}ýJ'Øæ\j Œ4åÆ;´ûè¹ymWI…¼>‡¹ùz–ËëYYÉûÌ(—jvê¬ä=sJ5ËòFèG¡›GøèŠž ¨üY×>\øì@OR×óÓ†çÁ0c5f ëâo%ŒõXêT5Õ~tÇØ¹  b7ñCÛÏe7 c…æ…z²¦ Õ¹Ùüβõй™¿~)ì™ÒÓfÇüûĽzô[Õwø³‡úÍ'N”ͨM¿n}Æò³¦Z°fUÉ"Í!ysþ) 0ñ¯(êg/˜\ƒ 0›Of,Fv›S ›… –ò·ôÃAÍU-X(õs0Y5 ¼ZÆ8ôì¸xö/3Æ endstream endobj 120 0 obj << /Type /Page /Contents 121 0 R /Resources 119 0 R /MediaBox [0 0 612 792] /Parent 101 0 R >> endobj 122 0 obj << /D [120 0 R /XYZ 132.768 705.06 null] >> endobj 26 0 obj << /D [120 0 R /XYZ 133.768 586.667 null] >> endobj 119 0 obj << /Font << /F48 94 0 R /F8 95 0 R /F67 100 0 R /F54 97 0 R /F64 99 0 R /F52 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 125 0 obj << /Length 2725 /Filter /FlateDecode >> stream xÚ½ZÝoã6ß¿"Xàpö6fER¤¤½»[lôÐÛC»¹§¶Š-gÝÚÖVr’Íýõ/R”-§ÙpŽÄ¯™á|üfHåëë_^••ª¼ñ×ë m­*|yá]¡Œu׫‹gu7׳f¾°¶šÕüØÏM1»ƒî¾ÜÌÆÏšÇÊY»æ9÷sSb§ž=rÎïø³Æ·-ÏÞ5h|€_ TŠÙªçþNü)Óù™¯¸sÝvóŸ¯ÿùå•3‰ÐF[¥õEÆÒ¾…ùïÞÀŸ÷ä½Áõ·ØD‚^žnÙ[•9V«ù"÷föåÙɞÆ‚ MOúJ ±WÚÛ‹…Öªr¢°³‚Ù²'Ü8Ö%è²á— ©€w½Ìïê‘Ö°„gíùXoJ÷ø~KÚ9Èò¤/²löïÀû:ž¾ Ǫf™Ø¾øNjï—𺡉©@ðšÊÄjÈÆû'¾¸±¨8 =«o²¬™Õû¿Ü “Û}Ðסáýá"ÖºIØ™]ÛR•e,÷µPkI™lú["wbò¼TÚÄ…õž¶7Á RÖÅi߬ævBd›iÒ “7.¬¡/1D~;Ï:Ðàcì:6ÏscÕ}îPoe/y¢êL^±÷à Y ©Ó …dâ>Æe³ZÖ¡;_ÍK‹Lõ7ø}a˜ð‚p}\ÀÛ»ê^Ö¶à.Ÿý‚d—¸´ÇÑnvýÝ!9¦6%¶8 ¾¦ÖôE¢¸…ÎU•çcmÔ ûSEƒqò2ý‘ [šY¼ê®## …Úê„¥SUU¢(³&…êÙ‘f#ˆ²Ê>­ l&;ÐRÜž¢äÁ‹F®çŒ**“º¶ ²} ÍòByf®ÊÁPSác*åÜû  SyUe…˜Ê3t?‹¼£Ë“¬gÐqN¨Éùd©‚“LDaV¨¼ð&ÌsUyá=$côÉ«rÖ£ûÖ]3H¼$ ÇàÖ‡¡‡MXjó¬^P´¢Œqº‘…«š²»øÿš®JвjLXÂóÔÉM¦¼õtˆéòl„93[¶¤0Ü~M‚#t;@ÔÕ*E‚vÏPCÃ‰ÌæPAÔÉ$^ÎõD{G¸+ÆÝžYä‹`ä²~;*³$Zr9½äE”û΢FF•Í®“¹AG=*r[£¬L1$…q€†Ëâ™hlc6ëo¹ž<wÈU»Ô8°éhKòþ¾F’ãv‘]ë$º‚˜„0>ÚÔ#HG˜ œ$`A.²1¾DòiüoO}—‹Ô8þd n‚ãçS/ ÅÎݺKcYïùEŽ«<€,Ê‘ ÷„×H8QU]RC:'„¯©2& À@Z`›^I¬†;2ù|Œô‚à=‰êžb S«•ûŽÊÔSßÉTžGßù["•¨¶`ü~.'¾í7(©ò*V/aÖ+ø½œÄs§‹Ï»xV‘TY°­úA˜–¡iõ*Ôt€ÖΩ¬Òc[¬ƒ¾áôqê'pÒèÂ’*>:=¥ "nÏ'=“Ú¤‰8–îËpZÚ>ò2î¯#W$rý¼É=ß{±‰'Š~ª.+ e´ý#SUY3:¢Ð9° —+QzÑžÍ2HÁn¢ BÄò:î´>S±Á”%µ–Hþã»'½~º˜ó:* ß ïé$L×uÈpˆÖ—£DE7CQUßIm$B!àe÷õŠ´ÕT¢‹²ØQE)×yn·!±ÉuG%.¢2à&ÖÉiGïB°r O}kª‘6Y²ÐæÑ¦?œ½‚C]t r­}8G[õŠ×åã³ZX¢õ ò¢ðÔÌPE<$Y`)ïïç‰CÈVV<ýïðºà×~r–޳˜(rÂ"ÃR¦ÖrHì*ÏoàrRȳR¹)˜ç0Ë•Ÿ™÷K©îkaÀÄÄ_N(óˆšì`ÀM-°ùÿßÅ$ql.ÆÍWŸµŸƒcóÏí咩݉6Ê;¹CùÉÃdÖɲGéžž/ zŸvpè=J!_¸d•C§¦ç«Áσ¨_I)„ùsì¿FQ'v£PÝ%m"–I¿ƒ¾ ~ùÄEŠSÆèñ®®Ó² ð£çëZ,êúä>4‚U8*KÛUžù_ÆW¨iF¥‡ã»†gìÛˆ~£KYA6±ÿ³Jã+å†ûšgU$rŒ£ò}aŸy¡±€.ŸwÄ„sß¹û ©û (>žÌqÃ8‘¨W«ãƒv‡òÆ eW-LG—£û[GÄ'—Âa¸6BÝUZ?ñ ")äŸóY%q°'ó·5©/†CĨ&¢ä,—WS6ÊÀHæØHéEê[ Y†ŸÓ»<¯ª2ïõdª³ĸ—TgG öÇŸL^O#Ñ6?òi8;rZ‰CësIxiQPáå[të¿NHèQ… çï¦O7z• änˆªûÒ*gŠ§Øƒš å²£0=¾37â£Ár¤ÍÃEîI.ʃ ¥ü£.±ÍÄHHÚ‡Ät'5‡w/sPÈï’4—¦m°“û!É×Q­SB/EŽ}RCߎ„/>C`*ð¿DÐC¢ÝÔª¯Ç’¦ûz¿W±G†sÍÇ´ÞŸÍ…õÈáÿÓ7BEreñÝ&ñAºƒ³ztÆöù¯y™…£e„ˆo»¹3Qò>"ÓÙ»ñ\ÙáG_$÷fêó‚ÍU•U'_nsÝÑ1úȇ`3ÜÃð)—ØP;Üîqè¿M²õ4»ª§$@ƒÔv|î}37n¶ç“L}hPÌÕÛp©¯æ ñ+ånZöʪáÓç"˜ëW¾‹Xäx.—ÌHÛû莻'—²ÉQ×ÕüXEa¸½&¨¡ûM3¾Áv—–74]Îõ8Øà·Ó¦RšcÉGÊàꨓ[Y›Þà§pW†«¹Síx™Ìð ZágªÙ¨VsV­¥SyöäýuþÄdžÜzùGTš-ÇJ„öÑ'¤•|~_ho”?þD%@ZÉR|ïU‡ûì ¥ÿFÀ-îּ坯té_¤7{D9ÜìáÇÖU6Ðþëð´¨ÁÑu¼çv¼‹ò­âÓ-.ÄГsô9qÛ 5 I·½ lú×| €âÔz‡ß0éhµÇ¡ß\¿øë79] endstream endobj 124 0 obj << /Type /Page /Contents 125 0 R /Resources 123 0 R /MediaBox [0 0 612 792] /Parent 101 0 R >> endobj 126 0 obj << /D [124 0 R /XYZ 132.768 705.06 null] >> endobj 123 0 obj << /Font << /F8 95 0 R /F52 96 0 R /F67 100 0 R /F59 98 0 R /F48 94 0 R /F79 127 0 R >> /ProcSet [ /PDF /Text ] >> endobj 130 0 obj << /Length 1560 /Filter /FlateDecode >> stream xÚÅXëÛDÿ~EzÀ‘ˆÏ^{ý(´(@ A%Ž|A¥>ǹ¤rì;½»ÿžÙÙ‡c; m%>¬¼Ï™ÙyüfÖ?,®nnÃd’ºiÄ¢Éb5ñƒÀ£dñØeŸ,–“wÎë錳Àù8õL´½h¿‰VˆÖÒÜ’¾jü—Ç=ê–¢mD{­í§Ó[+9å«ÏûÅ/7·QlËÈ}7HÙdÆ|7õc)cI$îI°’8A¿-'ÁA’q‡~,“ÉLÓõ]Iºpæ€{Ä´çΜdTò>ƒ ~QQ;‹Oai Â1n1dµG]8 Kùyåú;j×Tâœ+X`ß{lÈü•è¾¢ií‚#×RÕÕÖô‚†}[€xðƔɅ%ŠòÚ±ËõÃæ¨(‚{ûæ.™™‹–Š»“Maüf§mø?Þ.-2·ë€%Zû‰ö²DÛ•®nƒG(’o'ša×3¨+’@e)òdX>Ö@þžtÛÊíî•2qI¶Ó o‘ßA² ëíl ¬ (¥ ù5‘pyÜh“\Š1+²šy}IËÏ{ñ:ÑÅæxð•A¬±xzq.“õ¬ÛåtÄ~½”\æH¥8u_c#ïë¡ø ÚàC6ýT/¬ß Å·ré‘$Xö‰ýú)ýLÏÀR?Gkk2HMêWYA Ãâ-þ‡9no…½8ñÞx@®sÙÉ’gÞëÈÓÙ4ðêV•ÜÞú™±ü’|øx}õ;a„½Ö’-þË*¯å'_È¿›n{ÿÝ~øÍe……õ·ªÿ7hHMþàÈ?éOÁ¼´«îJ?åHþù` /]ÃÃhÆRŽüà)ÈÒÐ)ž”;ÐËg?ÀM3V¯Lè7kù¸×‹V"Af¾|<à^¥Å"ÇÍA—ÒtÝ´ e+H¨Â½nF³a¦‚§;B¢ÆCzÏC²*_%ÕƒûÙIᮇWÇI¡±@?3Eĉ²î ¦£:!JÝ â“YÈÝ„‘ßİïêÍâê_„q' endstream endobj 129 0 obj << /Type /Page /Contents 130 0 R /Resources 128 0 R /MediaBox [0 0 612 792] /Parent 132 0 R >> endobj 131 0 obj << /D [129 0 R /XYZ 132.768 705.06 null] >> endobj 128 0 obj << /Font << /F48 94 0 R /F67 100 0 R /F8 95 0 R /F52 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 135 0 obj << /Length 2032 /Filter /FlateDecode >> stream xÚ½ÛnÛ6ô½_aôIbU”H]Šm@·µ@÷СMÞÚb`lÙñj[®e5;~çF‰²È˲=ÈÉÃsã¹Ò?_={ñÆè‘RaaL<ºšT’„YšR“…qbFW³ÑÇ@…cèñD©Xï £<Ëý8‰ƒ»ñ$Ét`k˜Á§tër3NT°¾úíÅ›|T„E§H$MT&¹bôW7¸ÁÒ̃‹U¨¢À ì+@ÙcdJ‡:Rh@Í~¦{äžj Y°…ï]5Ž³à›¬Ì˜[ZµøÊƒ)o  8¦T°AP†{†½Åo‹@w<¤*F€‚7k”Þî„Ì_%CḴ3¡·!ø›”¹ØÎ"¢&µ&‰ M”¾èˆ:E4¼iŒúnîÆ¹ÂñDë$ø}Cêœ$IrÀ*LTs|ÇAu[í’È1¢Í‚A=êzå¡§M¶îØç”wn©YÑ64ZXÖ|húЊP ‹ôÓxbâDŽX—ÂÂZœCüw ö|Nú;>E&»ÛòP¶;$Û]œ›ÉŒuNŒþ,Ùò&ZiÒiŸ­ _îÈê= ^„£/liQ‹êv3áFD/átÓ¼^ J>9ØI†Z}Á“(Ù¦ˆ"0§Aå™2ÏoŒ¦„{ç™7ûõðšßâD9i1#dcLYrßspqB¥ ø{¤‡u…rnZ/={JÅ]V'hèh$n;ªòxÞÉYû.æQ‰Rk(ïï㓱*KÃL·ŒŠ”FêeÇ}"šq>dIm‘NµuÁÀî»uŒ?˰F‡]±‘ç ú²Ñ&x»gPǼ„JÁŒM?*ìE&;]Åi4ä°söJšq?'Zkë‡I\Ÿ¿k@%£è+a¶¾€9 ú›/rØ#WÝQÌ“Ðzˆ„ƒD#†Ö2ª:s–XŠs–_XHu3Ò@Ô—½ïXnä ƒZíÔÓw¬’ 1‚ípÎ=´¯aõÛØ6¹ÆŸËc4QãAW*÷ÓœqA)^µ;¡ÅÊ™JAÚ IÙ  3V<Ÿ&ê’8–P°¶izÝj·qNZ£¼AccòÖ~—5I=¶®„œeãËŠ0K⾦¦…j‚ŒrRU”U’…™ ËIhÚb M²'f+Ñõe­i"€sD¶Î} LÎX1hV´4'­ÁǪuk™`§ITŒqŽ.N¤Á‰2k Þ:• kÉmß„3ÉqÃIi†¹X«óÛáyÏ ‰ƒV¼êFæöñûpo(èg²ïù`ši^A:)"ÂWÚ^Jã(I Ž4‚Ü–~—7­öÆ4Š?vvLÜOåmúpé·ˆü¸¬!…6õq°lÕ"ú0Ž )x»<¦¡ÊZ£.±If¦eÝVHÈàe]$ÖrmBÝÅŠ6uÛT§R…Y—XH,vm)'Ã-d®´ï§tè;É »âMjcˆé„™+<¿&¼eGáLcñ$ôZg#öº³¨CupEZ¸ÆÕ‚ ó½^³(R’ÃMðÆ•™gŒ.Ô_»äçù€¸ Úéq‘­€û¶{˜K³z•%R¸U‡‚ºv*ðœµî8Øx èù0õ'/„Ï”r*lV®™;_ʳbs§9ÚµhÇÕK‘ jÌÿ¯èÅ¿uβBI9§¸ºÅ•ˆ×«uÈ^2´õjçpr+ûŇéhºB‚aJ;Åà†GmEh$͵PCuø;Žã[œƒZur^¸Ì!&µ ·H‰";—jϤÕPPKåÑë¾ðåº^)Ÿ^50Ó¶pÓjçÕF™RÁ[v:Ž>¡%ÊΕÝD-¹ËyÛµXܼÛšFŒA‚h¯¬”¿4Idz–_—m%L…q–<*½j(½:Ëi¯IDÎ5뱪KI¨… MrpC¼.Ü öHSr,¹Ñð¢y-­ÍÌh›'n¥´A—æ5ÏKc¹Ú•¼ÄÑcŪ¤(J -çȰ•Â8^7iº¢×Üy‡ á ±¯æ§B%U|{{¢OJ{)”áK×÷/êþõ“o<îÊéðF«wåTû†L+^ÏÇ»•‹…ß5Ìu{vÄBå¢îÖ}¼Êó\v¹ìãÏò›r#HZD,«­t$¿ˆøMÙV{3¯Ù±RÓ̽ÂbÝo±ïJPصwL¥0`ÛìþÄÍÄ¥ï:gw3/ÔîÄ‹¢Ç2¦ˆ+TKÊô?ÐÐCL>Ž¡‚ÿ–¸÷¨$<ùbOÏLJ ÚÍÜ;wÓî{Øå=k¾ý»ã‹†®`âW{ÝuµW«7^1^ɾÇ3¬†™ÝÊ®xá×Çxƾ:àYˆÄ>æS‘fÈÑ/[F¾4(ß×ÿÄT55¢G‘æð²2už`íæ¹$©áž½¾zö72ü‡½ endstream endobj 134 0 obj << /Type /Page /Contents 135 0 R /Resources 133 0 R /MediaBox [0 0 612 792] /Parent 132 0 R >> endobj 136 0 obj << /D [134 0 R /XYZ 132.768 705.06 null] >> endobj 30 0 obj << /D [134 0 R /XYZ 133.768 667.198 null] >> endobj 133 0 obj << /Font << /F54 97 0 R /F8 95 0 R /F67 100 0 R /F48 94 0 R /F52 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 139 0 obj << /Length 2122 /Filter /FlateDecode >> stream xÚ½Y[ÓF~çWD<%1¾/T­[ ­(´7@Èk;Ù”$vÒ%üúžëxœdYÊV}e<—3çú3“'³{Ÿ%é(÷ò$LF³ù(ˆc/ôóQbR/ŒÌhVÞŽ·“`\Ck¡Í -¡­dìÑdjˆ>q¸ƒ¶ƒöÎ7>ü„Ü &ïg¿ß‹ã`4 /7Bº2´ Ú´ÚÚFhuý1•,Ýɯm.œá÷ZÈÉñïŠ].ü!º£ 9øõc S…Ⱦ.ÐÞ@+…ñv¨—ÿ€áé9½U²o+´¯ ½ڪÿ³áY‹;±Þ®KÕUá0¦ (Sçĵèqãp²tÖ}£ï F>Ë· ÷ cÞŸM²xÜ´“i÷Lut$öJ<àÎFVß5/&Ëï7“0ƒñÇÍœgÈŠŠ\Ø¡Kkê¢ÄW<±Òsê~¡ìAï߯QÆ¢Åá/¸ªb"K!ÖsDÂ":ÌÏø)Øê_ܩΔÌÀൢÀºùYIQÒTÜ)‹ w.'Ó0%á£R°Ø’è˜9 …ZvÂCì2î_ø§ÿĆþ$Ò¼)ÖÒ qŒÐ·Òî;zäàÚ÷ÔN•šf^„Ê JÏi–X›;`éCÝ/qñd!ð4žDZ¹‘¹®dùg 9… ÄÉNæv}Pø¶M£Ü9…~-û$ANîÓØY ¸"§.e®æ/\]}ƒöóºÙ0~÷~n€ÿ>if÷8¿d}êV׋ï Ïº†p;=ÒPJª Æ«Øb­ q´™WDŸ?”uvc¬‡^Dw uÈüA*‘ÓŸÆyÆ ·Á°%ˆ´€‰³9œH‹ª‚!›>æ×ëš¿®—6qÑwÀ¨^ó0¡v"9¶YâqDHî…™ZT2ÑGÞ;Bè³®y·äšMÇsE+‹H-JQÉXü†îN3ô·©ÚB IÉ ÕT¬ä€ j¨!•ØLGÔÌÿ/rÛL+ÇÔoö;qü=;9 žc.…@Ь—ÜŽ'|ʼn—g± L!6ÓœŠLe©w JˆÆêaKÎÑ<­'¿óŒªº=žåDK>AgeLrør¾QU‚ÒB/"ð9aHMâÖ¡1cŠV t0 &ÈÍa¥€¿N¥ðÓ¤o­ò˜ ªZ)—ú»¡4sÊfB¦# ÔŸ9hqô»ù«ÕŠmq®þ+[§0¶k ¬L,ñõ“A7󜑗R%¿ÃJÊPPIÎÜh| å† hŸ¹Í¿RÒÑÔ‚¾šµ|ιÌû‡ÁÞm¼s‚ß ÈPi&oÏ{§`ìCþÿc±Ô‘öÖ…jüK-ŠŠ">³«µë¢Y hê>UÐæ× Í1 ëdjŒ—…G÷”W. £Ë& @‚0kA¿MÌ h“{& î‚6¹—DÖŒ×Ìͺq>(­­·Z“•ŠÕuÅ•màDuzÅë­Ò–*ž& ŠT¶U·;Æ~F¸rqvŠÏh£4KÖ€>_…–DªÅ®H^šl.ñT ÷fß1 àóW{›a“aHfX|Ò eC÷ JFð¹×Œ™F.\Ðź–Ôv'’6«~‘zQÊàM½_٠żž³2ø¦C+Ÿæ3Y5då-b™à‡NÞ˜4­ÄÉ‚ü<‘¬@"x_¹h˜A™Û:wn·.”jã[ªàý¶v^K~”‚÷¡P/œ[ýCé7Ò¿‰‹Î#†®)½ÊÂýïÅGRÏ49„áP›\„¡¤“RÓfU÷fr‡pf<µ«Øõõéɧµ{ÙÐE±êOWUr,])±#É‚W±ÛV<#AãÑ Åb¥¯xúÊ)9ñû(>囀ú?=žÊm"×Õž¤Ž¢“b8M1,§þþ"ƒìt#amñJ dá/³ßaô3G©CSvqÉù…f$ÆÏd;L)­–dçjˆ.žúZo N Aìåq< Xu®8`4!#•4²\A<0>~+˜Š—ì%“ÇAdk&ì·µØ-µ«KTL{„ºö¤·í•wïcíÑtßHOäÅtGdÓcÕš \ òÉ|œ@™U,jj˜˜i®<ðB~=IÓÞÕ#¨Y‹RŸ¤Ô=h @ºA­,®”„&}­þÄQ+ûÐkºXTèÑÛ\+Ç*/‹µ:ÇNq}e P…on²êK¾úFS v› ÑUƒ¬%•ò¢h¶´î³öáÙº:шb±ÙUzc€^r†Y|ùÅn1°ê©o?õ3wõ‰lìî`ú,Béë}_gÙôÀõÚƒçœGco+Ⱦ¹hxVyò¤æ ŽÍÃÂéKÓä×ν­5Ž}í#öŠCžDVÙœ—5YÎ ÿìjXKÌ˽û^+¢©çŽ~%é¨Ä­[„óGyžkîú„Šª? ÇÎâÃ¢à‹ƒ&"©tß0BR™$¸tT3—ê!;,Å¥¦O¿ë 9g•ê ykáôD·šVûOÀ!³ñôìÙÊ›vÓRÉ@¾. €_(]éìbg-h1È’C7üJEeìŠ|÷#‘?hä±²uÉO²Ðß:*Ê É?$ÍEÓBÕ±.tÿÎÝÅ9QD„Ês\ѬõU¤=à[ûY•öʹp_Õ‡.rnyïÙÈ’h_þ™‘ŸYÙs¼ýq—\Þ Ž\Ú:ËãÁåóFÃIìA• +\ŒÑEŽS÷žÎîý.ºmÚ endstream endobj 138 0 obj << /Type /Page /Contents 139 0 R /Resources 137 0 R /MediaBox [0 0 612 792] /Parent 132 0 R >> endobj 140 0 obj << /D [138 0 R /XYZ 132.768 705.06 null] >> endobj 137 0 obj << /Font << /F67 100 0 R /F8 95 0 R /F48 94 0 R /F59 98 0 R >> /ProcSet [ /PDF /Text ] >> endobj 143 0 obj << /Length 1194 /Filter /FlateDecode >> stream xÚ­WmoÛ6þž_!ô“ TŒù&’Ã6Àsê&ÃÒm­‡mH‹A¨åÌXle¶³¶ÿ¾wäѦ$Û«‡} ùv÷ð¹å聯›9æJQfÓyÆ¥eFg¥6LHMgÙ]~;àùÓül¡- =â¤RŠ|ô€+÷+øYÖð³‚~ï«A¡”ÌYTi íUG¸ºèAñ|Ü<…©…é»é÷Ù0+¸c<¼B:ù'ž-óf8ŒDùuë5lW÷uBNrÈ ò»Â£Ï„6ãÁ˜÷ד2)“Ñ ðÚ^,p7Äö– o Œ¼ý°ÓsÒYù3Ÿö6_N´Ê¸bR•U(æ¬È )˜¶&œ.çBç¿€îÑW÷Aµl©–ŽYi€ºWzƒ–6kòÞëG ´Ë«Ù¡c-g\ñ¨;G’h¤Qù¬Bˆ*L께¯w¶âlµåÌilázÈœ±Y!$³d º‚{ƒT~•bßÀøÒ‡&@‰$}1–IËÉ62 ¬h•ØY•æ¼r¬4.Ú„Þ_S´iŒi½I›WØ9ØÒe^­I Þb˜> L<ì—a#¤Q3(pF Û°‚Ã5¦ ò“™÷S&‹ô4d«Kh °´4»X¼îV2ÚžÂ[аÙ"¹ŠÍ*%RÇ$€`„bÆ”àeŒ%ýš²½"_è:ùÂ@Ù^û½C(3JèH‘#Ó#I¤ši“ÐÇŸ$}¢n‡Þ…´Kð7hoÈìÑ w=€UgI{Ý neÙÿßö3p„mÙà#I$¡Tàm€úõ=ÚK‰¡òVÅW£0ö—{Ÿ±4Á–‰úoT÷Ñê"ï/_5ƒ /lÛŠA‚Àœ ¬BPï"r‚J²·yCN¨.fàÐæñN °SÞSÞ_3ª°øvÈy©Þˆ/T¦¸ŠÎÁƒþ@s©G[>Rao( [J—-ímû7† ‡»Âø>©Útk¤“!³WTpáÃ"yy`Þ±oí{ˆ¯ˆW€Òì¥=TÉ­ƒ\çmO†»ôî§;Êá¹ðä•í×>E·òÛA¡…ô.¨ˆàþYòÖàö×þt?|F¯:PœåHºñ1L˜ƒ¹·½{ÚœrìN‰ïpµs&‡,ÐCZZQâŸâóFýO‡Õ6„S,ÏÿÍ$™Òvå&¹Ó›ä³!ÆŸÎí–ƒ’P“*‰Î ¸¡Ä7¾¢uYclÞr©vîÞ“íÜŒðAâ” Ôï@òŽ ßù†öi&ºi¶Úx íWh7>j<Aµo¬¥v0ðw”A –<%+۲┬jËòS²º-«h©¯SîuʶŽKôŽžcÚ:Gåìʹ¶Ü˜úþeÒ´¸7MôÒyG¬Ñ3¦ØÎʼn¶Éÿígúì¿éô·t;n“õ—Ikš“ù$Yº×4¿¡ñ¨ã°ëSAçýäE¸GƒÄûI~RVž!«ÎÕgÈ–§d;þ0gàÚ3dÝÊŠ~.”ågÈŠ~¬ŸyQ“ZJÏ@|±â']çÙùåŸjý¾¢·þ‘—%³?€áo›¥`>DÁ‹Ó‹ÏbRzÔ endstream endobj 142 0 obj << /Type /Page /Contents 143 0 R /Resources 141 0 R /MediaBox [0 0 612 792] /Parent 132 0 R >> endobj 144 0 obj << /D [142 0 R /XYZ 132.768 705.06 null] >> endobj 34 0 obj << /D [142 0 R /XYZ 133.768 602.377 null] >> endobj 38 0 obj << /D [142 0 R /XYZ 133.768 573.741 null] >> endobj 42 0 obj << /D [142 0 R /XYZ 133.768 516.446 null] >> endobj 141 0 obj << /Font << /F8 95 0 R /F54 97 0 R /F64 99 0 R /F52 96 0 R /F59 98 0 R /F67 100 0 R /F73 112 0 R /F48 94 0 R >> /ProcSet [ /PDF /Text ] >> endobj 147 0 obj << /Length 2385 /Filter /FlateDecode >> stream xÚÍÛŽã¶õ}¿bäÁjFuM‹^§;"¬‚ØäAëÑ\°{Ö²1¿ï¹‘¢(Ú³;‹}ER<‡ç~¡ß6o~xW”µª‹´¸hn.´1ª,ª‹"/Ujò‹æúâÃìÃ\Ï4<Îyjh˜¸çÏæ_?¼«<ÉÅ"ÕªÖ%¯vØw„ça;_˜"™ÕøÒ³{XêyåûŽÇ{wí5üþÊY»…ñ5\O鄱 åéò=ŒWWóEZή¸ŽXÖ;Z@ä`Ä}„´ûü´ ýn^e³¶GœŸyÛg9¶Å­Hùaˆž‘{dXÃyÁ ÷kD¹ïà÷¯lRËžží;^hí@' ÒoÌŒð"]ÏŸþHòDÎR«D"°w€"a!Y×=üˆæu„Úz‡[Yüoa¶YÁæ?ÙEéLÕY&l‰  ŽùH2ÜõŒ 3Ú©ÏŽÛþN«bZßñÛª—&$©U'®ÔüjªeóÊSßDë\¥ub'º~è_–ðóþ°·2¼ÅiGZš˜gQ*øÚQ32.\ÑdÞ`Ïe©òz,–l·ˆ’ö¯+cÏx;‡j9G\VªÒq¦"˜+¥KójÖ UZXç}}1[oHuÃ:©µ=à$gUmÑèIÃl`nëÕo¿¢Ë,çi1[Áò"în¹%™¤ª3ˆ5u1+9Ý «1hë tŒÁcJ8¾¤LÓñ^rÑÍ÷<1…¸ï†œ’ÇÀF5;®­ÍïrœÃð€Àqéö8ø{5{&C¿ŽèÜ€Y&ù+”ž'*,ò~ ¹}Åà‚U Ûf•+ˆÖc)®wÄã *ÔSU¡¹SØ¢ÉÇ3[$³]ãînÏßž˜gŒ©0¯Çñ”—Æ’G „?îD…»ãíIó\Í…NI.;ñî†w¸Ùwú sM˱PÛîmįÙÊ$”m;›2j wFÄ«´JÊÂWBQˆϺµ$þZ©¬ª,à#‰¥úižƒ_Ýv⣛¥*Ñ·]'Šõìßh("{g=â×+’8[-…)ç„ÂêR™‹$ì^ѳdŽÖk:mÇC Ù¸ŠZ¥©—K.F8’ó`­ R é¾lZ=HÚ“ïd ]?d ëŠmϺ>…®0ýèÊ’k$&-L‚y•üõ¡# %Vᡉ™ÝÈTZ'ª¨õÿZ…ªë!çX«M2¯l™Ò¥˜.\À¾–ãøW!‘¡'Ç™ZåEå”-Ëà º_ch¸ãV<ëòª)Ò±¼7ÎÉwÓMš»@Šct·ˆ¬Çâ$-FN6b§, ñÖ#_‚bO”ÆØ)+çd\r¶à=/Y+*mXë;¡Ë•‘²1J£N*e2GäÚSñÊÚ(©˜Ÿ.®nvYV†û*Ð3q©4M8œã ’YÇIä "l–éYsÊž Êeiö:{*ë*(™"ƒXQç¯T°‡Oy÷‹vÉb=sì\„°Aê?á†(³à<ƒ"mÕÞ 1XLßÈÚæŒ"SHéa=66jpÑ4f. Ö§IS•àH_aI¦‚ÀQ„¥AV8†„Z³exšA¹F’š^"æöz(Fh¿š¦š`»˜r‹DUCmJeÃ1<P_è`°I"åíq««MªL=Vj¯©4»Q$ЭE7σ$XK 0—šqqášRç¨6êÈ©áCçRþìw¨Ù•ê#ERÁ9nt³jOP¥Q‰qåÂ/°ý7x~¦gÂvš)pß^n"3ïû(©h`B•ð–?Õò¨ðEV¥³«­ÔòPp˜ ”ßÉådøÖ¦ûÌý0,8·†qª§RÒ Øn1†g)ÔöV”†ÇtÜF‚|&µõ{쎇{nšybdfÆ ©(ÛÐ…R¹¨FÕ¨ðûOnzÄì³àN¢cÊοóEÊ—¥Úú7 )4´®÷8w}QÞdyl,r?@æ†xR¹Õ¡Õ;_E¤¦K¢žm2\yį꾃ç'¡ry¦Îún ‡o_Ø:a§±³ò<Ò… /åTÄø*†Ã¸0ç®™<¥"£Ïs“7ߺ~ÇV¼ójünÔþÐXZÏ3ŠfÒÜ -÷¼råSØUÞ\qÑñùèîÖ³0ÛaF¸åK«H³œPÓUç/2¦Ùrº‹þ6ZŽï†R•­ô¤Ÿæ× ò‘«þÿ0e9Û·N{›&€j)Îî & ™!™ßÔð ßž”qÚw’ÿ¼O­ÌŸlzÇ1+>hÍÙã0 !¹Ó·D2ò*£¯¾CÊUQ•ç• U®¿õòKt¡Dò¦TIä—%ÝFnÄ=lec4ǃöAÂ'.¸6'¬s¥õ·WûÐI…÷jBÅ;SpÂ!ï¶5wg3¿Î©b:ÊN Lí'Nnüh+}Âãõ¸ Gu9b<õ§Î•i3mêÈtîwrIL!©¿g[çäyîw¼lsWÖC»¾u7 r ÍÙôy¸pÞy×Ó”fñVÀ–Á•ó™tYœÌD§Óâ·µî.X·²d#ñ³|¶ivÜ29°~HÌ^ª=Ý ¹-_•|¾,[÷ƒ·ÎT õý$%ÑÅ ØL؃.ÿ—$ì÷‚ðÀ ÷žpžd×lP¸eÇ…*m7f‘ÉUaô§‹´P: n,žìeîØÊð³ôÙPðW‹Þß\iRç3㜡W¢dûÒ{¯N<ö[ãÁùs;¶¸–ÞºÅÝ0üލéNãt‡t6>î&˜û´5ÁÛòxyF.ÇGsŠnsšn_᳊Èl¡Ñ§uлŒÀ®<š—yÝÙiº—ž/9ÆdžÙ:» ö‡:òׇóNÈ;?O·Oc‘¹ö2 -ÔIsfÜœGéVr¿YIç¥öçHû0åŒ ^¶TǧˆKà2à*ÐÔ¥§¥Ë÷±ñ¹§™xˆŸÐœ¥¿5úÕ‘¸P¦nÞD¾ÇÃsI1Ë ¬("5P¯ åÊéù…ÒåíÿCÉÜRæ…ÊŒÁþFU¥ar5ÕwoþѼù/·Eù endstream endobj 146 0 obj << /Type /Page /Contents 147 0 R /Resources 145 0 R /MediaBox [0 0 612 792] /Parent 132 0 R >> endobj 148 0 obj << /D [146 0 R /XYZ 132.768 705.06 null] >> endobj 145 0 obj << /Font << /F67 100 0 R /F8 95 0 R /F52 96 0 R /F48 94 0 R >> /ProcSet [ /PDF /Text ] >> endobj 151 0 obj << /Length 2081 /Filter /FlateDecode >> stream xÚÅYmsÛÆþî_¡Ñt¦ÐÔDp‡÷N§SEŽ,9LR‡’#:ñ¤ Jr(B¨¸ê¯ïîÞsÀ-+I§V¸×½Ý½}yŽúòìÙÇIº—ûy¢“½³ÅžJ?Tj/‰S_‡ñÞÙ|ïGïãònˆæDk¢ëƒQ¬C¯¡fIôáàÝÙ«½‘ü,S{#¥ü<ÆÎiZ½; é<öBjÇf÷”𝉾!:í}™ÆN›Ç_:_;FÿÈé;ãvï ú§h‚^â{"ÒÛrëa¹ßR󂈿çDS§ÿ};vŽñ Œ½uæß:sNÿÔÑçsÌw~ÿ}·KîpXî1t~¾cœ5þY{;c‡ø¾Àü±Ó¶kNœ{àõ_ážL{‡ÜѰܯ¨ùʱÛ)¾o`“é#4|¶ÿöž;cß‚,Ï7°ùkÈ>–¶+wÒÉï¶÷¸gçS‡^ôì5~Œ ñ0²ØÛ§ C#§Êí³ì]W"[~ DvJvGÊ.šöÚç½qû_;c/œ¨:unð;̽‚Çž;~¸Ëã¬üéÓå õuu#ÞzèÄ?€^?&öÇË?ý cnVtiò˜üùï—Ú³é݇äýíI/kŸ##˜¯DAìk­¶ÃŸË[àÐxÓÏ\3u˜8Êo)òÅqæÔ{º­ü, Bg×RÓGaz?ŠSò²áÉ¢1íKR3ñÊrÅ]íÝñT-ˆ€QÂs3Z¬æhÜñ‚š¨º«&ŠuÇynû…éWÄ>޽÷¼bÔƒ?èT`G]Þ3fX‚“´TäçQ´és‡´!SÞ¢]¡˜SxÕÂhJ³œ %,jœR]ÀäkpbÅVDW¨x,È'Ýb®Ù¾†œ‰3{H±îF&\¢¯Øš÷kHsoq¾³5¨V³Ö4 ncáåðX» /J|2Œ=~r]±*ë‘ñûP%~–êMS~3¯˜®v¾­Žfã'–ŸøÆŒ¯í—ƒ8ñŠ+2·ÎC‘®1M+Ý õ‰éRì&möCqÂÆôoåêˆ_æ]wæÞ¾8…~§Rব¯Ô²}Kü0÷£DÛ0¢+&`w¿£¦ñÇ/DДó’ÔOÒвã²j๢×Èóñ>û\B\Vì÷*µ v§ ‡2dºµ8§ŒqÌ©@´‘é+ò4'yïKë_„¢06‰â†Ý,È< éŠ/øWã²x ¼gâ•fÎÜV|V Yd­DvÁÌá"#§JÐVµ«9d qýËLâ¹r¯Y¿â¼!Ѳ„' ¹Ø€¡&2w%«þÝ¥§¥œ‹ü“¦­I»ÍbRñÏå®ÐKB_m¨0„ù–1Ëd]·{¹[ŠwlyFBÛzøÀ]™‡åÂ$ì°ÉôH~1Y®¨Ñ$n®‰§Édfž¯õW àV[ åÆÌBwnÖ’ç]hÒhd<`)iÐä@ô°‰Ž´¨6^H~­k"Ýî0GLÆŒ“öh|$¯é€ƒ4]M*ê®}[µ*8Õ­IiëΑ®'Êb'KpW4¯kËÝ$Œj…‚+ÆJš¹¶\ˆÌem‘ý¶ˆ–Mé:]Ñ%~úóWc—¨WæUNÏsmtý»Á%\œ.‰Þâ¶ÒúrA†å0÷SXbk/ùS[A»šHKÕ@úëAx)ÃÓ/02±<NŠn†µq9ývm LùX~±ßY¯V<ÕÚ"2ä°†=>m‹Gñ§Ï8í˜Û"ke:.bš›¡[Ž÷{ST1R9Û?ÜÀ(ãF÷‡ƒ,’'£J½Ã8} hhM%P¥¿#Û%*ÞBIt¨äÉÊkÁ€H|yäë~â›- ŠåÁˆ‚4–Ô§u.(­1 ¤/9ßZ%NÔÖ¯åƒÙ|ÓaˆÍÌ®3Êͺª¾gÌ´8E±OÎîy>À–^!q‹Ô¾´qßHŠ^ ;Jù™ROâ<¹²šW·Ý…n0Í|•éþ…°å6`+¸ Py€–:M}•&½-EErž½Õ²­;,„¡[lYyX×ɕżËÎe›YWR†ª+¸®hD˜l3 b ¨ÌÃé+¤=É!AÝxçóàØI2ëî§Rl©Lp÷ÿôeAà]·WÔ° *Þ²ä‹ÊûŽ3™ÆþÖkàæó/Þ+X-;°ÀÍ?›E ȵ² ô¦Z™™ö(XЄÚ.+J‰Íc(H¿ÀÅlfk)û‰ŽZ_ÐC0#äÒ°0³Ý3“alPÖªÚ|U›µ„àc ÷X®K‹†iN2TûöÒáEeiwþ¢ò®,z’Ãô‚.ñóŽ9f.×Ç”7Þ°}ÓòFyÆh†¯ïÒúWi†m µëä-åHðeûz‘ÉKÉ©ØúF‘šsc±IÙ˜ídCù.*ûú'’ãݳ¹ØHPϱ±¹·õçabÝ–›þLòhX.­¿}lcèó1ÒB,ª>ñ|”e“¤&Í}\ßÏøqègôKpº·YH¢Dva®¶ÞìiãH´Ü:u.ŽwÏÊ Ô³Âw ˆaR³õm·5àdóüsíÓ  õc`ìd»C†DÆáÑg#,çQöŽþŸWÀOÉ#ü`~ˆÄ›Ü{úÚþìXäüª¹ÿÈ?—¬,/Ÿ«9¹Ÿ9ôßÃÞº3gý‘³ïkú|ŽzcGãö¬ýGþ¹dåþËÿӆѦ,ïžHÓÞ÷)ô6;Aû„ÍØÑ};u«„J‹™R¢ÄP+ž}uöì¿W¥ŸÒ endstream endobj 150 0 obj << /Type /Page /Contents 151 0 R /Resources 149 0 R /MediaBox [0 0 612 792] /Parent 132 0 R >> endobj 152 0 obj << /D [150 0 R /XYZ 132.768 705.06 null] >> endobj 46 0 obj << /D [150 0 R /XYZ 133.768 285.043 null] >> endobj 149 0 obj << /Font << /F67 100 0 R /F8 95 0 R /F52 96 0 R /F48 94 0 R /F73 112 0 R >> /ProcSet [ /PDF /Text ] >> endobj 155 0 obj << /Length 1411 /Filter /FlateDecode >> stream xÚ½XKoã6¾çW9ÉÀZ+¾ôH‹»ÀmÒèa»([IÜ:V"9íæß/çA‘’¥xX÷ ›¤†Ão¾Ž8|¿<{{™ÏЏHe:[Þ΄Rq–æ³Ôd±Tf¶\Ï>FËû¹ˆªùB ý™m{Mkö4Tîl{Mí½m‚ôdüð–‡v•ýiyZãµZø¿Á)vx7—9*Ûð‚UÊ®oѪž/d†Pù]ë~(W ìE`ø Œg︿-÷{Vº¥±OË_gÉl!D\få³Tõ¶ýB+;BÐê¦Wî™o…ê[úG´•Ÿ¸}'ÜB%ð­TtWέêÁ(ž×À måeëCÝÈv¹f{q½ ä6Ûª÷V–kaÿãùBëcª^®¶ÝWó¿‹™¯Ý+‡þî›–.”b²oý¶y-ø1ðlŸTè¿]sjÆË7¯=¶£XÃqX^ûĶåµ>ZIø|¢5Ïmóz"Ã\½bÙù˜aÂi<ø7(ïsØù·ïØ€óW虀|,ÜVH¿y=T„Š$ÖZôsÂ;Rôž¡96A.»fx{¿æ. ¼äþŠ6ˆÔˆ›ã‰q:™Äy.ûü&Ãn³T.×[sFfÌˤ0¸–¦Ù?Ûæöùw‚ˆ>Øç›™óóOŸúOøqc |F¾ €E°¨ïƒ%çuœâ¾œŠFu›(>Rtï}Z>ÌÀ/j ‡9†é>Š#Æ“-žn…ÉDØ,¾‹Ñî6ñX„™ÓEZÚY0Œ¼ fe@Á ð–qx ?Å1<'Š<Åm=àGÃcN·òðav Oz:\¸ƒ2–ÙôýÓIœ¤ƒ »ÓÐéD¥‰oZ,—g¿)¢5Ö[ Geýš†ŸÛ :€™!©¶{]»ýç’FðêaÜ€}Ò_gÔ; ¡ ãFÙÕôÕCõ ýºácÝ`4x˜;ôÒ ®ñT³o,Ͼ´,Õe endstream endobj 154 0 obj << /Type /Page /Contents 155 0 R /Resources 153 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 156 0 obj << /D [154 0 R /XYZ 132.768 705.06 null] >> endobj 153 0 obj << /Font << /F8 95 0 R /F48 94 0 R /F67 100 0 R /F52 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 161 0 obj << /Length 1548 /Filter /FlateDecode >> stream xÚ¥XÛnã6}ÏWû$W¢HJ*ºÒ")ZEÛE‹ÝÅB±”Ø…ok)›Íßwn”h[¹ }%Qœ gΜ!ýýììíUžMJU:í&³ÛIše*wÅÄÙ\éÌNfõä}¤§i¤Rü+›ÆijŠè¢†¼–þlágWµšÆY‘EKyßÁußᘎnïepÞág/ÒN?Î~~{euàG2‰ÓBeEÊ\/¶{˜Ùý1µ:jð§ªYª„ HX ²$CÌág…. §M ~$eÁuüN®£+ò;1âãÜÛ²ƒ$Ö‘Ïðè¢[\é|)ÊIS…ŸžÙ/þ^ô¨il2]M!2°’ƒI-N¨(, üœóº\,L»RiküÊöd „$1ŠLâ,Í•KJˆ\ªJ+¹û ¾ãü›ÓpéD%Æ(¥ÈÀrI¢k\î í|%[§nÙRSzŸ$ÛlÁÒ‰t7’,§F^øC’Œ&šk!Z¹3ÑlAo Æ®¤+I"¾Ï!5º ÕrÃch¶j›ÅvÓX»¨¡$‰ö9/ì3â Ê-,O)‘h¦Ú*g²ÃhbÞ·û5 3„7”±8Ë2Na=&—CI•O%ï™e¥*œ>ìÄ÷½Ç%>- ¨ö²×WÓ<‡Ðàzqù¿†àñÔ¶K©—}U­ÝÞLck¢*gÓì!A@‡×y_eèóN54´ HP°uêTQ˜Ó`WTèrÜP‰@‚Fªæš­Ž% IG‡¤3eqÒQ¾%µ{ϸ¶[þBsW²6ÊYݰÑçÔ¨Òy| ÊrK·–ÙnÐѲˆª£õNBÙnLÊ´²hFp“B=›²ç345ö«Ü9º>Qî^®¿"W6±£õÇÞ³.z|ÒE›(Wèq×í;ù…ï ²êG2Àž¶wé4Îîªd‹þ2Êå}]Q+òÅ5'®Þ“=h=ˆ*Vcå×V ¾ap9——vs4‡Þ“hG l¨riÂ@ž$­BῈî}õ4[_ µhZö$FðnæÔ0Øb[Ñ%5ô!ãÅs¼‡ tÓ÷Ä¢ñËÊ·anz›=0ó,ú‹çVˆ_clô7ÞrÖJØîë xU×ð¼%¾…LÙ7R1Fߨ¶¶è܆ ©ÙÚ§cPô™ mìï{¨$‡ÙyÔvÒ¹´¥àmž®è‡ï_¦–·ºb§¥ô†é«Âg±±æ‚û¢Œ†Å§¾Ê¿XÖør"ž¤ÐÀüqÊpõ½pdÑ!˜Ý#…>s!¼n!X‡çç‚6cö4'褀mHîëòâ´p­Òºo-cû§’¢ß˜ü0®àÕò?¾èÀóíöÆöæf#Lªì° cÍ_á­ºãð1ùÁöã0ÇÜ’ö›L9TEuØKË\C`»Ì“0Ü<ᔉM|É×<Ôƒp)4V £í™:ûÖsÚ·¸Â‘&åMþ-Ϭ\PžGª›•Ð1˜O)v£¥ì¤7wcXXvSàM ~d©³  Òë·Äôx¼ùú)è—M‘½§a“¶R_ç¬ñ!˜Uô§hßËx%»áƒ³‚ôÁwp]IÄŽ;îK®‘Pœ,ï¬ î¥T™"Ÿ q¯oX˵œÀ|Ž¾Ê´—Bò8æ™ïëA?-\Ž_ ß2ÑðTfnÅÍÿíõ±Ê–¯P"~\HŠ÷bÿñ¿Fn¬»õ›{[Š:Á†7º•»ø³‘!hïÝú~VÊF嵟µc×|-Þ SæA¹¾£?‘zžìј:8æ{£QÐ}) pD‰g—³³§W]« endstream endobj 160 0 obj << /Type /Page /Contents 161 0 R /Resources 159 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 162 0 obj << /D [160 0 R /XYZ 132.768 705.06 null] >> endobj 50 0 obj << /D [160 0 R /XYZ 133.768 667.198 null] >> endobj 159 0 obj << /Font << /F73 112 0 R /F52 96 0 R /F8 95 0 R /F67 100 0 R /F48 94 0 R >> /ProcSet [ /PDF /Text ] >> endobj 165 0 obj << /Length 1472 /Filter /FlateDecode >> stream xÚ¥WYÛ6~÷¯0ò$k®Hꊛ¦Ò‡"Íú-̓V–Ö²½–•ë×gN¶“- Û9Î|óÍpd§!|ìÔzoÒ$›úÜgãiYOž'¡I|G$2Ó¢•2qÿ¦¶ÓW‡ÉðÑ¥¹jÔ¾\Lî_gÓÜä‰K¦‹ÕÔF™I­›ú,48³œ¾–3,·ðs†/þöÅn6÷Þ†6‚‰|«§|P¸Øóøi6wIPñÃNðÓT¨'[|F{ø®y®9“Š¥Ê/g¿Ý¿Žó¡. MÃm|Ç"CWr“F^×é4 %7ÈöºÂs6蘙ˆFΊ¦Öš<Žªš;k= R“¥¬Òw³¹µ. h虎Y_Ûü™ñ™å­x.ïSRœ‘b‰¦Q Œ{á¡‘=ö’7¶hó–±£S“tMo⸠e r™Ççkc½5Þ9ÝteQ'Ó™˜sdÛPM=[1®èy‚(Q=#ú[9Ví?3ú>ÁS^ê½ÐÒðÎr0Ø"5Á%yÐPøIœ åÅ’@•Ëô —†ÌÓÏb]yX£t´ØÐï:œyà=i0p{ \XbÌΕX]Sè…Ø({Aìëà8ð- íep40d¯”˜¸§¶™Í#ç‚ņr°bà<æ¢h Ü #€æ”ƒ!ÈJ5õMÖ!½=Q‘#c‚9#Udm}‹vr/yöº9äh®ÂžOø±R,L™Šý ”lèä%reÑrý!'4ý«uÐØv§|Ê…F†{=PˆOÏ—ÈVBÝ<4™Sê&cêbùÙu…§,ˆ—w¶&ŒûHCèâ(ø«RÞ6†v9Ôä4S|!ñŒ²8Xµ’}Cº_+q&J£Ë4\ ¢G¹Ý¸>êZ€{¯GФ&ÊìðÖ¤KªHîK4“N£‘ÅU­gä÷<m°Ðr%ûofu¿w.tŒ ’æùu%mO‚^>‰騹fsð®O\ð¹U•Àá„|żÕò·ã ›ösѽu%AÕS|þ#È1ô/a4¨1¤€FGwªõø‚iHMr¤ËBsÒ·bÀ™'Wß-mÖ‰ÉËÂúIõÜŽZŒE–ñR­DëŽ'õÊ„aÉìÐB3…,vÚ••£¾— ÑXmµ~ˆ–1é’0d'zð™<ÄÂE•—ÂO$ª‰;WL#…!¡UÒ†BëúÔþ´á‹— Q­Š LÓÖ­¸yNµ=Õ­ô7ŒÚŽ%¶²÷îÕW½UE­‘“Éã‰Ë½4¢ÅYQ$­Ô]PVÜg …˜z¾oaá—wëw¼AIÄtWL ¹ÖÈMàR CÇ¥rPóQVzÆ~s] _øaЪH‰‘±vC0,NJ «àêÊKÈü "ûÚÁ1*Ũ•¸y.—^wYmø¦Ýlú¦ð£ŽƒWô•ƒVŽ*ÒT]7Îw/ù;è}㹕Ü—ý½¹. ¯Zy9ŽZŽYO<¡‰Òo1²7^Âë7¯o m]+¯¶_åR¤F˜³Ošx¦äʲ=Ñʾ¬þñCŠá¦Þš’®Ôœ¥6=u¬G\÷›‘Iºr{ûº!˜áºî’ú+¿º¾'§†„[ž²ú˜4Ä t5À™°iôÝ‚EïØÊhhæ<†† ÄÂsNÒîg¸GW½lxê'ÎûÕkŒq(K;)•0eo¥·œ³ñúZËØ„^ÓE„2 Z]Òû$-|?°þzûJ¼ éœæ—]¡dÃS÷Ú«Å–]yqi µ;ƒfnA“çb‚Qpòëbò #.ì endstream endobj 164 0 obj << /Type /Page /Contents 165 0 R /Resources 163 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 158 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./Overview-intensities-cycle-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 167 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 168 0 R>> /ExtGState << >>/ColorSpace << /sRGB 169 0 R >>>> /Length 18842 /Filter /FlateDecode >> stream xœµM¯-Ér–çý+öа©Ì¬Ï!¶É¸Wb€ cKXn¶%øùT¼ñÖÚ»O>q8ûÜö ûÞÕkÕ®ªüˆŒˆ7òÉööWoííïÞþ÷/ÿÑÿüÅù—ÿøŸþí_¼ýõ?þ²¼/Ëòöùßÿø×ÿó—ùoú}Íÿö­õw‘ÿÊÏmß߯çÃ}û/ö‡¿þoÿôOóoÿáïÿ×?½ý»ÿöOÿðçoÿ¢moö?þïŸÿ×·?þÕ/ÿú¯»ûŸ·ÞßG{ëûûÞ߯y¼óùŸø›·ÿüö?¿½à§þÀo~tíïçæû'rSÜ-qŒ·c‰ß-ñgÿêÏßþøwñºùgÿòðgÿð—ÿþþ¯Çöö~ù/ÿõmyûï¿´·¿ºÿù»_šþò¿û%ŸúÜÞÇþöë[?Þ¯ÓŸþþíþ¶--þóóµ?~ú¾ïûòñ}~Œïã¥_oµ|óVú÷ïûöv¶÷ãÐ[í÷c?/ö£W_çû¸tõùW·¶½/M—·åÓõ÷3-÷·}¼¯Ñ4þØŽ÷ãÒ»]Çû~||ïß·¶¾÷ëãÏç_üÿŸp¿Þ¯qÿÿõýZ¢yî÷‰–ùtýoÞ°µëýž:c{ßšð~ÒÓó ôýÖßÛøø>?~ú~?c„½¾Ï?ö~méï}÷€êz¾/¼Ü=J·óm=ß·|µþ¥¦É«÷í½íºzýtõý8}ñLþõ-?oµïg}›Ÿ>¾Ý×÷u}}›Ÿ>¾ýÿ?W?ß×ûïÝiûjƒŒÛ@,Ÿ.ýÜ ß1Nøqç/mÜdà¶å~â—këõ~^ok‹Ò£åõ¯ûâ¿ý¥Ý†m;Þ¶% Á·ß{o«¦ë·ßmã}Ùßöå½ù»ó½ßãóxß®ù»#ZëXßÛ9}wás¼ÝW/ëüÝò¾a†ûü7ïátÞ“V~z¿{ öøîœßáþ›­½­š¥ß~ׯ°©c¥v¹¯»Ÿðè1”§6»Û%º2Z|ºî¶U×ÛÝr÷]¿ýníñ÷³ŒùY¶{8_Ñ1¾ý®½Ÿ÷„ºÿ=ÿÍãºGÂÛ¹FOÏ©É1ÔâÓsŽè÷»­/è£WE›ÝóŒñ†vz–ûº+¬ù9÷Ñ}Ý=2ïßm›ûï€÷k1&î¿Ù ]î1x÷Q‹iM}´Ås¸¾Ÿâ¸ÍÛÝ:зiúz÷é»õ}o㊻Nß5Ùû=ZÞýnÉûº¶Ð\ ÃÒ¼½Çü=ÿV¹ipÝ=–îþ;áY4îw¿æöŒg9dÉ`Þna”öwÆn‹™~Oš·=úý~ÎýÐÃá¹[õšßï<5v>¸n‰wÛs/L÷š¶]ï{õî÷sÂýîþ»[ò~“Áý°Æ’CóèŒw¿ûìRüÍ}{À»¯ZÞîïà9×èu‰Y?½ß½´·Û"ÀܼÇÙ±Gÿõ¹ocÉíoë= í¹iLMÖXŠw‡çÔ²tχ6²ÇìºÇà:?Ë=––#é Ö£ãì^±Ž¹o£ß·h²å{´ç9¨îûí²‘ <ˈ6»Ÿö„vÙ½n¶ùYÂa¸b윛Ñ÷]ç¹r[²°Ÿ{X5xÎðë:Í¿ûºûŠCæ>º×ª}ijÀ|ï«Æ„FÆt¿%V»Ì£5fó¶Ë=™ÇàÝÊw¿ÓØ•_pŒçÑmÉö턬ÿ}?XWn×÷Úã:šc‹lÖþ¾âx 7ðnkøî^dCÀ–ß~H“ !ûÙãéï9¶Àœ>ë¾-½»æØÝ·l[®óýVYãM=LóVNë9ßïöQî`ð~zÎ-r_öåþîž Ñ.ð7GX²»÷¹ocn6š·÷*|¯¦÷ˆŸ(<‰»ß[áG޶gÅgÙö·sA)Çg#ßm•7tÿÍ|ÚCï·D/N÷kò…—×þ혿ÃE¶KáÛäZ5¿Ã=o#ðõ#|Ó#QXsƒ<"ˆº`-Þb‹Þ;Øc4¬èƒm²H±†ƒ?¸hì°¦öåˆëZÛÍ/xO¤˜€ð —þ(CFy¬d´îºh‘£i‹Nš}WÄ]m —õnVv‡&Ë×1Äîɹà@kk< ,rCqÿÍ×Ɉ#î·âÂ9doà }8„ ähâ.ZŒ¦SûZÐa1õ‰FGäT›Ábe§ß=Œ² !-Ô ÷à…Å1žEŒÁ{ص@ΓŒÿ.gƒÆY·ŽöD'zÓ;€Ó¾iÊföcú®Eta.~w‡~÷Nm´ËÎMƒ É€n1i Žh30„‘¡k2Z° -1áï».Ø·§‚Êê]É2æ-\ÖXæïîÑÞ•ý‚Åã»MN;®…3œ"6ØrÌÁ(o²/÷Èû¶Y·á½—%p(" ±©­çyï'cÎÁÓ°Üœ°û9Ã~^h Ö°œ;Û¥lîëÛO£c~¿{|†C¸ÑXºÎ™×JáÝ·«ì<9‹éHvš+«ÞlÃdÉý7XÈîëî¹y[5׷öµÅJ0ýÍ+þÚ@-2Š-žóB-jXà#Qthœq» '¿ýîØ#¥Q,Wجý¤ áX£%W´g÷pʶBbã\£Íîþ£¤G‹yt?'¯9pâúÁ¶úó+f¼;œa¯b½Ýλ¼ßm×A[+¼Ê‘‚Øåœ‚=‹ÕûŠùvþqÖ*1©‰=4°ó9»¢pþE¦S’ìÜ¢­C7€évO¶+&<\x¿àm#c€Æõ¾a xÐ%¦ì=x!Cq?Ì=(®AQB˜c&ÈHî2ŽW~éÚpðîOFfêܾœ1É.Œš#g*Ϝnjt`öxÎûjXpWåWtDîÿz·KÄ&à¼íʲ,¸°\ѹq?ì‡û9cqDã³ÕdY” ÃwSÎtGC9†3Þ"¡¸>î7ÿÍ«ÇÂúÖ3ðRú÷Âß¿Œ†–þìÅK¬òyîu‰ÃûL7à ‰­€ ‘ u³JY9}Ÿ6È2mOÊ®ð†õ~Z­Z­Ö…ÂíKìµQš%HÛF+üª¤é¦*X×SiêWÀ{ªo¸B¤_icx‡]QW#Ë{¿{ZBòn–0;‘TwÞ¹ße©S‘¬«¼›»ÿ á¶R탟³+Ë©„À9h"Wˆ9~w{ ]'­‹Ñnßïwà˜84óN^­E,Vñ?©Vá{òãTÌÞ2qô“*f¿øåd³ßôn,T1{,ð«˜ýþkw‡c¢G÷-¬böÛɼ¯C³wMT1ã9×UÌ~×Ê*f¿‡î¡Š÷‹Ì )r='3ª˜ñ,wK¢ŠÙ£Ø`e3îw›]T1ãoÞÆUÌ~;íkg3þæmzPÅŒïnSŽ*f¿§Q$HÅŒþ[VV1ã9ûQ´Y—‚*f 8QÅÔ;Îb4É`3®»' ª˜ñ,÷u¨bz,¡ŠÙC™)TLõßÅ*füMÆØ.c°Š©wØYÅÔ;\¬bêY«˜ºßÁ*f¿—‡v°Š©18XÅŒûÝ}‹*¦ìKcS¶ ±Š¶ ÀÙÇ´]BSm}°ŠßÝÏ‚*f<Ë~±Š©wXYÅ”8XÅôûa&Zóád³¯Ýý>»(=‚ÕUÌx–½³Š6ëXÅ”3uV‹F-ª˜ZŒV1#¸_«˜¶u¨bÊîn¬b:±*¦Þïb3‚Ême3vùœ´Þn²×¤böc±m… ²o¶/s.]cébÓסŠAóy‰©\WPÅŒbl¬bv+Û¤bÊy; ³ï2¨bjR¯¬b:³ˆ*¦&`¡bƽŸULE «˜žð¨bÆ¢“oHÆ­P1»|OT1{J@¨bFbl¬bÊé;YÅôýPÅ´±CSï>XÅ´G*¦&Ë`3¢íu©&˪:VŽp•YDSY«Î*¦öÂ*fŒ‰½R1=QÅ‹BT1RWazJª¨b†9vV1{ÔP*¦füÆ*¦½oT15«V1å¬bÆ _.V1Ã+ºNV1£“îa‹*¦ßUL=ggÓÆUL¥`«˜² «˜Íä²¼*@3¬]ÛYÅT°Š÷ë «˜Ž8QÅTʵ³Š©tÂ^¬,÷Þ ª˜ïQÅŒÉ0J¸û=J!HÅÔ<ê¬bÚh¡ŠÙSúýUÌïÉ_P1GëòŸ~RÅ÷ æ Ó4bP Š)c·±Š9"Ò:NV1GnG3 ZßYÅÔ„ØYÅÇa'ŒÆ™26¨bÊÉ,TÌ/{±Óm*¦ ý`SàÂ*fŒÝ½P1Gºt¨bÆûÎ*f,¸±yžTÌ‘:ª˜1æŒÆ<*:«˜£áØ¡ŠÁáíº Š6¤¯¬bÆxi«˜1Î"ñM*¦‚ÊÎ*¦¹b/¦ñ…UÌp”ÛÆ*f8æYI¶@û«QÅ|œR1GæQÅ|œR1c¿-5ª˜±UL9™«˜áP\«˜Jêl¬bŽ„¡ŠAlìå£ä½žeasœ*¯GSýÐYÅŒö<V1t*f¼Ãíž‹¸¨b†s³_¬bÊÙßXÅ)@ Šó¨ V1G‚¤PÅÔ\)TLœ¨b† I;OÉ¥ÜPÅ”ó}p®yd(*¦ÆîÁ*¦æQ¡b†ÍÚö"1•eò¨bÆÚÑV1DZ vB*ḟÛú³Š9vu9ª˜Ãe5¤b>Ù R1£#ÆÂ*¦mg3“ÁxÝýœ¨b†óÖWV1c’µƒULݯ±Šp/TÌ‘Ä+T1åa¯¬b†9н˜0¨bÊ‘ùKÐ®í„ oSQTlÀžÜ X(UÄT…ÙœíªÄÿvz÷§Í6 fb.Ç»ÏÏrûu[ôцI}7ò6Unaî¿CÛÄâoÎcbWCj ‚s«‘úü—ˆ;%¸¶4œ0ÿÍ`³ª‘Šîl¾Ÿ âYf{ÓjDyé•㺿»hþɈw‡±´F‡Çs‚:(ÇSÏ2ϱ#\Q1¨]bÞ&ËîÛçlBP옼˜¬18½CLØû»«£:/Û3vp¥r]š$G¯¼¾û“2úv^þîU3æÑŽU šÌ1^@MÞ4vãoBR5ü2ñhAY‹ ×ÍËXŠg"È@€«S ÆIÕð1vp‡lòØ!X[ÕÁy…±¤6d¶K›¤é†•±­Ð㌮‹9¶)50ùÖe[¡êD’¡IEósÊ–oPóUÏBq\\ dÔÔ.kÚÏÜõ<ÛϰƒͱXÿ†þæ߆=‹µ¿c˜ÑJËaúmß þ> ˆ6#ô£Æª÷H;¸CECæë+£ ²ÃFÎs3”€Sëô\Õ¶j‡•q³ÍiC:(¸·ˆù·(@ÈwÛi|¦ôãš*ŠÂXi|BÈ~ϼV=v «jT4$߆lˆÚzÀú…A{ú¦³oÓt"Kòæg[7NÍMãÒÛv Î/ Ø—]LÕx«ÝNxë S=*úâç‰ôƒ&Ä"£5Ð(ç‚46TÁÂ[ˆ…*¾³Š|tÈD¯Â‰I“¬§ƒ6'É6%\u¸(:ZäVTÖDÝ–™ ¯,’à¿$tP¼rèO2ÊgNÜ“z;Ó0­°GOO¬fEp»D‡§Cå?#V"^Ä“¾,£L޹GPŒ×¸‘žrVÙ.+”oíJ (Ð!‡0ÆYØ®ùY²=Óg„w_ g*fW¦ÙØm³Äœ'à’N-µç¦ÚHµ Þ3&îÀ̾ á@c O"Úsv2W%)ƒ„ó}D$¦ò/1 }È·ï§-]BÎ÷S^8æ”DiWÊ=µ *qá\Ó(Ÿà˜'ÌShÌ}¤”\Ì÷Ùð®¢ó+ 1÷» ¿z?rx#Y³î´x¬élPByð8W*/Ô)\Ñ4Ç– FçàwWÅ·`æS»\yðÒÒ±¬[Îb<îœôÐ Bm¥ÀxËdÉ60—§…llÜ28ÜíÂ9ƒ ~8Žk9hƒ0§Ö‡@iQ`åÀª2š0˜(ªwV»Lïî€%L›·5ƒRÒ×´gÇI¹Ø‘‰ œèKõ^:¨e-ÇÙó(ÙbáØÍ¶`bQÁ6³5Ç ]ZoY¡VÅ[Œ]ªZÈë6Tõ•#µ‹j#E}œžóžï=m$'¦vÍÍy=ºÄûêã •H Wbœ™$ÛÁN\ µµ°áôA¢A[¯ÃfÍëÊ.q7ñù~™‚W‚wºß©ª½x°­Ú¾Ï‰ZEõ‘h€~ÏÓÖ•ÖÍ#Îb률¹·AsL ˜°³£<ä¿`à¥nÙGós®é‡$Žv¶Yá»mÛ%0Ûöz]r NÜO~(ªýõ-Î,î¤ÏŸŽxm§‰_äçÏ¿¸´ü"?úEoÂd¿~áÏ?xPìX2’Bõ'áúúSóöëG?×_Še§“tøôEERúŸÏg‹Ý…äøõíùÜTÞ«V<3Þ{ýŸ?ýâXìãþüñ‹À×Ç\~ñ|þøÅ¼ˆ·â.2§?ÑgÚëÓ’Þ­c,ãPáÞ2CŸõþEÒ˜>~‘Ÿ?ÿ"“ ¿ÈÏŸñ üçÿ^äºÒ¶JOÿâY½Ñ{‘U^ÅõüúñÅÏõ›€o0þñëy>…¨r|:ûúõùzý¼jò~üâùüñ‹M•£¿x>ü"ÇøÇ/žÏ¯_üÀ{$¼¶¥ØüÕNX×”_nÄïšõ¯ãƺÆÅ¼q.r1Ø—«\Lç2#ǹÎÅÌq.t1tœ+]LçR£¢¹ÖÅÜq.v1xœ«]Lçr£Ç9aö8¼>Î/FUpÉ‹¹ \óbþ8½@ÎU/åqÙ‹ä\÷b./¾˜É•/¦s4b 9×¾˜CÎÅ/‘sõ‹Iä\þb9׿< ` #ç ÓȹÆÔ.®1>‹`Œ â*ɹ Æt5®ƒ1“œ a %çjSɹÆXr®…1—œ‹a îæj“ɹæ±`XÓóN1fÅqEŒéäU#œYã@51æ“sQÌóžXcB9—ÅQÎu1f”saŒ!å\cJ9—ÆSε1攳žcP9WǘTÎå1F•s}ŒYå\ cX9WȘVÎêšqå\#c„(É<†«d ^å2#˹NÆÌr.”1´œ+e ÂãRc˹VÆÜò¢X&Áå\-cð.—ËÇÌõ2f—sÁŒáå\1cz9—Ì_Î53F¦rîÓs®š1ÁœËfŒ0çº3̹pÆs®œ1ÅœKgŒ1çÚs̹xÆ s®ž1ÉœËgŒ2çú³Ì¹€Æ0s® 1ÍœKhŒ3çó̹ˆÆ@s®¢1ÑœËhŒ4ç:3͹ÆPs®¤y-ËTJc+×Ò<©8h#ÝI¬¦1ÙœËi Bäz³Í¹ Æps®¨1ÝœKjŒ7çšó͹¨Æ€s.ª1nŽ«j/ËjŒ8çº3ι°Æó¢²&)ç\ZcÌ9×Ö˜sÎE$/{KÕ5¦syQç\_cÚ"ØvÎ6¦s‰qç\ccV8ÙxÎU6&žW-”+/j fžW®Àž•RTicê9—Ú<¯‚µ6ϲŒÅ6†sµÉç\nóDtXoó8.…ƒ&æWܘ~Î%7ÆŸsÍ™Ü\tc:Wݘ€Îe7F sÝͳ cá!è\yc :—ރε7æ sñAè\}c:—ß…Îõ7f¡sΫá™}©ÐœKpƒ58æ¡sŽè\…cê9—á<_bŽ™è\ˆc(:W☊Υ8&s-Ž1É\Œó,ËXc2:—ã<±=×ã8þÄ‚œÇOÀŠÓѹ$Çxt®ÉyîYf³Ö£¨Ê1!ËrŒHçº3Ò¹0Çt®Ìy #–æ“ε9OÆ‹s Jçê“Ò¹<Ǩt®Ï1+ t Kç SϹDǸt®Ñy®Ä"Ó¹JçY‘°LÇÈô¢N'™é\¨ó@Ó±RÇÐt.Õ1°škužŒ(똛ÎÕ:§s¹ŽÉé\¯óØ,Ø1;+v Oç’Ó̹fÇøt.Ú1?½Š\Å”â²ß“ëvÈ…;f¨såÎ+v ÒSÔ¹vÇu.Þ1G«wžŒ(–ε(F©sÏÃRÇ žghr OÂÔ¹†Ç4u.â1N«xÌS¯çYËu<¦‘s!Ïãäc%™êUó‰óɵ<¦ªW·–®æ1WËy^¯ÂâÈ*èy Vô˜­Î%=†«sMéê\Ôc¼:Wõ˜¯Îe=¬s] ë\ØóļXÙcÆ:—ö²Îµ=¦¬sqÏ“làêžä¬syAë\ßcÒ:ø<æ +|ÌZÿç(ñùžøúuÚúŸ*ÈÝÐ(âš·^  ¸Î"®‰ë,â¹Î"®™ë,âºÎ"®©ë,â»Î"®¹ë,âŽgô ³ ÉëU-ú™>R ’½Î"®áë,âš¾^€ ¿Î"®ùë,âÀ^± ^f˜X,.x&× ö_ö¢¤4‘TÀ 1ì,âšÃÎ"®Aì,âšÄ^@ vïžGŠA²Ø ŒAÂØ ŽAÒØ AâØ ’Áöڻż5E\ÙYÄ5„« lãÙÉ[úÊÎ"®©ìÐ ±ì,âŽ'MHƒ³³ˆk2{5Ø_;oe œ±™¨+!éì,âÏ^ 6ëzˆ6H@{Á6HB{7p¡1Џf´xƒ„´³ˆkh^8X·'Y@»¯¿‡8HP;‹¸&µ³ˆkT;‹¸fµ˜ƒÍÉ<Þ"™‚ Š¸Æµ³ˆk^{:H`{Á:0tE\#ÛYÄ5³E\CÛYÄ5µ½$¶E\sÛYÄ5¸E\“Û èÁjÝ©Éng×ðvqMog×øö‚|üö}°{‹#²rÊ"®iºý î,ââÎ"®©aófMqÍq/›×lqMr/ ‰r/(Érg×0÷‚ƒ4wqsg×V“Q ™·.Z(‰ïÕ±åAÀ5Iæ{KHè{ÁKHê{LHì;‹¸æ¾È„¿Ì„$¿ЄD¿Z²ßYÄ}E\ÓßYÄ5þE\óß tBà vBàYÄ5¾ '$å¼À'$žE\SàYÄ5¾ ( kˆPH|ÁPH<‹¸FÁ³ˆk<‹¸†Á³ˆk<‹¸ÆÁW$…íASÓ)AfKÁΜ(E÷qyPÄ5¾à)$žE\cáYÄ5¾@*$žE\“áYÄ5¾ *toÝ&×pø‚«°nÏæX:›)qSœÍJ><‹¸ijˆkB<‹¸FÄt…dijˆkH|ÁW®s"טxq͉/ Žy™±¤ø²¨ø‚²¬ø³°ø‚³´xqMÿ.H É‹g×Àø‚µÄxqŒg÷aÆ£ˆkf|Á[pAЏ¯„Þ3±ñ,âš_0Ï"®Éñu!Ññv!Ùñ,â_€’Ï"®ññ³Oüxq g÷CL_H„<‹¸fÈü…ÕÕJØŸI‘/ ‰‘g÷1Œ(â$_’$Ï"g C¢äYÄ5K¾1$LžE\Óä Câä«ÄùšI2q ”g×DùÇË_Ñ|É”/€ •/î¤Ê³ˆk¬<‹¸æÊ³ˆk°|AeØ]NN"®Ñò—!Ùò˜!áò™!éòš!ñò,âš/_Á˜gׄùψù‚ÏŒyq ™g×”yq™gלyq šgפù Ó°&ïëwq¿+¾~6ïÝï? ›ïƒŽúMؼ¶OäžsvF6ß¿6i â¼ œ®=óœÊ£Ë"'4Ý/aóñ~¥êFxÂPÂæ{æ*çg‰‰=ж›PÐfª#ó>•o¾KØ|üMrTóo.+LØ|¼u³ÍÆBá^&ù- ›ïñ“6ßsõû/ÜŠµƒ¬°yP°ùxN#ò\rK ›r8(HûÙÕžÄ/ŒdG¸‹Èª;rŽÑ³œÙs?$l^íIÐÜHŒ¬]Âæ½%j¾_$Ùâd>ðµò :j;aóñx?‚Í˾Ì\+ÁæÙ$lÞ;ä¿»â v)Æhk:cä»C,”çh¬ÉX¼1ŒbušÇ|Âæ½{ùÛgÉI6’ÀÔ1v·ù£Ç†/1ÏAǶNؼú®»òoÒYNzl³äØé~ôœ¶å†l^%Úól>ü—9èZ_ö à9:'–°ùxÎÙÏNؼÆ2ÃNj—°ù¸´#Áæc-FVrüǨ¡+4P ËÝÆJ ¿tîÿ™mVÂæÃ®ñH²€&ž°yÙV‚ª‡ïÖé4CŸó¹Ob^[±¦úèÕ×t8Èf‚úè¼ ŸïY;¨L#aó²»³&ؼîGÌêÂFÇ”qú`˜ü>Ÿñ2G‰ ›ïÉRúæ»6?½ `ózÁé;ìH.i´v™kAZ)/”ç–Ž…vN+Ü÷ZÂæe(ð~‹ŒÝ<6/ "¢¹GÚ 6ß±–-aój³y1^²=1-BSHgl^†‰N8¹ò~sÖ!aóZÈð>Ò©E³ÕÂ)Ø<3 ›× $˜¢ƒ„r·Q¼CÂæ‹E5Oë¾v| xzµ'|—„Ík¼Ìý.©LŽΣ HG5'l¾:j;aó±¡O!Ä2®|€rç ÆÁŒ`óåBÞÞz@¡eÂæ`™eµóœN‰Ýë$­U¿ŽO› ±èlì™ €Ó€Öt(ª¶nr¢çwHØ<Û‚„Íë;‚¼†-Øhì:Û¶5aózN„þgÿÍnÂæõ7'›lØühX‚ð8‹€lÞ(ƒ¹=·³ZT{.d Áh?‚Crx[¾”7¾´9˜IØ|ßφ¬éá8[ª€33n±POíé€eP¢!aózÎy­J{‹1½_,;9í ›WÿQ ~äú׿>êò†0±‘°y½µY¬ëY8 M UBÊp†ÂCv)®;XÙÉ)ÊmûcÏð4Ê>ªë››5'|6¯yKÏN§#³“„ÔQ%¿ u° ›ïÇÀ‚%ÙV»Mߌ¥+“3˜XL̓µ„Íw©©¶/sÒ1aóšïd¯å£4ч µyúΰù»¤ÇÚ¸Ò˜HØ|Ç£Ë6/ŸNr´2'6϶.aózwòÝ<¨RAOÌZS5W:kRÆu³L;ˆ‰Å„Íwç æûy=šÇ¼ˆw} `»=BÔ 6?Ù]¿C?)aŽ K®‚ÍGŒ@Åt¹vl0æ6¯ù>¯U¯õ”Fmu3ÆàQùÉ‚ÍǘÇu:¬õ„DfÂæÃ0?•‡xZScÞÆsܾ_…-È= JÀP’zÏ1‚‡`ó&rÌcɾ úgò_:X“ÍzÉùYˆßnÓ<>6_ûD-®8æs¾Ïï—°ù «Ì1Þy=¾ì”V‰__ñ„ଂZé€î„Íu0?‹cx?m‹ì¡‰Lßý°y¿›ÿi3õÓúéµ÷æ(ä‚]ÇôDSeÐ{!dF™ˆîY½ˆ y¶$eÆN„sZfõk>íœä;F ª™Q·ez|Κ¨ª±zfì½ _ ͸òɦÍ_z£¤©ªã*¿%¶öRØÕ·^E" $þó,dÍvOƒ­ ¿£2¶_…°¥F£ÊöG9Œ£hÛÑ3Ì&m3¶áÊÿ"q3®<*u3ÊÕ¢?QÞŒ?»…¾©¡é}¾2ºl«X¢LYâTR¥qŠe_‰œÍ©C Ê¢®µðFžý!¨sÆtxü­ùÏÞWz€A Á^YêlYZËZ§j¤{Î$;V;µÁ᪠ÆH—õNU©.¥ËroT\t”n }ôÙ|‰isdŒ i|©²’HÛ£»’FÚr‹¤±Ú÷J%U¡ø^È¤á Œ\ææJÎìY(m¹]•RÕC…TªqÛ«eyoO< ¶/²)ÖÌ °ö(@èNÆÄtxŽýÙŽ"¿æÍ 0Ëp(™¶ÜÌÌši4ßV‰¦ñ@Ï žHËñøñüžNÁ@¤‰Ñ­ôRÓŒ£pÚìÝ£rª}0Ù¶°Ú÷Ü……Úi “#§àœ(Œ£POÃq)åSUËWú©LM/Ô° V¡à¶#å+’På›\…†*_Ó L¤åQUfõ ˆ9ñÔðã)Fd;tŽjåµ;É”×c”R#ôòj?kz ³z•‘aU¹,?øšûJsÐfß„¿ôˆ'ÇE¤f–T#ŠÜ{¡©6g¡QTU YAOê’½EYUCsºj³Â‰ÂªöèöïPgU¥^Y mU»<Ú‹«1Ëz¥®Æ VªäÕÖsåE}U6¾k{²—¤°j?ûQ5ü.^$k¬zÏ£2k{U›À N· eVÏFeŒÇx*q(ðo/ÖÏW©Ê,µ¶ëÌ\:i­:¶­Ä㥢Úm뵌–ååYyg½UŒ2¶ïëóg¡?ÇUK®Í5Wy©g!º6ËKEÌ›¹S”]ƒïsät ^¹óÓá=ˆ•WŶÒkìƒyêvàÊö$ŸÛÜe[Ê œqñÎ/”_›S¨¿6‹ë(À6'Qmv2Q‚mv2QK¥ÇÕg`©/EÂ|åªM¾,öóÐ@V8€³b›]TbÛ¹eÓ« ÙW¡Å ”•D±ï‰QÏ ïj©½‘WÓŸJeH—î©Ö¢"ûìÑEIöA¡&Gp^ö¤ÐE€ªì+rå^Ùm™œß3Ç ³âVU(¡·^H³šö­ŠFö'гÍ[;PmTPžUÆ¥UÑÝ…$ж„÷²B »+Íù·×«V }ÍÛÆ°HÛ,á¡Jm™Ò¥Nœ£N”, µÔK¡ÔƸuÚ,Õ>͇Z­vÂ_¥7žóÕZ-®½kc'ü‘úà®ûS´ïãv+[åo«}aqåzšm„µ­mãbqEÕ6ÁÙ„%Òm[bòX¸mε£rûlvg7Ë"j·Íi,Ö®ž-pbž×³GŒ‚ðdf¢~+&ÂQ¸âRåü„б<¦†XÖ÷þþîwÅׯ [‹¸ò‰á|Gä•4Ý8Úößþ.'†?O¾_>|¹7Þüüéhå~öXF>~‘Ÿ?ÿâÚâ>~‘Ÿ?ýb,Êú¿~áÏ?v2pUñmÏ Ë_;§ú¹þ ìë'†?×_*û‰ÃýƲÆÄœN ®=£Hfï×·×g ©ñ`>~ñ|þøÅ¥håãÏç×/Æ¢Ó_¿x}~ýâ^ĪÈ%6ÆOôDLäåóõ¿iIï—¡8ôˆGîËYž³¼Ÿ_¬JÉ|ü"?þŦÓr>~‘Ÿ?ÿâøÏ/>þ¼È•;cúþºý¥VHzb2î¾~bøs}ž øõßëy>‰ý¾:Yþù¬ýæk#ym¯_<Ÿ?~lÅóÓ/žÏ¿È1þñ‹çóë?2­œ˜ÓvšÄÇÅŸñ»fýë°ù?T»¡±ÆÇ°yVÈ ›çÃæ¹Æg|?ÓåãÙîG»U¶,]DÔGÂæ¹ðy®ñ1lžk| ›/˜ ›ç# jAÂæ¹ÆÇ°yö“ ›/ê‹6_mö9žš@'lž3†ÍsaóŎބͳzbØ<×ø6_ 6Ï5>†Ísaó\ãcØ<×ø6_ °„̓„ÍsaóÈ`;Ÿ´¡'lž#Ú1^ÚŸÚ`½Ð-ÇC:€JØ|38^J”U÷ã©ß‡ÎNØ<×ø6_Œ„Ísaó•”MWîO• x¹ 1× aó\ãcØ|A6ؼkÑû+ãlƒ„ÍpcaóÞ aó\ãcð^8X]üK5>c|q°y®ñ1lžk| ›çÃæ Ì£h¬ñ1lžk| ›g©Ì°ùÂ0&l¾Ø²iC‹5>†Ísaó\ãcØ<‹‰†ÍÀƒ„Ísaó\ãcØ<×ø6Ï5>†ÍÔƒ„ÍsêÖ°ùjEÚ_à ¼Ò9sØP™°ù¢ù6_°¶—lETø-«ˆ‘~°y®ñ1lžk|L^- ›çÃæ ‚ë3°ÆÇ°ù‚°9—Œ„„Ísaóa´¼'ÕøŒgsÕø6Ï5>†Ísaó !aó\ãcØ|CèÇKi;äýa¸w3aó\ãcØ|áN&lžk| ›¯öPõXÂæ ,BÂæ¹ÆÇ°y®ñ1lžk|Ø<“¶¢]XÖ'^jÂæ 8BÂæ :BÂæ¹ÆÇ°y®ñù;ÀfÀ„Ísaó"!aó,Ù6Ï5>†Ísaó&A°ù‚“Ð_Ô0b™Ïn^Ú!¼=WRç¦ìPÂæë•wUåê=Æ%8ϼ„§_%aóź’°ù™°ù‚™°ù"¢KØ|á¸$lžk|^ËÕø6Ï5>†Ís©‰aó:!aó;aoO5&¡}¯WÑ.Dt×S(L«}íbaó\ãcØ|APHØ|PHØ|ÁPHØ<×ø6Ï5>†Í Ÿ°y®ñ1l¾0 ›çÃæ¹ÆÇ°ùÂoß©ñ1lžk|—k|Ø<ó6ÏR¶aó\ãcØ|½,{ÚDöcG Í„Ís™Ê\ãcØ|ÁUpFŽÁ nŠ¿ÏÓÂÑ„Ísaó\ãcØ|AWHØ<×ø6_ð6Ï5>ãÙ8ÅèÈó…¨c^d,$l¾€,$l¾ ,$l¾À,$l¾â%¼jðàPš…W&lžk| ›çÃæ¹ÆÇ°y®ñ1lžk| ›/x ýE £(ò•°‚ŒhÂæ‹@Ñ '36Ï5>†ÍÔ…„ÍØ…„ÍsÏ›gðBÂæ¹ÆÇ°y®ñ1l¾ÚÇ<ž1”.=¾g ¢Ãæ‹Ø!aó€!aó!aó\ãóFΈ:Y̆ízp«à~$l¾À0$lž‡¦aóˆ!aó\ãcØ|bHØ|ÁbHØ<×ø6Ï5>†Ísaó!aó…7ž°ù‚Ȱy®ñ1lžk| ›çÃæ *CÂæ ƒ‘°ù‚˰y®ñ1l¾ 3ì/”árFPTãcØ|glžk| ›/ܬ„Í|†„ÍWÄmoÀóqÃɆk+j| ›çÃæ¹ÆÇ°ùʼeÙï_ãó]ñõ˰yNü,l~@5¡‡w€}Ó0‚ÍǸŒRbZÇf0¼`óáüÏz$l>&ßü]Âæµ,°ùˆ;°©JªH#°[“4²|³“àôáêýoÞ]ŽHÄÀ(<óý:.Þ±àE›Í©ÚÔÃX¬éYnc>X,×CD6ûë ›Æzþö»¬´Ód$~Œþfƒ*aó±J,ÄLR›ái—‚͇›6/ ›Wp둾;vHš$l^nõÔf ›˜JHØü`M°ùȽ %ؼB$PdÂÂŒ³8dàž@ñt`bäŸÇÎçiLltÆÄœ IØ|ÜoVÔ6?8(lþ©˜íË¥5`ó ›~˜Å«„Í+Üžm`ó²gàŒÇ¢Aü.¶OÜv  [ øiÞ&l>æø 9Ãö̺^Âæc,Á!GÚÁÆL6õ²ñ›æ&L×­—úv^ozö—h§ìe+ÕÖáRÍv°å’TÑ='ǧ ÆI á%Ö‰UZ"ñ éàHEÅ„ŸŸLG'ÍY¡„ͽ`óS ›Wv‘E,rãã?ÿæo.±ïàˆ$l>œv8ùE%¡ÑI ÉméÐ_XJ”—΃Lؼýô ›—!„4[¬aìz¬ÅjãÓ,–C 'Ž—xNs`¦Á«ÅqÐÀl^r&-j— k6¯w§Å?ÆÙÙHùËöÜñ4miîr2牤t’TÎyÁ•TÆ‹NÂæeèiŸŒÂÉ6‚Í «3ØÞŠÓH® æq–°y)ÒÈ÷³ÄÊzĘŸ¢„Í+AMð-8T‘‘2\óXRýR,ðTÈ £¼“’œûÍ£=ç±”°y•ósŠT¥@nº.aóZÄç>l>e’¼e ‚d2Û‰=mAW]Êd –|wtŠbþa 2aóe¯„ÍÇOIO}·^°x$l¾p23Y26LÞj!‹¤ÎÜt6A,œÙœZ<ËÜ‚ÍGm.BµÀ£H«A¤RDºnä??ç°з ›ç7aóìܤJ%gj³„ÍV(Z®9T=—°ùè#<‘êJÛƒ€þXâÝ©b½ÝÙy^}iv¾¡šQ9Ò  GöÌ Íi¾w%è˜ç:=± ›¼@°ùX;æ5'aóÚ 0¦ ­|ŠP\w4ªüS´Ï2;Ê ›/’Ar¸6¯6›ç¦ðòCæäá•èNÏyäZ\œ„d2Wª^š–÷kmŒš´ÙžiaÀÔÒ+å`Sr-lÖ=EçD_Âæ‡ùðS»\™h˜mOÂæ‡ŸšÆnËd:á¹BEFZ¢0g~δƒaë(R ³s¬+=—°ùH¸B`,Ø|ØH­µÃs]v>¨DAúI¤„͇/Œ‰†žIHHn9O˜· ›W-ÞÔf«×#¬WÕV·»à 6?FñîXm\ý“àE`Áæ•x›ß¡=cüÁæC؃ O°y :s[{}à ½ûhT•!ؼlä|œ¶°× §·Œ :²¥(Ňggbñ FÎ? ¶µßDb2=gË5|× ›W…ôôî › 0–3×Ô«8, ÛŒOU¾ŠoÂæUxNñQÜï #ÙØ<‹_‡Íÿ´ˆiØ<«˜†Í³ŒiØ<똆ͳiØ<+™†Í³”iØá÷|åªÐšEÜø³ëUˆ¸=y,âÆ–s¥6HÄþTŒC"n<­£À9jP ­…ˆkB ‹¸z•JÄí÷òŠЏqeL%q{RTXÄ}Џ±µ¾U"®úó*DÜž$q5G!âêUöBÄí‰ÃeW4 W÷< Ÿ8í(D\ ÍQˆ¸qO>ÂaŸ]"‹¸2ÕžÕ0ŽIÄýdÁæ¨^ "nO*+‹¸bT\…ˆÛ“HÍ"®¬ÉQˆ¸Ï{¢ˆÛÏÈ"ntc$ ˆì†k-DÜx §äæÅ1Ì›|EqãžÛQˆ¸A¼‰+Џ:#¡"npüÎJÄíP±ˆÛ]G"®i¶,âê=G!âF õ­q5ÀZ!â>†E\¾µqãÊVíf•¥^ WSð(D\ã^ˆ¸Ý…Ð(â~ì,·´nYÆ"®Öì*&“: WÌ‘Vˆ¸ÝŽЏjøJÄU¶BÄU®…ˆ«æk…ˆ«{¶BÄÕ•{!âÆ¡½Úiæm¯D\Äq"®–Ƚq{¢ÝYÄÕè…ˆë3FXÄy-D\ãéYÄ c©DÜnE\ŽÀ"n^ÐIÄ /U[IÄÕЬ6»öþJZÎò’\صÈK Ny"î³,£ˆ«¿"î3‘PÄ}ÜIqµÐ-…ˆ+K]ízíݨqÚôµqõ@•ˆ«{®…ˆ«A½V"npˆÏBÄÕ{ž…ˆûòRIÄ/Í”D\#&YÄí ¦*ö¿¦jÂ"®¬É¨b‡U¨Dq{‹"®Þ³q» éPÄUóBÄ5aŒEÜž±‹¸²`­qeŒÏBÄÕ*¸"®¾qŸ•E\P­q54[!âêÏöBÄ}^EÜgYFWm»"®îY‰¸OD‡"î㸠ˆÛóˆ qå1~o¹ê•ˆ«Î®DÜ0Œí*DÜøòê…ˆ+Ãx"î³ £ˆÛ“ÓÆ"nð~%؈Ó~,…ˆx±ó(DÜ·Vˆ¸1W–¥qÃ땈 ïbi`nxX³ÏXm”ýd0fQA_ž…ˆk¦‹¸²&W!â>_¢ˆ«W9 WW…ˆ«‰t"®V¤­q5â÷︰ûRˆ¸Šy{!â>±=ïšuü‰"î'?òCûš¹Bq{ ´,â>÷DW«ýQˆ¸rЪͳzÚ½\³7¹Yì,m/¯fV^†‘D\Yê­qŸŒ ЏzÏ«q#¬ÝÖBÄ£ž–D¿˜e½ÚFÛQÄUÊ q5À®BÄ}®D7Â÷ó*DÜW H"®Ù+wÓZëGWNáYˆ¸qÚbLq5í×BÄ}2¢œ°êY¥Î½Ãn-DÜÞg]i›@"n,W[+DÜhøµU"n êµqãLé—$âvïqFWîäYˆ¸Ï=QÄ} #Џj„Qˆ¸¯ØD\M¤Qˆ¸ø«ä™D\]Yí±}2¢(â*½Ö W#~)DÜnV ЏÏÐä¶‹"qÛ·BÄíV•QÄ S£ºRq»I(âÊ&l…ˆû8ù(âjÚ/…ˆ+_³ÚqÛó,BqÃÍ mEÜè²k+DÜçUPÄÕÓöBÄ}I($â*?4 Wöv+DÜž'°ˆ«{¶BÄ ÃØöBÄU>á(Dܸg¯¶ß>1/ЏÊ÷BÄU‚c/DÜàTGü‰"îK»Â=¸kî1D·¯»~qÍnežÚæ EÜ~t•Oý3lÄýžøúõ#ak÷O>1<|éð•²$3޶ýãïrbøóä»RÅ9*[>:Z9ü}ùô‹üüùWsõñ‹üüéë²ùœêü…?ÿØÉÀÂ'ø?qNõsý¡,ï×O ®?%5ÿĉáþë¢s#§õpµ·µ) üõíù¼hÔ«í-ùø…?úÅ©ÄÇ/üùãë¢RŠ×/žÏ¿øÙÒñ¼´Áá'zâ´pòºþ7 ±.YàÚ®Xìã³H(?çK¼J`·åÓ/òóç_¬*%øøE~þü‹€WlŸ~‘Ÿ°!¡÷G“/ò/¾vêwL‘ÃišöÕÓ®%7ïíü‰#ÇŸë7)_ßž–=Zn9}-ïÏ]ùL ¶žùž×/üùÓ/†Ž‡þø…?úÅ&Ñ÷ãþüñ‹xÅÉ¥~¦Ö%Ô×ømC|Ƕ™8ÿýéŸß-QÜå¯{èŸ_þ9¬Õj endstream endobj 167 0 obj << /CreationDate (D:20131014204705) /ModDate (D:20131014204705) /Title (R Graphics Output) /Producer (R 3.0.2) /Creator (R) >> endobj 168 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 170 0 R >> endobj 169 0 obj [/ICCBased 171 0 R] endobj 170 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 171 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 166 0 obj << /D [164 0 R /XYZ 132.768 705.06 null] >> endobj 54 0 obj << /D [164 0 R /XYZ 133.768 364.405 null] >> endobj 58 0 obj << /D [164 0 R /XYZ 133.768 210.557 null] >> endobj 163 0 obj << /Font << /F8 95 0 R /F59 98 0 R /F54 97 0 R /F67 100 0 R /F52 96 0 R /F48 94 0 R >> /XObject << /Im1 158 0 R >> /ProcSet [ /PDF /Text ] >> endobj 174 0 obj << /Length 1603 /Filter /FlateDecode >> stream xÚÍXKÛ6¾çWøP 6+âK ÝZ Zß’ʵå]£¶´•¼MÒ_ßyQ¢´ÚM‚ÒMŠçñÍpè6Ï^^ØbQ&e¦³Åf¿PÆ$yV,2—'Ú¸Åf·x·|½Z;m–ç•Z^C;Bë } çhwÐÞASÐ^AsЮVW›Ÿ^^dyÄ?]¬µJJ•3çK {mí-´Kio¤]FýÛ Ý&ÚÖãµ@/'óà êBå:ѹ]¬ˆè25Jiy=^wÿ†³X…<±åDDÄŸYûÖâo&˜Ñ̉/Þy‰úmÛ£âë'¬ÿ6²Ú·mO‹?Ƀ2ÌÅ(MÜ¿ š‡¶ƒö>u©dŠiöÀåƒ|ãz+ßHw/sÉ05³R3IE¥‰µj, ’ÿ m+í^Ø·"]-óO‚ãÔoá;qžœF­Ö™.rìuZºe ä94öw:µ"Co”5’éèLd„HÍY!r³DYˆøµË3#É+"|yQ<ž7캇¢4³@NdCÎÀP•‰ËË@¸mND¶Öù²AëVõJ°mJ½l+ñð=ú¤®Èâ°bÀý@õiÖÑy’Ú,ÄG°ª‚ÃÆB—hpžlb¼Ñ9ž;Üz`Ò7±= ÏO¸ˆ²ß ‹·Q»¦u@Yú®yæÐIiÆ®iÈÛmP<`¾†¬r˵ø W ¦„ÑŽ—ˆŒ‡$©Ì›pÜ´gü²ŒqOðM-eºüw6+8øêE¶¾!œ_.!6ü[9wØÌ·ÍM-‚ÿSÍÁ´·“Ñ ˜»5ÁfFù`]czÉi›ïxÒs‡›ŽMÇââÄÉŸ)ˆ,·<ÃȤ!ãMÆûAŽ ÓÉï÷¨ïöeˆª•ãwþNZµlKJ’6)í$G>8e©ô¾.Ý=Àq†9W}>¸l‘õ®<­B|áâñU&….¿6¾²Deå$¾ð]Nj{æEß{ÉŸ*¦ `" í Ýj7¶q‡šPˆù–`'&ô3º5«HŽŒÂ—åFªþ¼`Â2×tðû[A áý.´ f†OÁiõ‘0„ÖæØ§Y5@Å=Uèõ„­çì‚UÓ! çI!IX£@ä•Òvyq¨w!9˜Ü±=4· ¥`f»2ìŽ§Ï ÷xÞmÓJ^ƒÍ:œYêí#¾Ä(.S(æbUXPí 8Ê­i]ÉÚ“Óz®XîáL¼O•E`²ä6K£4#,"ÿÓ·o%'Á¸×?âˆD°GÞ]”¥T4(K»ˆ¶c p¼À,±y1—ÁFð°ús)æv’2hª‘þ®í@›`2öÈ O“I*) A!aÖÉÑÓœâGµÍÿº žuE`B²£¹2º<Ø  lH”8®v½ã98s›Ølr©í†+DàK íCî@îÕ-÷a%~©ðs0íCöƯ–AÁ¾æC¢îC.®F^ Ý¯ÌÑIfÌ7bîÜ4áä_D eË5̤ªƒëÄ5(Øã,ê`2ɳþ Ës6ðŸ¼V1š3‚õˆAÈ;@´§J€Ç£ àié‘2—>P:í„ðvÞp˜Òd(¢`H—+ .å1÷§`¹iT‘>;‰“¾åÓ¨°JÍ$cã"1?QþEuÿFØTa݆Œ®Òçѱ$,«4^ ‰¡¿ök- Œ»µ5Þ¤…á­fHbH¶=öÆŸ9Th3V85¡Þ4Qå8SIÉn’Û¡¨Aí?úmrk]sA€À`#ÉÝ×C¸épsjqXíÓ›žþÑg©<åÿî¿TT<Å»Ô9GD'äk\K@ÁǸÙ"!”¢PK1B‰*z挳µDT\|iÜÄxþ]îýkñm5KñŽw3ØzMÕb¤Ñc<Ë ª„§Š)¡œ4© Ÿý¸yö/ͺü+ endstream endobj 173 0 obj << /Type /Page /Contents 174 0 R /Resources 172 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 175 0 obj << /D [173 0 R /XYZ 132.768 705.06 null] >> endobj 62 0 obj << /D [173 0 R /XYZ 133.768 337.958 null] >> endobj 172 0 obj << /Font << /F48 94 0 R /F67 100 0 R /F8 95 0 R /F54 97 0 R >> /ProcSet [ /PDF /Text ] >> endobj 179 0 obj << /Length 3260 /Filter /FlateDecode >> stream xÚµZ[¯ÛÆ~ϯ8è‹%4b¸ÞÐ"€'@ŠÔHƒÓ§$€y$êRKä‰(Ù>A|çº\JÔ±a£—{™ùf–ßÝõÍå]•T¹Íïî×wÆ—Iaì]ž‰uÙÝýêî×ÙËù™|¶š›Ù~¿¥Æ5ð<â_;·Åì„ü¬?a-üj,4›'¬ÎfK¬i¹ü0_@ÿ†_ÎÐÐ7+~Á!ÝP¬÷ð·≻#74{!á€-/ÃM¸lS#‰ý0ɶÊ–]‹-8ª—ªG±˜ÿ~ÿ»…ñIå=­çM÷dk](¬BK<1ë¬OoÊ1ï7¾LA"KÔ-¿1C–²¯ˆ! ·ÿ–f©TµXcf¯ øú%—{Ù÷q'›Üô0ÀðPÔ|ÒÄ'éIJʃejÜŠvíd¡ÏõR¯Ö 4F{Dv¤c> Z™ÌYžÏîI˜Ðý,šZ€"µ –ÝYx³â aN8eÌ›5žŠ¯•nØc?‹ KlõAGꕬ÷~'ûÙòû¡;jo7;mõ´Â‹Ky ÚIh¦¶ W‹…Ë;u£•I7}¬œ8¼á Î÷-0Ì:RÏNô®•Ñ/¹éïP\pñËÏJP‘>êZËi•&]¥å*3<~…ß×ðû QÇÏß§¸ôí˜^œéµìðgyî…žÛ»leÅgyC5©Òram”ßÙÿÍÜ”àK|¡ææk°&t`»£ - ÖZâøî€K«uµFÎÛÝž«Z=7lOƒ’­Øn^Á“ÖÉC"f+×5t9ùX£JÍ$k«Ä•F÷ Ê¡®°'át¦LŒ½°ƒ'a¤2©¹f’͓ڈIÎY`. L£ó”æ³æŒØa8Vk5á{"¬wØõ½ÙpÏZè¦=Œ¼7ŒB›O²ga]µ`Ô¤>êO¢&2q&uYd~öœxy"›ÇÎÕ$&»`̿ɨQL¸]$cp²ìI±Éé’Xd¸À̪XÏ 8èÙ/Šzèµ]}NùwÑí WÈÆu‡†Éª÷Ì*´¬#+,dë,šQ:Êp¾²‘E(˜z' Ä‚i”A.Él1‡Äþ ¢:4™…wé¬cevÄtRvmLaƒpÍ;õ¦0þþ5½2x£>Bûo•µ6†$•’モÁ £ rÅs_^‡ƒC*I‡ðí<Ë‘RÐtÚB÷QP!lf°Û‚g©Cƒ’¤Y6Ö­Ÿ_ •K2]×'®J¼¯ "ìÓ§©né€_Ûo“< ;ÈÉ>É:[±àY;Ë’Ì®Ü\ ³ËÊód^RžÈú4âq‚¶ˆµ9Dæy‚ŽÊ&i>:çV- ˜ð²€T?ó×2Ó]•¤¥…B‘”Ï`èŸÍAÖÏîUXEÌJUX“œ×;¤ò(ÛÛ4SËep6¼Sº< Wû H)‡BI†›FÝoÛ;6ï&ñi9" ~ïv¦-·Ï“JÏñpáA¯)ÒèP÷ß]`"'²æ›@ü{âQz„¡ å|Fèðã 6ÜëýV"1zA4ù`ï¹Ó„«’åÉ‹Ä;?Y×*61hå}ÅHøsTMÀÖW^YLÝØ#×ò"'+KƒÏ ¨ š4ÈÀ2SJ¶–"B¨Švƒn1sB Aƒ“È„©Ù¦©ÚZ1Tߨqºb!ÀÚÉVŸtW½ÊÎVyÐ…ºwâI±!âlÀkGÀŠ4ºO2¤å¹êƒbò½XEkÔïÁ¸ÁfÔf’”š¥ìà tMì–B¸zsà=²3q¦`èõ'Ö"‡m:{#p§A÷;cÝ .w-?‰ÂGN v€ºg!wa Óõ 0·{n”°J§ßÃni¥l‚cS2xË^.ä!a'‚?Ô &°{\¸'®%]PèÓp9RÛ Â6í`Á>ñÛXEÜWˆ”â¨^¦ÇG&¤ªmQØÁVd©&ÁúŽÃÖgôÝYI@ DO[® ñY3êô«€EC¸0¤6Vb#…ÔÔùR¨¤$6Äò—“Sêh=$‘–ºŽ¤9ÈmŒ«(e…Ò™1‹As¾Çêîøvj÷ÊÈ¿‡î•EV©toM8ˆ,O²Ü~®ƒÈ’¼ΞXRY®+aæêÀ‚Jxe£#p }*ð½.örn³1hæ™­~™g8ŠõjŒ€CNý4B2ˆ2Í)Yº×äÎÌZXœ0Òµ?‰‚é)´Ò 8hD ¸'b-ð€W}©¦b\øí¨ò¬#H‰)¬ï(gyŒb Ÿf³ ŸÅ8U”rº² PŸ6+³wN=ô #ˆŒd3“U€?Bw’FÝnd½ мpi•@Dz‰Ü)—C²tè}s é&ÀÉmb ÿú[¹€x5°Þª¦x>Ää~Ž"Pi@ n‘\ÞBÝB»Ñú_52q”sâƒ:<=%žÝ”ηűT X02ü’¿¡Ì_Á«¨‚bF«)i Ï>N`Å‘¡•÷j•tX)qX` +Y?ä‡@LeiHÂÕžhʬýè”’“ÄÑWoVS†OðÇT®ùK/D1A/à1cñÑs´GriàäåØ Ø£(x œ…ï£6I^2,À#Ÿ¦#É‹ :<Äøâ[Jèl…¸Ìà/±jÉiÍ"\BÂd°-WN˜¬¥@vq½GyNÒ»(9>ry’—UœÅïIªÁÙn_[>›ØÁ4k"%…`Ü_˜WÖ)M ¤ „£H¨‡GUóe0t+n'Á‘²7½ %ëÏJÇ‘øI ?¶F»¦wÉÇPÎÎDt刟í=Á~æ.JŒ…g+ óR3_ITi’|ÚFþ}·&Q„ØKY˜IÊ\0ÍQ“ÿÜ©"¾¾™›ˆöv`ˆOÔ=zNFJ^z0è͇àœí$-‡ bá~aÂ" —t”|À{‰ª-BiºR i¯ˆw™i‡ý^,ØÅµßjèÒrL€ßœCþ˜f3²ðÒ' CézA¶"“jP\Ç^쫟 ‚ŒMª2–ƒÝdÁ_¡õ,&­g ž1ާýþû Y^o«Qt.‹*a!ˆ‡Š›6¼tIfCÞó¯0‚W«$×\®ÞŠ)€%p÷4)N 4„eÏòšgAÉpIˆO`~-ò"‹@ fÏ‹$-ò±ª†T ú•2žŠ£TH?[LÞ?­…;w`ð¶­#ãN5áÌ5­(üEJ¢.©¡éV\Š9‘-!e®¢Äß­8ÍWîVþ™ÚÆ9‹•êà"M9`Ù¤ü|þräQÁÌxýgáëײ⡣³ö‚ i» ŸÍ£rõl}Œ2ú€NJ€ÿ÷?IØðúÕµj9ð”&¸[¹¡µé ÞV£šs¸!Ýpu¬D8$ðÞW]×A*¶N¥¸e§É71Ûq^/´„/è~êa¸Ú!%»–…/(ez Nö— œ^,KŠ=L°Pý{„Š\ZÜÌè¸4¿ÜõWñgÏc:á3|Yð$sªãƒò.œ×jX V¿±€¸ÞË™‘Àí…‰$šÏ?•‡™ðƒª¤Êø¾ŒpåȸQù0ê2yÇ(y7—ÛÔ†æ*.çŠÕ‘ÆÆÝ..@ u gÔÊ?°ZEV±Õ‚Q’Õã>½ÞzÜNƒY2l5Ø <Š(ÏÚ¼d_…6¬ P5¾ø´îs8QÕMyMÇ$¾_nÆîz~šŒ2³Ù,n¼1ñ!ÄBçO~˘ ³kÞ±;Þ ÷`Qñò²wˆ¡Žã,®)ú /1b[ö¼LÊ4˜ö¾Drÿ5˜lâM~q-¾¦P j€ú(w¦AR‘'¶(¦‚$üœ©dŸ·®õS›׊æ/¢«J¶–7“ú¤J?;ÀñIîò‹0×ÒÜY…K«£}¼Qo¾>É}_ðËØ<äS(„Y ŸÉø^ïHȆ¢ûúÜ'ï÷®88­õ£òÝ£~>>@Š¥¶ªOæ0{­˜iGÃ#(º3J0Ž•§´Iaܧã‚ò"‚öx ºQd‰­7™Û¾úþþ«ÿ. À endstream endobj 178 0 obj << /Type /Page /Contents 179 0 R /Resources 177 0 R /MediaBox [0 0 612 792] /Parent 157 0 R /Annots [ 176 0 R ] >> endobj 176 0 obj << /Type /Annot /Subtype /Link /Border[0 0 1]/H/I/C[1 0 0] /Rect [332.447 293.236 339.421 304.075] /A << /S /GoTo /D (figure.1) >> >> endobj 180 0 obj << /D [178 0 R /XYZ 132.768 705.06 null] >> endobj 66 0 obj << /D [178 0 R /XYZ 133.768 493.654 null] >> endobj 177 0 obj << /Font << /F8 95 0 R /F67 100 0 R /F48 94 0 R /F59 98 0 R /F52 96 0 R /F54 97 0 R /F70 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 184 0 obj << /Length 1770 /Filter /FlateDecode >> stream xÚíXmÓFþίˆøRŸÀ‹w×ëÔVº‡TBJ•!“ä’´¹$m R|gfgüß]ZéT©âÃ&özwçí™gÆþizïÑEšOr•'&™L/'ÚZ•&Ù$I´ÒZO¦óɻ໳ÓŸ]$ig¡SÆä“È/Øœé`ãFã ÆFI÷´¹'%Ö $–Ý·ÿLò\étj­rçüƒ×ô êO>¡Ãž4Ž µÓÊæ†%$'*ü`ä(\ o2YG*Ž›#JvåFc cãñYèŒ Ü˜W•gñm"œ,PpZwü5¸¿Û9²ÂŽX¡ÓTÅyߌIhœS™„ÿÖ8„wû¿ˆƒ;13 ;•ؼ•ðÄ|;ÎSŒ´3ÊDñHš_›™Æªüd¦B†ZÃøÌŒµçЮ™µÿ*žclZ¹ÿ–­Ü7¶úÆVߨê.Ù*µ*Ê’~wÀl•õD§@k)КÕ*Ëüº ¦e} â M’"ë(8ßÐ#ŒßÕ‚iRˆ,¬I‚rvf²`µ g¥ßWc·µ hÓý'\òu,˜‰UV[qÔŒ;5áCβåÂlظÙ Ççš×2KÇYý“t¦¬iâE .^ˆ!l16‘d^®ZGÑŽ‚­-<ÎÇ kT%M†…#±±ÐòšT÷aAÒ@”µq°øÂYµ@1%f·%8Ž˜ïT”7B¦\£ÎÚ[g­ëZ‡·vÔëãð£:{´9Ø‘côñûø8òÅö€é¿˜û­µðÁâà'Z3‡ÂáÀ@(YÌvÎ"¶KÏmùÄÙ¾·¨ÿošÿ]Iš8Íÿ¿tL#¨è6wá ¢So?á²õ®‹':V6N zЧ”—“\{jœ£YŸÏëIoFö¦Žªý§*Ÿce{&i/gB ‘EÜBXdMÇÁt% AÔÝâ2¹¼ˆÛ-¯$ƒ¶crbd¨L6¡V̲šl58õXØùKrü¾®Zsê팂ŽI»-Ǩ&r %†˜aõ,ùU ¶ëM¢\ÔhõvµCý«7gÎ@¨à§˜°\š.ˆ·è‚šâB¤‚ËškϬhéLv1k.±öHǨá¶WÊa†.üß|Í®&”ÓŽÃWÿ¨ ÇJ$†ŒÜDÅ&ë#wY ·H—¸ç!ì‰#! â $ޤy¦²$ï€Õ¨:Dºq]¤RÝð#9cY_ynA Ä¥Q¸c/霒«hŽ>x¥˜:¼~´lÙph¸a§ÿîŽV”ö½\„Ïø4_HæÞc:Ê•ËÝ8—–Ì¢³lnƒfÌR‘÷Ž]eSè/L÷KÁºù2à˺ôäòaÕüVÀ‡€ÊšÛ< ^[¯QpïÀ±ò— Í­eMäD™µpÄkyØo"jpAŒ§•;¿Vøº¨øœ @k˜î6-“0”núöã…Ã×ò5çËLøU~¼ÞÂOâ:^7ÕÐÙÜ»@ªçŽû?J6´i7À‰<Ñó!ž¸û„‚ß’Òàz%Ȩ~]²ÚM;†AÔo’P‘0^ñÿ‹ÁøÈA‰0Nðø/í¥^U®ëÀ£ëÿ0¤ÎvMé.™¦`vw‰ÿ† ²«þ†<¯É³a[4\ñë Ÿt|Vsƒµ½c^’æBóÔúdÞêz(‘ïø‰5w'"ÁÓÜ©k[ÖA¢—?íTº«´®PÔ–ôi‚ºC©|ûaÓˆöè$Q~‡2¹ÊäC”ÎðÙ½gÓ{á=å endstream endobj 183 0 obj << /Type /Page /Contents 184 0 R /Resources 182 0 R /MediaBox [0 0 612 792] /Parent 157 0 R >> endobj 185 0 obj << /D [183 0 R /XYZ 132.768 705.06 null] >> endobj 181 0 obj << /D [183 0 R /XYZ 176.353 473.813 null] >> endobj 70 0 obj << /D [183 0 R /XYZ 133.768 417.543 null] >> endobj 74 0 obj << /D [183 0 R /XYZ 133.768 397.728 null] >> endobj 182 0 obj << /Font << /F79 127 0 R /F67 100 0 R /F8 95 0 R /F54 97 0 R /F70 106 0 R /F52 96 0 R /F48 94 0 R >> /ProcSet [ /PDF /Text ] >> endobj 188 0 obj << /Length 1996 /Filter /FlateDecode >> stream xÚÝY[ÛD~﯈V¿Œ²IîæIL®n&~ºi’M’8uƒ0ž\Í'¯§çÓ8æÜwJh´9´–»¿„×é8Å/Ð^Aë áØÚÚÚ3h5´´-´JÆZho¼ØƒÇµ°j…í3ù^IûA¾‘ý­™†äþôáñ˜e;“‘wÐ|yºÐ>•wµÈoÒL?ÈóŒØ¼½úfâM¦¾ïæ±Xæ³ó©ûyìÌ,mžÉS‰®8ãó ´SiI~XôóKÛC(AêfJ2éFlØKÂ0p ¶½¯Š5ñ„§G'¾X™‘7ž©á²\ŸÑÖLSð£Õn\•,_Ø!”$n ( ø5¾¼À@è(”ÿ_•dÜ~0;L}5»¾ïEίH<ëÈ5¼b4a?8g@Ø~/©bšÝ0}êÙô¡ç&~ªÖ@[7è€ÍF,p?k*s¦~憙Ï31¶ëU)‘æ‰òÄ!{Ïñ=vj ͒Ÿ:ZŒÓºéð+â|)„IËšüvM|ñg±‡·›NÂcÍä §ÕV2®d0™@Ž Uh%t¯ø–3"LˆšháRðçH!Ý“t/欨Wiô­<_îµwVªwƒt˜6KÜ4Öñ¢ãÒvs> @Ô†¿zûûb'ô[Èð…•Q*”Z‹íGŸ¢ìSÓalâ;Ÿ ÝÖ:½aj\AûÚO¤ÅScƼ[˜7Æà½‚{¨\©ÉO¬<:éÀv¥`BîﺂÜsЦä—Åi)8Kç‘¢ÍBÕyRo+5±Þj4““®µ†&âØ¡â¡Úˆ@ƳBÙb»Ò ’Md1Z¢Óû(>¡,[¬ej;Ó‚.¤ëJŸ^i JÞ˜NÂo‘§l]Ä‘ž2ælû™ç†QÒ;â†ÇÀ]aîf™†Ð‡JMlêQŒÊïi¥ëPBK5 aß-õ9 nxnî:Î3DÜ —.*bc¨;²Q·>¿øŽBÙD".UiØw)P½yÏÑ¡™Þ.ÍbNïö…εò]9g’Ú¿ÔSaZT­¹Yi;ìÁ´µDjêÌKSõë¹Ü²üÔ®ü9£‹$U'IõÇ<ÎeXÇgÊ­°¬(]F„bT]7Ö†ÀË›K}—a]¢TŸßU©)1L£Ã:¶9D½B§âõp±;ÑÿBÁÛw µÅÍ-”¢Œl¯,²ö+»`h»Êî(r7 rᵈù–õ7šÑ “Cž å1N¸ên)K¬(´zÇ¡HÑŽ•%°R`îÆV'–$ôÒ“$ªw·*ÌËb,°ÿnœD£àCÁŠk+Šš~ôœ‰Å*‘mùÀQã©AŠÜµ`®°“8p…uk]~Þ ÁÌÚ"QQ—<,Á5wŽÛQ±±¦'Úñ$XB‡8U=ÛκNFÿa„ %Ûì|ŸÁ”:1Ê-®­²KûZݼ×ÓZSÊw·øž ´OˆõÊ‚¦v‘ª­0úEÝߌ…(ç+¬¢}¯:À3½¹â§Ù>‘·O"âOë?ukŽnŸ9à+™‘†ygÓ¥‘Jñ„òηdí±û3òƒFgxpYêûÈR#î\þ 1zmiP=Ï€<¾½#ÍM2 ’E. Âù_€º× LºÖWÏ8†fçJšØNÕó}]ò* 5bFGÚñ/:‚ïªnÌAœ(ð²­ºï)+ –öè u™’1òWQê¹žÞØ*UG:ο˜ ü–ÈBW ï-?b¥° É[Ù7 bXo[‰j‚²…V`Y¬ÔŸL“i”ºžçJÇ#AÆKù9Ž=z~õèOš ´ï endstream endobj 187 0 obj << /Type /Page /Contents 188 0 R /Resources 186 0 R /MediaBox [0 0 612 792] /Parent 190 0 R >> endobj 189 0 obj << /D [187 0 R /XYZ 132.768 705.06 null] >> endobj 78 0 obj << /D [187 0 R /XYZ 133.768 612.015 null] >> endobj 186 0 obj << /Font << /F48 94 0 R /F8 95 0 R /F52 96 0 R /F54 97 0 R /F70 106 0 R /F67 100 0 R >> /ProcSet [ /PDF /Text ] >> endobj 193 0 obj << /Length 1644 /Filter /FlateDecode >> stream xÚµXYoÛF~ϯÐ#˜Ì< ´€í*­‹\•¢ES”DˆD©$忾s-ENÇyX‘ÚÝ™ùæ\^ž<}¦½,Èb÷F³ž¶6Hâ´Ç*0iØM{y?õýÈX¯ékoã9Œþ/`|€ñVE µLÕ2–²¥„q#Ï™ÌÉxh÷ø{ôÛÓgIÒ•' ²0îùF™NYœ·F+&íJŽoº§˜dØ÷­µÞ]ߤ^Q¡0$I‰ÓƳüý˜Hä0J[ç3ßD"Ô³‰$2iÙÄqBåS1ŒäÂÀ£v¢ñ;y¢Öïå×W‚P)´d~ÞÎâk›a– Lšè‹!y¾éû&ñ&ùJlôÃål˜°Õ }-zásãO¯a `ü('•BóÆ-Œ@Þ‘þ™è”žŠ§U„*sÜÎ*9+ÎKañBDŠƒ]‹X×§ìbÄaô n#9ýÅã(žeNÓÏIâ[mAZ VÇ¢óöx%ÁˆãRؾ /„ÛKá0ŽCñˆoõ£€óƒ%·[‘ê—ÎÜcHgÿc+HR6½ßV¯E®×g}”ØI;—GÞ|Æ]Â8È <„žþ³Œá‘¾Ot$ ó¯G{×Ä*?o]6 źñýx) ¾é(íÖ^Š˜ßjuÈωÕBéFìÑçFعÌyÙ™wèu;*D‘†V!ûêBt•s—@Åw‹½Ä¤…é]?н|^ÔTšü0´Þ˜)/¸jOsl8x ßj™ŸW¢Yq'õtR/çÛ…[sókw΂ ã´³‡¤¢}+W-W6èpå5‰ÔH·sÁ:í¤7ZJ‰¯Ï¡Ç|-v¯äèŠTÝ!ò¯¸£Êi±(EŸŠÁ`}ú_(Qÿ …ßÔ«r-ʼf†©-íQ‡¨Ht´Œ6kâ2Ìi{!Ü4éØÝœ[Ǽ+ëC”$_£†M«Í†‘%ܧ ²·dæJùôo¤³þø½ŸZBhB̪B¦iåÌÞì]޶3Âø5áãÙýù&Gÿ,Dî»%µàÄQ%aD¦g‡(º[Bxº'Ý4|R«{Ђ™´]ù»KN`Ìý˜ñ¼k2!…?Å{œm-@XE‚þXà$è·]P~ÜôÒé²oåem ÿûÊrÀÈžóÐ’”q ­89Þ±kì'„ ޼©©á'¢#aÎ;«!zB÷ÉÝÆãöÊDÛñî”v‘¾vº%ô¡TIÈÐkó±d°Qh0_l!¥/ös›е•G#“³s­»¿ |ùÕî´¶ë NÚ oa¡‰½¦#ÕXäY®Ø´¸^DNî’¹fÂ|æ.žSUî’U¶iŠ)—ñkFM'¾ Ïõ]Ř—…œK>°Põ!«Ø06¨…ÂN/Hæ­`s­MDu“p˜¬v„ ýAc'!]“KtÕ$ò¦KŠ€IÃWQ¡˜¹$ïS¨`àÅÌvÍYÔ¢\,Žé`ªèNœ*¹ßJzö#8 aœ¶tY ”u†@'¨6Ê1$˜:ð^™Ú˪<Ò…’Ò’@G_N2oM‰ÏÚîÄ)º–›R $å ‰òþ³ÓtÙ`ð~äJ55ù[-@ÀbËì®=_Ô9¬È —pX‡­ ôgêäÉð ÙWÕÍVÉ'ËÎÝ%z‚(ØÛNí¢ÁÙn£æ íWú°mµ T˜–œ>[|’¬«#6Ù>A0>ÇG@‡$tAZÎ)%ø’£ÞR²*>ì+L4<ƒ¾É„‡'Hÿ…Ÿ[Ø{1d¹Ó¥²MvߺnbSuQ-$9¦JP¥WjsDsøK}K^ñA’(+´Û0w¯v΋yÔ zX¶õöÏò‰ëÏNl‹ËდkîœÖ[0C Ú49hB/†X|dLß*ß„VR;Åѵì/¤2Ìœq×|E×Ô!%°(Xˆ|ÍeàE¥Y%dW±*m?º&Ä…·û`Gy®t>rÇe™„ýw‘t"¬ˆyíŸk÷$LÉâ.ˆL±ý:lîæŒöªoÚÞÄ„1ÛŽý;õ#<=ŸòµêT**É(Ô¼QlLër¾oó¥R¯ã­Q'¯Õâíq¤I‘cðÛe Õâ'ƒÑ“ÿN…Ø® endstream endobj 192 0 obj << /Type /Page /Contents 193 0 R /Resources 191 0 R /MediaBox [0 0 612 792] /Parent 190 0 R >> endobj 194 0 obj << /D [192 0 R /XYZ 132.768 705.06 null] >> endobj 195 0 obj << /D [192 0 R /XYZ 176.12 455.173 null] >> endobj 82 0 obj << /D [192 0 R /XYZ 133.768 409.405 null] >> endobj 191 0 obj << /Font << /F48 94 0 R /F77 117 0 R /F8 95 0 R /F67 100 0 R /F54 97 0 R /F52 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 196 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 127 0 obj << /Type /Font /Subtype /Type3 /Name /F79 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 17 27 27 52 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 39 /LastChar 39 /Widths 197 0 R /Encoding 198 0 R /CharProcs 199 0 R >> endobj 197 0 obj [43.59 ] endobj 198 0 obj << /Type /Encoding /Differences [39/a39] >> endobj 199 0 obj << /a39 196 0 R >> endobj 200 0 obj << /Length 119 /Filter /FlateDecode >> stream xÚ31Ö3µT0P02Q02W06U05RH1ä*ä24PA#S¨Tr.—“'—~¸‚¡—¾PœKßÓW¡¤¨4•Kß)ÀYÁKßE!ÚPÁ –ËÓEŸÁ¾Ô¨o€B¬Â@ø €a—«'W $o&| endstream endobj 118 0 obj << /Type /Font /Subtype /Type3 /Name /F78 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 24 27 35 52 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 39 /LastChar 39 /Widths 201 0 R /Encoding 202 0 R /CharProcs 203 0 R >> endobj 201 0 obj [43.59 ] endobj 202 0 obj << /Type /Encoding /Differences [39/a39] >> endobj 203 0 obj << /a39 200 0 R >> endobj 204 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 117 0 obj << /Type /Font /Subtype /Type3 /Name /F77 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 5 5 36 37 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 136 /LastChar 136 /Widths 205 0 R /Encoding 206 0 R /CharProcs 207 0 R >> endobj 205 0 obj [41.52 ] endobj 206 0 obj << /Type /Encoding /Differences [136/a136] >> endobj 207 0 obj << /a136 204 0 R >> endobj 208 0 obj [638.9 638.9 958.3 958.3 319.4 351.4 575 575 575 575 575 869.4 511.1 597.2 830.6 894.4 575 1041.7 1169.4 894.4 319.4 350 602.8 958.3 575 958.3 894.4 319.4 447.2 447.2 575 894.4 319.4 383.3 319.4 575 575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4 869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900 863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8 319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9 319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9] endobj 209 0 obj [702.8] endobj 210 0 obj [514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6] endobj 211 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 212 0 obj [787.2 855 859.4 650 796.1 880.8 865.5 1160 865.5 865.5 708.9 356.1 620.6 356.1 591.1 355.6 355.6 591.1 532.2 532.2 591.1 532.2 400 532.2 591.1 355.6 355.6 532.2 296.7 944.4 650 591.1 591.1 532.2 501.7 486.9 385 620.5 532.2 767.8 560.6] endobj 213 0 obj [666.7 666.7 638.9 722.2 597.2 569.4 666.7 708.3 277.8 472.2 694.4 541.7 875 708.3 736.1 638.9 736.1 645.8 555.6 680.6 687.5 666.7 944.5 666.7 666.7 611.1 288.9 500 288.9 500 277.8 277.8 480.6 516.7 444.4 516.7 444.4 305.6 500 516.7 238.9 266.7 488.9 238.9 794.4 516.7 500 516.7 516.7 341.7 383.3 361.1 516.7 461.1 683.3] endobj 214 0 obj [625 625 937.5 937.5 312.5 343.7 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 812.5 875 562.5 1018.5 1143.5 875 312.5 342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7 593.7 500] endobj 215 0 obj [357.8 306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6 525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9 743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 460 664.4 463.9 485.6] endobj 216 0 obj [583.3 555.6 555.6 833.3 833.3 277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 277.8 277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4] endobj 217 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 218 0 obj [544 544 816 816 272 299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 761.6 272 272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8] endobj 219 0 obj [713.4 550 700 726.9 726.9 976.9 726.9 726.9 600 300 500 300 500 300 300 500 450 450 500 450 300 450 500 300 300 450 250 800 550 500 500 450 412.5 400 325] endobj 220 0 obj [693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 510.9] endobj 221 0 obj << /Length1 1755 /Length2 11898 /Length3 0 /Length 13010 /Filter /FlateDecode >> stream xÚ÷TÛéö ãE‹»wwww§X±Á‚÷Š[âw§H±âÅÝݽ×ËÌ™33çÿ}kÝ»²Vò{¶?ïÞûMBC¡®Å"a 6Ê‚!,¬ì‚)I}v;;+;;'2 6bü¯™Fèâ ; þËBÊhy•I›A^ UÀŽE7{€ƒWƒOÀÉÎ.ð_C°‹ @ÚÌd Pa(‚®È4R`'/µ ä5Ïô >æ?Ý@…™#@Å btxÍhafÐ[€€¯ÿ A/l8 ²±yxx°š9¸²‚]¬E˜ ˆ @è tqZþ  P5sþE™ mrýB lñ0s^ö  £ë«‹›£%Ððš ¥  Ps:þÇXù?Ì€¿ÀÁÊñw¸¿¼ÿrüÓÙÌÂìàdæèr´Xì5YeVˆ'„`æhù‡¡™½+øÕßÌÝ dofþjðgéfY €Ù+ÿø¹Z¸€œ ®¬® û?8²ýæõ˜e-¥À@Gˆ+òõIƒ\€¯çîÅöWsíÁŽ>ÿEV GK«?hXº9±é8‚œÝ€ ÒÙ¼Šÿ‘Y!vvv>^~Ðô´°aû#¶—ðO%ÇâW~>N`'€Õ+  È øúìãjæ@\Ü€~>ÿVü/BæàX‚, s 5ÈùŸè¯b Õðkÿ]@žCö×ñã°ÿñúûÉøuÂ,ÁŽö^ÿ˜ÿÙb6U9)e¦¿(ÿ­””{|Xxx,œ<ì^nßëƒßÿÆùûþËþO©ºè¯êþQÁÑ ø‰×Óû/÷¿&ƒþ¯µaüoUðë<ôÿŒ¿;»ÅëÇÿç%øÓåÿßìÿåÿuüÿoE²nööêéÿcðÿ£7sÙ{ýeñ:Ïn×ÝP¿nˆãÿ5Õþg¡%Áö–ÿW§1{Ý Gkû¿ä* òZªƒ 6ÿ¢ÿvá5¸=ȨvýqáX8ØÙÿîuç,ì^/××^ý©¾®Ôÿ¦”q´[þ±{œ¯}7sq1óB~mý+âøp¼.©%ÐóÏÙ°±:‚!¯.€Wr~+° òåå°Iü!úâ°IýøØl²ÿ .›ÂßHàÕÒì$`³øýÁƒÍò_Àüä°Yýÿ@ i_ÓXÿ rØlþ_Ëý·1?€Íþøº lŽÿ‚¯yÁCî×_/è©_3;ý£æ}E¯óþWá¯É]þ_“»þ ¾z@þ†¯£Í±qþ“àµelð¿^ÏÌíOø?-´psqy½Þþ\²×þþÿy—ž@ ä…Y°…PˆmmHÛmµ±ËΨÈÍŽ^*‹Ï‚Ëw·û·o’ª2>¬¹\K$vc,oÉÐ_‰/’?ù5׿ kIÔh}ð}|¯9±ÓŠ+&JY–õ5rüyÐCˆqb'Üž¥EVMRoûž#T‹Œâ¹&Ÿ“±á˜azÄ”8Š_P?®%èÂ^§ŒèÍ·…¼K1C2¢Ía $Zƒ=Ó"‰’ìöÕjTWKy la Þ7F×Ý}´Éñ mKiI³õüHŒ¡‹†1ÃfñÔŸ­k9Z­Ðßí'¿a?@â;!3Ó3Á¤ÿò¨Œo‹Iõ“ÂÁc•³•ªÕñ§ËµoäË„6Ö‰ò›¤DãqŸ2ý"Ó—{î^V¹dìÆòí%_õ[NÉCëåzßæv²ÕY((AªåEV¶B1–bTqö”L¼Çe¤ÝÖ0»±>wW˜Œw«§')„(ØÌZÛo9 [óÊiéŠ+Lk5"C‚÷ßn®4wóÚ:²› |t0n;ÿÅ|ĶX\`ôŽš—È)HGæUß·(•\µcz´±ZVéÇ åªÍR£+Æ ñ[o.º¢BÚñdÞÂsΔe„O4ðLôÉ—_ìMk ¤×žÙj`’íè±bbíR1œªÞBL¯M$܇lÎÔÉù¾Ã~]ò3¡þñÛ‚¦ÝŸ‡bYÑ}Îõ-º_j¿€ó¬ÇîøºÏVïG¬ÊQ×ÑDL•4¤[Z –Nöè"h?¥©ÐÖòÕc6c~†¬=À¹øò$«}㡬ûÀØ^…ÞAz¼x(\5š,UÇܪüÛÊ–))þx¨ý{ÇOèë£ìÁLJOöî*ز57CñE¿ýÊÙ`äAK…xF$f€mÇ®ñn¯;kij·é,ÁN¦ë}^U¡Ÿe+ Pe¯®ÿJ*.ùM@¡y‰Ò^ƒ4š­c•¥Ž~1ê²t£ï-m[nø+;Ñ}Pf[÷Â1¶guÔ‘y³[·qáljš„sÚ™n³k¦wgò㎄Z@+šÙj^Ÿ°…}IßÙX#™·–”|“%lrt1/\æçaHo'¹̲ñ¸~΀½õ4ìÐw»ãw ³p. Wðütg-¢kë|òÙ9­¦Ð=1oÚèz0][6'cê²åg«` ò` üÓ¥öR#uXáÐd"¥Z7¸²áýfm€ŽŸ{Š6e°ãË) =‡G<+»¥œ©¨´A-¬— [½9¶_ Æ`1%ÓÅÁ¬ÜŒ…'â¿k¡ÑŽøZôòDñüïQ¢³òUå]Gwg%KŽÃi÷,a7;9¸%† 0Ðå'½h?P÷ ¶|(ˆ\½*+^›Þ…!»ÌbçMâ»÷š8ê’ ÑßÛãGgÇKîẲ3F6v5àÔÆJøuŒ ~8r˜4¸³3F„Ž>ÒU" ÷"nï֗ t€#?©tæáš¹qÿBÖ›á³zë«ù»Uú|S5Î”Èæ§|‚%os.xö-”ŸW,ÚºÕ>mUH·ïåÏâ"MÂ ÛØö’ý››h)1¤ÜQª¿BÛ÷áxÍ¢¢"Àì".Äq–/tì^k'%Ù1TWŠˆzvĵ•pb>£‡P,È9Oå2!Wt’yÌÑ6Âù8übôîY_CÍ/5¢+÷a"£ø”«Ø2è6|Ì ªÞ¼wÓÈ)Zà­DÙuá;w¦Ò!„*e©íÖäQ¦bÒ%~˜XœÏ$w^‘¬žR“ }Ù´:tŠ“ýŒvˆÂ]È3‡î‡ð­‰Q3;7w—¤ÅˆJ† oèÓ/ˆ0»X?“òDëk¢š²-Ý/öy#`ZÉ¿Ž‹¹Ù³(‹%M«üaØ÷ýÌ3ë`yN‚»ÙáºÖNŠŸͰì–2ª¤¤é)Ä.ßI¦{½!Ð(\^­o„R6íðD£:ÌwÙkìÌÍGӦ̮Ã[÷ÍT~4î–’^Ëh&ÿ¯â¤€n.ìèÌ™w&óñ,'ª ô~©¤~(3‰¬¿ãõ@e¸fù“!Ä"ÐÁEb$eDþðÜå€ÓÓ†3UŒQO¡Õ·ƒÈEþál9òûceLd1Ã4’,|ã¨xYZ_8Ïž>2þê•Iê;“ u„Ï´Ž±íbÆ´ð£*cÌžb€¿u7i£^,#–äÊF$ÕŠŠ´aüšç?oüD—•m¹IKÅN>¾M‚¸ÖOiŒ ?ÈèôSôþ4"_sÅöyù}[^µpÌÛR¦7ò[ƒ í¤N•ÆÓž6ˆ¸yö²ãÔ_ÒfSd]¶>o’Ó¨Ù˜y;`ªFÜH_üÖ^v±÷Ó;¾Ç…èÅyÓ|”'-1šo ߟ‘w_(CÄ‘»ŒI>|×ÁqǢ㥜ܫs¡–læ§Òþ† Uwo¬¹‹r¹öŸVäh¡ØœTƒ»iГI„*Ú ‰»hÐ)‚ÐQNû‡¨‡8wÝ~*_p1Ù | ÆÊ¿²³š—¤lÙRlň Gæï¢}¸~ööšµŸfxy¢¬,_)åbmw®è8€'ÓN8ó¡,`Rü3·ö¼× …1knή–BdïÈ‘rÀÝç½Á%YÛûrÊè^CÚ‹|Â2Kg›ÏÎzþRõywï‹ì·X-iîQwÙE_ …Ö°;b›š¨·™ŒÂäˆ2¿Ë`%•}XNʇþ’M$÷¿Ƕ™êO‡vT«¼”ý08ª,U«bĺÝhë[÷ç´£• 8&~Ö0ŠÁ¢z±øn?x¦ÞáÁËÜÔ3K©áÙ\¡ë#2¹žöê¯ù}½Tõ ¹%ug“@g™fQt˜MåR¤ÏJóâÔ¾ Òzi‘S—lêªu&ãÉ\ŒìJWÛA=OË}M ~S°•Š*Ö”“Ô<÷ü¿Þ·[—I¹rJ5ð1+ef£Ïd‰!Ž¶ŽŽ1äì&‡s¯¢Þ¿]æ ‚î·”}nnÂÇU ×·ÈT¿™÷hâ|=@4»ø°mRÐËý„;ÈK:•Ä`KªV¸h† è1C3{=E›ä”MÒ `¯¥D\!îõ—Ñäu {l‹Ø‰%Â.=ÛŠ—«û’Ø]ãp•}>þèêǨÿôc^©Ð¶(í·…“q€¿p§øV\W*WãWÛæḬ̂4ÉÐ|ª£çÔÞþq&Ý]Ÿ`D”(«n ÜxEÕu~‹¼ñQFÉÄr‰¦¾“òâY+’U©·4›Ö—Ï9ÌcFî‰p>ý>‹z]7bB5·}þÙÞa’×™ÓHácÀzJTË2ÔHÇq>e¸¸Cr ´*ß¾"_9Üô_ÉάR½7£ŒÁÚÝЦ)˜Æ• {PSŒ–ß« ?¼T_/EEw¡ÚOªdäŽ|äg¦uÇ~‰-ó€ÑüìÙïua#¶žãÀ¥zý<Ü 1ÞðØé ¹÷Ï«9³牤×5­ÇªöôS ™ŸÏ4¦¥gÚ²ŒY o¶Õ[1л?r+ë’QÔ 5èp(‚ ?v‰{ëC <9ª÷4™< ^V NN;(·åÓ+<¤J¯›L@˜z“47T7Øß"©+G°ÚÆ7ÜV(Ò“ÿ¶¿•.RÍ{-V…}` …E¦=$Wr„•Ä®êªÌsµ5z¯LþÛíK 4ï¬õ{÷{då]pLÕ·¾<†z% .ý_£ß±P ”5nv°|nºR!£À$Vâk‹>#Ä"‰l‰Ô.:(.ôAlߕڭ`~‰Óe+.¶ ¿Gꃣ5[ÒYOñ"_ù¡U„ch;dÑó¤ç®T€D8°TᩯßG£å‹D‰é¼^ÆœÙ@)V´ØdÒ"ënE ¤ì;™­ÁQ¸Ó¦T-mgØý>éÖªW>ó:^}ÿl{û3Us®Qøl p1Ü<ƒèÂÖTÖ…Ÿný¦kÙ‹tkUé+3n\7‡GKJ)ßu®œ`÷Ò¢5‡þBH8ݲ™îGíÚfŸÄÝ ¿¸——†Ö‘ÛæYÒ˜¾÷s–ÃÁ—çÜeH‰"ºÂÕ-r<Á2²nAÄ…@ªF_ì·}[pò°n€ž¥×Ê"z\ÝľÝòûÑÄ-ŠVK«ÖŠRóv4Ã7\ø@²À¹ûR¢ˆäûoæ®çÄÕÏ>ÐG‚ >õ¦´-§ç™iÔZè¼ÔøÊw«ÖE°¢%7ã#Œe—+Š`Á¯s¸ëŽoÉ…Л“â÷JH_ĬcºáTã?¦ÀqCÕòc0ôÄjŒ õZ@ub­§jj5) Ùqý³¬…øÙoAˆKøóÒáPƒða @KÇf42ìt‰QÿbEÉ#.‰”·ûËÜçÚ˜äº]o–QW-–L¥²8ˬunýñ½qC{è§ÊC¹!ý™[ïº}&9ßÄ\«÷ .Æ2rñKkfÎK1ÖqEH3Æ *Ž__RÝé«¥kÙê/•ÍË0"ç,7Ï4+„–äÒÅÄÌèj£o<{™ì/U¼4Yuð_ÿbZkÀµ¿1î ?î³-¡h‘¢¡y›êìhI¿Š¾”á•vÑt –1Õ.U”Š…[þ-æ­i¶|Ù?EªþXûôu. cî0bȳ/CJ¼õ9*QÅiTØ06š}L¬ø Ø/c }xËZ¢i˜gwkÝ;Vý‚ƒ<ŸdÚAYêüÖ¤Æ|ö¼º}ma‰që1€ðùØåæxá—o¥ `†.¼jœ¤Z—Ž÷ÛÁeyós3¹*iù·U'Ô¼ÔÜå¶Œ*Esèä6…SU©Ù ç3V¥4Læ¾ TÑ@©/dûdD>º,«DÚzðGïF‰`è.èy2´sÇ´Í¡k¨:#Î!”|8Æ=õ3 ÏÆ'VÇæê„µŠØF4-½tðxð‚/¯]ï0NôSfGto(ÎôÒ.ÎÖ ¹·Wt¥$%ƒJ”÷?òcJ;3'öµÓÞ® r© ^n¸"ô@fÙ°ÇJ»¾i£ í&<4¢K á&KK׸±¯À¼ùŠ:“¯ñh(âø+q1Fô.:WuȘØ¿ØÒ½cVÂ@Lél’ã„<™ÏÛ^Àš8 wʦÄ6=¯>uÂûÕ«E¾ X+,„¥ÔÜßáZWÞáš©G«ÑƒõÇ(9‡·4åWIhËž=ßãý=y†éB©¿¯–y@¶Ó¯¢XP'5 ñimy‹ÑªÜ…ÿ9w¨ñ]E#”ã¥×¬X|*ß@”N ÄnÆQrØ¢%¸ŒT/N++?[HVäTúgñf­o`÷s“¥X¢¿=aUž9¶AË'”4L_ ü=KOû‰‡I¶ñÁá&ŸôCŠkª­ø’ÜH»>œ–êg¤½@7™ðÉ£uf ׯ÷¦é–@;ÐÖBIìÅ0‘€¦¨swË|4ýÞ@ˆ¬Ò.Ûà§ÙÃÜŒaÓ¬<>JsxH,íB€eˆ* x–Wü³—@)GóÚúæ¼Ëý4,þ¬¸÷Œñå‘§Òý@ôÔþV¢ñE”ÓßZ8’/MoܔȂðe]ž¾f1ñ"Å„9¼œÊ«Aeé :ô´j·öz÷‰‰žŒvsËîbîˆdT¹0)ˆ¹Ü…5ŠNï|&¹ ö‘͆g¢T=^uÌá]â$5\r´^{É„:ëšbÕ°–ýè^ê9–Ø6JZ/Ónd6–¾Ä’xÕ’\—ÓÒ¶2£8It©~pâÎR<·¿†±ïDå©‘GpÂÕýâ¹³Øñ·d=Ì”Èü—æŸHɳç«WøG¿†(`|ˆ£OÑÚ }xª[‡‘ŠdÈvI‚Õn³G *fâiôög.>µXÌÖRœu§xá5W™Ì(ôhDð^P~JÀX}SVþjïmþ\;õ¶öûØÔG€8Ó³N ÞR²g¾j§ù~ü±4GÜ}²$3é‘€V'øf:¹MyæÚc¼ ƒ.‘ݳj !wQ“á` ;¬@«ëÃH]L=ý.jÔaÙŽÂåie°@Dî$8¢¹Só%Ž·î“U¯ÜJ«ÆÀ7Ôfœúý¢ïX·ª(hŠ6*6jÂQòäÐøü[5ŒðXõN—j¥îbËÆY¥7¬ÅF:6Özâ^[ÉGÏ2Z~ ZF*±P ½3¯Hñ©ûÕi m”ÞžB>)Æ wÁQˆ¥Árgrü}e²:`ðTÀEHGqrÊäÅÝ)}b»Q”%P»9¼X5¨ƒÊzÔ•ѧj;M.êM𭍢"è¢>Š…tÌÞ|}N45™ 0dGÍcÚhV|whÏeƒÒ‹ñqfç‰úûa±”ä´ÛÚî&´{®‚ž–™®Î¬î$?”ü8¥Œ<: ï¾&G%ư¶©¸Ná4×v€mµéQ]3)"˜×mùÔ*0f3ØŒhŒà{ÎJIòá Q\_2äû¹]¬KWL„ºMˆhÒÞx®WÃ-Tr(GêP á3/ lÐÚÍÎë«Bvu R–ßä] "K½D Ã8F(Ã/‡,û³bUU8ݸ¡@œ0àcÔãL26Õλ¯×÷A¦dú?V`¢÷ÞÅœZ­¹+nÎÏÍÑ"Ðè+>÷<ÿ2g€RGg²PÓ§Jï†Ì&Í`•}v >†»•Ì\­¤qŸö¡^+ˆœÿ6Á€µ'$|^·^ÁãŠÇ¸¥ë¬_ªÀ‘bU?dí( éuô^p:Œ¾úÍŠ¾€a±ýjFJ~8–©oPŠ-ÌWKÍßã|m™îmhÂ%¯A†_a8KgwÖ“æÓ‰.!ÙZÑ@+=0I˜ Pa{~é}Ú<¬ðÅïî‹€‡|™ºÉÜHÃo×r„Lrý‚Šctá3êVwùt“ác:û¨N ÔmÁJéìÜx™…—¶£h^¥2¢­Oí(ýw´”H¾ãjï2ÃúgùåŠè ɹ—Ä¡å}ÎN \Y„Æs"J ߊ¼à‹Ü=Úu \yòHÍ+¶ð çQNv'ƒ ¤àgì%°Ç¸ÚtŒò9«D„Cc·(fßQ=`êš[¡Ú{Ïõr€qOÆ—Ç·µhvw~#ë/°ëUúy Í‡¼›U<:s mí†q ã—)ˆlBìcƤËÃþ¨–<ÏÄ›AßÅ}{ÅÂNªÌSR· HüÄË͘0›àEYIÙ¯Š½ ¨ØÌóc˜1‰LÍ%‘ük NöúæÍÏ*;L¾¯Æ» Œmñ™ê˜£ŸŸ™<‚Ø´«wµúÎHÌ)qíG½]+^"ÅØý޽Bô•È%†h,xVâ= \²3|¿´¸nÂI~­33¬I&ÍtÇ­pä#ÃüÎPëªÓù¬*z¼W«W`¯,?é_k€xJ„«SÍÜ+U×4)¥¬PbêÒµŠµŒþѽžéÀ'Ì…¶«¶yÜ8s11Å£DµF(~ÄX[”wœååîÙ¼ìÐlÐä’è£Ûþ>Ka·¹u½á~è~å¨dQ‘·|c=EÐëçr~ožkÝLnQ‡K*î²ö¡+R·¢5>³9ÄFê·³Ô‚Ä“¨‹žÖgö‹VF] å~®ðþ žÍ[ïÛNzžYr] )ü=ý«¸¶³Å÷½w80U &"ÄAYL q#þ¡¨Ù • ˜‘^¬„Ï%Œôßâ­ß}jmý Ò`V³—úd‹Ësp24 „kYcÙ­t)0”W+INžúu´f‹Õ4ñn?1¡–ŠHôÔ©·B~%Õ'Ü(Af»„ÄÆPÏÉ£)ÂódhrIÈ Õ1Ôr*18=GÕgœÑy™¸ÜþäVÇ`KÃ뛵êÚ‡TÎm¿ BIö÷0«6 ‰vm™Ø­ÕtB4áÎÐÆ‡zdE‹67 1ˆa¿D/ɤÜEüenç¿Á-o(ß<þ Ôþ4xÛîÖ–Q§5Ûa÷‘ÎÇ ™ZF攈Nœ¹eìÚÑÁúL7—ÞGÜ€@TV&þá3ž3ÓXeqˆ/½/BšÌSü§iêmíI H´ Ÿ*;¯äæ´Û®;b…2¬Ñá·pÔq£3Š]{öéh—I+¶ìúm^Ïæ2-}¦zš‡â´èQä¨fÞÙ÷²$Ľ¹ ;¬Š9ŒÇ!bžFÄßùm•ö$Q1õ6õ.sù†#ó«Azúôy/b7[F¾’·µcV\K"o,ðC0Ø«‘ží|T~rÂØöö',4e>RÎo}“± þ^~•ÝÓTļmÑn%채êžþdÃX%F©Ò´{Ÿ×)mù ‰R:ÎÿýÝŠÞ›š0ª¤Mx‘4/YY˜dqðéÂCS$Õï5¹®_®±nîLe ,ÈjíT2θ'ï#Ì=δMsŽ˜Åì÷6É߀æ½Iµø¾O¯¯­ÜÚóÚ¿G2åavÃ0¨ÍôÄ›rèUäjù²‡UW¬8%]-^µLоw@¿Ï>¥Ó›I¦ì QgÕ5ùŒlÊ¡€àzf킦¸d›•G:/,&&³r/úÞLúÐR ·¼ñ¸‘efÛ¬ÂÑA,JL9¨ÊòSéÅ8J˜+.Ôê ãÁÚ ‹1b­šÐ¸&p¬"IZwûGBºf¶¨X4†÷—Miætq”D£p‘äïdñ[!þø_î+'”u9Øü¢ÛT‘s³³òÄ_ ã‘¥yc‘³5ž¥´¸×‡bÕP„èV7¶¬Ûš¡}+ qÉ@EC‡§¸ýt!ôÜR“ZóÅë"'—Þ ¡z/¯KÑ#b‡x>¶i¾ñ"3”' ÆV|é¾my¶¶{á3Ô|—+G¸Û¡/BNŸG”HU›±°CïºÞxûlöuÕ# \ßÚôõ `˜-w’íæÌÏùKÄDzò.M뻓f¥þ'äŠX·4F¢nzI8Ã@N<ý€ö·\Dʪ’·N;Á;*[TßH7ç2yWc.´ÔÒ0Èâpjò(»¶L ^M^­Â> 2¿¦‡\v•)Í¥¯,¡.¼N¾'ms3øŠ|$WÀ«À1¥`s¸‘"‡Yj&µê–Ö+ÞÚ¦‰Á²j¹ñöø¬º?!^øCÔõÒ”èß E]•-üvDÿ;ëð»oIÔì) ïïoM?^i²ìˆÒ¥d^Y›nGîxë¦-{Þ¤>¨Uæì`, ,²¯—å^ª(ŽùV{㸠ö÷{“h¯JïÑ%(¿<•#|?ɵ5¹H&Q,…Øþ©%õ*!îø¸ôÉý=ôØ&о;¡jßô¶§ÛtU üš~g@ætØa±„Í2yi ›#÷* ‚Zûó–añG›bùîQxìs­Î‡[üƒ€/ÚüMGœjõ¬X(8÷îÞdöep–N¿àcŒäÊ_|ªa u’°­K4iW&:‹W”w}žý8÷©zt³e/nzH´¹*Ú> endobj 223 0 obj << /Length1 2087 /Length2 14044 /Length3 0 /Length 15299 /Filter /FlateDecode >> stream xÚ÷PœëÒ CÐà·0¸»»Cpw\ww‚wÜ‚»»;ÁÝÁÝ/{Ÿ}vr¾ÿ¯º·¦Š™Õ½ºŸ^ýt¿oAF¤ L'dlkh"nkãDÇDÏÈ ‘Ö`b02²Ð322Ñ‘©X8Lþk‡#S3qp´°µáþƒ!â`tz³‰Þˆ²¶6)g€‰ÀÄÎÍÄÁÍÈ`fdäú/ÑÖ t±0ÈÒ¤lmLáÈDlíÜ,ÌÌÞÎùïO¥€‰‹‹ƒöïp€µ‰ƒ…Ð t27±~;Ñ(ÛY˜8¹ÿO J^s'';nWWWz µ#½­ƒ?-ÀÕÂÉ dâhâàbb øK2@hmò4z82€Š¹…ãʶ¦N®@À›dadbãøâlclâx; ,)·3±ùYæ?ZÀ?Í0Ñ3ý›îŸè¿YØü 42²µ¶Ú¸[ؘL-@&yqz'7'ZÐÆø/"ähûtZ€€†o„¿KÄ…À7…ÿès4r°°sr¤w´ý¥‘á¯4om³1±µ¶6±qr„û«>Q £·¾»3üs¹V6¶®6žÿE¦6ƦÉ0v¶cPµ±°w6‘ý‡óf‚ûm33q°122r°sLì&nFæ  ângò·“é/ó›oO;[;€é› o S“·/8OG ‹ ÀÉÁÙÄÛóOÇÿ"8&&€±…‘ÀÐÄÌÂîwö7³‰éðÛý;X¸´߯ Àø×çß_ºoflkrÿMÿûŠäÔ„Ed•iþ‘ü¯SXØÖ àIÇÆ cfc01±p8ØÞÿ›çßüWýßV Å?Õ1þÎ(icj àúˆ·îýWˆË?“AùÏÚPþ÷9Û·y6PþF6F£·?LÿŸ—àïÿ³ÿW–ÿ×ñÿ¿‰;ƒ@û)ÿCøÿñ­-@îÿ0ÞæÙÙém7dmß6ÄæÿRÕMþ³Ð¶ ãÿë“t¾mˆèß6Z8Š[¸™+X8™ÿgˆþ{ oÉA6& ¶Ž=ptLŒŒÿÇ÷¶sFVoÇ·»úÛeò¶Rÿ{¤˜‘­ñ_»ÇÌÆ:8Ýáߌ™ àÉô¶¤Æ&nÏ6€ÞÆÖé-ð&Î`jë÷ײ³„þ2ýqD~#NƒèoÄ`ûq0Ä#ƒäoôÆ”ÿq2£7¦òoÄ `PùÞjQýq½ÕüÞj1üÞN0ú±½ùŒlAo-ü¯å¯N2ÿßj0ù2LÿÅïl,A—?è@¿ýÑmþH÷F0û¾‰2ÿ¾©²ø²,ÿ€o*­þ€oR@À7Ö¿!Ó›ª?D¾=^lÿ…¬oÜ·Ðî·Bí~»ßε{Û7Û?Úò—2û?à[áÈbz+Üñwü[¡Ž  ãʘÞR:ýîË[5Næ&¿+x›Y'WÛ?Þr8ÿßĺü߸þq+oÑnÀ·ôîÀ7qÃÿY#g‡·WÅ߬·]ù/þû½dbâfb·8okÄdYÔz÷]Ï•nwœo†lW=…ŠÎsÑ¡Íù &‘ªòkÀºÃPâP7Êʶåµàá³çQS-ÌçæxÅ–G¯'ýX¥©Ý¸…IÌþ‰oGB5}ïñéT÷¼ží½Ôü­ šÀ;¤È²í9‘rÑî\{%ÜjúJ–GCæw÷*Ù¥áŸJ¦é"U¿èøÎ’åfÌaC;ÑÀR8sCž½¾™ù5ñJ(Kçý+’%ßSkƒ9ê~ÎcµL…Ù±‡G ›âúÃè¹§ðA’ÖÏ¢‚h©ˆS½ùþ6d =kQÇ"oÉÈÄæöO}‘äí©h#Å-2ᡟ å¬vìÙ5…ÓÏLúypŽŠíûϘå³_ú­œŽ˜?§öÄ>]S @·|>HúÁ¾€“ÛßÇå3MQ÷ê+»Àl˜ã¤Ýå tCÔ—Ÿ+Ó}0´|Í4#%jâXF{,},ßGp8­úàÍéCCƒZ0ö…l`cÖi»u 7rˆ³Üg9…Ú©¤cYÆÜ“Fó©–Ï"²Ì;£l2Ñ—ÜyØ;5ß6ÊÛÇ|6^Œ²?ü5x_´†FdʥϯpXé +þ­ø¦œja/-±>f–5¾•€ÓÃä*,ö1Ô=Ž*/?í'Ÿ ½ÒApUþJÔk>T\XIYtèúA4³Ÿ¡“™ïZc¬Ó,öîÇ3˜Àª‹]õñk•žŒ® LDqn)h[Ä@“X›ˆ*\M¥…²7ãÅ&Üs¸ð™‹uêkPö»Ç„ÈÝ¥ÀPráîc³Íóæ®i°–@µ°¡EŸ!hˆ¤Cû(uUÚÞ€¢³0««‘ƒŽÝœô±¶"ýiDÝ8;ŠÇ­‰_GÇo7Äq“Ø(ÓüX;° •9 âS3º¾¿. ÿÐbœÊômŒ›Áÿ`FD‹>׶♃¤8NsÃÅ¢æ hOTŒÍITÔÕo!r€ñ¾w·§ÙÜ+=Gœ–ªMô:‚‚~¿çrkÉà09·ô5P‹@…Šõ»é<¼†~¨“€-I;ZI‹”×<[dÍ5¥ðü‘UA-ÁÕܰÃ÷Ó=‹…˜wP@6r¾õ/ÛD%Œ;R‚™'m±lVO´à^;%õûŸHtï[ü‹€ú’P{uñÖæñ%&¦­~ûÚöé …°ôó"ŒÎøª¹·¿ÚÈKv—i…¦Þ»ÒÓ°Ö®åóO7}Ká#©0”¦V×*Vé©?D'Õ–0oH0ž÷9ïRË8ú¬ØüsRLuDt/¿›ÜqqîšÝv´#DAF“„Œß¢|¾9ÿeÖŒmäÕÌQvQn'Ø’Ï™Ž5Ü8!¾Î#;öp·ZÔ¼µ?1´À@tºK»í p`Îîê)„lÄË·Váâ>Ь&’¿;Mîå(ô#ù—©t?ÍU9‘yda¼²Íý·¾m’H_}Tê]‚Ì:‹3"Œ{©1‹¯Ãö#)ÖRé€i[v¨;µò=8’÷M˜…„»+°k“Ôº:Ä…ÅCKOOfnŸQîPÉ>í†h™šcÈYF¾uœÏÐwÌçäIUêý³H€¤/Ûy>¼ ‚‡caí±·³ŒA’ì‚_I;1G¦tû <ÄÉí~ËÅNÈ*§»< Âóâ"æ›W¶‹ÕÇnzÑ||–œÅ½DiÒDô¼ƒ÷©­Zßê´¤éUÇž Q¬–¥×°øünÄz¿Q£*˜Ræ_±dþOî¢:²µ¨Ê\ŸÎ#[ç2L¯$ õžtØØ>'’l/º`hkNÔRaìcJï(çëá×úØ4¥–Ëâj<Òr’çqûI_’WáõœÔ?ø/¸OtøvôbÂ^–±6*J{R-ò«‹¶ó·Øâš.i¥Û-&âZÑ™ *ÄɼF{•ÝØA³wHG"É*hŒ¬{"di…Mßz¿úS‘aÉ,H›Ê3#¯Vøom(åfkUc*éjM^Û|³¾\8#(•6¹Q±aò7SlT:žAXãš  K ºïxt®‚ët¦AÕ_ï°Öýlô(6’qüy§"­Í Uæ2Žû¼÷E@=Lî.Bƒºñ»”Å鉌饩ø,C¡|Øh‚-Êø¨>pŒ({qKøÐI÷Ú#@§ +ªl-A‰!ÕõÛÑÁ¦ìCQæXúqWßÁS6Š(Ý ßZ­N…±vƒàQ?~Ô8T *ă†Çeâ)è ðúà&Œ0PK"VnY$¼óUÀqö)Ò–r¢m:IõøßEOgÏSdÓ¥7Bú­ù­ˆßµ»ÊÊ«ÄTŠ:J¥Œ(â5×>tz¼ôoSYko¸b®PÉ­s\ŸŽz¼@öm'\2ÿr±LŠÿƒvó’?kï3î¥íOéä%âO•H³ÈÙ€ÆRæqa”"Õ1 ©*ÊúÓ‚ô©‹r#&ÉÕ˜Í[zP¶â,¸å8™eV‘B-ÓI‹‡!óPE•ºßš,µtCPSÿ€)-ñ ‹O^o%ÏãMG.GW9߈-ݾ™_øÞ†M¾”p=¾ Íø+»ãÏnóNt%q®ïY*óž1”¹ä)g¤ëÁ1¾Ü#W渷¯×Ѳ¯–û0EY x¿ÈbÄßa©½.…Jl º4@ (soqK™Ø)õÖ!ßùnq¥—‚}ÉYåÕ¼Õ¶L®/¿X{u‹>³Ñ¾9ÈyHúÐABl;É÷aΊžàÜtÍ4(')úKÖ|Ňâ€ZW<±:®Âë R¹– %ÞÜç¢×PbK ¨ GˆgYÜ…C±ÊÚ_s2OÄD¿¨M±iÒ‰ÀU…Âb'†ß!Ð °|èÜvãH:g'Áëx]†ó…n“ ¢=>Ã%9çcEæ62įKtÔ¬>)ÜêënnÏ‘Þ8ðµS Ä0àÞrEñ¦Û¢ «¢-rTÐg³oc ×o+IRkò¹€ÄØjDhÛän¨Lf{…Geö)V‰|I!¿¾Ð´˜ZC"+[W?iŸV¤íˆ!š•]§ó,~Ö»îO»“<§½¾ë9 A!s^÷I×0¹»›Ñ¥Œ:]‚ãÞ½27˜B[Yñ ÎÞݖȚτ¬æîÏ•=ô9÷8Û%š§ÕÂM[®¤P[sVÚòG%Áy šN¢èN®uyè.0¡%¼•I?½n7m~Ô[9Sœº¦£ÝÇ’ý$ª+B‹,pp'V­ô$5°Y]ëÝ0µ°Ø%ùÇx¿ŠëV*30‹—&¸ 2ºwRªýÙÚ¦ßU48fèqƒ>cFøÃªB†ÒÞšsœrÊæ²Nâ¿÷8àâÞ­Ù´|±vp¹NW¸Š"Aäˆ5ôs»hÙÖ¿m)‘éiìÍ‚w/ )‰ü~5Á†<¥$Èàiz¤(rî]j<Ü ;øãÆgaÛ¡æ'Q%kËsÖTÌuËS…<Û†c¿Ù= Ú¤v}†euO󅱡Ó!†°©´ÃQËýeïé—c©ÏðSŽ!ásõ;á›ó–Xï‹Öj|<Òe<í…tÀ”¦ÍI©"¸=䔥dVÝñ-õ2{âêÀcúñ?RM«LúLJkAa<(0BE@K)`úPòûpm‘÷䯹tmé½ÃBµSµ}Ö`ÛÇã3‡›Ê¡,T“E2AmÍ»@3­˜¹ìû±²×pøº‰Å<"z¹¬“»zî²ÌÝ’g%(jC_l7\}ÝýÖ î”#~á~±W³{}N~êy骨M£.—kßGÓ´)ºmmC»n)k#f*‰` _¤$AP© Y^«‰TÉÙv'ŒU”÷š!ΧÛûM˜¨¤KNÀO #ütŸâ‡ýU§'¯Â`w²À.)ƒaî6™‘R­ȦM+$uàöEZ::g8ኲ³¾JÆaS=!ù 5”É79=òBgI¯ëû š×yÆâ:bxnxðc,e˜³òÒnö U×kyb±¾“gG|âÑ=¼ý„ÙÈSÚÄÁnŒè`¨ÛÏð©×Zžž‘=Wk„ôAØÇœ#õZïk»Æôdfƈ>-¾1†ÛÒê³¥GªÙ!à7¹Ãr!¹7´’€I“‹÷ûï@üõOûå›FÛy!P4 áì)tà[º½løv9¨¯êhêF-Ñ“h?ƒÃ°¾øv«Ñûëò”9á«(u’¡Ërv‰þòmœ”ÉrÔô ­%a…¿ õëXò4Úä£gQŒI‹!$QØÅï"g>ެ苠b3Í#!= ?ÅÄVX‰; xµ‡Ê¼¡8ü8ÈšS÷ý¬˜%ë­Â(Ê ]! yG…?Üx ðhnÅÂWt€:Å=Jh1n¾îåsÁ¡QÐò‚Žðó´ìí¿`†a£‹D|?¡EbÇYòºPÅ9¨Öf(ö¼kÝÝó¼Ò¯ÁnPF«v'åuÊŠXÙvpÌWòZi"zF§ŸTeù1(¦g×s³—‰ÐQ )›4Y×] Þ¯ð^Cˆw9gk®ØÌ$-ÃÜ^#“­ìk9?X?ÝÏŸµr8÷‘ ‹Ê·¾š=Os)«4¤íÖNs+ ðßDÑ lHÙpÀ—Ájè¤x dá6Èâ‰öÑ ÑßKiW"‘ØRëuÒ ]3Fl¯%z?Ïè·Eíï¼µìqe¸ƒõ= å;ÞQ©ƒæÔqAµ\ø÷¬z²Ë)3X°‹A\U ró±Pö˜ùöýˇYõqæ*½%ì»p$‰Êã'€…\öôxéó³»i›¾ò+ñ"ÿ#½™Á ®0»Ä>Üóà‘pâǧAc“˜:ôë¨& 1o°ª¯ÇÁÁ{&êZô²@ Åb4ögh Û¢ ÿ8qÞš\–ÙÔ'-ˆ—Õ-92Ì5Eh=×qìÕÀˆÏtr±ò/ܹV|ä°ŸxçiøÂEU ’^ù‰pY>sK镦ÒÅVnù€è.ëºFü ËÃbõ±œR]¾oöC˧ª#Ǥ¥°¥'­ÂݲzHÝ—.]¬\^¢z sªQ@Wº©ö'ŒÐJ˲ÿ°öúg~¤>tái æsaKíñÔgËvÛÈ”ãÊم΃&\±nN0‰9m”i4$ÓÚBwA? íl”p˜ŸÆÔ)Ø[¤„Š%®¥NáI}D¢ˆj·¼³·ý e¥kà…´¸o²qÚ»ccm½ÑG+ÄsÖ¸#”¿`Æ7(˜+Ã`Žï-¹4=§©æYÔ€s–b/Ö²ëêÝ&œIŽö´–Å:#S§)ñv­_lÕŸrÓCùŒ§ÞÁ’—?†,Ö©¼O“Á“㪑ðᣎ·s~„´PÖ½Âu@ ϼ:p•˜7N îlåÙ´M“ÁKû𮌸¥l9»åHΰ8'mîI“´õ ºË›_\CÂTµ»d÷ÛS_ÖLkÃ`&ë\¹WWIFÈud›yÒ©Øc¯Ÿ¶ôd»§Ý%Œ›®eð Ù‰ªÉ>J¯ÙmÄÒ¦mÛØua~”ñQ¥ñr6V—`¯¨vg‚1,E‡Ñ`…’–ȯ&é=á˜Úg™£sÀDA‰e%¶AJ’º\ü€¸IˆÁCï-*=>²b U0É“çjèvÙz„HôÔ­Î`Ø=ÜÑ—,¶ÑÊätЉ.‚å¢ Ç!;wF£Ç~»0qkžÙ×NT«ì+¹!£ÒX€ðÀì@g‹S2[I_ªkXáâÀÓ¶ÉvUµÕìƒ×üS~çk]“5JëäK–=%<3|ÑÕ— ÔWTGéºèaŽˆIl)àÈT2† ÿ4Y=mF£ßX\pp³’:¯×›aoY fÈõ´Í@,Vá O™P¯ìâ´—xѧ§&d]rÜ%«8Õ­l¢£Ó• DŸ?­ATç²3ëѵ–É&.«=ËŸò;4ÈÓËâP¥È ³û,áïs{oîËÂt8²9sF®ä…D ÁÓõºç5Ex^èLØk£UN*$ç_8íã ŠsDvµøª¥öNw%"? ‡T#›,I6Â4D‡! ;®œºF)Ê7ßÙ´ÙSÛ<Ü7H—K¼µStò².’*ÓÚöµ§˜Á){|´LM³Ž×KÀ lFk÷ÒÀÀÿÄw}ߣh5Ãö2‘ãL"?¯’¢KpLµÙPVeÓ’”]o1÷‰S•àx¨wwAÍy³²ƒåyx‡gd%°¿±ƒÿîÝÇÄfxr]äDVòÜ17zhFБ¥\Ž¢™ç˜ØÌ'bï¥.æ™`mO ë‹9R$K²ôØÑ<¸&J[‚ػ,Z/ý%Š¥ÕÚÃ=e‰ÂĵéÅúϰÃRµ &4…èoD}Aä™…‡wÑÜOVcdŠÖXA tÞó™“NOߟû2$b-$€Ååi®UB²@Jnt1V„„­ÉyÛ™¶3F<²c°|K&Ö:!ݳF•à,£fÑÈÇ4©¡ÊzÍ\È‚”æÊ’»ÜŸëî¬ ¾÷FÏý>SrØÕã¸9ƒiFÓúò¹Ccíús&ê-_Ö¯%æñDø¦Ÿ>Éó^›ÁAÚê›#y¤ÑWvñ·D‘Â÷­Òç¼3¯9Ý} =Û„ÉÄ«ZIx=~ç.¡ç`´¾¨å%ºñiSÅ+·ärç$~êÛh¦µ?Æ¢Z{í[ë—ý?šQïxøR‹$Ñž±Vz_Œ4\ Ú#åÂeOáìêö¿\~£¾ª·æu'›1®`»è ‰n×A˜j LJÙè9B,*ôªžà’÷ùîÙƒAñÑ«zµæ±‹¡þÑ FÁOb‹ª ðjîtѧ‹f@Æ=ù’À#&š&.'`¶àÝ’(†Òº÷Ì ­bLcâOZÜ_þLB"Ý66T¯îÌ^­oàä_¨\d×?äáüÝ[êŦJ‘eçU/Ä•J-¿Ðh¹*uf>ÚäŠ;>ñ‡dŽŒÛW\Eeý¬¨ Dð0ÙQQ¬#¾Ódeb´…ãÃû@F«)¡ï„déiܹ –Ì\iÚ»r‰_“J^T ¼J°?È!šîd³ÄùP>:bâo»ÑÕñ:9Í[…¬$rZgŒZœ@u” åèÓ'äÏä1¡ëî1œP&†¼¾ê`¶0 ”SXyÍí–ía‹-#á¤gíÈh^/Øviâe{?ËÝ<‡ýÈÄSKì’&0­äý‹H'¼ã |¨F^=S[¼ø° ŸGæQºG@×6¸/N±Œ®<ÝS¹ï׈X”B–½¹Y°€ À¾m²~ð˜¬'6ãzˆìù1Åý¼¬C?»ÌŸ,hÜz}Ç똠MXVN*B\À‡Šî’1¼‚&iw¾×Þ-3í÷vcâ­0*ÐçÈÒ<¶FŒ¹ínéÂíV±÷èÜ“ÓÖa&tĤ–ù™»µn\6ígp%ñO¸NñHçmŸáI¢åè¹õï}ÌzVVŸ‚ø.bn‡}`×:Ç ¾!×"!ŠÍíÃÙQ “˃3|KmP %(Ðr–h°²ÍI¸Ï_õÈ)lî!-;>¤…ø.ëÔF;®À´øƒ½¨Tã=ýಜ>U­½hxÔÁpZ½[4Ž«íÿ­Ø´Þ÷¾°Á¯ͼN­|’–:r;HCá<nßïéó¸E‰˜ÕϱúSìÃZ2ª*Z|–Q…e‚®îõÕ‰4F7ô÷}hƒuh\ÁkJÝIʘmá̆’cW+zWÄ5VGÃ'Ϊž¸¸ M.¾¹“?é-è{“RˆZ•RðáõWrpøyQcEਚ1 BòQì{(DÝžìÄÅuÿ8¬ý‰Ò‹ap¨M±m:`eG5äû2íŽ+Ô”Q· e# λÜ'v3¼€tÁ<Œ…Ü´“"þ˜ªÆ˜ÔƒE…[͇ò…¿EŒ' 1Cy*X’¨Ð+Àï8ø d1Èh¬­È)'oæ:7“!E…¨`†àzäþiÛ[v˜ÿ:#:¼ÀT õH‘€ð¼hÇÄðÉ6»Ÿök Ž6Ôl“ŽT9ø™ÃÎ>¯©:Â00¨+PføNxûйùÂ÷‹úUÒIJ@ý~ÉPÑÜGþø…ÈÇ.HJáá^Uûâ¢ziÞ: ßCÎfˆÜ N}˜á4µXÒªHôrAŽWý×ÈüæGrË…é’ÞÇêCÓé?^DX?rz!•6옅`äËõ¸Ìy'Ç¿ ÈÈ a”ž‘……k'Mb:OS%¼ºóŸ™fö} l8×î~®:…á­r?Ï}æVk/£‚bú,,'}ŠØ—…¬Ù£X+̇ôË#™)Ì‘U(¬7ð“;1¶SøbŒ}~H¹h8ë‚E5æWÇÂPz—å7J.D†Z± Â°Š³Û*1$Ã3j<¼ˆ¢Î†æ•‰ד\ˆ´Þƒ¤±Ãë£Oe~é Í–c„’öJdIp§ÁG?å)~ƒçž|qn¹-Rn'Z¦‡Wºì°•ž‚ÚËgˆº¦ÕÁ«5£šéÚ¤B•¹Aî€Ä͌舢«ÁÍÝ…Ò*zËlA4R2 a$ahÝÞg;ä4£{ ìOhgЦ¯8>GköúóQl›|ÝQÒ2…ÊŒ«Iãƒ>ø¥Jr(›ÔH†#дX¹½¿QÁºhÙøÓ*–Ç­ºl‚LÆ=X/”Ä?V¬üñýVè¸ëÉã{1q2qg>Æ&}¡æìp¶‰æ®ýÎ?U*vÜ.(ô^㘣ïÅ^>«3®’’ î*»o½æ€hJ—ƒÿXFG(™ÎàÍš:ÇÂ#¿…oé ‚H]²ˆ¨Oý^MÄ—¦Ä3åm¼Χ©(œõʨ¤<à5NxÌŽÑñªÃ;,`¼gï—ªƒ…ø4•Em¥—¯DË´¯J|B5VXb¡»”èMëKì×<,ø8\„n±eXk×Ûᚨƒ–ÅølœÞ'KÇ9jÏfÌÊ]YA»ÞU…ù ’ƒZºÄ`ˆÏtŸÑÑ{ËL8•TJæÑ‰´Ã¦õÔS¦Ø6gT°_Ÿnönû´î6=‹Fÿrf½’Éà22öîAÓ“åû?,뾈~…‡b\¶H5ë“õ*iV?FGà²~ Ú­?óP°Àf:ë߯oâfåïr®™þ®:Rªm­˜¿Å[¾BÁQ´¶™¢¬Ý/Ümq²ë ,ˆèû—;¬ŒÔìÙ ¢{p]öËú°n&aËþ*£ô{ütʺ°µ0”oȸ8`uŸ>ýbl—p?:‰ÒE]lÛ\Ù•ê÷69ÌWgúT€í®â¿Kýì¯åßdO²OŸäÞ\ŒdrrL‘ÛàCå."æ¶Få0$$°´_°¡ÖF opø)ÃÆD»’3wfæ¹…ª-jDL4ð%ãýl)õY!Ò0½ïám1I‹z'1ÔJzÝ¡“–*®eÿ:shŒp“h0ù%<Ç0Ÿ;üón¬)-ºÙòÉFèùVµVjñ׀望ýîjj±ˆd¿u±1NÁzO׸o°ÒYмÇpí>ÑÚè2ð6‰åaüâ||Oãû Òe'U qÆJ­ûƯîé¸.Ò£‘Vp zŠaXÿñ÷9Í­âsLBrrÈÝêD²ùpÜJþúä»ù©—â£Ã0~·]L+ƒÖèguv­äPîe•P&v§çDÜ}ýø9¾!)›0g ]µõ`µüН©‹XÆÔM'Ïç½ê‰¬ešÂq;SÕŽ €£O5¬ÓuÆ(’3é¼ F-woo\GIª —­Ðµˆ%åÁaûçê#“A›ï3"Ø÷e’aw}-Ñ7ÄÓͤá«W"¾i/Í~)©/-œy(–Ëêfì¬çðBù’¦· úFxúGTÄmÛX¥Iןˆ3ÉÚpÝ´;7w=ïú;ï2¾í9ÿN',…þŒ0aÂd¿üÏ;;Åzýï5|‚ÅJËêÕÆ¸Äó5‡(¬¿ÆÔŒ‰+Kç ¢ç•<šºiE==+÷›F$ƒ¹¦D×ý«ï tµ¥©~¬,’¨­QFš­EâEë}™¿mV€ð#/\Q?1<ù™³ÿ¢BìúA¿ Úv®±\øÓœ·n$”|¿îTëüZˆ²¯™cϧB½t²§Ø<â×ä ‚1âÖÆª±FSüüRðMÞЫãP' (/תDm2§M.º¸?Qc—,à'®Ÿm:‹(¬À8’ˆE—t`¥××Ó„X ¸)õÖŠ¤L‘ŒºÏ‘;"q.µôlú9*OuÐò!ÄÄqÚæö:³QœŸ¬÷¡]©uœ$>JUK&P]ÇÖÈžZTHv™€Öê®edDfõ²ÔÕ2ÙE}'aÌÔÑ£‹=×+Ú«¶-”BQɲNá]DÊM›±f™ñ~N¡…Œô]WÍP ºb„ê_óì,c<À³¢ãÉÓ#3aðiN–yt¼,·NŒN[ò Œ E3Y9U?[Ù8Jù©9‰¢¤5P˜AÐ A3^§žxF嘂H ˜·$”Ù½Jîø/P¤¶¥ÀYˆVu~‰Ñ-Ç0©ÅÍ·SËuñg¤{r×›x¥Ÿ‡- Wø4zÑÝâìÑ©ôÁöEéÅ4êÛÓèW¤¬íô(Îów2‹“¡t™‰c¿:˜ó49òLàX`n{üº>×ϳÕOËrú’µQ7Ôo¯½%³U’˜zêÔ…ó–”JÉöÆ@äÚå¸Ç£*ó,$ö“õê¢û¨II"š·}0z2?HÅŠšìÜ‘E¤¡":>i¾3v52jÕtMähM¦*Ä»¤m6Õ’B¡Â­£v^묲VuææZ=Í2_Ár’»ÀÐæX|2YK ü«Üµ;Œó®·=<†ûv)ù­µÝtrJãÓ"¦ît»ˆÂ%©M•^7¶>sé½Âþj˜›€Y6á½G&V[Óy¼K -º˜PBÄÉàVÕ6£e·å½Íiä8‘êegÂsµt’œÃgSNG¤hþõôÊòk«\ë9%T¡ £ÛÏ¿âK ΖøUoÎ÷ÑP-o£ûa.wñš;)ÐÐÉÉõe·u2»Þ-ˆ#a\è& Mò§”°wµ˜å´¨SÅ;ÇÂx,k7'=DÃâàWuFÞVÕïIKqq÷,¬°Öçïð»j¬IAr=2!6·ì>WTeâñò¤j Ï£ÑT§q1(¬Kɱìà‡èÇ…%<òÆ6åfEu5޶7,R’ðuÐÒÁ2¡d$`6¨®iºé^Ù\3¿0Ž‘®P Áã@­áKL˜†Ý÷ ÝgȈkÌI”@ìU¤ú2Ñû1K_ŽÜÜ^e–õA¹@‹XE6éO_ôc#øSRÕÃÀ«P”e#jˆ=š¶÷ðÒ)ÐtCìÇêË>†…òçÎçµylÛH&˜ÖŸXà’+«X—WN ±¶–„"òì >²ïX—ýB”·Ó?êi½_¡ýH;º°¢:bò+¨ÂÓô4¼`E²;F›>:Õ<ª¹ÂlW6r×D[D-ŠP„ð\˜{4îK¥ùž[áT7bÆW ¬‹- ÂUû:º@¿>Th§áV³– Èîüõ¯ÐF…®ð+¸ÇÄÍ=2aÀgïrÍYð=¿ èú0H†!ù66IŒx+œEÖ]k¥Hë]£À—9~ÐmZéXdÛÕú’NŸµŽKù*ÿaô 7gNRü¬;T!ôeš9 vÇËø„¤¸É>'D¯ç» ö#qÇ1Ùbe8¢_”FêÚgFí¿ôEqR_Í@euÞ>Ò5:ÕGe[äÊê¡qYÀQTÙœ–¼g à2R–¥»‹ ,Ñ^»É^Û¿ä ƒ±Æï k‹Þ£s‹dWìxëV}Å´ŠIGÕ:ÇgZ× ²m"W4ÅÏè n2¯Bœ`oPÑ\a `]Ò}¼²¥A›(_jÆÀÙ>ÁÄ$¸\‰Týµ;…›«Õ²m5Ž|ˆtÁ=µº+-O¥Ñ’&g¬FÍÚ¥‰'fU3˜èƒpÔª€DF’Ha˜ñÛë¤z„~†²:¸þ|ß¹ÐÛS¾BŠIL¶­á˨ԛAßUâýv¤ÏÇÉï¢_ø}4Ôeæ"¶Újk.æ¹x¨tRûÁI›š«ËÐF rPkêeuVûÕU­ÇæN!`òð‡a)>y¤J¶Œä;›2H &å ¹2 ´õÂ:Ñ`…OwØWÍgÎ[Ú»–?S»n—U™~ߺæ#Ã’at‡w&hÞ5f¶üN¿Ûýø5"ÅwËž |;B+gÓoés®ká.ê¼÷Tç‹»¤£©Å¹Ó æ÷Ø’®ãM5J_ÕH@1nêÁßšU-ÎFœ6=4çé—…"·6àÙš?±‰£ÓÌŽs6©ˆ Y¥_-KO© „‡_3 (艵?)úàê–~³£Qn—!è Ôü8¢û|õC:zH^‚¢ëáתDHÿxb+Òuó.ƒ¦Ö>Ñœò¥rsÔ´M^ó´Èy³Ø‰2[¢#俥êÓgVFµr•‚ƒEK“ݼ[†€pß¶Ž¶â¼¹¸ýï!cÆ!ë%>G§·6,-€­äüÊ1ýy$I¡n²cYáæ5 ¾Ù‡ÒʦҨŒ^•Z­ˆ3Ä*wwó <•\‡ü*™šôkïœqCàWŠŒpÙE7^öªG)oâ\XíËH/7óå'—G‘M˜ô³¯®› Zù/—é,-„q*ha“ ’ÙËê*(ä÷þYG+XÁÎË»Zï‡ Ÿrwi½s$¦½:„¥ÄyaO)Z¢ó 0ÈbÛÑ1¿Äî½ïç`rGkTáÚ¶g)aÍpPC£ß½·óƒk÷ê…BP.ŒYÉfœÚ©ÖžÌ.zQmÿ演§”Ú.ÄDr_-]mùRN &ò²ƒ+&UQC³#ü°J…òöÐàU_ΈauÀŒEþFÕÑíÅ×Âüe4+Xñ]ôc8uþ*ß•'Šªy 1®”¢èU^0•»ÇƒÛž4¤[÷·Z.£§æôZo<òª¶±©²+8ÿDCˆîà1ňx,xˆ I=Úû Tb»pvþW—ÐÊ=ºøIË—Üw}hOájnâPDàNiå`É8·ë9$Íju×Õ5uvë‘’±º&}c‹ÓÄlSâäe߻Ӧ0c× >ó\Ì\å/H cé\´Û–íé¶#JN%!¶ÅÆ"I¬Ù¾ƒa½ßžw‚®ÒÜ£úµÎqŽ©G$|Cq} ÕKõ.*&Z5_a¿M‰‚÷€©?Õð*CË,޲ üÚü ŠuST›¶ÿ¶kfië×Fn¿.g*õ éSí¨0ó ó~Wû/ £X7–¯ã¬AŒâû7Êá.ðR©¬öÕÝóJÙqŒ¾íËà몽FÏÑZ<% “Gñ_5(ÄÎaL³U‡Fûú,YIÐ@|ÂŒbu$’šSŠ•[6Izè»Øî¯õ܇ÖD5GÊ—·mñí äáÖ]Öš¾žèÖç èù%üÿïˆÈ3 endstream endobj 224 0 obj << /Type /FontDescriptor /FontName /NVBCMS+CMBX12 /Flags 4 /FontBBox [-53 -251 1139 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 109 /XHeight 444 /CharSet (/A/C/D/E/F/I/O/Q/S/T/U/a/b/c/colon/d/e/f/fi/five/fl/four/g/h/i/j/k/l/m/n/o/one/p/period/q/r/s/slash/t/three/two/u/v/w/x/y/z) /FontFile 223 0 R >> endobj 225 0 obj << /Length1 1574 /Length2 8340 /Length3 0 /Length 9369 /Filter /FlateDecode >> stream xÚwuT”Ý.]ÒÔHHw‡¤„t7è 30 Ò% H—”t#Ý- ÝÒ )\ôëß½Üõ®5ïûìýì½Ï>g?g­a~¤¥Ë%k ³) .>n^q€¼ºœ‘Þ3>^/¯7//?3³ýãÁa6ÁÁ0¨ø¿8òpqo{ DÜSÕaP€Š À'àççåðóòŠýE„ÁÅO®`k€:7@9ã0ËÃ=à`[;Ä}¥¿>¬Vl>11ÎßáYl„Ô;Ã}E+   ³ƒÿIÁ*i‡@8Šó𸹹qœ¹ap[)6N€aÐ9ƒà® kÀ¯¶@ÐßÍqã0ôìÀθta67 ¸7@ÀV ¨ó} ÔÜ×è>Sh:‚ Õþ pþÜ7ßßéþŒþ• ý ´²‚98¡`¨-À 4Õ¸îNjý‹„8Ãîã®@0hyOø½x @QV¼ïñÏ­à`G„3·3ò«Kž_iî7Zj-spAÎ8¿Ö÷ YÝï¼ÏßGü sƒzýƒmÀPk›_­X»8òèCÁN. gOÿdÝ›pþ±Ù‚!^^^>È r·²ãùUDÏÃôÛùÛ|߇—#Ì`sß Èlºáx9]AÜäãõoÇÀl…X‚lÁPœ²ß›A6àû)€ƒÝ¦¼÷CÈàýõüýe~?gÖ0(ÄãúïƒæÑÑPQ7Tàø»é¿Ýrr0w€¿€‹_ˆÀÇ/"øü7Óß{ðWÿ¿­Z@ðŸëûWÆgP@ì6î÷ï¯V\ÿœÖ?åÃøo Øý\ƒ¬ÿÈÀŒWˆ×êþ‡ïÿ[ ¿Cþ_ø•åÿCÿ»&Eä7ƒõ/ÊÿÅ:€!rî'Ûq¯uؽV ÿK5ý!n9Äú}ÏÀ{­ÈBmïç‹O›Wð;ØYì²Ö#¬ìþ˜§¿Žã¾ iÁœÁ¿n û(^ÞÿñÝKÐêåý-ã|h¿] {…ý·®Ô fýKŠüB ôÀ¹Ÿ{$ðâ»×¬5Èý÷˜x¸¡0Ä}à¾C€ ŽóëhEy7.Êç¨LJQQ\” Ù´–2¹JÙ‰ÉÖgLÎße>ÄÑ*î\&÷ ò ­öÎq"ƒW’©wwñUOÓv¥’¶;…ª¾L0¯w*P^ǰœ6ù³Z:i½+UÝN™½îó ÿ>›¬2¤T›íó<!¦iI§±%öF¬ˆG¹:¯Cž‚ÛädŒwSIã\[V3ºs—‰Á|3ä«9γ®L`€ ¹õ·ìºÖÏÆOš$ÜŠöÄi÷+Wäì¹îÀÏO•k 1žÛçÃE«s/óz¼ó‹N8( ™ËíZŒ<ÂW÷Ï«‰n¼²Z¼H¬¨™:à¹ÁÄh ¥£™ŽZÜëÌiÌ7‰b8j8ÐdÈßY q|Ü–‰±UÇ¡'wCÓ×x«:4w£8ý^}t"¢=Yå ÆÁkRž|A›ZN|¥ïsžÛÿ²%Þ~Ã?‚d:òƒß´fø.xy“T€É¤ˆ¡ÖÛE¬¹i (<î\P¿ððûê.]]ñpçx&Ü÷Ö;–æHAf•t·…¨[Cß(ä¿àQ;›¾B–ª_òZ¢)«ÝåÇ‹=àÍ­{Å‹g'îÊ;L½+¥CÍô2×#õFGF‚5/_Êï)¶=H3,]̘íBë«0ãUùÊIÀÙO<;æGÙ½b7±¶RåeM¼D¬€%Ô•â’>LUûMf;­úX"j%.€È„ǧÆ•ÆÕÿ‰‚²Ía(MöÄnÇS· Ôv¶PÆÔ.O¹1üröÞ­<c•“\ck Õäø“Å”LD#Þh#”™2÷€Ü ¤ú|1aÿ›,OLÎ;r•rœôÝ~©Elê7[nŽ=󂄨ö™F[ªÇ͘‘ðÄëô€°y[ë;/•‚žÐQSÈØR “¤å(ŒÆR´ªÞãkˆ_ê\Á ©J¡?÷ WÀ?K×9¸/E€ú@„TYÎvÔ˜4œñs–î{ì—üñÆ#”ªõZAÅk±‚Ò¢®®Ø9 ô‚ãÁC˜à7ý›*‰êH»Î 齦ªÝJSG2ª£ìŽþå^‰‚ƒ˜ãú¶„j½º.nS3ÓwFm/˜I<Ö'â=xxpæ¥_‡šΡ6µÉLlhÒ{F¿K·j¬åhä’BRqÝäšs¼u´h€Ï°ÐW‘°Š×䑤ˆ¥Ü–Q"û*"mãšœ–wˆ||ŽÕf2…a•€”Ó&|\t)=K¤/j:x}¶Î„:Hº˜¨ù…7%eðBÌ cé‹oKQ Ú©³>5Ÿ†™ $™¼”¢"f2˜mVL,ãT¨‹c …½±¹rìe™.IMº ñº^^- vm:a’©øyˆ)+cš cÓ{³®Í®©ÍÆŽIÒ$ßo—I]á]ÛÈ`)±ÅsªÜ? éÜ–Mnoö³¹F=9d÷ÁN ñt,drÏ ´ÐgÿFXeƒ4‡­!}-£Vd)=4i¨Ý¤L.’Ë$ÇÊ ‰Æ,ñ:O©l5èÎlŸ§X0›i‚î‚ïU~`Oþ]#hž¹Çx8ABÅ¢H-…xM†Ä®qeò•+"YQ2fÝôY·2R'Z¤@Ú–{È#\íÐS›ÉÆ×w¯hX*8 Œäкä}…Õ ô ‰_U`MèvY+>î«?ðâTUwÉ Ý‰‰(ù×å;…¦I»[ãp8±ây®ê¯È ÐÒãe`ëßvÄÙu¨²ë-&Œœx!ù>®ûiEMld½©¹:?ÙkJäa$S&Ó¬M2Ï5Drík½´_ÊbÚ` žUR:H‘1Hæ°7ÇMØ—(¥‡NÑßi¼“ýNš?ÕHúÈh¤;ª›'$¹$6=°ew¥DÍ5wQM7ïÍäõqÙÑÈ>Oî}sðú¦P9Ž–“®úùÞSçMÒÖ)Øy./¾‰­ÁÄ(2›RQÐcÖï-à;.jèW!;óãg\>…xÞû ÝW Ø8^E¿rjï ýÝm ¹G þ¼/“àÛî<þ4 õ[߸re޽,qÝÊÉëÂO¬ðÏe\–C’Ÿï{¢ç—øºM}i #Ïéäà!ñDZÁ”®dΊòðúÊG57ïO³Ò=òm•I¢(xœ8_0TåY|ÛK1ß5}Øå~j›²fk𬥟á+) [ºõ´]—pTÒÅáÕôþ£æ>õÙG…9,»›õ ™:máqF_®7@_z±)½Ö5-M6øxèE~|Òž6…ê³öý²¦R‡™ZþÂß UÑѤÌ'4}¹"(šTeS§Ÿ´ˆ·ÈΘpÇŸóÔhã©™)<ÂÐ;aXKLô]%ž¶ñøP²GÈÈøTÑR—yÍöˆ¾{4]¶Xå;Oæ¸/–+‘"GØüCqÌg]áÈ%ÒáÞ·Ùzø+âÝ”ð3_œ-°«ër³fE$öüÅa} Ÿ¥êFÙ¸Ù ÈÉ'À}¿¸îöå’œ¿× »Ø›±S9påtÙ1—dxLº/¿·¨`v˜ ¿@aÏÖŒIH‡3a׿ӡI£àç…Ù>/E¿°ì…¦jUõß #g~|Êßã‰Ä^ RO]Œ}–нÑoùfA±KìçÀPù”R«?ÓH¯*†Sð|GZ!cß®xiI•C4£l™ {žÞø¿Æq[¾Ê‚Oð§ž)zµª¤*d›/mqk¦ºùì^[¨]Ÿ ˜10¦ìí:m–ΑƒDæŸ8OLðHiCà|ö*²Ò“ëbÐ4…þÍ'¹Ç¡&Q‹¬¥ÔÒ‰!F䞌´¤ÊÌCS‹ã.$ì?2Ñ» óÐ>àG4k³0Qª0US‰asÅo¶C¬ND…ò+.Éñ`2ب {¬üwÔÒ¢P62R/ÔŒ>nBLMz¤ÎC'"¹íÏZ–‚¬ü¶ÈŠ-UÛE„sÌ f™Št'Àº•‡ŠJEd{¹€&δôÄbŒƒf$Ö$‚/Ò¹t‡: #n<™*e 0†”bæ]Ö,Jù ŒY!OxúËkÓO//G/\ÐÖÆ}*ÇœôûäaàëŒÇu"”!³× ’õ•3ÞôOJœLɰ‘óIT5ÞŠªßUØÓêû¿¤™£R)}Q„Kwp”‘KŒ®ïºr4`Ë?ePeY[*ÎGáÁ/éÆÐà[ÒÂEçîµ‘Šž|ýéÌ­è0·ë†åšQÊçèI‡²îŽm{ ï!e½ÛNêV³âN‹Œ§†=¤uâ…Å2¶Uë¸éTÑŠ¨Ð¾¦fäQl.Y‡À¹D¡2bÏßòÔ·'Hc¤HYÞΰSR‰QŽ "øz8J†ÀIB|r‹Ÿ/AÕETô@”ÌD%ã˜É؃Åâéî0¶¿ÏUš…³ðž_Ćñ<~Ãl¾u?JitC<‡ K{–ž†"=©u݂ܮ»joÂÑÔèF†ÈoOuÏÆ"Q2uM]@ÌÆ 4le+£°p©§ä¬7 WŒä6¼£ÿòÙ³ØÜÀò 4–6i8: 2<0èµ­-šçø‰ÉTÏn±6×?Áóñ ÎBë|,’Á†k¿ õ~ð”9·­$w¼ðJBc6š†ÜPÁ˜Ž>íåæVg|E:áRLœ¾[óÆÏ®¶G/b"ú¬{ô'ÚZ öZ]~m ø©Â4o?`Å¿Õzôäáq“ì¤_äštççù¨äŸ-¬Äµ°ÙƬ(R„œŸ‘¶^¾€K1gŠªôV¬»L?õ5ñLûp¼ð(&Î)5Ãdµ‚ö´Æ3ìÓR¾‚gÏkȆRKå~ÃsõA‹·œßs‹‚t®'ãmžpQ‰ï’ž}…¯4ÕO¸??!¸TkÆÖ8Q%î)eTrv_˜BXs¢‡èˆZá ~ƦZ XܬeøÖ•f£ùÚ)ŸŒ£#76ƒ"²°·_¯-;øJ.qOîTÀ´ VLZðÈjžO©°° nÇRx•GLAZKÐ¥-pÌ‹î%'ºèô4¡0ß{¼(2æ–‰Jo-»»=Zs*l÷NƒÐ¹yy¸Î+ëhv»dí?öõM$!¤»¬\’Ü&€¤U›¥ ¡Çîv¼Ì µØ‹5Öœó„ó.MÓIÀ Ù©Í#U¿6“ßQ¬Û¼óy¯­T$w„òQ$†ÿÍùW$ë*uçs¥äûÿ1àGèÉ›h,ø¤Ëqã*‹ÇÞ(>ë?LÉ âÃÖw¾kJÔÅgIó׫'Úø|ß3çueÕ ¿]4‰‚ç7'™¼Ç•óvE뇺 æy“ØM€á¨é¡vˆ÷©Ñ«gq¢G !-«Ç,Žºörž/m„) ‚~â_[—Je’Ô£Þiy×ïmÌñÉúÉŽŽ3v羑÷²ã¦ `­'ÓªT–yl×}¨ÌÄm'Gy Ãb<”pż‰{xªv÷e}^€ˆË|öä»;AÎZÅö³~YÁï*qTúGª²‰#ÍäŸ>/Áy¸m?9_ö< MgŠkMަ<:µödïÆ \VËÿD-vZœî*qCöIWÀåa[ŽéÖÁÙjƒÓ,iùËlúÞì 6Hí•àÓæ"õÇŸdé¡îZxc?DNñ·|ܰrSo; ×ÂÉJÙ´'Ëó±ïŽØô¹øæý1¥Yd…—oRaÚª¬[ÝÍ|[ ƒƒé²…fn—ã™2¢†(¨[ìó‰j±ÚUê¬âŠƒVų؆‘Èô\EôWÁ–C*kMØrK|ä€Ðµ´O¯\á‹Õ7J®)Ê$á–Ä2™œÜözÈL+oŸ– Ue&Ql¿›’lPÁ²ÿ©`À˜ ©”M‡Ô›t éeàùcŽÏ ½E{ ß]º‰ø÷DˆB{Ktæçø‡Ø”G¬/¹û›©Ô…0 Äð‚Ïb´«hsäp&(Y[dÞŽ½â3‘õfiônh:`ð ßJ œïqß&êbE¼¬¥UPIts#>1 ŸÐÚéFY|žäϳÙùšä¬&ß ß^: »e_µc<Û,Ö[t¾l™ÕãaE0Pr·èW;6 7–×™‡uèÝ\µ7J^úÖt¨¸ÈÞä~¼"m§²!AåÊÝ™–l£÷V#þÒ`{ðÕÏs&|ò²lîqúÙbg°˜«¸Õ"ÑÔÛ÷qÞàv”Ú]­ lœÒ‰¦Õ§•wVÆwÁ¹F¶ß5nà¯&dt}̯KAÑL8&<–OmŠgŽjóg5 çLñ`7öR±¡§‹>Š1‚D”ž²‰{ x´¾1ÚŒW$ióÆÖ‚mSÔ%(å3 \dóÌâ0( B‚™™³’¹$è{ÝtÕLê‹Ó­ƒ°f '_¤v9ßH˜nO¾C‰ù|Sbúì§È.ù*%—qŽÛAÓç¦î¥^ltþÁAÉ[ü[-†Þ1CØÉ—hNçÆ¿ïSÒ9Ý™Q%wÔ÷UýÐðÏ8hÏjø˜0Ú*¡ÃU Éž~ãõÌzé‡ÎE¼ŠBXÂÃÕéXÞJÔ"{=?·‹ü,äˆfÍ#ø²NiÖ ±+b½¬°ˆþ®o}OÝm–vÓ‚‹ÐP`%;‰=ß* ê^,Ȫ[.7l^S²=¸‘±§âÕ£,Û*Fœ¸ÚÖ¶SþÅŸ·òÑ»¤$ðœj†*49£. aŠŸ!5Î…NùšVCEC¥™B·)'wè)û¥£ÆŽ iùƒO¯Þ{2ê@­£@µXY®¯rÄûúä5ºñúbÊIèNÕ´×^h¥L&V:UнËJTßX;ü<Åg‰ É¡Ñ‹8ÙV©/ìíO…8ýéÉŠ½f¡Ç*•7ÞÕ9—5A«à‘ø/èD,zù'¬¿’<úøÀi3À³$n“t1À“JÔë¤ Øw&Ô>ÅÇÌ3¢¨)]Ÿ=â³RÌÑS”Õkã1çx¶¡";Z`}\†v“ª¿Â’(X~%Fð¡n¾c¯WfË2–ª”Þc+Â/;Wr8cò-½zñ„s¡(ØòC)M>/çX„æÍ&ŸôM3!³+v¨fê3–ÝúÚ„ŒúœL›åÛ¥úW åÙXà|ÆöáéÝ®ˆ§AnWÀ¨ït[á°fÌÕŒmÒtõ:–Qûއ+È!¬ç3bæ|[%¦ŠZ>2ÍÆÍQ+Æwj€A•ÓÙ]Œ§oE6§w(ö.(DÖì?ÚÇÖi_ôEÊ^¤ÊPð¿®Ä Á𩫟ɨ‰±e¤Nä }RmæaŠ7•³Ü‡}[‡Õ´&ÃNl´Œ\P³õÜrRA,l9þCf.‘•Ç+S]+ñêdšÏµñØ(â³²I`[íKJXQs\Щq¦OK/FžÖžŽZØG.W:ø<ÓzGXÌ)t(äU“©_Ë­B4Ë™§>଀¿’ÖlRŠ®j`é•ýìQê³ÙˆYý×Ï o-½ÛKÖý¬_>ó2Í¡kF|úfUÝ>‡·ÁëZÅ>ßÞÏdÄXr¦«êU0LÓº-‰Æ«a}(¾p®¬Ì©$zΤêH[z0(5ýù\@¡ÑëëLf×}˜6ûÆL«J“Yèƒ²îÆŽ/ã3 ÕNÇ7GÖk ƒÊ‘Éq3€M-Ðöc(ä-·~áï `¼FeÆh ­ß£„RwVZ¾y8&åŒûÆ5w›Ä6Ëëen@ºµí‡d(áÝ3^¿'º]^ÌK-©ÄÁÝ]R%àyóg©™9bÜá'kÏõ&’2ø¹‚Ü|,›•P[ñš0dèrçß½Õ0+c1~å$4`Š(Ô§i1Dé©RîÒ7Ö ¹<†`† | ÝÊ>‰–á[–2¾È×1)=›!\Þû€EeK›^œÊfme)ý!ñawäý-Ÿ tg‡Ú‰1F¼^¤ûAQ)þ¾ÑIÉ“­\ó!.W¼Ð7Å“Ñn]¾<Ø…q»ÀµåKÅsn´dIƒè0n³Vz àŒt\Óè4£QÏ ¾[_K¨(ç*”Îð7fîk[Xh0Ayú#° ?ñ‡ˆP›ßFðúƒÓJ(jŽÞZpD˜—ÇJ1uùå‡a<Ú¦Ã*-ÿ!€ó£Í¨‹Ü/Bl«ƒÒíC7UjbX,¹" ™Ÿ0>WxK¦¨vÄÛ5¼}Ÿ£¹“ܼ)gfÿ€ "eÞ‡¶ÈåÚqÖ%ÿn… Äº:Øá¨+ø”Cå8Æn­)”¿¶0´tí"ÍvR“9¤»PÃ6?JƘü-žÔ(ÓŠ:™"¿fjÕGÅ—’lìØ»³ÔWªõVõ“²tŠ©wn ÒP†Ë>Eˆrn„áæ1ET=.K·<°aÔe(%a—TkÔ‘ÁŠìä˜":x€Œ>ìMŸ)nzˆSK:•~1È+E"µ&x“9êÏXõUº Iº»‚›~Bðfè<„º0«a]À‡)׉†ÄΕq4·Uï3¨ïdƒín³¾Ùá{ 4¤{£ÙÕ¿~ðÎEOM]›²lÓ¶cÅánå_€©­o$ô)ò¦(6ZŸ·ed =ÏJɸ–LÈT¯`»´¦=¯à½t8:ßøq ÏA©Ø¡®gµ­a¼ ΙÀ÷V¹ó²;©©˜:ß¾1/ìöì-;%~ã0èÌ?|`úlÕBKXŸcô(D䯵&‰Í ³SãpŠþ/ÿ9¢ =©Äô”m„È?µ—€žšP-s)ãw1þölr¸Ä1#Ʀø –ÝÆë/¬þäç{¯ ïÅKÙœùœ²V.ÊUóuæÛU¾{ß¿YÈÏãA_¥hØí×ìvÜb΋™þ©"%Ú ´Ä­Ñ‡äf©EÄ6¸Š¼•b|ûØPþc±÷i¡£ýfµ”+D;%Eî•ÑÏnãuž÷¹?ÁdŠ Mü­4Ђة(®5ã&gg­>c &Jc&ë÷ym½ývóÝ#ŸÁ·OéXQ>‘¶¼8ùæ&(^2®Ùœ—}T”­“Cn„¹]¥TI#¬ÀP¸~¼¬Mò ·¬¡<èqG1"ê̦°äÖ[M_¹ÆF¢®Þ“ÊjTÊØoÆÏÿ](YŸº¥\8ÃÓòðòIì³ÏDVßÄï^õõ³• ¿vu\~vxm“ùÈÿÜ€ò‚ e|w*ª•¶‘9NËÑä}*?Àj©ú)½U]3œRÆAôo¼¯zzóµª[ÔœR°‡ê4·3§Ö+îcL@IJµ"ú†=bv â¥œt[+ 3zºa…R--¾/½¹´3ÉÃC¿Ôá8Ø©j쀶´Ú#<¶P`ÁŠ>1ú¥Ô«9›y^Ü5͆”çØ£Ý˧â#N–ª‰¦šB±÷=Y›8¯JsË/ƒJu0;7z§>ä„W¸_&É^CñÑ}Ø gñÝ®éâ©¥=ó…\F¼ ÐÃÖO\Þ_×Uh—õ%¸'ëÓZ•X&ƒ¾Ž‹ö>ug¥¤ ÙŒ%<ðð~|Ó  *㨗¿;Á¼¿Šs¹™.âPÒ/¿èZÈßl}Ã% )Ü#h‘Ðõæ©ÂkîÇ- îÑ]ßë>2î>j««E8¥|gf‘ùù>1±ð<Úc.C‘ZÜ¥Sâ&ÚÞ ·, _¤æÍbTú3ŠÑzª¨É-$^˜3ðxwÕ@/^PµÎÊP¥à¬‰ íŽñ„+Q(¹;j¤Ùô4èËÛBÝÞoÅK|']+Ý“¢Mœ”þ-LùHߊƪ†‰šeâF¡ŸËws6·åƱ€ZUœÔß¶¿íTyÀE§†C7L„,ºÐ2Q»é|Ó÷`CÍ\ÿ¹jªÑ3ãzUø[Ø)f‹e! Ýà¢KYÍÁ1ÔÂløÕˆÀ+d!WŽxJú2GU)r;S:ŒdÛyÜΨ¬ò¶ñG #¥ºhÕú#:TÞP]$;ävÚ…IÏ&Tõbn ZôëšqGêðË¢}ãçwVܰЙaGÑ[Ë6àlR+Óà;Öô{BƒgÈÅü¾ãìydÚùsé^K&‰K4<ª‡ÚbI#ãŒ%t²\¶Ÿœ¬vò\<‡G(ºí¯Ä?s´ ¼ëÇ›çô³W+ Ì×’Ó°uà ÁœAʯÒ]ABØÐý†»gS*³‹© ?GŠºÌ?@šÜ¿NôâògïÚn#q  ãÍTJIñã®è“h-ß*W™£1ÚõW.;¶·ÚGª0©²¾0Ãv‹_öíÙ¯ÎÕ >ô èZh¨¦"!­…*A;äìÖ.àt¢ºM¬[¤ºø¥Á5BýäŸÏï.R¿+rJž”v½oà‘±å~ßÔÝ,ñ~,ZçeO¶·gÞÒà yÍÏ×Z^DR–œ‹ª®Ù è€,È@²eqžŒœÊã§H„¶nÔº¡½ÒÆ2ädé–¢›W¹Ü8k¡RvlnlÁŽUšïÅÞ8L|v¼ŸÛLÛ¿M;ÊwD2ùã­®È~à/)8Ùœ*E[Nˆ-sYx6³`òõ…³Ô>íÛ9þÛ‚zuÒæ„V‚‰Ö¨×eö=tgx9¡¡Ü6áᥡÚ_9°¯ÜãÓçöq-<ó6í¥™ L1C±F<›Ú‘äÍÞb¸Ž¬7Úg}aë?•>x2oAð8Ê •v_ÎnG-¿›áµJÎÁ³a’—÷ä‡> endobj 227 0 obj << /Length1 2557 /Length2 22852 /Length3 0 /Length 24301 /Filter /FlateDecode >> stream xÚŒöP\ÛÖ #Á!¸[ãîîîîÁµqhÜ=@Ð@ ÁÝàÜ%¸»;·×9çÜ›s¿ÿ¯z¯ºª{9Çô¹Ön*2U &1 PäèÆÄÆÌÊPRgc°²r0³²²#RQiÚ¸Ùÿ#Ri]\m@Žüÿ"H¸MÝÀ2IS70O äw·°qظùÙxøYY쬬|ÿ!‚\ø’¦6%f€<ÈèŠH%ròv±±²v‡ùÏ#€ÖœÀÆÇÇÃø—9@ÌèbcnêP2u³:€#š›Ú4@æ6@7ïÿqA+híææÄÏÂâééÉlêàÊ r±¦cxÚ¸YÔ®@ àwÁeSàß•1#R4­m\ÿ–k€,Ý‚×Ëähïý‡þ×|Y•4Õ$dþ®ø¿:qqÀ—‰“ÀÄÎÅ `û½d<àÿÿuóßü§ø¿¤ª¦6ÿ$÷/rŽ– ßß5€›÷Ÿ:<þY ÚŽ à#(ƒÀ» ÐþY}V.VsðÛÿçð—Éÿ¿½ÿíåÿmõÿoBÒîöö©iÿÒÿÿ¨Mlì½ÿ!€WÙÝ |,”@àÃáø©:À¿²ÐÂÆÝáÿjåÜLÁÇCÌÑÊþ¿m´q•¶ñZ¨Ú¸™[ÿ½Cÿ™ؽ½#Päjóû²0ötàgn¾P\Á³úKŸ§ÿ )åh²ø}ðØ¹¸¦..¦ÞˆàуÀ— |B-€^­6€…Ùä6€ËóX‚\O”› À"ö[ô7â°ˆÿA<‰?ˆÀ"ùñX¤þ‹xX,Ò€Eæb°ÈþA¹?]áGWüƒÀÑ•þ ptå?]忈]õGWûƒÀÑÕÿ pt?ˆÀ¢ùsÑúƒÀ¹hÿAà\tþ p.ïþ p.ºÿE|`¦éfšýA`¦ùXg²þ?NÎ߇?ö¿7‚Åâ_\ðpޝã¸\Ë?L·üäü mþàßä?‹ã7ôøãŸí·Àþþ7äîò¯h`‚Õ¿ Ø¿õŸjÀý´öv²:þ‹–ý+>+¸ÛApïìþÁ ²ÿwÏá_¥;óÇ3ØÔ|`þ¥×ú“ Øô?jp1NÔ`gNà·££=ÐòO79Ùþ‘ºüO“9À±œ€.à·à¿¨ÜÉl@ÿÖïö9ÿ±7ÇÙä´0³ÿ_|Üÿhþ'8ß?Òÿ%³ýâ¿FÀî¨ëŸ6€\6ÿ»W\¿9@ ‚ ìÄüÖùãœÃŸ àkšÅÍÚø¯U7ÈÍô/pÜÿÁ³òøçáù¯=[ÿ+;ؽ÷¿ x>: öätù;Ôÿ\uæî.àY¸ýõ2߃ÿÁýá½€æˆ ³ sPÛÚж»¯b„žL;cBST;:)tL¾ .ßÝÞÂ}¡«ÎYs¹û2Ø…¶¼%E{-ºHúì{ô­îCK¢Zë£ß“ñ'õÉVÄù œ¾ñ‚#±º^b"&MÑ]¿gg?í`;èoòT9Îî¼oUó0ï<{d¼êzË–FÂgwÔv«¹žÊ~2ÅjÅOSåšeÎà‘ú1ÃÓcœ{¡N_ßLad¿’Êb@ô?Žå(ôÕ[gÿx?ã³R¡ÉîÚ‰O‰¯‡G }12Ií+¾Ÿ$;ç[R¸Ü7ïõM°4…1y™ yŸ=½ÚF=Ú±©»Æcd¡m;ç ”†°s;±¦´ ËØ…\»ºÕ8Ó­†ÃH¼ßn)¾Òv£ýÃÒ6™h‘ïgÝ+`E×ú(¨ù‡ïc½óÊàPÓmxrËÝ`ÓÐÖb‘^"+O6z)ký¨å%þtâd˜2·Q¨N ã¢ÇÞ'Ó0Aß ñ¶ÍVV=^˜nÈ¢S®¿‹þ• çÊíëÓèsöž†ï_ßs+¿šu$ŸŸà[sH™d„Óæ¦KýˆÌ]£Q¨6L¿/c9_¯Äa–,õ&ULØäš¿è§,䔓éÞ™«Œ2ñ¶½çËg>Õ®ÔjçÊW#Û>ŽfÝoÖÃwc±¿yS^.n„}Ò¾?¯ôŒü¸¡ÉšÙ®”Ý骒*# Ut»5Ó`Fq¢)îAæÐ‡ª£)ô°5ÚYôäÉX&'IES¸ Ô«p øÁoÁp^²°ÿk(NäuS{íw•;Zä ´•T»KÐÆß›´/^Ä 54ïò(|Ö!ºç~Žn‘ OnQúÚWsö4¸bR¡í?Q“Ím¥]­ ÑÆD½XF5¯jyŠÕ/Õ¤O÷׎FÞˆSÀ}ç`Å;–”Òd¬*2`½Î&fÙnúdŠ>Æ5 U¹Ô®b] †• têBR®IŠDh"Lì>qÉþé%“«æØ_N˜…¿mSM5û9‹lnQ‘·F?+ ý×Va YŒeØ»xó}ôhxˆ-Á¬Ú¸¤ uLU©\²P&þtôõ— ±·ò¨ÕÌ0 =µòcòneÔݾ<°ñÜ5ˆÁÚÝG3³²3„‰WÑ,¥Co¥ç¬<É¥¹>Çy^hDPúU¿ƒÔÇöÆ’‘&M3IØXKýàS_[Îê›îç3V­ÏWsB×*‚à¾~MÄ7¹âI:ÂA2ÉÑÿÒ~Åë¥*ÈÉ6C|%ä6~' ±ˆŠ"Àú­ÙßEÁí€ã1MKÆ& §^Ö­²vrÊÿÆdö%Àœ„Ê`Íù,È ¥e—S…ÓƒL?ÝøV®%ïëY]õvß®y4ëqù¥’ü½R¶.kÅHœ‡/÷ÞçYƒ»n”K¶ó`9¾Ð-ôçLÍŸº ÌË x‡ƒt?qe†|M#$ôÄe²¾#’{/ѾR  ïfWaÒN®â–S¥¤´ùÊ×1V²&Ò“¯ðÇœoxüvÃàÜ*Û­’Z¤tëãxϯGGXÍ#Ïm”9ÊÍéc‹*7³ã¢…:ì^¤û¼ÎdŠ?«¶AGÛlÚ,1âB¢5¿NÈX~èæ‚|î)Oî'nûƒ¨z*;&±=7V7Ø AeÝk€*ãg9ëaT÷ý\q‡SiX\þ¶·ðóIð¥ÞÜ·!‹«bi”’Pw%|‡xB4 Û´#ÏmrOÖÊõ³¾Û*€·)lЊæ3Ø06 EÔäJLJ=¢M:3á•x•ËfT¬ )0ô&iGp=¹‰k‰,–×Ý™öß©T¥ØsùI´Åè4ÄYvËpN¹0Ë$²Äò×n3íª|‡;‘h)ZæßÁ8JÃ&ÃGC¤@„òúªÏƒÐôhâÒnëœC™‰½*ø”Œ1g§’uÐ×^ˆ>}GñÞVÚå*Ï©1ú~kê–E /ªÂv”Ë’ !}Aú¹‘Û„"uËUIinB¦WïyEÚ¡âµÅgcîYðjñ™:N3Ná÷VéØ~è²ïª™ÌûßßLyݽ)Â3Ö{§ŽÛõK-§ESõõÚã}Î="pˆ1Áée‘à½K uâCs¢;ÎE|hŒ ƒ½/ü-Pív6ÞXÔ—›ƒ@vMÕÔcÒ_kÛøkö(VŸ^9 }Ùv,FuœC¿™SP¸€ïJÙBp¥ξ¶¶À|nÛhÄÔ[Œ*f•¬uÆ6^ÞòY’÷ÇÝáaVÙBBë¢äÒë Òwš¹f)ŸÚµƒ?ÚÓÚ[UýÈ\4ûY»BÖ¼_6“43l°ñ|oʩƆûu$Pηé¬]Ø\g¾Æ<»™çgs€[iÁ©2ÏšHr¤v©—<•Œ$`»\€ÇÉ ÀÓ CwSÑh…Kªjty?ƒ(Ûxù[’LÃíÆùA-‰²}æä)›É2¯;ó•;ÃéÖùÕ°À9c Ï`ý$"¨µz-Ç z€5Å5}vC‡MÚkütz?y `õâð)¶ÁKÛûºa}2“ÜÂ'/¹ØÉãòJ&qø§Ô›ùÞfq¾HJlÇf]‰J ¶‡·2 QŠÛ^ˆ ;åÓÑ _!s¦ò;§탥ha‘æc”¯¢Š Ö7 -^*ºO *ÑžÖèÛ¢ûŠr¿lõb†b–A»vñ 6ÈÄ¡HH™„iäY¯ì¡ÂVK“.©~ïÙœDHYÿ|’ƒ£íV•oŽïX/Ö•ï$ÉV% ʱˢÎ=¿òçÂãשëþÏM¤¢°–ï‘3ŒˆuV¨Ù9=1Jí}v)§ÙuÎ0k=WÂúŽUøÌ^ówÈUв1‡Fuºé¥1 WXŠL¼ËbÔj"?¨}é"”¦/[¶ÑĹˆÝ7RÜXç+™¼/× Ò¬SnQà‰«†gPO=Öw)LнîÅ<Ñuú·ÕÌ!FßÎë~P}ø…8& ©%•w|õs>¥ð¾sU6†¦¶AROMt UnaÝ*û5)£S¿„ާ‡ºý)ÇzÌ1¹ÿ@—fzÉ´«Q³û‚æKàôZ*‹£±ãhyÅ\$xÚ$QÄÚ½œá‰4ÄÊeb_醵¥s#»t³Õ.ÇÜÅê|Cø%Ó­\Èo½¾O›gŠkË-»yœ‰¿ØR(1]Ä^O]¿`uõ]]:ê­AÓ§¶ •Þ¹^ŸƒÒ±ÌD}?yÏ"Á“IHFûâšÃ3ëê5Ÿ‘ì²â:"­›9…Y¹ª¦XP2MÜTM§S+ :u¼ÁhFµÇDöû^Ï»ÿÀ<Ø“ÔÈ`9Öïã]âñžtøVܧjèCvø/vé6xX¨Ã«¶ë¹Ýï MóÉxñg “–>àYy.Á!ÂßñìH#èŠzk\„eC¥VÞÛƒÄg*H“2=ÈXï÷›¢¤?‡ ¯¬=œ–J­™êG„XÞ©zqɆå`ûÂé<Õ ,ÉÌb¡éb’sˆÿâZ¸zÚ½Û5 Ÿ*ׇ½cKK=1çR¾ã+sfç‘o¾jpe>j´¢ýUê…­ÆøÖMX¿j“w4QƵ·9˜ŸT’Ï‹:âÁÁ»ŠÎ¦?ÊcðÀ¶ëF§$Z±G]܈X]ÜÔ¾ãÈ«Î8gN7“¿–K©¸úÍÚîéÖYæÇÖJÔÂÀ’GÛ‚°õÞ…\2ÿU“ϧG’Ô:DAeÛ³jï¾QÂÊ®¸ÉT¶!Ì0/è]ˆÎ;b—»$¡ÿ:v\î‚GiWyÚrS†aRDqLŠN1^Å12[²ÂJhÈÂ鋈5!ù:qR¢ þaõœØÓøc™´úS3¢ðç}û5§OáåyStá™÷ …—,±pø4ÈFß®ù·ÝÞÈרŠby•×½—¢e•kÁ^Rs†úXÚÿÙN“æÛyš@–`¼3¡ãü¶{°›½¢[â»×(A2¢ó§¹矅Á"ÛÑ>l DùªlÝ$ÀA( öQ$Žrù$¥Å¡Ð/ö´S ”ð$-ÀAµ'e.Hg`”]÷Òüªi”lRåºÞ·©jN÷X-ÿŽÞž½î_%°XZ€I²á$Ý/LJ÷dÓrðÓº;%SÙø Tûæ…RÕÍÇ$éBâ #r†„A°l·Š«©të·#újáŠÖeºL;!./Þ¦\%U]™Ò™ ¾7±D†oJ'qu!p¢ÃD¹‚VÖ&i ï2> #ev¿o””µý‡¶åŠí‚ⵜ„¸ËÜ%¼81[];n—\µhß#@TM!¸·˜öõOg9¹-í“nÒÔß$’·%g!ª!K$ø Ó–púèáÁ‹œ)Bd°¥]SÆÑ{eZ)FæíݶÅ1Å€•eN–ïu“b6®ô2¹Ábéϱ–”~4\Ô¿E.Sš„^¹Gc©ä: 7MúNGëÙÿ馡©Y·§!Ö)hzŽÊv´ŸL¶ý,ZEö~pô#©ñ}c´Àþ‡Ú±ËÀO›ò͹okƒ —))àÊP—h$¬E‚¹RC5ðž‰[O†¿þ¸M¬ÄËDH3­¨bÂJ 4 ?°é@Ö+Ñ^ÆÁº@4S,™ÌM8êúÚ.™pøÙCyW™´ÐÈÙç<®×íÔ?å^O©v û~΃•ªN9s2Ý7B ž·>R±ƒ6Él:Mßrº{@®äu÷^¦t¹LZ¹úâŽhéoîÜÍÀõÃ;€ìyÅp&óð®óø­c%d»[Ý® ¿ìeN»JXÏm•1P%ø€XZ»ýÅyG¸Â}½‡I†?bã¢Çç}VXº¬žUœÖ‰Ç|' ʄϖÞú°x¬7U²æfs#‡^Õ»£u‘6,ù„;¦)ŽÐ[b›­9YÑåø`Ëñ÷ÏvÍêÌGé×Ï4AýÌ4£[]’­# öÞO¤x<‰8yȺ׳u•½ FÕ2î\Æ2épw lE¨n,1ÓH/ë±#›çˆëœ‘5l•ŽÆ’ÂþN° »–eV|Ö”Ä%½†¢gJ÷&óF?¿É(Üp•Ãxöµ¾Ù–sq>+á° YÓE·q¯êZÙî¾ü>yvüC×í€Xòú†?.vÑ‚N½z(憎|ÄTψE·ÙbZV0Øb½9Χ?]ìþ ¯±‡Ç§€ŠÞ£©PjúŽrÛÓj0±Qå½þ&”W4¡sÿû|ï7r´I¯m¶h\ŠÅeræ þ~Ö$”Ÿ|$71µÆ»â=[uc¾?WèñíõŒôf°u\6Ø.; û!MÜïD¡üÞT“bÏ.Gì×§õ-rž²dyO>š˜žçb  DéWE¡™ül‘ÊÊïò$øslJBˆœë³ks©hŠ‹áo;ôuoPô1?jÇ¿7Ð u÷L§.uÇñƒëÇVGú·¾o«íEôJ}®¢¿ aD 7ïñž:1)NRä?BŸ)˜LêK¨ºL’òNW:]ËDZ<†[ûŒ ž"é°gŸÕ†6J”Í,ÖÚÚWC³@ä± ÅZm>“WV‡V£¦ÛãÝë¥s&S»1ß=x¯4—UL@=зA Xݼrмc7ìŠç,‘MÍKŸ»L3ú1á¬Õf¤h\ ß&$LðÓõ\¥Ê:ÆgAµ”TŠñøJ†« ²°»=+õöÿºwÝ) z´ã“{÷+Á2¿4czóuüù‘s¡èÔqqÚóáYçD79½ü’ÏÛÎE]’jx¢}˜3Û%bêŸ bûòÈ å»ßZá11„®“”sw(¹=j54uÑ#)–ðª“_9ÇŠO÷DÒ!ÆinŽo»ï¥q-´egöp\±+d^ ÖXšKë»ß Þ@ZÇô¢VÜßë‘Tø„J–º‰"sÜ1ÒÒ³÷•æE…méu¬M¶•Ú"„_çò_6€ë'Ú’ò3~É--ïPý'‹%\¢pû4Äö‘,ñž¡Rò>«ú ÀD‘Oµ)ÜLQŒ}ÒÌiz+}û`°Gð|k4ML$ŠÐéw¨4è A‘uŸæ~Uë}žH¡ÉTã0ð¢hþHÊqEª1Â_fk†~²DÕì&ÿ ŽEx(Wåõ4ƒØE{5¸ ßËðë7Ø6aºÍ³ì †Aö™÷Ð\ v4ý½Ü i4FeêL›Ò(ƒeµr—²Ó£¿&H;E4ùODç¥Ïp÷”_‘à4ÞýXa­¬ kµ^×™… þÎiùMZ²É:n‰y¾NŠÎHf’‰$ÌÑÓÿ™)BO¹Y {BòWõ-’.R¬: °Á§kú朣í§bã¼ÛÉË‹î—I®t€qº×Ø÷ÐZY~Ñ4ïú?„ʈ¢jÍ¢qË!¦†î-ß?ñj?B ÏñÑ˱úãL5ûÎcßqh-úô] ºoKgXB,„]«®• ÑIÅGð¢†>1å)]-´^yUPëÇ;~¢7!‹K"æ 7Të5'Ê­Ëâ\|áwïÔAÆ–e‘wÏödÔYík´­l™•êôÂÃ.ÑÖÒSbÃö—¨#ÏQ œô£Á Løs+:…;ªÑ£Ube24ï{pz–pë&~ŽH±ÏOȪòüÀ­&9ÑÝÖdª•ÄRú4g˜6 ¹™M‰axÁN%¨ömw3`ÚÚhƒdë`äøk`~?Åb¿¯E‘“çd(1„̓Í!)žÏ%qTË×ÑgØŸ[ÃðJHÕxë'8²AЦ¦é¤V¨¬®_u«*xÖQá.c¶èÛ¨$%Û›KÞ3"¨ÂÝS@ªZ–h r[™ keÙÕ`hÖù¢ßŒ™ @9B¶“§0›bE$ ¹G’øXF2úF9ù§tvç¯m Ðݽu¯ä¼7¤D“,‡šãæâHÐ6ãÈ[k} j„ÆÞl›l¿——+àA½ÛÚûH N¦hŠªˆ ’êˆÍ²YñXãÓ ùÖÄ`‰}â¤J"YÛ³¼óÓ†™‘ÉÔ©ÅnØ$ÂhÍ-QÛæ&{µU^bX±~˜¦(½:ú‘ïߊؓ¿žbVõíIèùÞLfêµ¾ü¢\Ði öD§ i ùÔ¶ñV¾éÚ»]T!Ï‘‹±#3‡zÙg 0Ò’r{s[:º½".îtî+|ô͈9勿xfÇHR¶{Êì:Ö¤é{¡†–T¤¿ghÒd1JÚ'Cú¸CvÎRóÛ›~ENÊ ö%éØò#OÁy“Í’uº·åÆÝ Ȭ9XrWgózï[í-¿¥T¯pµŸ­쟸h ¡ µQ/Æå¿`mÖrh§¿bÏêBEoyHíò™ðx­=‚ÿÙžíy' ­!× ûgõ4¿Ç|ï©Ü£ž]v<h~çômÙ;¹Ë'МÊA?|st;_ýÝ&Ÿ›~6×J¢CûÕ–—ÍtµK¦rPÿë'¼55t-Àûws›:4„u<"<Ë *­€€çûÑjîˆw Wû"O œ†`ñÏmC²ãîf3³­—8&ë¥z¡ÄÑq£ø‰ÀϤž*15ЗáïP ¨‹*ìâ9“o‰±¦¦›c-‹dj #?ÛmbUDt` Kv¡uHb¹Ð‘´âàøï¥5‘=8è£ •E8An¿b¦ÑK—Ô×èê´Øá'¸Fˆw3žÈ©¡ÔŽé³É­¯|V£!LifÕs†šb´™ LlÄk‡ÜH#Ú_ÝZÉ6 ;hp¥’S=ÈHØë¾¯'Ÿ*'÷VOh/Ët,üðLÿ«Ä¶yîÓ®p ]Å‘©Ó°¢¶7ÊHï)·ðº»9e5­ŽxÛÊå¥X9µß‚i1’ÒOÞFæ<–ŸÍ.v×[t'zå~ôÆ"¯–ú:Û(±W˜ù¾Œèõ ì9ø5¼7<}߬tì¼F_ëóúËiôMx¾´•ÜZ¤]–¿bˆ<¨E¯”Â÷`L:ee`‡1pp&»ƒ7ÈÈnU“¿îÄÕIˆŽúv=òKÁ‹&(OŸ–Þ‘¢]9±Çm„¾úÖ~¤_þÄJõ+É)Ë…@¥¨ƒ[7Jê` (BýqJ‡æî‘Ô}ÁÁ^{#ÛÑ‘«û5`fPBc>Ñk|2Æ]w•çvÇð‡rÿVLgs½U —Uº¢tñËÐ|’S m"½Qž}¶ìÃÔ}…I±y;±|røpeo’"‡Œ!„IÖûDœ'«—H ÙèèC ªzøNÁƽo®ŠDE"f dŸaÞü$û ÀJi]sÆ 1y+ “WC[”€,Ýš[{Û‘¤]ÅYz¶'&Æô‹T‘FÕƒz8g9´‰NfŽ–ú…¤:æ…oAëE¬$QÜ£\ù£Ž¾u q AŒ.öd¾~Å Ì9LºÅ~‚¯zœ ß÷2·#†rjoù/E <ÐA]Ÿ¦/Mv˜SXý²ž–Am/«r¯%2@me‚C%æ®53z ßቅø€_[_Ž|l–7lo½— D>ùŸPn¢âÔn ¨G|häz™>^{1Èžk6ëÏÉ„·¡33ýùõ¢²¦H„õm‰Hy-?D#»uÞ`§È¥EÃŽ÷R³XáõRx öÙÌ\e.EÜŽI|¿´3ÚàšAØ…å«ÑzLÐí™1ýlz¦¾oSuð™>àj»^Ô¤t0÷|öüæ«|t¦êZ± ^ž.ÒäÄü—\ÿŽ-”S‹Bb:Ùœi½ñ )_®e·Ÿô ÿíFRS¼(ص™C‡M«µšàj"õ× ’âFÔ¦ì`ÌÕùÇò8Bõv •ê_ÝÍsÒLFꎞ‚@ácŽ“5oO·Ùg»r«Ä„6/íãFÕ=åЄCºÇålú OA?¹ & ˆ½²…3Øñtª[» ŸË–7ñ§IXªÛ™éó¯:Q>÷Ëô}},¹HM™$ú†x}ÞçV%Í!""/ðm§ÇöÂj•²µÚ Ôõ‚·wŒ®/Ú”"&üVŠ“=–ø°\³qãD"£]ãk¤¥Õq`¬ósBÉ•\1‹ïg¡¶±©oÀæuÉÞÔ"}ŠIøˆy:§i4ß´ ’LÅ!s¦=ÿäÇvëýÄâ§jµZœÉS…!BLË{Z—¡õe&ΉüM²’A û¢6[­t<¿DakŠÈuÑD+÷Úí¶$^N^–k¨-º%—­Š¤ñ]3Po/Ò—¯Ì‹¼¾Z¼ž Kq«¯ßü dlÙ­™ÈIYñVáÿ9‹4ØzÀ)Wïr·òØ€ÜZÁÉ$>ÃÈË–èÚà®1ô Ýí|q¿ÕD²y˜–Ag:_rùì´úÉÍlVî¼;é˜tÃ' Ÿñ^ŽwB%±Vü´ž|7ùkµ{cäQ+ßO–.¯¨n-næÊ5¼ì8ìê:¶¾sA “d¿Àlt˜€J"•¨6¾oWm’/Ãå §;A„DjùYÉÌ…ÂqJ%)%yתüDOyûÆý–é“Yv㽬†H'ßK³û}qè/£éNô àâÚæ=¤aMi'‚A>8ˆ®ô›5ÅÆKÂÀа]ùJbÚëgçÚÈ’Žg&‰'†§Ñ:çÎe ¿w!%htìYCÛ.K1Ð;ITú5yüAä^–’•Ö3òy°­vnråÎ2ÑvÏ=âÜûjå›@Û¬Õ«½?+Mn%¶ùºù€U¬<~7öl¤ÝZÈ!|JŒ[(k:»\'¿!ì ¹þT&Q é_ÙšÓhrÇÝÚCŸ¡†¤W’½Š¹ã'v6PˆÒµ¹ÄïôºíyX·ý´?œRõÀÊ:¤ëºáõ¼"ToÈ¥À­_yK­¡„.°Jíl€¼AZø.5ÚA ’ƒ}ÕÎû¾•îsˆíçÎñ—ˆ„=NÃÙ:%få¬Üë/hvK}j’”“½“þýo1µé«tZq„f#/{6kr5 Zá"I#Q(_(hâRæ]µFϸ, ™‚ÌÎodø+`ÐÚ×ÃüFYŽIÑ*ܶ…« [Ú¡[%ÿXåZaê‘=d±Ø”ûjp¼vBwâ c|®èD<ê²-Ú}Z"Ú'ÎIÔï²!NZظ d’¾7¬¡>ŒNí´™ÊІBò=öŽ®úqtPÇÚ§K"!{x¤¶ÑfX70Ð|Ѱ8º;,ozB{†»"²¯¢jaâgÍøezaó\È,..µêLœ&¯î&EjÅ C^ûÔ§:Cn=‡Çxݰ¶spRØØ£ƒ§yv&)V]¤£òy…ð+ˆ;$áHxÊa1"n£Üm%ï™§œÊɾûWPÒ,*ÈŒwX¿‘¾‹(é‹‹@e%¤3»h>«!f“Ò ‡(íœx  øÅëLvKsˆ–4 »'¡¸-d ™÷®·èëSeqÇ¡Ÿ¤‰;Ô&ÄáôͯÈe‚èÌ6êj%˜ò‡tø­)wà¾K 7ô©LÁ“ü߈­éW€,« â`Œ”£»NàÌLkêàƒJƒ§‚N—W°ÅÜÈ›“ÔãÑ,zfo[vÝ œ´kL®>Õyü·¨—ífaE#ú¼l*¶9´ ¥†·a/ªû.ÊêSn ^ò’¬â]U‰á¾o`S×ÏIhå’<×0×­ üê„NO¿Ç#÷¼ÛpE;Æ ¼7é’¶bNoI ”»Ñ«âLv9ãÂ×Úf§…2éâ£á(yèù< ¥éM›”•ÞqðlǪ;™$´ÐƧ#™ÖŸ2QO¦‹óÝ.ã¤Y¹Ò†¶4D6N{ßp*ìug¢£©E¸²¿4' o„fÆÄ¨84%sGŒ°03±¥}Þ&×WPF! ?··&5ž€ËtPlËJ‰ú]vQ6ñ»ôSmjT©ÌHeò‚’ SL‘Ý­ cõ:‹7~{rl‘ʸ@}!ŽjNN\œóé¤( ¤má1ôΪ!D‡•oK"æÝ›Kà{#n…êSÀškœu½9t¸Þ°kõçU´·äivL8¤žÔ¥o0;6aFf’Oh(—Ïà ±ûÞÙØ`:ÞXKŒ¿ÍËPvº>Óa>p‚Bå½FòH§Q¹¢¥sëï‘o}ÐáÊïœjg§ŽrâJ’í•¥¾íF´&3`Ó˜ø«”wá'žµ0‹_Ó5©ûÉE0“—Q4ÚúÍû^_¼åŸô“s2ë\ ¨?’ìàÕ¦JƒH’QõËZ~ ÃhžÄF#M!ùΜi™XƒÊ3î60ÂDÜzÜ÷‘GqõŸH‰î‘[àäÑ,(7˜\' ¶¸§Íµù1íÝ|AŸ Î!­µw-ê|vnªÏ—pß’¹W¤'¦•ìSŠú±ne´.…å€]j­f$¨)îØóGûe¢Ý„lk®¬›JÔÏ·AORâNÕ*ðÓ‚GæKË.E-`ÂYš-S³l‚Ý¿‚ššåò†ouIò3yVÓ­¨´t哤£…#½‚À8.å0ìÞ'ÿƒT|ÏsˆðqÍ(b×ÑÏîAÁ\¤ú>ñ:n@úèc=qÌÌ¥ÀcªŸJâD}{³nÄ8ÏÿÞ®]Ës»c'úÊúÂ¥_¡ÜÇ6Sãw‹•¯,z‹HƒõäÊÕ1; ±ÝT¸öÍ »Ôú¹x·±—ê#îËÍo+›ý즉%!ž1Gbgiôµ÷äž<ÆbN9[(Bµ±ÄEêǃ£¹pRWq ‡ò’%R)DèiB‘Nê¥:R°È+CÈã¨y' ª†9°DÈ^ׄž3A£>†06[õØùŒê÷¦9áB_ùÊZŽü?IUè(¡é‘7p`Ô½a“]Êêi}/wï‰7}§ïoÜ]|"À„XŽóåÑfgÝØž(Iœ¸Ð(Vüû,­³õȆ“˰}-Œ=Ô+½õƒË O—RaTï5‰˜ )ãíú“]Ê[Bff™2Üa‘nùÂu£qIöê¾[Â8ÊÜ6Ÿ+vJ;èÐ4œÀÉa«¦%Ot&…¤BÂfš`ŸIþr®ê9v)•ÛâI£sˆU˜•o‰ý¡—£°0JF|Ú«mðC]v¤OµØaLl¨Ö ^rk(G fûlÂLœ½Z4»”vüÁ´:1N‡ øÛL¬wÈ· ‹ô"TŽêÒ=9]Õó.„:í£Ê$NÜüÃj§d›Ø‘ðå<øÜ’"¿Ún7MÕJìhš¸Ì‘Ø¿¤À«U@ÊÑ—³à„42¬/oêIo*³Æ´ö­G·¢;ŒÏwa#2jþI–÷”]£04¶ß»¶ÔTJÙ4íb û•âäÜÐ¥‡H0ØD”¨¥þLx”î÷NEÄžaûß=gêþâqOܹ%ý|­îee»eã1ºfo^«Ú N¹Y_ÛaóͽÒþb·ùûOŽÞÃTùÐÙÐ=Û‘É=y–Ùɪ½_3ñõ®Eꮆ§£¯>šO[Ã_Î*.¡·=(_•¹1ë‡p†9"–êðáY¸ûÆ|(Ž3\…J%1§¸)¹,ʼ hêPÈŵõ•øÉɨàýß%UœêéQ¢ÚÁG+YLM–ÀÎ#áʀć6ý~.hlêõvbZY^Xw8¾°<• Ô?§)άÆV‘÷]¼Ñg§ßÔJ›iáÌËÕñÖ%µoÂæÇ¢eJ}x¿£‰¢É‹‘¬_ZÉeor“±úžðâ59òÇçœ\PÎ(ƒûÎüüË ñf8î‰ûd›W¬ù3~ÙÐ$¿ä2l¡|® <*vªÆå8ÔË/~ùÀIzúõÂ{ï«B‡‹plð”q¬˜õ”TÞYVhOŸ¿™ ™¬ž¨1AÉÒ^éÙ~3öÍ2<.i÷¬JΙ* `Gújª=™&ÕUIö´îœ7RB˜¡+7וL5 ãÿBŽãg˜§ÙE?|`3Îc—&_y’× ™ m›ÌZR=’Œ½j‰i( ¥ÛG«}RÑ»ÍOóô91ìÀé¤SËÖ˜ÖJGF£—|›[Ö¼ Ê:˜É _V«”]l¬¥èñÃ’ %2§°+Ämü¤þa™ ¦!—±¥Ùèë×þl{>ȆùwäiæWÝ©£¸ ñ¸f6 ;v¬ŸûƦˆVŸ¯2¬“šÐöúrnH©${â)òãÖk˜6€ÐĤåR/ÇbëPѱ×{"$ ÈÚ\Ì?5/®tj{6¿ˆ(\›<Î%¾îWã’„ëÿÚDÊØ†P£x>Ö'F€¾{‹|ôÖ?}À¨†9)š|–ºw‹n`ÌzŽ$º®‚³®Œå<˜Dâå°žEÌ+Ÿ&,è`ÇW¤!–¶«t/Êÿ`ðÆÞJð#ñe›ÙKUobþ(Dò¶ ÂKdw8v+o²ïUßÞ«lE–æ†(TOϬ}­\~”F:"ö™«ØÈÊjè4]÷m¤î¥tÁ=5ûª½ÝØ<.“9†-¦èì7ÊRûZ°ÞpYç2}¾7ûxgN[XºŽsU— [®:NʗŸÌ(Ÿ\R¢/#†@RÐ æªø²ëòD ФŒ9N” ã²ì-‡Ù÷ðþ ¹"! ·f6âU¢o50úlýõš‹{ƒtª$2åߊ©KøM¶¥¾V˜dÔ6Ÿðs¥Šä$GoƒÚ7â<,ˆ&u Ѝ"ÀŠºNë³-žð'6QataúÝxYmøeNäÕâæÐ3Ï*SjçÏóVä+¬´—‹ðè_[NÙ+ZÛôÔ¿‰Ò2Vý O„[ë­Eø|çxù˜iysÔó¾ÁáÇa5’„Í®/êíFB%_låzÇÐ-{’´•i»wøh2ƯþdþÄhÚÖd"_9·öu׿½¹ü˜ø«hoËbœï”â‘à´Õ«ôÃ: ¿fFd„@µLg}L+µoѽ Uþbˆ3ÙpcÇx¯?b;t”ZáȉµmiÊhÐ`äÕš}•=A Jæ Å‚þóF}^7¼ˆ¼µ)<ÒBÓb—ã`éNÀÛenÕ·³˜;gÆ™CÑ ¥Z¢ •\{¡¸b¢gà^©.tž½O´ÚV· HXöªâuŠ…#ÆrŽ^×¹Ó‡=ïxëÁVÚa2¨²ªU\@8d(£œ&~$Áw›}ÜŸÛÔógøî÷.Zp‘vº‘X~‘r‹%NÇc»Üò[²Èã“?²§¶>1­U"ÍÛ/øÙvø´¶ŠÜx~ÓÂù»±t=µ·>f:Å´_U3Ðè‚Þúõ¢Æ\¯ö»fÑÓ`0åö¨VcR|TUS5¶ò£`ê`ö#å6 úÕ1"¥¬ÚÍ~Êç®ì("tìvÁzío ÌȆ[Ýî…µìoÄkQq …©´ôüØpæ–òéÙ<›èÃiL /d2Êa??f"í ¡«ÚZîœñP¸æ‚ýé¯9GPÊ.‰xž2 øÐtì×óš¾&ÁåĘÁý4LQ‘t¢²3&Û( ‚k°)†{E«Xºm·!MÍ~X)©Ày]ñ¬à®Úº’¸w½¿Å¤Ï${šOŠÁxø¾‹%qf‡«`ñ1Š¿ ™â©il®ÜøýÅ‘|¡Ìv“)¾¿¬{Å—*ÂmÎ.ùçïÆ+³§dÍ¡WÌ´AÓ_âæª3©ÖEâËÍ1=ù[˜mõXéV£¤Ã‰Góºlä@J¡ž+e­¬å!ÜcDÄJM .ŸÂ¾œ„×¥%Í=ïÅñl0µ²÷É¢'¢/|QÝß]ÖÍêk`ÉS. ùXóEÚ=þ¼íüˆ,èQ5¦p»óéç8Ð5+¸ÙÙr“ªÄg•lÆ:r뚪:í„â©ÓáWÂ7¥· h§ÁF_~†±äL×Ó¡Ls&ˆŽ}Z¨F¹D(<îv0T$Q­+ã#H!ïá4ÛÇAðIñ-9›j[š ²9!CÏʈ6-ÒkWÑÕºû_ô” 'ô¥¯§Œ¶©h¨[ËœòÝgJTmGZ™F+!•÷¡ºŒ16q0µCdÅˉ2Ù0žR4«ŽšžîzÌÞ·@I. *ÝNy"¾X°ÎçbbM Ûre`CŒÎõï¿zz~)õŒ@F¨d}Xh¨Fó[ãT‡§ÞÁÎ0¾JŠ´ò¿â JàW ÔÛùtÙ/¤À^ 8Flæ@ 0'7‡¨  d…ÑÎIޱÐF¥»yÅ>TÅÑ2Pš}'Öï•aŠ>áræ6,bMÕ¦ÇöE©×Ù—ÁùŒÿ|X&»ÁŠ ž(Ò/J•rà­¥ÝI JÐ/ŸÛˆ­¹%½X~Ü3’Mm—%`ÄO)c•‹iyÙ=à¹a๠ M¿ìŸ*V¿¯—ý—/²ÎæBÉÜPIûÃÑ&‡ }7Y*Öõ‡ÌqkýÖ>?2 {0”×hñºfÅ®:ùÃ;F·¦S,'ªRE©Ä›çÛ½yÃmã»9ÈKXÐ)ðáKØÇ~-9Ón]ÒHX>Ù§MSþ”ÜùÕÝåéõ•Z5¹8ÛÄÙh¢ä×J^fZ¢4¯åK«ø,#U6©¶2ë×o}#F±B€€úpqÖaé¥û Ì/¾«Ê .œ'ÎK*7`¦€HÃ'Ú‡›:»BN£|$•Kë¯$VZv× æìÑ\ä?.Ú;ZQõ™Äðpèoœ™ÝÞny!Ÿ‡øÙ¡¾è›·+îþˆ« ´š’-Óf4ÅËVf²™ì©‚ rÐq;óÎû™ÆIÔm™Ü†4 Ü/øINÉãsHÓ¡é$æé®òÉ_{yñ׃¥èažÛªažÌ…Ík%„Vå嵨MŠ º4 Ê×ÇŒnèFÓ–³¨JË$jxäq‰Rehù/Tßo9â.ê÷×u9nÄ1øiQUÏ Ãêâdq|?#¨8ÓŽî~ù¹°Î±Ah-¥ø.©]|ù21+~-tÿ+¨u5ÿê1›TŠ[8¯ºËm1"ØÅ[n»ÀU]A *£òÿݾsÄ»¹YQ!|œ¥dë£ø=Mâ^Ô;Èõ0ÑïŒÊ¢E?7&ƒøªxÏE¼/«#™—û½øk}¢GÝ8÷¯ À8ä·jF&ƒ~ŸMWJxÃ{ßbòf§Ù¹ŒX%.œ;ç×”„ÎEjØä‘{¬œfŠo`~§ƒÀóÏ1ühTJXI<^Ù0(÷ÙuQÙÚîq°u:*a¤ ¡©Å=»¼Qý½bÍëxü/áþ0GkàE³ÐÊÌy·E£•ÉHÁŒ#E¤à 3K#Gh^ ø‘*£ È¥–8žl^íÚØ€J’ù½0¥48þ  Åcówþ—$·ø—@û‚JˆD(õ¸ypb;–¨Œl샽upö šc²xA cña;pk·íË™D…9µI:Úe¶&ßfinZyຠ)I½ã¡Ÿ9¥qa¤Üæλ¬éÆlyh]ÙEu—ÇðâKe÷ûqê˜#Ý©€‹îüÉ—þ¯ÆÈ‘ìŸ#JãE,ë˜W@Œ7¢ÓÕsyœøEG¥Ž·Ö8+ž¡…×\P;(¸®ÿ" 4¨0ÝNLóܲH…¶/ àFL¿äb—N^ Æ~i)Ë©À¤÷øw¹g¦ÊM._ûR/ºâ–ºß'°ÑñÈèÀ&*SX»Caºà‰‚’§Ç°§HŸßµ¶îÈ)Σ‹à%$<£Bw°J÷éò7‹\Ô®gk ’”ÖöHÆI'¹Á'æx¸¥í†‹ºwrÎÓØµ@%o|¿ÉüßÈÎ팉1Or¦X|çÛòå8^zÚ ê×ßú´ÿÐúi¡Ìô7 ¾¦¯¡’̘† š`yý•=¥ð5·ÐMS.Ãñ¿Ÿp¤BÆ,ÙÔVû‚=xö&Ÿ1­x ä%¸7$²àðpœeX†È6¯w?Ïs’©ý´ð¤CÝóJAa*,p¶YŒ0+s.¼çV¢áŠ÷äbò"*\:ö§Æíz•¬[WŠe$#«]Ú/¿ç¶ï´¼Ø9‘s Žú¥{êD?gñ‘ÿßiÌVŽþÐöà$Œe~ü9;ߤæc“‚S·ð+,;l©³IÑÛƒßU#¯€V­†çmÉ­h™Íñ‰R)ŽöÆdél'˜hå]Š™‹dÛ¥k@`g¨8AŽI°ÎÕ˜;q,Kµ®Þð>f+÷ÍKQÊæcªTkÕmä}ØLYu(ô+¬‚ÐÈäø×6HpÔpï–¡ÓZS–dIWGÑgñŒ dDàšðrúòûFèFVßÈë܆ á’ý›¬;Á²5= /dFÕ}¬³n’@®g7ðlÆc³òx†Ÿ¦gÊf—ç‰(¸†ÿf°O˜jõf ¤Ò°U‡ßA{9NpUÅû¥/u}"k†É–æK 4l‹eù­ïß(]›fÄÈ­3QYÁ$`^Ï Õida±í/Z‹F+óÕ\{ÏmâyÖLò3J¨¢X¤%.\|j•Aüe½XŸ6DZ}–Ëõ«M±‡ùŸÙåˆ"T.ºqN’øé7×®˜÷Üê‹"稟-+…K OZ_Öا]0ªd®GéZ¾ñ.é„éÛZY€ƒ¢èÛ°i÷”šüxÛæ´zõÐ5¢¯V€0ûìÊÖµeºj…Ó¾acîPPƒ‹\ŸÆœ‰OšP(¦Rõ#úfÃ3\@ò#7¶Ô$?ï2Nd7;«pgÌFFÂõýE‰ Ùxy;t2ï¼qCS)ŸO97tn‚øÆ§S~/ÅPÒfø ZÈ‚×_•}]¯pÀc‹üÿ(âPÜÿÄmPJ/ÇüBš£]\ ³Q©‚«>.µÕ΢!Ò1¢¢Æ˜œ€ ÷Om|Õ„ Z§³st¤ ƒuóŠ~+¶xôPiˆ‰0Ü13çÀk§#* Á‹ µá[, M’ õ$ü^9ïþ(5ŸÊk‚çr™ºeG9'$\{i€C÷³È®›æ+… CÇ!RµõÂû v®jÎYDçÌ#jÂê4]*— ¯D•¹Ø¼¾¤QÜÙ«®'²ÕÃxhscM yØŠ©(˜túÍÏS® §Ji­Ö¾p¬ùr‰ l¦¨LFwÝ¥ï^Quä8g`'¶Óö5ò “†åFR#ŸZï˜+”›ÿ!\wáM#8÷O>ïC;¿ïÖH4­ŠÙ¹ŠÈ êßK©} ¸žso–ŽÁÿR9ËŠç~BKpF‹v†n‘TR·P¶ +È"+PÉ\¢®‹Óu¿ULÆ}ùËün‹að5È#8gñÀL´ÐþÐÅ5Jçó90?¼%†þÂ÷|ýÑjóDeþ~¬³³©³v ¡úQìoæû°-kH$B›#¤;9Ó3HéM;²ŽäG/wЖK"ö÷ç=|6 «÷Ì<î}ž»KA!b’ûÏ·º[v9XãáUUÖt9ÙÑT7¸>¨msOè‰t JWÖê¾¼Ž@ËÆ‘KVÙ»åº(‚·~æJµJÆêü7F«ý½¥há¬Ì©£XŸ¹¦›Q¼Þ0'¡mf§'¾}NÊ×°w£(°xôr¿Õ¢vÄÏ„!œðs¶còÍ’ë~ª„ÙÆ¡š``š‰xUÍ88‚¦jL^1æx˜Š•ÚVDuÓøWß’—>Æ6_ÚwaE(ûÁ“YÂMlƒ)f"•÷lGéƒ÷t»xûÐ+oFv`㜋ôçÉÒ¢ðL±sUYÅuAÒ¤P¬…Ñq+sòÓ€q·,•Ñr íÕU*›ÓeäOé—6í^‰g"”}l¢«.~½èìZJ-ü`æ%†Æ ¡ë–˜·‡¢P™™ÅyÜSÙNÁQˆ©»ÔÌÒìÞ¡ ´f?«AÐ><ijÄû ¯àð0Zãa¸áKäKÀ>,BñZÑãøÄý*fõ@~è¿Npmö(ÙBP÷Ù)VmôͼƒT„‘[t6íÔÛ¼ĺ¾{ò¸I}ÏZtDo<àÎú¹™ÏA[l¼Ù(—¡§]*ýú`e4øÏ–NÛk¯waâÙ†‚Pn;³ìp¬šu,ªÁ“U@!Ô9m–rÀ/?CEzÐ+eÈü ƒ¶?k?^L8ú8'æal/ô-;¥à§™ØŒWþëŠ6—‘ú6³šŸ±H¼(ÉyÒÈ ·âj ;“]ddÒÅZ<,˺’•€w{Ê‹MÀ%êø¹Jõ.Ȃټ^.Cɘ`^ùFºÀVñ76@Ï0¼jÕO±²ýf:ˆŸr¿iÛ· iÐ/Jʉ©±±Èu16iCªðÀ}— Ì-¨ËÑbØ ÝͺÍÔ4’í'‹ n/±ëÓpÏTܺG9,¾ø\%¿$­AаKˆaüÌ~ QÀ´¥ÎŒÝI7‰gE±í鸩}€†&€ ]v”laf¶ôajƒC![CBCX×ҧʸҵ ‰s3oR„^Ÿ¿^rÆN6âØ:+¤)3sËÖ °NÌ “Šª­¯¼¼[D¦Ú¸ž´œöA†«nÊ(ŒD±¼¾s¤Ä kzä•çîP7x§ úÑpB}µeC[JWY˜“û15žkz¼”¹PÅEKú|±ÚgÑ*w!5lÁÃòU[ã#6WéYŠ]¬bNÿæ±Nî—ÜXu:f0ZÈ•Tƒë…P ú‘š’‚[‹@¥·›‘b³ß”•N|¨tÑ€s‚r6ÏZ¬ ³‡Lü‡lò " iD­¦ ÝÅJN c\Lo+mk37Æš”_%²/:ÆE²ÞMŸ.ÁÅyƒúüˆö„FåÕJ¾S¯ ƒu,ºÉJ_ : ¤»»«ˆÌ÷9%þ\ÝN£õvrnDo†lF3mmqUÉ+E'{‚š´5FéD/ žàDÖ¹möºäÛÄ2s:Ž:ÈθY“ìAáfÎH ?‘| ‹I.ñ¡OÖÄ¿æ2zóu¢€­`µ#:âm˜?æ×LƒÊô jb:~ŒÓ¶Kûóô}+‡?ƒêgÖºU è…¥×ÑAKr—ö`±)ñS3c„­µSgžÖNž’’znæŠÔû!£ªqŒϨòŽ1ßT)UÀîÝÕµ7DNºàPÊαümöØþ SÚrkÊÕòA¥·JUþIìuQ¥—Ëï1O«|sˆckxïáÝš¥«bƒÐ!$68ý`è5”¬:õw» Pê^FRœ¶Pó¤YúlÃÐv\ÿÈxÄÁÿ>ôâ”)‚·»–87ò |=øfù¨æ…?ÒÚ*„ÇÃFþ2~*M @̱»LÙ4$dHžê` {h~+ ¯V®šs=ªL^¥à”KÉOamÀyŽ’`"5w®WyÞXéJ7˜¥‚k Lg׊#°!WVÈ!´ÅN`k¡Îg¡±6½í6{ª £ó&œ/°èe uÇçÉíÖT—ˆÄHr€‹$æÓEý -Ìá{gÍÝ“!ôSC!§4£4À›}IJ29éÀjÆÒZñB½6ÇõÞÁ -«¶C¼îÏ6ÖQÞq‰˜ãŸãS2ìŠP„ø¼cóK»¨%5¢OkÝIz×>˜÷~J¯Q¹×±ÜÁDµg‹)¥ÝOðX‰(*%:Ñ%¸&tÖ“åâFoEQ1LóæøÙiZþÑi¹¹9 :×¶JOñœ^>ß] C½jÚÃ*î>[cŠtyòißâߥ„°$#T!#ñ»‹ZËtú—ýüÞ€K…; !FEÐ|{ÿ"×ù0ð¼éã,–X-¼ò]‰.,*¢øé&cGe²Yã}ŠÇQË‚s£«°\V’¬>ÔÆÛmŠ«9ò¹¨5µy²þ5‹w%'5¶èZÍg˜ÿ¨sýxV×è}n*8Ÿÿº·©–ÜâØã%–B6ÙÁs ›Œ-3Ü+Ußxœ°eoÌmÆú ì’* §¹®(EéšNC_\ˆ²ƒ"ZÇ~&ªŒÅ¶éJÙ°1UÆÒ±âEøël®"H§·p>Ãù(¤ÆõjÖ|m*ë¢lºà F\#ÀM@n¹ÆêÎj8z²xKR¬¯­¤ôÄskúï1<?4p`HBrå÷ÂáÆGë¸_Û²¹dNdA…ôf[Š#VÇÿx‘<âk ÅZ±Âeïg‡—aÔTÜHs€µb* ¯5—¼­lj8/~€êrù|?kç D¢jŠ'Åü:Sn¶íè°–(`º¤Ã*èn©r øÂ÷P*¬Íç’}MEÇߟ€é†?1ìÉþ~J’üvµŒýõÖ%z=9Lø}`6S_m³§[J³'§„c—wù£5M>ßô d91U4’}’Âsãrk¦Y„j¼~fo1Prýàe¡_ÕÂz;Q¡*ÇõIˆzXðnaÕùÅk#…ùÀ¦¿ÀqæÈèæþŠ­÷.ðrt,ÛCÇjN™dtYG’\^¿8+a}GW…¤†×¦ê¬ŠÂ‚Í_îCg§jrèñJ€¯Â&`üßE)‹- äzÇYH8 ½õ£´A†ú[(p•ŸBµçTˬ;†ýàà·]•õî­§!ñ_äGI–Ëôj ºå¯#¢q]˜ò@™}vQ‘˜vF§É×Ib¿0sDÂÒ°ñq@{f$ŸðITW Ð³¾ ÐålÛd®s'Uð~§,¨yxzï§Amÿцã8X°|}z]àöw¦È)÷šC#Ý•”7F®ÿ¨\ê¼^±ßß±–6§ï‚'9 <"uA-xÍÑgòì4sæu= §hC†t \^N‹.ßi&ñ`ý 'zÜŒ*AúìßFêÃè x4DÉÛ@¦ù ¬7îƒhM®W¯0Ô¥_Ï~PªÐætŽ©¿6ü¹{”ª÷q+#éCŸ¥x´AòkO÷Î)çÖ*£ï‰‰hêÔɇ߸ »tTX±N¼~¥ôRüÞ]Í´Þ?͈pœç¾Ã› Gérç¢þQµhÞû³é@•=_Lz­F?òïnJœÀŒ?` SéfGü®ý†nÎ,&ÅÙÅêý72ŸLš»üBM9;ÿ b³ !ôŸŽÿ¹t°É~à?¢ø'F¤ìUyÁË¥h£½Öœíö,ú•Ù³D=n6Zжó|g= ä1Ü15ûj‘ý…;šg0“9'ñt:n'«ò]·%óïŽ÷Äœ¨¿‹²äÃú¹9sêY¤ß\›…£_»ê„l®©z'i·_ ­Ç/}½C.§r?~û‘¸³!Žó<këw3yËQZù~[~” ÛÎ%F¯µAOþ b¡oåâ…":uP×NJq^vÐCsa¨ì3“øN¤»XYÄÉŠf8w·Ê'}¨Á¯ê­Ë:2ž‰L¸ã5R3²(ÉÚ×B°ò}Ðå!Ü—ýÁ±ÞóÿyAQ·×Q…ià:rÙêy°â!&xz5pz7ˆÕU5ŒU"Œ¥ £KÞÉߢ`–õ^ª’WVÄYÀ|¸ë¡Ú’ðuôsnûƒ~Œà'0iL |Y`Ì®( ßHëÕŒCG=É€ ±æ%§ •¢UBÔRÇÁ°'¶Dιú'ä·Â}Ž4é „‰íæÃpŽOewQưn½$ ­ËÆe»´ Hˆ‚ZÉð‚jÚ¯²ì²ÏÔ“Z EyX÷ùèH!Á€ a*ú‚ ¦!JiÅx;:bö ÆùÈ#ŽISr¥%P‘ò8–·6Ë˲:÷礌–k¢ºŸòæZÀÿ‘æ)‚ˆ`n¦‚Ǽ6·Êÿ…øý#¢-6œëW"Ìš••×3 ÚµÖÖ™;ÄÎÿäVGŸ‡äzA ¢³îç3hìž~CÜÔ”ä'A7äš©¾ endstream endobj 228 0 obj << /Type /FontDescriptor /FontName /LMTQCG+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/a/b/c/colon/comma/d/e/eight/f/ff/ffi/fi/five/fl/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/percent/period/q/quotedblright/quoteleft/quoteright/r/s/semicolon/seven/six/t/three/two/u/v/w/x/y/z/zero) /FontFile 227 0 R >> endobj 229 0 obj << /Length1 1805 /Length2 10484 /Length3 0 /Length 11626 /Filter /FlateDecode >> stream xÚ´Tê6LHK—À Ý! ÒHwH 13 Cwww—„Hw JŠ ÒÝ­ ¤|xιçœ{ÿ­ï[³ÖÌ<{?;ž÷Ýûe¤ÓÐæ”¶‚Z‚ä¡'/(@FU‹—ÀÃ󜋇‡‹‘QŒpýeÆbÔÁÁPˆè¿2pâÁ&kxà©B!eïs¯ (¯(€‡Gä?D(\ ká ¶¨r”¡3£ æÛØ"Êüç/€È àâø# 킃€ªÂäøPháІÁ „Ç¥`·E `¢ÜÜnnn\ŽÎ\P¸+À Œ°hœApWà·`€š…#èOe\XŒ[°óŸvm¨5ÂÍ<À@Äù!Âb‚Š´•Tê0äO²ÊŸÀ_gàåâý;Ý_Ñ¿![PG˜Ä ±Xƒ@uy.„;‚`±úM´pp†>Ä[¸Z€,,tn—ÖX<üKž3†!œ¹œÁ¿%rÿNópÊr+¨£#‚pÆúÝŸ,>»÷Ÿ7kºA¼þÖ`ˆ•õoV.0n]ØÉ¤$ûåÁ„õÍ„ððð‰ð@N;Жûwzè'ïoóƒ/°~ò[ƒ~°¼œ-\AÜäãõoÇ#,^^€ˆX‚lÀ¬²?˜AÖâ‡Ë‡ƒÝÆ<³Ç àùýùûŸÉÃxYA!ÿÐÿ¸_n=U-C=ö?ÿí{ùêðâ|Îàäàˆ „x>ÿåoýÿÑþ‡UÃüWo<ÿ$T‚XC"Jx8»ÿÈpýk*XþÚVÀWPƒ>Œ2ÀòÏä¿æà>|ñþ?Ïÿ!ÿcÿ;Ëÿmòÿ·!y‡?Ü,øÿ?n G°ƒÇ_„‡IvA ?Žýo€Ûüá7„ºÀÿ•à¡Y›A7ø_ð¡%‡Á‡~ÿ¼½@þzþÓû÷á…ÿ—û¡6ì÷C«°‡©†þK ïƒÜµÆû@ùGÉÃFp#lá ©}(pûWŇf=Að? ÿu÷@8üáMüc;ã?ør±æ¦¡@±`»ºàŽËi*7έ//&·ôÓY9½æà.×x)¬ÕÙ+ð é”OŸ,nȱœKÍÓÞy}omÀkKÒl¿ñ¾5KÐÛjÇšýJÚ?úæ»t}5æSN©mï;'o½{ÔVä.eÆ|'a\çÕ{îb°Ô°…iÙ’¤ÔÓBz¨‘óê™ð‹¶lncÈ–_—†–ˆðÌå¨[;ý×m²ëÜö–tè>-º*M+{އ»îm°9³ ý]Û#ÎVަÈ)Œ/vkÚRòd±Ù©¢Hës¨].DZ©Ð(cèS²3ó[Ÿ7j`˜™Ôm}ÇfͪÞmïsú ïû¶A\®[~/]]™/œMðS#.öª%lmÄ…Tá뚨ì2aØšrxì/–ÐÂSýʧ#ïOMŠ8yĹÊm´_âã¨9$åªÇ«NÄ P™Š4ôÿ-}ÕÆ†æýC+0øÞ«'0æ_>-DZB‘{ãÔB&ÑiÇcšæþ=µN³ï³AÏÞß^HD˜ç“…‡Ñ'sDË£BR‰ûÚÙEØ o€¶^ ²OÜ€hI÷r¹Å©mŸŸ¸#úŸÛÁp^êu(Iˆ@¿/j`êà!ÖUÐS*…@[ÿhßуÓIVñçÚcä¸!V]ïP”{¦ÉThœØ¢Î»©B6ÄݘyóNMÕd]‹š¢sŸds)ô6hC:ܼI$õœÈºáÊÑŽJR=£e ]ÿÔýÃõNcÂÖŸ^œW‰^ÝlËyéM{ï üO—šžRËU»vzèå}RbÁÑ nž£Æ;Vwæë8&>A/s˜õ´-~ÙÏÑÛ'1àGw6ÇÔªïF_·«aTœâÓÔJêe–“¹g€~©`à’¡W82ð÷Ò„?Jj¦3‘fñ£ôõN²¦ýzÃNá¨ÙËL$"¸6«$„^h!¼Å,›2öŒÖ€§èx¨%óŠýÛ¨Õ’É˽Tâq\ÉD›R ¦Cé’º1ÓÍærsô¸sÒL®=p {Pô{e4÷jÑEÛ‹£‡†>Z;£6["¾Õ_÷{º×$žtå&ÌapÉI6kÚ•Kïø©‹1–B¹3…ý]Rhí8û,_Ï]ÐÁ|d_‘ú…DÏò†rnt½tkî—ôwaƽ˜èíęԺ=/îÐ<cÈÎI`ÉG-Zyº?[Nˆ˜x:Úʈâ™S9W³ÞÖ ¥Œ!”î¥ÝÙ†‹ÖèmhµPÉýµ‘ž¾Óú ‡t »ê¿/IçP£:W1ÆgC¤¾»ÀE¢Ó+”D~Ýä6šäÇ*ÙŠZ,óx%?UÏ’XÈtÝ>+÷í¹²XK­;™íw.FáiwÉ›Õ9ï¬ÄÉšpÝ7÷À‘ª•Â]¼Oe“~kI‚ã¶™‚hƘ|s+_óâihV]uÏ2×:4¼YõZðÚfÞåP¾`ê°ÀÚ© =SŽíqN6£.®KÌ@óˆõ›£ôöÒ ,ŒìmÈJ{™'d§ô“#€,Ì0/ò®Þ‚8â¶”ç>]Jˆ[ê‰ä?KâÓ®È?#´æ¹ã¶Ì°Šñ v÷ןÐ:ɨa…éç²Ô¢i¦MqyñlL­üǰYøº{Ìíš•&?ÎÔ?Ë^êXÛl8v‹VÆÁÔ}Øg¾‰ÓIDªmlt¿Œ)UÛþ«#¿Ù;ÒM5ž$YÑ aÙÌ·nǨK)PäN*jæOÓšW$ox_9á>½¥ÛH2Ã!ÿÔ{„m1(:•¨"Ò‚v G¤¦óÕ˜Ž©(þéVƒŸ÷ÔOGF ÎQûšµÇ{p—C)UHd³Ë}sFIJ|Maê37…ç6Ôþ¿Ä:°­ŠÑ[† ˜#”­|w8Iºk§ç.Ý‚ëé2ÓQŒ”}†:çÌZgÑ”vãHyÐi^jÕrˆÊ¯8v¤£$Qõ_ÜÃæ?¥‚v&ò&b·HH>ñ·Ä6¼SÆÂ ~‰5<ÈðÎÐbªF‘S:Áφ‡TI3™âT|Y =íÆÕ[ü@cRanS ãd-±ö)¦DVÉXÃBcpæš2´-äÃÛ ‚ìðNºúÕ|•?2­`1ÁãÔT“¤OØ3¯WkÎÌIN™S)¾}¾hnϦƒÓÄRõÖ$·_P@k–Óø‹\å¾´2ÝsgQ4›tá·Å¢a4£_åƒrÎ jcÑŽ À¯åÇ\\ W8aÃ'N²%4»Â˜Z©RÜ«¶¾·zBÒñºÂCíeÊj¬ô9çRî‚" lé0v® ;£|8-‚*î‹äsQ¾bÄÜñœ•|›ø…í!ÞAM»<—êžùÛ5±Liȵeb•¤k/‘¡Úvå´þj¢>A¦|†ý¬›xqlÂoô0üŸ£5¨Ê 3».Íl¤ó0ò]¦waÂ[“yžµ}9 Ðp‘îáÉg¦d•WþZOÞ¹‡yÑ™öá¿w“³˜±®ÿñ©ìxŸÃÏOÅmY¥v¿ÏL™qújáãó­N‚㓽ڀwê¶£ÊÒ™õ¦¥„"®yñlTÌJŽˆ–‰*Q+5úôÀ¢d• ªm -÷üº[+ºN-lää,¿ðÌF¶ã|ô€®M‘í|2íª>Y+"ûÙÊDK†šk½ãÐrSD*¿­(aYQ-Þ«X©T̡ތ!ȼZL±6JàPXOš…|ª¦þ|žÞÝ sH]'÷±Þg;K3rc³Ñ{ƒÌÎ2:“jÏ™E©®&ÿ·W$8H£œqI²* fð9Å­½J'›ÀÒjnøNià“]›‘j Ƥ(w@…Õ·®Ôn÷üIé;à÷¾ô¡¶Ñ‚Â[C«%–`6ÑÜKhŒ•yxa¡´êµ†ept('äMBØ^5âQ¢ }cqD¿ƒ Ó§ PYZ%þnª¥€Ñ›º¦@„ɹ7ú N• ]¯ =Äj4Ì8É`38Âl5›„Òþ,5 ÙO†òámˆ/µ—c¢„×>Àý€B殯ÔeŠÕyViÌ`%«óÍhúÉÎx]oój`Ø[kGNÄÍR¥Í¹ï%†güÚtæ`]c&ŸÍÊ›é[bÁ²'« #–@x:mëÉB‚>%/žŸô³ˆAáð1o#r;$!àõuNR5é·k/DÈl^蛺 ³ ¹4ôÞÏçÊùÑÔ|˜G“=ñQË;›VŠ• NNLèz—YLÛEOþ eÍÿ™‰r“:ëõÄ]´öHíl&}/=ªi¤*ô³{Ür¼ÕÞÒFî´ } VîoÒ¬@žG‚p=7NÛ4º^ÛFuéÙ\ikÏI@`Î6SyJZzI ªíØNôÛCßTJÇ_»£äìÄÇò®Oõú´¯Žf¹ž`¼f6,¼è=3 ŒÌ#Š¡ŽŸöÞ&aÂÈîìÃ[¶† á¯5ùkvøBš9*š„[ÜÆ‘(OÉ“ýÕµ\@¥d·[ ½£ØÅžH×ÕvŸ«9ìôw’Iµæ«\„œp÷Û/í°B#3ŸçÑ-QˆÀƒ¿SÆ€1÷ž˜»ô ÓÕ 0PÖ•]éêfܪ‰ùú,”á·\ZIGR>ÂN½Â¥µi{†ì { u-¾‹Ìc'¨¦Éèù¢—¡L ÙE¼™DYPK!íb¨aq8ÌÕqy³žŒñüª§=¯~œØ¤â…†ŒOðí¢ßâÀ¤ýÝ91Ó÷~ì=1P­‚ÐL"Z±Rêet'¦õî¶„ ÌÈZŠ•Ã¬\öº7_l’üW±˜éx‰ÿsÑs»ø°Ÿ¬¾ö)™ÃsªÌÒQ¥ Z2OÛVTM}®MB­T^º´°¸¥ö1¦”Ùð'ßkÇðxïʸ÷C»ŠÁjÑþ¯¤Ô¤Ò£¿§ÿ´®îÝ\º â[®yó< /C e|ZHä96Â_,u ü¹ù Ø¿6l°PÀÞwJôWgެìÙ;1»ãéGו˜_̵µ^7>«åwS[%»“©M°ßò zç»ì¢H¿Ç"Œ7ª&TpÅ_áV"£Á¶ÛMâQµ¦ôšM¼‘N™¤í¦ùÈÖò`\?ó8ß´°~ä_–-ý\Rî"–KëIÞK<ä´­€44ਮ·úI{«.5C|ìÅ\XD|$þ®aGÀ|8¥ˆcu{òÈ.& I)24{„/¡™­6£`ƪXù™`“ {á:a†?˜Á3©8"Áò¹ÁE¿s¢ØÓ;Kg¸aCOIu£Úšm¥(Xð# Æ0p§jÞT<-[K`ĕӭŠmK6.üê4•7P¯°&¹Y¨üÒ:$Ÿ"ç;µV ØkS‘¾ß›%9ŸÊ¦Ï·Kø=çtìÌ·Îb©KŸý,òÛˆmRltlÕ´ì`ÊÚ@óCØdx¹g´×/æ¬ìpwœˆCöÌD¬Ïdâ?Ä3‰"j™s†W”©ó—œsz^:ƒðk†×‡‘]ø½áUþRþ–-f¦¦ë­ŠqFsoŒ3Ðæ\jÖ×ÑÞÚµLFxih€(8WDf$gJ4ÜZœ‚5¿ãkJ ÔTyW/T÷ÖÛLj%µÃªeòáÞVrÞØ1&I¿ï^”ÆÃñÈm[êY’Õ¼øXiÝEí¥">ó>rýQ,YŸž~9I4à$(Ó ý”ÛÏÇùÒc$'ó€eÁG„7â “§{Óy.=¼ý§ ZÄöÙNó@‘®Gøë7d2'ÊHù¬L+ÝŽªŒT6ò‡»02_?’îúðuøD&S‘_¤RJX¬ü²•çü‚à1ÓN+ýÕ—ÿšÌèéö2†Oñ|Û`³Œ·/s<]š?5‘Ù0²ïúŒE·7 ± ]5Vm©Rñ´v„þ,˜y=2ø ÚO»p{êØ¦‡õ–£XǸã½hnÚ"ø¹;ÿ~®ùË ö|®=„Yã8³ÉG ÖùÓ¯¥¹p¶ ‚5~ýØ C>öS]/jÎ覲±À—T§€¼èPJ§ùüŒB, sõao§«t´‚åµ/Ï÷(Q'zÚÖ¾qŸz«j]7sšGS­Vã¼ÜV½öîËë±ñ=ñÿip)7®u8avÌÝ£OØPf8Èáï»%5·|˜f÷öƒYÍ×8ÇÉ¸Ðæ*`·ÒXò©¢€*q·"Ø@33—+`­wáVéÝ49ˆ6aÊk-’ô|4¹‰5ü€¬¨ƒ¨ìFouDxÉ5’JáÕMsg&:Þ½c.<ž«úª‘Ú;/jâ“PO!TÈK”AãöYWY¿zcƒ&c8vcz§.i¥‹¦åsfí¸-_ŸoìÖ¹*-ýÜþ„ÒŒZ I¸Lxšƒ,[;ùíôÆþÒ9µÐV¢)Ó<$!Ï"æ­F ‹¯£FUhËà' |¬F}‡•€1I”Œœ°ÍÆ£«’‹GK o™>DÚºœ#1uÒH#‡2<‰Œ™d¼Ž¾ÖÀy¦Àòl§o½üêî¼1tmíS÷â”ñ'Hž!žF祱?KÚô§j!žo *×[WŒÌH<Ÿ§hŒáU˜Ïû©è¹nˆß±§S72þî²s!ÛžO:Kb‹éiiÝÒ.…–çØ k‚ˆ½TÖK;é¥$f÷0Ë—VâÕŦã±tø=®S[޳ØÊt µlâUµÜÚu(ƒQ^¨‹øP/h=_»–æcW ²úþlÝI^Sî<Ñø ¿àË„‘šZ ,õÆÇZ[r’è"oZ£W;ãQ\,¯Ö®I&$Ø1BƒØùÛ=¦¤ÊH–Ñrb¿¾œúalHÛÒ‘|ŽYAÍi~K‘œp<’@W\Êéýö\KO.ˆiÅ@`óó[ˆ2¯­2怅‘ËœëâÑ„eN~<èž»{ÑáݲàC<Ç@Z9«þô+ÇMâeõ”_s¡änÝÔ]ØÔ.ñì‘Ü‘9÷zE“D*?: ×ð}z3Jðü¸ðËÉÉŒßTÖYaW€v&:û ™~gdÂëÞ1“îKý•ºBµåb؉EÏžD븇¸%Hû–œl N cW.z\sJM°5¹¯ùäÑ‹¢M¤„]âõáýF*TRa/šGÝÙf±fMÄ/ªãªH£•rB»þÌoCTM~ÚÁmq#Ðèì2èæÖµl"P+ÛPxâûZé}½ÖFµBÐ1•yÏ°ÓÆJË’s2lWªØ±rÅ(² QÝ17ëm8²ìº°:Û6!^çL¢kè§Ëtï&øŠåj³‹Ö|ø¹Á™ª(íWɛ։èLÛuAÁ³ŽUtžs·Äù“É{߉ÁŽù5Tß“,ÖË„z¤Ñn±§›;jKj ŸÅæˆV¤¥—>ÆÆϯù¹2s'¥1<+¼].Œ•®O¥/†’÷*¼wtgºÌPÏ|,=óË™' µj‹¥þÝ~s:uÓ®‰$™ 6Š7£ÉÈV#„PËž‹%ýɽ±áéÑþçq½yyýž¾ \hŠ1f¼ãxÁ5¿Á„_ôø®f²kЪvaÚy/…Bø8Ö"²ú§”ÏUXfZ81tI©@Z¾Ñ`™A ¹@>OKŸÞ?¾åì“*&&9„õb´XéøçEÊm5ˆ¦¶Ga^Þ@%¢~ ÊO5Aša-A¨åîYÀ–OòÊJò»‡Xäo«ªò>á¬?.ÿh„— —ÿÔá—r#?¼¥jiÒ(Ü·b—¥â¦ÜÉQß­¬‡û1ô³ÚiðnÊhÔ,]ÅZƒ sâ‹×emܹ<²ÀÛûëêã –º'ƒ^áùlvñbØE§ä&|ô~ú’¹Žß|ÐÕ¯¡®#Ø^9[š²FD0}ž-£ËuE¢m’g9ÝaeX;`µQ¤ôû€Œíé/ÁáäîðTÁ[¾!Þ¸²A£#|3W$…—÷éŠjá´%j0˜¶ÈŒm_O2™}¾G „ßœFóÀÛeC ™Çm0X^×â¡ÝÔqf3M‡HizÖ¦ÂáÄ`ÇÂã·ºÂÍ´“/Kt¾áö3Ê÷{Lµ½~þ âHØŠÈ*vs™ŸS\ÕÈ"cõùv*»ÄËìR;Î!˜ä«áãhæWÁ<õîÚYyTz‚ðŽß¬‹Þå¶Mû5~Ùߘ°H¸ïÝŠxÊŸǹ _÷=²KIÌÿ_¸^ϹÛTÐ‡ÑøÚÎ,äͣÒU߀âû©²¾C”x0rÂ…ŽÏ´Þ¢®Ä¥¸Lè‡Øo „î#{Ôñß œ9Ioy.ņ,©gį̂H+~‹&•M=¨¢u[˜Ýã¬ÚõµE{óžØ?²SúEOÁíÖR·¯8 ìú7Å~{ŸøW9PÇ+†áˆߌ¢9G :ÇmÑ‹»óY­S&vçã‘c·j|+[‘^íôgçd¥;é^î£ÖFŽųXžˆv—ߵ­“•½îaÆSO£…9••Ç‘)%Ž/RÆ3SÀ:ï=Ö—ŸtWÇ\¨®®sí¼Ñë.¦µ¿l/€Bß]€w®~æ? ,® š¿ïÕ‹Ÿo?ÿ8Ÿ9yFüø>”%€¿Âõã]-sPŠÜ_‰úLïŽ[û]ÖÜ^#ÙÝêÈëÜ®éðŒãæ³OÜØå†R±u¡.3ûË=éNÅ=a (êmÆ“Ï"åøÈVÓÓfûh±b¯rgFµR›&Ÿ*φ «_2­¢žÖßt¥FÔÖÔk²“&G%”=í³°È2>#"Wé% ã¿ ®ù(f›‚T|Ê^7L)¾±_iyJz¨K>LÚG”ƒ—~ª6-‹“¯ÈPl²QlŒ,Ф`ŠAŽNXÜ5_VÈýX»$Ÿ*ͶÅÔ—bú‚Ò€Ü~É.öø,î^—9£×†$#‚mÈŸ®ïçn$[¢:ÔÓ+W_g6vÑíèdåç¸1Ô#S,æ{ SQu³r×ú¦¼†E ïcYpTŠÍæUÕà5 ~Œ'ïÉöÏ^”ëäŒâgGج!~ÔJÑ¥IÌÕùaÚ)Õ_^æ|e wÏ~'{šÀ¯Ü•O¤0”ùÄ·Yt®­èøÓ,*5~×Á ˺è½d˜I7Ç·D8 ¢JyIóyØg7˜M¥£7&=ú7•±Q‚”%µŸy|%´÷2J¿L»»®l¾Äk"–]ùÀÚ8C†O·ó!F¯6.ƒyöÞž%…Ò¬(ŸTÌz;b´V!ð÷‰ýþÙ¹ûHÛ~ò‹«>—¼Ô<:×T9íS…û|'0É%·ÈÇL¾~ë*X§ØOú‹0boÍ;-%J8õgT–S¥ºÆo³MÎ>k쬤r9»aíz¦Û53êŸ0èX­Á]—‹!?a f{ŒiV\¤U¾‹ìîܯñ¥#мS\°–Õ(ôD³à#)Ìò–¸>ì{}üfqˣȒ•!ªþ%:ïŒCœ@p݉r\Ni7XRÜpTª€ü=ºv^ò/c }>é¾A:4¼EW„‡]ætã`\ñ9¾òsˆ÷õ”ËG`–m§¡*@æs‘¥õQ处߳·Ø°J‚að4ÿ"Áñl© uùõ+Ýô}öY„/^ƒŽè­ŸÌéAšOϵv j½ËQëHÌ.w.õ„Õ+'à§x;DúؤíÛÃ<ÊÖ íw†•!›í ¼rAQ:Óœ Wמž9›sÎâ\cEVÀ‰ ¢ÌâGïé±à5ð\¦aLŸ -2Þ6n:Sø*…‰Ë È%3-ƘÇÚ-‚ÎôBï9ZÜN R„·*(ï¨éMHêFP]_eyaâ`ŽË•ƒKîIž¡ú6ÆÄ9€ÄP*uZ±'Α½Úp¤*ð0а[X9€ïÐñTÒ@sȽOSû)ÝžÜZÌÎŒÂrÜg*4ø ”(ó¿D#k[ëcNÈèhÈ?OÈbИÇ\HÕæwT}¾1Êü¢B8lîàTì:¦MþS*7jWÑßH/ûÑvò|#%qHÖâ•°ÄCÿÜ*rAþŽ)‚ÞçIíDOÒó#l\mÊý:´5™:ß”gŠå„}TPdô=2 Aödzuî žû¾æ…GRœÎZ/ªª@ªäs¬ÑF¶ë#óS™‡¯olÔ\_k~Ú=\N:SåYd¡‰ºÜD®Ÿºê}Ô!M´L)ì8/œ ;2çpÁ_¤^›eÖ–Ë3É>†”¯ QÆvî¯1‡ºc*½ úÜþ¬:,jk™·¥ÛÕ>êí.!WòÓ¾;”Ó‹4| úëI!“·¬Ûy¿ ¯±3MÝGhÂæPË`Ì´ÒAþ"_wíd»1®‹Ž„9 vu…:mv}`ù^±ù܉±i_ÇHO7k:XîÆpÔÔí¥†RÕ¤–Ÿ ½\¯j\~EOùÕO!qëó{¬]W¶o²s¾”éÞK©ÂÝ9-ßÚK®mÌýËáÑbc1A :·tÁgÙ±„ß| ®ä‡·Ê‰â“.2-áÉÙNbp9<䤖qfÇ“Û>§Õfþ ¼=§`RÝu þz´6_¯³Ÿ-&*Fˆ;@¾/Ö×ǺIæ¬×c`œ ªl®»'¦ƒT˜8ÛˆÐóF2I¤>…W¤/ ì–’½}7ˆHÞ{n(;ûÆ`ë'ÕSìUWC8é©"î±?à«=+)þæƒqh›~ëozdP~~2T¯mÚ:ÑU" ¯r¬’(3áV«ØU^ÇIºï&¡¹{AäJ3Añ™I*v­«'<÷ °²~™B¢Þ÷”H|JY%Ìåá…&)óU†Íw(Š—áKÜL]cp.É;0Wòq%ñ›gK_¯_=˜í»! îïØ”ŸUâ9ZŸ—©HsCö~SÅ2‰L°zä¦äô~V¼ aéJJ¨ y›¿-±*#µ÷~ã‰ÓRÀ¾Â8D`pU:îC„ÛðSÍksã95þþ*Æ4ÕsÙ€ú3µ™N |÷Ôä-Ó¼©MÖ A%@.~¹­JÇwÍÌH%Š<#ãþ1f´Á)m0VØ¢}g½árz—1*!¬I‹mòû‘†Ût\XŠîþÖaˆªâIêR™×õùAßÕ2,cí}èòô|$ŠÉÌSR „´¸ò¤d(æ¶¶£øjKI÷Í%Qd¨@í.t·2»²E0¯ªuiÏtçKq Û®˜×žWL9w7­QÈå{6õv©skÌ¥ËoÃèDXB\Ëï•p’>r'Ÿ·úŽ<1yá÷,ýdF„‰'¡ÿŠ5Ám¸Rk/*LíëNáÛÒiÀ1fË:âPð[į©GŠ5,!{…°år5Y9ôM#ømÊg.Úä7#—™6íÓÉÖòļåøÏv-g†Ü*;^š1mS„æà}ÚîUCÜN^üìj†‰qä<ãÅõuàÇ ËL1Èù¡$x0ZÇÝx»‚Í=9¢EÞâ>¶÷µrW3~H…é%¦v„Û­ÑdWfk7ZŸ}‰DmÈöრƒ¡%ûqZ«Ò ¹8ÙáY¦ÇÍ”ÌmzãccdNCË7•TUš;%w¹/„¿£ iѲîï¶-ç¯ÁúªKÚB7Þ$XrÅëWó ¹»´Ù†âü¿6ìÔyé^Žûd° ¢[Úü:FØ7T$¾B j"üvõv´gf9=æÁªÇ+©hÖp$³É*í |ZcÙÕÍû†¢w‘°‡`zLç[Ó€–‰vhžÍf{76’º73Øv}‚üþEFkÂÞ™û3— þUå1¥ÉÓ`¾CZ‰ ï]cET¹TØÕ+»±˜Có'#=ì¯O› ­ôóM,Àù©{FDÅ ­šúJxb–G÷‰0>‰+DGçë€VD⧸wƒ+ôÍ3ˆ ¢")OÛ2&üi$ ü­ü¸2”)ï.XliZ²È¦éaó²%šû¤Ñôz¤ŒY`šækôƒŽÝê):]û[íx iZEš‘IÜ™=㛕EV£^ði“x‹¼AxA×@ò~9YS”ç ƒÉöä€ é+Û;ô"¢jî&t¬¢$º’ZÐSŸ¬4K±Ø¥þަR”Õ³`!“Ø•)j yÓ °ø_'E\Cø9N€e×s³Ì‰Éù%AÍ cOß Ÿ!þ×A‹£J !°Á_1`öOòM¾*ècFt —I…‚ˆŒ‚^7<€f¸OŠCÖóùmt·\›È”-ògõÈì)í >]Ó@±/qñ¨_ŽpÅ4( AuEÁø&—Õÿêë—( endstream endobj 230 0 obj << /Type /FontDescriptor /FontName /VMRYVC+CMR12 /Flags 4 /FontBBox [-34 -251 988 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/C/M/O/S/a/b/c/colon/comma/d/e/eight/fi/four/g/i/l/m/n/o/one/p/period/r/t/three/two/zero) /FontFile 229 0 R >> endobj 231 0 obj << /Length1 1517 /Length2 7437 /Length3 0 /Length 8439 /Filter /FlateDecode >> stream xÚ¶T”ß-Lw£„ÔPCJwwwÃÌ ÝÝ¥„ JÒ! ‚”tH—J#]rÑ_ÿ¿o­{׬5óî§ÎÙçÙÏy‡™^K—SÚa Q@ÀÝ9y¸¸E²ê:<‚nn>.nn^ff=¨»äO3³ÄÕ Š€‹ü+@Ör¿·ÉÜïãÔp€Š‡€‡ÀóT„GP„›ÀËÍ-üW ÂU ò„ÚÔ¹*8Ä ‡Yáìã µ³w¿_æ¯G+˜ À#,,Èñ; ƒ¸BÁ 8@änݯ9t`(ÄÝç?%XÅìÝÝE€@///.Ì áj'ÁÆð‚ºÛt nWOˆ àa€ùƒ3@Ïêö‡]aëîr…î NP0îvŸá·¸îè*«4!ð?‚Õþàüy6.ž¿Ëý™ý«þ;#`Î ¸n°…:Aš j\îÞîÜæW ÈÉ qŸòA@Ö÷¿w(Hk@÷ÿ¤çv…:»»q¹A~Qþ*sÊòpY »»áüÚŸÔ¾?vàu„#¼à~[(ÜÆö g >êâQ–û3äÞ„óÍâàææ@\o°=ðWy=gÈo'Ï/ó=ƒ?g„3Àöž$j ¹ÿÁñsyB;þ‹pxx6P°;Àb…ãüSýÞ ±ýß7ßê 0å¾×€û×çï'ó{yÙ àN>ÿ„ÿî/ÐHSMV[çÉŒÿöÉÈ ¼~œ||N^n€0¿@_ðß*óÿ‹ûo«úçÞ¸ÿ)¨ ·E„ÿ pvÑðüS¬N à¿+h î¥ °þ£|3nnðýÏÿ³þ§üÿÉþW•ÿ›òÿwC NN¿Ý¬¿ýÿ7uòù3à^Éî÷S¡Ž¸Ÿ øÿ†Bþ˜duˆ Ôö¿^ewÐýtHÃíœþ>F¨›Ôb£uÛÿ!¡¿ºp_Þ ‡h!Ü ¿î'7÷ÿøîç ìxŸ¸Ý÷ê· r?Nÿ]RFØüš;^§«+ȇû^^¼?žûµxÿV6ÈG¸ß§îél®8¿:úT”þeúù@å¿‘°0þýÚÐæ_ð>úä¹÷Âÿy@Ä¿ ?èú/øtÿ=~Ãÿp{¸ºÞÏüoõÝÿ ÿ¾` ogn w¨ o½¨’¦òâÜŸ`Þ4Lgãô›smó¸"ÀLe«Ì]v=“Nè&ZX—g=•š§»õÛy_‡ÕüB»åÚÿÆ2Igl³gö3YßhÑŽtm/ 65§žÔ–ÿ­‹¿Aˆ#ê{äæW.BZ¤^=ŠÞµ½e_†"§7µ·*ŸªâÞ”s>Ó7 )ždηΙ¢`Àpç¤Áb'9ô&œ<=› ɽ£SIz‚°ûŒïµŸÉ ïóË)ßÅr=^·NJ&J ÔS’¡±Ç~2ß^ªÏø•¼‰#jâä-¸UÉ1ßÁ™U¡gµØ þàç0¢Ú…)·{¶ûØÙ6¸u€uè«Ð*[‡·ea¬èÝ%Þ Ó¦F¤ sQˆLÎ:ü/¦<öTÆŠ3É ÖÁøCÜíKïcŸ?tM{€Ã*b`’[–Àáá­;[ÔÕ~hW ßãúA¨^Ƙؘ`{YkB2Uq¾àú­ ÁvÂŬ®­4 «8K¬­-”$ÏD `¡bñÓ zêk×£¯KÔ•PV7fÆ|LÛRÀGñôzUF«içvŽ.Â9J$仸dI§~·@i¿è ‰‹Hˆ½Ë/»¯NmŸò‡|;c÷^³o]檧QözéŒÿ)Y,WNhúИπü›gæÇ±w·Ê´\77ˆÏ‹Ñú5æê 8n–·?6¶Ç‡qèÕNÑYIJZâú¤g‹AõôŠ˜ÕæŠZYGIJŒ­lú¦ð'G8u§nü‹óàº'yv ‘y}†b‡0Åà¶ ê‰ÕZÂGåÝ–ÒH˜¤½Þ•òP3.y»Ýãuû_³>Åh¹}E…ÙUW¶f÷íÏ{Ëë&d¤œt0Ù%JÙ¾×€Ïd­ÞPÞswgó"ªB˜[-ºF˜”תû_é¿>(@i½Ø²ûJÛ¦µûá6×ò#VÜ·Ôœ®uqÊé8ɬ÷öõ‹$¿XÅþóO±—„âžsœøÂH>ÞJ5aƉ2̇ÍU-S >o«ÇæÇyu4ë=œ¡UÂ/>Íä%ÓèŠÊÛØDÅŸQäLÉ-a‘rúùX¤j7?HY‡QÒ{%*È­à‰´}ËÁñ$Òi±ððTÁ×RÙëÕ§YÛ`©ë­•à Šf±´ÃJ…6óHåªÑ“^ªË§Äcq#n^ô£)J$šìÂêŸÆPªó=eHãOßõ®J°Ù¿„›ØŒ%ÄÈÌ×>‚þlƒçñ¥L“*9ˆ¦Ä»{PKk„ë<܈*- °(Bn!ñJ1–[ªVYÎñIcÐ åD³Í×-žõD“K8<ׯõ?)ÊGX&|\ôðõ= Çœm£$XËÉ j ÚM´¢¦!æ}#ªu#×È—u$åï®þhœú³»ùÇ.}©Ü\A[>g3u¹},‚Qy:Ó;ÇP²jN“ØŽ¬•‚¦.yuãþ8÷ËÁùùzaiR¼5Ë™®¸¤)Eé¶³}¤Â×-©%^ņÆzÝK}aëÁûîô?ü'GìûŸ`²sŒÝÎ Ùû¼ ó1¿&¶ÏÜ£ZtàÐôžˆj<]H×óˆnšoWý ­Àrl¤¬ÿ)Á9¼?8y:µ«ô¶o¼Ñræ¼0J¥¾â™r /[è›Ú5ŒŠ²iu!«C県/Ÿ'_#ôð ÿ˜U4øâS0mD|‰rÍ~e·‚£(Þ¹Àô¼Rù73ÿÄ=Ú%æù6ÇÁ›ì}a†Ùܪƒr‘zoqkçÃ?/èM…¤m8^`Î|˜äÌó³õg½¦m– [5ªþ˜¬­¼W-¾²!·ßÒÚGÅÉ7û)ß°ëIeªÏc‡#dHu(í[1ˆ ¶;ÖT-—£N;ÔOÎæüõåb—2ÞNűï±÷ÎvkyÃÚs«\i·®Æ >éQ>lÓ —z<Àóº0â 94üdW h³8·—ƒnÿ¨ëê€dÓ鉖˜~+äi§Z—VnW}MªÍsTu¶jÝbpŠ:8 ÕY=¨ïûX88´/|ÇÈB…aVÜXšK0ë<²]ž¤" ð¶ ÃÎU01ÄNQ©"zT–5äùÜÄõ|]g¾’Ø %Ö0%aŒP‹œÊÒœ‰õlmâ¤7¹æã–}ÔЈ^ã¾uñâ¾›ém|Ì&jÈ ØBŒxá~8]ÈÕÕF|q¦ã×ÙÁõ¦ÜVîŠE~)#ñà1>ð–»E¡šÁºM,G†î ;…éW-à¤^¾mœMw©f,¨…ìI+HH:k|ׯNMX¾{ =ÓÞ îÝŽ¼S¥P¯Í¶Á±Êhë®Fnòxã¦g|c¯\¸D ‹0·Yì{‡Çÿ€„´âóiÙiBœøÏÂ÷g¹ïFÄuÇ“VŘ_—rÞ\N=zmÅD ”ðm°œË½eqøªL‰ÁÃÝD|ã¿[ïn皟â-b“2¬(dÑлÁ,ú)öx>9â ·¸<[;›VÚœi¡¸Sû´î"ÒñåG¯Ölãd²d'mÃIö[ ‰zÍ“¥†hu¤¦rmÖ†”uPµß[ ÌhÎO\‘;R˜Ò:±ÒèKœ«’F+!~²Ë,]Hp‹(Ýç†ìUOkdP˜[¡h †t…‡ÇÅ8ˆýùY1º)ðÆnQý¥MPì¢Í»a“ÐèN63¯I}?ÊHm¡S¢4}1¨êoÀT÷°4 u)Ji£»#È—:"¬›uÆZF­^¥½e 0§H¤#Nõ.êÔe™ãõÉ;xp8ó8®>Ï»éÞê€üC»Xwzo¯îˆyä@¥ZvòÃâåµÎ„]ÓöŠ+{ÕÌåo/JøYÕzhöS¶+âÒHó¸ŠËȹóœÒ F£›Çk Ê×ÞŸº4ƒ>|1H÷þN¸Ø”’1ÒﺨAXí€pD“Žnh®Ï HŒŠ]êp˜. fMäSU®š½¯ó‚÷¤{ñé½ZÕ_åU$E›ìWþJ§érj–:W±`{!J0–éô(;CðõSK^uqCòǪALþŸgX8[†çÊö%²uªîBÄØ‡Pzgô'\hÍbÕ¹í´wpf¹»O¢uÄ?((3}¯ÛåÝ(9÷Œ^&™¥ÅF~ÏPöÔ~‘AÂY`Qÿ•«“­õ…¸™VvQyJã‘Ûn=9v;^´¤i»]óç_âb~æñbF¾Tøª‘¦ˆ\»ƒÛä16ÓÄ{}pü‘Lî4)Ÿ¬¼Ú`—…dZ2æJx¤£ /Û¯– k§“äÞßá߱Ъ- ²9cêu/[”ûóë{Þ|"lx*¥«ËžPÕ-‰sÊø´G³ê&äÔØŒ HvQ 9\ËC`HÕœ’lÜ O”RRx~ÑÒ% Ý[ O»ü‰ëõمB4iûÈ pêFÓ O1jHhÁó*mža’s4‰·3ŽÍ“T&Ãsö^Íîï*ù’¡Ý]9ÚTŽ+o·#ò°‚šÏŒ}$sVJçÚÕËnPzr®Ï[T*C^sRa¢†4¦IJÖà=sz«hÊ3,+ÊÔ”_‚Q掾ËZ¯=þš'y\ !rIïíq§íèeÓI&xH.JX¹Mk¢àÜ(›tî@¢)ÉDŸ… ­¯ìDsñãø¹˜ëTˆëSM&÷Ù3ºYˆž©¥³À–w,]&I)ŽJ£½«hÀ8AÅ’®“è™JÃÑyX–Ø/Ü–)«Û¢ÞYÝ|úU8|žà:ºŠÒƒ´ýcb5õùl*Zkm„ä¨7Í´V¡]oùÖDÒ´Òú5òÓÎQxíÞ–õVèÔT;¹¼|ÔL×s.9593¹Šâ‡_¥]û‰%ò~õ{6=â³Çö;|zgKÉÜ.°§Q0öp C téÝëbo¢§I9ÈiÍôý3N$d*ˆötåü–CÅ¿ 39Ü-éï³pûü ÞCÿïô ÃÁ*ßœ†ŒÀÈ[¯g¨åÜé¦ ùÎDzFö‰UCœuÙ+Û)žgâôÆøM˜‡´ÙZ–Äڀ׋ïzCb‹÷¾Äîâk5q¥|š<¯\T”}ÕCæT˜"¨ýžÃ‰[Ý ê'Fk–œ˜ˆu¦þ6ýêÛ>ý"o­3L[íxÝfFî= W²ÜL }!Ùû Ê}¬0ôz>DÝsu$¼4¤œVÀ‘¿4C=öŽ2ò1ãÉT¬šÎ ðMqŽC×býAøÕ4®ó‡¬ïå5ï·ºÏ`^„#{%ëƒ8¦ˆìëë)=>uæ&PT5bŽ¢†R<ÂaÇ0iõnìêÙ^´mGâ¼ aµ´›-éçyRƒg*ž§€¹ÎÚq&Ë)ï÷Ïu}}L^½iòÏÊb¯8)"õí\d¤®Ù?cˆûš\ÓaðN5ÌtJ__ô´Lë)öúûÂXJϯ+ŸùS0éÚÈ2"È RŽNiðâ~3bÕ€èù³ÇO½Ï+Ïá8;f¹ë š¦u?>MO½7dëæo“ N ü¶Ø«4©N™¬_ÊfãÞˆ~’×+÷°/fù„2?3ðáJeƱèðÀ¦·œU‹¶—m‰óË6…²/M—eŒ¬*ϤXP>w‹ïËÐÒ[ݱí¶ÛÞ…h°7ž1Ç„1u5p‘Ï﹯'`óû (–|á1!²Y•#>›q’t}ºŒcØÁºÆ"ñ…Ð"%‡Qƒg½´ù¬5?® œ¢èžt8ŠÜ s f6¥t½5Îùˆ”9³­‰Îj¼°‚­–xŠSœ36Î>ËãÖB«E5 ›_É0íÅ%n£3â¨[“ê†KïŸÇ)Pq],Æ?æKF2f‘ÓÇ.ȈcTŸüì[›3'¿‰ù„®(¿ª“sIYÛÁ¸Q/$-›ÔÞU±&É|g¡—5Q÷ÁÁöÇgÈ’1Óiq Ͼ#À© 1Ë)Eº¬†ól"f87güÓWšPïükr¥öGèݱlE ¬Ûy¦Ú†!Ê%Ò°:`-èšwR.ÙÙê"É~Ðéùê ›•–û‘€þá’Ì1Ydµ1ð¼©+Ï BØÛ¥šË«Q{›©¥²3áó3@è$®ž,ñãèWi¥"ñ‘ÅÂáI; ~ëqÒ­º0ÃÚ­´`s†¸[WyϹÍhÆ+Vêyû£üì½N'="£†fáŒ6•˜À´+~™è#—þÒ'é>Ž…¶”ýóì¡{¹•.ôÚÜ]„BµZ:=ŽpOU}†·+“û»ã¡\¥û7PЇ² éØñIü'9¡Sùp!mäwB>Zè]ÃWG„LÎè¸öÍ}…/÷¡gú“‚™ÉaDNê“KQæsJ‰Lïú\äªÖSpûre1@²V[ŸZ<.|&Gq)G×è¬ZDžöŽS§ßŒÐ®BQ(ÁÒÄÜ;øl*ˆreo‡¼–~sX£‹ïbÞ’²:Lb%Üß }B§&Eõ–‘k$| ´Ý\ ¦/Fî@Ë?ä.›aNóJ"ËI§u>¾IVgØ»EÕU!u¡øK1¬JÏ–b›Múiá«õ@º -2o³Ï¼¡ Ü-ÑÕu‘t#@Ýf¸ó«ÙÙç4|õ„±Ižãf:CûÌgj8zœù&RLǼؖ^IjÏMe´cX¶ç¬ƒ®ÿõ—Ÿ/<ò/å'=N•Çhg§çÒ©FþÄ9ˆÜI~‹ÙB6Þ]ÀO>Qrÿ2Ô$û\gL‚t—¹ÅëS¢Ïµ2Éréåùý·2•­ŠÌ:dËBXdŠ#ïúUÁòú[OU¹Òãm¹ÙXÜ•—VÕtkH\ w²é( g&‘Ø©ªØ'+=º¹ª$b˜Ìòùó°Ò7k34Ýê=†qÚ0O¢Öâ Ã+ưÐEøpÉ ƒì`’ÚþñÀ–º‚ÒPªö$k¯.aVí*³îaçÇ—nw±M‚ðÉLp?W ¬õâÈaâk|lsç²Ï6Ñúµ|;Ù­•BÚK3W­……R·ÇÏêÌö:Vú½¦\þ!Œs’Ò™^2š´Y9´yœ‘;6çåß*@îdµ0al¿èż|TUë Õ™b,þˆ>;@%<|'XB ¶ã9ÐÄÍ9€ò®8‚-çÚÌù*ôsÔÖ…cÐÁÅÇóTË&B\u âù{žëb6ö/Š[Tkñ »T†(P Î'hˆ_\:Òø·™õÒÙŠì—ëfÓÍŸœ–Mû½’ÞÀVO%ä$§4L™èd`DÒÄ:c¥ÊÑ'A<ìSŒ³T°Üp¬oŒv‘lB¢4/?• \ê—ÞSv®¤¨°©ßðn+•Í6¤|“òž*z®7.B[øjs¿r£¡åk9ËÛÞži2, ˜á4Á¸é ôGÞ$šÂÜ¢Äâ}l‹ÍJ†?·9§GÍÔ|£{PÄž˜Ÿ®2G=Ì›»á›ü?ö­†ÌÓÅü>;ùNµwô?¯#SK…{‹d‡{õ¸?³½šhÚq0ÿÊöÝ!6õr€•ïêL;;˜Ã"Šÿ²Ží>qúBNêÔ¸šª#‹¤>­gMO’J±¸°`œœì8õYÞYM˜‚óKB^œÛOÚ(ÛpV Ô‰BYÝ´ŽWÍÏ 5‘Ñ×1!+Ç@‚ R&··mÚí;7C¨ Ÿ ="Æê#,TP„\àeHÕzŸkozÌ `žC‘‡†®½|v½&¥¹®s´_#>:2a¥¯2îB€uü¬ÏÖß’¹`‘ÙYyd?žÈ×~¾^*"àÙã…\ÈÄ…Q«g =À>Xû6ݹ±õþìfÿ‡ÛÞP*ÝEÒh?¤~Õ¶§ŸÖ{0áw’Fâ$‚‚*­ Ë›‡î?¬²äZ‹Ù€nûI¦”ăW»­Ð °à^³Ñ1È ª‹y¬KžÂ$ÁË…Œ™]çä¢*º–5±5}Tô™j\¨ 9•™¬õ¬ "ñ#óòb«|­¸ì •#‚ ºö¤¢½ÃWï( fêý[p§•>/â– FŠö•´ßýTD‘ |Ÿ Î$™öÔ¼ãõ«ÅÔ‹® »î7¦j‘Rû‹¤abtLÇÕhž–²^KÄJÁ$þ x{MØ’1.ƒ‡°Qé’aP¼ÞVhõb|تhtqc)€HÔù+°OÉ~¿T=QtÍuèFLr{õ€$1ÓÉ XJ˜W ©­¼d±sgLd?¨ÀœÐ,Á•©*À(dHï'ÛNX•íº9ãÒ×Õú}ð¡¢­yifT‡Å³½p*5⫌•‘S¼óÝòpÈâUJû·ëyuŸê>N4ôCû´{£P£a¾zË(ûíÞÞÇÂï,ú« «­?R(ÓJ„ÊY‹}ËFnØê¬4¡ÿ¾³µcÖAOnt+>Á×C¢º‡•”NÞѪ„‘8_pvºM ‰UkÊå»$ %™Ê¿§gë¾—´ 1Y¿ÝAÞRÚ F*}ü]$ñªo3oîÈŠáDí z3ŸVVcÙ%i#Bî{‡wãP?=¹û®[ôëCuOc‰ ¸ß™œ» )oFðèh5;u" =2ÕÑëbEw£> $•‹ª–ÀKjôÏ/Ãpã¾@°d>$á¡IRsDê]Üdˆ5BëcJ»/ã¦å±èòÐ"Z0ù£¾_IeòÀ•äU YMG i4%a•ò‹ÍH”Ž×0ʬÅÐJç} Ч«ü™æˆz"Ú:þËh$Ñ ø•ˆVë>ñÖ#*7 ×ÓÐö,<ë(Þ§›ãM•½p³C×·fèöD¬ÖqÆPWf¤•ëXÒDïç8þ,ôÉzR©(u<îàACPuj’b5c[ÅuÙܯDîÒGÍ){Ð …7bÉÖu–Ø–›ú“I†Í‰ÇñÛ®Šïv¨AÝuÃ¥ô¿r(ˆÍ°-ιŽÌVHRO³–3žÙË8þlhf<<Øxc¥>êP4-?Éüíˆø«Ügâí®-—ÙOp*Â÷#æ]‰Æè·6†¾óHõóV$£$vl}’àåd[Â(U3‰¯<Ó|AÜxöp• 4aâÜ“áfõ9»wà‘\ÒuÉ£Õš9ÀØa·bÕ[ÙR3Ê®rê”ãÙI=ê:’ÒÃg{8u „¦T äGh 1˙鞃¾ e^Èwré‘1ZÝÀ« ¬â²m4V¯üÜüÓŸmM%ÔÑç¢ :IªÏ‰Ê§…F*ˆÜÎÎx¾hOÌ–CýÉÛ‡çãâ`Œ—åÄ"ã P³ØÚׂôìCv§j®:Qç¶{Kœí]¦*ýú3UM‚(ç„ÌæœP\TB-ž¦oúpQ°Ð~o‰v–L{d9.y!:Dç`%µm—ç}ì–.ÕÌÉð˜¬æK©Uälˆ¶ç†.<â0 y4êUu©:Ô?îgEíG½ßé¸19@‡q+~*1ÝnPs´øN'i«¹„’§EÛ6Ãró"?_·±À㵊–&0ø)m1â\oBìÖ÷ž ¾å¶sO–]'2—ùi6³Âÿ-8f) endstream endobj 232 0 obj << /Type /FontDescriptor /FontName /XOLCQR+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/A/I/c/d/i/n/o/r/t/u) /FontFile 231 0 R >> endobj 233 0 obj << /Length1 2640 /Length2 16937 /Length3 0 /Length 18455 /Filter /FlateDecode >> stream xÚŒ¶eTœÙÒŠ»»Ó¸»Cp î.Á]iÜ nAƒîîžà÷ÁÝ .AnÏÌ9“œïÞw±ðT=»¼ö»i(T5XÄ-€f–2@' +» @RICQS“ƒÀÎÎÅÊÎΉDC£i r°ü­A¢Ñ¶tu³: þÁ‘tµ4eR¦ 0U èwwpp8x9øÙÙœììÿ%]R¦¶%V€<ÐÉÒ ‰Fèìíjkm{úï¿zs‡€óßÇ⎖®¶æ¦N%S¥#Ø£¹©@hnk òþôol@ gA66OOOVSG7V «µ3ÀÓdP·t³tõ°´ü•6@ÙÔÑòßäX‘hš6¶nÿ¨4€V OSWKXà`knéä>äîdaé ûhÈ)Tœ-þ!+þC`ü§<VŽÍýçô_†lþ>ljntt6uò¶u²XÙ:XTdYA^ f€©“Å_DS7 ø¼©‡©­ƒ©˜ðwð¦q5€)8Çÿdèfîjë rcu³uø+K¶¿Ì€ -íd! tt´t¹!ýŸ”­«¥9¸òÞlÿ¶ØÞ èéäû[Ù:YXý•Š…»3›–“­‹»¥œÔX`Òo™µ%ÀÃÎÎÎn¬¥ ÀÒË܆í/'šÞΖ+9þƒóð÷u:¬À©XúÛZY‚ÿ ùº™zX@®î–þ¾*þ!qp,lÍA3Kk['¤ßÖÁbK«0x \m½ìà!ä°ÿõóïFà9³:9xÿ¦ÿÝh6 %UE9-¦“þW-!ôø²p²X8¹¸¼|^^€ÿÿú·ÿMÿo©ª©íÂûàœ“ ðOàòý7ÿŒý¶‡ð¿”à±¶ÐÿÞCvvsð/Žÿß»ð÷‘ÿ¯øËÊÿ-ø¿1ɸ;8üÍ ÿ/åÿÅ0u´uðþ<Øî ð’(Á«âô©:–ÿì¶’¥…­»ãÿÕÊLÁË"îd xVnÞĶn2¶^–ª¶ s›¿‡ç¿í{p°u²TºÙþuX8þÛ”uà 4·_2nà¦ý­²/Øÿz•v2Züµ‰œ<¼SWWSo$vð¨qòð|9À+kaéõ÷”ØX€ ð8C€Ðé¯ÖòòØÄÿýƒxl¿€Mò7â°IýF6é;€Mæ7â°ÉýF`›Š¿ئÒo¶©ü/â[Qý8lê¿ئÆoÄ `ÓüÀ9hýF`Ú¿؃îoŽZï_$ŽÅô_Äfš::ƒgü¯[ì¿Rnp¦nà‘°u³ÿ}L5ûÀ3Ss{7S7›¥œàˆÍ\MÍ-,­@ˆyþ#þgCþ5ÂñØÞô?|®åÿç8ó8"s xŠþ œû/‰£ãïÿ/¶ß™qëdtp0uýƒŽÂò·Q0Ãòœòþ¥wq¯ë¿VÀñÇËÁÔñ+à‚Xý¶fXÙzüaö/5ÐýO·`Šõo'`½õ_[Ë?)àt~—\DogK§?`™í¼ÝÜkû? ¸^¿“àÆá¯-û­W÷ŒÀ·-ÛoW<`[NàíüC® ðwtàÃÀÿQƒ3rþ­s›þ§ÑÜÿ‘þo›Á·x&mŒ$¸ZÎîD ~­°¹ün ¸T.î@¥…™Ã°ôzr€«õÛXéþ ýëœáÿgp ¿Ãßèl WË?º Î ä üãØ†ûïqûûûýáftý³4àFxüÁ¥óücYÀF½þ€`¯Þ@pY}~Ç ¶äcéúOÿsGš»»‚ë úûs¾@ÿ‹ÿ~ºXZzYš#--Í…BíêC;ïkʼn=Yv'¸úxµn_Ýɹ‘â ·Y¡z• ìˈ¹ónøS³¥TGmDª  • !È¥ãø<í$ºXᱰð d£ˆNXÞ( ¢üD Ÿº`ï#JŒ%Hû|(é=({NQq«G#"9Ž¥Ä $½×ß?pQ#&«(¨BT9X`À{ 9S‘uP„›ûÖ-Ån‘†,ÿ¥yúN^¹ù仪 Ëd~¡_•'p.ü-¨þ§±^Ÿ`÷øÎG›.±nȯÌEѹtûWÌEßî–¡“¨¨…]ùÔð:¢î½)ÅR2 §ãœí7rq*FΞ"“sŒ¡‚ (évˆVžÁÇE6²gñ>9|eÇß‚xgeéÏ?cÍ|±3¡Ú…ù¬ó/sô@as'@ZFÓ€¿“£ÍÔ+e›n©`^мÆÃHÿgOå^µwxäÒ4Sb™®ÏÉtc ™Ç$—QˆxáKµp†¸ÑÔ"ä>á\>ÙãŬ<ƒeÕ 4 \ۃȦ­>MŽãÓs”YYHÿ6ýˆ×rñ1zïN‘jdó´J$&ѽ‡‹t´æ‹8†D«ÏQ‡ºïÓøM&&Ùu‰Ë–Ùç1oã2–<]ÖY©ðüèO@ÉÔ@ŸçMâU" ¢5±ÀÂïÍ`£ziúQÔVz¦ 6’w½ga,¢h¢#ùé׸‹!€Ñƒ†öMU‰hª?Ês7Ë‹ƒ}-!/Iê‰4j®3S.éè4µ@h&ªBij®¹„u¾½'—W¿<+áé/c8‚´5£âØ0ÔÒ½2«}¥ŠöP-gtNÅ0ÿªuÃf4;7ÌJHC Áj1çà6¤HÞÝÉÆþrÎGAV1ÊyS΂µ»ácíÎÅsÞIiÍMä,”¤•DìÚd~[¸›V Wâ ÍC€XÝròÁöv UP_ŸNóQÍHR‰-×.+­FåSŸ³m^B¹Û(};œ}«8ƒ+šÑ}OƒºÞ»YZ»u¯j¬;£¿æ”%ïp=¶;ûÄ $ÜJúC¾÷µ0·ß¹#&毾2!ÒpÓ5ƒRyûBl©ûÓ¼>¬âïçeK-ê ã¢tº<êI Ã-%OÌU,µ+nó Š>5ÚÞ‡ÈûWô1‹˜_d,úuO±Éà|žj,9~ÃJJt‡FÎÄ6¨ u§°Ú~(AÎÐ>ßk¶;-){½Rîjë$Ém~)ïáA(ŽŒu£Jwf˃4´êr³‰As5ŸµXýîô„>‰}UßШÉ*ÀÌxFN,¯jê|$œ¶œ@åF£Ë gu˜t|«z9} YLl ùÂz±o¿©N”ïó¡‡3ãˆ#àTb\ïz§>ºQY =…³ò)þêÀBŽ=þ ÖÚSÚxIU\­ÍY’Ÿ7™Œn¹y²½ø èNkz+ÖnÁÔ±»¡\õžù98w“D&x+‡üøГ郙Úå!…ö2jn'CÎÈ6Zÿ°’ ód`Bg|àò®9ž‹Æ¬øyÜXêcÝ‘$¥‡˜ÖM¦÷°qñíJ:݈;ÐDpþ‚¶ ^SÍ[²Rv×3u’ ?¯\ÓàТÃ"QÓ<Ö*$>(‚ì³kEN¾œ˜Ì»éúnãŽRPwÝÛ.N7òΧ­÷Š/’è•ÉGÇܬ§%Ugæ…â=ÔÓŸÕ=¢W¥»z,†U±‚ßwâ}.héD³™å}C:`ºÅî2ngFØ$òð5à‡ç,ÎMCd蔡.C·¯ÃÀÓ¡jN‡Kp ñ™ì‘(K1j|÷õGM€¯ DÕ’^Ée$ÞpÒ—‹ýÄ|!Cç!Ô줋/ÁÕO§Ê’Qô³Ž…³c½™uì>—Áç…ÓŽ£§{ $lëž4 Yë[;q‹DâÙDdV³¤BŸ¹|Ž×Ô™ ¸[?r…@øfbŸ¿lå>nZÜПÖög <ÓUçO(Ô jE]öX‹hµ†]夕¡,hQW¢T.‹9›¬!)š1iý˜b¼‚¥¯F'{ª¢‘¾â6È—äßWF±Î/7õ»^¨íé6ùLûdåA.ªL¤“0æŒwgeÇ_‰P¦¬ËJ Ws~90Ðb^”¦ØüªR§~ñŽD`å »¥sža¸8ð’­ým®ŸûúÓG¶p7Ẩ¥#éÍfô< ]ÌÒ Q²üd«Õ¨¨¬èCªÅÑXÞO\³ïJãòN•ú-™ß—Á8M„Å 1hP$•c|›aåj¤ƒº"^ƒÛD?ók;Ç4Yj6!j‘™Í°¸d3¸ž<׌(Fö6üpòÜ ~ÓÈ´o>¹"›ÈCSª½VÊ{褵Dy/nDŽñ‰6dTn ͯ°ÚPkWO€,C„?vŒ4@ÌÝ‹ +Û’ Ÿ(‡=ä­­G®×m6üst¶åsI …4&¹úš éá[‚,’"üg+ %vpCç~~Ø÷Å0qâß™¤±ðº æôc†&{{ÒðՎ'»,âU¶¯…ü•›µÉOŸ‡ÚÀÄVà™\ÔyvÆ;[vþKª:Úòù(CÜIÀKö ’c ãûö#4¦$YcîñŠ.è¡zf›EâQ/iS¼×›wƆ.tf…_>¶É¤\¯'ì|›äNÀ”‡KºìZ¶S¡šaV¦Îy"tœ]ÑӚ̈́ÈMž³”=¿j€ÉÎF`wW¡ê„ÎT°õ8³¨¦k®BNË…M´&æäãâCÒáJ„Jg·ÞÙ/9A½¿Œ²˜–6®ÈàŽJ™à Ö°A¸ëÙ@¤.1])Mí–å¼E–j&Ô¹w3ûÎʳö–<¤Coö—A‹eúnª›íc‹þLeÆ•yMìaد/Ø‘F´¬Áæß^ÌnK@¤mÑÈ(ýõïMÃÖ˜ËñdŽNVH’ wì‚ÅTcßƘe2Àð6­‡O§d¥j÷çxCAº’)p¥êcôZÞ¼ºË‰ÀµNÄR¶J[¬…C80"˜›ÌÔÄßAÕ! S¬Ôd¤åûÏÉIuTÈ’E$Åà¤n3‡ •úƒ†ØÖW|0ÏâÜd=(Qœóèõþ¬ ù~Q̧ÀÍ¢»Íj4?í¢ŒsX»kÃÿLÅ{1NC0Ðu×¼l£DTöõ '‚{†82’ë– Ývšé3Œž]âénA!@„,WÛ=XfÑj¡ú#[†ÅxàHÝ&ómu8'—d0× äÀ×N‚tÜrí²óµawÍ«;€Èc¢8[Ä× ¬ñÕ«–‚¤+Ú`û½»íòäAM ×§õ®ŠyÞh½³fÈÝ$..KØþ®p²Š$’ ƒ¢q\Ä>NÞÕÖµ” Å… (=ó‡XÖë CN‹Í‹Ù­Ïô n$8÷Äå÷,O„êÆ/Í|¸^ 9Wõûí‰W¿r¶,á8æV¾Èz Ͳ$­+dzêtþL±Ì¥>y‰ü bŽJæ13òFó%®ÑáeB²ì@2ì+;c7€Ê£jôà$÷U»¿Hx‘þ×ôjƒºŽ‰“Î.á²û3ºd´û åñ6ùòÒúréR+”ïëB56ë©z–‡EñßÜ7vÔã?¶ŠA¶©\œù¾;^uþ€Š[pâÓ'­^¡õ)øN ±‡±ëkȨ{!àr¡Ê4€ëyDå"þÔ0kÑ{×±æ•qÒ(ï¸G›M–ɲ]„˜ÇÔ‡QAªŸZ¢‘Ðõµ¡!ÏÊe^e W:ÁÖ›WÇ­;édciÄ×ÐåçÜD’«$‹~GÿÚE2±Ò-”‡Bܽ£è•¸ƒ{FùzRY]Sœ« ½’Z7Äð!`G8Gf 4ó1‚‘E.^Y¯))æ2Èf—jÕør¨¯íµ†‘€dþûût©ÅéõY•·cÂZT0‹0‘§X­ Þô™ˆô7sP£[¾èÅÖï½ð}|ȇþÔÂÕu6ÍF.Ó€¥ºÓ ê PuvãÉ™¢ í™ÓÄ<Œ„4©—Ô…Eç/"YûÕ~lð^(ñ¨^Ýd€×ŒXǵ]>¦òe¾Ð€ùB!°´ˆ W™}(âé+‰Û²Dxž [z`è2náþ×6ˆ6¬f0žoà7_¥§&jIŒ ÞGwݜܨp¿qpÌVÒöM^gàs¬ë>ŽZ"É9‹pôÛ0ÿÜþ9§,ú<Ìñ”©Å(Þ'O­¬\Ôuì÷L´¯¾âü}¹δ¼aÞñ†H™ i«¨ÓTRZÁ1ómfT·L¿>`Ü+ü~è‚ÿ±P—=F†oÜaÒ†ÍC]a»K­™,c9¡~cñ>oKÖdÌ2ÿ ké÷sÀ úü,iO/Óš|K0b%LðÕ(Û~‰ÅBï3Kׄ¯¸œpÍh¾’ìO‡ yRY٦ϵE¢âël„{0ªC:óìð~9¦XÏ͵hüœîÐtÑ-EÙ‰:áyKzjÊ"<=™k¯fQÈKv‘ €Ò0vÒ…µ˜àÏnÅã´¯Nø\O[ÌÕmÝ<ͧÊmyò03‹­åÇÉëGDNµÓ3?¥wî!qëŻމeh-¥>\´~L^[qKBXA¨‘5íºTÖ› Ý´ uDjråÉ„…?!åã]½ÖoÞ¸O U½ÿâ¦TZ¨€b¨Ì¬ì=\>ð‰”ÔnÛC¸P‚¦²|EËj QZ!F˜£Çü00¢Ÿ‘ÈÓ)Y¤“™ì$(än‰xÊÇľ’NZ5 mJÜá33 åz Zz™†Úiˆ©9´^uRR"‘§Oysª6ïœë|ÃôýhhíÉW‘Ñï³;ù(,S7ñŽq2‰™{ iaX{m/ ]ËA3U’Âsî@¶~·ö°Çgm€?‡ãcÔG¨4²Ū—>CŠ|®î¦¥&ºÏ· øi7~ ìéV\ð\ûøw0âÄÏ=ï$ÅrÀI *þ! ÆYb? Ûé…ÑæU[ =[•e+ɇ3x߃Läõøùõ•Ñel?äíŒ\‹.¶ÈkZØš…^vË݆²õùt9Êò·ZÄŸð‡¢•“ãu@ O$(—Áô™˜ãw.Ÿþ7/wY‹8!øºPž£ …ÈUÅEq†=œÍÁIR¡DhmOäŠø8 .Ý>Ã$]¶àԽåª_~™\ÿÇ•«|4(!<ï¾Ey o)š¸hå€_—ïÕöÆ…³I<ªA­W³ìÁ&ˆ‚ï™ð5xñ3<ÓžPñð¢Eà[à‘‰¶QWRzânˆ3Cw™ÔÈÕ]/kï°“ÙOC“ÂËX§Ý¿ SS’@v?[íŠÒ"§Þ?È)½ ¬âP5"¼\Cµs¤¹´Gl$Ñ-1[˜*’àÔ`’(¥ú·/UÕI3uÔ w͠ΗDzabpÓå hx9i>êâëwŒsñ|äúŸ<qÝí]kà,:PiÅŒw;XgçQ²ßîÞ_pŽ”„ ëêºYx'p˜W¯t%}50g?-sR“^Ö§3œ÷§AØÜ¢ž±á¥£ñS«èêx- pzIÀä„ õ䨿†ÐáóEVƸ ¿Ÿ` í9†Î™¶±{;³-EäÙ-Á×Mž‹"#^U—?ê~ uWD±»,ä乡Ëþ¼ê™*£EÏb¡vËÉœýan;ß‚]À^J ¦Üa—påH3éú½H¶qsšÝ(¦ÕŠÏäóSòÖË# žU¼‹íƒÈel j Q‚ë‰aªFhìþED¦ £ðnçÐ,ý‰ÇgE¤„cËв$1µYÛ¾µ.FoQBBŒ/™âY7Ç˃(ž‘à/­ qxx‘†Ä}¾}E|B™_E½ÒØAâOŠ‚:gâjPKâ'´6«ó…úP¡±pÁ,Žä68õ¨ˆò«Lò®rùr Zùá‡Ôžà°©ÖÐÌ ‰òrõ“ó‘#ouʧq­Çs£³¨áÖšÎØO ÜÇÞ)Ë‚ŽSBÔñî;ïQ SõÇÝxB¥êb¶oÙ´ÜëxO¬{C§täÔÂem_ÌMÊi}Üý«: _ÞË {+¤š1?eLZØmm­oyQ§Vë[l¿‚ãê€ÒƒBXYN³¸qêI¹lµ[Pa‚ü•‘B^¾e®'—†¦Ó™= ²´¢mÌ??úV ç µäj{rƒ~ìTƒ–ÕÚe¥±¢Næ VƧöZ(o|õ øÕò!Žõù$n(Áx7S}Î<<±¥§ÔÚ¢‹9Š"ZþÅͼ؆¾2gŽ^°f®‰B*úf›u`q"”B*¶ Rìô{ªÃ,B¥«`f"íXó”~q8™`7°ûÍÓþ)€Ø¨¦>[äÀŠ›²,;hñ’]¡Ö2Mÿ§À#¥×6óN^ˆ5BPü´ÄZïy‘ ?ëíaéPå×H>þ‘ä 8è‹ÆôÓ÷­déºÄû>î¿àz("ob%Ú׌Oy–]˜}ŠjÖ¬7n¢ à?]ñIíÀ7U…/vSÓîVNÈ?´‘%ìx‚œRúߟ §¨ÊS‚¸éï¾hÂ*›-¹ÜUûSáà^Bo,zÿ‚”µîô²Ï„HÒMzjÜLŒŸÍ’qL‚2Ç „o>pyÆ¥E“ Ë÷3O½M†CäŸ( ’ÝÍpÇaúq ¡^Ð̹ޏ."öx€™¶z³ˆ¾#[ü³»ü2¢(ò'÷Û©xN·)õKå|[ަþfeRZdÌ]1 S½¢¸]t}ñD²¯JÍçx¡‚76.±py‰¢Xܲ N“•qÊ=£ÉUú-§·Óu(±µ.“0šðr n)‹ÚÅœ»oD¯ú¹G3eŽˆ«?¾>+ÜLHø ©•z“)«“ö! ›U \bQ°Ògñ‰Þ¸ ?:К7|DqâËvbXâcùðQ];/ ¶³, I¥aÎD.¶Œ5vÁnßþD¢sÙºw…üÓµJ—ÑÁ˶ejQýF6š ˆ’ËxËpñZ„ßYïg¦xÃóº¯GT,tݽGÜå âM©v%7ŠîƒT=ówE¥Èv÷­²ýÜøP P8š¤,Œ#Ó…½‰‘ó»†%‘_xµ´’Ú‚;ò’ßP&à¡–‡°`²ä¯@5·…|ë;û±ñû„K‘ÎgýS-#gä4Ip¼W¥HÏaÌî›q~¨÷óÛŽÙz„#KÌZWn8ÞqºLDrÔ…®Ÿ™D¸Æ$ý~¤‰“¨ÚrÓ…m7ΟP´ t}Œ<¼”îƒ4?P5%íž¶1 #å—Ñʇb·ûó`Úniv ˜\ïè€p—¶LÚ#”ð¤voå¥E¢‡0|kE™#‰äg¾Ä$`ÕOJÏ$ í2¬ ä¥]ÞŠ 3T,’ÑÒ}SŸÕo2ÉÕpdÇ­Fà± úõ<_Ek1îÉÚ~rÙHðµ:Õxð¼l¶f”b8ƒ‡¹ï›W-äî)»îØ=ÚÈUj†d÷[èÏbBÊ—b&=*dhû4DÐg­ð#Ù*Ä® ó'¶§â¡lþ&I¾-fR²óÆÀý½Ýg¶{Ï쾃‘•â£qwgn¯WZ•l(43Rì¹.ǰ°‰'$½ÛŒþ|ñ ³eØÅBG™\25wż{/·{›&‡ÓÎæ°‡¶”œü ™&”tNÙ7Ú@(z(U¯~=¼-ÄÙù¬ÔÀž0À!ËKôòºž%¯Ý%ŒÞTfʪ´ÉíeÍ»ýùÆ‘-:)Þ£WãISèó6Eóib²Ò¯éÏ ²›S85 D@µÎ‡knŠaƒI’æ¹vù ã–-ã˜,}öé!–ìjÂýYë_€ëp§bG ÈM/yˆ:”ïÌ•y_Ó©“—‚¢x,ìr-LtbÜw0Ñ&…êù+ G­Ì˜d_ÚµäÕÄyÈ“æ¹r†BqrÌË_Åç£2–æj~ôÉ)oÁÿ”ýRŸ(ù©òŒ$;B>ñ‘t­Câ­Ë8#— ™1\…Sê”Àx2ÏS´ì®f]ÿG…#\l^¼Zt®ífAø¿”‰ìØã%ÇóX™„ê\{ƒ÷ˆ¸^hÂ4q{z|]ô9]=²s¸ ‰n¦uê];:"AŠâRé §a_¤ŸæÓüZÅkÒãÆkÚÿeµÕ¤2EÝ ¾º0¶ÅDz5ŠXò*àuaK¯ëí*³;ÊL-E;ø’®ŸÀÍŸÀbÝͪ}Ê»£ŠÓBˆ?ÊAøv…²ó5ÀRU6fx-¿ï¹Qz@È’¸™‘)ûìŒõü2c+ÄõèÇøXðŽB í¸îì# Ç 8L) vptñ©¼µpìQ#­aÊ3‰›«ÇOn?˧ö5%aÊ:ÎËÎ0ÝÝñ|]¨¶-DÿF S¹þ›f‚Êì.ø5R~Žð.ÀëˆN›uõî$¨µPì|6à W vÃYk™"„ñ¥š!ªãå™ÜÂ,ù³Y×d=ð€iÊKNû¦˜ &[sCRÛV‹¯ú¤ƒúôø(„N,64°8 Í;› .ùö¡÷Nalîð¬äxpª³ ‚¤6$ÄÂT ãRň¬§¾ê<µñ¢¢#´ý’’?ÁÁôˆ”"Zƒ3·X€&;c­k÷A¬”:G=r\3"Ð঑]ï 2 Ãjé}¢d4m!÷s9%ÃÙ×ÌiŠÅwN'W ²|ª¾·ÖxEhâÞȼ~^­vç<"¥¤fE¹Ÿ£‚8¦X™ßqþjwÈbÙÜ›Ùy1²Rg2H`í²Ã fmgí(B¾Æî{‘;¡¸Î_'Ä_˜Gcåí‚H;šx{åí~™|wÜ=¹rÓ3:‡¤I5ãÊU ùìX¿c!k¤‚±Aƒœˆ6Xªª¿Ød‹b0âˆo’v†Ø®àŒ5ޟΠéîú@eˆ°Îô8#úuè› H&vÑ*˜"çé€HÍ+ƒzûõgâdÿPæ0BPÛ©\pÛ‹À ÷'¾fÀ»€JîÍè ˆYÀêœ `ó£íXÂ\0K`Ñliˆ).+ÓíÕ£¶Éßj“ô`ž•Üe_ó©cI²{'3#D~çÈDtrgo‘埄TXÝèü[3ž ’Ã]h‡ýaºŸ˜Þ¨†‹sš¿Ïçª2r¥9¼c; Ó;þ8Ñ=·No l ·ø;x³ɺϘ¶aÅ‹iš^¥´yˆ‘ØHÚµ]Ã¥|…ª«üvÃnhÈáPÝ—AîIj>ø‹~vºnÕ}–£6 ¿JMÏéŽoojÓqÐÑä”4ëB˜0Ü¥ò_zư”“É(µy3æèîšô ƒÛ36ICO½ŸY¾Œð`ç&ò6L–ºÙK9ÔÂSðáÀKío§@"_¬ihÝè¬|/P6™¾Ê,mWg6ä Ÿ©bÀÍ}×)ÆàúíÍ '›q¥ÉtɳÆ'×ÁÑ%a1Q'½™¶r~EÇvùˆãý¥rœfhk3è´Û2ŸÁÁ¯ûM¹Bøo@eP8ƒcþ‘’‘%€qÂHG{&‰>¼q,Œ¯7ÐF\}p_Æ•®(b ’ÆýÛ3+4¨'b;]ô² Õâ".ïoÝ[D‹©¿‡âï–4&~9&𥩏RS áxÞµ—ö½<œ~“2}ê‰øNŸ”‚2 ×MÐC¸È×pù û0±¥ŸçH/€˜öæÑâCVŸûÉÀ'ž©CoJÜì+?­¼ª²ã•®üUxhcl;¯jf9¨t´&<×Zzåix¢ŠY•KD)y¢ûšŠ;öPòZB§D šUyûØÌóg?º¹°>Ž «Q¹KHнײ|+×Ýí°ÉãŠÍ9þ*Éc‡ÎÌ>2³ÙDƱI°ùê†ß\;J$g`Kx*͘Dàü5/J/ûí¸UR×ô±¹XˆDŒT×¢M ×~Mz\MG‰"–§ÚÔ=;_Ûþ­3‡Ò‘›8£ ;ô/\W1¢‚7’© òï„WèèÝã³PæšO}…IÑÍ´’î”+EÒÑMb5œÎM=†E³Ÿv‰ ejbé`èÚ Ñ ëš3M°K€âïÝÈy/Þ#šÏ;ˆGª.Ýñ˜V:²IFW¬ÅJ·[3VÖâk¤àfÄ<,lºîãšûÑW¤q©!º TVV øyÍ‘ýEÒ¼ÿö\;øP/ñÐÃýA;žü²0%”œ[GVާ5>û^’W»å¸)’73«JÁp9àˆá"27¿¯j½ cÖ6–æÆÿ2úKQOr‚Këkx¢$A7‹·ƒ¸]µ¾÷í{×T¯ˆ8f!·Gg-¡3!ãQ¯ÖëìË}r"9äA›RhØk=„Ú¢l0&±ÐÓâ‹‘}Š ÁiŒÂé=•Ÿ×\Û"×åûSóå…šk¥¸$•Þ¬-nÚ*<ú”?ŒaëúæuZPË)6îª"ýKé®õï<ŠHæ)gó†ú¦ÍædÖ¨éäíB›‰ÅáaU’³ÌÞK¡Ð°P¸³3YŽ&:t´Nçj™ž\­®)œ±`̶"*Ï~&š}ŒÛ¢Ü ]Mµ-M‰.™KW/3j– jóãi|kpPém#‚Ïc>K¦ÚÄÀ&(= mÐlWB-F}õZô,ùç˜_ýÔ}&у:V)ÀuGH•ÂK¢u¸¿òqv®*D¼²óvítåkEìÊòk¢ó½ÿ›ÕÆg››#fÃk #5n„iÇsè‘-èB2Cì*ö›YrõOæšr}Öè]Åp ½„Ò–y!ñø%1q©‹·pG)ãŸ:$±¤ý÷ž$‡«ñõÉkûi'›%I—=ÈªÈØ‚”!UúºÊ\©]ÚÜBX¯ÃRn}²‡Š™ño’,š-´ôsi¢&Ðì'óËù׉Âdî¿ÏûI¼ƒÄeFÄ™ûžˆh&¶N Å —BÓ””2EI<Ȉ›ùRœ/C¾šÔËTzDôJ#éK6s® DßÉ õ@ÂA5Ñÿè6\.(=#Ö|ŽŽù (Bøà&_zºš»Á ‹Aø‰Oäà{Ò“}©÷bng’¿§º1ršÛÔËÁ9ˆ&7ß!·‡q–è÷µßÃþåêýîêšt«áµ °YC#ÅUnÀwrëx_Ÿxöâ.ÞÞm•Ò®^U»ñ P»H÷¹šék†1·Š ŸüðÛ#[1¡Ë÷°#—ˆ{‰e´jzÞÎ!‹s÷?³Q;äÓ„FÙ —ó©(úE.½Ç2 ùîÐÊ8¤˜Ožfï@j$8ÒC]0X¯G„}÷ãX¯‡g{qéRö;žd×AÕ÷õÞM±Ú®@Ùù“A¢¨F•Zð‡=+ MìËâÑ}Ó€·ŽÚé¸HÐWü‚W(ÃLlá1ör‡«í±C3ƒŒ\ìªÇÃ+ÉúÇR|!yÁl䤫5‡AWˆ uCf•½žÓº¦ Ê3òËŸšQx;yòwtÒÅQ?Ø<ɽÝJ6Ð%ÔHŸyßp”_çÓ¾Àê‡/“pty‰‹sôf°›‘õ$³-º”$©×OpËŽ(R¡¼‘µ Ì œï2Ð Bw—cçÐÔx`ã&`¥|.;ø›Û鿵oòõh+ø­¸Š/SáfÒÐì’f'†ø^.à†SDyˆó%8)ö–Ï»¢0ÕµÚ¦°PÛáù1郠 Q-mOo:YÂÃÖ‡Š(O2òJcÞJ'†]Ä ªÅËØ4Ê C+VcHü‚ãTC3kç¶r(ïÊ/®ï ¢ßb½y’ý\X›pÒ$omÕ;7@k¡«ÝfR’uêE½>ZýbƒcÞl8ƒoø@ð£TµdµrðCXXz‚-Wr<ÉVƒ,,w[ ø¼:Ô‚*[>ÑŒ^ÙðÈ[y^èéòìxž’—×ȟѬÙy *½—eÙ¤Ó+³q\ŒÜ×±½ºÒsLeüq?§£Jç ×já×Ï(EËLST!üìÛÌlŠºn²J¤&«n)º·õ1/#ð€Ä\»pVlæòoÍŸZæ@‚Xc‰Z)ÎÁ·Þ´ÇyqÖÍ#éDó¦Æ0ÍZ~Ã"ûÜüÍ\!"ýŸ»¯ñ¡f~R:ˆ_ôzµ¼· Ô{Oß×-þýE€¹b]¾¥Kl´ŸÆáŽ^`  ‰ÝÈ‘ŽhEú'ú¨jÈgÿúÆÇÖûk¿hÍlóìD†æU"p°YÑs­¥+ZDÅ&R5Ŧα‡Ú­#~9ø[[%GµÜBžmÒ‘M±ù~:JÂ5î´>²«‚1¢õ†­Ye…úÇïUrÐõ¶b£žQD—65£¾‰nOÁës·,6@Ìݧ8|„Ÿ*_sÐ-}ÿÌ$ÕDp_þÝANûƒ=Vµþdfí×2².J{Ä»¯Tpoi¦´‰YGï_Z2GÐç>q)÷åF7“Òƒ‚­%g#d¼Å”x=F}w<³ï1ã†tZ­—;‹ûeg5QU2cJeä2dÑï;dyòKd1ºòO?€„Sa»<¾åÕ Åê5lÌ0ßžš¿›+ dk©+ßèwùüÐiKŽg¹‚“ê ]˜±-a²÷ò3Ó|ç¼ëýCÿùìRCüùƒÌ¯6Nô%ÒsÁú:’Ëð3tîÍx[¯î zFXEzã_!«ˆQ>¿ ó²!¨Þp o\~Èiè%Põq÷!¯i2‡%C~Éöt‘­ì›Žj–Óß 멇çs•`3~¤ ”V‚Ž_ÓJpÍ ^‚q8é“tÔ•íqv4–Û y½¥ü ¶E;ŽkÓå²­'cëÅDõ&iªQWB”@±s[ëX[ÉKÛ-HÏ‚ù–ý®REz $l¯ 7©1~[>ãÑìÐÞÊü—ðV-“§W8♂Â]^©h+Ö°Øšj'sóq³gãÑy§-Ë6îöMP‡b3¤7`É‚/)¶âÁÁ¯M{¿Ñ}H¹¸f65EÚÐsÓO/îR“ù‹°Ÿtim»„zű› äWo7Ú ±Z¥žBLä³Àä©C!•ã8•*cÞ{Fj+x¼¨œ{¥>¦¾jÉäž«³ýÏÂrèC<Ö½•)¶¢‚)Ú©Â üøt¦ºSÉè¸÷%.¸õ´yÆ[§d#…*c¨jíaŸG‡zŠÐš¿ÇÌÓàŠÂj\aeCn˜ÇD¢ 8’kâxïå‹%\‹#ßS¢Rh{Ü7² +wºI iFe««£›d´²mqÝÛó^7Ç% ÁQµU»5qîxeÔ,‹ªÊ}^Z‘Da{s:VdJÈý¡ü0Œ5d…°L/0œ­ê'H©ËVä×àõq/|7ÁË*ÃÁSq„þ|Z¼Ï¯éq\H-q¡“*1ržŸ¬y›n—o=¿¦ÊĘôàê–Ö‘[“,X‹øªY“jì\ef—¥‘‡IAxôöÒ¾¤ïþ½ ¶(³CK³é™¾wôQ ¸sÆòζhªéû§»ˆtfõ5‰wå˜ç~­!I xvæ¼Ç&A™ Ý‚¤ë€ŒÛ4:bª=Õç!W_W”ÖÊ"ãÐÚo±¬Š?¦W’¿÷ÃøÜ=ØÉ9ùyâ ¢z‰J˜²R÷ŽÓ|.i4”«‘‹=š=Zêe ·v± i!1ò^#“šSÅË®+à Ë9TÛ($ôý±›f•ÔFMà<;GÎÈ•,W=ðʘH/Û‘Û`¯gÃñ¨ÑŒ}™H +€Ñh;Æ«ÃÚ¡§Ð¸™Ú6D¼@ÔèE٘Ǜõ(cÙ÷¢ÈÁ»Pq'Xáï6~ÔÄóµH1W™K=õ[Õ@Á€úT{Ûãè µ™ò7W}Ÿ)Ñ¿¾ »&ø*JPÃ èªøH`@ÀÒaºÇÀ%OP±ë¬ é¾lHlv8”S—{¬c~‚ç¾ï WMâülíl!®>ø<0¿«fæÆ“%ã™Ð¯Eÿa¯¦‘ÿ©IÍ>#Ÿ,âp¶áW’`©Û‰œÜ±ÝUA?špôŸ2›êN#©£wE(£¦Zþ(A†r‚Ø5ÛçI­JÓ2ШúÍØlyteaN…~du²Miüó‘¬ùi÷ñªÇpü¶hXB7Äq«ÕsßweC=XF$Žý¾ž™ 6¾m ®v †¼é4iú‘Mø±aÝ$ŸýcTÏ*lfJçJ2Â÷*¤2ûáA+ØÑ~€jR±gÃ~­{Ó„üR, !ÕNƒ¥±_=Нì7\{e¨Ñ|òI¢ ”Ú.ß"Š<ù:9w!õ.îûu8ä ˆPJ%œ¶ÜhAѡ̎YlùÁ OÒQÇ¥`È}º6ò¾ñÌ Au)/ì™/—·ò/NÚu™÷Xw+ ,¹y$I¸zú í½¢kÏIÂM‹MgoŸö¿ÖTñ5k¶ë¥ï;O¼þòxν«ìsš/ÕA¼d ‰ÕIA_§oy1²Þø0ˆ´ 2§¾–÷ÂhÂ9.·dù»ýzyù£»!û£Î’‘ç}Å6ŠˆÆfDåì}¹­Š`®0þT3%/´u¼O ÍEv²µÂ<»_¼Ñ‡¼éqè÷¹î£ ¢uØkf Óθ‡sT~öhC1®&‰ÅUmn¥A]`hvpxX•óœh{ÁZ«‚ðòƒ¸F%õ§"+ìñɬÒs£´àkÚµeQ¤eD&†;ÁÝ›î}†ô&¦ry‡€ž»ÞM4E÷XÐÑX]ÆÛ؇^†7Ëlò¡PÅ­þ‰7?åí9A³6åÁœÈdl¤a‘û2y¥)¿¿ýÁ¯W’ çûòPe/)œÖN¹¢çÔ˜-—¼tËð³ú×JDO&»ŸøM„¨cÓѧ“¾±^Mô|W‰=s3å^Û‡nbbC3\ï­wÛ õ½«ˆU{ %7?Ÿ×ˆNHOúœ®4©ÂZêÛ˜6ãÊüÝÌ™”IDaC]eÈÃè'êÆ‚d¡×a9Ü¡^ØØö8¦3{ß`¤ ©}±” ƒµr•= dõkt’ÿ^¢Ê {^í³ü¡ ½–±j$’Ôð0×jp¸–ºð‹kŒ$ -ýn(p'›âã"zÝö5%â!r=lßl—XAæPª=飚æ[µOg»@oùâýоKœ ~œÜÙ íˆ^x¡ fZ¿-q†Óé#tÇJ<=£ìì} C¹êBmïiEõnв¾ BÒáN™EÊP§¨ùÜæ@ÒÄ€ˆã³q<}ÉRÇØT˜­ß ãâõ>945œÊ¾Wr-…ªÊ¼Féblöb{Æ7¿ŽoaÐTÓêª6 Ñ”/¥:QžI¾S¡Lu,ï2KÞò)ÊÑéë@Í i‡”*±s6”užWÂBôòw7Ý%ÉÝɬŒÎ;S§ÓDÀ¤ŽçPŠŠ|9E !u‹È`´™U5'Çì ^hØ–rUú"Úˆž'Œ< ÜP(#ˆU cÊñC)JFI¼S„!M€…¯3]‹Æ÷$û‰§ú«õÖYˆÏ‚šmÇçiÜú5²2ÇÐþÇOõʼѦ>ܾQN L/mT{¿úî¹/þ‘vús÷JÞ·CSe.ÞÌ‹äÿ S2 iˆ(ûܵÆ#z !ž˜Xž‹tèGÞ¶Ôׂþ+ÌÜTYÖÛ·L)ÍŒS<ÄÈ&¼û·š›OcAY):YEûÈ=?L¯“!($ꂎǜÈÝ>+‡Ryqø,‰õ©¿½Aäc—Ä~õñ Κ}¸aîÇ…Oîf¼ã»Œö÷ùüÚ*PÑ•é#F¹Êñq>3O¤1‰º4jÍ•YÞ¹†z£²OYë›.É÷ˆ1ã'Q™‡êèˆ5yoDnX茉üÈ6¬3ñ¸[\A¸ßpºùЇ½4ºç7yØÌj•Þ·WŠXÙ&úO¶Û¾£(½ßax‘yv>§Å¤ÁIaUùÞ4ùªg.ß²<ðTÚœ«Þ-C£žl³»X!­S9kŒûóÑÆZ´ &øµ ¬—¼˜X/MŒO¨ñ)˜½ÁGü´V2 R?e–­¿·±Ub’œ'åUFÐÍ|Wá'Äæ†ôK²|Næ#¿ôÀúñUUö6U—íõ›( júµ4õ÷‘’-عnßLhAé­µÂÎM2‰¡Uýòì·oØébêy>*µÆ €¬¼en†ÐÓä*XÜ1¦kêN×-hm+ºËû]ªŽÔ [€ªÝì¯ÍˆÌªãο<ÃÛ–Ûí.‘Rò&JÓeUV… OZ­0Øïº©ÝqÙIêõ#A÷È­=¿æÍIýÛQ×øPL)Ç£‹ƒÇ7,-¸æÐjmÝÚébÛ»ˆ×ÞÝ«Ùõ¬uWɽ÷—™ãÜG¨·ærR÷ºê©\öCQÌ•M[Cÿ)K¯`³Í‘ûí'¾ ,ˆ7cçƒ@#],kÅJ`ËËT¤°+ÈUU#-Ü“fò¬wŠôPƒÕQª|J…±YýcX2ö%Ù*ÓÍöÂêí»7jº)óÉänwgíèøÁQ-– e<¦W¯D»Ü «ËN¯ãƒÂŸS£Ü­m‡óûbá0•‡g2ÛË'…gkó®Koq@ @K1“¥ “ÆK:²´×°ùãë®úi~8žo”ÊüõõÞ„ãëÍTÁòåÎYÍæ™èú‰Ÿ·ædµƒÈµ{ÓûZ,Cžùdþ-ŽQ#ÁÐw\Z§85Ðw(¤çU].H•ijÑô+ e¾ƒŠD[“-$¸™FW½Ú.åù©gëZÑf|n^Öß,ºJ ìágGÕKVê¾…1U‰M*||Ï=P:êe-Så·WÄмèbX¥‘šÏà«a=æ1N÷JÍ_çÞ~öUkk¸Ì Ñ` D¨dp̘…¿V·ÕòìÉ6nÁ¹35š.f1S©¬6Î3Å -$"i ¼}ó)£ŒÛÑŠÒhìbJŽ}n7«­mh!)µ†š¦¯=àv[ÉlèÝU û¢ÛeÀ(¬ÑÔ]ÎJ·“óøäc-ö´S¥„žRa“êØ!÷LF Üת!r ¤7™ž£…ÉQïWWûÞ|ãWæ`*gÔØÍ¬®PÆ$U¤#ÓlhŽ©*‰æ+,›ý?6ÉùúH.¬NyIÏ#m†¹Æì”9ý"Ùšçè?ÉK}pL4ÀºpAb¸_Y'uZë̘LuFpG9 `“«°ÎL¯’g  ÕXƒ2WjÉÓ×ûÖò/”m½´l„áºòÕ w>;NdýF~£GSuùÐ-¾ˆì:s…Š”˜3u÷•ÓÕÀëñ ÈÔ¦:ÜFä§f nâØ¯¨}”W|‹¹Ü¼è²T4¼äÁÑÈ¿]©™^Þ¤Î)8µ" CNטñžª´Ø÷2ÓÁÑÁ¢Ý>¡ÊXæËÃ<ÔæZÓ^üõc-Žï†ËÑ+Ê›œ0ÈÍ Å ½¢½UÌgF±L ¯.ŒÊÒvÓv" ÿcNjf`m)™ÑIål?z ›&JM›âvê9Ð(ZbaÜ„—.fýPšZ›aeÐ\„áÐ$¸¸–Úè¾›§ç T2Ö7¡=šã· Æã¹¬àî«MÇëMn/`•*ÌÖôEîÒŽÈgG¿.ª¡'w0U/ß6˜Çƒ4Wîr¨€e¸¼ƒakÞ …),L01—«r£ºœÛNGÃx ¬7Ÿ%k6ú{ŽP™n1?­v Ï‚ <ÛûÏãyRì"z …ýŸï¾7¦l¹gGŠ3¶Ó%@Ýüyèt…’L&þÆÖäÂ5]EsKš—%oÆá —²³&çÔ¯¡‘|-¯×ôgK×¥5{wi$ë3EXi.à‡À~v$¶<àóÅ;þW6Ÿ-˜›øNMÄý,É_©O‚Q.î£p>$ÉP5?@¸²g ÂæKÊ7Éñ­¡Å{%[#I1$têÞ© >‡mÿÇS…ˆjè¤ôÆ/§$ˆRo–ŤüšÊ­t>g<ÍÓcÚ–óS"õúd“ÚðqN`²kB˜u¢²+äõUØ„¨ ¨–¼éÔföº¿é¬ÇȶSº­K q±uɾu-]cr‹ýÙ± ÓŸåbQ©ó|3­4–EOcgÄß"ùÕë‚A‡Éùgîà0/¶Û÷k Ò^ÅT+#}ÈéÎΚB$CV!˜ŒêåÙý¾KyÏ‚:lr&õs„Û¡.”}7eÓ ¤—¾Ñ%Ô¤=‘H¥ Ÿ t&ªç‹ƒ£;|]f+â˜XL8Ž?šg_†ggxç)HÉvÊš:6‡6ϪHµÏ}å¤ó/Ý#9¹«ø/f¥ÿ2{'šWA½ùî‡M‘ ¡§…B§eÚCTzrv?“#| o‹T4ÖOËžß±˜;»( ¾‘;O³ã1™€mY¤µY²"¢—<û*عlMu´Å粦1ùw‚cv cÚ”¾Æè9]`º`!y+ž¶؈! Rz1Ûªw·’µÇ:‘7±¨ÒÕÚ’üU¼Ù"-Ä(|\#3cö9ZúXJpt´M±Bc\5ÍY˜Æ©RLPrÀÏNi.:€ÅowdVÖ«·)£ãr«Þ‘„³±Ù'pn0Àp'M£p·S¶µî¯aWWó˜­£9$’Vè;À«,Þ{'ºØðc—Š˜RYEpw ÀSéå³êèÍtJ‹‰(Ã|Ç NN¼ û/®ÓXa†ì$¸Zò› endstream endobj 234 0 obj << /Type /FontDescriptor /FontName /SMPLIU+CMSLTT10 /Flags 4 /FontBBox [-20 -233 617 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle -9 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/I/L/M/N/P/R/S/T/U/V/X/Y/a/ampersand/asterisk/b/backslash/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/exclam/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/quotedbl/r/s/six/slash/t/three/two/u/underscore/v/w/x/y/z/zero) /FontFile 233 0 R >> endobj 235 0 obj << /Length1 1579 /Length2 7581 /Length3 0 /Length 8607 /Filter /FlateDecode >> stream xÚ·T”ï6 Hww,)ÍÒ)HJ§t.°À»ÄÒ% Ò‚t JI—4RŠ4HƒtH‡ø®þúÿ}ç¼ïÙsvŸkæš™{æ¾æ9gYµõxdmaÖ`%ÎÃÏ ”Èkèéñ@  /(€ÍÊúwÿeÇf5»{@`P‰1äÝÁ 8¦‚#ˆ0(@ÕÓÀ/à‘à•@ ø_D˜»@ä±hðTaP°6«<ÌÕ×bïGÔùëÀnÃàåþu»Cl@P€îvAT´9ô`60Ü÷?)Ø¥àpW >>ooo^‹/ÌÝ^šƒà ;tÁ`w/°-àWËM øÏÖx±YO 8ô`vpo;€08ClÀPDˆ'Ôì@T詨´\ÁÐ?Èê¸ÀÏËÿwº?£%‚@ƒll`.® ¨/j°ƒ8ƒZJê¼p87µýE9{Àñ /Äd ü>: $«!:ü³?wˆ+܃×âü«G¾_icV„ÚÊÃ\\ÀP¸ö¯ó)@ÜÁ6ˆ¹ûòýy¹NP˜7Ôÿ/dÚÚýjÃÖÓ•O qó«(üÉA˜°ÿ±Ùƒáa (€Ý`¾_žúº‚;ù™=ú»Â\vˆ6À;0âÛßäÀÝ=Áþÿvüaóól!6p€5ØÅþ'; ¶û#îßâ0"äÇþúüýdŽP˜- êìûý÷ó)¨©h?áú³å¿rr0€??€G@ˆ ‹ÿ›æïüÕüo«6òçáþ•PjˆÿÑbxõáõ§0ØÿÜÀ+hÂrØÿQ¿PhƒøâÿÞß!ÿÒÿ•åÿªþÿ=‘’§³óo?û„ÿäqöý“³'±0Ä‚@ÿ—jþcŸ5À¶O—ÿõªÀAˆ‘…Ú;ÿ=Hˆ‡Äl« Û8ü¡¢¿î‘ÞkÃ< ¿Þ8~ ð|ˆ¥³qB¼U<·õÛFìÔK*Bm`¶¿–O@Xrwùb øó#¶Ôìó[Ü>^( Ž Ú ØÁܱÝ©ˆ0€Oö—é$à“û‰!´öð)þDLõ(€OㄈÓü‰ñøtþA>Ý¿?Bê|àAÄi ÿ@ÄñÁþ5áÿ‚ˆyÿ†ÿ™ˆ§»;âuñ[µˆqý…¿›À`° öÜ4ÌF2ܱ6¼ýªF–Æ›gs}yµ#&ɸ?ZÎ6Sàï Ž‘õdÂMÎʶ’r8]{¶<òót çáÕ˜YwNÈRšr>I±]pèú´ÛLo £¶MY':JÖ¡#°2E5}˜b8}!Ú#ø­j«øG‡Ç7ñ=€  ä‚1/›×±‡kÌȲ ÿhlF˜@ìnšáùTEüJ,$áR®=ŽêÚwÝ4!óãׯƒ9ýé‚ß_©õV‹TF’P‘ú©2æ ¿ø@E–œ£ÚäÄ&'|!_ž"x4Ù‹T0ü}b7ÐZ§÷L'7ÝëAÌŒ£Ô{©‡ êÍq˜Ôb0%ïGÖ¼÷Àî6Ô²¹Ö„Ú4¢I¡ÞYú‡zÅeÖÄÏã&/–ДLPŠˆv‹ß’#Q97…™ªðÉo ü¿ ã )^%¯.¥¬Ž°ùú‹:’lt6~Üü†I._œ&?êÒUDÏRš~^6÷PÞÎð›Û¶¸áŘ0yQÀNcR6²ð²N£, ðÔpß(º´Ã ¸ˆ,É «}‰KK¡@»Ý)v¸[^è#>¬Xx࿇í€á*AÇߺdÓxå÷\øœ:Å"çFyèYœ@ŒµyMÃÐ^ÑcËõÇ~XöäK¡sæK§h@6nÜÏÖÈ‹íºU‹LY€•÷ öàþËS&®Î.޲šZÖ‹U[´XIVÔ‚ÖÃÑ¢7¥ø³Ô_‘>GU7pÒÜ‹³¬eoØïÆ4…¼²‡œåC¼^œèÚð´Û;bW½Zöé²!Þ1x6èz(›ÊÁjÅ2–ä÷&0Âlþæ¼g—ú¾ÍfQqH\ý@ u%Ì’¦ ÓæÜáê~Lg&¯þaÐQkîgÇÖ¨ƒ/†{(Wn»[áWžEþVTË»ôáiÇq¥Ù ®k׃YΣºn«÷zÒ 6ûÆä»{^x£(Ï×y¸:¼×ææ·=ëÈúmMWBt '×))ûIžâí’H% Hmaoš¢UËê·Þp¾¶ ‘Òsrnð˜È Â*éºÁ¢†žÆÿ ¥ñú¸ Ä¶c°h,Fç˜I0àç-sÞ^´ <ê ^M ¹gÍ’LwБ5T w½!­wÌ·£š—QÈÁà¬ñKì7ž¹d†KcJ¦TEflÒ«;ªì]˜ÛUö [Y”¥Iè”NÒd²JŸiê…Ó$P <¯›0Ë{blÁ}VT  c¡{æ \ÄV;ýü£ÈÿAÎë(1{#Swø#šMºÇC^´µf Ü‹cê—íùÖ T†yzË'^§P‹Ê`B|ýcù})ž˜¥Še-™îª£öj2¸.º«ÂýìvÎÂZÊÕuWÑŽ?ce·÷ñƒkúS{»»=5auî}­y·o¯w‚%\ª*£Ó3™]-×Ín»_ÒØ|mf>ëÊ®«•ÌǦB¤$Û"µN)Iã›c¿ÞkXäŸù‰D)õÎŽX¶ª‡vKìTG3’¢-ÝM®ü¬ˆ´»<çÖ+KfmxÐÖu/>xöfBÕýUM¯)åuLƒk .uß…˜˜–ÖK ™’Î=3ýhüLƒ¦X>¯¨a_`’Ö¢ý@kªc¶TŠmÉ ñíwÅ2r ñc©ôüެ¢îÝÛ ´®´Ko—‘œT‡vm('‚Ž^ê‘­¿zI>6Fþ¦N6Õ²”4›—Ñ-õ“„€öV—ýëᛚ‡ØVàÖê‰<ï§·Gyc™D‹†-ußs#ÙTN´¯yTN6â´É¥ó!©ù’jnô)gâö‡?…«0¥eú¾¤…ŽÁ-ìÏ߉ ødºãɬC¤„Ù›v,‹°Ì½yU Î<°ÒÓƒ»^/R7NAìÞ§HYŠ.Oe!Y8 ”{ÖCÄ u™¯¡Tãæ ]âÒÚ”y¶ÕToëå†U²f¸™2¯¢È ’^­@nH¯Îsfqo}Бõ~^îJð1ƒ&O¢÷¶¦ÅžJ½ß”¦6+٫Ŝ׎¨RG9£ì†¢íßAì¥ Öð%¬²C¾¹Ò/ÕIŸ‘–¸uöÊû"£9׋f [ùåÕõk’œÍ]™Ÿ]GŽžR:¯=M¦ëªalP92KP¼ØsÃÞÜû€A³\d”ã@I‘‹X®"…ù0öÄrUpW³Ž¡ãìî¸ ¤1i‚³D²ƒÉ#-y¿”¥Äíô\&ÈâD‘% 9Ì‹puM´ÌŒux©ÓéÏʿߟ^.ˆO@™+ZiÞ¢P›|á(¤#é#›Tˆ•ªä¿Þ&ö¼Ó% Ӽ䂽¾‹ÐJO&Òô­þø](›ÒÐT¤'ŠžR‰º¼›èñä’ägjÄ‹ä×dîC r£àç.VîÒ¯ÏÅh ôFžŠù‹Ò¾ |`°Ï3R€eqyåRè>N—´_È"–pHiê›$ì¡§ýØ`o ø•Š© §îáÊvXæ²­=òÚAŒQ<ÚÑ·øè$ã7xõ_dkv†Yúk?ÎÆNãu-5‰qö®_ñD¾åH±ÔÜþ0¸¢õÐQ1©ÓŽ@3g=³ÄìÕZJ àHÕëÁÉÒÞ§ÝÉUÞasV¶‹çTžµþHîÕ†é_,ø¹d9Ù?òq¬â@û>[ϪKŸnêøö^sU›«š(–õŽˆtÀŒ"©{ø‘к*ƒpnÊ×¥TŠœùùÔ‡Ÿ»ú~Vúj{/šo?ä0ì‡Í¶øeKýí÷¢pæ¢Û>dNn5Â~Wû$™/š# ¹ÄM„rà%¥/Øl¾)žFIÂmÚ6É(w^@cÆ–Úü+-œÓí›ðQ•½°™š#ŒœíÈ7«eç(Æ…!û§C;Tïßµíc[¾‚¢µŒg'Ôíײ¾Fj ‰Ð}I4Ψö¢{.yÛך}ÉÜM‘˜`ØnÔõ]9´<_å wá´4û¾õ¥ÅC”¾ÌzËŠoÔ ’¢ªJد$ÃÏ/=„ç_SüX´ör³›Ý¤ÏÕÔy­œ°íPÒþ¢.œã‘ͽS1e!à¬çû\À;Ô—Ö½Sú§ï$gprËXwtD¡Xv!1ݲn„ÿ†,¸Å.ÊxÇÍqL±2PÛªº_N”4 ¶DÐIóVmÌŒ&úè#R‹ÙH` YM¥æxŠÈÉ«@'ǰ{ÔŽÉ…¶JOýU@(iUø]#¼§ž»cp˜Âèå'—¯Tæs­r)È‹µóëüˆN˃¿Ö 6Ëo_=»Û>Ô†,_0,°,æKéq¥m€wÝ€ O%À@!Œ" ¾‡5f×ÝŸðìî;—=áϸïäA¯rë‚“N<³?+õ´•Ûøk½É¾DfW1€0]9dILçNt[p‰jžÁ¿®ÒâÆ†\‡2F{ŸQ┨—á7D79È¿G&mxz†WÈ {*ócN‘ÑJÊÜ¡u½kµ^7‹ Øwò9Üí|˜9¡ýƒ]ÞñJØcËü;6³ÞK–e{ÃÌ*Ë\¤ ·!ÉqƒƒùlÊÉšÏ"­?3kÕZú‡$[„)¢ð™GÓI±3Å×yÞnžˆ?¨Lø~ùeÐ[P‡èÍ4^ùUIn‚‰ÞqõHi~o–µ½ eqŸÚD—?Ḙ–¦\hôvþm×—pø&pÉL¯Ï7©0ÍÏÅÀ âÀž*Ö4?e¬©ø9 CÙ)kâÐ^, CG¥* ÒjN;ÜKáPc‰Ý·•‰E4 #qFÆôØ…ú•´$ÝãÅn’‹{}d›Ü¹¤jXgÀ¿ih1ýhæ˜íɹ'=ÿt`̵ZÓ3¯•7xù!uPq+3LÐbMò ¬ FÇ{DÀ;t—&Ìp"à6ˆ “£f#åðß&ÕCÝ{ÎÞ(@Iï;øQm3+²2ª@‚âé D™®’œÃAFdݯ;»iATiaÉÖ çÎýÖŒcªbN¥%*ŸX¬yQ)B&˜žŒÄÍǘâÏñ2J'—wÎUK“3k–d3™=u£Öà›HU’Z,bâÝ9:ñEÀ1‘H`ÁTW•…Y ”äI›wv%»éD¥:ê¤ê­Ù1«•eæS.skô©Í€OÒ]G[‘ñÊÖ{ °€Æ•¬¯BY%Ûß"I$ùM“«<ÔÍKSî7:{ÖèŽ?›>Ýê•p¢*sŒMpøFæAb«T¿;W}!† Ï=SŽ!”7 ˆa|A:‰ÇÛxòXó¾Vô– N¿ŒcÒRI‰ðó‰×/”G°;σvûÑq žþ/Üì)ÃÝÁ_¼wèó¢¿`ïñ¡=€a?.»Þçï28~_´ðYe–;øšhÄæŠ×ºä&ÏïÀÛ•8´ ´{»‹³„ô]þÈýX*Í¡ Àó¨gR”§PyÍ ô‰©V‹›{UÚ<ÓÔBÞI.O—¤;DÛôgŸv²:½œi -!=3q¶ôg§4¬9 ƒŽàʬ6Óšof )JË)L™Ë í‰g‡ ,©Û×¥[&“à­:G²‰QÄH3ĪÆ»È”2ÞêÜýJŽÌ Ýפ{¤àß m”'2§ÎŽJ×'ÉV•òµ&YúÚ\Eì£U†q}åìô}„v÷¾,¢“-HÙÏ:rÁ)(AÐ pp_)ô ×ÿÔœ›,+gò$$×{}vJ *=×½ÏîË÷Ë´Â%nŠK½Û“"Ÿuœ;0.×>»¬æCfç RÛÛÊteî!í<õ€Æœx«¸ó¸¢Ô{HQ—¦0Çu:¸G=ÔY¡6¨V£:ÓÖØ~¤#Ìb‹ÉSýÙÛ«“ñZf#W˜zEßÐ^ò¨óùø÷[îÓ%Þž©6é½ôŠû\î—qJM|œ!3à{IG¤å©Mù V© ‰YR¯{L´Ô†8@W¿SåãÝ+»gà\UO­[¼}ã¾½ÔµïNß+Q8«¸ßý,:ë‰ÆDêÄb=Êï¨:ç=)¼ÒºŒ?|!ÄŠBO ã†WlyÓ[¶µRig™lýÄñÕ“Cu*0oÎÀKŤ+ðSB23eØÃó¦°òɲYkãžã±„±?}ç*Žõ5fVÚB#Üë:mzýã7hÈýyá4nœü-ÓÈJù¨ž÷„±Þ4×<‰€»¥9®ï¼²ó‡‹ž»ªÄR÷ãÉräz>éÔNt7Ôv¢AºålÞ‘Ëó1Ëóm‚!QŠ_+DH½ÎŠ ¥u?§ÜM•ÞÛ_Ý…{_í(»ã¨æF…¢Þô­iÍH¬ç™æ¸ O¸=Y'øbMMóTÞQSÑm˜ÄA¼O‘3«‘Ã¥ž=æÒƒ›±áþBõ|£‚¶¾ÒajþöeáÝÖÖì-žEe˜[5ß^v+ôóló¢vÒïïÕé]|›Âxý“~Jù¡ºª¤¶1y–@.ÓŒÑT5Èv¬SnßlãÓ†>ôª]lþ¡¯rSt“ÿº‚}ný¡1dŸ…³LŽ›µ2<·™3" bY‘¼©®;±Š*¶¼T¯D2˜«ˆ-[Èw“º[½wEPLÜ`6¿Þœz® ¿E„z|öŒ»ò쥫©ô'ƒœ`å"ÊevoâÅ!Ïfð¸¡ÊRBÙ×¼;uîßÖóíO‚,–h?¼8Od{NÞTÓ!%PÌL28zô2µ²VfãÓ%¾$ñ amb;Á´6R»M˜¦÷Ü$šÂì+Ãûž\óæøùÛÈdM‹Á  "+Uæšâ˜¡ày-DªB¢I« ¨Ù 2‰»|kÊ$'ç¢"uÖ|l‚ºÚ]3Z×£¯4{^D3 ïd—XüÐ’ LBY) Õ|ЉâjŽ…Ã8jˆ®ð½ŽÀ¦V'¦ t!»}|ÔB¨ÁÓ1ô<¢tY\Ø3¶´÷¨) wó¦¡ú,~°jK˰+zVoUm_¤§Ë["»¶Ó¶¹ çÎÃÄKPRÏýl(jö[ KfŽmŽÛmqN3>uílÁᬵ¦,™#E•Mg–•ò©eŒÐè½.“ò …1®éçÆèi½r‘óñ¯N¬vå÷y˜ëœùíãGÊÐóœkæ$°ÄØnØh¯Š^騋}Ýã¸U.ˆÖÕ–ÛÏGÛúr†ø‡mžeB—2gïìã×+W;g½¿JÝP¾«x–;P KØ6C¶@û)Ó-†Ï8Ç—j'ûÅ.ÔöW[jôÿ˜{—<>³[q‚±K1ðÚÜÝŽ[Zž/€qç cv9·/ö’B®¼[‚ô̧#BÊ5öìðôãŒw]? ºÑËBåW”l‹#hãΞÏR-JI)¦>ã ÿ¬G"£µc¶ ÛèGîKÑÁ¿)i$^¶UGÕÎ[I¡Ÿ0¢v¸Á«ñè§ù1¨ê\ŽâQV¦Äߢ)“ èUó @ôßzDn¯7þN(Ó2ã1_pb¡?©ƒYöÛž Â ï©Wõ—Ÿˆ*»‚zF*nû-i÷ŽÛôîÍ«EiMº'g·o,†UØðŸ,ˆȾîD;95 >_e±f¦‡wªÏ;y|3ꃫÀ¨Bͺ=°ÿ|¢1 ž<.ÿªɾãI$é€Õˆ•Ll®‚ ãÑ3f=qWÌÛxÆ™Nz°ó¹iþ2ÕQfI/{÷]„¹ÅKj7þ§A¸Iè4¾~cb¢.5µƒï»àRnc²Ì­!&úÓ‰¨çª<>Œ|Í•ˆ¬ŸíSx¿á`^*í2¹‰ŠŒbfùŒ¬Æ¬eãã~¡'JÒlÍmÉRàWy[À `˜PNŽx7‰¼HIh<:FºSov"‚@É)m7Oäç ·˜ç‡˜ñí]/oâW¹zOÓï`ÕÇè^æçô–Û"Îg&ËDçq…Á'>Mh»Ä ú(‘w¸gÊEt,"ÄM8Vtv鄦8møÙ¨D ‘²b˜í†Ý¥t|ùôû| ƬÞPíÛ£ßy¢œ¦Áâ ¬jÒVæ‰ão-ìÎ])g¹ÈÊqõq—º²—Í:?/Ö™Bm²W­jùWWvؾ,“=1½õOè kÅéEy¦ÛL(v‚^äçÏíþ@ùJbìgi ÇÙxÃ`Äd¿ÄÛâwá>—£ëÁT££a™°¥ˆ”ÛúÞKmoøø‡ë_&½¾8ç^&È}0ë÷¤O~ =0}Õø-”4^GK#ȉÃmq‘¬Øp¾Ž¶íݘ>˜mUh·0#q¥ y°è^$æÖOŠ/¦3aþ¦(ñ¥ÄÌ~ÿ a¥‚õ«×®+"›2Ê%žL¹}i•zC‰FRUNkšg›¤ÄJoPsö>–ÕVDLi7sÂe Ÿ `ÐŽá=6AÑ:/œ,?›Œ"1ÐU0»hø,eª§¢_‰ñg?rIëÀX­öçë™O;~æÚ&AmNÞa_½º´ÌZqÿþì°¬¸cv&ö$bÁ„#Ë~õ¨eD4ý„¿¨­aj.“]ÿÒ¹jà…2+Š•«ÑÝ µ¦ʧ::ú8d³gç½ .?±jö_kb(¯aÇV¾3éíu}-§ÖëE¦ž7 A÷¹I½e‘S²ií»˜æ~ê9}9_~¿û>ŒÏ+|Pȇø«?Ïy|(c$µ3Â6Pô$<^o²òH2eîm~ÞÀGç±BBÃø6[¿#tÁeß@ä-%É™jÙìÏnqªS=I$÷²\“Âúê蹘Á8&4$…•ò*JÁ ‚ ÏÚx¸ÃES3¨KRù˜ùÁ¦§ãŒéÀEn« w*Ÿc¹ÖÇcß ­^:‘t6ús‘‘kËð“4þ[,‡-¬;ª–Pˆ6½Íd@thOŠõm Å~êEFh÷åËyOp»¨ÄvëÇi…doµ”ÇòýŠ“|P²axŒ)ó%"Ó}m°fí8e½î)D¸—\Ÿ—ȼ3â»EÆVH|#±×·uFÑ 1=¸Œìdûœ‹öðTݹ×ÔŸ>¥©ðŸ³ÉãÒI+)0ÆîT¡îëö3‡È0»jD_'‡ÌΜó!‡p áODÄc.ñc—XÊÍ€=!Ý•m(!™µÉ&q–c¸?Ÿ½„M©û$AÚ0D¥÷^¶ãõ&¿£¥Ï O: ü|Åtdrµ\ÅJcå?tî0Ÿ:ÿ3‡~>ìžÿlÐ-j|ƒçžkÍGyÌtš)8Í9}ü²ÝÈDZ*1ïr“¾s|[(G$áüMžº”ÍÂC§«¤u…ÓRqüdU$8«Ú„65‹‰0dâV³ÌŒWL4÷ÔÑ~jFïÃu° toÍVçbê‹ð6¦#HLkÛL‚Òåñ†@W?õ½lh§ž&¥ždXÏÂmý«Sõ ¹¼¬ë€)$v+¹u¯mw®Øy°„8–ƒ3¼IÖïéˆZéXßwh^GÒµÔõòžF+ž¤Þ %1ä ÅzjŸ¬‰"S½Òœ?{4y™ïÈÁÃf¨MSƒ50ë侤 g©±úl¬wôø]F›ësÍq(ãá{$—=¼'¶7è•<–¡WÁ\÷lséóXIf8ûø\D{oã“ywäÖZütxëï­$q˜â|;I\1<^3Ò[j¶¼‰œŸŸYŽž3k37'S×E›»ú15ºP:ŠT¨NÌÙ5dôŠiØ¡ñHéut~Âñ7&3À‚šrowêS%Óš¡¡¿Ì"®DóuœŽ¯”:X±›b¯ìË›ðŸ#u÷–™±j0m¤à—Ð^Õ½’û"/lnÚp§ž7ôqÎÜDÜŸúÎÛÖßБ±/V'÷ºæ#]ÜN ½òiÛÇ9w{eÑïÖñ³7ŽŠÃ¯»ŽÆZR¹«ºé+Vå†*’*ÁŒ»«”e›Û1\/Ñ]de‹§¥Þˆ›î ¼˜5Éè> endobj 237 0 obj << /Length1 1407 /Length2 5961 /Length3 0 /Length 6901 /Filter /FlateDecode >> stream xÚTuX”í³Ô•‘^‘”Ú¥»»i–eÅe–%—AîEQFRRRºE¤[úÕïûóǹöºÞ}Ÿ™{fž{fî—í®ž!¯¼=ʦ‚BbxÁ|  ¢¶¡¡Â0 ò@66#8ûÇ`3¡Ýá(¤Ä`Ñ0æÊ¦Á\AµQH †‚E$À¢ Pÿ ˆBK• žp{ 6P…„¹ØQ®>h¸£æªÒ_¯@N(,..Êó;(ïCá$P‚q‚¹\U„B@CÃøü+§”ã*ÁÏïååÅqqçC¡e¸x€^pŒÐæC{Âì¿hu .°¿ÉñØ€FNp÷?\†(Œ ^p( é~ä´‡¡Wõ†êZ@]Wò°ÖàŸí‚ùÀ§û3úW"8òw0 E¹¸B>p¤#ÐŽ€uU´ø0Þ iÿ A¸£®â!ž8bwø}yPE^¹âø'Cw(îŠqçs‡#~±äÿ•æªÑÊH{E”‹ ‰qüºŸ ƒ^uÞ‡ÿï?D¢¼ØÎp¤½Ã/*ö®üÆH¸›L]éOÔ• ð͆ ƒ@ 1æ„yCø1òq…ýv‚™¯xøc]Q®@‡+*0¸ìê€u‡x€´ÌûŸŽŸ`0ÐÅí`Žp$àŸìWf˜Ãç«-@ý «%A¿~¿Y]í™= ‰ðùþ{Ðü: †ÚšŠÜ“þÛ­ €òbyEÁ@^a ŠŠ€þÿÎôwþâÿÛªÿy¿ÿȨŽt@Åÿ qÕ¿¿¨xþ¹œʇ øï :¨«½†9ÿ‘%H½z€ÿßbøòiàW–ÿ‡ þûN*Äoç_ÿ…€¸À>b®6Ûs¥mÔ•Vÿ 5…ý!nÂþ¿}êÈ•V䑎ˆ¿[ wW{Ãìõà¨Ó«ô×$®’#àH˜Êþëãäƒ@ÿå»RôáÕÆýj^¿]°+qý»¤2вÿ¥Ba †ø®ÆubÁWrµ‡yÿÞp ?…¹ ^‘ó: Ð€_Sòü2þ•êF_‰ï÷ð¯jþuþ­tÌLŽ£ ’¡Î5¡ÇUòô^¼ËRÛ©Çx ­o`:•Glæã ³2§4_ªLv€U¬›uÜŽ³¿~ÞÃ.½b®õ:äeVYsd¶{6~yˆû){ÄÀ2NZ“gš¬À$ñ݉£ÇEÖrSÖÞ±ÓÔ£¦}"Á‹ê…ЍFX£NSKÕ‹L­Û â&ß 0oíº–…÷ïpä,¸Ä†,F[F¦è¤³hJ5â½*Éæºz»gÈ;[£‚4<ƒ—°†cÈ•%»”„®WšÌ䓜ç<÷ÜL§ÀÚ©RÊmÚw–Nú¼Ë”Ì÷ÖÎ0xÕj´{#ŽÛ®Ò6q¦•J~™æ$HÄÜvª‡íi‹D n]hɺ_«•Tù¨^7‚úÒz9jB>ÌäKúß&àŒð—~°æÜÌɘ`©] ÷^fíÇ×SeºPz]ÁÜ)LqW¥uiaUheJ(Ïô9®âS*ûŒ‹=ž½ü‡h+•§õùàqÛa²êŠÞD«kÓxªNÉ-ÍbóåÁôÔ¿ÄèÊ” §<Í Æ9·"«½ 3Ó×s†ö÷åò,æ…[’ÚG-~âVŽ–!M¼è„FJwç ´’4 ­+ò,ãÆÞFÄø„¨ÜdÍ­}ÇÏ0ÚSÜ󯔫=öepˆz€4O³éñ°~¦ÊUÜWfâm‚Ém!¢ëKG>a¢lGª!›éèB¬PÀ¾C;g ²„9¦ãGø7º6óăôžgª¼:§¶Ž~ö”'O^#µá’Œ¶ÊøÖwU[ߦ?r.|zT9tMÖ”?JZù¢<õÈ.$ºþ£ÛE•좯‘ÇeÈ‹ë3ºd˜Ê³”\‡BËeV—rMM#4ôAjÖº¡-5G<˜YºUš¿TÓF”(‘Jå‚G³=ëM‰<9¾þèmöÎvÙvÊõã´ò`5¶€4•ñ6³yTð™z<›hÎ÷'KÌëoÜ/{=Ü|ÿk>yÀ„¡Û^säKðø5Ëá<÷顊´õ>®§+"pÓ²¹ûÈç8ƒÜp¿Ï&ëî*Nóš0mvòÓ›=°vT ’ê§-â=ýéõów b7¾¦;CÃoGR?b&+_áÖEøóåz…N‘§ ÏT79›JEŸtxø0M,º{‰àµ:O¿@¶àªŸ£X³  ¸EBž ~U¼/[T¡­,η™â1·®Î²oážÂ¹‚ž á®oçÑ—ì^k«sÆ7Üéµ»M;½{»VJú6nÛi½ùÉë‘£xZ&` A©MiƒúôÙûõúTrï7q¦k‡m¯%}™‡$̼ú)pèì߯AX \/Ð%+c#2(!JlZÙÜy»2¤ íêJ½ºÓ%y½’èÓl•ÖwªlaP$ÐDè£Å"‹öÆ‘a™U‡/™å§Ñ¯2qkZC,ÎV:è„L!ò!w=mñOè‘ÒÍŠG`2T¬ n²‹è¬”ú‹¦‹ë'åª Èb:ĤÁ‡q !z¡J¦õ—j‰Ïå$˜ÇiŸêE²˜¹Zæ˜é&û³…‡ÜT ž¿x~ /§CÙ>5ÍÁ‹?×ÔUÈùR3À–<Èp¨ó¸£Í²Ø ‰ši)|ûÂøl®§ö™V(ß½í;ü9¡’éFsöwÍÜë]'þ¹!Žt™=‚Ǭƒ·¶'ÍVà3=÷c ‘ŒøÁ޵Ú÷´ß¬NÂx|ZêÅ/³o}T¡t úžú$8ö &‘ó«êÝÄîÏÑ‘÷²È^vâH ú¬•‡lÔËÕ¯†„æèeã®é^¦3µ—ö³Ë´Â«õ®åÇ)TR¾—*M6‚)xnØZy¡KLØÇ3^ÅEM—èi€³Ê’j±;Æ>·½G6Ooƒò}¢­kËÚ×øËx¬§ßÅ—†ÄS´b5Oáô„^þüxöØ!\ê¶ I\͉;sÐWIÞáý4ëoÜľÁ–µå (Ä"í˜æ8(¨ƒ—÷„B»GN86Ì ­Vo¼Qi™ÒÖïŠ*ÖC”ÎHÞ¦ãšãîZn‚ ןÏv$î>”ÉmPÒØàxy=zžÚM*›]¶7©÷v“9/.}¡%ëÁ5b‹K!¤¡®Äò˜Ìu@Ï`¹·ËpADC ’ùôñ9ÃËbŸð¾Pع Ýs·¡{É?‰.îìîq¦di{F°˜’öX’ Ho* ªiCÈúË(“]y~nõሎÉ×ò:k¨XgšÆôv„õ¾Lõ:Z_©¨û¾d ò‰*n¡ØàFÇtðÎßK¦‹ï/—Ä;QR’ Rî:NÏÚÀ v!6 ~1ŽW¨¼YÃ0–Á¹õf´PŠ"Í3·þÌe–Z›«Ø{ J» iX åôJqžæ½FtÏÓ”Éíð12d’xÇÉÜ"•!o–í>Çݶ²ú¤Ô´ŸsY·¦8“IŸáÒÄ3ÆÝ°ë¬ñ*nl²Þw†“ïìÉã}ÝrÁ7d†¾ÒÀ“c 4>~؉¶ˆ|^ ’èÉ8ß4? Ý2̘4ÅOÎoÅnVo‰X ô÷:Þ>ÓÉL)`²Ä®°_È{Šøû;yѹ.¹º¤ŽFº#6´r L‹ÌÎJ^N¹»6Ÿ2b÷Þ{û$å5•Ù/Û:²ÌÆži]TP!ö Ô¨’|s¤L³ž¯2¶ìâ—÷D„ïŸNêðn²Wd¦ µŸ”ÊÁÑ3“LÂKÛ®t¡ïó÷ÏšNL{XìkŒ1ÂcÛòsþŒ;º1–‡í=$ëµ~Íʵþ¨ ýÀD—F}€+UŠâsø."ÝÝF¸n^€jqÈÓ°ñƒÎã¾#&(桎4äq³£»’ó½ßlÈïéÚ’—ªõÉôzä°lÍ¥ž·ÝNˆ‰¡løØY§,3¾sƒCš‹üîAEF]6wŸ#áhËñ»]<œQG$ìW¶M6¼›gEœØ1ù Ó¸ ¼À¾ï`Ë›|T=¬¯¬d„æ"¢»ËÌv¿ƒ¿\ðrÒܺ_!Ë3ïÛz„¢¾alKˆdñÁ^¤æ—R‚ z'{•ÆÓ’]Ýmý;} ?ž¸²C5FK^bSsz:ÂↇÒ{Ÿé(ðõdTõ¦¼×ÛÓG&Ìs?I¯d-¶“ð‘_)‰/¿Ÿ•µe/‘PF©=ƒv—B°$¶èJ¶(WÅÎrßﮦÛ%i›]8£Ä}Í2Š ¸3RgIßÇcÆ(‡“û°xó³K×HÇ~K“ÓÞþ¹åFè]ø©M\Ì×$ WÅt•æÒÒ54H_©EÒ¯W%'8ü#öRàº|ÕæÜÚ3רOê/|Iâ϶lLø’¨L?ˆPû©6ݶïu¸a1zÿ“\j`¡‡ö}ò%õ7ßøß"ikn¾x¾ó"Éÿ~ê£2ët}®â²3íQ!á¯ÐÒ¨´‚…u¼â]×ô5º#/Jd’¥_®pëÁ¤õ³Ðïltˆ œÞ· Ÿƒ—Ôž2öŠJߤẗ!§KN"µDÄŠ’šrª„Xæ×YêÜÞ›Æi:ÑjÚÕÏXø”sXÙ·háwˆ¾âS’ks6pt/ÙÛÝ·äÄ¥¶c_à Ÿ¦Sž›Çd¤©ª|‚>3ú<õÞê¡?nm̃픢‘¢ÂܵBãÙèÆD5éÖªˆ™·aæ|‹eï¾Õ <¦‹t­½M[·¯æ3xp¦"Èx3áiˆ¡gF…Ðd¢ÜXP—MÚ«ëb;Å¡uÕ€u-ÓØ'6į– (C¿Xï͇Uø1œêêà0 '×´î;༲~HBƱD›Šž­Èrý" ½Õ«~òÐRŠÇF â0º\ÒQØrñ¹_÷ÇÓ¥‹zƒ‰e‘{’Å’Ìß=°Sòô±ìˆÖvjX&i ãŒÁ),ùq°®Yä )|—Qâ':¦Uk4Ö݃+2gh­—¶Ûí;ãÄ/,[Eö÷ŒfÄ$+0gŽno~Ÿ¿X•hš8JÈ®ž³Wƒé³Œx­ @/ÁÍÛž‡\ÉÞö: ø¬ï@ßÚÊ-KH™’nô<,´‘ˆˆ?”)7]:?>i×âO'Õù’ð5e¿¿®Í5ç %íO ½o.µóa4gs¹mi¦ mjjºñýÄŸœûQê #‚ŠG÷4wcKÉÇžÆa»÷lðµ(7¶g- ZŒqelÚ¢Waà×'éI)\RKm£Ì:tîÜþü/3îMa4‹Fßµ‰öK·UÚìb+À(—y-¼è¯xRö:ó‡‹ 3ˆ–.¬"Lr;7<÷Ot3dMªe‡`QÞú­X+l”Oðx´þT'Êüθ˜[qZÇ+€iÅ$‘=Ïpþˆ"“T¶¹Vj¦P‚ ä9ÜkkÅöFô\Ý»“q©ÉJ|"ÝœÅ?´z{DáT¥—:ܳw“7ÎŽC§•á{ö±eú¢|ƒðÍÄÂÚƒQgçðûuNÁµªú*B› Û¦Ù”K mÔÌ)XðE~’6•t9་ȤE¯íÙEŽD;n íô9i(œ$>öÚ…NÓYž ‹}å«I¼ÛKÒ5¹ÐΠh;¾O¼•“ßjf| öÁØNì˜Y·×E}Ó†ŒdÀ;ÇlGöî2Ü<>±Ö=Ôè-œ³ÏPºèÈÖŒ@i“å‡$ÏJ É…ô¥šÐ@ĉDÜÆí›Äu–»ðÓæ'||¬¶i[EÁ¿S:Ðå7€ò¬­™¢Š‰8?] ¤E.çw¶|ó°¤)¥Ç•ÞT¯”}Ml,õÙWVð¼½꣢÷™É¡´lÜѼ«ßí»‰.|ÜŠ×=ð1˵E°Ê5¹Uy¬ÓpbVÞÆ’뚣ÓÐjòúÅÓ Ûº“ÀåÙì,ž3'[‡÷þõ ÑßÁˆç;Ÿâ èbÈ©Ÿ4Åd×sÈz(í°N¢MnºÜC”Äãb_U„M<øðt*‚±Ó/á0U$]_ÌFt«3uÑXÆ)5“f$ô} ²)óÉO⤠²¨@gºöÔX™8Ö-¸®¢¾ër§ù_Œ eÁ+#I‰k©ý±Ãûìw“iÑë:ùBeuÔ½ý1Q ïnî%?ëd‹§ºù =ÓZ¨‚g“ŠÐcóë§{'1OH‡(5øòÂzï™>µÐ‡4âeØÇ#ÌÞÃ{½|t¾ó¤cÆ?¢gÂø”6ƒ?õäËvÖËà>ïÙ¤Nbôš¡þáLiç3} & »OAÄ]²èß5Lzè%ñ&§­òrKf¦£»N³,ŒpOH«¾ðUð…ûÔힺ2Kr‹ä_§BÈÀ e&Awíß¹ñí³1²?ezªý)mô8½è˾øñ"ÛËwõCšÅQ¾…K×mfCWìËš‡nÜáú©»£fÙµØêü¬o^RQåvwû±*\ðäÆowCðr´\ó1ÿ—±µžÊ5 Ò2RB*þ8ñ ‹ò—nçKû¹õ1¢wóÑÄͳ|Ò}ÌcØÜ¾p·ÐpÞ ÃÂmLÃë媦Ó(h@rFy½~ÅŒN˜Äò­'*]-Aƒú‰ó>S–¢Ãd€škŠ"pÇÚ¼Ë1p3^+áÐùάÌUAjó6«]`ìùªjR!Xƒs&ÀfȪJt¸ÔåÇŠs‚#>8šžð±£œ™©u®—SñOoGö‡!)‡§jO'îä4¾l ¶Ò7Hnôñ+Ûïç~—ì!AçªÙ"½õôÞæÓq«‹££s°ˆ¯ä&‡4|'"-t㳬Z¤ÁÝ-@B†b Sên\¨µaåä|ìAkÃ+vˆUJW¢»ÉG¯ëY蹘þn‡fV7&€ÓVð’×]¾ýë|ÎÏ>¥•«Í¾‚¨õ0¬I}– ÆåýŒ—/LÎmà„¨’¯×©Œ‚u5öTxókJx—²R†Yš¿?Ý'ÊxïjÝdRõ©xõá݃Vöïç¨ÃB³ôµí¸9‰æŽÑ…‡jÝç§Äå1áZŠøÞd[DÜ… ÑxªÃHÖÛZ sÍußèÕ³öR5óµL¾¸ñhõníݤ>ÜR‘þR†cë?ÖÞ¾£ù .½±œràäU„J »•¡WŽ'É3Ì*Þl²Î—×¼QÒµD¼9s8ðùæ­¼Nš:ÉeP¨ï[1þ¾'´·NügkZY%–&ˆgé]gLõè7[oö¥?•7ÓºÔ§‰¶¥à€_Ô¥M-n©Þ#T¸k®{ã|„ÆíÚD6Wâ5‚.ª]•%­W3—]_ú›ZXe…=bR+"€¨KµâŒ£nÊ«ÀÚƒÔêcûâ5*:Fß4ãÆ™]É•„ɳïYà3‹~³¬ˆÇ3Š´øôlªìIÍx€û—ÍÖŒËL•…-TÙ{ðe_Uß{¶cžíÑÖÂÍmzΜ‹j¼Í]ãªÙ¥eˆû¥§ú%ÕÙö»×>¸ä<òË.ó^Âúƒá¦>ªø|iŒõ»´»ž{ÛýZfTƒì»†ðåkó;¢ryíúr­‘ £±/Ã|ÝKyZ梦d3Á©É^D<Ñ_â&½2×< Z’’Çó¿Êá ³»nm·µw¿¹ÆŸJ¾íæiˆ⤒Íz °3áG·rÎKñþ–.sžŒ~I˜À ͡󼺪AK3`ñ»K-ígº­znë±lÝÛ\eµÉ‚Ju931 ŠMzÜø5»o»Ùµ“ßWÞµ÷™DDmœx.˜K@fWp§RËÖ©Ÿ‹Ýûd¼Éiþ±ø˜K°B>¡x/ Ü$’]M¿Öýb˜¬ZÄ+õ­“q Ð Gg[ïŸû¾É¼é“m&ƒ²qNj«Ú´ãå Á£êΟњ¤+°…ƒFþ*P¶˜nyž™(”;gbŠ6³ÄÚ ÀþíiDæË··Lœnõqêl<:¿Ñ°N"†Â!vÖÓj·lºJp{N¶ÿ¥ËsÄ€°Q¾üùvWIÑ"Ãì‚Éùæ¶§NÝÔì§ž†7›5¥Ý*±+IÓ#Ê,|ucg|~·lµz‰4ì›d]ù*C>tm`lUlSpf‹ÑF©ûÝ_¥O5ʇLÔŸ¯›ŠÿÌ]> endobj 239 0 obj << /Length1 1868 /Length2 13984 /Length3 0 /Length 15147 /Filter /FlateDecode >> stream xÚ÷P\ÛÖ€‹"ÁoÜÝÝ-¸Kph ±F×Á%Xp‚»“îîî‚»_¶œ³÷ùß«º·ºª{}Cç˜sŒY«©ÉU5˜Å-Àf@°„™…M ©¤)ÏÎ`cãdacã@¦¦ÖAì€ÿ‘#Sk]@`YH:M!¯2)SÈ«¡ØðÞÕÀÎ `ç`ç`cp°±ñÿÇì,2uY”XïÁ@djI°£§3ÈÊòšç?:sz;??/ÓŸîq{ 3ÈÜÔ d ±Ú¿f47µh€ÍA@ˆçÿ„ ²†@XYÝÝÝYLí]XÀÎV"ôLwÄ t:»-” P6µþ] 25@Óäò—Bl q7u^v s ƒË«‹«ƒÐðš !¯Pq:üe¬ø—àïͰ³°ÿ7ÜßÞ9üéljn¶w4uð9X,Av@€ŠŒ" ÄÂ0u°øÃÐÔÎüêoêf ²35{5øsé¦q5€ék…×çbî r„¸°¸€ìþ¨‘õ0¯Û,í`! ¶·:@\ÿXŸÈhþºïž¬®­ØÝÁû?d r°°ü£ WGV-“+P^êo›Wò?2+ ÀÍÆÆÆÇÁ:€æÖ¬$Ðôtþ©dÿCüZƒ¯·#Ø`ùZÐd |ýAöv1u ή@_ï+þ—ÙÙ sÀ hr@þ'ú«hù¿ž¿3ÈðíµýØl|þûdøÚa`;ÏÌÿÓ^6¤3s֥̔ß?—;ߊ–W·jë[‡íI†•\ÿLqºŽ$þÕÃŒö—‘ C›Tñψ…$Í/NnÚÒβ2Ya$”îy$™‰ßÁµ,_±|k&â4]’2§R ˜†ÒqêU5.¼çØ'Ì‘†"ƒœc@L-$›þêAPYÑ6svÆ+c­üæ. 9jrŒˆ³ÒCÊ@í|bž±ãaY~Pnòðk3-kc?v<ë!TÍ1A_—Å}6x–ý¢·[g(ÒX6¬{¹3<«ÆÕM‘ÂÑVãþ sqÑ»\«ÝúP_ÈyÓ†˜7MRɸÞÔU¦I¸Õ_¶Ièß„&K:…úã°ä÷ÖÇœi ²<"ìÅû¯¥©SùTå:†Ö½Sµì¥#Ø·‚ݲ\„ð˜o± Øôé¨F÷gtÝt¢\¢Ußk °ô˜’ñêöMrÃxû!(¥zíÊõ¢´in`$]Ù&‰àw?l¤Á!Ï(ZWT>ÈCð|1I€›oiZw™ÄUëo1Ô¯N+{ ø•66Çw÷$-1#Ô<(Ì…¢×ü”­+"¨ÙNLC¥*¶×CcœŽÏPãXÏ®u¿gg(Aý„Bu×·¨qžtjG¦îP0RÑqÏ û°$ªßǘÌË~(Ãõ›'Vâw¡©ïã}çDÈ ï=§Œ8õ¡ØgÛì˜I²õ‹I Ö˜2Ã,«‹îC×}…BáÔk c:tAo¹]åñÖh&W-òä‘ò-uª›!e†Éw†p­œdW0fçû%YpÚè0ß'4üT®J*¿£íÑ$š<í[¯ëºÈŠSÔmRïbÄõŽ$SLX7 ½|ÑæåÅ®´¦ÌN¢$JEЋȠ¾Q”„&µÊœþ©®þÄ™»ä«dîkÒyþ%.ÿécªlI•«õ„ƒ³á¬G?%t&߯7n¼‡êîëV7 Z_ÛµEɸö†ae}Iž^±È)CQT<×h:̵‰€‘šUZþ®)DyýK??E#e´ÃU_isö/OOƒ@1¿ T¾4¦·'ÅçL5q÷KÖ³‰BP6!ÓlòÏ´<¨znQLgJŽWPП°b/ Z{ÝðÊCj£Öç»;žµ… QµÐñùü†G·6¢ß–Îo¹B)à¸wI.ðÚmæ7ß=3ÞÎ7‚3É#wK‹è=ãYŒ„p'¾¾LY)Ûi œË¡,ßÓ忽'›°¡bù|‡#¹„? 2yká¼…Õ®—ãÕÉ™8"EhDAF÷°Rê_"ZZµtïRâ"üRÉEÊMŒ @|{;ýèd^[¤]òãÐwµ¯[uiHžöY]Úzùgì)qS´¹ãqž/¨©-ÊÎIŽ6?^$†ãþ ýKbí¢¸Ê˜]B0G *Ÿ2áõCÑPšK;8 êçƒäüaßtK$`Ô?YÀw³…ŸUiÁÐò¨ ^wÁÎò<ù^fÔgÐ¥@g?¢Ö›„QÍÊñÌÐÀÝOÛn*9`5Jž²Ð–@Eü`:€•ÿÞ«®A.‘-Ö5s 7 f\ãÇ8ŠUÏÖŠžûí`é¾€Au 5ÆW½DgÙò¤FOÍŒs—5´yæÞ7ÓïV^¥•k`‚±*±0C>”Üò¯ê»õÒ—ª—ßÎt¬¿uCÍ´xÊ`âÊÏç´y-Õíí(ŽúPHJW»ûJìdô´ìW²UrÒ8^¸}âRpíSHqo¹dtœösk»ž…€¡²ê’Më˜Ð<É ôÞñ·(\¶k;NÇÆªðüð-†Úq‚šã: …Eá¥èÎPã¶„EÚý÷'ìà¼r”¹ð óQÑ'/˜†¨8X)Ž 0Þ^Xú}åÉ!£¦W§4[á[°)ÉâAˆ'³?ÁMÿî„8$­Æ,I†6âòEáÇô‹ÔÇŠóïåÂêœø¸÷"äzK£1‡üMJajµð£I¬Ú3u•Ј+ŒÏ»Ë0¸Uw:4Aòg'ËÄòWŽ™âWE8Ö %€.&¸ê®=,¢ókcŒüj,-ÛbŽYYšíhˆm!£µ¶U‰±¦U‘âá|½ëÓ›Ks/~Ñ£oSž5t‚å95ËG—ÃÌó·~¼ø=†˜WGœ+ŠhÔ’æØ>´¦Oˆ+fYÎèîˆÖ{’F‚oSwN´DîO>æ.S6<ÑM´kŠÆ¥Ž°¼E3eW|Ãòͽ~dòiU®¢ìyÿ†R2šÙÄJ˜¡Òr…Y3¡VZ6Äÿ!˜.ï*ý6,*Cd…2ÅÚáÂ_û <àr\VϹ+j6gpòõBq«½çöm _‚µÀ¡ )CjÛœ8”Ï–˜åöØî¨ªÃÇÎ +µ¤Žµìv9M6•ŽCÕPiÃáfªfúÙΠ[òq>`] /i#*ƒÖ‡yÊ%Ðóî,74psHª(‘ ˆõ >6R˹˜Œ^P˜KœtÛÍ–Ëä@ö³$À­B$–Ü€ýèXÏÈ3ì·~2Öæ<@/ø^°1m"lý=Ç÷ƒIOCö;ÄM(Z`n-Ûî.”Añ¶R D€8ö£UûZoïž £}às"ç,^m Ã[DWÈUV‘,nó0p¨¸ Gbš zûM̰ª=ff·u8Ðnë¹íC…ÿ`Ãê²z‰sp"5›áúIËfsÌo3¾nÍÜTIï&U\×#~”7ÔÈ­½éìØ#Ýó?±.´°ä—¼‹¿.lYÞmÔºìâAµÑ–¤Ê€Üei8Í ¤„tc1®ÆåFoÚ`ݦ§ÏQDt“¹BÎßõLÓlP@ ÝZµ8Ïœr;?m×õãÍH9îüOíålÂÙ}žšÊŒU9ð|VLù~ ø… ÛÖªn\sï wC1ÿÞÆÂFºH-pKŸŽ ½ˆÆ¼(X[á»ÕâþÐh<…~€Ò1A¿ „¶ܸ xyj`ŸŽÆ4ûƒ&UÈÿ„ï;$c ;ÛVÁvc¾ûcË!W}9¨]þ:Ìñ›'HCtØ‹Û ˜P§aátþ¼E¼ ©e¾×æ‰ÙÈOC¹i8ÎÎsñšèëŒQ=·)© ¨Ž5··º^7±^¸‰Ù4¾¬+&‰…Ü”ºw)O6ÀûÊ,[è "6Æ F»Gö휌Rÿ4U*6ïÊö?dÍ=&>33#õW`ÄMOçpZ-³´ÄR Œ Æì0{Cì°÷VcÌB뽋‚XnÄ ƒ“›hZ[\®?{ˆØ AOJİ;æ  ÿFÄ¹Ç bœÿöé¦Õê9/= åé%ø •¼ÖêZ­e—¨S{S8d.C!WærsE7“Í$D õDÿK/…É+å®Ç+r¼-a§°Šš<)ª/»¾º.D‡ÂÑuìhiªîÌ^¼¶éüøX#&J‡b”ù R¿ñ¢nÄV9¢Á>ñžið’¨{ ˜Y+º9‘²¼%__ö‰Œ/Q›C†ÝxEê?ï`ž¡1Qöð{ ߺIŠ[ïQõbÐqçxò‹ðŠóñ0؇nóÑ«KûÃÃs4UúQÅÝDE#“³×šf`6ã´m]„íÜÌVÇò aø|jû» ZŒ©½O'‹ëDhh¼ˆåp3®ªÑuîµ[4îAZâÑ'ÚyŒ+PSñTýR¾ñ¨ÍW²W{™@aKEŒ^ãý:32ÓHÚäúGéýey·xì-¢cÞ“K,…æ:F—¦)¯l—³¸âçú.ÆŽ}ÿÖÖðmqÇ{MÖÙ…Ý—˜é‚•œ%Í&1Í O‚îe(Ï7%Ó_«K½ú›§ŠÖñƼ€37ˆ°+¶ñæÂ^}§W¦[wr&3&Tø_®¹º±î1Ç"×±åd2Xi!ˆ:/:Oƒ»£®ÄÜ f=°ïø• ÀF£™®ò]üA™É€¸Œ<Ë{"¼Êêsÿ]²@—##`zH¯Ü]<ù7‘mÿ­¦’˜ÆD`pte‹­*Ÿ%AY£ˆhÙÞEŧaÀ¶&G€ë÷Ý6…64‘5’hªäé…ˆ¹ù£E e4îNáUúð^rÊ9>h ÏÀüH´UM¼±rå¬LÎÕ²aNqf\FÂ’–øc[ œ…˜1þà·•ÊSä í`A¥ìÕQn/È3Œ’ýÉ—ï Þç–÷asó5†‡î û޽.Å¡¢œë óB¥Ù¶"ñròØ"bãªã‡½S(Öü·Ër§Ôrcˆ–á †þÆØ¨Ÿ6 g¹?3òKObshv# 7ôïH~;QiüR7ƒS9u‹v> eu'*t*¶^Ç¡ÈÕkÔÛ:SäcÍ·þ–óSûiYʯëB!χۚ?Bsè<ž\œÊ6 û1·´+æðs>¡3ºYsÍ©#@•޹À/­Â¢2›ëäéó¼ÈêÏPF~ë÷ÏÇÍ@55EÞÜ…¦s €ãTŽáxF\ülë­\×ïqêýß \(.s¬Q]éÀj7ðïÔ.;†©ìÑÞèCuð^8)ß]tÕ£<&èŽã[çâÙZí§©p?ÓxÍ]ò\xñ§÷oª·˜nˆbšórŽJ}v·zá^étÉãébNñŽiùµT\wÀ©ŸÐö›œÃ,K—»ÊõæÊ(öŽY¼À-4[âÁÀ.ðÏãsç ÿŸ&Œû`}pç;x(Y_N/ª®±Å¸Èš4iÍûUe¯—w©F#ý¢pzaVT"ËΘ⇷Ÿ¼4~@ƒ–“?y^Ái© éwgËŠfÚÃN”+ö¿ìÎÁÛ©ÚW}·?Y*us`òôï$æšÅq)‚èñPNÿž‰¿¤ kÊAyŒë q§«œ¤ò†öàÔ~Û.Ø›û….ÒÔ»‚sË$³êpáih)güd$¨Œî)§ǺBIAO:ói€?a) (i'K¹‡{d%xû zJ^® JšùDŽ·¾«@ÁüÑ”*X³™Ä‹cÛ‘˜¿•ù¢p¨Á~Þ’²õÞ”ÿ»×ŠN»KÞP★T5¢®Ü=v†ÅRf¼M«?=§Ç2µÃ­ª×_A¥è¾Ê^ý­ÁŠ<·#WÅ[dÜJLo‰{+‰‘p¢“ÿéWÃܶouolùÄÐëP?]W3¡;}èLX†‘: oÜçR–(uEsˆ†¾ÓL}sÌt¯V¨·‹$ßø°\'!½÷¾•ƹYß o°ZE£WpÚÏI†ß¼Ÿò¶°ÌÜ<™àçlj«…b_¾[ï—¡6¬È´Uëý¹ÓZõ ·ï‹ú" Ó²¥(2± ›Þ‚’´@;ys]{SÆ|(Oîl*ͯ\iûä ‚7Ñ,ê²›/#â!ÀÚÒ`¨¾žü}ŽTdÁä„’ @%š¬Ççoäw¸¹1}¨h(J#âW©Ó‚U7ó}¾èf/›œh­¹¬K±a.ôôF8ÅËo®A×%_V#3ØqÕ{æ¯tcïz¾ôVöÇÆ5ì‘Yq‘MÔrÙ±vôèªÃ2ŽûÈ[š{çX¢Jç„r}p`J÷á3$­’ÌfÂo–˜Ö `P,ПþÑ7l•XµÊ`òMôqé3BfjH„$ŠdpSÖù½âŒ´Ô"fçòä ¡†Æ(˜¢bŽTj† )̺ðpùàÒ?ÑsÕÓNy])•,¬Sµ”Á/ºNBZf1=úB'I>¿-eÖq…H<œ/]âA¸`C}Ô0¡wÔÓy¢ óÏ~ž½úe7‡UÏ"ÖšÍÂïÏ}~ç.Ô¥€Ba6×€õ÷yN ôå@…ªrÕ2Ž6/îîª  ¤¦Gë¸,88‘´—K%¨ÿÎ)ÕTžKÔiŸð‚>F÷7-åݽXCðñÑÔV–?–ºÜÔL«y÷¢²®äéê, ˆlß%aât3¸>é]mÌX•>6Ÿ8Ob¢‚¾’5Ñ{éYGݬéìëÍlcÁ&Â-W|Vˆ1MJsm¥Áf`rv¦HÆKë»ô„gËRw"3C“—Gâ´á—]Ù›z©ÅéLï-¯ñl¼f!ÇØ"Snü °¹¡cT Ùräõ¯ï¸6ʨW&f¿I^ÞôÚDqêì´«ã¿y¹|–ÎF7ûd‰>`@ïmÒô]ÓºgÅÿú#Ý›,„OYcá ÜcѺƒ>‰¶I¡œ„GÛ¦ûûÏ”o•R‹H—„\¢.©£¿ Q‚† Iòì†Æý~xyÌ0ß*GD F?SmçpE÷5”» lj­ÝÆñðÍ¥žå™]eÄ}p‰ªšSGSDòÍ–:3ŠÑù’C²O¾ïË<Œ7|fÏÆ†MÁ:hwÔiÄŠ~=i*{EØOiRÞxߡ͇8nvšåÂ+íL ¦2û»JyŽð$лቧeKÓïÃ~KS‡^Çš‘ºî!ÿ òÆ8Ï_I›ÛÕ€£kÇÉk‹PÓð»gŽA¹€È2xG†v6) ~_0V¾µ˜8ÕDM–ŽO·ÁD¡¬yûI(§X³6–;®£ZLX&‰Q>6ŸŸÚ<ýDá áœ3 Þ7÷ág•÷½÷ƒW!X“Ox”ô.r"ìL‹vÙ–eòy««&p_•ã2˜{/™»4Ö¥ýö€8HrËñùtó-pÐ Cpk~‹›<¿£x¨,PfÒò‡KÚ¬¡ÚÒ)Ù¸Dó"-‰7„Üm`8X9 ·“}ͽ³Ñ–elÚºˆºŽejŽ>ë‰j'Ÿ€a²€Ñ"óçñµ®>lŸÔ¿3tsÚ§Š„CO‘i5 T—¨rQ±€"+7{;Wê8i1Òã‹?›Û:$?Æeç÷%}”«XóYìo?ª)€4yRÏ•ˆC+`ꨭJ¿VºÃjz˜Á#ßR Ĩ7Q‹R1•JP±ßÇô²2Ä€#øþ㪄{ ˜A"¤ˆOˆƒ¦»£ß/ð ÑsôN|è’Ë‹àÀ‚·ñ·i­žÌ½Gã¨#‰ÝP¼É=º„÷“ý3<®šœŸå×Ï1IGß峦H³e{åB÷íÖdÝæ&>-&1Û“ ½ùؽ´W8LÿÆðÃ5 — gèaß©EY%´¼l{, Ÿ³Aòy¨|ÅËÐO»p¬B—éçbDH¿öåS~†U߉±>™À8EªFÉÕ|;¶üذ'‘9u§‚$’`1£@0·Ø?Š+–h/¢z4?þΰw¬‚e'—\f A¤ù¹6Ñ©¶¯([‡ÏÛ§á+±ûúÙDk=\{’ûý7ûÃ妉hÛo·6ôdƒBß Ô#5ç?´LtR. Êxfhcý,=£Ý\Z¤½Ó¾ÂQ¡Š^9£E$k>ó!ÿöSŒÈÇr˜Ø‚•ÆçJr‡þÆîÚyµÑиØç™5Œ¸È/ "ì·‰ŽÛ$ˆ+,Á†·ö(Gw<ð6]l¢f¹#Ý7o(GYÄ Ï? ¾Ù¨Ž¹ªèngÊ«­µL¦ÞéSp?|Ä®KÇoùy óq‡¶Œ4þcW$MŸ©c@]_ië%ZÆx„‹æ¦ÿm jƒlkÞ!¿Í¥ÑÖÔ Ûçj“Ý.zv‘Ò†Æ7)° te©¥ºV›ší¿Pb ›â|êôî"<Ï L ô?¾èE½íÏaÉ=qëãHÁ†¹iqÞuÎÏdtº·?>ù¸™•X¥S‰ ÐA](9qÎÝzÁÍ®j\èGÌ;St42É‹Eì¿\\Å7áœjü\ æÃ’/‚ ŸñÍéµr¨pð܇ëb4_4å6ŸÄ& Ÿêëç%>æ*o_”õ$ K;%×~±ê#m+ý:ž«”ü]föôZ°X -£ì…©×L¬‡›ëÛ¨û£Nù[Í“®zÐfJ Éñ…:GÌý°$4ê«ÂDúaRÿáÓMNh™+Ú>—éG+¦ (ª ögç([ƒº(/s¹Â©³ ©ÈKÇ…ü3h‡"(&{Û„ÞÒ‘5k¼Üí~kU±MóÁ.ùó>‰15vwù–]±ÅcæÊPjÇL ‡”Gx.ªXNÆxOžŠŒ¨©§oËCVŠš0Ÿ‰žF+ÌšQ•2^~¯Ê|þÔÜU˜ÑŽhâö‹rPâ%–à÷.Z”îŽÃ´cV|Ë/˜4Á:p9ÖIþùd}ïÆðyé¶8ÞF>~%.|C9:3 7ªšŒ/šwËkøŸ¨6LážßÞ]¸…ú@DÞ›õ6§#ÛßÞyRWSÊ”’ñJ„UR¶Jb P¾¥L¿Þ'Dɵä9Ë˳™œõ^7ë•ä’Q±yš(‚½ߤÈ…k2» r¬¢„~Ž®^K€ÿeĵŠszgEÄâ—ãÅhsÊ=TqÇ'”&ÛÛ‡›‹_¡P’Åí üpÿ-IêíÉ'ê]hÞ™Þ*Íê­à7àÿA6ÍZÚ¡gÛdK›šíúEiÐnhG¶+ÕcíŠR°D;{âúðp;\*-de»|øRÁºž´8/}|tgD_¡Íïu4IM€ý¹Ü@M7äÞ.Xyá!9¼€ÆÃ˜ú^ÕØM¸UyÁ”2«Ã‘-ä Öé}ÐV\¤Y_×M¦†5]2ç›ôæ'F'$A«2‡‘‹óqÕŸQ<°ŒôŸCe¬C Q¿h6å¥UÆÁ4 ΋*¿¬ÐZÒ®ÿ-—W=>^½ƒ‹”oª2t.¨U`4rì‘FRVÑ7wv_=ãÓý†è-« z ¾ž†èÚæNà!kp~#:²oÏVQIâñ…]âêïfÛK+È’ó`³¨öÊS|/Xeu8H¢å§ 2æ àž¾Wv[˜% µÎ»¨µÄ“‰Ñ½Ê„¬1îè[,ê¿v*5î/&V'ks (“>!j5±×ú>ßœÁSi.÷Îh¯Þ^¾W5ï÷Ý*µ±ÚOò¸]4Jv®Ð%1þZnÏçÝw™›Ó˵ϲ%á#tçœyÁ¦Ilú¿zðÄêÔæ(ˆCÓÜ"ÑK;ËУjŽªî²F©ù½¨§w¥;šdždÀÑn¼#¹„¶=þj°äÄa· Îš€v€Ñ6Œ<¼ŠF°ñŽe(M÷šÄ :WEÌ÷7yÒYQ`1Ê8­÷Žªw¼ûZ®´{±®AñªlnÒ•Ï{úÚÿ<É\"9ê×ɲ­|ùoG™‡è¶©/Ó=þ‰Ù¸ôOÅ@äñ«…i„Y=£4h Â9/¤­Ûª²^]QE7P`ûB‡R £3%\¨ù”§Ù’»3v>²¶‡ÐÓîUL¢½UºLà=(Ž­K?¨¦¥Ç‹hgÀ[o_#%Ž6[aµ«rpxã6„1s£uëǺrZ×Ì–Û†Lh®›'Ýêd¶_EMh#õ ae6¦;ï’39Ò`ëúÞiŒÿ>ù–ˆyf³½ñn•Û'-9UÚ€ëýžPW'|•ÁãžßÅNKJ¹3þ=áì6ÂÜ“é|WÀD³¢íÞ;;U®Mt]âȸ]Ióü4í¡0¼ëÄJLÉä¤è6z޳Iíµb¦½­äšÁÑÏE/s‚ù”4ÖZiô3Œ»îÅË*‘—íõj§UI¦ØtµÄæi*Œ»×Æà©oàš4Ìnî2'Ú€½hÍo”מ)ªL ¸Á÷È’qÈž>ŽÚ¡‹)œíZ/O¸9ª2 m趨zOo•â+`Yq&,û¦Ø¦¤È¡vvî¬eZšòŸ&ì\¾.ÈX\ãy%s^üú•CyQøaiA ¨5"kaM£‘ŠÉ”9K+ää%%9;©‘~ÀAïùÜqŒ%â/Þ5臕/Þ‚]C%ì’]9];_|&ŠfùfÍ廘±4ˆØb ‡ˆ9Üҿе¥Z6,éž÷–¡Ân”N‡6=9!ÆDg‰Á›~N¿˜ wD‘*z¤Wå´ÊiÄCVÓ©I{ϯªkRgòlmucÆøÞÀMZ&øë’¸ÊûŠû]šœ’:Ž_<}åJrLÄî!?uzdèÆnt}š×LÉãé_² aü×Ïn:`äà3w'ˆÚq®P'ƦÛSÚº»R‘S¾„á±N¶óõ‰î¼ BÄÊÒV``~ô%ø<ÃÔud¹½÷è—l²®ãÇÖ^¤¬ó~“ˆ»¹ç'bË·"_ôbšÚ]hP„c•ÙM{LËH»BCqö+65§” Ú"¸«X¾½ïõ)¶l5䙣…œŽóQ„H'QMñÑéñs—Vž¦á,Q¯±_£“ŽƒJ¯ õÚéÌ=ßj©NJ1ö¼Î$êž(épûz~;,‰ty¤±)lñŽ­ÑÑÌ~³uæ[ÎÎÀ£Qç;+ýÚà(Ì»IDâÄÅ19¾ V çy“m÷«Êñ`þrà,î{¬„BàOß}Æaä25SyÖéç$ÅÒ@C6Äã¾Þ1%´§”†ü”Ç „¸ºÕµ¾è5EßjŠ1âï(•%ï£ЮŒõ‰¥Ñ‡eÊ÷&Éó !¤ʱž‹ez_  ¨[MW‹LX¶àïZ醇 ÑÉSƒñà ½XB~“¥Õ‰?äº!<ƦŒø?Ý K×'í–…WFuY|¤H‰+ ç]_ ÷-gö–̡ΟI2£Sú`t}ˆ~:©êì[7¶SpÁoêP†zæ\VôÖ!Œµ²CNÄ®¦´Û  7ïø›m_ÉJx bMvt’ajËÜ…²ÝÑøJ9„§ïH÷c^ôU¡q8ÝCÒm}5UkD¯›oVݤü,Ī>ÎñÌmQ¤Qe„ˆÙ,ó‹I{Ü*ë#3ÿÔ‹SÎkÝϼ›Ä±¦õ÷¢é¾”ÅuPô‚ ‡¬ø€ÓlÈ'skÁ©#S~ß^¸Œm"Æ0¦ÃÀAQQ¯—ÿDxùYê6"´‰A¡l7½á°£õý‰Y &Rzâäâß´|˜ê-Ýá{$QÜU_|¹&B›;âÁ°_¥q‹¿|Ë8®ågp^d)“¡1¬ý¡¨Záô[î®R¨0ãÜÉÝSáã!_@°ÛÉ®@ÖCi‹îÏ Ãb@—¶ðâ3ß4çC³»~âÞ8´1ýÈ1J­æ3)“‹ýúgîCs7Ûψ®SªHúìÉNV·Aò°Ý:9Lw ÑuOú{6Y9Z9Ÿô5÷ ÑæëréB’5É«.»¥b~­VO Ëé´.®G"¥C¿BhN¥'ÝÀú¾ç ™fÈk7šdh¥æÂxÙ]9ò‰+.¿ ÆXlªA‰~U>ïº`!Ò+΂ÞÍD­¸Ú#Si8?_ÐNô½A@q±Ç~_slWvñÅ×½b¦0{¤2„ážÃŠß¬÷³ü~03Ê⺈Äg@Ÿ òL°šECGÐwô“²¬ÜüTÈßnßK'a¹c‹F ªÖ5²w«XÎ'pY"á=züÄ7yÅkÝeº;–‚r{Þò÷ñí*å®íVÚŽ”O< E¨}MÃLu?/¤ â7 ³ŒKHU;¨ z'öÓSÿ§Ö$¦¸g’óïYÿØè&5Ô "ârêí@rNžYZ4~^êÒu”˜˜ P_Ì[c8/dD€É0>Ú‰‘×h<[±ª)ŽfÝ…y»Pš¸$RMs²h¹‚z~ÐJUÄw…@¾ ¢úxœÅ›:îžhÀ¼äÈçkY$cp‹ N·¤éÞÇÞª­‚ÆhhDò(Э»Ø­¨Oœ7³¦P%¼Û(}V— 3Ýš/¡ãâDÜ: š qè¨A zÉ4]©êÁ±¯fQ OÂKF—]äFT-\gåM“Íüý÷¥O.ª7n-?ƒÏŒ”@‚ýñ‚d`øÂ ¯fLaû"o–S³¶±÷8~ضÙ>LBRâ‚Àvësä¾tSéªÊR·LØ Òj¶Xé˜]¿!kâ}Æ„¬QCF[ó“•“#MÍb»ë#²è½[fFÕYÙ·ä[Wpù|Æ×°UöTîÇ_°È·NrÞ_ã4_À(¡©>ZŠ>’.®Äææ[Ü ŸDÀ«™YLÿ*4áÅ_ë÷ß$j'5°?uŸíî€ÏSv× 7E%ˆc©Žd?¡RI8qFf @ûoB3¡5û«ÅµFÙ ÁFhx)M’%³CF¬\^~š$ ƒ›ê/Ó’ ? ïÚ/ήúo~Œý´¢»¹H¦ÿ¡ÿøËØn8.s¯Óòb˜ókIY>·*8³ª0zõ @2,8„gAîB[–ë1/ÃgWÆ£ÙZ;—0UvÊ ûèx&—«-BA/Ë·~o1~úŸÿ~¹lnRШ/_™›ÿúÿ?» Ñ혬#Í2p˜m'£Žû´°ÅÁX7c+㑚Ý/!É0JU¹8¤Cëh=jg9´F ä>…ƒEEÇ,ç+r"Y\²š¨Ÿv™Çu%°YM¢?Ìš$\ƒG)VT¤ÍspQJyžránU¸ë\7°;×"ïf•·6ôÛÞhl JÜšER}C¹˜û‰±ë{3bæ{Ž=Te>žKX%XÓÕ5z¡ÛJ<‰Xà*~oƒ`ö!‡Ì7œò­-!Zæ ÊœüIµåDߣ3a®ÐUO‘EO¤‘o³‡š¬’UøcÛ}Z@îÖÂ6!N}‡À7ƒ/f!ý ¦M£ÀXcNï}“6agÓo;ó‹Hq÷haâS§V¾<—úGŠ ¦õ,oÕ;Œ·¹G8°Ð·…¦ ùÔØ&ƒRôÆìÞ”ìIJ¶^FPk{€Uˆœsqµ¢ü4<²/ídœ€{r¼ýN‡ÇïqûJÀEÅÓ¦OO±$Ї©*I|Zt4k¶I´æ Œ.öïpo†ùc2ÏžŒcû'†NO'.z°l¸LX¹ÃYψd¡ØõÉ¢•¼Ezƒ¬¯Vx×®¡vêáoØâb¸±¢·]ý‰gdɺ‚R˜t³ó‡ö®mãyÕ»æ'©ÕS–'ØòJc w š.f_ ëm­m~–N®©c ìlFU"·7,‰ÞóÒ´†±dj6ZÔ©”º§úú%ûmC Ø^4âkdJ¢8¾Yr)æ2åˆÁçLsÏ”S™®Êâѯ ÷GŽõVry_çûR%Åɨע:=z„…Æyä›…é6Ã&ÊT0„•#r&;{ÃŽÚ"ÄÜÔ>§‚™w2vTpï:°$u>$»-¡[;Ö'.Q¼MæP༠Ÿæ²íq {Fã1ù'-ÍßóÖïPXÄ3ZVA…Ù‰4 Úá|ñµ{OlÎ4äH ¦MÞÿþ’0 åÍò-‹v•ý!ø(Lª´vŸ°Äí¨òþã•}?Ý 2…—ìÈöaì—TÙùdzsÜŸEˆþò±¼‘ô êK#ô©ÇR±ÙÓw–Úï;`䊮üìÀœaåØ=š'­¨]"ßÃQÄ_¥µÒ:3y,¬vXà +Æ)ìÒ1²>ø6Mã;Ô¢ÜI£ó ¾”ºãmvCTvÚ˜²Aùî(ÌüpLQtâ… R =Mw`Øö·;ô}<Ú‹¶³ ?õ°'lèôôJ?ݛїŽÐZo X]×>ðÓO3–u—«gk=)µ`‚ÃjêÓìvïñ‹ÍÄßÞ$˜Ú)‹Ñœ !?žqLu¨L6öïäâH[v$FaÈúÞÅ6ñ–M¢_$®{Jzø ò¬c:êCXqÁB¡˜pAžÉ8†›ö´ô˜I¿\ÝžM¨á1à e‘ZŠ|V̼ˆ¦Ú‰ìÐñf ¨íEˆ´D”jÂa™Œ_œnÛÕ€Ÿ@¢pôéŸêãëîlÌQ\(p\vYš5VXÖ$ñ˜§o$Pi>!°?^ƨ¶1˜âÙT æðü"%_‹)E'o¯¶R¨Ž%ü–ÍÒyñAÄé$¸>ÓÿÞ_AÏc–¹N¡êm®ò¨nÃÇ5÷ÀçíÈpÆ%ój §ûõ—*§Q—M$¨|zI#ˆ!^ÔaÒ‹b}Gö¢vù¦qãhÎæ<´zë/#o`Lꛓ§Í€„"RLÄæÂ7 õá„Á…j^ƒHg_%Bm¿Úó^`/ÆÎŽ>ïàa—ô‰1ò.ý¾ûõ\ì5ÀŽÄŠ«Œµ{‡âélÓàsÐH#ˆœÆ¶xÔVº}Q¬@þž¤aƒKt?"šÊSîé›=EyRF³÷½ ™i’͇»÷UË>xíA¥„¡3(æM"IRþÈqÜÔvÌ…ÔR¢ƒ!XioðöŸ;céöT>¿ l×ÁŤ|¬U0ö+¾õù1ؽWë,•c§òvDöpÝÛÛ¦]_Š1¸ø¥0󛬳¡«oM« 5|²ØÚ»ÀA–‡0“×JÌ®ÑçT‹‰wÙ}F¨Ž¨]n4Ƈ®Ñ‡[¸Œ›ŽÝé]- A^8¢j~:5@yw=)-˜¯‘BòÅk•úùT-!$üëñÂæ˜Ê1‹'ï´ 4ÐM« vŽË¹ATЃ“צ¼Çd¹Ýº7kj–Åû“…¿ÎæZÊÔ9ÂYÕ?eTïÇÂMΗ>}I¤äX#Ԫ寖Uš.¿•ytwÀ)Túà25éa¬g3jQKÞ¤k˜_q·¡JDâÈ6w`U#À&úÎk=V+S–w *±žýð…„ÍŠ1SDøþ|OP€TÅ÷=ŒÄ§ÖÁóŽHdaW§zKzG£°E˜)ì¥Q¸eõœpŒ†f” ñ{‘LÁó‹šR©á›Ê5N§Ÿ'{ÓE®i\âDžµ´Æ¿ áS³Y ç¬<Ø0qˆóÔ©õgùtúºpÙCy C±dÚ}ÓŸ"Ü6æ!r'źïIÌ ´þ47RLO[ýäÍáªä%½“züT4ã1áÈ̪ß]Íûf—ž”…1gû, 0¸Ä¢r%,zå™ë¿ÜÇu¼ç,îp&ëîtöñß9Û“–̳’o“—˜ë* ¨~<x8nÏãÙF]|ªp ß²3ÂÏ0e-.™opÁ<ý¢?$½rºt7÷mæøÀ މ ¾4+}þC—‚»\gEKB•ìH(áJ ‡ËýÉNyÿç˜Ão2…5sHùs¯â½Ý0DèqÞ™{ôî^Ää¾Ñ¨ós(³#N2‹¾.QõU§^íøÀƒ¾lÐ@Óoß8ÒK‰ôáKmD‡Å—{¯uSq“Ö\èTÎ{ìœè|÷ëWã·Ô–æK[³G’*¼ šLÖ©Vò "ôŒ!Pãks½T5ø±Œ¼^JÆ ´&UÏô뎒ÉbÑÕ^ðU¡N‹%åymjë±µëôÚ¶mm;ÆÊ̬’F$]d3,îM´ÝÖì½Qe)l»¨ÜПÛ[ë!¯æ× ñÒ 7Ï—IÓá<ÿAÒK'ÒE™0ßR¡·OíБçP˜Ñû+ìoyBþµÝ§˜ëè—j>)r#SNÿUÛ<ݼÍÀZ¤œÓFãÉô…7ÏÄåÀN³³f4|µH-¬¯¼OÑsSá1#¢Ò”|8§òeÞêâÏpEä]÷VÄK#„S\1×y¤mIÚ(êÖ-ØñòðõÞÝæ¸Ö #aÑxZÞ Þê³íuÅv¸Z„YFÞÐ\VöÕk ‡±³pä%šXâϴ˦ Ú~ÂCŸ¼añ:W¶™ÞO3ê³™ïqY·²Ãï¶³)ñ‡ûxé/·*d}p£u´½‚ðïµõNE|ÏŠõ-No‰vçÙ?Vìÿ–^-?¢©Xzç¬×ä5ñ€%{±;¤ŒŒð´èíciRRÁ£´šê£×.ÛvýaÀ^æï¾VBþYVmÀ=!|ê’°$@ûèYÛpiZËÊùžl{Ú³]ä1w&:&³ý.Ö âG›Q_9æ0̦”úàÒ6 Xš\|[¢ËMu-ózŒŸuÉ5Á 'ááê¤d PÔá’²’{Kè;:.íbóEdªbKÏÇw5)ilý·"•ÆØ‘ma¿¬ÞÖæÐ\ïB½õ{¤ÐI›t18ôÀO b¿JwÎÕÉô–¹îL8Šg£gð’ "ú9]ûÅ5¶žÜ/ÔUÆZR:OÇvègÛ+ÄjN4oÓÕ´–÷V2Àö2þºhé+óÓç³ì£Nƒë²ÉpT°)\óhå3\q_¬¼g•Sx¬cÚG‹‚–ƒÂ0²Ì3%û¦3h§¹%â'Š©°_¤®%5•<’"£-š¿’F^Y„¦ênu–ÇvrÍ^gzò¦f¡3°çÌJ¿ÿ.–¦£ ¼rsýåŒp²5(Ò ›œÚ°ûå<z¤ÖØÁ‚[+>*Ofj!>ñ¦¦ŸÝ®AâÄrÝ‘w™=WÎõC¸^h4(&U1µÏÃEgÂ{Ñð“òR›ìîKÿ*ÿ¼Ä´:œÕJ3_Tëø¾”HÔ¦_â…Ê–Ÿ>Kì{ ~…ä„:ÎÙâÇz5ÇÝæÆ ÌAMŒÆå)³¢;-»œ|àýþ¡Öÿ†7!.¾ž´"éø}aÿ`«S,òyIÒùR*²víîL¾Ê’tŒiç 6ÖÆ›öƯ9®cÄÙÇXÖÛd>jDe_/…6ßšÕ5š«Z!¾%Ð] þ.ý6¯koaúÀœÌ´bEYØû¨nJw =ô¼¯Îbƒ*yeâ€ëx¾¿ûÓ'beU=¨üF«ÌžÂ´£G›~ïi®:Pðÿ;¾ë endstream endobj 240 0 obj << /Type /FontDescriptor /FontName /IZCGMA+CMTI10 /Flags 4 /FontBBox [-35 -250 1124 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 68 /XHeight 431 /CharSet (/A/B/D/E/F/I/N/P/Q/R/S/X/a/b/c/d/e/g/h/hyphen/i/l/m/n/o/p/q/r/s/t/u/x/y) /FontFile 239 0 R >> endobj 241 0 obj << /Length1 1516 /Length2 7734 /Length3 0 /Length 8743 /Filter /FlateDecode >> stream xÚ¶T”[6 ˆ€tHÝ0tKwIIÇ 1ÌÐÒHƒRÒ Ò! ÝR"¥´Hè9ç­ÿ_ëûÖ¬5ó\wîkïëÞÏ0Ò¾Ðá”¶†Y‚`P'P «®«Ìà ù¸€@^LFF]Âü“ñ%ØAEÿ#BÖ B<Øä@ˆ‡@u âæàáðŠò‰^ PäŸ@˜«(@䱨sT`P0“Qæìå ±µC<ôùçÀbÅ àâø“v»B¬@P€:avzèhrèÀ¬ `„ו`·C œE¹¹=<<¸@Np.˜«ísV€aÐÃÁ®î`kÀoÊ øoj\˜Œ];ü/‡Ìár Ž+0þâµ»ºt”ÕšÎ`è_ÁjpþÞÏ¿Êýý»ú'desrA½ P[€ Ä ÐTPãBx"8 ¨õï@#örAA––(Hk@ ÿæ·r…8#à\pˆãoŽÜ¿ËÎ0g€Í °Äüðƒé¹ƒW7°ŸÏ:þaòð¬!V€%ØÅüwõ3Øæ/üpþ®O€1ðA~<àïÏ¿žLf ƒ:zý;üÏsËë)é¿fÿ›ò¿œ220O€'Ÿ €“W€ÀÃä ~ÿ]ç_;ðû?Ö Èß«þ»¢2Ôù‹ÄÃîýCÄýoe°ü=6¬€ÿî {Ð3Àòoù›€V_<ÿÏCð'åÿOû¿«ü_åÿ¿+Rpstüãgù+àÿã9A½þŽxгâa6ÔaýßP}ð_­¶†¸9ý¯Wz˜i¨íƒÎ9yø¹€üÙ!pˆ'Øúae÷—–þ9Œ‡Ž(ø ù}ïXa^·öoÓ_ˆÀ­ó/$"àý ý^·õ@7ø? ?€Ûîßða¸aÿ¼®ÿ܈?ð¿ÈX¹¹º>ÌûÕ=0ýÿ¹\À`O°æÂ,ÌJ,Ô¾6´õW4…ç×Q^þ§}'Qgú[òdîß´‚eÅ/Oùò£ç¥;§·£/×öyKî H€f_|3¢EIê[Ñl,79|Ç $®öájn¼ÛªF|Pk[’Ã&íÏgRS¬¤.Ç_g2wÅ™šª.*í37pa£ŒÆF?~&,̇Ú&ÙV%ó^zjº]™~"5ú=‰Ja÷2£wˆW`£o±Œ²žA±·÷ÔYõ,sïyúN· ¹ªÅ8`Šq«[þÙõk–à³ÖÐ Kø°Žx“¶v<—ZR€uËž‡ÿ–òë`g%>aö˜oilj¿ŒC–@²£¹í¬ÕÎgâ<“—Ì^Iµ“yFê´{§omÊUgkìÐ32÷7à»A…lJ‹M¡‚eoÛB/¸5>®Jέ:~žŽí:–¾w[9ltÚey’¶¹'ÜñÈ*ä§ÜwAV¤WÕ (ÇÂÆY¡`Á<Û§“ÅŸhóäÞ~‹~c,šŠ6Ó»„¦ëÈ‘ûW&Ö¥@am+ ß!]öq¾r¥Î¤¤]:5£<5å2hÇntwQìI^½®RÛæã—üQË>SNR´Eóù*a {Òt:íç(rbÛ›ÈÛ;ô0Š&’>СÓÔˆÒ†\?¶¢ÐªP§te RŸÔœemôeÀ ÷§*õ$§é—rC÷déo©T¾Õ ÝSôÍS&{DŽqª58Bm_Ö#‘‘ƒ'B·Ö= >^æ¡ùÕ&³ú8ù]Ë 7•ä±'Jb³²0¿Ò®ëJÑòèñÛeO…HÎ$äX?RÉ;[ð†]ãŦåÞ8³s† °,0–üûÓ/ 9!º+¡öùtæ¨óäõXn5|$:%Æ%Ù_«ùªÌc|Ú²Ú0ô£ŸµÆE\Âíè4Þ † lÓèÿxéPOC¯¬u.’½`MQú#»Îs͹„lÀ[¥%)E¥™Y“ຠ ­aè'Ë·} =uâ@ªÜœsC1aì‹Ç¾ô6 Û8j[/ÅoÉTèa'¬xF{ç\H zeÁ,x%¯È?*rŠO«™Á\…Ëã[’›ô®x/ò)’î7Ú„Â+çlÍÎù£DX'Ûµ d)ÜŠ˜í×$Ç—•ÓÞC'ò0æð'2Q1´þ€jsgÎÐô’.HWû“Aº™8K+l—©úpÑÍ‹Mަ%{Ì«ÊÛ1rÛ]ϼæäM‘)yÄxLÉÒ'ÂÕíÆÐÍr :Ésp–3–t⛿]£ÔÓK’Sa±SPYmJ…ÚÄâ |}7‡Ü©ÞYomÌL˾!n6¸ SÑCÇ»–¬Å ¾µ!R Q22D?YnÅGÿ>ü9j‰%šºyT.·ÿK¸*OK^î+?²ðF€ÿq^£KaÉÈf2u¨iel½XŽ‘qtWzCÁʶ²v­þ´1Åh[À £Ë‘8›R/Òå,M5±Š•Û½ÅÓ·Âø˜ß&‚2ï§ž˜9:÷¯Fm¶ÊP}1E!{…ùÄ’ *ÑF’w%à=Í^-!ÌñÕøÖ’9ô®dzíös‡o5_Í•JOÔiž2nò‡©_#Ç<“‹Ñ²/6\šâé‘(¨z³§2X¬dTß‹>ü–ÒCósH¾jÆæB¨ >~†l­p´é^ƒ-‡Õ3é…nÊLØšdüÉì–vû®KI± zå Ò\iŒ׆/:TU‰Šî?öìÈœÀÍ·'ôE:¤_UËñ*Ë9¸Õÿ©ª‘óž"͈Æ)ÅBÅ*ÿØÃóÄ^ï¡ÿÌ„¬Ól'‡DwZ.à%ï‹þYÉ(æÃ%!¹Píg*º{ÕX©Áþ%ñêçm—hÐÆ¬‡;Úá½ ŠxP$1ôr“È_òåÔ8{àÞ@DLZÅ¢pÂY6Ö¦+JuÜ’Ï?Œ4H²}­²‰6Fî߀|}Ÿ“,‚T¡TÉZ¦8̧+=Æg%.æ@³0¹¡{ÛwÔ@ŒYK'ž;ƒÚ‚ª/#TæchäúüƒiŸDŠÝRCð‡,²júŽå¹‰C‡%gý£Âd¶OtÌvŒFƒG¬ñsk=[Q¿bÄRáíacu½{Ž!3Å µ}S¯TÊÀì€ÊH+îÞè4„«C¨›ýÍá £U^È1/t4]°Ü%®÷RUül+°»F‡¦FoMýËÝ6)0ÿƯ ³uv¹c¥Ý_Äbxp/wÎa4ôàI=ÎöÝ~¤TwKN²Aš^GÍŠ=cüXƒ¸†ÿz0Jht ÙÜæ%$罕À>›5ºâ~Þ_”ý»_Ä¥€ÃNãN/åIÅ”W'OŸazKmS,‘…k7|,”Þ¬œÝj£ÏI.Ö'øAÎw¸~€ïÍßJšTƒ‹a©CGf×Ü1º`ÇüÈŸÇØã´xà[ÈóB“’ûúkøy…-‡áèù¨ê-‰Á:ùøÉœ©-LûÈÃ?Yyâ\ÒjÀoŽùSz_õS ùû‚¯È+2LNµ/õÎk—$TŠßE‰|ôv@` Å Î!Aq"¹5ØÝˆ™×-C\tgøÑ…ª¹–¦ Mb«”*vÏWYßh…L×'˜Ò½ôù{þ5ÎÓEtõbÙJš±ÍÞ”oK#áÉçu‡Ôz×Î47£çA£8n}CXÍ3>e¨Ð܈G̶$vvp@±ŸyjÒ/Û¶;Â:DkΜI1÷+{ þ=ç†HæÎ’ÞöóœbîB#Ÿ©™e‡ÂšÍÉ•œ«Ó0šRçŠû€gá·+Ù/±%eLJ§S>Y è’~yæìsº> HУÈhd`U¥‚¹_éJåÙGøãÚÖPãÝ«M½•ù–Ze[ˆL™$†Ì»t&&ÄDá<Ô¬©<'Úyòj¿ž°@ ÷VIyzøÄs„ |õ†ñÀŠxB¼yˆ¹V.0’|$~‘Ñ›' ”%¬>g~“zŒAÞ™Zh2 P>û½ýnË»¥ÏxQ»|ýé?šiµDUHøãeÖy‹¼”Ñ¡‘ìo±%†Ê´*…6PÑgúù¦3½i£Peúîh{ºÝ(™p÷ ÷…ÅžñV7… E 1N¼iÇaÕÑÀ |ÊÑ/OI±Ƴ5¨æýµ?ËwëH‡ÝÓ-xNÎæË}.:<÷ˆ(7OA§­/R¯0¯!ü±fÝýy5‘,3Ù‘éÍòÓÔ©EFÔ+ý`¬þ—‰X'§C¤NLkQÛ2›1R¹£coG˜fõÇȹù± Í4¯£{ð:ް- (íÏ7¡Ú©ò汎‚(Tx †Ð:h£+£³ÐúIʲ_£o§ž\ìVÁu²«Ñ ÷.Gyh=šFÊæ²R÷R<×+Ù¸9õWPÖ‚Ÿ_~< B©Õ¢µyuZæ:î0g}dC£ñúÇì~ÏEƒÉlˆ3Up«Cy°äŒ^ÛÄE¶ÿíÞ†ËáõúÑõE8›?k¹é¡Q| ’HRnboÙü¢Ø»¹Üµ7à à‰(zí¾ ~ýO§£ÏóÕÂMoB{ÏN Ç0ÇM¢>$îRÛþú¶ÇÀ›‘Ë0â´CÚ‰ŒïÒ@zXÕôh%_ÚÅ:$ß­÷[Æ@•Ìñ÷^üÎo™#ýå*  V’ÉŽ/O$¶Œ™Ãlž–jûem›þ GÑØhË%ñŽš™c¥ÿti:j‰TäãþÌlµe²]¼mŸÏ.uÿD–޹ª†’€ ß=GU¾N3Ñ~Töa0ÿm¿ðeÌ NÖ—Ê$Ü·noB×ø™ÑA€ÍZ]Úµíù´|•¹òøÚpCKá}Wæz_%Žp¤³vDíØ`O]«ë^Éä÷Á« „Ž9áK>U4;‘ºÌ†¢¨w¯AÉÌNYÅm\‡~a"ÔW›†ï v—RÇPüÓ9!27WQÉçlìûÖíëA¤Ú¡C”ÊO0N‚cŠùŠ5vdYyØ.´_×bÚ;ѼúY§Lå-ÂÇ$6ê®A®‰?0 q¦žÇv™#³‹ñÒÍ[u|6lxþ–”¹ZCžÕo‹?2S¢Ð¦6f –{0Wß6ƒ¥½…’©çÍ4ènM­‰‹æ Ps”q½cø¦sŒ8’(ѱW˜7'w–GÚØö[u ö«’¹€õŸj4áô£r<õ2³8™gãÛTOnCŠ2Ðz`¤ñ­Á:©HÞŠ.:s×§´yÅIz8q˜—Št&ƒÜí@ívþ\­@ÌØ?Ã…ÎYœbLµ¤H5Å72ýík·³¡AiKÁ‚ÊÓú!÷ÃgÎÕëH6›ê·s¦]Ʀ­‡‰âZA¹Å„ÝLóH£@Øô’·z–_ñ-Þ§-K¹zü¥ãe̓7u·óÏX&°—Ñç)7dÅRèB;À8Q¹9=ý¨’<‹e‘"ÝS\ H^L ÈÔÙQ~Þá'h‡,ÏÞpÑ{çTêÎݸÓ'ö/Dl/ÈÚmÆ%Ø,ÂÝû¾’h÷›½*K ítâPE,˜ Ëô¥šßðA,°ñŠ:ËßíºÝº*MÞÎÖ(25&ke2ÑßT¶É}r뀋OÔ]k×ëo:žbP4¤Y•¡ßxÊ IªAnv"Ú.5 °¾‡CŒp •¶0v¯8³(_5ßÕá) Øæem+¸æ±ð®útÊÚß÷ìùe²$N>öøž©á1÷ÞE¨ÇùrúþÆÃ© ƒ‹@±¸Â¸¼~J⬠ØcA-Gy¸o`†ó¦qÇ;l«C†K´²Ø#u½Ñ|íðK‘ƒUžéï~ '.të/&#GwðÞZ¦QÃØg^Ü)ÄÄÃÝ9§6¥öLø—î+5œ^°b|‹ýYCþe%¯# %ÀoÄœ€ßf§@öT$IÖÔ€9Â9ß—üóÐü F™(HFˆ^U(j¨º…|±—B·/\øyˆ''{çÕ2'ºO®ÆæÑ Ij•Âúiˆ.æÐ7Éž¤N|§¹ñž]F¾» Û}É^F7ŽŠ¯VD/.s¿Ñl÷/¹Ð_QÛ²‰ZØBˆ+UsÔ}L‡ÑH&ÇΡ*ÜUüéäÙÄÎ~l.F…úg fuƒÆÏ;$ü5ãùîhÁwïXfÂI5MÖº·²ŸÆäÐY E|(Ä” T$ ~ÓçÓïµa™ WQw„U¤¼Žï¢”ðæõq¼›•õw¸Ü„QÃÆEšyµR2VÊj‘^lÔ¦ò çQᢶšIî{¸ŽŒäk¼;z3}N!3°ï5ýk~îØ—jc{éÄÖ%¥ÀI_o¨ð#< ÛFKMÅô)_ôó0u˜Þù2¼ÿ)™Ê¦Pß]·%ÊÊù>Gáiò6*2ÃÅôÕò¯0¢Ù5ÿ],ö³§áÁáuäIñvc©mí¯]¼göGø¨r )« 8‡ˆ;-œZâJ­}G\–ÖAþ¤¯ÏWECì‚VÜ+]®º.”Wû(:åØn„ôK–¶‚¼‹óOà¥óÇ.÷_1L „Üò¥²j8äà"Õ(푟ïá á¡‹^éšœ5* PâC× …]Îô­EìwàÄàÐF„ô_P¨„b>×Ô0ÊÀÄ, WdÐí COŒ–ÆU¬iQ×Ö–vúo,c-$ú§ã¨1GœDù. SUYñ¼ìlêl Gì– /^Hã¯,Y1·êÐè‘r¢&ø¦)Öu NòånéT§R­ŒuèR $gwºBÌ'|ìiäÄWÄœƒëÂz¼ïì¥è<‹kÄöv|+pé-"{™ß»meEäIË¡)fÔRfC±ø¿z…Ú…}Éñ㟶/€|Ÿ‹Èb•‘vìþ~*%$ó«8ËŽÚ+†$ÓkiÓ·ñÑd{ïµ0iš¢n6_bWfåP|L`äOÕÖõ>üR!Lz¥\¥ý<ÄŽLÙ/ÚT±–f+´|œæ˜o^YýB ®&[gtƒ“»’ Ž5ÓלÒçäÏè¹crírJE·è‡QÔÊ[»4›"¿,J³Ó®ä²±^y³uåó$s\й‰¾¸jŒ;p!÷6¬-Óƒ¼v‘S®Ê ßçù1Þ;y¨ÉW2"OóK}å‰ë9ô`ëÕ¼[žìè}Ì!ÑÌÞŠ·Üî6¤G¸¶pišÅkçï/nmS ¤™É lÚ¾¬“>­Á7ëÇq7üЧTñ™e„ÒßšN"¾J(䔀OÔÙ¯}6‡AnÏZðÑágýD‹÷4ïgñ¦¢2)µá!Xy_Ùà¥V’pŽŸ¨B|»Ù–•g¢4O»âŽ©ÌÑÓ»¨c¨4ñ|kñÞ¶˜üdïÁR†½ŸqÜbÊwÏqb„«âžÒw}t­Q67.Àt]’½v7±È×¾¢4ô@ÇÑaE¢…ÖŒ¾¸ ~ñúñÆ‹Y‹_†ÍTû}Ïߘ°Y7<eX©7W¹fsr>ïÈRöö6e¹gòÕ2I¯f(µ( ¢}Äz>§…ôŒËjŽC —˜¹ãQŠ†Ì‹ØnÍ„t[…µù•óY‚íbâwHZ ûïÅ.ü¢¸ Ÿ«¥<æá$ÃÌ$hÜÑò³ÙØ·°•w°Ð%t`üSËWË–˜¹VŸ Blªl2Õ(4Œ¯/)ÌvµÜÆGÚ¿£¬HLjcrôòN¶$`òø¦H>cQµÑîüÎuÿXbÎÀkö¦0¹oûÉ×÷m±ÅGñ·öZ­Õ¬Lô;ÔY_0\îCF°v¼í¶|¿IuzÑ@ãÿc9Tä–|÷ áÍvM•zˆ¥…p³ÊËfê÷çä_Âòä·†÷d,ßùÆ’—~Ô«OMŽ˜û"¿í,ì ˆÔü+'_Ê{þðˆúàÑÛŠë±ÉƵí õt"cIèŠïÎÁ|Þ–…)QªH¸ä¸ùE·IrhÑk~òºAb]a½â —äNƒ>íDnŸÑ9ú|¯P6G<ʺPŽà’ö‹¡‰”(À±¨I…Œvl8˜4¼ Mh¤žr£\Gëªû4*3¸íQ§tÄ’áD§Êý»ÝÍg °×ÈØ’¢Œkp8ýfj5ŸÞ%¯žï0w;ñºy‘u6…Ò÷¡ç£ÞÉñnÑÕEoî\2×ãšè­w\Y•ú>6ôì<‰ckqÚhÖÕsó¿ŒÒ‰_ÛaÞÿÈ2ä‚ìu´5ÞF]F±ðÇ2ÿôÜ'±¯6=²]Ѭ]5<ãOt9|·­#‘ñ1°¡óÝËßœBÿ‹­±ZRX³ÓÁÕ%W‡Ù£Q¢ êdbb% ó730Ni½Ôô‰ ®çqE¥„l›ªA6ŠÎ×:cYÃiýJ‹%# ÕQ‚©Àâ}·ç*{æ”(P!ë\?ìâÏSäã!Ÿ&&ÉgÕ¯w”yjâQ3@ ‰` þ„Æ¡d™«Ò”Ø+Ï÷Ôn-±”}ìiJërúp¬Ò4³.´$~ôôÉý>0פý¤Ã•‚:€y ;ÙW\ïès½™À»2Áöª`ÏÛãÙ¤óÞà _Æ??­½”k{a˜b ª •¢ÞŠlš}Ö Î…ÔPÍü*­f,{^Â\pu¨¨!Þ¹æ+¿'®6g¦•©ìïÒ9’x¸_L< ±’¯”ÕúÚSéÛHÞ 0yéSc{.ëv(öøÕØLã—•&z·ÿ‹MÆQïWµ?Ä_åúÖ&^0 _"U£Ç0¶<Ÿù>Ö×Ù¦›ŒK©8»½©•ò^Zš ‚óOµ|¼Ø*yGñ5RÒˆYñ—Ô%ì›¶^õ‘Åp&fåïœiÐØïŸ7`{°R,Þ¯ð¤™òÐøƒøÏ”ô¶l9DA½ýÀþ`çj-TG¦ &—nÞ¤YšØhz3e %½Û©0JûÖ&Ì YÁtÛÚÏÄTm6Ëu™%I5ã4ucû>œ9”ëóO”"ܗÆOI‡j½„óã÷7ŸyäF«†Ø¿lºÁ:VÝËž–ÕjÑžD9u_ñ+÷l²Ck‹sS5r•º÷±ŽQc‰‰Y¢¼´/~x>­yAÝ¥ôѢʶ1sŠÚ•=¯ºL6r¸‡“òdÝyÕ³÷+h. <¼¶AÖçQ…#Qùsª”# rgÿt;÷zü¸'\Ÿe 4|âàÎ)òåӢǢÓÚ^$—7qbÈH#¿ÇH¯©öXë3Zø­½õD14uô0e•ÝB Ü¥”‘áA·a^[#[ožã4>|-·<"NîjÅÃùSN€ÁÚïhƒJ¡åeÀÑØÅåv•ƒ±“Fû~Fimlaò#!‰±Õ¢òÌ5Dí~©x¥éXÂk0 Ê£Ë” pB„&©0 ²+†%“°Ð+f,Nì@¤9Q;#élp):®KØâÖֱش^žÎ¿øUþøšªÄͶ.Á,Ô?M5ŽwêçŠÎ îž“žA´r]k‘ÅÏ3†Å·©ÒÑÄÀQç|=UÓþ,/:º.4²Å‹p~úòŠïk¨×2>0·ÔFÒ/ÔÎO%ǨfíCnMÏòïËM¥äöæ·­ù²[÷>àÉw½T%r»eÏúVÚüp1 oÃÄKYeÞÝ0eò㜬!¶K½ÄçBrm+­+’Ëmr†“…ÇgæûÜû/õ‡hê/ ¬>Niz PáÀÍÃ…Áívi@5 F‘DMÙÁR»…˜Ô"Œ©RˆÔiGÞÔ½ã•}—Åk¥4pÄô¶/ˆ­EiÑ*ΈÃêqÄËJíÁ*ê‚ÝØ× \°¿L>(Sæ€ãÆóoA3ècx§Z€ãÕ*æ§ïô÷/šMƒ4®eï]‹l)UžgÓP¿ÀtÙöé¯né{´¨è}=hLZÜ=«þû©ÍÆ‘×3Úhâ+ë(Ó}Ì!÷·­¾#aÑüQŠñòY2ñ‘Û-‰×®_ÞöH^ꜗ¹Þö2Ê_V¸¸³SE3PH ÒcQ²·!¹º QŒh£Zû>I·¢ÎÁÉØø_}´‚b÷åÒÄFðzY’ŒÂ”w’•,øfÙùÁO>ÌÉÍn'zJ2Þl¸'¿ù1}ïè\d#´ïŒ{§ãß é ߦRÄAzšK„¸àÛÔuá]·h,{õê$µSƒw‘É …ü&×°'«HÅN&„âñp5wwslßµU\Pÿ B†¡FÑ»Ü[·y;Hœ²ØÒC‡‘Â¥2¿Ÿ`…rŒ¶)ø)4„)šÖà:ˆØSÁ®~ð/¦X%£:ÇFóìT@l ¶‰ìÃrk2òqMø–ß‚óÊ‹}òÎâEdË–Y±Ñ÷v”vžÌ’¤à{^¿m-è¡´è›é߆¬ö»o'È÷¤3[7Æv¿CÁ+er68ˆhÃ2¹ìŽ^ÇÆŠÇ¢GöÀÖåûÖfŒÁHŒ] ¡mz¢ q0 w¥¢¢WagéVË“sa¶R (™TL «$™.ë³ÊÝ_ ¦Ja=9ÆžzÔš'tVŸÞ^d§EI¬Ù(}åv ÑV`t†xýÑêZQ‚=^?KŸ'÷49i‹ŒìÈ… ïs\†À¯X•òìèÔô7«ƒ.Ä¡wÉ&1„AÅìx;_P»/•ÉÖtŽD<”C\Ù+esyíÆˆ‚¶æͨ'Œ¥·ÌŽ Æ`ñåsüÿ¯1êù endstream endobj 242 0 obj << /Type /FontDescriptor /FontName /EUHWPA+CMTI12 /Flags 4 /FontBBox [-36 -251 1103 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 63 /XHeight 431 /CharSet (/R/S/a/d/e/h/o/r/t) /FontFile 241 0 R >> endobj 243 0 obj << /Length1 2699 /Length2 19349 /Length3 0 /Length 20888 /Filter /FlateDecode >> stream xÚŒ÷PØÚŠbÁ 4XãîîÜÝ‚4и6î hpwww×àîA"8ÜΜ9“9ÿ{U÷UÐë³½>Û»¡"SQg3s0I9Ø»0±1³ò$54ØX¬¬̬¬ìÈTTV.¶ ÿÊ‘©´@`g+{þYH€A@ˆìÐb¨è`sµ°qظùÙxøYY쬬|ÿ5tóÞݬ̊Ì9{32•„ƒ£'ØÊÂÒrÎ?hMél||<Œ¹Äì@`+S =@èb ²ƒœh ´¨;˜Z\<ÿ'­ ¥‹‹#? ‹»»;3ÐΙÙl!LÇp·r±¨œA`7àwÊ% èïÔ˜‘©–VÎÿQ¨;˜»¸Á D`ke ²w†¸¸Ú›ÀÈéuY€²#Èþ?Æ ÿ1`ü]3Û?áþöþÈÊþ/g ©©ƒ#ÐÞÓÊÞ`ne (K)0»x¸0€öf¿ ¶Î ÐÊh1ø‹: %¦ B2ü;?gS°•£‹3³³•íïY~‡”YÒÞLÂÁÎdïâŒü›ß;+0ÈRwO–¿›kcïànïý_dneofþ; 3WGM{+'W컿m "ä?2 €‹•••—ƒr€mkDkOPíxðy4ŠS›Ýï@^™Áž.<k"F"bÒ=ðyròÑ ´mƒî‘£Êurå}­’ÿæÖ}PÚ£a¨|}"ti_õ †[å±|Ž)Z3ê}`ÉUžIÖ">9¼ 1"=Ö¥úÂÏ_óX9Ó/¤rq ȾgÑEÞz;ì1w‹^›•ìν”zøÄ°?±&f©½Å’åð–½K‹£¶…–³Y阡¶'†H}Æ{ÈÎùõd±ðXmÁ«|Ò”¾ ,:¨H™ûêÆŽôõާ¯—ñÌÝÝ¥¤ó•[‹ FÂnÂÁ fŠn±JžÞ_Vá~êžþ”?=¯ŸÖ÷Ó7ßEBÞÅÙhß|÷æä‹­Oô〷קÐ:£Œ²Î{ÀzúÌqÞãÀC½k¸Bò›ëkd„¤4tŒ7…éÍþ6ûÀzHWç§ä²kig×çÇõOâ²Å_ò"Ô¸e¹<Žª]Ñœ¬¦Ð2i ‹œ—®úghîº]ÉéÙûYìú.3s£cÉkQ™"–?Ò"ZM2¿<Ó¯ÃP › GPT> ~ÈøÈˆA”{UFSæ£9{1\veŽWñæ]S¡Ë-Æ‚YJI®PeF&×ä÷NÂæÂoÖ<}T§V¢/)¸»oF0é gÃÇ5X fœÂßjnÌH×Ý|jcKt‘œškÙÌE›ÍÀc#(¨—2TIfÊJʺî/v A0Ì${ˆ‚¡g³p¿9dïÍãd)ÎÍiåè­Ø}_Ëãµô:™e#:¦ûØÂ¼“vù=0RÒ#H—¦}¤üæ„+\ÊÔ_ÈÞº›}·k~Éûè“;jôãíÄG€IެAXfDŸgk=ÌÄW4ó¥¼²“È„ý“«â‡Rs‹3ªǼA«+ReZï²ØÅúñ×îÏêê  Þw/W㳄» ìÓS½¾$7RUâ‹¥óÑíqço á‚ûR¾éçÀ£œ®¾Ð$}ª } ­ì=+•úqø%C{$ðávZ€k3³PÅNla„!WkyÌks¬ >×4 ߘÃPã5rŽŠ2õÛÚÚ½¾“Ê8ƒ5µŒr‰" 8î'>Šbç_D>‹ŸRn|¦;¯ç/¡Õ¦9`„ ƒz’.G%`ÇOhä…&-âêZÀ¡‡ˆ3ÚdÁ–RcøOUH’g¸^u¬êîÜ—_cΓ@5Ò&UÍÓÀۥݣÈÓ ËïΣÑç`fJî¨(1ò+yG¨sH³«½å~Ÿ³#Ât¹hˆ«M°~ôÓ_ —ÙÉ2uàÕ.aÎõƒm°¼Ô}bU©ZÓq²Ä¸ªêÇnº"_üW#l9‹9w²ÝÔ‰NçÁÀ1¹D¨ªw½°&A£üÚNdþVÃyî Æ/G…epQ4ûýÆ;–†ðý¨±²ö2A¶_›ó1»&ã¯cnr±6-í¦üZÞД’8†o¿¦‚«Ðek;øUñ1W³g¶²”åLùþ•2•1õ‘w-¾ü?³Ä™Õ¤<_~‡ÌÓ·]ÉÇN#.’ðýØÜÕöLjôAÆÙ%f»¶\4&ã&›NŒÉ2¿˜Ê µG¼C_””ìoô¥¯_!8¹N’´|®[RL„éþÑgñp¼`Æ ÃŒàpîG?Ø•Œõ¥½}¬„íx;Þ„Ìö­Þ×=@êŒ6ùÂ[ì팳â±±5»iÜ—Ãë: «Ôpn­„öa­Ç-GZçqEÌú™Ü÷`.¡“aê ݼ3+’U÷ï¡ã>x¥øY¡n5‘* ¯=)¸º­ècc©à]9e²ÞŠg¯á¼Ï’Ìt¼b™.Æ )S'«'‰ˆÕUhÁ^ØÆd>ÏþU@úêI³CM”OptÌ.²D–NqËÏá$ô¬°¹NßÚëj„C”p>k" q “ŽÄîð ð)»4ësøD_rYa¿·9¯™æ|¤Ë•"½:WÌ®#âæÒ&’ÌîÚÒ{‘ðŠÄll䛼øÌ-,¡m}*¨; æð_+Žé (}$îq£Øh>ãÑ<3=öŸhF¨€¢iÁ³oUBŸI›b‹J?,ÖÞ®xF(]}ÑÚ@-KUr…gà{YCçäÁŒô”F§íÞÞF+ Dëï ¯òÛ}í Üo”èSiª÷Lä%^x,Ú¢ FºÙ}·# ,y$|:&ŸÂI‚~EÐíýpñ-s ïã±F±…x£-Ü›Õh>Í'©¹r,}Gƒ~”µWcŽS–Q+}¹S½ñ¥W¡š0¼Ó‹ ^y‡[Ý ¡" ÷0 xü$ò‘Õ?ïó´_¨&tC~ÂQ®„ñ㙌ò9î5Jš¥‹O‘,É©ÑBsë3iПs’eFÏzêBÓ(6=Ñ¢T!Öœ)¾©P£6 Ð 7'Š"‡ݤ<ë”PÇ«uJ~>E1(eW8 „â†C½±¤ã¥žÀab˜ÿJN Ãkg oºtÁhQŠ„Õa…öêbÛ¦ä¦Äiñ}ÔÜf³Þ·Úåá>|¢ìæ¬A×66Ëöݦò4\UÚø7¯…®|‰›$ÇKi÷ÔÇÆ'Y™zjbضèPÌp#ƒ)¾ÉÂO t¨àau6]µáªA÷<'=%µËÂ2&’ˆdd%þÚ3Ï™žy\æõÙX—žÎÞÚ¼x/Ð.ƒŠl?üÞ”=|»ÆƒTg ;—L„ç f[ò>® ÉÀ®UÛìM’EH„zHß+=4 õÁ0¶mI—rÿî ÖšéþbÈà™r·ÛO/×ÂO¢&ÁH‘CHV¦Ã›Æàu,jpï!ÚkÙ³x¬X‚ص6#aLÄ@46õu³W? ð÷u)¿}0¦+ì¯ú9;ˆ¿Ìÿ*÷[O¦Ê­–ÁŒ”lµ†Çe†µ…I¶L‚"3-?rßîEE&sÔ L U¡£SOùa\ÿJaÃc/Æ5oÃøISpÆ.·CuKhSÛϼ‘­J™ ‰§ée@’²ÀŒÓn ï%¶gk‹x¸ƒ-À[ȼ·¹’’ u;äKÿ3˜êŽ>ò5Ö}ù½‹™s>n†´’—isGzÉC—´ß¤ÿJk6pÂI¼`VA„±g`âìEÓ3¿? Ôk,OæÄg@~‚)ærÝ’#Ѹ¾¯J Çæ-ÕýÒ‚kßúffÚû±Ž)½óö1ÛåeÎWåñ,Ñe'¿DΣ!‰wyd^hý 3Þ{ï1c×Í}œpBÒ¦’TÇm}á±xúß/‚íƒB•äH›Nž#§¯Óžr¥ªl*ëQ^]w+[÷¤t½­Þ^;`hDн]œq.S\ÔJ‰¤+¿MMþÞ·ƒP.w¥«u5žÁÛxÖËÖ÷oF!§À†+òF±qDä ùP†IÉ„jßk¢‹î6sÓ–™ùpcW Š …­_ôEJ—nü´P úþ•Á©²hxa€×¢ŒóNÐÃÏ œá–ëÝöÈ -¢M׋¯þ‰Oy‘Kß0|i8m“f÷EïjzŒ”e·Ûx2¦Y¼?Âyy2™'ñ=ÐÌ óº&Hï±xä¶g—®nC–ç{oÕ³ÊöhrÞzy´š4͛ڨ˜ ú B­ ³æÕõÜOzîÉÎW‘… i·Fª•SÎ3‘•ž±ä‰CžíRK¦Âóö5¤}~TDr×¼É<ãLYYdÌܱ*Ó5Þn£­è2D;ýPŒ+¤oÉòk'ìõÚhÜò Ô<˜ MÑ-%ÌygÐ>¾mçš:Åýà«|L ɬaÒ¤‡¹Øæ—ŽiÄ¡•ßø ¾‘Sí˜<–·°~¦éäòËë×he¡r)1Ú}Ô=8m>Úz´w!'32 H£¢aS%Ù÷¯R‡¹¢-7Ñ™Þ'DÜ}U 1YÀéc¬±P¶§áÅ})¯ª&Ã{+¹J#@üü ¶š9æOCð¨7 °=$*¯üÅsGž7e 1'šL®J˜èî8e“°h©ÃvÓ @ó³tæU£a±ºà4íÅwÿû>.é^”/†Ñ'à”! !©’Y ƒm…¹7‰w­‘XKy7?ú“9|òaNP¹eð¶KšGG^­Òìùð¼&»Èµ…Ä7lÕÀ l Gd_]Yyý »¡pÆîù±Ô 5• R+Ám èý„ÂOh;§Æá.SÊáñ*Ãé¶±¿4¼éß³j L’Pˆ¯íç*å¢Ö‹¼bMLq$x9V¸lLÔi¬C[Ûº{—T‚ßb;9—E î̺ËSúÝj¸°`NÚ3¹@8ƒïÌÕZL…T¬`^œ+Öuâx‰ŸÓfìì"Ò×$«jN 2e|ªÔúkëÂZ?GzzJ.oljKök{;†ÑËm_ÿ¬'¼Kیܔ^‡¨s¿Æ½‹8¸~ëë!ã€@×Õ°ÀH…ƒ_ƒ¯óÅÕÈÓ¦N……çTLØãd,Xäw,<_ê1¸$²å±Ó‰-½öÞ.½½Ø3 ^®Í«(õR¡W/KQ_VÛ7£'=´U:Ç[‰5yc=V† ãÞåj4T‹OĺÏQdÔc7 Ër´í¯zõ£ÁÕüÇn>ò,’\~Ç®Èè'ëò«4:䱘Óôùz†ìæ<1¬Ï³Ä3àüÝŽ2nj™™D ¾%;ð+Ÿp=Öwé;*þ°k9ðs³àm……´aÿ`cƒ_‡Ê1¼a€üîÖ^ߎî½î‡wã ä·­‰”Ø"æ-<$)kéÛ¾˜mñ:ã_ŽÂ93iv4>€|x~úåxÜòIuÇ/Á%’°]‘'.R­ö-¡ù”\0 ˆã?ðu¸Z™8O~• pG6ÕóiîÃ~E)1¢?Kb± º F™#¿z¨ßéxËá#ç%õE—ó—6Š:‘ÌXªÜ—’ìc:¿lªÌýLe‘«!œ5÷°í¶Ï’U\"äÙÚû>‹Õ²Üߢau`hÞ›EÉßýpöe"ðV£s+wâ‚ ³ƒcÅ᥆ţ‘áÄgâCâwz/xÌþÐËC`"æû!0'ím‘‚΂2÷á  Œ1?éôÂULcOc\)I;4ίE”,4åOiƤ— EcO_é“âL¼1:ÓøW[ß“Ó_x¾È£ñŠuÅØB2o Â8ü$™ÆmZt wC–o Q™dÕ,'î¼V4Ìv„ù²t‘ˆ&¨nÉ£ú}Þi `@"{ݽ#h'ÝæíiÁÊ'\ÒHNÂv\|þ¾ 4U)ÛŒªîŒ9*.«Ñµ¸àvµ :jÊ#ERë°q³¥ô©²º9cur¼ìBVõ€š;ìÉÜ«†7¤¹y]f _‚ÂW¯8cK?O€ÊLnRÛE*´hj€—8$¨ýô_&q‘>çAwøE*îKHüÈÿXø“uŽœNèœ1¥.Q}#Ô?ç9†ú ¿ð°`(HÆTÌFYË¥¸¥ˆ‰)Ë$üŒ»˜(û Š-ÌŒ"KŽïušl,ìŠ:ÀôEÌv³)}‡8&4CiΆ”¶½Y¨¢ï´š®kš‰ lKP•[ú¡©ˆ‘…¢ —žÃ Ã&öW¢Òœ†à9óÜPX?¼ísé~á…Ç•¦ÓÉpÆŒÜÊÔ= ›QIÞ7-"°©9+ÆÀp%cGøôéÝcvv+ØÒ{—q$ZýAÑ=‰âm( ˜{oQç'Zˆv+#L§Dd”2guKåŒÄkvH,Kœ®Žß𢒠Œ2_O&ì¡ìQP¼©ü|q˜aÒ“X¬(Oô6qÏ=°ŸÕ qh%t_´ ¾æˆï[Œö‰Sëv"Á¼¬ ¹/C?€V¿_r]Òz?ˆ°n`µ¤a1­o´­×dtfJT]ðœÈUXSJ£Ä뎮N…À Éï…1FÛ:_~Qæÿ%Xì+0­‹cÜ`‡zS75 о¾¸(#7qÞ±rf|«g?FˆCP¦ÒëÑÚH-‹…ŸžörZk%D‹>ž’{äŤï H§<¹^‚›5hÌ;”µu«öTù±úh5¯Oä‚Ùî5ëþU`ÖÊ´ˆ/¹æXU÷ Ë;+îõb–n¥§ ŽsÛ% %˜!Ã%ý)쀇.„nÛŽ:RA{BumO'®ªÁâW@K`èò÷¸É¸fræðÞÎs@8†dÆý.2z-žâد ~¢šŸÖoí2RaQËÉšhŠáz°9Ú<° õÁ€o_+à¾}Ì%8µÿ´i˜æÜ>ÊŸc˜¢è=À'™0Ô‚=K3Á;»)¾ç"¸¦MqÚ í¼ŽÄïÛxàg0­$ö4ëw3ò ÕÑkó2;;Áá4N5Ïê Úr¹¿ÆlÚ÷{§*EÐ’Û–m– ÕY«LùGÉ`rÌý6#‰¾ˆ”)Ñ~ª÷)–QNÇ´¬ã <Ö£Hô½’‚½~`0­9êw*iÂ#9ä"”™>Í3²¶UÉO²½éËz4‹óZ[kÝ]ŠŽðùÀƒ¡sJ‘ø›()þf²2 o˜ÉÖ]ÍvC˜‡çœ·ÙYï^+@ži î 2 ê›/Í&¦)UhPZŒŽÐs¦‰äyBŸí§=:LU±qaеiD×QGଽ09õ[}\ðÇô0ÓcÌ©qŠê0—’ôzÊñ¨‰8¿ÓÄœwÈPßj4JÁøË’Ž ¸Yl„¦ùÛLs6÷»º!—ºçÃØ^e™"Ù}ö1ð5ßþÊ&Å©xÅç¿8*þ¡YAéRS{33¾æÕüñœnm§J‰‚jdviÁDZ/:Ç=Ä0Ç/N_¦ç{‡j7>² ¬ä9Ü¢ÚéS"”ïa¶·h6‰ó×H‚srBâ„»ieíP;q™:œh•¦ÂÄæ¯ŒÅªß·5¹ýÈõYùæ5?JUþdo †ÍÓö !þQÔÔU·è/¦,o>MN~- Ì~xÛøA6b‹æSŒS`N}Ô§/Kš¼Ð‘ÅU2kwvïû5¨ߤOiZEÈžEž^1À( ²S½”xíQ‡áΜ…Ý•¨ú¢NŠßÄ×dEm"÷%«ó¯-Wlz?výlÈè£%M»H€#‚áÕ²NíÛ ý‡³ZÓ'ôq\A¬õ:‚2?ƒ£BdÆÞ÷ìöØå«Yoßñ`B±`‘»ùk©E{(SQýòªïÅGP-¶³GŸ¾¾ç•¡Cj…µdÞ ÞHf¥±×´î­uÞ(:6å„Aσ©òkò DÒ…¢²›ß3Þ8îPHü`ôÚ=:‰Zú†üs5¾Mëͱ}¾^‘VÔ1Áp4âåY¨³¡ô.ןã*÷z…扲é~ÂsÕAÿ:= ù’ÊÿÅT³ñõâóÇ “*^¦›b 㘓¥Èšú†ö/ã¡ Ú©výÚ}x ý\ñŽ–0Í7¦HI—þM*T™çã1uÑ2«–Úì­Û•~ ÅP˜Ý|KèB¨4›ÅVósȈÜÊôzcÈrÂb‘y\ÕfE”Ÿ¶»BZ`9U™çä<*ï„Bûr×lŠ ööd.3Ãó ß»—«ù§t½ü×¾.‘é:j£µö*HÕ œhV{–Íu}"ŽÏAiߨSC.QŽ ÖY”l&Κõ!V„Eó!ç¦}•¼° D­‹Õ/Ùߢ¹UCsbÁP¡’•K×̼¿ŠßJ¡ (cQ¦³÷¶Îžó& Ó¹"&3­)ÇóÓ›Œã(~µ]œÃG«?Ù<&Ïy‹Å‘8êfužÍ½Xï% –‚L”cHÈ-Þä˜\5Sá7”ÎDú’»SàOIzÒXÎ϶n ÈÁ‚Ýô`~I†S2§w rHKœ@sLBÿ"”3È[ç½ÿ¹~O˜Ÿ³ý[t—è˜ÓÕl}btà$<ÆÉ wfªˆ,‚ËÂaywE/y¶Óx¬­€}²:{“¤Ÿ½ 6±Ž¥@Ï&–Õ¾6N8x»‚µßæÒ g‹»í©‚¾¹¯«ºç³´“mÑX¯d8Ümì[÷œn%—óüÝróÙ²³¼V˜ …ª·«‘a--ùÏÓ+µTý“ù¾´ûCñªÚÍåË€ìq òñ³|ñ²‹£I@]•X)Ç/£¾ ÄÖ£>/§÷"?æ³\ìFë¾50™GñÁݨ³0gT*<$~„šê¡a]ÁzbÊlºÕTf%¥@iFØÖÖ÷ØçԂʰ~› D:¢÷¢ãã}‡F&ïèå´ÝÌÊu4ä•õ^!‚¬UGCu‰™§4 á ZíûlAŠhì×k˜äëF㈊ùsPù©¶íyMüÁpO”1&e܆Eí¯}Ÿ*Íô¥ äSì¨~Öè|}UwYtÿ‡¨ïAóVô.Œ¦EðìgQó‚‚e•ÐrrO6úeQ"%é _÷~×µ¯ºÕˆó§Dæƒó‹z™ Fò±dka…žì'pt¥qš“gç—,ã –G¡„º¶b®;²TÌŠà M67½¾ÀÛ6ÿ bf|îQc\¥‘¸1§—f\6R½3?ãT³ªl;¬0#3õ.?âÇß™ñÊ*W0jßìþ*©²uÅ,®÷zåÌpùÕwRPºúv { ñ¾ìËi¬@»r;%:Kò´»5“¹'8¾Ò‘bb •„ù•S»ó#:v éÐlÒ¶Þ(u˜!¬&IÃÂi³ƒÇîç–©Í_$“ïÏù¡ßx.í/Ô[Ñå²"c´'…±öº-Tßl8P>ùâß$ z¼¯^j÷g‹Vn -‡"5»Ë8w‹ éøH1”‚Ó7v;Ó ŠN¿ûzvèXX¢Z¡Qî†E[Ùœ•S>ÆÅ„/„êZý#YÊFÀº®Ï¥Ùâ*DíT#² ‘|˜hùh“àñªÙ@ ~ºb˜(¹àþ¹MJfH„³”"(3úEŠâábå’¾\ÛÝ»dj»¿¸¡…Pþ!n-»‰a³ ¶Wª”ù]BÔy핪¨•”~}Bš´/!1r™g£cÙžhqê,~¼—ÎSÉÔw#Ú¦_|ë6Š *!®Ù/ÔC¾²ŽÊMó8Š„CßáÃK1­ Iλœ_­Ç’ºîØ.i>n2‘¯§HØlC»ZÑÐR=q·ÓÓÎCœ¸A´µ1y{Éê0Á¸W_±ž¤û*Säí þU)œÏ½bé(Œ¨c|{¡™ÿ\…m§‰†Øü„åˆ#0þRȲþÏKl>\ Š»¯‚i‡ iHÔ[U/éÞï‹G,Æ.s#Ú”¥ší2ÄLò+¬Îºâ½ŸZèK=C*?ô^/uÔ¸˜,ˆØð‰2OÁ•¤‡†žöÒ>27,Þ/ÅæcCíP›Öj ‡•ñtõV[ï™ÊR;¡«ð$<bÁÇö?V‰‰ÌÌrÛø”Šƒ½ÞKÓºÚ—î0,°Ó|rÍ7úö5ê€'L?BX`ÍB‹È'¤/@Æ©äüYL¦ïd8&&-Gn3ª.“FYð«•xí‡ÀÐ¥4*Ò‚§É¡wDWTòYÂ]¸ý»ƒ*ŽîÑ ‹¤èuU†pákGZ—­šÞã”Nuº¸’„Õæ8¡*gß"`ôã{!‘ò²£Ã^r´å=npx—›×üE·t¶Œp,ü¸šîÈ.\x?¡„Ñ`p´ç…KâÔL§§Î$w¬¼°É‹ÓzRGÌÈë8~3=r"&lOr²¡+G~!LESɪ¯ó€=ÙïîJó;‡2Ê (&A8ÖpiÄct²×m‚œš \¾5&·$0žs6NæOÑ=è—®…=LûÕ;&ßF|Ï2S;*Å"(=<=›;à”$. 9u•òˆŽY#Q^vùÊwÆ¿† Ý©0Ü`xðÍ“þíÛ-9®_H9Áå^µANœúÈ#g O“ø˜}‘•Êf\Á‡ùx*ØŠWkB6ð2?€Z†x²¬[ÃòbôÞ,7ØQDÑ£­ZoÊj¦iQg¦w¨–J€ó™ÇæËÃ=DLÞÃŠÎÆD[ŸHsûTgT&µÅ9~ï´´7u:ÀR)þN6ÃØcÍ_°•]ô†H:[aÙÕZÆòÔÇëNy"C“’|ØíÍd™Ìp¤È©ùƒE?UØã#“Ìm¿ßKª³ŸQÇ=A £øLvÌá%9‹ÜG´Ã¤þŠÙé·Í…Ó/£ÊOÔMIœøññß·f¦)·êé¼à³æçhi*® Ì•Pà¶OýYåù>(ÃŒ”ÚsFVíú£ÚÂ-µ|Qy Èêá+ŽÎ™æ§ƒÙ›‚gëòa9" ›Ð&¹Â×tžcò Þ_5ÜÎóñ2Ž˜ ±w\/G¬N#&!§Ph­•<­Gûc§ÿ-`’¿€ß¿YQ©ëÛe¨ÓmÍ¿ÔH4Ý& ¬ÒŒµKèa—…$ÅÍ¥îµQˆBªñ]£€ccdÆf!…I5! 0|ež8¸¯=C]][¯VP÷u6@³˜{uê©®ÁÛVòÅ ;.R±?þÕ¥0IA‘K…ºîeY^‚6÷NtÖ‰ ZçÍ@Lyîlõ8û ±÷zc&è°]½Aî-3~*û½j=¹|ò¼ä¸éêIÔt—€R.µ5êÎJ°^¯ØØÞóz¤k†ít€âF×ÃæŒã÷~nŒoÃbcÜÔeñï#?3QçiÌ‘ñmìÖí;zÌŽß}cœ+1»xšˆÿÐxî+!›í‹[ñÃÀ7èYö'\ô§Z¯wÊËõ©zõ»'—‡ 8jú@µ"!©@ÏJhÝ àNr©—:ÄrԻ槗¤3¹#°HÝ;™Þ8h4­)pþÕ&ȯ}fÜùV¿(âi|šÿIönÚ+$Šƒ[w.«¢ä‰Ûì ÷ÏÞ‰kÊ/÷‚^oµ•†¯?Wõ©ir îžX¦ñÅŠÅiã]Þß2_‡.ç»_NùžûfÜÍç…ÆÖZK„ʘ—¢VŸl:l»ð*ZŸÎNz!ìä1_’0«Áì®3Œ|]MÛ ?Sûɲ3ưèfv;á_ÝÐÜ·%z†—ª´ÇU‚ÊŒ ñíÒJzo¤ T º’®Jß5×±¨/lË2UhŒÈçò¢Õw— ì¬y_ÝÁtL“ì3é|—eÂ$³ÄÞhg–ÑñÒ»TþBÓ*>»îù;{œX5dwˆß’OdüáùÄåÁ8 ÜsÞøN—€œ$ÙH¸E%´€âß:4„ç$;véÌ/^9P©ÏŽp‡ÏŽ+r34hö`B)·Aá%üBxÅ•mq¦4?•LÅe¹´cv堛͈–9è3ˆ4úxõ ÷0À«ÅÀÈYÿБ^r]¼ž<‡©ß[QÕ¥Òa“Ã,Ø 6Òú¿tÙz$¾Ùú›EúkTöVé-öH³ÃþóÉtÛ¥ï†ë –z“vklbŠ¿óŸ ©¬IïØßÇÂ3%º¨I¯¿/îãÁX_åJóÞcŠR ©‚3Þ¹jˆÙÞÏ ±7û!º+“M™©KeíqáöèZÐä:e˜ (²ÆÓŸzàòã© êe|÷èÍ¢a p™\ ~äya†ŽËÄÃÜd­Y ø°õÈ?´Vj¥ÀOÉ`=ž€À–ŽÒûq¥ôZÕ@ 9€Ú‰ê3 ×áû_ÓüõL"±cº?'œ{ Š·±ü¢ó¨×/Pðzˆ[‰‹ßúèÃVãØc‰Z¾‹ŽAÄ≼RŽ\ÿœ×G WˆÝ+ŽÎ3߆é¡Îa½{ÎÇÏ94ǶcZÍ7½c¤ÚX§†ÈðR;)¤iËät¦ÛŠwlÊ߬[ô¥˜·4½â‚T«„²cÝþ‡ñ‡Ò†Ôóï?a`OÒ'œrôd©ec}ê2/0êá~ó5[f€“3¸Ý ‡}¦O‘Ÿ—9K‹¦%³]B¡éÍrè¯ï6ßh¿p'« ï(,Íî¹ ½4DÙóWÞ¹¸_iÒað6†±NÅoX¥¾q‰í-Ó|”¯º«&¿ùU`—†µ Wƒ5’»z˜äàP­$kj‰‚˜€ƒÀ];fÿ}›ŸÒ”зäËvd H’à·7ñõ43ÞØÆŽk.·Ÿ"+·ê<:É[Ò˜«¡à×¢8æ«Ôù3ÉÀg\V·½ù|§¶d™ïö|òÈ¡{L£Ô\¢ÅLø)wÇ´<“Ü"ého'<-5˜ qïNЛ‹î;†¿wµ‰ß‚QàÖ¨Úõ­½øÖ„Mè^¿!†²x¹Z«Ý3F2:TÎbë& ´xÙ'as=¨J?BMûU»{ž¼óNŠM fm aŽJ`Sí>~Ë8ç¹ðzÏË?,Iq&JnJ$4>“zó3ëÖ”HQh2µpÔ­ÞݳÍÛ݆oúylAº¤=Å ½E‚ÃeÕ$Ê—öþÄoùêá-Qø8줡_{úÌœ{òÍ„D5¡‹Y¿¥+üÉŽ`“ìxž§)ü ÔWîm~tFz /)VÝç÷¤šèñ©.zÎB—p‰÷.Õx¢ &"Ó°¢Ž^1>Ò.˜|àÐVÙ‰9×טoªÖN˜ïÀ²u¸WHÖ„²DtV/@¸”€—ILR=‚ˆ Ê?©NÊLþ$ñо—ƒÌ7 ,Ò0,¤K#gÌÞ{ ,P¨ˆx—º~‘®çðÑÈô>ªtÌ0cR¸·f(qêaª™UÇy~Õ6?ï»ÿÈqYôûã„|]Þ³>T`ºXÝ'¶­îÜ ðQ›‡áyP)º²um;à e¿F¹¦iRpBƒXi~°ú^be´4± ò–ëuùb\ÔvxãOÚŸ£åY<\¯q(èYNêGx5®c,0…Ø‘{ÕÐ=[ÕhÕõB‹6<ÝÒ=]¢?$(˵ép÷fS¯âž,{VE‹Èp+ùÙ£}͕ͪkLDÉKËyåió^r'ÿa!)5TÓäÞî{@È’,m¶”޲£Ÿ¨8plKßi†¼c¨# ò#›ÊÕŒ.€Óo„·(¶Ÿ³ƒœò9#æBןÀÌ]À\ˆ“Y b‰Ý‡LŠ¹à§­lë\¼œ¨žãšˆã A» EÖV•=S—Yym˜²Àv‡é=Ýˬƒ)Ù¬Œ¹k¾+]!IÌ:G"¨ŽyêîÏH³NÍXbï4ÒÀ¢Y±3²“¾[íÆ©vômâ¶ ùŠYŒ„¾~±Y»À2vŸ}j˜Džá¯ê@^j}£7¨1ªú•ø•Îp[³xgEêãúA|­qº÷ƒFÎÑjú›®¼øXèQkW~ͽ®ë÷ß V×0ÏE”D<-¹H&|éŒÛþB™0èu&…™ø ‡˜ã@ãÃÂÕc,&ð†JZ³©å+/ÑBcèCÑ çªÕö⛢9‘±"–˜ÝÆd5ƒªdÎû÷Æ=TCñ7Ö5Á‹Ib3ý֕͘'I‚©Kp·èEÆThWk)¥ÁëïZ”gê¸F„¡1ÎÛ>á9Î…ºß3jíbøôjNÁ"”%«V1!™UqœÃ¨gìq+w—¸¿®° zÑ3ÝoúêÂ(Àk‚éâlY½EUí[P}!ÖåXÜ¢ì㨛36JÒºžùÝY…à­pÂò!¼ýM±ÇÂøÉAzR®öè(:µŽà“sÓ[g×L9Ì×ÛKó|®|dˆg∬½8ò’*?–»ù2QÖ¶Ç YòÏ„ Ô»G„lߊçL¨^gLǘ§™²*/°˜oy6M7n NàóHßkjÊW„>Xw)Yù ýÐÿðHàM™G•¿Æt-ÔIù‹¤“¬5èžØl(”£ µûºnZ4Ū õÛ°­õñ×+Û–ž¥n9[/A-w‡íä÷–77A?\ƒZà+…Â+¤©Ê«™›ÊÙ¹‹~ÚÚ±ÚØ¸ô¼•ü j-êüÖøö˜ßôÇJñåöU`m •‰CÝ$PiôÒ›tŸfÁÁ¹”Ân«æ›gZ™ðè]ö|ˆD=AÑ‘zšŠs#Ó·Zýç> ·±Þ§IÀF»7ÇÞ>gÑúœkc°B®×$7æîôº¶¸Eßù ujË1BøhYátõbÇ“ÌÚÆZ Ô$m<Ô_R££÷¦=¥O¦ë—ðÖ6eÎð ãòþ‚)¾ãpq€àÚ™äÚìd‚‚š‹×„"³¬’S¬ÆâÑfKëWKæ%t±üâræ­÷¯&/±Ì†­æÄ5–F\™áZ‰ž=¿xÅþ€¬x«²CGFAñ+’ï¾€ÝóºGéÀÏöæEÆæû&åQ¸WÞÒ¬èZÕ}¨ÄF`ú•Ëguu»‹~}Wã·éJ ÷à&:³š¿·…ò™m¾Uá1`eJô@ÿŒûnbCÔÒ|¸½+Î4A :Á¥˜ã‹Iæñ áåV"‡µp<§5B®Tþ)±81áIªÈŒ#‚ 6Ó£–&Nì©×¡‰*ƒõ#gèh#—D±Ÿ e2Ð\º÷Bí@M¿E1³›V)‘{’€ráÓ‹ÍL¸ë¹i—·Ú‹MÆ©™ð È›]bÐóÚ´ÛäÀM™¢b6úœí\ú{DwVsÒ¼³À³d‚-É“ÁØý#º“„€tS†!Ô±ÆSlWÄ«ݵó%"BÎ]z|ãÇPX^l0zXÔÊcån Þí—5tÓ`À öÕg`±a~ìU(ï{!ÕOó0ûŒ%Å»@.»QvéÊõnKR>;7Z‰Î_?­*Ô åƒ©Y_ã^MÂ/4ùìo&“±WØ™€râ`W¢ \BU¿eÞlm¾–~Pð¼Ê÷c±‡¾9Š—+`êí·L¢ê]zÔT1à´‘©5-Ì%‚vèe½¸Ï››2ç@}ꣶ\µ ò¥%Æ6}{÷É=Æ_/kqè“-¹æÖô¼³p›J:)äß¶rì¹° ”°Ï+KÛoñR­ö{kô@íâdÛ Rfk ‹ÞäŽ>/7"½n÷^£‚Çgï;C3“&Ï ÞÊeéãrP]~ð£< é›?Ù¨•f™æž¨ŸÇÁÊ^y^j™†ž²ÐŸãؼXxœ©3ˆÆÌ Á”>6î©ÑgSQRÄ›Ës¦VM&áòÕ6ª·CÙ~Ÿ‡†¦^§´ƒmÃU—›_éÁŇ%CDFåÈøÉ“Þk ƒ Æœò ûÙóÂÄY…v‹.žµŠ¢Á‰úvD*XfH¾¬Ýëž+Ê•·ñxD†:•D4gqê½^B¹‚?h‚›Ã²gœâ&w·Á¿¾HWl§¯=¥ Óþ@6r¾_~F~NzÚº«›…':aÎÚwßã6ß úšžŒóVÿèÔ¼–xƒë=¿£·Òpð€ƒ@ *j.—–5Θyö¼ü®Æ+ÿà@•¢fÐjZòw‚2°ËLa:E‘©«¼Ð–$ù³%7ñÜ®àè–‡kjWU³¹ª+@½¨‘M;uÛAƒ.¡¡¾WõÕɱL O?âG\YC™¯.^—§Y W þh`Å5ƒí1'2cð ¶êŠ)œIßüÛ™™Ã\‹UgËÖòc ºM9¿©ÑÅ; 6`àÙ]Z{ï‹£“ƒCÐ Qm!á5eθ/†ˆ¿ –na^h5JH#W„P½`NEo’ùòÎQ=!Q·=÷íá=ƒŒ¨ÐGSßÔw$0·ñ~âÓ—a-(%ÎeQ!À¯,¸×Cœs§ö0c¶n‘[–)½åpžâò:Fë…Õš”5rpÕýµ=\Û¬{ÓL}ÜG‹pV]-ÜV29ç¬SqlؘÀ”,Ê~öûe-˜‚›)vǶKYŸÏÊqŲ«¬7Æk>)vg%/˜é¹¡45Œƒ—È~™ƒoq1å˜Ì‚áY7åH&±ÑW&Ÿã¹³Ïåqt‹’"i˜²Ÿ±® ïË2œI´¥ W.9;8Öªá¯øz3Îĵ,íWŽnë•A¬ù÷ÙnÚ#ÅtǶitzŸj¬èHçtÜiÈv>Ý×ùŠÍ²}a "â/ètÓþˆ#º!bj9ò7o£h¬mwm"Ne°ÊX•o™©CQ}|þrŒf‘QrµöžŽÄáƒ÷ÜöÒÅ­c~ÔÛV<±{Ç΂óGFœÏ©¤`6qQ-0.Ï ”X?~×!Á Ÿ=ö£‘°M¼~E;º´ ÷åùž²]‚ÒÍ2Æb9”aP>a`ÏrwfÛé†X"ª~â8Y8Q¬.¢‡,?­ iÊhÝ}…§‹wç ÎÖÊØ=—Iœ=Ô ·WÓ„NWåg Ÿ%A÷ôoÏRž¥Á„LXtì;(rLWBBà:ø`ÐoïKšÿùEÆFá €÷îîßhñ¥rG¦ØA59IQ@øÑ®÷ 9×?_‹Feİ:.S/‡EŒ+á퇫…·‘—\õ,‘PÑ/Ï™ú‹!v—8µøÕØfë7óhâKïO~I@4EÄúìè"Ï­¾DÉýRYÄÇ”q¯ .Œùî;ŠÉ¦«o·Ø´Ö_Zƒ,t×?"°×X­åÍlÄ0ÊS­†”×òšÁ¹Ò"k¹ ;Ö]¤ ûò ½ÀÕžÞŒi =Òrþd–ޝ,o}±c*L?„‹òè,…¼Q?ÂøÔÀ¿Ë瀨¶è÷¬-.¢ë‘(|S?Á‹ Ç;Ø® ˜Ñþ~øª¹ÊyP¶cÖÕ?^¼È;_2.²ËFC­sú m2è÷Ñ9§rÓ‰öÉ÷›‡7b4~y•~ôLø¬|h k´Œ“¯çü¨ÿ®u—!•H¨²ô´\8…yFm§üt,öt\³h¤øÛy 5}ûLo¶ØQp”(%_žÛ®ËlÙ;é¼ûÏx’×*OÊeÇò½9?R}Ñä˜s^;ß Øça,UÏïu–Vå8RxØ@:õäðPYî™Äô°šZ²¼·Ž‡Ì'x}jCãQ=“»Ä$Û]Ý7ac "݂T“ÂÚ3‰4ú¡¦ÛçÀïç'?€x}â¡üó I(ÌøÌÞ§ð÷ÌÕaÜz¼8+¦Ýq¢Z©­1ô'r²ÈSX{çT¥ô×6Úc"dÃxŸm2Ì”×Lú¦”;ä&ýª‹'Í)T 3x6åeýé6ÉcÑçmC¿9Û`;Íž':pa¦A´±°2³¹úÁ’N²¹U‰=0`…Œ¤üA¬¦PérNTÛ?õ¦ƒ§«Ø:s[DíL¹ÌI t†vcwŽkiÅ!´­Pý'è€òØn\oa\ÍM]Ì*J lñ0Á“¾ûÍöF–hÑ7¬Yë8ú|â×BÂi|ÆÖnKoÒÑõ½X¿·Éôœ—$øË°Ñ¼É<}‹á¯ËÇÁ~dkôC—+¨ ;vZZM¼Ñqð­æc!Ï3R:ƒ}y{ »Ü’û ·jOÁšìÇ÷<‹ü*‹nT]M6ÝÉ{Ÿq}8º(e€Ê˜@d5QËÙ ¾ maÈGg ž|ÿi/[pܘ†z⫎ª¸ó¤@ctߤ^¿z'5»@hFGÀæXfuC DáÁÔï’#‰3BÆ¡!ÈeUÚ"p ‡aKSRxîH ‡_>@¦XÆGÄÕuAÄ_qwL_ñ¾/î¼z‹§IU¥Õ:V.J·Ÿ§¯h½>-ž¯­Š ƒ|¬¨Ç¤Ðå#j{Ÿ9ˆû!ôÂ\šÌîó¾Êd6eLé1y8ÎMÁLŽÇÚ«gdîZ &ØÈ ê>HÃ/ÑiÃÕÙ˜ó7üBã•&Ýq–#ÎdCgšÉY¼ T½ØäÞòÉ,%òAOy#DÁHܼZbÆC!Ϲ—I&+ëáðI(`«=pñ 1±§ÍG»ÚЧ¸<©n¿ç º"¹ww¬§íy ÊɾÿwÓƒF‹é³ÃjÒ7U$½‚bc«–µè`YLlE˼÷æŒÛ‹j²'fµ©ã¯ó³Ç5);úR2™in`èïøH¸NÝ6mµö´îë 4`dHPnÓ³x^1×J¥Žt3žü2ºrÏì5Ÿ;hÐ3uë³uì—mR6²²o)‘Ù×QIQ™=HPó#ö~ñ˜pÎÁx'zwjÝÙ¯UÈ&öÒpäų(Ð1R³npÆÜm]E:îB.ÿäþE]JE.°¸Pc)Ú¶¸mêe Ž@®Ý8?\ xO ZN²6EEfqšO{K“n¤b5ê$«n$˜®"ˆ)œƒåbr²çÕà@ÄS`;‡r¬šçÛmÏ2ülQGÃ~téú*šÁS˜åkf¸—åyzÅ”Yáq´ª¦NIWŽIzî™÷HY<#Vs‰t“ÿ:ÍÒiÚS ð—÷‡áÒÕéß·ÁdÔqÏx9ªt` ŒËqÌmlÞ}7`/ëA"춈 Ñ ;¯#¦Y8'““Œ˜ÒSºVÊÒ΀‹)x/Iý„ ‰ìãª×D ¦FöS¢œ¹H] ß4 Ü`•[¨à«·XN-R[‘QK¹©äƒ¸¡Éj¦Øw‰ñ±ÚB@6s*¿¬%¿ŒÄcNã<Ç\¹Ø‡îLÒQý¸ÝXÄúu0Pœ C4ו¥ˆX¹â0£®œ¤ùêëZQ-rEÜ_§ í͇5ý“ÿoV¬+}:7XBûÐT ~jÇ/ÏÕ~ 5>ƒ?ð^Ó©0íØ(Ui¼ðÀ°¹ú>—&°ö:À ­ÆIœ¡¿¯¨Oe¢:¾ƒ`9æaÄ 1§Æw¥¨Ü°ö³>ì½£‘\S­Š[è^Ë’KðùæP;ýé@ïpÈ=)£mSyu“‡n¹é»Âqa¸¢޳RÔ6Ï\5E&G\<ͨÌS«œR†uSÞÄ ïäsšË -O–Ì-´Û.Š{J´+e::·yóEˆÍ§,/T?l¶]S^“â{~gÝ)ŠíÔ>wl6˜(Éf&dšoMm굕G:èÎÍ˰F嘓NbI„ÀùI¡ÒŒÿ¶ÎùEøxã转Œ( ™›$íCëôBÝ&÷!uNWÞwýÚ´ÒðfHÙg`3µlgdÄÛ$lDDddtæÌþôÍÁZÁƉu³o¤§e±LˈÀÄMªêÈ¡R–'ð¢2·Y룾Œ4§ã†¯ë&תÃ,kªŠZcneµˬ>»š“ë™bEJ΅¢÷º³?Ô&ñôÀ”¸òkÝŽÃZÝ';"'D¸ü8šbVsNR*Ü@@2õëtk›H,i1’E“™&hq—ú;þvî’lQˆg!K h«afÐê߉8rwŒë¼Äµ(—{¨ß¹©À%Z­ÉMkÓŽßîá\“(§—-w*Ël ÒÐS˜1gB¼%œùÍó'Îúƒ$š%d±wNrçHy]X8µñ­Y1*!tiU<ÑéíX3UûŸM[¨¥k•™äéIG¸sfHáà±ø÷óõkùÈð$/¬ÙëX7Ýü=Ïîù>2ü:õ" ß3+„ü´!}¥¬sâ?kŒCT¶Ü µ|ÿrÇÏp£j3FÊ7FŽð_X'YÎK?:ô{ìeÜ!ˆãn–z W)&gXUÁÝù‰¸÷Ÿã¤ñ6ìáA=CK`‘FŠˆ†-PGÎÑ dŠ€dÃñ²‡€¸·yÙ1‚)v(â”y$‡hm1xË?YNŠÃφüƒ°aÎSEƒ«)ŒÀ,,£š@uÖÿ2¶ {8- Ykgl@þТàQõ`2.M墚Hx.GÊýP8Ò~r9õ]=C=> w@ç,ÒNß² n] +»Jf‘‡,üål΂ ±L›Ó«úfd6«ˆkboôBlEûA¼š‰éÕi׺¼ W*›õdC¹¤mÜX¥Qî3Ý\;Õ—Ô«ér wÄkñ%}ws¬Ïäõ­Am ÇåUmáuÒäZÚD'>/<0[BUFoUÃB¥ØÂBvüÊ׎)ÝúEÊxÌHnt°,¿8RÖ#3Åãâuü«‘³Ëc(6š½å>ðéïšH|<­×\þŒ]Ø3ø/³žÎŸƒq7µuò×{ƒÔ0™3zëâ½Gˆ'†± öáßâ3m\Ÿ…]Ctì/JÄ32˜Ñ†ñvkÖ8.Àsit~¢¢ö!$ß?¥˜W¥NMTYMÌD¨Þ„áá< 爠ðï-Y´eõ§‹ÜäêXtJÓ¢Z`ÍÐØ™Æ/_IHÜЊhû¹¤öH?É”œ!ˆT[ßò.Ó·`Ç9‰z>àX“'dÙâÿ~³5O‰ô¹îKúÁÜ9Û¥wÃ73 :fJt4ľî¤bbºr¹^óêBœÜ‚r¯ÑûƒkÙÀ‘£ßzž”¯iì•4ìG™ÒAˆ8v Ó6º¼ú;ñÕGø·ãÑt”î¶3k†o¥ê Q#ÐCŠô×Ó3þ9°èBioº‚gØ\±Î¿a¦ãÿ‘‹%¥j§ˆJ÷±¹ÖxÎ>zÍíÃ~µw’v:VY±8Îhœí†@¯ö»Á^ÇófxÝü†lqìæ^â¹Îë¥yx¥r‡}&ÀkÁÞ"?lăŠ_Ùàà Ô›ßý®¹yM²íq*áã/ç„%A&°MÑñ+®døƒ|TÿÍS“Q¦¶¸x<Ü¿q'Þ!¦x]Sèä!’/~£ÅŸˆúß6ÖÝÍ…WPÑÑ«<™ #èK&ÂÒ·óÂkÜ›ØÚÄ,Õ«ÐV»{Z¡_ñµX§­às_Amµ8ÃÆHã6p^?ýmVÖí:^à endstream endobj 244 0 obj << /Type /FontDescriptor /FontName /NKZLXK+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/a/asterisk/at/b/bar/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/question/quotedbl/r/s/semicolon/seven/six/slash/t/three/two/u/underscore/v/w/x/y/zero) /FontFile 243 0 R >> endobj 245 0 obj << /Length1 1613 /Length2 3528 /Length3 0 /Length 4533 /Filter /FlateDecode >> stream xÚt 4Ômؾ­Ò”J–×’·_dÍlÖˆû6Ù…TÆÌofaKÈ’"*J¶PiѲ´X²$’JÉ’}É’„±+ßÐþþÿç|ß™sf溗ë~®û¹ïGz•-…£¸F2Š„!4}´R @ ”a„DZÚŽ@'‚?íiJ#PÈšDèSA m3ÀÐÙh 0c¤2€TÓDªk"€¡ñ3BÕ 0¾€†f2HƒHëS¼¨w:»ÎÏ¿€V@jh¨+®§(H%`1d¡{€$vE,†ØR°ð…œ–î­ ‡ûùùÁ0$ŒBu?(¯øè€ H©¾ X“ ÂÀÒ`iÀ΃@ûî°¥àé~*° D$ÓØ) 2¤ìꀭ©`é ’¿[|P~4@¿è~d¯ÈëÉ,–BòÆdwO ‚€¥‘ŒîOW0dÜZ †H£°ó1¾ãÆX?:0BY¶ÂúhX*Á›NƒÑÄ5ð5v› É8} ‰’é4ÈÚù TËî{üÇåz‘)~äÀŸO ãðk2p o¸=™àÃM ~İMß6w¨"ˆýÊÊè€þXøZ»op݉\3³5zS¼<[LÀƒìH ã t* üÓñ7‚ ‘Ž€¥n ; ùÍÎ6ƒøï˜}ÿT‚?pÁ?$€Xûüúw”=a8 ™ð;|ýŠá–h[ç}?$ÿrêéQü@(€*)«ªJ*€š†*ü7Ë/ý?µ¯[­0„gCüæ3%ã)€Æw ìÞý”áûc.ä~,<ðw…Cö4ƒ€ÜïáwA¨"°ì/äÿyÖSþ“¿Æò¿ÿOdÄ ×ýrßþ?†D üˆ`O3ƒÎÞ 4…½äÿ†¿¯3ĤÿzMéö† ÈîÄ_$ÐŒþ Ί@Çz¬OÌÏk`³ dЊB#¬½7‰@üÇÇ^9¬ûM¡±/kݲ7êd,·¶zJªj†JÅ@ìùRRU‘ìÅþë£ Àad °Õx ²v¥jªµfZGêóipì/´v:8îˆààP€»ÿÙ¼„?à~Nü ‘l*òMEù*pï?  §þÙÌ´? §ÿÙ…|C%6sÀ:ü«kX•Ê~PÖ›ÝÒŸxýõA io¥`DxD<^ÈG‰ûA‡^*©ðÕMG³xŠú~´××ZœQ¾Ó†ª|;³Ø»s\éÖj‰—£0ÂëXOPJŒ¦p{Ñã x·Å W;µ—Æi ¥aóŠ gWe2Î]x²Ô¦Þ¥Û"ÿ¢ÏÔл´Qc-™Ræü=ÉM²ÅŸ`[¹^žÙ$²¿òV®ˆ'¨´'L½û¨–·å¦{iÓº/'â%ŒFSj•Tûë:î(rúRÄÇÆø¼ÍYic“Gžª‰™»¾Z¤ŸŠ,ÇÉ…³G„ɹÑ^XÅe«ˆáí¦KƳ–’aÔÒ‰‚A“滹JotXv6ŸÔ#Ü\‚mï°Ðãe>ì§*óÆYÉ=Ör‚F½:©çÎlšËÖ‘r¢éf˜:VLÉþû²õ½ý+9yå`d˜€ª×„Í;ìî(ÂKS¬Ï™ù¢ÎõM/µ-]÷ÖM73.,hØ>Ã^ÝéÙi©Ê†¾Œån¹7þýÜœ’øÉݱŽó™™®Ãò?Ýt,riY<­Åí/bôr×'\Bzk¸UR!ÙÒOûÜq­è<AdÍ“/~O{õ’­÷–Ît),SfZøŒïœ­¼’î§r±sê]ð]µñxWé™c¹-Ò¥÷øÊN|H`qÒ+bF6“/ÌYŸTÔ®¬uØÃª€mí»_f6ÆÚQ5ɽǂ¿x)½??Õ1O<²Y¤s³Od¢Ç gÏlk.…ú &—åëÌ £‚u.½ü¼~‘uϧà’/馛,;ü9©õÛëƒùR¨½æH+NúMêÌéü•Ÿ-¡ï±Q™¶Ý#Û5çdSËrZ¶½ÆönþXŽž~ð••ã@ý0Äàm³¸¦q$Œ,ž+·Yæµ$Ô"6ŒUä{àk_Vi0f_Ù/ÌΑùú³<üj§ÉŠÌ{Ã"#Ño‘£F87kŠÉ™yü}ê’f—Ìnð‚?¯O.ïƒJk 1£,“à‹uÞµýa.»Ÿ ¡jB&“Ä.5–§?ÂËôhZ¨fݯžx¢—lT¢_=öôºt’ MðkxåCm…\Ú¼ Þµ=\klEzÝÉ¶á ­û†y7¼ÃÞÛ\»lZî;ò•sïTlÓl@ÃáËf’´î¼˜bÑkºjO»¤hC Û¶=SÒ]©ú‰Óæ¬DªNmç²Óa6K;w§vñ”ŒEsdWÝAsó€· ØÌá *á„ÂÈ/ä œÝU{y®^çnŠm¿![¿ëDü§kÕŽt¨‰Žòæ:“§{ùx›gCPòØàÐ¡Ú %%Yªx¤˜Dš}Á]ÑP¢½šFÐ2§MKgŠ+´ò¬ô“‡æÓ×Ï@Gä(úûeò®Ø§Cò]=D¥ÓO¤,ßͭž¢ŠùÜZÆkòpHègóÜ}ækèEèjЄƴåµÁèâ÷à QÍ»|^«8%Öš³±ºÖ„©Fž—ñ]q90“¸b¡!Øðü@óñ‹¶âU¡YNÄÛ«3¥ž‚G漞 åÝX¾éß[~ÓTkUBtÊöòò7«ÏˆõÒ‹\"w=Yqøè~u³ö‘ãÖ ôrŒAÁÀ³ÆóûnH޷òã%Kƒy20 §|5d\N¾:óé›M£ÖšPŒ¾”ôðdžbLA^غdR™×4šÔ«[ÉèÌñ†Š?.×ÞTø|&dqÅX8ž%ø¬iOG„ê%Ó(Êâè6#‰(”ŠWäT qM× ¾Î×XZv½‹VçM4ꥴ™¶¦í ƒ$yò:­—:ÜúrGdsÂb†q^±Z´g*«©Å™oø õP{«É} !$ojÌÿi—à=E7‹„„¾•U«VŠí¦óÂmµ’°|ãöµ¥·gKeÕ¾ÐRímT&î, ·%Ö_p½Xšóé±dÍêÕ¥AñÌT´Ú3îsÿDñNâKþc—®Sߟ’}V£à,rϲJȵK?ªi u ìhŸ%.ŽœÊoé,€|Î÷¢ ó½tý§¢ýaEÃRïz%NJmfîô··ßæZj¿óÜÇ=·;·Ù—ðX½ôúVkud™ü1ãèTdwωåQ•4ÝÂ*Û>†U•BuÂÉ¿4ûù„úgpÈü[ÐúòVf^pY“¸? ÄPóŠ˜(aÌ!öÀÞçÖK³—X ¾±ðuÚ{uG•ÖxšÔ Âüà¡ Áƒ!‡0J¢R¨ùÕmô'ž÷ôÙNŒyÎßtmAßMFw˜’LîŽ|®&óöŸBgsåÛãyç® /²19Ÿ×t+óÎJªådðçTw·.Sê>ådÇÓCgMm9k+Ì7\x\&¢ïAcøq¯|L—øÌï hb¬”“­Çí—ätÚ+mB|ŸóÔl³¦ywj7?áì~Vj¬Õh¸fÈ9Ä\Ø5rÄòMú—ðóòÞôjæ¬ïõ"éitS%ÝÏ(Û(>¢ üu÷`1g·N¡züÉ®þæ–ÛÕŽu/뮄@U5îã>)(–K>óYSrVÌ®†Õì‹ñ~„ :JÜò 3*rv[®c+·=òïô×hTùö$Ým7ß™i–{<$ÕÙ14,Ä$üÔl¶ùfeÑœ«mΠ~î˜ÜLÜÇ„WèíEhóôn=ê[i«=ïŠEVÜ}]ýÆÙª%ð2gO5¿Ïsç8¦…-GŘ ‚Ç3M&<ˆ”8?¨OU¢>8^pBwC†¿Iû¿ê³ÞYBt>ί£])ÓÝ’q³NñÌ utº†°F¬ö¡àzÉ÷Ÿ@ö%'ß¾t:Ö»µÚàt¼RþâŠÇ‡fa»o‰Ûö·å«¿4®½zÇÀX_W¶O_ ©ÆöâO ©„&½PÎÙZØm/VgxÜ•£M L{Î êÛu-ì6çß endstream endobj 246 0 obj << /Type /FontDescriptor /FontName /LOMSDZ+CMTT12 /Flags 4 /FontBBox [-1 -234 524 695] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/A/a/c/d/e/g/i/l/n/o/p/r/s/t/v/y) /FontFile 245 0 R >> endobj 112 0 obj << /Type /Font /Subtype /Type1 /BaseFont /NGCLME+CMBX10 /FontDescriptor 222 0 R /FirstChar 12 /LastChar 117 /Widths 208 0 R >> endobj 97 0 obj << /Type /Font /Subtype /Type1 /BaseFont /NVBCMS+CMBX12 /FontDescriptor 224 0 R /FirstChar 12 /LastChar 122 /Widths 214 0 R >> endobj 99 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RNJMWE+CMBXTI10 /FontDescriptor 226 0 R /FirstChar 80 /LastChar 120 /Widths 212 0 R >> endobj 95 0 obj << /Type /Font /Subtype /Type1 /BaseFont /LMTQCG+CMR10 /FontDescriptor 228 0 R /FirstChar 11 /LastChar 122 /Widths 216 0 R >> endobj 93 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VMRYVC+CMR12 /FontDescriptor 230 0 R /FirstChar 12 /LastChar 116 /Widths 218 0 R >> endobj 91 0 obj << /Type /Font /Subtype /Type1 /BaseFont /XOLCQR+CMR17 /FontDescriptor 232 0 R /FirstChar 65 /LastChar 117 /Widths 220 0 R >> endobj 94 0 obj << /Type /Font /Subtype /Type1 /BaseFont /SMPLIU+CMSLTT10 /FontDescriptor 234 0 R /FirstChar 33 /LastChar 125 /Widths 217 0 R >> endobj 98 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DKIPYG+CMSS10 /FontDescriptor 236 0 R /FirstChar 65 /LastChar 119 /Widths 213 0 R >> endobj 107 0 obj << /Type /Font /Subtype /Type1 /BaseFont /NBSMKC+CMSSBX10 /FontDescriptor 238 0 R /FirstChar 82 /LastChar 82 /Widths 209 0 R >> endobj 96 0 obj << /Type /Font /Subtype /Type1 /BaseFont /IZCGMA+CMTI10 /FontDescriptor 240 0 R /FirstChar 45 /LastChar 121 /Widths 215 0 R >> endobj 92 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EUHWPA+CMTI12 /FontDescriptor 242 0 R /FirstChar 82 /LastChar 116 /Widths 219 0 R >> endobj 100 0 obj << /Type /Font /Subtype /Type1 /BaseFont /NKZLXK+CMTT10 /FontDescriptor 244 0 R /FirstChar 34 /LastChar 124 /Widths 211 0 R >> endobj 106 0 obj << /Type /Font /Subtype /Type1 /BaseFont /LOMSDZ+CMTT12 /FontDescriptor 246 0 R /FirstChar 65 /LastChar 121 /Widths 210 0 R >> endobj 101 0 obj << /Type /Pages /Count 6 /Parent 247 0 R /Kids [86 0 R 103 0 R 109 0 R 114 0 R 120 0 R 124 0 R] >> endobj 132 0 obj << /Type /Pages /Count 6 /Parent 247 0 R /Kids [129 0 R 134 0 R 138 0 R 142 0 R 146 0 R 150 0 R] >> endobj 157 0 obj << /Type /Pages /Count 6 /Parent 247 0 R /Kids [154 0 R 160 0 R 164 0 R 173 0 R 178 0 R 183 0 R] >> endobj 190 0 obj << /Type /Pages /Count 2 /Parent 247 0 R /Kids [187 0 R 192 0 R] >> endobj 247 0 obj << /Type /Pages /Count 20 /Kids [101 0 R 132 0 R 157 0 R 190 0 R] >> endobj 248 0 obj << /Type /Outlines /First 3 0 R /Last 83 0 R /Count 4 >> endobj 83 0 obj << /Title 84 0 R /A 81 0 R /Parent 248 0 R /Prev 71 0 R >> endobj 79 0 obj << /Title 80 0 R /A 77 0 R /Parent 71 0 R /Prev 75 0 R >> endobj 75 0 obj << /Title 76 0 R /A 73 0 R /Parent 71 0 R /Next 79 0 R >> endobj 71 0 obj << /Title 72 0 R /A 69 0 R /Parent 248 0 R /Prev 35 0 R /Next 83 0 R /First 75 0 R /Last 79 0 R /Count -2 >> endobj 67 0 obj << /Title 68 0 R /A 65 0 R /Parent 35 0 R /Prev 63 0 R >> endobj 63 0 obj << /Title 64 0 R /A 61 0 R /Parent 35 0 R /Prev 59 0 R /Next 67 0 R >> endobj 59 0 obj << /Title 60 0 R /A 57 0 R /Parent 35 0 R /Prev 55 0 R /Next 63 0 R >> endobj 55 0 obj << /Title 56 0 R /A 53 0 R /Parent 35 0 R /Prev 39 0 R /Next 59 0 R >> endobj 51 0 obj << /Title 52 0 R /A 49 0 R /Parent 39 0 R /Prev 47 0 R >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 39 0 R /Prev 43 0 R /Next 51 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 39 0 R /Next 47 0 R >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 35 0 R /Next 55 0 R /First 43 0 R /Last 51 0 R /Count -3 >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 248 0 R /Prev 3 0 R /Next 71 0 R /First 39 0 R /Last 67 0 R /Count -5 >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 3 0 R /Prev 27 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 3 0 R /Prev 11 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 11 0 R /Prev 19 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 11 0 R /Prev 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 3 0 R /Prev 7 0 R /Next 27 0 R /First 15 0 R /Last 23 0 R /Count -3 >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 3 0 R /Next 11 0 R >> endobj 3 0 obj << /Title 4 0 R /A 1 0 R /Parent 248 0 R /Next 35 0 R /First 7 0 R /Last 31 0 R /Count -4 >> endobj 249 0 obj << /Names [(Doc-Start) 90 0 R (figure.1) 181 0 R (page.1) 89 0 R (page.10) 144 0 R (page.11) 148 0 R (page.12) 152 0 R] /Limits [(Doc-Start) (page.12)] >> endobj 250 0 obj << /Names [(page.13) 156 0 R (page.14) 162 0 R (page.15) 166 0 R (page.16) 175 0 R (page.17) 180 0 R (page.18) 185 0 R] /Limits [(page.13) (page.18)] >> endobj 251 0 obj << /Names [(page.19) 189 0 R (page.2) 105 0 R (page.20) 194 0 R (page.3) 111 0 R (page.4) 116 0 R (page.5) 122 0 R] /Limits [(page.19) (page.5)] >> endobj 252 0 obj << /Names [(page.6) 126 0 R (page.7) 131 0 R (page.8) 136 0 R (page.9) 140 0 R (section.1) 2 0 R (section.2) 34 0 R] /Limits [(page.6) (section.2)] >> endobj 253 0 obj << /Names [(section.3) 70 0 R (section.4) 82 0 R (subsection.1.1) 6 0 R (subsection.1.2) 10 0 R (subsection.1.3) 26 0 R (subsection.1.4) 30 0 R] /Limits [(section.3) (subsection.1.4)] >> endobj 254 0 obj << /Names [(subsection.2.1) 38 0 R (subsection.2.2) 54 0 R (subsection.2.3) 58 0 R (subsection.2.4) 62 0 R (subsection.2.5) 66 0 R (subsection.3.1) 74 0 R] /Limits [(subsection.2.1) (subsection.3.1)] >> endobj 255 0 obj << /Names [(subsection.3.2) 78 0 R (subsubsection.1.2.1) 14 0 R (subsubsection.1.2.2) 18 0 R (subsubsection.1.2.3) 22 0 R (subsubsection.2.1.1) 42 0 R (subsubsection.2.1.2) 46 0 R] /Limits [(subsection.3.2) (subsubsection.2.1.2)] >> endobj 256 0 obj << /Names [(subsubsection.2.1.3) 50 0 R (table.1) 195 0 R] /Limits [(subsubsection.2.1.3) (table.1)] >> endobj 257 0 obj << /Kids [249 0 R 250 0 R 251 0 R 252 0 R 253 0 R 254 0 R] /Limits [(Doc-Start) (subsection.3.1)] >> endobj 258 0 obj << /Kids [255 0 R 256 0 R] /Limits [(subsection.3.2) (table.1)] >> endobj 259 0 obj << /Kids [257 0 R 258 0 R] /Limits [(Doc-Start) (table.1)] >> endobj 260 0 obj << /Dests 259 0 R >> endobj 261 0 obj << /Type /Catalog /Pages 247 0 R /Outlines 248 0 R /Names 260 0 R /PageMode/UseOutlines /OpenAction 85 0 R >> endobj 262 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.10)/Keywords() /CreationDate (D:20131014204706-07'00') /ModDate (D:20131014204706-07'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian) kpathsea version 5.0.0) >> endobj xref 0 263 0000000000 65535 f 0000000015 00000 n 0000004328 00000 n 0000257457 00000 n 0000000060 00000 n 0000000094 00000 n 0000004387 00000 n 0000257387 00000 n 0000000144 00000 n 0000000198 00000 n 0000007636 00000 n 0000257266 00000 n 0000000248 00000 n 0000000307 00000 n 0000011673 00000 n 0000257192 00000 n 0000000363 00000 n 0000000415 00000 n 0000011733 00000 n 0000257105 00000 n 0000000471 00000 n 0000000498 00000 n 0000014757 00000 n 0000257031 00000 n 0000000554 00000 n 0000000588 00000 n 0000017018 00000 n 0000256945 00000 n 0000000639 00000 n 0000000685 00000 n 0000024528 00000 n 0000256872 00000 n 0000000736 00000 n 0000000773 00000 n 0000028639 00000 n 0000256748 00000 n 0000000819 00000 n 0000000874 00000 n 0000028700 00000 n 0000256637 00000 n 0000000925 00000 n 0000000952 00000 n 0000028761 00000 n 0000256563 00000 n 0000001008 00000 n 0000001045 00000 n 0000034059 00000 n 0000256476 00000 n 0000001101 00000 n 0000001129 00000 n 0000037814 00000 n 0000256402 00000 n 0000001185 00000 n 0000001230 00000 n 0000062128 00000 n 0000256315 00000 n 0000001281 00000 n 0000001307 00000 n 0000062189 00000 n 0000256228 00000 n 0000001358 00000 n 0000001404 00000 n 0000064266 00000 n 0000256141 00000 n 0000001455 00000 n 0000001513 00000 n 0000068119 00000 n 0000256067 00000 n 0000001564 00000 n 0000001604 00000 n 0000070410 00000 n 0000255942 00000 n 0000001650 00000 n 0000001686 00000 n 0000070471 00000 n 0000255868 00000 n 0000001737 00000 n 0000001795 00000 n 0000072927 00000 n 0000255794 00000 n 0000001846 00000 n 0000001872 00000 n 0000075079 00000 n 0000255719 00000 n 0000001918 00000 n 0000001979 00000 n 0000004100 00000 n 0000004446 00000 n 0000002029 00000 n 0000004209 00000 n 0000004268 00000 n 0000253975 00000 n 0000254693 00000 n 0000253833 00000 n 0000254117 00000 n 0000253691 00000 n 0000254550 00000 n 0000253403 00000 n 0000254262 00000 n 0000253546 00000 n 0000254836 00000 n 0000255124 00000 n 0000007697 00000 n 0000007463 00000 n 0000004624 00000 n 0000007575 00000 n 0000254980 00000 n 0000254405 00000 n 0000011794 00000 n 0000011500 00000 n 0000007854 00000 n 0000011612 00000 n 0000253259 00000 n 0000014818 00000 n 0000014584 00000 n 0000011914 00000 n 0000014696 00000 n 0000076631 00000 n 0000076029 00000 n 0000017079 00000 n 0000016845 00000 n 0000014976 00000 n 0000016957 00000 n 0000020189 00000 n 0000020016 00000 n 0000017210 00000 n 0000020128 00000 n 0000075457 00000 n 0000022135 00000 n 0000021962 00000 n 0000020321 00000 n 0000022074 00000 n 0000255240 00000 n 0000024589 00000 n 0000024355 00000 n 0000022242 00000 n 0000024467 00000 n 0000027084 00000 n 0000026911 00000 n 0000024708 00000 n 0000027023 00000 n 0000028822 00000 n 0000028466 00000 n 0000027191 00000 n 0000028578 00000 n 0000031617 00000 n 0000031444 00000 n 0000028978 00000 n 0000031556 00000 n 0000034120 00000 n 0000033886 00000 n 0000031724 00000 n 0000033998 00000 n 0000035905 00000 n 0000035732 00000 n 0000034240 00000 n 0000035844 00000 n 0000255357 00000 n 0000039660 00000 n 0000037875 00000 n 0000037641 00000 n 0000036012 00000 n 0000037753 00000 n 0000062250 00000 n 0000039548 00000 n 0000037995 00000 n 0000062067 00000 n 0000058845 00000 n 0000058989 00000 n 0000059089 00000 n 0000059126 00000 n 0000059369 00000 n 0000064327 00000 n 0000064093 00000 n 0000062409 00000 n 0000064205 00000 n 0000067907 00000 n 0000068180 00000 n 0000067775 00000 n 0000064434 00000 n 0000068058 00000 n 0000070348 00000 n 0000070532 00000 n 0000070175 00000 n 0000068324 00000 n 0000070287 00000 n 0000072988 00000 n 0000072754 00000 n 0000070677 00000 n 0000072866 00000 n 0000255474 00000 n 0000075140 00000 n 0000074845 00000 n 0000073120 00000 n 0000074957 00000 n 0000075018 00000 n 0000075272 00000 n 0000075706 00000 n 0000075732 00000 n 0000075793 00000 n 0000075829 00000 n 0000076278 00000 n 0000076304 00000 n 0000076365 00000 n 0000076401 00000 n 0000076880 00000 n 0000076906 00000 n 0000076969 00000 n 0000077006 00000 n 0000077609 00000 n 0000077634 00000 n 0000077995 00000 n 0000078378 00000 n 0000078632 00000 n 0000078971 00000 n 0000079612 00000 n 0000080075 00000 n 0000080698 00000 n 0000081089 00000 n 0000081661 00000 n 0000081834 00000 n 0000082167 00000 n 0000095298 00000 n 0000095581 00000 n 0000111001 00000 n 0000111343 00000 n 0000120832 00000 n 0000121079 00000 n 0000145501 00000 n 0000145981 00000 n 0000157728 00000 n 0000158032 00000 n 0000166591 00000 n 0000166827 00000 n 0000185403 00000 n 0000185941 00000 n 0000194668 00000 n 0000194913 00000 n 0000201934 00000 n 0000202157 00000 n 0000217425 00000 n 0000217716 00000 n 0000226579 00000 n 0000226817 00000 n 0000247826 00000 n 0000248358 00000 n 0000253011 00000 n 0000255559 00000 n 0000255645 00000 n 0000257565 00000 n 0000257737 00000 n 0000257907 00000 n 0000258072 00000 n 0000258240 00000 n 0000258444 00000 n 0000258664 00000 n 0000258914 00000 n 0000259035 00000 n 0000259153 00000 n 0000259237 00000 n 0000259316 00000 n 0000259354 00000 n 0000259481 00000 n trailer << /Size 263 /Root 261 0 R /Info 262 0 R /ID [<5100BDB8A6788C4229931A98A4F470AA> <5100BDB8A6788C4229931A98A4F470AA>] >> startxref 259807 %%EOF ShortRead/inst/doc/README0000644000126300012640000000121212227066722016434 0ustar00biocbuildphs_compbioI have added an unserscore to the extention of the vignette file, i.e., it is called ShortRead_and_HilbertCurveDisplay.Rnw_, so that it does not get processed automatically. This is because it takes quite long to get build the vignette and you have to download some example data before building it. If you do want to rebuild the vignette: In the same directory that contains the Rnw file, make two subdirecties, called H3K4me1 and H3K4me3. Go to http://www.ebi.ac.uk/~anders/ShortReadExampleData/, download the content of the two directories H3K4me1 and H3K4me3 there and put these files in the directories just created. Then run Sweave. ShortRead/inst/doc/ShortRead_and_HilbertVis.Rnw_0000644000126300012640000011713212227066722023264 0ustar00biocbuildphs_compbio%\VignetteIndexEntry{Processing and Visualisation of High-Throughput Sequencing with ShortRead and HilbertVis} %\VignettePackage{ShortRead} \documentclass{article} \usepackage[a4paper]{geometry} \usepackage{hyperref,graphicx} \SweaveOpts{keep.source=TRUE,eps=FALSE,include=FALSE,width=4,height=4.5} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rpackage}[1]{\textit{#1}} \newcommand{\Rclass}[1]{\textit{#1}} \newcommand{\Rfunction}[1]{{\small\texttt{#1}}} \author{Simon Anders\\[1em]European Bioinformatics Institute,\\ Hinxton, Cambridge, UK\\[1em] \texttt{sanders@fs.tum.de}} \title{\textbf{Processing and Visualisation of High-Throughput Sequencing Data with \texttt{ShortRead} and \texttt{HilbertVis}}} \date{version 2: 2009-06-30} \begin{document} \maketitle \begin{abstract} This document serves a double purpose: (i) It explains the use of the Bioconductor packages \Rpackage{HilbertVis} and \Rpackage{HilbertVisGUI}. This pair of packages offers a tool to visualise very long one-dimensional data vectors (with up to billions of entries) in an efficient fashion that allows to get a quick impression of the spatial distribution and rough shape of the features present in the data. This is especially useful in the initial exploration of high-resolution position-dependent genomic data, such as tiling array or ChIP-Seq data. (ii) It provides a specific example by walking the reader through the task of processing ChIP-Seq data using the stand-alone alignment tool Maq and the Bioconductor packages Biostrings, ShortRead and HilbertVis/HilbertVisGUI. \end{abstract} \medskip \noindent{\small\textbf{Note:} If you are only interested in the use of the \texttt{HilbertVis}/\texttt{HilbertVisGUI} packages, you can skip the first section and start reading at Section \ref{secHilbert}.} \medskip \noindent{\small\textbf{Note:} If you have trouble installing the package \texttt{HilbertVisGUI}, read the file \texttt{INSTALL} in the package.} \section{Introduction} Bioconductor offers substantial support for genomic experiments, which, for the case of microarray platforms, including tiling arrays, has reached maturity already a while ago. For data from high-throughput sequencing experiments, development of new tools is currently (mid 2008) ongoing. In this document, I would like to show what can already been done by re-doing step for step the analysis of an already published Solexa ChIP-Seq experiment. I use this to demonstrate some aspects of the ShortRead package (by M.~Morgan, \cite{ShortRead}) and the use of my packages ``HilbertVis'' and ``HilbertVisGUI''. ShortRead introduces data structures to represent aligned short sequence reads and offers functions to read in such data from files output by the SolexaPipeline (the software that Illumina provides with its GenomeAnalyzer machine) or by Maq (a stand-alone alignment program, \cite{Maq}). ShortRead's data structures are based on the infrastructure provided by Biostrings. As an example, we use data from a published study, Ref. \cite{HistMeth_ChipSeq}, on histone methylations in the human genome. Although this was not the main focus of that study, we re-analyse the data for histone methylation patterns H3K4me1 and H3K4me3, as these are data sets of manageable size. We first re-do the alignment with Maq, then use ShortRead to read the result into R and then visualise the data with HilbertVis. \section{The example data} The authors of our example have deposited their raw data in the NCBI's Provisional Short Read Archive (SRA, \url{http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi}) under accession number SRA000206. Use the ``Submissions'' tab in the archive's ``Download Facility'' to find the submission (under ``SRA000''). You will get to a directory that contains all the data as output by Bustard, the base-calling program in the SolexaPipeline, as well as a number of fairly self-explanatory XML files with meta-data.\footnote{When I first wrote this vignette in June 2008, the SRA was still in a provisional state, and the presentation of the data has changed since then. You can still find the old files in the subdirectory ``provisional''.} There are 3 lanes for H3K4me1 and 7 lanes for H3K4me3. I have used Maq to align the reads from these lanes against the human reference genome as provided on Ensembl. Doing so requires converting the \texttt{\_seq.txt} and \texttt{\_prb.txt} files for the lanes to the Sanger Institute's FASTQ format and on to Maq's BFQ (binary FASTQ format). Likewise, the reference genome is converted to one large BFA (binary FASTA) file. Then, the \texttt{maq map} command may be used to perform the alignment. As these steps are described in the documentation on the Maq web site, I do not go into detail here.\footnote{However, feel free to contact me if you want to know details.} In the end, we have, as output from Maq, a mapping file for each lane. I have put these files onto my web page. So, if you want to try out the following steps for yourself, please download them from \url{http://www.ebi.ac.uk/~anders/ShortReadExampleData/}. Note, however, that you should use a machine with at least 4 GB of RAM to perform the examples. Of course, Maq is not the only choice to align the reads to the genome. You may as well use Eland (the alignment program that comes with the SolexaPipeline), which can be read in as well by ShortRead, so that the following steps apply to this case as well. Within certain limits, the matching functionality of the Biostrings package allows you to even do everything within R. Finally, there are other alignment tools specialised for high-throughput sequences. Recently, the \texttt{ShortRead} package's \texttt{readAligned} function was extended and it can now parse the output formats of several popular tools, including Eland, Maq, SOAP, Bowtie, and the SAM format used e.g. by BWA. \section{Reading in the alignment} Assume that the current working directory contains two sub-directories, names \texttt{H3K4me1} and \texttt{H3K4me3}. Then we can read in all the files of pattern \texttt{run\textit{xx}lane\textit{x}.map} with the following commands: <<>>= library("ShortRead") maps.me1 <- sapply( list.files( "H3K4me1", "run.*lane.\\.map" ), function(filename) readAligned( "H3K4me1", filename, type="MAQMapShort" ) ) maps.me3 <- sapply( list.files( "H3K4me3", "run.*lane.\\.map" ), function(filename) readAligned( "H3K4me3", filename, type="MAQMapShort" ) ) @ Here, \texttt{readAligned} takes three arguments: the directory that contains the map file, the name of the map file, and the type of data to be read, for Maq alignment data \texttt{MAQMap}. (Our example data has been aligned with an older version of Maq, prior to the recent change in binary format in Maq version 0.7. Using the type \texttt{MAQMapShort} allows to read the old format.) You may also use the type \texttt{SolexaExport} to read in mappings produced by Eland (see help page for \texttt{readAligned} for details on the supported formats). In any case, the function \texttt{readAligned} returns an S4 object of class \texttt{AlignedRead}. \section{The class \texttt{AlignedRead}} An \texttt{AlignedRead} object is conceptionally quite similar to a data frame. It contains as many ``rows'' as there are mapped reads: <<>>= length( maps.me1$run4_lane8.map ) @ %$ For each read, all the data parsed from the map file are stored. Think of these types of data as of columns of a data frame, even though you do not access them with the \texttt{\$} operator but with accessor functions. The ``columns'' \texttt{chromosome}, \texttt{position} and \texttt{width} show where in the genome the reads were mapped: <<>>= head( chromosome( maps.me1$run4_lane8.map ) ) head( position( maps.me1$run4_lane8.map ) ) head( width( maps.me1$run4_lane8.map ) ) @ %$ As we see, the first 6 of the 3.4 mio reads in lane 8 of run 4 were all mapped to chromosome 10, to the given positions, and extending from there all by 25 bp.\footnote{Note that Maq stores the aligned reads in order of their alignment. Hence, we start with very low base-pair indices, which then increase. Maq has also started with chromosome 10, as that one happened to be the first one in the BFA file.} The actual reads are stored as well, <<>>= head( sread( maps.me1$run4_lane8.map ) ) @ %$ as are the reads' identifiers (which here encode their position on the lane): <<>>= head( id( maps.me1$run4_lane8.map ) ) @ %$ These last two objects are not ordinary R \texttt{character} vectors but \texttt{DNAStringSet} and \texttt{BStringSet} objects. These are specialised data structures provided by the \texttt{Biostrings} package designed to handle large amounts of character (or sequence) data. They are not elementary-type vectors but S4 objects. (See the Biostrings vignette for details.) As they only mimic a vector they cannot be columns of a data frame. This is the reason why \texttt{AlignedRead} is not a data frame although its structure is reminiscent of one. Other information stored in the \texttt{AlignedRead} object is the base-call quality as reported by Bustard, here given in FASTQ quality string representation. (See the Maq web site for an explanation of the format.) <<>>= head( quality( maps.me1$run4_lane8.map ) ) @ %$ Each of the letters codes for for the quality of a base call, i.e., which stands for the probability that the base call is incorrect. To see the actual quality scores, coerce the quality BStringSet to a matrix: <<>>= quals <- as( head( quality( maps.me1$run4_lane8.map ) ), "matrix" ) quals @ %$ For an explanation how the letters are converted to scores, look up the FASTQ standard. (Wikipedia has a good explanation.) The numbers are Phred scores, i.e. the probability for a base being wrong is given by $10^{-Q/10}$: <<>>= 10 ^ ( -quals / 10 ) @ %$ Maq calculates from this information and from the uniqueness and perfectness of the alignment an alignment score, which is stored in an \texttt{alignQuality} object: <<>>= alignQuality( maps.me1$run4_lane8.map ) @ %$ The actual integer vector of qualities (one number per read) can be obtained with the accessor function \texttt{quality} <<>>= head( quality( alignQuality( maps.me1$run4_lane8.map ) ) ) @ %$ An alignment quality score of 0 may mean that the read could not be uniquely aligned and has been put by Maq at one of the possible positions, chosen at random. As before, the probability for the alignment being wrong is $10^{-Q/10}$, where $Q$ is the quality score. Bear in mind that all these probabilities are estimates derived partly by heuristics. See the SolexaPipeline manual and the Maq paper for details before relying on them. \begin{figure} \centering \includegraphics[height=5cm]{images/Strand_and_Dir} \caption{The \texttt{strand} information shows how the read is aligned against the genome. If \texttt{strand} is \texttt{"+"}, the \texttt{position} indicates the start of the DNA read (dark green) as well as the start of the whole fragment. The part of the fragment that was not read (light green) extends to the right (i.e. towards larger chromosome coordinates). If \texttt{strand} is \texttt{"-"}, then the fragment extends to the left. As \texttt{position} always indicates the left edge of the read (but not necessarily an edge of the whole fragment) it now points to a position within the whole fragment. } \label{strand} \end{figure} The accessor function \texttt{strand} reports whether the read was mapped to the ``+'' or to the ``--'' strand of the chromosome. It returns a factor with three levels: <<>>= head( strand( maps.me1$run4_lane8.map ) ) @ %$ You should never see the level ``*'' in an AlignedData object. It is used in other contexts to indicate that a strand information is not just unavailable (this would be an \texttt{NA}) but does not have any meaning. Remember that Solexa sequencing is not strand-specific (unless you use one of the new strand-specific RNA-Seq protocols). Hence, it is better to think of this factor not as information on the strand but rather on the \textit{direction} of the fragment. Have a look at Fig.\ \ref{strand} for an illustration. The fields described so far are available for all \texttt{AlignedRead} objects. Depending on the alignment software that was used additional information may be available. The slot \texttt{alignData} is meant to hold such information. The fields that you can see here are explained in the manual to Maq. <<>>= alignData( maps.me1$run4_lane8.map ) @ %$ \texttt{AlignedDataFrame} is a subclass of \texttt{AnnotatedDataFrame}. Hence, we can see the meaning of the columns from the meta information displayed above and access the underlying data frame with \texttt{pData}: <<>>= head( pData( alignData( maps.me1$run4_lane8.map ) ) ) @ %$ \section{Coverage} In ChIP-Seq, one is usually interested in the number of precipitated DNA fragments in the sample that were mapped to each genomic locus. This is best represented by what is often called a ``coverage vector'' (or sometimes a ``pile-up vector''). This is a very long \texttt{integer} vector with as many elements as there are base pairs in the chromosome under consideration. Each vector element counts the number of fragments that were mapped such that they cover this base pair. The function \texttt{coverage} in the \texttt{ShortRead} package calculates such a vector from alignment information.\footnote{The first version of this vignette used the \texttt{pileup} function instead. Both functions do essentially the same job but \texttt{pileup} returns an ordinary vector while \texttt{coverage} (which was not yet available then) returns an \texttt{Rle} vector, as explained in the following.} In order to allocate a vector of the right size, \texttt{coverage} needs to know the length of the chromosome. \texttt{readBfaToc} obtains the lengths of all sequences in a BFA file (binary FASTA, the compressed FASTA format used by Maq). As a BFA file has a table of content at the beginning, \texttt{readBfaToc} only has to read the header of the BFA file and is hence quite fast. \begin{verbatim} > seqlens <- readBfaToc( "Homo_sapiens.NCBI36.48.dna.all.bfa" ) > seqlens 10 11 12 13 14 15 16 17 135374737 134452384 132349534 114142980 106368585 100338915 88827254 78774742 18 19 1 20 21 22 2 3 76117153 63811651 247249719 62435964 46944323 49691432 242951149 199501827 4 5 6 7 8 9 MT X 191273063 180857866 170899992 158821424 146274826 140273252 16571 154913754 Y NT_113887 NT_113947 NT_113903 NT_113908 NT_113940 NT_113917 NT_113963 57772954 3994 4262 12854 13036 19187 19840 24360 NT_113876 NT_113950 NT_113946 NT_113920 NT_113911 NT_113907 NT_113937 NT_113941 25994 28709 31181 35155 36148 37175 37443 37498 NT_113909 NT_113921 NT_113919 NT_113960 NT_113945 NT_113879 NT_113938 NT_113928 38914 39615 40524 40752 41001 42503 44580 44888 NT_113906 NT_113904 NT_113873 NT_113966 NT_113943 NT_113914 NT_113948 NT_113886 46082 50950 51825 68003 81310 90085 92689 96249 NT_113932 NT_113929 NT_113878 NT_113927 NT_113900 NT_113918 NT_113875 NT_113942 104388 105485 106433 111864 112804 113275 114056 117663 NT_113926 NT_113934 NT_113954 NT_113953 NT_113874 NT_113883 NT_113924 NT_113933 119514 120350 129889 131056 136815 137703 139260 142595 NT_113884 NT_113890 NT_113870 NT_113881 NT_113939 NT_113956 NT_113951 NT_113902 143068 143687 145186 146010 147354 150002 152296 153959 NT_113913 NT_113958 NT_113949 NT_113889 NT_113936 NT_113957 NT_113961 NT_113925 154740 158069 159169 161147 163628 166452 166566 168820 NT_113882 NT_113916 NT_113930 NT_113955 NT_113944 NT_113901 NT_113905 NT_113872 172475 173443 174588 178865 182567 182896 183161 183763 NT_113952 NT_113912 NT_113935 NT_113880 NT_113931 NT_113923 NT_113915 NT_113885 184355 185143 185449 185571 186078 186858 187035 189789 NT_113888 NT_113871 NT_113964 NT_113877 NT_113910 NT_113962 NT_113899 NT_113965 191469 197748 204131 208942 211638 217385 520332 1005289 NT_113898 1305230 \end{verbatim} If you try to reproduce this example, you may not have the BFA file\footnote{I have not put it on my web page as it is very big and easily created from the Ensembl files.}. So, you can obtain the object \texttt{seqlens} manually with the following command (which omits the \texttt{NT\_}xxxxx contigs): <<>>= seqlens <- c( `10`=135374737, `11`=134452384, `12`=132349534, `13`=114142980, `14`=106368585, `15`=100338915, `16`=88827254, `17`=78774742, `18`=76117153, `19`=63811651, `1`=247249719, `20`=62435964, `21`=46944323, `22`=49691432, `2`=242951149, `3`=199501827, `4`=191273063, `5`=180857866, `6`=170899992, `7`=158821424, `8`=146274826, `9`=140273252, MT=16571, X=154913754, Y=57772954 ) @ In order to get coverage vectors for all chromosomes, using only mappings in \texttt{maps.me3\$run13\_lane4.map} with a mapping quality of at least 10, we first create a new \texttt{AlignedRead} object containing only these reads (note that we also filter out reads that map to chromosomes or contigs for which we do not have sequence lengths) <<>>= filteredReads <- maps.me3$run13_lane4.map[ chromosome( maps.me3$run13_lane4.map ) %in% names(seqlens) & quality(alignQuality( maps.me3$run13_lane4.map )) >= 10 ] @ %$ and then run the \texttt{coverage} function\footnote{texttt{coverage} is a generic method defined in the \texttt{IRanges} object. Here, we use its specialization for \texttt{ReadAligned} objects, defined in the \texttt{ShortRead} package. For the help pages, see both \texttt{?coverage} and \texttt{class?AlignedRead}.} on these: <<>>= coverage.me3.lane4 <- coverage( filteredReads, width=seqlens ) coverage.me3.lane4 @ The object \texttt{coverage.me3} is a \texttt{SimpleRleList} object, essentially a list of coverage vectors, one for each chromosome. Here is the coverage vector for chromsome 10: <<>>= coverage.me3.lane4$`10` @ %$ This is a vector with 135 mio elements, i.e., one number for each base pair on chromosome 10. If we stored this as an ordinary vector in RAM, it would need 135 MB. However, it contains long stretches of constant values, and hence, \texttt{coverage} returns its result as run-length encoded (\texttt{Rle}) vectors. As you can see, the coverage vector contains a few ten thousands of ``runs'', i.e., of repeats of the same value, and stores this information in the form of the lengths and the values of these runs. \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-me3_p10} \caption{Output of \texttt{plotLongVector( me3.p10 )}.} \label{me3_p10} \end{figure} In principle, we could now plot this vector by converting it to an ordinary vector and using the standard ``plot'' function: <>= plot( as.vector( coverage.me3.lane4$`10` ), type='h' ) @ $% However, this command takes very long, as it plots one needle for each vector element, spending most of its time plotting over and over at the same spot. The function \texttt{plotLongVector} (in \texttt{HilbertVis}) produces the same plot with a decent speed: <>= library("HilbertVis") plotLongVector( coverage.me3.lane4$`10` ) @ $% [Output: See Fig.\ \ref{me3_p10}.] It does so by first partitioning the vector in 4,000 segments of equal length and the gets the maxima and minima of each segments (with the \texttt{shrinkVector} funcion). It the draws vertcial lines from the minima to the maxima. In case you want to write your own plotting function (because \texttt{plotLongVector} is rather rudimentary), you can use the function \texttt{shrinkVector} (in \texttt{HilbertVis}) to accomplish this. In the form used above, the function \texttt{coverage} counts only which base pairs the actual read covers. Typically, the read length (here: 25 nt) is much shorter than the length of the DNA fragments. In the present data, the length of the fragments after sonication, adaptor ligation and gel-electrophoretic size selection was about 220 bp including adaptors, i.\,e., approx.\ 185 bp without adaptors. Given that the immuno-precipitated histone can be anywhere on the fragment, not necessarily within the part at the end that is actually sequenced (the ``read'') we get a less biased picture by incorporating this information into the calculation of the pile-up vector. The \texttt{coverage} can be called with an \texttt{extend} argument to extend each fragment by a certain size. It uses the strand information to know which direction to extend to (see Fig.\ \ref{strand}). <<>>= coverage.me3.lane4.ext <- coverage( filteredReads, width=seqlens, extend=185L-width(filteredReads) ) @ Our coverage vector incorporated only the information from one lane. We get better count statistics by getting such a vector for each lane from the H3K4me3 sample and then simply summing them all up: <<>>= sumUpCoverage <- function( lanes, seqLens, minAQual, fragmentLength ) { res <- NULL for( i in 1:length(lanes) ) { filteredLane <- lanes[[i]][ quality(alignQuality( lanes[[i]] )) >= minAQual & chromosome(lanes[[i]]) %in% names(seqlens) ] cvg <- coverage( filteredLane, width = seqLens, extend = as.integer(fragmentLength) - width(filteredLane) ) if( is.null( res ) ) res <- cvg else { stopifnot( all( names(res) == names(cvg) ) ) for( seq in names(res) ) res[[seq]] <- res[[seq]] + cvg[[seq]] } } res } coverage.me3 <- sumUpCoverage( maps.me3, seqlens, 10, 185 ) @ Note that \texttt{for} loops are used here instead of \texttt{sapply}. The latter may look more natural in R but it builds up a two-dimensional array of all the intermediate coverage vectors, which is wasteful. Even with the \texttt{for} loop the operation takes a while. Let's do the same for ``me1'': <<>>= coverage.me1 <- sumUpCoverage( maps.me1, seqlens, 10, 185 ) @ As ``me1'' has only 3 lanes as opposed to ``me3'''s 7 lanes, we cannot compare them directly. A simple way of normalizing is to divide by the ``library size'', i.e., the total number of reads. <<>>= nreads.me1 <- sum( sapply( maps.me1, length ) ) coverage.me1.n <- GenomeData( lapply( coverage.me1, function(r) r / nreads.me1 ) ) nreads.me3 <- sum( sapply( maps.me3, length ) ) coverage.me3.n <- GenomeData( lapply( coverage.me3, function(r) r / nreads.me3 ) ) @ \section{Visualisation with Hilbert curve plots} \label{secHilbert} \subsection{The Hilbert curve} \noindent{\small \textbf{Note:} If you have skipped the previous sections as you only want to read about \texttt{HilbertVis}, here is what you need to know in order to start reading here: We have re-analysed part of the ChIP-Seq experiments done in Ref.\ \cite{HistMeth_ChipSeq}, namely the data regarding histone methylation patterns H3K4me1 and H3K4me3. We have constructed two sets of very long ``coverage'' vectors in \texttt{IRanges}'s \texttt{Rle} form, \texttt{coverage.me1} and \texttt{coverage.me3}, which represent the human chromosomes and have a length corresponding to the number of base pairs of each chromosome. Each element corresponds to a base pair and counts how many precipitated and sequenced DNA fragments within the respective sample (H3K4me1 or H3K4me3) cover this position. The vectors \texttt{coverage.me1.n} and \texttt{coverage.me3.n} have been normalized by dividing by the total number of reads. To do your own experiments with these vectors, you can download these vectors (truncated to only contain chromosome 10, to save space) as R data file from \url{http://www.ebi.ac.uk/~anders/ShortReadExampleData/meX.chr10.rda}.} \bigskip \noindent{\small \textbf{Note 2:} Since I have written this vignette, I have restructured the package and split it into two parts, called ``HilbertVis'' and ``HilbertVisGUI''. This text focuses on the functionality of ``HilbertVisGUI'', which provides an interactive tool to explore data using teh visualisation technique desribed in the following. ``HilbertVis'' contains further functions to produce the same kind of images but without interactive tools, i.e. solely from the R command line. If you want to know more about these functions, which are not mentioned in the present text, see the vignette ``Visualising very long data vectors with the Hilbert curve'', which is included in the ``HilbertVis'' package.} \bigskip \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-pileup1D} \caption{Pile-up representation of the ChIP-Seq data for H3K4me1 and H3K4me3, depicting the whole of chromosome 10.} \label{pileup1D} \end{figure} \noindent A first approach to visualising the two vectors is plotting them with the \texttt{plotLongVector} function described above: <>= library( ShortRead ) library( HilbertVis ) library( HilbertVisGUI ) par( mfrow = c(2,1) ) plotLongVector( coverage.me1.n$`10`, main="Chr 10, H3K3me1" ) plotLongVector( coverage.me3.n$`10`, main="Chr 10, H3K3me3" ) @ [Output: Fig.\ \ref{pileup1D}.] \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-pileup1Dzoom} \caption{Zoom into a small portion of Fig.\ \ref{pileup1D}.} \label{pileup1Dzoom} \end{figure} The two vectors do look different but it is hard to make out what gives rise to the difference. Is the number of peaks different, or their distribution, or their typical width? Given that each pixel on the x axis corresponds to more than 100 kp, each of the needle can as well be a small peak, only a few fragment lengths wide, a wide peak with a base of tens of kb, or even a cluster of several peaks. We might zoom in somewhere but this is not too illuminating: <>= par( mfrow = c(2,1) ) plotLongVector( coverage.me1.n$`10`[100000000:101000000], main="Chr 10, H3K3me1", offset=100000000 ) plotLongVector( coverage.me1.n$`10`[100000000:101000000], main="Chr 10, H3K3me3", offset=100000000 ) @ [Output: Fig.\ \ref{pileup1Dzoom}.] The standard approach would be to export the pile-up vectors into a genome track format such as BED\footnote{A function to do that might be added soon to \texttt{ShortRead}.} and then use a genome browser such as those on the UCSC or Ensembl web sites, or IGB, to zoom in at many places to get a feeling for the data. \begin{figure} \centering \includegraphics[width=.4\textwidth]{images/HilbertPlot_H3K4me1}\qquad \includegraphics[width=.4\textwidth]{images/HilbertPlot_H3K4me3} \caption{Hilbert curve plot of pile-ups for H3K4me1 (left) and H3K4me3 (right) on chromosome 10.} \label{twoHilbertPlots} \end{figure} The Hilbert curve plot is an approach to display an as detailed picture of the whole chromosome as possible by letting each pixel of a large square represent a quite short part of the chromosome, coding with its colour for the maximum count in this short stretch, where the pixels are arranged such that neighbouring parts of the chromosome appear next to each other in the square. Furthermore, parts which are not directly neighbouring but are ion close distance should not be separated much in the square either. Fig.\ \ref{twoHilbertPlots} shows the two pile-up vectors in this so-called Hilbert curve plot. \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-HilbertCurves} \caption{The first four levels of the Hilbert curve fractal.} \label{HilbertCurves} \end{figure} In order to understand this plot you need to know how the pixels are arranged to fulfil the requirements just outlined as well as possible. To my knowledge, the first to study this problem in detail and to come up with the solution also used here was D.\ A.\ Keim in Ref.\ \cite{HilbertVisualization_first} (where he used the data to visualise long time-series data of stock-market prices). He went back to an old idea of Peano \cite{PeanoCurve_first} and Hilbert \cite{HilbertCurve_first}, space-filling curves. Peano astonished the mathematics community at the end of the 19th century by presenting a continuous mapping of a line to a square, i.e., showed that a line can be folded up such that it passes through every point within a square, thus blurring the seemingly clear-cut distinction between one- and two-dimensional objects. Such a space-filling curve is a fractal, i.e., it has infinitely many corners and repeats its overall form in all levels of its details. Fig.\ \ref{HilbertCurves} shows the first six level of the construction of Hilbert's variant of Peano's curve. Observe how at level $k$ a line of length $2^{2k}$ passes through each ``pixel'' of a square of dimension $2^k \times 2^k$, and how this curve is produced connecting four copies (in different orientations) of the curve at the previous level, $k-1$. Figure \ref{HilbertCurves} has been produced with the function \texttt{plotHilbertCurve} which is provided just for demonstration purposes. <>= library( grid ) pushViewport( viewport( layout=grid.layout( 2, 2 ) ) ) for( i in 1:4 ) { pushViewport( viewport( layout.pos.row=1+(i-1)%/%2, layout.pos.col=1+(i-1)%%2 ) ) plotHilbertCurve( i, new.page=FALSE ) popViewport( ) } @ Going back to Fig.\ \ref{twoHilbertPlots}, we can now see clear difference between the two samples. The following observations my be made just from comparing these two plots: The peaks of H3K4me3 are tall, narrow, and well defined, while those for H3K4me1 are rather washed out. In both cases the peaks spread out over the whole chromosome, but some areas have nearly no signal. These empty parts are the same in both cases. These points were not clear only from Fig.\ {}. Exploring the plot interactively as described in the following allows to get considerable more insights. \subsection{The \texttt{HilbertVis} GUI} In order to study the pile-up vectors, you can now simply call \begin{verbatim} hilbertDisplay( coverage.me1.n$`10`, coverage.me3.n$`10` ) \end{verbatim} \begin{figure} \centering \includegraphics[width=.6\textwidth]{images/HilbertDisplay_GUI} \caption{The graphical user interface (GUI) provided by \texttt{HilbertVisGUI}.} \label{GUI} \end{figure} A GUI, as depicted in Fig.\ \ref{GUI} will pop up that allows you to interactively explore your data in the Hilbert curve plot representation. First, press the ``Darker'' button two or three times to get better contrast. Then, move the mouse over the coloured square and observe how the small red line in the right-hand gauge (labelled ``Displayed part of sequence'') indicates where within the chromosome you are pointing. Playing with this feature allows you to quickly orient yourself on how the chromosome is folded into the square. You can also read off the exact position from the field ``Bin under mouse cursor''\footnote{The display of the bin's value is not yet functional.} Use the left mouse button to zoom in by clicking on one of the four quarters of the image. You can only zoom into a quarter, not into any part of the image, because this ensures that the displayed part is always a single consecutive stretch of the chromosome. The left-hand gauge (labelled ``Full sequence'') indicates which part is displayed: the full width of the gauge represents the whole chromosome, the portion highlighted in red the part that is currently displayed in the square. The coordinates of the first and last displayed base are printed in the edges of the right-hand gauge. With the radio buttons labelled ``Effect of left mouse button'' you my switch from zooming into a quarter to zooming into a 1/64 part, i.e. into one of the small squares in a though $8\times 8$ grid. Use the buttons at the bottom to zoom out. If you have passed several vectors when calling \texttt{hilbertDisplay}, you may switch back and forth between them with the buttons ``Next'' and ``Previous'' (or by pressing Alt-N and Alt-P) in order to compare the displayed parts. The two buttons ``Coarser'' and ``Finer'' allow to adjust the pixel size. Initially, each bin is represented by one pixel at your monitor's resolution, and there are $512\times 512$ pixels in the image. Pressing ``Coarser'' once blows up each image pixel to a $2\times 2$ square of monitor pixels, which allows for easier viewing but reduces the number of displayed image pixels to $256\times 256$, i.e., each pixel now represents four times as many base pairs. There are a number of optional parameters to \texttt{hilbertDisplay} that come in handy, e.g., if you have vectors of differing length, if you want to customise colours or change a few other points. Refer to the help page (displayed with \texttt{?hilbertDisplay}) for details. \subsection{The callback interface} If you select the mode ``Linear plot'' as ``Effect of left mouse button'' and click somewhere in the plot, a windows pops up with a linear plot that displays the part of the chromosome represented by 256 pixels around the pixel on which you have clicked. (256 pixels correspond quite roughly to the size of the cross-hair mouse cursor). This is useful to get a detailed view of the shape of peaks. To do the linear plot, HilbertDisplay calls the R function \texttt{simpleLinPlot} defined in the \texttt{HilbertVisGUI} package. This is a simple wrapper around the function \texttt{plotLongVector} discussed earlier. Here is the definition of simpleLinPlot: <<>>= simpleLinPlot @ You can replace this function by supplying your own plotting function as the argument \texttt{plotFun} to \texttt{hilbertDisplay}. Your function must take two arguments that should be called \texttt{data} and \texttt{info}, as above, and will be filled in by \texttt{hilbertDisplay} with the displayed vector and information about where the user clicked and which part of the vector is being displayed. Try the following example to see the format of this data: \begin{verbatim} dumpDataInsteadOfPlotting <- function( data, info ) { str( data ) print( info ) } hilbertDisplay( me1.p10, me3.p10, plotFunc=dumpDataInsteadOfPlotting ) \end{verbatim} Zoom in a bit, then switch to "linear plot" and click somewhere. \texttt{dumpDataInsteadOfPlotting} will be called and output such as the following appears on your R console: \begin{verbatim} num [1:135374737] 0 0 0 0 0 0 0 0 0 0 ... $binLo [1] 22950198 $bin [1] 22950262 $binHi [1] 22950327 $dispLo [1] 16921843 $dispHi [1] 25382764 $seqIdx [1] 1 $seqName [1] "me1.p10" \end{verbatim} See \texttt{?hilbertDisplay} for an explanation of those fields that are not self-explanatory. This feature is meant to allow for customised linear plots (maybe using the \texttt{GenomeGraph} package to add annotation) but can also be used for other things than plotting, e.g., calculating some statistics about a peak clicked on. \subsection{Three-channel display} In order to look for spatial correlations in different data vectors, it may be useful to overlay the corresponding Hilbert curve plots in different colours. The function \texttt{hilbertDisplayThreeChannel} allows to display three data vectors simultaneously, using the red, green, and blue channel of the displayed image for the first, second, and third, vector. We may want to see whether the areas with strong H3K4me1 occurance are at the same chromosome regions as the majority of the H3K4me3 peaks. Furthermore, we may use the third channel to indicate the presence of exons. We first obtain a list of all exons on chromosome 10 from EnsEMBL via BioMart: <<>>= library( biomaRt ) ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl") exons <- getBM( attributes=c( "exon_chrom_start", "exon_chrom_end" ), filters="chromosome_name", values="10", mart=ensembl ) @ This is a set of intervals and hence best represented as an \texttt{IRanges} object: <<>>= exon.chr10.ranges <- IRanges( start=exons$exon_chrom_start, end=exons$exon_chrom_end ) @ %$ Them, we construct a vector that indicates for each base pair on chromosome 10, whether it is exonic or not (bty means of the values 1 and 0). <<>>= exons.chr10 <- coverage( exon.chr10.ranges, width = seqlens[["10"]] ) @ \begin{figure} \centering \includegraphics[width=.7\textwidth]{images/hilbert_3col} \caption{A three-color overlay (obtained with the function \texttt{hilbertDisplayThreeChannel}) of Hilbert curves for H3K4me1 (red), H3K4me3 (green) and an exon indication (blue). The image shows a zoom into the first quarter of chromosome 10 (i.e., the top left quarter of the images in Fig.\ \ref{twoHilbertPlots}).} \label{threeColor} \end{figure} With the following command, we get a 3-color representation of the three vectors in the HilbertDisplay GUI: <>= hilbertDisplayThreeChannel( coverage.me1.n$`10` * 5e5, coverage.me3.n$`10` * 5e5, exons.chr10 * .5 ) @ See Fig.\ ref{threeColor} for the image that the GUI shows. While the function \texttt{hilbertDisplay} adjusts to the value range of the data (or can be manually adjusted with optional the \texttt{paletteSteps} argument), the function \texttt{hilbertDisplayThreeChannel} expects all three vectors to be in the value range between 0 and 1. This range is transformed to colours from black to a saturated red, green, and blue. Values below 0 or above 1 are cut and displayed as if they were 0 or 1. To get the pile-up vectors down to this range, an obvious step would be to divide by their maximum value. However, this gives a too dark value, and hence, I have chosen for Fig.\ \ref{threeColor} larger scaling factors, allowing extremely high peaks to become saturated. \section{Correlation with transcription start} A common plot to do with histone modification ChIP-Seq data is to see how the pile-up correlates with transcription start sites (TSS). This is done quite easily. First, we get a list of known TSSs on chromosome 10 from EnsEMBL (again via BioMart). <<>>= tss <- getBM( attributes=c( "transcript_start", "transcript_end", "strand" ), filters="chromosome_name", values="10", mart=ensembl ) @ <<>>= head(tss) @ Note that \texttt{transcript\_start} is always smaller than \texttt{transcript\_end}, even when the transcript is on the ``--'' strand. Hence, we have to use either the start or the end coordinate of the transcript, depending on the strand, to get the actual transcription start sites, i.e., the 5' ends of the transcripts. Then, we go through all TSS, cutting out a window from 2000 bp upstreams to 2000 bp downstreams of the TSS and sum these up these vectors of length 4001 (reversing them whenever they are from the ``--'' strand): <<>>= tme1 <- rep( 0, 4001 ) tme3 <- rep( 0, 4001 ) for( i in 1:nrow(tss) ) { if( tss$strand[i] == 1 ) { tme1 <- tme1 + as.vector( coverage.me1.n$`10`[ IRanges( tss$transcript_start[i] - 2000, tss$transcript_start[i] + 2000 ) ] ) tme3 <- tme3 + as.vector( coverage.me3.n$`10`[ IRanges( tss$transcript_start[i] - 2000, tss$transcript_start[i] + 2000 ) ] ) } else { tme1 <- tme1 + rev( as.vector( coverage.me1.n$`10`[ IRanges( tss$transcript_end[i] - 2000, tss$transcript_end[i] + 2000 ) ] ) ) tme3 <- tme3 + rev( as.vector( coverage.me3.n$`10`[ IRanges( tss$transcript_end[i] - 2000, tss$transcript_end[i] + 2000 ) ] ) ) } } @ $% Note the use of \texttt{as.vector}, which transforms the \texttt{Rle} vector into an ordinary one. Without it, we would sum up many short \texttt{Rle} vectors which is very slow. \begin{figure} \centering \includegraphics{ShortRead_and_HilbertVis-tssPlot} \caption{Correlation against transcription start sites for H3K4me1 (red) and H3K4me3 (green).} \label{tssPlot} \end{figure} Normally, one would add all the other chromosomes, as well. For this vignette, we simply plot what we have so far: <>= matplot( -2000:2000, cbind( tme1, tme3 ), type="l", col=c("red","green"), lty="solid", xlab="distance to TSS", ylab="" ) abline( v=0, col="gray" ) @ [Output: Fig.\ \ref{tssPlot}.] \section*{Session info} <<>>= sessionInfo() @ \section*{Version history} \begin{itemize} \item v1: 2008-07-21 \item v2: 2009-06-30 \end{itemize} \bibliographystyle{simon2} \bibliography{hilbert} \end{document} ShortRead/inst/doc/ShortRead_and_HilbertVis.pdf0000644000126300012640000477267612227066722023160 0ustar00biocbuildphs_compbio%PDF-1.4 5 0 obj << /S /GoTo /D (section.1) >> endobj 8 0 obj (Introduction) endobj 9 0 obj << /S /GoTo /D (section.2) >> endobj 12 0 obj (The example data) endobj 13 0 obj << /S /GoTo /D (section.3) >> endobj 16 0 obj (Reading in the alignment) endobj 17 0 obj << /S /GoTo /D (section.4) >> endobj 20 0 obj (The class AlignedRead) endobj 21 0 obj << /S /GoTo /D (section.5) >> endobj 24 0 obj (Coverage) endobj 25 0 obj << /S /GoTo /D (section.6) >> endobj 28 0 obj (Visualisation with Hilbert curve plots) endobj 29 0 obj << /S /GoTo /D (subsection.6.1) >> endobj 32 0 obj (The Hilbert curve) endobj 33 0 obj << /S /GoTo /D (subsection.6.2) >> endobj 36 0 obj (The HilbertVis GUI) endobj 37 0 obj << /S /GoTo /D (subsection.6.3) >> endobj 40 0 obj (The callback interface) endobj 41 0 obj << /S /GoTo /D (subsection.6.4) >> endobj 44 0 obj (Three-channel display) endobj 45 0 obj << /S /GoTo /D (section.7) >> endobj 48 0 obj (Correlation with transcription start) endobj 49 0 obj << /S /GoTo /D [50 0 R /Fit ] >> endobj 52 0 obj << /Length 2610 /Filter /FlateDecode >> stream xÚ­ËrÛFòî¯`å²`• aƒWNk'±­l’r%r.I ‰,‹–½_¿ý @Ê’«ö@bfÐÓÝÓï¼¾zqñ&­f¦ˆ­ÉfW73“gqšå³¼¬âžW×Eïç&êà×Îi­šÆøÛÀow ‹…‹j_ã8‹þ”wsÄwÁÎ2oqïÁáÍüŸ«Ÿg‹´Œ‹*›-¬‰+SïdÃ-üÖ‹«u'›´°?˜‰?š{\lv«µ•dÍóA†Kk$yñƹ@ ¤ª„~Aôÿ P¦ÙÉÖßá×È®ÍH’ehÜ,!"žSbiÃñJ‰òZ z%7•Øtf€¿Œ,²4v‰–˸¬¬gá·œm½Ú»€»Sd´Ý¶gqžñöŸŽ^é&ÚÏ6šz@óZÕG‚FÝ©h¶¯zÜ‘G—ÕÙåÙ¼$.¬‹³¼œ-LWŽÅþN±ÐVæ/™‹j"hK’V'¸¯ÅPúðŸAî^dÆÆi™Ž¬Öé%$8qýßdž<Žþ·2gø3š±qbsxXXaoú„ü²ô7cÝX~?_¸4¥a"¿ ~ ä8Hi•TÍʸÊs²#ZiÀy²¸Ì™Ð+´"døÐÕ+â™venص0®w‡'ˆAlýjí-mኊŽžo‹hºÙÍm(¤Œú¦ãSÉ–…ìä=K1ë†!ö²Üí 3Bõ œ½¤'Y",ÀÐ0®K:Qk>ïY >ˆ§ #!æ1‡B1zí㑳 ìq¬ìØiÀNKNcPmE¢Û O+”ÍÇyVÐŒlQÜ6 UVÄ¥+§®¿œg–Íã0qùPqÎÅIÆ–!…$ ’ÈžEÂDo?Àßå)­ €Q3’L5ÍGF’¦E´WUt<YÓ«¯ Åÿ˜”¢­•«ÎÁk¥%‡‹8üD<…„Ï3 #Wû" ƒƒdU>ÒØ] kL¦ðÓf!úß &?òY¥ »r ó bê#ËÁÙR-üaÈB„ãÈ¡÷êau$…»Qâdé>•6 Õ/؆DÌ.„ˆ6iLi$‡Õ$Ÿ‹…oBÇF¸ìדt-ü­ý‘Q¼ÉH®uÀp‹U0;= ÉPÆ"ƒÇýQ³ ,¦^þhH]Ó¢ffüṸ5Nû}˜‹TYÙ ÕÞËiä£ þÁ½hÚiD»Å!!G3!ÿcitÓÔAé88L$(§â¬KUƒ8 #˜sóÜ´(r;Žå ›^˜UŇ*ûÂ0=oŽ,¹¯s qxH±6A›áLˆH4DÃp–|˜øX­`9UÖ9úܲ9gŒ”·E>ï{(ÄHw²kë­“ÞM…ŽõF™p8"^3\-žZ¤ž‡» sÝPö}aàVâ) XSl6Ñ{äk;(uéÍÍg® “èFBÐ,ŠC²/rÍOZ45Âd}F–Sk¨áDÁ›Ïuऒç1/õ80~Àx¨Vö1<}:ÊÈ8íšz¨SG'þ—ÓÍ*Šþ#Ï}2*õÔšæ%šx>ŠÇV'€jZŒàTj!cyÅñ&,1ßù¼Ã°a>»•W£Â+ÍË3é¤÷"_y9e),}Êg”>´é‰”>BFÙ@õ/¹éµU¾§ò Õ™œ¢qfÒ,‘qv£Fébþ  ·ð÷ATŸ–Õ èJª¤€'Ô×†Øø ¹=4T«ŸÔJi;hÀ¸Vº»«,¸€-¥†9K¯kø \/.±°$‘7öèyÍ{5Wf¤L˜{´å„˜ÍMXqUÿ77Ÿ£J4‡ÆC«Ã‹S".ο‰Ô¡^%'ÄrèA É“Õ6˜KR;ÉÌýy€Kâ-üe¥µîI¸¨­%¡ú#6’rèL\ºgf[/J1°[ûæÄ—ô =á½¾“M}-9 W©—ª ÀÎm e©+«èͼt,[X¾Öó×<¿Ñ+ÇíH€l´¾ fÀWƒ~Ôå½o à¬"ô½,¬B!eÙ³Ì$O¸åHeÚ>#:dð¤êíÇ£‹‹;±{ ¹†+•n'ESÕ"ÐI ¿Ýhó™E6IJ©æ‘îîc»mýQ±½”fVåæ±áýÞq,—|”K†{@#i£tÃj{5AŒ[|hŒ±¾‚dÍ:§Í«Z[ìSƒÊ¸^Õ4»¡iowCw¿T‹Ìdï‚ FJ¶`°ÃC0ñ³S Pé¸YOSŒNÂá-÷{~Cz‡ t |ò1lpŒÔz£\†TÞÙ“ d͸¹Á//‹¡ ±OÙ,¥ ÿ•s£^rdÔëPOM!1^s‰´^ÛÖ'óN}Uv÷íVFu/üPÈLGáÓ ¿ÿˆ‚¢"HJlˆ «å2d‹x×6€þÊm® Ùm­ß ²ÿCÿæŒjSŠ—ß'rñ›ò*äH~oà(ãS¦áü¦‚&uïÂÆCôEe Iü;~žÞ4jX.¿››±òÇ¥ši#ÁÖÑyO÷Yšúµ$‡b˜{û\®á*¸¬‹­Å/³÷À>P:(.jßÐî¤T»æ}À>/LBw 'çêyAŇ{Z‡<¼¿,;=ÆF£ˆL9¯™^t¥Ã}¦È…³ÕHXJDòÍñ?“ÊZ½¼ ò•+†ˆæŠñíL'1⽜D¼ñ' 7ºÛFl:íyÿ[­¶m^ì›sz[ûÅTœŠb.(‚”àØÿë{­ØITf¤¾æ”+¢ì ¼­Ô†©^Êo:÷-Ä-µ ŽÎ/¿ÿˆŸæJo(H©òNýÓDÿ’xéì¤J¿ÕÿT˜9–Táiriwg“šÿl«¡= h'yÇãJ^ø0æ¶Àãô9¹çe“,.uèÃck+iJàÍ‹Ÿ®^üËU¤Îendstream endobj 50 0 obj << /Type /Page /Contents 52 0 R /Resources 51 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R /Annots [ 76 0 R 80 0 R 81 0 R ] >> endobj 76 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [270.004 350.366 276.596 360.321] /Subtype /Link /A << /S /GoTo /D (section.6) >> >> endobj 80 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [461.32 219.663 481.315 228.38] /Subtype /Link /A << /S /GoTo /D (cite.ShortRead) >> >> endobj 81 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [337.543 171.842 370.659 180.559] /Subtype /Link /A << /S /GoTo /D (cite.Maq) >> >> endobj 53 0 obj << /D [50 0 R /XYZ 89.292 765.769 null] >> endobj 54 0 obj << /D [50 0 R /XYZ 89.292 740.862 null] >> endobj 6 0 obj << /D [50 0 R /XYZ 89.292 318.436 null] >> endobj 51 0 obj << /Font << /F39 57 0 R /F44 60 0 R /F23 63 0 R /F49 66 0 R /F54 69 0 R /F59 72 0 R /F61 75 0 R /F8 79 0 R >> /ProcSet [ /PDF /Text ] >> endobj 87 0 obj << /Length 3752 /Filter /FlateDecode >> stream xÚíÛrÛÆõ]_ÁñKÈÆD°,€L›)k§qËjÝN’éÀ$DqÌ‹LPQ܇~{Ïm»%'}iú@i/gÏž={î‹‹«³ÏžU“:«™\]OTn3mܤ4yVÕõäjùÃô¼›Íuí¦ÍÿÛiûËLM›í-üÝÀ¯}:››\Oïgºœ¶ zãµ‹é¡ø‡ç®¡y€ß~+h Ñá²·‚v(nÿ’º£@ ³ÊNeãËQf³¹5ùôh^|ùåì§«¯?{VN\V—¦K“å&&sðõ)ÃD‡w0g'ó$/t²Í~ÇtÜxâTS9è¶Å‘›™®€<>{íá:Üq‚<Ì* j®TVí„0ˆ¿0SFÂX ËøðØÛFVíŽØ×â‘•›žãN~ÕAW7)*"—ÑÑ-5Ò!<ÇÛØ-" ù»‡f9]Üõ¨ö×éÊF0¼(íê^B% 7HA³!8‘@<à@$@È¿C’æ£bÿŒ¬oyr¦½¥#ï;Ï6äºçâºÇ}ðXîkê4t°ñr†üöË‹Ðû¤§ý{ï`˜*¹Â`…áV Ïk8ò [!#YKÉ9‚,f‘‰ñ‡5y úUä0„²}yþTúeb}â×ÑØF®ß÷×Âì¯D»~œWÄ M"³ðŠ#sÝÌ3~ÜÏ~Eø‡¥mž)[>0bÎ~'–¿=ðX³X´]ì,Œì‚KC–Í çó™5:a?s6Ïs “àóÅ_ÈWèDêjú£2ö5yM\ÛÒÕ÷wß=!0,ÜW« YZ%’¥ êS·¤Mvü£¶{;{4]ˆòÚáf±Ž‚š£÷AHKén(†Zˈ"ÍVi|®±ÀŠH¯CC´àYD }2SºàûãªÔÓ¿Ï*ƒz?7V±±ßÐúb#Oxk Y?Ë:¿ jG¯Yx6pýbLµDì÷´‰ö‹-®ì,.n-Köw‘J݉K°(ÄkÚñâÎmt±KòXxà,Fn7];_U^`P3àÖ[›©Î–GEªlpy¿'ûIæô{ÁÈÆ²7ÀÀÚŠ‰+9|æX ãp¢ÁõCjE hÏñÿµç÷ANóÇ;‹³s¢Ëy=¢ËŒÆAòß0ø†= H0¯§8ðˆˆ5óþ*³Q°®T‘•®ˆ‚u52AUVUu¬³_;ôچÿ…#yêBøˆ¾¢8í#<\ï#<˜+åzŠMƶLåuVªDº^0»c§Y³d”(-±ã|TíÂë]y˜…¹ ]eˆ›H™Oœm!@Žâ€IÓ‘h‹U¯GF’lâ) ŽÐ¶×ÿä¸8d+›Õ6Í}H‰‹¼×$a s)ƒ±5ûøÿU°0'ÂÎB‡& "2È‘ž"önÏ‹‰À÷b&‚½Ä*±ç¸@OˆzfŒ<½.ÊÌ·øO"üÞ‹KÅÅ¿Ðÿ¡<Û"Ó¶”¥}¼šn ê¬Ð:Âïyöö·áê)ð%H²­Ó#‚Ž98\V|i©&T:8„* “+M@WÀÈ‹7ÅÞ8xûÝŠgE¨g3}§ç¸üê]{C´õ®ƒžVb¤Ô¼Äèç}ï´qìâÞð+^#Îòmdzï¹N‘¡"2È‚ÿ9ö&ß Æw$N÷œI QÏó”GåC „S½QwíOQž’VQ–Êõ¨ú<¸u?ÐeðÀ…œ{òÂ%¼À0á\B?˜ŠE ÔÐAvuãÏ2:ôH²S¶m% X@`ä»·c©V™v•Hõb¿Ýza°%Ö0Ð6|àŽøCì‘©-M0¯¥õ^ø0‹ï˜§bÝ2d2A•+©h–,ëd!‰}{+hñn 'ÉÚu‹ƒàš…N¾ÒH9vì†6z™–l"“²ºý)WR$ˆC·Üé:¼V[±S [bÓ–|%cÃôÜ/iC ¸á½GFé¬*ã2žÉ0Ź$4xqꄎEs)âi«PŸb—¤µOÅj›¶¹/k¨ò¦‡1(V$ ý¸^b±6ÁË·Í­¬L€‹A½©Æ ¯m$C!ØÞ*ƒ–¦ «1jœ¤#ð€ÎTRû3&0[¯aÐŽ„¤æZÚª=e)ÆÃ MUX°æuÇ.Sú²V9ý¦Ò£„°{•Þ°âègïwNÑbîDªŽ~ÉÛž$)ž…Yˆ•FjDV•¢£d0!nÛo%’1²‡¦Î³¢ª¬°8 PÌÝ‡Š í à ™HÁ;Y÷/™ y£?½Ì§%<–øKkdÍW…„:U_E±Y_ªBœ£â‚Qù££=µÅôÛ½·88’›ÀdVY9A‰Në\$^ÐéB©|#îÂõÌw#¥z!%ñMMRØõIÆ0Õ¡þ³ŒtÒ³ ü'àÝ7©Ð 3—ç/¹á}7Ì=à‘NT#‡å9®.NNÜ߉Òå5¸Ì^ºŸr6ì~^ù`ê¼7éyjYÎñ…O&aUàÅà œ²˜<ªó|šÅ¤kã½aeüâÀƒ†êNö@ÎyD§Ñ㔄F¨Y+æ`W1¸R¹“âPê᪹ÊO” pERQXÙR<­T*Lé¹qú7”$<Åò¼²Ó{/¸Þo ò&rˆ#Ž‚÷ÐQ@¤¢Í¦;aÕ“êÖfúÚ‹éFRôgš¬“ÜÌŠD©„ôXs}Úš#DbÍq 8Õ/E™¾te‡d8´h:Ù®‘‘ødR%sÓ7I­?”ÿ"ÄâM4ê¯dëWu­>iÉ/Föfų×Q‰o‘¼46ƒb#€+©éá´ªóN5ìÑñ49r¢àݬpèÓy¼Iݪ@÷VV«>ÐãÄöyÇ!RÔ~â O€);ÃIïǬóî2cN?‹“—M¸{y0¶Q9Èl…ã…ï#.3>¤Ø½4amã¥bdQDªüöïH¡˜a£|Û„S­°1÷»¢çÜAeÓ€uò5 I;Ì4kÑÇúÑÉ“µq¡Ìlî‹'í?ôà„%¯óò±}âßÂÓM­Írí7= BŠó¨úº n÷ÔæNe¸ š‡T„^*Ã[¸q9ÛÑ£çg(;X0ü.¢a¶™EÍžQÞ®æÖ'ÍdH\jº«5kàjJ Љ#T:ÉØ®%‹´§¡ìɧ°{/.’ïÇuÄ ª”ö”AW›èÝ>Q@7t‚’2•i2c¹ºýÒtþ½(ÒtÁìñü÷ycÈÕµ¦fˆ£!œJx0ãËcäÔÒªBì`ââ —.{re–yr½¤°~IŒ@÷RÚ`äK‰ååéµÊæ–ÅÈœªÃ¥±ç]Çé9R\§A«Mß`záƒ5)IväSWbÒ»ÁåÁ²‡_fpé/1LŽvØó@x€š?€“®— L` hÆÙMQgÎx%}ŽŸMÀÊç’2 n«Såž\}¬HŠ¥¦Ìiáý¡=Ìhã Å7}öQƒôøJÖÜÖÂ9t]²°uÑÇJØñ¯?u³°ßfíFù5 ‘bËÇPÃ/QÆÕfU#{yÁÕ‘1/2ç”ÀýB©ÙØàëL¹B`6Q ØŽñé<«ªßW‘i­ÿÔ#Õ;]d•öR¼'¸õh*ÏÙ0&k:-ÎD%AêÏ…‚|¨Žµbuü‚ë›PëÄ}„"¡ÿ“Q*¬N¦ÂO|}xl¸¾79@È ߣÆq³‹ û¸VÈJˆ÷_Ae”íñ3Æ&ú _4>¬ƒ|†§=è!ò©ˆüwÞ7DnÇñ¥¹ÿ—J½~ôæ-Éɘ?Ÿ‚«ÊA.‡Z Ûwý\˰?ã.*@´þhÏ4¶ÐÄÿ!—>FŠ€åîneø‚å¥Ä;¯¤íYvJÞb6ö­ñ+í¯6ó_6óaûí\ú_¶³¯®ÎÐäç5©êL×z¢j9D1YlÏÞŸýðS>Yžå“¯ÏòÌÔÕäÚy¦êz²=SÎe³êoÎ^Ÿ½ ¸æ‚la»ÀO–ÁÌY]VüÍ2 …¦àº2ñ÷à\J£Ð!SàtV)†xCFsŽÊäÆñ—’á3I¾?ì-77ëŽ[ôEÙj×ýÔzÇ«¿FÑÙÉ Îó ÓMWÂR{}I¼&à{|øoew\o6)²†»·‡=ÒžÝz¿k6~Esl³[z[¿ªí0<„®9®å ¡9Äøi÷¼Î¬c¡§Â#~Á{#ŸŠ.›cí~•·X|¨¡·[µò5f·Þ-Öíú¯†jþj×4òí§?˜|…º[†uÜØo–ý즕-×»Xw‡u)d׈5÷‡ø9{5fÓ$q~"'QÝ ÀZÿz®±HðŠÆô;¡ƒï©=6ëÿ~4~ûª!ôÅ‚µ…(ÖUý1QCÿ œ2endstream endobj 86 0 obj << /Type /Page /Contents 87 0 R /Resources 85 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R /Annots [ 89 0 R 93 0 R 97 0 R 98 0 R 99 0 R 100 0 R ] >> endobj 89 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [355.116 729.903 395.125 739.828] /Subtype /Link /A << /S /GoTo /D (cite.HistMeth_ChipSeq) >> >> endobj 93 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [154.589 612.902 396.721 624.763] /Subtype/Link/A<> >> endobj 97 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [204.06 567.572 210.519 577.671] /Subtype /Link /A << /S /GoTo /D (Hfootnote.1) >> >> endobj 98 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [401.171 493.909 407.63 505.94] /Subtype /Link /A << /S /GoTo /D (Hfootnote.2) >> >> endobj 99 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [478.885 469.719 506.98 480.837] /Subtype/Link/A<> >> endobj 100 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [88.296 457.764 325.207 468.882] /Subtype/Link/A<> >> endobj 88 0 obj << /D [86 0 R /XYZ 89.292 765.769 null] >> endobj 10 0 obj << /D [86 0 R /XYZ 89.292 668.085 null] >> endobj 14 0 obj << /D [86 0 R /XYZ 89.292 336.449 null] >> endobj 110 0 obj << /D [86 0 R /XYZ 104.528 196.634 null] >> endobj 114 0 obj << /D [86 0 R /XYZ 104.528 177.686 null] >> endobj 85 0 obj << /Font << /F8 79 0 R /F7 92 0 R /F39 57 0 R /F75 96 0 R /F79 103 0 R /F80 106 0 R /F25 109 0 R /F24 113 0 R >> /ProcSet [ /PDF /Text ] >> endobj 118 0 obj << /Length 2539 /Filter /FlateDecode >> stream xÚÅZÝoÇ×_Ay s³Ÿ÷‘‡²+ b©Y …c'’’Ø<™GYÑßùÚ»½;ʵ-´}8ÝÞîìÌìÌìÌo—z¹8ûîU1)U™¹Éâzb´WÖe“ÜiU”åd±z7ýq}˜™éúÅìýâçï^å¡£¶AÖO4‘<<+xÎáٳ瞽Œ¯˜O"4ÓÊ„\Ø‘Åï3[L×ÍlnsO=·ð€5÷Uøqsvë=#QóýlîM7AhW¢Í_â`ÍGu-quäïeÝò«6¢ö@⦻êާü¦—Å‚•æ¶CIµ[ãÊ's£µ*m€†Qe´êúz6wÖ¥óœõ,©x^`o˜V{²'Q fqð:f±7ŠYñ‚ÑYíäš›W}`“U«Nâ5[˜¼Æù¸]µžÞ§> E3…²E!¾-aó+<¯%”îFá⌶2E˽û Äçž\M’×ÝïZË‘ý/UfLÏþ©Al(8"Ðí¡Œ5Ág>XêzŽØÃ>`ª=3ª·²`ÑÀG m4lƒSjኞAz1*Üævz'»Ã#­x ÉÓ8U9Ä[ë#ñrfs^ª{³æyÙÔ¼"î–c4n 迎eW +ž„6Ô=ãu`N-ÏY=Õ >rqÖßš(ïGm?ví8vGac¼SNûO†™¾¶µØðx*ód1’ȯ["‹=4j5/-nú¨,n¦¡žáìWáixíÿ˜nZß³UvŠzäi$¿©™q#ñjµS¥ó=“§âù ‹¹Ré<æØ·b”˜Nþ£ý í»O-¨Ü'Ùºf:óè2Æ—3šr³Œéô¦á‘ÛË9m\ö·_ñ¢¨ýik»ŒgÚ=߬Åd-u@öÕ ŠSN”0¯|xv ›»P*›å⤌ØÅd‰~§Ð•-À‚ïÄ£ÞÃè½=Z$½ q¼+ûAäaÓažåÓŸöLUíņ(aY5Xž|–÷…ibv/ë£)[wl­Ò+­‹çW|£ “¥lŽmænK.š¡’…`ÄzIßQG¯|BŽ~ú/©ðsç,×:x/·”Ë›ñj2¯ò2jñ´òfú×ÞB‡‹ ¹ò6´õˆ†] 9J9ŸQpk•µPqœU…6Dèg°¨·‹[ŒP€¬'-bã}ÂlŸ${®ºsá3·àð%q;ák“+›Ï®Îµ6C?yË¥½mKÂ^˜î$Ø% M—›yΉ–Xt1Ž&Ëa×.î±êÀŒ%Ma³âWZðñûZbPî!ˆ›ŸD¿'!ñjXî.î3 ÐBƒ³ûðî7ãü¡+-ßÀžÖMw.}ÉèÐW%í˜A¡ÓþǨî ^¶¹N|§,$5ô°)ØÃÃ"Š/~Œ¢)—Å.)  eC}8 3Ì·b¨˜/–þ3š;‰ŒBJ_ÇØSžÅš]ùÀñND½ç)N¤dðx4qÇ÷0Ö`¯”°eR^¯f…ÄêÁ`‚†:p‹Úµø6‹F㽘9py! ³c¨Þ13¬þ-ƒì 0Ï@þБ5rB±èkÃ×@šH èï)šO ³nwp ÐA »#}C ŠÙ’€%ì[– KKÜ[ñùNâßiÝŽVLÜÑeoO¡y5hÂðpÏÓ¢Þ5ò½¹åÎG¤@€9ÖÜD±õQä-—ëF4l¿ãï/S„<ÆDp’ð.B™oGáG“.s ²:Ä5/>ß“HúLÄsµà•Áºg\RŸ‚Ò¸'‹/X}ïrö=¸bš2ÉÐßœHÞ¶€xo™œ kÙ“µìïºÝߣºE«ÅØ'NÿP©ŒÞ% 7iòŽ'†cïUQFÝÑWP*ÓÂÌá·JÛãiKº·`òæ¶Íµhc?}è¥W:|Ú?rÃÈÍš"-Ö¶*@} |CzNR1w< äõÉžñ¦>‘²ñHUB©·iº¾ ¬.MžK??±Û/HìæÉÄþµ)ÞP:ÿÊæø@j„»c²_DóòÞŠ¾?ÉÐtMÛ5]×ô±i¡µ½Y×Ì»fÑ5ËØ¤—í„ÚN¨í„ÚXüè%2EžÈ9"CøãxÁÍ¿óK‰Ã¾!K¾í Å~-é}*6ßýÇØüt6ør°aÿÛ1YœŠÉ5‚ÈÍ»îˆHl A´Èäm¢§ŒÄ—Öm©Û ßEW& JÒÏvÅ8q>ëÙÿYJ°dú¯l«CßÑç ߸pžæv³&Œ2¼Œ2¬Ð;òµMÆ#§L9œàG¶w›ñõ— kÚ·ñ~nÍßE">;ЧOÕ?t’;ðª‡%§UT”io¯Ö <1úE/£f½{ç†Õïf3‹·~{>šÈE³žâšL€§¥©œc芖Žp{ Óö–ˆù÷@õS‡¥¸p`ØÞAÛ¿’—Ãy>ÉT ØaCV@y/'Ne†WêÆf`ÏS&¨óñ}‘˜ ZÆÛ‹j;:s=€Ïé‡xÖ}1ÞýTÿ¨ÐÄß>NŽþŸs€Ñ Ž7ýíÉô&oäVé­É¡Ü¿fðSºã9“Gý–l|$ÁtÍIøôYX1n¨[²Æù´51²úolUQØ$I²›ÕeHSÖ4/d¡—òœ'ïs*ØÝû2¡ïúloü¼G3FHï¤zPg1™ªs‘Œ-¢¸‹¶m{*¦óO¨ã>­ÎPÄyË®ßw9°Ò…¨s> íèN«ãŸVçr`…S"Sõ.G}¶;9ô´:áiu=ãv1tqÂj—ƒK­3Œ½Ë‘:Y«Nöig] be訋“1-jO†ÿetÖÙ‹3:鉙pì+íÄä¥Êu˜,wgÎ޽דՙžü|¦•+‹É´µ2e9Ù™,S+é{{ööì×–×\˜Ín/ñ÷q𬛜¯€)4Mî”-|Z2¬Ÿä@F'\eðúMÆÅº¼ÀüŸÓã-þ æ²¼ûá Úͱ>ÐE ^Ïß iµÝÜì©JÀÇ*ŠlöÜUVø»"vV๛C2›~‹…ÚèN»?R©]ØÉ C”T—Hƒêpä™›ã-w~œ9 µö‘¿¶5Ò?0ÑUÕ¬çwÕæ ·HNàóRùŒãv³_m–k®ú0ëv³ÄÙÈØÔsÏ­Í~ KkðÞÕgYgç§·\ñ^Ž~jÒ’ gˆzB‹Y:(“Êhæ¢å¡Uï×ܸ­î¯€ö‘鱿éWÜßªË Äƒ‡&a#—íeÙ0¼LÆËW3c ¬k.ð l×j|ƒ¡ƒ*†M Õ£è" ãýߕ˟;endstream endobj 117 0 obj << /Type /Page /Contents 118 0 R /Resources 116 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R /Annots [ 120 0 R ] >> endobj 120 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [356.885 319.86 363.344 331.891] /Subtype /Link /A << /S /GoTo /D (Hfootnote.3) >> >> endobj 119 0 obj << /D [117 0 R /XYZ 89.292 765.769 null] >> endobj 18 0 obj << /D [117 0 R /XYZ 89.292 642.089 null] >> endobj 121 0 obj << /D [117 0 R /XYZ 104.528 179.935 null] >> endobj 116 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F39 57 0 R /F44 60 0 R /F80 106 0 R /F7 92 0 R /F25 109 0 R /F24 113 0 R >> /ProcSet [ /PDF /Text ] >> endobj 124 0 obj << /Length 2104 /Filter /FlateDecode >> stream xÚ½kSÜFì{~ӆėpŽ÷åíd€&L¯3m' ß’LÇæÑÞq_üûj%­½¶×$i?˜“µ»zK+™ƒ£Ïó­".Rµutº•±,äV¦’8/Š­£“·QYO¦J©¨¼žˆ¨"x àyûŠ+å ü­[ŒŒ.¶ïÕåDæ¸ÝbÞ%Bã)G˜ð»Ä$ðöùœwÍ'2êH™xŒlXM¦°å$ Ï’Æ£`S­j‹r¬.iÍýöôXX‚ÄQ2 xÙ¼?ú ”´J¶¦¢ˆó,Cã<ŸLTL³Ú¨®\ 0KÞ÷- ¢ž%Ÿ·<²u>Âcµµû žŸCùà7÷Î=$’·ÊŸ™V~‘ÄZ‹­©qnrTbŸö‘7l¬k6˜àŒñ®5Z]²üëF.ë:´¥Ý²ð”À¶’Ÿñ‰sZJ­€LBÄ…1(Ógऻ¿fRWxn*!LsÙ9ø–ÍøÜŸaM‡_£GÉröW±uÎnMø]2¬‘Q2`!ïÆ"ç­.˜}7,B2ÂBõX˜0 Á[Slⱑü˜›´a£{lT˜MÚcék‘n0”¹»I¬dÍvÙp>a6éÝü!˜ô.+ž3Ù]Vœôœ÷Òå³½®l}1”–õÚ¾hˆT¨vŸmýZbu rèèo{b¾¦šgO¹bja›8+&°ºæ˜w†ohñu ›ó$–‰ ­ds.g%gpÉ)¹nŠn_3]Ä©T|ü“•žÄ\]·²s1ZÙ›$N‹Œ¿€=À³§:Ò—$5±Ì"å%š! nœfo:ø*>S•êXçY'‚†nŠ'S%ž¯•V]ùµ¦+¦š_°­,E]Ø=YRÄ÷zíwdô±!I÷!ýÀ¨•£O^$ª~º!¸½ÁÆ’™Žñ­…W W¶ûV«Ö2&N…‹+X‰·ó?“FåYÕjYá={v鉉qDuZA?!²n¡>§Ë–T[p:%”•ì Àg¹¢»;‰šö­Ni™Û/êѰÐ5à2w+~­«+¶:µtÓÃ’ñœe¯;ÿ†¥p p“±W(ú²mt8cE4]“Ÿ·"|8”e N'Ëzî 4•©p¤(¬'~E{ýî&ÓѺ¿8¾¦Ý.Òȇë¦làâ)›PeìnÔô‚=WÇÔáe¿&†Ä_¢ QöKÞC„–öü’Z>ÜPÒ¹®…pk£ cä°†÷Ú±3¸Ò´‹ ¶íòÒe…Ò)efÖËÔ Æ`ZV6rCÑpÑð@ßÐðJípM&p€Æã`˜ J¦œ]û^9cå*N×þrP:© "2žX.Lï¦&!ÊŤ-*˜wgçÜk®š¼˜®·æN~Syà í^Ä.]âÂܨM?mÚuX‰©WÔq¡uGŠ?=‘+ ÓD÷©K³eÙ²´©‚¸ŒE tIl(­B+(­òÛ=' ,&ÓKíF ̦n ÇØwTÓ9zlAÛ]m+8kwUÀ äàÕåéèÚ¥ù 8nBÕ¶<ÐdݶüÀR¯›2g5Ü©…éLj:O¢3Ëž2ùÒÞ¥¹3­ÎŠèp"„Œöm±:zE«£¢ÛýâELÜÍé®L¸©Û:ìùÛNJÓ{ à3~ Ï_ÏáÙƒgÆàfÿwèÁ3ÐcÆÃÕlðÜ>W{âÌ‚$n26 ŽõgŽM»nU}t‡|DÑc©9EöVÙf’Öª/Ø:¿Ï)óE ‹£ÇõˆÉìÀókµÇðÖt›å¯»µ:W"ÎÑpâïmp–gÌ!öȯð°%fün_²5¡x$ÎS¶ÊŽç,W7nù ð×6K0㈎™ÛÌ ·Ïr}ÌðÈ]¢±vøKÅ6§@öovצx¥ìe3>ÛË·  &ëÜ@öuÑé¿Ýˆu¿{Ö´×]B–\IŽ^®vÅ€ó%½rcÁ,¹»Àk^æôa7¦n¬Á ¾ÜZjÔ$¸ù®/îPÄfêEþÇL±'/²@èh•¶m’¦sŸÊ¬U ºí¨m˜dÚôW2mêôoÞëfÀ²í?L³G“ÜjÜZWL¸Ã'åÉ“ ˜+¾'‡ ™%C¬ªz‡¨¡Srù<Ìa¼ÁƒÅƒàô†Â©±Ë*0/•ÔwPìNýŽAÝùÞ¿KkBÛ|šènê¶Ïøš>E~×é÷éS¨Ñ…·¼­}sýÐmlzVµÕp2Lc‘ÈŽ¡ßréáûÚr(9D©!JQfˆJÁÄ=T6Ü•QÅå¾éÐ"Œ–a´ £I#jnØ`ìÐaa2'Q ë,›= Â>¾`X!m‚µG“áæ+tʰBÝZX3ìï׃¤®È×#ÀsœÜs¿Èu_x¼º¯lÇ;ë!ÈOlëÖæâ¹†úí:èpLá9ÓœoׄKi ýX’^Ì^cc'E7rD±An³!¾W Éž^…g[åɘؿ¸ƒýÓÛc¨ã9¢ƒìå¿j}¸1ä N†¾Á!muŠR:¨â&\ÕÒ0: £ó0º–q®ÆrüN‘a´ £um\‘î¶ÇYgFÙ¯Š0•Ò ‡ÿA|ðòèÁ¿( ¦endstream endobj 123 0 obj << /Type /Page /Contents 124 0 R /Resources 122 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R >> endobj 125 0 obj << /D [123 0 R /XYZ 89.292 765.769 null] >> endobj 122 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F75 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 128 0 obj << /Length 1622 /Filter /FlateDecode >> stream xÚå]oã6ìý~E q­ËÖ°ëÀ+`Ý HÓ´×Ý5é%éºû÷%Ê‘mɶœäŠaŽeŠ¢HŠ")…?Îß]^ùD¦R°Éü~RÊ”J:)X––RNæw7ÉÍ”$D=êù0ÑLæ SíÛ\µ³Î6¯Á©jçƒÇúÚæ?O²ÉŒTæyÅ#mðH5¬›ux™xÇÊ z`úñ‘J6?Ìáð¸3¶tÚÜÑqÞÐŒcñÌáƒ"Ð/k¼ùyâ‰Æø¦.$òäÊìÊB¾ˆ‡Fîç-÷Øœp敾ëkàòV‡ôÓä5´–e7Qñ&k)=À›6è RÖÖƒ8íܳž._¼ZwÅËåUyج„§’sÅœLѼ]MKžl¶Ó',Y¬áÍ“Õ?Sš<+JŸÕ£€êg¯~Õ³A”ОÒ"y5ßа•ù„+€Á³ÚªŸéXl-Rž, =Z&ÃFÓøwšÓÜ-7zàîB}3¦é«.5ÿæ“ÁxQg#Fƒ—«)!4ùá7™_ŒÝÞ v-6R½x³JKóú#Ë3…ð;jᾟAÓÀ¯ù\Lg¬4ºYì Í,è™Õ¿w¦Ki™„µ ܘW­l.E2?µÚ@æ'X„[Ãêú­ž¡ý+Ý¢narW¡LÙÍ#N¸JÍtûútÏÊ s lÞ"›Ÿñ½f¾Â÷€µµÂ·7ª&°²j‘o ?èëÖª(—j>@Û˜Ë DÑÀÉMHfLž°‰HeÁµÍ³2BNX*ˆ]ÌÌâe<‘R*³€qýé/2YÊòûí<ÎÖ*S0™Ã$ï#; ÌˆPý*X:ûï{¥nʬ æŸæ¥-N·fªï‹z^´…­ïL×ek´6û¤Ieî¼7èˆñILˆ¢‚QŒ)h¸ÁãD’ –{`BÃôÖª©{n'[°ò¬Ô3Óriçà m4ÃØ(u$(>Ä\í;»Qiª¥Ô~Z¨‘LXêuTâPóí´[+Ü?‹_ŽT:•ŒCÞ›½©VìJ|J|Ä›h…Gí †ÔÊAÑpÍÓB­Û8Õh¤jÍ_"? )—á-1P‰á}Ù­•<Ú¯üv8׊´•Ho©•°s­ˆ"-…h¹Ü Dj†°a…Ê'-LzðìD>89„ÁÚìÁ0èS@äþêÔ@t–Á SùÏPžecýgõ89Ç™=ï #‡ ˆGrNRÐ3T“;CìòˆÎðßÀ”GÅpѰh-`…µhû½3„wFË5‡\Á·!7(4žÀj².ôð†ò«)ÈTØè¼LYÊÜ™Áf?²ÿ®¦I²Ïäùðžá¬xáR?‡iäÙ-¬_zâ,ο$çI)ß>ÖžJ{^óÌÚcgÓ^Û2証/6€D8Öˆ{šQ;­;³Í¶×ÌŒÌ Z¶×›]±=q¦ Þ¥iW”Žô{w)Q»o8‹Ð^ÿ¾¢¡Ìx`~Óôj éfª†ÚíM¤e ÔKïu3µgæÖ54ñСUêqd pþ ²ÂòÌ÷>£bûHïöòÇF§YQ~>:hŸl-[Ö2âPÑå\ȱ·.bh4ŽˆfýÆEc(‰¹}îLÂâÎÎý2’øŒãTIJĹ¹[‹$X¯Ò?#Rôþëϸ77ý/H覥#0ÒÃÙ¸иSâÂóÿF kô—æ‘&2¡ø=ø¨ Ðí¶µç3\uŽ0ÿŽŠì£.ÏkáÓëècAä%r؛Цã Ym×/P0òEeÕ¹L– (Y¾Ør#]g55"Ó%;ºäæÉ|ÛÚ[v£@¶B«{HòT«ƒ°œJ·ý©®&¦’e­>Ê–ÕZs„ó¹ÄžÅM@wµÜ#3öæÞ`ºEK@ÄÖ'=¬õß›íâ.㘞Vºšjojˆk|×F×qlõÔ…)AzµÚZB1ÖGƒã-ér³MU~…ëj¾V½ÍDZä«N©ÕÊ~Ý(zÄÚ¹¯-»¹nR›[e^<ù«Òã{Œ-"-ÅdFeZ–…ÆÔAþÝOówÿÛeendstream endobj 127 0 obj << /Type /Page /Contents 128 0 R /Resources 126 0 R /MediaBox [0 0 595.276 841.89] /Parent 82 0 R >> endobj 129 0 obj << /D [127 0 R /XYZ 89.292 765.769 null] >> endobj 126 0 obj << /Font << /F75 96 0 R /F8 79 0 R /F13 132 0 R /F10 135 0 R /F7 92 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 139 0 obj << /Length 2285 /Filter /FlateDecode >> stream xÚ¥koÜ6ò»Å"¸r“eHJÔ#Àà"4‡» ióåÐyW~4Þ•½ZÇ îÏw^ɕ։[²Dr83œ÷pÍBßY˜\«Æ¹…ke¬Y¬6'‹»…VµqEM0Z•Öæô ‹w'FvÊÄË·³xÝŸ¼?Y¼×–í2Âûý‡“—oêE£š2_|¸XÔ²]¸ªRVÃÌú—ìͩɮṼ‡;xºÓenªÌ¼:]¹Ë>\ÑܯþõòMåª2We^iD2Ì^ö·ðláYóžˆz^¨¢Îe˵€]ÀÓã¾M»Vú-²Pf’îOm•= ÌT˜à1î¸ <û횈I¶µ7þH±[3úö²õL {ž:ÀwÙáb¿éÊ¢ÎÞ^Lå`k¥{’–yíT^6 3C*óò¦èUU…` Ïáy6Áhœ*K#`/ù":Ë”g«jmü–djˆ÷káÿZæ¶JE¡jgt¸–-+RaGRש05Ê„²# Ë\7YÁï¸×ðùƒBî£vZˆšO<}I@¤)€0<Ù h,ªÿ&]x:s ‰Å²É•®SÅ=QÞ®²$‹&¸D«ÆlMhÀˆ\a¼CèmLµ,˜jé®aðÖʘNK'„™®,9‘ãèWÌ N… ºßÅ,:¯ìùÚ“™Ìq¼;@ŽÂӉ؄‹k ìCé4• $dzì"‚uA<ÓÜe·Ã™<[!ؕȧßôx+î€3Xëw‘nYXh£t'q˜¬„ÇÁ£I ֣؋3ï#ºAõ1iŒiй¬]í=ã7<“Øg7|XùŒ³mèiJ²&¼ï’4Öp`(ýúm MDîI¡à$çdðà½MF>$ŒŽ»Wí–e#Ïöç^>NQÉé0AÆ®x* <( #p²©r/"ó\Eî81»¼VMåëì»ÇÌ'u¹¥l\Bâ+l;Þ•¨¡• ëî›ÜïÛ×þeÇ5Ovܹ¯¯8ó/Bþ×9¯:òšdøB5E‘ =Û²¥¦K”ÍÁDfÌ¿ðÆaÕû&ÎUâYÀáFò(AnºVˆ%eä¡IÆ]À®ú{îÚ;¤AXŒ¼ ‚z–»1-º¹¦ >ÖU`†"ŸÈˆMÉWB­ÛúÌÒ3 ϽPàû?¸ëŽ¿[YïGÛ d$©iúòR๜¼{4;‚™¾`\cmÚžIO2 ¯`ú å¿Er^±)iä¬c³Ü½˜Q; ÂÈj{Õ"©hßvÏÕ>ÇmO{>|\»ä;t™ð½·³™»7ù¢„èRPe]YU¸b‘«Ò”Ò h§\©¬õW ïÿ..–¡“‘u3õ¯Z…¨6R¡QMÒíBolLRÁÛÒW ï§>kT^•I?­9ÍQ%»Î]£t™¶÷[LÄU•}ßq§³Ì«j¬®*pÚPùÒR⺕ět­:žøšuDɲª‘º¥ãÀw7øÕM¨´ãÚ —83¯-élC1\•Á-+vÎ_;]K|÷„VƒˆâgêHgòá«þ<šØí´? Iâ7Q(6í˜ü[‘z¨—î4Äa„Î05º|“`Æà&ÙGæé]ŽÏK‰T‡•õ\¸piQ…=“¯$`ä¾½xh*åŠê©÷z®òýDB£×ÿÀ±ßÇÎb!Û8Û†p¡ƒM{ô)¾g±É] Õ6ûhòâ9Xð3²Žo0´áÿÏ|æ©ÀCÓ{žaDd!GÒÆÜ­6Ì…ÍÞF óeïÎßC&íê¬ •nÚt%dùÖ†w‘ °/’ݽší­žRâÍ[ÁŸ/Òì_,ÒžVš-ùõlRñüù‹TÔÛ¨$D4Ò`2Ÿ6&@‘,Qº1¡^ÆA;×ÉF•ã}â;Øy6­H4•9Úߪ{,‡ñPkŽ{xžY*«t“OKm>2ÚšD¦mTVS¥«£ié§nÓô×¶Hû[`¦·qÇÉ ml(wEÉ÷ˆˆñÓë¿MÂdËA2‡GòQ C+&#šóº&.AüόދL³ñó&‘€@˜ âC A<eêh£ã¹=`5×uöÓ»³%EXŠè¨¬Û:^‘£;nôÆX€Ô:˜pI¨ÃOeºñÚK/NIZ×cڔϫHíŸÿ`’.> endobj 136 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./images/Strand_and_Dir.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 149 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 408.8 227.77] /Resources << /ProcSet [ /PDF /Text ] /ExtGState << /R4 150 0 R >>/Font << /R10 151 0 R >> >> /Length 152 0 R /Filter /FlateDecode >> stream xœµVKo1 ¾çWäÆCÂÄŽóº"!.€®ÄQZŠfA-•ÿ;“ÌcgThEµÒîæ‹_ùl'¾¶Ð:ý´ßÏGsm^~`{ùÓ8ˆ1ÙñíÍ¥A{eœEL>Zv9[$go¾˜‹ç²qiB¤RÍ)Úãá .ÙÁ0‚s¼ŒZÃÆÎ`2J $1<žA‘ ú=€hmdƒ`.ÀA”Ãí#“VJÆ€·Èä|ÒÚ"õ›3 PÐ/Ø›€Nf/ŽÂ.2Qµ¶2˜ “í/qϬÑDÍÝÑPqórµømΌ讄S!M5ërXë}7æ¶\êZÿÑÚW nS—Îr;%‰Î“-™nÛjù_ϫŋ’ Yz¤Ëaó»45Œ›%P_ábOýþK˳f¯ý©=èGMoeÙg¼lD QŽš‚“.-M.ÐJúÔA Ñf7OŽî4î™”ÐåwÌ×»Eå[(@ÅF©vqC0`Pätý»Ò¥|gCÞ<ÈPKò„§2ja†Šœ1"*2Ì2\JG$CŠlešš÷\ã|óˆNjI¬(õRW*’Cde¢#As"÷ÀÉz¤”ƒ€§¼>ÀZãuÂC„R5© è2‚ôð0Ëp‰€õ€^Ê'î‰43•Ö(7]dßÉ},O[nÔ)A%+3×R§õÙm?ŸöÕAž_ÔŽ…lf|–Ѧ ¢è¥äåâÏÞŽæé»?¯n¯~|vøf(@déäT  öpnž~¼:¿ýª»¯öýجŒV"ŽÊ\GRt9]Ïí÷ݱ2:%]SE"Wd˜m¥8!R_»2ÝΪãÏɦ*|’·HDXQô‚ïHŠ Š+öt}WÇ=ÄZãµãX¤œrÕêIð,í@zœ.“¸8"îÉ4;;-÷x®¶ì²—.!Ërón|}ð:rWÓý‹ö½ºÎ“‡ôÉ#’™kÛu^²%éN9ê¶ç”>ÍÖ=|J'»¬o…”DX}žÝÞ|ú~ÞúÜû’ìáí„>]MC³“+À/‡ï"ˆ‰£öéZÃÆÎ<¨¹<9×çv­;0ÍÚ%É$Q³ß'âdVjñi³ët„Ìñöyw‹,â][Ñ ø½|þþÂendstream endobj 149 0 obj << /Producer (GNU Ghostscript 7.07) >> endobj 150 0 obj << /Type /ExtGState /Name /R4 /TR /Identity /OPM 1 /SM 0.02 >> endobj 151 0 obj << /Subtype /Type1 /BaseFont /AENNSE#2BTimes-Roman /Type /Font /Name /R10 /FontDescriptor 153 0 R /FirstChar 32 /LastChar 255 /Widths [ 250 333 408 500 500 833 778 333 333 333 500 564 250 564 250 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 662 667 718 611 556 722 715 329 389 700 611 883 722 722 552 722 662 556 611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 344 389 278 500 500 722 500 500 444 480 200 480 541 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 278 333 333 333 333 333 333 333 333 1000 333 333 1000 333 333 333 250 333 500 500 500 500 200 500 333 760 276 500 564 333 760 333 400 564 300 300 333 500 453 250 333 300 310 500 750 750 750 444 722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 333 722 722 722 722 722 722 722 564 722 722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 564 500 500 500 500 500 500 500 500] >> endobj 152 0 obj 863 endobj 153 0 obj << /Type /FontDescriptor /FontName /AENNSE#2BTimes-Roman /FontBBox [ -168 -281 1031 1098] /Flags 4 /Ascent 1098 /CapHeight 1098 /Descent -281 /ItalicAngle 0 /StemV 154 /MissingWidth 1000 /CharSet (/P/S/W/a/d/h/i/n/o/r/s/t) /FontFile3 154 0 R >> endobj 154 0 obj << /Subtype /Type1C /Filter /FlateDecode /Length 155 0 R >> stream xœeS}TSç¾—Ü÷¬@Wh&ñ#÷×c?¨ŠΩ wœtNŠÈ7XQ\ I$ 7_˜¼! IÀ„P"E¥:±è´®Û´ëæœ+zºžÖÖµû8ï•ë»´gÛûï=¿ßó<¿óû=Ï‹c±1ŽãI»³ss ²S éz¹fs¾ª^¦\-¿Ì®ÃÙõ1ì·“›Zé[ùD¸Ûey.~h½èq"zôºù<ºô}L€ã“7îeªÔ†º¦VK½R”_òjJÊëÿ«lKOO§ŽþÓ¡²äºFImâz¹B¥®—+µT&V(è£T ®ÕP²ª*yÕ*­X¦×Q{h­V«ôÔ+™¯RÛSS·eP¹ºzyƒêuŠVVÓJZk dÊ*ê@½¼FFÕ˪ä«Ü¬zZÛ` ÒRi剹tý†úvQ*W•NåPùòBÖðÿ Ã┪ª¼M­–.•`Ø,ËÆ¶aX!¶+Â~†¥aob;°xþ–X,¦Ç®á»ð‹1É1ÂdAàJlQì?„­+¦ö ²k¯á·—QÖ² Ý(>éñ»{ ˆúLå$ç&`¾¹¥´˜Pm(í4õÂi€¦ˆ_¼î„`>¢ØGrræ´ËVAUA¢¼«­Îd W¼¿û°Â¸¯ô>aë(7ÐæÂf ?‘‰²Û£8ü > [)æ~šÂI¹u_lB‰(ñ«!)Z³õKîE²U%^¾‘Âmà„?ßû“ªêȬžT-4ßwÁ——nÝ•®j-°ky­G¨qY€ž0bôò‚°0¸œð5Öž‹${›pt2Ö2û’fÂë> ½œõ1GH.•O¨{ŽBÀ[8!·‘{ñ÷i(æý™ÁKSä~á±Ðfkc̆ÆF ÁŽÂ?¡ç‘pþã?\»˜L`ça…gÑå³M¡ÄåoP3Â×$=@åhNü޳ßõü#\ô_ˆürbú&üžo™QK‹n† é ×/JzÐD|lõ30<Ë&àVf— 4¡É±Óc ÀßV›ôd´»{­»õöK¯å•qDc‹»C+M@O`ýí¯øÝeÁ»VðøÜ½Œøš+HÎCÀ2›mo†-Hìõƒp 1qáòèIŸƒé‘öµôØOA öG'õƒ´L©Í*'?çT¬«iÍkâ’0aöÇaÞBéwè7è×âv´^h9›ËÕ%vÈt˜»t^]çqvæ—fL}xˆ¼~ìLc¿*$uªRZq*Ü$ÕX†[—@3—zJÔíïìè…>pÛ£öÑöîݾ~ç²fòÀ4Éa·U}¦8*™=½¸4No–~—Îu‹«éÌåý݆¾Ÿ¿8Þÿ.—Gj²I®œ€{™ÖƒöïâYä·{áo:DüS¶ø£<™æÀa)Z"º­ÁZÐ,Q[…ÍD§Û» ¸àµV’Ïê˜m·´ò|E8x’éåù è4Ÿª¸ |‰ée‹Å›ù]»Ôf±[lŒ¼°òPs»Ùf·A<ávzœà*·(zc¼òÆüLdaRÚÚ£o02:(©6~@¢w¿&xI~‘¾Áïó’™«‰ßZ(4ñaìí8åöAIä[ëLÌdÌ{Vÿ$öuYýð#€QŠôbµV«R…µÑ±áðXT;¬äãwµeš}k¥œÃÇ¡–¯lÁÓb½¨]k6!Fou Ú[+a…ñ˜²VaÁ˜1W€bó>’/‘ûZ»ôP~ZvøÍí9×PB™T+çj…a‘;ÔÂØß²Í˜f­³ â/÷ÿþçÂ_qÉwÉ×esp\;?së½óM5g¤§ëÇûòÀˆ(Íc®³É‘DøéžOѬIºÇæ~(6¶´9Lhm9•pÁ1fŠè¦+CylÞ]ž£lŽ †;]]®nÒésya7ÏÎ*‹¤¹·å-£µR’¾Ð5¶ÐÇÖæÌUÜœ;7´pSÚU2 ?§àPï™ÀmýD ‹¾MÓ¢²è!¨UM] ; xãÜ4ŠŸ +Yæ¡§ñ!|eÇÓ×Ä\y“èŠcÀ ÕPo?Ψ¸¸Ï“¹dôØÙe »<Ë=Äß 2ì_tƒ7ØD,¹ü–©ŒÉôdŠ;Ã½ÄÆÙÚûa†ÝW<<ÄÙD\q g7£¢gSÉAÚÂf ´g è! ø£G—B =¾«~Ð8È¢ÂAÑø÷>7î‹{8aÿå47endstream endobj 155 0 obj 1701 endobj 148 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [401.677 148.613 408.651 159.452] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 140 0 obj << /D [138 0 R /XYZ 89.292 765.769 null] >> endobj 141 0 obj << /D [138 0 R /XYZ 132.623 589.159 null] >> endobj 137 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R /F13 132 0 R /F10 135 0 R /F7 92 0 R /F11 144 0 R /F88 147 0 R >> /XObject << /Im1 136 0 R >> /ProcSet [ /PDF /Text ] >> endobj 158 0 obj << /Length 2898 /Filter /FlateDecode >> stream xÚÍZ[o¹~÷¯‚>H€5^æìdƒÍ¢I»¿mÅx4¶ÕJE#Ùëþúž9œ‹í$Û‡>ÈÃË!yn<üxèË«³×ïóY©™]ÝÌTl#mÒYfâ(/ŠÙÕê×ùÕÝBÍëÅÒfÙü±²XÛÀŸüZnÆbÝVø¬áw½Xêt^¯°3· Ý@Oyà¶òÐÍY.t6¿_$ЊƒqêòZ u7´qC7Ô÷ÛÕO¯ßgIǺViT˜bÓ2Îx ¿MÆLÿ"å’ê4Q ‚TG*ËdšDIìü_8¢:¢ÀÑb™gÉü¶ìYÎÌ»–un™éfÇ ã0V!,5[êÂFq:[*IB«”žS¾… uÖÆä =þˆ-¨(§9c ?s)´LÐrç ¹E`O¹ x<Ê·ÁÕ`m¢pÌ‹ª2 #’-Yê‘+bc¨ØØ›0›2!h̦ڻòÖbGsѤE”Źh¿œ0â;1Ü‘¾Cã-Ý¡z×ì¨F£nK¯\Ó$ ÷ w »5Õ[Ô_…rÝ1íó RsDób»›{fƒ™‘£æÄ•ªÜq¡­ë޳ÚY]ëΠ¯þÊ{§rÇ"Yݳì% 8Û²Nìè—qOeN1ÆÌ?"͵wê†A©œýöŠ6_a5ÔL3õVZö¤\EQnP¿?Á>ÉL¨Ð:Úoì<ËóÑô°»YŸï V’7½oxräÙwÝp±òë3Ï-7¿‚âsqç°ì”ð^D+‘_‘1TY«z9ô‚–š |Ã< Ê騻b$ʉº&#ºLá—À/‚YàHÙBê92œ…ý¤³ë†m«&\ê^HP¿JùZ˜ßtJ,Ei+®†£> õ1PCçTDN¨¸Û¹i†=YáÍSªÞÉZk1ï6X§’}t)¼´Òþc[ÅŸÄk· ‡/iê}n¡ºSMàÁvÆêujºó …¦HIÀ—ÖüY8w2ö?vÂ}ö Yë&×O ´êØv{H$ùòÄÒëÿ¹*:[ÿ¿ßeÍJÖû8Á¹–½ð ö5´a–‹—ì<àó+ä¼âC_VæqB»øÿoA˜zÉí¿K Ä_ Õÿƒ –Àm®GgÀóq[=·‡0$O£Ä$‚büˆ5F)ü¶`UÑ9ÒR?„¦›ñY•fQ–¨ÖîäÆÝãb·0Pr—pŒ™ÿH°¶ªùÄ0± Ëše”+A)±î ¨ÐêAblùà ±Í#˜žgVÆÈ¹v¢@Ë&GYš-ÖmoUèÞÖr`ß`ëƒ_â@q»ï@EÆŒ`”ÕeÑT ƒ\ìàJ9§ˆ¦ªj²"1¥;¦¬G.+‡ã6JCå'eÀ¿“µÜŠtngÜM"š@yû²N#k1ù›1²[ ÁRA“NB|w7@"–Û?‹ô¾êïÀ…ê«páTi¤Y‚`ñÇÂà”|éÖƒ#˜†û±å‡}{¸§=:“@m¹Éñˆ[fy’ã7ÍbÆefLõñ£Ÿ£å›ÎC#ã4ÍmÉ2ËzS¨ÓÊ8%ëY£<¯NÂþ¸$‡ëƼ½õ¦Æ¥ëé<¹2¾~oŠ™²‘±©ìa£a·¥Ž¥´¿¥Po4„øSJÙ>ã0ηš<pÈ^vt]9Äì‰)d|ºà¡>DÞú¤‰H¡§™;V[n÷A²)É{×s›dr4lË=—ä‚6¹0ãøºti츥s´Ù®i[Á†i¦:¹”’Ê8sàÌäaQÖ GN>‰ºÚNtæ&zhxöCY‚9%¯¤05öãÊÛžSH˜¦ï‚ ©Œ­‚£Õ_sRˆ›(QF'î+£Ý]3x8SÛð9½¦dW+ªnzgzZ}yb]ãÀñôJ'¶9ÿb…Zty­ÖKÐ1y`·ÆöKáÜN$¤’8ÒJPnÀ­[y‡{Ñ@Éê³MÑÔq¤t?œÇûÒ*K‰<«R—«yäVJ&Õw*¦N:_w«‚l+ô$n¥cï²F7Qâ÷ Íå R‹[;Ö ™pq¨­"•¶ëù”8c˜1K >ÇÜ–™J„Ê#ô8PÁR¬v ƒ“àé(}: áš>RÂéJY´`pÂ^"GõÒ!~äzwõ†¬;^œÇëw…UAV’“éÎ`U‡G¾Ÿ›(õ7Jn÷Þå.LE6‰bmz»ÖäÂùûaöXGqž†ó¡_üt?®6Êý}•0LíÒëIÚ –€õÝUYã9î»v7l-àWB/êæ Ñúp)ÖMsýŽÑXZܹ{Þ¦t/Ű~%Î_=Ý=O BrþÔòí=„_P éé{ÁW<ÊpÛª]NRBëCy l¹|¿ˆ:¿àš¼vlºeåÜ¿œ»8‹ŒþLâf¾8çöAv@Å*JO:U³íðOëBíhB•½=F„ÝÛER>]±Ã?v 8ºó7*k}¹±…¢{Èqðª)Ù ø€ó¯SñÄáø¥ãåvä‚|*áü¥ÔÀw:í½n×] ŒÑ¸Æ„G´R¹bšP#9„2ŒHF²CcÚ@Û#/߆1ºC{²„ä°¨ÁyõÚ8j&áé3±_—"øÄ3—Ë)~ ÂÕ®K[þ™ò¾Tü:•‡ÉW’0h$qÜHr£ ËÖ½59ÉùØ·²Ây½I¥ÏÉ•ÛRw©™Ô¯_õ“#wzQ8Ä@Ȳf; {´U§sTPÖTŽ©l‚v”“ œåLðu¸bêW4òŠeˆ’u’ùº@s^Vȵ´å]&ő逼ð³ëLI·ûj! žÑ”¼¬¥Ír™M2!™{˜s< ¯[N6¸ŸµLg…&“þl  æ”xöÃÕ‚¿x¦fyéBÏT‘XϪíÙ—³_‹g«³xöÓY™"Ÿ=@î4E1Ûž©4R@-\ßœ}>ûÙOµ”¹–Ýd—øO(:™%urN¹ÁœPTY3ä!ÚÑv–¥‘¨££\ù? …ˆC{äÊýÂÀáЮ)á; ÈänÝ:ØM·»úx” Nr6 ‘ U¸Ì¹u 1¸K;IJÞÔ§ýˆ9E¹§!Ľ«Žž‡õ®=BhŒøR~Ùï¸= DÞT<_5܃§ÜŽÕºÜl9#t·œ#†>\*àƒ³€]**"›ò®»>'ĉRc_&ŒÃÖ‡úx:{i>§g€”zX­wåá‘[YçÕ‘"Ôî`ÚñÂÚ€ªšûú€@}¸6lå¬püaˆ„Ù*ÔÄ/ý€åRøÙ5Gn}$ŽÂ%’Ü/ÒpÒ¦¼ÞÔLêÛqö‰¹ ”kÄn¦#­ÜøËfÌ)iÒøK¿ÓÁ¹»ò«(K›Ãòÿ·´ 7ù¿86åzG~-ë€t²pÂÍfÓ $ëÝm4ÎèÇ ¸˜Û`PÓ™ÛÈÿëcµþendstream endobj 157 0 obj << /Type /Page /Contents 158 0 R /Resources 156 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 160 0 R ] >> endobj 160 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [141.675 292.603 148.134 302.702] /Subtype /Link /A << /S /GoTo /D (Hfootnote.4) >> >> endobj 159 0 obj << /D [157 0 R /XYZ 89.292 765.769 null] >> endobj 22 0 obj << /D [157 0 R /XYZ 89.292 405.071 null] >> endobj 161 0 obj << /D [157 0 R /XYZ 104.528 181.849 null] >> endobj 156 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R /F39 57 0 R /F7 92 0 R /F25 109 0 R /F24 113 0 R /F91 164 0 R >> /ProcSet [ /PDF /Text ] >> endobj 168 0 obj << /Length 2930 /Filter /FlateDecode >> stream xÚµZÝo#·÷_¡‡¦ÐhÃï¢Iprh¤@îüàrHuòÚVki}^ùÜë__~ ¹³ÜµÄºèƒ°\rf8œÎüHíw—_½Öra«øâòzA™l — ÍIc¬]\^½[Ò]šÕZPKCÛº¶¦Òµ}Y2×G`Ü·)j3 MO¾zùãbÍiÃ[¬)m¬”aí¨Õ*ÎàžÒýøjM‰Ðaœm:4nVÉx˜T{jÛðÎ’òYTç ‚84Þ-Ð%Z†TˆÏ‚JÝH%$iÙ…áDB€Ä«¦ãª‘‚,'À¶ž*<…cˆïžüò“v }¿DÚh%FR)ZƒrP+ú!km Û€æÚ*ü2™Fd¶øS±ìpƒÖM‘ùÄ -9'é&‹“‘b fq“2Eí(ŒôJI,Á$ö{Û͘î×Èÿ·`gºüù›£ÅéÓd6GrAÆ&ddðÇ)iÑøU“’ód´n 1Vâ®Ç±«‚©’É5Ú²6Û×å Á³$‹ú„³Ë0¸‘¡0¨Ÿg+…èÈým2]ô›Á¡§ åæ'qU²aŒŽüÊñzÏSV“u>I;IÆê=Jë¨Âñ¼>Äi°$s%ÇŒ‹C™Ù"—2dMShèçh‚X$|¿É>mi‰èÊ1õkTˆdÑ?Tƒi 3+:gX{Þb¬ÎM4Icg÷ge¤ÉóyM×-×e"–M9cIŽJ E±F‘ïR%C- ±!rH«‚~’kñÐÏPæ¨_ úEŠ~“/ U·7E›x]l¨ºØàu)ꤙº ª¦±¡¥ÀN  úBæ]–SlîÇXKBl(„n°¯ R†"9Ñ{6“³C¿!Õ—Äšçv“­‹ SWSt]@V–S§›¬ !LIe£[‚J¹¼O¬ÌcíYYŒ)ÄËÃ˜È P„|âÃЄ̌q„Pe1†ó–*ÆtÞ¤dͬøœU]Âu°Eœy>a˜\Q«2¯ Q·R~*vhqŒÃ¾df¦ü‚Ç,RÙ¢Øá¨Ö”~æ(oÐ">8‚Î$Ç£œñðX\ÃâZþÛØ1 Ÿõ=Ÿ,w2vÌëjÜhë¶ŽW"㙼£rìˆâm Ÿ`_ëbLŽòË;¸ÖÑ?k8V%ªUj$c(fU1†íb_”whݦ•õGV[;•è´2(*À´.=ÉSyG"ŠÂÏÕ•sË0fÑeÎ;ª¸ŠÂ1§P<²"Vªƒ²ˆ…nST;ª¸Û!/Î;¬ST–6RW³*¡‡¨Ë• ¥òÔuïàÛÐcè\Þ‡3-£;¹!vôˆeT_TWa¡2·T aßLÆô ¼£ÎæY;¬.vd]Þ!uÒ*3EåqKÖ¡§“yǷ䥟åèÖ{:&†üœcÇdYùÆuħЙÜÌŒ™¡4ŒÆôÇ,ŠYûâ¼SyH¡uuAœ]Weh]ˆ©óq=\ÏWI;;ø‘².Y„]ò%Cç³ÇØaÅ_ÕVü)Ä ™8×ás,p;œ¦©Ôãû9Ê[/‰Ÿáf’Fˆ©¹x1O%ò«×føN4’ø[tÛHÅï׫57bùyÅ̲{Œ/GÇü°b®3¿v¾)]/]¶÷a8ô1½¼r­G÷Û¶‘ÄSߺßÎýú( ý—koöžïÎ øÒu[=žs¿Y1gä˃—~Œ^VûäÉ‹Iàõ»×+JÙòUäøP‘¦Š&Ð ÕX-¼ 8‘ÔzÁE%ü‘05“Pj±HÐÖ,ßzµæ”ßn±Ñ}p$^¹_þþ¼`¢±F|†À¹ç[K±ü‡ïÙAiôçªÐ s#·|tù1/’‹õ“…pÛe‘mï”t:{_mî€ÕÛ›³åÓÔ¾ï…v×~Ý‘…9¯;_<í`ΛH±íö^Eð8=›IÙr¸@¨2Ž9Á˜«¶¡–ºòò;ƒ1'ê¦=ƾm7À"O¿¹i#EìÚB• ²ú8rß;€€(*ÖgÀuû®ïömïVÉ€¡GõÞËé€ðüûw÷P[!̘qи°sÆcE‚&ãE¾À6î·‡âêmÿÐì„'ŸüZl ¿ÿ$þ(³4»ƒ¦1ÜŒÃQéXÝCÍ-,|u‚#¯3úçÈÜ]ƒc| °éá!©]>y«·Q€Öà+ Û´½9sD TXêÓ Z’¶Ô€Q_qÚAòaõÚ›ð^H‘“o h5°Ô&Ù¥°Šønω·l÷~}.X’ZW€Y†’p$ˆ¦` ¢²hbÙ–n,ø¤ïâ: aCùîî1t¸6‰Óâ9“b ðQ¸ÒQè¹-Ù»‡È6œq8mBO2EÈÃZ¦)ø ¦çèˆä íôˆäú6…h{HÇ3×}—:n\ÀÎå&‚ ÎK~¯AÙlLXþ|XÍâó;ý;.ßÍ×üp\ß‚WãÙ5òu G‡ô@{}^b/Ð6LŒZ_ MôEì:mš³OÚÑçŠdþñ„9rCyâ6lžd3“B~>Ç–cÿÇŒ>X/ö›PŽó˜ ÉûIz#£s>¶æ„tˆïƒ†Å±x’zµn³2·PŸÐÙ€ ÛémƒlHÊÙ×È$Û”7ºÃôÃx]Nð713¨‰XÝh#â%F$éÊUôm8û^|yáïÈ‚.Œm˜KÒÔ=Ýo±Ý_|¼x÷ž,®.ÈâÇ ÒpkO®MjíbA•j”/áýîâíÅÏYÖ„­‘´ïüWãL.¤[ˆ ˆ8¡®I k´ÒøB† ·«ã… u‡qÖÊ#Lr+‘|yë’žuVæ$$=W¥!%ºÆý#4vð «wϽgùùŸ|»ý>ùÖ¦³îà=NôÌv7@~¸Š Wáww0º}p…»…ïÕ‡n_Ž·0Í÷ÞÏ}úpû|±ºkû,€ µŽ6ðæÆ?a¤c¸v;'&3=„UJcª¤ÑSø×›öÐ>ì¶ñeßo=Ú´~cx¢«Ökvh¯€÷Ÿ~-A K³."zøáÍæpÓöe¹hxŽú1l‚ÍÊe+Í— ÕÚ_*¡ÀWqÚǾjíŽ}ìéív·¹Ûý{sÜu !ÔÚRIlM#]0¯bR1/¾qàÕÝîÆ¯²TW²†Øyu=LÖ†b)«‚‰üsÎDV5"K{{Û=ýÜS‡º½Ë“!ï7[o®ñ@ßIX½|½r‹ô`"Í·íÝ}lù¨Nö- ÆêŽ·Sç)ívrº1üvÛ}ŠsR5¿&„»0ÑÀDlï6}ÿ-˜xvÅÚU)!Al3=/qÞ¸9œò1&™”Áþ'SNendstream endobj 167 0 obj << /Type /Page /Contents 168 0 R /Resources 166 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 170 0 R 171 0 R ] >> endobj 170 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [408.817 385.619 415.275 397.651] /Subtype /Link /A << /S /GoTo /D (Hfootnote.5) >> >> endobj 171 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [246.461 193.626 252.92 205.937] /Subtype /Link /A << /S /GoTo /D (Hfootnote.6) >> >> endobj 169 0 obj << /D [167 0 R /XYZ 89.292 765.769 null] >> endobj 172 0 obj << /D [167 0 R /XYZ 104.528 189.419 null] >> endobj 173 0 obj << /D [167 0 R /XYZ 104.528 179.935 null] >> endobj 166 0 obj << /Font << /F75 96 0 R /F8 79 0 R /F7 92 0 R /F80 106 0 R /F25 109 0 R /F24 113 0 R /F91 164 0 R >> /ProcSet [ /PDF /Text ] >> endobj 177 0 obj << /Length 1763 /Filter /FlateDecode >> stream xÚ­X{oÛF ÿߟÂDâ«î%YÁ6 E×µC‹¡…QlXLq×›mµ‘Ó¢ß~<’÷Ð#Y»âÓ‘GòxäÔÉyr.u.ªBέÉÅʬæ›Ãlþ~sª@Ž8Êû™äe<ñàÙAÍ·³—³ùË@[z™ËDè£õìÁ“Õ¼‚ž¯¯çre…)«¹•+QÁÌÕïÙ“…Ìvðloáß <Íb©µÎÔÅbiŒÎ~)G:Áó.ŒEeíõâõÏž”6j¨¤ÈM 9ÙŽOËëŸóøèôÁóÕÉlÃô–Mx“Û|±´JgæÐð¶@ÂÃd`”dCºIp„•’mLÏ#ÃRËR”ÆÂ@ ‰\?¼ ñÕ:cj6¶a†&í™çÈó†D}Ãå]RUOjÜî5ÆžÒ„3‘Ù<¯x\ó{Ï9-ýÈK¯xé[x¾g·ä=‹mØÔ®ïAðÖRJQYûõý1 Ð¥@—\¡®‡¤ë§Ä¸6‘û˜åðYwa~šÞ7¸d¼› ûã&ÝòúTUçCf K¯.Þ.Hqz#1 Uj7T84qÖÆa‡e®â°òCüQQ©ŠJUTÊ?š~X'ëc]¬‡u°ü bMÃ_éç·q2QÓ;¯õ[F k³öšì/7³9OÚ(Í©øeÑ4´¤(@’vÀ΂z¬À­Ô†Y?/¬†Ê¬‹lSNÛ*kº®9.Ô e8“ê=Çÿ'Ç`\¸ºŸ=“»½nâï¦]¨¼ôŶ!M¡ªÖ:VØC€/U^ˆBõÂüšø››zã„¿¥7sÚ®=4Œá|1O›¤ xOÃУ S¦­Bßz˜’=˶8ShÌ/&°z"¿*8Éì[xþ uÅÇ• cdψ3>ÔcÕÛÄ’32òU€ÝÏ@.dq[º¦!-T¡^Ò $@C¥Hh3exïU…d¥E"Î<Ó ×v²nŒ¡Ï“<Ú&5¦#t”Põ^$£QE¨2éP¦Ø¨*¬-píÔzÃÔ©õ%ÚaFTÁ1 &v÷šÏbÏ^hb…ô›Ë{ ü…oÊ¿õŒèAŽ6×c õ X&Ñ¥”£TÊÇä¸Ý»Ô–‡æ ®k0²½aÊ U8óÁ0WÔÁ…¸à ²pQ.ûQAHò¢Já(—λ‹p-\½Ã,AVLSEP7QОê"{æ°T*tXí4Híp–³¹"ªVïA`ªýï‘Xÿ*Iêú†ˆC?ñáðÕÃì-ž?%6µ·Vl :ÓÛE‡#©?4ù•6áÅ©øMޝÞÝ“¹ØSÚB)È=è"»½éˆLÕÉ¢xIÌ5+Âù `ªC¢p ª d£mJDdkÎ'ð´Z UÈÏê Fyb…Ý}؆ÿz9úΠ¸Ç¯ÈÚ݆‡„èÑo¹'ÛU¶õyœ´Èp×…Õa£…-û…{ÈѦµXÛ˨ᲢžÁîs©ªbÜ`üËìaçè%*Ð!Öyã‚Ú º¦qg“›´x;öÉâíƒHGi“q†Ü5ý¸Ìo>ÒøDÎÕ^)æ@Çá»@“¥ÊÞHm¢ÿUÖ}³Êflø‘rÍžàòJXU²ë‹ï—jú&§¨ÖU¯‰1Î(ì>€aÖçD! KXa¡CX)ï kÏ{¨}wˆ@§«€‰¶!.º×èô3nëðÈàôQ⎡‚F¼l:îÍzÝÁã³#õ¯ï8½36;þtß{×yDlëB,EI@Ý: f_¸Ià¼zq©Ñ åÒM}Špo1äO‰[âñàj _G q5ïêî 1jÙ [Žq?˜QÛ]emÐb{ð%µ5é‡Î¿ÄœI|"³oÜü #ÈŸÓ†v¨ü'zë3¨R½OþáM¼œ¨¹Û Tß}sóïݹúÝy¼·—'<б†/>ÎØ—g÷\yvÜSxõ(âò Bêp‡œ3Bþ ™#JùD±Ÿ'mH^…Ð1½serèÁ`ì;ˆða¡eÒ|€¤ùÊW£Èt Ãöé8ƒ@ßN@4h'*A4ŒVi½5Œ!nʬ{ïmk|ŽÞ«H8ã}‹JTðô)êáœq¯„è8¢Ý >¨–% ã:0ê©TÁ³×mU iôÿºÓ^Y ]™Xåóà‘ú¥ÉáÓ@—ýoôä¢ð2ɰ[°ó½`ÿVC •›^o¡ùdèjÌ77·Ø¸M÷sÉÔºÊp"½Ow~ĆÝÒ¦ =d<Šâ *'V‹ÂÂ7¶.„É+4±r”ÙëÙ?­F`endstream endobj 176 0 obj << /Type /Page /Contents 177 0 R /Resources 175 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R >> endobj 174 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-me3_p10.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 180 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 360 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 181 0 R >> /ExtGState << >>>> /Length 182 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 69.07 73.44 m 328.36 73.44 l S 69.07 73.44 m 69.07 66.24 l S 106.11 73.44 m 106.11 66.24 l S 143.15 73.44 m 143.15 66.24 l S 180.19 73.44 m 180.19 66.24 l S 217.24 73.44 m 217.24 66.24 l S 254.28 73.44 m 254.28 66.24 l S 291.32 73.44 m 291.32 66.24 l S 328.36 73.44 m 328.36 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 47.21 47.52 Tm (0.0e+00) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 121.30 47.52 Tm (4.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 195.38 47.52 Tm (8.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 269.47 47.52 Tm (1.2e+08) Tj ET 59.04 76.53 m 59.04 153.87 l S 59.04 76.53 m 51.84 76.53 l S 59.04 92.00 m 51.84 92.00 l S 59.04 107.47 m 51.84 107.47 l S 59.04 122.93 m 51.84 122.93 l S 59.04 138.40 m 51.84 138.40 l S 59.04 153.87 m 51.84 153.87 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 73.20 Tm (0) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 100.79 Tm (10) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 131.73 Tm (20) Tj ET 59.04 73.44 m 329.76 73.44 l 329.76 156.96 l 59.04 156.96 l 59.04 73.44 l S Q q Q q 59.04 73.44 270.72 83.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 69.07 76.53 m 69.13 76.53 l S 69.13 76.53 m 69.19 76.53 l S 69.19 76.53 m 69.25 79.63 l S 69.25 76.53 m 69.32 79.63 l S 69.32 76.53 m 69.38 79.63 l S 69.38 76.53 m 69.44 82.72 l S 69.44 76.53 m 69.51 79.63 l S 69.51 76.53 m 69.57 79.63 l S 69.57 76.53 m 69.63 79.63 l S 69.63 76.53 m 69.69 79.63 l S 69.69 76.53 m 69.76 79.63 l S 69.76 76.53 m 69.82 79.63 l S 69.82 76.53 m 69.88 79.63 l S 69.88 76.53 m 69.94 79.63 l S 69.94 76.53 m 70.01 79.63 l S 70.01 76.53 m 70.07 85.81 l S 70.07 76.53 m 70.13 79.63 l S 70.13 76.53 m 70.19 79.63 l S 70.19 76.53 m 70.26 79.63 l S 70.26 76.53 m 70.32 79.63 l S 70.32 76.53 m 70.38 79.63 l S 70.38 76.53 m 70.45 79.63 l S 70.45 76.53 m 70.51 79.63 l S 70.51 76.53 m 70.57 79.63 l S 70.57 76.53 m 70.63 82.72 l S 70.63 76.53 m 70.70 79.63 l S 70.70 76.53 m 70.76 82.72 l S 70.76 76.53 m 70.82 79.63 l S 70.82 76.53 m 70.88 88.91 l S 70.88 76.53 m 70.95 79.63 l S 70.95 76.53 m 71.01 82.72 l S 71.01 76.53 m 71.07 79.63 l S 71.07 76.53 m 71.14 110.56 l S 71.14 76.53 m 71.20 79.63 l S 71.20 76.53 m 71.26 82.72 l S 71.26 76.53 m 71.32 79.63 l S 71.32 76.53 m 71.39 79.63 l S 71.39 76.53 m 71.45 82.72 l S 71.45 76.53 m 71.51 79.63 l S 71.51 76.53 m 71.57 79.63 l S 71.57 76.53 m 71.64 79.63 l S 71.64 76.53 m 71.70 82.72 l S 71.70 76.53 m 71.76 79.63 l S 71.76 76.53 m 71.82 79.63 l S 71.82 76.53 m 71.89 79.63 l S 71.89 76.53 m 71.95 79.63 l S 71.95 76.53 m 72.01 79.63 l S 72.01 76.53 m 72.08 79.63 l S 72.08 76.53 m 72.14 79.63 l S 72.14 76.53 m 72.20 79.63 l S 72.20 76.53 m 72.26 79.63 l S 72.26 76.53 m 72.33 79.63 l S 72.33 76.53 m 72.39 79.63 l S 72.39 76.53 m 72.45 79.63 l S 72.45 76.53 m 72.51 79.63 l S 72.51 76.53 m 72.58 79.63 l S 72.58 76.53 m 72.64 79.63 l S 72.64 76.53 m 72.70 79.63 l S 72.70 76.53 m 72.76 82.72 l S 72.76 76.53 m 72.83 79.63 l S 72.83 76.53 m 72.89 79.63 l S 72.89 76.53 m 72.95 82.72 l S 72.95 76.53 m 73.02 79.63 l S 73.02 76.53 m 73.08 79.63 l S 73.08 76.53 m 73.14 79.63 l S 73.14 76.53 m 73.20 79.63 l S 73.20 76.53 m 73.27 79.63 l S 73.27 76.53 m 73.33 79.63 l S 73.33 76.53 m 73.39 79.63 l S 73.39 76.53 m 73.45 79.63 l S 73.45 76.53 m 73.52 79.63 l S 73.52 76.53 m 73.58 79.63 l S 73.58 76.53 m 73.64 79.63 l S 73.64 76.53 m 73.71 79.63 l S 73.71 76.53 m 73.77 79.63 l S 73.77 76.53 m 73.83 79.63 l S 73.83 76.53 m 73.89 79.63 l S 73.89 76.53 m 73.96 79.63 l S 73.96 76.53 m 74.02 79.63 l S 74.02 76.53 m 74.08 79.63 l S 74.08 76.53 m 74.14 79.63 l S 74.14 76.53 m 74.21 79.63 l S 74.21 76.53 m 74.27 79.63 l S 74.27 76.53 m 74.33 79.63 l S 74.33 76.53 m 74.39 79.63 l S 74.39 76.53 m 74.46 79.63 l S 74.46 76.53 m 74.52 79.63 l S 74.52 76.53 m 74.58 79.63 l S 74.58 76.53 m 74.65 79.63 l S 74.65 76.53 m 74.71 79.63 l S 74.71 76.53 m 74.77 79.63 l S 74.77 76.53 m 74.83 88.91 l S 74.83 76.53 m 74.90 79.63 l S 74.90 76.53 m 74.96 79.63 l S 74.96 76.53 m 75.02 95.09 l S 75.02 76.53 m 75.08 82.72 l S 75.08 76.53 m 75.15 82.72 l S 75.15 76.53 m 75.21 79.63 l S 75.21 76.53 m 75.27 79.63 l S 75.27 76.53 m 75.33 79.63 l S 75.33 76.53 m 75.40 79.63 l S 75.40 76.53 m 75.46 79.63 l S 75.46 76.53 m 75.52 79.63 l S 75.52 76.53 m 75.59 82.72 l S 75.59 76.53 m 75.65 79.63 l S 75.65 76.53 m 75.71 79.63 l S 75.71 76.53 m 75.77 79.63 l S 75.77 76.53 m 75.84 76.53 l S 75.84 76.53 m 75.90 79.63 l S 75.90 76.53 m 75.96 79.63 l S 75.96 76.53 m 76.02 79.63 l S 76.02 76.53 m 76.09 79.63 l S 76.09 76.53 m 76.15 88.91 l S 76.15 76.53 m 76.21 82.72 l S 76.21 76.53 m 76.28 79.63 l S 76.28 76.53 m 76.34 79.63 l S 76.34 76.53 m 76.40 79.63 l S 76.40 76.53 m 76.46 82.72 l S 76.46 76.53 m 76.53 79.63 l S 76.53 76.53 m 76.59 79.63 l S 76.59 76.53 m 76.65 79.63 l S 76.65 76.53 m 76.71 79.63 l S 76.71 76.53 m 76.78 79.63 l S 76.78 76.53 m 76.84 79.63 l S 76.84 76.53 m 76.90 79.63 l S 76.90 76.53 m 76.96 79.63 l S 76.96 76.53 m 77.03 79.63 l S 77.03 76.53 m 77.09 79.63 l S 77.09 76.53 m 77.15 79.63 l S 77.15 76.53 m 77.22 79.63 l S 77.22 76.53 m 77.28 79.63 l S 77.28 76.53 m 77.34 82.72 l S 77.34 76.53 m 77.40 79.63 l S 77.40 76.53 m 77.47 79.63 l S 77.47 76.53 m 77.53 79.63 l S 77.53 76.53 m 77.59 82.72 l S 77.59 76.53 m 77.65 79.63 l S 77.65 76.53 m 77.72 79.63 l S 77.72 76.53 m 77.78 79.63 l S 77.78 76.53 m 77.84 79.63 l S 77.84 76.53 m 77.90 82.72 l S 77.90 76.53 m 77.97 79.63 l S 77.97 76.53 m 78.03 79.63 l S 78.03 76.53 m 78.09 79.63 l S 78.09 76.53 m 78.16 79.63 l S 78.16 76.53 m 78.22 79.63 l S 78.22 76.53 m 78.28 79.63 l S 78.28 76.53 m 78.34 79.63 l S 78.34 76.53 m 78.41 79.63 l S 78.41 76.53 m 78.47 79.63 l S 78.47 76.53 m 78.53 82.72 l S 78.53 76.53 m 78.59 82.72 l S 78.59 76.53 m 78.66 79.63 l S 78.66 76.53 m 78.72 79.63 l S 78.72 76.53 m 78.78 79.63 l S 78.78 76.53 m 78.85 79.63 l S 78.85 76.53 m 78.91 79.63 l S 78.91 76.53 m 78.97 79.63 l S 78.97 76.53 m 79.03 79.63 l S 79.03 76.53 m 79.10 79.63 l S 79.10 76.53 m 79.16 82.72 l S 79.16 76.53 m 79.22 82.72 l S 79.22 76.53 m 79.28 79.63 l S 79.28 76.53 m 79.35 79.63 l S 79.35 76.53 m 79.41 79.63 l S 79.41 76.53 m 79.47 79.63 l S 79.47 76.53 m 79.53 79.63 l S 79.53 76.53 m 79.60 79.63 l S 79.60 76.53 m 79.66 82.72 l S 79.66 76.53 m 79.72 85.81 l S 79.72 76.53 m 79.79 88.91 l S 79.79 76.53 m 79.85 79.63 l S 79.85 76.53 m 79.91 79.63 l S 79.91 76.53 m 79.97 79.63 l S 79.97 76.53 m 80.04 92.00 l S 80.04 76.53 m 80.10 79.63 l S 80.10 76.53 m 80.16 85.81 l S 80.16 76.53 m 80.22 79.63 l S 80.22 76.53 m 80.29 79.63 l S 80.29 76.53 m 80.35 92.00 l S 80.35 76.53 m 80.41 79.63 l S 80.41 76.53 m 80.47 92.00 l S 80.47 76.53 m 80.54 95.09 l S 80.54 76.53 m 80.60 88.91 l S 80.60 76.53 m 80.66 85.81 l S 80.66 76.53 m 80.73 82.72 l S 80.73 76.53 m 80.79 79.63 l S 80.79 76.53 m 80.85 79.63 l S 80.85 76.53 m 80.91 79.63 l S 80.91 76.53 m 80.98 82.72 l S 80.98 76.53 m 81.04 79.63 l S 81.04 76.53 m 81.10 79.63 l S 81.10 76.53 m 81.16 79.63 l S 81.16 76.53 m 81.23 82.72 l S 81.23 76.53 m 81.29 79.63 l S 81.29 76.53 m 81.35 79.63 l S 81.35 76.53 m 81.42 88.91 l S 81.42 76.53 m 81.48 79.63 l S 81.48 76.53 m 81.54 82.72 l S 81.54 76.53 m 81.60 79.63 l S 81.60 76.53 m 81.67 79.63 l S 81.67 76.53 m 81.73 79.63 l S 81.73 76.53 m 81.79 79.63 l S 81.79 76.53 m 81.85 79.63 l S 81.85 76.53 m 81.92 79.63 l S 81.92 76.53 m 81.98 79.63 l S 81.98 76.53 m 82.04 82.72 l S 82.04 76.53 m 82.10 79.63 l S 82.10 76.53 m 82.17 79.63 l S 82.17 76.53 m 82.23 79.63 l S 82.23 76.53 m 82.29 79.63 l S 82.29 76.53 m 82.36 82.72 l S 82.36 76.53 m 82.42 79.63 l S 82.42 76.53 m 82.48 79.63 l S 82.48 76.53 m 82.54 85.81 l S 82.54 76.53 m 82.61 79.63 l S 82.61 76.53 m 82.67 79.63 l S 82.67 76.53 m 82.73 79.63 l S 82.73 76.53 m 82.79 79.63 l S 82.79 76.53 m 82.86 79.63 l S 82.86 76.53 m 82.92 79.63 l S 82.92 76.53 m 82.98 88.91 l S 82.98 76.53 m 83.04 82.72 l S 83.04 76.53 m 83.11 79.63 l S 83.11 76.53 m 83.17 79.63 l S 83.17 76.53 m 83.23 79.63 l S 83.23 76.53 m 83.30 82.72 l S 83.30 76.53 m 83.36 79.63 l S 83.36 76.53 m 83.42 79.63 l S 83.42 76.53 m 83.48 82.72 l S 83.48 76.53 m 83.55 82.72 l S 83.55 76.53 m 83.61 79.63 l S 83.61 76.53 m 83.67 92.00 l S 83.67 76.53 m 83.73 92.00 l S 83.73 76.53 m 83.80 79.63 l S 83.80 76.53 m 83.86 79.63 l S 83.86 76.53 m 83.92 79.63 l S 83.92 76.53 m 83.99 79.63 l S 83.99 76.53 m 84.05 79.63 l S 84.05 76.53 m 84.11 79.63 l S 84.11 76.53 m 84.17 88.91 l S 84.17 76.53 m 84.24 82.72 l S 84.24 76.53 m 84.30 82.72 l S 84.30 76.53 m 84.36 79.63 l S 84.36 76.53 m 84.42 79.63 l S 84.42 76.53 m 84.49 79.63 l S 84.49 76.53 m 84.55 79.63 l S 84.55 76.53 m 84.61 79.63 l S 84.61 76.53 m 84.67 82.72 l S 84.67 76.53 m 84.74 82.72 l S 84.74 76.53 m 84.80 79.63 l S 84.80 76.53 m 84.86 79.63 l S 84.86 76.53 m 84.93 79.63 l S 84.93 76.53 m 84.99 79.63 l S 84.99 76.53 m 85.05 79.63 l S 85.05 76.53 m 85.11 79.63 l S 85.11 76.53 m 85.18 79.63 l S 85.18 76.53 m 85.24 79.63 l S 85.24 76.53 m 85.30 79.63 l S 85.30 76.53 m 85.36 79.63 l S 85.36 76.53 m 85.43 79.63 l S 85.43 76.53 m 85.49 79.63 l S 85.49 76.53 m 85.55 79.63 l S 85.55 76.53 m 85.61 82.72 l S 85.61 76.53 m 85.68 76.53 l S 85.68 76.53 m 85.74 79.63 l S 85.74 76.53 m 85.80 79.63 l S 85.80 76.53 m 85.87 79.63 l S 85.87 76.53 m 85.93 79.63 l S 85.93 76.53 m 85.99 79.63 l S 85.99 76.53 m 86.05 76.53 l S 86.05 76.53 m 86.12 79.63 l S 86.12 76.53 m 86.18 79.63 l S 86.18 76.53 m 86.24 82.72 l S 86.24 76.53 m 86.30 79.63 l S 86.30 76.53 m 86.37 79.63 l S 86.37 76.53 m 86.43 79.63 l S 86.43 76.53 m 86.49 82.72 l S 86.49 76.53 m 86.56 79.63 l S 86.56 76.53 m 86.62 79.63 l S 86.62 76.53 m 86.68 79.63 l S 86.68 76.53 m 86.74 79.63 l S 86.74 76.53 m 86.81 76.53 l S 86.81 76.53 m 86.87 79.63 l S 86.87 76.53 m 86.93 79.63 l S 86.93 76.53 m 86.99 79.63 l S 86.99 76.53 m 87.06 79.63 l S 87.06 76.53 m 87.12 79.63 l S 87.12 76.53 m 87.18 79.63 l S 87.18 76.53 m 87.24 79.63 l S 87.24 76.53 m 87.31 79.63 l S 87.31 76.53 m 87.37 79.63 l S 87.37 76.53 m 87.43 79.63 l S 87.43 76.53 m 87.50 79.63 l S 87.50 76.53 m 87.56 79.63 l S 87.56 76.53 m 87.62 79.63 l S 87.62 76.53 m 87.68 79.63 l S 87.68 76.53 m 87.75 79.63 l S 87.75 76.53 m 87.81 79.63 l S 87.81 76.53 m 87.87 79.63 l S 87.87 76.53 m 87.93 79.63 l S 87.93 76.53 m 88.00 79.63 l S 88.00 76.53 m 88.06 79.63 l S 88.06 76.53 m 88.12 79.63 l S 88.12 76.53 m 88.18 79.63 l S 88.18 76.53 m 88.25 79.63 l S 88.25 76.53 m 88.31 79.63 l S 88.31 76.53 m 88.37 79.63 l S 88.37 76.53 m 88.44 82.72 l S 88.44 76.53 m 88.50 79.63 l S 88.50 76.53 m 88.56 79.63 l S 88.56 76.53 m 88.62 79.63 l S 88.62 76.53 m 88.69 79.63 l S 88.69 76.53 m 88.75 79.63 l S 88.75 76.53 m 88.81 79.63 l S 88.81 76.53 m 88.87 79.63 l S 88.87 76.53 m 88.94 79.63 l S 88.94 76.53 m 89.00 79.63 l S 89.00 76.53 m 89.06 79.63 l S 89.06 76.53 m 89.13 79.63 l S 89.13 76.53 m 89.19 79.63 l S 89.19 76.53 m 89.25 79.63 l S 89.25 76.53 m 89.31 79.63 l S 89.31 76.53 m 89.38 79.63 l S 89.38 76.53 m 89.44 79.63 l S 89.44 76.53 m 89.50 79.63 l S 89.50 76.53 m 89.56 82.72 l S 89.56 76.53 m 89.63 82.72 l S 89.63 76.53 m 89.69 79.63 l S 89.69 76.53 m 89.75 79.63 l S 89.75 76.53 m 89.81 79.63 l S 89.81 76.53 m 89.88 79.63 l S 89.88 76.53 m 89.94 95.09 l S 89.94 76.53 m 90.00 79.63 l S 90.00 76.53 m 90.07 82.72 l S 90.07 76.53 m 90.13 79.63 l S 90.13 76.53 m 90.19 79.63 l S 90.19 76.53 m 90.25 79.63 l S 90.25 76.53 m 90.32 79.63 l S 90.32 76.53 m 90.38 79.63 l S 90.38 76.53 m 90.44 79.63 l S 90.44 76.53 m 90.50 79.63 l S 90.50 76.53 m 90.57 79.63 l S 90.57 76.53 m 90.63 79.63 l S 90.63 76.53 m 90.69 79.63 l S 90.69 76.53 m 90.75 82.72 l S 90.75 76.53 m 90.82 79.63 l S 90.82 76.53 m 90.88 82.72 l S 90.88 76.53 m 90.94 79.63 l S 90.94 76.53 m 91.01 85.81 l S 91.01 76.53 m 91.07 79.63 l S 91.07 76.53 m 91.13 79.63 l S 91.13 76.53 m 91.19 79.63 l S 91.19 76.53 m 91.26 79.63 l S 91.26 76.53 m 91.32 79.63 l S 91.32 76.53 m 91.38 79.63 l S 91.38 76.53 m 91.44 79.63 l S 91.44 76.53 m 91.51 76.53 l S 91.51 76.53 m 91.57 85.81 l S 91.57 76.53 m 91.63 95.09 l S 91.63 76.53 m 91.69 92.00 l S 91.69 76.53 m 91.76 79.63 l S 91.76 76.53 m 91.82 88.91 l S 91.82 76.53 m 91.88 79.63 l S 91.88 76.53 m 91.95 79.63 l S 91.95 76.53 m 92.01 79.63 l S 92.01 76.53 m 92.07 79.63 l S 92.07 76.53 m 92.13 95.09 l S 92.13 76.53 m 92.20 79.63 l S 92.20 76.53 m 92.26 79.63 l S 92.26 76.53 m 92.32 79.63 l S 92.32 76.53 m 92.38 79.63 l S 92.38 76.53 m 92.45 79.63 l S 92.45 76.53 m 92.51 79.63 l S 92.51 76.53 m 92.57 82.72 l S 92.57 76.53 m 92.64 79.63 l S 92.64 76.53 m 92.70 79.63 l S 92.70 76.53 m 92.76 79.63 l S 92.76 76.53 m 92.82 82.72 l S 92.82 76.53 m 92.89 79.63 l S 92.89 76.53 m 92.95 79.63 l S 92.95 76.53 m 93.01 79.63 l S 93.01 76.53 m 93.07 79.63 l S 93.07 76.53 m 93.14 79.63 l S 93.14 76.53 m 93.20 79.63 l S 93.20 76.53 m 93.26 82.72 l S 93.26 76.53 m 93.32 79.63 l S 93.32 76.53 m 93.39 79.63 l S 93.39 76.53 m 93.45 79.63 l S 93.45 76.53 m 93.51 88.91 l S 93.51 76.53 m 93.58 79.63 l S 93.58 76.53 m 93.64 79.63 l S 93.64 76.53 m 93.70 76.53 l S 93.70 76.53 m 93.76 79.63 l S 93.76 76.53 m 93.83 79.63 l S 93.83 76.53 m 93.89 85.81 l S 93.89 76.53 m 93.95 85.81 l S 93.95 76.53 m 94.01 79.63 l S 94.01 76.53 m 94.08 79.63 l S 94.08 76.53 m 94.14 82.72 l S 94.14 76.53 m 94.20 79.63 l S 94.20 76.53 m 94.26 82.72 l S 94.26 76.53 m 94.33 79.63 l S 94.33 76.53 m 94.39 85.81 l S 94.39 76.53 m 94.45 79.63 l S 94.45 76.53 m 94.52 79.63 l S 94.52 76.53 m 94.58 79.63 l S 94.58 76.53 m 94.64 79.63 l S 94.64 76.53 m 94.70 79.63 l S 94.70 76.53 m 94.77 79.63 l S 94.77 76.53 m 94.83 79.63 l S 94.83 76.53 m 94.89 79.63 l S 94.89 76.53 m 94.95 79.63 l S 94.95 76.53 m 95.02 79.63 l S 95.02 76.53 m 95.08 79.63 l S 95.08 76.53 m 95.14 79.63 l S 95.14 76.53 m 95.21 79.63 l S 95.21 76.53 m 95.27 82.72 l S 95.27 76.53 m 95.33 79.63 l S 95.33 76.53 m 95.39 79.63 l S 95.39 76.53 m 95.46 79.63 l S 95.46 76.53 m 95.52 88.91 l S 95.52 76.53 m 95.58 79.63 l S 95.58 76.53 m 95.64 79.63 l S 95.64 76.53 m 95.71 79.63 l S 95.71 76.53 m 95.77 79.63 l S 95.77 76.53 m 95.83 79.63 l S 95.83 76.53 m 95.89 79.63 l S 95.89 76.53 m 95.96 79.63 l S 95.96 76.53 m 96.02 79.63 l S 96.02 76.53 m 96.08 79.63 l S 96.08 76.53 m 96.15 79.63 l S 96.15 76.53 m 96.21 85.81 l S 96.21 76.53 m 96.27 85.81 l S 96.27 76.53 m 96.33 79.63 l S 96.33 76.53 m 96.40 82.72 l S 96.40 76.53 m 96.46 79.63 l S 96.46 76.53 m 96.52 79.63 l S 96.52 76.53 m 96.58 82.72 l S 96.58 76.53 m 96.65 79.63 l S 96.65 76.53 m 96.71 92.00 l S 96.71 76.53 m 96.77 79.63 l S 96.77 76.53 m 96.83 88.91 l S 96.83 76.53 m 96.90 79.63 l S 96.90 76.53 m 96.96 92.00 l S 96.96 76.53 m 97.02 79.63 l S 97.02 76.53 m 97.09 76.53 l S 97.09 76.53 m 97.15 79.63 l S 97.15 76.53 m 97.21 95.09 l S 97.21 76.53 m 97.27 79.63 l S 97.27 76.53 m 97.34 92.00 l S 97.34 76.53 m 97.40 82.72 l S 97.40 76.53 m 97.46 79.63 l S 97.46 76.53 m 97.52 82.72 l S 97.52 76.53 m 97.59 82.72 l S 97.59 76.53 m 97.65 79.63 l S 97.65 76.53 m 97.71 79.63 l S 97.71 76.53 m 97.78 76.53 l S 97.78 76.53 m 97.84 79.63 l S 97.84 76.53 m 97.90 79.63 l S 97.90 76.53 m 97.96 79.63 l S 97.96 76.53 m 98.03 79.63 l S 98.03 76.53 m 98.09 79.63 l S 98.09 76.53 m 98.15 79.63 l S 98.15 76.53 m 98.21 79.63 l S 98.21 76.53 m 98.28 79.63 l S 98.28 76.53 m 98.34 79.63 l S 98.34 76.53 m 98.40 79.63 l S 98.40 76.53 m 98.46 79.63 l S 98.46 76.53 m 98.53 79.63 l S 98.53 76.53 m 98.59 79.63 l S 98.59 76.53 m 98.65 92.00 l S 98.65 76.53 m 98.72 82.72 l S 98.72 76.53 m 98.78 76.53 l S 98.78 76.53 m 98.84 79.63 l S 98.84 76.53 m 98.90 79.63 l S 98.90 76.53 m 98.97 79.63 l S 98.97 76.53 m 99.03 79.63 l S 99.03 76.53 m 99.09 79.63 l S 99.09 76.53 m 99.15 79.63 l S 99.15 76.53 m 99.22 79.63 l S 99.22 76.53 m 99.28 79.63 l S 99.28 76.53 m 99.34 79.63 l S 99.34 76.53 m 99.40 79.63 l S 99.40 76.53 m 99.47 79.63 l S 99.47 76.53 m 99.53 79.63 l S 99.53 76.53 m 99.59 79.63 l S 99.59 76.53 m 99.66 79.63 l S 99.66 76.53 m 99.72 82.72 l S 99.72 76.53 m 99.78 79.63 l S 99.78 76.53 m 99.84 82.72 l S 99.84 76.53 m 99.91 79.63 l S 99.91 76.53 m 99.97 79.63 l S 99.97 76.53 m 100.03 79.63 l S 100.03 76.53 m 100.09 79.63 l S 100.09 76.53 m 100.16 79.63 l S 100.16 76.53 m 100.22 79.63 l S 100.22 76.53 m 100.28 79.63 l S 100.28 76.53 m 100.35 79.63 l S 100.35 76.53 m 100.41 88.91 l S 100.41 76.53 m 100.47 79.63 l S 100.47 76.53 m 100.53 79.63 l S 100.53 76.53 m 100.60 79.63 l S 100.60 76.53 m 100.66 79.63 l S 100.66 76.53 m 100.72 79.63 l S 100.72 76.53 m 100.78 79.63 l S 100.78 76.53 m 100.85 79.63 l S 100.85 76.53 m 100.91 79.63 l S 100.91 76.53 m 100.97 79.63 l S 100.97 76.53 m 101.03 79.63 l S 101.03 76.53 m 101.10 92.00 l S 101.10 76.53 m 101.16 85.81 l S 101.16 76.53 m 101.22 79.63 l S 101.22 76.53 m 101.29 79.63 l S 101.29 76.53 m 101.35 79.63 l S 101.35 76.53 m 101.41 79.63 l S 101.41 76.53 m 101.47 79.63 l S 101.47 76.53 m 101.54 79.63 l S 101.54 76.53 m 101.60 82.72 l S 101.60 76.53 m 101.66 79.63 l S 101.66 76.53 m 101.72 79.63 l S 101.72 76.53 m 101.79 79.63 l S 101.79 76.53 m 101.85 85.81 l S 101.85 76.53 m 101.91 98.19 l S 101.91 76.53 m 101.97 79.63 l S 101.97 76.53 m 102.04 79.63 l S 102.04 76.53 m 102.10 79.63 l S 102.10 76.53 m 102.16 76.53 l S 102.16 76.53 m 102.23 76.53 l S 102.23 76.53 m 102.29 76.53 l S 102.29 76.53 m 102.35 76.53 l S 102.35 76.53 m 102.41 79.63 l S 102.41 76.53 m 102.48 76.53 l S 102.48 76.53 m 102.54 76.53 l S 102.54 76.53 m 102.60 76.53 l S 102.60 76.53 m 102.66 76.53 l S 102.66 76.53 m 102.73 76.53 l S 102.73 76.53 m 102.79 76.53 l S 102.79 76.53 m 102.85 79.63 l S 102.85 76.53 m 102.92 79.63 l S 102.92 76.53 m 102.98 79.63 l S 102.98 76.53 m 103.04 79.63 l S 103.04 76.53 m 103.10 79.63 l S 103.10 76.53 m 103.17 79.63 l S 103.17 76.53 m 103.23 79.63 l S 103.23 76.53 m 103.29 79.63 l S 103.29 76.53 m 103.35 79.63 l S 103.35 76.53 m 103.42 79.63 l S 103.42 76.53 m 103.48 79.63 l S 103.48 76.53 m 103.54 79.63 l S 103.54 76.53 m 103.60 79.63 l S 103.60 76.53 m 103.67 79.63 l S 103.67 76.53 m 103.73 79.63 l S 103.73 76.53 m 103.79 79.63 l S 103.79 76.53 m 103.86 79.63 l S 103.86 76.53 m 103.92 82.72 l S 103.92 76.53 m 103.98 79.63 l S 103.98 76.53 m 104.04 79.63 l S 104.04 76.53 m 104.11 79.63 l S 104.11 76.53 m 104.17 79.63 l S 104.17 76.53 m 104.23 95.09 l S 104.23 76.53 m 104.29 95.09 l S 104.29 76.53 m 104.36 79.63 l S 104.36 76.53 m 104.42 79.63 l S 104.42 76.53 m 104.48 79.63 l S 104.48 76.53 m 104.54 79.63 l S 104.54 76.53 m 104.61 79.63 l S 104.61 76.53 m 104.67 79.63 l S 104.67 76.53 m 104.73 79.63 l S 104.73 76.53 m 104.80 79.63 l S 104.80 76.53 m 104.86 79.63 l S 104.86 76.53 m 104.92 79.63 l S 104.92 76.53 m 104.98 79.63 l S 104.98 76.53 m 105.05 79.63 l S 105.05 76.53 m 105.11 79.63 l S 105.11 76.53 m 105.17 79.63 l S 105.17 76.53 m 105.23 79.63 l S 105.23 76.53 m 105.30 79.63 l S 105.30 76.53 m 105.36 79.63 l S 105.36 76.53 m 105.42 79.63 l S 105.42 76.53 m 105.49 79.63 l S 105.49 76.53 m 105.55 76.53 l S 105.55 76.53 m 105.61 79.63 l S 105.61 76.53 m 105.67 79.63 l S 105.67 76.53 m 105.74 76.53 l S 105.74 76.53 m 105.80 82.72 l S 105.80 76.53 m 105.86 79.63 l S 105.86 76.53 m 105.92 79.63 l S 105.92 76.53 m 105.99 79.63 l S 105.99 76.53 m 106.05 79.63 l S 106.05 76.53 m 106.11 79.63 l S 106.11 76.53 m 106.17 79.63 l S 106.17 76.53 m 106.24 79.63 l S 106.24 76.53 m 106.30 82.72 l S 106.30 76.53 m 106.36 79.63 l S 106.36 76.53 m 106.43 79.63 l S 106.43 76.53 m 106.49 79.63 l S 106.49 76.53 m 106.55 79.63 l S 106.55 76.53 m 106.61 79.63 l S 106.61 76.53 m 106.68 79.63 l S 106.68 76.53 m 106.74 79.63 l S 106.74 76.53 m 106.80 79.63 l S 106.80 76.53 m 106.86 76.53 l S 106.86 76.53 m 106.93 79.63 l S 106.93 76.53 m 106.99 79.63 l S 106.99 76.53 m 107.05 79.63 l S 107.05 76.53 m 107.11 79.63 l S 107.11 76.53 m 107.18 79.63 l S 107.18 76.53 m 107.24 79.63 l S 107.24 76.53 m 107.30 79.63 l S 107.30 76.53 m 107.37 79.63 l S 107.37 76.53 m 107.43 79.63 l S 107.43 76.53 m 107.49 79.63 l S 107.49 76.53 m 107.55 76.53 l S 107.55 76.53 m 107.62 79.63 l S 107.62 76.53 m 107.68 79.63 l S 107.68 76.53 m 107.74 79.63 l S 107.74 76.53 m 107.80 79.63 l S 107.80 76.53 m 107.87 79.63 l S 107.87 76.53 m 107.93 79.63 l S 107.93 76.53 m 107.99 79.63 l S 107.99 76.53 m 108.06 79.63 l S 108.06 76.53 m 108.12 79.63 l S 108.12 76.53 m 108.18 79.63 l S 108.18 76.53 m 108.24 79.63 l S 108.24 76.53 m 108.31 79.63 l S 108.31 76.53 m 108.37 76.53 l S 108.37 76.53 m 108.43 79.63 l S 108.43 76.53 m 108.49 79.63 l S 108.49 76.53 m 108.56 82.72 l S 108.56 76.53 m 108.62 79.63 l S 108.62 76.53 m 108.68 79.63 l S 108.68 76.53 m 108.74 79.63 l S 108.74 76.53 m 108.81 79.63 l S 108.81 76.53 m 108.87 79.63 l S 108.87 76.53 m 108.93 79.63 l S 108.93 76.53 m 109.00 79.63 l S 109.00 76.53 m 109.06 79.63 l S 109.06 76.53 m 109.12 79.63 l S 109.12 76.53 m 109.18 79.63 l S 109.18 76.53 m 109.25 82.72 l S 109.25 76.53 m 109.31 79.63 l S 109.31 76.53 m 109.37 79.63 l S 109.37 76.53 m 109.43 79.63 l S 109.43 76.53 m 109.50 82.72 l S 109.50 76.53 m 109.56 85.81 l S 109.56 76.53 m 109.62 82.72 l S 109.62 76.53 m 109.68 79.63 l S 109.68 76.53 m 109.75 79.63 l S 109.75 76.53 m 109.81 79.63 l S 109.81 76.53 m 109.87 79.63 l S 109.87 76.53 m 109.94 79.63 l S 109.94 76.53 m 110.00 79.63 l S 110.00 76.53 m 110.06 79.63 l S 110.06 76.53 m 110.12 79.63 l S 110.12 76.53 m 110.19 79.63 l S 110.19 76.53 m 110.25 79.63 l S 110.25 76.53 m 110.31 76.53 l S 110.31 76.53 m 110.37 79.63 l S 110.37 76.53 m 110.44 82.72 l S 110.44 76.53 m 110.50 82.72 l S 110.50 76.53 m 110.56 79.63 l S 110.56 76.53 m 110.63 79.63 l S 110.63 76.53 m 110.69 79.63 l S 110.69 76.53 m 110.75 79.63 l S 110.75 76.53 m 110.81 79.63 l S 110.81 76.53 m 110.88 79.63 l S 110.88 76.53 m 110.94 85.81 l S 110.94 76.53 m 111.00 79.63 l S 111.00 76.53 m 111.06 88.91 l S 111.06 76.53 m 111.13 76.53 l S 111.13 76.53 m 111.19 79.63 l S 111.19 76.53 m 111.25 88.91 l S 111.25 76.53 m 111.31 79.63 l S 111.31 76.53 m 111.38 79.63 l S 111.38 76.53 m 111.44 79.63 l S 111.44 76.53 m 111.50 79.63 l S 111.50 76.53 m 111.57 79.63 l S 111.57 76.53 m 111.63 79.63 l S 111.63 76.53 m 111.69 79.63 l S 111.69 76.53 m 111.75 88.91 l S 111.75 76.53 m 111.82 79.63 l S 111.82 76.53 m 111.88 82.72 l S 111.88 76.53 m 111.94 79.63 l S 111.94 76.53 m 112.00 79.63 l S 112.00 76.53 m 112.07 76.53 l S 112.07 76.53 m 112.13 79.63 l S 112.13 76.53 m 112.19 79.63 l S 112.19 76.53 m 112.25 79.63 l S 112.25 76.53 m 112.32 79.63 l S 112.32 76.53 m 112.38 79.63 l S 112.38 76.53 m 112.44 82.72 l S 112.44 76.53 m 112.51 79.63 l S 112.51 76.53 m 112.57 79.63 l S 112.57 76.53 m 112.63 79.63 l S 112.63 76.53 m 112.69 79.63 l S 112.69 76.53 m 112.76 79.63 l S 112.76 76.53 m 112.82 79.63 l S 112.82 76.53 m 112.88 79.63 l S 112.88 76.53 m 112.94 85.81 l S 112.94 76.53 m 113.01 79.63 l S 113.01 76.53 m 113.07 82.72 l S 113.07 76.53 m 113.13 92.00 l S 113.13 76.53 m 113.20 79.63 l S 113.20 76.53 m 113.26 79.63 l S 113.26 76.53 m 113.32 82.72 l S 113.32 76.53 m 113.38 79.63 l S 113.38 76.53 m 113.45 79.63 l S 113.45 76.53 m 113.51 79.63 l S 113.51 76.53 m 113.57 79.63 l S 113.57 76.53 m 113.63 79.63 l S 113.63 76.53 m 113.70 79.63 l S 113.70 76.53 m 113.76 79.63 l S 113.76 76.53 m 113.82 82.72 l S 113.82 76.53 m 113.88 79.63 l S 113.88 76.53 m 113.95 79.63 l S 113.95 76.53 m 114.01 79.63 l S 114.01 76.53 m 114.07 79.63 l S 114.07 76.53 m 114.14 79.63 l S 114.14 76.53 m 114.20 79.63 l S 114.20 76.53 m 114.26 82.72 l S 114.26 76.53 m 114.32 79.63 l S 114.32 76.53 m 114.39 79.63 l S 114.39 76.53 m 114.45 79.63 l S 114.45 76.53 m 114.51 79.63 l S 114.51 76.53 m 114.57 79.63 l S 114.57 76.53 m 114.64 79.63 l S 114.64 76.53 m 114.70 79.63 l S 114.70 76.53 m 114.76 79.63 l S 114.76 76.53 m 114.82 79.63 l S 114.82 76.53 m 114.89 79.63 l S 114.89 76.53 m 114.95 79.63 l S 114.95 76.53 m 115.01 79.63 l S 115.01 76.53 m 115.08 79.63 l S 115.08 76.53 m 115.14 79.63 l S 115.14 76.53 m 115.20 79.63 l S 115.20 76.53 m 115.26 79.63 l S 115.26 76.53 m 115.33 79.63 l S 115.33 76.53 m 115.39 79.63 l S 115.39 76.53 m 115.45 79.63 l S 115.45 76.53 m 115.51 82.72 l S 115.51 76.53 m 115.58 79.63 l S 115.58 76.53 m 115.64 79.63 l S 115.64 76.53 m 115.70 79.63 l S 115.70 76.53 m 115.77 79.63 l S 115.77 76.53 m 115.83 79.63 l S 115.83 76.53 m 115.89 79.63 l S 115.89 76.53 m 115.95 79.63 l S 115.95 76.53 m 116.02 85.81 l S 116.02 76.53 m 116.08 79.63 l S 116.08 76.53 m 116.14 79.63 l S 116.14 76.53 m 116.20 79.63 l S 116.20 76.53 m 116.27 79.63 l S 116.27 76.53 m 116.33 79.63 l S 116.33 76.53 m 116.39 79.63 l S 116.39 76.53 m 116.45 79.63 l S 116.45 76.53 m 116.52 79.63 l S 116.52 76.53 m 116.58 79.63 l S 116.58 76.53 m 116.64 79.63 l S 116.64 76.53 m 116.71 79.63 l S 116.71 76.53 m 116.77 79.63 l S 116.77 76.53 m 116.83 79.63 l S 116.83 76.53 m 116.89 79.63 l S 116.89 76.53 m 116.96 82.72 l S 116.96 76.53 m 117.02 79.63 l S 117.02 76.53 m 117.08 79.63 l S 117.08 76.53 m 117.14 79.63 l S 117.14 76.53 m 117.21 79.63 l S 117.21 76.53 m 117.27 79.63 l S 117.27 76.53 m 117.33 79.63 l S 117.33 76.53 m 117.39 79.63 l S 117.39 76.53 m 117.46 79.63 l S 117.46 76.53 m 117.52 82.72 l S 117.52 76.53 m 117.58 79.63 l S 117.58 76.53 m 117.65 79.63 l S 117.65 76.53 m 117.71 79.63 l S 117.71 76.53 m 117.77 79.63 l S 117.77 76.53 m 117.83 79.63 l S 117.83 76.53 m 117.90 79.63 l S 117.90 76.53 m 117.96 79.63 l S 117.96 76.53 m 118.02 79.63 l S 118.02 76.53 m 118.08 79.63 l S 118.08 76.53 m 118.15 79.63 l S 118.15 76.53 m 118.21 79.63 l S 118.21 76.53 m 118.27 82.72 l S 118.27 76.53 m 118.33 79.63 l S 118.33 76.53 m 118.40 79.63 l S 118.40 76.53 m 118.46 79.63 l S 118.46 76.53 m 118.52 79.63 l S 118.52 76.53 m 118.59 79.63 l S 118.59 76.53 m 118.65 85.81 l S 118.65 76.53 m 118.71 79.63 l S 118.71 76.53 m 118.77 82.72 l S 118.77 76.53 m 118.84 79.63 l S 118.84 76.53 m 118.90 79.63 l S 118.90 76.53 m 118.96 79.63 l S 118.96 76.53 m 119.02 79.63 l S 119.02 76.53 m 119.09 79.63 l S 119.09 76.53 m 119.15 85.81 l S 119.15 76.53 m 119.21 79.63 l S 119.21 76.53 m 119.28 79.63 l S 119.28 76.53 m 119.34 79.63 l S 119.34 76.53 m 119.40 79.63 l S 119.40 76.53 m 119.46 82.72 l S 119.46 76.53 m 119.53 79.63 l S 119.53 76.53 m 119.59 79.63 l S 119.59 76.53 m 119.65 79.63 l S 119.65 76.53 m 119.71 79.63 l S 119.71 76.53 m 119.78 79.63 l S 119.78 76.53 m 119.84 79.63 l S 119.84 76.53 m 119.90 92.00 l S 119.90 76.53 m 119.96 79.63 l S 119.96 76.53 m 120.03 107.47 l S 120.03 76.53 m 120.09 79.63 l S 120.09 76.53 m 120.15 88.91 l S 120.15 76.53 m 120.22 79.63 l S 120.22 76.53 m 120.28 79.63 l S 120.28 76.53 m 120.34 79.63 l S 120.34 76.53 m 120.40 79.63 l S 120.40 76.53 m 120.47 79.63 l S 120.47 76.53 m 120.53 79.63 l S 120.53 76.53 m 120.59 79.63 l S 120.59 76.53 m 120.65 104.37 l S 120.65 76.53 m 120.72 79.63 l S 120.72 76.53 m 120.78 79.63 l S 120.78 76.53 m 120.84 79.63 l S 120.84 76.53 m 120.90 79.63 l S 120.90 76.53 m 120.97 79.63 l S 120.97 76.53 m 121.03 79.63 l S 121.03 76.53 m 121.09 85.81 l S 121.09 76.53 m 121.16 82.72 l S 121.16 76.53 m 121.22 79.63 l S 121.22 76.53 m 121.28 79.63 l S 121.28 76.53 m 121.34 79.63 l S 121.34 76.53 m 121.41 79.63 l S 121.41 76.53 m 121.47 82.72 l S 121.47 76.53 m 121.53 82.72 l S 121.53 76.53 m 121.59 88.91 l S 121.59 76.53 m 121.66 79.63 l S 121.66 76.53 m 121.72 79.63 l S 121.72 76.53 m 121.78 79.63 l S 121.78 76.53 m 121.85 79.63 l S 121.85 76.53 m 121.91 79.63 l S 121.91 76.53 m 121.97 79.63 l S 121.97 76.53 m 122.03 79.63 l S 122.03 76.53 m 122.10 79.63 l S 122.10 76.53 m 122.16 85.81 l S 122.16 76.53 m 122.22 79.63 l S 122.22 76.53 m 122.28 79.63 l S 122.28 76.53 m 122.35 79.63 l S 122.35 76.53 m 122.41 82.72 l S 122.41 76.53 m 122.47 79.63 l S 122.47 76.53 m 122.53 88.91 l S 122.53 76.53 m 122.60 79.63 l S 122.60 76.53 m 122.66 79.63 l S 122.66 76.53 m 122.72 79.63 l S 122.72 76.53 m 122.79 79.63 l S 122.79 76.53 m 122.85 88.91 l S 122.85 76.53 m 122.91 79.63 l S 122.91 76.53 m 122.97 79.63 l S 122.97 76.53 m 123.04 79.63 l S 123.04 76.53 m 123.10 79.63 l S 123.10 76.53 m 123.16 79.63 l S 123.16 76.53 m 123.22 76.53 l S 123.22 76.53 m 123.29 82.72 l S 123.29 76.53 m 123.35 79.63 l S 123.35 76.53 m 123.41 79.63 l S 123.41 76.53 m 123.47 79.63 l S 123.47 76.53 m 123.54 79.63 l S 123.54 76.53 m 123.60 79.63 l S 123.60 76.53 m 123.66 79.63 l S 123.66 76.53 m 123.73 79.63 l S 123.73 76.53 m 123.79 79.63 l S 123.79 76.53 m 123.85 79.63 l S 123.85 76.53 m 123.91 79.63 l S 123.91 76.53 m 123.98 79.63 l S 123.98 76.53 m 124.04 79.63 l S 124.04 76.53 m 124.10 79.63 l S 124.10 76.53 m 124.16 82.72 l S 124.16 76.53 m 124.23 79.63 l S 124.23 76.53 m 124.29 79.63 l S 124.29 76.53 m 124.35 79.63 l S 124.35 76.53 m 124.42 79.63 l S 124.42 76.53 m 124.48 79.63 l S 124.48 76.53 m 124.54 79.63 l S 124.54 76.53 m 124.60 79.63 l S 124.60 76.53 m 124.67 79.63 l S 124.67 76.53 m 124.73 79.63 l S 124.73 76.53 m 124.79 82.72 l S 124.79 76.53 m 124.85 79.63 l S 124.85 76.53 m 124.92 79.63 l S 124.92 76.53 m 124.98 79.63 l S 124.98 76.53 m 125.04 79.63 l S 125.04 76.53 m 125.10 79.63 l S 125.10 76.53 m 125.17 79.63 l S 125.17 76.53 m 125.23 79.63 l S 125.23 76.53 m 125.29 79.63 l S 125.29 76.53 m 125.36 82.72 l S 125.36 76.53 m 125.42 79.63 l S 125.42 76.53 m 125.48 79.63 l S 125.48 76.53 m 125.54 79.63 l S 125.54 76.53 m 125.61 79.63 l S 125.61 76.53 m 125.67 79.63 l S 125.67 76.53 m 125.73 79.63 l S 125.73 76.53 m 125.79 79.63 l S 125.79 76.53 m 125.86 79.63 l S 125.86 76.53 m 125.92 92.00 l S 125.92 76.53 m 125.98 79.63 l S 125.98 76.53 m 126.04 88.91 l S 126.04 76.53 m 126.11 85.81 l S 126.11 76.53 m 126.17 82.72 l S 126.17 76.53 m 126.23 85.81 l S 126.23 76.53 m 126.30 79.63 l S 126.30 76.53 m 126.36 79.63 l S 126.36 76.53 m 126.42 79.63 l S 126.42 76.53 m 126.48 79.63 l S 126.48 76.53 m 126.55 79.63 l S 126.55 76.53 m 126.61 79.63 l S 126.61 76.53 m 126.67 79.63 l S 126.67 76.53 m 126.73 82.72 l S 126.73 76.53 m 126.80 79.63 l S 126.80 76.53 m 126.86 79.63 l S 126.86 76.53 m 126.92 79.63 l S 126.92 76.53 m 126.99 82.72 l S 126.99 76.53 m 127.05 79.63 l S 127.05 76.53 m 127.11 79.63 l S 127.11 76.53 m 127.17 101.28 l S 127.17 76.53 m 127.24 82.72 l S 127.24 76.53 m 127.30 79.63 l S 127.30 76.53 m 127.36 82.72 l S 127.36 76.53 m 127.42 79.63 l S 127.42 76.53 m 127.49 79.63 l S 127.49 76.53 m 127.55 79.63 l S 127.55 76.53 m 127.61 79.63 l S 127.61 76.53 m 127.67 79.63 l S 127.67 76.53 m 127.74 88.91 l S 127.74 76.53 m 127.80 79.63 l S 127.80 76.53 m 127.86 79.63 l S 127.86 76.53 m 127.93 79.63 l S 127.93 76.53 m 127.99 79.63 l S 127.99 76.53 m 128.05 79.63 l S 128.05 76.53 m 128.11 79.63 l S 128.11 76.53 m 128.18 79.63 l S 128.18 76.53 m 128.24 85.81 l S 128.24 76.53 m 128.30 79.63 l S 128.30 76.53 m 128.36 82.72 l S 128.36 76.53 m 128.43 79.63 l S 128.43 76.53 m 128.49 79.63 l S 128.49 76.53 m 128.55 82.72 l S 128.55 76.53 m 128.61 79.63 l S 128.61 76.53 m 128.68 79.63 l S 128.68 76.53 m 128.74 79.63 l S 128.74 76.53 m 128.80 79.63 l S 128.80 76.53 m 128.87 85.81 l S 128.87 76.53 m 128.93 79.63 l S 128.93 76.53 m 128.99 79.63 l S 128.99 76.53 m 129.05 107.47 l S 129.05 76.53 m 129.12 79.63 l S 129.12 76.53 m 129.18 79.63 l S 129.18 76.53 m 129.24 79.63 l S 129.24 76.53 m 129.30 79.63 l S 129.30 76.53 m 129.37 82.72 l S 129.37 76.53 m 129.43 79.63 l S 129.43 76.53 m 129.49 79.63 l S 129.49 76.53 m 129.56 79.63 l S 129.56 76.53 m 129.62 85.81 l S 129.62 76.53 m 129.68 82.72 l S 129.68 76.53 m 129.74 79.63 l S 129.74 76.53 m 129.81 88.91 l S 129.81 76.53 m 129.87 79.63 l S 129.87 76.53 m 129.93 79.63 l S 129.93 76.53 m 129.99 79.63 l S 129.99 76.53 m 130.06 79.63 l S 130.06 76.53 m 130.12 79.63 l S 130.12 76.53 m 130.18 79.63 l S 130.18 76.53 m 130.24 79.63 l S 130.24 76.53 m 130.31 79.63 l S 130.31 76.53 m 130.37 79.63 l S 130.37 76.53 m 130.43 79.63 l S 130.43 76.53 m 130.50 79.63 l S 130.50 76.53 m 130.56 79.63 l S 130.56 76.53 m 130.62 79.63 l S 130.62 76.53 m 130.68 79.63 l S 130.68 76.53 m 130.75 85.81 l S 130.75 76.53 m 130.81 92.00 l S 130.81 76.53 m 130.87 79.63 l S 130.87 76.53 m 130.93 79.63 l S 130.93 76.53 m 131.00 79.63 l S 131.00 76.53 m 131.06 79.63 l S 131.06 76.53 m 131.12 79.63 l S 131.12 76.53 m 131.18 79.63 l S 131.18 76.53 m 131.25 79.63 l S 131.25 76.53 m 131.31 82.72 l S 131.31 76.53 m 131.37 79.63 l S 131.37 76.53 m 131.44 88.91 l S 131.44 76.53 m 131.50 82.72 l S 131.50 76.53 m 131.56 79.63 l S 131.56 76.53 m 131.62 79.63 l S 131.62 76.53 m 131.69 79.63 l S 131.69 76.53 m 131.75 79.63 l S 131.75 76.53 m 131.81 79.63 l S 131.81 76.53 m 131.87 82.72 l S 131.87 76.53 m 131.94 79.63 l S 131.94 76.53 m 132.00 79.63 l S 132.00 76.53 m 132.06 79.63 l S 132.06 76.53 m 132.13 79.63 l S 132.13 76.53 m 132.19 79.63 l S 132.19 76.53 m 132.25 79.63 l S 132.25 76.53 m 132.31 79.63 l S 132.31 76.53 m 132.38 79.63 l S 132.38 76.53 m 132.44 79.63 l S 132.44 76.53 m 132.50 79.63 l S 132.50 76.53 m 132.56 79.63 l S 132.56 76.53 m 132.63 79.63 l S 132.63 76.53 m 132.69 79.63 l S 132.69 76.53 m 132.75 79.63 l S 132.75 76.53 m 132.81 79.63 l S 132.81 76.53 m 132.88 79.63 l S 132.88 76.53 m 132.94 79.63 l S 132.94 76.53 m 133.00 79.63 l S 133.00 76.53 m 133.07 79.63 l S 133.07 76.53 m 133.13 79.63 l S 133.13 76.53 m 133.19 82.72 l S 133.19 76.53 m 133.25 79.63 l S 133.25 76.53 m 133.32 79.63 l S 133.32 76.53 m 133.38 79.63 l S 133.38 76.53 m 133.44 79.63 l S 133.44 76.53 m 133.50 82.72 l S 133.50 76.53 m 133.57 79.63 l S 133.57 76.53 m 133.63 79.63 l S 133.63 76.53 m 133.69 79.63 l S 133.69 76.53 m 133.75 79.63 l S 133.75 76.53 m 133.82 79.63 l S 133.82 76.53 m 133.88 79.63 l S 133.88 76.53 m 133.94 79.63 l S 133.94 76.53 m 134.01 79.63 l S 134.01 76.53 m 134.07 79.63 l S 134.07 76.53 m 134.13 79.63 l S 134.13 76.53 m 134.19 79.63 l S 134.19 76.53 m 134.26 79.63 l S 134.26 76.53 m 134.32 79.63 l S 134.32 76.53 m 134.38 79.63 l S 134.38 76.53 m 134.44 79.63 l S 134.44 76.53 m 134.51 79.63 l S 134.51 76.53 m 134.57 79.63 l S 134.57 76.53 m 134.63 79.63 l S 134.63 76.53 m 134.70 85.81 l S 134.70 76.53 m 134.76 82.72 l S 134.76 76.53 m 134.82 79.63 l S 134.82 76.53 m 134.88 79.63 l S 134.88 76.53 m 134.95 79.63 l S 134.95 76.53 m 135.01 82.72 l S 135.01 76.53 m 135.07 79.63 l S 135.07 76.53 m 135.13 82.72 l S 135.13 76.53 m 135.20 79.63 l S 135.20 76.53 m 135.26 79.63 l S 135.26 76.53 m 135.32 79.63 l S 135.32 76.53 m 135.38 79.63 l S 135.38 76.53 m 135.45 79.63 l S 135.45 76.53 m 135.51 79.63 l S 135.51 76.53 m 135.57 79.63 l S 135.57 76.53 m 135.64 79.63 l S 135.64 76.53 m 135.70 85.81 l S 135.70 76.53 m 135.76 82.72 l S 135.76 76.53 m 135.82 79.63 l S 135.82 76.53 m 135.89 79.63 l S 135.89 76.53 m 135.95 79.63 l S 135.95 76.53 m 136.01 79.63 l S 136.01 76.53 m 136.07 79.63 l S 136.07 76.53 m 136.14 79.63 l S 136.14 76.53 m 136.20 79.63 l S 136.20 76.53 m 136.26 79.63 l S 136.26 76.53 m 136.32 79.63 l S 136.32 76.53 m 136.39 79.63 l S 136.39 76.53 m 136.45 79.63 l S 136.45 76.53 m 136.51 79.63 l S 136.51 76.53 m 136.58 79.63 l S 136.58 76.53 m 136.64 79.63 l S 136.64 76.53 m 136.70 79.63 l S 136.70 76.53 m 136.76 79.63 l S 136.76 76.53 m 136.83 79.63 l S 136.83 76.53 m 136.89 79.63 l S 136.89 76.53 m 136.95 79.63 l S 136.95 76.53 m 137.01 79.63 l S 137.01 76.53 m 137.08 79.63 l S 137.08 76.53 m 137.14 79.63 l S 137.14 76.53 m 137.20 79.63 l S 137.20 76.53 m 137.27 79.63 l S 137.27 76.53 m 137.33 79.63 l S 137.33 76.53 m 137.39 79.63 l S 137.39 76.53 m 137.45 79.63 l S 137.45 76.53 m 137.52 79.63 l S 137.52 76.53 m 137.58 79.63 l S 137.58 76.53 m 137.64 82.72 l S 137.64 76.53 m 137.70 79.63 l S 137.70 76.53 m 137.77 79.63 l S 137.77 76.53 m 137.83 79.63 l S 137.83 76.53 m 137.89 79.63 l S 137.89 76.53 m 137.95 82.72 l S 137.95 76.53 m 138.02 82.72 l S 138.02 76.53 m 138.08 79.63 l S 138.08 76.53 m 138.14 79.63 l S 138.14 76.53 m 138.21 76.53 l S 138.21 76.53 m 138.27 79.63 l S 138.27 76.53 m 138.33 82.72 l S 138.33 76.53 m 138.39 76.53 l S 138.39 76.53 m 138.46 79.63 l S 138.46 76.53 m 138.52 79.63 l S 138.52 76.53 m 138.58 79.63 l S 138.58 76.53 m 138.64 79.63 l S 138.64 76.53 m 138.71 79.63 l S 138.71 76.53 m 138.77 79.63 l S 138.77 76.53 m 138.83 79.63 l S 138.83 76.53 m 138.89 79.63 l S 138.89 76.53 m 138.96 79.63 l S 138.96 76.53 m 139.02 82.72 l S 139.02 76.53 m 139.08 79.63 l S 139.08 76.53 m 139.15 79.63 l S 139.15 76.53 m 139.21 79.63 l S 139.21 76.53 m 139.27 79.63 l S 139.27 76.53 m 139.33 79.63 l S 139.33 76.53 m 139.40 79.63 l S 139.40 76.53 m 139.46 79.63 l S 139.46 76.53 m 139.52 79.63 l S 139.52 76.53 m 139.58 79.63 l S 139.58 76.53 m 139.65 79.63 l S 139.65 76.53 m 139.71 79.63 l S 139.71 76.53 m 139.77 79.63 l S 139.77 76.53 m 139.84 95.09 l S 139.84 76.53 m 139.90 79.63 l S 139.90 76.53 m 139.96 79.63 l S 139.96 76.53 m 140.02 85.81 l S 140.02 76.53 m 140.09 88.91 l S 140.09 76.53 m 140.15 79.63 l S 140.15 76.53 m 140.21 79.63 l S 140.21 76.53 m 140.27 82.72 l S 140.27 76.53 m 140.34 79.63 l S 140.34 76.53 m 140.40 79.63 l S 140.40 76.53 m 140.46 79.63 l S 140.46 76.53 m 140.52 76.53 l S 140.52 76.53 m 140.59 79.63 l S 140.59 76.53 m 140.65 79.63 l S 140.65 76.53 m 140.71 79.63 l S 140.71 76.53 m 140.78 82.72 l S 140.78 76.53 m 140.84 82.72 l S 140.84 76.53 m 140.90 79.63 l S 140.90 76.53 m 140.96 79.63 l S 140.96 76.53 m 141.03 95.09 l S 141.03 76.53 m 141.09 79.63 l S 141.09 76.53 m 141.15 88.91 l S 141.15 76.53 m 141.21 82.72 l S 141.21 76.53 m 141.28 76.53 l S 141.28 76.53 m 141.34 76.53 l S 141.34 76.53 m 141.40 76.53 l S 141.40 76.53 m 141.46 79.63 l S 141.46 76.53 m 141.53 79.63 l S 141.53 76.53 m 141.59 79.63 l S 141.59 76.53 m 141.65 79.63 l S 141.65 76.53 m 141.72 79.63 l S 141.72 76.53 m 141.78 76.53 l S 141.78 76.53 m 141.84 76.53 l S 141.84 76.53 m 141.90 76.53 l S 141.90 76.53 m 141.97 76.53 l S 141.97 76.53 m 142.03 76.53 l S 142.03 76.53 m 142.09 76.53 l S 142.09 76.53 m 142.15 76.53 l S 142.15 76.53 m 142.22 76.53 l S 142.22 76.53 m 142.28 76.53 l S 142.28 76.53 m 142.34 76.53 l S 142.34 76.53 m 142.41 76.53 l S 142.41 76.53 m 142.47 76.53 l S 142.47 76.53 m 142.53 76.53 l S 142.53 76.53 m 142.59 76.53 l S 142.59 76.53 m 142.66 76.53 l S 142.66 76.53 m 142.72 76.53 l S 142.72 76.53 m 142.78 76.53 l S 142.78 76.53 m 142.84 76.53 l S 142.84 76.53 m 142.91 76.53 l S 142.91 76.53 m 142.97 76.53 l S 142.97 76.53 m 143.03 76.53 l S 143.03 76.53 m 143.09 76.53 l S 143.09 76.53 m 143.16 76.53 l S 143.16 76.53 m 143.22 76.53 l S 143.22 76.53 m 143.28 76.53 l S 143.28 76.53 m 143.35 76.53 l S 143.35 76.53 m 143.41 76.53 l S 143.41 76.53 m 143.47 76.53 l S 143.47 76.53 m 143.53 76.53 l S 143.53 76.53 m 143.60 76.53 l S 143.60 76.53 m 143.66 76.53 l S 143.66 76.53 m 143.72 76.53 l S 143.72 76.53 m 143.78 76.53 l S 143.78 76.53 m 143.85 76.53 l S 143.85 76.53 m 143.91 76.53 l S 143.91 76.53 m 143.97 76.53 l S 143.97 76.53 m 144.03 76.53 l S 144.03 76.53 m 144.10 76.53 l S 144.10 76.53 m 144.16 76.53 l S 144.16 76.53 m 144.22 76.53 l S 144.22 76.53 m 144.29 76.53 l S 144.29 76.53 m 144.35 76.53 l S 144.35 76.53 m 144.41 76.53 l S 144.41 76.53 m 144.47 76.53 l S 144.47 76.53 m 144.54 76.53 l S 144.54 76.53 m 144.60 76.53 l S 144.60 76.53 m 144.66 76.53 l S 144.66 76.53 m 144.72 76.53 l S 144.72 76.53 m 144.79 76.53 l S 144.79 76.53 m 144.85 76.53 l S 144.85 76.53 m 144.91 76.53 l S 144.91 76.53 m 144.97 76.53 l S 144.97 76.53 m 145.04 76.53 l S 145.04 76.53 m 145.10 76.53 l S 145.10 76.53 m 145.16 76.53 l S 145.16 76.53 m 145.23 76.53 l S 145.23 76.53 m 145.29 76.53 l S 145.29 76.53 m 145.35 76.53 l S 145.35 76.53 m 145.41 76.53 l S 145.41 76.53 m 145.48 76.53 l S 145.48 76.53 m 145.54 76.53 l S 145.54 76.53 m 145.60 76.53 l S 145.60 76.53 m 145.66 76.53 l S 145.66 76.53 m 145.73 76.53 l S 145.73 76.53 m 145.79 76.53 l S 145.79 76.53 m 145.85 76.53 l S 145.85 76.53 m 145.92 76.53 l S 145.92 76.53 m 145.98 76.53 l S 145.98 76.53 m 146.04 76.53 l S 146.04 76.53 m 146.10 76.53 l S 146.10 76.53 m 146.17 76.53 l S 146.17 76.53 m 146.23 76.53 l S 146.23 76.53 m 146.29 82.72 l S 146.29 76.53 m 146.35 110.56 l S 146.35 76.53 m 146.42 79.63 l S 146.42 76.53 m 146.48 79.63 l S 146.48 76.53 m 146.54 79.63 l S 146.54 76.53 m 146.60 85.81 l S 146.60 76.53 m 146.67 79.63 l S 146.67 76.53 m 146.73 79.63 l S 146.73 76.53 m 146.79 79.63 l S 146.79 76.53 m 146.86 79.63 l S 146.86 76.53 m 146.92 76.53 l S 146.92 76.53 m 146.98 82.72 l S 146.98 76.53 m 147.04 79.63 l S 147.04 76.53 m 147.11 88.91 l S 147.11 76.53 m 147.17 79.63 l S 147.17 76.53 m 147.23 79.63 l S 147.23 76.53 m 147.29 79.63 l S 147.29 76.53 m 147.36 79.63 l S 147.36 76.53 m 147.42 79.63 l S 147.42 76.53 m 147.48 79.63 l S 147.48 76.53 m 147.54 88.91 l S 147.54 76.53 m 147.61 79.63 l S 147.61 76.53 m 147.67 79.63 l S 147.67 76.53 m 147.73 85.81 l S 147.73 76.53 m 147.80 79.63 l S 147.80 76.53 m 147.86 79.63 l S 147.86 76.53 m 147.92 82.72 l S 147.92 76.53 m 147.98 92.00 l S 147.98 76.53 m 148.05 79.63 l S 148.05 76.53 m 148.11 79.63 l S 148.11 76.53 m 148.17 79.63 l S 148.17 76.53 m 148.23 79.63 l S 148.23 76.53 m 148.30 79.63 l S 148.30 76.53 m 148.36 79.63 l S 148.36 76.53 m 148.42 79.63 l S 148.42 76.53 m 148.49 79.63 l S 148.49 76.53 m 148.55 79.63 l S 148.55 76.53 m 148.61 85.81 l S 148.61 76.53 m 148.67 82.72 l S 148.67 76.53 m 148.74 79.63 l S 148.74 76.53 m 148.80 85.81 l S 148.80 76.53 m 148.86 79.63 l S 148.86 76.53 m 148.92 79.63 l S 148.92 76.53 m 148.99 79.63 l S 148.99 76.53 m 149.05 82.72 l S 149.05 76.53 m 149.11 79.63 l S 149.11 76.53 m 149.17 92.00 l S 149.17 76.53 m 149.24 98.19 l S 149.24 76.53 m 149.30 76.53 l S 149.30 76.53 m 149.36 79.63 l S 149.36 76.53 m 149.43 82.72 l S 149.43 76.53 m 149.49 82.72 l S 149.49 76.53 m 149.55 88.91 l S 149.55 76.53 m 149.61 85.81 l S 149.61 76.53 m 149.68 85.81 l S 149.68 76.53 m 149.74 79.63 l S 149.74 76.53 m 149.80 79.63 l S 149.80 76.53 m 149.86 79.63 l S 149.86 76.53 m 149.93 79.63 l S 149.93 76.53 m 149.99 82.72 l S 149.99 76.53 m 150.05 82.72 l S 150.05 76.53 m 150.11 79.63 l S 150.11 76.53 m 150.18 82.72 l S 150.18 76.53 m 150.24 79.63 l S 150.24 76.53 m 150.30 79.63 l S 150.30 76.53 m 150.37 79.63 l S 150.37 76.53 m 150.43 79.63 l S 150.43 76.53 m 150.49 79.63 l S 150.49 76.53 m 150.55 79.63 l S 150.55 76.53 m 150.62 82.72 l S 150.62 76.53 m 150.68 79.63 l S 150.68 76.53 m 150.74 79.63 l S 150.74 76.53 m 150.80 82.72 l S 150.80 76.53 m 150.87 79.63 l S 150.87 76.53 m 150.93 79.63 l S 150.93 76.53 m 150.99 79.63 l S 150.99 76.53 m 151.06 79.63 l S 151.06 76.53 m 151.12 79.63 l S 151.12 76.53 m 151.18 79.63 l S 151.18 76.53 m 151.24 79.63 l S 151.24 76.53 m 151.31 79.63 l S 151.31 76.53 m 151.37 79.63 l S 151.37 76.53 m 151.43 82.72 l S 151.43 76.53 m 151.49 79.63 l S 151.49 76.53 m 151.56 79.63 l S 151.56 76.53 m 151.62 79.63 l S 151.62 76.53 m 151.68 79.63 l S 151.68 76.53 m 151.74 79.63 l S 151.74 76.53 m 151.81 82.72 l S 151.81 76.53 m 151.87 88.91 l S 151.87 76.53 m 151.93 79.63 l S 151.93 76.53 m 152.00 92.00 l S 152.00 76.53 m 152.06 85.81 l S 152.06 76.53 m 152.12 88.91 l S 152.12 76.53 m 152.18 79.63 l S 152.18 76.53 m 152.25 79.63 l S 152.25 76.53 m 152.31 79.63 l S 152.31 76.53 m 152.37 79.63 l S 152.37 76.53 m 152.43 79.63 l S 152.43 76.53 m 152.50 79.63 l S 152.50 76.53 m 152.56 79.63 l S 152.56 76.53 m 152.62 79.63 l S 152.62 76.53 m 152.68 79.63 l S 152.68 76.53 m 152.75 79.63 l S 152.75 76.53 m 152.81 82.72 l S 152.81 76.53 m 152.87 85.81 l S 152.87 76.53 m 152.94 79.63 l S 152.94 76.53 m 153.00 79.63 l S 153.00 76.53 m 153.06 79.63 l S 153.06 76.53 m 153.12 79.63 l S 153.12 76.53 m 153.19 82.72 l S 153.19 76.53 m 153.25 79.63 l S 153.25 76.53 m 153.31 79.63 l S 153.31 76.53 m 153.37 92.00 l S 153.37 76.53 m 153.44 79.63 l S 153.44 76.53 m 153.50 79.63 l S 153.50 76.53 m 153.56 76.53 l S 153.56 76.53 m 153.63 76.53 l S 153.63 76.53 m 153.69 76.53 l S 153.69 76.53 m 153.75 76.53 l S 153.75 76.53 m 153.81 76.53 l S 153.81 76.53 m 153.88 76.53 l S 153.88 76.53 m 153.94 76.53 l S 153.94 76.53 m 154.00 76.53 l S 154.00 76.53 m 154.06 76.53 l S 154.06 76.53 m 154.13 76.53 l S 154.13 76.53 m 154.19 76.53 l S 154.19 76.53 m 154.25 76.53 l S 154.25 76.53 m 154.31 76.53 l S 154.31 76.53 m 154.38 76.53 l S 154.38 76.53 m 154.44 76.53 l S 154.44 76.53 m 154.50 76.53 l S 154.50 76.53 m 154.57 76.53 l S 154.57 76.53 m 154.63 76.53 l S 154.63 76.53 m 154.69 76.53 l S 154.69 76.53 m 154.75 76.53 l S 154.75 76.53 m 154.82 76.53 l S 154.82 76.53 m 154.88 76.53 l S 154.88 76.53 m 154.94 79.63 l S 154.94 76.53 m 155.00 79.63 l S 155.00 76.53 m 155.07 82.72 l S 155.07 76.53 m 155.13 79.63 l S 155.13 76.53 m 155.19 82.72 l S 155.19 76.53 m 155.25 82.72 l S 155.25 76.53 m 155.32 79.63 l S 155.32 76.53 m 155.38 76.53 l S 155.38 76.53 m 155.44 76.53 l S 155.44 76.53 m 155.51 76.53 l S 155.51 76.53 m 155.57 76.53 l S 155.57 76.53 m 155.63 76.53 l S 155.63 76.53 m 155.69 76.53 l S 155.69 76.53 m 155.76 82.72 l S 155.76 76.53 m 155.82 82.72 l S 155.82 76.53 m 155.88 76.53 l S 155.88 76.53 m 155.94 76.53 l S 155.94 76.53 m 156.01 76.53 l S 156.01 76.53 m 156.07 76.53 l S 156.07 76.53 m 156.13 79.63 l S 156.13 76.53 m 156.20 76.53 l S 156.20 76.53 m 156.26 79.63 l S 156.26 76.53 m 156.32 85.81 l S 156.32 76.53 m 156.38 88.91 l S 156.38 76.53 m 156.45 79.63 l S 156.45 76.53 m 156.51 79.63 l S 156.51 76.53 m 156.57 76.53 l S 156.57 76.53 m 156.63 76.53 l S 156.63 76.53 m 156.70 76.53 l S 156.70 76.53 m 156.76 76.53 l S 156.76 76.53 m 156.82 76.53 l S 156.82 76.53 m 156.88 76.53 l S 156.88 76.53 m 156.95 76.53 l S 156.95 76.53 m 157.01 76.53 l S 157.01 76.53 m 157.07 76.53 l S 157.07 76.53 m 157.14 76.53 l S 157.14 76.53 m 157.20 76.53 l S 157.20 76.53 m 157.26 76.53 l S 157.26 76.53 m 157.32 76.53 l S 157.32 76.53 m 157.39 76.53 l S 157.39 76.53 m 157.45 76.53 l S 157.45 76.53 m 157.51 76.53 l S 157.51 76.53 m 157.57 76.53 l S 157.57 76.53 m 157.64 76.53 l S 157.64 76.53 m 157.70 76.53 l S 157.70 76.53 m 157.76 76.53 l S 157.76 76.53 m 157.82 76.53 l S 157.82 76.53 m 157.89 79.63 l S 157.89 76.53 m 157.95 85.81 l S 157.95 76.53 m 158.01 79.63 l S 158.01 76.53 m 158.08 79.63 l S 158.08 76.53 m 158.14 85.81 l S 158.14 76.53 m 158.20 79.63 l S 158.20 76.53 m 158.26 82.72 l S 158.26 76.53 m 158.33 79.63 l S 158.33 76.53 m 158.39 82.72 l S 158.39 76.53 m 158.45 79.63 l S 158.45 76.53 m 158.51 79.63 l S 158.51 76.53 m 158.58 79.63 l S 158.58 76.53 m 158.64 76.53 l S 158.64 76.53 m 158.70 79.63 l S 158.70 76.53 m 158.77 76.53 l S 158.77 76.53 m 158.83 76.53 l S 158.83 76.53 m 158.89 76.53 l S 158.89 76.53 m 158.95 79.63 l S 158.95 76.53 m 159.02 76.53 l S 159.02 76.53 m 159.08 76.53 l S 159.08 76.53 m 159.14 79.63 l S 159.14 76.53 m 159.20 76.53 l S 159.20 76.53 m 159.27 76.53 l S 159.27 76.53 m 159.33 76.53 l S 159.33 76.53 m 159.39 76.53 l S 159.39 76.53 m 159.45 76.53 l S 159.45 76.53 m 159.52 76.53 l S 159.52 76.53 m 159.58 76.53 l S 159.58 76.53 m 159.64 76.53 l S 159.64 76.53 m 159.71 76.53 l S 159.71 76.53 m 159.77 76.53 l S 159.77 76.53 m 159.83 76.53 l S 159.83 76.53 m 159.89 76.53 l S 159.89 76.53 m 159.96 79.63 l S 159.96 76.53 m 160.02 82.72 l S 160.02 76.53 m 160.08 82.72 l S 160.08 76.53 m 160.14 79.63 l S 160.14 76.53 m 160.21 107.47 l S 160.21 76.53 m 160.27 79.63 l S 160.27 76.53 m 160.33 79.63 l S 160.33 76.53 m 160.39 79.63 l S 160.39 76.53 m 160.46 79.63 l S 160.46 76.53 m 160.52 79.63 l S 160.52 76.53 m 160.58 82.72 l S 160.58 76.53 m 160.65 79.63 l S 160.65 76.53 m 160.71 79.63 l S 160.71 76.53 m 160.77 79.63 l S 160.77 76.53 m 160.83 85.81 l S 160.83 76.53 m 160.90 79.63 l S 160.90 76.53 m 160.96 82.72 l S 160.96 76.53 m 161.02 79.63 l S 161.02 76.53 m 161.08 79.63 l S 161.08 76.53 m 161.15 79.63 l S 161.15 76.53 m 161.21 79.63 l S 161.21 76.53 m 161.27 79.63 l S 161.27 76.53 m 161.34 79.63 l S 161.34 76.53 m 161.40 82.72 l S 161.40 76.53 m 161.46 79.63 l S 161.46 76.53 m 161.52 79.63 l S 161.52 76.53 m 161.59 79.63 l S 161.59 76.53 m 161.65 79.63 l S 161.65 76.53 m 161.71 82.72 l S 161.71 76.53 m 161.77 79.63 l S 161.77 76.53 m 161.84 79.63 l S 161.84 76.53 m 161.90 79.63 l S 161.90 76.53 m 161.96 79.63 l S 161.96 76.53 m 162.02 79.63 l S 162.02 76.53 m 162.09 79.63 l S 162.09 76.53 m 162.15 79.63 l S 162.15 76.53 m 162.21 79.63 l S 162.21 76.53 m 162.28 82.72 l S 162.28 76.53 m 162.34 79.63 l S 162.34 76.53 m 162.40 79.63 l S 162.40 76.53 m 162.46 88.91 l S 162.46 76.53 m 162.53 79.63 l S 162.53 76.53 m 162.59 79.63 l S 162.59 76.53 m 162.65 79.63 l S 162.65 76.53 m 162.71 79.63 l S 162.71 76.53 m 162.78 82.72 l S 162.78 76.53 m 162.84 79.63 l S 162.84 76.53 m 162.90 79.63 l S 162.90 76.53 m 162.96 79.63 l S 162.96 76.53 m 163.03 79.63 l S 163.03 76.53 m 163.09 79.63 l S 163.09 76.53 m 163.15 79.63 l S 163.15 76.53 m 163.22 76.53 l S 163.22 76.53 m 163.28 76.53 l S 163.28 76.53 m 163.34 79.63 l S 163.34 76.53 m 163.40 76.53 l S 163.40 76.53 m 163.47 76.53 l S 163.47 76.53 m 163.53 76.53 l S 163.53 76.53 m 163.59 76.53 l S 163.59 76.53 m 163.65 76.53 l S 163.65 76.53 m 163.72 76.53 l S 163.72 76.53 m 163.78 76.53 l S 163.78 76.53 m 163.84 85.81 l S 163.84 76.53 m 163.91 82.72 l S 163.91 76.53 m 163.97 88.91 l S 163.97 76.53 m 164.03 88.91 l S 164.03 76.53 m 164.09 79.63 l S 164.09 76.53 m 164.16 76.53 l S 164.16 76.53 m 164.22 76.53 l S 164.22 76.53 m 164.28 76.53 l S 164.28 76.53 m 164.34 76.53 l S 164.34 76.53 m 164.41 79.63 l S 164.41 76.53 m 164.47 82.72 l S 164.47 76.53 m 164.53 76.53 l S 164.53 76.53 m 164.59 76.53 l S 164.59 76.53 m 164.66 79.63 l S 164.66 76.53 m 164.72 76.53 l S 164.72 76.53 m 164.78 79.63 l S 164.78 76.53 m 164.85 82.72 l S 164.85 76.53 m 164.91 79.63 l S 164.91 76.53 m 164.97 79.63 l S 164.97 76.53 m 165.03 79.63 l S 165.03 76.53 m 165.10 85.81 l S 165.10 76.53 m 165.16 82.72 l S 165.16 76.53 m 165.22 79.63 l S 165.22 76.53 m 165.28 79.63 l S 165.28 76.53 m 165.35 79.63 l S 165.35 76.53 m 165.41 79.63 l S 165.41 76.53 m 165.47 79.63 l S 165.47 76.53 m 165.53 92.00 l S 165.53 76.53 m 165.60 79.63 l S 165.60 76.53 m 165.66 79.63 l S 165.66 76.53 m 165.72 92.00 l S 165.72 76.53 m 165.79 79.63 l S 165.79 76.53 m 165.85 79.63 l S 165.85 76.53 m 165.91 79.63 l S 165.91 76.53 m 165.97 79.63 l S 165.97 76.53 m 166.04 79.63 l S 166.04 76.53 m 166.10 79.63 l S 166.10 76.53 m 166.16 79.63 l S 166.16 76.53 m 166.22 82.72 l S 166.22 76.53 m 166.29 79.63 l S 166.29 76.53 m 166.35 79.63 l S 166.35 76.53 m 166.41 79.63 l S 166.41 76.53 m 166.48 79.63 l S 166.48 76.53 m 166.54 79.63 l S 166.54 76.53 m 166.60 79.63 l S 166.60 76.53 m 166.66 79.63 l S 166.66 76.53 m 166.73 79.63 l S 166.73 76.53 m 166.79 79.63 l S 166.79 76.53 m 166.85 79.63 l S 166.85 76.53 m 166.91 79.63 l S 166.91 76.53 m 166.98 79.63 l S 166.98 76.53 m 167.04 79.63 l S 167.04 76.53 m 167.10 79.63 l S 167.10 76.53 m 167.16 79.63 l S 167.16 76.53 m 167.23 79.63 l S 167.23 76.53 m 167.29 79.63 l S 167.29 76.53 m 167.35 79.63 l S 167.35 76.53 m 167.42 79.63 l S 167.42 76.53 m 167.48 88.91 l S 167.48 76.53 m 167.54 79.63 l S 167.54 76.53 m 167.60 79.63 l S 167.60 76.53 m 167.67 79.63 l S 167.67 76.53 m 167.73 79.63 l S 167.73 76.53 m 167.79 79.63 l S 167.79 76.53 m 167.85 79.63 l S 167.85 76.53 m 167.92 76.53 l S 167.92 76.53 m 167.98 79.63 l S 167.98 76.53 m 168.04 79.63 l S 168.04 76.53 m 168.10 79.63 l S 168.10 76.53 m 168.17 79.63 l S 168.17 76.53 m 168.23 79.63 l S 168.23 76.53 m 168.29 79.63 l S 168.29 76.53 m 168.36 79.63 l S 168.36 76.53 m 168.42 79.63 l S 168.42 76.53 m 168.48 79.63 l S 168.48 76.53 m 168.54 79.63 l S 168.54 76.53 m 168.61 79.63 l S 168.61 76.53 m 168.67 79.63 l S 168.67 76.53 m 168.73 79.63 l S 168.73 76.53 m 168.79 76.53 l S 168.79 76.53 m 168.86 79.63 l S 168.86 76.53 m 168.92 79.63 l S 168.92 76.53 m 168.98 79.63 l S 168.98 76.53 m 169.04 79.63 l S 169.04 76.53 m 169.11 79.63 l S 169.11 76.53 m 169.17 79.63 l S 169.17 76.53 m 169.23 79.63 l S 169.23 76.53 m 169.30 79.63 l S 169.30 76.53 m 169.36 79.63 l S 169.36 76.53 m 169.42 82.72 l S 169.42 76.53 m 169.48 79.63 l S 169.48 76.53 m 169.55 79.63 l S 169.55 76.53 m 169.61 79.63 l S 169.61 76.53 m 169.67 79.63 l S 169.67 76.53 m 169.73 79.63 l S 169.73 76.53 m 169.80 79.63 l S 169.80 76.53 m 169.86 79.63 l S 169.86 76.53 m 169.92 79.63 l S 169.92 76.53 m 169.99 76.53 l S 169.99 76.53 m 170.05 79.63 l S 170.05 76.53 m 170.11 79.63 l S 170.11 76.53 m 170.17 79.63 l S 170.17 76.53 m 170.24 79.63 l S 170.24 76.53 m 170.30 79.63 l S 170.30 76.53 m 170.36 79.63 l S 170.36 76.53 m 170.42 76.53 l S 170.42 76.53 m 170.49 79.63 l S 170.49 76.53 m 170.55 79.63 l S 170.55 76.53 m 170.61 79.63 l S 170.61 76.53 m 170.67 79.63 l S 170.67 76.53 m 170.74 79.63 l S 170.74 76.53 m 170.80 79.63 l S 170.80 76.53 m 170.86 79.63 l S 170.86 76.53 m 170.93 79.63 l S 170.93 76.53 m 170.99 79.63 l S 170.99 76.53 m 171.05 79.63 l S 171.05 76.53 m 171.11 79.63 l S 171.11 76.53 m 171.18 79.63 l S 171.18 76.53 m 171.24 79.63 l S 171.24 76.53 m 171.30 79.63 l S 171.30 76.53 m 171.36 76.53 l S 171.36 76.53 m 171.43 79.63 l S 171.43 76.53 m 171.49 79.63 l S 171.49 76.53 m 171.55 79.63 l S 171.55 76.53 m 171.61 79.63 l S 171.61 76.53 m 171.68 79.63 l S 171.68 76.53 m 171.74 79.63 l S 171.74 76.53 m 171.80 79.63 l S 171.80 76.53 m 171.87 79.63 l S 171.87 76.53 m 171.93 79.63 l S 171.93 76.53 m 171.99 79.63 l S 171.99 76.53 m 172.05 79.63 l S 172.05 76.53 m 172.12 79.63 l S 172.12 76.53 m 172.18 79.63 l S 172.18 76.53 m 172.24 79.63 l S 172.24 76.53 m 172.30 79.63 l S 172.30 76.53 m 172.37 79.63 l S 172.37 76.53 m 172.43 79.63 l S 172.43 76.53 m 172.49 76.53 l S 172.49 76.53 m 172.56 79.63 l S 172.56 76.53 m 172.62 82.72 l S 172.62 76.53 m 172.68 79.63 l S 172.68 76.53 m 172.74 79.63 l S 172.74 76.53 m 172.81 79.63 l S 172.81 76.53 m 172.87 79.63 l S 172.87 76.53 m 172.93 76.53 l S 172.93 76.53 m 172.99 79.63 l S 172.99 76.53 m 173.06 79.63 l S 173.06 76.53 m 173.12 79.63 l S 173.12 76.53 m 173.18 79.63 l S 173.18 76.53 m 173.24 79.63 l S 173.24 76.53 m 173.31 76.53 l S 173.31 76.53 m 173.37 79.63 l S 173.37 76.53 m 173.43 79.63 l S 173.43 76.53 m 173.50 79.63 l S 173.50 76.53 m 173.56 79.63 l S 173.56 76.53 m 173.62 76.53 l S 173.62 76.53 m 173.68 79.63 l S 173.68 76.53 m 173.75 79.63 l S 173.75 76.53 m 173.81 79.63 l S 173.81 76.53 m 173.87 79.63 l S 173.87 76.53 m 173.93 79.63 l S 173.93 76.53 m 174.00 79.63 l S 174.00 76.53 m 174.06 79.63 l S 174.06 76.53 m 174.12 79.63 l S 174.12 76.53 m 174.18 79.63 l S 174.18 76.53 m 174.25 79.63 l S 174.25 76.53 m 174.31 79.63 l S 174.31 76.53 m 174.37 79.63 l S 174.37 76.53 m 174.44 79.63 l S 174.44 76.53 m 174.50 79.63 l S 174.50 76.53 m 174.56 79.63 l S 174.56 76.53 m 174.62 79.63 l S 174.62 76.53 m 174.69 79.63 l S 174.69 76.53 m 174.75 79.63 l S 174.75 76.53 m 174.81 79.63 l S 174.81 76.53 m 174.87 79.63 l S 174.87 76.53 m 174.94 79.63 l S 174.94 76.53 m 175.00 79.63 l S 175.00 76.53 m 175.06 79.63 l S 175.06 76.53 m 175.13 79.63 l S 175.13 76.53 m 175.19 79.63 l S 175.19 76.53 m 175.25 79.63 l S 175.25 76.53 m 175.31 79.63 l S 175.31 76.53 m 175.38 79.63 l S 175.38 76.53 m 175.44 79.63 l S 175.44 76.53 m 175.50 76.53 l S 175.50 76.53 m 175.56 79.63 l S 175.56 76.53 m 175.63 79.63 l S 175.63 76.53 m 175.69 79.63 l S 175.69 76.53 m 175.75 76.53 l S 175.75 76.53 m 175.81 79.63 l S 175.81 76.53 m 175.88 79.63 l S 175.88 76.53 m 175.94 79.63 l S 175.94 76.53 m 176.00 79.63 l S 176.00 76.53 m 176.07 79.63 l S 176.07 76.53 m 176.13 85.81 l S 176.13 76.53 m 176.19 79.63 l S 176.19 76.53 m 176.25 79.63 l S 176.25 76.53 m 176.32 79.63 l S 176.32 76.53 m 176.38 79.63 l S 176.38 76.53 m 176.44 79.63 l S 176.44 76.53 m 176.50 79.63 l S 176.50 76.53 m 176.57 79.63 l S 176.57 76.53 m 176.63 79.63 l S 176.63 76.53 m 176.69 79.63 l S 176.69 76.53 m 176.75 79.63 l S 176.75 76.53 m 176.82 79.63 l S 176.82 76.53 m 176.88 79.63 l S 176.88 76.53 m 176.94 79.63 l S 176.94 76.53 m 177.01 79.63 l S 177.01 76.53 m 177.07 79.63 l S 177.07 76.53 m 177.13 79.63 l S 177.13 76.53 m 177.19 79.63 l S 177.19 76.53 m 177.26 79.63 l S 177.26 76.53 m 177.32 79.63 l S 177.32 76.53 m 177.38 79.63 l S 177.38 76.53 m 177.44 79.63 l S 177.44 76.53 m 177.51 79.63 l S 177.51 76.53 m 177.57 79.63 l S 177.57 76.53 m 177.63 82.72 l S 177.63 76.53 m 177.70 79.63 l S 177.70 76.53 m 177.76 79.63 l S 177.76 76.53 m 177.82 79.63 l S 177.82 76.53 m 177.88 79.63 l S 177.88 76.53 m 177.95 79.63 l S 177.95 76.53 m 178.01 79.63 l S 178.01 76.53 m 178.07 79.63 l S 178.07 76.53 m 178.13 79.63 l S 178.13 76.53 m 178.20 76.53 l S 178.20 76.53 m 178.26 79.63 l S 178.26 76.53 m 178.32 76.53 l S 178.32 76.53 m 178.38 79.63 l S 178.38 76.53 m 178.45 79.63 l S 178.45 76.53 m 178.51 79.63 l S 178.51 76.53 m 178.57 79.63 l S 178.57 76.53 m 178.64 79.63 l S 178.64 76.53 m 178.70 76.53 l S 178.70 76.53 m 178.76 79.63 l S 178.76 76.53 m 178.82 79.63 l S 178.82 76.53 m 178.89 79.63 l S 178.89 76.53 m 178.95 79.63 l S 178.95 76.53 m 179.01 79.63 l S 179.01 76.53 m 179.07 76.53 l S 179.07 76.53 m 179.14 79.63 l S 179.14 76.53 m 179.20 79.63 l S 179.20 76.53 m 179.26 76.53 l S 179.26 76.53 m 179.32 79.63 l S 179.32 76.53 m 179.39 79.63 l S 179.39 76.53 m 179.45 79.63 l S 179.45 76.53 m 179.51 82.72 l S 179.51 76.53 m 179.58 79.63 l S 179.58 76.53 m 179.64 85.81 l S 179.64 76.53 m 179.70 79.63 l S 179.70 76.53 m 179.76 85.81 l S 179.76 76.53 m 179.83 79.63 l S 179.83 76.53 m 179.89 98.19 l S 179.89 76.53 m 179.95 79.63 l S 179.95 76.53 m 180.01 79.63 l S 180.01 76.53 m 180.08 79.63 l S 180.08 76.53 m 180.14 79.63 l S 180.14 76.53 m 180.20 79.63 l S 180.20 76.53 m 180.27 79.63 l S 180.27 76.53 m 180.33 79.63 l S 180.33 76.53 m 180.39 79.63 l S 180.39 76.53 m 180.45 79.63 l S 180.45 76.53 m 180.52 79.63 l S 180.52 76.53 m 180.58 79.63 l S 180.58 76.53 m 180.64 79.63 l S 180.64 76.53 m 180.70 79.63 l S 180.70 76.53 m 180.77 79.63 l S 180.77 76.53 m 180.83 79.63 l S 180.83 76.53 m 180.89 79.63 l S 180.89 76.53 m 180.95 79.63 l S 180.95 76.53 m 181.02 82.72 l S 181.02 76.53 m 181.08 79.63 l S 181.08 76.53 m 181.14 76.53 l S 181.14 76.53 m 181.21 79.63 l S 181.21 76.53 m 181.27 79.63 l S 181.27 76.53 m 181.33 79.63 l S 181.33 76.53 m 181.39 79.63 l S 181.39 76.53 m 181.46 79.63 l S 181.46 76.53 m 181.52 79.63 l S 181.52 76.53 m 181.58 79.63 l S 181.58 76.53 m 181.64 79.63 l S 181.64 76.53 m 181.71 79.63 l S 181.71 76.53 m 181.77 76.53 l S 181.77 76.53 m 181.83 79.63 l S 181.83 76.53 m 181.89 79.63 l S 181.89 76.53 m 181.96 79.63 l S 181.96 76.53 m 182.02 79.63 l S 182.02 76.53 m 182.08 79.63 l S 182.08 76.53 m 182.15 79.63 l S 182.15 76.53 m 182.21 79.63 l S 182.21 76.53 m 182.27 79.63 l S 182.27 76.53 m 182.33 82.72 l S 182.33 76.53 m 182.40 79.63 l S 182.40 76.53 m 182.46 79.63 l S 182.46 76.53 m 182.52 79.63 l S 182.52 76.53 m 182.58 79.63 l S 182.58 76.53 m 182.65 79.63 l S 182.65 76.53 m 182.71 85.81 l S 182.71 76.53 m 182.77 79.63 l S 182.77 76.53 m 182.84 79.63 l S 182.84 76.53 m 182.90 79.63 l S 182.90 76.53 m 182.96 79.63 l S 182.96 76.53 m 183.02 79.63 l S 183.02 76.53 m 183.09 79.63 l S 183.09 76.53 m 183.15 79.63 l S 183.15 76.53 m 183.21 79.63 l S 183.21 76.53 m 183.27 82.72 l S 183.27 76.53 m 183.34 82.72 l S 183.34 76.53 m 183.40 79.63 l S 183.40 76.53 m 183.46 82.72 l S 183.46 76.53 m 183.52 79.63 l S 183.52 76.53 m 183.59 79.63 l S 183.59 76.53 m 183.65 79.63 l S 183.65 76.53 m 183.71 79.63 l S 183.71 76.53 m 183.78 76.53 l S 183.78 76.53 m 183.84 79.63 l S 183.84 76.53 m 183.90 79.63 l S 183.90 76.53 m 183.96 76.53 l S 183.96 76.53 m 184.03 79.63 l S 184.03 76.53 m 184.09 76.53 l S 184.09 76.53 m 184.15 79.63 l S 184.15 76.53 m 184.21 85.81 l S 184.21 76.53 m 184.28 82.72 l S 184.28 76.53 m 184.34 85.81 l S 184.34 76.53 m 184.40 79.63 l S 184.40 76.53 m 184.46 79.63 l S 184.46 76.53 m 184.53 79.63 l S 184.53 76.53 m 184.59 82.72 l S 184.59 76.53 m 184.65 79.63 l S 184.65 76.53 m 184.72 79.63 l S 184.72 76.53 m 184.78 79.63 l S 184.78 76.53 m 184.84 79.63 l S 184.84 76.53 m 184.90 79.63 l S 184.90 76.53 m 184.97 79.63 l S 184.97 76.53 m 185.03 79.63 l S 185.03 76.53 m 185.09 79.63 l S 185.09 76.53 m 185.15 79.63 l S 185.15 76.53 m 185.22 79.63 l S 185.22 76.53 m 185.28 82.72 l S 185.28 76.53 m 185.34 79.63 l S 185.34 76.53 m 185.41 79.63 l S 185.41 76.53 m 185.47 79.63 l S 185.47 76.53 m 185.53 79.63 l S 185.53 76.53 m 185.59 88.91 l S 185.59 76.53 m 185.66 79.63 l S 185.66 76.53 m 185.72 76.53 l S 185.72 76.53 m 185.78 79.63 l S 185.78 76.53 m 185.84 79.63 l S 185.84 76.53 m 185.91 79.63 l S 185.91 76.53 m 185.97 79.63 l S 185.97 76.53 m 186.03 79.63 l S 186.03 76.53 m 186.09 79.63 l S 186.09 76.53 m 186.16 79.63 l S 186.16 76.53 m 186.22 79.63 l S 186.22 76.53 m 186.28 79.63 l S 186.28 76.53 m 186.35 79.63 l S 186.35 76.53 m 186.41 85.81 l S 186.41 76.53 m 186.47 79.63 l S 186.47 76.53 m 186.53 79.63 l S 186.53 76.53 m 186.60 79.63 l S 186.60 76.53 m 186.66 85.81 l S 186.66 76.53 m 186.72 79.63 l S 186.72 76.53 m 186.78 79.63 l S 186.78 76.53 m 186.85 79.63 l S 186.85 76.53 m 186.91 79.63 l S 186.91 76.53 m 186.97 79.63 l S 186.97 76.53 m 187.03 79.63 l S 187.03 76.53 m 187.10 82.72 l S 187.10 76.53 m 187.16 82.72 l S 187.16 76.53 m 187.22 79.63 l S 187.22 76.53 m 187.29 82.72 l S 187.29 76.53 m 187.35 79.63 l S 187.35 76.53 m 187.41 79.63 l S 187.41 76.53 m 187.47 82.72 l S 187.47 76.53 m 187.54 79.63 l S 187.54 76.53 m 187.60 79.63 l S 187.60 76.53 m 187.66 82.72 l S 187.66 76.53 m 187.72 79.63 l S 187.72 76.53 m 187.79 79.63 l S 187.79 76.53 m 187.85 79.63 l S 187.85 76.53 m 187.91 82.72 l S 187.91 76.53 m 187.98 79.63 l S 187.98 76.53 m 188.04 95.09 l S 188.04 76.53 m 188.10 92.00 l S 188.10 76.53 m 188.16 82.72 l S 188.16 76.53 m 188.23 79.63 l S 188.23 76.53 m 188.29 79.63 l S 188.29 76.53 m 188.35 79.63 l S 188.35 76.53 m 188.41 79.63 l S 188.41 76.53 m 188.48 79.63 l S 188.48 76.53 m 188.54 79.63 l S 188.54 76.53 m 188.60 79.63 l S 188.60 76.53 m 188.66 82.72 l S 188.66 76.53 m 188.73 79.63 l S 188.73 76.53 m 188.79 79.63 l S 188.79 76.53 m 188.85 79.63 l S 188.85 76.53 m 188.92 82.72 l S 188.92 76.53 m 188.98 79.63 l S 188.98 76.53 m 189.04 79.63 l S 189.04 76.53 m 189.10 79.63 l S 189.10 76.53 m 189.17 79.63 l S 189.17 76.53 m 189.23 79.63 l S 189.23 76.53 m 189.29 85.81 l S 189.29 76.53 m 189.35 79.63 l S 189.35 76.53 m 189.42 85.81 l S 189.42 76.53 m 189.48 79.63 l S 189.48 76.53 m 189.54 79.63 l S 189.54 76.53 m 189.60 82.72 l S 189.60 76.53 m 189.67 79.63 l S 189.67 76.53 m 189.73 79.63 l S 189.73 76.53 m 189.79 79.63 l S 189.79 76.53 m 189.86 79.63 l S 189.86 76.53 m 189.92 79.63 l S 189.92 76.53 m 189.98 79.63 l S 189.98 76.53 m 190.04 79.63 l S 190.04 76.53 m 190.11 79.63 l S 190.11 76.53 m 190.17 76.53 l S 190.17 76.53 m 190.23 79.63 l S 190.23 76.53 m 190.29 79.63 l S 190.29 76.53 m 190.36 82.72 l S 190.36 76.53 m 190.42 82.72 l S 190.42 76.53 m 190.48 79.63 l S 190.48 76.53 m 190.55 79.63 l S 190.55 76.53 m 190.61 79.63 l S 190.61 76.53 m 190.67 79.63 l S 190.67 76.53 m 190.73 79.63 l S 190.73 76.53 m 190.80 79.63 l S 190.80 76.53 m 190.86 79.63 l S 190.86 76.53 m 190.92 79.63 l S 190.92 76.53 m 190.98 79.63 l S 190.98 76.53 m 191.05 79.63 l S 191.05 76.53 m 191.11 79.63 l S 191.11 76.53 m 191.17 79.63 l S 191.17 76.53 m 191.23 79.63 l S 191.23 76.53 m 191.30 79.63 l S 191.30 76.53 m 191.36 79.63 l S 191.36 76.53 m 191.42 79.63 l S 191.42 76.53 m 191.49 79.63 l S 191.49 76.53 m 191.55 79.63 l S 191.55 76.53 m 191.61 79.63 l S 191.61 76.53 m 191.67 79.63 l S 191.67 76.53 m 191.74 79.63 l S 191.74 76.53 m 191.80 79.63 l S 191.80 76.53 m 191.86 79.63 l S 191.86 76.53 m 191.92 76.53 l S 191.92 76.53 m 191.99 79.63 l S 191.99 76.53 m 192.05 79.63 l S 192.05 76.53 m 192.11 79.63 l S 192.11 76.53 m 192.17 79.63 l S 192.17 76.53 m 192.24 79.63 l S 192.24 76.53 m 192.30 79.63 l S 192.30 76.53 m 192.36 79.63 l S 192.36 76.53 m 192.43 79.63 l S 192.43 76.53 m 192.49 79.63 l S 192.49 76.53 m 192.55 79.63 l S 192.55 76.53 m 192.61 79.63 l S 192.61 76.53 m 192.68 79.63 l S 192.68 76.53 m 192.74 82.72 l S 192.74 76.53 m 192.80 79.63 l S 192.80 76.53 m 192.86 79.63 l S 192.86 76.53 m 192.93 79.63 l S 192.93 76.53 m 192.99 79.63 l S 192.99 76.53 m 193.05 79.63 l S 193.05 76.53 m 193.12 79.63 l S 193.12 76.53 m 193.18 79.63 l S 193.18 76.53 m 193.24 79.63 l S 193.24 76.53 m 193.30 79.63 l S 193.30 76.53 m 193.37 79.63 l S 193.37 76.53 m 193.43 79.63 l S 193.43 76.53 m 193.49 79.63 l S 193.49 76.53 m 193.55 79.63 l S 193.55 76.53 m 193.62 79.63 l S 193.62 76.53 m 193.68 76.53 l S 193.68 76.53 m 193.74 79.63 l S 193.74 76.53 m 193.80 79.63 l S 193.80 76.53 m 193.87 79.63 l S 193.87 76.53 m 193.93 76.53 l S 193.93 76.53 m 193.99 79.63 l S 193.99 76.53 m 194.06 76.53 l S 194.06 76.53 m 194.12 79.63 l S 194.12 76.53 m 194.18 79.63 l S 194.18 76.53 m 194.24 79.63 l S 194.24 76.53 m 194.31 79.63 l S 194.31 76.53 m 194.37 79.63 l S 194.37 76.53 m 194.43 79.63 l S 194.43 76.53 m 194.49 79.63 l S 194.49 76.53 m 194.56 79.63 l S 194.56 76.53 m 194.62 79.63 l S 194.62 76.53 m 194.68 79.63 l S 194.68 76.53 m 194.74 79.63 l S 194.74 76.53 m 194.81 79.63 l S 194.81 76.53 m 194.87 79.63 l S 194.87 76.53 m 194.93 79.63 l S 194.93 76.53 m 195.00 79.63 l S 195.00 76.53 m 195.06 79.63 l S 195.06 76.53 m 195.12 82.72 l S 195.12 76.53 m 195.18 79.63 l S 195.18 76.53 m 195.25 76.53 l S 195.25 76.53 m 195.31 79.63 l S 195.31 76.53 m 195.37 79.63 l S 195.37 76.53 m 195.43 79.63 l S 195.43 76.53 m 195.50 79.63 l S 195.50 76.53 m 195.56 79.63 l S 195.56 76.53 m 195.62 79.63 l S 195.62 76.53 m 195.68 79.63 l S 195.68 76.53 m 195.75 79.63 l S 195.75 76.53 m 195.81 76.53 l S 195.81 76.53 m 195.87 76.53 l S 195.87 76.53 m 195.94 79.63 l S 195.94 76.53 m 196.00 79.63 l S 196.00 76.53 m 196.06 79.63 l S 196.06 76.53 m 196.12 79.63 l S 196.12 76.53 m 196.19 79.63 l S 196.19 76.53 m 196.25 79.63 l S 196.25 76.53 m 196.31 79.63 l S 196.31 76.53 m 196.37 79.63 l S 196.37 76.53 m 196.44 79.63 l S 196.44 76.53 m 196.50 79.63 l S 196.50 76.53 m 196.56 79.63 l S 196.56 76.53 m 196.63 79.63 l S 196.63 76.53 m 196.69 79.63 l S 196.69 76.53 m 196.75 79.63 l S 196.75 76.53 m 196.81 79.63 l S 196.81 76.53 m 196.88 79.63 l S 196.88 76.53 m 196.94 79.63 l S 196.94 76.53 m 197.00 79.63 l S 197.00 76.53 m 197.06 79.63 l S 197.06 76.53 m 197.13 79.63 l S 197.13 76.53 m 197.19 82.72 l S 197.19 76.53 m 197.25 88.91 l S 197.25 76.53 m 197.31 76.53 l S 197.31 76.53 m 197.38 79.63 l S 197.38 76.53 m 197.44 82.72 l S 197.44 76.53 m 197.50 88.91 l S 197.50 76.53 m 197.57 79.63 l S 197.57 76.53 m 197.63 79.63 l S 197.63 76.53 m 197.69 79.63 l S 197.69 76.53 m 197.75 79.63 l S 197.75 76.53 m 197.82 88.91 l S 197.82 76.53 m 197.88 79.63 l S 197.88 76.53 m 197.94 79.63 l S 197.94 76.53 m 198.00 79.63 l S 198.00 76.53 m 198.07 79.63 l S 198.07 76.53 m 198.13 79.63 l S 198.13 76.53 m 198.19 79.63 l S 198.19 76.53 m 198.25 79.63 l S 198.25 76.53 m 198.32 88.91 l S 198.32 76.53 m 198.38 79.63 l S 198.38 76.53 m 198.44 92.00 l S 198.44 76.53 m 198.51 79.63 l S 198.51 76.53 m 198.57 92.00 l S 198.57 76.53 m 198.63 76.53 l S 198.63 76.53 m 198.69 85.81 l S 198.69 76.53 m 198.76 82.72 l S 198.76 76.53 m 198.82 88.91 l S 198.82 76.53 m 198.88 79.63 l S 198.88 76.53 m 198.94 79.63 l S 198.94 76.53 m 199.01 82.72 l S 199.01 76.53 m 199.07 79.63 l S 199.07 76.53 m 199.13 79.63 l S 199.13 76.53 m 199.20 82.72 l S 199.20 76.53 m 199.26 79.63 l S 199.26 76.53 m 199.32 79.63 l S 199.32 76.53 m 199.38 88.91 l S 199.38 76.53 m 199.45 88.91 l S 199.45 76.53 m 199.51 88.91 l S 199.51 76.53 m 199.57 79.63 l S 199.57 76.53 m 199.63 82.72 l S 199.63 76.53 m 199.70 85.81 l S 199.70 76.53 m 199.76 85.81 l S 199.76 76.53 m 199.82 79.63 l S 199.82 76.53 m 199.88 92.00 l S 199.88 76.53 m 199.95 79.63 l S 199.95 76.53 m 200.01 79.63 l S 200.01 76.53 m 200.07 79.63 l S 200.07 76.53 m 200.14 85.81 l S 200.14 76.53 m 200.20 79.63 l S 200.20 76.53 m 200.26 79.63 l S 200.26 76.53 m 200.32 79.63 l S 200.32 76.53 m 200.39 85.81 l S 200.39 76.53 m 200.45 79.63 l S 200.45 76.53 m 200.51 79.63 l S 200.51 76.53 m 200.57 85.81 l S 200.57 76.53 m 200.64 79.63 l S 200.64 76.53 m 200.70 82.72 l S 200.70 76.53 m 200.76 79.63 l S 200.76 76.53 m 200.82 82.72 l S 200.82 76.53 m 200.89 79.63 l S 200.89 76.53 m 200.95 79.63 l S 200.95 76.53 m 201.01 79.63 l S 201.01 76.53 m 201.08 79.63 l S 201.08 76.53 m 201.14 82.72 l S 201.14 76.53 m 201.20 79.63 l S 201.20 76.53 m 201.26 82.72 l S 201.26 76.53 m 201.33 82.72 l S 201.33 76.53 m 201.39 76.53 l S 201.39 76.53 m 201.45 79.63 l S 201.45 76.53 m 201.51 79.63 l S 201.51 76.53 m 201.58 82.72 l S 201.58 76.53 m 201.64 82.72 l S 201.64 76.53 m 201.70 92.00 l S 201.70 76.53 m 201.77 79.63 l S 201.77 76.53 m 201.83 88.91 l S 201.83 76.53 m 201.89 82.72 l S 201.89 76.53 m 201.95 79.63 l S 201.95 76.53 m 202.02 79.63 l S 202.02 76.53 m 202.08 92.00 l S 202.08 76.53 m 202.14 88.91 l S 202.14 76.53 m 202.20 88.91 l S 202.20 76.53 m 202.27 79.63 l S 202.27 76.53 m 202.33 79.63 l S 202.33 76.53 m 202.39 79.63 l S 202.39 76.53 m 202.45 82.72 l S 202.45 76.53 m 202.52 85.81 l S 202.52 76.53 m 202.58 76.53 l S 202.58 76.53 m 202.64 79.63 l S 202.64 76.53 m 202.71 79.63 l S 202.71 76.53 m 202.77 79.63 l S 202.77 76.53 m 202.83 79.63 l S 202.83 76.53 m 202.89 85.81 l S 202.89 76.53 m 202.96 85.81 l S 202.96 76.53 m 203.02 85.81 l S 203.02 76.53 m 203.08 79.63 l S 203.08 76.53 m 203.14 79.63 l S 203.14 76.53 m 203.21 79.63 l S 203.21 76.53 m 203.27 79.63 l S 203.27 76.53 m 203.33 82.72 l S 203.33 76.53 m 203.39 79.63 l S 203.39 76.53 m 203.46 79.63 l S 203.46 76.53 m 203.52 79.63 l S 203.52 76.53 m 203.58 79.63 l S 203.58 76.53 m 203.65 79.63 l S 203.65 76.53 m 203.71 79.63 l S 203.71 76.53 m 203.77 79.63 l S 203.77 76.53 m 203.83 85.81 l S 203.83 76.53 m 203.90 79.63 l S 203.90 76.53 m 203.96 92.00 l S 203.96 76.53 m 204.02 79.63 l S 204.02 76.53 m 204.08 79.63 l S 204.08 76.53 m 204.15 79.63 l S 204.15 76.53 m 204.21 79.63 l S 204.21 76.53 m 204.27 79.63 l S 204.27 76.53 m 204.34 79.63 l S 204.34 76.53 m 204.40 79.63 l S 204.40 76.53 m 204.46 79.63 l S 204.46 76.53 m 204.52 79.63 l S 204.52 76.53 m 204.59 79.63 l S 204.59 76.53 m 204.65 95.09 l S 204.65 76.53 m 204.71 79.63 l S 204.71 76.53 m 204.77 79.63 l S 204.77 76.53 m 204.84 98.19 l S 204.84 76.53 m 204.90 85.81 l S 204.90 76.53 m 204.96 79.63 l S 204.96 76.53 m 205.02 79.63 l S 205.02 76.53 m 205.09 79.63 l S 205.09 76.53 m 205.15 82.72 l S 205.15 76.53 m 205.21 79.63 l S 205.21 76.53 m 205.28 85.81 l S 205.28 76.53 m 205.34 79.63 l S 205.34 76.53 m 205.40 79.63 l S 205.40 76.53 m 205.46 79.63 l S 205.46 76.53 m 205.53 88.91 l S 205.53 76.53 m 205.59 95.09 l S 205.59 76.53 m 205.65 82.72 l S 205.65 76.53 m 205.71 82.72 l S 205.71 76.53 m 205.78 92.00 l S 205.78 76.53 m 205.84 79.63 l S 205.84 76.53 m 205.90 79.63 l S 205.90 76.53 m 205.96 79.63 l S 205.96 76.53 m 206.03 79.63 l S 206.03 76.53 m 206.09 79.63 l S 206.09 76.53 m 206.15 79.63 l S 206.15 76.53 m 206.22 79.63 l S 206.22 76.53 m 206.28 88.91 l S 206.28 76.53 m 206.34 79.63 l S 206.34 76.53 m 206.40 82.72 l S 206.40 76.53 m 206.47 79.63 l S 206.47 76.53 m 206.53 79.63 l S 206.53 76.53 m 206.59 79.63 l S 206.59 76.53 m 206.65 79.63 l S 206.65 76.53 m 206.72 79.63 l S 206.72 76.53 m 206.78 79.63 l S 206.78 76.53 m 206.84 79.63 l S 206.84 76.53 m 206.91 79.63 l S 206.91 76.53 m 206.97 79.63 l S 206.97 76.53 m 207.03 79.63 l S 207.03 76.53 m 207.09 76.53 l S 207.09 76.53 m 207.16 95.09 l S 207.16 76.53 m 207.22 79.63 l S 207.22 76.53 m 207.28 113.65 l S 207.28 76.53 m 207.34 76.53 l S 207.34 76.53 m 207.41 98.19 l S 207.41 76.53 m 207.47 79.63 l S 207.47 76.53 m 207.53 82.72 l S 207.53 76.53 m 207.59 82.72 l S 207.59 76.53 m 207.66 79.63 l S 207.66 76.53 m 207.72 92.00 l S 207.72 76.53 m 207.78 79.63 l S 207.78 76.53 m 207.85 88.91 l S 207.85 76.53 m 207.91 79.63 l S 207.91 76.53 m 207.97 79.63 l S 207.97 76.53 m 208.03 79.63 l S 208.03 76.53 m 208.10 95.09 l S 208.10 76.53 m 208.16 82.72 l S 208.16 76.53 m 208.22 76.53 l S 208.22 76.53 m 208.28 95.09 l S 208.28 76.53 m 208.35 88.91 l S 208.35 76.53 m 208.41 95.09 l S 208.41 76.53 m 208.47 85.81 l S 208.47 76.53 m 208.53 82.72 l S 208.53 76.53 m 208.60 82.72 l S 208.60 76.53 m 208.66 79.63 l S 208.66 76.53 m 208.72 79.63 l S 208.72 76.53 m 208.79 92.00 l S 208.79 76.53 m 208.85 79.63 l S 208.85 76.53 m 208.91 79.63 l S 208.91 76.53 m 208.97 82.72 l S 208.97 76.53 m 209.04 79.63 l S 209.04 76.53 m 209.10 122.93 l S 209.10 76.53 m 209.16 85.81 l S 209.16 76.53 m 209.22 79.63 l S 209.22 76.53 m 209.29 79.63 l S 209.29 76.53 m 209.35 79.63 l S 209.35 76.53 m 209.41 79.63 l S 209.41 76.53 m 209.48 79.63 l S 209.48 76.53 m 209.54 76.53 l S 209.54 76.53 m 209.60 82.72 l S 209.60 76.53 m 209.66 79.63 l S 209.66 76.53 m 209.73 79.63 l S 209.73 76.53 m 209.79 79.63 l S 209.79 76.53 m 209.85 79.63 l S 209.85 76.53 m 209.91 79.63 l S 209.91 76.53 m 209.98 79.63 l S 209.98 76.53 m 210.04 79.63 l S 210.04 76.53 m 210.10 79.63 l S 210.10 76.53 m 210.16 79.63 l S 210.16 76.53 m 210.23 79.63 l S 210.23 76.53 m 210.29 79.63 l S 210.29 76.53 m 210.35 92.00 l S 210.35 76.53 m 210.42 79.63 l S 210.42 76.53 m 210.48 82.72 l S 210.48 76.53 m 210.54 79.63 l S 210.54 76.53 m 210.60 79.63 l S 210.60 76.53 m 210.67 79.63 l S 210.67 76.53 m 210.73 79.63 l S 210.73 76.53 m 210.79 79.63 l S 210.79 76.53 m 210.85 92.00 l S 210.85 76.53 m 210.92 79.63 l S 210.92 76.53 m 210.98 79.63 l S 210.98 76.53 m 211.04 88.91 l S 211.04 76.53 m 211.10 82.72 l S 211.10 76.53 m 211.17 79.63 l S 211.17 76.53 m 211.23 82.72 l S 211.23 76.53 m 211.29 79.63 l S 211.29 76.53 m 211.36 79.63 l S 211.36 76.53 m 211.42 82.72 l S 211.42 76.53 m 211.48 79.63 l S 211.48 76.53 m 211.54 79.63 l S 211.54 76.53 m 211.61 79.63 l S 211.61 76.53 m 211.67 79.63 l S 211.67 76.53 m 211.73 76.53 l S 211.73 76.53 m 211.79 79.63 l S 211.79 76.53 m 211.86 79.63 l S 211.86 76.53 m 211.92 82.72 l S 211.92 76.53 m 211.98 79.63 l S 211.98 76.53 m 212.05 79.63 l S 212.05 76.53 m 212.11 82.72 l S 212.11 76.53 m 212.17 79.63 l S 212.17 76.53 m 212.23 79.63 l S 212.23 76.53 m 212.30 79.63 l S 212.30 76.53 m 212.36 79.63 l S 212.36 76.53 m 212.42 79.63 l S 212.42 76.53 m 212.48 79.63 l S 212.48 76.53 m 212.55 79.63 l S 212.55 76.53 m 212.61 79.63 l S 212.61 76.53 m 212.67 79.63 l S 212.67 76.53 m 212.73 79.63 l S 212.73 76.53 m 212.80 79.63 l S 212.80 76.53 m 212.86 79.63 l S 212.86 76.53 m 212.92 79.63 l S 212.92 76.53 m 212.99 79.63 l S 212.99 76.53 m 213.05 79.63 l S 213.05 76.53 m 213.11 79.63 l S 213.11 76.53 m 213.17 79.63 l S 213.17 76.53 m 213.24 79.63 l S 213.24 76.53 m 213.30 79.63 l S 213.30 76.53 m 213.36 79.63 l S 213.36 76.53 m 213.42 79.63 l S 213.42 76.53 m 213.49 79.63 l S 213.49 76.53 m 213.55 79.63 l S 213.55 76.53 m 213.61 79.63 l S 213.61 76.53 m 213.67 79.63 l S 213.67 76.53 m 213.74 79.63 l S 213.74 76.53 m 213.80 79.63 l S 213.80 76.53 m 213.86 79.63 l S 213.86 76.53 m 213.93 79.63 l S 213.93 76.53 m 213.99 79.63 l S 213.99 76.53 m 214.05 79.63 l S 214.05 76.53 m 214.11 79.63 l S 214.11 76.53 m 214.18 82.72 l S 214.18 76.53 m 214.24 79.63 l S 214.24 76.53 m 214.30 79.63 l S 214.30 76.53 m 214.36 82.72 l S 214.36 76.53 m 214.43 79.63 l S 214.43 76.53 m 214.49 79.63 l S 214.49 76.53 m 214.55 79.63 l S 214.55 76.53 m 214.62 79.63 l S 214.62 76.53 m 214.68 79.63 l S 214.68 76.53 m 214.74 79.63 l S 214.74 76.53 m 214.80 79.63 l S 214.80 76.53 m 214.87 79.63 l S 214.87 76.53 m 214.93 79.63 l S 214.93 76.53 m 214.99 79.63 l S 214.99 76.53 m 215.05 82.72 l S 215.05 76.53 m 215.12 79.63 l S 215.12 76.53 m 215.18 79.63 l S 215.18 76.53 m 215.24 79.63 l S 215.24 76.53 m 215.30 79.63 l S 215.30 76.53 m 215.37 79.63 l S 215.37 76.53 m 215.43 79.63 l S 215.43 76.53 m 215.49 82.72 l S 215.49 76.53 m 215.56 79.63 l S 215.56 76.53 m 215.62 79.63 l S 215.62 76.53 m 215.68 79.63 l S 215.68 76.53 m 215.74 79.63 l S 215.74 76.53 m 215.81 79.63 l S 215.81 76.53 m 215.87 79.63 l S 215.87 76.53 m 215.93 79.63 l S 215.93 76.53 m 215.99 82.72 l S 215.99 76.53 m 216.06 85.81 l S 216.06 76.53 m 216.12 79.63 l S 216.12 76.53 m 216.18 79.63 l S 216.18 76.53 m 216.24 85.81 l S 216.24 76.53 m 216.31 79.63 l S 216.31 76.53 m 216.37 79.63 l S 216.37 76.53 m 216.43 79.63 l S 216.43 76.53 m 216.50 79.63 l S 216.50 76.53 m 216.56 79.63 l S 216.56 76.53 m 216.62 82.72 l S 216.62 76.53 m 216.68 79.63 l S 216.68 76.53 m 216.75 95.09 l S 216.75 76.53 m 216.81 82.72 l S 216.81 76.53 m 216.87 79.63 l S 216.87 76.53 m 216.93 79.63 l S 216.93 76.53 m 217.00 79.63 l S 217.00 76.53 m 217.06 79.63 l S 217.06 76.53 m 217.12 79.63 l S 217.12 76.53 m 217.19 79.63 l S 217.19 76.53 m 217.25 79.63 l S 217.25 76.53 m 217.31 79.63 l S 217.31 76.53 m 217.37 79.63 l S 217.37 76.53 m 217.44 79.63 l S 217.44 76.53 m 217.50 79.63 l S 217.50 76.53 m 217.56 79.63 l S 217.56 76.53 m 217.62 79.63 l S 217.62 76.53 m 217.69 79.63 l S 217.69 76.53 m 217.75 79.63 l S 217.75 76.53 m 217.81 79.63 l S 217.81 76.53 m 217.87 79.63 l S 217.87 76.53 m 217.94 79.63 l S 217.94 76.53 m 218.00 82.72 l S 218.00 76.53 m 218.06 79.63 l S 218.06 76.53 m 218.13 79.63 l S 218.13 76.53 m 218.19 85.81 l S 218.19 76.53 m 218.25 79.63 l S 218.25 76.53 m 218.31 79.63 l S 218.31 76.53 m 218.38 82.72 l S 218.38 76.53 m 218.44 79.63 l S 218.44 76.53 m 218.50 79.63 l S 218.50 76.53 m 218.56 79.63 l S 218.56 76.53 m 218.63 82.72 l S 218.63 76.53 m 218.69 82.72 l S 218.69 76.53 m 218.75 79.63 l S 218.75 76.53 m 218.81 79.63 l S 218.81 76.53 m 218.88 82.72 l S 218.88 76.53 m 218.94 79.63 l S 218.94 76.53 m 219.00 76.53 l S 219.00 76.53 m 219.07 76.53 l S 219.07 76.53 m 219.13 76.53 l S 219.13 76.53 m 219.19 76.53 l S 219.19 76.53 m 219.25 76.53 l S 219.25 76.53 m 219.32 76.53 l S 219.32 76.53 m 219.38 76.53 l S 219.38 76.53 m 219.44 76.53 l S 219.44 76.53 m 219.50 76.53 l S 219.50 76.53 m 219.57 76.53 l S 219.57 76.53 m 219.63 76.53 l S 219.63 76.53 m 219.69 76.53 l S 219.69 76.53 m 219.76 76.53 l S 219.76 76.53 m 219.82 76.53 l S 219.82 76.53 m 219.88 76.53 l S 219.88 76.53 m 219.94 76.53 l S 219.94 76.53 m 220.01 76.53 l S 220.01 76.53 m 220.07 76.53 l S 220.07 76.53 m 220.13 76.53 l S 220.13 76.53 m 220.19 82.72 l S 220.19 76.53 m 220.26 79.63 l S 220.26 76.53 m 220.32 82.72 l S 220.32 76.53 m 220.38 79.63 l S 220.38 76.53 m 220.44 79.63 l S 220.44 76.53 m 220.51 79.63 l S 220.51 76.53 m 220.57 79.63 l S 220.57 76.53 m 220.63 88.91 l S 220.63 76.53 m 220.70 79.63 l S 220.70 76.53 m 220.76 79.63 l S 220.76 76.53 m 220.82 79.63 l S 220.82 76.53 m 220.88 85.81 l S 220.88 76.53 m 220.95 79.63 l S 220.95 76.53 m 221.01 82.72 l S 221.01 76.53 m 221.07 79.63 l S 221.07 76.53 m 221.13 79.63 l S 221.13 76.53 m 221.20 79.63 l S 221.20 76.53 m 221.26 88.91 l S 221.26 76.53 m 221.32 88.91 l S 221.32 76.53 m 221.38 79.63 l S 221.38 76.53 m 221.45 79.63 l S 221.45 76.53 m 221.51 85.81 l S 221.51 76.53 m 221.57 82.72 l S 221.57 76.53 m 221.64 79.63 l S 221.64 76.53 m 221.70 79.63 l S 221.70 76.53 m 221.76 79.63 l S 221.76 76.53 m 221.82 79.63 l S 221.82 76.53 m 221.89 79.63 l S 221.89 76.53 m 221.95 79.63 l S 221.95 76.53 m 222.01 79.63 l S 222.01 76.53 m 222.07 79.63 l S 222.07 76.53 m 222.14 79.63 l S 222.14 76.53 m 222.20 79.63 l S 222.20 76.53 m 222.26 79.63 l S 222.26 76.53 m 222.32 79.63 l S 222.32 76.53 m 222.39 76.53 l S 222.39 76.53 m 222.45 79.63 l S 222.45 76.53 m 222.51 79.63 l S 222.51 76.53 m 222.58 79.63 l S 222.58 76.53 m 222.64 79.63 l S 222.64 76.53 m 222.70 76.53 l S 222.70 76.53 m 222.76 79.63 l S 222.76 76.53 m 222.83 76.53 l S 222.83 76.53 m 222.89 79.63 l S 222.89 76.53 m 222.95 79.63 l S 222.95 76.53 m 223.01 79.63 l S 223.01 76.53 m 223.08 79.63 l S 223.08 76.53 m 223.14 76.53 l S 223.14 76.53 m 223.20 79.63 l S 223.20 76.53 m 223.27 82.72 l S 223.27 76.53 m 223.33 79.63 l S 223.33 76.53 m 223.39 76.53 l S 223.39 76.53 m 223.45 79.63 l S 223.45 76.53 m 223.52 79.63 l S 223.52 76.53 m 223.58 79.63 l S 223.58 76.53 m 223.64 79.63 l S 223.64 76.53 m 223.70 79.63 l S 223.70 76.53 m 223.77 79.63 l S 223.77 76.53 m 223.83 79.63 l S 223.83 76.53 m 223.89 79.63 l S 223.89 76.53 m 223.95 79.63 l S 223.95 76.53 m 224.02 79.63 l S 224.02 76.53 m 224.08 79.63 l S 224.08 76.53 m 224.14 79.63 l S 224.14 76.53 m 224.21 82.72 l S 224.21 76.53 m 224.27 79.63 l S 224.27 76.53 m 224.33 79.63 l S 224.33 76.53 m 224.39 79.63 l S 224.39 76.53 m 224.46 79.63 l S 224.46 76.53 m 224.52 79.63 l S 224.52 76.53 m 224.58 79.63 l S 224.58 76.53 m 224.64 79.63 l S 224.64 76.53 m 224.71 82.72 l S 224.71 76.53 m 224.77 79.63 l S 224.77 76.53 m 224.83 79.63 l S 224.83 76.53 m 224.89 82.72 l S 224.89 76.53 m 224.96 79.63 l S 224.96 76.53 m 225.02 79.63 l S 225.02 76.53 m 225.08 82.72 l S 225.08 76.53 m 225.15 79.63 l S 225.15 76.53 m 225.21 79.63 l S 225.21 76.53 m 225.27 79.63 l S 225.27 76.53 m 225.33 79.63 l S 225.33 76.53 m 225.40 79.63 l S 225.40 76.53 m 225.46 82.72 l S 225.46 76.53 m 225.52 79.63 l S 225.52 76.53 m 225.58 79.63 l S 225.58 76.53 m 225.65 79.63 l S 225.65 76.53 m 225.71 79.63 l S 225.71 76.53 m 225.77 79.63 l S 225.77 76.53 m 225.84 79.63 l S 225.84 76.53 m 225.90 79.63 l S 225.90 76.53 m 225.96 79.63 l S 225.96 76.53 m 226.02 79.63 l S 226.02 76.53 m 226.09 79.63 l S 226.09 76.53 m 226.15 79.63 l S 226.15 76.53 m 226.21 79.63 l S 226.21 76.53 m 226.27 79.63 l S 226.27 76.53 m 226.34 79.63 l S 226.34 76.53 m 226.40 79.63 l S 226.40 76.53 m 226.46 79.63 l S 226.46 76.53 m 226.52 82.72 l S 226.52 76.53 m 226.59 79.63 l S 226.59 76.53 m 226.65 79.63 l S 226.65 76.53 m 226.71 79.63 l S 226.71 76.53 m 226.78 79.63 l S 226.78 76.53 m 226.84 79.63 l S 226.84 76.53 m 226.90 79.63 l S 226.90 76.53 m 226.96 79.63 l S 226.96 76.53 m 227.03 79.63 l S 227.03 76.53 m 227.09 79.63 l S 227.09 76.53 m 227.15 79.63 l S 227.15 76.53 m 227.21 79.63 l S 227.21 76.53 m 227.28 79.63 l S 227.28 76.53 m 227.34 82.72 l S 227.34 76.53 m 227.40 79.63 l S 227.40 76.53 m 227.46 79.63 l S 227.46 76.53 m 227.53 79.63 l S 227.53 76.53 m 227.59 79.63 l S 227.59 76.53 m 227.65 79.63 l S 227.65 76.53 m 227.72 79.63 l S 227.72 76.53 m 227.78 82.72 l S 227.78 76.53 m 227.84 79.63 l S 227.84 76.53 m 227.90 82.72 l S 227.90 76.53 m 227.97 79.63 l S 227.97 76.53 m 228.03 79.63 l S 228.03 76.53 m 228.09 79.63 l S 228.09 76.53 m 228.15 88.91 l S 228.15 76.53 m 228.22 79.63 l S 228.22 76.53 m 228.28 79.63 l S 228.28 76.53 m 228.34 79.63 l S 228.34 76.53 m 228.41 82.72 l S 228.41 76.53 m 228.47 79.63 l S 228.47 76.53 m 228.53 82.72 l S 228.53 76.53 m 228.59 79.63 l S 228.59 76.53 m 228.66 79.63 l S 228.66 76.53 m 228.72 79.63 l S 228.72 76.53 m 228.78 79.63 l S 228.78 76.53 m 228.84 79.63 l S 228.84 76.53 m 228.91 79.63 l S 228.91 76.53 m 228.97 79.63 l S 228.97 76.53 m 229.03 79.63 l S 229.03 76.53 m 229.09 79.63 l S 229.09 76.53 m 229.16 79.63 l S 229.16 76.53 m 229.22 79.63 l S 229.22 76.53 m 229.28 79.63 l S 229.28 76.53 m 229.35 79.63 l S 229.35 76.53 m 229.41 79.63 l S 229.41 76.53 m 229.47 79.63 l S 229.47 76.53 m 229.53 79.63 l S 229.53 76.53 m 229.60 82.72 l S 229.60 76.53 m 229.66 79.63 l S 229.66 76.53 m 229.72 79.63 l S 229.72 76.53 m 229.78 79.63 l S 229.78 76.53 m 229.85 79.63 l S 229.85 76.53 m 229.91 79.63 l S 229.91 76.53 m 229.97 79.63 l S 229.97 76.53 m 230.03 82.72 l S 230.03 76.53 m 230.10 79.63 l S 230.10 76.53 m 230.16 79.63 l S 230.16 76.53 m 230.22 79.63 l S 230.22 76.53 m 230.29 79.63 l S 230.29 76.53 m 230.35 79.63 l S 230.35 76.53 m 230.41 79.63 l S 230.41 76.53 m 230.47 79.63 l S 230.47 76.53 m 230.54 79.63 l S 230.54 76.53 m 230.60 79.63 l S 230.60 76.53 m 230.66 79.63 l S 230.66 76.53 m 230.72 79.63 l S 230.72 76.53 m 230.79 79.63 l S 230.79 76.53 m 230.85 79.63 l S 230.85 76.53 m 230.91 82.72 l S 230.91 76.53 m 230.98 79.63 l S 230.98 76.53 m 231.04 79.63 l S 231.04 76.53 m 231.10 79.63 l S 231.10 76.53 m 231.16 79.63 l S 231.16 76.53 m 231.23 82.72 l S 231.23 76.53 m 231.29 79.63 l S 231.29 76.53 m 231.35 79.63 l S 231.35 76.53 m 231.41 79.63 l S 231.41 76.53 m 231.48 79.63 l S 231.48 76.53 m 231.54 79.63 l S 231.54 76.53 m 231.60 79.63 l S 231.60 76.53 m 231.66 79.63 l S 231.66 76.53 m 231.73 79.63 l S 231.73 76.53 m 231.79 79.63 l S 231.79 76.53 m 231.85 79.63 l S 231.85 76.53 m 231.92 79.63 l S 231.92 76.53 m 231.98 79.63 l S 231.98 76.53 m 232.04 79.63 l S 232.04 76.53 m 232.10 79.63 l S 232.10 76.53 m 232.17 79.63 l S 232.17 76.53 m 232.23 79.63 l S 232.23 76.53 m 232.29 82.72 l S 232.29 76.53 m 232.35 85.81 l S 232.35 76.53 m 232.42 79.63 l S 232.42 76.53 m 232.48 79.63 l S 232.48 76.53 m 232.54 79.63 l S 232.54 76.53 m 232.60 85.81 l S 232.60 76.53 m 232.67 79.63 l S 232.67 76.53 m 232.73 79.63 l S 232.73 76.53 m 232.79 79.63 l S 232.79 76.53 m 232.86 79.63 l S 232.86 76.53 m 232.92 88.91 l S 232.92 76.53 m 232.98 79.63 l S 232.98 76.53 m 233.04 85.81 l S 233.04 76.53 m 233.11 79.63 l S 233.11 76.53 m 233.17 79.63 l S 233.17 76.53 m 233.23 79.63 l S 233.23 76.53 m 233.29 79.63 l S 233.29 76.53 m 233.36 82.72 l S 233.36 76.53 m 233.42 82.72 l S 233.42 76.53 m 233.48 79.63 l S 233.48 76.53 m 233.55 79.63 l S 233.55 76.53 m 233.61 79.63 l S 233.61 76.53 m 233.67 85.81 l S 233.67 76.53 m 233.73 76.53 l S 233.73 76.53 m 233.80 79.63 l S 233.80 76.53 m 233.86 79.63 l S 233.86 76.53 m 233.92 76.53 l S 233.92 76.53 m 233.98 76.53 l S 233.98 76.53 m 234.05 76.53 l S 234.05 76.53 m 234.11 79.63 l S 234.11 76.53 m 234.17 79.63 l S 234.17 76.53 m 234.23 79.63 l S 234.23 76.53 m 234.30 76.53 l S 234.30 76.53 m 234.36 76.53 l S 234.36 76.53 m 234.42 104.37 l S 234.42 76.53 m 234.49 79.63 l S 234.49 76.53 m 234.55 79.63 l S 234.55 76.53 m 234.61 79.63 l S 234.61 76.53 m 234.67 82.72 l S 234.67 76.53 m 234.74 79.63 l S 234.74 76.53 m 234.80 79.63 l S 234.80 76.53 m 234.86 79.63 l S 234.86 76.53 m 234.92 82.72 l S 234.92 76.53 m 234.99 88.91 l S 234.99 76.53 m 235.05 88.91 l S 235.05 76.53 m 235.11 79.63 l S 235.11 76.53 m 235.17 79.63 l S 235.17 76.53 m 235.24 79.63 l S 235.24 76.53 m 235.30 79.63 l S 235.30 76.53 m 235.36 79.63 l S 235.36 76.53 m 235.43 79.63 l S 235.43 76.53 m 235.49 79.63 l S 235.49 76.53 m 235.55 79.63 l S 235.55 76.53 m 235.61 79.63 l S 235.61 76.53 m 235.68 79.63 l S 235.68 76.53 m 235.74 79.63 l S 235.74 76.53 m 235.80 79.63 l S 235.80 76.53 m 235.86 79.63 l S 235.86 76.53 m 235.93 79.63 l S 235.93 76.53 m 235.99 79.63 l S 235.99 76.53 m 236.05 79.63 l S 236.05 76.53 m 236.12 79.63 l S 236.12 76.53 m 236.18 79.63 l S 236.18 76.53 m 236.24 79.63 l S 236.24 76.53 m 236.30 79.63 l S 236.30 76.53 m 236.37 79.63 l S 236.37 76.53 m 236.43 92.00 l S 236.43 76.53 m 236.49 79.63 l S 236.49 76.53 m 236.55 79.63 l S 236.55 76.53 m 236.62 79.63 l S 236.62 76.53 m 236.68 79.63 l S 236.68 76.53 m 236.74 79.63 l S 236.74 76.53 m 236.80 79.63 l S 236.80 76.53 m 236.87 79.63 l S 236.87 76.53 m 236.93 95.09 l S 236.93 76.53 m 236.99 82.72 l S 236.99 76.53 m 237.06 82.72 l S 237.06 76.53 m 237.12 82.72 l S 237.12 76.53 m 237.18 85.81 l S 237.18 76.53 m 237.24 79.63 l S 237.24 76.53 m 237.31 79.63 l S 237.31 76.53 m 237.37 82.72 l S 237.37 76.53 m 237.43 79.63 l S 237.43 76.53 m 237.49 79.63 l S 237.49 76.53 m 237.56 88.91 l S 237.56 76.53 m 237.62 85.81 l S 237.62 76.53 m 237.68 79.63 l S 237.68 76.53 m 237.74 82.72 l S 237.74 76.53 m 237.81 85.81 l S 237.81 76.53 m 237.87 79.63 l S 237.87 76.53 m 237.93 88.91 l S 237.93 76.53 m 238.00 79.63 l S 238.00 76.53 m 238.06 79.63 l S 238.06 76.53 m 238.12 79.63 l S 238.12 76.53 m 238.18 79.63 l S 238.18 76.53 m 238.25 79.63 l S 238.25 76.53 m 238.31 79.63 l S 238.31 76.53 m 238.37 85.81 l S 238.37 76.53 m 238.43 79.63 l S 238.43 76.53 m 238.50 95.09 l S 238.50 76.53 m 238.56 79.63 l S 238.56 76.53 m 238.62 79.63 l S 238.62 76.53 m 238.69 79.63 l S 238.69 76.53 m 238.75 82.72 l S 238.75 76.53 m 238.81 79.63 l S 238.81 76.53 m 238.87 82.72 l S 238.87 76.53 m 238.94 79.63 l S 238.94 76.53 m 239.00 82.72 l S 239.00 76.53 m 239.06 79.63 l S 239.06 76.53 m 239.12 79.63 l S 239.12 76.53 m 239.19 79.63 l S 239.19 76.53 m 239.25 79.63 l S 239.25 76.53 m 239.31 79.63 l S 239.31 76.53 m 239.37 82.72 l S 239.37 76.53 m 239.44 79.63 l S 239.44 76.53 m 239.50 79.63 l S 239.50 76.53 m 239.56 79.63 l S 239.56 76.53 m 239.63 79.63 l S 239.63 76.53 m 239.69 79.63 l S 239.69 76.53 m 239.75 79.63 l S 239.75 76.53 m 239.81 79.63 l S 239.81 76.53 m 239.88 79.63 l S 239.88 76.53 m 239.94 79.63 l S 239.94 76.53 m 240.00 79.63 l S 240.00 76.53 m 240.06 79.63 l S 240.06 76.53 m 240.13 79.63 l S 240.13 76.53 m 240.19 79.63 l S 240.19 76.53 m 240.25 79.63 l S 240.25 76.53 m 240.31 79.63 l S 240.31 76.53 m 240.38 79.63 l S 240.38 76.53 m 240.44 79.63 l S 240.44 76.53 m 240.50 79.63 l S 240.50 76.53 m 240.57 79.63 l S 240.57 76.53 m 240.63 98.19 l S 240.63 76.53 m 240.69 79.63 l S 240.69 76.53 m 240.75 79.63 l S 240.75 76.53 m 240.82 79.63 l S 240.82 76.53 m 240.88 79.63 l S 240.88 76.53 m 240.94 79.63 l S 240.94 76.53 m 241.00 79.63 l S 241.00 76.53 m 241.07 79.63 l S 241.07 76.53 m 241.13 79.63 l S 241.13 76.53 m 241.19 85.81 l S 241.19 76.53 m 241.26 79.63 l S 241.26 76.53 m 241.32 82.72 l S 241.32 76.53 m 241.38 79.63 l S 241.38 76.53 m 241.44 79.63 l S 241.44 76.53 m 241.51 76.53 l S 241.51 76.53 m 241.57 79.63 l S 241.57 76.53 m 241.63 95.09 l S 241.63 76.53 m 241.69 76.53 l S 241.69 76.53 m 241.76 79.63 l S 241.76 76.53 m 241.82 79.63 l S 241.82 76.53 m 241.88 79.63 l S 241.88 76.53 m 241.94 79.63 l S 241.94 76.53 m 242.01 79.63 l S 242.01 76.53 m 242.07 85.81 l S 242.07 76.53 m 242.13 79.63 l S 242.13 76.53 m 242.20 79.63 l S 242.20 76.53 m 242.26 79.63 l S 242.26 76.53 m 242.32 79.63 l S 242.32 76.53 m 242.38 85.81 l S 242.38 76.53 m 242.45 79.63 l S 242.45 76.53 m 242.51 79.63 l S 242.51 76.53 m 242.57 92.00 l S 242.57 76.53 m 242.63 76.53 l S 242.63 76.53 m 242.70 79.63 l S 242.70 76.53 m 242.76 79.63 l S 242.76 76.53 m 242.82 79.63 l S 242.82 76.53 m 242.88 79.63 l S 242.88 76.53 m 242.95 79.63 l S 242.95 76.53 m 243.01 76.53 l S 243.01 76.53 m 243.07 76.53 l S 243.07 76.53 m 243.14 79.63 l S 243.14 76.53 m 243.20 85.81 l S 243.20 76.53 m 243.26 95.09 l S 243.26 76.53 m 243.32 79.63 l S 243.32 76.53 m 243.39 76.53 l S 243.39 76.53 m 243.45 79.63 l S 243.45 76.53 m 243.51 79.63 l S 243.51 76.53 m 243.57 79.63 l S 243.57 76.53 m 243.64 79.63 l S 243.64 76.53 m 243.70 79.63 l S 243.70 76.53 m 243.76 79.63 l S 243.76 76.53 m 243.83 92.00 l S 243.83 76.53 m 243.89 76.53 l S 243.89 76.53 m 243.95 79.63 l S 243.95 76.53 m 244.01 85.81 l S 244.01 76.53 m 244.08 79.63 l S 244.08 76.53 m 244.14 79.63 l S 244.14 76.53 m 244.20 79.63 l S 244.20 76.53 m 244.26 82.72 l S 244.26 76.53 m 244.33 92.00 l S 244.33 76.53 m 244.39 79.63 l S 244.39 76.53 m 244.45 79.63 l S 244.45 76.53 m 244.51 76.53 l S 244.51 76.53 m 244.58 76.53 l S 244.58 76.53 m 244.64 79.63 l S 244.64 76.53 m 244.70 82.72 l S 244.70 76.53 m 244.77 79.63 l S 244.77 76.53 m 244.83 79.63 l S 244.83 76.53 m 244.89 79.63 l S 244.89 76.53 m 244.95 82.72 l S 244.95 76.53 m 245.02 79.63 l S 245.02 76.53 m 245.08 79.63 l S 245.08 76.53 m 245.14 79.63 l S 245.14 76.53 m 245.20 82.72 l S 245.20 76.53 m 245.27 79.63 l S 245.27 76.53 m 245.33 79.63 l S 245.33 76.53 m 245.39 79.63 l S 245.39 76.53 m 245.45 79.63 l S 245.45 76.53 m 245.52 92.00 l S 245.52 76.53 m 245.58 79.63 l S 245.58 76.53 m 245.64 79.63 l S 245.64 76.53 m 245.71 79.63 l S 245.71 76.53 m 245.77 79.63 l S 245.77 76.53 m 245.83 79.63 l S 245.83 76.53 m 245.89 92.00 l S 245.89 76.53 m 245.96 79.63 l S 245.96 76.53 m 246.02 79.63 l S 246.02 76.53 m 246.08 79.63 l S 246.08 76.53 m 246.14 79.63 l S 246.14 76.53 m 246.21 79.63 l S 246.21 76.53 m 246.27 92.00 l S 246.27 76.53 m 246.33 79.63 l S 246.33 76.53 m 246.39 79.63 l S 246.39 76.53 m 246.46 79.63 l S 246.46 76.53 m 246.52 79.63 l S 246.52 76.53 m 246.58 79.63 l S 246.58 76.53 m 246.65 79.63 l S 246.65 76.53 m 246.71 79.63 l S 246.71 76.53 m 246.77 79.63 l S 246.77 76.53 m 246.83 79.63 l S 246.83 76.53 m 246.90 79.63 l S 246.90 76.53 m 246.96 79.63 l S 246.96 76.53 m 247.02 79.63 l S 247.02 76.53 m 247.08 92.00 l S 247.08 76.53 m 247.15 82.72 l S 247.15 76.53 m 247.21 79.63 l S 247.21 76.53 m 247.27 79.63 l S 247.27 76.53 m 247.34 79.63 l S 247.34 76.53 m 247.40 79.63 l S 247.40 76.53 m 247.46 95.09 l S 247.46 76.53 m 247.52 79.63 l S 247.52 76.53 m 247.59 79.63 l S 247.59 76.53 m 247.65 79.63 l S 247.65 76.53 m 247.71 79.63 l S 247.71 76.53 m 247.77 79.63 l S 247.77 76.53 m 247.84 79.63 l S 247.84 76.53 m 247.90 79.63 l S 247.90 76.53 m 247.96 79.63 l S 247.96 76.53 m 248.02 76.53 l S 248.02 76.53 m 248.09 79.63 l S 248.09 76.53 m 248.15 79.63 l S 248.15 76.53 m 248.21 79.63 l S 248.21 76.53 m 248.28 79.63 l S 248.28 76.53 m 248.34 79.63 l S 248.34 76.53 m 248.40 79.63 l S 248.40 76.53 m 248.46 79.63 l S 248.46 76.53 m 248.53 79.63 l S 248.53 76.53 m 248.59 79.63 l S 248.59 76.53 m 248.65 82.72 l S 248.65 76.53 m 248.71 82.72 l S 248.71 76.53 m 248.78 82.72 l S 248.78 76.53 m 248.84 85.81 l S 248.84 76.53 m 248.90 79.63 l S 248.90 76.53 m 248.96 79.63 l S 248.96 76.53 m 249.03 79.63 l S 249.03 76.53 m 249.09 79.63 l S 249.09 76.53 m 249.15 79.63 l S 249.15 76.53 m 249.22 79.63 l S 249.22 76.53 m 249.28 79.63 l S 249.28 76.53 m 249.34 85.81 l S 249.34 76.53 m 249.40 79.63 l S 249.40 76.53 m 249.47 79.63 l S 249.47 76.53 m 249.53 92.00 l S 249.53 76.53 m 249.59 95.09 l S 249.59 76.53 m 249.65 79.63 l S 249.65 76.53 m 249.72 79.63 l S 249.72 76.53 m 249.78 79.63 l S 249.78 76.53 m 249.84 79.63 l S 249.84 76.53 m 249.91 79.63 l S 249.91 76.53 m 249.97 92.00 l S 249.97 76.53 m 250.03 79.63 l S 250.03 76.53 m 250.09 79.63 l S 250.09 76.53 m 250.16 79.63 l S 250.16 76.53 m 250.22 88.91 l S 250.22 76.53 m 250.28 85.81 l S 250.28 76.53 m 250.34 79.63 l S 250.34 76.53 m 250.41 88.91 l S 250.41 76.53 m 250.47 79.63 l S 250.47 76.53 m 250.53 79.63 l S 250.53 76.53 m 250.59 79.63 l S 250.59 76.53 m 250.66 79.63 l S 250.66 76.53 m 250.72 79.63 l S 250.72 76.53 m 250.78 79.63 l S 250.78 76.53 m 250.85 82.72 l S 250.85 76.53 m 250.91 79.63 l S 250.91 76.53 m 250.97 82.72 l S 250.97 76.53 m 251.03 79.63 l S 251.03 76.53 m 251.10 79.63 l S 251.10 76.53 m 251.16 76.53 l S 251.16 76.53 m 251.22 85.81 l S 251.22 76.53 m 251.28 79.63 l S 251.28 76.53 m 251.35 79.63 l S 251.35 76.53 m 251.41 82.72 l S 251.41 76.53 m 251.47 82.72 l S 251.47 76.53 m 251.53 79.63 l S 251.53 76.53 m 251.60 79.63 l S 251.60 76.53 m 251.66 85.81 l S 251.66 76.53 m 251.72 79.63 l S 251.72 76.53 m 251.79 79.63 l S 251.79 76.53 m 251.85 79.63 l S 251.85 76.53 m 251.91 79.63 l S 251.91 76.53 m 251.97 79.63 l S 251.97 76.53 m 252.04 82.72 l S 252.04 76.53 m 252.10 79.63 l S 252.10 76.53 m 252.16 79.63 l S 252.16 76.53 m 252.22 79.63 l S 252.22 76.53 m 252.29 79.63 l S 252.29 76.53 m 252.35 82.72 l S 252.35 76.53 m 252.41 79.63 l S 252.41 76.53 m 252.48 79.63 l S 252.48 76.53 m 252.54 88.91 l S 252.54 76.53 m 252.60 92.00 l S 252.60 76.53 m 252.66 82.72 l S 252.66 76.53 m 252.73 85.81 l S 252.73 76.53 m 252.79 104.37 l S 252.79 76.53 m 252.85 92.00 l S 252.85 76.53 m 252.91 92.00 l S 252.91 76.53 m 252.98 79.63 l S 252.98 76.53 m 253.04 79.63 l S 253.04 76.53 m 253.10 82.72 l S 253.10 76.53 m 253.16 85.81 l S 253.16 76.53 m 253.23 82.72 l S 253.23 76.53 m 253.29 85.81 l S 253.29 76.53 m 253.35 92.00 l S 253.35 76.53 m 253.42 82.72 l S 253.42 76.53 m 253.48 79.63 l S 253.48 76.53 m 253.54 95.09 l S 253.54 76.53 m 253.60 79.63 l S 253.60 76.53 m 253.67 79.63 l S 253.67 76.53 m 253.73 79.63 l S 253.73 76.53 m 253.79 79.63 l S 253.79 76.53 m 253.85 79.63 l S 253.85 76.53 m 253.92 82.72 l S 253.92 76.53 m 253.98 82.72 l S 253.98 76.53 m 254.04 82.72 l S 254.04 76.53 m 254.10 82.72 l S 254.10 76.53 m 254.17 79.63 l S 254.17 76.53 m 254.23 79.63 l S 254.23 76.53 m 254.29 79.63 l S 254.29 76.53 m 254.36 79.63 l S 254.36 76.53 m 254.42 79.63 l S 254.42 76.53 m 254.48 79.63 l S 254.48 76.53 m 254.54 79.63 l S 254.54 76.53 m 254.61 82.72 l S 254.61 76.53 m 254.67 92.00 l S 254.67 76.53 m 254.73 85.81 l S 254.73 76.53 m 254.79 79.63 l S 254.79 76.53 m 254.86 79.63 l S 254.86 76.53 m 254.92 79.63 l S 254.92 76.53 m 254.98 79.63 l S 254.98 76.53 m 255.05 79.63 l S 255.05 76.53 m 255.11 85.81 l S 255.11 76.53 m 255.17 76.53 l S 255.17 76.53 m 255.23 79.63 l S 255.23 76.53 m 255.30 79.63 l S 255.30 76.53 m 255.36 79.63 l S 255.36 76.53 m 255.42 79.63 l S 255.42 76.53 m 255.48 79.63 l S 255.48 76.53 m 255.55 79.63 l S 255.55 76.53 m 255.61 79.63 l S 255.61 76.53 m 255.67 79.63 l S 255.67 76.53 m 255.73 79.63 l S 255.73 76.53 m 255.80 79.63 l S 255.80 76.53 m 255.86 79.63 l S 255.86 76.53 m 255.92 79.63 l S 255.92 76.53 m 255.99 79.63 l S 255.99 76.53 m 256.05 79.63 l S 256.05 76.53 m 256.11 82.72 l S 256.11 76.53 m 256.17 79.63 l S 256.17 76.53 m 256.24 79.63 l S 256.24 76.53 m 256.30 79.63 l S 256.30 76.53 m 256.36 79.63 l S 256.36 76.53 m 256.42 82.72 l S 256.42 76.53 m 256.49 88.91 l S 256.49 76.53 m 256.55 79.63 l S 256.55 76.53 m 256.61 79.63 l S 256.61 76.53 m 256.67 79.63 l S 256.67 76.53 m 256.74 85.81 l S 256.74 76.53 m 256.80 79.63 l S 256.80 76.53 m 256.86 88.91 l S 256.86 76.53 m 256.93 92.00 l S 256.93 76.53 m 256.99 79.63 l S 256.99 76.53 m 257.05 88.91 l S 257.05 76.53 m 257.11 79.63 l S 257.11 76.53 m 257.18 82.72 l S 257.18 76.53 m 257.24 82.72 l S 257.24 76.53 m 257.30 79.63 l S 257.30 76.53 m 257.36 79.63 l S 257.36 76.53 m 257.43 79.63 l S 257.43 76.53 m 257.49 79.63 l S 257.49 76.53 m 257.55 82.72 l S 257.55 76.53 m 257.62 79.63 l S 257.62 76.53 m 257.68 79.63 l S 257.68 76.53 m 257.74 79.63 l S 257.74 76.53 m 257.80 79.63 l S 257.80 76.53 m 257.87 88.91 l S 257.87 76.53 m 257.93 79.63 l S 257.93 76.53 m 257.99 92.00 l S 257.99 76.53 m 258.05 95.09 l S 258.05 76.53 m 258.12 79.63 l S 258.12 76.53 m 258.18 82.72 l S 258.18 76.53 m 258.24 79.63 l S 258.24 76.53 m 258.30 79.63 l S 258.30 76.53 m 258.37 79.63 l S 258.37 76.53 m 258.43 85.81 l S 258.43 76.53 m 258.49 79.63 l S 258.49 76.53 m 258.56 92.00 l S 258.56 76.53 m 258.62 79.63 l S 258.62 76.53 m 258.68 82.72 l S 258.68 76.53 m 258.74 82.72 l S 258.74 76.53 m 258.81 79.63 l S 258.81 76.53 m 258.87 79.63 l S 258.87 76.53 m 258.93 82.72 l S 258.93 76.53 m 258.99 79.63 l S 258.99 76.53 m 259.06 82.72 l S 259.06 76.53 m 259.12 79.63 l S 259.12 76.53 m 259.18 79.63 l S 259.18 76.53 m 259.24 85.81 l S 259.24 76.53 m 259.31 79.63 l S 259.31 76.53 m 259.37 101.28 l S 259.37 76.53 m 259.43 88.91 l S 259.43 76.53 m 259.50 95.09 l S 259.50 76.53 m 259.56 82.72 l S 259.56 76.53 m 259.62 82.72 l S 259.62 76.53 m 259.68 79.63 l S 259.68 76.53 m 259.75 79.63 l S 259.75 76.53 m 259.81 82.72 l S 259.81 76.53 m 259.87 82.72 l S 259.87 76.53 m 259.93 82.72 l S 259.93 76.53 m 260.00 82.72 l S 260.00 76.53 m 260.06 82.72 l S 260.06 76.53 m 260.12 79.63 l S 260.12 76.53 m 260.19 79.63 l S 260.19 76.53 m 260.25 79.63 l S 260.25 76.53 m 260.31 79.63 l S 260.31 76.53 m 260.37 79.63 l S 260.37 76.53 m 260.44 79.63 l S 260.44 76.53 m 260.50 88.91 l S 260.50 76.53 m 260.56 79.63 l S 260.56 76.53 m 260.62 79.63 l S 260.62 76.53 m 260.69 85.81 l S 260.69 76.53 m 260.75 79.63 l S 260.75 76.53 m 260.81 82.72 l S 260.81 76.53 m 260.87 88.91 l S 260.87 76.53 m 260.94 98.19 l S 260.94 76.53 m 261.00 79.63 l S 261.00 76.53 m 261.06 79.63 l S 261.06 76.53 m 261.13 79.63 l S 261.13 76.53 m 261.19 79.63 l S 261.19 76.53 m 261.25 79.63 l S 261.25 76.53 m 261.31 79.63 l S 261.31 76.53 m 261.38 92.00 l S 261.38 76.53 m 261.44 82.72 l S 261.44 76.53 m 261.50 85.81 l S 261.50 76.53 m 261.56 98.19 l S 261.56 76.53 m 261.63 79.63 l S 261.63 76.53 m 261.69 88.91 l S 261.69 76.53 m 261.75 79.63 l S 261.75 76.53 m 261.81 76.53 l S 261.81 76.53 m 261.88 82.72 l S 261.88 76.53 m 261.94 79.63 l S 261.94 76.53 m 262.00 85.81 l S 262.00 76.53 m 262.07 88.91 l S 262.07 76.53 m 262.13 82.72 l S 262.13 76.53 m 262.19 101.28 l S 262.19 76.53 m 262.25 79.63 l S 262.25 76.53 m 262.32 79.63 l S 262.32 76.53 m 262.38 79.63 l S 262.38 76.53 m 262.44 88.91 l S 262.44 76.53 m 262.50 79.63 l S 262.50 76.53 m 262.57 92.00 l S 262.57 76.53 m 262.63 85.81 l S 262.63 76.53 m 262.69 79.63 l S 262.69 76.53 m 262.76 79.63 l S 262.76 76.53 m 262.82 153.87 l S 262.82 76.53 m 262.88 79.63 l S 262.88 76.53 m 262.94 98.19 l S 262.94 76.53 m 263.01 79.63 l S 263.01 76.53 m 263.07 76.53 l S 263.07 76.53 m 263.13 79.63 l S 263.13 76.53 m 263.19 82.72 l S 263.19 76.53 m 263.26 79.63 l S 263.26 76.53 m 263.32 79.63 l S 263.32 76.53 m 263.38 79.63 l S 263.38 76.53 m 263.44 82.72 l S 263.44 76.53 m 263.51 76.53 l S 263.51 76.53 m 263.57 79.63 l S 263.57 76.53 m 263.63 79.63 l S 263.63 76.53 m 263.70 76.53 l S 263.70 76.53 m 263.76 95.09 l S 263.76 76.53 m 263.82 92.00 l S 263.82 76.53 m 263.88 79.63 l S 263.88 76.53 m 263.95 92.00 l S 263.95 76.53 m 264.01 79.63 l S 264.01 76.53 m 264.07 79.63 l S 264.07 76.53 m 264.13 79.63 l S 264.13 76.53 m 264.20 98.19 l S 264.20 76.53 m 264.26 79.63 l S 264.26 76.53 m 264.32 92.00 l S 264.32 76.53 m 264.38 82.72 l S 264.38 76.53 m 264.45 79.63 l S 264.45 76.53 m 264.51 85.81 l S 264.51 76.53 m 264.57 79.63 l S 264.57 76.53 m 264.64 79.63 l S 264.64 76.53 m 264.70 82.72 l S 264.70 76.53 m 264.76 79.63 l S 264.76 76.53 m 264.82 88.91 l S 264.82 76.53 m 264.89 92.00 l S 264.89 76.53 m 264.95 79.63 l S 264.95 76.53 m 265.01 79.63 l S 265.01 76.53 m 265.07 82.72 l S 265.07 76.53 m 265.14 79.63 l S 265.14 76.53 m 265.20 85.81 l S 265.20 76.53 m 265.26 79.63 l S 265.26 76.53 m 265.33 79.63 l S 265.33 76.53 m 265.39 85.81 l S 265.39 76.53 m 265.45 88.91 l S 265.45 76.53 m 265.51 79.63 l S 265.51 76.53 m 265.58 101.28 l S 265.58 76.53 m 265.64 82.72 l S 265.64 76.53 m 265.70 79.63 l S 265.70 76.53 m 265.76 79.63 l S 265.76 76.53 m 265.83 79.63 l S 265.83 76.53 m 265.89 79.63 l S 265.89 76.53 m 265.95 79.63 l S 265.95 76.53 m 266.01 79.63 l S 266.01 76.53 m 266.08 79.63 l S 266.08 76.53 m 266.14 79.63 l S 266.14 76.53 m 266.20 79.63 l S 266.20 76.53 m 266.27 79.63 l S 266.27 76.53 m 266.33 79.63 l S 266.33 76.53 m 266.39 79.63 l S 266.39 76.53 m 266.45 82.72 l S 266.45 76.53 m 266.52 79.63 l S 266.52 76.53 m 266.58 79.63 l S 266.58 76.53 m 266.64 79.63 l S 266.64 76.53 m 266.70 79.63 l S 266.70 76.53 m 266.77 82.72 l S 266.77 76.53 m 266.83 79.63 l S 266.83 76.53 m 266.89 82.72 l S 266.89 76.53 m 266.95 79.63 l S 266.95 76.53 m 267.02 79.63 l S 267.02 76.53 m 267.08 79.63 l S 267.08 76.53 m 267.14 79.63 l S 267.14 76.53 m 267.21 79.63 l S 267.21 76.53 m 267.27 79.63 l S 267.27 76.53 m 267.33 79.63 l S 267.33 76.53 m 267.39 79.63 l S 267.39 76.53 m 267.46 79.63 l S 267.46 76.53 m 267.52 76.53 l S 267.52 76.53 m 267.58 79.63 l S 267.58 76.53 m 267.64 79.63 l S 267.64 76.53 m 267.71 79.63 l S 267.71 76.53 m 267.77 79.63 l S 267.77 76.53 m 267.83 79.63 l S 267.83 76.53 m 267.90 79.63 l S 267.90 76.53 m 267.96 79.63 l S 267.96 76.53 m 268.02 79.63 l S 268.02 76.53 m 268.08 79.63 l S 268.08 76.53 m 268.15 79.63 l S 268.15 76.53 m 268.21 79.63 l S 268.21 76.53 m 268.27 79.63 l S 268.27 76.53 m 268.33 79.63 l S 268.33 76.53 m 268.40 79.63 l S 268.40 76.53 m 268.46 79.63 l S 268.46 76.53 m 268.52 79.63 l S 268.52 76.53 m 268.58 79.63 l S 268.58 76.53 m 268.65 79.63 l S 268.65 76.53 m 268.71 76.53 l S 268.71 76.53 m 268.77 79.63 l S 268.77 76.53 m 268.84 79.63 l S 268.84 76.53 m 268.90 79.63 l S 268.90 76.53 m 268.96 79.63 l S 268.96 76.53 m 269.02 79.63 l S 269.02 76.53 m 269.09 79.63 l S 269.09 76.53 m 269.15 79.63 l S 269.15 76.53 m 269.21 79.63 l S 269.21 76.53 m 269.27 79.63 l S 269.27 76.53 m 269.34 79.63 l S 269.34 76.53 m 269.40 79.63 l S 269.40 76.53 m 269.46 82.72 l S 269.46 76.53 m 269.52 79.63 l S 269.52 76.53 m 269.59 79.63 l S 269.59 76.53 m 269.65 76.53 l S 269.65 76.53 m 269.71 79.63 l S 269.71 76.53 m 269.78 79.63 l S 269.78 76.53 m 269.84 79.63 l S 269.84 76.53 m 269.90 79.63 l S 269.90 76.53 m 269.96 79.63 l S 269.96 76.53 m 270.03 79.63 l S 270.03 76.53 m 270.09 82.72 l S 270.09 76.53 m 270.15 79.63 l S 270.15 76.53 m 270.21 79.63 l S 270.21 76.53 m 270.28 79.63 l S 270.28 76.53 m 270.34 79.63 l S 270.34 76.53 m 270.40 79.63 l S 270.40 76.53 m 270.47 79.63 l S 270.47 76.53 m 270.53 79.63 l S 270.53 76.53 m 270.59 79.63 l S 270.59 76.53 m 270.65 79.63 l S 270.65 76.53 m 270.72 79.63 l S 270.72 76.53 m 270.78 79.63 l S 270.78 76.53 m 270.84 79.63 l S 270.84 76.53 m 270.90 79.63 l S 270.90 76.53 m 270.97 79.63 l S 270.97 76.53 m 271.03 79.63 l S 271.03 76.53 m 271.09 79.63 l S 271.09 76.53 m 271.15 79.63 l S 271.15 76.53 m 271.22 79.63 l S 271.22 76.53 m 271.28 79.63 l S 271.28 76.53 m 271.34 79.63 l S 271.34 76.53 m 271.41 79.63 l S 271.41 76.53 m 271.47 79.63 l S 271.47 76.53 m 271.53 79.63 l S 271.53 76.53 m 271.59 79.63 l S 271.59 76.53 m 271.66 79.63 l S 271.66 76.53 m 271.72 82.72 l S 271.72 76.53 m 271.78 79.63 l S 271.78 76.53 m 271.84 79.63 l S 271.84 76.53 m 271.91 79.63 l S 271.91 76.53 m 271.97 79.63 l S 271.97 76.53 m 272.03 79.63 l S 272.03 76.53 m 272.09 79.63 l S 272.09 76.53 m 272.16 79.63 l S 272.16 76.53 m 272.22 79.63 l S 272.22 76.53 m 272.28 79.63 l S 272.28 76.53 m 272.35 79.63 l S 272.35 76.53 m 272.41 79.63 l S 272.41 76.53 m 272.47 82.72 l S 272.47 76.53 m 272.53 79.63 l S 272.53 76.53 m 272.60 76.53 l S 272.60 76.53 m 272.66 79.63 l S 272.66 76.53 m 272.72 79.63 l S 272.72 76.53 m 272.78 79.63 l S 272.78 76.53 m 272.85 79.63 l S 272.85 76.53 m 272.91 79.63 l S 272.91 76.53 m 272.97 79.63 l S 272.97 76.53 m 273.03 79.63 l S 273.03 76.53 m 273.10 79.63 l S 273.10 76.53 m 273.16 79.63 l S 273.16 76.53 m 273.22 82.72 l S 273.22 76.53 m 273.29 79.63 l S 273.29 76.53 m 273.35 79.63 l S 273.35 76.53 m 273.41 79.63 l S 273.41 76.53 m 273.47 79.63 l S 273.47 76.53 m 273.54 79.63 l S 273.54 76.53 m 273.60 79.63 l S 273.60 76.53 m 273.66 79.63 l S 273.66 76.53 m 273.72 79.63 l S 273.72 76.53 m 273.79 79.63 l S 273.79 76.53 m 273.85 79.63 l S 273.85 76.53 m 273.91 79.63 l S 273.91 76.53 m 273.98 79.63 l S 273.98 76.53 m 274.04 79.63 l S 274.04 76.53 m 274.10 79.63 l S 274.10 76.53 m 274.16 79.63 l S 274.16 76.53 m 274.23 79.63 l S 274.23 76.53 m 274.29 79.63 l S 274.29 76.53 m 274.35 79.63 l S 274.35 76.53 m 274.41 79.63 l S 274.41 76.53 m 274.48 79.63 l S 274.48 76.53 m 274.54 79.63 l S 274.54 76.53 m 274.60 79.63 l S 274.60 76.53 m 274.66 79.63 l S 274.66 76.53 m 274.73 79.63 l S 274.73 76.53 m 274.79 79.63 l S 274.79 76.53 m 274.85 76.53 l S 274.85 76.53 m 274.92 79.63 l S 274.92 76.53 m 274.98 79.63 l S 274.98 76.53 m 275.04 79.63 l S 275.04 76.53 m 275.10 79.63 l S 275.10 76.53 m 275.17 79.63 l S 275.17 76.53 m 275.23 79.63 l S 275.23 76.53 m 275.29 79.63 l S 275.29 76.53 m 275.35 79.63 l S 275.35 76.53 m 275.42 79.63 l S 275.42 76.53 m 275.48 79.63 l S 275.48 76.53 m 275.54 79.63 l S 275.54 76.53 m 275.60 79.63 l S 275.60 76.53 m 275.67 79.63 l S 275.67 76.53 m 275.73 79.63 l S 275.73 76.53 m 275.79 82.72 l S 275.79 76.53 m 275.86 79.63 l S 275.86 76.53 m 275.92 82.72 l S 275.92 76.53 m 275.98 79.63 l S 275.98 76.53 m 276.04 79.63 l S 276.04 76.53 m 276.11 85.81 l S 276.11 76.53 m 276.17 82.72 l S 276.17 76.53 m 276.23 82.72 l S 276.23 76.53 m 276.29 79.63 l S 276.29 76.53 m 276.36 79.63 l S 276.36 76.53 m 276.42 79.63 l S 276.42 76.53 m 276.48 88.91 l S 276.48 76.53 m 276.55 82.72 l S 276.55 76.53 m 276.61 85.81 l S 276.61 76.53 m 276.67 79.63 l S 276.67 76.53 m 276.73 82.72 l S 276.73 76.53 m 276.80 82.72 l S 276.80 76.53 m 276.86 79.63 l S 276.86 76.53 m 276.92 82.72 l S 276.92 76.53 m 276.98 82.72 l S 276.98 76.53 m 277.05 79.63 l S 277.05 76.53 m 277.11 92.00 l S 277.11 76.53 m 277.17 79.63 l S 277.17 76.53 m 277.23 79.63 l S 277.23 76.53 m 277.30 88.91 l S 277.30 76.53 m 277.36 79.63 l S 277.36 76.53 m 277.42 79.63 l S 277.42 76.53 m 277.49 79.63 l S 277.49 76.53 m 277.55 79.63 l S 277.55 76.53 m 277.61 79.63 l S 277.61 76.53 m 277.67 85.81 l S 277.67 76.53 m 277.74 79.63 l S 277.74 76.53 m 277.80 92.00 l S 277.80 76.53 m 277.86 79.63 l S 277.86 76.53 m 277.92 82.72 l S 277.92 76.53 m 277.99 82.72 l S 277.99 76.53 m 278.05 79.63 l S 278.05 76.53 m 278.11 82.72 l S 278.11 76.53 m 278.17 79.63 l S 278.17 76.53 m 278.24 79.63 l S 278.24 76.53 m 278.30 79.63 l S 278.30 76.53 m 278.36 79.63 l S 278.36 76.53 m 278.43 82.72 l S 278.43 76.53 m 278.49 79.63 l S 278.49 76.53 m 278.55 82.72 l S 278.55 76.53 m 278.61 79.63 l S 278.61 76.53 m 278.68 79.63 l S 278.68 76.53 m 278.74 79.63 l S 278.74 76.53 m 278.80 79.63 l S 278.80 76.53 m 278.86 79.63 l S 278.86 76.53 m 278.93 79.63 l S 278.93 76.53 m 278.99 79.63 l S 278.99 76.53 m 279.05 79.63 l S 279.05 76.53 m 279.12 79.63 l S 279.12 76.53 m 279.18 79.63 l S 279.18 76.53 m 279.24 79.63 l S 279.24 76.53 m 279.30 79.63 l S 279.30 76.53 m 279.37 79.63 l S 279.37 76.53 m 279.43 76.53 l S 279.43 76.53 m 279.49 79.63 l S 279.49 76.53 m 279.55 79.63 l S 279.55 76.53 m 279.62 79.63 l S 279.62 76.53 m 279.68 79.63 l S 279.68 76.53 m 279.74 79.63 l S 279.74 76.53 m 279.80 79.63 l S 279.80 76.53 m 279.87 79.63 l S 279.87 76.53 m 279.93 79.63 l S 279.93 76.53 m 279.99 79.63 l S 279.99 76.53 m 280.06 79.63 l S 280.06 76.53 m 280.12 104.37 l S 280.12 76.53 m 280.18 79.63 l S 280.18 76.53 m 280.24 79.63 l S 280.24 76.53 m 280.31 79.63 l S 280.31 76.53 m 280.37 79.63 l S 280.37 76.53 m 280.43 79.63 l S 280.43 76.53 m 280.49 98.19 l S 280.49 76.53 m 280.56 79.63 l S 280.56 76.53 m 280.62 95.09 l S 280.62 76.53 m 280.68 82.72 l S 280.68 76.53 m 280.74 79.63 l S 280.74 76.53 m 280.81 79.63 l S 280.81 76.53 m 280.87 79.63 l S 280.87 76.53 m 280.93 79.63 l S 280.93 76.53 m 281.00 79.63 l S 281.00 76.53 m 281.06 79.63 l S 281.06 76.53 m 281.12 79.63 l S 281.12 76.53 m 281.18 79.63 l S 281.18 76.53 m 281.25 79.63 l S 281.25 76.53 m 281.31 79.63 l S 281.31 76.53 m 281.37 79.63 l S 281.37 76.53 m 281.43 85.81 l S 281.43 76.53 m 281.50 82.72 l S 281.50 76.53 m 281.56 82.72 l S 281.56 76.53 m 281.62 79.63 l S 281.62 76.53 m 281.69 79.63 l S 281.69 76.53 m 281.75 79.63 l S 281.75 76.53 m 281.81 79.63 l S 281.81 76.53 m 281.87 79.63 l S 281.87 76.53 m 281.94 79.63 l S 281.94 76.53 m 282.00 79.63 l S 282.00 76.53 m 282.06 79.63 l S 282.06 76.53 m 282.12 79.63 l S 282.12 76.53 m 282.19 79.63 l S 282.19 76.53 m 282.25 79.63 l S 282.25 76.53 m 282.31 82.72 l S 282.31 76.53 m 282.37 79.63 l S 282.37 76.53 m 282.44 82.72 l S 282.44 76.53 m 282.50 79.63 l S 282.50 76.53 m 282.56 79.63 l S 282.56 76.53 m 282.63 79.63 l S 282.63 76.53 m 282.69 79.63 l S 282.69 76.53 m 282.75 79.63 l S 282.75 76.53 m 282.81 82.72 l S 282.81 76.53 m 282.88 95.09 l S 282.88 76.53 m 282.94 79.63 l S 282.94 76.53 m 283.00 79.63 l S 283.00 76.53 m 283.06 79.63 l S 283.06 76.53 m 283.13 79.63 l S 283.13 76.53 m 283.19 88.91 l S 283.19 76.53 m 283.25 79.63 l S 283.25 76.53 m 283.31 79.63 l S 283.31 76.53 m 283.38 79.63 l S 283.38 76.53 m 283.44 79.63 l S 283.44 76.53 m 283.50 79.63 l S 283.50 76.53 m 283.57 85.81 l S 283.57 76.53 m 283.63 79.63 l S 283.63 76.53 m 283.69 82.72 l S 283.69 76.53 m 283.75 79.63 l S 283.75 76.53 m 283.82 101.28 l S 283.82 76.53 m 283.88 79.63 l S 283.88 76.53 m 283.94 82.72 l S 283.94 76.53 m 284.00 79.63 l S 284.00 76.53 m 284.07 85.81 l S 284.07 76.53 m 284.13 79.63 l S 284.13 76.53 m 284.19 79.63 l S 284.19 76.53 m 284.26 79.63 l S 284.26 76.53 m 284.32 79.63 l S 284.32 76.53 m 284.38 79.63 l S 284.38 76.53 m 284.44 85.81 l S 284.44 76.53 m 284.51 79.63 l S 284.51 76.53 m 284.57 79.63 l S 284.57 76.53 m 284.63 82.72 l S 284.63 76.53 m 284.69 79.63 l S 284.69 76.53 m 284.76 79.63 l S 284.76 76.53 m 284.82 79.63 l S 284.82 76.53 m 284.88 79.63 l S 284.88 76.53 m 284.94 79.63 l S 284.94 76.53 m 285.01 85.81 l S 285.01 76.53 m 285.07 79.63 l S 285.07 76.53 m 285.13 82.72 l S 285.13 76.53 m 285.20 95.09 l S 285.20 76.53 m 285.26 79.63 l S 285.26 76.53 m 285.32 79.63 l S 285.32 76.53 m 285.38 79.63 l S 285.38 76.53 m 285.45 79.63 l S 285.45 76.53 m 285.51 79.63 l S 285.51 76.53 m 285.57 79.63 l S 285.57 76.53 m 285.63 79.63 l S 285.63 76.53 m 285.70 79.63 l S 285.70 76.53 m 285.76 79.63 l S 285.76 76.53 m 285.82 76.53 l S 285.82 76.53 m 285.88 79.63 l S 285.88 76.53 m 285.95 79.63 l S 285.95 76.53 m 286.01 79.63 l S 286.01 76.53 m 286.07 79.63 l S 286.07 76.53 m 286.14 79.63 l S 286.14 76.53 m 286.20 79.63 l S 286.20 76.53 m 286.26 76.53 l S 286.26 76.53 m 286.32 79.63 l S 286.32 76.53 m 286.39 76.53 l S 286.39 76.53 m 286.45 79.63 l S 286.45 76.53 m 286.51 79.63 l S 286.51 76.53 m 286.57 79.63 l S 286.57 76.53 m 286.64 79.63 l S 286.64 76.53 m 286.70 79.63 l S 286.70 76.53 m 286.76 79.63 l S 286.76 76.53 m 286.83 79.63 l S 286.83 76.53 m 286.89 79.63 l S 286.89 76.53 m 286.95 79.63 l S 286.95 76.53 m 287.01 79.63 l S 287.01 76.53 m 287.08 79.63 l S 287.08 76.53 m 287.14 79.63 l S 287.14 76.53 m 287.20 79.63 l S 287.20 76.53 m 287.26 79.63 l S 287.26 76.53 m 287.33 79.63 l S 287.33 76.53 m 287.39 79.63 l S 287.39 76.53 m 287.45 79.63 l S 287.45 76.53 m 287.51 79.63 l S 287.51 76.53 m 287.58 79.63 l S 287.58 76.53 m 287.64 79.63 l S 287.64 76.53 m 287.70 82.72 l S 287.70 76.53 m 287.77 79.63 l S 287.77 76.53 m 287.83 79.63 l S 287.83 76.53 m 287.89 79.63 l S 287.89 76.53 m 287.95 79.63 l S 287.95 76.53 m 288.02 79.63 l S 288.02 76.53 m 288.08 79.63 l S 288.08 76.53 m 288.14 79.63 l S 288.14 76.53 m 288.20 79.63 l S 288.20 76.53 m 288.27 79.63 l S 288.27 76.53 m 288.33 79.63 l S 288.33 76.53 m 288.39 82.72 l S 288.39 76.53 m 288.45 79.63 l S 288.45 76.53 m 288.52 79.63 l S 288.52 76.53 m 288.58 79.63 l S 288.58 76.53 m 288.64 79.63 l S 288.64 76.53 m 288.71 79.63 l S 288.71 76.53 m 288.77 79.63 l S 288.77 76.53 m 288.83 79.63 l S 288.83 76.53 m 288.89 79.63 l S 288.89 76.53 m 288.96 79.63 l S 288.96 76.53 m 289.02 85.81 l S 289.02 76.53 m 289.08 79.63 l S 289.08 76.53 m 289.14 79.63 l S 289.14 76.53 m 289.21 79.63 l S 289.21 76.53 m 289.27 79.63 l S 289.27 76.53 m 289.33 88.91 l S 289.33 76.53 m 289.40 79.63 l S 289.40 76.53 m 289.46 79.63 l S 289.46 76.53 m 289.52 79.63 l S 289.52 76.53 m 289.58 79.63 l S 289.58 76.53 m 289.65 79.63 l S 289.65 76.53 m 289.71 88.91 l S 289.71 76.53 m 289.77 79.63 l S 289.77 76.53 m 289.83 79.63 l S 289.83 76.53 m 289.90 79.63 l S 289.90 76.53 m 289.96 79.63 l S 289.96 76.53 m 290.02 79.63 l S 290.02 76.53 m 290.08 82.72 l S 290.08 76.53 m 290.15 79.63 l S 290.15 76.53 m 290.21 79.63 l S 290.21 76.53 m 290.27 82.72 l S 290.27 76.53 m 290.34 79.63 l S 290.34 76.53 m 290.40 79.63 l S 290.40 76.53 m 290.46 79.63 l S 290.46 76.53 m 290.52 82.72 l S 290.52 76.53 m 290.59 82.72 l S 290.59 76.53 m 290.65 79.63 l S 290.65 76.53 m 290.71 79.63 l S 290.71 76.53 m 290.77 79.63 l S 290.77 76.53 m 290.84 79.63 l S 290.84 76.53 m 290.90 79.63 l S 290.90 76.53 m 290.96 79.63 l S 290.96 76.53 m 291.02 82.72 l S 291.02 76.53 m 291.09 92.00 l S 291.09 76.53 m 291.15 79.63 l S 291.15 76.53 m 291.21 79.63 l S 291.21 76.53 m 291.28 79.63 l S 291.28 76.53 m 291.34 79.63 l S 291.34 76.53 m 291.40 79.63 l S 291.40 76.53 m 291.46 79.63 l S 291.46 76.53 m 291.53 92.00 l S 291.53 76.53 m 291.59 79.63 l S 291.59 76.53 m 291.65 79.63 l S 291.65 76.53 m 291.71 79.63 l S 291.71 76.53 m 291.78 79.63 l S 291.78 76.53 m 291.84 82.72 l S 291.84 76.53 m 291.90 79.63 l S 291.90 76.53 m 291.97 79.63 l S 291.97 76.53 m 292.03 79.63 l S 292.03 76.53 m 292.09 79.63 l S 292.09 76.53 m 292.15 79.63 l S 292.15 76.53 m 292.22 79.63 l S 292.22 76.53 m 292.28 82.72 l S 292.28 76.53 m 292.34 79.63 l S 292.34 76.53 m 292.40 79.63 l S 292.40 76.53 m 292.47 82.72 l S 292.47 76.53 m 292.53 79.63 l S 292.53 76.53 m 292.59 79.63 l S 292.59 76.53 m 292.65 79.63 l S 292.65 76.53 m 292.72 79.63 l S 292.72 76.53 m 292.78 79.63 l S 292.78 76.53 m 292.84 79.63 l S 292.84 76.53 m 292.91 85.81 l S 292.91 76.53 m 292.97 79.63 l S 292.97 76.53 m 293.03 88.91 l S 293.03 76.53 m 293.09 88.91 l S 293.09 76.53 m 293.16 82.72 l S 293.16 76.53 m 293.22 82.72 l S 293.22 76.53 m 293.28 79.63 l S 293.28 76.53 m 293.34 79.63 l S 293.34 76.53 m 293.41 79.63 l S 293.41 76.53 m 293.47 79.63 l S 293.47 76.53 m 293.53 79.63 l S 293.53 76.53 m 293.59 79.63 l S 293.59 76.53 m 293.66 79.63 l S 293.66 76.53 m 293.72 88.91 l S 293.72 76.53 m 293.78 79.63 l S 293.78 76.53 m 293.85 95.09 l S 293.85 76.53 m 293.91 79.63 l S 293.91 76.53 m 293.97 85.81 l S 293.97 76.53 m 294.03 79.63 l S 294.03 76.53 m 294.10 82.72 l S 294.10 76.53 m 294.16 79.63 l S 294.16 76.53 m 294.22 79.63 l S 294.22 76.53 m 294.28 79.63 l S 294.28 76.53 m 294.35 95.09 l S 294.35 76.53 m 294.41 95.09 l S 294.41 76.53 m 294.47 79.63 l S 294.47 76.53 m 294.54 79.63 l S 294.54 76.53 m 294.60 79.63 l S 294.60 76.53 m 294.66 79.63 l S 294.66 76.53 m 294.72 79.63 l S 294.72 76.53 m 294.79 79.63 l S 294.79 76.53 m 294.85 79.63 l S 294.85 76.53 m 294.91 79.63 l S 294.91 76.53 m 294.97 79.63 l S 294.97 76.53 m 295.04 79.63 l S 295.04 76.53 m 295.10 82.72 l S 295.10 76.53 m 295.16 79.63 l S 295.16 76.53 m 295.22 79.63 l S 295.22 76.53 m 295.29 79.63 l S 295.29 76.53 m 295.35 79.63 l S 295.35 76.53 m 295.41 79.63 l S 295.41 76.53 m 295.48 79.63 l S 295.48 76.53 m 295.54 79.63 l S 295.54 76.53 m 295.60 79.63 l S 295.60 76.53 m 295.66 79.63 l S 295.66 76.53 m 295.73 79.63 l S 295.73 76.53 m 295.79 82.72 l S 295.79 76.53 m 295.85 79.63 l S 295.85 76.53 m 295.91 82.72 l S 295.91 76.53 m 295.98 82.72 l S 295.98 76.53 m 296.04 79.63 l S 296.04 76.53 m 296.10 79.63 l S 296.10 76.53 m 296.16 98.19 l S 296.16 76.53 m 296.23 79.63 l S 296.23 76.53 m 296.29 82.72 l S 296.29 76.53 m 296.35 85.81 l S 296.35 76.53 m 296.42 79.63 l S 296.42 76.53 m 296.48 79.63 l S 296.48 76.53 m 296.54 79.63 l S 296.54 76.53 m 296.60 79.63 l S 296.60 76.53 m 296.67 79.63 l S 296.67 76.53 m 296.73 82.72 l S 296.73 76.53 m 296.79 79.63 l S 296.79 76.53 m 296.85 79.63 l S 296.85 76.53 m 296.92 79.63 l S 296.92 76.53 m 296.98 79.63 l S 296.98 76.53 m 297.04 79.63 l S 297.04 76.53 m 297.11 79.63 l S 297.11 76.53 m 297.17 79.63 l S 297.17 76.53 m 297.23 79.63 l S 297.23 76.53 m 297.29 82.72 l S 297.29 76.53 m 297.36 79.63 l S 297.36 76.53 m 297.42 82.72 l S 297.42 76.53 m 297.48 79.63 l S 297.48 76.53 m 297.54 79.63 l S 297.54 76.53 m 297.61 82.72 l S 297.61 76.53 m 297.67 79.63 l S 297.67 76.53 m 297.73 79.63 l S 297.73 76.53 m 297.79 79.63 l S 297.79 76.53 m 297.86 79.63 l S 297.86 76.53 m 297.92 79.63 l S 297.92 76.53 m 297.98 79.63 l S 297.98 76.53 m 298.05 79.63 l S 298.05 76.53 m 298.11 79.63 l S 298.11 76.53 m 298.17 92.00 l S 298.17 76.53 m 298.23 88.91 l S 298.23 76.53 m 298.30 79.63 l S 298.30 76.53 m 298.36 79.63 l S 298.36 76.53 m 298.42 79.63 l S 298.42 76.53 m 298.48 82.72 l S 298.48 76.53 m 298.55 79.63 l S 298.55 76.53 m 298.61 79.63 l S 298.61 76.53 m 298.67 82.72 l S 298.67 76.53 m 298.73 79.63 l S 298.73 76.53 m 298.80 82.72 l S 298.80 76.53 m 298.86 82.72 l S 298.86 76.53 m 298.92 79.63 l S 298.92 76.53 m 298.99 82.72 l S 298.99 76.53 m 299.05 79.63 l S 299.05 76.53 m 299.11 79.63 l S 299.11 76.53 m 299.17 82.72 l S 299.17 76.53 m 299.24 82.72 l S 299.24 76.53 m 299.30 79.63 l S 299.30 76.53 m 299.36 82.72 l S 299.36 76.53 m 299.42 79.63 l S 299.42 76.53 m 299.49 79.63 l S 299.49 76.53 m 299.55 79.63 l S 299.55 76.53 m 299.61 79.63 l S 299.61 76.53 m 299.67 79.63 l S 299.67 76.53 m 299.74 79.63 l S 299.74 76.53 m 299.80 79.63 l S 299.80 76.53 m 299.86 79.63 l S 299.86 76.53 m 299.93 92.00 l S 299.93 76.53 m 299.99 79.63 l S 299.99 76.53 m 300.05 82.72 l S 300.05 76.53 m 300.11 92.00 l S 300.11 76.53 m 300.18 88.91 l S 300.18 76.53 m 300.24 79.63 l S 300.24 76.53 m 300.30 79.63 l S 300.30 76.53 m 300.36 79.63 l S 300.36 76.53 m 300.43 110.56 l S 300.43 76.53 m 300.49 79.63 l S 300.49 76.53 m 300.55 79.63 l S 300.55 76.53 m 300.62 79.63 l S 300.62 76.53 m 300.68 79.63 l S 300.68 76.53 m 300.74 82.72 l S 300.74 76.53 m 300.80 79.63 l S 300.80 76.53 m 300.87 79.63 l S 300.87 76.53 m 300.93 79.63 l S 300.93 76.53 m 300.99 79.63 l S 300.99 76.53 m 301.05 82.72 l S 301.05 76.53 m 301.12 82.72 l S 301.12 76.53 m 301.18 79.63 l S 301.18 76.53 m 301.24 79.63 l S 301.24 76.53 m 301.30 79.63 l S 301.30 76.53 m 301.37 79.63 l S 301.37 76.53 m 301.43 79.63 l S 301.43 76.53 m 301.49 79.63 l S 301.49 76.53 m 301.56 79.63 l S 301.56 76.53 m 301.62 79.63 l S 301.62 76.53 m 301.68 79.63 l S 301.68 76.53 m 301.74 79.63 l S 301.74 76.53 m 301.81 79.63 l S 301.81 76.53 m 301.87 79.63 l S 301.87 76.53 m 301.93 79.63 l S 301.93 76.53 m 301.99 79.63 l S 301.99 76.53 m 302.06 79.63 l S 302.06 76.53 m 302.12 79.63 l S 302.12 76.53 m 302.18 79.63 l S 302.18 76.53 m 302.24 76.53 l S 302.24 76.53 m 302.31 79.63 l S 302.31 76.53 m 302.37 79.63 l S 302.37 76.53 m 302.43 82.72 l S 302.43 76.53 m 302.50 82.72 l S 302.50 76.53 m 302.56 79.63 l S 302.56 76.53 m 302.62 82.72 l S 302.62 76.53 m 302.68 79.63 l S 302.68 76.53 m 302.75 138.40 l S 302.75 76.53 m 302.81 79.63 l S 302.81 76.53 m 302.87 79.63 l S 302.87 76.53 m 302.93 82.72 l S 302.93 76.53 m 303.00 79.63 l S 303.00 76.53 m 303.06 79.63 l S 303.06 76.53 m 303.12 79.63 l S 303.12 76.53 m 303.19 79.63 l S 303.19 76.53 m 303.25 92.00 l S 303.25 76.53 m 303.31 88.91 l S 303.31 76.53 m 303.37 85.81 l S 303.37 76.53 m 303.44 79.63 l S 303.44 76.53 m 303.50 79.63 l S 303.50 76.53 m 303.56 92.00 l S 303.56 76.53 m 303.62 79.63 l S 303.62 76.53 m 303.69 79.63 l S 303.69 76.53 m 303.75 79.63 l S 303.75 76.53 m 303.81 79.63 l S 303.81 76.53 m 303.87 82.72 l S 303.87 76.53 m 303.94 79.63 l S 303.94 76.53 m 304.00 82.72 l S 304.00 76.53 m 304.06 79.63 l S 304.06 76.53 m 304.13 79.63 l S 304.13 76.53 m 304.19 79.63 l S 304.19 76.53 m 304.25 79.63 l S 304.25 76.53 m 304.31 79.63 l S 304.31 76.53 m 304.38 79.63 l S 304.38 76.53 m 304.44 79.63 l S 304.44 76.53 m 304.50 79.63 l S 304.50 76.53 m 304.56 79.63 l S 304.56 76.53 m 304.63 79.63 l S 304.63 76.53 m 304.69 79.63 l S 304.69 76.53 m 304.75 79.63 l S 304.75 76.53 m 304.81 79.63 l S 304.81 76.53 m 304.88 79.63 l S 304.88 76.53 m 304.94 79.63 l S 304.94 76.53 m 305.00 79.63 l S 305.00 76.53 m 305.07 107.47 l S 305.07 76.53 m 305.13 82.72 l S 305.13 76.53 m 305.19 79.63 l S 305.19 76.53 m 305.25 101.28 l S 305.25 76.53 m 305.32 79.63 l S 305.32 76.53 m 305.38 82.72 l S 305.38 76.53 m 305.44 79.63 l S 305.44 76.53 m 305.50 76.53 l S 305.50 76.53 m 305.57 79.63 l S 305.57 76.53 m 305.63 79.63 l S 305.63 76.53 m 305.69 79.63 l S 305.69 76.53 m 305.76 79.63 l S 305.76 76.53 m 305.82 79.63 l S 305.82 76.53 m 305.88 79.63 l S 305.88 76.53 m 305.94 79.63 l S 305.94 76.53 m 306.01 79.63 l S 306.01 76.53 m 306.07 79.63 l S 306.07 76.53 m 306.13 79.63 l S 306.13 76.53 m 306.19 79.63 l S 306.19 76.53 m 306.26 79.63 l S 306.26 76.53 m 306.32 82.72 l S 306.32 76.53 m 306.38 79.63 l S 306.38 76.53 m 306.44 82.72 l S 306.44 76.53 m 306.51 79.63 l S 306.51 76.53 m 306.57 79.63 l S 306.57 76.53 m 306.63 79.63 l S 306.63 76.53 m 306.70 79.63 l S 306.70 76.53 m 306.76 79.63 l S 306.76 76.53 m 306.82 79.63 l S 306.82 76.53 m 306.88 79.63 l S 306.88 76.53 m 306.95 79.63 l S 306.95 76.53 m 307.01 79.63 l S 307.01 76.53 m 307.07 79.63 l S 307.07 76.53 m 307.13 79.63 l S 307.13 76.53 m 307.20 82.72 l S 307.20 76.53 m 307.26 82.72 l S 307.26 76.53 m 307.32 76.53 l S 307.32 76.53 m 307.38 79.63 l S 307.38 76.53 m 307.45 79.63 l S 307.45 76.53 m 307.51 79.63 l S 307.51 76.53 m 307.57 79.63 l S 307.57 76.53 m 307.64 79.63 l S 307.64 76.53 m 307.70 79.63 l S 307.70 76.53 m 307.76 79.63 l S 307.76 76.53 m 307.82 79.63 l S 307.82 76.53 m 307.89 79.63 l S 307.89 76.53 m 307.95 79.63 l S 307.95 76.53 m 308.01 79.63 l S 308.01 76.53 m 308.07 79.63 l S 308.07 76.53 m 308.14 79.63 l S 308.14 76.53 m 308.20 82.72 l S 308.20 76.53 m 308.26 79.63 l S 308.26 76.53 m 308.33 79.63 l S 308.33 76.53 m 308.39 79.63 l S 308.39 76.53 m 308.45 79.63 l S 308.45 76.53 m 308.51 79.63 l S 308.51 76.53 m 308.58 79.63 l S 308.58 76.53 m 308.64 79.63 l S 308.64 76.53 m 308.70 79.63 l S 308.70 76.53 m 308.76 79.63 l S 308.76 76.53 m 308.83 79.63 l S 308.83 76.53 m 308.89 79.63 l S 308.89 76.53 m 308.95 79.63 l S 308.95 76.53 m 309.01 79.63 l S 309.01 76.53 m 309.08 79.63 l S 309.08 76.53 m 309.14 79.63 l S 309.14 76.53 m 309.20 79.63 l S 309.20 76.53 m 309.27 79.63 l S 309.27 76.53 m 309.33 79.63 l S 309.33 76.53 m 309.39 85.81 l S 309.39 76.53 m 309.45 82.72 l S 309.45 76.53 m 309.52 79.63 l S 309.52 76.53 m 309.58 85.81 l S 309.58 76.53 m 309.64 82.72 l S 309.64 76.53 m 309.70 88.91 l S 309.70 76.53 m 309.77 79.63 l S 309.77 76.53 m 309.83 79.63 l S 309.83 76.53 m 309.89 79.63 l S 309.89 76.53 m 309.95 79.63 l S 309.95 76.53 m 310.02 79.63 l S 310.02 76.53 m 310.08 79.63 l S 310.08 76.53 m 310.14 79.63 l S 310.14 76.53 m 310.21 79.63 l S 310.21 76.53 m 310.27 79.63 l S 310.27 76.53 m 310.33 79.63 l S 310.33 76.53 m 310.39 79.63 l S 310.39 76.53 m 310.46 79.63 l S 310.46 76.53 m 310.52 79.63 l S 310.52 76.53 m 310.58 82.72 l S 310.58 76.53 m 310.64 79.63 l S 310.64 76.53 m 310.71 79.63 l S 310.71 76.53 m 310.77 79.63 l S 310.77 76.53 m 310.83 79.63 l S 310.83 76.53 m 310.90 79.63 l S 310.90 76.53 m 310.96 79.63 l S 310.96 76.53 m 311.02 79.63 l S 311.02 76.53 m 311.08 79.63 l S 311.08 76.53 m 311.15 79.63 l S 311.15 76.53 m 311.21 79.63 l S 311.21 76.53 m 311.27 79.63 l S 311.27 76.53 m 311.33 79.63 l S 311.33 76.53 m 311.40 79.63 l S 311.40 76.53 m 311.46 79.63 l S 311.46 76.53 m 311.52 79.63 l S 311.52 76.53 m 311.58 79.63 l S 311.58 76.53 m 311.65 79.63 l S 311.65 76.53 m 311.71 79.63 l S 311.71 76.53 m 311.77 79.63 l S 311.77 76.53 m 311.84 82.72 l S 311.84 76.53 m 311.90 79.63 l S 311.90 76.53 m 311.96 79.63 l S 311.96 76.53 m 312.02 107.47 l S 312.02 76.53 m 312.09 79.63 l S 312.09 76.53 m 312.15 79.63 l S 312.15 76.53 m 312.21 79.63 l S 312.21 76.53 m 312.27 82.72 l S 312.27 76.53 m 312.34 79.63 l S 312.34 76.53 m 312.40 79.63 l S 312.40 76.53 m 312.46 79.63 l S 312.46 76.53 m 312.52 82.72 l S 312.52 76.53 m 312.59 79.63 l S 312.59 76.53 m 312.65 79.63 l S 312.65 76.53 m 312.71 79.63 l S 312.71 76.53 m 312.78 79.63 l S 312.78 76.53 m 312.84 79.63 l S 312.84 76.53 m 312.90 82.72 l S 312.90 76.53 m 312.96 79.63 l S 312.96 76.53 m 313.03 79.63 l S 313.03 76.53 m 313.09 82.72 l S 313.09 76.53 m 313.15 79.63 l S 313.15 76.53 m 313.21 101.28 l S 313.21 76.53 m 313.28 98.19 l S 313.28 76.53 m 313.34 85.81 l S 313.34 76.53 m 313.40 79.63 l S 313.40 76.53 m 313.47 79.63 l S 313.47 76.53 m 313.53 82.72 l S 313.53 76.53 m 313.59 79.63 l S 313.59 76.53 m 313.65 79.63 l S 313.65 76.53 m 313.72 79.63 l S 313.72 76.53 m 313.78 79.63 l S 313.78 76.53 m 313.84 79.63 l S 313.84 76.53 m 313.90 79.63 l S 313.90 76.53 m 313.97 79.63 l S 313.97 76.53 m 314.03 79.63 l S 314.03 76.53 m 314.09 82.72 l S 314.09 76.53 m 314.15 82.72 l S 314.15 76.53 m 314.22 79.63 l S 314.22 76.53 m 314.28 79.63 l S 314.28 76.53 m 314.34 79.63 l S 314.34 76.53 m 314.41 79.63 l S 314.41 76.53 m 314.47 79.63 l S 314.47 76.53 m 314.53 79.63 l S 314.53 76.53 m 314.59 79.63 l S 314.59 76.53 m 314.66 79.63 l S 314.66 76.53 m 314.72 79.63 l S 314.72 76.53 m 314.78 82.72 l S 314.78 76.53 m 314.84 79.63 l S 314.84 76.53 m 314.91 79.63 l S 314.91 76.53 m 314.97 79.63 l S 314.97 76.53 m 315.03 79.63 l S 315.03 76.53 m 315.09 79.63 l S 315.09 76.53 m 315.16 79.63 l S 315.16 76.53 m 315.22 79.63 l S 315.22 76.53 m 315.28 79.63 l S 315.28 76.53 m 315.35 79.63 l S 315.35 76.53 m 315.41 82.72 l S 315.41 76.53 m 315.47 79.63 l S 315.47 76.53 m 315.53 79.63 l S 315.53 76.53 m 315.60 79.63 l S 315.60 76.53 m 315.66 79.63 l S 315.66 76.53 m 315.72 79.63 l S 315.72 76.53 m 315.78 79.63 l S 315.78 76.53 m 315.85 79.63 l S 315.85 76.53 m 315.91 79.63 l S 315.91 76.53 m 315.97 79.63 l S 315.97 76.53 m 316.04 79.63 l S 316.04 76.53 m 316.10 79.63 l S 316.10 76.53 m 316.16 79.63 l S 316.16 76.53 m 316.22 79.63 l S 316.22 76.53 m 316.29 79.63 l S 316.29 76.53 m 316.35 79.63 l S 316.35 76.53 m 316.41 79.63 l S 316.41 76.53 m 316.47 79.63 l S 316.47 76.53 m 316.54 79.63 l S 316.54 76.53 m 316.60 82.72 l S 316.60 76.53 m 316.66 79.63 l S 316.66 76.53 m 316.72 79.63 l S 316.72 76.53 m 316.79 82.72 l S 316.79 76.53 m 316.85 79.63 l S 316.85 76.53 m 316.91 79.63 l S 316.91 76.53 m 316.98 79.63 l S 316.98 76.53 m 317.04 79.63 l S 317.04 76.53 m 317.10 79.63 l S 317.10 76.53 m 317.16 79.63 l S 317.16 76.53 m 317.23 95.09 l S 317.23 76.53 m 317.29 88.91 l S 317.29 76.53 m 317.35 79.63 l S 317.35 76.53 m 317.41 82.72 l S 317.41 76.53 m 317.48 79.63 l S 317.48 76.53 m 317.54 79.63 l S 317.54 76.53 m 317.60 79.63 l S 317.60 76.53 m 317.66 82.72 l S 317.66 76.53 m 317.73 79.63 l S 317.73 76.53 m 317.79 79.63 l S 317.79 76.53 m 317.85 79.63 l S 317.85 76.53 m 317.92 79.63 l S 317.92 76.53 m 317.98 79.63 l S 317.98 76.53 m 318.04 82.72 l S 318.04 76.53 m 318.10 79.63 l S 318.10 76.53 m 318.17 76.53 l S 318.17 76.53 m 318.23 79.63 l S 318.23 76.53 m 318.29 79.63 l S 318.29 76.53 m 318.35 79.63 l S 318.35 76.53 m 318.42 101.28 l S 318.42 76.53 m 318.48 79.63 l S 318.48 76.53 m 318.54 79.63 l S 318.54 76.53 m 318.61 79.63 l S 318.61 76.53 m 318.67 79.63 l S 318.67 76.53 m 318.73 79.63 l S 318.73 76.53 m 318.79 79.63 l S 318.79 76.53 m 318.86 79.63 l S 318.86 76.53 m 318.92 79.63 l S 318.92 76.53 m 318.98 82.72 l S 318.98 76.53 m 319.04 85.81 l S 319.04 76.53 m 319.11 88.91 l S 319.11 76.53 m 319.17 79.63 l S 319.17 76.53 m 319.23 88.91 l S 319.23 76.53 m 319.29 79.63 l S 319.29 76.53 m 319.36 79.63 l S 319.36 76.53 m 319.42 82.72 l S 319.42 76.53 m 319.48 82.72 l S 319.48 76.53 m 319.55 79.63 l S 319.55 76.53 m 319.61 79.63 l S 319.61 76.53 m 319.67 79.63 l S 319.67 76.53 m 319.73 79.63 l S 319.73 76.53 m 319.80 79.63 l S Q endstream endobj 180 0 obj << /CreationDate (D:20090701104130) /ModDate (D:20090701104130) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 181 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 183 0 R >> endobj 182 0 obj 128239 endobj 183 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 178 0 obj << /D [176 0 R /XYZ 89.292 765.769 null] >> endobj 179 0 obj << /D [176 0 R /XYZ 229.045 530.885 null] >> endobj 175 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R >> /XObject << /Im2 174 0 R >> /ProcSet [ /PDF /Text ] >> endobj 186 0 obj << /Length 2676 /Filter /FlateDecode >> stream xÚ½ko¹ñ{~…QôÚ5ÎÚ[r߇^€k{éµ5rèÕm?$ÊÈ+Ùˆ¤U´ò9î!ÿ½œ¹Ã}(vúø°Ö.9ç=CÿöêÙW/ªä¬Žë"=»ZUu¬k}V¦I\ÕõÙÕõ«èùù"×i´9WÑ­}ÞÚç`ÿöyä‰ýù…}¾g° ƒ6 v´Ïßy®cX»L¿¹úÓYr¶P*®ó\n¸g,-¯¾ä÷}ÖŒ °/y¾åİäÑŸ†WÃwlŸ-¾ë(åï Ãì&³Ï/íóOû(û$øŽèù–ƒ=á(U\å òÊBÿ`Ÿ;¦q/Þ¿>_dYý6jÎišF/˜Aë¾u¤¢7È"•Åu–|úãÑBeItÇ\è2j:éZøèÊ Ç^'*Cè¨ã…@q¹¿íŽ_ˆ×ˆ æn)¸ö'@Ý,‘ñ¢–ð:Ê.€UIBK»f½mv°àˆÒGèvE¿Í{æ‰ÙÐH ÁiKDh`àš”¬UR L[Lpmk>ðá¶Æ®)ów™E[wj €¤ÚÉÆ,Ï-—oèk|* Ê–pï¸É°Y_½(ó^a´*â´,¬âu„ÞÍ*ûPù ‹ªÒŒjÅ|K/UTZPõE^Ô¤B}xŠko,ö¸÷|4’¸SÄhE†lÖ•ŽË¼ ø¼'½ÌT…$‚v ߵܦĠA:í$¸¤=OQÛóì`ªŒ–¦khÍPÝÞÑð=œÇ°Ì»vØï x ·ÈÆ9BŠßÞI…ù°Õ¸{!ó’^¯@~±æ¼µ†\XÃ2°ª›Ð—LÅi¡XÆŸç#‡jS–qR–Œ’ô"KX€CÈtà@’àà ó¾·#â(Ùð "°Ë—\„Ÿ7’‚µ0'˜6´:ÎìëÉvŠÔ™! ƒ°Œ¶µDfqž–¾?.ð wÍu¬“¬ßU‘ãg¥‡˜`–ËvëäŒHnz˜7“!¦e¬‹0H0»'XÜ0þ i\Ó‡!%D]'«gIJ7aá-'U”q™•Bi§F±q&Íã4qK–-íÓ;[8:´ ꜥ§Šî;¼›¶D‚,È$ñnY2ŒeÀãÔÄÇ$‹ÀsÍÞN•q]‡Þn)˜u ,J«ÙW0üÀ‘I3Ot•¡‰¤ÏÖo‡.daôF(ZcŠBå‘Î ‰ç©¬r¶mg·@ØàÌw7N-ŽÎâÙÄمßÍ ú dŽ`ëè÷öõå·9Ÿ‹ &ˆ©àÕKç՛ЄL#Kñà]Ó»trLÝ27°]ÆôjA¯bzCOd?§É"Ðά×f&<ƒú¨²,Zà_JÁ0¨î™v`sô¶°HsK¼ÿ S¦ÚZz¿”wDÄ;Zá¼å«8¯uBsoQ£qÌyÚåf|îXû“+wrËÄ À”"¤³*lЋ‰Wi® Ø më:UåôòÖyŽA,é—òÐ3„Ä ‡<ú“M6¼#x¯úÇðÛòQçÿ¼%í8¶,¼bb’´iÊÜ, óÎûèÑrŒÔÈfLèƒòð%÷ý‚v7A^2­½ʵ£ f‘5åk˦ëÌAøéš ëòý2LÉË °Àeæ8 Ö8.BNÃÜ­Ë©Á# wÓùâQ-FÆÞQ²#+¢×*ÍœgÅTç.äÂÑ@ŒL”´5ý µtÝçÞ2 Ï<ï½#šå”æE_Y8o7¨…{²µƒÓi@yÆzr}$79û-´Ï¡%&¦ˆÂÑòÎU¾CXúØßÁ² „/îØäù ,¤:ÃúÊ«™â'dæéz}˜ dy¬|îGie&LªÁ>Ø6\;…Y†F5"ª.âªr™ ÐñÁÄòëq²’Å¥v…jþúNæÆ¾nå¼ñ(E]+ÊËlÒxù€}Mê™i«÷.dg“™÷øàÞŠ*=ªˆË".Kð’¿ŽòM)iûÙ¹ðâM=guO“â„ì;ï±v±qªf׸Èq§ã˜}á<ÛöU´ï«(_“ “¹þÍó§6’ÔÉFRÌïD>¢þ  ·‹>¹KߨZ ó;ÊÃïünø»›ñû_ZcIê Ú[†uòÿ†×ž÷"[ßy|HÊ´}Ðr`qe•seº€Ø5±‹ësNEþ{¶çû?½HðnÙºv5JÜÍc@:jp•ê.]L©Âª¤ÔaÐÓŸôÛdÅ}:h“).7€¹3Å[8:ú”<ÉqK;/x*V”Qã%OÝQ‚Îç‘öæ}O1³ùƺ™j{X .¨, ñ¢ñS³ÜW¢Õ{@˜éJ‹W–%¾{”‡¹ºýü>ý3˜Ù¶Iiyg|ÙÌÎ…e2UÚ14ær{/º±±à™¶[™¥»Ür¹NÝÌg_?ÒÍt¬šàJþÆkwÒõ ]HP‘ˆ.9¢GîI˜´´úËi«ß ‘kŸ¿¸ùwÑ“# Þ lÇöu˜¥9=Ìþ|™ü‰†ÜyÉ|½ÄgÃjò6áÖý`„…W…² ]ãzì×BVë)¿5q¨Â‘”6|Ê7^{ >EÁ+~nñŠžW³¯£÷»DJÜÿÈ©5oj†/› PÍØóK2ð9F›G¨%‚üêÄ—¢Ø²º¶LM+ÔwR®Žh=âjOꂾ/hhÇH¶‰K_NDßç›é¡Ö,Ùq¬'r õä\C?Bó¼éã<ó3/¡élCb6Œ%¬vÐkì »VŸé¡$ÿsç}t^3äà8§™ï-#—>ª?ýޕߕ@=ÔÀCžØ¯¸?ïY{E›§¶a:ºÞEý|BÔèÖ»rs%º,ÇàHfò Ðå›1®C8¤œy_rÂ0ûÓN;ò“±«ž /½I Ã̘}úóû• 9'+ R8[/bý”U_•âÔŠy…ù8­Š¢?>*˜Í>ÎÿÛÁÓj½¡!<>…Ó¾vË{í…˺r"A›)ËÜ¿*ˆÏÊ>ùÓj¥—íÑU*ræ8q)YÄiQ‰‹çé;6UÇiîZ6ÿo í^4ûýŽý¥”ÀÆ¿˜tÎ ¼,.^»š¸}‚«$¿Ù é~ØÐQqê:Piå…kbùŽ  Ë«®¬ñ¶)Ç{ÇÓí¡G°s\‹¯šÊ¤¿s<[謴l ÿ}áG[®èûŽÜ׆Ï[÷šûq®ùÆÂBqŸ^ ý¡ÃÎg»ºŠê!,<0@Œ’ñÿð@ðÞ&¹ìwY—é2ìB¢·¸&0Çt²‡m†mE¸=€*nÔF‚ýoglŸo7p¿•Ž1ý#Îw²ùå[Ð+Lõ©âPIgyñi¨âº¬¦ `°Ö’-µšÃ¨3˰æÒË;ÃdßÈæ,î+õ_³Yàë¾[6ìø™-¿¹Ò\'%6Ï·¢®ùDA»Pºˆ³4ûOÛgêÿèRÕÿÚ¥ê$%Öu\UòD%ö컫gÿðƒendstream endobj 185 0 obj << /Type /Page /Contents 186 0 R /Resources 184 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 188 0 R 189 0 R ] >> endobj 188 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [168.305 696.606 175.278 708.467] /Subtype /Link /A << /S /GoTo /D (figure.2) >> >> endobj 189 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [416.6 529.234 423.574 541.094] /Subtype /Link /A << /S /GoTo /D (figure.1) >> >> endobj 187 0 obj << /D [185 0 R /XYZ 89.292 765.769 null] >> endobj 184 0 obj << /Font << /F80 106 0 R /F8 79 0 R /F75 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 194 0 obj << /Length 3303 /Filter /FlateDecode >> stream xÚÕÙn$·ñÝ_!,¸Ñô6¾Œ8½>“À ÖÊØÜ;Ó# 4‡Ü=²v÷!ßžºxô!­´Öȃ4l²XU,ë"?¿øèùWÕYÖ…9»Øœ©Ì¦Úg¥ÉÒª®Ï.Ö?$Ÿõ‹¥66ùQ»oÕ3þºZ¨¤SdÉñ;ø{ßy•ü©©§Á¡¶çŽF~7ÐyxŠäØ·kžt‚¾#âÎ…’y¶P:O>^èD蔼ç8'w ]&-®hÿŽ'Ƽ:î‘`ÓáBb¸‚vÏßkhoá@V'¿œÊ&éâ§‹?Ÿ-•MkkáW¥už³``®1I‰ÂN@'qÔà?”‰ÑÉqÿÄ’Ù7;!úvK ëä’çâgÏM 6‹¿Êï:{µÐ•£ãW¢Ì*¥£óJH‚pbþmË¢>ç>ìJþ;Ÿ e¾4Špíܲ€…[\®ùímÛ —NÂmïž„ š—ÕË@¶ð¡Y¶\,smHZ¼m@JÝ {{éW úh.¹‰·ñc–g¡·!Åã?Þá¡ ÞAL©,ÑNº¹KøcÙÐàRQ 5'茬kEûʛٺmtí å”È×ùuÄÈ1šñ…`Ã]j2Ø=$ƒ)·¿G%ªó'³+‚ÚÈ> +ÔVPUĦ#ÁuüóüÉ ð€ì‹§ê”ù :e~32ÿ_:e>¸N™ûdÿü+SŸ30¶«e4X-Ö°b+Õ6ù§0EJÓˆL\G3áziJôaÜ%;]ßH׎Œ÷Òkú´Ò&«Ûî×ØÔ–!ov‚ìDD<Ÿ"vâS›´Ê”ðÉ«UÂïÅUûŠ„ÝÖg˜n'U¥¦bäß(ÄO4·T×_ä0!¿˜ º TðGÚ[øÎ8¼XèÔZ꯷^Ï–èñ× û¼‚ºöW'ß[v§ºo×ΩLÏÓšÐsã %ÆA;iØqc<á9r³kYµè£aqËŽ¡‹¦P‘hª2-•Ù w"$Ôk"_[¤uåpœ#É‚EÓ‰p¶a•wW^)Ä1…Ik£§5–„QErh)^ƒ– M yÍÆäp‡U²µ†1œÛQ¬ÒñX4¯? ¤cªôBS‚AQH¤ü>Y,­5É¿UNšSDQ*¯(Œg)˜òK;×;Þ9<7-PÍëÒ7FåÖ»ž’\ÚL¥U9ÐŽ§E*SʸÆ`‘MfØòniƒéÔ,umáh‘ã— ‰mëÝ ŒÄÇ"':@.mäܘ .pÃßÞGq=O«§YSOK04¶cÃ6I™’h[×ö7Þ¯¦¶Ûqœ]È!,¯Ä¢ò)e©ÅỜ[ÖäÉ]·üí,ÆVNöEàäUœ¨mY½SR`Š«¢H¾Ï#[ÙÆæ^Ð=$áGÄ€ð ÿ<¸ îŠö*&tâÿ*òÁø”ÍíŒOâ0i%o¢ð³‰ì𮫡ÆTÀï/·N1VØßÁÇgØ.“·UûØ3Ü]s•wƒu5ÔŽ:ñÂmAKë¤w>,*¾`¿ä󮢿x¦cÐyOÁa?®#¶À^9‡rŒW+̳" JÐogNP¯Úæu3Ë8cÖ’O¬“Ryš—õ{YD—ðMìS™¥&«ßmUšÜ¾mó0m%('†å"F¡ÅD5³>+íöQ\G%,ÑÃ<˱†Oó}Õl;1Ndft Íõ`CÝ|[""÷yŒNÉ»«û Mqvˆ4Ú§›¨ºH.0ð82’µˆºŠ£n6„ÏöŽ? >:e4ů¤—µÌ©&Ù¦Dý8wMà”Ù áKãÔæžóA„q棑ƒë,gabƒ„j ¶›£Ô ÷<k"‘&Øœò.ëϼà‰É¤î‡5"Ù´4OzgºÉJÑ grˆ¨gRc×™²Á~!ìF›AS›TGÇÅEÈ7.Ù†¸Ÿ@b¿ùñï.úKåh¾ɤÿ©èݵÌûO!®£ãÞËø÷²¿Ç(C}9*¯| ¯£¤#l•|ÑDêyd7þ-̬„@'v,“þN73e†R§yæD•NKKe‘zX¸€Ð&z¾~aª´¨Åú>²'+w¹€#ýL è¼ë¶qfƒIrž]ˆÉ5¬K—Bù ç<ú-Ï›!¡ÑoN2²#|Ó2(— KAwÑõ"/#CN#÷Óû›ÈÏ7@´x˜bœAÇMHüaÅ確,ÛqèíÌüN €Ò™ËFå*2ˆƒÉ3,p ¨§ÌÆZè?¤€7$znm-{nWI±\ i_Ÿxps$\+WzjÈe¸vÃÈæ¡‚f36{&msçW”VÿÃzÎ×8¹'Xä@È_>¡¦–™s ¦¨’­ßxÎUç7SxÕi7èÄ&º·àX:™µŽ 'R»uñ•+ ’öŠÛÄi;’a?W-Ø?¶˜|y÷p Žv…Zx· "^ó€+yƒ˜?7ÇH]„"¾2¡RØÍØŸ¢ç…‰=_5ò|¬«UÍÊÖy»¨÷>¤¸=T7«Ê©r²=ˆÈ|Ât¾ÞFùDå#$ln£¬öÒå¬'|\6¥ÏAqŒÇª¡ý¹_ ‰ÏX½Šw=ht!º,”Ey(?ËÕÏL7| 9޽äÞUt¯²xVvZzp´¤F޵X€” È"–eal(©ŒËÒCÖ{‚|‡…¨Ñfå´ª¨šˆÞÁGÏS3ŒacôxÂ,dãr°GåE)™l¨™84ÉÀYÈäú¶•?³¸ÏËrÑOŸ?dKÙBÆEº7ÌÔ¨ª‡£à/ÌÇÂ8¿×\ÌšTË9Ù:WÔ15oú±P8Ý4â«ñÍNð¬}ÍÓÇÕØŒ½*Ÿb»´«Éχ!îµÀà±@ˆÛ°ä`•‹£;.ÑB¸&w'‰Çf…9ü9cfË Þà¹ÝÕ£ÕÑ'ˆ’^yx,´“'÷¾£çîmhzŸv’{Ôû(ìù;ÖÇòU¨©–y‡É µ®Ê;Oœô×*²èÛè0sä>–1dÆÖ—|×®þ„\à¦ÒÌ“¶_uþí ½YóK†?(>–Û'÷?\ÞOÞ²Èï›Á•ô»S’Gܧ?ŽÔãîé>09•„Pï¤o"rÔž<œÊ©ûÓðÚ@ÒuMF–s³Ç>Vx?Ù{\Jª_*ùüýe’?‡·ûQÄô)ÇÉÉ Ÿ€X\-¡¢üÆ%·gyòaea~ Y˜©,Æöúòâ£ÿÔĮendstream endobj 193 0 obj << /Type /Page /Contents 194 0 R /Resources 192 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R /Annots [ 196 0 R 197 0 R 198 0 R 199 0 R ] >> endobj 196 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [139.847 539.229 176.951 548.849] /Subtype /Link /A << /S /GoTo /D (cite.HistMeth_ChipSeq) >> >> endobj 197 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [481.496 453.301 506.98 464.175] /Subtype/Link/A<> >> endobj 198 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [88.296 441.597 362.79 451.802] /Subtype/Link/A<> >> endobj 199 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [150.611 209.963 157.585 221.824] /Subtype /Link /A << /S /GoTo /D (figure.3) >> >> endobj 195 0 obj << /D [193 0 R /XYZ 89.292 765.769 null] >> endobj 26 0 obj << /D [193 0 R /XYZ 89.292 622.038 null] >> endobj 30 0 obj << /D [193 0 R /XYZ 89.292 593.681 null] >> endobj 192 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F39 57 0 R /F49 66 0 R /F54 69 0 R /F61 75 0 R /F25 109 0 R /F75 96 0 R >> /ProcSet [ /PDF /Text ] >> endobj 203 0 obj << /Length 292 /Filter /FlateDecode >> stream xÚ]PËN1 ¼ç+|L$’ÆñîvÑGEáBÅÞ‡ª/ºM_ˆßÇÞìBUEIœ™ñØ1‚ç…€ä]¬¸tV°h–ã²Ìš‹˜ÙƒÂ>µFÓ–à!©™‚Ùg_{a|רѤ†ÈA³†:º„’\kh–ïzbPñÞ|óqä½2–b¡éÖØ²*ôkÏo…²"Ú‹€²v?$䨙Pë3GósŸ•vYœÖùüs(Bú^â©”°o‚2¼,æ¹—µ8%ú‰^øU´+ÌÜ|ÇÏåG7ƾ¥—ÅДdlÌGó̃³ˆ.ò¬e—Íé‰Óöè>AA/LwBùyjÓ)µ½=#®³žUÞù:v0§õ ›"vBendstream endobj 202 0 obj << /Type /Page /Contents 203 0 R /Resources 201 0 R /MediaBox [0 0 595.276 841.89] /Parent 165 0 R >> endobj 190 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-pileup1D.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 205 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 206 0 R /F3 207 0 R >> /ExtGState << >>>> /Length 208 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 235.44 m 256.73 235.44 l S 66.40 235.44 m 66.40 228.24 l S 93.59 235.44 m 93.59 228.24 l S 120.78 235.44 m 120.78 228.24 l S 147.97 235.44 m 147.97 228.24 l S 175.16 235.44 m 175.16 228.24 l S 202.35 235.44 m 202.35 228.24 l S 229.54 235.44 m 229.54 228.24 l S 256.73 235.44 m 256.73 228.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 44.55 209.52 Tm (0.0e+00) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 98.93 209.52 Tm (4.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 153.31 209.52 Tm (8.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 207.69 209.52 Tm (1.2e+08) Tj ET 59.04 236.53 m 59.04 263.63 l S 59.04 236.53 m 51.84 236.53 l S 59.04 241.95 m 51.84 241.95 l S 59.04 247.37 m 51.84 247.37 l S 59.04 252.79 m 51.84 252.79 l S 59.04 258.21 m 51.84 258.21 l S 59.04 263.63 m 51.84 263.63 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 219.69 Tm (0e+00) Tj ET 59.04 235.44 m 257.76 235.44 l 257.76 264.96 l 59.04 264.96 l 59.04 235.44 l S Q q 0.00 162.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 289.45 Tm (Chr 10, H3K3me1) Tj ET Q q 59.04 235.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 236.53 m 66.45 236.53 l S 66.45 236.53 m 66.49 236.74 l S 66.49 236.53 m 66.54 236.74 l S 66.54 236.53 m 66.58 238.38 l S 66.58 236.53 m 66.63 237.56 l S 66.63 236.53 m 66.68 261.40 l S 66.68 236.53 m 66.72 237.77 l S 66.72 236.53 m 66.77 239.41 l S 66.77 236.53 m 66.81 239.41 l S 66.81 236.53 m 66.86 238.38 l S 66.86 236.53 m 66.91 242.08 l S 66.91 236.53 m 66.95 240.44 l S 66.95 236.53 m 67.00 237.97 l S 67.00 236.53 m 67.04 239.21 l S 67.04 236.53 m 67.09 243.52 l S 67.09 236.53 m 67.14 237.77 l S 67.14 236.53 m 67.18 237.97 l S 67.18 236.53 m 67.23 238.18 l S 67.23 236.53 m 67.27 237.36 l S 67.27 236.53 m 67.32 237.56 l S 67.32 236.53 m 67.37 237.56 l S 67.37 236.53 m 67.41 237.56 l S 67.41 236.53 m 67.46 237.77 l S 67.46 236.53 m 67.50 237.56 l S 67.50 236.53 m 67.55 237.97 l S 67.55 236.53 m 67.60 243.11 l S 67.60 236.53 m 67.64 241.88 l S 67.64 236.53 m 67.69 241.05 l S 67.69 236.53 m 67.73 241.47 l S 67.73 236.53 m 67.78 237.77 l S 67.78 236.53 m 67.83 242.29 l S 67.83 236.53 m 67.87 238.79 l S 67.87 236.53 m 67.92 244.14 l S 67.92 236.53 m 67.96 240.64 l S 67.96 236.53 m 68.01 239.21 l S 68.01 236.53 m 68.06 237.77 l S 68.06 236.53 m 68.10 237.77 l S 68.10 236.53 m 68.15 238.59 l S 68.15 236.53 m 68.19 240.64 l S 68.19 236.53 m 68.24 238.18 l S 68.24 236.53 m 68.29 237.15 l S 68.29 236.53 m 68.33 238.18 l S 68.33 236.53 m 68.38 237.15 l S 68.38 236.53 m 68.42 237.56 l S 68.42 236.53 m 68.47 237.56 l S 68.47 236.53 m 68.52 237.15 l S 68.52 236.53 m 68.56 237.15 l S 68.56 236.53 m 68.61 236.94 l S 68.61 236.53 m 68.65 237.15 l S 68.65 236.53 m 68.70 237.56 l S 68.70 236.53 m 68.75 237.56 l S 68.75 236.53 m 68.79 237.97 l S 68.79 236.53 m 68.84 237.36 l S 68.84 236.53 m 68.88 237.15 l S 68.88 236.53 m 68.93 240.03 l S 68.93 236.53 m 68.98 237.15 l S 68.98 236.53 m 69.02 237.36 l S 69.02 236.53 m 69.07 237.36 l S 69.07 236.53 m 69.11 239.00 l S 69.11 236.53 m 69.16 237.15 l S 69.16 236.53 m 69.21 237.15 l S 69.21 236.53 m 69.25 236.94 l S 69.25 236.53 m 69.30 237.15 l S 69.30 236.53 m 69.34 237.15 l S 69.34 236.53 m 69.39 236.94 l S 69.39 236.53 m 69.44 237.36 l S 69.44 236.53 m 69.48 237.97 l S 69.48 236.53 m 69.53 236.94 l S 69.53 236.53 m 69.57 237.36 l S 69.57 236.53 m 69.62 237.36 l S 69.62 236.53 m 69.67 236.94 l S 69.67 236.53 m 69.71 237.36 l S 69.71 236.53 m 69.76 236.94 l S 69.76 236.53 m 69.80 237.15 l S 69.80 236.53 m 69.85 238.18 l S 69.85 236.53 m 69.90 237.56 l S 69.90 236.53 m 69.94 237.15 l S 69.94 236.53 m 69.99 236.94 l S 69.99 236.53 m 70.03 237.15 l S 70.03 236.53 m 70.08 236.94 l S 70.08 236.53 m 70.13 237.15 l S 70.13 236.53 m 70.17 236.94 l S 70.17 236.53 m 70.22 237.15 l S 70.22 236.53 m 70.26 237.56 l S 70.26 236.53 m 70.31 237.15 l S 70.31 236.53 m 70.36 237.15 l S 70.36 236.53 m 70.40 237.77 l S 70.40 236.53 m 70.45 238.59 l S 70.45 236.53 m 70.50 237.77 l S 70.50 236.53 m 70.54 237.15 l S 70.54 236.53 m 70.59 237.15 l S 70.59 236.53 m 70.63 238.59 l S 70.63 236.53 m 70.68 241.47 l S 70.68 236.53 m 70.73 237.15 l S 70.73 236.53 m 70.77 238.79 l S 70.77 236.53 m 70.82 237.36 l S 70.82 236.53 m 70.86 240.23 l S 70.86 236.53 m 70.91 237.15 l S 70.91 236.53 m 70.96 237.36 l S 70.96 236.53 m 71.00 237.36 l S 71.00 236.53 m 71.05 236.94 l S 71.05 236.53 m 71.09 237.36 l S 71.09 236.53 m 71.14 240.85 l S 71.14 236.53 m 71.19 239.62 l S 71.19 236.53 m 71.23 237.77 l S 71.23 236.53 m 71.28 237.97 l S 71.28 236.53 m 71.32 238.38 l S 71.32 236.53 m 71.37 237.36 l S 71.37 236.53 m 71.42 237.97 l S 71.42 236.53 m 71.46 242.49 l S 71.46 236.53 m 71.51 238.38 l S 71.51 236.53 m 71.55 240.23 l S 71.55 236.53 m 71.60 240.85 l S 71.60 236.53 m 71.65 243.93 l S 71.65 236.53 m 71.69 243.52 l S 71.69 236.53 m 71.74 240.85 l S 71.74 236.53 m 71.78 237.77 l S 71.78 236.53 m 71.83 240.85 l S 71.83 236.53 m 71.88 241.05 l S 71.88 236.53 m 71.92 237.97 l S 71.92 236.53 m 71.97 240.03 l S 71.97 236.53 m 72.01 241.05 l S 72.01 236.53 m 72.06 239.21 l S 72.06 236.53 m 72.11 253.39 l S 72.11 236.53 m 72.15 237.97 l S 72.15 236.53 m 72.20 237.15 l S 72.20 236.53 m 72.24 237.77 l S 72.24 236.53 m 72.29 239.82 l S 72.29 236.53 m 72.34 237.15 l S 72.34 236.53 m 72.38 236.94 l S 72.38 236.53 m 72.43 236.94 l S 72.43 236.53 m 72.47 237.15 l S 72.47 236.53 m 72.52 237.56 l S 72.52 236.53 m 72.57 237.56 l S 72.57 236.53 m 72.61 236.94 l S 72.61 236.53 m 72.66 237.56 l S 72.66 236.53 m 72.70 236.74 l S 72.70 236.53 m 72.75 237.15 l S 72.75 236.53 m 72.80 238.38 l S 72.80 236.53 m 72.84 237.36 l S 72.84 236.53 m 72.89 236.94 l S 72.89 236.53 m 72.93 236.94 l S 72.93 236.53 m 72.98 236.94 l S 72.98 236.53 m 73.03 244.34 l S 73.03 236.53 m 73.07 240.44 l S 73.07 236.53 m 73.12 237.36 l S 73.12 236.53 m 73.16 237.15 l S 73.16 236.53 m 73.21 236.74 l S 73.21 236.53 m 73.26 236.94 l S 73.26 236.53 m 73.30 236.94 l S 73.30 236.53 m 73.35 236.94 l S 73.35 236.53 m 73.39 237.36 l S 73.39 236.53 m 73.44 237.15 l S 73.44 236.53 m 73.49 236.74 l S 73.49 236.53 m 73.53 237.36 l S 73.53 236.53 m 73.58 236.94 l S 73.58 236.53 m 73.62 237.97 l S 73.62 236.53 m 73.67 247.63 l S 73.67 236.53 m 73.72 248.04 l S 73.72 236.53 m 73.76 237.15 l S 73.76 236.53 m 73.81 238.59 l S 73.81 236.53 m 73.85 240.23 l S 73.85 236.53 m 73.90 237.56 l S 73.90 236.53 m 73.95 239.21 l S 73.95 236.53 m 73.99 241.88 l S 73.99 236.53 m 74.04 239.21 l S 74.04 236.53 m 74.08 237.36 l S 74.08 236.53 m 74.13 236.94 l S 74.13 236.53 m 74.18 237.77 l S 74.18 236.53 m 74.22 245.58 l S 74.22 236.53 m 74.27 239.00 l S 74.27 236.53 m 74.31 239.82 l S 74.31 236.53 m 74.36 239.62 l S 74.36 236.53 m 74.41 239.21 l S 74.41 236.53 m 74.45 239.82 l S 74.45 236.53 m 74.50 237.56 l S 74.50 236.53 m 74.54 244.75 l S 74.54 236.53 m 74.59 237.56 l S 74.59 236.53 m 74.64 240.64 l S 74.64 236.53 m 74.68 239.21 l S 74.68 236.53 m 74.73 240.64 l S 74.73 236.53 m 74.77 243.52 l S 74.77 236.53 m 74.82 242.49 l S 74.82 236.53 m 74.87 240.64 l S 74.87 236.53 m 74.91 248.45 l S 74.91 236.53 m 74.96 241.05 l S 74.96 236.53 m 75.00 239.62 l S 75.00 236.53 m 75.05 240.64 l S 75.05 236.53 m 75.10 241.05 l S 75.10 236.53 m 75.14 241.67 l S 75.14 236.53 m 75.19 238.79 l S 75.19 236.53 m 75.23 241.88 l S 75.23 236.53 m 75.28 238.18 l S 75.28 236.53 m 75.33 242.08 l S 75.33 236.53 m 75.37 242.29 l S 75.37 236.53 m 75.42 244.75 l S 75.42 236.53 m 75.46 246.40 l S 75.46 236.53 m 75.51 242.08 l S 75.51 236.53 m 75.56 243.93 l S 75.56 236.53 m 75.60 238.59 l S 75.60 236.53 m 75.65 237.56 l S 75.65 236.53 m 75.69 237.56 l S 75.69 236.53 m 75.74 237.36 l S 75.74 236.53 m 75.79 236.74 l S 75.79 236.53 m 75.83 236.94 l S 75.83 236.53 m 75.88 237.56 l S 75.88 236.53 m 75.92 238.38 l S 75.92 236.53 m 75.97 241.26 l S 75.97 236.53 m 76.02 238.18 l S 76.02 236.53 m 76.06 238.59 l S 76.06 236.53 m 76.11 239.00 l S 76.11 236.53 m 76.15 236.94 l S 76.15 236.53 m 76.20 238.79 l S 76.20 236.53 m 76.25 239.82 l S 76.25 236.53 m 76.29 247.01 l S 76.29 236.53 m 76.34 241.26 l S 76.34 236.53 m 76.38 245.37 l S 76.38 236.53 m 76.43 240.44 l S 76.43 236.53 m 76.48 241.05 l S 76.48 236.53 m 76.52 238.59 l S 76.52 236.53 m 76.57 243.52 l S 76.57 236.53 m 76.61 239.21 l S 76.61 236.53 m 76.66 237.15 l S 76.66 236.53 m 76.71 242.08 l S 76.71 236.53 m 76.75 240.85 l S 76.75 236.53 m 76.80 239.82 l S 76.80 236.53 m 76.84 237.36 l S 76.84 236.53 m 76.89 237.56 l S 76.89 236.53 m 76.94 237.77 l S 76.94 236.53 m 76.98 237.36 l S 76.98 236.53 m 77.03 237.15 l S 77.03 236.53 m 77.07 236.94 l S 77.07 236.53 m 77.12 243.52 l S 77.12 236.53 m 77.17 242.08 l S 77.17 236.53 m 77.21 240.03 l S 77.21 236.53 m 77.26 239.41 l S 77.26 236.53 m 77.30 237.77 l S 77.30 236.53 m 77.35 238.18 l S 77.35 236.53 m 77.40 237.36 l S 77.40 236.53 m 77.44 238.59 l S 77.44 236.53 m 77.49 240.44 l S 77.49 236.53 m 77.53 239.00 l S 77.53 236.53 m 77.58 241.88 l S 77.58 236.53 m 77.63 237.15 l S 77.63 236.53 m 77.67 239.00 l S 77.67 236.53 m 77.72 241.26 l S 77.72 236.53 m 77.76 242.29 l S 77.76 236.53 m 77.81 237.36 l S 77.81 236.53 m 77.86 240.23 l S 77.86 236.53 m 77.90 239.21 l S 77.90 236.53 m 77.95 240.03 l S 77.95 236.53 m 77.99 240.85 l S 77.99 236.53 m 78.04 237.15 l S 78.04 236.53 m 78.09 237.15 l S 78.09 236.53 m 78.13 237.15 l S 78.13 236.53 m 78.18 236.94 l S 78.18 236.53 m 78.22 236.94 l S 78.22 236.53 m 78.27 237.15 l S 78.27 236.53 m 78.32 236.94 l S 78.32 236.53 m 78.36 237.36 l S 78.36 236.53 m 78.41 237.15 l S 78.41 236.53 m 78.46 237.77 l S 78.46 236.53 m 78.50 236.94 l S 78.50 236.53 m 78.55 236.94 l S 78.55 236.53 m 78.59 237.15 l S 78.59 236.53 m 78.64 237.15 l S 78.64 236.53 m 78.69 237.15 l S 78.69 236.53 m 78.73 237.15 l S 78.73 236.53 m 78.78 238.79 l S 78.78 236.53 m 78.82 237.15 l S 78.82 236.53 m 78.87 237.36 l S 78.87 236.53 m 78.92 238.79 l S 78.92 236.53 m 78.96 236.94 l S 78.96 236.53 m 79.01 237.56 l S 79.01 236.53 m 79.05 238.18 l S 79.05 236.53 m 79.10 236.94 l S 79.10 236.53 m 79.15 236.94 l S 79.15 236.53 m 79.19 238.18 l S 79.19 236.53 m 79.24 236.94 l S 79.24 236.53 m 79.28 237.56 l S 79.28 236.53 m 79.33 236.94 l S 79.33 236.53 m 79.38 236.94 l S 79.38 236.53 m 79.42 236.74 l S 79.42 236.53 m 79.47 236.94 l S 79.47 236.53 m 79.51 236.74 l S 79.51 236.53 m 79.56 236.74 l S 79.56 236.53 m 79.61 236.74 l S 79.61 236.53 m 79.65 236.94 l S 79.65 236.53 m 79.70 236.94 l S 79.70 236.53 m 79.74 237.15 l S 79.74 236.53 m 79.79 236.94 l S 79.79 236.53 m 79.84 237.15 l S 79.84 236.53 m 79.88 237.36 l S 79.88 236.53 m 79.93 236.94 l S 79.93 236.53 m 79.97 236.94 l S 79.97 236.53 m 80.02 236.94 l S 80.02 236.53 m 80.07 236.94 l S 80.07 236.53 m 80.11 236.74 l S 80.11 236.53 m 80.16 236.94 l S 80.16 236.53 m 80.20 236.94 l S 80.20 236.53 m 80.25 237.15 l S 80.25 236.53 m 80.30 236.74 l S 80.30 236.53 m 80.34 236.94 l S 80.34 236.53 m 80.39 236.94 l S 80.39 236.53 m 80.43 237.15 l S 80.43 236.53 m 80.48 237.15 l S 80.48 236.53 m 80.53 236.94 l S 80.53 236.53 m 80.57 236.94 l S 80.57 236.53 m 80.62 236.94 l S 80.62 236.53 m 80.66 237.15 l S 80.66 236.53 m 80.71 237.77 l S 80.71 236.53 m 80.76 236.94 l S 80.76 236.53 m 80.80 237.36 l S 80.80 236.53 m 80.85 237.56 l S 80.85 236.53 m 80.89 236.94 l S 80.89 236.53 m 80.94 237.15 l S 80.94 236.53 m 80.99 236.94 l S 80.99 236.53 m 81.03 237.36 l S 81.03 236.53 m 81.08 236.94 l S 81.08 236.53 m 81.12 236.94 l S 81.12 236.53 m 81.17 236.94 l S 81.17 236.53 m 81.22 236.94 l S 81.22 236.53 m 81.26 238.38 l S 81.26 236.53 m 81.31 238.79 l S 81.31 236.53 m 81.35 236.94 l S 81.35 236.53 m 81.40 236.94 l S 81.40 236.53 m 81.45 236.94 l S 81.45 236.53 m 81.49 237.77 l S 81.49 236.53 m 81.54 237.56 l S 81.54 236.53 m 81.58 237.97 l S 81.58 236.53 m 81.63 240.85 l S 81.63 236.53 m 81.68 240.44 l S 81.68 236.53 m 81.72 247.84 l S 81.72 236.53 m 81.77 245.99 l S 81.77 236.53 m 81.81 247.22 l S 81.81 236.53 m 81.86 240.64 l S 81.86 236.53 m 81.91 244.14 l S 81.91 236.53 m 81.95 239.00 l S 81.95 236.53 m 82.00 237.97 l S 82.00 236.53 m 82.04 244.75 l S 82.04 236.53 m 82.09 238.79 l S 82.09 236.53 m 82.14 238.18 l S 82.14 236.53 m 82.18 236.94 l S 82.18 236.53 m 82.23 237.56 l S 82.23 236.53 m 82.27 237.36 l S 82.27 236.53 m 82.32 238.59 l S 82.32 236.53 m 82.37 237.36 l S 82.37 236.53 m 82.41 240.23 l S 82.41 236.53 m 82.46 241.47 l S 82.46 236.53 m 82.50 237.77 l S 82.50 236.53 m 82.55 237.15 l S 82.55 236.53 m 82.60 237.15 l S 82.60 236.53 m 82.64 239.21 l S 82.64 236.53 m 82.69 239.21 l S 82.69 236.53 m 82.73 237.36 l S 82.73 236.53 m 82.78 237.15 l S 82.78 236.53 m 82.83 238.18 l S 82.83 236.53 m 82.87 238.38 l S 82.87 236.53 m 82.92 241.05 l S 82.92 236.53 m 82.96 239.00 l S 82.96 236.53 m 83.01 238.38 l S 83.01 236.53 m 83.06 237.56 l S 83.06 236.53 m 83.10 238.79 l S 83.10 236.53 m 83.15 239.21 l S 83.15 236.53 m 83.19 238.59 l S 83.19 236.53 m 83.24 237.15 l S 83.24 236.53 m 83.29 237.97 l S 83.29 236.53 m 83.33 244.75 l S 83.33 236.53 m 83.38 239.41 l S 83.38 236.53 m 83.42 239.00 l S 83.42 236.53 m 83.47 242.49 l S 83.47 236.53 m 83.52 239.41 l S 83.52 236.53 m 83.56 241.47 l S 83.56 236.53 m 83.61 240.85 l S 83.61 236.53 m 83.65 241.05 l S 83.65 236.53 m 83.70 239.00 l S 83.70 236.53 m 83.75 238.18 l S 83.75 236.53 m 83.79 237.36 l S 83.79 236.53 m 83.84 237.97 l S 83.84 236.53 m 83.88 237.56 l S 83.88 236.53 m 83.93 237.36 l S 83.93 236.53 m 83.98 237.15 l S 83.98 236.53 m 84.02 237.15 l S 84.02 236.53 m 84.07 236.94 l S 84.07 236.53 m 84.11 237.36 l S 84.11 236.53 m 84.16 237.15 l S 84.16 236.53 m 84.21 236.94 l S 84.21 236.53 m 84.25 236.94 l S 84.25 236.53 m 84.30 237.15 l S 84.30 236.53 m 84.34 245.37 l S 84.34 236.53 m 84.39 237.56 l S 84.39 236.53 m 84.44 237.97 l S 84.44 236.53 m 84.48 237.15 l S 84.48 236.53 m 84.53 237.36 l S 84.53 236.53 m 84.57 237.77 l S 84.57 236.53 m 84.62 237.97 l S 84.62 236.53 m 84.67 242.29 l S 84.67 236.53 m 84.71 237.56 l S 84.71 236.53 m 84.76 237.15 l S 84.76 236.53 m 84.80 237.36 l S 84.80 236.53 m 84.85 237.15 l S 84.85 236.53 m 84.90 237.36 l S 84.90 236.53 m 84.94 237.36 l S 84.94 236.53 m 84.99 240.64 l S 84.99 236.53 m 85.03 237.97 l S 85.03 236.53 m 85.08 238.79 l S 85.08 236.53 m 85.13 237.97 l S 85.13 236.53 m 85.17 238.79 l S 85.17 236.53 m 85.22 237.56 l S 85.22 236.53 m 85.26 241.05 l S 85.26 236.53 m 85.31 242.90 l S 85.31 236.53 m 85.36 238.18 l S 85.36 236.53 m 85.40 239.00 l S 85.40 236.53 m 85.45 237.15 l S 85.45 236.53 m 85.49 238.18 l S 85.49 236.53 m 85.54 237.36 l S 85.54 236.53 m 85.59 242.08 l S 85.59 236.53 m 85.63 237.56 l S 85.63 236.53 m 85.68 237.56 l S 85.68 236.53 m 85.72 236.94 l S 85.72 236.53 m 85.77 237.77 l S 85.77 236.53 m 85.82 240.03 l S 85.82 236.53 m 85.86 237.15 l S 85.86 236.53 m 85.91 237.15 l S 85.91 236.53 m 85.95 236.94 l S 85.95 236.53 m 86.00 237.36 l S 86.00 236.53 m 86.05 237.15 l S 86.05 236.53 m 86.09 239.62 l S 86.09 236.53 m 86.14 237.97 l S 86.14 236.53 m 86.18 237.15 l S 86.18 236.53 m 86.23 237.77 l S 86.23 236.53 m 86.28 243.93 l S 86.28 236.53 m 86.32 251.54 l S 86.32 236.53 m 86.37 245.37 l S 86.37 236.53 m 86.42 239.21 l S 86.42 236.53 m 86.46 240.64 l S 86.46 236.53 m 86.51 237.56 l S 86.51 236.53 m 86.55 240.23 l S 86.55 236.53 m 86.60 237.56 l S 86.60 236.53 m 86.65 238.79 l S 86.65 236.53 m 86.69 238.18 l S 86.69 236.53 m 86.74 237.97 l S 86.74 236.53 m 86.78 238.38 l S 86.78 236.53 m 86.83 237.77 l S 86.83 236.53 m 86.88 242.90 l S 86.88 236.53 m 86.92 236.94 l S 86.92 236.53 m 86.97 236.94 l S 86.97 236.53 m 87.01 237.15 l S 87.01 236.53 m 87.06 239.41 l S 87.06 236.53 m 87.11 241.88 l S 87.11 236.53 m 87.15 238.59 l S 87.15 236.53 m 87.20 242.90 l S 87.20 236.53 m 87.24 238.79 l S 87.24 236.53 m 87.29 239.62 l S 87.29 236.53 m 87.34 237.56 l S 87.34 236.53 m 87.38 237.36 l S 87.38 236.53 m 87.43 238.18 l S 87.43 236.53 m 87.47 236.94 l S 87.47 236.53 m 87.52 237.56 l S 87.52 236.53 m 87.57 237.15 l S 87.57 236.53 m 87.61 237.15 l S 87.61 236.53 m 87.66 236.94 l S 87.66 236.53 m 87.70 237.77 l S 87.70 236.53 m 87.75 236.94 l S 87.75 236.53 m 87.80 237.15 l S 87.80 236.53 m 87.84 237.15 l S 87.84 236.53 m 87.89 237.15 l S 87.89 236.53 m 87.93 237.36 l S 87.93 236.53 m 87.98 237.36 l S 87.98 236.53 m 88.03 237.36 l S 88.03 236.53 m 88.07 238.79 l S 88.07 236.53 m 88.12 237.56 l S 88.12 236.53 m 88.16 236.94 l S 88.16 236.53 m 88.21 236.94 l S 88.21 236.53 m 88.26 236.94 l S 88.26 236.53 m 88.30 236.94 l S 88.30 236.53 m 88.35 236.94 l S 88.35 236.53 m 88.39 236.94 l S 88.39 236.53 m 88.44 237.15 l S 88.44 236.53 m 88.49 236.94 l S 88.49 236.53 m 88.53 237.15 l S 88.53 236.53 m 88.58 236.94 l S 88.58 236.53 m 88.62 236.74 l S 88.62 236.53 m 88.67 237.15 l S 88.67 236.53 m 88.72 236.94 l S 88.72 236.53 m 88.76 236.94 l S 88.76 236.53 m 88.81 236.94 l S 88.81 236.53 m 88.85 237.36 l S 88.85 236.53 m 88.90 242.49 l S 88.90 236.53 m 88.95 237.97 l S 88.95 236.53 m 88.99 237.77 l S 88.99 236.53 m 89.04 237.15 l S 89.04 236.53 m 89.08 237.36 l S 89.08 236.53 m 89.13 237.56 l S 89.13 236.53 m 89.18 238.59 l S 89.18 236.53 m 89.22 237.36 l S 89.22 236.53 m 89.27 240.85 l S 89.27 236.53 m 89.31 237.77 l S 89.31 236.53 m 89.36 240.64 l S 89.36 236.53 m 89.41 239.82 l S 89.41 236.53 m 89.45 237.15 l S 89.45 236.53 m 89.50 237.97 l S 89.50 236.53 m 89.54 239.00 l S 89.54 236.53 m 89.59 237.77 l S 89.59 236.53 m 89.64 244.14 l S 89.64 236.53 m 89.68 245.78 l S 89.68 236.53 m 89.73 237.77 l S 89.73 236.53 m 89.77 236.94 l S 89.77 236.53 m 89.82 239.82 l S 89.82 236.53 m 89.87 237.77 l S 89.87 236.53 m 89.91 242.08 l S 89.91 236.53 m 89.96 251.33 l S 89.96 236.53 m 90.00 237.15 l S 90.00 236.53 m 90.05 237.15 l S 90.05 236.53 m 90.10 237.15 l S 90.10 236.53 m 90.14 236.94 l S 90.14 236.53 m 90.19 237.56 l S 90.19 236.53 m 90.23 243.73 l S 90.23 236.53 m 90.28 240.44 l S 90.28 236.53 m 90.33 237.56 l S 90.33 236.53 m 90.37 237.36 l S 90.37 236.53 m 90.42 237.15 l S 90.42 236.53 m 90.46 237.15 l S 90.46 236.53 m 90.51 242.08 l S 90.51 236.53 m 90.56 239.21 l S 90.56 236.53 m 90.60 237.15 l S 90.60 236.53 m 90.65 236.94 l S 90.65 236.53 m 90.69 236.53 l S 90.69 236.53 m 90.74 236.74 l S 90.74 236.53 m 90.79 236.53 l S 90.79 236.53 m 90.83 236.53 l S 90.83 236.53 m 90.88 236.74 l S 90.88 236.53 m 90.92 236.74 l S 90.92 236.53 m 90.97 236.53 l S 90.97 236.53 m 91.02 236.53 l S 91.02 236.53 m 91.06 236.74 l S 91.06 236.53 m 91.11 236.74 l S 91.11 236.53 m 91.15 236.74 l S 91.15 236.53 m 91.20 236.53 l S 91.20 236.53 m 91.25 236.94 l S 91.25 236.53 m 91.29 236.94 l S 91.29 236.53 m 91.34 237.15 l S 91.34 236.53 m 91.38 236.94 l S 91.38 236.53 m 91.43 236.94 l S 91.43 236.53 m 91.48 237.15 l S 91.48 236.53 m 91.52 237.36 l S 91.52 236.53 m 91.57 236.94 l S 91.57 236.53 m 91.61 237.15 l S 91.61 236.53 m 91.66 236.94 l S 91.66 236.53 m 91.71 236.94 l S 91.71 236.53 m 91.75 236.94 l S 91.75 236.53 m 91.80 236.94 l S 91.80 236.53 m 91.84 236.94 l S 91.84 236.53 m 91.89 237.36 l S 91.89 236.53 m 91.94 236.94 l S 91.94 236.53 m 91.98 237.36 l S 91.98 236.53 m 92.03 237.15 l S 92.03 236.53 m 92.07 237.15 l S 92.07 236.53 m 92.12 240.03 l S 92.12 236.53 m 92.17 237.15 l S 92.17 236.53 m 92.21 237.97 l S 92.21 236.53 m 92.26 239.21 l S 92.26 236.53 m 92.30 237.56 l S 92.30 236.53 m 92.35 236.94 l S 92.35 236.53 m 92.40 237.15 l S 92.40 236.53 m 92.44 236.74 l S 92.44 236.53 m 92.49 236.94 l S 92.49 236.53 m 92.53 237.15 l S 92.53 236.53 m 92.58 236.74 l S 92.58 236.53 m 92.63 237.15 l S 92.63 236.53 m 92.67 236.94 l S 92.67 236.53 m 92.72 236.74 l S 92.72 236.53 m 92.76 237.15 l S 92.76 236.53 m 92.81 237.15 l S 92.81 236.53 m 92.86 237.36 l S 92.86 236.53 m 92.90 236.94 l S 92.90 236.53 m 92.95 236.74 l S 92.95 236.53 m 92.99 236.94 l S 92.99 236.53 m 93.04 236.94 l S 93.04 236.53 m 93.09 236.94 l S 93.09 236.53 m 93.13 237.15 l S 93.13 236.53 m 93.18 236.94 l S 93.18 236.53 m 93.22 236.94 l S 93.22 236.53 m 93.27 236.94 l S 93.27 236.53 m 93.32 236.94 l S 93.32 236.53 m 93.36 236.94 l S 93.36 236.53 m 93.41 237.15 l S 93.41 236.53 m 93.45 236.94 l S 93.45 236.53 m 93.50 236.94 l S 93.50 236.53 m 93.55 237.15 l S 93.55 236.53 m 93.59 236.94 l S 93.59 236.53 m 93.64 236.94 l S 93.64 236.53 m 93.68 236.74 l S 93.68 236.53 m 93.73 236.94 l S 93.73 236.53 m 93.78 236.94 l S 93.78 236.53 m 93.82 236.94 l S 93.82 236.53 m 93.87 237.15 l S 93.87 236.53 m 93.91 237.15 l S 93.91 236.53 m 93.96 236.94 l S 93.96 236.53 m 94.01 236.94 l S 94.01 236.53 m 94.05 236.94 l S 94.05 236.53 m 94.10 236.94 l S 94.10 236.53 m 94.14 236.94 l S 94.14 236.53 m 94.19 236.94 l S 94.19 236.53 m 94.24 236.94 l S 94.24 236.53 m 94.28 236.74 l S 94.28 236.53 m 94.33 236.94 l S 94.33 236.53 m 94.37 236.94 l S 94.37 236.53 m 94.42 236.94 l S 94.42 236.53 m 94.47 237.15 l S 94.47 236.53 m 94.51 237.15 l S 94.51 236.53 m 94.56 236.94 l S 94.56 236.53 m 94.61 236.94 l S 94.61 236.53 m 94.65 236.94 l S 94.65 236.53 m 94.70 236.94 l S 94.70 236.53 m 94.74 236.94 l S 94.74 236.53 m 94.79 236.94 l S 94.79 236.53 m 94.84 237.15 l S 94.84 236.53 m 94.88 237.15 l S 94.88 236.53 m 94.93 236.94 l S 94.93 236.53 m 94.97 237.15 l S 94.97 236.53 m 95.02 236.94 l S 95.02 236.53 m 95.07 236.94 l S 95.07 236.53 m 95.11 237.15 l S 95.11 236.53 m 95.16 236.94 l S 95.16 236.53 m 95.20 236.74 l S 95.20 236.53 m 95.25 237.36 l S 95.25 236.53 m 95.30 236.94 l S 95.30 236.53 m 95.34 237.15 l S 95.34 236.53 m 95.39 236.94 l S 95.39 236.53 m 95.43 236.94 l S 95.43 236.53 m 95.48 237.15 l S 95.48 236.53 m 95.53 236.94 l S 95.53 236.53 m 95.57 237.36 l S 95.57 236.53 m 95.62 236.94 l S 95.62 236.53 m 95.66 237.15 l S 95.66 236.53 m 95.71 238.18 l S 95.71 236.53 m 95.76 236.94 l S 95.76 236.53 m 95.80 237.15 l S 95.80 236.53 m 95.85 236.74 l S 95.85 236.53 m 95.89 236.94 l S 95.89 236.53 m 95.94 239.41 l S 95.94 236.53 m 95.99 237.97 l S 95.99 236.53 m 96.03 236.94 l S 96.03 236.53 m 96.08 239.00 l S 96.08 236.53 m 96.12 240.03 l S 96.12 236.53 m 96.17 238.79 l S 96.17 236.53 m 96.22 238.38 l S 96.22 236.53 m 96.26 238.38 l S 96.26 236.53 m 96.31 241.67 l S 96.31 236.53 m 96.35 237.77 l S 96.35 236.53 m 96.40 241.26 l S 96.40 236.53 m 96.45 245.37 l S 96.45 236.53 m 96.49 238.38 l S 96.49 236.53 m 96.54 237.56 l S 96.54 236.53 m 96.58 237.15 l S 96.58 236.53 m 96.63 242.90 l S 96.63 236.53 m 96.68 237.36 l S 96.68 236.53 m 96.72 237.56 l S 96.72 236.53 m 96.77 239.82 l S 96.77 236.53 m 96.81 239.41 l S 96.81 236.53 m 96.86 236.94 l S 96.86 236.53 m 96.91 236.94 l S 96.91 236.53 m 96.95 237.77 l S 96.95 236.53 m 97.00 237.36 l S 97.00 236.53 m 97.04 236.94 l S 97.04 236.53 m 97.09 237.56 l S 97.09 236.53 m 97.14 238.38 l S 97.14 236.53 m 97.18 236.94 l S 97.18 236.53 m 97.23 240.03 l S 97.23 236.53 m 97.27 238.18 l S 97.27 236.53 m 97.32 236.94 l S 97.32 236.53 m 97.37 237.77 l S 97.37 236.53 m 97.41 236.94 l S 97.41 236.53 m 97.46 243.32 l S 97.46 236.53 m 97.50 237.56 l S 97.50 236.53 m 97.55 239.21 l S 97.55 236.53 m 97.60 250.51 l S 97.60 236.53 m 97.64 249.89 l S 97.64 236.53 m 97.69 248.86 l S 97.69 236.53 m 97.73 243.73 l S 97.73 236.53 m 97.78 237.77 l S 97.78 236.53 m 97.83 237.56 l S 97.83 236.53 m 97.87 236.94 l S 97.87 236.53 m 97.92 237.15 l S 97.92 236.53 m 97.96 236.94 l S 97.96 236.53 m 98.01 236.94 l S 98.01 236.53 m 98.06 239.00 l S 98.06 236.53 m 98.10 237.15 l S 98.10 236.53 m 98.15 237.97 l S 98.15 236.53 m 98.19 237.15 l S 98.19 236.53 m 98.24 237.56 l S 98.24 236.53 m 98.29 248.45 l S 98.29 236.53 m 98.33 236.74 l S 98.33 236.53 m 98.38 237.36 l S 98.38 236.53 m 98.42 237.15 l S 98.42 236.53 m 98.47 236.74 l S 98.47 236.53 m 98.52 237.36 l S 98.52 236.53 m 98.56 237.15 l S 98.56 236.53 m 98.61 238.18 l S 98.61 236.53 m 98.65 242.08 l S 98.65 236.53 m 98.70 236.94 l S 98.70 236.53 m 98.75 239.21 l S 98.75 236.53 m 98.79 237.36 l S 98.79 236.53 m 98.84 236.94 l S 98.84 236.53 m 98.88 241.47 l S 98.88 236.53 m 98.93 237.15 l S 98.93 236.53 m 98.98 236.94 l S 98.98 236.53 m 99.02 237.15 l S 99.02 236.53 m 99.07 237.15 l S 99.07 236.53 m 99.11 236.94 l S 99.11 236.53 m 99.16 236.94 l S 99.16 236.53 m 99.21 236.94 l S 99.21 236.53 m 99.25 236.94 l S 99.25 236.53 m 99.30 237.15 l S 99.30 236.53 m 99.34 236.94 l S 99.34 236.53 m 99.39 237.15 l S 99.39 236.53 m 99.44 236.94 l S 99.44 236.53 m 99.48 237.56 l S 99.48 236.53 m 99.53 237.15 l S 99.53 236.53 m 99.57 236.94 l S 99.57 236.53 m 99.62 237.15 l S 99.62 236.53 m 99.67 236.94 l S 99.67 236.53 m 99.71 236.94 l S 99.71 236.53 m 99.76 236.94 l S 99.76 236.53 m 99.80 237.15 l S 99.80 236.53 m 99.85 236.94 l S 99.85 236.53 m 99.90 237.36 l S 99.90 236.53 m 99.94 236.94 l S 99.94 236.53 m 99.99 237.15 l S 99.99 236.53 m 100.03 237.15 l S 100.03 236.53 m 100.08 237.36 l S 100.08 236.53 m 100.13 237.36 l S 100.13 236.53 m 100.17 236.94 l S 100.17 236.53 m 100.22 237.36 l S 100.22 236.53 m 100.26 237.15 l S 100.26 236.53 m 100.31 237.15 l S 100.31 236.53 m 100.36 239.62 l S 100.36 236.53 m 100.40 236.94 l S 100.40 236.53 m 100.45 240.64 l S 100.45 236.53 m 100.49 237.97 l S 100.49 236.53 m 100.54 237.77 l S 100.54 236.53 m 100.59 238.38 l S 100.59 236.53 m 100.63 237.97 l S 100.63 236.53 m 100.68 239.00 l S 100.68 236.53 m 100.72 243.32 l S 100.72 236.53 m 100.77 238.59 l S 100.77 236.53 m 100.82 238.79 l S 100.82 236.53 m 100.86 237.97 l S 100.86 236.53 m 100.91 236.94 l S 100.91 236.53 m 100.95 239.41 l S 100.95 236.53 m 101.00 237.36 l S 101.00 236.53 m 101.05 236.94 l S 101.05 236.53 m 101.09 237.36 l S 101.09 236.53 m 101.14 236.94 l S 101.14 236.53 m 101.18 236.74 l S 101.18 236.53 m 101.23 236.74 l S 101.23 236.53 m 101.28 236.74 l S 101.28 236.53 m 101.32 236.74 l S 101.32 236.53 m 101.37 236.74 l S 101.37 236.53 m 101.41 236.94 l S 101.41 236.53 m 101.46 236.94 l S 101.46 236.53 m 101.51 237.56 l S 101.51 236.53 m 101.55 237.56 l S 101.55 236.53 m 101.60 236.94 l S 101.60 236.53 m 101.64 236.94 l S 101.64 236.53 m 101.69 236.94 l S 101.69 236.53 m 101.74 237.15 l S 101.74 236.53 m 101.78 237.15 l S 101.78 236.53 m 101.83 237.15 l S 101.83 236.53 m 101.87 236.74 l S 101.87 236.53 m 101.92 236.74 l S 101.92 236.53 m 101.97 237.15 l S 101.97 236.53 m 102.01 236.94 l S 102.01 236.53 m 102.06 237.15 l S 102.06 236.53 m 102.10 236.74 l S 102.10 236.53 m 102.15 236.94 l S 102.15 236.53 m 102.20 236.94 l S 102.20 236.53 m 102.24 236.94 l S 102.24 236.53 m 102.29 237.36 l S 102.29 236.53 m 102.33 237.36 l S 102.33 236.53 m 102.38 237.36 l S 102.38 236.53 m 102.43 237.15 l S 102.43 236.53 m 102.47 237.15 l S 102.47 236.53 m 102.52 237.15 l S 102.52 236.53 m 102.57 237.15 l S 102.57 236.53 m 102.61 236.94 l S 102.61 236.53 m 102.66 237.36 l S 102.66 236.53 m 102.70 236.94 l S 102.70 236.53 m 102.75 237.36 l S 102.75 236.53 m 102.80 239.41 l S 102.80 236.53 m 102.84 248.25 l S 102.84 236.53 m 102.89 242.90 l S 102.89 236.53 m 102.93 239.00 l S 102.93 236.53 m 102.98 239.62 l S 102.98 236.53 m 103.03 237.15 l S 103.03 236.53 m 103.07 237.56 l S 103.07 236.53 m 103.12 237.15 l S 103.12 236.53 m 103.16 241.67 l S 103.16 236.53 m 103.21 238.79 l S 103.21 236.53 m 103.26 239.62 l S 103.26 236.53 m 103.30 244.34 l S 103.30 236.53 m 103.35 240.64 l S 103.35 236.53 m 103.39 239.82 l S 103.39 236.53 m 103.44 236.94 l S 103.44 236.53 m 103.49 237.36 l S 103.49 236.53 m 103.53 237.15 l S 103.53 236.53 m 103.58 237.56 l S 103.58 236.53 m 103.62 237.15 l S 103.62 236.53 m 103.67 237.36 l S 103.67 236.53 m 103.72 241.88 l S 103.72 236.53 m 103.76 237.77 l S 103.76 236.53 m 103.81 238.79 l S 103.81 236.53 m 103.85 236.94 l S 103.85 236.53 m 103.90 239.21 l S 103.90 236.53 m 103.95 238.38 l S 103.95 236.53 m 103.99 237.15 l S 103.99 236.53 m 104.04 236.94 l S 104.04 236.53 m 104.08 237.15 l S 104.08 236.53 m 104.13 236.94 l S 104.13 236.53 m 104.18 237.56 l S 104.18 236.53 m 104.22 238.59 l S 104.22 236.53 m 104.27 241.47 l S 104.27 236.53 m 104.31 240.03 l S 104.31 236.53 m 104.36 237.77 l S 104.36 236.53 m 104.41 237.97 l S 104.41 236.53 m 104.45 236.94 l S 104.45 236.53 m 104.50 237.56 l S 104.50 236.53 m 104.54 236.94 l S 104.54 236.53 m 104.59 240.23 l S 104.59 236.53 m 104.64 236.74 l S 104.64 236.53 m 104.68 237.15 l S 104.68 236.53 m 104.73 237.15 l S 104.73 236.53 m 104.77 237.36 l S 104.77 236.53 m 104.82 237.56 l S 104.82 236.53 m 104.87 237.36 l S 104.87 236.53 m 104.91 236.74 l S 104.91 236.53 m 104.96 236.94 l S 104.96 236.53 m 105.00 237.36 l S 105.00 236.53 m 105.05 237.15 l S 105.05 236.53 m 105.10 237.36 l S 105.10 236.53 m 105.14 237.36 l S 105.14 236.53 m 105.19 238.38 l S 105.19 236.53 m 105.23 239.21 l S 105.23 236.53 m 105.28 242.29 l S 105.28 236.53 m 105.33 239.21 l S 105.33 236.53 m 105.37 239.00 l S 105.37 236.53 m 105.42 238.59 l S 105.42 236.53 m 105.46 238.18 l S 105.46 236.53 m 105.51 236.94 l S 105.51 236.53 m 105.56 237.15 l S 105.56 236.53 m 105.60 237.15 l S 105.60 236.53 m 105.65 240.03 l S 105.65 236.53 m 105.69 240.23 l S 105.69 236.53 m 105.74 250.92 l S 105.74 236.53 m 105.79 238.59 l S 105.79 236.53 m 105.83 237.77 l S 105.83 236.53 m 105.88 239.00 l S 105.88 236.53 m 105.92 236.94 l S 105.92 236.53 m 105.97 237.36 l S 105.97 236.53 m 106.02 237.15 l S 106.02 236.53 m 106.06 237.15 l S 106.06 236.53 m 106.11 237.15 l S 106.11 236.53 m 106.15 237.15 l S 106.15 236.53 m 106.20 236.94 l S 106.20 236.53 m 106.25 237.15 l S 106.25 236.53 m 106.29 237.15 l S 106.29 236.53 m 106.34 237.15 l S 106.34 236.53 m 106.38 236.94 l S 106.38 236.53 m 106.43 237.36 l S 106.43 236.53 m 106.48 236.94 l S 106.48 236.53 m 106.52 236.94 l S 106.52 236.53 m 106.57 236.94 l S 106.57 236.53 m 106.61 237.36 l S 106.61 236.53 m 106.66 237.15 l S 106.66 236.53 m 106.71 236.94 l S 106.71 236.53 m 106.75 236.94 l S 106.75 236.53 m 106.80 237.15 l S 106.80 236.53 m 106.84 237.56 l S 106.84 236.53 m 106.89 237.56 l S 106.89 236.53 m 106.94 238.18 l S 106.94 236.53 m 106.98 237.36 l S 106.98 236.53 m 107.03 238.38 l S 107.03 236.53 m 107.07 237.36 l S 107.07 236.53 m 107.12 239.21 l S 107.12 236.53 m 107.17 240.23 l S 107.17 236.53 m 107.21 243.52 l S 107.21 236.53 m 107.26 239.62 l S 107.26 236.53 m 107.30 241.26 l S 107.30 236.53 m 107.35 238.18 l S 107.35 236.53 m 107.40 238.59 l S 107.40 236.53 m 107.44 237.15 l S 107.44 236.53 m 107.49 237.15 l S 107.49 236.53 m 107.53 240.23 l S 107.53 236.53 m 107.58 237.15 l S 107.58 236.53 m 107.63 236.94 l S 107.63 236.53 m 107.67 241.67 l S 107.67 236.53 m 107.72 238.59 l S 107.72 236.53 m 107.76 237.36 l S 107.76 236.53 m 107.81 236.94 l S 107.81 236.53 m 107.86 236.94 l S 107.86 236.53 m 107.90 237.36 l S 107.90 236.53 m 107.95 238.18 l S 107.95 236.53 m 107.99 236.94 l S 107.99 236.53 m 108.04 237.15 l S 108.04 236.53 m 108.09 237.36 l S 108.09 236.53 m 108.13 242.29 l S 108.13 236.53 m 108.18 238.38 l S 108.18 236.53 m 108.22 240.64 l S 108.22 236.53 m 108.27 240.64 l S 108.27 236.53 m 108.32 240.85 l S 108.32 236.53 m 108.36 239.00 l S 108.36 236.53 m 108.41 238.38 l S 108.41 236.53 m 108.45 237.15 l S 108.45 236.53 m 108.50 237.36 l S 108.50 236.53 m 108.55 237.15 l S 108.55 236.53 m 108.59 238.79 l S 108.59 236.53 m 108.64 240.03 l S 108.64 236.53 m 108.68 238.18 l S 108.68 236.53 m 108.73 241.47 l S 108.73 236.53 m 108.78 238.18 l S 108.78 236.53 m 108.82 237.56 l S 108.82 236.53 m 108.87 237.36 l S 108.87 236.53 m 108.91 237.36 l S 108.91 236.53 m 108.96 237.97 l S 108.96 236.53 m 109.01 238.79 l S 109.01 236.53 m 109.05 238.79 l S 109.05 236.53 m 109.10 237.15 l S 109.10 236.53 m 109.14 239.00 l S 109.14 236.53 m 109.19 239.82 l S 109.19 236.53 m 109.24 237.77 l S 109.24 236.53 m 109.28 236.94 l S 109.28 236.53 m 109.33 236.94 l S 109.33 236.53 m 109.37 236.94 l S 109.37 236.53 m 109.42 237.15 l S 109.42 236.53 m 109.47 238.59 l S 109.47 236.53 m 109.51 239.62 l S 109.51 236.53 m 109.56 238.38 l S 109.56 236.53 m 109.60 238.38 l S 109.60 236.53 m 109.65 238.18 l S 109.65 236.53 m 109.70 237.97 l S 109.70 236.53 m 109.74 237.36 l S 109.74 236.53 m 109.79 238.79 l S 109.79 236.53 m 109.83 238.38 l S 109.83 236.53 m 109.88 237.36 l S 109.88 236.53 m 109.93 236.94 l S 109.93 236.53 m 109.97 238.79 l S 109.97 236.53 m 110.02 238.18 l S 110.02 236.53 m 110.06 238.59 l S 110.06 236.53 m 110.11 238.38 l S 110.11 236.53 m 110.16 237.97 l S 110.16 236.53 m 110.20 237.97 l S 110.20 236.53 m 110.25 238.79 l S 110.25 236.53 m 110.29 238.79 l S 110.29 236.53 m 110.34 238.38 l S 110.34 236.53 m 110.39 238.18 l S 110.39 236.53 m 110.43 241.47 l S 110.43 236.53 m 110.48 237.15 l S 110.48 236.53 m 110.53 237.36 l S 110.53 236.53 m 110.57 238.59 l S 110.57 236.53 m 110.62 237.77 l S 110.62 236.53 m 110.66 237.15 l S 110.66 236.53 m 110.71 237.56 l S 110.71 236.53 m 110.76 238.18 l S 110.76 236.53 m 110.80 245.37 l S 110.80 236.53 m 110.85 247.01 l S 110.85 236.53 m 110.89 239.62 l S 110.89 236.53 m 110.94 237.36 l S 110.94 236.53 m 110.99 237.97 l S 110.99 236.53 m 111.03 239.41 l S 111.03 236.53 m 111.08 236.94 l S 111.08 236.53 m 111.12 237.15 l S 111.12 236.53 m 111.17 236.94 l S 111.17 236.53 m 111.22 236.94 l S 111.22 236.53 m 111.26 238.79 l S 111.26 236.53 m 111.31 237.36 l S 111.31 236.53 m 111.35 237.15 l S 111.35 236.53 m 111.40 237.15 l S 111.40 236.53 m 111.45 236.94 l S 111.45 236.53 m 111.49 236.94 l S 111.49 236.53 m 111.54 237.15 l S 111.54 236.53 m 111.58 237.15 l S 111.58 236.53 m 111.63 240.44 l S 111.63 236.53 m 111.68 240.64 l S 111.68 236.53 m 111.72 239.00 l S 111.72 236.53 m 111.77 240.03 l S 111.77 236.53 m 111.81 238.18 l S 111.81 236.53 m 111.86 237.97 l S 111.86 236.53 m 111.91 241.26 l S 111.91 236.53 m 111.95 242.08 l S 111.95 236.53 m 112.00 237.15 l S 112.00 236.53 m 112.04 238.38 l S 112.04 236.53 m 112.09 241.26 l S 112.09 236.53 m 112.14 237.56 l S 112.14 236.53 m 112.18 238.59 l S 112.18 236.53 m 112.23 237.15 l S 112.23 236.53 m 112.27 237.15 l S 112.27 236.53 m 112.32 236.94 l S 112.32 236.53 m 112.37 236.74 l S 112.37 236.53 m 112.41 237.56 l S 112.41 236.53 m 112.46 237.36 l S 112.46 236.53 m 112.50 236.94 l S 112.50 236.53 m 112.55 236.94 l S 112.55 236.53 m 112.60 237.15 l S 112.60 236.53 m 112.64 237.36 l S 112.64 236.53 m 112.69 236.94 l S 112.69 236.53 m 112.73 236.94 l S 112.73 236.53 m 112.78 236.94 l S 112.78 236.53 m 112.83 237.77 l S 112.83 236.53 m 112.87 237.15 l S 112.87 236.53 m 112.92 237.36 l S 112.92 236.53 m 112.96 236.94 l S 112.96 236.53 m 113.01 237.36 l S 113.01 236.53 m 113.06 237.56 l S 113.06 236.53 m 113.10 236.94 l S 113.10 236.53 m 113.15 237.15 l S 113.15 236.53 m 113.19 237.36 l S 113.19 236.53 m 113.24 238.18 l S 113.24 236.53 m 113.29 237.36 l S 113.29 236.53 m 113.33 237.15 l S 113.33 236.53 m 113.38 237.97 l S 113.38 236.53 m 113.42 237.97 l S 113.42 236.53 m 113.47 236.94 l S 113.47 236.53 m 113.52 238.38 l S 113.52 236.53 m 113.56 236.94 l S 113.56 236.53 m 113.61 237.15 l S 113.61 236.53 m 113.65 237.15 l S 113.65 236.53 m 113.70 237.15 l S 113.70 236.53 m 113.75 236.94 l S 113.75 236.53 m 113.79 236.94 l S 113.79 236.53 m 113.84 236.94 l S 113.84 236.53 m 113.88 236.94 l S 113.88 236.53 m 113.93 236.94 l S 113.93 236.53 m 113.98 237.15 l S 113.98 236.53 m 114.02 237.15 l S 114.02 236.53 m 114.07 237.15 l S 114.07 236.53 m 114.11 237.15 l S 114.11 236.53 m 114.16 237.56 l S 114.16 236.53 m 114.21 237.36 l S 114.21 236.53 m 114.25 236.94 l S 114.25 236.53 m 114.30 237.56 l S 114.30 236.53 m 114.34 236.94 l S 114.34 236.53 m 114.39 237.15 l S 114.39 236.53 m 114.44 237.77 l S 114.44 236.53 m 114.48 239.00 l S 114.48 236.53 m 114.53 237.15 l S 114.53 236.53 m 114.57 239.82 l S 114.57 236.53 m 114.62 239.62 l S 114.62 236.53 m 114.67 239.41 l S 114.67 236.53 m 114.71 240.85 l S 114.71 236.53 m 114.76 237.77 l S 114.76 236.53 m 114.80 236.94 l S 114.80 236.53 m 114.85 237.15 l S 114.85 236.53 m 114.90 246.60 l S 114.90 236.53 m 114.94 249.69 l S 114.94 236.53 m 114.99 244.55 l S 114.99 236.53 m 115.03 241.05 l S 115.03 236.53 m 115.08 244.75 l S 115.08 236.53 m 115.13 241.67 l S 115.13 236.53 m 115.17 239.82 l S 115.17 236.53 m 115.22 238.18 l S 115.22 236.53 m 115.26 237.15 l S 115.26 236.53 m 115.31 238.38 l S 115.31 236.53 m 115.36 236.94 l S 115.36 236.53 m 115.40 237.77 l S 115.40 236.53 m 115.45 236.94 l S 115.45 236.53 m 115.49 237.15 l S 115.49 236.53 m 115.54 237.15 l S 115.54 236.53 m 115.59 236.94 l S 115.59 236.53 m 115.63 237.15 l S 115.63 236.53 m 115.68 237.15 l S 115.68 236.53 m 115.72 236.94 l S 115.72 236.53 m 115.77 236.94 l S 115.77 236.53 m 115.82 236.94 l S 115.82 236.53 m 115.86 237.15 l S 115.86 236.53 m 115.91 236.94 l S 115.91 236.53 m 115.95 236.94 l S 115.95 236.53 m 116.00 236.94 l S 116.00 236.53 m 116.05 237.15 l S 116.05 236.53 m 116.09 236.74 l S 116.09 236.53 m 116.14 236.94 l S 116.14 236.53 m 116.18 236.74 l S 116.18 236.53 m 116.23 237.15 l S 116.23 236.53 m 116.28 236.94 l S 116.28 236.53 m 116.32 236.94 l S 116.32 236.53 m 116.37 236.74 l S 116.37 236.53 m 116.41 237.15 l S 116.41 236.53 m 116.46 236.94 l S 116.46 236.53 m 116.51 236.94 l S 116.51 236.53 m 116.55 237.15 l S 116.55 236.53 m 116.60 236.74 l S 116.60 236.53 m 116.64 236.94 l S 116.64 236.53 m 116.69 236.94 l S 116.69 236.53 m 116.74 236.74 l S 116.74 236.53 m 116.78 236.74 l S 116.78 236.53 m 116.83 236.94 l S 116.83 236.53 m 116.87 236.94 l S 116.87 236.53 m 116.92 236.74 l S 116.92 236.53 m 116.97 237.15 l S 116.97 236.53 m 117.01 237.15 l S 117.01 236.53 m 117.06 236.94 l S 117.06 236.53 m 117.10 236.74 l S 117.10 236.53 m 117.15 236.94 l S 117.15 236.53 m 117.20 237.15 l S 117.20 236.53 m 117.24 236.74 l S 117.24 236.53 m 117.29 236.74 l S 117.29 236.53 m 117.33 236.94 l S 117.33 236.53 m 117.38 236.74 l S 117.38 236.53 m 117.43 236.53 l S 117.43 236.53 m 117.47 236.94 l S 117.47 236.53 m 117.52 236.74 l S 117.52 236.53 m 117.56 236.94 l S 117.56 236.53 m 117.61 236.94 l S 117.61 236.53 m 117.66 236.94 l S 117.66 236.53 m 117.70 237.15 l S 117.70 236.53 m 117.75 236.94 l S 117.75 236.53 m 117.79 236.94 l S 117.79 236.53 m 117.84 236.94 l S 117.84 236.53 m 117.89 237.36 l S 117.89 236.53 m 117.93 236.94 l S 117.93 236.53 m 117.98 236.94 l S 117.98 236.53 m 118.02 237.36 l S 118.02 236.53 m 118.07 236.74 l S 118.07 236.53 m 118.12 237.15 l S 118.12 236.53 m 118.16 236.94 l S 118.16 236.53 m 118.21 236.94 l S 118.21 236.53 m 118.25 236.94 l S 118.25 236.53 m 118.30 237.15 l S 118.30 236.53 m 118.35 241.05 l S 118.35 236.53 m 118.39 236.74 l S 118.39 236.53 m 118.44 236.94 l S 118.44 236.53 m 118.49 239.00 l S 118.49 236.53 m 118.53 237.36 l S 118.53 236.53 m 118.58 238.38 l S 118.58 236.53 m 118.62 237.56 l S 118.62 236.53 m 118.67 240.64 l S 118.67 236.53 m 118.72 236.74 l S 118.72 236.53 m 118.76 237.36 l S 118.76 236.53 m 118.81 236.94 l S 118.81 236.53 m 118.85 236.74 l S 118.85 236.53 m 118.90 236.94 l S 118.90 236.53 m 118.95 236.74 l S 118.95 236.53 m 118.99 236.74 l S 118.99 236.53 m 119.04 237.15 l S 119.04 236.53 m 119.08 236.74 l S 119.08 236.53 m 119.13 236.74 l S 119.13 236.53 m 119.18 236.94 l S 119.18 236.53 m 119.22 241.88 l S 119.22 236.53 m 119.27 237.15 l S 119.27 236.53 m 119.31 237.36 l S 119.31 236.53 m 119.36 237.15 l S 119.36 236.53 m 119.41 236.74 l S 119.41 236.53 m 119.45 236.74 l S 119.45 236.53 m 119.50 236.94 l S 119.50 236.53 m 119.54 237.15 l S 119.54 236.53 m 119.59 237.15 l S 119.59 236.53 m 119.64 237.36 l S 119.64 236.53 m 119.68 237.77 l S 119.68 236.53 m 119.73 236.94 l S 119.73 236.53 m 119.77 236.53 l S 119.77 236.53 m 119.82 236.53 l S 119.82 236.53 m 119.87 236.53 l S 119.87 236.53 m 119.91 236.53 l S 119.91 236.53 m 119.96 236.53 l S 119.96 236.53 m 120.00 236.53 l S 120.00 236.53 m 120.05 236.53 l S 120.05 236.53 m 120.10 236.53 l S 120.10 236.53 m 120.14 236.53 l S 120.14 236.53 m 120.19 236.53 l S 120.19 236.53 m 120.23 236.53 l S 120.23 236.53 m 120.28 236.53 l S 120.28 236.53 m 120.33 236.53 l S 120.33 236.53 m 120.37 236.53 l S 120.37 236.53 m 120.42 236.53 l S 120.42 236.53 m 120.46 236.53 l S 120.46 236.53 m 120.51 236.53 l S 120.51 236.53 m 120.56 236.53 l S 120.56 236.53 m 120.60 236.53 l S 120.60 236.53 m 120.65 236.53 l S 120.65 236.53 m 120.69 236.53 l S 120.69 236.53 m 120.74 236.53 l S 120.74 236.53 m 120.79 236.53 l S 120.79 236.53 m 120.83 236.53 l S 120.83 236.53 m 120.88 236.53 l S 120.88 236.53 m 120.92 236.53 l S 120.92 236.53 m 120.97 236.53 l S 120.97 236.53 m 121.02 236.53 l S 121.02 236.53 m 121.06 236.53 l S 121.06 236.53 m 121.11 236.53 l S 121.11 236.53 m 121.15 236.53 l S 121.15 236.53 m 121.20 236.53 l S 121.20 236.53 m 121.25 236.53 l S 121.25 236.53 m 121.29 236.53 l S 121.29 236.53 m 121.34 236.53 l S 121.34 236.53 m 121.38 236.53 l S 121.38 236.53 m 121.43 236.53 l S 121.43 236.53 m 121.48 236.53 l S 121.48 236.53 m 121.52 236.53 l S 121.52 236.53 m 121.57 236.53 l S 121.57 236.53 m 121.61 236.53 l S 121.61 236.53 m 121.66 236.53 l S 121.66 236.53 m 121.71 236.53 l S 121.71 236.53 m 121.75 236.53 l S 121.75 236.53 m 121.80 236.53 l S 121.80 236.53 m 121.84 236.53 l S 121.84 236.53 m 121.89 236.53 l S 121.89 236.53 m 121.94 236.53 l S 121.94 236.53 m 121.98 236.53 l S 121.98 236.53 m 122.03 236.53 l S 122.03 236.53 m 122.07 236.53 l S 122.07 236.53 m 122.12 236.53 l S 122.12 236.53 m 122.17 236.53 l S 122.17 236.53 m 122.21 236.53 l S 122.21 236.53 m 122.26 236.53 l S 122.26 236.53 m 122.30 236.53 l S 122.30 236.53 m 122.35 236.53 l S 122.35 236.53 m 122.40 236.53 l S 122.40 236.53 m 122.44 236.53 l S 122.44 236.53 m 122.49 236.53 l S 122.49 236.53 m 122.53 236.53 l S 122.53 236.53 m 122.58 236.53 l S 122.58 236.53 m 122.63 236.53 l S 122.63 236.53 m 122.67 236.53 l S 122.67 236.53 m 122.72 236.53 l S 122.72 236.53 m 122.76 236.53 l S 122.76 236.53 m 122.81 236.53 l S 122.81 236.53 m 122.86 236.53 l S 122.86 236.53 m 122.90 236.53 l S 122.90 236.53 m 122.95 236.53 l S 122.95 236.53 m 122.99 236.53 l S 122.99 236.53 m 123.04 236.53 l S 123.04 236.53 m 123.09 237.97 l S 123.09 236.53 m 123.13 249.07 l S 123.13 236.53 m 123.18 236.94 l S 123.18 236.53 m 123.22 236.94 l S 123.22 236.53 m 123.27 236.74 l S 123.27 236.53 m 123.32 237.56 l S 123.32 236.53 m 123.36 236.74 l S 123.36 236.53 m 123.41 237.97 l S 123.41 236.53 m 123.45 236.74 l S 123.45 236.53 m 123.50 236.74 l S 123.50 236.53 m 123.55 236.94 l S 123.55 236.53 m 123.59 237.15 l S 123.59 236.53 m 123.64 236.74 l S 123.64 236.53 m 123.68 237.56 l S 123.68 236.53 m 123.73 236.74 l S 123.73 236.53 m 123.78 236.94 l S 123.78 236.53 m 123.82 236.94 l S 123.82 236.53 m 123.87 236.94 l S 123.87 236.53 m 123.91 237.36 l S 123.91 236.53 m 123.96 236.94 l S 123.96 236.53 m 124.01 239.82 l S 124.01 236.53 m 124.05 237.36 l S 124.05 236.53 m 124.10 237.36 l S 124.10 236.53 m 124.14 238.18 l S 124.14 236.53 m 124.19 237.15 l S 124.19 236.53 m 124.24 237.15 l S 124.24 236.53 m 124.28 237.36 l S 124.28 236.53 m 124.33 240.64 l S 124.33 236.53 m 124.37 238.18 l S 124.37 236.53 m 124.42 236.94 l S 124.42 236.53 m 124.47 237.97 l S 124.47 236.53 m 124.51 237.15 l S 124.51 236.53 m 124.56 237.77 l S 124.56 236.53 m 124.60 237.77 l S 124.60 236.53 m 124.65 237.15 l S 124.65 236.53 m 124.70 237.15 l S 124.70 236.53 m 124.74 237.56 l S 124.74 236.53 m 124.79 241.05 l S 124.79 236.53 m 124.83 242.08 l S 124.83 236.53 m 124.88 239.21 l S 124.88 236.53 m 124.93 241.67 l S 124.93 236.53 m 124.97 238.38 l S 124.97 236.53 m 125.02 241.67 l S 125.02 236.53 m 125.06 240.03 l S 125.06 236.53 m 125.11 240.64 l S 125.11 236.53 m 125.16 240.44 l S 125.16 236.53 m 125.20 239.62 l S 125.20 236.53 m 125.25 239.00 l S 125.25 236.53 m 125.29 237.15 l S 125.29 236.53 m 125.34 237.15 l S 125.34 236.53 m 125.39 237.56 l S 125.39 236.53 m 125.43 241.67 l S 125.43 236.53 m 125.48 239.00 l S 125.48 236.53 m 125.52 239.41 l S 125.52 236.53 m 125.57 237.36 l S 125.57 236.53 m 125.62 237.15 l S 125.62 236.53 m 125.66 236.94 l S 125.66 236.53 m 125.71 242.08 l S 125.71 236.53 m 125.75 239.62 l S 125.75 236.53 m 125.80 239.21 l S 125.80 236.53 m 125.85 236.94 l S 125.85 236.53 m 125.89 237.56 l S 125.89 236.53 m 125.94 237.56 l S 125.94 236.53 m 125.98 238.38 l S 125.98 236.53 m 126.03 237.36 l S 126.03 236.53 m 126.08 237.36 l S 126.08 236.53 m 126.12 236.94 l S 126.12 236.53 m 126.17 237.15 l S 126.17 236.53 m 126.21 237.15 l S 126.21 236.53 m 126.26 237.15 l S 126.26 236.53 m 126.31 237.15 l S 126.31 236.53 m 126.35 237.36 l S 126.35 236.53 m 126.40 238.38 l S 126.40 236.53 m 126.45 237.36 l S 126.45 236.53 m 126.49 236.94 l S 126.49 236.53 m 126.54 237.56 l S 126.54 236.53 m 126.58 237.56 l S 126.58 236.53 m 126.63 237.15 l S 126.63 236.53 m 126.68 237.15 l S 126.68 236.53 m 126.72 236.74 l S 126.72 236.53 m 126.77 237.56 l S 126.77 236.53 m 126.81 236.94 l S 126.81 236.53 m 126.86 236.94 l S 126.86 236.53 m 126.91 237.15 l S 126.91 236.53 m 126.95 236.94 l S 126.95 236.53 m 127.00 236.94 l S 127.00 236.53 m 127.04 237.15 l S 127.04 236.53 m 127.09 237.15 l S 127.09 236.53 m 127.14 237.36 l S 127.14 236.53 m 127.18 238.59 l S 127.18 236.53 m 127.23 239.41 l S 127.23 236.53 m 127.27 239.62 l S 127.27 236.53 m 127.32 243.93 l S 127.32 236.53 m 127.37 243.93 l S 127.37 236.53 m 127.41 236.74 l S 127.41 236.53 m 127.46 236.74 l S 127.46 236.53 m 127.50 237.15 l S 127.50 236.53 m 127.55 236.94 l S 127.55 236.53 m 127.60 236.74 l S 127.60 236.53 m 127.64 236.94 l S 127.64 236.53 m 127.69 237.56 l S 127.69 236.53 m 127.73 236.94 l S 127.73 236.53 m 127.78 237.15 l S 127.78 236.53 m 127.83 236.94 l S 127.83 236.53 m 127.87 238.18 l S 127.87 236.53 m 127.92 241.47 l S 127.92 236.53 m 127.96 240.03 l S 127.96 236.53 m 128.01 240.64 l S 128.01 236.53 m 128.06 238.59 l S 128.06 236.53 m 128.10 248.45 l S 128.10 236.53 m 128.15 240.23 l S 128.15 236.53 m 128.19 237.56 l S 128.19 236.53 m 128.24 238.38 l S 128.24 236.53 m 128.29 239.82 l S 128.29 236.53 m 128.33 238.18 l S 128.33 236.53 m 128.38 236.74 l S 128.38 236.53 m 128.42 236.53 l S 128.42 236.53 m 128.47 236.53 l S 128.47 236.53 m 128.52 236.74 l S 128.52 236.53 m 128.56 236.53 l S 128.56 236.53 m 128.61 236.53 l S 128.61 236.53 m 128.65 236.53 l S 128.65 236.53 m 128.70 236.53 l S 128.70 236.53 m 128.75 236.53 l S 128.75 236.53 m 128.79 236.53 l S 128.79 236.53 m 128.84 236.53 l S 128.84 236.53 m 128.88 237.15 l S 128.88 236.53 m 128.93 236.53 l S 128.93 236.53 m 128.98 236.53 l S 128.98 236.53 m 129.02 236.53 l S 129.02 236.53 m 129.07 236.53 l S 129.07 236.53 m 129.11 236.53 l S 129.11 236.53 m 129.16 236.53 l S 129.16 236.53 m 129.21 236.53 l S 129.21 236.53 m 129.25 236.53 l S 129.25 236.53 m 129.30 236.53 l S 129.30 236.53 m 129.34 236.53 l S 129.34 236.53 m 129.39 236.53 l S 129.39 236.53 m 129.44 236.53 l S 129.44 236.53 m 129.48 237.56 l S 129.48 236.53 m 129.53 237.77 l S 129.53 236.53 m 129.57 237.36 l S 129.57 236.53 m 129.62 237.36 l S 129.62 236.53 m 129.67 237.97 l S 129.67 236.53 m 129.71 237.15 l S 129.71 236.53 m 129.76 236.74 l S 129.76 236.53 m 129.80 236.53 l S 129.80 236.53 m 129.85 236.53 l S 129.85 236.53 m 129.90 236.53 l S 129.90 236.53 m 129.94 236.53 l S 129.94 236.53 m 129.99 236.53 l S 129.99 236.53 m 130.03 236.74 l S 130.03 236.53 m 130.08 236.53 l S 130.08 236.53 m 130.13 236.74 l S 130.13 236.53 m 130.17 236.53 l S 130.17 236.53 m 130.22 236.53 l S 130.22 236.53 m 130.26 236.53 l S 130.26 236.53 m 130.31 236.53 l S 130.31 236.53 m 130.36 236.74 l S 130.36 236.53 m 130.40 238.38 l S 130.40 236.53 m 130.45 242.90 l S 130.45 236.53 m 130.49 243.32 l S 130.49 236.53 m 130.54 237.15 l S 130.54 236.53 m 130.59 236.74 l S 130.59 236.53 m 130.63 236.94 l S 130.63 236.53 m 130.68 236.53 l S 130.68 236.53 m 130.72 236.53 l S 130.72 236.53 m 130.77 236.53 l S 130.77 236.53 m 130.82 236.53 l S 130.82 236.53 m 130.86 236.53 l S 130.86 236.53 m 130.91 236.74 l S 130.91 236.53 m 130.95 236.74 l S 130.95 236.53 m 131.00 236.74 l S 131.00 236.53 m 131.05 236.53 l S 131.05 236.53 m 131.09 236.53 l S 131.09 236.53 m 131.14 236.53 l S 131.14 236.53 m 131.18 236.53 l S 131.18 236.53 m 131.23 236.53 l S 131.23 236.53 m 131.28 236.53 l S 131.28 236.53 m 131.32 236.74 l S 131.32 236.53 m 131.37 236.53 l S 131.37 236.53 m 131.41 236.53 l S 131.41 236.53 m 131.46 236.53 l S 131.46 236.53 m 131.51 236.53 l S 131.51 236.53 m 131.55 236.74 l S 131.55 236.53 m 131.60 237.97 l S 131.60 236.53 m 131.64 237.56 l S 131.64 236.53 m 131.69 237.36 l S 131.69 236.53 m 131.74 241.05 l S 131.74 236.53 m 131.78 243.11 l S 131.78 236.53 m 131.83 241.88 l S 131.83 236.53 m 131.87 240.85 l S 131.87 236.53 m 131.92 238.38 l S 131.92 236.53 m 131.97 239.21 l S 131.97 236.53 m 132.01 237.36 l S 132.01 236.53 m 132.06 238.38 l S 132.06 236.53 m 132.10 236.74 l S 132.10 236.53 m 132.15 236.74 l S 132.15 236.53 m 132.20 236.53 l S 132.20 236.53 m 132.24 236.53 l S 132.24 236.53 m 132.29 236.74 l S 132.29 236.53 m 132.33 236.53 l S 132.33 236.53 m 132.38 236.74 l S 132.38 236.53 m 132.43 236.74 l S 132.43 236.53 m 132.47 236.94 l S 132.47 236.53 m 132.52 236.94 l S 132.52 236.53 m 132.56 236.53 l S 132.56 236.53 m 132.61 236.53 l S 132.61 236.53 m 132.66 236.74 l S 132.66 236.53 m 132.70 236.53 l S 132.70 236.53 m 132.75 236.53 l S 132.75 236.53 m 132.79 236.53 l S 132.79 236.53 m 132.84 236.74 l S 132.84 236.53 m 132.89 236.74 l S 132.89 236.53 m 132.93 236.74 l S 132.93 236.53 m 132.98 236.53 l S 132.98 236.53 m 133.02 236.53 l S 133.02 236.53 m 133.07 236.74 l S 133.07 236.53 m 133.12 237.15 l S 133.12 236.53 m 133.16 237.15 l S 133.16 236.53 m 133.21 237.15 l S 133.21 236.53 m 133.25 237.15 l S 133.25 236.53 m 133.30 238.38 l S 133.30 236.53 m 133.35 237.36 l S 133.35 236.53 m 133.39 239.62 l S 133.39 236.53 m 133.44 238.18 l S 133.44 236.53 m 133.48 237.15 l S 133.48 236.53 m 133.53 238.59 l S 133.53 236.53 m 133.58 237.56 l S 133.58 236.53 m 133.62 237.56 l S 133.62 236.53 m 133.67 236.94 l S 133.67 236.53 m 133.71 238.18 l S 133.71 236.53 m 133.76 238.79 l S 133.76 236.53 m 133.81 237.15 l S 133.81 236.53 m 133.85 237.36 l S 133.85 236.53 m 133.90 237.56 l S 133.90 236.53 m 133.94 239.41 l S 133.94 236.53 m 133.99 238.59 l S 133.99 236.53 m 134.04 237.15 l S 134.04 236.53 m 134.08 237.36 l S 134.08 236.53 m 134.13 237.15 l S 134.13 236.53 m 134.17 237.36 l S 134.17 236.53 m 134.22 236.94 l S 134.22 236.53 m 134.27 239.00 l S 134.27 236.53 m 134.31 237.36 l S 134.31 236.53 m 134.36 237.56 l S 134.36 236.53 m 134.41 237.15 l S 134.41 236.53 m 134.45 238.79 l S 134.45 236.53 m 134.50 239.21 l S 134.50 236.53 m 134.54 237.15 l S 134.54 236.53 m 134.59 239.41 l S 134.59 236.53 m 134.64 241.26 l S 134.64 236.53 m 134.68 237.77 l S 134.68 236.53 m 134.73 237.15 l S 134.73 236.53 m 134.77 237.36 l S 134.77 236.53 m 134.82 237.36 l S 134.82 236.53 m 134.87 237.15 l S 134.87 236.53 m 134.91 246.81 l S 134.91 236.53 m 134.96 240.64 l S 134.96 236.53 m 135.00 237.36 l S 135.00 236.53 m 135.05 237.15 l S 135.05 236.53 m 135.10 237.36 l S 135.10 236.53 m 135.14 236.94 l S 135.14 236.53 m 135.19 237.36 l S 135.19 236.53 m 135.23 237.15 l S 135.23 236.53 m 135.28 237.56 l S 135.28 236.53 m 135.33 236.94 l S 135.33 236.53 m 135.37 236.74 l S 135.37 236.53 m 135.42 236.74 l S 135.42 236.53 m 135.46 236.74 l S 135.46 236.53 m 135.51 236.74 l S 135.51 236.53 m 135.56 236.53 l S 135.56 236.53 m 135.60 236.53 l S 135.60 236.53 m 135.65 236.53 l S 135.65 236.53 m 135.69 236.53 l S 135.69 236.53 m 135.74 236.74 l S 135.74 236.53 m 135.79 236.53 l S 135.79 236.53 m 135.83 236.74 l S 135.83 236.53 m 135.88 236.53 l S 135.88 236.53 m 135.92 236.53 l S 135.92 236.53 m 135.97 241.67 l S 135.97 236.53 m 136.02 241.67 l S 136.02 236.53 m 136.06 240.03 l S 136.06 236.53 m 136.11 244.34 l S 136.11 236.53 m 136.15 237.15 l S 136.15 236.53 m 136.20 236.74 l S 136.20 236.53 m 136.25 236.53 l S 136.25 236.53 m 136.29 236.74 l S 136.29 236.53 m 136.34 236.74 l S 136.34 236.53 m 136.38 236.74 l S 136.38 236.53 m 136.43 237.15 l S 136.43 236.53 m 136.48 236.74 l S 136.48 236.53 m 136.52 236.53 l S 136.52 236.53 m 136.57 236.74 l S 136.57 236.53 m 136.61 236.53 l S 136.61 236.53 m 136.66 236.94 l S 136.66 236.53 m 136.71 237.15 l S 136.71 236.53 m 136.75 237.77 l S 136.75 236.53 m 136.80 239.41 l S 136.80 236.53 m 136.84 240.44 l S 136.84 236.53 m 136.89 241.05 l S 136.89 236.53 m 136.94 240.64 l S 136.94 236.53 m 136.98 239.41 l S 136.98 236.53 m 137.03 243.73 l S 137.03 236.53 m 137.07 240.64 l S 137.07 236.53 m 137.12 240.64 l S 137.12 236.53 m 137.17 239.82 l S 137.17 236.53 m 137.21 240.85 l S 137.21 236.53 m 137.26 238.59 l S 137.26 236.53 m 137.30 236.94 l S 137.30 236.53 m 137.35 238.79 l S 137.35 236.53 m 137.40 237.15 l S 137.40 236.53 m 137.44 236.94 l S 137.44 236.53 m 137.49 236.94 l S 137.49 236.53 m 137.53 237.15 l S 137.53 236.53 m 137.58 237.15 l S 137.58 236.53 m 137.63 237.15 l S 137.63 236.53 m 137.67 237.15 l S 137.67 236.53 m 137.72 236.94 l S 137.72 236.53 m 137.76 236.94 l S 137.76 236.53 m 137.81 237.15 l S 137.81 236.53 m 137.86 236.94 l S 137.86 236.53 m 137.90 236.74 l S 137.90 236.53 m 137.95 236.94 l S 137.95 236.53 m 137.99 236.94 l S 137.99 236.53 m 138.04 237.15 l S 138.04 236.53 m 138.09 237.56 l S 138.09 236.53 m 138.13 236.94 l S 138.13 236.53 m 138.18 236.94 l S 138.18 236.53 m 138.22 236.94 l S 138.22 236.53 m 138.27 237.36 l S 138.27 236.53 m 138.32 236.74 l S 138.32 236.53 m 138.36 236.94 l S 138.36 236.53 m 138.41 236.74 l S 138.41 236.53 m 138.45 237.15 l S 138.45 236.53 m 138.50 237.15 l S 138.50 236.53 m 138.55 237.36 l S 138.55 236.53 m 138.59 237.15 l S 138.59 236.53 m 138.64 244.75 l S 138.64 236.53 m 138.68 239.21 l S 138.68 236.53 m 138.73 236.94 l S 138.73 236.53 m 138.78 237.36 l S 138.78 236.53 m 138.82 236.94 l S 138.82 236.53 m 138.87 236.94 l S 138.87 236.53 m 138.91 237.15 l S 138.91 236.53 m 138.96 237.15 l S 138.96 236.53 m 139.01 236.94 l S 139.01 236.53 m 139.05 236.74 l S 139.05 236.53 m 139.10 237.15 l S 139.10 236.53 m 139.14 236.94 l S 139.14 236.53 m 139.19 236.94 l S 139.19 236.53 m 139.24 236.94 l S 139.24 236.53 m 139.28 237.15 l S 139.28 236.53 m 139.33 236.94 l S 139.33 236.53 m 139.37 236.94 l S 139.37 236.53 m 139.42 236.94 l S 139.42 236.53 m 139.47 236.74 l S 139.47 236.53 m 139.51 237.15 l S 139.51 236.53 m 139.56 236.74 l S 139.56 236.53 m 139.60 236.74 l S 139.60 236.53 m 139.65 236.94 l S 139.65 236.53 m 139.70 236.94 l S 139.70 236.53 m 139.74 236.74 l S 139.74 236.53 m 139.79 236.74 l S 139.79 236.53 m 139.83 236.94 l S 139.83 236.53 m 139.88 237.15 l S 139.88 236.53 m 139.93 236.94 l S 139.93 236.53 m 139.97 237.15 l S 139.97 236.53 m 140.02 236.74 l S 140.02 236.53 m 140.06 236.94 l S 140.06 236.53 m 140.11 237.15 l S 140.11 236.53 m 140.16 237.15 l S 140.16 236.53 m 140.20 236.74 l S 140.20 236.53 m 140.25 236.94 l S 140.25 236.53 m 140.29 237.15 l S 140.29 236.53 m 140.34 236.94 l S 140.34 236.53 m 140.39 237.15 l S 140.39 236.53 m 140.43 236.94 l S 140.43 236.53 m 140.48 236.74 l S 140.48 236.53 m 140.52 236.74 l S 140.52 236.53 m 140.57 236.94 l S 140.57 236.53 m 140.62 236.74 l S 140.62 236.53 m 140.66 237.15 l S 140.66 236.53 m 140.71 237.15 l S 140.71 236.53 m 140.75 237.15 l S 140.75 236.53 m 140.80 236.74 l S 140.80 236.53 m 140.85 236.94 l S 140.85 236.53 m 140.89 236.94 l S 140.89 236.53 m 140.94 236.94 l S 140.94 236.53 m 140.98 236.94 l S 140.98 236.53 m 141.03 236.94 l S 141.03 236.53 m 141.08 236.74 l S 141.08 236.53 m 141.12 236.74 l S 141.12 236.53 m 141.17 236.94 l S 141.17 236.53 m 141.21 236.94 l S 141.21 236.53 m 141.26 236.94 l S 141.26 236.53 m 141.31 236.94 l S 141.31 236.53 m 141.35 236.74 l S 141.35 236.53 m 141.40 236.94 l S 141.40 236.53 m 141.44 236.94 l S 141.44 236.53 m 141.49 237.15 l S 141.49 236.53 m 141.54 236.74 l S 141.54 236.53 m 141.58 236.94 l S 141.58 236.53 m 141.63 236.94 l S 141.63 236.53 m 141.67 236.94 l S 141.67 236.53 m 141.72 236.74 l S 141.72 236.53 m 141.77 236.74 l S 141.77 236.53 m 141.81 236.74 l S 141.81 236.53 m 141.86 237.15 l S 141.86 236.53 m 141.90 236.74 l S 141.90 236.53 m 141.95 236.94 l S 141.95 236.53 m 142.00 236.74 l S 142.00 236.53 m 142.04 236.94 l S 142.04 236.53 m 142.09 236.74 l S 142.09 236.53 m 142.13 236.94 l S 142.13 236.53 m 142.18 236.94 l S 142.18 236.53 m 142.23 236.94 l S 142.23 236.53 m 142.27 236.94 l S 142.27 236.53 m 142.32 237.15 l S 142.32 236.53 m 142.36 236.74 l S 142.36 236.53 m 142.41 236.74 l S 142.41 236.53 m 142.46 236.94 l S 142.46 236.53 m 142.50 236.74 l S 142.50 236.53 m 142.55 236.74 l S 142.55 236.53 m 142.60 236.94 l S 142.60 236.53 m 142.64 236.74 l S 142.64 236.53 m 142.69 236.94 l S 142.69 236.53 m 142.73 236.94 l S 142.73 236.53 m 142.78 236.74 l S 142.78 236.53 m 142.83 236.74 l S 142.83 236.53 m 142.87 236.74 l S 142.87 236.53 m 142.92 236.94 l S 142.92 236.53 m 142.96 237.15 l S 142.96 236.53 m 143.01 236.74 l S 143.01 236.53 m 143.06 236.74 l S 143.06 236.53 m 143.10 236.94 l S 143.10 236.53 m 143.15 236.74 l S 143.15 236.53 m 143.19 236.74 l S 143.19 236.53 m 143.24 236.94 l S 143.24 236.53 m 143.29 236.94 l S 143.29 236.53 m 143.33 236.74 l S 143.33 236.53 m 143.38 236.94 l S 143.38 236.53 m 143.42 236.74 l S 143.42 236.53 m 143.47 237.15 l S 143.47 236.53 m 143.52 237.15 l S 143.52 236.53 m 143.56 236.94 l S 143.56 236.53 m 143.61 236.94 l S 143.61 236.53 m 143.65 236.74 l S 143.65 236.53 m 143.70 236.74 l S 143.70 236.53 m 143.75 236.94 l S 143.75 236.53 m 143.79 236.94 l S 143.79 236.53 m 143.84 236.94 l S 143.84 236.53 m 143.88 236.94 l S 143.88 236.53 m 143.93 236.74 l S 143.93 236.53 m 143.98 236.74 l S 143.98 236.53 m 144.02 236.94 l S 144.02 236.53 m 144.07 236.94 l S 144.07 236.53 m 144.11 236.74 l S 144.11 236.53 m 144.16 236.94 l S 144.16 236.53 m 144.21 236.74 l S 144.21 236.53 m 144.25 237.36 l S 144.25 236.53 m 144.30 237.15 l S 144.30 236.53 m 144.34 236.94 l S 144.34 236.53 m 144.39 236.74 l S 144.39 236.53 m 144.44 236.94 l S 144.44 236.53 m 144.48 236.94 l S 144.48 236.53 m 144.53 237.15 l S 144.53 236.53 m 144.57 236.94 l S 144.57 236.53 m 144.62 236.74 l S 144.62 236.53 m 144.67 236.74 l S 144.67 236.53 m 144.71 236.74 l S 144.71 236.53 m 144.76 236.74 l S 144.76 236.53 m 144.80 236.74 l S 144.80 236.53 m 144.85 236.74 l S 144.85 236.53 m 144.90 236.74 l S 144.90 236.53 m 144.94 236.94 l S 144.94 236.53 m 144.99 240.85 l S 144.99 236.53 m 145.03 236.94 l S 145.03 236.53 m 145.08 236.94 l S 145.08 236.53 m 145.13 236.74 l S 145.13 236.53 m 145.17 236.74 l S 145.17 236.53 m 145.22 236.74 l S 145.22 236.53 m 145.26 236.74 l S 145.26 236.53 m 145.31 236.94 l S 145.31 236.53 m 145.36 237.15 l S 145.36 236.53 m 145.40 236.94 l S 145.40 236.53 m 145.45 236.94 l S 145.45 236.53 m 145.49 236.74 l S 145.49 236.53 m 145.54 236.94 l S 145.54 236.53 m 145.59 236.74 l S 145.59 236.53 m 145.63 236.74 l S 145.63 236.53 m 145.68 236.74 l S 145.68 236.53 m 145.72 237.15 l S 145.72 236.53 m 145.77 236.94 l S 145.77 236.53 m 145.82 236.74 l S 145.82 236.53 m 145.86 237.36 l S 145.86 236.53 m 145.91 236.94 l S 145.91 236.53 m 145.95 236.74 l S 145.95 236.53 m 146.00 237.15 l S 146.00 236.53 m 146.05 237.15 l S 146.05 236.53 m 146.09 236.74 l S 146.09 236.53 m 146.14 236.74 l S 146.14 236.53 m 146.18 236.94 l S 146.18 236.53 m 146.23 236.74 l S 146.23 236.53 m 146.28 236.94 l S 146.28 236.53 m 146.32 236.74 l S 146.32 236.53 m 146.37 236.94 l S 146.37 236.53 m 146.41 236.94 l S 146.41 236.53 m 146.46 236.94 l S 146.46 236.53 m 146.51 236.94 l S 146.51 236.53 m 146.55 237.15 l S 146.55 236.53 m 146.60 236.74 l S 146.60 236.53 m 146.64 236.94 l S 146.64 236.53 m 146.69 236.94 l S 146.69 236.53 m 146.74 237.15 l S 146.74 236.53 m 146.78 236.74 l S 146.78 236.53 m 146.83 236.74 l S 146.83 236.53 m 146.87 236.74 l S 146.87 236.53 m 146.92 236.94 l S 146.92 236.53 m 146.97 237.15 l S 146.97 236.53 m 147.01 236.94 l S 147.01 236.53 m 147.06 236.94 l S 147.06 236.53 m 147.10 236.94 l S 147.10 236.53 m 147.15 236.94 l S 147.15 236.53 m 147.20 236.94 l S 147.20 236.53 m 147.24 237.15 l S 147.24 236.53 m 147.29 236.74 l S 147.29 236.53 m 147.33 236.94 l S 147.33 236.53 m 147.38 237.15 l S 147.38 236.53 m 147.43 236.94 l S 147.43 236.53 m 147.47 236.94 l S 147.47 236.53 m 147.52 238.18 l S 147.52 236.53 m 147.56 238.79 l S 147.56 236.53 m 147.61 238.59 l S 147.61 236.53 m 147.66 238.38 l S 147.66 236.53 m 147.70 239.41 l S 147.70 236.53 m 147.75 238.79 l S 147.75 236.53 m 147.79 237.56 l S 147.79 236.53 m 147.84 237.15 l S 147.84 236.53 m 147.89 236.94 l S 147.89 236.53 m 147.93 237.36 l S 147.93 236.53 m 147.98 236.94 l S 147.98 236.53 m 148.02 236.74 l S 148.02 236.53 m 148.07 237.36 l S 148.07 236.53 m 148.12 236.94 l S 148.12 236.53 m 148.16 236.94 l S 148.16 236.53 m 148.21 236.94 l S 148.21 236.53 m 148.25 236.94 l S 148.25 236.53 m 148.30 237.15 l S 148.30 236.53 m 148.35 236.94 l S 148.35 236.53 m 148.39 237.36 l S 148.39 236.53 m 148.44 236.94 l S 148.44 236.53 m 148.48 237.15 l S 148.48 236.53 m 148.53 237.15 l S 148.53 236.53 m 148.58 236.94 l S 148.58 236.53 m 148.62 237.15 l S 148.62 236.53 m 148.67 236.94 l S 148.67 236.53 m 148.71 237.15 l S 148.71 236.53 m 148.76 237.15 l S 148.76 236.53 m 148.81 236.74 l S 148.81 236.53 m 148.85 237.15 l S 148.85 236.53 m 148.90 236.74 l S 148.90 236.53 m 148.94 237.36 l S 148.94 236.53 m 148.99 237.15 l S 148.99 236.53 m 149.04 236.94 l S 149.04 236.53 m 149.08 236.94 l S 149.08 236.53 m 149.13 237.15 l S 149.13 236.53 m 149.17 236.94 l S 149.17 236.53 m 149.22 237.36 l S 149.22 236.53 m 149.27 236.94 l S 149.27 236.53 m 149.31 236.74 l S 149.31 236.53 m 149.36 236.94 l S 149.36 236.53 m 149.40 237.15 l S 149.40 236.53 m 149.45 237.97 l S 149.45 236.53 m 149.50 237.15 l S 149.50 236.53 m 149.54 236.94 l S 149.54 236.53 m 149.59 236.94 l S 149.59 236.53 m 149.63 236.94 l S 149.63 236.53 m 149.68 238.59 l S 149.68 236.53 m 149.73 239.41 l S 149.73 236.53 m 149.77 245.99 l S 149.77 236.53 m 149.82 244.34 l S 149.82 236.53 m 149.86 237.36 l S 149.86 236.53 m 149.91 236.94 l S 149.91 236.53 m 149.96 237.97 l S 149.96 236.53 m 150.00 237.36 l S 150.00 236.53 m 150.05 237.15 l S 150.05 236.53 m 150.09 237.36 l S 150.09 236.53 m 150.14 237.15 l S 150.14 236.53 m 150.19 236.94 l S 150.19 236.53 m 150.23 239.82 l S 150.23 236.53 m 150.28 243.32 l S 150.28 236.53 m 150.32 237.97 l S 150.32 236.53 m 150.37 237.56 l S 150.37 236.53 m 150.42 238.38 l S 150.42 236.53 m 150.46 239.62 l S 150.46 236.53 m 150.51 237.36 l S 150.51 236.53 m 150.56 240.85 l S 150.56 236.53 m 150.60 237.56 l S 150.60 236.53 m 150.65 237.97 l S 150.65 236.53 m 150.69 237.56 l S 150.69 236.53 m 150.74 239.62 l S 150.74 236.53 m 150.79 238.18 l S 150.79 236.53 m 150.83 241.26 l S 150.83 236.53 m 150.88 239.62 l S 150.88 236.53 m 150.92 238.38 l S 150.92 236.53 m 150.97 237.15 l S 150.97 236.53 m 151.02 237.97 l S 151.02 236.53 m 151.06 237.36 l S 151.06 236.53 m 151.11 237.15 l S 151.11 236.53 m 151.15 237.36 l S 151.15 236.53 m 151.20 238.38 l S 151.20 236.53 m 151.25 236.94 l S 151.25 236.53 m 151.29 237.36 l S 151.29 236.53 m 151.34 237.15 l S 151.34 236.53 m 151.38 237.36 l S 151.38 236.53 m 151.43 236.94 l S 151.43 236.53 m 151.48 236.94 l S 151.48 236.53 m 151.52 236.94 l S 151.52 236.53 m 151.57 237.15 l S 151.57 236.53 m 151.61 236.74 l S 151.61 236.53 m 151.66 236.94 l S 151.66 236.53 m 151.71 238.59 l S 151.71 236.53 m 151.75 237.15 l S 151.75 236.53 m 151.80 236.94 l S 151.80 236.53 m 151.84 237.15 l S 151.84 236.53 m 151.89 236.94 l S 151.89 236.53 m 151.94 237.15 l S 151.94 236.53 m 151.98 237.15 l S 151.98 236.53 m 152.03 236.94 l S 152.03 236.53 m 152.07 236.94 l S 152.07 236.53 m 152.12 236.94 l S 152.12 236.53 m 152.17 236.94 l S 152.17 236.53 m 152.21 236.74 l S 152.21 236.53 m 152.26 236.74 l S 152.26 236.53 m 152.30 240.85 l S 152.30 236.53 m 152.35 238.18 l S 152.35 236.53 m 152.40 237.36 l S 152.40 236.53 m 152.44 237.15 l S 152.44 236.53 m 152.49 237.15 l S 152.49 236.53 m 152.53 240.03 l S 152.53 236.53 m 152.58 238.79 l S 152.58 236.53 m 152.63 240.03 l S 152.63 236.53 m 152.67 239.41 l S 152.67 236.53 m 152.72 241.88 l S 152.72 236.53 m 152.76 242.70 l S 152.76 236.53 m 152.81 246.60 l S 152.81 236.53 m 152.86 237.77 l S 152.86 236.53 m 152.90 239.62 l S 152.90 236.53 m 152.95 237.15 l S 152.95 236.53 m 152.99 238.18 l S 152.99 236.53 m 153.04 236.94 l S 153.04 236.53 m 153.09 237.97 l S 153.09 236.53 m 153.13 237.36 l S 153.13 236.53 m 153.18 239.00 l S 153.18 236.53 m 153.22 236.94 l S 153.22 236.53 m 153.27 240.44 l S 153.27 236.53 m 153.32 237.15 l S 153.32 236.53 m 153.36 238.59 l S 153.36 236.53 m 153.41 237.36 l S 153.41 236.53 m 153.45 237.15 l S 153.45 236.53 m 153.50 238.38 l S 153.50 236.53 m 153.55 239.82 l S 153.55 236.53 m 153.59 241.47 l S 153.59 236.53 m 153.64 240.64 l S 153.64 236.53 m 153.68 239.21 l S 153.68 236.53 m 153.73 242.90 l S 153.73 236.53 m 153.78 239.41 l S 153.78 236.53 m 153.82 238.59 l S 153.82 236.53 m 153.87 237.15 l S 153.87 236.53 m 153.91 236.94 l S 153.91 236.53 m 153.96 237.36 l S 153.96 236.53 m 154.01 237.15 l S 154.01 236.53 m 154.05 236.94 l S 154.05 236.53 m 154.10 237.15 l S 154.10 236.53 m 154.14 237.15 l S 154.14 236.53 m 154.19 240.85 l S 154.19 236.53 m 154.24 237.77 l S 154.24 236.53 m 154.28 240.23 l S 154.28 236.53 m 154.33 238.79 l S 154.33 236.53 m 154.37 239.82 l S 154.37 236.53 m 154.42 237.15 l S 154.42 236.53 m 154.47 237.77 l S 154.47 236.53 m 154.51 237.36 l S 154.51 236.53 m 154.56 239.00 l S 154.56 236.53 m 154.60 238.38 l S 154.60 236.53 m 154.65 238.18 l S 154.65 236.53 m 154.70 238.59 l S 154.70 236.53 m 154.74 240.03 l S 154.74 236.53 m 154.79 239.00 l S 154.79 236.53 m 154.83 237.56 l S 154.83 236.53 m 154.88 237.97 l S 154.88 236.53 m 154.93 237.15 l S 154.93 236.53 m 154.97 237.36 l S 154.97 236.53 m 155.02 236.94 l S 155.02 236.53 m 155.06 236.94 l S 155.06 236.53 m 155.11 236.74 l S 155.11 236.53 m 155.16 236.74 l S 155.16 236.53 m 155.20 237.15 l S 155.20 236.53 m 155.25 237.15 l S 155.25 236.53 m 155.29 236.94 l S 155.29 236.53 m 155.34 237.15 l S 155.34 236.53 m 155.39 237.15 l S 155.39 236.53 m 155.43 237.56 l S 155.43 236.53 m 155.48 237.36 l S 155.48 236.53 m 155.52 237.15 l S 155.52 236.53 m 155.57 237.15 l S 155.57 236.53 m 155.62 236.94 l S 155.62 236.53 m 155.66 237.15 l S 155.66 236.53 m 155.71 236.94 l S 155.71 236.53 m 155.75 236.94 l S 155.75 236.53 m 155.80 237.36 l S 155.80 236.53 m 155.85 236.74 l S 155.85 236.53 m 155.89 237.15 l S 155.89 236.53 m 155.94 236.94 l S 155.94 236.53 m 155.98 237.15 l S 155.98 236.53 m 156.03 237.15 l S 156.03 236.53 m 156.08 236.94 l S 156.08 236.53 m 156.12 236.94 l S 156.12 236.53 m 156.17 236.94 l S 156.17 236.53 m 156.21 237.15 l S 156.21 236.53 m 156.26 236.74 l S 156.26 236.53 m 156.31 236.94 l S 156.31 236.53 m 156.35 237.15 l S 156.35 236.53 m 156.40 236.94 l S 156.40 236.53 m 156.44 236.74 l S 156.44 236.53 m 156.49 236.74 l S 156.49 236.53 m 156.54 236.94 l S 156.54 236.53 m 156.58 236.74 l S 156.58 236.53 m 156.63 236.74 l S 156.63 236.53 m 156.67 236.74 l S 156.67 236.53 m 156.72 236.94 l S 156.72 236.53 m 156.77 236.94 l S 156.77 236.53 m 156.81 236.94 l S 156.81 236.53 m 156.86 237.15 l S 156.86 236.53 m 156.90 236.74 l S 156.90 236.53 m 156.95 236.94 l S 156.95 236.53 m 157.00 236.74 l S 157.00 236.53 m 157.04 236.94 l S 157.04 236.53 m 157.09 236.74 l S 157.09 236.53 m 157.13 236.74 l S 157.13 236.53 m 157.18 236.94 l S 157.18 236.53 m 157.23 236.94 l S 157.23 236.53 m 157.27 236.74 l S 157.27 236.53 m 157.32 236.94 l S 157.32 236.53 m 157.36 236.94 l S 157.36 236.53 m 157.41 237.15 l S 157.41 236.53 m 157.46 236.94 l S 157.46 236.53 m 157.50 236.74 l S 157.50 236.53 m 157.55 236.94 l S 157.55 236.53 m 157.59 236.94 l S 157.59 236.53 m 157.64 236.74 l S 157.64 236.53 m 157.69 237.15 l S 157.69 236.53 m 157.73 237.15 l S 157.73 236.53 m 157.78 236.94 l S 157.78 236.53 m 157.82 237.15 l S 157.82 236.53 m 157.87 236.94 l S 157.87 236.53 m 157.92 236.74 l S 157.92 236.53 m 157.96 236.94 l S 157.96 236.53 m 158.01 236.94 l S 158.01 236.53 m 158.05 236.74 l S 158.05 236.53 m 158.10 236.94 l S 158.10 236.53 m 158.15 236.94 l S 158.15 236.53 m 158.19 237.15 l S 158.19 236.53 m 158.24 236.74 l S 158.24 236.53 m 158.28 236.74 l S 158.28 236.53 m 158.33 236.74 l S 158.33 236.53 m 158.38 237.15 l S 158.38 236.53 m 158.42 236.94 l S 158.42 236.53 m 158.47 236.94 l S 158.47 236.53 m 158.52 236.94 l S 158.52 236.53 m 158.56 236.94 l S 158.56 236.53 m 158.61 236.74 l S 158.61 236.53 m 158.65 236.94 l S 158.65 236.53 m 158.70 236.94 l S 158.70 236.53 m 158.75 236.94 l S 158.75 236.53 m 158.79 236.74 l S 158.79 236.53 m 158.84 236.94 l S 158.84 236.53 m 158.88 236.94 l S 158.88 236.53 m 158.93 236.94 l S 158.93 236.53 m 158.98 236.74 l S 158.98 236.53 m 159.02 236.74 l S 159.02 236.53 m 159.07 236.94 l S 159.07 236.53 m 159.11 236.74 l S 159.11 236.53 m 159.16 237.15 l S 159.16 236.53 m 159.21 236.74 l S 159.21 236.53 m 159.25 236.94 l S 159.25 236.53 m 159.30 236.94 l S 159.30 236.53 m 159.34 236.74 l S 159.34 236.53 m 159.39 236.94 l S 159.39 236.53 m 159.44 237.15 l S 159.44 236.53 m 159.48 237.15 l S 159.48 236.53 m 159.53 236.74 l S 159.53 236.53 m 159.57 236.74 l S 159.57 236.53 m 159.62 236.74 l S 159.62 236.53 m 159.67 236.74 l S 159.67 236.53 m 159.71 236.94 l S 159.71 236.53 m 159.76 236.74 l S 159.76 236.53 m 159.80 236.94 l S 159.80 236.53 m 159.85 236.74 l S 159.85 236.53 m 159.90 236.94 l S 159.90 236.53 m 159.94 236.94 l S 159.94 236.53 m 159.99 236.94 l S 159.99 236.53 m 160.03 236.94 l S 160.03 236.53 m 160.08 236.94 l S 160.08 236.53 m 160.13 236.94 l S 160.13 236.53 m 160.17 237.15 l S 160.17 236.53 m 160.22 237.15 l S 160.22 236.53 m 160.26 236.94 l S 160.26 236.53 m 160.31 239.00 l S 160.31 236.53 m 160.36 236.94 l S 160.36 236.53 m 160.40 237.15 l S 160.40 236.53 m 160.45 237.36 l S 160.45 236.53 m 160.49 237.56 l S 160.49 236.53 m 160.54 239.00 l S 160.54 236.53 m 160.59 237.36 l S 160.59 236.53 m 160.63 237.97 l S 160.63 236.53 m 160.68 238.79 l S 160.68 236.53 m 160.72 237.56 l S 160.72 236.53 m 160.77 237.56 l S 160.77 236.53 m 160.82 239.41 l S 160.82 236.53 m 160.86 237.77 l S 160.86 236.53 m 160.91 240.03 l S 160.91 236.53 m 160.95 236.94 l S 160.95 236.53 m 161.00 237.15 l S 161.00 236.53 m 161.05 237.56 l S 161.05 236.53 m 161.09 236.94 l S 161.09 236.53 m 161.14 237.36 l S 161.14 236.53 m 161.18 237.15 l S 161.18 236.53 m 161.23 237.97 l S 161.23 236.53 m 161.28 238.38 l S 161.28 236.53 m 161.32 236.74 l S 161.32 236.53 m 161.37 239.82 l S 161.37 236.53 m 161.41 239.82 l S 161.41 236.53 m 161.46 238.18 l S 161.46 236.53 m 161.51 237.15 l S 161.51 236.53 m 161.55 238.79 l S 161.55 236.53 m 161.60 238.59 l S 161.60 236.53 m 161.64 238.59 l S 161.64 236.53 m 161.69 237.77 l S 161.69 236.53 m 161.74 237.36 l S 161.74 236.53 m 161.78 237.56 l S 161.78 236.53 m 161.83 237.36 l S 161.83 236.53 m 161.87 236.94 l S 161.87 236.53 m 161.92 237.77 l S 161.92 236.53 m 161.97 237.56 l S 161.97 236.53 m 162.01 237.36 l S 162.01 236.53 m 162.06 238.38 l S 162.06 236.53 m 162.10 239.82 l S 162.10 236.53 m 162.15 242.70 l S 162.15 236.53 m 162.20 238.18 l S 162.20 236.53 m 162.24 243.73 l S 162.24 236.53 m 162.29 242.29 l S 162.29 236.53 m 162.33 238.59 l S 162.33 236.53 m 162.38 237.97 l S 162.38 236.53 m 162.43 243.73 l S 162.43 236.53 m 162.47 242.08 l S 162.47 236.53 m 162.52 237.77 l S 162.52 236.53 m 162.56 237.56 l S 162.56 236.53 m 162.61 247.01 l S 162.61 236.53 m 162.66 249.48 l S 162.66 236.53 m 162.70 238.59 l S 162.70 236.53 m 162.75 247.22 l S 162.75 236.53 m 162.79 240.64 l S 162.79 236.53 m 162.84 238.38 l S 162.84 236.53 m 162.89 238.79 l S 162.89 236.53 m 162.93 240.44 l S 162.93 236.53 m 162.98 239.41 l S 162.98 236.53 m 163.02 241.05 l S 163.02 236.53 m 163.07 239.00 l S 163.07 236.53 m 163.12 237.15 l S 163.12 236.53 m 163.16 241.67 l S 163.16 236.53 m 163.21 237.15 l S 163.21 236.53 m 163.25 237.15 l S 163.25 236.53 m 163.30 237.36 l S 163.30 236.53 m 163.35 237.97 l S 163.35 236.53 m 163.39 237.56 l S 163.39 236.53 m 163.44 237.15 l S 163.44 236.53 m 163.48 237.97 l S 163.48 236.53 m 163.53 236.94 l S 163.53 236.53 m 163.58 237.36 l S 163.58 236.53 m 163.62 237.97 l S 163.62 236.53 m 163.67 239.41 l S 163.67 236.53 m 163.71 243.52 l S 163.71 236.53 m 163.76 241.88 l S 163.76 236.53 m 163.81 239.82 l S 163.81 236.53 m 163.85 239.00 l S 163.85 236.53 m 163.90 238.38 l S 163.90 236.53 m 163.94 237.56 l S 163.94 236.53 m 163.99 243.32 l S 163.99 236.53 m 164.04 239.62 l S 164.04 236.53 m 164.08 242.70 l S 164.08 236.53 m 164.13 242.49 l S 164.13 236.53 m 164.17 246.19 l S 164.17 236.53 m 164.22 238.38 l S 164.22 236.53 m 164.27 237.15 l S 164.27 236.53 m 164.31 241.47 l S 164.31 236.53 m 164.36 242.29 l S 164.36 236.53 m 164.40 237.56 l S 164.40 236.53 m 164.45 237.36 l S 164.45 236.53 m 164.50 237.36 l S 164.50 236.53 m 164.54 237.36 l S 164.54 236.53 m 164.59 237.36 l S 164.59 236.53 m 164.63 239.00 l S 164.63 236.53 m 164.68 237.56 l S 164.68 236.53 m 164.73 238.38 l S 164.73 236.53 m 164.77 237.15 l S 164.77 236.53 m 164.82 237.15 l S 164.82 236.53 m 164.86 238.59 l S 164.86 236.53 m 164.91 237.15 l S 164.91 236.53 m 164.96 237.56 l S 164.96 236.53 m 165.00 237.36 l S 165.00 236.53 m 165.05 236.94 l S 165.05 236.53 m 165.09 237.36 l S 165.09 236.53 m 165.14 237.15 l S 165.14 236.53 m 165.19 237.77 l S 165.19 236.53 m 165.23 237.36 l S 165.23 236.53 m 165.28 237.15 l S 165.28 236.53 m 165.32 239.41 l S 165.32 236.53 m 165.37 237.97 l S 165.37 236.53 m 165.42 237.56 l S 165.42 236.53 m 165.46 237.36 l S 165.46 236.53 m 165.51 237.15 l S 165.51 236.53 m 165.55 237.77 l S 165.55 236.53 m 165.60 237.97 l S 165.60 236.53 m 165.65 237.15 l S 165.65 236.53 m 165.69 237.56 l S 165.69 236.53 m 165.74 237.56 l S 165.74 236.53 m 165.78 239.41 l S 165.78 236.53 m 165.83 239.41 l S 165.83 236.53 m 165.88 247.84 l S 165.88 236.53 m 165.92 249.07 l S 165.92 236.53 m 165.97 240.64 l S 165.97 236.53 m 166.01 241.05 l S 166.01 236.53 m 166.06 239.41 l S 166.06 236.53 m 166.11 238.59 l S 166.11 236.53 m 166.15 237.77 l S 166.15 236.53 m 166.20 237.56 l S 166.20 236.53 m 166.24 237.36 l S 166.24 236.53 m 166.29 237.36 l S 166.29 236.53 m 166.34 241.88 l S 166.34 236.53 m 166.38 245.37 l S 166.38 236.53 m 166.43 242.08 l S 166.43 236.53 m 166.48 237.36 l S 166.48 236.53 m 166.52 237.15 l S 166.52 236.53 m 166.57 242.90 l S 166.57 236.53 m 166.61 241.26 l S 166.61 236.53 m 166.66 243.32 l S 166.66 236.53 m 166.71 248.25 l S 166.71 236.53 m 166.75 240.64 l S 166.75 236.53 m 166.80 237.36 l S 166.80 236.53 m 166.84 236.74 l S 166.84 236.53 m 166.89 237.15 l S 166.89 236.53 m 166.94 238.59 l S 166.94 236.53 m 166.98 236.94 l S 166.98 236.53 m 167.03 237.97 l S 167.03 236.53 m 167.07 238.18 l S 167.07 236.53 m 167.12 237.77 l S 167.12 236.53 m 167.17 237.15 l S 167.17 236.53 m 167.21 239.62 l S 167.21 236.53 m 167.26 238.18 l S 167.26 236.53 m 167.30 237.77 l S 167.30 236.53 m 167.35 237.36 l S 167.35 236.53 m 167.40 236.94 l S 167.40 236.53 m 167.44 240.03 l S 167.44 236.53 m 167.49 237.36 l S 167.49 236.53 m 167.53 238.38 l S 167.53 236.53 m 167.58 237.15 l S 167.58 236.53 m 167.63 237.15 l S 167.63 236.53 m 167.67 236.94 l S 167.67 236.53 m 167.72 237.77 l S 167.72 236.53 m 167.76 238.79 l S 167.76 236.53 m 167.81 237.56 l S 167.81 236.53 m 167.86 239.41 l S 167.86 236.53 m 167.90 237.15 l S 167.90 236.53 m 167.95 240.44 l S 167.95 236.53 m 167.99 236.74 l S 167.99 236.53 m 168.04 236.94 l S 168.04 236.53 m 168.09 240.64 l S 168.09 236.53 m 168.13 237.36 l S 168.13 236.53 m 168.18 240.64 l S 168.18 236.53 m 168.22 238.59 l S 168.22 236.53 m 168.27 239.00 l S 168.27 236.53 m 168.32 239.00 l S 168.32 236.53 m 168.36 237.36 l S 168.36 236.53 m 168.41 239.62 l S 168.41 236.53 m 168.45 237.36 l S 168.45 236.53 m 168.50 237.97 l S 168.50 236.53 m 168.55 237.36 l S 168.55 236.53 m 168.59 237.97 l S 168.59 236.53 m 168.64 241.88 l S 168.64 236.53 m 168.68 242.29 l S 168.68 236.53 m 168.73 243.73 l S 168.73 236.53 m 168.78 244.34 l S 168.78 236.53 m 168.82 241.05 l S 168.82 236.53 m 168.87 239.21 l S 168.87 236.53 m 168.91 242.29 l S 168.91 236.53 m 168.96 240.23 l S 168.96 236.53 m 169.01 247.84 l S 169.01 236.53 m 169.05 241.26 l S 169.05 236.53 m 169.10 237.56 l S 169.10 236.53 m 169.14 237.77 l S 169.14 236.53 m 169.19 239.00 l S 169.19 236.53 m 169.24 239.00 l S 169.24 236.53 m 169.28 237.15 l S 169.28 236.53 m 169.33 237.15 l S 169.33 236.53 m 169.37 238.38 l S 169.37 236.53 m 169.42 238.18 l S 169.42 236.53 m 169.47 237.15 l S 169.47 236.53 m 169.51 237.56 l S 169.51 236.53 m 169.56 237.36 l S 169.56 236.53 m 169.60 237.15 l S 169.60 236.53 m 169.65 237.15 l S 169.65 236.53 m 169.70 237.15 l S 169.70 236.53 m 169.74 237.56 l S 169.74 236.53 m 169.79 237.97 l S 169.79 236.53 m 169.83 236.94 l S 169.83 236.53 m 169.88 236.94 l S 169.88 236.53 m 169.93 237.36 l S 169.93 236.53 m 169.97 241.26 l S 169.97 236.53 m 170.02 237.15 l S 170.02 236.53 m 170.06 236.94 l S 170.06 236.53 m 170.11 240.85 l S 170.11 236.53 m 170.16 241.88 l S 170.16 236.53 m 170.20 241.88 l S 170.20 236.53 m 170.25 239.41 l S 170.25 236.53 m 170.29 240.03 l S 170.29 236.53 m 170.34 241.05 l S 170.34 236.53 m 170.39 238.38 l S 170.39 236.53 m 170.43 238.18 l S 170.43 236.53 m 170.48 240.03 l S 170.48 236.53 m 170.52 239.62 l S 170.52 236.53 m 170.57 240.03 l S 170.57 236.53 m 170.62 249.89 l S 170.62 236.53 m 170.66 239.00 l S 170.66 236.53 m 170.71 237.15 l S 170.71 236.53 m 170.75 237.56 l S 170.75 236.53 m 170.80 237.36 l S 170.80 236.53 m 170.85 236.94 l S 170.85 236.53 m 170.89 237.77 l S 170.89 236.53 m 170.94 237.36 l S 170.94 236.53 m 170.98 236.94 l S 170.98 236.53 m 171.03 236.94 l S 171.03 236.53 m 171.08 237.15 l S 171.08 236.53 m 171.12 236.94 l S 171.12 236.53 m 171.17 237.56 l S 171.17 236.53 m 171.21 237.36 l S 171.21 236.53 m 171.26 236.94 l S 171.26 236.53 m 171.31 236.94 l S 171.31 236.53 m 171.35 237.36 l S 171.35 236.53 m 171.40 237.56 l S 171.40 236.53 m 171.44 236.94 l S 171.44 236.53 m 171.49 237.36 l S 171.49 236.53 m 171.54 236.94 l S 171.54 236.53 m 171.58 237.36 l S 171.58 236.53 m 171.63 237.15 l S 171.63 236.53 m 171.67 236.94 l S 171.67 236.53 m 171.72 236.94 l S 171.72 236.53 m 171.77 237.15 l S 171.77 236.53 m 171.81 236.94 l S 171.81 236.53 m 171.86 237.15 l S 171.86 236.53 m 171.90 236.94 l S 171.90 236.53 m 171.95 237.77 l S 171.95 236.53 m 172.00 236.74 l S 172.00 236.53 m 172.04 237.15 l S 172.04 236.53 m 172.09 237.15 l S 172.09 236.53 m 172.13 236.94 l S 172.13 236.53 m 172.18 236.74 l S 172.18 236.53 m 172.23 237.15 l S 172.23 236.53 m 172.27 237.15 l S 172.27 236.53 m 172.32 237.36 l S 172.32 236.53 m 172.36 236.94 l S 172.36 236.53 m 172.41 236.94 l S 172.41 236.53 m 172.46 236.94 l S 172.46 236.53 m 172.50 236.94 l S 172.50 236.53 m 172.55 237.56 l S 172.55 236.53 m 172.59 236.94 l S 172.59 236.53 m 172.64 236.94 l S 172.64 236.53 m 172.69 237.15 l S 172.69 236.53 m 172.73 237.15 l S 172.73 236.53 m 172.78 236.94 l S 172.78 236.53 m 172.82 237.15 l S 172.82 236.53 m 172.87 237.36 l S 172.87 236.53 m 172.92 236.94 l S 172.92 236.53 m 172.96 237.15 l S 172.96 236.53 m 173.01 237.15 l S 173.01 236.53 m 173.05 237.15 l S 173.05 236.53 m 173.10 239.00 l S 173.10 236.53 m 173.15 237.15 l S 173.15 236.53 m 173.19 237.15 l S 173.19 236.53 m 173.24 237.15 l S 173.24 236.53 m 173.28 236.94 l S 173.28 236.53 m 173.33 237.15 l S 173.33 236.53 m 173.38 237.15 l S 173.38 236.53 m 173.42 237.56 l S 173.42 236.53 m 173.47 236.94 l S 173.47 236.53 m 173.51 236.94 l S 173.51 236.53 m 173.56 236.94 l S 173.56 236.53 m 173.61 236.94 l S 173.61 236.53 m 173.65 237.15 l S 173.65 236.53 m 173.70 237.15 l S 173.70 236.53 m 173.74 237.56 l S 173.74 236.53 m 173.79 237.15 l S 173.79 236.53 m 173.84 237.97 l S 173.84 236.53 m 173.88 237.15 l S 173.88 236.53 m 173.93 237.36 l S 173.93 236.53 m 173.97 236.94 l S 173.97 236.53 m 174.02 237.56 l S 174.02 236.53 m 174.07 237.15 l S 174.07 236.53 m 174.11 237.15 l S 174.11 236.53 m 174.16 237.97 l S 174.16 236.53 m 174.20 239.21 l S 174.20 236.53 m 174.25 239.41 l S 174.25 236.53 m 174.30 237.97 l S 174.30 236.53 m 174.34 237.15 l S 174.34 236.53 m 174.39 239.00 l S 174.39 236.53 m 174.44 241.67 l S 174.44 236.53 m 174.48 237.97 l S 174.48 236.53 m 174.53 237.36 l S 174.53 236.53 m 174.57 236.94 l S 174.57 236.53 m 174.62 237.36 l S 174.62 236.53 m 174.67 237.15 l S 174.67 236.53 m 174.71 237.56 l S 174.71 236.53 m 174.76 238.18 l S 174.76 236.53 m 174.80 241.67 l S 174.80 236.53 m 174.85 238.59 l S 174.85 236.53 m 174.90 239.62 l S 174.90 236.53 m 174.94 237.77 l S 174.94 236.53 m 174.99 237.36 l S 174.99 236.53 m 175.03 237.36 l S 175.03 236.53 m 175.08 237.15 l S 175.08 236.53 m 175.13 239.00 l S 175.13 236.53 m 175.17 237.56 l S 175.17 236.53 m 175.22 237.36 l S 175.22 236.53 m 175.26 237.36 l S 175.26 236.53 m 175.31 236.94 l S 175.31 236.53 m 175.36 237.15 l S 175.36 236.53 m 175.40 238.59 l S 175.40 236.53 m 175.45 237.56 l S 175.45 236.53 m 175.49 237.56 l S 175.49 236.53 m 175.54 237.36 l S 175.54 236.53 m 175.59 237.15 l S 175.59 236.53 m 175.63 237.77 l S 175.63 236.53 m 175.68 238.38 l S 175.68 236.53 m 175.72 238.59 l S 175.72 236.53 m 175.77 237.56 l S 175.77 236.53 m 175.82 243.11 l S 175.82 236.53 m 175.86 241.88 l S 175.86 236.53 m 175.91 244.55 l S 175.91 236.53 m 175.95 242.29 l S 175.95 236.53 m 176.00 237.97 l S 176.00 236.53 m 176.05 237.97 l S 176.05 236.53 m 176.09 244.55 l S 176.09 236.53 m 176.14 243.93 l S 176.14 236.53 m 176.18 244.14 l S 176.18 236.53 m 176.23 248.04 l S 176.23 236.53 m 176.28 237.36 l S 176.28 236.53 m 176.32 237.36 l S 176.32 236.53 m 176.37 243.52 l S 176.37 236.53 m 176.41 237.15 l S 176.41 236.53 m 176.46 236.74 l S 176.46 236.53 m 176.51 236.53 l S 176.51 236.53 m 176.55 236.53 l S 176.55 236.53 m 176.60 236.53 l S 176.60 236.53 m 176.64 236.53 l S 176.64 236.53 m 176.69 236.74 l S 176.69 236.53 m 176.74 236.74 l S 176.74 236.53 m 176.78 236.74 l S 176.78 236.53 m 176.83 236.74 l S 176.83 236.53 m 176.87 236.53 l S 176.87 236.53 m 176.92 236.74 l S 176.92 236.53 m 176.97 236.53 l S 176.97 236.53 m 177.01 236.53 l S 177.01 236.53 m 177.06 236.74 l S 177.06 236.53 m 177.10 236.53 l S 177.10 236.53 m 177.15 236.74 l S 177.15 236.53 m 177.20 236.74 l S 177.20 236.53 m 177.24 236.53 l S 177.24 236.53 m 177.29 236.53 l S 177.29 236.53 m 177.33 237.15 l S 177.33 236.53 m 177.38 236.74 l S 177.38 236.53 m 177.43 237.56 l S 177.43 236.53 m 177.47 238.18 l S 177.47 236.53 m 177.52 237.15 l S 177.52 236.53 m 177.56 236.94 l S 177.56 236.53 m 177.61 237.15 l S 177.61 236.53 m 177.66 239.00 l S 177.66 236.53 m 177.70 239.41 l S 177.70 236.53 m 177.75 240.03 l S 177.75 236.53 m 177.79 242.49 l S 177.79 236.53 m 177.84 243.52 l S 177.84 236.53 m 177.89 237.36 l S 177.89 236.53 m 177.93 236.94 l S 177.93 236.53 m 177.98 237.15 l S 177.98 236.53 m 178.02 237.36 l S 178.02 236.53 m 178.07 240.85 l S 178.07 236.53 m 178.12 238.38 l S 178.12 236.53 m 178.16 242.49 l S 178.16 236.53 m 178.21 249.28 l S 178.21 236.53 m 178.25 249.28 l S 178.25 236.53 m 178.30 246.40 l S 178.30 236.53 m 178.35 237.15 l S 178.35 236.53 m 178.39 237.56 l S 178.39 236.53 m 178.44 237.15 l S 178.44 236.53 m 178.48 236.94 l S 178.48 236.53 m 178.53 236.94 l S 178.53 236.53 m 178.58 236.94 l S 178.58 236.53 m 178.62 236.74 l S 178.62 236.53 m 178.67 236.94 l S 178.67 236.53 m 178.71 236.94 l S 178.71 236.53 m 178.76 236.94 l S 178.76 236.53 m 178.81 236.94 l S 178.81 236.53 m 178.85 236.94 l S 178.85 236.53 m 178.90 237.15 l S 178.90 236.53 m 178.94 236.94 l S 178.94 236.53 m 178.99 237.15 l S 178.99 236.53 m 179.04 236.94 l S 179.04 236.53 m 179.08 236.94 l S 179.08 236.53 m 179.13 237.36 l S 179.13 236.53 m 179.17 237.15 l S 179.17 236.53 m 179.22 236.74 l S 179.22 236.53 m 179.27 236.94 l S 179.27 236.53 m 179.31 236.74 l S 179.31 236.53 m 179.36 236.94 l S 179.36 236.53 m 179.40 236.74 l S 179.40 236.53 m 179.45 236.74 l S 179.45 236.53 m 179.50 237.15 l S 179.50 236.53 m 179.54 236.74 l S 179.54 236.53 m 179.59 237.15 l S 179.59 236.53 m 179.63 236.94 l S 179.63 236.53 m 179.68 237.15 l S 179.68 236.53 m 179.73 236.74 l S 179.73 236.53 m 179.77 236.94 l S 179.77 236.53 m 179.82 236.94 l S 179.82 236.53 m 179.86 236.94 l S 179.86 236.53 m 179.91 237.15 l S 179.91 236.53 m 179.96 236.94 l S 179.96 236.53 m 180.00 236.94 l S 180.00 236.53 m 180.05 236.94 l S 180.05 236.53 m 180.09 237.15 l S 180.09 236.53 m 180.14 236.94 l S 180.14 236.53 m 180.19 237.56 l S 180.19 236.53 m 180.23 236.94 l S 180.23 236.53 m 180.28 236.94 l S 180.28 236.53 m 180.32 237.36 l S 180.32 236.53 m 180.37 236.94 l S 180.37 236.53 m 180.42 236.94 l S 180.42 236.53 m 180.46 236.94 l S 180.46 236.53 m 180.51 236.94 l S 180.51 236.53 m 180.55 236.94 l S 180.55 236.53 m 180.60 236.94 l S 180.60 236.53 m 180.65 237.56 l S 180.65 236.53 m 180.69 237.15 l S 180.69 236.53 m 180.74 237.15 l S 180.74 236.53 m 180.78 236.94 l S 180.78 236.53 m 180.83 236.94 l S 180.83 236.53 m 180.88 236.94 l S 180.88 236.53 m 180.92 236.94 l S 180.92 236.53 m 180.97 236.94 l S 180.97 236.53 m 181.01 236.94 l S 181.01 236.53 m 181.06 237.15 l S 181.06 236.53 m 181.11 236.94 l S 181.11 236.53 m 181.15 236.94 l S 181.15 236.53 m 181.20 236.94 l S 181.20 236.53 m 181.24 236.94 l S 181.24 236.53 m 181.29 237.15 l S 181.29 236.53 m 181.34 236.94 l S 181.34 236.53 m 181.38 237.15 l S 181.38 236.53 m 181.43 236.94 l S 181.43 236.53 m 181.47 236.94 l S 181.47 236.53 m 181.52 236.94 l S 181.52 236.53 m 181.57 236.94 l S 181.57 236.53 m 181.61 237.36 l S 181.61 236.53 m 181.66 236.94 l S 181.66 236.53 m 181.70 237.15 l S 181.70 236.53 m 181.75 236.94 l S 181.75 236.53 m 181.80 236.94 l S 181.80 236.53 m 181.84 236.94 l S 181.84 236.53 m 181.89 236.94 l S 181.89 236.53 m 181.93 236.94 l S 181.93 236.53 m 181.98 236.94 l S 181.98 236.53 m 182.03 236.94 l S 182.03 236.53 m 182.07 236.94 l S 182.07 236.53 m 182.12 236.94 l S 182.12 236.53 m 182.16 236.74 l S 182.16 236.53 m 182.21 236.94 l S 182.21 236.53 m 182.26 236.94 l S 182.26 236.53 m 182.30 236.94 l S 182.30 236.53 m 182.35 236.94 l S 182.35 236.53 m 182.39 236.94 l S 182.39 236.53 m 182.44 237.36 l S 182.44 236.53 m 182.49 236.94 l S 182.49 236.53 m 182.53 237.77 l S 182.53 236.53 m 182.58 237.77 l S 182.58 236.53 m 182.63 236.94 l S 182.63 236.53 m 182.67 237.15 l S 182.67 236.53 m 182.72 236.94 l S 182.72 236.53 m 182.76 237.15 l S 182.76 236.53 m 182.81 237.15 l S 182.81 236.53 m 182.86 236.94 l S 182.86 236.53 m 182.90 237.15 l S 182.90 236.53 m 182.95 237.15 l S 182.95 236.53 m 182.99 237.77 l S 182.99 236.53 m 183.04 237.15 l S 183.04 236.53 m 183.09 237.15 l S 183.09 236.53 m 183.13 236.94 l S 183.13 236.53 m 183.18 244.55 l S 183.18 236.53 m 183.22 250.92 l S 183.22 236.53 m 183.27 240.03 l S 183.27 236.53 m 183.32 237.36 l S 183.32 236.53 m 183.36 238.18 l S 183.36 236.53 m 183.41 240.64 l S 183.41 236.53 m 183.45 241.05 l S 183.45 236.53 m 183.50 242.29 l S 183.50 236.53 m 183.55 238.79 l S 183.55 236.53 m 183.59 240.85 l S 183.59 236.53 m 183.64 237.77 l S 183.64 236.53 m 183.68 239.00 l S 183.68 236.53 m 183.73 238.18 l S 183.73 236.53 m 183.78 236.94 l S 183.78 236.53 m 183.82 237.15 l S 183.82 236.53 m 183.87 236.94 l S 183.87 236.53 m 183.91 237.36 l S 183.91 236.53 m 183.96 236.94 l S 183.96 236.53 m 184.01 236.74 l S 184.01 236.53 m 184.05 237.15 l S 184.05 236.53 m 184.10 237.15 l S 184.10 236.53 m 184.14 236.94 l S 184.14 236.53 m 184.19 236.74 l S 184.19 236.53 m 184.24 237.15 l S 184.24 236.53 m 184.28 237.15 l S 184.28 236.53 m 184.33 236.74 l S 184.33 236.53 m 184.37 236.94 l S 184.37 236.53 m 184.42 236.74 l S 184.42 236.53 m 184.47 237.15 l S 184.47 236.53 m 184.51 237.15 l S 184.51 236.53 m 184.56 237.15 l S 184.56 236.53 m 184.60 236.94 l S 184.60 236.53 m 184.65 237.36 l S 184.65 236.53 m 184.70 237.15 l S 184.70 236.53 m 184.74 236.74 l S 184.74 236.53 m 184.79 236.94 l S 184.79 236.53 m 184.83 236.94 l S 184.83 236.53 m 184.88 236.94 l S 184.88 236.53 m 184.93 237.15 l S 184.93 236.53 m 184.97 236.94 l S 184.97 236.53 m 185.02 236.74 l S 185.02 236.53 m 185.06 237.15 l S 185.06 236.53 m 185.11 237.56 l S 185.11 236.53 m 185.16 239.62 l S 185.16 236.53 m 185.20 244.75 l S 185.20 236.53 m 185.25 237.56 l S 185.25 236.53 m 185.29 236.94 l S 185.29 236.53 m 185.34 237.15 l S 185.34 236.53 m 185.39 237.56 l S 185.39 236.53 m 185.43 237.36 l S 185.43 236.53 m 185.48 236.74 l S 185.48 236.53 m 185.52 237.77 l S 185.52 236.53 m 185.57 237.15 l S 185.57 236.53 m 185.62 237.15 l S 185.62 236.53 m 185.66 237.15 l S 185.66 236.53 m 185.71 237.36 l S 185.71 236.53 m 185.75 237.97 l S 185.75 236.53 m 185.80 238.59 l S 185.80 236.53 m 185.85 237.56 l S 185.85 236.53 m 185.89 237.15 l S 185.89 236.53 m 185.94 237.15 l S 185.94 236.53 m 185.98 237.15 l S 185.98 236.53 m 186.03 237.15 l S 186.03 236.53 m 186.08 237.15 l S 186.08 236.53 m 186.12 238.18 l S 186.12 236.53 m 186.17 237.15 l S 186.17 236.53 m 186.21 239.82 l S 186.21 236.53 m 186.26 240.85 l S 186.26 236.53 m 186.31 242.49 l S 186.31 236.53 m 186.35 237.77 l S 186.35 236.53 m 186.40 239.41 l S 186.40 236.53 m 186.44 239.62 l S 186.44 236.53 m 186.49 236.94 l S 186.49 236.53 m 186.54 239.21 l S 186.54 236.53 m 186.58 236.94 l S 186.58 236.53 m 186.63 237.36 l S 186.63 236.53 m 186.67 239.82 l S 186.67 236.53 m 186.72 239.21 l S 186.72 236.53 m 186.77 237.36 l S 186.77 236.53 m 186.81 238.18 l S 186.81 236.53 m 186.86 237.36 l S 186.86 236.53 m 186.90 237.36 l S 186.90 236.53 m 186.95 237.15 l S 186.95 236.53 m 187.00 238.18 l S 187.00 236.53 m 187.04 239.00 l S 187.04 236.53 m 187.09 237.15 l S 187.09 236.53 m 187.13 237.15 l S 187.13 236.53 m 187.18 239.41 l S 187.18 236.53 m 187.23 239.62 l S 187.23 236.53 m 187.27 236.94 l S 187.27 236.53 m 187.32 236.94 l S 187.32 236.53 m 187.36 237.77 l S 187.36 236.53 m 187.41 236.94 l S 187.41 236.53 m 187.46 236.74 l S 187.46 236.53 m 187.50 236.94 l S 187.50 236.53 m 187.55 236.94 l S 187.55 236.53 m 187.59 236.74 l S 187.59 236.53 m 187.64 237.15 l S 187.64 236.53 m 187.69 236.74 l S 187.69 236.53 m 187.73 236.74 l S 187.73 236.53 m 187.78 238.18 l S 187.78 236.53 m 187.82 240.64 l S 187.82 236.53 m 187.87 237.36 l S 187.87 236.53 m 187.92 236.94 l S 187.92 236.53 m 187.96 237.36 l S 187.96 236.53 m 188.01 237.36 l S 188.01 236.53 m 188.05 237.36 l S 188.05 236.53 m 188.10 237.77 l S 188.10 236.53 m 188.15 238.38 l S 188.15 236.53 m 188.19 239.62 l S 188.19 236.53 m 188.24 240.03 l S 188.24 236.53 m 188.28 239.00 l S 188.28 236.53 m 188.33 244.75 l S 188.33 236.53 m 188.38 237.97 l S 188.38 236.53 m 188.42 237.15 l S 188.42 236.53 m 188.47 239.21 l S 188.47 236.53 m 188.51 241.67 l S 188.51 236.53 m 188.56 240.23 l S 188.56 236.53 m 188.61 239.62 l S 188.61 236.53 m 188.65 242.70 l S 188.65 236.53 m 188.70 242.29 l S 188.70 236.53 m 188.74 237.36 l S 188.74 236.53 m 188.79 240.85 l S 188.79 236.53 m 188.84 238.59 l S 188.84 236.53 m 188.88 236.94 l S 188.88 236.53 m 188.93 237.15 l S 188.93 236.53 m 188.97 243.32 l S 188.97 236.53 m 189.02 237.77 l S 189.02 236.53 m 189.07 237.15 l S 189.07 236.53 m 189.11 236.94 l S 189.11 236.53 m 189.16 236.94 l S 189.16 236.53 m 189.20 237.56 l S 189.20 236.53 m 189.25 237.97 l S 189.25 236.53 m 189.30 236.94 l S 189.30 236.53 m 189.34 237.15 l S 189.34 236.53 m 189.39 236.94 l S 189.39 236.53 m 189.43 236.94 l S 189.43 236.53 m 189.48 238.38 l S 189.48 236.53 m 189.53 237.36 l S 189.53 236.53 m 189.57 241.88 l S 189.57 236.53 m 189.62 238.79 l S 189.62 236.53 m 189.66 242.29 l S 189.66 236.53 m 189.71 244.96 l S 189.71 236.53 m 189.76 244.14 l S 189.76 236.53 m 189.80 239.62 l S 189.80 236.53 m 189.85 237.97 l S 189.85 236.53 m 189.89 238.18 l S 189.89 236.53 m 189.94 237.77 l S 189.94 236.53 m 189.99 237.56 l S 189.99 236.53 m 190.03 238.59 l S 190.03 236.53 m 190.08 239.82 l S 190.08 236.53 m 190.12 239.41 l S 190.12 236.53 m 190.17 237.36 l S 190.17 236.53 m 190.22 239.82 l S 190.22 236.53 m 190.26 242.70 l S 190.26 236.53 m 190.31 238.38 l S 190.31 236.53 m 190.35 241.05 l S 190.35 236.53 m 190.40 237.15 l S 190.40 236.53 m 190.45 236.94 l S 190.45 236.53 m 190.49 237.15 l S 190.49 236.53 m 190.54 237.15 l S 190.54 236.53 m 190.59 237.15 l S 190.59 236.53 m 190.63 238.18 l S 190.63 236.53 m 190.68 237.97 l S 190.68 236.53 m 190.72 236.94 l S 190.72 236.53 m 190.77 239.62 l S 190.77 236.53 m 190.82 237.56 l S 190.82 236.53 m 190.86 237.15 l S 190.86 236.53 m 190.91 236.94 l S 190.91 236.53 m 190.95 238.18 l S 190.95 236.53 m 191.00 236.94 l S 191.00 236.53 m 191.05 237.15 l S 191.05 236.53 m 191.09 237.15 l S 191.09 236.53 m 191.14 236.94 l S 191.14 236.53 m 191.18 237.15 l S 191.18 236.53 m 191.23 236.94 l S 191.23 236.53 m 191.28 236.74 l S 191.28 236.53 m 191.32 236.94 l S 191.32 236.53 m 191.37 236.94 l S 191.37 236.53 m 191.41 237.15 l S 191.41 236.53 m 191.46 237.15 l S 191.46 236.53 m 191.51 236.94 l S 191.51 236.53 m 191.55 236.94 l S 191.55 236.53 m 191.60 236.94 l S 191.60 236.53 m 191.64 236.74 l S 191.64 236.53 m 191.69 236.94 l S 191.69 236.53 m 191.74 236.74 l S 191.74 236.53 m 191.78 237.15 l S 191.78 236.53 m 191.83 236.74 l S 191.83 236.53 m 191.87 236.74 l S 191.87 236.53 m 191.92 236.94 l S 191.92 236.53 m 191.97 237.15 l S 191.97 236.53 m 192.01 237.15 l S 192.01 236.53 m 192.06 236.94 l S 192.06 236.53 m 192.10 236.74 l S 192.10 236.53 m 192.15 238.79 l S 192.15 236.53 m 192.20 237.36 l S 192.20 236.53 m 192.24 236.94 l S 192.24 236.53 m 192.29 236.94 l S 192.29 236.53 m 192.33 241.67 l S 192.33 236.53 m 192.38 237.36 l S 192.38 236.53 m 192.43 238.59 l S 192.43 236.53 m 192.47 237.15 l S 192.47 236.53 m 192.52 238.59 l S 192.52 236.53 m 192.56 239.41 l S 192.56 236.53 m 192.61 236.94 l S 192.61 236.53 m 192.66 237.15 l S 192.66 236.53 m 192.70 236.94 l S 192.70 236.53 m 192.75 239.41 l S 192.75 236.53 m 192.79 248.45 l S 192.79 236.53 m 192.84 241.05 l S 192.84 236.53 m 192.89 237.15 l S 192.89 236.53 m 192.93 237.77 l S 192.93 236.53 m 192.98 237.15 l S 192.98 236.53 m 193.02 238.18 l S 193.02 236.53 m 193.07 237.77 l S 193.07 236.53 m 193.12 236.94 l S 193.12 236.53 m 193.16 236.94 l S 193.16 236.53 m 193.21 237.15 l S 193.21 236.53 m 193.25 237.15 l S 193.25 236.53 m 193.30 237.15 l S 193.30 236.53 m 193.35 237.15 l S 193.35 236.53 m 193.39 237.56 l S 193.39 236.53 m 193.44 237.36 l S 193.44 236.53 m 193.48 237.36 l S 193.48 236.53 m 193.53 236.94 l S 193.53 236.53 m 193.58 237.36 l S 193.58 236.53 m 193.62 242.70 l S 193.62 236.53 m 193.67 236.94 l S 193.67 236.53 m 193.71 238.18 l S 193.71 236.53 m 193.76 239.00 l S 193.76 236.53 m 193.81 238.79 l S 193.81 236.53 m 193.85 238.18 l S 193.85 236.53 m 193.90 237.77 l S 193.90 236.53 m 193.94 246.81 l S 193.94 236.53 m 193.99 236.94 l S 193.99 236.53 m 194.04 237.36 l S 194.04 236.53 m 194.08 237.15 l S 194.08 236.53 m 194.13 236.94 l S 194.13 236.53 m 194.17 237.36 l S 194.17 236.53 m 194.22 237.56 l S 194.22 236.53 m 194.27 239.62 l S 194.27 236.53 m 194.31 238.38 l S 194.31 236.53 m 194.36 237.15 l S 194.36 236.53 m 194.40 236.94 l S 194.40 236.53 m 194.45 237.36 l S 194.45 236.53 m 194.50 237.15 l S 194.50 236.53 m 194.54 237.15 l S 194.54 236.53 m 194.59 237.77 l S 194.59 236.53 m 194.63 240.44 l S 194.63 236.53 m 194.68 240.23 l S 194.68 236.53 m 194.73 236.94 l S 194.73 236.53 m 194.77 237.15 l S 194.77 236.53 m 194.82 238.38 l S 194.82 236.53 m 194.86 236.94 l S 194.86 236.53 m 194.91 237.15 l S 194.91 236.53 m 194.96 237.15 l S 194.96 236.53 m 195.00 238.38 l S 195.00 236.53 m 195.05 238.18 l S 195.05 236.53 m 195.09 238.18 l S 195.09 236.53 m 195.14 237.36 l S 195.14 236.53 m 195.19 237.15 l S 195.19 236.53 m 195.23 237.15 l S 195.23 236.53 m 195.28 236.94 l S 195.28 236.53 m 195.32 237.97 l S 195.32 236.53 m 195.37 237.15 l S 195.37 236.53 m 195.42 242.08 l S 195.42 236.53 m 195.46 239.00 l S 195.46 236.53 m 195.51 237.56 l S 195.51 236.53 m 195.55 237.15 l S 195.55 236.53 m 195.60 237.15 l S 195.60 236.53 m 195.65 236.74 l S 195.65 236.53 m 195.69 237.36 l S 195.69 236.53 m 195.74 237.56 l S 195.74 236.53 m 195.78 241.67 l S 195.78 236.53 m 195.83 237.36 l S 195.83 236.53 m 195.88 237.97 l S 195.88 236.53 m 195.92 237.97 l S 195.92 236.53 m 195.97 237.15 l S 195.97 236.53 m 196.01 237.77 l S 196.01 236.53 m 196.06 237.77 l S 196.06 236.53 m 196.11 237.15 l S 196.11 236.53 m 196.15 236.94 l S 196.15 236.53 m 196.20 239.41 l S 196.20 236.53 m 196.24 239.21 l S 196.24 236.53 m 196.29 236.94 l S 196.29 236.53 m 196.34 236.94 l S 196.34 236.53 m 196.38 237.97 l S 196.38 236.53 m 196.43 236.94 l S 196.43 236.53 m 196.47 240.23 l S 196.47 236.53 m 196.52 236.94 l S 196.52 236.53 m 196.57 236.94 l S 196.57 236.53 m 196.61 236.94 l S 196.61 236.53 m 196.66 236.74 l S 196.66 236.53 m 196.70 236.94 l S 196.70 236.53 m 196.75 237.36 l S 196.75 236.53 m 196.80 237.15 l S 196.80 236.53 m 196.84 237.36 l S 196.84 236.53 m 196.89 237.36 l S 196.89 236.53 m 196.93 236.74 l S 196.93 236.53 m 196.98 237.15 l S 196.98 236.53 m 197.03 238.18 l S 197.03 236.53 m 197.07 238.79 l S 197.07 236.53 m 197.12 236.94 l S 197.12 236.53 m 197.16 238.18 l S 197.16 236.53 m 197.21 236.94 l S 197.21 236.53 m 197.26 236.74 l S 197.26 236.53 m 197.30 236.94 l S 197.30 236.53 m 197.35 237.56 l S 197.35 236.53 m 197.39 236.74 l S 197.39 236.53 m 197.44 237.15 l S 197.44 236.53 m 197.49 236.74 l S 197.49 236.53 m 197.53 236.94 l S 197.53 236.53 m 197.58 236.94 l S 197.58 236.53 m 197.62 236.74 l S 197.62 236.53 m 197.67 236.94 l S 197.67 236.53 m 197.72 236.94 l S 197.72 236.53 m 197.76 236.94 l S 197.76 236.53 m 197.81 236.74 l S 197.81 236.53 m 197.85 236.74 l S 197.85 236.53 m 197.90 236.94 l S 197.90 236.53 m 197.95 236.94 l S 197.95 236.53 m 197.99 236.94 l S 197.99 236.53 m 198.04 237.15 l S 198.04 236.53 m 198.08 236.74 l S 198.08 236.53 m 198.13 236.94 l S 198.13 236.53 m 198.18 237.15 l S 198.18 236.53 m 198.22 236.94 l S 198.22 236.53 m 198.27 237.56 l S 198.27 236.53 m 198.31 237.15 l S 198.31 236.53 m 198.36 238.59 l S 198.36 236.53 m 198.41 236.94 l S 198.41 236.53 m 198.45 237.15 l S 198.45 236.53 m 198.50 237.56 l S 198.50 236.53 m 198.55 238.18 l S 198.55 236.53 m 198.59 237.56 l S 198.59 236.53 m 198.64 237.15 l S 198.64 236.53 m 198.68 237.15 l S 198.68 236.53 m 198.73 238.18 l S 198.73 236.53 m 198.78 237.36 l S 198.78 236.53 m 198.82 237.36 l S 198.82 236.53 m 198.87 247.22 l S 198.87 236.53 m 198.91 239.82 l S 198.91 236.53 m 198.96 237.77 l S 198.96 236.53 m 199.01 237.77 l S 199.01 236.53 m 199.05 237.97 l S 199.05 236.53 m 199.10 237.97 l S 199.10 236.53 m 199.14 238.18 l S 199.14 236.53 m 199.19 237.97 l S 199.19 236.53 m 199.24 237.15 l S 199.24 236.53 m 199.28 241.05 l S 199.28 236.53 m 199.33 236.94 l S 199.33 236.53 m 199.37 239.41 l S 199.37 236.53 m 199.42 239.62 l S 199.42 236.53 m 199.47 237.15 l S 199.47 236.53 m 199.51 239.00 l S 199.51 236.53 m 199.56 236.74 l S 199.56 236.53 m 199.60 237.15 l S 199.60 236.53 m 199.65 237.15 l S 199.65 236.53 m 199.70 237.97 l S 199.70 236.53 m 199.74 239.41 l S 199.74 236.53 m 199.79 238.38 l S 199.79 236.53 m 199.83 237.56 l S 199.83 236.53 m 199.88 237.15 l S 199.88 236.53 m 199.93 236.94 l S 199.93 236.53 m 199.97 237.56 l S 199.97 236.53 m 200.02 237.56 l S 200.02 236.53 m 200.06 237.36 l S 200.06 236.53 m 200.11 239.62 l S 200.11 236.53 m 200.16 237.56 l S 200.16 236.53 m 200.20 238.38 l S 200.20 236.53 m 200.25 237.77 l S 200.25 236.53 m 200.29 239.21 l S 200.29 236.53 m 200.34 237.56 l S 200.34 236.53 m 200.39 237.97 l S 200.39 236.53 m 200.43 240.64 l S 200.43 236.53 m 200.48 239.41 l S 200.48 236.53 m 200.52 239.00 l S 200.52 236.53 m 200.57 237.77 l S 200.57 236.53 m 200.62 237.56 l S 200.62 236.53 m 200.66 237.77 l S 200.66 236.53 m 200.71 239.41 l S 200.71 236.53 m 200.75 237.56 l S 200.75 236.53 m 200.80 237.97 l S 200.80 236.53 m 200.85 237.15 l S 200.85 236.53 m 200.89 237.15 l S 200.89 236.53 m 200.94 239.41 l S 200.94 236.53 m 200.98 237.36 l S 200.98 236.53 m 201.03 237.36 l S 201.03 236.53 m 201.08 238.59 l S 201.08 236.53 m 201.12 242.49 l S 201.12 236.53 m 201.17 238.18 l S 201.17 236.53 m 201.21 240.23 l S 201.21 236.53 m 201.26 243.93 l S 201.26 236.53 m 201.31 241.47 l S 201.31 236.53 m 201.35 240.44 l S 201.35 236.53 m 201.40 237.56 l S 201.40 236.53 m 201.44 237.36 l S 201.44 236.53 m 201.49 237.97 l S 201.49 236.53 m 201.54 240.44 l S 201.54 236.53 m 201.58 239.82 l S 201.58 236.53 m 201.63 239.00 l S 201.63 236.53 m 201.67 246.19 l S 201.67 236.53 m 201.72 241.26 l S 201.72 236.53 m 201.77 240.44 l S 201.77 236.53 m 201.81 243.52 l S 201.81 236.53 m 201.86 241.05 l S 201.86 236.53 m 201.90 237.56 l S 201.90 236.53 m 201.95 237.36 l S 201.95 236.53 m 202.00 237.36 l S 202.00 236.53 m 202.04 236.94 l S 202.04 236.53 m 202.09 237.36 l S 202.09 236.53 m 202.13 237.36 l S 202.13 236.53 m 202.18 237.36 l S 202.18 236.53 m 202.23 244.96 l S 202.23 236.53 m 202.27 237.77 l S 202.27 236.53 m 202.32 238.79 l S 202.32 236.53 m 202.36 237.97 l S 202.36 236.53 m 202.41 237.56 l S 202.41 236.53 m 202.46 237.56 l S 202.46 236.53 m 202.50 237.77 l S 202.50 236.53 m 202.55 241.05 l S 202.55 236.53 m 202.59 240.44 l S 202.59 236.53 m 202.64 242.29 l S 202.64 236.53 m 202.69 238.79 l S 202.69 236.53 m 202.73 236.94 l S 202.73 236.53 m 202.78 236.94 l S 202.78 236.53 m 202.82 237.36 l S 202.82 236.53 m 202.87 237.15 l S 202.87 236.53 m 202.92 236.94 l S 202.92 236.53 m 202.96 236.94 l S 202.96 236.53 m 203.01 236.94 l S 203.01 236.53 m 203.05 236.94 l S 203.05 236.53 m 203.10 237.15 l S 203.10 236.53 m 203.15 236.94 l S 203.15 236.53 m 203.19 236.94 l S 203.19 236.53 m 203.24 236.94 l S 203.24 236.53 m 203.28 236.94 l S 203.28 236.53 m 203.33 236.74 l S 203.33 236.53 m 203.38 236.94 l S 203.38 236.53 m 203.42 236.94 l S 203.42 236.53 m 203.47 236.94 l S 203.47 236.53 m 203.51 236.74 l S 203.51 236.53 m 203.56 236.74 l S 203.56 236.53 m 203.61 236.94 l S 203.61 236.53 m 203.65 236.94 l S 203.65 236.53 m 203.70 237.36 l S 203.70 236.53 m 203.74 236.94 l S 203.74 236.53 m 203.79 236.94 l S 203.79 236.53 m 203.84 237.77 l S 203.84 236.53 m 203.88 237.36 l S 203.88 236.53 m 203.93 237.56 l S 203.93 236.53 m 203.97 240.85 l S 203.97 236.53 m 204.02 237.15 l S 204.02 236.53 m 204.07 237.15 l S 204.07 236.53 m 204.11 237.15 l S 204.11 236.53 m 204.16 237.15 l S 204.16 236.53 m 204.20 237.36 l S 204.20 236.53 m 204.25 239.41 l S 204.25 236.53 m 204.30 240.03 l S 204.30 236.53 m 204.34 237.15 l S 204.34 236.53 m 204.39 240.23 l S 204.39 236.53 m 204.43 238.38 l S 204.43 236.53 m 204.48 237.15 l S 204.48 236.53 m 204.53 237.15 l S 204.53 236.53 m 204.57 238.59 l S 204.57 236.53 m 204.62 237.15 l S 204.62 236.53 m 204.66 237.15 l S 204.66 236.53 m 204.71 237.15 l S 204.71 236.53 m 204.76 241.26 l S 204.76 236.53 m 204.80 237.15 l S 204.80 236.53 m 204.85 236.94 l S 204.85 236.53 m 204.89 237.56 l S 204.89 236.53 m 204.94 237.77 l S 204.94 236.53 m 204.99 244.75 l S 204.99 236.53 m 205.03 237.36 l S 205.03 236.53 m 205.08 241.88 l S 205.08 236.53 m 205.12 239.41 l S 205.12 236.53 m 205.17 237.15 l S 205.17 236.53 m 205.22 238.38 l S 205.22 236.53 m 205.26 243.73 l S 205.26 236.53 m 205.31 236.94 l S 205.31 236.53 m 205.35 237.36 l S 205.35 236.53 m 205.40 238.18 l S 205.40 236.53 m 205.45 244.96 l S 205.45 236.53 m 205.49 240.23 l S 205.49 236.53 m 205.54 238.18 l S 205.54 236.53 m 205.58 238.18 l S 205.58 236.53 m 205.63 237.77 l S 205.63 236.53 m 205.68 237.15 l S 205.68 236.53 m 205.72 237.15 l S 205.72 236.53 m 205.77 237.97 l S 205.77 236.53 m 205.81 237.36 l S 205.81 236.53 m 205.86 238.18 l S 205.86 236.53 m 205.91 237.15 l S 205.91 236.53 m 205.95 236.94 l S 205.95 236.53 m 206.00 238.18 l S 206.00 236.53 m 206.04 238.79 l S 206.04 236.53 m 206.09 248.86 l S 206.09 236.53 m 206.14 243.52 l S 206.14 236.53 m 206.18 243.32 l S 206.18 236.53 m 206.23 237.36 l S 206.23 236.53 m 206.27 238.38 l S 206.27 236.53 m 206.32 238.18 l S 206.32 236.53 m 206.37 237.15 l S 206.37 236.53 m 206.41 238.18 l S 206.41 236.53 m 206.46 237.15 l S 206.46 236.53 m 206.51 237.36 l S 206.51 236.53 m 206.55 237.36 l S 206.55 236.53 m 206.60 238.79 l S 206.60 236.53 m 206.64 238.18 l S 206.64 236.53 m 206.69 238.38 l S 206.69 236.53 m 206.74 240.44 l S 206.74 236.53 m 206.78 237.56 l S 206.78 236.53 m 206.83 237.36 l S 206.83 236.53 m 206.87 243.93 l S 206.87 236.53 m 206.92 239.41 l S 206.92 236.53 m 206.97 238.38 l S 206.97 236.53 m 207.01 238.38 l S 207.01 236.53 m 207.06 239.41 l S 207.06 236.53 m 207.10 236.94 l S 207.10 236.53 m 207.15 237.97 l S 207.15 236.53 m 207.20 243.11 l S 207.20 236.53 m 207.24 251.12 l S 207.24 236.53 m 207.29 240.03 l S 207.29 236.53 m 207.33 237.97 l S 207.33 236.53 m 207.38 238.59 l S 207.38 236.53 m 207.43 237.77 l S 207.43 236.53 m 207.47 237.77 l S 207.47 236.53 m 207.52 238.59 l S 207.52 236.53 m 207.56 240.85 l S 207.56 236.53 m 207.61 243.93 l S 207.61 236.53 m 207.66 240.85 l S 207.66 236.53 m 207.70 241.67 l S 207.70 236.53 m 207.75 239.21 l S 207.75 236.53 m 207.79 243.73 l S 207.79 236.53 m 207.84 240.23 l S 207.84 236.53 m 207.89 238.38 l S 207.89 236.53 m 207.93 241.47 l S 207.93 236.53 m 207.98 238.18 l S 207.98 236.53 m 208.02 242.90 l S 208.02 236.53 m 208.07 243.93 l S 208.07 236.53 m 208.12 247.63 l S 208.12 236.53 m 208.16 240.44 l S 208.16 236.53 m 208.21 238.79 l S 208.21 236.53 m 208.25 241.26 l S 208.25 236.53 m 208.30 246.40 l S 208.30 236.53 m 208.35 243.11 l S 208.35 236.53 m 208.39 242.29 l S 208.39 236.53 m 208.44 238.59 l S 208.44 236.53 m 208.48 246.81 l S 208.48 236.53 m 208.53 245.37 l S 208.53 236.53 m 208.58 247.43 l S 208.58 236.53 m 208.62 237.56 l S 208.62 236.53 m 208.67 237.36 l S 208.67 236.53 m 208.71 241.05 l S 208.71 236.53 m 208.76 237.56 l S 208.76 236.53 m 208.81 238.79 l S 208.81 236.53 m 208.85 237.36 l S 208.85 236.53 m 208.90 242.70 l S 208.90 236.53 m 208.94 239.00 l S 208.94 236.53 m 208.99 238.18 l S 208.99 236.53 m 209.04 237.36 l S 209.04 236.53 m 209.08 239.00 l S 209.08 236.53 m 209.13 236.94 l S 209.13 236.53 m 209.17 237.97 l S 209.17 236.53 m 209.22 239.00 l S 209.22 236.53 m 209.27 237.56 l S 209.27 236.53 m 209.31 237.56 l S 209.31 236.53 m 209.36 241.05 l S 209.36 236.53 m 209.40 240.44 l S 209.40 236.53 m 209.45 241.67 l S 209.45 236.53 m 209.50 240.44 l S 209.50 236.53 m 209.54 238.38 l S 209.54 236.53 m 209.59 239.82 l S 209.59 236.53 m 209.63 237.77 l S 209.63 236.53 m 209.68 237.56 l S 209.68 236.53 m 209.73 240.03 l S 209.73 236.53 m 209.77 243.93 l S 209.77 236.53 m 209.82 237.77 l S 209.82 236.53 m 209.86 246.60 l S 209.86 236.53 m 209.91 242.29 l S 209.91 236.53 m 209.96 237.36 l S 209.96 236.53 m 210.00 242.29 l S 210.00 236.53 m 210.05 239.62 l S 210.05 236.53 m 210.09 241.67 l S 210.09 236.53 m 210.14 239.21 l S 210.14 236.53 m 210.19 239.82 l S 210.19 236.53 m 210.23 237.97 l S 210.23 236.53 m 210.28 237.97 l S 210.28 236.53 m 210.32 236.94 l S 210.32 236.53 m 210.37 238.59 l S 210.37 236.53 m 210.42 242.29 l S 210.42 236.53 m 210.46 236.94 l S 210.46 236.53 m 210.51 238.38 l S 210.51 236.53 m 210.55 239.62 l S 210.55 236.53 m 210.60 244.14 l S 210.60 236.53 m 210.65 252.15 l S 210.65 236.53 m 210.69 240.23 l S 210.69 236.53 m 210.74 239.62 l S 210.74 236.53 m 210.78 237.15 l S 210.78 236.53 m 210.83 236.94 l S 210.83 236.53 m 210.88 237.15 l S 210.88 236.53 m 210.92 237.56 l S 210.92 236.53 m 210.97 240.44 l S 210.97 236.53 m 211.01 239.41 l S 211.01 236.53 m 211.06 237.15 l S 211.06 236.53 m 211.11 236.94 l S 211.11 236.53 m 211.15 236.94 l S 211.15 236.53 m 211.20 236.94 l S 211.20 236.53 m 211.24 237.15 l S 211.24 236.53 m 211.29 237.15 l S 211.29 236.53 m 211.34 237.15 l S 211.34 236.53 m 211.38 236.94 l S 211.38 236.53 m 211.43 237.15 l S 211.43 236.53 m 211.47 238.79 l S 211.47 236.53 m 211.52 237.36 l S 211.52 236.53 m 211.57 237.77 l S 211.57 236.53 m 211.61 236.94 l S 211.61 236.53 m 211.66 237.36 l S 211.66 236.53 m 211.70 237.15 l S 211.70 236.53 m 211.75 236.94 l S 211.75 236.53 m 211.80 237.15 l S 211.80 236.53 m 211.84 236.94 l S 211.84 236.53 m 211.89 237.15 l S 211.89 236.53 m 211.93 236.94 l S 211.93 236.53 m 211.98 236.74 l S 211.98 236.53 m 212.03 236.94 l S 212.03 236.53 m 212.07 236.94 l S 212.07 236.53 m 212.12 236.74 l S 212.12 236.53 m 212.16 236.74 l S 212.16 236.53 m 212.21 237.15 l S 212.21 236.53 m 212.26 236.74 l S 212.26 236.53 m 212.30 236.94 l S 212.30 236.53 m 212.35 236.74 l S 212.35 236.53 m 212.39 236.74 l S 212.39 236.53 m 212.44 236.94 l S 212.44 236.53 m 212.49 236.94 l S 212.49 236.53 m 212.53 236.94 l S 212.53 236.53 m 212.58 236.94 l S 212.58 236.53 m 212.62 236.94 l S 212.62 236.53 m 212.67 237.56 l S 212.67 236.53 m 212.72 239.41 l S 212.72 236.53 m 212.76 236.74 l S 212.76 236.53 m 212.81 236.94 l S 212.81 236.53 m 212.85 236.94 l S 212.85 236.53 m 212.90 236.94 l S 212.90 236.53 m 212.95 236.74 l S 212.95 236.53 m 212.99 237.36 l S 212.99 236.53 m 213.04 237.15 l S 213.04 236.53 m 213.08 236.74 l S 213.08 236.53 m 213.13 236.94 l S 213.13 236.53 m 213.18 236.74 l S 213.18 236.53 m 213.22 236.74 l S 213.22 236.53 m 213.27 236.94 l S 213.27 236.53 m 213.31 236.74 l S 213.31 236.53 m 213.36 236.94 l S 213.36 236.53 m 213.41 236.74 l S 213.41 236.53 m 213.45 237.36 l S 213.45 236.53 m 213.50 236.94 l S 213.50 236.53 m 213.54 236.74 l S 213.54 236.53 m 213.59 236.94 l S 213.59 236.53 m 213.64 236.74 l S 213.64 236.53 m 213.68 236.94 l S 213.68 236.53 m 213.73 236.94 l S 213.73 236.53 m 213.77 237.77 l S 213.77 236.53 m 213.82 236.94 l S 213.82 236.53 m 213.87 236.94 l S 213.87 236.53 m 213.91 236.94 l S 213.91 236.53 m 213.96 236.94 l S 213.96 236.53 m 214.00 236.94 l S 214.00 236.53 m 214.05 237.15 l S 214.05 236.53 m 214.10 236.74 l S 214.10 236.53 m 214.14 236.94 l S 214.14 236.53 m 214.19 236.94 l S 214.19 236.53 m 214.23 237.36 l S 214.23 236.53 m 214.28 236.94 l S 214.28 236.53 m 214.33 236.94 l S 214.33 236.53 m 214.37 237.15 l S 214.37 236.53 m 214.42 236.94 l S 214.42 236.53 m 214.47 237.15 l S 214.47 236.53 m 214.51 237.15 l S 214.51 236.53 m 214.56 237.15 l S 214.56 236.53 m 214.60 237.15 l S 214.60 236.53 m 214.65 237.15 l S 214.65 236.53 m 214.70 237.15 l S 214.70 236.53 m 214.74 236.94 l S 214.74 236.53 m 214.79 237.15 l S 214.79 236.53 m 214.83 236.94 l S 214.83 236.53 m 214.88 236.94 l S 214.88 236.53 m 214.93 236.74 l S 214.93 236.53 m 214.97 236.94 l S 214.97 236.53 m 215.02 236.74 l S 215.02 236.53 m 215.06 236.94 l S 215.06 236.53 m 215.11 237.36 l S 215.11 236.53 m 215.16 237.36 l S 215.16 236.53 m 215.20 236.74 l S 215.20 236.53 m 215.25 236.94 l S 215.25 236.53 m 215.29 236.74 l S 215.29 236.53 m 215.34 236.94 l S 215.34 236.53 m 215.39 236.94 l S 215.39 236.53 m 215.43 237.15 l S 215.43 236.53 m 215.48 236.94 l S 215.48 236.53 m 215.52 236.74 l S 215.52 236.53 m 215.57 237.15 l S 215.57 236.53 m 215.62 237.15 l S 215.62 236.53 m 215.66 236.74 l S 215.66 236.53 m 215.71 237.15 l S 215.71 236.53 m 215.75 236.94 l S 215.75 236.53 m 215.80 236.94 l S 215.80 236.53 m 215.85 236.94 l S 215.85 236.53 m 215.89 237.15 l S 215.89 236.53 m 215.94 236.74 l S 215.94 236.53 m 215.98 236.94 l S 215.98 236.53 m 216.03 236.94 l S 216.03 236.53 m 216.08 236.74 l S 216.08 236.53 m 216.12 236.94 l S 216.12 236.53 m 216.17 236.94 l S 216.17 236.53 m 216.21 236.94 l S 216.21 236.53 m 216.26 236.94 l S 216.26 236.53 m 216.31 237.15 l S 216.31 236.53 m 216.35 236.94 l S 216.35 236.53 m 216.40 236.74 l S 216.40 236.53 m 216.44 236.94 l S 216.44 236.53 m 216.49 236.94 l S 216.49 236.53 m 216.54 236.94 l S 216.54 236.53 m 216.58 236.94 l S 216.58 236.53 m 216.63 236.74 l S 216.63 236.53 m 216.67 236.94 l S 216.67 236.53 m 216.72 236.94 l S 216.72 236.53 m 216.77 236.94 l S 216.77 236.53 m 216.81 237.15 l S 216.81 236.53 m 216.86 237.36 l S 216.86 236.53 m 216.90 236.94 l S 216.90 236.53 m 216.95 236.94 l S 216.95 236.53 m 217.00 236.94 l S 217.00 236.53 m 217.04 236.94 l S 217.04 236.53 m 217.09 237.15 l S 217.09 236.53 m 217.13 236.94 l S 217.13 236.53 m 217.18 236.94 l S 217.18 236.53 m 217.23 236.94 l S 217.23 236.53 m 217.27 236.94 l S 217.27 236.53 m 217.32 237.56 l S 217.32 236.53 m 217.36 236.94 l S 217.36 236.53 m 217.41 236.94 l S 217.41 236.53 m 217.46 236.94 l S 217.46 236.53 m 217.50 236.94 l S 217.50 236.53 m 217.55 236.94 l S 217.55 236.53 m 217.59 237.36 l S 217.59 236.53 m 217.64 236.94 l S 217.64 236.53 m 217.69 236.94 l S 217.69 236.53 m 217.73 236.94 l S 217.73 236.53 m 217.78 237.36 l S 217.78 236.53 m 217.82 236.94 l S 217.82 236.53 m 217.87 237.15 l S 217.87 236.53 m 217.92 237.15 l S 217.92 236.53 m 217.96 236.94 l S 217.96 236.53 m 218.01 236.94 l S 218.01 236.53 m 218.05 236.94 l S 218.05 236.53 m 218.10 236.94 l S 218.10 236.53 m 218.15 237.97 l S 218.15 236.53 m 218.19 241.67 l S 218.19 236.53 m 218.24 243.93 l S 218.24 236.53 m 218.28 243.11 l S 218.28 236.53 m 218.33 237.36 l S 218.33 236.53 m 218.38 242.29 l S 218.38 236.53 m 218.42 242.90 l S 218.42 236.53 m 218.47 245.58 l S 218.47 236.53 m 218.51 242.08 l S 218.51 236.53 m 218.56 241.67 l S 218.56 236.53 m 218.61 237.36 l S 218.61 236.53 m 218.65 239.62 l S 218.65 236.53 m 218.70 238.18 l S 218.70 236.53 m 218.74 240.44 l S 218.74 236.53 m 218.79 237.77 l S 218.79 236.53 m 218.84 241.47 l S 218.84 236.53 m 218.88 239.82 l S 218.88 236.53 m 218.93 245.16 l S 218.93 236.53 m 218.97 239.62 l S 218.97 236.53 m 219.02 248.04 l S 219.02 236.53 m 219.07 242.90 l S 219.07 236.53 m 219.11 241.67 l S 219.11 236.53 m 219.16 237.77 l S 219.16 236.53 m 219.20 240.85 l S 219.20 236.53 m 219.25 237.97 l S 219.25 236.53 m 219.30 237.36 l S 219.30 236.53 m 219.34 241.26 l S 219.34 236.53 m 219.39 238.79 l S 219.39 236.53 m 219.43 242.70 l S 219.43 236.53 m 219.48 240.23 l S 219.48 236.53 m 219.53 241.67 l S 219.53 236.53 m 219.57 240.44 l S 219.57 236.53 m 219.62 240.85 l S 219.62 236.53 m 219.66 238.38 l S 219.66 236.53 m 219.71 238.38 l S 219.71 236.53 m 219.76 236.94 l S 219.76 236.53 m 219.80 237.77 l S 219.80 236.53 m 219.85 238.18 l S 219.85 236.53 m 219.89 240.23 l S 219.89 236.53 m 219.94 237.15 l S 219.94 236.53 m 219.99 237.36 l S 219.99 236.53 m 220.03 236.94 l S 220.03 236.53 m 220.08 237.15 l S 220.08 236.53 m 220.12 237.36 l S 220.12 236.53 m 220.17 236.94 l S 220.17 236.53 m 220.22 237.15 l S 220.22 236.53 m 220.26 236.94 l S 220.26 236.53 m 220.31 236.94 l S 220.31 236.53 m 220.35 236.94 l S 220.35 236.53 m 220.40 237.15 l S 220.40 236.53 m 220.45 236.94 l S 220.45 236.53 m 220.49 236.94 l S 220.49 236.53 m 220.54 237.36 l S 220.54 236.53 m 220.58 236.94 l S 220.58 236.53 m 220.63 236.94 l S 220.63 236.53 m 220.68 236.94 l S 220.68 236.53 m 220.72 236.94 l S 220.72 236.53 m 220.77 236.94 l S 220.77 236.53 m 220.81 236.74 l S 220.81 236.53 m 220.86 236.94 l S 220.86 236.53 m 220.91 237.15 l S 220.91 236.53 m 220.95 236.94 l S 220.95 236.53 m 221.00 236.94 l S 221.00 236.53 m 221.04 236.74 l S 221.04 236.53 m 221.09 237.15 l S 221.09 236.53 m 221.14 236.94 l S 221.14 236.53 m 221.18 236.94 l S 221.18 236.53 m 221.23 237.36 l S 221.23 236.53 m 221.27 237.15 l S 221.27 236.53 m 221.32 240.23 l S 221.32 236.53 m 221.37 237.15 l S 221.37 236.53 m 221.41 237.15 l S 221.41 236.53 m 221.46 237.15 l S 221.46 236.53 m 221.50 237.77 l S 221.50 236.53 m 221.55 238.38 l S 221.55 236.53 m 221.60 243.11 l S 221.60 236.53 m 221.64 237.15 l S 221.64 236.53 m 221.69 242.70 l S 221.69 236.53 m 221.73 237.56 l S 221.73 236.53 m 221.78 238.59 l S 221.78 236.53 m 221.83 237.77 l S 221.83 236.53 m 221.87 237.56 l S 221.87 236.53 m 221.92 237.15 l S 221.92 236.53 m 221.96 237.36 l S 221.96 236.53 m 222.01 237.77 l S 222.01 236.53 m 222.06 237.36 l S 222.06 236.53 m 222.10 237.36 l S 222.10 236.53 m 222.15 237.15 l S 222.15 236.53 m 222.19 237.36 l S 222.19 236.53 m 222.24 236.94 l S 222.24 236.53 m 222.29 237.56 l S 222.29 236.53 m 222.33 237.15 l S 222.33 236.53 m 222.38 237.77 l S 222.38 236.53 m 222.43 240.64 l S 222.43 236.53 m 222.47 237.36 l S 222.47 236.53 m 222.52 239.21 l S 222.52 236.53 m 222.56 237.97 l S 222.56 236.53 m 222.61 237.15 l S 222.61 236.53 m 222.66 237.36 l S 222.66 236.53 m 222.70 237.15 l S 222.70 236.53 m 222.75 237.56 l S 222.75 236.53 m 222.79 237.36 l S 222.79 236.53 m 222.84 236.94 l S 222.84 236.53 m 222.89 236.94 l S 222.89 236.53 m 222.93 239.21 l S 222.93 236.53 m 222.98 236.94 l S 222.98 236.53 m 223.02 236.94 l S 223.02 236.53 m 223.07 237.15 l S 223.07 236.53 m 223.12 237.15 l S 223.12 236.53 m 223.16 237.15 l S 223.16 236.53 m 223.21 237.15 l S 223.21 236.53 m 223.25 237.77 l S 223.25 236.53 m 223.30 236.94 l S 223.30 236.53 m 223.35 239.62 l S 223.35 236.53 m 223.39 240.64 l S 223.39 236.53 m 223.44 237.15 l S 223.44 236.53 m 223.48 237.15 l S 223.48 236.53 m 223.53 236.94 l S 223.53 236.53 m 223.58 239.82 l S 223.58 236.53 m 223.62 237.36 l S 223.62 236.53 m 223.67 236.94 l S 223.67 236.53 m 223.71 263.87 l S 223.71 236.53 m 223.76 239.62 l S 223.76 236.53 m 223.81 240.23 l S 223.81 236.53 m 223.85 238.79 l S 223.85 236.53 m 223.90 240.23 l S 223.90 236.53 m 223.94 237.97 l S 223.94 236.53 m 223.99 238.38 l S 223.99 236.53 m 224.04 238.79 l S 224.04 236.53 m 224.08 236.94 l S 224.08 236.53 m 224.13 237.15 l S 224.13 236.53 m 224.17 237.36 l S 224.17 236.53 m 224.22 238.18 l S 224.22 236.53 m 224.27 237.15 l S 224.27 236.53 m 224.31 237.15 l S 224.31 236.53 m 224.36 237.77 l S 224.36 236.53 m 224.40 237.56 l S 224.40 236.53 m 224.45 246.19 l S 224.45 236.53 m 224.50 246.60 l S 224.50 236.53 m 224.54 242.90 l S 224.54 236.53 m 224.59 237.97 l S 224.59 236.53 m 224.63 237.56 l S 224.63 236.53 m 224.68 237.36 l S 224.68 236.53 m 224.73 238.38 l S 224.73 236.53 m 224.77 237.36 l S 224.77 236.53 m 224.82 238.18 l S 224.82 236.53 m 224.86 238.38 l S 224.86 236.53 m 224.91 239.21 l S 224.91 236.53 m 224.96 237.15 l S 224.96 236.53 m 225.00 237.77 l S 225.00 236.53 m 225.05 238.79 l S 225.05 236.53 m 225.09 238.38 l S 225.09 236.53 m 225.14 236.94 l S 225.14 236.53 m 225.19 236.94 l S 225.19 236.53 m 225.23 237.15 l S 225.23 236.53 m 225.28 237.36 l S 225.28 236.53 m 225.32 236.94 l S 225.32 236.53 m 225.37 236.74 l S 225.37 236.53 m 225.42 236.74 l S 225.42 236.53 m 225.46 236.74 l S 225.46 236.53 m 225.51 236.94 l S 225.51 236.53 m 225.55 236.74 l S 225.55 236.53 m 225.60 236.74 l S 225.60 236.53 m 225.65 236.74 l S 225.65 236.53 m 225.69 236.94 l S 225.69 236.53 m 225.74 236.74 l S 225.74 236.53 m 225.78 236.74 l S 225.78 236.53 m 225.83 236.74 l S 225.83 236.53 m 225.88 236.94 l S 225.88 236.53 m 225.92 236.74 l S 225.92 236.53 m 225.97 236.74 l S 225.97 236.53 m 226.01 237.15 l S 226.01 236.53 m 226.06 236.74 l S 226.06 236.53 m 226.11 236.94 l S 226.11 236.53 m 226.15 237.15 l S 226.15 236.53 m 226.20 236.74 l S 226.20 236.53 m 226.24 236.74 l S 226.24 236.53 m 226.29 237.15 l S 226.29 236.53 m 226.34 236.94 l S 226.34 236.53 m 226.38 236.94 l S 226.38 236.53 m 226.43 237.36 l S 226.43 236.53 m 226.47 237.36 l S 226.47 236.53 m 226.52 237.15 l S 226.52 236.53 m 226.57 236.94 l S 226.57 236.53 m 226.61 237.15 l S 226.61 236.53 m 226.66 236.94 l S 226.66 236.53 m 226.70 237.77 l S 226.70 236.53 m 226.75 236.94 l S 226.75 236.53 m 226.80 236.94 l S 226.80 236.53 m 226.84 237.15 l S 226.84 236.53 m 226.89 237.36 l S 226.89 236.53 m 226.93 236.94 l S 226.93 236.53 m 226.98 236.94 l S 226.98 236.53 m 227.03 236.94 l S 227.03 236.53 m 227.07 236.94 l S 227.07 236.53 m 227.12 237.15 l S 227.12 236.53 m 227.16 236.94 l S 227.16 236.53 m 227.21 237.15 l S 227.21 236.53 m 227.26 236.94 l S 227.26 236.53 m 227.30 237.15 l S 227.30 236.53 m 227.35 237.36 l S 227.35 236.53 m 227.39 237.15 l S 227.39 236.53 m 227.44 237.56 l S 227.44 236.53 m 227.49 241.67 l S 227.49 236.53 m 227.53 237.36 l S 227.53 236.53 m 227.58 237.15 l S 227.58 236.53 m 227.62 237.15 l S 227.62 236.53 m 227.67 238.18 l S 227.67 236.53 m 227.72 237.15 l S 227.72 236.53 m 227.76 236.94 l S 227.76 236.53 m 227.81 237.15 l S 227.81 236.53 m 227.85 237.15 l S 227.85 236.53 m 227.90 236.94 l S 227.90 236.53 m 227.95 236.94 l S 227.95 236.53 m 227.99 236.74 l S 227.99 236.53 m 228.04 237.36 l S 228.04 236.53 m 228.08 238.59 l S 228.08 236.53 m 228.13 237.36 l S 228.13 236.53 m 228.18 237.97 l S 228.18 236.53 m 228.22 237.56 l S 228.22 236.53 m 228.27 237.36 l S 228.27 236.53 m 228.31 238.79 l S 228.31 236.53 m 228.36 238.59 l S 228.36 236.53 m 228.41 237.15 l S 228.41 236.53 m 228.45 237.36 l S 228.45 236.53 m 228.50 237.15 l S 228.50 236.53 m 228.54 237.36 l S 228.54 236.53 m 228.59 237.56 l S 228.59 236.53 m 228.64 237.15 l S 228.64 236.53 m 228.68 237.15 l S 228.68 236.53 m 228.73 237.15 l S 228.73 236.53 m 228.77 237.15 l S 228.77 236.53 m 228.82 236.94 l S 228.82 236.53 m 228.87 237.36 l S 228.87 236.53 m 228.91 237.36 l S 228.91 236.53 m 228.96 236.94 l S 228.96 236.53 m 229.00 238.59 l S 229.00 236.53 m 229.05 237.36 l S 229.05 236.53 m 229.10 237.15 l S 229.10 236.53 m 229.14 237.15 l S 229.14 236.53 m 229.19 237.36 l S 229.19 236.53 m 229.23 238.18 l S 229.23 236.53 m 229.28 239.62 l S 229.28 236.53 m 229.33 237.15 l S 229.33 236.53 m 229.37 236.94 l S 229.37 236.53 m 229.42 236.94 l S 229.42 236.53 m 229.46 237.15 l S 229.46 236.53 m 229.51 236.94 l S 229.51 236.53 m 229.56 236.94 l S 229.56 236.53 m 229.60 237.36 l S 229.60 236.53 m 229.65 237.97 l S 229.65 236.53 m 229.69 240.85 l S 229.69 236.53 m 229.74 237.36 l S 229.74 236.53 m 229.79 237.15 l S 229.79 236.53 m 229.83 237.56 l S 229.83 236.53 m 229.88 237.36 l S 229.88 236.53 m 229.92 237.36 l S 229.92 236.53 m 229.97 237.36 l S 229.97 236.53 m 230.02 237.56 l S 230.02 236.53 m 230.06 240.85 l S 230.06 236.53 m 230.11 238.59 l S 230.11 236.53 m 230.15 239.00 l S 230.15 236.53 m 230.20 244.96 l S 230.20 236.53 m 230.25 239.41 l S 230.25 236.53 m 230.29 237.36 l S 230.29 236.53 m 230.34 237.36 l S 230.34 236.53 m 230.38 236.94 l S 230.38 236.53 m 230.43 237.36 l S 230.43 236.53 m 230.48 236.94 l S 230.48 236.53 m 230.52 237.36 l S 230.52 236.53 m 230.57 237.56 l S 230.57 236.53 m 230.62 238.59 l S 230.62 236.53 m 230.66 237.77 l S 230.66 236.53 m 230.71 239.41 l S 230.71 236.53 m 230.75 239.41 l S 230.75 236.53 m 230.80 238.38 l S 230.80 236.53 m 230.85 239.62 l S 230.85 236.53 m 230.89 240.03 l S 230.89 236.53 m 230.94 248.25 l S 230.94 236.53 m 230.98 247.22 l S 230.98 236.53 m 231.03 252.77 l S 231.03 236.53 m 231.08 238.59 l S 231.08 236.53 m 231.12 238.38 l S 231.12 236.53 m 231.17 238.79 l S 231.17 236.53 m 231.21 244.55 l S 231.21 236.53 m 231.26 241.26 l S 231.26 236.53 m 231.31 243.93 l S 231.31 236.53 m 231.35 237.15 l S 231.35 236.53 m 231.40 241.47 l S 231.40 236.53 m 231.44 239.00 l S 231.44 236.53 m 231.49 240.44 l S 231.49 236.53 m 231.54 239.21 l S 231.54 236.53 m 231.58 240.03 l S 231.58 236.53 m 231.63 237.77 l S 231.63 236.53 m 231.67 238.38 l S 231.67 236.53 m 231.72 237.36 l S 231.72 236.53 m 231.77 241.05 l S 231.77 236.53 m 231.81 240.85 l S 231.81 236.53 m 231.86 237.56 l S 231.86 236.53 m 231.90 237.15 l S 231.90 236.53 m 231.95 236.94 l S 231.95 236.53 m 232.00 236.94 l S 232.00 236.53 m 232.04 236.94 l S 232.04 236.53 m 232.09 237.15 l S 232.09 236.53 m 232.13 236.94 l S 232.13 236.53 m 232.18 237.15 l S 232.18 236.53 m 232.23 236.74 l S 232.23 236.53 m 232.27 236.94 l S 232.27 236.53 m 232.32 236.94 l S 232.32 236.53 m 232.36 237.15 l S 232.36 236.53 m 232.41 237.15 l S 232.41 236.53 m 232.46 236.94 l S 232.46 236.53 m 232.50 236.94 l S 232.50 236.53 m 232.55 237.15 l S 232.55 236.53 m 232.59 237.15 l S 232.59 236.53 m 232.64 237.15 l S 232.64 236.53 m 232.69 237.15 l S 232.69 236.53 m 232.73 237.15 l S 232.73 236.53 m 232.78 236.94 l S 232.78 236.53 m 232.82 237.15 l S 232.82 236.53 m 232.87 238.38 l S 232.87 236.53 m 232.92 237.56 l S 232.92 236.53 m 232.96 236.94 l S 232.96 236.53 m 233.01 237.36 l S 233.01 236.53 m 233.05 237.56 l S 233.05 236.53 m 233.10 241.26 l S 233.10 236.53 m 233.15 237.36 l S 233.15 236.53 m 233.19 236.94 l S 233.19 236.53 m 233.24 237.97 l S 233.24 236.53 m 233.28 237.56 l S 233.28 236.53 m 233.33 236.94 l S 233.33 236.53 m 233.38 236.94 l S 233.38 236.53 m 233.42 237.56 l S 233.42 236.53 m 233.47 236.94 l S 233.47 236.53 m 233.51 237.15 l S 233.51 236.53 m 233.56 236.94 l S 233.56 236.53 m 233.61 236.94 l S 233.61 236.53 m 233.65 237.36 l S 233.65 236.53 m 233.70 236.94 l S 233.70 236.53 m 233.74 237.15 l S 233.74 236.53 m 233.79 237.15 l S 233.79 236.53 m 233.84 236.94 l S 233.84 236.53 m 233.88 237.15 l S 233.88 236.53 m 233.93 236.94 l S 233.93 236.53 m 233.97 236.94 l S 233.97 236.53 m 234.02 237.15 l S 234.02 236.53 m 234.07 237.15 l S 234.07 236.53 m 234.11 237.36 l S 234.11 236.53 m 234.16 236.94 l S 234.16 236.53 m 234.20 237.15 l S 234.20 236.53 m 234.25 237.36 l S 234.25 236.53 m 234.30 237.15 l S 234.30 236.53 m 234.34 236.94 l S 234.34 236.53 m 234.39 237.36 l S 234.39 236.53 m 234.43 237.36 l S 234.43 236.53 m 234.48 237.77 l S 234.48 236.53 m 234.53 237.15 l S 234.53 236.53 m 234.57 238.38 l S 234.57 236.53 m 234.62 241.26 l S 234.62 236.53 m 234.66 237.15 l S 234.66 236.53 m 234.71 237.15 l S 234.71 236.53 m 234.76 236.94 l S 234.76 236.53 m 234.80 237.15 l S 234.80 236.53 m 234.85 236.94 l S 234.85 236.53 m 234.89 237.56 l S 234.89 236.53 m 234.94 237.15 l S 234.94 236.53 m 234.99 236.94 l S 234.99 236.53 m 235.03 237.36 l S 235.03 236.53 m 235.08 239.21 l S 235.08 236.53 m 235.12 237.36 l S 235.12 236.53 m 235.17 239.82 l S 235.17 236.53 m 235.22 241.26 l S 235.22 236.53 m 235.26 237.36 l S 235.26 236.53 m 235.31 237.77 l S 235.31 236.53 m 235.35 242.70 l S 235.35 236.53 m 235.40 244.14 l S 235.40 236.53 m 235.45 239.00 l S 235.45 236.53 m 235.49 236.94 l S 235.49 236.53 m 235.54 237.36 l S 235.54 236.53 m 235.58 237.15 l S 235.58 236.53 m 235.63 237.97 l S 235.63 236.53 m 235.68 238.18 l S 235.68 236.53 m 235.72 237.15 l S 235.72 236.53 m 235.77 236.94 l S 235.77 236.53 m 235.81 238.18 l S 235.81 236.53 m 235.86 239.00 l S 235.86 236.53 m 235.91 237.36 l S 235.91 236.53 m 235.95 238.38 l S 235.95 236.53 m 236.00 238.38 l S 236.00 236.53 m 236.04 240.64 l S 236.04 236.53 m 236.09 237.97 l S 236.09 236.53 m 236.14 236.94 l S 236.14 236.53 m 236.18 237.56 l S 236.18 236.53 m 236.23 243.11 l S 236.23 236.53 m 236.27 237.77 l S 236.27 236.53 m 236.32 238.18 l S 236.32 236.53 m 236.37 241.88 l S 236.37 236.53 m 236.41 237.15 l S 236.41 236.53 m 236.46 237.15 l S 236.46 236.53 m 236.50 237.15 l S 236.50 236.53 m 236.55 237.15 l S 236.55 236.53 m 236.60 237.36 l S 236.60 236.53 m 236.64 237.56 l S 236.64 236.53 m 236.69 237.15 l S 236.69 236.53 m 236.73 237.15 l S 236.73 236.53 m 236.78 237.15 l S 236.78 236.53 m 236.83 236.94 l S 236.83 236.53 m 236.87 237.15 l S 236.87 236.53 m 236.92 237.15 l S 236.92 236.53 m 236.96 237.36 l S 236.96 236.53 m 237.01 237.15 l S 237.01 236.53 m 237.06 237.36 l S 237.06 236.53 m 237.10 236.94 l S 237.10 236.53 m 237.15 237.36 l S 237.15 236.53 m 237.19 237.15 l S 237.19 236.53 m 237.24 237.15 l S 237.24 236.53 m 237.29 237.56 l S 237.29 236.53 m 237.33 237.36 l S 237.33 236.53 m 237.38 237.36 l S 237.38 236.53 m 237.42 238.18 l S 237.42 236.53 m 237.47 238.18 l S 237.47 236.53 m 237.52 237.36 l S 237.52 236.53 m 237.56 236.53 l S 237.56 236.53 m 237.61 237.56 l S 237.61 236.53 m 237.65 237.15 l S 237.65 236.53 m 237.70 237.36 l S 237.70 236.53 m 237.75 239.21 l S 237.75 236.53 m 237.79 237.77 l S 237.79 236.53 m 237.84 239.21 l S 237.84 236.53 m 237.88 236.94 l S 237.88 236.53 m 237.93 241.05 l S 237.93 236.53 m 237.98 237.36 l S 237.98 236.53 m 238.02 238.59 l S 238.02 236.53 m 238.07 237.77 l S 238.07 236.53 m 238.11 242.90 l S 238.11 236.53 m 238.16 249.89 l S 238.16 236.53 m 238.21 252.77 l S 238.21 236.53 m 238.25 249.28 l S 238.25 236.53 m 238.30 250.51 l S 238.30 236.53 m 238.34 239.21 l S 238.34 236.53 m 238.39 239.62 l S 238.39 236.53 m 238.44 237.36 l S 238.44 236.53 m 238.48 237.15 l S 238.48 236.53 m 238.53 239.41 l S 238.53 236.53 m 238.58 242.49 l S 238.58 236.53 m 238.62 239.00 l S 238.62 236.53 m 238.67 237.36 l S 238.67 236.53 m 238.71 238.38 l S 238.71 236.53 m 238.76 237.56 l S 238.76 236.53 m 238.81 237.15 l S 238.81 236.53 m 238.85 238.38 l S 238.85 236.53 m 238.90 237.36 l S 238.90 236.53 m 238.94 237.15 l S 238.94 236.53 m 238.99 237.15 l S 238.99 236.53 m 239.04 236.94 l S 239.04 236.53 m 239.08 236.94 l S 239.08 236.53 m 239.13 236.94 l S 239.13 236.53 m 239.17 236.74 l S 239.17 236.53 m 239.22 237.15 l S 239.22 236.53 m 239.27 236.94 l S 239.27 236.53 m 239.31 236.94 l S 239.31 236.53 m 239.36 236.94 l S 239.36 236.53 m 239.40 236.94 l S 239.40 236.53 m 239.45 238.18 l S 239.45 236.53 m 239.50 237.15 l S 239.50 236.53 m 239.54 237.15 l S 239.54 236.53 m 239.59 237.36 l S 239.59 236.53 m 239.63 240.44 l S 239.63 236.53 m 239.68 237.36 l S 239.68 236.53 m 239.73 239.21 l S 239.73 236.53 m 239.77 245.58 l S 239.77 236.53 m 239.82 237.56 l S 239.82 236.53 m 239.86 237.36 l S 239.86 236.53 m 239.91 237.15 l S 239.91 236.53 m 239.96 236.74 l S 239.96 236.53 m 240.00 237.97 l S 240.00 236.53 m 240.05 238.38 l S 240.05 236.53 m 240.09 237.36 l S 240.09 236.53 m 240.14 237.15 l S 240.14 236.53 m 240.19 237.36 l S 240.19 236.53 m 240.23 237.15 l S 240.23 236.53 m 240.28 237.15 l S 240.28 236.53 m 240.32 237.15 l S 240.32 236.53 m 240.37 237.15 l S 240.37 236.53 m 240.42 237.36 l S 240.42 236.53 m 240.46 237.15 l S 240.46 236.53 m 240.51 236.94 l S 240.51 236.53 m 240.55 237.36 l S 240.55 236.53 m 240.60 237.36 l S 240.60 236.53 m 240.65 237.77 l S 240.65 236.53 m 240.69 236.94 l S 240.69 236.53 m 240.74 237.36 l S 240.74 236.53 m 240.78 236.94 l S 240.78 236.53 m 240.83 237.15 l S 240.83 236.53 m 240.88 236.94 l S 240.88 236.53 m 240.92 237.56 l S 240.92 236.53 m 240.97 237.15 l S 240.97 236.53 m 241.01 236.94 l S 241.01 236.53 m 241.06 237.15 l S 241.06 236.53 m 241.11 236.94 l S 241.11 236.53 m 241.15 236.94 l S 241.15 236.53 m 241.20 236.94 l S 241.20 236.53 m 241.24 236.94 l S 241.24 236.53 m 241.29 236.53 l S 241.29 236.53 m 241.34 236.94 l S 241.34 236.53 m 241.38 237.36 l S 241.38 236.53 m 241.43 237.36 l S 241.43 236.53 m 241.47 236.94 l S 241.47 236.53 m 241.52 236.94 l S 241.52 236.53 m 241.57 237.15 l S 241.57 236.53 m 241.61 237.15 l S 241.61 236.53 m 241.66 237.15 l S 241.66 236.53 m 241.70 238.79 l S 241.70 236.53 m 241.75 237.15 l S 241.75 236.53 m 241.80 243.93 l S 241.80 236.53 m 241.84 237.15 l S 241.84 236.53 m 241.89 237.15 l S 241.89 236.53 m 241.93 237.36 l S 241.93 236.53 m 241.98 237.15 l S 241.98 236.53 m 242.03 237.15 l S 242.03 236.53 m 242.07 236.94 l S 242.07 236.53 m 242.12 236.94 l S 242.12 236.53 m 242.16 237.15 l S 242.16 236.53 m 242.21 236.94 l S 242.21 236.53 m 242.26 237.15 l S 242.26 236.53 m 242.30 236.94 l S 242.30 236.53 m 242.35 236.94 l S 242.35 236.53 m 242.39 237.15 l S 242.39 236.53 m 242.44 236.94 l S 242.44 236.53 m 242.49 237.36 l S 242.49 236.53 m 242.53 238.18 l S 242.53 236.53 m 242.58 239.21 l S 242.58 236.53 m 242.62 237.56 l S 242.62 236.53 m 242.67 238.59 l S 242.67 236.53 m 242.72 239.21 l S 242.72 236.53 m 242.76 237.56 l S 242.76 236.53 m 242.81 245.99 l S 242.81 236.53 m 242.85 239.21 l S 242.85 236.53 m 242.90 241.26 l S 242.90 236.53 m 242.95 237.56 l S 242.95 236.53 m 242.99 239.21 l S 242.99 236.53 m 243.04 237.97 l S 243.04 236.53 m 243.08 237.36 l S 243.08 236.53 m 243.13 237.15 l S 243.13 236.53 m 243.18 237.15 l S 243.18 236.53 m 243.22 236.94 l S 243.22 236.53 m 243.27 237.15 l S 243.27 236.53 m 243.31 237.15 l S 243.31 236.53 m 243.36 237.15 l S 243.36 236.53 m 243.41 237.15 l S 243.41 236.53 m 243.45 237.15 l S 243.45 236.53 m 243.50 237.15 l S 243.50 236.53 m 243.54 237.15 l S 243.54 236.53 m 243.59 237.15 l S 243.59 236.53 m 243.64 236.94 l S 243.64 236.53 m 243.68 236.74 l S 243.68 236.53 m 243.73 236.94 l S 243.73 236.53 m 243.77 237.15 l S 243.77 236.53 m 243.82 237.36 l S 243.82 236.53 m 243.87 237.15 l S 243.87 236.53 m 243.91 237.15 l S 243.91 236.53 m 243.96 237.36 l S 243.96 236.53 m 244.00 237.15 l S 244.00 236.53 m 244.05 236.94 l S 244.05 236.53 m 244.10 237.15 l S 244.10 236.53 m 244.14 240.23 l S 244.14 236.53 m 244.19 241.05 l S 244.19 236.53 m 244.23 238.18 l S 244.23 236.53 m 244.28 237.77 l S 244.28 236.53 m 244.33 236.94 l S 244.33 236.53 m 244.37 236.94 l S 244.37 236.53 m 244.42 237.36 l S 244.42 236.53 m 244.46 236.94 l S 244.46 236.53 m 244.51 237.36 l S 244.51 236.53 m 244.56 237.15 l S 244.56 236.53 m 244.60 236.94 l S 244.60 236.53 m 244.65 236.94 l S 244.65 236.53 m 244.69 237.15 l S 244.69 236.53 m 244.74 240.85 l S 244.74 236.53 m 244.79 238.38 l S 244.79 236.53 m 244.83 238.59 l S 244.83 236.53 m 244.88 237.77 l S 244.88 236.53 m 244.92 237.36 l S 244.92 236.53 m 244.97 237.56 l S 244.97 236.53 m 245.02 237.15 l S 245.02 236.53 m 245.06 237.56 l S 245.06 236.53 m 245.11 237.77 l S 245.11 236.53 m 245.15 237.36 l S 245.15 236.53 m 245.20 236.94 l S 245.20 236.53 m 245.25 236.94 l S 245.25 236.53 m 245.29 237.56 l S 245.29 236.53 m 245.34 237.15 l S 245.34 236.53 m 245.38 237.36 l S 245.38 236.53 m 245.43 237.15 l S 245.43 236.53 m 245.48 237.36 l S 245.48 236.53 m 245.52 237.56 l S 245.52 236.53 m 245.57 237.36 l S 245.57 236.53 m 245.61 246.81 l S 245.61 236.53 m 245.66 244.14 l S 245.66 236.53 m 245.71 243.32 l S 245.71 236.53 m 245.75 237.36 l S 245.75 236.53 m 245.80 238.18 l S 245.80 236.53 m 245.84 238.79 l S 245.84 236.53 m 245.89 238.18 l S 245.89 236.53 m 245.94 237.15 l S 245.94 236.53 m 245.98 237.15 l S 245.98 236.53 m 246.03 236.94 l S 246.03 236.53 m 246.07 237.15 l S 246.07 236.53 m 246.12 237.15 l S 246.12 236.53 m 246.17 237.15 l S 246.17 236.53 m 246.21 237.15 l S 246.21 236.53 m 246.26 236.94 l S 246.26 236.53 m 246.30 237.15 l S 246.30 236.53 m 246.35 237.36 l S 246.35 236.53 m 246.40 236.94 l S 246.40 236.53 m 246.44 236.94 l S 246.44 236.53 m 246.49 237.36 l S 246.49 236.53 m 246.54 237.56 l S 246.54 236.53 m 246.58 237.36 l S 246.58 236.53 m 246.63 237.15 l S 246.63 236.53 m 246.67 237.15 l S 246.67 236.53 m 246.72 237.15 l S 246.72 236.53 m 246.77 237.36 l S 246.77 236.53 m 246.81 237.77 l S 246.81 236.53 m 246.86 237.15 l S 246.86 236.53 m 246.90 237.15 l S 246.90 236.53 m 246.95 239.21 l S 246.95 236.53 m 247.00 237.97 l S 247.00 236.53 m 247.04 237.77 l S 247.04 236.53 m 247.09 237.15 l S 247.09 236.53 m 247.13 237.36 l S 247.13 236.53 m 247.18 237.56 l S 247.18 236.53 m 247.23 237.56 l S 247.23 236.53 m 247.27 237.36 l S 247.27 236.53 m 247.32 237.15 l S 247.32 236.53 m 247.36 237.77 l S 247.36 236.53 m 247.41 237.36 l S 247.41 236.53 m 247.46 237.77 l S 247.46 236.53 m 247.50 236.94 l S 247.50 236.53 m 247.55 236.94 l S 247.55 236.53 m 247.59 237.15 l S 247.59 236.53 m 247.64 236.94 l S 247.64 236.53 m 247.69 237.15 l S 247.69 236.53 m 247.73 236.94 l S 247.73 236.53 m 247.78 237.15 l S 247.78 236.53 m 247.82 237.36 l S 247.82 236.53 m 247.87 237.15 l S 247.87 236.53 m 247.92 237.36 l S 247.92 236.53 m 247.96 237.56 l S 247.96 236.53 m 248.01 239.82 l S 248.01 236.53 m 248.05 260.99 l S 248.05 236.53 m 248.10 243.52 l S 248.10 236.53 m 248.15 236.94 l S 248.15 236.53 m 248.19 237.77 l S 248.19 236.53 m 248.24 238.38 l S 248.24 236.53 m 248.28 236.94 l S 248.28 236.53 m 248.33 237.77 l S 248.33 236.53 m 248.38 239.21 l S 248.38 236.53 m 248.42 237.77 l S 248.42 236.53 m 248.47 239.62 l S 248.47 236.53 m 248.51 239.82 l S 248.51 236.53 m 248.56 238.18 l S 248.56 236.53 m 248.61 240.44 l S 248.61 236.53 m 248.65 240.64 l S 248.65 236.53 m 248.70 241.67 l S 248.70 236.53 m 248.74 241.26 l S 248.74 236.53 m 248.79 237.15 l S 248.79 236.53 m 248.84 237.77 l S 248.84 236.53 m 248.88 246.81 l S 248.88 236.53 m 248.93 248.66 l S 248.93 236.53 m 248.97 244.34 l S 248.97 236.53 m 249.02 239.00 l S 249.02 236.53 m 249.07 251.74 l S 249.07 236.53 m 249.11 238.79 l S 249.11 236.53 m 249.16 238.18 l S 249.16 236.53 m 249.20 237.36 l S 249.20 236.53 m 249.25 237.15 l S 249.25 236.53 m 249.30 238.59 l S 249.30 236.53 m 249.34 236.94 l S 249.34 236.53 m 249.39 237.15 l S 249.39 236.53 m 249.43 239.00 l S 249.43 236.53 m 249.48 237.77 l S 249.48 236.53 m 249.53 237.77 l S 249.53 236.53 m 249.57 237.36 l S 249.57 236.53 m 249.62 237.77 l S 249.62 236.53 m 249.66 237.97 l S 249.66 236.53 m 249.71 237.36 l S 249.71 236.53 m 249.76 239.62 l S 249.76 236.53 m 249.80 239.21 l S 249.80 236.53 m 249.85 243.93 l S 249.85 236.53 m 249.89 241.47 l S 249.89 236.53 m 249.94 244.96 l S 249.94 236.53 m 249.99 240.64 l S 249.99 236.53 m 250.03 240.85 l S 250.03 236.53 m 250.08 237.56 l S 250.08 236.53 m 250.12 239.00 l S 250.12 236.53 m 250.17 240.64 l S 250.17 236.53 m 250.22 237.77 l S 250.22 236.53 m 250.26 237.56 l S 250.26 236.53 m 250.31 237.15 l S 250.31 236.53 m 250.35 237.15 l S 250.35 236.53 m 250.40 236.94 l S 250.40 236.53 m 250.45 237.77 l S Q q 59.04 73.44 198.72 29.52 re W n Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 73.44 m 256.73 73.44 l S 66.40 73.44 m 66.40 66.24 l S 93.59 73.44 m 93.59 66.24 l S 120.78 73.44 m 120.78 66.24 l S 147.97 73.44 m 147.97 66.24 l S 175.16 73.44 m 175.16 66.24 l S 202.35 73.44 m 202.35 66.24 l S 229.54 73.44 m 229.54 66.24 l S 256.73 73.44 m 256.73 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 44.55 47.52 Tm (0.0e+00) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 98.93 47.52 Tm (4.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 153.31 47.52 Tm (8.0e+07) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 207.69 47.52 Tm (1.2e+08) Tj ET 59.04 74.53 m 59.04 96.95 l S 59.04 74.53 m 51.84 74.53 l S 59.04 82.01 m 51.84 82.01 l S 59.04 89.48 m 51.84 89.48 l S 59.04 96.95 m 51.84 96.95 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 57.69 Tm (0e+00) Tj ET 59.04 73.44 m 257.76 73.44 l 257.76 102.96 l 59.04 102.96 l 59.04 73.44 l S Q q 0.00 0.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 127.45 Tm (Chr 10, H3K3me3) Tj ET Q q 59.04 73.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 74.53 m 66.45 74.53 l S 66.45 74.53 m 66.49 74.59 l S 66.49 74.53 m 66.54 74.61 l S 66.54 74.53 m 66.58 75.29 l S 66.58 74.53 m 66.63 77.90 l S 66.63 74.53 m 66.68 80.50 l S 66.68 74.53 m 66.72 74.75 l S 66.72 74.53 m 66.77 74.67 l S 66.77 74.53 m 66.81 74.67 l S 66.81 74.53 m 66.86 75.18 l S 66.86 74.53 m 66.91 75.67 l S 66.91 74.53 m 66.95 74.78 l S 66.95 74.53 m 67.00 74.83 l S 67.00 74.53 m 67.04 74.75 l S 67.04 74.53 m 67.09 75.78 l S 67.09 74.53 m 67.14 79.60 l S 67.14 74.53 m 67.18 74.72 l S 67.18 74.53 m 67.23 74.72 l S 67.23 74.53 m 67.27 74.72 l S 67.27 74.53 m 67.32 74.70 l S 67.32 74.53 m 67.37 74.80 l S 67.37 74.53 m 67.41 74.78 l S 67.41 74.53 m 67.46 74.72 l S 67.46 74.53 m 67.50 74.75 l S 67.50 74.53 m 67.55 75.05 l S 67.55 74.53 m 67.60 74.72 l S 67.60 74.53 m 67.64 74.67 l S 67.64 74.53 m 67.69 74.70 l S 67.69 74.53 m 67.73 76.92 l S 67.73 74.53 m 67.78 74.70 l S 67.78 74.53 m 67.83 78.36 l S 67.83 74.53 m 67.87 76.19 l S 67.87 74.53 m 67.92 83.81 l S 67.92 74.53 m 67.96 75.46 l S 67.96 74.53 m 68.01 74.75 l S 68.01 74.53 m 68.06 74.70 l S 68.06 74.53 m 68.10 74.75 l S 68.10 74.53 m 68.15 74.94 l S 68.15 74.53 m 68.19 74.78 l S 68.19 74.53 m 68.24 74.83 l S 68.24 74.53 m 68.29 74.97 l S 68.29 74.53 m 68.33 74.75 l S 68.33 74.53 m 68.38 76.38 l S 68.38 74.53 m 68.42 74.78 l S 68.42 74.53 m 68.47 74.72 l S 68.47 74.53 m 68.52 74.86 l S 68.52 74.53 m 68.56 74.70 l S 68.56 74.53 m 68.61 74.72 l S 68.61 74.53 m 68.65 74.72 l S 68.65 74.53 m 68.70 74.72 l S 68.70 74.53 m 68.75 74.70 l S 68.75 74.53 m 68.79 74.78 l S 68.79 74.53 m 68.84 75.62 l S 68.84 74.53 m 68.88 74.75 l S 68.88 74.53 m 68.93 74.75 l S 68.93 74.53 m 68.98 74.75 l S 68.98 74.53 m 69.02 74.75 l S 69.02 74.53 m 69.07 75.24 l S 69.07 74.53 m 69.11 75.18 l S 69.11 74.53 m 69.16 74.75 l S 69.16 74.53 m 69.21 74.67 l S 69.21 74.53 m 69.25 74.72 l S 69.25 74.53 m 69.30 74.72 l S 69.30 74.53 m 69.34 74.78 l S 69.34 74.53 m 69.39 74.70 l S 69.39 74.53 m 69.44 74.70 l S 69.44 74.53 m 69.48 74.75 l S 69.48 74.53 m 69.53 74.70 l S 69.53 74.53 m 69.57 74.72 l S 69.57 74.53 m 69.62 74.70 l S 69.62 74.53 m 69.67 74.70 l S 69.67 74.53 m 69.71 74.70 l S 69.71 74.53 m 69.76 74.70 l S 69.76 74.53 m 69.80 74.75 l S 69.80 74.53 m 69.85 74.80 l S 69.85 74.53 m 69.90 74.70 l S 69.90 74.53 m 69.94 74.72 l S 69.94 74.53 m 69.99 74.72 l S 69.99 74.53 m 70.03 74.75 l S 70.03 74.53 m 70.08 74.70 l S 70.08 74.53 m 70.13 74.72 l S 70.13 74.53 m 70.17 74.70 l S 70.17 74.53 m 70.22 74.75 l S 70.22 74.53 m 70.26 74.80 l S 70.26 74.53 m 70.31 74.75 l S 70.31 74.53 m 70.36 74.67 l S 70.36 74.53 m 70.40 74.72 l S 70.40 74.53 m 70.45 74.70 l S 70.45 74.53 m 70.50 75.27 l S 70.50 74.53 m 70.54 74.89 l S 70.54 74.53 m 70.59 74.75 l S 70.59 74.53 m 70.63 76.30 l S 70.63 74.53 m 70.68 75.32 l S 70.68 74.53 m 70.73 74.67 l S 70.73 74.53 m 70.77 77.73 l S 70.77 74.53 m 70.82 77.06 l S 70.82 74.53 m 70.86 74.72 l S 70.86 74.53 m 70.91 74.75 l S 70.91 74.53 m 70.96 74.72 l S 70.96 74.53 m 71.00 74.78 l S 71.00 74.53 m 71.05 74.75 l S 71.05 74.53 m 71.09 74.78 l S 71.09 74.53 m 71.14 74.78 l S 71.14 74.53 m 71.19 78.57 l S 71.19 74.53 m 71.23 74.72 l S 71.23 74.53 m 71.28 74.91 l S 71.28 74.53 m 71.32 74.70 l S 71.32 74.53 m 71.37 74.83 l S 71.37 74.53 m 71.42 76.02 l S 71.42 74.53 m 71.46 75.59 l S 71.46 74.53 m 71.51 74.72 l S 71.51 74.53 m 71.55 76.02 l S 71.55 74.53 m 71.60 82.04 l S 71.60 74.53 m 71.65 75.86 l S 71.65 74.53 m 71.69 76.30 l S 71.69 74.53 m 71.74 75.48 l S 71.74 74.53 m 71.78 74.72 l S 71.78 74.53 m 71.83 76.70 l S 71.83 74.53 m 71.88 75.32 l S 71.88 74.53 m 71.92 75.24 l S 71.92 74.53 m 71.97 76.54 l S 71.97 74.53 m 72.01 75.46 l S 72.01 74.53 m 72.06 75.43 l S 72.06 74.53 m 72.11 74.91 l S 72.11 74.53 m 72.15 74.70 l S 72.15 74.53 m 72.20 74.75 l S 72.20 74.53 m 72.24 74.86 l S 72.24 74.53 m 72.29 74.72 l S 72.29 74.53 m 72.34 74.80 l S 72.34 74.53 m 72.38 74.70 l S 72.38 74.53 m 72.43 74.72 l S 72.43 74.53 m 72.47 74.70 l S 72.47 74.53 m 72.52 74.78 l S 72.52 74.53 m 72.57 74.75 l S 72.57 74.53 m 72.61 75.27 l S 72.61 74.53 m 72.66 74.70 l S 72.66 74.53 m 72.70 74.70 l S 72.70 74.53 m 72.75 74.83 l S 72.75 74.53 m 72.80 75.21 l S 72.80 74.53 m 72.84 74.75 l S 72.84 74.53 m 72.89 74.70 l S 72.89 74.53 m 72.93 74.72 l S 72.93 74.53 m 72.98 74.75 l S 72.98 74.53 m 73.03 75.40 l S 73.03 74.53 m 73.07 74.91 l S 73.07 74.53 m 73.12 74.97 l S 73.12 74.53 m 73.16 74.70 l S 73.16 74.53 m 73.21 74.67 l S 73.21 74.53 m 73.26 74.64 l S 73.26 74.53 m 73.30 74.78 l S 73.30 74.53 m 73.35 74.70 l S 73.35 74.53 m 73.39 81.69 l S 73.39 74.53 m 73.44 74.75 l S 73.44 74.53 m 73.49 74.72 l S 73.49 74.53 m 73.53 74.70 l S 73.53 74.53 m 73.58 74.70 l S 73.58 74.53 m 73.62 74.75 l S 73.62 74.53 m 73.67 77.35 l S 73.67 74.53 m 73.72 75.24 l S 73.72 74.53 m 73.76 74.72 l S 73.76 74.53 m 73.81 79.79 l S 73.81 74.53 m 73.85 78.55 l S 73.85 74.53 m 73.90 74.75 l S 73.90 74.53 m 73.95 74.83 l S 73.95 74.53 m 73.99 74.91 l S 73.99 74.53 m 74.04 76.21 l S 74.04 74.53 m 74.08 74.67 l S 74.08 74.53 m 74.13 74.64 l S 74.13 74.53 m 74.18 75.05 l S 74.18 74.53 m 74.22 80.04 l S 74.22 74.53 m 74.27 82.56 l S 74.27 74.53 m 74.31 75.51 l S 74.31 74.53 m 74.36 74.70 l S 74.36 74.53 m 74.41 75.02 l S 74.41 74.53 m 74.45 78.98 l S 74.45 74.53 m 74.50 74.75 l S 74.50 74.53 m 74.54 78.33 l S 74.54 74.53 m 74.59 74.75 l S 74.59 74.53 m 74.64 75.18 l S 74.64 74.53 m 74.68 81.31 l S 74.68 74.53 m 74.73 74.97 l S 74.73 74.53 m 74.77 81.42 l S 74.77 74.53 m 74.82 76.30 l S 74.82 74.53 m 74.87 76.70 l S 74.87 74.53 m 74.91 76.49 l S 74.91 74.53 m 74.96 76.76 l S 74.96 74.53 m 75.00 74.72 l S 75.00 74.53 m 75.05 75.51 l S 75.05 74.53 m 75.10 75.56 l S 75.10 74.53 m 75.14 75.18 l S 75.14 74.53 m 75.19 74.89 l S 75.19 74.53 m 75.23 75.65 l S 75.23 74.53 m 75.28 74.70 l S 75.28 74.53 m 75.33 76.92 l S 75.33 74.53 m 75.37 75.51 l S 75.37 74.53 m 75.42 75.51 l S 75.42 74.53 m 75.46 83.56 l S 75.46 74.53 m 75.51 77.14 l S 75.51 74.53 m 75.56 74.80 l S 75.56 74.53 m 75.60 75.13 l S 75.60 74.53 m 75.65 74.78 l S 75.65 74.53 m 75.69 74.70 l S 75.69 74.53 m 75.74 74.70 l S 75.74 74.53 m 75.79 74.70 l S 75.79 74.53 m 75.83 74.64 l S 75.83 74.53 m 75.88 74.70 l S 75.88 74.53 m 75.92 74.78 l S 75.92 74.53 m 75.97 75.78 l S 75.97 74.53 m 76.02 74.75 l S 76.02 74.53 m 76.06 74.72 l S 76.06 74.53 m 76.11 74.97 l S 76.11 74.53 m 76.15 74.75 l S 76.15 74.53 m 76.20 74.70 l S 76.20 74.53 m 76.25 74.75 l S 76.25 74.53 m 76.29 75.21 l S 76.29 74.53 m 76.34 74.80 l S 76.34 74.53 m 76.38 74.75 l S 76.38 74.53 m 76.43 75.16 l S 76.43 74.53 m 76.48 74.75 l S 76.48 74.53 m 76.52 74.72 l S 76.52 74.53 m 76.57 74.72 l S 76.57 74.53 m 76.61 78.71 l S 76.61 74.53 m 76.66 74.75 l S 76.66 74.53 m 76.71 77.22 l S 76.71 74.53 m 76.75 74.86 l S 76.75 74.53 m 76.80 74.86 l S 76.80 74.53 m 76.84 74.70 l S 76.84 74.53 m 76.89 74.70 l S 76.89 74.53 m 76.94 75.29 l S 76.94 74.53 m 76.98 74.70 l S 76.98 74.53 m 77.03 74.75 l S 77.03 74.53 m 77.07 74.72 l S 77.07 74.53 m 77.12 80.39 l S 77.12 74.53 m 77.17 82.37 l S 77.17 74.53 m 77.21 74.75 l S 77.21 74.53 m 77.26 74.78 l S 77.26 74.53 m 77.30 74.67 l S 77.30 74.53 m 77.35 74.78 l S 77.35 74.53 m 77.40 74.78 l S 77.40 74.53 m 77.44 75.78 l S 77.44 74.53 m 77.49 80.36 l S 77.49 74.53 m 77.53 74.89 l S 77.53 74.53 m 77.58 78.11 l S 77.58 74.53 m 77.63 74.80 l S 77.63 74.53 m 77.67 74.91 l S 77.67 74.53 m 77.72 74.97 l S 77.72 74.53 m 77.76 74.91 l S 77.76 74.53 m 77.81 74.67 l S 77.81 74.53 m 77.86 76.38 l S 77.86 74.53 m 77.90 74.91 l S 77.90 74.53 m 77.95 74.97 l S 77.95 74.53 m 77.99 74.89 l S 77.99 74.53 m 78.04 74.80 l S 78.04 74.53 m 78.09 74.91 l S 78.09 74.53 m 78.13 74.67 l S 78.13 74.53 m 78.18 74.78 l S 78.18 74.53 m 78.22 74.86 l S 78.22 74.53 m 78.27 74.70 l S 78.27 74.53 m 78.32 74.72 l S 78.32 74.53 m 78.36 74.72 l S 78.36 74.53 m 78.41 74.75 l S 78.41 74.53 m 78.46 74.70 l S 78.46 74.53 m 78.50 74.75 l S 78.50 74.53 m 78.55 74.94 l S 78.55 74.53 m 78.59 74.67 l S 78.59 74.53 m 78.64 74.75 l S 78.64 74.53 m 78.69 74.72 l S 78.69 74.53 m 78.73 74.78 l S 78.73 74.53 m 78.78 74.99 l S 78.78 74.53 m 78.82 74.80 l S 78.82 74.53 m 78.87 74.80 l S 78.87 74.53 m 78.92 74.75 l S 78.92 74.53 m 78.96 74.80 l S 78.96 74.53 m 79.01 74.72 l S 79.01 74.53 m 79.05 75.05 l S 79.05 74.53 m 79.10 75.37 l S 79.10 74.53 m 79.15 74.72 l S 79.15 74.53 m 79.19 75.21 l S 79.19 74.53 m 79.24 74.70 l S 79.24 74.53 m 79.28 74.72 l S 79.28 74.53 m 79.33 74.67 l S 79.33 74.53 m 79.38 74.80 l S 79.38 74.53 m 79.42 74.67 l S 79.42 74.53 m 79.47 74.70 l S 79.47 74.53 m 79.51 74.70 l S 79.51 74.53 m 79.56 74.64 l S 79.56 74.53 m 79.61 74.70 l S 79.61 74.53 m 79.65 74.67 l S 79.65 74.53 m 79.70 74.70 l S 79.70 74.53 m 79.74 74.70 l S 79.74 74.53 m 79.79 74.72 l S 79.79 74.53 m 79.84 74.70 l S 79.84 74.53 m 79.88 74.72 l S 79.88 74.53 m 79.93 74.70 l S 79.93 74.53 m 79.97 74.70 l S 79.97 74.53 m 80.02 74.67 l S 80.02 74.53 m 80.07 74.67 l S 80.07 74.53 m 80.11 74.72 l S 80.11 74.53 m 80.16 74.72 l S 80.16 74.53 m 80.20 74.67 l S 80.20 74.53 m 80.25 74.67 l S 80.25 74.53 m 80.30 76.24 l S 80.30 74.53 m 80.34 76.24 l S 80.34 74.53 m 80.39 74.72 l S 80.39 74.53 m 80.43 74.70 l S 80.43 74.53 m 80.48 74.70 l S 80.48 74.53 m 80.53 74.67 l S 80.53 74.53 m 80.57 74.67 l S 80.57 74.53 m 80.62 74.72 l S 80.62 74.53 m 80.66 74.70 l S 80.66 74.53 m 80.71 74.86 l S 80.71 74.53 m 80.76 74.70 l S 80.76 74.53 m 80.80 74.72 l S 80.80 74.53 m 80.85 74.70 l S 80.85 74.53 m 80.89 74.72 l S 80.89 74.53 m 80.94 74.70 l S 80.94 74.53 m 80.99 74.72 l S 80.99 74.53 m 81.03 74.70 l S 81.03 74.53 m 81.08 74.67 l S 81.08 74.53 m 81.12 74.70 l S 81.12 74.53 m 81.17 74.70 l S 81.17 74.53 m 81.22 74.72 l S 81.22 74.53 m 81.26 74.75 l S 81.26 74.53 m 81.31 74.72 l S 81.31 74.53 m 81.35 74.80 l S 81.35 74.53 m 81.40 74.75 l S 81.40 74.53 m 81.45 74.72 l S 81.45 74.53 m 81.49 75.92 l S 81.49 74.53 m 81.54 74.89 l S 81.54 74.53 m 81.58 74.89 l S 81.58 74.53 m 81.63 74.83 l S 81.63 74.53 m 81.68 76.65 l S 81.68 74.53 m 81.72 84.92 l S 81.72 74.53 m 81.77 75.70 l S 81.77 74.53 m 81.81 75.05 l S 81.81 74.53 m 81.86 74.78 l S 81.86 74.53 m 81.91 74.80 l S 81.91 74.53 m 81.95 74.72 l S 81.95 74.53 m 82.00 75.08 l S 82.00 74.53 m 82.04 75.08 l S 82.04 74.53 m 82.09 75.02 l S 82.09 74.53 m 82.14 74.78 l S 82.14 74.53 m 82.18 74.70 l S 82.18 74.53 m 82.23 75.94 l S 82.23 74.53 m 82.27 74.70 l S 82.27 74.53 m 82.32 77.90 l S 82.32 74.53 m 82.37 75.18 l S 82.37 74.53 m 82.41 76.30 l S 82.41 74.53 m 82.46 74.72 l S 82.46 74.53 m 82.50 76.16 l S 82.50 74.53 m 82.55 74.67 l S 82.55 74.53 m 82.60 75.51 l S 82.60 74.53 m 82.64 76.08 l S 82.64 74.53 m 82.69 74.86 l S 82.69 74.53 m 82.73 74.70 l S 82.73 74.53 m 82.78 74.80 l S 82.78 74.53 m 82.83 74.70 l S 82.83 74.53 m 82.87 74.97 l S 82.87 74.53 m 82.92 80.20 l S 82.92 74.53 m 82.96 80.72 l S 82.96 74.53 m 83.01 78.47 l S 83.01 74.53 m 83.06 74.61 l S 83.06 74.53 m 83.10 84.76 l S 83.10 74.53 m 83.15 74.99 l S 83.15 74.53 m 83.19 76.24 l S 83.19 74.53 m 83.24 74.67 l S 83.24 74.53 m 83.29 74.70 l S 83.29 74.53 m 83.33 82.83 l S 83.33 74.53 m 83.38 74.72 l S 83.38 74.53 m 83.42 74.67 l S 83.42 74.53 m 83.47 75.43 l S 83.47 74.53 m 83.52 74.78 l S 83.52 74.53 m 83.56 74.70 l S 83.56 74.53 m 83.61 74.80 l S 83.61 74.53 m 83.65 79.06 l S 83.65 74.53 m 83.70 74.89 l S 83.70 74.53 m 83.75 74.67 l S 83.75 74.53 m 83.79 74.75 l S 83.79 74.53 m 83.84 74.70 l S 83.84 74.53 m 83.88 74.70 l S 83.88 74.53 m 83.93 74.70 l S 83.93 74.53 m 83.98 74.83 l S 83.98 74.53 m 84.02 74.70 l S 84.02 74.53 m 84.07 74.72 l S 84.07 74.53 m 84.11 74.78 l S 84.11 74.53 m 84.16 74.72 l S 84.16 74.53 m 84.21 74.75 l S 84.21 74.53 m 84.25 74.72 l S 84.25 74.53 m 84.30 74.75 l S 84.30 74.53 m 84.34 84.11 l S 84.34 74.53 m 84.39 74.78 l S 84.39 74.53 m 84.44 75.59 l S 84.44 74.53 m 84.48 74.67 l S 84.48 74.53 m 84.53 74.67 l S 84.53 74.53 m 84.57 74.67 l S 84.57 74.53 m 84.62 77.65 l S 84.62 74.53 m 84.67 78.25 l S 84.67 74.53 m 84.71 75.67 l S 84.71 74.53 m 84.76 74.67 l S 84.76 74.53 m 84.80 76.19 l S 84.80 74.53 m 84.85 74.70 l S 84.85 74.53 m 84.90 74.67 l S 84.90 74.53 m 84.94 74.89 l S 84.94 74.53 m 84.99 78.66 l S 84.99 74.53 m 85.03 74.72 l S 85.03 74.53 m 85.08 74.70 l S 85.08 74.53 m 85.13 74.72 l S 85.13 74.53 m 85.17 76.32 l S 85.17 74.53 m 85.22 74.97 l S 85.22 74.53 m 85.26 75.24 l S 85.26 74.53 m 85.31 75.32 l S 85.31 74.53 m 85.36 74.75 l S 85.36 74.53 m 85.40 76.16 l S 85.40 74.53 m 85.45 74.75 l S 85.45 74.53 m 85.49 75.05 l S 85.49 74.53 m 85.54 74.78 l S 85.54 74.53 m 85.59 76.84 l S 85.59 74.53 m 85.63 74.75 l S 85.63 74.53 m 85.68 74.72 l S 85.68 74.53 m 85.72 74.78 l S 85.72 74.53 m 85.77 74.70 l S 85.77 74.53 m 85.82 80.12 l S 85.82 74.53 m 85.86 74.78 l S 85.86 74.53 m 85.91 74.83 l S 85.91 74.53 m 85.95 74.72 l S 85.95 74.53 m 86.00 74.72 l S 86.00 74.53 m 86.05 74.86 l S 86.05 74.53 m 86.09 74.89 l S 86.09 74.53 m 86.14 74.72 l S 86.14 74.53 m 86.18 74.80 l S 86.18 74.53 m 86.23 74.72 l S 86.23 74.53 m 86.28 74.99 l S 86.28 74.53 m 86.32 82.53 l S 86.32 74.53 m 86.37 79.22 l S 86.37 74.53 m 86.42 74.70 l S 86.42 74.53 m 86.46 76.89 l S 86.46 74.53 m 86.51 74.72 l S 86.51 74.53 m 86.55 75.08 l S 86.55 74.53 m 86.60 74.72 l S 86.60 74.53 m 86.65 74.75 l S 86.65 74.53 m 86.69 84.08 l S 86.69 74.53 m 86.74 74.70 l S 86.74 74.53 m 86.78 80.47 l S 86.78 74.53 m 86.83 74.78 l S 86.83 74.53 m 86.88 83.43 l S 86.88 74.53 m 86.92 74.70 l S 86.92 74.53 m 86.97 74.75 l S 86.97 74.53 m 87.01 74.72 l S 87.01 74.53 m 87.06 79.03 l S 87.06 74.53 m 87.11 74.86 l S 87.11 74.53 m 87.15 81.72 l S 87.15 74.53 m 87.20 76.84 l S 87.20 74.53 m 87.24 74.70 l S 87.24 74.53 m 87.29 79.98 l S 87.29 74.53 m 87.34 74.80 l S 87.34 74.53 m 87.38 74.72 l S 87.38 74.53 m 87.43 75.16 l S 87.43 74.53 m 87.47 74.72 l S 87.47 74.53 m 87.52 74.91 l S 87.52 74.53 m 87.57 74.72 l S 87.57 74.53 m 87.61 74.70 l S 87.61 74.53 m 87.66 74.72 l S 87.66 74.53 m 87.70 74.70 l S 87.70 74.53 m 87.75 74.70 l S 87.75 74.53 m 87.80 74.72 l S 87.80 74.53 m 87.84 74.67 l S 87.84 74.53 m 87.89 74.72 l S 87.89 74.53 m 87.93 74.75 l S 87.93 74.53 m 87.98 74.91 l S 87.98 74.53 m 88.03 74.75 l S 88.03 74.53 m 88.07 75.40 l S 88.07 74.53 m 88.12 83.97 l S 88.12 74.53 m 88.16 74.72 l S 88.16 74.53 m 88.21 74.72 l S 88.21 74.53 m 88.26 74.70 l S 88.26 74.53 m 88.30 74.67 l S 88.30 74.53 m 88.35 74.72 l S 88.35 74.53 m 88.39 74.72 l S 88.39 74.53 m 88.44 74.72 l S 88.44 74.53 m 88.49 74.67 l S 88.49 74.53 m 88.53 74.67 l S 88.53 74.53 m 88.58 74.70 l S 88.58 74.53 m 88.62 74.75 l S 88.62 74.53 m 88.67 74.67 l S 88.67 74.53 m 88.72 74.64 l S 88.72 74.53 m 88.76 74.80 l S 88.76 74.53 m 88.81 74.75 l S 88.81 74.53 m 88.85 74.75 l S 88.85 74.53 m 88.90 79.66 l S 88.90 74.53 m 88.95 74.67 l S 88.95 74.53 m 88.99 76.57 l S 88.99 74.53 m 89.04 74.70 l S 89.04 74.53 m 89.08 75.16 l S 89.08 74.53 m 89.13 74.75 l S 89.13 74.53 m 89.18 74.67 l S 89.18 74.53 m 89.22 74.75 l S 89.22 74.53 m 89.27 74.78 l S 89.27 74.53 m 89.31 74.70 l S 89.31 74.53 m 89.36 74.83 l S 89.36 74.53 m 89.41 80.85 l S 89.41 74.53 m 89.45 74.67 l S 89.45 74.53 m 89.50 75.65 l S 89.50 74.53 m 89.54 74.67 l S 89.54 74.53 m 89.59 74.83 l S 89.59 74.53 m 89.64 74.89 l S 89.64 74.53 m 89.68 75.67 l S 89.68 74.53 m 89.73 74.67 l S 89.73 74.53 m 89.77 74.72 l S 89.77 74.53 m 89.82 74.75 l S 89.82 74.53 m 89.87 74.80 l S 89.87 74.53 m 89.91 81.50 l S 89.91 74.53 m 89.96 79.39 l S 89.96 74.53 m 90.00 74.78 l S 90.00 74.53 m 90.05 74.72 l S 90.05 74.53 m 90.10 74.78 l S 90.10 74.53 m 90.14 74.72 l S 90.14 74.53 m 90.19 74.70 l S 90.19 74.53 m 90.23 77.00 l S 90.23 74.53 m 90.28 76.54 l S 90.28 74.53 m 90.33 75.51 l S 90.33 74.53 m 90.37 74.70 l S 90.37 74.53 m 90.42 74.64 l S 90.42 74.53 m 90.46 79.03 l S 90.46 74.53 m 90.51 87.71 l S 90.51 74.53 m 90.56 75.08 l S 90.56 74.53 m 90.60 74.70 l S 90.60 74.53 m 90.65 74.67 l S 90.65 74.53 m 90.69 74.56 l S 90.69 74.53 m 90.74 74.56 l S 90.74 74.53 m 90.79 74.56 l S 90.79 74.53 m 90.83 74.56 l S 90.83 74.53 m 90.88 74.56 l S 90.88 74.53 m 90.92 74.59 l S 90.92 74.53 m 90.97 74.53 l S 90.97 74.53 m 91.02 74.56 l S 91.02 74.53 m 91.06 74.56 l S 91.06 74.53 m 91.11 74.59 l S 91.11 74.53 m 91.15 74.56 l S 91.15 74.53 m 91.20 74.61 l S 91.20 74.53 m 91.25 74.64 l S 91.25 74.53 m 91.29 74.72 l S 91.29 74.53 m 91.34 74.70 l S 91.34 74.53 m 91.38 74.72 l S 91.38 74.53 m 91.43 74.67 l S 91.43 74.53 m 91.48 74.72 l S 91.48 74.53 m 91.52 74.75 l S 91.52 74.53 m 91.57 74.70 l S 91.57 74.53 m 91.61 74.83 l S 91.61 74.53 m 91.66 74.72 l S 91.66 74.53 m 91.71 74.67 l S 91.71 74.53 m 91.75 74.67 l S 91.75 74.53 m 91.80 74.70 l S 91.80 74.53 m 91.84 74.72 l S 91.84 74.53 m 91.89 74.91 l S 91.89 74.53 m 91.94 74.70 l S 91.94 74.53 m 91.98 74.99 l S 91.98 74.53 m 92.03 75.29 l S 92.03 74.53 m 92.07 74.70 l S 92.07 74.53 m 92.12 74.75 l S 92.12 74.53 m 92.17 74.70 l S 92.17 74.53 m 92.21 85.79 l S 92.21 74.53 m 92.26 83.92 l S 92.26 74.53 m 92.30 74.70 l S 92.30 74.53 m 92.35 74.70 l S 92.35 74.53 m 92.40 74.72 l S 92.40 74.53 m 92.44 74.67 l S 92.44 74.53 m 92.49 74.64 l S 92.49 74.53 m 92.53 74.64 l S 92.53 74.53 m 92.58 74.67 l S 92.58 74.53 m 92.63 74.70 l S 92.63 74.53 m 92.67 74.64 l S 92.67 74.53 m 92.72 74.64 l S 92.72 74.53 m 92.76 74.70 l S 92.76 74.53 m 92.81 74.67 l S 92.81 74.53 m 92.86 74.67 l S 92.86 74.53 m 92.90 74.64 l S 92.90 74.53 m 92.95 74.72 l S 92.95 74.53 m 92.99 74.70 l S 92.99 74.53 m 93.04 74.64 l S 93.04 74.53 m 93.09 74.67 l S 93.09 74.53 m 93.13 74.67 l S 93.13 74.53 m 93.18 74.67 l S 93.18 74.53 m 93.22 74.67 l S 93.22 74.53 m 93.27 74.67 l S 93.27 74.53 m 93.32 74.67 l S 93.32 74.53 m 93.36 74.70 l S 93.36 74.53 m 93.41 74.64 l S 93.41 74.53 m 93.45 74.70 l S 93.45 74.53 m 93.50 74.67 l S 93.50 74.53 m 93.55 74.72 l S 93.55 74.53 m 93.59 74.70 l S 93.59 74.53 m 93.64 74.67 l S 93.64 74.53 m 93.68 74.70 l S 93.68 74.53 m 93.73 74.67 l S 93.73 74.53 m 93.78 74.70 l S 93.78 74.53 m 93.82 74.97 l S 93.82 74.53 m 93.87 74.64 l S 93.87 74.53 m 93.91 74.70 l S 93.91 74.53 m 93.96 74.67 l S 93.96 74.53 m 94.01 74.70 l S 94.01 74.53 m 94.05 74.70 l S 94.05 74.53 m 94.10 74.67 l S 94.10 74.53 m 94.14 74.70 l S 94.14 74.53 m 94.19 74.67 l S 94.19 74.53 m 94.24 74.70 l S 94.24 74.53 m 94.28 74.64 l S 94.28 74.53 m 94.33 74.67 l S 94.33 74.53 m 94.37 74.67 l S 94.37 74.53 m 94.42 74.72 l S 94.42 74.53 m 94.47 74.67 l S 94.47 74.53 m 94.51 74.70 l S 94.51 74.53 m 94.56 74.70 l S 94.56 74.53 m 94.61 74.70 l S 94.61 74.53 m 94.65 74.72 l S 94.65 74.53 m 94.70 74.67 l S 94.70 74.53 m 94.74 74.70 l S 94.74 74.53 m 94.79 74.67 l S 94.79 74.53 m 94.84 74.70 l S 94.84 74.53 m 94.88 74.67 l S 94.88 74.53 m 94.93 74.67 l S 94.93 74.53 m 94.97 74.72 l S 94.97 74.53 m 95.02 74.72 l S 95.02 74.53 m 95.07 74.70 l S 95.07 74.53 m 95.11 74.67 l S 95.11 74.53 m 95.16 74.67 l S 95.16 74.53 m 95.20 74.72 l S 95.20 74.53 m 95.25 74.72 l S 95.25 74.53 m 95.30 74.70 l S 95.30 74.53 m 95.34 74.67 l S 95.34 74.53 m 95.39 74.70 l S 95.39 74.53 m 95.43 74.70 l S 95.43 74.53 m 95.48 74.75 l S 95.48 74.53 m 95.53 74.70 l S 95.53 74.53 m 95.57 74.80 l S 95.57 74.53 m 95.62 74.70 l S 95.62 74.53 m 95.66 74.97 l S 95.66 74.53 m 95.71 74.78 l S 95.71 74.53 m 95.76 74.67 l S 95.76 74.53 m 95.80 74.78 l S 95.80 74.53 m 95.85 74.61 l S 95.85 74.53 m 95.89 74.75 l S 95.89 74.53 m 95.94 75.10 l S 95.94 74.53 m 95.99 75.35 l S 95.99 74.53 m 96.03 74.75 l S 96.03 74.53 m 96.08 77.22 l S 96.08 74.53 m 96.12 78.44 l S 96.12 74.53 m 96.17 77.00 l S 96.17 74.53 m 96.22 74.64 l S 96.22 74.53 m 96.26 74.99 l S 96.26 74.53 m 96.31 74.72 l S 96.31 74.53 m 96.35 74.72 l S 96.35 74.53 m 96.40 74.78 l S 96.40 74.53 m 96.45 75.02 l S 96.45 74.53 m 96.49 74.80 l S 96.49 74.53 m 96.54 74.72 l S 96.54 74.53 m 96.58 74.70 l S 96.58 74.53 m 96.63 74.75 l S 96.63 74.53 m 96.68 74.75 l S 96.68 74.53 m 96.72 74.80 l S 96.72 74.53 m 96.77 79.03 l S 96.77 74.53 m 96.81 78.28 l S 96.81 74.53 m 96.86 74.75 l S 96.86 74.53 m 96.91 74.67 l S 96.91 74.53 m 96.95 74.72 l S 96.95 74.53 m 97.00 75.73 l S 97.00 74.53 m 97.04 74.78 l S 97.04 74.53 m 97.09 78.06 l S 97.09 74.53 m 97.14 77.76 l S 97.14 74.53 m 97.18 74.75 l S 97.18 74.53 m 97.23 78.95 l S 97.23 74.53 m 97.27 75.05 l S 97.27 74.53 m 97.32 74.67 l S 97.32 74.53 m 97.37 79.06 l S 97.37 74.53 m 97.41 75.56 l S 97.41 74.53 m 97.46 75.89 l S 97.46 74.53 m 97.50 74.72 l S 97.50 74.53 m 97.55 74.72 l S 97.55 74.53 m 97.60 75.89 l S 97.60 74.53 m 97.64 75.40 l S 97.64 74.53 m 97.69 75.46 l S 97.69 74.53 m 97.73 79.47 l S 97.73 74.53 m 97.78 74.70 l S 97.78 74.53 m 97.83 74.70 l S 97.83 74.53 m 97.87 74.70 l S 97.87 74.53 m 97.92 74.86 l S 97.92 74.53 m 97.96 74.72 l S 97.96 74.53 m 98.01 74.75 l S 98.01 74.53 m 98.06 81.04 l S 98.06 74.53 m 98.10 74.72 l S 98.10 74.53 m 98.15 74.86 l S 98.15 74.53 m 98.19 74.72 l S 98.19 74.53 m 98.24 74.78 l S 98.24 74.53 m 98.29 77.14 l S 98.29 74.53 m 98.33 74.72 l S 98.33 74.53 m 98.38 74.78 l S 98.38 74.53 m 98.42 74.75 l S 98.42 74.53 m 98.47 74.67 l S 98.47 74.53 m 98.52 74.75 l S 98.52 74.53 m 98.56 74.67 l S 98.56 74.53 m 98.61 77.62 l S 98.61 74.53 m 98.65 75.48 l S 98.65 74.53 m 98.70 74.78 l S 98.70 74.53 m 98.75 79.79 l S 98.75 74.53 m 98.79 74.70 l S 98.79 74.53 m 98.84 74.94 l S 98.84 74.53 m 98.88 74.83 l S 98.88 74.53 m 98.93 74.75 l S 98.93 74.53 m 98.98 74.67 l S 98.98 74.53 m 99.02 74.75 l S 99.02 74.53 m 99.07 75.08 l S 99.07 74.53 m 99.11 74.83 l S 99.11 74.53 m 99.16 74.72 l S 99.16 74.53 m 99.21 74.70 l S 99.21 74.53 m 99.25 74.67 l S 99.25 74.53 m 99.30 74.75 l S 99.30 74.53 m 99.34 74.67 l S 99.34 74.53 m 99.39 74.72 l S 99.39 74.53 m 99.44 74.67 l S 99.44 74.53 m 99.48 74.67 l S 99.48 74.53 m 99.53 74.67 l S 99.53 74.53 m 99.57 74.64 l S 99.57 74.53 m 99.62 74.75 l S 99.62 74.53 m 99.67 74.70 l S 99.67 74.53 m 99.71 74.67 l S 99.71 74.53 m 99.76 74.67 l S 99.76 74.53 m 99.80 75.32 l S 99.80 74.53 m 99.85 74.67 l S 99.85 74.53 m 99.90 74.70 l S 99.90 74.53 m 99.94 74.67 l S 99.94 74.53 m 99.99 74.75 l S 99.99 74.53 m 100.03 74.72 l S 100.03 74.53 m 100.08 74.67 l S 100.08 74.53 m 100.13 76.49 l S 100.13 74.53 m 100.17 74.70 l S 100.17 74.53 m 100.22 75.48 l S 100.22 74.53 m 100.26 74.70 l S 100.26 74.53 m 100.31 74.67 l S 100.31 74.53 m 100.36 75.73 l S 100.36 74.53 m 100.40 74.72 l S 100.40 74.53 m 100.45 75.10 l S 100.45 74.53 m 100.49 78.68 l S 100.49 74.53 m 100.54 74.64 l S 100.54 74.53 m 100.59 74.75 l S 100.59 74.53 m 100.63 74.80 l S 100.63 74.53 m 100.68 76.32 l S 100.68 74.53 m 100.72 75.18 l S 100.72 74.53 m 100.77 75.32 l S 100.77 74.53 m 100.82 76.81 l S 100.82 74.53 m 100.86 78.49 l S 100.86 74.53 m 100.91 74.78 l S 100.91 74.53 m 100.95 75.24 l S 100.95 74.53 m 101.00 75.08 l S 101.00 74.53 m 101.05 74.67 l S 101.05 74.53 m 101.09 75.59 l S 101.09 74.53 m 101.14 74.75 l S 101.14 74.53 m 101.18 74.67 l S 101.18 74.53 m 101.23 74.75 l S 101.23 74.53 m 101.28 74.64 l S 101.28 74.53 m 101.32 74.91 l S 101.32 74.53 m 101.37 74.70 l S 101.37 74.53 m 101.41 74.70 l S 101.41 74.53 m 101.46 74.72 l S 101.46 74.53 m 101.51 74.64 l S 101.51 74.53 m 101.55 74.70 l S 101.55 74.53 m 101.60 74.70 l S 101.60 74.53 m 101.64 74.67 l S 101.64 74.53 m 101.69 74.70 l S 101.69 74.53 m 101.74 74.67 l S 101.74 74.53 m 101.78 74.67 l S 101.78 74.53 m 101.83 74.67 l S 101.83 74.53 m 101.87 74.67 l S 101.87 74.53 m 101.92 74.72 l S 101.92 74.53 m 101.97 78.36 l S 101.97 74.53 m 102.01 74.70 l S 102.01 74.53 m 102.06 74.72 l S 102.06 74.53 m 102.10 74.72 l S 102.10 74.53 m 102.15 75.48 l S 102.15 74.53 m 102.20 74.70 l S 102.20 74.53 m 102.24 74.70 l S 102.24 74.53 m 102.29 74.67 l S 102.29 74.53 m 102.33 74.67 l S 102.33 74.53 m 102.38 74.70 l S 102.38 74.53 m 102.43 74.72 l S 102.43 74.53 m 102.47 74.67 l S 102.47 74.53 m 102.52 75.05 l S 102.52 74.53 m 102.57 74.67 l S 102.57 74.53 m 102.61 74.70 l S 102.61 74.53 m 102.66 76.59 l S 102.66 74.53 m 102.70 74.70 l S 102.70 74.53 m 102.75 76.02 l S 102.75 74.53 m 102.80 79.09 l S 102.80 74.53 m 102.84 76.16 l S 102.84 74.53 m 102.89 75.21 l S 102.89 74.53 m 102.93 74.67 l S 102.93 74.53 m 102.98 74.64 l S 102.98 74.53 m 103.03 74.72 l S 103.03 74.53 m 103.07 75.75 l S 103.07 74.53 m 103.12 74.67 l S 103.12 74.53 m 103.16 80.25 l S 103.16 74.53 m 103.21 75.13 l S 103.21 74.53 m 103.26 74.72 l S 103.26 74.53 m 103.30 74.83 l S 103.30 74.53 m 103.35 74.75 l S 103.35 74.53 m 103.39 79.82 l S 103.39 74.53 m 103.44 74.83 l S 103.44 74.53 m 103.49 74.67 l S 103.49 74.53 m 103.53 74.99 l S 103.53 74.53 m 103.58 74.67 l S 103.58 74.53 m 103.62 75.18 l S 103.62 74.53 m 103.67 74.75 l S 103.67 74.53 m 103.72 81.18 l S 103.72 74.53 m 103.76 74.72 l S 103.76 74.53 m 103.81 82.64 l S 103.81 74.53 m 103.85 74.67 l S 103.85 74.53 m 103.90 83.13 l S 103.90 74.53 m 103.95 76.73 l S 103.95 74.53 m 103.99 75.94 l S 103.99 74.53 m 104.04 75.18 l S 104.04 74.53 m 104.08 74.67 l S 104.08 74.53 m 104.13 74.83 l S 104.13 74.53 m 104.18 74.75 l S 104.18 74.53 m 104.22 74.91 l S 104.22 74.53 m 104.27 84.67 l S 104.27 74.53 m 104.31 74.97 l S 104.31 74.53 m 104.36 74.72 l S 104.36 74.53 m 104.41 74.78 l S 104.41 74.53 m 104.45 74.78 l S 104.45 74.53 m 104.50 74.75 l S 104.50 74.53 m 104.54 74.70 l S 104.54 74.53 m 104.59 77.90 l S 104.59 74.53 m 104.64 74.75 l S 104.64 74.53 m 104.68 74.72 l S 104.68 74.53 m 104.73 74.67 l S 104.73 74.53 m 104.77 74.67 l S 104.77 74.53 m 104.82 74.83 l S 104.82 74.53 m 104.87 75.27 l S 104.87 74.53 m 104.91 75.13 l S 104.91 74.53 m 104.96 76.46 l S 104.96 74.53 m 105.00 74.72 l S 105.00 74.53 m 105.05 74.75 l S 105.05 74.53 m 105.10 74.78 l S 105.10 74.53 m 105.14 74.72 l S 105.14 74.53 m 105.19 76.21 l S 105.19 74.53 m 105.23 74.78 l S 105.23 74.53 m 105.28 74.70 l S 105.28 74.53 m 105.33 75.94 l S 105.33 74.53 m 105.37 79.33 l S 105.37 74.53 m 105.42 74.80 l S 105.42 74.53 m 105.46 74.89 l S 105.46 74.53 m 105.51 75.24 l S 105.51 74.53 m 105.56 74.70 l S 105.56 74.53 m 105.60 74.94 l S 105.60 74.53 m 105.65 79.01 l S 105.65 74.53 m 105.69 74.89 l S 105.69 74.53 m 105.74 74.97 l S 105.74 74.53 m 105.79 74.80 l S 105.79 74.53 m 105.83 75.46 l S 105.83 74.53 m 105.88 77.27 l S 105.88 74.53 m 105.92 75.13 l S 105.92 74.53 m 105.97 74.72 l S 105.97 74.53 m 106.02 74.70 l S 106.02 74.53 m 106.06 74.70 l S 106.06 74.53 m 106.11 74.72 l S 106.11 74.53 m 106.15 74.67 l S 106.15 74.53 m 106.20 74.70 l S 106.20 74.53 m 106.25 74.70 l S 106.25 74.53 m 106.29 74.78 l S 106.29 74.53 m 106.34 74.78 l S 106.34 74.53 m 106.38 74.67 l S 106.38 74.53 m 106.43 74.72 l S 106.43 74.53 m 106.48 74.70 l S 106.48 74.53 m 106.52 74.70 l S 106.52 74.53 m 106.57 74.75 l S 106.57 74.53 m 106.61 74.70 l S 106.61 74.53 m 106.66 74.70 l S 106.66 74.53 m 106.71 74.86 l S 106.71 74.53 m 106.75 74.75 l S 106.75 74.53 m 106.80 74.70 l S 106.80 74.53 m 106.84 82.56 l S 106.84 74.53 m 106.89 74.78 l S 106.89 74.53 m 106.94 74.97 l S 106.94 74.53 m 106.98 74.67 l S 106.98 74.53 m 107.03 74.78 l S 107.03 74.53 m 107.07 74.64 l S 107.07 74.53 m 107.12 74.72 l S 107.12 74.53 m 107.17 74.83 l S 107.17 74.53 m 107.21 75.46 l S 107.21 74.53 m 107.26 75.21 l S 107.26 74.53 m 107.30 76.73 l S 107.30 74.53 m 107.35 74.91 l S 107.35 74.53 m 107.40 74.75 l S 107.40 74.53 m 107.44 74.83 l S 107.44 74.53 m 107.49 74.70 l S 107.49 74.53 m 107.53 75.10 l S 107.53 74.53 m 107.58 74.72 l S 107.58 74.53 m 107.63 74.70 l S 107.63 74.53 m 107.67 75.10 l S 107.67 74.53 m 107.72 75.73 l S 107.72 74.53 m 107.76 74.70 l S 107.76 74.53 m 107.81 74.78 l S 107.81 74.53 m 107.86 74.72 l S 107.86 74.53 m 107.90 74.72 l S 107.90 74.53 m 107.95 74.99 l S 107.95 74.53 m 107.99 74.70 l S 107.99 74.53 m 108.04 74.67 l S 108.04 74.53 m 108.09 74.70 l S 108.09 74.53 m 108.13 85.22 l S 108.13 74.53 m 108.18 74.78 l S 108.18 74.53 m 108.22 78.95 l S 108.22 74.53 m 108.27 77.38 l S 108.27 74.53 m 108.32 74.80 l S 108.32 74.53 m 108.36 78.09 l S 108.36 74.53 m 108.41 74.64 l S 108.41 74.53 m 108.45 75.29 l S 108.45 74.53 m 108.50 74.67 l S 108.50 74.53 m 108.55 76.46 l S 108.55 74.53 m 108.59 76.43 l S 108.59 74.53 m 108.64 74.70 l S 108.64 74.53 m 108.68 74.80 l S 108.68 74.53 m 108.73 78.14 l S 108.73 74.53 m 108.78 74.94 l S 108.78 74.53 m 108.82 74.70 l S 108.82 74.53 m 108.87 74.67 l S 108.87 74.53 m 108.91 74.91 l S 108.91 74.53 m 108.96 74.80 l S 108.96 74.53 m 109.01 76.00 l S 109.01 74.53 m 109.05 83.29 l S 109.05 74.53 m 109.10 74.72 l S 109.10 74.53 m 109.14 74.72 l S 109.14 74.53 m 109.19 76.24 l S 109.19 74.53 m 109.24 74.78 l S 109.24 74.53 m 109.28 74.67 l S 109.28 74.53 m 109.33 74.70 l S 109.33 74.53 m 109.37 74.72 l S 109.37 74.53 m 109.42 74.80 l S 109.42 74.53 m 109.47 79.09 l S 109.47 74.53 m 109.51 74.78 l S 109.51 74.53 m 109.56 74.80 l S 109.56 74.53 m 109.60 74.72 l S 109.60 74.53 m 109.65 74.78 l S 109.65 74.53 m 109.70 74.80 l S 109.70 74.53 m 109.74 74.67 l S 109.74 74.53 m 109.79 74.70 l S 109.79 74.53 m 109.83 75.67 l S 109.83 74.53 m 109.88 74.75 l S 109.88 74.53 m 109.93 74.75 l S 109.93 74.53 m 109.97 75.35 l S 109.97 74.53 m 110.02 74.70 l S 110.02 74.53 m 110.06 78.33 l S 110.06 74.53 m 110.11 74.99 l S 110.11 74.53 m 110.16 74.70 l S 110.16 74.53 m 110.20 74.70 l S 110.20 74.53 m 110.25 74.75 l S 110.25 74.53 m 110.29 78.30 l S 110.29 74.53 m 110.34 74.86 l S 110.34 74.53 m 110.39 74.67 l S 110.39 74.53 m 110.43 83.94 l S 110.43 74.53 m 110.48 74.70 l S 110.48 74.53 m 110.53 74.72 l S 110.53 74.53 m 110.57 74.78 l S 110.57 74.53 m 110.62 74.70 l S 110.62 74.53 m 110.66 74.80 l S 110.66 74.53 m 110.71 74.70 l S 110.71 74.53 m 110.76 74.67 l S 110.76 74.53 m 110.80 74.86 l S 110.80 74.53 m 110.85 84.86 l S 110.85 74.53 m 110.89 77.49 l S 110.89 74.53 m 110.94 74.72 l S 110.94 74.53 m 110.99 84.67 l S 110.99 74.53 m 111.03 74.78 l S 111.03 74.53 m 111.08 74.64 l S 111.08 74.53 m 111.12 74.70 l S 111.12 74.53 m 111.17 74.72 l S 111.17 74.53 m 111.22 74.72 l S 111.22 74.53 m 111.26 74.70 l S 111.26 74.53 m 111.31 74.70 l S 111.31 74.53 m 111.35 74.75 l S 111.35 74.53 m 111.40 74.91 l S 111.40 74.53 m 111.45 74.67 l S 111.45 74.53 m 111.49 74.75 l S 111.49 74.53 m 111.54 74.75 l S 111.54 74.53 m 111.58 74.83 l S 111.58 74.53 m 111.63 74.78 l S 111.63 74.53 m 111.68 78.14 l S 111.68 74.53 m 111.72 80.69 l S 111.72 74.53 m 111.77 75.40 l S 111.77 74.53 m 111.81 75.05 l S 111.81 74.53 m 111.86 75.24 l S 111.86 74.53 m 111.91 75.67 l S 111.91 74.53 m 111.95 76.13 l S 111.95 74.53 m 112.00 74.70 l S 112.00 74.53 m 112.04 75.08 l S 112.04 74.53 m 112.09 75.10 l S 112.09 74.53 m 112.14 74.83 l S 112.14 74.53 m 112.18 77.54 l S 112.18 74.53 m 112.23 74.75 l S 112.23 74.53 m 112.27 74.70 l S 112.27 74.53 m 112.32 74.70 l S 112.32 74.53 m 112.37 74.80 l S 112.37 74.53 m 112.41 77.57 l S 112.41 74.53 m 112.46 74.70 l S 112.46 74.53 m 112.50 74.75 l S 112.50 74.53 m 112.55 75.40 l S 112.55 74.53 m 112.60 74.70 l S 112.60 74.53 m 112.64 74.70 l S 112.64 74.53 m 112.69 74.72 l S 112.69 74.53 m 112.73 74.72 l S 112.73 74.53 m 112.78 74.72 l S 112.78 74.53 m 112.83 74.70 l S 112.83 74.53 m 112.87 74.70 l S 112.87 74.53 m 112.92 74.72 l S 112.92 74.53 m 112.96 74.67 l S 112.96 74.53 m 113.01 74.75 l S 113.01 74.53 m 113.06 74.72 l S 113.06 74.53 m 113.10 74.70 l S 113.10 74.53 m 113.15 74.75 l S 113.15 74.53 m 113.19 74.80 l S 113.19 74.53 m 113.24 74.91 l S 113.24 74.53 m 113.29 74.72 l S 113.29 74.53 m 113.33 74.72 l S 113.33 74.53 m 113.38 74.75 l S 113.38 74.53 m 113.42 74.67 l S 113.42 74.53 m 113.47 74.72 l S 113.47 74.53 m 113.52 74.67 l S 113.52 74.53 m 113.56 74.72 l S 113.56 74.53 m 113.61 74.80 l S 113.61 74.53 m 113.65 74.67 l S 113.65 74.53 m 113.70 74.70 l S 113.70 74.53 m 113.75 74.70 l S 113.75 74.53 m 113.79 74.89 l S 113.79 74.53 m 113.84 75.24 l S 113.84 74.53 m 113.88 74.67 l S 113.88 74.53 m 113.93 74.67 l S 113.93 74.53 m 113.98 74.78 l S 113.98 74.53 m 114.02 74.67 l S 114.02 74.53 m 114.07 74.72 l S 114.07 74.53 m 114.11 74.72 l S 114.11 74.53 m 114.16 74.91 l S 114.16 74.53 m 114.21 74.99 l S 114.21 74.53 m 114.25 74.67 l S 114.25 74.53 m 114.30 74.67 l S 114.30 74.53 m 114.34 74.70 l S 114.34 74.53 m 114.39 74.72 l S 114.39 74.53 m 114.44 74.75 l S 114.44 74.53 m 114.48 74.80 l S 114.48 74.53 m 114.53 74.67 l S 114.53 74.53 m 114.57 77.62 l S 114.57 74.53 m 114.62 78.66 l S 114.62 74.53 m 114.67 75.27 l S 114.67 74.53 m 114.71 76.70 l S 114.71 74.53 m 114.76 75.29 l S 114.76 74.53 m 114.80 74.67 l S 114.80 74.53 m 114.85 74.67 l S 114.85 74.53 m 114.90 76.59 l S 114.90 74.53 m 114.94 74.97 l S 114.94 74.53 m 114.99 74.91 l S 114.99 74.53 m 115.03 74.72 l S 115.03 74.53 m 115.08 75.18 l S 115.08 74.53 m 115.13 74.78 l S 115.13 74.53 m 115.17 74.75 l S 115.17 74.53 m 115.22 74.70 l S 115.22 74.53 m 115.26 75.94 l S 115.26 74.53 m 115.31 78.47 l S 115.31 74.53 m 115.36 74.72 l S 115.36 74.53 m 115.40 74.80 l S 115.40 74.53 m 115.45 74.78 l S 115.45 74.53 m 115.49 74.75 l S 115.49 74.53 m 115.54 74.67 l S 115.54 74.53 m 115.59 74.67 l S 115.59 74.53 m 115.63 74.72 l S 115.63 74.53 m 115.68 74.70 l S 115.68 74.53 m 115.72 74.67 l S 115.72 74.53 m 115.77 74.70 l S 115.77 74.53 m 115.82 74.72 l S 115.82 74.53 m 115.86 74.67 l S 115.86 74.53 m 115.91 74.64 l S 115.91 74.53 m 115.95 74.67 l S 115.95 74.53 m 116.00 74.70 l S 116.00 74.53 m 116.05 74.70 l S 116.05 74.53 m 116.09 74.72 l S 116.09 74.53 m 116.14 74.70 l S 116.14 74.53 m 116.18 74.67 l S 116.18 74.53 m 116.23 74.72 l S 116.23 74.53 m 116.28 74.75 l S 116.28 74.53 m 116.32 74.67 l S 116.32 74.53 m 116.37 74.67 l S 116.37 74.53 m 116.41 74.78 l S 116.41 74.53 m 116.46 74.64 l S 116.46 74.53 m 116.51 74.70 l S 116.51 74.53 m 116.55 74.67 l S 116.55 74.53 m 116.60 74.75 l S 116.60 74.53 m 116.64 74.70 l S 116.64 74.53 m 116.69 74.70 l S 116.69 74.53 m 116.74 74.64 l S 116.74 74.53 m 116.78 74.70 l S 116.78 74.53 m 116.83 74.67 l S 116.83 74.53 m 116.87 74.70 l S 116.87 74.53 m 116.92 74.70 l S 116.92 74.53 m 116.97 74.83 l S 116.97 74.53 m 117.01 74.67 l S 117.01 74.53 m 117.06 74.67 l S 117.06 74.53 m 117.10 74.70 l S 117.10 74.53 m 117.15 74.64 l S 117.15 74.53 m 117.20 74.72 l S 117.20 74.53 m 117.24 74.70 l S 117.24 74.53 m 117.29 74.64 l S 117.29 74.53 m 117.33 74.64 l S 117.33 74.53 m 117.38 74.64 l S 117.38 74.53 m 117.43 74.72 l S 117.43 74.53 m 117.47 74.64 l S 117.47 74.53 m 117.52 74.67 l S 117.52 74.53 m 117.56 74.70 l S 117.56 74.53 m 117.61 74.70 l S 117.61 74.53 m 117.66 74.70 l S 117.66 74.53 m 117.70 74.72 l S 117.70 74.53 m 117.75 74.67 l S 117.75 74.53 m 117.79 74.67 l S 117.79 74.53 m 117.84 74.70 l S 117.84 74.53 m 117.89 74.70 l S 117.89 74.53 m 117.93 74.70 l S 117.93 74.53 m 117.98 74.67 l S 117.98 74.53 m 118.02 74.70 l S 118.02 74.53 m 118.07 74.72 l S 118.07 74.53 m 118.12 74.72 l S 118.12 74.53 m 118.16 74.70 l S 118.16 74.53 m 118.21 74.70 l S 118.21 74.53 m 118.25 74.70 l S 118.25 74.53 m 118.30 74.91 l S 118.30 74.53 m 118.35 82.59 l S 118.35 74.53 m 118.39 74.83 l S 118.39 74.53 m 118.44 74.67 l S 118.44 74.53 m 118.49 81.94 l S 118.49 74.53 m 118.53 79.74 l S 118.53 74.53 m 118.58 75.59 l S 118.58 74.53 m 118.62 74.78 l S 118.62 74.53 m 118.67 79.44 l S 118.67 74.53 m 118.72 74.75 l S 118.72 74.53 m 118.76 74.67 l S 118.76 74.53 m 118.81 74.72 l S 118.81 74.53 m 118.85 74.67 l S 118.85 74.53 m 118.90 74.72 l S 118.90 74.53 m 118.95 74.70 l S 118.95 74.53 m 118.99 74.64 l S 118.99 74.53 m 119.04 78.19 l S 119.04 74.53 m 119.08 76.92 l S 119.08 74.53 m 119.13 74.61 l S 119.13 74.53 m 119.18 74.99 l S 119.18 74.53 m 119.22 77.71 l S 119.22 74.53 m 119.27 74.91 l S 119.27 74.53 m 119.31 75.67 l S 119.31 74.53 m 119.36 76.35 l S 119.36 74.53 m 119.41 74.61 l S 119.41 74.53 m 119.45 74.64 l S 119.45 74.53 m 119.50 74.59 l S 119.50 74.53 m 119.54 74.64 l S 119.54 74.53 m 119.59 75.51 l S 119.59 74.53 m 119.64 76.00 l S 119.64 74.53 m 119.68 75.46 l S 119.68 74.53 m 119.73 74.89 l S 119.73 74.53 m 119.77 74.53 l S 119.77 74.53 m 119.82 74.53 l S 119.82 74.53 m 119.87 74.53 l S 119.87 74.53 m 119.91 74.53 l S 119.91 74.53 m 119.96 74.53 l S 119.96 74.53 m 120.00 74.53 l S 120.00 74.53 m 120.05 74.53 l S 120.05 74.53 m 120.10 74.53 l S 120.10 74.53 m 120.14 74.53 l S 120.14 74.53 m 120.19 74.53 l S 120.19 74.53 m 120.23 74.53 l S 120.23 74.53 m 120.28 74.53 l S 120.28 74.53 m 120.33 74.53 l S 120.33 74.53 m 120.37 74.53 l S 120.37 74.53 m 120.42 74.53 l S 120.42 74.53 m 120.46 74.53 l S 120.46 74.53 m 120.51 74.53 l S 120.51 74.53 m 120.56 74.53 l S 120.56 74.53 m 120.60 74.53 l S 120.60 74.53 m 120.65 74.53 l S 120.65 74.53 m 120.69 74.53 l S 120.69 74.53 m 120.74 74.53 l S 120.74 74.53 m 120.79 74.53 l S 120.79 74.53 m 120.83 74.53 l S 120.83 74.53 m 120.88 74.53 l S 120.88 74.53 m 120.92 74.53 l S 120.92 74.53 m 120.97 74.53 l S 120.97 74.53 m 121.02 74.53 l S 121.02 74.53 m 121.06 74.53 l S 121.06 74.53 m 121.11 74.53 l S 121.11 74.53 m 121.15 74.53 l S 121.15 74.53 m 121.20 74.53 l S 121.20 74.53 m 121.25 74.53 l S 121.25 74.53 m 121.29 74.53 l S 121.29 74.53 m 121.34 74.53 l S 121.34 74.53 m 121.38 74.53 l S 121.38 74.53 m 121.43 74.53 l S 121.43 74.53 m 121.48 74.53 l S 121.48 74.53 m 121.52 74.53 l S 121.52 74.53 m 121.57 74.53 l S 121.57 74.53 m 121.61 74.53 l S 121.61 74.53 m 121.66 74.53 l S 121.66 74.53 m 121.71 74.53 l S 121.71 74.53 m 121.75 74.53 l S 121.75 74.53 m 121.80 74.53 l S 121.80 74.53 m 121.84 74.53 l S 121.84 74.53 m 121.89 74.53 l S 121.89 74.53 m 121.94 74.53 l S 121.94 74.53 m 121.98 74.53 l S 121.98 74.53 m 122.03 74.53 l S 122.03 74.53 m 122.07 74.53 l S 122.07 74.53 m 122.12 74.53 l S 122.12 74.53 m 122.17 74.53 l S 122.17 74.53 m 122.21 74.53 l S 122.21 74.53 m 122.26 74.53 l S 122.26 74.53 m 122.30 74.53 l S 122.30 74.53 m 122.35 74.53 l S 122.35 74.53 m 122.40 74.53 l S 122.40 74.53 m 122.44 74.53 l S 122.44 74.53 m 122.49 74.53 l S 122.49 74.53 m 122.53 74.53 l S 122.53 74.53 m 122.58 74.53 l S 122.58 74.53 m 122.63 74.53 l S 122.63 74.53 m 122.67 74.53 l S 122.67 74.53 m 122.72 74.53 l S 122.72 74.53 m 122.76 74.53 l S 122.76 74.53 m 122.81 74.53 l S 122.81 74.53 m 122.86 74.53 l S 122.86 74.53 m 122.90 74.53 l S 122.90 74.53 m 122.95 74.53 l S 122.95 74.53 m 122.99 74.53 l S 122.99 74.53 m 123.04 74.53 l S 123.04 74.53 m 123.09 76.38 l S 123.09 74.53 m 123.13 81.48 l S 123.13 74.53 m 123.18 76.68 l S 123.18 74.53 m 123.22 74.70 l S 123.22 74.53 m 123.27 74.67 l S 123.27 74.53 m 123.32 77.95 l S 123.32 74.53 m 123.36 74.70 l S 123.36 74.53 m 123.41 76.32 l S 123.41 74.53 m 123.45 74.70 l S 123.45 74.53 m 123.50 74.75 l S 123.50 74.53 m 123.55 74.61 l S 123.55 74.53 m 123.59 74.80 l S 123.59 74.53 m 123.64 74.61 l S 123.64 74.53 m 123.68 75.21 l S 123.68 74.53 m 123.73 74.83 l S 123.73 74.53 m 123.78 75.05 l S 123.78 74.53 m 123.82 74.70 l S 123.82 74.53 m 123.87 74.70 l S 123.87 74.53 m 123.91 74.67 l S 123.91 74.53 m 123.96 74.72 l S 123.96 74.53 m 124.01 82.23 l S 124.01 74.53 m 124.05 74.72 l S 124.05 74.53 m 124.10 74.83 l S 124.10 74.53 m 124.14 82.23 l S 124.14 74.53 m 124.19 74.75 l S 124.19 74.53 m 124.24 74.67 l S 124.24 74.53 m 124.28 76.59 l S 124.28 74.53 m 124.33 81.53 l S 124.33 74.53 m 124.37 74.70 l S 124.37 74.53 m 124.42 74.70 l S 124.42 74.53 m 124.47 75.37 l S 124.47 74.53 m 124.51 74.86 l S 124.51 74.53 m 124.56 76.27 l S 124.56 74.53 m 124.60 74.72 l S 124.60 74.53 m 124.65 74.75 l S 124.65 74.53 m 124.70 74.75 l S 124.70 74.53 m 124.74 75.70 l S 124.74 74.53 m 124.79 77.03 l S 124.79 74.53 m 124.83 79.47 l S 124.83 74.53 m 124.88 74.67 l S 124.88 74.53 m 124.93 77.11 l S 124.93 74.53 m 124.97 75.43 l S 124.97 74.53 m 125.02 74.99 l S 125.02 74.53 m 125.06 76.13 l S 125.06 74.53 m 125.11 80.44 l S 125.11 74.53 m 125.16 76.73 l S 125.16 74.53 m 125.20 83.54 l S 125.20 74.53 m 125.25 81.39 l S 125.25 74.53 m 125.29 74.86 l S 125.29 74.53 m 125.34 74.83 l S 125.34 74.53 m 125.39 74.83 l S 125.39 74.53 m 125.43 77.11 l S 125.43 74.53 m 125.48 78.06 l S 125.48 74.53 m 125.52 79.41 l S 125.52 74.53 m 125.57 79.58 l S 125.57 74.53 m 125.62 74.75 l S 125.62 74.53 m 125.66 74.72 l S 125.66 74.53 m 125.71 74.75 l S 125.71 74.53 m 125.75 74.89 l S 125.75 74.53 m 125.80 75.81 l S 125.80 74.53 m 125.85 74.70 l S 125.85 74.53 m 125.89 74.67 l S 125.89 74.53 m 125.94 74.75 l S 125.94 74.53 m 125.98 74.72 l S 125.98 74.53 m 126.03 74.72 l S 126.03 74.53 m 126.08 74.75 l S 126.08 74.53 m 126.12 74.67 l S 126.12 74.53 m 126.17 74.72 l S 126.17 74.53 m 126.21 74.67 l S 126.21 74.53 m 126.26 74.70 l S 126.26 74.53 m 126.31 74.70 l S 126.31 74.53 m 126.35 74.70 l S 126.35 74.53 m 126.40 75.89 l S 126.40 74.53 m 126.45 74.70 l S 126.45 74.53 m 126.49 74.75 l S 126.49 74.53 m 126.54 74.80 l S 126.54 74.53 m 126.58 74.67 l S 126.58 74.53 m 126.63 74.70 l S 126.63 74.53 m 126.68 74.67 l S 126.68 74.53 m 126.72 74.72 l S 126.72 74.53 m 126.77 74.70 l S 126.77 74.53 m 126.81 74.67 l S 126.81 74.53 m 126.86 74.80 l S 126.86 74.53 m 126.91 74.70 l S 126.91 74.53 m 126.95 74.70 l S 126.95 74.53 m 127.00 74.72 l S 127.00 74.53 m 127.04 74.75 l S 127.04 74.53 m 127.09 74.83 l S 127.09 74.53 m 127.14 74.78 l S 127.14 74.53 m 127.18 85.92 l S 127.18 74.53 m 127.23 74.99 l S 127.23 74.53 m 127.27 80.91 l S 127.27 74.53 m 127.32 77.98 l S 127.32 74.53 m 127.37 80.36 l S 127.37 74.53 m 127.41 74.80 l S 127.41 74.53 m 127.46 74.67 l S 127.46 74.53 m 127.50 74.86 l S 127.50 74.53 m 127.55 74.72 l S 127.55 74.53 m 127.60 74.64 l S 127.60 74.53 m 127.64 74.72 l S 127.64 74.53 m 127.69 74.70 l S 127.69 74.53 m 127.73 74.72 l S 127.73 74.53 m 127.78 74.78 l S 127.78 74.53 m 127.83 74.70 l S 127.83 74.53 m 127.87 76.24 l S 127.87 74.53 m 127.92 78.30 l S 127.92 74.53 m 127.96 74.70 l S 127.96 74.53 m 128.01 74.80 l S 128.01 74.53 m 128.06 74.72 l S 128.06 74.53 m 128.10 75.16 l S 128.10 74.53 m 128.15 79.74 l S 128.15 74.53 m 128.19 74.72 l S 128.19 74.53 m 128.24 74.83 l S 128.24 74.53 m 128.29 82.48 l S 128.29 74.53 m 128.33 75.59 l S 128.33 74.53 m 128.38 74.59 l S 128.38 74.53 m 128.42 74.67 l S 128.42 74.53 m 128.47 74.56 l S 128.47 74.53 m 128.52 74.56 l S 128.52 74.53 m 128.56 74.53 l S 128.56 74.53 m 128.61 74.53 l S 128.61 74.53 m 128.65 74.53 l S 128.65 74.53 m 128.70 74.53 l S 128.70 74.53 m 128.75 74.53 l S 128.75 74.53 m 128.79 74.53 l S 128.79 74.53 m 128.84 74.56 l S 128.84 74.53 m 128.88 74.80 l S 128.88 74.53 m 128.93 74.56 l S 128.93 74.53 m 128.98 74.59 l S 128.98 74.53 m 129.02 74.59 l S 129.02 74.53 m 129.07 74.56 l S 129.07 74.53 m 129.11 74.61 l S 129.11 74.53 m 129.16 74.53 l S 129.16 74.53 m 129.21 74.61 l S 129.21 74.53 m 129.25 74.56 l S 129.25 74.53 m 129.30 74.53 l S 129.30 74.53 m 129.34 74.53 l S 129.34 74.53 m 129.39 74.53 l S 129.39 74.53 m 129.44 74.59 l S 129.44 74.53 m 129.48 75.83 l S 129.48 74.53 m 129.53 75.27 l S 129.53 74.53 m 129.57 74.91 l S 129.57 74.53 m 129.62 74.86 l S 129.62 74.53 m 129.67 74.80 l S 129.67 74.53 m 129.71 74.94 l S 129.71 74.53 m 129.76 75.27 l S 129.76 74.53 m 129.80 74.53 l S 129.80 74.53 m 129.85 74.53 l S 129.85 74.53 m 129.90 74.56 l S 129.90 74.53 m 129.94 74.53 l S 129.94 74.53 m 129.99 74.59 l S 129.99 74.53 m 130.03 74.61 l S 130.03 74.53 m 130.08 75.08 l S 130.08 74.53 m 130.13 74.56 l S 130.13 74.53 m 130.17 74.53 l S 130.17 74.53 m 130.22 74.53 l S 130.22 74.53 m 130.26 74.53 l S 130.26 74.53 m 130.31 74.56 l S 130.31 74.53 m 130.36 74.75 l S 130.36 74.53 m 130.40 74.67 l S 130.40 74.53 m 130.45 79.33 l S 130.45 74.53 m 130.49 77.71 l S 130.49 74.53 m 130.54 74.72 l S 130.54 74.53 m 130.59 74.56 l S 130.59 74.53 m 130.63 74.59 l S 130.63 74.53 m 130.68 74.53 l S 130.68 74.53 m 130.72 74.53 l S 130.72 74.53 m 130.77 74.53 l S 130.77 74.53 m 130.82 74.53 l S 130.82 74.53 m 130.86 74.53 l S 130.86 74.53 m 130.91 74.56 l S 130.91 74.53 m 130.95 74.59 l S 130.95 74.53 m 131.00 74.61 l S 131.00 74.53 m 131.05 74.59 l S 131.05 74.53 m 131.09 74.61 l S 131.09 74.53 m 131.14 74.53 l S 131.14 74.53 m 131.18 74.53 l S 131.18 74.53 m 131.23 74.53 l S 131.23 74.53 m 131.28 74.53 l S 131.28 74.53 m 131.32 74.56 l S 131.32 74.53 m 131.37 74.59 l S 131.37 74.53 m 131.41 74.56 l S 131.41 74.53 m 131.46 74.53 l S 131.46 74.53 m 131.51 74.61 l S 131.51 74.53 m 131.55 74.56 l S 131.55 74.53 m 131.60 74.75 l S 131.60 74.53 m 131.64 76.46 l S 131.64 74.53 m 131.69 74.70 l S 131.69 74.53 m 131.74 74.89 l S 131.74 74.53 m 131.78 75.70 l S 131.78 74.53 m 131.83 75.08 l S 131.83 74.53 m 131.87 75.08 l S 131.87 74.53 m 131.92 76.11 l S 131.92 74.53 m 131.97 78.95 l S 131.97 74.53 m 132.01 74.75 l S 132.01 74.53 m 132.06 74.70 l S 132.06 74.53 m 132.10 74.59 l S 132.10 74.53 m 132.15 74.59 l S 132.15 74.53 m 132.20 74.59 l S 132.20 74.53 m 132.24 74.56 l S 132.24 74.53 m 132.29 74.59 l S 132.29 74.53 m 132.33 74.56 l S 132.33 74.53 m 132.38 74.56 l S 132.38 74.53 m 132.43 74.56 l S 132.43 74.53 m 132.47 74.64 l S 132.47 74.53 m 132.52 74.59 l S 132.52 74.53 m 132.56 74.53 l S 132.56 74.53 m 132.61 74.56 l S 132.61 74.53 m 132.66 74.56 l S 132.66 74.53 m 132.70 74.53 l S 132.70 74.53 m 132.75 74.53 l S 132.75 74.53 m 132.79 74.53 l S 132.79 74.53 m 132.84 74.53 l S 132.84 74.53 m 132.89 74.56 l S 132.89 74.53 m 132.93 74.56 l S 132.93 74.53 m 132.98 74.59 l S 132.98 74.53 m 133.02 74.61 l S 133.02 74.53 m 133.07 74.59 l S 133.07 74.53 m 133.12 74.67 l S 133.12 74.53 m 133.16 74.78 l S 133.16 74.53 m 133.21 74.75 l S 133.21 74.53 m 133.25 74.75 l S 133.25 74.53 m 133.30 78.87 l S 133.30 74.53 m 133.35 74.67 l S 133.35 74.53 m 133.39 74.72 l S 133.39 74.53 m 133.44 74.75 l S 133.44 74.53 m 133.48 74.67 l S 133.48 74.53 m 133.53 74.72 l S 133.53 74.53 m 133.58 74.70 l S 133.58 74.53 m 133.62 74.75 l S 133.62 74.53 m 133.67 74.72 l S 133.67 74.53 m 133.71 75.08 l S 133.71 74.53 m 133.76 76.19 l S 133.76 74.53 m 133.81 74.83 l S 133.81 74.53 m 133.85 74.72 l S 133.85 74.53 m 133.90 74.83 l S 133.90 74.53 m 133.94 74.97 l S 133.94 74.53 m 133.99 74.80 l S 133.99 74.53 m 134.04 74.70 l S 134.04 74.53 m 134.08 74.75 l S 134.08 74.53 m 134.13 74.75 l S 134.13 74.53 m 134.17 74.72 l S 134.17 74.53 m 134.22 74.72 l S 134.22 74.53 m 134.27 74.99 l S 134.27 74.53 m 134.31 74.67 l S 134.31 74.53 m 134.36 74.70 l S 134.36 74.53 m 134.41 74.86 l S 134.41 74.53 m 134.45 74.83 l S 134.45 74.53 m 134.50 76.02 l S 134.50 74.53 m 134.54 74.75 l S 134.54 74.53 m 134.59 74.75 l S 134.59 74.53 m 134.64 75.27 l S 134.64 74.53 m 134.68 74.80 l S 134.68 74.53 m 134.73 74.89 l S 134.73 74.53 m 134.77 74.86 l S 134.77 74.53 m 134.82 75.18 l S 134.82 74.53 m 134.87 74.78 l S 134.87 74.53 m 134.91 74.70 l S 134.91 74.53 m 134.96 79.85 l S 134.96 74.53 m 135.00 74.75 l S 135.00 74.53 m 135.05 74.80 l S 135.05 74.53 m 135.10 74.72 l S 135.10 74.53 m 135.14 74.72 l S 135.14 74.53 m 135.19 74.83 l S 135.19 74.53 m 135.23 74.75 l S 135.23 74.53 m 135.28 74.97 l S 135.28 74.53 m 135.33 74.72 l S 135.33 74.53 m 135.37 74.67 l S 135.37 74.53 m 135.42 74.59 l S 135.42 74.53 m 135.46 74.67 l S 135.46 74.53 m 135.51 74.59 l S 135.51 74.53 m 135.56 74.56 l S 135.56 74.53 m 135.60 74.59 l S 135.60 74.53 m 135.65 74.56 l S 135.65 74.53 m 135.69 74.56 l S 135.69 74.53 m 135.74 74.56 l S 135.74 74.53 m 135.79 74.56 l S 135.79 74.53 m 135.83 74.59 l S 135.83 74.53 m 135.88 74.53 l S 135.88 74.53 m 135.92 74.72 l S 135.92 74.53 m 135.97 77.03 l S 135.97 74.53 m 136.02 77.54 l S 136.02 74.53 m 136.06 83.81 l S 136.06 74.53 m 136.11 79.69 l S 136.11 74.53 m 136.15 75.43 l S 136.15 74.53 m 136.20 74.56 l S 136.20 74.53 m 136.25 74.53 l S 136.25 74.53 m 136.29 74.59 l S 136.29 74.53 m 136.34 74.59 l S 136.34 74.53 m 136.38 74.70 l S 136.38 74.53 m 136.43 75.54 l S 136.43 74.53 m 136.48 74.56 l S 136.48 74.53 m 136.52 74.59 l S 136.52 74.53 m 136.57 74.59 l S 136.57 74.53 m 136.61 74.59 l S 136.61 74.53 m 136.66 74.64 l S 136.66 74.53 m 136.71 74.72 l S 136.71 74.53 m 136.75 74.83 l S 136.75 74.53 m 136.80 74.78 l S 136.80 74.53 m 136.84 74.72 l S 136.84 74.53 m 136.89 77.95 l S 136.89 74.53 m 136.94 75.51 l S 136.94 74.53 m 136.98 74.72 l S 136.98 74.53 m 137.03 76.19 l S 137.03 74.53 m 137.07 74.70 l S 137.07 74.53 m 137.12 74.75 l S 137.12 74.53 m 137.17 75.43 l S 137.17 74.53 m 137.21 79.28 l S 137.21 74.53 m 137.26 75.81 l S 137.26 74.53 m 137.30 74.61 l S 137.30 74.53 m 137.35 79.77 l S 137.35 74.53 m 137.40 74.61 l S 137.40 74.53 m 137.44 74.70 l S 137.44 74.53 m 137.49 74.78 l S 137.49 74.53 m 137.53 74.72 l S 137.53 74.53 m 137.58 74.70 l S 137.58 74.53 m 137.63 74.72 l S 137.63 74.53 m 137.67 75.02 l S 137.67 74.53 m 137.72 74.70 l S 137.72 74.53 m 137.76 74.70 l S 137.76 74.53 m 137.81 75.43 l S 137.81 74.53 m 137.86 74.67 l S 137.86 74.53 m 137.90 74.67 l S 137.90 74.53 m 137.95 74.67 l S 137.95 74.53 m 137.99 74.67 l S 137.99 74.53 m 138.04 74.67 l S 138.04 74.53 m 138.09 74.67 l S 138.09 74.53 m 138.13 74.70 l S 138.13 74.53 m 138.18 74.75 l S 138.18 74.53 m 138.22 74.75 l S 138.22 74.53 m 138.27 74.75 l S 138.27 74.53 m 138.32 74.70 l S 138.32 74.53 m 138.36 74.67 l S 138.36 74.53 m 138.41 74.70 l S 138.41 74.53 m 138.45 74.70 l S 138.45 74.53 m 138.50 74.67 l S 138.50 74.53 m 138.55 74.67 l S 138.55 74.53 m 138.59 74.64 l S 138.59 74.53 m 138.64 85.43 l S 138.64 74.53 m 138.68 74.80 l S 138.68 74.53 m 138.73 74.70 l S 138.73 74.53 m 138.78 74.75 l S 138.78 74.53 m 138.82 74.72 l S 138.82 74.53 m 138.87 74.67 l S 138.87 74.53 m 138.91 75.65 l S 138.91 74.53 m 138.96 74.67 l S 138.96 74.53 m 139.01 74.67 l S 139.01 74.53 m 139.05 74.67 l S 139.05 74.53 m 139.10 74.67 l S 139.10 74.53 m 139.14 74.67 l S 139.14 74.53 m 139.19 74.70 l S 139.19 74.53 m 139.24 74.72 l S 139.24 74.53 m 139.28 74.67 l S 139.28 74.53 m 139.33 74.72 l S 139.33 74.53 m 139.37 74.72 l S 139.37 74.53 m 139.42 74.67 l S 139.42 74.53 m 139.47 74.91 l S 139.47 74.53 m 139.51 74.78 l S 139.51 74.53 m 139.56 74.64 l S 139.56 74.53 m 139.60 74.67 l S 139.60 74.53 m 139.65 74.67 l S 139.65 74.53 m 139.70 74.70 l S 139.70 74.53 m 139.74 74.70 l S 139.74 74.53 m 139.79 74.67 l S 139.79 74.53 m 139.83 74.67 l S 139.83 74.53 m 139.88 74.70 l S 139.88 74.53 m 139.93 74.67 l S 139.93 74.53 m 139.97 74.70 l S 139.97 74.53 m 140.02 74.78 l S 140.02 74.53 m 140.06 74.67 l S 140.06 74.53 m 140.11 74.72 l S 140.11 74.53 m 140.16 74.67 l S 140.16 74.53 m 140.20 74.67 l S 140.20 74.53 m 140.25 74.72 l S 140.25 74.53 m 140.29 74.72 l S 140.29 74.53 m 140.34 74.67 l S 140.34 74.53 m 140.39 74.70 l S 140.39 74.53 m 140.43 74.67 l S 140.43 74.53 m 140.48 74.67 l S 140.48 74.53 m 140.52 74.67 l S 140.52 74.53 m 140.57 74.67 l S 140.57 74.53 m 140.62 74.67 l S 140.62 74.53 m 140.66 74.70 l S 140.66 74.53 m 140.71 74.70 l S 140.71 74.53 m 140.75 74.70 l S 140.75 74.53 m 140.80 74.70 l S 140.80 74.53 m 140.85 74.67 l S 140.85 74.53 m 140.89 74.67 l S 140.89 74.53 m 140.94 74.72 l S 140.94 74.53 m 140.98 74.67 l S 140.98 74.53 m 141.03 74.72 l S 141.03 74.53 m 141.08 74.67 l S 141.08 74.53 m 141.12 74.64 l S 141.12 74.53 m 141.17 74.61 l S 141.17 74.53 m 141.21 74.72 l S 141.21 74.53 m 141.26 74.67 l S 141.26 74.53 m 141.31 74.67 l S 141.31 74.53 m 141.35 74.72 l S 141.35 74.53 m 141.40 74.67 l S 141.40 74.53 m 141.44 74.67 l S 141.44 74.53 m 141.49 74.64 l S 141.49 74.53 m 141.54 74.70 l S 141.54 74.53 m 141.58 74.67 l S 141.58 74.53 m 141.63 74.67 l S 141.63 74.53 m 141.67 74.64 l S 141.67 74.53 m 141.72 74.72 l S 141.72 74.53 m 141.77 74.67 l S 141.77 74.53 m 141.81 74.75 l S 141.81 74.53 m 141.86 74.72 l S 141.86 74.53 m 141.90 74.67 l S 141.90 74.53 m 141.95 74.64 l S 141.95 74.53 m 142.00 74.67 l S 142.00 74.53 m 142.04 74.70 l S 142.04 74.53 m 142.09 74.64 l S 142.09 74.53 m 142.13 74.67 l S 142.13 74.53 m 142.18 74.64 l S 142.18 74.53 m 142.23 74.67 l S 142.23 74.53 m 142.27 74.64 l S 142.27 74.53 m 142.32 74.72 l S 142.32 74.53 m 142.36 74.61 l S 142.36 74.53 m 142.41 74.67 l S 142.41 74.53 m 142.46 74.67 l S 142.46 74.53 m 142.50 74.72 l S 142.50 74.53 m 142.55 74.64 l S 142.55 74.53 m 142.60 74.61 l S 142.60 74.53 m 142.64 74.75 l S 142.64 74.53 m 142.69 74.67 l S 142.69 74.53 m 142.73 74.67 l S 142.73 74.53 m 142.78 74.70 l S 142.78 74.53 m 142.83 74.70 l S 142.83 74.53 m 142.87 74.70 l S 142.87 74.53 m 142.92 74.70 l S 142.92 74.53 m 142.96 74.70 l S 142.96 74.53 m 143.01 74.64 l S 143.01 74.53 m 143.06 74.67 l S 143.06 74.53 m 143.10 74.67 l S 143.10 74.53 m 143.15 74.67 l S 143.15 74.53 m 143.19 74.67 l S 143.19 74.53 m 143.24 74.67 l S 143.24 74.53 m 143.29 74.67 l S 143.29 74.53 m 143.33 74.64 l S 143.33 74.53 m 143.38 74.67 l S 143.38 74.53 m 143.42 74.67 l S 143.42 74.53 m 143.47 74.70 l S 143.47 74.53 m 143.52 74.64 l S 143.52 74.53 m 143.56 74.67 l S 143.56 74.53 m 143.61 74.64 l S 143.61 74.53 m 143.65 74.67 l S 143.65 74.53 m 143.70 74.70 l S 143.70 74.53 m 143.75 74.70 l S 143.75 74.53 m 143.79 74.64 l S 143.79 74.53 m 143.84 74.64 l S 143.84 74.53 m 143.88 74.72 l S 143.88 74.53 m 143.93 74.64 l S 143.93 74.53 m 143.98 74.67 l S 143.98 74.53 m 144.02 74.86 l S 144.02 74.53 m 144.07 74.72 l S 144.07 74.53 m 144.11 74.70 l S 144.11 74.53 m 144.16 74.70 l S 144.16 74.53 m 144.21 74.67 l S 144.21 74.53 m 144.25 74.70 l S 144.25 74.53 m 144.30 74.67 l S 144.30 74.53 m 144.34 74.70 l S 144.34 74.53 m 144.39 74.67 l S 144.39 74.53 m 144.44 74.67 l S 144.44 74.53 m 144.48 74.67 l S 144.48 74.53 m 144.53 74.64 l S 144.53 74.53 m 144.57 74.70 l S 144.57 74.53 m 144.62 74.72 l S 144.62 74.53 m 144.67 74.67 l S 144.67 74.53 m 144.71 74.67 l S 144.71 74.53 m 144.76 74.67 l S 144.76 74.53 m 144.80 74.64 l S 144.80 74.53 m 144.85 74.64 l S 144.85 74.53 m 144.90 74.67 l S 144.90 74.53 m 144.94 74.72 l S 144.94 74.53 m 144.99 83.73 l S 144.99 74.53 m 145.03 74.67 l S 145.03 74.53 m 145.08 74.67 l S 145.08 74.53 m 145.13 74.72 l S 145.13 74.53 m 145.17 74.64 l S 145.17 74.53 m 145.22 74.64 l S 145.22 74.53 m 145.26 74.67 l S 145.26 74.53 m 145.31 74.75 l S 145.31 74.53 m 145.36 75.16 l S 145.36 74.53 m 145.40 74.70 l S 145.40 74.53 m 145.45 74.67 l S 145.45 74.53 m 145.49 74.64 l S 145.49 74.53 m 145.54 74.64 l S 145.54 74.53 m 145.59 74.64 l S 145.59 74.53 m 145.63 74.67 l S 145.63 74.53 m 145.68 74.64 l S 145.68 74.53 m 145.72 74.67 l S 145.72 74.53 m 145.77 74.67 l S 145.77 74.53 m 145.82 74.67 l S 145.82 74.53 m 145.86 74.72 l S 145.86 74.53 m 145.91 74.67 l S 145.91 74.53 m 145.95 74.70 l S 145.95 74.53 m 146.00 74.64 l S 146.00 74.53 m 146.05 74.67 l S 146.05 74.53 m 146.09 74.67 l S 146.09 74.53 m 146.14 74.70 l S 146.14 74.53 m 146.18 74.67 l S 146.18 74.53 m 146.23 74.70 l S 146.23 74.53 m 146.28 74.70 l S 146.28 74.53 m 146.32 74.67 l S 146.32 74.53 m 146.37 74.64 l S 146.37 74.53 m 146.41 74.67 l S 146.41 74.53 m 146.46 74.67 l S 146.46 74.53 m 146.51 74.70 l S 146.51 74.53 m 146.55 74.61 l S 146.55 74.53 m 146.60 74.64 l S 146.60 74.53 m 146.64 74.64 l S 146.64 74.53 m 146.69 74.67 l S 146.69 74.53 m 146.74 74.70 l S 146.74 74.53 m 146.78 74.64 l S 146.78 74.53 m 146.83 74.70 l S 146.83 74.53 m 146.87 74.72 l S 146.87 74.53 m 146.92 74.67 l S 146.92 74.53 m 146.97 74.67 l S 146.97 74.53 m 147.01 74.70 l S 147.01 74.53 m 147.06 74.70 l S 147.06 74.53 m 147.10 74.67 l S 147.10 74.53 m 147.15 74.72 l S 147.15 74.53 m 147.20 74.80 l S 147.20 74.53 m 147.24 74.67 l S 147.24 74.53 m 147.29 74.70 l S 147.29 74.53 m 147.33 74.67 l S 147.33 74.53 m 147.38 74.70 l S 147.38 74.53 m 147.43 74.70 l S 147.43 74.53 m 147.47 74.64 l S 147.47 74.53 m 147.52 74.70 l S 147.52 74.53 m 147.56 80.23 l S 147.56 74.53 m 147.61 75.13 l S 147.61 74.53 m 147.66 76.95 l S 147.66 74.53 m 147.70 74.72 l S 147.70 74.53 m 147.75 86.60 l S 147.75 74.53 m 147.79 74.89 l S 147.79 74.53 m 147.84 74.75 l S 147.84 74.53 m 147.89 74.67 l S 147.89 74.53 m 147.93 75.24 l S 147.93 74.53 m 147.98 74.75 l S 147.98 74.53 m 148.02 74.67 l S 148.02 74.53 m 148.07 74.75 l S 148.07 74.53 m 148.12 74.83 l S 148.12 74.53 m 148.16 74.70 l S 148.16 74.53 m 148.21 74.70 l S 148.21 74.53 m 148.25 74.67 l S 148.25 74.53 m 148.30 74.67 l S 148.30 74.53 m 148.35 74.67 l S 148.35 74.53 m 148.39 74.67 l S 148.39 74.53 m 148.44 74.75 l S 148.44 74.53 m 148.48 74.70 l S 148.48 74.53 m 148.53 74.70 l S 148.53 74.53 m 148.58 74.70 l S 148.58 74.53 m 148.62 74.70 l S 148.62 74.53 m 148.67 74.67 l S 148.67 74.53 m 148.71 74.67 l S 148.71 74.53 m 148.76 74.67 l S 148.76 74.53 m 148.81 74.72 l S 148.81 74.53 m 148.85 74.64 l S 148.85 74.53 m 148.90 74.64 l S 148.90 74.53 m 148.94 74.72 l S 148.94 74.53 m 148.99 74.67 l S 148.99 74.53 m 149.04 74.75 l S 149.04 74.53 m 149.08 75.40 l S 149.08 74.53 m 149.13 74.61 l S 149.13 74.53 m 149.17 74.67 l S 149.17 74.53 m 149.22 74.64 l S 149.22 74.53 m 149.27 74.72 l S 149.27 74.53 m 149.31 74.67 l S 149.31 74.53 m 149.36 74.72 l S 149.36 74.53 m 149.40 74.75 l S 149.40 74.53 m 149.45 74.70 l S 149.45 74.53 m 149.50 74.70 l S 149.50 74.53 m 149.54 74.91 l S 149.54 74.53 m 149.59 74.67 l S 149.59 74.53 m 149.63 74.72 l S 149.63 74.53 m 149.68 74.80 l S 149.68 74.53 m 149.73 74.72 l S 149.73 74.53 m 149.77 74.97 l S 149.77 74.53 m 149.82 77.84 l S 149.82 74.53 m 149.86 74.64 l S 149.86 74.53 m 149.91 75.05 l S 149.91 74.53 m 149.96 74.70 l S 149.96 74.53 m 150.00 74.67 l S 150.00 74.53 m 150.05 74.70 l S 150.05 74.53 m 150.09 74.67 l S 150.09 74.53 m 150.14 74.75 l S 150.14 74.53 m 150.19 74.64 l S 150.19 74.53 m 150.23 74.70 l S 150.23 74.53 m 150.28 76.81 l S 150.28 74.53 m 150.32 74.72 l S 150.32 74.53 m 150.37 74.67 l S 150.37 74.53 m 150.42 74.70 l S 150.42 74.53 m 150.46 74.72 l S 150.46 74.53 m 150.51 74.64 l S 150.51 74.53 m 150.56 74.78 l S 150.56 74.53 m 150.60 74.70 l S 150.60 74.53 m 150.65 74.70 l S 150.65 74.53 m 150.69 74.89 l S 150.69 74.53 m 150.74 75.27 l S 150.74 74.53 m 150.79 74.72 l S 150.79 74.53 m 150.83 74.75 l S 150.83 74.53 m 150.88 74.72 l S 150.88 74.53 m 150.92 79.14 l S 150.92 74.53 m 150.97 74.78 l S 150.97 74.53 m 151.02 77.90 l S 151.02 74.53 m 151.06 74.67 l S 151.06 74.53 m 151.11 74.72 l S 151.11 74.53 m 151.15 74.67 l S 151.15 74.53 m 151.20 75.83 l S 151.20 74.53 m 151.25 75.40 l S 151.25 74.53 m 151.29 74.75 l S 151.29 74.53 m 151.34 74.67 l S 151.34 74.53 m 151.38 74.70 l S 151.38 74.53 m 151.43 74.75 l S 151.43 74.53 m 151.48 74.70 l S 151.48 74.53 m 151.52 74.67 l S 151.52 74.53 m 151.57 74.67 l S 151.57 74.53 m 151.61 74.70 l S 151.61 74.53 m 151.66 74.67 l S 151.66 74.53 m 151.71 75.05 l S 151.71 74.53 m 151.75 74.70 l S 151.75 74.53 m 151.80 74.67 l S 151.80 74.53 m 151.84 76.68 l S 151.84 74.53 m 151.89 74.75 l S 151.89 74.53 m 151.94 75.05 l S 151.94 74.53 m 151.98 74.70 l S 151.98 74.53 m 152.03 74.75 l S 152.03 74.53 m 152.07 74.70 l S 152.07 74.53 m 152.12 74.70 l S 152.12 74.53 m 152.17 74.67 l S 152.17 74.53 m 152.21 74.78 l S 152.21 74.53 m 152.26 74.70 l S 152.26 74.53 m 152.30 74.91 l S 152.30 74.53 m 152.35 74.89 l S 152.35 74.53 m 152.40 74.72 l S 152.40 74.53 m 152.44 74.75 l S 152.44 74.53 m 152.49 74.91 l S 152.49 74.53 m 152.53 79.90 l S 152.53 74.53 m 152.58 75.18 l S 152.58 74.53 m 152.63 75.24 l S 152.63 74.53 m 152.67 75.24 l S 152.67 74.53 m 152.72 80.17 l S 152.72 74.53 m 152.76 75.29 l S 152.76 74.53 m 152.81 74.94 l S 152.81 74.53 m 152.86 74.70 l S 152.86 74.53 m 152.90 75.27 l S 152.90 74.53 m 152.95 74.78 l S 152.95 74.53 m 152.99 75.02 l S 152.99 74.53 m 153.04 81.23 l S 153.04 74.53 m 153.09 74.89 l S 153.09 74.53 m 153.13 74.78 l S 153.13 74.53 m 153.18 75.97 l S 153.18 74.53 m 153.22 74.80 l S 153.22 74.53 m 153.27 74.72 l S 153.27 74.53 m 153.32 74.70 l S 153.32 74.53 m 153.36 74.83 l S 153.36 74.53 m 153.41 74.75 l S 153.41 74.53 m 153.45 74.72 l S 153.45 74.53 m 153.50 74.99 l S 153.50 74.53 m 153.55 78.03 l S 153.55 74.53 m 153.59 74.89 l S 153.59 74.53 m 153.64 74.94 l S 153.64 74.53 m 153.68 74.83 l S 153.68 74.53 m 153.73 80.25 l S 153.73 74.53 m 153.78 78.33 l S 153.78 74.53 m 153.82 74.78 l S 153.82 74.53 m 153.87 74.67 l S 153.87 74.53 m 153.91 74.70 l S 153.91 74.53 m 153.96 74.80 l S 153.96 74.53 m 154.01 74.83 l S 154.01 74.53 m 154.05 74.70 l S 154.05 74.53 m 154.10 74.83 l S 154.10 74.53 m 154.14 74.67 l S 154.14 74.53 m 154.19 81.23 l S 154.19 74.53 m 154.24 74.70 l S 154.24 74.53 m 154.28 74.97 l S 154.28 74.53 m 154.33 75.10 l S 154.33 74.53 m 154.37 81.99 l S 154.37 74.53 m 154.42 74.67 l S 154.42 74.53 m 154.47 74.64 l S 154.47 74.53 m 154.51 74.67 l S 154.51 74.53 m 154.56 74.83 l S 154.56 74.53 m 154.60 74.67 l S 154.60 74.53 m 154.65 78.82 l S 154.65 74.53 m 154.70 74.70 l S 154.70 74.53 m 154.74 77.71 l S 154.74 74.53 m 154.79 74.78 l S 154.79 74.53 m 154.83 74.67 l S 154.83 74.53 m 154.88 78.06 l S 154.88 74.53 m 154.93 74.72 l S 154.93 74.53 m 154.97 74.70 l S 154.97 74.53 m 155.02 74.78 l S 155.02 74.53 m 155.06 74.75 l S 155.06 74.53 m 155.11 74.75 l S 155.11 74.53 m 155.16 74.64 l S 155.16 74.53 m 155.20 74.91 l S 155.20 74.53 m 155.25 74.67 l S 155.25 74.53 m 155.29 74.70 l S 155.29 74.53 m 155.34 74.75 l S 155.34 74.53 m 155.39 74.70 l S 155.39 74.53 m 155.43 78.47 l S 155.43 74.53 m 155.48 74.78 l S 155.48 74.53 m 155.52 74.91 l S 155.52 74.53 m 155.57 74.70 l S 155.57 74.53 m 155.62 74.70 l S 155.62 74.53 m 155.66 74.78 l S 155.66 74.53 m 155.71 74.70 l S 155.71 74.53 m 155.75 74.64 l S 155.75 74.53 m 155.80 74.67 l S 155.80 74.53 m 155.85 74.67 l S 155.85 74.53 m 155.89 74.70 l S 155.89 74.53 m 155.94 74.70 l S 155.94 74.53 m 155.98 74.67 l S 155.98 74.53 m 156.03 74.64 l S 156.03 74.53 m 156.08 74.70 l S 156.08 74.53 m 156.12 74.70 l S 156.12 74.53 m 156.17 74.67 l S 156.17 74.53 m 156.21 74.67 l S 156.21 74.53 m 156.26 74.64 l S 156.26 74.53 m 156.31 74.64 l S 156.31 74.53 m 156.35 74.67 l S 156.35 74.53 m 156.40 74.67 l S 156.40 74.53 m 156.44 74.72 l S 156.44 74.53 m 156.49 74.67 l S 156.49 74.53 m 156.54 74.67 l S 156.54 74.53 m 156.58 74.67 l S 156.58 74.53 m 156.63 74.67 l S 156.63 74.53 m 156.67 74.70 l S 156.67 74.53 m 156.72 74.67 l S 156.72 74.53 m 156.77 74.67 l S 156.77 74.53 m 156.81 74.72 l S 156.81 74.53 m 156.86 74.67 l S 156.86 74.53 m 156.90 74.67 l S 156.90 74.53 m 156.95 74.72 l S 156.95 74.53 m 157.00 74.67 l S 157.00 74.53 m 157.04 74.64 l S 157.04 74.53 m 157.09 74.64 l S 157.09 74.53 m 157.13 74.67 l S 157.13 74.53 m 157.18 74.64 l S 157.18 74.53 m 157.23 74.64 l S 157.23 74.53 m 157.27 74.64 l S 157.27 74.53 m 157.32 74.61 l S 157.32 74.53 m 157.36 74.70 l S 157.36 74.53 m 157.41 74.75 l S 157.41 74.53 m 157.46 74.67 l S 157.46 74.53 m 157.50 74.70 l S 157.50 74.53 m 157.55 74.64 l S 157.55 74.53 m 157.59 74.64 l S 157.59 74.53 m 157.64 74.67 l S 157.64 74.53 m 157.69 74.67 l S 157.69 74.53 m 157.73 74.75 l S 157.73 74.53 m 157.78 74.64 l S 157.78 74.53 m 157.82 74.64 l S 157.82 74.53 m 157.87 74.64 l S 157.87 74.53 m 157.92 74.70 l S 157.92 74.53 m 157.96 74.67 l S 157.96 74.53 m 158.01 74.64 l S 158.01 74.53 m 158.05 74.61 l S 158.05 74.53 m 158.10 74.72 l S 158.10 74.53 m 158.15 74.72 l S 158.15 74.53 m 158.19 74.83 l S 158.19 74.53 m 158.24 74.67 l S 158.24 74.53 m 158.28 74.70 l S 158.28 74.53 m 158.33 74.64 l S 158.33 74.53 m 158.38 74.70 l S 158.38 74.53 m 158.42 74.67 l S 158.42 74.53 m 158.47 74.67 l S 158.47 74.53 m 158.52 74.64 l S 158.52 74.53 m 158.56 74.67 l S 158.56 74.53 m 158.61 74.67 l S 158.61 74.53 m 158.65 74.70 l S 158.65 74.53 m 158.70 74.64 l S 158.70 74.53 m 158.75 74.72 l S 158.75 74.53 m 158.79 74.72 l S 158.79 74.53 m 158.84 74.78 l S 158.84 74.53 m 158.88 74.67 l S 158.88 74.53 m 158.93 74.67 l S 158.93 74.53 m 158.98 74.67 l S 158.98 74.53 m 159.02 74.67 l S 159.02 74.53 m 159.07 74.67 l S 159.07 74.53 m 159.11 74.64 l S 159.11 74.53 m 159.16 74.67 l S 159.16 74.53 m 159.21 74.70 l S 159.21 74.53 m 159.25 74.67 l S 159.25 74.53 m 159.30 74.64 l S 159.30 74.53 m 159.34 74.78 l S 159.34 74.53 m 159.39 74.64 l S 159.39 74.53 m 159.44 74.75 l S 159.44 74.53 m 159.48 74.67 l S 159.48 74.53 m 159.53 74.70 l S 159.53 74.53 m 159.57 74.72 l S 159.57 74.53 m 159.62 74.67 l S 159.62 74.53 m 159.67 74.67 l S 159.67 74.53 m 159.71 74.72 l S 159.71 74.53 m 159.76 74.75 l S 159.76 74.53 m 159.80 74.72 l S 159.80 74.53 m 159.85 74.64 l S 159.85 74.53 m 159.90 74.78 l S 159.90 74.53 m 159.94 74.67 l S 159.94 74.53 m 159.99 74.86 l S 159.99 74.53 m 160.03 74.67 l S 160.03 74.53 m 160.08 74.72 l S 160.08 74.53 m 160.13 74.72 l S 160.13 74.53 m 160.17 74.83 l S 160.17 74.53 m 160.22 74.61 l S 160.22 74.53 m 160.26 74.75 l S 160.26 74.53 m 160.31 75.05 l S 160.31 74.53 m 160.36 74.83 l S 160.36 74.53 m 160.40 74.70 l S 160.40 74.53 m 160.45 74.70 l S 160.45 74.53 m 160.49 82.40 l S 160.49 74.53 m 160.54 74.78 l S 160.54 74.53 m 160.59 74.94 l S 160.59 74.53 m 160.63 81.75 l S 160.63 74.53 m 160.68 77.30 l S 160.68 74.53 m 160.72 74.67 l S 160.72 74.53 m 160.77 74.80 l S 160.77 74.53 m 160.82 74.67 l S 160.82 74.53 m 160.86 74.70 l S 160.86 74.53 m 160.91 80.77 l S 160.91 74.53 m 160.95 74.78 l S 160.95 74.53 m 161.00 74.70 l S 161.00 74.53 m 161.05 74.72 l S 161.05 74.53 m 161.09 74.67 l S 161.09 74.53 m 161.14 77.87 l S 161.14 74.53 m 161.18 74.70 l S 161.18 74.53 m 161.23 74.72 l S 161.23 74.53 m 161.28 82.48 l S 161.28 74.53 m 161.32 74.67 l S 161.32 74.53 m 161.37 78.11 l S 161.37 74.53 m 161.41 74.70 l S 161.41 74.53 m 161.46 79.01 l S 161.46 74.53 m 161.51 74.64 l S 161.51 74.53 m 161.55 80.85 l S 161.55 74.53 m 161.60 76.57 l S 161.60 74.53 m 161.64 82.59 l S 161.64 74.53 m 161.69 74.78 l S 161.69 74.53 m 161.74 75.75 l S 161.74 74.53 m 161.78 77.46 l S 161.78 74.53 m 161.83 74.67 l S 161.83 74.53 m 161.87 74.61 l S 161.87 74.53 m 161.92 75.83 l S 161.92 74.53 m 161.97 74.72 l S 161.97 74.53 m 162.01 74.67 l S 162.01 74.53 m 162.06 80.15 l S 162.06 74.53 m 162.10 84.05 l S 162.10 74.53 m 162.15 79.36 l S 162.15 74.53 m 162.20 74.64 l S 162.20 74.53 m 162.24 76.13 l S 162.24 74.53 m 162.29 84.30 l S 162.29 74.53 m 162.33 84.81 l S 162.33 74.53 m 162.38 74.72 l S 162.38 74.53 m 162.43 81.75 l S 162.43 74.53 m 162.47 75.75 l S 162.47 74.53 m 162.52 74.78 l S 162.52 74.53 m 162.56 74.70 l S 162.56 74.53 m 162.61 78.17 l S 162.61 74.53 m 162.66 74.99 l S 162.66 74.53 m 162.70 74.78 l S 162.70 74.53 m 162.75 75.05 l S 162.75 74.53 m 162.79 76.35 l S 162.79 74.53 m 162.84 74.72 l S 162.84 74.53 m 162.89 75.70 l S 162.89 74.53 m 162.93 79.17 l S 162.93 74.53 m 162.98 74.80 l S 162.98 74.53 m 163.02 75.21 l S 163.02 74.53 m 163.07 74.70 l S 163.07 74.53 m 163.12 74.70 l S 163.12 74.53 m 163.16 74.75 l S 163.16 74.53 m 163.21 74.70 l S 163.21 74.53 m 163.25 75.24 l S 163.25 74.53 m 163.30 74.70 l S 163.30 74.53 m 163.35 74.70 l S 163.35 74.53 m 163.39 74.67 l S 163.39 74.53 m 163.44 74.86 l S 163.44 74.53 m 163.48 74.80 l S 163.48 74.53 m 163.53 74.72 l S 163.53 74.53 m 163.58 74.91 l S 163.58 74.53 m 163.62 75.62 l S 163.62 74.53 m 163.67 78.87 l S 163.67 74.53 m 163.71 78.09 l S 163.71 74.53 m 163.76 81.01 l S 163.76 74.53 m 163.81 74.78 l S 163.81 74.53 m 163.85 79.50 l S 163.85 74.53 m 163.90 76.59 l S 163.90 74.53 m 163.94 74.70 l S 163.94 74.53 m 163.99 74.83 l S 163.99 74.53 m 164.04 78.41 l S 164.04 74.53 m 164.08 77.65 l S 164.08 74.53 m 164.13 77.22 l S 164.13 74.53 m 164.17 75.29 l S 164.17 74.53 m 164.22 74.91 l S 164.22 74.53 m 164.27 74.72 l S 164.27 74.53 m 164.31 76.84 l S 164.31 74.53 m 164.36 79.60 l S 164.36 74.53 m 164.40 74.75 l S 164.40 74.53 m 164.45 74.91 l S 164.45 74.53 m 164.50 74.70 l S 164.50 74.53 m 164.54 74.70 l S 164.54 74.53 m 164.59 74.70 l S 164.59 74.53 m 164.63 76.57 l S 164.63 74.53 m 164.68 74.75 l S 164.68 74.53 m 164.73 80.20 l S 164.73 74.53 m 164.77 75.10 l S 164.77 74.53 m 164.82 74.72 l S 164.82 74.53 m 164.86 75.65 l S 164.86 74.53 m 164.91 74.70 l S 164.91 74.53 m 164.96 74.75 l S 164.96 74.53 m 165.00 74.72 l S 165.00 74.53 m 165.05 74.72 l S 165.05 74.53 m 165.09 74.72 l S 165.09 74.53 m 165.14 74.72 l S 165.14 74.53 m 165.19 75.78 l S 165.19 74.53 m 165.23 74.72 l S 165.23 74.53 m 165.28 74.80 l S 165.28 74.53 m 165.32 77.03 l S 165.32 74.53 m 165.37 74.78 l S 165.37 74.53 m 165.42 83.02 l S 165.42 74.53 m 165.46 74.91 l S 165.46 74.53 m 165.51 74.70 l S 165.51 74.53 m 165.55 75.10 l S 165.55 74.53 m 165.60 74.75 l S 165.60 74.53 m 165.65 74.72 l S 165.65 74.53 m 165.69 74.72 l S 165.69 74.53 m 165.74 74.94 l S 165.74 74.53 m 165.78 74.72 l S 165.78 74.53 m 165.83 75.32 l S 165.83 74.53 m 165.88 75.16 l S 165.88 74.53 m 165.92 81.18 l S 165.92 74.53 m 165.97 75.10 l S 165.97 74.53 m 166.01 74.70 l S 166.01 74.53 m 166.06 86.87 l S 166.06 74.53 m 166.11 77.22 l S 166.11 74.53 m 166.15 74.97 l S 166.15 74.53 m 166.20 75.70 l S 166.20 74.53 m 166.24 74.67 l S 166.24 74.53 m 166.29 74.70 l S 166.29 74.53 m 166.34 74.75 l S 166.34 74.53 m 166.38 78.09 l S 166.38 74.53 m 166.43 74.70 l S 166.43 74.53 m 166.48 74.64 l S 166.48 74.53 m 166.52 74.64 l S 166.52 74.53 m 166.57 81.42 l S 166.57 74.53 m 166.61 87.06 l S 166.61 74.53 m 166.66 75.81 l S 166.66 74.53 m 166.71 76.13 l S 166.71 74.53 m 166.75 81.91 l S 166.75 74.53 m 166.80 74.78 l S 166.80 74.53 m 166.84 74.67 l S 166.84 74.53 m 166.89 74.70 l S 166.89 74.53 m 166.94 74.67 l S 166.94 74.53 m 166.98 74.83 l S 166.98 74.53 m 167.03 74.61 l S 167.03 74.53 m 167.07 74.72 l S 167.07 74.53 m 167.12 82.91 l S 167.12 74.53 m 167.17 74.75 l S 167.17 74.53 m 167.21 77.60 l S 167.21 74.53 m 167.26 74.64 l S 167.26 74.53 m 167.30 74.72 l S 167.30 74.53 m 167.35 74.70 l S 167.35 74.53 m 167.40 74.67 l S 167.40 74.53 m 167.44 74.72 l S 167.44 74.53 m 167.49 74.67 l S 167.49 74.53 m 167.53 74.67 l S 167.53 74.53 m 167.58 74.70 l S 167.58 74.53 m 167.63 74.70 l S 167.63 74.53 m 167.67 74.61 l S 167.67 74.53 m 167.72 74.67 l S 167.72 74.53 m 167.76 79.12 l S 167.76 74.53 m 167.81 74.64 l S 167.81 74.53 m 167.86 91.10 l S 167.86 74.53 m 167.90 74.64 l S 167.90 74.53 m 167.95 92.57 l S 167.95 74.53 m 167.99 74.72 l S 167.99 74.53 m 168.04 74.86 l S 168.04 74.53 m 168.09 77.41 l S 168.09 74.53 m 168.13 74.67 l S 168.13 74.53 m 168.18 80.47 l S 168.18 74.53 m 168.22 74.64 l S 168.22 74.53 m 168.27 80.50 l S 168.27 74.53 m 168.32 74.67 l S 168.32 74.53 m 168.36 74.67 l S 168.36 74.53 m 168.41 74.99 l S 168.41 74.53 m 168.45 84.19 l S 168.45 74.53 m 168.50 76.49 l S 168.50 74.53 m 168.55 74.59 l S 168.55 74.53 m 168.59 79.60 l S 168.59 74.53 m 168.64 82.07 l S 168.64 74.53 m 168.68 81.53 l S 168.68 74.53 m 168.73 76.24 l S 168.73 74.53 m 168.78 75.83 l S 168.78 74.53 m 168.82 77.49 l S 168.82 74.53 m 168.87 76.08 l S 168.87 74.53 m 168.91 75.37 l S 168.91 74.53 m 168.96 85.38 l S 168.96 74.53 m 169.01 74.83 l S 169.01 74.53 m 169.05 74.89 l S 169.05 74.53 m 169.10 74.67 l S 169.10 74.53 m 169.14 74.70 l S 169.14 74.53 m 169.19 90.48 l S 169.19 74.53 m 169.24 77.76 l S 169.24 74.53 m 169.28 75.21 l S 169.28 74.53 m 169.33 74.64 l S 169.33 74.53 m 169.37 74.91 l S 169.37 74.53 m 169.42 74.78 l S 169.42 74.53 m 169.47 74.75 l S 169.47 74.53 m 169.51 74.75 l S 169.51 74.53 m 169.56 74.80 l S 169.56 74.53 m 169.60 74.67 l S 169.60 74.53 m 169.65 74.72 l S 169.65 74.53 m 169.70 74.70 l S 169.70 74.53 m 169.74 74.70 l S 169.74 74.53 m 169.79 75.43 l S 169.79 74.53 m 169.83 74.75 l S 169.83 74.53 m 169.88 74.80 l S 169.88 74.53 m 169.93 74.67 l S 169.93 74.53 m 169.97 75.08 l S 169.97 74.53 m 170.02 74.70 l S 170.02 74.53 m 170.06 74.70 l S 170.06 74.53 m 170.11 77.71 l S 170.11 74.53 m 170.16 74.91 l S 170.16 74.53 m 170.20 74.94 l S 170.20 74.53 m 170.25 74.72 l S 170.25 74.53 m 170.29 75.27 l S 170.29 74.53 m 170.34 74.94 l S 170.34 74.53 m 170.39 75.65 l S 170.39 74.53 m 170.43 74.75 l S 170.43 74.53 m 170.48 77.62 l S 170.48 74.53 m 170.52 74.72 l S 170.52 74.53 m 170.57 75.05 l S 170.57 74.53 m 170.62 82.61 l S 170.62 74.53 m 170.66 76.21 l S 170.66 74.53 m 170.71 74.78 l S 170.71 74.53 m 170.75 78.84 l S 170.75 74.53 m 170.80 74.70 l S 170.80 74.53 m 170.85 74.78 l S 170.85 74.53 m 170.89 76.62 l S 170.89 74.53 m 170.94 74.86 l S 170.94 74.53 m 170.98 74.67 l S 170.98 74.53 m 171.03 74.67 l S 171.03 74.53 m 171.08 74.75 l S 171.08 74.53 m 171.12 74.70 l S 171.12 74.53 m 171.17 74.70 l S 171.17 74.53 m 171.21 74.70 l S 171.21 74.53 m 171.26 74.70 l S 171.26 74.53 m 171.31 74.80 l S 171.31 74.53 m 171.35 74.67 l S 171.35 74.53 m 171.40 78.74 l S 171.40 74.53 m 171.44 74.67 l S 171.44 74.53 m 171.49 74.70 l S 171.49 74.53 m 171.54 74.70 l S 171.54 74.53 m 171.58 74.78 l S 171.58 74.53 m 171.63 74.72 l S 171.63 74.53 m 171.67 74.70 l S 171.67 74.53 m 171.72 74.72 l S 171.72 74.53 m 171.77 74.70 l S 171.77 74.53 m 171.81 74.67 l S 171.81 74.53 m 171.86 74.72 l S 171.86 74.53 m 171.90 74.70 l S 171.90 74.53 m 171.95 74.75 l S 171.95 74.53 m 172.00 74.75 l S 172.00 74.53 m 172.04 74.67 l S 172.04 74.53 m 172.09 74.70 l S 172.09 74.53 m 172.13 74.67 l S 172.13 74.53 m 172.18 74.70 l S 172.18 74.53 m 172.23 74.75 l S 172.23 74.53 m 172.27 74.75 l S 172.27 74.53 m 172.32 74.72 l S 172.32 74.53 m 172.36 74.70 l S 172.36 74.53 m 172.41 74.72 l S 172.41 74.53 m 172.46 74.72 l S 172.46 74.53 m 172.50 74.67 l S 172.50 74.53 m 172.55 74.67 l S 172.55 74.53 m 172.59 74.75 l S 172.59 74.53 m 172.64 74.75 l S 172.64 74.53 m 172.69 74.70 l S 172.69 74.53 m 172.73 74.67 l S 172.73 74.53 m 172.78 74.72 l S 172.78 74.53 m 172.82 74.70 l S 172.82 74.53 m 172.87 74.72 l S 172.87 74.53 m 172.92 74.70 l S 172.92 74.53 m 172.96 75.08 l S 172.96 74.53 m 173.01 74.75 l S 173.01 74.53 m 173.05 74.70 l S 173.05 74.53 m 173.10 75.40 l S 173.10 74.53 m 173.15 74.72 l S 173.15 74.53 m 173.19 74.72 l S 173.19 74.53 m 173.24 74.70 l S 173.24 74.53 m 173.28 74.78 l S 173.28 74.53 m 173.33 74.72 l S 173.33 74.53 m 173.38 74.72 l S 173.38 74.53 m 173.42 74.75 l S 173.42 74.53 m 173.47 74.72 l S 173.47 74.53 m 173.51 74.70 l S 173.51 74.53 m 173.56 74.72 l S 173.56 74.53 m 173.61 74.72 l S 173.61 74.53 m 173.65 74.72 l S 173.65 74.53 m 173.70 74.75 l S 173.70 74.53 m 173.74 74.78 l S 173.74 74.53 m 173.79 74.72 l S 173.79 74.53 m 173.84 74.70 l S 173.84 74.53 m 173.88 74.72 l S 173.88 74.53 m 173.93 74.83 l S 173.93 74.53 m 173.97 74.72 l S 173.97 74.53 m 174.02 75.70 l S 174.02 74.53 m 174.07 74.75 l S 174.07 74.53 m 174.11 74.72 l S 174.11 74.53 m 174.16 74.75 l S 174.16 74.53 m 174.20 74.83 l S 174.20 74.53 m 174.25 74.80 l S 174.25 74.53 m 174.30 76.30 l S 174.30 74.53 m 174.34 74.80 l S 174.34 74.53 m 174.39 74.72 l S 174.39 74.53 m 174.44 81.37 l S 174.44 74.53 m 174.48 74.75 l S 174.48 74.53 m 174.53 74.70 l S 174.53 74.53 m 174.57 74.78 l S 174.57 74.53 m 174.62 74.70 l S 174.62 74.53 m 174.67 74.70 l S 174.67 74.53 m 174.71 74.78 l S 174.71 74.53 m 174.76 74.83 l S 174.76 74.53 m 174.80 80.36 l S 174.80 74.53 m 174.85 75.16 l S 174.85 74.53 m 174.90 74.89 l S 174.90 74.53 m 174.94 76.51 l S 174.94 74.53 m 174.99 74.83 l S 174.99 74.53 m 175.03 74.70 l S 175.03 74.53 m 175.08 74.78 l S 175.08 74.53 m 175.13 74.75 l S 175.13 74.53 m 175.17 74.70 l S 175.17 74.53 m 175.22 74.78 l S 175.22 74.53 m 175.26 74.72 l S 175.26 74.53 m 175.31 74.86 l S 175.31 74.53 m 175.36 74.75 l S 175.36 74.53 m 175.40 74.75 l S 175.40 74.53 m 175.45 74.72 l S 175.45 74.53 m 175.49 74.72 l S 175.49 74.53 m 175.54 74.78 l S 175.54 74.53 m 175.59 74.72 l S 175.59 74.53 m 175.63 74.72 l S 175.63 74.53 m 175.68 74.72 l S 175.68 74.53 m 175.72 75.56 l S 175.72 74.53 m 175.77 74.72 l S 175.77 74.53 m 175.82 75.48 l S 175.82 74.53 m 175.86 77.79 l S 175.86 74.53 m 175.91 74.78 l S 175.91 74.53 m 175.95 74.94 l S 175.95 74.53 m 176.00 74.67 l S 176.00 74.53 m 176.05 74.75 l S 176.05 74.53 m 176.09 75.97 l S 176.09 74.53 m 176.14 75.35 l S 176.14 74.53 m 176.18 74.91 l S 176.18 74.53 m 176.23 76.40 l S 176.23 74.53 m 176.28 74.75 l S 176.28 74.53 m 176.32 74.72 l S 176.32 74.53 m 176.37 75.75 l S 176.37 74.53 m 176.41 74.72 l S 176.41 74.53 m 176.46 74.59 l S 176.46 74.53 m 176.51 74.59 l S 176.51 74.53 m 176.55 74.53 l S 176.55 74.53 m 176.60 74.56 l S 176.60 74.53 m 176.64 74.61 l S 176.64 74.53 m 176.69 74.56 l S 176.69 74.53 m 176.74 74.56 l S 176.74 74.53 m 176.78 74.56 l S 176.78 74.53 m 176.83 74.59 l S 176.83 74.53 m 176.87 74.56 l S 176.87 74.53 m 176.92 74.56 l S 176.92 74.53 m 176.97 74.56 l S 176.97 74.53 m 177.01 74.56 l S 177.01 74.53 m 177.06 74.59 l S 177.06 74.53 m 177.10 74.56 l S 177.10 74.53 m 177.15 74.59 l S 177.15 74.53 m 177.20 74.56 l S 177.20 74.53 m 177.24 74.53 l S 177.24 74.53 m 177.29 74.56 l S 177.29 74.53 m 177.33 75.73 l S 177.33 74.53 m 177.38 74.64 l S 177.38 74.53 m 177.43 76.24 l S 177.43 74.53 m 177.47 74.80 l S 177.47 74.53 m 177.52 75.08 l S 177.52 74.53 m 177.56 74.70 l S 177.56 74.53 m 177.61 74.64 l S 177.61 74.53 m 177.66 84.54 l S 177.66 74.53 m 177.70 75.46 l S 177.70 74.53 m 177.75 75.16 l S 177.75 74.53 m 177.79 74.70 l S 177.79 74.53 m 177.84 80.99 l S 177.84 74.53 m 177.89 74.61 l S 177.89 74.53 m 177.93 74.70 l S 177.93 74.53 m 177.98 74.83 l S 177.98 74.53 m 178.02 74.70 l S 178.02 74.53 m 178.07 75.54 l S 178.07 74.53 m 178.12 79.17 l S 178.12 74.53 m 178.16 80.66 l S 178.16 74.53 m 178.21 77.11 l S 178.21 74.53 m 178.25 75.05 l S 178.25 74.53 m 178.30 78.98 l S 178.30 74.53 m 178.35 74.72 l S 178.35 74.53 m 178.39 74.78 l S 178.39 74.53 m 178.44 74.94 l S 178.44 74.53 m 178.48 75.24 l S 178.48 74.53 m 178.53 74.72 l S 178.53 74.53 m 178.58 74.75 l S 178.58 74.53 m 178.62 74.67 l S 178.62 74.53 m 178.67 74.64 l S 178.67 74.53 m 178.71 74.75 l S 178.71 74.53 m 178.76 74.70 l S 178.76 74.53 m 178.81 74.67 l S 178.81 74.53 m 178.85 74.72 l S 178.85 74.53 m 178.90 74.64 l S 178.90 74.53 m 178.94 74.72 l S 178.94 74.53 m 178.99 74.64 l S 178.99 74.53 m 179.04 74.67 l S 179.04 74.53 m 179.08 74.67 l S 179.08 74.53 m 179.13 74.70 l S 179.13 74.53 m 179.17 74.67 l S 179.17 74.53 m 179.22 74.67 l S 179.22 74.53 m 179.27 74.64 l S 179.27 74.53 m 179.31 74.64 l S 179.31 74.53 m 179.36 74.70 l S 179.36 74.53 m 179.40 74.64 l S 179.40 74.53 m 179.45 74.64 l S 179.45 74.53 m 179.50 74.67 l S 179.50 74.53 m 179.54 74.67 l S 179.54 74.53 m 179.59 74.67 l S 179.59 74.53 m 179.63 74.67 l S 179.63 74.53 m 179.68 74.64 l S 179.68 74.53 m 179.73 74.64 l S 179.73 74.53 m 179.77 74.70 l S 179.77 74.53 m 179.82 74.70 l S 179.82 74.53 m 179.86 74.67 l S 179.86 74.53 m 179.91 74.75 l S 179.91 74.53 m 179.96 74.70 l S 179.96 74.53 m 180.00 74.67 l S 180.00 74.53 m 180.05 74.64 l S 180.05 74.53 m 180.09 74.89 l S 180.09 74.53 m 180.14 74.72 l S 180.14 74.53 m 180.19 74.67 l S 180.19 74.53 m 180.23 74.72 l S 180.23 74.53 m 180.28 74.64 l S 180.28 74.53 m 180.32 74.70 l S 180.32 74.53 m 180.37 74.72 l S 180.37 74.53 m 180.42 74.67 l S 180.42 74.53 m 180.46 74.72 l S 180.46 74.53 m 180.51 74.70 l S 180.51 74.53 m 180.55 74.67 l S 180.55 74.53 m 180.60 74.72 l S 180.60 74.53 m 180.65 74.67 l S 180.65 74.53 m 180.69 74.64 l S 180.69 74.53 m 180.74 74.67 l S 180.74 74.53 m 180.78 74.83 l S 180.78 74.53 m 180.83 74.67 l S 180.83 74.53 m 180.88 74.70 l S 180.88 74.53 m 180.92 74.72 l S 180.92 74.53 m 180.97 74.67 l S 180.97 74.53 m 181.01 74.67 l S 181.01 74.53 m 181.06 74.72 l S 181.06 74.53 m 181.11 74.67 l S 181.11 74.53 m 181.15 74.67 l S 181.15 74.53 m 181.20 74.67 l S 181.20 74.53 m 181.24 74.64 l S 181.24 74.53 m 181.29 74.64 l S 181.29 74.53 m 181.34 74.75 l S 181.34 74.53 m 181.38 74.67 l S 181.38 74.53 m 181.43 74.64 l S 181.43 74.53 m 181.47 74.64 l S 181.47 74.53 m 181.52 74.72 l S 181.52 74.53 m 181.57 74.75 l S 181.57 74.53 m 181.61 74.64 l S 181.61 74.53 m 181.66 74.67 l S 181.66 74.53 m 181.70 74.67 l S 181.70 74.53 m 181.75 74.67 l S 181.75 74.53 m 181.80 74.72 l S 181.80 74.53 m 181.84 74.67 l S 181.84 74.53 m 181.89 74.70 l S 181.89 74.53 m 181.93 74.70 l S 181.93 74.53 m 181.98 74.67 l S 181.98 74.53 m 182.03 74.70 l S 182.03 74.53 m 182.07 74.64 l S 182.07 74.53 m 182.12 74.64 l S 182.12 74.53 m 182.16 74.64 l S 182.16 74.53 m 182.21 74.67 l S 182.21 74.53 m 182.26 74.67 l S 182.26 74.53 m 182.30 74.67 l S 182.30 74.53 m 182.35 74.67 l S 182.35 74.53 m 182.39 74.70 l S 182.39 74.53 m 182.44 74.75 l S 182.44 74.53 m 182.49 74.75 l S 182.49 74.53 m 182.53 74.67 l S 182.53 74.53 m 182.58 75.29 l S 182.58 74.53 m 182.63 74.67 l S 182.63 74.53 m 182.67 74.72 l S 182.67 74.53 m 182.72 74.64 l S 182.72 74.53 m 182.76 74.70 l S 182.76 74.53 m 182.81 74.78 l S 182.81 74.53 m 182.86 74.70 l S 182.86 74.53 m 182.90 74.72 l S 182.90 74.53 m 182.95 74.67 l S 182.95 74.53 m 182.99 74.75 l S 182.99 74.53 m 183.04 74.72 l S 183.04 74.53 m 183.09 74.72 l S 183.09 74.53 m 183.13 74.70 l S 183.13 74.53 m 183.18 78.95 l S 183.18 74.53 m 183.22 74.91 l S 183.22 74.53 m 183.27 76.43 l S 183.27 74.53 m 183.32 75.10 l S 183.32 74.53 m 183.36 74.78 l S 183.36 74.53 m 183.41 74.94 l S 183.41 74.53 m 183.45 77.00 l S 183.45 74.53 m 183.50 74.72 l S 183.50 74.53 m 183.55 74.70 l S 183.55 74.53 m 183.59 74.78 l S 183.59 74.53 m 183.64 74.70 l S 183.64 74.53 m 183.68 74.72 l S 183.68 74.53 m 183.73 76.46 l S 183.73 74.53 m 183.78 74.70 l S 183.78 74.53 m 183.82 74.83 l S 183.82 74.53 m 183.87 74.67 l S 183.87 74.53 m 183.91 74.70 l S 183.91 74.53 m 183.96 74.80 l S 183.96 74.53 m 184.01 74.67 l S 184.01 74.53 m 184.05 74.75 l S 184.05 74.53 m 184.10 74.67 l S 184.10 74.53 m 184.14 74.67 l S 184.14 74.53 m 184.19 74.67 l S 184.19 74.53 m 184.24 74.70 l S 184.24 74.53 m 184.28 74.72 l S 184.28 74.53 m 184.33 74.67 l S 184.33 74.53 m 184.37 74.70 l S 184.37 74.53 m 184.42 74.67 l S 184.42 74.53 m 184.47 74.72 l S 184.47 74.53 m 184.51 74.70 l S 184.51 74.53 m 184.56 74.64 l S 184.56 74.53 m 184.60 74.70 l S 184.60 74.53 m 184.65 74.72 l S 184.65 74.53 m 184.70 74.72 l S 184.70 74.53 m 184.74 74.67 l S 184.74 74.53 m 184.79 74.72 l S 184.79 74.53 m 184.83 74.64 l S 184.83 74.53 m 184.88 74.67 l S 184.88 74.53 m 184.93 74.72 l S 184.93 74.53 m 184.97 74.72 l S 184.97 74.53 m 185.02 74.78 l S 185.02 74.53 m 185.06 74.72 l S 185.06 74.53 m 185.11 74.75 l S 185.11 74.53 m 185.16 74.75 l S 185.16 74.53 m 185.20 74.89 l S 185.20 74.53 m 185.25 74.78 l S 185.25 74.53 m 185.29 74.70 l S 185.29 74.53 m 185.34 74.64 l S 185.34 74.53 m 185.39 75.73 l S 185.39 74.53 m 185.43 74.86 l S 185.43 74.53 m 185.48 74.72 l S 185.48 74.53 m 185.52 74.72 l S 185.52 74.53 m 185.57 74.72 l S 185.57 74.53 m 185.62 74.70 l S 185.62 74.53 m 185.66 74.75 l S 185.66 74.53 m 185.71 74.70 l S 185.71 74.53 m 185.75 74.75 l S 185.75 74.53 m 185.80 74.83 l S 185.80 74.53 m 185.85 74.72 l S 185.85 74.53 m 185.89 74.70 l S 185.89 74.53 m 185.94 74.72 l S 185.94 74.53 m 185.98 74.72 l S 185.98 74.53 m 186.03 74.72 l S 186.03 74.53 m 186.08 74.72 l S 186.08 74.53 m 186.12 74.72 l S 186.12 74.53 m 186.17 74.70 l S 186.17 74.53 m 186.21 75.27 l S 186.21 74.53 m 186.26 77.46 l S 186.26 74.53 m 186.31 75.16 l S 186.31 74.53 m 186.35 74.97 l S 186.35 74.53 m 186.40 74.72 l S 186.40 74.53 m 186.44 77.16 l S 186.44 74.53 m 186.49 74.70 l S 186.49 74.53 m 186.54 74.70 l S 186.54 74.53 m 186.58 74.78 l S 186.58 74.53 m 186.63 74.70 l S 186.63 74.53 m 186.67 76.08 l S 186.67 74.53 m 186.72 74.72 l S 186.72 74.53 m 186.77 77.71 l S 186.77 74.53 m 186.81 74.72 l S 186.81 74.53 m 186.86 74.70 l S 186.86 74.53 m 186.90 74.70 l S 186.90 74.53 m 186.95 74.70 l S 186.95 74.53 m 187.00 75.32 l S 187.00 74.53 m 187.04 76.02 l S 187.04 74.53 m 187.09 74.64 l S 187.09 74.53 m 187.13 74.70 l S 187.13 74.53 m 187.18 74.72 l S 187.18 74.53 m 187.23 78.52 l S 187.23 74.53 m 187.27 74.64 l S 187.27 74.53 m 187.32 74.64 l S 187.32 74.53 m 187.36 75.10 l S 187.36 74.53 m 187.41 74.64 l S 187.41 74.53 m 187.46 74.61 l S 187.46 74.53 m 187.50 74.61 l S 187.50 74.53 m 187.55 75.43 l S 187.55 74.53 m 187.59 74.61 l S 187.59 74.53 m 187.64 75.27 l S 187.64 74.53 m 187.69 74.64 l S 187.69 74.53 m 187.73 74.59 l S 187.73 74.53 m 187.78 83.86 l S 187.78 74.53 m 187.82 74.78 l S 187.82 74.53 m 187.87 74.75 l S 187.87 74.53 m 187.92 74.78 l S 187.92 74.53 m 187.96 75.62 l S 187.96 74.53 m 188.01 74.70 l S 188.01 74.53 m 188.05 74.67 l S 188.05 74.53 m 188.10 74.70 l S 188.10 74.53 m 188.15 74.72 l S 188.15 74.53 m 188.19 82.97 l S 188.19 74.53 m 188.24 81.37 l S 188.24 74.53 m 188.28 75.29 l S 188.28 74.53 m 188.33 74.83 l S 188.33 74.53 m 188.38 74.70 l S 188.38 74.53 m 188.42 74.72 l S 188.42 74.53 m 188.47 74.70 l S 188.47 74.53 m 188.51 75.13 l S 188.51 74.53 m 188.56 74.89 l S 188.56 74.53 m 188.61 74.78 l S 188.61 74.53 m 188.65 74.78 l S 188.65 74.53 m 188.70 75.02 l S 188.70 74.53 m 188.74 74.67 l S 188.74 74.53 m 188.79 75.13 l S 188.79 74.53 m 188.84 74.70 l S 188.84 74.53 m 188.88 74.67 l S 188.88 74.53 m 188.93 74.72 l S 188.93 74.53 m 188.97 75.56 l S 188.97 74.53 m 189.02 74.75 l S 189.02 74.53 m 189.07 74.70 l S 189.07 74.53 m 189.11 74.83 l S 189.11 74.53 m 189.16 74.67 l S 189.16 74.53 m 189.20 74.64 l S 189.20 74.53 m 189.25 82.94 l S 189.25 74.53 m 189.30 74.67 l S 189.30 74.53 m 189.34 74.75 l S 189.34 74.53 m 189.39 74.70 l S 189.39 74.53 m 189.43 74.70 l S 189.43 74.53 m 189.48 74.83 l S 189.48 74.53 m 189.53 74.72 l S 189.53 74.53 m 189.57 75.56 l S 189.57 74.53 m 189.62 83.59 l S 189.62 74.53 m 189.66 74.83 l S 189.66 74.53 m 189.71 74.78 l S 189.71 74.53 m 189.76 77.60 l S 189.76 74.53 m 189.80 79.88 l S 189.80 74.53 m 189.85 74.67 l S 189.85 74.53 m 189.89 75.05 l S 189.89 74.53 m 189.94 74.94 l S 189.94 74.53 m 189.99 74.86 l S 189.99 74.53 m 190.03 76.78 l S 190.03 74.53 m 190.08 80.85 l S 190.08 74.53 m 190.12 80.72 l S 190.12 74.53 m 190.17 74.86 l S 190.17 74.53 m 190.22 83.67 l S 190.22 74.53 m 190.26 77.84 l S 190.26 74.53 m 190.31 74.70 l S 190.31 74.53 m 190.35 85.03 l S 190.35 74.53 m 190.40 74.70 l S 190.40 74.53 m 190.45 74.70 l S 190.45 74.53 m 190.49 74.80 l S 190.49 74.53 m 190.54 74.72 l S 190.54 74.53 m 190.59 74.67 l S 190.59 74.53 m 190.63 74.70 l S 190.63 74.53 m 190.68 80.58 l S 190.68 74.53 m 190.72 74.67 l S 190.72 74.53 m 190.77 92.05 l S 190.77 74.53 m 190.82 74.80 l S 190.82 74.53 m 190.86 74.64 l S 190.86 74.53 m 190.91 74.78 l S 190.91 74.53 m 190.95 78.14 l S 190.95 74.53 m 191.00 74.78 l S 191.00 74.53 m 191.05 74.72 l S 191.05 74.53 m 191.09 75.46 l S 191.09 74.53 m 191.14 74.70 l S 191.14 74.53 m 191.18 74.72 l S 191.18 74.53 m 191.23 74.67 l S 191.23 74.53 m 191.28 74.67 l S 191.28 74.53 m 191.32 74.70 l S 191.32 74.53 m 191.37 74.70 l S 191.37 74.53 m 191.41 74.72 l S 191.41 74.53 m 191.46 74.78 l S 191.46 74.53 m 191.51 74.67 l S 191.51 74.53 m 191.55 74.67 l S 191.55 74.53 m 191.60 74.70 l S 191.60 74.53 m 191.64 74.72 l S 191.64 74.53 m 191.69 74.67 l S 191.69 74.53 m 191.74 74.67 l S 191.74 74.53 m 191.78 74.67 l S 191.78 74.53 m 191.83 74.67 l S 191.83 74.53 m 191.87 74.67 l S 191.87 74.53 m 191.92 74.70 l S 191.92 74.53 m 191.97 74.70 l S 191.97 74.53 m 192.01 74.64 l S 192.01 74.53 m 192.06 74.75 l S 192.06 74.53 m 192.10 74.72 l S 192.10 74.53 m 192.15 74.67 l S 192.15 74.53 m 192.20 74.70 l S 192.20 74.53 m 192.24 74.64 l S 192.24 74.53 m 192.29 74.70 l S 192.29 74.53 m 192.33 89.80 l S 192.33 74.53 m 192.38 74.97 l S 192.38 74.53 m 192.43 74.75 l S 192.43 74.53 m 192.47 74.67 l S 192.47 74.53 m 192.52 74.89 l S 192.52 74.53 m 192.56 74.78 l S 192.56 74.53 m 192.61 74.78 l S 192.61 74.53 m 192.66 74.80 l S 192.66 74.53 m 192.70 74.72 l S 192.70 74.53 m 192.75 77.24 l S 192.75 74.53 m 192.79 75.21 l S 192.79 74.53 m 192.84 76.27 l S 192.84 74.53 m 192.89 74.72 l S 192.89 74.53 m 192.93 76.70 l S 192.93 74.53 m 192.98 74.67 l S 192.98 74.53 m 193.02 74.80 l S 193.02 74.53 m 193.07 86.44 l S 193.07 74.53 m 193.12 74.67 l S 193.12 74.53 m 193.16 74.67 l S 193.16 74.53 m 193.21 74.72 l S 193.21 74.53 m 193.25 74.70 l S 193.25 74.53 m 193.30 74.80 l S 193.30 74.53 m 193.35 74.70 l S 193.35 74.53 m 193.39 76.70 l S 193.39 74.53 m 193.44 74.67 l S 193.44 74.53 m 193.48 74.70 l S 193.48 74.53 m 193.53 74.67 l S 193.53 74.53 m 193.58 74.67 l S 193.58 74.53 m 193.62 80.72 l S 193.62 74.53 m 193.67 74.64 l S 193.67 74.53 m 193.71 78.41 l S 193.71 74.53 m 193.76 82.80 l S 193.76 74.53 m 193.81 74.72 l S 193.81 74.53 m 193.85 74.70 l S 193.85 74.53 m 193.90 74.67 l S 193.90 74.53 m 193.94 76.05 l S 193.94 74.53 m 193.99 74.70 l S 193.99 74.53 m 194.04 74.70 l S 194.04 74.53 m 194.08 74.67 l S 194.08 74.53 m 194.13 74.70 l S 194.13 74.53 m 194.17 74.91 l S 194.17 74.53 m 194.22 82.29 l S 194.22 74.53 m 194.27 81.15 l S 194.27 74.53 m 194.31 74.72 l S 194.31 74.53 m 194.36 74.64 l S 194.36 74.53 m 194.40 74.64 l S 194.40 74.53 m 194.45 74.83 l S 194.45 74.53 m 194.50 74.72 l S 194.50 74.53 m 194.54 74.72 l S 194.54 74.53 m 194.59 74.70 l S 194.59 74.53 m 194.63 74.80 l S 194.63 74.53 m 194.68 81.53 l S 194.68 74.53 m 194.73 74.64 l S 194.73 74.53 m 194.77 74.72 l S 194.77 74.53 m 194.82 77.27 l S 194.82 74.53 m 194.86 74.67 l S 194.86 74.53 m 194.91 74.83 l S 194.91 74.53 m 194.96 74.64 l S 194.96 74.53 m 195.00 76.24 l S 195.00 74.53 m 195.05 77.65 l S 195.05 74.53 m 195.09 75.10 l S 195.09 74.53 m 195.14 74.72 l S 195.14 74.53 m 195.19 74.64 l S 195.19 74.53 m 195.23 74.64 l S 195.23 74.53 m 195.28 74.67 l S 195.28 74.53 m 195.32 76.19 l S 195.32 74.53 m 195.37 74.86 l S 195.37 74.53 m 195.42 74.75 l S 195.42 74.53 m 195.46 74.83 l S 195.46 74.53 m 195.51 74.72 l S 195.51 74.53 m 195.55 74.75 l S 195.55 74.53 m 195.60 74.75 l S 195.60 74.53 m 195.65 74.72 l S 195.65 74.53 m 195.69 74.75 l S 195.69 74.53 m 195.74 74.75 l S 195.74 74.53 m 195.78 75.08 l S 195.78 74.53 m 195.83 74.67 l S 195.83 74.53 m 195.88 78.41 l S 195.88 74.53 m 195.92 79.41 l S 195.92 74.53 m 195.97 74.70 l S 195.97 74.53 m 196.01 74.72 l S 196.01 74.53 m 196.06 74.86 l S 196.06 74.53 m 196.11 74.72 l S 196.11 74.53 m 196.15 74.64 l S 196.15 74.53 m 196.20 83.05 l S 196.20 74.53 m 196.24 77.38 l S 196.24 74.53 m 196.29 74.75 l S 196.29 74.53 m 196.34 74.72 l S 196.34 74.53 m 196.38 74.67 l S 196.38 74.53 m 196.43 74.70 l S 196.43 74.53 m 196.47 82.59 l S 196.47 74.53 m 196.52 74.70 l S 196.52 74.53 m 196.57 74.86 l S 196.57 74.53 m 196.61 74.75 l S 196.61 74.53 m 196.66 74.80 l S 196.66 74.53 m 196.70 74.70 l S 196.70 74.53 m 196.75 74.70 l S 196.75 74.53 m 196.80 74.72 l S 196.80 74.53 m 196.84 74.70 l S 196.84 74.53 m 196.89 75.02 l S 196.89 74.53 m 196.93 74.70 l S 196.93 74.53 m 196.98 75.05 l S 196.98 74.53 m 197.03 74.83 l S 197.03 74.53 m 197.07 85.54 l S 197.07 74.53 m 197.12 74.70 l S 197.12 74.53 m 197.16 77.71 l S 197.16 74.53 m 197.21 74.80 l S 197.21 74.53 m 197.26 74.67 l S 197.26 74.53 m 197.30 74.86 l S 197.30 74.53 m 197.35 86.14 l S 197.35 74.53 m 197.39 74.67 l S 197.39 74.53 m 197.44 74.64 l S 197.44 74.53 m 197.49 74.67 l S 197.49 74.53 m 197.53 74.67 l S 197.53 74.53 m 197.58 74.67 l S 197.58 74.53 m 197.62 74.64 l S 197.62 74.53 m 197.67 74.70 l S 197.67 74.53 m 197.72 74.61 l S 197.72 74.53 m 197.76 74.64 l S 197.76 74.53 m 197.81 74.64 l S 197.81 74.53 m 197.85 74.64 l S 197.85 74.53 m 197.90 74.61 l S 197.90 74.53 m 197.95 74.67 l S 197.95 74.53 m 197.99 74.70 l S 197.99 74.53 m 198.04 74.70 l S 198.04 74.53 m 198.08 74.64 l S 198.08 74.53 m 198.13 74.70 l S 198.13 74.53 m 198.18 74.72 l S 198.18 74.53 m 198.22 75.73 l S 198.22 74.53 m 198.27 77.33 l S 198.27 74.53 m 198.31 74.70 l S 198.31 74.53 m 198.36 76.65 l S 198.36 74.53 m 198.41 74.70 l S 198.41 74.53 m 198.45 74.86 l S 198.45 74.53 m 198.50 74.67 l S 198.50 74.53 m 198.55 74.72 l S 198.55 74.53 m 198.59 74.70 l S 198.59 74.53 m 198.64 74.75 l S 198.64 74.53 m 198.68 74.78 l S 198.68 74.53 m 198.73 78.19 l S 198.73 74.53 m 198.78 74.70 l S 198.78 74.53 m 198.82 74.72 l S 198.82 74.53 m 198.87 79.60 l S 198.87 74.53 m 198.91 85.35 l S 198.91 74.53 m 198.96 74.80 l S 198.96 74.53 m 199.01 74.91 l S 199.01 74.53 m 199.05 74.72 l S 199.05 74.53 m 199.10 74.80 l S 199.10 74.53 m 199.14 74.72 l S 199.14 74.53 m 199.19 82.83 l S 199.19 74.53 m 199.24 74.99 l S 199.24 74.53 m 199.28 75.43 l S 199.28 74.53 m 199.33 74.70 l S 199.33 74.53 m 199.37 78.19 l S 199.37 74.53 m 199.42 86.52 l S 199.42 74.53 m 199.47 74.83 l S 199.47 74.53 m 199.51 83.78 l S 199.51 74.53 m 199.56 74.78 l S 199.56 74.53 m 199.60 74.75 l S 199.60 74.53 m 199.65 74.70 l S 199.65 74.53 m 199.70 75.08 l S 199.70 74.53 m 199.74 75.08 l S 199.74 74.53 m 199.79 74.72 l S 199.79 74.53 m 199.83 78.87 l S 199.83 74.53 m 199.88 74.70 l S 199.88 74.53 m 199.93 74.70 l S 199.93 74.53 m 199.97 74.70 l S 199.97 74.53 m 200.02 76.00 l S 200.02 74.53 m 200.06 74.72 l S 200.06 74.53 m 200.11 79.01 l S 200.11 74.53 m 200.16 74.70 l S 200.16 74.53 m 200.20 74.83 l S 200.20 74.53 m 200.25 74.83 l S 200.25 74.53 m 200.29 76.65 l S 200.29 74.53 m 200.34 74.70 l S 200.34 74.53 m 200.39 75.54 l S 200.39 74.53 m 200.43 77.30 l S 200.43 74.53 m 200.48 74.72 l S 200.48 74.53 m 200.52 74.75 l S 200.52 74.53 m 200.57 74.70 l S 200.57 74.53 m 200.62 74.64 l S 200.62 74.53 m 200.66 74.70 l S 200.66 74.53 m 200.71 76.65 l S 200.71 74.53 m 200.75 74.70 l S 200.75 74.53 m 200.80 74.80 l S 200.80 74.53 m 200.85 74.75 l S 200.85 74.53 m 200.89 74.70 l S 200.89 74.53 m 200.94 78.95 l S 200.94 74.53 m 200.98 74.64 l S 200.98 74.53 m 201.03 74.64 l S 201.03 74.53 m 201.08 80.15 l S 201.08 74.53 m 201.12 80.20 l S 201.12 74.53 m 201.17 74.67 l S 201.17 74.53 m 201.21 82.18 l S 201.21 74.53 m 201.26 86.06 l S 201.26 74.53 m 201.31 77.68 l S 201.31 74.53 m 201.35 82.40 l S 201.35 74.53 m 201.40 74.67 l S 201.40 74.53 m 201.44 74.78 l S 201.44 74.53 m 201.49 74.67 l S 201.49 74.53 m 201.54 82.32 l S 201.54 74.53 m 201.58 74.67 l S 201.58 74.53 m 201.63 80.31 l S 201.63 74.53 m 201.67 83.35 l S 201.67 74.53 m 201.72 76.13 l S 201.72 74.53 m 201.77 75.94 l S 201.77 74.53 m 201.81 77.98 l S 201.81 74.53 m 201.86 74.94 l S 201.86 74.53 m 201.90 75.05 l S 201.90 74.53 m 201.95 74.75 l S 201.95 74.53 m 202.00 75.16 l S 202.00 74.53 m 202.04 74.80 l S 202.04 74.53 m 202.09 74.86 l S 202.09 74.53 m 202.13 74.75 l S 202.13 74.53 m 202.18 74.70 l S 202.18 74.53 m 202.23 78.17 l S 202.23 74.53 m 202.27 74.72 l S 202.27 74.53 m 202.32 74.78 l S 202.32 74.53 m 202.36 74.67 l S 202.36 74.53 m 202.41 76.95 l S 202.41 74.53 m 202.46 74.97 l S 202.46 74.53 m 202.50 74.89 l S 202.50 74.53 m 202.55 74.91 l S 202.55 74.53 m 202.59 79.39 l S 202.59 74.53 m 202.64 79.06 l S 202.64 74.53 m 202.69 79.09 l S 202.69 74.53 m 202.73 74.86 l S 202.73 74.53 m 202.78 74.67 l S 202.78 74.53 m 202.82 74.80 l S 202.82 74.53 m 202.87 74.70 l S 202.87 74.53 m 202.92 74.67 l S 202.92 74.53 m 202.96 74.72 l S 202.96 74.53 m 203.01 74.67 l S 203.01 74.53 m 203.05 74.67 l S 203.05 74.53 m 203.10 74.78 l S 203.10 74.53 m 203.15 74.75 l S 203.15 74.53 m 203.19 74.67 l S 203.19 74.53 m 203.24 74.70 l S 203.24 74.53 m 203.28 74.75 l S 203.28 74.53 m 203.33 74.67 l S 203.33 74.53 m 203.38 74.72 l S 203.38 74.53 m 203.42 74.78 l S 203.42 74.53 m 203.47 74.67 l S 203.47 74.53 m 203.51 74.72 l S 203.51 74.53 m 203.56 74.64 l S 203.56 74.53 m 203.61 74.70 l S 203.61 74.53 m 203.65 74.75 l S 203.65 74.53 m 203.70 77.06 l S 203.70 74.53 m 203.74 74.70 l S 203.74 74.53 m 203.79 74.70 l S 203.79 74.53 m 203.84 75.32 l S 203.84 74.53 m 203.88 74.78 l S 203.88 74.53 m 203.93 74.72 l S 203.93 74.53 m 203.97 80.82 l S 203.97 74.53 m 204.02 74.72 l S 204.02 74.53 m 204.07 74.72 l S 204.07 74.53 m 204.11 75.37 l S 204.11 74.53 m 204.16 74.72 l S 204.16 74.53 m 204.20 74.67 l S 204.20 74.53 m 204.25 77.57 l S 204.25 74.53 m 204.30 80.74 l S 204.30 74.53 m 204.34 74.67 l S 204.34 74.53 m 204.39 84.81 l S 204.39 74.53 m 204.43 74.72 l S 204.43 74.53 m 204.48 74.75 l S 204.48 74.53 m 204.53 76.16 l S 204.53 74.53 m 204.57 75.10 l S 204.57 74.53 m 204.62 74.72 l S 204.62 74.53 m 204.66 74.67 l S 204.66 74.53 m 204.71 74.67 l S 204.71 74.53 m 204.76 76.84 l S 204.76 74.53 m 204.80 74.70 l S 204.80 74.53 m 204.85 74.64 l S 204.85 74.53 m 204.89 74.70 l S 204.89 74.53 m 204.94 74.80 l S 204.94 74.53 m 204.99 88.17 l S 204.99 74.53 m 205.03 74.72 l S 205.03 74.53 m 205.08 87.90 l S 205.08 74.53 m 205.12 84.81 l S 205.12 74.53 m 205.17 74.67 l S 205.17 74.53 m 205.22 76.68 l S 205.22 74.53 m 205.26 78.11 l S 205.26 74.53 m 205.31 74.67 l S 205.31 74.53 m 205.35 74.67 l S 205.35 74.53 m 205.40 77.84 l S 205.40 74.53 m 205.45 75.13 l S 205.45 74.53 m 205.49 87.77 l S 205.49 74.53 m 205.54 75.86 l S 205.54 74.53 m 205.58 75.32 l S 205.58 74.53 m 205.63 75.75 l S 205.63 74.53 m 205.68 75.02 l S 205.68 74.53 m 205.72 74.99 l S 205.72 74.53 m 205.77 75.97 l S 205.77 74.53 m 205.81 74.70 l S 205.81 74.53 m 205.86 76.19 l S 205.86 74.53 m 205.91 74.78 l S 205.91 74.53 m 205.95 74.70 l S 205.95 74.53 m 206.00 80.47 l S 206.00 74.53 m 206.04 74.70 l S 206.04 74.53 m 206.09 87.55 l S 206.09 74.53 m 206.14 80.01 l S 206.14 74.53 m 206.18 83.75 l S 206.18 74.53 m 206.23 77.76 l S 206.23 74.53 m 206.27 78.76 l S 206.27 74.53 m 206.32 75.32 l S 206.32 74.53 m 206.37 74.80 l S 206.37 74.53 m 206.41 75.67 l S 206.41 74.53 m 206.46 75.29 l S 206.46 74.53 m 206.51 75.70 l S 206.51 74.53 m 206.55 75.10 l S 206.55 74.53 m 206.60 77.98 l S 206.60 74.53 m 206.64 74.72 l S 206.64 74.53 m 206.69 74.75 l S 206.69 74.53 m 206.74 74.72 l S 206.74 74.53 m 206.78 74.70 l S 206.78 74.53 m 206.83 74.64 l S 206.83 74.53 m 206.87 75.81 l S 206.87 74.53 m 206.92 79.66 l S 206.92 74.53 m 206.97 74.72 l S 206.97 74.53 m 207.01 74.72 l S 207.01 74.53 m 207.06 78.87 l S 207.06 74.53 m 207.10 74.67 l S 207.10 74.53 m 207.15 74.86 l S 207.15 74.53 m 207.20 76.87 l S 207.20 74.53 m 207.24 87.01 l S 207.24 74.53 m 207.29 74.94 l S 207.29 74.53 m 207.33 74.75 l S 207.33 74.53 m 207.38 74.75 l S 207.38 74.53 m 207.43 75.62 l S 207.43 74.53 m 207.47 74.70 l S 207.47 74.53 m 207.52 74.67 l S 207.52 74.53 m 207.56 78.68 l S 207.56 74.53 m 207.61 76.62 l S 207.61 74.53 m 207.66 85.90 l S 207.66 74.53 m 207.70 81.72 l S 207.70 74.53 m 207.75 74.75 l S 207.75 74.53 m 207.79 82.75 l S 207.79 74.53 m 207.84 74.78 l S 207.84 74.53 m 207.89 74.70 l S 207.89 74.53 m 207.93 74.67 l S 207.93 74.53 m 207.98 74.78 l S 207.98 74.53 m 208.02 85.71 l S 208.02 74.53 m 208.07 78.79 l S 208.07 74.53 m 208.12 78.11 l S 208.12 74.53 m 208.16 86.87 l S 208.16 74.53 m 208.21 74.75 l S 208.21 74.53 m 208.25 74.72 l S 208.25 74.53 m 208.30 74.75 l S 208.30 74.53 m 208.35 83.32 l S 208.35 74.53 m 208.39 75.67 l S 208.39 74.53 m 208.44 80.39 l S 208.44 74.53 m 208.48 84.05 l S 208.48 74.53 m 208.53 74.80 l S 208.53 74.53 m 208.58 74.83 l S 208.58 74.53 m 208.62 101.87 l S 208.62 74.53 m 208.67 75.02 l S 208.67 74.53 m 208.71 80.39 l S 208.71 74.53 m 208.76 74.78 l S 208.76 74.53 m 208.81 74.67 l S 208.81 74.53 m 208.85 74.72 l S 208.85 74.53 m 208.90 77.16 l S 208.90 74.53 m 208.94 74.80 l S 208.94 74.53 m 208.99 74.61 l S 208.99 74.53 m 209.04 74.67 l S 209.04 74.53 m 209.08 78.87 l S 209.08 74.53 m 209.13 74.72 l S 209.13 74.53 m 209.17 74.70 l S 209.17 74.53 m 209.22 74.97 l S 209.22 74.53 m 209.27 74.61 l S 209.27 74.53 m 209.31 78.47 l S 209.31 74.53 m 209.36 86.65 l S 209.36 74.53 m 209.40 74.99 l S 209.40 74.53 m 209.45 81.42 l S 209.45 74.53 m 209.50 76.08 l S 209.50 74.53 m 209.54 74.80 l S 209.54 74.53 m 209.59 76.84 l S 209.59 74.53 m 209.63 80.93 l S 209.63 74.53 m 209.68 74.72 l S 209.68 74.53 m 209.73 79.69 l S 209.73 74.53 m 209.77 77.60 l S 209.77 74.53 m 209.82 74.75 l S 209.82 74.53 m 209.86 78.68 l S 209.86 74.53 m 209.91 74.86 l S 209.91 74.53 m 209.96 74.75 l S 209.96 74.53 m 210.00 76.13 l S 210.00 74.53 m 210.05 75.75 l S 210.05 74.53 m 210.09 83.26 l S 210.09 74.53 m 210.14 81.34 l S 210.14 74.53 m 210.19 75.08 l S 210.19 74.53 m 210.23 74.83 l S 210.23 74.53 m 210.28 74.72 l S 210.28 74.53 m 210.32 74.72 l S 210.32 74.53 m 210.37 79.79 l S 210.37 74.53 m 210.42 74.97 l S 210.42 74.53 m 210.46 74.67 l S 210.46 74.53 m 210.51 78.47 l S 210.51 74.53 m 210.55 80.20 l S 210.55 74.53 m 210.60 76.02 l S 210.60 74.53 m 210.65 79.88 l S 210.65 74.53 m 210.69 76.76 l S 210.69 74.53 m 210.74 74.78 l S 210.74 74.53 m 210.78 74.72 l S 210.78 74.53 m 210.83 74.70 l S 210.83 74.53 m 210.88 74.72 l S 210.88 74.53 m 210.92 74.70 l S 210.92 74.53 m 210.97 74.75 l S 210.97 74.53 m 211.01 74.99 l S 211.01 74.53 m 211.06 74.78 l S 211.06 74.53 m 211.11 74.72 l S 211.11 74.53 m 211.15 74.70 l S 211.15 74.53 m 211.20 74.67 l S 211.20 74.53 m 211.24 74.67 l S 211.24 74.53 m 211.29 74.70 l S 211.29 74.53 m 211.34 74.70 l S 211.34 74.53 m 211.38 74.78 l S 211.38 74.53 m 211.43 74.70 l S 211.43 74.53 m 211.47 74.91 l S 211.47 74.53 m 211.52 74.70 l S 211.52 74.53 m 211.57 74.70 l S 211.57 74.53 m 211.61 74.72 l S 211.61 74.53 m 211.66 74.72 l S 211.66 74.53 m 211.70 74.72 l S 211.70 74.53 m 211.75 74.70 l S 211.75 74.53 m 211.80 74.75 l S 211.80 74.53 m 211.84 74.72 l S 211.84 74.53 m 211.89 74.75 l S 211.89 74.53 m 211.93 74.72 l S 211.93 74.53 m 211.98 74.75 l S 211.98 74.53 m 212.03 74.72 l S 212.03 74.53 m 212.07 74.67 l S 212.07 74.53 m 212.12 74.72 l S 212.12 74.53 m 212.16 74.70 l S 212.16 74.53 m 212.21 74.67 l S 212.21 74.53 m 212.26 74.80 l S 212.26 74.53 m 212.30 74.72 l S 212.30 74.53 m 212.35 74.67 l S 212.35 74.53 m 212.39 74.70 l S 212.39 74.53 m 212.44 74.64 l S 212.44 74.53 m 212.49 74.67 l S 212.49 74.53 m 212.53 74.67 l S 212.53 74.53 m 212.58 74.75 l S 212.58 74.53 m 212.62 74.67 l S 212.62 74.53 m 212.67 77.14 l S 212.67 74.53 m 212.72 74.97 l S 212.72 74.53 m 212.76 74.67 l S 212.76 74.53 m 212.81 74.72 l S 212.81 74.53 m 212.85 74.75 l S 212.85 74.53 m 212.90 74.75 l S 212.90 74.53 m 212.95 74.70 l S 212.95 74.53 m 212.99 74.70 l S 212.99 74.53 m 213.04 74.70 l S 213.04 74.53 m 213.08 74.67 l S 213.08 74.53 m 213.13 74.64 l S 213.13 74.53 m 213.18 74.70 l S 213.18 74.53 m 213.22 74.64 l S 213.22 74.53 m 213.27 74.70 l S 213.27 74.53 m 213.31 74.72 l S 213.31 74.53 m 213.36 74.70 l S 213.36 74.53 m 213.41 74.72 l S 213.41 74.53 m 213.45 74.70 l S 213.45 74.53 m 213.50 74.67 l S 213.50 74.53 m 213.54 74.67 l S 213.54 74.53 m 213.59 74.67 l S 213.59 74.53 m 213.64 74.67 l S 213.64 74.53 m 213.68 74.67 l S 213.68 74.53 m 213.73 74.70 l S 213.73 74.53 m 213.77 74.67 l S 213.77 74.53 m 213.82 74.64 l S 213.82 74.53 m 213.87 74.67 l S 213.87 74.53 m 213.91 74.67 l S 213.91 74.53 m 213.96 74.67 l S 213.96 74.53 m 214.00 74.67 l S 214.00 74.53 m 214.05 74.72 l S 214.05 74.53 m 214.10 74.72 l S 214.10 74.53 m 214.14 74.70 l S 214.14 74.53 m 214.19 74.70 l S 214.19 74.53 m 214.23 74.72 l S 214.23 74.53 m 214.28 74.75 l S 214.28 74.53 m 214.33 74.70 l S 214.33 74.53 m 214.37 74.70 l S 214.37 74.53 m 214.42 74.64 l S 214.42 74.53 m 214.47 74.70 l S 214.47 74.53 m 214.51 74.67 l S 214.51 74.53 m 214.56 74.72 l S 214.56 74.53 m 214.60 74.72 l S 214.60 74.53 m 214.65 74.70 l S 214.65 74.53 m 214.70 74.70 l S 214.70 74.53 m 214.74 74.67 l S 214.74 74.53 m 214.79 74.70 l S 214.79 74.53 m 214.83 74.70 l S 214.83 74.53 m 214.88 74.67 l S 214.88 74.53 m 214.93 74.67 l S 214.93 74.53 m 214.97 74.70 l S 214.97 74.53 m 215.02 74.70 l S 215.02 74.53 m 215.06 74.64 l S 215.06 74.53 m 215.11 74.64 l S 215.11 74.53 m 215.16 75.02 l S 215.16 74.53 m 215.20 74.67 l S 215.20 74.53 m 215.25 74.64 l S 215.25 74.53 m 215.29 74.67 l S 215.29 74.53 m 215.34 74.64 l S 215.34 74.53 m 215.39 74.67 l S 215.39 74.53 m 215.43 74.70 l S 215.43 74.53 m 215.48 74.75 l S 215.48 74.53 m 215.52 74.72 l S 215.52 74.53 m 215.57 74.72 l S 215.57 74.53 m 215.62 74.64 l S 215.62 74.53 m 215.66 74.75 l S 215.66 74.53 m 215.71 74.72 l S 215.71 74.53 m 215.75 74.72 l S 215.75 74.53 m 215.80 74.67 l S 215.80 74.53 m 215.85 74.70 l S 215.85 74.53 m 215.89 74.70 l S 215.89 74.53 m 215.94 74.70 l S 215.94 74.53 m 215.98 74.67 l S 215.98 74.53 m 216.03 74.72 l S 216.03 74.53 m 216.08 74.70 l S 216.08 74.53 m 216.12 74.67 l S 216.12 74.53 m 216.17 74.70 l S 216.17 74.53 m 216.21 74.70 l S 216.21 74.53 m 216.26 74.75 l S 216.26 74.53 m 216.31 74.64 l S 216.31 74.53 m 216.35 74.67 l S 216.35 74.53 m 216.40 74.70 l S 216.40 74.53 m 216.44 74.75 l S 216.44 74.53 m 216.49 74.75 l S 216.49 74.53 m 216.54 74.64 l S 216.54 74.53 m 216.58 74.64 l S 216.58 74.53 m 216.63 74.78 l S 216.63 74.53 m 216.67 74.67 l S 216.67 74.53 m 216.72 74.70 l S 216.72 74.53 m 216.77 74.61 l S 216.77 74.53 m 216.81 74.67 l S 216.81 74.53 m 216.86 74.70 l S 216.86 74.53 m 216.90 74.67 l S 216.90 74.53 m 216.95 74.67 l S 216.95 74.53 m 217.00 74.67 l S 217.00 74.53 m 217.04 74.67 l S 217.04 74.53 m 217.09 74.67 l S 217.09 74.53 m 217.13 74.67 l S 217.13 74.53 m 217.18 74.67 l S 217.18 74.53 m 217.23 74.75 l S 217.23 74.53 m 217.27 74.70 l S 217.27 74.53 m 217.32 74.67 l S 217.32 74.53 m 217.36 74.67 l S 217.36 74.53 m 217.41 74.64 l S 217.41 74.53 m 217.46 74.70 l S 217.46 74.53 m 217.50 74.67 l S 217.50 74.53 m 217.55 74.72 l S 217.55 74.53 m 217.59 74.75 l S 217.59 74.53 m 217.64 74.70 l S 217.64 74.53 m 217.69 74.67 l S 217.69 74.53 m 217.73 74.64 l S 217.73 74.53 m 217.78 74.72 l S 217.78 74.53 m 217.82 74.70 l S 217.82 74.53 m 217.87 74.67 l S 217.87 74.53 m 217.92 74.78 l S 217.92 74.53 m 217.96 74.70 l S 217.96 74.53 m 218.01 74.72 l S 218.01 74.53 m 218.05 74.91 l S 218.05 74.53 m 218.10 74.78 l S 218.10 74.53 m 218.15 74.80 l S 218.15 74.53 m 218.19 74.75 l S 218.19 74.53 m 218.24 76.97 l S 218.24 74.53 m 218.28 75.97 l S 218.28 74.53 m 218.33 74.70 l S 218.33 74.53 m 218.38 79.33 l S 218.38 74.53 m 218.42 75.29 l S 218.42 74.53 m 218.47 76.21 l S 218.47 74.53 m 218.51 74.70 l S 218.51 74.53 m 218.56 75.02 l S 218.56 74.53 m 218.61 74.70 l S 218.61 74.53 m 218.65 80.77 l S 218.65 74.53 m 218.70 75.59 l S 218.70 74.53 m 218.74 78.71 l S 218.74 74.53 m 218.79 74.70 l S 218.79 74.53 m 218.84 75.62 l S 218.84 74.53 m 218.88 74.75 l S 218.88 74.53 m 218.93 75.46 l S 218.93 74.53 m 218.97 75.02 l S 218.97 74.53 m 219.02 79.39 l S 219.02 74.53 m 219.07 74.89 l S 219.07 74.53 m 219.11 90.69 l S 219.11 74.53 m 219.16 74.67 l S 219.16 74.53 m 219.20 76.51 l S 219.20 74.53 m 219.25 78.47 l S 219.25 74.53 m 219.30 74.72 l S 219.30 74.53 m 219.34 75.65 l S 219.34 74.53 m 219.39 74.75 l S 219.39 74.53 m 219.43 74.91 l S 219.43 74.53 m 219.48 74.72 l S 219.48 74.53 m 219.53 78.09 l S 219.53 74.53 m 219.57 75.16 l S 219.57 74.53 m 219.62 82.99 l S 219.62 74.53 m 219.66 74.75 l S 219.66 74.53 m 219.71 74.75 l S 219.71 74.53 m 219.76 74.80 l S 219.76 74.53 m 219.80 75.67 l S 219.80 74.53 m 219.85 74.72 l S 219.85 74.53 m 219.89 74.72 l S 219.89 74.53 m 219.94 74.86 l S 219.94 74.53 m 219.99 74.72 l S 219.99 74.53 m 220.03 74.72 l S 220.03 74.53 m 220.08 74.75 l S 220.08 74.53 m 220.12 74.75 l S 220.12 74.53 m 220.17 74.72 l S 220.17 74.53 m 220.22 74.67 l S 220.22 74.53 m 220.26 74.70 l S 220.26 74.53 m 220.31 74.75 l S 220.31 74.53 m 220.35 74.70 l S 220.35 74.53 m 220.40 74.72 l S 220.40 74.53 m 220.45 74.70 l S 220.45 74.53 m 220.49 74.67 l S 220.49 74.53 m 220.54 74.70 l S 220.54 74.53 m 220.58 74.67 l S 220.58 74.53 m 220.63 74.72 l S 220.63 74.53 m 220.68 74.67 l S 220.68 74.53 m 220.72 74.72 l S 220.72 74.53 m 220.77 74.70 l S 220.77 74.53 m 220.81 74.72 l S 220.81 74.53 m 220.86 74.67 l S 220.86 74.53 m 220.91 74.72 l S 220.91 74.53 m 220.95 74.70 l S 220.95 74.53 m 221.00 74.72 l S 221.00 74.53 m 221.04 74.72 l S 221.04 74.53 m 221.09 74.72 l S 221.09 74.53 m 221.14 74.70 l S 221.14 74.53 m 221.18 74.67 l S 221.18 74.53 m 221.23 74.70 l S 221.23 74.53 m 221.27 74.67 l S 221.27 74.53 m 221.32 87.17 l S 221.32 74.53 m 221.37 74.75 l S 221.37 74.53 m 221.41 74.75 l S 221.41 74.53 m 221.46 74.75 l S 221.46 74.53 m 221.50 74.70 l S 221.50 74.53 m 221.55 74.86 l S 221.55 74.53 m 221.60 85.71 l S 221.60 74.53 m 221.64 74.70 l S 221.64 74.53 m 221.69 84.27 l S 221.69 74.53 m 221.73 74.67 l S 221.73 74.53 m 221.78 75.02 l S 221.78 74.53 m 221.83 74.67 l S 221.83 74.53 m 221.87 74.70 l S 221.87 74.53 m 221.92 74.80 l S 221.92 74.53 m 221.96 74.67 l S 221.96 74.53 m 222.01 74.72 l S 222.01 74.53 m 222.06 74.75 l S 222.06 74.53 m 222.10 74.70 l S 222.10 74.53 m 222.15 74.72 l S 222.15 74.53 m 222.19 74.75 l S 222.19 74.53 m 222.24 74.72 l S 222.24 74.53 m 222.29 74.78 l S 222.29 74.53 m 222.33 74.91 l S 222.33 74.53 m 222.38 78.36 l S 222.38 74.53 m 222.43 75.24 l S 222.43 74.53 m 222.47 74.70 l S 222.47 74.53 m 222.52 75.05 l S 222.52 74.53 m 222.56 74.89 l S 222.56 74.53 m 222.61 74.78 l S 222.61 74.53 m 222.66 74.72 l S 222.66 74.53 m 222.70 74.72 l S 222.70 74.53 m 222.75 75.13 l S 222.75 74.53 m 222.79 74.67 l S 222.79 74.53 m 222.84 74.70 l S 222.84 74.53 m 222.89 74.72 l S 222.89 74.53 m 222.93 77.24 l S 222.93 74.53 m 222.98 74.75 l S 222.98 74.53 m 223.02 74.78 l S 223.02 74.53 m 223.07 74.80 l S 223.07 74.53 m 223.12 74.67 l S 223.12 74.53 m 223.16 74.72 l S 223.16 74.53 m 223.21 75.51 l S 223.21 74.53 m 223.25 74.80 l S 223.25 74.53 m 223.30 74.70 l S 223.30 74.53 m 223.35 82.80 l S 223.35 74.53 m 223.39 74.80 l S 223.39 74.53 m 223.44 74.72 l S 223.44 74.53 m 223.48 74.94 l S 223.48 74.53 m 223.53 74.64 l S 223.53 74.53 m 223.58 82.15 l S 223.58 74.53 m 223.62 74.70 l S 223.62 74.53 m 223.67 74.75 l S 223.67 74.53 m 223.71 75.27 l S 223.71 74.53 m 223.76 74.99 l S 223.76 74.53 m 223.81 74.83 l S 223.81 74.53 m 223.85 75.89 l S 223.85 74.53 m 223.90 74.83 l S 223.90 74.53 m 223.94 75.35 l S 223.94 74.53 m 223.99 74.72 l S 223.99 74.53 m 224.04 83.02 l S 224.04 74.53 m 224.08 74.75 l S 224.08 74.53 m 224.13 75.83 l S 224.13 74.53 m 224.17 74.83 l S 224.17 74.53 m 224.22 78.93 l S 224.22 74.53 m 224.27 74.70 l S 224.27 74.53 m 224.31 74.75 l S 224.31 74.53 m 224.36 74.89 l S 224.36 74.53 m 224.40 74.67 l S 224.40 74.53 m 224.45 75.05 l S 224.45 74.53 m 224.50 80.63 l S 224.50 74.53 m 224.54 75.35 l S 224.54 74.53 m 224.59 74.80 l S 224.59 74.53 m 224.63 76.78 l S 224.63 74.53 m 224.68 74.72 l S 224.68 74.53 m 224.73 74.72 l S 224.73 74.53 m 224.77 74.75 l S 224.77 74.53 m 224.82 75.18 l S 224.82 74.53 m 224.86 75.48 l S 224.86 74.53 m 224.91 80.15 l S 224.91 74.53 m 224.96 74.70 l S 224.96 74.53 m 225.00 74.89 l S 225.00 74.53 m 225.05 87.93 l S 225.05 74.53 m 225.09 74.78 l S 225.09 74.53 m 225.14 74.86 l S 225.14 74.53 m 225.19 74.72 l S 225.19 74.53 m 225.23 74.72 l S 225.23 74.53 m 225.28 75.37 l S 225.28 74.53 m 225.32 74.70 l S 225.32 74.53 m 225.37 74.64 l S 225.37 74.53 m 225.42 75.10 l S 225.42 74.53 m 225.46 74.70 l S 225.46 74.53 m 225.51 74.67 l S 225.51 74.53 m 225.55 74.70 l S 225.55 74.53 m 225.60 74.67 l S 225.60 74.53 m 225.65 74.67 l S 225.65 74.53 m 225.69 74.64 l S 225.69 74.53 m 225.74 74.72 l S 225.74 74.53 m 225.78 74.64 l S 225.78 74.53 m 225.83 74.64 l S 225.83 74.53 m 225.88 74.67 l S 225.88 74.53 m 225.92 74.67 l S 225.92 74.53 m 225.97 74.72 l S 225.97 74.53 m 226.01 74.70 l S 226.01 74.53 m 226.06 74.70 l S 226.06 74.53 m 226.11 74.67 l S 226.11 74.53 m 226.15 74.67 l S 226.15 74.53 m 226.20 74.64 l S 226.20 74.53 m 226.24 74.70 l S 226.24 74.53 m 226.29 74.67 l S 226.29 74.53 m 226.34 74.64 l S 226.34 74.53 m 226.38 74.70 l S 226.38 74.53 m 226.43 74.64 l S 226.43 74.53 m 226.47 74.70 l S 226.47 74.53 m 226.52 74.78 l S 226.52 74.53 m 226.57 74.67 l S 226.57 74.53 m 226.61 74.72 l S 226.61 74.53 m 226.66 74.70 l S 226.66 74.53 m 226.70 74.78 l S 226.70 74.53 m 226.75 74.64 l S 226.75 74.53 m 226.80 74.86 l S 226.80 74.53 m 226.84 74.67 l S 226.84 74.53 m 226.89 74.75 l S 226.89 74.53 m 226.93 74.75 l S 226.93 74.53 m 226.98 74.70 l S 226.98 74.53 m 227.03 74.67 l S 227.03 74.53 m 227.07 74.72 l S 227.07 74.53 m 227.12 74.70 l S 227.12 74.53 m 227.16 74.64 l S 227.16 74.53 m 227.21 74.67 l S 227.21 74.53 m 227.26 74.67 l S 227.26 74.53 m 227.30 74.67 l S 227.30 74.53 m 227.35 74.80 l S 227.35 74.53 m 227.39 74.72 l S 227.39 74.53 m 227.44 74.75 l S 227.44 74.53 m 227.49 74.83 l S 227.49 74.53 m 227.53 75.13 l S 227.53 74.53 m 227.58 75.54 l S 227.58 74.53 m 227.62 74.70 l S 227.62 74.53 m 227.67 76.02 l S 227.67 74.53 m 227.72 74.72 l S 227.72 74.53 m 227.76 74.72 l S 227.76 74.53 m 227.81 74.67 l S 227.81 74.53 m 227.85 76.32 l S 227.85 74.53 m 227.90 74.67 l S 227.90 74.53 m 227.95 74.80 l S 227.95 74.53 m 227.99 74.75 l S 227.99 74.53 m 228.04 75.65 l S 228.04 74.53 m 228.08 78.17 l S 228.08 74.53 m 228.13 74.70 l S 228.13 74.53 m 228.18 76.49 l S 228.18 74.53 m 228.22 74.75 l S 228.22 74.53 m 228.27 74.72 l S 228.27 74.53 m 228.31 74.72 l S 228.31 74.53 m 228.36 80.04 l S 228.36 74.53 m 228.41 74.75 l S 228.41 74.53 m 228.45 75.54 l S 228.45 74.53 m 228.50 74.75 l S 228.50 74.53 m 228.54 74.70 l S 228.54 74.53 m 228.59 75.10 l S 228.59 74.53 m 228.64 74.75 l S 228.64 74.53 m 228.68 74.72 l S 228.68 74.53 m 228.73 74.70 l S 228.73 74.53 m 228.77 74.72 l S 228.77 74.53 m 228.82 74.70 l S 228.82 74.53 m 228.87 74.70 l S 228.87 74.53 m 228.91 74.75 l S 228.91 74.53 m 228.96 74.75 l S 228.96 74.53 m 229.00 75.56 l S 229.00 74.53 m 229.05 74.70 l S 229.05 74.53 m 229.10 74.72 l S 229.10 74.53 m 229.14 74.70 l S 229.14 74.53 m 229.19 75.08 l S 229.19 74.53 m 229.23 74.67 l S 229.23 74.53 m 229.28 79.41 l S 229.28 74.53 m 229.33 74.70 l S 229.33 74.53 m 229.37 74.75 l S 229.37 74.53 m 229.42 74.72 l S 229.42 74.53 m 229.46 74.72 l S 229.46 74.53 m 229.51 74.67 l S 229.51 74.53 m 229.56 74.67 l S 229.56 74.53 m 229.60 74.72 l S 229.60 74.53 m 229.65 74.67 l S 229.65 74.53 m 229.69 80.74 l S 229.69 74.53 m 229.74 74.78 l S 229.74 74.53 m 229.79 74.67 l S 229.79 74.53 m 229.83 76.51 l S 229.83 74.53 m 229.88 74.78 l S 229.88 74.53 m 229.92 74.78 l S 229.92 74.53 m 229.97 74.94 l S 229.97 74.53 m 230.02 74.94 l S 230.02 74.53 m 230.06 74.78 l S 230.06 74.53 m 230.11 74.80 l S 230.11 74.53 m 230.15 74.91 l S 230.15 74.53 m 230.20 75.05 l S 230.20 74.53 m 230.25 78.57 l S 230.25 74.53 m 230.29 74.72 l S 230.29 74.53 m 230.34 75.18 l S 230.34 74.53 m 230.38 74.70 l S 230.38 74.53 m 230.43 74.78 l S 230.43 74.53 m 230.48 74.70 l S 230.48 74.53 m 230.52 74.70 l S 230.52 74.53 m 230.57 74.78 l S 230.57 74.53 m 230.62 75.46 l S 230.62 74.53 m 230.66 74.64 l S 230.66 74.53 m 230.71 81.23 l S 230.71 74.53 m 230.75 78.22 l S 230.75 74.53 m 230.80 81.01 l S 230.80 74.53 m 230.85 83.43 l S 230.85 74.53 m 230.89 77.22 l S 230.89 74.53 m 230.94 76.05 l S 230.94 74.53 m 230.98 76.11 l S 230.98 74.53 m 231.03 74.83 l S 231.03 74.53 m 231.08 74.72 l S 231.08 74.53 m 231.12 74.67 l S 231.12 74.53 m 231.17 74.70 l S 231.17 74.53 m 231.21 74.75 l S 231.21 74.53 m 231.26 76.62 l S 231.26 74.53 m 231.31 82.67 l S 231.31 74.53 m 231.35 74.83 l S 231.35 74.53 m 231.40 82.10 l S 231.40 74.53 m 231.44 74.72 l S 231.44 74.53 m 231.49 77.68 l S 231.49 74.53 m 231.54 75.43 l S 231.54 74.53 m 231.58 77.46 l S 231.58 74.53 m 231.63 74.70 l S 231.63 74.53 m 231.67 74.70 l S 231.67 74.53 m 231.72 74.64 l S 231.72 74.53 m 231.77 79.85 l S 231.77 74.53 m 231.81 86.08 l S 231.81 74.53 m 231.86 74.67 l S 231.86 74.53 m 231.90 74.80 l S 231.90 74.53 m 231.95 74.70 l S 231.95 74.53 m 232.00 74.70 l S 232.00 74.53 m 232.04 74.70 l S 232.04 74.53 m 232.09 74.78 l S 232.09 74.53 m 232.13 74.72 l S 232.13 74.53 m 232.18 74.72 l S 232.18 74.53 m 232.23 74.67 l S 232.23 74.53 m 232.27 74.70 l S 232.27 74.53 m 232.32 74.72 l S 232.32 74.53 m 232.36 74.78 l S 232.36 74.53 m 232.41 74.70 l S 232.41 74.53 m 232.46 74.70 l S 232.46 74.53 m 232.50 74.72 l S 232.50 74.53 m 232.55 74.78 l S 232.55 74.53 m 232.59 74.67 l S 232.59 74.53 m 232.64 74.70 l S 232.64 74.53 m 232.69 74.72 l S 232.69 74.53 m 232.73 74.67 l S 232.73 74.53 m 232.78 74.72 l S 232.78 74.53 m 232.82 74.70 l S 232.82 74.53 m 232.87 75.05 l S 232.87 74.53 m 232.92 74.83 l S 232.92 74.53 m 232.96 74.75 l S 232.96 74.53 m 233.01 74.70 l S 233.01 74.53 m 233.05 74.80 l S 233.05 74.53 m 233.10 84.57 l S 233.10 74.53 m 233.15 74.70 l S 233.15 74.53 m 233.19 74.75 l S 233.19 74.53 m 233.24 76.87 l S 233.24 74.53 m 233.28 76.89 l S 233.28 74.53 m 233.33 74.70 l S 233.33 74.53 m 233.38 74.70 l S 233.38 74.53 m 233.42 74.70 l S 233.42 74.53 m 233.47 74.70 l S 233.47 74.53 m 233.51 74.72 l S 233.51 74.53 m 233.56 74.70 l S 233.56 74.53 m 233.61 74.72 l S 233.61 74.53 m 233.65 74.72 l S 233.65 74.53 m 233.70 74.72 l S 233.70 74.53 m 233.74 74.70 l S 233.74 74.53 m 233.79 74.70 l S 233.79 74.53 m 233.84 74.72 l S 233.84 74.53 m 233.88 74.72 l S 233.88 74.53 m 233.93 74.64 l S 233.93 74.53 m 233.97 74.67 l S 233.97 74.53 m 234.02 76.43 l S 234.02 74.53 m 234.07 74.70 l S 234.07 74.53 m 234.11 75.05 l S 234.11 74.53 m 234.16 74.67 l S 234.16 74.53 m 234.20 74.70 l S 234.20 74.53 m 234.25 74.70 l S 234.25 74.53 m 234.30 74.72 l S 234.30 74.53 m 234.34 74.72 l S 234.34 74.53 m 234.39 74.67 l S 234.39 74.53 m 234.43 74.89 l S 234.43 74.53 m 234.48 74.67 l S 234.48 74.53 m 234.53 74.70 l S 234.53 74.53 m 234.57 80.12 l S 234.57 74.53 m 234.62 77.95 l S 234.62 74.53 m 234.66 74.78 l S 234.66 74.53 m 234.71 74.72 l S 234.71 74.53 m 234.76 74.67 l S 234.76 74.53 m 234.80 74.89 l S 234.80 74.53 m 234.85 74.70 l S 234.85 74.53 m 234.89 74.72 l S 234.89 74.53 m 234.94 74.70 l S 234.94 74.53 m 234.99 74.64 l S 234.99 74.53 m 235.03 74.75 l S 235.03 74.53 m 235.08 74.89 l S 235.08 74.53 m 235.12 74.72 l S 235.12 74.53 m 235.17 79.25 l S 235.17 74.53 m 235.22 75.10 l S 235.22 74.53 m 235.26 74.72 l S 235.26 74.53 m 235.31 76.40 l S 235.31 74.53 m 235.35 74.97 l S 235.35 74.53 m 235.40 74.91 l S 235.40 74.53 m 235.45 74.86 l S 235.45 74.53 m 235.49 74.75 l S 235.49 74.53 m 235.54 74.70 l S 235.54 74.53 m 235.58 74.70 l S 235.58 74.53 m 235.63 74.97 l S 235.63 74.53 m 235.68 74.72 l S 235.68 74.53 m 235.72 74.70 l S 235.72 74.53 m 235.77 74.80 l S 235.77 74.53 m 235.81 74.75 l S 235.81 74.53 m 235.86 82.89 l S 235.86 74.53 m 235.91 74.78 l S 235.91 74.53 m 235.95 78.17 l S 235.95 74.53 m 236.00 80.91 l S 236.00 74.53 m 236.04 80.04 l S 236.04 74.53 m 236.09 74.72 l S 236.09 74.53 m 236.14 74.72 l S 236.14 74.53 m 236.18 75.16 l S 236.18 74.53 m 236.23 85.95 l S 236.23 74.53 m 236.27 74.72 l S 236.27 74.53 m 236.32 75.08 l S 236.32 74.53 m 236.37 75.10 l S 236.37 74.53 m 236.41 74.70 l S 236.41 74.53 m 236.46 74.72 l S 236.46 74.53 m 236.50 74.70 l S 236.50 74.53 m 236.55 74.75 l S 236.55 74.53 m 236.60 74.67 l S 236.60 74.53 m 236.64 74.72 l S 236.64 74.53 m 236.69 74.75 l S 236.69 74.53 m 236.73 74.72 l S 236.73 74.53 m 236.78 74.72 l S 236.78 74.53 m 236.83 74.72 l S 236.83 74.53 m 236.87 74.72 l S 236.87 74.53 m 236.92 74.72 l S 236.92 74.53 m 236.96 74.72 l S 236.96 74.53 m 237.01 74.72 l S 237.01 74.53 m 237.06 74.67 l S 237.06 74.53 m 237.10 74.70 l S 237.10 74.53 m 237.15 74.70 l S 237.15 74.53 m 237.19 74.70 l S 237.19 74.53 m 237.24 74.75 l S 237.24 74.53 m 237.29 74.75 l S 237.29 74.53 m 237.33 74.75 l S 237.33 74.53 m 237.38 75.54 l S 237.38 74.53 m 237.42 75.32 l S 237.42 74.53 m 237.47 75.86 l S 237.47 74.53 m 237.52 75.32 l S 237.52 74.53 m 237.56 74.53 l S 237.56 74.53 m 237.61 74.75 l S 237.61 74.53 m 237.65 74.72 l S 237.65 74.53 m 237.70 74.78 l S 237.70 74.53 m 237.75 77.24 l S 237.75 74.53 m 237.79 75.54 l S 237.79 74.53 m 237.84 76.49 l S 237.84 74.53 m 237.88 74.91 l S 237.88 74.53 m 237.93 85.19 l S 237.93 74.53 m 237.98 75.16 l S 237.98 74.53 m 238.02 74.99 l S 238.02 74.53 m 238.07 74.72 l S 238.07 74.53 m 238.11 74.78 l S 238.11 74.53 m 238.16 75.21 l S 238.16 74.53 m 238.21 75.54 l S 238.21 74.53 m 238.25 76.16 l S 238.25 74.53 m 238.30 77.14 l S 238.30 74.53 m 238.34 82.72 l S 238.34 74.53 m 238.39 76.92 l S 238.39 74.53 m 238.44 74.67 l S 238.44 74.53 m 238.48 74.70 l S 238.48 74.53 m 238.53 83.73 l S 238.53 74.53 m 238.58 74.72 l S 238.58 74.53 m 238.62 74.70 l S 238.62 74.53 m 238.67 74.70 l S 238.67 74.53 m 238.71 74.75 l S 238.71 74.53 m 238.76 74.72 l S 238.76 74.53 m 238.81 74.72 l S 238.81 74.53 m 238.85 75.08 l S 238.85 74.53 m 238.90 74.72 l S 238.90 74.53 m 238.94 74.70 l S 238.94 74.53 m 238.99 74.70 l S 238.99 74.53 m 239.04 74.72 l S 239.04 74.53 m 239.08 74.70 l S 239.08 74.53 m 239.13 74.70 l S 239.13 74.53 m 239.17 74.67 l S 239.17 74.53 m 239.22 74.72 l S 239.22 74.53 m 239.27 74.70 l S 239.27 74.53 m 239.31 74.72 l S 239.31 74.53 m 239.36 74.75 l S 239.36 74.53 m 239.40 74.75 l S 239.40 74.53 m 239.45 74.94 l S 239.45 74.53 m 239.50 74.70 l S 239.50 74.53 m 239.54 74.72 l S 239.54 74.53 m 239.59 74.75 l S 239.59 74.53 m 239.63 85.76 l S 239.63 74.53 m 239.68 74.70 l S 239.68 74.53 m 239.73 74.70 l S 239.73 74.53 m 239.77 89.94 l S 239.77 74.53 m 239.82 74.75 l S 239.82 74.53 m 239.86 77.73 l S 239.86 74.53 m 239.91 74.80 l S 239.91 74.53 m 239.96 74.70 l S 239.96 74.53 m 240.00 74.94 l S 240.00 74.53 m 240.05 75.18 l S 240.05 74.53 m 240.09 74.67 l S 240.09 74.53 m 240.14 74.78 l S 240.14 74.53 m 240.19 74.72 l S 240.19 74.53 m 240.23 74.78 l S 240.23 74.53 m 240.28 74.83 l S 240.28 74.53 m 240.32 74.70 l S 240.32 74.53 m 240.37 74.67 l S 240.37 74.53 m 240.42 74.70 l S 240.42 74.53 m 240.46 74.72 l S 240.46 74.53 m 240.51 74.70 l S 240.51 74.53 m 240.55 75.10 l S 240.55 74.53 m 240.60 74.75 l S 240.60 74.53 m 240.65 74.67 l S 240.65 74.53 m 240.69 74.70 l S 240.69 74.53 m 240.74 74.67 l S 240.74 74.53 m 240.78 74.70 l S 240.78 74.53 m 240.83 74.75 l S 240.83 74.53 m 240.88 74.67 l S 240.88 74.53 m 240.92 74.70 l S 240.92 74.53 m 240.97 74.70 l S 240.97 74.53 m 241.01 74.72 l S 241.01 74.53 m 241.06 74.67 l S 241.06 74.53 m 241.11 74.64 l S 241.11 74.53 m 241.15 74.70 l S 241.15 74.53 m 241.20 74.70 l S 241.20 74.53 m 241.24 74.70 l S 241.24 74.53 m 241.29 74.53 l S 241.29 74.53 m 241.34 74.67 l S 241.34 74.53 m 241.38 74.70 l S 241.38 74.53 m 241.43 74.67 l S 241.43 74.53 m 241.47 74.70 l S 241.47 74.53 m 241.52 74.78 l S 241.52 74.53 m 241.57 74.75 l S 241.57 74.53 m 241.61 74.70 l S 241.61 74.53 m 241.66 74.70 l S 241.66 74.53 m 241.70 74.89 l S 241.70 74.53 m 241.75 74.75 l S 241.75 74.53 m 241.80 74.94 l S 241.80 74.53 m 241.84 74.75 l S 241.84 74.53 m 241.89 74.70 l S 241.89 74.53 m 241.93 74.70 l S 241.93 74.53 m 241.98 74.67 l S 241.98 74.53 m 242.03 74.67 l S 242.03 74.53 m 242.07 74.70 l S 242.07 74.53 m 242.12 74.72 l S 242.12 74.53 m 242.16 74.72 l S 242.16 74.53 m 242.21 74.70 l S 242.21 74.53 m 242.26 74.70 l S 242.26 74.53 m 242.30 74.70 l S 242.30 74.53 m 242.35 74.67 l S 242.35 74.53 m 242.39 74.72 l S 242.39 74.53 m 242.44 74.70 l S 242.44 74.53 m 242.49 74.72 l S 242.49 74.53 m 242.53 74.86 l S 242.53 74.53 m 242.58 74.75 l S 242.58 74.53 m 242.62 74.99 l S 242.62 74.53 m 242.67 74.72 l S 242.67 74.53 m 242.72 75.51 l S 242.72 74.53 m 242.76 74.91 l S 242.76 74.53 m 242.81 80.20 l S 242.81 74.53 m 242.85 75.13 l S 242.85 74.53 m 242.90 75.92 l S 242.90 74.53 m 242.95 78.68 l S 242.95 74.53 m 242.99 77.27 l S 242.99 74.53 m 243.04 76.59 l S 243.04 74.53 m 243.08 74.72 l S 243.08 74.53 m 243.13 75.32 l S 243.13 74.53 m 243.18 74.75 l S 243.18 74.53 m 243.22 74.78 l S 243.22 74.53 m 243.27 74.75 l S 243.27 74.53 m 243.31 74.72 l S 243.31 74.53 m 243.36 74.70 l S 243.36 74.53 m 243.41 74.70 l S 243.41 74.53 m 243.45 74.72 l S 243.45 74.53 m 243.50 74.72 l S 243.50 74.53 m 243.54 74.70 l S 243.54 74.53 m 243.59 74.72 l S 243.59 74.53 m 243.64 74.72 l S 243.64 74.53 m 243.68 74.72 l S 243.68 74.53 m 243.73 74.72 l S 243.73 74.53 m 243.77 74.70 l S 243.77 74.53 m 243.82 74.80 l S 243.82 74.53 m 243.87 74.72 l S 243.87 74.53 m 243.91 74.72 l S 243.91 74.53 m 243.96 74.72 l S 243.96 74.53 m 244.00 74.70 l S 244.00 74.53 m 244.05 74.67 l S 244.05 74.53 m 244.10 74.70 l S 244.10 74.53 m 244.14 76.16 l S 244.14 74.53 m 244.19 74.80 l S 244.19 74.53 m 244.23 74.70 l S 244.23 74.53 m 244.28 74.83 l S 244.28 74.53 m 244.33 74.67 l S 244.33 74.53 m 244.37 74.75 l S 244.37 74.53 m 244.42 74.83 l S 244.42 74.53 m 244.46 74.67 l S 244.46 74.53 m 244.51 74.75 l S 244.51 74.53 m 244.56 74.72 l S 244.56 74.53 m 244.60 74.70 l S 244.60 74.53 m 244.65 74.75 l S 244.65 74.53 m 244.69 74.67 l S 244.69 74.53 m 244.74 82.04 l S 244.74 74.53 m 244.79 74.72 l S 244.79 74.53 m 244.83 74.80 l S 244.83 74.53 m 244.88 74.78 l S 244.88 74.53 m 244.92 74.72 l S 244.92 74.53 m 244.97 74.70 l S 244.97 74.53 m 245.02 74.70 l S 245.02 74.53 m 245.06 74.78 l S 245.06 74.53 m 245.11 75.46 l S 245.11 74.53 m 245.15 74.75 l S 245.15 74.53 m 245.20 74.75 l S 245.20 74.53 m 245.25 74.72 l S 245.25 74.53 m 245.29 74.72 l S 245.29 74.53 m 245.34 74.70 l S 245.34 74.53 m 245.38 75.48 l S 245.38 74.53 m 245.43 75.51 l S 245.43 74.53 m 245.48 74.70 l S 245.48 74.53 m 245.52 74.70 l S 245.52 74.53 m 245.57 74.72 l S 245.57 74.53 m 245.61 87.60 l S 245.61 74.53 m 245.66 78.06 l S 245.66 74.53 m 245.71 76.43 l S 245.71 74.53 m 245.75 74.72 l S 245.75 74.53 m 245.80 74.78 l S 245.80 74.53 m 245.84 75.73 l S 245.84 74.53 m 245.89 75.13 l S 245.89 74.53 m 245.94 74.67 l S 245.94 74.53 m 245.98 74.72 l S 245.98 74.53 m 246.03 74.70 l S 246.03 74.53 m 246.07 74.70 l S 246.07 74.53 m 246.12 74.86 l S 246.12 74.53 m 246.17 74.70 l S 246.17 74.53 m 246.21 74.70 l S 246.21 74.53 m 246.26 74.72 l S 246.26 74.53 m 246.30 74.67 l S 246.30 74.53 m 246.35 74.70 l S 246.35 74.53 m 246.40 74.70 l S 246.40 74.53 m 246.44 74.67 l S 246.44 74.53 m 246.49 74.75 l S 246.49 74.53 m 246.54 74.72 l S 246.54 74.53 m 246.58 74.89 l S 246.58 74.53 m 246.63 74.72 l S 246.63 74.53 m 246.67 74.70 l S 246.67 74.53 m 246.72 74.70 l S 246.72 74.53 m 246.77 74.67 l S 246.77 74.53 m 246.81 74.70 l S 246.81 74.53 m 246.86 74.70 l S 246.86 74.53 m 246.90 74.70 l S 246.90 74.53 m 246.95 74.80 l S 246.95 74.53 m 247.00 74.70 l S 247.00 74.53 m 247.04 74.72 l S 247.04 74.53 m 247.09 74.70 l S 247.09 74.53 m 247.13 74.72 l S 247.13 74.53 m 247.18 74.70 l S 247.18 74.53 m 247.23 75.48 l S 247.23 74.53 m 247.27 74.70 l S 247.27 74.53 m 247.32 74.70 l S 247.32 74.53 m 247.36 74.72 l S 247.36 74.53 m 247.41 74.72 l S 247.41 74.53 m 247.46 76.57 l S 247.46 74.53 m 247.50 74.80 l S 247.50 74.53 m 247.55 74.70 l S 247.55 74.53 m 247.59 74.70 l S 247.59 74.53 m 247.64 74.75 l S 247.64 74.53 m 247.69 74.80 l S 247.69 74.53 m 247.73 74.70 l S 247.73 74.53 m 247.78 74.80 l S 247.78 74.53 m 247.82 74.72 l S 247.82 74.53 m 247.87 74.70 l S 247.87 74.53 m 247.92 74.80 l S 247.92 74.53 m 247.96 74.75 l S 247.96 74.53 m 248.01 74.64 l S 248.01 74.53 m 248.05 74.91 l S 248.05 74.53 m 248.10 76.40 l S 248.10 74.53 m 248.15 74.67 l S 248.15 74.53 m 248.19 74.97 l S 248.19 74.53 m 248.24 76.43 l S 248.24 74.53 m 248.28 74.70 l S 248.28 74.53 m 248.33 74.72 l S 248.33 74.53 m 248.38 75.18 l S 248.38 74.53 m 248.42 74.70 l S 248.42 74.53 m 248.47 75.86 l S 248.47 74.53 m 248.51 74.70 l S 248.51 74.53 m 248.56 79.85 l S 248.56 74.53 m 248.61 81.45 l S 248.61 74.53 m 248.65 75.02 l S 248.65 74.53 m 248.70 76.19 l S 248.70 74.53 m 248.74 75.27 l S 248.74 74.53 m 248.79 74.67 l S 248.79 74.53 m 248.84 74.78 l S 248.84 74.53 m 248.88 76.76 l S 248.88 74.53 m 248.93 74.75 l S 248.93 74.53 m 248.97 75.08 l S 248.97 74.53 m 249.02 74.70 l S 249.02 74.53 m 249.07 74.97 l S 249.07 74.53 m 249.11 74.70 l S 249.11 74.53 m 249.16 74.70 l S 249.16 74.53 m 249.20 74.80 l S 249.20 74.53 m 249.25 74.67 l S 249.25 74.53 m 249.30 75.59 l S 249.30 74.53 m 249.34 74.70 l S 249.34 74.53 m 249.39 74.72 l S 249.39 74.53 m 249.43 79.79 l S 249.43 74.53 m 249.48 74.99 l S 249.48 74.53 m 249.53 74.70 l S 249.53 74.53 m 249.57 74.75 l S 249.57 74.53 m 249.62 75.08 l S 249.62 74.53 m 249.66 74.83 l S 249.66 74.53 m 249.71 74.91 l S 249.71 74.53 m 249.76 74.67 l S 249.76 74.53 m 249.80 75.51 l S 249.80 74.53 m 249.85 77.79 l S 249.85 74.53 m 249.89 77.35 l S 249.89 74.53 m 249.94 77.19 l S 249.94 74.53 m 249.99 76.00 l S 249.99 74.53 m 250.03 78.84 l S 250.03 74.53 m 250.08 74.72 l S 250.08 74.53 m 250.12 74.83 l S 250.12 74.53 m 250.17 74.75 l S 250.17 74.53 m 250.22 77.84 l S 250.22 74.53 m 250.26 74.72 l S 250.26 74.53 m 250.31 74.91 l S 250.31 74.53 m 250.35 74.83 l S 250.35 74.53 m 250.40 74.89 l S 250.40 74.53 m 250.45 75.46 l S Q endstream endobj 205 0 obj << /CreationDate (D:20090701105130) /ModDate (D:20090701105130) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 206 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 209 0 R >> endobj 207 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 209 0 R >> endobj 208 0 obj 263490 endobj 209 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 204 0 obj << /D [202 0 R /XYZ 89.292 765.769 null] >> endobj 200 0 obj << /D [202 0 R /XYZ 134.674 265.654 null] >> endobj 201 0 obj << /Font << /F8 79 0 R >> /XObject << /Im3 190 0 R >> /ProcSet [ /PDF /Text ] >> endobj 212 0 obj << /Length 209 /Filter /FlateDecode >> stream xÚMOËN1 ¼ç+|LëÆq›+X n•rq¨(E•º åÿñ6KUE;3öØ!°rˆ-æHà’Åh¼ & ¤Bh5w¹¨“¢¥u!VO£‡‡ª¶ ¶7­û÷íîŒ7E­†² å”r à|±OPö¯z0¤‚Ï_¹¾¦cfíצóžõK5b©ëØè¹ôl\¯/’ÔÆíZøw®Âé/錺Φ—eJ=7©Z¼MÇöf4oår@—çO¹„–ùº(ñ,©Ç¢þtKGendstream endobj 211 0 obj << /Type /Page /Contents 212 0 R /Resources 210 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R /Annots [ 215 0 R ] >> endobj 191 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-pileup1Dzoom.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 217 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 218 0 R /F3 219 0 R >> /ExtGState << >>>> /Length 220 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 235.44 m 250.45 235.44 l S 66.40 235.44 m 66.40 228.24 l S 103.21 235.44 m 103.21 228.24 l S 140.02 235.44 m 140.02 228.24 l S 176.83 235.44 m 176.83 228.24 l S 213.64 235.44 m 213.64 228.24 l S 250.45 235.44 m 250.45 228.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 36.38 209.52 Tm (100000000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 109.99 209.52 Tm (100400000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 183.61 209.52 Tm (100800000) Tj ET 59.04 236.53 m 59.04 262.27 l S 59.04 236.53 m 51.84 236.53 l S 59.04 242.97 m 51.84 242.97 l S 59.04 249.40 m 51.84 249.40 l S 59.04 255.84 m 51.84 255.84 l S 59.04 262.27 m 51.84 262.27 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 214.68 Tm (0.0e+00) Tj ET 59.04 235.44 m 257.76 235.44 l 257.76 264.96 l 59.04 264.96 l 59.04 235.44 l S Q q 0.00 162.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 289.45 Tm (Chr 10, H3K3me1) Tj ET Q q 59.04 235.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 236.53 m 66.45 239.46 l S 66.45 236.53 m 66.49 236.53 l S 66.49 236.53 m 66.54 236.53 l S 66.54 236.53 m 66.58 236.53 l S 66.58 236.53 m 66.63 236.53 l S 66.63 236.53 m 66.68 237.51 l S 66.68 236.53 m 66.72 236.53 l S 66.72 236.53 m 66.77 236.53 l S 66.77 236.53 m 66.81 238.49 l S 66.81 236.53 m 66.86 237.51 l S 66.86 236.53 m 66.91 238.49 l S 66.91 236.53 m 66.95 239.46 l S 66.95 236.53 m 67.00 237.51 l S 67.00 236.53 m 67.04 236.53 l S 67.04 236.53 m 67.09 237.51 l S 67.09 236.53 m 67.14 237.51 l S 67.14 236.53 m 67.18 237.51 l S 67.18 236.53 m 67.23 236.53 l S 67.23 236.53 m 67.27 236.53 l S 67.27 236.53 m 67.32 236.53 l S 67.32 236.53 m 67.37 239.46 l S 67.37 236.53 m 67.41 238.49 l S 67.41 236.53 m 67.46 236.53 l S 67.46 236.53 m 67.50 237.51 l S 67.50 236.53 m 67.55 237.51 l S 67.55 236.53 m 67.60 237.51 l S 67.60 236.53 m 67.64 237.51 l S 67.64 236.53 m 67.69 239.46 l S 67.69 236.53 m 67.73 239.46 l S 67.73 236.53 m 67.78 236.53 l S 67.78 236.53 m 67.83 237.51 l S 67.83 236.53 m 67.87 236.53 l S 67.87 236.53 m 67.92 236.53 l S 67.92 236.53 m 67.96 236.53 l S 67.96 236.53 m 68.01 236.53 l S 68.01 236.53 m 68.06 236.53 l S 68.06 236.53 m 68.10 238.49 l S 68.10 236.53 m 68.15 238.49 l S 68.15 236.53 m 68.19 236.53 l S 68.19 236.53 m 68.24 236.53 l S 68.24 236.53 m 68.29 236.53 l S 68.29 236.53 m 68.33 238.49 l S 68.33 236.53 m 68.38 238.49 l S 68.38 236.53 m 68.42 236.53 l S 68.42 236.53 m 68.47 236.53 l S 68.47 236.53 m 68.52 237.51 l S 68.52 236.53 m 68.56 237.51 l S 68.56 236.53 m 68.61 237.51 l S 68.61 236.53 m 68.65 236.53 l S 68.65 236.53 m 68.70 237.51 l S 68.70 236.53 m 68.75 237.51 l S 68.75 236.53 m 68.79 237.51 l S 68.79 236.53 m 68.84 236.53 l S 68.84 236.53 m 68.88 236.53 l S 68.88 236.53 m 68.93 236.53 l S 68.93 236.53 m 68.98 236.53 l S 68.98 236.53 m 69.02 236.53 l S 69.02 236.53 m 69.07 236.53 l S 69.07 236.53 m 69.11 236.53 l S 69.11 236.53 m 69.16 236.53 l S 69.16 236.53 m 69.21 236.53 l S 69.21 236.53 m 69.25 236.53 l S 69.25 236.53 m 69.30 237.51 l S 69.30 236.53 m 69.34 237.51 l S 69.34 236.53 m 69.39 237.51 l S 69.39 236.53 m 69.44 236.53 l S 69.44 236.53 m 69.48 236.53 l S 69.48 236.53 m 69.53 237.51 l S 69.53 236.53 m 69.57 237.51 l S 69.57 236.53 m 69.62 240.44 l S 69.62 238.49 m 69.67 241.41 l S 69.67 238.49 m 69.71 241.41 l S 69.71 236.53 m 69.76 238.49 l S 69.76 236.53 m 69.80 237.51 l S 69.80 236.53 m 69.85 237.51 l S 69.85 237.51 m 69.90 238.49 l S 69.90 236.53 m 69.94 237.51 l S 69.94 236.53 m 69.99 238.49 l S 69.99 236.53 m 70.03 238.49 l S 70.03 236.53 m 70.08 236.53 l S 70.08 236.53 m 70.13 238.49 l S 70.13 236.53 m 70.17 238.49 l S 70.17 236.53 m 70.22 236.53 l S 70.22 236.53 m 70.26 238.49 l S 70.26 236.53 m 70.31 238.49 l S 70.31 236.53 m 70.36 236.53 l S 70.36 236.53 m 70.40 236.53 l S 70.40 236.53 m 70.45 238.49 l S 70.45 236.53 m 70.50 238.49 l S 70.50 236.53 m 70.54 238.49 l S 70.54 236.53 m 70.59 237.51 l S 70.59 236.53 m 70.63 236.53 l S 70.63 236.53 m 70.68 236.53 l S 70.68 236.53 m 70.73 237.51 l S 70.73 236.53 m 70.77 237.51 l S 70.77 236.53 m 70.82 236.53 l S 70.82 236.53 m 70.86 236.53 l S 70.86 236.53 m 70.91 236.53 l S 70.91 236.53 m 70.96 236.53 l S 70.96 236.53 m 71.00 236.53 l S 71.00 236.53 m 71.05 236.53 l S 71.05 236.53 m 71.09 236.53 l S 71.09 236.53 m 71.14 236.53 l S 71.14 236.53 m 71.19 236.53 l S 71.19 236.53 m 71.23 236.53 l S 71.23 236.53 m 71.28 238.49 l S 71.28 236.53 m 71.32 238.49 l S 71.32 236.53 m 71.37 237.51 l S 71.37 236.53 m 71.42 237.51 l S 71.42 236.53 m 71.46 236.53 l S 71.46 236.53 m 71.51 236.53 l S 71.51 236.53 m 71.55 236.53 l S 71.55 236.53 m 71.60 236.53 l S 71.60 236.53 m 71.65 236.53 l S 71.65 236.53 m 71.69 236.53 l S 71.69 236.53 m 71.74 236.53 l S 71.74 236.53 m 71.78 236.53 l S 71.78 236.53 m 71.83 236.53 l S 71.83 236.53 m 71.88 236.53 l S 71.88 236.53 m 71.92 236.53 l S 71.92 236.53 m 71.97 236.53 l S 71.97 236.53 m 72.01 236.53 l S 72.01 236.53 m 72.06 236.53 l S 72.06 236.53 m 72.11 236.53 l S 72.11 236.53 m 72.15 236.53 l S 72.15 236.53 m 72.20 236.53 l S 72.20 236.53 m 72.24 236.53 l S 72.24 236.53 m 72.29 237.51 l S 72.29 236.53 m 72.34 237.51 l S 72.34 236.53 m 72.38 236.53 l S 72.38 236.53 m 72.43 236.53 l S 72.43 236.53 m 72.47 236.53 l S 72.47 236.53 m 72.52 236.53 l S 72.52 236.53 m 72.57 236.53 l S 72.57 236.53 m 72.61 236.53 l S 72.61 236.53 m 72.66 237.51 l S 72.66 236.53 m 72.70 237.51 l S 72.70 236.53 m 72.75 236.53 l S 72.75 236.53 m 72.80 236.53 l S 72.80 236.53 m 72.84 236.53 l S 72.84 236.53 m 72.89 236.53 l S 72.89 236.53 m 72.93 236.53 l S 72.93 236.53 m 72.98 236.53 l S 72.98 236.53 m 73.03 236.53 l S 73.03 236.53 m 73.07 236.53 l S 73.07 236.53 m 73.12 237.51 l S 73.12 236.53 m 73.16 237.51 l S 73.16 236.53 m 73.21 237.51 l S 73.21 236.53 m 73.26 236.53 l S 73.26 236.53 m 73.30 237.51 l S 73.30 236.53 m 73.35 236.53 l S 73.35 236.53 m 73.39 236.53 l S 73.39 236.53 m 73.44 236.53 l S 73.44 236.53 m 73.49 236.53 l S 73.49 236.53 m 73.53 236.53 l S 73.53 236.53 m 73.58 236.53 l S 73.58 236.53 m 73.62 236.53 l S 73.62 236.53 m 73.67 236.53 l S 73.67 236.53 m 73.72 236.53 l S 73.72 236.53 m 73.76 236.53 l S 73.76 236.53 m 73.81 236.53 l S 73.81 236.53 m 73.85 237.51 l S 73.85 236.53 m 73.90 237.51 l S 73.90 236.53 m 73.95 236.53 l S 73.95 236.53 m 73.99 236.53 l S 73.99 236.53 m 74.04 238.49 l S 74.04 236.53 m 74.08 237.51 l S 74.08 236.53 m 74.13 237.51 l S 74.13 236.53 m 74.18 237.51 l S 74.18 236.53 m 74.22 240.44 l S 74.22 237.51 m 74.27 241.41 l S 74.27 236.53 m 74.31 237.51 l S 74.31 236.53 m 74.36 236.53 l S 74.36 236.53 m 74.41 238.49 l S 74.41 236.53 m 74.45 239.46 l S 74.45 236.53 m 74.50 237.51 l S 74.50 236.53 m 74.54 237.51 l S 74.54 236.53 m 74.59 237.51 l S 74.59 236.53 m 74.64 236.53 l S 74.64 236.53 m 74.68 237.51 l S 74.68 236.53 m 74.73 239.46 l S 74.73 236.53 m 74.77 240.44 l S 74.77 236.53 m 74.82 236.53 l S 74.82 236.53 m 74.87 237.51 l S 74.87 236.53 m 74.91 237.51 l S 74.91 236.53 m 74.96 236.53 l S 74.96 236.53 m 75.00 236.53 l S 75.00 236.53 m 75.05 236.53 l S 75.05 236.53 m 75.10 236.53 l S 75.10 236.53 m 75.14 236.53 l S 75.14 236.53 m 75.19 236.53 l S 75.19 236.53 m 75.23 236.53 l S 75.23 236.53 m 75.28 236.53 l S 75.28 236.53 m 75.33 236.53 l S 75.33 236.53 m 75.37 236.53 l S 75.37 236.53 m 75.42 236.53 l S 75.42 236.53 m 75.46 237.51 l S 75.46 236.53 m 75.51 237.51 l S 75.51 236.53 m 75.56 236.53 l S 75.56 236.53 m 75.60 236.53 l S 75.60 236.53 m 75.65 237.51 l S 75.65 236.53 m 75.69 237.51 l S 75.69 236.53 m 75.74 236.53 l S 75.74 236.53 m 75.79 236.53 l S 75.79 236.53 m 75.83 236.53 l S 75.83 236.53 m 75.88 238.49 l S 75.88 236.53 m 75.92 238.49 l S 75.92 236.53 m 75.97 236.53 l S 75.97 236.53 m 76.02 236.53 l S 76.02 236.53 m 76.06 236.53 l S 76.06 236.53 m 76.11 236.53 l S 76.11 236.53 m 76.15 236.53 l S 76.15 236.53 m 76.20 236.53 l S 76.20 236.53 m 76.25 236.53 l S 76.25 236.53 m 76.29 236.53 l S 76.29 236.53 m 76.34 236.53 l S 76.34 236.53 m 76.38 236.53 l S 76.38 236.53 m 76.43 236.53 l S 76.43 236.53 m 76.48 236.53 l S 76.48 236.53 m 76.52 239.46 l S 76.52 236.53 m 76.57 238.49 l S 76.57 236.53 m 76.61 236.53 l S 76.61 236.53 m 76.66 236.53 l S 76.66 236.53 m 76.71 236.53 l S 76.71 236.53 m 76.75 236.53 l S 76.75 236.53 m 76.80 236.53 l S 76.80 236.53 m 76.84 236.53 l S 76.84 236.53 m 76.89 236.53 l S 76.89 236.53 m 76.94 236.53 l S 76.94 236.53 m 76.98 236.53 l S 76.98 236.53 m 77.03 236.53 l S 77.03 236.53 m 77.07 238.49 l S 77.07 236.53 m 77.12 237.51 l S 77.12 236.53 m 77.17 237.51 l S 77.17 236.53 m 77.21 237.51 l S 77.21 236.53 m 77.26 236.53 l S 77.26 236.53 m 77.30 239.46 l S 77.30 236.53 m 77.35 240.44 l S 77.35 236.53 m 77.40 236.53 l S 77.40 236.53 m 77.44 236.53 l S 77.44 236.53 m 77.49 236.53 l S 77.49 236.53 m 77.53 236.53 l S 77.53 236.53 m 77.58 236.53 l S 77.58 236.53 m 77.63 236.53 l S 77.63 236.53 m 77.67 236.53 l S 77.67 236.53 m 77.72 236.53 l S 77.72 236.53 m 77.76 236.53 l S 77.76 236.53 m 77.81 236.53 l S 77.81 236.53 m 77.86 236.53 l S 77.86 236.53 m 77.90 236.53 l S 77.90 236.53 m 77.95 236.53 l S 77.95 236.53 m 77.99 236.53 l S 77.99 236.53 m 78.04 236.53 l S 78.04 236.53 m 78.09 236.53 l S 78.09 236.53 m 78.13 236.53 l S 78.13 236.53 m 78.18 236.53 l S 78.18 236.53 m 78.22 236.53 l S 78.22 236.53 m 78.27 236.53 l S 78.27 236.53 m 78.32 236.53 l S 78.32 236.53 m 78.36 236.53 l S 78.36 236.53 m 78.41 236.53 l S 78.41 236.53 m 78.46 237.51 l S 78.46 236.53 m 78.50 236.53 l S 78.50 236.53 m 78.55 236.53 l S 78.55 236.53 m 78.59 236.53 l S 78.59 236.53 m 78.64 236.53 l S 78.64 236.53 m 78.69 237.51 l S 78.69 236.53 m 78.73 237.51 l S 78.73 236.53 m 78.78 236.53 l S 78.78 236.53 m 78.82 236.53 l S 78.82 236.53 m 78.87 236.53 l S 78.87 236.53 m 78.92 236.53 l S 78.92 236.53 m 78.96 236.53 l S 78.96 236.53 m 79.01 236.53 l S 79.01 236.53 m 79.05 236.53 l S 79.05 236.53 m 79.10 236.53 l S 79.10 236.53 m 79.15 236.53 l S 79.15 236.53 m 79.19 236.53 l S 79.19 236.53 m 79.24 237.51 l S 79.24 236.53 m 79.28 236.53 l S 79.28 236.53 m 79.33 237.51 l S 79.33 236.53 m 79.38 237.51 l S 79.38 236.53 m 79.42 236.53 l S 79.42 236.53 m 79.47 236.53 l S 79.47 236.53 m 79.51 237.51 l S 79.51 236.53 m 79.56 236.53 l S 79.56 236.53 m 79.61 236.53 l S 79.61 236.53 m 79.65 238.49 l S 79.65 236.53 m 79.70 237.51 l S 79.70 236.53 m 79.74 237.51 l S 79.74 236.53 m 79.79 238.49 l S 79.79 237.51 m 79.84 240.44 l S 79.84 236.53 m 79.88 240.44 l S 79.88 236.53 m 79.93 236.53 l S 79.93 236.53 m 79.97 236.53 l S 79.97 236.53 m 80.02 236.53 l S 80.02 236.53 m 80.07 237.51 l S 80.07 236.53 m 80.11 236.53 l S 80.11 236.53 m 80.16 236.53 l S 80.16 236.53 m 80.20 236.53 l S 80.20 236.53 m 80.25 236.53 l S 80.25 236.53 m 80.30 236.53 l S 80.30 236.53 m 80.34 236.53 l S 80.34 236.53 m 80.39 236.53 l S 80.39 236.53 m 80.43 237.51 l S 80.43 236.53 m 80.48 237.51 l S 80.48 236.53 m 80.53 236.53 l S 80.53 236.53 m 80.57 237.51 l S 80.57 236.53 m 80.62 237.51 l S 80.62 236.53 m 80.66 236.53 l S 80.66 236.53 m 80.71 238.49 l S 80.71 236.53 m 80.76 240.44 l S 80.76 236.53 m 80.80 236.53 l S 80.80 236.53 m 80.85 236.53 l S 80.85 236.53 m 80.89 236.53 l S 80.89 236.53 m 80.94 236.53 l S 80.94 236.53 m 80.99 237.51 l S 80.99 236.53 m 81.03 238.49 l S 81.03 236.53 m 81.08 236.53 l S 81.08 236.53 m 81.12 236.53 l S 81.12 236.53 m 81.17 236.53 l S 81.17 236.53 m 81.22 237.51 l S 81.22 236.53 m 81.26 236.53 l S 81.26 236.53 m 81.31 237.51 l S 81.31 236.53 m 81.35 237.51 l S 81.35 236.53 m 81.40 236.53 l S 81.40 236.53 m 81.45 237.51 l S 81.45 236.53 m 81.49 237.51 l S 81.49 236.53 m 81.54 236.53 l S 81.54 236.53 m 81.58 236.53 l S 81.58 236.53 m 81.63 236.53 l S 81.63 236.53 m 81.68 236.53 l S 81.68 236.53 m 81.72 236.53 l S 81.72 236.53 m 81.77 236.53 l S 81.77 236.53 m 81.81 236.53 l S 81.81 236.53 m 81.86 236.53 l S 81.86 236.53 m 81.91 236.53 l S 81.91 236.53 m 81.95 236.53 l S 81.95 236.53 m 82.00 236.53 l S 82.00 236.53 m 82.04 236.53 l S 82.04 236.53 m 82.09 236.53 l S 82.09 236.53 m 82.14 236.53 l S 82.14 236.53 m 82.18 236.53 l S 82.18 236.53 m 82.23 236.53 l S 82.23 236.53 m 82.27 236.53 l S 82.27 236.53 m 82.32 236.53 l S 82.32 236.53 m 82.37 236.53 l S 82.37 236.53 m 82.41 236.53 l S 82.41 236.53 m 82.46 236.53 l S 82.46 236.53 m 82.50 236.53 l S 82.50 236.53 m 82.55 237.51 l S 82.55 236.53 m 82.60 236.53 l S 82.60 236.53 m 82.64 236.53 l S 82.64 236.53 m 82.69 236.53 l S 82.69 236.53 m 82.73 236.53 l S 82.73 236.53 m 82.78 237.51 l S 82.78 236.53 m 82.83 237.51 l S 82.83 236.53 m 82.87 238.49 l S 82.87 237.51 m 82.92 240.44 l S 82.92 236.53 m 82.96 239.46 l S 82.96 236.53 m 83.01 237.51 l S 83.01 236.53 m 83.06 237.51 l S 83.06 236.53 m 83.10 237.51 l S 83.10 236.53 m 83.15 240.44 l S 83.15 236.53 m 83.19 238.49 l S 83.19 236.53 m 83.24 236.53 l S 83.24 236.53 m 83.29 236.53 l S 83.29 236.53 m 83.33 242.39 l S 83.33 236.53 m 83.38 241.41 l S 83.38 236.53 m 83.42 236.53 l S 83.42 236.53 m 83.47 236.53 l S 83.47 236.53 m 83.52 236.53 l S 83.52 236.53 m 83.56 236.53 l S 83.56 236.53 m 83.61 236.53 l S 83.61 236.53 m 83.65 236.53 l S 83.65 236.53 m 83.70 236.53 l S 83.70 236.53 m 83.75 236.53 l S 83.75 236.53 m 83.79 236.53 l S 83.79 236.53 m 83.84 236.53 l S 83.84 236.53 m 83.88 236.53 l S 83.88 236.53 m 83.93 236.53 l S 83.93 236.53 m 83.98 236.53 l S 83.98 236.53 m 84.02 236.53 l S 84.02 236.53 m 84.07 236.53 l S 84.07 236.53 m 84.11 236.53 l S 84.11 236.53 m 84.16 236.53 l S 84.16 236.53 m 84.21 236.53 l S 84.21 236.53 m 84.25 236.53 l S 84.25 236.53 m 84.30 236.53 l S 84.30 236.53 m 84.34 236.53 l S 84.34 236.53 m 84.39 236.53 l S 84.39 236.53 m 84.44 236.53 l S 84.44 236.53 m 84.48 236.53 l S 84.48 236.53 m 84.53 236.53 l S 84.53 236.53 m 84.57 236.53 l S 84.57 236.53 m 84.62 236.53 l S 84.62 236.53 m 84.67 238.49 l S 84.67 237.51 m 84.71 240.44 l S 84.71 236.53 m 84.76 237.51 l S 84.76 236.53 m 84.80 236.53 l S 84.80 236.53 m 84.85 236.53 l S 84.85 236.53 m 84.90 236.53 l S 84.90 236.53 m 84.94 236.53 l S 84.94 236.53 m 84.99 236.53 l S 84.99 236.53 m 85.03 236.53 l S 85.03 236.53 m 85.08 236.53 l S 85.08 236.53 m 85.13 236.53 l S 85.13 236.53 m 85.17 237.51 l S 85.17 236.53 m 85.22 237.51 l S 85.22 236.53 m 85.26 236.53 l S 85.26 236.53 m 85.31 236.53 l S 85.31 236.53 m 85.36 236.53 l S 85.36 236.53 m 85.40 236.53 l S 85.40 236.53 m 85.45 236.53 l S 85.45 236.53 m 85.49 236.53 l S 85.49 236.53 m 85.54 236.53 l S 85.54 236.53 m 85.59 238.49 l S 85.59 236.53 m 85.63 237.51 l S 85.63 236.53 m 85.68 236.53 l S 85.68 236.53 m 85.72 236.53 l S 85.72 236.53 m 85.77 236.53 l S 85.77 236.53 m 85.82 236.53 l S 85.82 236.53 m 85.86 236.53 l S 85.86 236.53 m 85.91 236.53 l S 85.91 236.53 m 85.95 236.53 l S 85.95 236.53 m 86.00 236.53 l S 86.00 236.53 m 86.05 236.53 l S 86.05 236.53 m 86.09 236.53 l S 86.09 236.53 m 86.14 236.53 l S 86.14 236.53 m 86.18 236.53 l S 86.18 236.53 m 86.23 236.53 l S 86.23 236.53 m 86.28 236.53 l S 86.28 236.53 m 86.32 236.53 l S 86.32 236.53 m 86.37 236.53 l S 86.37 236.53 m 86.42 236.53 l S 86.42 236.53 m 86.46 236.53 l S 86.46 236.53 m 86.51 236.53 l S 86.51 236.53 m 86.55 236.53 l S 86.55 236.53 m 86.60 236.53 l S 86.60 236.53 m 86.65 236.53 l S 86.65 236.53 m 86.69 236.53 l S 86.69 236.53 m 86.74 236.53 l S 86.74 236.53 m 86.78 238.49 l S 86.78 237.51 m 86.83 238.49 l S 86.83 237.51 m 86.88 243.37 l S 86.88 236.53 m 86.92 242.39 l S 86.92 236.53 m 86.97 236.53 l S 86.97 236.53 m 87.01 236.53 l S 87.01 236.53 m 87.06 236.53 l S 87.06 236.53 m 87.11 236.53 l S 87.11 236.53 m 87.15 236.53 l S 87.15 236.53 m 87.20 236.53 l S 87.20 236.53 m 87.24 236.53 l S 87.24 236.53 m 87.29 236.53 l S 87.29 236.53 m 87.34 236.53 l S 87.34 236.53 m 87.38 237.51 l S 87.38 236.53 m 87.43 237.51 l S 87.43 236.53 m 87.47 236.53 l S 87.47 236.53 m 87.52 236.53 l S 87.52 236.53 m 87.57 237.51 l S 87.57 236.53 m 87.61 236.53 l S 87.61 236.53 m 87.66 236.53 l S 87.66 236.53 m 87.70 238.49 l S 87.70 236.53 m 87.75 238.49 l S 87.75 236.53 m 87.80 237.51 l S 87.80 236.53 m 87.84 237.51 l S 87.84 236.53 m 87.89 236.53 l S 87.89 236.53 m 87.93 236.53 l S 87.93 236.53 m 87.98 236.53 l S 87.98 236.53 m 88.03 236.53 l S 88.03 236.53 m 88.07 236.53 l S 88.07 236.53 m 88.12 236.53 l S 88.12 236.53 m 88.16 236.53 l S 88.16 236.53 m 88.21 236.53 l S 88.21 236.53 m 88.26 236.53 l S 88.26 236.53 m 88.30 236.53 l S 88.30 236.53 m 88.35 236.53 l S 88.35 236.53 m 88.39 237.51 l S 88.39 236.53 m 88.44 236.53 l S 88.44 236.53 m 88.49 237.51 l S 88.49 236.53 m 88.53 236.53 l S 88.53 236.53 m 88.58 236.53 l S 88.58 236.53 m 88.62 236.53 l S 88.62 236.53 m 88.67 237.51 l S 88.67 236.53 m 88.72 239.46 l S 88.72 236.53 m 88.76 238.49 l S 88.76 236.53 m 88.81 236.53 l S 88.81 236.53 m 88.85 237.51 l S 88.85 236.53 m 88.90 237.51 l S 88.90 236.53 m 88.95 236.53 l S 88.95 236.53 m 88.99 236.53 l S 88.99 236.53 m 89.04 236.53 l S 89.04 236.53 m 89.08 237.51 l S 89.08 236.53 m 89.13 237.51 l S 89.13 236.53 m 89.18 237.51 l S 89.18 236.53 m 89.22 237.51 l S 89.22 236.53 m 89.27 236.53 l S 89.27 236.53 m 89.31 236.53 l S 89.31 236.53 m 89.36 236.53 l S 89.36 236.53 m 89.41 237.51 l S 89.41 236.53 m 89.45 237.51 l S 89.45 236.53 m 89.50 238.49 l S 89.50 236.53 m 89.54 238.49 l S 89.54 236.53 m 89.59 236.53 l S 89.59 236.53 m 89.64 236.53 l S 89.64 236.53 m 89.68 236.53 l S 89.68 236.53 m 89.73 236.53 l S 89.73 236.53 m 89.77 237.51 l S 89.77 236.53 m 89.82 237.51 l S 89.82 236.53 m 89.87 236.53 l S 89.87 236.53 m 89.91 236.53 l S 89.91 236.53 m 89.96 236.53 l S 89.96 236.53 m 90.00 236.53 l S 90.00 236.53 m 90.05 236.53 l S 90.05 236.53 m 90.10 237.51 l S 90.10 236.53 m 90.14 236.53 l S 90.14 236.53 m 90.19 236.53 l S 90.19 236.53 m 90.23 236.53 l S 90.23 236.53 m 90.28 236.53 l S 90.28 236.53 m 90.33 236.53 l S 90.33 236.53 m 90.37 236.53 l S 90.37 236.53 m 90.42 238.49 l S 90.42 236.53 m 90.46 238.49 l S 90.46 236.53 m 90.51 236.53 l S 90.51 236.53 m 90.56 236.53 l S 90.56 236.53 m 90.60 236.53 l S 90.60 236.53 m 90.65 236.53 l S 90.65 236.53 m 90.69 236.53 l S 90.69 236.53 m 90.74 236.53 l S 90.74 236.53 m 90.79 237.51 l S 90.79 236.53 m 90.83 237.51 l S 90.83 236.53 m 90.88 236.53 l S 90.88 236.53 m 90.92 236.53 l S 90.92 236.53 m 90.97 236.53 l S 90.97 236.53 m 91.02 236.53 l S 91.02 236.53 m 91.06 236.53 l S 91.06 236.53 m 91.11 237.51 l S 91.11 236.53 m 91.15 237.51 l S 91.15 236.53 m 91.20 237.51 l S 91.20 236.53 m 91.25 236.53 l S 91.25 236.53 m 91.29 236.53 l S 91.29 236.53 m 91.34 236.53 l S 91.34 236.53 m 91.38 236.53 l S 91.38 236.53 m 91.43 236.53 l S 91.43 236.53 m 91.48 236.53 l S 91.48 236.53 m 91.52 238.49 l S 91.52 236.53 m 91.57 238.49 l S 91.57 236.53 m 91.61 237.51 l S 91.61 236.53 m 91.66 236.53 l S 91.66 236.53 m 91.71 236.53 l S 91.71 236.53 m 91.75 237.51 l S 91.75 237.51 m 91.80 239.46 l S 91.80 236.53 m 91.84 238.49 l S 91.84 236.53 m 91.89 238.49 l S 91.89 236.53 m 91.94 236.53 l S 91.94 236.53 m 91.98 236.53 l S 91.98 236.53 m 92.03 236.53 l S 92.03 236.53 m 92.07 236.53 l S 92.07 236.53 m 92.12 237.51 l S 92.12 236.53 m 92.17 237.51 l S 92.17 236.53 m 92.21 238.49 l S 92.21 237.51 m 92.26 243.37 l S 92.26 240.44 m 92.30 242.39 l S 92.30 238.49 m 92.35 241.41 l S 92.35 237.51 m 92.40 241.41 l S 92.40 238.49 m 92.44 258.01 l S 92.44 239.46 m 92.49 254.10 l S 92.49 237.51 m 92.53 240.44 l S 92.53 238.49 m 92.58 241.41 l S 92.58 236.53 m 92.63 240.44 l S 92.63 236.53 m 92.67 237.51 l S 92.67 236.53 m 92.72 236.53 l S 92.72 236.53 m 92.76 236.53 l S 92.76 236.53 m 92.81 238.49 l S 92.81 237.51 m 92.86 240.44 l S 92.86 238.49 m 92.90 241.41 l S 92.90 236.53 m 92.95 239.46 l S 92.95 236.53 m 92.99 238.49 l S 92.99 237.51 m 93.04 239.46 l S 93.04 237.51 m 93.09 239.46 l S 93.09 236.53 m 93.13 237.51 l S 93.13 236.53 m 93.18 238.49 l S 93.18 236.53 m 93.22 237.51 l S 93.22 236.53 m 93.27 239.46 l S 93.27 237.51 m 93.32 240.44 l S 93.32 236.53 m 93.36 238.49 l S 93.36 237.51 m 93.41 238.49 l S 93.41 237.51 m 93.45 239.46 l S 93.45 237.51 m 93.50 239.46 l S 93.50 236.53 m 93.55 237.51 l S 93.55 236.53 m 93.59 236.53 l S 93.59 236.53 m 93.64 236.53 l S 93.64 236.53 m 93.68 237.51 l S 93.68 236.53 m 93.73 237.51 l S 93.73 236.53 m 93.78 236.53 l S 93.78 236.53 m 93.82 236.53 l S 93.82 236.53 m 93.87 237.51 l S 93.87 236.53 m 93.91 240.44 l S 93.91 236.53 m 93.96 236.53 l S 93.96 236.53 m 94.01 237.51 l S 94.01 236.53 m 94.05 237.51 l S 94.05 237.51 m 94.10 240.44 l S 94.10 236.53 m 94.14 237.51 l S 94.14 236.53 m 94.19 236.53 l S 94.19 236.53 m 94.24 236.53 l S 94.24 236.53 m 94.28 236.53 l S 94.28 236.53 m 94.33 237.51 l S 94.33 236.53 m 94.37 237.51 l S 94.37 236.53 m 94.42 236.53 l S 94.42 236.53 m 94.47 236.53 l S 94.47 236.53 m 94.51 237.51 l S 94.51 236.53 m 94.56 236.53 l S 94.56 236.53 m 94.61 236.53 l S 94.61 236.53 m 94.65 242.39 l S 94.65 236.53 m 94.70 241.41 l S 94.70 236.53 m 94.74 237.51 l S 94.74 236.53 m 94.79 237.51 l S 94.79 236.53 m 94.84 237.51 l S 94.84 236.53 m 94.88 237.51 l S 94.88 236.53 m 94.93 237.51 l S 94.93 236.53 m 94.97 236.53 l S 94.97 236.53 m 95.02 236.53 l S 95.02 236.53 m 95.07 236.53 l S 95.07 236.53 m 95.11 236.53 l S 95.11 236.53 m 95.16 237.51 l S 95.16 236.53 m 95.20 237.51 l S 95.20 236.53 m 95.25 237.51 l S 95.25 236.53 m 95.30 237.51 l S 95.30 236.53 m 95.34 236.53 l S 95.34 236.53 m 95.39 236.53 l S 95.39 236.53 m 95.43 238.49 l S 95.43 236.53 m 95.48 237.51 l S 95.48 237.51 m 95.53 239.46 l S 95.53 236.53 m 95.57 237.51 l S 95.57 236.53 m 95.62 237.51 l S 95.62 236.53 m 95.66 237.51 l S 95.66 236.53 m 95.71 236.53 l S 95.71 236.53 m 95.76 239.46 l S 95.76 236.53 m 95.80 236.53 l S 95.80 236.53 m 95.85 237.51 l S 95.85 237.51 m 95.89 239.46 l S 95.89 236.53 m 95.94 238.49 l S 95.94 236.53 m 95.99 237.51 l S 95.99 236.53 m 96.03 239.46 l S 96.03 236.53 m 96.08 239.46 l S 96.08 236.53 m 96.12 236.53 l S 96.12 236.53 m 96.17 238.49 l S 96.17 236.53 m 96.22 238.49 l S 96.22 236.53 m 96.26 238.49 l S 96.26 236.53 m 96.31 238.49 l S 96.31 236.53 m 96.35 238.49 l S 96.35 236.53 m 96.40 239.46 l S 96.40 236.53 m 96.45 236.53 l S 96.45 236.53 m 96.49 236.53 l S 96.49 236.53 m 96.54 237.51 l S 96.54 236.53 m 96.58 251.18 l S 96.58 243.37 m 96.63 255.08 l S 96.63 242.39 m 96.68 247.27 l S 96.68 238.49 m 96.72 245.32 l S 96.72 239.46 m 96.77 242.39 l S 96.77 240.44 m 96.81 244.34 l S 96.81 239.46 m 96.86 244.34 l S 96.86 237.51 m 96.91 241.41 l S 96.91 236.53 m 96.95 237.51 l S 96.95 236.53 m 97.00 236.53 l S 97.00 236.53 m 97.04 236.53 l S 97.04 236.53 m 97.09 236.53 l S 97.09 236.53 m 97.14 236.53 l S 97.14 236.53 m 97.18 237.51 l S 97.18 236.53 m 97.23 237.51 l S 97.23 236.53 m 97.27 236.53 l S 97.27 236.53 m 97.32 237.51 l S 97.32 236.53 m 97.37 237.51 l S 97.37 236.53 m 97.41 236.53 l S 97.41 236.53 m 97.46 237.51 l S 97.46 236.53 m 97.50 237.51 l S 97.50 236.53 m 97.55 236.53 l S 97.55 236.53 m 97.60 237.51 l S 97.60 236.53 m 97.64 237.51 l S 97.64 236.53 m 97.69 238.49 l S 97.69 236.53 m 97.73 238.49 l S 97.73 236.53 m 97.78 238.49 l S 97.78 236.53 m 97.83 239.46 l S 97.83 236.53 m 97.87 239.46 l S 97.87 236.53 m 97.92 236.53 l S 97.92 236.53 m 97.96 236.53 l S 97.96 236.53 m 98.01 236.53 l S 98.01 236.53 m 98.06 236.53 l S 98.06 236.53 m 98.10 236.53 l S 98.10 236.53 m 98.15 238.49 l S 98.15 236.53 m 98.19 238.49 l S 98.19 236.53 m 98.24 236.53 l S 98.24 236.53 m 98.29 237.51 l S 98.29 236.53 m 98.33 237.51 l S 98.33 236.53 m 98.38 237.51 l S 98.38 236.53 m 98.42 236.53 l S 98.42 236.53 m 98.47 237.51 l S 98.47 236.53 m 98.52 237.51 l S 98.52 236.53 m 98.56 236.53 l S 98.56 236.53 m 98.61 237.51 l S 98.61 236.53 m 98.65 236.53 l S 98.65 236.53 m 98.70 236.53 l S 98.70 236.53 m 98.75 238.49 l S 98.75 236.53 m 98.79 239.46 l S 98.79 236.53 m 98.84 237.51 l S 98.84 236.53 m 98.88 239.46 l S 98.88 236.53 m 98.93 239.46 l S 98.93 236.53 m 98.98 236.53 l S 98.98 236.53 m 99.02 237.51 l S 99.02 236.53 m 99.07 237.51 l S 99.07 236.53 m 99.11 237.51 l S 99.11 236.53 m 99.16 237.51 l S 99.16 236.53 m 99.21 237.51 l S 99.21 236.53 m 99.25 236.53 l S 99.25 236.53 m 99.30 236.53 l S 99.30 236.53 m 99.34 236.53 l S 99.34 236.53 m 99.39 236.53 l S 99.39 236.53 m 99.44 237.51 l S 99.44 236.53 m 99.48 238.49 l S 99.48 236.53 m 99.53 239.46 l S 99.53 236.53 m 99.57 239.46 l S 99.57 236.53 m 99.62 237.51 l S 99.62 236.53 m 99.67 236.53 l S 99.67 236.53 m 99.71 237.51 l S 99.71 236.53 m 99.76 237.51 l S 99.76 236.53 m 99.80 237.51 l S 99.80 236.53 m 99.85 236.53 l S 99.85 236.53 m 99.90 236.53 l S 99.90 236.53 m 99.94 236.53 l S 99.94 236.53 m 99.99 236.53 l S 99.99 236.53 m 100.03 236.53 l S 100.03 236.53 m 100.08 236.53 l S 100.08 236.53 m 100.13 237.51 l S 100.13 236.53 m 100.17 237.51 l S 100.17 236.53 m 100.22 236.53 l S 100.22 236.53 m 100.26 236.53 l S 100.26 236.53 m 100.31 236.53 l S 100.31 236.53 m 100.36 236.53 l S 100.36 236.53 m 100.40 237.51 l S 100.40 236.53 m 100.45 237.51 l S 100.45 236.53 m 100.49 237.51 l S 100.49 236.53 m 100.54 238.49 l S 100.54 236.53 m 100.59 238.49 l S 100.59 236.53 m 100.63 237.51 l S 100.63 236.53 m 100.68 236.53 l S 100.68 236.53 m 100.72 236.53 l S 100.72 236.53 m 100.77 239.46 l S 100.77 236.53 m 100.82 239.46 l S 100.82 236.53 m 100.86 237.51 l S 100.86 236.53 m 100.91 240.44 l S 100.91 236.53 m 100.95 236.53 l S 100.95 236.53 m 101.00 237.51 l S 101.00 236.53 m 101.05 237.51 l S 101.05 236.53 m 101.09 236.53 l S 101.09 236.53 m 101.14 237.51 l S 101.14 236.53 m 101.18 238.49 l S 101.18 236.53 m 101.23 236.53 l S 101.23 236.53 m 101.28 236.53 l S 101.28 236.53 m 101.32 236.53 l S 101.32 236.53 m 101.37 236.53 l S 101.37 236.53 m 101.41 236.53 l S 101.41 236.53 m 101.46 237.51 l S 101.46 236.53 m 101.51 238.49 l S 101.51 237.51 m 101.55 239.46 l S 101.55 236.53 m 101.60 237.51 l S 101.60 236.53 m 101.64 237.51 l S 101.64 236.53 m 101.69 237.51 l S 101.69 236.53 m 101.74 237.51 l S 101.74 236.53 m 101.78 237.51 l S 101.78 236.53 m 101.83 237.51 l S 101.83 236.53 m 101.87 241.41 l S 101.87 239.46 m 101.92 244.34 l S 101.92 237.51 m 101.97 246.30 l S 101.97 236.53 m 102.01 239.46 l S 102.01 236.53 m 102.06 236.53 l S 102.06 236.53 m 102.10 241.41 l S 102.10 239.46 m 102.15 241.41 l S 102.15 239.46 m 102.20 248.25 l S 102.20 237.51 m 102.24 245.32 l S 102.24 240.44 m 102.29 251.18 l S 102.29 249.22 m 102.33 259.96 l S 102.33 244.34 m 102.38 256.06 l S 102.38 249.22 m 102.43 263.87 l S 102.43 241.41 m 102.47 249.22 l S 102.47 236.53 m 102.52 243.37 l S 102.52 236.53 m 102.57 237.51 l S 102.57 236.53 m 102.61 237.51 l S 102.61 236.53 m 102.66 241.41 l S 102.66 238.49 m 102.70 241.41 l S 102.70 236.53 m 102.75 239.46 l S 102.75 236.53 m 102.80 236.53 l S 102.80 236.53 m 102.84 236.53 l S 102.84 236.53 m 102.89 236.53 l S 102.89 236.53 m 102.93 236.53 l S 102.93 236.53 m 102.98 236.53 l S 102.98 236.53 m 103.03 236.53 l S 103.03 236.53 m 103.07 236.53 l S 103.07 236.53 m 103.12 236.53 l S 103.12 236.53 m 103.16 236.53 l S 103.16 236.53 m 103.21 236.53 l S 103.21 236.53 m 103.26 236.53 l S 103.26 236.53 m 103.30 236.53 l S 103.30 236.53 m 103.35 236.53 l S 103.35 236.53 m 103.39 236.53 l S 103.39 236.53 m 103.44 236.53 l S 103.44 236.53 m 103.49 236.53 l S 103.49 236.53 m 103.53 236.53 l S 103.53 236.53 m 103.58 236.53 l S 103.58 236.53 m 103.62 236.53 l S 103.62 236.53 m 103.67 236.53 l S 103.67 236.53 m 103.72 236.53 l S 103.72 236.53 m 103.76 236.53 l S 103.76 236.53 m 103.81 236.53 l S 103.81 236.53 m 103.85 236.53 l S 103.85 236.53 m 103.90 236.53 l S 103.90 236.53 m 103.95 236.53 l S 103.95 236.53 m 103.99 237.51 l S 103.99 236.53 m 104.04 237.51 l S 104.04 236.53 m 104.08 236.53 l S 104.08 236.53 m 104.13 236.53 l S 104.13 236.53 m 104.18 236.53 l S 104.18 236.53 m 104.22 236.53 l S 104.22 236.53 m 104.27 236.53 l S 104.27 236.53 m 104.31 236.53 l S 104.31 236.53 m 104.36 236.53 l S 104.36 236.53 m 104.41 236.53 l S 104.41 236.53 m 104.45 236.53 l S 104.45 236.53 m 104.50 236.53 l S 104.50 236.53 m 104.54 236.53 l S 104.54 236.53 m 104.59 237.51 l S 104.59 236.53 m 104.64 236.53 l S 104.64 236.53 m 104.68 236.53 l S 104.68 236.53 m 104.73 236.53 l S 104.73 236.53 m 104.77 237.51 l S 104.77 236.53 m 104.82 237.51 l S 104.82 236.53 m 104.87 236.53 l S 104.87 236.53 m 104.91 237.51 l S 104.91 236.53 m 104.96 237.51 l S 104.96 236.53 m 105.00 236.53 l S 105.00 236.53 m 105.05 236.53 l S 105.05 236.53 m 105.10 236.53 l S 105.10 236.53 m 105.14 239.46 l S 105.14 236.53 m 105.19 239.46 l S 105.19 236.53 m 105.23 236.53 l S 105.23 236.53 m 105.28 236.53 l S 105.28 236.53 m 105.33 236.53 l S 105.33 236.53 m 105.37 237.51 l S 105.37 236.53 m 105.42 237.51 l S 105.42 236.53 m 105.46 236.53 l S 105.46 236.53 m 105.51 236.53 l S 105.51 236.53 m 105.56 236.53 l S 105.56 236.53 m 105.60 236.53 l S 105.60 236.53 m 105.65 236.53 l S 105.65 236.53 m 105.69 236.53 l S 105.69 236.53 m 105.74 236.53 l S 105.74 236.53 m 105.79 236.53 l S 105.79 236.53 m 105.83 236.53 l S 105.83 236.53 m 105.88 237.51 l S 105.88 236.53 m 105.92 237.51 l S 105.92 236.53 m 105.97 238.49 l S 105.97 236.53 m 106.02 238.49 l S 106.02 236.53 m 106.06 236.53 l S 106.06 236.53 m 106.11 236.53 l S 106.11 236.53 m 106.15 236.53 l S 106.15 236.53 m 106.20 236.53 l S 106.20 236.53 m 106.25 236.53 l S 106.25 236.53 m 106.29 238.49 l S 106.29 236.53 m 106.34 238.49 l S 106.34 236.53 m 106.38 240.44 l S 106.38 237.51 m 106.43 240.44 l S 106.43 236.53 m 106.48 238.49 l S 106.48 236.53 m 106.52 245.32 l S 106.52 236.53 m 106.57 247.27 l S 106.57 236.53 m 106.61 236.53 l S 106.61 236.53 m 106.66 236.53 l S 106.66 236.53 m 106.71 236.53 l S 106.71 236.53 m 106.75 238.49 l S 106.75 236.53 m 106.80 236.53 l S 106.80 236.53 m 106.84 236.53 l S 106.84 236.53 m 106.89 236.53 l S 106.89 236.53 m 106.94 236.53 l S 106.94 236.53 m 106.98 236.53 l S 106.98 236.53 m 107.03 236.53 l S 107.03 236.53 m 107.07 236.53 l S 107.07 236.53 m 107.12 236.53 l S 107.12 236.53 m 107.17 236.53 l S 107.17 236.53 m 107.21 236.53 l S 107.21 236.53 m 107.26 236.53 l S 107.26 236.53 m 107.30 236.53 l S 107.30 236.53 m 107.35 236.53 l S 107.35 236.53 m 107.40 236.53 l S 107.40 236.53 m 107.44 236.53 l S 107.44 236.53 m 107.49 236.53 l S 107.49 236.53 m 107.53 236.53 l S 107.53 236.53 m 107.58 236.53 l S 107.58 236.53 m 107.63 236.53 l S 107.63 236.53 m 107.67 236.53 l S 107.67 236.53 m 107.72 236.53 l S 107.72 236.53 m 107.76 236.53 l S 107.76 236.53 m 107.81 236.53 l S 107.81 236.53 m 107.86 236.53 l S 107.86 236.53 m 107.90 236.53 l S 107.90 236.53 m 107.95 236.53 l S 107.95 236.53 m 107.99 236.53 l S 107.99 236.53 m 108.04 236.53 l S 108.04 236.53 m 108.09 236.53 l S 108.09 236.53 m 108.13 236.53 l S 108.13 236.53 m 108.18 236.53 l S 108.18 236.53 m 108.22 236.53 l S 108.22 236.53 m 108.27 236.53 l S 108.27 236.53 m 108.32 238.49 l S 108.32 236.53 m 108.36 238.49 l S 108.36 236.53 m 108.41 237.51 l S 108.41 236.53 m 108.45 236.53 l S 108.45 236.53 m 108.50 236.53 l S 108.50 236.53 m 108.55 236.53 l S 108.55 236.53 m 108.59 239.46 l S 108.59 236.53 m 108.64 237.51 l S 108.64 236.53 m 108.68 236.53 l S 108.68 236.53 m 108.73 236.53 l S 108.73 236.53 m 108.78 236.53 l S 108.78 236.53 m 108.82 236.53 l S 108.82 236.53 m 108.87 236.53 l S 108.87 236.53 m 108.91 236.53 l S 108.91 236.53 m 108.96 236.53 l S 108.96 236.53 m 109.01 236.53 l S 109.01 236.53 m 109.05 236.53 l S 109.05 236.53 m 109.10 237.51 l S 109.10 236.53 m 109.14 239.46 l S 109.14 236.53 m 109.19 240.44 l S 109.19 236.53 m 109.24 236.53 l S 109.24 236.53 m 109.28 236.53 l S 109.28 236.53 m 109.33 236.53 l S 109.33 236.53 m 109.37 236.53 l S 109.37 236.53 m 109.42 236.53 l S 109.42 236.53 m 109.47 236.53 l S 109.47 236.53 m 109.51 236.53 l S 109.51 236.53 m 109.56 236.53 l S 109.56 236.53 m 109.60 236.53 l S 109.60 236.53 m 109.65 236.53 l S 109.65 236.53 m 109.70 236.53 l S 109.70 236.53 m 109.74 237.51 l S 109.74 236.53 m 109.79 237.51 l S 109.79 236.53 m 109.83 236.53 l S 109.83 236.53 m 109.88 236.53 l S 109.88 236.53 m 109.93 236.53 l S 109.93 236.53 m 109.97 236.53 l S 109.97 236.53 m 110.02 237.51 l S 110.02 236.53 m 110.06 237.51 l S 110.06 236.53 m 110.11 236.53 l S 110.11 236.53 m 110.16 236.53 l S 110.16 236.53 m 110.20 236.53 l S 110.20 236.53 m 110.25 238.49 l S 110.25 236.53 m 110.29 238.49 l S 110.29 236.53 m 110.34 237.51 l S 110.34 236.53 m 110.39 238.49 l S 110.39 236.53 m 110.43 236.53 l S 110.43 236.53 m 110.48 236.53 l S 110.48 236.53 m 110.53 236.53 l S 110.53 236.53 m 110.57 236.53 l S 110.57 236.53 m 110.62 236.53 l S 110.62 236.53 m 110.66 236.53 l S 110.66 236.53 m 110.71 236.53 l S 110.71 236.53 m 110.76 236.53 l S 110.76 236.53 m 110.80 236.53 l S 110.80 236.53 m 110.85 236.53 l S 110.85 236.53 m 110.89 236.53 l S 110.89 236.53 m 110.94 236.53 l S 110.94 236.53 m 110.99 236.53 l S 110.99 236.53 m 111.03 236.53 l S 111.03 236.53 m 111.08 236.53 l S 111.08 236.53 m 111.12 236.53 l S 111.12 236.53 m 111.17 236.53 l S 111.17 236.53 m 111.22 236.53 l S 111.22 236.53 m 111.26 236.53 l S 111.26 236.53 m 111.31 236.53 l S 111.31 236.53 m 111.35 236.53 l S 111.35 236.53 m 111.40 236.53 l S 111.40 236.53 m 111.45 236.53 l S 111.45 236.53 m 111.49 236.53 l S 111.49 236.53 m 111.54 236.53 l S 111.54 236.53 m 111.58 236.53 l S 111.58 236.53 m 111.63 236.53 l S 111.63 236.53 m 111.68 236.53 l S 111.68 236.53 m 111.72 238.49 l S 111.72 236.53 m 111.77 238.49 l S 111.77 236.53 m 111.81 236.53 l S 111.81 236.53 m 111.86 237.51 l S 111.86 236.53 m 111.91 237.51 l S 111.91 236.53 m 111.95 236.53 l S 111.95 236.53 m 112.00 236.53 l S 112.00 236.53 m 112.04 236.53 l S 112.04 236.53 m 112.09 236.53 l S 112.09 236.53 m 112.14 237.51 l S 112.14 236.53 m 112.18 236.53 l S 112.18 236.53 m 112.23 236.53 l S 112.23 236.53 m 112.27 236.53 l S 112.27 236.53 m 112.32 236.53 l S 112.32 236.53 m 112.37 236.53 l S 112.37 236.53 m 112.41 236.53 l S 112.41 236.53 m 112.46 236.53 l S 112.46 236.53 m 112.50 236.53 l S 112.50 236.53 m 112.55 236.53 l S 112.55 236.53 m 112.60 236.53 l S 112.60 236.53 m 112.64 236.53 l S 112.64 236.53 m 112.69 236.53 l S 112.69 236.53 m 112.73 236.53 l S 112.73 236.53 m 112.78 236.53 l S 112.78 236.53 m 112.83 236.53 l S 112.83 236.53 m 112.87 236.53 l S 112.87 236.53 m 112.92 236.53 l S 112.92 236.53 m 112.96 236.53 l S 112.96 236.53 m 113.01 236.53 l S 113.01 236.53 m 113.06 236.53 l S 113.06 236.53 m 113.10 236.53 l S 113.10 236.53 m 113.15 236.53 l S 113.15 236.53 m 113.19 238.49 l S 113.19 236.53 m 113.24 238.49 l S 113.24 236.53 m 113.29 236.53 l S 113.29 236.53 m 113.33 236.53 l S 113.33 236.53 m 113.38 236.53 l S 113.38 236.53 m 113.42 236.53 l S 113.42 236.53 m 113.47 236.53 l S 113.47 236.53 m 113.52 236.53 l S 113.52 236.53 m 113.56 236.53 l S 113.56 236.53 m 113.61 236.53 l S 113.61 236.53 m 113.65 236.53 l S 113.65 236.53 m 113.70 236.53 l S 113.70 236.53 m 113.75 236.53 l S 113.75 236.53 m 113.79 236.53 l S 113.79 236.53 m 113.84 236.53 l S 113.84 236.53 m 113.88 236.53 l S 113.88 236.53 m 113.93 236.53 l S 113.93 236.53 m 113.98 236.53 l S 113.98 236.53 m 114.02 236.53 l S 114.02 236.53 m 114.07 237.51 l S 114.07 236.53 m 114.11 237.51 l S 114.11 236.53 m 114.16 236.53 l S 114.16 236.53 m 114.21 237.51 l S 114.21 236.53 m 114.25 237.51 l S 114.25 236.53 m 114.30 237.51 l S 114.30 236.53 m 114.34 236.53 l S 114.34 236.53 m 114.39 236.53 l S 114.39 236.53 m 114.44 236.53 l S 114.44 236.53 m 114.48 236.53 l S 114.48 236.53 m 114.53 236.53 l S 114.53 236.53 m 114.57 236.53 l S 114.57 236.53 m 114.62 236.53 l S 114.62 236.53 m 114.67 237.51 l S 114.67 236.53 m 114.71 237.51 l S 114.71 236.53 m 114.76 236.53 l S 114.76 236.53 m 114.80 236.53 l S 114.80 236.53 m 114.85 237.51 l S 114.85 236.53 m 114.90 237.51 l S 114.90 236.53 m 114.94 236.53 l S 114.94 236.53 m 114.99 236.53 l S 114.99 236.53 m 115.03 236.53 l S 115.03 236.53 m 115.08 236.53 l S 115.08 236.53 m 115.13 236.53 l S 115.13 236.53 m 115.17 236.53 l S 115.17 236.53 m 115.22 236.53 l S 115.22 236.53 m 115.26 236.53 l S 115.26 236.53 m 115.31 236.53 l S 115.31 236.53 m 115.36 236.53 l S 115.36 236.53 m 115.40 236.53 l S 115.40 236.53 m 115.45 236.53 l S 115.45 236.53 m 115.49 236.53 l S 115.49 236.53 m 115.54 237.51 l S 115.54 236.53 m 115.59 236.53 l S 115.59 236.53 m 115.63 236.53 l S 115.63 236.53 m 115.68 236.53 l S 115.68 236.53 m 115.72 236.53 l S 115.72 236.53 m 115.77 236.53 l S 115.77 236.53 m 115.82 236.53 l S 115.82 236.53 m 115.86 236.53 l S 115.86 236.53 m 115.91 236.53 l S 115.91 236.53 m 115.95 236.53 l S 115.95 236.53 m 116.00 236.53 l S 116.00 236.53 m 116.05 236.53 l S 116.05 236.53 m 116.09 236.53 l S 116.09 236.53 m 116.14 236.53 l S 116.14 236.53 m 116.18 236.53 l S 116.18 236.53 m 116.23 236.53 l S 116.23 236.53 m 116.28 236.53 l S 116.28 236.53 m 116.32 236.53 l S 116.32 236.53 m 116.37 236.53 l S 116.37 236.53 m 116.41 236.53 l S 116.41 236.53 m 116.46 236.53 l S 116.46 236.53 m 116.51 236.53 l S 116.51 236.53 m 116.55 236.53 l S 116.55 236.53 m 116.60 236.53 l S 116.60 236.53 m 116.64 236.53 l S 116.64 236.53 m 116.69 236.53 l S 116.69 236.53 m 116.74 236.53 l S 116.74 236.53 m 116.78 236.53 l S 116.78 236.53 m 116.83 237.51 l S 116.83 236.53 m 116.87 237.51 l S 116.87 236.53 m 116.92 236.53 l S 116.92 236.53 m 116.97 236.53 l S 116.97 236.53 m 117.01 236.53 l S 117.01 236.53 m 117.06 236.53 l S 117.06 236.53 m 117.10 236.53 l S 117.10 236.53 m 117.15 236.53 l S 117.15 236.53 m 117.20 236.53 l S 117.20 236.53 m 117.24 236.53 l S 117.24 236.53 m 117.29 236.53 l S 117.29 236.53 m 117.33 236.53 l S 117.33 236.53 m 117.38 236.53 l S 117.38 236.53 m 117.43 236.53 l S 117.43 236.53 m 117.47 236.53 l S 117.47 236.53 m 117.52 236.53 l S 117.52 236.53 m 117.56 237.51 l S 117.56 236.53 m 117.61 237.51 l S 117.61 236.53 m 117.66 236.53 l S 117.66 236.53 m 117.70 236.53 l S 117.70 236.53 m 117.75 237.51 l S 117.75 236.53 m 117.79 237.51 l S 117.79 236.53 m 117.84 236.53 l S 117.84 236.53 m 117.89 236.53 l S 117.89 236.53 m 117.93 236.53 l S 117.93 236.53 m 117.98 236.53 l S 117.98 236.53 m 118.02 236.53 l S 118.02 236.53 m 118.07 236.53 l S 118.07 236.53 m 118.12 236.53 l S 118.12 236.53 m 118.16 236.53 l S 118.16 236.53 m 118.21 237.51 l S 118.21 236.53 m 118.25 237.51 l S 118.25 236.53 m 118.30 236.53 l S 118.30 236.53 m 118.35 236.53 l S 118.35 236.53 m 118.39 236.53 l S 118.39 236.53 m 118.44 236.53 l S 118.44 236.53 m 118.49 236.53 l S 118.49 236.53 m 118.53 236.53 l S 118.53 236.53 m 118.58 237.51 l S 118.58 236.53 m 118.62 237.51 l S 118.62 236.53 m 118.67 236.53 l S 118.67 236.53 m 118.72 236.53 l S 118.72 236.53 m 118.76 236.53 l S 118.76 236.53 m 118.81 236.53 l S 118.81 236.53 m 118.85 236.53 l S 118.85 236.53 m 118.90 236.53 l S 118.90 236.53 m 118.95 236.53 l S 118.95 236.53 m 118.99 236.53 l S 118.99 236.53 m 119.04 236.53 l S 119.04 236.53 m 119.08 236.53 l S 119.08 236.53 m 119.13 237.51 l S 119.13 236.53 m 119.18 237.51 l S 119.18 236.53 m 119.22 236.53 l S 119.22 236.53 m 119.27 236.53 l S 119.27 236.53 m 119.31 236.53 l S 119.31 236.53 m 119.36 237.51 l S 119.36 236.53 m 119.41 237.51 l S 119.41 236.53 m 119.45 236.53 l S 119.45 236.53 m 119.50 236.53 l S 119.50 236.53 m 119.54 236.53 l S 119.54 236.53 m 119.59 236.53 l S 119.59 236.53 m 119.64 236.53 l S 119.64 236.53 m 119.68 236.53 l S 119.68 236.53 m 119.73 236.53 l S 119.73 236.53 m 119.77 236.53 l S 119.77 236.53 m 119.82 236.53 l S 119.82 236.53 m 119.87 236.53 l S 119.87 236.53 m 119.91 236.53 l S 119.91 236.53 m 119.96 236.53 l S 119.96 236.53 m 120.00 236.53 l S 120.00 236.53 m 120.05 236.53 l S 120.05 236.53 m 120.10 236.53 l S 120.10 236.53 m 120.14 236.53 l S 120.14 236.53 m 120.19 236.53 l S 120.19 236.53 m 120.23 236.53 l S 120.23 236.53 m 120.28 236.53 l S 120.28 236.53 m 120.33 236.53 l S 120.33 236.53 m 120.37 236.53 l S 120.37 236.53 m 120.42 236.53 l S 120.42 236.53 m 120.46 236.53 l S 120.46 236.53 m 120.51 236.53 l S 120.51 236.53 m 120.56 236.53 l S 120.56 236.53 m 120.60 236.53 l S 120.60 236.53 m 120.65 236.53 l S 120.65 236.53 m 120.69 236.53 l S 120.69 236.53 m 120.74 236.53 l S 120.74 236.53 m 120.79 236.53 l S 120.79 236.53 m 120.83 236.53 l S 120.83 236.53 m 120.88 236.53 l S 120.88 236.53 m 120.92 236.53 l S 120.92 236.53 m 120.97 236.53 l S 120.97 236.53 m 121.02 236.53 l S 121.02 236.53 m 121.06 236.53 l S 121.06 236.53 m 121.11 236.53 l S 121.11 236.53 m 121.15 236.53 l S 121.15 236.53 m 121.20 236.53 l S 121.20 236.53 m 121.25 236.53 l S 121.25 236.53 m 121.29 236.53 l S 121.29 236.53 m 121.34 236.53 l S 121.34 236.53 m 121.38 238.49 l S 121.38 236.53 m 121.43 238.49 l S 121.43 236.53 m 121.48 236.53 l S 121.48 236.53 m 121.52 236.53 l S 121.52 236.53 m 121.57 236.53 l S 121.57 236.53 m 121.61 236.53 l S 121.61 236.53 m 121.66 236.53 l S 121.66 236.53 m 121.71 236.53 l S 121.71 236.53 m 121.75 236.53 l S 121.75 236.53 m 121.80 236.53 l S 121.80 236.53 m 121.84 236.53 l S 121.84 236.53 m 121.89 238.49 l S 121.89 236.53 m 121.94 237.51 l S 121.94 236.53 m 121.98 237.51 l S 121.98 236.53 m 122.03 236.53 l S 122.03 236.53 m 122.07 236.53 l S 122.07 236.53 m 122.12 236.53 l S 122.12 236.53 m 122.17 236.53 l S 122.17 236.53 m 122.21 236.53 l S 122.21 236.53 m 122.26 236.53 l S 122.26 236.53 m 122.30 236.53 l S 122.30 236.53 m 122.35 236.53 l S 122.35 236.53 m 122.40 236.53 l S 122.40 236.53 m 122.44 237.51 l S 122.44 236.53 m 122.49 237.51 l S 122.49 236.53 m 122.53 237.51 l S 122.53 236.53 m 122.58 237.51 l S 122.58 236.53 m 122.63 236.53 l S 122.63 236.53 m 122.67 237.51 l S 122.67 236.53 m 122.72 236.53 l S 122.72 236.53 m 122.76 236.53 l S 122.76 236.53 m 122.81 236.53 l S 122.81 236.53 m 122.86 236.53 l S 122.86 236.53 m 122.90 236.53 l S 122.90 236.53 m 122.95 237.51 l S 122.95 236.53 m 122.99 236.53 l S 122.99 236.53 m 123.04 236.53 l S 123.04 236.53 m 123.09 236.53 l S 123.09 236.53 m 123.13 236.53 l S 123.13 236.53 m 123.18 236.53 l S 123.18 236.53 m 123.22 236.53 l S 123.22 236.53 m 123.27 236.53 l S 123.27 236.53 m 123.32 236.53 l S 123.32 236.53 m 123.36 236.53 l S 123.36 236.53 m 123.41 236.53 l S 123.41 236.53 m 123.45 236.53 l S 123.45 236.53 m 123.50 236.53 l S 123.50 236.53 m 123.55 238.49 l S 123.55 236.53 m 123.59 237.51 l S 123.59 236.53 m 123.64 236.53 l S 123.64 236.53 m 123.68 236.53 l S 123.68 236.53 m 123.73 236.53 l S 123.73 236.53 m 123.78 236.53 l S 123.78 236.53 m 123.82 238.49 l S 123.82 236.53 m 123.87 238.49 l S 123.87 236.53 m 123.91 236.53 l S 123.91 236.53 m 123.96 236.53 l S 123.96 236.53 m 124.01 236.53 l S 124.01 236.53 m 124.05 236.53 l S 124.05 236.53 m 124.10 236.53 l S 124.10 236.53 m 124.14 237.51 l S 124.14 236.53 m 124.19 238.49 l S 124.19 236.53 m 124.24 236.53 l S 124.24 236.53 m 124.28 236.53 l S 124.28 236.53 m 124.33 236.53 l S 124.33 236.53 m 124.37 236.53 l S 124.37 236.53 m 124.42 236.53 l S 124.42 236.53 m 124.47 236.53 l S 124.47 236.53 m 124.51 236.53 l S 124.51 236.53 m 124.56 236.53 l S 124.56 236.53 m 124.60 236.53 l S 124.60 236.53 m 124.65 236.53 l S 124.65 236.53 m 124.70 236.53 l S 124.70 236.53 m 124.74 236.53 l S 124.74 236.53 m 124.79 236.53 l S 124.79 236.53 m 124.83 237.51 l S 124.83 236.53 m 124.88 236.53 l S 124.88 236.53 m 124.93 237.51 l S 124.93 236.53 m 124.97 236.53 l S 124.97 236.53 m 125.02 236.53 l S 125.02 236.53 m 125.06 236.53 l S 125.06 236.53 m 125.11 236.53 l S 125.11 236.53 m 125.16 236.53 l S 125.16 236.53 m 125.20 236.53 l S 125.20 236.53 m 125.25 236.53 l S 125.25 236.53 m 125.29 238.49 l S 125.29 236.53 m 125.34 240.44 l S 125.34 236.53 m 125.39 236.53 l S 125.39 236.53 m 125.43 236.53 l S 125.43 236.53 m 125.48 236.53 l S 125.48 236.53 m 125.52 236.53 l S 125.52 236.53 m 125.57 236.53 l S 125.57 236.53 m 125.62 236.53 l S 125.62 236.53 m 125.66 236.53 l S 125.66 236.53 m 125.71 237.51 l S 125.71 236.53 m 125.75 237.51 l S 125.75 236.53 m 125.80 237.51 l S 125.80 236.53 m 125.85 237.51 l S 125.85 236.53 m 125.89 236.53 l S 125.89 236.53 m 125.94 236.53 l S 125.94 236.53 m 125.98 236.53 l S 125.98 236.53 m 126.03 236.53 l S 126.03 236.53 m 126.08 236.53 l S 126.08 236.53 m 126.12 236.53 l S 126.12 236.53 m 126.17 236.53 l S 126.17 236.53 m 126.21 236.53 l S 126.21 236.53 m 126.26 236.53 l S 126.26 236.53 m 126.31 236.53 l S 126.31 236.53 m 126.35 236.53 l S 126.35 236.53 m 126.40 236.53 l S 126.40 236.53 m 126.45 236.53 l S 126.45 236.53 m 126.49 236.53 l S 126.49 236.53 m 126.54 236.53 l S 126.54 236.53 m 126.58 236.53 l S 126.58 236.53 m 126.63 236.53 l S 126.63 236.53 m 126.68 236.53 l S 126.68 236.53 m 126.72 236.53 l S 126.72 236.53 m 126.77 236.53 l S 126.77 236.53 m 126.81 236.53 l S 126.81 236.53 m 126.86 236.53 l S 126.86 236.53 m 126.91 236.53 l S 126.91 236.53 m 126.95 236.53 l S 126.95 236.53 m 127.00 236.53 l S 127.00 236.53 m 127.04 236.53 l S 127.04 236.53 m 127.09 236.53 l S 127.09 236.53 m 127.14 236.53 l S 127.14 236.53 m 127.18 236.53 l S 127.18 236.53 m 127.23 236.53 l S 127.23 236.53 m 127.27 236.53 l S 127.27 236.53 m 127.32 236.53 l S 127.32 236.53 m 127.37 236.53 l S 127.37 236.53 m 127.41 236.53 l S 127.41 236.53 m 127.46 236.53 l S 127.46 236.53 m 127.50 236.53 l S 127.50 236.53 m 127.55 236.53 l S 127.55 236.53 m 127.60 236.53 l S 127.60 236.53 m 127.64 236.53 l S 127.64 236.53 m 127.69 237.51 l S 127.69 236.53 m 127.73 236.53 l S 127.73 236.53 m 127.78 236.53 l S 127.78 236.53 m 127.83 236.53 l S 127.83 236.53 m 127.87 236.53 l S 127.87 236.53 m 127.92 236.53 l S 127.92 236.53 m 127.96 236.53 l S 127.96 236.53 m 128.01 237.51 l S 128.01 236.53 m 128.06 237.51 l S 128.06 236.53 m 128.10 237.51 l S 128.10 236.53 m 128.15 236.53 l S 128.15 236.53 m 128.19 236.53 l S 128.19 236.53 m 128.24 236.53 l S 128.24 236.53 m 128.29 236.53 l S 128.29 236.53 m 128.33 236.53 l S 128.33 236.53 m 128.38 236.53 l S 128.38 236.53 m 128.42 236.53 l S 128.42 236.53 m 128.47 236.53 l S 128.47 236.53 m 128.52 236.53 l S 128.52 236.53 m 128.56 238.49 l S 128.56 236.53 m 128.61 238.49 l S 128.61 237.51 m 128.65 238.49 l S 128.65 236.53 m 128.70 238.49 l S 128.70 236.53 m 128.75 237.51 l S 128.75 236.53 m 128.79 237.51 l S 128.79 236.53 m 128.84 237.51 l S 128.84 236.53 m 128.88 236.53 l S 128.88 236.53 m 128.93 236.53 l S 128.93 236.53 m 128.98 237.51 l S 128.98 236.53 m 129.02 237.51 l S 129.02 236.53 m 129.07 236.53 l S 129.07 236.53 m 129.11 236.53 l S 129.11 236.53 m 129.16 236.53 l S 129.16 236.53 m 129.21 236.53 l S 129.21 236.53 m 129.25 237.51 l S 129.25 236.53 m 129.30 237.51 l S 129.30 236.53 m 129.34 236.53 l S 129.34 236.53 m 129.39 236.53 l S 129.39 236.53 m 129.44 236.53 l S 129.44 236.53 m 129.48 236.53 l S 129.48 236.53 m 129.53 236.53 l S 129.53 236.53 m 129.57 236.53 l S 129.57 236.53 m 129.62 236.53 l S 129.62 236.53 m 129.67 236.53 l S 129.67 236.53 m 129.71 236.53 l S 129.71 236.53 m 129.76 236.53 l S 129.76 236.53 m 129.80 236.53 l S 129.80 236.53 m 129.85 236.53 l S 129.85 236.53 m 129.90 236.53 l S 129.90 236.53 m 129.94 236.53 l S 129.94 236.53 m 129.99 236.53 l S 129.99 236.53 m 130.03 236.53 l S 130.03 236.53 m 130.08 236.53 l S 130.08 236.53 m 130.13 236.53 l S 130.13 236.53 m 130.17 236.53 l S 130.17 236.53 m 130.22 236.53 l S 130.22 236.53 m 130.26 236.53 l S 130.26 236.53 m 130.31 236.53 l S 130.31 236.53 m 130.36 236.53 l S 130.36 236.53 m 130.40 236.53 l S 130.40 236.53 m 130.45 236.53 l S 130.45 236.53 m 130.49 237.51 l S 130.49 236.53 m 130.54 237.51 l S 130.54 236.53 m 130.59 236.53 l S 130.59 236.53 m 130.63 237.51 l S 130.63 236.53 m 130.68 236.53 l S 130.68 236.53 m 130.72 236.53 l S 130.72 236.53 m 130.77 236.53 l S 130.77 236.53 m 130.82 236.53 l S 130.82 236.53 m 130.86 236.53 l S 130.86 236.53 m 130.91 236.53 l S 130.91 236.53 m 130.95 236.53 l S 130.95 236.53 m 131.00 236.53 l S 131.00 236.53 m 131.05 236.53 l S 131.05 236.53 m 131.09 236.53 l S 131.09 236.53 m 131.14 237.51 l S 131.14 236.53 m 131.18 236.53 l S 131.18 236.53 m 131.23 236.53 l S 131.23 236.53 m 131.28 236.53 l S 131.28 236.53 m 131.32 236.53 l S 131.32 236.53 m 131.37 236.53 l S 131.37 236.53 m 131.41 236.53 l S 131.41 236.53 m 131.46 236.53 l S 131.46 236.53 m 131.51 236.53 l S 131.51 236.53 m 131.55 236.53 l S 131.55 236.53 m 131.60 236.53 l S 131.60 236.53 m 131.64 236.53 l S 131.64 236.53 m 131.69 237.51 l S 131.69 236.53 m 131.74 237.51 l S 131.74 236.53 m 131.78 236.53 l S 131.78 236.53 m 131.83 239.46 l S 131.83 236.53 m 131.87 239.46 l S 131.87 236.53 m 131.92 236.53 l S 131.92 236.53 m 131.97 236.53 l S 131.97 236.53 m 132.01 236.53 l S 132.01 236.53 m 132.06 236.53 l S 132.06 236.53 m 132.10 236.53 l S 132.10 236.53 m 132.15 236.53 l S 132.15 236.53 m 132.20 236.53 l S 132.20 236.53 m 132.24 236.53 l S 132.24 236.53 m 132.29 236.53 l S 132.29 236.53 m 132.33 239.46 l S 132.33 236.53 m 132.38 236.53 l S 132.38 236.53 m 132.43 237.51 l S 132.43 236.53 m 132.47 237.51 l S 132.47 236.53 m 132.52 237.51 l S 132.52 236.53 m 132.56 236.53 l S 132.56 236.53 m 132.61 236.53 l S 132.61 236.53 m 132.66 236.53 l S 132.66 236.53 m 132.70 237.51 l S 132.70 236.53 m 132.75 237.51 l S 132.75 236.53 m 132.79 236.53 l S 132.79 236.53 m 132.84 236.53 l S 132.84 236.53 m 132.89 236.53 l S 132.89 236.53 m 132.93 236.53 l S 132.93 236.53 m 132.98 236.53 l S 132.98 236.53 m 133.02 236.53 l S 133.02 236.53 m 133.07 236.53 l S 133.07 236.53 m 133.12 236.53 l S 133.12 236.53 m 133.16 236.53 l S 133.16 236.53 m 133.21 236.53 l S 133.21 236.53 m 133.25 237.51 l S 133.25 236.53 m 133.30 237.51 l S 133.30 236.53 m 133.35 237.51 l S 133.35 236.53 m 133.39 236.53 l S 133.39 236.53 m 133.44 236.53 l S 133.44 236.53 m 133.48 236.53 l S 133.48 236.53 m 133.53 236.53 l S 133.53 236.53 m 133.58 236.53 l S 133.58 236.53 m 133.62 237.51 l S 133.62 236.53 m 133.67 237.51 l S 133.67 236.53 m 133.71 237.51 l S 133.71 236.53 m 133.76 237.51 l S 133.76 236.53 m 133.81 236.53 l S 133.81 236.53 m 133.85 236.53 l S 133.85 236.53 m 133.90 236.53 l S 133.90 236.53 m 133.94 237.51 l S 133.94 236.53 m 133.99 236.53 l S 133.99 236.53 m 134.04 236.53 l S 134.04 236.53 m 134.08 236.53 l S 134.08 236.53 m 134.13 236.53 l S 134.13 236.53 m 134.17 236.53 l S 134.17 236.53 m 134.22 236.53 l S 134.22 236.53 m 134.27 237.51 l S 134.27 236.53 m 134.31 237.51 l S 134.31 236.53 m 134.36 236.53 l S 134.36 236.53 m 134.41 237.51 l S 134.41 236.53 m 134.45 237.51 l S 134.45 236.53 m 134.50 236.53 l S 134.50 236.53 m 134.54 236.53 l S 134.54 236.53 m 134.59 236.53 l S 134.59 236.53 m 134.64 236.53 l S 134.64 236.53 m 134.68 236.53 l S 134.68 236.53 m 134.73 236.53 l S 134.73 236.53 m 134.77 236.53 l S 134.77 236.53 m 134.82 236.53 l S 134.82 236.53 m 134.87 236.53 l S 134.87 236.53 m 134.91 236.53 l S 134.91 236.53 m 134.96 236.53 l S 134.96 236.53 m 135.00 236.53 l S 135.00 236.53 m 135.05 236.53 l S 135.05 236.53 m 135.10 236.53 l S 135.10 236.53 m 135.14 236.53 l S 135.14 236.53 m 135.19 236.53 l S 135.19 236.53 m 135.23 236.53 l S 135.23 236.53 m 135.28 236.53 l S 135.28 236.53 m 135.33 236.53 l S 135.33 236.53 m 135.37 236.53 l S 135.37 236.53 m 135.42 236.53 l S 135.42 236.53 m 135.46 236.53 l S 135.46 236.53 m 135.51 236.53 l S 135.51 236.53 m 135.56 236.53 l S 135.56 236.53 m 135.60 236.53 l S 135.60 236.53 m 135.65 236.53 l S 135.65 236.53 m 135.69 236.53 l S 135.69 236.53 m 135.74 236.53 l S 135.74 236.53 m 135.79 236.53 l S 135.79 236.53 m 135.83 236.53 l S 135.83 236.53 m 135.88 236.53 l S 135.88 236.53 m 135.92 236.53 l S 135.92 236.53 m 135.97 237.51 l S 135.97 236.53 m 136.02 237.51 l S 136.02 236.53 m 136.06 236.53 l S 136.06 236.53 m 136.11 236.53 l S 136.11 236.53 m 136.15 236.53 l S 136.15 236.53 m 136.20 237.51 l S 136.20 236.53 m 136.25 237.51 l S 136.25 236.53 m 136.29 236.53 l S 136.29 236.53 m 136.34 236.53 l S 136.34 236.53 m 136.38 236.53 l S 136.38 236.53 m 136.43 236.53 l S 136.43 236.53 m 136.48 237.51 l S 136.48 236.53 m 136.52 236.53 l S 136.52 236.53 m 136.57 237.51 l S 136.57 236.53 m 136.61 238.49 l S 136.61 236.53 m 136.66 238.49 l S 136.66 236.53 m 136.71 236.53 l S 136.71 236.53 m 136.75 236.53 l S 136.75 236.53 m 136.80 236.53 l S 136.80 236.53 m 136.84 236.53 l S 136.84 236.53 m 136.89 237.51 l S 136.89 236.53 m 136.94 237.51 l S 136.94 236.53 m 136.98 236.53 l S 136.98 236.53 m 137.03 236.53 l S 137.03 236.53 m 137.07 236.53 l S 137.07 236.53 m 137.12 236.53 l S 137.12 236.53 m 137.17 236.53 l S 137.17 236.53 m 137.21 236.53 l S 137.21 236.53 m 137.26 236.53 l S 137.26 236.53 m 137.30 236.53 l S 137.30 236.53 m 137.35 236.53 l S 137.35 236.53 m 137.40 236.53 l S 137.40 236.53 m 137.44 236.53 l S 137.44 236.53 m 137.49 236.53 l S 137.49 236.53 m 137.53 236.53 l S 137.53 236.53 m 137.58 236.53 l S 137.58 236.53 m 137.63 236.53 l S 137.63 236.53 m 137.67 236.53 l S 137.67 236.53 m 137.72 236.53 l S 137.72 236.53 m 137.76 236.53 l S 137.76 236.53 m 137.81 236.53 l S 137.81 236.53 m 137.86 236.53 l S 137.86 236.53 m 137.90 236.53 l S 137.90 236.53 m 137.95 236.53 l S 137.95 236.53 m 137.99 236.53 l S 137.99 236.53 m 138.04 238.49 l S 138.04 236.53 m 138.09 238.49 l S 138.09 236.53 m 138.13 236.53 l S 138.13 236.53 m 138.18 236.53 l S 138.18 236.53 m 138.22 236.53 l S 138.22 236.53 m 138.27 236.53 l S 138.27 236.53 m 138.32 236.53 l S 138.32 236.53 m 138.36 236.53 l S 138.36 236.53 m 138.41 236.53 l S 138.41 236.53 m 138.45 236.53 l S 138.45 236.53 m 138.50 236.53 l S 138.50 236.53 m 138.55 236.53 l S 138.55 236.53 m 138.59 236.53 l S 138.59 236.53 m 138.64 236.53 l S 138.64 236.53 m 138.68 236.53 l S 138.68 236.53 m 138.73 236.53 l S 138.73 236.53 m 138.78 236.53 l S 138.78 236.53 m 138.82 236.53 l S 138.82 236.53 m 138.87 236.53 l S 138.87 236.53 m 138.91 236.53 l S 138.91 236.53 m 138.96 236.53 l S 138.96 236.53 m 139.01 236.53 l S 139.01 236.53 m 139.05 236.53 l S 139.05 236.53 m 139.10 236.53 l S 139.10 236.53 m 139.14 236.53 l S 139.14 236.53 m 139.19 236.53 l S 139.19 236.53 m 139.24 236.53 l S 139.24 236.53 m 139.28 236.53 l S 139.28 236.53 m 139.33 236.53 l S 139.33 236.53 m 139.37 236.53 l S 139.37 236.53 m 139.42 236.53 l S 139.42 236.53 m 139.47 236.53 l S 139.47 236.53 m 139.51 236.53 l S 139.51 236.53 m 139.56 236.53 l S 139.56 236.53 m 139.60 236.53 l S 139.60 236.53 m 139.65 236.53 l S 139.65 236.53 m 139.70 236.53 l S 139.70 236.53 m 139.74 236.53 l S 139.74 236.53 m 139.79 236.53 l S 139.79 236.53 m 139.83 236.53 l S 139.83 236.53 m 139.88 236.53 l S 139.88 236.53 m 139.93 236.53 l S 139.93 236.53 m 139.97 236.53 l S 139.97 236.53 m 140.02 237.51 l S 140.02 236.53 m 140.06 237.51 l S 140.06 236.53 m 140.11 236.53 l S 140.11 236.53 m 140.16 237.51 l S 140.16 236.53 m 140.20 237.51 l S 140.20 236.53 m 140.25 237.51 l S 140.25 236.53 m 140.29 237.51 l S 140.29 236.53 m 140.34 236.53 l S 140.34 236.53 m 140.39 237.51 l S 140.39 236.53 m 140.43 237.51 l S 140.43 236.53 m 140.48 237.51 l S 140.48 236.53 m 140.52 236.53 l S 140.52 236.53 m 140.57 236.53 l S 140.57 236.53 m 140.62 236.53 l S 140.62 236.53 m 140.66 236.53 l S 140.66 236.53 m 140.71 236.53 l S 140.71 236.53 m 140.75 236.53 l S 140.75 236.53 m 140.80 236.53 l S 140.80 236.53 m 140.85 237.51 l S 140.85 236.53 m 140.89 237.51 l S 140.89 236.53 m 140.94 237.51 l S 140.94 236.53 m 140.98 237.51 l S 140.98 236.53 m 141.03 238.49 l S 141.03 236.53 m 141.08 238.49 l S 141.08 236.53 m 141.12 238.49 l S 141.12 236.53 m 141.17 236.53 l S 141.17 236.53 m 141.21 236.53 l S 141.21 236.53 m 141.26 236.53 l S 141.26 236.53 m 141.31 236.53 l S 141.31 236.53 m 141.35 236.53 l S 141.35 236.53 m 141.40 236.53 l S 141.40 236.53 m 141.44 236.53 l S 141.44 236.53 m 141.49 236.53 l S 141.49 236.53 m 141.54 236.53 l S 141.54 236.53 m 141.58 236.53 l S 141.58 236.53 m 141.63 236.53 l S 141.63 236.53 m 141.67 236.53 l S 141.67 236.53 m 141.72 236.53 l S 141.72 236.53 m 141.77 236.53 l S 141.77 236.53 m 141.81 236.53 l S 141.81 236.53 m 141.86 236.53 l S 141.86 236.53 m 141.90 236.53 l S 141.90 236.53 m 141.95 236.53 l S 141.95 236.53 m 142.00 236.53 l S 142.00 236.53 m 142.04 236.53 l S 142.04 236.53 m 142.09 236.53 l S 142.09 236.53 m 142.13 236.53 l S 142.13 236.53 m 142.18 236.53 l S 142.18 236.53 m 142.23 236.53 l S 142.23 236.53 m 142.27 236.53 l S 142.27 236.53 m 142.32 236.53 l S 142.32 236.53 m 142.36 236.53 l S 142.36 236.53 m 142.41 237.51 l S 142.41 236.53 m 142.46 236.53 l S 142.46 236.53 m 142.50 237.51 l S 142.50 236.53 m 142.55 237.51 l S 142.55 236.53 m 142.60 238.49 l S 142.60 236.53 m 142.64 238.49 l S 142.64 236.53 m 142.69 237.51 l S 142.69 236.53 m 142.73 236.53 l S 142.73 236.53 m 142.78 236.53 l S 142.78 236.53 m 142.83 236.53 l S 142.83 236.53 m 142.87 236.53 l S 142.87 236.53 m 142.92 236.53 l S 142.92 236.53 m 142.96 236.53 l S 142.96 236.53 m 143.01 236.53 l S 143.01 236.53 m 143.06 236.53 l S 143.06 236.53 m 143.10 236.53 l S 143.10 236.53 m 143.15 236.53 l S 143.15 236.53 m 143.19 236.53 l S 143.19 236.53 m 143.24 236.53 l S 143.24 236.53 m 143.29 236.53 l S 143.29 236.53 m 143.33 236.53 l S 143.33 236.53 m 143.38 237.51 l S 143.38 236.53 m 143.42 237.51 l S 143.42 236.53 m 143.47 236.53 l S 143.47 236.53 m 143.52 236.53 l S 143.52 236.53 m 143.56 236.53 l S 143.56 236.53 m 143.61 236.53 l S 143.61 236.53 m 143.65 236.53 l S 143.65 236.53 m 143.70 236.53 l S 143.70 236.53 m 143.75 236.53 l S 143.75 236.53 m 143.79 236.53 l S 143.79 236.53 m 143.84 236.53 l S 143.84 236.53 m 143.88 236.53 l S 143.88 236.53 m 143.93 236.53 l S 143.93 236.53 m 143.98 236.53 l S 143.98 236.53 m 144.02 238.49 l S 144.02 236.53 m 144.07 238.49 l S 144.07 236.53 m 144.11 236.53 l S 144.11 236.53 m 144.16 236.53 l S 144.16 236.53 m 144.21 236.53 l S 144.21 236.53 m 144.25 236.53 l S 144.25 236.53 m 144.30 236.53 l S 144.30 236.53 m 144.34 236.53 l S 144.34 236.53 m 144.39 236.53 l S 144.39 236.53 m 144.44 236.53 l S 144.44 236.53 m 144.48 236.53 l S 144.48 236.53 m 144.53 236.53 l S 144.53 236.53 m 144.57 236.53 l S 144.57 236.53 m 144.62 236.53 l S 144.62 236.53 m 144.67 236.53 l S 144.67 236.53 m 144.71 236.53 l S 144.71 236.53 m 144.76 236.53 l S 144.76 236.53 m 144.80 236.53 l S 144.80 236.53 m 144.85 236.53 l S 144.85 236.53 m 144.90 236.53 l S 144.90 236.53 m 144.94 236.53 l S 144.94 236.53 m 144.99 236.53 l S 144.99 236.53 m 145.03 236.53 l S 145.03 236.53 m 145.08 236.53 l S 145.08 236.53 m 145.13 236.53 l S 145.13 236.53 m 145.17 236.53 l S 145.17 236.53 m 145.22 236.53 l S 145.22 236.53 m 145.26 236.53 l S 145.26 236.53 m 145.31 236.53 l S 145.31 236.53 m 145.36 236.53 l S 145.36 236.53 m 145.40 236.53 l S 145.40 236.53 m 145.45 236.53 l S 145.45 236.53 m 145.49 236.53 l S 145.49 236.53 m 145.54 236.53 l S 145.54 236.53 m 145.59 236.53 l S 145.59 236.53 m 145.63 236.53 l S 145.63 236.53 m 145.68 236.53 l S 145.68 236.53 m 145.72 236.53 l S 145.72 236.53 m 145.77 236.53 l S 145.77 236.53 m 145.82 236.53 l S 145.82 236.53 m 145.86 236.53 l S 145.86 236.53 m 145.91 236.53 l S 145.91 236.53 m 145.95 236.53 l S 145.95 236.53 m 146.00 236.53 l S 146.00 236.53 m 146.05 236.53 l S 146.05 236.53 m 146.09 236.53 l S 146.09 236.53 m 146.14 236.53 l S 146.14 236.53 m 146.18 236.53 l S 146.18 236.53 m 146.23 236.53 l S 146.23 236.53 m 146.28 236.53 l S 146.28 236.53 m 146.32 236.53 l S 146.32 236.53 m 146.37 238.49 l S 146.37 236.53 m 146.41 238.49 l S 146.41 236.53 m 146.46 236.53 l S 146.46 236.53 m 146.51 236.53 l S 146.51 236.53 m 146.55 236.53 l S 146.55 236.53 m 146.60 236.53 l S 146.60 236.53 m 146.64 236.53 l S 146.64 236.53 m 146.69 236.53 l S 146.69 236.53 m 146.74 236.53 l S 146.74 236.53 m 146.78 236.53 l S 146.78 236.53 m 146.83 236.53 l S 146.83 236.53 m 146.87 236.53 l S 146.87 236.53 m 146.92 237.51 l S 146.92 236.53 m 146.97 237.51 l S 146.97 236.53 m 147.01 236.53 l S 147.01 236.53 m 147.06 236.53 l S 147.06 236.53 m 147.10 236.53 l S 147.10 236.53 m 147.15 236.53 l S 147.15 236.53 m 147.20 236.53 l S 147.20 236.53 m 147.24 236.53 l S 147.24 236.53 m 147.29 236.53 l S 147.29 236.53 m 147.33 236.53 l S 147.33 236.53 m 147.38 236.53 l S 147.38 236.53 m 147.43 236.53 l S 147.43 236.53 m 147.47 236.53 l S 147.47 236.53 m 147.52 236.53 l S 147.52 236.53 m 147.56 236.53 l S 147.56 236.53 m 147.61 236.53 l S 147.61 236.53 m 147.66 236.53 l S 147.66 236.53 m 147.70 236.53 l S 147.70 236.53 m 147.75 236.53 l S 147.75 236.53 m 147.79 236.53 l S 147.79 236.53 m 147.84 236.53 l S 147.84 236.53 m 147.89 237.51 l S 147.89 236.53 m 147.93 237.51 l S 147.93 236.53 m 147.98 236.53 l S 147.98 236.53 m 148.02 236.53 l S 148.02 236.53 m 148.07 236.53 l S 148.07 236.53 m 148.12 236.53 l S 148.12 236.53 m 148.16 236.53 l S 148.16 236.53 m 148.21 236.53 l S 148.21 236.53 m 148.25 236.53 l S 148.25 236.53 m 148.30 236.53 l S 148.30 236.53 m 148.35 236.53 l S 148.35 236.53 m 148.39 236.53 l S 148.39 236.53 m 148.44 236.53 l S 148.44 236.53 m 148.48 236.53 l S 148.48 236.53 m 148.53 236.53 l S 148.53 236.53 m 148.58 236.53 l S 148.58 236.53 m 148.62 236.53 l S 148.62 236.53 m 148.67 236.53 l S 148.67 236.53 m 148.71 236.53 l S 148.71 236.53 m 148.76 236.53 l S 148.76 236.53 m 148.81 236.53 l S 148.81 236.53 m 148.85 236.53 l S 148.85 236.53 m 148.90 236.53 l S 148.90 236.53 m 148.94 236.53 l S 148.94 236.53 m 148.99 236.53 l S 148.99 236.53 m 149.04 236.53 l S 149.04 236.53 m 149.08 236.53 l S 149.08 236.53 m 149.13 236.53 l S 149.13 236.53 m 149.17 236.53 l S 149.17 236.53 m 149.22 236.53 l S 149.22 236.53 m 149.27 236.53 l S 149.27 236.53 m 149.31 236.53 l S 149.31 236.53 m 149.36 236.53 l S 149.36 236.53 m 149.40 236.53 l S 149.40 236.53 m 149.45 236.53 l S 149.45 236.53 m 149.50 236.53 l S 149.50 236.53 m 149.54 236.53 l S 149.54 236.53 m 149.59 236.53 l S 149.59 236.53 m 149.63 236.53 l S 149.63 236.53 m 149.68 236.53 l S 149.68 236.53 m 149.73 236.53 l S 149.73 236.53 m 149.77 236.53 l S 149.77 236.53 m 149.82 236.53 l S 149.82 236.53 m 149.86 236.53 l S 149.86 236.53 m 149.91 236.53 l S 149.91 236.53 m 149.96 236.53 l S 149.96 236.53 m 150.00 236.53 l S 150.00 236.53 m 150.05 236.53 l S 150.05 236.53 m 150.09 236.53 l S 150.09 236.53 m 150.14 236.53 l S 150.14 236.53 m 150.19 236.53 l S 150.19 236.53 m 150.23 236.53 l S 150.23 236.53 m 150.28 236.53 l S 150.28 236.53 m 150.32 236.53 l S 150.32 236.53 m 150.37 236.53 l S 150.37 236.53 m 150.42 236.53 l S 150.42 236.53 m 150.46 236.53 l S 150.46 236.53 m 150.51 236.53 l S 150.51 236.53 m 150.56 236.53 l S 150.56 236.53 m 150.60 236.53 l S 150.60 236.53 m 150.65 236.53 l S 150.65 236.53 m 150.69 236.53 l S 150.69 236.53 m 150.74 236.53 l S 150.74 236.53 m 150.79 236.53 l S 150.79 236.53 m 150.83 236.53 l S 150.83 236.53 m 150.88 236.53 l S 150.88 236.53 m 150.92 236.53 l S 150.92 236.53 m 150.97 236.53 l S 150.97 236.53 m 151.02 236.53 l S 151.02 236.53 m 151.06 236.53 l S 151.06 236.53 m 151.11 236.53 l S 151.11 236.53 m 151.15 236.53 l S 151.15 236.53 m 151.20 236.53 l S 151.20 236.53 m 151.25 236.53 l S 151.25 236.53 m 151.29 236.53 l S 151.29 236.53 m 151.34 238.49 l S 151.34 236.53 m 151.38 238.49 l S 151.38 236.53 m 151.43 236.53 l S 151.43 236.53 m 151.48 236.53 l S 151.48 236.53 m 151.52 236.53 l S 151.52 236.53 m 151.57 236.53 l S 151.57 236.53 m 151.61 236.53 l S 151.61 236.53 m 151.66 236.53 l S 151.66 236.53 m 151.71 236.53 l S 151.71 236.53 m 151.75 236.53 l S 151.75 236.53 m 151.80 236.53 l S 151.80 236.53 m 151.84 236.53 l S 151.84 236.53 m 151.89 236.53 l S 151.89 236.53 m 151.94 236.53 l S 151.94 236.53 m 151.98 236.53 l S 151.98 236.53 m 152.03 236.53 l S 152.03 236.53 m 152.07 236.53 l S 152.07 236.53 m 152.12 236.53 l S 152.12 236.53 m 152.17 236.53 l S 152.17 236.53 m 152.21 236.53 l S 152.21 236.53 m 152.26 236.53 l S 152.26 236.53 m 152.30 236.53 l S 152.30 236.53 m 152.35 236.53 l S 152.35 236.53 m 152.40 236.53 l S 152.40 236.53 m 152.44 236.53 l S 152.44 236.53 m 152.49 236.53 l S 152.49 236.53 m 152.53 236.53 l S 152.53 236.53 m 152.58 236.53 l S 152.58 236.53 m 152.63 237.51 l S 152.63 236.53 m 152.67 237.51 l S 152.67 236.53 m 152.72 236.53 l S 152.72 236.53 m 152.76 236.53 l S 152.76 236.53 m 152.81 236.53 l S 152.81 236.53 m 152.86 236.53 l S 152.86 236.53 m 152.90 236.53 l S 152.90 236.53 m 152.95 236.53 l S 152.95 236.53 m 152.99 236.53 l S 152.99 236.53 m 153.04 236.53 l S 153.04 236.53 m 153.09 236.53 l S 153.09 236.53 m 153.13 236.53 l S 153.13 236.53 m 153.18 236.53 l S 153.18 236.53 m 153.22 236.53 l S 153.22 236.53 m 153.27 236.53 l S 153.27 236.53 m 153.32 236.53 l S 153.32 236.53 m 153.36 236.53 l S 153.36 236.53 m 153.41 236.53 l S 153.41 236.53 m 153.45 236.53 l S 153.45 236.53 m 153.50 236.53 l S 153.50 236.53 m 153.55 236.53 l S 153.55 236.53 m 153.59 236.53 l S 153.59 236.53 m 153.64 236.53 l S 153.64 236.53 m 153.68 236.53 l S 153.68 236.53 m 153.73 236.53 l S 153.73 236.53 m 153.78 236.53 l S 153.78 236.53 m 153.82 236.53 l S 153.82 236.53 m 153.87 236.53 l S 153.87 236.53 m 153.91 236.53 l S 153.91 236.53 m 153.96 236.53 l S 153.96 236.53 m 154.01 236.53 l S 154.01 236.53 m 154.05 236.53 l S 154.05 236.53 m 154.10 236.53 l S 154.10 236.53 m 154.14 236.53 l S 154.14 236.53 m 154.19 236.53 l S 154.19 236.53 m 154.24 236.53 l S 154.24 236.53 m 154.28 236.53 l S 154.28 236.53 m 154.33 236.53 l S 154.33 236.53 m 154.37 236.53 l S 154.37 236.53 m 154.42 236.53 l S 154.42 236.53 m 154.47 236.53 l S 154.47 236.53 m 154.51 236.53 l S 154.51 236.53 m 154.56 236.53 l S 154.56 236.53 m 154.60 236.53 l S 154.60 236.53 m 154.65 236.53 l S 154.65 236.53 m 154.70 236.53 l S 154.70 236.53 m 154.74 236.53 l S 154.74 236.53 m 154.79 236.53 l S 154.79 236.53 m 154.83 236.53 l S 154.83 236.53 m 154.88 236.53 l S 154.88 236.53 m 154.93 236.53 l S 154.93 236.53 m 154.97 236.53 l S 154.97 236.53 m 155.02 236.53 l S 155.02 236.53 m 155.06 236.53 l S 155.06 236.53 m 155.11 236.53 l S 155.11 236.53 m 155.16 236.53 l S 155.16 236.53 m 155.20 236.53 l S 155.20 236.53 m 155.25 236.53 l S 155.25 236.53 m 155.29 236.53 l S 155.29 236.53 m 155.34 236.53 l S 155.34 236.53 m 155.39 236.53 l S 155.39 236.53 m 155.43 236.53 l S 155.43 236.53 m 155.48 236.53 l S 155.48 236.53 m 155.52 236.53 l S 155.52 236.53 m 155.57 236.53 l S 155.57 236.53 m 155.62 236.53 l S 155.62 236.53 m 155.66 236.53 l S 155.66 236.53 m 155.71 236.53 l S 155.71 236.53 m 155.75 236.53 l S 155.75 236.53 m 155.80 236.53 l S 155.80 236.53 m 155.85 236.53 l S 155.85 236.53 m 155.89 236.53 l S 155.89 236.53 m 155.94 236.53 l S 155.94 236.53 m 155.98 237.51 l S 155.98 236.53 m 156.03 237.51 l S 156.03 236.53 m 156.08 236.53 l S 156.08 236.53 m 156.12 236.53 l S 156.12 236.53 m 156.17 236.53 l S 156.17 236.53 m 156.21 236.53 l S 156.21 236.53 m 156.26 236.53 l S 156.26 236.53 m 156.31 236.53 l S 156.31 236.53 m 156.35 236.53 l S 156.35 236.53 m 156.40 237.51 l S 156.40 236.53 m 156.44 237.51 l S 156.44 236.53 m 156.49 236.53 l S 156.49 236.53 m 156.54 236.53 l S 156.54 236.53 m 156.58 236.53 l S 156.58 236.53 m 156.63 236.53 l S 156.63 236.53 m 156.67 236.53 l S 156.67 236.53 m 156.72 236.53 l S 156.72 236.53 m 156.77 236.53 l S 156.77 236.53 m 156.81 236.53 l S 156.81 236.53 m 156.86 236.53 l S 156.86 236.53 m 156.90 236.53 l S 156.90 236.53 m 156.95 236.53 l S 156.95 236.53 m 157.00 236.53 l S 157.00 236.53 m 157.04 236.53 l S 157.04 236.53 m 157.09 236.53 l S 157.09 236.53 m 157.13 236.53 l S 157.13 236.53 m 157.18 236.53 l S 157.18 236.53 m 157.23 236.53 l S 157.23 236.53 m 157.27 237.51 l S 157.27 236.53 m 157.32 236.53 l S 157.32 236.53 m 157.36 236.53 l S 157.36 236.53 m 157.41 237.51 l S 157.41 236.53 m 157.46 237.51 l S 157.46 236.53 m 157.50 237.51 l S 157.50 236.53 m 157.55 237.51 l S 157.55 236.53 m 157.59 236.53 l S 157.59 236.53 m 157.64 236.53 l S 157.64 236.53 m 157.69 236.53 l S 157.69 236.53 m 157.73 236.53 l S 157.73 236.53 m 157.78 236.53 l S 157.78 236.53 m 157.82 236.53 l S 157.82 236.53 m 157.87 236.53 l S 157.87 236.53 m 157.92 236.53 l S 157.92 236.53 m 157.96 236.53 l S 157.96 236.53 m 158.01 236.53 l S 158.01 236.53 m 158.05 236.53 l S 158.05 236.53 m 158.10 236.53 l S 158.10 236.53 m 158.15 236.53 l S 158.15 236.53 m 158.19 237.51 l S 158.19 236.53 m 158.24 237.51 l S 158.24 236.53 m 158.28 237.51 l S 158.28 236.53 m 158.33 236.53 l S 158.33 236.53 m 158.38 237.51 l S 158.38 236.53 m 158.42 236.53 l S 158.42 236.53 m 158.47 236.53 l S 158.47 236.53 m 158.52 236.53 l S 158.52 236.53 m 158.56 236.53 l S 158.56 236.53 m 158.61 236.53 l S 158.61 236.53 m 158.65 236.53 l S 158.65 236.53 m 158.70 236.53 l S 158.70 236.53 m 158.75 236.53 l S 158.75 236.53 m 158.79 236.53 l S 158.79 236.53 m 158.84 236.53 l S 158.84 236.53 m 158.88 236.53 l S 158.88 236.53 m 158.93 236.53 l S 158.93 236.53 m 158.98 236.53 l S 158.98 236.53 m 159.02 236.53 l S 159.02 236.53 m 159.07 236.53 l S 159.07 236.53 m 159.11 236.53 l S 159.11 236.53 m 159.16 236.53 l S 159.16 236.53 m 159.21 236.53 l S 159.21 236.53 m 159.25 236.53 l S 159.25 236.53 m 159.30 236.53 l S 159.30 236.53 m 159.34 236.53 l S 159.34 236.53 m 159.39 236.53 l S 159.39 236.53 m 159.44 236.53 l S 159.44 236.53 m 159.48 236.53 l S 159.48 236.53 m 159.53 236.53 l S 159.53 236.53 m 159.57 236.53 l S 159.57 236.53 m 159.62 236.53 l S 159.62 236.53 m 159.67 236.53 l S 159.67 236.53 m 159.71 236.53 l S 159.71 236.53 m 159.76 236.53 l S 159.76 236.53 m 159.80 236.53 l S 159.80 236.53 m 159.85 236.53 l S 159.85 236.53 m 159.90 236.53 l S 159.90 236.53 m 159.94 236.53 l S 159.94 236.53 m 159.99 236.53 l S 159.99 236.53 m 160.03 236.53 l S 160.03 236.53 m 160.08 236.53 l S 160.08 236.53 m 160.13 238.49 l S 160.13 236.53 m 160.17 238.49 l S 160.17 236.53 m 160.22 236.53 l S 160.22 236.53 m 160.26 236.53 l S 160.26 236.53 m 160.31 236.53 l S 160.31 236.53 m 160.36 236.53 l S 160.36 236.53 m 160.40 236.53 l S 160.40 236.53 m 160.45 236.53 l S 160.45 236.53 m 160.49 236.53 l S 160.49 236.53 m 160.54 236.53 l S 160.54 236.53 m 160.59 236.53 l S 160.59 236.53 m 160.63 236.53 l S 160.63 236.53 m 160.68 236.53 l S 160.68 236.53 m 160.72 236.53 l S 160.72 236.53 m 160.77 236.53 l S 160.77 236.53 m 160.82 236.53 l S 160.82 236.53 m 160.86 236.53 l S 160.86 236.53 m 160.91 236.53 l S 160.91 236.53 m 160.95 237.51 l S 160.95 236.53 m 161.00 237.51 l S 161.00 236.53 m 161.05 237.51 l S 161.05 236.53 m 161.09 236.53 l S 161.09 236.53 m 161.14 236.53 l S 161.14 236.53 m 161.18 236.53 l S 161.18 236.53 m 161.23 236.53 l S 161.23 236.53 m 161.28 236.53 l S 161.28 236.53 m 161.32 236.53 l S 161.32 236.53 m 161.37 236.53 l S 161.37 236.53 m 161.41 236.53 l S 161.41 236.53 m 161.46 236.53 l S 161.46 236.53 m 161.51 236.53 l S 161.51 236.53 m 161.55 236.53 l S 161.55 236.53 m 161.60 236.53 l S 161.60 236.53 m 161.64 236.53 l S 161.64 236.53 m 161.69 236.53 l S 161.69 236.53 m 161.74 236.53 l S 161.74 236.53 m 161.78 236.53 l S 161.78 236.53 m 161.83 236.53 l S 161.83 236.53 m 161.87 239.46 l S 161.87 236.53 m 161.92 238.49 l S 161.92 236.53 m 161.97 236.53 l S 161.97 236.53 m 162.01 236.53 l S 162.01 236.53 m 162.06 236.53 l S 162.06 236.53 m 162.10 236.53 l S 162.10 236.53 m 162.15 237.51 l S 162.15 236.53 m 162.20 238.49 l S 162.20 236.53 m 162.24 236.53 l S 162.24 236.53 m 162.29 236.53 l S 162.29 236.53 m 162.33 236.53 l S 162.33 236.53 m 162.38 236.53 l S 162.38 236.53 m 162.43 237.51 l S 162.43 236.53 m 162.47 237.51 l S 162.47 236.53 m 162.52 236.53 l S 162.52 236.53 m 162.56 236.53 l S 162.56 236.53 m 162.61 236.53 l S 162.61 236.53 m 162.66 236.53 l S 162.66 236.53 m 162.70 236.53 l S 162.70 236.53 m 162.75 236.53 l S 162.75 236.53 m 162.79 236.53 l S 162.79 236.53 m 162.84 236.53 l S 162.84 236.53 m 162.89 236.53 l S 162.89 236.53 m 162.93 236.53 l S 162.93 236.53 m 162.98 236.53 l S 162.98 236.53 m 163.02 236.53 l S 163.02 236.53 m 163.07 236.53 l S 163.07 236.53 m 163.12 236.53 l S 163.12 236.53 m 163.16 236.53 l S 163.16 236.53 m 163.21 236.53 l S 163.21 236.53 m 163.25 236.53 l S 163.25 236.53 m 163.30 236.53 l S 163.30 236.53 m 163.35 236.53 l S 163.35 236.53 m 163.39 236.53 l S 163.39 236.53 m 163.44 236.53 l S 163.44 236.53 m 163.48 236.53 l S 163.48 236.53 m 163.53 237.51 l S 163.53 236.53 m 163.58 236.53 l S 163.58 236.53 m 163.62 236.53 l S 163.62 236.53 m 163.67 236.53 l S 163.67 236.53 m 163.71 236.53 l S 163.71 236.53 m 163.76 236.53 l S 163.76 236.53 m 163.81 236.53 l S 163.81 236.53 m 163.85 236.53 l S 163.85 236.53 m 163.90 236.53 l S 163.90 236.53 m 163.94 236.53 l S 163.94 236.53 m 163.99 236.53 l S 163.99 236.53 m 164.04 236.53 l S 164.04 236.53 m 164.08 236.53 l S 164.08 236.53 m 164.13 236.53 l S 164.13 236.53 m 164.17 236.53 l S 164.17 236.53 m 164.22 236.53 l S 164.22 236.53 m 164.27 236.53 l S 164.27 236.53 m 164.31 236.53 l S 164.31 236.53 m 164.36 236.53 l S 164.36 236.53 m 164.40 236.53 l S 164.40 236.53 m 164.45 236.53 l S 164.45 236.53 m 164.50 236.53 l S 164.50 236.53 m 164.54 236.53 l S 164.54 236.53 m 164.59 236.53 l S 164.59 236.53 m 164.63 236.53 l S 164.63 236.53 m 164.68 236.53 l S 164.68 236.53 m 164.73 236.53 l S 164.73 236.53 m 164.77 236.53 l S 164.77 236.53 m 164.82 236.53 l S 164.82 236.53 m 164.86 236.53 l S 164.86 236.53 m 164.91 236.53 l S 164.91 236.53 m 164.96 236.53 l S 164.96 236.53 m 165.00 236.53 l S 165.00 236.53 m 165.05 236.53 l S 165.05 236.53 m 165.09 236.53 l S 165.09 236.53 m 165.14 236.53 l S 165.14 236.53 m 165.19 236.53 l S 165.19 236.53 m 165.23 236.53 l S 165.23 236.53 m 165.28 236.53 l S 165.28 236.53 m 165.32 236.53 l S 165.32 236.53 m 165.37 236.53 l S 165.37 236.53 m 165.42 236.53 l S 165.42 236.53 m 165.46 236.53 l S 165.46 236.53 m 165.51 237.51 l S 165.51 236.53 m 165.55 237.51 l S 165.55 236.53 m 165.60 236.53 l S 165.60 236.53 m 165.65 236.53 l S 165.65 236.53 m 165.69 236.53 l S 165.69 236.53 m 165.74 236.53 l S 165.74 236.53 m 165.78 237.51 l S 165.78 236.53 m 165.83 236.53 l S 165.83 236.53 m 165.88 236.53 l S 165.88 236.53 m 165.92 236.53 l S 165.92 236.53 m 165.97 236.53 l S 165.97 236.53 m 166.01 236.53 l S 166.01 236.53 m 166.06 236.53 l S 166.06 236.53 m 166.11 236.53 l S 166.11 236.53 m 166.15 236.53 l S 166.15 236.53 m 166.20 236.53 l S 166.20 236.53 m 166.24 236.53 l S 166.24 236.53 m 166.29 236.53 l S 166.29 236.53 m 166.34 236.53 l S 166.34 236.53 m 166.38 236.53 l S 166.38 236.53 m 166.43 236.53 l S 166.43 236.53 m 166.48 236.53 l S 166.48 236.53 m 166.52 236.53 l S 166.52 236.53 m 166.57 236.53 l S 166.57 236.53 m 166.61 236.53 l S 166.61 236.53 m 166.66 236.53 l S 166.66 236.53 m 166.71 236.53 l S 166.71 236.53 m 166.75 237.51 l S 166.75 236.53 m 166.80 236.53 l S 166.80 236.53 m 166.84 236.53 l S 166.84 236.53 m 166.89 236.53 l S 166.89 236.53 m 166.94 236.53 l S 166.94 236.53 m 166.98 237.51 l S 166.98 236.53 m 167.03 236.53 l S 167.03 236.53 m 167.07 236.53 l S 167.07 236.53 m 167.12 236.53 l S 167.12 236.53 m 167.17 236.53 l S 167.17 236.53 m 167.21 236.53 l S 167.21 236.53 m 167.26 236.53 l S 167.26 236.53 m 167.30 236.53 l S 167.30 236.53 m 167.35 236.53 l S 167.35 236.53 m 167.40 236.53 l S 167.40 236.53 m 167.44 236.53 l S 167.44 236.53 m 167.49 236.53 l S 167.49 236.53 m 167.53 236.53 l S 167.53 236.53 m 167.58 236.53 l S 167.58 236.53 m 167.63 236.53 l S 167.63 236.53 m 167.67 236.53 l S 167.67 236.53 m 167.72 236.53 l S 167.72 236.53 m 167.76 236.53 l S 167.76 236.53 m 167.81 236.53 l S 167.81 236.53 m 167.86 236.53 l S 167.86 236.53 m 167.90 236.53 l S 167.90 236.53 m 167.95 236.53 l S 167.95 236.53 m 167.99 236.53 l S 167.99 236.53 m 168.04 236.53 l S 168.04 236.53 m 168.09 236.53 l S 168.09 236.53 m 168.13 236.53 l S 168.13 236.53 m 168.18 236.53 l S 168.18 236.53 m 168.22 236.53 l S 168.22 236.53 m 168.27 236.53 l S 168.27 236.53 m 168.32 236.53 l S 168.32 236.53 m 168.36 236.53 l S 168.36 236.53 m 168.41 236.53 l S 168.41 236.53 m 168.45 236.53 l S 168.45 236.53 m 168.50 236.53 l S 168.50 236.53 m 168.55 236.53 l S 168.55 236.53 m 168.59 236.53 l S 168.59 236.53 m 168.64 236.53 l S 168.64 236.53 m 168.68 236.53 l S 168.68 236.53 m 168.73 236.53 l S 168.73 236.53 m 168.78 237.51 l S 168.78 236.53 m 168.82 236.53 l S 168.82 236.53 m 168.87 236.53 l S 168.87 236.53 m 168.91 236.53 l S 168.91 236.53 m 168.96 236.53 l S 168.96 236.53 m 169.01 236.53 l S 169.01 236.53 m 169.05 236.53 l S 169.05 236.53 m 169.10 236.53 l S 169.10 236.53 m 169.14 236.53 l S 169.14 236.53 m 169.19 236.53 l S 169.19 236.53 m 169.24 236.53 l S 169.24 236.53 m 169.28 236.53 l S 169.28 236.53 m 169.33 236.53 l S 169.33 236.53 m 169.37 236.53 l S 169.37 236.53 m 169.42 236.53 l S 169.42 236.53 m 169.47 236.53 l S 169.47 236.53 m 169.51 236.53 l S 169.51 236.53 m 169.56 236.53 l S 169.56 236.53 m 169.60 236.53 l S 169.60 236.53 m 169.65 236.53 l S 169.65 236.53 m 169.70 236.53 l S 169.70 236.53 m 169.74 236.53 l S 169.74 236.53 m 169.79 236.53 l S 169.79 236.53 m 169.83 237.51 l S 169.83 236.53 m 169.88 236.53 l S 169.88 236.53 m 169.93 236.53 l S 169.93 236.53 m 169.97 236.53 l S 169.97 236.53 m 170.02 236.53 l S 170.02 236.53 m 170.06 237.51 l S 170.06 236.53 m 170.11 237.51 l S 170.11 236.53 m 170.16 236.53 l S 170.16 236.53 m 170.20 236.53 l S 170.20 236.53 m 170.25 236.53 l S 170.25 236.53 m 170.29 236.53 l S 170.29 236.53 m 170.34 236.53 l S 170.34 236.53 m 170.39 236.53 l S 170.39 236.53 m 170.43 236.53 l S 170.43 236.53 m 170.48 236.53 l S 170.48 236.53 m 170.52 236.53 l S 170.52 236.53 m 170.57 236.53 l S 170.57 236.53 m 170.62 236.53 l S 170.62 236.53 m 170.66 237.51 l S 170.66 236.53 m 170.71 237.51 l S 170.71 236.53 m 170.75 236.53 l S 170.75 236.53 m 170.80 236.53 l S 170.80 236.53 m 170.85 236.53 l S 170.85 236.53 m 170.89 236.53 l S 170.89 236.53 m 170.94 236.53 l S 170.94 236.53 m 170.98 238.49 l S 170.98 236.53 m 171.03 238.49 l S 171.03 236.53 m 171.08 236.53 l S 171.08 236.53 m 171.12 237.51 l S 171.12 236.53 m 171.17 237.51 l S 171.17 236.53 m 171.21 236.53 l S 171.21 236.53 m 171.26 236.53 l S 171.26 236.53 m 171.31 236.53 l S 171.31 236.53 m 171.35 236.53 l S 171.35 236.53 m 171.40 236.53 l S 171.40 236.53 m 171.44 236.53 l S 171.44 236.53 m 171.49 236.53 l S 171.49 236.53 m 171.54 236.53 l S 171.54 236.53 m 171.58 236.53 l S 171.58 236.53 m 171.63 236.53 l S 171.63 236.53 m 171.67 236.53 l S 171.67 236.53 m 171.72 236.53 l S 171.72 236.53 m 171.77 236.53 l S 171.77 236.53 m 171.81 236.53 l S 171.81 236.53 m 171.86 236.53 l S 171.86 236.53 m 171.90 236.53 l S 171.90 236.53 m 171.95 236.53 l S 171.95 236.53 m 172.00 236.53 l S 172.00 236.53 m 172.04 236.53 l S 172.04 236.53 m 172.09 236.53 l S 172.09 236.53 m 172.13 236.53 l S 172.13 236.53 m 172.18 236.53 l S 172.18 236.53 m 172.23 236.53 l S 172.23 236.53 m 172.27 236.53 l S 172.27 236.53 m 172.32 236.53 l S 172.32 236.53 m 172.36 236.53 l S 172.36 236.53 m 172.41 236.53 l S 172.41 236.53 m 172.46 236.53 l S 172.46 236.53 m 172.50 236.53 l S 172.50 236.53 m 172.55 236.53 l S 172.55 236.53 m 172.59 236.53 l S 172.59 236.53 m 172.64 236.53 l S 172.64 236.53 m 172.69 236.53 l S 172.69 236.53 m 172.73 236.53 l S 172.73 236.53 m 172.78 236.53 l S 172.78 236.53 m 172.82 236.53 l S 172.82 236.53 m 172.87 236.53 l S 172.87 236.53 m 172.92 236.53 l S 172.92 236.53 m 172.96 236.53 l S 172.96 236.53 m 173.01 236.53 l S 173.01 236.53 m 173.05 236.53 l S 173.05 236.53 m 173.10 236.53 l S 173.10 236.53 m 173.15 236.53 l S 173.15 236.53 m 173.19 236.53 l S 173.19 236.53 m 173.24 236.53 l S 173.24 236.53 m 173.28 236.53 l S 173.28 236.53 m 173.33 237.51 l S 173.33 236.53 m 173.38 237.51 l S 173.38 236.53 m 173.42 236.53 l S 173.42 236.53 m 173.47 236.53 l S 173.47 236.53 m 173.51 236.53 l S 173.51 236.53 m 173.56 236.53 l S 173.56 236.53 m 173.61 236.53 l S 173.61 236.53 m 173.65 236.53 l S 173.65 236.53 m 173.70 236.53 l S 173.70 236.53 m 173.74 236.53 l S 173.74 236.53 m 173.79 236.53 l S 173.79 236.53 m 173.84 236.53 l S 173.84 236.53 m 173.88 236.53 l S 173.88 236.53 m 173.93 236.53 l S 173.93 236.53 m 173.97 236.53 l S 173.97 236.53 m 174.02 236.53 l S 174.02 236.53 m 174.07 236.53 l S 174.07 236.53 m 174.11 236.53 l S 174.11 236.53 m 174.16 236.53 l S 174.16 236.53 m 174.20 236.53 l S 174.20 236.53 m 174.25 236.53 l S 174.25 236.53 m 174.30 236.53 l S 174.30 236.53 m 174.34 236.53 l S 174.34 236.53 m 174.39 236.53 l S 174.39 236.53 m 174.44 236.53 l S 174.44 236.53 m 174.48 236.53 l S 174.48 236.53 m 174.53 236.53 l S 174.53 236.53 m 174.57 236.53 l S 174.57 236.53 m 174.62 236.53 l S 174.62 236.53 m 174.67 236.53 l S 174.67 236.53 m 174.71 236.53 l S 174.71 236.53 m 174.76 236.53 l S 174.76 236.53 m 174.80 236.53 l S 174.80 236.53 m 174.85 236.53 l S 174.85 236.53 m 174.90 236.53 l S 174.90 236.53 m 174.94 236.53 l S 174.94 236.53 m 174.99 236.53 l S 174.99 236.53 m 175.03 236.53 l S 175.03 236.53 m 175.08 236.53 l S 175.08 236.53 m 175.13 236.53 l S 175.13 236.53 m 175.17 236.53 l S 175.17 236.53 m 175.22 236.53 l S 175.22 236.53 m 175.26 236.53 l S 175.26 236.53 m 175.31 236.53 l S 175.31 236.53 m 175.36 236.53 l S 175.36 236.53 m 175.40 238.49 l S 175.40 236.53 m 175.45 238.49 l S 175.45 236.53 m 175.49 236.53 l S 175.49 236.53 m 175.54 236.53 l S 175.54 236.53 m 175.59 236.53 l S 175.59 236.53 m 175.63 236.53 l S 175.63 236.53 m 175.68 236.53 l S 175.68 236.53 m 175.72 236.53 l S 175.72 236.53 m 175.77 236.53 l S 175.77 236.53 m 175.82 236.53 l S 175.82 236.53 m 175.86 236.53 l S 175.86 236.53 m 175.91 236.53 l S 175.91 236.53 m 175.95 236.53 l S 175.95 236.53 m 176.00 236.53 l S 176.00 236.53 m 176.05 237.51 l S 176.05 236.53 m 176.09 237.51 l S 176.09 236.53 m 176.14 236.53 l S 176.14 236.53 m 176.18 236.53 l S 176.18 236.53 m 176.23 236.53 l S 176.23 236.53 m 176.28 236.53 l S 176.28 236.53 m 176.32 236.53 l S 176.32 236.53 m 176.37 236.53 l S 176.37 236.53 m 176.41 236.53 l S 176.41 236.53 m 176.46 236.53 l S 176.46 236.53 m 176.51 236.53 l S 176.51 236.53 m 176.55 236.53 l S 176.55 236.53 m 176.60 236.53 l S 176.60 236.53 m 176.64 236.53 l S 176.64 236.53 m 176.69 236.53 l S 176.69 236.53 m 176.74 236.53 l S 176.74 236.53 m 176.78 236.53 l S 176.78 236.53 m 176.83 236.53 l S 176.83 236.53 m 176.87 236.53 l S 176.87 236.53 m 176.92 236.53 l S 176.92 236.53 m 176.97 236.53 l S 176.97 236.53 m 177.01 236.53 l S 177.01 236.53 m 177.06 236.53 l S 177.06 236.53 m 177.10 236.53 l S 177.10 236.53 m 177.15 236.53 l S 177.15 236.53 m 177.20 236.53 l S 177.20 236.53 m 177.24 238.49 l S 177.24 236.53 m 177.29 238.49 l S 177.29 236.53 m 177.33 236.53 l S 177.33 236.53 m 177.38 236.53 l S 177.38 236.53 m 177.43 236.53 l S 177.43 236.53 m 177.47 236.53 l S 177.47 236.53 m 177.52 236.53 l S 177.52 236.53 m 177.56 238.49 l S 177.56 236.53 m 177.61 238.49 l S 177.61 236.53 m 177.66 236.53 l S 177.66 236.53 m 177.70 236.53 l S 177.70 236.53 m 177.75 236.53 l S 177.75 236.53 m 177.79 236.53 l S 177.79 236.53 m 177.84 236.53 l S 177.84 236.53 m 177.89 236.53 l S 177.89 236.53 m 177.93 236.53 l S 177.93 236.53 m 177.98 236.53 l S 177.98 236.53 m 178.02 236.53 l S 178.02 236.53 m 178.07 236.53 l S 178.07 236.53 m 178.12 236.53 l S 178.12 236.53 m 178.16 236.53 l S 178.16 236.53 m 178.21 236.53 l S 178.21 236.53 m 178.25 236.53 l S 178.25 236.53 m 178.30 236.53 l S 178.30 236.53 m 178.35 236.53 l S 178.35 236.53 m 178.39 236.53 l S 178.39 236.53 m 178.44 236.53 l S 178.44 236.53 m 178.48 236.53 l S 178.48 236.53 m 178.53 236.53 l S 178.53 236.53 m 178.58 236.53 l S 178.58 236.53 m 178.62 236.53 l S 178.62 236.53 m 178.67 236.53 l S 178.67 236.53 m 178.71 236.53 l S 178.71 236.53 m 178.76 236.53 l S 178.76 236.53 m 178.81 236.53 l S 178.81 236.53 m 178.85 236.53 l S 178.85 236.53 m 178.90 236.53 l S 178.90 236.53 m 178.94 236.53 l S 178.94 236.53 m 178.99 236.53 l S 178.99 236.53 m 179.04 237.51 l S 179.04 236.53 m 179.08 236.53 l S 179.08 236.53 m 179.13 236.53 l S 179.13 236.53 m 179.17 236.53 l S 179.17 236.53 m 179.22 236.53 l S 179.22 236.53 m 179.27 236.53 l S 179.27 236.53 m 179.31 236.53 l S 179.31 236.53 m 179.36 236.53 l S 179.36 236.53 m 179.40 236.53 l S 179.40 236.53 m 179.45 236.53 l S 179.45 236.53 m 179.50 236.53 l S 179.50 236.53 m 179.54 236.53 l S 179.54 236.53 m 179.59 236.53 l S 179.59 236.53 m 179.63 236.53 l S 179.63 236.53 m 179.68 236.53 l S 179.68 236.53 m 179.73 236.53 l S 179.73 236.53 m 179.77 237.51 l S 179.77 236.53 m 179.82 237.51 l S 179.82 236.53 m 179.86 236.53 l S 179.86 236.53 m 179.91 236.53 l S 179.91 236.53 m 179.96 236.53 l S 179.96 236.53 m 180.00 236.53 l S 180.00 236.53 m 180.05 236.53 l S 180.05 236.53 m 180.09 236.53 l S 180.09 236.53 m 180.14 236.53 l S 180.14 236.53 m 180.19 236.53 l S 180.19 236.53 m 180.23 236.53 l S 180.23 236.53 m 180.28 236.53 l S 180.28 236.53 m 180.32 236.53 l S 180.32 236.53 m 180.37 236.53 l S 180.37 236.53 m 180.42 236.53 l S 180.42 236.53 m 180.46 236.53 l S 180.46 236.53 m 180.51 236.53 l S 180.51 236.53 m 180.55 236.53 l S 180.55 236.53 m 180.60 236.53 l S 180.60 236.53 m 180.65 236.53 l S 180.65 236.53 m 180.69 237.51 l S 180.69 236.53 m 180.74 237.51 l S 180.74 236.53 m 180.78 236.53 l S 180.78 236.53 m 180.83 236.53 l S 180.83 236.53 m 180.88 238.49 l S 180.88 236.53 m 180.92 236.53 l S 180.92 236.53 m 180.97 236.53 l S 180.97 236.53 m 181.01 236.53 l S 181.01 236.53 m 181.06 236.53 l S 181.06 236.53 m 181.11 236.53 l S 181.11 236.53 m 181.15 236.53 l S 181.15 236.53 m 181.20 236.53 l S 181.20 236.53 m 181.24 236.53 l S 181.24 236.53 m 181.29 236.53 l S 181.29 236.53 m 181.34 236.53 l S 181.34 236.53 m 181.38 236.53 l S 181.38 236.53 m 181.43 236.53 l S 181.43 236.53 m 181.47 236.53 l S 181.47 236.53 m 181.52 236.53 l S 181.52 236.53 m 181.57 236.53 l S 181.57 236.53 m 181.61 236.53 l S 181.61 236.53 m 181.66 236.53 l S 181.66 236.53 m 181.70 236.53 l S 181.70 236.53 m 181.75 236.53 l S 181.75 236.53 m 181.80 236.53 l S 181.80 236.53 m 181.84 236.53 l S 181.84 236.53 m 181.89 236.53 l S 181.89 236.53 m 181.93 236.53 l S 181.93 236.53 m 181.98 237.51 l S 181.98 236.53 m 182.03 236.53 l S 182.03 236.53 m 182.07 237.51 l S 182.07 236.53 m 182.12 237.51 l S 182.12 236.53 m 182.16 236.53 l S 182.16 236.53 m 182.21 236.53 l S 182.21 236.53 m 182.26 236.53 l S 182.26 236.53 m 182.30 236.53 l S 182.30 236.53 m 182.35 236.53 l S 182.35 236.53 m 182.39 236.53 l S 182.39 236.53 m 182.44 236.53 l S 182.44 236.53 m 182.49 236.53 l S 182.49 236.53 m 182.53 236.53 l S 182.53 236.53 m 182.58 236.53 l S 182.58 236.53 m 182.63 236.53 l S 182.63 236.53 m 182.67 236.53 l S 182.67 236.53 m 182.72 236.53 l S 182.72 236.53 m 182.76 236.53 l S 182.76 236.53 m 182.81 236.53 l S 182.81 236.53 m 182.86 236.53 l S 182.86 236.53 m 182.90 236.53 l S 182.90 236.53 m 182.95 236.53 l S 182.95 236.53 m 182.99 236.53 l S 182.99 236.53 m 183.04 236.53 l S 183.04 236.53 m 183.09 236.53 l S 183.09 236.53 m 183.13 236.53 l S 183.13 236.53 m 183.18 236.53 l S 183.18 236.53 m 183.22 236.53 l S 183.22 236.53 m 183.27 236.53 l S 183.27 236.53 m 183.32 236.53 l S 183.32 236.53 m 183.36 236.53 l S 183.36 236.53 m 183.41 236.53 l S 183.41 236.53 m 183.45 237.51 l S 183.45 236.53 m 183.50 237.51 l S 183.50 236.53 m 183.55 236.53 l S 183.55 236.53 m 183.59 236.53 l S 183.59 236.53 m 183.64 236.53 l S 183.64 236.53 m 183.68 236.53 l S 183.68 236.53 m 183.73 236.53 l S 183.73 236.53 m 183.78 236.53 l S 183.78 236.53 m 183.82 236.53 l S 183.82 236.53 m 183.87 236.53 l S 183.87 236.53 m 183.91 236.53 l S 183.91 236.53 m 183.96 236.53 l S 183.96 236.53 m 184.01 236.53 l S 184.01 236.53 m 184.05 236.53 l S 184.05 236.53 m 184.10 236.53 l S 184.10 236.53 m 184.14 236.53 l S 184.14 236.53 m 184.19 236.53 l S 184.19 236.53 m 184.24 236.53 l S 184.24 236.53 m 184.28 236.53 l S 184.28 236.53 m 184.33 236.53 l S 184.33 236.53 m 184.37 236.53 l S 184.37 236.53 m 184.42 236.53 l S 184.42 236.53 m 184.47 236.53 l S 184.47 236.53 m 184.51 236.53 l S 184.51 236.53 m 184.56 236.53 l S 184.56 236.53 m 184.60 236.53 l S 184.60 236.53 m 184.65 236.53 l S 184.65 236.53 m 184.70 236.53 l S 184.70 236.53 m 184.74 236.53 l S 184.74 236.53 m 184.79 236.53 l S 184.79 236.53 m 184.83 236.53 l S 184.83 236.53 m 184.88 236.53 l S 184.88 236.53 m 184.93 236.53 l S 184.93 236.53 m 184.97 236.53 l S 184.97 236.53 m 185.02 236.53 l S 185.02 236.53 m 185.06 236.53 l S 185.06 236.53 m 185.11 236.53 l S 185.11 236.53 m 185.16 236.53 l S 185.16 236.53 m 185.20 236.53 l S 185.20 236.53 m 185.25 236.53 l S 185.25 236.53 m 185.29 236.53 l S 185.29 236.53 m 185.34 236.53 l S 185.34 236.53 m 185.39 236.53 l S 185.39 236.53 m 185.43 236.53 l S 185.43 236.53 m 185.48 236.53 l S 185.48 236.53 m 185.52 236.53 l S 185.52 236.53 m 185.57 236.53 l S 185.57 236.53 m 185.62 236.53 l S 185.62 236.53 m 185.66 236.53 l S 185.66 236.53 m 185.71 236.53 l S 185.71 236.53 m 185.75 236.53 l S 185.75 236.53 m 185.80 236.53 l S 185.80 236.53 m 185.85 237.51 l S 185.85 236.53 m 185.89 237.51 l S 185.89 236.53 m 185.94 236.53 l S 185.94 236.53 m 185.98 236.53 l S 185.98 236.53 m 186.03 236.53 l S 186.03 236.53 m 186.08 236.53 l S 186.08 236.53 m 186.12 236.53 l S 186.12 236.53 m 186.17 236.53 l S 186.17 236.53 m 186.21 236.53 l S 186.21 236.53 m 186.26 236.53 l S 186.26 236.53 m 186.31 236.53 l S 186.31 236.53 m 186.35 236.53 l S 186.35 236.53 m 186.40 236.53 l S 186.40 236.53 m 186.44 236.53 l S 186.44 236.53 m 186.49 236.53 l S 186.49 236.53 m 186.54 236.53 l S 186.54 236.53 m 186.58 236.53 l S 186.58 236.53 m 186.63 236.53 l S 186.63 236.53 m 186.67 236.53 l S 186.67 236.53 m 186.72 236.53 l S 186.72 236.53 m 186.77 236.53 l S 186.77 236.53 m 186.81 236.53 l S 186.81 236.53 m 186.86 236.53 l S 186.86 236.53 m 186.90 236.53 l S 186.90 236.53 m 186.95 236.53 l S 186.95 236.53 m 187.00 236.53 l S 187.00 236.53 m 187.04 237.51 l S 187.04 236.53 m 187.09 237.51 l S 187.09 236.53 m 187.13 236.53 l S 187.13 236.53 m 187.18 236.53 l S 187.18 236.53 m 187.23 236.53 l S 187.23 236.53 m 187.27 236.53 l S 187.27 236.53 m 187.32 236.53 l S 187.32 236.53 m 187.36 237.51 l S 187.36 236.53 m 187.41 237.51 l S 187.41 236.53 m 187.46 236.53 l S 187.46 236.53 m 187.50 236.53 l S 187.50 236.53 m 187.55 236.53 l S 187.55 236.53 m 187.59 236.53 l S 187.59 236.53 m 187.64 236.53 l S 187.64 236.53 m 187.69 236.53 l S 187.69 236.53 m 187.73 236.53 l S 187.73 236.53 m 187.78 236.53 l S 187.78 236.53 m 187.82 236.53 l S 187.82 236.53 m 187.87 236.53 l S 187.87 236.53 m 187.92 237.51 l S 187.92 236.53 m 187.96 237.51 l S 187.96 236.53 m 188.01 236.53 l S 188.01 236.53 m 188.05 236.53 l S 188.05 236.53 m 188.10 236.53 l S 188.10 236.53 m 188.15 236.53 l S 188.15 236.53 m 188.19 236.53 l S 188.19 236.53 m 188.24 236.53 l S 188.24 236.53 m 188.28 236.53 l S 188.28 236.53 m 188.33 236.53 l S 188.33 236.53 m 188.38 236.53 l S 188.38 236.53 m 188.42 236.53 l S 188.42 236.53 m 188.47 236.53 l S 188.47 236.53 m 188.51 236.53 l S 188.51 236.53 m 188.56 236.53 l S 188.56 236.53 m 188.61 236.53 l S 188.61 236.53 m 188.65 236.53 l S 188.65 236.53 m 188.70 236.53 l S 188.70 236.53 m 188.74 236.53 l S 188.74 236.53 m 188.79 236.53 l S 188.79 236.53 m 188.84 236.53 l S 188.84 236.53 m 188.88 236.53 l S 188.88 236.53 m 188.93 236.53 l S 188.93 236.53 m 188.97 236.53 l S 188.97 236.53 m 189.02 236.53 l S 189.02 236.53 m 189.07 236.53 l S 189.07 236.53 m 189.11 236.53 l S 189.11 236.53 m 189.16 236.53 l S 189.16 236.53 m 189.20 236.53 l S 189.20 236.53 m 189.25 236.53 l S 189.25 236.53 m 189.30 236.53 l S 189.30 236.53 m 189.34 236.53 l S 189.34 236.53 m 189.39 236.53 l S 189.39 236.53 m 189.43 236.53 l S 189.43 236.53 m 189.48 236.53 l S 189.48 236.53 m 189.53 236.53 l S 189.53 236.53 m 189.57 236.53 l S 189.57 236.53 m 189.62 236.53 l S 189.62 236.53 m 189.66 237.51 l S 189.66 236.53 m 189.71 237.51 l S 189.71 236.53 m 189.76 238.49 l S 189.76 236.53 m 189.80 236.53 l S 189.80 236.53 m 189.85 236.53 l S 189.85 236.53 m 189.89 236.53 l S 189.89 236.53 m 189.94 236.53 l S 189.94 236.53 m 189.99 236.53 l S 189.99 236.53 m 190.03 236.53 l S 190.03 236.53 m 190.08 236.53 l S 190.08 236.53 m 190.12 236.53 l S 190.12 236.53 m 190.17 236.53 l S 190.17 236.53 m 190.22 237.51 l S 190.22 236.53 m 190.26 237.51 l S 190.26 236.53 m 190.31 236.53 l S 190.31 236.53 m 190.35 236.53 l S 190.35 236.53 m 190.40 236.53 l S 190.40 236.53 m 190.45 236.53 l S 190.45 236.53 m 190.49 236.53 l S 190.49 236.53 m 190.54 236.53 l S 190.54 236.53 m 190.59 236.53 l S 190.59 236.53 m 190.63 236.53 l S 190.63 236.53 m 190.68 236.53 l S 190.68 236.53 m 190.72 237.51 l S 190.72 236.53 m 190.77 237.51 l S 190.77 236.53 m 190.82 236.53 l S 190.82 236.53 m 190.86 236.53 l S 190.86 236.53 m 190.91 236.53 l S 190.91 236.53 m 190.95 236.53 l S 190.95 236.53 m 191.00 236.53 l S 191.00 236.53 m 191.05 236.53 l S 191.05 236.53 m 191.09 236.53 l S 191.09 236.53 m 191.14 236.53 l S 191.14 236.53 m 191.18 236.53 l S 191.18 236.53 m 191.23 236.53 l S 191.23 236.53 m 191.28 236.53 l S 191.28 236.53 m 191.32 236.53 l S 191.32 236.53 m 191.37 236.53 l S 191.37 236.53 m 191.41 236.53 l S 191.41 236.53 m 191.46 236.53 l S 191.46 236.53 m 191.51 236.53 l S 191.51 236.53 m 191.55 236.53 l S 191.55 236.53 m 191.60 236.53 l S 191.60 236.53 m 191.64 236.53 l S 191.64 236.53 m 191.69 236.53 l S 191.69 236.53 m 191.74 236.53 l S 191.74 236.53 m 191.78 236.53 l S 191.78 236.53 m 191.83 236.53 l S 191.83 236.53 m 191.87 236.53 l S 191.87 236.53 m 191.92 236.53 l S 191.92 236.53 m 191.97 236.53 l S 191.97 236.53 m 192.01 236.53 l S 192.01 236.53 m 192.06 236.53 l S 192.06 236.53 m 192.10 236.53 l S 192.10 236.53 m 192.15 236.53 l S 192.15 236.53 m 192.20 236.53 l S 192.20 236.53 m 192.24 236.53 l S 192.24 236.53 m 192.29 236.53 l S 192.29 236.53 m 192.33 236.53 l S 192.33 236.53 m 192.38 236.53 l S 192.38 236.53 m 192.43 236.53 l S 192.43 236.53 m 192.47 236.53 l S 192.47 236.53 m 192.52 236.53 l S 192.52 236.53 m 192.56 236.53 l S 192.56 236.53 m 192.61 236.53 l S 192.61 236.53 m 192.66 236.53 l S 192.66 236.53 m 192.70 237.51 l S 192.70 236.53 m 192.75 237.51 l S 192.75 236.53 m 192.79 236.53 l S 192.79 236.53 m 192.84 236.53 l S 192.84 236.53 m 192.89 236.53 l S 192.89 236.53 m 192.93 236.53 l S 192.93 236.53 m 192.98 236.53 l S 192.98 236.53 m 193.02 236.53 l S 193.02 236.53 m 193.07 236.53 l S 193.07 236.53 m 193.12 236.53 l S 193.12 236.53 m 193.16 236.53 l S 193.16 236.53 m 193.21 236.53 l S 193.21 236.53 m 193.25 236.53 l S 193.25 236.53 m 193.30 236.53 l S 193.30 236.53 m 193.35 236.53 l S 193.35 236.53 m 193.39 237.51 l S 193.39 236.53 m 193.44 237.51 l S 193.44 236.53 m 193.48 236.53 l S 193.48 236.53 m 193.53 236.53 l S 193.53 236.53 m 193.58 236.53 l S 193.58 236.53 m 193.62 236.53 l S 193.62 236.53 m 193.67 236.53 l S 193.67 236.53 m 193.71 236.53 l S 193.71 236.53 m 193.76 236.53 l S 193.76 236.53 m 193.81 236.53 l S 193.81 236.53 m 193.85 236.53 l S 193.85 236.53 m 193.90 236.53 l S 193.90 236.53 m 193.94 236.53 l S 193.94 236.53 m 193.99 236.53 l S 193.99 236.53 m 194.04 236.53 l S 194.04 236.53 m 194.08 236.53 l S 194.08 236.53 m 194.13 236.53 l S 194.13 236.53 m 194.17 236.53 l S 194.17 236.53 m 194.22 236.53 l S 194.22 236.53 m 194.27 236.53 l S 194.27 236.53 m 194.31 236.53 l S 194.31 236.53 m 194.36 236.53 l S 194.36 236.53 m 194.40 236.53 l S 194.40 236.53 m 194.45 236.53 l S 194.45 236.53 m 194.50 236.53 l S 194.50 236.53 m 194.54 236.53 l S 194.54 236.53 m 194.59 236.53 l S 194.59 236.53 m 194.63 236.53 l S 194.63 236.53 m 194.68 236.53 l S 194.68 236.53 m 194.73 236.53 l S 194.73 236.53 m 194.77 236.53 l S 194.77 236.53 m 194.82 236.53 l S 194.82 236.53 m 194.86 236.53 l S 194.86 236.53 m 194.91 236.53 l S 194.91 236.53 m 194.96 236.53 l S 194.96 236.53 m 195.00 236.53 l S 195.00 236.53 m 195.05 236.53 l S 195.05 236.53 m 195.09 236.53 l S 195.09 236.53 m 195.14 236.53 l S 195.14 236.53 m 195.19 236.53 l S 195.19 236.53 m 195.23 236.53 l S 195.23 236.53 m 195.28 236.53 l S 195.28 236.53 m 195.32 236.53 l S 195.32 236.53 m 195.37 236.53 l S 195.37 236.53 m 195.42 236.53 l S 195.42 236.53 m 195.46 236.53 l S 195.46 236.53 m 195.51 236.53 l S 195.51 236.53 m 195.55 237.51 l S 195.55 236.53 m 195.60 237.51 l S 195.60 236.53 m 195.65 237.51 l S 195.65 236.53 m 195.69 236.53 l S 195.69 236.53 m 195.74 236.53 l S 195.74 236.53 m 195.78 237.51 l S 195.78 236.53 m 195.83 237.51 l S 195.83 236.53 m 195.88 236.53 l S 195.88 236.53 m 195.92 236.53 l S 195.92 236.53 m 195.97 236.53 l S 195.97 236.53 m 196.01 236.53 l S 196.01 236.53 m 196.06 236.53 l S 196.06 236.53 m 196.11 236.53 l S 196.11 236.53 m 196.15 236.53 l S 196.15 236.53 m 196.20 236.53 l S 196.20 236.53 m 196.24 236.53 l S 196.24 236.53 m 196.29 236.53 l S 196.29 236.53 m 196.34 236.53 l S 196.34 236.53 m 196.38 236.53 l S 196.38 236.53 m 196.43 236.53 l S 196.43 236.53 m 196.47 236.53 l S 196.47 236.53 m 196.52 236.53 l S 196.52 236.53 m 196.57 236.53 l S 196.57 236.53 m 196.61 237.51 l S 196.61 236.53 m 196.66 237.51 l S 196.66 236.53 m 196.70 236.53 l S 196.70 236.53 m 196.75 236.53 l S 196.75 236.53 m 196.80 236.53 l S 196.80 236.53 m 196.84 236.53 l S 196.84 236.53 m 196.89 236.53 l S 196.89 236.53 m 196.93 236.53 l S 196.93 236.53 m 196.98 236.53 l S 196.98 236.53 m 197.03 236.53 l S 197.03 236.53 m 197.07 236.53 l S 197.07 236.53 m 197.12 236.53 l S 197.12 236.53 m 197.16 236.53 l S 197.16 236.53 m 197.21 236.53 l S 197.21 236.53 m 197.26 236.53 l S 197.26 236.53 m 197.30 236.53 l S 197.30 236.53 m 197.35 236.53 l S 197.35 236.53 m 197.39 236.53 l S 197.39 236.53 m 197.44 236.53 l S 197.44 236.53 m 197.49 236.53 l S 197.49 236.53 m 197.53 236.53 l S 197.53 236.53 m 197.58 236.53 l S 197.58 236.53 m 197.62 237.51 l S 197.62 236.53 m 197.67 237.51 l S 197.67 236.53 m 197.72 236.53 l S 197.72 236.53 m 197.76 236.53 l S 197.76 236.53 m 197.81 236.53 l S 197.81 236.53 m 197.85 236.53 l S 197.85 236.53 m 197.90 236.53 l S 197.90 236.53 m 197.95 236.53 l S 197.95 236.53 m 197.99 236.53 l S 197.99 236.53 m 198.04 236.53 l S 198.04 236.53 m 198.08 236.53 l S 198.08 236.53 m 198.13 236.53 l S 198.13 236.53 m 198.18 236.53 l S 198.18 236.53 m 198.22 236.53 l S 198.22 236.53 m 198.27 236.53 l S 198.27 236.53 m 198.31 236.53 l S 198.31 236.53 m 198.36 236.53 l S 198.36 236.53 m 198.41 236.53 l S 198.41 236.53 m 198.45 236.53 l S 198.45 236.53 m 198.50 237.51 l S 198.50 236.53 m 198.55 236.53 l S 198.55 236.53 m 198.59 236.53 l S 198.59 236.53 m 198.64 236.53 l S 198.64 236.53 m 198.68 236.53 l S 198.68 236.53 m 198.73 236.53 l S 198.73 236.53 m 198.78 236.53 l S 198.78 236.53 m 198.82 236.53 l S 198.82 236.53 m 198.87 236.53 l S 198.87 236.53 m 198.91 236.53 l S 198.91 236.53 m 198.96 236.53 l S 198.96 236.53 m 199.01 236.53 l S 199.01 236.53 m 199.05 236.53 l S 199.05 236.53 m 199.10 236.53 l S 199.10 236.53 m 199.14 236.53 l S 199.14 236.53 m 199.19 236.53 l S 199.19 236.53 m 199.24 236.53 l S 199.24 236.53 m 199.28 236.53 l S 199.28 236.53 m 199.33 236.53 l S 199.33 236.53 m 199.37 236.53 l S 199.37 236.53 m 199.42 236.53 l S 199.42 236.53 m 199.47 236.53 l S 199.47 236.53 m 199.51 236.53 l S 199.51 236.53 m 199.56 236.53 l S 199.56 236.53 m 199.60 236.53 l S 199.60 236.53 m 199.65 236.53 l S 199.65 236.53 m 199.70 236.53 l S 199.70 236.53 m 199.74 236.53 l S 199.74 236.53 m 199.79 236.53 l S 199.79 236.53 m 199.83 236.53 l S 199.83 236.53 m 199.88 236.53 l S 199.88 236.53 m 199.93 236.53 l S 199.93 236.53 m 199.97 236.53 l S 199.97 236.53 m 200.02 236.53 l S 200.02 236.53 m 200.06 236.53 l S 200.06 236.53 m 200.11 236.53 l S 200.11 236.53 m 200.16 236.53 l S 200.16 236.53 m 200.20 236.53 l S 200.20 236.53 m 200.25 236.53 l S 200.25 236.53 m 200.29 236.53 l S 200.29 236.53 m 200.34 236.53 l S 200.34 236.53 m 200.39 236.53 l S 200.39 236.53 m 200.43 236.53 l S 200.43 236.53 m 200.48 236.53 l S 200.48 236.53 m 200.52 236.53 l S 200.52 236.53 m 200.57 236.53 l S 200.57 236.53 m 200.62 236.53 l S 200.62 236.53 m 200.66 236.53 l S 200.66 236.53 m 200.71 236.53 l S 200.71 236.53 m 200.75 236.53 l S 200.75 236.53 m 200.80 236.53 l S 200.80 236.53 m 200.85 236.53 l S 200.85 236.53 m 200.89 236.53 l S 200.89 236.53 m 200.94 236.53 l S 200.94 236.53 m 200.98 236.53 l S 200.98 236.53 m 201.03 236.53 l S 201.03 236.53 m 201.08 236.53 l S 201.08 236.53 m 201.12 236.53 l S 201.12 236.53 m 201.17 236.53 l S 201.17 236.53 m 201.21 236.53 l S 201.21 236.53 m 201.26 236.53 l S 201.26 236.53 m 201.31 236.53 l S 201.31 236.53 m 201.35 236.53 l S 201.35 236.53 m 201.40 236.53 l S 201.40 236.53 m 201.44 236.53 l S 201.44 236.53 m 201.49 236.53 l S 201.49 236.53 m 201.54 236.53 l S 201.54 236.53 m 201.58 236.53 l S 201.58 236.53 m 201.63 236.53 l S 201.63 236.53 m 201.67 236.53 l S 201.67 236.53 m 201.72 236.53 l S 201.72 236.53 m 201.77 236.53 l S 201.77 236.53 m 201.81 236.53 l S 201.81 236.53 m 201.86 236.53 l S 201.86 236.53 m 201.90 236.53 l S 201.90 236.53 m 201.95 236.53 l S 201.95 236.53 m 202.00 236.53 l S 202.00 236.53 m 202.04 236.53 l S 202.04 236.53 m 202.09 236.53 l S 202.09 236.53 m 202.13 236.53 l S 202.13 236.53 m 202.18 236.53 l S 202.18 236.53 m 202.23 236.53 l S 202.23 236.53 m 202.27 236.53 l S 202.27 236.53 m 202.32 236.53 l S 202.32 236.53 m 202.36 236.53 l S 202.36 236.53 m 202.41 236.53 l S 202.41 236.53 m 202.46 236.53 l S 202.46 236.53 m 202.50 236.53 l S 202.50 236.53 m 202.55 236.53 l S 202.55 236.53 m 202.59 237.51 l S 202.59 236.53 m 202.64 236.53 l S 202.64 236.53 m 202.69 236.53 l S 202.69 236.53 m 202.73 236.53 l S 202.73 236.53 m 202.78 236.53 l S 202.78 236.53 m 202.82 236.53 l S 202.82 236.53 m 202.87 236.53 l S 202.87 236.53 m 202.92 236.53 l S 202.92 236.53 m 202.96 236.53 l S 202.96 236.53 m 203.01 236.53 l S 203.01 236.53 m 203.05 236.53 l S 203.05 236.53 m 203.10 236.53 l S 203.10 236.53 m 203.15 236.53 l S 203.15 236.53 m 203.19 236.53 l S 203.19 236.53 m 203.24 236.53 l S 203.24 236.53 m 203.28 236.53 l S 203.28 236.53 m 203.33 236.53 l S 203.33 236.53 m 203.38 236.53 l S 203.38 236.53 m 203.42 238.49 l S 203.42 236.53 m 203.47 237.51 l S 203.47 236.53 m 203.51 237.51 l S 203.51 236.53 m 203.56 236.53 l S 203.56 236.53 m 203.61 236.53 l S 203.61 236.53 m 203.65 236.53 l S 203.65 236.53 m 203.70 236.53 l S 203.70 236.53 m 203.74 236.53 l S 203.74 236.53 m 203.79 236.53 l S 203.79 236.53 m 203.84 236.53 l S 203.84 236.53 m 203.88 236.53 l S 203.88 236.53 m 203.93 236.53 l S 203.93 236.53 m 203.97 236.53 l S 203.97 236.53 m 204.02 238.49 l S 204.02 236.53 m 204.07 236.53 l S 204.07 236.53 m 204.11 236.53 l S 204.11 236.53 m 204.16 236.53 l S 204.16 236.53 m 204.20 236.53 l S 204.20 236.53 m 204.25 236.53 l S 204.25 236.53 m 204.30 236.53 l S 204.30 236.53 m 204.34 236.53 l S 204.34 236.53 m 204.39 236.53 l S 204.39 236.53 m 204.43 236.53 l S 204.43 236.53 m 204.48 236.53 l S 204.48 236.53 m 204.53 236.53 l S 204.53 236.53 m 204.57 236.53 l S 204.57 236.53 m 204.62 236.53 l S 204.62 236.53 m 204.66 236.53 l S 204.66 236.53 m 204.71 236.53 l S 204.71 236.53 m 204.76 236.53 l S 204.76 236.53 m 204.80 237.51 l S 204.80 236.53 m 204.85 236.53 l S 204.85 236.53 m 204.89 236.53 l S 204.89 236.53 m 204.94 236.53 l S 204.94 236.53 m 204.99 236.53 l S 204.99 236.53 m 205.03 236.53 l S 205.03 236.53 m 205.08 236.53 l S 205.08 236.53 m 205.12 236.53 l S 205.12 236.53 m 205.17 236.53 l S 205.17 236.53 m 205.22 236.53 l S 205.22 236.53 m 205.26 236.53 l S 205.26 236.53 m 205.31 236.53 l S 205.31 236.53 m 205.35 236.53 l S 205.35 236.53 m 205.40 236.53 l S 205.40 236.53 m 205.45 236.53 l S 205.45 236.53 m 205.49 236.53 l S 205.49 236.53 m 205.54 238.49 l S 205.54 236.53 m 205.58 236.53 l S 205.58 236.53 m 205.63 236.53 l S 205.63 236.53 m 205.68 236.53 l S 205.68 236.53 m 205.72 238.49 l S 205.72 236.53 m 205.77 238.49 l S 205.77 236.53 m 205.81 236.53 l S 205.81 236.53 m 205.86 236.53 l S 205.86 236.53 m 205.91 236.53 l S 205.91 236.53 m 205.95 236.53 l S 205.95 236.53 m 206.00 236.53 l S 206.00 236.53 m 206.04 236.53 l S 206.04 236.53 m 206.09 236.53 l S 206.09 236.53 m 206.14 236.53 l S 206.14 236.53 m 206.18 236.53 l S 206.18 236.53 m 206.23 236.53 l S 206.23 236.53 m 206.27 236.53 l S 206.27 236.53 m 206.32 236.53 l S 206.32 236.53 m 206.37 236.53 l S 206.37 236.53 m 206.41 236.53 l S 206.41 236.53 m 206.46 236.53 l S 206.46 236.53 m 206.51 236.53 l S 206.51 236.53 m 206.55 236.53 l S 206.55 236.53 m 206.60 236.53 l S 206.60 236.53 m 206.64 236.53 l S 206.64 236.53 m 206.69 236.53 l S 206.69 236.53 m 206.74 236.53 l S 206.74 236.53 m 206.78 236.53 l S 206.78 236.53 m 206.83 236.53 l S 206.83 236.53 m 206.87 236.53 l S 206.87 236.53 m 206.92 236.53 l S 206.92 236.53 m 206.97 236.53 l S 206.97 236.53 m 207.01 236.53 l S 207.01 236.53 m 207.06 236.53 l S 207.06 236.53 m 207.10 236.53 l S 207.10 236.53 m 207.15 236.53 l S 207.15 236.53 m 207.20 236.53 l S 207.20 236.53 m 207.24 236.53 l S 207.24 236.53 m 207.29 236.53 l S 207.29 236.53 m 207.33 236.53 l S 207.33 236.53 m 207.38 236.53 l S 207.38 236.53 m 207.43 236.53 l S 207.43 236.53 m 207.47 236.53 l S 207.47 236.53 m 207.52 236.53 l S 207.52 236.53 m 207.56 236.53 l S 207.56 236.53 m 207.61 236.53 l S 207.61 236.53 m 207.66 236.53 l S 207.66 236.53 m 207.70 236.53 l S 207.70 236.53 m 207.75 236.53 l S 207.75 236.53 m 207.79 236.53 l S 207.79 236.53 m 207.84 236.53 l S 207.84 236.53 m 207.89 236.53 l S 207.89 236.53 m 207.93 236.53 l S 207.93 236.53 m 207.98 236.53 l S 207.98 236.53 m 208.02 236.53 l S 208.02 236.53 m 208.07 236.53 l S 208.07 236.53 m 208.12 236.53 l S 208.12 236.53 m 208.16 236.53 l S 208.16 236.53 m 208.21 236.53 l S 208.21 236.53 m 208.25 236.53 l S 208.25 236.53 m 208.30 236.53 l S 208.30 236.53 m 208.35 236.53 l S 208.35 236.53 m 208.39 236.53 l S 208.39 236.53 m 208.44 236.53 l S 208.44 236.53 m 208.48 236.53 l S 208.48 236.53 m 208.53 236.53 l S 208.53 236.53 m 208.58 236.53 l S 208.58 236.53 m 208.62 236.53 l S 208.62 236.53 m 208.67 236.53 l S 208.67 236.53 m 208.71 236.53 l S 208.71 236.53 m 208.76 236.53 l S 208.76 236.53 m 208.81 236.53 l S 208.81 236.53 m 208.85 236.53 l S 208.85 236.53 m 208.90 236.53 l S 208.90 236.53 m 208.94 236.53 l S 208.94 236.53 m 208.99 236.53 l S 208.99 236.53 m 209.04 236.53 l S 209.04 236.53 m 209.08 236.53 l S 209.08 236.53 m 209.13 236.53 l S 209.13 236.53 m 209.17 236.53 l S 209.17 236.53 m 209.22 236.53 l S 209.22 236.53 m 209.27 236.53 l S 209.27 236.53 m 209.31 236.53 l S 209.31 236.53 m 209.36 236.53 l S 209.36 236.53 m 209.40 236.53 l S 209.40 236.53 m 209.45 236.53 l S 209.45 236.53 m 209.50 236.53 l S 209.50 236.53 m 209.54 236.53 l S 209.54 236.53 m 209.59 236.53 l S 209.59 236.53 m 209.63 236.53 l S 209.63 236.53 m 209.68 236.53 l S 209.68 236.53 m 209.73 236.53 l S 209.73 236.53 m 209.77 236.53 l S 209.77 236.53 m 209.82 236.53 l S 209.82 236.53 m 209.86 236.53 l S 209.86 236.53 m 209.91 236.53 l S 209.91 236.53 m 209.96 236.53 l S 209.96 236.53 m 210.00 236.53 l S 210.00 236.53 m 210.05 236.53 l S 210.05 236.53 m 210.09 236.53 l S 210.09 236.53 m 210.14 236.53 l S 210.14 236.53 m 210.19 236.53 l S 210.19 236.53 m 210.23 236.53 l S 210.23 236.53 m 210.28 236.53 l S 210.28 236.53 m 210.32 238.49 l S 210.32 236.53 m 210.37 238.49 l S 210.37 236.53 m 210.42 236.53 l S 210.42 236.53 m 210.46 236.53 l S 210.46 236.53 m 210.51 236.53 l S 210.51 236.53 m 210.55 236.53 l S 210.55 236.53 m 210.60 236.53 l S 210.60 236.53 m 210.65 236.53 l S 210.65 236.53 m 210.69 236.53 l S 210.69 236.53 m 210.74 236.53 l S 210.74 236.53 m 210.78 236.53 l S 210.78 236.53 m 210.83 236.53 l S 210.83 236.53 m 210.88 236.53 l S 210.88 236.53 m 210.92 236.53 l S 210.92 236.53 m 210.97 236.53 l S 210.97 236.53 m 211.01 236.53 l S 211.01 236.53 m 211.06 236.53 l S 211.06 236.53 m 211.11 237.51 l S 211.11 236.53 m 211.15 237.51 l S 211.15 236.53 m 211.20 236.53 l S 211.20 236.53 m 211.24 236.53 l S 211.24 236.53 m 211.29 236.53 l S 211.29 236.53 m 211.34 236.53 l S 211.34 236.53 m 211.38 236.53 l S 211.38 236.53 m 211.43 236.53 l S 211.43 236.53 m 211.47 236.53 l S 211.47 236.53 m 211.52 236.53 l S 211.52 236.53 m 211.57 236.53 l S 211.57 236.53 m 211.61 236.53 l S 211.61 236.53 m 211.66 236.53 l S 211.66 236.53 m 211.70 236.53 l S 211.70 236.53 m 211.75 236.53 l S 211.75 236.53 m 211.80 236.53 l S 211.80 236.53 m 211.84 236.53 l S 211.84 236.53 m 211.89 236.53 l S 211.89 236.53 m 211.93 236.53 l S 211.93 236.53 m 211.98 236.53 l S 211.98 236.53 m 212.03 236.53 l S 212.03 236.53 m 212.07 236.53 l S 212.07 236.53 m 212.12 237.51 l S 212.12 236.53 m 212.16 237.51 l S 212.16 236.53 m 212.21 238.49 l S 212.21 236.53 m 212.26 238.49 l S 212.26 236.53 m 212.30 236.53 l S 212.30 236.53 m 212.35 236.53 l S 212.35 236.53 m 212.39 236.53 l S 212.39 236.53 m 212.44 236.53 l S 212.44 236.53 m 212.49 236.53 l S 212.49 236.53 m 212.53 236.53 l S 212.53 236.53 m 212.58 236.53 l S 212.58 236.53 m 212.62 236.53 l S 212.62 236.53 m 212.67 236.53 l S 212.67 236.53 m 212.72 237.51 l S 212.72 236.53 m 212.76 237.51 l S 212.76 236.53 m 212.81 236.53 l S 212.81 236.53 m 212.85 236.53 l S 212.85 236.53 m 212.90 236.53 l S 212.90 236.53 m 212.95 236.53 l S 212.95 236.53 m 212.99 236.53 l S 212.99 236.53 m 213.04 236.53 l S 213.04 236.53 m 213.08 236.53 l S 213.08 236.53 m 213.13 236.53 l S 213.13 236.53 m 213.18 237.51 l S 213.18 236.53 m 213.22 237.51 l S 213.22 236.53 m 213.27 236.53 l S 213.27 236.53 m 213.31 236.53 l S 213.31 236.53 m 213.36 236.53 l S 213.36 236.53 m 213.41 236.53 l S 213.41 236.53 m 213.45 236.53 l S 213.45 236.53 m 213.50 236.53 l S 213.50 236.53 m 213.54 236.53 l S 213.54 236.53 m 213.59 236.53 l S 213.59 236.53 m 213.64 236.53 l S 213.64 236.53 m 213.68 236.53 l S 213.68 236.53 m 213.73 236.53 l S 213.73 236.53 m 213.77 236.53 l S 213.77 236.53 m 213.82 236.53 l S 213.82 236.53 m 213.87 236.53 l S 213.87 236.53 m 213.91 236.53 l S 213.91 236.53 m 213.96 236.53 l S 213.96 236.53 m 214.00 236.53 l S 214.00 236.53 m 214.05 236.53 l S 214.05 236.53 m 214.10 236.53 l S 214.10 236.53 m 214.14 236.53 l S 214.14 236.53 m 214.19 236.53 l S 214.19 236.53 m 214.23 236.53 l S 214.23 236.53 m 214.28 236.53 l S 214.28 236.53 m 214.33 236.53 l S 214.33 236.53 m 214.37 236.53 l S 214.37 236.53 m 214.42 236.53 l S 214.42 236.53 m 214.47 236.53 l S 214.47 236.53 m 214.51 236.53 l S 214.51 236.53 m 214.56 236.53 l S 214.56 236.53 m 214.60 236.53 l S 214.60 236.53 m 214.65 236.53 l S 214.65 236.53 m 214.70 236.53 l S 214.70 236.53 m 214.74 236.53 l S 214.74 236.53 m 214.79 236.53 l S 214.79 236.53 m 214.83 236.53 l S 214.83 236.53 m 214.88 236.53 l S 214.88 236.53 m 214.93 236.53 l S 214.93 236.53 m 214.97 236.53 l S 214.97 236.53 m 215.02 238.49 l S 215.02 236.53 m 215.06 237.51 l S 215.06 236.53 m 215.11 236.53 l S 215.11 236.53 m 215.16 236.53 l S 215.16 236.53 m 215.20 236.53 l S 215.20 236.53 m 215.25 236.53 l S 215.25 236.53 m 215.29 236.53 l S 215.29 236.53 m 215.34 236.53 l S 215.34 236.53 m 215.39 236.53 l S 215.39 236.53 m 215.43 236.53 l S 215.43 236.53 m 215.48 236.53 l S 215.48 236.53 m 215.52 236.53 l S 215.52 236.53 m 215.57 236.53 l S 215.57 236.53 m 215.62 236.53 l S 215.62 236.53 m 215.66 236.53 l S 215.66 236.53 m 215.71 236.53 l S 215.71 236.53 m 215.75 236.53 l S 215.75 236.53 m 215.80 236.53 l S 215.80 236.53 m 215.85 236.53 l S 215.85 236.53 m 215.89 236.53 l S 215.89 236.53 m 215.94 236.53 l S 215.94 236.53 m 215.98 236.53 l S 215.98 236.53 m 216.03 236.53 l S 216.03 236.53 m 216.08 236.53 l S 216.08 236.53 m 216.12 236.53 l S 216.12 236.53 m 216.17 236.53 l S 216.17 236.53 m 216.21 236.53 l S 216.21 236.53 m 216.26 236.53 l S 216.26 236.53 m 216.31 236.53 l S 216.31 236.53 m 216.35 236.53 l S 216.35 236.53 m 216.40 236.53 l S 216.40 236.53 m 216.44 236.53 l S 216.44 236.53 m 216.49 236.53 l S 216.49 236.53 m 216.54 236.53 l S 216.54 236.53 m 216.58 236.53 l S 216.58 236.53 m 216.63 236.53 l S 216.63 236.53 m 216.67 236.53 l S 216.67 236.53 m 216.72 236.53 l S 216.72 236.53 m 216.77 236.53 l S 216.77 236.53 m 216.81 236.53 l S 216.81 236.53 m 216.86 236.53 l S 216.86 236.53 m 216.90 236.53 l S 216.90 236.53 m 216.95 236.53 l S 216.95 236.53 m 217.00 236.53 l S 217.00 236.53 m 217.04 236.53 l S 217.04 236.53 m 217.09 236.53 l S 217.09 236.53 m 217.13 236.53 l S 217.13 236.53 m 217.18 236.53 l S 217.18 236.53 m 217.23 238.49 l S 217.23 236.53 m 217.27 238.49 l S 217.27 236.53 m 217.32 236.53 l S 217.32 236.53 m 217.36 236.53 l S 217.36 236.53 m 217.41 236.53 l S 217.41 236.53 m 217.46 236.53 l S 217.46 236.53 m 217.50 236.53 l S 217.50 236.53 m 217.55 236.53 l S 217.55 236.53 m 217.59 236.53 l S 217.59 236.53 m 217.64 236.53 l S 217.64 236.53 m 217.69 236.53 l S 217.69 236.53 m 217.73 236.53 l S 217.73 236.53 m 217.78 236.53 l S 217.78 236.53 m 217.82 236.53 l S 217.82 236.53 m 217.87 236.53 l S 217.87 236.53 m 217.92 236.53 l S 217.92 236.53 m 217.96 236.53 l S 217.96 236.53 m 218.01 236.53 l S 218.01 236.53 m 218.05 236.53 l S 218.05 236.53 m 218.10 236.53 l S 218.10 236.53 m 218.15 236.53 l S 218.15 236.53 m 218.19 236.53 l S 218.19 236.53 m 218.24 236.53 l S 218.24 236.53 m 218.28 236.53 l S 218.28 236.53 m 218.33 236.53 l S 218.33 236.53 m 218.38 236.53 l S 218.38 236.53 m 218.42 236.53 l S 218.42 236.53 m 218.47 236.53 l S 218.47 236.53 m 218.51 236.53 l S 218.51 236.53 m 218.56 236.53 l S 218.56 236.53 m 218.61 236.53 l S 218.61 236.53 m 218.65 236.53 l S 218.65 236.53 m 218.70 236.53 l S 218.70 236.53 m 218.74 236.53 l S 218.74 236.53 m 218.79 236.53 l S 218.79 236.53 m 218.84 236.53 l S 218.84 236.53 m 218.88 236.53 l S 218.88 236.53 m 218.93 236.53 l S 218.93 236.53 m 218.97 237.51 l S 218.97 236.53 m 219.02 237.51 l S 219.02 236.53 m 219.07 236.53 l S 219.07 236.53 m 219.11 236.53 l S 219.11 236.53 m 219.16 236.53 l S 219.16 236.53 m 219.20 236.53 l S 219.20 236.53 m 219.25 236.53 l S 219.25 236.53 m 219.30 236.53 l S 219.30 236.53 m 219.34 236.53 l S 219.34 236.53 m 219.39 236.53 l S 219.39 236.53 m 219.43 236.53 l S 219.43 236.53 m 219.48 236.53 l S 219.48 236.53 m 219.53 236.53 l S 219.53 236.53 m 219.57 236.53 l S 219.57 236.53 m 219.62 236.53 l S 219.62 236.53 m 219.66 236.53 l S 219.66 236.53 m 219.71 237.51 l S 219.71 236.53 m 219.76 237.51 l S 219.76 236.53 m 219.80 236.53 l S 219.80 236.53 m 219.85 236.53 l S 219.85 236.53 m 219.89 236.53 l S 219.89 236.53 m 219.94 236.53 l S 219.94 236.53 m 219.99 236.53 l S 219.99 236.53 m 220.03 237.51 l S 220.03 236.53 m 220.08 237.51 l S 220.08 236.53 m 220.12 236.53 l S 220.12 236.53 m 220.17 236.53 l S 220.17 236.53 m 220.22 236.53 l S 220.22 236.53 m 220.26 236.53 l S 220.26 236.53 m 220.31 236.53 l S 220.31 236.53 m 220.35 236.53 l S 220.35 236.53 m 220.40 236.53 l S 220.40 236.53 m 220.45 236.53 l S 220.45 236.53 m 220.49 236.53 l S 220.49 236.53 m 220.54 236.53 l S 220.54 236.53 m 220.58 236.53 l S 220.58 236.53 m 220.63 236.53 l S 220.63 236.53 m 220.68 236.53 l S 220.68 236.53 m 220.72 236.53 l S 220.72 236.53 m 220.77 236.53 l S 220.77 236.53 m 220.81 236.53 l S 220.81 236.53 m 220.86 236.53 l S 220.86 236.53 m 220.91 236.53 l S 220.91 236.53 m 220.95 236.53 l S 220.95 236.53 m 221.00 236.53 l S 221.00 236.53 m 221.04 236.53 l S 221.04 236.53 m 221.09 236.53 l S 221.09 236.53 m 221.14 236.53 l S 221.14 236.53 m 221.18 236.53 l S 221.18 236.53 m 221.23 236.53 l S 221.23 236.53 m 221.27 236.53 l S 221.27 236.53 m 221.32 236.53 l S 221.32 236.53 m 221.37 236.53 l S 221.37 236.53 m 221.41 236.53 l S 221.41 236.53 m 221.46 237.51 l S 221.46 236.53 m 221.50 237.51 l S 221.50 236.53 m 221.55 236.53 l S 221.55 236.53 m 221.60 236.53 l S 221.60 236.53 m 221.64 236.53 l S 221.64 236.53 m 221.69 236.53 l S 221.69 236.53 m 221.73 236.53 l S 221.73 236.53 m 221.78 236.53 l S 221.78 236.53 m 221.83 236.53 l S 221.83 236.53 m 221.87 236.53 l S 221.87 236.53 m 221.92 236.53 l S 221.92 236.53 m 221.96 236.53 l S 221.96 236.53 m 222.01 236.53 l S 222.01 236.53 m 222.06 236.53 l S 222.06 236.53 m 222.10 236.53 l S 222.10 236.53 m 222.15 236.53 l S 222.15 236.53 m 222.19 236.53 l S 222.19 236.53 m 222.24 236.53 l S 222.24 236.53 m 222.29 236.53 l S 222.29 236.53 m 222.33 236.53 l S 222.33 236.53 m 222.38 236.53 l S 222.38 236.53 m 222.43 236.53 l S 222.43 236.53 m 222.47 236.53 l S 222.47 236.53 m 222.52 236.53 l S 222.52 236.53 m 222.56 236.53 l S 222.56 236.53 m 222.61 236.53 l S 222.61 236.53 m 222.66 236.53 l S 222.66 236.53 m 222.70 236.53 l S 222.70 236.53 m 222.75 236.53 l S 222.75 236.53 m 222.79 236.53 l S 222.79 236.53 m 222.84 236.53 l S 222.84 236.53 m 222.89 236.53 l S 222.89 236.53 m 222.93 236.53 l S 222.93 236.53 m 222.98 236.53 l S 222.98 236.53 m 223.02 236.53 l S 223.02 236.53 m 223.07 236.53 l S 223.07 236.53 m 223.12 236.53 l S 223.12 236.53 m 223.16 236.53 l S 223.16 236.53 m 223.21 236.53 l S 223.21 236.53 m 223.25 236.53 l S 223.25 236.53 m 223.30 236.53 l S 223.30 236.53 m 223.35 236.53 l S 223.35 236.53 m 223.39 236.53 l S 223.39 236.53 m 223.44 236.53 l S 223.44 236.53 m 223.48 236.53 l S 223.48 236.53 m 223.53 236.53 l S 223.53 236.53 m 223.58 236.53 l S 223.58 236.53 m 223.62 236.53 l S 223.62 236.53 m 223.67 236.53 l S 223.67 236.53 m 223.71 236.53 l S 223.71 236.53 m 223.76 236.53 l S 223.76 236.53 m 223.81 236.53 l S 223.81 236.53 m 223.85 236.53 l S 223.85 236.53 m 223.90 236.53 l S 223.90 236.53 m 223.94 236.53 l S 223.94 236.53 m 223.99 236.53 l S 223.99 236.53 m 224.04 236.53 l S 224.04 236.53 m 224.08 236.53 l S 224.08 236.53 m 224.13 236.53 l S 224.13 236.53 m 224.17 236.53 l S 224.17 236.53 m 224.22 236.53 l S 224.22 236.53 m 224.27 236.53 l S 224.27 236.53 m 224.31 236.53 l S 224.31 236.53 m 224.36 236.53 l S 224.36 236.53 m 224.40 236.53 l S 224.40 236.53 m 224.45 236.53 l S 224.45 236.53 m 224.50 236.53 l S 224.50 236.53 m 224.54 236.53 l S 224.54 236.53 m 224.59 236.53 l S 224.59 236.53 m 224.63 236.53 l S 224.63 236.53 m 224.68 236.53 l S 224.68 236.53 m 224.73 236.53 l S 224.73 236.53 m 224.77 236.53 l S 224.77 236.53 m 224.82 236.53 l S 224.82 236.53 m 224.86 236.53 l S 224.86 236.53 m 224.91 236.53 l S 224.91 236.53 m 224.96 236.53 l S 224.96 236.53 m 225.00 236.53 l S 225.00 236.53 m 225.05 236.53 l S 225.05 236.53 m 225.09 236.53 l S 225.09 236.53 m 225.14 236.53 l S 225.14 236.53 m 225.19 236.53 l S 225.19 236.53 m 225.23 236.53 l S 225.23 236.53 m 225.28 236.53 l S 225.28 236.53 m 225.32 236.53 l S 225.32 236.53 m 225.37 236.53 l S 225.37 236.53 m 225.42 236.53 l S 225.42 236.53 m 225.46 236.53 l S 225.46 236.53 m 225.51 236.53 l S 225.51 236.53 m 225.55 236.53 l S 225.55 236.53 m 225.60 236.53 l S 225.60 236.53 m 225.65 236.53 l S 225.65 236.53 m 225.69 236.53 l S 225.69 236.53 m 225.74 236.53 l S 225.74 236.53 m 225.78 236.53 l S 225.78 236.53 m 225.83 236.53 l S 225.83 236.53 m 225.88 236.53 l S 225.88 236.53 m 225.92 236.53 l S 225.92 236.53 m 225.97 236.53 l S 225.97 236.53 m 226.01 236.53 l S 226.01 236.53 m 226.06 236.53 l S 226.06 236.53 m 226.11 236.53 l S 226.11 236.53 m 226.15 236.53 l S 226.15 236.53 m 226.20 236.53 l S 226.20 236.53 m 226.24 236.53 l S 226.24 236.53 m 226.29 236.53 l S 226.29 236.53 m 226.34 236.53 l S 226.34 236.53 m 226.38 236.53 l S 226.38 236.53 m 226.43 236.53 l S 226.43 236.53 m 226.47 236.53 l S 226.47 236.53 m 226.52 236.53 l S 226.52 236.53 m 226.57 236.53 l S 226.57 236.53 m 226.61 236.53 l S 226.61 236.53 m 226.66 236.53 l S 226.66 236.53 m 226.70 236.53 l S 226.70 236.53 m 226.75 236.53 l S 226.75 236.53 m 226.80 236.53 l S 226.80 236.53 m 226.84 236.53 l S 226.84 236.53 m 226.89 236.53 l S 226.89 236.53 m 226.93 236.53 l S 226.93 236.53 m 226.98 236.53 l S 226.98 236.53 m 227.03 236.53 l S 227.03 236.53 m 227.07 236.53 l S 227.07 236.53 m 227.12 236.53 l S 227.12 236.53 m 227.16 236.53 l S 227.16 236.53 m 227.21 236.53 l S 227.21 236.53 m 227.26 236.53 l S 227.26 236.53 m 227.30 236.53 l S 227.30 236.53 m 227.35 236.53 l S 227.35 236.53 m 227.39 236.53 l S 227.39 236.53 m 227.44 236.53 l S 227.44 236.53 m 227.49 237.51 l S 227.49 236.53 m 227.53 236.53 l S 227.53 236.53 m 227.58 237.51 l S 227.58 236.53 m 227.62 237.51 l S 227.62 236.53 m 227.67 236.53 l S 227.67 236.53 m 227.72 236.53 l S 227.72 236.53 m 227.76 236.53 l S 227.76 236.53 m 227.81 236.53 l S 227.81 236.53 m 227.85 236.53 l S 227.85 236.53 m 227.90 236.53 l S 227.90 236.53 m 227.95 236.53 l S 227.95 236.53 m 227.99 236.53 l S 227.99 236.53 m 228.04 236.53 l S 228.04 236.53 m 228.08 236.53 l S 228.08 236.53 m 228.13 236.53 l S 228.13 236.53 m 228.18 236.53 l S 228.18 236.53 m 228.22 236.53 l S 228.22 236.53 m 228.27 236.53 l S 228.27 236.53 m 228.31 236.53 l S 228.31 236.53 m 228.36 236.53 l S 228.36 236.53 m 228.41 236.53 l S 228.41 236.53 m 228.45 236.53 l S 228.45 236.53 m 228.50 236.53 l S 228.50 236.53 m 228.54 236.53 l S 228.54 236.53 m 228.59 236.53 l S 228.59 236.53 m 228.64 236.53 l S 228.64 236.53 m 228.68 236.53 l S 228.68 236.53 m 228.73 236.53 l S 228.73 236.53 m 228.77 236.53 l S 228.77 236.53 m 228.82 236.53 l S 228.82 236.53 m 228.87 236.53 l S 228.87 236.53 m 228.91 236.53 l S 228.91 236.53 m 228.96 236.53 l S 228.96 236.53 m 229.00 236.53 l S 229.00 236.53 m 229.05 236.53 l S 229.05 236.53 m 229.10 236.53 l S 229.10 236.53 m 229.14 236.53 l S 229.14 236.53 m 229.19 236.53 l S 229.19 236.53 m 229.23 236.53 l S 229.23 236.53 m 229.28 236.53 l S 229.28 236.53 m 229.33 236.53 l S 229.33 236.53 m 229.37 236.53 l S 229.37 236.53 m 229.42 236.53 l S 229.42 236.53 m 229.46 236.53 l S 229.46 236.53 m 229.51 236.53 l S 229.51 236.53 m 229.56 236.53 l S 229.56 236.53 m 229.60 236.53 l S 229.60 236.53 m 229.65 236.53 l S 229.65 236.53 m 229.69 236.53 l S 229.69 236.53 m 229.74 236.53 l S 229.74 236.53 m 229.79 236.53 l S 229.79 236.53 m 229.83 236.53 l S 229.83 236.53 m 229.88 236.53 l S 229.88 236.53 m 229.92 237.51 l S 229.92 236.53 m 229.97 237.51 l S 229.97 236.53 m 230.02 236.53 l S 230.02 236.53 m 230.06 236.53 l S 230.06 236.53 m 230.11 236.53 l S 230.11 236.53 m 230.15 236.53 l S 230.15 236.53 m 230.20 236.53 l S 230.20 236.53 m 230.25 236.53 l S 230.25 236.53 m 230.29 236.53 l S 230.29 236.53 m 230.34 236.53 l S 230.34 236.53 m 230.38 236.53 l S 230.38 236.53 m 230.43 236.53 l S 230.43 236.53 m 230.48 236.53 l S 230.48 236.53 m 230.52 236.53 l S 230.52 236.53 m 230.57 236.53 l S 230.57 236.53 m 230.62 236.53 l S 230.62 236.53 m 230.66 236.53 l S 230.66 236.53 m 230.71 236.53 l S 230.71 236.53 m 230.75 236.53 l S 230.75 236.53 m 230.80 236.53 l S 230.80 236.53 m 230.85 236.53 l S 230.85 236.53 m 230.89 236.53 l S 230.89 236.53 m 230.94 236.53 l S 230.94 236.53 m 230.98 236.53 l S 230.98 236.53 m 231.03 236.53 l S 231.03 236.53 m 231.08 236.53 l S 231.08 236.53 m 231.12 236.53 l S 231.12 236.53 m 231.17 236.53 l S 231.17 236.53 m 231.21 236.53 l S 231.21 236.53 m 231.26 236.53 l S 231.26 236.53 m 231.31 236.53 l S 231.31 236.53 m 231.35 236.53 l S 231.35 236.53 m 231.40 236.53 l S 231.40 236.53 m 231.44 236.53 l S 231.44 236.53 m 231.49 236.53 l S 231.49 236.53 m 231.54 236.53 l S 231.54 236.53 m 231.58 236.53 l S 231.58 236.53 m 231.63 237.51 l S 231.63 236.53 m 231.67 237.51 l S 231.67 236.53 m 231.72 236.53 l S 231.72 236.53 m 231.77 236.53 l S 231.77 236.53 m 231.81 236.53 l S 231.81 236.53 m 231.86 236.53 l S 231.86 236.53 m 231.90 236.53 l S 231.90 236.53 m 231.95 236.53 l S 231.95 236.53 m 232.00 236.53 l S 232.00 236.53 m 232.04 236.53 l S 232.04 236.53 m 232.09 236.53 l S 232.09 236.53 m 232.13 236.53 l S 232.13 236.53 m 232.18 236.53 l S 232.18 236.53 m 232.23 236.53 l S 232.23 236.53 m 232.27 236.53 l S 232.27 236.53 m 232.32 236.53 l S 232.32 236.53 m 232.36 236.53 l S 232.36 236.53 m 232.41 236.53 l S 232.41 236.53 m 232.46 236.53 l S 232.46 236.53 m 232.50 236.53 l S 232.50 236.53 m 232.55 236.53 l S 232.55 236.53 m 232.59 236.53 l S 232.59 236.53 m 232.64 236.53 l S 232.64 236.53 m 232.69 236.53 l S 232.69 236.53 m 232.73 236.53 l S 232.73 236.53 m 232.78 236.53 l S 232.78 236.53 m 232.82 236.53 l S 232.82 236.53 m 232.87 236.53 l S 232.87 236.53 m 232.92 236.53 l S 232.92 236.53 m 232.96 236.53 l S 232.96 236.53 m 233.01 236.53 l S 233.01 236.53 m 233.05 236.53 l S 233.05 236.53 m 233.10 236.53 l S 233.10 236.53 m 233.15 236.53 l S 233.15 236.53 m 233.19 236.53 l S 233.19 236.53 m 233.24 236.53 l S 233.24 236.53 m 233.28 236.53 l S 233.28 236.53 m 233.33 236.53 l S 233.33 236.53 m 233.38 236.53 l S 233.38 236.53 m 233.42 236.53 l S 233.42 236.53 m 233.47 236.53 l S 233.47 236.53 m 233.51 236.53 l S 233.51 236.53 m 233.56 236.53 l S 233.56 236.53 m 233.61 236.53 l S 233.61 236.53 m 233.65 236.53 l S 233.65 236.53 m 233.70 236.53 l S 233.70 236.53 m 233.74 236.53 l S 233.74 236.53 m 233.79 237.51 l S 233.79 236.53 m 233.84 236.53 l S 233.84 236.53 m 233.88 237.51 l S 233.88 236.53 m 233.93 238.49 l S 233.93 236.53 m 233.97 238.49 l S 233.97 236.53 m 234.02 236.53 l S 234.02 236.53 m 234.07 236.53 l S 234.07 236.53 m 234.11 236.53 l S 234.11 236.53 m 234.16 236.53 l S 234.16 236.53 m 234.20 236.53 l S 234.20 236.53 m 234.25 236.53 l S 234.25 236.53 m 234.30 236.53 l S 234.30 236.53 m 234.34 236.53 l S 234.34 236.53 m 234.39 236.53 l S 234.39 236.53 m 234.43 236.53 l S 234.43 236.53 m 234.48 236.53 l S 234.48 236.53 m 234.53 236.53 l S 234.53 236.53 m 234.57 236.53 l S 234.57 236.53 m 234.62 236.53 l S 234.62 236.53 m 234.66 236.53 l S 234.66 236.53 m 234.71 236.53 l S 234.71 236.53 m 234.76 236.53 l S 234.76 236.53 m 234.80 236.53 l S 234.80 236.53 m 234.85 236.53 l S 234.85 236.53 m 234.89 236.53 l S 234.89 236.53 m 234.94 236.53 l S 234.94 236.53 m 234.99 236.53 l S 234.99 236.53 m 235.03 236.53 l S 235.03 236.53 m 235.08 236.53 l S 235.08 236.53 m 235.12 236.53 l S 235.12 236.53 m 235.17 236.53 l S 235.17 236.53 m 235.22 236.53 l S 235.22 236.53 m 235.26 236.53 l S 235.26 236.53 m 235.31 236.53 l S 235.31 236.53 m 235.35 236.53 l S 235.35 236.53 m 235.40 236.53 l S 235.40 236.53 m 235.45 236.53 l S 235.45 236.53 m 235.49 236.53 l S 235.49 236.53 m 235.54 236.53 l S 235.54 236.53 m 235.58 236.53 l S 235.58 236.53 m 235.63 237.51 l S 235.63 236.53 m 235.68 237.51 l S 235.68 236.53 m 235.72 236.53 l S 235.72 236.53 m 235.77 236.53 l S 235.77 236.53 m 235.81 236.53 l S 235.81 236.53 m 235.86 236.53 l S 235.86 236.53 m 235.91 237.51 l S 235.91 236.53 m 235.95 237.51 l S 235.95 236.53 m 236.00 236.53 l S 236.00 236.53 m 236.04 236.53 l S 236.04 236.53 m 236.09 236.53 l S 236.09 236.53 m 236.14 237.51 l S 236.14 236.53 m 236.18 236.53 l S 236.18 236.53 m 236.23 237.51 l S 236.23 236.53 m 236.27 237.51 l S 236.27 236.53 m 236.32 236.53 l S 236.32 236.53 m 236.37 236.53 l S 236.37 236.53 m 236.41 236.53 l S 236.41 236.53 m 236.46 236.53 l S 236.46 236.53 m 236.50 236.53 l S 236.50 236.53 m 236.55 236.53 l S 236.55 236.53 m 236.60 236.53 l S 236.60 236.53 m 236.64 236.53 l S 236.64 236.53 m 236.69 236.53 l S 236.69 236.53 m 236.73 236.53 l S 236.73 236.53 m 236.78 236.53 l S 236.78 236.53 m 236.83 236.53 l S 236.83 236.53 m 236.87 236.53 l S 236.87 236.53 m 236.92 236.53 l S 236.92 236.53 m 236.96 236.53 l S 236.96 236.53 m 237.01 236.53 l S 237.01 236.53 m 237.06 236.53 l S 237.06 236.53 m 237.10 236.53 l S 237.10 236.53 m 237.15 236.53 l S 237.15 236.53 m 237.19 236.53 l S 237.19 236.53 m 237.24 236.53 l S 237.24 236.53 m 237.29 236.53 l S 237.29 236.53 m 237.33 236.53 l S 237.33 236.53 m 237.38 236.53 l S 237.38 236.53 m 237.42 236.53 l S 237.42 236.53 m 237.47 236.53 l S 237.47 236.53 m 237.52 236.53 l S 237.52 236.53 m 237.56 236.53 l S 237.56 236.53 m 237.61 236.53 l S 237.61 236.53 m 237.65 236.53 l S 237.65 236.53 m 237.70 236.53 l S 237.70 236.53 m 237.75 236.53 l S 237.75 236.53 m 237.79 236.53 l S 237.79 236.53 m 237.84 236.53 l S 237.84 236.53 m 237.88 236.53 l S 237.88 236.53 m 237.93 236.53 l S 237.93 236.53 m 237.98 236.53 l S 237.98 236.53 m 238.02 236.53 l S 238.02 236.53 m 238.07 236.53 l S 238.07 236.53 m 238.11 236.53 l S 238.11 236.53 m 238.16 236.53 l S 238.16 236.53 m 238.21 236.53 l S 238.21 236.53 m 238.25 236.53 l S 238.25 236.53 m 238.30 236.53 l S 238.30 236.53 m 238.34 236.53 l S 238.34 236.53 m 238.39 236.53 l S 238.39 236.53 m 238.44 236.53 l S 238.44 236.53 m 238.48 236.53 l S 238.48 236.53 m 238.53 236.53 l S 238.53 236.53 m 238.58 236.53 l S 238.58 236.53 m 238.62 236.53 l S 238.62 236.53 m 238.67 236.53 l S 238.67 236.53 m 238.71 236.53 l S 238.71 236.53 m 238.76 236.53 l S 238.76 236.53 m 238.81 236.53 l S 238.81 236.53 m 238.85 236.53 l S 238.85 236.53 m 238.90 236.53 l S 238.90 236.53 m 238.94 236.53 l S 238.94 236.53 m 238.99 236.53 l S 238.99 236.53 m 239.04 236.53 l S 239.04 236.53 m 239.08 236.53 l S 239.08 236.53 m 239.13 236.53 l S 239.13 236.53 m 239.17 236.53 l S 239.17 236.53 m 239.22 236.53 l S 239.22 236.53 m 239.27 236.53 l S 239.27 236.53 m 239.31 237.51 l S 239.31 236.53 m 239.36 237.51 l S 239.36 236.53 m 239.40 237.51 l S 239.40 236.53 m 239.45 237.51 l S 239.45 236.53 m 239.50 236.53 l S 239.50 236.53 m 239.54 236.53 l S 239.54 236.53 m 239.59 236.53 l S 239.59 236.53 m 239.63 237.51 l S 239.63 236.53 m 239.68 237.51 l S 239.68 236.53 m 239.73 236.53 l S 239.73 236.53 m 239.77 236.53 l S 239.77 236.53 m 239.82 237.51 l S 239.82 236.53 m 239.86 237.51 l S 239.86 236.53 m 239.91 236.53 l S 239.91 236.53 m 239.96 236.53 l S 239.96 236.53 m 240.00 236.53 l S 240.00 236.53 m 240.05 236.53 l S 240.05 236.53 m 240.09 236.53 l S 240.09 236.53 m 240.14 236.53 l S 240.14 236.53 m 240.19 236.53 l S 240.19 236.53 m 240.23 236.53 l S 240.23 236.53 m 240.28 236.53 l S 240.28 236.53 m 240.32 236.53 l S 240.32 236.53 m 240.37 236.53 l S 240.37 236.53 m 240.42 236.53 l S 240.42 236.53 m 240.46 236.53 l S 240.46 236.53 m 240.51 236.53 l S 240.51 236.53 m 240.55 236.53 l S 240.55 236.53 m 240.60 236.53 l S 240.60 236.53 m 240.65 236.53 l S 240.65 236.53 m 240.69 236.53 l S 240.69 236.53 m 240.74 236.53 l S 240.74 236.53 m 240.78 236.53 l S 240.78 236.53 m 240.83 236.53 l S 240.83 236.53 m 240.88 236.53 l S 240.88 236.53 m 240.92 236.53 l S 240.92 236.53 m 240.97 236.53 l S 240.97 236.53 m 241.01 236.53 l S 241.01 236.53 m 241.06 236.53 l S 241.06 236.53 m 241.11 236.53 l S 241.11 236.53 m 241.15 236.53 l S 241.15 236.53 m 241.20 236.53 l S 241.20 236.53 m 241.24 236.53 l S 241.24 236.53 m 241.29 236.53 l S 241.29 236.53 m 241.34 236.53 l S 241.34 236.53 m 241.38 236.53 l S 241.38 236.53 m 241.43 236.53 l S 241.43 236.53 m 241.47 236.53 l S 241.47 236.53 m 241.52 236.53 l S 241.52 236.53 m 241.57 238.49 l S 241.57 236.53 m 241.61 238.49 l S 241.61 236.53 m 241.66 236.53 l S 241.66 236.53 m 241.70 236.53 l S 241.70 236.53 m 241.75 236.53 l S 241.75 236.53 m 241.80 236.53 l S 241.80 236.53 m 241.84 236.53 l S 241.84 236.53 m 241.89 236.53 l S 241.89 236.53 m 241.93 236.53 l S 241.93 236.53 m 241.98 237.51 l S 241.98 236.53 m 242.03 237.51 l S 242.03 236.53 m 242.07 236.53 l S 242.07 236.53 m 242.12 236.53 l S 242.12 236.53 m 242.16 236.53 l S 242.16 236.53 m 242.21 236.53 l S 242.21 236.53 m 242.26 236.53 l S 242.26 236.53 m 242.30 236.53 l S 242.30 236.53 m 242.35 236.53 l S 242.35 236.53 m 242.39 236.53 l S 242.39 236.53 m 242.44 236.53 l S 242.44 236.53 m 242.49 236.53 l S 242.49 236.53 m 242.53 236.53 l S 242.53 236.53 m 242.58 236.53 l S 242.58 236.53 m 242.62 236.53 l S 242.62 236.53 m 242.67 236.53 l S 242.67 236.53 m 242.72 236.53 l S 242.72 236.53 m 242.76 236.53 l S 242.76 236.53 m 242.81 236.53 l S 242.81 236.53 m 242.85 236.53 l S 242.85 236.53 m 242.90 236.53 l S 242.90 236.53 m 242.95 236.53 l S 242.95 236.53 m 242.99 236.53 l S 242.99 236.53 m 243.04 236.53 l S 243.04 236.53 m 243.08 236.53 l S 243.08 236.53 m 243.13 236.53 l S 243.13 236.53 m 243.18 236.53 l S 243.18 236.53 m 243.22 236.53 l S 243.22 236.53 m 243.27 236.53 l S 243.27 236.53 m 243.31 236.53 l S 243.31 236.53 m 243.36 236.53 l S 243.36 236.53 m 243.41 236.53 l S 243.41 236.53 m 243.45 236.53 l S 243.45 236.53 m 243.50 236.53 l S 243.50 236.53 m 243.54 236.53 l S 243.54 236.53 m 243.59 236.53 l S 243.59 236.53 m 243.64 236.53 l S 243.64 236.53 m 243.68 236.53 l S 243.68 236.53 m 243.73 236.53 l S 243.73 236.53 m 243.77 236.53 l S 243.77 236.53 m 243.82 236.53 l S 243.82 236.53 m 243.87 236.53 l S 243.87 236.53 m 243.91 236.53 l S 243.91 236.53 m 243.96 236.53 l S 243.96 236.53 m 244.00 236.53 l S 244.00 236.53 m 244.05 236.53 l S 244.05 236.53 m 244.10 236.53 l S 244.10 236.53 m 244.14 236.53 l S 244.14 236.53 m 244.19 236.53 l S 244.19 236.53 m 244.23 236.53 l S 244.23 236.53 m 244.28 236.53 l S 244.28 236.53 m 244.33 236.53 l S 244.33 236.53 m 244.37 236.53 l S 244.37 236.53 m 244.42 236.53 l S 244.42 236.53 m 244.46 236.53 l S 244.46 236.53 m 244.51 236.53 l S 244.51 236.53 m 244.56 236.53 l S 244.56 236.53 m 244.60 236.53 l S 244.60 236.53 m 244.65 236.53 l S 244.65 236.53 m 244.69 236.53 l S 244.69 236.53 m 244.74 236.53 l S 244.74 236.53 m 244.79 236.53 l S 244.79 236.53 m 244.83 236.53 l S 244.83 236.53 m 244.88 236.53 l S 244.88 236.53 m 244.92 236.53 l S 244.92 236.53 m 244.97 236.53 l S 244.97 236.53 m 245.02 236.53 l S 245.02 236.53 m 245.06 236.53 l S 245.06 236.53 m 245.11 236.53 l S 245.11 236.53 m 245.15 236.53 l S 245.15 236.53 m 245.20 237.51 l S 245.20 236.53 m 245.25 237.51 l S 245.25 236.53 m 245.29 236.53 l S 245.29 236.53 m 245.34 236.53 l S 245.34 236.53 m 245.38 236.53 l S 245.38 236.53 m 245.43 236.53 l S 245.43 236.53 m 245.48 236.53 l S 245.48 236.53 m 245.52 236.53 l S 245.52 236.53 m 245.57 236.53 l S 245.57 236.53 m 245.61 236.53 l S 245.61 236.53 m 245.66 236.53 l S 245.66 236.53 m 245.71 237.51 l S 245.71 236.53 m 245.75 236.53 l S 245.75 236.53 m 245.80 236.53 l S 245.80 236.53 m 245.84 236.53 l S 245.84 236.53 m 245.89 236.53 l S 245.89 236.53 m 245.94 236.53 l S 245.94 236.53 m 245.98 236.53 l S 245.98 236.53 m 246.03 236.53 l S 246.03 236.53 m 246.07 236.53 l S 246.07 236.53 m 246.12 236.53 l S 246.12 236.53 m 246.17 236.53 l S 246.17 236.53 m 246.21 236.53 l S 246.21 236.53 m 246.26 236.53 l S 246.26 236.53 m 246.30 236.53 l S 246.30 236.53 m 246.35 236.53 l S 246.35 236.53 m 246.40 236.53 l S 246.40 236.53 m 246.44 236.53 l S 246.44 236.53 m 246.49 236.53 l S 246.49 236.53 m 246.54 236.53 l S 246.54 236.53 m 246.58 236.53 l S 246.58 236.53 m 246.63 236.53 l S 246.63 236.53 m 246.67 236.53 l S 246.67 236.53 m 246.72 236.53 l S 246.72 236.53 m 246.77 236.53 l S 246.77 236.53 m 246.81 236.53 l S 246.81 236.53 m 246.86 236.53 l S 246.86 236.53 m 246.90 236.53 l S 246.90 236.53 m 246.95 236.53 l S 246.95 236.53 m 247.00 236.53 l S 247.00 236.53 m 247.04 236.53 l S 247.04 236.53 m 247.09 236.53 l S 247.09 236.53 m 247.13 237.51 l S 247.13 236.53 m 247.18 237.51 l S 247.18 236.53 m 247.23 237.51 l S 247.23 236.53 m 247.27 237.51 l S 247.27 236.53 m 247.32 236.53 l S 247.32 236.53 m 247.36 237.51 l S 247.36 236.53 m 247.41 237.51 l S 247.41 236.53 m 247.46 237.51 l S 247.46 236.53 m 247.50 237.51 l S 247.50 237.51 m 247.55 238.49 l S 247.55 236.53 m 247.59 239.46 l S 247.59 236.53 m 247.64 237.51 l S 247.64 236.53 m 247.69 240.44 l S 247.69 236.53 m 247.73 238.49 l S 247.73 236.53 m 247.78 236.53 l S 247.78 236.53 m 247.82 236.53 l S 247.82 236.53 m 247.87 238.49 l S 247.87 236.53 m 247.92 238.49 l S 247.92 236.53 m 247.96 238.49 l S 247.96 236.53 m 248.01 239.46 l S 248.01 236.53 m 248.05 238.49 l S 248.05 236.53 m 248.10 240.44 l S 248.10 236.53 m 248.15 237.51 l S 248.15 236.53 m 248.19 236.53 l S 248.19 236.53 m 248.24 236.53 l S 248.24 236.53 m 248.28 236.53 l S 248.28 236.53 m 248.33 236.53 l S 248.33 236.53 m 248.38 236.53 l S 248.38 236.53 m 248.42 236.53 l S 248.42 236.53 m 248.47 236.53 l S 248.47 236.53 m 248.51 236.53 l S 248.51 236.53 m 248.56 236.53 l S 248.56 236.53 m 248.61 236.53 l S 248.61 236.53 m 248.65 236.53 l S 248.65 236.53 m 248.70 236.53 l S 248.70 236.53 m 248.74 236.53 l S 248.74 236.53 m 248.79 236.53 l S 248.79 236.53 m 248.84 236.53 l S 248.84 236.53 m 248.88 237.51 l S 248.88 236.53 m 248.93 237.51 l S 248.93 236.53 m 248.97 237.51 l S 248.97 236.53 m 249.02 236.53 l S 249.02 236.53 m 249.07 236.53 l S 249.07 236.53 m 249.11 236.53 l S 249.11 236.53 m 249.16 236.53 l S 249.16 236.53 m 249.20 236.53 l S 249.20 236.53 m 249.25 236.53 l S 249.25 236.53 m 249.30 236.53 l S 249.30 236.53 m 249.34 236.53 l S 249.34 236.53 m 249.39 236.53 l S 249.39 236.53 m 249.43 237.51 l S 249.43 236.53 m 249.48 237.51 l S 249.48 236.53 m 249.53 236.53 l S 249.53 236.53 m 249.57 236.53 l S 249.57 236.53 m 249.62 236.53 l S 249.62 236.53 m 249.66 236.53 l S 249.66 236.53 m 249.71 236.53 l S 249.71 236.53 m 249.76 236.53 l S 249.76 236.53 m 249.80 236.53 l S 249.80 236.53 m 249.85 236.53 l S 249.85 236.53 m 249.89 237.51 l S 249.89 236.53 m 249.94 237.51 l S 249.94 236.53 m 249.99 236.53 l S 249.99 236.53 m 250.03 236.53 l S 250.03 236.53 m 250.08 236.53 l S 250.08 236.53 m 250.12 236.53 l S 250.12 236.53 m 250.17 236.53 l S 250.17 236.53 m 250.22 236.53 l S 250.22 236.53 m 250.26 237.51 l S 250.26 236.53 m 250.31 236.53 l S 250.31 236.53 m 250.35 236.53 l S 250.35 236.53 m 250.40 236.53 l S 250.40 236.53 m 250.45 236.53 l S Q q 59.04 73.44 198.72 29.52 re W n Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 73.44 m 250.45 73.44 l S 66.40 73.44 m 66.40 66.24 l S 103.21 73.44 m 103.21 66.24 l S 140.02 73.44 m 140.02 66.24 l S 176.83 73.44 m 176.83 66.24 l S 213.64 73.44 m 213.64 66.24 l S 250.45 73.44 m 250.45 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 36.38 47.52 Tm (100000000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 109.99 47.52 Tm (100400000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 183.61 47.52 Tm (100800000) Tj ET 59.04 74.53 m 59.04 100.27 l S 59.04 74.53 m 51.84 74.53 l S 59.04 80.97 m 51.84 80.97 l S 59.04 87.40 m 51.84 87.40 l S 59.04 93.84 m 51.84 93.84 l S 59.04 100.27 m 51.84 100.27 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 52.68 Tm (0.0e+00) Tj ET 59.04 73.44 m 257.76 73.44 l 257.76 102.96 l 59.04 102.96 l 59.04 73.44 l S Q q 0.00 0.00 288.00 162.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 100.83 127.45 Tm (Chr 10, H3K3me3) Tj ET Q q 59.04 73.44 198.72 29.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 74.53 m 66.45 77.46 l S 66.45 74.53 m 66.49 74.53 l S 66.49 74.53 m 66.54 74.53 l S 66.54 74.53 m 66.58 74.53 l S 66.58 74.53 m 66.63 74.53 l S 66.63 74.53 m 66.68 75.51 l S 66.68 74.53 m 66.72 74.53 l S 66.72 74.53 m 66.77 74.53 l S 66.77 74.53 m 66.81 76.49 l S 66.81 74.53 m 66.86 75.51 l S 66.86 74.53 m 66.91 76.49 l S 66.91 74.53 m 66.95 77.46 l S 66.95 74.53 m 67.00 75.51 l S 67.00 74.53 m 67.04 74.53 l S 67.04 74.53 m 67.09 75.51 l S 67.09 74.53 m 67.14 75.51 l S 67.14 74.53 m 67.18 75.51 l S 67.18 74.53 m 67.23 74.53 l S 67.23 74.53 m 67.27 74.53 l S 67.27 74.53 m 67.32 74.53 l S 67.32 74.53 m 67.37 77.46 l S 67.37 74.53 m 67.41 76.49 l S 67.41 74.53 m 67.46 74.53 l S 67.46 74.53 m 67.50 75.51 l S 67.50 74.53 m 67.55 75.51 l S 67.55 74.53 m 67.60 75.51 l S 67.60 74.53 m 67.64 75.51 l S 67.64 74.53 m 67.69 77.46 l S 67.69 74.53 m 67.73 77.46 l S 67.73 74.53 m 67.78 74.53 l S 67.78 74.53 m 67.83 75.51 l S 67.83 74.53 m 67.87 74.53 l S 67.87 74.53 m 67.92 74.53 l S 67.92 74.53 m 67.96 74.53 l S 67.96 74.53 m 68.01 74.53 l S 68.01 74.53 m 68.06 74.53 l S 68.06 74.53 m 68.10 76.49 l S 68.10 74.53 m 68.15 76.49 l S 68.15 74.53 m 68.19 74.53 l S 68.19 74.53 m 68.24 74.53 l S 68.24 74.53 m 68.29 74.53 l S 68.29 74.53 m 68.33 76.49 l S 68.33 74.53 m 68.38 76.49 l S 68.38 74.53 m 68.42 74.53 l S 68.42 74.53 m 68.47 74.53 l S 68.47 74.53 m 68.52 75.51 l S 68.52 74.53 m 68.56 75.51 l S 68.56 74.53 m 68.61 75.51 l S 68.61 74.53 m 68.65 74.53 l S 68.65 74.53 m 68.70 75.51 l S 68.70 74.53 m 68.75 75.51 l S 68.75 74.53 m 68.79 75.51 l S 68.79 74.53 m 68.84 74.53 l S 68.84 74.53 m 68.88 74.53 l S 68.88 74.53 m 68.93 74.53 l S 68.93 74.53 m 68.98 74.53 l S 68.98 74.53 m 69.02 74.53 l S 69.02 74.53 m 69.07 74.53 l S 69.07 74.53 m 69.11 74.53 l S 69.11 74.53 m 69.16 74.53 l S 69.16 74.53 m 69.21 74.53 l S 69.21 74.53 m 69.25 74.53 l S 69.25 74.53 m 69.30 75.51 l S 69.30 74.53 m 69.34 75.51 l S 69.34 74.53 m 69.39 75.51 l S 69.39 74.53 m 69.44 74.53 l S 69.44 74.53 m 69.48 74.53 l S 69.48 74.53 m 69.53 75.51 l S 69.53 74.53 m 69.57 75.51 l S 69.57 74.53 m 69.62 78.44 l S 69.62 76.49 m 69.67 79.41 l S 69.67 76.49 m 69.71 79.41 l S 69.71 74.53 m 69.76 76.49 l S 69.76 74.53 m 69.80 75.51 l S 69.80 74.53 m 69.85 75.51 l S 69.85 75.51 m 69.90 76.49 l S 69.90 74.53 m 69.94 75.51 l S 69.94 74.53 m 69.99 76.49 l S 69.99 74.53 m 70.03 76.49 l S 70.03 74.53 m 70.08 74.53 l S 70.08 74.53 m 70.13 76.49 l S 70.13 74.53 m 70.17 76.49 l S 70.17 74.53 m 70.22 74.53 l S 70.22 74.53 m 70.26 76.49 l S 70.26 74.53 m 70.31 76.49 l S 70.31 74.53 m 70.36 74.53 l S 70.36 74.53 m 70.40 74.53 l S 70.40 74.53 m 70.45 76.49 l S 70.45 74.53 m 70.50 76.49 l S 70.50 74.53 m 70.54 76.49 l S 70.54 74.53 m 70.59 75.51 l S 70.59 74.53 m 70.63 74.53 l S 70.63 74.53 m 70.68 74.53 l S 70.68 74.53 m 70.73 75.51 l S 70.73 74.53 m 70.77 75.51 l S 70.77 74.53 m 70.82 74.53 l S 70.82 74.53 m 70.86 74.53 l S 70.86 74.53 m 70.91 74.53 l S 70.91 74.53 m 70.96 74.53 l S 70.96 74.53 m 71.00 74.53 l S 71.00 74.53 m 71.05 74.53 l S 71.05 74.53 m 71.09 74.53 l S 71.09 74.53 m 71.14 74.53 l S 71.14 74.53 m 71.19 74.53 l S 71.19 74.53 m 71.23 74.53 l S 71.23 74.53 m 71.28 76.49 l S 71.28 74.53 m 71.32 76.49 l S 71.32 74.53 m 71.37 75.51 l S 71.37 74.53 m 71.42 75.51 l S 71.42 74.53 m 71.46 74.53 l S 71.46 74.53 m 71.51 74.53 l S 71.51 74.53 m 71.55 74.53 l S 71.55 74.53 m 71.60 74.53 l S 71.60 74.53 m 71.65 74.53 l S 71.65 74.53 m 71.69 74.53 l S 71.69 74.53 m 71.74 74.53 l S 71.74 74.53 m 71.78 74.53 l S 71.78 74.53 m 71.83 74.53 l S 71.83 74.53 m 71.88 74.53 l S 71.88 74.53 m 71.92 74.53 l S 71.92 74.53 m 71.97 74.53 l S 71.97 74.53 m 72.01 74.53 l S 72.01 74.53 m 72.06 74.53 l S 72.06 74.53 m 72.11 74.53 l S 72.11 74.53 m 72.15 74.53 l S 72.15 74.53 m 72.20 74.53 l S 72.20 74.53 m 72.24 74.53 l S 72.24 74.53 m 72.29 75.51 l S 72.29 74.53 m 72.34 75.51 l S 72.34 74.53 m 72.38 74.53 l S 72.38 74.53 m 72.43 74.53 l S 72.43 74.53 m 72.47 74.53 l S 72.47 74.53 m 72.52 74.53 l S 72.52 74.53 m 72.57 74.53 l S 72.57 74.53 m 72.61 74.53 l S 72.61 74.53 m 72.66 75.51 l S 72.66 74.53 m 72.70 75.51 l S 72.70 74.53 m 72.75 74.53 l S 72.75 74.53 m 72.80 74.53 l S 72.80 74.53 m 72.84 74.53 l S 72.84 74.53 m 72.89 74.53 l S 72.89 74.53 m 72.93 74.53 l S 72.93 74.53 m 72.98 74.53 l S 72.98 74.53 m 73.03 74.53 l S 73.03 74.53 m 73.07 74.53 l S 73.07 74.53 m 73.12 75.51 l S 73.12 74.53 m 73.16 75.51 l S 73.16 74.53 m 73.21 75.51 l S 73.21 74.53 m 73.26 74.53 l S 73.26 74.53 m 73.30 75.51 l S 73.30 74.53 m 73.35 74.53 l S 73.35 74.53 m 73.39 74.53 l S 73.39 74.53 m 73.44 74.53 l S 73.44 74.53 m 73.49 74.53 l S 73.49 74.53 m 73.53 74.53 l S 73.53 74.53 m 73.58 74.53 l S 73.58 74.53 m 73.62 74.53 l S 73.62 74.53 m 73.67 74.53 l S 73.67 74.53 m 73.72 74.53 l S 73.72 74.53 m 73.76 74.53 l S 73.76 74.53 m 73.81 74.53 l S 73.81 74.53 m 73.85 75.51 l S 73.85 74.53 m 73.90 75.51 l S 73.90 74.53 m 73.95 74.53 l S 73.95 74.53 m 73.99 74.53 l S 73.99 74.53 m 74.04 76.49 l S 74.04 74.53 m 74.08 75.51 l S 74.08 74.53 m 74.13 75.51 l S 74.13 74.53 m 74.18 75.51 l S 74.18 74.53 m 74.22 78.44 l S 74.22 75.51 m 74.27 79.41 l S 74.27 74.53 m 74.31 75.51 l S 74.31 74.53 m 74.36 74.53 l S 74.36 74.53 m 74.41 76.49 l S 74.41 74.53 m 74.45 77.46 l S 74.45 74.53 m 74.50 75.51 l S 74.50 74.53 m 74.54 75.51 l S 74.54 74.53 m 74.59 75.51 l S 74.59 74.53 m 74.64 74.53 l S 74.64 74.53 m 74.68 75.51 l S 74.68 74.53 m 74.73 77.46 l S 74.73 74.53 m 74.77 78.44 l S 74.77 74.53 m 74.82 74.53 l S 74.82 74.53 m 74.87 75.51 l S 74.87 74.53 m 74.91 75.51 l S 74.91 74.53 m 74.96 74.53 l S 74.96 74.53 m 75.00 74.53 l S 75.00 74.53 m 75.05 74.53 l S 75.05 74.53 m 75.10 74.53 l S 75.10 74.53 m 75.14 74.53 l S 75.14 74.53 m 75.19 74.53 l S 75.19 74.53 m 75.23 74.53 l S 75.23 74.53 m 75.28 74.53 l S 75.28 74.53 m 75.33 74.53 l S 75.33 74.53 m 75.37 74.53 l S 75.37 74.53 m 75.42 74.53 l S 75.42 74.53 m 75.46 75.51 l S 75.46 74.53 m 75.51 75.51 l S 75.51 74.53 m 75.56 74.53 l S 75.56 74.53 m 75.60 74.53 l S 75.60 74.53 m 75.65 75.51 l S 75.65 74.53 m 75.69 75.51 l S 75.69 74.53 m 75.74 74.53 l S 75.74 74.53 m 75.79 74.53 l S 75.79 74.53 m 75.83 74.53 l S 75.83 74.53 m 75.88 76.49 l S 75.88 74.53 m 75.92 76.49 l S 75.92 74.53 m 75.97 74.53 l S 75.97 74.53 m 76.02 74.53 l S 76.02 74.53 m 76.06 74.53 l S 76.06 74.53 m 76.11 74.53 l S 76.11 74.53 m 76.15 74.53 l S 76.15 74.53 m 76.20 74.53 l S 76.20 74.53 m 76.25 74.53 l S 76.25 74.53 m 76.29 74.53 l S 76.29 74.53 m 76.34 74.53 l S 76.34 74.53 m 76.38 74.53 l S 76.38 74.53 m 76.43 74.53 l S 76.43 74.53 m 76.48 74.53 l S 76.48 74.53 m 76.52 77.46 l S 76.52 74.53 m 76.57 76.49 l S 76.57 74.53 m 76.61 74.53 l S 76.61 74.53 m 76.66 74.53 l S 76.66 74.53 m 76.71 74.53 l S 76.71 74.53 m 76.75 74.53 l S 76.75 74.53 m 76.80 74.53 l S 76.80 74.53 m 76.84 74.53 l S 76.84 74.53 m 76.89 74.53 l S 76.89 74.53 m 76.94 74.53 l S 76.94 74.53 m 76.98 74.53 l S 76.98 74.53 m 77.03 74.53 l S 77.03 74.53 m 77.07 76.49 l S 77.07 74.53 m 77.12 75.51 l S 77.12 74.53 m 77.17 75.51 l S 77.17 74.53 m 77.21 75.51 l S 77.21 74.53 m 77.26 74.53 l S 77.26 74.53 m 77.30 77.46 l S 77.30 74.53 m 77.35 78.44 l S 77.35 74.53 m 77.40 74.53 l S 77.40 74.53 m 77.44 74.53 l S 77.44 74.53 m 77.49 74.53 l S 77.49 74.53 m 77.53 74.53 l S 77.53 74.53 m 77.58 74.53 l S 77.58 74.53 m 77.63 74.53 l S 77.63 74.53 m 77.67 74.53 l S 77.67 74.53 m 77.72 74.53 l S 77.72 74.53 m 77.76 74.53 l S 77.76 74.53 m 77.81 74.53 l S 77.81 74.53 m 77.86 74.53 l S 77.86 74.53 m 77.90 74.53 l S 77.90 74.53 m 77.95 74.53 l S 77.95 74.53 m 77.99 74.53 l S 77.99 74.53 m 78.04 74.53 l S 78.04 74.53 m 78.09 74.53 l S 78.09 74.53 m 78.13 74.53 l S 78.13 74.53 m 78.18 74.53 l S 78.18 74.53 m 78.22 74.53 l S 78.22 74.53 m 78.27 74.53 l S 78.27 74.53 m 78.32 74.53 l S 78.32 74.53 m 78.36 74.53 l S 78.36 74.53 m 78.41 74.53 l S 78.41 74.53 m 78.46 75.51 l S 78.46 74.53 m 78.50 74.53 l S 78.50 74.53 m 78.55 74.53 l S 78.55 74.53 m 78.59 74.53 l S 78.59 74.53 m 78.64 74.53 l S 78.64 74.53 m 78.69 75.51 l S 78.69 74.53 m 78.73 75.51 l S 78.73 74.53 m 78.78 74.53 l S 78.78 74.53 m 78.82 74.53 l S 78.82 74.53 m 78.87 74.53 l S 78.87 74.53 m 78.92 74.53 l S 78.92 74.53 m 78.96 74.53 l S 78.96 74.53 m 79.01 74.53 l S 79.01 74.53 m 79.05 74.53 l S 79.05 74.53 m 79.10 74.53 l S 79.10 74.53 m 79.15 74.53 l S 79.15 74.53 m 79.19 74.53 l S 79.19 74.53 m 79.24 75.51 l S 79.24 74.53 m 79.28 74.53 l S 79.28 74.53 m 79.33 75.51 l S 79.33 74.53 m 79.38 75.51 l S 79.38 74.53 m 79.42 74.53 l S 79.42 74.53 m 79.47 74.53 l S 79.47 74.53 m 79.51 75.51 l S 79.51 74.53 m 79.56 74.53 l S 79.56 74.53 m 79.61 74.53 l S 79.61 74.53 m 79.65 76.49 l S 79.65 74.53 m 79.70 75.51 l S 79.70 74.53 m 79.74 75.51 l S 79.74 74.53 m 79.79 76.49 l S 79.79 75.51 m 79.84 78.44 l S 79.84 74.53 m 79.88 78.44 l S 79.88 74.53 m 79.93 74.53 l S 79.93 74.53 m 79.97 74.53 l S 79.97 74.53 m 80.02 74.53 l S 80.02 74.53 m 80.07 75.51 l S 80.07 74.53 m 80.11 74.53 l S 80.11 74.53 m 80.16 74.53 l S 80.16 74.53 m 80.20 74.53 l S 80.20 74.53 m 80.25 74.53 l S 80.25 74.53 m 80.30 74.53 l S 80.30 74.53 m 80.34 74.53 l S 80.34 74.53 m 80.39 74.53 l S 80.39 74.53 m 80.43 75.51 l S 80.43 74.53 m 80.48 75.51 l S 80.48 74.53 m 80.53 74.53 l S 80.53 74.53 m 80.57 75.51 l S 80.57 74.53 m 80.62 75.51 l S 80.62 74.53 m 80.66 74.53 l S 80.66 74.53 m 80.71 76.49 l S 80.71 74.53 m 80.76 78.44 l S 80.76 74.53 m 80.80 74.53 l S 80.80 74.53 m 80.85 74.53 l S 80.85 74.53 m 80.89 74.53 l S 80.89 74.53 m 80.94 74.53 l S 80.94 74.53 m 80.99 75.51 l S 80.99 74.53 m 81.03 76.49 l S 81.03 74.53 m 81.08 74.53 l S 81.08 74.53 m 81.12 74.53 l S 81.12 74.53 m 81.17 74.53 l S 81.17 74.53 m 81.22 75.51 l S 81.22 74.53 m 81.26 74.53 l S 81.26 74.53 m 81.31 75.51 l S 81.31 74.53 m 81.35 75.51 l S 81.35 74.53 m 81.40 74.53 l S 81.40 74.53 m 81.45 75.51 l S 81.45 74.53 m 81.49 75.51 l S 81.49 74.53 m 81.54 74.53 l S 81.54 74.53 m 81.58 74.53 l S 81.58 74.53 m 81.63 74.53 l S 81.63 74.53 m 81.68 74.53 l S 81.68 74.53 m 81.72 74.53 l S 81.72 74.53 m 81.77 74.53 l S 81.77 74.53 m 81.81 74.53 l S 81.81 74.53 m 81.86 74.53 l S 81.86 74.53 m 81.91 74.53 l S 81.91 74.53 m 81.95 74.53 l S 81.95 74.53 m 82.00 74.53 l S 82.00 74.53 m 82.04 74.53 l S 82.04 74.53 m 82.09 74.53 l S 82.09 74.53 m 82.14 74.53 l S 82.14 74.53 m 82.18 74.53 l S 82.18 74.53 m 82.23 74.53 l S 82.23 74.53 m 82.27 74.53 l S 82.27 74.53 m 82.32 74.53 l S 82.32 74.53 m 82.37 74.53 l S 82.37 74.53 m 82.41 74.53 l S 82.41 74.53 m 82.46 74.53 l S 82.46 74.53 m 82.50 74.53 l S 82.50 74.53 m 82.55 75.51 l S 82.55 74.53 m 82.60 74.53 l S 82.60 74.53 m 82.64 74.53 l S 82.64 74.53 m 82.69 74.53 l S 82.69 74.53 m 82.73 74.53 l S 82.73 74.53 m 82.78 75.51 l S 82.78 74.53 m 82.83 75.51 l S 82.83 74.53 m 82.87 76.49 l S 82.87 75.51 m 82.92 78.44 l S 82.92 74.53 m 82.96 77.46 l S 82.96 74.53 m 83.01 75.51 l S 83.01 74.53 m 83.06 75.51 l S 83.06 74.53 m 83.10 75.51 l S 83.10 74.53 m 83.15 78.44 l S 83.15 74.53 m 83.19 76.49 l S 83.19 74.53 m 83.24 74.53 l S 83.24 74.53 m 83.29 74.53 l S 83.29 74.53 m 83.33 80.39 l S 83.33 74.53 m 83.38 79.41 l S 83.38 74.53 m 83.42 74.53 l S 83.42 74.53 m 83.47 74.53 l S 83.47 74.53 m 83.52 74.53 l S 83.52 74.53 m 83.56 74.53 l S 83.56 74.53 m 83.61 74.53 l S 83.61 74.53 m 83.65 74.53 l S 83.65 74.53 m 83.70 74.53 l S 83.70 74.53 m 83.75 74.53 l S 83.75 74.53 m 83.79 74.53 l S 83.79 74.53 m 83.84 74.53 l S 83.84 74.53 m 83.88 74.53 l S 83.88 74.53 m 83.93 74.53 l S 83.93 74.53 m 83.98 74.53 l S 83.98 74.53 m 84.02 74.53 l S 84.02 74.53 m 84.07 74.53 l S 84.07 74.53 m 84.11 74.53 l S 84.11 74.53 m 84.16 74.53 l S 84.16 74.53 m 84.21 74.53 l S 84.21 74.53 m 84.25 74.53 l S 84.25 74.53 m 84.30 74.53 l S 84.30 74.53 m 84.34 74.53 l S 84.34 74.53 m 84.39 74.53 l S 84.39 74.53 m 84.44 74.53 l S 84.44 74.53 m 84.48 74.53 l S 84.48 74.53 m 84.53 74.53 l S 84.53 74.53 m 84.57 74.53 l S 84.57 74.53 m 84.62 74.53 l S 84.62 74.53 m 84.67 76.49 l S 84.67 75.51 m 84.71 78.44 l S 84.71 74.53 m 84.76 75.51 l S 84.76 74.53 m 84.80 74.53 l S 84.80 74.53 m 84.85 74.53 l S 84.85 74.53 m 84.90 74.53 l S 84.90 74.53 m 84.94 74.53 l S 84.94 74.53 m 84.99 74.53 l S 84.99 74.53 m 85.03 74.53 l S 85.03 74.53 m 85.08 74.53 l S 85.08 74.53 m 85.13 74.53 l S 85.13 74.53 m 85.17 75.51 l S 85.17 74.53 m 85.22 75.51 l S 85.22 74.53 m 85.26 74.53 l S 85.26 74.53 m 85.31 74.53 l S 85.31 74.53 m 85.36 74.53 l S 85.36 74.53 m 85.40 74.53 l S 85.40 74.53 m 85.45 74.53 l S 85.45 74.53 m 85.49 74.53 l S 85.49 74.53 m 85.54 74.53 l S 85.54 74.53 m 85.59 76.49 l S 85.59 74.53 m 85.63 75.51 l S 85.63 74.53 m 85.68 74.53 l S 85.68 74.53 m 85.72 74.53 l S 85.72 74.53 m 85.77 74.53 l S 85.77 74.53 m 85.82 74.53 l S 85.82 74.53 m 85.86 74.53 l S 85.86 74.53 m 85.91 74.53 l S 85.91 74.53 m 85.95 74.53 l S 85.95 74.53 m 86.00 74.53 l S 86.00 74.53 m 86.05 74.53 l S 86.05 74.53 m 86.09 74.53 l S 86.09 74.53 m 86.14 74.53 l S 86.14 74.53 m 86.18 74.53 l S 86.18 74.53 m 86.23 74.53 l S 86.23 74.53 m 86.28 74.53 l S 86.28 74.53 m 86.32 74.53 l S 86.32 74.53 m 86.37 74.53 l S 86.37 74.53 m 86.42 74.53 l S 86.42 74.53 m 86.46 74.53 l S 86.46 74.53 m 86.51 74.53 l S 86.51 74.53 m 86.55 74.53 l S 86.55 74.53 m 86.60 74.53 l S 86.60 74.53 m 86.65 74.53 l S 86.65 74.53 m 86.69 74.53 l S 86.69 74.53 m 86.74 74.53 l S 86.74 74.53 m 86.78 76.49 l S 86.78 75.51 m 86.83 76.49 l S 86.83 75.51 m 86.88 81.37 l S 86.88 74.53 m 86.92 80.39 l S 86.92 74.53 m 86.97 74.53 l S 86.97 74.53 m 87.01 74.53 l S 87.01 74.53 m 87.06 74.53 l S 87.06 74.53 m 87.11 74.53 l S 87.11 74.53 m 87.15 74.53 l S 87.15 74.53 m 87.20 74.53 l S 87.20 74.53 m 87.24 74.53 l S 87.24 74.53 m 87.29 74.53 l S 87.29 74.53 m 87.34 74.53 l S 87.34 74.53 m 87.38 75.51 l S 87.38 74.53 m 87.43 75.51 l S 87.43 74.53 m 87.47 74.53 l S 87.47 74.53 m 87.52 74.53 l S 87.52 74.53 m 87.57 75.51 l S 87.57 74.53 m 87.61 74.53 l S 87.61 74.53 m 87.66 74.53 l S 87.66 74.53 m 87.70 76.49 l S 87.70 74.53 m 87.75 76.49 l S 87.75 74.53 m 87.80 75.51 l S 87.80 74.53 m 87.84 75.51 l S 87.84 74.53 m 87.89 74.53 l S 87.89 74.53 m 87.93 74.53 l S 87.93 74.53 m 87.98 74.53 l S 87.98 74.53 m 88.03 74.53 l S 88.03 74.53 m 88.07 74.53 l S 88.07 74.53 m 88.12 74.53 l S 88.12 74.53 m 88.16 74.53 l S 88.16 74.53 m 88.21 74.53 l S 88.21 74.53 m 88.26 74.53 l S 88.26 74.53 m 88.30 74.53 l S 88.30 74.53 m 88.35 74.53 l S 88.35 74.53 m 88.39 75.51 l S 88.39 74.53 m 88.44 74.53 l S 88.44 74.53 m 88.49 75.51 l S 88.49 74.53 m 88.53 74.53 l S 88.53 74.53 m 88.58 74.53 l S 88.58 74.53 m 88.62 74.53 l S 88.62 74.53 m 88.67 75.51 l S 88.67 74.53 m 88.72 77.46 l S 88.72 74.53 m 88.76 76.49 l S 88.76 74.53 m 88.81 74.53 l S 88.81 74.53 m 88.85 75.51 l S 88.85 74.53 m 88.90 75.51 l S 88.90 74.53 m 88.95 74.53 l S 88.95 74.53 m 88.99 74.53 l S 88.99 74.53 m 89.04 74.53 l S 89.04 74.53 m 89.08 75.51 l S 89.08 74.53 m 89.13 75.51 l S 89.13 74.53 m 89.18 75.51 l S 89.18 74.53 m 89.22 75.51 l S 89.22 74.53 m 89.27 74.53 l S 89.27 74.53 m 89.31 74.53 l S 89.31 74.53 m 89.36 74.53 l S 89.36 74.53 m 89.41 75.51 l S 89.41 74.53 m 89.45 75.51 l S 89.45 74.53 m 89.50 76.49 l S 89.50 74.53 m 89.54 76.49 l S 89.54 74.53 m 89.59 74.53 l S 89.59 74.53 m 89.64 74.53 l S 89.64 74.53 m 89.68 74.53 l S 89.68 74.53 m 89.73 74.53 l S 89.73 74.53 m 89.77 75.51 l S 89.77 74.53 m 89.82 75.51 l S 89.82 74.53 m 89.87 74.53 l S 89.87 74.53 m 89.91 74.53 l S 89.91 74.53 m 89.96 74.53 l S 89.96 74.53 m 90.00 74.53 l S 90.00 74.53 m 90.05 74.53 l S 90.05 74.53 m 90.10 75.51 l S 90.10 74.53 m 90.14 74.53 l S 90.14 74.53 m 90.19 74.53 l S 90.19 74.53 m 90.23 74.53 l S 90.23 74.53 m 90.28 74.53 l S 90.28 74.53 m 90.33 74.53 l S 90.33 74.53 m 90.37 74.53 l S 90.37 74.53 m 90.42 76.49 l S 90.42 74.53 m 90.46 76.49 l S 90.46 74.53 m 90.51 74.53 l S 90.51 74.53 m 90.56 74.53 l S 90.56 74.53 m 90.60 74.53 l S 90.60 74.53 m 90.65 74.53 l S 90.65 74.53 m 90.69 74.53 l S 90.69 74.53 m 90.74 74.53 l S 90.74 74.53 m 90.79 75.51 l S 90.79 74.53 m 90.83 75.51 l S 90.83 74.53 m 90.88 74.53 l S 90.88 74.53 m 90.92 74.53 l S 90.92 74.53 m 90.97 74.53 l S 90.97 74.53 m 91.02 74.53 l S 91.02 74.53 m 91.06 74.53 l S 91.06 74.53 m 91.11 75.51 l S 91.11 74.53 m 91.15 75.51 l S 91.15 74.53 m 91.20 75.51 l S 91.20 74.53 m 91.25 74.53 l S 91.25 74.53 m 91.29 74.53 l S 91.29 74.53 m 91.34 74.53 l S 91.34 74.53 m 91.38 74.53 l S 91.38 74.53 m 91.43 74.53 l S 91.43 74.53 m 91.48 74.53 l S 91.48 74.53 m 91.52 76.49 l S 91.52 74.53 m 91.57 76.49 l S 91.57 74.53 m 91.61 75.51 l S 91.61 74.53 m 91.66 74.53 l S 91.66 74.53 m 91.71 74.53 l S 91.71 74.53 m 91.75 75.51 l S 91.75 75.51 m 91.80 77.46 l S 91.80 74.53 m 91.84 76.49 l S 91.84 74.53 m 91.89 76.49 l S 91.89 74.53 m 91.94 74.53 l S 91.94 74.53 m 91.98 74.53 l S 91.98 74.53 m 92.03 74.53 l S 92.03 74.53 m 92.07 74.53 l S 92.07 74.53 m 92.12 75.51 l S 92.12 74.53 m 92.17 75.51 l S 92.17 74.53 m 92.21 76.49 l S 92.21 75.51 m 92.26 81.37 l S 92.26 78.44 m 92.30 80.39 l S 92.30 76.49 m 92.35 79.41 l S 92.35 75.51 m 92.40 79.41 l S 92.40 76.49 m 92.44 96.01 l S 92.44 77.46 m 92.49 92.10 l S 92.49 75.51 m 92.53 78.44 l S 92.53 76.49 m 92.58 79.41 l S 92.58 74.53 m 92.63 78.44 l S 92.63 74.53 m 92.67 75.51 l S 92.67 74.53 m 92.72 74.53 l S 92.72 74.53 m 92.76 74.53 l S 92.76 74.53 m 92.81 76.49 l S 92.81 75.51 m 92.86 78.44 l S 92.86 76.49 m 92.90 79.41 l S 92.90 74.53 m 92.95 77.46 l S 92.95 74.53 m 92.99 76.49 l S 92.99 75.51 m 93.04 77.46 l S 93.04 75.51 m 93.09 77.46 l S 93.09 74.53 m 93.13 75.51 l S 93.13 74.53 m 93.18 76.49 l S 93.18 74.53 m 93.22 75.51 l S 93.22 74.53 m 93.27 77.46 l S 93.27 75.51 m 93.32 78.44 l S 93.32 74.53 m 93.36 76.49 l S 93.36 75.51 m 93.41 76.49 l S 93.41 75.51 m 93.45 77.46 l S 93.45 75.51 m 93.50 77.46 l S 93.50 74.53 m 93.55 75.51 l S 93.55 74.53 m 93.59 74.53 l S 93.59 74.53 m 93.64 74.53 l S 93.64 74.53 m 93.68 75.51 l S 93.68 74.53 m 93.73 75.51 l S 93.73 74.53 m 93.78 74.53 l S 93.78 74.53 m 93.82 74.53 l S 93.82 74.53 m 93.87 75.51 l S 93.87 74.53 m 93.91 78.44 l S 93.91 74.53 m 93.96 74.53 l S 93.96 74.53 m 94.01 75.51 l S 94.01 74.53 m 94.05 75.51 l S 94.05 75.51 m 94.10 78.44 l S 94.10 74.53 m 94.14 75.51 l S 94.14 74.53 m 94.19 74.53 l S 94.19 74.53 m 94.24 74.53 l S 94.24 74.53 m 94.28 74.53 l S 94.28 74.53 m 94.33 75.51 l S 94.33 74.53 m 94.37 75.51 l S 94.37 74.53 m 94.42 74.53 l S 94.42 74.53 m 94.47 74.53 l S 94.47 74.53 m 94.51 75.51 l S 94.51 74.53 m 94.56 74.53 l S 94.56 74.53 m 94.61 74.53 l S 94.61 74.53 m 94.65 80.39 l S 94.65 74.53 m 94.70 79.41 l S 94.70 74.53 m 94.74 75.51 l S 94.74 74.53 m 94.79 75.51 l S 94.79 74.53 m 94.84 75.51 l S 94.84 74.53 m 94.88 75.51 l S 94.88 74.53 m 94.93 75.51 l S 94.93 74.53 m 94.97 74.53 l S 94.97 74.53 m 95.02 74.53 l S 95.02 74.53 m 95.07 74.53 l S 95.07 74.53 m 95.11 74.53 l S 95.11 74.53 m 95.16 75.51 l S 95.16 74.53 m 95.20 75.51 l S 95.20 74.53 m 95.25 75.51 l S 95.25 74.53 m 95.30 75.51 l S 95.30 74.53 m 95.34 74.53 l S 95.34 74.53 m 95.39 74.53 l S 95.39 74.53 m 95.43 76.49 l S 95.43 74.53 m 95.48 75.51 l S 95.48 75.51 m 95.53 77.46 l S 95.53 74.53 m 95.57 75.51 l S 95.57 74.53 m 95.62 75.51 l S 95.62 74.53 m 95.66 75.51 l S 95.66 74.53 m 95.71 74.53 l S 95.71 74.53 m 95.76 77.46 l S 95.76 74.53 m 95.80 74.53 l S 95.80 74.53 m 95.85 75.51 l S 95.85 75.51 m 95.89 77.46 l S 95.89 74.53 m 95.94 76.49 l S 95.94 74.53 m 95.99 75.51 l S 95.99 74.53 m 96.03 77.46 l S 96.03 74.53 m 96.08 77.46 l S 96.08 74.53 m 96.12 74.53 l S 96.12 74.53 m 96.17 76.49 l S 96.17 74.53 m 96.22 76.49 l S 96.22 74.53 m 96.26 76.49 l S 96.26 74.53 m 96.31 76.49 l S 96.31 74.53 m 96.35 76.49 l S 96.35 74.53 m 96.40 77.46 l S 96.40 74.53 m 96.45 74.53 l S 96.45 74.53 m 96.49 74.53 l S 96.49 74.53 m 96.54 75.51 l S 96.54 74.53 m 96.58 89.18 l S 96.58 81.37 m 96.63 93.08 l S 96.63 80.39 m 96.68 85.27 l S 96.68 76.49 m 96.72 83.32 l S 96.72 77.46 m 96.77 80.39 l S 96.77 78.44 m 96.81 82.34 l S 96.81 77.46 m 96.86 82.34 l S 96.86 75.51 m 96.91 79.41 l S 96.91 74.53 m 96.95 75.51 l S 96.95 74.53 m 97.00 74.53 l S 97.00 74.53 m 97.04 74.53 l S 97.04 74.53 m 97.09 74.53 l S 97.09 74.53 m 97.14 74.53 l S 97.14 74.53 m 97.18 75.51 l S 97.18 74.53 m 97.23 75.51 l S 97.23 74.53 m 97.27 74.53 l S 97.27 74.53 m 97.32 75.51 l S 97.32 74.53 m 97.37 75.51 l S 97.37 74.53 m 97.41 74.53 l S 97.41 74.53 m 97.46 75.51 l S 97.46 74.53 m 97.50 75.51 l S 97.50 74.53 m 97.55 74.53 l S 97.55 74.53 m 97.60 75.51 l S 97.60 74.53 m 97.64 75.51 l S 97.64 74.53 m 97.69 76.49 l S 97.69 74.53 m 97.73 76.49 l S 97.73 74.53 m 97.78 76.49 l S 97.78 74.53 m 97.83 77.46 l S 97.83 74.53 m 97.87 77.46 l S 97.87 74.53 m 97.92 74.53 l S 97.92 74.53 m 97.96 74.53 l S 97.96 74.53 m 98.01 74.53 l S 98.01 74.53 m 98.06 74.53 l S 98.06 74.53 m 98.10 74.53 l S 98.10 74.53 m 98.15 76.49 l S 98.15 74.53 m 98.19 76.49 l S 98.19 74.53 m 98.24 74.53 l S 98.24 74.53 m 98.29 75.51 l S 98.29 74.53 m 98.33 75.51 l S 98.33 74.53 m 98.38 75.51 l S 98.38 74.53 m 98.42 74.53 l S 98.42 74.53 m 98.47 75.51 l S 98.47 74.53 m 98.52 75.51 l S 98.52 74.53 m 98.56 74.53 l S 98.56 74.53 m 98.61 75.51 l S 98.61 74.53 m 98.65 74.53 l S 98.65 74.53 m 98.70 74.53 l S 98.70 74.53 m 98.75 76.49 l S 98.75 74.53 m 98.79 77.46 l S 98.79 74.53 m 98.84 75.51 l S 98.84 74.53 m 98.88 77.46 l S 98.88 74.53 m 98.93 77.46 l S 98.93 74.53 m 98.98 74.53 l S 98.98 74.53 m 99.02 75.51 l S 99.02 74.53 m 99.07 75.51 l S 99.07 74.53 m 99.11 75.51 l S 99.11 74.53 m 99.16 75.51 l S 99.16 74.53 m 99.21 75.51 l S 99.21 74.53 m 99.25 74.53 l S 99.25 74.53 m 99.30 74.53 l S 99.30 74.53 m 99.34 74.53 l S 99.34 74.53 m 99.39 74.53 l S 99.39 74.53 m 99.44 75.51 l S 99.44 74.53 m 99.48 76.49 l S 99.48 74.53 m 99.53 77.46 l S 99.53 74.53 m 99.57 77.46 l S 99.57 74.53 m 99.62 75.51 l S 99.62 74.53 m 99.67 74.53 l S 99.67 74.53 m 99.71 75.51 l S 99.71 74.53 m 99.76 75.51 l S 99.76 74.53 m 99.80 75.51 l S 99.80 74.53 m 99.85 74.53 l S 99.85 74.53 m 99.90 74.53 l S 99.90 74.53 m 99.94 74.53 l S 99.94 74.53 m 99.99 74.53 l S 99.99 74.53 m 100.03 74.53 l S 100.03 74.53 m 100.08 74.53 l S 100.08 74.53 m 100.13 75.51 l S 100.13 74.53 m 100.17 75.51 l S 100.17 74.53 m 100.22 74.53 l S 100.22 74.53 m 100.26 74.53 l S 100.26 74.53 m 100.31 74.53 l S 100.31 74.53 m 100.36 74.53 l S 100.36 74.53 m 100.40 75.51 l S 100.40 74.53 m 100.45 75.51 l S 100.45 74.53 m 100.49 75.51 l S 100.49 74.53 m 100.54 76.49 l S 100.54 74.53 m 100.59 76.49 l S 100.59 74.53 m 100.63 75.51 l S 100.63 74.53 m 100.68 74.53 l S 100.68 74.53 m 100.72 74.53 l S 100.72 74.53 m 100.77 77.46 l S 100.77 74.53 m 100.82 77.46 l S 100.82 74.53 m 100.86 75.51 l S 100.86 74.53 m 100.91 78.44 l S 100.91 74.53 m 100.95 74.53 l S 100.95 74.53 m 101.00 75.51 l S 101.00 74.53 m 101.05 75.51 l S 101.05 74.53 m 101.09 74.53 l S 101.09 74.53 m 101.14 75.51 l S 101.14 74.53 m 101.18 76.49 l S 101.18 74.53 m 101.23 74.53 l S 101.23 74.53 m 101.28 74.53 l S 101.28 74.53 m 101.32 74.53 l S 101.32 74.53 m 101.37 74.53 l S 101.37 74.53 m 101.41 74.53 l S 101.41 74.53 m 101.46 75.51 l S 101.46 74.53 m 101.51 76.49 l S 101.51 75.51 m 101.55 77.46 l S 101.55 74.53 m 101.60 75.51 l S 101.60 74.53 m 101.64 75.51 l S 101.64 74.53 m 101.69 75.51 l S 101.69 74.53 m 101.74 75.51 l S 101.74 74.53 m 101.78 75.51 l S 101.78 74.53 m 101.83 75.51 l S 101.83 74.53 m 101.87 79.41 l S 101.87 77.46 m 101.92 82.34 l S 101.92 75.51 m 101.97 84.30 l S 101.97 74.53 m 102.01 77.46 l S 102.01 74.53 m 102.06 74.53 l S 102.06 74.53 m 102.10 79.41 l S 102.10 77.46 m 102.15 79.41 l S 102.15 77.46 m 102.20 86.25 l S 102.20 75.51 m 102.24 83.32 l S 102.24 78.44 m 102.29 89.18 l S 102.29 87.22 m 102.33 97.96 l S 102.33 82.34 m 102.38 94.06 l S 102.38 87.22 m 102.43 101.87 l S 102.43 79.41 m 102.47 87.22 l S 102.47 74.53 m 102.52 81.37 l S 102.52 74.53 m 102.57 75.51 l S 102.57 74.53 m 102.61 75.51 l S 102.61 74.53 m 102.66 79.41 l S 102.66 76.49 m 102.70 79.41 l S 102.70 74.53 m 102.75 77.46 l S 102.75 74.53 m 102.80 74.53 l S 102.80 74.53 m 102.84 74.53 l S 102.84 74.53 m 102.89 74.53 l S 102.89 74.53 m 102.93 74.53 l S 102.93 74.53 m 102.98 74.53 l S 102.98 74.53 m 103.03 74.53 l S 103.03 74.53 m 103.07 74.53 l S 103.07 74.53 m 103.12 74.53 l S 103.12 74.53 m 103.16 74.53 l S 103.16 74.53 m 103.21 74.53 l S 103.21 74.53 m 103.26 74.53 l S 103.26 74.53 m 103.30 74.53 l S 103.30 74.53 m 103.35 74.53 l S 103.35 74.53 m 103.39 74.53 l S 103.39 74.53 m 103.44 74.53 l S 103.44 74.53 m 103.49 74.53 l S 103.49 74.53 m 103.53 74.53 l S 103.53 74.53 m 103.58 74.53 l S 103.58 74.53 m 103.62 74.53 l S 103.62 74.53 m 103.67 74.53 l S 103.67 74.53 m 103.72 74.53 l S 103.72 74.53 m 103.76 74.53 l S 103.76 74.53 m 103.81 74.53 l S 103.81 74.53 m 103.85 74.53 l S 103.85 74.53 m 103.90 74.53 l S 103.90 74.53 m 103.95 74.53 l S 103.95 74.53 m 103.99 75.51 l S 103.99 74.53 m 104.04 75.51 l S 104.04 74.53 m 104.08 74.53 l S 104.08 74.53 m 104.13 74.53 l S 104.13 74.53 m 104.18 74.53 l S 104.18 74.53 m 104.22 74.53 l S 104.22 74.53 m 104.27 74.53 l S 104.27 74.53 m 104.31 74.53 l S 104.31 74.53 m 104.36 74.53 l S 104.36 74.53 m 104.41 74.53 l S 104.41 74.53 m 104.45 74.53 l S 104.45 74.53 m 104.50 74.53 l S 104.50 74.53 m 104.54 74.53 l S 104.54 74.53 m 104.59 75.51 l S 104.59 74.53 m 104.64 74.53 l S 104.64 74.53 m 104.68 74.53 l S 104.68 74.53 m 104.73 74.53 l S 104.73 74.53 m 104.77 75.51 l S 104.77 74.53 m 104.82 75.51 l S 104.82 74.53 m 104.87 74.53 l S 104.87 74.53 m 104.91 75.51 l S 104.91 74.53 m 104.96 75.51 l S 104.96 74.53 m 105.00 74.53 l S 105.00 74.53 m 105.05 74.53 l S 105.05 74.53 m 105.10 74.53 l S 105.10 74.53 m 105.14 77.46 l S 105.14 74.53 m 105.19 77.46 l S 105.19 74.53 m 105.23 74.53 l S 105.23 74.53 m 105.28 74.53 l S 105.28 74.53 m 105.33 74.53 l S 105.33 74.53 m 105.37 75.51 l S 105.37 74.53 m 105.42 75.51 l S 105.42 74.53 m 105.46 74.53 l S 105.46 74.53 m 105.51 74.53 l S 105.51 74.53 m 105.56 74.53 l S 105.56 74.53 m 105.60 74.53 l S 105.60 74.53 m 105.65 74.53 l S 105.65 74.53 m 105.69 74.53 l S 105.69 74.53 m 105.74 74.53 l S 105.74 74.53 m 105.79 74.53 l S 105.79 74.53 m 105.83 74.53 l S 105.83 74.53 m 105.88 75.51 l S 105.88 74.53 m 105.92 75.51 l S 105.92 74.53 m 105.97 76.49 l S 105.97 74.53 m 106.02 76.49 l S 106.02 74.53 m 106.06 74.53 l S 106.06 74.53 m 106.11 74.53 l S 106.11 74.53 m 106.15 74.53 l S 106.15 74.53 m 106.20 74.53 l S 106.20 74.53 m 106.25 74.53 l S 106.25 74.53 m 106.29 76.49 l S 106.29 74.53 m 106.34 76.49 l S 106.34 74.53 m 106.38 78.44 l S 106.38 75.51 m 106.43 78.44 l S 106.43 74.53 m 106.48 76.49 l S 106.48 74.53 m 106.52 83.32 l S 106.52 74.53 m 106.57 85.27 l S 106.57 74.53 m 106.61 74.53 l S 106.61 74.53 m 106.66 74.53 l S 106.66 74.53 m 106.71 74.53 l S 106.71 74.53 m 106.75 76.49 l S 106.75 74.53 m 106.80 74.53 l S 106.80 74.53 m 106.84 74.53 l S 106.84 74.53 m 106.89 74.53 l S 106.89 74.53 m 106.94 74.53 l S 106.94 74.53 m 106.98 74.53 l S 106.98 74.53 m 107.03 74.53 l S 107.03 74.53 m 107.07 74.53 l S 107.07 74.53 m 107.12 74.53 l S 107.12 74.53 m 107.17 74.53 l S 107.17 74.53 m 107.21 74.53 l S 107.21 74.53 m 107.26 74.53 l S 107.26 74.53 m 107.30 74.53 l S 107.30 74.53 m 107.35 74.53 l S 107.35 74.53 m 107.40 74.53 l S 107.40 74.53 m 107.44 74.53 l S 107.44 74.53 m 107.49 74.53 l S 107.49 74.53 m 107.53 74.53 l S 107.53 74.53 m 107.58 74.53 l S 107.58 74.53 m 107.63 74.53 l S 107.63 74.53 m 107.67 74.53 l S 107.67 74.53 m 107.72 74.53 l S 107.72 74.53 m 107.76 74.53 l S 107.76 74.53 m 107.81 74.53 l S 107.81 74.53 m 107.86 74.53 l S 107.86 74.53 m 107.90 74.53 l S 107.90 74.53 m 107.95 74.53 l S 107.95 74.53 m 107.99 74.53 l S 107.99 74.53 m 108.04 74.53 l S 108.04 74.53 m 108.09 74.53 l S 108.09 74.53 m 108.13 74.53 l S 108.13 74.53 m 108.18 74.53 l S 108.18 74.53 m 108.22 74.53 l S 108.22 74.53 m 108.27 74.53 l S 108.27 74.53 m 108.32 76.49 l S 108.32 74.53 m 108.36 76.49 l S 108.36 74.53 m 108.41 75.51 l S 108.41 74.53 m 108.45 74.53 l S 108.45 74.53 m 108.50 74.53 l S 108.50 74.53 m 108.55 74.53 l S 108.55 74.53 m 108.59 77.46 l S 108.59 74.53 m 108.64 75.51 l S 108.64 74.53 m 108.68 74.53 l S 108.68 74.53 m 108.73 74.53 l S 108.73 74.53 m 108.78 74.53 l S 108.78 74.53 m 108.82 74.53 l S 108.82 74.53 m 108.87 74.53 l S 108.87 74.53 m 108.91 74.53 l S 108.91 74.53 m 108.96 74.53 l S 108.96 74.53 m 109.01 74.53 l S 109.01 74.53 m 109.05 74.53 l S 109.05 74.53 m 109.10 75.51 l S 109.10 74.53 m 109.14 77.46 l S 109.14 74.53 m 109.19 78.44 l S 109.19 74.53 m 109.24 74.53 l S 109.24 74.53 m 109.28 74.53 l S 109.28 74.53 m 109.33 74.53 l S 109.33 74.53 m 109.37 74.53 l S 109.37 74.53 m 109.42 74.53 l S 109.42 74.53 m 109.47 74.53 l S 109.47 74.53 m 109.51 74.53 l S 109.51 74.53 m 109.56 74.53 l S 109.56 74.53 m 109.60 74.53 l S 109.60 74.53 m 109.65 74.53 l S 109.65 74.53 m 109.70 74.53 l S 109.70 74.53 m 109.74 75.51 l S 109.74 74.53 m 109.79 75.51 l S 109.79 74.53 m 109.83 74.53 l S 109.83 74.53 m 109.88 74.53 l S 109.88 74.53 m 109.93 74.53 l S 109.93 74.53 m 109.97 74.53 l S 109.97 74.53 m 110.02 75.51 l S 110.02 74.53 m 110.06 75.51 l S 110.06 74.53 m 110.11 74.53 l S 110.11 74.53 m 110.16 74.53 l S 110.16 74.53 m 110.20 74.53 l S 110.20 74.53 m 110.25 76.49 l S 110.25 74.53 m 110.29 76.49 l S 110.29 74.53 m 110.34 75.51 l S 110.34 74.53 m 110.39 76.49 l S 110.39 74.53 m 110.43 74.53 l S 110.43 74.53 m 110.48 74.53 l S 110.48 74.53 m 110.53 74.53 l S 110.53 74.53 m 110.57 74.53 l S 110.57 74.53 m 110.62 74.53 l S 110.62 74.53 m 110.66 74.53 l S 110.66 74.53 m 110.71 74.53 l S 110.71 74.53 m 110.76 74.53 l S 110.76 74.53 m 110.80 74.53 l S 110.80 74.53 m 110.85 74.53 l S 110.85 74.53 m 110.89 74.53 l S 110.89 74.53 m 110.94 74.53 l S 110.94 74.53 m 110.99 74.53 l S 110.99 74.53 m 111.03 74.53 l S 111.03 74.53 m 111.08 74.53 l S 111.08 74.53 m 111.12 74.53 l S 111.12 74.53 m 111.17 74.53 l S 111.17 74.53 m 111.22 74.53 l S 111.22 74.53 m 111.26 74.53 l S 111.26 74.53 m 111.31 74.53 l S 111.31 74.53 m 111.35 74.53 l S 111.35 74.53 m 111.40 74.53 l S 111.40 74.53 m 111.45 74.53 l S 111.45 74.53 m 111.49 74.53 l S 111.49 74.53 m 111.54 74.53 l S 111.54 74.53 m 111.58 74.53 l S 111.58 74.53 m 111.63 74.53 l S 111.63 74.53 m 111.68 74.53 l S 111.68 74.53 m 111.72 76.49 l S 111.72 74.53 m 111.77 76.49 l S 111.77 74.53 m 111.81 74.53 l S 111.81 74.53 m 111.86 75.51 l S 111.86 74.53 m 111.91 75.51 l S 111.91 74.53 m 111.95 74.53 l S 111.95 74.53 m 112.00 74.53 l S 112.00 74.53 m 112.04 74.53 l S 112.04 74.53 m 112.09 74.53 l S 112.09 74.53 m 112.14 75.51 l S 112.14 74.53 m 112.18 74.53 l S 112.18 74.53 m 112.23 74.53 l S 112.23 74.53 m 112.27 74.53 l S 112.27 74.53 m 112.32 74.53 l S 112.32 74.53 m 112.37 74.53 l S 112.37 74.53 m 112.41 74.53 l S 112.41 74.53 m 112.46 74.53 l S 112.46 74.53 m 112.50 74.53 l S 112.50 74.53 m 112.55 74.53 l S 112.55 74.53 m 112.60 74.53 l S 112.60 74.53 m 112.64 74.53 l S 112.64 74.53 m 112.69 74.53 l S 112.69 74.53 m 112.73 74.53 l S 112.73 74.53 m 112.78 74.53 l S 112.78 74.53 m 112.83 74.53 l S 112.83 74.53 m 112.87 74.53 l S 112.87 74.53 m 112.92 74.53 l S 112.92 74.53 m 112.96 74.53 l S 112.96 74.53 m 113.01 74.53 l S 113.01 74.53 m 113.06 74.53 l S 113.06 74.53 m 113.10 74.53 l S 113.10 74.53 m 113.15 74.53 l S 113.15 74.53 m 113.19 76.49 l S 113.19 74.53 m 113.24 76.49 l S 113.24 74.53 m 113.29 74.53 l S 113.29 74.53 m 113.33 74.53 l S 113.33 74.53 m 113.38 74.53 l S 113.38 74.53 m 113.42 74.53 l S 113.42 74.53 m 113.47 74.53 l S 113.47 74.53 m 113.52 74.53 l S 113.52 74.53 m 113.56 74.53 l S 113.56 74.53 m 113.61 74.53 l S 113.61 74.53 m 113.65 74.53 l S 113.65 74.53 m 113.70 74.53 l S 113.70 74.53 m 113.75 74.53 l S 113.75 74.53 m 113.79 74.53 l S 113.79 74.53 m 113.84 74.53 l S 113.84 74.53 m 113.88 74.53 l S 113.88 74.53 m 113.93 74.53 l S 113.93 74.53 m 113.98 74.53 l S 113.98 74.53 m 114.02 74.53 l S 114.02 74.53 m 114.07 75.51 l S 114.07 74.53 m 114.11 75.51 l S 114.11 74.53 m 114.16 74.53 l S 114.16 74.53 m 114.21 75.51 l S 114.21 74.53 m 114.25 75.51 l S 114.25 74.53 m 114.30 75.51 l S 114.30 74.53 m 114.34 74.53 l S 114.34 74.53 m 114.39 74.53 l S 114.39 74.53 m 114.44 74.53 l S 114.44 74.53 m 114.48 74.53 l S 114.48 74.53 m 114.53 74.53 l S 114.53 74.53 m 114.57 74.53 l S 114.57 74.53 m 114.62 74.53 l S 114.62 74.53 m 114.67 75.51 l S 114.67 74.53 m 114.71 75.51 l S 114.71 74.53 m 114.76 74.53 l S 114.76 74.53 m 114.80 74.53 l S 114.80 74.53 m 114.85 75.51 l S 114.85 74.53 m 114.90 75.51 l S 114.90 74.53 m 114.94 74.53 l S 114.94 74.53 m 114.99 74.53 l S 114.99 74.53 m 115.03 74.53 l S 115.03 74.53 m 115.08 74.53 l S 115.08 74.53 m 115.13 74.53 l S 115.13 74.53 m 115.17 74.53 l S 115.17 74.53 m 115.22 74.53 l S 115.22 74.53 m 115.26 74.53 l S 115.26 74.53 m 115.31 74.53 l S 115.31 74.53 m 115.36 74.53 l S 115.36 74.53 m 115.40 74.53 l S 115.40 74.53 m 115.45 74.53 l S 115.45 74.53 m 115.49 74.53 l S 115.49 74.53 m 115.54 75.51 l S 115.54 74.53 m 115.59 74.53 l S 115.59 74.53 m 115.63 74.53 l S 115.63 74.53 m 115.68 74.53 l S 115.68 74.53 m 115.72 74.53 l S 115.72 74.53 m 115.77 74.53 l S 115.77 74.53 m 115.82 74.53 l S 115.82 74.53 m 115.86 74.53 l S 115.86 74.53 m 115.91 74.53 l S 115.91 74.53 m 115.95 74.53 l S 115.95 74.53 m 116.00 74.53 l S 116.00 74.53 m 116.05 74.53 l S 116.05 74.53 m 116.09 74.53 l S 116.09 74.53 m 116.14 74.53 l S 116.14 74.53 m 116.18 74.53 l S 116.18 74.53 m 116.23 74.53 l S 116.23 74.53 m 116.28 74.53 l S 116.28 74.53 m 116.32 74.53 l S 116.32 74.53 m 116.37 74.53 l S 116.37 74.53 m 116.41 74.53 l S 116.41 74.53 m 116.46 74.53 l S 116.46 74.53 m 116.51 74.53 l S 116.51 74.53 m 116.55 74.53 l S 116.55 74.53 m 116.60 74.53 l S 116.60 74.53 m 116.64 74.53 l S 116.64 74.53 m 116.69 74.53 l S 116.69 74.53 m 116.74 74.53 l S 116.74 74.53 m 116.78 74.53 l S 116.78 74.53 m 116.83 75.51 l S 116.83 74.53 m 116.87 75.51 l S 116.87 74.53 m 116.92 74.53 l S 116.92 74.53 m 116.97 74.53 l S 116.97 74.53 m 117.01 74.53 l S 117.01 74.53 m 117.06 74.53 l S 117.06 74.53 m 117.10 74.53 l S 117.10 74.53 m 117.15 74.53 l S 117.15 74.53 m 117.20 74.53 l S 117.20 74.53 m 117.24 74.53 l S 117.24 74.53 m 117.29 74.53 l S 117.29 74.53 m 117.33 74.53 l S 117.33 74.53 m 117.38 74.53 l S 117.38 74.53 m 117.43 74.53 l S 117.43 74.53 m 117.47 74.53 l S 117.47 74.53 m 117.52 74.53 l S 117.52 74.53 m 117.56 75.51 l S 117.56 74.53 m 117.61 75.51 l S 117.61 74.53 m 117.66 74.53 l S 117.66 74.53 m 117.70 74.53 l S 117.70 74.53 m 117.75 75.51 l S 117.75 74.53 m 117.79 75.51 l S 117.79 74.53 m 117.84 74.53 l S 117.84 74.53 m 117.89 74.53 l S 117.89 74.53 m 117.93 74.53 l S 117.93 74.53 m 117.98 74.53 l S 117.98 74.53 m 118.02 74.53 l S 118.02 74.53 m 118.07 74.53 l S 118.07 74.53 m 118.12 74.53 l S 118.12 74.53 m 118.16 74.53 l S 118.16 74.53 m 118.21 75.51 l S 118.21 74.53 m 118.25 75.51 l S 118.25 74.53 m 118.30 74.53 l S 118.30 74.53 m 118.35 74.53 l S 118.35 74.53 m 118.39 74.53 l S 118.39 74.53 m 118.44 74.53 l S 118.44 74.53 m 118.49 74.53 l S 118.49 74.53 m 118.53 74.53 l S 118.53 74.53 m 118.58 75.51 l S 118.58 74.53 m 118.62 75.51 l S 118.62 74.53 m 118.67 74.53 l S 118.67 74.53 m 118.72 74.53 l S 118.72 74.53 m 118.76 74.53 l S 118.76 74.53 m 118.81 74.53 l S 118.81 74.53 m 118.85 74.53 l S 118.85 74.53 m 118.90 74.53 l S 118.90 74.53 m 118.95 74.53 l S 118.95 74.53 m 118.99 74.53 l S 118.99 74.53 m 119.04 74.53 l S 119.04 74.53 m 119.08 74.53 l S 119.08 74.53 m 119.13 75.51 l S 119.13 74.53 m 119.18 75.51 l S 119.18 74.53 m 119.22 74.53 l S 119.22 74.53 m 119.27 74.53 l S 119.27 74.53 m 119.31 74.53 l S 119.31 74.53 m 119.36 75.51 l S 119.36 74.53 m 119.41 75.51 l S 119.41 74.53 m 119.45 74.53 l S 119.45 74.53 m 119.50 74.53 l S 119.50 74.53 m 119.54 74.53 l S 119.54 74.53 m 119.59 74.53 l S 119.59 74.53 m 119.64 74.53 l S 119.64 74.53 m 119.68 74.53 l S 119.68 74.53 m 119.73 74.53 l S 119.73 74.53 m 119.77 74.53 l S 119.77 74.53 m 119.82 74.53 l S 119.82 74.53 m 119.87 74.53 l S 119.87 74.53 m 119.91 74.53 l S 119.91 74.53 m 119.96 74.53 l S 119.96 74.53 m 120.00 74.53 l S 120.00 74.53 m 120.05 74.53 l S 120.05 74.53 m 120.10 74.53 l S 120.10 74.53 m 120.14 74.53 l S 120.14 74.53 m 120.19 74.53 l S 120.19 74.53 m 120.23 74.53 l S 120.23 74.53 m 120.28 74.53 l S 120.28 74.53 m 120.33 74.53 l S 120.33 74.53 m 120.37 74.53 l S 120.37 74.53 m 120.42 74.53 l S 120.42 74.53 m 120.46 74.53 l S 120.46 74.53 m 120.51 74.53 l S 120.51 74.53 m 120.56 74.53 l S 120.56 74.53 m 120.60 74.53 l S 120.60 74.53 m 120.65 74.53 l S 120.65 74.53 m 120.69 74.53 l S 120.69 74.53 m 120.74 74.53 l S 120.74 74.53 m 120.79 74.53 l S 120.79 74.53 m 120.83 74.53 l S 120.83 74.53 m 120.88 74.53 l S 120.88 74.53 m 120.92 74.53 l S 120.92 74.53 m 120.97 74.53 l S 120.97 74.53 m 121.02 74.53 l S 121.02 74.53 m 121.06 74.53 l S 121.06 74.53 m 121.11 74.53 l S 121.11 74.53 m 121.15 74.53 l S 121.15 74.53 m 121.20 74.53 l S 121.20 74.53 m 121.25 74.53 l S 121.25 74.53 m 121.29 74.53 l S 121.29 74.53 m 121.34 74.53 l S 121.34 74.53 m 121.38 76.49 l S 121.38 74.53 m 121.43 76.49 l S 121.43 74.53 m 121.48 74.53 l S 121.48 74.53 m 121.52 74.53 l S 121.52 74.53 m 121.57 74.53 l S 121.57 74.53 m 121.61 74.53 l S 121.61 74.53 m 121.66 74.53 l S 121.66 74.53 m 121.71 74.53 l S 121.71 74.53 m 121.75 74.53 l S 121.75 74.53 m 121.80 74.53 l S 121.80 74.53 m 121.84 74.53 l S 121.84 74.53 m 121.89 76.49 l S 121.89 74.53 m 121.94 75.51 l S 121.94 74.53 m 121.98 75.51 l S 121.98 74.53 m 122.03 74.53 l S 122.03 74.53 m 122.07 74.53 l S 122.07 74.53 m 122.12 74.53 l S 122.12 74.53 m 122.17 74.53 l S 122.17 74.53 m 122.21 74.53 l S 122.21 74.53 m 122.26 74.53 l S 122.26 74.53 m 122.30 74.53 l S 122.30 74.53 m 122.35 74.53 l S 122.35 74.53 m 122.40 74.53 l S 122.40 74.53 m 122.44 75.51 l S 122.44 74.53 m 122.49 75.51 l S 122.49 74.53 m 122.53 75.51 l S 122.53 74.53 m 122.58 75.51 l S 122.58 74.53 m 122.63 74.53 l S 122.63 74.53 m 122.67 75.51 l S 122.67 74.53 m 122.72 74.53 l S 122.72 74.53 m 122.76 74.53 l S 122.76 74.53 m 122.81 74.53 l S 122.81 74.53 m 122.86 74.53 l S 122.86 74.53 m 122.90 74.53 l S 122.90 74.53 m 122.95 75.51 l S 122.95 74.53 m 122.99 74.53 l S 122.99 74.53 m 123.04 74.53 l S 123.04 74.53 m 123.09 74.53 l S 123.09 74.53 m 123.13 74.53 l S 123.13 74.53 m 123.18 74.53 l S 123.18 74.53 m 123.22 74.53 l S 123.22 74.53 m 123.27 74.53 l S 123.27 74.53 m 123.32 74.53 l S 123.32 74.53 m 123.36 74.53 l S 123.36 74.53 m 123.41 74.53 l S 123.41 74.53 m 123.45 74.53 l S 123.45 74.53 m 123.50 74.53 l S 123.50 74.53 m 123.55 76.49 l S 123.55 74.53 m 123.59 75.51 l S 123.59 74.53 m 123.64 74.53 l S 123.64 74.53 m 123.68 74.53 l S 123.68 74.53 m 123.73 74.53 l S 123.73 74.53 m 123.78 74.53 l S 123.78 74.53 m 123.82 76.49 l S 123.82 74.53 m 123.87 76.49 l S 123.87 74.53 m 123.91 74.53 l S 123.91 74.53 m 123.96 74.53 l S 123.96 74.53 m 124.01 74.53 l S 124.01 74.53 m 124.05 74.53 l S 124.05 74.53 m 124.10 74.53 l S 124.10 74.53 m 124.14 75.51 l S 124.14 74.53 m 124.19 76.49 l S 124.19 74.53 m 124.24 74.53 l S 124.24 74.53 m 124.28 74.53 l S 124.28 74.53 m 124.33 74.53 l S 124.33 74.53 m 124.37 74.53 l S 124.37 74.53 m 124.42 74.53 l S 124.42 74.53 m 124.47 74.53 l S 124.47 74.53 m 124.51 74.53 l S 124.51 74.53 m 124.56 74.53 l S 124.56 74.53 m 124.60 74.53 l S 124.60 74.53 m 124.65 74.53 l S 124.65 74.53 m 124.70 74.53 l S 124.70 74.53 m 124.74 74.53 l S 124.74 74.53 m 124.79 74.53 l S 124.79 74.53 m 124.83 75.51 l S 124.83 74.53 m 124.88 74.53 l S 124.88 74.53 m 124.93 75.51 l S 124.93 74.53 m 124.97 74.53 l S 124.97 74.53 m 125.02 74.53 l S 125.02 74.53 m 125.06 74.53 l S 125.06 74.53 m 125.11 74.53 l S 125.11 74.53 m 125.16 74.53 l S 125.16 74.53 m 125.20 74.53 l S 125.20 74.53 m 125.25 74.53 l S 125.25 74.53 m 125.29 76.49 l S 125.29 74.53 m 125.34 78.44 l S 125.34 74.53 m 125.39 74.53 l S 125.39 74.53 m 125.43 74.53 l S 125.43 74.53 m 125.48 74.53 l S 125.48 74.53 m 125.52 74.53 l S 125.52 74.53 m 125.57 74.53 l S 125.57 74.53 m 125.62 74.53 l S 125.62 74.53 m 125.66 74.53 l S 125.66 74.53 m 125.71 75.51 l S 125.71 74.53 m 125.75 75.51 l S 125.75 74.53 m 125.80 75.51 l S 125.80 74.53 m 125.85 75.51 l S 125.85 74.53 m 125.89 74.53 l S 125.89 74.53 m 125.94 74.53 l S 125.94 74.53 m 125.98 74.53 l S 125.98 74.53 m 126.03 74.53 l S 126.03 74.53 m 126.08 74.53 l S 126.08 74.53 m 126.12 74.53 l S 126.12 74.53 m 126.17 74.53 l S 126.17 74.53 m 126.21 74.53 l S 126.21 74.53 m 126.26 74.53 l S 126.26 74.53 m 126.31 74.53 l S 126.31 74.53 m 126.35 74.53 l S 126.35 74.53 m 126.40 74.53 l S 126.40 74.53 m 126.45 74.53 l S 126.45 74.53 m 126.49 74.53 l S 126.49 74.53 m 126.54 74.53 l S 126.54 74.53 m 126.58 74.53 l S 126.58 74.53 m 126.63 74.53 l S 126.63 74.53 m 126.68 74.53 l S 126.68 74.53 m 126.72 74.53 l S 126.72 74.53 m 126.77 74.53 l S 126.77 74.53 m 126.81 74.53 l S 126.81 74.53 m 126.86 74.53 l S 126.86 74.53 m 126.91 74.53 l S 126.91 74.53 m 126.95 74.53 l S 126.95 74.53 m 127.00 74.53 l S 127.00 74.53 m 127.04 74.53 l S 127.04 74.53 m 127.09 74.53 l S 127.09 74.53 m 127.14 74.53 l S 127.14 74.53 m 127.18 74.53 l S 127.18 74.53 m 127.23 74.53 l S 127.23 74.53 m 127.27 74.53 l S 127.27 74.53 m 127.32 74.53 l S 127.32 74.53 m 127.37 74.53 l S 127.37 74.53 m 127.41 74.53 l S 127.41 74.53 m 127.46 74.53 l S 127.46 74.53 m 127.50 74.53 l S 127.50 74.53 m 127.55 74.53 l S 127.55 74.53 m 127.60 74.53 l S 127.60 74.53 m 127.64 74.53 l S 127.64 74.53 m 127.69 75.51 l S 127.69 74.53 m 127.73 74.53 l S 127.73 74.53 m 127.78 74.53 l S 127.78 74.53 m 127.83 74.53 l S 127.83 74.53 m 127.87 74.53 l S 127.87 74.53 m 127.92 74.53 l S 127.92 74.53 m 127.96 74.53 l S 127.96 74.53 m 128.01 75.51 l S 128.01 74.53 m 128.06 75.51 l S 128.06 74.53 m 128.10 75.51 l S 128.10 74.53 m 128.15 74.53 l S 128.15 74.53 m 128.19 74.53 l S 128.19 74.53 m 128.24 74.53 l S 128.24 74.53 m 128.29 74.53 l S 128.29 74.53 m 128.33 74.53 l S 128.33 74.53 m 128.38 74.53 l S 128.38 74.53 m 128.42 74.53 l S 128.42 74.53 m 128.47 74.53 l S 128.47 74.53 m 128.52 74.53 l S 128.52 74.53 m 128.56 76.49 l S 128.56 74.53 m 128.61 76.49 l S 128.61 75.51 m 128.65 76.49 l S 128.65 74.53 m 128.70 76.49 l S 128.70 74.53 m 128.75 75.51 l S 128.75 74.53 m 128.79 75.51 l S 128.79 74.53 m 128.84 75.51 l S 128.84 74.53 m 128.88 74.53 l S 128.88 74.53 m 128.93 74.53 l S 128.93 74.53 m 128.98 75.51 l S 128.98 74.53 m 129.02 75.51 l S 129.02 74.53 m 129.07 74.53 l S 129.07 74.53 m 129.11 74.53 l S 129.11 74.53 m 129.16 74.53 l S 129.16 74.53 m 129.21 74.53 l S 129.21 74.53 m 129.25 75.51 l S 129.25 74.53 m 129.30 75.51 l S 129.30 74.53 m 129.34 74.53 l S 129.34 74.53 m 129.39 74.53 l S 129.39 74.53 m 129.44 74.53 l S 129.44 74.53 m 129.48 74.53 l S 129.48 74.53 m 129.53 74.53 l S 129.53 74.53 m 129.57 74.53 l S 129.57 74.53 m 129.62 74.53 l S 129.62 74.53 m 129.67 74.53 l S 129.67 74.53 m 129.71 74.53 l S 129.71 74.53 m 129.76 74.53 l S 129.76 74.53 m 129.80 74.53 l S 129.80 74.53 m 129.85 74.53 l S 129.85 74.53 m 129.90 74.53 l S 129.90 74.53 m 129.94 74.53 l S 129.94 74.53 m 129.99 74.53 l S 129.99 74.53 m 130.03 74.53 l S 130.03 74.53 m 130.08 74.53 l S 130.08 74.53 m 130.13 74.53 l S 130.13 74.53 m 130.17 74.53 l S 130.17 74.53 m 130.22 74.53 l S 130.22 74.53 m 130.26 74.53 l S 130.26 74.53 m 130.31 74.53 l S 130.31 74.53 m 130.36 74.53 l S 130.36 74.53 m 130.40 74.53 l S 130.40 74.53 m 130.45 74.53 l S 130.45 74.53 m 130.49 75.51 l S 130.49 74.53 m 130.54 75.51 l S 130.54 74.53 m 130.59 74.53 l S 130.59 74.53 m 130.63 75.51 l S 130.63 74.53 m 130.68 74.53 l S 130.68 74.53 m 130.72 74.53 l S 130.72 74.53 m 130.77 74.53 l S 130.77 74.53 m 130.82 74.53 l S 130.82 74.53 m 130.86 74.53 l S 130.86 74.53 m 130.91 74.53 l S 130.91 74.53 m 130.95 74.53 l S 130.95 74.53 m 131.00 74.53 l S 131.00 74.53 m 131.05 74.53 l S 131.05 74.53 m 131.09 74.53 l S 131.09 74.53 m 131.14 75.51 l S 131.14 74.53 m 131.18 74.53 l S 131.18 74.53 m 131.23 74.53 l S 131.23 74.53 m 131.28 74.53 l S 131.28 74.53 m 131.32 74.53 l S 131.32 74.53 m 131.37 74.53 l S 131.37 74.53 m 131.41 74.53 l S 131.41 74.53 m 131.46 74.53 l S 131.46 74.53 m 131.51 74.53 l S 131.51 74.53 m 131.55 74.53 l S 131.55 74.53 m 131.60 74.53 l S 131.60 74.53 m 131.64 74.53 l S 131.64 74.53 m 131.69 75.51 l S 131.69 74.53 m 131.74 75.51 l S 131.74 74.53 m 131.78 74.53 l S 131.78 74.53 m 131.83 77.46 l S 131.83 74.53 m 131.87 77.46 l S 131.87 74.53 m 131.92 74.53 l S 131.92 74.53 m 131.97 74.53 l S 131.97 74.53 m 132.01 74.53 l S 132.01 74.53 m 132.06 74.53 l S 132.06 74.53 m 132.10 74.53 l S 132.10 74.53 m 132.15 74.53 l S 132.15 74.53 m 132.20 74.53 l S 132.20 74.53 m 132.24 74.53 l S 132.24 74.53 m 132.29 74.53 l S 132.29 74.53 m 132.33 77.46 l S 132.33 74.53 m 132.38 74.53 l S 132.38 74.53 m 132.43 75.51 l S 132.43 74.53 m 132.47 75.51 l S 132.47 74.53 m 132.52 75.51 l S 132.52 74.53 m 132.56 74.53 l S 132.56 74.53 m 132.61 74.53 l S 132.61 74.53 m 132.66 74.53 l S 132.66 74.53 m 132.70 75.51 l S 132.70 74.53 m 132.75 75.51 l S 132.75 74.53 m 132.79 74.53 l S 132.79 74.53 m 132.84 74.53 l S 132.84 74.53 m 132.89 74.53 l S 132.89 74.53 m 132.93 74.53 l S 132.93 74.53 m 132.98 74.53 l S 132.98 74.53 m 133.02 74.53 l S 133.02 74.53 m 133.07 74.53 l S 133.07 74.53 m 133.12 74.53 l S 133.12 74.53 m 133.16 74.53 l S 133.16 74.53 m 133.21 74.53 l S 133.21 74.53 m 133.25 75.51 l S 133.25 74.53 m 133.30 75.51 l S 133.30 74.53 m 133.35 75.51 l S 133.35 74.53 m 133.39 74.53 l S 133.39 74.53 m 133.44 74.53 l S 133.44 74.53 m 133.48 74.53 l S 133.48 74.53 m 133.53 74.53 l S 133.53 74.53 m 133.58 74.53 l S 133.58 74.53 m 133.62 75.51 l S 133.62 74.53 m 133.67 75.51 l S 133.67 74.53 m 133.71 75.51 l S 133.71 74.53 m 133.76 75.51 l S 133.76 74.53 m 133.81 74.53 l S 133.81 74.53 m 133.85 74.53 l S 133.85 74.53 m 133.90 74.53 l S 133.90 74.53 m 133.94 75.51 l S 133.94 74.53 m 133.99 74.53 l S 133.99 74.53 m 134.04 74.53 l S 134.04 74.53 m 134.08 74.53 l S 134.08 74.53 m 134.13 74.53 l S 134.13 74.53 m 134.17 74.53 l S 134.17 74.53 m 134.22 74.53 l S 134.22 74.53 m 134.27 75.51 l S 134.27 74.53 m 134.31 75.51 l S 134.31 74.53 m 134.36 74.53 l S 134.36 74.53 m 134.41 75.51 l S 134.41 74.53 m 134.45 75.51 l S 134.45 74.53 m 134.50 74.53 l S 134.50 74.53 m 134.54 74.53 l S 134.54 74.53 m 134.59 74.53 l S 134.59 74.53 m 134.64 74.53 l S 134.64 74.53 m 134.68 74.53 l S 134.68 74.53 m 134.73 74.53 l S 134.73 74.53 m 134.77 74.53 l S 134.77 74.53 m 134.82 74.53 l S 134.82 74.53 m 134.87 74.53 l S 134.87 74.53 m 134.91 74.53 l S 134.91 74.53 m 134.96 74.53 l S 134.96 74.53 m 135.00 74.53 l S 135.00 74.53 m 135.05 74.53 l S 135.05 74.53 m 135.10 74.53 l S 135.10 74.53 m 135.14 74.53 l S 135.14 74.53 m 135.19 74.53 l S 135.19 74.53 m 135.23 74.53 l S 135.23 74.53 m 135.28 74.53 l S 135.28 74.53 m 135.33 74.53 l S 135.33 74.53 m 135.37 74.53 l S 135.37 74.53 m 135.42 74.53 l S 135.42 74.53 m 135.46 74.53 l S 135.46 74.53 m 135.51 74.53 l S 135.51 74.53 m 135.56 74.53 l S 135.56 74.53 m 135.60 74.53 l S 135.60 74.53 m 135.65 74.53 l S 135.65 74.53 m 135.69 74.53 l S 135.69 74.53 m 135.74 74.53 l S 135.74 74.53 m 135.79 74.53 l S 135.79 74.53 m 135.83 74.53 l S 135.83 74.53 m 135.88 74.53 l S 135.88 74.53 m 135.92 74.53 l S 135.92 74.53 m 135.97 75.51 l S 135.97 74.53 m 136.02 75.51 l S 136.02 74.53 m 136.06 74.53 l S 136.06 74.53 m 136.11 74.53 l S 136.11 74.53 m 136.15 74.53 l S 136.15 74.53 m 136.20 75.51 l S 136.20 74.53 m 136.25 75.51 l S 136.25 74.53 m 136.29 74.53 l S 136.29 74.53 m 136.34 74.53 l S 136.34 74.53 m 136.38 74.53 l S 136.38 74.53 m 136.43 74.53 l S 136.43 74.53 m 136.48 75.51 l S 136.48 74.53 m 136.52 74.53 l S 136.52 74.53 m 136.57 75.51 l S 136.57 74.53 m 136.61 76.49 l S 136.61 74.53 m 136.66 76.49 l S 136.66 74.53 m 136.71 74.53 l S 136.71 74.53 m 136.75 74.53 l S 136.75 74.53 m 136.80 74.53 l S 136.80 74.53 m 136.84 74.53 l S 136.84 74.53 m 136.89 75.51 l S 136.89 74.53 m 136.94 75.51 l S 136.94 74.53 m 136.98 74.53 l S 136.98 74.53 m 137.03 74.53 l S 137.03 74.53 m 137.07 74.53 l S 137.07 74.53 m 137.12 74.53 l S 137.12 74.53 m 137.17 74.53 l S 137.17 74.53 m 137.21 74.53 l S 137.21 74.53 m 137.26 74.53 l S 137.26 74.53 m 137.30 74.53 l S 137.30 74.53 m 137.35 74.53 l S 137.35 74.53 m 137.40 74.53 l S 137.40 74.53 m 137.44 74.53 l S 137.44 74.53 m 137.49 74.53 l S 137.49 74.53 m 137.53 74.53 l S 137.53 74.53 m 137.58 74.53 l S 137.58 74.53 m 137.63 74.53 l S 137.63 74.53 m 137.67 74.53 l S 137.67 74.53 m 137.72 74.53 l S 137.72 74.53 m 137.76 74.53 l S 137.76 74.53 m 137.81 74.53 l S 137.81 74.53 m 137.86 74.53 l S 137.86 74.53 m 137.90 74.53 l S 137.90 74.53 m 137.95 74.53 l S 137.95 74.53 m 137.99 74.53 l S 137.99 74.53 m 138.04 76.49 l S 138.04 74.53 m 138.09 76.49 l S 138.09 74.53 m 138.13 74.53 l S 138.13 74.53 m 138.18 74.53 l S 138.18 74.53 m 138.22 74.53 l S 138.22 74.53 m 138.27 74.53 l S 138.27 74.53 m 138.32 74.53 l S 138.32 74.53 m 138.36 74.53 l S 138.36 74.53 m 138.41 74.53 l S 138.41 74.53 m 138.45 74.53 l S 138.45 74.53 m 138.50 74.53 l S 138.50 74.53 m 138.55 74.53 l S 138.55 74.53 m 138.59 74.53 l S 138.59 74.53 m 138.64 74.53 l S 138.64 74.53 m 138.68 74.53 l S 138.68 74.53 m 138.73 74.53 l S 138.73 74.53 m 138.78 74.53 l S 138.78 74.53 m 138.82 74.53 l S 138.82 74.53 m 138.87 74.53 l S 138.87 74.53 m 138.91 74.53 l S 138.91 74.53 m 138.96 74.53 l S 138.96 74.53 m 139.01 74.53 l S 139.01 74.53 m 139.05 74.53 l S 139.05 74.53 m 139.10 74.53 l S 139.10 74.53 m 139.14 74.53 l S 139.14 74.53 m 139.19 74.53 l S 139.19 74.53 m 139.24 74.53 l S 139.24 74.53 m 139.28 74.53 l S 139.28 74.53 m 139.33 74.53 l S 139.33 74.53 m 139.37 74.53 l S 139.37 74.53 m 139.42 74.53 l S 139.42 74.53 m 139.47 74.53 l S 139.47 74.53 m 139.51 74.53 l S 139.51 74.53 m 139.56 74.53 l S 139.56 74.53 m 139.60 74.53 l S 139.60 74.53 m 139.65 74.53 l S 139.65 74.53 m 139.70 74.53 l S 139.70 74.53 m 139.74 74.53 l S 139.74 74.53 m 139.79 74.53 l S 139.79 74.53 m 139.83 74.53 l S 139.83 74.53 m 139.88 74.53 l S 139.88 74.53 m 139.93 74.53 l S 139.93 74.53 m 139.97 74.53 l S 139.97 74.53 m 140.02 75.51 l S 140.02 74.53 m 140.06 75.51 l S 140.06 74.53 m 140.11 74.53 l S 140.11 74.53 m 140.16 75.51 l S 140.16 74.53 m 140.20 75.51 l S 140.20 74.53 m 140.25 75.51 l S 140.25 74.53 m 140.29 75.51 l S 140.29 74.53 m 140.34 74.53 l S 140.34 74.53 m 140.39 75.51 l S 140.39 74.53 m 140.43 75.51 l S 140.43 74.53 m 140.48 75.51 l S 140.48 74.53 m 140.52 74.53 l S 140.52 74.53 m 140.57 74.53 l S 140.57 74.53 m 140.62 74.53 l S 140.62 74.53 m 140.66 74.53 l S 140.66 74.53 m 140.71 74.53 l S 140.71 74.53 m 140.75 74.53 l S 140.75 74.53 m 140.80 74.53 l S 140.80 74.53 m 140.85 75.51 l S 140.85 74.53 m 140.89 75.51 l S 140.89 74.53 m 140.94 75.51 l S 140.94 74.53 m 140.98 75.51 l S 140.98 74.53 m 141.03 76.49 l S 141.03 74.53 m 141.08 76.49 l S 141.08 74.53 m 141.12 76.49 l S 141.12 74.53 m 141.17 74.53 l S 141.17 74.53 m 141.21 74.53 l S 141.21 74.53 m 141.26 74.53 l S 141.26 74.53 m 141.31 74.53 l S 141.31 74.53 m 141.35 74.53 l S 141.35 74.53 m 141.40 74.53 l S 141.40 74.53 m 141.44 74.53 l S 141.44 74.53 m 141.49 74.53 l S 141.49 74.53 m 141.54 74.53 l S 141.54 74.53 m 141.58 74.53 l S 141.58 74.53 m 141.63 74.53 l S 141.63 74.53 m 141.67 74.53 l S 141.67 74.53 m 141.72 74.53 l S 141.72 74.53 m 141.77 74.53 l S 141.77 74.53 m 141.81 74.53 l S 141.81 74.53 m 141.86 74.53 l S 141.86 74.53 m 141.90 74.53 l S 141.90 74.53 m 141.95 74.53 l S 141.95 74.53 m 142.00 74.53 l S 142.00 74.53 m 142.04 74.53 l S 142.04 74.53 m 142.09 74.53 l S 142.09 74.53 m 142.13 74.53 l S 142.13 74.53 m 142.18 74.53 l S 142.18 74.53 m 142.23 74.53 l S 142.23 74.53 m 142.27 74.53 l S 142.27 74.53 m 142.32 74.53 l S 142.32 74.53 m 142.36 74.53 l S 142.36 74.53 m 142.41 75.51 l S 142.41 74.53 m 142.46 74.53 l S 142.46 74.53 m 142.50 75.51 l S 142.50 74.53 m 142.55 75.51 l S 142.55 74.53 m 142.60 76.49 l S 142.60 74.53 m 142.64 76.49 l S 142.64 74.53 m 142.69 75.51 l S 142.69 74.53 m 142.73 74.53 l S 142.73 74.53 m 142.78 74.53 l S 142.78 74.53 m 142.83 74.53 l S 142.83 74.53 m 142.87 74.53 l S 142.87 74.53 m 142.92 74.53 l S 142.92 74.53 m 142.96 74.53 l S 142.96 74.53 m 143.01 74.53 l S 143.01 74.53 m 143.06 74.53 l S 143.06 74.53 m 143.10 74.53 l S 143.10 74.53 m 143.15 74.53 l S 143.15 74.53 m 143.19 74.53 l S 143.19 74.53 m 143.24 74.53 l S 143.24 74.53 m 143.29 74.53 l S 143.29 74.53 m 143.33 74.53 l S 143.33 74.53 m 143.38 75.51 l S 143.38 74.53 m 143.42 75.51 l S 143.42 74.53 m 143.47 74.53 l S 143.47 74.53 m 143.52 74.53 l S 143.52 74.53 m 143.56 74.53 l S 143.56 74.53 m 143.61 74.53 l S 143.61 74.53 m 143.65 74.53 l S 143.65 74.53 m 143.70 74.53 l S 143.70 74.53 m 143.75 74.53 l S 143.75 74.53 m 143.79 74.53 l S 143.79 74.53 m 143.84 74.53 l S 143.84 74.53 m 143.88 74.53 l S 143.88 74.53 m 143.93 74.53 l S 143.93 74.53 m 143.98 74.53 l S 143.98 74.53 m 144.02 76.49 l S 144.02 74.53 m 144.07 76.49 l S 144.07 74.53 m 144.11 74.53 l S 144.11 74.53 m 144.16 74.53 l S 144.16 74.53 m 144.21 74.53 l S 144.21 74.53 m 144.25 74.53 l S 144.25 74.53 m 144.30 74.53 l S 144.30 74.53 m 144.34 74.53 l S 144.34 74.53 m 144.39 74.53 l S 144.39 74.53 m 144.44 74.53 l S 144.44 74.53 m 144.48 74.53 l S 144.48 74.53 m 144.53 74.53 l S 144.53 74.53 m 144.57 74.53 l S 144.57 74.53 m 144.62 74.53 l S 144.62 74.53 m 144.67 74.53 l S 144.67 74.53 m 144.71 74.53 l S 144.71 74.53 m 144.76 74.53 l S 144.76 74.53 m 144.80 74.53 l S 144.80 74.53 m 144.85 74.53 l S 144.85 74.53 m 144.90 74.53 l S 144.90 74.53 m 144.94 74.53 l S 144.94 74.53 m 144.99 74.53 l S 144.99 74.53 m 145.03 74.53 l S 145.03 74.53 m 145.08 74.53 l S 145.08 74.53 m 145.13 74.53 l S 145.13 74.53 m 145.17 74.53 l S 145.17 74.53 m 145.22 74.53 l S 145.22 74.53 m 145.26 74.53 l S 145.26 74.53 m 145.31 74.53 l S 145.31 74.53 m 145.36 74.53 l S 145.36 74.53 m 145.40 74.53 l S 145.40 74.53 m 145.45 74.53 l S 145.45 74.53 m 145.49 74.53 l S 145.49 74.53 m 145.54 74.53 l S 145.54 74.53 m 145.59 74.53 l S 145.59 74.53 m 145.63 74.53 l S 145.63 74.53 m 145.68 74.53 l S 145.68 74.53 m 145.72 74.53 l S 145.72 74.53 m 145.77 74.53 l S 145.77 74.53 m 145.82 74.53 l S 145.82 74.53 m 145.86 74.53 l S 145.86 74.53 m 145.91 74.53 l S 145.91 74.53 m 145.95 74.53 l S 145.95 74.53 m 146.00 74.53 l S 146.00 74.53 m 146.05 74.53 l S 146.05 74.53 m 146.09 74.53 l S 146.09 74.53 m 146.14 74.53 l S 146.14 74.53 m 146.18 74.53 l S 146.18 74.53 m 146.23 74.53 l S 146.23 74.53 m 146.28 74.53 l S 146.28 74.53 m 146.32 74.53 l S 146.32 74.53 m 146.37 76.49 l S 146.37 74.53 m 146.41 76.49 l S 146.41 74.53 m 146.46 74.53 l S 146.46 74.53 m 146.51 74.53 l S 146.51 74.53 m 146.55 74.53 l S 146.55 74.53 m 146.60 74.53 l S 146.60 74.53 m 146.64 74.53 l S 146.64 74.53 m 146.69 74.53 l S 146.69 74.53 m 146.74 74.53 l S 146.74 74.53 m 146.78 74.53 l S 146.78 74.53 m 146.83 74.53 l S 146.83 74.53 m 146.87 74.53 l S 146.87 74.53 m 146.92 75.51 l S 146.92 74.53 m 146.97 75.51 l S 146.97 74.53 m 147.01 74.53 l S 147.01 74.53 m 147.06 74.53 l S 147.06 74.53 m 147.10 74.53 l S 147.10 74.53 m 147.15 74.53 l S 147.15 74.53 m 147.20 74.53 l S 147.20 74.53 m 147.24 74.53 l S 147.24 74.53 m 147.29 74.53 l S 147.29 74.53 m 147.33 74.53 l S 147.33 74.53 m 147.38 74.53 l S 147.38 74.53 m 147.43 74.53 l S 147.43 74.53 m 147.47 74.53 l S 147.47 74.53 m 147.52 74.53 l S 147.52 74.53 m 147.56 74.53 l S 147.56 74.53 m 147.61 74.53 l S 147.61 74.53 m 147.66 74.53 l S 147.66 74.53 m 147.70 74.53 l S 147.70 74.53 m 147.75 74.53 l S 147.75 74.53 m 147.79 74.53 l S 147.79 74.53 m 147.84 74.53 l S 147.84 74.53 m 147.89 75.51 l S 147.89 74.53 m 147.93 75.51 l S 147.93 74.53 m 147.98 74.53 l S 147.98 74.53 m 148.02 74.53 l S 148.02 74.53 m 148.07 74.53 l S 148.07 74.53 m 148.12 74.53 l S 148.12 74.53 m 148.16 74.53 l S 148.16 74.53 m 148.21 74.53 l S 148.21 74.53 m 148.25 74.53 l S 148.25 74.53 m 148.30 74.53 l S 148.30 74.53 m 148.35 74.53 l S 148.35 74.53 m 148.39 74.53 l S 148.39 74.53 m 148.44 74.53 l S 148.44 74.53 m 148.48 74.53 l S 148.48 74.53 m 148.53 74.53 l S 148.53 74.53 m 148.58 74.53 l S 148.58 74.53 m 148.62 74.53 l S 148.62 74.53 m 148.67 74.53 l S 148.67 74.53 m 148.71 74.53 l S 148.71 74.53 m 148.76 74.53 l S 148.76 74.53 m 148.81 74.53 l S 148.81 74.53 m 148.85 74.53 l S 148.85 74.53 m 148.90 74.53 l S 148.90 74.53 m 148.94 74.53 l S 148.94 74.53 m 148.99 74.53 l S 148.99 74.53 m 149.04 74.53 l S 149.04 74.53 m 149.08 74.53 l S 149.08 74.53 m 149.13 74.53 l S 149.13 74.53 m 149.17 74.53 l S 149.17 74.53 m 149.22 74.53 l S 149.22 74.53 m 149.27 74.53 l S 149.27 74.53 m 149.31 74.53 l S 149.31 74.53 m 149.36 74.53 l S 149.36 74.53 m 149.40 74.53 l S 149.40 74.53 m 149.45 74.53 l S 149.45 74.53 m 149.50 74.53 l S 149.50 74.53 m 149.54 74.53 l S 149.54 74.53 m 149.59 74.53 l S 149.59 74.53 m 149.63 74.53 l S 149.63 74.53 m 149.68 74.53 l S 149.68 74.53 m 149.73 74.53 l S 149.73 74.53 m 149.77 74.53 l S 149.77 74.53 m 149.82 74.53 l S 149.82 74.53 m 149.86 74.53 l S 149.86 74.53 m 149.91 74.53 l S 149.91 74.53 m 149.96 74.53 l S 149.96 74.53 m 150.00 74.53 l S 150.00 74.53 m 150.05 74.53 l S 150.05 74.53 m 150.09 74.53 l S 150.09 74.53 m 150.14 74.53 l S 150.14 74.53 m 150.19 74.53 l S 150.19 74.53 m 150.23 74.53 l S 150.23 74.53 m 150.28 74.53 l S 150.28 74.53 m 150.32 74.53 l S 150.32 74.53 m 150.37 74.53 l S 150.37 74.53 m 150.42 74.53 l S 150.42 74.53 m 150.46 74.53 l S 150.46 74.53 m 150.51 74.53 l S 150.51 74.53 m 150.56 74.53 l S 150.56 74.53 m 150.60 74.53 l S 150.60 74.53 m 150.65 74.53 l S 150.65 74.53 m 150.69 74.53 l S 150.69 74.53 m 150.74 74.53 l S 150.74 74.53 m 150.79 74.53 l S 150.79 74.53 m 150.83 74.53 l S 150.83 74.53 m 150.88 74.53 l S 150.88 74.53 m 150.92 74.53 l S 150.92 74.53 m 150.97 74.53 l S 150.97 74.53 m 151.02 74.53 l S 151.02 74.53 m 151.06 74.53 l S 151.06 74.53 m 151.11 74.53 l S 151.11 74.53 m 151.15 74.53 l S 151.15 74.53 m 151.20 74.53 l S 151.20 74.53 m 151.25 74.53 l S 151.25 74.53 m 151.29 74.53 l S 151.29 74.53 m 151.34 76.49 l S 151.34 74.53 m 151.38 76.49 l S 151.38 74.53 m 151.43 74.53 l S 151.43 74.53 m 151.48 74.53 l S 151.48 74.53 m 151.52 74.53 l S 151.52 74.53 m 151.57 74.53 l S 151.57 74.53 m 151.61 74.53 l S 151.61 74.53 m 151.66 74.53 l S 151.66 74.53 m 151.71 74.53 l S 151.71 74.53 m 151.75 74.53 l S 151.75 74.53 m 151.80 74.53 l S 151.80 74.53 m 151.84 74.53 l S 151.84 74.53 m 151.89 74.53 l S 151.89 74.53 m 151.94 74.53 l S 151.94 74.53 m 151.98 74.53 l S 151.98 74.53 m 152.03 74.53 l S 152.03 74.53 m 152.07 74.53 l S 152.07 74.53 m 152.12 74.53 l S 152.12 74.53 m 152.17 74.53 l S 152.17 74.53 m 152.21 74.53 l S 152.21 74.53 m 152.26 74.53 l S 152.26 74.53 m 152.30 74.53 l S 152.30 74.53 m 152.35 74.53 l S 152.35 74.53 m 152.40 74.53 l S 152.40 74.53 m 152.44 74.53 l S 152.44 74.53 m 152.49 74.53 l S 152.49 74.53 m 152.53 74.53 l S 152.53 74.53 m 152.58 74.53 l S 152.58 74.53 m 152.63 75.51 l S 152.63 74.53 m 152.67 75.51 l S 152.67 74.53 m 152.72 74.53 l S 152.72 74.53 m 152.76 74.53 l S 152.76 74.53 m 152.81 74.53 l S 152.81 74.53 m 152.86 74.53 l S 152.86 74.53 m 152.90 74.53 l S 152.90 74.53 m 152.95 74.53 l S 152.95 74.53 m 152.99 74.53 l S 152.99 74.53 m 153.04 74.53 l S 153.04 74.53 m 153.09 74.53 l S 153.09 74.53 m 153.13 74.53 l S 153.13 74.53 m 153.18 74.53 l S 153.18 74.53 m 153.22 74.53 l S 153.22 74.53 m 153.27 74.53 l S 153.27 74.53 m 153.32 74.53 l S 153.32 74.53 m 153.36 74.53 l S 153.36 74.53 m 153.41 74.53 l S 153.41 74.53 m 153.45 74.53 l S 153.45 74.53 m 153.50 74.53 l S 153.50 74.53 m 153.55 74.53 l S 153.55 74.53 m 153.59 74.53 l S 153.59 74.53 m 153.64 74.53 l S 153.64 74.53 m 153.68 74.53 l S 153.68 74.53 m 153.73 74.53 l S 153.73 74.53 m 153.78 74.53 l S 153.78 74.53 m 153.82 74.53 l S 153.82 74.53 m 153.87 74.53 l S 153.87 74.53 m 153.91 74.53 l S 153.91 74.53 m 153.96 74.53 l S 153.96 74.53 m 154.01 74.53 l S 154.01 74.53 m 154.05 74.53 l S 154.05 74.53 m 154.10 74.53 l S 154.10 74.53 m 154.14 74.53 l S 154.14 74.53 m 154.19 74.53 l S 154.19 74.53 m 154.24 74.53 l S 154.24 74.53 m 154.28 74.53 l S 154.28 74.53 m 154.33 74.53 l S 154.33 74.53 m 154.37 74.53 l S 154.37 74.53 m 154.42 74.53 l S 154.42 74.53 m 154.47 74.53 l S 154.47 74.53 m 154.51 74.53 l S 154.51 74.53 m 154.56 74.53 l S 154.56 74.53 m 154.60 74.53 l S 154.60 74.53 m 154.65 74.53 l S 154.65 74.53 m 154.70 74.53 l S 154.70 74.53 m 154.74 74.53 l S 154.74 74.53 m 154.79 74.53 l S 154.79 74.53 m 154.83 74.53 l S 154.83 74.53 m 154.88 74.53 l S 154.88 74.53 m 154.93 74.53 l S 154.93 74.53 m 154.97 74.53 l S 154.97 74.53 m 155.02 74.53 l S 155.02 74.53 m 155.06 74.53 l S 155.06 74.53 m 155.11 74.53 l S 155.11 74.53 m 155.16 74.53 l S 155.16 74.53 m 155.20 74.53 l S 155.20 74.53 m 155.25 74.53 l S 155.25 74.53 m 155.29 74.53 l S 155.29 74.53 m 155.34 74.53 l S 155.34 74.53 m 155.39 74.53 l S 155.39 74.53 m 155.43 74.53 l S 155.43 74.53 m 155.48 74.53 l S 155.48 74.53 m 155.52 74.53 l S 155.52 74.53 m 155.57 74.53 l S 155.57 74.53 m 155.62 74.53 l S 155.62 74.53 m 155.66 74.53 l S 155.66 74.53 m 155.71 74.53 l S 155.71 74.53 m 155.75 74.53 l S 155.75 74.53 m 155.80 74.53 l S 155.80 74.53 m 155.85 74.53 l S 155.85 74.53 m 155.89 74.53 l S 155.89 74.53 m 155.94 74.53 l S 155.94 74.53 m 155.98 75.51 l S 155.98 74.53 m 156.03 75.51 l S 156.03 74.53 m 156.08 74.53 l S 156.08 74.53 m 156.12 74.53 l S 156.12 74.53 m 156.17 74.53 l S 156.17 74.53 m 156.21 74.53 l S 156.21 74.53 m 156.26 74.53 l S 156.26 74.53 m 156.31 74.53 l S 156.31 74.53 m 156.35 74.53 l S 156.35 74.53 m 156.40 75.51 l S 156.40 74.53 m 156.44 75.51 l S 156.44 74.53 m 156.49 74.53 l S 156.49 74.53 m 156.54 74.53 l S 156.54 74.53 m 156.58 74.53 l S 156.58 74.53 m 156.63 74.53 l S 156.63 74.53 m 156.67 74.53 l S 156.67 74.53 m 156.72 74.53 l S 156.72 74.53 m 156.77 74.53 l S 156.77 74.53 m 156.81 74.53 l S 156.81 74.53 m 156.86 74.53 l S 156.86 74.53 m 156.90 74.53 l S 156.90 74.53 m 156.95 74.53 l S 156.95 74.53 m 157.00 74.53 l S 157.00 74.53 m 157.04 74.53 l S 157.04 74.53 m 157.09 74.53 l S 157.09 74.53 m 157.13 74.53 l S 157.13 74.53 m 157.18 74.53 l S 157.18 74.53 m 157.23 74.53 l S 157.23 74.53 m 157.27 75.51 l S 157.27 74.53 m 157.32 74.53 l S 157.32 74.53 m 157.36 74.53 l S 157.36 74.53 m 157.41 75.51 l S 157.41 74.53 m 157.46 75.51 l S 157.46 74.53 m 157.50 75.51 l S 157.50 74.53 m 157.55 75.51 l S 157.55 74.53 m 157.59 74.53 l S 157.59 74.53 m 157.64 74.53 l S 157.64 74.53 m 157.69 74.53 l S 157.69 74.53 m 157.73 74.53 l S 157.73 74.53 m 157.78 74.53 l S 157.78 74.53 m 157.82 74.53 l S 157.82 74.53 m 157.87 74.53 l S 157.87 74.53 m 157.92 74.53 l S 157.92 74.53 m 157.96 74.53 l S 157.96 74.53 m 158.01 74.53 l S 158.01 74.53 m 158.05 74.53 l S 158.05 74.53 m 158.10 74.53 l S 158.10 74.53 m 158.15 74.53 l S 158.15 74.53 m 158.19 75.51 l S 158.19 74.53 m 158.24 75.51 l S 158.24 74.53 m 158.28 75.51 l S 158.28 74.53 m 158.33 74.53 l S 158.33 74.53 m 158.38 75.51 l S 158.38 74.53 m 158.42 74.53 l S 158.42 74.53 m 158.47 74.53 l S 158.47 74.53 m 158.52 74.53 l S 158.52 74.53 m 158.56 74.53 l S 158.56 74.53 m 158.61 74.53 l S 158.61 74.53 m 158.65 74.53 l S 158.65 74.53 m 158.70 74.53 l S 158.70 74.53 m 158.75 74.53 l S 158.75 74.53 m 158.79 74.53 l S 158.79 74.53 m 158.84 74.53 l S 158.84 74.53 m 158.88 74.53 l S 158.88 74.53 m 158.93 74.53 l S 158.93 74.53 m 158.98 74.53 l S 158.98 74.53 m 159.02 74.53 l S 159.02 74.53 m 159.07 74.53 l S 159.07 74.53 m 159.11 74.53 l S 159.11 74.53 m 159.16 74.53 l S 159.16 74.53 m 159.21 74.53 l S 159.21 74.53 m 159.25 74.53 l S 159.25 74.53 m 159.30 74.53 l S 159.30 74.53 m 159.34 74.53 l S 159.34 74.53 m 159.39 74.53 l S 159.39 74.53 m 159.44 74.53 l S 159.44 74.53 m 159.48 74.53 l S 159.48 74.53 m 159.53 74.53 l S 159.53 74.53 m 159.57 74.53 l S 159.57 74.53 m 159.62 74.53 l S 159.62 74.53 m 159.67 74.53 l S 159.67 74.53 m 159.71 74.53 l S 159.71 74.53 m 159.76 74.53 l S 159.76 74.53 m 159.80 74.53 l S 159.80 74.53 m 159.85 74.53 l S 159.85 74.53 m 159.90 74.53 l S 159.90 74.53 m 159.94 74.53 l S 159.94 74.53 m 159.99 74.53 l S 159.99 74.53 m 160.03 74.53 l S 160.03 74.53 m 160.08 74.53 l S 160.08 74.53 m 160.13 76.49 l S 160.13 74.53 m 160.17 76.49 l S 160.17 74.53 m 160.22 74.53 l S 160.22 74.53 m 160.26 74.53 l S 160.26 74.53 m 160.31 74.53 l S 160.31 74.53 m 160.36 74.53 l S 160.36 74.53 m 160.40 74.53 l S 160.40 74.53 m 160.45 74.53 l S 160.45 74.53 m 160.49 74.53 l S 160.49 74.53 m 160.54 74.53 l S 160.54 74.53 m 160.59 74.53 l S 160.59 74.53 m 160.63 74.53 l S 160.63 74.53 m 160.68 74.53 l S 160.68 74.53 m 160.72 74.53 l S 160.72 74.53 m 160.77 74.53 l S 160.77 74.53 m 160.82 74.53 l S 160.82 74.53 m 160.86 74.53 l S 160.86 74.53 m 160.91 74.53 l S 160.91 74.53 m 160.95 75.51 l S 160.95 74.53 m 161.00 75.51 l S 161.00 74.53 m 161.05 75.51 l S 161.05 74.53 m 161.09 74.53 l S 161.09 74.53 m 161.14 74.53 l S 161.14 74.53 m 161.18 74.53 l S 161.18 74.53 m 161.23 74.53 l S 161.23 74.53 m 161.28 74.53 l S 161.28 74.53 m 161.32 74.53 l S 161.32 74.53 m 161.37 74.53 l S 161.37 74.53 m 161.41 74.53 l S 161.41 74.53 m 161.46 74.53 l S 161.46 74.53 m 161.51 74.53 l S 161.51 74.53 m 161.55 74.53 l S 161.55 74.53 m 161.60 74.53 l S 161.60 74.53 m 161.64 74.53 l S 161.64 74.53 m 161.69 74.53 l S 161.69 74.53 m 161.74 74.53 l S 161.74 74.53 m 161.78 74.53 l S 161.78 74.53 m 161.83 74.53 l S 161.83 74.53 m 161.87 77.46 l S 161.87 74.53 m 161.92 76.49 l S 161.92 74.53 m 161.97 74.53 l S 161.97 74.53 m 162.01 74.53 l S 162.01 74.53 m 162.06 74.53 l S 162.06 74.53 m 162.10 74.53 l S 162.10 74.53 m 162.15 75.51 l S 162.15 74.53 m 162.20 76.49 l S 162.20 74.53 m 162.24 74.53 l S 162.24 74.53 m 162.29 74.53 l S 162.29 74.53 m 162.33 74.53 l S 162.33 74.53 m 162.38 74.53 l S 162.38 74.53 m 162.43 75.51 l S 162.43 74.53 m 162.47 75.51 l S 162.47 74.53 m 162.52 74.53 l S 162.52 74.53 m 162.56 74.53 l S 162.56 74.53 m 162.61 74.53 l S 162.61 74.53 m 162.66 74.53 l S 162.66 74.53 m 162.70 74.53 l S 162.70 74.53 m 162.75 74.53 l S 162.75 74.53 m 162.79 74.53 l S 162.79 74.53 m 162.84 74.53 l S 162.84 74.53 m 162.89 74.53 l S 162.89 74.53 m 162.93 74.53 l S 162.93 74.53 m 162.98 74.53 l S 162.98 74.53 m 163.02 74.53 l S 163.02 74.53 m 163.07 74.53 l S 163.07 74.53 m 163.12 74.53 l S 163.12 74.53 m 163.16 74.53 l S 163.16 74.53 m 163.21 74.53 l S 163.21 74.53 m 163.25 74.53 l S 163.25 74.53 m 163.30 74.53 l S 163.30 74.53 m 163.35 74.53 l S 163.35 74.53 m 163.39 74.53 l S 163.39 74.53 m 163.44 74.53 l S 163.44 74.53 m 163.48 74.53 l S 163.48 74.53 m 163.53 75.51 l S 163.53 74.53 m 163.58 74.53 l S 163.58 74.53 m 163.62 74.53 l S 163.62 74.53 m 163.67 74.53 l S 163.67 74.53 m 163.71 74.53 l S 163.71 74.53 m 163.76 74.53 l S 163.76 74.53 m 163.81 74.53 l S 163.81 74.53 m 163.85 74.53 l S 163.85 74.53 m 163.90 74.53 l S 163.90 74.53 m 163.94 74.53 l S 163.94 74.53 m 163.99 74.53 l S 163.99 74.53 m 164.04 74.53 l S 164.04 74.53 m 164.08 74.53 l S 164.08 74.53 m 164.13 74.53 l S 164.13 74.53 m 164.17 74.53 l S 164.17 74.53 m 164.22 74.53 l S 164.22 74.53 m 164.27 74.53 l S 164.27 74.53 m 164.31 74.53 l S 164.31 74.53 m 164.36 74.53 l S 164.36 74.53 m 164.40 74.53 l S 164.40 74.53 m 164.45 74.53 l S 164.45 74.53 m 164.50 74.53 l S 164.50 74.53 m 164.54 74.53 l S 164.54 74.53 m 164.59 74.53 l S 164.59 74.53 m 164.63 74.53 l S 164.63 74.53 m 164.68 74.53 l S 164.68 74.53 m 164.73 74.53 l S 164.73 74.53 m 164.77 74.53 l S 164.77 74.53 m 164.82 74.53 l S 164.82 74.53 m 164.86 74.53 l S 164.86 74.53 m 164.91 74.53 l S 164.91 74.53 m 164.96 74.53 l S 164.96 74.53 m 165.00 74.53 l S 165.00 74.53 m 165.05 74.53 l S 165.05 74.53 m 165.09 74.53 l S 165.09 74.53 m 165.14 74.53 l S 165.14 74.53 m 165.19 74.53 l S 165.19 74.53 m 165.23 74.53 l S 165.23 74.53 m 165.28 74.53 l S 165.28 74.53 m 165.32 74.53 l S 165.32 74.53 m 165.37 74.53 l S 165.37 74.53 m 165.42 74.53 l S 165.42 74.53 m 165.46 74.53 l S 165.46 74.53 m 165.51 75.51 l S 165.51 74.53 m 165.55 75.51 l S 165.55 74.53 m 165.60 74.53 l S 165.60 74.53 m 165.65 74.53 l S 165.65 74.53 m 165.69 74.53 l S 165.69 74.53 m 165.74 74.53 l S 165.74 74.53 m 165.78 75.51 l S 165.78 74.53 m 165.83 74.53 l S 165.83 74.53 m 165.88 74.53 l S 165.88 74.53 m 165.92 74.53 l S 165.92 74.53 m 165.97 74.53 l S 165.97 74.53 m 166.01 74.53 l S 166.01 74.53 m 166.06 74.53 l S 166.06 74.53 m 166.11 74.53 l S 166.11 74.53 m 166.15 74.53 l S 166.15 74.53 m 166.20 74.53 l S 166.20 74.53 m 166.24 74.53 l S 166.24 74.53 m 166.29 74.53 l S 166.29 74.53 m 166.34 74.53 l S 166.34 74.53 m 166.38 74.53 l S 166.38 74.53 m 166.43 74.53 l S 166.43 74.53 m 166.48 74.53 l S 166.48 74.53 m 166.52 74.53 l S 166.52 74.53 m 166.57 74.53 l S 166.57 74.53 m 166.61 74.53 l S 166.61 74.53 m 166.66 74.53 l S 166.66 74.53 m 166.71 74.53 l S 166.71 74.53 m 166.75 75.51 l S 166.75 74.53 m 166.80 74.53 l S 166.80 74.53 m 166.84 74.53 l S 166.84 74.53 m 166.89 74.53 l S 166.89 74.53 m 166.94 74.53 l S 166.94 74.53 m 166.98 75.51 l S 166.98 74.53 m 167.03 74.53 l S 167.03 74.53 m 167.07 74.53 l S 167.07 74.53 m 167.12 74.53 l S 167.12 74.53 m 167.17 74.53 l S 167.17 74.53 m 167.21 74.53 l S 167.21 74.53 m 167.26 74.53 l S 167.26 74.53 m 167.30 74.53 l S 167.30 74.53 m 167.35 74.53 l S 167.35 74.53 m 167.40 74.53 l S 167.40 74.53 m 167.44 74.53 l S 167.44 74.53 m 167.49 74.53 l S 167.49 74.53 m 167.53 74.53 l S 167.53 74.53 m 167.58 74.53 l S 167.58 74.53 m 167.63 74.53 l S 167.63 74.53 m 167.67 74.53 l S 167.67 74.53 m 167.72 74.53 l S 167.72 74.53 m 167.76 74.53 l S 167.76 74.53 m 167.81 74.53 l S 167.81 74.53 m 167.86 74.53 l S 167.86 74.53 m 167.90 74.53 l S 167.90 74.53 m 167.95 74.53 l S 167.95 74.53 m 167.99 74.53 l S 167.99 74.53 m 168.04 74.53 l S 168.04 74.53 m 168.09 74.53 l S 168.09 74.53 m 168.13 74.53 l S 168.13 74.53 m 168.18 74.53 l S 168.18 74.53 m 168.22 74.53 l S 168.22 74.53 m 168.27 74.53 l S 168.27 74.53 m 168.32 74.53 l S 168.32 74.53 m 168.36 74.53 l S 168.36 74.53 m 168.41 74.53 l S 168.41 74.53 m 168.45 74.53 l S 168.45 74.53 m 168.50 74.53 l S 168.50 74.53 m 168.55 74.53 l S 168.55 74.53 m 168.59 74.53 l S 168.59 74.53 m 168.64 74.53 l S 168.64 74.53 m 168.68 74.53 l S 168.68 74.53 m 168.73 74.53 l S 168.73 74.53 m 168.78 75.51 l S 168.78 74.53 m 168.82 74.53 l S 168.82 74.53 m 168.87 74.53 l S 168.87 74.53 m 168.91 74.53 l S 168.91 74.53 m 168.96 74.53 l S 168.96 74.53 m 169.01 74.53 l S 169.01 74.53 m 169.05 74.53 l S 169.05 74.53 m 169.10 74.53 l S 169.10 74.53 m 169.14 74.53 l S 169.14 74.53 m 169.19 74.53 l S 169.19 74.53 m 169.24 74.53 l S 169.24 74.53 m 169.28 74.53 l S 169.28 74.53 m 169.33 74.53 l S 169.33 74.53 m 169.37 74.53 l S 169.37 74.53 m 169.42 74.53 l S 169.42 74.53 m 169.47 74.53 l S 169.47 74.53 m 169.51 74.53 l S 169.51 74.53 m 169.56 74.53 l S 169.56 74.53 m 169.60 74.53 l S 169.60 74.53 m 169.65 74.53 l S 169.65 74.53 m 169.70 74.53 l S 169.70 74.53 m 169.74 74.53 l S 169.74 74.53 m 169.79 74.53 l S 169.79 74.53 m 169.83 75.51 l S 169.83 74.53 m 169.88 74.53 l S 169.88 74.53 m 169.93 74.53 l S 169.93 74.53 m 169.97 74.53 l S 169.97 74.53 m 170.02 74.53 l S 170.02 74.53 m 170.06 75.51 l S 170.06 74.53 m 170.11 75.51 l S 170.11 74.53 m 170.16 74.53 l S 170.16 74.53 m 170.20 74.53 l S 170.20 74.53 m 170.25 74.53 l S 170.25 74.53 m 170.29 74.53 l S 170.29 74.53 m 170.34 74.53 l S 170.34 74.53 m 170.39 74.53 l S 170.39 74.53 m 170.43 74.53 l S 170.43 74.53 m 170.48 74.53 l S 170.48 74.53 m 170.52 74.53 l S 170.52 74.53 m 170.57 74.53 l S 170.57 74.53 m 170.62 74.53 l S 170.62 74.53 m 170.66 75.51 l S 170.66 74.53 m 170.71 75.51 l S 170.71 74.53 m 170.75 74.53 l S 170.75 74.53 m 170.80 74.53 l S 170.80 74.53 m 170.85 74.53 l S 170.85 74.53 m 170.89 74.53 l S 170.89 74.53 m 170.94 74.53 l S 170.94 74.53 m 170.98 76.49 l S 170.98 74.53 m 171.03 76.49 l S 171.03 74.53 m 171.08 74.53 l S 171.08 74.53 m 171.12 75.51 l S 171.12 74.53 m 171.17 75.51 l S 171.17 74.53 m 171.21 74.53 l S 171.21 74.53 m 171.26 74.53 l S 171.26 74.53 m 171.31 74.53 l S 171.31 74.53 m 171.35 74.53 l S 171.35 74.53 m 171.40 74.53 l S 171.40 74.53 m 171.44 74.53 l S 171.44 74.53 m 171.49 74.53 l S 171.49 74.53 m 171.54 74.53 l S 171.54 74.53 m 171.58 74.53 l S 171.58 74.53 m 171.63 74.53 l S 171.63 74.53 m 171.67 74.53 l S 171.67 74.53 m 171.72 74.53 l S 171.72 74.53 m 171.77 74.53 l S 171.77 74.53 m 171.81 74.53 l S 171.81 74.53 m 171.86 74.53 l S 171.86 74.53 m 171.90 74.53 l S 171.90 74.53 m 171.95 74.53 l S 171.95 74.53 m 172.00 74.53 l S 172.00 74.53 m 172.04 74.53 l S 172.04 74.53 m 172.09 74.53 l S 172.09 74.53 m 172.13 74.53 l S 172.13 74.53 m 172.18 74.53 l S 172.18 74.53 m 172.23 74.53 l S 172.23 74.53 m 172.27 74.53 l S 172.27 74.53 m 172.32 74.53 l S 172.32 74.53 m 172.36 74.53 l S 172.36 74.53 m 172.41 74.53 l S 172.41 74.53 m 172.46 74.53 l S 172.46 74.53 m 172.50 74.53 l S 172.50 74.53 m 172.55 74.53 l S 172.55 74.53 m 172.59 74.53 l S 172.59 74.53 m 172.64 74.53 l S 172.64 74.53 m 172.69 74.53 l S 172.69 74.53 m 172.73 74.53 l S 172.73 74.53 m 172.78 74.53 l S 172.78 74.53 m 172.82 74.53 l S 172.82 74.53 m 172.87 74.53 l S 172.87 74.53 m 172.92 74.53 l S 172.92 74.53 m 172.96 74.53 l S 172.96 74.53 m 173.01 74.53 l S 173.01 74.53 m 173.05 74.53 l S 173.05 74.53 m 173.10 74.53 l S 173.10 74.53 m 173.15 74.53 l S 173.15 74.53 m 173.19 74.53 l S 173.19 74.53 m 173.24 74.53 l S 173.24 74.53 m 173.28 74.53 l S 173.28 74.53 m 173.33 75.51 l S 173.33 74.53 m 173.38 75.51 l S 173.38 74.53 m 173.42 74.53 l S 173.42 74.53 m 173.47 74.53 l S 173.47 74.53 m 173.51 74.53 l S 173.51 74.53 m 173.56 74.53 l S 173.56 74.53 m 173.61 74.53 l S 173.61 74.53 m 173.65 74.53 l S 173.65 74.53 m 173.70 74.53 l S 173.70 74.53 m 173.74 74.53 l S 173.74 74.53 m 173.79 74.53 l S 173.79 74.53 m 173.84 74.53 l S 173.84 74.53 m 173.88 74.53 l S 173.88 74.53 m 173.93 74.53 l S 173.93 74.53 m 173.97 74.53 l S 173.97 74.53 m 174.02 74.53 l S 174.02 74.53 m 174.07 74.53 l S 174.07 74.53 m 174.11 74.53 l S 174.11 74.53 m 174.16 74.53 l S 174.16 74.53 m 174.20 74.53 l S 174.20 74.53 m 174.25 74.53 l S 174.25 74.53 m 174.30 74.53 l S 174.30 74.53 m 174.34 74.53 l S 174.34 74.53 m 174.39 74.53 l S 174.39 74.53 m 174.44 74.53 l S 174.44 74.53 m 174.48 74.53 l S 174.48 74.53 m 174.53 74.53 l S 174.53 74.53 m 174.57 74.53 l S 174.57 74.53 m 174.62 74.53 l S 174.62 74.53 m 174.67 74.53 l S 174.67 74.53 m 174.71 74.53 l S 174.71 74.53 m 174.76 74.53 l S 174.76 74.53 m 174.80 74.53 l S 174.80 74.53 m 174.85 74.53 l S 174.85 74.53 m 174.90 74.53 l S 174.90 74.53 m 174.94 74.53 l S 174.94 74.53 m 174.99 74.53 l S 174.99 74.53 m 175.03 74.53 l S 175.03 74.53 m 175.08 74.53 l S 175.08 74.53 m 175.13 74.53 l S 175.13 74.53 m 175.17 74.53 l S 175.17 74.53 m 175.22 74.53 l S 175.22 74.53 m 175.26 74.53 l S 175.26 74.53 m 175.31 74.53 l S 175.31 74.53 m 175.36 74.53 l S 175.36 74.53 m 175.40 76.49 l S 175.40 74.53 m 175.45 76.49 l S 175.45 74.53 m 175.49 74.53 l S 175.49 74.53 m 175.54 74.53 l S 175.54 74.53 m 175.59 74.53 l S 175.59 74.53 m 175.63 74.53 l S 175.63 74.53 m 175.68 74.53 l S 175.68 74.53 m 175.72 74.53 l S 175.72 74.53 m 175.77 74.53 l S 175.77 74.53 m 175.82 74.53 l S 175.82 74.53 m 175.86 74.53 l S 175.86 74.53 m 175.91 74.53 l S 175.91 74.53 m 175.95 74.53 l S 175.95 74.53 m 176.00 74.53 l S 176.00 74.53 m 176.05 75.51 l S 176.05 74.53 m 176.09 75.51 l S 176.09 74.53 m 176.14 74.53 l S 176.14 74.53 m 176.18 74.53 l S 176.18 74.53 m 176.23 74.53 l S 176.23 74.53 m 176.28 74.53 l S 176.28 74.53 m 176.32 74.53 l S 176.32 74.53 m 176.37 74.53 l S 176.37 74.53 m 176.41 74.53 l S 176.41 74.53 m 176.46 74.53 l S 176.46 74.53 m 176.51 74.53 l S 176.51 74.53 m 176.55 74.53 l S 176.55 74.53 m 176.60 74.53 l S 176.60 74.53 m 176.64 74.53 l S 176.64 74.53 m 176.69 74.53 l S 176.69 74.53 m 176.74 74.53 l S 176.74 74.53 m 176.78 74.53 l S 176.78 74.53 m 176.83 74.53 l S 176.83 74.53 m 176.87 74.53 l S 176.87 74.53 m 176.92 74.53 l S 176.92 74.53 m 176.97 74.53 l S 176.97 74.53 m 177.01 74.53 l S 177.01 74.53 m 177.06 74.53 l S 177.06 74.53 m 177.10 74.53 l S 177.10 74.53 m 177.15 74.53 l S 177.15 74.53 m 177.20 74.53 l S 177.20 74.53 m 177.24 76.49 l S 177.24 74.53 m 177.29 76.49 l S 177.29 74.53 m 177.33 74.53 l S 177.33 74.53 m 177.38 74.53 l S 177.38 74.53 m 177.43 74.53 l S 177.43 74.53 m 177.47 74.53 l S 177.47 74.53 m 177.52 74.53 l S 177.52 74.53 m 177.56 76.49 l S 177.56 74.53 m 177.61 76.49 l S 177.61 74.53 m 177.66 74.53 l S 177.66 74.53 m 177.70 74.53 l S 177.70 74.53 m 177.75 74.53 l S 177.75 74.53 m 177.79 74.53 l S 177.79 74.53 m 177.84 74.53 l S 177.84 74.53 m 177.89 74.53 l S 177.89 74.53 m 177.93 74.53 l S 177.93 74.53 m 177.98 74.53 l S 177.98 74.53 m 178.02 74.53 l S 178.02 74.53 m 178.07 74.53 l S 178.07 74.53 m 178.12 74.53 l S 178.12 74.53 m 178.16 74.53 l S 178.16 74.53 m 178.21 74.53 l S 178.21 74.53 m 178.25 74.53 l S 178.25 74.53 m 178.30 74.53 l S 178.30 74.53 m 178.35 74.53 l S 178.35 74.53 m 178.39 74.53 l S 178.39 74.53 m 178.44 74.53 l S 178.44 74.53 m 178.48 74.53 l S 178.48 74.53 m 178.53 74.53 l S 178.53 74.53 m 178.58 74.53 l S 178.58 74.53 m 178.62 74.53 l S 178.62 74.53 m 178.67 74.53 l S 178.67 74.53 m 178.71 74.53 l S 178.71 74.53 m 178.76 74.53 l S 178.76 74.53 m 178.81 74.53 l S 178.81 74.53 m 178.85 74.53 l S 178.85 74.53 m 178.90 74.53 l S 178.90 74.53 m 178.94 74.53 l S 178.94 74.53 m 178.99 74.53 l S 178.99 74.53 m 179.04 75.51 l S 179.04 74.53 m 179.08 74.53 l S 179.08 74.53 m 179.13 74.53 l S 179.13 74.53 m 179.17 74.53 l S 179.17 74.53 m 179.22 74.53 l S 179.22 74.53 m 179.27 74.53 l S 179.27 74.53 m 179.31 74.53 l S 179.31 74.53 m 179.36 74.53 l S 179.36 74.53 m 179.40 74.53 l S 179.40 74.53 m 179.45 74.53 l S 179.45 74.53 m 179.50 74.53 l S 179.50 74.53 m 179.54 74.53 l S 179.54 74.53 m 179.59 74.53 l S 179.59 74.53 m 179.63 74.53 l S 179.63 74.53 m 179.68 74.53 l S 179.68 74.53 m 179.73 74.53 l S 179.73 74.53 m 179.77 75.51 l S 179.77 74.53 m 179.82 75.51 l S 179.82 74.53 m 179.86 74.53 l S 179.86 74.53 m 179.91 74.53 l S 179.91 74.53 m 179.96 74.53 l S 179.96 74.53 m 180.00 74.53 l S 180.00 74.53 m 180.05 74.53 l S 180.05 74.53 m 180.09 74.53 l S 180.09 74.53 m 180.14 74.53 l S 180.14 74.53 m 180.19 74.53 l S 180.19 74.53 m 180.23 74.53 l S 180.23 74.53 m 180.28 74.53 l S 180.28 74.53 m 180.32 74.53 l S 180.32 74.53 m 180.37 74.53 l S 180.37 74.53 m 180.42 74.53 l S 180.42 74.53 m 180.46 74.53 l S 180.46 74.53 m 180.51 74.53 l S 180.51 74.53 m 180.55 74.53 l S 180.55 74.53 m 180.60 74.53 l S 180.60 74.53 m 180.65 74.53 l S 180.65 74.53 m 180.69 75.51 l S 180.69 74.53 m 180.74 75.51 l S 180.74 74.53 m 180.78 74.53 l S 180.78 74.53 m 180.83 74.53 l S 180.83 74.53 m 180.88 76.49 l S 180.88 74.53 m 180.92 74.53 l S 180.92 74.53 m 180.97 74.53 l S 180.97 74.53 m 181.01 74.53 l S 181.01 74.53 m 181.06 74.53 l S 181.06 74.53 m 181.11 74.53 l S 181.11 74.53 m 181.15 74.53 l S 181.15 74.53 m 181.20 74.53 l S 181.20 74.53 m 181.24 74.53 l S 181.24 74.53 m 181.29 74.53 l S 181.29 74.53 m 181.34 74.53 l S 181.34 74.53 m 181.38 74.53 l S 181.38 74.53 m 181.43 74.53 l S 181.43 74.53 m 181.47 74.53 l S 181.47 74.53 m 181.52 74.53 l S 181.52 74.53 m 181.57 74.53 l S 181.57 74.53 m 181.61 74.53 l S 181.61 74.53 m 181.66 74.53 l S 181.66 74.53 m 181.70 74.53 l S 181.70 74.53 m 181.75 74.53 l S 181.75 74.53 m 181.80 74.53 l S 181.80 74.53 m 181.84 74.53 l S 181.84 74.53 m 181.89 74.53 l S 181.89 74.53 m 181.93 74.53 l S 181.93 74.53 m 181.98 75.51 l S 181.98 74.53 m 182.03 74.53 l S 182.03 74.53 m 182.07 75.51 l S 182.07 74.53 m 182.12 75.51 l S 182.12 74.53 m 182.16 74.53 l S 182.16 74.53 m 182.21 74.53 l S 182.21 74.53 m 182.26 74.53 l S 182.26 74.53 m 182.30 74.53 l S 182.30 74.53 m 182.35 74.53 l S 182.35 74.53 m 182.39 74.53 l S 182.39 74.53 m 182.44 74.53 l S 182.44 74.53 m 182.49 74.53 l S 182.49 74.53 m 182.53 74.53 l S 182.53 74.53 m 182.58 74.53 l S 182.58 74.53 m 182.63 74.53 l S 182.63 74.53 m 182.67 74.53 l S 182.67 74.53 m 182.72 74.53 l S 182.72 74.53 m 182.76 74.53 l S 182.76 74.53 m 182.81 74.53 l S 182.81 74.53 m 182.86 74.53 l S 182.86 74.53 m 182.90 74.53 l S 182.90 74.53 m 182.95 74.53 l S 182.95 74.53 m 182.99 74.53 l S 182.99 74.53 m 183.04 74.53 l S 183.04 74.53 m 183.09 74.53 l S 183.09 74.53 m 183.13 74.53 l S 183.13 74.53 m 183.18 74.53 l S 183.18 74.53 m 183.22 74.53 l S 183.22 74.53 m 183.27 74.53 l S 183.27 74.53 m 183.32 74.53 l S 183.32 74.53 m 183.36 74.53 l S 183.36 74.53 m 183.41 74.53 l S 183.41 74.53 m 183.45 75.51 l S 183.45 74.53 m 183.50 75.51 l S 183.50 74.53 m 183.55 74.53 l S 183.55 74.53 m 183.59 74.53 l S 183.59 74.53 m 183.64 74.53 l S 183.64 74.53 m 183.68 74.53 l S 183.68 74.53 m 183.73 74.53 l S 183.73 74.53 m 183.78 74.53 l S 183.78 74.53 m 183.82 74.53 l S 183.82 74.53 m 183.87 74.53 l S 183.87 74.53 m 183.91 74.53 l S 183.91 74.53 m 183.96 74.53 l S 183.96 74.53 m 184.01 74.53 l S 184.01 74.53 m 184.05 74.53 l S 184.05 74.53 m 184.10 74.53 l S 184.10 74.53 m 184.14 74.53 l S 184.14 74.53 m 184.19 74.53 l S 184.19 74.53 m 184.24 74.53 l S 184.24 74.53 m 184.28 74.53 l S 184.28 74.53 m 184.33 74.53 l S 184.33 74.53 m 184.37 74.53 l S 184.37 74.53 m 184.42 74.53 l S 184.42 74.53 m 184.47 74.53 l S 184.47 74.53 m 184.51 74.53 l S 184.51 74.53 m 184.56 74.53 l S 184.56 74.53 m 184.60 74.53 l S 184.60 74.53 m 184.65 74.53 l S 184.65 74.53 m 184.70 74.53 l S 184.70 74.53 m 184.74 74.53 l S 184.74 74.53 m 184.79 74.53 l S 184.79 74.53 m 184.83 74.53 l S 184.83 74.53 m 184.88 74.53 l S 184.88 74.53 m 184.93 74.53 l S 184.93 74.53 m 184.97 74.53 l S 184.97 74.53 m 185.02 74.53 l S 185.02 74.53 m 185.06 74.53 l S 185.06 74.53 m 185.11 74.53 l S 185.11 74.53 m 185.16 74.53 l S 185.16 74.53 m 185.20 74.53 l S 185.20 74.53 m 185.25 74.53 l S 185.25 74.53 m 185.29 74.53 l S 185.29 74.53 m 185.34 74.53 l S 185.34 74.53 m 185.39 74.53 l S 185.39 74.53 m 185.43 74.53 l S 185.43 74.53 m 185.48 74.53 l S 185.48 74.53 m 185.52 74.53 l S 185.52 74.53 m 185.57 74.53 l S 185.57 74.53 m 185.62 74.53 l S 185.62 74.53 m 185.66 74.53 l S 185.66 74.53 m 185.71 74.53 l S 185.71 74.53 m 185.75 74.53 l S 185.75 74.53 m 185.80 74.53 l S 185.80 74.53 m 185.85 75.51 l S 185.85 74.53 m 185.89 75.51 l S 185.89 74.53 m 185.94 74.53 l S 185.94 74.53 m 185.98 74.53 l S 185.98 74.53 m 186.03 74.53 l S 186.03 74.53 m 186.08 74.53 l S 186.08 74.53 m 186.12 74.53 l S 186.12 74.53 m 186.17 74.53 l S 186.17 74.53 m 186.21 74.53 l S 186.21 74.53 m 186.26 74.53 l S 186.26 74.53 m 186.31 74.53 l S 186.31 74.53 m 186.35 74.53 l S 186.35 74.53 m 186.40 74.53 l S 186.40 74.53 m 186.44 74.53 l S 186.44 74.53 m 186.49 74.53 l S 186.49 74.53 m 186.54 74.53 l S 186.54 74.53 m 186.58 74.53 l S 186.58 74.53 m 186.63 74.53 l S 186.63 74.53 m 186.67 74.53 l S 186.67 74.53 m 186.72 74.53 l S 186.72 74.53 m 186.77 74.53 l S 186.77 74.53 m 186.81 74.53 l S 186.81 74.53 m 186.86 74.53 l S 186.86 74.53 m 186.90 74.53 l S 186.90 74.53 m 186.95 74.53 l S 186.95 74.53 m 187.00 74.53 l S 187.00 74.53 m 187.04 75.51 l S 187.04 74.53 m 187.09 75.51 l S 187.09 74.53 m 187.13 74.53 l S 187.13 74.53 m 187.18 74.53 l S 187.18 74.53 m 187.23 74.53 l S 187.23 74.53 m 187.27 74.53 l S 187.27 74.53 m 187.32 74.53 l S 187.32 74.53 m 187.36 75.51 l S 187.36 74.53 m 187.41 75.51 l S 187.41 74.53 m 187.46 74.53 l S 187.46 74.53 m 187.50 74.53 l S 187.50 74.53 m 187.55 74.53 l S 187.55 74.53 m 187.59 74.53 l S 187.59 74.53 m 187.64 74.53 l S 187.64 74.53 m 187.69 74.53 l S 187.69 74.53 m 187.73 74.53 l S 187.73 74.53 m 187.78 74.53 l S 187.78 74.53 m 187.82 74.53 l S 187.82 74.53 m 187.87 74.53 l S 187.87 74.53 m 187.92 75.51 l S 187.92 74.53 m 187.96 75.51 l S 187.96 74.53 m 188.01 74.53 l S 188.01 74.53 m 188.05 74.53 l S 188.05 74.53 m 188.10 74.53 l S 188.10 74.53 m 188.15 74.53 l S 188.15 74.53 m 188.19 74.53 l S 188.19 74.53 m 188.24 74.53 l S 188.24 74.53 m 188.28 74.53 l S 188.28 74.53 m 188.33 74.53 l S 188.33 74.53 m 188.38 74.53 l S 188.38 74.53 m 188.42 74.53 l S 188.42 74.53 m 188.47 74.53 l S 188.47 74.53 m 188.51 74.53 l S 188.51 74.53 m 188.56 74.53 l S 188.56 74.53 m 188.61 74.53 l S 188.61 74.53 m 188.65 74.53 l S 188.65 74.53 m 188.70 74.53 l S 188.70 74.53 m 188.74 74.53 l S 188.74 74.53 m 188.79 74.53 l S 188.79 74.53 m 188.84 74.53 l S 188.84 74.53 m 188.88 74.53 l S 188.88 74.53 m 188.93 74.53 l S 188.93 74.53 m 188.97 74.53 l S 188.97 74.53 m 189.02 74.53 l S 189.02 74.53 m 189.07 74.53 l S 189.07 74.53 m 189.11 74.53 l S 189.11 74.53 m 189.16 74.53 l S 189.16 74.53 m 189.20 74.53 l S 189.20 74.53 m 189.25 74.53 l S 189.25 74.53 m 189.30 74.53 l S 189.30 74.53 m 189.34 74.53 l S 189.34 74.53 m 189.39 74.53 l S 189.39 74.53 m 189.43 74.53 l S 189.43 74.53 m 189.48 74.53 l S 189.48 74.53 m 189.53 74.53 l S 189.53 74.53 m 189.57 74.53 l S 189.57 74.53 m 189.62 74.53 l S 189.62 74.53 m 189.66 75.51 l S 189.66 74.53 m 189.71 75.51 l S 189.71 74.53 m 189.76 76.49 l S 189.76 74.53 m 189.80 74.53 l S 189.80 74.53 m 189.85 74.53 l S 189.85 74.53 m 189.89 74.53 l S 189.89 74.53 m 189.94 74.53 l S 189.94 74.53 m 189.99 74.53 l S 189.99 74.53 m 190.03 74.53 l S 190.03 74.53 m 190.08 74.53 l S 190.08 74.53 m 190.12 74.53 l S 190.12 74.53 m 190.17 74.53 l S 190.17 74.53 m 190.22 75.51 l S 190.22 74.53 m 190.26 75.51 l S 190.26 74.53 m 190.31 74.53 l S 190.31 74.53 m 190.35 74.53 l S 190.35 74.53 m 190.40 74.53 l S 190.40 74.53 m 190.45 74.53 l S 190.45 74.53 m 190.49 74.53 l S 190.49 74.53 m 190.54 74.53 l S 190.54 74.53 m 190.59 74.53 l S 190.59 74.53 m 190.63 74.53 l S 190.63 74.53 m 190.68 74.53 l S 190.68 74.53 m 190.72 75.51 l S 190.72 74.53 m 190.77 75.51 l S 190.77 74.53 m 190.82 74.53 l S 190.82 74.53 m 190.86 74.53 l S 190.86 74.53 m 190.91 74.53 l S 190.91 74.53 m 190.95 74.53 l S 190.95 74.53 m 191.00 74.53 l S 191.00 74.53 m 191.05 74.53 l S 191.05 74.53 m 191.09 74.53 l S 191.09 74.53 m 191.14 74.53 l S 191.14 74.53 m 191.18 74.53 l S 191.18 74.53 m 191.23 74.53 l S 191.23 74.53 m 191.28 74.53 l S 191.28 74.53 m 191.32 74.53 l S 191.32 74.53 m 191.37 74.53 l S 191.37 74.53 m 191.41 74.53 l S 191.41 74.53 m 191.46 74.53 l S 191.46 74.53 m 191.51 74.53 l S 191.51 74.53 m 191.55 74.53 l S 191.55 74.53 m 191.60 74.53 l S 191.60 74.53 m 191.64 74.53 l S 191.64 74.53 m 191.69 74.53 l S 191.69 74.53 m 191.74 74.53 l S 191.74 74.53 m 191.78 74.53 l S 191.78 74.53 m 191.83 74.53 l S 191.83 74.53 m 191.87 74.53 l S 191.87 74.53 m 191.92 74.53 l S 191.92 74.53 m 191.97 74.53 l S 191.97 74.53 m 192.01 74.53 l S 192.01 74.53 m 192.06 74.53 l S 192.06 74.53 m 192.10 74.53 l S 192.10 74.53 m 192.15 74.53 l S 192.15 74.53 m 192.20 74.53 l S 192.20 74.53 m 192.24 74.53 l S 192.24 74.53 m 192.29 74.53 l S 192.29 74.53 m 192.33 74.53 l S 192.33 74.53 m 192.38 74.53 l S 192.38 74.53 m 192.43 74.53 l S 192.43 74.53 m 192.47 74.53 l S 192.47 74.53 m 192.52 74.53 l S 192.52 74.53 m 192.56 74.53 l S 192.56 74.53 m 192.61 74.53 l S 192.61 74.53 m 192.66 74.53 l S 192.66 74.53 m 192.70 75.51 l S 192.70 74.53 m 192.75 75.51 l S 192.75 74.53 m 192.79 74.53 l S 192.79 74.53 m 192.84 74.53 l S 192.84 74.53 m 192.89 74.53 l S 192.89 74.53 m 192.93 74.53 l S 192.93 74.53 m 192.98 74.53 l S 192.98 74.53 m 193.02 74.53 l S 193.02 74.53 m 193.07 74.53 l S 193.07 74.53 m 193.12 74.53 l S 193.12 74.53 m 193.16 74.53 l S 193.16 74.53 m 193.21 74.53 l S 193.21 74.53 m 193.25 74.53 l S 193.25 74.53 m 193.30 74.53 l S 193.30 74.53 m 193.35 74.53 l S 193.35 74.53 m 193.39 75.51 l S 193.39 74.53 m 193.44 75.51 l S 193.44 74.53 m 193.48 74.53 l S 193.48 74.53 m 193.53 74.53 l S 193.53 74.53 m 193.58 74.53 l S 193.58 74.53 m 193.62 74.53 l S 193.62 74.53 m 193.67 74.53 l S 193.67 74.53 m 193.71 74.53 l S 193.71 74.53 m 193.76 74.53 l S 193.76 74.53 m 193.81 74.53 l S 193.81 74.53 m 193.85 74.53 l S 193.85 74.53 m 193.90 74.53 l S 193.90 74.53 m 193.94 74.53 l S 193.94 74.53 m 193.99 74.53 l S 193.99 74.53 m 194.04 74.53 l S 194.04 74.53 m 194.08 74.53 l S 194.08 74.53 m 194.13 74.53 l S 194.13 74.53 m 194.17 74.53 l S 194.17 74.53 m 194.22 74.53 l S 194.22 74.53 m 194.27 74.53 l S 194.27 74.53 m 194.31 74.53 l S 194.31 74.53 m 194.36 74.53 l S 194.36 74.53 m 194.40 74.53 l S 194.40 74.53 m 194.45 74.53 l S 194.45 74.53 m 194.50 74.53 l S 194.50 74.53 m 194.54 74.53 l S 194.54 74.53 m 194.59 74.53 l S 194.59 74.53 m 194.63 74.53 l S 194.63 74.53 m 194.68 74.53 l S 194.68 74.53 m 194.73 74.53 l S 194.73 74.53 m 194.77 74.53 l S 194.77 74.53 m 194.82 74.53 l S 194.82 74.53 m 194.86 74.53 l S 194.86 74.53 m 194.91 74.53 l S 194.91 74.53 m 194.96 74.53 l S 194.96 74.53 m 195.00 74.53 l S 195.00 74.53 m 195.05 74.53 l S 195.05 74.53 m 195.09 74.53 l S 195.09 74.53 m 195.14 74.53 l S 195.14 74.53 m 195.19 74.53 l S 195.19 74.53 m 195.23 74.53 l S 195.23 74.53 m 195.28 74.53 l S 195.28 74.53 m 195.32 74.53 l S 195.32 74.53 m 195.37 74.53 l S 195.37 74.53 m 195.42 74.53 l S 195.42 74.53 m 195.46 74.53 l S 195.46 74.53 m 195.51 74.53 l S 195.51 74.53 m 195.55 75.51 l S 195.55 74.53 m 195.60 75.51 l S 195.60 74.53 m 195.65 75.51 l S 195.65 74.53 m 195.69 74.53 l S 195.69 74.53 m 195.74 74.53 l S 195.74 74.53 m 195.78 75.51 l S 195.78 74.53 m 195.83 75.51 l S 195.83 74.53 m 195.88 74.53 l S 195.88 74.53 m 195.92 74.53 l S 195.92 74.53 m 195.97 74.53 l S 195.97 74.53 m 196.01 74.53 l S 196.01 74.53 m 196.06 74.53 l S 196.06 74.53 m 196.11 74.53 l S 196.11 74.53 m 196.15 74.53 l S 196.15 74.53 m 196.20 74.53 l S 196.20 74.53 m 196.24 74.53 l S 196.24 74.53 m 196.29 74.53 l S 196.29 74.53 m 196.34 74.53 l S 196.34 74.53 m 196.38 74.53 l S 196.38 74.53 m 196.43 74.53 l S 196.43 74.53 m 196.47 74.53 l S 196.47 74.53 m 196.52 74.53 l S 196.52 74.53 m 196.57 74.53 l S 196.57 74.53 m 196.61 75.51 l S 196.61 74.53 m 196.66 75.51 l S 196.66 74.53 m 196.70 74.53 l S 196.70 74.53 m 196.75 74.53 l S 196.75 74.53 m 196.80 74.53 l S 196.80 74.53 m 196.84 74.53 l S 196.84 74.53 m 196.89 74.53 l S 196.89 74.53 m 196.93 74.53 l S 196.93 74.53 m 196.98 74.53 l S 196.98 74.53 m 197.03 74.53 l S 197.03 74.53 m 197.07 74.53 l S 197.07 74.53 m 197.12 74.53 l S 197.12 74.53 m 197.16 74.53 l S 197.16 74.53 m 197.21 74.53 l S 197.21 74.53 m 197.26 74.53 l S 197.26 74.53 m 197.30 74.53 l S 197.30 74.53 m 197.35 74.53 l S 197.35 74.53 m 197.39 74.53 l S 197.39 74.53 m 197.44 74.53 l S 197.44 74.53 m 197.49 74.53 l S 197.49 74.53 m 197.53 74.53 l S 197.53 74.53 m 197.58 74.53 l S 197.58 74.53 m 197.62 75.51 l S 197.62 74.53 m 197.67 75.51 l S 197.67 74.53 m 197.72 74.53 l S 197.72 74.53 m 197.76 74.53 l S 197.76 74.53 m 197.81 74.53 l S 197.81 74.53 m 197.85 74.53 l S 197.85 74.53 m 197.90 74.53 l S 197.90 74.53 m 197.95 74.53 l S 197.95 74.53 m 197.99 74.53 l S 197.99 74.53 m 198.04 74.53 l S 198.04 74.53 m 198.08 74.53 l S 198.08 74.53 m 198.13 74.53 l S 198.13 74.53 m 198.18 74.53 l S 198.18 74.53 m 198.22 74.53 l S 198.22 74.53 m 198.27 74.53 l S 198.27 74.53 m 198.31 74.53 l S 198.31 74.53 m 198.36 74.53 l S 198.36 74.53 m 198.41 74.53 l S 198.41 74.53 m 198.45 74.53 l S 198.45 74.53 m 198.50 75.51 l S 198.50 74.53 m 198.55 74.53 l S 198.55 74.53 m 198.59 74.53 l S 198.59 74.53 m 198.64 74.53 l S 198.64 74.53 m 198.68 74.53 l S 198.68 74.53 m 198.73 74.53 l S 198.73 74.53 m 198.78 74.53 l S 198.78 74.53 m 198.82 74.53 l S 198.82 74.53 m 198.87 74.53 l S 198.87 74.53 m 198.91 74.53 l S 198.91 74.53 m 198.96 74.53 l S 198.96 74.53 m 199.01 74.53 l S 199.01 74.53 m 199.05 74.53 l S 199.05 74.53 m 199.10 74.53 l S 199.10 74.53 m 199.14 74.53 l S 199.14 74.53 m 199.19 74.53 l S 199.19 74.53 m 199.24 74.53 l S 199.24 74.53 m 199.28 74.53 l S 199.28 74.53 m 199.33 74.53 l S 199.33 74.53 m 199.37 74.53 l S 199.37 74.53 m 199.42 74.53 l S 199.42 74.53 m 199.47 74.53 l S 199.47 74.53 m 199.51 74.53 l S 199.51 74.53 m 199.56 74.53 l S 199.56 74.53 m 199.60 74.53 l S 199.60 74.53 m 199.65 74.53 l S 199.65 74.53 m 199.70 74.53 l S 199.70 74.53 m 199.74 74.53 l S 199.74 74.53 m 199.79 74.53 l S 199.79 74.53 m 199.83 74.53 l S 199.83 74.53 m 199.88 74.53 l S 199.88 74.53 m 199.93 74.53 l S 199.93 74.53 m 199.97 74.53 l S 199.97 74.53 m 200.02 74.53 l S 200.02 74.53 m 200.06 74.53 l S 200.06 74.53 m 200.11 74.53 l S 200.11 74.53 m 200.16 74.53 l S 200.16 74.53 m 200.20 74.53 l S 200.20 74.53 m 200.25 74.53 l S 200.25 74.53 m 200.29 74.53 l S 200.29 74.53 m 200.34 74.53 l S 200.34 74.53 m 200.39 74.53 l S 200.39 74.53 m 200.43 74.53 l S 200.43 74.53 m 200.48 74.53 l S 200.48 74.53 m 200.52 74.53 l S 200.52 74.53 m 200.57 74.53 l S 200.57 74.53 m 200.62 74.53 l S 200.62 74.53 m 200.66 74.53 l S 200.66 74.53 m 200.71 74.53 l S 200.71 74.53 m 200.75 74.53 l S 200.75 74.53 m 200.80 74.53 l S 200.80 74.53 m 200.85 74.53 l S 200.85 74.53 m 200.89 74.53 l S 200.89 74.53 m 200.94 74.53 l S 200.94 74.53 m 200.98 74.53 l S 200.98 74.53 m 201.03 74.53 l S 201.03 74.53 m 201.08 74.53 l S 201.08 74.53 m 201.12 74.53 l S 201.12 74.53 m 201.17 74.53 l S 201.17 74.53 m 201.21 74.53 l S 201.21 74.53 m 201.26 74.53 l S 201.26 74.53 m 201.31 74.53 l S 201.31 74.53 m 201.35 74.53 l S 201.35 74.53 m 201.40 74.53 l S 201.40 74.53 m 201.44 74.53 l S 201.44 74.53 m 201.49 74.53 l S 201.49 74.53 m 201.54 74.53 l S 201.54 74.53 m 201.58 74.53 l S 201.58 74.53 m 201.63 74.53 l S 201.63 74.53 m 201.67 74.53 l S 201.67 74.53 m 201.72 74.53 l S 201.72 74.53 m 201.77 74.53 l S 201.77 74.53 m 201.81 74.53 l S 201.81 74.53 m 201.86 74.53 l S 201.86 74.53 m 201.90 74.53 l S 201.90 74.53 m 201.95 74.53 l S 201.95 74.53 m 202.00 74.53 l S 202.00 74.53 m 202.04 74.53 l S 202.04 74.53 m 202.09 74.53 l S 202.09 74.53 m 202.13 74.53 l S 202.13 74.53 m 202.18 74.53 l S 202.18 74.53 m 202.23 74.53 l S 202.23 74.53 m 202.27 74.53 l S 202.27 74.53 m 202.32 74.53 l S 202.32 74.53 m 202.36 74.53 l S 202.36 74.53 m 202.41 74.53 l S 202.41 74.53 m 202.46 74.53 l S 202.46 74.53 m 202.50 74.53 l S 202.50 74.53 m 202.55 74.53 l S 202.55 74.53 m 202.59 75.51 l S 202.59 74.53 m 202.64 74.53 l S 202.64 74.53 m 202.69 74.53 l S 202.69 74.53 m 202.73 74.53 l S 202.73 74.53 m 202.78 74.53 l S 202.78 74.53 m 202.82 74.53 l S 202.82 74.53 m 202.87 74.53 l S 202.87 74.53 m 202.92 74.53 l S 202.92 74.53 m 202.96 74.53 l S 202.96 74.53 m 203.01 74.53 l S 203.01 74.53 m 203.05 74.53 l S 203.05 74.53 m 203.10 74.53 l S 203.10 74.53 m 203.15 74.53 l S 203.15 74.53 m 203.19 74.53 l S 203.19 74.53 m 203.24 74.53 l S 203.24 74.53 m 203.28 74.53 l S 203.28 74.53 m 203.33 74.53 l S 203.33 74.53 m 203.38 74.53 l S 203.38 74.53 m 203.42 76.49 l S 203.42 74.53 m 203.47 75.51 l S 203.47 74.53 m 203.51 75.51 l S 203.51 74.53 m 203.56 74.53 l S 203.56 74.53 m 203.61 74.53 l S 203.61 74.53 m 203.65 74.53 l S 203.65 74.53 m 203.70 74.53 l S 203.70 74.53 m 203.74 74.53 l S 203.74 74.53 m 203.79 74.53 l S 203.79 74.53 m 203.84 74.53 l S 203.84 74.53 m 203.88 74.53 l S 203.88 74.53 m 203.93 74.53 l S 203.93 74.53 m 203.97 74.53 l S 203.97 74.53 m 204.02 76.49 l S 204.02 74.53 m 204.07 74.53 l S 204.07 74.53 m 204.11 74.53 l S 204.11 74.53 m 204.16 74.53 l S 204.16 74.53 m 204.20 74.53 l S 204.20 74.53 m 204.25 74.53 l S 204.25 74.53 m 204.30 74.53 l S 204.30 74.53 m 204.34 74.53 l S 204.34 74.53 m 204.39 74.53 l S 204.39 74.53 m 204.43 74.53 l S 204.43 74.53 m 204.48 74.53 l S 204.48 74.53 m 204.53 74.53 l S 204.53 74.53 m 204.57 74.53 l S 204.57 74.53 m 204.62 74.53 l S 204.62 74.53 m 204.66 74.53 l S 204.66 74.53 m 204.71 74.53 l S 204.71 74.53 m 204.76 74.53 l S 204.76 74.53 m 204.80 75.51 l S 204.80 74.53 m 204.85 74.53 l S 204.85 74.53 m 204.89 74.53 l S 204.89 74.53 m 204.94 74.53 l S 204.94 74.53 m 204.99 74.53 l S 204.99 74.53 m 205.03 74.53 l S 205.03 74.53 m 205.08 74.53 l S 205.08 74.53 m 205.12 74.53 l S 205.12 74.53 m 205.17 74.53 l S 205.17 74.53 m 205.22 74.53 l S 205.22 74.53 m 205.26 74.53 l S 205.26 74.53 m 205.31 74.53 l S 205.31 74.53 m 205.35 74.53 l S 205.35 74.53 m 205.40 74.53 l S 205.40 74.53 m 205.45 74.53 l S 205.45 74.53 m 205.49 74.53 l S 205.49 74.53 m 205.54 76.49 l S 205.54 74.53 m 205.58 74.53 l S 205.58 74.53 m 205.63 74.53 l S 205.63 74.53 m 205.68 74.53 l S 205.68 74.53 m 205.72 76.49 l S 205.72 74.53 m 205.77 76.49 l S 205.77 74.53 m 205.81 74.53 l S 205.81 74.53 m 205.86 74.53 l S 205.86 74.53 m 205.91 74.53 l S 205.91 74.53 m 205.95 74.53 l S 205.95 74.53 m 206.00 74.53 l S 206.00 74.53 m 206.04 74.53 l S 206.04 74.53 m 206.09 74.53 l S 206.09 74.53 m 206.14 74.53 l S 206.14 74.53 m 206.18 74.53 l S 206.18 74.53 m 206.23 74.53 l S 206.23 74.53 m 206.27 74.53 l S 206.27 74.53 m 206.32 74.53 l S 206.32 74.53 m 206.37 74.53 l S 206.37 74.53 m 206.41 74.53 l S 206.41 74.53 m 206.46 74.53 l S 206.46 74.53 m 206.51 74.53 l S 206.51 74.53 m 206.55 74.53 l S 206.55 74.53 m 206.60 74.53 l S 206.60 74.53 m 206.64 74.53 l S 206.64 74.53 m 206.69 74.53 l S 206.69 74.53 m 206.74 74.53 l S 206.74 74.53 m 206.78 74.53 l S 206.78 74.53 m 206.83 74.53 l S 206.83 74.53 m 206.87 74.53 l S 206.87 74.53 m 206.92 74.53 l S 206.92 74.53 m 206.97 74.53 l S 206.97 74.53 m 207.01 74.53 l S 207.01 74.53 m 207.06 74.53 l S 207.06 74.53 m 207.10 74.53 l S 207.10 74.53 m 207.15 74.53 l S 207.15 74.53 m 207.20 74.53 l S 207.20 74.53 m 207.24 74.53 l S 207.24 74.53 m 207.29 74.53 l S 207.29 74.53 m 207.33 74.53 l S 207.33 74.53 m 207.38 74.53 l S 207.38 74.53 m 207.43 74.53 l S 207.43 74.53 m 207.47 74.53 l S 207.47 74.53 m 207.52 74.53 l S 207.52 74.53 m 207.56 74.53 l S 207.56 74.53 m 207.61 74.53 l S 207.61 74.53 m 207.66 74.53 l S 207.66 74.53 m 207.70 74.53 l S 207.70 74.53 m 207.75 74.53 l S 207.75 74.53 m 207.79 74.53 l S 207.79 74.53 m 207.84 74.53 l S 207.84 74.53 m 207.89 74.53 l S 207.89 74.53 m 207.93 74.53 l S 207.93 74.53 m 207.98 74.53 l S 207.98 74.53 m 208.02 74.53 l S 208.02 74.53 m 208.07 74.53 l S 208.07 74.53 m 208.12 74.53 l S 208.12 74.53 m 208.16 74.53 l S 208.16 74.53 m 208.21 74.53 l S 208.21 74.53 m 208.25 74.53 l S 208.25 74.53 m 208.30 74.53 l S 208.30 74.53 m 208.35 74.53 l S 208.35 74.53 m 208.39 74.53 l S 208.39 74.53 m 208.44 74.53 l S 208.44 74.53 m 208.48 74.53 l S 208.48 74.53 m 208.53 74.53 l S 208.53 74.53 m 208.58 74.53 l S 208.58 74.53 m 208.62 74.53 l S 208.62 74.53 m 208.67 74.53 l S 208.67 74.53 m 208.71 74.53 l S 208.71 74.53 m 208.76 74.53 l S 208.76 74.53 m 208.81 74.53 l S 208.81 74.53 m 208.85 74.53 l S 208.85 74.53 m 208.90 74.53 l S 208.90 74.53 m 208.94 74.53 l S 208.94 74.53 m 208.99 74.53 l S 208.99 74.53 m 209.04 74.53 l S 209.04 74.53 m 209.08 74.53 l S 209.08 74.53 m 209.13 74.53 l S 209.13 74.53 m 209.17 74.53 l S 209.17 74.53 m 209.22 74.53 l S 209.22 74.53 m 209.27 74.53 l S 209.27 74.53 m 209.31 74.53 l S 209.31 74.53 m 209.36 74.53 l S 209.36 74.53 m 209.40 74.53 l S 209.40 74.53 m 209.45 74.53 l S 209.45 74.53 m 209.50 74.53 l S 209.50 74.53 m 209.54 74.53 l S 209.54 74.53 m 209.59 74.53 l S 209.59 74.53 m 209.63 74.53 l S 209.63 74.53 m 209.68 74.53 l S 209.68 74.53 m 209.73 74.53 l S 209.73 74.53 m 209.77 74.53 l S 209.77 74.53 m 209.82 74.53 l S 209.82 74.53 m 209.86 74.53 l S 209.86 74.53 m 209.91 74.53 l S 209.91 74.53 m 209.96 74.53 l S 209.96 74.53 m 210.00 74.53 l S 210.00 74.53 m 210.05 74.53 l S 210.05 74.53 m 210.09 74.53 l S 210.09 74.53 m 210.14 74.53 l S 210.14 74.53 m 210.19 74.53 l S 210.19 74.53 m 210.23 74.53 l S 210.23 74.53 m 210.28 74.53 l S 210.28 74.53 m 210.32 76.49 l S 210.32 74.53 m 210.37 76.49 l S 210.37 74.53 m 210.42 74.53 l S 210.42 74.53 m 210.46 74.53 l S 210.46 74.53 m 210.51 74.53 l S 210.51 74.53 m 210.55 74.53 l S 210.55 74.53 m 210.60 74.53 l S 210.60 74.53 m 210.65 74.53 l S 210.65 74.53 m 210.69 74.53 l S 210.69 74.53 m 210.74 74.53 l S 210.74 74.53 m 210.78 74.53 l S 210.78 74.53 m 210.83 74.53 l S 210.83 74.53 m 210.88 74.53 l S 210.88 74.53 m 210.92 74.53 l S 210.92 74.53 m 210.97 74.53 l S 210.97 74.53 m 211.01 74.53 l S 211.01 74.53 m 211.06 74.53 l S 211.06 74.53 m 211.11 75.51 l S 211.11 74.53 m 211.15 75.51 l S 211.15 74.53 m 211.20 74.53 l S 211.20 74.53 m 211.24 74.53 l S 211.24 74.53 m 211.29 74.53 l S 211.29 74.53 m 211.34 74.53 l S 211.34 74.53 m 211.38 74.53 l S 211.38 74.53 m 211.43 74.53 l S 211.43 74.53 m 211.47 74.53 l S 211.47 74.53 m 211.52 74.53 l S 211.52 74.53 m 211.57 74.53 l S 211.57 74.53 m 211.61 74.53 l S 211.61 74.53 m 211.66 74.53 l S 211.66 74.53 m 211.70 74.53 l S 211.70 74.53 m 211.75 74.53 l S 211.75 74.53 m 211.80 74.53 l S 211.80 74.53 m 211.84 74.53 l S 211.84 74.53 m 211.89 74.53 l S 211.89 74.53 m 211.93 74.53 l S 211.93 74.53 m 211.98 74.53 l S 211.98 74.53 m 212.03 74.53 l S 212.03 74.53 m 212.07 74.53 l S 212.07 74.53 m 212.12 75.51 l S 212.12 74.53 m 212.16 75.51 l S 212.16 74.53 m 212.21 76.49 l S 212.21 74.53 m 212.26 76.49 l S 212.26 74.53 m 212.30 74.53 l S 212.30 74.53 m 212.35 74.53 l S 212.35 74.53 m 212.39 74.53 l S 212.39 74.53 m 212.44 74.53 l S 212.44 74.53 m 212.49 74.53 l S 212.49 74.53 m 212.53 74.53 l S 212.53 74.53 m 212.58 74.53 l S 212.58 74.53 m 212.62 74.53 l S 212.62 74.53 m 212.67 74.53 l S 212.67 74.53 m 212.72 75.51 l S 212.72 74.53 m 212.76 75.51 l S 212.76 74.53 m 212.81 74.53 l S 212.81 74.53 m 212.85 74.53 l S 212.85 74.53 m 212.90 74.53 l S 212.90 74.53 m 212.95 74.53 l S 212.95 74.53 m 212.99 74.53 l S 212.99 74.53 m 213.04 74.53 l S 213.04 74.53 m 213.08 74.53 l S 213.08 74.53 m 213.13 74.53 l S 213.13 74.53 m 213.18 75.51 l S 213.18 74.53 m 213.22 75.51 l S 213.22 74.53 m 213.27 74.53 l S 213.27 74.53 m 213.31 74.53 l S 213.31 74.53 m 213.36 74.53 l S 213.36 74.53 m 213.41 74.53 l S 213.41 74.53 m 213.45 74.53 l S 213.45 74.53 m 213.50 74.53 l S 213.50 74.53 m 213.54 74.53 l S 213.54 74.53 m 213.59 74.53 l S 213.59 74.53 m 213.64 74.53 l S 213.64 74.53 m 213.68 74.53 l S 213.68 74.53 m 213.73 74.53 l S 213.73 74.53 m 213.77 74.53 l S 213.77 74.53 m 213.82 74.53 l S 213.82 74.53 m 213.87 74.53 l S 213.87 74.53 m 213.91 74.53 l S 213.91 74.53 m 213.96 74.53 l S 213.96 74.53 m 214.00 74.53 l S 214.00 74.53 m 214.05 74.53 l S 214.05 74.53 m 214.10 74.53 l S 214.10 74.53 m 214.14 74.53 l S 214.14 74.53 m 214.19 74.53 l S 214.19 74.53 m 214.23 74.53 l S 214.23 74.53 m 214.28 74.53 l S 214.28 74.53 m 214.33 74.53 l S 214.33 74.53 m 214.37 74.53 l S 214.37 74.53 m 214.42 74.53 l S 214.42 74.53 m 214.47 74.53 l S 214.47 74.53 m 214.51 74.53 l S 214.51 74.53 m 214.56 74.53 l S 214.56 74.53 m 214.60 74.53 l S 214.60 74.53 m 214.65 74.53 l S 214.65 74.53 m 214.70 74.53 l S 214.70 74.53 m 214.74 74.53 l S 214.74 74.53 m 214.79 74.53 l S 214.79 74.53 m 214.83 74.53 l S 214.83 74.53 m 214.88 74.53 l S 214.88 74.53 m 214.93 74.53 l S 214.93 74.53 m 214.97 74.53 l S 214.97 74.53 m 215.02 76.49 l S 215.02 74.53 m 215.06 75.51 l S 215.06 74.53 m 215.11 74.53 l S 215.11 74.53 m 215.16 74.53 l S 215.16 74.53 m 215.20 74.53 l S 215.20 74.53 m 215.25 74.53 l S 215.25 74.53 m 215.29 74.53 l S 215.29 74.53 m 215.34 74.53 l S 215.34 74.53 m 215.39 74.53 l S 215.39 74.53 m 215.43 74.53 l S 215.43 74.53 m 215.48 74.53 l S 215.48 74.53 m 215.52 74.53 l S 215.52 74.53 m 215.57 74.53 l S 215.57 74.53 m 215.62 74.53 l S 215.62 74.53 m 215.66 74.53 l S 215.66 74.53 m 215.71 74.53 l S 215.71 74.53 m 215.75 74.53 l S 215.75 74.53 m 215.80 74.53 l S 215.80 74.53 m 215.85 74.53 l S 215.85 74.53 m 215.89 74.53 l S 215.89 74.53 m 215.94 74.53 l S 215.94 74.53 m 215.98 74.53 l S 215.98 74.53 m 216.03 74.53 l S 216.03 74.53 m 216.08 74.53 l S 216.08 74.53 m 216.12 74.53 l S 216.12 74.53 m 216.17 74.53 l S 216.17 74.53 m 216.21 74.53 l S 216.21 74.53 m 216.26 74.53 l S 216.26 74.53 m 216.31 74.53 l S 216.31 74.53 m 216.35 74.53 l S 216.35 74.53 m 216.40 74.53 l S 216.40 74.53 m 216.44 74.53 l S 216.44 74.53 m 216.49 74.53 l S 216.49 74.53 m 216.54 74.53 l S 216.54 74.53 m 216.58 74.53 l S 216.58 74.53 m 216.63 74.53 l S 216.63 74.53 m 216.67 74.53 l S 216.67 74.53 m 216.72 74.53 l S 216.72 74.53 m 216.77 74.53 l S 216.77 74.53 m 216.81 74.53 l S 216.81 74.53 m 216.86 74.53 l S 216.86 74.53 m 216.90 74.53 l S 216.90 74.53 m 216.95 74.53 l S 216.95 74.53 m 217.00 74.53 l S 217.00 74.53 m 217.04 74.53 l S 217.04 74.53 m 217.09 74.53 l S 217.09 74.53 m 217.13 74.53 l S 217.13 74.53 m 217.18 74.53 l S 217.18 74.53 m 217.23 76.49 l S 217.23 74.53 m 217.27 76.49 l S 217.27 74.53 m 217.32 74.53 l S 217.32 74.53 m 217.36 74.53 l S 217.36 74.53 m 217.41 74.53 l S 217.41 74.53 m 217.46 74.53 l S 217.46 74.53 m 217.50 74.53 l S 217.50 74.53 m 217.55 74.53 l S 217.55 74.53 m 217.59 74.53 l S 217.59 74.53 m 217.64 74.53 l S 217.64 74.53 m 217.69 74.53 l S 217.69 74.53 m 217.73 74.53 l S 217.73 74.53 m 217.78 74.53 l S 217.78 74.53 m 217.82 74.53 l S 217.82 74.53 m 217.87 74.53 l S 217.87 74.53 m 217.92 74.53 l S 217.92 74.53 m 217.96 74.53 l S 217.96 74.53 m 218.01 74.53 l S 218.01 74.53 m 218.05 74.53 l S 218.05 74.53 m 218.10 74.53 l S 218.10 74.53 m 218.15 74.53 l S 218.15 74.53 m 218.19 74.53 l S 218.19 74.53 m 218.24 74.53 l S 218.24 74.53 m 218.28 74.53 l S 218.28 74.53 m 218.33 74.53 l S 218.33 74.53 m 218.38 74.53 l S 218.38 74.53 m 218.42 74.53 l S 218.42 74.53 m 218.47 74.53 l S 218.47 74.53 m 218.51 74.53 l S 218.51 74.53 m 218.56 74.53 l S 218.56 74.53 m 218.61 74.53 l S 218.61 74.53 m 218.65 74.53 l S 218.65 74.53 m 218.70 74.53 l S 218.70 74.53 m 218.74 74.53 l S 218.74 74.53 m 218.79 74.53 l S 218.79 74.53 m 218.84 74.53 l S 218.84 74.53 m 218.88 74.53 l S 218.88 74.53 m 218.93 74.53 l S 218.93 74.53 m 218.97 75.51 l S 218.97 74.53 m 219.02 75.51 l S 219.02 74.53 m 219.07 74.53 l S 219.07 74.53 m 219.11 74.53 l S 219.11 74.53 m 219.16 74.53 l S 219.16 74.53 m 219.20 74.53 l S 219.20 74.53 m 219.25 74.53 l S 219.25 74.53 m 219.30 74.53 l S 219.30 74.53 m 219.34 74.53 l S 219.34 74.53 m 219.39 74.53 l S 219.39 74.53 m 219.43 74.53 l S 219.43 74.53 m 219.48 74.53 l S 219.48 74.53 m 219.53 74.53 l S 219.53 74.53 m 219.57 74.53 l S 219.57 74.53 m 219.62 74.53 l S 219.62 74.53 m 219.66 74.53 l S 219.66 74.53 m 219.71 75.51 l S 219.71 74.53 m 219.76 75.51 l S 219.76 74.53 m 219.80 74.53 l S 219.80 74.53 m 219.85 74.53 l S 219.85 74.53 m 219.89 74.53 l S 219.89 74.53 m 219.94 74.53 l S 219.94 74.53 m 219.99 74.53 l S 219.99 74.53 m 220.03 75.51 l S 220.03 74.53 m 220.08 75.51 l S 220.08 74.53 m 220.12 74.53 l S 220.12 74.53 m 220.17 74.53 l S 220.17 74.53 m 220.22 74.53 l S 220.22 74.53 m 220.26 74.53 l S 220.26 74.53 m 220.31 74.53 l S 220.31 74.53 m 220.35 74.53 l S 220.35 74.53 m 220.40 74.53 l S 220.40 74.53 m 220.45 74.53 l S 220.45 74.53 m 220.49 74.53 l S 220.49 74.53 m 220.54 74.53 l S 220.54 74.53 m 220.58 74.53 l S 220.58 74.53 m 220.63 74.53 l S 220.63 74.53 m 220.68 74.53 l S 220.68 74.53 m 220.72 74.53 l S 220.72 74.53 m 220.77 74.53 l S 220.77 74.53 m 220.81 74.53 l S 220.81 74.53 m 220.86 74.53 l S 220.86 74.53 m 220.91 74.53 l S 220.91 74.53 m 220.95 74.53 l S 220.95 74.53 m 221.00 74.53 l S 221.00 74.53 m 221.04 74.53 l S 221.04 74.53 m 221.09 74.53 l S 221.09 74.53 m 221.14 74.53 l S 221.14 74.53 m 221.18 74.53 l S 221.18 74.53 m 221.23 74.53 l S 221.23 74.53 m 221.27 74.53 l S 221.27 74.53 m 221.32 74.53 l S 221.32 74.53 m 221.37 74.53 l S 221.37 74.53 m 221.41 74.53 l S 221.41 74.53 m 221.46 75.51 l S 221.46 74.53 m 221.50 75.51 l S 221.50 74.53 m 221.55 74.53 l S 221.55 74.53 m 221.60 74.53 l S 221.60 74.53 m 221.64 74.53 l S 221.64 74.53 m 221.69 74.53 l S 221.69 74.53 m 221.73 74.53 l S 221.73 74.53 m 221.78 74.53 l S 221.78 74.53 m 221.83 74.53 l S 221.83 74.53 m 221.87 74.53 l S 221.87 74.53 m 221.92 74.53 l S 221.92 74.53 m 221.96 74.53 l S 221.96 74.53 m 222.01 74.53 l S 222.01 74.53 m 222.06 74.53 l S 222.06 74.53 m 222.10 74.53 l S 222.10 74.53 m 222.15 74.53 l S 222.15 74.53 m 222.19 74.53 l S 222.19 74.53 m 222.24 74.53 l S 222.24 74.53 m 222.29 74.53 l S 222.29 74.53 m 222.33 74.53 l S 222.33 74.53 m 222.38 74.53 l S 222.38 74.53 m 222.43 74.53 l S 222.43 74.53 m 222.47 74.53 l S 222.47 74.53 m 222.52 74.53 l S 222.52 74.53 m 222.56 74.53 l S 222.56 74.53 m 222.61 74.53 l S 222.61 74.53 m 222.66 74.53 l S 222.66 74.53 m 222.70 74.53 l S 222.70 74.53 m 222.75 74.53 l S 222.75 74.53 m 222.79 74.53 l S 222.79 74.53 m 222.84 74.53 l S 222.84 74.53 m 222.89 74.53 l S 222.89 74.53 m 222.93 74.53 l S 222.93 74.53 m 222.98 74.53 l S 222.98 74.53 m 223.02 74.53 l S 223.02 74.53 m 223.07 74.53 l S 223.07 74.53 m 223.12 74.53 l S 223.12 74.53 m 223.16 74.53 l S 223.16 74.53 m 223.21 74.53 l S 223.21 74.53 m 223.25 74.53 l S 223.25 74.53 m 223.30 74.53 l S 223.30 74.53 m 223.35 74.53 l S 223.35 74.53 m 223.39 74.53 l S 223.39 74.53 m 223.44 74.53 l S 223.44 74.53 m 223.48 74.53 l S 223.48 74.53 m 223.53 74.53 l S 223.53 74.53 m 223.58 74.53 l S 223.58 74.53 m 223.62 74.53 l S 223.62 74.53 m 223.67 74.53 l S 223.67 74.53 m 223.71 74.53 l S 223.71 74.53 m 223.76 74.53 l S 223.76 74.53 m 223.81 74.53 l S 223.81 74.53 m 223.85 74.53 l S 223.85 74.53 m 223.90 74.53 l S 223.90 74.53 m 223.94 74.53 l S 223.94 74.53 m 223.99 74.53 l S 223.99 74.53 m 224.04 74.53 l S 224.04 74.53 m 224.08 74.53 l S 224.08 74.53 m 224.13 74.53 l S 224.13 74.53 m 224.17 74.53 l S 224.17 74.53 m 224.22 74.53 l S 224.22 74.53 m 224.27 74.53 l S 224.27 74.53 m 224.31 74.53 l S 224.31 74.53 m 224.36 74.53 l S 224.36 74.53 m 224.40 74.53 l S 224.40 74.53 m 224.45 74.53 l S 224.45 74.53 m 224.50 74.53 l S 224.50 74.53 m 224.54 74.53 l S 224.54 74.53 m 224.59 74.53 l S 224.59 74.53 m 224.63 74.53 l S 224.63 74.53 m 224.68 74.53 l S 224.68 74.53 m 224.73 74.53 l S 224.73 74.53 m 224.77 74.53 l S 224.77 74.53 m 224.82 74.53 l S 224.82 74.53 m 224.86 74.53 l S 224.86 74.53 m 224.91 74.53 l S 224.91 74.53 m 224.96 74.53 l S 224.96 74.53 m 225.00 74.53 l S 225.00 74.53 m 225.05 74.53 l S 225.05 74.53 m 225.09 74.53 l S 225.09 74.53 m 225.14 74.53 l S 225.14 74.53 m 225.19 74.53 l S 225.19 74.53 m 225.23 74.53 l S 225.23 74.53 m 225.28 74.53 l S 225.28 74.53 m 225.32 74.53 l S 225.32 74.53 m 225.37 74.53 l S 225.37 74.53 m 225.42 74.53 l S 225.42 74.53 m 225.46 74.53 l S 225.46 74.53 m 225.51 74.53 l S 225.51 74.53 m 225.55 74.53 l S 225.55 74.53 m 225.60 74.53 l S 225.60 74.53 m 225.65 74.53 l S 225.65 74.53 m 225.69 74.53 l S 225.69 74.53 m 225.74 74.53 l S 225.74 74.53 m 225.78 74.53 l S 225.78 74.53 m 225.83 74.53 l S 225.83 74.53 m 225.88 74.53 l S 225.88 74.53 m 225.92 74.53 l S 225.92 74.53 m 225.97 74.53 l S 225.97 74.53 m 226.01 74.53 l S 226.01 74.53 m 226.06 74.53 l S 226.06 74.53 m 226.11 74.53 l S 226.11 74.53 m 226.15 74.53 l S 226.15 74.53 m 226.20 74.53 l S 226.20 74.53 m 226.24 74.53 l S 226.24 74.53 m 226.29 74.53 l S 226.29 74.53 m 226.34 74.53 l S 226.34 74.53 m 226.38 74.53 l S 226.38 74.53 m 226.43 74.53 l S 226.43 74.53 m 226.47 74.53 l S 226.47 74.53 m 226.52 74.53 l S 226.52 74.53 m 226.57 74.53 l S 226.57 74.53 m 226.61 74.53 l S 226.61 74.53 m 226.66 74.53 l S 226.66 74.53 m 226.70 74.53 l S 226.70 74.53 m 226.75 74.53 l S 226.75 74.53 m 226.80 74.53 l S 226.80 74.53 m 226.84 74.53 l S 226.84 74.53 m 226.89 74.53 l S 226.89 74.53 m 226.93 74.53 l S 226.93 74.53 m 226.98 74.53 l S 226.98 74.53 m 227.03 74.53 l S 227.03 74.53 m 227.07 74.53 l S 227.07 74.53 m 227.12 74.53 l S 227.12 74.53 m 227.16 74.53 l S 227.16 74.53 m 227.21 74.53 l S 227.21 74.53 m 227.26 74.53 l S 227.26 74.53 m 227.30 74.53 l S 227.30 74.53 m 227.35 74.53 l S 227.35 74.53 m 227.39 74.53 l S 227.39 74.53 m 227.44 74.53 l S 227.44 74.53 m 227.49 75.51 l S 227.49 74.53 m 227.53 74.53 l S 227.53 74.53 m 227.58 75.51 l S 227.58 74.53 m 227.62 75.51 l S 227.62 74.53 m 227.67 74.53 l S 227.67 74.53 m 227.72 74.53 l S 227.72 74.53 m 227.76 74.53 l S 227.76 74.53 m 227.81 74.53 l S 227.81 74.53 m 227.85 74.53 l S 227.85 74.53 m 227.90 74.53 l S 227.90 74.53 m 227.95 74.53 l S 227.95 74.53 m 227.99 74.53 l S 227.99 74.53 m 228.04 74.53 l S 228.04 74.53 m 228.08 74.53 l S 228.08 74.53 m 228.13 74.53 l S 228.13 74.53 m 228.18 74.53 l S 228.18 74.53 m 228.22 74.53 l S 228.22 74.53 m 228.27 74.53 l S 228.27 74.53 m 228.31 74.53 l S 228.31 74.53 m 228.36 74.53 l S 228.36 74.53 m 228.41 74.53 l S 228.41 74.53 m 228.45 74.53 l S 228.45 74.53 m 228.50 74.53 l S 228.50 74.53 m 228.54 74.53 l S 228.54 74.53 m 228.59 74.53 l S 228.59 74.53 m 228.64 74.53 l S 228.64 74.53 m 228.68 74.53 l S 228.68 74.53 m 228.73 74.53 l S 228.73 74.53 m 228.77 74.53 l S 228.77 74.53 m 228.82 74.53 l S 228.82 74.53 m 228.87 74.53 l S 228.87 74.53 m 228.91 74.53 l S 228.91 74.53 m 228.96 74.53 l S 228.96 74.53 m 229.00 74.53 l S 229.00 74.53 m 229.05 74.53 l S 229.05 74.53 m 229.10 74.53 l S 229.10 74.53 m 229.14 74.53 l S 229.14 74.53 m 229.19 74.53 l S 229.19 74.53 m 229.23 74.53 l S 229.23 74.53 m 229.28 74.53 l S 229.28 74.53 m 229.33 74.53 l S 229.33 74.53 m 229.37 74.53 l S 229.37 74.53 m 229.42 74.53 l S 229.42 74.53 m 229.46 74.53 l S 229.46 74.53 m 229.51 74.53 l S 229.51 74.53 m 229.56 74.53 l S 229.56 74.53 m 229.60 74.53 l S 229.60 74.53 m 229.65 74.53 l S 229.65 74.53 m 229.69 74.53 l S 229.69 74.53 m 229.74 74.53 l S 229.74 74.53 m 229.79 74.53 l S 229.79 74.53 m 229.83 74.53 l S 229.83 74.53 m 229.88 74.53 l S 229.88 74.53 m 229.92 75.51 l S 229.92 74.53 m 229.97 75.51 l S 229.97 74.53 m 230.02 74.53 l S 230.02 74.53 m 230.06 74.53 l S 230.06 74.53 m 230.11 74.53 l S 230.11 74.53 m 230.15 74.53 l S 230.15 74.53 m 230.20 74.53 l S 230.20 74.53 m 230.25 74.53 l S 230.25 74.53 m 230.29 74.53 l S 230.29 74.53 m 230.34 74.53 l S 230.34 74.53 m 230.38 74.53 l S 230.38 74.53 m 230.43 74.53 l S 230.43 74.53 m 230.48 74.53 l S 230.48 74.53 m 230.52 74.53 l S 230.52 74.53 m 230.57 74.53 l S 230.57 74.53 m 230.62 74.53 l S 230.62 74.53 m 230.66 74.53 l S 230.66 74.53 m 230.71 74.53 l S 230.71 74.53 m 230.75 74.53 l S 230.75 74.53 m 230.80 74.53 l S 230.80 74.53 m 230.85 74.53 l S 230.85 74.53 m 230.89 74.53 l S 230.89 74.53 m 230.94 74.53 l S 230.94 74.53 m 230.98 74.53 l S 230.98 74.53 m 231.03 74.53 l S 231.03 74.53 m 231.08 74.53 l S 231.08 74.53 m 231.12 74.53 l S 231.12 74.53 m 231.17 74.53 l S 231.17 74.53 m 231.21 74.53 l S 231.21 74.53 m 231.26 74.53 l S 231.26 74.53 m 231.31 74.53 l S 231.31 74.53 m 231.35 74.53 l S 231.35 74.53 m 231.40 74.53 l S 231.40 74.53 m 231.44 74.53 l S 231.44 74.53 m 231.49 74.53 l S 231.49 74.53 m 231.54 74.53 l S 231.54 74.53 m 231.58 74.53 l S 231.58 74.53 m 231.63 75.51 l S 231.63 74.53 m 231.67 75.51 l S 231.67 74.53 m 231.72 74.53 l S 231.72 74.53 m 231.77 74.53 l S 231.77 74.53 m 231.81 74.53 l S 231.81 74.53 m 231.86 74.53 l S 231.86 74.53 m 231.90 74.53 l S 231.90 74.53 m 231.95 74.53 l S 231.95 74.53 m 232.00 74.53 l S 232.00 74.53 m 232.04 74.53 l S 232.04 74.53 m 232.09 74.53 l S 232.09 74.53 m 232.13 74.53 l S 232.13 74.53 m 232.18 74.53 l S 232.18 74.53 m 232.23 74.53 l S 232.23 74.53 m 232.27 74.53 l S 232.27 74.53 m 232.32 74.53 l S 232.32 74.53 m 232.36 74.53 l S 232.36 74.53 m 232.41 74.53 l S 232.41 74.53 m 232.46 74.53 l S 232.46 74.53 m 232.50 74.53 l S 232.50 74.53 m 232.55 74.53 l S 232.55 74.53 m 232.59 74.53 l S 232.59 74.53 m 232.64 74.53 l S 232.64 74.53 m 232.69 74.53 l S 232.69 74.53 m 232.73 74.53 l S 232.73 74.53 m 232.78 74.53 l S 232.78 74.53 m 232.82 74.53 l S 232.82 74.53 m 232.87 74.53 l S 232.87 74.53 m 232.92 74.53 l S 232.92 74.53 m 232.96 74.53 l S 232.96 74.53 m 233.01 74.53 l S 233.01 74.53 m 233.05 74.53 l S 233.05 74.53 m 233.10 74.53 l S 233.10 74.53 m 233.15 74.53 l S 233.15 74.53 m 233.19 74.53 l S 233.19 74.53 m 233.24 74.53 l S 233.24 74.53 m 233.28 74.53 l S 233.28 74.53 m 233.33 74.53 l S 233.33 74.53 m 233.38 74.53 l S 233.38 74.53 m 233.42 74.53 l S 233.42 74.53 m 233.47 74.53 l S 233.47 74.53 m 233.51 74.53 l S 233.51 74.53 m 233.56 74.53 l S 233.56 74.53 m 233.61 74.53 l S 233.61 74.53 m 233.65 74.53 l S 233.65 74.53 m 233.70 74.53 l S 233.70 74.53 m 233.74 74.53 l S 233.74 74.53 m 233.79 75.51 l S 233.79 74.53 m 233.84 74.53 l S 233.84 74.53 m 233.88 75.51 l S 233.88 74.53 m 233.93 76.49 l S 233.93 74.53 m 233.97 76.49 l S 233.97 74.53 m 234.02 74.53 l S 234.02 74.53 m 234.07 74.53 l S 234.07 74.53 m 234.11 74.53 l S 234.11 74.53 m 234.16 74.53 l S 234.16 74.53 m 234.20 74.53 l S 234.20 74.53 m 234.25 74.53 l S 234.25 74.53 m 234.30 74.53 l S 234.30 74.53 m 234.34 74.53 l S 234.34 74.53 m 234.39 74.53 l S 234.39 74.53 m 234.43 74.53 l S 234.43 74.53 m 234.48 74.53 l S 234.48 74.53 m 234.53 74.53 l S 234.53 74.53 m 234.57 74.53 l S 234.57 74.53 m 234.62 74.53 l S 234.62 74.53 m 234.66 74.53 l S 234.66 74.53 m 234.71 74.53 l S 234.71 74.53 m 234.76 74.53 l S 234.76 74.53 m 234.80 74.53 l S 234.80 74.53 m 234.85 74.53 l S 234.85 74.53 m 234.89 74.53 l S 234.89 74.53 m 234.94 74.53 l S 234.94 74.53 m 234.99 74.53 l S 234.99 74.53 m 235.03 74.53 l S 235.03 74.53 m 235.08 74.53 l S 235.08 74.53 m 235.12 74.53 l S 235.12 74.53 m 235.17 74.53 l S 235.17 74.53 m 235.22 74.53 l S 235.22 74.53 m 235.26 74.53 l S 235.26 74.53 m 235.31 74.53 l S 235.31 74.53 m 235.35 74.53 l S 235.35 74.53 m 235.40 74.53 l S 235.40 74.53 m 235.45 74.53 l S 235.45 74.53 m 235.49 74.53 l S 235.49 74.53 m 235.54 74.53 l S 235.54 74.53 m 235.58 74.53 l S 235.58 74.53 m 235.63 75.51 l S 235.63 74.53 m 235.68 75.51 l S 235.68 74.53 m 235.72 74.53 l S 235.72 74.53 m 235.77 74.53 l S 235.77 74.53 m 235.81 74.53 l S 235.81 74.53 m 235.86 74.53 l S 235.86 74.53 m 235.91 75.51 l S 235.91 74.53 m 235.95 75.51 l S 235.95 74.53 m 236.00 74.53 l S 236.00 74.53 m 236.04 74.53 l S 236.04 74.53 m 236.09 74.53 l S 236.09 74.53 m 236.14 75.51 l S 236.14 74.53 m 236.18 74.53 l S 236.18 74.53 m 236.23 75.51 l S 236.23 74.53 m 236.27 75.51 l S 236.27 74.53 m 236.32 74.53 l S 236.32 74.53 m 236.37 74.53 l S 236.37 74.53 m 236.41 74.53 l S 236.41 74.53 m 236.46 74.53 l S 236.46 74.53 m 236.50 74.53 l S 236.50 74.53 m 236.55 74.53 l S 236.55 74.53 m 236.60 74.53 l S 236.60 74.53 m 236.64 74.53 l S 236.64 74.53 m 236.69 74.53 l S 236.69 74.53 m 236.73 74.53 l S 236.73 74.53 m 236.78 74.53 l S 236.78 74.53 m 236.83 74.53 l S 236.83 74.53 m 236.87 74.53 l S 236.87 74.53 m 236.92 74.53 l S 236.92 74.53 m 236.96 74.53 l S 236.96 74.53 m 237.01 74.53 l S 237.01 74.53 m 237.06 74.53 l S 237.06 74.53 m 237.10 74.53 l S 237.10 74.53 m 237.15 74.53 l S 237.15 74.53 m 237.19 74.53 l S 237.19 74.53 m 237.24 74.53 l S 237.24 74.53 m 237.29 74.53 l S 237.29 74.53 m 237.33 74.53 l S 237.33 74.53 m 237.38 74.53 l S 237.38 74.53 m 237.42 74.53 l S 237.42 74.53 m 237.47 74.53 l S 237.47 74.53 m 237.52 74.53 l S 237.52 74.53 m 237.56 74.53 l S 237.56 74.53 m 237.61 74.53 l S 237.61 74.53 m 237.65 74.53 l S 237.65 74.53 m 237.70 74.53 l S 237.70 74.53 m 237.75 74.53 l S 237.75 74.53 m 237.79 74.53 l S 237.79 74.53 m 237.84 74.53 l S 237.84 74.53 m 237.88 74.53 l S 237.88 74.53 m 237.93 74.53 l S 237.93 74.53 m 237.98 74.53 l S 237.98 74.53 m 238.02 74.53 l S 238.02 74.53 m 238.07 74.53 l S 238.07 74.53 m 238.11 74.53 l S 238.11 74.53 m 238.16 74.53 l S 238.16 74.53 m 238.21 74.53 l S 238.21 74.53 m 238.25 74.53 l S 238.25 74.53 m 238.30 74.53 l S 238.30 74.53 m 238.34 74.53 l S 238.34 74.53 m 238.39 74.53 l S 238.39 74.53 m 238.44 74.53 l S 238.44 74.53 m 238.48 74.53 l S 238.48 74.53 m 238.53 74.53 l S 238.53 74.53 m 238.58 74.53 l S 238.58 74.53 m 238.62 74.53 l S 238.62 74.53 m 238.67 74.53 l S 238.67 74.53 m 238.71 74.53 l S 238.71 74.53 m 238.76 74.53 l S 238.76 74.53 m 238.81 74.53 l S 238.81 74.53 m 238.85 74.53 l S 238.85 74.53 m 238.90 74.53 l S 238.90 74.53 m 238.94 74.53 l S 238.94 74.53 m 238.99 74.53 l S 238.99 74.53 m 239.04 74.53 l S 239.04 74.53 m 239.08 74.53 l S 239.08 74.53 m 239.13 74.53 l S 239.13 74.53 m 239.17 74.53 l S 239.17 74.53 m 239.22 74.53 l S 239.22 74.53 m 239.27 74.53 l S 239.27 74.53 m 239.31 75.51 l S 239.31 74.53 m 239.36 75.51 l S 239.36 74.53 m 239.40 75.51 l S 239.40 74.53 m 239.45 75.51 l S 239.45 74.53 m 239.50 74.53 l S 239.50 74.53 m 239.54 74.53 l S 239.54 74.53 m 239.59 74.53 l S 239.59 74.53 m 239.63 75.51 l S 239.63 74.53 m 239.68 75.51 l S 239.68 74.53 m 239.73 74.53 l S 239.73 74.53 m 239.77 74.53 l S 239.77 74.53 m 239.82 75.51 l S 239.82 74.53 m 239.86 75.51 l S 239.86 74.53 m 239.91 74.53 l S 239.91 74.53 m 239.96 74.53 l S 239.96 74.53 m 240.00 74.53 l S 240.00 74.53 m 240.05 74.53 l S 240.05 74.53 m 240.09 74.53 l S 240.09 74.53 m 240.14 74.53 l S 240.14 74.53 m 240.19 74.53 l S 240.19 74.53 m 240.23 74.53 l S 240.23 74.53 m 240.28 74.53 l S 240.28 74.53 m 240.32 74.53 l S 240.32 74.53 m 240.37 74.53 l S 240.37 74.53 m 240.42 74.53 l S 240.42 74.53 m 240.46 74.53 l S 240.46 74.53 m 240.51 74.53 l S 240.51 74.53 m 240.55 74.53 l S 240.55 74.53 m 240.60 74.53 l S 240.60 74.53 m 240.65 74.53 l S 240.65 74.53 m 240.69 74.53 l S 240.69 74.53 m 240.74 74.53 l S 240.74 74.53 m 240.78 74.53 l S 240.78 74.53 m 240.83 74.53 l S 240.83 74.53 m 240.88 74.53 l S 240.88 74.53 m 240.92 74.53 l S 240.92 74.53 m 240.97 74.53 l S 240.97 74.53 m 241.01 74.53 l S 241.01 74.53 m 241.06 74.53 l S 241.06 74.53 m 241.11 74.53 l S 241.11 74.53 m 241.15 74.53 l S 241.15 74.53 m 241.20 74.53 l S 241.20 74.53 m 241.24 74.53 l S 241.24 74.53 m 241.29 74.53 l S 241.29 74.53 m 241.34 74.53 l S 241.34 74.53 m 241.38 74.53 l S 241.38 74.53 m 241.43 74.53 l S 241.43 74.53 m 241.47 74.53 l S 241.47 74.53 m 241.52 74.53 l S 241.52 74.53 m 241.57 76.49 l S 241.57 74.53 m 241.61 76.49 l S 241.61 74.53 m 241.66 74.53 l S 241.66 74.53 m 241.70 74.53 l S 241.70 74.53 m 241.75 74.53 l S 241.75 74.53 m 241.80 74.53 l S 241.80 74.53 m 241.84 74.53 l S 241.84 74.53 m 241.89 74.53 l S 241.89 74.53 m 241.93 74.53 l S 241.93 74.53 m 241.98 75.51 l S 241.98 74.53 m 242.03 75.51 l S 242.03 74.53 m 242.07 74.53 l S 242.07 74.53 m 242.12 74.53 l S 242.12 74.53 m 242.16 74.53 l S 242.16 74.53 m 242.21 74.53 l S 242.21 74.53 m 242.26 74.53 l S 242.26 74.53 m 242.30 74.53 l S 242.30 74.53 m 242.35 74.53 l S 242.35 74.53 m 242.39 74.53 l S 242.39 74.53 m 242.44 74.53 l S 242.44 74.53 m 242.49 74.53 l S 242.49 74.53 m 242.53 74.53 l S 242.53 74.53 m 242.58 74.53 l S 242.58 74.53 m 242.62 74.53 l S 242.62 74.53 m 242.67 74.53 l S 242.67 74.53 m 242.72 74.53 l S 242.72 74.53 m 242.76 74.53 l S 242.76 74.53 m 242.81 74.53 l S 242.81 74.53 m 242.85 74.53 l S 242.85 74.53 m 242.90 74.53 l S 242.90 74.53 m 242.95 74.53 l S 242.95 74.53 m 242.99 74.53 l S 242.99 74.53 m 243.04 74.53 l S 243.04 74.53 m 243.08 74.53 l S 243.08 74.53 m 243.13 74.53 l S 243.13 74.53 m 243.18 74.53 l S 243.18 74.53 m 243.22 74.53 l S 243.22 74.53 m 243.27 74.53 l S 243.27 74.53 m 243.31 74.53 l S 243.31 74.53 m 243.36 74.53 l S 243.36 74.53 m 243.41 74.53 l S 243.41 74.53 m 243.45 74.53 l S 243.45 74.53 m 243.50 74.53 l S 243.50 74.53 m 243.54 74.53 l S 243.54 74.53 m 243.59 74.53 l S 243.59 74.53 m 243.64 74.53 l S 243.64 74.53 m 243.68 74.53 l S 243.68 74.53 m 243.73 74.53 l S 243.73 74.53 m 243.77 74.53 l S 243.77 74.53 m 243.82 74.53 l S 243.82 74.53 m 243.87 74.53 l S 243.87 74.53 m 243.91 74.53 l S 243.91 74.53 m 243.96 74.53 l S 243.96 74.53 m 244.00 74.53 l S 244.00 74.53 m 244.05 74.53 l S 244.05 74.53 m 244.10 74.53 l S 244.10 74.53 m 244.14 74.53 l S 244.14 74.53 m 244.19 74.53 l S 244.19 74.53 m 244.23 74.53 l S 244.23 74.53 m 244.28 74.53 l S 244.28 74.53 m 244.33 74.53 l S 244.33 74.53 m 244.37 74.53 l S 244.37 74.53 m 244.42 74.53 l S 244.42 74.53 m 244.46 74.53 l S 244.46 74.53 m 244.51 74.53 l S 244.51 74.53 m 244.56 74.53 l S 244.56 74.53 m 244.60 74.53 l S 244.60 74.53 m 244.65 74.53 l S 244.65 74.53 m 244.69 74.53 l S 244.69 74.53 m 244.74 74.53 l S 244.74 74.53 m 244.79 74.53 l S 244.79 74.53 m 244.83 74.53 l S 244.83 74.53 m 244.88 74.53 l S 244.88 74.53 m 244.92 74.53 l S 244.92 74.53 m 244.97 74.53 l S 244.97 74.53 m 245.02 74.53 l S 245.02 74.53 m 245.06 74.53 l S 245.06 74.53 m 245.11 74.53 l S 245.11 74.53 m 245.15 74.53 l S 245.15 74.53 m 245.20 75.51 l S 245.20 74.53 m 245.25 75.51 l S 245.25 74.53 m 245.29 74.53 l S 245.29 74.53 m 245.34 74.53 l S 245.34 74.53 m 245.38 74.53 l S 245.38 74.53 m 245.43 74.53 l S 245.43 74.53 m 245.48 74.53 l S 245.48 74.53 m 245.52 74.53 l S 245.52 74.53 m 245.57 74.53 l S 245.57 74.53 m 245.61 74.53 l S 245.61 74.53 m 245.66 74.53 l S 245.66 74.53 m 245.71 75.51 l S 245.71 74.53 m 245.75 74.53 l S 245.75 74.53 m 245.80 74.53 l S 245.80 74.53 m 245.84 74.53 l S 245.84 74.53 m 245.89 74.53 l S 245.89 74.53 m 245.94 74.53 l S 245.94 74.53 m 245.98 74.53 l S 245.98 74.53 m 246.03 74.53 l S 246.03 74.53 m 246.07 74.53 l S 246.07 74.53 m 246.12 74.53 l S 246.12 74.53 m 246.17 74.53 l S 246.17 74.53 m 246.21 74.53 l S 246.21 74.53 m 246.26 74.53 l S 246.26 74.53 m 246.30 74.53 l S 246.30 74.53 m 246.35 74.53 l S 246.35 74.53 m 246.40 74.53 l S 246.40 74.53 m 246.44 74.53 l S 246.44 74.53 m 246.49 74.53 l S 246.49 74.53 m 246.54 74.53 l S 246.54 74.53 m 246.58 74.53 l S 246.58 74.53 m 246.63 74.53 l S 246.63 74.53 m 246.67 74.53 l S 246.67 74.53 m 246.72 74.53 l S 246.72 74.53 m 246.77 74.53 l S 246.77 74.53 m 246.81 74.53 l S 246.81 74.53 m 246.86 74.53 l S 246.86 74.53 m 246.90 74.53 l S 246.90 74.53 m 246.95 74.53 l S 246.95 74.53 m 247.00 74.53 l S 247.00 74.53 m 247.04 74.53 l S 247.04 74.53 m 247.09 74.53 l S 247.09 74.53 m 247.13 75.51 l S 247.13 74.53 m 247.18 75.51 l S 247.18 74.53 m 247.23 75.51 l S 247.23 74.53 m 247.27 75.51 l S 247.27 74.53 m 247.32 74.53 l S 247.32 74.53 m 247.36 75.51 l S 247.36 74.53 m 247.41 75.51 l S 247.41 74.53 m 247.46 75.51 l S 247.46 74.53 m 247.50 75.51 l S 247.50 75.51 m 247.55 76.49 l S 247.55 74.53 m 247.59 77.46 l S 247.59 74.53 m 247.64 75.51 l S 247.64 74.53 m 247.69 78.44 l S 247.69 74.53 m 247.73 76.49 l S 247.73 74.53 m 247.78 74.53 l S 247.78 74.53 m 247.82 74.53 l S 247.82 74.53 m 247.87 76.49 l S 247.87 74.53 m 247.92 76.49 l S 247.92 74.53 m 247.96 76.49 l S 247.96 74.53 m 248.01 77.46 l S 248.01 74.53 m 248.05 76.49 l S 248.05 74.53 m 248.10 78.44 l S 248.10 74.53 m 248.15 75.51 l S 248.15 74.53 m 248.19 74.53 l S 248.19 74.53 m 248.24 74.53 l S 248.24 74.53 m 248.28 74.53 l S 248.28 74.53 m 248.33 74.53 l S 248.33 74.53 m 248.38 74.53 l S 248.38 74.53 m 248.42 74.53 l S 248.42 74.53 m 248.47 74.53 l S 248.47 74.53 m 248.51 74.53 l S 248.51 74.53 m 248.56 74.53 l S 248.56 74.53 m 248.61 74.53 l S 248.61 74.53 m 248.65 74.53 l S 248.65 74.53 m 248.70 74.53 l S 248.70 74.53 m 248.74 74.53 l S 248.74 74.53 m 248.79 74.53 l S 248.79 74.53 m 248.84 74.53 l S 248.84 74.53 m 248.88 75.51 l S 248.88 74.53 m 248.93 75.51 l S 248.93 74.53 m 248.97 75.51 l S 248.97 74.53 m 249.02 74.53 l S 249.02 74.53 m 249.07 74.53 l S 249.07 74.53 m 249.11 74.53 l S 249.11 74.53 m 249.16 74.53 l S 249.16 74.53 m 249.20 74.53 l S 249.20 74.53 m 249.25 74.53 l S 249.25 74.53 m 249.30 74.53 l S 249.30 74.53 m 249.34 74.53 l S 249.34 74.53 m 249.39 74.53 l S 249.39 74.53 m 249.43 75.51 l S 249.43 74.53 m 249.48 75.51 l S 249.48 74.53 m 249.53 74.53 l S 249.53 74.53 m 249.57 74.53 l S 249.57 74.53 m 249.62 74.53 l S 249.62 74.53 m 249.66 74.53 l S 249.66 74.53 m 249.71 74.53 l S 249.71 74.53 m 249.76 74.53 l S 249.76 74.53 m 249.80 74.53 l S 249.80 74.53 m 249.85 74.53 l S 249.85 74.53 m 249.89 75.51 l S 249.89 74.53 m 249.94 75.51 l S 249.94 74.53 m 249.99 74.53 l S 249.99 74.53 m 250.03 74.53 l S 250.03 74.53 m 250.08 74.53 l S 250.08 74.53 m 250.12 74.53 l S 250.12 74.53 m 250.17 74.53 l S 250.17 74.53 m 250.22 74.53 l S 250.22 74.53 m 250.26 75.51 l S 250.26 74.53 m 250.31 74.53 l S 250.31 74.53 m 250.35 74.53 l S 250.35 74.53 m 250.40 74.53 l S 250.40 74.53 m 250.45 74.53 l S Q endstream endobj 217 0 obj << /CreationDate (D:20090701105136) /ModDate (D:20090701105136) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 218 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 221 0 R >> endobj 219 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 221 0 R >> endobj 220 0 obj 263246 endobj 221 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 215 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [389.173 245.758 396.147 256.597] /Subtype /Link /A << /S /GoTo /D (figure.3) >> >> endobj 213 0 obj << /D [211 0 R /XYZ 89.292 765.769 null] >> endobj 214 0 obj << /D [211 0 R /XYZ 240.931 260.642 null] >> endobj 210 0 obj << /Font << /F8 79 0 R >> /XObject << /Im4 191 0 R >> /ProcSet [ /PDF /Text ] >> endobj 227 0 obj << /Length 2875 /Filter /FlateDecode >> stream xÚíÛŽÛÆõ]_!J¡+†3Ãá%@ ı;.Ð&ÞöÅ6P®Ä½Ä’¸^j½Þ~}Ïu8$µ‰"o…A‹3sæÜç\†k–ü3KcMšeféË<5UµÜìËË,uÖÁ,ÂÄï°úqáOëºâ™Ñ–¿~µ÷ËçÝâçÅòç…Q"U‘úºfˆÿ}1C¿vY™Ëu$óóÅ×?TË:­ ·<¿\Vujk»ôÞ¦¶\žoß&?¬LrÏÕ=üwO»ZÛÒ'þ›Õ:7.y‰‹;x.`¾HZ9"Hžlt˧•­x_žÜ x'@Ýå0¯¨Ú5îÄ™ž/qÿ¿t¯a”ï[Ããw™Ïtß%78'«Í†[Ù ¯ºÙ±²ùN…¼FNǺþºd³²er-Àݾë»}»zþ¨vmLZ{Oú2Yг ÕlP+€Ø:5¦ ¿®ÖÞ:’¯|ÄÍîat©Tàyàéoùg£°&±ðœÁc·@os®"’;AŒRþMÞQIWðü‹ìkˆÌQÖÆìmdö“@Þ‰W2NáÙÓ»%ÎRÁþ'xþ-Üfòþ6ÿÖóM÷[ðïI#sáÿÌjO|5biäé[x¾‚ç{xذ$¢’8ã!y <¯åw/’ÙM`–”r)O/ G!òûBþßv3Û íÜf»Q4EQàØ{K¢ ÊþϽ`¿Þ1˜æn¶éjíœMò”Tƒj1yZçùH7ç׎]U&ýQÄñÞï8ð¹ªHš[!GA¥‘HK ¼w÷â[/¡œ1W¨ zm?\ì$Î#øQlÐòðT$§NÁ?ï8¾#b¶ª„^!Öð¦«ö@ñ6p#~KB|`!.ݾ9’²Ö#mñ1êïépˆèY•4H<«“g/`á9¯\i]æh<ïÓ¹¥K Ûå̾eêsi5€h¶AôA+#ù¾e’ ÿIJÁð"„}`ò¡‡TJŸd\)tж;LHóô?¿C'…aë ñ•¾Ý#ê 2­K´BüFÌÕö|<×…KMYTK8Á]_ý€ÏÎx ¦t.ùO‡)å![›€š#ÿîAs¶Ny¤¡®Ù´=o‰]µ²§á1¿mwQl¸”³X#°D„NL:?\~t¸ò,ªÆÉ37¯q>®qè†==Ïê 4²x›™SÌ¡©cÜÂÒÉ®™½ É´mîÆŒ|–ä*ø:Þ1ø?.t’lÖ°:bbîo“3•Fÿ°ªò0FÛìÉ ä’u1ÝBN~P7Pö,ÖjW8h¿óêÌ´¼9J$xäE’ÿK¬€X/Bý4#ˆÔ·Áüf§)WBD=ª›ld…w¨„æš bÔn(‘lC ji4Bl.© ›:$@|]1M´Ãa› Ñ\6*Ð ’롈àÞl•ʕ˕Oœ,Ù£”lq½†ðA; H¿[ošÝ€æš|"¡b¦ž%TÌ×QBEáŸHÙ¯Ðû‹Š9ÝêÉ(†ª²à*ì0,ÇŽ°€#\Qò9‚<"kà*0`çnÛí„R µ)SbCðÜõdÙEéL͇§ï“G„­¾ÚQógr©ìŠjN¥n"g;𨷡8GެO~5bs>7z˜õœoÜÈ&.,wÂìâ…â‰â<Ï’óUåH4ëù4=òûX¿âj¨‘3^1`MÜEL«±`µöïÅ5Ç8nÉCÍøÜŸÈJ‹¡HØjú“š &#‡3C„7àüœ 3r˯q®Wx –{Êõ÷QÉDm!ê„=YÄDDpeÈÀÄs0Hê;ù}­qyÏ ‘x¿Ð¥[ÊxÞJ¯M°uñžAäÂ*N÷ó AÐç«Ö¤Ï£ÊÇ¢<|ý¤†¢ø©ŽØËÆÝèº$ì%¡Úußj‚ÁŽã!º§ôRÒp]&-¨IÖ{:•(bî6JZÐÆÐýnS$/…)>¡Àò޼?ô¶*¿ˆ?NuO%¨ l WkÄsa’cÍAPl(™­³÷<®Jáý©[Ý"£­a¹6ﵞóÜ¥@϶Qg®˜«I„ïI'õŒIhðX׵䵿Õ"—Š–™àWR{ªÜîö!'BI/ ˆášãf<¾åàUõsSË!ŵÍ2U\!pwÕ¼é±Ü`d˜XÎex{†Ù‡¦r‚C\£ÍSÚsÁß­1Âz®²RŽÔäÎWqíA¾M%¸TÜܻˡŒ8qàÜ›æÀ Ã%”—;uo‰­aà'Uþ”¦KÓ9jßÓíBcîT¡W׼в‹Šõx'¥ªèЦâçZDõ»â„2óB7‹U{†Ô£4)‚$öAElÛî…·äJ k£"¸%‚ë͹óãrXQoâD‚PbŠ¡ll[Y¡ÃÙ®™ˆ\ˆJÌõ6ÄYºpºÑC 1zž9!¯®Á࿆öãCQøä(b¸(H£Yù%ÁNÜÕ”ÃÝL©Ø.ÃãQ ÚrÿÔás›«W!7älý€ö0`‡øò@í[èÞ«Òц*×C(M…-U+@È]7ÇYK<¤­Õð*LÙ&`¥‹.NTóz9#ça Z•Â,u¼¥“s³z‡-èÁ‚£Ûm Q0Ñq»‚(â ‡¾ðK7€'²P&Ϲ‹8³S<òºp'q}, eïþÒŽÅ$Á©WòÒ…Þpy.á¡æŒ¿qŽ‹vNÞ:úVpĄøQãFÈŒ4A—ÕÆ ·ÕP:¤.¹Pž³Ëì:ÍM)« ã†çÚIv|³ ÆÔÊ&íì½,R›Ut‰Îz“ 0^Ì“lUie*¾cg qì®OÇnênœ7iéÇíÍpƒ‚5Ä;ãòÛ•·\_qDrVž¿Bøy_ŽŸ&f¸¥Ç7Z:!®)SD:¡MYÈ‹"–ú]–Ù™nL–:ãDu'HAWÙ9¡@d6¦ƒi¼®†þdy[ô¹G›"Pϼi¸h=4Má>“U¸¦^~m&U⺮3¹u­ëÔ—õ¤²»jx¼6Æ#úÞ ¦‚⸠ÇV»ÐȬMš(:€8ü¡`/O~Y8y}¡_9&°¡úÓÎE‹9\œÄܳç¹Ù³ÉÉ;Qiô¼ƒÿd'Ž<¾0€¡k•Å‹óðç"ò· ¦ÈÒ²,øN޾ϖÛE¶üi®WWˇþe Xc¹_˜¢H p<ïoÑŸž²u„þöÄú¥w­Ø)¼Ÿ§NŒ*ÝlÒÔ%»,¸êÚBXpñ—jtëqØoèèaw×ñïV~×\æÉþ¯ëD†Ñk-4›í–kÖœ:g+Õ±R›ÀŠ)!¢f4ß\wwÇ_Úf;cÙUiVU–Ḭ̂¶.µEI#R™#Wsü x–endstream endobj 226 0 obj << /Type /Page /Contents 227 0 R /Resources 225 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R /Annots [ 230 0 R 231 0 R 232 0 R 233 0 R 234 0 R 235 0 R 236 0 R ] >> endobj 222 0 obj << /Type /XObject /Subtype /Image /Width 516 /Height 516 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 39328 /Filter /FlateDecode >> stream xÚì½ÍË~וÚÿÀßÿ*ƒ šžô04=hLŒCÀa0ƒã¡0Ó`šAáB 7!Ü{ûܸ ¨¢ö9Ïûó‡êp/Ïû<çc¬Ú»ÖZµþͿٱcÇŽ;vìØ±cÇŽëøÿþßw~üñuþ¯ÿõ»‚ßÿÿã:ÿçÿ¼Îÿý¿wê¯ø.ø~‹ë}ùÀ]øWzGþ„ïÅ¿Å'¸Ëûo׉ÿâ“÷ﮓÿÛ¼£þ—ߑߋÿë~ËßlÞTÿ«ßqww‡^¿¯-œŸÊ½#?Õù/×ùÿxè…ú§ßÿé?]'÷Åo~s¿ýíu~ýõuâ·î­õþó¾Nô²Žpø¦ÎˆO>¹N3ÿõ¿^'ß÷ßÿûëüÿñ:q\ù´Íy,ñt4jäöבÀ×Ñkº¾ÎcÉô/Z†?G¿¸QĽ£³ m•g®{#n<ƒ¶‰á|_÷}½¾¶0_¡9ðÛ/ÿÿcX0, †Â'XÀ£óQÇ·ª³*ÚG:’Ùã›ÜSnÕ·ÓvȳÉ]ÍÀ~DéhÔëç§ÒvP{«càþá:ñ_ü +úã_çßþíuÂþÃñÅuâ›èMØ[úœ¸£®ØVs qpGo|Œ]üýß_'ÿl÷\KâÙ0>ùÉùiuäl‘bS^ø·vs¶ù¾Î#~æf<絫ÎÖ<uå©Ï£wtïÅ6Dç”b÷¦[³¹•ŽaÁ°`X0, z,p-©#£šÛAG2p$s®¯âØ×Ún\ñ8Çç<—ñ.`˜+ãÞw{L|“¥ †ör¶ù™È{ù¼çÕ–éÑ!?IÓ×îý­ÛË£…Á$¼÷ÞuþøN|þÕW×ùÁש- s ÷Ö`¤áD?²=Ç7ñ v¾HßOŽq,È,3ÚzŸ}vŒÎR1Rüú××™ù ÷ _ÍͲfÍÖŒö†ƒÒÖÓñé,L¿Frk<7 ÜØæ5•²ânÖ°máµMbÂaÁ°`X0,<áˆxœs¿côòûò®¤± Ù^¹»r O¢×ç9ÎüŽs‡AÜ/j[¸¯Ñk¼ÓÊpÛ6o‘÷Ú/¯gr²åï}…n¿¬ŒSã×VD`{ûww?úÑu¢…¿ùæwçûï_gcÐ#¸&~Ëž_~*ô¬ö;þ $âïè{)K™[Ì]üû ãxœsâ›êÑví¬+†fdψŸß1[þÞ ­‘WM§v#GV¸'WV'G¸–á>…õèQ`X0, †Ãłܶî©Ôª»ø(m1Œ4”ë=>:_܈m¢(ùš:OÕgͽ©~Æ Q/•zóXjæHƒ ïãë\ç»gÿ ~“¹nI=Ñ›ð À #Âê¥Y“ð[0‹’mHö÷ü¯¸šù¢œÚÊÅEè˜ÌnÆež6û|³Îq¹ Õ3Îk6¶ÉnÕ‘c5sD·‹qö\WA°ðÊ`³½ýòËëDŒDÆ/móaÁ°`X0,  °óu6ÄyXt'ȧÎ~æh+õ™j윎áf&º,'¾#,ÌG]g3s›™î>×gfþ‰¿©Éêýqnÿ«ÜWÞ 7Yiٲ匵˜hCž#Àx?üð:áMþüóëd¶Ç=§îå]œ'ß·i7’õ;.žYû+3fÌ=6™M.öÛñBÊòedÏãеXm¢ïVÛ3ß=#…³Š™Õ̶BÛcØå£áûXÕÀn4ñ|aÁ°`X0,  tWÒÌb7*òÓEµ¹±‘³ï3~5ûwõf4FóBšÅ“ý›MÎKÃÀ8 Í#íÔy3§¤ë„žõÊ, v}¹€~#„µþÆ“à¿Ð P,ÐÜÉfv»y‘ç`ããc%–SfÕ.ÈOîò˜\Ë ÝÐ<#švè×$CóÔ·ãf“ëÚ=ì.‡>­ö¬Ú ŒUŽCæØåŽúQ¡Ѱ`X0, †½Ë@ÇõϬ½ÐD–ö³Ò=S–SŒg(Nkš?¢ΙzMîLs›± ïXû  SŒÈü’ó¾qûgo)â6Ñ/˜A¬–^6ø”¹U¹²ÿÔ1E½¢`ƒø9ß°_#©Òc·rÙO™Ýå\¹F#¥ÁÙÌåգΞÝNÆ1?.ž„uÝú!3Ì™1s1¨°9íÓw †ÂaÁ°ÀåšéûB%‰Y<ƒËÚÀY•×í:UŒ½o:n]¤e9ÉFÌz¼NÝÛ*k¤Þ1-:Æôíð_°ð`žêÂõªYM¾ŒÓË:ÍXi²ÉzŒÓ¸Veð8z–½‰^Ð\ª~ÝÒÄæUÓ½u—‹El2ûrÌdn[¶x¸ã§Ÿ^§SPAÛª>÷K¿þÌm›×Ά7WÎQÍMŒkÃ8e?E"¶ÜªÌ5¹ÀS ŠaÁ°`X0,|;±ÀåþëÞJ}%.Ö±©…Áó—µ³\ 뾕9¦ž£gp03ÀÃeßœr&ü.ðiüaŸmרüг}N¯Üp}:[û¹ÏkœŒæ– QƒQûÃsŸ-üïº B„v3p:®îéXfÔë9̬Ñ`„óË»|­yäâ^Xƒ¢‰æ †ÂaÁ°ÀaAníë_ µgXÚÌÞ°®˜“ü ¹Þ„Ã)ç F_`Ü:,ȼÿ*g—ãÐ7MQÃíœÆÜêÜi¼ºœÝs1¢§g§yâêáoÌ9`•¯ÈÕFúgkl`£5×döå§mø“¼úR¿3Ç©bäc1òº5‰Fcf›ãjZ¾Ñ¸Îq§nµ{Íyð9ç7{ÕóÌb•Ë{Ѱ`X0, ¾ÍX+’k̘k%·¯‡ãr´q@ïKëYó•qùÿâ:Ù‚±ålÐ?ÏGŒ«aÁ°`X0,  þ?û¿ÿùÔ;fUÕÞ›†(J÷[f˜i…g­]å©¸ÝØŸÅvø’wʼ+dß±z#ÔSéöæZï&ï‹›¼õ'zÔ§èÐX˜Ì6œf–9_¼Úve/¹Æ¥û¾‹èëmõ©j‡FÏ6 l<ž9[çiæŽÔ‚¹{ZŦё†ý:ÿÍß\§j,7Ñ›½ªÌ=ÿ»«¸ÚTÂb…pwee‡´pµŸÿü:•ÛÄ42'³œ¡æjÙ †ÂaÁ°`XÀOÂN[Åv[Ç ?­¶×§Ä3ÔUÌÑŠu¬]ŒV‰ë3C•óרï̳Ìí(Ñãª{à4RW#й/ÜüÍ54ÏÇL_ŸE¯À֠ѸVö ×Çîµg_›I?Æ2˜^X戲{ŽäÌ1±ïú•I£5wom㬷¿ÖóâX¶™®òo®¸4, †ÂaÆ”²—Öiålþ-âÐ\eöP³:œ*×±G˜wǨ]®»c|‡½É9+ŠqÄí…ùðŽà Xï.«`eUê<Þr=Äìk¬z¶Ï²nïõn<Î<œ•ÈžÁøÉ]uøSð¬îâ óZ‚Çžcç2ËáªÌä »|¯ÌwùÎw®óÇ?¾N0ÃXæÑuoô:/y¯š¨y‹‚Jóï²z ¯´aTñ>çòì †ÂaÁ°@5(ÅÔ¬—ušÒï 5?(s,Êäp¶®€«ªÏ±›¿ÃWSµ.ø(qüй2ÖÍî#0ݼhrÞïé€5úZ§yb6°¦‚ýR# èÐpD½zaÃ5̉k™ÌÛ4­ÖOójy¤éšœ+a9h"¢ùšÃ‚aÁ°`X0,h˾–_ÖkÕý¼·ºŸÒ\uäÔ_5Zµ.ãÞvÍïf?ß #cû_œè`îì˲ZuŸwOAît–9›Æè¦±m™Ké£ì4Ö®yòüý¬‰ÑxŸuNaüpncƒ§9kMÄcŽ7Pk¦YH¹’{/Ž"|üñuÂj;ÅÜÁ|ùÕ¯®³vVŽ.Ϧ ìâš™Õçáê¯À'c´ÀÎ1qr ûú9Òë ŽÉ¿§Úk †ÂaÁ°`X XÐd^d}§ìíå j!ݼsñoªá°€Ù!·WbfÏ©ü}Ž>ÅØ~ÿýëÄoÁ,qµ ÄHpQ“åjå<çîEŸj®"mŒÞœ»×Dú·FÜe6F+gažøs˜ŽóS¤VF4cA~ò¦ÚNÏ?€ÿÁù—y@„?¼NÌ ¶„Mu÷gI²š‡ëY]ÅåH wwÇ&ñ¸>b Öšýø˜/ÚøæŸýÙÿóÏ'Ï5‡• 8, †Âa‹)Í¼Š‹•ÒÎß„µÄž‘3Ѹ%Ñ2j1²­‹+Ó1æF+N£UYm›-¶ö2ÛÞÓq F„¦æxÎÒÃéM5V½ïå¦ê³yܧ®n ßÅ1Æšã=Ÿ™Uˆÿ8Š@5Iz~¯±½÷4ôòw6öY¹8DVãÄø×à)‡ÙTjr-3Ÿì"g²J9lÞë@¶¬u‰O~ô£ëDì ëa‚]D»qµÆ7þÊÙsnÃaÁ°`X0, ´–F?6QIê;sûx‹\•ÝenJëÂðHc ™ãWõ ër°ÛÕ‘À(€èSVáà}œªÌå¬=mŸ¸NæQö³ëÌÖÉñr9³aVµmsíø¬d¢÷åØ ®Æ«­Äµº8Ö×ÿÞ÷®<3l&ÿ–?g¤pã?ó®<›†ÂaÁ°`X0,pšÕйå]õj~  3'ÊàÙX)ÂÕbà_å\­ì—Ô¬4ö*¢Øæ¨'lÒgŸ]'¾ \àþZ¡ßñî¼_>¦ëóÊOëªçèÇ&¾Nkž"v˜Èûå~w¯™ø¼êèãQs®Mֻȟ78ÒÇ 7ÏßWriØBçñT,ès!yu„lœ™oi˜œ{š2Jö‡{BŽüÔuµS‡­ûîw¯¶Ÿ°W]`VòìÇRV\ †ÂaÁ°@}Çü´¬½Üäz;{¥ù,¼'UÞ£ˆs¾x42ËÔhO9,`Ÿ¦ªÌa§ü†îÙ/†ü8"¨jc7‡·Öª:Úb¸ŽæªŸVœéëf,pÖC[ƒ{#rñ9ÐÐY~Ís<¤jAÜ«®’£ÞÆ)c¸vÎþÇ{(ìæ¸›ƒM ƒóï»Ü=exµƒ¿]^^Ö–éû÷t…Ógù5}ÁÔ°-`r`Ø’ðŠˆí·’jZj1,¡;´%s<À°`X0, †škæì^_cº‰lê¡çÝwŸ •wv§£«©'è´8úÖËî˧O˜ý³§ûëf^({£c¶–yœ8ßñ°`X0, †nŽ4QŽ®mygäv.;\ÄZS‚?Q¥»¦N_®}Ù´6ëW7;ú¬ 1¨9¾´)íl-9nïŽÝ1gÖk/h¦?Ï‚l±5ï¾QiÓy—ýøyUàb ûªô§zhO8¢Þê*!öQÇ —{Ù½r×™AÊ^û œc‰rñØfMéårýÄ&Fñ”£Ë½ãtð~ÉY·ÌurùäõUæ`k|ª¡w;š{Ÿãa8Ö³À©Ä¸Uûßs¨ÆÎ71ÂaÁ°`X0,hLiö©uwQý‡Æ«åFZÎ"w™2óÉÖ†•èîñ$Í̚ɬßÕ(375ëûlÓÌ}ç³æï°6 fâÚ–=hèAeÉMu7#ø;:O›y”-g¿òi*06ë“SÕAgÛÝ3ë¬áa½>ê×°¯ßÕ$u\JŽwÍkE]4­Ý ’z“ñŽÈ½Utz;z2³Í-ßÇð¸H]g9‡ÂaÁ°`X0,pšÕÙƒÙ{?s„^³w¹<9ÞRGTŽÖ»WçÑq8ªwç¬+Ž\˃kU8]îžùé«ö±»8Àä ^'ç빬½lë²zƒ{~Æ)Õ!tõAò£ñ*æ‘Ó׬Ͻ™ýƒÊaž*r¸5ŒSnÉV×1ÆY[¾ñç Ó<+m×Ï.Ñe5jµ#Í å+;=–FütçòއÂaÁ°`XðmÆ‚¾{³îçË;õpÛ:/˜óq»Ü¥<ºò»ð'àL n­q§Ð˜RkU5ü@ã_>õ9ö¿R,Vfq\«Ï爸œ×Ód]¹XÖ>j1«…79eýº"#W¶BýsÞó;»ïôÚÊ9O+ó£®õ’zuî×Fç:{¢Ö[c›ûl»'«ˆ>>„çŰ`X0, †ªAqšµ”µ’zv‚µ™ p-£þĶ±ï†¯“k&6о¹gÕ"å踼ÃÍ1«§£út_©6ךëŽXóŒ\Î ·~ÅÑÂYUÀ]G¶Æ ™c/ó:!ÛLõœê\põ~:‡¬ŸÙ˜ìíÍoÝÔèiÖ< :äxÑ&¡‰]É™­S\ý¦\KÈé¨8V-søÃ‚aÁ°`X0,(¸}·òÍ^›ö:œ¶˜Î‹lÕ'1ûûšhFþ»?x|Ø×©yú8ñ‹ëįNs¸žÄÝSßê#sÔe£àê9ï[¶$Í:D#Q³åÉ™JM¾XÓã}]’&Çí”EÌŒV^Eô1{™ïâò Ïø)vôj'nÅèÆª{zfå¼¶QË|š 0, †ÂajÓ5sÿ4£!ϧêæú×E fgd¿›ë Ü,P~OÍ:ÑJ.Ìzq}–~ ß‹½çíQ^ñškÍäÖ'a¿³ÜQؼKVièk 4 Œ³i÷¸¦'×åÉ23·¬jž•\‰µá¸r FoIè-voó{Ôp÷ÒÙÙNg—ô½õÂaÁ°`X0,¨6Ý=¾"÷ŽSjRÏ2¼±ÙËìâñ2ËtZIPQ ºX_}˜_Ð[à>eþ ÿÅ7™3Á8áŠ*÷bçN9Ÿ·¸Nög¯Y£ŠpªÊ•’¹7¡¤ýÅ׉Ø×çœÛ=DsyU¬®ŒJËÙ„ë¸ØŒ¾Îiæ.rnT£TÓàBÏåÕZ³Ñër®%¯9OVcG•Sj¼ùRz3ªUƒbX0, †Â«¦ÑSnöéñ òȸ:+Å©§ÕáE“7”#ÓúH<þû“O®sŠØp|Â×üþ÷¯Óåh,Ù) qOÅ¢™_M̰k%Íʪn9ߪ·ºzß{uyeÖ kú1« ðñë__§"Eïv<ƒÖUékž6ãÇ}ŸG»*¹9oò©ZEUr:Ü{)ɺ:NÑŸSfØéf÷‘ÒÂaÁ°`X0,4¾ãÞ[‘ûˆ•ÜTyÌé0óØpYìÕmb¨\MÉì-b]Yö9ò³ñ©^c<'~ˬQïËØ#BŽêÌšry¬óÑy“ŸÛÉ~¾4¬Wf–r™;zŒÈºv_‘g¨ÖŠ+G36ñM¦›[à€ÀSñ9ñ>Ûnë²#O×úÖøj*. 4kÂd]úŒ/}”ø°`X0, †=¸ýÝ©’sˆÔNj›€SâØQ׆÷”ÖrÖy3˜ҬÞöŸ5+²Ø«òûúÖhFŽk½Fû×µaóvÚ×Y'ÜÅdºØË Ù !ül¼z¹×_jͲï¸×`ïó+O•êõû9¢ã^•·FÊ ~÷bªõú=•¹2—¨ <ÎNfM ÃqñÂaÁ°`X0,8Íê&zMwCÙ¶pT•ãøà •Ú¿êq»ræsãl\l‘¼F¿è>N9«{X=æyN5ù8Y×WãåN+ò4 Æê‰ÓL½F‡ÍÅ$7ëŠÓ\¹ÌTôQÍ}œŒÑ™É9†½RD“1§~ðS½ŽSzão×{̹ZWµH½ÆNnŽäw½‰{Å †ÂaÁ°ÀiÓõÑtMÅ7½¬_®ù,àoºg`olÞmå§Ê¶ˆ««8ϵcx~|SÿËWÈUKÔWňÓÌî{\“îñÙ;û}dY½ÍUîP»‘ë§äÙêbz{,vÉ&žÙyf]käHËüün ÷fÖ¥Ìõ_Ÿ¬Ú’ø›ñ½á²NëºöUM›˜ñÝÈt±÷Î.5|½Bµ¶3lìç°`X0, †Y³ºéýÆóÅW€…GÆ–ÆY©­ãú/Úª}5휑G¾ÓÊÆ¯”ƒRÖ‚mŽ!§9D•šëƒ÷‘¨Í<Òv‘„§ªtM6Û™¼÷oj¯ô<@¯ëζdÛάi_¾¯Q{UÛŒ7÷ŽiÉÑ×®=ÍÓ8ê¼fÈ|ÎiÔkV«p+g2¯Þ¬ÄÜ}‡ÂaÁ°`X0,hbJÙ‡ÛxmšJÌl¨¶0Æ 33Z5¦©»—³–š½•f‘èXýàƒëÌÕRšº§Ñ†NÕ*×+ÑèÊ&Ã+û§\üdãÅîÕ†ùÉ5G¯™Ý§½ÓøR GPŸú›ÖÄCžª‚;‹§#ß½—ŽºŒÎ'®kª>F´ÏéÓ >ݰQˆgŽ·¯t™Ÿ'_§‰èh<×Íø †ÂaÁ°@cJŸûkrD"k5»Ýâ3u´äø¨fF÷^Å&# Ï…½ÌŒñó €kY»Ñ PM¿¼ v¾Î|/W!ÈqD}îÒ=½n¼µjMçì¶{3¥Ÿ¿ì·™c˜O} §Q‹YÛÁÙ«ÁOW;yåÐp/O}ZWƒÕyxuÕÚ¯ruËf¥Ôç¢ökN½Ú°`X0, †ÎwÜxåröó@±þ‹ê0|Ÿ~zPŸà{qã)¦4oÝôfÏ  †ÂaÁ°`Xà8"·Kr;Döâé\slÚ«&û©¯Ûr¯ê_ñÊ.Žï~÷:ßÿ:êñSÁž°íÊww~.æˆøÖ¯fU×>ü_®Ž+3¥>z~ßO>¹Îüà:ÁÚ#RNŒm©ŽX§Tv/ûÞé‡;¯Z˜Ëï ÃsµA¶¥üÌ̺çt=ÕT«ìí°³'¹’l¶±}¶¼Ó£s‘¨›šú8Mu÷M]Á6¯Ù²e{~šO§k‰&—pX0, †Ãç;v~ ~NžSêmtZ©yßÄh’Ç-ß1#©*]“‹¤ÿe¯qöO©O3Gè)ËáÐPÙ§ÆwÌþPŽ£Ãsþú×׉+ãù.Üù—×ùÞ{×ÉßÄ™uÆ\+5Ö©Ñ=ãªC8³\GŽV\Íõ[]žk43®çgK©¸ÏksÚÈM^žû­kCŒ=Ç[ö<’ËÍ^éÉéêÝçwäë»*Àý5˜Ûd ºq5, †ÂajÓ5¹0.[D«½ä·ËÙ=Sä4u¡k‘÷b§9JM.ìW½Çóüô§×©Qˆý®°ññ¡•zúqÅÜl;"E¹ßñ{ß»N|>SåDzÏΫl9›jòM{ñpÀRñõ[ø$³,çìè±%ÁrÄ#׸ïë>©É˜{0š±•Güۨxë_þò:ûžÍ{vLÐï8+ªñ·:§Ø;Ìþw×SÜ2Ú_öZÎ'rˆ\d‚ê~äÞo6‡­Í Ð)$èür‘ØY?¼É¶k0½Y‰5q³:g–¬W±ÈñÂaÁ°`X0,dßqg¥,DŸéßX€ì;sþ §ÑÔ·dö7#Üõ¾æyÎÇœæžç+Ã*²¢—òøY‡ØãñÅujŒ±›§Íî^u·Ø³¬^9‡Ê6pË€«Q¼v3Ëyç{Å:!3BšM¦|ˆcŸ˜ƽOY+£Áˆü}Ö<ÉÜKŽtmxÌCæOî‘ÏŸüä:]î­ÆÃ<¯RêæQÃi+ê †ÂaÁ°`Xàj\fûÖŒû§cX«Hð\Ð|棲ÏÔå­4ìPå¥HÔïøšý`a˜½{ÍûòÕ 4“™pqøÎÏ~üÉiä@£?À£Ây¨]^˜z69žXÀ>Q @­nŸ¹<~¥ȸ##Ø6f_³:1?³Seib;›èˆ>~;+!8¿í©>^_q2ÏšÜ>ÎÖ5þ\Å—ÓªC§µ²ý×cX0, †ÃW㲩˜ÜG+eݳ¬)Ñè`4µ {o‹ó½6Y?°'nD呬Õa²Óù"sD%Ç‹²5Ó1¯Ö&ã;®Æ¨‘û«황hê!6žM—I¤LmaÕÍPµ ü–#Tïφëp9›Ün|—_üâ:9¦Â©%kÍ—¾OŽ»h0EÛ„9É>Î3ß½YS5ÃÍ;­oÕTþʽܬ0ûÕ×°`X0, † r†Åi\bŽ˜rßtm…J%×X£òž§»È¾ú¼{w¶¨ÜªõíØ6¶?ÊB0‚ú;n69ϯ³ºà=Ø*‚ñ8eêrì±²=¾ôÞFnsUPÔ˜jÕ f C>ù¿èeνB‹õQª@’qµÓ£’ãúktêšÃÆÂ¨"MVºËœv_‡´ÉÚStÐxãŒM ÖüÖ™1SÍêaÁ°`X0, šlõ•ôQާcƒ¯Ãõ4óŒÎÕŸ_p®ŸY2ÞÛ¢ßÝ׌1Í›SÞ Gíº¬œfnöõP¸ú$`œ¿›cíT Ï‹¬9œí¤â&+æå>÷ T5¦^NsÛñ?à1ª¹ê+®5†½Ìl­Ë\sð&û¬A‡Œ_.P[Ußm‹¬Æ<’vœ[sö« g+8VUÜ]ÌLãSv-¬ë¥\S¸Yù †ÂaÁ°`XÐÄ”öy(š‘¤mÞ{8Rαª9à²EšXʼähF½¯ŽyÖî'üU`\këLQ­ï¬·#šˆbý&Ö¦æÏ9ZvµWnÐÜi8d6 ç-éüvÌí(G¤õ7ùäÈR®q…päîiŒt^¡iKâšx¶¬âøUmÃFõºÁëÓÊõül:Ær$jާ=inÝ‚«¡Æ+ú”WMÙÚ7lGšsÙrôŰ`X0, † r¿h­Àœcâl‹jpéÝy'‹±Ý(œîgºìÇÌè3÷5¬ñ}ØL\~sef²ÇŠwÜN'„¯£µf²åÏ9\ü+î/Ep­êÚ9«Õ5#_ÕYcü«¯®X̘ŽöGÄž}½×eO±zÿñ9®Œ^Jž4¦Îìå±ûò8vàI´å¦”sâÜXR=s½>ÔæŒ“ s*³¯½u£2‘g1[Ím4󛣯åä¢ÜlX0, †ÃÅ‚>s9×.ÕÞPµˆ{æ§ùo¯Û ¹El1´5œ­v™SÌ949þN M™g+œ^úvYÂÅà¹x`VWá•I›9ØøïÜ©þwØ[¶ÉPØfûÌ:ohO`VwÕ9È'£![3üý·{à…´ïr6eÖIξx<óHŒ_Ù×éú…m ëŽw£­Áñ\Sé´.’W9ê²ñ&óÑzÊ ¡…¹e2+{ŠGM”EÎpѰ`X0, †ªô•3¼4'Ûê^@ÛYµy37ÕØù\½¢É‡r#„£³G›ŸD+zdý½¦Fö7q¤9‡È¡ ·’cNk;}6U{Σ‹ù7f€ïÈÂCä§ê¨"7gÛi”¦Æ”jTØ `Í~t†yVŸfd¾èÈQ ð†»ë}ÇÁõpth‡,ÙûŸ-XÏeÛ¥ÿå•’fŒºˆŽuìÕìÝÌ6ÏaÁ°`X0,  \‡ü<<ÒúXÍ^×Nsv0kruòÓÊòùùq_æ…ò¬ä¸27úhÉfÿë¬nöVó8T æTÚøÊˆWÔ–q>ë{œ!_¾u­sêZI}Žì‹T:· G3Âúè:{… åfíÍf×XæaÁ°`X0,  Љ¤{vp#¹Ö[ö.5ºÖZ)íYŒñÀûnöåaÔ5¥>Ù{zšÅÓǶ9U>¡EÌ‘¨}ÅùŒ2Œ¹ú^z¯Ì'4»u÷Ï+l”Öú•FS;Òñ Œì݆ç:çÍ5Ê{®ÞŠcïÅ:º¶uºèOb9z¿jƒ›§×o"ò¼Îì«^k-Ö{„ Ÿ «Ë×äž…%ÄzãÇ?¾NŽèèµé†ÂaÁ°`XðíÁŽÛì+’;ŒÐ¿›~ÑëÀs‡·È¿åÝ"ãk‹¹ˆÍ¦½CŠÆ_ÖÄÁ6µóXÓÀeíiýW2×þ8­-Þäý5~ÆOtë­ÍEý/Çgº­[ÿ5_kà;,+Z税YÕL(§¾¨WÓHȇÙàfŽ«ì× ^£!ßhÁ5#ªY‡¸ï;;©1?ûÙu²ö5ÇÕðÓb-ÁßÄx˾ãaÁ°`X0, Ø·•=w9KH™ÆŠf«ÛÌPÕ‹æŒ!ÎrÙÙM5Ï'1i=C’+ܹ6Ä.’=q¼7lìg_y§™S},Á½Ú‚O~ëÖn¬6ÕO\¿ð•aÏ›ñ_áû@ Ìnw/fAÕb7êm‘ëò"ûQÔD“Þ«õ/¯k®7Úœ.úǃ>c73Þ©WsÜ0Z°¢p±Öœ]8, †Âacî¢Ñ¡9ÂÊíÅ\TØi勬*à²òaqwì‰Üéwš9,ÕF'Ê]ÇÅdfÎ#ãûÊS1‡GYeº×ñè9Æò4V¥ñk+—âúš•·³•ss$×6âïcnb$;}§¨üUÃÌ41– +¢ou•O¡yþf½—•¢›5^fD]´­® Tÿ“-*Ưñðý÷Þ»N͸dî‘c¤9òvX0, †ÃÅÜ%çì4Êx~d÷ó$Û–ž‹pcL}ÖÎÇê®Ù(K¸ÌšÓj€Ùr6zk§­ª ßË1|‰çŽ&K(Û^fØòúçÿü³ÿëŸOÕOÓÑÎYx:ÇÝSa7ˆùÎúnf)º59Œ¼ÌžåS?~“z/¸Ç”&Ò sÔÙî<ÂÜ×<³0r8¾ÅÕcâÕÝOzÊÂÒ¢9~F5R¸ê.ÛüaÁ°`X0, Íê<¿´M¸ÞØÞÓÄ¡—{á/ÿò:ÑKÙç±…çû6Yf§þ;25¿5ú´Ù³ßÛ}gïjS3#KžA§žè{9A9ª–=t£Ù£×ëþ±*]®Åóþû׉=><€}êìŒó€7úZ¹ÕÕ¦Éý›#o³í½·ȱÜ9ðtMÕðƼjr#ë¹gàÑÅ ÿÍWc{ •?Œþ¯Ëû †ÂaÁ°€± ç[Ö€P‘êJåöwcÌq½7§· §áö¼.¯áLx„4(¦9w§±vÊ6¸'gõ6ØL½ã«ŽSM ×û7¹g½\¿è®Ü=›ªê©Å†oßD|àçŸ_'Z›×<r¼?«Õ~©Ó»8u¸¦úù›„«áôz2§|¯Ó-Éq¹ÎŽË$m¢aym£|sMÂaÁ°`X0,0dÛ•gA³C?Í^ÏwÉ^ΤpQšîyØ7Ç5>N«u4ŒAFÏÞž«%Ñ1óÄËæ¢+5r¸mÞñže8Í;k¤×¦ë™^q]K|ŽÚ—`\Á q$†VÌá¾È¸àVwªóÌ£¨YÉ4c&GJ4xÝðÕz/®4šãoÿ²ã£NGl8jÙOË–UDtl0Ó8, †ÂaA®eãž“u·xL²òƒîs5‡~×™ë8äÊã\ç >Gö‡Ö×s¸¦yd§šl÷"]›ê½2@3bŒèýz÷ì¯!–}Ù÷âNûœG§ÍØ+§åˆßœñ×<^õü~rZiå¹"JsM½ –!WÎ;ø†‰E´°¶?þ &Ð^w±jŽCÆq½_¶nX0, †ÃÆ‚¦B"Çž!ƒ†}OxG¾ŽÖ×kòŒÜýrž¿Î2sêÞPãµxÏžçu?û8e¢NùЦ.v37OuöNY#W÷ç#ÔG4½ãt†ï±FÍ7/šk˜æQ®àžªsæxïÕ6mÖ!}L²kÉìÿÍ\M×üT¼Î̭ǾÝÜûnÊl¯Ø5'wX0, †Ãç;Îù¨OÝÔFl¬ežMޙ靓÷zÿ\ß<Çd:­­ÞÃÕkq7žß<Ÿhme›ÙÄ÷žr€ý¯zè«2åød}6õ«ª-mƃZ˜¿óßy.4ãá”UkæÑ¶Ð¡€[Åe+zºsL{«]ÔŠ»šòíMv'ÿ—«w±•Óq‹ë †ÂaÁ°`X µl´6ŸfI#«̻hüOÔ{z¬òÞM¿ÉÞaÖèf^ˆ{ÐYoíßSýälÿO«ê§5Orê%<­Vßsb÷lË©Gþ kÔTnjÐ3Û™¦Ú£æªõ>íµ'lmÓNi$ó‡n•^¡W'~Ž;Ùw–íÕ½»?ÉkzÐy]$¡®‚z&¤É ËÑŒ}öY3*ž[Ý{™†§üáUó>²7¿©òºÍš“=³ª+â8¢¬˜lÇ´«Ú >Ñß2‡¬+s|¢¾ãaÁ°`X0, ¥5Õsæ=NÞâÊÌ`h^Ï;½—Æ 6£¨É¸ovµ\9X õãôû=—Õx•¿zëÃå”5j]}/œÚí{ÊʵÈû·sÖžWD9ã2×y•æFÓb÷ª7æ1œÔÓ¹Üðu¹¾§o}Ú&8³›Õ2Ùó ›-?þV›ÏOΖßõÍ7×ér͆ÂaÁ°`XðmÆ‚<Ç]Lš‹RË:<²~°@½Ò§ún¿Ö/ŠÖûÍo®Q©}íÈ^k—{3Ý^…÷¼·Y)7ïÖÛòľ5µÈûhU>0ƒØÇ×:=Ö–qž>þŽ«Àx¯Šè“:§Më56ÐiÎäñÓ¼¯«_É÷U]ýfnöϬœ[oW}žl`a0öX9‡Çl¬ÛXn¼;bþac‡ÂaÁ°`X0,pXÐ(!°eÎn½Æßdï°Û×à^œöd¯zZÇú‚íÞï;z¯žO>úè:Ñw¬mõvÇ©Rîi„ç©ÖYþUFùÞ£Ýè–äÚ‘î·™T©ñ„ö Rï£?Íèìíóéȹ‡V®Å¸¶ çÖÁr*Rä>ÊÿU›¯–O~e{8RÅÙIœˆÆÁ›æX<Çà †ÂaÁ°`X šÕÚÚšk£ãDÛ¡ß[¹Q¤þh\mò×ò®Ïîíò7å·œ£íÆqeÏcÛ¨÷êÕÃ/ÿ©ðžrò½õ@c©ú6q3È)'8]ô~ä<÷,ßãè-¸^«¤¯¬š+û|üñub5õóŸ_g»ëf®{B^æ:ÙƒŒ7èÁÚ ú¾š3˜u0†ÂaÁ°`X0,ИRe3T¥*×àv–ÓíV<§˜­ÚY=×Ñxsla~G§[u™ù­‰H¼Ç5mœ®{¶ Ö6=eØz\n"cOÙ$XKÕä9ø³Ÿ]çO~rï½w`cXAZ½ù÷T9þö\•î[‡8RðÃÝ'Nƒ]Gû°`X0, †®ÆeÓû®r¢Ë¤fdá‹û­Ö”QëêllÞ5BïÍÂq_÷ªó¨¶0û†~¿¸miã Ì|דúì.bó9jdûÜ\ÇÍǾҥ‹Ux®…ø)îe`5Êçnnºˆn½>ìÿ¿ü—×ɱ+N[¾?sŒDfŠ4÷VcMóÛq;4÷Õy1, †ÂaÆ”6»<Þ—é{i•pΘæÿºèJ®J+ŠOÐk ÑìÙ›{3G8íÔ«{êGë‘úµö¿Ï¤Ë¶®¹KÃï55@ó]šÈ&¾º©b“ùÇ‘žjÓõ>ô{ÜN³rœ˜í‚\®F¤Ú/®U¿üò:u «‚l¬_þò:amɾµs¯±âœF ðçÎJ{Š=ì|ßaÁ°`X0, ”#â,{Õ‘ãv`[ÝGú©•Б¯ÆÝxΑ®Í½íãBó›öÞOngö=5ÁYêo+xÊ 5LNS5¾ç4îå@¹È^ÈFw¥É<êÇOÆmg§ªýõbîEôxä²ÍïÇ$k54k­¼ÞÐo²:Dn%|L¯ÎÖ£†š4ÿ qÈå¢qtTëØ †ÂaÁ°€±< çA³ýWYçÿ=ÝQº¶r#¿×I{î÷if¨û&³[ø>WÖ{i6ºÛMëñóùç×ùû:Nù‡ÓîO<þ¹ïrÀŒ8.{ ªÓrÏë ͬlê×ß³ç}4ÅiLÅ«VO¢aOã”ånTõW™Áfo5ÇU ÃwPçëï“ñLì ®‰ª—­k7, †ÂackGãÊüÛFQ­ÙEf¯±ÛãœîO]Õ›&Bï‰  ¬­§Ö>û]ô Ó?õϾoÐðBomNm`ïqÆáê1)Ù£Õ/™Ç­«sO/âɯ²…ÌQ¯gù-F¯»&«=hµz}fõíªMsk6f“€ |pZ# ׇnÿŠßBµìTYÝù y­2, †ÂacÓSrvUÇdíÉíïX‚ìUìëbô>èæ›÷* r}OgDzwÌ)„ðÈÔ|™Þî5ö6sV÷, †Âac?‰ó gËàZØ1<kx¾8ê½JÙ½"ÙiUÁSv¥¯ÿâžýÅ\ûU1x§\»—ó–61Šo¡š­‡«6ÞXü uRxÖgž“樓„ÃýSµ´S?lÃãõìs1º†eåo~óÍu"nó”µÓêö54òSuN8ª?¯‡Á5áûŒ,y|f½aÁ°`X0, œïØíR›ñÓh¾eŒÈYi÷<_}5ÉÌÏÜ‹ìköUçÛÖ×p|nëv}ʹ<9þ³Q~йðÖìßéÌ:eêNµÐ›q•cH2GÔg¶ººZŠ’¬-“Y&Øv(Éhì+sNǦ鮫Å× †ÂaÁ°@5(xÿ‚Oø·n$kt%3ØÑ8_¾ÿÕWש•܌Ѓ÷MØ›#;>T²p~½œ¯ÑØ~f¼Eã›î½Æ ‹uÊPÝã^z;Üãò)'púüø9>°Ïy¥ÑG#4k’Ó+¨ýd­žw\UêyîžÞý´^ÏìÈóë^ìô=¤ëc œo:#¾ct¹*®Ú¶0ÙJh̳‹Â9, †ÂaÖ¸dO„æD»«¹ÝÛXÕtÅ瘛¬ãª±UÍΑ#î~ðƒëüÑ®à³Ï®Ói4a~q…7†sî{õ;¼È£ÝišåzÏæ5LW³‹?µ§óÑÅ(º±ª£ºa„NÙŒÞ?Þ°ˆXÕäQ‘Û¡i"1N½ÀOP5ÏJ­Þø„olÖ]M=&Ç9ÿ»êœëz›½ÌnÎr¼4.2K?, †ÂaÖ¸ä}¨Ž(Õ”pÕñ´°ÿ¹_݆}î~møóŸ_'烳R´ÓeRŒpLTöFåX;Ô˜`?³R9‡.ky5c8£˜Ã]lÔ•{¾«™õ0rœEÒˆP·JijV6žåžµ;­…ªŠ½’[¥|¡Üʤ‰.x^ègûªµ§×l˜@f#1÷{ûærÕòóõaQ1Âÿ꯮ÊØ.ö`X0, †ÃåˆØÂÃëÊÜ‘²®¾k4©êuæ+´Ê[cg>ùä:ƒð7,°æ†÷јÏ ´\ÇÄaó`ìaoæE_å¼QÿhæuoÓ²õέ×(¶é{1è•9nË£+çžjb{ çl4ãìIÜõ©:\3Z6òI ¿6~¸±ÿ§jœ:ùÌ\VÃVåè\F^þùŸ_§ÖZ †ÂaÁ°@± ¹¯îY˜MÒ¾àÊï._;·gß§Œ_x*ö¸„=És6ï²]Ý }/æÁîy!{¯_ŸØ\á‰G¯®lbäúý{Žjp*{Ôëû®QósU•h˜–&Sòy´ðóº3§Q ÷ðîôÈ«²£ù„EÒú•º>QÞÙÛf«J†ÌسÆ5FÚ°`X0, †Ê©š´Ó;¿Á9%oliæ@šÊÚ\?Âí¦³õÎuv˜÷P¯«râüÑÎv5^¿{hrÏžç™è|ÓyÏëÚ¹Á©†©ÐÓõÎi,q-½'×=9ÐJ# ›‘Ðcî;Ê1>Ïpì#oû¨{µ™5oµí¹&Q_ ´ùœó…UíJœ³6, †ÂaÆ”º¶ÊuR\åm%<k+¹|ŸÆ/“£5KN£°ÀÛ4y"ºÓèÄÓ¹ÙØáÆû–ë`æº!ϟ픃:ÅÙ–º–aÎÐdìšóºâÔêx>õ‡ò}úéuBS…qãïå6ž²4§õ‰N3ìšqÒDŠ6^àÞΟrkl+˜åSÝrµ*. kßéºú·¿½N|YfMÝÌaÁ°`X0,  š˜Ïl‹”÷Ð ‰ªÞ=§°ÄUÿ\îFÃäHHÅÅ>æ…xö:?io]OS»¾ÊOÃÂõÌuîð×µ G/èN™ÙΞ+;|hø]cà©0¯ùtyÙR9/y3òŸdx5#ÖEJ?Éózmݜ掱Ì}ªµækÙD–æ8UºvّÂaÁ°`X0,41¥÷bÝÞYŸŠpø/ì*ç¸ÝÛ?:åþuF =±çúå/¯O~Ã鸬Ìöœú ›™Ûçìë»dûÓØLW$kÿöþGm=0-PGwg}lᩇ´©œò¤O#NOÛ9¿×)Ž÷œ¡' flÃõk¶ùPD×XPW+³‰Án¢/4ªGŸÍõõ°`X0, †9¦´±lY•«a¸M¸’û½ /§Ê`M+÷&g̹ü‘SŽ%@·+ìíù©OöÞÎú4Ó*ÝYëNœ¯€‘Ïl¡få°GíIcUúî-v_ßÄ]­W¼7ê^«Üd˜¾GtZ3¨çš ¦úNùP9gìkn¬™C\‡£I9¾Ô‡aÁ°`X0, ”#r÷ÒÞt™S§%~~ø‚U»ÉU‚ã]OVEË=ëôù;œ¿Öä¹1soVæìõµO#™Ëyp½ÍlFÈ©pùƒªá €÷X 'H‘Gõ©÷çBïµï£%®ÉÕa¿‡ ÷b!Nï)½4H‡:™s ¼»²Î>µZߢê—n\ †ÂaÁ°`X ѽQÑÜ«ñdi|¦¶«³ÓXÚ}òæ §¸Üc}Ïý>YW4q§œ¶ë­AÙ[?ÍTÍü°þ­x9Ë5‹s¦À°`X0, † šLÿÆo Ë©•šÕë(,®õÀ*ÙÒì Ogn3®PsÜ1üy®hÓm~¶\¯¤ï—F[à^ j_eãTOÛñ~9Óíïþî:yh”·mc›ºçýúDc‰ÝìnªÝëý'žß{+^/â·“ÇpæOµÖݲן`¥ëØëëbòõ^Û® -Gã¸w †ÂaÁ°ÀùŽùà:•½³‰âÌp/ÈçÂ~s•Ú¸%]ŽF§}‘uÛ8â OÈu¥ùóÞÛëê˜7µ³O½iªâFãéÌz¨4{ðñy<°ò!8=Ö©øÍo®S¯À;tçYeîÉ:ÄE“j$s32{®¦™­§ŒbÏÆÜ[å§½W¡é´ZVÏû¡¿>üð:¿øâ:1ÿæo®“Uãpb­{ªP»ÀC­‘Ê¥ãof ul †ÂaÁ°`XsͲÖE@±…oFé¯~uxÎ>¸NÌbT“ÇNoʹ]®vy39ÇÇY«6áy¸Z¢îÔ=+áì³Ñ¯÷=Û=t¸W]Ñ¢&6ÒéW°×,[ƒ^·íTÁ¸ŸM÷ж©H›­â“XʾîÃ&‡îIDè)V:/-6-,Û||e¬s-€œ£§ªžl‹ÔíÆ¹jV †ÂaÁ°`XÀÕ=­T®­œ=M¼OgާýÅ/®5×~ö³ëÄ3pÞ4_!×ÖÉ^˜†‘p‡î¹¸åY=Ãù3~5uóóg¥ël+úxžH¯ â,m£pâz#µ`Ü÷Ùïö$¡ñº:¨™M½õç+WÕ²¢yÒGzô–ÿ^ÄuÃéXU®˜?g +÷*– ×d+ÄjÕ_êâF†ÂaÁ°`X0,P,pÙ^¼×vžG™`{rÀ^›7Š^;÷Éó´B÷=o¬V½Ç€iÍ—©ç z_§Ð¥¨Ä÷åªîý×× ‹|«o¾¹N.æ]0¾Ï£]õ s-ò†%ȈœÇCaÛT;Â{}ýõujÁž4j0™…hòÑž«Iœ²¦÷8«çüÛ=®IW}}Ä,_³Ã¬ÜuÎÿÍÞóaÁ°`X0, Ôwì”è4‹ÙÙw/õŠžZï>NõÔ†ŸúžÄà=©J“ç²~Ϊ}ÿítt2ž{¶ÛøÕG]'žð;ß¹NT™AÌ3œ«¨l³vn65›•‰kÿ\‘¼ßã;cà£ÖWmžÖÅ`gæ³;ûÏÞ¢žjã?a®N¡¦¶Q£kÑd®)s˜×*îÙòøG4µ[{¸8¢aÁ°`X0,|›± ׿y'¢Õɳõëóë³çåÞç¹îü“\øþÇEh¾XƒìÉÊ{p½ZÊ|X'pœ‡Øx÷ð}\6×AÍÐ?¾Îï~÷:aýp/µüZ¹O-$çžZ˜{üF¯r¦Ì*ÿÝG ^‘+*ºJLŒªî8Ö±‘è)ÄuôÅOÖZÙ®¾ŠÉ¹W½(Ï#އé+Ô«ZE&N;EgGŽ:hê †ÂaÁ°àÛ†Ù‡åÍ­à¶‚Ï ³Òéñº=ZŽSí3Ð{OnÞ;ß³'ý'ygÊëøQM'5tp ×ôsŒ.®‘ÑG0r!~‹¿aÍ =¦£oÁqήªŽÆË¹HÑf¾ß³KMf™æÄ5*뺲⓫,1³„+£ÍѶÀܦf"P³=ÒxB›Ì²{q­Ot³ïé`4ÑÎú®…TÕD]—:œ†ûí™ùaÁ°`X0, 24uõʘÅ̸}н½ö½]|3zOu¡ïV€‹ã}hÃE¸Ê‰Í×ËnÞKï‚+€y€ÞøØØ1¨l1FðCWš½¥o­èŸÖÍ&¯±oì=Wv+k)ëuxï¯ùthaÌA´3WcÇwÞÿ:øø>úˆ±žýøÏ™Ï{‘!™™éUJ{rÊMåy×Ô±Êõ°\œ„S.K×Û G4, †Âo'¸=¸³'ú9Ææxž÷òÁïyŠ›1ód¯ú.=°ÓobqOÙ'7/t—š½üê׆ç'°öX•?`j²ž¹ë;Í|¼WÕ½×=Èmë²)Á—2ß…÷e.‹ßÚ± Z_U{yB NôFëàsÌV攲ŽGƒ§êÐÙ®f¶GGì½uZÏ_eF=['­7ÿ×ezÞ«(4, †ÂaƔꉫQj°ùú$íc¼ßïÕÉr›çÆFË¢±á½JØ“#ë$ôJZ“åÞÓ6YH½-Åu0N0*PÝã½÷®Xð“Ÿ\',{«ù:šëäržó"Ý{ie™Óv`…sô”‹¦àªˆ8ùÝå TeŸ£Ó¾ÚbmÆ^fØ|||áJ@Ìe¹XŽÓxqz/6Ãõr£uß ‰¶v^·d;ær$9àµY«Ž# †ÂaÁ° c ï|vŒºš³ntê9½‡A§~®SFÈy›¬·f$4•¾›¹Ó³vz~öÙuÂò þê¯~w2§»Çš 7Õ¨yç±í”%Ný¤ÙÿˆYƒyÁìP_•3ë‡?¼N|¢#êgÃ}YÓsXŒ>bŒÐL¥S^ôž7ù­µéòåÚ¦9æÜ͸œqÖÔ?â+;E Æâ †ÂaÁ°`XÐsDõp>®› {aiYW¹©;Ùøtž(HôÕ3ï±Oýut´ 1¯™sjrž^oK¹—³ÍT+í¼ØŽ‹Ð¨Ñ\; –£7›¸»¦"’ŽF´ß‘g¨ÎY¾GÏfÝf­–È:Þn„à›`~4++›8^N³öî­—VöYiOb8ïÅ—öœ3°lÌçp›³Z»c)så£ÓºWªÙâ8ÿaÁ°`X0, 2GäâåôoÖV~ƒóŒx_¬ž¸f§:{4y•'Ë)AÝÓßëkÞå¼Ñ”‡Éx‘÷¼ï›³¢T1[iƒŒƒ¬wÝø»Õ:1Þñ¸6¯4>ÑA9RFp¾$Æ5öç¸SíMÖ¬S•?Å}U&|’uSzú¾&Ñ=®)ßKsl¹®e¶ð®Uy$£°ê´+ÙGÔðø †ÂaÁ° kP4õÔþ;¦cã“G²î£û}™³<§ÜËkáÔƒ©ªbúœj—Ü|Á˜ÌµD];äý{“ûïÆ†ë»?¼Î¦Jˆ«š¤0UùWtÞ:};Îáâvã¸M¶ÀNa€Õ!àgwõM2Û–5 ”ày‡\3^¿ñ³=÷?Ê~¡¡ñœNáá#Ü Ö»Óæ+` ÀOÈëËJïM<<ßqX0, †Â\˦im­Ú̈À£Žcê\–}f¥N=žý“;¤ÓÏ/ÒÝ7ïdÝojµç§mª¢(FÌæ8̆ñk¬ÑH髎6L—Žv½¾ƒyÍoÇþ;¡U¼è¹»&¾šŸ_Ÿk‰fºY¦ºg§1™é}»Zö§³[{ŠŸÔ°{ºNv㣹„ü<|ýžéísý†ÂaÁ°`X0,ȹfM• m ì‘5¿¹ð®"á©Ô½·¬6|/~µáLšìÜòZù‚…\¡F9°aÒœæ@ö}k7V·‘s8ØÄ?ëhÉø•Ù¶á°êʱ¥U»ÊŠ×p¢úÌ\§ãQ³N`®ªO®¶¥iSEˆfNê@6¹]§cï4?Žç&ψSÕ­|š+ã4õîWÎ_0, †ÂaA¯ÉæF¯*ÑásŒ=®‹ñ|wš±’ù– NõÙšwÔÃÜÚì‘W [ým®}ÓxÁG‘#Q›êE9£Ÿ¯©ñº®×ÓÒèKë~ܱyî¶ÌŽÂêâsÖ‚à¹~À1HŒ®ŽOÃáy8ÆOr-Ðë{÷z€§±ý¯úºW§HÔèK÷ñ±™3ÑЃ÷Ô8ul †ÂaÁ°`Xà|Ç.ëÇñl—\¾[0á™oÉvþIÌ~¼õÑ­}¶‹³]ÙOçü݈ „ 4Ït7Zx\}ÿûש̃"KæÇòçù•ÙÈþÇ~àNÅ—+q} nOŒhP€5å\9W9=«C —q5‡à¼pÚ’¯Š=Õ„é˜StÝñ¤Æî©"MÃMå¸PŽØçÖ‚¨’yƒŒÃ‚aÁ°`X0,8ßq³»ÁÓbD) ‘#ó±‰x왢Ñrã¦èËÜ59F-ÏÏÌ \;>£ sÇsÖXÿüM$g~’¦ª¸ÞWž¯;îdÀÁòÃz#¾µ/¹â¤F'ò½8— ³käåÖVU=Ü1×L<]ke¶0¯…îÕÃí1å5¿ÕoZÒ±—§ëU^‡3ßÏÇaÁ°`X0,  4{]{ù^…8¶TÿP¾b4Áç_}uœsÍ‘{M´áiUÇ{µ3ú_5µQTKÁÅ1²GÒUÊëã3O³û›z§u ïÅø=`|-SqºNÈŸ7þÖÆ/ jžDõç™yÐÙ§÷â,*W«]Ù07nÝsUÌ™4­#ŠÕ2°:Gãjk]!ô1á¬DÇwt+m^?¸ˆnŽÛÑÈsþ{X0, †ÂÌ5™Y½o–ÿ“O~wbW˱vZ}OÕí²Më}%Ïëè5s¿Q¦r{L7;ÜüjîrÊä|–†ë뫊8[t/©·ðM$äó»4èœ1«Ï.sð^ —ë~åê³Ã*æÊ³y~qtŠ‹õ=U¶T6Ïé]è“ôŒ.Ú +[üV=¿îîNÛŸU••ʶ…Q›GŰ`X0, †Œ§ÚÅN×µ<ïh\5gqʵђ€*3<ñÞžæ¤7\G棸ú‰*ãíp:e—yÄŒ“SQv1«¯bÏznä ¦œöà=Ûèü¡÷üé.ƒÏÙ®æÔÞâf'š±êÔÿò£®“í¯îø ˆ°e»çb§³F£=Ò×–rïˆU+üõ.™m|µDs)fup/¬œûJXîyò< †ÂaÁ° ׸Ìu gÓíFµn {£x´ó~‡«NdÎåéyÞ7×èE7ž/×k<Î1ŠtW®±EÆí¯±jŠ˜ÍÛåh7ÇBôQ‚ ÿsj‹ú9ò*&°g¢²ª^Ã\5QµOÔšU“Ö$ÕY©U«Ø¿ =g0'¡Wf;ÀZ7z_׿.ŽZuäzž¬5Y©ù›š¥«Ö ¿Å÷¹6ÓóÑèÆÃ°`X0, †ªAÑ[¿Óè;¼Þ ³C›@¡#D9(`G®í¬PÖ»h|@Ù×y…h<³N‘@ù"‡÷T¶ôÊÍéùŸ¾âOÏ·ôßìcM¯k©èt¤{o²~Âñاu˜3tºŽ¿rÞLgÙøW¼nQˬ^`ý/ký9¥ñÌÆ8¼Ð÷Íx§«>qªë7¾r“!˜¿©­äÐP×W8‡ÂaÁ°`X0,p¹fy5jNÚb·PÐÂŽ ¹Ü¿°o¼?r{ºÞÛØÔay’ÏÝ×ywqP3н³î»"äê0nT«"V¿Kuíœu!úXÐ̺4‘§~Þ¦²ä=*¬á+š¾>37øž+¶ÓÈž;ýU'yšÅvç9eÉ4f’c,óˆUådíqg8îT=¤ý›êüÅ•Áúb¼ÝÕ7Òë¸ÌAF®¹Ã™eøœ×K̨hKºèS÷ x#ýœµ \4;ÇÏ«Ýñf™wÚý,p殖Ͱ`X0, †}eƼ‹Ìü^®ÔÀ%Œ+§5Ç÷mj»ßc+’¹¦{ÙýÍHÐ}¨ó#sKòhÌñ½}ÎþЬK|Oo¡·½§œØk3ÚòÓò(⪗ ×ê¼ÿ89ÆÀYÇï*6ë°–ƒ¾Ü÷¾wl{õЬ1°Æ\;†ë¼(Ó¢UrÔÚ4ú´-N`AVÉãë|ðÁuºq’£ú±š#ç›Õ”㈆ÂaÁ°`X0,8w•ÈÚb?ûÙu¢¯Æü25šù•}pOò‰š}tå¾vd?6´Žæ¿è»ô9PùÉ3K–±£·ºýx;Å…{8åÆ[3Tƒ1?¿2¬ëȈŸm©fˆÖgdß(ëý«_]'pÇÇ_'j|“Tò¼cß+ëÕä˜jåâÎS{q³ZIGÅQšª2Ñ0ÉÍ,ëã^ò ¶÷ †ÂaÁ°àÛŒ÷²~N5 Ø’óð¯ÿú:yÏ›œÐSÊ&eëÔ|aØ[ªSŸx?–´xÃùdoï=/ê ºÓ>j¢Lûç|m¥KVVá³Çý¦ÎÿÍ>Ü{¶(³+¬‡UÜ{ï]'þæqÈžk<b¡¿þú:³º;Ç“è:G9.Ju–Gcb;Ó«,U»Ç¸öú§‘¢§¬æ°`X0, †MLéiüð:Áå"w‰ù+›¬©È£Z£O×-YÇ^ŸA«á8­?m:7¹mµ]{ö‘Ê+*3æÞ:ÏÓaÁ°`X0,  t¾ç¼Œ¾>Èéá4Òì¿òwNíÆ½_¹OX+€ûBsØy ß³ü jd­ïÓk¾JîITgÏö4ÜÚ“:’9²÷9ߥkµ$ÍsºšJÌqi]*è3»6dF×Ù+EL§»Îßçúòyì³4Ìå̺‘Éu<Õò+¿ÝTÛtˆ–óa³×ÏÇaÁ°`X0, T³úÞØîã3?‹Žö=¹ØËæyYï |bs½9Ö àL|õ…1“àbØ5†Æç~wzÎ¥4LÈ=±²vŽ è×?ù¾®Zº:¯ù¿§QÍ}g ¿0¬_£ÉŸkN™cM•ÑU¨ŽseM¹øsÖÃt}жE¤(Nî;ü—ÿv¼Ÿ²Üyü8t¯¥-Ùd6½<, †ÂabAf z{«ÞŸ^GZ¯™{í^ Õ©Zïïycµ`ÿ±ËÆnW=ãœÃ¬ûã^õlyoû„•rU?ž×©éÑü4[ížåwoþUBc8UoÄU]ÔYÖh€¨äï°Å7¿øâ:ÙæÞÉ?3#ç±Y×åŠöŸ}vÊ~ã½p"K>qfeµ¿Ô>çµn³tñóÆKÎíucxX0, †ÃW˦ÿ§ûôÆã™«9»¸/÷ 9ýÔ*öø’#*s~MÕÙ`\³—ävÖzÜ-z“ù*üu½ÏãüÄ—Ýׇjj—4|×½[æäóϯ9V¼ÞÈ#Ó½uSgÊ¡C ÞG>4ú“Y5ZY,ÕWµ@æÊ´ºÐs~53ŸÍõ‡ÂaÁ°`X0,ÈX ý¢#³W9hêµ5½Ãuá³ì‰ó4›û¹Ýè˜^ Z³Q˜sÈoÇ#ÿžçñÔ’Ÿ®Þ:ì^l@oÉïɬ—G‘j_€]äj³½ÀyjÖ®Lµ˜åp²½î¿þ[^·pŽgÆn7øIô©r%šž%˳»‰É­4, †Âaæš9_R¯ºvÏB6ž §F•#ë^åóííÀ©R‰O«í(Rè¨Èúù^Y¡¯™~ÏBžf®½vMÒÔ"ÎAéÁý«Þ^÷´j!¹µ•„J¼Övä˜Iö´r¤ëå<Ò\ý~¾¸*ºŒ\xrŽÐv—«¨ñ*+Ú¬r †ÂaÁ°`XàbJKÐì…›Zç6¯ÎD´!všì£Á×Ý«Ù{ºï7µ›w|îƒîUj³½us¡×Î=ÕýÎþ¬·¨5ùZ¦¨güoÏ^²-mV;§ÈYçAc\Õ‚A\¿è÷Ù¢Âfº™Û¬%Ü7¹ú î¢|²‹ˆ8­RÄ÷ÕÚšNÁÃUàj¸Óç\´áÂaÁ°`X0,8,Èu4rmkÝçfëªÊK}Ëô¾È'»­¬¢vzd«ØX¤^×Ù¢{3Žó÷1׸"ù=ÞÛ¾NcO• {,8[hjÄ7ÚÌKpD¨²Œ,èÍXõZµœ}Ó·ƒŠ…«ÓŒåTµýY­®×»vQ}MXÇ)©¦´»Kmû«£aÁ°`X0, r-× 9÷ùÔd^ˆ3;Þb'õ„íé¿ßk)»z‚§¨áðËiÿ6ÖL{‡µžTº¿ç#~^­æ-¼uÙf¿ž³¥ª{à°ÃUfoZØe®5U³²?ô¢]¤zŽ^V†GŸÓyHó;溙9®£ç¥{Kxªßþ<7sX0, †ÃÍ5ËìÛÑ4Ïærakr5çËƢ>á N¿‡æöÝM­Éþ­a[Ôª7£¨aáîi»5ë¦G]‹Ó'?ÕÓ;]]<ÑÏ#ÁÕ…qö’sÇrMy½/+34JõÚû¸—[e$bN;÷ë=:¤{nÕûõÀéšçÞ˜áÿ †ÂaÁ°`X QÿÙ×ÓDµ5í‰^-·w;õÞöl븦'óǰûf“ ØX¤\;¯i+ýí“,¼¾×ÞåÑÌëçùnOư®‘Ø®b69N/÷"?]K­Y™} Ü†ˆöä˜OåsT7#ëQ(6å¤È…7âöäŸ#rÕ1ºü·ÖÙ¹7®ò»<Ï †ÂaÁ°ÀqD} UŸOí´r›œ*Ö>ñ6žöÑs¥ÏƺÁú$±±yŒa= ÏÌŠÓ_}ÎËÜ£y¯iïÆ¹rPNãZǧzuõšne==æE—ÒDSdµv_á¬_Žh}²Òh¸µaÁ°`X0, 4¦ôô¾Ížº×=Ó“&Ç'ׂ|îU¼§DwÚ†Ìðp=J÷×¶l·¦çÌA§z§öO¨µÑŸdÍô;åfݬžÄÜ‹âË#™1½™w1Uõ½gbu d†“•I^”ï¥9nÜjî˜ûþ)^»P{ÒÌnކuZñŠeY%æÉ¨ë}ÇÂaÁ°`X0,4U&Ý|ïUX‘çE¯gÛðTO8¥Óy­g®bÙ×Ôhî«÷ÊJwZ ‘3þð ü׿ýíubærÆ{v>kqôö¤ßÅ?‰~‹ˆSý¦óŸºëC§Z{ßU,9bùÔž+ÏfÆÃE¨ölpæëzmófE¤Ïã²2¹®%ûâÑÚN­Go]{î±×  †ÂaÁ· ò7ÿ`3´öÄ©ÖSãÃÊ^¡WñO˜"=Tû+ï=ùsöæ8ÃS ‚…ጶÿ¬lð¾õçÌÒ“:€O®Ð3“jÙúš)|µÕ ÝSq<­H딟ãä,mS¡¾¯RÔԋɱÓÚ’êõÖèY§ÖÒØ¥'•³îqDÂaÁ°`X0,¸¨NéyÜìãTÙ@{AÛü4Â굪o}`.óNSÛm~Æ8§AÇ×Ñœ5íwäì°‚ñW_]'þ‹z…MŒâkyÏŸªI¼ ëûºE}6¥ãQùøéO¯3[`§úîæ”cœžËÏʬQ^Ñ5Ü`~UÕc+õŒ‹—VÅ9e"·Î>WÃ÷4ö^öbÆ aÁ°`X0,  r˜>’êÔ2k>{Ãfœîmûwi|ÄO8÷}ä ¹8[üýë__'ë~ {ÈùFû6Tda]ŒvÜ#Àq¾M§­ÔgÌ5¾¹^™¼Ÿ‰ÍŒîùÇ¥4k!g£šwá'ÔuZ®Çêìpƒ½6f®5ƒ<2U{ÓçDû°útöÏ6ì·‹ñæû§ü\¿ýÔ^å±7, †Âaóÿ±§{ó×2÷<Œ§¹üÙyZGÛ틘Yˆr"0kÔ(îžFœ20½&¡‹ªýÁ®“£gu•– K~lƒê«ªsFLͲìÇ€Ó“l8ôcƒ¹âUöÆö›íؽ˜óSæ$·a³ÚTlÍ-ì¢ßï)®÷ÖiX0, †Â?%,è½KO؉·ÈV»Çdëꔨûg`½ ŒaœlñrÂ|ßl¯úÜÀžÿilÏP° È×2¢M€›Ÿ~zjÐJÎVó]}k< î’õ"òˆêã42Õ«ê½uÍ£žùÉö?ÇÇf-Ì&WÁ“1ÂiNžzÒ{/<ÎaÁ°`X0, þ”° ÷q?©-rz\%gÕOUO}ßj£A ¦H•ÄN¯üßÝìs™þ=‡€+0 ”õ@ð÷Ç_'Ô9œæYïbUñ_øæDÙ'‡;.rû4f£Ç—ìímÆçï‹¿ÍŠM­^UävßäO¸âç©®¸Ãè<†ÂaÁ°`X0,øÓóŸæ\¼Kò½¨°\kÃÙÆ'<cdfBx”Â>góN{³Q~n¸öë±Å†_˜kÄà¿Ðvc+ÁщàjÔKȾxçågï­Ë7lØ­†íqVÎáHïæ¶Ò_åú˜OfYÃIÞ[ïe->§•}¯NÚü$Ú‘ 9ß­©<û·{îÙ†ÂaÁ°`X0,øSõóÍuÞÓF¸‡/Ç9ï‚sÕ•fîŸf¯4=®Ÿ®yg8µbài]Ëò“¸c“›æú¬×°`X0, †Ú1¥M¶ø=[”mÎéNó”›j¬koÍ~–„Õç˜sÀMê4z‹‘uÊ×õÃùsVävã³Ï´:IÏï±eÖ¿ûëäÚ1ü¾ÀxùUçÜL®äÚÐÕèt,Ü© ý)«sÊ£ö±y”6ê—:ZòÓr䆎œmî¸>µŠ¸æ°`X0, † xÇŠ§â(µ?|,p6™OõÞ»×½6Ñýò½'iÆ¡ÃÎdilfÞÿ:~àžõvÏßsG½÷Þ[·ïÖÈI|~s|_sñTßûTO¯ç O+Tª6BæEB9Ìr¨Ä+ åÄúíÞš[ûìýΊ:S²åobÝ,ëceÕ¶ëêµ'þ;, †ÂaAÃqß=ÏÛz—(wyÜVMÿf+­zeý3÷(½…¢°ÍœIÚG¨æYÓØÿæ]îiw7 lÍ8ÂÖÍG03¨LÚ×—ÌñœOªÀ8/³ó–º*™M– v1ë`<™;¹}š—Ó!lrå²äh–†ÇÖêHú_ÖZç¨W› ǰ`X0, † @q ×ÿýFyÝc‡ò>ËyÜ|yª«õ1“.£§ñ‘¹7ÕQÔ°:Ú¶™ËV½áèÜüí¯æ²¥œß gÿ¹ú>9´)îEº÷. "+×9N¬ÑÙP/§ã¹ u%vÏìØ¶F$ÛöœI×X‡Åù¾}VSTö[UЙÿ?Õ  †ÂaÁ°€û õÁ³¯ç÷‹ “ šu¯Šm;>uUóNk¯ôu|N½“jûÌwñØ?OöšåVrmÂ^Å\·…¿©}î^ø&6ÄdÂÚ7ìM¶|GpSð\ó:-¯ÔŸØÔsW»¡ýå˜d‡A<Ô¿yõ=Õôs‘™yå /ý„ÇeršÏ{>¡ßןÆ'7mâÞs[v£Z«O:ïös..W!ÌãY£ 3ïáðK®gš£(Õò;}B§ºÀ~ö†á¼WÙ§ÿD3=sžW³s±Ù.Ý‹và§å1Ì«‚ÌM †ÂaÁ°`XÐøŽOó}þ|ǧ»¹¬à²3NõÖ^åƒ>­þ$ú×OOX¬ÞsÝ·ª›}ìScëÇLš‹#ÕYÖ¼‹‹èß‘ÿË57ólu>â^ïŽ-¶cÿØ#éêœ×¸×39åZïeÞeÍ·Œtüîì½Õës äÀ>þYŸÙqÂÙ§?, †ÂaÁŸžfµó”zcq@·Í©lݳ´÷*ëåñàâñNŸÐ©+7±s÷|îÏaín\¶{5Öc ©™;§ãP}¯M‹q­L×™)rˆ£–*ë`4º+Ù箜L?f#zj%t½—mu~6U¼T†-«úœê®86/gõY †ÂaÁ°`XðZ,øÃ5};|y‹»ô»È¾š¹Fªq{L¹YàÉhéU¬Ý.¾GUÆl”÷œW×ùOYŽž'ìí0Ÿð'ã°æa s(iàî¸vàªFŽ­Â]ðMÖHç6?U`U@×#}T ž¿ÏtßTdϘ¢ïËYm›|ÀæŽïxX0, †ßN,x®ºö§zähÃW]¿‰jë#Z ¯²å̃ëuBÅ‚½áø't)ŽwÒ(Sõ\ó˜j¬À—IçÚAuz4Ìmž5vø]TÍ&ÏP×k|MeœQ5f,›q˳xX0, †ÃÇ5Q^ºú6pD§uØO¯ÏóB5„³‚A®…‘µ‹1÷]ĬÎÍFÓïž^Ä?`öÌ:ëÑ ­c¢TKAýƒ:ïtîä Aî}eTú9¨¬÷¯>ù—_^'ëÏdï¤~Îê|øüûß¿NèéáÔ±Çu”œ_û”ol6s€yÌ÷J}&`¿Bp#M[á¾Ã‚aÁ°`X0,<ሚªÊJèÐס»wh<ËšΚljçù.~x°˜¡MFÌs/ð½^8eÉšLeÜ>=ç:o>ŸN;§ çÎÚ0;\Àhaîßÿýu:9E Ÿ°‚÷ûï_ç§Ÿ^çx¸Ë=&­ùN£pØó9n&:&§™._¯Yÿd‹äøm¶6ÂaÁ°`X0,¼*¦ô´êÄ/ô™A¯jCõRåŠánÄê.»©ß‘}ܧuس%WŸ]že}ë*€å™›g·‹t½ƒï3c£vÀõuÃÓªŠ¬=,3sAŸ}v_}u@ UbéµñF81zq`Õ'AÌêo~syµóD³1÷iK{¯Eãž­¡Í'êܧª\§6Wñ@[!ÇJÕ rUñ\›¾É6r|NÃDŽCõÛÂ?ËYcˆ…M À2Ã>h­Ìœ‡¨ùeʃávÏàÔ$²umê¹ë5ÖWµò€Ž]T[ÚèÒôNù›ªïÑ{“Î ¬ ¸†ÂaÁ°`X0,h° ÷Ñ|0BGÂ[pPºïÆ<åL´ÆB:ïRÖv;­zï8®çñ.fÏíÍwŒ¥UÝ3KÓÔ(ÌíÓ«ˆä~Ôçi”ô0fаü@ ÃOzø±ÄhÍör}ážG--ì  Ï7ß\',RæˆÜêÔq¤÷,3r ìvù€\¡[ç‘ßø²9ÊX<, †ÂaÁ)<©™¸#èqÌ®º¢ûnÎèW­iݺÚêoÒJÙ·¨–φ(sì±Õ'lüÝÚV="œfÃZ×›™SjªôªÝzeö,7Êu}MØf5ÂŒ3T]ÎÒ:Öë^>cÖ‹p|W^§5Q%8˜×m¢qœb‰»~VkWþ*£Æ°`X0, †}®Y®±ãUìGôáoìã°»wc˜­.Æ „<¢”5bÝæ¬ÐåTÚ0ëùäZóšëô$‡è´…•hôŸ3R4ѤMέÓkj&Ÿ²X½úN(TsõõÏöê}ŽØ©òyöùfœr5†C‡Ì÷æ±”ë®êõ‡ÂaÁ°`X0,pÚtyÿ’w¬ß?ò[pD.DýÔNË×EfW—¤ßwst"Ç»*ºqÝv7VïéßSG¼çytŒY®ÌžõÜÔëÝh4öÙ®ži>uœ8ËÉÿ_ÔxHŸD4ñ-ü_dº9Ë™31OëæÊ°ý¨vÖ£ñ¿kµ¦aÁ°`X0, 2¸ÈìüÛ°¥ì«ÍóŽùÞ™ºLùŸÙĤé¨àgƒírÙp¬°×ÏôÓúAÙJ8;ߨ@¸èÓ†S:µ*M<ªó ßãܲ8·RVÿæñà”Ø69ôlìd¯ÿÀºî¹ß•ÕlìdiœU]DqfÆ4z$¯í‡ÂaÁ°`X0,p¾ã>›)ÛŠìÅØ¡½ãâ9uœ¸¬1Å•ªãœmuήrÇÏ~P9ƒú18½¾›ÑŸºñŸ6V®÷ºæë÷ö<ã2ïܳ Ñ6lž†Éa5%ƒ¦\GµPœNG8ä¨H9ó«Áw"ßí´NÎGDÏBgƒõ³_¾ñ}7kžüÛüù°`X0, †}Ë{{ó†sØÁ-¦Œjš9DÈ>¸&sÜònW¯ü³Ÿ]'Ï,ÞSó\fU±qN½¢Í,k*³4Þºž¡r\ŸC(Õ‚ÖÚ²ÿÔé]£/ N¦ÆêQ:ç÷Wõ¼†yÂò¹wìãTs¼„ê“;V–ۇ㨛±Ý`â©Úv£’ï †ÂaÁ°`Xà8¢œõÜØ4ÍÅÞ‘UWÖ¾fÖˆ¿“wènNé Õz‹¹–>Ï~£žu9ÕEoìvsßf®±Î[SÙÄU-t‘½÷ïie¨Ý滳NúŸ€BÝ™O>¹NÇðäñÐÔ‘áötpšoüøwœÚ³®ÍØœŸ„?wÚÑ=åNïEø †ÂaÁ°`X}ÇM|Úó½ü-n6ñ¬ÁœÕ¹¦Zv¨*ž«Û°ÅÀõsåĬŒÊæx6èì5ÛÆ¬‚˜}ôÙCúÜÎß³ö§ëœæùï¡aöõý;, †ÂaAÃq-¾‹ÛûäÝ™Ž|­ÏÈ‘f¬–ÆùüM ¾‰X¸œ!ÞðEšé¯¿Ê^§´SûÄD%WïæU¶ýíêNž>ç«æo>‹‹x†Œn¬Þ¦úÌ\½Å­(܈R{˜ëÎÜë—'Ü]3BzÏi¶Ox×F•¢“ÉXÙ_ù´Ý5®ÀE dÝøaÁ°`X0, ”#ê{äÉ[8ÅÚ&‡…­:æf¢fZú¹šªå®ÆG¿}­E͸ƒ~G®Ð«m‡>çå¹Gït†ž¢ 3œ©×°^N]a÷¾ý 0Î ?rÿí¿½NXÎ/¿¼ÎaÁ°`X0, œï8{s=¸>ŸK}aMüg¨Áó‹ú)|ö23úôªÂŸÈŸöõâŸÇ ºÊ5|GôþkÓÚô½ÖÄ«üÚ§ú]œ‰ƒÄqú}Ì\í(„¨7ùTK9Ï^çùIüÀ=k¯žñôê5lá)~Þ1g>¿‹¢î…:Ìêc$³æ Xôï~÷:ñ_ °`X0, †Œ§Y\á®Ù¯5£Zý¶lùÕ7Ê¡òNÜùéà=ÌŒSâÊ÷éMo}~Vú‚½‚²Ç»ñê6VÅEœÎÓ&C°~ŽC†=ǬéÇ’â2V#ÍšÄÍ g-›ÏÏìŠF’?×Fv(Ó°1Ï•1úï4U5û(îSlÊU~ô©Üº=ÈZëÌ¥s|ΰ`X0, †Š.‡:ÛsÍ(Ñ7rXwÓ¼ûvu%Ôn«Ž\£rìê¼k¶ǯ6µÔïíõžÌ©F‘à]¯²!÷â'Ÿì뛨`®YÏ£ÂþbüÍ¿:EØæ©N+$êšê¹BÝi¿<©ÿÞG&Ü«‹ô$>$3EýúÇYÕüѶâ8sև㱠.tX0, †ÃÅf-XNŸ3GR5ÊZ¹Æ4û>œwÉÕæhÚßíRš“Æk)Ò9æÜo}ðnQkª’í»g^…)Oø QO_Uéã¹Wút~a €“ĨãŒ3÷^j²‚œ{ª¦:ªÖrjt!´÷Ÿø1Ÿg„åof$íyW77s6Ù[XïCï­ˆ2Âf¬Ô– †ÂaÁ°@±@-†ÛÕêçú¦n‡¢»fî)g3›Üõb»+4×[¨CÜóº>÷ϲN¿)Xp_¬ ŒÖºxø-Ÿ-Ìi~Í©ÿ½÷>¦É)â4Êà GÑ3!¹Fç=¶§ç“ïYQ¿í*96XWn|ýÌ676áÔ—}O»¯‰«ç8ÌS—#<, †ÂabA³Ÿmæo¿ê+ܽÊG–ýAOê-°À§ÚqnŽƒÝ‚ çøâ‹ëd?2ûë1~€ ü NUðnlZÏöœâãiDeóMÇtjG÷úÃÍä¾î|o ,høŠSÌ1ÏÍ37Út.&¤uo±lK 8v@[lX0, †Âì;n¢Îr ÿ ƒÌÜ×ð ;>ªÙÃr†Þ—­WÀ“Ü‹ù|ël©f¿éÚˆÀÙs¿úÕuª:·Fóò¬§™Vý»ô¾æ'lÛ=ÔèQø4‡NmŽ«µú¤z¾î”_r~óþ·}-û^ ®Ÿ5§Nûý^ï8†çÉèm †ÂaÁ°Àéæ—>9g÷»Ò(}õÖ#ûµ;ÄÞ–ß—¦´c¿D€õ"ào®k£OÏ2k€³þ‹8ÌÆº>¯Õ¢ìYÏÌ4z#Ú’Šƒ¯e s äšP÷çNãžsyÝò¼–ý“ï<¯©t/žÁaë)ì<àÙ&dŽhX0, †Â{5)šÝî¿Þ)«Lg\à(Ç&GÆEú½Ëú} ‘Ó½|Ï–½êló¹M€)\YãùUÅŸ¦Årÿ>©EâX;w-ëSUºÌ†õýr¯Åzl¿6èÕØ5‰l+zô=þ0¿Åkù"^j®Ù°`X0, †§~(VåÊíÀ# ŒüÈüÛ~ÇÔdeõ]—×ÖXη;\îÞé®Ö½5ZV]ù±Æv±™õÀ5ŒÇóz%÷vô}õÆST½èx§SÇ{jOtŸW°}m-˜ætõ›ÔSœ­„V,mÆv£ÖèþV•˜\Y _G™%ÌbüwX0, †ÃWã²ií{þ;d:°¶*«^8ûœ+»é;6»?¾—¾…‹ë;ݽvÌg‹Ñû¦ù·ÜòÚþÿôO×Éwåçj8:GîYì×Öý|¢\wª‡vZ/µ÷±6,Ç=î(¯\ËäKc嵯Æ?Þ(rÜS«àÿ"¦ât}˜[õ”ñ»7–2®ÖoX0, †Ãõ»,§MÝì÷sä¹üå—׉ˆ~É(U—ÊŠsNɹ‰{íÑèÜÃDZV ö¼s¥!´?˜®¹x¯ª]Þ·†ááï»üÁSe‰ÓÞ<µù÷*ž“ÓØ†f¥ô$ã}šVåCuTðÉw¾sÚ_ÈÍÄŠ(Çm¾ÖÛëbé{»ª`X0, †Ãåˆú»¸gsŸ»,ª^/Ž­«R‘÷ÔüF°lÌV¹]˜SpoýZ®£½r3›¸=á~ÎäôŒÁ)ËÑ fãêp¿©¨£%³š½"z¯ºÜàÚ[¬g^ÐðTýhÑ–a­fŽ‚€=ùõ¯¯Œ(*œ:¶P•öïež*fle :Žåßr}^œŸ}vøÕ°`X0, †®–Í©'.÷Å©æ[!ö]òŽFmïú›}+°€µš³îkÏ缪F佊çý¾¸AùWyÀO±ï­£L_Ëœ4<Õiö\Ã=YEÜkÏÆV?ѹgK9BÒõ—Ît¶KXâDN%®Àk¡&íɺ%Ç„œ*sæµ+®üÉ'׉w †ÂaÁ° É5{>7ûŠðÈ>;Í wYQ9›ŒG…jV(7•ýàϽcO¬\ö—ÝÛËãà<²wƒ¯µooÑ ÍJæ”íÉ«©¬Ý«¬œZ•üÛ'-ö\W\õó¯˜?Ñ·fýö¯¾ºN¬BùÊÊ 5qž}õùœEÛxÃ3ËípVwX0, †Â^ƒâÞÜÉãYß—{Šë­»‘à|v7ž­t£ñ´|_—™ž½Þoqœî Ÿï[OU»›,›wióOÛN-Ò=¦5=UÆx7ãÍyØOuüz=‡&0Ç8ÿ¯ZŽQq(“cY{V­É•Sæü´ j£÷8, †ÂaÆ”ö9 ÷f"{p²ÖÝMŽíwa¸gQ¹zs¼+TÞétF<·ZÍκ©tÓ Às ¬µ5Ÿ+Q¿Ûvjgzof£“ «—STz»:; â?Õ§šZK-9ó½îšø&*4!_ ^cXZÎ Ë5Iïi0fþ­ÑÜÎ}á-µ„ˆ2Åû †ÂaÁ°`XàbJû˜É&Ö´Ÿ_M¦XÓÊÿ8z‡ñ9¢‰8Õ7ÍÞÃS–æ”8m«STåCã{ÝMÂì÷¼WmüN5lžîÐOۭǾ¾VÑ©2d“÷Fé©ÒàiôuŸ_ÆHªŠ‹ü lØN"‚1ðó¨>Uë±ÕŬžF)·÷ê÷9G½.ñ©ìmuc…2ª¾Ö£m^kéIdÈ“ñªâ,¸+âf *:qýVþ„çÂÀf›û²Æf4žèfµÉЬ¶‘£a‡ÂaÁ°`X0,È‘³„÷<Ë9Oßµûƒ\æ…ëwÅÚ°\ÉÑqD¹^Æ“YÙø›2ƒ‘­YFɾÅîy·_U+ü^mú{]oÁ>GåÆy£<Üð‡}¾Ø“hW­”\fhÙp,:pm[WùQ+úû6–Üñxy-§Q¯zÂ÷õBÝ»°j®3, †ÂaÁ«rÍîY?µHšë¡ØÄwt1¨¯Ò‚x÷Ç“=¸² Ù[ôĆ?Q®{mWòùp\ܽZ„úlîj¼g æžœk’ºXhͻĕÁiðß¿üåuòÊ–A¯“£¯‡Üó=Žäçq}Ú(<À“‹–ávƒ7챪^óó¨^tæö³†cZ+]üïåfâ°`X0, †ZãÒÙÓ™îâtpãM¯ÆóÈÏ?ö㠗­ÔϵÌ9œÆ²öþÔýZ?i}×ÔNj®ÜÔuÒoê\.ÀF©Ê c l,«+°&›»¯Áú˜‡ápaîõØ{öU¯ÏaæR8*tïÑ>ˆGÍš-§¯2—î>wm®u©x„ †ÂaÁ°`X yVžª"÷=ÅWv4·ÿuû£ß"¼J³Ú¡Ûi&û=ÆïžÖÇižK_¿£YEœÖ ìÑÖÍ8m%ÇK¨§^õ›º±YïQu]ð ,ì<,,s`‡‹ÈsÐÙ}B^›5± }žT¯áÖŒü̺Uq¿Úd¤æóÉzFWn„8mOõƒóo‡ÂaÁ°`X0,pXÐûzš™ÛdÇ»™¢>57¿t†ö™VXpZ×2ï›w¿§0ü*}¹> ±¯=úÄ;ŸÇŸÿ˜ë†4F š+ášÈ½rzìøüÓO¯¸ðÿpðâ·¨‡¿QÛåIAãGnìù“„F¹±©–Û¬=îÕ <´aÛÞ{êÝfX0, †ÃÅ‚Þ/“k´½Š-ÉÞ¢Þ÷n¸×â‚ë_—#sªOÕÔs?}Ú{ïøÜn¿ê {+—çþ†ÕY «ë˜‡~6©g¥+(Xè*hNN¨18¥w _óóϯó;ß¹Î/¾¸Îo¾¹ÎÞ2Ÿ²ÊÑkZª®Ž³`.;Ûç{ñ }F'ÆŸøÕ¯~u½†kíaÁ°`X0, \®YVèuþÜ\¯ù ¸:2ª¹ôvöü-С¯KžÛçË/¯ãážwøUG掞(E<‰!|þ *©-ÒLɌݹú¹SHP_­ª.85ÿ8‚¿áeæù…oÂþ€/â»@ŸòÉu‚ƒÊõÙŸp&™íiz6çÍ=aYßN½€žâH€\'g8âÀ5‡ÂaÁ°`X0,hbJó®9ç¡<ÑjSo²Û뽊½y;y­w'óOÞëí4F2FÏѤ9òÐe„iDDÃ|ê*‹’]•L¾¬t®â¤yUjñ‹ëÿÃHÕ>ù»¿»N Boú¸…~Íà°Uía_ ¶_ùœÎÊ×Xƒc}›:˜9 × †ÂaÁ°@9¢&§#[æœ}sÏêÿ¸Ž'ö6[Îì·º÷I£&q¯Âã½·;åmî«~¥ÑG 6š¹Öy£}¡z×| A¦wTa53æšàïV_3¿³‹è¸Çíh[õ•è›õƒó×÷¸ó‘Îós"Øå—Vƒ †ÂaÁ° Ñ¬nÞÑEd¡×Ûþ‡`oßåáöøÙÛþÜšetÆåWU$iv¬¯Šn®“ó¿N¯yšƒéü¼ [•+œfÛ¨VÎÅa†ƒÛÁleþÁ­÷À1v|ôÑu:[Ô(?4‘ê™nÖ-n½šqátÜæ7:SÀtÎ%Ìõ¼• þ{X0, †Ã‡§šr¹Íß <Ù‘½¾8›Ï;zõžæXõ l§Y„¹¶fÏœœ"Ëk=ÚO*6žVVu½ßä¦õó+ÇC:_6Ÿì#ƒÄ1¥Œ\ª˜ÁXÀ~dD“~ï{×éÖ!NEäUªÔýÚ•=§Šª.vÅÝWWYºê{¢Ÿ‰RŽÑ焟ûŽu3W6, †ÂabAï%áhRUœ~ðÇ{p›£Yy Gy¹ †¹N£+ïiÓ=·±o¡ÓážCè™&3ÛÌ8CíÛ]“¨ÝãQÇYf¼–Ó»ÿã?^'t-w†ÈÒ†/U¥n7ƒNõRšh„^Üm7=Ð2ìç=A¸þ×__'çýÁž¸Á§c~X0, †Â ôP]\e<žhPüáûŽ»¤ã_{Ak…d/ð½ÏS?²cKž{“÷½Û{|Â)Ö¨¸¿oVTÓ·h|¿mƒMÎòkl+T8f gðE°Q¨üØ3oýHs\eÃL:ïpn™ÜžM$ªâ‹Søi8"X]·W¤Ë(À¿ †ÂaÁ° × È·¡Vˆ~—Ùaïž›R•àl[¸Â úÖݸҊ}Lé)Êßkó{ªn½M~âƒÎûýæ½ò,ËÖÌÙ—'ˆQÄ^Bµ9Ê®°/ص˜â ì6FãOzø^`Ž]tlpž:bOcNcz¶“ñ–Öñ·zeå{ˤ•qîåÞº­Úã:ò\Pßñ°`X0, †§:rMM™w_kòÝß—µds­C øz_§ñ¢y÷ê"Üòõ³Ïú”7{U]¡&s­a±Mãì=tì_Ÿ›–õr FŽQt~Cm¶ü.?øÁuâïÏ>»N|Sm F»ª^dUêWÕ]½ÇUæ|ODÒ6q­§ -ÚŠ™ó×òÒ¸2ª‘rÞ_n·aÁ°`X0, 24sY#—°—ĨpªVïÆwŒûjnÅ»¹¯Ó"ÖyáæxcN3³–¯gØžgÝóçž¶Foÿó:£L¯Üxr£âl—þÊõ/[~ÌØy¾&û]Œ¢®1AÚôc^›5ïÒŒ«^ý¯yÚ\“HïèüÑÏ£\2úà .zÃÑ5qDÂaÁ°`X0,ø¶aA£%«êµ|wŒ(üï ·ý]bÁïKÑZÀœ­àÑ¥¾¹¬ùðDÅ.óB§¶4ã«tçN½á½]:U0;eÀ]ˆžàùÞ£ ß#½ÒÌÿ0 Ô«ÞñøqH³æÁoûq¥ãáGg¿‘ãÀ{5·ˆ]é U4ÏMÍ5 †ÂaÁ°àtÿÂßÌ~.ioqpÇYñ<B}þùu¾KtÀî›cÿœ‚qcOšÙÑXéSÝݦ1Ïš¦2æ)3öœõj2‰œõpª u«Ou¯Þë»áNñ^ÀÌ>è0@Kç•[®Øî>éWùÄ<…ÅÐȆ'l"8?­;_vƒªÚDY0ê †ÂaÁ°`XàrÍšQÔDˆ9¶ä-F)[~å¯xwŒ¼’·>ð$¨@;rôžDÇs?—{?ï=ËÐçU=Ñ|8e„î)HäXÇg­ƒ¦ÎûóÚîM>Ô»?t}+®q@^å6ì1B¿¯~pçÿÕ±Á(Ƭ¸®âž¬å¸­CüM´$¯c•ÿÁoas®‰ŸmX0, †ÃǪ»÷evÈEޱçèIvGÍa¼qï£g¡ûnfVç¬äþ¿Êß}¯‚̽Ê2Oª–÷¾éç>¸S¦(WZÔï«Êœzi9&³ÑroÔ³›ê6‡Z`ŒÔÓ„½ÂßÙ¬vœ çOض _´:¤»&çˆ p}àZfl²w®F”5+ržFÿ4×lX0, †ßf,èwj.öÌù)œ’m¶„½Ç™[XдÀÛÇ4èNhºžÃ9­óòkzõ¹ÓL´×V3|‚Mßœëá¶™k©ôœì•ÓŽþCÀmIX¿ìÍD|ð­÷rÌuéêºo2¦0ï'anæ²T©O5.8"T×}îØél †ÂaÁ°ÀùŽóˆÅþã¡JtØA¿KµêlO´È»¹»æ­üí][nÃ0 ;õδÏÝfç ý HÐq’+| ]›—mѦ$*±ŸÉ®ó î+Ç_7üØ]­FT& UŽ Ê—ç±˜ëº&Ê *tÞ'ZKžÎogq…ò¹c c9’>•[®È«u&«Ï)þÍ{f¹ß}Ïâ7§—‡+FÆI)H`:sqIf">/Fà ŠÅ‚bA± Xäš©ünÞ)óûúzÞksµßÖ“{戊?Tv,±H;–6?Oã·ãí]µÏW¯Ô“r_•ƳjüD<+=¨ð÷™Í[$ϳ)8¿>ñùk^ƒ"àõÈ®ÖQØwâËç³çæ˜øÛDAÔk *ËS,( ŠÅ‚bkV¯Î_Ž™D¯–爮Žä÷“WÍ8 rղʫªkÞ†äL¯.’ßùNdìYzÂ~¯­®‚¹„¼Iž«ÞëÛîÇž²{Þ?¾ãM>«ž¸ºçÕLÞË+t›9ùSó7WHQ>GÑ÷¯aü{SêÐ|6TØð6yµNç£üìCÛÅßô––¯…5¶8–•õåÔŒPÔêzOý¶XP,( ŠÅ¯Y­Þ3ëNøjïOflÞÅ­ržoIB’ë®rI/'•7w|ŽÜ|NÓ*’¨{%w‹ßäª(JÆGW¾7—Ó¯%C¤Þ6&}í½Ã9úð=L–ö£ª§ÃL‘Ÿ5‰&ç¬Mûùy*ßÍG8 ŠÅ‚bA± XÔ²™]Œê—É€˜LjÞ[Ý_}ï™u=ÔøLü°«4ñØ”ø@=§ä½Ã>çnÇ#|ráìæxQÅ•%¸Àj-^i0©Õþ^DPœ˜ P™eÞn¨O| Æ*Ï–W8UŸµ©ñ›\oKášÂ ö>sõ^_ó?/ ŠÅ‚bA±€±`UŸ«i̳cN9"ÕØË–dç­jYìØÌ„¥I8“HÑëüÅ ªlHRã>™µÙ>$63G̳âQ¿D-!™/«ó+‰GUºvÌØŒ­ûý}¸ZྛÿN~gÉ}¿T Á+r¬¾·äü¼ê=«, ŠÅ‚bA±€µéVk¦#  Žn]öÉ£ =³Ev–ýLÆØ¾ÿw•;:vΤ®e’µ”T9ç¹h¦yœJ²ŠrþprL?Æ¯Žæ g•: +Å1 ÄÊÕþéз>scor2éMe{Õx( ŠÅ‚bA±ÀkV'óß$zÜvvvÿ©‹»n>æßOôÜV-€ÊÒ:‹ÇH¢éòºêl=Ð' ^›êßÛ¢„|Îø?æÙÏ}Á>@á¬WôÌŽì#^'«haÄ‚¤N2Cs&™ÏP,( ŠÅ‚bkVçv›{AeU2$¼Êjž×ê~ÿXÍÇch²º‹ÏŒü©å²©¨H¾zRÑ2ÑiLôúXæ½ù›þº¾úUŽÂ¹ógÃ:õªJŽÒ‚SÙµêƶ³*òA 7kžûõRÜD# ŠÅ‚bA± X ° ­­­­­­­­­­í“ÛsT1endstream endobj 223 0 obj << /Type /XObject /Subtype /Image /Width 516 /Height 516 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 46996 /Filter /FlateDecode >> stream xÚì½{ð…wUÞ»m+rj½0PE{tðráÔ–#¦TÑZ¡ãhEŠã¥…:r‡›¶PnC-Q. ÃÍÂ5å’œLB ä+™pS8¢õÒœ½Î:<3Ï|žY¿-µgýñ›ýÛûÝïû}¿ßõ|ßµžõ¬ßú­}ík_ûÚ×¾öµ¯}ík_ûª×'|ýíß–]}Ù_þeÙ_ÿuÙ_ýU™¾þæoÊú¿ýIý|§?Óßíwô¿ÿí¿•é'ûï¿ø‹2¿­_}̶>f[WÏ­_ú=+ý¤þŠþºþׯEÏPÿÛï·é9÷;}íz&:ªz|½/z/ôŠèlõ˜:þ_ýŒ¾£×¨g®×âwJ?¯Çùó?/ûô§Ëú8:~œ«®*ëoý韖éLëïê}ï³ê¿}6úLð9 ïëÝTÓOö9ôËÏÊÇPÇáG~¤Ìï³ÅGFïTÿ.Í?_S~¿ô¿z&:÷tfúülÓ»ì3ÖÏáÿ<ü_GÓ_¡Oêg|†·}âeöge/yÙÓŸ^æ+×ç*­A÷–ú·¯ÿŒ¯VºRWmä±õÕG;ãÿ{-,,,,,|.X ç¦¦¯Ï|¦ìž÷,Ó3×9éã£óAg—þ—fµ•¯GE%_ÅúŽ{H¿wþ»}„ÓO/»ä’2_ãŽwt4ZG>Ct”|þûÊ¥5®¿â(ì˜å÷Ý×ÝMÇG½GçŸ_æW¤Gî9Ö¿öµeûXÙ•W–õçSúŽ|ö³e´{qo¦£Ô离ò Š5íÏ}<õ*|ôñ—Ñþ*{éŒmí u„ýó:+zôô éÎæý€†¢ƒcDž±„×4&Ž›=Oz/As[½®¯Gßé;´«t¿ê{ƒÉjíY䡯Æ;Ljłłłłłł›†yîùµüäO–ùJñYMOd>VúÔï|êSe×\S–c8~æ9ÞÒO‹„\~§tþ»?éÏ÷¬k/A+Î×KßGÿ]_G“ˆ–ÏRÿu7BÇqýðÐY¹ßð_q$õ3ïã|ÅáoÖÏûï}oÙûß_¦ÏÑýݾ >æäIúóí?5ŠÕgtö}ù OÂY÷œz„Æ‘~ÿ‡‹Öc¢¿è3ç†Êò¦Ølž¾ÖòqüªgigE»)ŸKº«ÔñÔ÷Õó;¦ø §sλMß ú>¢OŠ•þp™¦½Çµ×–y$±`±`±`±`±`±às‰é¯ëÕ]pAe9=b@÷ÈýŒ>íúÈçÙHQŽŒký[_}øôÑ4óØ¯Ž6PÆÙ£g‹Ð<¦Þ/õùú_žQn—¢´jünÒ“¯{6ýEÍê|5ù(ù¯ht…²`„ß{¸èh÷¾÷GûÀÊÞþö²s<\|q™ßAýLŸÿ½îUöÌg–Qì«?ùÉO–åxE_Þ»<òîÙ|ù7BõYýãÃyG{þóo<E„ü}šW¾ <#Lûš±£öy¨ÿ%ÿã<_¡ýߎùÑ|¶÷^4£ÝM«g^Нâg<£¬?yùåeôRöùÊ,,,,,|ùaþbGZúê&‘"=CͬG”î£GiK3k1ûF½GþÔFN:Z{{è=õhƒzKÕßùe™IyØIÆ–rIýDßwS3Ë4¶9Gé•tÄüÌù©>¦òõîßV®òŠÝç*6ßQä\¤ß}Å9‹ÕEëóÈ÷ßóž2ÂM÷·î‘èÚ¿å[Êüª}'ChÞøÕóÊç‰úmg¢fn0eÃõ×5næ‘[ŸQT½EQМ/Ö¿;ZøÀéG#/G¼bò¥ô·"¯ E©†.Çû[ÍcŸ åŽ      hÍf,ЕBOÇ9GCÏS´ú(.AOš„t÷ ó“Ý$oëÏ›™IK¬¼<ÿÛcç*z–÷¼˜®Yþù~€fq©V(g]ÇU«!?¹û¯kÔȑڳóÄsÖßzó›Ë\„f­2½ï§œRÖÜfª‹¤•¢£ÔŠ1=C¨þËÑŠØ´#¢}]#}+Çp(jäÙÞ‰nÆäŽôû=ç5êH¼ÚÕè̤ ró~iæ÷g:ãß³K?ÙXsê©e×=­ø½{Ë[Êô8[¡|®*ƒ‘šßÇ>¶ŒÖì¤s‡{ª +’úøä|Ö¤Ò?×Úç\Ræg’#_G딞î Ý”wšk'c’¹‚“l;õ÷!¤Î:~™¥IÕ[tœ¼ËñÀ ’æiÐQ­Ù$Æ5×pκú9FÚgÞZU½¼'(Oû´>îÿmÍ@Õ¨ÑU Õ—>4ÚÎ)],X,X,X,X,X,È϶YŠîQwùàËhvùÝ|ÙËʼï›Ïvb¯9KÐ×rWdPm»«×úk­wæƒõ4¤Ša”1ϹËy›(}ùý$ožùú¬JëˆÖ¦ç:ý8ä]=Ïè¼JR{žÄ»NÚ£3g0³¸+ud›è+zï×îö9 ãÐ{'ÐæX_¾ïÝ{ˆ¢:ú]W–öè{†‰RJîåsrÞ•)g‡³Z!åâ'‘±‰Z,X,X,X,X,X,P,xÂn<š«÷’ê;¼套–=êQe™=åµÿ~^ù2yòÊ÷ËÕɈ%˜ù]êíÕó˜2JWPÇAõr›œ•wÒZ6ú|®J#œ¥|Åü9}¾Rèîø*ÖggWNö¼afZæè©¸ÒÝ$›O<[ºƒ„w¹‡ËÄ[¶ÝîpõѲz¤ŸùK^RF¾è…/,kEqÂDâèúµS4»kÜ&zwþ[]GJû:J½É¸FêëÔéÒw_zï.º¨Ì«#)Šž+d      ¨—Ÿ?Uîs©ÿý÷oüFYVjÍLÎI·hשëwþàÊ&‘ÌLkëûÞŸïŽrÞ[“*Ö©‹MÎe_«üüùگݻää.6ÔaÇUÅ&±£Œ/îçÏ;¯Lë÷}v|’:¹çÚê?ɰOê³rNs® þìg—y‡P:>yZÿÛy®Z9ŠT‘Úû¥Žo4 ú_Ž*«B;)ÈQÝbfed²îÇœ›AÝ{3ó9+Ѝ¦_¿ßûö_þå2ŠÑ¹Ï¡=[îk¶X°X°X°X°XpóÄ‚øo<Ú“Ÿ\6¹”UÔßò»œ«Ôs?Š z›~òÿ°ŒØn“ ]ú÷ïXö´§•å»OÝ}ˆ›JØD]=o8¯¬É™÷I=­£‰W¤\ÞK8ö5"¨*šŽOcz>çÜ¥}Âû¥˜ù(¯×Óþªzäî¾Jkp$΀Ž!­JRKÈQµ>NïÖTñcÞ/i§¾ó-šyŸ~Òϰ93¤CèØJ{‰Æ÷'OyJ™Ç¥5âí‘Ã'=©Ì+%      œSJ³šž ud:Ϣר}Æ3›ŽÖù=š}íz{¾õxæš/ÇŠ-èÜøµ_+s53ÕÜS´ê{GQÊ“ö2yTºêËé«Üy0«öMúãd._îxHZ Ž€ÔÛ”pd^Oä¹àÌΥʠ||RrË]_}?àÞ•fBÞuä:9Û_{mé“LѹvŒXùøTIõ¤Þ§5«ßøßÎÎÍ÷´;œú*8çœ2Ú3“ÿl_­{¤Å‚łłłłÅêe“ÏŸô™?úÑ2Ÿ”Ì]ۨƢK¬ÿ½ì²²®1'v"EÀt5~Y¿¯¨×Ì®}¨ŒrsýŽªðeÍ:ÍLM|f®|Ñ#÷Ìq…Ûl4òä¤=B: ”£ ‡Y1À㊇t¾eî ¤ÚÞ©rsç÷6ÄYõU™#uYÃÑ$çÐ ¡/úª{‡¦;%Ý¡ùì"V¤¿Ÿ•IrÞ¼*0ïs|ôâr䘼óÉõ3ÏyNñí‰Ã¬÷w±`±`±`±`±`±€4(®»®ŒžÊs¾l®ÝJʤ‰§ŸÑ|M>¦æw\5µ”³ž°ÏØ'>±ìkv´žáý쯽$úw_þò2ÂÁìc=ÿK9eŠÃL¸”TcEÕpô+„T½åkçÌ3ËrŒ"g–»¿yß ÷o“ZEÈ€<¡F,Ií<×ây­åD}‚ø„~÷/¸ Œ2¤Gš¿|Äzu/r õøÛ\Eßùðóx£³£‰óœk3réìRd$=œ¬NýwüÜèø‹‹‹‹‹‹”;¦¼Ò„Kæ|*÷!ÎϤç&âÈåìdf¦i«£=~dE^‡Õ¦ÿþ¥_*û–ÃUGsŽ¢ÏCb”åœl΂ÑqûˆM7é8Iw$3 u³úÝΔy¦Õ};íüoÊ8;ïn¢XžU8z‡@\ÏûL˽;}ÅQäb‰9sšãQ“Ws$tEèuäV#{¹>nÞ(¯)Z›>GnšùmÕ‹/.Ëó4÷£5fHÑf=þbÁbÁbÁbÁbÁb÷²ñU3ï(ýsÇLîq²œ9uƒütCц¹Æoæ:’myþóËúê&cÞÕO”w£çÙÜE=wÍ›0usÇíì!3—º—æþ#Ž#„ì*©ÀjPî’zèø¸zj™dŽæÑ¦®©ÙóS•ºŽê/¶RĤ—!#ñ(ÔS½ûÝe~æž7×h›G“H5.ï£&j´^&ݯhÞ¶jMÿ}Åe^Ý6Yk”»Ÿë½/,,,,,LêŽ5o•»œÐ}q>á­o]ÖOúÝ#%꬜ï8=!êÜ&UxQ•F¶«®*kµ4¯³›«TåUF9÷‰’Cî•C±©…ËQ”Üõ2wÍC©cÈ$â¡þ‡Ë‘B«Ã&ܳÆ]ŽdRÿbÛúZóyžÓ1K3x­esG;RÔFÊá½³¢ºÅ¬—£Ä¤©H»£¦cÞmÒ[Gï¯(kúÜÓGóªiOj'î¯h·X°X°X°X°X°X X@¬E¿wú,CµØ®dÕ:«·=|ôh9+Mùâ¯Nú›ç;žõc©«#iÀ¶uõ™ÎvbÏR4 ‘KÏA«Õ\O#+'L"”£ØÝA½ïÎþ¥8•w5ðcst%«Ÿ4ÓG3Ag{÷-ºË]ʲ&Ã$ò9©xš(=æZ*ý­ÞÉh™Ü9‘ªê\½a¢HŸ°9˜ãŸÄbÕÏ{ü–Îú:)w<ªŸ‰G#i‡w 9¿œã´‹‹‹‹‹‹®AÑŸw&ešœ¹ä+}½ýD3á§Ñó;¨OÞQ%¯î~ß«Ïü‰ÞcÞ1\Ç¿µ8zV¸ž­k[¹×êÿvÜI‘×9¹ÿ ©yxvÞý é¹y.UǶ;ûМÉ=¾=Æ¢ÇÑq{ßûÊžñŒ2Êçþ&Y•.kP“¦Šw¢Ìu…Ä Ú®û\òøùHaî[JsFU_úfqguŠŸ h.Né^‹:ERäŠæ‰Fu<Ï:«ŒVVï)¬ÇïÝ&½H™\£L:æ‹‹‹‹‹‹Ž“™O½6¨¯\a?{ÒÙêyêÌô¡«@³-™‰§ç¦9qîÓÊ&G ]êëÚöwU§Î3¶—^Z¦yzžÕÜôduøj¢z±IdfΦs¦¢~RÑðëŸ8Zc%éwù9ôêÐßU”ìϨjʤ ”–‰Gê3„|~®×ËQb×sëèãéQ Î¤ë8xæúùlÉ(à|`â6/,,,,,(ølô®â®öFÿ%ŒÐ÷=ßÚï_ye™Æhe_—ûŒ·õµ“o!•³¶>Õ%ÓµÐ:Tù9Wuí5(þ0Qê˜T]Q¾ž²ÛT¡?é…šýi êtŒH¿«þ2óžš©nk’ó%D _äW=é¤3Y¹.ÏWGŽ’i¤"×ýùè¹rËdfž4š7¯at8a\—Þ×*ö;öú¨úÕgËy畽ãe”5&n?1]      ¨— ÕmMªZrßmg«f`z^¦º*Ç#m}6̬TŠœ8ÃÖŸ¬çÚ¹×§×Q;£yºóɺÙY|”«4».ŒWEÑØÇX¿Õã ÷Èkó³vy?¿ýÎßXFÇ?iÜc άàÌÒ̈Oq*Òñö™Öí‰soŽõÑ:ÊerÎÝÇÍ畳8rV]½tWáѾ"ï©t}õŽÑï”ÇŸóuõ'       H[Àc žs™Ä"¼Z*g¥©>¢»ØO*¡2~͕֜/JOÄþ4×¥¬ á¿Û÷Úgõ:Ì•GT“³“Î?Ì‘1¯)#Þ#åj=fBz¼ý­ö3¤9ÐÙ|ò!mgŸ]ÖÊ`¹G§g`=^籬9s5ó4rtÈñh² (ÆH|T?2õ$¢~ޤ„pRo ñ@ê¶C¼Ð|¶Äk%M{¯ #n³GAI]Ó½õ·ÊzÝ~—é<      (F”×ÂI£“|´–)¯—Õ œOå}åM(ÿ•5–}¶äº-Ï“ ·ÿí5ì¹W]=ÊeŽeθQ,++ ÒÓºþ÷{r´[>s4½ïÿþ²~iõ"ùÌ0¤"éÂÑ¡,3Åýrìt¾‚r¾8ósŒ%WêÑ1³î÷ÿvø¿–w_Î[ð;’wq“­ôIç,òW/~q1"|¯˜•7š»¢<B·¼—ð ­ÇłłłłłÅïeC<·üüèÕ[yîéø³”2¹yUR´Aÿëd4Ï}äé¹rÞOçRÇ1ˆo¦çéO÷Y]Í=†ûsbfîEx}&9ÓÌùÔÙõÌg–MüOVEÓˆ–VóMx†¤$ìуIý&­ÏÏf¥k¯Wštc!ȉnCÿ÷’KÊN?½Ì£dªØ–±8g·¡JÊ“Y«ô=ˆ}êk6³Y‡ÿ~´ÓN»ñh9ÚLÜg¤øÚ¤x¾Ÿ§2ÿ3Wy±`±`±`±`±`±Àkͨf™¸ˆžG¦˜C~ÖÎk:€LòÝîtl'u%~þ^IççFþÄGéƒ,ËÙUÿ­~y&=kçêø¬–œ?©k¶Ç§+Â|æçÚùA"µaÿ[y­®’A;ÿç‘ÎQ#ǯæzÎô™I?ÄÌ%þjî‡HѰi$ϯ(–ã¢T è+‹s/MZ:©£]eÖ?¹è¢2Òè ÖÏ«7¿¹,32c±`±`±`±`±`±ÀcDº–sÞ„ª3òü¤çbbiús.­ñ¬=ÉXi,"¯B´\§3é­C1ÒËÒÑÐNŠé¾¾­²ÉsÞï‚w0T.±^ã›ÞTFÙ:ʳk4Fc>¹¯}Vu˜èTgLœWDfÏéúÉ´óyÕ«ÊT'<³‹)SìfߦäN—Yý/W>ú™;[#£±Ls¤eîÏõ¿­¨ù?Q6QwìWë.º—Î\ˆ‰ :õT],X,X,X,X,X,˜`ex'õ,T‹‘»«Ð(¹?ñ_§5Ew–tŒµÝ„³J*>ò:—ZgO{Oè/ê r5÷´ÑêÙ˜»=NT&½Tè¹[ݵ>ü¾<ä!eÄ&ÝŒ¹fîbO}è^ôŒR¦å¼¯kF|b¼ä(SÞûéjÍš6I¦=9ñ[(ÒNH§W·X°X°X°X°X°Xà1"ŸQþä˜ë•(ë—³¨¾"Þö¶²üTž;ýùÜ{ï{ËÚ3SEÅr—FŸQ™]ÙkZ¹9÷§11×F Úz‡<¶Fí(óÞÿüÏ—e-5âô«Wz®¯oûŽï(#%½yOùIu˜VeݹI4Õçƒ+ «ny®´Ê\ Ê!fŸ©¿Øsì¹Ï-s]µþÖå——‘¹ê9;Z©¦DÎ5S¯I_³¤(rÓȤ MÚyÅéœ×ñ$nCŽe„rM¾z±`±`±`±`±`±À± ÷1ôÜ=ùzÞ“F£}þë__F,Íö™¤"ëÝôè8“º9Ê^]}Ù[ÞRÖLNŸôÈ÷*Ö÷_óš²^/“8Q¯%-èyUU«9[O±@ûŠú<ÌOú”ÅÓïök5î¤HLfý•ž]ÏxFÙdy®6W’n1!sÔ”FÆY AÒù𥉉ؤmÊ= ¸_EÿJ›æ»ûþÖ>PF’¢¾ÛÌøå³‚tQÜwõ9Sjîïé{Â[>{4R‡ó¨²ó{ýl³·Ïêë´C ºãłłłłł›3P ù ­·ò؈w ÷§3_k>V:Ó4zûbLÃè¹’" 7ÜPF}ÛýLÔk5ŽœsN1ñ2ÏW·ÿîD#Ú{MVu„tjý[£¹‹÷·>|´SN¹ñh™¿ç}Û‰#ªçÜ3Çï2)P&4s³8álŽYÑ~ŒæªÏ(ŠOzþ·c§”§&¾h§¿Ûh¢÷Ýý*iž“ÖzŽOzQQOUŠ™Ì»ÿÐD¦3Vñ‘v\“¸.ÝSš­¢9wB/,,,,,(8ëlÂΚœUÿÝÝud¼š,gcI+Øõ`'½ùû¨¾FßélW{øÜÑ£_ýìÜhBºÍY‹¢F9oå@“~ôÎg›ôÁÌ Ï ŸÓ«3°Ç?+Qô땯,£8 õ²ÌyÆeyÜ&«8«ûæ|w^eùÉ—†ú7é3Ï«æÝ×uWÐ<]µ—0wÏ™¬}÷™ò±¢ͽ¬@ªé^g”gQV}ϵ“îÉW ßò½E#çªæ4‡'j³Bݤ‚/ï“Ušªt•N™è“Þ)¿/“š8/,,,,,xî˜ô¥)6&9?Íϼ³{Ò£õ;ê}M¹†vîÚ©w„4cõž6´ß"IJóµàOޝ~uÙdægå.ê°“Ÿó ¡89é#F9sOÆI4‰råT¿vá…e~äÞ<éIeyÎ8 bþDŸ9عBÓ÷Kú­ÎØæ~?ú£eį˜ëfä=F®ž#ý UY™ÌÿIWlj»r•3ó|Ò 6WŠù¹‘êÈDW|¢óOÚ)¤*C<¢Å‚łłłł›3ЬžÌäI¿Å|š¯ôì˜Î+]“¼džEÎT¤ùpî¹e/xAYwŸ9Ê(óH¸;¼¼á eT7W Ÿ<ãç§ïŒG>ž™Õ;Bõ2CËñ… :¯\晲ÞQ47¸åQ*› ²¯£Œô߬8§#öm‡+ŽFñLÃøÎäyÏ+Ë|hÖÿÓ÷cÊJxoªC¤B#´fýzsß[‡›º&ùÝ$î¤W©âäÎJ”Åöýïg      Š¢Çó¾¨äCtoÓûaUùîÿ¶¾ ±n&J2™çC;ÀłłłłłÅç”Ò“éd…f¯â s-ÕqOž}tÅ]sM™wŸ÷@w´rŸÜLEâsö«}=ææ<ÌI·Ï3Ò¤y ZwUó»ïfÒ¥…fš33sß™ÜûC?ÓÏÑï|gå‹É_2?ãç«&̈Ÿ 'X>ß<«Kçœc)´Z©bq²ê ›&{*ê_“³Õí%H/Wtú..ëfèï¶¾JÏ.êqC˜ëÚ†yVè8,,,,,,(äúôœû˜Äô–ž.©¤í¬³Ê<úDZ^^BÏS~uüMZqÚWGŸÕ¤vž"líh=ҜыÊr&7Ç&šÆ4Ûû3Ý ÞŸ‚s/!ZéñóÕ”'&BEÕK¡¨ ùí‡ÉYfÏú+Ê‘žd«©U´©i'ÊœßÏú$s= ŠôêqÜNôÌI-$gVƒÌ¸FùwŠ®ƒš˜”Í×+Íê(~-í!w      2LÔ›© Cÿn×DÐó‹Æ”®¸¢lUÈêÖúwÒ/^W¥ßýÛܦ̳Ò9Z2™uîëôV'èñtœýaŽl䜩ߣœÛr5:7¿ôÉItk2’ä!õÈ®ˆ¢g¥5}YÛ!çˆ=éÞ@k-'ýhò¸Qdo¢?Ña£ý í*³†s^õt¶T 6ÿ]Š5‘nÌ„uïßÍÚt~]®Ã“ï1ÆI³z±`±`±`±`±`±€žD4‹‘ëès®ÊÏÐ{Ù“²tg]O;­,s´Ü?x®“âT§æ¾]çóoþf™UµçˆGÖ( ê{W{ f3Ö|=f-Az‚¦uG«RsŽ“n›¤Šæ= IÉp¾F(f•‘‹â!žyœt`ѳr "î¹QÏ!Î{6å÷3^»·$E‘¬“@:!û¢Ž¥™ OÚ~{$›iÐQâ\ƒyÕUeýßV°ÌÝ…ˆÝ:Ÿœö{¡>ÍÏj±`±`±`±`±`±ÀcD±¡3Ì¿N92ºýÎyç•éy~Õá/Žv×»Þx4çdjÌÇW·Ævˆ÷˜ù`Ôy°ÿ~ö³Ërý u$$gÊŽ¹¶¶^õ¼W wl§ç}ïÊ—•¢©ê?wϤ3§sS.nVó›p¤©NÇsÄuÄé±úÃYG›Ç7t&»:DŽox—I:²¯8ßAåú²Iý&eZ]íAu)5=×ý#D¦¦Gäˆ!ßµ`ÊBÉ1X}¿»µæŽW´¯ð=gæáSåã¤.qJ      ¼çÈDã7+€iŒE»Ëõ•öˆ½õ­eÍQtµ·îü’µ…Ý\]™0‹4“õ^Њëoõ™{·׎Ιµ¬`àä#e¹¯¨?ó’ U-ÑÝ'&áçRmDk´Î<ë^N+Âè¹3HÞ-Ïi,˜Túä˜í¦&}}Ï3‰/e…ÆI÷(_w¾ÛÉJªOž+§h^͵#¨ºPg”*êS=«êMôÿÉ“S­)óû®2ï"(F´X°X°X°X°XpsÆ‚I®ŠFß4ý©v’‡ÒìLg9uV»¢Í´IŽ“2*©N¤ÿn¾ßIU|IYz>ÿóŠs½¾É38y Š|ÿ÷—ṳ̀Z$Ÿ“~g=oK¹~úäd fÍ.ªÉš¨²úGVö¦@ŠÖæÈÅvüÎR/KÂÜÜ{1#Ýê`ë]ôœ‰‹K\Ù¬"èœsÚ·O 89q9&;Û¼GšÌªb£ÑbÁbÁbÁbÁbÁbÁDAKßiöTî¿óG¿ýÛe^uîX@cÕ÷ë²ËÊH@Õh=–õÄèÚí u÷¾ÔQzýëËrÆ4½}Üþð2­/#N,Í4×aÐLý¤K‘?“ºV Õz~_Q@û¹g 'úk¯-󘮓@äøëG˱ÿoÆî“öIl½²Ö?̹]RnŸ°³—#=ÒN¤H÷”tã)[ÚsÉ‘Âï¯â¸þºïW k(Ê7Q#ɳ‚öÌäm&ØšÇVÓbÁbÁbÁbÁbÁbAîe“{R8Ïp¢šEOpzO{ü;«•n™#G¿Ü}#w*!hŸ[·³ÞÏ{^™{³=¨ì¤u=Sê1ùá.Ó_Ïê»Y™ü§s©ŽLWJ£a{fòó^ÁçÏÂýÝ3;ïê«Ëˆ%˜ÕçÔϸÖb«RgFgYôܸûÝËúê¾îëÊö°2GÇ<¦l¢AÕ9Hí${u½ ½‡qßHÎLP}H×=P6ib+¾úüÏÕ¯Y1ÒÇê çuµÌÚz¤/AŸ$,›Ô.,,,,,8PæŽ2•fRÐ1i’ëwüü›KyÎ9e¤XKOôž‹ô{MXà£ÔŠÖýh™ÿîß?|êhê{;¢•ãB™u¦cèˆL:^WÕö3?Sæua~½Þ}ÏÙ³%Ë5S~—õý©ŸêiýRæŽÖ©¾<‹Ý¯ç?¿ÌÑaÒˆê€Èx|2k¾Mt•i/äGð]™÷î!Î*ÕHRœp¢Ýç; âåRFÞGŒôñˆBógKÏ1%âçèZ£Þ¬y¯KÝiÝ3ôÕ-,,,,,oíy'_­ý[ø‡e¹‡æŒy4 â-ª†çOs¤ˆ3‡™"À³.¹¤,g-'Š÷tnÔ})W‘·$†ªâí!}å:ÖLð+¯tB‰ÎLþ.é”.,,,,Üœ±€ÖZÖ h;÷ܲ¬0L ´4rFužÒ»ãüUòÃÔïÒçEÃ|^ÝéNeþä«c¢T­–;3úºxó›Ër,‚zШ÷hÏ£O¯jÍ{lŸùêW—=ò‘eîmHE-÷âÉ:ÄÕÌýiÝQfÉŒ|×ñž÷”¹"EQH=Ã9±´Ê"Oåš^]B¿¥ž„8~Ä%ßH~¸þ KZgzEÔ j‹üŠúhÚå3ßÓü$«kßgÎm=Zë‡~¨Lϳã }›äþœAªëÅw']•Ä‹öŠÂÌ“ÔWVQÈ¿îó*çš³¢ˆÿ–Gü´ãR[ã‘Öô¹R„Æ=ÊJ‘a=çVhÉUNÎ(PuÇ^ ÍZïØTáÌÿÌyä¬vBûáy–œt*ò|α²\àsr±`±`±`±`±`±@± ëúÇ,w™Ì]ðrîU¿å lT5ãj¹JhÒ[+­&ÝpÜ·LråTŸ’Y£¤˜7™EOxBY¦3_~G¨O_~âö«&µC¯h£#ÊxœAïeZ³Î9©Žø“8é(æÊGêÈIsà¤}IHÁ¸ÿnŽñ\Þû¹dÄWûð‡Ë2úQ>¶ãš¯‹?¸ŒvMYÑÚýjÞ›ewÅ5R¤¯Þ;⋺JÏDQ¿»X°X°X°X°X°XàsM'šó®IKÏ_”Éò¨‘~ÆqG?ï}F²²n®j^_çOs6Šf—g éEã3QÞ˜ô²¡hÕœélaõ'§V–;ú ɾsçî¬ß•û‰çêBŸ ×]WöU‡¿8šGÛ(¦”»FRÔQ#ÞÑ•ÐßQÕïåFs¼1ϽÌZô_×Ï÷•vÌJé:ö:J½ÆõÚ[³Ô•ÕÙ§¤”ž«½( ôÔ§–9O;w#Ê;=šK!$õ GółłłłłÅç”æ|¥û³]»+-SV‘Ø­¹jÃ3ÓssÏ}nÙü@™Gô×ûyÐóbôšÔéP¼"+`îEŽªóðǼ¬µéˆ‰×šä½ö)b{äÎD¡ò5¨suRËßþçïþêh¥ô™Fó‡fZ¦3¤Ä Oåû¥G=ª¬5 ý“e¥} ­Á C «=¸6¾3säÙóÂ>ÚãÎNŸTœQŒ…´;Jñsg°g~Τ?QŽ€åHÑbÁbÁbÁbÁbÁbÁgAGG%Ú›å™I{˜Å‚łłłłÅÇ‚¾›Ú}RA“+žÈ£z Ùó2ª]–k¬È‹ªÖq®d¡®¹%uZ§—jP«ŸôŠ'Â;Ç…\eOj9Ëœã¹WyãÜÃT»”ú86¹§Çý:ÞLE÷]tÇ3ÿ!÷7×ÑkMÅ OÃóàî¼Ç“ÿ­qÚŸx¯Ø\Ãåcå^Ô3þŒtd×µSyÿ–îE‰¥œ»Çf®K¾ >H¥PÏ­ãù˜”Ÿ¬SR® ÍêłłłłłłÌ›è8y]Œ+Yù]p2bÁ©Ïl•*“:‹²¯Ë,JÊe;6inËY…ªŠœQ€*•æZš{™'L¿Bq9RTeý­ÜÉ(+fôé½J30aHÑ$çh†šx¡>{U·m¤N+}>5çW¦,Ĭ²è1=Z;>Î9Æ;áO"®“^œz´öêw¸Céú½à‚²fz÷Š{ÝëÊ<Ú“Ï–êéü×sdIwÔÙ£*×³4ó]…Nìëž]]ÇłłłłłÅÅŠZPT„îïãWæY'Z¡“(Çdü•m¨ýM4šÔŸé¾¹G¡ç4)>F+ѯk¢FjÀ”Ó×YÑÑ€ƒ"¥ñIΚÖõjôU–»Qm qV³VÆÄ ‘ò6±I­}’ÃÍÙ½þn÷îì÷;R¤ÊÒ4÷ˆ3ผ3Ý®bA|橘¨Ã9й* )¶‘R7ùò«yïDÚà4'éå=¹Hã:ÇÕÛßú¶ÃGë‰íÖ‡Žö¾÷Ýx4=÷l^k¶X°X°X°X°X°X ÷]¿›;ÊùÓÊ[ßZF]ù(?èÏòíÏ;ò ¹â¿Q/9¿ ÿîß•åèGVi&õÚ\çg˜»êøœì'¾~ÍÊÛ“£‘Z²ÖÙåˆqö²?Ì¿>©ŽÉŠß4ž9W˜òHêµ_|qÙ…–y„ÇgTßSe2hη«®&zhî¯ô "÷±íº2Is3bf%|_ Y#1÷÷tLɺå:ò.e¢M5mrûŒ,ŽÑ¾Së¸Ù/þb™÷!ò{·X°X°X°X°X°XàÚt96Ñ.#¥eÏM2J> è QÕátîÝ÷¾e>gqü̽º‡”»ü镪‡Èùû®—«c¢˜ë=\zk„ž|óJô^-;òÆ4³õÄÃÓššxõ¬ôå#9/éúÞÊd&-qªXüÖo-ûÝß-óÊM?BŽFN"räç‰ë‘Ì +€â-¤g’5XèzÉKdí»S"N¬ŸgçÄ]›rÊYç0WêßùH™Ï²Å‚łłłłÅÅ‚Žít®AÏö-o)›œÛ¤š´rµ¸9u0ôJpE7ýÝܤßéçtçe¿®U‚•\Ù,kLÑ šTÿµu¤â¢‹ÊºrŸ~=ks圚Ç=rgFÂAŠöLöäóIÓ#G6rOîšçÝ5ò~]­•ágâû ê›™™ÇH÷%~Ò›~¾ÃÌÌŠ¬«ïW§µœÊÏüjÒHɼš —&ÇŽÜ˹Š&©y;~ù‹æ0ä¤FÉ5 œeGÝ…2çͯ´™Šªžó}™G—×r®¯!â¤"üùDi™ŽÙs£ãiÿëáÿ9ZÖOë1ìÝ‚r²6`¿ßŒˆIgü¬EÙÑ„P>?3××k蜃êq0Zw™ÃLZÊ´–sjF4_Aù¾ú%íÁ2«–"«^áØú–ÊóÌžA÷¥z½­¦xûÛ—ùŽ—Ø¶Tk¶X°X°X°X°X°X0_Ë9÷§³Hc#Ù§ùoõzéøÆ>PFž\5œµ8QÒ 'ÁÎô©:™òTs¬,+÷ν™çËrÿëI>4?Õfµ:çÓŠó±%¯BõŒ¹ƒ¼gês}bžuúÝ=¨Ì³“‹ eŸÝ%ó;š£ªkè)ÀuÛ|½;7ÕU/(–â,âŽJ57€f¾ë~d›¬»ÙN¢¦YCϱ”XrGÚ¼{!%–9ç!ëêûêè9ãžÊ_‹‹‹‹‹‹Î)äær¦˜ê¬õÎÓ)wf¡Ì ©°ænÚY¥*?“ºñOv !+WPMÖ‡>TF*̓2îPìË£zžè×]g­ãßr¸êhYx¢ 8¯Ô›ôò¦8'iDLpÙ=€úje¸txb!úo©Çè»@ìeç6sØ}`{û>O¿;Î÷uJ>63&Ý—&u‹~½ÎÔUë'ê”?©&¼ÎÀI%/Õ?f8¡CkßåìbÁbÁbÁbÁbÁbciÓM:žg=ïà0ïôA± ŸÛ>>ú”Dd¾²HQÙ‹¢ n$1å:&FOšžÇ̯s6Ù׋_é;ßYæsÌÕ rMý\ /w¢xEVŸ£Šª¬¾Häˆ<ïYCOúúÉŽŽRí˜_ék^S6Ñôñ¹ÓÊ®½¶L{ÊhTŠÆø· Šá™D83Òé‘ûZ(Ò˜ÙžyuôûÝ¥t>ßò®fRs—{ûN"xYƒb±`±`±`±`±à挾¾TˈºW÷ð€²ìÉ)ïL K„Gþ$Hk™æ§çÈtÅ) bÍó\T½>Ï_{Æ*÷ûöÜ¢+žOr¢?0©ʹ3Òâν‡<îG¹æÉ¤UæÇlâ:šC§K^›¹céIJÚäsÓ¤["Ý‘I÷ŠmNrÙ4‹Ü'øNO=ƒwuɽkéL4*èR[!do|ðƒËˆ•ú¼ç•Q/!‡ÿ~8-Ï(â¦úØ.,,,,,(´t>•ÇOžð„2½Þ‡÷¿¿,wŽ 9™¿Õ¿~ýõe^M¦žAÏŸÖB«6yGï~çì³Ëzæ"PeŠ3â¹9všõÙ²žCŽ1æAçéˆ9ÕzEÿüð_F¾š®”®Zÿn¯Õjx¤ô¢3bD‹‹‹‹‹‹úDcØGî™õç5/Úw’Øzžu¥žƒÄLSjŠÏ4féqTÙé9Ï)˹¬¯•»pæ.>^­¯#™óìÔWqңܟÄý¾ø“òDÛG'JËT‡Ek6k€«ç¹üò² “v>ÿs~pr|Ú¥Þ¡‰{{êRJû(êJC{9çNäõ¥ë”æ9±F ¿<ì{Œ¹R¿Aþ9¯Ê¼ ~ôðÆ£½üå7mÂ+X,X,X,X,X,X,ðZ3ZAZ¥®½×õŠ&š”+ôÑó‘qŸ«i²†³F“è¹;wÉ}(´[=©`eMlísã0ù^O|õµÉ€¬¡q'wôËU9_ÊyÕI=i¤;âS¬À¯H«œHU/GØœ#‘+æ>úÑ2­V£˜›Îœžiz¥ÄjÎùq÷½z+¦X%±;HŸ0š*F)ª6™í~÷UQüá2¯›ûÂåŽç]'^k^M“•«OªÑ—ýaîò™Y¾®ê6Ï,k:£ÅÜò‘3Öä(11&ÜÑ|YyÛc¤™ÇNw°ÿnõ殽RލòR|”æz˜®ú¢£¤;Ãw¿»Œb°~½Í®™ôlͱ&¿×W_]–µé     nžXŸÄµ»u^Ó+r˜+§ü¥÷KgE¿¯ÿdý&üÌ\!¥÷Ô;iúçû Ýoû½Ökqþ­žgWýüye%bôåN”™š<×è‘Bñè}Ê×Óó>yEbæŽK„>Ùx®y¢O‘´ITmR7JØ4ásf­ Z³Ú-Ëë{•µ.œÇ¥³uÞIÒJqM¼É}&¼éMe~×ZÏd®Düª5[,X,X,X,X,X,ÐëjöÑäyŸ~Åu®ô¿ÞÄguî^§çé‘ÏyQ­VîÏ2QNð••ëßé[Ù·tlªïìú•™¹Â…ò†½É†‰êͽA¢nòÄftÿæùî\u8Ñ:¦ëÍJÝÔé†ÔBˆ-@¾:÷Kx¤I7ɬ4’÷i/|a¡Oç[žñŒ²ñ/Êô“½×͵iÎ(ð×k_[ÖØÔ«U5âˆSAÚÚS¢qvŒpMlbËèû‹‹‹‹‹‹ŠžåtOåµ*Ä£ 2­Ö<'ûï«®*£§ª\¯äùPUÕõòµ6Ñ=ð*ï–8ïüèOÁoxCÙÿ,p~/­hWÈyÛœ='fr_»F’'ɱŽI7£ƒÏ¨ž9ÎÆÌYWÒ OKwæü¤21g{éL(Ú–#?„°ô­¬«¦ã¯Œ¿öޝªâM³y•çd•m‚ò;õH Î½¬ÇH»—łłłłłÅÇõóêµuöÙe“n ^±E^‚z‘ôSÏé§—ùº Î›„DY뀲<ÚÛš¼eî¾çÊcs¦%áìºÖ,ŸÛ¤î†ê˜(:ç~€:œ’fçiEŸ4BH˜ú«Rý­nÚ-øµS”‰Æ¹õÛ¿Mцܯ6ÏŠÌàÍ9Ó‰’›çß3c„".,,,,,¸EŸ‰úð¶ûß¿lRí®Špù)2+31gâ<:4ïNê þyQè¯÷u…ÈÿqY¿Þÿþ2ײÖùsÙee~äý¯ËÈW÷ ÿÀʾpñ"‘J e¾r‘$&Yõœ}Ëy4ïBB]Š&½‡4¢¨ê޾ïr?Fþͽ1!Ýß3wšö3¤?ãœpç=Nø·TÿH£A,‘IŒKù w¹KYæm:_â¯(ËQSôúná—¹Œî›ß\æ™î^ûw;œy´þ•_ÿõ2Ÿÿ:«}$      àžÇ¯BWhVŠèÿjVw ½Z\¹=ïCˆçžö¿])"s᜙æ}dôêºÿ&e?'ÁɃѺP=´ûÜ5(r f Åô&}CònÁ½ÐIWÊdÆúw©{û¤ó`îZÒök¿VFŒåÉyN8¥9GL'ŠšÒýÍ™eí±’ï‹ùDÃÜ9!ÄÉí<ò^-è;F=ÛK/-£¹ï|gá]®Ø(àå5µX°X°X°X°X°Xà¹c¯²ñhÉd>d îÌþ™½¬ë5y¤j¦ÌÜËfâg&ü=×ËÙUë¦ÕÑunf=^:NÆ‘\ä~ c yºkÊ'tUöyMœþ­± IèÿžrJYæÄ$vG«æ¦!…ßR¡¸eÒóþÓ×xÎófÔîÝTgo]"«P¼ÎÏÄ•%|䯹¦Ì׬¯‹®Z=í´²¼ ì~¡l2h—²X°X°X°X°X°X X@JÎ9'H½Âç À9®r«ÃgŽæ>aÂ:ó¹”™¢Y×b¢ÒFõ½ï-óZ<Ãimz>Tsgq:é‹Ö!WŽæˆÙD m®¤MÌzQ…àdW£ýFý󽺳FYŽ ¸/%¯N17ŠÕ›zÒ s’¡ö•H}|¨S$U/Njâ\ݑؘYEÐ×ZÖÇ&Æ©GžÉǪâ„Y1‰òé¹õ˜øú],X,X,X,X,X, ,ðèU¾(7¯í7~£ì)O)£ˆG?M+3sÞGÃkUºöJŸþ4G÷4«Ø#QG£ÅUaçjÃäå2ÓÒkUruRí¦X™¯©¼.&ÊÒNcÖÇα_×gžYöÔ§–w^Y?e7?tö&R_}=b¤Ó˜ã„°º~3Ç5sb³ât^s]‹IÜxÎøÍ사¤7á´ä,í¤âu2nj½Oðu1©À%¹VÉMrÊúZ,X,X,X,X,X, —ÎÂÊÏq™Ù>¹•—èé¦ýç7®9Ú×>q´É+¨1¥·¹ Êõš¬JªìÎÕÏwYe.gNs¯òÕÍh¥Þ%>WÉ“Oô%\Ðã9^7‰&yõ=1èˆeG#Öñº>ó‡<¤Ì3•“®—~½¯Í"Z§Oû[ßqøàÑHùÜ« s™¯ë ‹Õ³ŸTåG2G™&šósŸœù!9ÿK [Ç}B%õí½gkk­iÕ'?¹ÌGFf²b‰Iû¥ìà       ´úC;³hWÇ\yDŸÉwß»~Ð9ç'åþoûí>yÂÒ‘l.+éßÒ¨ªž@® éQýšÃŸmRµä£—•Í&OÇ9RáÕý„ò‹ Ž0Ôÿ…Ðø¥¹.éÜsËšmK9ô—½¬,{RKËüaâôú½¦(›g«³çÏ>Î!kGgï=QÈ꬇“#®óJ·‰"ÇDóнœægû[ÚÑòC*›ðäiΛEñýŠ+Êú»­t¡3Ç¿»X°X°X°X°X°Xµéô©Y³`y]PfrgéÚ' :Ú­þÔ}"®»®,Ïz'פ÷ùœ~Ù÷~o1ݳÝùÎe¤`–Õö&ú~“º<çûé; OìYêV9yZÏûÊÙéõ¹QÎñï(Ó.á¹³1~s_•É=Êš9b™q'ç‹çè0Ñ£&}˜ì9 Ù)™ùyeÌI¬•¸%Õ¤ª.ÝQ·ÿé¸P׈u/ZŸWÙcL4ºõÕq¡Ë//ëÏô·²Û‹‹‹‹‹‹Šä'é9s,u4HO‹T4Ñ7ð^!ýzä#ËNzäìQ}|\嘺¾ñeyµzå‹{’IÌÇ}Qî.D,YRc£§cÿÅÜK%cy!Ò| ù©Šåx‹kžûoÑ2#”¡ón!ëlO¼¹¶+÷„šðTs$3ïç}s]ôÉ<¡X±Ÿ­æ…;nÜÌ:Í ;³ÔÏÇ»gúŠû‘Û¦gÕ¬‰þäé§—iÍłłłłłÅצ›gX¼÷ÅRM&ê^ä ¨…Žj_õOýTY¿ßœÒ³Ï.óœ&ÒÛEϰ¹¬Î%ë×W~eÙäéžX|ž]ÍG˺¾B½K¦+„“°¿Ÿu<|þÓÈ~"–¹OºÁõ‡3RøÊ%ÿ¦#C×’§¤>1Q8÷¹äw9k¯–M´³c®[¤Î¡Äž¥H£7‰;åÕ”qAñßþÛ2Ú?»'wÖ®Çð)?Þÿ½×½Ê:*åWzå•e/}iõ;^,X,X,X,X,X,ÐÙâµÌzžù9‘êѨéYùÝWµ‡ÌÈ"$ò'¬š0ÙrÆÊQr‚¹§Ï¼Ã¸Þ¯]ÉW—¯×#3¹6Ÿö ¹ÒÇq–âô\ŸµÍ3~¹ï¢:;º×Ä)%\èç÷¾Š|8ïhý·G\I ÙY¹Û‘ë!ÐxÎõa&ýsÝWÐÚŸëÃg¥AªWÍú'™ëÛŸl¦J[Xÿíë·£è}]S¾á†2âfdþ°+ò‘¢…ßÓłłłłłÅ町Ù¼×±Ý&:W™GG Cê“î#™c,¹çù%RWžô¡Ñž(?Ot$ü‰üdö¬ ŸµD²ŽýI;êæ»–óïß&”ìûÒš0Ú·ß§8¤3Qœ5'º¤›ÝŸ\,X,X,X,X,X,ðÑ\#‹ªéléùîÔSËžùÌ2ïÌB¼ÖÉyÝëÊ(¢BygòÞÎæÒÚOñ¤j5Á­ƒ›ÌÕÜÓG¹µ¤¼1‰}Í£Uî¥í–ñÂët2;ožéÌIOŒf‹ßÿõܳ†ÐmÂTV¶3~•SMqçF:ŽLbkýCùä:8ÂDš™9î—£=.ñ„ûJøu»ÃÕGÓ /RΙ(ðOÞÉÊ{ê“©ž´ßY,X,X,X,X,X,ðZ³Iî/×:M®×gEk8tf¹«3ü“êu©^ÆŸ‘'¾n¢xœëÈ&Ýój¾~R5Ok3+6Oªø=w¯î“âßœy˜³ê¹ÖI»x è1ýy9«=Oâô‹¤f@+‹T˨ṳ̂k¢C8ñÉþÊê(ùø®ÅGçœù.k®ÓÌ=•|¨K‘ÎÏVŸÎri]‹J8N±âì£ò®R°X°X°X°X°X°X±@3›¤¤äùšÕ”ÇTe¹þL«*MžïÜûQ¦˜íèI–žRU™ºêäs¦qí&ÌÌœ &ýŠ ïººrÎAS Ac¤WLª y“‡!.tVËÞu‚ÔYíyÒÏ=Ç4¨ú/«“sfN:ë?PÌ9×Ðy5_®µ¤ ¾ITòœ™ezá…eýÉûܧÌYú¤“ßv§;•eU=ºj碜to¿X°X°X°X°X°Xà½l&¾KךŽÉ„‰J³‚úOXdŽ2ÔécÒ»âe¤Ý£ñ=‡?9šê©ªyÔœ¹ó»“g‹Gܸ‡ôŒmÿVëàÑ™äü ±æô3+nQ4Œâ+ÈFrÞ9ç¬çs>Çòù;‹Ò+'U¤¿í3$ŸÕD¢”ÎÍÝm|ç,0ͨ‰ï%mÀìE'±#ÿ]ßEÐî‘t6&ìMb‰ÐÑüÈ­Yã3™30©ÕÕîÀ­AG¸|ÿû—åŽE‹‹‹‹‹‹Tk¦½›Û3w×HêLA¾‘2›zOÏ9§L9T‰ï³=û¨üÌ«âíñŒU®üÊÚ“J7R¨~íkËè™—´ÅHû‹|μڅ|c¯ÜÏ>0¯ÖÜC'w~ÉÇ̽,õîø‘©õ¸¡ûE±µŒ#¤©B+w¢|˜ûÚdÅÿB÷šüîÃ¥GSÖâ§?]¦õ\”Ïøºïó<‘?‘9£RïHkÕÞíne~œöNYá!ç¶#æšÃ“è–kîæNº±LÞ¡n/í%u5büR'Mõ«ô‹Ô™eÒW(w«Ï•’Yç´ŽÝ3:“§¥»?WHË»‘]™Ä!I£’vY‹žôŸç}r$–Ör¯&=æE•e ¢Ùž™í²2‰_ïbÁbÁbÁbÁbÁbcA÷Y#-zN×'b­‡¢g7ª¾Ï9#ʺ¶}øÃeä¯rŠžÍé'U6Î $Ïg UKMêMhþd.®ŸÉ3žQ6auf5Õ›^/Ÿµ•ÕÐ?úÑe?ó3e¾Ž2ç“:ÑgU´‰&ÕúQý¡jëŽw,{øá”£éìrߘ÷?96HÌíÌžwÆ™TT{®Àài¢¾NäûXŠÅéLÎ:ízüŽ*+‹þ‚ ÊÎ8£Œ4ÌU"c¾ r¥íbÁbÁbÁbÁbÁbbAþ÷~¯Œæ0u÷ðœ…w¦Lè$.‘UvýnzèÉ£YµrV:ç3c0_»_‘V½QKÕ¾ÈõD^Ç—µ8ú]}YÏg] ‹#«JÄ&-‘ÑëóŽß)ò`ΰ¢< Íó\§?Wôu†›ç˜hNô"2QÏ—>ŸÓO/£ŠWù˜äõÜ/õqžþô²|V:¶­ÙåqŒV&ì¿Û³©×Ê=€áë’Ó9L{âXf-ñü-_×ÎLÐsÍä~½ç=eóßòÊ©œEÍúrÄ‹Î'ý–^#u°"%÷N¾ŸÌ½{&š-ç¡ÞLíû3—_^Ö¾”îuîI;Õ?ú£2R\Ô³Z,X,X,X,X,X, Z³\“û³_vYYî)™½%U ee1ÒªÊ<ÕÜAo¢ÆzŠP@êDÊ0zn‹‹‹‹‹‹#ò壡ëZÿÛs¬ƒ“ºoòö”…̽$NêŸ'ý7Ý?(NuµÈçÒ•oÒí¢ÿîüþ¤gbÆÁI¿uª[ÑÜ´ç¾}wf¹GL#ªæ×³EçLæå’WœW'Q•V¾û9LšÒýNgõýF@b þ[öu®Çxå•e}´—¼¤LÿÖ·–õZî…öý¡>›>2¹³<±5&1@Ò¸&4ÌZ"Yu0«J浜óྋöh9ixNúç’vGÖ¬^,X,X,X,X,X,ðY­>ŸjCH%€ƒ'ÏÝôìæ±Òì¢5;ïÿN¨‘5rÖ5×°äs&E ÷®vYÖ§ëõõž•µüW¼÷5×”õ“òD§‹Î‡²™“\­ÿWWAc™W{ù]›p]ߨ5(ú“=&}õÕ]¥7sÿÊþûÝï.sVmY³Ì>Úš±¥¬}FbMd&ÀMË–æ5N¼ß¼ŠsŒ¨­5Ušëhîõhκ¡ÙH•t¹?fî’é>a±`±`±`±`±`±@±ÀWnVîí¬=õLîäY`Z•Ù÷æ~…^]EZs¹oùÕœ·r61Órïø<ŸI¹k’³ÎÊ Y5Â03cuÝõÙöé™ ÕL'¡U@«Ÿt.%Uê9³Ô=3­š¼)J@\íîZèäñZ=²{žþôO—‘!©äºG¯ëþòúÊ ƒu>ywP^ÕE+=+=NVgc³öq¶ç5t¤ß}»ßý$2\[@?ßq'깓w~Gü^?àeúëçi4ÉݬÉ5Øs—™¼‡ÉÑÎÜ'¯îÉüφrG›îkO(æý|'BsôlRƒÙ+"+Zx­ÙbÁbÁbÁbÁbÁbÁäi‚Ôƒýy³ÿî róýÙ™2•þ”×3™º.f&çXFó!sM‰“™uÒˆÃIg¨±Ž“"š?ªŸÉO 4:òÞÃrp9Ÿë9eRÉðø[¦ù´>ç[e½_Ý7°c/ª;á}pÑhVøµçÚ:Ÿùþ­dò|çƒç=¯ŒºÒ™è/vmQVŸpߢ½ÜÔc n§?“ê3,E]T[€*ž^øÂ²Ãûß¿ìùÏ/£»Iù¸¬ ìþÓuÙ©VÈ#¥ÉÑÈýî„1Kº…>KCÞ˜›y¼Yc¢”ÙÃSßÛ¬GüÞÌ,íñWöKæ`Pô5kH*ï—Њ2Áÿ/ÿ¥¬ßÿW‡W-ïÒû3yÈG#öi`.,,,,,ä®p”ÕÒÌ`û|}^î5Òæ¬¼~iÍQöð¹Þœ¼¨¯R¾òãäR®ÓÏ™²öÞýÎÃ^æ‘_ƒôäK9YšE”ßÌ–ÝÇ<¯ÜÖ¬î¾9YÍ[Ÿv;Ùëú7³Ì£"^X昒óø^óH;‡|´>οü—eÞ‘“j÷H¥fsG37Òµøôuû!î4U<9~åÈØ¤÷Ó$×L5€T›æüOÒ¡h§#ÇdzçÓ]lèÕ5kzTÙßXF»ˆŒ°™g2Ñ X,X,X,X,X,X,ÈU3zu^cÕÏ\mÏyN™þn×Ghö„<å­²z-©Qd€göB¾ŠI}’¿Îþ?ï—Hß/3ÃsŒÈ½eîÚ“5"2K$s¶Ió¿ßéì¶ÆÛ•­±X°X°X°X°X°X5«)EÙ¢þäG>RæëîiO+ûÿ±,sÉ&3ߟ|½ é¦uÉŸ$µ4Ê~æYÝŸi$={úœyÕ«Ê|4(>à¹lýõn(£s£;î£×ñ=òùXéˆy¦Õ#H¤Ý7×.k{îsË\[Ûg‘úLÒ?œ(õé}é‘yìcË®»®,÷ý¡ê*ç]ñ³Ò]œf¨ow»²'?¹ŒòÅ„V™ékÊïf>fÖ…Èz/ùïIeÜ\/k³ä×d$i/ô=‡?9qT|/‘ïìbÁbÁbÁbÁbÁbךõ·N9¥,÷:ÑÕäUBäU¾ù›Ë¨‡Ÿ?e”¼ߤ;Í1zFË]9²rlæX¶gpV'=ãSTª¯]ûöç»G eÏõÈ/xAYæ x63€{WR,ñqîLú}ï[F/ÒOÈL€Þè¯w„äE/*Ë» óy“b¥wöq½î<=&Ö»/‚þõærô;ÍWôˆ–¯2Ÿ9Ù›Íã!YGÂgñ1&ª×“¾±Y‹ž4ô|§4Q8Ì‘í\G óÍþD÷9‹‹‹‹‹‹®M7™Õú[Ú»yÒ%$+ú®¯M¯ßÉy¢‰š+ÅÁ&òu” ?©&˜× ù¸õw;æó¶·•‘‡É;¨ é­QäÄwo!­fÍpù}ÏÏõäÃ'zº–iBjuYÑ¢WJßUÃhž!é+ÒZÐ3é#tÖÛs¯î—úвþ[y¼„³®G—{Q6“b}ÙCÒúÊœ¬/A>|øI;c>å)eY;gÕ]u<ÏäþÖï?ZÖ÷öy¾X°X°X°X°X°X@X@*m~¹¿$Õ^éÓ õøsvܤWˆÏRê9’µÂˆš;éLº®»XfÊQFØÏ„ž©'6úL>¾vèËûì2eö*k—f Í–Ž-?ûÙe¤+þíß^öøÇ—y<±`±`±`±`±`±À±€<^V{ÎÑ!ölÒç¯gåJ¿ÙûeŒ˜ô‹ÌL°\!ågâ/~äî–Ô-hÙ È ±ÈH ?Ãú‘©‡KVQ˜(Ñ1=ÛN•(ÃKª¹ê'çø²*Ú„é:ɨfµ4Êkçn)“ØHÎhçHާ½ßdTé¾Ì×ødŸFŸï9FZsm§Ÿ^Fó"Z¤ÆIùèÌZñ3l…FÇ‚ùý],X,X,X,X,X,P,ð\g®øÎ:f„­¼D±šÏú~³òÜÛx•y­¬ÌL,W÷çŠøìo³†æRüà2Ïæ|·ž³…;n£dù¬rŸMï“}K®^œt&¥ø1sÞ9?ïç¨ZŽ“L8 y¤ÎA“ñ§È)NOÌH‰Î§µ¯])Åçvç¾éˆ×J{ÌG™·™(IêYµŽ´{!·óÎ+S,hî·ï¼{i¿ÿ„'”½ô¥eY‘o¢Ë‘}×bÁbÁbÁbÁbÁbLjœ»H<:UŠ]¸ÆW®5s]åž{n™_Ñ3ŸYö«¿ZF7´®s>‹ªHüoz^¦œ¬óEé™.WÜS—¯ö"o™+²¯£j/ò~ôÝyÿÐIDk¢*@,ߌÚ×5ü.ä>͇\—DZp/Ò˜-vÎóê««Û¨ª«u0Zeñ»8Zæjzää´ÓÊhï—³ü>ª¿ôKeóU–™®ý÷Ïý\™žÃ™g–Ï“¼–÷öÍÕj9†éÜÊ,,,,,Üœ±`¢ÅÚ³¥µ…sÇ4õ'YVkä{†è³’® =Ž÷Lq–—ÎÆÕžôŒ&•æ\5Ÿž¹;ü$“«Æ&8’¹»yvå'MGª&›Dc²êo~:Îg>¹.BöI½[f3’ò1ÉŸ7CgûDM÷}ï+kî v“’!¬g0sç\ŠÜº ™C>0#/ÝÓ¬o¯‘Æ,á­ÜI¿]U¡ÑîNÄ öìbÁbÁbÁbÁbÁbkÓåʬyyº;þ¤ì=<E>‡4ʨ·­åÜíž¾)?›}Ý\/÷éè cVù KþuEOòxc™Dl(¿9é'’‘qR•€sü%_L^4Ç‚èwÛ‡íáO6A±¹¶ó$Dû:ÒÏjŠªÎlÉ‘OWùž«Rø¹y<‡x­úN¯£Û®?šŸ§ê‡ëÑTKøÒês®¾º¬÷™åâçÙ¬›Å‚łłłłÅÅ­‰¦(„û:åkÑè¹â„ÿ×ãBôí™è<7r1?õÏkXèYlÒÓW¨³ï¨.†PÃ;<úX©Jvîð>ÉØNú`N¢.”ž¨gO;éZ2A.ÿÅIÇvªš°)¨«ìD t rü-³gÛ^ùʲ܆âfäýoҢɫŒ* óÜ&ÕˆÉîÏÇw”M¢[™ñžw¼><^Dë¨ÿw8\|´þÖbÁbÁbÁbÁbÁbÁ$wL1Šäø³ ùL¯­Èzh4‡I‡Š*¶ÈÏçüÑDim’ŸÊqe‘Q'MÂk=gŽMb_îÓ|4þ𲬊–ë³²n@^¡>þ:'½J1kñ娔W3Íõ"È×ѵϳÉÔåܱàÿ¸ì羌®=GÌòÞàÛWÍ«Éî}ï2нôßOzRÙÿ~¸äh“±ÒHrVÅ$ò¬½™Õär÷"ê%:Ù'ä(+á Ž€×ÓùŒÍ¼ þäbÁbÁbÁbÁbÁbAÎg¯›€tuTÿ®w•å|4Åa¨Œ®R~žhßåÊôI}wf©å‚¾~)_LXéç©s©³WY‘€ÖE{šd…í¬œ+k2:O”7r߯IvØÜ}ã7–½îueUó5ú(ùg|”»Iæ*-êWÕ]V³>E,5ÏÛJkÙϨæÌäWè|ü~Õá/Ž6éÊ:ׯp• ¾u{ò‡j~õ~]sMáÅbÁbÁbÁbÁbÁbcÝ#BЬ,=©×èñyÃÊ2SÔ_ÝÅ{Sʌىz0Å r嚪jÒ5=‡æ¨]î¸wÝue_ýÕe„s5Âò$“¾ásu¾ ;”üù$“›ÔÆã¤{©ÿÝ(LªÅ™y«#öüç—Ñøƒzƒpz.utÈsšywA±Êö~™¡Ì)ÕQ:kÎÇ_ü`Yß©ÜÞ¯ÇôÚ[Ï)S¿Ô¬Äâ»»¼Ÿqþ@¿      y´V0˱¯ÌòíoõqÚ[N8œ·é]\îDˆ@1«Ög#K=Nkú½ä%eyÜrLòV‡Ï­£^YïÅcæÊ/uïÚÿíQÊìï@ä5˜™ÒŸ\,X,X,X,X,X, ý¼wF ™ïµf“õ›sg9ÂsúéeÝ;›fHÎM´‚ÉÿSÏŽ‰®…ÿú-Ÿ=Ú?úG7M?ß55ÎPõ©Ì3–¢7+ËÝ<)?N=Œ< –óÈîEiüsm ¡Ã¤cÈ<ö5©7¤ãä55é7ä~[ßé.TYuÙ±)ÏŠÇ=®L?Ùee4÷T‘²·ÍÏzîý^ÿú² o¶×”_ÝdÍêø¢iÜÛu0H#"ïóFJî¥ëÝŽ&¹ãłłłłłÅ=ZVFô7™èQÐ<Ôïzî#Ç[h<'RóhXÆ‹“Æ z^½ô¥ezÎ7ÜPFlUÍ’ùXòÒY·™ôsÏùåI¤.3uç=Ói?“µ²óþaÂgP?Cþÿ‡¿<í ´Ó:eÕ{vQ¶ýYÏ*ÓskŽeÞ¹å}BV–#ÿæ™V¿^Zwú[÷¿YçŽsO+?Ïì7NÏ­ïÅdÿ™ñ‹üÛbÁbÁbÁbÁbÁb厩Š${ïþd3»&5ïÙkÍ3¿“5>шȼµy|ƒxƒäsÈ«d/ä×÷ˆòJ=ë(­ü4ýn¾­=ÆëH‹,Ϻ‰žCfΫðòŒÕdæçNè4ò™OÔÑs>Ýg5éfræÖ·.{àË:¬³‚´)Ü›éo)Ò}¾Æ6ý“¤N™‘:ëaR$3ë“èˆM¢[Äb¥3¤>ÂyeчÞÉÚã™G´X°X°X°X°XpóÄ‚ ïÈóÈõ ~>”/žÔjåçMÏqç(±¶<;3©šä¿²†é•eelêÓíª¹­éÑ–ÕnÛÚ[v| ë]çÚbKR\…"uù^œôhÙÛOÔ²¦y!RW˜ïŽ4*˜Ï§×i÷šÑ£õ”céwj¸´¯¥î”5ê;‡þ<)ÒøùS'\â0SÇÏÌÜp?ï¿å*ºûʸO>Ù«Æ&å9tòî™É.,,,,,(dÖùLz&ͱ‘ì½óӱζîñMygZûY‹!&<:ÒÐË×>ïCº6s%‹£yûŠöÚÝ›”Ó&hˆ—8©™Ê™Ê d¦eVVôH ?×g¬WæL¨guio@Þ’ü¤Mã6zÎgŸ]–uN­~ê§Ê|oÓþÓgiÖNÌq!õWçŸ_櫬õ7>ò‘6Äê9ø¾—°[#lÄ“ÉjruÖ„ñ8ž¾ó¢•)./,,,,,§Ô£„ þ+6=š2¬ò·¼R»gTwŽÈÏb“ ¬yl‡F†|KûÒÌ ¥µLœUº žAÓ1ôçSý-]¹mŠôÔ™s¦ÞqƒpdŽã“ÈRVGÉ™ÊIïø\‡¥s>wÉì1×{4Ññ£#»O˜èÌS,®ÏêŒ3ʨ:µ»C’–Zž±9«îßÕwî{ß²VÃ&¯³;&+Úsñîs¨j,w ÖqËüçÌ«'ï—÷W‹‹‹‹‹‹T_àO¾~]­U;yfÌüOâƒQøI–²ÏÙŸä(Afyå|·{̵xÒ!»“Fÿžýì²[Þ²LŸô{ÅM´èŠ(2™ïï¤WûäþÎÙz¾*iäÙçÉùKó’™­ê ÊÒt®éßX¦Ÿ¡=©¸x=E€Ëªs†øŸYùYÿÛXùÔÓê-ê¯Jñ?òN¾CÖ¿_õª²¬1Ѭ ܤnª¾"wrËłłłłł›3dß®~€t†s¦cò¤ïýݨ2ÝãK™+è÷1kgeƒIõPƵ\ËOùâÌät¼ðÌ5å³tÌûÜç_sMYÖ˜kÐÍ+¶rÇÊSSüg²ȨA¹Hõ Y¹º£ˆºûú_~´îßšh®j4†ôs¶t#äñuž÷•úÜî¬.)Ð<¼ð²¬à—c&íC¨2ÎWíètõnyÂ!VŒóEý]—ÒYÐ}Š-,,,,Üœ±Àç­Ï1ÜïžžÈ&•5”{Ê«õ¤]smõˆÉ(Fqº^âøõõNXˆ~LbÕøƒÎ±æËåLºÖ×dŸ·¹ßhFÉœGžknç=É<c‰õ&žaÒû&cõCÌ(ü˜Ç”eå· +ƒb,%ǯ¬î¿®ž6#8õ`Ê>Êïsô†"½Î™tó¡].¿ŸÛbÁbÁbÁbÁbÁbך‘yÝ\–õ‘rÕL?µyeÝ—¬‡LuF¹ÊÛÇ|ÂoÌœØìOHå8÷Ñ8ƒw~¤he²2‹5«FS…ËMËàg–3ç¾7¿höæÚ:âjfõéü[9*¨ï\zi™[ÏŠ{Ý«L5®‰íãv¿û•¹/êûÛ-s sR[Jþ¿kÖÞõ®2×£ÈwÙßézIåßz¶]W{§ÿãpÁÑ^ñŠFÝg¨+á õ‡"n¿¯PRÑÉœêq¹X°X°X°X°X°X0é Oì¯Ì/õ3Ô8ϼcx΃LjU\j¢€1©O§üÔ5æwó(»âŠ2žÕy>çzÅUåS–Џ„}¹&‘b 43ƒ”òÈþÒë¢z¨ìá •2Kp¢f¦Þ‰vs}—x³Îž%~iöTm§ ê¥sG-á(R´ ŸrK2ï7{ê ëû.ß‹ª‚‡¯ÁFêŸþé2gÝg} ]³v yÎłłłłłÅêe㾂”sFÕykÄŽ›ä )c’q„´msÎnR 4©`šÄ:¨¦×t}_ÿø2­©Éþ$÷Ȧ§Zª'"ŸŸû e>'åÈh]dBÚKäj2ÂÏ’Ÿ!\ÖU<Ñôs,È»²ŽÛ<ìaeúþ3ŸYæ×ÛŸ§Œ§ã¾ïšö±2sæHµê«LzAö'½ÚŽô)Fš5(§´÷ Ý…|4bƒ“®ˆGé®ùˆ-,,,,,8L”Á|nèSÞäYžVÓÄ?“g8i?ˆ‰6Å$¿™•Óò9P4ŒTm©¯)]8öQ¬Ìç[çïºï¹áNw*ûèGËú}í¨žý¶WÇägØy üŒç[sÂ;ø²ß©œ¨ègÚ7Nz<©bdÞuôgžûÜ2Šü¸VÛ„AJœÿ¯ÇRÜÏû¬Îê1zd­ £õ4óý<3ì³îœsÊÔó÷/¶B]Þ?xÞœ¸ý9"D=Cçݯ      ¨Ç%©0MªÂéœsÞ6Woå µw±÷Üî¼§‰¾¨3#iöRù͈åN4Iócêý"–š{K]Gýß—¿¼L=•-ç‹i̳BݤŽ>óåò'³>aŽD—uÂ,õ{=éwC\Ön(#U@½ïÄÖèÿºç$Ö_{mÙd]Ðghõ9¦(_×ù0Ä`ñ¨¬Gf|gûÔ§–QÌÐ÷Ãúj™ôœ¢JF_qyÕøþ¤?¿X°X°X°X°X°X@µfYÃÖ#ôDOóÙ£ĵ£³ò ‹¬ Fš± ªãÈØáWAâ+‚žŽu¶“‡¡\˜¾¯ýD|59vèˆ5¯ãB®0W„ËL9RTž<éO²Àª‰ËjÉyþä^¥~LU÷óQ®ŒŠöçßüæ2ŠêB…~>×Kú;mÝÝ’Ö¸ÏRÊ´fÝlÕx÷»¯ê"ý™G>²Œ>Ÿ÷-]î\™è3!׎M*a³'yÔłłłłłÅïe“{mSîCglöç~7½‹}7g¥‰Hs)ë g¼8©Ö=!ê«Ç¸‹ªß¥y=º¤š |wüª]§NŸ¾u5é3ø¤ßÇD-m¢J‘#Î@î£:ÉTRÎk”ÈóŽx®ŸbJ~¶ÿxYÎTæ’ÄöuG¬¿ êÊ4©S›Dªû»÷<¼õh·8üåѲöcŸÏYg•ùyN4Oý~ù˜üØ•M”ošÊbf_ú/,,,,,(Üø%þÊU¯©§U™ÇÓ#c¹í¤úu¤»EyOҾȹ<=bÿvL©Ÿñsô€ü¿ûXRÉv?¯;¬¢kŽUg‹÷î¤8•ß—k®)›p‰'}3sïò¾ºÈ—´¿ríå÷¿¿ŒÆ3wZ™t¨$¤˜ì&‘ç‰&yŽÿäšAÚÏP<ÖÇç­o-ó^]ÙWä^¢Ä'§=*Eö      ¾œ° W^SÉG5G¨œ§ççðÊW–MT,r6Šô÷²W!ݹ©#ÄQÿ©>Ó£Yïbò»¹^Þ#xÞñ„ަ¿Þˆ6É)_|q™fü;öâlÌ?øƒ2UEð³Õ%Ìjí^H^®+›<~’5î(™wq"ÅÊ&Ó]¦8É=3"ø}ɱM?[Ÿ{¤rê©eýùsÏ-Ó_yèCËN9¥,G´&]вfõœòÜñbÁbÁbÁbÁbÁbÁ—GŒÈ½S΀O˜«}æÞ>G\w++h?”I_¡Ì¡¥gáö]Žúª\Ëñ®Ó Î0a÷Ä×Ñ=uFî]çí®‡³6QÃn?üÞ÷–å°s5’þLwŸq¯K1¨/ò]“¯ÚEäVÞ{±ßïcÿºFHNº_¢ç<îš5RôÚµW&¡-ÆTõ¬z?@x4á<Úf…:â·,,,,,,|9aAÎþP§ ŸK9órӲÓyN=ª&{íkË&ÊÏtþ=+½î–☥¿KèIº[ùüs¿!šÕޤ”SÎyIbfjý­Îêºhû¦o*Ë=zrçÒ9qÏcžú-¿/¤ôN»ª«RtÖ3Ô u^9.šyÅYám>»ÈÛëèå¨Næ´û¯ßõ®e·¼e™Ž›ö뜰‘e:BEûØÅ‚łłłłł/',Ðñÿû‡O­³„ä»&ŠÇ¹;6=­‹5³æ(ïFZâ´ŠsǽüTæ÷=÷ ÏZ…Ô537Ü÷jŽ›ôú2Ï3ïòõÜ4ñE‰á+Z¦ó-ï IÅ‚bV™›µ'‹‹‹‹‹‹_®1"׿¢ÑèËj¤™à³åª«Êr #õÄ™+{“ÖGÎÀf–i®%Õ>?²ÇÄ(îÚëZ9Ø'õü¹ž®»GÝêð™£y?ЬšžãE_®œÒłłłłłÅª¢êë;E]ÂIEy^ C÷±ÑdzŸÔw†Ö]Î:9ðû×+2GWôLÚÿ÷Xõ¸yù®®Ê¹éy½Elt<ÝóЪ'”ô 8U#z:ó6sÞœþ;©WʹTŠP‡­ðêÏ´Ÿqtø¾ï+#~¦³ \ÃÙóÚyo“ù¥¹SÒ¤;-ÅL|æøHú'Ý{xO¨\ééw3×$vŸÐI—Sç¯>çłłłłłłŒ=Cú“íÎ;¯ÌŸa¿ØP ë3÷û÷¸GYÎÊy aÒ?â¤g{é¥e¹Â}ÒÏ1÷ì&¦YßYÅ âË—Õ_“^œ4ó]™ÍÏ<ã ’óýôÎöLÔÀ¼#¼êÎQGȬ§=ÉŠfœ Õ¤#'å:©Þ*÷pqýý®ÞŠÝÛ“êãzsÃ󾧢>5¤>Ñ×uÚie„Ýt)FêDQÁc$¬¼õ­Ër ÊG~±`±`±`±`±`±`#Ò§e?~±½ÔSQˆ*§¨N?w‹þÜ_í=¨k!=õçllÎ}g¶§¹µ³|ôÜwÑSöDg/çÍçÚz9ê5¯HÊý.ÝÿÜòðÙ£Q¶±íö·/ó1³®Ý¼‹b_YÙ›òïT™å\ß µ®;)®Pt²ëˬŠFú/öÚììùD¯&çú³bÆ$"Yµzäg=«lÒcw±`±`±`±`±`±à¤XÐU0~pYûO}Îúb«2ó:ÿo¿.»¬ìê«Ëˆ‘ؘ’+Y>—èP_Ÿî©Ç"yþœÊI_Ž*îÝTO€ªõ'³Òõ\¡Žü›«OäG#ïgÒ£ïàýîWÖÚ9>gøÈ+Ã9gÏõÜî}ï2ké¢êKŠe%í¬áqEiô,«ÆÍuùh Òv  ÆF…iÆæŒóóÜËw?G¥¡¼óáÔbÁbÁbÁbÁbÁbÁ >øÁ²®¢ºÃÊ4zðÅ–5μ²™û±2êÀ¢Y-¯—§y8G çvÝ:yòI^8ç7µùç¹â©õÒº&¯â÷+k‘oö]Q•š-9®¢×îs£{eýþ#QF¿â±ÊIYuŒŸzxäÑ芜ùà¸ûl7ØÙË9ÃNó'k6Ò¼¢ñÉ5qtEµSÝ• bÒõê{Ç;ʈG¡Wä9nª’#-”¶®MûÕ_½ñh™“¼X°X°X°X°X°X X }]pAÙmo[öŸÿsY¯¦/Α¯,×Ëú»‡¿>š?A»è;8©X™`¡=§çÕGŠ[ž¥õ'ÄIš@®ÌaÒÍÈ]/ õè8¾×òUœY”‘ÏŸô ²Wh¶)Ј-,,,,,(PnôŒ3ÊÚ+zßê/¶Z3Ÿéög+JõYýû¿_¦Oˆªn§ñ(ZŜκ¬GìS¿.bTÒS­ëÎùs½¯GIõ3%plštE! ‡Üc…"žÏymýïC¿s4áùüt/ñ°‡•å=ÉÿŸÝ;üÖÑrE$]Û„EIÇ×]b·Çs;¾öð§GË “èÍïOš#¢Ý=*w'Ý «÷ÑZ·‡ö¤Çâ½J)_ìž$ÇÁú»Í^ ¨ÚbÁbÁbÁbÁbÁbÁ_¯žÛÔ»ðs)BQue6=êBô9:Q½ögÞ¬Ó•»«S ŠŽ<× ÈìAÛŽø1[è«ÛÏ™>IêáQ»Ü×&ó3×BëœsÊ´Ê’ËÞ¡&×@Mx´ðoÝåpîÑô²–~î˜ùìg—Ñžx ¹Ž<3Å<{íwž½ñE«P‹i'à{TZ¿z¶‹‹‹‹‹‹#òç 9Ì{Ì})¾úN©ÖÖçW£ÏŸ.IUlå Ê”IÚ„—£þlž™¹¿!]ÝD­š¢UoñvœÕ*9Š›Í»7Î9ÉóÚF_û~´S•¾4Ù¾èÊ+˨þ.kMûø|ô£eý+ËÊ;„þd÷ÕÊ [P9·\c>™ç çïw™ÔEr_W>f{Šgæu‘WÐbÁbÁbÁbÁbÁbiÓMb>gUFÑ’¬äö¥øRM³n(ë¨Âç—«_tÇ=ïF·³v–¾ÿò——ÍŸë'ÝÆéy|^5CüU=Òd›D±NÛ$o£Ø­ºî“¾$4>“8Þ$7JG8ÿü2Gdêe9ÉØúh7n^sMYÿ÷=ï)ëÏêSeÊ”Öo‚:¥æÈ$q|íä{¤;@ß?Lx°„n­ÙB#œù½“YD\ÜłłłłłÅÂê(ç¯w½«¬«Ï&ëåKýÕóù ˺ÖlC›cAó?ü‡²Ì £ÙÒGøä'ËZ?$+-·uÆ*WÖL¸Ž9OG+({KcLbþ¾ŸÕ¤k !£ö¦¡5Hõ}^“EOôôzÕ«ÊògHS‘tÌî|ç²{Þz´Üã•ò•™ñ«xݵŸÚÝÕëç=O3J:¯@³ÌÎ<'Ž4å͉ûMlIïõ“3Δ+Ï{ò¬ªMý       (tÓòȹk×֫G ãB_ˆ.ŸôlxÅeôKçÚt‹‹‹‹‹7O, §¹Ë//£gX¿º“rS¿T^ŸÑ9óùõñõiý>÷){øÃ˲êBÖm#'ÍC?šw¥œ°4é“þ»™˜Ùt™Aª«ã»¿»L?ß á /Z¯ªbÙcd†m±I_xÇ ?Úß;üÕÑôÛS,+³‘iüý>Kow»²[Ü¢Lkµ<¢••·Ÿò”2ŸÉzï¯)ÿ«Çù†ÃÇæ«†´_ˆƒš£îò9¬+]g¯ö]ÊFLà~Ýæ6e]EØ¿²X°X°X°X°X°X@1"=ó®é¨yuUa|é¾ü¾Ìãf'ÅŸªœF‘¢¬J1©î§Êý\ÕN¹Î¬»›3Ѿf³ªÞD;¢_ÿé?•eÍŠœÍŸ+`Г>åÖér¼È5 rvý¼foÏ<³ì²ËÊþÎáoŽ–ã‡™@\â~çu¯+Ó˜›ž¿ë*{Œ4ëºg]GŠúößýî2Bjï'•÷ÙíI«÷Ñ篬œ­öxûÛËt      r/›Ü%á¦1÷ö•±FÕku&x숔l‰wêX3\¤‘K<=2ÕwúÌuíÓ¯“GÍY9ÊQRçSò ¾syuyZY~ïxGi:.LØÅ~Bÿœg$ιßw?r¿ÿC‡·­çCŽqM”Û3Ã!c·®×ßv”!¤ÎÜTÝïQ æ¤+Mæxèß´QþpÖ¬^,X,X,X,X,¸9cùóœÌÏGû:)g5Çd¼KE®ÍqF±£ü¤IGÈOÁYCO;’öEÖgÈyÕœ‡ëoS$'W–å|h~~ï×)§”Ñ/Rç÷yÈ,‚Éú=%~,å—I…c2«)JÙžMwPº!%÷ᤠèÑ$_õ«#êÊîÎ ðT¡–k܈;ª|€»Þu4¶‹u±`±`±`±`±`±À± wÏ9#Ê ïk#¢'î\?•U)rŽ˜Ô‰;[í¨AΞ‡ªÛFyϬ Ü<ÃÜd¢–œÙ ™ÿìOîq¢¿=#9Á‘ÜÛT+ÅÜ—Njܲ^VZÎ3¢UYf ! ¡¹ï—Ü{Ó‘ÿ÷˾úðé£Í5=âêûŸÌÈ*9RJóÍ+©¦ŸçbÁbÁbÁbÁbÁbךѺȹà/'îèÿ\,ð'hZƒþ´;é_™ë NÚ§/2w‡¤Î Ù«2Rôƒ¼º>A;Ë‘´¦=¿œ9®¤S—»ÆP= û‡¼f'V&¿KQÍ [’îˆï-[}=÷`Õó×xË„)áêúÒ£½èEeÿo{ç²éYñ·Ph…¦"BkÉBéB2t%’î¢܈¸*7tQÐY‚ ÓV1Š[C£ A¢f2D 111$!Æ 1 ùCþ˜Lp2Q#m¡PÒ÷îYxàâwq½ß7ï73Îy8‹wÞyÞ繟û>×ýœsëøUã™~üiŸà¹²:—T»ÇŽ      HƒÂ3£ôÊ)§SVù”9üáýyÿí¼SŸô1Òˆö=²)rØßÍëÚè-8Q¥óÊÕuô®˜B>“Týêö~8é0NèL=åi\ºy}k±ùï­%]x(ªà;$Öç×^»ì[ßZF±‹'Ÿ\V:„×^Ç^1‚x ô¼|=]’g¯Øfáý¯Ž4oûß5&-Ì9ÒÊü¤óñRZ‰6Ý`Á`Á`Á`Á`ÁʼnTßákäIý¬?µÁ‚P‘Â縓H©ÆÜú1X0X0X0X0X0Xб€Þ¹NŸ^–¨LôQê*jÃ8Ý5ƒìu€k…V?_ Õ=dÒ—<á‘êºîÏ÷¡‡–ùuGoÁ>ë꽫Ç,bx#×ó%Šwúì³Ë¨Î‹bk»Ð¸œ÷íÄûÍó¶ÄH¬üiYÏ“v…_eÖçCyÑÎ" kóO_±@GÌ×0újG?'ó‘TuëÙ5úU›ü¼ÿÛÏ%½ÎÁ‚Á‚Á‚Á‚Á‚ÁÕ èo"]ÝÔû+ò]I/Œ÷½oYç¤iÌ$é$R—‚Ay¤žÃ"EYõœ] !ÑdëßO¸¸IÆAõQŽçŸ_v˜C;ÅÓ:ò¾Ëg{‰UHßôÌXŸÿ¥¬õL¡Xåéi,«ã8é¤=÷Ü2œPÏ Ê’Þ5Õ»)zÕWáyí;ÏöôYrûJü<ÍR3ýYSç ß±´kÖùÞ²þl>^šT½©—,,,,,,P, Lq2ÂTAC笑#ì•ñh]¨Ê•âè ýyhnèßÇŽ-ûëÍo·æñ«kîQ„Jï½t“ozn$ùOßKT#4”íœdÀ“Lw®Šï•Ì}f?ñ3ž]àk¾<¢é¾Ë÷"ä"†bwÿ{°`°`°`°`°`°@kÍô.ªÚ½ç*w¦£Ñײ¾ùRÏDeëUöŠ:P¨·yàeý“ºBâtQ'8?Úê1¼ DR©GïqÉqå•Ë{lÙÑtõ×–ä.½æƒïá¨ïæI&ºÏFyªß¡÷î$ÖDÞŒfu$컑â|ª>aÍvÂ,ò-ZÏèûª'J^—†:o&ùV_g—pq“ÚCºŠ0ÓýÒZðD;ROî3ÄkÝÓ™Iƒb°`°`°`°`°àbÆšç·ÞºŒPô~ª92ßÇA£7”GóߤãªsI¯SsÖ:¶zGgHt¢s”¨·ò·o^ÚÚ¾± éEâ‘ÑCîE}_צ÷¢óêÌ™?Å©¦Ä]w-»çžeI/ÒÍ«ÕñÃ.óYÚ\y#ab$~Øç@uuP\ÈGrѼzy‚¿^SÅ«:øõ¾Qg;ár¢&QñpRì߯_ùÑ–éh     ¨fu UÓ˜¾Ûª_U (ϾóOM½bJõy©ªƒ¯`RNâ¨JkWÝ*íh¿«gö,ÁºªòEgëHÔÈÏS÷pZˉñý;~ÙÓj}_+”Ä.¼R4Å"´Ò­k'üIß}2ÏÞÑ75êâ•t |h‚P v$™kõ´ô|ûD‹Û#éSO-#Œ¦³ÕÌ)ÞNùÏÁ‚Á‚Á‚Á‚Á‚ÁÍÓšM4—´ÏHGŠ~%•u=yr™ùª²Ñêì~%7ß¼L{Ûõ»èµ`ô­³·WÓ+ëUû¿hv[3€:ªã‚’’³¾·~ýëËÎVD¨Ž§Ÿ^–DŠt4TCX=6eé·ò #Iè Ã_ûÚ2Ê™V©*½Ï§8@ÝoçB{GÞÆûÊÂëFçvR-˜TäѬ𾱛r<ò|½¯ˆ$Ž.Eüî‘” O½&<ù[ÂŽÞܲµÙüÇÖ‰úxöýó`Á`Á`Á`Á`Á`jV×Q3Ss¸Ýî¾{Yqû¸uç;V'æç¡"WÖÚ!Îó¾ôó—_^¦}@TŸ¡®¡º]xžÎŠò«ùÒ»ë ÃÞûæhjÐ|®_Ñ<é–žt3¤_Wt&üRùÕ¯.óªzô^OxÍ5Ë|¢WØPVC’õþ¶G)©¿1ÕK÷Û+Ô%Q;Ê’{e6ß[Ó×?ö;Ò:Á|Ÿ¬HáWŠÏS÷aI×*.ª÷,,,,,,Ðܱ>_ª £ž¾?¦"K¿žòZ7Ý´Ìk|i¦Xkv|;õ…¤9 ZIoGï·5²´k 'y‹?ÊCŸ¾ò$}”Ægô¼fe™=–üƒêéêõS/û®7ž÷©§ŽB>RDßÏ»Æ{Ï–ëFêhP‡PÔ]ß›ÖéFößòmRäSä%Döyaå`¨Mz­®yoYìÓ{ï]¦üùÁ‚Á‚Á‚Á‚Á‚ÁÅ:~xÙ‰Ë|qÍA'¹?ͪ¨Ÿé׾ܿ½zåjZGúß;øø®1¾ǾkÁtT}¦/?4#–hnäõGþ]žt†}÷LŠ(ÒzÔ>#Iö³¿¡û)¦(°zEò½¥è‡Ÿ'‰b³Ÿƒ4¾êç˜^Ç&å‚ú5«ÏŽbV>;œhRü| ÍŸ1¦x)Õš     \ÌXÐGõÅ—õ·¹¤Ëåzô‰«°Ž[nYV߯:ˆ¾N½'IrÐêÉé¹ä™8£=ûÖµ®+¬ñÔ'Ø#lªov°ßR?LÑ!Â}_õã{µ$ØAøÞWºúÛªÊ)íDêe£Zp¯¿¾ìË_^¦«•¼M¢<¬½×ÉÏû¿û~©îÎç—)6EØA»DІÑïÒÈø(Y®&M¹øúfõ“¥x2uòq¼$ûïGɳ5üxêS,,,,,,èXÐs¹ù¯­ù,Þ%—,;~|YÏØ¾ðÂ2Ÿ+,¥ŽCy¤÷¼gY¯©Ï{¯Æ:[UúäzwTKÒó¿þÒWé[¤F«¨*|߇çÝéëçåÇufÓ?QVñ»)¯Ó¨=°´cíxÕÛ     6ú|?“û•èµQö¹3?ëó_übYýýþ÷/ûÌg–Q”Æg±UýÉW÷Ó˜—ß®_¼âŠe=wãß=u(ïT;î¼ .å¯s¾«WËU”µ z‚9S‘fr=Ù^…§ë+aè\úøÇ—i>Ú³”ý¸éÜöUWy¬ƒ"TÑ¢‘÷q#É|Ht“î?ÖyBùq¯(è1’:hçÌè\RàcDƒƒƒƒƒƒÝ#Q”€t|6§{¤~†ž?­o~á Ëhͦ’qÆô½‰*qô‰?ûì²®Û@ß×®|š­;ÊZ3Òy : Ò4K"EÊNx­I¶”"”mL檣t¦h®  O|óÜx]Dý_Ô Ö×y‘—ðºþiR}¥²;rœõÜ성¹kÔ‘¸š>C\³Ç5]¹”ïöúœ3¬cR³e°`°`°`°`°`°@cDúöAR»ÉûIÿ»®­³õTãšF€¢U±Y•TG£ýnH©Û+'µWù‘páüÊõk¤sJû3íc•ë-øŒªç úª¨äÿ’¸¢å7s¶i &, Ú‡$zbš#öÚÅŸñ(îDñaß;ž"Ì}Ÿ©ÜfÊ/{EÊΓ·ï«ž:Ý(žzµÚPõ¢ç{ÏàŸZZëL.ø›G·V]V5Ö:X0X0X0X0X0XбÀgpˆwç±€*)T;Î×zÓÌìž:SЛ¬V¢Ñ›©ï—±¥QIú³èS+vî™3Ëú÷5âÙ³ô¬éד¨ÔéÓËr¿JuUIv˜ú«–<¡Î7ŠœtžƒŸó]…´Öü^%éeOQ,ßw‰j6=Ç’ÐG×,uMòªù¤ˆ71L|‡/ïÉý¨*s†bïÊ]§½“׬­.`ƒƒƒƒƒƒ Pßjª£<¬®ßòE?ýé2bëÕÙ®ºj™ÏQΗ˜TZw¯ïƒº²j ‹x”GÒ›Ãû:WéÞ†˜r”Ý£ž/ÄèëgÖ,že깑9†R¤È+BSäÁǯ(ÛNžÁ«OôNÑWò>:ç¿ï+þ<›”rôK$¿Ý?׈M¢ËAU}¥>°~eålؼßnÒ™Ô¯;½êµ:X0X0X0X0X0X ¹cê‘ÑùŸ¤&Aïæ¤SÝ=s÷9å1>ðežÕ¦³Hyžz%½’ˆÞÎTIx߇Ÿ¾‚Æ£F?s±vo¼qYƒVäQÖRñWu-|½÷¨¹B)ò]?†!E3È—ú>Œž›ª+ÔWº)ׂ®r•ôj“)E™üoQÞŸž)Åg’Lºç¢øH—çxª×ܦ}/=Í>'•Czæ´Z      ˆSªWHÙUBÒ© üK¯ýï¾Ú³þèzú[³z³]Uy÷‘#öµ`ô,mê`ý|S+ýðÊ:©ÿ!~`òîì«Àt½“ú®®¯]¯ŠºšzÏOµ?Š’:•MAÛG’H]ÂTÌëý ¿?ôsØ×Çy÷zü.…vD´'$%Šçä±P¿!?Oõ³´?ïw=X0X0X0X0X0X ¹c¯éÔ¯§täyd)(‚Ôßwß½ìóŸ_¦Šm^ï—âµú¨¯%½Ñ/ú·È}pJ û(óHÏ´T2(žPH¡¿èŸ¸¯6"Â$ÇçW"u¥ýùpZ#Z‘G÷Õgí%ˆ›šä÷UM‚P€Øô‰FYiFy®‚÷ÿ»ÆÊ’•E O­ùn5ªâ9Ÿ”û¦Þ7Ä’õ÷ëUqHq"©M”Ì      4F¤ãI㦫Uó\z/•µì#êÔ2ý-]¹Ô;†2JÊÊ#Í=ÿÉÑäŽ}÷ªã£ø€çâz¯E±úþ 7,£9à{ÐxíhßïÛ#²×H”toà#“ä“ÉÃPÆ6ɳSWJUQHæ•÷ä‰Zµ˜ÑæüD[žžÍI_ Kýz}9ª…¤|z÷“Šû¾ß+I¢®©Z4ý_      (wœ(ù·BꜨ]n¿}©TÑ|«Ï«§ƒuë: Ô«bßêšñô#œû@ÉÞÛ]c#äÏ?üáeÕ“%ï˜t™L:}û¾êžõG äDÙƒº ú5K¾‘ªÞúz…FÏ4ðÚ ¾JóÝ9×—ž !‚gQ68!²Ž)ïi®¿ŸY;êÖñï,»úêeù˜Ó,õLf»ö{à„Å1X0X0X0X0X0X X@jlÉLH®Gße(³ì1Åó¬hÓŠóò!>st0¤ð þ’×õÚÎ>¾tòä²]kåhžSTÇû„_|Ïô¼*Ê£ Ý…÷á^¿…T;|$*ÑyKt¼ÂI¢SMÑ<Êàûœ©1z4WÍ@b PÝVáhÉb_$1=åÃøK#ã£sý.ÞñŽeï}ï2ÛcÇ–õh|!Öš      øúeúy¯ëùiɺ®ïÔÈ÷gýè£ËuYßÞ3-}”ƒz‘F¢ëqéØªÇ yEvú»f×¾H*ÅôûKú³{Oî1ˆ|cÂì¥ ~âc5ò–WkRîO#0§|¶7÷9>“«g#eK>’æ#uÜqDz‡Zæóé^“Pë³|ÄÆó½PnŒgÛÒóÕ:8Rá»lóüÖºÏÓO/«ù`Á`Á`Á`Á`Á`¯5KÞ»©Æ'ñK”_ó+ן!Ç#e¥zÏÏÍåþŸæ­× ®ï”*8ið&+Q1¨÷ÎKté;9ñZ|‰ _R•k&±Ê¾âz¶Ñ#ñ(¨/¼ï_CñÒXK°€~×Ç‘’*EïüÓ÷8K*š¾K‘ßyv, %Ú••_õ»DŸ%O¸»ÊÛO´e|<öºë–      Ðü÷oÙZ/O5,”µéßé:u>¢ýÜõK³½¾_a’ÿROÒcË눑 a“rb}¿!±Š‰¿Íw=šx¤¯ ¢ª@ÊxR/û>+hçC}FôÍ=ÑÜÓ«òýMrñ;¢D 1éhãÿ/õ ¢hž¯öòç=Kú4QLæÎ;—ùƒóx6{__„³ôL½²J‚b}Ä      ¨ÖÌWâûžq~­õ‹Z‘MóJß”iþhÄÉWjtïׯJñÅ{Ñ>¯†”y¤ &RS¥ŠbïNµšýê¦R«·o^ÚÕså=:“ëññ(­#¯î1:É&ª >Ãîy¡~íPER*K!’zÆ„ãT zM¿‹ ŒªV®i¼Žž vÈ%\ö(L< bƒÐ\õš!øÃ2š?}íû     \œXà+Ç©ŸÆœ"N»²OýüQìÕ¼îœ_}ô®GšÛ‹y#E5¯>ç+iÅ‘×íÿzÕUË|·þ¾üòeº²èîÈS%UNþû^Ñ®_9©2z=sêúDqQÒ{ôïûÊ‘öq<¯eG•b»ö%]š±„/wõÙð\m¯RŒÊ'žXæÙ/ž!ï«Õk=þø²Ï}níR(ªI;®¤*“æÉ`Á`Á`Á`Á`Á`åŽ)«¢÷NÝßòú1ê-HœRª€ÓJŸ$ŸÒíSŸZ¶«§=˜Æµ×Cö=µ=ò’^iäœXíd”Œ°fÄÔoЬóÌçDõÚóQÅ•¤’+ÉÕ’jqRë—Tº%Œå$šáÇ6QÉ=j¢;§¿¨ÑšùêaJYâÛß^¦×_*Ž´WìýyIûÎk˜Ô "L쑜äYôߺì²ežoÜ=ü`Á`Á`Á`Á`Á`掉=åYj~ ê(Q¯Ÿ3¢N+Z9NÞD)¢ŸÿÞ{—yöfŸ‡‡á”ê]“†°¯Z¢îØ÷£(„×—£gM1¯>AÕL»V´‘¶F¢k‘äÁ)ÓGWN;Šù¨ Ï¥&¨DU‡T¹FÝ9=Ÿ$ÁVß5•zMzm=Ï^ðÌ^¯8M§sÀs<:ÔwJôÞÿuóï[{å•7·æù “|ë[—}ö³Ë       }ª$T~Ìk Ô7{lYÝQî¿þõ²žß)£ 5å’Ì'Ÿ«ƒ´8v3:®WÌHz‘'Ù¨^§–÷—ñŠsy÷pŸ[$|ј§F/)©#ŸD É'wÝ0ýuŸ%¤¾´_úÒ²Ó§—©V¼gGhoYêëµßi§áñWw¡ÄaH:Õz½;,Ï<³ì¥—–ùyH>çðݯˆá@u|ŠP¯½¶ŒÆy°`°`°`°`°`°€jÍ´¢AU’LMÂaÓ8FŸ“õ>U³®þî÷ÛU¤úÿ­+ì~éü?’~‚¾cU£(²hRމ6uÒõðÂïI’nì¾ë:ùUZ³^·-aAû(¥|öì¤Æè9v»þúe´¨5¢;¨DñŒÖu¿ž~åõ‰r‰)EùkŠP”‰"Æ´¦*_¬{ËX¦Õ õÉñãË>ùÉe~FåÞ€öŠù íë½²äT×6X0X0X0X0X0XàsÇ”Uô¼/Š,ù1Ñþtª5Wóª"E=oÛñ¢îW³É èl÷±¸Ä—&ÿ굨£Ï’ª†çåzÖ¢÷±äOüJñYò®tõ½DI'DY¾}k¶Ñ3½=¯X±Lë%Iõ‘"oäaüLKú³ëÞ†)I|›žþóÏ/#õ•œk­g>sfYéÉә󲟽^sC+sûL,,,,,,èXà5o=.$e’œˆÖ›wÏOxA}(Ê.”ÃkÛz% òH^aÀ÷.9ëÒó höÇÀ+Šè5P¢D)N• ¿HPU Õ7*ë˜t½Ö™Žjáå——U®S¯¹¾S]Wzžš)KßLײv¤ë$Î*ñ9)¯ÝãKÞ?ûØ5e“so½N Ú ê0{E¿ ÒØ­¾î!ëi     hŒ¨÷VзÑþ¥o¾ÊX«¿kF&—ª9å¾B{MV1Q–£9üó:zéï(¿’]ã6 ƒ´ÏÃb¨æ1¢òÌe•ÝîsƒöäÉË'÷8X0X0X0X0X0X Útú&¥Ý–;Û“:>Ê\~tîY¿Óž/î,Ó³•½Ýß÷ý{值Ú±Íc[«HšÏ±ªun0Íœ$ÒâkÄòª1¯—tP"¬IrpT£GºÔ#©G–4O§ÑòÀÔ1“ö`ÄúxõÕe¾#j,ÓøÔLÓøCaMýkÕ4ùŽ«¾ ªîRH½YŸ¡¤"‚â>EÿÎÖÞ2ï"ªGEöÞýîe/¼°Lg#©Mªõèßm·-,,,,,, N)ÅgôíøÄ‰e‰ÊÙ®GùùþÔùu^ÃöÂ:’¬=éÙz7ªiòy¨¤«¦ÿ~ÂvÓõ˜cY‚Sž/Z^KÕºˆí鹎Ý_ie¥êJÑ9@ZÍŠT­Ö#B¾ Ï÷íõnÊGíw÷›ß,«üu?[ÿÄ÷‹O”÷¼æ!ñf{6ŸbJQôlX{ôÙmïÿÕ>ùä2å!PÄRŸ¦VÿÝr˲Á‚Á‚Á‚Á‚Á‚Áíq™hçö{ù§Í}[ëgÖØÑÁ´ ú<¯•ûÆË4Oºš²}àK­¥*9õªª‡|Œ…Ó÷W"Ž+éºjôïÔÚ!f²"—0P¬L½G­VŠJiÔ7ax6µÞ;ñ„%ó¤6v×\óa|‹Î¢¯|e™gV¨Ö"]ù`Á`Á`Á`Á`Á`׬ε=Ë®˜fGiéïAçö *<õ«T·’¨ÆéÏã*T)æ™~~>ûê3ÅĤ²Þw;% òkP¯­?…Ž¡çÑl&E¨ˆåKêŽ5‘«Ž“¤¯ïëÿ·T×jRߨ¤ŒÿD+IIwZ#`9™¢p¹Ñ»¨x¬ªÕé|P挓{\ NŽïíEŒ¿ß,,,,,,P ™ÄS¢gÑs‰Å>° W‘Ú_ÞY3VÔ­F£j—éÞ÷%”Iâ'ôŠóΡ齃_O‚ýsõá}žSµùvÏG¥È ñ=— áP¦»Ÿ³ÏºÎ%CXpÝuËúL®ZÏÑûŽ?Š’¤a¨’×\³¬ô1ˆ%諨|7sï¨K{ÞûÏk’S$Îÿ:E™ô )EÝ|ü\Õ8žêúÒ£°>)ïc©>H{9‘&$)x}oÚ¿ù§ü¶·-»ÿþe§N-{öÙe´"(†©sŒ:iÒLHú:Q/Wß5ÉwϤ¬úÁTïtÄŠ‘ÛgãŸoþgkÄÊ&^„ßË      $Ú•£Þª~x™rêzæËw*9ÿY ‡¿ž¤c`Ò+Ðç(=gU«{(ÖDÊÏ^ƒ²ØyVt¤“¾ä^³Î+o“¢q!ˆ‡©ýß}tBkº¾:Uë»ëàQ¯Ì$ÎFZ±ÕÏ\Ú7Ý´¬þ~ä‘eú[ùñ»Meêªé5ëìMöTMé«Y}¯%_Ils=gaAͺҎø»Í¯·F|Ýö‘'D,,,,,, N)e+|µQϰ(:ç§nŒûöùäÁú¼õµB¾þ½ßѯ~µŒx¤Z#æ}£ÖìSLI+w|¼‹âþ~söç¦&½oHý˜bqIWP‰õëêÓ¡X–Ǧú_5+èYk¾Xyž•óí=éyù.3‰f  yfµ¯ü¢Ü´þÊsÏ-«O|pa®ÎsÒ'ÑÜ1Å$“èÅœûÌÑÎÁ¯…Á‚Á‚Á‚Á‚Á‚Á‚ ¨ž]t“®Ü‡afžÿñ"[ ™Ó»c':>ïF‘¥>s4†ã;HÒÛ4­ô䛾¢"Nò+‰†­ÍÓ³S¯¨ñ Ÿ÷'E52ù®.‰:EŠôWt«ævÿæÕW/Óÿ[gî¹câQW¹Ç0u·Óq'© ¤§Sw ‡ª¶ë× <$Ýyõõ¿Ú¼±µ¿ß¼¸5íCäý ù4åf<ñÄ2¿ã"5X0X0X0X0X0X XŒ°æÎºÝzë2_ó~4±š£<U7O»súUŸäI}ù<îä•¢}7Q½ Oë;Qú3S•î…f ¡žÆj(«jÔ¹Rã4ÎÊD%ŸÖ}ù´Üyç²þIéÈÑì%foõ¯¡jA_W˜ÔQêy’§L3_÷EÊЧÜïQÏàýVìf7ëW¢b–î.¨+Ù`Á`Á`Á`Á`Á`bAò–]Ÿ¼óË*Û¢Öj„¯½vÙ¥—.;ÊŽ3ç–YªúTúŒè­™ê¤È? N=ÏÒ|Ë•~}E’gÛ& ½ëãæÕêòÈ•¯òYTŠéyF1¡’öuòç!Îd'P•ßcx %ìöXßý³~?é‰I1:]¡º+Ól¾^¿Îœîá#Îî¾”XÊ^¿ÝG™ú}      h­™×/ò %‡UA£õ)ûóÿ>sW÷~òä²£¬5#n§V‘'q’>7¨gýJRF+Úwñg·IbSþ½˜ü^‚P^Î+¤éì¢L1ç¾û–Pƒìü©¸ô¬†¤×$õëôO§¯ ìú¿¯ã»ß]æ=UhvŽî3Ï,#6¾êjG0ÏCðÚwiìÙçÁ‚Á‚Á‚Á‚Á‚Áù÷Tz ½ÄÑçvéú?ò‘eGÃ2íY¹>ߨÅ{9âRz]ß=<éLäëé¼§Mê\’¾ŠSÔóÅs𼚇WŸ&†pA¢çR¯„à5Lr†Æ¾uÚé·ú5׊¸ýöe·ñL]?ÎÄOÎ;xRGÑ›o^V—öŽîo½Z»îaÔ'û½‰"H× §ý¼Žç`Á`Á`Á`Á`Á`AÇ‚ä­_Ç\{ºÑß%›ÿÜZ¾ö–·Õñ¹ñÆe?øÁ²£\ ý©U÷ÀRî*|ôº ´r©gºŽeÖ|îXG2ÁZ¡I—Æ$ëçqÄk$p¤£â# ÷ózw^#N×écÓµ?1ê“ßýnY}rÉ%Ë’|¨Ž Åå´*­¾Ù’8LŸK5+~ö³eº½þñH·ÐwM¥.Hä¨SÕš      PE‰÷'ú[4à žzjÙáßj‰ÑW×ð¸³k—Ì›´~§ëN(†&™VŠxߘøUâÂQÇCõuS’¾öI7%ÒÐqðÈB ÃDU¯woÔˆAy•úí£úoõojŒQ³ë_OœXÖ¹ÜçOîXŸ{ÏüV WEJ?ö±e‰9UhRTÊ÷ç¥(²,ú/ö¾W^›Qçjÿ»quhO¢ìtª…¤‘Qï4X0X0X0X0X0X ¹ã\/WûAâ˼з•ýÍ^}ÊÕ¢ÆÿhêÎ*"TÏ]ç ñµZÜÇ=’<‘¯êò]E(GLoèþÉRNÐóQ“œ2!c¿w_÷D¹KÊò+˱W-Q}gœúÈ›ªUœo]œ(~Ò?§F“Ú¿‘‡W ßSÒó4||¦_gE·ú'ª3CóJõÉ“ÚFi•¢ÞR^†xDƒƒƒƒƒ3hŽÏóëê]éŠ+–Õ7+CJê ^Ùi³1é{xv³ØT‡’T‘še…|V”æ‰~'çaR+aRßC_”%LXÍz_¤e¡Š^TI Ò:J¤~æë‰èWt$/¿|Ùùyô+õÕeô±»ÎHW4×™OUW €ÎCwäy³~OU×súôMg^äû’®2¿Ó,,,,,,Ð^6¾ÓºZŸ½ýóºòƒUÇÞ'3aßX@ZÄùìò‘Ê/Ó'Ê  l,±%“ßÚU‰"ILÌa®žŸzÍh÷vß³‰öTýPcÇGAù+çÛAœÉê/©X­œ¢ù_‘^Òx¡­‘óŒ_ÒÞ!Þl®ôÞï‚X }L 5H?Pg]Ÿ«³9³5_Á:X0X0X0X0X0X@¹c]ATï¿«ÎðÑ¿Ÿúw·£Y4·½×M”(r\ðQ¯WLõ>IGKÒìò1%ú>y{_yçû¡Ó*VÆ)UNÑ' ß’Ñê¯ê“¾ËÚµ£ú¹â”&ˆß½¢æduåŒeÕz6ROti/AjÄÿ$Ö å|I­Ngã÷¿¿ÌŸm°`°`°`°`°`°€4(ȧQ²”hÜíÚŸ…¢1=N˜t„ñØMþ_ßÊéM?²>ç5唣«½)õl§N-»çžeúÐ2Ò¡ô> ±ïã—¿\Vw¡¼èî ’yKs€f_?Wxý_įÐ>³^Éœ²Ãã*^¿Ò£[Ô—æ|Rm§QÄDÍc°`°`°`°`°`°@9¥t_”këJký ûÿ:ú~ôçóQÇï¸c™Î‡¤+•è³ù7Y_›C<ÊQ4)ÉÛR´Jç<ñc=˜¼¥Ž¶_Mz§õÍRÐü²Žùf³L½¨ª–QÜ€ø“çjDusŠÎŠ•ÿ°yjkÇŽ½¹5Š+&ÜßÛE£²ºë»2mý»Ð0É&WmZuî3¤_IÕ¢–«œVáÕ£ït°`°`°`°`°`°@cD:?½RÞÝÑèK\èq'Ê6éxžd»H»°Fý6uÌ{!yÅ]½†]5ëTëÎÐ#‰Ö™Ž­D]ÔŸÔÇCï´øƒÍçnUyê•ÌÕRÏǾéŸt…@¯[Þq¶?êãã¨uw7ܰ¬²ù´ÿù³ÍÿníÊ+ßÜÝo²£œx±sõ^|]iƒƒƒƒƒƒ#"mÞŸüd™®Áú×R‘úô§—íªùp¡ä|Æ©Ë󤾦Ïk¸’ÞŽÕu•äøè;ôVî»4z¶[Ò%Ó+y_D˜Ç¦HÅ.é§“g÷úu**«õBˆV>rßúëtž>&?¾Œ™òÂåëׯûÛd®*¾ë¿¾å-ËtoÓOKÑNõÍ®a^ýR{,·ƒþJ?      ´Ö,éî#ImþÅ|PƒÞjIAgfe©t¦ùh‰ê€íªƒA×L[?'¼ó@‰§šè`$uIä y‰—¨Øácõ,T1¯óUÍøè÷9Þ3$>MŸ¦ª¸ûyBº j?ÑèV¢)f½òʲ¾Öô‰^ºy}k¯½öæÖH‰šf¦ß_‘â©RPtQcDƒƒƒƒƒƒ«ÅÖÕªµäzÅÙ¾sÇ^Êz‰’§ê~ƒêßUÏv×H—¾S'ÌC9^·²“-¡Ú"ŸöÚbTeF<[Þøü#U™QnZÏVÚ²sw͵½÷ЈeÞ/2ÙEhu§æU= ^ŠýåíüãeĂޕ¿­kŠæ!)®¨B>Íí>ƒƒƒƒƒƒ 4ák‹ˆyÕW¥>ß9|ê$~â#^…¼yoÊNzÏ@ª\äÕéÊóž5”õó¾K1‘Ä÷O§¼d)6W§·xê{®±—sÅÍðã™tФè‡zÿ¼¼V!)·ÁWMö'XXлmæÝ—h¶P•éÝQ6Y½4±¯ëÊë.      ´—g×1!óÙ½? ~˜ÿ«µùþ šVŽ-)ÙúxK¢t§¬¹¤¦Ìã½AûÏ5ÿNYlZƒþ•©gP_­¾Eý±ûÚ©(«çÄêª?W3¿ß×]w-Ë; Ñþ„Fžè·ÔSËš²É”o-, hªÎ ŠîV”IŸ#=}â“Ò¢F÷12X0X0X0X0X0XðosÌ1ÇsÌ1ÇsÌ1Çÿü­£!endstream endobj 230 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [150.611 440.739 157.585 452.599] /Subtype /Link /A << /S /GoTo /D (figure.4) >> >> endobj 231 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [143.929 417.386 150.387 429.418] /Subtype /Link /A << /S /GoTo /D (Hfootnote.7) >> >> endobj 232 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [300.168 333.7 307.142 344.539] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 233 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [444.908 287.812 471.787 296.529] /Subtype /Link /A << /S /GoTo /D (cite.HilbertVisualization_first) >> >> endobj 234 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [151.016 263.902 178.881 272.619] /Subtype /Link /A << /S /GoTo /D (cite.PeanoCurve_first) >> >> endobj 235 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 0] /Rect [237.247 263.902 262.193 272.808] /Subtype /Link /A << /S /GoTo /D (cite.HilbertCurve_first) >> >> endobj 236 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [295.341 202.193 302.314 213.033] /Subtype /Link /A << /S /GoTo /D (figure.6) >> >> endobj 228 0 obj << /D [226 0 R /XYZ 89.292 765.769 null] >> endobj 229 0 obj << /D [226 0 R /XYZ 131.987 564.225 null] >> endobj 240 0 obj << /D [226 0 R /XYZ 104.528 161.006 null] >> endobj 225 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F7 92 0 R /F11 144 0 R /F10 135 0 R /F14 239 0 R /F25 109 0 R /F24 113 0 R /F91 164 0 R >> /XObject << /Im5 222 0 R /Im6 223 0 R >> /ProcSet [ /PDF /Text /ImageC ] >> endobj 247 0 obj << /Length 225 /Filter /FlateDecode >> stream xÚMPKO!¾ó+æ(3¼v=mÔ[nê¡®»¶I›Mµúû Õ 2|/,/tÖô’5ÑŽN€C ¡j=³'ÍÚ€Õã1ÁÝ,66œ¾æêEðm«u=ò˜ÐÄH@¾3±KߟåZ¡Üs}|óöÉ5*휓ñFiïÌ»ìÅ¢oª¯sHNÜÏÕz9ÉñGQ'ÇC‘Uã> endobj 224 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-HilbertCurves.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 249 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 250 0 R /F2 251 0 R >> /ExtGState << >>>> /Length 252 0 R >> stream q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 61.20 205.20 m 97.20 205.20 l S 61.20 205.20 m 61.20 198.00 l S 97.20 205.20 m 97.20 198.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 57.86 179.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 93.86 179.29 Tm (1) Tj ET 43.20 223.20 m 43.20 259.20 l S 43.20 223.20 m 36.00 223.20 l S 43.20 259.20 m 36.00 259.20 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 218.89 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 254.89 Tm (1) Tj ET 43.20 205.20 72.00 72.00 re S 1.000 0.000 0.000 RG 61.20 223.20 m 61.20 259.20 l 97.20 259.20 l 97.20 223.20 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 54.54 217.36 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 54.54 253.36 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 90.54 253.36 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 16.83 0 0 16.83 90.54 217.36 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 43.20 205.20 m 43.20 277.20 l S 79.20 205.20 m 79.20 277.20 l S 115.20 205.20 m 115.20 277.20 l S 43.20 205.20 m 115.20 205.20 l S 43.20 241.20 m 115.20 241.20 l S 43.20 277.20 m 115.20 277.20 l S Q q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 196.20 205.20 m 250.20 205.20 l S 196.20 205.20 m 196.20 198.00 l S 214.20 205.20 m 214.20 198.00 l S 232.20 205.20 m 232.20 198.00 l S 250.20 205.20 m 250.20 198.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 192.86 179.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 210.86 179.29 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 228.86 179.29 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 246.86 179.29 Tm (3) Tj ET 187.20 214.20 m 187.20 268.20 l S 187.20 214.20 m 180.00 214.20 l S 187.20 232.20 m 180.00 232.20 l S 187.20 250.20 m 180.00 250.20 l S 187.20 268.20 m 180.00 268.20 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 209.89 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 227.89 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 245.89 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 263.89 Tm (3) Tj ET 187.20 205.20 72.00 72.00 re S 1.000 0.000 0.000 RG 196.20 214.20 m 214.20 214.20 l 214.20 232.20 l 196.20 232.20 l 196.20 250.20 l 196.20 268.20 l 214.20 268.20 l 214.20 250.20 l 232.20 250.20 l 232.20 268.20 l 250.20 268.20 l 250.20 250.20 l 250.20 232.20 l 232.20 232.20 l 232.20 214.20 l 250.20 214.20 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 211.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 211.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 192.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 210.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 265.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 247.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 229.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 228.87 211.28 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 8.41 0 0 8.41 246.87 211.28 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 187.20 205.20 m 187.20 277.20 l S 205.20 205.20 m 205.20 277.20 l S 223.20 205.20 m 223.20 277.20 l S 241.20 205.20 m 241.20 277.20 l S 259.20 205.20 m 259.20 277.20 l S 187.20 205.20 m 259.20 205.20 l S 187.20 223.20 m 259.20 223.20 l S 187.20 241.20 m 259.20 241.20 l S 187.20 259.20 m 259.20 259.20 l S 187.20 277.20 m 259.20 277.20 l S Q q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 47.70 43.20 m 110.70 43.20 l S 47.70 43.20 m 47.70 36.00 l S 56.70 43.20 m 56.70 36.00 l S 65.70 43.20 m 65.70 36.00 l S 74.70 43.20 m 74.70 36.00 l S 83.70 43.20 m 83.70 36.00 l S 92.70 43.20 m 92.70 36.00 l S 101.70 43.20 m 101.70 36.00 l S 110.70 43.20 m 110.70 36.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 44.36 17.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 53.36 17.29 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 62.36 17.29 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 71.36 17.29 Tm (3) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 80.36 17.29 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 89.36 17.29 Tm (5) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 98.36 17.29 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 107.36 17.29 Tm (7) Tj ET 43.20 47.70 m 43.20 110.70 l S 43.20 47.70 m 36.00 47.70 l S 43.20 56.70 m 36.00 56.70 l S 43.20 65.70 m 36.00 65.70 l S 43.20 74.70 m 36.00 74.70 l S 43.20 83.70 m 36.00 83.70 l S 43.20 92.70 m 36.00 92.70 l S 43.20 101.70 m 36.00 101.70 l S 43.20 110.70 m 36.00 110.70 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 43.39 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 52.39 Tm (1) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 61.39 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 70.39 Tm (3) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 79.39 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 88.39 Tm (5) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 97.39 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 22.13 106.39 Tm (7) Tj ET 43.20 43.20 72.00 72.00 re S 1.000 0.000 0.000 RG 47.70 47.70 m 47.70 56.70 l 56.70 56.70 l 56.70 47.70 l 65.70 47.70 l 74.70 47.70 l 74.70 56.70 l 65.70 56.70 l 65.70 65.70 l 74.70 65.70 l 74.70 74.70 l 65.70 74.70 l 56.70 74.70 l 56.70 65.70 l 47.70 65.70 l 47.70 74.70 l 47.70 83.70 l 56.70 83.70 l 56.70 92.70 l 47.70 92.70 l 47.70 101.70 l 47.70 110.70 l 56.70 110.70 l 56.70 101.70 l 65.70 101.70 l 65.70 110.70 l 74.70 110.70 l 74.70 101.70 l 74.70 92.70 l 65.70 92.70 l 65.70 83.70 l 74.70 83.70 l 83.70 83.70 l 92.70 83.70 l 92.70 92.70 l 83.70 92.70 l 83.70 101.70 l 83.70 110.70 l 92.70 110.70 l 92.70 101.70 l 101.70 101.70 l 101.70 110.70 l 110.70 110.70 l 110.70 101.70 l 110.70 92.70 l 101.70 92.70 l 101.70 83.70 l 110.70 83.70 l 110.70 74.70 l 110.70 65.70 l 101.70 65.70 l 101.70 74.70 l 92.70 74.70 l 83.70 74.70 l 83.70 65.70 l 92.70 65.70 l 92.70 56.70 l 83.70 56.70 l 83.70 47.70 l 92.70 47.70 l 101.70 47.70 l 101.70 56.70 l 110.70 56.70 l 110.70 47.70 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 46.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 55.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 64.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 73.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 109.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 100.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 91.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 82.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 73.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 64.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 82.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 91.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 46.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 100.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 55.24 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 4.21 0 0 4.21 109.03 46.24 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 43.20 43.20 m 43.20 115.20 l S 52.20 43.20 m 52.20 115.20 l S 61.20 43.20 m 61.20 115.20 l S 70.20 43.20 m 70.20 115.20 l S 79.20 43.20 m 79.20 115.20 l S 88.20 43.20 m 88.20 115.20 l S 97.20 43.20 m 97.20 115.20 l S 106.20 43.20 m 106.20 115.20 l S 115.20 43.20 m 115.20 115.20 l S 43.20 43.20 m 115.20 43.20 l S 43.20 52.20 m 115.20 52.20 l S 43.20 61.20 m 115.20 61.20 l S 43.20 70.20 m 115.20 70.20 l S 43.20 79.20 m 115.20 79.20 l S 43.20 88.20 m 115.20 88.20 l S 43.20 97.20 m 115.20 97.20 l S 43.20 106.20 m 115.20 106.20 l S 43.20 115.20 m 115.20 115.20 l S Q q Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 189.45 43.20 m 256.95 43.20 l S 189.45 43.20 m 189.45 36.00 l S 198.45 43.20 m 198.45 36.00 l S 207.45 43.20 m 207.45 36.00 l S 216.45 43.20 m 216.45 36.00 l S 225.45 43.20 m 225.45 36.00 l S 234.45 43.20 m 234.45 36.00 l S 243.45 43.20 m 243.45 36.00 l S 252.45 43.20 m 252.45 36.00 l S 256.95 43.20 m 256.95 36.00 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 186.11 17.29 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 195.11 17.29 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 204.11 17.29 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 213.11 17.29 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 222.11 17.29 Tm (8) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 236.78 17.29 Tm (12) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 250.28 17.29 Tm (15) Tj ET 187.20 45.45 m 187.20 112.95 l S 187.20 45.45 m 180.00 45.45 l S 187.20 54.45 m 180.00 54.45 l S 187.20 63.45 m 180.00 63.45 l S 187.20 72.45 m 180.00 72.45 l S 187.20 81.45 m 180.00 81.45 l S 187.20 90.45 m 180.00 90.45 l S 187.20 99.45 m 180.00 99.45 l S 187.20 108.45 m 180.00 108.45 l S 187.20 112.95 m 180.00 112.95 l S BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 41.14 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 50.14 Tm (2) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 59.14 Tm (4) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 68.14 Tm (6) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 166.13 77.14 Tm (8) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 159.46 86.14 Tm (10) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 159.46 95.14 Tm (12) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 159.46 104.14 Tm (14) Tj ET 187.20 43.20 72.00 72.00 re S 1.000 0.000 0.000 RG 189.45 45.45 m 193.95 45.45 l 193.95 49.95 l 189.45 49.95 l 189.45 54.45 l 189.45 58.95 l 193.95 58.95 l 193.95 54.45 l 198.45 54.45 l 198.45 58.95 l 202.95 58.95 l 202.95 54.45 l 202.95 49.95 l 198.45 49.95 l 198.45 45.45 l 202.95 45.45 l 207.45 45.45 l 207.45 49.95 l 211.95 49.95 l 211.95 45.45 l 216.45 45.45 l 220.95 45.45 l 220.95 49.95 l 216.45 49.95 l 216.45 54.45 l 220.95 54.45 l 220.95 58.95 l 216.45 58.95 l 211.95 58.95 l 211.95 54.45 l 207.45 54.45 l 207.45 58.95 l 207.45 63.45 l 207.45 67.95 l 211.95 67.95 l 211.95 63.45 l 216.45 63.45 l 220.95 63.45 l 220.95 67.95 l 216.45 67.95 l 216.45 72.45 l 220.95 72.45 l 220.95 76.95 l 216.45 76.95 l 211.95 76.95 l 211.95 72.45 l 207.45 72.45 l 207.45 76.95 l 202.95 76.95 l 198.45 76.95 l 198.45 72.45 l 202.95 72.45 l 202.95 67.95 l 202.95 63.45 l 198.45 63.45 l 198.45 67.95 l 193.95 67.95 l 193.95 63.45 l 189.45 63.45 l 189.45 67.95 l 189.45 72.45 l 193.95 72.45 l 193.95 76.95 l 189.45 76.95 l 189.45 81.45 l 189.45 85.95 l 193.95 85.95 l 193.95 81.45 l 198.45 81.45 l 202.95 81.45 l 202.95 85.95 l 198.45 85.95 l 198.45 90.45 l 202.95 90.45 l 202.95 94.95 l 198.45 94.95 l 193.95 94.95 l 193.95 90.45 l 189.45 90.45 l 189.45 94.95 l 189.45 99.45 l 193.95 99.45 l 193.95 103.95 l 189.45 103.95 l 189.45 108.45 l 189.45 112.95 l 193.95 112.95 l 193.95 108.45 l 198.45 108.45 l 198.45 112.95 l 202.95 112.95 l 202.95 108.45 l 202.95 103.95 l 198.45 103.95 l 198.45 99.45 l 202.95 99.45 l 207.45 99.45 l 211.95 99.45 l 211.95 103.95 l 207.45 103.95 l 207.45 108.45 l 207.45 112.95 l 211.95 112.95 l 211.95 108.45 l 216.45 108.45 l 216.45 112.95 l 220.95 112.95 l 220.95 108.45 l 220.95 103.95 l 216.45 103.95 l 216.45 99.45 l 220.95 99.45 l 220.95 94.95 l 220.95 90.45 l 216.45 90.45 l 216.45 94.95 l 211.95 94.95 l 207.45 94.95 l 207.45 90.45 l 211.95 90.45 l 211.95 85.95 l 207.45 85.95 l 207.45 81.45 l 211.95 81.45 l 216.45 81.45 l 216.45 85.95 l 220.95 85.95 l 220.95 81.45 l 225.45 81.45 l 225.45 85.95 l 229.95 85.95 l 229.95 81.45 l 234.45 81.45 l 238.95 81.45 l 238.95 85.95 l 234.45 85.95 l 234.45 90.45 l 238.95 90.45 l 238.95 94.95 l 234.45 94.95 l 229.95 94.95 l 229.95 90.45 l 225.45 90.45 l 225.45 94.95 l 225.45 99.45 l 229.95 99.45 l 229.95 103.95 l 225.45 103.95 l 225.45 108.45 l 225.45 112.95 l 229.95 112.95 l 229.95 108.45 l 234.45 108.45 l 234.45 112.95 l 238.95 112.95 l 238.95 108.45 l 238.95 103.95 l 234.45 103.95 l 234.45 99.45 l 238.95 99.45 l 243.45 99.45 l 247.95 99.45 l 247.95 103.95 l 243.45 103.95 l 243.45 108.45 l 243.45 112.95 l 247.95 112.95 l 247.95 108.45 l 252.45 108.45 l 252.45 112.95 l 256.95 112.95 l 256.95 108.45 l 256.95 103.95 l 252.45 103.95 l 252.45 99.45 l 256.95 99.45 l 256.95 94.95 l 256.95 90.45 l 252.45 90.45 l 252.45 94.95 l 247.95 94.95 l 243.45 94.95 l 243.45 90.45 l 247.95 90.45 l 247.95 85.95 l 243.45 85.95 l 243.45 81.45 l 247.95 81.45 l 252.45 81.45 l 252.45 85.95 l 256.95 85.95 l 256.95 81.45 l 256.95 76.95 l 252.45 76.95 l 252.45 72.45 l 256.95 72.45 l 256.95 67.95 l 256.95 63.45 l 252.45 63.45 l 252.45 67.95 l 247.95 67.95 l 247.95 63.45 l 243.45 63.45 l 243.45 67.95 l 243.45 72.45 l 247.95 72.45 l 247.95 76.95 l 243.45 76.95 l 238.95 76.95 l 238.95 72.45 l 234.45 72.45 l 234.45 76.95 l 229.95 76.95 l 225.45 76.95 l 225.45 72.45 l 229.95 72.45 l 229.95 67.95 l 225.45 67.95 l 225.45 63.45 l 229.95 63.45 l 234.45 63.45 l 234.45 67.95 l 238.95 67.95 l 238.95 63.45 l 238.95 58.95 l 238.95 54.45 l 234.45 54.45 l 234.45 58.95 l 229.95 58.95 l 225.45 58.95 l 225.45 54.45 l 229.95 54.45 l 229.95 49.95 l 225.45 49.95 l 225.45 45.45 l 229.95 45.45 l 234.45 45.45 l 234.45 49.95 l 238.95 49.95 l 238.95 45.45 l 243.45 45.45 l 247.95 45.45 l 247.95 49.95 l 243.45 49.95 l 243.45 54.45 l 243.45 58.95 l 247.95 58.95 l 247.95 54.45 l 252.45 54.45 l 252.45 58.95 l 256.95 58.95 l 256.95 54.45 l 256.95 49.95 l 252.45 49.95 l 252.45 45.45 l 256.95 45.45 l S 1.000 0.000 1.000 RG BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 188.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 193.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 197.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 202.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 206.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 211.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 215.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 220.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 112.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 107.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 103.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 98.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 94.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 89.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 85.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 80.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 76.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 71.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 67.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 62.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 224.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 229.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 233.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 238.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 242.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 247.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 58.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 53.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 49.22 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 251.62 44.72 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 2.10 0 0 2.10 256.12 44.72 Tm (l) Tj 0 Tr ET 0.000 0.000 1.000 RG 187.20 43.20 m 187.20 115.20 l S 191.70 43.20 m 191.70 115.20 l S 196.20 43.20 m 196.20 115.20 l S 200.70 43.20 m 200.70 115.20 l S 205.20 43.20 m 205.20 115.20 l S 209.70 43.20 m 209.70 115.20 l S 214.20 43.20 m 214.20 115.20 l S 218.70 43.20 m 218.70 115.20 l S 223.20 43.20 m 223.20 115.20 l S 227.70 43.20 m 227.70 115.20 l S 232.20 43.20 m 232.20 115.20 l S 236.70 43.20 m 236.70 115.20 l S 241.20 43.20 m 241.20 115.20 l S 245.70 43.20 m 245.70 115.20 l S 250.20 43.20 m 250.20 115.20 l S 254.70 43.20 m 254.70 115.20 l S 259.20 43.20 m 259.20 115.20 l S 187.20 43.20 m 259.20 43.20 l S 187.20 47.70 m 259.20 47.70 l S 187.20 52.20 m 259.20 52.20 l S 187.20 56.70 m 259.20 56.70 l S 187.20 61.20 m 259.20 61.20 l S 187.20 65.70 m 259.20 65.70 l S 187.20 70.20 m 259.20 70.20 l S 187.20 74.70 m 259.20 74.70 l S 187.20 79.20 m 259.20 79.20 l S 187.20 83.70 m 259.20 83.70 l S 187.20 88.20 m 259.20 88.20 l S 187.20 92.70 m 259.20 92.70 l S 187.20 97.20 m 259.20 97.20 l S 187.20 101.70 m 259.20 101.70 l S 187.20 106.20 m 259.20 106.20 l S 187.20 110.70 m 259.20 110.70 l S 187.20 115.20 m 259.20 115.20 l S Q q Q q Q endstream endobj 249 0 obj << /CreationDate (D:20090701105139) /ModDate (D:20090701105139) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 250 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 251 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 253 0 R >> endobj 252 0 obj 33526 endobj 253 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 248 0 obj << /D [246 0 R /XYZ 89.292 765.769 null] >> endobj 244 0 obj << /D [246 0 R /XYZ 215.228 260.642 null] >> endobj 245 0 obj << /Font << /F8 79 0 R >> /XObject << /Im7 224 0 R >> /ProcSet [ /PDF /Text ] >> endobj 257 0 obj << /Length 3449 /Filter /FlateDecode >> stream xÚµZëܶÿ~ÅÂh‘]äVIQ-à$vì´\äÒ¢ˆTÞÕ=êÝ•³ºóåRôï¼ø’tÇ@?ìD‡Ãá<~CêË‹³§/êE“5¥Y\\.T^dÚ”‹ÊäYÝ4‹‹íË+µ¼ßÕü9¯[­i–%þ«—×ÐÒÜôvµÖå²ëøZ-ßË€š«åžÅ¦ÛòÈ{äz ¿k&çGÏÿRè8æV„諟.¾}ú¢²Ah›Ì6õ"'qqÒMÊÌ_ÊHl{KÜY(ìûJ¦À÷ÔGÌ#…ÔeÖäJXß_ ¯Í ÖsÍ«À÷Ãz¡ûƒÐâ²ÝŠÿ-ó ·¼b\bÄIk“Û¬(Ìb­TÖXKÒØ}à!̼TL4Íêñž6 º!“¥äa-9ð†ͼÿ¼Z[mH-7¢b/ÿà÷&·9S]I+/ˆš S‘äy"²°uB ²§—Á¨ý{”wÈíD˜êÃGSîD܇•&Š;¡øk"°Zfb­,-¦5¼»Ç°Ê¹§GW~É8߸hÏô¨àñ øcöÿIx—ÄûsØ×¼±ÿoµNªy\wYÄj÷£¼ßË^àJ?wS°kØ2ÅMøïð{*ÿ£=ø=“nä}wjR5ž”'ü¸ý÷àÓLj~©¿5Ú/¯;îdIˆŸÁï¯ðû~Ï?ZÜ^8~¼¹<Î{ÿ;‰“ªÈš¢Ã6û 2¿‘~ÒÔ%é§¥èù,ÍÚsŸÏ3wYPn TI…9i6í;.ÌÞsÇÐ9 ܆®=2ÙVx¾É•é(w@Á›ÎICéêv¥k™¥;±$!a Y‡vïÌCíº€®‹h7”3h‚½WXPnÚ:¶[&‘žs H±Gfø\9ù¥£ÝJîÔ£D£9Ñ[î¹Ó“ü­ ‘²EØå—>t®!Z<6x@Òá X}¡üꙀäjß±ûKä¥ù Ƽ}g¸½=†aÈ®uJ;Ÿ±¾ƒÙ'ÙûsÔ}±lœ˜Š¼”d>Ô@z (d¡Ý–ý®Ð6¤ôËQä‡ôƒ4Hš&f/ ¼Èw»5à³ÏФŽc$Q;\ À¦>IJuYÚå«·ó–ö‚аeÓB6Oëft3Ò¹.óåàðH¦A-2ëZÛÆÐ;Љ½±ÑÃ+©¦ß¹z¼%¡†ú}‡nZäÚŽ=N=üÄêifBp1LÍ$ñYÞ†רÉÝ`Ð@qáàì#£¤$&7Ž,šŒõaV?b;·b”Y¼ñ5‰Çc8¸tÜ€nL7Ç4†7·fq´x …]¢eçã–iÙ@£¹ìLÌÑÇ/|#ÏàÐÄá=Ž™H/¢<‡¦_$¾ïØxS?‡¡§É{8AÌd$yë9ˆ¹0ìvÃ&b¯¶1SzL¿9=‰¢M{eFI&øxՉ螉“ðoƒÃ#;?†ÉÝLls×~ïP›fáEˆZWY])ÒZ)P…R”.®¥ž€8ÆØ:Ëm!Å)ìà’õ03qi³ÆhaòÍ@õj’’×J›¬©Kx¨3S³Œ¯Dã´bQˆßÑ•wÒÿ0»Cï½Ü`òë;®<Ž­Œƒ¦ιýÛ!üðž´"EœÅifäé3냣æÍžÔ}i=s}B•_{UŸh'EŽƒ¢Ñ1ýÝ˳¢w^Áà÷/iËåùü÷³4ò>Ï2AeC/ÖÅ3DN!°^Œ*É-±‘6Ýím:$RˆCâc‚Åà½ÂT±ë¥dVä%Aî=‰à£3—öV&Ÿø+÷Fá†ôÜþÑáÇu“@×¥ÜQëD¹u¹¹§y ůõòe°- blZÐJ ŸSÒ'!TKö y@Ú0âIP¦¶"÷ú?ºÊÝHÊjf0ð4‘” –ôF™âk—éÞá$èî}ÕP·îA«1£è Ê'ü® 3’›v‘2£î´xõ0[¹ ¿.(2ËÓ‡ ›Kj?ÈÂxßǘÁÂä!"•@@x—ÞìÜ ƒ$€Y˜œ6Çim™jøYTä¡Ð:p‰ FÂ\'ÌŽgöâÄC&œ¦Ý]”¥qdå ð1æ ¯.©†µ&sÂÉU‹K¹’R ï8Ò–8¯¤Pó¡X¥gê„o„¥à]3¸‡ö¡s꣭Ãà×=Y)€Ù\\‡)_™mÈþÉ– ÷þÚy< ]Äg„*(CŸD/#œÚ35 FÈB:B ‰9´ ‡¸¥Z¾NU2ªlz¢©‹Dðgº$x'dñ‰ªž‹’¡½³Ù¥Óµ?|åMè÷ ¯“%ƒ8*¢%ã€Kîâ³Õ‘2ËVI‘`”šÑ5…îtˆaÒùãмIã|ÏcþùØ!qÀŸþ¹ª «HM;RßÐs«¯{ð¥ÇúFþœ³fzC3Å ný1«¬ÀCï„ÑTiRlv¼àµÎÙµ¾Œ ï]äƒÅ1Ì`ZѼI=Çp@‹2kª‚¿1Y^,LV*ž¶žÁ€€ýò1 Í¬àÔh†ªN#JÍ‘àÒ¹u‹½³É£ªüÞɯ|ÐOªê஘y¨,£æÍ.5ZxQÕxÎý!ÈÆ!¦‹|‚8u'ÖâÑÃp’%³öªË…ÁÜÀKØÜØ]"+’Õk;5nhkSÏM¥<ç à‹A`9Ëãàt I$F™.ÓÀÓYp‰2…DÿMë÷WÛi¬²Å¤†”°½Ï5u„íédRäu²„B‚ÂÀäÐ|xâ.ö€óµL0xËñÇ7«øºÍ]äÅ.Yã`•BÄÝå ,¨>d©8Î$¬´!¹c/äùÏ(#oŸŒçÂÅÉÌ¬Š‚ÂÇ‹U]Ý8^6“”›ä[$x<ßê*ŸÞháxG ¡?½Ÿx¡šHP)Žr7y‘Ü÷® —l‰m¨}ü?P ¾Íàhw¸2Ulì‹ôDË(;»±è#ª€pœ$†Â;ÍÕµ,1Ee”ìT@rJ À4UL§Š|:ê&FƒÈï|ó¥ù””ù-Dþ^0sÒ•ç3ñE”K7‘¹\…CÑ#çM6©‹áXɘGÈtfÞï,<ï¤@€—ú7×”7|Ï0oôòÆPi‰™àšc ¶d‚fx ¢D>S % ÝZoÞ P øç„Ë¢ˆ§±%KN=“Ì$g6 ðCuˆaå¹»!Ìhyð?Á¶ˆñ€-ç§„BS›<‚¬ÀÆßXÀ3ÀxìoÑ¡#BWSÓó™5¾Mò#¤Glkùß\Š…Ž*&ý¶êiYðSržŒG,5ÌœsÌ@ç@@¢S@‚Í¡ZÄÎ‘ß ±ŒD ¢ù[‹;6Á©ª"àÃ*S•cÄ7y®'’rÏG«é½:FF ¥1ãsÂGíÏpŲ¦§‹Ñ9û­CÜéñnŒµŒ‰oSÃéL«½B›.£#'SÖÓ»l¤Š 0`èÜ1]>PÛä›)^L³ñÅ\rñ7úrEå™Ñè÷ÓN0Ç;VAQP—“YUÆ«Xß:‡„ÕSo,«ôš$`±r›:3¶IÔ{éTáŠ_3·«.ÓD;¾çÌ“TÎã2ðq;Ràuþ£:cæntVÕ\z½vIÒ}Á±ì‰P0£c/’\¶Òñ‰[\¦@ϳƒzß±>ªƒü¡óµû 3ÇÔ7OÇÇ—µóneD=—å+¡pÿÅ~’”:œ|>oF·Þ&9?ÔÉ.h¨ä¯úöèÇ0T!Õ!vcqÅtéÙO蔀'ȸÆäZ{|iWú[‰_¸ö¦6Úµ_ ®ƒ¢^¤Üt ÎOû€àúœákçÍÿš™¼Ÿnef«ÅG*%ݲöæ…Ï>îŽÅÇ~:@/ëÑa64ðWan)d>Ÿ¹«ßF¦&¨{—BVIVÑÆ”9iÚèÙ*=Í&¯2(§Oe:+k÷]ò˜[¦—Ù¥´²No¢›q…nT™å¥M”þzÖM5ľyÃ,Yªð8Ü&oEŽG4è6Ôßµ¡L̽<Ü7Þ6¤ÃÅî–™Í(PÛ:Óº<¥@È…rÔÌprF\¹*2 ›Åœˆ|-W@•3®ÿ8À—°o#£ž¹À©­ÿ0B×oøoÎWòß›Ý'ŸÙä;:®…ÜסÃÌ'8–qÔ]—…/_d.ÂQõo;H¶™Îšb]„¯’ìRÛrÆô‹&³es8A«Û8[Ò%œ‰";bSÛbã£Àƒºñu|×f®NOÔÅáNÝ”5ºÆA8&ÿ÷á€É訒[ßÖ_K‘7ž=¿8ÃÏcó…ZÔM¦½Pe™i«›ýÙÏg?þ”/¶gùâÛ3@:M½¸‡ç@g³ØŸ!aYò¾;ûþìož×Z˜­#n_âÇÊÚ.lÖT5{0…Ge›¬61ÆÕ@Û¦B¢"Sa­´d¸ŽË™íÍð~×â'FêH®ŽâíÍá³?¬ðK–ÝôÜHó¡—ÚèaeO'/tÞqØÜÞô‡v—Mº®3¥kÜëÌ”I¥J§ÍÿåçµCendstream endobj 256 0 obj << /Type /Page /Contents 257 0 R /Resources 255 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R /Annots [ 259 0 R 260 0 R 261 0 R 262 0 R ] >> endobj 259 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [134.698 727.691 141.672 738.81] /Subtype /Link /A << /S /GoTo /D (figure.6) >> >> endobj 260 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [186.457 592.478 193.431 603.318] /Subtype /Link /A << /S /GoTo /D (figure.5) >> >> endobj 261 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [220.787 446.601 227.761 457.44] /Subtype /Link /A << /S /GoTo /D (figure.7) >> >> endobj 262 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [221.335 376.803 227.794 386.902] /Subtype /Link /A << /S /GoTo /D (Hfootnote.8) >> >> endobj 258 0 obj << /D [256 0 R /XYZ 89.292 765.769 null] >> endobj 34 0 obj << /D [256 0 R /XYZ 89.292 519.776 null] >> endobj 263 0 obj << /D [256 0 R /XYZ 104.528 166.482 null] >> endobj 255 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F80 106 0 R /F39 57 0 R /F44 60 0 R /F7 92 0 R /F14 239 0 R /F25 109 0 R /F24 113 0 R >> /ProcSet [ /PDF /Text ] >> endobj 267 0 obj << /Length 280 /Filter /FlateDecode >> stream xÚMPËNÃ0¼û+öhâøýàˆ n• àÐ&´Ejé ø{Ö‰£FÑ:Þ™õJøI^q§"(ð¯¡Û8àÆ‡è†žùѱJòƒ*Á[L\˜àºÝ¸;‘Ťš\ª™Ím"u òè4¤5Hm¹õ”rÜ ©¥ “ôcóƒÇãƒUZkêoXeŒ¦i{­m2¾<â±-¬n¹Ë¢™}Éç1ÏàS~EI×™Û¥7aæÏ-&rdË ¦<ý-}VèdžU–ücïé©n¼½¾LYÍͰÁü¦ÇÂÜa¬†ñGÙ<ËKÁ.“=F; Î6å<n’ãÆ ;ÃUÐx–ãÈ&}É}"ÿºÅlÅendstream endobj 266 0 obj << /Type /Page /Contents 267 0 R /Resources 265 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R >> endobj 254 0 obj << /Type /XObject /Subtype /Image /Width 522 /Height 876 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 70248 /Filter /FlateDecode >> stream xÚì½iÔnUu%ì5Fý¨1ê_þUÊTå«@PA¸EDEEQ0(Ø+*ŠŠ  Š¢bPŒb1¢ * F4**ŠMÔh•šØH(vØ¢t~çÜI®ÓwÞ¹˜ûûìfͽW3×îð;Ÿ?ÛmÛ.]ºtéò{Xî`>O~ð]§¿^yöá?þÐ1מ{\—.]ºtù=)“ØŸ„ÿÜAŽ ½û?ø‡#¿÷·Ï¹úô®ü뽺téÒ¥ËïI¹êoö$ÿ$ÿ/xãž|ˆ˜¾_sÎW¿û +O{Üeozh—.]ºtÑrÔ>wZ±Üþk»êŒ§|á„Ý7ÄÃï}§«ÿþðKߺ߷ÿò!]ºtéÒEË‹µÍ§ÞvôÏ?ÿ׋Ëôó©’Ûm_=éA(LÐp¯íÿ䪳_xÙ^ø†uéÒ¥K—-–#¹õ?ó¦+ߺÏâ2ý|ªäö_ÛWN|À—ÿü4Låò¿=ô›'?ôë'=à?tùͦOýý÷¶ü»tÂúŽÂº¿Â5ÿxêTáÏ.þìïùÜXÜçÿ^+«xî4šÓŸ¦‘½-žûÂGlõýOþå·ßôˆÅeúùTÉí¿¶©|ñÕ»NаÝÖté{ù—₩ü‡¼2,úÛÛ¢`Jñ}z£âûmцÿ%ì„õ}Áõ…uÇ©|íõ¾ñºŸüææ›÷È=žñÐínçÃwÅ?ÿ«]qó7Lÿ^ñWh·èÀ}õu¼æó§ßð³Ì¿úÁ%—½ï%ëÞçë;"ëÒª ÿæI7ß|óµ×þøÄ§ßkÝŸ{ØÃÿ×wÎ{Ã×ß°çâ2ý|ª¤¨í%¶mQFk{Ï wÑâÊô§¢¶©|þøûNÐ0•‹ßõ¼/Ÿpß5eû‡¼õK·Z¦Ûô··EÙ<%Š‹8 ½hŸ ›¯¯ù~[´á?D ;a}_pÍC7Îmú a¹ôœ—Mµ}þ3çO>g¯íÿâiw¿ÝŽÝ·ßó©©_ýø»³ûöûÎÓ&é÷Á7<‡o˜^Aîš/¼{ºò‘3Nzø}îrÊI¯ž~õᓟ½î}¾â˜Þ3áâþÌô×—ñü·|õ}î úÿ]þ‘“¾tâ—éçS%EmGís§ß˜Ïô§Åµmþ­^ÙbmSùÇ—ïtøÖ;þâ+wYS€;>íE:èoo‹ÂSb‹ñ}ú²Et8î¨Ã¾wÅ·o¾ñú_ÿä»—äõT󽝸Ø~õã+o¾é†_ÿä{W~ü”é W~ù¹¯›®ÿæ77¯,×ÎK?ðÊ_|÷ÂéA×ÿôšK?øj®jM³·ô”ßÜtïn¾ù¦¯¼a/üõ+oxÄôßéâ—_÷¢©Z®øè_üúÚ«§;¯ûþ%—œóò5½wùGÿbþÿÍ7]ÿó~ÿKïûÒk´¹%ú‚[¼yô¡<:œþìŸ_õÕ›®¿nz¯Ÿ\üù Ï<„»búáôs©[}…¯¾i¿é¿7ýú—ÓTÇOþÏ«ï{Ã/~4ÝôÕÿý¸5Mýá×?:ýúåG¿ð¡÷úÓÃ÷ÝpÞ±;ñU÷¹òoÚÔþ§GOß§+¿Ó°÷¿bÞÀßtãÔ¼ NN1K7Ï™z‚¹~XS~rÉ?MuþÙ^»?n·;ÿùs¹ Ô>ùÚ'oÜ|ÃËöߨ«ã†édô›ßìvÏížø mzܽæ_ýã§þâ©·ôˆ[Yníð˜jµÅ´ÙâÙbOK/{Ñß9Õ3­‘©Ïñ×oœ}Ü ‹zÿÓ÷Üîó¯XOôü=ÿçÅ<ñs¯Üuq™~>URÔvø#·vè0ýi•Ú¦ïkþ[Ô6•O¾ôž@‡iªþå;¯)¯:áS%ßøÖW¿ù­¯^pÑ×ðïßþú…ßþÆEó¢K.øö%N7L·éoo‹ÂSb‹7ßâõO|ôÃÏÙ÷>Oxè=Ïÿ؇§ÿ~ôí¯D —ôäùHþ©÷í»Ûöo}Ó<Ÿ?vƉŸ;î·•¿÷=ïü‹ïµçκ˿ݡ¡h#/ýðkg1ò•O>í‘»<|·Þ÷î·Ÿô” ¨jÚ¼mþ‰6uóSÞ÷wó–ï'ð‘£î17ïcoœþû¾¿}×ý6nuчmS¥¯›þzÁ?úØßóa÷¿ûç>ù‘5½wÅÇÿêÔ#µëÝïòª—1]ÿÂÇÞ{þKîÉ ãt7=”_ù×?ýþôýÄ£Ÿ½ÇÎÛü´Ç}åóç¿íÙ;n~ú4Royþn:RÉ+\ý/Ÿ¾¿ö•Ç~òع…œù‚Y*~úãÓØ½ïE;qkõ㫦?=æaxÒƒ¶}ÝSî† §+Ÿ}ÿßì½ëög¾}6I|ü]ñYš ï?û=uÐ.¯:ò9Ó÷«¯ºüŒçîèf)Ï™b‚¹~XSn¸î§ÓmÓ›¼×o9øÞÓ÷k¯ýñCïµÍ9/ºG±:&Ä:ö¨ ïtçmÎ9ükê¿Õ%àÖ©7mÜÑž¬—Ìôý]o8zÂ…ë¯ûù¡=y—¶:ñ‰;LýÊ÷þzå—=b—mþö;­£zîƒÿÇ…çœpþKwY\¦ŸO•µú°ÿ55~úwMÁÅÑÚ6W¸æ£U­©m*Ÿ8f' Ã×ß~Ðg^ºÓšt¸à¢¯ðï·.þæ·'\¸ô©\rÙE@ýímQ~ã?µ6 ß½ç®ße›—àÑ{>ú¾wúÑ5W¹¦®mÆ®Ä+ï}ßm{Ô¯|æCù‰¸gúá!{ïð¢}çmçµ?þѸóùÇîä^p‹7=”¿ßøë_\ý¯Ÿ¼ß#Ÿµ×އí³Ã3v×½ï³Íهݽ©ä>û—OÚÔ{ß|âÛžÌNßÿ—Yšüôv¯mßgÇ_|÷Í­…ð¼ßÝîtð#¶?óùóõ_]{õtåa»íü¸ÜùOà ß¹òyØîÓÿúèG½ñu¯>ü1;]|î¦ï7Þxã}7nõçô+”[]ùˆ¬)[œ6nhOÖKæÏ_qì4 ?¹æŠý÷~È}7lõô‡l7 ñ;¾Û?¾|>\üêW×ív·­ÿâi;®£z΃îøõ÷¾òÜ#wZ\¦ŸO•µ=ï!ÿsjüôï­^LjãŸoþh=ZÛT>zäŽ@‡ÿó×~èE֠÷.ÞtR¸ø‚[þ¡á[—\ö­K/¿èÒË¿ tÐßÞeͶ%G‡{oøÓç=b‡×õÏÞþ¼]n¼þºË.úÆô“÷¼ëT?·ö¦~ t8ìÑó0Qû·>dïíßøô!Nï¿ãÖo¢™ð¼Gîðº'ýö¿/ÙÏÎÒÍ£YL°º6Wuý/‚³Ãôâ>rÞ9ÿäÚk§¹tÔŸmá¹›î£/¹ï'>ü÷?ÿùÏn¸áú_ñµé¯?øþ5»lÿ'G>fËW,dDÖÔY [#Ú“õ’¹î—¿œþ=ú°ƒp÷­Þkû#öÝpÆÁóç¾x' Ã½wØJh•òôûÿá?ùŠ3Þ¸¸L?Ÿ*)j{êýÿhjüôï­^LjãŸoþh=ZÛTÎ~þö@‡/ýõç¾aM:\tÉ|X¸x:,lúw:/LeÂ…Ë®¸ø²+.:èoo‹¢ÛÚ[E„5g‡í³Ãß¿`çNxö?Ó©ÿ¥ûmøå¦ïÃv»'ƒÎô§i§Ä•¼ÿ…kÛ°ÅF¢¶i_4=뽇®mü´"¦©~þñ{¸¦â)Ÿë!Ó•w½ã­Ÿzÿ;f áóž¹çÎ:ýõ?´M]ÛŒ^©¯¼ù)¿Ú¤Ð8áÅÏØýwÚm§m7ÿéèÇlá‹›‡º¦æg=bǧðè¿|ýkæ]å~ðWO»ëæ^r#¾Â§ßtÐôýCïï¯?rúrü1/|ÐNsï½ë¹[© >ü¢ùÊu×~g‡>zùÇÝrv˜Äéš™pΡ¿ýïáûT³£YL0×Sá›/üÊ禿>öšÎŸ>qïéûç>óÉIÒòÓ·83'xzä}î4í«Ÿ´ï¼çÿè‡>°ëô«}·w#—§íöGNã=ýiÍÍÓϧJnµ¶éß5e•Ú67f͋ڦrÎ nA‡¯œzày/Þ°¦.¹'…oè ¿½- O-^¬¿¿üè^yÙÅ7ÝxÃ/üÝw½éÕÓŸxà¶/}ì\É;Þð’‹.üæ ×_Ãu?¿æ›ŸþÀëžñ„l³Å'~ë¯ýÙO‚ë®oý±ßºàSm¿¼ö{ÿüž—½pï;MÿvÙ%Ýxã×\}ÅWßóR×ÔÍ•|ù½¯ÅõSNzÕnwÛjÚÍžypÕÔµåÈg½åÄï]ýo¸á§ß»äËgÃOùÒ[žyÙÅMkê‡×\ý¹3ç?é 7=”¿åmÏùæW>ãõ¿šÊ~ùOxÌ$„7K-7Rá+L-ù§ÓÇ•Óþêu“¼NïxöÚÖ~ý=GO7üã§>ñ¤=¶{ÿaó•}÷¼ë¯¯ùÞwoºé¦éÑ:ã .?v·»¬9;¸©XÌR7j®t@ßý†#¯¸ì’©cöýËN;ñ…Ó‰æéÙî5Oøíù³ùWß<ûå×þà{7Ýðë^ü¥—"kê¬h‹kdM á’yã1B;÷áwœˆþà›Ÿžþ{ìáÏÄ&[É:Š gîö‡_|×+Þý¼\žîÑaúÓš›§ŸO•üÛ×¶ù·ze‹µMå‡Þ‚ÿòÖgœÔÆ5e :àß˯¸øŠ+/páÊï\~Õw.:èoo£²Ù¹Ú]¬¿?éAÛîq­ï³ÃŸì~÷­ÿÀm§?vÐü×3Þø”=¶›.Þ{‡?¹ÿŽ[=îþÛö¨í^óÄ [|âS¼ítTÇõ-6r:£=åÁÛ>p§¹¶=vÚjªê¯ž>_Ñ>w1­ë‡ÜsëÃöÞÖ5åGmü^[¿à‘ÛñS}Ôܘ{m¿Õ;m}èï6F_°¸yè¡üýÈ}ïº×.ÛLšÊž;oó̇ݕ…°©ð>yÌÝ~ù³Ÿ\wÝ/|ß÷À]ŽÙoÃÇ\ÛÔO¿l—_üìÚ žõ¸=ÏxÎ-ïrê³6î·Û§ŽÝeû­¦Ü÷;O¸ü–gnaŒŠNÐ?£¶Å~Ð:Ï~Á<vÛÔ±SÏò._xý£§³ÕÏ~zín÷Øn:3¾þ)ë)ÚýÿÏ»_ñžçoäràþ¨(knž~>UòoVÛ«»þW¦?µMåC/Üèðµ¿yƧŽÞ¸¦nõ3ݦ¿½Êæã¶»x«ß_~ÀÆiL+k:•¿í ßÖó®çm|Å_ü˜ùžÃ÷ÝðªÇoü»C¶üÄi»ÉE[ò»µm8bÓ=ÓƒÎxÎ|ñœÃ6¾òñóÓ_´ï†I^óØ [l*?èèýn¹þ¶ƒ6ÞjSµL²ú¥Û8½ìTŽŸøÛ§¼onÌtÅѶaóƒ¶ø‚ÅÍCå×|ï¡_óÄ}‹}6Loô¾CgO¸Å‘âl«ŽÙñë§²Ió¶ûì°Õ öÞá­ÏÚrÿüóþrºíÓçìØý¶Ç•O½ñ­mv·»LôÉ£Ö³æçqä-èð­·?ó‹/Û±K—.]ºt™Ê'ÚPÄJwéÒ¥K—ßÛtP‡‡.]ºtéòû\&h¸÷Î3¯×¿5ÊoF??üá\®¾z.'œ0—_ýj.?ÿù\ðÁw\GÁ¯~ò“¹àÊ 7¬-z? þÊßQžÂÏå®ãN}–­Ÿ‹Vá­ù¹_úÒ\ð×k®™ ·ßÔµŠßšûG{‰û™¯ó|ø¯zEÿª÷¸§»ÖÆ÷k×OtýÃ÷\qÅ\>󙹜þ\>÷¹¹œ{î\.¸`.<çœ3—óΛËÙgÏ÷sü]ûùŸÿy.e »K/‹¶üØcçÂÏå…§|á sAûQêÎýÉ}ÎíÁw)Ÿú^ø+¿µ›ÕÚ‡n”ùêy¨W0‚ÜÃÜB·.xÍjKx½«ŒªÛÉ}âzÉÍ.}¢ÎFW?·+ËͳZÏÛôÙ ßüÒg'hhthththththtXtàùŒªïå$¤ŽÞ‹kà¹ÍRBÇ×Íp7»ÜüWÔÓqÄ›êìÂúå·€¤BQ¬Ôqç+ëŒÚ·<7øž‹.š‹J~#•½ü¦õ˜ª<Ô3—ÎíD&ãÃ3Ï:í´¹pÿC qoóý:šÚøä# jÞœö ÑäÔ«/ѳéù§>×õ»+аÚÏÜÛ@ç}÷Ë®»Î}­äöÎEŸ«k ÏÂo1‡1Ž˜óÀn®ðlgŒÀLS):ñW ƒêF¸P¿ëy`"ãšÎOF¼õé§Ï¥Öýºë„r d½ȵ¦,©TWétæõìÒú¶ÖË)Š9Ý”¶Ù½£î0Ã];Í[7:4:4:4:4:4:¬3:èmÀŒbÙÎ'}µ©”¨¥½Ó¨äÔ:µç“9Æ«¿âÞÖ±à+¼uVó(£Ç OÀqp×!j‹pmtr¸Ö/%+4±Ö-t£¬zªÚb®«‰×5úð¨£æŒ@à õŸ8—DÎ`¶£à·lSVM£Ž;þ M—j“Ô#Y5²ŸuÖ\ð, Ïmµ­óq-ñ…PÙëôÀnV8-´Ã&·»` À÷`>`Eë=Éî´Ö/¹UælÓª3×a¢æ‘ÂX»Öš7jthththththtF§u©õÎbXûƒñI¶öìmIº‚t–ÖX 3 ý̈ ^g:¾:²îLê,†:îŒ2Éé>Ñ%++‘<¹-»Öæ¹â0ÿ /b^Ak¼˜;ŸÖn¬«qs²>=94qk¸Àñ}õyÓùé¹6Ôrˆ ͤYî WG6jŠ´—xêsk7—èIê˜#}/Ì@Ìd¶ÀbMM°vöÜs.°Ø²ŽÈ½—Ûh›ÙK¡î7“Ýìqêîqž¬gC=îκŸuEkÏh|VýîõÌꇠ}Xk´Ô›D&>õžGõ´ÝìuöVÞ/¡ÏO‚¼A<—ÝOªüW¿ÝÁºý›Ó³A>×qpn-çQÀŽ”µÐîÝË>lthththththtX‰gIG+‹[ˆ9ÆÌÕü+Ì ŒSÖ >íjD¿zßÕ~žÉi5ã 9À<Éz"fk ®PÕ)9[<&Þýsê©seÀKÖH‚ø‰ïhnÅNâÝëd¾+Ð'òüAÁðf3SŠ2ºäZ…QÇßóx+Çø‘¯מzoÀ«ßßüæ¹°¤e‹<Ïs•T5jäñžyT`mu¨š°ß×<õòÕèÆ_ÆÇ‚èz›¾7:4:4:4:4:4: £ƒc0P[3Ûdëx·Úƒ‹ÿ ÉÌ^ˆª+püŠs©è¨©ÿ-úÏÅwÌ|îyíí„•+™¥°‡2ç^b‰Ëe‘c¢HX2îÔ,j B%^všËi™dÀ¬àˆúK8-âhL_­Étz†Ú?Óå©©y'joÇ—´\×>ïß`Õ}³£/ó|ÎãþrÆÎDÿYÏ´z䑞¼Óv#Îó“ý%Tƒ„¿2“FÌgÞèÐèÐèÐèÐèÐè°êuÇoá²:ò¼÷5Ÿ€ê•ßBX ]T‡“¬-Šz¬=c¹‘[—4^IcäñA^ç;šÈá\K“d?L<‡kÛwíÅ—ð!äNs‹Ë „þÇN€gûÁæz¶$ͨ7rn“uý\ò$ØwIb']_ö©`þÆâšM‘5{£ìv‰/´ëÚ_ÅI˜<ßq’]W㙿1™µ÷,¤¨zº®ÂÂ×èÐèÐèÐèÐèÐèÀèä‚gÛ“ËH¢Ì˜ð0T½?çSÇ\ÍÙ!þ^Rq³¼°CÂCz³®Éñ¹~öjãC$ ЧöÃÍêäØ2öŒÄš´J9«óO¢=«ßK#.Q0¦:WĨwô wÁ°Ý_uNîÕçEYÏ+Ì^më—x¥`õñ.H{Ú`^щæpÔGÂíÙ’ñÒ­“'.÷±[ãI§ó„³G±ì=ä¹ .¯8ç«s@ü“†ÑË>j“U›µ³$ÂöŠ{à·É¾¬ìÿÆõàWlqFA«8¢2Œá s#ð\­-Ålévþ´Ú~´J¿ë“;[Žr™SŸ]PÎØ[–s»a‚>.âLy”©›ãù¯È Š<∹8pðz¶8n: )·ÚëZfùÃ삉õ<ɰ3‹êürÕ[˜ŸÉößþÛ\€ ðŒeáËõ¨*Ÿ]mΛEßt•üb.FR žr‡;Ì…wž›ç p«rS=Ãè€60·rvÕšº7iE™´•÷€#ìØ×”çŸaù;[ÊØ’­‘®])œRW¥³(9{½ž÷Õ·¶Ž»q:Iôý2ÝŨ?¡³­×ö<“‘®Aö®¯cþvØ\4K#ï¶ŠQÎÀ%묚Nã1?Ù"\3Z×un&ßÝ^È#V:ðúþ`.º6f•$†1Ù¥$5ŽÓºCj9Õwé( 6d¶ULQÿÕD«¬ñ‰‰UºÑ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡fðÆ|S.ë:ºGóqÞF7'ñW¼#²W8Nlµ‚)NAÃ~CûQ?|kmˆW Gý¨ÇÆ+¡~F—#’Ww-9#·ËÂS3,‹JK⃒š.‚:£[]$çýQî¸:")ñù¬Y’¨=­×WÂøÍ3_ßkYv×:«¶qç¾»\ 7F&¬“OžKíYZû¬&Œ£ü‡ N%6tõM|T¿¤¾:ÌNÏqÄ.CÆ&,jthththththtFf÷åUæbCtñ™Wె–öŸë#X_Ä+ØÁðU?=w3`·¥È¨ç>¼3x ~fçpÏÚvœÈdgë¬%v-CrÍFuY¢ergá„ÛÙ“Ì5Ü6õFX–ù(Ï3Åw:¦Ö'°~ ÑM1Vº¼õC®mâ.skÃQç·#^Kòš^å€ãŸÁÌIÎõ£’¿Ö¥$êú­>Ž~°S‚ä‡iï½ç‚½üçá× ubÇeásï˜ðF&>çÒW¯ÍVÌ’‡gšóÁ€Uš÷œ¹6I$m£C£C£C£C£C£Ã0:$}îúÄIoeÕзֈ{¶k«g=Ÿ ×­#=ë±­\sáXÃñF|v†LÀüw¹ÿ\vÑ:¦l”/¿'‘9IæwžÛœÓ¤FsÇ>ÌçˆÁÀí4j¬TNoÇW¯+o¹‘XíGýj\pÒÀåW/‘šá¤–?üZ\Ȱß`¥@¦¡°^ kåÐSç{ø!;M`Iê¼¶JãØå9¢ »PöÌa¿z~Gìuὂ+£€ZÛèÐèÐèÐèÐèÐè°ýƒó¬Ñ«óó„m+š‹'ɽ¨‘AÎ.£ˆ£Á¹h'ÇŒ8¿YŒxB0â˜ÿ<‚ª£`n:KfíZó§òfäk³wÖ³ñlgŽ”Üb^ëXÕ@Öƒ©¬¨³—Ö’'áWf†e¸ zTwOâIâVY­Yr²¬ø°DßñŽs W0Ðÿìàv õîÂź‘­õWº¯«Ù=½Îë éIˆý$xJÙCRH ý6´sìïxZê¬ÍËСÎRŸ•”‰BïMðØcç‚{p’â¾…0É­ãt*sœî¥Ž8Ó¿22:ž½z'xŒ²º8/í —Ÿ«îUÕàauó ˆàbñ†–œµÒi¼^D—q¸ælÇûò[³~óå lô`ØÃÚJbo ;>Ûëçv­ëK<&F‡F‡F‡F‡F‡F—ý‡õ<ɬSY§Übø+ÎM`œÐ™©þŠN¿¤£É'SÍ5_GT©utÐ\Ü©ö¸ãæÂsócyˆ÷ÅŠ@ 5 LûÊõ¹®Üœ‘¬ŽhK¬ÒµïgrQ~uçuàç4ÚˆG–Ç}sˆ;}×oôsÍ‹˜ Áçp*ç|`ßc÷ç|Œy|ue=å)sa *®Ô¾Úo£ÜwœäLðÚÙè5?)ï$ay×=$d óðpLâî»Ïèï~.ס»«ÑAsøš‚F‡F‡F‡F‡F‡F‡atPÍIѦ=Üêc¾Yè[ÐÜfökÅn¤4³³%~<çU"¡µ,ÕÙïÐAA*b-àtÉlZÀ ̼)jÖ—HéÚ;qY–ö$‚¦®M±o‡Ì;üîÊÈíjÖÞV¯7î‰W¡³ÖZç™hŠœÖ(Ï…”hÞœ\M<`“¼¢IlöK˜ˆ‰S7ÏùZ 4š»ªžÛ®ÎQÍžëæŠQo[þÎk’sÇç‚ÃÎJ¬Wæ,ÍçRésÛèÐèÐèÐèÐèÐè0ŒŠ œç:g'v¶iÕ ð¹žµ8y±tå:ŽS·^ÑÜ{l7äó5ŸþT+Â5pžSމƒ<^ `] ~eW™Ú4â~”;:‘Ey¼[ÍêÆV3ÎBÂÜnÀÍúäî¼ïœÎÐ1-×Ñ@µ$t=à²Ï×úœÄ<‰˜sÚ’š?ÓÙ(ëÜ:N‹â0B5uX*I¸'QöÅe1¡5b&óÜ=E÷“ðrgï–3ªÍãL£šOA‘ˆ™Ïuþ¸5böuÃè V­$&®ŽªãAœu©>¹çÑ^InÍÑÓk œœîsÌ­YÅÔ€µ.9KC}šNì€ÊpÎÚ³äÔÏÚB–¼‚15S-[÷œ†3Ñåül£9"“ÕäÚÄ!:„J˜õM“=Xâ[÷XÝU{R3'Ò;g#q’ªÞ'Ô±üDìo]ä/ÏÿœRѶÎL*»…F‡F‡F‡F‡F‡F‡atH´15»¯ãRæ{’¨:gW¯×„g€{¬nC-8ƒOí‰Çs§ËÄFV³(_t’ÃqY>¦Ä“Yß²š{ ºœ•íAYÓÕë Ö3pöÌD{ WP¬µ†Ó98¶#ËAî9PÇ|9MB²çqº¦Äç9ÙïÕ»©e83oïVsw»jOf·f¼c‰‘hüØ7^5Û5¤óëޮѡѡѡѡѡÑaj=Iî1X3-'ÞzÌ­W[ëø»ryqmÅ–ÓQî};–ol{rgswBÏÙKF­Ì9 ä}üðžWqͧv4ö^`éÍìè.‹¹ {tÎÛœXùR$ûѲy cÍøWk¥jýF¶áìàœÝuTsëdû²Ù›ïß\ÍÊ•Á¶fÞɸV¿ ¬ $;m®%3»ÐF‡F‡F‡F‡F‡F‡…èP[Öԃѱ^(ëužeÆÙ“ó rq0{žßsÎ:e*p}Èž5Ou¢sHdQ§çlú.;§Fî3 3vó'U8s"¯Õ­%œ.Gfqu}Xç±Mdi2Û“±¨}nG÷ µLkFë_!Õë’û˜Î^<4ûj­µ«Y ëÕ‘hÛò˜DÅ_Ìsç¯^N·ÆÑÁ,¯’Ý{½3’³Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ña!:8öÚÚƒ1Ÿ½£9]´‘ÓN¨Å'ñ2«­ÛÊìçtSN'Æ÷³‡›>KÙ$r,HìwIÖ{|À•òÁÎk„µ@I´š›?µW§®S•Q¸ÎR®ÖTĽá™3ª)Ê­½ªùL¤œÊ®Z«YçÛrû4‡¹ÌQGG&é¹—r½s»·;U/åùÇwæ÷Æ»ó^Zc`]>)þÎèœDüɧѡѡѡѡѡÑa!:,³{ÖjçÇXkÜ]Ä“fª¹ òÌ8N¶×2Öy»áÈ 'GæÓ¨eQÍ@˜³m$öÊ„Õ3¼`æ)P”çб…Ô3$gíÖµ¬8;ªÛ©çFm®}ƒí ßÉÖÏÚR™Ï•f,»jŸ FÞ$þT=“ëÞK˜Ïk.‡nÉWj $ë‹T·Ì-g§k­õNn×½Ì ¿Ìg©Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñ!ïùÑ,“ ‚ð_Õò˜p°%ÔÙ×´‡Y:itUÎÊUǹƒ•¶9–êXÝÌ+ÈÏÒÈ;7‰G_‚z Þ¹_i.ÕQ°Å¹–uu2š7Yó£}ÜÏèÏÓN› óŸ«Tqi]–cŸ^Ŧ™xH&'e]V‰]ÛÄG½më¸qܪQïÍÜ _¯‹Q{7“ë–×sI¶/•óÎ3ÇyÃêw×r®ßí<Ù{¼ô nthththththtXˆ5—B¤ÖH0¯”ö¤®nÇ;‘³ûªÆ£ž‡¹G¬Ûˆˆ×\$ê‘xÈ!sA& ¤ÍN3°Ì[5Ï T¯G•!:jŽÏ­;õì9Ÿ5òk4Ç«ã%[Öoµ½2÷#uZ”Qé·ŠätR±ÞWÔÞÈ.‹PíuìVŸ³×kvÙ.1·S;æÕG9ùϲ"ñeu½ºl]7:4:4:4:4:4:,C‡:g®å¨=kë›öª¾){E&vº<²/±æàéÌZÌÞh Ñ¡î™$ÅÍ7gÿâ8üU$`áýã?žËî0–ܵθ¨|õ̬u>ð´dŒp.œ})™=ƒsª}”!±#ÊÜBÇ=Ï=SÏóÑl›uþÊšR3U1ÊçþŠ9FzÔ\ÙµÕ¸Îˆä¢ “|F5ΨwGîšãÂ謮Q öÒOÖ<.x^9™³>kÞ4‡ªõÜ«­ÿ«£C=ó5â„å†Ö†þDü뎜PËó,­9пD< Ü_g5ÎÈZn9"øp'³Ïð×Ú÷¯>Ý/Ó%~›õé»öÀtOî¯õ¼Í%˜ë½-ÁØzê\ày›sŒ$zÔQ¦J¥¯é„aϵ òŠsÔÖì+nÄë<µî"çÛ©#ø’(¶Ú†ë8=j‚ÄêͲ½»Ù§T÷ÉܵJ'vÿÚW6ñpN˜4Í’óv«ç§z½â~Dºa%BfBBBk¤™ï\ü]ýôQFâ͈ï'Ÿ<¬2peððüóçÂ#µÓNsq~n\7Ũ?jI7Ú¹Üq…å(?ê»[{ôåï’èj{k‚Ѻ¦jÛ:|§kiÏèVG&æ™dkVŠz¦ñlw{†Ú?³öªM0hÔ÷#™Q¬ÓÆ;²®Ug cÛëæ» Õ F6:4:4:4:4:4:¬„nnÔó¤öUƒüW Lñœg‘c3æÓwrÎE[¢YâwįÔnÎcÍ\‚Ìч¿ÑüFµ~©¶Vç>®ú¦N.Æ:ÏF]é ÷uÎMpŽåš“DÖ9[í²HF‡A:“Õî\ÏõúÀ¬ö¥Ìu_õH¹¬—ø°®ßݬpˆ6ª]L¸Ü݌ʽšј£»Æ¾$´Ö³¬u2u{.0:äñ}uöÏDkáJ’Å5·_;Å8¾éVÚãÖlƒµÎ§î™Ú¿´æiI¸/êOíÙ>êƒQ·9Ñv:FeÛ®g—ë#ÐBZÇF‡F‡F‡F‡F‡F‡…èû€åyôtVÀެ§e༢®ØÎ›Dr%Ñ4ºF8×_g{_íí†tÝq ÎÃM߈qÐå õMüE•7 ñ_­ê’üéNkQÛÐë·c­àhô_›VÇ–&±WnÄG™å"®è~¬Ö¸Ö~˜y®r”h-“kÙ˜àÂ2߆k­¦Ž”öžú¸&ñw9¯»Ú¬!]7ÉÏF‡F‡F‡F‡F‡F‡•Ð!É™’Çqo0c†Zxµ¯pgíûWç1OâG³4ß©L üF<Ž™º"8¾¾ÖV%ö vV×8çø@Üœ[5<÷V–Q†@— ´Î _s$šºº\lšÃ2'¯¶|Þ2Ñ9ëymùõˆNx™ßž£Æ\?Ô¾¹}?Ù÷º¿:…:J1Á“ZkÑs½¨ãý3> ÑA?¬=pg½ä§:ֱ͑­´ÐÆ`]°nǼœ*çþÕï*÷ø·‡6—eLT²å³]}5â¸8§!qR[ßxöj s VŸý]\dâÁ›è(jog'=”ï…}¶k¼Kâ¼®ß=÷:p­r̵Ÿj-»œw(~Ë»¬\šX±Ù&[ë¯0šð®‡\JüH—{ÝžD“VG>ºÈÖ`þ4:4:4:4:4:4: £ƒóþJ¢œòHvX`ë|.¬wâ^Rh݇uTKîUè4ø~ÚisÉ­àñcFåZ†ÔRNó“ÖŒNP÷㣓–*=œUÎ=Ku&n\`?Å»'£Ö Ôú‡dEów´ sx”nÔ‹ ®§Ö?¸H<¢ki½Cs±`«èZs«´ËlëlÇêSçÀUÛ¿å{§<›O=F¦5:4:4:4:4:4: £C}¢¯­Buü»Ž ÷Õé§Ï¹uNÁyf&,I¨›ENòä(P¿i.ÍÕ2fûÄŠíÖc‚Ɉ»9Së‡7u/Êù¹œŽ4Ñ/ÕˆP¯²ZX·ÊíŒhthththththtXˆÉêH4ɹF-ª@㎛ ³d×±*œ9hÙLÎììû D`<æéu¶ãšLWYÍÜ[ŸÄk¹êø„.}/hÉÜêÈ-kI0'I‚hµ…ò›%̉Ôe QÉÀò³æ0ɱ,×H8ÎI7[F£É\œcÎd¢þ™µ+æ ´Ó*'ÕZ=j “¹•ŒÃ5‡OÂû‘çÒâù¬íaÏaÙ7:4:4:4:4:4: £C’‰’Û y¨\Ü:·õ ™áü8ut›j{PÞüæ¹pvÅQŽ‚eØÁqpxS´„}qÑ?œñG­TŽqËÍü óßõ¼™ä‚g¿AÇš­¥îd¯ãóΛ ÚÉà~m‰Ö°îÎq¼c½ƒz^ûºgHvN²†ÓÉp®íÑÌ/Ž™¤F(Î’SgPªÚäºÓ'r†ŒŽNîA;±:X$ÌiÉIÓ1’åyˆÜ‡­ÞIdÍ©§Î÷ã­?~.uÜI\×ú<è=.Ÿ‹êßÔžˆùL×,±ÚŸlAÖ~«[›0Ÿ¸œMü[e–K´p5'[í-™`eÂïü=\^`Õš&{È|_:Ê7RïÍjùæú¶ÆˆœÇ/p\…g©Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡~¢Ãö1«Ç«–„‰M¹öšSkšc÷Mx›s€:îÆYóWC]g\‹"èmÍ“k¦Z\“ 4È…¤²«fœK8îxL™gC-˜Ž½ög€½˜õõœtsž¥®F2·G&:õˆv:+Þ5!÷PMVÇŠ:oöÚ³Ô­ìjÏÌÄÏ6Ï©Tk&kMu"{QöÞ{.ì×áòä<Љ_M §û *ÃèPËÃÚ¬¶Ç9-“;_#Ç7{ÉjÄr èé^ÏÚµe6±'ñïlÏM|Ï;~âß˜Û ë1åUÌ1q:^Ì\{:h.àÓPßÝ„y,é}ǼÁ¸æ|ÙÏÒ«›±ƒyݾ(ñm`Öwæ!aÀ³˜«„ù*]žVÖÌh$Ô¨'C½åvJuñ•Í­ÏËð"ñë0cÔèÐèÐèÐèÐèÐè0ŒNV'VÑÝÆ :¥ãŽ› ¾cÀ¨íÐV`õe,@=¬ËB|FKöÚk.9×e-C°R°‚œí’óvÕzŒÜ?;mƒ›ÉÚ·9_V"!ÌÔµŒ'²‰3¶ÔYÚëóéh.EåŽÈ9¾&ºZÓÂïþ”§Ì¥ö(Èóž;;ã(äš„<ãL®­ròÇñcèsÏ;o.¹ÿa¯äÖV%{q×L®åU:ª+N"[ë·`Éã*;´¿j>–ÑL@®—œ¯¯j U“Ìß±»À8Bw„š÷Þ{.ʹh9+ç*Útg£C£C£C£C£C£Ã0:¨ŸgžÿE3òÀšÆlÛ‰fÔŸÍÕɱ]¹Tqz7ç?´ÜZ7Êç‚ͨ¹ Y>hŒRâý˜pÊåZ¸:–p™&Ší¹¬ÿqo(6eŠãó;kü¸¯œ”æVtJ§œ2—}÷ {_è³ê|[Iþ&gãÎ}JµÏ]'9¡çøRc¢ÓŸ,Ë„R]í9™ë”oêÑÏhöœz‡PëKsþóäNcNRջǿ¡qŽËæ§óZ嫬G<ñˆvÈèxDëÌ¡Ncì¼…çvÍg¢‘Œ*¯ÜÞLYŸ†¢vùÄ*ÝèÐèÐèÐèÐèÐèà¬Ò‰—3B;ùÀÞ}uüHÎü\¯ÄÄËTçVú³Ã'^¯Š5¹µ7a&ÏÙÒj]Ä2V±ú,ŸxçZ#5j•N´aIûk©¢'w|Ô:ŸÌ^¿õ®Lw&Ìh—È´ZN¢ý«ìUk~S¶ ŸC%§WI2,ËaªÑgêS×μÜ5i¯Â#šyW8—h†Ñ¿åèlÖ#ñDUàÝY£~¡µï+GQ%3-9‹Õ™‰0jÌűç¸âV«cqò0·¸å–z¾¢LqµGeâÑšãB[¢ÞB§3YÆÀÛ«FÒoµå·Îµê¢Yž×o1ÊwûŽÖ³Ë1¨$š=Ïùl©÷ZµÆÌl½ƒÕùÌ9=“lGuÛê¨F7Ìà )+ÊÝ‘h–œUZótH޹ßi?Gñ$çÊÚšVë[jûfM¦æ¹Eá û²òIq°¶S3›YÍ`œhœÜ¼å:ù [³šäÈ›x·ÖþϹ–cYôY‚n >Öl|ÒOÞ4ñAMÖ~.Ãk^×¼~Yš-ó=®÷c£™FÇNQ q«³ó8Q­»5]éÚÎUû¬ÖÈ[Ke"ÕgaÄ7µ¼Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñaê~ãâf~íQ餖òrfŠLâ_Ü ]m|üýZ9›†"‘ò~网ŸŽùóŸÿó\>ÖÞ‰µ?j}f¯}FeµÛŒÚ=¯Î$s¨j6p^<j‹!˜XiU:÷@v6MådHV“Ó­âwëcóýƒËn\Ç«:ÖZ;§Rr@YSêkPí9Ú%Þ½£Äâñ;nšÛ Ñ¡öžr¹݈#…ž.ëq¯íY‰…(™Ÿl‰vžf\›ó.Sv,Ì ÄîÕ|Ú9óƒj´ýIΑڢ:ê8j«µ '2<ñMбœºg` CÍÖ’û8þ„íÄ10ävö𳑭ÞNSšØ¸síPnõ®ueõúuq ê“Œd¸êÒUƒ§Ïâ5È{`‡n>ÔlŠ:3ù·B»ï>< ð¬KG94:4:4:4:4:4: £CÍ® ýà,#Ü3ø®¹lÜ*P-“뱚¹¢ÖSñ³8 °ÌÙ³êv]qê9–[ß’•_5ÌÓN› Ï Ÿù9½¶±&ˆœG®/ãñ¨&_aô× )£Ñ[IþÊZ‚Õš%Á\öÖj{eiÆ;$Ò0Ñ ®•™¬—„2×`ëˆÔÅ»8älBïÕºbf·Ð=§›!ÌéWï”5Ep¤Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑaÜèðlq¼s.*GOa<«¡{½×ÁÑq sÁ9ˆÙnÕ;‹ó–IZwúÖg{ÿÌgæRkØòhšDÞæ,ë…DºÖ’õ•çë\æÅšàæê1•ÌP¡üØ ®åVf§IbÇêµËFÇ}ßÉ£_¯ݵr¾Wõ~Wdw|ìüDHŽ­SÎ\Ñ'* g4C;«t£C£C£C£C£C£ƒ³JלrÊË'£Z·€š9¦[gµžpÙ#+‰ñ©géè)Xç Fã¥Yùø~¯zv%QN5cómñqñtINŸ¤W?ÉQn´œ "÷Äv:ÏD¢’A-•Îîì4¨ëÅ’Èj—/i™ÞÏq]&‘hŠFç¤ó¨OÖfÂ\Zg:v÷@ gŽ?~.Ð!³lÁ_Ù_…µ‚\ØÏ>ØçÑpªYJâDœ¥£^5|?¯Æ½ŸÑO|£Ö.I”ÐÿœÑ·sYê|y)#úêŸeºš:’+‘-Iÿ/“xÎÃ!× ¹¾ÅèÃ0±Æ:4w(ã<ø~å^en\åzò«šõÎÅô圉&Óy‰°„ÄsÁ}‘äÕuÞª «žj{Ôg˜ï^%<ü%Xþ0KûÕ°& Ò‰=íU«íý& ÖèÐèÐèÐèÐèÐè°fiÖ¹™àì˜zÒá·Páa»p.IëX™øXJèÕ­V¯wœ+‘‘£[r®ƒ\ž×ÙW‘Þ5î'xšÄµ©n³^#‰Z}\u.9–¹Ú36Á‹œã"ÑË-Ó ­Â©˜[¥!Y³Í)|Å1aÖX¦;ÌRRë|”ï”ï„ïºóµæìÌÀ;—aY ’$ÉþÓèÐèÐèÐèÐèÐè èà²T¨‡•ËrX[yêÜ|:îìyÅvÞZ‚%¶]ç1˜pY¸^ª%í=›³õº\K·:$¹Kêõ²Š$qvê\‹RŸýkËfކ‰ŒÍsVê)×eåš´õõ|vZZÛ–Ç3&Þ,´NŽ7ØqÏjü¸Ö q@œÓSå­“ºn%Öz’|5Õì»:?Us›¯F¢¡6ÌçÛRÔgí|n×÷×ã^[À×Kã$ö¨ßì²ü¡5§J¾—XÅæ›xœæ\|NË—x•¨?¹ö3ú \Öw¸Ã\Ø" ®{.¹¾(·P'Ö4W¬çlµ·æ¤»×rŒkg¢+¨=E_ëœ3<ñIHžXG:½Dw ƒ_²?É}JóUŸû$ÞÚÉ~©î1Ç„©½ ökÃç±ÇÎ…£M—eÈÍ}6P°Çãì¢üF¼ŸtáÞ´Öœ³žêothththththtFü½Ä6h>õpÏÀät&õ¿Ž¸GûùìNOù_¬Kb‚’̤¹žŠ£Z¸$–Y ©ËÒ²ºö`Tï”k~rÏ9÷ò<•nªgrÍ“ÄF%ú÷¬GœV$ç¬^)j«ú¨ÖÎÅ3ºÕ”ÏIÖNfRY¡£¯Ú!7Y£¥¾7ÌÎ ‹ïˆ\Þß]ÍnfªÕžžÛèÐèÐèÐèÐèÐè0ŒÌËÚõæþ©¹õJÅR5QõiÑLë›Û(ëzjYÄú1¶qÌŽ²„q?;ö6ý£qvþ··Vç6åš9טújæú«Ä{¡Ö}ñX;†FÇ€¡^‘u;Wϧ“x¯Ž&«gÍ5c‰6¬îy¬Y·‡IìµƘíàº'q)Èk WF~p.Ì‚úu}i.cª¿Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ña!: 6|g ã­­ÇÚõ³G×§õÜn˜œï긭ܟ3™{è=Ì:æï­ã ÕË·¶Í9]Y«ûµ&,åëõÄõ’й-›½‹5¢k§žŽñÞͧõZE[¸ GzÂ\ít8µdNl¾«´‡!ë c¦ó¯˜Ó†÷ÉõŒÅÚçX9pî»ï\ØŸ‡×>p5W\'æûèB¥¸¦-¤¹ÚèÐèÐèÐèÐèÐè0ŒjÑÐ(6þ¸sJ’…‡0jëdžý³fùKfõ²¬”‰V}èz,±»¹L¦œ=P­“¹$LÎæ5ÿö2[á(;_"·“ö'ûœÚ?Aåy=“ÕçÙÍö„m£f«G|F¾|\rÏp\[EŸY£˜2ãA ±ÿ¼Ã_ÇdÂõ¸=k›áU \€|†•™¹»™˜{4ó~ð©wë³ithththththtF—ç.ÏY[Ð}´~»Úâœxºæ¹Bjæ@Çf ŒÉúªÏ}‰ç§ú¿Õòju»smáÍ5Hµìª31åÅ£Ösg‰V>·Ê’ëd`½oqù€”knuÏÕ_ÿê4ÉËö‰Ÿ|=¯§½aož9X‰¸9 –ësÏ‹î ]ì[íÀ¶ÍD¦ûgÍJœ³ð5:4:4:4:4:4:¨f‰¹p·jÂV{~*jðuÍIšØ=—å^O,eËêÌW\OÄÙ1Ùï×ñ/cÌ®[îìæIVÐú¯9ovõÈæ¾ ÎÓ•í’N‹èV¨ú1jÜœó[`¿‘÷׋‘/É ”Øôso¤ £­­Q Ñ©te?Xè4ë1Þön¶J«_zbMæÖ£յJwfÒèÐèÐèÐèÐèÐè0Œ<'Õ.3ÊkQk™ê³<¯ šM"Ï÷çetV¬®ÁH¤PbÇ\BÁ‰µÎŠ¾Š¿b"íݳÔ›{H& Ëv9Šæ^tšOÅPèt·ãW{Ÿ&˜¥†Ä3d}ÇÚí¸Fu’yžÐ|ŸPóp&Öçš]\ÇÂéÉ•!‡­ØN_Né>„5–ª/ʵ¦¬¿" B£C£C£C£C£C£Ã0:0Ã-~Å~YµW';÷ê-†³N¨+bC¸åîêlåЮà-`©Áù WN9e.lm×±ÖhµÝt†ð›&þËØªesT¯åÞ4çåÈÎGW}Ò'¹O,<.8þ¨Ž@Ìýr]Ö¨Òñ^òqæšÚdto°,VÝ{ "$ø›Ä*ŽÎÆd¯˜üªÎjTGïj®aõ‹p2Y±¸Öö“ônthththththtFö“äÂ''«ǫ̃ï¹iØÛ ž`È Ê¨TK'ý0WöÎ;ÏyÆqýä“çâü¾ðÊ‚UÛÜÕêê|ÏVÑ`$Œj‡J¼:kßà:£Í¨äµG'¶H·"j\Í‹^G\.óÕ‰Õo}Žò<×:œ£ó7]?|˸®ÇŸì[–ùŠ8rןlËvñ³Ê¨žÿ [À±*ãì†Ñå¹FÃ)‡ë ´'¡ÏÁ›Örúœú—ɶxà\ØÛmà¾r§¸ÿ¿ü—¹¨V*aðnthththththtpÑp.S†“|~×Ñ|f¼HX¸“pýpvN´Ší;n]àü•øž¹Yä2}¨Nµì´žÏðúžUVýèoi¿ŠÅ¹^­õ:Âlqy^r{n.Ó&ºP¦…$ªnu=ɨçó*ý6Í· —y$msR‚¿C¢Ô9\ÞU®?‰e=Ïpì¦Pä$yÏ6:4:4:4:4:4: £ƒÊ޹Ðx¶üŽZ5Ò¼¶9V['¸\fp…:¾LcRÔNÊVx×f÷QiVËÃ\F-[5 R×:¨Äzîú9׺$Vu»QmR­rÞ‰¹·°> +‹™Ù’U– R²©ßwuįužÉÌõÈ­½òŒ«É»(R8à²üªÉuì.xÎ;ù“Nš aV£C£C£C£C£C£Ã0:Ô™&j)ªñenF¡=·â"ér‹°ó½T͘¾QÍ}í<$µøV„úÜí$jb«Mäð¨F+™¹ånt]'Œ NwÄ'zí ¹ËÙºL·–Gq:ÉÀױЙ±™u¶£vó|/‘0U®bíM|ò½P-ósÞÂe˜å8OØGE=ÿkÑUW”µ‘ç7—8n ®Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑAÑÁI›:È;çê‰[£ÌŒ‡Õïðx8YÄù/êSdÎîë8¬4 ǹhÿ;¿¾:`"És¹š|ò®Ä9?5×¶þDÿ¦šO­‡OÖª“DmÎbè}™OE’A‰kƼ‚?6Ö;0ÂE&ÖÈ•  jJmÌ2žpÝwÎêÄwe}5±I¾ç/­YA¿zž‘9Yw,µÔ¢ÝèÐèÐèÐèÐèÐè°::$,mË,SzbÂuø”ò:U¾¾D;¡ýœX ÜšU~-Œ/Z{ÔQsQÕÄ[ÏiÀjÑ(FŒr¾Æ©9ž·ÄÏ6‰óÊmâî‰Ú{±ˆ[d®˜Ú¦<Ê1˜3ZZZk9Ps›ÔœÒ¹ïAku_¹ý€k[íCž`bbÛ­uJùn¥28–Eí:´–c*O8æNY ÍX7:4:4:4:4:4: £C½¢ë–çþoî~´kþ¨£>]£\ЉϭŽ/÷0[ ó¸›$‹ÞYGŽ¢v"É—E~Z´ëµ©Ì$Î6‡;ÙV«ëŽ×{&r&‘B£R=ÏS³ó9¿‹\˜£Ã*ÙE“¬:«xJŒfÍùsœ¦Î8çM«íËü\eçKÚÆú"žá¬SUf¤eª=Hü{“,?hÖ#Ç}ö\´ÞuðÛ9mÞ²Ü4µ„tìŽ.êpYŒªÃñe…rÞ•QØ<Š3áÜ®#—q?Öþ-'œðÛ‚·ýösA”¯wÎP–DìòSŽ;n.nGÊ+3œõ–2·†ÑAû¡Ž Q)á2ÕQ0xG´üCærÎ9sãôìïê|À’YäÎìΗ•%ßn4 ûÖêù®–uõù±^/j;^fË[öÉûÜñT$+±æ¸V-%?‘ã+ë—3x'h•0¨'ã;Úÿ5—Å2MNr=ÇÁÑyèû—y$6ý„£f½€L`Y­Î{Ì…‹Ý¯›ÊêôW|k®Tï2¦åv‡F‡F‡F‡F‡F‡FÕ,±®}«8K¦ö!¿ŸzXªãíŽ=v.'Ÿ<—½öš ÇÄAÞjŒy²Ö®éü¬z- |ÿÜçæâ˜ jDå%õÈÍÙÒêÞ¨WGn ­mÓΆX[UcyüñsqÈŽU¼XPÇì‘ÌÌ$Óýê{ƒdV¬’ÅiT2rÂç:«QÏê„÷`—«šXF ¶绑d™‰šY:©ç̨Gk£C£C£C£C£C£ƒC~ —ÔÙpu®j¾’Ä#1™{õ©sÉèY×Õ˜©ìÿx.áÈrˆ˜;Ì7ÜÉZJ\Ç^‚=¢Ë‰uo”I[­:ÿk,®£œt¶ðèÀCZVEIÎ|šëjÙ\&ç8’[ºGZòç.“ ¹ÿyˆâÚÉ÷cÅ)GÊ^·–Ù*]ÏdºÒèÐèÐèÐèÐèÐè0Œ\§ÎåaÓ™\ÏüšÉm™Í+ñ'µgÆòägØ\ß’ðr8©Î×a=õÜã‘ÕÓ¨ó®ûMuq@ø*ßñŽs9í´¹œ~ú\8‚’¿«”f]_-™kV“d¤œÝÐåvÉ=K•ô?|që̳õñ8æ\7ŒÎ«¬£D‹˜øWç^ £rÞyƒ;ÄÏó¹Ø:ÕÀ'ÈâÚæ¼/ðáùcz¬Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñaœ%Tz¹ð©ßù\ƶ$™/8»è2O¼š±<_ådêæ¶ÓðLH°Cóås¶-HlÍÓ½ûô&ÙfqjÆØA[‚§ +¢‡þà悸!fet…‡Û‰šÿØ*Ú‰ZOâžâlÐŽý ÙQ` ‘KPŒµ”ΧuÂß#™Ñ|µËbßœ‡ö2‡Gµøh|÷a‚šͳföp20a€q»;A¥F‡F‡F‡F‡F‡F‡atpÖ±Zzc¾¹¼-˜iêÁ•Ÿ.ë~®çLÎZ–°ŸJ˜üŠ;3jËYâ9¼æõ^k$Üy:½ÎÚ C¾öÙî ÉŒ€MO„f 2 mÆüq>œº ðq~ª‰ÐúkŒÐùìFG£k­W½cäUÃ~Ð.¢‡™{ÁÉy´™ê™¹}4~m4.× å¾ÇËØ<_k} 7¾ºº5GcÌP U®£V>@£QlthththththtXt¨c¯œes­‚?¿û¨6ϳ¬žUX²—ÙÎÆg£ÔyÇûáteùRº–±É{±œ%š  tJx"s’ 4'ŽZôt*^Ô§Nzר‘kŸØÿ–u¶¬[¨÷?š3÷À¿—ŸÌþ4êÀç‚ÕŠûYOˆûyw·ÌÏs™æ§öÜ®¯$º¯dW0*’½t­WÔvºêüs ˜ñ9othththththtXˆîä®×U±÷ÛWñÿ\v–\%W`}]ÆÞ¼^ú( í(ÿp¢³r= ìvµ_ŸzÖ P€x p-B›tÒIsa:s­ÔžêËêæjî){J賜#Öì¼l#füå·vÚZŽ€sHÄÚEFç7¿y.@dö.¾à k¢€Š>‰FÈ¡Û2¤HÆÔ~¾ZG™vT§”ïE‚YÕ'»XÔÄ—¦Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñautp«ƒó-òHq.¾çPÌ:È õ«t£æ´Nÿ“sÁΓäúêܵ/kÎ!¬YlÄLò*Žú1ª6¾©iÐTì¿ÿ\€OyÊ\€ûøÍìü©£jíA²¨{ÆõÖk“œÆR½Ç3ú7à¬zü*ïú»5ô0îFà:V(Zˆ¶©,8Kø1–­‘Q¯7Ê ó­]t^²Êê֚ʱÚ#‚Ç%É0;ÐèÐèÐèÐèÐèÐè0ŒNkr.}/žù(®Çj_Sw~¯ïwgÒZÛ“óZ'óg’ò.㎫³%Z©yÉpâ‰s#ÐYwÜq.¬K–©Î ë%±õ×ñøµUÝir`3ed}–×t \ÏÿÄ~ªmæ|‹|'g³Ò¬FÜ?Œ¡Zb:g¢gÏUì¦1Ùí8ÖXï¤ökEíDÉ%xÙjŒËýKWgÕ‹1â¬WW¦÷×x&vØ\”µ^uþ¹¯µ­Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑaêS˜³V«•×Z‹Â1Ž÷á7ªÏSn†äÞ\£º£e^v9C ëjðáL+üެ/rcÏÉÑ úÔïb$Ý ¯q÷Ãf°µ¸('–½˜KuÑÚ'ÓÙµ7ز¬¹>ÙsÕy„²†wžrÊ\tÔ::§UPfuþ+ë‹à-À;:æ3Í´•¯‘U˜ðsí[q5/e²ss^ ø~È!sq2­® ûFÞ98h,‡L©ykthththththtXˆ£¶ž¥lsaŸ+æ Ã;*W€›óµf ÉãéþZ?Ë]wÌWu¼Lýך­ÂyHÖד<2ª¯«9‡ÍŒ³µ%¶×Db;Nr—c]ñ+±6Övpží*g¸?qð\?©}žkMÿÒÚ>»zlîÓFÛÏY¨ÐZð–°î}Î;@}ࢹ=\O­NöòithththththtF‡Zc“H`´ º#e €ÌŃ/c÷µ%™ÖGcÄ;š›u‰tÒ+°WòuÖ¥$Ú³z¥»ìKµU]G¼ÆèõÊ'›Äj©œ¯Íå[TMû³c<ÅHŒšófDvâàƒçâ|]hKn!4HjÁ×äÕɸÙ5ª›ª÷]Ëæ^®ÖûYÌÌó¹ÜÐ5¨ÚûšïÝíµ²lºÞèÐèÐèÐèÐèÐè°FÆ4r_-YlíbF¾ÕO…yLM`—‰"ïF³%•8ËçC8ÒP¯»<8õš­QÀ½‹ÓÛÔˆ™ë¸Nõ ­s¼:f §US4¯=®UVkäëT±. 1° 0îü, îa9ÀÖvÕF&= < Ìȧù•rŸê<¢0Ùe­î ;º÷Å‚\·6ÊX®>.>ßYn$Þò%ú4:4:4:4:4:4: £×£¶×Z[ÂÞqì¡Ê­ålõŽ9!?iæyEóûs^â¤Í£8ëæILJýBY†^åxwnEÙi§¹¨ö@±&±Ú»9Ÿ|ççÖ–ÍdÄ¿™ú$™bÜ[×yKy¼ØÇQf(Ì-ãrÖ; åØ+Ž+ÔÙÅ–P|BñLX&“6JÔœÓoÔÿ¤~z"Qkù3úvIkW*ë¯4ö­Þ5CŽ|othththththtF‡D>óG3†èÏ} ÝL¨Ùh‰ZÿÖÉÛ$Ìèè/óÇsLÎèn3s§³´î%–.‡ÎhîÑQ=A;»p­s½Í\yŠ;ù."Ñ•)·ÞZ#øf@'€‘:묹`Es$óI†~ ÷àW¨AÑÁõó{@§Ä-_¶›ª×K2úyÔÛ2Ýo²~—é·Uw‡¾Mvžªó\EÈ:C– ±Î­Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ña!:hœQ-+ê•Â΄¬£ˆûƻ௸Ž7Ï[Í–RçmYå\íŒËµ&ŸãhV4:4:4:4:4:4: £ƒ‹ôqOÔÌæõ¬cÛœ‹ÐaW>ÁáÝqþr1J…· ’,ð¹‡[î;ǧE;j<¯kŸú¦òúuVfk?*sÙµz~ÕÕõ~£VÈÚB×éfš[M5ÃI½Sb]GbÓwüù¯°dùÀÜàšcˆïtæÎã×í‚ë{îá # 7´CÎŽç2ã v¹¾ ¿ªžpÂ\êlÉ+×Q£C£C£C£C£C£ÃJv‡zî²?ñœg˲ž†pŸÝ˜¬æ¦ãLCµ–#ÉNžœkÉ3šç”}8kLöf6E[•|öOt ·Ž{d„¯u†Ë4~£~É÷Ú"ï´ 7]®AM8IFãÅ\<uUbÈ»¶œžzê\˜-\=.œ–k«çªã!W -·-ɼ鲕ñGcQ5FR™™ioÍ;êUü~KŒhthththththtXȤ1”¯,¼/ûn±dC/qÄ\p'Ï F–„½VÛ ¨Q¯è:'QõfYd³ùºÓ¨rD;Ûî2>1—fÔ~ÌäÜfºŠ%}™×qb›NöNÎ3ñ:vÏÂ.‚™F3`òžÊåÊý"xï§žœì]©žØªMUk8ï¡áá\¦Ôš¾ÎôÄ $‰g¬Ó5i¦ª[Gç3÷¡î@Jîî¾F‡F‡F‡F‡F‡F —x¸%mæÚ0+Eg.Dgpt>UÕy0[Œ›'õ©y™Ïd.‡k?F])ú^è=FOü }‹+Œ Iä”Z],Râeêô{¢©KÔÍg5®wGy¼!{ΰFwÂή3!‰ÄtHQÏ7ö:Þô½Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñaj‹Õ¨ ÚYŽ-Žèe¬Mú'…O2à,‹¢Ê­‰Ý0Ñh›Y¶Cƒ—Ø%Þï\Ê%Úž\;—3Ñ%äÕ­Þ£š.'Ûy¤° rÔc9©™’t4Ùc\-¿¹Y×2j†„Þx«­æ]P]Ó¤1+5㿵æÍTm•úýº M.ŽOÛ†½«ãµãz83Z­W¬u¼ÎR?º X_gæp£C£C£C£C£C£ÃBtÕÆèSöiXáÓ%{]`ÕÒ\?ú\Ì"·¦’³U"«knºdÔòu—œsµ‡kKžZþ䘕øèÖÙjjk©ÓfYuMü¢W±‰×(Ìk>ÉI;fEΨåF–wwŽûÚI¹Zï»»m·‹[¹Zƒ2~ãsî¹sál;!«Qo.zŽÑSû°¶æ³œG:ÔùѸžC™K=뵟ë‡ë‘­q$×,5:4:4:4:4:4:8ÍR‰ŸÛmÝYrß}ç‚Ó(ô!`ôåX׆<.&_ûîþelµ™Ó%zgÁdí\-î…Gõiɸ$°Ëâkd\Å75§c©¬Ü-èYká²b©Äe>шTŽ,ãëÐÆ ·تñ7ËRÞûñuׇ ̼§mPnÕà%»]ƒÀ>ÆÇ]ƒGõÖŒ uÔd-¯Üztج‘F‡F‡F‡F‡F‡F‡u°;ŒòB$ŒÄj§Ã[àäøÇ<¶"9Kg$äó©~œv"ñf\–ã~[v”çŒãFÈíÅ£Ò;ø[¯¸ÂœùaT/TûyŽŽ,>ÌÃúÕd'à´¦ÅØÛ¹öa®¥“³‡ò[`µöÚk.ÿêUËkmC6ášëžûJíÑÎÖ¯ž®*y€ªüvÊ™ëë£n]Ô»åÄÛ'ñÜ^Á‹£Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ña%t[¦}r3\ù©˜í–ksgÌÜj¼ çö¨sVZþ®q÷¼¾Ô3míÄZ³+$Ò~”¾þ$§9î$«iôS¯ˆÚ²É¼õ§~wÎÚ©¹;ë·vLò¬ƒîÚ$pk0¨ „®˜ó|9¦—\sè¼dÕŠüØÒ]³ºë¬ÅUkµîÐT“VËvÝuënÙEjkËuÚèÐèÐèÐèÐèÐè°sB’©0ñTÌ?Ü“Ê⫾îìœGuJ’e¿rÈÅyFø-0‡ùÔÌ’ø©æˆPkW–ñ™çr8Ï":êS:ª#Êù'GgHIš÷a›ª¹rvR×N's˜õó“3ytÐ\ê|:Ngâ´[Ž…žïWfçYÍ9Èœ4V\ЃMyò$W)ª1­u^3—YùLòŒB« Ã²ÕšGñ¸QÇõ«.%±þ$–ÊQ9°ŠÆ©^é<úÿ8·bc ª=ŽõNÿ–G¥9d_fá]E33ª?ɵ[µg ®ÓQ¯Ýú¹ŽcÍÍ µ“ªfµÖ)%»¦¯QöÜs.œ±«¶Ý«nGå­¾—î‘ôY\›æcÕ–k< ÐÁiöð+¬;øÐ¢pK˜mQƱ‹×cáxÚù¯ÐÈiO:~òd|ií4:4:4:4:4:4:,D‡QIžÄbÔÑpõ¯ãÖˆÚ*êð(‰@Õ$Ôò Q?˜i˜½zbå|åŒð'L¼XsÝ×hîËQkrm5«gW‚«Dw.ÃÄZ§Êï i£ÒRe‹Ó¨·¶ÎäÚ¶›ØIY®âÎÓOŸ ûH8ÿð\wäf¬ÉqÕ¬6tþ¼ùÍsQ9Þ å¸ãærÖYsQæCnkj’zµ=|?úÉn$ÑŒålN”ø*è> Òû“N˜ËÉ'Ï…¥VŸ•dªµ».kpnÙ¯m²nž¸ÕÄ}ëâs5¶W߈ó-ÓTçúÒÁa£C£C£C£C£C£Ã0:Ôç}Í·˜û:ÖãâFßi¢Ðól Z%k|"UÖ7bnÔ¿´Æ»Ü“Só˜×oÇÖ·Z†¯—:©9™u«|–Í–Ûί»ÆÖE$2\<Å[3;½ë@˜\½a•%Ïéâ¹YçЩµ‘šåÊõÛÁ뽜æM,ãõŽÔeãª÷«uÆÞÑýj<«VâhuµéL˵"¹­VO uÏ,ó mÕ¨Ý3·KÖÙBÝŒåET¯‡ƒIDÛs&„e’<±öæ:¢UÖQ®K¬Ø‰íUe‹Îµœ&{€Zg¢šÇç40Î;pç9ŸgMu¼ŠqnÇÅ¿U^ñZ#”äuJúÜÍüÄ£~”U¾Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ña}Ñ¡¶;Úež–5"Ôþ«ÎJžÈŸ„[o™†Á“ß:;¸fú¨-eÉ©S[ÂùÜGíé È2»„u<—Ò£6îQ®Èe~­«ðfŒú„?Æ[a„ÃZSþjÎÆåâd•_¢–Î×T#ø)¤{˜zŒ8±«'ñwL€£;„Ñ]ÐÊ{ãF‡F‡F‡F‡F‡F‡Û„Á»Î]2š{¢îD±Ôr\Ë|.èõÒPåOÑ($w§³Gê œ¶0‹DÓ˜ËáÄ£u™Fh™wkî° )V°$þN¿)¾3"ðjrû4g«:(78ä63Î9YªÌ™<Ã9ÖÏåúÑ>m³c;Oø+ø½ÐKº Å×aÍw5h/%½ÈÿQ–ûÄc¶Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ña:8 \k-øÝ뙯|¹×bÍû½^vÌú¹9žïø;V ø“µ%èm¶ÔsNÐ5?°ú"‚3Íi®Ô6ªÙ*—e&Í?õêÎG6_‰¹GAΠâ~åv\®§ÍSÉ_3Ôå³ÚÉvµ×þØ|Ï™gÎ…ß3Ÿer’óËÉeE—…S%¿Ê|§ûªóù2ãw"OFýdâ½t£C£C£C£C£C£Ã:h–ê¾ÂÆé%FåjÍíP£I…d”ûb}¹’,œ‰vg|F΢^³ºõ¢¶o~¢ÆU©>*ÇÊÑÿ\OUÇñêmò˜£e™ƒ–iÒj ¬{9ö7FVÙ«Èâ´N6&ãî0…9´!'Y—5êá ¼…Ël¸j©gnó=÷œK™ˆw<õÔ¹ =£:%·róøÓXóÙèÐèÐèÐèÐèÐè0ŒëínœM•ùÎsµî=q³^öèÕ娍^¥ŽRvA¬¬eÍãÃVÈš%#ÉÄ„öì»ï\œWa-K“QXEW³^9w’|¯N{6:ÓF3«æVHÎJ¯ñ¤»SN™ óéÕX³šç>ºŠnêõZã‹ò:{GÄâÍ£ÖÀÔ;ÞšH¯èÎÊùí×þ´ËP ȳÜèÐèÐèÐèÐèÐè0ŒŽ÷)Ïœ’¬bm3³ÝjL…äê¯Y#r-IJ̣ùCÙÚë²±÷ ë[ô›æ©qÜ!¸Î^þð :÷Q¾n·ÞkÞõºÍ£ºÑ@®É¬×”f·O|2– ý€9¦r¸¶G;Ïg'ÇÔ/¢Æõyp»SÝV[±sLw=àöoõIž‘Q«Óêan‹r¸³·ž®böN¬Q¯ÆeDô°ÝSÇ ã`›&4øM…Ë$» n®Ž/·óöêØ”ëpòÕ„ÏþûÏE%³Ê=/·¦Ü¾ËaÛíh{ê]\²Ãq3ÁeÛTYïØá¸ý˜rh¸:ë÷ÒÞHf¬Ñ-Œ¯,ýˆ†ÑÁåÉù(rË,4*?‰ˆÉ×u^sn}^ESáî×h&=¥žuÖ\˜!WœÕ5ïCÅÎð¶ø|‡-sˆf ÊågÎ<æVÁ¨.ÔI›QÝר5¼Þ%Œ+šå§ŽnsýÏ–ÖZ;TkNFõQÉvzcf¤¬½5ꑌ¸Ã>Ýï±0—“£šð$R¯Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡Ñatøé3z¢__}È2ÛeÎ0VÏŸÄò•´™sGr–|gë¹ËÌ8ʉ‘ï4’Ss#©uîºë\ØÿÐí[ðîÀÄÏ|f.ð]ó‰Z!•ãºÆPõ.ȵm{•kf0² “:ûOÂý{`.ôx¯u,Iþ²$KZÍΗXáP‚V‹4ê¿wè0ÊÞë(F3n¬Îdž·'÷ëK¤ Ï=¶]bV£°¸À𥄭®¶6:]DŽ>µÖ¨^_¼asWk&×Ï6èaŽ:j.ú,ô•ãšã§¨ 4錗²v'R¥ÎïSóxÔ–k7:£;–õõsHòäº7r»/7^¼ƒb?qF æÀ©Q2/Áo~ïÐ!·žçH‘Dß$–£dÞò¹ÞY»/ÄD·–ë¸xC‹ÂÜŽE<·¦åy<Ý<¯õ*îíŠqô4EµdÃ÷N˜ [•Žå€Êô§Îø9»q¬Yô¦è£kO†Z6&6è|~.ÛYòœ8©97j¯‡ø%q…÷9‹{ÚåJothththththtø½C‡ü ¾ ÿm®_Z]ãä¼U‡S#Å("àÃÙ$!Óàû‡ë|Æõe–÷e|9v]³zðBJ£ +<$y¥#$Ë^ô Ðz–ÆÌ¬îürÖ‹ÄãÔñÚiÍN×”k\ÍåZ/f›e;½Döº >õþm­0O ÕÄwì:j|Iòùî½÷\ ¦7:4:4:4:4:4:üÞ¡ < •1`4}¾8+äæm§¦¶Ÿ&o‘h¢´h!ŽŒƒ­ågâ0Ú†„GB%À2Ž Èg¬MÖ,qùàç’èU¸ÇØš_·vn²,Z¨HĨ&ɯÄù…U›çlÖÊk—ئk”U´Uy\­ÞøïbW—ùÆ,‹þs{E×ÃÊ òûæ³ÔèÐèÐèÐèÐèÐèଷ.“`~\ÅCUÏæà¯s3O…úÛü ž£Fr²V©{$'G„¹zœoí(ÓržÝ>AI×ÿ¬7Ó¸9îÇAÇz$qFpm6°>»Ù[çfå~^C÷Å’œyQêìöÚó Ë\îù©ï²¾öèÜ·y4KÎ(c¹Ëk–û`8ý^½Š^×›¾7:4:4:4:4:4:4:ÜJ¶Mµ ÕwÖÕ1$àYÊu:¶„„;b¹’,Hn³ç*®0.¨ž¡F™DcVŸ²“Ñ©k«{›WMÍn€& ½tüñsÑþq½ÍÞÂìý˜ìRÜØ1îèhº¼½:Ctå¬ÛntÔ{Öéšêyûoϱ_¯Ó1]žÓZ›W´ÄíëØÃÙ7Í“F‡F‡F‡F‡F‡F‡ß;tõÊ«›ÄÖ9„ªµLΛqÔz[Ûà\î˜ÜÊyõÕ¿-›É{tt …“-ynÙÜÓÀiº˜éÂñÙNít€:Ê:.¼Òõ{-7j-„kF Öv°¾×³õTŠ•_\m.BpT³´^l™£K?þžð{×ü~ü+ ©îFuGùJÉײ³Ñ»p:mÃI~Ò„5]Y5ø¯Ð"âÌOöU0:½F‡F‡F‡F‡F‡F‡uCذp‚ÖsÊíS§”x~j¾•Ä'6—‡ÉÜ«Wzr"®c‘j¬ÉW™;M×­R;©»'‘óɈ×k-çñpöeµ«r z ¾©§6fcV9ŒÖrîoì´IæÊš£ÏiÒ«†úÐ&Z&ÅPî™Ñý@­£sYAÝ»;¿ŽQt½Ãqþ½‰œq3A£9篶s½˜4ôÃq4Ûn;¬…Û':$Rºg]Ž*?“ æµåw”30™‡Î w‘snDO’`œÓr°½²~ ß©l„޽wµ öŒDš[„Q'¸±sKØEÔR™Äa¹9¦2ªFÇã¼F¹1GwÎ/´ÖõÕ1h5?fEžn×Wë!˜†}Ñ˾mthththththtFw:ƒuüˤA„P@zïUš {EEDÄÞ•ÞDà"@K¯Ò« ÒA¤iRÔÛ¼Õ§Þë{·xû¼u²p;ž93Y{ŸCòïïÿòì:{öÌúgÖZ³–©û2åg0/q¿ë1Ý™4mvjwû7ut¦ç³^“¶ØŒòq”Ûâ/‰»v;€À`°C^°Ã¥»¹­¢¶Ön¶Ž„`¶aw®Ÿ`ŒàÖ'Èík»›|}™ÍÛP’Íǯ¦È][$1I|3¾ƒ½AeN·YëcÓî/i‡¶¼œ’3#x¸-æ’L²6«ín¶{’–lfY•³ƒÄ7ÀïøÇŒ"ó¸cEšš:w&Éj>¿¾7îò½ ìv;€À`‡ò¿§kìŒã¶Xå.¯É}êäyäM £þ\wLBK‹d.ç>·õßæCkÓoØêÜŒE ѹûµ¤µÈ#r»µ¦YªïáLFúª:ÞÏ‘Ì7n ƒ×Ù±íÞV¬Kѵ^&³ðQ¾GŒ×#š¼/±á2?Ú¤¥„§ÌÚpûcH<"L®÷«AÒ½#Üï¶çºsæZÆT`°Øìv;d‡ØãËÔÍíU˜[÷—øÔÉ3°˜-ÊcY‰ÂQÝ­q –±Ño,D·-ÞÏ™¿¦õB®[pk2åYkåREqÅÔ²teY­ëʃc 2¸NlŒiú¬šñ1ôßÏœ9hÚ´0Ìøî¸|º÷¦_ïÉtgÂÕÛ¿éµâf"›|ÖuM¦ÞÉEßÑÙ˜ÂVNyö°Øìv;€lš%Éz.Ó6W4KîïûýmóJÓ;ÑÆYßHó7ëÜÑÜÜd{#¹2–( ¶´^c¬‘ȉÍZ׫˜c½›a‹t!YWåÎ)_;¦G×ýWõxƒœ•e¸icµÅ×ßE×;ñ9É“ý=¸Õñoýnzæ)›Å\®Óö«ç‘h¢l:Ì`¹·Ì^æ3HF ò‘Rv­‚À`°Øìä-M÷ÚòkY»t5Knh,››KâoéŽ$¬Çãr¯Kš81 – ¬[¬Ùq·y\¹·ƒ<š‡M“fëeúW°YómÛmÌÖÓmšFÛWc ·%ÝñæÎ cüø0X›Äå1£Ž»sÈêïÅ>¢ ½õ¾òJÌM¬SbïÙ`q³%Ù¾äÞ’шmä Qo–œíþ¦›÷pZ›&YÞSÌ÷ÕF`°Øìv;ä;øQ°­Ò_ÓÜÕ_é2SÏk¯g~±µ÷ÙŒ,g“Þ6™)÷^¦;rÇÊpó‚{¬¢Û^Ý+ìl!]`[‡(ÏPï^ÿ¨÷b³ôx¶{ê¼ g~aÝ딘ØËÔŒâÖ ™ã Ý"oŽIúô ƒíÑ\ŸÌ¦~U²R—Æ6’D¼—0…|Üânó¶Ö(ñ³uË(³•j¹À`°ØìvÈvàÍ6—,l›;‚Dnñ‚M/¡ëLßH··›™…ÄçÁo„ðX"fH|åÖFÛ=õ ‰zvýL=R„M‡æŽvè\gd± 3ï–Nîšd Ì:~S~#ÎÌšŸ™3ÃÐsÖë1.ÜU3Z¸éݪ3)?‹cw°–É\(‘·¦²D«iËñ¤¿ 3©ä»›zf7³H"Ϙ½žË#鶘‡æ™<*à¯ýEÀ`°ØìvÈ5vg{,جaöY= Lì›Ù§Ì>®¯½’ÈL›ÝJï×¼ƒ$´ÛÞç×fgóÆ´ÍèÍ{êjt½ŠÛvï7Ñ$_ŒD%áMS‡à¾žïž¹€ÛÛ‚¯¼2Œ·ßƒe³'æ=3ã6ØV«™~Ú\¶´²F‹Ÿ+!¸mñÁ⮘›É¯TwTLÛQ›ÖÚV‡’–/áVþ¾Ü;²Ç `°Øìv;ä2;äÖÊ&lnÍ[yÞ§Û õÞ§Ç@ÐûmÃŒñe‹{ C_«¥[®möøn¬µà¾ÏsaÝ’®Û‚ÍÙ®ß5•¶5kr”DzÈs•š{$k ÝpwV IÆ"wäm7#Käž»4‹ç&âòèkîÜ6}¹>Óod ·÷²{äfû fÍè-ß­_²•Ħ6KeÞÍŒåâä°Øìv;€rÜ_'/ì³…sÓ%¹Þ®XÆòLÐÏÏÑe¯É)ú~›Òã˜O±õD]‡£ëÁtèqWôÕXòØ ¹UÃ6 ˜_ ªßlDò ºÝPÂM±[·å¶o·ÿƒÍ ‚mâܘ/L˯<Æ…œA$õ 9ØÖ~šÏ2ûÄcÁí­ªKZy[rg³5îv;€À`°C@v¯0rÛ"ÁÁ4Kæ×mdæÑÛ¤é=hËÉ¢·4ÓnèŽnëÅÌ_zTS§Ä{XÃà¶Î‹Ò,_1çÖJ´6=ƒ-n‰YÛn}šÎ§¦|xMHÞÝ–%ÖÍ5¶õ’úQóÝÍŽ;*ˆ\Oè–ünFУJXX¾^O’KËöF~3FÙ|6l^ F Á`°Øìvˆ‰lóyÃæwã·Dó£·R=îM³aóÒ´éŽä³{½lîõzúÊ}·´—g`ôk¯´½—Û£Õíû*ÑDÙÊ)Éðè§™1=ÜÚ¹U׿E)ñÝ5=%ÌÖb“-&GÈãºHøÂüÍc·G·™™K®År×’í›Ú¾…ćÙÜcÆ18ìv;€À`‡€ì ïq-“Û>‚Íìõú¼Ï´UÙbhÛò6Ú¢¢Ùú¸®ÿñ+ýž|2Œ•+Ãà\“¬I0ïo³ÕÊ­Ÿ’¹¼[îÉí¹îûK|qÝ1úøæ|ß­i”g®tG{6yœmǺRæmJ*32¤m|bÆ„1[¬»w¸3IVÙ¾2Gô+{ÍþÈöwîºç¹ûKI< üjÒ|jÛÀ`°ØìvðÍn[‰|Öl›+aso¦¶Aï¡’q¦uÛÍÚ&ôUxnm’yçÇ ƒ¯å>¢GÀ³E—èŽÜíß-OÜýÎofy“äÖRÛª+w.'ÓïQ×ÕHÜÂwpgÜs{'ºóBºã*“Àò¬¬¼ÖŒ59~ãtÉgÖ_M¿²Â}OÉÝüŽdÜýÈÖl_ÖfÓ¯Z5Œ`ë’ÜY)Í–oFÉ–ØÖÝ::[ ¸Çcn˯DømK’v{ž²`1[Ü«%½Ã-g$ã1[N"S“¬­d;€À`°ØÁ7;ØÊ pëöpsÏ›¸äü,=Ï K{Ó¨ë‘ô¼êüÛ´ºš­ïÆÞ›~çw¶µ9nÛYÌ–£lzywfC¹6 öRIbË3?º½ƒ•߯öÀ­0å¶n/vÛ1mã›d°içÜ‘jüÆBw×€Ä;Ô”_e·×D>Ç2“Œ^$^®}’ëîüêèä_GÁìv;€À`¹fÉeËæÙèžÓ™óq–êfr]ò›^yú™Ì#|Ö·˜¾ fïs—дÚ¢ »e ßµ`r Æʶ{óùí#±Ûón“ë£üÚ[Ýu›™†» sóWÐ[· ÖmšzWy‹²­*õ›e5X¤ëXØÄoäp·ßEnikå>öòu î£ßÞçW{f‹Îmóœ1Ï;€À`°Ø!;¸mLrO3É7²å+Ñm%æ›êñ=Ì Ü7Í•ïnËd>kó×u[ºýÆÝ]rÚÀ-W¥åÖf‹î×{0öÍoÌ 7›è}‡[‘¾–P¢+³ek²i/ݒж*X[rkMåõ#¹0+ªÄÚë×—Õo’0¸[{æWèûõˆ÷nM‘„Åx,Íšg}¬Ë«:tƒ[xöj°Øìv;€²ƒ-§¡{æ"Yb‹Îçöã²É|~w^õÏïkZœu¯Z[†¿™_ÜI÷zw$á`­Ú´xšÒ‰ë'wõ<’좶7õ;¢¯3’0¦DƒÊúL–ê¶§°W€Ùôœ/¶¼’:t·OŸ6Ç€ÚÅ`ÙZÝ2Á½ÂÔfg¿]ÎP~Û³»5Ê™7ØSl±Ó¹§ëºz]3Ï`jÛ6 æŽl) v;€À`°ƒov¯+Ñe».õ/î®1·ÝÄŒýËoÁŒ`>K·AK¼¼$­—ß‹í’n  Éª¦mÑ<_ç¾X"œ›å×ã!³Ë]v·v[_3#Tľò(ö­·:®7]þ»¿¦©mÓyAo·f[uS¿Þ$wvïÑ7[(¿6k‰¶Ù½žÔ=F æÏ Ѥ¹ã%ÚXLâ,†UuÉcŽÀ¹êÞþºf>»•‚À`°ØìÜ5 Y§#‰¥lkÿü.ìh®û¶e#2såØb ۬̒ܦìu¯Q’Ïc×ðØÞ:·lß¹e1Vª`« cÑHž¨ç9ÒÛ Ïܹ ëñ$ͱ“\¦I¸À¯´4GY’ø_P¿Þ³r ¡_/…`½Ò­ s—M¢_’èmØ·T¿ŠÁr•ý´õ–©Åi;€À`°Ø! ;è:¸åÛ¾šmý¾;V€<»·ntg±1…ܯOÿš¦Ü,³¾vO—ɶÕvîky½é5ffÒ}8sËÃ6©.ñ9ô«=Üßìqº‡¡î aój¶ùfÇ’ùÑAÒ¥ÍìYÁ´.îxqhD%šÃX¾¸;ª¡MϦ{çøõ pçü•s–û[èò3Ûûìv;€À`‡€ì ×‰$º—í]ô¨îúÑçÚº­„÷sÖBž›so5e²$+¥Ä7Ì=›Ö™ËÌ9.ÿ‚±dýó;£×ã¢Û´j¶è ±ëŽüj‡‚qGnmœÓôGÕó´r;´é6M–áóyþîfO¹¥X®©0¬;Rt0y.ñ —Ë|÷Uî5bn†•´@=ÚÍÏ_¾ί.Ñ­•Ç„7å­.Á²}~À`°ØìvðͺÎÁ©éËm}ÅÞ;ÌY°d~­G-ÓyJÏæ£·d}¦oÖ€émh³ º¿Ž~®¥{ï C’ÝÞvÉùXxÁ-s¸VùÛ¹uqym­ŽÝz.§áî˺æMou¦¦Qg aÝ:OÛxÆmÁ”Çj³Ii¹–D€÷›³ÉoTŠ`-$Xdx w¸™(öœ¶¹ÕßåWS7.É v;€À`°ƒ-’†Û¯O/‰)«%~e_2.3¯áâIfNR›M¯5˦Ëv[¿°­i²Õ¿©•2½[m^¸¹ÕNü¶(w&š¼.ßì¨n-yO‰¿¨í݇™ÛÇiÑ¥=óeÿ@},dŽILÿgIO›tÅSÔ-Ûƒe¨‘xlJt~óæ“Ò؆’(ˆrÏayNÉUúÖ½óÆc<ÛºE³ù|¾ƒ¦ó;€À`°ØÁ7;HÖ雵¤Ç†uçÍ´}Asþ®×Ïßõsx¿ûÛÙ¤·$÷Ÿ­MJìàòžL“‹Ü6½+Íu÷¶wô[Ú`‘Ÿåú¿ÑØÜRB?“[Ûñõ6Éûõ¨ÈzÔewÆOwVM‰”K`¹VJÒOÝZ;›ÅS¢ të r7§m,Ö·g¾ÜÊ,©=·ÏÙfÜÖpŸ1TÁ`°ØìvðÍn«™D_aæ[—Ô‰Í6ÄýQŸÝs¯Ô¿)÷V¶Ût\òuyî6©Û+ýFëuÛF/æš8~ת©£ókyô+½ýθs×××ýD}¨n¡æ™8ï7=™õVáÖÙÖÜIä¶$FD,þ¢nM‹_Îrß9·r`IZ¬[ªKøÂæñž»#7ù—r·w‹²éÍ$š%°Øìv;€LvpÏõÜV¿™€ôM—Qü[ï›l•ÖmÊ6¿P¹^Ë/;èëû²#VE©3^Ÿ¤÷é×^vÐëÊ´¨ÆÞÚs7ÑÄji{Š_ׯ‰ãÈíz,½®L ¯[l£3ã•­¥™mÉÝ›$9ïÈ¥w,ì{{kðbÑPÙ4êæù¨é—eÜyǺµÚV*ËW;€À`°ØÁ7;H<ÙÌHÝò–lž©göÑWÃéWqs…‘-Û…»¿¸cäš¶Eý*.k±$\éž½^Ì(|úsuéäŽø{VyÉ-&Š%¯=·f¶5ëº&w/°Ew‘ë%9gÍ,Q~×—ÙòLÉ-¤6]S°–có-wgì’kmÑcä™ÎäOñËk±Dó“ë‘$žÙg‚À`°Øìà›l2Ä”'6ûšYö‘¶XÜf¿³ÍÐmµÇOäÞm³wK´a6É‹Vįå4XÌ[fîÉçèQx?ó5C?¦Û^õóu™ãw[çæ7“KìÞnŒÜv/±“Ê9ÎÖß%úwæS¹ŽHò^Áülž±nî¬Ûuû¥ÛüEÝ5Xþ#·M?X¯·IKÓë•{½®«7Êv;€À`°C@v°Åd³ùz¹×¶Hfš6ßN›%(vë›ÛÒ”»‘%b¿Öì)òþ«¿ G~0cPφ®[Ó„[”S9Bg þí—Å$vU9;È%¤ßù»<²Š[{)÷Gõí<ØZEIVPwÜ ¹MV"ƒéylúj÷smµj~k›¶9v¬[óìwôh?˜¾X5v;€À`°C@vÈys¿mþ¦lqf„ûëÛ¢‚ûõ3³Žº­äf©ô×±ØgcßäòÁm½â:Ñ3Úðž1cÂ0c•ë0MŸX}íXì+æÜ+ýj„bÑMI,˜ríŠÙ®Ük¬tX¬½ÁXÉöDw+‰Í=˜¾Ëo4ry¯±};›^+–ñ„+%#êØ=FôòÞ`°Øìv;¸#i¸½ÂäZ#³ô•n¶géÞªnÛ“d>k“üæœQ×®°.ÅŒw›M$‰H çÝâÌíD_åg–D·Yë^|ŽÈÁçHz{­œß6/‰Fbûúîef‹½ øÕDÙ46’¯/—ðr+¶\Câw$l £Mãjã/¿äØGnî»I´÷’¯cÓ†I4rÍØìv;€À¶ì?îvg0‘Ôƒ-†›‰$3b½évRÉ*÷ìþbfç‘÷5ù<]Â#6»<×*³À{ï…¡·+æÖ/Éû‹¤—[éæW^¹%L°Èض–#‘á’è.~óãHöK$­<],‘7äåqKT›GÙÚÝZ¾Ü£î—¡$ÏÅ'A‹v;€À`°ƒov÷YSSán¦Üf 5koÜÙXÜmÌýMm±5l­ÂÖ üÆ× 6KuÇg ¦ Ðß‘kžµ@6­š[‹ez´²VJ÷4æY*ïA¹kt—Y"Éåz [oÛ8Gž‡Ë//ÄÒžcÑ5ÅÂerœ»>MÞqGãÑëÊì¡’v(‰Kiûm‹+"ñf·é'õ^Ïý7û(Øìv;€À¾ÙÁo†AÛjnw¯\¹2 ^o¥Ÿ£Gç6ï¦[%0I¾?ýY¦}Ó×Ú¯_YìZ)yrÉ}L¹Äz!3†ŸÃ¾¯f´j¶bóµz öX"•[èw…ä’5˜òñ‰ß¼<îxÑ’£Á2«J¬¢º,•¬_“³°ÛûÅ&u%ÚiIî!›&G÷¸ÇT1Ghv“Dð6ntÛ²Á`°ØìvÆ6ù`J¹•PžmÇ&Ç/C×`¸[…î•ê¶·šÜä^;Ÿ»«ÛäÞwÁ¢½Ùô{zïÖ3cšº#]Èw031±†Ð\ '/¡Ä¿Ôm§“ë…Ìvâ¶ñÅ’­FžëS.áåq6b)³$ª‰<°©Ñ Ææ>’ÇÛ4ïcFƒá=%K†aÞsذ0Ì\`rÍd,š4¹Ÿ³M¯¨Ÿ“=V;€À`°ØÁ7;Øf7’vkó3#~ÇO—K¶ÈÆî™¸^“¬3ÑsíÙÚ-ûž© æc»=NÚÍæÝø{1/ÓØÈµ(~-¿~-õòf’žèf7ÓgÛƒBò^n–”˼áøÕúÇè7.º­fô¨þ¦Å‚a°´gÏmwÛ²žIú©ßë®[s ¬¯o5¿¾Îe ~ëìóÁ`°ØìvðͱxÁ¹å•ßèjz–áúõìz‹2sиۤaÏôys[ë$zƒØmÐ;šm>+‘ rkfny!ʯŠEÎä–'€M’Ë5´ÁV>ÚÞÎíg«G®ÖãWë%aýËö„á³eK43…<ï’¼m^¸Átøî¨}’{j½ìv;€À`‡˜ØÁ– Æœ­Èçòs~Û•$þ†M+¥ÏRu¯ZÞc¶1IO}vï®y„@9wÓê¸3(Iú—„$Ö7‰v˯…T²2+Ooóžf{³ñ—­æsKóæwôâ·åH4{½Kr[ü›^E«lÜø=Ì~ÇÜa+¿Á^î± ûÙJlÊúfËh¬Ÿ¯¯öuûâfìv;€À`‡˜ØA·Kr…ûí#6Ihž©[šl¶cwK0}P%6#=m]R^x´Jd—MÝÆîèm6]ŸÉ¤±ôt¹œ—ø:Ó†³½úÕ±¸{ŠMCânç’{­c°Xy±Øµc‰Vm–V‡D×2™RѬ[ÉzC3 ¥þ\[.Q›Z2öÐÚüizf.‰”ÐßEýfóØìv;€À¾ÙÁ7w=âôÐe‘nÖk†ê:ôy™ÙBÌHz—Ê,¯ŠyÔô fŽE·L›áw¿<2ƒDKæ¶úIü($#ý|]jéíߦ£à^`¶pÛª.}œÃZS~"Ûa9‹~Ž.sÌžhÖ’)oÝžÀr]¢ÄNíŽSa‹cû:\?z.]®Ö_évmÝ+^×óðl^+~ûYú=[[µµÝnôD°Øìv;€|³ƒMç#Éègî±ir$z'‰&GŸ+ÙZlÞeùü±ø"˜=Ñ–%Óm÷«rÏ”ƒy¨Êó­ÇR“’2Û¼šm1U$Þ˸;K }¥¡9¦â=ºý”÷0¸éûu;¯~¦[ dó3ñë‹.×KË[…<DZ.Eu=FŸþFlùÕYU·2KÊ/Ѫ¹GAîÌ_¦Ü,U¶|;€À`°ØÁ7;Èû©Wϓ˲Že…ë’ya÷î0t„Mª˜=Ô̰ãöšæ],iuÝ”\nÛ4xî6ɵ¡ç'e„cjíܽ^·ËëþÒ–Ú;€À`°Ø!ØA#Wþ]lom¶pýíÌVgËýmö‘ü£ &“å6k[ˉ]ge뉱¿¯dÍ[8öHéòŒöòš6›%ZÂAîRéÚ–ÿ¶èô¬™<9 Ž‚¢Ç cp&z¾ÛÊ•a,[F,þ 6iïÖùõ”´%¹ÿ¼»…Hô<Áâ7ºGSºÄ3½t$ZY˨ìv;€À`‡€ì ÿú’¨±ëvÜQ8l¹~.¦TÏ­{Êó9š~zº÷ÄÚëþ:~=Nƒµùܲ'Êë6™#YgŽLXÞšVl=J¤MæÛô¥¶Ò²þGï/f´|–'ÌúèKo?|Ô,Õã3ðUÓ¦…Ñ Aœs“£RHÆ’X%¶odæîqGï4³‹ÚÖ‡Ú¼ÁmÒIž+ÖõÕýÖÜ–Nž ƒ™¯5* ‰ÏÙÎÁ`°Øìvðͦ¶Gþ}M+˜Ùk‚ñ‚Í{ÐÌšw>/øBžÞ]?¬<8 ¿³T7;øe4yfI»rKl¿:·`£9O™}ÜÌ-eË\oÚÝL‰göÓÕ,ï××Áñï;ÂÐû—n³ž93 ½´ºö‰uVÌ]™\WlU[î¶MÓÍʳùí/ü˜ØÇ€õ„îš6Þ4r(ƒÀ`°Øìà›$qöÌsl«³Ý}ͯ—{†˜[:Ÿ¼c–`qÏÜ_瘱gzÍ»Èä±hÜöD·¬_{·©%äyqk ôûè>&;H²ÜšñdܹGõg±¶Çß^÷_ÕëwëÖ-ŒÌÌ0ôû3_ð;ö鯸ñaÈå•Ü#B>Špgsç)ŒfݲÝ/ßI˜N…Â盺Dw­ÚÖ'fë9Á`°ØìvðÍî÷²y÷é3›ôŽÅ³Ôf]’[6ó6)Ø9îw”g„ f­–ôV·/´Ü:f{;¹žÓ¯…Ú|S[^¹åZî l;Ç-Wm«¢t/Yýœ¹sÃÈÎ,oe1Ór­ïa)Ä: Ó–­¯°ã¬:nôë¹j“rò¬<:¢d¯_ÉLFÙÆúwáu‹îpâ2€À`°Øìüj$lžozïf/¸ü së*ù÷µYM<¿s[w ›ýËo.ÑXbqøe–XZ ›[%+Ôä÷t¯µõn3Œ[Çeó–”dk²±‰¯ƒ³*GófÑã[šÒFçýL¶JÛ"6HâW¸÷HZ¾ûkºãŸØø7Xü@÷J4¿}ŠýOØ7€õùnm¡\÷å×£ìv;€À`“ä=×=d°ýôbêprKæÇnŸµe*Ñõ¦Ñï*0¹¿_,y9ÝR1/²yÆÂì¹µzίÖgʶNÓí§ê¶’»ýÆÍÒÚô'ºMS_ã¶wozû4óWêì 3[¥yeœYó¦Ôµ‹$+mcÑðè÷Ô£Žèµ­ëÇ$¾ßæ:wÎbÛ(ÂÖbY³§¯£4ymÀ€0ô’›^¯–ú;€À`°Ø! ;Èë_ëkÆ%έŒ-—¢}Ù¬þFºª­G»}ÏÜßH’Ç<–j±ä= ¦­ŠÑ‚iºä¹/嫽ÌÈnÉ`ÓØ¬¨&g™kål'ó|}·[ÛÓ9òƒ­Ò,£$ZV[t »ÅÞ¢L‹¹;’§»µ˜õfn\3ºÙ¯<á§°g²¾&Ž™ÂüŽn>²´y°Øìv;€bb‰fCÏÁmF6Ûaþ´JçÝݱÂôßæŠBÛÜ3˜©­Ì¶LånK–OO¹ÎtçIô+ ‚YºåodËq#ïa³ ÛÊ`>ÅÆS¼Íí·iFÛ0óm™|¡¯À29ˆ£Àqô ¶™²žJb–·4SZºyÙ=ârÊL™oûÊ?X›Ÿ€_IÂ_AÏjjóaØÓ ¹ v;€À`°ƒov°y ¹}öÌ–n±Ùk.ŽUúâð…-¤M>°FN· êV{w;4{‡< Ineí±Õ¹;;¤\?fcùµnß ¿,c›³»K%‰„fókåþ¢Gÿ6¿µ©“a‰áÖFš×² šûì½÷†Áû_y% –E6 ¸ž%ÇÖölã¹5VƒÑo,}í˜ÛÍ˼™qll¶ïÜZlã3?šÙÜ}Ab•;€À`°ØÁdyÄ=ê¯?2g²~{·Ü‚L¸gÇÁtPº_‹¹Ühc%¹¯¬›‘mŒàæ5É9n&Ê =F,Ú½ý³ÄcQŽøÍñèôñ’ÄgÛÝLÎÕõ*~GY|×ô쨺ý×m‰–¬WÕëJ˜ÁO4½YfΠôæë# –9§V6°Øìv;€|³ƒ»×¸¥­ôš´ÍŽõt±Ø¯¹…pýð¼Uç&¶Äq4Ý‹ãa«çáRñçu+̺·aì¿§Ár‘H,€ r,¹ƒÕ‰¼¿¸cG›ÞºäÑ㤙ž’Ø&’µrnKq~È¢kÊd®öƒe)Ç¿õ±œ|üc“ÌzýèÑêø»˜Q¯meÖ5cúU¬óqOllå¶b›6e[¦'ݧÅcP<";€À`°Ø! ;¸-86 àŽNÆgòìÒ&Õm›<&†®AâÙknÉ™`›]„Û—9BÏáLË*¿rCn)–ǵ–¿Q0ý•<Ú›$’†éiúCêmUÏÈ)á³<,—X"™÷Ñ9èâŒyäü¢KHý7Ë4Ö~LœÇ—{¥ºµj¦¦E²ÂÑS®þŽüeyœir½Ü+ƒ7–|7Sʹ5`îz´a£À`°Øìvðͦ”v÷Y³œú QÏŽ-‘¢y'ßôù·FF^ϲùܯ7n Co«’¹§_¹ç×6-ÉÀbÚ¿$öqyO÷[ò`ñ1üJ÷˜ÄAÝoÁ¦0uò<­Üºl‘´ÜMoçºl±åÒë„G’¼ºÖÛͳ¶š´Ebwç`Õ}òõxA\¶¶»G¦Y¶­ïÑGüÛ´­Kä³|e"Øìv;€ÀÁØA¿ƒ{Ê|wþ‚ó–žv;€À`°CÀ¼Ònë¤Yóz Ó¢ýcÍ|óÿ\ÛæY'—‡ît›¯]~Öó\|U,²ÑíÃæî ’çúÍ#‹g¬¼>åì ³^,ÏrÛ¦ýÖ­Yº ÚŒÛlӷؼmÜ^`IJìò6©b{;w~ɺEw|Û9f{ÐcÛ|’M"sÄ'D.+tnåAn®´ôM°Øìv;€bbÓîlΤø(çÙyûí0ô™²éãw1翱?1ïM"yÜ=¯‡ªÄÇÀ&—$Œà¾¿Û »¾ÈoÔIùmùgÝg$Þ¿î Áx*ï"ÃȽ$Ñ$Üõfóy´U÷ª[[ åqémçëϦƒå(":/ðQ=ºˆÎª’Q¹NPÏRäûYFk`°Øìv;d¿9Íü#üÖúJ–‚¤YÊÝÍôtÏÇm­Ô¥-íJ°Ux;unyä–%ÚVÃ’<žòõŒ~ý Ü‘ŸÝRT.íc#cØÊ)ñë¶i]äýË&!Ý{lyXÖq =š·mŒÁ+øúw烺VJ¢™ÌÖëm:U÷˜9XæP°Øìv;€ÌH~óΘ٠·l Ã6Ϻ8Ú›KeÓóùõÄ“ë¯ò®Îƒéñälå7O¨ß{ºíûnÍž6 lû.¶ªë„õåž™¡Ø”zæPÝ®mŽmú.I-¹×&ƒÀ`°Øì3;|öÉÇ@!Ø;`쀰vÀØ;`ì`âíÕËC¡ÐÉã‡/ÂUññ©c1žvˆÊ,Bi+R¤HÉ’%›5m2 O°Ÿ;sbÿÞÝŸž?]PÙ ØÁÁ;·o&غeÓäI5jX«VÍ#‡÷Å(ºÁ—:;è’œDe:µü‘ˆ£cǼrÙeããã322†ê>mJ•*•““‹=Ø­ëù³'#®z}ÜkõëÕMLLLM-Ù鞎'>:D; ìß°a“._¶d!ÿûÒ¨5kÔ K*T(ß·ÏóŸœ;ÅûÞÃõ×&%%ûjT©n;'j1¡n¼Óv2@afÂè—FV®\Y?ºoï.â…a/ þ`×¶Ìu«çÌšîmuyˬ™+–-*[¶ÌÁ"îùÆø±‹Íß³{ûŠå‹4¨—δsïžt·÷ßÝàIãJ•.cýÕÀ}‰›.˜ûá;èªU«ôëÛ›O»³Ã$´7nX·|éB⣨ì`;'j1óæÎ¤svïÜJS'ï´ PÈÙ†ñ$½I\{GßÍz‡~lݲɼvÑÂyüï‹Ã†Ð˜ß¡YZ0ovZ©Rüûšk®êÙã)þÝ®]›g{õ g?>ž’’²>swÉŒéS2ÒÓy~AE"Öðže²ƒäœˆbä¨YÒO(äì°tñ[ìpþìÉæÍ›•*•zo§ŽÓ§Mam=rh¯Ç)qqqtH¿çÚ5+®¾êJšV/^¼X±b´ÿÜ™´ò¤ +V GЮbÞÙ”•I'$k›wÉÆõkéÇáƒzÏ2¥ºã[1¢²ƒíd€‚Ê æLñ@û­š¥Q#ªT©q”bÞÜ™>òPZZÚî°Ã©GRSKv½¿3íÙ¶åÝ)“ßðD1ý¥CDCƒö#Þ¹ Þ7¬£Ö­]µ}ë{:ˆDXòëϲ±ƒyŽ£&;ØN¦êÒkàBŽy¥ùÞÜVé'ÔÆsfM×Y`ñ¢ù¼ø°¡š¥õ™kèÇ¡{ø„Q?®‹â»uí|_§ZµjŽ~i¤÷h®O›:Ùd½ Z£·æzϲj–ŒsÅ &¢ß§Nõnâ8YaÆ Û%¸ÉÙÁæÑJCåVOÎg®[=rİÍïgíØö~—.÷é6ëÖ­[mÊÊ\¹bIzz¹AûëW>øaBBBÏOïÚ¹eöÌi•+UÒEúÚ5+èhbbâÑÃû½ò 4 téÒ'ŒÛ½s+ÍhèÞ¿ß«t‡;noР~ؾ|qÕªU¢Ú ¢žã(Æ})RdÒ›ˆX%å.3À%‡XØWÕ(Q¢i“Æ$½É‚'ç·lκ¢]Û””æÍ›7{gÝjïè´ŸN"šœ\ì®]LV’óIIIíÚµ!!!ii®që-7E¼ÈØ1¯4¨_”œœÜ¬iú—÷a]wm{ºûÚËQ…¶íG1†H‡h6äy´ºË PØ!ö%iW½;s‚¦ 4>Ç·;0Ø3h`¿òåËót;ð"åŒôô¹sfàÃ0v ;øÍ³/Û7lØ ‰( JðÅ›%%Mà (ðfˆ®°š`4 ÀhPÅ;¢ìvÀô´(;€;€À… S&¿1Þ¬üpìvÈoìc\&4‰KQs*íÚ±¹r¥J›ßÏŠåιrìvÆ^ÔVÚJ•Jíx÷Í;vœ;sbÿÞÝœ?ìŸÑõþÎ-Z4OII ŸÖ–uͪeÍš6Ñ÷ÛtöããݸŸö—-[†ÃÂ;n€~DQÀ­½Y³¦9¶ÿ»OþaÎø°vÍŠúõêÞrsdíógOròPh–‚!?W ¡ó}†5ÅRŽxqØ´´4ºþ¶lÙ|ùÒ…ôl¯U«VÙðÎÛ ßš[¢D‰i?Q vÈÏìP´hQ/j\gOÿ3gÖô¤¤$oÿœÙ3êÖ­¿oï.ÚùÒ¨5kÔHLL¬P¡|ß>ϳÄþâÐZµjêS†´R¥fÎø©~çãÇÞ}W‡ääd’!={<¥'ªŽÈ.Áµ4vÌ+—]V‘ž›‘‘AÂ$/šMjH²U«V5!!!=½ (Þµ¨¶wä£V‹Y¯{È—NKM-Ù鞎'>:Ä—>øáµí¯¡öÖ¸q£qc_Õ›JÔ;›ŸoÑÂy Ô§;|Þµc3·éVôi„Cÿz'»ïæh¥^Z@ÎÄѼy3N|–z—^íÑG¢£™ëVÓ z©úäÝ>M&ŒÃÿ>ýÔW_u%D%Ø!?³µyêbQÛsÔ^¶ïÃ¥J¥ŽýB#1ü…ŒôtÖÒ„~¸ågvX¸`.õw/Oh‹Í×¾½rë–Môîô­S§6ðá;HPÐ`¯_ßp·½{vÄÅÅmÊÊä;Ì›;“†gN¤ß™äm½ºu7nX·lÉÂÒ¥K“Xv° R*ð°kÉ"¬¼h½ŸïE%™:åÍ=»·¿³nµ—u(jQmïH¿mÕbVàãÇÒ ô¸Ë“0¿¿Kg¾Ûm·ÝÒ¨QìáŒ{5ªW÷ZšíÎæç#R F §´mÛºi“ÆmÚ´æ4Ùôïõ×]Ëgæx·Ù¡uëVô.[6gµnuyûöWö]ÞÕùófùüD<ˆ¾2ý»}ë{üïŒéSˆ—!*Á46 Ù7:ú#²õâ’%KΚ15¢=;zÙÄ7^§Kh?õ bÅŠyS&tùî[÷ïÝMÈ·ì@ƒØ+Úµ%‘âí_ºø-O3œ’’BÒÀ»z1Ñÿ&¹ñܳ=ù7Š ú/$€^paT9tÈÀˆ„ÔBãݬwèɺ¼0ÐS’“‹Mž4!b¿­¨¶wtTKDF{Þlš}ðT…ž¸dñoPÁ•à®ðˆÏ·jåRoêGÿ’ ÷þ¥v˜ãç²ÿ;{æ4š§ÐcGЮ÷wŽ…ˆšéߎà‰"éßü¬ˆ.;ФòÞN£Rí7 š“Hjõéý,ñ¨^{α—ÝvëÍ4/¦}—Î÷^Bš¥äì­H‘"žÒ€÷{9 iØìƉÚsîÌ ::zÔôÒN?²¢Wׯ¥œÇ™@“ÆáÞôÄd‡ógOR1h"Fm`ú´)nA¬IÐ@®:¸OÄ~[Qmï訖ˆ ü,;³6µ²eË/^Ü;ŸxäÐ^>gùÒ…\ î ø|D1ú¿§NÕÿ¥Kî–#;D<…§NoN_¾|yvi¸ïÞ{$ƒ° Ô,‘(¸ñÆë#¨öDM"v‘ÙZ,µùiS'{í9Ç^vèÀžÔÔ’*”÷ºÒ%Á$-wl{_÷VŠÝ7¬£×­]µ}ë{:˜ÁIÌÒ˜MµÒÒÒ¸6rd’–ú#V¯\æÕ}}šp=úÈCt·;;Ü‘Ø!ê;:ª%¢O8B ƒ†Ù¬ó™2ù ~Y;¸+Üö™"Zš÷¯än9²ƒû)‹λ¼e Ý—#¸f){V€²;ÎѶm[{Ô@¿½ÁÏËô»¿ÞuëÖ¡9µ°—-[²d ukà%d•¶í§ÂÓKQÚîsÕ•Wôìñô]wÞA0⦺¦VͰºfó{鯢^yy”YKsfM÷äó¢Yâ¢ÚÞÑQ-È*z<ð¿£~2œ_–5Kžjäˆa¼?Ç ÷Å’»ÅÈôï·æJ†ýQ­Ò'ŒãŸyúIX¥Á:h”^¯n]j3ô×›cæv qAÅÇ}XÒËè’Ê•*¡Ü}W‡6mZ{”Al¢Ï÷/Ev 4 téÒÔ‹wïÜJ„H£_zSïèØ×^¦w§ÊY¼h¾yªúõêÒˆÆÆž©—&ééîé¸kç–·æÏ©^½WræºÕ$$7¿ŸEÓ™.]î«\¹r^X¥ŸíÕ£L™2Ó~:É´J›Eµ½££Z"*æ# D.ô²³gN£ûxò¶[onܸMKW­\Z³F Oiã¨p¥Ð™Ô¢„r;‡»­_KxcüX¶YÐoáSÞwÃÄ7^çùMˆn¾éÆõë9>„íAô-èëoxçmªØ’%K£ìû>hßþjú›O|–¼¾0h`ÿ¢E‹JzÙ]»4i܈„Þ‘ÃûHîþ‚÷jEŠ™ôæ:zZ‹KŽØÑ”}“““›5mâITÂÑÃûIú•+WÖS æèÑÊS­Õ«Ó [·nEõÕ¼esÖíÚ¦¤¤°ó$‰î<òh2xQOØo6=ݳ8ÛŠõÕbV µ™ŒŒŒ¤¤¤víÚx/ëy´Òþ êÓŠšŠ7®°U¸ws9;8îfZý„Oá>K%gpz/úvŽa{ÐÙSß!Ú%¾4°ä$Ø!Ÿ{´êcj´9ö²… æR¡ÑŸ3wÎŒääbžãÍÐ!I2ÄÅÅå7Ö‚±r¼À¬•&v iÅ¥õ rWq € ò;8܉Á ë3×Ì™=cÏîí‹Σ!DÏOƒ°C>!çVÀØs‡ü€ukWÕ®]+!!¡T©ÔnÜÏF;`îv€f °ØìØìv@‚…DØMˆ°šyÇô£CÒ$ v QàU‚œB…`‹ÅK6li²PØ#;(lذaÃV(77;ÀPP8vÀØ;`쀰vÀØ;DàíÕËC¡ÐÉã‡/B±ùYŸ:†/ØÅ2oÅŠkÛ¶õ»Yïð¡sgNìß»ûÓó§Á…“vnßLD°ùý¬›nº¡V­š¿Ø~ÙáüÙ“Ÿœ;UP?b,oG×¢[ìà©/š_¤HMÞ!þA‡Ô¯—˜˜Ø¼y3b÷}ÑàCD Ät¨mÛÖM›4nÓ¦5íß¶å]ú÷úë®å3I´Ö«~è²% K—.MÒÛQxÑ$l‡½0øƒ]Û2×­ž3k:Ÿ`+az?ß‹1uÊ›{vogÝj’ö9V”÷vDgQí(¿w-z¹ÅÉÙ‰£2eʬX¶(*;àåý³gN£ñ¹/v0¯=ñÑ!z XÞORŽÏ'†JIIYŸ¹Æ»óŒéS2ÒÓ½{.]ü–í-V­\Êÿ’,¥ITzÿ+VÌ|èÐ!iüï(ü»YïÐyë(¡º<9¹ØäI|U”÷vQí.Ôšˆ…²6fnßúÉ¢ùóf5¨_ïõq¯™ìpüØAý’3§?’ =óÚë×ÒÃ?äý4æó7eezlÅ vÚsîÌ ¾öèáý¶·ˆxÊ©GÝ%q÷ɹS¶ÂŸ?{²yóf¥J¥ÞÛ©ãôiSXã(¡^$ªRÚypÿ_ìà½]ÔG»Ëµf$ì‘„:ªÛêœÙ3ÒÒÒLvˆª–÷°vÍ ýœÕ+—éBϼ–Ý‘C{#Øaã†uôcÝÚUÄV:>=Úáaë.aÄCMéj+úÈCT'wv¸#,¢í%”°ƒ°¢¢?ZÆnôe‘c"Ä)ý<†.“c^i>‡7Û¢’HñññºÌ‘°Ãæ÷6ÒNÏøûÊË£ÜìpAIòÖ%ÉðaCy?¡xñâÓ¦NöµþBȦf¦VÍŽÂë˜3k:‹bG %š%aEE}´­üæµH°Ž ›·yì!ý"¢À×€„l­ûöîZ¹bIÆ n¼ñz¿sèf¤§wº§ã®[Þš?§zõjnv ßAƒú4Æ^±|qÕªU¼ýƒ (]ºôÄ ãvïÜJcò)“ßè߯w®°[uë׫K]¾ô{«®­ð™ëV1lóûY;¶½ß¥Ë}•+WæÚJg{õ(S¦Ì´ŸNÒ­ÒŠ²=:jù/æºE¸ä ³Ca®`ìÀ[‘"EÒÓË=е˱#ü²k‡jT¯ž˜˜Øºu«IoNÈ‘ŽÞwݵ퓒’Ô¯7öµ—õ{’ eØäääfM›Dõö ÆQ=Bm…ß²9ëŠvmSRRØ—$¼÷Ĩ%4=Z‡ @‚=앚žþܳ=åe{´Ä#°Cììv;€;€À`°Øìà— á …À9²Ca{w°Øìv;€À`°ƒŸœ;uq[v;\*ïuþìÉÏûì³råÊ=ýÔÇŽì× "¢VçÌšNtÏ¿maºÇŽyå²Ë*†ãi×gõ›„~¸Eu„Î^¼h>GónÞ¼±:cá+RSK¾öêhoÏÂs©±Ü¿çõq¯Ñè…ZÐ鞎'>:ô™8BþK£FÔ¬Qƒ®­P¡|ß>Ïç–ì@ØðÎÛQS:¢~Äá/­U«¦®mH+Uj挟ʿ]D3X´p^ƒõi˜Ñ²eó];6¯Yµ¬qãF$Ùš5kê¥ ;|ðÃkÛ_CçСqc_ui 6;ü÷¿ÿ=sæL™2¥{?ß룣<=ODŸâžÈõOb¼^ݺ7¬[¶äû9ûö½0øƒ]Û2×­&6‰¸É¼¹3é÷î[i2Bˆ8õž|ÍC×¾½rËæ¬Ö­.oßþjŒ -º=p«Ë[zÿv¼ûή¿–~¼1~, !öìÞ¾bùbêû÷wé,d‡úÖ©S›Úö‡ì ;T­Z¥_ßÞh`yÇTÏT«D桨qïžqqq›²2ù’!%J”  ˆûÛ9ØHaë–MmÛ¶nÚ¤q›6­iÿ¶-ïÒ¿×_w-_rÛm·4jÔ0kcæÊKjT¯^˜ÙáŸÿü'•ùøñãii¥ ì÷ѱƒº™€{‘éíÚRÒo3½&Ñ7ýx7ë:ŸªÝ6­35KÞQÛ=ùúš¼öÌiDè´—ÖÑ9§NEß,< –P¤HãQ³IN.6uÊ›‘½uÞl^JØáìÇÇSRRÖg®ñ®1}JFz:XžÚž{¶' üòåËßÙáo`ûˆz‰½hNA îoç`‡U+—zÊú—†Þ¿ÅŠc%É¢%‹ðþÃ_(Ììðí·ßÒôŠ}ðàAšÓÑTîø±CD\™ÉÙuIO«³qýZÚO|Á7Yºø-NÊ|þìI:§T©Ô{;uœ>mŠ™UÍÁ¶{ò ô½ôóyäà@²¶É÷—ªW¯Ö·Ïóôcüëc¨±qcX»fÅÕW]Y¶l™âÅ‹S§Frî̉ÙF¤^ çÍ» ,O}–vïÜ:æµÑwßÕ!!!¡÷ó½xgÔHûGAx¶Y”,Yrþ¼Yô[þí"šA„0ñØß“-,‹ŽÚËû—/]X˜ÙáÏþ3OhÛ³gOjjêË£Bƒy§ÑQš^íØö¾î­d“äl%¤©ß£<”––FƒÜb‡sªF`ûÖ÷<È÷—ú÷ëMA?®¼¢ÝƒÝºÒS'ŽÐ¨¦ëýYE0eò¹bIìè­hõÊe|ÍèǺµ«ôÆ@Èщ ,·s µŠC.:Gýdx;l~o#ýðlޝ¼<ŠO Ð0uÚÔɨÕ‹-œÇÖLÛG䯺òŠž=ž¾ëÎ;ˆ><á·óˬY¢*ï9bXaf‡¯¾úê/ùË¿þõ//\yVVÍ hþNGÙs 4%¬_¯.M+ˆX= ræºÕT“›ßÏ¢¹F—.÷U®\9B¼Ø÷õëIoN 6ÀÓ„«´yOÇ…Z¸Ð¢]»64ÎdmÅHzìÚ¹eöÌi•+UŠ`‡°ãkzz§{:Ò oÍŸCS¯ 4€ÛÄ ãˆthäICVš›ÀîwìðκÕ$–-Y¸g÷ö•+–4kÖôê«®t|Ä Î¯½L{ˆ/šïÝÊñíba‡°UúÖ›7n´)+sÕÊ¥ÔÜÚì‚Í_|ñEÄô¶Õ«WSd67'kQ½O·lκ¢][š'²ë)5S¼Ó¤ ##ƒF}¾ÿüsoúðŸÿü§qãÆÅ¿Ûˆ4i$OÓ«½8; vXŸ¹fÎì{vo_´pMgzöxºÐ²Ã/~ñ š>œ={vÞ¼y4}˜÷^6¤Zµª ééåžíÕ#ÇRÐ}–ˆ°NÚ?þHÄQ³‘óÑéÓ¦T©R99¹ØƒÝº’Œ¸êõq¯Õ¯W—[jjÉN÷t<ñÑ!Ú9h`ÿ† xO¤tù²% ôó]ÌòØŠÁçÏ™=£nÝ:ô^4ìÐ'˜ÕuüØÁ»ïꜜœ––Ö³ÇS^ÙWA8fv FEŸ~Ø ƒ?ص-sÝê9³¦óþúR/[¸`î‡ì oTµj•~}{ó¡;;ÜAmuã†uË—.¤–œc°ÝŠÏiݺ ]¶lÎjÝêòöí¯æË{?ß«téÒS§¼¹g÷öwÖ­¦&šc©°côK#+W®¬ÚÈùh«Ë[fmÌ\±lQÙ²e† qÏ7Æ¥fFpÅòÅ Ô¿¿KgÚ¹wϺÛûïnðDw¥J—±þÊo¯1ßÅ,­|~‹Í©ûм‰î6oîLÚ³{çVÖ'˜ÕEÔP¯n¸ ÄeÔ¿HÆò~ýB‡‚ÁÉßm5ªWÌïf½C;©ué;Ï~|<%%e}æoÏŒéS2ÒÓy¤D †>ï§ænŽ[ñ9kV-ãý³gN+Z´(ÿhì4yÒ„ˆ·vÜ ;x ÑGM”ĵw4j#磋ÎóZ2 ;š¥óf§•*Å¿¯¹æ*{óïvíÚðð5@¯‘”ÇV >éâ·„ «ˆ2 2л¿íB‡K—hŒ±}ë{„];·fš½Ò¬­T©Ô{;u¤Y-ÏÅ6eeêìC[±bÅhϹ3'6®_K?üÐë‰îฟC³]ý’3§?¢÷¢÷ï‰xkÇ­ 'ÁH`F°CÔFÎGÚëµä¸¸8O{Ï÷\»fÅÕW]IÃøâÅ‹ë¤SÅŠè4|¥«X~è5滘屃Ï?zx¿"Ê@µäÝßv!„Cþg‡ˆ$Ô¶NAMHß¹zå2¡ÝÚM-}ä¡´´4š†Ò†ut溵«˜}Ø­kçû:ÕªUsôK#slŸ¶^cv³<¶b˜oG²‘öœ:qT¨YªU³†Ü‡ ÂáÇê vÈqBM,Ÿ‘žÞ鞎»vnykþœêÕ«IØ!sÝê‘#†m~?kǶ÷»t¹Íy„Áƒ”.]zâ„q»wn% ¦Kÿ~L<AƒúaÛÙòÅU«Vá§Øžî¸•ÃVõl¯eÊ”™öÓI†'G©€‚ÙÁæÑJãêV¯EmäžÝsSVæÊKÒÓË Ø_¿Š†Ù ={áÜD¿Öï³À@`vø](t6Z Õ …ú[.|#ªb9ä¸ü·¡P\(´ï»Ç…B·dk2%ìq­ßg€ìðòÙ—‡öØ[•­^öº^×E½°ã+Ó*¥E=ä¸|ô™ÑEâŠôÛÜÿ½kÔ]õ¯¯?éëIvˆ¸Öï³rW³T‚´PÚÞ …h,òïh‡v Æ æå²½¼oÍàñß!”ýwŠån×ú}V®h–Š—.)Z8íO.}2>)þÍ/ß4õÎêã°Á¼üî—ï.W£œ÷oýê“‹cÐ éï½cïz·ˆký>+v«ô’ïþ«táf‡¨09Û^ ì _Þ<ú‰öï/C¡SßaYvI…B_Yîq­ßg¶J?4ë!þ÷Æ>7Â*]ÈÙ!*tÓ)µ|ªûææå•šTºuÈ­Þ¿?9ñ“¡{‡2žó0•dÀö¯}öZÔ»E\ë÷Y±{´ÖÉöhÝ •‚GkAÄGÙXœ-“fÿfÏÚóI¶›è¦ì6ððwçO …²B¡Ÿgcf(” æ8d»œðqö³>qò”M³d^øY~=ZÓk¥Ú5èÙÌg‹¥Â£µ`bðîÁ„î3»‡eò¶ô›=hÏðÃÃ_:ýÒ3«ž¡fкkë tðZ§gV>3ò£‘„.»$Oº{ôݦãír û_ gÑQOÙ4KæµÁžËj¸gB¡¡Pz(4²´ ÂÜh燡PÛlÉŸ Õ…†jÓŠÑÙ{C¡¢¡P³PhV4Á0,j“Ó,æÏ–Ík?Ë÷j¸G¯,šR´D¹wŽÄj¸»j8b£}ßë[íòj$ùãâÊV+{cß½iÅí/ÜN{âãŠ&Tj\éþ7ï7»ãrÂMýoªÚ²ª{ã±CÄ¿æµÁž…HÀEÀÊl¾øo¾¿'"iyGç?J|ÁÆåü|O°pqðD(”y)Üì\„e×O.y2ÿßì`ˆBذ‚MÂذž¾#;@რ°õ7;(lØ Ù•P-Ø áæf‡¨=(ð;`쀰vÀØ;`쀄x{õòP(tòøá‹|-p1ÙaßÞ]Ý»w«T鲄„„Ò¥KßróMkV-;fvؽskFFÆ7^¿|éÂvm[Ÿ¹æùçz^uå¹%áÏŸ=ùɹS`€K‹ˆn¸þڈǎàǼû®ÉÉÉiii={<År^—ðŽæÌžQ·nøøxš›De‡ƒû÷Ô¯W·Kç{ùª—F¨Y£Fbbb… åûöyžwØ¿aÃÞå'>:”œ\lÙ’…øÐyÇ$lIzÓ¬Áv7’üõêÖݸa äÒ¥K¿8lH„„wœÐ¢Eóµo¯ÜºeÓÇ§Ž™ì@”Q«VÍ»uýôüiÚ?p@ß:uj/\0÷Ãv,^4¿jÕ*ýúö¦ý{÷ì ¾ÿî¾üõq¯Uªt_ä;T'Y}øà‡QoÅÜA›ÿ:d íu ï>aéâ·lZ©Íïm¬V­êc>Ì;Ï~|<%%e}æï´Ó§d¤§óïk®¹Šf%ü»]»6Ïöê¯ ð#²ÃÆõkõ£$íãââ>9wÊc÷ Gï·±CFFÆ]»x;7eeÒÎdm+V¬í9wæh`¿æÍ›ñ%Tx¤"ǼÒ|Žžý†®»ñÆë£Z¥MÅQ­š9h–"N°±]Øù¾N5kÔ8¸ËÿâÅ‹O›:ÙFyvëJçתUsôK#½È!Ž 6l’Mκàݵcszz¹[n¾iŲE{vo§é@ŸÞÏy­wßÕ¡~½ºY3i~a³J»O°yÞ?{òŽ;nkP¿3ÑàAèò‰ÆíÞ¹•f S&¿Ñ¿_o蝹kV$$$$&&FÕVcö ¢ÁyÅŠh"––vë-7­}{eì­nv ßçΜ¸þºk[´h~êÄúwì˜Wˆ,ˆènÍš6¡õ i¢AÃW¸hìÿA}Tß¾ª5p S?û™úå/Õ矫_ÿZýö·ê÷¿W_|¡¾üR}ýµúÓŸÔÿþ¯úóŸÕ_ÿª¾ýVýãê_ÿRÿùÏwŸŠ~Ñÿ´—ŽÑtM×Еt=Ý…îEw¤ûÒÝéô$z=•žM% rPi¨LT2*•’ÊJ%¦rSééèMè}è­èÝè é=émééÍéý©¨.¨F¨^¨v¨Ž¨¦¨¾¨Ö¨î¨©©6©N©f©~©–©®©Æ©Þ©öéЗ ïA_…¾ }!úNôµè›Ñ—£ïG_‘¾%}Qú®ôuéÓ—¦ïM_¾=µjÔ¨MPË öA­„Ú µj7Ôz¨ QK¢öD­ŠÚµ0jgÔÚ¨ÍQË£öG­Ú"µHj—Ô:©RK¥öJ­–Ú.µ`jÇÔš©MS˦öM­œÚ:µxj÷Ôúããsì)&y'£|±Ã¿ü=;2—Ï;€À¹ÅäçŬìv;€À@.²]ˆ¿ÿ‚À`°Cdqæ`°ØìÍR®s°Ø쀹€¹ØìvÀÜ!_aË{Yôj¿þåg˜;€À`‡¼CŽ)ïs<s¿‚¶"EФ¦¦¶lÙbø‹/ø•óù–0w;€.Qvˆ*çÏ9±ïnGV⃋ê)’1wöcGœûøÄá{ç͙٬i“ºuëü쓳Â;üÏïýþ»³]þÕ¿ÅÜìv;Ä> È v8ö$ǵ.œs]°ÿþ7¿¬_¿^¯žÏð¿Ó¦NnÔ°aRRb©R©tíòù/>õ®Z±lqƒõããã/\àÝäüÙSt~÷»±Ì?nLíÚµèòË.«øÂÐÁ¼3âò³§cîv;€r”óúÎÃ?¼¶ý5E‹mܸѸ±¯²äç/šÏ‰š7o¶sûf¯ë›wÏ—F¨Y£\¡Bù¾}ž×Ì™=ƒ†Ê$£öíÝUhçÃþ7Æ«Vµ*ÿž9}jæÚÕ§ŽÝ´ñ&=üPwïªÖ­[mÛü.Í86¼³–oBrž*óñÇùú~G§þÍÚÕ+OŸ8F7©Q½ú°†˜—aîv;€|±Ãm·ÝÒ¨Qì™+W,!Ù¢³É–µo¯Ü²9«u«ËÛ·¿š¯7w&Ú½sëþ½» ¼sà€¾uêÔ^¸`î‡ì N©ZµJ¿¾½½µhÑœî³u˦¼ÖG]*sI{¢K–ð:Ö¬Z^ºtšwÕúÌ·õ›ØûQpÏgžæøíç%J”ع}‹w9M1Ê—/o^»ØìvðÅÇ$µdñÞOQÖ¬ZÆûgÏœF“ ›féìÇÇSRRÖg®ñö̘>%#=Ý;yéâ·`wˆ`’Û;l}Óu×]›^®Uc±bÅèä/~÷9_õóOÏé7©P¡Â£<äÝ„¸˜v×6Ûåùßg)í6R?@FŸèìPc *ö™*ò/•ôUo`vxð1Uw‡JüVû_Õêí°C‡ùªìïUÜ¿UÉ?©{vøë_ÿñÌ3=J–,™‘‘1v̘ÎãïU­iú5ÑÙalkõ«’ê_EÔÿS#[a‡z5Ô²’ê/qêË85&õìðH u6^ý3¤~]DÝ›tÉ±ÃÆõa}Å‘C{yÿò¥ uv îÐÏ?sú£¨ì°)+“ö$k˨sgNðÉ- ò%4w˜ðúØêÕªÑßüêg¥J¥>òpw:íðÁ½óç΢“ÿ›_F\Åÿ>ÔýÁ*U*Ÿ>qŒw~°kíܾå½#‡öé Ò¹È>N¹ÅémU…æªb UérU½~v¨ÑC%~¥jTM;¨†«¦Ýƒ°CãwTÉ/ÔÝ£Ô­o¨Ä¿©›f]`‡»§©âÿ«îœ¯ž­œ¢›XpØaذáµjÕ:vìØ–-[RSS×Pi <;¼ø€ð êßMõíªžx0 ;¼t¥úcQõêåêÑTßvªÇ•AØaZšúU¢º½‚êVNý_õTÚv蜪¾ˆSÝ‹«%ÔuɪUÑÆÞU:#˜ì°qÃ:Ú³níªí[ßÓñéùÓÙ3öR™;°UúÙ^=è÷Îí[èè'çNó¡×Ǿæ`‡Ïñi÷nÔ®]ëüÙS|šn,zkÞè›»s‡òµrÐ,%ŸVÕ†G×,Õ™¬Š®âþ¥Š}©j/V·w°°C÷ð”áªÙ4KMÞS•>¾À¿R·,.€š¥¿ÿý¿4eX¸p·ùÁƒÝLb°À³Ãóå Yú4M½Ù2ºfiRmõ«dõÏ"ê‹$5»’jca‡:µÕWñj`úÍÒŒjWÒvø(AõH)š%Oó3rİÙX€~Ÿ:qÔ»í/^¼ø´©“ôuùyîpÁ£õ`¤Gë§ç?NLLì߯Ïñc‡–-YXµJ;п_þá7÷t¼»q£F¿øì<í5rxÙ2ef͘vâØaš5ÐÔãÅaC/þúˆÜb‡ø_«¸oTÒqU¶vhxMøœ*/©b?W _«ŒuªMû ìP}ŽJù…j>D]ÓMµªŠÿNÕ]:ößäžAØá¦éªØ_Âìðø ðþ—«2PÅÿ¬šîSý‡vøì³_QåŸ?ÿ)·ùuk×–¥/ðìðU õ×¢êçåÔÜk¢°Ã#ÂçLm®>/¡þ”¤6UQwÞtæÖP?/®4V÷´RÏ7P¿.ªfUŠÎí«‡or]å ìðdõǸ0;Ô-Þß»¸:§þ§ˆš— Jç_vX³jMÛ¶¼û«ô­77nÜhSV檕KkÖ¨Á$;Ø÷A‘"E&½9áÐ=‡~È' 4 téÒ'ŒÛ½s+ͦL~£¿Þ—;\„¹¯†+Y²d‹ÍI€ër›d{… Š&%]sõUsgÏp³ýþâwŸßróM­[·úͯ~FÿNò&‘ERR"qtË–-èßKqîP¦•J¤ÊÞ¨2nT¥F«"ߪ²?‰d‡Ú]Â<娪÷ˆªûlØîPae˜®º^ÅÿU]þô÷š¥/«¢_Gg‡Û†‡oò@ ìpç¸ð¿=z©.cÂ?.ûLu}SÝ73lw¸|Oa‡ýû„?Ó¿á6¿g÷nú÷?t  ²ÃÈîji{õò½jÔ½jeõxµ¨M$; ¸>,À?.«\¥^l¶;¬«šÝz®SWOµü^³4¤Žú21:;ÜS%|“¦Õ.°C§ôð¿Ë«J‡ìKP7–PwÛ¦%ä[vзfÍšš­III ÔååQ$ÁLP„6iè4Q‹‹Ó_sì˜WØý599™ÆÆô/戳dc‡Ð_Â(ò×0¢ú,¥½¢~g°Ãýa^÷Á š¥š/«„?…{p‹G²çßjøGxÏÃìÀ{þ†ƒ:g³Ão\Ð,ݶR%ÿìP |–V¶V_§D²ÃÀlvÐþ‚fibõMb˜žlÞÿmüü-Ný=.¼§M‹0;пìpc6;ÜzA³Ô£¨úªÈ¥g‰Ø¡r¥Jˆ³äõÜ¡Xc•ÜD¥4S%[Dg‡òÙÓ„šµÀõo ïlrõvhðtøß+®V- ÿ¸¼§ºâauå#êêÇTû'ÔuO©w†Ùáæ^ê–gÕmÏ«;úD×,ÍÖ,=<,¼¿çÐ ìðÀ´ð¿C†LÍR™2e ‘GëØÛòúáî?`‡§n ï|àö ì0°møß[nTOg³Ã3-Ô­Ôý-UçæêÞ¦ªSuyöÜáÎúªC=u[muKÍ蚥?ek–šek–ª¥]`‡›Š…ÿ-~é±ÃúÌ5sfÏØ³{û¢…óhFгÇÓˆÑ üèëJ¿¤â¿ˆb•NüRÕ{໹Ã(•˜=w¸òÿ7Õè'2Ÿ%¶JϼÀM5«tñoT·ñØáöåªø_ ”Uzñâ%Üæ‡ \À­Òì°¬úSr«ô‹©~×^`‡ MÕ7IáÖsÛuêoñjdC‘Ï[¥ûg•ž®Y¥ÿ§®ýnîðTQõå%9wX·vUíÚµJ•JíöÀýì¶Š¹p‘í%F¨´î*½ªp…*=,¬q*3ö;T晴~®ê· ÷ËòÓÂv‡†UƒÇTÑ_«ŠK/X¥kÌR‰ß¨†cÔÕÝÃs‡fcTÝÅNÖ߇=Zo› ’4Ö¶Ya»ÃÃcU·É*í+ÕzWòh­S§Î±cǶmÛVªT©îѺæ*5ív5ì5ô~µøJõ÷µ¢åvr«úmIÕ½S¸M,o¶;ôºVõ¿Rý®¸ZSý‚UzvͰ–éåºêÞËÃs‡áµÕÌJ.Ö_d{´>®þ/î{Ö±ÅÃv‡¶%ÕõÅÕÏãÔ¤DðÆÜs‡`ìòºŠÿ• ýSù‡JüX•ö½ÏRÕlsCýVá~Ù¤…J_¦âÿOÅÿEedª6×|ïÑZïuUâ³°Gkü·ªÔ9Õt²k5\*ñïªØÿ©Vk¿_ ׫·j¾Ký›JúV5ݯ +P«áž~ú™%J¤§§¡(Ø«á6¶V_–TÿŽSÿŠWŸ—Q ¯øÞgiÄMa%ÏCÙm⾎jCMõ—Dõ×õnÕá¦ï=ZÇÕUŸ¦„=Zÿ§N§¨—«»VÃ-/©þRD}§Æj«áÊ—U3‹ªoŠ„AÌOPiÈÒÈ+Hˆ¤HÈþÍ€8K`°Ø¡`²‰5 Wv;€r‹H@¹_ì–«[Žì€ 6ô”q²PØ#;(lذaÃV(77;ÀFP8vÀØ;`쀰vÀØ;˜öÂà²eË„B¡>½Ÿ5ÿ½˜ˆúè·W/§='vù¥ùkä;°äÑ·J•.ãCû÷‹{sâø}{w‘hŠø7°”ûøÔ1¿Ú-›—.Æ%ÄQßñ’{q~tvع}3‰PÆ¡{øÐÚ·WÒ¡Ó'Fý÷b²ƒíÑB±q9ØÝÀBvˆ*y"’:™9ž^5¢f‰‰‰*”ïÛçùOÎâýŸž?ýâ°!ÕªUMHHHO/÷l¯æ £&Š:~ìàÝwuHNNNKKëÙã)«" o+ãEÌbð=-œ× Aý¢Eÿ¿½k Šâh×Q.rq¹6€@Pj‰‚Àªñs1_E#jDD4&_b4£ñå`BJ1Þ‰€r1€JPaEQ$EJ’ªïTLçש¤R§üõ×tÒg2³Ó;,,,ìÓõÔÖLïLwO÷ûöÓowϼCbb¢›.Ö–,‰Œçêê5N¥•IÚ!gìH trrÒëõ©)[xŽjÅ–);+3$$ØÝÝmYRbçýÛâ¼Ì>£ÙHÁS->2vÌh*Xtt \v`(È?D57Ö“A¡<ݸa]xø3E_ç_¾t‘º‘ÐÐõëÖ²×~𮯯ïÁÌ}-Í •§¨WT&È‘º©ÑÕU%ÇŠ(¢³%1[xAy¢,K“H¡¾îìäɆ ã#'M2Pü…º:ýÜ,AiÕzì+­MÄ )[7_jº`¬8•w8›] (¶¬Hq±1¦jciIñ°a~oÞ f³Ïh6RðC™]uµ&C\ì̙ӡ\à€ìà. ññ¯šˆžÞÿþ–§§çcO'';SïïOtoìßÝÕ™¥Ž›íÔR?ÉN·|¼‘FÔây÷((øAÔ yòÄqvJÝ8R'ÉOÝÜÜ¥Uë±kL•t@t#ÍK\l¥9ÃN©ç¥}fIüÄ,>÷P™QP.p@v AiCý9>ªtªgMF§PŸI1îuPRtpíjKWÙ¡úL9ýûíµËìôøÑÂÁƒK':ì (uìpë»kÒÓ;[³¸w÷¦ZiÕzìÎû·£££¼½½-ŒÏÎÊdÏ%.¶¬H×Û[Ù) òÅyigñSÈ*žú•dN¨Å3K‚Nµºª‚Ž+ÊOrNaø±ónŸ°ƒ <Ö±ƒÙ.WzªVÚò²Réí§N”ðÛ‰ ò­|}¹Ï¼¹¯ˆ«Q ;òêvPVÉ ¼·@„E¿Òì,®;:UúõððÈ:x@y—`f‰ºAé8ÜâÌÒ¨‘Zg–åQÞ..†FvP+mí¹jº€¯\§oOS–<ïp6ë„ÅÅ–éhñvšš²…Íÿò2ûŒÊHµ§T\·# ô» Ä;ZÛ®\Ò2]¿yÓ__ß½»w67ÖÓp7óÀžÖÿ¹œúÞ»«ýüü²¾Ú/[•¦” ´ßîö¶>^•­JAÖÇ7Çÿ¶*m‘Äå‘Ý..†FvP+-zÿ… â›ë ä……=Í®7Vœúd[JíyÓÅ ç^ ¶X²" qgMÆ¥ÇüýŸÜ´ñ#A^jÏh6ÒìSˆ+€þ…î°ƒ4Ð`Rãb.uûlÇ£»»{Ô„ñœ~ì¼ûñæ Ô>Þ½éïÿþ{kø-4:Õëõ4rîÒŽV-ì (òvA1´³ƒZiKŽ £bPN]1»¾®Öôì”Éžžžlƒ(‘¦Åj”‰Ø6xøp²Ë–&&°­jy žQÙÕ}¹8;`°Øì€°vÀذCv(-)ŽŸ?/00ÀÕÕ…~ãã_-ýæ¨=?)Z|(Î4}{±<5QsF)vRiÑS§@üÄ.iœ@ò™öiªš0S^žžžÉÉI”Qæ=5­$•³a`È@UåéÇÝT\lyY)Y(ôÔo¬\Ùè¾ haeÓht˜û¸O+Èõñöæi?Z¨V_]+\ƒ\]]=zÄ`èСœè˜EÒ¿t Gjwê>Oÿìo†ªŠ»±.9©TzꈟØÁåæM¦OŸ*u§œŠÜ–º•âÙ(Å¡ •³a`ÈuDiüë«é_îü‚îË€vP6Øa.1øôiSÉðððàñìÞß^U+ƒÀ¯®N'ÁÒ1ÃÌ™39;б–q#bz½>q‰\k¬ë´øSP?±‚3¦QFNæÀâ“m)ü’Uoo¯ æ“(æçåÀvÐn;ô¸|é"EÞ¼ÑÆNÙCçýÛ^°”M#p˜{§ãº——Ž$ŠM*’½Æn±èÂì`»u‡~øaÖ¬Yd5Ð/[œo$6™EF¢ì/5g”V8©ì‘ž¡¹±¾ÆTɰoï.&–\–j¹¢=»2hãP{–º3çÜd€@­\UyšÏlûùùA6zgÝAÙ4‡¹ÌÊkoûÓ+}Ú§©ÙAéWW0³Ä]‹;2;˜ªâ½ ãÆ#­1›×²¤DNGM)ÛÖÈWÍ:µÂIeô jÂLW†„/ON’ç¢NÃAØÁqd`ýºµ†¸Øó5Uåe¥¡¡!o¿õ&d£û2ÀWh|Î@~-M£æ0—FøÎÎÎkV¯jj¬Ë=”Å^BÑÂJ¿º²Ui³ÒhÑ—±C¿ï°êŸf÷9ÿú믿ú·­{ÊŠÝŒ}ÂlÙKöÚΑ‚Ã}þ"O¯îuw è¼û•+¼¼td /ML-L8¸lX-J¿ÃQQ46šÃ\¢ ½^ïêê:eÊ$î ×";(ýêjÙÑú“%_Æþ®ôë+’iŒ”››ûóÏ??zôˆ~é8$8XüŽ$0Þ“… @ú¯ à‹6bþNè‚óƒ]]]è—ŽÉ@C}: @?•°ƒMÙ ŸìvÀØèsv ÙáßÄì À1vÀØ;`쀰vÀØ; Cw\i¿Î;d‡'T‚kë÷w¾C[=.W,x{{ÅÏŸwýÛ+ÿà^ÇÕÖæ;ïÚ”º“ ؈H&¥8c,ÓétÉË–‚d‡Æ†ZÒ‚ò²Ò1£#æ¼ôbÚ`W3K÷¿¿3‘F2,æÖw׿¿:×ÝÝÝÇÇgÍê·xpGÏt¡¸¨`ìØ1C† ‰‰‰nºX[v²$2rœ««kTÔ:Uf*HŠ«•”ú‹ô뤼ÃÙ$´Òø+—ɦØõåvÁ¶Ô­zf_>KÛ6rÄ—€€§Ö}øY1æÈØ‘èää¤×ëSS¶È®òfs€^`‡Ä%‹I\iìÄc¨ßQ]UQr¬È××÷?R>Ä3 'R F¨¯;;y²aÂøÈI“ ¡®†Ng?7K™© )³ìPˆŽ›ë™±ƒlÁE_çSïMݯ4~ïž/ɲ¾|éb]­ÉÍÍ-?/‡]¼qúððgèúëhñ‘ÐÐõëÖª±Ã•Ö&J9eëæKMŒ§ˆ†dWrCžøÈKç¶f‡ôíi4&!)å17ÛIŒIÙé–7Ò¸EÏ$üä‰ã|ôE§å§OðSR(Y¦â¤Ì²f–[³Ã·×.?;e2g”¢ø—_š>m* ‹q‹ÛÓÓ󌱌'•“If…;Ô˜*)’†Oç Ö¬^E&Ƶ«-â\À¦ì@£}¢†ÏÓ?“FVŸ)'‰%Ma§Ç<˜FSjñLÂo}wM*ðw:nHOïݽ©% °Ð'ìàþG4hPttTcC­²ßnokñòÒ<Ååü¬ÉÈodFAóà^‡Ù>¿óþmJÜÛÛkÑÂøì¬Lµ9¨¯쥤ª*O[Ìmô;ÈœPó…i½^Ÿ¸d±,)ëØÁl—®Ö««%U^V*MêÔ‰;ЃÀ¥8 æiݬš(¯areª6^¼pž¯&(ûí’cEdízxxðE´êª º ¢üdCý9)~켫¶î@QhåëË}||æÍ}E™ ‘õÿDÿ¯)ê¹@þº`‘¸j¾•.6f" fÈtµ8í3jäA¼ì –Tí¹jº˜+`úö4~/)ˆÔ$ဠbv)‚ZO.§ßàáÃ?Z¿vþ«s'M2° ¨$–DYX±g)ïp¶rduíjKPPà»kÞ‘^)Èò Q´°ƒT®–%%êtº3Æ2ÙÖV¾d·¥ne×lÞ´DwïîÍõ4žÏ<°‡D-McÅ©O¶¥Ôž7‘‘’ðZpp°ìʸØC\ì•Ë2eTË4êBWÙAü6œ;Z»ÊjY ?",ÌÅÅÅ`ˆ#.ÞK&†^¯§Av´½Ædá2ä|M‹ÏÏËqwwã‹Ë;ÒÇŽMâJ’5a<ª¥YWkzvÊdOOOº˜löÊŠSÚw´šÍlÄv°”;€°Ø€F€ì`è; ôBP[1GÍôZýkÜÑŠ]p]ÐÈ S[3µ@#P?½SÿZØu]p];@#°t;@#°t;@#°t;@#°t;@#°t;@#°tÁn‹=`|‚ÛšÄ_ê³Û–µè!èæ¶àáÃm!Ý׈YçÙY™ááÏ8;;ä忨®-ì®´6%'' Dïëë;ç¥ËN–€ìGt¥áPÎWîu\mmfi; û¸÷c™N§K^¶´¿³Cüüy3gN—õH¥ß•]VZRÜû1ðê¼èë|ÿ's²3[šÊËJÏšŒ¶k {c‡æÆz½^ÿ ³¿9^t©éµæﯙ6õÙn&Ûyÿ6ÿ¦qïß>ÀØ¡±¡–«›Ì…e¶QÿšYºÿý­èè¨Ø˜‰Üe¡_ù..*;vÌ!Cbb¢›.ÖÒ *2rœ««kTÔîñGŠ®~0\Ëx{ÿ¾ÝÆGž(=&M„n |gÕ[ü²Ÿ?vÖXׇ10ê||丽»wöN[Ø;/qbtùéÔšÄì”xÊÖÍTÆŠSy‡³Ù½7¬ †ìµË—.R"¡¡!ë×­UÞÞ þÙ; qTc$¥†¸X2rí­’íÒ·§KÒ³Ë$_êú“˜TÏêíä‰ã,ž„™N©ù)õf•K-)³=•x–ƒøÚ:íÓT5Á òxzz&''Qa2ìé[u^Uyú±ŠÅÅ–—•’ðÆÊ¶k »bæZÍ¡ZUË \ëãíÍkéøÑB_cª¤S›TigŒe<&';“(Xy;Öx¸ÿF„…)Ù/åÊ"ÜÞ*¹ÏÙꇺ©ÏÓ?û›äŸ)—J>Uó“«ÏêLii»p'ÑìT6é'NÊŠžjó¦ Ó§OeëMj;¶¥n¥x6ZëC0uNJDÿÿðƒÆæLhl»¶èGì VÕ™±¬tú´©djyxx9Òeîu°ZºñíU>­åííµha|vV&»ñ¬É(íî(¨Ývà‚gª66ÔŸ#°©K;ÈÔ‡ôÅ®*¹oÙájk³^¯O\²X£l[ѽ¨õ0jI‘îH“:u¢DcO5cÆ4JÁé¯@WÒï'ÛRøÔî¤n ̧æÎÏËé+HuN¦7ý{óÆŸ3íl‰z6µ…]±u,‚™%µª¾ÓqÝËKG­Ï&ÉnbÕ«äPªÆ‚üC+__îãã3oî+œ*ÊO²îŽƒX¸÷7jŒ™%¥úØU%÷!;ÆÆL¤! SíâQ#Gâ­è©Ô’ª=WMóÕôíiü^j2éðX¹„ìq†}{w±&¾ÞÞÊþml¨%óðý÷Ö°‰_ôÉž¥VçªÕªÊÓ|FÝÏÏÏvmao«ÒÏ?ÿÜ /Ì6»*­VÕÌÚjokañiŸ¦ª±GÞálÆ,t™YØÃ6þÊvUÉ}ÈË’u:‰«l›%_S3:‚ì2ÉVH•ñVôTjIщºŽ… âÉ,<’ö4¿·íÊ¥Aƒíß·›”KÍ¢7ÛŽt{HHðòä$éžzvêÄzY#^¯_·Ö{¾¦Š ÐзßzÓvmaoì@|êïÿ䜗^$vkin {áõïó­f«šêÐÙÙyÍêUTÕ¹‡²ØË Jv0Vœ"S«ö¼éâ…ó ¯óéSJjïîT]4 %Óã£õkÁ=ÈvUÉvû6œ»+»ÚS©eQr¬hDX˜‹‹‹ÁGý’ô^ƒéõzJ‰ß S¶ã×¹²W`ŽîêK1¶~®?Ö91Ë+Wxy醺41A¹¥¼ÛÂ߆km¹HŒ@–UéËs^äÔªšºªOWW×)S&ñª–ÕR]­éÙ)“===ÙfËÊ¿Vv;ÒÙ&LJ9jÂx:;ô,;ØO%ãKx?À—4  Ø€  Ø€  Ø€  ¨°4v€.@À4ì@À4ì@;Ð`S4•Ó;õ¯…PQÐÇÑ-ìðB¯„.½æ†ÐãÁ"; Š  ¥ ÙvGÓ%;<úßßyä¿,¨Íi 8Z±Ù/=?SJ€Ã⧻׉ØŒüþëÿ NÿýË¿¤ì@aîœçþñîý稇µD²5k" –ڎ¶Æ7¯ÆjûšØ:5àhÑÁÿ…”6endstream endobj 268 0 obj << /D [266 0 R /XYZ 89.292 765.769 null] >> endobj 264 0 obj << /D [266 0 R /XYZ 179.143 238.66 null] >> endobj 265 0 obj << /Font << /F8 79 0 R /F75 96 0 R >> /XObject << /Im8 254 0 R >> /ProcSet [ /PDF /Text /ImageC ] >> endobj 271 0 obj << /Length 2329 /Filter /FlateDecode >> stream xÚ½YoÛÈù=¿Bú@µÃ9x›(vÓ¤0ÚÅÂ-Ð&y eÊ l™^QZ']ìïwÍp†¤ì Hû@‘s}÷|—þ|ñìÅëjQ§ua›…ÊlªM±(M–Vu½¸¸z—\l—*i÷ø³\Yc“Æ›¤á©»¥®’#Lï–ºL.—+]àXÓI·á­Ý=¬àùOw?Í-ïÀÚìÚƒCÖ3dwË}ñºÌBµRi©ÊEF$nê-<—DœJö‚í{Yëá¹—= <ŸhÀ|Y¦6+$E°Í©_w»AïŽçi2sE0+›œÁB^&m ×øs†˜+²ÍŠr±Òë<',Äcj gA„Ý9@Õ@$ˆòœmq²ï5ID$„{;p%Œ¾Ï”! 2•@ïCÆ[;ÞR• Â&H@Cª=0V}®QÛ=MìH¼­Ìwˆ§;Š{¹F^d×ÂXÛ6Hàƒp4'(½,Û=XÇ y€)n¬I~j7|leÀ´Å )‘‡ôyKFc¶æZßgy&:%æÃúIHí#xø(v¶1R¼Mµ‹ú“àÿ†Z¥Æ*ª˜” }#åt—‡äCpL½p’Ü,VºÒi^ƒQê2­JXÀf4[³‘k ÷…R‚jEÔã`½ÁÝ઻†yi÷¡~ÝNÈG]•"to7,ÿÁôLÖDÖº>ðZ¤:p2 QÐÃÏè¬LÞ+cϽ·Í~P)Y#žŽ;ÁÖúáÄî¶0žŒ¯’áCdF‡ðèLܰ⎢´ƒóeϬ¸‚¶¾’Õßðá¾Ûµ¡GÅIñ'1«sfð—× B|6Cç†:Ä÷ ·åºÜ»Mä£Ýg*4` ÀÛÀ°@³H 4$ŽOÝ7Td8þIþ™oó^cOî¦Cò Éð^VÚ¾õÞ®g(¿‚äw‰«Ÿá¤-øQ Hó'çzž'ºHïN¥p*$ †£³4×ÝñûajË“ƒ‘[ñƒ‘“´c£aWƒ7re«Ê9¦'©_w"ŒX@ÀÉÏbÄNû‚Þ3}½~ž1DçUó,’HèÞZ^#uÚz¼gMHú~µuþiÏû‚k§×>†P´#?Çr€øp±õÞ’`úÏ,aáïv ¡ã­×íçÞ?u•äÛaåÁAAé4?=ñÁ"8?µÚæÆ{ã…²imm´ëbY$Õ–V.3}8qÈV¢‡ëiK3ñyV%o†p#IÙ(ÚŒ®*Z7ÎÍ÷3Ø!Æò¬“1±2»i ,Š´°•D¬^vî‚@‡ðÔÀÕ UÜH!l÷ˆ3HcÙшkÐÆcÝÈ!ò°S·õ+Íi(Á Ã4©õ|®"œcà¿ Ói_3:µš'‰OéèÔyH®J^Àƒo ‹ðØœ¬%¥Q¼±|b ™<;MÒ¥g0$­ìá´]Iv-·qž‡î1ްÿÁaW„ÈÖžew;8a"̤ÝÕ?‰ì]`þ™)G0¨ RɇAl߈1´ƒ_ñk ô,Vp ´W§•ë@c†ô79¹“¹³é](|LÛzèHjª†„¥k^ù}¨XRª¨:°N+–ïž±¡ÀOË"Î0~›Ñðw.íÙZÞë¬.B7’»£C+šTýD@Uà7g ÇÀÿý‹%Ì¥¡¬[7w\ùŠ€ršu˳‡ öîyêT¤E¨jªà»? S÷>#Ž{+Ù×s* ôp &Т¼ì0=ý)\°š¬Šk¢’ý5µÜ\Õ3‰¦ÊRåÓ®ñ%~í±Žå¼r§9ÿ‡Òi]™oÛ‡3;¹öD÷¢ÎPÙÖ Øª|,3íe†‹Ô…”LpþÚÜH™…;øM ®Ž'fäɹ˜Êã^ @£„¿; WÆ7b§œC…O1€Ð·É·P¥¯‘qÕ»'íÍa&YÞz†¾uÀ3fí'ú3!(›\% ½à¾mg›Â‘Ψçjq‘R¢¡[ûr6Wj€+ñV.ùÿ~”½fzßáy<÷w±¥Gþ{H¢\R?QHªA‡¾¨:p©½â/® TžpUCÉ;ö `Ígšauˆàœ¢‰.Õ 5s™Î×¹” —ì(i”ßÈY¼ÅÐ=·åt8f…½õÿÌÆÉ0þ+е¦+þ7÷Ý»¼´öÞ\“Rqæ2(¨1dØà‚ÉÎÞû_ç€pV®¦bž/•΃ö3×ü~,²çËU] ¾àLZî„2h¹kü_nK•j6”þ·RŸ$\º*RUÅÆXXô=Q‚AËÃ?Ú&ÿ8üA©¬wü†#þ)7xÊÝÒŽ°õÔìŸèZ(qB ? ÝÔƒî xûˆÛdÜyM¾“[ôRÞx»ry—TúóÛ?ð±ì©—~z‹¡›ÎÏÔ§ÄU¹«§@8„0--‹ZøpWî¸6PñÌ`™RñÐq\Ðû è®dû*ŒÌ•3Y§I –£ËF¬ˆÕg?\<û/É!{íendstream endobj 270 0 obj << /Type /Page /Contents 271 0 R /Resources 269 0 R /MediaBox [0 0 595.276 841.89] /Parent 216 0 R >> endobj 272 0 obj << /D [270 0 R /XYZ 89.292 765.769 null] >> endobj 38 0 obj << /D [270 0 R /XYZ 89.292 690.576 null] >> endobj 269 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F39 57 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 276 0 obj << /Length 2247 /Filter /FlateDecode >> stream xÚ½YY“ÛÆ~ׯØRùL–00€€+JªäX–;Ѧô «d,ˆ%×Ü]éß§Ï™ÁÁ¬©ò00GOO_÷4Ÿ_=ùöÅ2»(£2·W7E™Ò\,“"*ÓôâjõvöÍ<™­ ÝBë  ým?wõ·‹øb‘$Q™e4÷-ô'ÐÞÍ™±ôšC+¡* ¥Ð¬.76*“³;½¤ïp§|j'¤žUÞ¿—²{:½îÐ@û7´W²óÇÏ9Ó£Ôþ­‚¶¥¾Gyê¦rw$GÇ÷ÚS$ñí‹Âk)II;‹z sù 4<3Th²Œò2pÒ_`ÒFÜB»–]ÐNÐþ:~+ù4â H¢ÜX!{ƒÖpœ/¬5³jÇÏæcHc‡?'¡¾—)û~ž„«}×pÇ/q‚Ò´¢•»­›„x«#±Oc¸Á^ú;ZˆL-Îp±?Ò¡ŠdêY”ed“eOíW'ŒE ; ½†V߉ÄpsÒÙ¶ámLÌÒ íÆ¯U+|ìçf9{ðTQt)ð]#áŽVl‰h³âV8Ù G^ɧ2xj·ÿ/q†³­p‡O¤à…É•Q"¯tÖž¿šißrlšFÖéøG1t`°?Š0*ôfd* ›¨ä}éâÔªF6?̳|V­Qƨ¼`ßYµ"õû¨NtÜ·¤ðâkQΉÕd‹¸Ø Y'\q§bÆgÆFö!Á=c·“_ÇäœQÊ^jlDà(n}‰ÒYƒî½ÆŸK¦P{¤ü6<kiŒGÝ~+Fßõ„ÑéK-þRñQ÷*t9À@¦ô{k50Q˜/É}tG€D:µå…²qC¸ŒŠ%#`.°•ÎS8äÕæØ4‹znA8h»øäÂ.ÓÙÊá ƒ ì1Fà“øX ŽÅv¶fÆvÚ“ò+œ“è[Ñ  ´ÙÌtGÀɘ„Gž2äs²RðÊ2ÞrhãF‚£à$GEQä?ØhjçÔ•¸#…Dnei0ÍéÁ°Àœ³ÄÎÞÌ‹L÷ôÞ¤ðÝ%J|Ï3»F–<˽È4> gEU7!²‡[ÑüƒÎg=*âQF°œ½´G §øžpk]«w’ê†+— -)3CÂKØÝQ2,Në´ñvÏá GˆÐ:D`¢)ÏMßÿ›Z: ä÷‰ÇÑ„ú¬Œå¡Gm¬‹9…EA ÔÎ^ Sܘ!¢ç ˆ¶n.9V’%4Ø®YF?‰|zâˆ<éš,ïy­âµzBMHà›pŸƒýF•‡Ýš‚SžÌRçŒØÝ0ü­å JBÖõ†3…k…3]¾Ñú¥—ùWâºíˆ ao7GÏfpFóóÆ ò÷"›_~†öü'¸×$€?ŸßJ>‹s*Õñw‚çqèw®?óýMOw¤ÂG‰"”‘Ó¬kXb:8ëŸRq˜²Ø±‰Êšyë-s+Ûµ<ü'¼ëðë]0ë瀙“2“Ð}ó> endobj 277 0 obj << /D [275 0 R /XYZ 89.292 765.769 null] >> endobj 42 0 obj << /D [275 0 R /XYZ 89.292 527.746 null] >> endobj 274 0 obj << /Font << /F75 96 0 R /F8 79 0 R /F39 57 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 281 0 obj << /Length 544 /Filter /FlateDecode >> stream xÚuTM›0½ó+|4Rq<6Ü[Ûm´mO+qÛö@ùضÛö×wÆ YµŠ ¶çyæÍ{&À$þ€QÚ’i Bе}ÂNL S”¹u˜å£§Ä€ÖVàv ÀuáÕ—Þ²»1yHØC¡H«d‹2ëdµ®˜¶Ð¬Þ±Ê eÓÒ ÈsVoù:~ıÁÇG—fº°¼zŸf þÁ/gŒ"¢ËÚñ '㙂SUòŸ©ªxGq 5´õÛ‡¿K# ½Áåi¨Þ@‰¶>ùë1U¡ÂM±@e‡Ó—p¤ßqHÔ_WëÒ\ÛS…Ú¨uvH¢³qÙ<}ÊpbŽç e@ÆÀëe«a| {M 1„ý'Ob!1h#J ¶A£AY–K Ð&2Õ‡º¿ÒÌTáEœñ˜Ö¼¶xy'ÚÍ"£ 8нþ†‹¼ïÀ‡ƒàg/1xÀß½AëôÞ[;D¼Ã6:³½ÌÝ»ûååw‹hå6Ú6 ƒ"¤ß„©Ÿ.i–ç†×Ñk$C'ûfß9±äJÓÁu÷êÕÉ@n¸×Ÿe+ùØÓRJ¨Öìð²¼Qš„<4ÍþÔ)pkâéH\eÉ8h©r¼c?Nc²ŒY]§G×™¿"Êþ†‚ôäžýœtévÑôÿqÁ@äâs©ØNmº.‡xùÔá7«¤ºÈýI¡ü%)–|®“¿’ï endstream endobj 280 0 obj << /Type /Page /Contents 281 0 R /Resources 279 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 284 0 R ] >> endobj 273 0 obj << /Type /XObject /Subtype /Image /Width 514 /Height 512 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 95646 /Filter /FlateDecode >> stream xÚì½/he[¶ï¿E™-bvÄ!“@LD„2E(ScŽÈÇÄsLD›Î‚]¢EhÓmŠ E›†z¦E]Ñâ\óD™Ë.qÅ+ø]xÜ#®¸˜oŽñ«ögÔØûðžî¾¢jggïµæšsŒ9ÇŸï÷ÿÿÿkñÿøs¾4\}ohdžý•ápmX, ‡{†ýµÃ{~d8qì–KÇžcmØ_:ü·ç+‡ÿ•Þs¾6,W†“3ƒ¾åpeXË t='ýÕr=Ž}ïj2ìâó'{ý­¿Swqµ4 þí¯ÖÝéåžA¥÷è¯ô G\ÕÒÀOÞß3œôïý#CÝïr9ü¾Ÿâ[|–ÿíbmH£­ÑÐûŸ8üÚ–Oþ[]Cü^áûøÆx IüÖ?ç|Ï®so½yf8yjX4b”|t=×{†7¿5¼=3¼~ixl¸;2h¾iÌ?Þ­  ¯ñ½>žq×U³¦„_áÃzê¸\-:ôW‡ë©ci8Ù3ì¯ 7kC\³®ß?¹^bF­¦]¡¾÷Ñqw6ZëÐ\ZM𽋥aÏ ç¢9¦W4ñ”5þ>+b<ñìt±~õ[GܵfæŽYóDãé+K×ɹ·0u:bfêÛÍ Áÿ*½âŸð®µŽaÇr¯u\ö‹\ÎëÂßy¸nKÇáÞdð'øá䙣 SGÜ…îQwá³1ÍyÌÛý'†ËC«º—7ŸQš]'ÇŽ•!¬fà<ÚÓg\îôLcuûµM‡Ç†ÅBÐÿÛç_Ñ5èçÿû·ÿ{xá†^`xáþ_~®ÖÝÅõÚw½0È’œ\ûn÷®‘Ô Ëp`àzÑÜ=hi”t%WËéê³5Ð\rÈæh½ïòŒšo›ão}£ÖH\'æW™þVD¯Çb×ÊåiÝÉF1?u¿´óÅ?ÆúrÄUa®Æ¿9ç y|KØœ'†jôŠÖ8m>¯*Í «Ëÿ˜:b”´áuïïžôž7Íðð¡ýÚq`øá©¡5‡[àðkÃÃ!ƾ†þWsÀŸûå©a¾†Öqw°¸;ˆßžtG° ëñþbêh‹ŽÃƒ ÒJwÜ?5pO¢¹ôþÈpò!¼³C{Ù Âjšwno÷ZGxÍ(·K²„ò¿aÛýÃò|k¸>0Äþ û}÷37Ç€ž—ž‹>?vƒZÝòàŽ˜ÿð 1Úšçë ¢lŸ£•¢u§Ýˆf—ûßÙÙ8쯺Áióüwé6?f¯žµ ™)ïùÔñbÑqxdˆßêGsž¾@ÿÖü×÷˜FuÞ§a¥c'@¿ã¬'¦Þ®ÿq½xœGU; ÝìṃÞáä…!FØÇ$®Y6ßçÉåW‹Žý'SGüÖ¯dxá†^`xá~Þæë çÿNÖ­#ëý[n×‹Ž˜šÍ0Gc ò <õÐ Ðvñ¼£kޱ=uhÜ4g^.5uÄ)ØG&Æ9>Y3ÄkÐfˆ^ѷܬ 'O¦Ý…¬GÄjü“ß8ôÉÿñ×õ~Ý‹f# Œ„\>7<œ4g´¦´öcmj¶⮟hiicɇÂöFL†óŸq×Éñ§¥Šg¡3»lõ~µáge·õŒh]‹ŒkÐÊ’gAŒçnC\•ÎÔZû¼r·ç­uÈ·8>ަEÚÚqfXô 0Gõ á‹aµô|__®n§ŽËç†Û#ÃÝ C\•?ý»=ÃÕÞÔ‘·ši±B53=N¢óþãý!bKCŠÒøÕ^­ ñD|üçhŒ¡}Ó: —ÍpÞ¦YuÝ©žŽörš‡?ÝâsàSò¬Ðpmž ×ZØ.ÙR­PZ¿²ˆY »Ê8 g{ÌUYÍýV¯û(Í1^‹i-ëjµ²¸[;t%þ9Š«¤ªÇ'çÝ‘{[½ÞáòÈÀuOJ^L㌘ùò O³°ÃÕØê:µ—vÛ2Œ¦Jû Í„Ë3ƒ®ðá†e¿å'sHþ̰ÿC¬bD‡†^`xá†^`§ˆ3Å—¯è}½4„ ÷ëy÷Áù¿ ÙÉt§8ëÅ8ÃGÐV$[çß«Hm]œUqÊÖgÆßjü5m±ÄÙ0æ0²H K¨MòPÊ1é.š!®íØpùÄ y8ŸÍ Z ºßÅjž²#ã#vj¸:0èÞ¼0Ü¿4ÜìÒé^w­…µÔ©Ÿ!4é‘äÚ‰L®ÎænIR”‰q¤ò )6¥ŸÞÌ3/¢+±R0â w ¨ìx|{Ü5Nô‘ÁG,KqÈ›¶èhv¸7sjøx`øàh7Ì«ûK_p›pÝš£ÿcñaeÐþAs&îÔgÈÝKƒ®SçwÞõ+Ãýsã9šoòç{­c³l:ãÇYž14XãšÇÿôlê¸?6ܶvÛÂhäSŽ[+ÑïW{¹Ø­!Žï kl눯„íÒJÑûµ(AEä„v˜O‰¹PߟoŽ)jE"Úé»A¥›Uëx80ÐJ¤¨£¾K7õÒ+.*"ÌJ¤ZYò¯ aó›Eô)yRÅpUsou¸ì®y:yn{UV\Ü jBb'Ð ûdžû?rvx³“¤c\à /0¼Àðà /¢%¿Zt,_vùÕ)ÍæZ×f÷xr1¼ö)ÕYÑjù_éÊ}Ø%å›0bqµú^¬}ÆX”ùì‰Æ6Nˆˆx°rRQ =~$_Ľ_Ù~–_öÄg‹ÎeQÛ©UæOœ™JÖzʼn›gXÝVk¼SY3ÙIØ|z“”±õó)­züV+ߤ‘Ç7Ò ¥5Èh3˼rþQ>_®Ä'„š«1ýÞü–•uû§†-~ͯáÕ…áÊÊ,çs´ϽÃÕä°ç¢ÈÌÛÓ©ãÝjÑÑŽ ?® Ž éé(þ©{<è³iíG<Ê¿ëã CØíÈ0n,3ãsÀ²{º*}fò;OºÁoÌâ1ÿ®¸lSGdývÔ ÔµvØçðÕ׆ó—SŸZØCݯ®UÐÜ#Åî.=k³BÊ’ëŽ.—†˜Õ1mm†ÅÐNCÑ]­,EÞÊ®/E;5’¾ÛÙ2“ÝóÖèqüÛwçëé|w­ ¾< Æ_¯ÌQÄ^Ž û{ͱ‰hqNjd¢‚EÏôÈóÜïZã3ïT½ÂS5ÉᡸF"&£Z_ëÊ]®¿S•º³F²jMu“L1؈-[§>-b’Qµb åÜj˜gˆymÖ¥ì[Ò¿]~»èà®&êð»þ©ÂsÅÚ·;úôrÑqߦް?š«œQ|pˆÓW/0¼Àðà /0¼×f¶üȳ謄s\|L\¹ó§EÞÁÏS¾Ž¢÷™Ý%´¨Ç‹<ûG˜á-kŠVˆ\jÌËÈÎÏÝè(§àÀ™W¼^òbŠeÅÝ©wÃGIÏ]L²0秆˵O“1œð’=¿rqOé~Å~–ëñ0…ß,¦a‡[ÍÓ ®/N ¨­yÞø­fkêŠoJ,åSÄ©ô©UOÑ?ÿÕ3C² ä@óñys`w¾YN¯ö¯æ\ô‹y-XÄpølêx8^<Ï;Y?Yì¨Ö“—7[‘"ædÉF_¬ZÍÁ3g(^@‘(r*X»–ø“•&§ŠCý›—¿od~àlaô2Í^zp誢ÖÔwMb6¸éþÎ^à[+L"&\rëqUªºdŽXsWËxõìUsž:æC÷ZÇÅj'‚SÞÜ_—匯ÝíÞáÅÔ±ÿ¢ÖF¢´ûºo†àëO¡ˆÝ «Ó•U÷hy|¦V‡ßyœŠ6Vƒá‚óÐ}вu¼mÓÛ6Û[]ÿÅ¢C63ö`Ø?sÌÏ Ã /0¼Àðà /¸RaItZA²çšÉê«zµ2ð¤3sêÚx·gàIŸ+B6óêÔ ¤­/rJ/¿1è¯âù¢—¤fcSLvF¾æ¶M¿^tˆ LÜb²sG¼=ë`ÙB†}.çDz„iÌc& —MÿV˜r—ï^ÚsÃg€]…}Û’]åZ`6³pJ¤³6ìpõ̉§Ï§#5kD™ÿ¥U3v=ï§\ÞŽÚÚTë[84ôÉ×{­ã$H·l®^ïMmÝ:nö ²iW«vµR`Ä9çê‚Moþœ«õHB<-ÒÍóâSNüdE†LÕÑñ,”•vìm–Íþ‚µ”^¬{ddUy.ÕRr瀌ðIØìOšxµj–q¶¥!˜ÓÜJˆÝNï¼zbP®|Îþ[¦¬®ÀzÚŸ-]‡ôhul¹Ÿä¿wX€Äó¦™Ï>ÊÊ‚¨uT@æ™TC‹*‚¼/ÅÞýe©rFõŸ`/ÑLfm‰ª^o~×:Ø9ËîݘcŠw‰I[óÖ½LÌ(Œáðà /0¼Àðà ¤'îO™ÿž»- b ‚ÌœSÖ'oº!â «1Q.i–„ØŸ32º’;‡˜”cžôðkóÈð/Õ‘¾~j¨Ü­Ê¿hÕϵ͙:EÌhÉ™ýÔ*ó¿ú¸6;®ÎÃ9Á̯ ´3´BTI'qêw€ÿ-Ux’#=b©_¦ø”Ä5M v–íbÿF®<ΰg†X/¨å›mcñ-tµ÷³ê¼»ÚkW{Q 8+Y݂ԂN,°Óæ¾'­b÷³ÚXà9ï{¿ƒ-<ጹ%;u9±âWZ'žUŒ8úÝ"&öjS7c¥hŒ<øÊÂÿ2Îfc^m\+¢ “ö\nˆNOõHz=‰²ÀŸŽ¦O3O;ã!RäQ9'“åLÞÁ^^wµ29žbDd€Oq3ü;ö'VSË £®’•¨3ý¦²zö z.Õïôed>ÑŽ:v²Ø˜'çÃ{Ãõw1gFu1Ö‘j€ï×¾Îft×’Ækc†^`xá†^`ËÙ\§*ô¶hMÅ™EÞ!ÎkeöG´o 76$5òÓ‚Ká‡'†÷ÍO‡u_Á$ìê~ò#Á[ë«ÌNIÏE]áÁx¦5åu­[tD·‘#¢^êµWŽXç2q;èNet=â¶ÅS4©°M:×ÚfЕ<>7k´æ*l8¹òR„§0Ô±§fK´çФšÇ¨Ž*ÁÇóx²ÕÈ3ÖØÎÜ b?am0Û“7Á_Íu‰Vw—ØÆPÇy˜8µÄ,uj˜£[–k 6èœJ (ÎËþ”UÓ,Ê0B1yÆèúGþ×w/‚$'@Š×1;˜ÏKŠG"XP°g ;üì¼GÚ\g ã–ñ ^/š4=¡ÿÂŒåÑ•(³z¬°·×õz‰‡|+G€ÜÈ¡ƒã¿½jíjîÍÜÂXȈea#L5®Ø_ŵ¡j%)1±¾ºòØ£vzÞ©zöVÌo`ºHÕ˜!¯ÝâË0£¢ƒÖO«è4wó_I+g“7.øÿÞ/ ÷+Ãaßä,çÈgärÜ\áðà /0¼Àðà P †ªjÌŸƒX”£çË>3ª­Pu©n ­¾«¿NoZë`\%ÅüçÓAú¡ï`öíÍ‘ažÏÊÈlÖY¢›Q ­ÙÄú壭ºÁwG妥õv»gˆŽ0yæ}´FÔkï×vÿÌr=>£ÔññÊQ4’BõV^8Û€¯VÅp´fe¯À—Ø*R¯?÷ÊM›ÏêÐÂ/A˜ÄcVX¿Â®¢®’½o‰%€Ú4\õ膛 ©[­>ÖX:oFÄm¨è­ºe1œ ŒWD?*xÓ¸a¥ÏýM^u¹É#'¿_2˜ÌÁEäGQ Ô'Ç]”Ê^úÖ`DÑ*£^‰b,àc¡ÆSåOì…¥û/EÿP] Ù›º½Ô·%u¤'(ZÊ<¶é±M)‰§üºÞüÉv/ìF¤•–j¤Æ„só§Žüõ C¥8Rñ,òË7߷޹cÍNÏN\w†Ú§™"ÛRž‚åe[rËÀß­§Õ“Èþ¨ª\¦íSëPuñÉ‘AZBÑõ¥>C47ÂZÚŒ=±‰ÆÙ;¼Àðà /0¼ÀðŒÏ(²UiÁ(sáwç;õ´ÖVDLÀ?íã¿Lê¾ ÝFŸÃÒÔNæ/:™ç2§¡ö²·ìsë5s;Dõ¦˜²¤ÉâóGjã´®WÍV7ë!±N•q޹½7ŽàìyùÃÏÂל:~cØ¢¾Ít*ëÝÂNUÇ-*ðE ’µ|1ò‘1tK¥õ•ì[²6´Ò¬/Õ¹¦‹/HììÃÙ<~P/J‹v1=‰r÷T؉³ù:üÝ}mˆØ ¸¾T®_¬qÁ6ÀŽ*Ö”ãÄI\pEV@Ú1¾‡ýMT'©< © |éÎh43Õ©¹r­rÄd+UÇ)[ O‘tNAJµ—ÈŸ’5Ãúœ°o2‰èÜT]´žÎ›¿Ú©]„)êň"ët=¥·.Å?uURP¢þT©”NÝŽ¨%o<÷N‡ÇS=k*¨M9kZa×ÇêqåUˆ«à$í¡ïaÚKÃý‘!ØïÝšISUqø¨m¨<ðiO¿~­‘á†^`xᆗ²ê'CéÀ3¤´iI‡‚ŒÏ2ŽóýÆéæÔ »þq9ý¸ .¬P‡W훕A±—W½“5œ¡çY9ÕpÎjïÆ¶–PzÒ¸Ó¯ú³š¡öŽ¥<²<  Î5?7éj£ïÙÞxúmÚ÷֘˙ÍiæÚ…ï@Y2xîNý)PÙcæ7Í"Ú«¢í3y@®¯Ê¼—ª=Kv8eli Æ’I Ö}±–UÕžÈe§Ez@pÙq$õDR$GY`Ÿ?ÁêìŸvó­Aë(¼€f{«o duH³½èr’W¼òo¹_ðÎ%†F˜_C²05r6uÄw‹§5{½š:¤Iè#_4˜ßèï8ò[ü#âKIÛ‘q3f¢K§aRŠDíå›õâÍÌÝÑžÞ¶xh9%6æ¸÷¾ÄµJÖrs>+¦GÓÒ‘G&Õ]GT ½~û§†ˆ–ûÎVõ3·]tDM)9ÞýzØ‹JeRÞ…ì˜fo(Ý ê~ݦŽûç­#©¸’ÉP^±¾Ëf Æ«âuà /0¼Àðà /@¶(EE¢âK«C\mªMýæêy±'uóýÔY'½ó¸wŽ™ŸyÓ/«Sÿ½CŠÞZãšíRdž¼ÿËg,ÕÙØYópd¸>3huH,rzPEˆyyF\…« CªšNQAgs.w­}é:…ô:mV&la`ÖN@U»…Y¢ÎÖ»2>–4\˜»#4•VØ“{ÂM}£þöã½AÚˆâlÑ¿k´–<í•¡j%Tr›c†¤Y Õ˜óL£äµÊЋOõŠ»Æ^Ż̠r¥™µ¦þ·^toyµ‰¶7OGh§ŠÃÿêæ¿§Ž¹Æð~mPµ­T>Å,¡½Po¼»Ëï§Žó‹]ùðà /0¼Àðà hv)~".8Τ“ùäµÑÑ;¿3(–¢ß¾>0(žï j³çÊé騣gîqpf$¯=»Z·]¿|„´!t§?9æžµ…×5\®§Ž«¿,:Þ]RåaTî¡¿ÉÇM¾/< r' ú÷í÷†`®ø×©ãÝŸº6ÕwÍ(Öã1Ÿ3Côµ9j½eÒÇi.é žØ”«%§Ùžµ:þÛÑÌ2—ž²¤`Îè¡K~9iˆ  ª0ž*ôP™Ú(Œï•œ>u'÷/ Á'Ì`ö™–L#üœ``>š:jæ4Öxõ¡Ï²…Ù`®wñF±èê¥!½S7Ò0Ò.B:õÇY’˜Û>&œKÌÚWk¦ëŒšïWŠªEV“’QP+B;:¬ZæÄê¦:d°7ì¦mßh¬Ú× Ã Ã›cçƒéS®v¦Ö$#Z[ª=Qù°…ƒV·*ÀrwÇ /î+ªŽ‘7OÏ]6ûÙ®Ä3óaã OΦŽP¥‰Üî¦~^ûÏДGŽXÕÑñDÄËçþEìˆ?´©ãöÈp¾4¤ˆ.â`s½Šûè>µšªL‡^`xá†^ 1býÂ)vpsl·œ”·ô+ét¯æô‰&±à²Ã¹|£_Cy“cÖÙHÅFØö›cëSƒü‘Æùã‘ê úvùÄ×+Ç=ãú4½ç¦”#V¶ëñÌОNòVbϾm­”àæò_bH¨õœèKö¼¨ïU= ª™=h͘.é9â“©r¢êb®Eí¿ŠNC·<¡ôÇ x¹r;7/žoì^œKwôvmÐ'Ü^’.F²hâ0×Ìy9}é±"‡È¨ÕH£ÒUvæT°ìaŠü„B"¢Èê&†gv¢†!Õµ–ÊÄñHï ÌÿnPô5J²}eÅ{OƒvíüÏÿ¼^Äy»š:´:BßǡէSwræâó˜ â?‰ZQ²ˆó .%Tx Ñ£‡¨NæÙÔv&;æ¶qÿØ@ ™OÚá“` ×Óm‰A¥Š_ͨSfcx½g†¨ò_‡Ô‘º‘Ÿk`d£Tu/;¯§#¥:ùôãLŒóˆùÌK‚/0¼Àðà /0¼@­+£•ˆÑ¦Ò ªþÈÝóçL™ VŒ²õA“/KyääwØÕ¢œ2ÎqéÌ^ýhVk-(c¢9)û£Ïùtoh·ª6˪¨k[zåÇÙ±è?:3³–GWÔÇqsgh{†è8“ÊƒÛÆè¶ÓŠK Ý7‰ޱ*\0®ÂHQQSªÏ„-ÌÏ5EkÌÌ/½C©åûçJ9ƒr—Š]¤ ÏÈø{·#BÈGì¢æšgüó1—rzâI†NJ¼S<‡ªv®rͨOkÖX ÔpRe/k µ÷¯Áè)nYUoÞ¶Ö‘dh·ñ4cߢ{‘M Ï9¡ Ÿž8ôÄÓÊ…‹;U.É^ñÚÐÿÈnÐÿûŸ¨½3¼9˜:šãƒ£ýyað~1­)Æ0“:*UbeáKufÕÛ UNB!(õ ±7 »Ü°3Á°áÕ/d{YažØðR”l³Ž8WµF8ß®þmêÐê¶|·6¼;­Vȼ_MïͽZ¼}Ëã÷N¼Ön‘ôïá†^`xᆈJBôY¤§ûcËØNX©SÏâã…AÝUI=Y=/ñ™væº>0ð$%¯ñ=Ó¤éŒú±Ð¡Þ0BÌñ+ŸBP¸`¨êQã‰øõ(>Z3êÃhütføxg¸k†Û§y e±©k£­¹5Ä\Âx’;Ei¶ð\õYV‡î¨áLQFÏjÕèÆ­¤Ä‡ÕÞ£§“2õ¸k)9Šc•¥>>×Å@§RÄ(¨aZ2ÎçyªÀÄž¡æõì8·U¥™x€‘S¦º¨jö>¶Ö¬æŠ…j=ºmI9*iÊbc%V^Žª”ª%eíÙ7ÄfEø¾XÎK°6p$O¾5„oÚõÃùöñ´Ë·•AœÉªoüx¼èx»2´6uTF¾¹ïÉ™eÛ½ 5ñ³‰å~¦ÿµ›÷Bn+*+ ë{ÁáÌjˆ2!ÊWYÙwyê´G%{bæí×ÅQï;u(’2ªrQ½º8m´¬ÜþkOû°š ËE‡âB[¼«ÈȨ¦cxá†^`xá¶ä%Eì\úúiá9ŸÃžè¯TW¦j7¦Ý&¼m†»3ƒ”%O–­²Z×§ó>-¾Kg¨¨ãÂi7õé«þJõ«_Oóêð*/_ ÌfjäߢCñ%äÝt_×Gõþüèh¿2¼ÿÚðúØðp0u„ò¦jeýs¤â­ç«ß&›L«‹^ïµÀY>ñ€UFh>}²uÕ'¾…E Þ§æY[ªn;ùPVÿÊ2$åJòlˆWVQD*û¤Xzèüì1ð?DžùDöp6Cü-5bà³æj^ïùRîòÙdÐ Ô+´ÃþJÄ£‚;Ú­3H$_¬¨W©_MQ¾¢x.öéZK]Bä‚fæQñ:Õ…u'ÆÙ¡ñ¥_O±ÞwüÄ“R&l©jAÎÞ#öjeÐø+ƒ;´ˆÔù2G¯ç½o›üoøhÏ™Rç%k0ù+fª¬àhøç“ESŸ¼¥‚>…JñÌ2ÇÞ 0oè¯ÄT£žÙÍ QŠš ÉKVM¢IçåÓZÓî‹?±¿•å¤Ú¯âKa‘6=°Ã /0¼Àðà /T*¨Ú ;#"?Ú#‘\9zíÖb4|~Þ- 6lñÔÐ0bÍ!õ=õŠj*^/ {íB‰&ôqhWݶC™±r›pŸ“öàmˆ(ÝÇL “+[í9¼:75”XS·&ôp«ÖñØo¹ãtêx}Ñ:N.²Nâ6Ñ*=‰X™CkGyÞ÷G†àÜóHZ¬qUózµƒÆê­c—w®»ÖÊ;û.¿÷á†^`xá†àéæä{Cš]d£¢½ò ϹÛÝ { «÷H+ÁÏ/ïV†¹VÐ;/¢ŠÒâBd«»•®ž >;) ªo:Nsˆél•øfQ%ßâÝܵ"KO'Ö…®]N:‘Å\òÍsÙÿ»;C;ž:Ô§v»7ݺŒæMf² »åÊŸyêp†[ÎCCòkÈ2kŸN©´BÐ…I]$Ì&ïèec½b\3:zÚï ä gu¨¾Ksž69∫ø>AŸµ°íçŸZÇm3ìòz<‰'oceëhŽ9ß—&pRò°5åÑÜbˆ#Åßjפ9ƒ8í|šQÐ M‘LÙùàþÝDö¨?^*5cá{â[) îÄ_´×ŠÝŽwlq­)÷JŸž/5â#"ä•¢Œ|¶{£)–¨öŸäIΙYñ¶}É’¼¢Uyü7Ñ¡ämÁñR}¹èSÖõŠ9ÇŽqÕ:>ž-:‚Çû¼“˽öK¯÷ ʇ"’ôwœ[C 9a ý»#úéÀÐþ:uü¼Ð5§zQ³[ΨÌwÆìá†^`xᆘù²6÷KUŽ- #z Îú¥ó 5 S/ÿûý7†û¥ázoºŽVšàS’¢ò€ïÿ°èHZúñ'"·È ¾˜:¨€Y™Xõצˆ–b;šÛZÒñ§vùÌpf-KÍ|å…Á÷õieh2hÎ?þÑ@ÕNõÑ¿^·Ž«¿-:î_øi&+ǧÓý…£œOSÕ+ÜjßYQ6LÑyªœ£Þ>kKüvuVüq¦2yv)?4ÛÅ‚{s¿èˆõÅëDë¥1›vý•ªñêxØïÜŸo‡Ibl(z7a+½[ìsɨ¦î¦·¨ò3Ó_$Æïjᛞf­<¤¾'+!‘…ŒL+߯» “ƒg¬öùäÔÀ=cqµ#éaoz˜¹Úi3x7eÌy*?BuŽà9øÈ^ÂÊDf˜)Þi©ÀB^h*02X´/gL+Öøë—¿4mOqÂÐ…ßk¡ú²uhG÷fiÐyX¤·¥¸´öKò¡\)Šuß¶äëY• m¬Øe1F„Xëðà /0¼Àðà DÍ¡Ÿ´~ï¿5¤ù@_ÝgæÑBÍçLŠ ùü??6(¹3?WÞôùï~o¸¾0èzô£«z¿6Ì=Y›l;µÙ¿± äšuUÊ×(¢çbçvÓ½¼»3D&Kª¥ˆÇÌ-Þ«¥AÌØº¯ö‡?Ùè‘÷Ë/üôÂÀXMd¦°.îžäïöŸRoQáv® /•kbK3øê;ÓBɲæ%yº$…¸tÎU,.jÞ€Ç#ÖÞ7ydUÜ)ªý”`÷Uÿ—[†ó[tЪ>7pVT»‘ÎòÁà^€5Ÿ0KÐ$=JÖãAI¤öÁ¥ëôÕ—ª¬¡”¼»KÔ«*¥¾'ðãQ{]£§ÈOê ~BuVºÍ·ÐД¸ÍÙ…‡Z­!—}{u0uè™Þµ^UtØyæ4üNT«níS%µfèJŸãÏW´†¥b++XY­=*ãQŸEd6Ú4æaåƒ.±è¸_M7dž÷ ÷ýösç—ì€'¹_’ ;éÕ¿—ýcPnþ¨Ù(ÕHÕÛ슅*®Pô›x¿z^à /0¼Àðà /ÀhCel®Ý)¿CþÕ]}ÎâÄ“¤vwXkê*M,·L›Ú2¡’1¨ˆ5©>ÄcÅôãêÌ=|iଋIKE-`xá†^`xá¢RT¶«fTK-–î=NTNÄ|f–9º-TOøÔ°%ÛEeC°"¤œµ´˜ýSß7øxk?~ŒŒNâE«¢¾¿²ÚjdÔÿuû!­>­2tèGç`êøñûE£1©†³(òĪ”B„l~§¼âa·dÍJg\²ÛdfŽ’Ÿ +ZTüȇƱº95èä{ëxu`Pö\ñ¢Ä›§šFgÊ wdÙ\'4Vª%igä[•Á_<™ Þ¹Ã.¡ÅŸ¦f·“õǯŸ¬þlHµœíˆ•Å<ñ¬b0h‡ ŒV«_ƒ~[òþ©×’1ìŽÈØÿªw&‡vTƒB\úL2—½PâiÄ®Ou)ÂV9Æ‹u6uÄ=¢-ž#j¶“ýç9;슟Oê1†¬( ¬nê´Òì‚î<5ç3ZxÝËíñâöx~:ÁJá\…±vüué×øžGœ3ªŽŽˆ´g–“‡BöŸµ)Òˆ~À4>ŒÒƒK|xá†^`xáÒY•U[¥f¬2wÕXG0“ÿùÂ/ÁEޏù8§-pYCE×p»6Ôõµ‹¨àº~iPþ%”bêõ5Îmå¬Y™©Ï‰ßú½G¥¨s‹é´˜f¦Îà¨B¬ŒÁájÅ >gïtò&…kbK½he®æ_íÒ¦)–J6_ÞV£}wlHÜn‘Kåß9ý¤A#]åš[;oѦ :YémêШž¿4¤Ùå#)*E9[È‘® O[b-é³ N’ü)"™)>¼ _*?Îêäà7¦}£Ö!»2™=/ϨvqnÉøc_ÕÚM•kHZ±Q/êŸ vëÔ{ˆWbwG¦µðÑÍñ%óöak´ª¦ÐÊÑP¦¾Ø¢¸BÔ~$­FŒwe‡Ÿ?;ϳB ªvKM)Gþ¦µŽ£Ä™¢wÌgéíñÔ!«N^ ÚêP“tè)œo¸{fØ(*Vv”ʺÏû–X®cxá†^`xáâáž8ÏÒÎ3‡«è„ø–у̳›N[PÄæÉ+å—ñ팟°O$=}ê;CïCv#8åT™æÑ!õ‚q¶SK=ÅIàƒRF‰½T%†@FF´"o…®ºÇßÒSƒˆ~öª8ÏøÏ€ðÑÉšUKž"$›'’â …-MõäÓKµ£Ô°ó§CÅIňøŠ´Wª/Ð RŽì¼/‡Õtwºè˜½ƒ!ùkWrá+uæ¤1Ê ª<Ú:R}F;ªOÉûGfoޤ^—â¼"3¡hãwºCE¥òlo©sؽLÚ£¨…ŽîmhýXç€Ù›«>‘8Ó¾HÖï_Ξ—›‘]ýpl¸yb‹YQßõé…ž‘µÓŒY%f?Œ«ÁwõR…ÚFµê.¥Çú ®tî‚´÷ó(ö-âˆÐ®&u;ºrýáÊ 1G†\Â#H¡øsfÐÝÒü‘·e­BQ, ¶gŠH¼%š¤¿^`xá†^`xÈthöâY§\*ÏbC6ªjˆ§ü2;A° â)È/”NÆRýXpùŇ”yÙô%f*(3n‰^²4+HüÛÌ£Éò3†kÊòGÁÍ\yöÊíŸu„Cm•cé»üý×ßRn—6¿vK1†@ ôŒi]—̯V*x¯ ?<7¼ûŸ†èš÷*W©Ë‘Ÿ ýV@ûvj†€Ç;ñºƒNœ ŽÊÚ×öÃI›:RLØ÷$däVo£¬®¿1¤.?=fŠgMÄÀu…PºI{!ÎØ²»¨?Iqrxá†^`xb/:\ȼ„NviU.©4CèGÔ«E•@½Ç]e‘:?5ÐJ‡×(ìOQïm r>o9A3[­|ñ©AŸ³‘?d“`Œ ãŸNÖˆA±/æÍ™áÃ_ ÁŒçùtõXIc.”:a‡£ßDçh½îÝd±–KoËþo ©«hWŸ£:œ!…¡.Û(üO—`® æˆúÜùÜå‚Bï÷ŠÐý'Óþ“/2ÅònO€B=wá"׬÷اÍÖFŸ`|‘݆z×Tšù´·¬TïaauK;(hÐ$¶gfrÓ‹ÏT'¢L'Í¡,*W b8)jŠ\jøåˆáq¨í˜¼€b•ÜÕ°~»Ö¸†ÿÝðHó‰Ìsrؤƒ ÍÊØˆO„•úv)×K¥=UAT¥!ö–žÍÊ ’8ºËo·Tí–§Ÿx0¤¦tj ª)«gkë¼ßóÓè1Þ®nDîÇj bÝi‡\YøÔ¹¹Þ`xá†^`xáRž”Mì@Qß43&´{ä/"ÃXEF­Ãƒ BϽv=ß¹c«u°‹ŸVôzm`‡þdžÇ3CÔÄâ9J;>å¬M*Ü_éÇœV\íòž»™<ƒö»EGÍ&νÊ!†1O꓈óIl¿DÍ)W.»TµèOŸ5¥³µñ¾¤èê2è ¦,¿_­¼WÖõzº^ObÐÙùæÙÔÁqd6Åí£wµ4Ü·©#2Èáª<§¬=pG§®y²U“é®ð*¤ƒVß7­CYËåª-¶980×}Q­g¦¥ML̸݊’NDcÀÙȺëÄv.µ­ª\sEç=æ'ö©É#0ŠÝ-_’ÅSN󯆹šºuÌ JÆŠpr·èˆ8UÙËÝ|eØ’¿†%᪔ª1£‚$ë~ž‹£¬qV¥&æ|ð«ðN(éìD ‰¿óöÛ©ãq½xœ÷º‹#¹þèeR?¯‹àRå¶¾Kѳ¢OÄZYÒðà /0¼Àðà $5ðúWʪx¶r,§Ó.fQ]M\q7KÃ]3hŽ±×Œ<þ`PÏW:—Ηš9ªÖi^Õ+'‹/ÎïšÉmêh_/:¤›yùdq9«™‹ùýSçðc3\þÁ°‹8YãÊù†U¢4Œ“½’4ÏU™¹ Ã(˜Ü”9¥/`TP>ú¹!nƒ“\ñ Eºâ09¤ÏDžîqÝÂÔ ïŽWw­cqºèPn7øâuq6ï]u­ìÔHJéR™»Üqö%×\ªgÐO­°­ú˜¨‹HŸ@ŽVG{E%£^©~/ö3ʱ椇Sœµ˜jŒd…A]­W]FÄŒ•ØäÇð+ŒºÍod´ ýD(lˆì¤Grd»öŸ¢–[ü'úœ?b T"ÏÉ»ÁV¿¹-»ýe%ó¥ÆQ ÝgÜU¢Zžh)š]X;ÝŽw>þÐ¦Žª_Ï(PT“Ê×ø÷ÆU±&¤Ô´¤`¿æ`¢F¼(å¯Á¡M#V’/0¼Àðà /0¼@íUIy"1 Á¶\R¶‹Uv`£Š£Ç'umॼLÅÕËI©ðþ¹a˵‘éŽgÛÂÍ:ؤ®-]Z~7·†Ÿ¾7("ñjÏ µÌØ‚ðpj8¿0´ï QEÅC2Ù&‹Íš7ª`+&Ãx”µYëöV¶>DýSÜ@›téå¯ZÛ1bOòÚê ƒ¦Þý3Ct`yü-j}dè••nmÑZÌ´»UëK uf¥å]#<ä÷˜™âŒÓ,NÓ/Z‡âNiOâ± ÎíÄÙUE`SD…ŒÐœo¥ú—ùÖ™mÓ=—øß¤ù¨\**("bÀ|.{1Ïi«“ý„…¡§Þ¿0$[Ç(*Ò>JfÓÕdNn ÁOAöxdØ« äÉÕœºêx§dØà5£þ“÷Î>¯ô Õ9õÜ{Vvšš1O^ù å¸1絓‰¬½øç™ß—'õ1Q¤1þ-ïÌÔÛXؤÕ[Zyä4Ç"š÷•Oëzxá†^`xáv)ÜñTú†U‰²Ìö¤î#põ CÌFŒO-©ãéÄŠÌÈ–'‚èPÊij䙓-3³öõC 2³é•O§Ž×ß-:îÖÓÝgÆÁãÊu ílêøñnÑ‘+ƒWa`ïI²Bü7j5·d{©ÂSëÜÀŒ+î<'Ë@å+ÁÆVùèÈÍSyä°YK ox¿bañ|)·8kwzU¡B”þÎT©}Ãg×&ƒ2òOT :ÕmI=bEå¼ê}Ä­i½3‚G._V{’‰šï”~ÓéÔÞÙ;È+ű!õ¸±Š;îëèݨô*äU“ÞM‰¬VêÆJ”¾$+T1ç#³\êCÂ)6ˆ‡ØÑw™¢”äý`–£]4kÒo±{ŒOÓŒÝaåX¿ÊY[qÙsÆ‘ œ%»ÿ–ÍWP޼Õ.±¾´tðEyá¥ÜÕß—êc} /0¼Àðà /0¼@êÑ}© ñçõG ³qŠ]@×#=;ý•êNaCbd¸Bc&8üš£Ú°\-¹¡§.>'u]Q׃VqW˜®JyŸ›—“áhÑñx:uìÈ‚¥¬7¯-28ʇ:Bƒæ¨uäZ>°[h$‹ ¯‚©«‹õ®`ú"R–“‘½ wÍ ‘YÆJO*ðÁùì}[Œä¤“»Ùvékœ¯[Gbfvk øÛÕ_ ‘9¥:OÊánøÜfö Sº¥ËàXØ(Š&?ÂhC©l¬1Ž cnÌx¦Œ?•é_»dÏWª¨]ôõ‰›Îo¿°ÿÑÎS}¦Vɦ¹Á¼¤îÈ}•ÍÅ;‘t1WS_rúó®oûJµ¯ñ7w”:õ0—’w.^löøxÖUg‡s²tŸ¥'÷«²¾‡‰&,Øö¨¤õÕv^ŒñäÀT8HÖJ²‰5ßÈ}òÌK¹±iŸÌñaïªtwà /0¼Àðà /z ÐOæó¹¥Ò2¢FìÄÁ©-"¨‰ pÏkÄ{žn/ ¼æ‡§†öÜá]äÊÏòüZóÎQuÖØÁ:8ÇžåâBzÏ»¯ zÖW_æ±Ö¡3ûÉ^;±ðŽYé-Êgñħ+—®ôÕÞtõ/Yå(ýÓÚNö™ù2Ä⪮Ü–ébícíÐïH«¯ð`ë9^¶03ƒc§f fWº‹ˆø)t¶áSwXxp#D$P{ ß?œÿ‹!Vœ? =—›‹©CJˆ[tçKo¸<äîkÆ|K^•k¡X~V T޾“ƒ©#<—*K9zΡ¬T>‚7ý—È€ƒS‚»¦ÄZüewaê¼ã>ê´ÌºÂSTkÃZîœqÞ¨Ã'Ëê”-,ÙEÝ)«ù(¿Œ>>Ý©Ûá-½¨dr€ºhµÿ)»1SœúOW;ȼšWÜøâ—&s~TË£š48ü+ wzåÞ·ðsêÊS5òðà /0¼Àðà l¼À\_çs£Ì%V&æ±Ò]ÂO`®Yë.y±vnVñ_9h XazjÁ!¶9ÙQÏbK¶—]lUõµa[xðí¿ Ÿšáö†w&-×”—9_OŠéî>줴,jŽ»>´Ö1kyl:ú«¶Ý.NƒdUŠ É.Õžª¡Sóβ6•“ª²QÅø»ïN°Ð¦ÜðèF^ÌÙó’ú¼¯ÐtJ%_‡úw4[ÈÒ–:­ËfPOYœë7ö¤²”œ¼˜:Þ}·èh§†ûf¨ùå- /E—0kwKi¶B²`_r¸¥ºAõ yÁ«6uÌœäV Ä(inËäÊãI]·©ãñ`ñx°¥ú"Õ£f˜q0²…lÑcBÄ5jMëNF«]Z[v8Ðd±¨tÝðc3GL¶FŽC\&ýc”&­²RƒM Ÿ4kê~‘1EA£ãs>˜*Y¯"(´V^ŽÚ=—ªLá_©[Nq-ß9TFšá†^`xᆈw*6.žAR÷ sF¨4£æ#¹sÅ®|¿6ÜþÚðá…áam¸¹0P{¢ZÅaÈ`ÆÜ+û˜Xµ•2,èµgågІÞ †âQ§†÷/ RºÔÛÕâí*qh·cO‚Éz ¤¢ç†Ä!Àls¸;ØbS\Bv@¾Œ?ZãÁUŸÔëTu‰Ž¿ ó@eèE|ÊIéé 6‰èðÂÓLL¹‡9j7->×O&åzTÊé^ôÄ‹-ª5Æ[lxå+œrá©QíÉz×9 ìªfóYG ›°EùÈ>6þå”Gþ9æðˆ›©Æ’u†Š`8{Š5±&l èA«30ž,9LÊþ!xãOJ*¤3㵦ΕÁx¸õŸžrÐd¨ØÁl¹…•l™5º²eF•:Ì`,Ñ=º/Ð+QÍ‚ëÑœ?96°Ë•õ½õ S•»8:ÿcëØRÓ»%V†Ú’¢89¼Àðà /0¼À?©(9Á”ÿEGIíŽOÔ©è¹àPu•š¡7'’”¯›c•‡¿7ðîôo19T…»ÈAóôê¿•NzÌ" eÇXƒç¯H3ZwtûÌWîõ´ªùTÌç¼öÕ$…¨sudPæHóü|o:ŸÃjVªþbu"û\ø|uGœÉ²ê…A7ulqVG?»¢:M–êñknšO?˜¥ýÛ©“u‰q§ž³+*!u¾Í¥¿B ïl66ºÉ´gˆ:RÄ3K4&ÅsЇålI xP*¤}c•`õ#¬ˆøy­*(‘ÕLÔî©™PŽXâó«^âálêHÙO¿_=‘£õN^µÖlÑj'{ĽS$Oó!,äË©#$w¿»"ü~à /0¼Àðà /ÞY¿Ë!}‡šOL9âzÔ‰I:ƒ~_—*ÍÅÌAEâÛ#;­¨ÍÁJªÕI§WÖ"òŒ*ÐúØ™žÙ-d± 'ŽÐÑ@7«°ô ªÖ{ÝZÇ}w³E²ZTK‡^á]9Ö%Bù±ú‘T§Ç`ž”Q]¹%r‚s(¯™#¹û¢Ø˜êé)`Û×ʷÙz{} Ö&²üòžRxÕÎÖ:RÝ£|´ªUûDõÞM†ºÖ-\pŦ*¬Õ hTç|Ÿ«‡ð¹ÀSWýúŒLØ2—NbfF[òAìå‹HªÛ3Y©#Cö3yy2 &Tä[à èu±:Óoî`#ß“$[+%ÈÑ‘ºJ¹ãR•÷ºeIïŸ"‡•“¿ÆTQ/]]±mÐK.ž8¶¡Yæ îRRM;ÇÁ}GÔ«ís•s~xá†^`xáR¯â9Õ>°F4Ø“Àƒ”Æ g–Ë3CíOaU!ŸÚ­ƒçΊÐ.÷øRø¦’›Öº¸¹7(nÀ™°…ÅNãL•èc.÷ÚrîZ:\v£šéúä÷/ É!g$%š«;CœÓXïT¤(ÖW7bb‘ º4U?K™¯gÈg[± l2Âó¨:§DµäÔÙD½.YÈø9¡ãIOQêOýû¬Œuæ4r(#O]Å«UëØ’‹,z 1J·Slj‰Î´tÇîbW m:S{Å]Ÿ°¨ Ï.ÝÌÍ{øi[˜ßJ”,bˆïÕèeUÀIõºñ™òø†X³ô×d#aý'++D©R˜mà&¾”V¬„öQÌ>'~Ž?«Ó‹ÎjJ_Vü²Þ2EŠ*_ _‘’Ƕê±V¥KÆÇXRò¼ìãh‡ÕÅdÅO[©;²|ZÜ—{1rÂË °bvްY¦ö؆á†^`xá†àÉ%u—ëäΪ¦Cê”íâ’5Bù\åëÉTŸz”{†ˆ&)k¬ÏÖ5ø·G¾=ñìTõJ_®©A=Ù–ôú/§ŽWß/:æX)k$Ú¢#i0¢âÐõ¿ZØý¤O{øzÑÁ“»f¶DÄ-Ð ÁÞ€¸YÕîIÊ’µv´èq¤®yVî•õr}×:RŒÎëú"ï¦y[ùºÁ?ÆÈ^²Bªte}2jn#;,…>¹o©ØÐªW/À̬b ^?©wŠd–LÜü·^¤ŠxN<)Æuïò†ÁYý%B²Q²ˆ´D}…FãÂOÌo´½I‡tWµs<8T£VPß~ûCd0¡-*±Œ Í*9_vn¦(✡¸œ.gËÝ”ª±„ IšGŒV†¤©Ä'…ýRòbʳ˕¾‰¹udç·°U×ø8@·a®9í—4zˆôFG›jªÁâ¾…¹E]rÔå8ǼÝDä"žïU+ó½ÛoïN7g†á†^`xá†HYŒÒ‘”Äy)ê»Oô úÆþh`Ž#b>˜i'g†~k¨q$ZKfãYp¥fà°n­2Mw!Fë—†Ô)ãѳ›Ö:Gº^˜õÓÚùƒªòÒ½¸­ˆL £"<³RÑqÞ¦Ž«§‹Ž¨úS4Œ:ı,[á¥w…§¢rV¤YÁ 7ïÑc7Y¸Ó,¥– mT0?8È\ùÊb-Ø;ÃnÇ*¶s®´cRV®zvÅå/ª…Gö<é*j/ÁYDnaÅF®/zZ›Ï¡æàfÌ›o a]Ù=ÄÚ òºÅ‚Ñ'OÄQñ“"3ŒùðtÊÃ’m’¾‰‘"츂w}eМцãI{›ºPñzºªR)šö?Œ`{¾åšKýsØsdÞù·Éæ.è-ª¸¨uÑóòs}ì—yd™Sÿi­i§¿ #<øÔ¸^`xá†^`xÚÿ¢w^Ÿª6¯1òÂÅ….¦ý¹æ-yçÒ•“rкwåa K¶ºòïZGªåK±‚í¹¸]ɽîIüõ´²|m¦.6Z~ÖÁ¢#IŸ ŒÛmê˜y°é}¦ÏH\Ȇ³“n§B%YÝÀ®–ÆSŒ‘–Š=,¡þÐs‘™WŠBµ>q¶×Êõ¥›}{0å¤ñÙϳ©#>_{íô¨!UºÞÒ~‰ñÒòÛÖ.H{Î-Ý”äú»0ȧ‡µ‘5ÿÃÎÄd2è=ßsV ‡O*1cH=ªrÈh½³®T¢¦NÀÒ›Õ¡¨Ç¨»_ÝËðà /0¼Àðà ÔÙHU…Ô•Ãnwtd¤‚F}‚˜¾0Â'Oà›úé—†ÖßÞœ˜ç½m­£f@j]ß–uÁ® žšÙ¹O-uXKÆâìæ•wkƒž£ú2ÞÛ:âé»*eô7ù¬PÜ`îÇoÒ©”ÞÜžØb‡kS¼þ;G°+{\(­Mõ.ï4W®Ï4öݧÓ%2P©+ß]oZvQÍ•æõ¶w5BƒFYNí¦àIYÈZèć@­™âq£…¬-l)“®»Ûƒ‚~®’4JÈ2G=D2†ÝSàtã›Èpž¢ìSTkó uÄLÖî+:uœá9^¤ªÃšjκàppH+© 1Nñá/ûÂRý"Z¼¯-{f^á»H{Q|Ÿõ4ç¹¢~=Z;©jZ{]VŠ/0¼Àðà /ðOì¨ó˜â%.ýæ®y¹7]º);™+•‹9,‹§XJôFîVe{eE㾨ªðÔU½k©‡ü«9ÇÄìóÄ[+þ„=¹'æ‘¡9ŸÓ-3{³gPö§=3Üeuº]-:¤l~³gˆî)sw¹î·Ÿj+SqXy ç@ÓüT¾)<`XFÍLù¥C±ÆH«=ªò|̯ÿsê†1_ú]ç\*ö 盾W#pÓd5½:Zt¼Û3¼YâÇïE*œ‰Ÿ„bþÊã3ÃÝÚÀÙ>gŸ7>N±¸×¿0|83pkÌSÖ9MÙd߇ÔsôÉ©Cqt#ê™òsÄq͈“VAïO:›â$—÷P¬•2ïO¤ži¸ýƒáäå»=fÅxHX!FJÔ´VŸ&¾5ö߆êjͪ7I»/r3–=[ºNÙ=輓o$¾Ë+iY¾¥ZUÓdÃi™S¦•|ée~VÅÆªûɾ°YC¬Ô¼÷ªÝ‰þÜÄÖ¨«bÏb€Ug³²ííRÛÔ+à /0¼Àðà /À ¢telWþéØ íø¹RlÆÊà8?@ÔËy÷Dè­{¦&f¾¾Kc® ²×q]}cûSš“%Rz|8/WŒ]*ä'F±60xw5¥eóuZ׿Q'Ù¾™:´NoÛ¢ãΊxè̺i·H¡2éWÌQn«©óB½ï”sô˜Û]kíëEsCú´#F›˜çR´'2\ž•–=•Ÿ Cè’³¦QŠ“²!ºy ùŸubÐ;å// í7†W†Ûc}÷ã‘!ôǺòÐÂú†ž&s[ðÚ1Ûu=âë85¨?Kgùöë©#uÍøù½râ…öúÞ—"*³~zýõ ÃùW†”+‡¢ü»´fÞµEÇeßê´¦ˆÜUkWN9Ò=}¡F:uD_$U;µ²ñc:ž[,¼v•‚™Ü²F˜g?Çf Ú+8ÛQ“£UFEÚªEÅhÛðà /0¼Àðà ¤^žl):†W‘ŠbÄ7<®" Y-a‘© •„VÓH[ÜÈ®œg^#aÞR¹ª™©¹ê*°EUý!é¿@{Zu}s,ÈŸXä©»†5ÕÜæ^{_ãþÊ›•=>)£«ºÝ›n?s‹i¬ô9<³kÃÛ’¥!©™È"ùûƒŠÚæ[å•hÙ¼&üä Þ.Õ¸>3hVDvÜzZtÌÖÉ¿E÷…ÕE‹KP5ŸŒo¤Iaí¦/U¯z¦d«Ø¢N•ø7rÖä<¬´{ôÎ:‹4Õ‰Lò…ñ#uØ'f#êZwIµ!ºæá†^`xá†Hk]Ei¶@ÅnÚÔ=5T¯À9+± ã S-bj'õ9WÏ ´ïžhUÚSCâ^ Eòâ uršéJ”ÕB‡ÈýÚcòÌ sºb5¯Zë`ý^=ç&†áÊ‹KžÔÄ&u˜X§Î]¬?G•ÝœGsóÂ:LýD»œE$dÿ/býaZY^;ªÜqûÇ¢ãöÙ1qn§zj ²‡qHÄaX/ªÆÌɼ‰¡Í«Ïp¹6ð SãÙéªüóßýÝ ÚQ=µ]š‰šѯ|åÅ:æêåMgÍ2~8ç²õþÒÊÌIîvU:/`]ÆB0¤JÚÂKÆõJCUmSmaô vS2:ZÌâYŸMÕ{ÿËyUÈÕÊV³æ9±^SíE±krDƒmfÿ×F½pµi_šžEáœ/•çÚ³ÍZ™æïRç2ïìØªìý12µbý%*ï÷†Ö °†Œ ˆ”êßà /0¼Àðà /28é°,ñŒ9û«f{ê/c¾,¸)_InUú‚¢ÚÌëOw±£>*føñÔ¡•ÎêÖH>²rL8šG“²¥Iã£fÐB5r®—4bOZGØ+i¬{ÖU•œ'ß4˜ÜW»?Ð#_óD‡w†-"YlÅô¼Ä–@Ý혓nÁÄo†1¹>püÞ0³Þy%ÞKƒòòÊàüÍÔñð{Cû~Ñ6J•ÃUjÄ'L½~d3sáŠóÁna¸û«!*fí1%ÅRWÎÈâý¾|j ·À£C9Êýæˆ99m€5kV\Ùˆ;E¢4è¥|líÑÊMäyPõlì7 xxÒ¦Žëß-:Âk«ê£ÇޤØ~xi GÇ»W˜‡YÏj,PJú¤ÿÕ ^§]5«F*WÇmß.¶)éÂÐ?Rë1ŸܬÄÄ*ŽÊ´"Yb<93<ÃÉa‹-wl6¾çyÕúfo¿½ÆÜÎ[ØóÊ*ØÂÁ˜<+?ÍN̰êQjsÖÇ/0¼Àðà /0¼@âe峫¼µèÁ¡J]XE®8ÏÅûÑÙ1ÍdéÈãìùöÈ<Îaõ1ÕÞžX£FñwSÇá­aK5ù¥p_¤²ñÄ¡Nά ;Ñ0òQ=‹}Í…ötY©K…Èm¥k£öºüWUÕdV‘fTÃÎħ93ÆÅ¢C\ªóŒšC=/ÿ·²ÏÊz«²´8œåOY<ÎÛ¤c‚þ5ªrD4Ã÷Ôé¦çºþÞ ̧†dü®¯¿10‹c¨:·`êBÒ¨>6ëß”OמáÞqã`-¨xÅc§!UxFüÇáOJžB¬ç­uܽXt%ïúØpoŽÑ’<1\O‘}ϳ"$È^­§«¹÷*8+¸ca5#sDz{Z¡ìl*,ñŒ&­Lîñ\M)îšzUØ­Eõ+{eáu_ªv&ãfÈÎJK\ó¼U&UYTÖ;ÆüúÉŽ._™^ÑžSsLº%¨Ã¤ž5Î[Vk0]¹Ù¹wÒ'è)—UŸª¬whúèj‡^`xá†^@'©Äh [”´N¨{XTÈÃàŽ’MCN$1Bè=zXÞÆsY}?Ù!RW fiØs¨ÀÏþB Öû²ñ-‹{YIã’ œ¹ÅüÍô‰ˆP=\L©#Œ½]º~üÄ糯ÇÇçÕ…áú‰!Ï}¦qÔú1žŽ“ž¬Û+y´ó¥Ã-Rüa›Û4kù‚3 J+i%’·A*_mùM·oö Ñãï¥ZYu½'×¾–)b§dÞHliÚ ùgŠãEÿVO_ûzêX¼Xtì;"Wè=€qý§­ãðÅÔ‘ô€‚›]>œZïäOÐþÖÀÈCêT­ÿÊ-äÉs‡òø§SÇõ¿·Žóÿ˜:jÕî.;_UZÒ^—™qZÚbåR%8Rìˆã >¯`d)ž,âoñ+×4÷H࣎½eQ™Ou­Ø/1ÂÏ=gåÙ^`xá†^`x^mêW*•`©¡Æˆ˜ÙÄ+¼ßʆÄüEšun{85pdè§blybõ×Õû3ÇO6µ|©sJ§WåÝôJíŽw„Ÿ£G­#"<þW)o¥î!×Úž6ŒÍñÉøáÓ C3(–"=D]¡Ö¦2‰ä‘ ª]¨Ø(ÊQØ®Ôs¤u÷p¼èP$'ì³ò¡È)ÏÜ€8c" O‹§yøjeÐê¯ö I9q¡ˆÈIO5~[úbП(›–X|«ŠŠò›¥¶y s/³r|Å÷ ‡ÍàÏ7r¸XÑÉ嵩³Š3E‹990]Í<êŠm†ºW(¶ {ŽW{†Äç\{k­…*KÅfP¼FDÛéqBƬj"㠲Ü?så¶—XÇEj7…=kÈN#¾»“á»Ew'Ï sÚWª©†ËÕÔññ+CŠÇþÝÀ®CîceÁ×3K[«1SÇ÷ ¬¯ O×Ì â݈>‡U;šv¹î§âÌLOV:ÅNG¢‰H+fÁ¼‘¼usð¬‡^`xá†^`WŸT]w‘ Ô¹†ëE=P®À™OŸ¢ŒO:¢×ƒ±¦è©qmÄôí8ëdMÆÚYÝYè§Ç,wĬèÁJW§4ÁõLQa(}ÉÐŽÑ•õ‡>E,®óáÔÀZ¬X›»¼b;ïÌUÅaeNvì>£ âd¬&ç"˜çp3H§^•Jv)c^ÏÔ¨'”ZÍÕí¢ƒõòoºò·Íðþ[CÍ3 V«y·h&²³ì^s÷Ö†o¹frÐÅŽ¥t9%MR·ŸŸ^®íчµ¿<˜:†ë{‘ážØ’ç_u\;î÷ ·Kƒ¸GäI?œ˜… ¶<—ÊÂúÃÃÖ®¤ãz½èÐwÅ3Euñ\Ùè O¾2±>Êû(:ª²z"žç… ÓEÕJùMÔ“õn^Mþ^•¡ˆëíÚ×/– ¬æî¿r 6ñìá¹oé­×\+^°ãúÉ¡ˆîý±!ü¾+F*œ‰ó YÝÊnÁjüZéJ;À÷'Vв¿†^`xá†^ 1*0 F¶gugK¹Ï;†"J}·-ÝdÌg¡cš]ÕÊèŹLÝOêmsõ/ ±‚|%¦ûE}iÊâÔSëèjÞ§2ÇU)FóTÄü”ª™y~Ô:ØÃ¢¾¶¤IWzÞSÕ¨º™|¶¼n­ãڡ̸â0ôËqª/Gƒì ´Kì¬ ÓZ‚èSWšÇB5ÃA³¤;ƒµsókÃ\ejcd1ŒùSN5Éx^a¥Y V)¤³2!õé°bÕ·ËSƒ²ºò麪v6u¼ùÅ¢#˜%î ÷­C‘œ»ud¸÷…W2òGWm꨼¸:•Gþ^CW2s}8¯‚jP¥Y©ù¬}Eé‘g܉^¸® Ô¤ÑæÊEõ)ý`;6D_ÕŸ mmÐøß7ƒx$>Þ.:İýúÀ ”`·“êótªø•#v_u¿ú.Gtfù{ÚsÃO͠ѸY”u ß'FAê¡kŽÉ·Ê¢+*­#¦Ë±K‘•ÐîâöØ Ÿ¨kŽ Ô(’ù„»¸ðþÛ«§†”i¥½òÏüñÂ4†¨ÿâŠ<þb¸_æÈñ6?|g`íeš%ÓšT KL{K*÷º;­µjÁ5Öo¯Ÿ"6QGÛ+>´E‡¸Ö™¹®Jô©ž–‘IîiéJÏ1Ÿ¸kY~r¹×J~Äš†^`xá†^@¿=?3ˆx× ‚ý\š3ÑSÃL³d™Û‘¡Xî}‰¨“Òœ[È[Ÿ™u¾±Æ5r1Tc Åù ÓrÄ"¨Ô¬lWÑyLMdÃÃÊJ¾Ì?ÿîÔP3dêzÍ.ï QÑ*¥ ðëÒ÷%oRtêë QyÞÄþ¹BgÀÆYuΕ[¬)’×B;œ×;#{\Å\›ŒEΚ¬ãZ_è»IÌá°äñDÈŒCúÜȤˎ•ªZv8ª§æýÊ N黽©ãͪu´ïoþ6u¼½Xth†Ç ÚAÍz}׫cƒl»"cœ±±R|?#Ïz y™Çµ¡ýÖFyíd7XU«^9ò øµIéfoºÙ‹yÅ™ùÖ³EGbh!kq¬¯ð®Éèኽ“Cõ¢¥êƒý†µšwfª´\³ÆöÓó©C툂FMìf¦½ÖW®ý«_R†”;O2áü†¥ªØ§ñߥí"6?W& †–#ƒÆœ¬’Q;Í•¯‚»{Câ™çN†ùn®PÖ…Åyjõ¦x¸l -Tf†^`xá†ø§öÐs¯ŒÄéÌŽÓœ^—Þú–fèÊY52ÎèÚfõŸµrXZYŠ<<þÃ4 _¶T|‘ç ñŠÊeAž:ŽUdcýÙ½]b´‘¹›¹æ6^OQåà‘Øù#ÿůPWD¤«>uµ»¿HqÚ­³˜ *ós® ½ìà@›³ÉÞ%ûÙíp™3}üUåøöÛ©ƒ5·ŠüðzR¤ V‹>®2xW¬7†›ÿ6¤þ¯ª'â¯cÛ±!j<;¬y¥ý€<ûÕžániЕ3RqçˆV$'ÍgGä‚}’‰L±×6ë[ÞÚ…áã^>bïDH66©ÒÈÏB«”ìÐQk}aÕTGT®:¿ upȇ–ØÞ›™ÇÖ?Š•¢/å³Nõ¢Œ5v]Ç—‹ŽOmê';GT€#Ú&ÿïù‡á¦{QÍ@ìECN¦ZkÊ€Ó¦¡Ó*±UÐ&ÃzPÉ4TJýY|<›:Ú‘k)SLõÉ5È÷‘_e‹ß©ë¨ìÄRî™!UÃRQŸ<¼Àðà /0¼ÀðQs¨ZAée@o¢*Vk£õ"ë'ÎjÁ§kFEh:Ý€q"ëªà|ªœ£ƒ##}“Û#ƒ”G´Ö^?3„}óùðæwSGê¼ðoàœl8t•·b]¬»`*þÒ%F}Ž[TªÎå*ÖMxÎjùS¨=P€3„"9T'âßq÷¾uý¬ÛrÝ{6¹ ý^Þ¬ sê÷¥Ø‹¸3×\òªì[ç¹;±¥¹m‰>p®dà úÅ* DŠ5UUð‰…ê¨"lˆ+&¶aÔ°ÎaöÑmʪ˜zyàé. W¿1Dþú7†÷O§Ž“g†{D<­®Í42š{Êó²ŽZµ Êé#^w­ FU¨‚ý»òÉDýp|ï¦kl~Fγ៞ˆ±#AßR^ÒSÖûõCžäbÂkDÄÒç’ç¯+‹`­K©³Õšùèã5¤ó¾l…ŸîCë¤ÌÛ8)‹Y:ª›:üyÀÄìÙ^êN¦qPnZVWÐÅ’%Œ^FV(Ô‚Ük n-UÖíP2MyIÏ•WÖ¸2Óúe,eGmpµÉä§æÑìÑ<_OK[Ôíõùw&Ã'³oìš$Ïž²ÏâáP„ä‡{ë¥áÞ‘v%j¡Ù®™+ZUê“ÞHx%éÓüš¥ìyøÔPY”go+ÇWR¬UÌíXûä”òyª©œXtdèÒ·0–ê?Æ”•Ôygν*U¡>3é4¡*>ñÃåcŽroº8ùÛ¤nãà{c=5Õ`^Å·kʼn±Dê®nÃob¡Wiî©”‡5¨öøÊ¡ßÞMoV†\ÑmW2¼Àðà /0¼Àðç«©ãöØ8¨‡lHŠ]€mL÷y7eލg]rCksžá¾/:6¤¼'Øy²®ßÝ|þþ×g†ìûÜÅhþ§¢sAøÌ—vÏCk™»Ûë'M=<¾Êq=çËZÙyul8i™ësge#õŒgKq]Õ‹Š•Q£‡Ú†9©gº©öäÞcŽ–ÞOj;¢¿©f™Ã®†¦¾Ëê潜ƒ¼5ª³#v½Eý³FŠ’b©îèþåÔ׆ȤöWª©‘ð¹²Úv&¡RävLóûÃØ!<1DE‡£ýna82„Mv Ï_±h¯8¼Àðà /0¼Àðwm2ü×¢#ìƒ_uh¬€•k‹^|êBò*AecÙŸBy}~åVe}#ølç<¦?#j1  [ëBÙ.eRdù ¡¦á9²øÞšC,:ÔûφZ½™tõW} >3Nƒíáü°%·Xzåê‰5rjnç GV®ÌêËÿaxüCûÚ030OµF.e¾ÀQœô¯K\pÇùµq†oñò+O¼>…}Úb¬²j‚`vq~&/ƒZâÄÅ]¶åÓ;ßí7v;Ü!pu$vtx™¤çŒ%¨rõñ>—à3„ÆPb´@V]Ï4º/YHÛX”GfVïsäsatŽ9}Xû¹Œº«Ù"*ºRõ)ùPFó¨NK¿Oß”¦Ö—µi…>»è“ kà+3+ÞÙ¥ˆTŸ¢†–Læ®ÊDkUÖÎø½…qŽúªŠx{½ñëÕÔq³^tü´4èé´SCì£r£u¨“‘û EBÇg˹‡^`xá†^ཹ[tp¶S‘$Î}ä2"G´^ù•AWþÃÊ Nù¤³æ³‘ ã‰%@#Ì^xr7Q›R>HÏHŒašÿÔae@°3±¶“³ê-‰Ñ‚õ¨{ [Ñ*)9nrˆC(¬Ë£©#ÅÐbMAGÕ¡¡-nga£µpì´R¬¦ÔËÍ ›ò8OÛÿÕÔ±øÅ¢cV™ÜX¶Èe#61 ¨‰ã7ΰЩ Ý9Þ…¼j;•új\î² É’£çnæž 5j'/€N½øÛƒ©ãä¹AÌÞ)6EE$¿‹öKÃýKCÌ@_é:¿óŽT™0•}ÎÍKÃl‘6lÞqÍçùaoÑñð¡=s<5(K(>j1-Çs„!#±¡ëä3WHnr¾ÁM:M\kèrJZð•ï1U¥*Jã1[ÙŠ2'S¤Nû+F¼UÑ*6’¢lUWJbDAŸÖ]p‰{$'vSÑ}iöÞQÇ‹:g=SÖuÈ®ªÇP1*ݶ©ãFðxøÃQë˜×©ë^­ êIŒhÒž]cà /0¼Àðà ü3{Z3Îa}cZ}Œi°“ZÝýÕjŠ¥*´)yv.œT0Ô]ß~5u\½0üëÔqx±èHõfš!~.k/ R£cÍäκ‹`ÌŠj×gé¡DtKÙXzÅCŠuJ'SXÔ- >ÌŽÁ#„_€ÿ•÷‰ŒÞO>®¤Ã>æ^u–Ï*YZÖͽ„T-·ÁQóm“óåMüuË3™±¡Œ“²®©óËÞL~o²Q¯î+B{³ÐÄ4h¬‚Ù¦ì÷¶Ô—x&Ç!©· +ïœõÁ|B_Ѱ¢Â>Ý1{ «“—Í<·2๺5ÏÑÓŠµv¸˜:ôù¯þe2¬ šuŠöëßÂðà /0¼Àðà _×WMðèÔ †70 WÝ@Z!æ\ª&à–H9® ¿#I½NgLÇížAçYr>ÌÜV›\0Õg”‘Q,ëveHºçå¾f˳ÉíÎZÏ[C½_ ¹ð ‘·Zôþß ¹9DňôêØR ¹jÅ¥,ÆÖV¶p¨ùìªçŒÌ©XA® g£ž­2t‘ÏA{Æ–ª€ÚO÷ó]`õu~f|Â&êUsÊ©BÀç¡ìÕbÙ õ¬«Ô+` §½ÝR‡‰Ø‹Ô?g¦tëóºYbn«öãõzñzQ ÷Ui)0{Þ¦ŽYÓç65bèSÕ¥]ÏIk‡¿\thïÑ)¢¥vis.æ ÆóÖQy’!IV”ñ™Â˜47«Íg'ÿMÍ¢r˜b>…C ±~Ánp7²¥’Pê™ÐI$±Ì‰YÚøâ=/ϦŽT}6u(Ç:û÷ÈBôé¨zYyvÕúnrÐÊ>×Þ+VÏ6GV”sÏߣs½êÀ8w^‚Ê™6P£è@Õ\| iæø•0^šØ`u“•þÔrÓÚ ìjØÙy籤ö>Á?™Œåêýdì1é¿K‹Ó£ÐT™áì .¾ãÖ±j˜k’!¿MóXùóÂ>M¯Ëãh­#²´P#Ò>°µ©#ˆ JÌ*ø=Ô™ÛšA §¾ï]¬PV’}#g âä´¢ÊA/0¼Àðà /0¼ÀþYŸØIÅ;f´’CqÏÙØ¤ÜŒI®,óþ_[GtT©o Ø¢ š@Ä…’üÂÛ[CÊ ¡–,¤4ëš Þkvû†Y³ÆW«ßcTaý—áö©af]ðp²¿êäµê²ÉÒ²g-N¸Ç}’O»:ô“B"1Ø.ËI>º¤\c'ʹÎP¹¿Öl{èÙ'Ã[Ì7å%«ö ¸Äç+ÿR[<=;d!S?õæ|©µ·E1“ÝaøÑ^"Y!Æ”˜q.‘„´£ w¾ÙÏÄ0‘Ä(ŽºSYQâa“5>dHƒ yÎ{º‰ÐûõNT¥Æóåæ®nµØ‘ª ·ÔxhVÄÈ?zŒQ×yÓZGb´ŽO–ج¬`ôž;rõ¤»ˆšj›'/ZÇòë©Cíz5]Ï,”º/ñí3?.ß4¼Àðà /0¼Àð¡ÞBE f~Á±ðéÖÀóf²n/3[¤GÝËÔ.-ö¿Óþs&lá4£v¡®M¿=s`ΓC fÈß z¿fþõ©AìsR¯ŽÓ²ÆœÏdccV=ñ6—x ½Uê^'úËØIÇŠÄ`Ø@¯Ùœ‰¤5ï6ñö’oéЩë‘k°œÓ#«vK [²ÉˆÀ¤˜ŒNÜR2…ʾˆªÿÈZPj\RûƒrÁØù„>Hä]-‘}…ª¨D­Bå]aŒâä·­cÿ+Cêý¤íR¦Ò!û ¸è­úr6‡•´œd““ýôkž•ò2RweM2QÙ¼uwêÄ,Ì‘Ÿ…žóžµø[r> ’™Ø$¨£^¼Þ|x½5•U™,°ÏïvLÌ~޳ÃöŠñ´Ršë¥#)/zµž;þ8hÞüÖн@÷Ý t/н@÷aÕ#6«Z§è’fb¼gVH—&²ê¦REh:ÀGà¹'ž7F‘7L9Ò©$Ƴ—Àœa·K0Í:ßEø¸ÔßäÞ #·5°wŒW" ¦\óÕ—†÷ãÐpñC( êy±_žµšE“ zåfkЬШ†b˜®£Òµvë` ¦nš{Y¨í,Ü“ê jYÉ]?ŸI{ÎjO®¯ªõ S¿%ò°¾'Iy=ƵÀûvlßï˜; ž1·™ÁΧû•j9k8#§oýû‰)±ö6þ}lˆN̨ÕþgOµµäB<&=G÷þkùîÔ¨×Ìßw篨¿2:%}<Å%^Yõ¦L7YM³7$¿ÏçEνRoÀÝN¼}¢øGægécjLðùƒÂž*ê:"¯íÜÎðû‘m÷ßÊV«÷*í4à "ÒÕõ³Ý‹8L¨ÉŒÇV`0Gü&u!f~÷©%Î 2R’9Ó猲ÀdÑ[|>â$ Ýç¦üÅ”&nÐëÝ t/н@÷Ý t/À¹”:ôe3qåÁªíu>µIgÍ5×<·r¹cÐé†ÊkaEãDf3jâæš£C´Ì‡§ 5¦†lݯ ;_:X†L´*]ƒÇÉA?˜,ã*:WÒ?’ûK*ím¨Ç!qá– uʇ‚7 ÎÝÕ¬¬gvLšW/ ãËMC<ýq¼š8¦4¶äaX«U/RÒ0•ºÉ82dº«j´cµú”Þ<ñK‹©»tU~9^UŒ§T8óE°f8]üÝŽA4é¶È*F~ót4D¬ ùå˜Wª’z-i¹v˜—×'‡&K­"V$Gñ‡çVZ¦1”Ÿ*Ê;É;(K«¨´Y¡0; "n_o’‰½™³” ÞKK•ú­È?ž¸5*ÅJ®R“/:vkŠ êBÜ+2ûLPE€ÕQ‹ØÕQ³Þ=Á›qløÉq{hȼâõgµ­ÜŒÁxɱҊ­œ_•"< ¾ý€Ú{‡ýtûÆLº"ØÝ t/н@÷Ý t/0­A¯UÃ}1‡ËJNZKY¼zåÊ=>u€oáý¹áÍ©A'¯O»†qßñ/†'†G¨Øke)kãáæÈ°Ð;OˬÎ\ÖE:E’53çÍ®AßønÇp|44$ƶÊi\æ|ª¦+|Ú)ª¦÷FfÐV{Ï7›Á¡ jF@é•èÌšßC çÄÀÀò¤¡g‡ u]Gäg£†`e'¦Ö<ìyzjXãk³…ŒsͶ¯pVÔgQ™ ‚™AU—Š–8^å7H›Ê –УRG†TÍL.yYÍ[˜ X‡Ì¼ùB¦^­jÚcðép¥éj«¬4F;îš›œKdNó„Ü düf-®®“û¨•»=ÐÄÿ6gÞ§qÐüñž;°Š$)Γ}®ü#«Ì‡CƒxéÅ ºWbŒ‘ w/Yã­sFómŠùÞÙj}ËÅÆ°3KRF{c½“%Üì7“'ºÜÞ<ºè^ {îºè^ q£!V“¸ÂþÛpûgónÊQV=š”õ“¦z¯5¢MD“Î ô>ÒVÓïCža•]AyXjÕi â^¬(e™¡w_O²äËþëCû¡A}Ùê:Þ3POïdgYÍ.%¦_ªRR‹ë.±Òl\ó|ÿà’3Xñª8xîN›br”ã±Æ(W\Šû‘׺rÁU¥NêÕºÄÒ¹Vm~ú+öd•zKöÇ%¡Z÷K­Gäîƒ+Øí«‹cV¨:Ñ÷W±lÕ¹ÆR•O“Çœ3Ω¶êo†ú¬ÇT{ ©G³°»£/(Þ–1.Z{e$s­ãã øwJ€Ó– çú+u½ÅN‰¶úì¨ÅU=°ì3¼¬šŽX\™ѹI®iùîT!`•óQuŸ£þÁ™#v¶ªFðO¸Þ5([­ìü„Í÷y¢xûƒÖ^Ör⦞-­bÈßÿÅðiÞ:ºè^ {îºè^`¡†°¨<ÍíéRESª÷Ó©™£°*Š2…êÁÐjUyå¯\ï”YVÆ3u—0ÑY:¤ÈsE»³š þÌ|ΘªÒÔskë§_mn_’]Ò¸8*ƒAU{,\[ºZiÆéšßŒ†T±–â?c>K¾à±_ˆ¼üÊ¿o^8¨“¢ù@IHŒÇ`ŸN#L•IxÞÄL)-tÉ×Ó.•>¦¨Æ¬•Š5+ÍÊRÆ›}ÃýhH>Ž4Ü|m¸ÛŸoŽ¿T#*/ ¤Oxwbø´c§¸Þ3L;|»Ç÷_TGz;Ž·Ý t/н@÷Ý t/мµü!Ñø ³ì©È %¥E=¨Šç=ýOÏ 1šüR[óRtBùw½¹3D‡E­Ý 'ñH43>ㄞu(Å‹·SÌöþ|5ßÎ ¡©(ËãI‚üÚ{GÚóÀÿªíbglx÷Û¡á 9qÓ½@÷Ý t/н@÷Œ“Pe’ùâP¨÷ºÍ”;SþK}ܲÒèøž¸sçÙBüœHºÕ²#L9‘`ZV¨è¿$ÝŠªuÎçyª¦{Ì1³BgØsC0ª‘+ ž1Ö‘ì'#¬»£—)ŸœrTÒt_pù…!FXïtM™`ÛY5ú?þÇo¯±”¤ZÔs"Ë # 둺ՊrM©>åȤø@Õ(/U…•¥<¬2¼)"·¢Uº ˆJ^ˆzÍ´¥¥¯³š;Teêv,*"J–|„öÊØÀ÷0cN¦è'QYï’Õ-›9¢%¯ô¸Î!T{JÕkí.¬ž4ùDq#ÒòÊæ†FÀWÓxäx1üg2i$Æ®±ª;_j§ëþGO-¢=ˆ &%†7Ì„°0Ê;çCsj—öQÚ9‹S¾ãÄz7Žà¾Ãøw/н@÷Ý t/нÀ¤™îн¼0L¡ï2ðLDÊÀ’ Iù/Ìj¹›b4ÃI•:kÁ2¡ ²~+€ãºÆ ®^x´À —ë0­^”ñ *Ü¥(ãc¼Sœ4ƒŸÙSoToÈ [£U<‡íšÏR'”"NÉÎ3;¼æ VºÃ~9;Œq­ Lö¿dêc&¶±TéZ™ëªÖ|UB/ýP©[­ÖÐc0EäØQÈ.¤ÂJW= sˆ ‰ªò¥/@s­Ê”±ÓÄa¢Ü1=²“u—•¬"­(³Ãôð¬úXð©oV¥Ÿb22)àmfÅfÕ`-Õ ¹hh>ì‚GYB½s¼ Îo© ìÕ84|8bu{T‡ü~É&0ë=CЧù•Ã={e¸8Þ~±iH|•ˆ´c¤×¯2kq`¿Ú5¾G2Bĺ{f ÝÓs m/µŒ‰ÕSwäè^ {îºè^ {žãÔÛžÎhÌrª ̹ŒúÇ¥ÆXØÞ‚• ÝÖa?5OüouÊ¡hŠJ§ßØ'²ÆÌ¹fœ¾© ÌQÔ!!wy«Õ¡_(õŠÑkæ¸<2Ä)ÒmxòM¬Ãd>Qã¥û³/ ÚÔ‡% ?:ÖüÂÿ¿ˆ3ÚÉ~–èMÄÙdEÁ°À±P2•¬œLìŒEÓÌPñôÕØPs—´i‘ï ËÃ(‡®ñŠ…Jƒbù©õ9î®Æ’ü£Ÿúk/Õ¤5ïu‰`ndìqý/8Ÿáa«^`](Œ.Y%vfáKëP]ðÔzîèûË<3¿AŠžY‚±ÙÔu zöuNªënÁÔ¯ºgˆÏwÍ©Ê+®Q¿tœÔãy¼køéõ¦!j]Ò\…º =ï…×VؼӌM¡^uÝÕŸ' )è)ïqÇ¢QÒ'ßXü4•{Ô Õ°²ºÊ\Ëût/н@÷Ý t/н@šZûâÂ]é¾;’žãîÐÀSªîQÏâþÐ@~Ô4s|ÕH%ínwÓ }äëç†Ç¡¡®ˆªDOÅÉÊ<À.˜TÝ*¨¨êî½p¦bu“©£-z|Š‚LU©Ëgä•L_áÔø˜Ö]µêâŊ׫G¨Õ¤¿*ù¸5Õ˜´Š™Gä'õ.±³Œ1°Ì¥L(Ÿ²¥ÑÊ^9:êZŽÏ,jƒ™%¸DºxìübÇ~Wë«k—Sšu`n•[XòäkKI%Ìê[ˆ×]Ül Ï+ŠŸ©Ë¬V‡²N˜Ýyè¬yüTqVvîåR¥nQØI±8Eƒ=V3q›8çs©ÛLkÊ;îTEy¹76|Üß4È;DWfè^y%m¬Yjé‚KD6„³…±GVê–ÊR}þ‡í¦Aloñı[ã=#áìÃM6j¶ò\WO¾>öØâ—®>³÷£ê¸{îºè^ {îôõPèÛ/÷  Ò7$ÀÉ!b\ šc'3j§<ûnr7ùÕþæjÿQ)êWÑážrm°Þ‰™u¡z:È//ð­ö”+ThTrŠ¥vÖ1d$áøµašžy׉›üZ:Å«²ËýÈÙïÞÃrvhX­bÅL¸ûAàÿ£Ìo¢ (|Ôµ°òέ0*§l8ã*%wŸü/9¸ªB ýÅB®sÖ|Iö¼X­AB”#fˆ4‰Ç{nˆk{áÓ¸eZƒðïQík6¸,¸¿âŠÆÈ‘,­^g™ŸdVI½‡Œ—VFîê7Wjx'à©ÙYÉJ€ôí%Ú™¾1«ðhا%•+*ûTõ™¦q½~=Ž Çßl*ÿ!» Ÿ¾"òãÏ(ÙŠˆdμZÝâ…8n›Û'K¬¥÷ð§sCt!jt±5h.=l ·w¿2¼ý»A\ÓÉ”ÕF-.÷NÒüúÓ¦ï¸_÷Ý t/н@÷Ý t/p³»i“íC“èqö*,²Eižë.Rf„s› üÒÓ“ò.Wp9”{"ë5b GÃÁçÚ]Cy"Í@åȤ¹`«5 ân*ãDµüþsµ¥…-Å ÈB‹û“Ö]Q6ÌڠȬý¢7I±£ª·ɘ¨imj—YD!jÖ•°Š£/žõÍ—†iøÜf®ùÜÄBà9ß`(ÊéŒ;‘¥$®–ŒÐˆ4j‡gEQx¬Ùÿ>‡ÒãÆõN–ŵg—"´k|€µs“Ïô—w ¨.α#_;‘y쓯v††7[Ãí¾¡Fr¤'¥Õz¹gˆšöCÃñù¦!ŬÀQ¯¹qÑ–óMƒ,ö§ßÆ?×åÜÖhŒÏ ûÃÅÄü@o~Ó̵ÓÊ}ÆÃh ÆVʤcfŠ¥G#ß½@÷Ý t/н@÷zjO†ƒ‰Ã!¸ iQ1+Tÿ™Ø˜Ùñ„Š/já±_F,ÍñDÄ¡Ÿ±taux&"H´ÌT$cÛ Ë\Ò ×Az¦Ð棚aô€°Ï®¬)1iè9NÙa&át–ò_´“…9lÛºë˯ ‘M®êØÈÎ/Õ—zô ÖpòÉüPÔ½ÎõØ ÈÓU™â’'eU*­zÑX¬ö9íFå`<3ÍÖîâgžÖ÷ ­VØsŸÕŒ–±G¦¹à±$"c¨~p’…£D>ãNKõlí‹T?çjÍ´²Æ¸öÓý¢Gæl©lÒi†—zij%î»Ê,]ã`ܱT%Pù_ßMEO«?5ñHÜYð6ª(CG†‘mÄoc½«Æòpl˜¬™í™eÛƒ°xsE‰ßŸ>m ŠÃ¿{94¨*†!éN¾9ÄýÁA+§jdÕ¾F„Ù#´Sáã)Ùê8ÿ»è^ {îºè^ 1?(GFíœnÄ/M½…ñNù™5kRÜöú:Ÿ½b:å| îvÒ¯dn—JÓPŠaÏkíÖ”µS—Ö{ä»ÉÊ¥Õ÷µ3œÜwf *7ÚÔPï÷ëwlH¼aåÌ˹4]§Ÿòüg.Ùí~°;6L5`sDnUƒ~-:×lW˜8ÁžÈe»­Kê-îÚöÚ›Çi½”Ȼ̦ÒÙÍÒ,­‘Àð;…û·rÇåX“Ëý¹Ôn>ümØÆÉêæ³7Ö—Cs•³1V„FÉ?›•¥Sœs”½Ü4Ä5¼0¤K¬õøÛS>þÂ0ñ=ÎUÐod¥(k}™1G'àGGa«•)bÆH:Úó}ý#mÊâ hÛÙA/V„ÊݧkÓó…=¬cž2³U#¦¬ßztV‚Ü?5s•×H`TƆiÝ5g=°•ÅŽZïõî´Žç”ÛU} ê÷ÂëɃ{=°ÔRªB¥¢µw,ÇLàUY)ZY»×f2_/½x¬ÐHŒÓkê0»Ÿ“°CŠ»ê~‹^ÕB>ºäÖ˜±y§E)ìC¨É«üÔOj¾ êœÉ~}£Ãgh>„= ž/ãÍÛ¯ áõü®ÏŠ´ßþyÓpñlh+‡û½‡†Zu¼À´öÃÖ Ù"»Íy~±c ³} k3ºè^ {îºè^@ï×¹[gLV&–¤Ê™P:ÜS¶êØÁñ oRù¾ôíZÝg4T.»i2ÌçÐj9«mYÈñQù™ßÌÑDž+¿ëàkš{stîªEÒƒPD%FfüŒˆbe™ªë­9pÙŽŸûÁàqÿ|h˜Î’>-qÎMYZÆ ŠGØ!ǵØhõèÅ>ç”§y+.¢ :/G|ƒö¿Ìv-¬å{Ô³Ãڃʖ¢CU…ߥŠP°LKç(ÃwƆHÛy$3E¨ØM†¬ñ÷/ ±L*„¨W”8+-C1Ð1y[çHWŽ/"«ÎaX|ßj·ÎR2E´çñÜ®w—ºÀj½.ùߨÉZkævk¿!õ=‹šgâ‘-«Š–èt%âŸ3¼?ÆW†f?©òYªs§y;:0?9Ä—¨\‰lÜ|cHz‘¥*5ñ EEV‡Š©¬2W¤µ¼ÖþPŠJ»ø7’7ç ¬Ô©ƒigUYk¿¡â?¨’MËu×é[*_G­ô ;wÑueÖx²Ï>Wµ#u›O?ÖøÌè¿ ¸´rÑ—êÝ[Œoûgï":ê«#˜¢‡F£„u¤®¥5¾6Ä~C»0NGÍùv¸Ø qøxâÆ0ŸâœX;Áÿ©Ý¾CŸÜ½@÷Ý t/н@÷×û›ë‰{AgXõAHï€}ôIùNô 8“ªÒòÒ¡þ‹ÛÑp5Ž )*¦2ùéŦáòÎP#Kü«PuG?¸®êÞ¡»øá+Ãû#ÃõkƒT§ƒϯg7È‚£©f©p–_‹ÕD™³:\99a\…–0r¸PµX`0£M€•`ÞüàåаfýÒº£µa èkÇ3…îd­®þ4@YÍ‹eWW+8ª‡ â*¤1T^>쌿lðv«Õ>¾Ø›±#¬p}§ u—dE ›Ç‚.ÕO¸Ÿ©eE]t¡.¢D›k„¹ö¨fƼǜyuè·¾ÏAWÝ'võÎ%ÉÀOׯèß·†´Ž´ï•FíŽ!ê½Á¨,³vé ;síÄg®˜!ùÉËŠ _ãë¥{îºè^ {î45”³P¢xÏ¢òÍ3e)Ô!›ì'}¿…9Anoàê»î?ž妞n~f²Œ á)Üm úÞñÖá–ÿî Ãxcˆ*¯ÝñÌ ‘NÍV9¦{T­WÍA§SgÕ›ÐuªJð¹aâÑfD¼Q¬ÊpÅN7ff¹i‹¨áþ›¡V«V`Ö˜[Ê•sýBýš>Ì Æ_‰A.êB™5žŸËRí¨u–¥Å^ÆãÊ¥yJû@~æÍÉ ¨“;W1Ô=žþmhÐzQ6–#ƾ¡…U_ùÖXQ,³Ï\gÕ¯d|µ*æ$¿ï6*^ôi#åDÿG&„˜Qè £¯™ëÔA¦+$ãÊÊ.(r¾ÉÕ˜ßGÉ¿åo 7àÂ)æðð»E½£H­FÐzäîh­Öv¸>µFŒKæšõg_.¾~½i¨ùñÛqhà‰X“,°¯&éð2ŽÙ*¼BÕóתÍx÷rÓ5É|Ö±Ÿ·ØW÷Ý t/н@÷Ý <ÝlN äD ýׂQ~'ª×;ò.˜Ä…åëèzwh¸Ý1P§²ÖU¾ßN7 Œ'$} d‡SlA*'R÷žšqk¸üÒqb¸Ý7(—ªèSå»ÖÉšùš³¿j<$±X¤'å]E/6 Á« ›{ùykUÍÃMƒê»‚O›6™*„š]Èl†¿€÷‚/ZÞ•0½ÂªBjä”GÖÓ¹Øm]ö¡ÈŒ˜@îèWw¹çI=~"«Ýúå\_îtïÒbPwÆýw†ëß¾m¸¿3Lv~îg_à²ÆÈ¤~"ª"Ârê4*•7Ų¦úC?œ‚åõç½MÃÅÎ`Øtú›§‘W*Z~ñtÄéyžûÜs×Ù[³läÓ®öüà«¡¡òU;Éê_Ö"†ÆhU„D®V™«SdB8n Q[j¥êÈöF=ƒÂ•Á[ès@çú¢ƒ“ì³ê%æ–•ÉÍ~@F~YÑRÛ!Dƒ™MÌcâ¸#{Xùä…XÍ'›ê{?‘öØçM*­ÄªWy¿§*Ÿ_Ç<}oõ°¬©q)¢5GØ&æCïd,±ªUæ*w|fa2‰Ý…v¼§çÙkÃ…‚6Wvü›!Íg0õ-(lâç}¢¢A¯Ÿo_>ýëРñW,ñjwsõÈbøû»è^ {îºè^€]Æd" %nœøâ~¥>ï3'Ö)jŸpýzhkÓÅé¦a:w«÷ƒ…«!ñÖ’¢æ4Ú'†»=ƒV‡*T«‚dÄUÜï¨ÊŽgðWÑ8¸?šì§.[cn+4rŽ8i²³,س}ÄîÇá~|Äw1³.$; Žx*!²Š¯vê­(˜óT¾ <²R›#¯o)ñÊËìO¨ÒÏýP+µ2ÂâÐ@…jÕ)U‚‰u­Ö‹RÓ¶š•rÔšFØ·R,e…µ`ÁF!fHÆ•7Dº¸‚Ø)¹Àе¶[˜:ý­:4ØÀÈyˆZÇôi%þ“zk–ÖLW"Nã‘K™t²ÉU…úRËQUæ“ß/#Ÿ¬}‰ÛÄþ µ  º¥kùe>Ášë‹{ú[Zé¢FöYU1ßôD®¿p|gH}©Á4î;·±¬jvZ!÷/ÚŸ‹Ýz¡Þà÷ãð~Ò£×oþslP½±vGú´ËgcC÷Ý t/н@÷Ý °Z+%úÅJ­`ôDogk.º§™çÝŽ 1ÒåÌŠ–ÌÚ€7ÎÔPÜ‹³0loRyöÙûðñôêÔð•!º„ü=IÛ%ì?˜îds Í]çÊ™º×—‚ôGô ·¿2„ša¤Ýé*SNÊ~骭•™ÛÄæW»uªêzä×ÀÀÜùÙØ»ÿûôÜxØ*k7¬4m25†X}ÏúÄgVäÂ2¤êЕN˜º5ª¨¶^±®«Ôı-öAA•§D/S <).”jž‘Áôø˜V_°I'ÆX` St­ùŒ‘—í¢"g c¶ˆ¸ÖªÎº[¸V§îBXcÄFj¡ ÓÝT+â•!Ž6BÆTÑ ™ò°¨M£º¢h¿aç½`]LqïìS-[FÔé:òÄ\Ç Ôx¤'Rô=u^ÿiÓ +9v(Þ>þ«A ˜·îºè^ {îº RÌuÖûh‡µÔ¹#®Ü®Skjb¢öCkíèAÙõ3ƒúѦ*¸Y·1ºæƒ‹ ¼XêŽg&E,^8YS3,ðÏÖ‰Uwt¿cˆj=f 0{ƒ#b_svFgeÃåRw¹ž©üc2`–`DhmÆê ˜õ;f[Äì[R¨ÄZN=#Eó½fÞ«uZ¨¸c?:èWÏøœíņ$ÿ†ê¤À¨ïU¼¢¨2G¦hÏõv¸Þ&j$Ýî¸H9ßÚoEvxUÞEÌg"Ý,-=b|îã©áý¡AÜZ›ªŒ™ã]r©C ѹT—«µ³½!³D|Žºö"‚:g½¢@E•¾ªÏ3뺚eW ®=nõúYMnFp˜dŽt­Á™I¯ví1W¤ç›®Aû%UÿþÆpõ­AwtöÍÐPù%¾4¨ÂáàÿŽo µz9ö0²TdVDªT/?¢_ìÐ0õ{¢õÉØœ6‡†îºè^ {&¸^g')”ŸÍÑ›zŠ—• ˃¢µÉÚ­«ýÍÕþ£ZGë% þ ·½OÀªÔÕÞœTû”òVdc(yZΩ§F9ßyæPdªÊ³ŠGõEÈß/νx:…m¬‰QVJ.úÆCgã š=`0Tĥ˕ü2ÿUž«Z«™ªæJ¬`g§WZ~yv0Y¥¿­±…ʧœ¯?‘ËßR7ytO‡†©>A˜z9«Åè» †…OZçœK•Ó€tE·(å²kôLóÜí¼ÖÅ÷[Ç}ƒò}1CždÿU@féÄÚ-VjÍ:¨©.0<Än1RØ¢š»§ÏM¤Ður”Jl3êŸqµ $îOXÑZ*uÓw%;¯E!óLUÛ,לØ08+"ª!Kîš·gùxúÚpyb`\4iƒŠæÔ¢=ì¦D=jâµ(üê“Oôºb·TŠQŸmǪ}1RÚ½@÷Ý t/н@÷õ—t1Vò ä2åù±ÖyŠ iÒòž×Ñ›qh8pˆúöÄŸ é¼ Éþ˜e‚gpåbjÍg]• :éò_Á–0맨îÍ¡atÜï6ç†ÊÒ<ñH@ãCvÌýHªÅýÚ@ÿó*=å™ÿ6õ1Õõ¨îõÊ‘¥¹„gT¹³j&1Õ4b¥„bHYS]èìgkÖµjý3¡ì³³s3w–*iY)”1§Þ=‹léOûCõ5≔^¤t Å ñÛ8¨iõd5jL¯äÁã)³VSÐ+2ª”@‚ìOÒxb}ãfê#rìX0+Èt]3Ýô_à=Nó¤°UG^ž£+1½§û3ÒœQݬW†¤È[ÍäÒ›P•žLÔµ&™»DîlYûŠOH+ÅŸ¯äøWCøkUÔ«ò“u³“‘•Ë,Ö]¬°R'†ê` ±³ìÉÕÞÆ î0õcúÕ*^´Aõ;ê^ {îºè^ {”±*#S•ô"Kžk­O¤Î„‹ÿ0œ½0<8ôÁ=[+Z“•qŽ1…}bŠP¡ÊŽvÆOÙùÐw‹qa’ÓQùy³5ÔžýMCv«9 \fTv /–fiš—gA-òÄ‹[jÉê6­ßRš¢ôøÔaä_Éï3¶@f-WÙK5~•a Æ øŒ0O4“éñ£@•™ðWG›«£)gªÈ†Ö—†TU£n7®Ú›w£×£ºPIKÇ盘÷抈O·âõh9kf9åþX« õ™Ð×JÔ-£š±pÙiRÜ1ØÔ§Y8"jæ}¡¾ô9¥+ÛLÕÓ\Ⱥ–»X¨ˆFŒ1ÙêÚåW¸âS§*"~©•Yï°iÏsQÛ®ödžËÑ@ ™ªYÄl ¾éÈç*VøhVáb†DY|¦A«æzÇ oTõŽ"ŸTâ³î^ {îºè^ {…™,ûsdHg4é/‹wšç0©®æøªª_çÅ3ÃíŽáâ¥!Xj¡ȳ­²ÌⵦMXèc*ª‹S—ÙlùõΩÜyíxvóO~ï8>wxÿE®l|œÇœzÿ}”’þŽxóà¹TÛÆ(\UŽ(½Zìb60Õ£Væ®ÊËW#KŠ6(—*vAÏÈÁá_°PkÊyËX‡„êyàYž€ô…QdªR†ñï"GŸXyƒwG%ÐÄxP2’)b¦ëýYà% 5£º:|Y²öªbu=ÁTq]3²'5w æêÔãÆœ&5RW4†’…g?¦¾Wq-ܯƟO‡ØEÑÊ”X} Ÿ¯¤ðfOEƒ©ìy¨ö²f–4%çÏw·|±ìÆô·ãhsNŒ³æ¹NT&ijFe»w¹Öêë¤o¥ù£.TÇ™Éf šáò,‡½r¹oH± ZxŒv÷Ý t/н@÷Ý ¬± $ ¨œÄ9š+Q½Q+ÚYÁD,ˆ,=3¨:.ñ2…Ù%*ÂÐ’'ý—•3uŠba]LýDÃgLj)†÷û›÷û¡nãˆ~pÖŒñ¼ÆÕÊZ¯à›­Å´V{|Ø«.ý] -ɪ’ ™ê鸞š™­STJ^ØGõòÐðéÜó¹Øù´ÖjžŽ§re¨i+¼“¥Ö:&¾ë5 žÃÂH‹¤{QäGµÇÑ5ÙÖiâ»®}sÉtmÜó ¢/ÕT(ÊÇÑÚ•æŸÿ~&¾A²üI·Es2j ¬—0ºÆ «^²üÈeÇ–ym†1ɺP*®ã·b;dÌLËÁäeÕʪÁ¨#=v ¬}%ÎÌ.ȶêZèh«ê?Œ”&Þiø§*%dÃU/´97$nÉE׳ó{¹Ü.÷‡Ê Éád1À(?›¾•ø9ÃG;cŒÖìÅÞŒT[ ë¤{ï^ {îºè^ {¤=¡j=œC#º"^²ªBf`ÜõÍè#Ÿ£2,âX{ÿ·MÃÙÖpyî𳌴éuf×½¤~vu‚ð (c­tžýü‚³UŽ ÊiVN§XõžG––eX§¢RªËÒ™K¬W_nÒY»ð ¤ÌuÌv¨ëÊaçO††äÑVºi’ºGøbtÓ—x ûÝVVñ•—ù5VP³cMñ0ÎÈuÏPc‰ºZEÀ`EÙ‰CoÚ£;Cƒ|ÁõÉÐ@È)l¨ éìkK¾€¹{±s°g°d„S|¦æ‚‹bÔ jKƌĺµ”d‡Ã*¦ä(jž‰u¼dxkd8å²YwQÕaX QyØdyø¼J§áB,‘õØ,Ô-ÔÜ.ïW;pˬU\sŽq7’òÑò¤å®Ãª;4ˆ[FÏâýÞØ ¾-Õ-LìÔÚw«ÅN.ÎðèŸE5i|—+^ÿÍÀŽ¿¸S¯x Uwž;îºè^ {îºHçøüÔsýÂpùgCÌC¨H/°„îßÄa‹:%ݯ꣤hyçx³oÐÏÊè}82(B¥ø)C:wýL3ÊxÞjt¯hh„¿â4ç Ø“}p ;ú}ôTgu¿;#ì¿ãƱ “‚U1.hÖD•W°UcfÊk¸O Þ qbû+(œo\›äÖc®-òé`ð ÿ¾»ŒÚYýþ…‹˜<™gØG²rÿFE¨çÊ©÷‡(ÐC£C`‡;~24\nôDÞïŒ ª ÕéûǽÍ{)¯z.Ámà÷¢Ê„†4ÍmY¤šÙD2yÜ{âv[Í(h¼¢ŠEDõ9Ìo‚‡P{³¤eS5âYAåúâÑRM/ó‰\Ñä$äS.Yݤ,ÏYZ½ORÛ,þ´Tz§ž¾ê ¨ÃØ)öWá%ù¼CtNK¶½VDßÖ‘!þí g½ðƒCqH=ñÛýávHט]¬É™jN¼CÐÿvÜ7„ºý_ aÄÕãYc­Ž‹Ñ]®à¾æJï^ {îºè^ {4Ï9Vì4Qï ªïx*äß¡#‡¥Õ‡'+îÜû#Ãxbøèøé™qñ'îÕ‘B¿†wÌR{NÙ|²“òˆ«Ìè:±ö•>82èo¿ß Êˮʞ_?7hdjü'¾\Ó{@•™ß ´É—Ñ’`³ï©vÌ-(§¬qб–o¥¿,NÄ5jT,rU¡FZ¿«*‚Ccª ö'âz4)¿/žd?£ž½3_Œ gûÚ®ÒóõÈdŠH°ŽÙgòȱ®’ý•zvª”@¤+ÅXÙÊé¶o™9=WÎŒmâ£p›Ï®Cõ9‚ùp!kϸРGÑs\¨ø-¼k½u š•…óy­>!10. ëVPUæ:Ʀ Ïyeh©¬€µò<ÕmòÚ”ÇwNÈ›#CèL¹¶‹¢1£cªK±×µËUÄ&bAÈ Ç®@SNñyÔç„ ØþØÀõÙîØ µ\÷P›•]J*ŸÈ€w/н@÷Ý t/н€îúvÏóY6ŸÏª·¿5°’“6ŸÚßâ^V&wê0¨ÃZv^ülã Ãí¹AùVUf^íB…Mê6Rugö-žš¯2#*V¥ô›Ç¬ˆ:+Y¿Âû*_àÕ‰ŠG);̾ª··uT¼ƒ×Õ£"Ï;Í:åpý:™*#¿p×Ší ¦´ÀqÿpÎá¢Í3ç¥Ñ•¦ÏáI|9aûºvåpksðj0Ýy²XÄ|&pcç ûÄxnH6ÊWkp¹ªctÖÓîÉ °SQ‘R±–£§Ç‰5>óÈ)+îç•~`•µ—}õ%ÕѶ âYÐsñµDÉœ@«N­¢¨ˆ(³b%V³ T•@9¶ìkãΤ°ÆUÄqµ ’3–ùeî7 ·Éj7Yõä|Æ'ë Þo7÷“­ÓÓW#Æ8~FØÛкÆæzÆðE×ZP¤”#Lн@÷Ý t/н@÷ú–›¶2—F_˜N+‘±²ë×éFyUý{ŽÔiź»TéW8¨¹œfˆ²´Q¯åžÈPǹ滱!å­JzOÙ¥3=æc#TåŽù/y¬VÆphC”m¯½T…wò bHKggêq *,ªâì‚TÍ­ìp)#±²x n‚Ðí¢ ¸ªyë ~ d5nôG‘ÝV‡»gÆß»ÿÚ09v ïö Ÿò°š·]ô«:;Ú4hÏ0UÞŽcC­U òKÍŠWs± ,ÓœÃØù$EÂÒm‘+¾Ë©•¾/TMí¹¼Ù5ü4ľÎ{¼Ý´Òô"ÓþMló³N‰ìÃÒ*Ã:zúdlX™ÕloeÏ.¼” שÙ[2Å黯gÆNØŠï[ðàÔ ]é‚L÷¨oDaì[ t­mØymÐþPßuõcÃÙ84¤ýÿ–uŠüP—üÁ—BV@¨ƒ%^_õÝ t/н@÷Ý t/ «xÖŽãÈÎqÍ“³'†ÌqêÚñ~ÆIÚ‚¬à¸ÝÂk¨c‚Ë^gEÍñ¤ˆ]ÏŒ<ù®ñP!³öôhl¨Õ›«ÕkRK)ß›ÎhªG­ý_+?×J³ÌÓëYªÇQEçNêå)zs‘ž1¤ZÙµl Æ"¾ä¶îâÜzîcMüÌnÞˆ¡y]¾c¼3H){|æpÛþó¾áæph]QGâúÖVÄýäYÈm˜¬=m²âi¬}Õ3…2K²Kà¡2³½Ì»%[J6BƲJO_D‡¹kßó1ùñ™aIX«ÞöÝ t/н@÷Ý t/ðôõ¦ú‰ÑÙtnˆ|\¤$æk»üÊÀüæ¦óQzjq–§õ‹ªÎ™ij2çEôM`luÑY8þUΨÄ?¦ÚÑ¢%­÷GNÍc Ôé^Y¹´Õk9Á…¹WUWj$¸¦“»âyŽÓ·—oèÚÏö*V¨´xüsTË:ͳ*‰OXÏ4ü‹}£|Ÿþöak¿3Ðf*J£,ØÍ84œ=Û4$>z7dÉÕ!x; ?}±iˆoùãµÃ+~Ø3» lþ°7#<‹ª=aÃFÃÅ¡!ì¼*ú8þŒ-¬ôyUïTé_b¢p)“e‚«>8 ÉpNVÃÊÂìpÆ+¨> wÏ I3QÖØ§9çXDK/UÌyÿ–ûÃÝÖpkk3~aXÈäjîp­ vÍØ–LkXÎÊ»R?“«Œ aí"–â!$cõkŠQÕ‹i ÿj¸pW01f`×ñô“A50aÛ ÷õ¤+j=Iã Ê›YóHOÜ=‹T&•fä }g´Ý t/н@÷Ý t/P{ÿSå!»`pê¼~94Dïƒ,•,ÉvlÚ‚ú#N aÏO SÝ£ÇUd‚t*ŸkؘÉBÝTRTÑs/=à©;>tŸs^Õ“rD« ÂVÊS£dÇR¼¹Ý)à õ@­ý8ë™'%3mþ…#uÁCmSõ·£À()—‘r ¤¿¿‹»†Ú…t±5\äRL 0ô2ZõîçCƒòÎ?m o?>l‡†ŸŸd‹ÄV!FÁˆÃxŸàÓ'mÃ0„ßô+–?°®©Æ8)Å ¿ÌZŒé42Ì&—øIÍ'5IÄ ¢^±©¤ÁÊzKF{üùÆžªt6=N º1ŒETÐñvÇ0þ—¡îmÒú˜ƒú¡Aùú…\gé«Iµ'«²I'nå7™ùåN‰UÜÑF̘…O•!ôäè(¹ozÕäÓ™÷Ï×n$õÞJíTvžŸð_YòËï ±';ŠlµÛÒÌ£ø¸Š†Ê¹œÉŠæñj êf»è^ {îºè^ ªæ±ÿyT¬˜æ³N¯>'ÿhÐŒ}³k¸Ü¨´˜æ {¸3‰ÇyRf󕉩¬Îðš&ž Îæµó¥hŽoöVPëQK =Z\æv­H”>utŽ·cÃÅ_††] ÝÅ8®'ô‘Ѻž˜èpUѧzW~ûó ×»†i]ø;wáF î(쉳‹+Ú£,°êBß½2Œ¿7üüÚ\içÝï˜wŽNÖ»+*o•8ÖŸIOªëš)ÊÝž`Ä—4O|E,ÔFbddÿãókõŒÞÅ84œØH–i=ù>±„QgS¬b“õ~Ú bÒ{{´iæCÏöÆ_½2<¼6üô ,¼®JìŽêè¼Û5TŽÁ…ü/c¼Ì•WþMM~“Z3¨LHûRÔH×]M² ä¯(7©K z@5¸°ºq/µ:4õ¸ÍܘoÏ µ‘•عgplPüV3a²N¾‹.œÛ±›åœTL,¢Ž³_è^ {îºè^ {Ô±¢j«ÐJ6+Œ8o^އfg~|exøÆ@M–T]¦øKAÉ•,ÄÐÑ+,gi…ò¯ÖøªÆ\ÌG•þ ÖLF—7¾7æ›®ÍÇa•‚«ƒ?³ó…1%Zõá3"jä1¢7_ ©Æo¥Ú-)iŠs§x~êT“·’µ{8Õª7͹­’ær£Ò "k‡8¢;ÌsøÇ]džñW†›W·öâyˆ®|ù2ow á <Î / Ñ7Ï{2w ò,±Ö\M†•„Ñ5£ ¸#¨pšøÙ;C&>)ä Uy{ðÌAíZ3¾¿Œ†¾ñzÇpvhPýÞ݉•œ]ߟ~81°>áçñfÓ•´‚w‡Å q!Âÿ½ix85¼94È¢¾;5èu­PéIÉ;„÷WǨ³vÔ<øuÍkƒcESÜtd”Z«|«h«¯”ºÊÔ;OÅùàP-®s>PçÎ޾•Szœ!?¤œâ5iIÀ[¥{—÷ôloÜ/™–Ù‰±:>1\>3°Þu1Lð|eÈÖÎÚȸVBú•Üí¤Ù¤˜RíVÓ_݃ak¸Ú7œlΦµsõGƒ*iUËëq·Àweá ÐSãYk§ CâQ ^6QQÌ~ÕÒ»Zglê䪘…­1õ{VÅ™2Ãt…Jo]½ª÷ãØ kÓÓQ%'r/N7#û@Ÿ>üé³JœÚCÔ¢"£@QÏ£Ésã†jûEÿ8ÛS^ {îºè^ {b/PÏqÔË^ȬIÁ»Q‚×ï.ªõœ¯éæ•Aq¡ÛíРU×é§Ô‰eÚ‹ô,¨©-&%ŸuÑ#_XžjN6lÔ-#7šT¼Ñ Rµ¶i3Kç×B^LìÙŽšuª*oi6:'pº~v‘¬¬ô”­c\îÔQ{©jg ÔdÈi–VAõìÌ:ò¡F£$5ÏYW%i—0ç^ø™?î‚ùʙ߲¸çÄe£¾Ü4¤çîï|74s.þj¸ùÖçkz Ù.Ý‘x˜©*®uÕz†PJÅ Õ¤Ò Yu­qÄy%§*]µF¦µlßx½;\O«›OJ•ºßÛ—›†ïÿÅ=}âuqè3ÉP—´M}¥|Ø3„ÏRÙWe|‚÷”)º;­h[qÓÝÙhü´·ùiâKÌêœQ¥·nUù¥Ú󺓪)ë.jÇò¡u ®íÁV»GWbM«J÷ÜËa‡)ϫݻÑá^;"9Òxz½iˆˆ>*½©¿ÌÇüf»¹™jõUåš•¾Y-Ü2®8ÉhÏdͼ¼äÄjRY`ªÏw/н@÷Ý t/ðÏì’â5‘ÍdþT¿yèó9”ÙznЩóâ™ázh îåÉРŠÓ‹ƒNC…a/XÂêL &;ÏòÌ–Vë­ªHôP'JæÉ<@EÈ•ù̈Õßf>áøth0ç‚£ÒM¨FšI’Ú5º¢È¦u÷íÐpðdlHu’%f•ü‹[Å)uåµj‚î:×R¥FFÜ/+<å5ÍHž'zõ‹ÕÎúx§º“‰Õ„}ˆ41­zç¹áb/LzrhHÌl`ßâ¨VfVpWÃý†îWÌÊ®F¼ÈßùæÈ ý@D¤¢oÍ#ƒ<ˆºÆdսŮ·Ä8‡þ5r)ÐEŽÒ¯ül;4ˆã]Œd±[ó«e´*2õn[n¾Ø4èš#ÞÈújöNÒB.0ºã¹W5ÌRoœú(«e®E´Ó­„3‡D•é¡þW;L­‹è™õŸõþîºè^ {îºHÖI=,…É9–´éã¤é1šŸ×¿7ð|*[¤ùv3Ž U[¬ù”̓Sz œ?d ×Z§e*#ÿídëf÷ÜKâãÆŒ9¼À‚ET¤VÐ1 !îxŽÏI½*mÏÙ86D.V®2zÇÂ\v±5L¶×Ø!Ò“ýflHã&„¤ÜúžÒ³ J¦W<>Û4lÎôô5`Ëã=k©ë9ë¨Fð+¿Ú1LqÕXÎýG) W¸ e£fXö<¼¤ÙÛ8k@¼31NßGêZr´#ò17¯»ל”YÄÒ 6¼ëgCƒ˜œon ûqeh$ßo‡†ûf@¦¾EA¬Âow ‘YVšÿœª#Š6z\›ÇZõúÙsÛƒ,Ãý86ÔÈIeH¨QÖ¥¤G¦‚§f,Iªf¬ŒÌÅW¶‡5†ÆÂ WU;üß_õ1kY­$¡Úcð6[¬›™âÄpN‹W+=üyEE=”›&6Öúç?Œcƒ²ÿÔ$šXæÜ^yuèUÜOsÕ È¡>¹{îºè^ {î˜Q®-Y­2&Ê[ÉZ^BÜñtã«’já.Gƒæ¶rUµ(8BÿeŽo$K¢i¯Ó N‘é)ÖˆtJ-š,ñ,šÁÜ~&hYÔʼ [Dý®#®/}Ú3zFdR-nš™nuÉìö ©~üÒ û ˆÜÝÞÐUÓ«¤›?u£TµMåÁÉ>1ÏœGÎüy¤¬º{ç¤6‚ÏIÚîúÞßd±'eçä¿R X™³Ÿ"® X$Ís½ž¸æ87¨…„=@Ìð úS jð¼RÂ1Õ?Ξm.N‡†ŸŽ6†sÃ÷Ï Q'°3ï ¬yÈûpú½_î~oø¸o¨¹ø¨4~aˆ¿únh¾d0ÆøLH™YìúÖ:+×”ÙSÔ´ÚXò+–ˆkÊö2KK®«Zã9¬ öeÏI?•´oŠêî—¯»â°½‡†È)‡¢ëcNÂÿºïEV43áÏŠHâôP—¥tgô-W{ÃÕÔ«(+ÙdðN„wÐϱ–íj»è^ {îºè^€u ÝÓÔéóŸÕÝ|ýÜúШu_5·LÔ^ÑJÑOó“69TQæ|qÔàÕùÆ\Œ~ËVuTµñý¡× ›¹Ð‘sÞcV¥OQµÊNV3Aÿ@³yÕ`öѾ940’Ú%_®GCT-BƒõoáÀ(>´Ä“¬>£CÜ‹žWä…}æÓ&†íÄøX¹¼b2è»'>v*) ¶ÀÔÁŒ?ªï”½eÜr5 §Fß]syT ÁY[A¬²ÿÊ»]ìÞ?7|¸5<mO_dÏÅí¦Ò@ûÿÖ!µýÕ§_>þÉ|wðÚµ+J‰Š°Ýÿ»Aï æ=ör~âɦÓƒ]9ÉÞ!þÕÔ Qâ’™eAŠÍ^5kô­`]WcS•1~^[ÃÕhHÊ›QåòøªŽŸ’ê ç#c˜ÿ“©>Ä´hõÅ7.¾¸…èSì—Ü:"FdQâîºè^ {îº`/®­®2ª{'ýÁ¢ê˜ØžÅ¶êukRßþqkøùÄ “©,؇qXÝo ¡Öç¹qùr ¦9ÏêJTB.ØXÍgœ^S®‡Ùdr«¬¢dßã¢jÙ00«uŽ‹¨ˆgiÿã) È9£ìy:Si‚YæÂ¾[3n yp¬‚ƒ†´C`Õß X}}s¯ÆR–°²ÿÕod½ba$^°U“”µ E-¨æ+“ ; ‘õ›êç}Δ‹ŸîI5)rñó½G_ôCÙd¡>ÓWtêîUuœK…+Äha¡6øÚñÌðã‘A¶]ºØ{ÙÛÝv´ä;.w ¥¤öÈ£(b&k|Î5—TûM*݉Y³d7xÆ”‚!³{•/š•™èṘu‰Œ_ÑÚG”Clf‘Éõ.’К×órægu{é<È3u9)/dÃÉ•eÌðõÌÎWÆ-0Ý¥³ùäd…T9Àìóù` ,XâôcÿQõd G1?£æCY¼ÀxVj é¦ÏG‡`í|$ŸIé1äA?erµP7_hŽ@u4ö!b¨væŽåʨ‘.UÛªÂ0f¾Ï%t])kÉ} ~~3x}b4Fu ^»X{µddo#çìyîƒÄTï1™Ê/QwÓ®Éë9±³=x16LëÎÉÖøÔÔ‹ç\m .3ÓͨÎÁÎØ ™|÷Ü ñGŸör©kjÒZu@3ª|ïwõÄ Oˆç'jB&+4«ÏL ÿs{÷Ý t/н@÷Ý °÷„WU+*«ý‰5[j9ÇdÙÞmˆ™l—ÏO±Z©ï^¯OQ«óÕÛv¼ms@Z3Šç@µY]9«šìdÉ#×ÜJŒ‚ Ûä®îé»~±W%NÇ+)“j¡Õ65ÎW'†Ëqhˆù£3¦Öxhô8‚?v~RÁv86D¥n(ï<Îþ‡)ý5 ¼a¬fMö‡Úß%ΓíçÈSÇ;Uyˆl¦b#Á{lw4~i-QÇÍ3Cè0b/÷ÓWeÒÅÆMšµxT¯KYפâ¤=¡8={I³®2¢£¢c ßy—eØ‹ö¨ïïéAÖxª½œ×»ÖÑíß úÆÏ O_ ‰g!wµñ~=²º·»Cƒ¼ç8ãÄ/Í¿Jµ¬dÀÞ¯*[¥Q_‹.v/н@÷Ý t/н@Ê~²lZ‰½ ñd‘È¥¬uáÕ€Ê7Éžëoõ3ÿiTU%¨1×_E†E5‡ÿ96$•C¿Ç‹Wh?¬ó¶á|”VTNRÍêJ !ýcÕ×NüºU¡»>/[©í¤ÊF©*G†ˆ¼€^9{bPÕnxUGxå¿›òˆPä QYï‚ûTIK+§S'²lSÌÍ­j*«XbEƘ³ªzÛ¸—Ø7Øq“ÿª‘ºŸ²Ps(_F®uv •ÞÀÔ9H†¡öˆYA•ùäË-$—ؼÉ\‘ÔÉ£ªÖûìÄ/í6_O_9âé»ä’PŒj ÙØAN¨™M"XÖãju/¾*Ý2¿iP DÏNŒz¿úFƒX,T¥|¶#ø ﲘOÝ#)Ê;òìML³^£¯Áׇ찮d¡ ’ãÆË¨jÖç³Â1=éÂÐïÈFEDKüä¾7NZB>’ª¢‘xnˆTp²øZYrÖBkžS}¾{îºè^ {b/P5¬Ó¹I3\|¿¿wÔž²?á)ìvkx»g¸Ù1è™F¥è ƒ²ÆzgÄCœÕ6¢"RÜÖ)O¬kåd«,iå˜7¹8Ý\œ3pÒÐ$›tQ„¤ÎEµQœ]©š±ö‚±‚‹Ln…w‹z‚S„gþêÖw1«Úà‘'FW£«¼X<×Ê1ô³Ô~ŸÊ»›"-ì9\˲r1ÿžò°¥ 7Í.Žd,•*Ùñ ]­jæI ¨ô Ö˜Xê™*†‰‡Í«wÇv™ÕS|²ÿ°iÓÝyüG»…WCÃåþØö>EŨqÞgã6G¥.þîøÓØš›¡ab'›ŸþÄa2«ŸOL’ΆçˆZnéãˆU[j¡OnuU㕨P­½¢ RVúÈû=gN¸ßî§8ŒVh({–¾Ô°~1¶³ç¥·å~’6ír¿ ïÔªj^Vœúܦ²jÄÆ¹F|ôBßGz4J »õ#ïtÌ pÐíìÏXeÉSéÕèØ|¬è¥9œ<ª1vİû³ë^ {îºè^ {tÒÙŸÓÔ©Ve-0vŒnù84ÜíÞítÍ—O¯¸=4¤n !NÁÞ•“…ó¾Nm¨weEÖÂÊ"+/»Š¨zõ_” kUdbÏ(yÉä}5"‹Btˆø*Kš’þ·ê /©•â§±FOçqý¼pÍ¥ëŸQšãC½GÍÞ´^Ø›FûYºæ©Ýɹ¾›õ¨d«<ü|¾ÂÚÚZËó2kAKæw LtÉóÜ]j˜'¾2gޏMñ\¥>9E·ðyÿ°~ÿfx:ކOïDSÜ,FYéS\Qõ©2y~ÿô üÊÃÓyí¨GiÒçû5+šW‚¬®œÜÈuå†ïÝV¤ÔkDCGUÄ|x’ÅÞ}[3Gœ¬Üå©AgFnÅÝǧ W䳦î3³É¡Í*Í&Ä£{KÞg…Ï䇣¡Aœá=åüú¥ÌÅÙ{½>¾Ü4L~GLјáðÚ™ün4¼¢/Uþ¥Ø=Î eÿŸmºè^ {îºè^@j}Ìë±æ*æ<£T-$Û€@`÷) ?ì¢U¡Î„ ¾Å‹¨¯—î"Ô=æÎ÷ȸ…ÖÉãÊÏ´¦¨vQÁVª9‡sŸ~Ñž+>‚ç¸ Ìü¤òé–íîÔ î’}bÞö¹ñ(ž O†²Cs<£âN /dxC ð/_Àèúõ¯Øj²Š±óe¡j”Ü×ew‘2t5×\,ö;Y‰ò¥Xôå“®¨>±£¤:¯!†=\Ui) Q;·‡¢Œc·cܦyÈê*s8À#–ÓdÊ“­ÎùʹSlªFµjé\Klç©KN½‡s¤åíh˜¼Ã¬Íôa×vzššWâÁ»xbàˆMsÕüËE3þÛÐÖ¹;2è·²ºŠ&ë#*ôŽ$}ÁPõˆPÄ gN¶Ôí¥n2UÉêí áe0‡#¢‚jmeºãÚ|ü¯ O'¢¹§{ŸÕcýg©—z¶Z¥ˆîEñ¨ˆ~cG‘ªvi¯´Š¿0LuÂêõ§ þÃß ×ãØ oï^ {îºè^ {¤ÍÓ=syRuÔ÷²'¨dN™yŒì°#ÎbŽûCÃí¾A§ÅÑñ°kˆÓò‘éPvýéûô¬{žt´yÈT¦•¨NQ£^8­×^ªj‘ž<ÆB§þˆ´ø¬¸:7LQš™ Bžs:}‡_@ÏË qvÙ”‘Œî~tºÑB†ÍQmV\e`:ñé•~±”U_ñщ̱߯xšÚ¥0/\2Ú:ï§Ì ;K,þÕ<5c,kѰªÆ¢ Ìø[žÝä}ŒKáiÀ-TÈe+à_"~Ù@ÿXÌIÕ%^cä*¿64Ôzƒšüµ®Öÿ*xã½>ùÞ¤*“m9;Ý4¨Ëiªåöœ5øÀu7ÝÎ86è»Ä™vÜÞð$îñl;4ˆ=&l©jìa 7ª*SEo"ºFBŽwÇc«˜ån„,–?Õ{&Uw°D¢‹ìô¤êîŒþ>ÿ–›íp³ØÙÎØ@Ï8UJÏ~9¢[z.¨±IœàÇ‹8ÕáŒÄ‚½Þ©FïýþæýäO»è^ {îºè^ E9fî£ÖCrS-128Èe„ÅðŸeg¤²ýfß0Z£ôĤêù ±à&eçQãÎgj=µtžE–6êZ᳘Ӥ cÍ¢ÖêÇdª]ª?¾âÜ}?g“Ó©œuzÌ‚¥–Uj:Ÿê¼üƒ#UÀ2.áÑ?}£8¢Ôú“A¿XŒü ƒVаaÜT9’ <ÌÐ+©ŒjÔ ªšãÔ7g¶·ú ÊGM}²ÌU¼µî3}‚ôCqý7 ?»ãq<6Ùwc$Hê?ÛÑÀØŽG‡Ô¦8áTE`|eR±Ñûc> ⡪ŒP퉨¯ÍÈŒ{uדE‚õˆšg&›C5Ÿ²$w ãë¡áns·?u$©MŸã?Ç^Nk ܆²NŠIW=¸×ï£Ô5«†äâÜ@ÆuE’…÷O¾nNçsGÛÆY`=‘`\Q¿›áýh¨µ.ãÖ0±Ø9XË^T鼈±-Õ™È ±–[{6­)zÔ ßR¯kÑ®ZS_eøâ7CCú[¬…îºè^ {îº`l§ê§0ÿÈÚQÖÚEO‡X‘ QtvxÜC^@óùrkƒ–8%>8äRÝ Ö‚²N~6|øµ¡*¼¤žñÒU«lBaH¨~0õe3SSôM"«˜r‘¬þ*z”ìüŠ>tŸíS„Á*fv ‰}îkƒÎìÉêsà“gd¥ú8ê9²§‰sƒ÷8›/ä…]Y°·èž[`„`ïX$"gú…w’‰~sAg5Œsí¡ôþ•‘j”›ãkÄÙBÞ=3Ô=IbÀ N9Û1Ù½½±ávÜÜŽ =qÕàŒžº½æø 5b¬bxR·çŒW(¤àÕo¶†ñ¹Ãë:båFw›0{¥`Šs뤵_¹ß¿ÿÆ k è“"ŸÁ<éõ$Ü]DU¹~ö]PÔ–»öú…#8èÀ†=UPËóºf •Lý=7t¼4È D †ºÀô„ #_ðéy|{¡WT#©ÚWõˆËÏ}uŠºs¿ÁYퟖ8êkOkÙÑ1ZÛ½@÷Ý t/н@÷ky®ÈWæRQ™jJ¡ô=Î\}˜±ãKƒ”¸pütdÐ;‡>ë8Sý\q'±à¬Ä~«°NÔ® v*é¬ç=ïÉÎ(Û‚xWœpKD"ëtKËc>óò´^µHF±½ÌßMµ|¶~ƒ½M\µÒ›ð.þ èÉÜ¿´º¨÷[«kå~ Î‘·bŒ…V¨èé¤n;e·¡]^5cJÖ~Ñz%G¿Á«ã¹ Äøs¦úvðzÅŠ+¹à´NùŠæù¾âbo¸øœ±]àÖVO(æåÿ •GäÇáf*ÅÁf8Øä×ÙÙN‰ôºb8þŒ9‰™é¹éË]Ãä üÚ<ÛþþÙÐ ;ùã¾Aw¡LqØLÿäÝ4\ÝÄ@]ˤQ [w·cÐ]‡ •øçÁä3ʽRÔ‘ªÂóÜ ¾Ë¤û‰^¿”¿–‹:Ú|ý¾ùÒpñ»Mƒ~›8[ôWn1îw —{ƒÁà˜-©–‹>MíÊR}Žæ»wuÍnýÒ¾”ypêøx=ÕZ“¾ôv/н@÷Ý t/н@Š«~°¤ºŽØE¬_Ñu¦U¶®ÚI¤ˆÇí‘A|³ÊEôão†IÙÍÏûв|s>4\¾Ø4¤Ó=j«¢_‰~ÄÿÑ.ôs•ÈØãô?È £6¯¼¿v?¥,ªæ'™ÜÒú£.ÓëÆªœQþ~šÉ¦K½Ôc¥o¤’#tê£þP÷‚{LVšgÕªbOËÿ‹ÜÝUÛq•G‚Ýô•i'úÊm²ÀQüHêR$Sú+óé+õ®ª”ÖÚcU53LQ…Ð$wtd½=€#f<µðªš9Î)që¨9Y­Sóé¡·î^€Œ‚)Nb¿þ/gãÁûÃMÃxnø°5KùjÏ ¿ófoófb‰¿6(F”z1—:>4(_ê“ê·«9뜕…—¢ 3¤Áúî½]ÒdŸ²ÞsôUþNû+U­<‡†à²› ××Âî¥Z`ôH&ŽJì–“Ö¾q!îx %8?S”Õ 5žÉùÖ½@÷Ý t/н@÷UŸ‘õK)'HíÅºŽ˜}`>‘ýSÌ beEÖ)úÅüçšãgßnBŸë]'¯ƒ»MCUëfwUòMZ:ì«V½f Gª§~òW@i‚öœ¹Î¶ qo Ìì¨×þêÈ õ+fÝ)*v2é_xGR:ë©I¤h&«[¹°Rõ²Nu%þ½ZgËΩ—( é罂¸x﫪է+Z0k\uÖnÁÕ+©×ɬqÍhC÷\,²±i4Ô©„ü/mNp3š¡H}qÙ¥hÝ94ˆáD5®áׂWa®pXð¶ØÉ„g$¯Âo “Uôl¯êHYëîcõîOCÃíh`åspGσsw8Ïvd´wghw¤Ž¼‹¿ zdœ¥¥>P¬£ˆÒÛˆ9Ç+§|‚zë¿ýáÐ }®ÄS¡9ëÁdž"n±»è^ {îºè^ ñ­!*"îâèùbîo!F,¤¢.ê*PWÿWCx10ÈM³èóÍ\AÁh¡ø"&Œñy{nNk²¨²ŸbuóQ:Â<þæ{î[>œÄqA{£í»µˆÆ Zž5ÀÑû ­Ì¼ûò‘žoRõå>CŒƒñ¸Ç¨}¬Ý t/н@÷Ý t/N”ºϰ,œµY1Xº‡’ dœ¶ÕÅ(ñ^’þH±áÑÿ.{§…¾~f´¹šøí¨d¼(V´j ˽¬e?Óª/Q>ñ…H<×Á©ÃóVÊ_m 77†Ûƒj Épv´iЉU?×st¬‚¨_…ÆÖÌl󤮨Ì:2õ¨b_K«Ë+©ªôõ=´+ŸØðÐÛ•<)í¼>£¨²¦qˆ÷ý 3³…µ¸ö¦UæÙ[ê9ÖˆÖåh¨ ›añþÕÚƒô-¿ Èü¦÷{VôiÛε½É®áÝ—†‰×Nýeˆ †]r{¼.^¸ÈÌn‡ƒíç XhÍøoU𨛙‡U¤Å+¸ö£,ÖšÛ½è‰3«’úæLì~óvÞ~®_åÓD½¨XàvglÇýV•®Š˜I3W×Lwä~ÑžV•°*ìêtÍ@ÅÅy¨šyÅ c$Eåv͘WàŸLýhê]-óDŸß½@÷Ý t/н@÷ qžíȪ$˜¾ËÏz1¨êŒSOa{XP!xtÙÈ¢€õ®óÔ¹ˆª{²ý`E%¸©W{”Šw•·5…wÙ E-߀¼;4ÜÞž¤ÂIÍõÄ£«N"Äß¿4œ½2$-Ë’¯d?{ðHЃûFM/L†Iáî1oö‚ÇD¾>US²zØâIjвLe~K÷^;ÚŠºhÄa8WÙ›FÆéØuÌÜε×,²uu?QÏ=1!@Ý)*~U«IæÙÃBõ¬ê•%õ»%׈ÿ«!ÖÚ‘!ñTüih˜ô ?iÐþ„ÙùTwuÝso£øñȨбä`ᾂþëQ—IÿÕÎÓ*žc ê¦$ϳ>yüzhÐhGG¤¦òÚW;Cƒ4"?í ×ûcÃÄ\í~\š›nå"c‹Š—Tõ½eÔè¢GLw5®Ï†íÓ.Ú?íÍ Y  -ó•÷UÙ[%õ‡ML}B÷Ý t/н@÷Ý ÐJG¶}sê Þ+ÁÕ°ócE7<Õ¶ÕS*NÇÓ™QYic¦ &dp^%]¼ªŒ£Ù+l¬ôUíøÂ–\»­Ó©Ÿj2ô,Œ••ÊXæ‰êQS® \²x˜Sw‰êÊè¯aoãäø|lHõ±ž½Š§ïó3N¯²]χ†ƒçcÃÎéРʴˆ¨8[WŠ­XéTïGž:äÁY‰§Ú’]ˆ2•¨ =ZDÃj•,sÙðà¿ÌD—^ç<¡ï#+=r‰bMìÍËê®ü´ÔmÇzi\íÄœ€Ý‹÷&–EtZñyIyðnÜÜÁù0ždñ’©fâ3aÙpåa<þ0yy©^QQ tÉ…ò)¸¬É½<ù5D9ö êN:SÔiMÏ £èÇŒ¯Ö.ÊM©V»¦èUÆÜ•³X+{:’Ž4[hWCÛ×*=¦Y껋]×T¬ú^Ú–º¬«Õѽ@÷Ý t/н@÷S~áq·utd ›òÏ il™…,YÑÅêüˆŽÚÛ¢N|fdªvL=‹M5¨jó­d“C—PUOd­#‰Ìlµ§©þcG%V–ô=¥š'ÝIÚ1r 3£g$>^ï¹ü¯±áé Iù½°É…‚žk_jN>ýbcðSvÊ=‘¥™yÒÊ[Um&¢:Œ•*Ó”ÓOßE‰GaœzÓ*ÿÙ€éñ+ç^Q)­¼pɆ×o/ß2ýìšJñ³WE"U”/ǭ͉'y¾Õj†ýa8ûÒý˜þÉ?¾6¼;7Üo‡ûmðßì7SVúê÷cCf]CåÀ¹Ã_Wר‡ƒò¤Ç']ùÃáæab®‡Ÿ~ð6'ìÊŒtMœlf«Åb‘X FÃg"Çé·‰Û¡0±\Ž 1ÂäãÍÅ‘!ÅHÅÂáï—…6oäpCCS[8u¢•:ùø4p৺èZAÞØRщqõ¢c•¸n°Êºè^ {îºè^€ hTUKibYÔªÐÍû’¨J¼#Ìü5Fâé4íüºèâ‰H‘Ç74Ó®FCêiJ Ïs.oé®öq”ƒücîâÕ5Ý;¹ÂJN<©F"W•òæ|¥.—µ—Ò"O}Xþ[qw«š4³Xž.YZ±Ôâ.ž6¯ ;'í8?L9;¥ÌÄq=ÏÊØ\Oâÿ £°¬…š³^àâ(ñº&“Ê6†Ú˜º™háõ|Õ-¨ñ×Ï•·¼x12¯qzDE„Ïÿ»£MCÔ"GÁœœ´Åç¨HÔRÂë…5óèùô¤>ndžŸ†E_e¯4&7ãØê-boó¿’®â·XàÆ¡³=v˜ç©É§Ý‹ßibóÃÞ/UóúÚX1#¢Ž«O†èÄtmJinª+óéo7 ©›Lq*u·±ž?›Ç‹¡a­ö@ÚOâÍSe{ìŸÝ»M\Ü6ªò\TOóªF~J5ý–ÿj^vCu ØÇJíôøù¦AŸÙ½@÷Ý t/н@÷µë*²!Û¡!©"F×à˜-måXã+KÙŸÈ •¾ªˆíÌLSª“|ÛžCïõ‘áÞ$¼ÇÚ¡“8ëB¿ÌÉÐe£• Kõ~µJO‡ìyÌ­³èܱ*|t‰«™ª.¥N5ÆYJ@dæõ“ý[:ãZêL‘‡Òi´ªÛc•gyïÍœ ä=^èÃFD±²sÐãTVj°ÿ¥ZÖš#®Ün+ýh ™\V'V¾‹á©+¥žÄ×v ñž½Ro€ñQ,E×632€Î‚XGŠ*øzO’•αVûݤ&südl˜ >]QE=P¡’ià]?ß9c‹]âÕ_††Ô¡)«è»©Ij-'å&ì…B§©h²³v4¼"$oÆ¡AŠ«Ò¬¿Þ®÷V3ó›*Z‹‚êĶêîÒkI¶ õÄi/Ó³áQ_*÷ ‰I†ŠK…óœYïiCå@#£^0VŒ¬±âpž7w”ØQºè^ {îºè^ u7k|´Buö„ öÕ‹MC®¤¾ddâÓPcV«éÍÔ‰ï~ÔÙ²U&´T™Y³r+¬Âu”ÒSP7øÊØ­–þU޲©˜¸­Í@ÝæÄ! ÕÎÍz=e±SEOÐ'F92—GrV”ƒR_L&·ÙùëgCÛ»±!q[UÖåÒÉ^óÚ)šWÖWí–Z`±ã_UݰšÇ“p5k¿¢™jÈ<€}EåZY¨PåŒå\ÒÚñî¡ÔïS"Š)õ+¹8ôþñÄ {{°7C·u= ²o·†àxQLÆ+QÏ„=ƒâ~bŠSˆwׇ†`{c'&{74p½×hgêUÆÿÐ:’²¢êªû³!tQC®Oxp(‡;Å¢‡ÏÈšž^ëw‘ô¡`µRÅiÙ‡$N~·ÝuÏ«ø½OÕ£¯õùñ ôM%ŽšbJœEŒ‡s=¢Î„ó¼{îºè^ {î¸pËÙ<¦“ç ™íMUŽ…W-i¬)›”õ®P¯zh¬+ƒ£K_+¸ *SV:¹×è g³ÕE}¦2N¬êÖO&ãqÕš¬1(ô³7x¨êh¯©«¤ ²×òÛ°r‹Šÿ”zΩïÞg©¯»š¡ã™úú×vè,hM–ØÔ‚KÑ—L÷XßO=J²±ÕÓÕÚæÚ]¬œØŒS!+—âŠàÜX`Ï+l;Ïx¿xÏvž¢ õÕÛFSvU³HÏ]1Ž0Œc6z4&Øä¬B5tUBIÙn§¸®ÁŸæŸ eù1'€'äãó¡aRr™chO74LŒnÉQ:u˜Jmsžÿ=4ÿØátGªG%Ó;¹â3óòÔ»#eÆ#·kˆn;0¼%1º9ïüÊ0ͺ™ã:u2FKè^#v•±“–MÖ{fÛË®xZìæã239x„ºè^ {îºø'ö‘=dPöD¶Hg%d!ãA(ÂÀo¬zëšÕêƒzBÕÚŽ9 ÝmÆ‹dÁ¤Ý@åñÄÝÄÈLåN5Ù+Ÿ}Çš–bæ@ˆUÁp‰¤èVaK‘:îjÞªÔæå¨ úÈ*G\펯ª¦…»oAï¦Xþ´ ¨M¯q®UÁG£¡Ö¯–w¦<{áÉ|s\´2àŒ¥ýæƒtg¨Š«ÌÙêdÓÈ„p±;4<ŒFoBõéÐvèiåÎà§qQùFxýŒ‹ª®2ª[U‘â~*ñÈEnWþb¶²N×[ÃB;ìƒjJ#]Ý´âh«ÑÍñ%®}Ôi§H&‘ÒN€ó ßö¶ÄQ«:RR. Yµµê½v/н@÷Ý t/нÀG3“âÃlùi!Óy‡U^Eá=U:a6rVÜ —'cCœÑH![«òê¹O'uu•¯ìS™TxþA®™‘™¢TßâÊ ½ä‚ºu<ÇvfÙâÄÍ~v$/°QYò"¥£.óPÛÕ^¥þzœšÓ{ ©½ ÉR|ôBž”Ñ<¾ÂYX׈.ÄŽª·*¶t!–X”L2à•q®°dÐ׬¾³V´F•¬Ÿâ‰blÐÿïò†S÷™wÝYÜxy44PI‡ª÷©@53‘à'«²TÚ1·ÿ×@6ƒ´—Œâ*dWß™Ïð»=CÔNP¿Æ¡¼j°dk/D-•ðþNuc""H¬HyíØ¢F]ã$M×p¿<Ü4\X‘üdÕa+.ƱA:5Sý¼÷]ŠÍ[Q)ýì;gEê*?LRóáùàjÖ!#Vg~í¬äü\Ø!—Y×½@÷Ý t/н@÷<ûÄóÂi%ÙFÌ@å_¦³ÇyR~#õëu–¬5„Ì"%v8œ‘“^[ñ2u}¥îpG'¯¡zÔxeÎפë‰*¬aô¬'/&@Ó¤do³ñÞyL·Õw»©û1ª}s¾"®¾Û4löƆè”Ù®_t¶Mv2©Ï³Eº–¶=}â©öàÉp0e¾ô¬¥ È<ÔÔãƒúÒú,XÃVyVffê©)| «J@åÔ̘RŠ·ÐþG瑯h±d°F—ñ´zâFÇY~î>J.¾j\&NÅšw–?UG˜x ÏåÖÀUŒmš]¥¦:ñþ‘Ñ®TÃR#rêÕ>cb±3›‘ù,økîÄôžŸŽ ìÙ¼{a¸Ø7<=ªž;ëÕ¹#ëÅΡ!òί T~_¨@އt¤ø¹u¹ÖèÚs NRwŠUï9quØ¥ÑS-ë86¤owÍqYŸonGCb OÙK$'Ö þŠ«l9篵eõu/н@÷Ý t/н@ê×€nBät"k,Æ€9¯z½76­2 Ö³sZGÈr¯js”j·è&ƒ_Hµ£…¸Ö…¦3lå+‹±uËKoxŒP‚xìjКúÛB~§ô==|¤|Øã9oMP{bæy–$l)3Ý¡Àî½íÈJóÚÆ}»ùø¤ÈÖ»ÖÇëIQµší*ÕšÃ]‹/Å'³žã+a œÒ•9$q¤»×®5µrçúØ#!/ɈÙBŒ1=ú õ ††bDT´Ñ\ú£AÚ1ŒÃÜCC°C€‰úòOcÕgxß‹g`eÙ¬œ|èÌqW9ÉËÇȉ µÇÛ­áá+Ãä¯éÅ°× &ENÆÏÐÜÓnžm e5M¶Büu¨öÔ+¬KWݬ¦ºÏÍ8ܘÏfœ RTÖ?ÿÂ!¿ åÊ»íÐ<#x2Y­Uµ¬É^ѪS“¨®£º÷¨±Ðîºè^ {îºp/)þS·ˆÎw³š$Ïû¡˜NRè‡%IºóÐp¡Ý‹9,f¤¢AÃ;õŒ—zÂ5FÍRÕ\-03{Ži­®É“ —  ¬yÌR™øÖØã¸ß1ðnÇ¡árßá9¬‰Ìá5œÇG†CS<cጌˆ½Æ—Í éeÔ(U~jîB~™V4´„äÇûe&‡”c…^=×<2¯pÕ*Ëö®h¥ âIÓS@Õ_­ü¬•~Áò¡SÿšÎ©À›W†ØiøsÔŒºzbÍ—íRÞsç…C߈êßð¡í"íøY§‰Ü#œ-É#È2#bÃÙÕŰiÁïñ*o²ÿK½T²ÌªS [\Ù®›Ã:ö¢]Ú0¼ÿÚ0]ƒß‘LvJ°ü‘7O<6ðkŇä½Ë–z \Ÿv°?ì/¨ö¤¬=^Ovo…›eGòìœÔêç¿í^ {îºè^ {ȺBÊyÅÏsågÍxF¾¦*ƒœáè²?~=6Èæp†Ä©“5œŒZĘŒ U‡‚zÜ ŠÞ)/Œ4­•¼ÞlJ ËË ÜS³RÞBF¸žñË·H“:*ñü¼œ"<ŽÛï†é?.œ¾Õ5¿·9Û‹3iòæP¦æ\MžZ}7Ê Ò+I€3d‡¨•9Ú‚Q?ÙÀµìp÷Ý t/н@÷ÿô^€¹Ñt×ÔäJ‡ Ièe‡¿ðÈzΪ&)k£Ê·rFNñf9‹x2*ñŒÌð^Öô kŸW­¿JáÒï_;•ªŠ:3éU§2NÙdÉCN-3rƒq+¢">Í0>dôŠùÆz6Žy±¥Ç_î¾5¨?èxolŠÇ‡¯7 âú»ûÂÿØÃUªS^¾2`àÄšæ[Íà×úšU×swveæ£ÓxRe¾fèÈXXê`©’SGráªø gò ·ÆÝ—2 O;Ÿ™eWòó3}¥¢@Sÿ—ͺ÷§†Ñ’› úPqUº_ÙÔ‘NLk>ëðsRlÑŠödÌsÌÏÄ϶½ø­lzÇëËìvVc™j’ƒuÁ£Fʥ≜òSö Se¸«Ù*†:؉ÍÞÚ‘¬`ñï½Çù¯Pº<>¾0œí Ç»ùÝË‚õ€~Mº¯Â]Ã]k\‰&jáåX¨…@äŠ;çîºè^ {îºH:ä‚HöA"_•‡cäþ0ÇjòÚGW”zÉÕ/ÆJNØÞÊúú•­O!Õȱ:T³K¯9¶¢J¹fXôò£_Ìï:¶ÊÙp!XxÆDW·}íH#>é×#7'_Ä.÷ƆèUÇ\J^¾€–-)ëO=ždOT,’»›MÃÃÖ ÝÏš«Z»÷…>÷ÒÛÅ[ùÜ2ªÕ¢2“®!EQ³º¦2ÃN±Â•—Îì+Ö~UeF~ªØ¨ˆº¬°XW5R}Ú‡o‡* Ål‘"ö²ÒÌ8§:[½e–©®Õâ1~æàŒÒZcÏ)2ÔQsþÍØP«Fc–Eu™åžîŒ ¿âZVæ]œÌâÆÊŠXPµœn[ÈG!oyzÒx"úüÈϚǣ#0iÍ{E®G{èG¦)ÿÌû Æy°?Y°®µ¿ÌÏ´²¨RZ;I}¬ºè^ {îºè^€UIœÉÊZ¦U¾âÊ÷«gWøÖ˜µ V„C™Š“†;âQI/ž¹`Äg4AØ©¤uÄÊ·èÇJ_énË}s§IüvEq2¬¶¥sêû]CTÁE>nC½_šÝÒ%O‘ uÁÃJTƪ¨ªuÜœô]Á'ìk‡RŒbúÒß*·øó¯ —7†÷{†«#ÂOEíjùE‰Ê‹µe®jï+e5ƒ¼ÙYFŠF– r®Ó3Ɖ¤Q¸¦ƒS¹Íãú d!s­™nˆg§çKŽ>\ÛxjˆYáQ‘èòÃ8è)_CmxZS¥Ú6V«2ÎÁ-iLÔä‰J \OXu±OÈ#Ü ée£útV“Ÿ®Ä»·ðJêZULL•á‰Ý”j2¡ÀÂ}NÔQ{äGÑчql8ÛnÎìÊÇÏ ÚTpG£žŸ‰¸Øw…mœ£âM’wØÒ|›tb¼÷TG]àT/ Mœo quÔWÅÉîºè^ {îþ™½€V}Š!0_Y5Ž‘SÛ9jŸrÒe Ã3¬ëÙ CâRˆRjð˜§æ)[ÖuM¥Vqb‚EO êZ§1ñ8Oœ³æŽ°I‰ãqDbí¹,ô‹17Z4Çß¼4pÌCçNÙ4¿ëOÏ ×§½çÓ‘ÿ¦~ÿ¹–r¡—¿äF¹£ Ô+5oµÆ¯ ÇGCÃÍÖ ~ÿÛ#uFjelâ¨lÛ•#Žz1üœZ»ÆòÍH&ùuÉðª/µµŒQ0êOÓ-÷•Ÿ‘7Ýu-KG[ŠpF÷˜Ý/°~{«YAþøvcuòOMüTá,3Ž0FÎ×r©á b–z8…ñj2²Êsô‘Á„6"¹S8o㮯ËÜ¡É>µ¸pM¼7 ׎ºóœøO\kÞ=ÂÃhˆy"K"fE_ï¹cKõá°-àl¬Ûj‰Æ¾l{Æ¡+eÕ_Ï·ôÀÖú‡´«Äû ×B™™¬í^ {îºè^àŸÙ lþ·ÿ£E†”¶1¬ž9Rl§Æm˜Ï­: d™«ê‡UW1|«u“UáŒ%`3É/—ì­òï¥:”O!ÆRïQ£Ò÷ô9¬ÒÝ7†›ç­wuö];* ÖB%g©]è!b¹ÔôÙÜcHU‡¬ndYÉ)34$ž¿åÁÕs'û©Ÿ9ÚaÓ|„o÷ ïö ¿î÷6 b3ˆ,¡ÇôJT<†¦ªï(hU¢ Âp¶kX˜9âwú©’Ó#Qxú¡íÈHŽvqžÙd7ÇM¸ùw£‘ÔXY`íH‹ng¸Á^‹ÝgÌùr7’5tó1&Fˆµn»ZIÎdQf¯ ,¬ƒ­Ñ¹´«¤Ž*#x¬²@Y^ìb4„':>ƒWì:Œ²Ê%vwƤ½ îÊ:ê›­»/*fv/н@÷Ý t/нÀÿv'2,´?˜±“¢Äc¶êµˆÍÂØj¾¥<ïÜGïô湚I\P6Eí##ÓEŠ­•ž©”!"#DQ<_cöŽS0N²W;†`ʽu¸Èݳ¡AöMö_öñ“ªk³ VY¶ÉV»‘N¾ˆRas!óU5SôùßÖ”è©øùþ/†È$Šà GpŽnö ·ãØ øÉx24L^íŠßÅõŽáødhxúÜ@M"Õ@ª·(¼†l‘×$G_å+Ðë~×W/ R µ Ùäj¿’ØÃÌl'S´Ç+9×t¦J×RŠ"¢6›™ÜÔïV=weà?I{ø¸\M¡ÚŒÇÜéÉoêoKÍFeÆà§M_9kÜìyäÜË.Å™¹?Áœ? ×çCƒ¼@Tqû“’æÅ¸¹˜âWrŒ0RÍUª/ö¿Vk,õðÎLÝÝ t/н@÷Ý t/ð¿Ý ¤žôÒ3qy¡ÒlUÝc>§/äò ¯oæûõs:qLjïŠ_À;o¶†”uRÿ;´]’µDMÚB?ZÉ¢Vþçd“þ2õ§ÕÔ½;7Üm êP“Ý‹žýgÕò¥¸Ve¬F›çÖZó©µPüKÔ¢3(Ùöj‰·„U©Š¨øŒ†ûqh`ä¡VSëúÇ/ þnP¥´z…ø¼« þ=Ùy¨œ(út³k˜ò¼öWßã÷ãT‰ª{?"(ÞiÍ“ˆ5yÎÎ̱›„:¿/ª‘Ê$OõÕÂý^•7ɤOP™ÓWƒA]œb´fd†û¥šÝ¸_Ö¢@©â×bb±t°Ò5þ¡ú˜ÁCRµà¡ÍšTlÈÄ"N9ŸWìg|úÂ£Ž·{Ué§‘a7eÙA±·Vù&LET¥{îºè^ {îþ×g‡+c²ÆT‹HQ#œ4Ø*#qÍ9†%7Žk@ùÛ”¯Y©ì -ižàxúŽüš[*ÚÒÔWÔÉk<Š5ÕÒj* ,]’‡WUOõoñH$6öè1ÃK«^ò©ó½²C”ÕM4_Vrë ÚÜX_ŠwíÌxû¥áÍÖ ¡ÕòÌÀ(ŠúéîŸ 7'›é'NìÖÆ¦ÈÀÅ‘!ñ b-ßì 7Ÿ}‡rýbó†ÚQšEÒXt$›ÏzcF„¨ïO6¬1c†`QN5œ©{ QFíÀyj)Õâ YGf9B»ÐWÈ™ÀWÊ M| nóSŒQ£…z Ô“§Ž\ëQ¿­Zn=ÇTíàÜtb¤§æcÒZR”êTþÍš'ïÇ¡AÕö Ç/ Œz‘Í;ù,pnL·c>T,‚KÜìv Ý t/н@÷Ý t/ð¿Þ Žñq®n‡†ÉæûP¾@––}F•¼ÙkÕ•5k9ñQ8KÕÉÆ <:úkDˆY§…ØNU”+ýDq²›Ad–MY#.^'q2Vö3ZfT™Ê6FÆöÄ 8ÞAvýÄðæÔ°–Åf§X¬”ºNÉ2W2\½aE\©ÈʆPDó»½*Û²–ŠÉ¼ßî÷ •íð‡ßR<„\ÓÎfz"ÎKöÿµ÷¾°ueYÚ÷!&60¸²dbK&‘%ƒHVHd…”ä" \ ˆI“!C*Gj0 F‘š´¢&Ÿ5©Ôd¤ò‚¼`@† (Ò` ø|¤ ¼`TÒþÎZÏ:9¿•uŽãTU¿ê™ÞÖ#•ëæúÜs÷Ù{­½×Ÿç99Fܵ6bb±‚T û ݹ®PªÀ5sO3Ù­\p ú³~÷OmÄÅÖ@ûpq0Œ8Û3¤ /ó¼ˆÿpÄ4“ÅsÈ¥R$ë+ȱ@ûyò|‘ùOfÎÀ5MOúë:CK½°“‰õ‘ºE5Y8 Sw¡¿~uÐFL|Î}úØà¯¨ì—C–º½fÝÌ`3íåf%šˆ-3ŽM.òË…z”³UGœÐ)¬Ã aÜÀÌœaå Ý t/н@÷Ý t/ðßÝ ÈVð¬òW”,X¬e‹õCÅÌ¢œ^µËê?ýù>ÛŒý~h†Ùð ýÏ ‡O_8 Ä±Ðõù/H-.ñqdØ&³×—æXå=`MÏjÅÄû§ºPYÈèœj†|~Ÿ«ï‚•™¸)bó6U!Ž‹Z£›¾QYÝSŒ8û»ÍˆËcƒlxnw Êdí_¼ Q +b^ÌðÄ’]ëEku«Ûmvâd= »fâøb„dEEh¡û‰µò‘õÕñÈÀ¨àÙg>Ûφªï½ùõ0â²µíÀpëDÄ%båê¼?WkîÉ“ª‚ôähsr”¸¦uÍ|⬒ö3Åñ®ö ¡„âŸ"ÿÅÌ`<Œyªrü•!Å^è±O 'r¬JX{r$NÚë†5nÀT‰ÊyޏJò|û4²¨Uþ+l¬ò³ñéª#õï¨g”v,âÊsužÈ¼£6 ÍÞÃã?ŠÛÐjåä<[ξF„!Û^Šn¡~@]f¬À),¤íÕîpµÛ½@÷Ý t/н@÷ÿS*EeŸUíæ'²‰3ÙÏnbå}ÒF¤þôÒ93¹v‡-°@ÌgØ©IðPŸ¢ÇÄÏÑÊ´F:ôÓ©“¬Ëå<«P[(J“1oÿ‹6âð©!]§*³PµÇßyy<Î7#n. š·²0¯þàHQÕ|a^=“¦Xý/Õ…ðûÄcæ½?©°ôîQϬ ŠØ(§ï+¥?ÿýÚÁØNÊPû_E¾XÖÏgפ¢bº!ÌÊé»Ç¿ªb02¿r(2#;£ÊLU¨N€^Û¹C¨ªÖë;‚Åå ûSX ^”õþÓcCê3º1¤:Rï“’ºèÅž!ùT&‡>‘Æ_<$ÁEÿaN“–3u&Ê‚Q»3u¯]f/91ªBkªèf%IÕjJNêw+ËSÃlKã[hF±¢µ áÙlö7YóHþªUþº"±ÜóœüÃ0"|¨ì?ªDj•/ë=4· ‡3w¥óo Ý t/н@÷Ý t/PÍêÙ׆“dž˯Í æ¿R/ .V!’eBezj­¸>0$éLî8ÎòÙißÏz!¦²ÿmHZÛU©¤03TÞÝ…^dºÖÔ»'õ¤L cfiSy[ù¯Ôu’V¢ŸI•?F¤z¼Â>½À‹Ëž/ôš%Ýð)*Ñ­¤2©÷€¯ ÕŽúóúãSW\ð3ˆÁÏõÌ6þ°·ñÍvøfê'zùxqy`8;6\o ZûªÏd­`U0 ‹‘züYɬžG‡ìùLÄ%R3›RcQbh;ëµ^×DòýR°ØmŒ•Ÿ)~¨½ 9ÍÀgH>=ÍÀàîöÌ»‹Nv •ç\w¾ð¬Ãû¿Ò×+Kîþë¬ go[êßÔ( SªsrÆÊÇÝ4CÜ¿bD°¢i6’àô`ö<éÀÎUåÁ²Q¾9/ß1|ªšÅR:ì"zéß]ã/&“ÈS“sRŸÖÃv)Ý t/н@÷Ý t/°f©ÎÎ ¡';pkø«c““•S·”s³ŸÕƒ1ΧÃeÍ"?E-¹¢„#Y¸j«ª¸N|ºç§Å…r,…s]W©;éCÖ¯zÿU³Î™Ú{%›põÔÀœ;£RIÑ’ysÖV^8t!%ÏBßWÕE ;ñ‚^|‰á°ÓŸw˜¼Wíê0CC\úƒn?Ï‘U¿m†XõÁ$`+W«ïí®AûQŸ‰ž‘î!ØÉfû׌¯cÝdQa˺Yt™UµñýÉ웈0Â|}y¾ÿlg8›²‡á¹äØ_ÆšRÌ *NÊ›L¢6P–ô+¼lÃÕr‡LUШ ]᎘˜ÐÚÎû¸hU™½åÊ­üçqXrE÷9Œ`¬2b˱õ2>ðPÿÁúâSã|£šçTç0÷v1¾”bD¥:z¾°`oÝ«6ŒÐ“U‡>E5Ô3â©{îºè^ {îÖ,ÕŸšáÇɹA S–g>5§ /Ç󟇪…Óù4ž]Ì.?#{eiŠ8‘MŽU£•îÞÈ•úÔÔ#>«t¦,ðP¡V-iš3Žõiî³ÒÊB䄽í`ÍÊ3"ÿ»-ðª×³šŒ=,€sñdÿ-¿zåÁ¨€{£¦!y«`œ„1µ:ÎÏ¿²I©³*×Ëæ‡ÙTLÌuÃ?!_´,ÿcƒ2骛}ólѾ6è¹Ü>o#ô·É.¹å|õ¹a¡ŽwUc¶{qêÖFœì"ê¢jäÔ1¤˜ŒÇ…X[¨.$¥¡Ã¶{E+ìä¤íî¤ps„Õg—<©ì¿xØ¢FT¼ÖÊur†™3UAÌŠóußE;ÉÊmÆÖ¦oä¿ÿ›!:ÝÏz¾|4Š2Îþn‘5%g·WLû1¨Ìϳ4ÕͪcQU%`¶Oª²ÜÝqg«µé²ðÚóDµ³«ÕÜX¡Ñ˜TP窃îºè^ {îºX3Z'2(SÜšáò†¿:/Àèži7Äm+ hUiÖŽ*‰P;ž;ÊÉ1q‘õ™š•^ð²gGtå[®, µj.ÎÔà[è‹WLé´H|Ę̈ªF®0¿…%ôZÖ¤Ó§¼­÷ÈäºPº™"ž° ìCïS•CS'`â"öUCïŒùɪÏñ«³§†Ä,Q¢Ìc꼬zòn^ÿÉO¯áQ#Í.ÕXJRV„Æ\ÑErÂsUbµ²V–µÐ²ÿzÖÁLâ ŸîÞUÄT™é^ {îºè^àoÙ dµbtuðiùwC0!ÿµe‡ÉÀ̪˧mµZxjSïØÙ‘LïÑ .òÈ^Ϲÿذót!.…½uæˆãu?¼>ºôdÙ#VT&9ߪ#^”j Q–õòüԟ賚ý8…%ƒ§þÔ# Lî²ÔǤJ]h>&¯„o—zàÇÓç^ˆé¬=3-SgD+41N¸­¸82(‚q¹5Ð*Fd¬ÈŠiM‘Wát$¾Žxîn‘ô/…QDwu¸×ßGTì¼ÜÃÔU„‘W§UÚ¥Óòl-Ãnû=ëþÃn+j¾-æyÙÓ¤1 žämCÓ;Å7NÚòHóÞTOóG Vð\I{ѼB<+:Æá‰!sGË HcÈâ{Œ5í|ÑFè釗ç7:Ò6"ç¦ÝkŸà6DUW7Ȩ(ÆÜ]Ní?Å­o¦øˆ´_"_ Ø'&Ÿås‰=eØ5Ɇ§û§pt/н@÷Ý t/нÀBìbÇ uPmlrd  •xsŽI'Óã6B•`Ê[ÅJAL@:€±~5W]#òðw†Ð©\a¯M?ÈWÝó¡%¬ü·E52åŒÈ«¬§¯ïR8Ü&=ËSתѰվjÂ6¢>sR»Ö9•¨Uq²rDZ®Ìù‰Ë쾪†#.²™i&‹©ÀY—‹‘¿®Uùò`3Bú‰©¶‘·:òzå®TK4èÔ5“† xEXHòøvÍPYŽ'_à,åÔ=qþŠÛ½Íí^ºkMŸ #&î8è–"˜ò¡ÛR&Qù\°ÇPc½Ö`¤§¬:x°‡á•W™‘4Ù‡Urå©;’ñÏÐsGhp5È!¯QòJPÏŒPEhÌҹꀑÛðÅO6#Û{èÆ¢šB3Y6žÈù`PäJ»/(˧ºÓ2©;’\âŠ{˦•̈ "&™"BÝ t/н@÷Ý ü-{ª<Ԍժ4z©ˆÿæ?û_bEÀÒþ|ÙmÓß?vÔw:¢¿ JÉ/è$›®ckŸÑ’ÉvÍÜÔ'@Î&cÍφ3ò#7XŽ‘Žçî^¸êz§n5VôµÊ˜Í²Är–غ—€½ªþ(T¿4D>NÙ)k/>^_)‡Äg(»ê9ôô\ÈýEïÉó~)xúÜ NMDŸ‚Z*6X¹¼Ž¬„×òéH9TYòo zÿ›á»ç†on‰¥Ñ›«#ÃË­abfvµÕÓzUä˃6âfÏðÎq6É_ží¾ï%œYµ§n©6ƒJ²þ4ÕÅTxœRmKœ™ÉçÊÏÍwP~IÑàyžòÎês;yÞÈ ÇvÈ¡GdÆã½—ÿ0ŒØ²ytvVâY„oåÌ¡§Ë4†sï+E»è^ {îºø›ö•XûðhL=Ïþò‘ÁqÎ=qëý¼ÙíÃm3 ú+q©éœˆ fªä¤Òõ2ÀùÌ+OÊ€¥?=ºŠ”Çœ â•ÛòW&¬¹â1EŠÈ\W{ÖX×—òÅ8wó[Ôhý*iÙ×u¹˜É•acÒã0Üm U‰&ù_Í„ÃI cTgŸ]­ #7VÊäÑPƒJ¯„ÈRRGƒzŽy4FÙ^qÜÝÞm ãr¼>6¼Ùu<3Üý£!”:Ëla9¢4¾ÓˆX¢[éÈè÷æe»<F´§†ë=-³êH•oMz`¥¸þÏ͈VÀªÑOP^ OÔ;µKw´¸ôãIv÷Ðò§sñÄ0Ù^×BÅžjâ0ü°":©©*ʧfmFߢ{ÒéÅXõ%ì^‚‘;7öE¦ 󴳯µû îºè^ {îºX;=­ýD%ÇœìmýÙäO=7¯Ú—†/ ?Ûõý¹_~n`$'žìîŒt¾cŸ¾¢@µ÷LP—˜<ˆÍ1‡Ç9y®Ð§öÏÍ}L~N÷>úèÄçS¦òë`©×I6€Õ•˜QêýGï[Úo( »*q1§EÿÎpõALf¡Ú}mè‹l)uyd˜2³nñŽ7#ÄÅ#ƒ5«ë$†u{³ØÑ¡/¸Ón?/H|†5¢K ÿ”W0„ÝŠçRÕl†IAõ“¥‚4Ç m¦]^þƒA3­ý¹x{`øæùfÄÛ£áíQ⯾:7¨‡kbröø’,°3­%6’2—‚’‘jrMs¾9³Gb/Ç59"¹mßUÖVe\©C”ü'‰;q!­²¿7,pª †ÉQJ=zð5µï«’•äÁõçè^ {îºè^ {Ä^×µ±•þ‡!åyúÐ)éFDè·†ýÿr:f {ŸýÓaÄÉÖÀù¯Y´°£.ÙðIJ¨=듃+[»»® Åëºè^ {îºè^ ­ÁZ¹§óøB?>‘gϨ¬›ñßÞ ø\ܤÿ3_¿pÄ…ý­!”£}$57bE³Ú0õ†Ï}s©Ÿ(lûÜÝÏ.òà³’Î OÒiö$ê‘Kœ“â¹ÇCÈòýÁº6Óú"Ÿ•G˜]E–9i#j–2Ë©oM L;Ÿ2°ô>¬ÎÕ+cެn0™„Ý=ò/o†7ï#Ô+&QîŠrÝ@íF§Ðrî%>:p§¼ü¥AVýrÇ 1oGŽcÃ[ÛáÍÄ›§wjîÉk$Ï1 ‹rÖ½Ø »†‹ƒ®¦øÒëã6âíÓaÄw{mDU·$‡ÞB½4û ÑçXSWcVâiaÌ$f‘l8惲·Áá M÷éÈ5O÷6÷¬íèÝ.Ž ìÔª×Ó©ß"qÑ£rc¡ÂU%ô&{È“Ó͈îºè^ {îºH‹o!eEÖ¼@âF£¦!µZþ›ÿ>u¨kL®Mz‹?×j)yÞ<ù¥Aìgìµ™áæ^›˜~ºäª™btÊädWuÍÚóÊÔe¦M¬ s.’Êæ 5Ãk(‘ŸÄ5WÀ³sú«Â>‘úk83a¯Q¹8Ú\弪,ù£Ä‹4·¯Ï Á¨üØ@e¢xvÁ™àÖ~Ú ígßDžÔõ†<;Ùm²Lëo' r&|È\¡}ṵ̀<Œ¸Ú5È¿:6üp`øãÿ6K†ì¶¸—ÝãswÁJÝÃç*ÑCÂûBĸBTŠzè›'1!¿þÚJO_ #Rݲôƒ´Ó`¥å¯ ™‰zyv…ݦ¦$F,*`e»Î )"]ËÌXòá^+•P¿id^³bæÌÕ¤sìKQ\} ýob\—ýG·cFÖž5=)Í«;G÷Ý t/н@÷Ý ¤Ã;Fõìß ²xTN9ßZ¿'§ífÆw/ ûïC‡ŸB]âçŠiM)¤¹¡>/÷ÂÊŇÖ<Ø¢¿ö„ÙÛÄß«J?¨Î% ÆŒ3;ž ‰шHÔ9¹ÐÅC[]ªûXiLǤ>kîÙObT´)¼¡¬ç«IÝ4b`ÒÍW›\­´ŸdŠH¬}ZŒ ñ ¬¥ôu§•ÍÉQLN°k¢6å¾IX¶©â×½0sšŒw9diß¶aÄÍ®A6¹=i#^ìÚv3B6Aö_ºKßyÕÙÔøˆÅ•ÌÁA§R™ôîý÷Ö ß¶ÍÝCêÔCU-÷9“ÞCÊ) œê`“ÞŒ›´ÇÉ&Ké²*o²@ ÞS¯–&½.TO}gÚKL^`®½d¿wwd&I³ˆõöàl¿<0ˆ#Ö¸ó§U¾ªN«Y—b‰þ£z€oÿq3¢å}×X÷Ý t/н@÷Ë^ ò?èSþÙ°cØùƒp\×I™Ý?šÚ%ÿ#²Ã¯”Ï_~¶®1­œì¨âwý¥ájkHÝè‘ sµÏCtš'«…“#ûËöwš¡œôÙSŸcPc§­†mUV™¥+gBéÞJú•`ÜR­9À»u¼b‘„Ë]mûU38õÐ1 /¸È˜gD3±û²r2²–ˆ*àìH е—ö¯:†š'º7Ô$.¿Ã«ƒòŒ/v†bløîÀÐ>ߌøÓA–ùö÷×èTl0ì!Y#¼¿,ÔyÀ ‘ôS|üõÔô´cy1ÞÆÁ¦5Ãç†o zÿ¾•qNU£1ªœYÐY]r¦ä¸&‡FåRжE™\Æ®3™øA Þ“Æ(|tðB̬ݩZ@14éËSw‰õºPŸO¤o¡˜•öŸQ³:wí%+M_À-5´º“ÛfPLXº«Ý t/н@÷Ý t/°Àÿg™™I•¬b 9âÊ/—TûÏÇ»Æþ¸gPÎN§òà"Vg²^h»â0¾Aû)½oòT‡š†*N¡ú§yx½cЕ£JÚåU“Ôóe7»›/¶†—»iš;ÁÑ0ââñfD(§C%<Ù*†à[ÐÚÓ2§| ®¾C,¹éÌ*<û£¤CUDz±T茺CX¤ðnàv‹ä)U‘Óõ\3U3ÖzàðžsÇ–žHb3æÕÈSWìÕdßÜÃþ3Š˜¾uÑ*RâÝ®á»ífÄÍŽáúÀpÑÚˆÃóÍF´j÷SúÆk¶ØÛªµVqΈCª{‹ÝdÜ¡¡¦7í{Á =±íÍqKù*É»E¶ìpäfÁøs†§‘×Þú•a“5çõé I§†*NÝ%¿D÷Ý t/н@÷Ý DT!YòY;¯ÖÔ…ò N7©jøýç!'Ÿg^:én‡ow ‘;Ž™9g‚doÙû?UëyØÿJWÓëÉÚøûiU”OŒÓ¥ü>­Ë8Á]¦{ˆŠJ÷#A°gPžKw¢èÄåv¸Ü¾hrJ³Þû°N+tªä£ªVn.DKbÕ#ž9qˆ•¿ÒU”™ß_JÚsç]ª#­ÝgÈkÕ¼jmÄê'¦õˆzŒùR=0l#­åäïœmÿšø sH1±ÂÚ!frÅßîmÞNóêîÀ õOfÞùY Z9ˆw%O!+걨ÜF×j°¦…~Ãx¾”ãá ^;}kòíîjæœ=7„ÝV$'81¤ò©øÞ‡1CíôX)J¶ÀØùhíãÎc.1J‰Šu¦˜¼üàcCÕë^ {îºè^ {©aÖqà94æ3+?©¨qP&‘™b}£zpDˆVWOV¶=:Å`ß"Ãë3AQ­>eî+˜ BÉZ0±YR%ªþê Cª[Ådߌ¡KÿzûÔðÝg†©ÏÅOÄî}.v òAŠ dv,Ïýi–> Þû¶PW¸M’o*v;F²ªÖˆj ¶þUlcø”ÄkQ»ûuZÇ3HÎïÜA¥ˆ‡¯AyUe'™%$Ÿöäàæª€d“ï´#E܃Bñ Žô1S=*¼¿xÏòL˜½UÌ1kNlŠ–(ó{»kˆ¹G+îôÔHKµR™"Bz§ê™«š êÅz݆×-´]ÈË7Å$ÝzÃ&G—5óa™}œ]4YQÿÛˆENyfÉHQvº1ÚÉ zÌvÍ4Úêð€Šsb”T-À ýU÷Ý t/н@÷Ý /1Gó™ï ãêΨgóˆ ý羟»=C°=3bãõuêdç™TÏ]ï†Öêwõˆ‘Zgö!«ÆÌÑ’ˆ“0ßdz?ÖþÉNÁ~œ¨DÖ2:‰¤ðîàìZ¨7f÷º·ªr_b £r%,dêšg´Qfåü¼\Õ ésé/RE(TT…X³rˆW$ÅpØ¥‘:ªÀƒÞD˜lϹZ!<º«|m2÷Í‚|}|S< Ù±‰uPk3Ïù¤Ãns#ëNúl‘iЏùšSèÌ^¢Ÿ“_7¾{Šî6ƒ¼²í™#îCöé›#Cê·‚e熞þeFd'0Z×¢ƒ>4Ö‚ô›”mwÀÆ3MjPàè€ßIO™5 Œ–™FeÌøÕ-€‹¾{îºè^ {îê +ýÎÓ7ÖÝtBGFíä¤M‰¼<ùå¸ÓV’j_±{ñç[Ô—R&s’…Ì’c>t/н@÷Ý t/н@ª¿ ¶+0#álU³lI[DsRQ=Agëí?©Eo~¨ÉøêHýò¨õ [œWóÓ!GÄ‚f #XAú×WGÈà°-}LŒð¤]¿G–_nª &7 c—G›Ë÷Ú—©¦ñC;Ÿê<ÁÝÁÞ«æä×È,]óÈÉæSÅ›:ž•%ÏguxÄ?sŒkfÛ‹«Ñþƒkš–°j‘NÝsC\(Å%X¡A¾ës{ŽÔÏu5n®nޱǸö9©›¬dÛ'–gD”®h}ÖìƒÓ~Ì£aÒŠe‚ê‹ËS¿WDÅ}ÿÌ:O½r☞ ”†È’¡1Ä®,,¶¸)‰ NBù~’Šf÷0ÐiMu§>»è^ {îºè^@Éb¨ºé óh¬å½€àÙ ù‚þsÿOXبÈÒB¯äbkxõ•áâkCX*Ÿ9Ê&OçzûSCeÖÒ{x¢×+ʫӡ[YE2¶1JÓþ?ƒâBﶆTIˆHNŠѾ‘ÿ-ì¶+}@×/õyÁ—Õ¸ëfcê?Y;ñ7õ Á0æsqj8ûAµ¯‰ÏYÕ€8§‡§€w Û¨8@(TÎ`Þ–Ö’‘.ùÙP$d§GO/î‰Ä°º–ðY'3Ú3Ã·Ž»G†×dž·G†އ¬U®?Õ7êi`=uvlˆ½Šïm.ö ´Ÿ7{†”'eü„Z0dwªHcI;fðé+ã½2#ä^f%+¨ÀË®1Ô¯æÌ¬×u3ÚùÞtϪ@ÆMÁOÌRiWÁÅóU•¯¾Å£Á íÅØç ™"™È#ǿ†w/н@÷Ý t/н@Ì7Õ5étsäPGXÑV®êfqŽSý˜[¤_t<éw)ǵ/7#Ta¥Sð›ƒXÈR×jð¦ U÷‘¼zb8û³!îó©£VQEO™,O ‘ãæDíoªüod¥Nu›¬´ Åœ‘™&ÀÇ[»éºÆ˜ï«wˆnµàåVP¡r;“QÚ+~꛾/V1£©É¢ë'u¥!žpñ»ÍˆI½eæceú¾ì";4ök, ‰Í›Ï·0i'¿#˼»hAÖÙBK’b)µ¸t¦Ê‡ÊJ­Ù[çOѦOÅÌò—ÚÆm˜M^è‚,jqç²óôPœìÔcG'3þ÷Vï‡OIúPÎt§]¢ªm ö t/н@÷Ý t/ð·ìâùz(óq+ª‘<¯éD¹(¶NÄüFˆ$\üƒA÷öÍÖ æa1*\Ÿ×«Xha«ç"Îb®ïàSWç›/އ—­¸ûr3‚•f‰Š äbJsO£u\>˜{@œ‚-k#ï™Txd™ØgË?½Ò6ROzN‚Å›¨'Kõ™êgIêš30ðÁ±Ææ~Ç5þâýwÿÄxü¡Òw\¿ò³UÕ2{טßê~£öÂ0£šVëî]/Õ§L~Üý,g/U;aÛ›¡ùÏÎ4t³í¥¿ktÉÓÂÊR~âê±V“au$ã¯Ð1´`c‹…OqVƾKkŸ«9pn`üŠõœÉÐË3S_¹‰ê»¹OÀ<äèÕµÀIÈWèkœmeŸ“m`ó© Z¹ïjWcª7`7%9+ÊhÔ•ÅLé`:X‘.¿ Ès÷Ý t/н@÷Ý $ †•þºBA1uîWnX¦õ"z|R·bGJÇ“2 ͺ×O†ß=7Üì^ìlF\Œ‡â½!˜Ó<»4Õ˜ )éuÕ[žœ·Ôh«|°êzylXÊï|ȱP»c‚éq•¤œXNÄIŸ¢ÆdØó^ãHåçEk#®¿FÈ3ª–×Ïa$Å æxTê(‡ÍÏ‘«upVU„äÙ¹îÀlú³øžº.ÈMVsDÈ|¸Àº†lo¼Rã0Ì!²žp…§z!n@žœë£â7râ–%¤OIâ˜uû§^-¸1<üÎ"0Šb=F$-uX³¤¢HûF¾»2n5v¹HržÈâ1BÅOAt´Öµ&»J–<î" ×÷‚Ý«{>÷jçSb¬†³õ¨¬®dµm­Ý­UÙ‰­¢ÌüÊGWù¥“§£¯Dv\ÓŸ&Ÿuº[î¸ø·Z¦`–î^ {îºè^àoÙ ,œšgÍá=J|šk:Ô©Þ©öõ£¶MW¸Ø6Ñ!Î,ž‹¼:px—JðPyÏNü­TòòRf<;h#ö÷ôF¡/Æ\kvO#¾&²ÃÛá™=¼žzµpîNu¨vËìds„'Y{Äp¦’e^þùî±áCªÏÌ?Í@[]½@`üß!y Øyú‹/B—Ê“C:ƒïÜ‹r*_È]®Å‘¸rW´iopõøôï¾4üÑ‘n†Ù^‡Ö…*xöWfù® wÞF7‚lÛSͧÇ6É«ìH=k²$ÇmÄY3„“s꟪™Í­–…ÜëýcHëæÉdǪ%·LÛ¤¿âÌÁ.”5¨«^¾êÒ¶WhƬª× ÍÇ頻¨àN@Îd²îÈÚ ¡ÚÿTɹ’ñ"¦gL 3°Ts£A¶WÝÜe鯺è^ {îºè^`ªLCÇg²jžBú€µêiáijÆRÝ ±£ÄºÆYq¶gH—+¨ÖøQ£„§ìÊyX¢=5ª =ƒ¼¿lø»CšÕA'ZáÁSÿ3t/w†—;Ãj­2wPè «'úX}ž Û˜Ö5Çs›Ü€ì¶«5´%O5 ñÌk£î·Fù’wG‡bh lr…Meªcq GÅßJýdš %ÒRk‰¾uµù)ê¥È0í6+rK”,ß§!ì•`b/üx)"GæmU~g _ÐwÑžY Á[â³ëûC;2¼»3´Ï Ý t/н@÷Ý t/0}_ÕÈó’Å—V°Û©ãƒO É62;ì=VgÿÚF¤9L­‚wÿf0ˆ]MìĮʡïøíáû6Œ%;ÿE„.†QùöÄ0¿ »0hù¥%Á8ƒgÃ'ñAYZCx1é逑 ®Ç¸þQ1õnû «~¡‡ë~'@¦©8}[”&ºBЃó}3¬[ø•W4J%_¬Üÿ§6‚¤Žž^™#“íb<ù嚟ýH?N±çU±±fÖ’•óOTµ€ĉý²µµJWxñÅ0bç™áp§Ðw|u`à÷ÓBtÞ›¿yêðÞ̪æ“òŒèQ¢}H£]{åÖb_´W¬^@T$E2k| Ÿ•vVP8­|w´±Œ*'Oê xéAoe¡sª|¯…~«ªº‚Ø «gk5fâÕ¯¤#ŠjOEê8Ú%ò–wqz.TìOµ.'…C+]1"ͺ`·ö÷k«˜¹¼ÀµãÛSC÷Ý t/н@÷Ý L<¥~ŸçͰ5„•+:€Ê_üÁÀ{æù(Uš‘ã«øŽ`dE§3YË® —;žò4‹‚uµ|:Wâ„•xÆ\yv›¾@9çmûã׆ǃAZÒõœ.Kî³ôäïÊñáéq¨ä½Ÿ #Ö:¹8 =—<¯_ÿêÔ (Ü‹=Ã÷O Ÿù©w¢8• Œ³wºENšwU#öVö?üTÉÙÕ³víÁç¼JJ+ÌÿòV"µZïl;ŒP†÷ÅÖцÌÜ¥ž hŽO \¾6áu׎es:ŒÐª©•Œ_ÅŒ"+Ù›9o‹[è–"k7î?ÅyÈ“yâogA´gSA;ÆúUÎÄ…ö~­Qã&ÕN¾è”±-°å\ ; ;zåµ ‹êÛ™Ïd­A]ˆ˜i­¨úÖU£q`3LðÕøÞ,ªh>Û z#p&hosy0Œ¸z¼¡ˆ¥Ö xü4K»è^ {îºè^ ©cûéU§Ec˜«%’~™î lÉò ¨ODTDʪ¯K¼ÇÊë/Øœ¼×&4øt?¡ÕØFĉŒyöìûçRŸ‘3MŸ‘(=}ÿ««í0B¬¥ÃÓ͈ÕìO­FÃÚÑÓŒœõšµO¾àCIQÎäÈH 6‰õ´ûí?ù®å~¡Øœ….°•xÎj½_é!JÊÚ5ZªW¯O%Jæ|ÉLÕÚ@©úœTìˆlÞ·G†»]ƒ®öÆ‘É_âNTP»„ ·[²ùäå.¹5*W =òÂý“/½uUe2ù…ª| Ö÷¨ÐVÄ^ÊAº1u&åV«B¹ÜÛ¼ÇÙÁ0â»fuÕ_Ý^ïºè^ {îºè^€ÖO†êÛJç)=?NL^p©&Mã¦ÐsÑ+[jj—±NXò)êÇQ?>5愳[Cîðn­ÇZõªŠ,ÚÔ?bJ q…#C¨]ëä¥X"NÛábŠÇÝã6âðtt ¡~XçÃô|½¶MÖ*Ÿ ª= L÷ÚmÿÉz£ÓŸÌQT0×ypÊ)K«Â!ÛX¹þΞ#r†Pùºtñ,ä £/¯ÀÛB¦’~+½rb³®Ïÿ*ž;lÝíì—§mY¹Ò'ì°ï|ž9‚GýÔ\d ŸPóãIíÝçsì©`µ’µÇHÆ^®TH®1§Õ,3ÙWøÝ«ï^àè(|à1Vu>”êÐ…è çÙÈ×:Á=»DÖu°î…3)„JGC¤ uñ¤ û V&Ó/—Þ´š‰æÈÄwÔŽ—±AæÙëœa§¤Ïº4»ëóH‘®ðrÏн@÷Ý t/н@÷´ó¿FÄÌ)üT‰3¡ôé÷`{€õKãƒNjjpË Ü4ƒlìÛÏ oŽ ªq¢NzªC“Q­Ý+µwÞ#0¹æª¨W-le^ô¹Òï›²ÃÆ)ùgmèÈéàì¹<¤æ£ÎÕn Â’;œ2¶úW1B̹Úðªn‹¾i›Ôè Ëæ±¬àÁ8F,T®z¸v«1ÖÄÜôZÏWò`r`¾o­žsñlA7„Þ„6Ü+œ?l Qç‰ZÇW{Ãé{¾y2Œ˜fšwºöŸ¢C±rMvð›ÏÛˆ»fHV‹ß·°¸'~Ú7tÞE¤EóD–D_t…aŸ­hî?F,øhp¿,ÔŽ"¯ZY“•«L• ¤0ØD8ª‹ù|“f(žxºÄi#öUvƒ 9hhK]üÒO™Ìº¦xé׺Ãên ‡ ß—\îdÞ+–ì‚131‡ù¤T[~¹5èš×{†îºè^ {îºP¿Œ¾i0­õ¤ûïoÛ0âeÛŒˆs‡VÁ?¨$HkwþÄûzìÎïÎ7#"ÖäÏE±©ËsÃÝï ìò¾|f¨ Nê,cþ÷p;Œ˜Ô™#|<ŒH-YiGÔú5ÅØÖ¶†”(×]!6=‹Ù è AË WÃj¾¸äpS«YR¥™»ºh[¤™®“ b€±šèñWãQôSø×û-vå[á[Ó4\[M‰= ^‡ýn¥’LOVq3ÅT™ѳà04è_ß8ôLc £6¯Y¹ã|WŸ‰ï[ )˜)B5ŸÂ;9Vò¶´”¥••S޵°–iý>m#xäX{ÉøFå/Ušä…fUóB‰‘=ý·~zh0}ØQµV•¶YiÖÇÊvù_$UY2‡à%kOÉüoñ UÊõõ¢jš¼9g2ã`¼7V>`ï~·ŒÇ#Æè£Ú½@÷Ý t/н@÷)ÏÅ^¤ª¸á3ùîÑ0¢rR¥ìF=ñ…MðÙ+uûÂ"«uúý©A}Oai›!ò5Îó¯k²)ŸëßëîsƒêHãu‡r"±‚¤ý§ŠMA}ÖÖ€%Õב<0PS†gm¯ér~¼I^¤°ÚjdtÚ}øÏB~vŽ e>:0<ÀNVÈcV V½…O¬Wæü¬1œŸY8)Ó×× @Ê'ÍÁÃG†ïC5I·Û•U,ª‘=&©9öí3ÔG3«®8§|èwÏ 'çîÔ÷¤qV}¿5y’cÎ?6ÄldÆ1ÆÊíVy0*ÇûC:¼bÏã÷"6…e:³£Ïј4ŸÉ¨ *F,Cñà« r5ïO»Ç]keÒ+Ñ0úhV¹SY>Y§Òñº¦pš"Ÿ+ï\ðì¬ONŠT¾¼0çÅ¢©ë¼<5„ec!+ÿñYÚû)ꮪQ}÷îºè^ {îº`·BZw̆0gêÖãâ‘Akd:_@}»ð „Z¥‚-ž½l†“ÚŒ`àÍW†7§†xºž“‚6ùèɦ¼8—ö·ÅaØKR!«Í‰8’óTS¡&Ö2YdK¯S¬ ÕjvÏÈ6v¥Rt91ûÉ?ª¼•¥Ò÷ dF-¨Ÿ˜3M‰Y­ÔÎU¯WÏÅ ÚŽ•%¸¬V±²Ö*ãGâm¦þ‘¯zÍ®ož"ä=ƒZwÁÖëÙ4]MÕ¤íá> yö”ÿ%#±æ'ýZåÁ ¥ZÓˆá äî¢Ú"ÖjöÒnÐCK}¡¦t¥M™ÇµšÉÊåž2ËT–dçÔZ]1÷•1ƒ5±Õ“·¹ªç€_޶nªä„6PÙKTΓÍz¾Î¿ÅXE„Yk5ŒY…šgeÉ.ÊVÜs—ßÅk›»è^ {îºè^@¼£‰ ƒÓ÷õßÙ‡îuÓ׎°ÔÅÀ“Ÿò8šK7ÿnøö3ƒ¥˜°ÿÌ ¿U½ÓÛf`\(eÜÔaÊîØk¦î-X¼…z¶`Ö².ì` –¶ŽŸõ¹à͘f¦w„•œ‘^?·äˆ?þÙoŠl„ïïDDÌÂjùSÖw!—EÑ.Uþ±’®šw¬xüHY­­µ •ƒÚâ•éBù2ÍayLeŠ_îÔ½¨~ü‰'ÜzÕvñ¿ äàV V8¤ Ç­x)#ŒŒj©x¬9Íî¢Â¹`É5·¦SC6¿µÇ´OÇÅ+ø ãߪÆc˜eµÆŽ ñ´»àº+e)~(««‘‡|JU¥ÈûyQ°Æ£ˆè\š9š¬/aÕ»Iv¯TØv/н@÷Ý t/н@囯DÚâ(G¬@q쟒 I°Ò9j/9ú&.Ž ÁÌð_ÕÚÉò‹Ý÷pÇ ;5,Ô¶iô”¦õcIž*„Éÿ ó¬,[DÞ0—Ø)Vó‰KU£…ïšµ š«ªÛ¬š#eíWÅ…l/?]OY{Ô(.(˳†'÷¢Ï¨9ðñáö±!bD{Æ”b½C³>XM¼3‘Z$IÛÈÇ?ªŠXP‡)ÕŒªäÒ_q¬ÀYÇÏÒ®ü«Ñ êCq]T Gf'ù4Kv˜¨vF¾8E¥ð¹kláŒ*×¼3ëT##¿RWºíè)¨N«O)Ú¯«ó¶òlÏ»¦¦”tvJ/q‰Ö‰Ó÷ÆÐÌMýtºŽÏÌîºè^ {ý ¥92eú«¨3ô«úeâ|„h-aè”*¸ýóf86ˆ¹‚Ï()8ó\ŒÚ­š ¸'†Ûfˆ1ÁDE44óÉÝVtX0EœTY*˜‡XéPlÿ1µ)ƒYs^U'±TÖzHÎ(©(Þ:â9ú{”[y`}S^õêŸ ¾qÝ‘6zñܳ¤|åÚjeí­Y£ë7­ëºz 2 ÐïÔεR1¸ö;ã{´$iíFåE!utù©(±&=MZoªLª3‘Ï4&TlY‰r,ôVë‡n²Ê¥°Àû˜Uåîž4b<*«×à³d‡ÃVÓîa_ÁZÜYX šþ¹½Ä„© ±üûÎ VÒNk UÓôqUA¦(Ú$^nv¥Q™—ËŸ½!3^øJïûÓSˆŠ}xÕÛÓáÖÔNç{¬8ñÛ”¼@÷Ý t/н@÷£^ ¸ˆg^¬È³û†5TŠŸPi‚ÝÖE;eLtªõ®ùø.àwJþ‚OœÔ QŽL'ñÂûºÚ-¹ÄD¡¬Æ'r@õ'U*.Gi>¡Ï«0!ó9Ö1L\|°~© øî†7Ÿ82í±AÏ]¿è„ò¹¤‚z©‚KMpï §£ßïÏ-XojÞ´«M+Qˆt}þ+ëWYSWï¡ÖéÁS1YTfùù­K6ÕHc=>T07cª¼åÙŸs¸ª½ÔßÁøWëx“š$@F!jmdDÉjnOë·ªjÖ-|]T©ò– ,ÌAƒE¡î"’‡Â· ï\x•ña\eA馯Áøº,žf&^a÷\팣?M~AVÝ÷·T#’»85œlÛˆï¾ÜŒˆèºbã~îºè^ {îºX¨›òOL•f®kœT ‡Ñ³­ÖëªßéÝg†—­`̧²³¾4ÂêÄÁ5é!jýº2 WWr¦Î)Å’N·2àþé¡à¬jÌÖ‘¾<5œ|¶ñ‘ül©óÜ™d_v~D…gÉ4Õ¼#)—]bô€ê~zul`öS\ÙTðQ.RJCŠ Æ*ö¹*~lým0YÕYa δj'ÙOÂUÏך­«½NÕP݆k –Ÿ „ üµâ”QÆ0h©È²^3¼Z5¡þ[Q™(âwh6¥l)=ïßríï«‘7Ý?} »2ƒcÂÅF…f§9 Àäþ œí¬]Yð#•¡0*¬é¿$ï\1ósgÀV°ÆfAå§Ä3£¢æh8<Š}lRÕ¤â-#ÛŽˆÝ t/н@÷Ý t/@U…ªñÑ›8=Y×|â)¢~m XRyÚ ÕEÍÛÈ#"/v:þ2T >jµTÕÈ2K§rkˆ±õŒIÒŒ€Z½2àä”ã=O‘(ûÜõ¤oÑ…L¾@¬ ׎\è¯gƒ«¬0ú&[÷™¡ªi'­ tŠM*êî\h¡øóíW†w_XÅw}`P”iM×cA²ž—Ù…D¦2fÑ]]`Ü*«5õȬ(Ý']Tý­TÝ™û«Õª¬@@vc+VÊ£˜Vä`I"ª)P驲̱–µrt¬TÛ&û¬smáB„“J¬èÜ\íÞZÑ—'·[íHMê´z.äsXá¬Ku㥶6æªïúR>3œ¹T2ÀÀ#Dm'U«,õ ±\ƽcJ4ÊreZ ŒÅQ!ˆ9÷ÊVu8¢Ãþázo¸žìp÷Ý t/н@÷Ý ,T?®èµ©¾hÿ?7#®ÿdXȵ©ê Y6]YI)Ý´6"©½cuT%î…;²•?‚r_b™öX¯<)K:×´ºûK~0X Å›QcA«¾`¶öñ–¤Õ¸¢#n‡´ÞÝOÕº;žâùоÝo†d¸ æä£aÄÛg›Ñ}õ±vBÅ™µ.uÙLÿ«‹bZ~¹5¬Uâ-Ôa²Î°öæóû²ë U—uÕWv¸ÄR:é’õC]¼ŽÚãÞlT&޲’1ŒNQd=v±ÄfLµÄ`¬Vå:.ÌÉac‘…g­u–ÔW›ôššL岎¥㺠>ky²æXy)<‹ ®‚ð ²~µØéÉΣJ3ª. ÍFDÒî,üxUÕe¡N ÄÐjõðÔ41£z¶Í¨<áØÝi—XöS[k¿+­_ùÜîºè^ {îºXë¹Ðˆ¥N@¡å­¢W}É ß ·{†xÏ­A6P™ŽÚ§,¨Dê¸Âs›û¿f溤vå4J˜½Q3É^Xû˜›zŽ šï`WsîU‡V.5tÒÕnzª.h畳ab-ÆßªÚSYÈdüš¯“B½A™å×{†«]ÃÅ!Y³¢ SYTæ©ÒRß_¬Ùý%)V°v^®5¨È¢r­±'k\òƒÉîÅ¿ú¬ŸNË†šŠ©‡Ñ¯NVM°â:q)3VsÙ²H¨n]ÈN¦úX›áª¯Nlsz%²)²ã£»”ºØ4þŒ3FµôtÊz߬2‡ºBÊó¦9I}¨Ê0£§,’È­ÛwQ|¾{îºè^ {î§Âá<ÉèÛJ9V<Çú¬SçxµÆÌs5CÍuêÔÜ —1˜¥¬1|Aâˆþr1eÐ`ž]¡ãÑ­³ó͈8?º'¢VHR ʬñ}q¡ÈXÑ“rýö`¸=è^ {îºè^ {ÿ7ìu1Kë¹)å³"ÓúáÌd§|ä¡™*âØÿ‚ü»ÔƒßÌõ¾•Õ ;3ÎþÔ(Mù9¯ÍÈÃ+ÇÍŽ!ÎJTÀÁ™1÷¦¹cðl›ªHš¥>[âéâOdsê*`ü¤êúÕJ]ÎÀ¢ô‘2°¡zãš¡{34'{mÄå iµBås­G~!zC»šF¬øˆªZX³œµî±f¢«ú ýù÷8C°Ã©ü½©Cªj²£:Q‘Ò´c åVp/Pëœ#©"Ö*ÐÎ0…(GÍÒ2¾—"ºkÞaíÙÕ8^~pT© T*Ïë³àWý÷¾îž,Iὑ'ºÝ10G|±;díw ¯ ïŽ SLωÖÈaÿsCðÏèu­\Zo=)æ¬ÉW{Ój>U +¿Ìzëû^¶á=Xý«ÏzÝ âÏ«{:Œ¸Ü5t/н@÷Ý t/н@U¸H3J9ŽmåÊ Æ“Z¬#ž%K`ªdó÷KåäÕSWÙ‹?ÄkÇ™“´NX¿GÛ‚ 1±"£2ΪáMÐß== )È+›ŽZ_bÿΧþ°fROV\Ù+Ù¢Ú¯”jÏQaÄb'`|Šºöj_¿ç¸ÅYAo˜tê+sBµ!TÁæL+–§®‘ŸB¢Ò¸À×½’!Mw[bnIi‘ ,÷î‹âY¨ÖTü{T'¯Ü¼ŸXSªô›ß™lù¨×˜îîÕ÷\ð›U§†OJÕ³¥G)Í“:{YÅZŸ‚âE¨ß&ƒMeŒYP)•Ű@åæêφ+&çH§w>Üw¢–Rõ*7ñ¢Èâ‰e%V·ò¡„§CîúÒÑ™j¹yç´Nä²–,úÚÖ|+–#‚;<Æ}ôNÚ0""i§Ãˆö/†ËÇ›Ý t/н@÷Ý t/pÿ­‹' ÂZh«Nb: ú{® )›\쩃^c¥˜ÈCITq*žëõ£Ç_ªšÒõFWZh· ñ·æâ èö0âNÁDÁ.­Â8ñ P‰ŠT_VsÁ°óû¿h²áDœ"$ÁÆàÝåìgWí™">7§†)‡åfŸ«˜=tkº-Ôg)úzê9b Z§’É­ã¹j…x?¥>!aíR¢V=>‘Ö~¡N’ü ô&´xŒ¦†:¡¯qVJ¯13°K –0ÅJî¾²pÁjÒ5 ³ÀRGžÉª×]%úøž»¢%êôôWNv†“X•SÕÊ9e9a‡«MP­*Õ˜-_)½ué=uоgªrd}ˆºj¯ßÊ®f!ûOîh²‚±ß…*´Ü›UöæªæõÖ‘†µT,ȽÆYk#¢pBúŒâœá'J÷J#¨´xrìNým…c\c‘oŠÃ«³Õ >Í4zÜK€_%Å©t5pôÕ:îºè^ {îº`U[íXIv˜yFÎ7>wžéÐKVÚ9št‡agdùý¹Ô‡‰zÖÁYPç)›šþì‚Ëz||M×¹ØmSØm?㇓?°ë-†åß›‘™·}>èS)J°Â2·æÒi܉ 첕Y‹ý#Ñ«Ž9Ö{œR}&´ÍÁtÎeçš>—´yk6¤*§ ¯wÝÚõûþš]Â…ß×ú³V"i©2–Þ1 ½Î8½É÷ÅHËBL’ÏbAÄÃT9)ñLrô%ŽkåLKµäBo&õÊk.¸ú®YêÑ3Þ[v\Ué21¤ÕªFÏVj*ßceVùŸBDTю׈î‚mqe³êotG¡Y|°ÇȪ;Y Ø‚(ì I¡»VçÖúÏ•µ“´x’ªŸvƒ¨VŸè'\tú'Ž2eÃý{ݶ6bAõ¯(ô½km9¸¢g{µloQxY­l\ãÓãœT «cÁ¯AŸˆ»‘N²çQ™Ð Á»ã÷»uÕp¤G£åBl 둼ˆä~a4o¡¤Ô!×Ñšæ&glå[›½ÕŸFt¶4Ÿ‰©ÛççÅ!æ•gooö67“bTðáøþííã͈›1¼Ù3Ü9Ò&“ëHv@ö™1.>AòNswŠšÛÃ?®š!=÷Èk;Àh‘¢ObóJ×´W¯Q»…ŽK¿²Ê´Ûi#ºè^ {îºè^€‘æMø\bôçM§zÒ›_™TÉïÞDy¬¾ÌÞ¶¢m<Í@ö éD(P_»¢lL¦YäÌÉ»›ë‰Ëî¢ #¦úÄc´¥æL&^?V¶®OÌÓ “¿‚½$Ô¿Kª”ÿÚ©”ÖZí;ãš-m“Ýhók‡ÿg3bª›Åª§§®}Uðø)~U9¨W|Y²º5+Ê1a¬Úú¸Úóµ’…_åR[‰•‘S1ù®)¦j„Ù[Õ¸Ìà ã+Öx5;_3Ë•Û|M9±øŽä»käp…ÝXö¦¥x"`Š×Ýí‚“™µ—¤dŽØçÛ;‡^ÿî¹£µa‘eòýÒÛç†Zi¬O¹Ú.N ñ´·A¤kµ»Võ«0$¶mÖúzÜfªEW¡Û+՝е^r.¢å/Û0B¬‰aßá¤âzK»è^ {îºè^ ÍX+q2¤ÎèÄqúẮºóœ© gÞOêÈFìEžIym¯•c¼Bt‹GÝO9¯õŠyý>¯Vù»Ëf¨lÛ1&ž½%ÏC܃¼Ø§zzê‡z&× xùb¦étéžn¡+Ÿè°ÌT–ÝyFÉä1á»×"wÄd | ÉüP™ÇVX ‹¹—isj5&#Tµ¿¬Ô".°R¬õ(Uv/fÒ™©g)ÙygkÉeù©ÌfŠéÕ{&?p\^`­ú—½KU§¾Ú«’^x¦U¦ðûåè„Ç4B±x+F“ا¦ LžJåmÜ•ö<žg—…Ô¡¦RŒ­Gr‚wõäi…Us¹kHë1–³#U/9þIo—;–SC|Gfá#–h1Ýgp¶Ç—õ1ìë6ŒØÿû͈°lz8ö±³•ï¸Ün.§¨šFF»\ù‹îºè^ {z,©­Ö…2ßÄ‚þú‰ÝK‘„ÙSÄ(ý‡aÿ—ñ:èéœ}mˆgtn¸x:Œ ­PgçFpG(­ŠÇTŸy¿"ÌC~Zù¹ª5s¯â$3Ý•9a¡?¨ÄߢNÌç@TÔ3rZŵ{‹VeEY>²ÞÈùV«R#$I)ž™ÊâV=ìÒƒVaB^ø×¢eÑ3°mLJ僡ìy™vsO_ÕiZ¨ÄV_ž¬“‹¨FpÍqÆéI/v áÁYi‰O9|ì®sˆ]~µ!†í©”-mE€µšBcT×ÑJT¯eTS´Ã‰i„üðS&׸ÖSò¡uLÒ<_SÅ߯—D·W­J­¬à‘ϽÇ0=+ª=Œ®£hðÕvqh²2Mëèî׆›_µš8ò8QCòh¡×¯·Ãˆèö¢­“—ALfªÁ6Në\I²Â3éßN^‰Œ7¬úH½Š>zRÏш]}aXcqï^ {îºè^ {ù©ì¦q}ê<²w³1©ÕÔ.*Mâ´~A'5Í™PÁ³ÌoD`dÛýN. ±jP‘¥¾ì8£-Øí5þ`íÈû½Ÿæ½*“k¬kÚ µvµf, ê¯Q/^U©®€ÌŠVF¸š!%WÕ9ÏYQx¯ZÉÇñd­(kkŒ‚¿W¶„åP¹2ødÏ®=zþ~ÖÇ,•9*Jdœjf!ŽxŽüKɉ§zBÙÕðDÍmhÍ+"!Û¥O¢¯gÍpu`¸Øé•m× RVZ¯«JÔñNp¶§ÑV®^xŠ"ÚZޏ¢¸KA/dê5[{‚dƒM¬‰k{˜4·-*2íWV„ VËqõÜ ®RY)ÑDç£bJ¾ö_mF¨×ìU3Há%ÕW0Û‹ìóþfØÿÀ†ó„û+¨¯V>Ÿ½“ñ4öâùz¿|nà³cÍO÷Ý t/н@÷Ý ¤3>*ˆR&‹]WÌh…šd.xƯÆo<”=j:iª#[ó3ª¿"óÒFÈ#œ<6è_ÕŸuxÚF„ÍnåD¿ÚªÝ^°Ï÷³Ù^3çK§¼{¯Ÿ4)`I û¹ a­¼Ø!Rîµ*×߯úQÔîâ"Ôsaެð¤|tõPÚ? 0)ês¡h¹ÆNVÙ_qñ•¡†]ùóY`–.u±÷mAVº:Ó/ªRB¾Ã#;ãfÛÂ*¢bAÖUcz¬P}¬¢8@`9™µ's#Ná›Ào¦8ÏÍ®A¾@ñE<ζ†;Ç7Ù=­2yŠÚÕ5uSºö«•|P°µ(/é?©b9UD¨ ²0Ôî¤äÎ.Kø»…îËÊŠÉ@FÒþÁ°s4ŒHÕ¹¨EI«#f©lÖ5ÆGq›‹_8n ÌóÆ_q7²Ò*Ê«Æ*ÒCƒ¾Dƒ£ÚgFÔ!’ÅFd²{îºè^ {îRßò>»¢f™JµaU•c!¢bùâàpð\Œ4‘SNÎ š¥¡çu˜ÊÊÄÞz‚ŸC#RT>ñAQû½@}^TB\ð %žêÊ]{Ë^a²PÆY«ÊKÝåU“5–Š–ÀÞV¯±À"Â+³® v­¨Ï$n1Æ'Ù[T½LåU«ìCþ^*Hµ—X¨ÞTÅ#wMÈ)GÜR:>ôξ²4Ÿ÷ #ȘTBÐ唯 ï¤:‰ÖøÍáê÷ZÈPq=0´ÿÇp{`x{jg‚¼€4V¤Ìþýó͈¶†ú-*×\Cé%¶“™{$éªè›*²íÅ…^6=ßÊÅ]U2ù·°BI/’{‡ìꙅ† ø×|Ѿ{ŒˆÛ8R%³˜áS6V*T3îç–a~Yzû–În{ÃÅÛLl*ZMìãŒ3üiv/н@÷Ý t/н@<©ÇÖ"ï@½’˜ ¬‚SÞ ++æð¹£ÚÀû3§8‹%¾hð'“§:¾é×Èõ,py…Š™•9ázñë§9¾ì©¿77,¼¾}åÍÖIÌfSeà0‚¼ÜUíº®‹¤$Nî…’ÛMÞJ/TifèªMXñAÓùÔY³Ô#®¢ÚµàAV²ê ,ˆ\)k5¥´oœíµ ì^ÁUȘŒ×LªÂ0^9˜qslˆˆ%¹VPÇËúŠˆ )æIÞlr¸B#TQw­xÑ3ƒ<ÅÛ#ƒô1ˆšRÇ[#uÑGÙ /'Gm„æa;r|áø…á»­a³m†Âÿ–ºS ã\ÚIVNlümÄ:˜)f #EþWŠ}eu›¹+t¦Ü èÊiͦNɹ¾EÏ=Ö#£Á;£ûk±wÏÃÄ#íÿû›Íˆð&œ™+?w熧†ÛÏ ºZ;6p$µ¯&á”ÓŸ¹&vžl ÛÝ t/н@÷Ý t/ÀÞ%2˜-¨uè©)kž‡8 ‡GÁ‰JV‡‡åg矨-+HkA–_ª”©G;­ÖúŪ?BãAö_ì¯ö¬—ü¾iñ©NŒÊ଼Ř׬%+ÄZ O «ZíEŸ‘l{ ýY¥scM#¾²4/ðó[ˆ‘aϬƒ®¹ãê$Q# qæ¹S 6 íR /MÕ°«âø§zÊrÊþ¨ ûæåÅZÀ,mTMƒWAŸ.½ÔöØ~uªq}W*‘w%VüNnsEþx`8Üi#ÄÛÖŽ g£³ØkíËá ìW ƳZÿÀîÅ•èee/©ªŽµë0¾)ª‘ýˆ˜’bD%â¶:ÕbfB2æ-vwkõqfãq ¯øn'jff…ÓÄ,‘"Éösyj¸þý0Bï;\²óÌ“Å𳲍ô­7Íн@÷Ý t/н@÷©;£>ÍC58ã=êOçyMQš¤¯íöü“ _³ÿذyfªrº7Í¥d‡g%”üûƒëB»Xˆù‰ï#U ¬ó9 ÃJ~¹ªi0gº½0ó£"”‘ž£sHÑŒÊý ë½ –¾Æ+^¹«žceo‹L´×é!CWY÷f1{ásïõt¹ÛÈ‹ÕWÈn ·ü¡¯zâŽÈžCûïK3žš«cG\;ú,|‹Æo®èR;‘u…–¢÷…¹•öuD‡ôÅp^È2–Á×&ãQò2QïêWPÞY•¥ò,²ÿÊ¥Þ¤ðøngóî=ŸósCÕ‡­\sT°­™ýÚª2’£è<¦™X ׃/ë—{]Ô×9–êÆˆ¥¸èr…IÄ‹!W´POÊãlß4Ã$U/.ˆá=è%rîeut/н@÷Ý t/нÀ Sa|]ÐËé\sFs ˜ ¼féåç›?)Ò’²®ìü*Š‚óZßß‘û5ð)é³~üOêå§ žj\em˜/c´lÞ5öRã$¨iLgæÅ¤¬¡œ×b) Ñ•5^Ž[©M9â”çuRßÂŽµ–_®ŸXu-“Î|hd3ÙeV¿#ÎÈQ/J<Í(tJ’Õ­ª4VÝyÅ"{«}QÑ\¨‹(Ü ‘)F$pAMUqÄ”¢ÚS1ðTÈ~÷ íóÍù E"Šžq^_Q™p`×±Þ©ªQƬh…B)†¬¨“ ¢WÀ›—˜¨¹ÓÐ̧)µ)N¢¿hÁb† ;Ÿb­ê®bd‰sƒ‘êk å\ïfåNüÒ):± Ô£–9¯±UŽþjo¸z_ŸììvS­rq¸5LÚC^ÁB•Õ¬:8JÝ t/н@÷Ý t/Py†c†WÝ’II'21ö›¼Ø3<„1i)ê²\o¹ÃI±‚¼_éH¦„?¬b­9šuvˆâ›Ä[%–l¬J^œß}Vˆ×w¡²0ª­U&Ͳ«q%BÛ%W²º•¹šÆj½Ó?±4 #’Z êsË£.ùªŠ¸Â§±õfm¡¼äÊ~&EáÈÇK­u]tN_Dá¸æ€Ï"ì<*?é©c´¡WX+ý’~ ¢ŒÖÖŠÁ`Àóß/ úýåA]fo¶†˜Ÿâ¦–ÊÌN{}мÀak#Ôi¥è“zÇ≟#‚[/øôœÃ¡VêU–"¶–Ôy0†Q,bì‘Ï”Ýyþ-®Ž ‘U×óªp£¦ºÔ r÷»_T#M‰_Mªf7§ø3v§ø.·{iÉÚƒ·Wæ‹»’w¸>ߌà¾+Æ_Lþbüó»í^ {îºè^ {̲;WîÑnpUJ™½êží g;™q—Úô?Rùñï¯ù܇øŽ/Ÿ†‡$“û½!DÉ®›áÅ/ <ç&†4ÌÕX/Ô›¾‚9rsTauŽY*Ë£Ù¿«†ce“ƒE•ÈÞ2Ú•ž²KqÂerãP{ʪg)]cµÿ+ù8Öµ«^û’×Ó7E\"e{áÍ'²9.gV®¢‹'˜ÒYOÈ>;æ¯1ÚéN¸¿"´ÎYïʵ©rÕïÙí@Ä@ø~ÏüO£ÿ­úÅ´‹‹¿å¼u¼mÂ0âÝífDû­!ÕUFtÔ²É1Jn£Äb‘êœñt˜g¯ÜÂ\­UT¿ÂlŒ12NªÝ-ù⨺<5ÔûT¼Žã\w,o÷ ß8ÒÊån' -l‹: ¿FˆåO<„·mq³k/àürÑ9ˆgŽÈìç{32Wt/н@÷Ý t/н@ʧèON0ž€|]«× f ,ÛÅÑpq4pÃÃÃyäÄÕöaì(Ù‡‡Øÿþ·‡{¦ 4óMÅCfmA—ÜÇöjkH÷C½xÚöªäX;Ë#4â*|‚Ê#^‘lOÜ%'˜¸v©"DîßjÙ¸—ÀjMU©ø×ªzYó} ú›5S\˜7ªº}åF^ÐÇD¬lê3›9Yô"‘I»jJr>ÄøKAÆ»Øxªµ/ìv¬ h¿F¤9ö†‰¡N,îЦÑÎÍÙ$ä§­"¿\(Z*štìPÒ­Mû½Ã™Lî~gxùŸ†¬9å!òªð•ŠÊ¢n9©(’¶…+ž:¼ªÏÀ´³âH–ºPŽg KØv«¸ÇŒ§LÎ7tÆZ.ÿJ;ÌjÕP‡QÄ<* ya­gȼ>ÞŒ¸:7\49®'fìYÉH=¬H–öYè^ {îºè^ {)W¨sŠáðÉæðÉ‚²Ìtžõ‘ÁŸœ#®·†ø+q>xÖéc kº+¶š¬e§œÑ_î§äLu‚^Ð1‘Mðõ®Êºàö9öb»y±Íó¿dQSµçÿ2„Út!i-É`–˜Ö¸#ЉF/ÎÔ¬ˆ+Z~¬i\¨Üc¼ñ X¨AÅé5øpF^ðnÅ;¬E G\eÃÆTøX_2>biXñ³q§†F/ýïéŒØ±¯Ç?W¶W5) >z=å‹o#’-’¾‘Ï@þí›#C¨ÏxVWߢýÊpµÛFŒ_H™hùÇäýø–92Ì&uî +`Ùi¤]PaeO^¸tíÕÒÉïºý/CdN#*ë^>|©jr]hÍ2î]k¤C!w;œl‡I[Ó@&êÕÝ)W'S}޾…t¸\G÷|±×.L½×3ï1fžFVÀÖ®±îºè^ {îþ–½@Z)z.ÔÑï <Ùé”z‘âÝÒÇ¥s¨ßÿjìå*0ÑpǪÔ8+ÿõ—³ÿ‚tº¯·Æ+Xi*!ˆpu¼ûÒâ9¥j·ö”ÕÌ ŸlÔ­ÁzǺ£…/’à›‚ÇIñúV]&¾·ä´Š¥7™Ó”›V¾˜±”¡±ÐƒÆ|" [G>ù Æ0UAWÆ3ì|"/\ãH…œlr©jÚLiG!mzر”ûƒÆÓ¤-â^å: Kãl‘ùUý§ãlÇ ÊOý«r‘Ê_l‡‹íÀYqÝÚÝa4a)ú$;óOmDêì+ÝT¡­Xb ³.jm2Åñ¹Äg}ØÓZÕ!¹e$*ú[[¡ûºµ×-"3úÖQ?Cí‚Lê6m™O|›ÃˆKïç#löZe¥ò¼Ú‡‹ãaÄ¿7ˆÍ#TfÄíCÚ”=X÷Ý t/н@÷Ý èLߺèOVË?Âk“ô{'ÌTQ¦œ™¬ôzÔP-|ߟÊÒ@û/ &½ŒŸÆýi?ê Kê!¬ôCÏ‘æÀ…-«Tá–X×ÐùRÕèÖ”øÒëEão![ZòÎ Eã¦òŠ/pbS)†;8§'TíË­‚…OœÌ+÷ù1ÝÌ9þÀÑæ¾%i‹£ª3yœT#Šœ58¨lW9y¨,©U¦NCÔ¬G²¢šo;ç†ÑÂL¿óÈáÞázoÑü'-”á}æpË?ñ'¸–âv+ tŸïžr\ÎÙÂÃÈϪ‹¡œîŸXùFRœmM¨ÆýJ…sšEÅkÓÆÕ¢¾TMmzÊÊz›e öl1mºÆn#»;k¹cr"“ÖÕpª]ª5-̳6›½¥~ªÕ^Tûð“#Ãduí)„_ã=€Q<áÝ t/н@÷Ý t/òŒÌÇá>/v wÍpòç6BùˆÐ˜p 1K«¯áUÛŒˆ“`(2Üå#|ÖÅœOÊÑÿW~d±Á¥¬lx:áD©çZoÞ½ž*Ö¨{Rê٨ز«-ÖusÜF¤úLÎO±(nVâ?ÉŠõƧkná!¯ÝgiZ+Ÿ(ÔεR š²Z¥¶°ŽFútxÆšK÷L¥xœª¿“ò°a~VÉJsV¤¾°Â HŽ…ÐŽô UÆÓ[ÚÊ}j]\ïµk_¤#îþà Ëp½gP˜6P»Aí÷"ö[Y²{tÛ³ºÄ§üµôzÌŠV&ËÝaDìv¥æóÊ‘ªšå¹#bλˆ—†ÄG~äûàô86t/н@÷Ý t/н@¬£ª2+Ý-?Nd'»íd·ñ_#æƒõ%¥xÆš›1giâVz€(?Z_g›u‘ËV?¸ãÅxôÑ ?¯Í¯?:Å·'†›#Côé^œx½_S&1eÕ¨KaE[sAI³æÐ©ª‰Wñ žaôNNû%¢Àb'+Q*~ÃVü[QŸcêq[á»cÝcò’QE½h#Þïê©yö•ÔÔîKÊ5m×ðÍSCkÖX&¾zuD¢†vaþá ¹£P´ ;±›ªþ,|\;·[ƒªaÅ–£æÅŸ ‰²ü-£T´á ¢¶»MÅ×qs`àZ“P5/³ÿdáVmLböÖš*+w ym¿çô»è^ {îºè^`âþU¥¨:¿ì¼®yFv Û;ªÄ"+5Š©³Ãm‚ÿ\=®¦Î‘Cÿõá\Ó:j¾uD–§”Ñ~»7¼Ý‹ºµ¿HÍ*#B>®ö —¿0ÜükñÃãͱõžÉò×ì'ípõ ³Èõ’vd‰¤\3°Ì|•u·`hÏSü„ˆÈ&—Ù¸• Uzù'3IÚ²í-¨Ì`ôÒõ¹Ná ÓºØÎ îaUáѪœ"66oµ¦¤¨™O•ÉXéÌ>GŽÕg»V£"‘Qý0y|ÇÈN>$æ³ÂÖø)•Õ÷óÀøüתWÕ¥óË#¼ÛÛ¼›jSõûYk#¦ž²ªL ÿXv)äsNöˆêô¯W†›sƒ"u‰ ZÙ½OÔœ;ÇËí#ÃÍÞp3UÈ«â…Öµ2ÃG‡¬h­@ÄWˆ˜¡êiɃn–ÄBé¶…1CΤnI5ÕyÓ ì^ {îºè^ {)/ékÝÖÌ'N«ÕοäS ]<\“j5šêÑ&»‘>ëäŸÛˆÔQެñác‡t«×rÄêÞòL‡ÆÿÇtö÷¯ã̽‰iy¡nŽZ$›óãºÉ4ÓpZ—‡úæÈð×Y˜Ë#ÃB.•˜]$E;r­ÓjM~¡7‡ïä¿2¢‚¸fiž7©1T#BeE/ì4Êw¯Jñ)wÌ'[£@•e®¬MòÔºÍ=Žêù0BÕƒQg(2+¶lâ”{ùجš ˆPïOÜ,É"ùgÝ<5¼Ú3Äu V©>ͨLVœªj-ÝÏÓþJÅUöûòÎgí*OöÚˆ£aÄÕhw7í¹ã±CÑ¡ÁKl'dPA>Õ·s‡£‰T5kÜÌ}.{7œm Uga§ÄÙN EÆîN ÁU¨šmÖ'ø,â+©~ èŸNºàBtÛ›x#~å#W3®¼îºè^ {~+ðzQ!Uåéú>#"äsû¬ #4VÊn¤Y’ÃRÿò¤EâýG5;ü JÎr>…bøÉÎ0¢ý£Ã5²?Òˆö“Y©5J¯NÛˆïžä¢Ë[Z{`¬J ’²<Ñâ¹á< ‰F²{ä[Ž\›ê~Á X«1 sý×µÿÊä@’dŸËsI™Ð5ßWy!¸'aÖ›]c%ª~Šq%ŽD†q8DŒ¢ÄÇÒéÛUW&ÍÇ‘¡Våe¾â¡ªÊ=Œ3cAkcòjkPÂzlóþWð%¦‡þk0]žÍv½ÿå±³‚#¯qˆlòÓ6‚ö9Öò±!¼6Xøè/"sJ5_SÔ‘áL¨½{¬Ó¾Þ®w#’|ñ™A;¬Š3o¤Yͺh]G÷£9ÆR}–¼îD¿Ç~RÑ*ðK§*‘Ò3³Ez¯Î,ÇXPê¹st/н@÷Ý t/н_9ÛÎÞÏÕ•J¼×Ÿ¾i­j礑yã5’ÂÈTÉæ‚kiF­ô‘=$>“êâ\óQ k:;0D]™?»ÕîÂgý˜Ü1ŸÑŶ¸Ùnn¶ïÏkêÊ/Ü}ˆ$E j ³Ë¦T9.09W&·*Ö˜ó„kŠçܘ“Ôg©½ÊAM¿#†+òÐ1jUÇEè;j&ºDÀ˜­ k }NŒ¼—ƒ&Aç[s«~¹gÈ»&ÿ}I¡(‚È⹦ Ù<<òy·kHÖ¬è˜hä¿o†ìgä|$.ôàújÆ„ßܶ‡ã–ïÑ@6¶éÙ>'qM¨×ÒãEÉ’“/šLt¬ËE$Pú8¬¥¤ VmóÅmóîεJu¿z¤EïQî;¢èˆF!˜ÞÉÛðâ+Ã÷ùµTõ*ñûû_}eH«Ì_×î}AÍ6ú([ƒ^Q-}°‹‹½œêóÝ t/н@÷Ý ü {ÿ´FlÆR©$e@0þ‡ç2Çê÷vkÐS˜x·ÔS6+ZæÞ NÊOèð²+Lj)Þþý)ëíY¹5Ö&°"ÿ”ú©N̳câ w"9Á¯XÕØ“ª"B ªñQd[r¾¨a«Üѵ¯$bäy m_AÊ,—:̸óª’ªaqÿìCf-}VR¨)Ýv|O‰%o[¸¶Xí û¯h.)j¤î{uŠ)Îã>ñ‰1Ëñ³œ{ÊíªÇ*ž²Ö¬žþ©!Å£Ä;Í'¨øá'VrþÈZЇ¯Äˆ¿ÙN¬2{\üÖjìžO'{^ôyiÌ}ÍNµ—Px¡ÆN)E°É·V:ÑÂS'uÑ9œúÃÎKëGÚñät">äaM¿uk»&1ÞxwØëcCí ûŒ¸¢´¨Â¦)Vb†‰…‘IÅê+ã ùaºè^ {îºè^€ a¥¹6¥™XìíÕ¨_9‚¥6ª•BĆ|Õ|òÜ›ÿ*Õ¢/#Τʙ>èú?~5é»ëüEÖ¸T…è5ZšE)§ÃºÊÒ©· -5“…­1“G¢fÖØ²ÆhA–æ…Ù(vÙ@ì.èfTõn5JVrâI¦ØÿÔ[D+hUœ¬ÁÓ•,8xY­ªÞ¢Ø¹5Û?0£/ï)ìÍŒ<ãhèÌÖ&á9¢H‘ª nn •uíÇ1¢óÞ–t]?d}ü„ª <ñªuÝLè<;5Ð_nۈÃj5U1»Pº'L~\Ì~xš1Ï#v4sM¯‹žö„±—Ãhй—G¦8ªd£‚ÞyÞ˜-ªÞô½DÜ-ÖÈÍž!)Hªfz¦©&6æ†ùÐ˶AÏ•v_~Ý t/н@÷Ý t/ºpîNôzjš¨ÒVö¾ì©²Ô3ËÒ¤V³u±º?Ã^à'iM"C}?—Åê·X«¾sßÇŠ5_Ý• .)θÿ]È;Ç ´'B5ÆÄ–V´Zª^<C"g­¸YéCa\²ÿP²K:òTf¤/ƒý™â]ö‰ä²®Ñ›5ûĉ·Â&1©œÏzÕ×°‘+…ýþi¬À—r8«±‰ =^_U _mFì·¶ïdÅ#Â×Г’Ù›\ŠDÉ>P§&QVª=ï[r¥”úŠZ;½óo†ý;ä”4Œˆø˜ü”Yê‡Q±}ò,®J)kÛ¨ìybÞ`ÌYæÈ“*‚- ¬¼<㟬¨,s‰•–Éÿêi¢B^w(öæ¤ Û úÝ3¿w zýêÔ ©{VÝHä²å¹ £çv:¶)f‹ù,M[½­—­Z‰îºè^ {îºH°Þ¡®®¾ÂRç8(¸)GU‘þ)q?ŸÈ÷é'ܹ×LYÝ”ƒþ‘y±‡ßÕýïŸÿUÜY⸠ëŠî$fˆÂæÈ ¬iǤå];ž"SÏ—"fX³ñNp¤\véØÊ™å«aâ6Tœ)ѼT')ÛKË^°…èYõ•¯«8¾©çdi=*H¬qÏíJžìsqŸÈqKéûfPéòhQù¢ÃL¯ô ev‘²÷øTîô{Y#"“«ÚoÆvÞ·ËMùqE·bÈh!4>­¸kÈÿôüøÄ{ ë]{ ñìãõYJ&=v¶ð³ñKÛÖ@?Ëß/w ·†<»¬î="B¨d¸zn>jô¯©BõvϰÿÔpèH{dÌÅkÍìðTK€ˆkeYdDTï¤BÖB÷Ý t/н@÷Ý „R-V7WyÌtå³íày_Ù娹¿Ûùd/p–ùÇyä_j¬iÍkð s\Íˤ«èJÕs‘e…aÉ{ÓŠ½Õ“ª1™Ê±ÂZb8\Ëšç_–xíäMVþU]r)_ìwÈ3æŠõžžÔœsO´~õÌ[´&Ù»”÷*ÿ»ltЬq›òY©–êÊÓ•Ø©ÍÁî-ÚùÊQt3“jaö”qH¼Üs(K*†©uÍ<þþîŒXŠ00wœø:À;¿•BMªúcµo`S< òp¶·ºWÊ)òËË»£ýÇìp|Í'ÃÚØ˜Q%¢QG÷h•'91K{n:=SíQaáÉ93Ý—pÍÄ5¡¿âN@XGÉ ¨ÆÕ¯¹c`Wšjѹ Þ4ƒ4åùéoŽ Qc|lîçߎõ¢½D©¬ˆ]r⧆Û#ÃÍï ¬LHñFU–b–r-t/н@÷Ý t/н@ªãª*ÞÌNâoU•ù ÇGtÓˆ +jÆJ´d¡Kå§ø‚ŸÞ5ÿ©Ýô5ú´ò-hKÁ'@_ÏW•rdK¦šêo'[4÷Ýlž »:^Ê·Vvb~Šô,V¹>Ô[dgHUñ _°1¤øÒ ÓÅB%[e+™ñ4—ЧXË'OTF8Ûš+#ÙBƶX*žâ'N•ã61’þ,‹‚‚§†°–ìRñöçQÛyÔ>á|@—gB©-g¤…ülä‰Ù®ÉÚW®ŽôìÔ‰©•R²Ÿ ܉Рêʌౘ¯P½Eö\8dÃ'çxñúkƒx¡§zosF$ʘaΞnF¼jƒá‹ÍÎ7EoNÄu©þA}Gñ&.DqShæ(Â~EÚ“´¯Sf³%õNbÿÓ½@÷Ý t/н@÷ÓȧAzʜϬô«…Â;ªÅÞ>ÞŒˆ9 V·j'§ÇûÓíÿ_îçážeXÁÊ1Û1éÎÀó²î±Dç¢V“1ôg¥|ñ©¡öÈ0/ï×ùqM›²2³ÕÙ¥»â_Õß«Ú#º{ô1«Ždí¡¢7ó}Œ‰q¬j®¹Ìð”gí.=)UÅɬ‚ΣĨü¯¸ñ¬#Ž!Û¢>#òB'q ø¦«sÙãþ¾°@©þFˆ•™µ‘•߯jýD$S*´j’2v”uQçÎÍ©»ÐQøÒs¥Au¼ùðä”?u¤ý*¹)TÕé`Üoÿù é~²W®î¥'†vWÅõ=³Ö¾üHÜ!*·™÷_ð§uÿ£qFíhªm.5q̱îºè^ {ª6ÙËüdZk™¦j+׃ð9 û—GÐÈ3Û_?3_Ä_ ïì˜"êê‰;r@U'Žg4œškXÕ©=‹ZÛ‰˜Cš Õ^1+ O¶x¥Uk_¹¬ù ë]T ’#Ž™b®îÚõ_µr‰N–¼Ö”Öo!ÈžC‘„‘:æí$ 7k;ãoýt¿ÿ¯†ÊA‘²Þ\¿œ ª–ôµÌ<µr|Ô¾ æ„ÇͲ¦SŸ<~©/e,´Î±2d·0sfN`œƒÕH#Ÿ;c#"9Ñ;«=„Pª%4Xæ˜y¯~?±ˆ Êôò+CØÛSƒ´«¸[PÖ^|’¬ˆYt0:‚P¿ÚäoòjÛ`±sDT*íýæœuŠ:‚Û‡gÕÇ7o¹‹îºè^ {'‘¥çëPÍ¡3èŠYw¥úºëC­ý¿•Ãý \s¡²neîã÷À긘ÕdžÐ%©5“åÌKm¾ˆié¼ÏO=)E•Õ,êãx!ò¹Ì>—®ö•yF½JW{Îk›§‹{F1»ÙSØ'bDŒ)a´ƒ­‹§oܧ*"*A²cbV<6PáH|ã1‰È·†^<ê§ÈŽ…Û^z•·íÇ1H<¤‚:æLñâ“q5“ˆI¢óŽ6|¡ö¸äÍSM)9Т×ÉËŬRõƒ`ñ.†‹ƒI95¨Œ±/æê]“ > >> endobj 282 0 obj << /D [280 0 R /XYZ 89.292 765.769 null] >> endobj 283 0 obj << /D [280 0 R /XYZ 133.945 321.099 null] >> endobj 279 0 obj << /Font << /F8 79 0 R /F75 96 0 R >> /XObject << /Im9 273 0 R >> /ProcSet [ /PDF /Text /ImageC ] >> endobj 288 0 obj << /Length 2403 /Filter /FlateDecode >> stream xÚíÙŽÇñ]_±˜„Ìqs–ȱ vÄ‹äÁ2ì9äZrVrW #ÿžºú˜cw%²ÄÃ飺®®ê®ªá³óGŸeÿ¿ò Ûã@á¶çê-èZÀ#ëÓEQð·¯æäer–œ‰ŽŒáŠÑ“à4{):…AÜ•ÌI1àtí°®‚œDí–I{lÉüå®~+‹vH‘Ç í ´ž+5{!&„{Äz;ˆ}VE¤‘0›m˜I옥š'œŸ,QF•½Æ~:¤O$Ê`oA‚Ñ9Ý_1‰ g{Þ?9)δ]³gë¹Ø?´Ÿ ß›„ÁK~]:®6vKbj+󦧺œT·¦C!Ørg;‡U 0kùôvÇT³kÐoy¡Óéæ‚ûrÆ×¯Eϰڙ4Åß—í®áéHϾOl÷HbÓoÄš$«J¤˜ƒX&¥‰ÎËCã./5òm`‹ ¬‚‡Ø hˆä¡{ /¿å§¯&–v² AÇÑ=\”йú+úÒ»]‹·D¦üµÚ±dRw!Ø*4o"îp•·Õ#ßñ|?àŽ-Ó9ÙK¥Sd¿Žâ"óbøêð³øW¿a¼+§æšÑ¹{H¢ á¦k„ÚEt2‘ÇÌä¹…d–d]d.—~c» {ŒåFûé_†Ëƒ¸Š·uÏ ¤šú ¾p‡«˃hJa ƒ ø.DW ¯ïh„Žš«HéØ#Fê ˆ_Ô“þvþGV‹[¥ýHÃyðÁí¨¸VŒ / öEî_  ávÍï×dš&:ÿQ'¢àtäOÚÎ{žVüŽ#ì)®ßaã[xž}ÓSf½©%ÊBüpŠ“Âó3ÚŸoþD:gÇQÁs^Qe’*CŠú|¾È KƒÝÏЊ¹¹‘€!ž ‡ÄÍ:ïwV´•÷ä÷ñ>E—‰VšÙãh• n;á2çOi?æEFÞ]#0«1šnƒˆÏƾõ|QUm±³Óc”8M<ƼеËï.ê7Âì^8á13|-S!¨î“AVU_ÆÝ@‹O#utÒÞÍ]Hdy ¤:çBÕ¢(1Ü`SÚ#¤M*IS-(CœöËMÂÛò»¡0‘ÐÒé­§|Æñ2§º :Æ{ÁÀSÀ“Éû>èÔàŒ‡«ßn UèŒði¯gVð!ÞÖçyÁ“ɘÁ€@WàÝz’Žd2òÄ|§Ò/"™œñp¹ð˜=@/ÐÓ¯E¤Ët@áŒ×EàïnfZJÖÆò•²)Ñ¥özæ5öNÙø8È'èeÑ~XÙC=Ae³^v¦9Òå ÿçÃ=òÏ¿·îîÌÈëãØÓ<1¾tðë\pÈVY$Úf‚ÚÝø¹ÀtKfègºŽ)ÎÎC]¦žª½(•äæðÞÄÞã¹°‰*sA‰‘C^º gÏ<ÞH¾Ñã.R´¨|zXY+@›ã0Ø‚Å!&ÊS)r£7¿Ô6ý™¯#ìv=rÊ/2›Ï^DéP¡Cä“§9Q²˜§¬T`›/ºý°}‰ÓA`óí4–Ý(aƒ©¥$|áÚe@õ1ÀSÖC3Øß¿~ŒÅ.G4’*í7b8ޝz»‰Ãcý J_Ü1IŽÖZ,ñ*Œš€Ÿy(à¦jQ¬W7n«ââIÂ9y³H‚ì#^ìïDàõÄ™ï˜)Òn‡õ—Tsdï«S¾(ÀíMpùˆçäRX“ûš$¶}\-ˆ–Q0yìošÛmý4A×B}…m¾Î¯^ì }£”âÖ+) 'Ðï|Sïº B;u;3m=­{5£16- †6= Qáð%ë¸:Ó_ÒÉ¢S ;š›ªiEä/ÝÞm\ZHR¥4¯–hŽXUžn+Yц¡<Ñ©òÑ7Áçž¡ÜgBaq"M:Î7jUò)ø˜Ûc•ýÓq4À£x[2 WŽ¿êe>*Ô.þRay0GÞ5AÏ~zYL/.qŒ[÷¢ä›¬3v——ÜÜÐÒÔúy‚—q‘7&cûË=i×÷âõ?ð²§”±»”I>ÈÅ÷ïñÄì“ávrÈ^KþåŽõ±N]þôFÞoB-C’.+–‚ç:Êk:ฟô8ãþ^TöS¼þtÇ—£©ûý£<ÓËÛ"z4‘iFûë‰ëûˆ?™">0Î;¸Yú˜ïqñâ@_¦h!΢?(˜Ù¿{ŸC%ÿ=ºÊØ2œžñoCùbøÙjü×å†6¤‚0¼«÷îø¹îÂéo¢¨Ó4I‹âa}•IU”“úòÃ&¶ÒÄ_ûB)‰_¾„ó'= ôTº©’²,8Ç&_xôåù£ÿŠÏendstream endobj 287 0 obj << /Type /Page /Contents 288 0 R /Resources 286 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 290 0 R ] >> endobj 290 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [438.032 680.15 445.006 690.989] /Subtype /Link /A << /S /GoTo /D (figure.8) >> >> endobj 289 0 obj << /D [287 0 R /XYZ 89.292 765.769 null] >> endobj 46 0 obj << /D [287 0 R /XYZ 89.292 654.525 null] >> endobj 286 0 obj << /Font << /F8 79 0 R /F75 96 0 R /F39 57 0 R /F80 106 0 R >> /ProcSet [ /PDF /Text ] >> endobj 293 0 obj << /Length 254 /Filter /FlateDecode >> stream xÚM¹nÃ0 †w=Gy°"R¾Ô±GÐc à­Í`ÄŽ ¶Û}ÿR‡Ó@ !òÿ?R‚惀F+[ P©UUep\æežÏÝÕ«ÀˆÆÆîm@ Ï“88ÜÄtœÞM~¬Ån_eÁ@}†Ê*²”UÜ) n?å>Ayáè9Í]’’Ei’4##Ÿ¦y¾95kôO£óiÙô+GŽe èê’ožæHü$Aú§=Â3g¯øqË%ººÅ5Hž{â«ùà*: Ú—Îõö¸–×_åV·aÇ2¡ŽTï±nÜ8”*9Öï@Ú(Sdü¡T*ƒä‰Èi⥺‚f}endstream endobj 292 0 obj << /Type /Page /Contents 293 0 R /Resources 291 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R >> endobj 285 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./ShortRead_and_HilbertVis-tssPlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 296 0 R /Matrix [1 0 0 1 0 0] /BBox [0 0 288 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 297 0 R >> /ExtGState << >>>> /Length 298 0 R >> stream q Q q 59.04 73.44 198.72 191.52 re W n 1.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 80.53 m 66.45 80.58 l 66.49 80.60 l 66.54 80.59 l 66.58 80.59 l 66.63 80.62 l 66.68 80.63 l 66.72 80.62 l 66.77 80.60 l 66.81 80.61 l 66.86 80.63 l 66.91 80.65 l 66.95 80.64 l 67.00 80.65 l 67.04 80.61 l 67.09 80.63 l 67.14 80.63 l 67.18 80.64 l 67.23 80.64 l 67.27 80.67 l 67.32 80.67 l 67.37 80.68 l 67.41 80.70 l 67.46 80.73 l 67.50 80.75 l 67.55 80.75 l 67.60 80.73 l 67.64 80.74 l 67.69 80.76 l 67.73 80.74 l 67.78 80.74 l 67.83 80.73 l 67.87 80.72 l 67.92 80.70 l 67.96 80.72 l 68.01 80.74 l 68.06 80.71 l 68.10 80.71 l 68.15 80.72 l 68.19 80.74 l 68.24 80.72 l 68.29 80.72 l 68.33 80.73 l 68.38 80.73 l 68.42 80.72 l 68.47 80.71 l 68.52 80.73 l 68.56 80.73 l 68.61 80.72 l 68.65 80.73 l 68.70 80.70 l 68.75 80.73 l 68.79 80.79 l 68.84 80.81 l 68.88 80.82 l 68.93 80.82 l 68.98 80.81 l 69.02 80.81 l 69.07 80.83 l 69.11 80.81 l 69.16 80.81 l 69.21 80.79 l 69.25 80.78 l 69.30 80.80 l 69.34 80.81 l 69.39 80.79 l 69.44 80.80 l 69.48 80.80 l 69.53 80.82 l 69.57 80.80 l 69.62 80.81 l 69.67 80.82 l 69.71 80.82 l 69.76 80.84 l 69.80 80.85 l 69.85 80.86 l 69.90 80.87 l 69.94 80.88 l 69.99 80.92 l 70.03 80.93 l 70.08 80.93 l 70.13 80.93 l 70.17 80.88 l 70.22 80.89 l 70.26 80.88 l 70.31 80.89 l 70.36 80.86 l 70.40 80.88 l 70.45 80.91 l 70.49 80.89 l 70.54 80.87 l 70.59 80.89 l 70.63 80.90 l 70.68 80.92 l 70.72 80.93 l 70.77 80.95 l 70.82 80.99 l 70.86 80.98 l 70.91 81.00 l 70.95 80.98 l 71.00 80.99 l 71.05 81.00 l 71.09 81.03 l 71.14 81.02 l 71.18 81.04 l 71.23 81.03 l 71.28 81.05 l 71.32 81.04 l 71.37 81.03 l 71.41 81.02 l 71.46 81.01 l 71.51 81.02 l 71.55 81.02 l 71.60 81.01 l 71.64 81.01 l 71.69 81.03 l 71.74 81.02 l 71.78 81.04 l 71.83 81.04 l 71.87 81.04 l 71.92 81.03 l 71.97 81.04 l 72.01 81.04 l 72.06 81.04 l 72.10 81.05 l 72.15 81.05 l 72.20 81.07 l 72.24 81.06 l 72.29 81.10 l 72.33 81.11 l 72.38 81.12 l 72.43 81.11 l 72.47 81.13 l 72.52 81.14 l 72.56 81.15 l 72.61 81.19 l 72.66 81.18 l 72.70 81.16 l 72.75 81.19 l 72.79 81.19 l 72.84 81.22 l 72.89 81.22 l 72.93 81.22 l 72.98 81.23 l 73.02 81.26 l 73.07 81.31 l 73.12 81.33 l 73.16 81.33 l 73.21 81.36 l 73.25 81.33 l 73.30 81.34 l 73.35 81.37 l 73.39 81.35 l 73.44 81.35 l 73.48 81.31 l 73.53 81.33 l 73.58 81.31 l 73.62 81.37 l 73.67 81.34 l 73.71 81.37 l 73.76 81.38 l 73.81 81.37 l 73.85 81.35 l 73.90 81.33 l 73.94 81.33 l 73.99 81.35 l 74.04 81.35 l 74.08 81.36 l 74.13 81.35 l 74.17 81.33 l 74.22 81.34 l 74.27 81.34 l 74.31 81.30 l 74.36 81.30 l 74.40 81.33 l 74.45 81.32 l 74.50 81.35 l 74.54 81.32 l 74.59 81.31 l 74.63 81.30 l 74.68 81.28 l 74.73 81.27 l 74.77 81.25 l 74.82 81.26 l 74.86 81.32 l 74.91 81.28 l 74.96 81.25 l 75.00 81.24 l 75.05 81.27 l 75.09 81.27 l 75.14 81.24 l 75.19 81.25 l 75.23 81.26 l 75.28 81.28 l 75.32 81.26 l 75.37 81.26 l 75.42 81.29 l 75.46 81.33 l 75.51 81.37 l 75.55 81.41 l 75.60 81.40 l 75.65 81.40 l 75.69 81.41 l 75.74 81.44 l 75.78 81.43 l 75.83 81.44 l 75.88 81.45 l 75.92 81.43 l 75.97 81.39 l 76.01 81.40 l 76.06 81.46 l 76.11 81.46 l 76.15 81.48 l 76.20 81.45 l 76.24 81.47 l 76.29 81.47 l 76.34 81.47 l 76.38 81.48 l 76.43 81.47 l 76.47 81.47 l 76.52 81.48 l 76.57 81.56 l 76.61 81.54 l 76.66 81.55 l 76.70 81.54 l 76.75 81.56 l 76.80 81.56 l 76.84 81.54 l 76.89 81.53 l 76.93 81.53 l 76.98 81.55 l 77.03 81.55 l 77.07 81.56 l 77.12 81.61 l 77.16 81.62 l 77.21 81.66 l 77.26 81.66 l 77.30 81.64 l 77.35 81.64 l 77.39 81.65 l 77.44 81.65 l 77.49 81.67 l 77.53 81.67 l 77.58 81.65 l 77.62 81.67 l 77.67 81.66 l 77.72 81.69 l 77.76 81.72 l 77.81 81.74 l 77.85 81.72 l 77.90 81.71 l 77.95 81.72 l 77.99 81.71 l 78.04 81.70 l 78.08 81.71 l 78.13 81.71 l 78.18 81.72 l 78.22 81.76 l 78.27 81.76 l 78.31 81.76 l 78.36 81.76 l 78.41 81.76 l 78.45 81.76 l 78.50 81.75 l 78.54 81.77 l 78.59 81.80 l 78.64 81.80 l 78.68 81.83 l 78.73 81.83 l 78.77 81.85 l 78.82 81.84 l 78.87 81.85 l 78.91 81.83 l 78.96 81.85 l 79.00 81.85 l 79.05 81.86 l 79.10 81.87 l 79.14 81.90 l 79.19 81.89 l 79.23 81.90 l 79.28 81.87 l 79.33 81.86 l 79.37 81.87 l 79.42 81.87 l 79.46 81.88 l 79.51 81.90 l 79.56 81.91 l 79.60 81.92 l 79.65 81.94 l 79.69 81.94 l 79.74 81.94 l 79.79 81.94 l 79.83 81.98 l 79.88 82.00 l 79.92 82.01 l 79.97 82.01 l 80.02 82.01 l 80.06 82.04 l 80.11 82.09 l 80.15 82.11 l 80.20 82.09 l 80.25 82.10 l 80.29 82.11 l 80.34 82.11 l 80.38 82.12 l 80.43 82.09 l 80.48 82.10 l 80.52 82.11 l 80.57 82.12 l 80.61 82.12 l 80.66 82.14 l 80.71 82.14 l 80.75 82.15 l 80.80 82.15 l 80.84 82.16 l 80.89 82.17 l 80.94 82.18 l 80.98 82.17 l 81.03 82.16 l 81.07 82.15 l 81.12 82.11 l 81.17 82.13 l 81.21 82.13 l 81.26 82.16 l 81.30 82.15 l 81.35 82.13 l 81.40 82.12 l 81.44 82.13 l 81.49 82.12 l 81.53 82.11 l 81.58 82.06 l 81.63 82.05 l 81.67 82.05 l 81.72 82.05 l 81.76 82.07 l 81.81 82.09 l 81.86 82.06 l 81.90 82.06 l 81.95 82.06 l 81.99 82.07 l 82.04 82.04 l 82.09 82.04 l 82.13 82.02 l 82.18 82.02 l 82.22 82.02 l 82.27 82.00 l 82.32 82.00 l 82.36 82.02 l 82.41 82.05 l 82.45 82.03 l 82.50 82.02 l 82.55 82.03 l 82.59 82.04 l 82.64 82.04 l 82.68 82.03 l 82.73 82.02 l 82.78 82.07 l 82.82 82.09 l 82.87 82.10 l 82.91 82.07 l 82.96 82.07 l 83.01 82.05 l 83.05 82.06 l 83.10 82.07 l 83.14 82.08 l 83.19 82.09 l 83.24 82.11 l 83.28 82.11 l 83.33 82.13 l 83.37 82.11 l 83.42 82.13 l 83.47 82.14 l 83.51 82.15 l 83.56 82.14 l 83.60 82.16 l 83.65 82.17 l 83.70 82.19 l 83.74 82.20 l 83.79 82.19 l 83.83 82.20 l 83.88 82.18 l 83.93 82.13 l 83.97 82.08 l 84.02 82.05 l 84.06 82.04 l 84.11 82.06 l 84.16 82.06 l 84.20 82.07 l 84.25 82.06 l 84.29 82.07 l 84.34 82.11 l 84.39 82.11 l 84.43 82.14 l 84.48 82.15 l 84.52 82.14 l 84.57 82.10 l 84.62 82.15 l 84.66 82.13 l 84.71 82.11 l 84.75 82.13 l 84.80 82.12 l 84.85 82.11 l 84.89 82.12 l 84.94 82.16 l 84.98 82.15 l 85.03 82.14 l 85.08 82.09 l 85.12 82.09 l 85.17 82.08 l 85.21 82.07 l 85.26 82.11 l 85.31 82.11 l 85.35 82.10 l 85.40 82.12 l 85.44 82.13 l 85.49 82.14 l 85.54 82.14 l 85.58 82.12 l 85.63 82.09 l 85.67 82.10 l 85.72 82.07 l 85.77 82.06 l 85.81 82.03 l 85.86 82.02 l 85.90 82.05 l 85.95 82.09 l 86.00 82.11 l 86.04 82.11 l 86.09 82.14 l 86.13 82.21 l 86.18 82.23 l 86.23 82.21 l 86.27 82.24 l 86.32 82.23 l 86.36 82.22 l 86.41 82.24 l 86.46 82.25 l 86.50 82.25 l 86.55 82.29 l 86.59 82.32 l 86.64 82.33 l 86.69 82.30 l 86.73 82.29 l 86.78 82.29 l 86.82 82.28 l 86.87 82.29 l 86.92 82.28 l 86.96 82.28 l 87.01 82.26 l 87.05 82.28 l 87.10 82.25 l 87.15 82.26 l 87.19 82.25 l 87.24 82.26 l 87.28 82.27 l 87.33 82.29 l 87.38 82.28 l 87.42 82.29 l 87.47 82.28 l 87.51 82.30 l 87.56 82.28 l 87.61 82.29 l 87.65 82.27 l 87.70 82.31 l 87.74 82.30 l 87.79 82.33 l 87.84 82.31 l 87.88 82.36 l 87.93 82.35 l 87.97 82.37 l 88.02 82.34 l 88.07 82.32 l 88.11 82.32 l 88.16 82.31 l 88.20 82.27 l 88.25 82.29 l 88.30 82.30 l 88.34 82.29 l 88.39 82.31 l 88.43 82.30 l 88.48 82.31 l 88.53 82.33 l 88.57 82.30 l 88.62 82.26 l 88.66 82.24 l 88.71 82.25 l 88.76 82.26 l 88.80 82.25 l 88.85 82.25 l 88.89 82.28 l 88.94 82.31 l 88.99 82.32 l 89.03 82.33 l 89.08 82.34 l 89.12 82.35 l 89.17 82.33 l 89.22 82.34 l 89.26 82.36 l 89.31 82.33 l 89.35 82.33 l 89.40 82.31 l 89.45 82.31 l 89.49 82.32 l 89.54 82.33 l 89.58 82.35 l 89.63 82.33 l 89.68 82.33 l 89.72 82.31 l 89.77 82.27 l 89.81 82.27 l 89.86 82.28 l 89.91 82.27 l 89.95 82.25 l 90.00 82.25 l 90.04 82.25 l 90.09 82.24 l 90.14 82.24 l 90.18 82.26 l 90.23 82.26 l 90.27 82.25 l 90.32 82.24 l 90.37 82.30 l 90.41 82.30 l 90.46 82.30 l 90.50 82.33 l 90.55 82.35 l 90.60 82.39 l 90.64 82.35 l 90.69 82.41 l 90.73 82.38 l 90.78 82.39 l 90.83 82.40 l 90.87 82.40 l 90.92 82.40 l 90.96 82.43 l 91.01 82.43 l 91.06 82.45 l 91.10 82.45 l 91.15 82.45 l 91.19 82.52 l 91.24 82.53 l 91.29 82.50 l 91.33 82.50 l 91.38 82.50 l 91.42 82.54 l 91.47 82.53 l 91.52 82.54 l 91.56 82.54 l 91.61 82.54 l 91.65 82.55 l 91.70 82.57 l 91.75 82.58 l 91.79 82.59 l 91.84 82.57 l 91.88 82.57 l 91.93 82.55 l 91.98 82.54 l 92.02 82.53 l 92.07 82.54 l 92.11 82.53 l 92.16 82.53 l 92.21 82.51 l 92.25 82.51 l 92.30 82.50 l 92.34 82.53 l 92.39 82.53 l 92.44 82.56 l 92.48 82.59 l 92.53 82.61 l 92.57 82.60 l 92.62 82.59 l 92.67 82.60 l 92.71 82.62 l 92.76 82.60 l 92.80 82.61 l 92.85 82.59 l 92.90 82.58 l 92.94 82.54 l 92.99 82.52 l 93.03 82.51 l 93.08 82.57 l 93.13 82.51 l 93.17 82.50 l 93.22 82.56 l 93.26 82.54 l 93.31 82.54 l 93.36 82.54 l 93.40 82.54 l 93.45 82.52 l 93.49 82.53 l 93.54 82.51 l 93.59 82.51 l 93.63 82.53 l 93.68 82.50 l 93.72 82.49 l 93.77 82.48 l 93.82 82.49 l 93.86 82.55 l 93.91 82.55 l 93.95 82.54 l 94.00 82.55 l 94.05 82.53 l 94.09 82.51 l 94.14 82.52 l 94.18 82.51 l 94.23 82.52 l 94.28 82.54 l 94.32 82.55 l 94.37 82.54 l 94.41 82.54 l 94.46 82.51 l 94.51 82.51 l 94.55 82.51 l 94.60 82.50 l 94.64 82.44 l 94.69 82.45 l 94.74 82.45 l 94.78 82.42 l 94.83 82.42 l 94.87 82.46 l 94.92 82.44 l 94.97 82.43 l 95.01 82.42 l 95.06 82.39 l 95.10 82.40 l 95.15 82.40 l 95.20 82.45 l 95.24 82.46 l 95.29 82.50 l 95.33 82.53 l 95.38 82.51 l 95.43 82.52 l 95.47 82.51 l 95.52 82.54 l 95.56 82.54 l 95.61 82.54 l 95.66 82.56 l 95.70 82.59 l 95.75 82.58 l 95.79 82.58 l 95.84 82.58 l 95.89 82.58 l 95.93 82.58 l 95.98 82.55 l 96.02 82.53 l 96.07 82.54 l 96.12 82.53 l 96.16 82.53 l 96.21 82.49 l 96.25 82.50 l 96.30 82.49 l 96.35 82.53 l 96.39 82.51 l 96.44 82.53 l 96.48 82.52 l 96.53 82.59 l 96.58 82.62 l 96.62 82.61 l 96.67 82.60 l 96.71 82.62 l 96.76 82.62 l 96.81 82.61 l 96.85 82.60 l 96.90 82.58 l 96.94 82.57 l 96.99 82.56 l 97.04 82.57 l 97.08 82.57 l 97.13 82.57 l 97.17 82.56 l 97.22 82.56 l 97.27 82.57 l 97.31 82.61 l 97.36 82.63 l 97.40 82.66 l 97.45 82.67 l 97.50 82.66 l 97.54 82.64 l 97.59 82.64 l 97.63 82.62 l 97.68 82.61 l 97.73 82.61 l 97.77 82.58 l 97.82 82.61 l 97.86 82.60 l 97.91 82.61 l 97.96 82.62 l 98.00 82.62 l 98.05 82.63 l 98.09 82.63 l 98.14 82.67 l 98.19 82.71 l 98.23 82.72 l 98.28 82.70 l 98.32 82.72 l 98.37 82.72 l 98.42 82.75 l 98.46 82.80 l 98.51 82.81 l 98.55 82.82 l 98.60 82.84 l 98.65 82.86 l 98.69 82.85 l 98.74 82.83 l 98.78 82.83 l 98.83 82.82 l 98.88 82.80 l 98.92 82.78 l 98.97 82.79 l 99.01 82.78 l 99.06 82.78 l 99.11 82.76 l 99.15 82.78 l 99.20 82.73 l 99.24 82.74 l 99.29 82.74 l 99.34 82.72 l 99.38 82.70 l 99.43 82.70 l 99.47 82.69 l 99.52 82.70 l 99.57 82.73 l 99.61 82.70 l 99.66 82.72 l 99.70 82.68 l 99.75 82.67 l 99.80 82.65 l 99.84 82.65 l 99.89 82.64 l 99.93 82.65 l 99.98 82.67 l 100.03 82.68 l 100.07 82.69 l 100.12 82.69 l 100.16 82.70 l 100.21 82.67 l 100.26 82.65 l 100.30 82.65 l 100.35 82.65 l 100.39 82.63 l 100.44 82.63 l 100.49 82.64 l 100.53 82.66 l 100.58 82.67 l 100.62 82.68 l 100.67 82.69 l 100.72 82.68 l 100.76 82.67 l 100.81 82.66 l 100.85 82.65 l 100.90 82.69 l 100.95 82.67 l 100.99 82.65 l 101.04 82.64 l 101.08 82.64 l 101.13 82.64 l 101.18 82.64 l 101.22 82.64 l 101.27 82.66 l 101.31 82.63 l 101.36 82.61 l 101.41 82.65 l 101.45 82.67 l 101.50 82.69 l 101.54 82.70 l 101.59 82.68 l 101.64 82.72 l 101.68 82.75 l 101.73 82.72 l 101.77 82.75 l 101.82 82.77 l 101.87 82.76 l 101.91 82.77 l 101.96 82.77 l 102.00 82.80 l 102.05 82.80 l 102.10 82.80 l 102.14 82.80 l 102.19 82.81 l 102.23 82.84 l 102.28 82.84 l 102.33 82.84 l 102.37 82.80 l 102.42 82.83 l 102.46 82.85 l 102.51 82.83 l 102.56 82.85 l 102.60 82.88 l 102.65 82.88 l 102.69 82.91 l 102.74 82.93 l 102.79 82.90 l 102.83 82.92 l 102.88 82.94 l 102.92 82.95 l 102.97 82.95 l 103.02 82.95 l 103.06 82.95 l 103.11 82.97 l 103.15 82.96 l 103.20 82.95 l 103.25 82.98 l 103.29 82.98 l 103.34 82.96 l 103.38 82.96 l 103.43 82.97 l 103.48 83.01 l 103.52 83.07 l 103.57 83.07 l 103.61 83.07 l 103.66 83.07 l 103.71 83.04 l 103.75 83.04 l 103.80 83.05 l 103.84 83.04 l 103.89 83.08 l 103.94 83.07 l 103.98 83.09 l 104.03 83.08 l 104.07 83.09 l 104.12 83.13 l 104.17 83.12 l 104.21 83.08 l 104.26 83.12 l 104.30 83.11 l 104.35 83.10 l 104.40 83.13 l 104.44 83.17 l 104.49 83.20 l 104.53 83.20 l 104.58 83.23 l 104.63 83.27 l 104.67 83.28 l 104.72 83.28 l 104.76 83.26 l 104.81 83.26 l 104.86 83.24 l 104.90 83.27 l 104.95 83.25 l 104.99 83.24 l 105.04 83.22 l 105.09 83.21 l 105.13 83.23 l 105.18 83.25 l 105.22 83.24 l 105.27 83.24 l 105.32 83.22 l 105.36 83.22 l 105.41 83.22 l 105.45 83.25 l 105.50 83.28 l 105.55 83.25 l 105.59 83.24 l 105.64 83.26 l 105.68 83.27 l 105.73 83.30 l 105.78 83.28 l 105.82 83.25 l 105.87 83.25 l 105.91 83.20 l 105.96 83.20 l 106.01 83.25 l 106.05 83.26 l 106.10 83.24 l 106.14 83.24 l 106.19 83.27 l 106.24 83.27 l 106.28 83.32 l 106.33 83.32 l 106.37 83.34 l 106.42 83.32 l 106.47 83.35 l 106.51 83.38 l 106.56 83.35 l 106.60 83.36 l 106.65 83.35 l 106.70 83.34 l 106.74 83.38 l 106.79 83.40 l 106.83 83.43 l 106.88 83.44 l 106.93 83.42 l 106.97 83.38 l 107.02 83.38 l 107.06 83.40 l 107.11 83.40 l 107.16 83.39 l 107.20 83.40 l 107.25 83.42 l 107.29 83.43 l 107.34 83.43 l 107.39 83.42 l 107.43 83.44 l 107.48 83.47 l 107.52 83.46 l 107.57 83.46 l 107.62 83.45 l 107.66 83.46 l 107.71 83.47 l 107.75 83.50 l 107.80 83.52 l 107.85 83.56 l 107.89 83.60 l 107.94 83.58 l 107.98 83.60 l 108.03 83.60 l 108.08 83.58 l 108.12 83.63 l 108.17 83.64 l 108.21 83.62 l 108.26 83.61 l 108.31 83.64 l 108.35 83.64 l 108.40 83.67 l 108.44 83.66 l 108.49 83.66 l 108.54 83.68 l 108.58 83.67 l 108.63 83.67 l 108.67 83.66 l 108.72 83.71 l 108.77 83.70 l 108.81 83.70 l 108.86 83.73 l 108.90 83.76 l 108.95 83.77 l 109.00 83.75 l 109.04 83.76 l 109.09 83.74 l 109.13 83.76 l 109.18 83.81 l 109.23 83.81 l 109.27 83.85 l 109.32 83.87 l 109.36 83.88 l 109.41 83.89 l 109.46 83.88 l 109.50 83.89 l 109.55 83.91 l 109.59 83.92 l 109.64 83.91 l 109.69 83.97 l 109.73 83.95 l 109.78 83.94 l 109.82 83.95 l 109.87 83.97 l 109.92 83.95 l 109.96 83.97 l 110.01 84.00 l 110.05 84.02 l 110.10 84.03 l 110.15 84.02 l 110.19 83.99 l 110.24 83.98 l 110.28 83.97 l 110.33 83.99 l 110.38 84.02 l 110.42 84.03 l 110.47 84.01 l 110.51 84.02 l 110.56 84.04 l 110.61 84.04 l 110.65 84.03 l 110.70 84.09 l 110.74 84.08 l 110.79 84.10 l 110.84 84.10 l 110.88 84.10 l 110.93 84.08 l 110.97 84.07 l 111.02 84.07 l 111.07 84.10 l 111.11 84.11 l 111.16 84.12 l 111.20 84.08 l 111.25 84.09 l 111.30 84.09 l 111.34 84.11 l 111.39 84.10 l 111.43 84.06 l 111.48 84.07 l 111.53 84.08 l 111.57 84.10 l 111.62 84.10 l 111.66 84.09 l 111.71 84.07 l 111.76 84.08 l 111.80 84.08 l 111.85 84.11 l 111.89 84.08 l 111.94 84.13 l 111.99 84.12 l 112.03 84.11 l 112.08 84.12 l 112.12 84.11 l 112.17 84.13 l 112.22 84.14 l 112.26 84.14 l 112.31 84.12 l 112.35 84.13 l 112.40 84.13 l 112.45 84.14 l 112.49 84.15 l 112.54 84.17 l 112.58 84.14 l 112.63 84.15 l 112.68 84.14 l 112.72 84.22 l 112.77 84.19 l 112.81 84.20 l 112.86 84.23 l 112.91 84.25 l 112.95 84.23 l 113.00 84.23 l 113.04 84.24 l 113.09 84.22 l 113.14 84.18 l 113.18 84.19 l 113.23 84.20 l 113.27 84.24 l 113.32 84.24 l 113.37 84.26 l 113.41 84.21 l 113.46 84.24 l 113.50 84.29 l 113.55 84.27 l 113.60 84.25 l 113.64 84.23 l 113.69 84.25 l 113.73 84.26 l 113.78 84.25 l 113.83 84.28 l 113.87 84.28 l 113.92 84.34 l 113.96 84.36 l 114.01 84.34 l 114.06 84.43 l 114.10 84.46 l 114.15 84.47 l 114.19 84.49 l 114.24 84.45 l 114.29 84.47 l 114.33 84.49 l 114.38 84.50 l 114.42 84.53 l 114.47 84.54 l 114.52 84.53 l 114.56 84.55 l 114.61 84.56 l 114.65 84.58 l 114.70 84.58 l 114.75 84.63 l 114.79 84.62 l 114.84 84.62 l 114.88 84.62 l 114.93 84.66 l 114.98 84.66 l 115.02 84.63 l 115.07 84.65 l 115.11 84.66 l 115.16 84.68 l 115.21 84.69 l 115.25 84.67 l 115.30 84.68 l 115.34 84.65 l 115.39 84.65 l 115.44 84.70 l 115.48 84.74 l 115.53 84.76 l 115.57 84.76 l 115.62 84.75 l 115.67 84.79 l 115.71 84.78 l 115.76 84.81 l 115.80 84.82 l 115.85 84.82 l 115.90 84.81 l 115.94 84.80 l 115.99 84.79 l 116.03 84.79 l 116.08 84.85 l 116.13 84.85 l 116.17 84.86 l 116.22 84.84 l 116.26 84.82 l 116.31 84.80 l 116.36 84.77 l 116.40 84.76 l 116.45 84.80 l 116.49 84.79 l 116.54 84.77 l 116.59 84.79 l 116.63 84.77 l 116.68 84.76 l 116.72 84.77 l 116.77 84.80 l 116.82 84.79 l 116.86 84.81 l 116.91 84.81 l 116.95 84.80 l 117.00 84.84 l 117.05 84.83 l 117.09 84.85 l 117.14 84.87 l 117.18 84.92 l 117.23 84.91 l 117.28 84.91 l 117.32 84.94 l 117.37 84.94 l 117.41 84.94 l 117.46 84.99 l 117.51 84.98 l 117.55 84.98 l 117.60 85.00 l 117.64 85.00 l 117.69 84.98 l 117.74 84.99 l 117.78 84.97 l 117.83 84.99 l 117.87 85.00 l 117.92 85.00 l 117.97 85.07 l 118.01 85.09 l 118.06 85.06 l 118.10 85.07 l 118.15 85.11 l 118.20 85.11 l 118.24 85.11 l 118.29 85.11 l 118.33 85.10 l 118.38 85.10 l 118.43 85.11 l 118.47 85.12 l 118.52 85.10 l 118.56 85.11 l 118.61 85.09 l 118.66 85.11 l 118.70 85.13 l 118.75 85.16 l 118.79 85.16 l 118.84 85.13 l 118.89 85.15 l 118.93 85.15 l 118.98 85.15 l 119.02 85.13 l 119.07 85.14 l 119.12 85.16 l 119.16 85.18 l 119.21 85.14 l 119.25 85.20 l 119.30 85.17 l 119.35 85.18 l 119.39 85.20 l 119.44 85.22 l 119.48 85.23 l 119.53 85.25 l 119.58 85.23 l 119.62 85.26 l 119.67 85.26 l 119.71 85.32 l 119.76 85.32 l 119.81 85.33 l 119.85 85.36 l 119.90 85.39 l 119.94 85.40 l 119.99 85.40 l 120.04 85.37 l 120.08 85.42 l 120.13 85.46 l 120.17 85.49 l 120.22 85.52 l 120.27 85.49 l 120.31 85.52 l 120.36 85.56 l 120.40 85.57 l 120.45 85.60 l 120.50 85.61 l 120.54 85.60 l 120.59 85.62 l 120.63 85.64 l 120.68 85.67 l 120.73 85.67 l 120.77 85.67 l 120.82 85.68 l 120.86 85.72 l 120.91 85.76 l 120.96 85.74 l 121.00 85.76 l 121.05 85.73 l 121.09 85.75 l 121.14 85.73 l 121.19 85.77 l 121.23 85.74 l 121.28 85.77 l 121.32 85.78 l 121.37 85.75 l 121.42 85.74 l 121.46 85.73 l 121.51 85.72 l 121.55 85.71 l 121.60 85.72 l 121.65 85.70 l 121.69 85.70 l 121.74 85.69 l 121.78 85.67 l 121.83 85.68 l 121.88 85.71 l 121.92 85.73 l 121.97 85.71 l 122.01 85.68 l 122.06 85.71 l 122.11 85.74 l 122.15 85.77 l 122.20 85.76 l 122.24 85.83 l 122.29 85.84 l 122.34 85.90 l 122.38 85.94 l 122.43 85.92 l 122.47 85.91 l 122.52 85.94 l 122.57 85.90 l 122.61 85.91 l 122.66 85.93 l 122.70 85.92 l 122.75 85.95 l 122.80 85.93 l 122.84 85.93 l 122.89 85.95 l 122.93 85.95 l 122.98 85.97 l 123.03 85.94 l 123.07 85.96 l 123.12 85.99 l 123.16 86.03 l 123.21 86.01 l 123.26 85.98 l 123.30 85.99 l 123.35 85.99 l 123.39 85.99 l 123.44 86.01 l 123.49 86.01 l 123.53 86.06 l 123.58 86.09 l 123.62 86.08 l 123.67 86.09 l 123.72 86.08 l 123.76 86.08 l 123.81 86.07 l 123.85 86.05 l 123.90 86.05 l 123.95 86.02 l 123.99 86.02 l 124.04 86.03 l 124.08 86.01 l 124.13 86.05 l 124.18 86.02 l 124.22 86.07 l 124.27 86.08 l 124.31 86.12 l 124.36 86.12 l 124.41 86.15 l 124.45 86.18 l 124.50 86.21 l 124.54 86.21 l 124.59 86.18 l 124.64 86.22 l 124.68 86.21 l 124.73 86.27 l 124.77 86.32 l 124.82 86.33 l 124.87 86.33 l 124.91 86.33 l 124.96 86.33 l 125.00 86.39 l 125.05 86.41 l 125.10 86.41 l 125.14 86.45 l 125.19 86.49 l 125.23 86.54 l 125.28 86.51 l 125.33 86.53 l 125.37 86.54 l 125.42 86.54 l 125.46 86.58 l 125.51 86.55 l 125.56 86.57 l 125.60 86.59 l 125.65 86.58 l 125.69 86.57 l 125.74 86.57 l 125.79 86.62 l 125.83 86.60 l 125.88 86.63 l 125.92 86.67 l 125.97 86.66 l 126.02 86.68 l 126.06 86.68 l 126.11 86.69 l 126.15 86.71 l 126.20 86.67 l 126.25 86.65 l 126.29 86.68 l 126.34 86.65 l 126.38 86.64 l 126.43 86.64 l 126.48 86.61 l 126.52 86.62 l 126.57 86.63 l 126.61 86.65 l 126.66 86.62 l 126.71 86.61 l 126.75 86.65 l 126.80 86.61 l 126.84 86.66 l 126.89 86.67 l 126.94 86.66 l 126.98 86.66 l 127.03 86.66 l 127.07 86.65 l 127.12 86.68 l 127.17 86.67 l 127.21 86.64 l 127.26 86.65 l 127.30 86.64 l 127.35 86.66 l 127.40 86.66 l 127.44 86.66 l 127.49 86.66 l 127.53 86.67 l 127.58 86.64 l 127.63 86.66 l 127.67 86.66 l 127.72 86.68 l 127.76 86.65 l 127.81 86.69 l 127.86 86.73 l 127.90 86.73 l 127.95 86.76 l 127.99 86.76 l 128.04 86.76 l 128.09 86.75 l 128.13 86.73 l 128.18 86.77 l 128.22 86.73 l 128.27 86.76 l 128.32 86.76 l 128.36 86.73 l 128.41 86.74 l 128.45 86.74 l 128.50 86.76 l 128.55 86.80 l 128.59 86.75 l 128.64 86.72 l 128.68 86.72 l 128.73 86.71 l 128.78 86.69 l 128.82 86.68 l 128.87 86.67 l 128.91 86.66 l 128.96 86.57 l 129.01 86.55 l 129.05 86.52 l 129.10 86.52 l 129.14 86.50 l 129.19 86.47 l 129.24 86.47 l 129.28 86.49 l 129.33 86.47 l 129.37 86.43 l 129.42 86.40 l 129.47 86.42 l 129.51 86.40 l 129.56 86.42 l 129.60 86.41 l 129.65 86.42 l 129.70 86.43 l 129.74 86.44 l 129.79 86.42 l 129.83 86.40 l 129.88 86.43 l 129.93 86.43 l 129.97 86.45 l 130.02 86.45 l 130.06 86.44 l 130.11 86.45 l 130.16 86.48 l 130.20 86.46 l 130.25 86.47 l 130.29 86.48 l 130.34 86.50 l 130.39 86.43 l 130.43 86.42 l 130.48 86.47 l 130.52 86.49 l 130.57 86.50 l 130.62 86.47 l 130.66 86.52 l 130.71 86.58 l 130.75 86.54 l 130.80 86.58 l 130.85 86.56 l 130.89 86.51 l 130.94 86.53 l 130.98 86.54 l 131.03 86.54 l 131.08 86.57 l 131.12 86.58 l 131.17 86.56 l 131.21 86.53 l 131.26 86.53 l 131.31 86.54 l 131.35 86.56 l 131.40 86.55 l 131.44 86.51 l 131.49 86.46 l 131.54 86.49 l 131.58 86.45 l 131.63 86.47 l 131.67 86.41 l 131.72 86.42 l 131.77 86.43 l 131.81 86.43 l 131.86 86.42 l 131.90 86.42 l 131.95 86.43 l 132.00 86.41 l 132.04 86.37 l 132.09 86.34 l 132.13 86.36 l 132.18 86.34 l 132.23 86.36 l 132.27 86.41 l 132.32 86.45 l 132.36 86.51 l 132.41 86.56 l 132.46 86.59 l 132.50 86.56 l 132.55 86.57 l 132.59 86.56 l 132.64 86.51 l 132.69 86.50 l 132.73 86.48 l 132.78 86.49 l 132.82 86.47 l 132.87 86.55 l 132.92 86.58 l 132.96 86.60 l 133.01 86.62 l 133.05 86.63 l 133.10 86.61 l 133.15 86.65 l 133.19 86.70 l 133.24 86.64 l 133.28 86.64 l 133.33 86.66 l 133.38 86.68 l 133.42 86.72 l 133.47 86.69 l 133.51 86.70 l 133.56 86.70 l 133.61 86.67 l 133.65 86.65 l 133.70 86.64 l 133.74 86.65 l 133.79 86.71 l 133.84 86.72 l 133.88 86.74 l 133.93 86.77 l 133.97 86.74 l 134.02 86.77 l 134.07 86.74 l 134.11 86.71 l 134.16 86.72 l 134.20 86.69 l 134.25 86.67 l 134.30 86.65 l 134.34 86.68 l 134.39 86.73 l 134.43 86.71 l 134.48 86.72 l 134.53 86.77 l 134.57 86.80 l 134.62 86.84 l 134.66 86.89 l 134.71 86.89 l 134.76 86.95 l 134.80 86.96 l 134.85 86.99 l 134.89 86.99 l 134.94 87.02 l 134.99 87.03 l 135.03 87.04 l 135.08 87.08 l 135.12 87.08 l 135.17 87.10 l 135.22 87.14 l 135.26 87.15 l 135.31 87.18 l 135.35 87.16 l 135.40 87.17 l 135.45 87.16 l 135.49 87.14 l 135.54 87.16 l 135.58 87.19 l 135.63 87.16 l 135.68 87.13 l 135.72 87.16 l 135.77 87.12 l 135.81 87.16 l 135.86 87.15 l 135.91 87.13 l 135.95 87.14 l 136.00 87.16 l 136.04 87.17 l 136.09 87.18 l 136.14 87.16 l 136.18 87.13 l 136.23 87.13 l 136.27 87.13 l 136.32 87.10 l 136.37 87.07 l 136.41 87.06 l 136.46 87.08 l 136.50 87.04 l 136.55 87.04 l 136.60 87.06 l 136.64 87.05 l 136.69 87.00 l 136.73 87.00 l 136.78 86.98 l 136.83 86.98 l 136.87 87.01 l 136.92 87.01 l 136.96 87.01 l 137.01 86.99 l 137.06 86.97 l 137.10 86.97 l 137.15 86.96 l 137.19 86.96 l 137.24 86.97 l 137.29 87.01 l 137.33 87.00 l 137.38 87.00 l 137.42 87.00 l 137.47 87.02 l 137.52 87.03 l 137.56 87.09 l 137.61 87.08 l 137.65 87.08 l 137.70 87.09 l 137.75 87.11 l 137.79 87.11 l 137.84 87.10 l 137.88 87.07 l 137.93 87.05 l 137.98 87.05 l 138.02 87.07 l 138.07 87.08 l 138.11 87.11 l 138.16 87.08 l 138.21 87.03 l 138.25 87.03 l 138.30 87.02 l 138.34 87.05 l 138.39 87.02 l 138.44 87.00 l 138.48 86.98 l 138.53 86.99 l 138.57 86.99 l 138.62 86.97 l 138.67 86.96 l 138.71 86.95 l 138.76 86.95 l 138.80 86.94 l 138.85 86.91 l 138.90 86.94 l 138.94 86.99 l 138.99 86.95 l 139.03 86.90 l 139.08 86.90 l 139.13 86.90 l 139.17 86.84 l 139.22 86.78 l 139.26 86.75 l 139.31 86.71 l 139.36 86.72 l 139.40 86.72 l 139.45 86.72 l 139.49 86.72 l 139.54 86.71 l 139.59 86.64 l 139.63 86.60 l 139.68 86.61 l 139.72 86.62 l 139.77 86.59 l 139.82 86.60 l 139.86 86.58 l 139.91 86.55 l 139.95 86.59 l 140.00 86.58 l 140.05 86.56 l 140.09 86.59 l 140.14 86.53 l 140.18 86.56 l 140.23 86.60 l 140.28 86.58 l 140.32 86.56 l 140.37 86.56 l 140.41 86.56 l 140.46 86.58 l 140.51 86.60 l 140.55 86.63 l 140.60 86.64 l 140.64 86.62 l 140.69 86.63 l 140.74 86.56 l 140.78 86.52 l 140.83 86.49 l 140.87 86.42 l 140.92 86.37 l 140.97 86.35 l 141.01 86.34 l 141.06 86.33 l 141.10 86.36 l 141.15 86.38 l 141.20 86.39 l 141.24 86.37 l 141.29 86.34 l 141.33 86.32 l 141.38 86.27 l 141.43 86.19 l 141.47 86.16 l 141.52 86.09 l 141.56 86.10 l 141.61 86.15 l 141.66 86.08 l 141.70 86.02 l 141.75 86.02 l 141.79 86.03 l 141.84 85.99 l 141.89 85.97 l 141.93 85.92 l 141.98 85.92 l 142.02 85.88 l 142.07 85.87 l 142.12 85.88 l 142.16 85.86 l 142.21 85.81 l 142.25 85.74 l 142.30 85.69 l 142.35 85.66 l 142.39 85.61 l 142.44 85.55 l 142.48 85.57 l 142.53 85.52 l 142.58 85.50 l 142.62 85.49 l 142.67 85.47 l 142.71 85.45 l 142.76 85.41 l 142.81 85.39 l 142.85 85.36 l 142.90 85.29 l 142.94 85.25 l 142.99 85.20 l 143.04 85.16 l 143.08 85.12 l 143.13 85.05 l 143.17 84.97 l 143.22 84.94 l 143.27 84.88 l 143.31 84.83 l 143.36 84.80 l 143.40 84.78 l 143.45 84.74 l 143.50 84.72 l 143.54 84.68 l 143.59 84.65 l 143.63 84.63 l 143.68 84.61 l 143.73 84.56 l 143.77 84.52 l 143.82 84.50 l 143.86 84.49 l 143.91 84.49 l 143.96 84.49 l 144.00 84.48 l 144.05 84.45 l 144.09 84.42 l 144.14 84.40 l 144.19 84.41 l 144.23 84.39 l 144.28 84.41 l 144.32 84.37 l 144.37 84.35 l 144.42 84.33 l 144.46 84.32 l 144.51 84.30 l 144.55 84.27 l 144.60 84.27 l 144.65 84.27 l 144.69 84.31 l 144.74 84.29 l 144.78 84.26 l 144.83 84.23 l 144.88 84.23 l 144.92 84.22 l 144.97 84.17 l 145.01 84.17 l 145.06 84.15 l 145.11 84.11 l 145.15 84.12 l 145.20 84.10 l 145.24 84.09 l 145.29 84.06 l 145.34 84.05 l 145.38 84.01 l 145.43 83.96 l 145.47 83.95 l 145.52 83.99 l 145.57 83.99 l 145.61 83.94 l 145.66 83.94 l 145.70 83.94 l 145.75 83.93 l 145.80 83.90 l 145.84 83.90 l 145.89 83.88 l 145.93 83.88 l 145.98 83.83 l 146.03 83.81 l 146.07 83.75 l 146.12 83.76 l 146.16 83.75 l 146.21 83.69 l 146.26 83.66 l 146.30 83.66 l 146.35 83.66 l 146.39 83.66 l 146.44 83.67 l 146.49 83.64 l 146.53 83.58 l 146.58 83.51 l 146.62 83.48 l 146.67 83.48 l 146.72 83.47 l 146.76 83.45 l 146.81 83.44 l 146.85 83.43 l 146.90 83.43 l 146.95 83.45 l 146.99 83.44 l 147.04 83.41 l 147.08 83.41 l 147.13 83.41 l 147.18 83.41 l 147.22 83.41 l 147.27 83.41 l 147.31 83.38 l 147.36 83.37 l 147.41 83.36 l 147.45 83.31 l 147.50 83.30 l 147.54 83.30 l 147.59 83.24 l 147.64 83.26 l 147.68 83.24 l 147.73 83.21 l 147.77 83.19 l 147.82 83.18 l 147.87 83.12 l 147.91 83.11 l 147.96 83.07 l 148.00 83.02 l 148.05 83.01 l 148.10 83.00 l 148.14 82.99 l 148.19 82.94 l 148.23 82.96 l 148.28 82.94 l 148.33 82.92 l 148.37 82.87 l 148.42 82.87 l 148.46 82.83 l 148.51 82.84 l 148.56 82.83 l 148.60 82.77 l 148.65 82.77 l 148.69 82.72 l 148.74 82.68 l 148.79 82.68 l 148.83 82.67 l 148.88 82.63 l 148.92 82.59 l 148.97 82.54 l 149.02 82.48 l 149.06 82.42 l 149.11 82.39 l 149.15 82.36 l 149.20 82.33 l 149.25 82.34 l 149.29 82.30 l 149.34 82.27 l 149.38 82.31 l 149.43 82.32 l 149.48 82.30 l 149.52 82.30 l 149.57 82.27 l 149.61 82.25 l 149.66 82.24 l 149.71 82.23 l 149.75 82.22 l 149.80 82.18 l 149.84 82.16 l 149.89 82.12 l 149.94 82.11 l 149.98 82.08 l 150.03 82.07 l 150.07 82.02 l 150.12 81.96 l 150.17 81.96 l 150.21 81.97 l 150.26 82.00 l 150.30 81.95 l 150.35 81.93 l 150.40 81.90 l 150.44 81.90 l 150.49 81.91 l 150.53 81.89 l 150.58 81.91 l 150.63 81.88 l 150.67 81.89 l 150.72 81.91 l 150.76 81.93 l 150.81 81.94 l 150.86 81.91 l 150.90 81.90 l 150.95 81.88 l 150.99 81.85 l 151.04 81.85 l 151.09 81.86 l 151.13 81.85 l 151.18 81.85 l 151.22 81.85 l 151.27 81.87 l 151.32 81.86 l 151.36 81.83 l 151.41 81.78 l 151.45 81.79 l 151.50 81.81 l 151.55 81.80 l 151.59 81.77 l 151.64 81.76 l 151.68 81.77 l 151.73 81.77 l 151.78 81.77 l 151.82 81.79 l 151.87 81.79 l 151.91 81.79 l 151.96 81.77 l 152.01 81.74 l 152.05 81.74 l 152.10 81.71 l 152.14 81.69 l 152.19 81.66 l 152.24 81.64 l 152.28 81.61 l 152.33 81.60 l 152.37 81.56 l 152.42 81.53 l 152.47 81.50 l 152.51 81.49 l 152.56 81.49 l 152.60 81.48 l 152.65 81.47 l 152.70 81.46 l 152.74 81.46 l 152.79 81.46 l 152.83 81.43 l 152.88 81.44 l 152.93 81.45 l 152.97 81.44 l 153.02 81.42 l 153.06 81.43 l 153.11 81.42 l 153.16 81.41 l 153.20 81.40 l 153.25 81.42 l 153.29 81.41 l 153.34 81.41 l 153.39 81.40 l 153.43 81.36 l 153.48 81.38 l 153.52 81.38 l 153.57 81.39 l 153.62 81.41 l 153.66 81.40 l 153.71 81.41 l 153.75 81.42 l 153.80 81.41 l 153.85 81.42 l 153.89 81.40 l 153.94 81.40 l 153.98 81.44 l 154.03 81.39 l 154.08 81.37 l 154.12 81.41 l 154.17 81.51 l 154.21 81.51 l 154.26 81.50 l 154.31 81.46 l 154.35 81.43 l 154.40 81.43 l 154.44 81.43 l 154.49 81.44 l 154.54 81.45 l 154.58 81.45 l 154.63 81.42 l 154.67 81.43 l 154.72 81.43 l 154.77 81.42 l 154.81 81.39 l 154.86 81.38 l 154.90 81.38 l 154.95 81.38 l 155.00 81.40 l 155.04 81.42 l 155.09 81.44 l 155.13 81.42 l 155.18 81.43 l 155.23 81.45 l 155.27 81.44 l 155.32 81.46 l 155.36 81.42 l 155.41 81.41 l 155.46 81.40 l 155.50 81.38 l 155.55 81.40 l 155.59 81.40 l 155.64 81.43 l 155.69 81.41 l 155.73 81.41 l 155.78 81.39 l 155.82 81.39 l 155.87 81.39 l 155.92 81.41 l 155.96 81.40 l 156.01 81.42 l 156.05 81.41 l 156.10 81.44 l 156.15 81.42 l 156.19 81.43 l 156.24 81.45 l 156.28 81.48 l 156.33 81.49 l 156.38 81.50 l 156.42 81.51 l 156.47 81.51 l 156.51 81.56 l 156.56 81.58 l 156.61 81.57 l 156.65 81.57 l 156.70 81.57 l 156.74 81.54 l 156.79 81.58 l 156.84 81.57 l 156.88 81.59 l 156.93 81.57 l 156.97 81.56 l 157.02 81.57 l 157.07 81.60 l 157.11 81.61 l 157.16 81.62 l 157.20 81.65 l 157.25 81.65 l 157.30 81.62 l 157.34 81.66 l 157.39 81.68 l 157.43 81.70 l 157.48 81.69 l 157.53 81.71 l 157.57 81.74 l 157.62 81.76 l 157.66 81.78 l 157.71 81.79 l 157.76 81.80 l 157.80 81.81 l 157.85 81.83 l 157.89 81.79 l 157.94 81.79 l 157.99 81.81 l 158.03 81.81 l 158.08 81.82 l 158.12 81.81 l 158.17 81.81 l 158.22 81.84 l 158.26 81.84 l 158.31 81.86 l 158.35 81.87 l 158.40 81.89 l 158.45 81.90 l 158.49 81.91 l 158.54 81.91 l 158.58 81.93 l 158.63 81.91 l 158.68 81.91 l 158.72 81.90 l 158.77 81.87 l 158.81 81.88 l 158.86 81.87 l 158.91 81.91 l 158.95 81.91 l 159.00 81.91 l 159.04 81.90 l 159.09 81.88 l 159.14 81.90 l 159.18 81.87 l 159.23 81.86 l 159.27 81.84 l 159.32 81.84 l 159.37 81.86 l 159.41 81.87 l 159.46 81.89 l 159.50 81.90 l 159.55 81.92 l 159.60 81.93 l 159.64 81.93 l 159.69 81.93 l 159.73 81.96 l 159.78 81.99 l 159.83 82.00 l 159.87 82.04 l 159.92 82.05 l 159.96 82.04 l 160.01 82.06 l 160.06 82.06 l 160.10 82.09 l 160.15 82.10 l 160.19 82.07 l 160.24 82.10 l 160.29 82.11 l 160.33 82.09 l 160.38 82.11 l 160.42 82.12 l 160.47 82.13 l 160.52 82.13 l 160.56 82.14 l 160.61 82.15 l 160.65 82.17 l 160.70 82.21 l 160.75 82.23 l 160.79 82.26 l 160.84 82.28 l 160.88 82.30 l 160.93 82.30 l 160.98 82.30 l 161.02 82.31 l 161.07 82.31 l 161.11 82.33 l 161.16 82.34 l 161.21 82.34 l 161.25 82.36 l 161.30 82.35 l 161.34 82.37 l 161.39 82.36 l 161.44 82.36 l 161.48 82.39 l 161.53 82.40 l 161.57 82.42 l 161.62 82.44 l 161.67 82.44 l 161.71 82.40 l 161.76 82.36 l 161.80 82.36 l 161.85 82.36 l 161.90 82.35 l 161.94 82.39 l 161.99 82.36 l 162.03 82.35 l 162.08 82.37 l 162.13 82.36 l 162.17 82.35 l 162.22 82.35 l 162.26 82.34 l 162.31 82.34 l 162.36 82.31 l 162.40 82.30 l 162.45 82.30 l 162.49 82.24 l 162.54 82.24 l 162.59 82.26 l 162.63 82.21 l 162.68 82.13 l 162.72 82.11 l 162.77 82.12 l 162.82 82.11 l 162.86 82.13 l 162.91 82.13 l 162.95 82.11 l 163.00 82.13 l 163.05 82.12 l 163.09 82.11 l 163.14 82.14 l 163.18 82.13 l 163.23 82.15 l 163.28 82.15 l 163.32 82.18 l 163.37 82.18 l 163.41 82.16 l 163.46 82.14 l 163.51 82.15 l 163.55 82.20 l 163.60 82.20 l 163.64 82.20 l 163.69 82.22 l 163.74 82.24 l 163.78 82.22 l 163.83 82.21 l 163.87 82.23 l 163.92 82.20 l 163.97 82.20 l 164.01 82.22 l 164.06 82.23 l 164.10 82.21 l 164.15 82.18 l 164.20 82.17 l 164.24 82.17 l 164.29 82.19 l 164.33 82.21 l 164.38 82.24 l 164.43 82.23 l 164.47 82.23 l 164.52 82.21 l 164.56 82.22 l 164.61 82.22 l 164.66 82.21 l 164.70 82.23 l 164.75 82.23 l 164.79 82.21 l 164.84 82.20 l 164.89 82.20 l 164.93 82.20 l 164.98 82.21 l 165.02 82.19 l 165.07 82.16 l 165.12 82.17 l 165.16 82.16 l 165.21 82.17 l 165.25 82.19 l 165.30 82.16 l 165.35 82.19 l 165.39 82.22 l 165.44 82.25 l 165.48 82.28 l 165.53 82.25 l 165.58 82.22 l 165.62 82.22 l 165.67 82.20 l 165.71 82.21 l 165.76 82.20 l 165.81 82.22 l 165.85 82.21 l 165.90 82.20 l 165.94 82.19 l 165.99 82.18 l 166.04 82.18 l 166.08 82.19 l 166.13 82.19 l 166.17 82.19 l 166.22 82.17 l 166.27 82.18 l 166.31 82.20 l 166.36 82.18 l 166.40 82.19 l 166.45 82.16 l 166.50 82.15 l 166.54 82.15 l 166.59 82.13 l 166.63 82.15 l 166.68 82.14 l 166.73 82.12 l 166.77 82.16 l 166.82 82.18 l 166.86 82.18 l 166.91 82.19 l 166.96 82.21 l 167.00 82.22 l 167.05 82.23 l 167.09 82.24 l 167.14 82.28 l 167.19 82.30 l 167.23 82.31 l 167.28 82.34 l 167.32 82.32 l 167.37 82.37 l 167.42 82.36 l 167.46 82.34 l 167.51 82.31 l 167.55 82.34 l 167.60 82.34 l 167.65 82.35 l 167.69 82.39 l 167.74 82.40 l 167.78 82.41 l 167.83 82.40 l 167.88 82.41 l 167.92 82.39 l 167.97 82.40 l 168.01 82.41 l 168.06 82.41 l 168.11 82.43 l 168.15 82.45 l 168.20 82.44 l 168.24 82.43 l 168.29 82.40 l 168.34 82.40 l 168.38 82.42 l 168.43 82.44 l 168.47 82.44 l 168.52 82.40 l 168.57 82.44 l 168.61 82.42 l 168.66 82.43 l 168.70 82.44 l 168.75 82.47 l 168.80 82.50 l 168.84 82.52 l 168.89 82.51 l 168.93 82.50 l 168.98 82.49 l 169.03 82.49 l 169.07 82.49 l 169.12 82.47 l 169.16 82.46 l 169.21 82.44 l 169.26 82.43 l 169.30 82.43 l 169.35 82.43 l 169.39 82.42 l 169.44 82.42 l 169.49 82.42 l 169.53 82.44 l 169.58 82.43 l 169.62 82.43 l 169.67 82.43 l 169.72 82.46 l 169.76 82.46 l 169.81 82.47 l 169.85 82.46 l 169.90 82.47 l 169.95 82.46 l 169.99 82.45 l 170.04 82.47 l 170.08 82.46 l 170.13 82.46 l 170.18 82.48 l 170.22 82.51 l 170.27 82.54 l 170.31 82.58 l 170.36 82.60 l 170.41 82.57 l 170.45 82.56 l 170.50 82.60 l 170.54 82.61 l 170.59 82.59 l 170.64 82.61 l 170.68 82.61 l 170.73 82.62 l 170.77 82.64 l 170.82 82.63 l 170.87 82.63 l 170.91 82.68 l 170.96 82.71 l 171.00 82.72 l 171.05 82.74 l 171.10 82.75 l 171.14 82.78 l 171.19 82.78 l 171.23 82.78 l 171.28 82.77 l 171.33 82.81 l 171.37 82.84 l 171.42 82.87 l 171.46 82.89 l 171.51 82.89 l 171.56 82.91 l 171.60 82.97 l 171.65 82.94 l 171.69 82.94 l 171.74 82.96 l 171.79 82.98 l 171.83 83.00 l 171.88 83.06 l 171.92 83.07 l 171.97 83.12 l 172.02 83.16 l 172.06 83.08 l 172.11 83.08 l 172.15 83.10 l 172.20 83.10 l 172.25 83.07 l 172.29 83.11 l 172.34 83.12 l 172.38 83.13 l 172.43 83.16 l 172.48 83.17 l 172.52 83.17 l 172.57 83.18 l 172.61 83.17 l 172.66 83.20 l 172.71 83.23 l 172.75 83.26 l 172.80 83.28 l 172.84 83.27 l 172.89 83.25 l 172.94 83.24 l 172.98 83.26 l 173.03 83.26 l 173.07 83.31 l 173.12 83.33 l 173.17 83.34 l 173.21 83.33 l 173.26 83.32 l 173.30 83.37 l 173.35 83.38 l 173.40 83.38 l 173.44 83.40 l 173.49 83.41 l 173.53 83.42 l 173.58 83.41 l 173.63 83.44 l 173.67 83.45 l 173.72 83.51 l 173.76 83.50 l 173.81 83.51 l 173.86 83.50 l 173.90 83.51 l 173.95 83.51 l 173.99 83.50 l 174.04 83.54 l 174.09 83.58 l 174.13 83.58 l 174.18 83.62 l 174.22 83.61 l 174.27 83.61 l 174.32 83.59 l 174.36 83.61 l 174.41 83.69 l 174.45 83.76 l 174.50 83.75 l 174.55 83.77 l 174.59 83.81 l 174.64 83.83 l 174.68 83.85 l 174.73 83.86 l 174.78 83.86 l 174.82 83.85 l 174.87 83.86 l 174.91 83.88 l 174.96 83.90 l 175.01 83.91 l 175.05 83.93 l 175.10 83.95 l 175.14 83.96 l 175.19 83.99 l 175.24 84.01 l 175.28 83.99 l 175.33 83.98 l 175.37 83.98 l 175.42 83.97 l 175.47 84.04 l 175.51 84.04 l 175.56 84.05 l 175.60 84.06 l 175.65 84.10 l 175.70 84.09 l 175.74 84.10 l 175.79 84.10 l 175.83 84.14 l 175.88 84.13 l 175.93 84.15 l 175.97 84.19 l 176.02 84.24 l 176.06 84.24 l 176.11 84.21 l 176.16 84.23 l 176.20 84.22 l 176.25 84.23 l 176.29 84.24 l 176.34 84.29 l 176.39 84.27 l 176.43 84.32 l 176.48 84.34 l 176.52 84.32 l 176.57 84.34 l 176.62 84.33 l 176.66 84.35 l 176.71 84.36 l 176.75 84.38 l 176.80 84.40 l 176.85 84.47 l 176.89 84.43 l 176.94 84.47 l 176.98 84.49 l 177.03 84.51 l 177.08 84.47 l 177.12 84.49 l 177.17 84.53 l 177.21 84.54 l 177.26 84.54 l 177.31 84.52 l 177.35 84.53 l 177.40 84.53 l 177.44 84.58 l 177.49 84.60 l 177.54 84.62 l 177.58 84.63 l 177.63 84.67 l 177.67 84.70 l 177.72 84.72 l 177.77 84.75 l 177.81 84.71 l 177.86 84.72 l 177.90 84.76 l 177.95 84.80 l 178.00 84.82 l 178.04 84.80 l 178.09 84.82 l 178.13 84.85 l 178.18 84.86 l 178.23 84.82 l 178.27 84.84 l 178.32 84.83 l 178.36 84.88 l 178.41 84.90 l 178.46 84.93 l 178.50 84.93 l 178.55 84.97 l 178.59 85.00 l 178.64 85.02 l 178.69 85.02 l 178.73 84.99 l 178.78 85.03 l 178.82 85.01 l 178.87 85.01 l 178.92 85.07 l 178.96 85.09 l 179.01 85.09 l 179.05 85.11 l 179.10 85.14 l 179.15 85.15 l 179.19 85.17 l 179.24 85.17 l 179.28 85.20 l 179.33 85.25 l 179.38 85.31 l 179.42 85.32 l 179.47 85.34 l 179.51 85.35 l 179.56 85.35 l 179.61 85.36 l 179.65 85.36 l 179.70 85.36 l 179.74 85.37 l 179.79 85.41 l 179.84 85.40 l 179.88 85.38 l 179.93 85.35 l 179.97 85.34 l 180.02 85.37 l 180.07 85.39 l 180.11 85.36 l 180.16 85.36 l 180.20 85.37 l 180.25 85.37 l 180.30 85.38 l 180.34 85.34 l 180.39 85.37 l 180.43 85.40 l 180.48 85.36 l 180.53 85.33 l 180.57 85.38 l 180.62 85.40 l 180.66 85.44 l 180.71 85.49 l 180.76 85.52 l 180.80 85.51 l 180.85 85.54 l 180.89 85.56 l 180.94 85.58 l 180.99 85.59 l 181.03 85.59 l 181.08 85.58 l 181.12 85.67 l 181.17 85.69 l 181.22 85.73 l 181.26 85.73 l 181.31 85.71 l 181.35 85.74 l 181.40 85.77 l 181.45 85.81 l 181.49 85.80 l 181.54 85.85 l 181.58 85.83 l 181.63 85.84 l 181.68 85.85 l 181.72 85.89 l 181.77 85.94 l 181.81 85.93 l 181.86 85.93 l 181.91 85.95 l 181.95 85.98 l 182.00 85.96 l 182.04 85.97 l 182.09 86.01 l 182.14 86.03 l 182.18 86.05 l 182.23 86.00 l 182.27 86.01 l 182.32 86.03 l 182.37 86.06 l 182.41 86.03 l 182.46 86.05 l 182.50 86.06 l 182.55 86.05 l 182.60 86.07 l 182.64 86.07 l 182.69 86.07 l 182.73 86.10 l 182.78 86.14 l 182.83 86.17 l 182.87 86.18 l 182.92 86.17 l 182.96 86.15 l 183.01 86.20 l 183.06 86.20 l 183.10 86.19 l 183.15 86.20 l 183.19 86.22 l 183.24 86.23 l 183.29 86.25 l 183.33 86.31 l 183.38 86.35 l 183.42 86.38 l 183.47 86.42 l 183.52 86.46 l 183.56 86.50 l 183.61 86.52 l 183.65 86.52 l 183.70 86.51 l 183.75 86.52 l 183.79 86.55 l 183.84 86.56 l 183.88 86.58 l 183.93 86.63 l 183.98 86.58 l 184.02 86.61 l 184.07 86.64 l 184.11 86.66 l 184.16 86.65 l 184.21 86.67 l 184.25 86.69 l 184.30 86.67 l 184.34 86.71 l 184.39 86.75 l 184.44 86.76 l 184.48 86.76 l 184.53 86.76 l 184.57 86.81 l 184.62 86.86 l 184.67 86.87 l 184.71 86.86 l 184.76 86.88 l 184.80 86.93 l 184.85 86.92 l 184.90 86.99 l 184.94 87.00 l 184.99 87.00 l 185.03 87.04 l 185.08 87.09 l 185.13 87.08 l 185.17 87.08 l 185.22 87.16 l 185.26 87.20 l 185.31 87.24 l 185.36 87.22 l 185.40 87.27 l 185.45 87.31 l 185.49 87.34 l 185.54 87.38 l 185.59 87.42 l 185.63 87.47 l 185.68 87.45 l 185.72 87.47 l 185.77 87.52 l 185.82 87.52 l 185.86 87.53 l 185.91 87.55 l 185.95 87.53 l 186.00 87.61 l 186.05 87.63 l 186.09 87.67 l 186.14 87.63 l 186.18 87.62 l 186.23 87.62 l 186.28 87.63 l 186.32 87.67 l 186.37 87.72 l 186.41 87.72 l 186.46 87.72 l 186.51 87.71 l 186.55 87.76 l 186.60 87.82 l 186.64 87.83 l 186.69 87.87 l 186.74 87.91 l 186.78 87.92 l 186.83 87.93 l 186.87 87.92 l 186.92 87.93 l 186.97 87.93 l 187.01 87.98 l 187.06 87.97 l 187.10 87.94 l 187.15 87.95 l 187.20 87.95 l 187.24 88.01 l 187.29 87.99 l 187.33 88.06 l 187.38 88.11 l 187.43 88.13 l 187.47 88.13 l 187.52 88.12 l 187.56 88.14 l 187.61 88.12 l 187.66 88.15 l 187.70 88.21 l 187.75 88.20 l 187.79 88.18 l 187.84 88.18 l 187.89 88.17 l 187.93 88.20 l 187.98 88.23 l 188.02 88.30 l 188.07 88.36 l 188.12 88.35 l 188.16 88.42 l 188.21 88.45 l 188.25 88.46 l 188.30 88.49 l 188.35 88.52 l 188.39 88.57 l 188.44 88.56 l 188.48 88.59 l 188.53 88.60 l 188.58 88.66 l 188.62 88.69 l 188.67 88.72 l 188.71 88.73 l 188.76 88.76 l 188.81 88.77 l 188.85 88.81 l 188.90 88.78 l 188.94 88.78 l 188.99 88.84 l 189.04 88.89 l 189.08 88.85 l 189.13 88.86 l 189.17 88.85 l 189.22 88.81 l 189.27 88.87 l 189.31 88.88 l 189.36 88.86 l 189.40 88.89 l 189.45 88.90 l 189.50 88.94 l 189.54 88.94 l 189.59 89.01 l 189.63 88.97 l 189.68 88.98 l 189.73 88.99 l 189.77 89.00 l 189.82 89.08 l 189.86 89.08 l 189.91 89.09 l 189.96 89.13 l 190.00 89.21 l 190.05 89.23 l 190.09 89.25 l 190.14 89.28 l 190.19 89.33 l 190.23 89.34 l 190.28 89.36 l 190.32 89.36 l 190.37 89.39 l 190.42 89.41 l 190.46 89.39 l 190.51 89.39 l 190.55 89.42 l 190.60 89.46 l 190.65 89.46 l 190.69 89.46 l 190.74 89.51 l 190.78 89.55 l 190.83 89.59 l 190.88 89.58 l 190.92 89.67 l 190.97 89.68 l 191.01 89.68 l 191.06 89.70 l 191.11 89.70 l 191.15 89.73 l 191.20 89.73 l 191.24 89.75 l 191.29 89.74 l 191.34 89.76 l 191.38 89.74 l 191.43 89.69 l 191.47 89.70 l 191.52 89.68 l 191.57 89.67 l 191.61 89.66 l 191.66 89.66 l 191.70 89.63 l 191.75 89.67 l 191.80 89.70 l 191.84 89.71 l 191.89 89.70 l 191.93 89.67 l 191.98 89.61 l 192.03 89.63 l 192.07 89.58 l 192.12 89.57 l 192.16 89.61 l 192.21 89.63 l 192.26 89.65 l 192.30 89.66 l 192.35 89.71 l 192.39 89.70 l 192.44 89.67 l 192.49 89.69 l 192.53 89.70 l 192.58 89.67 l 192.62 89.69 l 192.67 89.68 l 192.72 89.69 l 192.76 89.70 l 192.81 89.75 l 192.85 89.73 l 192.90 89.76 l 192.95 89.76 l 192.99 89.77 l 193.04 89.78 l 193.08 89.75 l 193.13 89.73 l 193.18 89.74 l 193.22 89.75 l 193.27 89.75 l 193.31 89.71 l 193.36 89.68 l 193.41 89.68 l 193.45 89.66 l 193.50 89.66 l 193.54 89.65 l 193.59 89.59 l 193.64 89.61 l 193.68 89.66 l 193.73 89.62 l 193.77 89.64 l 193.82 89.62 l 193.87 89.63 l 193.91 89.61 l 193.96 89.60 l 194.00 89.59 l 194.05 89.60 l 194.10 89.61 l 194.14 89.59 l 194.19 89.61 l 194.23 89.58 l 194.28 89.54 l 194.33 89.53 l 194.37 89.55 l 194.42 89.54 l 194.46 89.53 l 194.51 89.48 l 194.56 89.48 l 194.60 89.48 l 194.65 89.51 l 194.69 89.54 l 194.74 89.56 l 194.79 89.54 l 194.83 89.54 l 194.88 89.49 l 194.92 89.51 l 194.97 89.52 l 195.02 89.53 l 195.06 89.52 l 195.11 89.48 l 195.15 89.48 l 195.20 89.47 l 195.25 89.48 l 195.29 89.48 l 195.34 89.53 l 195.38 89.53 l 195.43 89.56 l 195.48 89.60 l 195.52 89.57 l 195.57 89.56 l 195.61 89.60 l 195.66 89.61 l 195.71 89.59 l 195.75 89.60 l 195.80 89.60 l 195.84 89.57 l 195.89 89.58 l 195.94 89.57 l 195.98 89.59 l 196.03 89.58 l 196.07 89.59 l 196.12 89.60 l 196.17 89.57 l 196.21 89.54 l 196.26 89.56 l 196.30 89.59 l 196.35 89.56 l 196.40 89.57 l 196.44 89.55 l 196.49 89.48 l 196.53 89.50 l 196.58 89.46 l 196.63 89.46 l 196.67 89.40 l 196.72 89.36 l 196.76 89.36 l 196.81 89.33 l 196.86 89.32 l 196.90 89.31 l 196.95 89.34 l 196.99 89.34 l 197.04 89.30 l 197.09 89.26 l 197.13 89.25 l 197.18 89.27 l 197.22 89.25 l 197.27 89.23 l 197.32 89.26 l 197.36 89.26 l 197.41 89.25 l 197.45 89.23 l 197.50 89.24 l 197.55 89.21 l 197.59 89.29 l 197.64 89.29 l 197.68 89.30 l 197.73 89.31 l 197.78 89.26 l 197.82 89.28 l 197.87 89.29 l 197.91 89.27 l 197.96 89.28 l 198.01 89.25 l 198.05 89.24 l 198.10 89.21 l 198.14 89.18 l 198.19 89.18 l 198.24 89.17 l 198.28 89.14 l 198.33 89.09 l 198.37 89.13 l 198.42 89.12 l 198.47 89.10 l 198.51 89.08 l 198.56 89.07 l 198.60 89.07 l 198.65 89.02 l 198.70 88.97 l 198.74 88.97 l 198.79 88.94 l 198.83 88.98 l 198.88 89.00 l 198.93 89.00 l 198.97 89.03 l 199.02 89.04 l 199.06 89.07 l 199.11 89.04 l 199.16 89.03 l 199.20 89.03 l 199.25 89.03 l 199.29 89.04 l 199.34 89.02 l 199.39 89.04 l 199.43 89.00 l 199.48 89.01 l 199.52 89.03 l 199.57 89.05 l 199.62 89.04 l 199.66 89.03 l 199.71 89.06 l 199.75 89.04 l 199.80 89.05 l 199.85 89.06 l 199.89 89.08 l 199.94 89.10 l 199.98 89.13 l 200.03 89.17 l 200.08 89.22 l 200.12 89.22 l 200.17 89.21 l 200.21 89.25 l 200.26 89.24 l 200.31 89.22 l 200.35 89.21 l 200.40 89.23 l 200.44 89.27 l 200.49 89.28 l 200.54 89.26 l 200.58 89.35 l 200.63 89.35 l 200.67 89.34 l 200.72 89.37 l 200.77 89.34 l 200.81 89.30 l 200.86 89.29 l 200.90 89.32 l 200.95 89.36 l 201.00 89.37 l 201.04 89.34 l 201.09 89.41 l 201.13 89.40 l 201.18 89.43 l 201.23 89.44 l 201.27 89.42 l 201.32 89.39 l 201.36 89.37 l 201.41 89.32 l 201.46 89.33 l 201.50 89.35 l 201.55 89.32 l 201.59 89.28 l 201.64 89.32 l 201.69 89.32 l 201.73 89.36 l 201.78 89.42 l 201.82 89.42 l 201.87 89.45 l 201.92 89.42 l 201.96 89.45 l 202.01 89.46 l 202.05 89.48 l 202.10 89.49 l 202.15 89.49 l 202.19 89.47 l 202.24 89.44 l 202.28 89.38 l 202.33 89.37 l 202.38 89.34 l 202.42 89.38 l 202.47 89.34 l 202.51 89.34 l 202.56 89.30 l 202.61 89.31 l 202.65 89.32 l 202.70 89.33 l 202.74 89.35 l 202.79 89.36 l 202.84 89.38 l 202.88 89.35 l 202.93 89.35 l 202.97 89.36 l 203.02 89.38 l 203.07 89.43 l 203.11 89.42 l 203.16 89.47 l 203.20 89.48 l 203.25 89.48 l 203.30 89.49 l 203.34 89.51 l 203.39 89.53 l 203.43 89.51 l 203.48 89.52 l 203.53 89.54 l 203.57 89.57 l 203.62 89.58 l 203.66 89.57 l 203.71 89.58 l 203.76 89.58 l 203.80 89.60 l 203.85 89.56 l 203.89 89.61 l 203.94 89.60 l 203.99 89.55 l 204.03 89.55 l 204.08 89.54 l 204.12 89.52 l 204.17 89.49 l 204.22 89.54 l 204.26 89.50 l 204.31 89.47 l 204.35 89.48 l 204.40 89.44 l 204.45 89.44 l 204.49 89.44 l 204.54 89.45 l 204.58 89.42 l 204.63 89.44 l 204.68 89.43 l 204.72 89.44 l 204.77 89.48 l 204.81 89.50 l 204.86 89.54 l 204.91 89.53 l 204.95 89.55 l 205.00 89.57 l 205.04 89.50 l 205.09 89.47 l 205.14 89.45 l 205.18 89.44 l 205.23 89.44 l 205.27 89.42 l 205.32 89.41 l 205.37 89.41 l 205.41 89.40 l 205.46 89.37 l 205.50 89.37 l 205.55 89.42 l 205.60 89.41 l 205.64 89.40 l 205.69 89.39 l 205.73 89.41 l 205.78 89.47 l 205.83 89.47 l 205.87 89.46 l 205.92 89.43 l 205.96 89.43 l 206.01 89.41 l 206.06 89.41 l 206.10 89.37 l 206.15 89.38 l 206.19 89.39 l 206.24 89.38 l 206.29 89.35 l 206.33 89.31 l 206.38 89.31 l 206.42 89.30 l 206.47 89.30 l 206.52 89.31 l 206.56 89.31 l 206.61 89.33 l 206.65 89.34 l 206.70 89.35 l 206.75 89.36 l 206.79 89.37 l 206.84 89.35 l 206.88 89.31 l 206.93 89.32 l 206.98 89.29 l 207.02 89.27 l 207.07 89.26 l 207.11 89.27 l 207.16 89.30 l 207.21 89.34 l 207.25 89.30 l 207.30 89.27 l 207.34 89.24 l 207.39 89.22 l 207.44 89.19 l 207.48 89.14 l 207.53 89.10 l 207.57 89.05 l 207.62 89.03 l 207.67 89.03 l 207.71 89.08 l 207.76 89.05 l 207.80 89.04 l 207.85 89.00 l 207.90 88.94 l 207.94 88.92 l 207.99 88.88 l 208.03 88.88 l 208.08 88.81 l 208.13 88.79 l 208.17 88.85 l 208.22 88.82 l 208.26 88.84 l 208.31 88.84 l 208.36 88.85 l 208.40 88.87 l 208.45 88.84 l 208.49 88.81 l 208.54 88.76 l 208.59 88.78 l 208.63 88.77 l 208.68 88.78 l 208.72 88.78 l 208.77 88.77 l 208.82 88.74 l 208.86 88.68 l 208.91 88.66 l 208.95 88.62 l 209.00 88.62 l 209.05 88.60 l 209.09 88.54 l 209.14 88.51 l 209.18 88.48 l 209.23 88.44 l 209.28 88.42 l 209.32 88.41 l 209.37 88.42 l 209.41 88.40 l 209.46 88.33 l 209.51 88.33 l 209.55 88.35 l 209.60 88.35 l 209.64 88.29 l 209.69 88.25 l 209.74 88.23 l 209.78 88.25 l 209.83 88.25 l 209.87 88.27 l 209.92 88.30 l 209.97 88.26 l 210.01 88.26 l 210.06 88.31 l 210.10 88.39 l 210.15 88.35 l 210.20 88.33 l 210.24 88.32 l 210.29 88.27 l 210.33 88.28 l 210.38 88.24 l 210.43 88.22 l 210.47 88.23 l 210.52 88.24 l 210.56 88.24 l 210.61 88.24 l 210.66 88.21 l 210.70 88.17 l 210.75 88.20 l 210.79 88.22 l 210.84 88.25 l 210.89 88.24 l 210.93 88.20 l 210.98 88.20 l 211.02 88.21 l 211.07 88.23 l 211.12 88.22 l 211.16 88.19 l 211.21 88.15 l 211.25 88.16 l 211.30 88.19 l 211.35 88.17 l 211.39 88.19 l 211.44 88.22 l 211.48 88.23 l 211.53 88.23 l 211.58 88.17 l 211.62 88.18 l 211.67 88.13 l 211.71 88.08 l 211.76 88.11 l 211.81 88.11 l 211.85 88.11 l 211.90 88.12 l 211.94 88.10 l 211.99 88.07 l 212.04 88.04 l 212.08 88.00 l 212.13 87.98 l 212.17 87.99 l 212.22 88.01 l 212.27 88.00 l 212.31 87.98 l 212.36 87.94 l 212.40 87.90 l 212.45 87.90 l 212.50 87.88 l 212.54 87.90 l 212.59 87.91 l 212.63 87.91 l 212.68 87.94 l 212.73 87.89 l 212.77 87.91 l 212.82 87.95 l 212.86 87.94 l 212.91 87.95 l 212.96 87.99 l 213.00 87.97 l 213.05 88.02 l 213.09 88.05 l 213.14 88.10 l 213.19 88.11 l 213.23 88.08 l 213.28 88.02 l 213.32 88.04 l 213.37 88.00 l 213.42 88.01 l 213.46 87.97 l 213.51 87.98 l 213.55 87.98 l 213.60 87.99 l 213.65 88.02 l 213.69 88.04 l 213.74 88.05 l 213.78 88.09 l 213.83 88.13 l 213.88 88.15 l 213.92 88.13 l 213.97 88.18 l 214.01 88.15 l 214.06 88.12 l 214.11 88.12 l 214.15 88.18 l 214.20 88.19 l 214.24 88.21 l 214.29 88.11 l 214.34 88.11 l 214.38 88.10 l 214.43 88.13 l 214.47 88.16 l 214.52 88.14 l 214.57 88.15 l 214.61 88.16 l 214.66 88.18 l 214.70 88.16 l 214.75 88.15 l 214.80 88.20 l 214.84 88.24 l 214.89 88.26 l 214.93 88.26 l 214.98 88.24 l 215.03 88.25 l 215.07 88.23 l 215.12 88.25 l 215.16 88.26 l 215.21 88.23 l 215.26 88.23 l 215.30 88.28 l 215.35 88.29 l 215.39 88.32 l 215.44 88.32 l 215.49 88.32 l 215.53 88.32 l 215.58 88.31 l 215.62 88.29 l 215.67 88.31 l 215.72 88.29 l 215.76 88.32 l 215.81 88.34 l 215.85 88.33 l 215.90 88.37 l 215.95 88.36 l 215.99 88.41 l 216.04 88.48 l 216.08 88.47 l 216.13 88.49 l 216.18 88.49 l 216.22 88.42 l 216.27 88.42 l 216.31 88.40 l 216.36 88.45 l 216.41 88.53 l 216.45 88.55 l 216.50 88.57 l 216.54 88.55 l 216.59 88.59 l 216.64 88.59 l 216.68 88.51 l 216.73 88.50 l 216.77 88.49 l 216.82 88.47 l 216.87 88.46 l 216.91 88.46 l 216.96 88.46 l 217.00 88.45 l 217.05 88.47 l 217.10 88.42 l 217.14 88.42 l 217.19 88.41 l 217.23 88.41 l 217.28 88.41 l 217.33 88.47 l 217.37 88.51 l 217.42 88.52 l 217.46 88.53 l 217.51 88.56 l 217.56 88.58 l 217.60 88.57 l 217.65 88.59 l 217.69 88.60 l 217.74 88.60 l 217.79 88.64 l 217.83 88.66 l 217.88 88.63 l 217.92 88.61 l 217.97 88.66 l 218.02 88.64 l 218.06 88.59 l 218.11 88.55 l 218.15 88.61 l 218.20 88.62 l 218.25 88.63 l 218.29 88.62 l 218.34 88.63 l 218.38 88.60 l 218.43 88.58 l 218.48 88.59 l 218.52 88.58 l 218.57 88.57 l 218.61 88.51 l 218.66 88.53 l 218.71 88.57 l 218.75 88.54 l 218.80 88.53 l 218.84 88.56 l 218.89 88.58 l 218.94 88.59 l 218.98 88.55 l 219.03 88.55 l 219.07 88.55 l 219.12 88.56 l 219.17 88.59 l 219.21 88.62 l 219.26 88.61 l 219.30 88.59 l 219.35 88.60 l 219.40 88.62 l 219.44 88.64 l 219.49 88.64 l 219.53 88.63 l 219.58 88.60 l 219.63 88.59 l 219.67 88.61 l 219.72 88.63 l 219.76 88.63 l 219.81 88.56 l 219.86 88.57 l 219.90 88.59 l 219.95 88.64 l 219.99 88.62 l 220.04 88.60 l 220.09 88.58 l 220.13 88.57 l 220.18 88.59 l 220.22 88.62 l 220.27 88.58 l 220.32 88.58 l 220.36 88.64 l 220.41 88.58 l 220.45 88.58 l 220.50 88.63 l 220.55 88.67 l 220.59 88.76 l 220.64 88.78 l 220.68 88.77 l 220.73 88.77 l 220.78 88.79 l 220.82 88.82 l 220.87 88.84 l 220.91 88.88 l 220.96 88.85 l 221.01 88.87 l 221.05 88.87 l 221.10 88.85 l 221.14 88.82 l 221.19 88.85 l 221.24 88.84 l 221.28 88.88 l 221.33 88.87 l 221.37 88.84 l 221.42 88.83 l 221.47 88.77 l 221.51 88.79 l 221.56 88.76 l 221.60 88.72 l 221.65 88.66 l 221.70 88.67 l 221.74 88.67 l 221.79 88.70 l 221.83 88.67 l 221.88 88.68 l 221.93 88.71 l 221.97 88.73 l 222.02 88.70 l 222.06 88.69 l 222.11 88.68 l 222.16 88.69 l 222.20 88.69 l 222.25 88.68 l 222.29 88.67 l 222.34 88.65 l 222.39 88.61 l 222.43 88.64 l 222.48 88.62 l 222.52 88.65 l 222.57 88.63 l 222.62 88.62 l 222.66 88.59 l 222.71 88.56 l 222.75 88.53 l 222.80 88.59 l 222.85 88.56 l 222.89 88.60 l 222.94 88.59 l 222.98 88.57 l 223.03 88.58 l 223.08 88.56 l 223.12 88.51 l 223.17 88.47 l 223.21 88.47 l 223.26 88.51 l 223.31 88.44 l 223.35 88.43 l 223.40 88.40 l 223.44 88.38 l 223.49 88.38 l 223.54 88.38 l 223.58 88.41 l 223.63 88.35 l 223.67 88.36 l 223.72 88.32 l 223.77 88.30 l 223.81 88.27 l 223.86 88.27 l 223.90 88.28 l 223.95 88.25 l 224.00 88.26 l 224.04 88.24 l 224.09 88.23 l 224.13 88.21 l 224.18 88.17 l 224.23 88.18 l 224.27 88.18 l 224.32 88.18 l 224.36 88.16 l 224.41 88.11 l 224.46 88.12 l 224.50 88.06 l 224.55 88.01 l 224.59 88.02 l 224.64 88.00 l 224.69 87.98 l 224.73 88.02 l 224.78 87.99 l 224.82 88.00 l 224.87 88.00 l 224.92 87.96 l 224.96 87.96 l 225.01 87.94 l 225.05 87.96 l 225.10 87.95 l 225.15 87.98 l 225.19 88.02 l 225.24 88.03 l 225.28 88.04 l 225.33 88.11 l 225.38 88.07 l 225.42 88.03 l 225.47 88.02 l 225.51 88.05 l 225.56 88.04 l 225.61 88.04 l 225.65 88.11 l 225.70 88.15 l 225.74 88.17 l 225.79 88.18 l 225.84 88.13 l 225.88 88.13 l 225.93 88.12 l 225.97 88.11 l 226.02 88.09 l 226.07 88.11 l 226.11 88.08 l 226.16 88.12 l 226.20 88.14 l 226.25 88.14 l 226.30 88.10 l 226.34 88.12 l 226.39 88.15 l 226.43 88.16 l 226.48 88.12 l 226.53 88.13 l 226.57 88.15 l 226.62 88.14 l 226.66 88.10 l 226.71 88.11 l 226.76 88.09 l 226.80 88.09 l 226.85 88.08 l 226.89 88.12 l 226.94 88.12 l 226.99 88.13 l 227.03 88.13 l 227.08 88.08 l 227.12 88.08 l 227.17 88.09 l 227.22 88.06 l 227.26 88.09 l 227.31 88.06 l 227.35 88.01 l 227.40 87.99 l 227.45 88.01 l 227.49 88.04 l 227.54 87.99 l 227.58 87.94 l 227.63 87.92 l 227.68 87.89 l 227.72 87.89 l 227.77 87.90 l 227.81 87.93 l 227.86 87.95 l 227.91 87.98 l 227.95 87.99 l 228.00 87.99 l 228.04 87.98 l 228.09 88.01 l 228.14 87.97 l 228.18 87.96 l 228.23 87.92 l 228.27 87.94 l 228.32 87.94 l 228.37 87.92 l 228.41 87.88 l 228.46 87.78 l 228.50 87.77 l 228.55 87.77 l 228.60 87.79 l 228.64 87.77 l 228.69 87.74 l 228.73 87.74 l 228.78 87.72 l 228.83 87.69 l 228.87 87.65 l 228.92 87.67 l 228.96 87.72 l 229.01 87.73 l 229.06 87.73 l 229.10 87.67 l 229.15 87.65 l 229.19 87.67 l 229.24 87.62 l 229.29 87.57 l 229.33 87.56 l 229.38 87.55 l 229.42 87.50 l 229.47 87.50 l 229.52 87.49 l 229.56 87.47 l 229.61 87.51 l 229.65 87.51 l 229.70 87.49 l 229.75 87.48 l 229.79 87.45 l 229.84 87.45 l 229.88 87.49 l 229.93 87.52 l 229.98 87.53 l 230.02 87.58 l 230.07 87.58 l 230.11 87.60 l 230.16 87.60 l 230.21 87.61 l 230.25 87.60 l 230.30 87.58 l 230.34 87.55 l 230.39 87.55 l 230.44 87.54 l 230.48 87.52 l 230.53 87.58 l 230.57 87.62 l 230.62 87.64 l 230.67 87.62 l 230.71 87.58 l 230.76 87.64 l 230.80 87.63 l 230.85 87.63 l 230.90 87.64 l 230.94 87.60 l 230.99 87.63 l 231.03 87.62 l 231.08 87.65 l 231.13 87.65 l 231.17 87.64 l 231.22 87.63 l 231.26 87.64 l 231.31 87.62 l 231.36 87.62 l 231.40 87.57 l 231.45 87.56 l 231.49 87.56 l 231.54 87.58 l 231.59 87.58 l 231.63 87.62 l 231.68 87.64 l 231.72 87.62 l 231.77 87.57 l 231.82 87.58 l 231.86 87.53 l 231.91 87.57 l 231.95 87.57 l 232.00 87.55 l 232.05 87.56 l 232.09 87.54 l 232.14 87.55 l 232.18 87.53 l 232.23 87.54 l 232.28 87.50 l 232.32 87.48 l 232.37 87.49 l 232.41 87.51 l 232.46 87.52 l 232.51 87.50 l 232.55 87.50 l 232.60 87.50 l 232.64 87.57 l 232.69 87.58 l 232.74 87.61 l 232.78 87.58 l 232.83 87.58 l 232.87 87.58 l 232.92 87.57 l 232.97 87.58 l 233.01 87.60 l 233.06 87.62 l 233.10 87.59 l 233.15 87.62 l 233.20 87.64 l 233.24 87.60 l 233.29 87.61 l 233.33 87.60 l 233.38 87.59 l 233.43 87.57 l 233.47 87.54 l 233.52 87.53 l 233.56 87.51 l 233.61 87.49 l 233.66 87.47 l 233.70 87.44 l 233.75 87.45 l 233.79 87.45 l 233.84 87.40 l 233.89 87.40 l 233.93 87.41 l 233.98 87.43 l 234.02 87.39 l 234.07 87.38 l 234.12 87.38 l 234.16 87.33 l 234.21 87.32 l 234.25 87.26 l 234.30 87.25 l 234.35 87.23 l 234.39 87.23 l 234.44 87.20 l 234.48 87.19 l 234.53 87.21 l 234.58 87.18 l 234.62 87.20 l 234.67 87.15 l 234.71 87.13 l 234.76 87.13 l 234.81 87.14 l 234.85 87.08 l 234.90 87.06 l 234.94 87.06 l 234.99 87.08 l 235.04 87.06 l 235.08 87.04 l 235.13 87.04 l 235.17 87.01 l 235.22 86.98 l 235.27 86.96 l 235.31 86.94 l 235.36 86.92 l 235.40 86.86 l 235.45 86.85 l 235.50 86.81 l 235.54 86.79 l 235.59 86.78 l 235.63 86.81 l 235.68 86.76 l 235.73 86.78 l 235.77 86.76 l 235.82 86.80 l 235.86 86.79 l 235.91 86.82 l 235.96 86.80 l 236.00 86.77 l 236.05 86.78 l 236.09 86.81 l 236.14 86.80 l 236.19 86.78 l 236.23 86.78 l 236.28 86.78 l 236.32 86.75 l 236.37 86.69 l 236.42 86.61 l 236.46 86.58 l 236.51 86.59 l 236.55 86.56 l 236.60 86.54 l 236.65 86.59 l 236.69 86.56 l 236.74 86.54 l 236.78 86.49 l 236.83 86.56 l 236.88 86.56 l 236.92 86.58 l 236.97 86.60 l 237.01 86.61 l 237.06 86.62 l 237.11 86.61 l 237.15 86.62 l 237.20 86.65 l 237.24 86.63 l 237.29 86.61 l 237.34 86.62 l 237.38 86.61 l 237.43 86.63 l 237.47 86.58 l 237.52 86.54 l 237.57 86.51 l 237.61 86.47 l 237.66 86.45 l 237.70 86.40 l 237.75 86.42 l 237.80 86.42 l 237.84 86.38 l 237.89 86.37 l 237.93 86.37 l 237.98 86.40 l 238.03 86.40 l 238.07 86.40 l 238.12 86.38 l 238.16 86.40 l 238.21 86.39 l 238.26 86.42 l 238.30 86.42 l 238.35 86.40 l 238.39 86.36 l 238.44 86.32 l 238.49 86.30 l 238.53 86.20 l 238.58 86.20 l 238.62 86.20 l 238.67 86.19 l 238.72 86.16 l 238.76 86.18 l 238.81 86.19 l 238.85 86.24 l 238.90 86.23 l 238.95 86.18 l 238.99 86.19 l 239.04 86.16 l 239.08 86.16 l 239.13 86.15 l 239.18 86.16 l 239.22 86.16 l 239.27 86.09 l 239.31 86.09 l 239.36 86.06 l 239.41 86.06 l 239.45 86.09 l 239.50 86.06 l 239.54 86.03 l 239.59 85.99 l 239.64 85.97 l 239.68 85.96 l 239.73 85.99 l 239.77 86.02 l 239.82 86.00 l 239.87 86.01 l 239.91 85.99 l 239.96 85.99 l 240.00 85.95 l 240.05 85.90 l 240.10 85.86 l 240.14 85.85 l 240.19 85.81 l 240.23 85.81 l 240.28 85.80 l 240.33 85.82 l 240.37 85.84 l 240.42 85.79 l 240.46 85.78 l 240.51 85.81 l 240.56 85.77 l 240.60 85.75 l 240.65 85.75 l 240.69 85.77 l 240.74 85.76 l 240.79 85.75 l 240.83 85.73 l 240.88 85.69 l 240.92 85.64 l 240.97 85.63 l 241.02 85.63 l 241.06 85.65 l 241.11 85.64 l 241.15 85.59 l 241.20 85.54 l 241.25 85.47 l 241.29 85.46 l 241.34 85.48 l 241.38 85.50 l 241.43 85.53 l 241.48 85.48 l 241.52 85.48 l 241.57 85.46 l 241.61 85.47 l 241.66 85.44 l 241.71 85.40 l 241.75 85.41 l 241.80 85.40 l 241.84 85.40 l 241.89 85.36 l 241.94 85.35 l 241.98 85.39 l 242.03 85.37 l 242.07 85.36 l 242.12 85.37 l 242.17 85.37 l 242.21 85.36 l 242.26 85.31 l 242.30 85.28 l 242.35 85.26 l 242.40 85.26 l 242.44 85.25 l 242.49 85.21 l 242.53 85.21 l 242.58 85.23 l 242.63 85.21 l 242.67 85.20 l 242.72 85.14 l 242.76 85.14 l 242.81 85.11 l 242.86 85.11 l 242.90 85.09 l 242.95 85.09 l 242.99 85.08 l 243.04 85.05 l 243.09 85.06 l 243.13 85.05 l 243.18 85.03 l 243.22 85.00 l 243.27 85.00 l 243.32 85.03 l 243.36 85.06 l 243.41 85.00 l 243.45 84.99 l 243.50 84.93 l 243.55 84.89 l 243.59 84.92 l 243.64 84.90 l 243.68 84.91 l 243.73 84.91 l 243.78 84.93 l 243.82 84.91 l 243.87 84.91 l 243.91 84.95 l 243.96 84.94 l 244.01 84.95 l 244.05 84.95 l 244.10 84.95 l 244.14 84.93 l 244.19 84.94 l 244.24 84.88 l 244.28 84.87 l 244.33 84.81 l 244.37 84.81 l 244.42 84.78 l 244.47 84.78 l 244.51 84.77 l 244.56 84.75 l 244.60 84.77 l 244.65 84.79 l 244.70 84.82 l 244.74 84.79 l 244.79 84.77 l 244.83 84.74 l 244.88 84.74 l 244.93 84.76 l 244.97 84.73 l 245.02 84.74 l 245.06 84.74 l 245.11 84.75 l 245.16 84.69 l 245.20 84.71 l 245.25 84.74 l 245.29 84.78 l 245.34 84.70 l 245.39 84.69 l 245.43 84.67 l 245.48 84.68 l 245.52 84.69 l 245.57 84.69 l 245.62 84.67 l 245.66 84.68 l 245.71 84.67 l 245.75 84.68 l 245.80 84.70 l 245.85 84.69 l 245.89 84.65 l 245.94 84.64 l 245.98 84.62 l 246.03 84.62 l 246.08 84.63 l 246.12 84.63 l 246.17 84.61 l 246.21 84.62 l 246.26 84.62 l 246.31 84.61 l 246.35 84.59 l 246.40 84.59 l 246.44 84.59 l 246.49 84.54 l 246.54 84.52 l 246.58 84.50 l 246.63 84.49 l 246.67 84.47 l 246.72 84.46 l 246.77 84.41 l 246.81 84.40 l 246.86 84.40 l 246.90 84.40 l 246.95 84.44 l 247.00 84.42 l 247.04 84.45 l 247.09 84.42 l 247.13 84.39 l 247.18 84.42 l 247.23 84.44 l 247.27 84.43 l 247.32 84.39 l 247.36 84.34 l 247.41 84.35 l 247.46 84.38 l 247.50 84.36 l 247.55 84.37 l 247.59 84.32 l 247.64 84.30 l 247.69 84.31 l 247.73 84.35 l 247.78 84.39 l 247.82 84.39 l 247.87 84.40 l 247.92 84.37 l 247.96 84.33 l 248.01 84.32 l 248.05 84.33 l 248.10 84.35 l 248.15 84.36 l 248.19 84.34 l 248.24 84.30 l 248.28 84.27 l 248.33 84.26 l 248.38 84.22 l 248.42 84.24 l 248.47 84.26 l 248.51 84.27 l 248.56 84.29 l 248.61 84.30 l 248.65 84.28 l 248.70 84.29 l 248.74 84.27 l 248.79 84.34 l 248.84 84.36 l 248.88 84.35 l 248.93 84.38 l 248.97 84.38 l 249.02 84.37 l 249.07 84.39 l 249.11 84.40 l 249.16 84.37 l 249.20 84.34 l 249.25 84.37 l 249.30 84.38 l 249.34 84.41 l 249.39 84.43 l 249.43 84.40 l 249.48 84.40 l 249.53 84.39 l 249.57 84.36 l 249.62 84.35 l 249.66 84.34 l 249.71 84.37 l 249.76 84.38 l 249.80 84.35 l 249.85 84.33 l 249.89 84.30 l 249.94 84.29 l 249.99 84.29 l 250.03 84.32 l 250.08 84.36 l 250.12 84.39 l 250.17 84.38 l 250.22 84.40 l 250.26 84.41 l 250.31 84.42 l 250.35 84.41 l 250.40 84.43 l S Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 73.44 m 250.40 73.44 l S 66.40 73.44 m 66.40 66.24 l S 112.40 73.44 m 112.40 66.24 l S 158.40 73.44 m 158.40 66.24 l S 204.40 73.44 m 204.40 66.24 l S 250.40 73.44 m 250.40 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 49.55 47.52 Tm (-2000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 95.55 47.52 Tm (-1000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 155.06 47.52 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 191.06 47.52 Tm (1000) Tj ET BT /F2 1 Tf 12.00 0.00 -0.00 12.00 237.06 47.52 Tm (2000) Tj ET 59.04 75.11 m 59.04 239.58 l S 59.04 75.11 m 51.84 75.11 l S 59.04 116.23 m 51.84 116.23 l S 59.04 157.35 m 51.84 157.35 l S 59.04 198.46 m 51.84 198.46 l S 59.04 239.58 m 51.84 239.58 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 60.10 Tm (0.000) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 101.22 Tm (0.001) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 142.34 Tm (0.002) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 183.45 Tm (0.003) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 224.57 Tm (0.004) Tj ET 59.04 73.44 m 257.76 73.44 l 257.76 264.96 l 59.04 264.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 116.05 18.72 Tm (distance to TSS) Tj ET Q q 59.04 73.44 198.72 191.52 re W n 0.000 1.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 66.40 85.10 m 66.45 85.10 l 66.49 85.13 l 66.54 85.12 l 66.58 85.11 l 66.63 85.10 l 66.68 85.10 l 66.72 85.10 l 66.77 85.10 l 66.81 85.12 l 66.86 85.12 l 66.91 85.13 l 66.95 85.13 l 67.00 85.14 l 67.04 85.13 l 67.09 85.13 l 67.14 85.11 l 67.18 85.13 l 67.23 85.15 l 67.27 85.17 l 67.32 85.17 l 67.37 85.16 l 67.41 85.16 l 67.46 85.09 l 67.50 85.04 l 67.55 84.99 l 67.60 84.99 l 67.64 85.01 l 67.69 85.04 l 67.73 85.02 l 67.78 84.99 l 67.83 84.99 l 67.87 84.98 l 67.92 84.95 l 67.96 84.94 l 68.01 84.93 l 68.06 84.90 l 68.10 84.93 l 68.15 84.93 l 68.19 84.95 l 68.24 84.97 l 68.29 84.96 l 68.33 84.97 l 68.38 84.96 l 68.42 84.96 l 68.47 84.94 l 68.52 84.93 l 68.56 84.93 l 68.61 84.96 l 68.65 84.95 l 68.70 84.96 l 68.75 84.96 l 68.79 85.01 l 68.84 84.98 l 68.88 85.04 l 68.93 85.05 l 68.98 85.05 l 69.02 85.00 l 69.07 84.99 l 69.11 85.01 l 69.16 84.99 l 69.21 85.00 l 69.25 84.97 l 69.30 84.99 l 69.34 84.97 l 69.39 84.98 l 69.44 84.96 l 69.48 84.95 l 69.53 84.96 l 69.57 84.94 l 69.62 84.93 l 69.67 84.93 l 69.71 84.91 l 69.76 84.94 l 69.80 84.94 l 69.85 84.95 l 69.90 84.95 l 69.94 84.97 l 69.99 84.94 l 70.03 84.90 l 70.08 84.86 l 70.13 84.86 l 70.17 84.91 l 70.22 84.92 l 70.26 84.91 l 70.31 84.90 l 70.36 84.90 l 70.40 84.90 l 70.45 84.93 l 70.49 84.91 l 70.54 84.92 l 70.59 84.90 l 70.63 84.88 l 70.68 84.89 l 70.72 84.94 l 70.77 84.94 l 70.82 85.00 l 70.86 85.00 l 70.91 85.06 l 70.95 85.07 l 71.00 85.08 l 71.05 85.08 l 71.09 85.11 l 71.14 85.09 l 71.18 85.13 l 71.23 85.12 l 71.28 85.12 l 71.32 85.11 l 71.37 85.12 l 71.41 85.13 l 71.46 85.17 l 71.51 85.22 l 71.55 85.24 l 71.60 85.31 l 71.64 85.33 l 71.69 85.30 l 71.74 85.33 l 71.78 85.34 l 71.83 85.37 l 71.87 85.38 l 71.92 85.41 l 71.97 85.45 l 72.01 85.46 l 72.06 85.47 l 72.10 85.48 l 72.15 85.47 l 72.20 85.49 l 72.24 85.46 l 72.29 85.48 l 72.33 85.47 l 72.38 85.46 l 72.43 85.47 l 72.47 85.51 l 72.52 85.52 l 72.56 85.54 l 72.61 85.55 l 72.66 85.56 l 72.70 85.56 l 72.75 85.57 l 72.79 85.60 l 72.84 85.57 l 72.89 85.62 l 72.93 85.61 l 72.98 85.62 l 73.02 85.62 l 73.07 85.62 l 73.12 85.65 l 73.16 85.69 l 73.21 85.73 l 73.25 85.73 l 73.30 85.77 l 73.35 85.76 l 73.39 85.79 l 73.44 85.80 l 73.48 85.80 l 73.53 85.84 l 73.58 85.86 l 73.62 85.86 l 73.67 85.85 l 73.71 85.86 l 73.76 85.85 l 73.81 85.88 l 73.85 85.90 l 73.90 85.88 l 73.94 85.91 l 73.99 85.90 l 74.04 85.89 l 74.08 85.92 l 74.13 85.90 l 74.17 85.90 l 74.22 85.93 l 74.27 85.94 l 74.31 85.94 l 74.36 85.94 l 74.40 85.98 l 74.45 85.97 l 74.50 85.99 l 74.54 86.01 l 74.59 86.05 l 74.63 86.06 l 74.68 86.10 l 74.73 86.10 l 74.77 86.10 l 74.82 86.12 l 74.86 86.12 l 74.91 86.12 l 74.96 86.12 l 75.00 86.12 l 75.05 86.17 l 75.09 86.21 l 75.14 86.25 l 75.19 86.25 l 75.23 86.27 l 75.28 86.26 l 75.32 86.25 l 75.37 86.25 l 75.42 86.24 l 75.46 86.24 l 75.51 86.23 l 75.55 86.23 l 75.60 86.25 l 75.65 86.26 l 75.69 86.25 l 75.74 86.25 l 75.78 86.25 l 75.83 86.23 l 75.88 86.22 l 75.92 86.20 l 75.97 86.20 l 76.01 86.20 l 76.06 86.19 l 76.11 86.20 l 76.15 86.20 l 76.20 86.19 l 76.24 86.22 l 76.29 86.25 l 76.34 86.31 l 76.38 86.35 l 76.43 86.39 l 76.47 86.42 l 76.52 86.44 l 76.57 86.45 l 76.61 86.41 l 76.66 86.43 l 76.70 86.46 l 76.75 86.50 l 76.80 86.56 l 76.84 86.57 l 76.89 86.60 l 76.93 86.60 l 76.98 86.65 l 77.03 86.65 l 77.07 86.66 l 77.12 86.66 l 77.16 86.66 l 77.21 86.63 l 77.26 86.63 l 77.30 86.58 l 77.35 86.59 l 77.39 86.54 l 77.44 86.53 l 77.49 86.56 l 77.53 86.63 l 77.58 86.64 l 77.62 86.72 l 77.67 86.76 l 77.72 86.81 l 77.76 86.83 l 77.81 86.85 l 77.85 86.85 l 77.90 86.88 l 77.95 86.89 l 77.99 86.92 l 78.04 86.93 l 78.08 86.96 l 78.13 87.00 l 78.18 86.99 l 78.22 87.01 l 78.27 87.00 l 78.31 86.99 l 78.36 86.98 l 78.41 86.99 l 78.45 87.07 l 78.50 87.17 l 78.54 87.25 l 78.59 87.28 l 78.64 87.28 l 78.68 87.24 l 78.73 87.24 l 78.77 87.28 l 78.82 87.32 l 78.87 87.33 l 78.91 87.35 l 78.96 87.35 l 79.00 87.36 l 79.05 87.32 l 79.10 87.35 l 79.14 87.38 l 79.19 87.41 l 79.23 87.37 l 79.28 87.41 l 79.33 87.35 l 79.37 87.39 l 79.42 87.38 l 79.46 87.42 l 79.51 87.42 l 79.56 87.47 l 79.60 87.52 l 79.65 87.61 l 79.69 87.61 l 79.74 87.70 l 79.79 87.73 l 79.83 87.72 l 79.88 87.72 l 79.92 87.73 l 79.97 87.73 l 80.02 87.76 l 80.06 87.80 l 80.11 87.81 l 80.15 87.82 l 80.20 87.86 l 80.25 87.87 l 80.29 87.87 l 80.34 87.81 l 80.38 87.79 l 80.43 87.76 l 80.48 87.76 l 80.52 87.76 l 80.57 87.76 l 80.61 87.76 l 80.66 87.81 l 80.71 87.83 l 80.75 87.88 l 80.80 87.88 l 80.84 87.95 l 80.89 87.96 l 80.94 88.01 l 80.98 88.05 l 81.03 88.09 l 81.07 88.09 l 81.12 88.13 l 81.17 88.15 l 81.21 88.14 l 81.26 88.16 l 81.30 88.13 l 81.35 88.16 l 81.40 88.17 l 81.44 88.23 l 81.49 88.22 l 81.53 88.22 l 81.58 88.26 l 81.63 88.26 l 81.67 88.24 l 81.72 88.29 l 81.76 88.38 l 81.81 88.41 l 81.86 88.49 l 81.90 88.51 l 81.95 88.50 l 81.99 88.50 l 82.04 88.47 l 82.09 88.47 l 82.13 88.50 l 82.18 88.50 l 82.22 88.51 l 82.27 88.53 l 82.32 88.55 l 82.36 88.55 l 82.41 88.60 l 82.45 88.61 l 82.50 88.66 l 82.55 88.71 l 82.59 88.71 l 82.64 88.77 l 82.68 88.78 l 82.73 88.79 l 82.78 88.78 l 82.82 88.80 l 82.87 88.80 l 82.91 88.80 l 82.96 88.82 l 83.01 88.81 l 83.05 88.85 l 83.10 88.83 l 83.14 88.84 l 83.19 88.83 l 83.24 88.87 l 83.28 88.88 l 83.33 88.92 l 83.37 88.94 l 83.42 88.95 l 83.47 88.93 l 83.51 88.92 l 83.56 88.92 l 83.60 88.93 l 83.65 88.92 l 83.70 88.93 l 83.74 88.92 l 83.79 88.95 l 83.83 88.97 l 83.88 89.00 l 83.93 89.00 l 83.97 89.04 l 84.02 89.06 l 84.06 89.08 l 84.11 89.07 l 84.16 89.11 l 84.20 89.12 l 84.25 89.14 l 84.29 89.21 l 84.34 89.22 l 84.39 89.25 l 84.43 89.25 l 84.48 89.23 l 84.52 89.26 l 84.57 89.29 l 84.62 89.29 l 84.66 89.30 l 84.71 89.34 l 84.75 89.36 l 84.80 89.35 l 84.85 89.30 l 84.89 89.30 l 84.94 89.27 l 84.98 89.28 l 85.03 89.31 l 85.08 89.34 l 85.12 89.35 l 85.17 89.35 l 85.21 89.32 l 85.26 89.32 l 85.31 89.26 l 85.35 89.28 l 85.40 89.26 l 85.44 89.27 l 85.49 89.22 l 85.54 89.23 l 85.58 89.24 l 85.63 89.25 l 85.67 89.24 l 85.72 89.28 l 85.77 89.31 l 85.81 89.34 l 85.86 89.36 l 85.90 89.38 l 85.95 89.41 l 86.00 89.40 l 86.04 89.40 l 86.09 89.42 l 86.13 89.38 l 86.18 89.37 l 86.23 89.37 l 86.27 89.42 l 86.32 89.43 l 86.36 89.46 l 86.41 89.46 l 86.46 89.50 l 86.50 89.56 l 86.55 89.67 l 86.59 89.66 l 86.64 89.68 l 86.69 89.71 l 86.73 89.75 l 86.78 89.80 l 86.82 89.87 l 86.87 89.93 l 86.92 89.94 l 86.96 89.90 l 87.01 89.80 l 87.05 89.75 l 87.10 89.76 l 87.15 89.80 l 87.19 89.82 l 87.24 89.84 l 87.28 89.84 l 87.33 89.84 l 87.38 89.88 l 87.42 89.89 l 87.47 89.90 l 87.51 89.90 l 87.56 89.97 l 87.61 89.98 l 87.65 89.98 l 87.70 90.01 l 87.74 90.02 l 87.79 90.00 l 87.84 90.02 l 87.88 89.99 l 87.93 89.97 l 87.97 89.94 l 88.02 89.94 l 88.07 89.95 l 88.11 89.97 l 88.16 89.92 l 88.20 89.93 l 88.25 89.86 l 88.30 89.88 l 88.34 89.94 l 88.39 89.97 l 88.43 90.01 l 88.48 90.01 l 88.53 90.01 l 88.57 90.05 l 88.62 90.02 l 88.66 90.03 l 88.71 90.04 l 88.76 90.03 l 88.80 90.04 l 88.85 90.10 l 88.89 90.12 l 88.94 90.14 l 88.99 90.17 l 89.03 90.19 l 89.08 90.29 l 89.12 90.28 l 89.17 90.25 l 89.22 90.25 l 89.26 90.23 l 89.31 90.25 l 89.35 90.22 l 89.40 90.25 l 89.45 90.26 l 89.49 90.31 l 89.54 90.32 l 89.58 90.41 l 89.63 90.42 l 89.68 90.40 l 89.72 90.44 l 89.77 90.49 l 89.81 90.53 l 89.86 90.60 l 89.91 90.64 l 89.95 90.63 l 90.00 90.68 l 90.04 90.73 l 90.09 90.73 l 90.14 90.75 l 90.18 90.78 l 90.23 90.76 l 90.27 90.68 l 90.32 90.63 l 90.37 90.60 l 90.41 90.60 l 90.46 90.59 l 90.50 90.60 l 90.55 90.63 l 90.60 90.63 l 90.64 90.63 l 90.69 90.67 l 90.73 90.66 l 90.78 90.65 l 90.83 90.63 l 90.87 90.64 l 90.92 90.65 l 90.96 90.64 l 91.01 90.65 l 91.06 90.65 l 91.10 90.66 l 91.15 90.69 l 91.19 90.65 l 91.24 90.66 l 91.29 90.69 l 91.33 90.75 l 91.38 90.85 l 91.42 90.89 l 91.47 90.90 l 91.52 90.93 l 91.56 90.93 l 91.61 90.98 l 91.65 90.96 l 91.70 90.98 l 91.75 90.93 l 91.79 90.93 l 91.84 90.85 l 91.88 90.84 l 91.93 90.84 l 91.98 90.85 l 92.02 90.87 l 92.07 90.88 l 92.11 90.85 l 92.16 90.85 l 92.21 90.85 l 92.25 90.92 l 92.30 90.95 l 92.34 91.00 l 92.39 91.03 l 92.44 91.02 l 92.48 91.02 l 92.53 91.04 l 92.57 91.02 l 92.62 91.06 l 92.67 91.04 l 92.71 91.04 l 92.76 91.11 l 92.80 91.11 l 92.85 91.19 l 92.90 91.18 l 92.94 91.20 l 92.99 91.24 l 93.03 91.25 l 93.08 91.27 l 93.13 91.27 l 93.17 91.31 l 93.22 91.26 l 93.26 91.25 l 93.31 91.26 l 93.36 91.29 l 93.40 91.29 l 93.45 91.32 l 93.49 91.31 l 93.54 91.33 l 93.59 91.34 l 93.63 91.34 l 93.68 91.33 l 93.72 91.31 l 93.77 91.28 l 93.82 91.30 l 93.86 91.29 l 93.91 91.30 l 93.95 91.30 l 94.00 91.32 l 94.05 91.34 l 94.09 91.33 l 94.14 91.34 l 94.18 91.34 l 94.23 91.33 l 94.28 91.30 l 94.32 91.30 l 94.37 91.31 l 94.41 91.32 l 94.46 91.30 l 94.51 91.29 l 94.55 91.27 l 94.60 91.27 l 94.64 91.27 l 94.69 91.26 l 94.74 91.21 l 94.78 91.20 l 94.83 91.17 l 94.87 91.14 l 94.92 91.11 l 94.97 91.11 l 95.01 91.04 l 95.06 90.92 l 95.10 90.92 l 95.15 90.87 l 95.20 90.87 l 95.24 90.86 l 95.29 90.82 l 95.33 90.80 l 95.38 90.77 l 95.43 90.77 l 95.47 90.74 l 95.52 90.77 l 95.56 90.75 l 95.61 90.75 l 95.66 90.81 l 95.70 90.82 l 95.75 90.83 l 95.79 90.81 l 95.84 90.79 l 95.89 90.76 l 95.93 90.76 l 95.98 90.77 l 96.02 90.77 l 96.07 90.72 l 96.12 90.72 l 96.16 90.74 l 96.21 90.72 l 96.25 90.71 l 96.30 90.70 l 96.35 90.71 l 96.39 90.72 l 96.44 90.76 l 96.48 90.77 l 96.53 90.80 l 96.58 90.77 l 96.62 90.76 l 96.67 90.77 l 96.71 90.74 l 96.76 90.75 l 96.81 90.71 l 96.85 90.70 l 96.90 90.69 l 96.94 90.65 l 96.99 90.64 l 97.04 90.63 l 97.08 90.58 l 97.13 90.61 l 97.17 90.62 l 97.22 90.62 l 97.27 90.63 l 97.31 90.62 l 97.36 90.59 l 97.40 90.60 l 97.45 90.58 l 97.50 90.58 l 97.54 90.57 l 97.59 90.50 l 97.63 90.53 l 97.68 90.57 l 97.73 90.58 l 97.77 90.59 l 97.82 90.58 l 97.86 90.59 l 97.91 90.63 l 97.96 90.59 l 98.00 90.51 l 98.05 90.49 l 98.09 90.43 l 98.14 90.41 l 98.19 90.43 l 98.23 90.40 l 98.28 90.40 l 98.32 90.45 l 98.37 90.44 l 98.42 90.43 l 98.46 90.46 l 98.51 90.42 l 98.55 90.40 l 98.60 90.41 l 98.65 90.44 l 98.69 90.42 l 98.74 90.40 l 98.78 90.43 l 98.83 90.43 l 98.88 90.43 l 98.92 90.44 l 98.97 90.50 l 99.01 90.57 l 99.06 90.58 l 99.11 90.58 l 99.15 90.60 l 99.20 90.61 l 99.24 90.68 l 99.29 90.72 l 99.34 90.76 l 99.38 90.80 l 99.43 90.81 l 99.47 90.81 l 99.52 90.77 l 99.57 90.79 l 99.61 90.78 l 99.66 90.72 l 99.70 90.75 l 99.75 90.79 l 99.80 90.81 l 99.84 90.77 l 99.89 90.68 l 99.93 90.66 l 99.98 90.68 l 100.03 90.74 l 100.07 90.79 l 100.12 90.83 l 100.16 90.87 l 100.21 90.90 l 100.26 90.94 l 100.30 91.00 l 100.35 91.05 l 100.39 91.11 l 100.44 91.12 l 100.49 91.15 l 100.53 91.16 l 100.58 91.14 l 100.62 91.14 l 100.67 91.16 l 100.72 91.20 l 100.76 91.21 l 100.81 91.21 l 100.85 91.20 l 100.90 91.20 l 100.95 91.25 l 100.99 91.24 l 101.04 91.26 l 101.08 91.28 l 101.13 91.29 l 101.18 91.32 l 101.22 91.36 l 101.27 91.37 l 101.31 91.32 l 101.36 91.28 l 101.41 91.34 l 101.45 91.38 l 101.50 91.40 l 101.54 91.40 l 101.59 91.40 l 101.64 91.42 l 101.68 91.40 l 101.73 91.44 l 101.77 91.50 l 101.82 91.57 l 101.87 91.59 l 101.91 91.63 l 101.96 91.59 l 102.00 91.60 l 102.05 91.57 l 102.10 91.59 l 102.14 91.62 l 102.19 91.69 l 102.23 91.76 l 102.28 91.80 l 102.33 91.83 l 102.37 91.88 l 102.42 91.93 l 102.46 92.01 l 102.51 92.05 l 102.56 92.04 l 102.60 92.08 l 102.65 92.11 l 102.69 92.16 l 102.74 92.21 l 102.79 92.22 l 102.83 92.25 l 102.88 92.31 l 102.92 92.34 l 102.97 92.40 l 103.02 92.44 l 103.06 92.47 l 103.11 92.46 l 103.15 92.44 l 103.20 92.46 l 103.25 92.48 l 103.29 92.50 l 103.34 92.61 l 103.38 92.66 l 103.43 92.75 l 103.48 92.74 l 103.52 92.77 l 103.57 92.82 l 103.61 92.89 l 103.66 92.91 l 103.71 92.98 l 103.75 92.99 l 103.80 93.00 l 103.84 93.04 l 103.89 93.09 l 103.94 93.14 l 103.98 93.17 l 104.03 93.19 l 104.07 93.26 l 104.12 93.25 l 104.17 93.20 l 104.21 93.23 l 104.26 93.24 l 104.30 93.28 l 104.35 93.31 l 104.40 93.32 l 104.44 93.31 l 104.49 93.32 l 104.53 93.35 l 104.58 93.39 l 104.63 93.43 l 104.67 93.44 l 104.72 93.48 l 104.76 93.52 l 104.81 93.57 l 104.86 93.64 l 104.90 93.69 l 104.95 93.74 l 104.99 93.75 l 105.04 93.74 l 105.09 93.73 l 105.13 93.77 l 105.18 93.77 l 105.22 93.81 l 105.27 93.83 l 105.32 93.87 l 105.36 93.86 l 105.41 93.87 l 105.45 93.88 l 105.50 93.91 l 105.55 93.90 l 105.59 93.96 l 105.64 93.95 l 105.68 94.00 l 105.73 94.03 l 105.78 94.12 l 105.82 94.13 l 105.87 94.15 l 105.91 94.16 l 105.96 94.21 l 106.01 94.21 l 106.05 94.27 l 106.10 94.31 l 106.14 94.38 l 106.19 94.46 l 106.24 94.53 l 106.28 94.53 l 106.33 94.56 l 106.37 94.58 l 106.42 94.59 l 106.47 94.66 l 106.51 94.69 l 106.56 94.72 l 106.60 94.80 l 106.65 94.82 l 106.70 94.82 l 106.74 94.84 l 106.79 94.84 l 106.83 94.86 l 106.88 94.87 l 106.93 94.85 l 106.97 94.80 l 107.02 94.81 l 107.06 94.86 l 107.11 94.87 l 107.16 94.87 l 107.20 94.91 l 107.25 94.93 l 107.29 94.99 l 107.34 95.03 l 107.39 95.04 l 107.43 95.08 l 107.48 95.11 l 107.52 95.14 l 107.57 95.18 l 107.62 95.24 l 107.66 95.30 l 107.71 95.32 l 107.75 95.34 l 107.80 95.34 l 107.85 95.40 l 107.89 95.41 l 107.94 95.45 l 107.98 95.51 l 108.03 95.60 l 108.08 95.63 l 108.12 95.67 l 108.17 95.73 l 108.21 95.79 l 108.26 95.80 l 108.31 95.80 l 108.35 95.79 l 108.40 95.87 l 108.44 95.96 l 108.49 95.96 l 108.54 95.98 l 108.58 95.95 l 108.63 95.94 l 108.67 95.99 l 108.72 96.02 l 108.77 96.07 l 108.81 96.06 l 108.86 96.07 l 108.90 96.06 l 108.95 96.11 l 109.00 96.16 l 109.04 96.23 l 109.09 96.29 l 109.13 96.31 l 109.18 96.34 l 109.23 96.38 l 109.27 96.39 l 109.32 96.45 l 109.36 96.43 l 109.41 96.46 l 109.46 96.47 l 109.50 96.56 l 109.55 96.57 l 109.59 96.60 l 109.64 96.60 l 109.69 96.65 l 109.73 96.66 l 109.78 96.71 l 109.82 96.76 l 109.87 96.86 l 109.92 96.87 l 109.96 96.92 l 110.01 96.97 l 110.05 96.99 l 110.10 97.09 l 110.15 97.20 l 110.19 97.31 l 110.24 97.35 l 110.28 97.34 l 110.33 97.32 l 110.38 97.29 l 110.42 97.35 l 110.47 97.39 l 110.51 97.43 l 110.56 97.44 l 110.61 97.43 l 110.65 97.47 l 110.70 97.45 l 110.74 97.43 l 110.79 97.42 l 110.84 97.42 l 110.88 97.43 l 110.93 97.41 l 110.97 97.40 l 111.02 97.41 l 111.07 97.43 l 111.11 97.51 l 111.16 97.54 l 111.20 97.63 l 111.25 97.65 l 111.30 97.73 l 111.34 97.82 l 111.39 97.82 l 111.43 97.83 l 111.48 97.82 l 111.53 97.84 l 111.57 97.90 l 111.62 98.02 l 111.66 98.16 l 111.71 98.25 l 111.76 98.33 l 111.80 98.36 l 111.85 98.34 l 111.89 98.38 l 111.94 98.44 l 111.99 98.60 l 112.03 98.70 l 112.08 98.78 l 112.12 98.78 l 112.17 98.81 l 112.22 98.83 l 112.26 98.92 l 112.31 98.96 l 112.35 98.95 l 112.40 98.96 l 112.45 98.93 l 112.49 98.95 l 112.54 98.99 l 112.58 98.99 l 112.63 99.06 l 112.68 99.13 l 112.72 99.20 l 112.77 99.28 l 112.81 99.38 l 112.86 99.42 l 112.91 99.52 l 112.95 99.63 l 113.00 99.65 l 113.04 99.64 l 113.09 99.72 l 113.14 99.71 l 113.18 99.79 l 113.23 99.81 l 113.27 99.84 l 113.32 99.84 l 113.37 99.84 l 113.41 99.87 l 113.46 99.91 l 113.50 100.02 l 113.55 100.09 l 113.60 100.17 l 113.64 100.19 l 113.69 100.21 l 113.73 100.23 l 113.78 100.21 l 113.83 100.27 l 113.87 100.29 l 113.92 100.31 l 113.96 100.37 l 114.01 100.47 l 114.06 100.53 l 114.10 100.54 l 114.15 100.61 l 114.19 100.69 l 114.24 100.74 l 114.29 100.73 l 114.33 100.84 l 114.38 100.90 l 114.42 100.99 l 114.47 101.08 l 114.52 101.18 l 114.56 101.24 l 114.61 101.30 l 114.65 101.24 l 114.70 101.17 l 114.75 101.16 l 114.79 101.25 l 114.84 101.35 l 114.88 101.39 l 114.93 101.45 l 114.98 101.54 l 115.02 101.58 l 115.07 101.62 l 115.11 101.69 l 115.16 101.76 l 115.21 101.86 l 115.25 101.96 l 115.30 102.04 l 115.34 102.06 l 115.39 102.06 l 115.44 102.13 l 115.48 102.23 l 115.53 102.37 l 115.57 102.39 l 115.62 102.44 l 115.67 102.43 l 115.71 102.45 l 115.76 102.53 l 115.80 102.54 l 115.85 102.58 l 115.90 102.65 l 115.94 102.71 l 115.99 102.75 l 116.03 102.76 l 116.08 102.77 l 116.13 102.81 l 116.17 102.83 l 116.22 102.85 l 116.26 102.91 l 116.31 102.99 l 116.36 102.98 l 116.40 103.07 l 116.45 103.12 l 116.49 103.19 l 116.54 103.26 l 116.59 103.30 l 116.63 103.30 l 116.68 103.37 l 116.72 103.41 l 116.77 103.48 l 116.82 103.58 l 116.86 103.68 l 116.91 103.72 l 116.95 103.71 l 117.00 103.83 l 117.05 103.89 l 117.09 103.94 l 117.14 104.02 l 117.18 104.09 l 117.23 104.12 l 117.28 104.18 l 117.32 104.25 l 117.37 104.29 l 117.41 104.37 l 117.46 104.45 l 117.51 104.50 l 117.55 104.49 l 117.60 104.61 l 117.64 104.72 l 117.69 104.79 l 117.74 104.89 l 117.78 105.00 l 117.83 105.03 l 117.87 105.10 l 117.92 105.16 l 117.97 105.25 l 118.01 105.33 l 118.06 105.40 l 118.10 105.44 l 118.15 105.51 l 118.20 105.60 l 118.24 105.70 l 118.29 105.70 l 118.33 105.78 l 118.38 105.75 l 118.43 105.84 l 118.47 105.88 l 118.52 105.89 l 118.56 105.95 l 118.61 106.01 l 118.66 106.05 l 118.70 106.12 l 118.75 106.19 l 118.79 106.29 l 118.84 106.39 l 118.89 106.51 l 118.93 106.61 l 118.98 106.70 l 119.02 106.79 l 119.07 106.99 l 119.12 107.10 l 119.16 107.17 l 119.21 107.24 l 119.25 107.30 l 119.30 107.43 l 119.35 107.51 l 119.39 107.60 l 119.44 107.70 l 119.48 107.79 l 119.53 107.85 l 119.58 107.96 l 119.62 108.01 l 119.67 108.12 l 119.71 108.19 l 119.76 108.26 l 119.81 108.35 l 119.85 108.39 l 119.90 108.54 l 119.94 108.65 l 119.99 108.76 l 120.04 108.89 l 120.08 109.00 l 120.13 108.98 l 120.17 109.04 l 120.22 109.09 l 120.27 109.12 l 120.31 109.19 l 120.36 109.25 l 120.40 109.33 l 120.45 109.36 l 120.50 109.32 l 120.54 109.29 l 120.59 109.31 l 120.63 109.35 l 120.68 109.42 l 120.73 109.40 l 120.77 109.44 l 120.82 109.51 l 120.86 109.65 l 120.91 109.77 l 120.96 109.92 l 121.00 110.02 l 121.05 110.12 l 121.09 110.20 l 121.14 110.31 l 121.19 110.38 l 121.23 110.42 l 121.28 110.42 l 121.32 110.51 l 121.37 110.62 l 121.42 110.70 l 121.46 110.77 l 121.51 110.85 l 121.55 111.02 l 121.60 111.08 l 121.65 111.15 l 121.69 111.19 l 121.74 111.26 l 121.78 111.40 l 121.83 111.54 l 121.88 111.64 l 121.92 111.80 l 121.97 111.91 l 122.01 111.94 l 122.06 112.05 l 122.11 112.13 l 122.15 112.20 l 122.20 112.30 l 122.24 112.39 l 122.29 112.49 l 122.34 112.57 l 122.38 112.71 l 122.43 112.79 l 122.47 112.82 l 122.52 112.84 l 122.57 113.02 l 122.61 113.09 l 122.66 113.17 l 122.70 113.23 l 122.75 113.30 l 122.80 113.41 l 122.84 113.47 l 122.89 113.50 l 122.93 113.57 l 122.98 113.54 l 123.03 113.56 l 123.07 113.61 l 123.12 113.71 l 123.16 113.81 l 123.21 113.95 l 123.26 114.05 l 123.30 114.10 l 123.35 114.20 l 123.39 114.33 l 123.44 114.37 l 123.49 114.40 l 123.53 114.52 l 123.58 114.60 l 123.62 114.60 l 123.67 114.64 l 123.72 114.73 l 123.76 114.81 l 123.81 114.83 l 123.85 114.95 l 123.90 115.02 l 123.95 115.06 l 123.99 115.13 l 124.04 115.16 l 124.08 115.29 l 124.13 115.42 l 124.18 115.60 l 124.22 115.76 l 124.27 115.88 l 124.31 115.97 l 124.36 116.23 l 124.41 116.38 l 124.45 116.50 l 124.50 116.60 l 124.54 116.74 l 124.59 116.82 l 124.64 116.92 l 124.68 116.98 l 124.73 117.10 l 124.77 117.25 l 124.82 117.35 l 124.87 117.48 l 124.91 117.55 l 124.96 117.66 l 125.00 117.74 l 125.05 117.80 l 125.10 117.90 l 125.14 118.06 l 125.19 118.22 l 125.23 118.30 l 125.28 118.40 l 125.33 118.49 l 125.37 118.61 l 125.42 118.67 l 125.46 118.77 l 125.51 118.82 l 125.56 118.94 l 125.60 119.16 l 125.65 119.42 l 125.69 119.66 l 125.74 119.81 l 125.79 120.05 l 125.83 120.13 l 125.88 120.27 l 125.92 120.32 l 125.97 120.33 l 126.02 120.41 l 126.06 120.52 l 126.11 120.57 l 126.15 120.64 l 126.20 120.76 l 126.25 120.78 l 126.29 120.84 l 126.34 120.93 l 126.38 121.08 l 126.43 121.20 l 126.48 121.34 l 126.52 121.45 l 126.57 121.55 l 126.61 121.73 l 126.66 121.89 l 126.71 121.93 l 126.75 121.98 l 126.80 122.15 l 126.84 122.27 l 126.89 122.43 l 126.94 122.48 l 126.98 122.59 l 127.03 122.74 l 127.07 122.84 l 127.12 123.02 l 127.17 123.11 l 127.21 123.19 l 127.26 123.29 l 127.30 123.35 l 127.35 123.43 l 127.40 123.54 l 127.44 123.58 l 127.49 123.69 l 127.53 123.81 l 127.58 123.78 l 127.63 123.83 l 127.67 123.94 l 127.72 124.10 l 127.76 124.22 l 127.81 124.34 l 127.86 124.49 l 127.90 124.62 l 127.95 124.73 l 127.99 124.84 l 128.04 124.94 l 128.09 125.10 l 128.13 125.14 l 128.18 125.21 l 128.22 125.31 l 128.27 125.51 l 128.32 125.65 l 128.36 125.73 l 128.41 125.75 l 128.45 125.81 l 128.50 125.92 l 128.55 126.00 l 128.59 126.01 l 128.64 126.22 l 128.68 126.36 l 128.73 126.58 l 128.78 126.77 l 128.82 126.90 l 128.87 126.96 l 128.91 127.04 l 128.96 127.15 l 129.01 127.26 l 129.05 127.40 l 129.10 127.47 l 129.14 127.70 l 129.19 127.89 l 129.24 128.11 l 129.28 128.28 l 129.33 128.54 l 129.37 128.71 l 129.42 128.79 l 129.47 128.92 l 129.51 129.06 l 129.56 129.24 l 129.60 129.39 l 129.65 129.59 l 129.70 129.66 l 129.74 129.82 l 129.79 129.98 l 129.83 130.01 l 129.88 130.07 l 129.93 130.15 l 129.97 130.38 l 130.02 130.56 l 130.06 130.68 l 130.11 130.81 l 130.16 130.95 l 130.20 131.11 l 130.25 131.24 l 130.29 131.36 l 130.34 131.53 l 130.39 131.67 l 130.43 131.68 l 130.48 131.70 l 130.52 131.82 l 130.57 131.89 l 130.62 132.04 l 130.66 132.25 l 130.71 132.48 l 130.75 132.61 l 130.80 132.80 l 130.85 132.91 l 130.89 132.98 l 130.94 133.19 l 130.98 133.45 l 131.03 133.63 l 131.08 133.72 l 131.12 133.84 l 131.17 133.98 l 131.21 134.10 l 131.26 134.33 l 131.31 134.43 l 131.35 134.55 l 131.40 134.71 l 131.44 134.80 l 131.49 135.05 l 131.54 135.27 l 131.58 135.52 l 131.63 135.65 l 131.67 135.88 l 131.72 136.04 l 131.77 136.19 l 131.81 136.40 l 131.86 136.53 l 131.90 136.82 l 131.95 137.06 l 132.00 137.22 l 132.04 137.38 l 132.09 137.58 l 132.13 137.82 l 132.18 137.98 l 132.23 138.12 l 132.27 138.26 l 132.32 138.38 l 132.36 138.50 l 132.41 138.68 l 132.46 138.90 l 132.50 139.04 l 132.55 139.25 l 132.59 139.35 l 132.64 139.49 l 132.69 139.66 l 132.73 139.78 l 132.78 139.95 l 132.82 140.12 l 132.87 140.23 l 132.92 140.33 l 132.96 140.39 l 133.01 140.60 l 133.05 140.69 l 133.10 140.98 l 133.15 141.26 l 133.19 141.40 l 133.24 141.64 l 133.28 141.81 l 133.33 142.13 l 133.38 142.39 l 133.42 142.63 l 133.47 142.93 l 133.51 143.16 l 133.56 143.30 l 133.61 143.51 l 133.65 143.67 l 133.70 143.83 l 133.74 144.07 l 133.79 144.25 l 133.84 144.33 l 133.88 144.46 l 133.93 144.64 l 133.97 144.85 l 134.02 145.17 l 134.07 145.22 l 134.11 145.25 l 134.16 145.19 l 134.20 145.22 l 134.25 145.36 l 134.30 145.49 l 134.34 145.70 l 134.39 145.92 l 134.43 146.21 l 134.48 146.43 l 134.53 146.66 l 134.57 146.99 l 134.62 147.45 l 134.66 147.89 l 134.71 148.19 l 134.76 148.39 l 134.80 148.67 l 134.85 148.91 l 134.89 149.07 l 134.94 149.27 l 134.99 149.34 l 135.03 149.41 l 135.08 149.58 l 135.12 149.70 l 135.17 149.81 l 135.22 150.06 l 135.26 150.24 l 135.31 150.33 l 135.35 150.54 l 135.40 150.62 l 135.45 150.84 l 135.49 151.03 l 135.54 151.22 l 135.58 151.41 l 135.63 151.51 l 135.68 151.63 l 135.72 151.70 l 135.77 151.81 l 135.81 152.05 l 135.86 152.21 l 135.91 152.40 l 135.95 152.60 l 136.00 152.79 l 136.04 152.97 l 136.09 153.13 l 136.14 153.46 l 136.18 153.61 l 136.23 153.80 l 136.27 154.13 l 136.32 154.29 l 136.37 154.47 l 136.41 154.66 l 136.46 154.81 l 136.50 155.03 l 136.55 155.24 l 136.60 155.38 l 136.64 155.59 l 136.69 155.68 l 136.73 155.94 l 136.78 156.00 l 136.83 156.16 l 136.87 156.38 l 136.92 156.61 l 136.96 156.82 l 137.01 157.02 l 137.06 157.26 l 137.10 157.51 l 137.15 157.64 l 137.19 157.81 l 137.24 157.82 l 137.29 157.94 l 137.33 158.00 l 137.38 158.16 l 137.42 158.22 l 137.47 158.38 l 137.52 158.49 l 137.56 158.82 l 137.61 159.03 l 137.65 159.14 l 137.70 159.35 l 137.75 159.55 l 137.79 159.70 l 137.84 159.69 l 137.88 159.76 l 137.93 159.91 l 137.98 160.13 l 138.02 160.36 l 138.07 160.50 l 138.11 160.68 l 138.16 160.74 l 138.21 161.02 l 138.25 161.21 l 138.30 161.40 l 138.34 161.67 l 138.39 161.95 l 138.44 162.32 l 138.48 162.40 l 138.53 162.61 l 138.57 162.75 l 138.62 162.97 l 138.67 163.18 l 138.71 163.30 l 138.76 163.41 l 138.80 163.51 l 138.85 163.52 l 138.90 163.64 l 138.94 163.85 l 138.99 164.05 l 139.03 164.30 l 139.08 164.49 l 139.13 164.66 l 139.17 164.83 l 139.22 164.98 l 139.26 165.10 l 139.31 165.28 l 139.36 165.47 l 139.40 165.64 l 139.45 165.84 l 139.49 165.94 l 139.54 166.18 l 139.59 166.26 l 139.63 166.49 l 139.68 166.67 l 139.72 166.88 l 139.77 167.05 l 139.82 167.25 l 139.86 167.40 l 139.91 167.58 l 139.95 167.79 l 140.00 167.94 l 140.05 168.09 l 140.09 168.22 l 140.14 168.35 l 140.18 168.57 l 140.23 168.72 l 140.28 168.95 l 140.32 169.10 l 140.37 169.29 l 140.41 169.36 l 140.46 169.42 l 140.51 169.57 l 140.55 169.72 l 140.60 169.79 l 140.64 169.97 l 140.69 170.15 l 140.74 170.28 l 140.78 170.45 l 140.83 170.67 l 140.87 170.84 l 140.92 170.91 l 140.97 170.98 l 141.01 171.10 l 141.06 171.17 l 141.10 171.38 l 141.15 171.67 l 141.20 171.75 l 141.24 171.95 l 141.29 172.09 l 141.33 172.23 l 141.38 172.30 l 141.43 172.39 l 141.47 172.65 l 141.52 172.77 l 141.56 172.95 l 141.61 173.04 l 141.66 173.10 l 141.70 173.45 l 141.75 173.58 l 141.79 173.63 l 141.84 173.67 l 141.89 173.73 l 141.93 173.79 l 141.98 173.80 l 142.02 173.90 l 142.07 174.16 l 142.12 174.33 l 142.16 174.45 l 142.21 174.52 l 142.25 174.76 l 142.30 175.03 l 142.35 175.34 l 142.39 175.52 l 142.44 175.60 l 142.48 175.83 l 142.53 175.74 l 142.58 175.97 l 142.62 176.22 l 142.67 176.37 l 142.71 176.47 l 142.76 176.62 l 142.81 176.81 l 142.85 177.05 l 142.90 177.23 l 142.94 177.50 l 142.99 177.80 l 143.04 178.07 l 143.08 178.05 l 143.13 178.01 l 143.17 178.00 l 143.22 178.03 l 143.27 178.25 l 143.31 178.35 l 143.36 178.43 l 143.40 178.58 l 143.45 178.67 l 143.50 178.90 l 143.54 179.05 l 143.59 179.21 l 143.63 179.37 l 143.68 179.60 l 143.73 179.79 l 143.77 180.25 l 143.82 180.75 l 143.86 181.07 l 143.91 181.44 l 143.96 181.64 l 144.00 182.09 l 144.05 182.27 l 144.09 182.48 l 144.14 182.61 l 144.19 183.03 l 144.23 183.34 l 144.28 183.73 l 144.32 183.95 l 144.37 184.16 l 144.42 184.44 l 144.46 184.73 l 144.51 184.98 l 144.55 185.16 l 144.60 185.41 l 144.65 185.46 l 144.69 185.84 l 144.74 186.06 l 144.78 186.13 l 144.83 186.48 l 144.88 186.75 l 144.92 186.99 l 144.97 187.16 l 145.01 187.43 l 145.06 187.75 l 145.11 188.03 l 145.15 188.39 l 145.20 188.83 l 145.24 188.93 l 145.29 189.11 l 145.34 189.11 l 145.38 189.38 l 145.43 189.53 l 145.47 189.80 l 145.52 189.94 l 145.57 189.96 l 145.61 190.06 l 145.66 190.13 l 145.70 190.11 l 145.75 190.20 l 145.80 190.36 l 145.84 190.58 l 145.89 190.80 l 145.93 191.11 l 145.98 191.36 l 146.03 191.77 l 146.07 191.82 l 146.12 191.98 l 146.16 192.08 l 146.21 191.99 l 146.26 191.93 l 146.30 191.97 l 146.35 192.22 l 146.39 192.37 l 146.44 192.58 l 146.49 192.67 l 146.53 192.74 l 146.58 192.76 l 146.62 192.79 l 146.67 192.86 l 146.72 192.81 l 146.76 192.93 l 146.81 193.04 l 146.85 193.13 l 146.90 193.21 l 146.95 193.01 l 146.99 193.07 l 147.04 192.98 l 147.08 193.13 l 147.13 193.08 l 147.18 193.11 l 147.22 193.16 l 147.27 193.44 l 147.31 193.60 l 147.36 193.67 l 147.41 193.66 l 147.45 193.54 l 147.50 193.43 l 147.54 193.32 l 147.59 193.16 l 147.64 193.16 l 147.68 192.98 l 147.73 192.89 l 147.77 192.83 l 147.82 192.72 l 147.87 192.63 l 147.91 192.55 l 147.96 192.29 l 148.00 192.16 l 148.05 191.93 l 148.10 191.75 l 148.14 191.61 l 148.19 191.44 l 148.23 191.18 l 148.28 190.93 l 148.33 190.71 l 148.37 190.54 l 148.42 190.33 l 148.46 190.22 l 148.51 190.02 l 148.56 189.71 l 148.60 189.44 l 148.65 189.40 l 148.69 189.26 l 148.74 189.24 l 148.79 189.02 l 148.83 188.87 l 148.88 188.55 l 148.92 188.32 l 148.97 188.19 l 149.02 187.98 l 149.06 187.71 l 149.11 187.62 l 149.15 187.31 l 149.20 187.04 l 149.25 186.80 l 149.29 186.54 l 149.34 186.36 l 149.38 186.15 l 149.43 185.98 l 149.48 185.79 l 149.52 185.54 l 149.57 185.35 l 149.61 185.06 l 149.66 184.72 l 149.71 184.51 l 149.75 184.17 l 149.80 183.90 l 149.84 183.60 l 149.89 183.35 l 149.94 183.14 l 149.98 182.88 l 150.03 182.54 l 150.07 182.19 l 150.12 181.85 l 150.17 181.54 l 150.21 181.04 l 150.26 180.70 l 150.30 180.45 l 150.35 180.11 l 150.40 179.70 l 150.44 179.40 l 150.49 179.10 l 150.53 178.73 l 150.58 178.32 l 150.63 177.88 l 150.67 177.60 l 150.72 177.28 l 150.76 176.87 l 150.81 176.48 l 150.86 176.07 l 150.90 175.78 l 150.95 175.53 l 150.99 175.20 l 151.04 174.99 l 151.09 174.69 l 151.13 174.35 l 151.18 174.14 l 151.22 173.86 l 151.27 173.55 l 151.32 173.09 l 151.36 172.63 l 151.41 172.22 l 151.45 171.74 l 151.50 171.29 l 151.55 170.85 l 151.59 170.56 l 151.64 170.11 l 151.68 169.68 l 151.73 169.30 l 151.78 168.91 l 151.82 168.53 l 151.87 168.22 l 151.91 167.84 l 151.96 167.52 l 152.01 167.14 l 152.05 166.82 l 152.10 166.49 l 152.14 166.08 l 152.19 165.64 l 152.24 165.21 l 152.28 164.56 l 152.33 163.86 l 152.37 163.31 l 152.42 162.77 l 152.47 162.31 l 152.51 161.61 l 152.56 161.18 l 152.60 160.78 l 152.65 160.39 l 152.70 159.87 l 152.74 159.46 l 152.79 158.94 l 152.83 158.49 l 152.88 158.22 l 152.93 157.80 l 152.97 157.36 l 153.02 156.99 l 153.06 156.57 l 153.11 156.17 l 153.16 155.80 l 153.20 155.27 l 153.25 154.83 l 153.29 154.46 l 153.34 153.95 l 153.39 153.50 l 153.43 153.04 l 153.48 152.75 l 153.52 152.31 l 153.57 151.86 l 153.62 151.37 l 153.66 150.88 l 153.71 150.35 l 153.75 150.04 l 153.80 149.67 l 153.85 149.50 l 153.89 149.06 l 153.94 148.70 l 153.98 148.22 l 154.03 147.89 l 154.08 147.65 l 154.12 147.41 l 154.17 147.19 l 154.21 147.04 l 154.26 146.92 l 154.31 146.64 l 154.35 146.37 l 154.40 146.09 l 154.44 145.73 l 154.49 145.43 l 154.54 144.97 l 154.58 144.63 l 154.63 144.35 l 154.67 144.12 l 154.72 144.06 l 154.77 143.92 l 154.81 143.78 l 154.86 143.54 l 154.90 143.28 l 154.95 143.04 l 155.00 142.83 l 155.04 142.61 l 155.09 142.44 l 155.13 142.40 l 155.18 142.28 l 155.23 142.24 l 155.27 142.05 l 155.32 141.92 l 155.36 141.80 l 155.41 141.65 l 155.46 141.66 l 155.50 141.67 l 155.55 141.77 l 155.59 141.71 l 155.64 141.86 l 155.69 141.94 l 155.73 141.99 l 155.78 141.83 l 155.82 141.83 l 155.87 141.85 l 155.92 142.05 l 155.96 142.27 l 156.01 142.56 l 156.05 142.70 l 156.10 142.98 l 156.15 143.07 l 156.19 143.37 l 156.24 143.57 l 156.28 143.91 l 156.33 144.09 l 156.38 144.44 l 156.42 144.65 l 156.47 145.04 l 156.51 145.33 l 156.56 145.78 l 156.61 146.13 l 156.65 146.58 l 156.70 146.98 l 156.74 147.52 l 156.79 147.96 l 156.84 148.54 l 156.88 149.02 l 156.93 149.51 l 156.97 150.02 l 157.02 150.53 l 157.07 151.28 l 157.11 151.78 l 157.16 152.15 l 157.20 152.50 l 157.25 152.92 l 157.30 153.35 l 157.34 153.81 l 157.39 154.54 l 157.43 155.17 l 157.48 155.74 l 157.53 156.47 l 157.57 157.11 l 157.62 157.61 l 157.66 158.24 l 157.71 158.98 l 157.76 159.88 l 157.80 160.78 l 157.85 161.53 l 157.89 162.39 l 157.94 163.27 l 157.99 164.08 l 158.03 164.91 l 158.08 165.91 l 158.12 166.86 l 158.17 167.96 l 158.22 168.88 l 158.26 169.85 l 158.31 170.89 l 158.35 171.85 l 158.40 172.97 l 158.45 173.93 l 158.49 174.75 l 158.54 175.90 l 158.58 177.00 l 158.63 178.01 l 158.68 179.19 l 158.72 180.44 l 158.77 181.86 l 158.81 183.26 l 158.86 184.55 l 158.91 185.85 l 158.95 186.86 l 159.00 188.09 l 159.04 189.19 l 159.09 190.08 l 159.14 191.22 l 159.18 192.52 l 159.23 194.06 l 159.27 195.07 l 159.32 196.11 l 159.37 197.24 l 159.41 198.24 l 159.46 199.41 l 159.50 200.53 l 159.55 201.85 l 159.60 203.16 l 159.64 204.80 l 159.69 205.97 l 159.73 207.15 l 159.78 208.12 l 159.83 209.08 l 159.87 210.17 l 159.92 211.03 l 159.96 211.99 l 160.01 213.11 l 160.06 214.15 l 160.10 215.07 l 160.15 216.05 l 160.19 217.17 l 160.24 218.35 l 160.29 219.28 l 160.33 220.15 l 160.38 221.03 l 160.42 222.28 l 160.47 223.65 l 160.52 224.98 l 160.56 225.99 l 160.61 227.07 l 160.65 228.00 l 160.70 228.96 l 160.75 229.87 l 160.79 231.15 l 160.84 232.26 l 160.88 233.34 l 160.93 234.24 l 160.98 235.03 l 161.02 235.78 l 161.07 236.49 l 161.11 237.29 l 161.16 238.09 l 161.21 238.85 l 161.25 239.53 l 161.30 240.24 l 161.34 240.81 l 161.39 241.28 l 161.44 241.98 l 161.48 242.70 l 161.53 243.36 l 161.57 244.00 l 161.62 244.57 l 161.67 245.13 l 161.71 245.73 l 161.76 246.15 l 161.80 246.74 l 161.85 247.12 l 161.90 247.59 l 161.94 248.06 l 161.99 248.46 l 162.03 248.76 l 162.08 249.10 l 162.13 249.45 l 162.17 249.76 l 162.22 250.07 l 162.26 250.27 l 162.31 250.65 l 162.36 250.78 l 162.40 251.01 l 162.45 251.40 l 162.49 251.83 l 162.54 252.11 l 162.59 252.48 l 162.63 252.83 l 162.68 253.18 l 162.72 253.46 l 162.77 253.65 l 162.82 253.84 l 162.86 254.18 l 162.91 254.38 l 162.95 254.78 l 163.00 255.06 l 163.05 255.32 l 163.09 255.57 l 163.14 255.74 l 163.18 255.97 l 163.23 256.15 l 163.28 256.26 l 163.32 256.46 l 163.37 256.61 l 163.41 256.76 l 163.46 256.85 l 163.51 256.94 l 163.55 257.09 l 163.60 257.26 l 163.64 257.34 l 163.69 257.49 l 163.74 257.54 l 163.78 257.56 l 163.83 257.60 l 163.87 257.60 l 163.92 257.74 l 163.97 257.75 l 164.01 257.81 l 164.06 257.83 l 164.10 257.87 l 164.15 257.69 l 164.20 257.56 l 164.24 257.44 l 164.29 257.37 l 164.33 257.30 l 164.38 257.37 l 164.43 257.23 l 164.47 257.21 l 164.52 257.12 l 164.56 257.03 l 164.61 256.97 l 164.66 256.90 l 164.70 256.76 l 164.75 256.77 l 164.79 256.71 l 164.84 256.71 l 164.89 256.51 l 164.93 256.46 l 164.98 256.27 l 165.02 256.15 l 165.07 255.85 l 165.12 255.68 l 165.16 255.34 l 165.21 255.13 l 165.25 254.84 l 165.30 254.67 l 165.35 254.49 l 165.39 254.38 l 165.44 254.27 l 165.48 254.02 l 165.53 253.72 l 165.58 253.37 l 165.62 253.10 l 165.67 252.85 l 165.71 252.64 l 165.76 252.42 l 165.81 252.37 l 165.85 252.24 l 165.90 251.85 l 165.94 251.45 l 165.99 251.16 l 166.04 250.75 l 166.08 250.51 l 166.13 250.28 l 166.17 250.00 l 166.22 249.67 l 166.27 249.08 l 166.31 248.59 l 166.36 248.31 l 166.40 247.77 l 166.45 247.35 l 166.50 246.84 l 166.54 246.43 l 166.59 245.81 l 166.63 245.35 l 166.68 244.57 l 166.73 244.10 l 166.77 243.61 l 166.82 242.99 l 166.86 242.49 l 166.91 241.79 l 166.96 241.24 l 167.00 240.77 l 167.05 240.27 l 167.09 239.71 l 167.14 239.29 l 167.19 238.60 l 167.23 237.91 l 167.28 237.02 l 167.32 236.17 l 167.37 235.40 l 167.42 234.66 l 167.46 234.13 l 167.51 233.30 l 167.55 232.71 l 167.60 232.30 l 167.65 231.61 l 167.69 230.71 l 167.74 229.67 l 167.78 229.24 l 167.83 228.67 l 167.88 228.02 l 167.92 227.28 l 167.97 226.47 l 168.01 225.66 l 168.06 224.86 l 168.11 223.98 l 168.15 222.89 l 168.20 222.03 l 168.24 221.23 l 168.29 220.61 l 168.34 220.24 l 168.38 219.63 l 168.43 219.31 l 168.47 218.75 l 168.52 218.10 l 168.57 217.49 l 168.61 216.93 l 168.66 216.43 l 168.70 215.86 l 168.75 215.19 l 168.80 214.74 l 168.84 214.34 l 168.89 213.85 l 168.93 212.98 l 168.98 211.96 l 169.03 211.01 l 169.07 210.44 l 169.12 209.83 l 169.16 209.42 l 169.21 208.95 l 169.26 208.52 l 169.30 207.78 l 169.35 207.19 l 169.39 206.48 l 169.44 206.07 l 169.49 205.70 l 169.53 205.36 l 169.58 205.15 l 169.62 204.79 l 169.67 204.41 l 169.72 203.98 l 169.76 203.71 l 169.81 203.38 l 169.85 203.20 l 169.90 202.94 l 169.95 202.52 l 169.99 202.16 l 170.04 201.78 l 170.08 201.68 l 170.13 201.51 l 170.18 201.32 l 170.22 201.01 l 170.27 200.84 l 170.31 200.50 l 170.36 200.33 l 170.41 200.07 l 170.45 199.85 l 170.50 199.70 l 170.54 199.59 l 170.59 199.59 l 170.64 199.60 l 170.68 199.61 l 170.73 199.57 l 170.77 199.54 l 170.82 199.41 l 170.87 199.45 l 170.91 199.43 l 170.96 199.30 l 171.00 199.11 l 171.05 199.04 l 171.10 198.95 l 171.14 198.78 l 171.19 198.58 l 171.23 198.46 l 171.28 198.25 l 171.33 198.18 l 171.37 197.97 l 171.42 197.87 l 171.46 197.75 l 171.51 197.59 l 171.56 197.44 l 171.60 197.34 l 171.65 197.33 l 171.69 197.29 l 171.74 197.20 l 171.79 197.22 l 171.83 197.19 l 171.88 197.08 l 171.92 197.23 l 171.97 197.28 l 172.02 197.32 l 172.06 197.24 l 172.11 197.19 l 172.15 197.05 l 172.20 196.92 l 172.25 196.90 l 172.29 196.86 l 172.34 196.85 l 172.38 196.87 l 172.43 196.77 l 172.48 196.84 l 172.52 196.63 l 172.57 196.44 l 172.61 196.17 l 172.66 196.15 l 172.71 196.22 l 172.75 196.33 l 172.80 196.28 l 172.84 196.23 l 172.89 196.14 l 172.94 196.17 l 172.98 196.03 l 173.03 195.89 l 173.07 195.92 l 173.12 195.89 l 173.17 195.86 l 173.21 195.83 l 173.26 195.63 l 173.30 195.50 l 173.35 195.33 l 173.40 195.24 l 173.44 195.17 l 173.49 195.13 l 173.53 195.05 l 173.58 195.10 l 173.63 195.23 l 173.67 195.29 l 173.72 195.20 l 173.76 195.13 l 173.81 194.96 l 173.86 194.78 l 173.90 194.69 l 173.95 194.55 l 173.99 194.43 l 174.04 194.43 l 174.09 194.33 l 174.13 194.25 l 174.18 194.21 l 174.22 194.13 l 174.27 193.97 l 174.32 193.70 l 174.36 193.54 l 174.41 193.39 l 174.45 193.36 l 174.50 193.24 l 174.55 193.16 l 174.59 193.06 l 174.64 192.89 l 174.68 192.67 l 174.73 192.58 l 174.78 192.44 l 174.82 192.30 l 174.87 191.97 l 174.91 191.90 l 174.96 191.79 l 175.01 191.71 l 175.05 191.55 l 175.10 191.42 l 175.14 191.23 l 175.19 191.13 l 175.24 190.91 l 175.28 190.78 l 175.33 190.59 l 175.37 190.41 l 175.42 190.20 l 175.47 190.00 l 175.51 189.80 l 175.56 189.48 l 175.60 189.32 l 175.65 189.15 l 175.70 188.98 l 175.74 188.69 l 175.79 188.46 l 175.83 188.17 l 175.88 188.02 l 175.93 187.83 l 175.97 187.68 l 176.02 187.50 l 176.06 187.49 l 176.11 187.45 l 176.16 187.38 l 176.20 187.37 l 176.25 187.25 l 176.29 186.87 l 176.34 186.58 l 176.39 186.45 l 176.43 186.51 l 176.48 186.47 l 176.52 186.37 l 176.57 186.20 l 176.62 185.98 l 176.66 185.74 l 176.71 185.62 l 176.75 185.58 l 176.80 185.61 l 176.85 185.37 l 176.89 185.20 l 176.94 184.89 l 176.98 184.74 l 177.03 184.54 l 177.08 184.34 l 177.12 184.25 l 177.17 184.35 l 177.21 184.30 l 177.26 184.25 l 177.31 184.12 l 177.35 184.08 l 177.40 184.04 l 177.44 184.06 l 177.49 184.02 l 177.54 184.04 l 177.58 183.97 l 177.63 183.83 l 177.67 183.66 l 177.72 183.55 l 177.77 183.37 l 177.81 183.09 l 177.86 182.97 l 177.90 182.86 l 177.95 182.68 l 178.00 182.57 l 178.04 182.56 l 178.09 182.45 l 178.13 182.37 l 178.18 182.18 l 178.23 182.12 l 178.27 181.93 l 178.32 181.82 l 178.36 181.74 l 178.41 181.66 l 178.46 181.52 l 178.50 181.40 l 178.55 181.35 l 178.59 181.07 l 178.64 180.88 l 178.69 180.82 l 178.73 180.69 l 178.78 180.81 l 178.82 180.82 l 178.87 180.78 l 178.92 180.80 l 178.96 180.76 l 179.01 180.59 l 179.05 180.47 l 179.10 180.25 l 179.15 180.15 l 179.19 180.03 l 179.24 179.90 l 179.28 179.84 l 179.33 179.86 l 179.38 179.88 l 179.42 179.89 l 179.47 179.83 l 179.51 179.83 l 179.56 179.84 l 179.61 179.79 l 179.65 179.86 l 179.70 179.90 l 179.74 179.84 l 179.79 179.92 l 179.84 179.86 l 179.88 179.81 l 179.93 179.73 l 179.97 179.59 l 180.02 179.42 l 180.07 179.47 l 180.11 179.53 l 180.16 179.48 l 180.20 179.40 l 180.25 179.35 l 180.30 179.20 l 180.34 179.08 l 180.39 179.14 l 180.43 178.90 l 180.48 178.75 l 180.53 178.51 l 180.57 178.46 l 180.62 178.35 l 180.66 178.25 l 180.71 178.23 l 180.76 178.11 l 180.80 178.06 l 180.85 177.99 l 180.89 177.85 l 180.94 177.77 l 180.99 177.66 l 181.03 177.68 l 181.08 177.63 l 181.12 177.63 l 181.17 177.59 l 181.22 177.37 l 181.26 177.12 l 181.31 177.02 l 181.35 176.84 l 181.40 176.80 l 181.45 176.63 l 181.49 176.49 l 181.54 176.42 l 181.58 176.19 l 181.63 176.05 l 181.68 175.96 l 181.72 175.75 l 181.77 175.64 l 181.81 175.53 l 181.86 175.54 l 181.91 175.48 l 181.95 175.35 l 182.00 175.24 l 182.04 175.13 l 182.09 174.90 l 182.14 174.67 l 182.18 174.44 l 182.23 174.28 l 182.27 174.18 l 182.32 174.09 l 182.37 173.96 l 182.41 173.68 l 182.46 173.45 l 182.50 173.29 l 182.55 173.08 l 182.60 172.91 l 182.64 172.75 l 182.69 172.57 l 182.73 172.35 l 182.78 172.13 l 182.83 172.04 l 182.87 171.83 l 182.92 171.70 l 182.96 171.57 l 183.01 171.42 l 183.06 171.16 l 183.10 170.89 l 183.15 170.78 l 183.19 170.71 l 183.24 170.45 l 183.29 170.35 l 183.33 170.09 l 183.38 170.00 l 183.42 169.84 l 183.47 169.65 l 183.52 169.52 l 183.56 169.35 l 183.61 169.14 l 183.65 168.92 l 183.70 168.84 l 183.75 168.73 l 183.79 168.46 l 183.84 168.25 l 183.88 168.11 l 183.93 168.00 l 183.98 167.93 l 184.02 167.85 l 184.07 167.64 l 184.11 167.39 l 184.16 167.05 l 184.21 166.92 l 184.25 166.76 l 184.30 166.56 l 184.34 166.38 l 184.39 166.25 l 184.44 166.10 l 184.48 166.04 l 184.53 166.00 l 184.57 165.75 l 184.62 165.61 l 184.67 165.42 l 184.71 165.12 l 184.76 164.92 l 184.80 164.91 l 184.85 164.79 l 184.90 164.60 l 184.94 164.51 l 184.99 164.39 l 185.03 164.27 l 185.08 164.07 l 185.13 163.98 l 185.17 163.78 l 185.22 163.67 l 185.26 163.40 l 185.31 163.24 l 185.36 162.99 l 185.40 162.90 l 185.45 162.84 l 185.49 162.69 l 185.54 162.50 l 185.59 162.43 l 185.63 162.28 l 185.68 161.83 l 185.72 161.57 l 185.77 161.25 l 185.82 161.05 l 185.86 160.80 l 185.91 160.54 l 185.95 160.26 l 186.00 160.05 l 186.05 159.83 l 186.09 159.63 l 186.14 159.38 l 186.18 159.20 l 186.23 158.99 l 186.28 158.82 l 186.32 158.66 l 186.37 158.40 l 186.41 158.17 l 186.46 158.05 l 186.51 157.88 l 186.55 157.71 l 186.60 157.53 l 186.64 157.34 l 186.69 157.35 l 186.74 157.13 l 186.78 157.03 l 186.83 156.81 l 186.87 156.52 l 186.92 156.44 l 186.97 156.36 l 187.01 156.18 l 187.06 155.93 l 187.10 155.83 l 187.15 155.66 l 187.20 155.50 l 187.24 155.38 l 187.29 155.11 l 187.33 154.98 l 187.38 154.86 l 187.43 154.73 l 187.47 154.55 l 187.52 154.49 l 187.56 154.44 l 187.61 154.41 l 187.66 154.23 l 187.70 154.10 l 187.75 154.06 l 187.79 153.88 l 187.84 153.74 l 187.89 153.54 l 187.93 153.34 l 187.98 153.21 l 188.02 153.07 l 188.07 152.95 l 188.12 152.76 l 188.16 152.45 l 188.21 152.24 l 188.25 152.09 l 188.30 151.98 l 188.35 151.90 l 188.39 151.91 l 188.44 151.86 l 188.48 151.73 l 188.53 151.73 l 188.58 151.52 l 188.62 151.29 l 188.67 151.16 l 188.71 151.01 l 188.76 150.83 l 188.81 150.82 l 188.85 150.68 l 188.90 150.51 l 188.94 150.41 l 188.99 150.25 l 189.04 150.24 l 189.08 150.08 l 189.13 150.01 l 189.17 149.95 l 189.22 149.85 l 189.27 149.77 l 189.31 149.67 l 189.36 149.49 l 189.40 149.36 l 189.45 149.22 l 189.50 149.03 l 189.54 148.90 l 189.59 148.86 l 189.63 148.76 l 189.68 148.60 l 189.73 148.53 l 189.77 148.57 l 189.82 148.52 l 189.86 148.48 l 189.91 148.32 l 189.96 148.21 l 190.00 148.30 l 190.05 148.23 l 190.09 148.21 l 190.14 148.09 l 190.19 147.99 l 190.23 147.97 l 190.28 147.95 l 190.32 147.89 l 190.37 147.80 l 190.42 147.69 l 190.46 147.68 l 190.51 147.69 l 190.55 147.62 l 190.60 147.65 l 190.65 147.58 l 190.69 147.59 l 190.74 147.56 l 190.78 147.44 l 190.83 147.32 l 190.88 147.18 l 190.92 147.09 l 190.97 147.13 l 191.01 147.02 l 191.06 147.02 l 191.11 146.93 l 191.15 146.86 l 191.20 146.82 l 191.24 146.72 l 191.29 146.67 l 191.34 146.58 l 191.38 146.49 l 191.43 146.40 l 191.47 146.30 l 191.52 146.27 l 191.57 146.24 l 191.61 146.21 l 191.66 146.10 l 191.70 145.99 l 191.75 145.93 l 191.80 145.92 l 191.84 145.94 l 191.89 145.78 l 191.93 145.57 l 191.98 145.46 l 192.03 145.41 l 192.07 145.38 l 192.12 145.25 l 192.16 145.19 l 192.21 144.98 l 192.26 144.83 l 192.30 144.75 l 192.35 144.73 l 192.39 144.59 l 192.44 144.45 l 192.49 144.30 l 192.53 144.15 l 192.58 144.03 l 192.62 143.96 l 192.67 143.94 l 192.72 143.79 l 192.76 143.77 l 192.81 143.72 l 192.85 143.63 l 192.90 143.38 l 192.95 143.21 l 192.99 142.97 l 193.04 142.78 l 193.08 142.61 l 193.13 142.36 l 193.18 142.25 l 193.22 142.18 l 193.27 142.02 l 193.31 141.81 l 193.36 141.65 l 193.41 141.48 l 193.45 141.18 l 193.50 140.95 l 193.54 140.77 l 193.59 140.59 l 193.64 140.39 l 193.68 140.25 l 193.73 140.11 l 193.77 139.96 l 193.82 139.74 l 193.87 139.63 l 193.91 139.49 l 193.96 139.33 l 194.00 139.19 l 194.05 139.06 l 194.10 138.83 l 194.14 138.66 l 194.19 138.54 l 194.23 138.35 l 194.28 138.19 l 194.33 138.02 l 194.37 137.82 l 194.42 137.70 l 194.46 137.55 l 194.51 137.50 l 194.56 137.32 l 194.60 137.19 l 194.65 137.20 l 194.69 137.09 l 194.74 136.96 l 194.79 136.80 l 194.83 136.68 l 194.88 136.56 l 194.92 136.48 l 194.97 136.31 l 195.02 136.21 l 195.06 135.98 l 195.11 135.84 l 195.15 135.68 l 195.20 135.43 l 195.25 135.37 l 195.29 135.17 l 195.34 135.15 l 195.38 135.15 l 195.43 134.94 l 195.48 134.81 l 195.52 134.67 l 195.57 134.60 l 195.61 134.43 l 195.66 134.32 l 195.71 134.17 l 195.75 134.09 l 195.80 133.93 l 195.84 133.76 l 195.89 133.65 l 195.94 133.49 l 195.98 133.38 l 196.03 133.23 l 196.07 133.07 l 196.12 132.90 l 196.17 132.75 l 196.21 132.65 l 196.26 132.43 l 196.30 132.34 l 196.35 132.15 l 196.40 132.05 l 196.44 131.97 l 196.49 131.87 l 196.53 131.74 l 196.58 131.61 l 196.63 131.53 l 196.67 131.44 l 196.72 131.36 l 196.76 131.24 l 196.81 131.07 l 196.86 130.97 l 196.90 130.73 l 196.95 130.60 l 196.99 130.63 l 197.04 130.49 l 197.09 130.50 l 197.13 130.40 l 197.18 130.33 l 197.22 130.29 l 197.27 130.31 l 197.32 130.25 l 197.36 130.15 l 197.41 129.97 l 197.45 129.85 l 197.50 129.80 l 197.55 129.66 l 197.59 129.59 l 197.64 129.51 l 197.68 129.44 l 197.73 129.27 l 197.78 129.19 l 197.82 129.09 l 197.87 129.08 l 197.91 129.09 l 197.96 129.04 l 198.01 128.96 l 198.05 128.89 l 198.10 128.78 l 198.14 128.77 l 198.19 128.73 l 198.24 128.62 l 198.28 128.50 l 198.33 128.43 l 198.37 128.42 l 198.42 128.41 l 198.47 128.35 l 198.51 128.09 l 198.56 128.01 l 198.60 127.98 l 198.65 127.92 l 198.70 127.91 l 198.74 127.90 l 198.79 127.81 l 198.83 127.67 l 198.88 127.58 l 198.93 127.45 l 198.97 127.28 l 199.02 127.13 l 199.06 127.05 l 199.11 126.88 l 199.16 126.80 l 199.20 126.72 l 199.25 126.72 l 199.29 126.65 l 199.34 126.61 l 199.39 126.55 l 199.43 126.51 l 199.48 126.44 l 199.52 126.41 l 199.57 126.27 l 199.62 126.23 l 199.66 126.22 l 199.71 126.08 l 199.75 126.03 l 199.80 125.88 l 199.85 125.76 l 199.89 125.69 l 199.94 125.66 l 199.98 125.53 l 200.03 125.35 l 200.08 125.23 l 200.12 125.15 l 200.17 125.12 l 200.21 125.13 l 200.26 125.08 l 200.31 124.93 l 200.35 124.81 l 200.40 124.73 l 200.44 124.69 l 200.49 124.59 l 200.54 124.48 l 200.58 124.45 l 200.63 124.48 l 200.67 124.40 l 200.72 124.39 l 200.77 124.33 l 200.81 124.25 l 200.86 124.16 l 200.90 124.10 l 200.95 123.98 l 201.00 123.91 l 201.04 123.87 l 201.09 123.89 l 201.13 123.85 l 201.18 123.71 l 201.23 123.63 l 201.27 123.54 l 201.32 123.43 l 201.36 123.43 l 201.41 123.41 l 201.46 123.37 l 201.50 123.32 l 201.55 123.24 l 201.59 123.09 l 201.64 123.00 l 201.69 122.91 l 201.73 122.89 l 201.78 122.84 l 201.82 122.80 l 201.87 122.74 l 201.92 122.78 l 201.96 122.80 l 202.01 122.83 l 202.05 122.77 l 202.10 122.71 l 202.15 122.69 l 202.19 122.72 l 202.24 122.62 l 202.28 122.66 l 202.33 122.65 l 202.38 122.61 l 202.42 122.53 l 202.47 122.46 l 202.51 122.47 l 202.56 122.54 l 202.61 122.51 l 202.65 122.55 l 202.70 122.48 l 202.74 122.38 l 202.79 122.31 l 202.84 122.32 l 202.88 122.27 l 202.93 122.19 l 202.97 122.19 l 203.02 122.05 l 203.07 122.04 l 203.11 121.98 l 203.16 121.90 l 203.20 121.85 l 203.25 121.77 l 203.30 121.72 l 203.34 121.74 l 203.39 121.71 l 203.43 121.72 l 203.48 121.76 l 203.53 121.72 l 203.57 121.70 l 203.62 121.58 l 203.66 121.53 l 203.71 121.51 l 203.76 121.43 l 203.80 121.36 l 203.85 121.21 l 203.89 121.12 l 203.94 121.11 l 203.99 121.04 l 204.03 120.96 l 204.08 120.88 l 204.12 120.87 l 204.17 120.84 l 204.22 120.75 l 204.26 120.69 l 204.31 120.64 l 204.35 120.57 l 204.40 120.44 l 204.45 120.34 l 204.49 120.28 l 204.54 120.25 l 204.58 120.20 l 204.63 120.12 l 204.68 120.13 l 204.72 120.03 l 204.77 120.00 l 204.81 119.97 l 204.86 119.93 l 204.91 119.84 l 204.95 119.69 l 205.00 119.64 l 205.04 119.52 l 205.09 119.42 l 205.14 119.28 l 205.18 119.28 l 205.23 119.18 l 205.27 119.18 l 205.32 119.18 l 205.37 119.14 l 205.41 119.16 l 205.46 119.12 l 205.50 118.96 l 205.55 118.95 l 205.60 118.82 l 205.64 118.74 l 205.69 118.65 l 205.73 118.49 l 205.78 118.36 l 205.83 118.30 l 205.87 118.26 l 205.92 118.32 l 205.96 118.33 l 206.01 118.26 l 206.06 118.22 l 206.10 118.15 l 206.15 118.08 l 206.19 118.08 l 206.24 118.08 l 206.29 117.99 l 206.33 118.01 l 206.38 117.92 l 206.42 117.78 l 206.47 117.66 l 206.52 117.65 l 206.56 117.58 l 206.61 117.57 l 206.65 117.49 l 206.70 117.52 l 206.75 117.49 l 206.79 117.41 l 206.84 117.41 l 206.88 117.27 l 206.93 117.20 l 206.98 117.14 l 207.02 117.17 l 207.07 117.09 l 207.11 117.03 l 207.16 117.04 l 207.21 116.88 l 207.25 116.71 l 207.30 116.60 l 207.34 116.50 l 207.39 116.38 l 207.44 116.34 l 207.48 116.30 l 207.53 116.16 l 207.57 116.11 l 207.62 116.01 l 207.67 115.92 l 207.71 115.76 l 207.76 115.63 l 207.80 115.56 l 207.85 115.50 l 207.90 115.45 l 207.94 115.41 l 207.99 115.34 l 208.03 115.22 l 208.08 115.19 l 208.13 115.08 l 208.17 114.96 l 208.22 114.95 l 208.26 114.93 l 208.31 114.96 l 208.36 114.91 l 208.40 114.85 l 208.45 114.72 l 208.49 114.67 l 208.54 114.69 l 208.59 114.65 l 208.63 114.58 l 208.68 114.50 l 208.72 114.38 l 208.77 114.33 l 208.82 114.37 l 208.86 114.29 l 208.91 114.27 l 208.95 114.27 l 209.00 114.22 l 209.05 114.16 l 209.09 114.12 l 209.14 113.99 l 209.18 113.94 l 209.23 113.84 l 209.28 113.78 l 209.32 113.71 l 209.37 113.67 l 209.41 113.60 l 209.46 113.57 l 209.51 113.55 l 209.55 113.50 l 209.60 113.38 l 209.64 113.27 l 209.69 113.23 l 209.74 113.18 l 209.78 113.11 l 209.83 112.97 l 209.87 112.83 l 209.92 112.72 l 209.97 112.65 l 210.01 112.55 l 210.06 112.53 l 210.10 112.49 l 210.15 112.44 l 210.20 112.35 l 210.24 112.24 l 210.29 112.17 l 210.33 112.07 l 210.38 112.00 l 210.43 111.84 l 210.47 111.72 l 210.52 111.64 l 210.56 111.63 l 210.61 111.63 l 210.66 111.61 l 210.70 111.51 l 210.75 111.55 l 210.79 111.49 l 210.84 111.41 l 210.89 111.36 l 210.93 111.29 l 210.98 111.26 l 211.02 111.18 l 211.07 111.02 l 211.12 110.96 l 211.16 110.83 l 211.21 110.82 l 211.25 110.81 l 211.30 110.82 l 211.35 110.71 l 211.39 110.65 l 211.44 110.65 l 211.48 110.57 l 211.53 110.46 l 211.58 110.38 l 211.62 110.30 l 211.67 110.16 l 211.71 110.11 l 211.76 110.07 l 211.81 110.01 l 211.85 109.92 l 211.90 109.82 l 211.94 109.70 l 211.99 109.57 l 212.04 109.49 l 212.08 109.39 l 212.13 109.38 l 212.17 109.29 l 212.22 109.21 l 212.27 109.11 l 212.31 109.09 l 212.36 109.02 l 212.40 108.97 l 212.45 108.88 l 212.50 108.81 l 212.54 108.74 l 212.59 108.68 l 212.63 108.58 l 212.68 108.57 l 212.73 108.58 l 212.77 108.58 l 212.82 108.62 l 212.86 108.61 l 212.91 108.60 l 212.96 108.61 l 213.00 108.55 l 213.05 108.54 l 213.09 108.47 l 213.14 108.52 l 213.19 108.44 l 213.23 108.39 l 213.28 108.37 l 213.32 108.26 l 213.37 108.23 l 213.42 108.18 l 213.46 108.19 l 213.51 108.11 l 213.55 108.10 l 213.60 108.00 l 213.65 107.95 l 213.69 107.84 l 213.74 107.78 l 213.78 107.72 l 213.83 107.65 l 213.88 107.56 l 213.92 107.46 l 213.97 107.36 l 214.01 107.29 l 214.06 107.22 l 214.11 107.15 l 214.15 107.17 l 214.20 107.14 l 214.24 107.10 l 214.29 107.06 l 214.34 106.99 l 214.38 106.93 l 214.43 106.84 l 214.47 106.74 l 214.52 106.66 l 214.57 106.65 l 214.61 106.66 l 214.66 106.62 l 214.70 106.53 l 214.75 106.44 l 214.80 106.42 l 214.84 106.35 l 214.89 106.30 l 214.93 106.27 l 214.98 106.21 l 215.03 106.17 l 215.07 106.08 l 215.12 106.05 l 215.16 105.97 l 215.21 105.84 l 215.26 105.79 l 215.30 105.78 l 215.35 105.65 l 215.39 105.60 l 215.44 105.51 l 215.49 105.44 l 215.53 105.37 l 215.58 105.37 l 215.62 105.33 l 215.67 105.20 l 215.72 105.20 l 215.76 105.20 l 215.81 105.17 l 215.85 105.17 l 215.90 105.12 l 215.95 105.09 l 215.99 105.06 l 216.04 105.06 l 216.08 105.04 l 216.13 105.04 l 216.18 105.03 l 216.22 105.01 l 216.27 104.99 l 216.31 105.02 l 216.36 105.00 l 216.41 105.00 l 216.45 104.94 l 216.50 104.86 l 216.54 104.88 l 216.59 104.80 l 216.64 104.78 l 216.68 104.76 l 216.73 104.69 l 216.77 104.66 l 216.82 104.62 l 216.87 104.57 l 216.91 104.57 l 216.96 104.57 l 217.00 104.57 l 217.05 104.51 l 217.10 104.49 l 217.14 104.50 l 217.19 104.44 l 217.23 104.38 l 217.28 104.35 l 217.33 104.25 l 217.37 104.20 l 217.42 104.15 l 217.46 104.08 l 217.51 104.05 l 217.56 104.01 l 217.60 103.93 l 217.65 103.95 l 217.69 103.94 l 217.74 103.91 l 217.79 103.87 l 217.83 103.81 l 217.88 103.73 l 217.92 103.71 l 217.97 103.65 l 218.02 103.55 l 218.06 103.52 l 218.11 103.53 l 218.15 103.52 l 218.20 103.51 l 218.25 103.50 l 218.29 103.43 l 218.34 103.49 l 218.38 103.44 l 218.43 103.40 l 218.48 103.35 l 218.52 103.31 l 218.57 103.22 l 218.61 103.21 l 218.66 103.17 l 218.71 103.16 l 218.75 103.13 l 218.80 103.10 l 218.84 103.09 l 218.89 103.10 l 218.94 103.13 l 218.98 103.14 l 219.03 103.08 l 219.07 103.01 l 219.12 102.93 l 219.17 102.84 l 219.21 102.77 l 219.26 102.67 l 219.30 102.59 l 219.35 102.48 l 219.40 102.42 l 219.44 102.34 l 219.49 102.26 l 219.53 102.24 l 219.58 102.22 l 219.63 102.21 l 219.67 102.15 l 219.72 102.10 l 219.76 102.03 l 219.81 101.96 l 219.86 101.91 l 219.90 101.89 l 219.95 101.86 l 219.99 101.81 l 220.04 101.85 l 220.09 101.79 l 220.13 101.77 l 220.18 101.80 l 220.22 101.82 l 220.27 101.76 l 220.32 101.76 l 220.36 101.72 l 220.41 101.69 l 220.45 101.69 l 220.50 101.61 l 220.55 101.59 l 220.59 101.61 l 220.64 101.59 l 220.68 101.57 l 220.73 101.53 l 220.78 101.54 l 220.82 101.56 l 220.87 101.58 l 220.91 101.59 l 220.96 101.58 l 221.01 101.56 l 221.05 101.57 l 221.10 101.53 l 221.14 101.47 l 221.19 101.40 l 221.24 101.32 l 221.28 101.24 l 221.33 101.12 l 221.37 101.05 l 221.42 101.03 l 221.47 100.97 l 221.51 100.95 l 221.56 100.91 l 221.60 100.92 l 221.65 100.81 l 221.70 100.77 l 221.74 100.78 l 221.79 100.72 l 221.83 100.72 l 221.88 100.71 l 221.93 100.66 l 221.97 100.63 l 222.02 100.56 l 222.06 100.53 l 222.11 100.51 l 222.16 100.50 l 222.20 100.50 l 222.25 100.46 l 222.29 100.45 l 222.34 100.41 l 222.39 100.36 l 222.43 100.36 l 222.48 100.39 l 222.52 100.38 l 222.57 100.34 l 222.62 100.35 l 222.66 100.33 l 222.71 100.28 l 222.75 100.29 l 222.80 100.27 l 222.85 100.24 l 222.89 100.18 l 222.94 100.14 l 222.98 100.15 l 223.03 100.16 l 223.08 100.09 l 223.12 100.02 l 223.17 100.00 l 223.21 99.98 l 223.26 99.96 l 223.31 99.95 l 223.35 99.89 l 223.40 99.94 l 223.44 99.91 l 223.49 99.93 l 223.54 99.91 l 223.58 99.94 l 223.63 99.91 l 223.67 99.89 l 223.72 99.85 l 223.77 99.83 l 223.81 99.77 l 223.86 99.73 l 223.90 99.73 l 223.95 99.71 l 224.00 99.68 l 224.04 99.65 l 224.09 99.62 l 224.13 99.53 l 224.18 99.54 l 224.23 99.51 l 224.27 99.48 l 224.32 99.47 l 224.36 99.43 l 224.41 99.43 l 224.46 99.40 l 224.50 99.39 l 224.55 99.38 l 224.59 99.27 l 224.64 99.28 l 224.69 99.26 l 224.73 99.21 l 224.78 99.15 l 224.82 99.10 l 224.87 99.05 l 224.92 99.05 l 224.96 99.03 l 225.01 99.01 l 225.05 98.95 l 225.10 98.96 l 225.15 98.90 l 225.19 98.90 l 225.24 98.86 l 225.28 98.85 l 225.33 98.79 l 225.38 98.77 l 225.42 98.75 l 225.47 98.72 l 225.51 98.64 l 225.56 98.61 l 225.61 98.57 l 225.65 98.48 l 225.70 98.49 l 225.74 98.48 l 225.79 98.42 l 225.84 98.44 l 225.88 98.46 l 225.93 98.45 l 225.97 98.47 l 226.02 98.44 l 226.07 98.40 l 226.11 98.39 l 226.16 98.35 l 226.20 98.27 l 226.25 98.22 l 226.30 98.22 l 226.34 98.22 l 226.39 98.27 l 226.43 98.25 l 226.48 98.28 l 226.53 98.26 l 226.57 98.22 l 226.62 98.15 l 226.66 98.08 l 226.71 97.99 l 226.76 97.94 l 226.80 97.91 l 226.85 97.91 l 226.89 97.91 l 226.94 97.92 l 226.99 97.93 l 227.03 97.92 l 227.08 97.92 l 227.12 97.92 l 227.17 97.92 l 227.22 97.88 l 227.26 97.86 l 227.31 97.80 l 227.35 97.79 l 227.40 97.74 l 227.45 97.70 l 227.49 97.72 l 227.54 97.76 l 227.58 97.73 l 227.63 97.72 l 227.68 97.68 l 227.72 97.67 l 227.77 97.65 l 227.81 97.64 l 227.86 97.66 l 227.91 97.65 l 227.95 97.69 l 228.00 97.72 l 228.04 97.65 l 228.09 97.66 l 228.14 97.64 l 228.18 97.61 l 228.23 97.59 l 228.27 97.53 l 228.32 97.57 l 228.37 97.56 l 228.41 97.52 l 228.46 97.44 l 228.50 97.42 l 228.55 97.40 l 228.60 97.41 l 228.64 97.41 l 228.69 97.37 l 228.73 97.30 l 228.78 97.28 l 228.83 97.26 l 228.87 97.24 l 228.92 97.21 l 228.96 97.20 l 229.01 97.26 l 229.06 97.24 l 229.10 97.18 l 229.15 97.13 l 229.19 97.09 l 229.24 97.09 l 229.29 97.07 l 229.33 97.00 l 229.38 96.96 l 229.42 96.89 l 229.47 96.85 l 229.52 96.81 l 229.56 96.76 l 229.61 96.74 l 229.65 96.77 l 229.70 96.78 l 229.75 96.78 l 229.79 96.76 l 229.84 96.75 l 229.88 96.74 l 229.93 96.67 l 229.98 96.67 l 230.02 96.68 l 230.07 96.68 l 230.11 96.62 l 230.16 96.58 l 230.21 96.54 l 230.25 96.56 l 230.30 96.56 l 230.34 96.55 l 230.39 96.52 l 230.44 96.55 l 230.48 96.53 l 230.53 96.55 l 230.57 96.50 l 230.62 96.48 l 230.67 96.46 l 230.71 96.43 l 230.76 96.41 l 230.80 96.35 l 230.85 96.37 l 230.90 96.37 l 230.94 96.37 l 230.99 96.33 l 231.03 96.34 l 231.08 96.34 l 231.13 96.36 l 231.17 96.35 l 231.22 96.36 l 231.26 96.33 l 231.31 96.31 l 231.36 96.28 l 231.40 96.29 l 231.45 96.27 l 231.49 96.22 l 231.54 96.19 l 231.59 96.21 l 231.63 96.24 l 231.68 96.20 l 231.72 96.17 l 231.77 96.17 l 231.82 96.14 l 231.86 96.13 l 231.91 96.01 l 231.95 96.00 l 232.00 95.99 l 232.05 95.93 l 232.09 95.87 l 232.14 95.83 l 232.18 95.79 l 232.23 95.77 l 232.28 95.76 l 232.32 95.73 l 232.37 95.72 l 232.41 95.73 l 232.46 95.73 l 232.51 95.73 l 232.55 95.74 l 232.60 95.72 l 232.64 95.74 l 232.69 95.72 l 232.74 95.67 l 232.78 95.63 l 232.83 95.57 l 232.87 95.54 l 232.92 95.52 l 232.97 95.48 l 233.01 95.48 l 233.06 95.46 l 233.10 95.52 l 233.15 95.44 l 233.20 95.40 l 233.24 95.42 l 233.29 95.44 l 233.33 95.39 l 233.38 95.34 l 233.43 95.28 l 233.47 95.28 l 233.52 95.29 l 233.56 95.28 l 233.61 95.25 l 233.66 95.25 l 233.70 95.20 l 233.75 95.17 l 233.79 95.13 l 233.84 95.09 l 233.89 95.06 l 233.93 95.00 l 233.98 95.01 l 234.02 94.99 l 234.07 94.95 l 234.12 94.94 l 234.16 94.96 l 234.21 94.90 l 234.25 94.89 l 234.30 94.90 l 234.35 94.88 l 234.39 94.85 l 234.44 94.81 l 234.48 94.74 l 234.53 94.71 l 234.58 94.69 l 234.62 94.61 l 234.67 94.58 l 234.71 94.57 l 234.76 94.59 l 234.81 94.56 l 234.85 94.58 l 234.90 94.53 l 234.94 94.52 l 234.99 94.51 l 235.04 94.55 l 235.08 94.54 l 235.13 94.53 l 235.17 94.54 l 235.22 94.54 l 235.27 94.51 l 235.31 94.50 l 235.36 94.48 l 235.40 94.47 l 235.45 94.46 l 235.50 94.45 l 235.54 94.42 l 235.59 94.42 l 235.63 94.39 l 235.68 94.33 l 235.73 94.31 l 235.77 94.32 l 235.82 94.31 l 235.86 94.27 l 235.91 94.28 l 235.96 94.26 l 236.00 94.20 l 236.05 94.13 l 236.09 94.13 l 236.14 94.14 l 236.19 94.11 l 236.23 94.04 l 236.28 93.98 l 236.32 93.98 l 236.37 93.96 l 236.42 93.95 l 236.46 93.87 l 236.51 93.81 l 236.55 93.81 l 236.60 93.75 l 236.65 93.73 l 236.69 93.75 l 236.74 93.73 l 236.78 93.74 l 236.83 93.67 l 236.88 93.66 l 236.92 93.69 l 236.97 93.69 l 237.01 93.74 l 237.06 93.72 l 237.11 93.70 l 237.15 93.64 l 237.20 93.56 l 237.24 93.54 l 237.29 93.55 l 237.34 93.51 l 237.38 93.51 l 237.43 93.49 l 237.47 93.46 l 237.52 93.40 l 237.57 93.40 l 237.61 93.41 l 237.66 93.42 l 237.70 93.44 l 237.75 93.48 l 237.80 93.44 l 237.84 93.43 l 237.89 93.44 l 237.93 93.43 l 237.98 93.41 l 238.03 93.41 l 238.07 93.44 l 238.12 93.42 l 238.16 93.38 l 238.21 93.31 l 238.26 93.28 l 238.30 93.26 l 238.35 93.28 l 238.39 93.28 l 238.44 93.29 l 238.49 93.28 l 238.53 93.26 l 238.58 93.20 l 238.62 93.20 l 238.67 93.19 l 238.72 93.19 l 238.76 93.11 l 238.81 93.11 l 238.85 93.10 l 238.90 93.11 l 238.95 93.07 l 238.99 93.07 l 239.04 93.02 l 239.08 93.07 l 239.13 93.07 l 239.18 93.06 l 239.22 93.03 l 239.27 93.04 l 239.31 93.03 l 239.36 92.99 l 239.41 92.98 l 239.45 92.96 l 239.50 92.98 l 239.54 92.94 l 239.59 92.89 l 239.64 92.87 l 239.68 92.82 l 239.73 92.83 l 239.77 92.84 l 239.82 92.85 l 239.87 92.87 l 239.91 92.80 l 239.96 92.75 l 240.00 92.74 l 240.05 92.75 l 240.10 92.73 l 240.14 92.69 l 240.19 92.67 l 240.23 92.67 l 240.28 92.64 l 240.33 92.63 l 240.37 92.60 l 240.42 92.60 l 240.46 92.58 l 240.51 92.56 l 240.56 92.52 l 240.60 92.51 l 240.65 92.51 l 240.69 92.51 l 240.74 92.49 l 240.79 92.48 l 240.83 92.47 l 240.88 92.48 l 240.92 92.44 l 240.97 92.42 l 241.02 92.37 l 241.06 92.37 l 241.11 92.35 l 241.15 92.32 l 241.20 92.25 l 241.25 92.21 l 241.29 92.17 l 241.34 92.17 l 241.38 92.15 l 241.43 92.13 l 241.48 92.18 l 241.52 92.15 l 241.57 92.15 l 241.61 92.10 l 241.66 92.13 l 241.71 92.10 l 241.75 92.07 l 241.80 92.05 l 241.84 92.06 l 241.89 92.07 l 241.94 92.06 l 241.98 92.00 l 242.03 91.95 l 242.07 91.92 l 242.12 91.91 l 242.17 91.91 l 242.21 91.91 l 242.26 91.95 l 242.30 91.91 l 242.35 91.93 l 242.40 91.93 l 242.44 91.91 l 242.49 91.84 l 242.53 91.82 l 242.58 91.76 l 242.63 91.74 l 242.67 91.71 l 242.72 91.71 l 242.76 91.70 l 242.81 91.63 l 242.86 91.56 l 242.90 91.54 l 242.95 91.50 l 242.99 91.52 l 243.04 91.50 l 243.09 91.52 l 243.13 91.51 l 243.18 91.47 l 243.22 91.45 l 243.27 91.41 l 243.32 91.41 l 243.36 91.40 l 243.41 91.37 l 243.45 91.38 l 243.50 91.32 l 243.55 91.25 l 243.59 91.21 l 243.64 91.20 l 243.68 91.20 l 243.73 91.25 l 243.78 91.30 l 243.82 91.32 l 243.87 91.30 l 243.91 91.31 l 243.96 91.27 l 244.01 91.23 l 244.05 91.20 l 244.10 91.18 l 244.14 91.15 l 244.19 91.17 l 244.24 91.20 l 244.28 91.19 l 244.33 91.19 l 244.37 91.18 l 244.42 91.13 l 244.47 91.10 l 244.51 91.05 l 244.56 91.02 l 244.60 90.98 l 244.65 90.96 l 244.70 90.95 l 244.74 90.98 l 244.79 90.99 l 244.83 90.98 l 244.88 90.95 l 244.93 90.94 l 244.97 90.93 l 245.02 90.89 l 245.06 90.85 l 245.11 90.84 l 245.16 90.81 l 245.20 90.81 l 245.25 90.77 l 245.29 90.76 l 245.34 90.75 l 245.39 90.70 l 245.43 90.65 l 245.48 90.67 l 245.52 90.63 l 245.57 90.58 l 245.62 90.57 l 245.66 90.57 l 245.71 90.56 l 245.75 90.54 l 245.80 90.52 l 245.85 90.50 l 245.89 90.46 l 245.94 90.43 l 245.98 90.39 l 246.03 90.37 l 246.08 90.34 l 246.12 90.34 l 246.17 90.31 l 246.21 90.27 l 246.26 90.22 l 246.31 90.19 l 246.35 90.19 l 246.40 90.17 l 246.44 90.14 l 246.49 90.11 l 246.54 90.11 l 246.58 90.09 l 246.63 90.10 l 246.67 90.10 l 246.72 90.11 l 246.77 90.11 l 246.81 90.07 l 246.86 90.02 l 246.90 90.00 l 246.95 90.00 l 247.00 89.98 l 247.04 89.95 l 247.09 89.94 l 247.13 89.93 l 247.18 89.91 l 247.23 89.91 l 247.27 89.90 l 247.32 89.86 l 247.36 89.83 l 247.41 89.77 l 247.46 89.73 l 247.50 89.70 l 247.55 89.68 l 247.59 89.65 l 247.64 89.64 l 247.69 89.64 l 247.73 89.65 l 247.78 89.66 l 247.82 89.65 l 247.87 89.64 l 247.92 89.63 l 247.96 89.63 l 248.01 89.59 l 248.05 89.62 l 248.10 89.65 l 248.15 89.58 l 248.19 89.55 l 248.24 89.48 l 248.28 89.45 l 248.33 89.42 l 248.38 89.39 l 248.42 89.44 l 248.47 89.49 l 248.51 89.50 l 248.56 89.48 l 248.61 89.46 l 248.65 89.43 l 248.70 89.44 l 248.74 89.44 l 248.79 89.47 l 248.84 89.48 l 248.88 89.47 l 248.93 89.50 l 248.97 89.48 l 249.02 89.51 l 249.07 89.51 l 249.11 89.52 l 249.16 89.50 l 249.20 89.48 l 249.25 89.49 l 249.30 89.50 l 249.34 89.52 l 249.39 89.49 l 249.43 89.49 l 249.48 89.50 l 249.53 89.53 l 249.57 89.50 l 249.62 89.50 l 249.66 89.49 l 249.71 89.52 l 249.76 89.54 l 249.80 89.62 l 249.85 89.61 l 249.89 89.63 l 249.94 89.63 l 249.99 89.57 l 250.03 89.53 l 250.08 89.52 l 250.12 89.51 l 250.17 89.47 l 250.22 89.47 l 250.26 89.48 l 250.31 89.45 l 250.35 89.45 l 250.40 89.41 l S 0.745 0.745 0.745 RG 158.40 73.44 m 158.40 264.96 l S Q endstream endobj 296 0 obj << /CreationDate (D:20090701105328) /ModDate (D:20090701105328) /Title (R Graphics Output) /Producer (R 2.10.0) /Creator (R) >> endobj 297 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 299 0 R >> endobj 298 0 obj 122462 endobj 299 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 294 0 obj << /D [292 0 R /XYZ 89.292 765.769 null] >> endobj 295 0 obj << /D [292 0 R /XYZ 132.24 260.921 null] >> endobj 291 0 obj << /Font << /F8 79 0 R >> /XObject << /Im10 285 0 R >> /ProcSet [ /PDF /Text ] >> endobj 302 0 obj << /Length 1841 /Filter /FlateDecode >> stream xÚ­XKsÛ6¾çWh|¢¦%‹ðL;;±ã4}Œí¤mO†’hKKt%Û‰{é_ïb±—=ñ¡Š °/ì~»XèàüÙGÕÈf¶Ð£óË‘&Sº•Zd•µ£óÙ‡ä×v=–ɲ¾†_÷<Œ+“|?NÌ“v Œ…H¾ŒU™´wD5§ÚVI= c›œ¿…á¼ãmã÷Ú¯O07át·ËvÓ.› )­7LaÌÊÆiaTrä¬k×^cº€‡˜îéó 4ÞѸ§AéIõüG¹¼‰¿8=J¥É¬1ð–™ÍstQ €m¤Z«ä‹SZ‡ Pk4¦vß÷cU…ÉMëß—nÑíwß)‚¸ˆ.0ôÁ‡òú~§¹ÒÉ¥yó£ ôýQäÂS¥ð¥àìÙ˜ûÞ“Oa8!'­0x0…¢—7™ÈމOk?<žÀ9MôÜõÝ8UÂæÈõ@¶;ÎáÙ£}ìõ-jiÚ‘LƒEžjMܳÈåßWc×ÚÌžge–_“¿˜þ S¸èI~|/_‰¾&÷Y³?¯§&K¦üÁy­žÃðŒžè…Æ ßc®æ¦%éšµé!äžDŠÇ}¾G)³&+vµ÷ I¯€ú7xîXÃxÒÎhÈ[ÊËÌgÍàãÂËÕvI§MA’µÉ~g͆œ» ‹WÀ_æ~§—87”LJf•¨¸›6ä–]y29¡÷%Íúº—ù¶t+½ôÓÎÅ ùoËZ·¬°€ù”4¦à¼eyè%àtø ‚}î+tí’!þ6IÓW[h ØhÂŽ8/ž”ÆŽ‘ÃmÍÀSѣ齃N‰¯´ì$}¢·!©ÁÌÏôvžúBãt ÊŽö+Í_Å9Ò§4B¢¾P§´í°åýÛ>P(.ü΂/™ÇðP„\h\Æ‘úª§%…òœ=ç‹Nú„–6]E¸aÔŸi|Åðù›C².èü•F÷¢~ëDUHÛKìÀP82§žš‚2Ò¼`¸[Ä:†tNmÈêy8¨˜1µÝf£¨bÉææ­®ï¶êvÛ÷ánð[&–%Ñ¢ó?„bÂò=Ù§¤õåPH~J|]eòŠùqa õÃñ½cÇÊ1Añ„ä9:ÊE3úâä£â†D¨Gviº]ž±¨±§¤¦¦H[‡Ñk†"ö‰•FÇS² ”Êèè¼b°e‘ë—̆â‘í•ÝöXC­YºbÞS*>è'äš:òªˆ§aïo×–~I«Ùñ0ëΛ.Ðñµ"â%0xÓ«ýu 3Bèob¡kŠ#¹ôÊ`œã´3äæš[€E VùÅýÁ3_ûÿé@GÄ{žÌêÛÚ`L‘ºû;a§ÊHCùí*óÚ;Øè°Å!éë8Ü×nZ4Ú±[œÛÁ‹23"”î|à ºØÂеE+yåM6€w‡X ÈuG3ð(l‡ž½<ö=„ø+endstream endobj 301 0 obj << /Type /Page /Contents 302 0 R /Resources 300 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 304 0 R 308 0 R 312 0 R ] >> endobj 304 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Rect [150.611 639.741 157.585 651.602] /Subtype /Link /A << /S /GoTo /D (figure.9) >> >> endobj 308 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [136.813 218.502 228.408 230.363] /Subtype/Link/A<> >> endobj 312 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [136.813 154.741 292.945 166.602] /Subtype/Link/A<> >> endobj 303 0 obj << /D [301 0 R /XYZ 89.292 765.769 null] >> endobj 305 0 obj << /D [301 0 R /XYZ 89.292 600.449 null] >> endobj 306 0 obj << /D [301 0 R /XYZ 89.292 329.731 null] >> endobj 307 0 obj << /D [301 0 R /XYZ 89.292 257.855 null] >> endobj 115 0 obj << /D [301 0 R /XYZ 89.292 257.855 null] >> endobj 243 0 obj << /D [301 0 R /XYZ 89.292 214.019 null] >> endobj 241 0 obj << /D [301 0 R /XYZ 89.292 182.138 null] >> endobj 300 0 obj << /Font << /F8 79 0 R /F80 106 0 R /F39 57 0 R /F75 96 0 R /F14 239 0 R /F7 92 0 R /F88 147 0 R /F99 311 0 R >> /ProcSet [ /PDF /Text ] >> endobj 315 0 obj << /Length 655 /Filter /FlateDecode >> stream xÚTÉnÛ0½û+t¤€Šå¾ô– ‚´(TßÒT[±Ú²Éú÷R^S Ë£Ù4|ï o§“·Cytº˜>!rUáµà!Æb:`¥d÷õ{xŠðXVRFÉ>ó²RÁ³û¸ß€=»3»ë=ØMwŒÕ9€]0ö ¿ŸðÃòŽê§w0ÈÉ$Ò9n´/ ñîv”¿(+--ëÁ^n±Ó€GÍ¿Þ$ƒmiû¿ØbålüdnñŒ”ÖÌûäjºyê0#÷º¬¬`ë³:Ç^pš|Œuèñ ã9àÿL'‡üd¬endstream endobj 314 0 obj << /Type /Page /Contents 315 0 R /Resources 313 0 R /MediaBox [0 0 595.276 841.89] /Parent 278 0 R /Annots [ 317 0 R ] >> endobj 317 0 obj << /Type /Annot /Border[0 0 1]/H/I/C[0 1 1] /Rect [268.189 715.457 399.137 727.318] /Subtype/Link/A<> >> endobj 316 0 obj << /D [314 0 R /XYZ 89.292 765.769 null] >> endobj 84 0 obj << /D [314 0 R /XYZ 89.292 742.854 null] >> endobj 83 0 obj << /D [314 0 R /XYZ 89.292 710.974 null] >> endobj 242 0 obj << /D [314 0 R /XYZ 89.292 679.094 null] >> endobj 313 0 obj << /Font << /F8 79 0 R /F88 147 0 R /F99 311 0 R >> /ProcSet [ /PDF /Text ] >> endobj 318 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 310 0 obj << /Length1 868 /Length2 2545 /Length3 532 /Length 3171 /Filter /FlateDecode >> stream xÚíUy”ÆÎ òñ3´;Ç}‚•ü[íWÐtlë]91¯À7§\W½ÜÉK\ÚF)ä#=Q²ÃÒ¼!úõR8Ápp© Ó|¨Ïm´$òÏW<Ì ˜é/ã”ôÅóÞW Ú–ìI}>¢Ü ø”ê{ËjÂÁ"ýl±P¸øæ·63ô=XÃùGS<Ï•ÆæBIí¸»'doŒÏj4žµ<ï ñ¥á··¸ØºL×JJǪBúkpeº“DHXPÓ§üC¾}Îz×¢½º¼˜ûjú©ÒƒúfÓ9³Ø ¯wÍ‚[mM’ÆÖ«Ñ+¶é_¼ŒÈÖ¾$—ãôF< MDÜâ$M|ÃkÇg-ðîQviMç!§ôX0G>@/¦{ñr^N4;áNxÐ¥°ÎÉ\;±c¼â¦çûº¼Åi$¼â•J¨'æKVÀ`•LÑN >àSW©_^þÕ¥tù‘–Ž.Í%{¦á½Aæ­58‹û¼Á|^6Ô³ºítléÇ|’½àýöž þ|ÿW^FÓ>êg´FÑ9˜Q¹Boú3÷, Æã i{iÜ©'Øš_£–ãYÆ‚Çöû¼>¥Ó´l9[qfZ9TÒæ„Kƒ[kÏ›#›`Ѩ¡†à'Ñ3¬ç’2×á˜oWÓ;)FƒÙ-ÅŠÓæ㪷Y¬/ÓaG¬´}¡+ʆ¸Îç¦3¢ýÆ©±ÃÕG¬¿—lZ»«œö™D¼V‘ŸÔ#ž. Ñ*¡­ç7“ï¯&=1tëýY_V ;V%@ÿŒi:™Îñêú~‡²6ÆvšO+{ÇW…n=²=/+b×b¬–¥³]1VÔIúç_ Wxƒ?¼´s©B¦ßÉðºNtÞ^ïÌ–T9ס±>ÎoTáØWúý¨Lb̹ÁTµô;ÖwŠMí¥3…G»Ügc¤ aeeNtå9Óã HñÔÏoóæÂtÉ€!+1½©·$ë—p¼Ï¬8IttWp*^ï­Ð;ñšýÖN ¶Ñ¦©#jYÛ‚p;ütúlîÝC%Ò1=+ÃÐa?Γߤ$LrY°v•\çþ„é]”¬_V"K?Å,¡Ïu-3ŽïEwX_ûéÂþ\¬VŒ¥Z™é žDNMë/­ÌëJŽÂÊ ˜FÉØâäÃaQx)3fzñ­‹ß±Ä uQ¥¹sæ.:/¡…¥7üضgŸXˡ+k¤)fòf¸…Ã>ÕÆµxçødtÜÊ.æÕ/ž)XÆ$­!Êf5ÐM·Û^ò@xàH)¡O—yæõ ‚WFrSXñjý»f­=ÊÝOÖ¤¾i0TÕSò:V`-Ðwf‡¬lòI¯Ì¦ªfMÓ]wvζ NrÎq°>«÷ëï {ê?ø*γÙÝjõÔc˜Äöö›¡ý^ÏÝÞŒ u”.()“ÏsßöxtúN†>´J4¿—ïÜ mËˆÞ ÈÍ;Ö½$:T\zº1×UDèöMÍw“‘®×­ûnýžšå >9sQ%Æž$)¢|¤·|ðµ’FÓ•m×ÄŽ;ÙîShå§“†ì!‹u^G¤·îm5Ë'î-N»Ý›ä‘›¿sÛ nrÓê¨ÜðcibXfäZ9©DPÕ„M'Ó—T‡ï²x¦­Jßc4‰œ»ªû¡¿fÔè:GŽ´ÑÌoÆdÙ~u˜¯ÂîFöÖ»pF†--^¼?qhú¼rJÂÁì]w÷‚ØÑP¢ÕäP Ç÷ÙÛ˜7²ûG&Ö5 ×ÌI2K„¯4×Ù]3žIm>ªSI¨ ?›HV\)£E=Í©.ö)-ü›¡ˆzu.»>EäìJtrÈ…ø^ÏÝ:êéRÝì€*U¦®ˆ¹Ø§cÆÓäšáµ;šü«>¸àg{´ô}Ng•Iy/EòŠ?aÏK§Ë$¦Ö6¥”G-àåm½¨0{’Ï‘tÒ0ZTZ»¯ô 9Ÿ(’¯ðšð>ým[ÁAñÌÏ8Þ „pЃ©!Ï^qmØËCv;ÌÒ‘ÿáùÿ‰D2H 3iýäÊV÷endstream endobj 311 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 49 /LastChar 57 /Widths 319 0 R /BaseFont /BBJJNN+CMBX10 /FontDescriptor 309 0 R >> endobj 309 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /BBJJNN+CMBX10 /ItalicAngle 0 /StemV 114 /XHeight 444 /FontBBox [-301 -250 1164 946] /Flags 4 /CharSet (/one/two/three/five/six/eight/nine) /FontFile 310 0 R >> endobj 319 0 obj [575 575 575 0 575 575 0 575 575 ] endobj 320 0 obj << /Type /Encoding /Differences [ 0 /minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft 129/.notdef 161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus 171/.notdef 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade 197/.notdef] >> endobj 238 0 obj << /Length1 809 /Length2 810 /Length3 532 /Length 1392 /Filter /FlateDecode >> stream xÚíRkPSG¶* A«#ja\ÍPyH’”€€ o ‚t.É&\Iî 77˜ /K”— :E¬¢¢PP,b­(#hƒŠ ZŠ¢ B| *G|µ”qJ¶¿:Ýý³ç;ßžóí·ÇzqH¸ƒPLÄA§6â ¼ã.@Ø\†µµ Q #ðU(]ââ‚¡J >à \y\W¾€a ¼…†Ä¤ñ°ñ²# €PIL„⠥⡜®!Be œaÒ°P&ac7” *!™Ål‚1&¢@”b8ƒ3¦È—@ð«©$H*iQÀ†i h‰b—i€Jœ ‚îi%ÿ†¨ÉÅ}T2Y*+?îÒßò¨“i>2¹BEAbHâ“©káqPŒ©ä“³~*ÃDB\*ƒÀqbsù˜ÒSCqF‰â•)á8qñd)´}ãB8‘žëÖÚü×ñdŠáÔ—ÜOìñùÓ.‘˜¬ç²¹\„&Ò{â3©™7."Ä.<¾3@IÕ0è ¢#>Ø„ C5€jZ1‡}ÐÖ¤ A2ƾ• 8r W)ÇÐq€G*…)è=sœ8ÚHC­§'¡ÞäÀs.Îtwq?õ¯ÄKTA¿U€Ïår—ó><_¤"IˆSãcF;9K0Ú}ÕPÄèê$DnÚ Å§¶Ió.k«2à¿n®~Øet.ª.m/&N çï],¥Êö×è˜ ífþ"·"Sò¤y~жØç‡L¿¯Í-­ˆ*Ìà7²o„35™¹»f½³_:è§KŒÜ]²¥¡k#©ß“ÃZÖõœ•Þ¹KÛ%+L➣/î2b$Iííö¡÷…ç;ú7š‰Gçok\¯~l•½$Ëz¸)¼B=’›¶pÓõ+ #æ/Ùòޤ3­C>e¦ù¾”Иӌü`Ôçaþù{·ó.(äc•þÚeo¿xm&)ÝT­,1Opþ6Ý*z`3¼ìëò ÀÞãëÙÛŠí™±×÷e]Ö³t­¿ýÔpߣ™¤rê;à]sm™$KéZÍVµÏõœnRý¾pdtôtåî³þM¹Ójô½=’ßÚZì·,:ƒEÙ?»{evêas¬)f±´¶ãÍÁÑÒÕ,ÐëÃËZ°rpE}Ëü"§Ê3º†*³©Oݼ3礗MU îMž-„ÓYÚç[#µóX­vMî™Lk=Zê›räÜÄ ËŤà\^¶sÉ3[ƒ¨º+…½Ûk[;+Úf†.Ï›±c–ö¯üú…²Ÿu7ý{[~p ÖûØä<):k¥³¬¯s_×ß7jŒôpRfõN©²ÊÛ,`½/ʘÞ#qÂîNº&Nó¬j&¢æô¹Ï1\³è”çÕ-|³¾3¶æ“÷篨iZ(ˆÌîÆÙ;®†·r0NË»ÏAâð«±Ã/o厦*FMRªYFkôGׯÖF(I1|q,V÷P¯iÚxÙ¦¯é8ÛrmS÷žÕŽ™?VÝøÊ´ 3heŸÈ®C]»³"¬âí ¡eNsûq‹=ܸÿøOÉ JR„%¼"âendstream endobj 239 0 obj << /Type /Font /Subtype /Type1 /Encoding 320 0 R /FirstChar 0 /LastChar 15 /Widths 321 0 R /BaseFont /VBZKLM+CMSY10 /FontDescriptor 237 0 R >> endobj 237 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /VBZKLM+CMSY10 /ItalicAngle -14 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/bullet) /FontFile 238 0 R >> endobj 321 0 obj [778 0 778 0 0 0 0 0 0 0 0 0 0 0 0 500 ] endobj 322 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef] >> endobj 163 0 obj << /Length1 1056 /Length2 4154 /Length3 532 /Length 4857 /Filter /FlateDecode >> stream xÚí”g\ë¶ÆAéÒPiC“J t‘. Ф ”$„P& ¢4¥Š€¨T6‚léMDi R¥÷Þ9qï{ööîóñÞO÷wg¾Ìÿ]ë}ÞgÖZ3B|F¦âª(œ#Z ‡%ŠÃ$` €º>!À$ tBBê4’ˆÁa5D´“—‡ª>.€$€É(HË(@átB€:@À¸¸ºÈÏ$Y@ÕMÀ8!±€>’èŠö$i8!=SœM T=<“Ÿ;¼´7šà‹FIÐÁ` ãDÑ.,ä§!¬3ýsåƒÿwÈMð&™@$“"É" ‡õPhg:ˆŽtšääÃÔ?ŵ|<< ž?åé?ÂHOŒGÀ%à<ñ>D4ÐÇ¡Ðì?S-ÐzÓG£0>žÿŒê‘'U¬‹€þ¹„ñÖÂø£QF¢“+@$ø ÿXFcQÿô@*Û zêºë¢¶ó˜ƒ%"ð‰þLþƒa3©8Œ?` •€Ba¤DÒýï'Ûœ¥‰u¡0XÒ<Àe$€  # ‰àÀ-€Á¢ÐþÚŸä"ÅI[RI‚gîg7e¤ˆ—Úûç€ýŒü¹ ª‘,)Eç/’“ &)fú‘ú AþMòÄé/‚A¡õ Âú$ ¹ü‚ÒÄõ$Âü‚rÄão„‘”±¿ I÷ ’ ãA’2á$){ÿ‚2„ø ’^Èç$ëûþg¿ÕÔpþ·Äး¤”$—†2òòAÿ=Í ‹!•ZG€C¡P9©?ûïäC  ±Ä?>/Ò$ý›1¤±C£ýÑNtÃ8'Å·”Ê»ÁšÏz )Áäj.Uñ¿5ôÕž J ÷xÑqà ü½Üò (ý<ã å ¯ß§÷½šÛƵVC½âSûOf|fÒ«9-7Òõ~àùwÙÞU~ÙZ‚“~þÞYl•×úd­m1Ǥ˜¥á#k´ö­ḧ‘µÔJ÷0‹Š,¿"ÅgœêU-5êÇœœH1ú)<Ø-Šæ­è·u\ëÁ3šì¤{ò(.|tjòsÈÇÖnÃG•+Rµ U‰¼PùQøÉ³¨þO•mó#þ›ê"ÉG!ÅØ›Ëª9“‹ÏŒ8Ö/j&k²xsæ ³}m’;Â<×vOCøµ`&'‰I¯«XÆ\ ºj~¾ÂˆüŸ«ñuUª×…îÔnÃÎ@<·ÕEÁ5ÆùgÅBÇT$‹GdˆàÃW_ÄéïV®Yå$QlÑ)Áït+>QKUMþ²î‡ˆTÎ"OÕÛ®%š¿™ßâ¿uÞŸ_´ðK¿˜Ÿ–øÚÅD~FÖLv,ÍwOÉ—o_Á”.ÄŸ¬ã”¾%t ¼ËÒÍiô™Eï<3ñÙâܽG©?’º•sº¨u5YÇáæþcMÞa¿lã|gWÈmtÈTô:9ÅQj¶£G^]ŸÞ 9t¾ ¿IŸKsBå⮨ý:©3¤¼¡Ua=¸õ7Bg}?äïXqBN•}|™û˪Í}_¥$ÁÜNEHo·I}»3äž|ÿzWÊl·ô„[Ó=žd²À… =㤴õª탠o.Ì.‚†´MO:8‡ lY׿—µ˜ÌC 67U[áÜV QZC¨p¢à$³¾nQ”by™çórÅ¡:±PPË'ˆ¡ú=ú!ÔæÂ¡©“bXÊCÜ*ÇÀ§˜¤m)¿à€#3 ‹Ö'45™kŸ¸›Þ“VœÕ~EY’àíÂù|¹ÌžóÛÕN5‹AoivÄ¥&ŽƒÉøœ Å׊;1òÜ”žf%Î lÏîÎ|æÿ`!:¢ßž‡]òa½ñfm.åáÀÙËñÓ¾÷;wÀvCí4!ž€ù¥ëNÚþµ Ehò¯Áž'…©¤]}GFX“íP½`IÃLדeZzD*gÃz­¹fgin½^3ß1[ú–C¦Š´5OƒGEP¦d„xëÏk.;Ïü~nyð5þœ”J {uJ9X"÷¤±W¥ê~™z?¿Q©­Lgá»lm´O¿Ì_òš£qÅ{”5J™N9A^o»üå'Ò¹©òרnП/ÊûÝ/÷C›Û6*"%¾š,pÌz,û¡MC§½Zfª·dÌÆœ:µÀlu«$¡ßÃÔC›,ÿ¾öÑÕ_Ö˜pÇk_"uë« S“. –úœ·#ûõ[„£5ÆâͳS‰¦žUÎø0 9Š>û’‡*K*ç&¹&XœÏµ1­Lɤ? bMô¼¡ÊðBJ0 ·­™øÝàØñQLx~ è•°ÉA‘ ç?—|9VÕn ‰ÕhЛ3U¯7¨û­oâx'ú¡ù‘ÐLC¥_¢æa®¹MÃ{9ë“<)üôž“=iûXñ¼øT©ðÒµÝÔÁ+Õy¬¿_u£`%Þ!“•£7ùA1d—U‹Öj’{§z³k{~é·½Û[šÊJE"ˆéƒÛ>g(¦8á½ ";ÐïJì© fÀà+<‹ˆÎÉ—¯÷Û4[ñêq:¿\`\ ÍJ´R¨¢¼ÀmfK”àÐÂߥíp³¤ù–Ý4)ÿƒ÷Æçã;¯ìÊëÞ­ 8[ƒ z/È„µýpü‘na–Ù!f|=YEt/ÝÍç[¶ûÌoõÈ:JuŠMôƒ·vuANoA­Š$X#¼Õä5Žôgf9‰ÀçT¥ïX©úAG¤âYŠNU@ïEÍ8®I+m•å®5ð]|W7ß(B˜ý°@·™a ªù¤Õ{=ÞŸ¯Áï¹æ^koóoï›kL¾Ûy?={Z$é¹÷¼jkµ×™g <'v.‡y)s÷Mû^zµç¾(ZOBù%×t2?ÏrÕ#ކ†è»ÑßpŽIKL•„˜õæòh éºÐ‰FÆ1Cyó‹œr¶ÒÞñ»ãð],¼]&Qü^‘‡¥7%.Þä;#Ê—>ÙÛ°®r5“a :Ýì?ÌíÒâ/Ö¨o¯˜eý6bK®øB~YÏ“P@Hò|„­ÒÄ×Çr݄ƣؤB£~¶¥[e“÷cŽwöý¾»K,j˧ë¦@¬ÌƒY„ª+×¶£/Ú³FèIò™¢î£(ƒëW¢N€‰Ï‰:/„ýÕ‹âbQÆOAOvêÙ¾Á-]'ÈóÔiêŒÒ©:j^”ä žUü"½4ú˾úÐxQ.3#ǶÐÕ¿+&n†wm°–ïû½zý£ý­œà‚ȉ¾M[(ºÆ»ñLèÞšf3Å®)ñw«9û‘ÂÜ–Á–Tæ“6¸”Ž—šöqÓºsÒ¹ŸEp¨%% ª_ö6T¿¦ ›(Ö€×ï9øèZÃÞÈHc–EKÛ79øZqdtƒ.LìêV Цì(–üL(þ=¶îOѸllËS~BÍ%²8|~È«sÒ|qzKà@üLýàÁ’¢Wbî[©°rð¹ß HfWˆ¥˜+¯"ˆ|zâp-OìA5M¼8/7å•p “tŽ$A63‡ =“wÜjŽÂGóš‹È<õc_#.ñàUª‰éqz³ôèŒ>Z‰\±Âi¶#£¡¬Z~¾3áBþeYÏGÃWSß•èyðH¼*‰¶¹R2Ìnº0A‘Jçâ3ý‘QC^Gžð˜šeª VNÔð”sìa‡—«ma‘š¹DО**˜É£ôúÂ#±}›ùÐ<[JaP6h:h÷BÏ* ›\ê(²¥ê¶hSÜæX¶É—ú!yÆZÆc•½Å:pÊ.wÈ‘Jxu2ÕîR:*,ÞrCéÍž•6µ^ãê¹:šql%Ç:áÏú}pÅ3ç’„nȸ¥Îs³ÜÖ4=5—¡oGX ð~–Csð¥Í’ÌÒ……’W6ÂoŸ–¨ïùß³«®!Å.pÞ¨´o=~ô½2yŽ'‚AË }@Ü¥{Ò!¹}ŸIMÃL@s—ÿ^,}Ö9!›wSoÈ7ƒ.ês¥×µ˜`í ý>ËSˆ ½MêxWÙT ª´ëïϿ֎”IÅ;Õù¾Uâf¸«r£àâÜHDÏ|vÀ°Ç"¤¯@0™ä¿~‰{±”ëy*ö÷uZݵûÂÝ«ú»ÂvÎ#nºr=¸b=ÿŒýôÛœ²^Ük3v͉¯;/×&Ìô†»#¦…ÁziÍ:kúP…‹œË/^¯ _È^?§Z¹œIØ}ãkUC®ÖÍ™K6i)†'#ô‰´}Ó3÷¯ù{ õªà£±tŒ©” w_Ä·1vzÄoÕiàü¤ä‡Û×X0æ<xÍÖ¾§¥#õå3µ;Là²ÚŒ,ïví4þƒlܵ‚Öä|bsjf3{V-&»eXä,ÕNc®‡Bƒ~–u±MIsð¨l%o|/ÒÌ–ÿðI˜‚œ…tµ4-=Cm ׈#¸9ÝûýÜÓ"—X¦OMÙH9Ηš|C•ó¿«Ø§WÎîh#‹¡¢´áͤ :jÙ>òÎ 2??†DŽÇi¥u±Ù[Ë·F]¨nLñ ³D8¸½«Ð©îôT‰ö¾é{} ´O‚§kç\‰Í=Øô-Ù„N–ò¯ÍâDŠ'Ql#žŒI…‡Ø2š ó݆ëÅ®òcÓ¼÷»eó„!;_EšRÞÆ¥UŠõ³kЖÚÜ„u×Ï5¼­·˜!ýõíLBs½¯|Ö®DÎúŽ~äMk¡*µâ‰\¶íŸlè*Æ¥ík=ÕÙ’Tck«3hÜ^Û ±ï‚ ‡ÇGš±>³ºµprKZ©ïòÁÓþP¨Õ§÷ѽ éw:Kíz©]mAN‡) «C[ì½{?Þ€)óÕ¨Ž9JðbG=1nÜí,Tvu¸©avil¿¿ñ­­Ï :ñé& à çíëý¢ãl!Ó—N”-Ö dãyøŽÞî`º³ÑÅüR y£°„}†Ïzl!ÖSÊÉ‹¡þœTŽƒßÜ Š¸9ìU’=9_¡Û…ÑЗ\GøCÇ`x!QEÈz'”)R,Ã\v§±ftñ9»‘Ò‚ý­òKg<\gLêßxøȨn$Që&;[¹_.Ö;”ø›GÇG„eÉúǹŒœÐÿáE÷ÿÿ'œ<ÐHç‰$¸Óý Írµendstream endobj 164 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 63 /LastChar 118 /Widths 323 0 R /BaseFont /LCJTDG+CMTT8 /FontDescriptor 162 0 R >> endobj 162 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /LCJTDG+CMTT8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-5 -232 545 699] /Flags 4 /CharSet (/question/A/I/R/S/a/c/d/e/g/h/i/l/n/o/p/r/s/t/u/v) /FontFile 163 0 R >> endobj 323 0 obj [531 0 531 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 531 531 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 531 531 531 0 531 531 531 0 0 531 0 531 531 531 0 531 531 531 531 531 ] endobj 324 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef] >> endobj 146 0 obj << /Length1 1375 /Length2 9432 /Length3 532 /Length 10274 /Filter /FlateDecode >> stream xÚí˜eT\Û¶  î\ îîî<¸PHîœàîÜ Á-wÜ%HpmιïÝ“¾ïg÷¯]U?ö7×\s}5÷Z»Æ( 5 fq ˆPvafgaH*kʳ³ØYØØ$ih$€¦. XÊÔ(`çççÈÍ^/^?Ü<ì<È4Iˆƒ§ÈÊÚ@'IÿW/@Üè27”M]¬ö¯5ÌMísÐÅ“ ngPÿk†3@è trZ° ³³,@æ.3 ŒÌú—“<ØàýWØÂÕῇ܀NίRº¿5鯒°'Àh‰Ìªy] øêòCë?‹Ë¸ÚÙ©˜ÚÿUþïNýqS{çe@ì\]€NeˆÐ üŸ©:ÀÉ)-@®öÿ9*ïbj2[ÙÌì\,l\ÿŠƒœe@@ 5‹¹5ÀÒÔÎøw¶øO“×þýíÁª¥«­ %Ïø_·öïA5SØEÓÓ`û'ûofÿ‡_›äòè³½v™ý5ñõýßW†ÿ±˜4Øb[8¸y¦NN¦žÈ¯›è•¸ÞìØèz¼³²€!.¯S¯ñXBœÿº¯ìVKÐ_±¿‘‹Àjíé` ÿâ°:¼Þ<ˆÅ¿CÜ|VsˆäŸ$ž×yâÿÐë‰è5[êßÄË`•ù‡^——û‡^ç)ýC¼Vå赊ʿ‰ïµŠÚ?ôZEýâ°jüC¯fZÿ¦×Èjú½Ö4û‡ø_¿Õ¿‰íu ‹?À üÿêÛøº¦ÕÈõÚÆ?ðÕô¾JØþ¯v૆ý?øºoXÁà«ä|Õpø_5ÿÀW §?ðUÃù|í¶Ëøjåú¾Z¹ýƒ¯૆çøªáõ¾–²€Î ­÷?χ„ÄÛ™‡ÀÌÁÍö—*€Ÿ‡ß÷ÏÔƒ]òRn666>¾¿£æ®NN@°Ëߦ×Ã÷ßl z=¯@ Ðyqb.l“ÚZæ']8YGïL’^<ÚÒ.Èr´*ˆ=ëÔ4¡ $»À Á²U`¦œ(V±ZXr¯6Šû xk°†,`  áÒçgh œšAæö÷`ØgGì-’o;41ž.Q]­¹uÂÕ(°óž|‚-û1ÿôÛÏÖl}%Í‚j'Ù0·M)¨½¿7r, )„, âd\áT¡ÙàÎb889[9pÉÚX[Ø¥@<¼ÊnØ™õ4B³?³ÏF;&p‹2kYº?Œîh1¡õ…ã~–+Ð%z6DTl„ÜÈŠ1/oá™íîLÿ ïêë(²"BÊ/xÍd ÖV­Îƒ®ÅlXå4¯ÞiÞÄûP,­qoÞÀBÅá-|­ÅšóyÔÉf#üã}ÿÒÜ <êiUÞï™w©Ì.»Ç²ÁN^Ý(Y 3K$” S?ä¥+MÊ †a#å1å»Ç©°"˦KR86ie´ùþ>d/>×þ‘ÛcwÐorQÿoÝN­«CîI³èPÜt ø°ÐÜ`½¬ÅŠä^.õ mÝ’w ê—š$mê_ræ”9íQb²¦*ÞUrXÔ° ,øpà Û e|ä(¾^ Ñhà¢lé3w¥dÄ =Æc¬æ …Jû8TÖjÝaP+wµÍjm‚ÙØIÕ'Ôj»|‘ý-~ç’!Ÿ´³xW•&}õ–7½=âëܼ‰ 3£$êù=Õh½a²òB;²ƒ-r½A´ „>™Có^s©z}Ö=Ì—°}:&ã«[í!âGÇ'(“‚B:7šíGC]®Ä¾ŒÒÙé|¦M½µ‹Q Xã7•Gôá_N"v'[VÑΜæÌgÖÕgϾ:ü‚KŸù‹?O¹5á( @:Ü ööÝܶ¿ˆI{1²+Nf§•dHñS%ùi2¿—¡{¯þÍïñÕ¯Ä|b¨ó˜$ÕqH£qªB6¶q(ùk9Y ç’åçµ:iÏŠº(,øXixS'¡ º'Ü™UçëèÞ~c~þrhÝ!_¸ˆñáW1ª“Ŷ¤=´_EîUåx9–¾¡ H¦9žê»•hÕ’ì>j>Ë´‡Ÿpf÷ñw™ÒÖjå>Mi™ŒK&ì°ÕzD"1GÀÆ.›#³ÿeˆG)kß!“¤Ú„ÖMÏá$ïªhp®q»©³M’ÁDB;â†Ù¹HM)r”°gä7Út¦Á ‚ÄÜ‚Ø-ëXÏU:¥@Ç*K!6w:…þV 9N– ÁOóÐŒFVAúBñ±ÈõÑ º\q)Ï’Õ·ZïuRÕÛ¯Š0/ò*.$Õ>âF©“UD€Ÿ¹˜zE 3¦ryv¥ÖÆ5«ü eà¤é{¤Úð±Áÿ ē註›Ó‰:nð%EðÃQ ‹Îžn‰ŒEœ•ÿÏpŽÙïÀôf÷Çm¿šœ\¾ÀyŸý¶yÙÂ-m¦ãÌÕFäRð°n^‚;7ûv.óâ2ï¦ý›é¹.€ßŒ'âaÇÀéyeï–Kõ²}„/ßÊïSªv ³?ý«lW:jƒo¨Ë@jrœ§ÒN¹ÎQKÉ”ví¥¤0hwmƒ~@ ŒðgÚ _ûÄOäŒ-ßrC`éd OºU ã\^Tø}Ž¢vûU¨~ãð¾8ÿ¨‹V"ìfzæÏQ¾º£3¾¼e®Z,µJW[×f ¾¿RŽåk™á ‰ä)úÕÛ+·Ëô8‘Rdß8¸†P¶~\PÕ2]Ô‰k¾µb´©í‰ÏMM¨Ñ?ºßû{n´¡ª§•ø‚÷ÉͲÐÕ&ß'±Š^FúcA{æœà¬}¸®8È‘›«”¤Ô6¢Jaæ„{#Ê2ƦfomF×cb$· ¡c9?Ö@,fÓß2aı¾Ã~ý$•ƒ*¤r=œ]V4=Èf# pv+§]hKzK15–ì8¡ä€ùÒM©HoŠÄÝ2¹¹/òåœÿ^Þc‚8êW+I#*Ä‹d½3œþ„'kþ‚`3[Þˆj1+~Á <ùÖô†hçeøa¢=7r/8A^+ /ÌÞðòóQ‚*Á§Kû:wº×u™hõ¾£ù!Æò%›‰òxð}ìÁmpÿ÷H¡°-u¬B•&Bû†.x¡æX5ëîŸQ(i–À8d¿mè(•®3Êìk8Gª‡˜¥BX$lh¤`ó ÎÓ®UÍZ™hŽšga'¢„•ݮIJwÏ>™U‰fÌpmmd0>dÚÈë·òqäÝ/óͺ ¢ÚÈRWZ+i†Ïqy뜂ا¬ÎN¬²±xÇUÃ%Yi—…•ÄpÖÒš»4”ž#âßÂë—Vu®ékŽ-ªôÀfV$ªÀ`ˆ<µ™[PKšûýÓ‘·T°ÞóŒX†è™æw²-òYC ƒ”ÁÊÑD?¬,U†yë.Ï;ªø¨4ý¨€…“Êß«ºíŽûÝ7²~¡y/"L£n_E{¿ôpyÌþ‚g"õvK0J˜uqäÃÀÅaU)‘ù7fÐ ŒcGÕ˜0Q=’ö2SL•ïhLÙª0‹û¿Ù%ï|yÛho°ÉŠ–† ¶÷NÂÔÁíDz XQé«V1ßNï*ÙbœMŒÌë‡â׆”{¦ß>hBS¯Ö4!:Õ‰=”¦8Ó–¤ ôÝG­¨íõ’+m°ÁUb½ˆ„‡ÓŠf]K_NÞ ”á½8ï©C}s¶AœŽí>‰z«ÆÓÜÖš­ŠçÏ^<° ±)¯'Û•×÷ôõ„E)¤Ê¥é¬ôzSH^½ò“q@òÖÑ÷¶.u¢åùQtÅ[SÓs #É+R œ9ƒxk¾GÞƒžòñ¶ÊÏ(šƒÎF>…‡×ÈéY£"òàÇwÞ‘9’£bÌ:1{Ùo…‰†­©’•Z™žåiÂ]Mž÷¬6ùý,¸ÈS‡êàhØõþ¨‚±FšëË”K8›Šn‚àš7Ô; ”á¶UîGuð\×!ã™Á‚·®ô­|¿zïÝcž¸óÌš™ÅçQ 5[Ä‘àž˜›ŠÚæõCå97Öxh|J¸ëÞ²2~š0›oì\n)C˜~÷{nê» <¹0Rÿ$çýޏÛ/!‡_K¿~»~[“Šó›H%™ŸÄDSg›óáø€8r».Y‡¿Ù£QH^¤~ÈÌxy\XÎ[‘ÓT] g²ûIŸ÷TŽwoDÛ¡K½K¢Ñf(µ¾oõ÷÷ј+RŠ‘”¶@S'>¦ƒJò¢bŽ!3Ð’¨_y:xÆÔ€Þn½+wkÑÛ®—øÄ.ç“XÛÛ¥ë]T޽ɔ:Z&Î&9_‹…ð7a\Õ=üØtóêÇzeu¬xD”hoÅ–lŸŽZ\¯Ø 軡ú‡•ósd0Û—x‘MièuÔlt¹†MLÏÔܼÞYIq Ÿ·ner4;}-¢7‡ˆ¯Æhݘ®õ¹¦RD•:¶P[B~=¡ÜvÕLØ/ˆÃ¼Íylj»6VJ;èÝÇñ¢¢§LÚS½(zb©”Áª[àÞ)(\5YK8è“é~q…MÛäŒ[alú˜§9¯ƒ‡g¥,zpáë)±Ümr~!ÂÓÈ_bn y„Ì5?@^ÜÑö+&1ÒJ‰Ér“–˜$ Ò¸g¿Ýù6Ir‹¥O ÒØ?Äz’ïÉ ™°ÅÁÚ"ÐjÇæd¯Ú,ÕE,z ¡ØèR*3‰àŸ#ã‘1þ‚R˜l[¾ë ¬ˆPî¨á¡Gðº}YLw”\>·²­ñî‰T£ÁžTô¼¡Ø?-C]ñP›WUàÌ\½A;ú~°Mð¾Èûç\‹iÈg·¤‹©›³š½€©AGÅ9üaüƒËÊ1Sƒæ|`M¶mþáRåž|œtöÓ,›w¿ëíMÕ«êŽ|äk§ýE‰éô»?GF!VÄ>ªÙB5üR‚§ž¥ê„‹àv³à0¨rÝ­Ž$„ H\ö£mC÷™Šx(—áuvoG¿áÂMÂÕ¢pV€ OÞ{J”º>×bÄkøîÓ@“2D±q+AÚe¼pÜì—þáz}´(üÐlËdßKfÙQ¿j1UˆL "þÉ~ôíë· 8BM›‚‹óÖ”¸Ü£„·5ÛÇI }î£ëªà°d!¨‹:oÒ‘¦±þÄ~@UÈÞÝÂÃ\‰W/áŽO™áóV“Õá'ãÇ÷߸¹5ŒlËÈuYa#w/³ü~Vš’ZNóOæÞ¿ˆ}ËtÞ"·ä½Xô0¾s tXEY·¹ AðîÙÓcœ×ˆ©e§Ž:óòBŒ(•=)z\XÏGð»OÄDâÍ”ŽuÏÈBàÓke–U^æô3Cù`)Û§Ýè<Ñr‚BSÊ«B¾oqC—gE|I0±ù‡µ¸à¶=nÚÐ·ÃØÕ¬)L¾ ½bëâÝ”ðª`™—GPî %¼fƒïÝðó¶t3W% h¸}¹7ç=̽îûÌD6ÜÅü×z§D ýã%XEƸ¾Éšæ=Ù.‰òw)÷ì¥ëžÄI®ž,-ûéa.,æÿ¡†‡îö0Ê}Ú FŽ…]jG[RŽ@PsRó#Ù£’Ѱ½òäl F,À¼Eh+?CFX¨óˆv¸aîܲ#[i|ãÿ‹´G&)çIè-ýwã•ùVt}Û\4&V¨uâ$;HÃ.ã²÷àÒ¸E™1ã9kI*£AÌá휴ÄÌoaPL¢M©'¡,Õæ‚?ýIfsïRìè›Ô3<ØüM‡oÑöÁ<Á3·% =˜…Db¾

ø73Fɧ?¬À ¨]rzËmô·áÂA:óÎ:"%l“ÜŸ9 H× ±Tlq6­|¾tÝòÈãì8éß{êVÆ{P(übn†´ÌªJwÆuW¶ôc g‚<û–4¯zJÓ>£c¢½©[:Ù$¨@v‹ß\½¨Iל“ÜIí{2º„³wâ ð,¸`/Ò^/ošÒ·÷È]KCn^(8¿pyôÒ9ög\)÷HXùMb#Â)zi, w%Ô6ÕÿH{ׄÑMÈ>ÏíÝp\è¨Þ41„÷Bû” _æÏ(œíéMM€[À"Ó£!‘˜ò·|Gƒ †L£iÍ퀖×É|f1´‹Jý¥P}œÃKYåݶpÈ# =]#5_žâ ƒ{,síHÅ2}êN"0n‰Ç—ô®¯«˜Âž-Œnºž Òü‹‚¸aL².sig[¾^ Љ¥»—Æ£«?ÎaX`0/N7†§´‚ºy¦Rj’™aåBÏóÄEèÄf‘3]§DÃèµÄ~™ßÛ‹¶ö%©Œ'lÓ¼˜úóÔ»,ڽ¹5qÇ÷ÙúpšÏV¿FCaÚ²1h”áÛŸ•cXaÕ D¯FÌüŒe’ ™¯dO¥¨9ª»…öÿ -Ñyjœ‹³. vT‡§F¶Y=e_@¾ˆq Dkýž_I(#_W|Ï™˜­»ªþ²’‰Ä=4ËLŽß8²2ÍQã¸é†î” ºTDîLX>²ÔÃI!J1›ËòI6ÀÃdM_)Î;­œ’꼸2º·8¥QEsÍbW ù7t®V}Áði·ªD©£NÀ™8 }³ƒ˜¼ _/÷õ7Ô `š/°ÝêÃ\-ZvXwIÌçö‚çTFŒ`!Ú©&ñ=Í™:5çDëB)!x1Ûêc§Æƒ^õøwÍ:–aʱØ{:'@ºS†K»Š|}‡ÊnUFá›>4vÎ-’ßÚhÛâÑɶ:•çþ,âzoüñ?êÿF'º…~¿µÝ>Vt–@El†óh6jFj…@p:¡\Ót€ëAúHЉš5™êê55…=aµ&ÿ]ù÷ ¯j^¾°¬bžøa­~£_˜öl0ªèzLkª/=Mѽ-cäG¥“›p,&~æÀ\£=ƒ3ÒéI^è_ÐëIrÁÓöœ\Œ£Í@[™¶·Òí! è:ÝtN!‘8]¨¶½?áB…o+%ÿ¸–„QpP†ØJÆó[èrNh3Ñ|Z±s®=‹´¯C/˜¹&xeô²$ƃƒpGª“…* yY5îmùåuÉñú¤?üd+ÂY£Q¶‚DGeð¥Â ú(Š#°)=¸YqmŒ0ÜÊVƒ… á*}®™p0=,Ea­ùåç¦ê‡åÑ:Ôê(&L6Ã:Kÿl’P¹$Rs™5ý‚+bÆ‹uo‚›zʽóo§pd=u†•7/2F«àÌnÉÝŸ¼™£Pœ'x„:ùÆiÕ'Ùºæ± ø·½š(ÚÓÅ&9?î¿ûªù6‹0*h‰4‰ 2&0è+xYÿúc&M‚ð.ÏÀX4‡uòEîÈŠp6Šˆ{3I/Æ,U0]×¹Ù§}LYþørØ£T5!Zò-SóíæÉq‰¬?¥Yœ¹²/}T‡-‡$-‰à®1ò¶ã>W•ê<¢bRYÛîã8ÅÆøÌ§– ƒYô’Áó$£79aê•Äýzl<¦7|¼YŸ˜e7nOÂK‡,Ü>^ñ ÖÒ7V+Ê Œå‹:­Ç3G¿ñdÛ4àU~Ã݃aÇÙwÖ¼Ö =ìxÓ‘àE>à£ïÊOù3þÞú»šž_Ì`ñ>¸:Žý…€æ’çDðiSn!FP²¢&p½Ø[äÕ«pÇ™Ig íöëAn}à Špœ!±ÔŸ@]ˆq¯ma}÷—èÚ /2Ù5ë ëåg¹È‚®èåÙ xÒŸb·¿–x{°.@[o¶¥ÉÁl1±Èx6mtÜÇzA¦[‘Ù´üv³{ŸÏGŸ.(¬arúÇ\f¹_”h™ƒ‰¢ÜÒ\‰w/7w4]n‡=RTj<@:ù*ØOÐKælTîĮß󺋢xñ—•Ò3XŸ™ezÞÌv¦—c¤JU^ Í£:U˜ègT$Š®B¸¸XGÑuYƆ<¹½˜àã´k;öšMÙÔ½ü6‘á £®0ešW¼sߨló~¸ÐÈúÅëd•œ°<ÜrŽË•À}“Öý[Ûä¼}«?L1ãtHŠ˜vÇ!à=¹HgŒKç¬ùœŸæ¤c»t¿²¯Ù§FO?ÌÍÑ"`1J`SeGhJ‘Õ‘?úÚÿŒÞ#ÝïcK¶0†--á…&ÃCF¸÷ª»_ŽTm’@ül±•Û»·˜ßˆ&ðñ2cçÂJbyç.–pë6 ;®»NR S|Íh¶Ý5€ÝI)à*¦ÝšØQñ·hV/"¶Jœ{Y¥mQ\‚ÆÛA#z„B/’kuOŒ¹ìˆ‚z+ü–Á/RùJ Ôï~y§Fv;ÍÈ›¿©¯œ™f@ã Û4 ,!—¨ ’Vù¬é  Çëåew‰; "ߢáO!êÙýÔ«O$%y«ç<o…0ÁÅÀ¾j‘r[n@±oaß ¶çÕ (Šqu³‘ºÂú ƒäîra ¤9Ì2P¿Ë‰ö ™0¨0þ|‹²cÀ¼@ŸÃg*vÓ7‚R«o0–©m0VhéLY*BæŽãC.+‘þ¥£œÑ£²M91˜4ž¯Æò@2|\ß]^}‡jþ$xÌ{I¨'­¢9|T9@¹`HUZ¶Ý@ðñ“镜—ùóÉòâ|HüÝJuÈú ÷›jº;}áÜŠo*6ȵ’Ì‘/‡P)ïÜìtF}qF)T˜™£¢Ò”7ˆÎv›ÒþÇ“s÷÷7Ó'²¥Ô†¢WìÆ·f¶º"”…%:þï鋹CîŸlF]îÙñJ…ï>P¦f‹ˆ¢Ñ-ã{¼•®Š”Õó ¨rŽ–ùi¦q‹Ëß«Q—°Å£ üpN mÒ0øN‚Z!uÔ<)IÿFU¤>cžÇéHk9­`-È <—âøÔ€-"ínÃènNî‘*Ü[ÏÎ_÷jšDaˆ ûFKíÆ¸µƒ¥þú?–ƒÖgï §I|Iç!Ëô]Ís²tLã3—õž¤µtÛÄØsÆd”SË0§NfFVãÜ„éHY;'NãÊúZÃE-(fqÛ0bÛÀÀ}JFËf¥ ²ƒ×ß_$ ¥ï³ê‡YhVÃ`)#A[a´¼ 9ÚÙ1gÂʧeU^<”ÛÇŸ Õ‡ÍÂa‰X*Ëãs…gÑ $åùçñ3o[SÄ˼ÏÇ:;@¨6$5òsüÀÄò•Öiùt´áPé¦ËÎýøxõfE´Û3~½ašÔ«Ú…ßžÏ>°š®Tø8Å [ïáÔðۀᶬgã0BY¢ù«^X—pµ»–öÂðÖµÝ+ÛNŒ¼¼“þøþüÎÆƒè#=Ãïb“¾w®Â=_²RU…ÅýðfÛFçd»hežÇe›½$ ÕÃKÕÕÕHãåÚí¤|î»ø66…$Ué iPå©Û?õ:´A™˜üÖt؉æ¥xõpoh&ƒîª^Ò¦ÖߦLÈìÈ¿sæSÁÔ³ r‰}_6c# ž@ØÐ໌þ,0sq¦-('+ì÷aò{Úö‰§÷î‰ o —ªe5Ú9ã gZ¬[pUv½œÝŽ+þ.úôBLŠh‰/•Eä0"UÓ¹øão¡$î§y5¨à'×j ÖAD5ÝkqæÐ{‰¬ÊÛ1ÇX„Hi‡è;Üý°ÄNØsL³é§N!÷>d#¡·±ó½Xk…œ³îÙ\üÂ8ÅA˜¸°½Ä> cÛ¾ÙÍldÄz#ÝܘÙ'Qy¶_V#wYJõeNƒ=˜Xâ-+ì3m{Èš÷hHk¢˜%f·º¡ZŠß¾Gößã_ßÓg·Z+þÒÓs,+á;²ô ÞMÏ‚> ™>\ À®ÑÌ&R3ùÊ&”Z÷Û<'9D‚ÒˆCùÃÄèEüÖ¦—Ÿ_¬Ì,¬bÝñ0p…wQ gß››ž,þè'.ç½&™Çÿ†âS6ÔÂ÷5·q¤<†>Èñ… ¡ævÅ. V ÝNΦø¸QÎSž•áv¼Wý¢ í[/ëh9KšStŽE¼WÑÒÏ•ìpû<Ý÷yý¹•¹^cêkÿº½S—A©A­V¾–­Úõ,MÁ¨Ä$xôµ6)½›ðQ|ÈTù“‰¾à|Øû&¼› ^iãñôÒ즬÷y 1»íÁj‡‡‹·dâe ¿]ñX~þ$‹‰BÍ7Y}Lwj‚Ú¤§ÕÕB¾³;éÃÆ)œ—ø¶ ¨pýÂ;HÓ;´Ãóá[K!M³†Í8O‘¢39 % ‡m{:ÅŠI4n;}íâ BÍ€¹H9WŸá·„ðÄTÔBùé"âë˜P¡ÏØßq'ˆj *ý~ÏyåÃÄÉ5 ì{oʃ_kÄFÚ ÈК»×"Åöàð7ž vHZÝrNŸix‹ÕQ¾–Jø€úž_Õµ¶Ú£ôX—ï$ÕË´)‘ùa‘åè”pœ.R‡M•ï¼z=%éÿ³—`ÄZÙzM÷åHîéK·¹®áYW_ÏñJƺ†Œÿ8_Cxšn…¶OB^˜ç~=4½‰uÀ8û>ž!Ã;ýð££B¦šYr¨¾$ÊmÃ¥²l.¥VÒã–^,ç!2‡=¡SçðHÈ.YË·¢ïš:ï„ä¶3R'Å¢1ß™þtw¾'Û…f½¬AˇòãêüÖ‘*?Eh×´‚–ùÃýNtMzóón±M~œ6ó”dg#fu”ŠÈr¼Z‚¥ó¤¹ra\ê7»pSêÏ–Xͳ֪EŸedÖäØi˜*b ‘~æ1²iTå@ÆËGr1MûP‰Ïð Ÿ Î _^a^øÖ­,ÒÅ-êÀwÐ hšïy TÂØ™oö³a´²–1œIûüKëP¢FîMÞ,™K5J¥xŽÉWRûÐí]žß9êõÂ÷ÞX+­×Å%V¿RóëcÎjj£íÆÝ1æ¼onÛîJ»ùñËÁ’Þ4íx{ R¹¼dQäRdþ0¹mÓÉü°×6¾+èÉm°¶Áü ¸ø È;ñÁ0Ÿâ!›˜0}¯Xwðóre„º×ªRaãžSë»ÇRÙÌâ|}í YÄÖzå£*jÊ,÷ÁùDxGDmL]gšAÁü0xõQÖ´:¨my̦Òrù5"á*‹fúuðÏ.«T³Q/%€> À!Û×u$sûÃ!È¡‹zÖED<XDçš!ЈOJ,™hðë.Q/3 ݧ \Arpærd¦Ëö Y3Ÿ`SB6 ‘Ø- ’p™9‚Nl[.oíS_¬A+—X>s©\…gÁ 횸U^éGC낇ïÍlP&ô9ë;©ÇØŸú‚V€L¶k³­Bµt餪w ¶°1ì0<ŠCl²yUš– ·èÍSÿ¥Ucº—'¦j£F«erIj«¥)?ï\*+b2ŒŒ>$KÐ=>Eýhf /æ1žQ¼°õY°3"A—šJÔ’kÇtY%˜ý6¯Sõ#vö2¬³´Â`‰6G·Á€µ-O¤mÅê݃²õý¦rËjk ¾³ù¨(qZ.[¾÷Àtù^ ¬Â ߃¼Èçu2÷ªï–Ô©xf™qäòÝs°6k'Ĩd ä‡ã2À‡‹+¨oìQàâZÈœo/d0©1Xƒß–QeÇ„kAbF[÷¦VºKZSN uµVÒ½ª¼(öÁ“Îûœ èÎqxÝ%z=¬3$c€ë^¡ «?¼…Ï#Â’Àyh4ÚitNïs·*ýríÜûæÓ‘zYÇþu¾X³ ¡‚sÚìÆ®2a#ÎArˆ`*¢¥#‡aü³¹½}iºN@À\.t[‘ y«&6z%þi–4ìô©XeˆŸéGS •yÍÎÄaRºæ†6?ôµŽÛÙ͏!Ýd>Z3ü¦Ñ°a˼šf.b®WƒàÚ€ DÔIyl6)‚óŒ‰ÞWò¾žj$ZÐao’ö¯|ïØl a¦M½Æ¥x‘;eIÕÌ'‰Ge3¨oX –ZÎ଑žÖßÚòŸNœôÈ`'ìÙuö¡5*‚7/~ž~‘ǼešÓAëODtÙ~"ù ·r-LÝRÕ‰H¨-#9ªÏöøBþÿþŸ(`n4urØ›:Ù"ÿ/¥~HÖendstream endobj 147 0 obj << /Type /Font /Subtype /Type1 /Encoding 324 0 R /FirstChar 12 /LastChar 127 /Widths 325 0 R /BaseFont /UXVJDI+CMTI10 /FontDescriptor 145 0 R >> endobj 145 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /UXVJDI+CMTI10 /ItalicAngle -14 /StemV 68 /XHeight 431 /FontBBox [-163 -250 1146 969] /Flags 4 /CharSet (/fi/hyphen/period/colon/A/B/D/F/H/L/M/N/P/R/S/U/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/x/y/z/dieresis) /FontFile 146 0 R >> endobj 325 0 obj [562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 358 307 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 743 704 0 755 0 653 0 743 0 0 0 627 897 743 0 678 0 729 562 0 743 0 0 0 0 0 0 0 0 0 0 0 511 460 460 511 460 307 460 511 307 0 460 256 818 562 511 511 460 422 409 332 537 460 0 464 486 409 0 0 0 0 511 ] endobj 326 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie 197/.notdef] >> endobj 143 0 obj << /Length1 785 /Length2 1439 /Length3 532 /Length 2018 /Filter /FlateDecode >> stream xÚíR[XSWÅà…ˆÑ%J@ÈCH!b"ST@ É ‰$'é!ÄZD¬b;C$RîZ#:^¸ˆb ÔrQ+A È8*‚ˆC@tÖ¯ßØÇ™§ùæì—½þíõ¯³öÆbüé\q$ÄÃRG¢‘¼X,"è÷ ‹õB ¶T †7³¥ ©Tà+’3 Phdg™‚Â/±D¢øR`ç…›&Q]!,¶”‰ô¶Š9Hªpt¡LŸˆP „ÄB\'‘¸ŽDBQ…ŸöäóÄ€ò±Ì•I>µb!$Fo ØÍØÄ½I®*â¡ð_ŠõÓ ½—ÿ†­ÏÅ™2¡ðK¶hZ~&©?õÙ"Pñ;C,’ȤXb.„ÀŸSC æXW }Þõ‘²…ŽBÀ‘¸Þ‰°þc]ÃÈ!®¿@Êá[ÍÔ!˜û¹}~3>ðþŒÍ,&Ýá÷«iú³°4H!áö &þõ!!9%8D=Q¿>íÂ?Æ€9b®Ž$² `#[Ò?"="%`.$\ïï‹¥ú#@ŸLà‰Ôô½º~ûti €žþ¥M›Är¥£3 8’Èú„õ®€B&$ü;q,øJùld‚+ÅÙ•¥ݰ` ®àTàÜWœça{f5æÕ×-åìZÙ/)wxõhõXOlµñŭψ”B«—éFŧF£4?é2Íâ®P¡Âóª¶fBÁï9ñËÄ‹-â"q×™F˰Scæï»¬êºïE?^ ¦ÍcÍ~ v7€“óz›QÄìè•];s©¾4“å.÷ƒóÕÀ`™;F½sce…kȤ¯ GíèçßóIJPy‡øìxk]R°˜Sl-tßrÆÊºT·»F´¾u¸ÿÒö¤ÅÑ—î’ÜÿJ””gb"tSØ×¶ÇŒÞ„ONjÿùá¨UÍ+Žc°´tVˆƒk¶G¬Ãs\Áʸ=­³‹ÍÿË ”îá­5õ„fFXòâò»qm¹Öfùr/G»ä*$®=dØÕ»*ÓŸÐi˜C¥†]e¬MÒÜT4}Md4ï×ífWš–cå¬BÞ™þM·ðí¾Üä¡lÃucñIM_µÚó¿¶¥´X¢OÖwäô;ËÖŒ crÏHn]òé=µ~1·ë:r¦´Ýg²ü¨,5þËÇMµO±h»Â(òZeÚ>®xuÈeݱ±/öÞØü¢Ó®, ~»2}™æ=³3Ì]üÁÅ…¯ºÖZÚMk}ÚŒ˜%ÝÈšÿlt@²MX_g®„Ίží-ö¸sCX ]aäBõ±à´FLú–ºôL=m:óbØG|™çŸ2·_šÁ> endobj 142 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PEDMFA+CMMI10 /ItalicAngle -14 /StemV 72 /XHeight 431 /FontBBox [-32 -250 1048 750] /Flags 4 /CharSet (/Q/k) /FontFile 143 0 R >> endobj 327 0 obj [791 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 521 ] endobj 134 0 obj << /Length1 798 /Length2 1515 /Length3 532 /Length 2104 /Filter /FlateDecode >> stream xÚíRkÛ¿ž•ß(ÛyÆ”-;õ Å`¬¸{4×Yn1ÂÙW KvG*Ïï .ÔG»áOk*ΧvU7hý®Tʼ&ÐJ–Ú¡Òh4ç˜{¼Å…êpÙîÖù‰Ü}«ûÝÕIƒÆÝJš3¾5‡=ºŸc|ñ ,åX%k¤ü\…?7ÁûXU|!§Sˆ|eŒ´wßw´•ÑÈZî?M°$©b`/ƒgÜ7ÌwS³¬Ûë Õæ=µIØvC¯é‘ê9atÌL!ÅÒ14÷\?3¾¥©ôÌk{åƒDårRk±¸ë¥÷Uêì³çŽôÿø¦‡*0ÌÈ’w © 7²H›1÷[™“–cξȗèM›>|ââ]4Z¸â‹‚ȹ‰¬/äæ©ÇDZzºóÄu'ÕãÏQOÓÈ3ÚQ}Jw™5*'™õ¦.cCƒúO>ÿINz+\Ô{]A¥ÍC¢X›«ó†Bœo0˜Š8°Î†Kfוj»Ÿ<Ÿå©X›Û*ãáêÔàË äL4åH²[Ò‹¥ÐÛC†—o–|s8—wÕΣ/Vp ¤Î<¿lúrœgOûУš]6W"ÐÊŠ¤,ñgÛq•Mƒ / ã> ÒºíÌôQQî-UõƒwNdí’”™SZp¨´«y§ÔÚö7yX‘×?<<±®îˆÒ¡ÍŸ“ûÛ8H7Ÿ#>RýÚëìŸaïÖÇ• _ôñ!ßÂÔEqü!@еçݰò±õ†Š£î“‚E;/Ë·Y¾Ã âŽk¯ÉÜ«¤§5ÎÃüÚÁô½Ý#•ÒccïÈBòÉZŒ²šf5ÇWåU[—–^«_ðÚ²á±K¾¹FM²È'ȃѬT;XjœðOéKÑÊÉK´ ¤åÆTnkaŠ)ÌóΫ.¤¯+ø­5hXYgÄ€¢9²ÑIånvâg[±´süݾèN’Itö€»Kôo¿h†5¸6ò¯Ä««7(e>Cÿ‡âÿÿT:Has`…„ø7U(endstream endobj 135 0 obj << /Type /Font /Subtype /Type1 /Encoding 326 0 R /FirstChar 61 /LastChar 107 /Widths 328 0 R /BaseFont /PPCHHW+CMMI7 /FontDescriptor 133 0 R >> endobj 133 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /PPCHHW+CMMI7 /ItalicAngle -14 /StemV 81 /XHeight 431 /FontBBox [0 -250 1171 750] /Flags 4 /CharSet (/slash/Q/k) /FontFile 134 0 R >> endobj 328 0 obj [585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 607 ] endobj 131 0 obj << /Length1 767 /Length2 581 /Length3 532 /Length 1130 /Filter /FlateDecode >> stream xÚSU ÖuLÉOJuËÏ+Ñ5Ô3´Rpö Ž4W0Ô3àRUu.JM,ÉÌÏsI,IµR0´´4Tp,MW04U00·22´25âRUpÎ/¨,ÊLÏ(QÐpÖ)2WpÌM-ÊLNÌSðM,ÉHÍš‘œ˜£œŸœ™ZR©§à˜“£ÒQ¬”ZœZT–š¢Çeh¨’™\¢”šž™Ç¥rg^Z¾‚9D8¥´&U–ZT t”‚Бš @'¦äçåT*¤¤¦qéûåíJº„ŽB7Ü­4'Ç/1d<(0¤s3s*¡ òs JKR‹|óSR‹òЕ†§BÜæ›š’Yš‹.ëY’˜“™ì˜—ž“ª kh¢g`l ‘È,vˬHM È,IÎPHKÌ)N‹§æ¥ ;z`‡è»9FEºzjCb,˜™WRYª`€P æ"øÀ0*ʬPˆ6Ð300*B+Í.×¼äü”̼t#S3…Ä¢¢ÄJ. QF¦¦ Õ† ™y)© ©@ëëåå—µ(C¦V!-¿ˆ © ú¹™y¥Å Q.L_89åWTëSœ®¥©¡‚¡‘©‘‚¹…Q-ªÂмÌÂÒTOS CˆG“K‹ŠRóJÀ©B0~Z&0TSS+R“¹n^ËO¶nÉš¾­meëâ «Xõ9žXûò&ûˆu³3SjƒMç*¦—,yµðÑÖ¾ÃâÙ%¼’­§ m‘ìõë‰û²HxÍÖ®Ë"&4˜î×»,^ÙÜ5÷Ÿ¶ú+ÏÃ…a3æ´>’¶Ú_ôxV§²ÎÍ/Êõ'x楼pŠZ¼ïû½kÜBZA“´”¤Ìo®`¿Ë(&^y÷ù¥@O¹ý©+{æ?Úx¾·(ª@CÒ³ßëÿ3‹ÝË6*·ÿ¬½8àšÞ"‰«›üž :Äï|Öú/ïm‰èLÝjõ}Ç5ùÞßù©?õî뀂Œ{ÜÜÌßìxâüLp—ãÂ'æXÌ6Õ1q^Ÿ·&ŽçˆÒÜ7"†§:ùLœ£nW¿Èa_µÞT©íÕ“¢÷lg¶cx­'´ñÄÓÏkå]–K†¯Õ9j;±ú/§r£hDÛ;³ ‡ïæU-z?çÓñú!ófÊ>$øÌ¯_Í6aiÝ|m÷ÇÜÓ»Ö'·u½R½e"ìV]véƒ~ÃôK-r·ÒÊ‹¥²Î¿á^ý‘1‹c¶®Ê—ê¹iÛÊ;²'¬ª¨º‘ºõ{ß“UîÛ7|TñrU•¿s¬à/ãJ%µGÇÒ™8͸À}¿BwÚÜæ¼S‚4/¬ÓøÎ?[\Ýþ“³«îŠV¶®îÓ©Áþ–ÓN߸YÌ~;Ò6!G²êê¼Lý<¹TÑÒm­ZkCÂ*YŸ}uº³³>w‘ïIAýý5Oº-*ƒ+ªµO·H¯»t…±ååy"_îZF¸ª¯±šœÌ+$§õàÄÜ9öú¿ÊÊ7ªg?|æÁ" ÀUàã  רÀäœÔÄ¢’üÜÄ¢l..vp:endstream endobj 132 0 obj << /Type /Font /Subtype /Type1 /Encoding 320 0 R /FirstChar 0 /LastChar 0 /Widths 329 0 R /BaseFont /FAZYEI+CMSY7 /FontDescriptor 130 0 R >> endobj 130 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /FAZYEI+CMSY7 /ItalicAngle -14 /StemV 93 /XHeight 431 /FontBBox [-15 -951 1252 782] /Flags 4 /CharSet (/minus) /FontFile 131 0 R >> endobj 329 0 obj [893 ] endobj 112 0 obj << /Length1 1581 /Length2 9273 /Length3 532 /Length 10183 /Filter /FlateDecode >> stream xÚí”UX\Û–¨q‡à¤îî‡àîn…S…N hp‚kp'‚»»CÐàÁ î]{ŸîœÓ÷>ÝïÖz©Œ¹ÆüטBK¥¦É*a¶Ê‚AVN6N!€”²†€“–VÊh±ƒ¤Í!@!§  '@ÂÝÀÅàäââH½]íll!)Æ¿ñ$œ€®v–æ €²9Äè­aiîÐ[Ú!Þl GG€Æ_o¸4€n@W ''ÀÊÎ°ÚØÐØÿò‘Yƒüÿ [¹;ÿOÊèê•0@%PE+0ÈÑ`´FcWCçBMþoHýgqYwGGs§¿ÊC{ô¿²æNvŽÞÿ;9»C€®e°ÐôŸCuÿRSZÙ¹;ýgVbîhg)²q8þ²s“µóZ©ÙA,mÖæŽnÀ¿ã@ÕJ@Ûö·»œ¢¦Œšóß«ùwJÍÜÑòvþ§è_cÿfÎß í«Àƒƒƒ:úüÏ?ãÿ˜Jd ¶²A·/ÀÜÕÕÜ º/ Ä ðåج€^ Ô— †@_@[ò` vEûk19¹ìÖvÅþFn»‹;´²pü×Âý“üïÌ¿‡y8ìÎæ®@#Ðú(çGÿc0´º%ØÉÉüw„Ànëíl ýñA߅ζú°û]Á¿P0øóB- ž¿óÐV°ÿmj>èD¿ š—üMÐj2ÿ?´–ìo‚öGî7qØåôs~?€]ù7A•Uþ!hß­¢ù› U´~´Šîo‚šéÿC‚\¿çßÚ =Vì¿{*Úâ7AKXþCœЯ³ú¡ üÿÚ  TÔæ„šÚþЖÚýОÚÿP'‡?*åøB­œ~#'Ô ôB­À ÔÊù„Z¹üP+×?jåöB­  ÔÊý„ZyüP+Ïß½`Ù½þ@¨•÷µòùÿ÷Ù—”{ù²róX¹ [Ú ?/ÇÛ¨ ²sqÊKCw/¿à¿Ž¿¥»+ôØ@þ¾l¡÷Êÿ°µô½€–hKó`KáûÔ†°2™‚©rD&XI›Æ*µ]_Ûуãa‹G]˜Öjôî*2ð°vw(=^ºE¶ù©Ëžº|H›{Úñ0ÛÉði~©÷+CÙû‡ó«ëàƒ­ ³‡¼°ª3k£eIú…ýOòÔ¤µv‘W¨`º =êº3Cøøõd3µß‡ÖÐqSi`§¹”…ó¼_õÄNJ@X ö·Òļ|nsǽ+@ÉM|2ºø9#nH˜5Çg š˜[°wr´5Š–c桌.ˆÍlny¸«Ìb›ân ûš}•hÎ'ÓD07²IêW÷ÑŸ-he6t4Ï“eûU+¹kp¥!P®dÆ®4ø¼\”2{Â=l~ 7zNwðÇB¹h™Ë×’éÎI'+÷Gûh†X÷<~+lð :)>„ xË/úLó 8Ù0d‹¬+Pýôžû`›M4<Ñ–#k‰¸9±5)Œ¤ G ÆuIIÍRÐ ¶Õ’"MöñW¹_ì€Ë±¤”C˜ãf\b3Ž8¤áC‘T@=/[4ië;lñ×4­©LòM’Ýï¶gô†g㨦t½X?Xp£¤ÃÕöÿúµ +%ŒéœÞõ¶ý»íÔó‘º]ÛÔk¹šS½J‹E›h §Á‚s –ô–Ñ[ÓÈiò¦ê¯êThDÛ=ý‹Ù ®‰Æ"€‚´óãã^õ{ˆÀ‰Ø±$‹“ "·`îÓ`=óQšâ]%ßÉG$ qÊw[BÁ2UvÆõnQÌcûù†¿CÃIÅ­¿Ùù.žb°ÉñLèIûÎí2(˜à}bÓ£CÌæÊ$®Ú£î(¼‘ÿ7a˜„£$Lþ\­D¶~Ôæ‡ÂŠ·lyAmgtBùÒÕþ]ûñLÌcŽÅ؆Œ∫Uá§Ú­3Ü©>Ò¾²9°¯CyËàDºî}åËŒfÎ"x{ä–ˆ¦–š±Ñã-ä*ó=T(­mP¯}|'6¿·([{ÍØÎ‡ç¬k!9Îî{*—üqÖ`¤9tÊÄX’ý5ª-¿IqÙ‹ŽÎ(É/¦ vó)Œ]‘’dŒÑ]ôc QYi’‚ÍödxfSqÙc¯ æÛ™‚QgŠLç½èAKm–7Aýn~*·½ìcÜŸ›Ô†M ñ81Éà•ÆTáz#=LÎEY’½xZYÁˆµ›¹ö­ÏL݆Ë(f_CX¿ŠÉKT7 y}4Ø“ØCô ]mš«Õ$•pLPŠÖÙ0ß/žL°a[ Æ~dÚ/ÒJ,_4œÞ[rþÉàSCRæF}]pt0LK»ÈêãŠhéxϱ4滟ääSÖ`°)íT™Þ`>S”x …@x5*¿f[XÛ÷ `/Eá»'Œ„úÜyÄÎÓR3ØqÉ”c>økIôØ#ç1Y®+›WÁ‘ cyÚ &NdnJ/ß!Ú]ªKvcdð§×ÛT‰î[¤F¦NhJÑÃI4v<ŸÉÏÔ÷à¤Ï^ÓÅÞ;™óØòõìŠ×Ó~hÜæoúõìeÈÿ¦Å¢›žB¶¡žÚññ*ZëÊs¹ä-É‹—ëA•‚we×FÂs‰å¥é"u“¶Wçnó{ô"Ce‚sŒ«wZ¶Ó$•KJûÌ í-‰9Ê&JŽŒ(±(,^ª4G©~dêkÚ¤Oî;ËýlIhv;À¸DïBÜ,üËñ€š#æà§ÐûÆåümRŸ,*õ ý~Ø/ò"JçªáeN˜8ùƒözôW&ÆJ#$m=?ö¦#}¤­†¯›ÒƒàÓ#§úÆšB^*÷#¢ÖA´m‹nïjÁ©~~8ŽCñÃÇ3%~Díå’cýþŸôIÞa@JŒj{LT €N£U¼©¾¡Ô  Ñçy}®óæ¸îè7ÞQBøõ‡Ç¾é¥ºêƦH›Kïýi&û¾»}Nnw¦" {Á²9ü£uôrU”ß‹=JÁhKC8Œæ—F¦ñ[VöÚÁ9=E/ïÛ#Žvó¡ÜŠãd â6m»<<õД"6>†I5“9¡'÷ËåŠ;lÆ¡P®†ž~Y)s0&:@¨Öé¶ëØ`ùM«Î› ekeÙÒzIJqØ•—7EÄpàâ÷s¸8GŽ×¡£ÔêLòÝEFÅà§iÝ"v›kQR¤ÛmT“ÁËÄ©äÝ3ns{áR»å©Fyßç>A„Ñ·ã+É^‰ ÙÃ¥Fç”\¯ cKß^¯¬ÅbXt"sŸcm%¥Â[…â—!~jpñj7íÄÜÝYoÑz%°l™°éÃ`q=?Hµl•â´?(Ê"û>¤€ãa5^&ú˶†¡l!`œÞ(kæÎ2õ¨pu#“œ÷šW3›¿A€©ÕŽhóJ@½ pA4¤ŒuO—/H<ʶZç–̘Ö(_yƒQUT‘žgbœP'qÙ:t4MˆþÅý-ê:Ztq¤GSF¿„¥D€g¤þc!9©ê–Ó—[ç™ûà«í¡Û‘ ÄA÷/,–Ý <G§Ý»¾0êã´°Y‚”‘ì§ÄdÉÄõšòøgÙ:c!߬²—«_ ­È:‘0çÌFëDT÷Ç¿ ¯£Ú§©¤sðq6ŠmÖê­>¹Ì*øÚá‡M5âÁͱ2Ù4i2.s­+ì&Ì[Ñ„*qfW(4c“ʺ0Ó¾â¡Nfl$ƒye8‚QòXËÌš |›_ê»ì«<º‹gܲ –(ôSq¤§÷Á ‚ÐQ_ë§ðNºù H¹Ø‹F¸ž>þDèÛŸ`yÍõÉWçjÄkIx;…-yö:ùð`øc¼—G0Cý}ÉñQ¢_H£±Žê^BOˆãÅEáS‰6®ÚÈëDÔÚ¸&sjØãá›±Ä.Xé—¾\_ {˜Ó×~<¿WXITáb´««ÉŸI‚±&oJ ¤œËZx^H_}+’ûúÛ‹ïg²Þ³wGÔk¨Naù/ÇÆ3î0Z;ò[óÛzŒH½ÈÏoß%×/ »ä ÌËPR¯ÙôØÙ¦o·¢'߯R|Ës¦DæúÁ‹À¦!VQ•;ìÆµÿæ a±ÏËÛSµ×6ÕÓéÚªÄEòDŸøCp”Τ®DšÊj^ÎȬ¹Ÿ†ÉÚ­Qs£ž{µŽ¥"6ÁßE” .ttqÏ}¸Ú _WžïgOª jèÏW;ÔR*-–L0`ùvJÜæmÜy׺k'“sÜÓMÅ8ã¥p<A^r¾Tíº~¢Æv$Ÿ«ìó$e2ü6AP°k½<´îöà(o3Ž‘U†Á»þÙü§ÙPeˆSw9ÞñÙ b ÝõX½¬þ3DåZƒ1ÿèÊò8X«¦mnð~jh©ê)w¬u3fÂM¬:ï›P»•¢ûæˆq¡E,,®qß-MS×3kg8*Œ"ByužÊWZïRâ£qy£3stD³;ùØQ ŸàìÙ;º<.Û6 8|Ä2wö˜lY+Âù™VZÞE‡'‘QȘ ûÎÚœV¬À×õ©K¢í¨ òzÝË CbÈAФ"£‚JtÖ éäy·vίÞfü¤øËuôñR'›}ñˆ¡$l¡^J¼ Ù“,Åñ”_½¼\f?—Tž€(%½®KÃæöÖýƒf‡T°•$?£«É§…Öž¹Ÿ³ÁÕ1s¬CœÕ¦´¹£zÕ] ŒY¿2ÇØ›áç¦>ú¥F,“î?e¨ÉœøÐÖM<"$½ÝÖ…ñ?Òé„waÁ"ê¶‚Ç—ÙHyÌ*Öíë3ÕçwÄSº ug SE>RyÆHÝo6™d¬O;ŒüÖqa8Í_ höðíæòeÇI‚lÓ(¡i1¿¨Çñ|‚ºbݹuU˜¯Aö®c avü%p‰ü]Ú¢vNg|-Ê]m4öŒÎV1-×^â Bˆ‡¹K[êF´f1Ù–Žc"×ߢ½¸ýÕø æÎvk¤ê ²€\Ä_ϳ+<Ä8ÁÍIè þÚ¢p({ì,wºËþJਢ¥a f(Ö[cï£# 32Q5~d¦î'7ÜoJùjLq]«JkâBBI#¼K¸”H11ZÆp$w ÞTÁ(Ï¢îßø»ó%”€¹è_ë8ØÔd­h™ÑΣïn,·©ó°SLà9!âqH¥" ùÉ[6 áa½V)£Ë¶«Ëj.ëÎÉž•e4–@ßGHŸBØD-Î1(/‹_µDé¹[ “PÕrSÞ´”äÕ{‡¬8fñks‘€mTÅô{ôfÇʈÌZ¤²™À¢É­xönþÙ|ÿwM³4yU”§ëì¤Ñvñ4‘Ÿ1I&:ëXu9dz£[6´2òafŽýowýÀf…¸q÷ñ…§M¾•ÔI×­Ý'1.×®“ú5 ©¼–ŸἫT‘ãïcŒl)í]A»*žjùEè#/$CDô]dÒt4OµŒéI~ž[H±ôÚ½F)(Tø˜?ÞÚØÞu&D³>†âªba¤`†Cš\/™äÌšö+-€Œ#dùŠÒçèÜCö׆c/4eFpszq~§i|?oíwAf£Ø&ôÛ§çõ ¼%oçŽ%Có£ —¶ZPÅQUW’˜±×Œ¯ÀõÕV¯AÜô’ÁÈúàÌYLìçÏ}ëEßU§eÆúøù¦/à^„ º6àQrüK*ôvÍf5Óm»¼¿Î_aÃÈ[žŸ¢§“G±æ‘¾Î>ܩ޹Ã\€{ØZbˆTHP½IÖ©èÝàbZr¹\߯LCJW}ÐVòŸÖþ€ŸÅÓhëY²†bm;iñk¦g+Þ›¾,W~°Ú+ô­3ÂîÊaZ_•åæ>@ûmro¬ã÷ûŽtŽ*[˜Î6yoßh.wŽz®¬ÕšÒkôk;_Ñ|ÄŽYû „Vé›o§`ºød±p†eµaö~¼Û¯n?c;D¸¹dê×”ñTÊádã?.Õi›c{‚üL æç›è\þŠë«7Æ4Îõ¤5üÀÚ­ô›/L–59q## Ù§ÓªOñJÖ#YÕ .WåÛÏAb–‹Ô—‰n¸OS†Ï’¯=ÀµY4-ÊÖí}ÊÃB?ÞxW{Ü63ïí±DÀØ›ð;¸isî ˜^+Ôó´î|¡oÇŒÞ÷áL<±PÈo¹p¸>™à‚¨Ä¹›à“—&ÐáÛÛt;xø×6u®Nš[jqª°°téQ¥á¬ÞKoµè ’¬|‚òP@BË¢1a \ôÑr÷\ZŒS‰£¯‚ü^a"!OF83š(°žÍËäbÍê?—°Œ4Ÿs€Ÿ°Èí.°|KuœA‰ÂZÝî;'ÒÞÍ)2ƒiASׯŽó\Wúf„ÁºôzJ3UšÆ 4«D¿ú(•ØÛažj) Íȸ×ð/2uÍ(µO,´b W(P"ó½Qq{h@«]ùXªÚNk8ÀÃ{ s1³]Wn윅Y{WyR‰o­¼ô¯I­Àªçr‚¹Ýbmæ„L~šU¯¶jŠF£œ?ʆ¤élÁž|o€F)‰Ôé~Úõ÷x„ÔMæ?ó«áóW³Û&[´Zšv$VÅ´ˆ&F;L¾×ÞŪҕprô¤vY äÊRn.H¸·³[£U"XqÍBâfµpŒu¢TkfåùqˆÒ©Æ¨•Ò\Uµv=‰5s¶'{ZÌ æ/]u<öY{ejUJvñ*}s¤½jêË–~*ï=¤ŒR¸ßD<*\cdL×°¯d]v#°ºß¬d¯E~e!@êòo°);ý5íQÄêî[ußK« ‰Ôø_ˆ8°Ò–¯ A%xᛳ9<—ûiC$ù30§7éÔõQY‹Â™Øøy+iµCÙQ7›Ö:«Ç&E|[_Ûã`ð–2‰éò4$“SËkk~ˆnÐf¸¸ƒyÒ—ûz¾ÍXñvÜôù¢KÏ$|ŸÐX A°|é±.…”Þû±,h< Ø 2Q«e eÂpaØ«/Kc/µw!yÀwj6^°xw<þ¶w°a5"ÇÅm^Ú‹˜†zÁåÙXLɆ«aá8­aáJŸû×wï¤b)‘9s¯ÌdR‹–,U+u`-ëäØN·:^ØæjwDœIVùG¹ã-‰®ŸêãÂq}âð4™„=gDQHiàæ<˜B's½õÕªé)Ø»KÁTD£©Ød’%2çúŒå úü¸PrM¬æÛ33ŽøŠšj% õyCÜ/ñcoa[SQÿSí±ù|»0 F N] y38ããúþÝ}5®V$«æÖ®Ï]ÍŸ!u¤ÜB¨×ç¸N²O$¦Í5–gIƧ Ja‡‡=ÐÉlˆÝ}¹p–uð4ÛS¹êœ:׬yù‰l”@í8„¨Õ˜ÚªE·exkÀEÅ̆´þµˆTZ š%÷õÛjáL£Ã¤W0/ ¾ÀmÚQ•¥ ™ ÷ÄÜ;»Õ«ƒe$Ãþ)ç•1”Çttúôæ±£ ÅQgÅã³*u¿„ ¬ôÞ{ÎëBtk÷cõKÔ8~Ò–® ü!…õ—„«ë÷Ò„_öŠ(f=Ð*陯 \|%â<Î2-(3v76m ³¦[¯§‡öP–ŽO5´¨ËçX{£±6ÓQ'J-X ÂÁò%Û¶>HYG¨M_ÈXn<ÌqlM´>˜§rq5òh¸q¹vÌwIÞÿÌ·· 9©¸Ôü ¢¸^U'¨ìv`Hc}n_¤ô[ï6=“Úשh¼KçšfqÊ–jÝ0a¦å¶¸X‰ïNX!‡Ó¢ýú¡5)Ïxyf Éüø‹%É;‹ŠÉ û ‘íb_À$1¨”|ø@´Eg„9†!×åfÓ‡#õØßeˆ³…ÿlÛ&®“X<&Û픽á)FÔî'Ú¸åüXGBmüòt2Q½ÚdËùÌ5¾̸e+I_Ò`ÎËj%ßÌ.Yv]]P¼/¸+‹&¥ùoøÎ_2E»™Ò/Jß ü$›ÖscÃ&g'C¾ÎÞo¯uÂUYl<ÔÑPmÿ©95옰@û¼ äzžÆ»[víó™…1´ÎTz¥þ°LPŽRv8¸|-SVgÆD¼Îs«9ºÞ^·+þG/ìcйÞÅÜ“ʳÝ[¿]ñkžËÖ,¾iù¹ÎÛÜéVÏ›ŸŠ y<ËLö¢ýð5òÑeem¥tvZŽwã9~`òþœæÏ~í|ÛJÁ‰¡—U:O3úÍ[Ìw‚9tOƒè›hZ ’ešÆ©Ã\Ÿc¹*|qeδ"…humd D=Z"Ý)õŠv© á?>õªà?…7}XÖ$G¡ºÝyÜ ¡6†®-îï|xÅÔK¶þñ¨ìSGrÅð²£áOzÍVîæâeÞ=Ͷ– <»O?ÈTZuòÃ3Óuç´D$Ã/©ðžŠéYxï7z¶]sI4§ž¡‚³Wb›WŸNhƒcLðÄ7†«íÊÚ½nŽ­%WïŒ:[„%Ûß¹PVÔ\Æ3­NØ­^Ôq?bƒAó™yÁàX„+œÛ£â_’دRžìýÚ=%߇Vú¯vxÔVýP÷újÄ;“çxgä\Åt3ˇ–Œô ©3ÅK˜‘3Ü“ZÌ„gƒ¾Ø^:ÿ€ÀYí×ðrIg,å=œ‰Ñát~éA¡Qù 5âÚj¼µ¯aâÀ¼=€ÈÈh¢¤JùZfy¯-Šc$E &>}­åõ! Ö§Sr£Sa¥SEñ ëpޭʸVsŲë5?…›êD”¶i/¸Q£E<=9b©F M9üŠq^ `kªºü÷Üí:ï)!®›uˆ6hè.ö~¨’ŠuT”õÈÅ6 ì¹WÅÝj(hÒC qmê5†œ½ºG{»^›zx±èS¬˜7sÓ¡£‰ìq¤÷ˆF(;_¢>¬2ÚÁnÀÂeLší¼]t‡¿^ú¹KŸOI7ã–ÏP'qò@±$nû‰›Dн-/0^µegß?ýý÷/B퉙¥QW¡rbA`ZÚ^οÊGË÷’•P×9…8S0Q>Çñ7Me\U9Ü× D -éz¾5Û/æŠ\£û¿œx±¤x,šïcB¤ŽÍÖ)h¶'ãg«XÓVÝÀìN‰Ë„s#¦Hí˜R’ýnBf|¹·•쥕yŒ¸[û(}BB ³ÛÏð}dUFÖ¢ºE?ïï˜nÄ™Šäg £7’Õ‚=çïÃÓqÂ^õétŸUÔ•|o­30Ë¿n^êõZÔ«G³À%Gç$Ò´´è2élg˜Ç•Üévqh±Jó_(–´G1“ù.èÃÃ5ÔÕ$™ãä×puT¤’]ÃpE¢nÝÂV1¥¢—"ÖîH‘á!–W©8f¿p qÿž}kpw@¤ èVàà|ËC·ÛYËÊØ Šº¢˜@t`+!£å_ø’C¸Åˆ’DÛk„’?§ûÌŽzïêŽYw!³Ôrv Dˆ ñ¿»ý¦…# ç5/ްëRt¯m-ظ&ÿé]yò\eåÀ?û&&‘Q^ý53ã:Z1y«vAîê9ᛌ‹ UJÃeîMiÙ&6k–ÇË£;„ "}b€Ø±ñk‰]æð-b„ø¢Wî Ý» RµUòhÎM©Åí–Ðù³‰íQX¼·ÙC/’ ž#«õóˆ5‘õ¤§—ª¾…íÌÉ?‡`ÿ @zc7t‡”èüch-¥.1®y"°w/;:•pЫ,"¶ 5×~Êé¯ß) ± æÅ¿‰gY‰ú´óž.æLÂ÷X½žû,_˜¥”¬ .løO¯ª>8äs*×QäÌs…-E“‰Oâ=tó½îÍ›=L—¨³.~_H8dz,ÚQVˆj-L÷¦$!{“!¥…BˆÄh[Ÿd¯/7Õø½„Õ˜¬¨)vJêPÔƒØm¼5b™Jΰ1÷YFg„à«5äŽóîñã¤ælý·ÑàêìH£¥)áº'yâZofB&Jß‚Á+²@Ë<0>ý ãÕÉ}9¦H:sœDrNààøŠlÍÇjûÛ¶_­Ï­×g¦*MO±†d8γ±$˜l Nj,ùZˆK §›ì£—ÊD-mÓ¬ ”‘È£7ù ¶ŽaÜó«¨N.=¦žD¥‹°ç Ö ;¡Ô•ñÏØ* ¨Ê*6l¹­dAæçêo;ýOó»h\Þƒ†üô!®Öí>#•Ý÷afʶd!Á|6ŽJDx–&m|8žrk£±31F–b´¾ËÁêíâ:ö¾·+EJt_~ù¿™ s¬í.Ëbî¶„yùô üIÂ1ÁÒtÓw¹7(-K™ê¢(MfB‹úÆ ­M²ÚVˆ:G´ÎM†eè58co%9ŽßÀíÇ5Å|Eœ'Sä·;ë–¶gynf°£¢–£ûˆ÷½Üsÿ$Yk¶³™Ž,÷ÎÑç:Œ·û¸_V?#oß N½/7N¿`I6^‹Úðî-ÚbðM#¢¦Àvµ¶Š}C¥žEƒ¦›­r¨‘ÃU›íוœï³ajœÅ/©:úÎì™,+D¸®3˜ÂTÛu¶cG€ÞcöñçáKP­D+}Þ·Ô¼³¿½ øH5¼+Ï €{w—µ¢N«ÓTOJe”Ñì,æ±Tbg*øñ=ï^(ðÛÍÜs~GšS*èv¯V­$\±›!‚î:CÎçÉ3^:–J¥¾'ÛÍÇ.©Æ°àoÚSEèâ0œ?÷á_%ßÚÁºÍÍÅ/ÁAÏX®¾aÅÜ!¨¨IBH€{•k³ÿµ¯ÙtÀp¿xq¢gá´·n!Á„Õ3ÑË ÙÏß#2[d5F«ÜO_Ón{uØ>oo+.†Ï™µõ1]ßâúQªúxâ;1×~>’ÙÆ÷›€ß8ÆÆª?‘œ!6á.ò”.ÞXõR9«¶ä]ù ëJ"‘E³§ þõƒØ£ »ñ­•“e(žgëyšOÈ“£;z8H I4&+Ñ óq5,—´¨WiǧÊ£Wj{T@û¢çûÛ©ìK'L˜ØªŠàFA,û~eQmKŸe‚6üÜ/±1+=À„3ݹý‡ÀË g?ó÷3--WR è†ãx¥Uô‚÷"r¡Ú9Ú­øáÙn£ÈÄ?“õ:¿3õ¡†6ì1is'Ò:mJ” ñÊ=$«Ú(8pºâ©ŠtŽ˜âð'Õo­‹¶4z/Šï´fv‰{hëãrºÁÍäæ<ûÄ]ÿÒ‡ãYÛøBlu3g"à DA8,™5®3‘?¢èDË{ÿHãàutâ<>Wæž ’Ol &}¾1‹´Ìœ„¤°ãz’t\>ËÎæ­Æ2!Y65¬ô&;yNK“vùá zÆi¬NÅus>¤\®ÚçJn5ž(z0Z1Ü4Sš€-™ ö<¾›%[OÝ¢½Ö /®0)Z¡obI–7:]v ½ÚëgÑ(ׯ"¤ÌæÒxîÛDó,ö2<ñ&˜×s³C%] ¢­r¸ªœR2+ú$×…„“ÈHž¨ÊFŠu8ìk5è‘ eˆG°!xá%ÛV8øaTʈQÊk”r·ÉbB¥Ó+Œ‹ø¹O†>Y%;¯¶Öo`ÅÜ{Ï’hz\Yæhdü¤U&;Ñ|oXX¿)VwÓª²¥èïSÁ­2µ|ѱ\/v7øBuE©•8·^µ€°Vbã! \Üû¹Da½£È>ñØÙ*¨¹-§x¸o†0Êúk,?§%½¿}®˜ÿþü9U5ÈîåÆYúLá!|îhÚU_°îqp8jjÌã.Q}— »²\ iËù¦\&{1·®Í/B5‘¼í\'£~-ü…êExç©×‚3+²‚‚ªû@ÈŠ |HÜà(²{CsŠCìÛ ƒù VŒ"—nîàh…9ýÜ}>Õ1–ÂÝrÛ£Ð=47Œî‰®g>öõÆ'jd¹°À.𶀞ÌóÎHˆòtV}‘8ç@‰HH8JÉÀz‡§˜ûÔ¾VZª–åû÷Äê+Œ8ºD^%˜c¾±5»§Êz´½ì®´qˆ”Ùeà•BÑ"ÿÁ¬ û¾Ü7«{‚*HÓNÅ!ï%Dæ€1äj³žRvà1Çåƒg‹`^_~]Sâ‡g›Tí–Èߥ2a¨­÷Õqj³Éf]Ó3F¨9u\ëùÒUjÿ¼f`·J’%>-â).‹oÅkKŒ4UÇŒ£` >f»¢çôþ†“Þ»¸¨›ˆÜq‡ ýq ƒpÉèˆ [ús'=LÉý8¦è‹ìkÔJ¢g¼R8p§xúOGz>L-ÚÚ¦€c:¡4¤v¾!Îõ&´ŸÎüUŹ-R‹Øl¥ ë!àí  ñ²»>¡;€JXÈ-[yÝ×m"sõÇrLË͈¢©…?[Œ€!ૼHTc(¥SÆœWêŽ:>¼îòéô·8ÏΨ™ºw!¼‡1Óô~â B.ˆ95£•¾Nð¶©±(ŒdȺ*6ï¢8,›õ(`Hõ^-0G2O‡ö–püþÐþÿ' X:Í]!`'sW´ÿË[]™endstream endobj 113 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 12 /LastChar 122 /Widths 330 0 R /BaseFont /HKSEPC+CMR8 /FontDescriptor 111 0 R >> endobj 111 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /HKSEPC+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/fi/quotedblright/quoteright/parenleft/parenright/comma/hyphen/period/zero/one/two/eight/A/B/E/F/H/I/J/M/N/R/S/T/W/Y/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 112 0 R >> endobj 330 0 obj [590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 0 0 0 295 413 413 0 0 295 354 295 0 531 531 531 0 0 0 0 0 531 0 0 0 0 0 0 0 0 796 752 0 0 723 693 0 796 383 546 0 0 973 796 0 0 0 782 590 767 0 0 1091 0 796 0 0 531 0 0 0 0 531 590 472 590 472 325 531 590 295 325 561 295 885 590 531 590 561 414 419 413 590 561 767 561 561 472 ] endobj 108 0 obj << /Length1 894 /Length2 2391 /Length3 532 /Length 3020 /Filter /FlateDecode >> stream xÚíRy<”û΄4*”¢l¯$Û1c†±æX×¾ï˘y‡a6³¡lEG¥Å¾ !ÙUQÖJ* E)KÑAâNuÏéÜΟ÷þu?÷}ÿyŸçûüžßó~¿_Yi{e,Ù4!“èÊB0²´S0¨¬¬DÓñd’1šj--`Àð*B][UK[ •ŒÈ”P*ÞÏŸÈ)|iDŠÇ I€%šî94°'cð =€Ý×4À¤T&ˆ…A‹ÇÐ_ÐO‚¿æ1#áÈ€ÆwË üQb‚T' Ï ©p"bÉ$B(€qP¸™sÈIòßõ³¹ ƒ@°B¿Úszô·*šˆ'„þ«N&Rt X’± •ô³ÔüÍÄâÄŸ«ft41 ù@@å;…§™àC@¬ žŽñph üƃ$ìÏ!8mûnlojkí ômšßJ6h<‰îJùÓô«öFüÀœÞPñ!€» LEÁrÞ?¾<ºê( CÆâIœu@©h* åì¡€O‚!ÂÉ ‡‘Èt΀ӒpG¦B¿SM€S ÚWö;¡ÀÉ$ðOŒRàô`òŒà`*ø€ãÈ ê‚ã‰Ã3ÿ¢Pà4Îÿü‰Q 2AÒF€ŸÆWæïÍ44$‡œPæl¼2’ÐR4P*áÿ.t$რ™1'³ŠŠ†¦Ö7àRAýÛörõÆá9cÁ ctbÒê~+‰8ZÐ[Ê£Èeèw+ÞêfËófþèÁ.ÂÕ.ó ÅW7\Øe™{vMòLJ¯‹ÑÎ5…Ù>6™;ŸÞ¿1Éô™Ì<Þ æò{¦eè[ÊÁåèÛu}‹³(.ëg¯ºK’] ;sæïÍäÛÈ;¼Û6,½¥ÕYÓš£®áb’IpŒ=}ã°ª´`zPɵؑ`ÁäDî‘'ѱ|õJ/?‘›»Ù|yI‹SÏôÝ÷e÷«{’zúYþD‚?:’šÔù‚‹Y ëìŠl¸^¯jÝáøtRŸnvZýh½Lbר°šœØ©á¾ÓÝùá6W½ =‰è™ð¸{ëÁý°ƒyâj6!Ï.üÚ½Âý¸mÃF–½“çQç\KÇJD÷‡=#£—Ô&¸ƒîÀŒT%hﳚ‚ÞÝ=“뛪7çöpD#q9~\Ý‚’`j´\Š0ÞÓ{°©Iã7„FäìXê}cm#l»úxv ºYèŽ7þ>R ˜ùIlú07°®µäÓébê± º+}²uÓ“Fk¶e‡YÍÓ¶®jò”|¶ý,öh9Å‘'Ó¸»*¦Xˆ˜ÎwdÎEf§C…)ÞqÅy¢ý$áÔþÞ¢´¢ÏQu¼sÉ+wжDë¬âÔK¢Óž)Ò“`·Ô²Í½¦ì»D•bÌ×åK“ÎSÌ_\èxв}´¡$s'né(d¦¤ª/+TæD¶‚ǦIeJ0®šTÎð (œ<3÷&¯ôz$°±å1ÿ¦Xv]s[[¡@ˆv¦ÎçœoÓƒ•þâi(`Y[ý"¿qÿ€¦)û“k9MvN¤aÙŠOiŽ1EÜç`gÜJëqÈò8*s¡—=˜ñLµ/¯ø×âo‡w×kNÒöG;IóMfIs¿l{°ä#\»/=`ïzù¹Im@G‰HR…\0"Ê犞”ATU€äÊ¥‚Ðä¨e6¤ÃnØv{:,zŽ+¶œÛ¹¿7칿a¡ïÞ^c®:r#N/‡l^[úñ¬=»LÆ… ¯?Æ<=)þ,ø(ò¤ås‚nlSh[E!f ‡ýˆB¯€­¼lW8&‰nî.ˆãÉ)¬o4Ò0—ÏËÂä˜lþFͨge”)ÀýBøŠæ¢âµ¼›erZÒçÊ4Tǹ¶]<·0ú1^àýª6¤ncø@<±œQ´o®Ô}ªÂnj‰luD1&‡@÷Inœgó·Åð“e$%ÍBmÏ-䬻q™tzg e(Àû[¾ûÖNzkM1u¼|XÒólÌ4•¯‰?é›"m¬ëôò’Ã"WÇTÏÂ˦‹cŸ+1ínoUqkû,bŠ’­a…@iâ(M†Gß1YhÌ`¶vXJv-WT#»üíåmkrK‹âªÈÞ—[X'^5nŒÄòè£Ô5·Ã´ ÷Ã<‘°J”ÉÕ(Ñ+°³¹›Q4¸Œî‘ËRÛ«îÍúÊço\s;·-V²SñÆ¥rŠ’¨ŒñÊñü-èN”qÎý#ËGuõaÌÁ‚Šoyû§)›÷‰n 4ÂJñôxaÕ«3¬¸<¡ç^ĈH°“3;Y~bWù Ùb>7±ï v‚™m{:ØPOD›‡!‡¯o@\M0Èsç3<9·YNŸA"óyÔDq‘7F¤êø=#-•]Ê‹³ˆ=Õ1³Tó‡Ñùi´•>¢æ}\v÷ŽaöÕ‘˜~æõT”¢ƒid¤¾3iD"îFF2,w ›¿›Ñ¹qmiÝÂ[ÊûŬ‹±¤!3 éù%͵t_ ¶ÜÔ§ÓŒÇ ë”¹•æÚæÂï—vÕêñÚÙöR|Uc/.lÞl{š-ªHäŠó*]l°J.·^yw»÷\ý¬¨Ø.©ù‰WÓÁ^{¤«î¯(­'&Ô(øi°'Y\ SÅY,²h»qçÞT7vôÂMùÓ¾L· 6]½F+/äl½«9ŸKÁV2Öm¥3ëÛß,¼P¥Ïµà~=Øázõ—žKjÊú=íñUgON3ö ³à;Ã;—OìBFXVxÅ·qË]‚hÁ~ùUàš÷|ÏNµe9m¦ãosǤ“ëûÁÇ£¹yÍø|Ö³±kʤܨŸb=^-ëæ‘²—˯Oi6=¹Z¿°’Y²”?WZî{Õ¿y­½æP«·[/û4äÄ:',¦áƒ 5dC¬>©56ëÎ!K–£) …yotÕ†l/ãy0IЈVt*“#ÎïV\Œ·¬)Pþì쬺־¿+åe†OÊ8dû,rݾðw3Üdæ½´Ë1sJ&3Úw :Õ 5YUÕ|…Hazÿv][›¥Ý7@8«{3TÑì9"ѺãöÇ·/ªý™ªïëNáß>†¼è˜õ©TÀg¿­’ºôLZG¿q‰½ÿÔTŸOvÃiÝ6»-Â_ à) #h\{A´©ÔI[ëÌ›² ­by^õ•Óab£_> endobj 107 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /DSHQOT+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/plus/one/two/three/four/five/six/seven/eight) /FontFile 108 0 R >> endobj 331 0 obj [935 0 0 0 0 0 611 611 611 611 611 611 611 611 ] endobj 105 0 obj << /Length1 2097 /Length2 12726 /Length3 532 /Length 13890 /Filter /FlateDecode >> stream xÚíµUXͶ­‹k4¸»»»w—ÃÀÝ=¸»;Á!¸—àÜ%hp·=þµæšd®}yÎÕyㆷWÿªµêÕ«ŠœXQ…^Øh Ú9Ó330ó‰Ê«È©ª23130!“‹:Œœ-vbFÎ"fnnf"as"Ð83+9‘(ÐÞÃÑÒÜ™ˆJ”úŸ$N"a[€£¥‰‘‘¼‘³À4‡‰‘ ‘ ÐÄàìÁ@$lcC¤üÏNDÊ'€£+À”™™ÈÔÒÄ™È`ni‡Àø'i;3 ç‡M]ìÿgÈàè2ED2IM²h ´³ñ 2˜!0~‚´ 'ÿo˜úß“K¸ØØ|1²ýgúÕéÿÊ0²µ´ñøWÐÖÞÅàH$48ÚýïT ÀÛ“˜ZºØþïQig#Ka;s=7LJ-$,Ý¦Š–Î&DÎŽ.€ÿ ìLÿ·PõþË£–¬²†¬í¿7ö¿†,íœU=ìDLïùÿÅÌï *“£¥;‘3(ôûŸÿôþ—œ¸ ÐÔÒÔìDFŽŽF ;‘3‘¥)Àà²ÌÈ`t}BªŒ‘ÐáŸ}ee#btp:Lmþùï £)ÐÆÆÈñ=ÄIÄhp4Ø9¿Ç¸ˆlAQ'#Pþåþ׌ÿÝÿfcM`ä°³˜ýeþWô%³€fvúg 'ë÷ +(ׯÅé=òn´µ5z°1ZxØ[ìÞCÿeÜøî ´'#'‹÷h%žGà{´ àßÌrïìö>Îòíláø+dÙ èò^1v]3K׿2@v@»úo™u¸þå´ƒŒ€ÿ(;ȪåßF¸þY³ ðý#5€Ó{Y8@Þ.FïûÉòfþÏ}x·ÇR~'²È;TEß $)öN Êˆÿ›8AâïR–|'ªÔ;Ê!ýN uÙw©Ë½H]þ@ê_þM\ =Åwé)½HOù@z*諾ê;ÔÕÞ ¤®þN =Íw­VëߺƒL¬ÎÿÑÅÜ ecPø?›Š›õßÙÿÙÝÜlÿt·‰¥¥‰¥£‰‹í{dËt`L€Žï[ÎÍñ¯õŸš *½7>7ȵñ;\›ü›˜™@E3ý ÿé¿ðŸÆý A®ÍÿBW‹¿dÑò/ÉÚü… Ý÷å0ƒ®ÿ™§fgéàÝ(LL\Lÿý˜¸8‚®@çÿzlAÊÿ°™%èÜ&K¿€&¼ÁV©M¡å¾â…Sß ©Š 7>ó×õ-G†@1ß4pZqG"˜RD‡öM%ú=¾_²’¡û‹Ùõ§ü!Š eËÚ .@1$hR$kùYÐ-|Dß³ácð½PÔ©òaô÷É £™}Z$ªŸ‘à žÑt`*mOLê¿ =üM“íÈ}˜{ØáŸ —\†<¿ÄI>ñÁb×߯Ï}/Q`'”ÿÀº¾`œ‰”²‡&œœ©ô¨+g{ƒÎ=uL­U4à£Nª2+Õ£¤ªe[Oj’‰x¼6Ä›[ÑÔIFˆlHkI¿À¬(û‹ƒp~ÊªßØmÔfáðhpÔX`u¬ëÍÎЛ>Ñt‘sV/h gU5Ղؤ‰Lw‹‡÷¨¾‘Ÿ×ôYsýÁºÔ¼¬Ð·H’ÉÏÆÐÆðËï/å™ÞÈ1ääÃÁ~üÌqÞ|Ri·ý˜Mõ}¢ë&öÊ»¤`ÑpV®ùo ”c~‹²ŸÍê!‹®?^keÞsÐs¡+p¾õ_UtïGß ›/[Þ•é­ŽÀÚfÁÞšÖ—[Y8íE ÚÆ!ÊÈê½^±ž† òZJE©K&±Â‡ŽÙ–`… 2N£ábê›v¼ ¯>ãò‹µVSèBc“\tØ£âráÖàSoQ‚’”}´ ¸dŒÌÓÇÓ;ø Óü6ú4"U²òŸûÿxåíÝ#û3h7úæÈïÊV E”ÙÊÞÄ<˜? J{uø{C§U³L†ê½?û=ì¯6^^Iã:_ÛŸŠÓm–z€­sÑt-ª(B üSA—ok·\cJÓ°­˜Þ!ïoplHŒ‰ëòJmM™Mä<µ»‡BKk.ð"aÕ,Æ$<Œ-Ú´ðP–fÛ¤ô@Þi,+Â9Ä6»ÇÃÑG€Xê|p0D>,ïÊ“ë*ßµ*’cþ•”WÃïÝAØŸk€ƒå ˆFÄœs½D uê/´òôa=ÔOñ…n$m­†Â6C-#yr¾ÑÊöÈ“DÖÎyÃo-ÂÝ~?’ÆÝr¤ò«|ºK#,uûy4%.f2"êÛ¯þ#©q™ß½¨è¯Oà]YZ&\HO–/JŽõ9¥<ÆÖ4–DÃ0ày“´ L™•Ëq[ÄN}ù€™L¸¾2F«ÞÞNN)2‘1Î@wE×*‰¾¬W8,hb¢vŽ7?„;ÙÐ ¦À•QsÌt5Eü[¤¦÷ÅØ"ŽÂ98$5U-BƒÜÃ}‡ ’Âç5Íò§Üþà4Ä-‹¦ßd \[Î$¿T@HùºÅ!Ô°Ý¡Î=¥¹”Už Q™ ´rr`mƒ’¼¼[å†Îé‚þ"ØÇ´‚í0ü9¿å"_Lëˆùóop‡½áÊõ[DÀ1ì½öGKÉ  BD×ÏÅò¯ÍßÙן¿A/®ëfž½ë¯KÊò¹á>VVöFn•°>Êûp˜à¡{ø »Bul£w#-ÚAHO$D>Rz &´îö –UÔïÃÒ±9\Ú»‰#‹?bíÓ‘®ªp›™"•oÒSsŸÁiÞäÅËí•ÅaÖqŽEýR½ðƒ†ó¸¢U겆2 3,&/4 jÐÍÒ¨f²R+ëZÅ8ÈE/û‰b“bÖiÉÙ¹mûq àO£‡_øé3ÌÎI‚Éž>ìmk´K[à8› ö—¯š)2Эk‹œWM(¤EhÌ´WK¡D‚Èc7"P4ö€´P,¨™LáÎRÕDR¶6òöªŽ‹õôí%Ç\6ÏÖ@È*þvÂ2²Ä“?zM3YàƒÏQÂ#r®‘ȪdiÙ¶v‹|C`ºìÞ©­åÔ­ó¡%ºóü{#lSM§(å+ë90>?fÎõçEc>7[T“¥ƒOãz|–¡Ôžk”íе@ Ù›­¤Ëª(N·–3ù€;©§g“ꤕQ Ç« ˨Ãb†è‚µž˜vþ©:>À"ö:á üàH5È_ˆ³rX#D¢„ÍoJ‹køãt`Ç&qáŠ(ùŽrø:ì|ùuG+-’®HÅ㳯íá`ÄéœÆ~bÉ%_4º¼µvóY¯'>ø×žå~/CÇ.ƒ«*òÚÞ¬ÏzOÏûÔT,¡ zˆ0¾iÖdgñŸý2´¾uÑñ:ÊÙMyáÐÊZ+§µ§ü#–êÒ8õÒ|‚þºI­(L6ñCÎ}ZF9À¨Z¼ä‹¢7/Ä÷½×·ý°µDnºnb-Œ&¶êŸgà`8¼±ýோ¹á‡ôaïé5:1¾$†òÝ`eXÀWq Oä-;#! uª½ðšmÀ1eª 4PÁ sGA×°^—AZ%r½¨èæ¦w?•œ×—ÎÓ³¬¸â Ô?&‚j Ú•­+sÿNrÀnKÈKÞ=,at:.|þ+qwä`*)[ Âù^#laT¬©óÀîœvÚa^Ÿ Z8Si¿H ¡RKݼ¯'à ŒaÈ“)ÄÕf0ÙO:Ô}XÕs¸zcƒ2­ l>šWnGý†~˜úxSbÊ— ÇI¾s™Âµ@3E §ªÃw}çòª™ˆÝ‹ÉÀ“#ùÁÎËí{Ƭç¶§Ì*¢û·¤¿üiÖ±’ö¸ÈéŒ-P@“ýiÇSªóŽH8þt±öî!åO:'_™ôåD•û \¬d’—^CJ†6›ßõÄWIÈO»cFðæ_X¢œ_«qPnáû? è}mƒ&zagîNœ³?MÉb¨ÛS@E³/`¶•¤<J€õ!\˜¿Ãeï‡wœ’ 8(~²“S2à­!…mÂ[Âàc@C,š¡uË!´nÐÎÏ‘a¼,VkèŸ_0–ý}wpVÒdÙžäÒ8ôösÚ‹eS&É“UØ4ÚŠˆÌËòqYEKßÀ´OðC:ïsíX³¡ö–}©A9>·ÛHnÉðëk– nkK±9•„‹ýÄ(‡úóîTgœåníÜ+n°s® ófž eVÔói”Há£ÒpʽÄAÂ’ ëngÍýýÔAJÓNƒ?® TëfÃS8 ÍE<ŠþÙHíÁÎ/OÑ3L½¬ ©¾~d ©à°û…¬)Ǩ“G&¦zµ‚ô,\‹–i›3%—â„¢Q.[[ò§µ>¤¢ª››ùTöXáfÛÓGóз¥ÄÞ$„÷}uºÚÑÁON[Ý´pGå«”{eƠΙ,“²õây·ÆOÚ%9ÛXèÜw†ß0¡0?7ñI!—­ èŠ 0R×@ÍèÝ o}»|tÝþNeb¤Tº³•ì¥T[nTõéÝÙ(N¥?Ò/pl¹ÎÄ]ûfé²8Ç})6Îãl€áö£’\Ì\[±ç|c)|³³oåî«6Õ#§Ç,™JQ?u°êÒk›GÇ‘äP©žOª 㙽tõßqPЮæP’šÎèPžl?åä&ÑòΪ³u©¥å·ÂªÃ& )½vþøö¿ˆ®ÑãfB_gÒð¤ v±H×Bî‹ó&øåú<š.Ñdg6×¢¼JaiƒÅ™ Ì{øåk†®]¢$Î)¡ÂéZ~Á#’€\‡¯l¥}Cëë6ª$Ì”¨õís¸Vñ®Ì¶l9ûXt_ZÒûg¾VxŠmãÛb-ϱm)µ¹,_ ¯ÞN‚;›ë‘‚$ÿjpËÚ^_ÀÒö;ï÷½€º–:W‚tÂwÍŠÀ9Ÿ %èä*_s])¹qž—ê~vZ© Þ3Ö=ýMGŽ¡ ½åð·Tã‘sŒ²”@­öp *•EÇ•ÓÕo+ôMnWzM¶ sœÔ–AäP+¥¬’ Àý:bˆŒ~ËyRd×)¬¯&WzÖó[¾½Îï9øjmÌW,b£qã¶‹"Y”Ôí÷ÛæOÍz "–aÄèþJT&ñËQnh“‘,cFAØÛц¯Ÿù¦€á1b”΢k_5ÄNŠB*ux¤æFP0w°6µ@âO0K±n}>.ûÙ(Ç$¯qg¿™CêÀaó÷­è`¸nÎÕ›Á7y×àÙ§‘æW𣠖 [zFÀ×=Îã`zô‹£úÕßøV<0Ú0jÃŽæÒ¯Çžf-¥ZʾT%40+åPëTÜ+¯~ÔŒ‹À•Þ4`øXÁv“×óz$¦´v»é=AÜ]Îø‹‹i9ï5D‡s Éå‘<ß:@•gÏ3u$gc³=ió±Ì1öú‹òÉ!˜ìK˜š™—J‡¹ª¢\AËêeTÃØ× ë^¯ŒÃçUàÒ â]ì÷Y¨“®¯ÂÜC¡„tЀþz”@éY¾ã”gyȈێÈC9>‰Þh+Kt—‚ÏÝÍõ%‡¬”}títC‚´^¯@2Ryö‹Ý„™6sÑ}I¹)Žá†ž0Bq¡ \Å%n3±‹»V!2œ2OéëueIa„ Í|s,cÚ) w,…kŠ™ÕÃs­xÛœž~{DËYnáó+—~p(nkQ#{²aßjaoðÉ ®3ä@|Žt÷ŒÏ&#%,£¢ǰÆÓÉ$‰ÉçøNÉ‚‰RcOxwi1}-Kåã­ÑëÜdŠ@=îg þÿ&%ûÃ Š²‚"CJ¼Þö×"Ìhû!Û<üï/p‘õØ…TqÅ–:x-È*—ðUL¾_ÒP³ßtØè X«V¤ì"W €XÒßÝ"ßJ弑–ð¥hõW:Eð˜ñb›³÷~'­ÿF{¾Dx\;ûe–!  ýf~µyðÙÇ{$ÃÏ’U ýˆ )ŸÞhµ¶áä³› Â×Ú[ȬD<¼ ­{-Ò>4cjRáššK X± § Ѥ¥ü€ËádZÕåÏΤu/F x^„Û¼ ó%ùxlœ˜bÁ†"X<λdXuõ$íÄ&¤ 0È$&—b~„XFmp½޹ˆf‹ºcÃIÍ3qèŒB@Fg"-Ó?QQÊ+M)MŒì…Ã4Фi}R2”Ú0j>ü¹ª‡›lŠÙZé=ÄØ‚l#Ã2Ý^?;|i‹åAm™øf¥©,œ¾ù d@û[°ì÷‡oªÙˆˆ4W`“dHÇâYÑ ãejÑ+1\;ð¦ØÑ°ü7¬¸ŸºGG ®/eï^ÙpḷZ^¿à©Ì.÷j¬1 îî Èõ¬¼yžž¶û;{+ÎWS0µýzmѯXBÛM×^GáÕÉ ÷ïŠKV;Ìôh‘é IkŠÁ ó\Ÿq”aa|r³¶vzvæÓQ­1Ë23Ó«ÝòQò)iyú›rêèëîʬÕMã¤ÝH¹œxÖšu­]Ï1Q•¥8Šár«›ö@ÖÞÄ·­'&ØW4ƒ\ÜzOB •¾3õÏe ¼vßëcJZ›božŽe‚ˆøÔ–ÒI¬ÈÛI¬oHENi¾ñbQXµ¨"+ºÐgu´i†-±îh‘+U¦‡>g¯å}‰]ˆY®¨e¹â4¥ÕÃý—IØÀ"JûdqEtÔRnøŠËq£¼@øX›+škZö¦ÜHâü1¥:#Ç…‰r šæS˜“ÇIïúÈÕKmüÌþ#å”qÞ7,7ÍczÉ`œ›2¥ Ó0 Á ~;¡R&Ï–2Ÿ.›õ>èû•»:xYÈÚÝÀ Ù%¼íå dùOƒ”Ê${,®;“¿í›öo%í¿W½&:© û$ çÈÃ#!׉·?)Ùðø¥N28|T˜i¹eÞJ°.ŠŸ¤½á õ«Ã¢ºd‹AFkN§åû–º‘#±öV…Àq ¢=‰ž5nA’³4±ís„Œ¡ÂB§ ÚŠÎO©Äi:¹p²(‹ò0QÂO%Èý®Péå;Úšûsµš’;—j¡˜ƒ5ƒ-­=ÍàÐŒŽWœÇÓ Ð)µ»ÔS»Q×°-•›ˆ1é°;`Ô Än]3t’ek"çå÷-¯Â_%ð³>j?Xݹ‹ ærHØn—ÁR°rœI±Q òèè/4_׊XŒ vCAú"®ì•‘¥tk §÷î|…!Ö=/(ªªÓºÄŠö£`F¾eww,ú`Ô¸ VAX¦:òÊ&ëWn O ÞÇ–%ٙĩMg ýÔô¦X6×UFëtí,PçSÿ¼äˆŠíß•3R[ƒ“è|ò °1,ÃÙŽnodRtµoO5jú›@‘ãϬ3ÄÑÇÓÛWã€>•,zKqpUû–™¶Ç‡ÎD.„X8¥àKYx¸QóË%’ŽóÚMcÊŠ«²®t½ÖZ^Û ¸ÁÈp¼t¾Vå‘bºOÊ%òñÇüÒ×Ú™ºw”Ì»–LżHc®îô΢›©ŸùΚšÇ«ˆéÐF‘žw¿åzi“²g¢UóÙôÕ–M0JØ¡Òd¿±€!iÛÅ:}GÀÞµŒYæ"è sZGw@Šþ¢¶l¦s¬,À¦÷êw¹Å;'ø‹+¯8ðìöC‡Ìqn"»Ã ¯h¾#]°HoÓz|$eK*6?Ió‹›ÉjTÛ]ÂuH¿Å,&ÿÍ­$¢·~Ž^NBz ø“‹¡/oÀäèà<öænž1ç6C`¾HÉ¢Ž+Ó@çç˜F'….%¥½ –ó!M$Š{GÏÆËÕ~'ôjëªU ö3ÒÊÇcŽyë'á©‚¦¹5eùû4î«Áz¤SxÉŸW´ùˆW‡ZîÖ«:ôßÔsp£Ü™nb&׸ hS/Jõf™G~né„2e…šœtwyߨ /•”Z©] Ü ¹)ÓÍÈm¥ªIœaîH¬"«4¢ )m 6sÿéògL/}yk÷n¸ór¡³µÇÌý9F¥Dº ÓÖAë€ÆA\@BÎq‘š"Gùí5$Šû!XHþN îø×ÇЙ¥F3kŠçh˜¹Re>hº7Œô±é}ÃI\CPÓÈl”¤;Wp°ò®…< ‘b]Šb„è<¾aBfkOf ­7Ù’žF™²†YÍI‰Ðßüc–-=‚ ¢ïúT`dû|¾|ÒqD¥:95¤}QU‚OüŽwÝ} Iƒ¬P‹¯Úa1EÙ!þ¤>E›­EoNc7üÔQÐk M‚aúb’èT.d—¥µLV:®têØü¸! æQëU ;¾:#ï3ãcdü™é¬ådÉŒ}9ç·6IÚ”û3¹ŽMu–>ÿ€mNÌ6[ŠF+*á×íóhÒA6a(Í0ÉT^ªƒiœñXöjy[Ñ€sDJ>)ˆu‚ÆNøÚÈׄ/¨þrÝ›]ãS•”»UàWë†(Mö²hÇ£Ö AŸ¢úE‰A m¦'oO‚i—žÛÖÇå3X[Ykc­¬LæW¿¤ž3X'T÷òCP*&ˆôèì3Ö¦6þPHüPŸK6ê²G|Û}ø7¦t(­SKGÿ“•]ޝ‹s3yWE ò¯íãз¬Åò Û>ÄØö–·LCKszåþew„?ÉÓÉRîÜë½Lh‚Oñ =ÇGw£TÞ£eC§sªhó]·þ&§¤šÙÁIù^еkþ`+Ä7à´³Š‡mlc€±à«ùr?´ø®fÔuœšˆ‹ÌQô…SK0þé‡Y­Ç·³‰Æ½2°\w˜?>0í»ÝˆÍZ‘ãD.óZ(þ'šiÀïÎÃáÁ_|n<M±uó5ø`?Ñ-Дê2q7T°®óëhÛL‰ù3ÀóÅœL`LôØ*Œk.°½.b­í„ nã*ˆ°išu?ŠH¶ËcHx×ÏaÚÛËß@úèIþ†|È$ˆ B¤^Ftž®O+¶™€¬¬vµúI+À9éùX¼Ñ_Ö?Œ< óÀ  @]Õâs]?)“žVeüì8eMiI¯º97‘{K„pL}Mª>ÉpZ&Y™®Í½–˜ƒâÖ¾áS\‰B¼Ûý:8p¶ˆ%ùm]Z0€&ïbgˆ$?Z‹Š±BˆÅk¢^5ßoL’‹Ócærg©V0ƒ×­._'Ì}\`ºWGÉ(ÝPLj M´ï'†È+OIåïGä8¡„¼Í7y.VÆCc¹§ È'$>B3‚Gh*S¶KzEÏKàhB©—MÜ’Z[ªë~ºEš¥ xÇb£#¡GñÓX•¬h݃§ˆŒ q9‘ÉA¶‡~gëz7qpGvÿ…ž%Sõ~4‰|í[CÚáãýX´d´bdý‡ätñ^¦•tI™ÿ²y“apÃäàŠH•Dç}ØEŠ_ðžôo&ŠÄ–¢ªóF˜ÆeG‚wöõѾZñ9byñµ¥,µƒ}à)¼ôÔ-f•Ö%¿¾­†f}µáˆêÀ›'ˆBlCSuúþ>Ê­ØßÛÞL´ƒ¾ÊçðaÎ,GÊÛr¾á“K産©ëBWíæ»n0C§‹j„ÕÝsä[—œN¯Ø6Ê(þ•øn¬i.P‡zª—-Q&¦IœB& Z~*пïvS‹äÂ7оŸÈþ*¤É(àGtÅ¿úˆC]^°”4Gá–ÆY›r϶œÞiá+\MáÞ ¥ÛµÀä¼=ZžZ7½¿~RÍf®ÑlÎ2îGF0^4Wmjms\ ®W—v…e`*D®¾­3}4f´ù•s Œx›0èE ¥`l*{@Ö$Z»-¼jöÇåâÕàóað5¢l1—»+ œ@¸ÀzÌD;0*Oåsð%5Ï(¾²ûCLº,oX ý‡‘ÈKÊf`½äÀFÿä‹òσXŸ=çÔÈ/ô‘ wîçœW'òØ¡_–¬s;k~ýríl‘OÞ1£:U¾^9ƒ?52v&+!]ü ¿‡òŸÎI½H}lcAèäë$™Œ‹xNr+·´‹ÂÓ;t°Ñ‚uƒÓÒqh ›üžs†Xþ#¡m†Ï@§«‚ÇÿдÓÌO+‡ŠYª0)F̬:óÕð(Ê?zL"mw!°»F0Ó/A6"׸Ñ'Xýná8C Rrh×ȇý…ŽÕOŽr¡(Îíã&ÝFÏÑ3ã/ÑÒ4Æa¬áQ?t‚%'YÆñC®+‘ø<¾¾;q1¶’"׬ÅÌ­.f’–ºL2ß‘üå”}—Úçþ ÒËÄÏ2ΛgVðçt®¤#O•ÎŒ&õ—عŽê]j8ĺ–¡ê!V qy¥:¥uIÕÚÍ`›z–îS_6-ü~|_èd ^cÙ²‰¬6_õ|†ÿôÁ·W)tð€´˜²›¨ˆEÀñ»Ô\þþÖã_V^/÷.;ˆEÈm”.l˜PÒÈ^rî3)Õ3Ö¹hãs#°ùl‹:¶.g &[6}5¾<ÕoÆp•Â'í|‘ÄöPÑ=ÿ$Œ00Ùíq+e57yCA¿áB1³… }“Eýµ´îÔ“ iÒͪ«Ž96û:yXWšëµùÙ•gBœix,÷ă’%ähh¨“-èã'‡éÇ}¬í<›_až”[ïà„(,ﻬÂB³ÖzèÊJÄâµ1Ù?)_46EC–Šc¦E²?M5«‹Øáp9ÛGÝùsgC pÉŠûjs>e Ý »ßV|8þ~Í/Âr~§€åæùÕÕKß:ú¡˜¨{o`;rLVo P ÛÄ—<"”»Ä}Û~ׄýÃêÎUXA¶n¡ƒ`xG›Œ¬ Í‚¨¦+JŒÙS®iÙŸ²dÇrr$²òè‚òy&çÈC¹C’|1g¼ZåŒÄ‘rºƒFÕ´è’ Œgß U$Uáh)zhh šÍ¶IÊyÇÔ`Î_þ”*:û}êõ?Èz0 ¯¸)ÖL–^©Ã™;xóË5{d`yGUg…z™KÐ/Ùd 0äR08@”íšJ›`ý*‹K+lÊ€{ƯœS{$”-£­ípkx²©Lj 'ç+†:E<õûEŒ§ÀFØî>o `½óÉ_B¡M+n/'€«Q;ÿxÚ›`ð“£ÿ0ù’‘¼Ö×*Ìxk¼O¸[~þtU¶£àÅÇÃ5 º¿Ü°Ùžÿ¤Q½Aâ|ãš<5 ȯ¡n6ø]^É]¦äpzîÕG»zÇç¦êœþ¹¡Xµ¶·¸-R¿)Ÿ0.æuÉÎòì¢p}c½yµøÒº½Õ†§þX0¢¶ ,Å$?¦ æX×AÎãÝt…ôì™Ì©Õ˜ý¸5[ Œ)ù\ã’HnÔNíz6?Á1ÖCMGMÝåÈÕß…#@ŠëÜÌ>ŠŒL^‘”ÙYÛZ¯J p¼Ü³…qíXº"$YCrfs÷‚RòºÉ¬ŽìËŒ—9mÁ~eSʼnؽ™sj·øžÀÂçvÝrã¨ëh†ýc°¥Î}jÖX[:vŸbÛÙvñ³³Vac2ĆöÔ§œ ÒW<ØW'å‘˺¤Ñ ¿ïc Õ']‡Ä‚#CGH¦ t­wØÒñŽÀfå”ùæ‚°ùv7ã- úÍÅ4±ÿˆEE¹¯1´à³ô8@hÝcùWóMçÍ©|œV©wRþÎŒ¶ê™°ñ—ÂÉ-ÑT¢Áx‹ûk¹ÓXSi«³]Ù­{eºRE¾ ÷÷!⟠¤¦nÌð´ã³ èRøºóÚìj T¡`¦µï½ùÑÒ°•ZbvZô1ÙQȉ΅’‹¨%ÍL2aM]­{˜fšØý\fŠ ,øe8«z¸þAC³ª64WñëòŒú»û3éÇ>šEi‡ø?=¦–™UµüXî`XQ\ËÎé4Ê \G#y·L¸ÍÙõÛùy&]˜³¢dÒ5Ð…«QýRIªè!înù>î·¡ôQÕÙ|Lìpï‰÷%¨&2^ɽÍéâlÕ<…1Dâ¼G·ˆÓ@Þ<,p—Þê×%Ôl _¬: 8ÖFëšå¸k.6ˆO®EÆØ·T&/ˆØfle¨–ŽòPZE¾“¦6nK!0ãKÀRXËá·¿h ÄÐfHJÈÙ*ÙI©|Þ»ŠZqP¶¼Ä? à-®L‡XÜ/'è´ZïT¼æ²˜Äou/f²~°À>‚{2QK÷¢;@¯¶€o`¸v_gblšïeª£ù×|Ò`Ê´íjNùåxb—0Ž5Ùðh%¤— $™ZÚlöûɇqçt"9Táªøˆ˜_dô†ŽmkWèÕ“‚'™a]¼Ÿ”X¥jöa"¼K‹?¸øÂb™Í·±]ªŠ|=Ò‚eꆷ#üî©ó7!Àwj†jkË`㳜Üõ5O4î“Aùt¶¥L#¬i„íìL ç°ÃËñîÂ.,¿Ú½¾Ï+OÛ(²»Â"OW³âàSøí Ÿ2„OþœG~œË¼Ø«j« ’¤{dó_´YæeãöŸ×ßÒóÐ8¨÷¤rµâôFô0;ZF¯Ã>–b2)öX‘Ü­¿¿Hϸbà @Q¾øºŸSV†,f6Ú¡o8$ ÜjÏhEí½`®Ï+™á EÎã½*Êð3CŒ*WÚZb-ã#¯T±|x™‰‰öö#(¯ç´c¨£…š"Òœp7¥Õ=½‡œÉ=Œ™á1šŽÈ{aF™½WÆ›3»›šøMÄ¿ÆSW^]èƒ Ä}1œqÆÚ؃v¸ÐwÛ0Ï^¼w 3¬02£n¨hõ¢òÒ üÍK¡âABGõ¶ƒx\”ßû7Æs™wŽ4õE¿½‰nˆï™´vžò :Èè²”ŸJa7±šPó8gPÿ‹ë±žBÖË-Èhç—^H3]PRe—âŽñVߘÚáN†˜¦àYñ´[£+ËD0î0ù¢ÓYTd<{ |žë¾ž-MC©Ø3º;l VM˜ÉfP,qfkaõ–ÉD ‰ê¤ý–#k#ÒÒï‚IdgZw@áü-eúÆKpí¶ùR¯È,ÑÀ´njiÑFzÅG%Eô˜•>"2ЙyGÜn›gŽwûÅê뺕h˜'¼3+dl “Wöé$«›rF Bråï1T.uK‚Y**Ëf…íÄUêá§Ço¬þŸ_6H€ YŽñ™u¯æÛhþp7¨;&ybMÝÅöPWj]RP‹Ýø}e)‡ô'|Ò]¾ì¥ëåWîN9ŒåÑKçAèF~‚›ŸÝ'äØxZÃk—âN'>¯3]þ\V?—(½á"`dZâCóÇ¢eÝÓÉ— CÎÁ®.¼¥A ÏuÀÂ`/P¸>q‰"ó¿^ ƒú " žš óåþƒÚ„Éj½]f† ì×§QéåñÏjVa“¨SЭE9ôIþ?í•‹iÌÄpûÁÛÔÁkÖo~­K$è) }?b7Na®7,ȇ’ü³BÅ\±Ô&׈F¿ä{¨µÃþá9·œI´Ü‡‡HÍH3G¾ÛîsÝ~NöÇST’ÄÇŸªâûÖÎfŸ"õÏ“Û ø·´Ôú¿ÖóyãZò³^g;Õ‘=©¥UKïöPtdgCÏ`ÎëQn{r4P}CQ¥°7ùu?cï£ËBYù…N‡Šj—%Ý;SNgB7Ø6É’/Q_‰z1õµpb xi¨õ¯ØÖU¸&+¥þÀúpÛ9ßrA|Å WI<o—4¥Étd^JO, ·lúŠfML»1­oAk¾‡fCºIÎÞÓYIÐh¿/fÜæ0 —{[6áÊXIâW·ú ztw¼”„6sŠšï9æ÷Cýñ¨r€œªàtÌJwü³‰óŠVÿÔ|Y;WEcê>Üzdµ]Þôq¬¤éÛѾL7a¾ô7æ8=ŸšŸè‹öö–uÖU»=ú£†žú³ s…&Ñfrìò7qUÓ«­„ñv„'ë%i‡ü†3åZ—Çc`Ž‚;T·)͸í%%ý>îwÄ-‹<ÉÞ¦ÕE, |à*ù,p÷íU÷沂J7ဉ Â[_λÉ{=¿WíwæÕgEZ¡#Ë¢ƒrÂp]µÈíí÷K‘kºã=±wˆ] ‰ç>4aàR(:©ª09 ÉJO…pmîÞ|w(™ê"Ui:y¾$žoÇul˜cÿÌ#§¼KΩʎ†]Gi‰5H Ôh‚Ðw¶Q-ŸÇ]jH;ÉùÎËZ¹ µ´…ÎæKCK'ÍbÑO"}2®B¸ÆTE>ÕêM¶Ò¸Äè¼)tqÀŒ‰>8¿Hµ)ˆ[ÙÞ—kÒ‚ÒÍŠReX¿eXX\…ZÊÒƒwä ªKâŒi1]p9@©kƒq¸ûƒwXHz´}vŽ¿7Ú1Þ¶Á4©¨Œ5 Þ33=™_£äfû¹ûÕ † §½¿J¯;t/}9õ¼‰ôg™Å4fw†õòØr4âÝİÁ}Ù isb˜8µfV¯®‡V4ÃFž ÎÒ¡"ù…3c p£½nÈ+ffhÙ™ dá„ÓøÆªxµàíWO¤º® ·¿iÜFÈd _oÌH~B}4£ÌÒÑ9cB®òŠœ‡0cD;±O® ð=Õ£òú={aÜãH½ K©0‡³õ`=øíÎ,&i4L']Žþ±eÈ«0¢Í"Çßa[“ÕZŸù;àûçŸ î'ÒøîDßfwÛ}‹Ø‚¬oð©Ÿ;2 ¥œÒ…¬Y¿ÂjzZ8´R1â ÆQ>]>õä¯ÙK¤£qâ&ð?›%ÚX{¹÷0Α;y-âˆä)`K)ºøÈz¸ŠÚeóþH#$ZHàæ(¾ÒlHµH\â{º+½ùf¼ßÒñB¨Ñ(iñùL¥¢¿Cògõ+“:¸ˆsü×øŒz,¼³¼«Çy1~~Õç¹,Ï!Üá ªÙú ¿ç­YæH;¬¹Bí£ÎÊ—o`‰ÉØ bïz“š\`Å.Àñ *¶1ädåC\sÍÌVƒrêmfƒ9ë8ROÉüö€Á#×r^Š-rþ|éõ{j€ :Ú@ʵ³<¸´ÆË›1ËDœT ‘Ö/T²9:´T¯ôÍÄ“Ÿ†? 0PÑœÁ&Tî¯D­°|Ê yOêÆ]8[[~Y!AfˆEOTé oiá =ŽKräqƒ_Â.fFۊʈçÊÕ9ä%2¤pèá×¹b•#èèÙ<®t•ÍY§ã¹ý®ÀYmr”,væ÷ ¼ sÏ*]{|,úÈÿ'˼uÞ«PÄ&µÇÚŠnð)±bUн'ކ±«âgªj8ÛX‡Þù1H¿¬Z‡FŸ0O[#ëßäA»²R¿½èlïk8ð?ÛÞ±YêØèE£…Ç(ŸÕ^'a¤ªó>´¯Æ];™nå®gÍõUæ Ì%Øåtwžþ¿”F=^êDúãTl-q­ŒƒC´G¯ªu!Bþò&\€°o;ކ ]Q.m&;MÚôÕˆ}Ñ·àùØD-–aì[žgŸKÆ2jÐa‰=X×£¿ãw7û‰ll]}UbÂ`ÈõsVfå8 þ¤…$OâW¶ر#ê‹ÞùÒ^'›?|8?ÌáäR¹YdÊ¢R“Ø¥{Öúì“ñ]¨9×|“9ªHÃtÂàl¯ÌÓ‘nGÄtžì!dD4Îà çô¹. [-LxL/v¡¹¯ùÀÔ‡‡¬óÒ±Æï?TÈ\ŒämC¥¸‘W Þ>šÔ¯]s÷Ÿ>–o4#í®*èSa·Ñ~nãý€ëqO•×”,¬A=R6q/ÑXQíkpŒSì¿ÆouÿItò‰–f´ÊÏ:^¢ðu»6ÕÔCÝ{rB7¾žèHÆ”¢½6+€ÛEpïCTÌòö„§UêîöS¿QðÏ3WNáT€“¥[ñXNÔ=0ª£<äó g½ƒ¯ tU‚þÛ4&!i.Áå±ÉúÞ^5íîį6Ð?'—¸âÒMê¿ÙÂvu½™<ðÇ4uÿ4‰]mâ7àsk4¿üHëóÅ]ÊlÆBú3m;Ë`p1ñ}´ï±X&6_Õo›?0ؽýÂXjO׌ Åï‹ …—Ê!³Ian“fôS…â5º0ƒ±>r½ÎêŽ{;ÏOKò÷[&ålût¨½ÝnýÁ¿ÎÅysËÒˆ ú8´2ŽY@Úù±=;ùDY,V’y9³p°—xàd¥±w‡XYvlf\š<ǹ¨C*§.A÷."%­vùÞw6ãöcÏ[ƒqö×?­ßhKºp£d;  Z öÑZ·C«ÝÉàøäf¼§½öGHƒ‘Ã×jç–þª’l Ë5‚š™ïý²e²Xc=U«» =) )ùËMts×¶a[þ bŠÖÖ7±20ó xéíî$ÆÊF4—óm_Æ£5”1}âSâÑÞ·öClU‹è–À|´‹dtÍOÍßÐÛxð)»«·‹Pê\?= ¢ÍÊÎ5»~ÏñW$…Š6ò1§öQ›3µüäíÉ}†µ±^0yB¥ÊPl¯^Ùª? Kd½å.1Þò-&D°<+~êO,cί˜$vYúG=.+ÌBXS¬Zt¿ÁÄûºEaà ±ˆÔ^YŽ>êà©«ëá/§Ë磩¦ñÔÌÈI¥‚Û\iŽ&– cW5×t,š‹M Tk¢èk{V¾\ܨkØç"è!9že1´½p 1Xƒ}Z4\®c€4ÿòÈÝj«£ $|ê|ó Ç»Ù|¸ÆÊûù«³Çš^óv¯m¡àZ_<0Ìt´¢LË^²˜€õ1ìwé\ìü¡ü‡c¶óézEp- óÈ͘ç~©ÍÙR” +8¸dØŒ.2&µÍV°Ú’•@’•К3rXFøa8ðÝCÍ&ð=qŸt¶s9GµÌÔæ[xýïW1žô™þþ!üÿüb€‘£3ÐÖÈÑáÿ÷FÑ…endstream endobj 106 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 34 /LastChar 125 /Widths 332 0 R /BaseFont /YKRWKB+CMSLTT10 /FontDescriptor 104 0 R >> endobj 104 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /YKRWKB+CMSLTT10 /ItalicAngle -9 /StemV 69 /XHeight 431 /FontBBox [-20 -233 617 696] /Flags 4 /CharSet (/quotedbl/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/less/equal/greater/A/B/C/D/E/F/G/H/I/K/L/M/N/P/Q/R/S/T/U/V/X/Y/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/l/m/n/o/p/q/r/s/t/u/v/w/x/y/braceleft/braceright) /FontFile 105 0 R >> endobj 332 0 obj [525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 0 525 525 525 525 525 525 525 525 525 0 525 525 525 525 0 525 525 525 525 525 525 525 0 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 ] endobj 333 0 obj << /Type /Encoding /Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef] >> endobj 102 0 obj << /Length1 767 /Length2 1134 /Length3 532 /Length 1699 /Filter /FlateDecode >> stream xÚíRkTSWU$ ¡”7ˆX9*LEJ’K|bäLòÐòj ¹‡p!É%—…ò¦¢E,¬PA–ƒÐeª€”V*•Âðt,O+VP䡈"½à¸º†þœù5kÎýs¾ýí³Ï¾û|–ë½|lœQ<ºâ Òa N€'äûú",€0XtKKÅ$†+v‹IèGG8«¤q׉ãàdG‘Š%0i8 6ñ¬H\à,‡&+€PL†C9¥!Ë€.Á ËÎ2ð^8 ¼a4$@”AG€b„B)¦ 3,ña8à¾QUÔÛÖHDS¦À&ʤ ,¢¸B PFgzâÔ]ròß0µTÜU%“yŠå òobúA,Çd±ÿ¢àò( ÄQH(–R÷Ã7î„ÅTò¥]>)–ag…T Âa°8op,Ú‹¨FJÂI¨à" èR#Tz‹6˜û÷ "ë·ïºØõc Ò76 ÖôÅù£¦R"°Èb°XE¤¾·»à%·¹($8Š)¤ÀÖΈ BK§&ˆªì@0 cŒ¡3 œ¤Ž*™†ô…gElY€³€Ñÿü»vá1qÔlØØ²ÙÀÞÞØ;Ú'ü;ÍO)U¿رX,.×q•¨*ÈÅÙ¡òy[‡aT¢Æ@ ½·—l9‘W}¸,Ñ¥¤íÍ*zmþùC?Õ¥]ÎßÂxôËýNâÊϾpÝ„^š^V®{rlÏ×L4̮ߴÚ9þFœ3­G¡ÕÙÍ'’GA©5ýШ#?“þ ×|8êŠõ“;§ûÔÑ. "ÜbÓ± õ²ÛÝs“‰‘I·ú{µN¡}+È…ûFúŽ·ÌŽºá%xoi³IPÁ´Áë^ÓÆ{ÿˆü§v¾cf‘p™0[}N++n6Õ,z`µúªœsõù¤Nö·aÎ)ŸfÃ/u2'¶âlëîÖà šF#³óÆN!Û^wîÔ<Ǽ àÆ¥•¹!Âõæh°§[û Z=ä+ùq‹Š‰™ßkrÉý櫇÷ãqôÔª¦»7î~¨»9Ä•SX°gº“Y§OdþèkÃ8¥½é rYØ—šVºfD"¶ÚŒ…©cìªHé¯ê§OnW[ãJÿä‹ÉküêtiÃIã$/ÆÍÌ¥Õ8šñv–ÌênG‘€£ÆâDgõâËö{e†‹‹žÍ·FKþ4m¸i¹(€ïN¾üN•…¥—‡7µÎ0sjxy'^íô°j;<ù~þA»«Nãn;æÈÚÑéM F}KN÷é”ïÃ;NÐ>b°ÎM¹Ç*<ÿ¾¼ ±_ÅM:¨üôÚ‘¹ö#~å³vϳÕïV¦4JyfÆQ.x›–·—^úÚu†ZÙn{ÒŸ¶^¨ZõÂüæ´þ€üAmÃèÜ-Ä"ÈÿäÔQ6­cìisû¯ã• 4Ô2¯õE”Võ±k³ç7žø sÇ@_î×aêKM mÛ+·ò±gnéóf#¿Ýv÷S~E*¯ÉÊÝ?¯­ÜP'ð0S˜Ü~öç¹KŠ™ò·ŒçÍIF‘ç…ë³e±Þ[W‹TV|+MÞ¢ü›ZNçË–å…§SîÜ©y7¤.Gb¤^8>½Â(¬‡Á—´øá¦®æ¼'É,+ý ½ð£Æ9þõWyf†¥¯4šÊý?>óLvÿ¶/Ùaw@á½Áw^X—¬,¶ÝvúºØâ¯µòífÀô±éug MšÇ˜Ž¦ç5wTæîÝëËÕ^¹\M?•:h Ž­ºUWñÁ¯“ïíâÍ<§µÝ̬Ø~1³¬C‹85äÝå£ï–‰vnŽð}\5`žÔÍ6ÿ$Ø=zxr¯òt)‡E·Á5 4óª/û&çêòÓ ¼?Ýèóóærû¦F#“¡KïX>r—Œ§µÅo{®³‘ãĵýñ2ÿöÔ«´]/%GªVÏæ[žºº„§‡>`?{ß/ž©”Ý.b¬-‰Ÿì­ñú\ß|N#PÇ<£¹°juß…­iéeb­œåO“¥“ÅÉ©ÙSBloDâKÞ™vzôæÁeîÑ#ßš¸zTîÛ&#†·v½gÊÌÊÔ•†ò¬¿«|`5Z¾¦+CÖ|©ÒÖA$óËêÌÂ.^5ößß;pj*´kn$Ý s8> endobj 101 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /WVLLOJ+CMITT10 /ItalicAngle -14 /StemV 69 /XHeight 431 /FontBBox [11 -233 669 696] /Flags 4 /CharSet (/x) /FontFile 102 0 R >> endobj 334 0 obj [525 ] endobj 95 0 obj << /Length1 2193 /Length2 14295 /Length3 532 /Length 15503 /Filter /FlateDecode >> stream xÚí·UX̶h àn ÁîîÁÝ=¸6®Mãîwww·Ü w×àÎéí½W²öy¼÷é~x`̪®9j–©’*ƒ°©½1PÂÞÌÀÂÈ •WSca°023‹ QPˆ‚€F`K{;1#0ÀÂÃà vX9,̼ì¬$ €¨½ƒ;ÈÒÜ  ¥ù§@ز41²È-€¶1LŒlªö&–@°;#@ØÆ òÏ'œ*@' ÈhʈÄÂ0µ4Œæ–vHLÿ8IÛ™Ù¸þ+lêìð?M.@D @ý/MDÒÔÞÎÆ` 4CbR°‡dB\þßÐú߃K8ÛØ(Ùþ3ü¿*õµÙZÚ¸ÿw{[g0·7‚ìþwWMàÉÉM-mÿw«4ØÈÆÒDØÎÜ`þ¯¥“„¥ÐTÉlbƒœÿ íLÿ·¤rÿ2`’‘”’WR¦ûïEýW£’‘¥XÍÝáߣþÓû_Ìò‡!åYºt˜!õet„|ÿÏozÿ+™¸‰½©¥9€•ƒ`¹#A¶„8ž,K;S èfb´³C>€ÔÄ`fBúgEÙØLŽÎö` ©±Í?-ÿä0Ù9Ûÿ³Ìævœ&S{#П€É2ÚÿĸLF¶¨“¤4ÿŽòüw¢ÿÚÿfg† `ÚÙÍþвüwôuf…ŒìôÏNÖ‚l¾6ÎN)™ØÛÚý‰@æcáî`ü3vΉ[Úÿ1d‡ÌÅÉÆÈÉâO2 ÈþO2 {;à¿™bvýÓÎñ[€€õ€(›Ù;ÿ©D×ÌÒå¯]'Èbÿ›!²N@—¿\! ËüBp@Tí,ÿáþgÎ6ö}ˆçŸal-ÿ3Ê ¶:ý)'Äèèlôgñ9!Ææÿ\;À?Òœlÿ,Ð韫èO"nôljâ-ü‡ Î"â+ú‡ ²b"*þoâ‚Jü!ˆä‚˜Iý!ˆ“ô‚d—ýCìr’]þA²+ü!HvÅ7$»Ò‚dWþCì*’]õAJ¡ö‡ .êâ¢ñ‡ Ù?ÿ!Hv­$Ÿ1ÈÈÄþÓÀÃöïøžH"gÈ 9™ØƒþlÎÿ>jÿ9 ¤ ŽÄÃøAâ“åoi¡EÌ[bºg:ã mŠ¿Ë:Ò®×~¨HÇFÛ}»KâúDàÞî¥üCâÌß16uîe×Åp7Ýã+Áç‹ty÷²ÛÀ#ôoͳWÇЊÓë£e‰Z…YçƒGyJÔbj{ð«¤P=:.=Aœ\Ÿ%ÒmÔCƒë)ÙHU0RËÂØC×\1ãa×&}¬BZéV~Û·;c= ä&¼@Ý›ÀE°Šd/¶LX „¦3às¯éЙߝEê}@5w1QgT÷¤UG̶Ù-}»]îšü©ÚV×ã5û´…hLûoHŽ~’ÇIó¾BUöˆW¼¥RÃÚ ¦*P*˜™µDüê]¢`†â .P»0…ª´Óã•Hv<¸ £9ø]òd§e@‹`”³—¾rM<áB¬GáMÛK¦Ÿ<þŽº]Dó«†íªë0ás"G~þØ!¿¿ç×%uÞÅ/ŠGb¼nê1ެkoáC+” 5*Õ¤"˜ò„ŸÃ Ü9S´¤û–iîÙ¾Ë%óЪ]Í;Q1˧e˜—ìp‹ˆ@H|Ó›•Q=yÙ}>ÔÂv™}š[;>—û’ŠhÜŽ{Ÿâý¹û(f±NgÙ‡-tv~S@'1ݤ‰5ìÓò)jٹmýGnqj²ÑÃóO‡¥<1TvÝK´¾_ÝzÜÞ®0Éx?ÙÏׄ8q*B¯Ç|¬z[ôå²`ÅirŽW”GuWRPZêIw|!©8Û·LGÚ> n %#ËÆ5fKØ[âp’Y^öÀ1îÁœ•™ûT £¹3Ùô„,õð‹•l%úin ÷¾Y±Ô‡q³½ûg11¸!ï‰WàÝ›÷ Åý†ÊQõðÁ$E/ö‘]†HcTâ²])ßec3‹Ì@I¡*'²úî?C ]qõCγr\‚/®ßø k»ª„6 ,×ä5±ö&Ù¤>¨æ;Е¨Ñ;‘:ÁÄ2OP/~äSO.k¤cÛ["K”ávd œ1 —ùmXP;|É•QÈE·µw(]Þæ\}:°ös±ËBŠ_€” ˯â+‘Ú˜²+cè'’ òð2ÈôíÙ/€‰ŽŽ/²”3=§øŽMSè~Zz•ÈpCn,ªñÎó1Ônö奞œzŽê-€ªû³—K$'²71Cøe±$÷|ßæŠ4\äQdÆÔÀ)+¥å<ä!oãrõí ¢iµ-/¨~P8rõÈÌoƒqVTNe•ƒ#T}nðEûIY0é´àD²¬åòtU§ßN²ÂdÅ™Sóò ½’Ñ6Øw‡ógÑTì$õ6Ò ÂõÚýÚ±ëj×qÃqBÇÛ É0ù•©UëN¡Ô Øüô›Þm1CT¤ Õ†Ô…ãf¨‚V(Båú’‚ôŸRÚ¾SÎ 71êMtò%R0è´%; s6 UœžNÝ%ƪäÌpï"Ò­{bý[q›RÃ÷ìwž=zyàé0á ®¹?Tïe0‘ª}ïyN¥ýnœÔ»jƒ² P¦ípæÙŠJðD}u/¸“£9¾-]mí¸;Ìö@óšGîeŽLnØÿ2”2ùJý*% m-'¼g?ØéV|š¹é$¹³!} ×ÍØéªã1 nYóú˾Ô1ÈL‹ M¼Ì¦ }ÿIóXkâq›†Hô–ê­ó`³} ãÉrœþE³ôwÝ9&ájò’îQäWy\³‘\wbIqãçOñ5xLÈtáz³šŠ'Zz¼³]¨˜IoA7ÆÕNUhŸæn÷l´Q8¤J±’œS‘á†pkÖÔ‡7B2NÜ¥1˜ëJöéõk´½“m/ÎŒO\p&*ÔŸ¶¾/ì/ /rdÇgé# [‘w|Æ |ßøZ›tdr{®ÒPâ‹m?oW?@7k³°ÂWØnèˆUG/ÿŽ€ª%P¬v °ôQÄÿK çN0î`ûWÔ^İñ¢TÛ¤SáSÓéÈ«ZSE4¹Ü?˜g¶]ûŒ ,¥¢‹ôjÀt¤àíçèc“‹¨÷¨IKuc«¦wû™-wðüùÁ.g!yï#Erup«+«™ Ŷã4®,ªïÓ ›gœMó 1v2<þ‘W#⩟.Båt· ÌIæ¶Ü—ÐÐB~‘ˆ/@åÁ—&¤@BûÈ-øOOfŒ½!£Îꌟ]^¶à#"EsŽõF³1WyåÚ]0·b!˜x@çc 7ÞKx¤~£%€ùƤ-Ð25¥û>*;Ø0ì¸ÅøÜ“î¢Ï5/S‡awÞU7•<ž¸8ÚøYdlþb¥ØÚþûx\V²â€È™xæôÜ«ÄV?éÊ൷3>¼7©dËIµ»3ß-ìúÙÈͼÕ:¿jË\àm¯X‰Í­4ÕŠò¬x¼J”bPØu~*FB B·Á·Â|1wx—¥Å³ÝŒ`ùÉY‰ì]¬JÑzˆ|Å:³çØ22a«MsS¶ö_Á¦.jv£0iñ*·¡ Ò~eOlè{µ¬ŸÍ²Ž |èè¯÷Åa l;ܯsWöÂ0&÷™gØW@_¥îº¡÷xu3½{·ò |—¨ã³¶¶’ŽȇO>š:gÛKxÛëï4+l¢½õôˆNäÏ->‘ázd`ø¨„³bòic°Å >1_À&‰‘¨R‡VÎÒÞúx<ê-ñ¥„9ÅQ¾˜è-ÿS&ï®r_ÄÉ;S¿L€üfû××+ö匯b`':¡›ó– ¹Øjvc¬ÐšQ4а{þp©¥¼†\SÍÊ:ûOòXâô¯Ü³’l å^¼({‘ ŸjZæÑI¶#cÏ“h /37ѵvhÐ…(*±#,ö =.ì[‹CåÚÚŸìPpÛ Ó&ùA•*+ÿãf³¹³½“ä¸RZñ†g÷î5ÖUá%/Ñ6>‹ßZ¡·~!ûÆ•RʹöÒèߺúî’ÂÜBg^ÝsLJDÄ­T–ðÊGz¿½¯\¹0NÞ}îºCC”ô)Ha˜Y Ô@“)m›u¬Ä”˜G¿Š*‹S­r“¯!´?y+ÏÆ¿¸Ë¹nX@/XééW· bãÅDã¶LXZÙ¹ ‚â„Ü4øÈ­ZšÏ‚9y¯ì;G–+§;a Ú}]ÐW‹_¢çh^ê?ôDü8&á R£v\êþ*’X™üÛu…Lì¿ëùƒñTåíÌ×—D³Rø¬Üf˜ßø«F²×rt-ÒŒË=®ʬÕ3¾ðD=×Ì2V±ÏK§²b^¢¸té%ÞüLæHpY‘ä•°ExîÓ_ô"¦ôf]û°¬}âçbÈàEÈÏØY)b™Å:¿#LsÑvp¸Uz–YEÌi¾Kï}VFhúMÈ@pº ‹—†€Üˆb[ñ­þ :EܤòÞšñ;{¤ˆ3ìká2Lláb¦A±uR*Ãî–kíWÄûàba7ÞåÙ›èØ(óŠSô&³ƒ îÈš÷922Öýw2šähXÈoÏ]h9W?ÊYqù9ýúËÆð<ÿŒˆþ(t¶ù}ô©æD£©¥@ÕêàaŽ‘Ú³ÓêÄbF $¥õ ŠôÆ7…,‡5,Šž í—Å> õQÄì?ÜE†e9.ðúÔÚä;–)8"Á7‡îôÃPb¡;F¿&–ëÕ+½]"+RÇS“’ã«/£Ìõ`ëÀÞ0ñÛ±<­qîáZŸ}èvF©êdýE =®¶íª!3:\3I^Ž+¥ø§Å„>ô“ä Hë–Š{³Þµh¬É!ãJ—7O~ªÐõ& [例sÿSh¸ù‚:¢ôq$%oÍvy6ÿ÷o(ù¡,R­×®rÀPC]iY£B%ÏQÐÝ_šWø™D,'`¥Á‹7ó0:…r™*ȶLaæ5*þ†"YRël-'ñÄû¨ep,µË Õ{P³Ã+æ{§#²&²M£¯ð%¹ˆC0°5!e#ån—þsšv1a=DÆmíì³™Lо ëé”vÛÕÑ'öàB·pø¾ÑÉ#غ¬ã“õ‰4?}²I–+è‹Õ/gí-WÖ…M‰aùSå‘Î ¯ˆ€w|•È÷AÜKGùX+ÒâN8ÅîÒñ?uæiÏœwxó0ã7Ù7•o›y"JèèË ©$_“3ƒbÇ©ÊÉO/¿:ú†n©· '¥çnÓÚÝ"MÓ±A-¿6+c.ç6@J;õ*h‹âš›;G5SIÒ€ï·Pœ©N~‚_hŒ¨»ØΩ,µ7§N·Pž(¿Ž—@™¯$‰Ì|ã;?q»È£UHŸßš¹Ûyúò…ílŠ#;ÛB'GÜä»^Œ'ãûS Šú)ÃWXWŒ§_¤ºœls’•ËO !Ú”'‰âð6wßÀu{õœ!C_•Ø€³3ù»Ø9«¶ˆÇÚ™âá±ï:íôŽÛ܇nìAw%xym±äæ¨D‡…Þ9â9ͧº ~¯šf'K|2†òÙH•ÜÈãåx×-¶½‘ÚOœEcÏB«'°vÀG»Ùæ<75ÐoãQ$Š l”}©ÜJnÖÕà—Ól+eëѺëh‚zxË/[1èð¬Ê”†`Q#\ ó ŠòñGŒÆÀK:â¨hY›]VÑFõÉUn¹î¾¼¬N× tQ OϽ¿Ñ¼0Ъã÷@Û{?™‰0ºéVj¦3 w¿ƒgIêkæíébå@ã*¤b¸.lZ?¯Fþ"8S€®HjÐHªoÑ“˜G½²ƒRP/ì=1½ôÙæÅìéã;Öë_jKȧWª’¿ˆkÊvm縅æÏPO^ØŽðíÍYHB‹”K’È:s/'籠ßLè‘]eJó'J¾2O UðàØÉèû[GíØ”Œ…²œNlÁ§i(-‡«îEç“ »Â]vû*×ã*Dvªa&x…}¦Í!{ßûEWl ±ÄŸwî?›ùÎÈD½ý1˜¿¡¦D:žØWHîoûh–j(ϵêì4:'6q@˜MÜ”¿]XTJãq D¡ç ìs3ÓÈU™RøTy›7HL;Îüsbn¼RÅ9>KˆŠñUR«ŠšGê§ÿakÆ»/è{ÇÃü؉7r{“ªì³çæÄ5O‚84Ñœe@'uö{ÁRpŸí¦y{Í"¹À¡]/7 ÇÌÁVÆ5{5Nî- þ…ômfæ¡þîß”?÷5`³rE¥*¥™>G¾Þ™YÚÚ CWÌ*•ÆW˜AÄrŠQiE×Íõ=7¤åßòX¨. ' "ÐòÝ>çSŽËÕ¾µ`(: ¦Oj`Žm”sõB*O[¶g 䔺zïø™þ§ fÍó„–ÓJlæY‡(Úõ» e¹.F6ek®ÛêqžÊ.zNÕ ÐEo¨£â­™‡4J5Ôýõ “ ªF«x§í€{ÁbJr8Z»[i¢øxÕ ² X‚§̳•pÑšÞ,‘Öi!ínž•+—èÑYVЬD3pæáö.Ìc @_å 2A~wß_rœgŠ&¾IÖa\äƒF L13™Ün«”/X®™ì‚SÑgÍ ¥§Š+{ÔpU¢4œ6«Ù¾“™Lz³ÿ]±«Úè‚ÿŠªys`~j×ÄÛ@#ùï1&¢ç*Khyâ˜EX©œÄ1D+w?dUj—59Ž­Ü€6£´ÓZØóÑjttv/DTñT P¯·/sûëÑ~YÓ忇Î1y˜z·õÏjƃésµ k(¯¬&1 {€òêðämT}œ ðOJuçíú³/úh["-¬ëmÂc’ôŸ åJcñÊS ±"+háŒKß7Œ‡õéßãÇq>oF\sÑŠQ¨’l/S“7Дkæ¶0¶ìþ}ljº%Ñ¢¢jYù)GYžN}X [g/u8Z!V“šZ=±l÷¡œ÷°ìCÆ}V½'5zQ´¸ÙE•#Á*û#Ù¼é…ðé> „õ°¥oöÖÇ3‹~ª³ûE)mF”Þ2, òñÙi2ðúÌ;Š’'n·FšëiQí=‰®6;_y/*Ôhê{Ö4FìmÁ'ßòŽAå“z†áM)$uüTÏý²¼O‘»Ð–S¡)Zígþ=´HÒ³*öî)6‚ZÉ'¤2q9±Oë³[ˆþûîùmEºŠçG7š ó¾Å Ú4çš•ÀÌzö.¦g\q¿AË=ª/•¨æ´çEDáÈáËáß_ °fê‰WA÷¹iàHiѪ½}Ö|Žñ’Î|½+µ›¼íÏ\láCºt¶Ÿ2/¾H‡g%SsJ½ck¢a@7Â%ëÞË#Èñß5¿1¼Š•8ïø_ Æð¸þî·±YƒKS @Å ÐööúÛŸÁdØÅg÷£ÏÅ#¢#š{cã /š8ªÑ‘ÄaB2œ†¶á¼yB´”çî*Ñg¹ÒðÀ»Á¡ðj®pFŒ5aêÖëÖVÖ¼êá:ñ€&9ç¤JñÌ̘̚"ûçFé%]Õ’1ƒu²cÒ‚:nÜgg¯úN¦åï7¶}+,¼b*¾S£Sž.®§uV|å„·ìQà(&à76Âæë’óä':«2£'±Å7½ð­´¤Íå¿•8l—2ô‘CüˆhZï@ }u‚ަ©Ú?ÇýÜô:‘¡të~¸ÜbTR¿Æ`qç¡wûÞ̰3̵dmH0Þk܈Iß­šÜ0*1Ú2|LÓyBå‘Üàáœ>óI°¼ íŠh¦VZ)Dó~*ô°l°0©6ýýžUÇΆƒìe#©,GŠu˜wluñmÿ\k™%þg¤f܉ÈJi.ê4ÑhÞ§m4›BN'ÍüŽQ«ºá£ÌÁ~>=kr˜Û±]zÀÙã[­ñ «3ѱL™OÝù{šÛ1·¨Î©^Dç‘É‚G£®[T|ŒÞÂSöÜÉ‹m{éÙ„žL„«º¨°jH»69Ç•=Ì”KLzÚZ’ÉÑT8n³+ØFÒ®+j¸¯áÁ†;¡kß,¦SÝ é ‰ÏæÛ zÕ•£ï~Ã%@[…Ï’ÌÈÃ;bïì+Ñ.À/©´Âè¸&4W/Ÿƒå,ɵÝù0¡²}Gc°sŸMlvE¢RÆï^ՙí¿aXü“¤U©GÃ@A]À†)}r˜/;Â:ë×x|×RmÎ:ÇF “4u‘AœF|ègžŽ"Ù…Tœ¤1»1ú ØL[uJé¶nyúaÓJÄ|èà_s8DßÞ} kíkKb£ÉÑ6zÿ3¥ïòwoÂåŒcìœfûBþ¦ñ¶ &»¯Òl(Q°"9ûÑÀêMÔé~=ÔbÏýƒ¼Ö<¹Ùô©`ºä¯Æ‹õmGš'^Eøã*.ë)"CY\Œ£³Æ~L€á÷+s³ösϾE+%½9‡R|À6Ò°Ói`xGsÃMF zÍLsE|º´1b*wƒ™Pé,vªþñÔ'Fjce¢šæ!…£ªÐÁaª"çÆsžª}[TóÛÆ{¢³Ã=A"ŸÇ;Yšƒ·Í3[Ó¥ÂvÍc tÎÊi¿«¤Ï†núÂJÜñ“¸VÙHÕ%rH#4zƤw±ì/; úÂ…)GGå…)¨Þ[øÙ´?%Œi =^Š3àP¬Æ áaŒŽ™fÔ=dçì X’£Ú®K±ß;`1ÄFäGã9îU«({8 ø4ɦ š~^Ê(ÇnÛî#%Ò:ÀD:Û„åaŽÌ‚Óh B½—ŠŽ-®êœ‡ŽŽ¿!p€a0nP#Ïòé±È1•°Aû…gÄ~Z^(ºÉÏúÞÃ~EéÖß—ã»îo!¿ñ©K oF‡ÓM¢àc_­O÷°‘¢ÀúšW¸3— ÞÏÆ8ÛÇ„PcŠN3u‹\ßIŒ·e¥ÁçY”¹a‹øYs‡6©ÃZù­¨cjG)äŒZÞ³}µu§µÞ¿óyèÈq­„Íj»Ïx:t3ņðúð˜ÏfÑ.¯X_øMEu†óoàG7â–îÔZ¡Õ‡•ÄŒ]JÐO6mŸT.£H±Šw¹€c|óFx-MÛÛªõBûwAKõƒ“œmÑ¿w•Š·‘gá…È2µàUv‰E• s¸Ùk”1´Áˆ!e8°‰7„Ïúj_ÏiÊl+àúgŠÍk¹ óÙ ¶æ¿þYYŽM¯s ŠÁ9u•5~]E| Þ â׳«kßµ¢Õ‡ÍTÔ¦¾r¤„º«Öz4ÔÙloM©˜sÏõ¯¦úäÔvzEH|3З?–i¤ŠPMó QdÔž)Ï`ñóyGàœ-qµ·[«´Eˆú4*wŸR Æ–ÅäÒfu©€Q ©ï¥Â™dsEÔ 2@({³ÎÝwo¦?×)kí:;ƒ\z3ç>á+Y»9MûL¼Pº¡,pt>Ë»¿ŒMw¦'0V'¿Ú°Ñ,õ·œ·y& Þ #(»´®{AAê4ŽNõ+¹¿Šxnô _k1ª.âA¯÷ÐooROÎTù±¹We8M;EKåèÊ·)ÇóÔçEñ‹$qMS>×ëF.$h¬w´!NAÙ"CUÕÄᲇ Ÿ³ì6Ý_;^òcËüŽ—¹,Ùçùô”ÂÀb©qª]n~ERï ÍÉü5l,á}ò)‚eÉêBÔ#Ý&‹ØòlyŒ§÷–a6?«Äê7ñ)ò›%%±Ë8:ˆêØ ¹³?ò2ú«~¾ŠÚ}ðÒ½"áÜ ³7å|*Öwc8Iå÷ºÍRrÕxøk×9ð Ò™ ¢”)¿ò2‘ yõê}‹‡¶ÝkõÅ5UˆËÄ?‡¹5Š×ÒbrÚ~¦‡ë; F1¬ò¼Ÿ¡8O£˜«Y.Ÿ@à²J‡² ‹ •p+—Ï™T §ºvg³\öµ°4—D,4¼xñVg§c<–~WƒrùKÑàÆ|ÜQ. ,Ë¢VÁÅ-˜[Ñ7-{ýó!^9iZEæÄº‰†Þlþžcn;Oõ§5)‰6·ÎUÃê‰ÔqìÀ95¨c‹ZþIN×B¼‰-hû…œYÊulgÙV/¨ßá7è„\ÚÃܪMº»Xù¨ô«mq=çßg8Ät‡ˆXü|ÚœðSLüžÇ4:ù!ሄsùØŽ‡óziï–‰½Ø©Mº\^˜oÍYt‡V6:Ej5ýKj!(txTšçûü<\ïAnH$i+Èi è^ººË˜* Øt`“À5ôC_È 9³)DÝ¿ƒÎIBœ•U«¢½Ã%ä%5ª½¢*>›§á$Ö??.pçÚ à{ü`K9DÛ@¸÷3ÇÅLnA\òn%,‘£Îw0b»i’µôÌñW•y‚.#g¶…÷*&úÐz£ÄåZ¯Yšð\úôñóðoX¯)](eBnÝÁÈýÈo‡çIµÃšFgf êP=u~‚Þ…j3‘'KxÕBýE2ÉôÙùÔ<¹:Nê^e^Ê![PRÒÍ,P™K\ÌÃp kÜþ¸KP†s{ QD+¸–8kÜ)…àâíŠ'>S<­õ[åó1Šš¶D„êj8¿B³×ÎM%&ÜZ« ‘A$EI_W€þ7Ó‹{$ü•Äè ˜æÊ¼äò›¬„­é¯4´(†–õR'îL“à±ápà i¿öÊ2œ¼ZBú“~ªû#¥ª´ÚȘ ‰’ŸÌ·8èëþ•£VDÙã71[iˆÎ£Éúïå´—«Ö€Ø3qúꛣ"Íoi~¼-8¡ø\Jm6Àõ4쎸ª5ß»+ ^)~:@NJž+èjÒ츮ƒí¯ðˆk³O§Iýpô%]‹»`Gý¢ ËV…dò‚÷›Q„'#±Ä¦nü0Á›-q>š˜B½mŸ(6Úª§SVŒ¹9 3.EðÍ„AüOA††|)9ǸxDëÁV©÷¡Sr‡H°]àÇ‚/î£ÄkÕ¢ŒîSžËY£’Z Ÿ˜ËÒ4‡”‰n$KP‘R vD©QkóÝÀ™vÏ~ŒŽ ÙíñÙ"»³Œ(`£÷Z¥Îg³:v3éº2U•Ý/M&BÔ]–ƒÜ/tK°ñn #ª.§«§+/ŸnÕb×VhØVMÉHçŽ0#ß!üåù^ÓºÙàÁUP-êšÇÐEn´¯ªÏþ°ÛQAmÓê¦èí¥£{ g«Ëuâ¸-IÎwÜi‘J±±¨M'ê"Ÿ»y2ôãüy“ò»ò““ú²VÓ­oç—ÑL§ttL Š;Û—ô2ÒL «þûô:(c×|šÂ>ƒ£ŒùM¢·À!Š{7v }†à´ZùÂÁ¢ŠX+äGÅó%ßPNÒªDSK•\{vjXlI-¤{dx¢¯ 87¼¹‰±5©ä3u¼Q ÐÊìÿmë‹ë-[”d5õý&Q›m!é­"B¢êÙä^Þ­ ¯oÈ0ê±4SÍ|*xœî9b3^œCŸ—¯ÊF‰Ÿê1{¾-¾êLœ•á/;àþ¨Ï6-û¥š‚…j l’ùœws`Zká©MœuÕ󉯝œü\ï™ù¸Ò‘ùN7$𦬋u'JÊ)BÒΦ?´¶#¬åݾ4DòÈ…Ý/É{Ñrj¿|I²†Ë8ÚëÒ‚A¦–Ãemg2Qâ‘ÀœIn¨ÞØŸŸ{[ ÿÔK!µ_Œ;¸ÃVÝûkþ­º½Õ~›`)íÛÿAcéÙ!ufdÕ%¤!*ðȵ±qhŽ·²çý{zÁ°kSŸ‡ì£Õc7Bw§ D!Um@uÓÃJå—õÙâ¾?K/×P'oE”P'#r±ûµf!£Vœ‘‰9rSÇÂËÛœFgÆ@Xrsäë¸ùµe*¥ë3FÒ2ñPL@õE3ÿÙçóO"v^:¼½zí)øõÈsL‰ÀW´1Cß@h^¬-]Áùôæ=Î jÌÔÆ%O2èoâ OˆÂ6T®”^…‘ÒuÖè!0wÈfbQ0uÊÐÐ?";†È8¿#ûT—>ʶó\ðKâo"vÂðÛ§õ³ã<ùNJ0¾¾Ý;ý>©D ~¦jýãÛT åÏJö0‘3–Såö†X°3ÆuTÞ×0 ¸ÒRà•F2)¾ rÙ¬ùì %þ o¤îtQ‰9ŽþVA"Ô³æYI.ššéIÕNÆy?Õ' Í®­íÂ÷œƒ VëJ4Çć”g¿”HcÖ)/|‘¬*Q¨÷ºÍ}€>L-hÌžƒCÂs§B~DÞÒD°Úy%m0:lý}&ù¹™ž˜(Zmx8ßI ñMrš³?MŠÕñë·CÜ õèЗ/Wâ3 œ–©ö Éˬ³ ½oø¸¿Â©ÈÜYv†ìˆò86\ãÏT’Æ›êmçÂèXYÊi* –Á¹þŠ­ÌüìA‹ÐwÒ_P <¯õ¦Þ%.`ñkÇ|¾ªOu²uzÑ×ñHÓ€†Š”jX4*?$×üª!O„ãëí^hä´iš³ö˸Çèõw¢þ÷%©î Ö7œ©«§·l©P§ãZËx BÞ•})wÚÁOy~L*Öoï´ICqpÐjÀ~¤­…v%“Ô+Š“òó"”5Gl.W$¤²× Ú¡E<ð“Àä Yå·k‡­e·oCcÅ|ûìçK–ghèÌLsA]É&²“q¢·öáЃ"ÿEv6·œîV>%vþÁ)OÉËÉ|3ŒôQ‚‹%Õ_ í«5¢¥OjÛNÏP‡Û?Óx¤inSà›àóà­öDà¡rÇQ§1e†“^nÌ®‚ñ¦«,amê×"²Ÿà¨h¾¥Òiqz;£ ^ÏF´çﮞH°Ÿ6¬Ðj‘­Á±³C=ÓÒÉú1⻓®Œ-›K5Á#|]|Iç\ÙWÐøÂÕ3'ìÙ¬8«ß‹§ļvð=÷ÓÔÚª¥Þg/Èü<¾‡»3wÚÆ+s$¬Z”q]-ç_ØñUZ0?ñÕ”ñgß¶þøÅ†²ù´gÍÆ“R=û­ëºåšù˜æ¥Ní\é´÷3טÈ]"û%3ÏûÔ÷B°€o!PÓmPÍ+FMK§“½Öí¾ùÝTógâÏjÓ~ÚWþÃ+I"zXÊcD’;¡sœËÂ¥*üAG鱆 áu ïvOS 1ã,$§Ž„×#ØÝ¢1ݹ 8Œ\¾ÒÉ韜ÀÍV²T”¤—¥˜XEèÎn Lx`ÖýEÖýE®E»¥x >øKß+þÝu æÏŒ§«#˜uœ²IÏãŽ*¿·¨ìð—c¯ÈgZv"­ý–CêtÛD•HæÊæÄÜ?·×ß•µ£ïŽuÄS‚Ê‚4êšESM8¯0¯ÔàWÈdß0]HAÛ?#ÎÁ„ú“ùùJùLöp yì®À¦ !À% +o3vp†µYvzˆº³*ÄQÿøb´é™ÿ0J²Æ‘Ý•:UÇ´;¥M™Ayæ`"!~"|:(µ ò ~2ÿaú 34—Ù­–íc¶ ³x¢y0…“4Âk¢­Œí"ÉnHlá\*êÂö9½Ì•«MG„ïG\î{ Ô“íQïâgâäÝÙS¾Í9Ò¯`é¤xΖ‰=‡Õ ŸÐz{š´Ž AÜyIC&¹§;i-YxJ¡ä6y¾Ou:‘MîënÌëV™¸Ø3f`¢Këo²÷rÑ,\æ'[¸sWpDê!™þÎÌ/7W—–‚ ÿ ßnêY¹±”&Ä‚³)‹:¿ÞiL½ õ¢RÃñ›UÑ€¬iš›’ ò«;^+FÎùb ý( çP°/áGª0BOmD‰Q:žbšµ/°Õ•!ÁʧÝö›ŒÏK¬JzŒw­â3P нàQ¶²u' C²´ü›T8J*åhlC½[ñSU>NW"N)Ï “ü é^i"Ä‹’ÄJ ¾VщIŒE“±Ò³4KœúuÎoö’™k‡¿߮㨧®Ï%-86•<0à&ží¢$ôì7-1txnŠPãÂP|¦ã5ÔÍ´Bl.*|u!«tæ®GÀ9÷üÀ»=iWu™L…÷{ûÜ£r'«øxŠ'®!ÂöF•^O$¾Ã¦áÊâ=2 Qô sb@ѨQu±¢×'9Œ3Ë×õz±z4£Ëç‰É¡ÆßV¬´q|çŽ(ÔZÖox¼jÞk¼ÍÂn%Ô )ŽÛªÑàdÝKv“1¦Bƒ".`ð q”ÄÓ0Gauoóô·ÄðgiðÏzçolÉ¡ó ÕÃä#CuÏyEH E -ÎØUŠ—ð´ÌÇ' Ô˶™4ê­Ÿ/å­¼nC"l†7]:–É}Ö¼+§GÌLhêÅD૞~ 7 ¬s|5?& ÛŽÎþq‰QGµd{¢³f=mÖh@ ùÇóý»¨-|+AîK­‚¨œÓ7ýÃ\žiTxÕ7„dãá’»n´é–‹H)]Ê<Ù&nŠ?Y.IÌ&O} ïhñuMHèÁƹ´÷±¶a‚×±H¡¨W‚¼Ô zW¬l(×nµa¸. ãvß,dŠ»ºÛ^V›ˆ/³¥Ïi"ÜÐ5òÂOeת‹²P9má•1µ„+vÔá¡ Od^Ò^,£uybJ™[¶V$H±ÎWØ2?\³j;|%s ˆ´´ï°É [„³BfþtQ€¶G† “‰ŠhLòIp›D¨‚+Ž¥ÅAÜ< ¹8„.äÁ­<Êh7x÷´Oå¬Nñ®Êu­ÁãnW!:›3ÃÌ -ñã&Ûûg-¦ï¨¸47d™æ¡ŸJ ¢B4 ½cêÛ^¼´Ñéó«öOnøÐ.jÓ?aýfï¥Ê«ßºãJF§)a²I Û´jóÕ@­‘ø¡ Íu=yÎeýÔn-¢v|¢áâÈ"‡‹¬kj ‚=¿WÊä¬6qÛ#ÂÊCñÉ3×WO¼9µ>8öý.HEP„ŠfÅÔ~p9g¿¯í N—ýæ:ÈŽ‹rg{å§jïNÚVjÄÆÉúY·nø”pØ;ì]b5{Už»q ølGT)/:!CZ‡KzUQz‚äj×vg%FÒ«ßZøÀÞåÍòüÏ'#<ª„é›%íYû-l麀úW‰’ÌÅ\úÙ|ÜF±*éeÊÏ#óÐË{žHBjÍWéwšË ‰»8膇Ýã@uU¡[ÒÛ,Ô«yÚ§žÁtÔÄñ7s¸Õ”ž€QŒ˜’Ç>bä÷ˆ¸9.6ñODèC]‹œR¨˜»];ñ²×ªñ±"ù2Ý‚åXÚXf»¶¸ õ•~¨_ó;µ*Ìðp§+)ãu Ú6º*ª>÷: @áû£„Å‘‹sY5µçætÜÒú[‹åœMÄíÌJ²¢<\¥¸ ·…»j‰îp©Î Æ5V`STÑÛüÍQzBãmÌ›ªzQóX_×@!‰ÃfÅlcÇ?ìq;·rRÓ¡KºJ *;åöoî ÚÐ™Ô kó˜Ð5)+{›.ÁäuX}­@í ,e`^ÙõÊÖ‡.KKeȈuggÛ!k‰PÃ|ß,¡ÈÎZÀѬw3?EFMß}?³BÁ/{Êß䟕šÀJÿmÛK)iè(*3|<õ°í†¹n'“Eh¼J…ê-‘½<µKØY£ú¦wƒ½&B"Õ—çkýzѸ`ù›øä'©¸Ï«ðxf_ßZj«Ú’ø¸ÎïO'˜âDeØ ´½ yèÅÔ|9ÍTáÄ.´aÞwŒSjVAIp½d\|ì®ú *5m*ӕ׈YåLìV¨OGÑÆ’¨Ú+‹–ð67V þ “›A÷¿Ë“Æqø°Þ”À;|Ñv9p8Óøx·Ž~ÿ¤ uâ-5K§«^1#¦À8ÝñPC¢Zƒ™ï>òÞ^þÉŒž_cn¼07%áh_éVDo¡H"Ö½Ëâzñg`Z! 8ïöw…ñtÜÓ¨+B¾ß~ LÞdòÀ7ÏùWËÀŽ€J÷«³|èõǸ°WXZû šyËoø’¯÷_³]9ÞI´".#¢(Åc$¤ÀD¦+‘›')±|g©Î·YB/ùÀvh4ÉxQV&¾]p*ÞÎAûD2v›ã¾óR¹\7"*‰ùÎÈkR¿W¼%…xh-Î*¸¡8d$¨â”âÐe~aâú ™rUo‹Wн«À¸€Ë/+Yi|½ý%–¸ MÃTâÑŽˆ)}ë†Ã§ÌÒm"ïÇõ©Ö~é+Ó0»·.ŒH¨o&™ÑX3ÔH·£úttì'©wzOgf´í÷ώ憾x«þzjW*ò<Ú¥¥X’+g†í—‘ §m¬~C½m,ëkÜÎ¡ÆøŠžü…â3¸ 3ÙðÂ'?tUv.oÊSÌÅ0<¿­§\´Ú|t?9«Oà0 útÌÌO¹¢l)ÍÑuÀä±™cqž·ï$ÿVÚ­Ž ü…„šÉ.̱» ¨<³.ÌÎ óœ÷Ý]r‡“Ǭ«_—æÁvˆú’OWo5z‡­•ô¨0µœÒ ŒšKà6NþMÍm£™îQWÛ*e%ùq[(PRá±ÒÔQ¯¿¾Ü 7óK`w÷1…OéÌùŽOx!Ĉ\æ½eÌ! ¨“ædr¡g7K?R½¯Ò[«Ø’ôÇOݧE*ùªyæÛeªÚ’¡E©ê:w87Ò<Ègü¶ýäüv­xñ î*dd$qK‡ò3*ž‚½aø*eã¡­oóIk‰hG«¾"wà•£ÒS¿g‚ŽH]Œ­5Äœ „P>&ÿ\ëH6zÈÚ_'Sz'8%(N%WÖÔ?ž¥"D1[;‹ß“K+3Vç߯H棔P¼G}èÔ\ ðÀµ<©×Z  b6Dì1ˆ"$`Åi•¡C2‹Yk³„y ­BñŠ]ˆ‡Ò”„¥/™)tò#ÆÜaLÀ³Ôj9 !k;¦°¹½¸ËWñ~Ø-k¨ ²rHo—jšc‹ Mœ}B8NãÙVø¥ƒmÐ!è]pˆo:« ãæý“W¬¹ ê:M‰„~X«%\!uäJÀq­ SÖÝðÛlj¾÷éÕjÖd¾#3´o»qÆ]­0¡uø•&ZL’$ 9>›‚D~ëˆY WÞÔ+Ç:0VÁo5ȶ¼(ÂŒÍfkÌ W”¡Nž g¬-¤ª¿Ñ!‘LZé L‹wä3µptþ4(ônåëgã¸Ð÷÷>ïy ãáo’H³Ú>8ØÉ›Wâ$rÂáS<kÙ!íQ»O”.…(öóþ`¡ã=¸æ¢ö!]P@i)Ò’âLC6ÖÜÜê+÷¨OEˆf¹-‚˜[_ß;§V÷tÛ.±OÆs­Ï.¬}|aNÀΫν6²øÓˆt¶Ðú.–óþn5´2ªUq§!Äïvµt2…õEånAÒ¶…6˜D9iÛ僟•‡ß¼qûmØ^oŒ´ &fšËnزó–x$õI>ÓM8B5eXÓkT£\yw¥ZíNr×6™¾½½@§ÃŽ}%=-ðáqO¹ªžÂïàã±8ïhhgÌ·=3×´Ú}1E~Hܬ‰n»ãA_°Â=9ž%¤¶7QÓ‹å‰Éúj¨ž¦„Cap zŠJd©³zîye¼äë”5­¼~›¢ ÎíïRp× HÝZ“˜=àâŸF!ï;ÅÚHË—¹÷ ûÍ&1‰»ë·é-!õÓ›\FÔö­#AôU8ekæÿ‡_HÿÿÿŸÀÄhÛÛ¬‘þQóÓýendstream endobj 96 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 34 /LastChar 126 /Widths 335 0 R /BaseFont /JGHMPQ+CMTT10 /FontDescriptor 94 0 R >> endobj 94 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /JGHMPQ+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/X/Y/bracketleft/bracketright/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/braceleft/braceright/asciitilde) /FontFile 95 0 R >> endobj 335 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 0 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 525 ] endobj 91 0 obj << /Length1 911 /Length2 2531 /Length3 532 /Length 3177 /Filter /FlateDecode >> stream xÚíRi<”ýN% E¨Èƒd 3ö¥’}klcÍ:̃aÌ0‹-YÇR¢¡¦,Yš”ìÙÊ6…Ê.´ˆ ‰´pd(!Ë™ê¼oïéýxΧó;Ïóå¹®ûú_÷õÜ÷_JÜ© ‡Æ{ÆxI®× ¶\‘’2 €(3D‘@m®¥ôȾ€2 €«k«hi+Ã!R€>(œ€ñõ#2²ßE€^ HÀx£pEòYÞ(,€Ä{c@R¸" ‡Å¶ßO[B@´"Ðoàúbp¥ïyÌp>x@ã'&ýQ  DV(@†R`EDãqØp ú@”,ñ¬^ +É#ÔïæÆd,ÖøÝž5£¿UQlø¿êøÀ 2 $<$à~—:‚?£!@4†ø{ÕŒ„Âb¼õp¾X€ý¤0DcLˆ¶Æ¼ý–þàAú÷¬±ýˆ dŒ4u0FÊÿØæ’5 ƒ#Ù…ýiú]ûÃaÖl˜0À¦ƒÁYBÖûÇ—Ûo­ŒpÞx4ǺjêŠ@@…CX÷‚…Ô€SpƒCƒaÆÊ«¤ˆÃ“XGÖHN>xäû2UU¥ ,™øýIhJ ÿ‹Ð”ð8ðO¬”H¡¿êjpö#€Q(J>x2áÁj⃠ù‹BP"²~ðO¬ÆÂ`ˆûŨJ?×óùûtõõña§”5eV 8\YÐPƒþw¡=LÍ Y™a0 ­Ÿ÷& Žôã:³6÷öÁ°ö ‚a 7ddï­Cñ¿|;±8ÊèÚ@ »›¾ïªeMËWüp:öF·E°ÜXµÓji6?tš}Z,tm?ñls¤MŸñ§Ø`jæ³éÏé숆ýN Ùˆð·A_ãgx›n?ý<«Æfõx¬§ø¢sáÃÜùö™«Ö2†vï8^‰oiu ©mÍ¡¨k8gc퓪©ˆÛòe'«&†ò]ÌØ>ÚåŸÄY/ÿ’‰o&ï^½ÆYpaÃõK}wSþö>óC…ò‚êŒçÆéI3ZUÙ¦­~;íé:qò‚ëÌS(´<¨%9ÂèÀþ}&czé½/SPªAë°‹äa½ÔQ#YºMÍ’hEdrœ¦~ÜúŸÜû¹1´‰£ÿª°˜taœ`q÷s˜ƒf*¬:qARf¡‚òIøèÔ®+Ç¥ƒéf%­«vjˆÌ`-)‘ϳs îÄ=#þ#Ë&t + úÆ‘l³”‰õ-î$J›~€•¶ïôàˆ‡rÂÄŠS¬cú?é•vU9¥‹"âØ¹ÓøqÛZ¬ª—Ù ôì7Nú#kõGEjùݨ-K‰÷›¤çVž™~epœ˜†zù[Å·çÐFä×SW‚¥¥öÆŒr›Mhôu•q6NfĽñ@œÛ“C[fÐ鱕Å/fŬ bª9wÓwõçÏìRlËÖ­a‹Éo—UM*2r¯©\Ë0¾(_uPóÒ!‰g¬.Èpnð'UÉWgóÛU ™)‹sãön8Yìh’<ÏôTEùQÜN+°aŸ›BMb¢ûã]ïwØK𤅸)“E–Fp÷5åŽÏtl¿¨ò–å¿6ò„³Åé«V{•q—êxͼРw©Àn\vж.™`Ò’“´|=‹c¸f›Gq-Z“r8+_æå-Óñ6ÚèïL€’2ÔûyÃK ƒ±ª¼™6Ñø#¥Qßñ­‰)GÕÃÆƒKB3¿ŽJ`æ¦Í÷ß)·BžH¶†ð›q”jxý}>·.¾éè £"Û5¥ö®ðÀv¹Æçše/ITL B÷Ñ°Š‰ThcŸ‰œeN>çò—J«Ð™Ží רô\·äÚÑ&Í'-Ò3< ò„È-ÇI ßK¦˜iŽá®¾%eÿœ™ä%gJ«xͪoÖ«G è³`]Ö6ÍúpÈñ˜oM5Ž6SUk7]ÃâãâA0ò@!½xMºm‘òLÌ4½òdeúÜ»ôñ{BÄf2ðö+ÐW;-¯_ ¦Åh§„¦c†ŸÖ2*·0ÏúußI®fƒV¶^‰3y³n¢YºÙ–uS/p!›c<^ùש/7~Õ3ê=¿%,âhÜ¡Š| /v0›cîyÐ<³ã1†‚F¼¥œw!Ý™e7Ši]¶›]GŽd…ו˜o1Ü$œß'±Wpú]ìd¿”æ¦UDb­“ÔŸ2u°u쎫3Ñía«ˆk‘TØÑžà9óD4þÍùwÇmZOÕ®s:OdYÜëÕ²-ȼ)nyæ,÷;Ž€ˆ†n• Bó¹%ÑFa¡Aî…Å‘®ç¹ñ_cc¨/§­eÌX&RuÅÄËSùE‚y?Ë)t½.>¼6@_&T¿³YpP78|n—͹…ê°„zn/IŸ9¿¶NØæ+yÑ6ž¬›)óОL•Z3U…}ÈÎßp¯e“à}3®)›H™"oC-öWµæ¥¢;˜W¥µ9zW¡váA®ô±à,GµâEáTEö»5ÍMe­B^O‰ÏÛo"•lª~™› "Kwí-™ã²Ÿ®\½=Qi5x·Ãc_ï™ ¹¼½»)#c¢¦OJˆFªÕh@ôBñ‡h›ý¢‘–*“;²÷iŸ›so½Ž++=kÔÒ ðŸR1oº‡Üÿn*7Þåoy VÖFQ ØšSlųÖv»ÓUñÜÑñtfìÈgÿ¼”9ñKkêí R 4z0ßË€â"rãZ_6ß± ¶`á"†AsWbï†Õ×_‡Ç¹²+Kœu«÷©F–Ž/ëî0¹ëJYˆŒ’tGA¯Ø+¸úÓé:â×TœÛ4CìØU—–Øßв£*—Íd½§!Ac[˜++¯Eiú‘|·›³÷·1òú-“¸¨'¦Ü%L--4ÑÜ<[.W‘úsÖD&¢òxf·2r!Ew?lMP t’¸#/QúåŠ{}aî­C¿Niîí\òd_dA3¥*wµ+JÅ⊼eû·ŒäóÔÒœ÷­¦SoîYH6ð!`w£© ¤[‚¼±Õ(¤Ý,¦ÇªB°Æè´Ëzy”K‹œY_õ}qèq‹÷ãaãI³üÕjï\;4†¬ËV-Q7Ü:Ž;_mÐynõø õÜ#c(ú³mC.ì?| ÿ7øŸ0ðÆ‚( ˆ"@þ €e‚6endstream endobj 92 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 43 /LastChar 56 /Widths 336 0 R /BaseFont /FSHVFS+CMR7 /FontDescriptor 90 0 R >> endobj 90 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FSHVFS+CMR7 /ItalicAngle 0 /StemV 79 /XHeight 431 /FontBBox [-27 -250 1122 750] /Flags 4 /CharSet (/plus/zero/one/two/three/four/five/six/seven/eight) /FontFile 91 0 R >> endobj 336 0 obj [877 0 0 0 0 569 569 569 569 569 569 569 569 569 ] endobj 78 0 obj << /Length1 2039 /Length2 14724 /Length3 532 /Length 15836 /Filter /FlateDecode >> stream xÚíµeT]Ͷh‹»»»ÜÝÝÝ…»»»»»»»K\‚‚»[ðá®oïsvrÎýùÞ¯×Ðh«ª9f¯QUcQ’*«1ˆ˜;š$ÜXYxIÄTY˜IX™™Eá()Å\&nÖŽâ&n^VI€)ðð—ƒ—ƒŽ’DÌÑÉÛÅÚÒÊ„FŒöŸI\$"ök37+€=0‡™‰‰š£™5ÀÍ›‘DÄÎŽDõŸ'\IT®€9# ‰¹µ™‰)ÀÒÚŽé% G®‡ÍÝþ{Èàâ ”"¡ù—&- PÒÜÑÁΛÄ`Ǥè|èòÿ†ÖÿN.éng§hbÿOú õ ›Ø[Ûyÿ×G{'w7€ ‰‚£9ÀÅáOÕüÛM`nínÿ¿GeÜLì¬ÍD,í$ÌÿY»JZ{Ì•­Ý̬H,Lì\ÿŠÌÿ·°rÿR`RÒ–PÑP¦ÿ÷žþkLÙÄÚÁMÝÛé?Yÿ™ü/fùÃÀê¸X{‘è1ËËœüýïOÿë]fŽæÖ–$¬œ$&..&ÞpÀÓ$_ks€ À (ÌÄèàè|„X G¸6¸çLÿŠýYhýdc'arvwt˜›Úý{'ÿ3Âó_#ÿ3ÌÎLÂädâp°Xüeù¯èÿš |™‰ë?)\mÿÙ€síÜ]ÿ€fŽöö&"$LVÞNV‡?!NàSÀDŽæB\$L®v&®V"Ü$L>Ç?à"ÿa ½›çŸq ·›• à¯ÿÔÇÑÝåO€íŸ‚yü5¨ë Ü»ÿ0PÖàñ—+pŸ˜ÿ£@Uë¿E¸ÿY³ãŸ‡8Ùþ©7ÀõŸ^ð'Ì-ò‡€yEÿ0§Ø&ÿCÀuKü‡¸€«–üCÀ5Ký!àz¥ÿPBæW*û‡€.rè"ÿ‡€. è¢ø‡€.Jÿ!n ‹òº¨ü! ‹êº¨ý! ‹úºhü! ‹æºhý! ‹öºèü‡x€.ºèbêbbf pûgØÿsEþçÛøŸÇØ™þf é˜ý¹Ì@ó¿èø ÿ9Œ!ð…–!°$V!°&Ö!°(6!ÐÉö/JÙý…@+û?leL!ÐÊñ/Z9ý…ÿÜ¿håòþs;þB •Û_´rÿ V!ÐÊó¯Î´òú VÞ!ÐÊç/Zûöw‡ÿ»}‹Š:zù2°;ðó?;ÁCÂÃÉãÿ?gj8X/¥Œ8°s03swüŸ¨™» °Õ¹ýë;øŽÿf kà7 à0ƒ[[q4ã ³É숨(¯¤µìLRlZì‡]Mµ«˜”s¦ÛjÑþU›ƒŽtyDìù†ïÓç§2#y윔µüûÈÃø(ǧ_ûgŽ‚÷¡ÙSè9roÇÒý¨ÒÂÖTušNÙ—ü›¯çÅÊ4âêÇФ Ãzmùaœ\Ú’9v‘á-Tl¤ª(YÎÕQì‘›ž(i)›s¡6‘0]ôë·Ž}îh¿JaŠRë?a&¢šõ³©îÑa¨ ]T•E¢ 7|oÎ%±Ts!9‚ü£:)Z€јïƒ'aôí{V"JÁãúSwŸ6é;%§ÁVŽ‘U™ìj9óMJ©c]<õ ŒÏï3’Œgž’>¹Ô@Š k?äT·âxM}Z]HRÄnrlÝ/9¹ó>,H÷yx"pdNBi¾îÂ9"þ®pÖû(¿lDiß”Lá‘?åW>-À.h'’—û¬ŠíÂD” |»+šàÍØ¸£¯«¼§Šªð¶  æ7H‰¶‰êa¶%¬ZY¯Ö!R|œæ6Ëa/ƒ)T\Gàk¢áÌ,pÔU…¤(„ åáqÔÛF—CQ×'Ø4éëÃ÷»Jé’gúÕ^]¯¥ïs!V¦9tm~š†ÝÒ ÅµV®HÇoc¼Ð×Î>Q·M¨IÎÆD3Éa|±1—i &>ÒOrßAã‹+åsÒ.ARË_Z÷;î(RßI².JA»¬P‘³¸2ƒo¡0dT¶õÜ!XK˜ßKÛÝu¹Û3éj‡É¡Šð²ßžqò»ÖïÓ•{Îòn»ýǦ3d¦Scñ°Q:œþ§ä:ë‘Z¾pÒP®4Çû/£þ8Q-aIb ;}˜Wg q3fQwo|׫kŸA@õÈLjöàšTÍpÖßYÇŠCíÍô™‡l/Ũ]h{´™»Ob„)FYmڥxÚ¢(ë-²Ÿ¾aŸÉË^ˆ Ú×€do½³šrdè›™{“†Äþ´¾÷¡'ˆ«·óê84i‚Π›dmSv”Á?ÕùöÈ!)èlY ¨$áè)G÷üûnõ+Slöod×ñÖ9Ì t)¢Ò±â/Á6bÙÙC÷\yq‹½U¤§±Ûz¨½bäF†Ýw›w£µ€šŒt«ÌÊ>/Å,@ÒI[nrB”±Ìí}jøÙ.^…86F2ÒÆDGYue‚Ž ª˜ G§d #p¹ Ñm©>ßžK¢£ÆäȽ¬)ŸÚò¡ö¶± ¬á*æ²j®À4M•àe"&¡ýC9œ‰ž³ëÎä˜ú»G²ãÅÁ: 4›<ûîžHâ¾8m¹ymx 9›Ÿû1­¹îùñs†sÈó0³úÏj++Fåù6Aþýhÿ‚cÊÏ—hù%}Rm¬ç†ß¤KOq,ïfº ³ˆo¾p¶/âr¦ãœ0ž,+ ezüñAY¼–\½WØ„;m%èV/]¼OS4ö¡Ñ^†©Íhž_ ¼r^r }˜YÓ|T¶k‹~ð¥­.‘èí‰Q‰PK)dÞi‘‡ƒÆ›^Êáñä&È^Æû±¢ä0cVRo:]Ú¬sJ“èÇí\ÀyÊàQ½ùÁ[Q›¡jE”ÔÝ*HíFc„`I8\Üõ6° GC”k— ræ€~îõ§ïlq®Jõt1;K1¨»ƒµ}s¸ô×S³Ï’l¡w`Åæ1 Œ„ãzw¤Þb¯r›}lë)êTëf±LKbSæí:±8.€>RÃð,ï{ÃMKx8>I®zT7'ãÎâ6%?N¢ÑÐ-›jŽt¤ð‡a# 3ó³“+­îd¤ÈYô¿’ºOÔŸqɦö ?E”o{+Š:@^‡ªIù•Få@YÇVÚ·Pþø—-{ã"»„wh:5Qf£:RP·} ï7îc {ÿOý—ïÊ<™J? ó ðGÞ½õZÀZ¤>9ëd¥ñ§¼¬¸„á[º5 ¾\úöˆ—Š%‡›®\µÞ^𸢣´®4DÆ’¾$ë ÁñýãgφU¾Ï2û™ü<ÎUQa\6Ej™êkBm|iä7Ò¢¶}ø“ ¼œ°ÒŠæ§’Å*Äñꩳ•"[[¸]6 á,?G× <½>±^÷«­6F æÕ2È?Mâu|ÿîÕè‘Í5Ä"‘®]ÚÝ5B27КG<êo}ò–“òfX›¿Æ YkÕnnpvšS1Rå«Bå¿´|ø·åöÝ'‚Ï­tÇ¿D€b`z«©fOd .\‹È] wº­r^¤¿9{Yw«œlzKlTœ*NùýbQJY&ËÅü-bà À+ÞëY.°=ªÖ,´:tô¸ï†ðôsÆËÇxx© F^ï! ú¸¶KÁìv÷uUIY‰%cZ7G‚`;’/j~T,™Ë#‰1Ôã:Mij\`–Mƒ¾!ÀSt‹VÙè&Øt Ú~ù¤(ac±YnaÜ_hKT£a†^“¾Æ”Îʸkäñò×atœ|û6½úiÀÂ+ºs;ª©Q¸ëÜ÷‡Î*cςɛ+ï_tïG ý/úÎ7îð—N²ÑÚU›+Gœîp-¸Â5ÏÃâ7 ˜ƒØ‡_åSK¿Õ9ån+ÛìôþÇQ2\¿L‘δh«#C¶ùT “]óQ²ö'È6žB»°â¯öRsr»çƒf,Ëâû¾ ²n±™ŒkfØF=ïu>‡˜ »ä`H§Áú‚|v…zØnç:¹ŸØöT<™Š2:Ƴ-¬h?…ÕaÉÀ(œÌ| g3 Ròܼ–µ@÷ÔEÅH•µ<õÙç1w†¹…yÅZ-/ÉJ^L[m… õ'‹` _0I1×´D?]ðWjØ8éÂêql£2ÜQ­y8`"G3ŠøïÄ!'`9È-òì…@#=½Š~Gì —¦‘¹×´qtÈ ,Iuºú\Û0ÈuÒ)Ûv\+÷BÌÒq™6ý¾BF}F ƒ~gvöÆyy»;\³ØÀ»UcfÿÛú9ÇæGÄùL ñwE üô+î0=¼ˆh ­EºÚÔþÚ ÊÔ,ÆBP²¡õêÀ£DU8q™¿¹œo(”ÏÌÜ9FÞáåà ÓÕE)ƒ"_èæ­$Å“õY "¸I™˜ó GQî=öë51N.Ñ]ŪXÕë9ñ_îYGõ,)ôA4nt4;žµ°¹¸j<õí©L¢–’•\…ÎQÃéaÂd´¶>±Œ©f.­ ʺŠ$æ‰å5ôô†$—b„ ’2¬ô¤©¡h©´S_b) ¶ðRã]Aùgàd!jÜý]›ŸqWð,×&'ö£;_å/JÜÞô|ªnD‚!§9Å £ØHk¡? Qçär “î¥äÔÓņ&Þ¾…Öê$éö“Ò“å÷ío•Iúæ&9Xؽ5wsË“»ãŒxë+ëÒäíFœ€.Ô` îÞÚL³]ŸçÜà­ã[Ër[k‰$Ë'ûëd>Wqï´vÚ±E1{W±W–z–ñÖl?q¦*ß—X&7 ¬5„ØrqáAìùåHøµÑ¿›÷€À//4$¼Ù½’/¯Ü_(|Ìô{è}p‡Qcí ÑküÕvT>h½lÀa&it˜‡¬C“_›cÞÔfTƒ½ΆÚ(yQ@6‰dÐ9Z«ì¸ÿÞÅ?ÛPÜB¾€ 0 0­äÁå¿Fçì_ܯ>ƒF XsùÝúÛ ð µåUd-–q#ïבPŽ7LÌqoûÇM½S=ï!?•¬NN%º¶ŸÙ%Èë<ø.&Kæ?Õ´5ÃE:$ÈOŠô(äÞÌGF½M0“’ ¯%êè»ÅÙkzh‹Íóƒ>í¹³—eÎ(%ëlþOÈÔÄ2óŒÇíXY$rI›¯UdسILo…«gP‰¨þúr~Ý?wEû‰-|r&×ë°ô”šD;ôWt%1á~šÇPô¡–9¨%Í¢º1ŸàýÃô¤xz>½}«)n‰R7ÀurZ‚ cØ3Ñ:`Åh*ž• e0o®Õ©6Ù t‘g)£§žºA^º“|B°è‚ä¼%Ué–[Tžw(f.ó"¹•î”·qhfªM°‘Ó$*3ëïXJêó¤Î/¶+‰ØÇ|ðÓ™‰ÿ¬“fa.ÍI7¬ £ãkØ/±àÛ@Î-nI­ðÑHÇ3FÖýÑ÷‡cU) ßp°g}Ÿ:v]RGöò\ ¨@p‰‡‚´Ì ûÒh¿ÖBKâ™}Jò²©8»~#VÎôj=Ö4ó6ê˜îJ~rŒÐb yº]FK©RC›½’>–@ÍtqL°¤ð˜¶˜§²xO®&GD‹×R„ˆ÷¬ê! £w)0 }b žÓr ĤXÌdÞÈJQ¨öaŠ)7,]{c€Sõªß ú1dÜõyqŸƒ>@¬½„Ê™#m€Üá0‚‚}E$| i•È©]3æÛóKKRµÀ|Ì;ˆóù1.U"3IÀÏv潜Ԥû·µ\¨Àç1XTö' In~*†m6õDë^â¤4- €ÝŽø­!w…°q™¼&罜Q¸î3R’'+T-Fç*¥!'»oÿ÷C‘c4ÑvߤÚp^Î:b\“°Ø¡!lUPq÷Š#µ¸¤Nä_T&¦z3Pe3»íþ ×kܼ2äÛmm+Åîº_6„ž‡ÁÖÖ 4Pä÷×´$Âý²?i©Z|·>Än(0­ºÁ² J~u„ö>^-–ôÝ»°š­äìº?éÒ”†ÕÇ,Ì×Ú'FÎB]6BPA~-H"æ´:Š©T„r*l¬§a;¡v_¸cT%²÷„]6yÞóêÌ“çK§‹†L²ÑSÌÞmV÷üÀÜu“½dCØÛ¶é蔈ÀC )/»ÆlF‚V*Hpr~+ƒˆ¸::3»Wꀟ4Ë]__pÒ;T×Ï2üFwhù¡Á‡8nÒä'6{[€ëW†¸›ÀdÅ CFÖ\xLç~w¯”yJ5ÙSp5ô3ߺË.ß^]?Ðhb΄ȓ3ˆs®S 7K¬Î‚ü9 æ–S¦ Ë¢‡‹Ú™šó [gìf®šÌÆŠ-Z§ì¥$«fÒê§6ÀfL9XôûÇò°Ü MµQù˜ª­ížê;/%Å·aú$“häsúôV×»Ê^qt&ÔL‘$1µîËœp-ŒÚfý‹‹ç^ÔR#ùZbXLEMZ«Ý’ݰ9Ôz©ŸS?#gÙ #:ò³Üµß=Ié¼Áo¿îÏjôÍÑÚ]h0>gú}µEqË#”܈œ gC»$·j eõ\º)¦êªHŒÊ<ß^¿RUóJ¾ ÄÅßWû\žªQÚÿ5Ây~WÙaKb4Ä@^FÉ]àа¿B.²¥BŒ>³¶)"|½íLZÙ9Jõ#×û˃ySy[ÐL¼É9‰Vë…ø‚ŽùRU¥%~»PËŸSÅmKÛQ•Å0®ª¿@òî9qt?fS~?®ê‘€æíÍàM˜qü,”úAuÔqÂɹuIµŽ&5UÖ¹Fxïk±ÝÓŒà÷Ûoèv¡²ÌMäôÜxÐ8yi‰Ïà°_ù!Übµò}Nû.1jî6_¦Sc½ Ï»ç8â¯Ó¸@ ™¤‘e¼L×cŸ®D9UL¼ìI³Þ…éõNÏÀOÍQ'-¦ø–J€E–<3íïH‘&âÈŽD?{j¹¹mzáa}ÎíQƒs¾ÂœŽD…î>’ѽÐ&ò8¢Çu”Sß‚½|K ÁŽE=ÃÀ‚Äë2‰Î“!‘9êrä{eg˜a¨”ÑÌæR¤êIÞ®ÔºâT U‰‘•îíÈ6 ð(UàÃeˆ$¬ÁRô‰8-íúí½ fnˆ$|vm„uo·™ÔÃ7²EËs‚Nüõw¢4^ÑL°íwZ‹Ö‹ÑÍkt•vÔN؃XœgcœGÙØÖl Ú-á1¤ßJnw'¸Kß´J’ƒåè>—eÄ×ú÷Ž šWˆ¡›7ã5(±Ìy}£xoš©æ9bÀ^˜×ç#s°˜—+ðQcéÆ(‚Z/N•'ïÞg‹È/©~ˆ÷4â3Åmà=v¥:Ü`ztùTœ¨È^1ž¥’0Á UK©¶0œNóu:môwtѱVlFý‰^dC¬Coîí¥u9YN¯ÀÚZ≥ÒXŒõjΪNд@ˆÄR¹·#S†$KIê ¥y·‘Ü/Ó+†t­æ`»òLüüAú¡Ðî/˜‘ã…ç¡‘5ô¤‚Ãá3¡¥i½®Ö¯ßFêlb?È7ë$È25­¾ ù8ÂR…:JuÅÊ–‘ÀÝå‘?1¸…/}VÙÀ­þÈ…tŸôv ŸðºÞçAj7eîaR)r¡sQªéʺ£Û46NðÛ‘Áí©ß#0åIô'd‘¶ròNŽ\jå'Jªè£™å/ºô`÷tE Gj h•†Â¨°"4é÷O°ñd²_7G±½9/I6hÔ`èjVÏœÿ¦µ8W(v6&Í%<$hu*ß·-*~bó=Z1œÇÇÒÆjqÜ—üËŽ¨~kG âb)LúéóY”+Rþ\ß(Uö»O=&|csôf ‚ TxµAàI·¿x·ËÇÔÓ”JÕá0e!†4XçóœIçÊ'ØskA^ÇzŒÏþYô=}}/†k*{ŽbºÓ‚éVë!Ác!Ôîì[ÌSvF"5"÷¾g¥aÜúgxëÙÜ’ÅnÝÇ\E¹ù®ŒÌŸÞdXñ¾.˱O]žÑ’J½åáfñ´ºÛ Q-lŽy:|?\³ì÷a?·øo>2Ä=„“‘ÝqÏÍNL¡9è¨ÃåXÁ¿[†½6žÄxl]¦¶ž=ŠˆS즥Ðy³Í¦‹·¨+]Ö\³Xe§°wÇÝÕÝïî™iÒLËJJVÀ«¿µ“ë–$ÚZ± ø»"”Dœýl *G°×4\nÍËýÍÀù’Ãä`Ò“ë²Ä²i¾íØ0X‡½* ŒÅ¾D•°á›v†‚)™KÑæhbˆ}MPV¯ö3S÷Šm—+[ y!øÙEÆê.ßê¯Y¨¤è;>ÎòªØÑ!Á¯*}÷õZì.0O<°^î$Zž*µÁ„[vµÎ¬‚ ûxœâÖÆ#>òyÐLcÚæmäÄOVH˜nª[~Ñ£öYˆ¹ž˜Â tò¦ëø°³WÄÑX»Ô®QOnOÓ]ÆI­Ê€¡õ¥G˜h燶g~©ßœ ¼èoó±‘w~I¿ø8j¾S@€¤GMõ@˜õ¥‚>7P¼Ä¡æ¸W{õåp;Ŭøá¢:ùü¿]›^… ŽšgÒôk vpÊ¢ã™}#£1¶„£ŒþYåóÉ ø £P V+„Ò8ßw_§Êñ„2ѹ¯íÆZðbÑkÍîáƒÃ#i˜ùÂOã¦`•\ŽÚè ¬LôÍ£–{<Ýù±<›íAõÉÃk×06m[ócç”Ï£xÎbH¾Y#T§öq×kVLÊ:áEÉãŠøÄtœž$î^C0ÈáBö_œFèÒšbjŽ„YñÍÁÏ2æËZ¾Bµ'„W³B1…DŽš“u„D§Eðm¥>íûþ–ªÊ.d%=åªä†´||õ6ªGO”<#üFâôr òn!02ɪ{}e´Â[ŽÄH¯ëÿô¬e£ªµ#¼ÑáâWøIœ+ "õDðÍ~&©–‚¥¼¦ÞglG3!¶4. 7µMV\™`c¤ð’c­Œ“óï”ÒòSR aRz`d¨zRE|u‚CsYf¦œd޼<ÄkÓ¿É0ÉSªD%çLTT†Ñ½:´:Œ Ø¥àdæÂšZÊž‹ø.0Œ[¤°øDJwh0¾å_QbO‹´Rê8hXo5,e~³uý¾Þß·ªY‘…æfI²Ò$yZ|2gFSn£×ï2Ý2›zÿÔ¦VV!ßi2?+–»è´°ÃØ–—öŒ5˜'x YÁ¤ 0äý‰÷ûu0’ qŸBÝY~qZ>Ÿ Hä„ 4OñÙ Šur‡Kü;x«à~Æ‚3µVn ëö¶ÛYŒm +hvˆ§AˆÈVÈ—_†Ö{9˜ß šZgÀ¿=ŸþÐïk^b cæ,P¸˜Çá¤é›ÎÁÌ(A.¬{çcœ'\6’²Á»$"¡ú€ÄЦÑyŽBå_d3ބދFÆ œ_xúȼ¢._k`êËw—ûW!÷ß™¦oE+½AvÅ&ÈäxÛZ!uçZ(jºE~„^¹·pj¶”øûc–W¾ÎAh^¾÷¿Ð*7W­xJó¬ò!Â,Ç<ý,u$㢬&d~þ<ÃWy•€™KGòï³F"G¡†°ËAæQ˜¯6>k¦Ïî×ü*Ç&u׃1®«ÿÖZè:‘ãBæÀ?Πg,nX‡g›Ç™Š %RŒÀ4#1tÞõ▸גǢԳC«‡âzï‹~ééÖÊŸï~‰ÞíÿK[,ky'I–m5º3[ØaýÂ=À)­Z¯ãÊëþóõ¾¿ÚϺö²ú.\O”0/>fçpÔoa7Óåþ˜ži«Ð–…S¤=¿ öŒÏÙFWœYå¡ÁùX@À\§Ðjkñ[Ú±ÀŽ#MP;bpyqª —‡—œo,´PÈÙ¾R{>ÖíËITÏ©òWþÆcÈOó,YÏá6OÒA_“zåQ9{`[•™rsq-L›F6«Ú&¤]H+Òïã®—€‰­·J{‚þ¥Mðå/r—¥!ƒºäñ)¨Ši",µèpêÛ·E_§¾t¬Ý!u_s²±Å/´¤é)³YJÏRúüƒ\zZ²Ø=OŒÑž‰'>¯[–O˜d·¡7/sÛzdáñDDHwªpÁUq#,¶ãišê-ÝÊì Ƕþp§SÑÁ ¹%fvÙ Ò°FË“E›Ê¼Æ%dìæ*­Éz¤ñƒNT°W$[o¢TáF_¦çø˜5æFû¡Dgíp¹Ûíqg½„ªÃʵ¤—_0áª2Ň–÷*®’j¤-¯ô8ðE7’,‚kô•IÙp`Y_ÙíÆTÄôH°ø±™l¹§'¶ㇻ«¹ù²Îùgˆ>ö~\åŽßîØR‚Ó¨ùãƒ2ç}ãz/ˆÊ$1âä³D{„²ë=Ø)/ZÓøx¯W çFTe'C¤žN¦Õ_« /ÃD+èL.𷎨æŠsü‚U¦rOY›¹K40}š«iØ{äÖìÛm“'}ênâ/_W•äg'÷Ÿ³ö–ûuŠ‚]žM¤e<¶âI wí!®0ŽC¯?qj´ýèÒ#Ó³~ÊçÃRy¼Á1û¡WðÀJ§÷›XΊÜUT“«­®‚ÎiÝO;#*8EÓ*ðþrn©-g¾ÆqŠÏǬ»ç$h˜Íútúë¨ú°Òêøo–fwÛ[ß¶Ïz¾x’Oy}[ýÕF;ë=Ðm”D§‚c‡ÃbÈVØR­ö:  ª Œ> ŒÜ¥+ß:1aä!©—gÃÆù©Ka+ɰE³‚PîÃFæöÆ=Ì0ÒýÝ%ò$jp)fín=®ótãó¼wÒ«ù'}½a9\>—Gù§a«ZÌï·`Ó€ &èÓ¤ÅK<Þ™c<Â÷ãäÁ$;?ô¯óæ8Ýb…'ÕC¡Õ¡ž'!0Cª2§¥ ›×#_G@é¾(÷㾌ã U^¸X]Vªc‡¬÷Š-1Xè~>å=‚¤$í>ä ï”T;[ÞONªÜÓ~UNè‘çPÂí@›æAÌŽ‡íJþ¾@¿tpnPKŒC¹²Ùµ¿KMµÄP©JÁWÆvs޾{à,¶äI@ÑÉ—¯·ÛW{¼ÊSù•_5ìð¡mCúúU‡–çDß[­¥I»Xäƒ!™Ë°÷‘Ì6‰‘ìº0³*ÚÑý ³ìl¦¼0ÂdŸ9ÓÅp0¢Ç 3"hIšìÀÛ N1XnâÌ) Q?Q´ÀoPX­­<_«tÜÁyÃûiAYB:ï¤Q Gý”¾³)ß%·@|Yê‡ßÌJ¬§S¶\råû?{Hr<+}·fœCþmZö›r®—ްÖÝ´ôa]\…!r¸ì Ú q?÷Þvu¿kVVûc0ZY ðòù0’.S8ÄÕêÝæ%U™U/a¥$-Ï—b¼Ô$v´ {†!öµ/ƒÕžG7îžû¦Øf_à’*|ƒyiÀ!I³+/¼ƒwj1êàÄŽ÷²iŠäË$%oez·×ÓÝ¥˜’©àD3´åYâ7qÉȽ‘Eˆ)¾QÔi”qò'¤â3ΓËë±ë|¬!À+áèûwíÒ "ê9jkîèGçz‰6>Ÿ ÔB6‘u+C„ókhÐzµ1õúæx“@dÑ}WОú«Ñ5'2ûá ±8N Í?8©°ìý6쬧i@Ûþ¾0N ÕÝ7k´X()tçýÙÅø]ÏI«‹*mó¢M¢Þ^¥ž_ïâkÄ9ïéËQ§mÍ×O\"Ë¥Ÿ —J“9~Ñ9ú¾….]ð«±?Åõ5.K¢æ›ÁCLé½Jxó³ÅÚ+Çg“ØËÛ‚Æ„ûà|2²FÓ#Ø3¨ÆÀK *ÿ.Íø"(ÜB8VQÔuM½Êù5\ÑnžBÚáç—Œ•ß8?VXZøý›:-RŒ]ó jou¾K½FÓððß î±ÙKj¯PâºF·I™)ŠqºÐýN3#WtøiØ´`À:ÓAÚVçs1r ~èÂt@çˆWáîžu’”ëÎú“{ ÂãµÓ²°mr•ùç¬týNŸcÖ[×v1c nûAy%be/Fûshù°…{ÝèÊ&äi”eÔþòʼnSh¾…JçW›N‹ k)øÅÄ˪(„JX `gæÐ÷maÓFW["LilO„…Ÿ¢Þg/ 8¦bøþÈ·ñkÿz.2Ä%äc²”®I¡Ð%=Äx˜|ò½¿ïцˆ!dr5_týðLqIS;–ëòG%‡ÈvÀ£~Wfʘ¡ãëæâ+kU›´ RÒñ>Ôç"ÈF;/Ãþé_ØßtÑ[¾è(YùÞ„»ºëvŽDö‚,| ÓE…M+2ާr7h×Ãè+e•»Ä=KÚ¿×ìdIÝb*›§ÜU°i×¶–Mùãçh““3΃‚¤ rºU ÄW4ïU×íĺég‹ŒÆO¾Ós܂ݞ\—ʃHÓý‰öåUHû ïžS¼ï:s“ÙO[P¾³&£)Õü§Qó¼Qî°¹+Â34±¹‚^1­=¯0ˆîV#á“’ÜVkÎh¼:àŒæ–Xþj7 W"Ðsøa=%0hÞÂúÕ4g"~ð·‚kÎ}F¹Ð wojäØèœà_PdÆ“Á°ží™´:x÷QÝïßK—;RÍüÑd¢ùzrì —‹™›Ù¬¹z 2¦²ýrº_³W’¨…6[ §PX°N2ë8¶sK•ß6êùQ2í_ü$.ÓùŠ7é OÖ³"Mwjáf¾²G´ *í _yF¸ß»,Û@BiÚÄ(X©>ÄÏÄOi¯ :k. ÉX¼d?¶‰ÝàL´Äª`¦~ça[±*U¢£Eþ¤Ò{ý¡dã¢ÈÄ3“Ó$n$S<ÖçQ¿áfÁú’i‰Å^s B&Y(ÀÔ]g#XçGÛF¯ó5dhŒR¶¥hJžÚr™lgÞÒŠa8g­µÏØB<ìn¦Õ%6ÉœJ {'Ïàƒ €çhäNi‚ïå€SÕ‘ 빋å¡<¶ô)JS7ÅBVSÃE,àb^Ã=¦ñkƶï;Xmu¢›fÿ6Š8]¿ÅÂ]fð€É)Lf<•?Èc\ø%»kÉ3 x >3ÖvP°@HÏ$_HÆçˇ¼K胾ï‰Évˆ~-žO‹yŠ… ôÎÇëŠj"‚“›©FéÈ1üb©Õï¨Ë7ÏŸë- ®'Ȉ1ÃOß!×ÍÈå2•dð‡Ý>Ço,ÕD É ¦,“ß©õ!G™íbe%ÿäYPZkå³`³üq-àö­©y#=Lûe2~LjˆÂhì>¸/|‚W(ñËtãP´fÄÔ0ù/Ø£l”þ:#af¯9ÂÝdáÎ]2uaöì}»;yS-ˆ°ï¢P“1È/Þ7ºmÌôFm=ÑŠµäÃP–Ûu~·tÆ´šë‘Zîúõ½ÕôysÑ[׊B¹Ú:yŽß`ó! 92ðpj`QzE)-Áò]¾ -?æOÙéëù`JÄe9Á×8¿$&ç®ÝïþÞ¥eû®³Ìá’‡ïVe™øÜ·˜$ži…‚O$¾ù&–ÒÔ\¢ŽnV½Î´`T‰dê³—‹í öõK,4~ð‹ú6*çD¨Ù`…Z\Þ¡‡”{Ø¥=V4{zɳÖš_svú¯?ìüiüì.‘=ƒb7’lW›HabâpÒz¨É¦8›o ê1‚[·Ë$Ú"\o$ôíÞ¬u;_–@?ŸÓ/ NU?¢>Gw·VÅñbðô;¤>åÍ\}òHŒ-ÓËz‡ÆODyÅÒ‰'娼Y&Š€/iyyˆ~ 9jXz­ZT/Ï?˜P™ùÄq岄Ɉ2ÊãM1Ó„kJ·¡¡«æ+|ü:˜ëÓš¤<Ó mPÔÆ÷Á•W@µÁÔÀ4&Þ.̲mT5ÆýL/ –0~ÔYé~< î[5ÝYL)VøŽ\¿[©…ª¡:ǧ*&þA_)Õ3þà¤s!ï”.7S’Úÿ¢_ =Lâül;ŸÖºê—ºâZ¦äœ‚ tµÍbw8'¿u¤1"qZââï#+.•ŠcƒÏ÷ü¼\­±A¤Ñ…¤dç‘O`|N§‡î´z>­[8c)3¤•#[ÒJì¤iø>ÆÉÇßÊF>ÅÙŸ(T*e`yL,c¶¿ì·F´ šÔ°z¹(³ïÚ3%m]~Ãy‹‰>„]«Ú;ûIÛ0µ@©ëV\Í6&ý—¤ð… ‰ËyX¡õyWJÆoké,Oíà¡{Þó¼Ÿä†'DM·¶Ägïl³Ž‘OáÈ'g;˜Âz­>\Í mùýò|éœòµ—Ìä[R! D µ~Þ«3ô茵íWXÍð‚;¯õ+$“I¸,÷©Ö¥x Ô)dºLØG¸#öyð”³K~©?5ad("¾Ž%·ªØ»H:¥/CðÜ@=%·S“ö/ºµ­Ù¬i „FV¶Åm|Xý!›ñ3Œ2Žn†«È Üõ£ÿW¨¬‹?Þ`À¯8[¦êwÜP„@ñtLžñVJ}ú\åZÁ[2èþ«•-=F÷¹v‘˜3“=Œ@Þ³Äå ýÇä‚”ãÇ&o{¥¿rp”ÈB”œJ§Ÿ¸@üË7Èm|Ý-¼AIöDÀ¹2Q8©ãÕu…a£RB-êÛ~æ«ë„Ö èIðÂ6…ÜøžNJذÓ«ÁËê=*Œ¢ŽP¦ˆ(]/_Dí‰+Ž^©Ü÷«®«yóM93 »\û*ö®u7ÄèN=G¼Ì­9þ-?½A ºCó;¿ÈFM#fE¹h6³¨Žaç7¯:>>Su¾ü½O¢×QÝÃKV " ȺؑDõ.ßìlvÍõyçÕïH5 uz°„â8üÓÔì*"Ut˜“ÉóµÞJŠ¢@!–Z«uÆÜ¼„tz8ÁIãÝö“è¾þ^‚“Ø·»6Ôz:覸Jÿ=7I“)Áwµ¿[-K5˜¿ÜŽWżž³W¨1{¢»8™ ñ)ØLºwuí5/2¿?#Sª¢n4¿ãºÔÚÿâ·Ž£Ò$ž»áx*¯‡¡†qõ[@•+]¯Äl–±”õ¡Cñ7 ÏÊ%Š6#íeßû³·ùä¦ãÞ6~™’ŸŽpãƒ$‚˜O9Ù«`©¿sk…„õ®ŒLÜz¦aÑ ·›ûíÜÉßKÊYB‰!³Gáÿ˜Ã‰h‹?k©Wí›mçƒÕxÑÜFå¨ÃÛŽáÊS èž_j`–ø?û–S„«èšË¨(\!®àQû–R&‚(‡ùSr -Ï”]óM~>)¨~tÇù uz ɾ.òK–´ñ;Ù`ö\ÿ¸NøÉŠ0x†ÃDŒggÍ!gI«Iai&áã-Yipë½bóïÄâ“ó°{Sc¼„L¬€Ü£ á¤c¥ìÍýZ¨«n üzbÃá`‡ÄôÀOÚ(Þµ(IJ°ÈÌÈcÐ]_˜ÅŸX‘ µô7…›Òm\uP»#W]/ñ:ØöMÄ”uƒs´0×›Rs_SÁ­]"kÅ95óp„„˜”ã@\tƒÐ|ûrãî=ñP·lfo˜+ÓpÑVê6›Üß -ë9!bj/¦kGPú"ÙE©±_ëZ©ÔJòŽë½žª(®ƒ ë¿ùt‘ëÊÃÕ:‘·ªå=´‹Î²BŸn­!]-D{X}ˆŽuE[Z7;èsÚ’êÞsˆG;Öí7¤4®N¹ÅÉ*$kŽî»„C‹R!`=9†J:±Š 8’´›*u¾^ãd 54J箨&=¼ú4F1PœÎŸ üh¡U$ãB<ÊVÂOwè»;9ñžå}Vûnþû#Ó¦!ªpq´:s”v|ü½S‰ ž¥3WS9¿ÉrœÂ]¤ Këéõ¥5=Q›;Ç2xÝÛ¼2˜‹àóÝG#<~g,út‹¾ªÅë_{³µ`å†wh}ÏéwVúX¦y;õ.•ß8<χIp=»Ìh°_͇§|´JÜF3¿ÜF3íüºžîMM§6cíêà±±âï¢ûÑ^´'+AÍýÑò4”—}‘=öt%P©ëð7%16ôÈßÖC/ß¹%‰­´‰ g墇ÅevÚy¢YÍÄucá0ÉLI)CüÇv8½çöÅ.p¶Ê‰ÐÌ3¢åçÜæIX7ž nù}C>‹õp9ÌKúäE¶®SRKTvIéyÝû‘äÔ„*ó¹™òSТw+$F~Úú7ìG2œY6qQaaˆâ`œ-‚Ͻyù2Ç¡¹È©¤ ~0ÉdçI…ÆðÐü+-hóŸT"ªèV„í¿¿NÅNºÖÔ¦+¹Ôðn´ØBŒxzóÑ4þœHGð‰±®}0EüÞd»­pv‹ãˆí‡syjvÔ¹]Òª(ôÚpÆøÀ¦ùÚ+ÍüÿðîÿOðÿ‰fv7G{[¸ÿÉÖZïendstream endobj 79 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 11 /LastChar 123 /Widths 337 0 R /BaseFont /OXEQUP+CMR10 /FontDescriptor 77 0 R >> endobj 77 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /OXEQUP+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ff/fi/quotedblright/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash) /FontFile 78 0 R >> endobj 337 0 obj [583 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 278 389 389 500 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 0 0 0 0 472 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 611 278 500 278 0 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 ] endobj 74 0 obj << /Length1 1379 /Length2 6925 /Length3 532 /Length 7772 /Filter /FlateDecode >> stream xÚí—eX”]×÷Aé‘JB`èîî¥c†f`º¤‘FARº;Dº;E–|溯÷¾ô½Ÿïûé9ž™/ó[kíÿúŸkï}Ç0ÓkëqÊ€`Ö`EÁÉÃÅ# ÓÐ×ðpqc33ËÁÁVTÞ ðˆˆðdÜí¼ÜAQ~AQ^~lf€ÌÅî`g°Ê±ýU$qÃl¬  +„=Ø©acèÁlÀo.€ Ðýk…@ì†{€A\Ø<<ƒ ` ¶s€bÿ2¤µ…„þƒÜ]þòÃݦ¬H“l¤E ñ€À¶Ø@M²éäÿ‡©ÿWt‡@4­œÿ’ÿkHÿ-måìñþ?0gwЀÀpè–ÿö¦9¸;ÿgVaq°‘ÚAÀî¿CnŠ^`¶ÂÆ€€»ƒÿCAÿé9¶9ªÉÈéj?û{;ÿ•Ó¶r€"ô½]þý«ø_Ìó›‘Ã;xL¸¹¸¹y…Èï¿™ýG/¨ äEžA€nå<Høò  °ì…ô ä‚ÂÈ%äHü¶08ö_»É/º ·ú+þwHtƒX¹ÙÿŽ€>`8ìw@„AÁÿ°ˆ°‡ƒÿˆ —ØÀ Èò(ó›yùß„ÔSø‡„jJ¿‰TþM| ÊoBºWÿMHMÍH¹N÷7!×éý&~Pÿ7!ü&¤¦áoBj>ÿ‡hõ›9ëß„|›ˆ‡›ýÈgÿH;v Òýˆ4äð"»:ýȶ?Ù×ù7ò ûBÿ@d_؈ŠËˆì ÿ‘}Ýþ@ä$ Ò†ûˆ´áñ"mxþFäÛ èõ"¥¬ÜlÐßsøïWFVæåË)àäåãðó"…°ÿÿ]fupu«È¸¹¹…ùþ¾26îp8Šø× yÿͶÈ› {m°fa6b¡Ž©õáÅ Æ?b°£ÊÚ5ÄkÖtNµá„Ì' B Õ\Ù¿V?¿*É ÁßÂØ¢ó¼¡r‹jõÓQ< rO›¹Ûò°ÜÊði¢z~š¡á½éÂp²GÐR?}¶/€ª5ùu¨8éE^Oæqï^Ž6«¼þö£/ô(ŸL·¼8öÝ‚Boވ̕ó†¦ÉÝ÷O½Á¸l›b¤¥ø"ì¶ÊÊŸBÕ¨÷[8M¯áã Nv¦´'OS ÎY•Ä-U“…@ö«P6ãÙ È^bf‘/N¦ñäÙ“¬ë$¦…p+F’Ƭ»wQ®<|ÒÕÊçab´KÇϳΔ¾ñÌͨ_Gå°Ò4ïºm›‡èÈt‡qêŦ«T3vJaïd—vëÕœnˆ<€BOÉo¢³‘.ÆrѤ?7¿V°§IG‹¬ñÖÝØ5Ê1gøûÌÊ)wÛš¥›é´vT­Ä²ˆ† ,-eñ1ó¹§5Ji=+öûIé¬A½O»ôÊvS¹sáSÒ/O áµÜ.U8/pK¦DÙ“àDlÚ½ði)c¤¡ÄitÊž°jö´ðGŠí+ˆŒö×ÒÍ쬻õn"o‰ß¦²-€zƒ’éãÅB[/3zʪ™à+le¹mmµãàÓ8 uÝ’ÙÇÏW©b²‡±°“ú¥Àž…ÕQáìXMbøÙÞÎÒAŒ ½_fkl½´¤ÑÈ£R¼œ$ ÕFA'éòùðö¹¢É³Ú‚`ªS-gïê¶½‡g—˜PP;ÁŽz½ßÑY­'á³ÿ0šЬ‘q&3'µÈRH/Q# ðS»¦ñd3ºÿÎ41Æ¢ºÊX!1‡ÍG nT¡Æ—æ­ß¶ð°{†%¯w:ðrÊö'~ÀžYk›L·{K‡HôÐb¤_OÑ‘©; †)ΜEž€œ¸PЪº­Ê·³,°ÔKÁ]‰&úa]Œ¬¹½ÙA.V³½8Ä´‡¡êù(qŒ+8Ž,çô¿Œ,_2Bk"ì_÷,?¨ãƒ3„íAÇ!ìŠ/ºÄVD5Éž…sñ˜I)˜DTU¿WzoÒ†Á(áv^'û©…©ŠÑ0èŠ[Êý“x´[¤á’WØÙ˜y¯ÆÓ® ÕÚŒºÙèàÊØø§‡>ÎÌn§*K¸%^M2êìeÊÏ­*»\BïØÐ9õ¼ï¢ùîv1ÍØ:+,;…ÉXÈûßH´$ÁO Ûøn8ñ –mûÜ)7`ßÕFï´­Ó?ß• ¶œTÞ)Bïè+ÌÙ\¨sC|KSà•öÌöf°¯¸<¢pjfb–Îeq‹,xÕÉçívÝ”Gõ2³Ñ©º^RÎü¡ÞsÏê8©O‰ïY[ØWÔ;:¹(â´3m¨Î_Näný¤ó}¼îZ<Ó¨ADŒx©†#õr¯âW¹EX …QýfOáa7¯J¦K”n=\b#lF¾ÉLS\!"ДLÇØM½^‚ã¡ÜœýH³»Øž)& €#=º&ßä=;ÁwÏãÔM±¸Z—=&ò6Õ'ÁÔ±»§×ü›Ô”á·üD¥‚*º}ÓEMPWÇ$ÞgÉ+/k}¬…/î‹¶q,ñ7Îa’œ½6 BT=äfÉqY.d èlŸwê÷[Bi¾'¢«n«˜=+%­¿­{%Û«Z´˜ÇÈ<„ëá#$Θ I\ïltn)Yè¦ åà«cHám›0†?ôí§¨Œ´NTœÁ¤cçs5p)úšž­3AÊÇ*A ŒÌ¶¶û³k´¸Ÿx×oK"À¡Ýðå ?337jdÖ—e Ñ1V h]ø’äüMá†fL¦þÄZ/CÕøû¯VBÓt¯bÌ©ŽÃ[JûïW¡@ƒŠýÇÛh„ÝKÎä™fú°YžÞub¥åƒNrkFó<“ï9P²Uz]>êàueÌŽðíUÁ›aÝ•\û#T¢-?Ñš6bOà¯ÝG±_ñ,y~ÎL”‹Îô®ì\Œï-°Nuœ XÃò¿}ó°ÎÏËâ8åtÁ¸ë%·ùDûÞóÇ`üΉÝáe™ ¥¹™/9Îvyƒ.ÓTÚ~ÏSL£Þ½n›ò>'¸ÿfúÇÖlö7)}ÆwØWÑ츾×ó/\mBûŸ]X´žU5[é¯GgÁÃÛ¦ŸŒY}dðì 0ÍäI¸Š@7P°˜¥}²áÿ6V¡Ï ² RI©ó¶ Ò,«Ÿµ¾«»ñò|ª';˜çÿ8FÃl^ïH!’¶ó‹«û®Øö'8JÕøeNÿW#¬ÒéZáQSø½—‹ü·ˆ•ZT×9µŸJåCÎ=…¯¥S¤l·[…¶Ó¸fßB å1ws8-~’óE¡'©…22]„ñœ˜¼ûd'óèÞ¼ÕȾº²¨Õ…õ½¹pv6hMÓHc)úŽ?Œýg Îç@¿26¯  —/ŒŒ¢øM²VϪqØgfpI0M® TU¾Kpì¥í|#Q¥´h0Þ|Ëì=)“š¹½;Ø=Å7V9›äI¤á>I¥¼8úò3Eo!4ôÇb i5>{Ûú¡•Ö)ú‹Äí ™ö7¯¿u›—H"g¾æ†6{1n;fmR‡4Ïq65~îÇtªˆcHÑ¿¦ýN5(€Êöåq jù;3ᲇ¿$={²WZºëû–™·ÎUÛ&a¯ƒÄ·S?Æ Mš´!Ƽ¿Ú_TÄäÊß/s®)Lå)?‹ó±p T *¢Ëµë9;]Rº‰_Ōψ˜zUÁ9•éù¨üƒ¬Ñ±tâNÚϽ«·'#(5_öXÚ¶y™EBqôë×*;¼jò«a¾@Æ'9:”ûìoŒb},W?þåË{²(1ˆ"RSœ$C˜À£C+àøÜ‰rɹq±'©ÿú¬-_×ÒBxj,;}MÆùê5»²ØqJµ` { Á­¼ÀÚ<ˆÃÕö®ô>EFÆ>¬åúqß‹Ì_Ê!í÷ d!hÏ,7›‰Ì0d“T«Ïðüú”ÕÐh¸ÒÞîø1Ïe.R‹Æ½U£¹j]Jºm`z¹LrtMÛQ“J$‘hCüÊÎ#O8š-Ä–ga”Ùžél‰bõÝóƒÄc·EZÀ‚à6UGè,ä*µ?’CŒa'~áfiƒô“o7 P‹J:08…øD‡rX«3šr߀Œ ¿!ËgÐTÖö 0õ‰­Ù†ßž¶:]8€}D~™wk¿Z„d·:•é sÛ¤‡;(JJàd‹/Iº½¦çÝü¢zoÖãiä·¯i™÷ú³¸Ú̾„"ˆ=­NR ºjñNŽw#­s¸ukbsÀ–5ͧ<äÃyƒ¯ŠYÆu,œ¨ñ#°>‚¨ZÞgÉ.–ñõ™À‡÷ÊRÂ$©»8öÜ‹«X—ál/Ÿç°Õ1tгâþZ¸˜ý^½d™—¬at~ `I Œ TŽÀ÷± øÏÙòà£(3ár32sõ >N}ÒÈ|zEójpcô£ØŽUà’À÷#ásMoŸ›†3g!ÊX…·#Õ L[ŠÒ½º»0Ò ýÄ“«“›Xi€º‰Ñd o7™'®]^q esg,.$3\¹gQ\+“äc´wª. sš$UÓ$0’ºˆ+“Ü£lžÂwœþ£™Í©îr a×OZʹ—ë­AM Ê gòfX³Ð‹ ïÐÂÎÊ;2)tëìDǪ£…f?ÁL‚²°’—BÄ…ÕÚ’ùÌr.+“ a‘®†Ä…WºÓùÛ\æj¿R´ªýVkŸ—f‹§ÉïLIB˜a|ïÈ"äËgDÄ”|n×·½'˜µÆ‘ùúØa$+ño†¤ÂF<¹ƒó‚±QC…BÅì¿í>!œ9y’d=ëå1ºÞ•·#÷P›òÿ×~:a“ jU¢~Nñ™ fƒ¥`‚*©ô,!¼6:ÂÌ~æf‚1_…}ÉÝb{É´œÝޏ·ÄTÜì±—®ð5Uk4ÚžÁ½üH@4;8¸½“ÇØ0º(0N¶ødì¸]“œÅW‡­NvÑF‘¸@Æ3ÌØÞð©gkÝJÒs|†o‹Gr]vÕV Ìb‡*×7ó," –Ô~c?w Æ»†ù½l?‚1Ã[åó݃%i²a- ’/ß ‡?æ­À-°p¸±!ßîœõÈïûb@æû¸½¾»„纜vYlh*­¾ÿG“êqp)gwèàP|5Óƒ"… ãønƒÂ¹é—CN[ädcš1å•Hìæ÷{1à |§=ª,c{É:¥ö5Û}O95Ṵ̂A_“:µ‚JDBwÍF1H%Òèt-„ÈÖòÇpCÒ<0)hm|”ȉ¬Xx~;b9‘ÕIY"L”;ÅM„ÐYÛ·$]år*yñ·ÌLÊV&Dñ¸.]¬BjH˜”=® JΫ\zbB^—¦ ¼Ç}pñ +ü@•UEzñÊ¿zñ "¿D¬8D…î³=—«FË «´-`僯`ëZ¨XÎçZqîILïîû¯MÓhçݩƼ_yâóºät†Åëæ*:²©«–År1éE“Pgar]åÃ(aTëôˆŽ%µ ÜÎ~a¢çŒt`krVéZ•%=í¢²•b ºSÆÄ¨íðróõ(H›\Œæê]Ð ;×\ÃØµèî%àÔ·x0˜öÇio!‚»¡uïN6O®ñ¾¥ôõþ)w³ ·"®B^¹™±µ"Ãêvj7D¡¢5ÍŒEœûM½cÇñj¼Tb{‡£Çû$톂¹ƒHüÏõѧé_ÈÞí¯]›ºVÄ'|¨•ÇfÒÓ{*8û¹òÝâsґͱoºÂq˜k €|]9YcÎP>eØëµÌ«ç“oY0²Û–U¶½±è€F>-§›o˜î‰ÇËøÓ—áÁVLÙ²¼ÇOdnÐý¦àí!š'¥R<­³«&>È$˜nNš†Rú¤µØÄÛæ'üBLøP'ú¹"ÌÏcÀ¾§ùXQ þJY¾X=Êdý;:0[" ƒ„-ÜÊ–¸Ž ì• „92úK÷ì7ŽÑTÏô¼Ýª¬ ¶>¢D¡þS)E}¥¶¶nÕTŒM«‚Hþ€™¡GæÖ€W(ÎÙÙ=BY¬›&z›Æ«+±‘usD˜©>—ØÔÌ­w¸ãKÝä'àç¯GƒÓ÷$ÅÞâoMìLˆ%?¤¹¹UøŸ<$Å®,îÿ,¶zðªö“ ÈÈ9I!Ÿ˜|¼¢ùàÁŒÛàhó“ØXôÀW!yÒ”äRÞße xå(ËlæmA•!uy6½bµ×Eä–Þ,40àHRC]ÙÃ*Á«qT“#•¡»êå¾èã§G^Á±ß·ü0LëUßóó «ÀÅŸÁ;5kcsËìÖ¨Â߉WYõêQÓ+é<ûöuyVó ®P!gZ€ÙUJe™/CòÍgš,L§Ŧ@ëBz?êËV,ã×ó5äÁÍím×Jw•þõUßñ4™ƒÄ©Úƶ][Šìß)™NáLšNIúx é×]S¼—>Kbzf¢=kš ÆT8bš×Œ|¾»gK3\z=ǬÌeˆ×ŒÙUÕ‹ôÎÁý{¶;Áêð›ýµùŸW›erm; ÑwÆdÅ’ð)ù‘a¾£„ða]Pá»qÍæÛY_öØä5oX°2uðÿšs Ó-ÓBâÖödyŒž¯×¤¾…p´tLÃ>áÏÑ®êñf{Ã['Ý´×iÉ[ï\¼åŒÇûlÍâjKOߌƒ¥¼À{Oò¤:êÀš[—4j<«å;ùÌÉ"ßÓ̳RÁöå߃ëg|Ɏ¤(ÝuʪÎ_hÇEjÞ˜‘éeþ:;¿³™ÎxÅíwv»‹š!Ž×ô3¶U8Š•à//ÉýKàXq_Š9Ë'ÕªNô¢ïm@{6Ƭ Ïn‘ #ùÿÚ¨k;©tFú¹Pe³{ׇÞS‹yáK)S=5ú\i$åûlð[ HÀ™¦ÿÓ=¾>y˜½ô+X䣓ù¹°¼¨ ±WÔ°<ôÐØ“QÂ¥Ké•;Sî|Q$oÈ㛘6°^½ûõ®AðQk¥Žyå!LŸba÷NE¤I‰Vm‰¸äQ[úåqîy~\r˜èá¾üÙ#‡Ïæ÷äßfãbh¹ÐSø­ÖOÍ]%¿ê;"¼}ê šHçõäHì/H¸¨¬: Ímòq´Î%ð õ‘¿dÀ.4&Z:}.•åÃY41¡F`5þÄß¡hÆžª ÿb6Ñ·DeÁâcéŒKÇo)°)/e¨&f±Ù÷ØpÐÑqö²¼Ä9 +÷Ä÷6œÂè“É»§&G9‰#sÂ÷9ýÆÝw´#@Y%gi ûùg@&.Mš„G©  qïÆ|ŒÉ2J{\¿ÑÛÆQ#ú;Ì3ǰµ Ý„nR…™¡`•Z¹&û駈ώècÇÔ~µà‘fͧèXc;#`¼–¬Ö—Ü‚©eüs¬ÍY¢A!ï·í©ÝEO'n!Ý&œî\"]Ÿ’;œè­ì9‡©£Ç›…Cn¥ª.âRçœ]M‰rÆ8:Ððk²CRÇÝÄû¡ë €Š‘‡ÆÇ/œŸoÅq »t¬6ç“îAÐ<óÞ&6SÈ¢ž84i†šL,aR@ k³Æé$󇉯>Y¸Y6Ê]éuâªL·ðìf(½¦#Ū)jκ‘4{zÍCiMQØcÂïVý1—F}Lƒi³ºtãDܸùžH¶óW¼8¹C±átM\3PÞd•`:ÅRn¨WæÊp-‡ýòxßC×tÍ ‡)l• ¶¿2Eƒg¥ÍÙe¨ræß¢tùXQýUh/ÏÂ:{. [—‘U¬?òzéÇñ¥Ü‘…R÷+K²‡„t\px?.­p(üzÉ€–?ú.N˜U=}Ô'yï¾s4=³öX…6í‡w~xȸ£ʽ5â^NCxÕ†»—ø#ç!Æ{Ê¢íÖ~ÄÞ,+%þ©‘y‰»vYb ¼é˽ÚXˆål³,™þg¿OyÃñ;Âh Ì—(hµò[? °…„²¼´Ó\VDÙxAÔ;‚ø9‹ÞNÖ:Ãèq– ðÆ–ÎâkiÒ¯ƒ þ ÊaO-s-’ÊáC”ÍxNÍZ0[cñîÅPËûÂÍË[¶¤{¯a~Ï­ÆŠtŸ†äÑõ&Q²ìv´rÏŠ[é1Ú›;¬%.ŠwŠV¡l! _Öà=©“)Áµ0Ê>iñw·LF®…¤1ߣ©»¶2ì™ñBŒ"Û}õkÈ.ÌD¹Ü|ÆÎe 9ï³¥×™‰„á±gh$µ$í5³LRV >9 œ¯ÚZ?lŠYSƒI³ög2÷k>õ9¼ü NÕš¿ïð¾mÒ9vñø ÍR5zë$nï!çFBTWl‹ð€s#/ÃÊ Ï9>nM0[‹{×›³»`ŸX’òŠz;nsÕ–â!Ô8Õ‹h¾4¡ºÏßá,œß.'pÞ:ÊmÙ¿[êÀÁs ‘£c7G]ÈÁ‘ͨÅ~CáO6kmSK Oáž•@Ý`Oµ"¢A¤:ÏU&,$õ,>Ô§­‘Q°Èáמ×)n'åÂ)Ûªžy.ãy‹é,÷ÿãûþGØ@ÀVpÌÙ î„ý_þ¨ž!endstream endobj 75 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 46 /LastChar 126 /Widths 338 0 R /BaseFont /KACSVP+CMTT9 /FontDescriptor 73 0 R >> endobj 73 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /KACSVP+CMTT9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-6 -233 542 698] /Flags 4 /CharSet (/period/slash/zero/one/three/colon/A/D/E/G/H/I/L/N/R/S/T/U/V/X/a/b/c/d/e/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/asciitilde) /FontFile 74 0 R >> endobj 338 0 obj [525 525 525 525 0 525 0 0 0 0 0 0 525 0 0 0 0 0 0 525 0 0 525 525 0 525 525 525 0 0 525 0 525 0 0 0 525 525 525 525 525 0 525 0 0 0 0 0 0 0 0 525 525 525 525 525 0 525 525 525 0 525 525 525 525 525 525 0 525 525 525 525 525 525 525 0 0 0 0 0 525 ] endobj 71 0 obj << /Length1 923 /Length2 3165 /Length3 532 /Length 3812 /Filter /FlateDecode >> stream xÚí’i<”ÛÆ­E"ÙâÊ®ÁÌ`ìÛØe7–eÌ\ÆdÌhŒ-d)dd‹H’eB¡d-*²$BBÑ"[ÖÄäžú?ÿåé~ù<¯îÏ}]o®ïy¿ãw|Îó’:j‹R@bIÞ  ‰HQ€+Â5C+s ®ã’2$ƒh žD4BS@M®¡A8®(Á5aêš05)ÀFÆã|)€¬¡ÜO‘€ôÉx šX¡)¾ ?݃&(RÂ$Øÿ<؃ 9Ä*rÀá¡Þ Oä€þ dNô!j”±A¶‚Ar = K)Ð#bIDB€}8 Ö$ú] =ÉÿG¨ßÍM‚k´ÿOûŸCú·6ÚOûÉ? ˆ’+$—:ƒd³±ø ÿß»æ4AqP€«(ÂTþ¨ãMð¡ ÖOÁø>hB ø«±¿'¡ïW¨…£ËqcÈKýÕ³E㉇°€ý-þÅð¿™>"2>pƒ)Â`pºþþùåþÛ]ÆD ‹'â%„*€&“Ña0º•„Ã< †`(=0T‘H¢ÐôÁD>$2ÇϪÁ¨éÏÒ¤@Íþ&ejþ©#¨ãߤ @þ" uêýÁéI¡à?~ÿ¤‹ #\€’ÿtqà?~åþûˆ H¡á Ê@A ûi¤¨!`‘ÿ[èHÄŸÍ SWRûUÅ‘É ‘òëϦ¯ïOöÁÓ7‚¡ †ct˜„Ñ:*ç^|ÅYã’þJV¹@‘¼²ó=mqõyZŠ_Þj"7ô9€¢+¹â+(¶%Ì—“LÝE;¹ý¯&~› h€,I¬O·±ÖX~†«]\Hb©¦­žõ‹êåÌÅJÌfs¸5[fNŸ&ÓŸŸ7%•FK»Ÿ¼²ÎûcT°sbÐïÍþ<ä"+æWy:;{ar¡>Ó½ð|?±Ñ…f»u“Ở¶ÞXšÝHJ¹cO@œù0¸Ù9¸t>ÛÚ´®wðK"{‰´‡'Ußél ìã×7÷‡…FyGœïëéÊ‘ö®‹Ï™.Ö=ݸù¡ ª$O{T®üAdf¡IS¡¡1¬1ƒâßÊŠ4rØ©ˆ‚ŽÎ^þÏ'¯¾1ÿ}ì”ç}md¯¨}7á?wèõ¦Räé2Ë·Œ‘^Ex÷[gª¶ÇoJõMì¿DŒ'oÞKvî0Ú²Bø®/Éü¶&¹«[Ú2(Ÿ Ñ8BÂv;¬¥t”=Ô{©?$ì÷G2Bj?–u%ku'pu™Ù:*¥×³-žr²ø¸«éÒùú6gršåÞqÌ&Ò›ÉØ!SÔÓDcès?SyèθKÀhý§dM‚è»H“q¯s(M ÎZÆRíÁ£RòE6sêŸçºŒ_$!t£®Œð}®HÉO‹^ Æèq†0)Ȱ\Ⱥ´-;RÄ|ð’èN¬ýÔȪVX¾‘ë¡7Z ?RŽØ Qy¦î÷>wO‹7Ô3$¯Õ2™È4p²hXµÝî›ç:ÆM üpÍÊãS ¨I}Ì;ý÷w‘j)U­e™ò2çmï‚:DåG±© ¹ÜSà{ú*µ[«3+öÔMËÔª5 ™G-¹â‹ùÃ)}ªªì¶ÚCÞáBûÒ[vLnyÖI¾¨ÝN¸åáüìCÛ{ ¹áÑ8zÎê²h‡tpƒÄ-#¤¸ÅúÀNTÓßœ]Ò¸’“KéÎÌ–ÛÛý¦<ÏÞž\¹#ÝÅVÚ©û-<‚ ‰3‡}P+²ÇâÁ…L"Y.-íRƒ/ÕBòükLfªQb?Y')^B¸2¡*©5~³¤2Fv‘MIÂaŠú…}ï¶¼`g4G a?ýnÎð]„ÙOÓöÝÆçªÇk¯-_Œʘ´%qr‡Õ‹7bó®VÞ*dÄÊøWшs`Mùn»c ÅÄF¤gÏ–kͧ5­Áåº8ñÂÐñsÈrž¼ÔÖÇ KÿdôÄMñ½¼Ý†‚ÃRf =W-w24œ¹ÍŠ.~u‹;hò ‡ZÚWâûc˜¬¶ õ®µý^PM *®^‡HJSuø­¨+çL–Ì7*N¸6ê'RIúìÇDBl§²eïŸq.+[WK5Ñ׺/YxöÖÏÃåÕ¡¥šÔ:dÊlF݉kjäU{³—QF°(^i`CdÑ_ýP‡pÜt]†±tîÌžñàÞ¶ë›Âîý^cŸœ^þŒ€NõVg‡Š%8J¨[?¾vëô–Ü5ƒærñÛQ‰À¡Tù=gKà…Âõ 2´˜L?!½ìu8þàÆdË3õ_žßšr8ãÁ-킚Z÷ÍÕÏ4àCð‹EûSá[FƒzØØ\ÛêÒ®–ñÙÂ)æ½°¯û[Û›ÌHrÏ|™æÈ/ÌvØ¡‹¬ï„͸ºÊ4nKè#F¾\èÆ{Çb¤kdß3£¿ù¹c[²ÁSB6ÒqE“7*x„Î.E+ôªO{{•`º‹Qßl¶0•.õ÷tž™n³¶Mƒ=ö¼"¾O±@“­³wù˜$H­üppŽMúº­Ø[U˜£;z¸3R¢!—o#PúžÝ³=5³º)î¯Å~–5I4 çéZ‹9}O0µ‡ë­à¡"ÊF£ãEC:ñYbb…X¨ŽÀº3ƒ•e 8¶áŽCÒ®ê.^ëÖ¤˜Œ]XšO”îË¿ $¶ùê&Õ×–µéñ¢OŸ£’·×&ࢋí€-ª[W㦹Ýf{Tv¢"]C•õD‰ˆe¥ÜppâJ­F_ÍòedDÛì™sŒðt{¯Ü4”¼yÚ÷#WÝá9ãú­¶Èa1ç|†#öEåÑQ>Þ4W kò”™•ko–¹îcÊ¢ÇÕ}Ä+W˜t¬„ܹ´‰ÁD4÷\¨¹òKH”çìÌ®æ6ëˆt žu®|g`»ûÜ ÿmúîËU›<›uT¬Ô0´¬¢‘IœBYo>) újj38Éõ‡1kÉû¬wªê·+ñ9ã‰÷å¸IÉ`‡¦3üÝ¥N·¹ùª·öîÛm>ÎùÎØC*à;ï¬löåÆŠ‰L3¸níyÃɨï¤þ§š =ã‡ÙuÉ^¬ƒ.©^Î<ö?nAÅž@X¡À»ðÞQÓš,½µổ¥ú%ËKØâ †&6Œ;CO8|/7Ç@ŠklsN‹èb–üâ’®~õå€îµƒñÓ Çø²ye£xEM“ÂDüa­aůj³“®'tÜ®ãi±¤JLp¿òéžé³:WÓ' suÞ_¥7UBïÖ®?¼-“ÆãOÚB}ô?› hQ{ÝN÷ƒÌ‘·Õ­"J]¢¶¾ð~]¼J¶Õ>y¶í¸ë1*„ÍMa¤´àóÄÅv5•u%å«ËæYñð†âÜôXDÌ•×Íî\ SB^¥ÛYôÔ‹5K»~±¥I¦)l*ž[&¤ÎtæÆ¥è D>ÎÕlY½ÖÞššágnJVÀèJë›ò¤§¿Ý°Îñ ‚¨î š³ÆÃÍ¿KúÊÊÕ a5¬ç³Ê’¨Ô÷]•—Ý^W¦Q„²ê/¸cv j½iÊœòæþ@{ÖÍ<²îÌŠú„NíJ„àúø¡W õ¼É—OE7ØL«l %ËèþØðþ¾ÆtnÀÏ#'p‹KeOé6dý”KE’âñÄ¡»Odë~ì܃ ¿äDj„bPÓÔÆ£Öå4SÂ}ª})¶eÇ~|ó£Ây££Èç´ã¦•ÔS“ßt÷?å7‡ñ?×Ò¡‘ ìŠÉj‡Îfôïs+£¥Zv8Ü:¨Ù+‘%p%¢×n«uz™ùæuhVñLj Ø/r''yNN-$NOè¨pb¯0e¹èQ1Õ¾t]Ï¸Æ ýÒa»„ß»çeÊfõgí ¡Ž§;.ŸÚë±à ¸›=ñ0Cºmî®…GLë;·h‰—ûØ+ÚåX°lÍ"V‚9$穸"OnGËÕ9§ \žf­gŽ‘‚vÇ­e7D¾lfBÄôQÆîGª”×ç‡]Ù˜.4èR]ËS\Zeë½7$•ôj7­¢6Y¾dfÖÿ “S^€üÛÛ}†Eúã3Èœ*5߯G‚ú‡ëôq‹G·7|^"[_N™ÕÎ×1¦||Ú_öØ3«æ%9?nGSZÔe9÷#Á[ßÎAï‘z®2Ä! mX%rw.ø•ï¹õuGŽ£.c…’–É{,‰B¦ŒaŽž X£²£–¢;îNÁ7´i<†yå¾ßcÃÎ áÇÞ‹²<\±´lOIi$´Å2ö|8þkða€!€h2…ä&ûqü ü  endstream endobj 72 0 obj << /Type /Font /Subtype /Type1 /Encoding 324 0 R /FirstChar 71 /LastChar 116 /Widths 339 0 R /BaseFont /KUYJFE+CMTI9 /FontDescriptor 70 0 R >> endobj 70 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /KUYJFE+CMTI9 /ItalicAngle -14 /StemV 70 /XHeight 431 /FontBBox [-35 -250 1148 750] /Flags 4 /CharSet (/G/H/I/U/V/b/e/i/l/r/s/t) /FontFile 71 0 R >> endobj 339 0 obj [794 763 396 0 0 0 0 0 0 0 0 0 0 0 763 763 0 0 0 0 0 0 0 0 0 0 0 472 0 0 472 0 0 0 315 0 0 262 0 0 0 0 0 433 420 341 ] endobj 68 0 obj << /Length1 1773 /Length2 11134 /Length3 532 /Length 12135 /Filter /FlateDecode >> stream xÚí·UXœÍ¶p ¸[phÜÝÝ!¸;Á×F‚Cp÷à‚»»»—à÷ànkï½’½þËs®Îsš›sÖ;kTÕ|«(I•ÕEÍL€Rö.Œ¬L¬|qU^+ %¥8hìbå`/aìä°òò²D]-l,V.>v^>N^J€¸ƒ£ÈÊÂÒ@#NûÏ n€¨dejlP0v±Úk˜ÛÔL­€.LQ[[€ê?O8TÎ@ÐŒ •`feê0ZXÙ#0ÿã#coîàþ¯°™«ãÿ¤Ü€ g°€,I +š9ØÛzÌ€æÌŠเ`“ÿ7¤þ³¸”«­­¢±Ý?åÁ{ôeí¬l=þ;ï`çèêÌ€ ûÿªü/5 ™•«Ýfe\Œm­LEí-l–ÿ Y9KY¹Í”­\L-æÆ¶ÎÀÅöfÿ)Þ¶)0‹kK«H‰Óÿë4ÿ•R6¶²wQ÷püwÑÆþ‹Yÿ0xo@Vî=&Vð@ðßÿ|ûôSIÚ›:˜YÙƒÛ“ ` { €ûLœ/V€•½Ðtû23Ù;¸€€·Ä`îBøç0ÁçÍlþ¯Ø!­þ Ç?Ù?Ìf'W ™‰íë¿3¼ÿùßa³£1ho 4ÿ+ÊúßÑÿ ®nê`ggü' `¶ôp´Úÿ qŸÏâ`ö'Ä `v¶5v¶üá0{A`={à¿™làb þùgå® ?°3øþÍ`g Û_*œ<ÿøÚ:ü‰pLjþ!°ªØ[Šÿ!ð³¬'ùoâËIÿ!°ØÇ?Ä`–ùCàùäþx…?žAñßÄ>å?®©ú‡À5ÕþxÝê<ƒÆ¯HóçÓú7o%f±© Ðå6/ÛŸžùß ö?ð¿û|K0ÿé^ð:Lþx§Lÿô' xYf!Øøþs¦!xB‹¿¼PË¿¼Ò¿:Ÿ,aó‚-lÿB°†ÝdkØÿ…` ‡¿¬áø‚5œþB°è/ü§ÍþBðŽ»ü…`+׿låö‚­>ÿõ.ƒ­ÜÿB°•Ç_¶òüþßw—˜˜ƒ»#øfdãdùgã¸À­Æâó¿jØ[9¹e$œ,,,Üàcþ'jê ¿×.ÿú±ß‹ÿÃæVà[tš",-8˜òY§4†”øJæM•BÓAˆY4Å)ÖuÏv .ÆCØŽÊ9Ñ­×j?–¥c¢ìAï‘|~&pŽh÷V—:ûâ—:ÿºçf´—îÙB }™®à±ëHvxŒÚÖ8w} ¡4³>V’¤“?u>xœ«L#¡¾»Jú®GÏ­¾'#ˆ‹[[*ÝV#4¸–ŠT-Õ©$Œ#tí3ZRÂûµÉ@_ëP¸fú• ‡vWŒÇ<¸o‰¯úwرè¦í$ìª[tXªûÂ'Åù¡h¨5oýÃU" 5`zNuT&03¤*Ë_ÒpúgB2LÁ팡¥]›ô…’ëÓzáŽ!;½¡e¾ìbËyBžCE£Ç¤vëËì.ÑË,V ¾‘öOÚ߀~JèE8N,.=¬n¨v»YÕs²ˆ¨$8Œ”*ã„㈤ëólPïªj0â-ˆtÌÖ6~ÍXZºvÀã²–ˆ^¢ ŒÇ½G€gÒȱ#âGÉhÂa×Ñýud”øÂí™ ƒxA—Û@9žS$ú M4/ËÖ9®Ql¹fŠž.îxÏÆ0v–Ñ[D>&‚ý,[‚pà|„µŽÉÃP2‰ý  R!ÅÝㄜx°†î¥è%”ØB\Èâ°"\ø“§´Fæ©ÿ]9]Z&©Ä§m?ÒÅÆÒ:«ác¡Â†MiM\â±sþ×­s£ ~v%¹,Çʆ˜IRîHõ↕»±„€MëœÍâq‰¼ ûzP‘Wm2Âüa²„½†Ù±-c[¬iY BZÜÔŽyª¶æ}Æ^_±.HЉRzÜ? ë¼d¤ðá°ÿàçÅÅ.—¢ ‰­ûX,rÁœyî ÿêaC^Ì%êu×PÃhq'¡6ÌlHyW ±p;w½j"€D½Pøt2ÄJ'0 ÏöìL( JÑôé(Â,ÒãÆ‰¨ú@|kKÓt W¯ÏkÅ5±§W‡tq­‚=•ÝæÔZ{cIêõš£êEÁ…Uìkæ®@ü[ÔãéÁ˜|ºsû,|! žºU #—5Bë"rw-Ž› §3ûŽuB’šÐDz>ùä7,¨1Š)ÁjŠ{Ô"³õOÎØ¡ò)ŽkèÎcËodÓ~†ŒŸˆ÷^Ò±êúÍîŽZäZ•…`§Q­ÉüùÌiôYÜà ×{H¦\–jP1¯­“oö­ãø áJ™ÛÏīɫ_ä´ªúÌZé‹3kSp×2±ï@O‹??xŽ}ê²}…&aXæ• [; µhÝÀ3ý×ÈK_‘ÓHÉpC¡GùùéóÄþɥ͘\ɱ4¡cñs¨«­Oã‹+†©íQõæÞf¾KºhÒ;5‘¶“øšÎC¿S†ôÜŽv’‚÷º“K»é‡R»”(çj,:ǽýóµ[ryfj«¸B…ýŒ|”[’b{Ñ"B¡í‰Ò²YÝ©¯½>æYµÒ ýуŠe¼³iá_ãh^¿Ät²I®ÚŸÇ«h9°Ä4W!ê{uß8|6¤ŠÇÖŠV”8^š zYO_킌9ªóï2X:ضçD™IšZÐ\Áä¾›‹ïX)Â0DXèvÆUÎy´p½Dlÿ ‹×># ³S|ŸöÊWjñ±ò# ï²§Ñ¸†âÊùt˜A%{ˆÊÖ˜œU¨¢”k¾µkè> W6ñyî‹ AK‚çg×Í(qìî˜> „ì^)wí»’Ø.\^F*ëˆyNÿeÌÌ”ûÝþìè%jªW›‘3U FwŽâhT–¿w¸ÒÓ œõÎÇ~žâº&¾ƒ1S©É’1O”^¯‘Ýqˆ Mi‹Q,7!§ÁB¬ªR³6¦1¼˜±ÑÅüæy' Û*RcÓé<‚4†ƒ±?éóÍÖQq*ÔN`²8 ²ÝņñÈÒ»n¾= ¬â›„T©º,MõF•HWyËG$ïKdÄJÞi‹tæ7µ¹.ÞïXÌC1C–Œâ-ëcXáÈ·¼)»ó³ÄåÅ!9Xˆ6 áÞ„jÎ?b}\帆b…ùètk*}&Tg•·Pgâ¹öÀ‡Ìxä:yiÊG/þ=SжÞa›]›CÆÃ>þØ¢2Ô†”HÎW6EÝöýAT~PñšsœJ÷2ÂN$CÕ1[ ScËÉðwLMh#EDaÂ\Ò&êŒe •¶OˆY×{è™óW³pÛs^>ŒîêuÇÕâežØÏ!Md@^€=Ì™%“tWf69#¯ªs{|WYÀ~¿£>L1ÁôàÁWˬØóc,ýWjGR±:?×õšßiÌP½ÒØvá²UÖ‚(ˆ+Èó(•NÈGXÇ8@ŠÅ…Zº‚ö¶eL3lT^íûùÑi8ú«£Ã~ PDäB{¢!"Ä:+:‘fÛ—Áo3Ùüùù„òNÐgUÅ8é›Y “dˆz¹ý±rKuËzç±Gª¯Rl^ÏbàüLé¸nderÇ7<¨ÅÈFWâõ HWŠ –áÖ*™W°“ô©50ª)t燈-BÒØ/¼¶•p5[žÂvöõ¦"u«ksƇ¥üd8!¿ýrsóA.P2íPBÈ“ úÜî–®Û'aÜ›¥`@N—gdCãÇ%Óá\l{íâkEkîê>ØÆo<7x¡ô‰ùëŽWÝ._grSס‚6‰~ï*nQ¼€ó.Åó@ 4»pšþÀ>™lã1ÑFö(ïH­‹ÚtsþÂ#v‘72…<ëçn½oáYœöÚ1ãçÊl³Ý)«Ïó‰ OÅ{´?Ò{ìÕoË✖¦y —Ñ(ãK"„B‘oLm*´x«=’ÞÃÿ ß8ß$\µhæï_œ”ã ‚ž©[5>µ¥½^,?U–\IhéDOÛ°0SÎÜïA5ÝŒ5*' 7{‚Ŭ\Ã…ò°è ÔXÔ‰â4ºgmß6³® * §˜mÓ¦œT9}­M­™²2bïd×/Eiùé\úL¦çü]?XpóbÎ9RŸB´–˜¶[£ÊûN>ô©¦·”îxœq(\?xõm­ZÊS Zèa2´ÐÂEy+Ç-IÝɸ£ ÿîäud N ?Ö‡/㺞(§æ2[³‰{ÀÁº4ßäRÚ]€´•ãèóøoadXc¸ž8YQ‚Þv¼¹»&Éxѱ…!Åê´iÍÝàf2h„F& È)§$1‘;šYÏ™ÏÅÐJ‰ SaÌQ2|“¿î¶—âñêÇ!–¨Fù?¢ŠU ék›’ˆÂu§„.ñOÂ~ Í´“ƒSÑ¢ÃOLˆ®jñYBIè£B‰‰ý lðê¶<[è(¼8 iæ ŸµI‰.Íê´É*¸ð1ÂÉ0ÅÓ OôÀXy<ëJB tP„ #ʇ·/«qé-Õ‡Ê/êh‡Eþ¨—mØË’YQ~|“ºu~ÊgúÊWúLžGÖ/ç¥æÓD•Û†‚D[­Uy&¶¥›RÌ@¶SD^´rì3»¶`BAó|?¨d:êú>ÉðóÄ.—äBvÕ‹¥Œ –Ìgž=»…e_s¡æöy=i ŽŒ@×ȃzStFH‘ñÎÑáxg”˜Pi½Ð.W¾‡»œÑÅxØÕ£Ž®¯Êþ×Á4E—öî¸õJv·Ä)Tv†G#®£•‘”òjÑKÒéãòºÓNÜ ÎÁé$ðÄ‘NßÉEÞ+ÕÖñ»â´)º\^à'Ó96Z§9&à b BÒúpI´”ÑG½C¨|Ï—DŒ:)»á0RTé<šwd¨  ÊK–Î#'†¯Wõ£cž~ôp¾è ƒ Bþ}ôcž?ý’×ñ0†¥ÚænÚ‚RyÖ3~oªx1ñ9i\Æx$!W†‘j󳯟tmíLÀõ^Øÿç/Ü®½ïÆuÒÛÝ ª Ò‚Çaéûº¿?Ua3–åÈðÆÁcäLIâû‡â@3¹-ÇaŠFô(¤1úBn)Âúî3}ƒ[·íǨ>6ÌBüÞ'ÂÕI«ðIÀ©Ã t‹‹Ç"àq+$Ýä‚¹Ž ¡Û€ùË/1X!bäî†øh6ZΟ,ʸ:••p¸7©­èâëúMž¾ö©Ï¸zcËŸËÌÖ¡ñ·´ø ÕãiºY‹OJäÞ’NG*KØO_Ö–Ý"Д ýà åQûøÉîtf—ÖŠ"Ñoáer 6eŠ¡0Ea}úPa›˜Ø'W±C)QÞH/F©ŒrÀõ“ÉQ}>0XÅMcJňLµpþeûuçýFRø°ÈÍ(«,h” S¬r^d»øª@9Â7úžÀùéK¶7Dµ-\,Œ&”Îôæ+|䛑­¡°n´€Éüï2ǯ͸ècÏÙ=;\î‰jÏÕ²ð1xó$‹0š¬ã‚îg8u íë/Æa¹ý?ÌC“\?dC§×’Åú$ï·ô£tÀ]ð*ç Ës‹òžØó§h]¦$zdtcGiß,¿z2Çß>¡þrílÉãÉ\9$hŽQõ›((·púæF$"Áò-}Õ•…/NËIéÇYÙg,]Ø€NbN›Yï¼$ÎTÒ!Â4U=Ô'd²KÇàYÿðy%­׺ƚûp>'»š—fŽÛ›&æž…~ck(fV˜Æ®¦£HEÙ*{‘ÃK²löõè…» ä8PTÖañšV’ÚÛІl…Š&‹ê5û¿Ò{̲R\¶™„xžç⚨+¹ kgNÒ”¦” Í>„—ïë³knÝ ŸÑs ¡a¿8Ä¥Þ+ʤ¨«Lþhþtü eƒäðœƒúÔïœ\ÌåJ¶JÄa‚ó)8É Á#—¢š–tvꨋǃ*4.¿¶Ühç÷ƒÅÒ[¼m§%túñÖSÕs–¬æQüŒÓíJ}Ô}#ƒ˜LC ˜;Sn¹—a•û¢ÔTUrÿÒ‰ÏÚ¾:ì~áÚoZ›eè^ºMõzhÐEDø]´¦LÎmÿI×ËsH/ÿÒÕ¢¡¿[ÿ„eï¤e5cVÆð Æ°KQÔ­ ÄZeÛñW 嵺~í¼au­¼Q•J¶.MåG)yÎÎòŠá´œ ° ‚pgÆ×¨¢Èݦ¶N〠-š5U¡­c˜Îëm _ýjÕ¨’ß 72û¯2åÖÕÞIU9l42d_mzz$Ϊ.Zœ4:‹ÃM8ÉHöÐÚ%–‚¾~üc¿24ï`knØ8LSÛlttšŠ¹f®ŸÐÄŸPâœb0ŸyååµëžÏGìÉzFœE<¡lÈFÞ¿6œ”äõT%Q«MRÏm9 "Zô×D€´œH+$Š2qªŽLE ESEM“x¯ÑD ¿Ñþèù1\&–Ù¨°~úBÉ¢‚JøzA±Z ²(Y5X½!þj Àü„>Çãó5D‰Á®‰Çû„YÔ‚¹6)0&@§Fje­<ͱZB;u”Ã’%™¯,§’ø”wppðy\þ»§Ðî8g¢ÉÉÒÒHøµƒ,¡&­År+Ê››òÁ>ýÕÈjr+œf‹ÂýÁETˆNó¹ì¶F»=°”Áq:¹e±&ÅÇ4„橪‰zH Â(üNÆŸ‘ŠtKQ W2VÿIyU5ýFP.IT‰OYISк¬Aóã{ i/ Slϥ岼—sŠ"J–ò ¼ ;[åƒs·ðØPØç‘Ú˜6ïmaÃÒKgO³z'K´k©²ò…ÿI}/È·kì$,èœg·ÉѰ2 }æw¶ Ü¦‘'G0ɾ¬"ñèe‚þbt7–-}£Ö³'qêߨi»DäÂ8c¸½ßFwÓŵ«ü’áÜä8`^pß; «{é¡<8ò†+I£äWåäIŸ¼ü3>­=†Åò;Kž —g¸ÖGÑOvßÓ°`Ot¼ˆÙ²•¤¤©'ÄtÂç´z+èÜÂY.#‹¸uÏL”Ȭ̽*­éÊ&哉8ìŸì׺g˜ÈÔˆA$óœéÙM$õÇ?ž÷h‰º‡õ«ù<:CÃÈÅÄšÔÌs_[olœzqA·f›˜Ù‹vãtñ5j { Æ!¿¼Ptùé õN/ –»WBF“µÇF£?}n‰Ïù•Ŭ©¦ MMó…3#›>(–CñÐ"QáÕÈW*¨£…'üï9x3QH®}G2¡¹nïÊàÜdAò˕߱÷WŒ²q :Ã2–íªÄ)[—­oc‡¦ÐrE®CïÙČҌ±‹²bÇy›ÞP‰§O–·«¨¤dr;?_ûíµ±¥ò'wnK»'/{gvðÄÙ’:¬i:BIFžuBÅÕU²ZÍ[kW36ºÙòúîº=.ø«§o«2¨ËX}×’h¬~Æ:âPPNÍÌpÐ|ÜTk“lŸdg ;À’ù¶e'±ÁŽ‘ÐUÌHRVQc+ÔIŸAe'¼¹5úó; ÖS Õ‰9 ™u¦6»ƒeÿÜG¥4Ä8êž|%/Iªs{èS˜Wö[Ue¹~kj f;4Ëñd3¤@ïòäuùdu 'º½}\ ¼ü¬)¹ß ÊÉc|cŠÚ–§¥Œœª”á3¬²Ï·ìíNî­²+›MÛ qäø(—Ë/¥ä^ñªÍ;{_+ß§ÍÎ{[WåÄ-T«2•² æžZ†èNVЃªÓ›¤àL&w,‡ ‘/†u…“z*uxuë4õ‰Yk:3·ãÞß>˜Ò9º$ô%ЄHj^"ž»c˜<¼$z‰¬ÏC{G~¨ã ìnJÙS/J^‚ž¤=ÀQÒsÝù‚å©m±·bžZvˆöûJ° Ö8…S‚ýñ+ì‡El)Õ÷²‘Éš ¸W£ìíöï'•ô¬ ÁGß &W‰ÕNòÍxí4ÊC·x ò´m]‹¯]ä\ˆn[k÷4Ç GQ ¶I÷’¥±p¢M¨–‰g$XpXEv×_4 ß[µÆJ‘ݨº60l ›וæð ÓúÍsžÞÔ*‡¦<¹EMûøgë¼\ªÿFž{Ú¤YËâ• ³ÿ!e î—ù#Ù'”ê;4Œ’eωDQkRYJ’éÀÁñ"ÿFçú̱Ê"*¤úÑÀ15_‡)¦"ñÔpúωƒAËúwò>/ƒóKEO¥´±Æ98:”7¸¹Ü“OP f¿øK¡su|V‹öYž:”‹2¢`fü#S7K›ï Ø]d‰&ð¢Ât†\:0Ô ±ŠîM}JY®ü8™PÒ—¤zÙµ,BŒJê0Š>åžÔÕ²Ú»)í¬E—n R/òoô•¶k ¾H¨sz›Èð}JŽ˜Ü;èÿJZÛÖ>þ¦3˜¤!«8€ ³z‚öWWÛŸ d‰Ã ýˆÂbéa*Lv´¼Iðî´ÖÀ0î%_n[Xúå ÇŠS´ÔßdF•VÕùÈm{õS'ìrñšÏBòw…¤¬(ˆ@þU„ üç¸\D’ì‡!w›T´á¾½'ÍúoK|U†ß84kì6Ä÷‚ü›ù.É0ú­m…ú%Åï2¾€ï–«4öçzGdÁ؆ù2ªÀwmg¢™· á‹“ åæH›^'Ÿüàö‘Í“Ðe“þòK{ÉIUŸ‹Ãý1CÞœåØ\YΆˆˆ•â1tiÂ=Dò¹¥Õ:N{Ñ7€ø÷ãÝõgóûâ_‡ l C«AÝCŽDY‡ïic”Œ̾ç4lg[F^ß±<:m¶%MlxÓž¯Zs¸{ÞÁ›§í½ÿ8 ç Âî–ëo_Wu9{v¸¾š¤õÀÙå ÚÌ/›3»ÌÔB8^‰joé5|¼~$¶ã·…jÐÐö²O mv´`˜£^ù†Ô·Åß&‘"Ä:x™ÚþLÓíŒ9ü}úŠ &¤†,8&PànlÍfHã}WÔ]*b¿°°ÀËþ¾ÛÎUÇIkÖ‡ 2Aø—yHLö¡âELCÎ7º_WJ«ý³5}‹ÍiåY­wª-ÃÛ#Kü¼ânšÌŽ|–ºt±=«cᨵeDÙŽÜÓ½™žxè/äÉR™Zs—ÙQô™ÊŽ™fÓnóL¢ù°s^R×þº.ùªìØqåø¼&®y£Õo÷޳ͤVe;‹ Ÿ{¢ ™R½˜Óµ9÷ÄKßpóiÔ•`q‡Ä‚´%+nCß7çÚd—›]îtçs¸¯4È=ªÂ*ÇØ.|€\EÎþñ#ulE p±ÏM2PªüÒÿAzbEŠDM…ã=$ïÁ/¸ñÇŸäA)Ÿy’¦~˜IÄ–˜ÂU‡Ð)§¤ÿ ¤5—š%çÛ’%g¿¨ †˜˜Rh« V™¾ ÓK xIAÐgÜ¢¬U…¯&s nkÙØe‚b„%ª=«lÈHÖ1™ži£ØŠýv[»at݉óÌ I–Õ‹±î¡»ÃìW8ËÎBNÿ°  ›N‹/®0[­yœØÕÖöLÃþÄr?e þWçêõH&+vpêÝUÔ(o$Ië>°iø£šå Ù$À% 1ÌGš”Xß—S ¬Êtƒµ›jqW+aG;àyfù6²t&Ùâû¦Ås>^hæÝèÏi5E×ÅKOŒ«T¦Ûeá2>Õi LA?fåùØ|«>ÿæÚ8Ê|_á"œ¯õù;Ÿ9ÉEè»zbma&üõz¿;‰BjÏWuwõ\8eûl_"û!F•D¢¸¡˜e@š ô27£‚ô{1EÔò¿lÌŒ)¤ºÛ~ò7ÈÛ‡sÆË/ú˦»û#@AHé½ù%ê,4O`2c÷çÙâH”[y˜¶D«n4ñ ˜7ƒ¼¸§ŒÝ£ª+Ùô#ú@âúLÜ©ªIMzãÞç¯C_e_PF&:%‡UšÚޝ0 Þà´à¿ ãrðíÇÈ›ÈièX†²ž %èšEÅÇô¥ùÎ~‚ÈT_J¢²¬X÷žá¢MªC¹&²4t“½ B§XåѸ®&é€ÀýiFdv-F„ž>‰À„ºm…©{Õé_9%gk`YtìKBïàLH|åïvÆÛ]6Rµs ùgyšãçyˆ2Œ2}ò ý0³/ý•hgSM²ØæpWÆÈ2™›FIr¥“'úrUk›}!C°Bl/°I³Ó^´$C˜tŒˆ¸—°dx¿ý?×Qh“ún%gKoØ¥0= ¤aDZLëè _;;rÛ—/±èRDÉóJ>"×éûC³Àª§ ÑmÂU ÚüӀ?W ì‘6À˜Œ#œ:ºIú´¯=µ%›4R’G.yÇ>ÝàŽíV®ÇÅLMÓø]×U|ºïQnJ>á #™¨^—ø¯”æyÕßÀ–zoP1É€ƒ>ÊâGÊSžíœñWJz Ý(Â;Uû ßâçRŽûÌ@dí?à’ø>Ù_ö»<+œÉ‚ßÛ:¡(lñwKáE}oÏ{IÉ p¯ì+} ’ÈL»8Îl{G?Öqƒ²°}áÕ•¤¦øç¿¾ÙO“RœèŒ–êµNÃ;¯aì0¾7k Irð#>Ø´@Wòê3‰-uH¬üá‹3Ð)zzyŸ8˜WÞÍuAŒ¹à耕¼-o«]“=/±õ¤x^> Ž<;šjv”ýÚ×t[¤\“s”—ߦø ôIŠ ­sùIüN#¢¤h˜ÂqyøóØÈœRÛ[Ä&}ÇHÊS¦F×ÊhébE`œÁ¤)é0OaüîªG<-«Oç q†¯^GY¥[ÍüVT„9Z{‹S"Y`NŽÎ%‡¡õíû’*ŠêÌÏ;£¬ð ±âшéšëÈÕªê\ëºQ)ᥲ‡ ¢Í?6T’m’wp5ø\äúžÆÛ¹ÇUÅ€bÎ ûÁ -0¦ÄòKóv zuûó‡ñËíûÉ/rF!ùäšb/Š^à-îÆ˜‹:`¶D½HØt;|ÖÏ]³î)²* âçõ4NÞl‘¨ˆTÏžnuIJ~&ãÊ¥\ ™´Û•$-%È>Ï"±XW¾»¢xñÚc!@ø¼cóø4‡%æÌW/Móá•Ú_ô4gãòŠ&Š4Òÿ“‘›…JfGY°Ê<"ˆ¡_ª¨·*H\hP(‹uk#%˜dÝ‹d|JZ—K¬ Â=HÑ÷¢é#3å« /Ú”Ñ%­]íJtN”7‘Õ/EnR=CDðàÅ$§Çe©{™²ãˆRKç~ܵßVge:¿ © Wk\.ÃîšøÆ»±îzÐT×§ƒ“¸ïÑX¡KÑÆ½‚Ñ…ûAë§Íè;DþOœ/‚„%ÇÜ"^I¥Ä°µåGë̼5FeU°ïð0DÑÇöLß$éQL·«[÷TFõ{#bò‘½ò»¥ºõBò 5|œå^rl b R6§ž|‘¬kï@€+Æl§úöè£ìDœª˜šÿenEg£“,q~hx€S’ØVöîÝmŒÏ~·™PÑx{[Èéâ÷ˆÐê*õŒ/#ŸKØ;¶h()Ñ« (ä×Ñœ8‡ã°I´ßL®8¶¸Xµé›7$ "+Ù7ñ¬(¯¯CßVÉ]Ð\ñ69ÑB uS•nÕÏ;ꮸ*xKðßÔQçÌW7-¼š,eA‹’§ªY rо®,Dʤû(:ÒLÊNIDÚ‡ÏÉmÕPøÆLß55‘+>Áµ‡öܳàl3Ö3º®éGã/´¡Ÿ”—/ÃhÅúCo§Õ²Rg8 ¦tÊ™X]1#ò5I»ˆMG÷Ó"–ž#BEY˜^ÕMölìe$ü ]ñ¦\ÀÙ‚£“OðzhKæÙþ®U¯H Åö"ÿÃQꈔÈ8þ4ÂoŸ·P»´h’™˜Q4"ž7.Õ…Æ î6 ÄØú6¦Ó3ߨê|Y¶Ü¿Ôw APN—K§`r”j(~e5¹…k”Ôš5ÌükÄ3à†Fóí"¸ŒfîC»»DÀ=i5•Õ{øPÍÆÏ”,vɦe#U|âHe׳DºeÖºJÌúÌ|„"×ä-cIË”,û.Îu¨Û•ë8ÇY_,“D mpV㫎L»ÏÑÃÒ" õn‡­JâzxD6}Êòx ¼´IÿUn2Ç;͹:Yí¦ž5g3’ªðhôØÖƒ·‹E‰s®ýøë1…äDêjäò&7æî4g³ºtmC%m×ê8pE¿RC÷ámühv.ðQ~ ÎEö+¬˜Üì-DyrÁ±! ãRã—“¬1E‹m䞸–~ô[ —Ülívò–âR¥ý©}É0üØËÆS7Åzb›ê¯öãqÙj›ø%ùP—6Ày¢Éó‰Ñ\BH<« a³Ků[´\NI<‚ÚE:< «Ya SËÙ,u&Ê2.Ÿ‰Ç}¯ cr qvkó ±X½ûB‹ï=ŸNŽ*²ùÔl°Œ/þùwCK£×Ëù{…3Ô4ßJòeA߷ĸ ˜Mð2uôó¹~ÿøíÞ[F—È ¢ÑKý~ðs®‡ZGy³‚(¡LÛxo,P´ÿ¥g!ªÓÐŽ¿<U©²¢+§>¶`:ÃŒÂwdJè5¿ñîtL+•”›à!ÐHSlFLE.¨ˆY™ë‡Æx+?¡ŽˆyV)g—µ¯o&´û®¤@™08B«ÊKͱêá»éy™ãëÓU†Lù‘W9CðIeÛ«¬å,Îz±ø¹r#ιnj< Z?wÍ~ŠÄa\„¿ÿ NS£¹éÉR½{t³¢’Ú]Ëk «]²pdoΉ|+ëÀÆÞüD~½ƒ 8]¾V@§5 ·‹gNm1ùÖMïÙԻݩs0.v0)±Äî'=¸qÚ¾œÄÕ‘OÞ^*(!žüeáÞ§oo½ÒÏÉÒc±Ì6ùˆ\ëGDlRÒÂÀÓ‡¼°ÜÙÀ¹~ªåSPÏ ªƒQ6yóU6¢ _¹÷¹C‹„¿|]oo;šóøeÛoFJþª |$Å+ø…8&ŒiÞ¡š:ņÛ÷âWí…ˆ¬C¢^¶°07•ÓÏfB^«5¤NŽêf®¨œ÷p©L¢½±IL˜z·1¬™Aù~^xæ,÷-ýLüµ©†£°MJe9†rbƒ~D߸·GO7sDa¬æ%Å‘ ç#ó_ÍzVfš¤Ê‘‘%ÊJ°¯MãØfSbmŠ+æãšF¬r[^Ì u®¢OŒ˜QL BCÓÃZ˜X_e4¦5CVÍ¥ÖÑCÂ7)àé]ùi„^>¤UŒŸ[×dKÑ;"«¦>¬{m‘WÇ>ð¨ÊÃÖZ?âû•Æɬã=ž:\+ÚlFRøQYWŽ_ ÷ÕN]MyÅÍ ¿6Wõ…üþfR¬Á¢-4û¾'•\ØÁ÷‰3SžŒÎ=ù½ÊW}—_©Wån§Tw†yP_ͬ²L=•?$dÖè²®œÝV×ha¾B±÷—ØõQ†³IsÏòß05TËɽZµdîË›˜U[Ý‹v(·Ä䫨'øluX'Ñìâº8]oב[ ¬Cû¤&oÃvÉêŽÝ1Yþ~þÿÿŸ(`j 4¹8؃lþ1D#endstream endobj 69 0 obj << /Type /Font /Subtype /Type1 /Encoding 318 0 R /FirstChar 11 /LastChar 122 /Widths 340 0 R /BaseFont /CXGQFC+CMR9 /FontDescriptor 67 0 R >> endobj 67 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /CXGQFC+CMR9 /ItalicAngle 0 /StemV 74 /XHeight 431 /FontBBox [-39 -250 1036 750] /Flags 4 /CharSet (/ff/fi/ffi/quotedblright/quoteright/parenleft/parenright/comma/hyphen/period/slash/zero/one/three/four/six/seven/colon/A/B/C/D/E/G/H/I/K/M/N/P/R/S/T/U/V/W/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z) /FontFile 68 0 R >> endobj 340 0 obj [600 571 0 857 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 514 0 0 0 0 286 400 400 0 0 286 343 286 514 514 514 0 514 514 0 514 514 0 0 286 0 0 0 0 0 0 771 728 742 785 699 0 807 771 371 0 799 0 942 771 0 699 0 757 571 742 771 771 1056 0 0 0 286 514 286 0 0 0 514 571 457 571 457 314 514 571 286 0 542 286 857 571 514 571 542 402 405 400 571 542 742 542 542 457 ] endobj 65 0 obj << /Length1 921 /Length2 2683 /Length3 532 /Length 3326 /Filter /FlateDecode >> stream xÚí’y<Ô}×ÇgbÐRŠ‘%ËŒeÆÖeŸ,ÙF–,s3?Æ c†!k…$Kö±'÷E")²&Ò&k"¡„Rˆ{ªçZžëúóyþº_÷ïûÏï}Îùžóùžsd¥lí• ‰TOC¥Ð•‘*HÀØÊÈY@ª xeei žN¢RLðtP@jk#C†7 †(u”Žš&¯,`Lõ¡‘¼OÑyc…ïAhÀФ‘x `…§ŸýØ9x2`O%@zˆ `H&Øï7,Ò‚@¢ / I:à z“(¼ªß™S¼¨ú§™ÈðÿÝÒÙ¢y¶H€-‘H¥C"èÅ«jMe×ÙJþ?Dý=9†A&[ãý¾§ÿÞ¤¸ñ~$rÈÿPýütXQ‰ ò÷P'ð§6#*ùUÌéx2‰`Hñ&ƒâ§‰ˆ!1A¢-‰N8xáÉà;H!þ]»k?¨:ž0>icäç4ølñ$ ýDˆÿY¿ÿ`äŸÌî Ä\*’È>¿ÿ¹ÿ­–)…@%’(ìuÐDx ÂËÞ 6i§‘‰B™Èd VU¡Péì+»#ပÆû}˜š@•LýnüÉZ€*JfÏõw JP5üƒÐl¿õÄž§*þObû<ÿ$mv¦?ÉV¯ þ‰ì=S¥þ5UÚ_]3ð/ˆb‹üÿ쳑•yZ™-[Yý$R[@k"Âÿw …ÀÍMØÏE Ð(ô+A£ú½fÏðwö"±'‚LÀûâ)• {Î'«>¶<ÂôÊ@Ljä}+ź¶uèή³Ï/AÉeÝ–Šc5ÎëÿÊÙ#0›‘ Þ¼Ðfׇù’=¼5ä1“z[Üy9Ç*ä¿ôÚÙùÝMõOV4¡6ƒc=åé'Kä/uÌ_¶•791ËýJ Òæt³-÷ íŒÉ!;ÄÅÔV—³ÊÏkÄÃÓS9Gð‰ãi82ò‘ÚÌZ¿ÂS”¶õ+±ÏÑcÍò}fÿk—õ”Þ5¡Qî×.¼fY±N&Unzº¾’ÌCº’—/æ>‘[Q¢»±ªZü_V=)(qùjóO£âX¼šŸàžvãÌ/í¸¤ÏåXÉ^Ö§°‰s7%ôº¡¥' Ñ–¶K{ç†ñ±ÜÁWÅ÷¸µ%“iUä#}ñ«Å Ñ‘Á»3…_SùOg~Ÿ8ãê;¼šZëóõîRÃaÛý#ûBJK¥ºV»È#éé¹@ðŠè`íKY2kíDïýj›I€Vkãn¦(äóÚn%k$fe‡Oˆ®ÝLM /ÉyžH¨ä®mo9åÇoϸ‰q’® îÃ{ z¸óíÞ#‚6 «‡Ä.%dU\ò;¹ÓäN”øØÛåÂM;Š 6¹çlÆ£…TÏ)Y©óÊ­H_^¡ü»¥N3Žñ|2Þ8˜×.¿³W‘³ö[‹WãßYè6¹$ˆ¹zÕ|¹|ÁÜ9ÏzŠ‘9êx˜ŸŸ‘¯(Ô¿¶‰€7Š£bŠ¿™ å·îçcø©Ãî¹g„o§ŠÀU·5Wå6µŽdýVÖ¶K/5Ê>h`e9ê©3¶¿ÔÆ­kìëžcg,¹Õ‡4Ä5ÒEg#2_ ütULEÀ¥°z”Îå¤àa`2æì9-žGf «G¢Õ/èô©ùÉx:ÃOÁMadα˜´&„«,œw›?rOù%¦É b#Û47„;\ÒÝ<øävì¢â¨nk»“a÷°ßÔŰSoÓͽ[¥{RN]ï•Xÿ¦5´øreýT+×BËúÃgb‹z˜v¤çÑäŠ^òW…#ÉâL®¢'QÉv¥ÍYÛŸËáoEnEb%îOY?~sz»–ñQ} äý˜ÓFx ç'Ûà/*VÃ+ù å±—,Ãf쩤. í'Z︨›à<árû啊áˆd§ñ¹ßÖðôòµXYªz[ºuzÒ£Þ÷¨…Àµùš«`ðˆm‚7–7Ú Ï|8qßhcH—cNA~éî¹ÃÃ=šlŽ'_àwå/6š·ìçfŽtð<³ÃÞ¯ÎèŽîåÚuyòi(~ ôê•üÝrvö'{<âÐz ‘k4²~½Pã„g«Än­~›\äØIx#½Jë.Èj³“~ÌÚ‘p}™î¼Ÿ.kÅab—W¦C²¬Ý^¶ c¢ç >ÝôMUTè/Õ!/½y|DvÌØ3kç÷E Wãò[º·g ]ó¡I³+\)¾ÏJN©•çH‰æÌEË\H¡c¶Š7” o_‹.¿ý6M”zšÁ©¹r@jþ«`ýXƒÛqÇÉÎý‡‡ôWíê¹í.6Çfk´Ð:xrŸIòd¢-Í:ů[Ü í¦l««½QúWw!,£K¢(q!ÎÁîSÑÈT\(bÃþuü­:R|á™Fé×V¨©vLüô³¼pÏ`ßÍljãS³Š‰ájÛ÷=Æáæ©Ò˜y¨™à¨¬ Ó>oEIÐÜA,Fæ,¢‘Æò ¾Â–m½e‡žî2¿•Mdåß³üåAâ{^xV%Ú.ûnQÉíQƒäH¡Š§ÝJJÎ["PŸ®ö}³%é.Ï-ELÆÓD—äEãÛ­ÔyfÐ¥ ]d*¥/D»SX~ “›,ðReV¿ceàøÛ;ó¥wÕx0J—¬"K=Š¿=Çá(êE„-B^‘Ùþw‡É©e¥ÌŠãY±Jõ’þ^9$úŒ`ŒƒfUùZ(!+&Êg£Tt7åUþ× ÆyÕ•¢…æm.µLž lľÓ[*˜ßý0f)O.V|RXRÇ4fQØÕ*<ÚÔˆ6ÛFhôO5¨ñ]'ÞØbêxðBM›¿bÅ, Xyó—E={ƒw×"!Õ¶n™õNFÐ;iHì7+‡o“©º–øðþC&|u…uðjR½ÐÄ“ƒ5ù‹•B6é¯ÛÅx ¯LÁÖ»´:¬8åňS´Þ+ɾ_>Õ½¨÷ÃBôTÚ ­¯[·SÓˆÕG§ÕôrFõdÚ½Ê%û—Üy2ÈÛ_Ü9–.6tA—}–ܤ$áf8VÖ[ÂÒûЧ Œ0;š7Ú!Õ¬§ÍÍÓŸ¼’ž;gÉ'ÄÓfE „15PʯæͽgúD†ŸxhC½zÀH‘—±½»¾‹5q3»µ‡Õ¨é35(Í4âŽ]»ƒ“xÐÑì_µçcÎôùÌ«¦ÉžÀóK—¼<$-¬¡JM-ýzÉçtMMVW‡%ìQxæÚÓnË[}¯eBDuT-?É9¹_àÒJgÍù²µ‘‡Ó•©Ë¥bCJ¶\.ɇqÚ]‡:O0ô{:+²œronÖ$«Ù´Äž…™¥§dš5ï=ÿàjög#ŠßWmóKmké²MºKS΋Š×ˆ;}ëë->Ù^±zç…t`JÜð½coß×åÝ»èŠ+ûð¬¾ëËÀã^{[¸?&¿[»q?üiCÕrº.\2µ7Ð9s‰oï#Žtiû}ç|FH삈ýò‚30³"íâNWg9©6Dz¼±5nD(KºŸ³“Xí(ÐÃe*B¸PÕQÛÃb úÅOÉã—_ÊÜQ)[_bu¾óK:q°t‡#¡/}h.{Ñ-[é~ÍYò`Àé“å6è9f„mA>×…¸ó÷ô?Zßw€ë¹wëß9QĬ®L6¿4ê¯Þ*ï"~ û¯@CžêÞü&l^^a¤€3ž1ÚH ¸RÙL‡C‡äW±‚М㭬*áþ+ÐÄ„ÐsgÈ­®qÕM…QåÓs8fŸt'ºé¾qºƒ1ë‘H3â«Z]²÷qÇϹì¹+u­õÝîcÕ·ÕJ#ñB¬÷n¿ˆ¬,0í9?ä´ª¿µië­h@àä,ê.«£þºë¨ˆùcΙPæg‹­Rßt÷.ÖÎ˵>b.øDü£¤³çæ½ ‡¸ÌwãD¯÷’Ð_ÌÑ»H×f·ò¸à©'rS´2õîÂPíÕ ËG·ëj£ðTΡÉZ\rE**š'’ŠXào`bûÏ*åçrmxiå? pó˜ö{…ßA¡a 3ëêѪóÖx®eÓ++:³Ï•{“kúÚeÎŽ“üGn÷\ÝÝ@_ZÓSG±R-wqCÀJºÒirÛlýS_=.1âT;h@’©²/ê.!Ùê~}9cî3{O©âµô-«G;°ÜERûš¬^èÌëV;ƲæN‹´\â94t¥Âx¬‡“>uÞP~Ôp®±b+ÄÂMnIL¼²ëä.;54›&z\¥¶îtkšÆ!þïüG$ A> endobj 64 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /VTCYOS+CMBX9 /ItalicAngle 0 /StemV 117 /XHeight 444 /FontBBox [-58 -250 1195 750] /Flags 4 /CharSet (/two/colon/A/N/a/b/c/e/o/r/s/t) /FontFile 65 0 R >> endobj 341 0 obj [592 0 0 0 0 0 0 0 329 0 0 0 0 0 0 893 0 0 0 0 0 0 0 0 0 0 0 0 924 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 575 657 526 0 543 0 0 0 0 0 0 0 0 0 592 0 0 488 467 460 ] endobj 62 0 obj << /Length1 1275 /Length2 6591 /Length3 532 /Length 7397 /Filter /FlateDecode >> stream xÚí”e\”ë×ïéfî¡AZZº$¥bf†.éîîn¥Pº‘FA@éæ™½÷y¶žÿóòœWçsæ~3ßµÖõ[¿k]×}3ÑkêpÉXC-A P‚‹—›÷@VM›—ÀË Äeb’…ƒ,`(DÎzàåȸÚø€^¡gü"Ï€‚¸LY(̶µCXeÙþ*È8à`+ @ÍarBjXY8t V`“ ãèÐþk… @ä‚»¬¹qyyÖ`+Àd †àòüeHbÿ¶v…ýwÊ wAš°"M²­¡GO€5È—GŠìB:ù¿aê?Å\Õ-œþ’ÿkHÿ#mávôü_P'˜+¨A­ApÈ–êƒþñ¦²»:ýgVaá¶’Ø:‚ÀB`°ÈZŒ°²ØX8º€þŽƒ Öÿi9·¿-ð(ª¾0—áøç<ÿÎiZ€!]OØ¿ªÿͼ¿98Ø` äy‘…Èç¿ÿ½ú^ò+¨5‚¼‚B 8ÜÂy3$ðæ€!Ö Èi˜‡E —3ñØ@ḧ€€Ç êädñWøŸˆ €ÇÎf‚ü‰x¼@pè¿A €áþó"ÙýŽ u][ø—…<0ä‘¿;BwB6–ùMBžç¿ ¹\ö7‰xäÿ%a>Òoâð(ÿ&¤¦Ê¿$‚Ìéü&dNï_B^NžßCEº³üMÈ~Vÿ/¹{ë?¹yЈ´có"{ÚþȦà?©ìôy‘Ê?© ý‘ʰ?9bøˆTvù‘óCüÈí¹þÈý¹ýFäDŽ石úŸùùs¨‡7¿€‹yÌ¢""È¡}ÿ÷:=ØÙ¤,‡¼@ °¨ÀßQ+W8Aüýå@¾#ÿÍ6`äy€¬pæ VbÁöiÍ¡~òE•ì¨Ïm[âÕº§;ñ‚æPK‡TœÙWë ®ª2nalѹßP¹D¾óÑUøàŸ>{·åf¾•éÕFep”©æù öôÛb’‹ùÐiÀµ[ÄòTõ>F¾ÁÇ <;?†‡ï Ä‚Y¾í 8OWš­oWJSk ãÉæH FP'È„<ã-¸4=Ûè³~ž® bÓïðyî´ÿ|%¶(ðÜdôÉïg2¾øãÃ<‚´÷µM¢:Ô|fJhná5–+‘÷¶.s}æAJ¬€É™zLwZavfJsúãæÅUªP¾Â¾xù$q“1ÚÚÕD,À´mËœ6ÞO²§ ±×u\óo(ø 6Ø*BíÑ€ÕIûÙ‘Ýü_E1J˜‹w[ % Ûlߪ…E”pé³Ü£-5X.ß¼®|ùú‚x:†¤ü¡l¼a]QÚï)'ßTãâ~ù—OhcWN#t‹Á¤·T0[—†Þºý¼GÁt~+ÙÌ?•®"Q”lfZìh¤Tÿô ©"õcý¨ÎÞ|æF`›bj¡!…’HÓ$¥¹ܼÀÔë x_<ùÔÂ(¦¢„/‘ødDwf`ݤNÓUŽ Õçýì'¦„Ê´„œ‡ZçQ®3ŒYÞkY¤Ío^¥A•¢Taœ'¾í¦Ákè¡ëÆhtªU%ë*´Œˆ¸-°ÑÃÓÃys뮑ôíéY/¥Â#÷˜•µUèßd–¦>¸Y×ôÖš?Á`gNd¡¨¼ày.YÒ±ÖÛßÙŠgŒƒÛÓ'ñá½áUB‡ÂÆ´«ÕhÔáç»è›–@âoU´ôÉîd+tØ\¦«Ü®ä7ÇŒßy¹Õ‹‡ŸÞR©¦ mN%bÐȲ\‚&â¨7uÎYiXçEÜée^ ³]Ù,‡‘H%°qÑ[›q@eÓ8‹/7…—yTŽ?`Ò· \Ã#°+c¦Ì uü ÚiJãR°÷]„éôlM™<ÐN2s…D¡çÒŽÇgGjÙ˜†¥E}CçÆ…=•–µ)%‘ýÎVZºç:dy/qîµâÔí¨Dx½î5šh¯/P / ‹R,w‡=¦0…ÙC¦~…sㆹâË=í~Á47#6J_ŒÚ¶Ößq³äŸÚêIU]æ~UÃû@ÓZ×¼|bRX­è’PGfØn®äoŽ*ä“$Å3ZT¦®nݦ‰õ*³Ã¤¤l3ìi°~Hõö¸26NleßäëÆ»ÓÉG¾÷P©›Cò §(ZÞã…“\µójÂ÷FP°ÚpøÒ[ݬ±hÇQw‰Ìjtó ‚¥ ~›‚mµ²9bYÔ®ˆ˜=ïþk9–K¼Š’‰Í'Jó]é‰_»çd.Íxq´?i6ÍèSba;ÙšM·yíoPYD'GDÁÆüìtüà>®>̱0³1ÓMMPþÖ}Æ -5à'¿s mÕÁìÓ«‹f¸fª’ '×:Uæ‘•4ßfÊ©v/øÍâ9Ê»]îü™M)p¾s9?¦NêfZß&ï{2ä³Á~:ðÂ’Ìè kØöÈЮ»ŽØck+¼f0(°ä£õÞñS.¸ÔZSK3—`©#IîuéËôgœ_Žo kÊyÐHú.ñÉ j|Ñšvr‚‹KÄ=î_‚1eܼ « %nOì%¼¶ƒ¬ ¾è&=!ÏÂÁ/Kc›oÊÒ£l¢½’äi‚õÝF?F“ÚÎùñ’¿¨5Å4ŸfŒëuO?¥­{x$¾{"?¯Ë/gº£pÕOâŸSZ}öÈŠé|ò9=}§BQÔ,‰nW@¹Ñë/ßÛáŸÇ-Æ< àǀœÇÚÕŠ$ÙENw/Õt.>:OଓӌÊÖ‘— öË {Ðd”yFC]°ý:÷¡D*9ÔÙ¼ÔÛ1œÆ¢lA7žG»~xîvhd?RÉöd±Ò9Ïî(à]‘>—F½¥y5ø­.%,É%`pZ æ6øbb¹ À4ÕPÉ,?¸êKÉß µbÍíl« Í,v„6[cE.®¢Z\W<Ä>PýའQ¨#7ö”uj³dL8P[íµ'zÍ‹êŽN̵Œ,~ÐÐö}%¶‡õôD¯¥Ú&4,Õg$cm¡ËdжbTÈ“J@4;aëÉܺ?•Õ[J̬G¬D‰±ºùoµå»í}FU—“J;sE¬Bt ÀqÙwõ„²×},PÞiÓl¾ƒg«ò*;œôy‰ÎõmmÙËÕÆ[Òô4VW߯ò“²Uoƒ õSŸ.Zö7è ùÑTý!.qïmEª¼d Ç —³4ÞU¦&´É'­ŒI½aìäBó¥XŸwó 7õ {NºéŠw&¤´¢ßuÜäog°â}¤¥‰|îÃ]ˆ;í£5Â]8‹½Ÿpž06¤ö¥±m¬2)Õ¤·(ðéÓây„5s– Üõx*÷4g¾qªÔË]Ó•&sÏ—çØëzh­Žö°ÞȃKžyXÝOCU(¢íÈ ß˜•NžÓI‹¤ÓÒ½˜#[Ü‘˜6qû¾¢´½EÜY:Õ‚c‹sÿ,Y$·pŽâȳ`©ÆeÔölÅ‘:ÆòñÇ}½Š%ñƒçSÙeÃóóDÁ€$§‘ ö¥#¨ ÝBc9kÕ°Bõ³,üãöÎÿÒ{ŸýN·ûƒä3ÉðHg,ÇnjlYBN6ô! tŒ»'…¸y~R à€@²‡D¯¿5­†dªN ã÷’Fö-¯–Ê•„°®¶û©Ù¥x)$l2#¬)ÕÛæX¿¯QÆ5U¿×/ †>Îw<øþ똲«´&Êôñ‡mØ#bÜE¨¶ »ÇgoÜÓ-ƒ&´ëU_eb¥VÈ g«°ª ¯š ¢–FË0‡˜.Ì»BÚÛ^(1š2Ú„]b°î›÷¡rêÅ)&ÂÇO“&Ä0š2,£… 8óN_• ~²œ¤üùÝÜ[_ãšNÚ …7©¥ÿ:u2 +`h6âQ[/ûicü8#|åX¶§Õë=“_`“¦…Ó‘$OæU™ï6þ‹†“ft‰ W<„Ÿð¥F#†ÝÀ«ª ¿ÙR£ý—÷x½oÎßktú_eh×ÌñžÕí¶o<-ëŸÌ=·×&¥ Uàð;½¬xLWC_u޵6°:ñiÄÔ±8¬2˜ÚuC‹%ÁbÄBû8Q<¦›`ÛUCVþRsp´0W)òNÓ$×”¡þ­Ú޳Àhéh-vùÖ,Mtso›êÇã[2‚;^~|* ÌG7™Øû–ИØìNÂê’ŽÝQöáwÚïVÑÎåú ‰„FÜpÇÈ-Üê‡ÜüÔ>¬•Ë”æЬI…p ”(~‹Í»¢­[Öàg¾Ç¡Àm MÙ œšH/ÃÔ™ëÕûêlÚ¢© Ð ½ÃPéR¬xrP¾¶žd£¹(Qo¶V³´ësó9-pª/ÄËÜÇW(a ¢Fg݃–f˜/Þ[Lļ‰û26J"ú0±tÏíÓy¦Ñ@ç!&fåQé :ÿäDøBôÝ3qÄ›3A¶œœÜñöô[)æª D-c‚±ˆµ‡_È/ðç®ßToCõSl›kª×ÀÂá“×›«« üÛ†Rg?Cuyv¤× ‚.4Ô¹°]çîæ­à{Ð ëVËÄ+¡_¢->4I£W{>ß¿v‡ö F¨Õ~Þôìð×Fâ!Ù »Uh½ <Å€‹x|A§£Hý<èÿάÍaw;¶.}ìÄûÀÚÅwúPìÅZXÕ¯§Á¿Qñ6ÁÌtNü2ñû^Ç߈ñO¾…xíuÙðY$šò5q—ùáõA-Z -Ò*óÕz`ÂN„^ƒ;–rZJƒI½_Ýì}Ñ¢­¸Â¡¥ëø“ÚãéiÅ[`ãÓòœ¢:=²Ãƒ5<ë<œ<“´!†Q{wkš7ÅÇ>ê=> endobj 61 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /GLJXEA+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/comma/hyphen/zero/two/three/six/nine/colon/A/B/C/E/H/I/K/S/U/a/b/c/d/e/f/g/i/m/n/o/p/r/s/t/u/v/x) /FontFile 62 0 R >> endobj 342 0 obj [272 326 0 0 490 0 490 490 0 0 490 0 0 490 272 0 0 0 0 0 0 734 693 707 0 666 0 0 734 353 0 761 0 0 0 0 0 0 0 544 0 734 0 0 0 0 0 0 0 0 0 0 0 490 544 435 544 435 299 490 0 272 0 0 0 816 544 490 544 0 381 386 381 544 517 0 517 ] endobj 59 0 obj << /Length1 1086 /Length2 4511 /Length3 532 /Length 5229 /Filter /FlateDecode >> stream xÚí–eXTm·ÇiI‘”Ø" = 1„4()-! 3 3ÄСˆ(‚ Š  !Ý” ]Ò)! ÒgŸ÷}Ïó~<çÓ¹ÎÞ_öo­µÿëß÷Ú×µ¹¯ë)Á165 +Ë*Ú††`Q,,BÎͭ⊀b‘´*‹ÀÒÒ`@ÉÝÀq q97 ‚qövEÚÙc^¾?Š$%'„+EÚP¬= §ƒ¢ ‰Àz J( ÿÇn€> áê€ “ƒÁ Ã6;$šô‡£;h[ ùgîîüï”ÂÕ g àÅ™äpá4Ê€#lÉA:\/ÎÉÿ†©Š«¹£P:P§?äíÒä¡NH”÷¿*0NÎîX„+ #\Ñÿ,5AüiNGº;ý3{ E!aJh;ù3„tSCz!àzH,ÌÀºº#~…hø?=àöí—Ê=U诤‰Æz;ÿ¥úGõ/ÿ͸íqEzæ"Â""`\!îþ÷“å?šÝFÃ0p$7êê õ&ÇŽ$_0€DÃ^ g$ŒÆ`q¯¸=ñl1®äœ§89ãÿ#þ+@Pìß(€”þ"IQ¤ñIáHÿo@NÙø/Â>ú7I ›¿,"€à¿!!~C\Ûß×Åî7ŵÿ qn‘¿!®ê7”@N#×ýâúb~Cœ²ëoˆSvû qËÃþ†¸õ¹ÿÂÿœeeŒ—¯$Dň´„ÿ/3B#]ÜwT )1±_Q˜»«+ýõíá¦ìßl‹Ä$á…€‘``·ž8$–?͸їC̯lW£SÒ8XG4‹ÊìÔtáŸ.6=ÎM¦»¼D¼ÄáyÊêVëw¯[m3Ð%&iø|ÉÃz)Ù§ŠÕt'YÛ{Ñ™ó0hº¦|ho]_w`úKvüýw­©[mkoõxU —/M^Çk2÷(mJy‘4UKF= .æ»®%É%;DüÙ”ç•øçDS½AÏH+&¶1µî´Ç¤iqçV„ðncësº üZ€>ú•E÷åÏlæ§¶[wâ¦Ü¶êÉ‹ Šª½Ï­ aºvŒŽ Üì·¾ÜO9¾l­t2lªnà<—}Ÿ;™çe5:±WQÅ<*LS¦2w{†~1†wh6ž¥LrA‘k©{v5ù'a˜¨ušDäpÑ„)ˆ*×gš¯7²šìùp¶šë̃ÛndÊ‹ÉtQèm)½ØgNè·‡Þ/ýã,ù™|Ó-é£K>•çˆ:& ж›Ú=cÿZÅ€Θ6Žˆ”gy¯åY,µ¾åk¡0xd?#ÙáçÁ¿ v8’» qpß”è¡zãÛCçH²ñ§ž2rGûKÃËgê?¸ì*ú•¼ðê ž:ÝnÕ¯~ dÊø ³Þ²Àß2X²öHmrJ²4³½ëBQ¹i‘aš›—!`Ö9Ò`Ù>ÓÜKVÍ/ÅÇvû]“Õv,f~]ýì3ÍÚ+èþ QýLÇÄUÓ`u™Ö­¢.Ú‹aRÂÁÑÀñW (C1„OÞ‰ŒÈ5ããÂÔ-_K¢pu{7é*ŒÂ+ƒã©AÚ*9i¦îç'ñЧÚ4•øR±‘´Î­n-ø‚Ó˜§"Öž4Mù•Ù¾4Çen,iÕ„ý3pæç£­¢³c Å¡uršæîª\¯þèkSÑôg‚/uT4ŽI¬{,Ý®ãÆ?Ó$ç‚)w…L.ö$}UvH3vÁ±G»˜Êq ú‘°îÈ/ %Ÿ϶:Æ~Ž‹vâÊšµ•>=ºõí>“;LY˜¢Ä°I·ìI©‡£Ñ¼0·g¹±cOÿ¬eç†úáDãÖÞ펹©; ÛOÖÍ•ý<‡^HfÊ=]tcÊí³RyåüY£ Å dƒÿõT_gÌÝɶ’ôûðÏðü˜ZVýÄ©ñCíqûØ'»E·zDé2ަŅ®æ{ˆü,¡ÁVèŒ2?ô3ÊŽFÔÝ%â¨%’räªK-¸ìïß`oiî¼T¹‰7Q³Ù”£-V´ATmj¥x$íkyj„ò‹iORsÎo••þ(N‡ùÁAö6J´ò†sÊÈ‹Ï+ÔÂ6¬)ùÛäêc=ÓªEa‚©+“£–ÓïPït)õ‡gžf.¶Ù¨gÉÕÎÅÔŒ ²F˜eZ‡Lñu¾T7!æ2w¾×™®Þ^RmÃm_í ¡ æ4½¶¦ÒE?óYîá{×rž\Ñô ÉïroPW²~¸Â¡u ?Ð}&Ît­Ç†©=¸Þ]|`˜óÔ 6&J%¯Ì–‘Œ b}ûÂÜ \‘9È”ê“ÐGû„Öy„ Œxe—Dsë™U5(¦‚Ž,[®¬¿Y—ß³â×Ì úèʱŇ\õ~aöˆ ò VE;{ÆAÜì¨íªóf;›£Ñª w&@ç§–‘f™ïŽc…œ$›+ånªj·¹H‘r2>=teâ ¥~î$*m‘±¼üå†üæË±&æwè‰Ç!ù×/b{ºÍô!,ì·e0ºHÒ×dÜŒæ¨ój5#øÔëw}Ýs!s ·¤’H¦¿qïý 2W)c4`÷/(Ëm~îIºW„Q‹ Ê ')ð^úôƒû­{Çò3ÕÒÕ.©3 Ó¤9„Ϥ†Y³‰óû‰ç¼‰|̇4TÛÒÃX&?m×zsø“;ã3TõÞÛÞÚ¸zRP:)%ô6]bÑË»•ÌÌYàб<Áuú€e¦¤qâzs ©Bë$ë³w)_DöÛä>IkV˜‚t÷n7ÙÑj-tü°/BçóÒY!Ïú±¯¯Ï8÷%¤â“¾9ë—&pIÒ£›ËÜ}:úÕ+öŒÊ矾ÕtS Í‹›ö%ÍçÞÎ?™,) Dh€ð5<ßÔ …Ç&µìV4.·‹Qu’ªvš$h‡›YÚÎ Ü|ⲉ³°¡Õ$L¢}º|w}‰³t5Œa ñâþÎ9KÑf±)ï:åúìV=),y–$q¹­¼£]RâyÀ|ŠÂ9#br Ì+Y6"žTpkœ®ëPY]eb=OÞÊv‰þÛóS§ŒZúo¯šË,ã埂\ƒ{¼v­˜evz»[{™èš/£Nеx’ø6œdÞÁÓ ;O‰³›AëÍX¢—N®–SVµª'pÃ÷Ïõ¹4w$ì”;,üˆ˜~;Eô>Þžß3S#.’eC«+1‘T“9iÁö¶HÈ4½¿ÔSž¯•r]ÚÎñFŸ%wD\3òmáxÛ±'²PM̱7¸[¬ÒÈ=*›æVަÍÛwWjhM,¦V7äuÁ.TEÆ9œ½Y¡ÄN*Šypg¶dS ÕÝüo#¹wŒZfû3¢^ñ˜f¥ïnf^r§·ê®ä§U ~OWñÏ*Æ&%ú>‘]‘ÑŽ¾ZÆM/ÛÃÑCŸÿ±faô^-ÎÊã½Ñ­Ýè‹šŠ»Ùü‘:x÷‡z;òD[]dÐ9“e tu´I(ËtdxŸ}¸dáÍìõ&Í”ú‰¬f0”¼ö‰“S"™½˜÷ùjöFìáįV츚À¹0£âò¬Úçaâ~·qfƃ¶Þ -ÛêB¤sf‡ÒÂnJ_!ý1¾¯gRɼOŒÁém^}ç\„kó Ålùª få5ˆR§†Mø'¦÷ç-û2»Äf3ÚÏ}:_¯%ªq7•d íÄL¯Òû¤«,/-¾:†X°ÕP*_‹ša¢$ÍéÕþQ7œw¿?š“œ_mm–T„““nA@¨Kéâ;=?,œÿamÖÌe;æbÁÌïí€ØªyeØ-󶇚ÆÐM“\ѳªÊ]£ž¬‘ú»mÁ߃=vï¯ùò|­$ºj¥™•­ $‰ ¶%iõo—¯Î[àÍ<È#©]ß×ßcÌÌJDÈEžDLM°ƒÉºí—¦ ”—v9éOÊÝZ†L·.z7ëlA=ž:Iðú¾ë\†ÁÒ½‡RâžIsR; ”…·‚O?ùÅI\ɳ„ òA¡¡aÏRœ?x^“(f(4¦]@ÄÓ4HTÍÖˆñÛä …l·À(,O¸ ‡ûúhõ·Iè‹G阸ìí³úÎv]Tò²S¨ŠÌmÛ 9AxÌþæ@`zf—ÀèGß±C%¾³&ºC^ëðQKï‰{’öˆU÷‹‚ìv²/F¦óßÓVZµ§¨ú[‹Ïiù>¸«Ç·†¦¥º]ä ÃR•ÓÓö}’óh2,¬dtVk™§5¥öº¨cŽÜ+"¹X¦÷A´«Ýâ_˜Öþ±¾«8Š.:®³bÜû^~à sÂÈ~R¿€×-Nqý½@y;XlÜS€IWa [ù¢ÍZ0Rèdîuúög ™é¬‘{õŸÙÝs‰¾6ùmeELéCt ŸÒ€4µÀÛ/Ǿü¡T/õud‡otÄ^Ï·ÞnGâ©[öèZn;ŸË-ªÁö‰²¬Þ¶ÂÜA)Ñ‘æV£7Bß@Ò’^ŸÙ¢ß—1Y“¸ÕtpÜ~3~|EÜán˜zÓR“Æø|É€Á‚ÎÁ:õƽև,¥zmÞýŒ¯³h3/\W¯Ý»µç±¹xãëÌY¥‰ý7§+Â?ût=}È®Þ&ô<ó¿‘{µXZ«ÞÑM ϺrT.j1YžrÞë b@°ÎægnÊèîϺ{’ÖeVÑ/ÖjmsÌ3 ƒ1oånyHªƒwUü¦¿&‹0ŒÈ_òIêZIKÔ»”ÞW%cnÓÌÝUªóÇìsèr¥o¼Íão`]æbQÉ­N²$§¼¦¼5,ÛÙ7}wîEVáàÑ;[À( NbäTZûºlxSPð¶¬÷Ó¢z)X#ôêµp.gëÇ’g÷¾w“Ü­ˆ?%·àç|e àF'ê0~?LØ(í' tÐö&Oíêêµ<¤¤¸T›žGë`š~£Îzpõi(¿‚[àlWÆ¥‘H£“Dù½ã ÚTØ=ƒ„œóªËäÕÕ(Ž«ÏÎs¬¿,sÉÖwä>.æË7ƒM뺈̰•שžÐæ°•gÛqbFßjl§ÌAæ9:Œ=ss/¶Úw¤Oä›ôuUW€W[ç*¢-)Or‰d²‹NíD ‡k>VÒ Ñh؃,gGAWÎUN.¦‚+ÍìöoŠUìŽÎþ ¦ù,0Ð\3”sèªáøýq„‰¶Ò+4S á¬ÓöÜèg>4§Gk*EåàAYN)´É¯ Öµ?8XÇ;Ž¡³xLgY-ëOøäKk·H†Ñ)‹SY†¨Ôé]L²Æ·ô)¶NÙ:‘+G°VßK“Ô«#o•:ï[V YH9±ªÛ²-Ó¯dÝ€TI„P¸OÇK=Ø;í;(K Èp©Ðz•æã/ >Ø‘»WÌ9'¸p¿×ÒèAŸMŸ·aoÙS®‰{ñ÷ÇóvkÇþWKò¹Ìæ|` ié[•O¹æ ½$qný>ƒÉ¢jÅð°Ìâƒâ ŸÃ§Þ2ùïh,¬ãŽ|{æ£Î²â¨gÂ@ÜlªpH„ßa"^hûäÒVŒ1bcY~}¤©ºÀÉD2.´rF­-š<äÔØ=–djk¤@°uvó’ü–.ˆ!¤µmšÖKfL•Æußwàöb֗æ.É;™Ï itÁÐÄ÷füf9Á.žtÖûi\¨égïdq ¼ì>÷}‰‡Ò[-^_\5Ú2yž¸¢CÏÉÝÍn> œ«uë=V öÃQùòE׌8ü…0@n*3iΧ”½Ï`¬ô­•qüI4š6ß>ÿ@?1Oâ=É} ñã£íK–\ruUÛ1dɺÖ]µ9ÒDµ÷åág2Êýx7ðôVëÞÎщë©RŠñæötAIΈlÏˆëˆæüòNõLº&ì)kSFãß\!x‘ÁÌÌ'Û›*Þà4"ø=Ê_-Èâ¢ÊLúQÑVìnš!/ý¢=ŸW. N[Mè-³˜<º¤?1ÄoRãrü¢/4T3J~\é7ù’=l­šwןP½+cfíÖ*À–¹êpîP 5šöL'»ˆµôR˜¬ÜÞ‡›B.e–%¦–am۲⠨ÇèìÔœJÓpYݳâEœçWò»ð-QBÉ+ñðçÛ½Ó¹c™|Äá$9•ÀèteciÞ§ãG(ÉD÷à·ƒ—_qlSl‡ÀëIC mjƒ|ê»n`›Á, ¯Øbül~7>,ö'^Ñk»‹ Èÿð"ÿÿ0êŠÅ8A]Éÿ Ý“²±endstream endobj 60 0 obj << /Type /Font /Subtype /Type1 /Encoding 322 0 R /FirstChar 46 /LastChar 117 /Widths 343 0 R /BaseFont /CINPND+CMTT12 /FontDescriptor 58 0 R >> endobj 58 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /CINPND+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/period/at/A/H/R/S/V/a/b/d/e/f/g/h/i/l/m/n/o/r/s/t/u) /FontFile 59 0 R >> endobj 343 0 obj [515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 515 515 0 0 0 0 0 0 515 0 0 0 0 0 0 0 0 0 515 515 0 0 515 0 0 0 0 0 0 0 0 0 0 515 515 0 515 515 515 515 515 515 0 0 515 515 515 515 0 0 515 515 515 515 ] endobj 56 0 obj << /Length1 1412 /Length2 7516 /Length3 532 /Length 8361 /Filter /FlateDecode >> stream xÚí–e\”íö¨EéîZz†éîî`¨¡CénNAºDPºKRN ‘>ó¾û¿_={<çÓù™/s­{=÷ºfÝñ{i5´9$­`9˜“ˆ$ V•2q@œ@tFFi8ì…9É€Ý Â énà@üÂ<¼Â|¼èŒi˜³7jcëx.ÍòW’@Ò‡Z‚ª`7[ˆ#bK°@f …¸ys$Z=á Ђ¸Bà+Nt`µtX@l Nè\):YÃÿ [¹;ÿ{ÈwEHž#$YE+˜“ƒ7À bÎ¥CÔ‚ LþoHýçärîj`Ç¿¦ÿ»Kÿ5v„:xÿOÌÑÙÝ ¨Â¬ p§ÿLÕ‡üKN æð_eÝÀPKI'ø¯ÔUê±Ò€ºYÚ¬Á®¿ã'«ÿT@´ío.Y%)]=%¶ÿYÏ¿5ÀP'7oç¦ý+ûoýfDwàP/€1!ßÿ2ýb²N–0+¨bCðñÀp8ر3Äð NV/Ä aÌÅésC<@´äÀGÿk9yù\¶Þζ§¿âÿ ñ¸œË³úpÁœ ÿ0Àåæ ûÍ ÛÂ!dp¸¬aîðßDêñG/€Ëñ'ÿa„‰+Äã~—ôopÉüCˆŠò¿ QMá7!J)þC‚Wß„ÈÔúMˆLíß„0ÒùMÝß„hŠÞ?„ØÉ\àß„0³øMˆ^YþC ¢¼Õˆð†üµéDøØü!Û?aýö ÂÂáDh8þFBÃéDhÀþ@„†óˆÐpùð?ð¯…úqûVî ÂÊãDXyþFÄ%Æåõ"¬¼ÿÆÿ>PRR0/_Ä.âàFì6„¢@€øêOÔu‚º¸Ceàú;jé‡CœÜþ¾Á‡õßl EmÄ b‰¾0 ³|j—Þüú­¿lÑx +’”MK‚ZC÷T'FÈ|"’Cé ² ëJ½ÁueöÊç-…kT‡ŸæˆÜqKBÆÌý–‡ùV–O…Ái–ª÷¦3ÝeÈ>Îûæéó>$õÉ•¡·)†Å}9'ýûÏet¶Ÿ-Ñ>ê1öhìÉå0ËrÐ «gâ¡ÕÂÍpyÁ¾ì‰›’ôdy,Äß.µ•mñ¬Ãÿº5?ùÞì±Õˆžù¥òQš7Ö†ÑuÂð%~] iyÔ†{¾j¦a\Õ­…ñͱÃiLö4ó»›Ifu—ó×êéÜb£+uT2Þ ùH%,hT{g1­î£º„¦€±–åÂ[s#µŸÔÃE³”¶ÊòM>/×§°ãÚ?20éAL¤ûØ5ϳY”x”ÃâgÃdïª2©]ê°wìäJj"¬»qé4f6_s(®4Í ¥.H…ô¡ó‹Ú'¸Èèឈl˜£ÉâEÙw7TÈ&ãª!.«þ%ù_hsþ*§¾üA?›ÏÞ)ÆÉòS\­ÑÔè2_l {cCm”ŘX`b¹)LtM ô£"·9@ÖE}s •uÌcR˜ Ç+ýpÑ|•“EÆ2>·âNuSµ8 é§:c¼ä‹bLž=)jU}aç¹?P¥ï‘qòVÅZcmbdÏ–Ã3;@¹ÖsA¸mzO¥ ²“¿¤ù“wÉbÜXŸÌ~}Ù÷’„œaªåÙqãt€¼€Õnö—:ÜØ “ÓwU×r–;À0S‘ݨ–x³à¼€B¦Jý_±Wj~ØS-ûX@¾>ÂØò…k^^»ò¥\ù\±£,¼|€T³bKò‰7»ük†q t@@Ù{'ݱ™cxuGVš;¥ Èž“0v½À•Ÿ7·XnˆûýúvpÐÈI$6'¼Ù…€/,€šžÇÏ}›Å™:y¦«Ûs)@-Îs€vE²9è,âŸJ”í*ÞÎY#ù"/ìHÁ¶Iȱ_Ö_0üÒj²ª-hKžÅ%4T³PvùgÅ‹`ÆÝwqrÀÚîYïæwUaýBj¥—¸ôÍæG¢Ñ6¶»ûÅßÙÊÏ Ò 8T½oOv¢˜¸íû=5½÷Ø3{2ÓŠ]Q¶~l]F]f®DòÚ …™v¼‚ƒª¶ªšN£}ÆÓ³'Ú‰¼ÿÄ[XÃȺÝxÃý}r1.\]gÑû m­P:†¨Pï-†M@ì¶ÚÈ1GÒºz,MIÙ÷úªý o#a^1®¼ª¤h>7L®‰'üa÷Ø*#k”žùì,Û -‹{ ÐÕ)ÚexÛVè¿Ñ´ˆE~ÊnQndýþ´>ZìÔsEÖìaÜ¡¸®†õS“gÒ|a1—ŽaŸGlÒ|‘W|C¾¯Kd!K®«``6Ãì%WUÑKòÖ"׃‹¼'c4©ãï9”°èañýÖØÓ‰'×µúaÅ8DÍ!R¡JŽ3UÇQ&áaì6,MëeÃSdDžìЂ{ÒªÁ˜‘dê(È ë=¾–)"° uh½¬ªÈ´ð‰ã"ùcfÕžÞÝ>¶âÂÏœ×É)™UÚÉo¼Q&H±êê× ‘‘î\-üLsß‚]®C0˜OõÔo7<=¼°žâ¼ Þj`os] ó“MnÜè+]0×b“éBòζ—zív|ìi·i ˜3Ý»‚ºß×sz¢­}|ä@*ÄŸ@/Ëö!,ù !§cª¶Læ÷¶÷»ºmõ”§ÓF$!D§ï}_zOüt¥y³ÒwvE.°Aç'Ý¿æyy?îȤ[¤‚ÉÜï" ¸fW]3X|iëhöaZIÄÔÔサ9Ìßç(Øàaß?QÀ¿k›V¶'1Ì£ãIØ÷ó%È,¹Ä¬†é”Gp¡–?@¥’VÌ¡fäT̬//uܶ·Hžª+c¤ÁhŨûL1áùÕ.ãó®šcrš¡Ý`¿ÔÃéã$â?WÞËHËkïWj¬Æ*OðÊ·žŠ®`¿aºL6(Îà•7"é%RÍátËð‰—k+¾pF®œ, ¸Œ;nvV»y\S•\H ¿û¡³ˆ7(¤¬™Î¦•% ¬¿OÐX¹’çv1lÇ12—cñ^÷ÙòM!WÖËgÍQýwŠšMÚߋ˩ջ{Æ•oÓ„.vîÔq›|Ú±Õç¢p¼/+ŠÓ­N?õ"N›•Ì—cÆÖ¬u£%&‚¹ù5f:¯UâáBªÌÍc¨9æ%† û9y5ge´áªN þåXEߤ_Ö–}\Ì{NQá]›‰ÚlK»f;Ã_[Näô´ä ­ãl¨ëÛAìS†êŠ'`öŸ&RüÖÎæ_Míø·~b‡S®{Çæ!çLX=Èc'^ÏŽ.•SK[ØJ'L ´MuFçã,Œõ`ŸÍ×Õjêã¡U©—7oZ>ú©wäMõÅOhž¼Ùƒƒ¹½«‘¯V4êEåÄÏ»y¼¿r£‘|«ûåò’Ä•†”ìSÅÀ¢âDeêRñ8N¦Œ\¤ñÊR‡È%÷2 åV"àmËXƒ–@8_øñ»™ô ìU>½¬²OІµ]¬¯›^”ì9Y¼ÉNU©ôÿqiŸ¨!ã!žÒðDãÕêGņnbû µÙ/+kaªêÅo9nÒ3_ƒÄË#¸Ó “$à÷ÉÒ-§˜e½]g6-éÆ›Ø½¥ë>ܽ ›çUÕ‡&ÙýRfÎ-¶Ho”¤Q¶=R¹ÂL±{õ©é)/"/±DwG÷~ipáI¼âsè?0—K±.ÝLø¸ícüuÑ-:Ù «¹!†j«t¸ ÛlAö™ÿÏjN|vAø²L7œ†•‘ýú¢ý<Íåþ›7Õ'Œïœa;×ݯ¶ßìž}Ñ 7ìå_!î¢þ³Ö&%ÐÉ\Ô¢÷êK( ©‹µ‹:m™›,ëÄòúHä…Ã:LRYRÉ’Ý+‹ƒõàxx b¨RYdŽßú™ü,RSöaqÿC"_7²ñgú¼ÝZóCcϬòÀ£öu‰_¤pë3Æ^¶çâÎùp®“íod͉Zbõ'lËRœ¦WÔé*ÜIÔXô+f¡Vû6ú0âä®!ñ&AÊñ5×›VݳÛL{g`ŽÀ4SH õ‚°Û!UL=wRP¸Œ:¯Iò.°:^&Wðn&g“û>[AäQjï™ê9noÂÄqžorC6žIj9c¥Á.Ô¨öõ·[A]ºú†‰ÌòÉ,Ñì:bë{Z¾¶½Ê¾ßíls92XûõÛ­oL2Ò³ óòÛ¼›ä¯ËY×,≓„°lº©«OýÛDZîÑû*•3Ðk8—væB¢¤Jwg¿JÕ‹}Í÷Œßð¯üÒcÁ>ÿ¬)É|Å6×»u²ÖtŒÇñØ“ú•œþtö³-±4Qˆø^OÏÝÅS™ìÃï<Ïî'«Å4“n–;ynð¨zø¿Eœ½ämmí£L2èЛÑQð[<¬p@N$Ò3¤.í–bÂ}l[£?'2}°¯Ôy¢¹Ò|DnóúçJsHÄ뵢͙øÝ2·• W»‹DêKR¡©lÍóFòƒ·slÃÌd5Îç“GÜ9~–ä4þ*Øß.ù0ƒÅÜPÆu0«ô€Ô.…¤ß6ÅzŒ˜œ©z¶‰X»#¯ÎÇ6ø)b cz“<¼Î­‘þzV¥lž–£ p€±vÐ.Ìdx€6¬~ƒ{ÌEv±eÖî<ß& 9mß)øæÎBЃÍQ­ú꣆¿”!8æ³w_¢…ÆpšEVË9~•ZC1­šÔ–Åg:Y—®A…¤îv†s©¬wš%Mym&=©ì™Íb†Ö27˜,-à¬ÿ—(M©ŽT¦±ŽtÛÛ8Ô’ƒ7z eG'´~Hq€˜Ô aˆHóÉ×à¤iÒ`‹SW+ƒÉF˜MÕÖö³vqÒÏÍqèˆ}[¾çAÔâ_7þœV? ç÷yE1<#øä^µPÿÙð Á‰ú¯ÓüÂC2:4‘Dq`ó÷‹8¢_q³ê~4ÀÓW1|™S“”:A¤Æ«aÞö²¸¢'&9žâ£¦ñ~àûrÇ.’4kÛO'}BcBóuÈÒluäl«¦íšc»#iìµôÝÄcø3fûRé-Ú÷qvFÛg’›7­šÑSÈßq“±ñ$žQ¼KÆ Ít˲7×+¶û18¦«­1;?κ¿ŽyTôö$Ä)»]ªËÇeÊx=‹#mµßO=jÆBh¾UÈÓ=tƒ±èx·WѼ ×¿j^K¡ã<¨-ýÌ9ËX1zÍ5Ê„Wt›SQàüª½J÷{óŒäGѲV7¤æÑ^G‰=ÅÓ‹r±†É0¿‡ Qoâdß\ýøÐ%þz¥a63}“C,ÓêM>xñWSÝ`PÒ¨Ižµµ^!÷½yRelµlòØ…±YüÉy°WÓ•‹¡¤<ñ-ڛŨ¡Qv‚mk¾ÊK¥¯×@tgjç{‹ÛÃÁ‚Ù£ódÞž½ÖÁ‘p&õG.k÷>¼ò®ð‰f5 ϼÌ8ü¸Å·áìâ‚?,سíòE±GtÂï’×ôÏåìM]4Û÷LvÅQsA¢fûÀŸô¦Å¥Ÿ¢üœú)Å[üUbÉE‰çô(žäTK¨a.=Èiݧ:&ödêÝ6`s°·)ÝÄÙž¶ýáÈ[^G™™pþ¨ì¥~¥J§x>3µ-žñ% +z竃TúŸùQ^wÂ1yÆÕï½ÏY+°Ð ,­}³õX2;>pŠ|§võ þ8>Û(›¿ kPå˜(ÄäB<²¬/>ê¹ØÑQnÆžøto°DxЀJ¬5ÁnÚx¼š–"·½RƒjæÂ7­Õ‡>Eó¹l‰ÛÔ±ªd¡Ä¬±Wžº…e 0ÊÉMùýU_È’bÜ«˜v4ƒ"t+cy²ÄøÕdž”)˜«|N›LvJòT¥›D–ÝÚÛ^ÊÓ‚OÈ"ê3»fÒ†ùõòNxŠ(IèLNX&ɼ¨óJ²•Ö’—?U5 RëÒy±µS©hGöÖØÉnÝÝ'tZ [ßÑ`ß0ó†>ÉJ“q¿Y„}P2{9È“¯gËŽIÇ mÓÆM•¯ÈGãŽtÄÖå•‹²3¡,~àß÷O«M6ô15yŸ;¯~^&6Ä"÷Ë×¾áü­CàHïÙýû|N zÝœ)þs nÓûGøƒQ÷J¼í<$ YãM·BŸÏ{ÅãÄÇi5èÜPK¦/ 4qôfÍ×k-‘­± ?¸¡¿¨u³ÑÿµäÓT]"u„9«hD*MÅêå|Û2/É«ù¬àÇ¥‚óS¾÷ŒÚ 'Å…´´NœwK/Aî‡Ê ²k¬Ê<˜ƒÛ1•w[‡sof‘ù¼åÛ`U5ƃ\Ÿ,<ê8;¹{¹¦ÉJ]8zYånNKÏL®ßá×'h;ѯTr­„¢{íï·Ixˆ×úv6YgÑÔ£9ŠÚ L0aï©fL°'7æäiê–44÷–(Èìè³Kt)Ç6£KŠ™YÌŽö¹üxÄ—D¸qaèXK¥ssÒ}Z°±æx¼AyVtë«LÄ8Qåͱṣ4Ûè KÒøÎwvB8_MÃ…GÖ0ÍîKaL—P4µ¼|× ýâþËN e}>ÚbŸˆp˨¤=^‚1â1±£M`©Åìã5ý2&BïŸ.W)š¯¢œùJ¡/Z’§œãÆ8bµvàÏN¦ÁÐÈœ.š¼ç#¢«5›ïØ1O:»sÑíÏU/íE‹‰³æ õbêàyˆ­Ûy "X*™Üíã¹ÔU©&5‘És#EÓ—OmÅé¥Ê·PûÛÃH¶/;"{íTx¿)ò$ªzw¡—Ͻ+#3K&t‹¹Å/H§*-[¦àoÐu³ä‘õ.%DkŽzhŸx€šÿÀ{™u@H.±^¼d{_<³¿È8ʽæãnÓ¡hæ¬ð•tKˆÝ<ËÞÿåõ‚^À¼„5䈫ª›0ËÌÛÈ­¬5Át–n«}ºó6¹Q¸«kûõ‰Sýë˜a[\¡W»×Þ6[y›ŸTµDÛ7v4™Që–›G¶Whbš%ÞœRòö}w 탳íõ~aÇP¸î œ½o?öäÀ:×®†âö¾# ­IQÖÔ|U÷>êÛ†Bë™-¹N¡¹°íNv5¼:!‹_Gý WÜ”;˜Ô Gt=žE×3øD‚Túê“r„ÃK:ƒ@_4¤Ïn–gq2I¸ÊbŽ/¡h¨M²i6WØs²bVPٽΠËű¾òôøT°‹íÏ2ô¨¥½i)_ï4ZN¼¼×´Ýåéº>ةܸq¯ÖbCuÖV”hÚÿØ&Ä¡V–7(BÁ¹“¶W—»Hbx_Nçpןs)ÒWS{GôYYõs¸„«ÝJEÐð‹@æäc¼7zÓHM¦t³+à;EÍ44æ+&U¼ÎŽõ\Sëzí_ºñgr¾t¼éþq9}›?¡Ìg\¨€œU”ùE‘à®õԭÖ/âîíB‚àk—qšßÍ.«q];½ùLB …$3ÑúøKß® ¬·5ým#ÎÆòWïæk¾ §ÇL­¡h{˜xÿÚŠ^ÂR/wù]-à“71ºÑ>H8œpu*>,+)°éÜOQ¾ ¸¤ØújN‡ö ·ËÕO¼GóùÓ®Òˆ‚ÏîGsŸäíÌÒã”²ÔØö»+dJíG„c(+SøÒ‘\ÛU'‡üŸFi7þ´\5¾ÿâÚ}÷ëŽÈ%„_%WlÀù›Àøl%½rºIo‚$óM#ÞÎÉ®Uô1µŒ:¸ÈXBS?Wic ‰C‚‘ÍüÈž‹¥¡à fß›ôM¸ÓZ©I<”NC+ÖeÒmèËJ‰)ŒQbÖ˜1âjJ ׬y 2Åçf¡wÇŒ 9[÷JØ{‘?êNÊ›·c¢·ÅWöÌÄð…»mçIHtСFìÏ+"ÿu™Ódq*{þãøl-ÐýíR4›[3%¦sqúj–ǧlØ=°!¿nœ·^¼Íýteå{o‚5£NÞ+’9­2uO|A«DÕ=Ì4Â[©FFªQ¾å/ÛC‹~Ñÿ‚´íJ$œ¨¾¥Ñžµf> endobj 55 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /EJBUVJ+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/hyphen/period/one/two/three/four/five/six/seven/C/D/G/H/I/P/R/S/T/U/V/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 56 0 R >> endobj 344 0 obj [375 313 0 0 563 563 563 563 563 563 563 0 0 0 0 0 0 0 0 0 0 0 813 862 0 0 884 880 419 0 0 0 0 0 0 769 0 839 625 782 865 850 0 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 594 460 444 438 625 594 813 594 594 ] endobj 82 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [50 0 R 86 0 R 117 0 R 123 0 R 127 0 R 138 0 R] >> endobj 165 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [157 0 R 167 0 R 176 0 R 185 0 R 193 0 R 202 0 R] >> endobj 216 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [211 0 R 226 0 R 246 0 R 256 0 R 266 0 R 270 0 R] >> endobj 278 0 obj << /Type /Pages /Count 6 /Parent 345 0 R /Kids [275 0 R 280 0 R 287 0 R 292 0 R 301 0 R 314 0 R] >> endobj 345 0 obj << /Type /Pages /Count 24 /Kids [82 0 R 165 0 R 216 0 R 278 0 R] >> endobj 346 0 obj << /Type /Outlines /First 7 0 R /Last 47 0 R /Count 7 >> endobj 47 0 obj << /Title 48 0 R /A 45 0 R /Parent 346 0 R /Prev 27 0 R >> endobj 43 0 obj << /Title 44 0 R /A 41 0 R /Parent 27 0 R /Prev 39 0 R >> endobj 39 0 obj << /Title 40 0 R /A 37 0 R /Parent 27 0 R /Prev 35 0 R /Next 43 0 R >> endobj 35 0 obj << /Title 36 0 R /A 33 0 R /Parent 27 0 R /Prev 31 0 R /Next 39 0 R >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 27 0 R /Next 35 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 346 0 R /Prev 23 0 R /Next 47 0 R /First 31 0 R /Last 43 0 R /Count -4 >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 346 0 R /Prev 19 0 R /Next 27 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 346 0 R /Prev 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 346 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 346 0 R /Prev 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 346 0 R /Next 11 0 R >> endobj 347 0 obj << /Names [(Doc-Start) 54 0 R (Hfootnote.1) 110 0 R (Hfootnote.2) 114 0 R (Hfootnote.3) 121 0 R (Hfootnote.4) 161 0 R (Hfootnote.5) 172 0 R (Hfootnote.6) 173 0 R (Hfootnote.7) 240 0 R (Hfootnote.8) 263 0 R (cite.HilbertCurve_first) 243 0 R (cite.HilbertVisualization_first) 241 0 R (cite.HistMeth_ChipSeq) 115 0 R (cite.Maq) 84 0 R (cite.PeanoCurve_first) 242 0 R (cite.ShortRead) 83 0 R (figure.1) 141 0 R (figure.2) 179 0 R (figure.3) 200 0 R (figure.4) 214 0 R (figure.5) 229 0 R (figure.6) 244 0 R (figure.7) 264 0 R (figure.8) 283 0 R (figure.9) 295 0 R (page.1) 53 0 R (page.10) 187 0 R (page.11) 195 0 R (page.12) 204 0 R (page.13) 213 0 R (page.14) 228 0 R (page.15) 248 0 R (page.16) 258 0 R (page.17) 268 0 R (page.18) 272 0 R (page.19) 277 0 R (page.2) 88 0 R (page.20) 282 0 R (page.21) 289 0 R (page.22) 294 0 R (page.23) 303 0 R (page.24) 316 0 R (page.3) 119 0 R (page.4) 125 0 R (page.5) 129 0 R (page.6) 140 0 R (page.7) 159 0 R (page.8) 169 0 R (page.9) 178 0 R (section*.1) 305 0 R (section*.2) 306 0 R (section*.3) 307 0 R (section.1) 6 0 R (section.2) 10 0 R (section.3) 14 0 R (section.4) 18 0 R (section.5) 22 0 R (section.6) 26 0 R (section.7) 46 0 R (subsection.6.1) 30 0 R (subsection.6.2) 34 0 R (subsection.6.3) 38 0 R (subsection.6.4) 42 0 R] /Limits [(Doc-Start) (subsection.6.4)] >> endobj 348 0 obj << /Kids [347 0 R] >> endobj 349 0 obj << /Dests 348 0 R >> endobj 350 0 obj << /Type /Catalog /Pages 345 0 R /Outlines 346 0 R /Names 349 0 R /PageMode /UseOutlines /URI<> /ViewerPreferences<<>> /OpenAction 49 0 R /PTEX.Fullbanner (This is pdfTeX, Version 3.14159-1.10b) >> endobj 351 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.10b)/Keywords() /CreationDate (D:20090701105700) >> endobj xref 0 352 0000000001 65535 f 0000000002 00000 f 0000000003 00000 f 0000000004 00000 f 0000000000 00000 f 0000000009 00000 n 0000004434 00000 n 0001299106 00000 n 0000000054 00000 n 0000000084 00000 n 0000009757 00000 n 0001299020 00000 n 0000000129 00000 n 0000000164 00000 n 0000009816 00000 n 0001298932 00000 n 0000000210 00000 n 0000000253 00000 n 0000013124 00000 n 0001298844 00000 n 0000000299 00000 n 0000000339 00000 n 0000028687 00000 n 0001298756 00000 n 0000000385 00000 n 0000000412 00000 n 0000171739 00000 n 0001298631 00000 n 0000000458 00000 n 0000000515 00000 n 0000171799 00000 n 0001298557 00000 n 0000000566 00000 n 0000000602 00000 n 0000832965 00000 n 0001298470 00000 n 0000000653 00000 n 0000000690 00000 n 0000906989 00000 n 0001298383 00000 n 0000000741 00000 n 0000000782 00000 n 0000909663 00000 n 0001298309 00000 n 0000000833 00000 n 0000000873 00000 n 0001009641 00000 n 0001298234 00000 n 0000000919 00000 n 0000000974 00000 n 0000003713 00000 n 0000004492 00000 n 0000001024 00000 n 0000004316 00000 n 0000004375 00000 n 0001297035 00000 n 0001288394 00000 n 0001296875 00000 n 0001287940 00000 n 0001282431 00000 n 0001287780 00000 n 0001281898 00000 n 0001274222 00000 n 0001281739 00000 n 0001273820 00000 n 0001270216 00000 n 0001273661 00000 n 0001269409 00000 n 0001256995 00000 n 0001269251 00000 n 0001256640 00000 n 0001252550 00000 n 0001256481 00000 n 0001251978 00000 n 0001243927 00000 n 0001251819 00000 n 0000003861 00000 n 0001243020 00000 n 0001226904 00000 n 0001242861 00000 n 0000004012 00000 n 0000004166 00000 n 0001297610 00000 n 0001138144 00000 n 0001138084 00000 n 0000009997 00000 n 0000008476 00000 n 0000004645 00000 n 0000009698 00000 n 0000008646 00000 n 0001226594 00000 n 0001223141 00000 n 0001226437 00000 n 0000008809 00000 n 0001222183 00000 n 0001206399 00000 n 0001222023 00000 n 0000009002 00000 n 0000009154 00000 n 0000009305 00000 n 0000009501 00000 n 0001206176 00000 n 0001204193 00000 n 0001206012 00000 n 0001202251 00000 n 0001188075 00000 n 0001202087 00000 n 0001187770 00000 n 0001184471 00000 n 0001187611 00000 n 0000009875 00000 n 0001183747 00000 n 0001173283 00000 n 0001183587 00000 n 0000009936 00000 n 0001136622 00000 n 0000013246 00000 n 0000012772 00000 n 0000010153 00000 n 0000013063 00000 n 0000012910 00000 n 0000013184 00000 n 0000015765 00000 n 0000015586 00000 n 0000013402 00000 n 0000015704 00000 n 0000017741 00000 n 0000017562 00000 n 0000015860 00000 n 0000017680 00000 n 0001173056 00000 n 0001171649 00000 n 0001172898 00000 n 0001171324 00000 n 0001168939 00000 n 0001171163 00000 n 0000020376 00000 n 0000025169 00000 n 0000020238 00000 n 0000017873 00000 n 0000025046 00000 n 0000025107 00000 n 0001168659 00000 n 0001166359 00000 n 0001168497 00000 n 0001164727 00000 n 0001154170 00000 n 0001164565 00000 n 0000024895 00000 n 0000021587 00000 n 0000021643 00000 n 0000021723 00000 n 0000022795 00000 n 0000022816 00000 n 0000023078 00000 n 0000024873 00000 n 0000028809 00000 n 0000028333 00000 n 0000025355 00000 n 0000028626 00000 n 0000028472 00000 n 0000028747 00000 n 0001152806 00000 n 0001147667 00000 n 0001152645 00000 n 0001297724 00000 n 0000032615 00000 n 0000031976 00000 n 0000028966 00000 n 0000032430 00000 n 0000032123 00000 n 0000032277 00000 n 0000032491 00000 n 0000032553 00000 n 0000034722 00000 n 0000163916 00000 n 0000034603 00000 n 0000032760 00000 n 0000163793 00000 n 0000163854 00000 n 0000163281 00000 n 0000163426 00000 n 0000163526 00000 n 0000163550 00000 n 0000167303 00000 n 0000166795 00000 n 0000164039 00000 n 0000167242 00000 n 0000166942 00000 n 0000167093 00000 n 0000172506 00000 n 0000437595 00000 n 0000171859 00000 n 0000170781 00000 n 0000167398 00000 n 0000171678 00000 n 0000170944 00000 n 0000171108 00000 n 0000171318 00000 n 0000171527 00000 n 0000437007 00000 n 0000437069 00000 n 0000172387 00000 n 0000172015 00000 n 0000436946 00000 n 0000436329 00000 n 0000436474 00000 n 0000436574 00000 n 0000436679 00000 n 0000436703 00000 n 0000702069 00000 n 0000437456 00000 n 0000437167 00000 n 0000701946 00000 n 0000702007 00000 n 0000701795 00000 n 0001297841 00000 n 0000701178 00000 n 0000701323 00000 n 0000701423 00000 n 0000701528 00000 n 0000701552 00000 n 0000705309 00000 n 0000744814 00000 n 0000793926 00000 n 0000793281 00000 n 0000705122 00000 n 0000702167 00000 n 0000793096 00000 n 0000793157 00000 n 0000791987 00000 n 0000792138 00000 n 0000792292 00000 n 0000792441 00000 n 0000792615 00000 n 0000792779 00000 n 0000792945 00000 n 0001146371 00000 n 0001144700 00000 n 0001146211 00000 n 0000793219 00000 n 0001136744 00000 n 0001138204 00000 n 0001136683 00000 n 0000828447 00000 n 0000828509 00000 n 0000793807 00000 n 0000793502 00000 n 0000828386 00000 n 0000827790 00000 n 0000827935 00000 n 0000828020 00000 n 0000828120 00000 n 0000828143 00000 n 0000833735 00000 n 0000833087 00000 n 0000832136 00000 n 0000828607 00000 n 0000832904 00000 n 0000832299 00000 n 0000832449 00000 n 0000832600 00000 n 0000832750 00000 n 0000833025 00000 n 0000904221 00000 n 0000904282 00000 n 0000833616 00000 n 0000833256 00000 n 0000904160 00000 n 0000907049 00000 n 0000906809 00000 n 0000904400 00000 n 0000906928 00000 n 0000910593 00000 n 0000909723 00000 n 0000909483 00000 n 0000907156 00000 n 0000909602 00000 n 0001297958 00000 n 0001006690 00000 n 0000910454 00000 n 0000909830 00000 n 0001006567 00000 n 0001006628 00000 n 0001006416 00000 n 0001010261 00000 n 0001009701 00000 n 0001009291 00000 n 0001006808 00000 n 0001009580 00000 n 0001009430 00000 n 0001133677 00000 n 0001010142 00000 n 0001009808 00000 n 0001133555 00000 n 0001133616 00000 n 0001133043 00000 n 0001133188 00000 n 0001133288 00000 n 0001133312 00000 n 0001136805 00000 n 0001135697 00000 n 0001133776 00000 n 0001136378 00000 n 0001135852 00000 n 0001136439 00000 n 0001136500 00000 n 0001136561 00000 n 0001136003 00000 n 0001142759 00000 n 0001139307 00000 n 0001142598 00000 n 0001136195 00000 n 0001138265 00000 n 0001137697 00000 n 0001136962 00000 n 0001138023 00000 n 0001137836 00000 n 0001138361 00000 n 0001142991 00000 n 0001143043 00000 n 0001146591 00000 n 0001146649 00000 n 0001153048 00000 n 0001153222 00000 n 0001165030 00000 n 0001165364 00000 n 0001168861 00000 n 0001171529 00000 n 0001173259 00000 n 0001184122 00000 n 0001188009 00000 n 0001202809 00000 n 0001203173 00000 n 0001206375 00000 n 0001222763 00000 n 0001226836 00000 n 0001243520 00000 n 0001252284 00000 n 0001256859 00000 n 0001269843 00000 n 0001274044 00000 n 0001282187 00000 n 0001288184 00000 n 0001297348 00000 n 0001298075 00000 n 0001298160 00000 n 0001299178 00000 n 0001300509 00000 n 0001300548 00000 n 0001300586 00000 n 0001300812 00000 n trailer << /Size 352 /Root 350 0 R /Info 351 0 R >> startxref 1300967 %%EOF ShortRead/inst/doc/hilbert.bib0000644000126300012640000000575212227066722017700 0ustar00biocbuildphs_compbio@article{HilbertCurve_first, author={David Hilbert}, title={{\"Uber stetige Abbildungen einer Linie auf ein Fl\"achenst\"uck}}, journal={Mathematische Annalen}, volume={38}, year={1891}, pages={459}, } @article{PeanoCurve_first, author={Giuseppe Peano}, title={Sur une courbe qui rempli toute une aire plaine}, journal={Mathematische Annalen}, volume={36}, year={1890}, pages={157}, } @article{HilbertVisualization_first, title={Pixel-Oriented Visualization Techniques for Exploring Very Large Data Bases}, Author={Daniel A. Keim}, journal={J. Comp. Graph. Stat.}, Volume={5}, year={1996}, pages={58-77}, url={http://www.jstor.org/stable/1390753}, } @article{HistMeth_ChipSeq, author={Artem Barski and Suresh Cuddapah and Kairong Cui and Tae-Young Roh and Dustin E. Schones and Zhibin Wang and Gang Wei and Iouri Chepelev and Keji Zhao}, title={High-Resolution Profiling of Histone Methylations in the Human Genome}, journal={Cell}, Volume={129}, year={2007}, Pages={823-837}, doi={10.1016/j.cell.2007.05.009} } @article{Maq, author={Heng Li and Jue Ruan and Richard Durbin}, title={Mapping short {DNA} sequencing reads and calling variants using mapping quality scores}, journal = {Genome Res.}, volume={18}, year={2008}, pages={1851}, doi={10.1101/gr.078212.108}, } @manual{R, title = {R: A Language and Environment for Statistical Computing}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = 2008, note = {{ISBN} 3-900051-07-0}, url = {http://www.R-project.org} } @Article{BioC, author = {Robert C Gentleman and Vincent J. Carey and Douglas M. Bates and Ben Bolstad and Marcel Dettling and Sandrine Dudoit and Byron Ellis and Laurent Gautier and Yongchao Ge and Jeff Gentry and Kurt Hornik and Torsten Hothorn and Wolfgang Huber and Stefano Iacus and Rafael Irizarry and Friedrich Leisch and Cheng Li and Martin Maechler and Anthony J. Rossini and Gunther Sawitzki and Colin Smith and Gordon Smyth and Luke Tierney and Jean Y. H. Yang and Jianhua Zhang}, title = {Bioconductor: Open software development for computational biology and bioinformatics}, journal = {Genome Biology}, volume = {5}, year = {2004}, pages = {R80}, url = {http://genomebiology.com/2004/5/10/R80} } @misc{gtkmm, title={gtkmm: {C++} Interfaces for {GTK+} and {Gnome}}, author={Murray Cumming and Daniel Elstner and others}, url={http://www.gtkmm.org/} } @Manual{GenomeGraphs, title = {GenomeGraphs: Plotting genomic information from Ensembl}, author = {Steffen Durinck and James Bullard}, year = {}, note = {R package version 0.0.9}, url={http://www.bioconductor.org/packages/bioc/html/GenomeGraphs.html} } @Manual{ShortRead, title = {ShortRead: Base classes and methods for high-throughput short-read sequencing data.}, author = {Martin Morgan}, year = {}, note = {R package version 0.1.23}, } ShortRead/inst/doc/images/0000755000126300012640000000000012227066722017025 5ustar00biocbuildphs_compbioShortRead/inst/doc/images/HilbertDisplay_GUI.pdf0000644000126300012640000024450012227066722023150 0ustar00biocbuildphs_compbio%PDF-1.4 1 0 obj << /Pages 2 0 R /Type /Catalog >> endobj 2 0 obj << /Type /Pages /Kids [ 3 0 R ] /Count 1 >> endobj 3 0 obj << /Type /Page /Parent 2 0 R /Resources << /XObject << /Im0 8 0 R >> /ProcSet 6 0 R >> /MediaBox [0 0 522 876] /CropBox [0 0 522 876] /Contents 4 0 R /Thumb 11 0 R >> endobj 4 0 obj << /Length 5 0 R >> stream q 522 0 0 876 0 0 cm /Im0 Do Q endstream endobj 5 0 obj 31 endobj 6 0 obj [ /PDF /Text /ImageC ] endobj 7 0 obj << >> endobj 8 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 522 /Height 876 /ColorSpace 10 0 R /BitsPerComponent 8 /SMask 15 0 R /Length 9 0 R >> stream xÚì½k´_E•-ÎwŒûáŽq¿õ·ëµïíÿm„EADå¡DP1ò0yEP±#((Ú¶¨(Š Ú*" >iíV| ïW@ÿÞ™ôaæÌ3gÖï$´¬5ÎØ§~µ«V­×¬½ªví 6X%½jûM:wîܹóz˜70iÿ?cøõö ºû«Çßsɉ;wîÜy=ɃÛœÿl 7|îðßýë1¿ùÂÁwž³ïíÿ´kçÎ;w^OòŸœ7xþÁÿ_û¡ù!b¸¾ëâ£ïüÜüÛÏÞûÖîÒ¹sçÎ5»çS×0?þ[»ãÜ~xÊSñ²ç=õÎ9ê–Oìuã‡_Ò¹sçÎ5¿ýåûSÇ-»òŸf‡Û‡Fÿ­ýü´P á¹›ýýyë¹^wúŽ;wîÜyÆ|ôîÝýÝÞþ‰=g‡Û‡Fÿ­]µø…?ù‡Ð0äÛ¾pÄ5gìrõi/|Bç‡W¦|½Þæ¿ Ö®ÖúîúÞYCƒºéûuéý¹Û†¿½âÃ7~t·Yçáö¡‘ÇkCþÑ{· aÓþö–Ï/øÙâLËÿç%ï.f½÷±ÈP‰PˆëaDáú± á ‘‹LX»\»RX‹rò/>ðâî]úðCí½ûNoÚeÓ¿º€r^ò¯'/ÿÃ’‡X1ü]òå“”-*¸ŸŸú¢»®Úø?ÿÙøÜ·zÊÖ›?:CCV"oùÚûG7rÕoØ}ë—m¿åEŸûôiÌASÃämê%uª—‹þyœò}è´S¾~ì³Gò¾ñ¡áß‹¾pþóçnxÃ×,©BƩï×þèÒW¿ø9/}Á³~pÅ×§qoÉ7?rÖÑ/ßîYOÏ Gå?üÆ/?á9LÐUž¨Sò}üíp½ø¸·ì´Õ¦‡¼aï«®¼üSoÙbª÷ARëö*©ÊîüÙ7‡ë÷¿{Ñ‹F ¯=ïðÑ+~盃ì.zÛ–Líò»ï~zåK_øº79õ€g¢Á¡äû_úäÛmvÞ§Ç%‰ožÿÁï“&|éÂÏdþÖï9æàáúÎ;n;÷Ð-œ–²Îs|˜–WÜûÇ¡Ú0ÒCvÝüã‡4oøõö%·î¶õÆ_8|Ë+WçXêùÐÿŸë.>åòwl=ë<Ü>4Z;â¥ÿo ~ø;-£pÒÖ¦œ–´©i­ ù[Ço t¸úÓó¿ûŽ-§e Ãµ7\ DÀßëoºæÆn¹nÈ7ßzÐAï},òÃ>åh®_±óv/Ûzã^=çÝówòõŠg Í.¿ûWð{>ÿ©‹öÛf¸þÕíKß}ÓïœðH/yþ³^¾íSõœa†ÉÍ"O#òÞ•>gÞ.Ûï¾ÍÆG¼|ó!¿r»§{Ø3‡Â|7N…É›êå´ÃGݾáºk÷yáÓ/;vË?ÿfdò¾¯ØùÛ>õwÝáHNÆnÇ÷Øvã…/ßüÝíÂ=¢Îpã‚=6Û¼qÚyÏÝØ÷…O»|Ñ–n€3Vž¨S¾~à¾?ßÿ}ûïµû›wÝbáž›ôÒgì±ÍÆ.|V–TeßÿðëVrïšývÚäòã·üíÏFovÈ÷}és7>jÏ9_{û³¦¨…ó|þ3ŸzÈn›÷Ö±|ù=w%/Ý~«½_ø´“Þø¢~uûa»múÿìz·m½Ç¶O=ñ5[ÂqíðÌ.:òY3j)ëLZæÒØæCƒ÷[øŠÍ‡9téùs6\üº¹ÓúeæüîãÃчN}ïQ¯Üò¦KN®xàmçnøtòjM .‘iyFµq6¢œÌ&ó'-¤°ô®%ûìñ’mçløÆ—l:ˆø3‡<ó{ï.–/¿wûgnôÁ7l±]ÐÁ;>ùê/¾û’c¶œun ­ö’ÿ;?ü]ma¥5¾}*i;ÚÚ/=f  Ã¿ÿÓ_}ÛœièpýM+Ÿnºö‘¿#4\ó­×ßrÛ ·Üv#ÐAï},ò”zp®£Ãóæ<å°Ý6ß~s¾¸pôÕ+V¬”çãÍyèÁ¦a̓>ø‚gnø±mäð=6?mÿ9_^¸J³3‰Ö†¾Ým³÷¾vÎ… æ|øÀ9§¿~Ϊú†Gí¹ÊX˜Ô©^n¹zŒ$¼yßÝ/<éÕÃÅU?úþðë[^öŒ=©Ž òTW~ä€?Üô÷ßûçÁÇ¡|°²Áoœºÿ  •'ꔯyÑûãý¿»åßúÐAƒË:嵫‘Tq7ÿbäÞ¡¯Õ§Ûúûï½õ†_·¸ó3†ö™ÚWÜtXøŠQLDÿF öØìCoÜîô[lôQÒ„ÃvßüÔ×=úï {Y-’fP°Ì‡©¦îÿË#&áÃÀ¿vÌ8s^zÏ=ƒ.ûªúÜ¥'lû­¯ý˲eZ±âþ»—übøõw¿½këÍþþ˜WÎ,¸`‰Lk3ÈÙˆr2›Ì½ùËð÷¸…‡¼ðY²ëfGÏ›sî!cÍKÞ¾%Ðáy›o¨Z“üÆ<éßÎ;éÜCæÎ:·„Ö^ÿ‚¿ˆþ®¶°Òß>•´mmȾu3 ÃÿéÀKŽš3-n¸y|X¸ixXXùwx^ò€ ·.¹éÖ%7ôÞÇ"³zLå:: óŸ·í¹ù¿>çÛ§¼ôá•óŸá©ÿ{ÍùËÊïK·ƒÎðÓ0SâF¾tätf$­ 󢡯/1øÁ"U¿üä©èåÊO,JÎÿÌ'¾ý¥Ï GvÐÎ[=eøõÏ¿·¤N'ã÷·ë§zY¾2 qÊÛߴóŸºý–›LýtÜ+g`¨ò†gLqÉIª8„ï|tþpýÕ/}ñÜ3\œ|ü‘;n9rïüCg–Ô€_{ÛXrï=¿^ÉÞ­Ž|ÅœKN|äÙap§Ó4áâ#ý÷¨=“–BšAÁ†Ì•¯»êï¯ÞmÇáÙá;‹÷®ðÝ+O˽Ϩ™<í¾ÍS‡yõëæsþK¿úå톻æÍ¬´Á*™Öf³‘9Læà7ì{ï½¹ÿ¾û>ôÎCßkDÜø÷í:üzÇ’Ûtxû<Ûþ,ò+=ðg™Ëyp¶!O«<Ü>4’[ƒ_ma¥µÏ 4L„ÖäÖ†ü/ A‡Ÿ|üÀKž3-n¼åº›n½þæÛnÀß[–Œ¸pÛí7ßvÇÍKî¸è ÷>™ÕcÆÂ|ý­K¿vÌk¶ûÖ‰Ûýæçßþ=õ=ïæ?Gï9çÚ‹GÃü׋þùíû<ïø×l}ÖÉ_÷“ï+ô »÷þi(Ùs—0 œ¯½è”¡Âw/¿ìØý¶ÿÖ;Ÿë·?rxÎÁÏ·÷sïø· ©¨ü·oñ‡»îøÃï·ôî?üî×·³Ù׿dÓ÷¾&‘:Œ/ýÃ#CÞ÷ùSCžêå¾?ý~¸~óþ{öŠç|ûKç°¯Ó†ÊuÊ×wýü²}ß¾'ì»å)‡ï=þúÎ;¶ÛbÃ϶I‡0PrÇÍ¿œÆµ¿¸êOwß5<ì¿Ó¦ïÚg:µ¿ùÙ¸,râ± ‡ì×KnþæÇ‡’s>ù±#_ù¬ApÃõ?žñþáÙaZDÑ©¢ÓÒ 5LJá®wî3wj 4Ü2üzÁg?½`Þ–·}ï¼a¾àÍûïò܇g‡l·}ÿóë N9h§ëzåÀ×ì¹ónÏÛø¸ÿôê nu&P‘È´6ƒ€œLk¡b2§¾ýõÃ3ÂðˆqñGŸºñŸ;þá•«Ò‘:¬Eô¦íŸôÃóO:ïйœß°ý îiøiZåáö¡‘Õ¶6ü–פµ)b¦ýZòŇ?‚WuàeoŸ3-n¾ O 7tÐ{‹Ìê1ca¾~×qGÞ~ëM>°â/wÿúü¾wøißmòŽW|æôn¸îš÷ß¿âÞew]ó/Ÿú¦×¾pã{¼þËïÿÓ—¢ÜÑùé,ºþÚ_­ýåžßüôóïó–éÔ^ýùㆠßûö·^·Ó¦_Z8–|ó¸g}ùüºë7¿~ðÁ‡®¿zîé.¿zû§O{vpª´ÔIÍñAú¹ÓYrëÍcÿôÛ[Ï^|äðDóÆ—lú¾×>Ú#§©»®¹ð]÷üî7®¸ï÷7ýø„ƒ÷æÒoyÙf?\-…u‰Lk3 hF™ÖBÑd>tüˆÎ}í3‹qãï®ùÎð޺Ûʵ’µè‚ÚþI?:ÿ¤Ï6—ó=: ?M«<Ü>4ò_ßÚÔ½Z2ckCþò ÃÏ>ñ¦Ë;-OCü½mÉMKn¿eÀ…ÛuÛ¿º è ÷>Fyjsµ+ÌׯÛq“ž½Ñ6›ÿýÏÚè5/Údøéìùã¯ç2÷€6 Ÿ·ùß¿`‹ ÷~ÁÆ _¾éûö›3c¯ñ&ã:Êg$rxF;àÅ›¼h˱µ¶Üphê#oËß¶ç3†.»~És6Z¸Ç&ŽTäo;÷À©³ïOǫǒLê´ü™Cæ¾vÇM^ð̱æËž»Ñá»oʽñò‘˜çn¶áN[ntĪÄèCå‰:åëcæ=c×­7:òÎ[m|ÐKŸÁNØIª8„+Žæ_þ´ôÞ{ÿòâm·Øç…O?~¯9ßÚËE#1sÀŠã^5gª£*OÔ)ó‹GÌ}ß~ÿ9Š=ç #ºèˆUæ„3JŠ[°T¿ÅÕçŒ 7|öSÛl¾áá{lþ‰7ÏÌŸŸ~ùÃCµï\þE{m†’+Ž›û‰ùsí5÷(týÊ9óX¨2šQdá''µù0#µƒýž¸ï#ã;8Xí‘óT¿ïÜû‘᜼ƕÈÕšÀj%2­Í¬63ÚÈ´Š&3tô޽Ç^†—ü슇W†Ÿ?wÃ#^±ùù‡ÎÌÌÙå·ìð¤ÿøÜI_xëÜYçáö¡‘ÇkC¾äm ÃÕŸ|ÓwŸ;-n¿˜õÞÎg‘fÝȸ?ó¡}ãOv|ÞÜyÏÚàk&°ÿNOº{éÖõ¨¿þð;¯•¼ß‹6dúêíŸ>@ÒǮ͖~ÑèМunyü·6äKz®9û œ°EçÎõ<1X“FvyÎF[oþ÷/yÎSŽxùæÿx`jêÜC·|ÈÐÝ©ûÏý«½óZÉg8÷˜W>òĽv[>tÇÿ}î{ßü“ÏŸ4ë<Ü>4òøomÈß|û ÃuŸ>èßÞ±EçÎõ<1X“FÞ÷º¹Y¼ç5s¿sü_P×™¼ÿóŸ´†ù‰ÒÚ·Žy®ÿôA?zç;wîܹó¯8vNxWºsçÎ;¯·è :wîܹóúœhxÞVã¹^wÿöNäÊ.ÖUÒï?æ;ïó)§Œyùò1/[6f$\£w-]:f”¬X1=k}düÊ×h½p¿œPŽšÚ—fmŸïU5÷ûã¿Þuט™6©£ŠGÍüQ.1Ÿ¹œKøW-Ñ_µŽëÝ%më+‡sŽ?\gÉ’1÷»c¾üò1ÿàc¾ä’1_{í˜Y_<æË.ó…Žõ¹M¾V>ÿô§c†”Y*»[n³R¾hј¹_Ö(ôòÃŽô#g g~2Ï™\«¤T?u\ø•Gí´Zyè¤Ì#Êz¨% s˜)tvÁ6«”°½«Êt2O—œviª®}¦–åôÄXëe+Ó\óãïÐÐèÐèÐèÐèðhýF‡F‡µ…¬Ï°P—ó*5Œ‹[`Ýf/¡òuî´Ëé?s£S9b¤ª]°_<2ÛŽ“;—°žd{Qß•ëë¯Ê½Œ¹gSŠ™ZŒËYë¼~FÀ{ï±Ç˜÷ÚkÌ_ùʘO;mÌ‹™±õ™Ng×LÓÀÞ›9€^ÎðÀ1k¿jkè ÷B‡!Gè<0‚©B k;c4M½Úį@0оã<0‘qMõ“Ñ£>çœ1;=É3=üªH¤^ÑémeþuFå¨×Îó³:íÒÞòXÜlÐE€ÕÏ3ÍnŒ:O€†;:ͨfðœÖ<² QìÛùIŸ=¡óÙÛ«.鯪ºÚåtO%ÎV»˜Û* .aT­f)ƒcˆ' GÔî þA9£-3·]¹Öq¼­X¨¦Œ_Ú»“2×aŽigMl×àá±ÇŽc=+Ôûí7抟¶#ã^ôÎ\N‘F•;~E¤K£I<"SeŽ9¿qÁcF_@1Öm][ç9ãš³Vx¨'ÌþË]Úa“›]°à:ÐX´Ö©ÌN-d+Ó–Uo52é,T)dIAÖŽZ3¢F‡ÕØR£CÖ¥F‡F‡Fµ…uT3gÔϳ†äý`ü$ë4Ç%[jiÆÕ4𙥦úÏ1%µ{&U qÁ(“m¤ò«oF:÷\§Wª?®Ž³>ì"f»`±_‚¯F” ³¬VŸwÞ˜áçóÕw_œÇæõ“Î.ôš“YO\¤¸_ðJ­Fýdeï‡Ãž)9‰3??t¶Ÿ5Ù%Ý©ÎöåâäŽr•”kAmÜQÎslÂç#³tXçOŽþe}ËØÁ‰9ã¤\á°îÒ»Ý;ËèMOxÇaãÔ3¬”.éèÔ‚4¾ÄÜÓ·EòÎ1E§'ú«Úò‡åFw/ÇÄø¬÷4­cÌUÁ•‚[eÓ–•?Ž*.wÏÑÆfW^99\€í€BX䈡¸Ú.£·B}îEßîtö®²®Ì(òLËáÕÕ38Ïé|—ž×átIKÜyœ±–Í~,Ûuž5åeŒ® ïúpÑ]gË\¢k÷œ*-èÉê±Ç˜ õy×z’l›”&F§™íåéÓS¸g‰yŒÚr¶SW²Ö±hÜ 2å•>•2Åá/¯Žñ™ Žf·ŽÏ×ÊCÕÕÌ×r*tþVË_Áut¨‰« ü"K(™?̈,ñihAßRt<Ì$Ía3ŸŽgÏÃõYKÏ&:t`Äó%ð¼ó© ¯úÛì—t^§Ñ0’é½\¢6Â-À?+Oœt2*é¨y^­ØÄQh7öÈÃF‡F‡F‡F‡F‡F‡Y¢ƒJ -ò˜BèŸ\ÍwA7ôÍ8æ0{Wæ¿Ñ¯»ïò>Oµ_åAïe-ͺá, uàEu§«Ñ¨F‡F‡Õ´ÙèÐèÐèÐè èPù<¯=i´GùÃ_áÄCpx>u'W#ó—wœV°‡WMP­Ã¹X#†‡‡÷æX“{ÆçöyWs o²}œ¯Ëët®Üù1Çå¹ÓÞ|©bo-Åõîôßá…zݵ™ª®º³ êþÄQ•q-ãˆKª]ÎNÿT_QÑ+h¯ÒÀñ%¶XÏ‚”3ˆ³E»š“j2×ws¶Š¼tfëü‰ûö1ß«>D÷Ep}þzûÞ ÆŒoà²Å±d‘œ×’ýÉ%ÿÓèÐèÐè€Ôètà{yO ‹íN©Ò•D¬½¢öm¢œW 92€p¯8#ƒ*þ"k;c ŸÀºê¬žåÂ1%÷¥JOüví3Ž¨Ç¨gõ‡¬NÛë^¨Ž®N¥_ÕUµõϬ3üþ ÿН‚B‚G=f‡n÷€ß°ã½¦¬oü Ë×H|V¿w¦¶ –Â_‡T«D]Qrëõ\‡Õ'P§]êOr”C-Âù¢IS–²ó:.g•dé«·×rèÏÂ…cærÝ{=^öÞ*'GN<§rœQª0Fè'¯+r9 T~:ܬ\»¹“#,xý73fµMç±+:S± Çç\®sõ‡ìàµÔÆÙϨGR¯‚/Û*¦èþÕ<+`ß(öØèÐè0CkõÔèÐèÐè°~¢Ó}Ó³¬ùZµE¿„šxöw:‰_1F|½Â‰Íw¹§*DxÀ7Ðö±·Vë«Õð[?ºãŽÇÅ£c4á_URú®ŸzN¥ŠÛѯðèˆêÞù±\³Þr~âVþè³?¯ ªÔX+XYšjYÚ»¶Ï×J§Ã÷ŒéÜÛWöiªù:®|¯ó½Î«º±W”3âÆølçŒ3Æì01{<¥ÜIJçl“Ržç9®…›Që5¾¤{uøtz~Ø}!ˆ³¼wÜèÐèÐèÐèÐèÐè01:ðé¾le::geüÌ‹ìXÖòŸë#8^Äìà3.°S”Û\Fo¥ñs7Ÿ¨úÏ´)2²¼pñ hŸOçP_ǽ»µãŠOvkÙcgRÑð R¨)‡+=rr'NkvkŽ.Ö§Iw#dßR‘ ŽÝCîNªYNñŽTbSHŒ/Îç;Ù©¯s:ÀãU_±ñÆcÞk¯1#Ê„}ìÚšÃñºœÞªÄ4œ±I£…šÙù.=CÒÅî5°‡w໤œ\ÙK£C£C£C£C£C£ÃÄèà¬F9“סÜ3`ö]L¹‹É0UüŠ^ñ÷_XFxÎUÃðü@%¦ŠŠ‘»õðbYŒqÛ©®L9.9›UÏ“ù¬ËýºèÖdŸÆ<äÝ¿îY“Î(TP¢_´Á—PÐröŸ.òÀcq{n+þ§îåTó]ç’¬!¬ÿšJJýX}N‚ÛÁL R8öØ1rȘwÝṵ>ì=®øõ<µs›Ì“ŠS‰óJ´»W=gžkñL›¿ Äãåè"øÌÑWNnO‘ôÛèÐèÐè`yÒèÐèÐèP9…Ï<}̀Π9©!ë6•‡‘ô½!æ!Êñ< -åÞÙŸÃÏÀÛƒfø|}WõÑ>ÞîÑ]»ü¡þª<ÌÞŒËsçÏ]_9¹úl)Š}ÌÛì«‘ô™Zw » ëÓ‰gOîüÏI¸wþ 4G“›;Õ=¿ã[Fn!Úá㤠3%x~DöØc̘kaÿ<öµb…Zõ9%:1Ë%sF÷œh›ÙÕûñÛm¼Ê¬ÚÈ«Ò<çtÉùRò´¶—F‡F‡F‡F‡üåÐÌsÇç½™6¨>Aß ÒÄ|vÚ«¨¨ :ùõ,;œ‰CÿY‚£à³AIN:dT8?“SÝ6³Ü9ÎÆÚÎg¤h¹ÜY¥Ã ¼Èq0õQqšãðËÕaTÏìr‰~[Ê7Sî¬,G–œïÅ©øX‰~ò“ÇŒJ  à?ï@p³…<»pï:É:]ÒÖtžg,Üšã'Ïá 1ŸÄ9¥¼C^HïE|Ñ9Þ¯~OçóÆR&FÕõϼpëÑX\´h̨ƒ')æ-ü <*KÖÅ[w´GþŸÓ+üÊ'!£5P»”Î"VübLaúÑÚä/*²¼rüD¹í°ýCÝ·ÔÁy6m‡ßÒbš!…¼«1%÷îø£–žcês\ìÅi ó½ŒŒÚ‹¶ïʳ7®D •®ÕL·SÂqU#x°nž#Ü»xyâ¼½ÓsµqçÔ£ª\Üê<×ÁxyÔ_…>°?Á=N؃í%1·Ä:>¯×»Û.9,0ülthththththt˜ø)‰Ÿ§²Ö©¯Ó³Åð+ž›pâ„j¦îWtñ%•&?™²–ê9Ûª-@›óçÙ=Õžxâ˜Y7 ÿü!Æ ‹…ú˜òÊñ\-7ãjˆ³ý5Û¬{rUü%FO–¬‹òqû¬Š8h“åßIÜa‡1°û…û" ±;—42æ¢^•“4œ¬]ýFÇçF‡F‡u 4r’ßhc.¹ï†³¬ñÄ„x ¸Á4ó¾VÔt’Ò/û¸•#çǸë¼z$PË^}­Gã1(xEØž.ù4-à4#EËjq/íb ÙªMå4ikо¼Ãc×¹]ËÊmFpÖ"7oqzËuTOÔ;åò ²èµŽ7ãZ%+=N—”ªì·óÞ`mó%èÞ‰ÃIݬóÊ ?gÝvmfyUì‰ÏŠaíRÃ6ϹÅcÇPÂ_%Öˆ+ŸYZ×%¦_¬£Ña†:u+hththtX?ÑAq¿sÑAùéÞLá˜?×s”O^ì]¹M`‡êªê@F^7äçk~úÓ¨·Àß9åwâàȰ ´¯§Ž³wEBkúÆ}Aœpúãü³Þë$ÎÜЯðÙnÀMgïº3P­Œµˆ)×:n¼\â<¡ã€F{46•¥“W6oµM­£|Ó¨óÓÅÓXÚ¯ÃÝ2Ú½¬ž„[p5#µÓŸŒy–èð"Ë‚“Î'±Ëw§°ŸÑhiT¿§ HÄ'Ÿ«þ8Ñ1.+ïhmthtp2mththtX?ѵ=ó0[V~JuϼYÏ+w9}P»vÏÔÙfµ¾óÆ•§û:æ:ìckåÄQ—Šþgq<Ñ6YÖüœ[åt\Õ¿Ù‚1õKµ¼ºÇtºµN'5G›ó¥ªí9®•ïu4¨,²õ98 êH+s°lG޹YRެ_"v#RŽeìΞJ­Ly¢ÔªOÆüVQXõßéªÓg¶ç—´¤Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑavèàZpœdËuz¨+PÙjô^÷šê›ÓæX¦!ûþ‚öîtO—Î:«qtê¹ß1³qɵ š¦c¯f.!¶€ç_=íégλrœ¿ž©ã­ø´€ÕÀ¼CùÃvêt¦¢íÎ+Ö“ó.’à´ÑùI‡dÛqs .WP†¿Ì›Q[[È–Xáƒj—òœñŽ=c®öŽ{yo¼F¶ß\Ä2Ç©¤Ña548{ithtPþ4:4:¬?èàü€kÓi>sÀÈÙ û@™8Oˆk=Ë‹[c.qüA×n*žAGÇþמܳ¹ê†Ú]ö-ª ¹Ž³_m!ßåj xÎÀVÌåîÉ—eÁ»Ø{óéèî=,>ÛÐÉ1{挳™3êo+^«";‡qé(öé]ª¥ÎrÕ#9¿Á5•çüu×Ì mY-ÈI§ÂM­à–õ¬ ^k晌ã°î»€9Mεâ{‘ê{–fg_ë6:ä•5Ç T÷ôÔk§{n\úÌîd§OvLŸÅÇ»Î*RÑ1§uüŒéxÈ;<•?ÎÃdÚ*^ΡžÖä±hÜO©e ç•qØ—(=ìÛùÉšQ¦‚æª9¬Qút¯«ØÌC·‡³îK+Ú^‘…óîÞ¬ŸÎÛ;šÑú+¼¢îºd>Óyë~}Õy–¯ÃÙl•h›³£ þBÏÝ~xÝe¡~Œ­×ì¯V:+PË5ž³Ñ¡Ñ¡Ñ¡ÑÁjW£C¶£FÕj‡nu8koÝwé†p˺âSÙ+è|fÅÿ믬ùÎ~¹Nþú ïpÓ¾ô4 ÇO­ã¤àhv ge å+c†p¨ò¶šÓw—–»U?”³—S­ph’ÑaRͩȢ";µtæ@ö:–ýS wÞ˜-Tç ÚŸÁ-¸Q¨¼êœQ)W4Üõ«ÚÂèûh)ø|oŒçÒú¬ú½ftVûuH©Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑAÓÄ«ÒÙ~+~R¥ã0Å=E:è¢zÚó¤ö˜ë«ÿÉSDCbDÐ'G$ލ8_ä(É2©—S9ºvø /Ð| 2Û‹¾õ“©r1ÊX˜~ÅY‡†Nÿ³n8ûusúÆ>‡K¸&¯~:¿7©>¨7cßå<®y5šáøÃ+¶™{nN˜y¨ÉÍól!G 9^Äm²Î³ã½+dtx—ùPÀ…YîYÊ}5:¸v²þ 5:4:4:4:¸È˜"`žÏd¾¹Qd½Ê|sh¨í8š•ÖìÄ`”ÏŠ#Ž*Õpþ5Ÿø­RÎ4:4:¬&5:4:4:4:¸¯ÿT8€Äö[×%÷œ…„Õ[¶nöîr•¾‹Ø¸úÎ3p`¾û‰±c÷&K™[Ö¯®ëîÓŠÈ){N™ó®ßì+¸5Fsà&G~tGóü<ûì1£Ž;ÁOù¬òÒ˜aæ¼jé¤8ëø™Ûg;Õ¤‘Aͳ W“ÛTŽe½rV£»7ó¨³÷s-TìÚir¦Üévö6œÕÏsÊû+4§±)¦Ûw3Ïe´{\¥Ð赨Ñ!÷ÛèPIë:¨ô™ÃîÝ+•‹>›ó¹RÊIµní·‚ Ú¯‹o8/á¼(ÿŠÕm¼¯ß"a„¼`Á˜ñ%  ÍLgö!š*¾Î=Û£ú•šÚ¾ŽNu€Gê¼–Zq Ý(*Ïï¾éè*48{q¨Q÷~kâ9U:Ù"Üõ^µ mÍIÜi Ó¨¬ÕŽ'ÊŠ¨þ;”ä±;,Èñ½ÔäÓç€ øÕ­•gÏ£ˆ\Ñ–Œʇ,eM¬çy=.¯ëH'õ·ê©¸>(ìÎ:kÌØy›ù-k5<¯àÓÉüÁ®iŒe}à–á¯øµÎÛg‰;V+s¿j n&ãb†JŽ åù[Å rk:Ž‹²ÎëX£Oº*­”8+¨ì²p×+ë7:XšåÌùF‡F‡ÌmÇóF‡F‡'::¸”άŸºëõñ¦,>Q#ýòJÍ­E: +1 ÇI-9ãŒ1ÃÊpV?^~ù˜YR[n9f·Ï³;›¢‚¹ŽK“ò¡Ò [Ÿ³© Êד¢ÏšŒEk:ÿàü•ã¼ÃÖW{§]œ!¢büf¢ãL%£óÇyÖv7gÈû3ÝüÓa_naRMpãâ˜6ÆÈ±VÕÆ7×uzë|”F¥2Í”¬ž4:hÍF¥¶ÑÁkýA§YOô™ˆ%ÿ¯æê k‘;͘Ÿ¾-3Íx‹ÍYã'îÒus–5Ÿ%ÈgôáW #øÀ#Êñ%µwÅÄI1¡üõUgûl­N7¸¦«S…"£¶™åè~e_‘5œ¯¹DÛt˜˜ý§ãŒòСÓ¦ÞRSž£* ®…Š·¬´ï´½ž5 äôAw½:O¨tê<œµÙèÐèÐè`u£Ñ¡Ñ¡Þþú‰ÌÛ¬‡Ü£ú:½+Ÿ1«Ö'2¶2ïcNr‚gvϧN·v¨ÏA†wRùbÔ¼>¥8¼ÈÜvIµZGš½®¶æt^%å"û¥³Rz.0:(ýÕ#i_Ù‡»¬~#û.‡¹*ów—¶élÖq^Gê~uœÑúŠžNg²–V’ó¢¼pZähV‘yÂ5õ´í¬]Ž(Ñ÷v9SԱѡѡѡÑaKitht¨£ƒѤOOÎWàW¬#ëS· ßuüáuÞìñÔjœÕFø[?\Îë}Në@?ZP»ã}²u0ºïÖSöTnÕ+ï:¢üüër¶DµÈkèytÌ:ã’z{¥6ûçOœÄÞfú-sï:sºä´T=¿ÒÀºÊo‰fŸœ}cNY nÞ˜ñ1g§:â¤{\sïy¨c×5kxוþ³Ñaª´MÇ·F—Ü(ÖUtÐìöVe©Oæ3t…Wy…šNj™ª¬Ì1õc: = „GÄr„ÏT‹à÷ëÝX´w—xoðrŠ–¨§R9:â$èxët/ûÆì»\¿êyÔSå»X+›ß”{Q,sþÊíZäij :?]›ºÃÄQ¨IÑÁY¨Êb)oÏo9>ä½Y‚Zžç½îW·cAçBWîñ¨µŽ¢3Uâz—Rhö4:4:4:4:¬¢?œ&}Ž£L‰³²üÄæxÊÁ^¥E4vÁ±÷äÅ4d{t6¥×ê÷øÞ… Çì¢(ïZ÷Wœ˜qÜ{:Úš^+ÍNÖ¬½Ja݃iMæ•{/2Ë1ûa'£óœ8Zâ<›Þ›G¡úP×aWâÊQåN~pZç*n^Ç÷ò,«bŽ1…|2žÓ H»ëá—œ7Óq©ÏôdJœÎ¨÷S™ô§Ñ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑabtP«ÏOaYFn¼Xu^×wb.éhæ¡Ò¯+ÖÇ„ë³Ï³ÓLÎñ㕳qåè]¿Oê°’éWIe^1>:o©Þíʹ¾4fâä‚õSŒ½â1rLÀÕÏ~U TA‡Õfÿ\O•vrüÁqÀÙ¾k![ŸÃY÷.˜Z·R8iR:yŽáøÉö¢»b\,Z-4Ç“ës'²Záda|Z£Ãj®‡\ ë:è]NvJ•“ “ óêœsÆŒoë,^—‹‘:ú+³£Š•9îU¨r³ã¬]hjtÈzÛèÐèÐè°¾¡CÅ:ôÉËiBÅŸ°ýN­½jò®ãË.3èäÜwš†k` Çî–Ñþ@ìç¢#À¶¯s†ÊLÃyBd±¸/Rýò‹re犿’ãÖšUÃwr]/gÍt^Âyx¥¤.G›Z«kÙÍCœowmæÙˆê­›íäù›Ò¬kÓ)òLLê4:4:Ì '“žÂçV‘/¸`̺CU¹§cç(ö~ò}Yâ•ïå¹rÝMêÐûÝa‡1³ÇÐ¥ì£ôk¡•S佉tu›};k¦>ƒ;Lwú©<%,MxuÐŒP߈:zâ:ËÚ}%Sm–ÑÑöŒ3ÆÌcᾸeܫރÏ'a‰‰ò̇¥ ”ä9ZæÙÂRúª,¿ï©»\<ÐyþŠv9Uù6M¶/gG*qG³£­>^7/R]Òv4nYµZ“Ã5ça2Tšõ2ÒH&Fí]-Qí”ßÉúÌ™í"¿qŸ9 L©uÏV•¤üäs¶ÙfÌûí7fÕ ~ƒ™= ·ã4Ç­û/¥oš378RÇÉñ–w Ã;qÜŒã3ù¼nøäí¶óyç‘%ýb,—¨¦1µy~âì(ÿªç·07Ð;æ<<^Œ%.vç¼+ð”gJ's;ûÀНvž9{å¹³Gg/NÓÔ[æÏ*]¿êÇÜÌÇy õ9ÎÿTp͵ïìñPîb>Î:)åÙ‚”“.ñ¯ðª™ªçìZ¹4ž ñ%絜5qü‡¿OO…wÑ2|¦ÛiùßþÛ˜wÝü 1ú£µÌIΊzÎ_)‡Ýj ¨B ÇiûJ;#…ö¨_ÅugÖñ *.²¡/Í(¯-k¹Cjmßñ6cDe6å¨uü¡V¡3룃ó·Z¾n£CîÑaï1ËòÊž0s#Zk²¥T´Ýq¸¢ÿú«ŽšKøM4]›ËmjÊØ­”dÞr‚ŸäwÍX£x8É‘| I}—r8Ûµ–°Lùœ ]ÁT®rn?Ö‹9¾‘uÒé<{]®ƒöùl7$F4Ý ;¢u,| ‹oeKÉÜfTOØo;Ût¶ƒùƒ³>ç?ó ÍÔ•;ûÒø’ó Úþ{Œ™÷u(%¬ÙÏW|»³#'koPnththththt°öÕèPùrhöx?¦2å¬Zͤâß¼K–ÛǽžÀIO–pz뤟5Á¡®y=×Ý[Ñd—+ö褖å +æwâT^|rêÌŸ?fœ§¡{wÝØ+ks\ÎÒw'o0®)¿`ÝŒ|Ž"ÓàÞÌr2âSßùFô…øí9¯óÛl)•Ó+ÞÕÍOÜLCý˜«¯Þ@Çå<†ónDÙÇfŸ q0-q»—Ý(êí¨­ŒÅõhdÔèÐè°š_ÖOtp¾ÚÂùFç9³¯s=º\Êÿl¡®…ìQëž™Ï$ät-^©â:ðQêœn¨wÕQ𯼫ÖÝ«gA¨…rf¿W‘W]ÿ+ç?8Ÿ–=FF.·¢­5Ù3î0‡—Òéë|Ï%4"ZAU‡û|2!®,ó™gŽY%ÂãUìS¹8 r^½¢ŒÌ Ø‚Æ*méê”gÿ Ö§å|Ö"[Þ[—reÎé=â~£C£C£C£C£C‰òìÔú´|]B£“cå¹FiSMÖôô ´ƒU6¥AŸæ¸wݳ—ucÒr•CÀJ;¼’¿öÂÜcKWëÓh‰Fp CDˆ9Æ’ukÊNo9&ÃX©è“¹áü ~Õ7ûܦb5¡˜çÌyN\®'r#ÎÃÑ$ÞÛÌwñ‹¼ç9ÏFTÇœßàQðIòj§Î_e{wËžÊùÕl³j;:"‡éN‹t¼Ú¯úŸŠ¦)ÆeíÕù‰rÉõ¥öë|øÊvV£i“–7:4:4:4:¬èà<¼&¦Ùýš¹ä¼„ó<ˆWèI´·ÏéU­œôU[øyš€S윽+ßpÊ·[[×ÖÔKhl$ó_ùéøÌ+ªœ€5j5Ëè=A´à¾ëäzT[Î^ËùLöÞ:ѧ~Ö(ÌOøëEË¿øÎ/g–#r[m5fÕI7vÖç÷ÜŒB¿ÃU·ŽI­I5–e¡oö©Ç?±ƒ:k²j Ê:ÓæFê4VÏHY´hÌêO2";,PúóÜ@ç‡Qjës£C£C£ƒ³ŽI­©Ñቋš”BîEŸ\TY.: ÇgNz62_ëÉ Š/ÎÊÜ]Y |žþå½qÚ¥‰ûÂ)vܦz$ʨ§F(µ\mÄY:_óÜï{•ut¬É™KÎ~çqHª¸é|ÚÁwr!wÖLd};O#œyÿ*ø†ëÅ‹Ç|ñÅc椱 ì¯Ð;ïmིꗔ·L­ÊZ{wú“q'ϸœdy§´Æ^*½¸±;®jVÛAk˜ ²LùWÇ+ç‹ÜµÒÆz’ý’E£C£C£C£C£C£ÃZ@öZÚ>ïÇ«èŒz!¶>ÕnwýéÙÎË9­ÓëìT.êo5ê¥_™Tß®=rä- ¦ÁþGå¢Ïç³±®ò*j¶ ¦“%ÂcTªxÅ–1]Ût|vº­ïÁeé3…¼.Ìg­ŸvÚ˜yß)3r,}П@Â߇E¿¼6:h ˆY㻫·p¹ZA^çå±ó‰‘ìuAƒr^%«vʳ&ç÷оÎú¸}|‡|À,KwÿºYeœÍ¸à4õ!ŸâX™ÿ8•½÷¢{r\Íʪ´Kë3:ä'õÛúÄǶ\V-R$bo–y8»_3v0=>â$ŠMù™Ú½ÛÅûã3 ÕîÑ}ŸT%«>V‘‚ϵÖÞyµW{äwúòî‚Ls–‹kMãH8-÷—â¼qöœ¼ ~8^äÖùm8ÞŸÌÖ_wÞy̼{AOíp6¢½;;Ò z€M|jŠ[s¯X.{EgûðùŽBô¬ä (wo›ª¬3B¹šy^‘e¬ç±€f挛 9Y×ÊÍ®óˆ–"K.²¤¾ÂÑþ¥î½ÝˆÜ(–Ñ[<ÌsÕC½«‚NRMÜ:/×Ñ3%˜~MŒ­ÎÆ9)ÊäXS)œGRïêæÎwUÖˆ³>«þèÞ]”WÞ6B¬#vy!¦tâ‰cÆ5æŒÚ ± ¬{D ÐDzáŸAÉ®»Ž9[töZŠõ° ÕžK¸`¶ŽŒ®Ž ¯þ»hªZ·£_ªàZeÎÒµ_þþWÞ«ƒÄ±Ê,ÍI-:û@Ê–žF‡F‡F‡F‡F‡ŒÙN…üEGƒz<7.ÕL=Í väС¢Ÿu,`Îp4I©å»ð\Ìo<åÕ1î%#²©úp§'L3¯ëZ³f¥cTθ/C9]ªx\Ão빎KºšÉ«œÌyØ8¿ñÇ?ö·G=fí‘cGڮѰiƒ ÆŒøð…ßöRy©¶8_¤ô¸·,†d<ârmMÑ_eÍÑ$ óŠG¤oÏñîÄpXÖHêu³­¹¹¥fæ?ÏW!AìO®XårŠMUð(£ƒ“‘ÑÊÔèÐè0ƒí7:0ç´ÇF‡F'qg­:^ȾBã*™3y¤\“9É#Å:#pŠÏ=ÃJ"ë |‹rÉ=—©‡ÌXã¤ÃèÆ½«ÜÕBÝÙhïìÃ?çØ ëQ¹Ä{;]|Æñ0ë¤Ã87CÈ:éÓ€3G„ô)›µ×iŽ‹¨8½Òë¼Jîx¢ýê ÞÜ?q3¦¸okª÷Ëq­º¨WÏ~8s£Ž“zíEGáðÔõźç8Ã>š‰¨·ÌïÇÁ'ðO‡V<a‹ÖsÝÕokkúFgÅû9ÚX‚n†™GW)qz褖µQ5Ð¥J<ÇÕw~’¯aûø2/ï=vßÃiŽwAàQ…W£¿¹ã<B9Æœäõ¾Š_UÍÉ~[{çU6Žq?zš£<ëg.Ï–RÑ¥DmÙyHøFUhž(+5ëv®ébJ¿Q±¦LI¥~–už¸ŽÛ©«(Œ_ç¬è?î.;;uÑ6]±åö™Î,M=ÑÑi‹¶–±›¹1©D”{NîyÔAê»t\æ³øt,ŒøLË‹ãäÐÖ(ž90Ö#â„“a¸î…N%jthththtX4ø‰˜Gáö¼åg·úyYNv*©ü,Æ\å8±Å=g%}Cb¬¬k[“r@½gûŒ™[ÈOô¡¸$ó³n›L©àlîÝá×wçch¿—]6挪E}4q}X%ïâv-gÊù­ÒÊ ÛT®Vb)Î3Ôåèô§¢WüÒ±¸ë¬iγ©Åq¹F ¹Gý’f#bGhy=ÆÌ½€Ïü-Züʧâ,{t{£C£C£C£C£C£ÃÄè û<³9Ÿ‰Q`5OÛξ½"ë¬uºv¦Ï×Y]ÜÆé|eZÅ[V쮢ùytz—)óKô%gÅZ’ýgER9åݘ¹5^ÏåøÞbÓ“âøùåüž ’óÒœ`Aˆ)yæ˜çÍ3ï¾Ð¾˜<_Ê远V-Õ"ܹ‘NK•çî}4'}í%ÛKE¾NϹ\çÑÝÑÀþ‡%Î1"nÏ–9ë¬1cG ##ÑÜèÐè0}5:4:4:4:*ÏSŽçÊ%=/‚©Ò_5ë<'S·â3é3©ú=÷LcJŠ&Ž~çõâL9g>\ïr%êUœU‚6 žUùT“l¹99ã~Í£sõµýŒãZî´ ~»‚SüýP×&V½Qoƒâl ø>óÙ­¤;ku31~#/Ç~sRŽ¹È’ãv¾ÎÚåô¿väP)[tÅúò ¾ãRö±ìOÜÉ–y.‡ŸÂÁþ­²£µÑ¡Ñ¡Ñ¡Ñ¡Ñ¡ÑAÑÁy㊥T,¢" õùNnG+Ë¿žÉ4›g«Gjò[a¨ko–CÊÕ8Ýã»t½Òq²bqŽWüýšºNZî(¬—WÚQ)äš wcFd ¸Ãç'è7†ôôuÕ={ä»ôT§ÛÙ~+3´ŒA•KÆ>dw*ˆ£ÓYŠ‘ÆÏ³¶¸QdÍYFoû²|Ý|€OÒPÝ hU£Ã*-7:4:4:4:4:TÐeêhF毲Nò÷þô=8g#u»vÚžuU{WËBæ/Î3W³ÐR%TÑCµ²Œ/ ¯Xbæ¿¶–í7ÛE%þS±²ì©Ü¬#·Ÿë°}9-u²svíê8ÝËñϬº{Óɨ¢':ûR²&+…•YDö0ŽÊy$EIÕ±¼ ¯trBû8_Qù_±{YUo£óNz3¬ôÛ£·£ZÄãåï¢%ÜÓïd—ý'¼U”µH# „£zršîÓ¨”ê6óÊqÞQ«z[ñlÙš\›ú«Û{¬ËN½qÝÞÕš4U<¹KŽ~Ç·ÚùÞÝçZs¼uÉ–èÖçÙ"ÀCþ:¼³PÅÐú^ÐL-·¯öå¼JÖùl鳳͌M÷¨'å­Ku\¨Ç1Ô®ô‘tÅVWç+úÀö«âäȳ/¦<[ÑrЬ®É\%KÊ!T/œ6f‰ç¸Š›éUrÖ1}ûŒe”=Zƒçs¹3)W±#šÏ]áo°Þ®l¿Ña6:4:4:4:4:TÐ÷òÛÙÈzVÞªÀØ9òSÛQò[TM«<‹¹gF–ŸÅÄY«>Á±ÄÕ{d_”=¼³.Ñ“âœÖe\ûõú“Þ•#!ÿPçó¤ÉÍ”¶Š¤ÔóÔõÖi[·¾ù8©Ôœ†gÏìJtÔy¶ãfŒHyžP™;iïn¦”µ+Ï`UŸù›žê•Ù6§EÎË1 ðÕðÒ(ѳ;*‘¥F‡F‡F‡F‡F‡F·*ÍT±‡ç³¸™~~‹'ë’³8N9Þ’×7óÛdšøœ[p %¼—•Ÿßàš Cæg§ùª{Y"úî‰{¶u¶Ë³nð¯ññ5ïkå¯i(1ÔÊ27*ú¯é¿ÿ÷1;|Ì»•Ûjéÿ¬šàìºRž=dö9Z•ÇëÚa‹Æ. ÖÇ['ñ̇®/µD§?êE¹=“¡bMÚ¯³µ\R×´Šºö]ví¨äYóêðìP‡Ñ!·À²Öy{æêðì-à]<ãJÝnthththththt˜%:äÝSìÕ+Ç(ôé2Ë=¯g9ÏV©%¼ívšqknwó ²€Vàݽ|žvåš©â’Ò¯šã¸‘­Ã¥Šu»–ë)#BÆ}· 4·€„w9uÎÀçÍ* Gg]ÃYtOu…ŸÎCòèxÕÛEJ]û4¬×Ô7`®:ûU^©ìØZáÃ5–ÎÉÄ6Ès`‡Nœ·á·ÿ^h‡ÆŒq<ÇÒ‘OÓ/Ï8«­œÂ×èÐèàlÍÕiththtÐ{×=tpÒama­fÊÝ[9œôD)Ä^°Þ‡rœÑqÊ)cÆsŸv«»³–щyÍqu²ìøkïßýî˜s„MmpR›Uª"Ošê-(êq¹ŽÝqOï­K¤Bs•”rm™½%’ž]ÁµŒ&N¦î^Çsõ]k.ñÌÛJ›ÝȈ¿æ”çÙ])KŸ[szËräï½êîwEv'èlކ߭Ó3[P¢=ê)|üE3ÐYY•VY4:pjtÐòFGC£C£Ãº„J¹Êíós’>=é½h™ßéV­Ö'\Þ‘UyÇ'k©Ú ûU½¿‡yéWù¸¾Ê+kWŽZ0ÿ+xm%r{RÎó]:–Š?¬´\ñ?Ç9»˜g¦Çy]©T)çj}¼•”y¥k¦õ{õWwÖen3ÛEFü¬KnG=—Tp9×Ô‘Öä:ð{àüÌÉ'1dö-ø•÷«pT3z^`fãõ·á”¶F‡F‡ÙÝÛè°n ƒÓ|µÍn%W-…½bÖgtà'¾ºÏW¹gmw ü‡\ðüÞ:dtÚî,B5‡-HOD_ó”ýIö½J¹óóÊí ÿgçñt&ãøïdäx éc7 ÓU7›â6ʨôÙ²ôìe¥9ëÞš”WîÒe^iTÍi—“Ó:ÕIöèg_8Ú”öBy~â|#Ç…¸„ë ®Îû%Øÿð)¼¯†#QðN¼Ó^£úˆÞ¯ô`%Kwvw5:4:4:¬è½.'öÕª ZŸq%Å£Pa‰ðº°êCÖ[§Qª¥ªc+è)Ïeì%tD9¹·Õœ•¡Ï•ø"9¤ÿX§L¡óB™ê=*òrœÑ_îTðÔqž³Æ6³¸Ù‘ÃîÅi¬z•ŒP•¹JÖü|o¾vœ¬KÜI*'•ü!G¶Q^…K³TFùWöÉ*/ùèy§\{×Ý^kþ:3ðÎ}aY ždeI£ƒÕœFÇ·F‡F‡|o¾vœ¬KÜI*§F§³C}W‹pÜSΰŒ´Žã0_óÎ+”»S)•²6ªf w£Óö+§X¨¼rîÝ}ké±Hy¼ŽZå[æmÅWdd×{]k®ÕÕLk9ûXÇ:»Ð9R=–å8<;=™ô®:fúë|æ6Ù?(/3æW‡2æì²Ls¼Kßp>JùÀõ1"ÌE5ñ 'Ê1>S”éa ©ßF‡U¨jtÈ©ÑÁÑãZntht@Z÷ÐAy®¸À{8uD,)FåaEó*!q9Ÿ˜íôªòÜcVÎ[ò5¥å¹}ÕÃ5±î5I“zÇ+-¯ÄyrúkŽêdßÂ2r½Tâ`yf¢±SçEÕ œWq1 rÕÓìäå$âÆ[‘‘û±]/æè÷üùcÞyç1ï³Ï˜á7ô[<ÿW¦ RägmÇÉ%s^ÚÉ]kòõ¤xç’óØ•vø.7ËÊ~^ýIERN¦õò Ÿ+6¥cqQ>7"þU÷“+ŸÁ+œe½Ácæaœ•§§gL:ÇC7àÞ§Ê4;ô×6ùÛd•~Å.f™85:8>7:(× t¨è —ð»$Ü;ÞÝàñ{ßúýMå3°íàé%^8fÕ®¬YŽN^u{Çê9¯eîUèÌ–8é“þìRÅ ˜ªLgöEª·YÊù®ÊX.ç±;ûr-¸¸„ãUÖC—Ýü$s ËÝ•h Nç‡3÷ô®Ì1w¦rgPð¾Vœð¹hјùmÓ¬•øsE—0Ç㯋òˆx>é0ÂÔÑ¿ŒÎåã{ëï;Ôõ¤Ñ©Ñ¡ÑÁµÐèÐè°n î—–Ó4?õ0g°äb&Î"Ôo¨-€þŠvOOõ_5©Öý<—TÎ÷æ~«…³ÓRN@R÷•MÙ?Lš²mºäøì¬ b}ŽWtctg²æ¼3Óí‚v4+%KÁµ‹ŠT¤°æHádçÐ!÷¨¼BrÖT×IŽN×5AéäšrÈ-Ý{çsÃÇâo®aNŽkײÓL]µ§~l k’Ömtà3`9Z¢ïz3òÙÎZâö¸ræH”ó9*5µe§±9’“{týêˆ8>¶œVŽønGù¬Üv gçÿÊTA½Ì[õuõ~+È«õåªç¯ô¥žeíNhÔ=‡Ú²¾ÛåЪ2ö,… os/¹¯ ‚×e]GmKça³ÌÕ•ÇÌn"ñ:¸ÎIt=uð]cìqeùÊWÆÌç }µ/ý–1µßèÐè°–S£C£C¥¯F‡uЮ9ÂãέͲvüqëÑùiÝI\såùÎYkÖðºæ«Ü¡u|~¯ŽTQ€µ…· q¿º½×Ó¤xª©똴ǵå+|ã»xîÄã‚ídÝ`=wåÎϸïæL*ÙÙéCöÕª“ŽNç™+k¾kž”Ãðuð±Óù.>Ó†çÉYcaûü®Î 7o̼Ÿ -8rÅmBßx.âQŠkJ!éj£C£C£Ã*”Ô{otp׌8Ù_Í.9o½P%¾ä’;MÂùvWâFáFäV¢Y:J§JDiv^ÅqU5Ù}ˆq§"ÁìÛ+Òwu2ç]$yvs æ_×µÑ͵”sô¿Â³æÀQ?kþfV®/¹dÌ:3T¯˜g</©Ç`•=Û«Ñ´FGsEÅõW—*©ÑÇòX£¯hðó‘³#g›NúÎ{ëÙzúMR'Y§-³³‡;³k3÷¥”;ï§’Eâ}¿ªWÎk­IR/Ф´åó¼¢RS¥–eT‰rdV»o¯d Õ}Œúޜ۷ÀûF긿&u*s°Ü¦›éØgGäÔfÐ{•fõ®ÈˆM!þÃÒçˆ"Ö»yUš“~Aç:.ìhuTéìÑÌOV£ÉÊêÒitX7ÐuR×e²e1ÿ—S­vÏòlAù4‰lézWÅÿg­˜T?³½dþä1B—ñÄêžIë©‚òš²§ÒuØJNÊ•~+3J_ åkùäkÔA Ag;nç*—»Þµ§ªhfÖXÇ=7?ÌR#Uèwº¡%:oa­>çœ1c×hÖõQyw:{0¬/3R°ß†|ýÝî$¬kó{L‰ÓOå!ÍÌV“*Òè°¾¡Ëßõ¨Ø¯“…–OêõY©¢3Y+\ͬ“Æ8©7ȽTF¤gnÔýy%Õñ¥Þãìü¹ãUE'+xi¨ ¶›9ð›qNúõù€FrŒ®>7˜]}{¥¾› V0¢2OpQhgjk.:ªÔº/‘éþ>‘›{QiA€S:ሥƋ²æpæø­ 4:4:L˜æFÇ·F‡õø„[ÜÅû²œãQ(7ÐÖbø«< Ü‹wC˜r÷êÖÊ]Á(°Rƒç/”œyæ˜yµ]e­o«©fÿ€Ì#UÝÓg[çµ²Ä5FWñ„«tñŠz;“zìÙ¡ƒKŽØqÁïå7]ì((S^oAýG™XFüåG󤳧±“zìI%^ÇßlG¹ÇÌù<‹«Üåp‡ÛqsoýÖ0gž½g/¡;Ûu,ä½J©Ñ¡ÑA¿ÊçDñ¹OÎ'ëùoŠ ›uÐ>v‚á« ŒJÙ;iâ³²·ÚjÌøÎ8ÊÏ8cÌü<¥è §`9ÿÏI‘1ûÏlMù)ØÝ«ëPʱl_NÏÇåæä°¾‚2•úÎâTWÕßf)d©ÕÍYkº{1ÏáY™ãƒãa…·•‘fôtåk‚³J-ËËïî­H'ÇÝrÇO^ËvïÏê€YBªœAÄ+à˜ Å÷ìJ¼­Œ´ÑaýAöçú6sƒŸpÝ7ÏÁH³ŸGüOý½uº„ˆÁŽ™w{‚æ•{ÊÓwX4ež÷:bïJxš[³æNe qO» â©-8“JŸè³ËOÍN¦'Ÿ3¯¤kM}òå:XÔ·ZòèT‹*ñ®ìEY¾î´Ê¨³ì–Ó.k j—kÓõXÁñŒ5ü«î\Aó –‚«Y‰ Õ±¯2§œžèoëø;©·W^ñ>“µ…)õúõ±Ttµ®ÏœÔÏ/^R$ žÎSr'';+våÙFÒ9Ÿæ(©×ä–Ñ/t §×m°Bƒ+©Ô¬¼GÉvÄ^´"…ú¸r›Š×Ú&´‹÷9pûšÔ+j‰£­èj–ø¤œt5µ<Ï4\;“FÂsûß㘳ó~Ü2ìËõ¨õõZ„qÁ¡•4:¬Fçf7®F‡,ñI9éjjy£Ã=:(…N?³—ø$1¾‹ý<Ÿ7Ëçûá¤YŽ>)…™ªJ$§¢Õg5fö0 –¿Šr÷ ×~ÅKç/¼8T°ÒÅå&µVÕO×ïìl©ÍcDš?̼2¨oÆ1ouD1P¿Ê5+x¡6U±wׯ“Kæ|MœwªÜëè©èd¦'÷•uØÅp²¯Ë¶ ×Ð:î…ýë›óتzî(÷Ýf/Á#Õ}>¢Q£ƒã6úÕgŸ,…Š7àh2°oœñ÷)ð“žeÁѧ %¬!Ìy÷>ßËß$Ef\ÐgI7jö9ºÍÙfeœ“‹’ñ:>׬[Y>‡ÜYnÔÌÒ¯®Ö–ì‘ß ºðÂ1k <ëàѹh^FùÊØÝìKǽu˜çއãq*XŸiÈ‘+woîK9™Ût¸ŽJYKUO9åÑ ‹Ûl³1ã-9¶wþB™Ó¥÷žxâ˜W˜)[:4œã–¢Û«p¦ÑÁèÉ :ßèà¨ucÌcotÈ:ÓèðxCåƒò„KÔKð¯|BšÓ=dŒ”/X0æ‹/3N<@|€÷»ªíÔµÈ=³»½¬Hzv7ÎF"ðÞZ}¾Ë¾.??f{aq>¤b}³Kuž+êÕ-ÑY±‹Rrü~e¶¸ú Þ´rô»8Rægÿ:®\¿¢'•ò U×2%:–Jt«Nm] ·hð ì+ÕÙi§1ó½˜ý:­àú¶G®4リV‰,)Ç\kZ¿Ñ¡ÑaÝCôÈØ¡2%SyÈ£ã§öêÝ¢Ec>ãŒ1ïºë˜ù8ø[}ǼbkÝTòSªÆµX¸þÁƬ<© šóüÊy7ê¼#7ëvÅ6µµŽœ³ýº¹q)o™6èÌÉ'Y룯èUJë;)ð™uú«;‹Lý÷Ëkd÷wc†ÇWñÎô 59J‰rÌ%xG4p9{ŵÌU•ˆê°ÓíËÍUT[X:Ø¡(«¢$ù4k—r G-*>¹bAÎãUúªØQ½ßÙy†Œ µë6ÎõaqzFú^gËHì±&SI£Ãi…ö’ïjthththtX7ÐÛTýÑsØT“³æç“Ü*R«s[Söêõ~+€ºUFázw^˱zž9ÃåŠõú4ʽÔwÃj,ˆ€½ÊO~ò˜Ï>{Ìçœ3f~ƒ’¯ÕKs¬G¡šæ0û+ÇÖ|÷m—,S2éü üÇ^\í«B­ÊÑqCict^;rè©åY£*í»øX¶V¥!#~F=•¬öË¿ª^9/áhs»/X Çìè˜K,ÙF‡F‡F§EÊ1­¹n ƒÞ˸ zŽÌOýÊ1ýµîýtŒ\Ÿ¿.še])W?æèÌmÎN'U·] „5!sýª¶_Ñm¬mÁcs/â=½JƒŽOÍ¢%è_bÅÛCó7cÆ{C|*£ËŒ8L'ZvçU¤V÷ð qkÐîôƒÊŒR@D®‚b¥dÊ™´‰ý–ÎɳÇ¥Š]8Xo³Ò£ò¤n¡Z®z®'=Væo¨¯>¿â+'À¸Ù R£CI?r/ë:(TKu¤Ð7j·@ÓtWýé2ó9ëŒó‡®¦{~œ‡©—¸gF¥œ=žÃk¶÷‘ÐÑ!!æ£åm:ä±s_¼î ÏŒÀš2zDd > 4CT«™rýŽÛ§š%è°RÇ¢í(:+·õmÇõRÉj9,‹­†÷! ºóÙ :"¦Oªç“Û³¯v~,kEn!Ë+[VÅKTzQoàvY;ùªusD”åÅ”°¶;Ätœd)ìntX.5:pjtproththtpÚîøÆº ª°ÇžåèÆî䘹4©>OzJö¤I½«ãÖ(õy¥SG1é ~HðÒÙÇVÆÅ~+шT)SB|& 8 ßÄa{qÞUñB[P{t'™èH•ÿN¹}Þµ[ÙÝÁwq4û{¹G`.ð¸ ïCxà˜a­¨ÏqBÔçÙòÁ•d uÉx­UJÜϺí×g“úÊ\ZËsÛÍè4æïdáæÆ‚V'‘85:4:4:4:0:¸'w-GRσÝS¼&èøì¤V‘KF™ Šåv²÷®`\ã¤ãBÚº±¸»*1+Ç=ÝÎEÞp­;ë€È@Œg-"štÚicæ5ôetÖJÞù {Y®fž»œ=¶öåv0Â.°Î»œÖˆyÔ.ZËoÀ9$âè"£óÇ>6f 2ï.¾ „#QÀEg_ÙŽæjRžWdê¤_·ÖlY9nV™[ªž(¦8Éj<Ù½‹šý*÷ÞèåÞèàîmththt¨ŒiÝFgü½E–K…ëã9Z_¡û*Ô\tÂÅœ¼*¼ÊzR)¯xéœÔö³ïÕ:ª?™yŒNc+¨<Á5ö¦Â§!R±Ï>c:pÀ˜ûø šOà”ßRºÇŸÌÇ–숣I.bƒ /  þœÕ¿Ü#x>c¶£&0å°PPÚ4¦ºš9æ´bMl$—Wf;¬çYŸst‘ùÀ¢ç…:[S?æð‰å¢­9Q±Ó•¹Ñ¡Ña5cltpüithtÐ^Ötà¤Ä™¿Å£ãbÍGvs#RtÍÎÕwϤN¾jÅuÍ:ŸQÉÕg½U{¯È][«hN¶&§ ùWäŋnjóøŠâ[Œ™c)ˆ2ñN?Ž8ž;¹g>;9Ö¹íÆîî……Õè¹ô™ÛËè4Œm¶3QWy®§Íãýxõ¨$*¡ŽÛO’5!s©b•šõ9ÓLw¯óƯ®¢‡ÎâÜÜOËõWµeýþo…~gÝ^5:8ýqšmtht˜E4:<ÞÐ[Ö1Ç[}’…F±î# ÉÐ=倮<:>kÊ–5©f"Už='-q”dÚTsxµQÏFPNfÏ©8ó'¿¿ã(WìãúìÇT .ž¦½ð—[9kršììHµºÍ=ê –zv:G‡4Æ#RŽñ\K¿ Éí ®‹Ì'B#q .šÇY¿PYI‘í"[«ÒìFá´´âêÈ‚ù’~µ–ñ]ßkS w;œ+èÆ-¨?×3-²Õ7:4:ÔG±¾¡ƒr̽ßÁ5¡i:"\ƒ>ы׸™K.> ñ¥ºf:¤›T·k¹Ú{Ý åÞžè¯î)5ãWe­ßExr¿N{q5Óå“TÚò 1nõßy3G9sC#¢ü5+öùªiŒ¡ÚŽb:2,×°̦8ñ꧛àœãNº~­(£<Á[r<;kr)Ïg¸Ž³Í¬íj³ÖiËÀbHœãêìõ]ËÌUÖä… ÇÌÔj=sRÇ®z²²~£CéÞ¬Kë:8ÿï$¢ƒi—@-2¯ˆñû><¢ü<å4ÄùÛì+±£¬?Ù ò38·ÀÑþÒ ‘ãENH¬“Ž6m_=•³¾+ãEÆeÔÇšu¶GÕ ¦Š}/t)ET¹ç¸¡=r¿¼²Ì5«á«nG(GQóÌ3ǬV zîb¿Ì+=Yåxv ðŒŽÏ3©Ì^fg#u¼¨xéz uÌô䱫Þòõ‚cv>-·†y£ ÏX'yˆXº3dbä­Ña•{Tgrûë3:(O2ÿYKyÍ…÷\ñ¹a£žàt>Gòh–{îË•»“¯œFåç_}ÞÌë°}´\cŽn,ûvíQéqÑ-ÕUç‡V3ßPâ¾±®øåtÃÈIßNÒ/ø ¡vŠr;_u1‡JÄ/£ªkW«¹Ÿî$X™w¹_³‡Ôš•õÙzÊõÝ÷t*ôóW¨@-Î-áØ#xÎ3@ po;2=ÜŽã÷žç’,åÚW£C£C£C£C£ƒ{®áQÚ;ÒS°FæÞwíg‹pv¡’Íh’­LëhÊ8å´®â´ë•\αN4*åžù.•¸iæ€þêÐAis-«ŸÏˆæ¾·È÷.£÷Ëø¼ñå Tk帤¦¿2²#:qÈ!cVÔÎѯX2…ˆ é ¾ZtŽÀ8«©øÕI[Èí8ª&Õ=×KFüÊ`>y¾î7Ô5zïS¥ì¼Ø{£C£C£Ã ®òmththtp;Z3¯T'õm}nW»øD¾ÌmÇå­«“õ0{ã: YßœVp<Ë;O¨åü¦¡–k ùkAΦ²OV}Ó_+Xìê¨÷Ö}¡NjÎË©u¸=ÒzÖŸÃkµ\ÆJŽ©Â.à1`;÷Ô@ö¼Ú¾\¢‘°Ç=|"Ÿ~_)£@Öv'kWR±úÙùŠ :ä’ =ZS½wNÊŽ=ªÏÇ5ûÌ¥\ЧѡѡѡѡѡÑabtàvtíUǨû0ù©\õ–¿VÏ+qŽWÙe©H_ëW<¹k!Ç7rkñp-¸•tì Å›eà*¿£=²çÙrË1kô@±FiSšÎW®¹ß¼²Y‘¸FlqxŒ®/gkÚ¦"2Ë‹÷¸â-3d>[Fצ3†ò»Wü^¡j¯„âÅšùé’æÜZ¶ 'ßʽ•–ê徜uO:º µnW*Jø}A±7Ö8¤K£C£C£C£C£C£ÃÄè%®I¿Âý:|QÏšàôV©TǸ}§-5f'ýŠn8šÙ«óyL3ŸÎ뤙KìÜ7tÜŽ¸º÷pq ­ÃctËQ#Ÿ•§¸SŸETbez¶Æ‚¨öf &I]pÁ˜aÑü&Û“Œøêà.´ èà¸Äç{ ¦Ä”×íÈiT%ÆèÐdvè0©NÎN“ó½ùo¯8iÌ3sÀÕá˜!{†J;îÞF‡F‡F‡F‡F‡ :°ž8«tû$37ø›Aøê(ÞûÆXð+ÊñÄÍz«_KQýÏÏà.U"BuͲËÚÅ{᜗æUN~û†õÓÑ=FÅ Ô*üÌmfT­ûízy=ŽT‘¸‹»7ÛKö™•™’ê ÐD9àzTÀg•kMÎìue–ãf.þÌô¸ñê !\îhÓúno°Æ÷ôýAå—€óú®+f\5yw1÷¨§µó‰ñ˜i kâAx×Àèp£Ã ©Ñ¡Ñ¡ÒŽ“¸‹»·Ñ¡ÑቋN²ÿ¯Ø2NúÂ9´xOXÀß.ÄyՌײy7¬ór¹*ÔVl¼â%”KŽ“ÝØvÔ^xŒüdZ‘פÌqƽqãÚáñ:ªwÒ»œry–¦‹º~g׋ã¤ÃÓÙi¬–;IMЧ9.§3¬›kj+óJÏêTÉï~jûºG´bG쫳,xï Ÿ œU,ãÞ•*•ïig\v:ÆmòŽÙ•©Ñab[«[º«ÓèÐèàÆÛèPád£ÃãÔSå}n¬-YÖH¼6§ÒáU6]!ÅØñüåÞQÒ·ðf‡Î3Lj¡ ´~Zdΰ&ðWYF©n3'õüCNZžq°âa*XSñuªê4T’«?i Óé’jš³&µG7Gbûâ^ø}ºŠ®Nê{¹>f€ìølp¦ ‘d®©^ÚÅ|C5väpVëWoD‡Ü:>úåo0®Ç»p/Põ”SƬwUôßQîmthththththtÐ{'ˆ,eÝÓrõTšØË±Ï×:üìÆç€9®r4Æ=÷Uô!?}«ô]ûΖ³¯à=œy&ïæ=lжêøÙßNu5k ÊÝEôÞkÒ^&Å”l5¹Ô¯]ŒˆõAç6Žžºç¯{lÇ™ þj›¬‡j•˜òl„WNÏ:kÌ|Z¸î¸à–uî„{³®ê܉kr}¦-Ï ÇS®ê»¨úޤž”ˆ tÀ¨yF]ÑmW'bD£C£C£C£C£C£ÃÄè5Íéjݲ0^޻Ş \:úè1£&k#‹[9ÒhÓ ¨‘-ÚY"ÿêì®ây² ºxS«gD+U¼/Ñõî4Ê}ÆÙKþ5=ãr…‡uJ²7®Ð–{wšÉÈžg#užcÁ''Tp“KxN¥¶£Ö‘÷EðÜOwròîJ݉­ÑT¾æ_A-"<Ü‚ûRª‹á°|Õ–‘ø’ âQ«¼ôKU['Õgæ¡Î@œ£ú3ÐÙèÐè 44:4: 5:èÛpY¯”ÃS øŠ"ž¹ðvȃù©Jµ«âsœ†dʳ—¨ØZÝ;TÒ'V}3åà£'îoQÂ’iVýt_,Ò“ëg´Ž‹>U"uš\û©9ÿ\Ѩ¬ *ÙQ˳7‹ÈÚè8£'.:YT4ö«|ÖÓáô^“0r)v(X ì[Ô{¨e)©–j}}w•3<Þ>ûŒY#½ºsˆ¯ç¢8íRtpØç¼ÐJVëF‡ŠFeMhthtXÐÁiˤVŒ„ñòØùyωˆ;mµÕ˜+φ5ÖÄä»òxë 4³oG/ûmö9™Çù:gr¤¥rWÆhÇ½Š¤\Ê4OÚ‚ÆØ mÊmö“h‡ß¨RiòŽq¶>EÇ[7‹@Ëð0ˆo¸á˜ Êí¸HŸJ͸À£Öïfj´ŠÛÔm>¯ƒß>㌹«b«¶Ã_FS>ð½9Æ«òš,§xÑáF‡F‡F‡F‡F‡F­9ñÛpn\Îß2 :~¶â§KÞu tÀª–~ëGû…9›ª<[eKW‹Ë<ÉöU±;§\¢Öý~ü]Èìë|ȾÑI<·“ý°F rªàTe_´“Ô¤õ9±Œ AìI®pXyËþ£‹zÏî4’½\Ž{ óìn“MÆì,W[п‘.¹dÌüµ~CVßzsoÏ1z*ój>ûyd ÷âÆˆ: Œ9ëa¶}ç[²VçÈ•Þ[,5:dÎgž4:4:8j'Ÿ(èÛ©ÛŽ^»gÉyóÆŒ§QÄCp¢/~E‰£¡þ^LÝö]ýIc#ÚrŽ\±…꽪-:Æå´.ÆO‘ÎgÝË”;î94×»²\*;`+ú™Ë³íTä®6˜u@#B™~Ãàš£î«Xê1œt\¹¾‘Êo–q9¢1ø¶N«FÂ9ÞìKyîÇ厇ð è…#NyG·FðœV¨M±îû_ÜÙ5˜‰ñ[½ùDP•ˆÎfÖ9{tØW°‘F‡ýÊ”“hthtxâ¢C¶îÌáìmÔŽXvxrü»¿3¯"¹•&dÈŽŸO5¹èD¶ë êwÕKTÛ³ïu>Ü{Ìåük=æ“¡roöÛuœš”Î̇ºd‘ø|ޝ:ÊôÞªæð‰*ÙÜ#’[åQÀZ»î:fø¶_Ž5ÁfA¾&¬HNÌ+]vkýƒrž¨Ê£ã¨"fä˜UަæÙTÅë\²Îël§Ñ¡Ñ¡ÑÁiH£ƒ“l£C£ÃìСn}uKqí«†ókˆ¶ìž1Ý(êcqiR\`Ü*-_ë{÷l_\’½ß¤£«x§ Žä¾r|cÒ”±fRÜ©XÓ¤)[D^Ùäs!ò '})}µS¿Ý™G­kÐCìÑ$œ­ÁX >±â¥ô/mßïç$¨ñ7.×=ùØÀ+ÝL­C-ç(.SîfhI˾]gÝ:[Öx—æ¬-+S£C£ÃjÆÕèÐèÐèÐèàÐA[à§-§ÉÎÒóSyNÌI=Å—ËW³¥ç¨‹ÓC×Zý.‡\üt˜ŸšA´eçÉ3…™¶J„ªÞ²+©øºŠÏw×õQÖŸ5ALJt®I}¬ú– Îçð©ÐOþ’×üùcv0ÝÅê,ïe–åc¿ÄzÁæefoQ«±nZÎZbØ Ì:Uc“™m±%ìÉÙ–3+Ë“¿=n—esºÍ›ð\nÆò8Oë'ó“iÓò˜=;mµØlÁ¶öŒ%Yn¨·o –Åjhë MZ¶ìý\-+}.¢®þž‘_'=Dz'}°C°C°ƒ‚‚‚<_eF—h뫃m°÷™'J$¯W‚ãxäì±*–ôô¬§& :Çc€ÒÀï˜Û­û\­¾Ù6Ü?‹ðØR;gÖU*Ó[̶g Øjí‹ðØp<ÁCÞb“µfÙªWZå¿cËzJ<¢²ÏSïDý\ùÓ$%î `~ä \¡f}ÁF´€}«W·TïÁúh ®î öô¬_+³~ `ZCŒ vvðüììÐ~ØÁ^¥ÊZOJÖ§Œƒ4[ý“úÒ§&~;Ïì’]sJÔ[Ɖ¨?vYÌ $~vŠæi,]+æ=°eî·™ ì·êìÚöpfå#O‰vÐ#Q‹Yk‹¶WK=‡òÝOYqÆV Sh&Òñ¬—í]¦ú¤M»/˜62_¶2’zêy‘kmÔû@˜äõ‰7¸ó\Ë wToEY`¥À;†ÁÁÁÁÁÁ™Ùõûîž]”6Ó¦ ˜R¤ªßdcßÇdýnzôª±V°¾³eågIvʇåŒmÁÑa³ƒÝ"4$°•2žôÕÿ²aÆß_:h°m©î_Ö³6âHϵÐwÉ÷=™Üðû¡ÚZʯ2–QV¶H·å);?%‘›þR³<̰9Ö½|øÞŸ¾¶mö,“FÖ™ÑÞ`‡¯üììà©O°C°C°ê9³Øï¬Vž7îñùËÞ‘å—•g´z–˜Õ+‚2aõa>f“=ûQ&ÌR1MÓ#EvȈ“‘葆¿‡1SÛ2·gMð³9³WYe¢õÄ3w’k=‹›>=SÈ5bŸ±&ú½KíGÒ_)Õ¹á)yÌ'on¢¿Åc÷к²3:äW½Îä¯ódû=Ø<–é «'j–ÂF·ÎÙ¯En­v¨PžÁÁvÝ‚‚Ú6;x45Oým×O ¶dlmôŒnO­ü6ĶÏL籦±îÐ1ÚWÀÚÂì³ú„ÏxñËÍ3³ÚÞêÇ‘‡Ë°Y`VQ³-¨ôÊ©g`ûLЂcŸyi°þº²ŽšÆü²ÇÞ‹cµWÿÊò÷ó#±^³s¶ë_õÜ8Ø!Ø!Ø¡ž<=5vvhoìÀjh[o»†v{m™È@Új!<Á.e˜ulz,Œ¿Ý:Yd)Ùz´¿z$¢·Ðß §Ño‡m™ûùÅ?¾ü9ØZWSTV”ò»±«z4±y¶TR ;èœ%O±ÛúÄ9fKµÝ@ ×ïú¡…Av`v†vn5]O=SÂY¨‰—Õ|–JÉ#m»ßí¶ØãÈa-ƒꉱ%ìÀZìà)%Ø!Ø¡õ²³À¬þºG<š¯u’­¹°RðYÞóD†õÉj[*ã ¿MúÉH‘ó“±&"m½R/¿ÊÎRy‚¶ÏÖ5”ôrfšÖ"|Æ×}_«ôxª öèö÷¬$Ú|j÷ G(=Æï˜óæ¡å·O¨óÛ¶kÁö~lfÙ²ñ›ÕОwÙ}çžK;;;;;;`ÈìY²e%A, óKø5m‘=BQOp|±:3V6‚²¶‘•åñÉ3¾f‘˜<çÚ§²ñ‚kߺD|¯J÷³T¶n{deçæÉ¹2~GYaØ]ž9€?7–?³À8—ÓûbÑö"³ æ ·Ço»ÐR¡åí;©}Y¶0ikoÓ [Úºt­íâ ;66~…ã¤?œ‡Ô‡ÉÄlnì×g[? !ØÁ¥-ÁÁÁ¨9Áí™ð]oÜ«Æjh[´ùlçª-=LãßQiÇØ×~ù³R<9à*3ž.(cGÆ2~ÇG‚ýI[sЧtÞyy°]…¨L’âéS°ZyzsñµY{ÁÓ l»þ*½®³X]黹sóÐçéÙ\`Jÿœ m…Î w½Úü‚ç²ýöØò.žœæÁZ¤ëiqìƒ3+´~žý´¶öÚZdŽÓ`‡`‡z4*Ø!Ø!ØA×3ØA{–ØîDûÚ~·õPŸv‹oÁ°Rìq§uÆo¥ÙHôÛ»ìx½Ú˾j¤w2ÙŠÜðû#3GíÕA?A{úݶ!ž‘h}Lïñ}UÓk•µÑÖd-[»tfK™åC;ÌêÉ|‰Ø¿ÚþྛGä¿l‹³Sí1ÃüÙ*6ëGOOáØ±mrJùQ Õʪ½ŽìP´ƒ‚‚˜V;;ØöëÆd…£Ó3Yy®™dXJϺ¹­-,x8‹ÕÓ3»ÇžXY)¬,¶ïۢߢҞ%ñ`È>Xá/¶hë-k;“ªÇÂ`þÈLžÕÔܓң!:èdOnòÝO-%m—DâQY° ” +…õóA1Ñ5ÁÞd^'²†Ç1¯ æƒ-Òòaí’Q gwr-^,=v<{nØ#ÂcÁÀÎ;;;;;;TÅþ'wüÕ (lËÏ|Øãþ‘ÛPÁÃG´î±7h$ègOý,Ï|q¶þàèÖ9Ë:¦þN«@l—ì<ÔOú¶µÄ¾óH¬²ôž:TÓƒþžµÓ íbó;gák¹ÚsËJô³ó,1몵š1 ã- ¶Áb¦ç,&=}/ŽGÝ^äÆe¬Ç+ólûu²ìaD4Tv`­vvvh-ì€VôOê)‰õj‘çéO§Äoÿ1›eKÀ3¾lËÓ”A¾á®wëá(Ö»mÖ³yYÞèÑëžØ_ÒïÂzMS<r-ž ö%Y;øí'‹÷üjÏp<åfeû^¿Ç?š$\xah™Ñîa±1Åæ]ŒƒØlëcÏâ<3¦ È:g=väZf8l>¦9ÂÎÓnJã±([ëüÚuvȦéC°ƒ?M°C°Ó„`6feöýŒñ&Æ :à[ù¬Dý«g´2>b9ÛÁ_®'`z|› ŸRŸ~:}B‚Ä`=³Ê¹FáEï°•káÙa«Ï󳓳Ÿö±!«/T‚½ÇÛ_7Ææ,%›1KŽÖ ­–ÇÎèê•VÛ;d{N²ú£<:Œ÷êq$c„•¨µOí`ãÈîqÆ}8ßÓ>@ÌÍcçY ëG[ç !Ø!Ø!Ø¡žÞ vv`ãÈîñ¶Ím)øm‹ñç\Mz›ËXz[<+_ž:ëoG꯴ȵ^=g_fô[TwøSÚóöîÞI'å¡÷²y‹´]8qË–,Ç‚ñZ÷ôÚ¥hµ@¯S /hÏ’½[Ò¶áh=2a9³ôöøÒcPÖÜ?‡ÕL¿ö°‰fòä<°,‘;kN—‚k  Há©Ý«¢-’ç.-gÆDÌò£ +/¶4ì4ö®WfÛmïë/=ƒÒû@tkÖÐgà0™gå,ǽÁeÒûs vvvÐ!Ø!Ø¡µÛŸ€½ñ,Ïjòñó…~®×éÙŠž=r1Þ\“¢|ªuX¼(úl vЏG&þZÙz®S²óå𚱘~ûIcI‰Ñó b9ÛLìÀä‰ñ,Ïjò vvvvvh Ác-³r¦ñèUÖ»0`ÿâØÇ”•É k¨¿&)6MöþI¼~–ø¬¥T&Ioë¼§í:i‘Xi|UvHJÐ߂ԶWd"l"^ü<Úë“ÕµåÑr@vðŸzáÙqŠ932_“mùu`>4öí¡ÊÆ£_glËâQb(={þÆÊbí=¯¦\Ë¬ÃæÆe:œ}v„Óƒ¾rìììììPmœt¿ÈC<1Ào·=̾ Gë5ûWV ³v}ücAe]Cýfœ¬µiûÉäæ—'•ž|˜­Ãv¯Øg›Ú³¤ñâ‹y0©bÍõYèÈé¬nYyS"iÔu`¾´EúûÂò+~©sÖö“­ïÛý…)ÙXcúÀF-aL£yKg»)ìªkkßËZŠzÅ$¬{AÅ;;;Ð_ƒ‚öš»mX}ì'nÏÓ·'Æ~ÒgRÅ_õŽDôÃȘÕ_Dµ}S6GØÚˆ{Â=S"ÇiFÃUK´?ÚjÉ h™0Ë©¯ñDn[7´/ŽIد۶þØb÷—=îvz‘°öÿhéÙ-euFYI¯ ô\E÷¬@Ÿ²RÁÁÁÁ_‰‘ì€ýìÀØG–<¡  ¥»gQKõ˜b–ǯ“ Æòôh]fµ<¶ÈŽ·­¥Ç¾ÙãÈ<üÅZgâÉxÝÖ' ¢ýÔÚn¿£d·HⳎ fi™U±ýE¬\ý•Xœ±èxäVÛï„ÜoÃÙúàGž¾`1Ø¿ž^f>R”¶–ž=ÆY{j"ךÓõ¾ý42–ƒ‚‚‚Ê”ì€=ì`¯J³š·Ì`Û:&ó?š§d= k⯳?^ÿŠ=âÿÕFðh>ë»E6Øù³ZéÕ:m% ¥Ò«·Ú"ùx´kÅvM³…Ž—7ÈlÝÐö\[`VJ^”‰ÎA¯uâX`þ(=ÖP&• ϽhÍÅØ:µ­ÿè£ÃÏZ’ÈÂ6kØúuöœ»ììììì€òÁ{ƒÚà ÞtŸ¢Î0mGý‘“P‡±ýÁ£ùß ö²ï©j ÛmˆÖÀ?¢±ž6wØ'‰1ÏŽM<½Á¶Ò:^¯Yë9ƒvŽÓC¬›Gz’OðÀÚÚ{5¡íb¹!ÿ2MÃru{³²ƒÝÒ¬zˆlÅZgó¾.Wó&J’}ƒ ­^Û²E.³ë£)Ø¡©;;;;;4;dµ­+ 66F{ýý‹}Ílzô®êrí3 K2Ël?÷é}ÍF“'+K~ųl›`ïhõk k©'½g€*/é·ê$^N2_½:yÏNÖî™Ä—¢½^È,ò«ä#'Æë“ ‘÷mÍ—_…±í^fyêï:ùk‚rF®ÏêAÒ»#SØs ,ÝnW!;T‚‚‚‚Ú3;°ñ{“ùªÉß³§Žy?l»öœÝ%¥Ôü‚þ%ÛãÄZÄÒ0ëgsK׺ÎÒ›xê…ÍËØ/¬>¶íòäæ±-L¶Ú†hë*¶ZûÊÞ|39KP 2aŒ‰{Vµ<õH‘k9Ï\8höì<ð| û\>ÜeKÒ–“¹ý%\­ÿ¸k…PÛ>k_úp¢KÁc VÏ‚ª ÁÁÁÁí™°u,àÚ\ÛfOUŸ?{®Ä݉ÐJ°¾Óñx->–G«m½uJl;†ili³'h-1ñØ5aö–Éß3•G]C†q1JCÏØê¼GJ:½>9\ï_Õç Ê×Qņã+j Îm´ßIÒÈIž²ßC´N®unúËSÈ;6ûÛýëá\¦ç¶Î{Á.g›ö(öÔÍ3S*H5Ø¡ªì€ù;;;Øé™ŽµFvðkšÞµÅ¤Ñ–ø­„mý²-Iö>‹ßƒ$1ú<.Ëú zúô<Ä2ˆoÁóÎŽŽ·%V&x¬7úÇ$0o Z$ÞËFŸ½®­}):O˜v¡nØV¥!AzYt@˜Bj¥ßD¿›#Ù|ªO‡»à‚‡õ/ÛÃàÑaæÀ¸-óçØmdö=YÛc„éƒØûW›—1ì¶cS§—õ_L£ëƒfžFÖkâá]’Ùä°`AÓ¦å!Þ$©Ü¥O±¿!«Û%{DZ{o¿=á&ñ)ÉîY¿œý³Æ’Œ#Ø]¶>0?3‹ÁšËº?®qKŒ|…s@­ð°‰j&ìPUvvvvvÀ=ö°m° ž½¦ÕÔF}jœ~‡ïÂ{™žÿN–ÓiðÜ6 ŒGª—ƒgÛcM{®¢×^™|˜Òž:<·Í¶$ØR][V®='Ññú< –§æ‰‘5_ñíˆOIAv™âi!¶ çzEç$W]•‡¬G‹<…)ô(³-¿­ì¹}‡Ÿ)˜V³2gÚèÙgkÛ(ÔRõm `‡ªB°C°C°C°C°ƒìY²½û‰êƒÎc´@댽×5Ç,¦GûõÄk»]ÛÎl#+Ë“§þBâ?©ï°ë”ú¤¬ [×öÈ YÞσ¶Å°g:^,°øp¤¥Ò"ù°x~æÎÍC³^ŸqÁ¼pZ>ø5­ušI¥,9»C¼Lø¢ÇÞâþd[åWö'ÝaRO¿£ŸÙf{ß2õRÏxÄžb_‰’YôB¡G‚ª ÁºVxm·+Ø!Ø!Ø¡í±ƒ­‡þÞiíǬþ LõÇŽqýî•®ÖSç©ãÙª´mgôµÇ†Wæ‡döy“=Ñcžú 5Ú¯¢ëiÛ[f!™m·¥Äʵ-Zc¦'˜þÞ½pè’¬w\O?‡Ø aOóžá¹ èA’€û´¥²Ò*-)[Êì‰çP¦WLOt@~dºaÏÇlMÖu@“¡Gó=Ü*ý+££0gv¨*;;;;;°<µ4"4l•AyîÓkÐzôé3ô¸ÃÓ6x®2‘†~WK¯\ã~9›x-dì˳°^I×kÁø´ëYGCY¡Õwa=Yð”ë±08ÞmOãݧöLŒå {sfmÏj÷l9¨Ï/˜Hê£ß¹³×ô™l³Î+Ø GÇØ³=^X/ d´æ3mÇRØLïbñºt7;´èììììкØÁîÆXŸmŸA[r­WbcåI½+Ú†kÛ‹œ¢ã™’ôúldf{ÑÚhÑ''ô¹+úm,f…Ю6”„õ5–â÷ ²ÜvþLž2°Kd=ÂJñ´E°[^/YM¾À•_fŸíÖyú×–ƒgæ€Í-ž Éæ'„3aPcíÑaùeâïe90«íÅñ(ëï2 ôÎs»§l}¶µÚÖ7OžÁ-?;;;Ø£#ØÕ¤±Ù=1á5“?J¯#° ™Të>k£Nê_q5PçoÛýSì=?úQr¯Œ}Ú»>L>ž”ZJú^ÌÇoQ1°UiVgäã,}—^å·û×ÎG‚x2¥ä\ ³Ö‡™3óÀ{?KÏPcµv±wY»P涯‰õ#ö“’:ý‡@‰~òe’g’´­Ó ”†gÊ.ÝÓãLÛup­³²àŸ°ôlÕÕ–•_†ž>µÓk–Äk Ì¡GNÉØ ­ö¬ý…J–3+Ë–†ƒGì=­ö·HÇ0ëjלÙpOKýVÅÓvßyzÍ—L`°C°ƒ«&¬¬jjììÀr vh-ìà‘'¦Áµ|êd-Õ«™òNŠþnˆ>MßUÑ#QxA¾>#œ"90­Ó­|±þÂÙφžà×1 ò®™xrßC ¼ cß|·WîPpÄaŒ}2€Ý›acm&M·Ò*h©ú­öfõÁ3f™ÄðZÑ"ý.!–Ëføµæ½ÄZ±qÍbümÇzÚÚËäãÉŸõ ËÙcmÿLC1ˆ‡Áñ^{O‹?^Ÿx2÷X0][™K‹çYÏuå­±có /¼MìPlƒØ!ØAËÄsºk‹>õ–~ÖÖk%/_-”gs­h“míµ5ß^uÒmÔÌ…ß÷÷ >o6G0› ç¢c­ôÛ…ºnþúøm¾‡)*㎆ òeLܪ¿Ó*zˆ’ÄoiŸ’<¿c±öÚÞ¿§‚ÉgDl,c¹{n÷¬=ýR²¥Á,ÛCËÊÒ§ý°}þþ·áìÞAI²4Ìêz¬Z°ÂžŸ`‡2ÒvvìììÀØAûÈIM_ b·õCztàS°çùZŸZ&Aï Ôë)ý¤Ð6P§a½ÉzGç R:ûì£[aû ümd–Á¶Àö¸ðÇ`MXOÙuËZKïáÆ¨ižúøë\YÈZ7¼†SOƒ¾ò«-É`‡Æ ÁÁ,}eìÐØì`[9Ôd´Õ¶ØÒÀq$ïpÉIºÍ\Xg¹ë¦m;ì&&ôJáîV¶ ·¡ô$«FaëÏÓÅêu¼ØÚˆ£Û,ÞÃ,:&ç´hk/|!¿Êþ@=Â9 î¶çö,ÅoýÖ•ÕŠÕÇÃh˜>+gÙµ²µË® Ê“Ù.–Òã}eºêï5[Jâ{— s<öÞ"ÊPÒKÊçììììP&&Ø5-ؤÁÆ#JIŸ ËV|˜¾IÀçw-y~×i$Þî; lç!ë ['=ëàþ‘X™'§»»+ñ½{ÖÆ¬µµYSbzϘòØ ÖãX+‰í’u|­“¯OE–|ôN {~…­`ó¦“ix~e2dÜdó…vf³#{lúõÍ£c¬&ø+ö¦Ÿü×vé8ÿas!OÏ’¶;;;;;Кà¯ÁÂöª™-ýU£°’›ŒGýt/£R÷©ŒVYg>.»ýÖ^¯W¢´ýþ"ìÙjl¾?è–ŠTÑGg÷‘'xlŽ­]Y-CÖZ±_õ z…ZžÄ%w2k­°}Dš‘™Â3cñK›õ }#ˆ•åá}Ì™iEÖàÑXÛª{ø‚íx·Û[Mðôk‹­QÌoVÁÁÁô×`‡`‡`ÆL¶¬þ¶üý,£m”\ë±)«ÒzM™í õûµ²²ƒ\‹e(œXUF2x^ŸÝ¿xoc”®¨2-­¬SÍØ±µ•âŸÛh™È;qrr»>ËEË -¼ž·°Ùˆf[ÓP—ìÑäñøyÇo½«a·êõÁïÁóÏ4ìXÿjýÉÚŠ¬ñzn‰m׫լV¤‚‚¾"«`‡`‡`¦LßÚ';Ø6M×Jë†_“1¥@¯ñÉ+}—œc€o±¯]èºÙÖÐc=E’Fê ^,[ìQÀ´«±Z'dXlQÖÀ´ÅsWe-bùx®uŒè€°ƒ¬5k_“= pÆ¢Kñømß‘î;”€ÇÎhÎ*´ŠØ×,ÆßïL'=ãÅú§lž­¬{í¾öËÊãGòì|(¤ vvvvÈ,ÿ`O)þö¶FvÐòÑ6í‰M¨3hÃY»tYº-L+Ø(Ó9K‰2º‘pü²kf9³†¬šcÛ1¦'ž*>:½SÒèQ$^øZ ÏÓk¯:½¶9¶}°Ç—m?ýù7TàLm£Ý/¬È žþÅñŽiìZ±ú{|Džvù{Üþ•µÑ³sØ ˜ÚÛ¢zl‚­·¶.ùG=³–¸ëUF½öÕC‚‚‚‚h|°C°ƒÍìL6Œ±ýÌ¿„ííDF°û…é «ËŸ=AWª¿GŠþÕ¿º-ròžA½`AÚ·¦D4JŸ©.¡™B®í¶Ûš`ÛÖj4XM<ý…ò·­:«‰¿Îà½Yç0ö(`ýbÛ4ۋ豇(Ÿ‡ù«ír™T±¯™·Ù®yÖ¾`2·Ëb-Å]¸zŽ'v$ììììììP!;°>µí-{ÇG·TVœÅ#a÷>;œi«~uTçÀö ê}Æueý^æxtÃ3îP&ú‹6sçyè'k}¢»öþIÐï?âÙ†þ¶àHÄV°<þÛæà(ópŠöb¿cõ¹ÚïᩳGÂùÛ›q‡m9Ù½ìW6·©Œñ=í¾c~-–Ö>bcÖ3£®ÆªÈ]úNÕÒ`‡`‡`‡`‡`‡`‡ÌìàÙ߈ý•uÔè7ÝXYz·*+í‰G’8BuþÚ»"¾,>ØÁ#1­™Áž>jiìàÉ 9BŸƒÁúí¶¬P‹÷†µÑf+››0O¼¶Ÿ¿ÐUYð3‹}>›'cÝF‘¼x˜WÉPËAïh¯”Þià)ìÚ3‚üyÚ÷zl”Ç’Ûõa÷²}˜hÓl¦ðØj Õès5¾¦j¸Ì–§ |;L—bŸÆ£e…#Ôn/“³WxÍαç',ƒ@Æoá×`‡2µ vvvð‡`‡öɬ,ä™0ÏeËò÷­t}:7æ¦W=0Û†ÃõMí³5Ó£ÃÕÖ/Ø:O>h—Ä/„gHÙûªå)óYÅ–{õìYm&ö`V¹Ù3“Êr@-²ûÅžŸøí!扚ìùÕ3Ç@)ÙÞ< Ú–2¹UÆÂ¬u¶Õõx§í¾`œ+Aï¸`i˜$xl2WCq+“60f°C°C°ƒ+‡`&™`‡öÉÌ> Uaýήí>b-’—,ÉC{0l­Ð»RÙ8ÂV°s­1eõÖž»],Æc‡µ>èÑ­¿Œ©Û®×ôõž^ü“xñm8 mkÆäÏâÙ½LO0Þ£áþÞ´G+³„ÕÀÖ„Ê4Ж†Ç"I°×šm6÷ðZZ;HÀÓ`$¦G<0ÏI“òÀoÙÈ,¿'`ë~þÅ4Ìž`6Nñ mEűóm#£›{zߨÕV‹Açƒ~’>Ø!Øæì5M°C°Cûaöäb÷]V½ÒÖûsµšŒ6YËw Ú2acMë€>ÿûKëó2¡VãY²ÛbKÞ¯·ì^Ô¨¬=Îê#Ð>C»ôÊJôKÕS–ÇGgçÉ|AL3+³®º¬ê¥ä—ž_Cìx[2ö,HÛv-CÜ‚yJJÙá)geÈ{úKX»ÊXÉÖjƶ׈Y<Ööל²3§ÐÞ`‡`z/Ó^³ú;;°ø`‡ÖÂXÖjïÙéªSÚddzÇzÊZªÖöŠcS ÜÁÎå`aËĶxY-€gä2[Äò±µÓè7Œì o±§lÆh¶ ™ì€c„»O=róXQÏ€•eï×Á¿«Üó«G樇v«Y‰È›¨Ï¸^¬O€‘½¿B§v_e%Z˜‚Ùf!ý=¨Û¥¿œå±úšù=ãH÷QÁÁÁÁÁÁ_飬ìÀ¾ƒO+v<6­VV½Âñ®a{¥$èv‰DbPÇXyúÂhU˜dl…~îökæïgpì}/Øó[÷Xz÷Ù-òË åÃòD}cüÅ$Ÿ5ø­½ŸÅüå²»l  5G,9ÚI6”k=WY½ú¿€ãN¸ƒÕO°ÇúÛ=®÷á0›†`_4ÖéõÛ¾ö^Ü‚‚h‰ÁÁYS;´Ovø\­³ñËÆ‹­˜Ë_Ûv]Ô[t>¶†ë»ôtì½$l‘Ç_aËÇc»ð4uÆ̾1Ÿ›L3YÍÙX¶ÛèႬ²Â4vÝìšØ-õh²–jV=gu¶ÙÁÃtþ>õ»³æ‰µež=”‰¶‡z¤ l=ïâ)”º\ö-QìY¼×žÝé:³Q£¿Ì屺-zö[à‘`‡`‡`‡zrcíòäì`×!Ø¡õ²ë_­Ë:î´´-Ò«ÀZ2ò«þBÇŸÔsjˆÎ³u{4ùm&î Ö2÷øsXÎÕŒz+üñóÔG1ÛLj<ËbØÌA§×VKë¿n2 PÃÑ"ik)#E¼¦R¢¬ÃÊWltmsp$¢”ÐÞb1½GÏYŒíÏÄD=a½#òÑßÒɈÿJ¯kë]ñÚÏ#9°]+YÇJ@¿£Çt•i‹^×÷ìÐ B°C°C°C°Óáæbæó±m,ëGæÉ±óA/óäHО[[o¨Œyu`_Éd1¶§‚•k?){l¾ÇžTÓ§~ÄôlW3ÆÛ-Âܘ„1%–"VB¿iˆs*‰Ñë§#¤ãõ:¯NÉcCÆ_¶Ù½ÃÊòÏ ìkmEõ}FŸn‘¬üjVÕ«Ìžú3yb ™McveμdûìÐ*C°C°C°C°C󲃜ÚO޶¶³¾Óº¤¿ÓãB?}ãÅÚ6^ðX¼êsƶ0â‘|V¦f¹±¾fºÁöÀTS[¿$=ýȤÁÆ‚î ­™¸ÏÑ)YŸ¢Æœ±\ý\±ub+ôY— ›6å¡=̪àÅ/ì ~2 ÛÚkÏXìѽlÏ'±,æÁ³uR¤¡¿OZÍ ½vö¨×ëòƒ;oUú`‡ÁXb°C°C°C{`­oös¿_X«QÃuëPëtìY=Fš>TÖûÌ ±œY_ æd­§=fýÖ5ké,{V··šrmy²ríz²hEãx¤cSƾØv:½øFfÎÌCNAÑgÐ äKô’Û²ey,]š¶Âž3ØÅ<ÆYg•~›Ãf(%ö b¬¿=íqd×Z<Ü¥ÃÚå˜Õ;4Qv¨LJÁÁÁ,´vð÷¾]¢nQ5I½L²C5÷VŸ'“-Æã>=½ûÎÎ eËjbtOzÿèöË$«TmyúSÚòD[-="öVÇô)‘:OæòH^ü?z¼àiùbO„ôìKëüŠõ‘_õù r×ìÙyŒ‘‡|sSN¥°û¹/ká·{˜•€_Å”8Žì€³Pž`žV‹.½ÿ~Âìrï”)yxüx¦ž;¸$Ö°!ØÁno°ƒÎ3Ø!Ø…æe0»q GMÖ€#KÁ·‡ÃÂ7l@½e^ »-r—ø&NÌÃ/»_*c4Ûãdsßz˜¨`›)pŒã·¥´MÃR´ g;º±×Ø×©p?*ÖJâõ{pr½aCz|é5ë¹sóеÕÞ'ñY _0É0N´5Ж¹§ß±\{mº2߬­ç¶_Ôn‹ô‚ð‚ì1?!c:›7áÊÁ-";`š`‡`[ƒš—°nö¨T9Ó6²±æ ¸­G³þàïÙêƒ'g¿UÈ3¦½ æ)Ý“¾2É0kµïlgùûe+-³m…l/ÎGï©@v@ØL{#í¹“x{ËüQ×:· .ÈcÕªèSG´´µŒõ¯.ß¡c=ˆi<º-ž=ý%òÚøñyèšã®W"ÿ`‡ s³cìììì ¥ì€i<ºÝØÁ/}®¯–!;a¬m[´L¤ôT6¢±Ç±\ÖG˜-’ß2û'«ôüœ[=£Ù¿²ü™ö²ñÅØDÇh+¡{„µ…ù@Ps0wÏâ,}):½~Nô–•.'odUZlެ;Ý5Ö–•_£pÅÜ>ÉÓÖ”‘Œ^AöÔS)Ev&ëwâ„)°m>":ìÐ!Ø!Ø!Ø!Ø¡=³³úZƒ[ËϨfG«?4=Ù%jݳ­ ¾Q¨ƒmómûik#Ú+»öxñÈ S2¬ÌxêcËÄÃAxž¼ÇF¡>°QŒö‡I^ÇË;hLÇÐz蜱EÚîé7°ƒ¦N“Ó3dÍTüT¶–bÿÚš¦ƒ½ ÏôJßeÏÊÐæ³^¶e­f;´m•^Ð_5Å:ø×ÓÁn;4i‰Á˜O°C°C°Ckdl—m=tP—ô]þq«~+ÑP½j6·ŠGN¯ êU{[% ž3«ëÕËœÍ<3 Œ±kkß‹ñ~^³G4Žvm{ŸPb:^Æ‹>ýû}2b1lo$Þ+kÐ2fÏ>;‰¿ýö<ıpý•¦{Zcýìo÷ˆÆs¯–ƒ@Ÿ‰mó²<ÇKdÞ³ÊfËŒSðûh¨ öX(„`‡F ÁÁ¬þÁZcƒZ/;ØOs¶Ì=ïã4MÐõišr¥/pç®U¡nȵ¬åÙ®¯ÑV`ß±ýuLbº>ÌÂøåï¹×ÿ+³ ŒCY¼­L{Y°½¦,g|³ Ka3 Ôj,ý!Lڞȯr} yȯâ)’k´6¢ízÿ ¶ûÈ3m–÷ô Ó ”°î y1/ëeÆûºDaX™ V?äwäu½N54½ Á‚ìÚzRzò vvvh.v°G¢Ö@ y=Áó»´þ4vrõ>ÛêûÂ_®½/N×ß}cò±uO6Rvvvv𴺹Øi¯RY/ÓÚ%5¦Ð«<ò…»¦ñðè±ÐôŸX™õÐì OÓB™£¾UƳ‚ñ~>²µ·2Žf#×?ʰtÛJ#ìm;Ãr`óL¯cô7@=rÆþÕ¾ =~õ>Im‘¹˜UÔÞ'?bÀù’G=v˜Õå¯ßøc{YqèRpÌ¢ýѽïÐó`‡F ÁxW°C°C°CC…æe6–=öOÏÐõÄ·i#H)¢izÝM?y gÉ“ucÝ^9ÙX³¾Är`i<ÜQ½ÝföÍöhÅqm§a)ý–„ÕÄcù™lkƒÖ=B½^ɘ‚ù^<ß*²{§¡RbÐß m—¯Ž 6lÈWÞm ?â·Àlmas66‹“u^}RãzûWËR–¶Q2¯fmaåJ<¾ˆùÀL Ø!Ø!ØÁUÏ`‡¬)1;´=vð&Û‡£ûÛÒÚˆŒ€ïÅËócÓœ(.u•>}ꈼ„O²þà±óÕ[ûéØcYþ¶ÞêÒíVcJ›/+1K‚¥ØŒÌÁæ5O›‰ÃQYÀ£X<Ù/*'~Ëytz¾Äzе ¥œ+WØ=³,ÉAóšþ:ª^ÿe÷bÎöüG³¤Ìr¥D§”;wnºu8Ó›ƒõ1%ììAæÁÁYC°C[e&ybÐ’dOÇú ºjÖ¯ECD>òܪ¹IVâä4ÝÆónaïëwa¤Çå½a½ÛCV oÛ;½®³];gOeuÀ_+³{~Þ´í-ã)½–ª->' wn …·[5±½ Y5Ç–L5m²ÈDöÁŠ•“k=—cr`ºŠ­ÖòѧÕI¿à©×¬ÎÚ3¦ïŸ=?al…õĶ ¯Œ½Ý†ß-Bvψ‚‚hz]g»&ÁÁžìÐöØÉ™õŽ®³’Rž.1Ø~ÿ™Úƒ$O¯L&MðtÑ7©›p„üj¿ÁgÛU­®>x¬¦ÌjŸ=g³‰§Î,=Ö9N8}›öj]Õ_äôðÖGì’X$ÌGsPÓÌyì e¥-¤¾›&ÞéÓó³Ç=šló8ê‰>ë’õ&³™Ò§"éGéY™g"×39°¶ˆÜÐÊÙ0[ ;;T‚tš`‚°þmƒÐJÛc멟õ×±íÀÞÆj¨ Ÿ×D~=¯,H2®W¯ÎCëªçÙ“ÕĶÕþVØ9è_™W,ÿHÏZó¬,Ÿµ>Ú·Àæ$ø£•P¼WK›­h³š‹v±“´›7h=×¶…}HËDf’òv-J’Zƒ}ÄäúÌúQ¿K¨YÏEeµõö¬® ú'õLC®qmuÛ3BIªø`‡`‡2’a郂ª Á¬g[#;èðì)l»ô <é–~®V›æ ´4ô“`Óœ¶¡K×oÖTfQYïgµ–ž:K°ÙAës5µb­ö0‘-v/ ¨çhŸuJ=Zõm¶l¯ˆö]x$¿lY 5“iØ ó”]Üh!YÏŠd&NÌû%Ææ«öI Ú2 k³]˜Æž!HÀÙ X~éAæ…Ó×z5\ƒq%Ò^8Å=Ø!ØÁUg ÁÁ •g°Ckg̽¥®ûEËM×s̘<ØÎ±ÆÐF¬“˜íï²mTÖѽŒþÞc£*cíÒk’5[žY-võ=â©›¶ú­¦ÁžeÌ¢~‹‡éƒfñZf`f{Ý‘yq1 Ûóæ÷CÖ`ÀKÃ4Aß+Þ*ýÕ! \õ–Ý¿ÀúØÚìììà©[°CÆ`‡¶Á̃„}ÍzD¯Žé³»íÜ['µÄìú4lÐï@yØŠtôX¿Ø)Y‰låƒ]s Û5÷ˬ «­ý„ÎJŸΔ˜O[­×7q¡Óèw*›‹*+ËÖ ´`ò«–­¬eã›h¶1~GNÇŠ|ľ(*¿¯Êf†ÈÈ8X[½Ï‡1)c@½gžŒ”`‡`‡`‡`‡ªB°CûdÖ›ìé^ ÏÁнlÛ–©ÃMY7¶³ÎÓ ”*Zr¿äÙ]؃¶ÚùÛvÛÖ7¿Tý) ³Ö1 Kнió‚ú›;6Ãê:0?Le¡2¹éZI+콸vcëtJÿ)ßè ÷Ì…P̆ëa+Ö.\YÖ_\Òý.1ú¤,WË}YXý»¯•L‚ZDv° v`ò vvh9ì ëÉvâó n¯Mš‹•<Ù“í e£G–§½ø+>M3ÞÁUW»†Œq<#”é°çºšgdF´HÌrêœeRv0Ê“>îƒÕrcýÒ\ó.æ1C{…>:Ö×úKÄØ§¬¥ŒCï0ê{uz}º²³ôš>ßk‚¹áÞW±rÊ“­.sð÷>›á«ìÐ"B°C°C°C°Ckd”ž(aüÚŽß´ÆP}[ª±lÄ1KÂì+×NißËî²ý]ž²üì Á~ëÊSÚ„jd‹rÐkÐÚ¢²š ÏçM˜Ö3IϺ<³*¬uاÈÚ:hÖ`)=¹¡>è³ÇÙžd¿æ{Ôà\Ñ–¡æV9#ÈæJ”O!;4@v`÷;Ø5v`éƒthùì ¡ŸŒ°†ò§ŸÎC?)㿦 ¸^SYhX9EDó‚üªOѬê™Õà{‚ú+E¬-L{ vÈ‚‚‚‚t̓<Ï#ºDüþˆ´Z¿ÉÒx–¶µÜi?3-ÅþªÞ»ÂRÚÖ›YÈÊøÚS“j´‹Ù+Æ ¶…ñð»‡yuÝìw¸*óÚ1Y{ÇÎÙ®§g_7¦÷æ¹²¹LKw–Š­“0ôiÞlŽ!oð t¿ËƒÚ+¥KÄ/‚±Q¯Ëe’4yA"‚Z\v¨¾&ÁÁvú`‡êÙÁÏ ºüšáºuy°ç¬†Ò̶ô÷€˜ÕõX þgójBe~;øG"{ ïêz¶ÏÀ4Öoa<9gY+a?ÃúkÈÚÈž‚«±`Ì‘•;t uίŸúí{m†]Cžå(Á~SµyCe–ßÃež”hÿ1=ò…] Ó\S– ½FØ ÉydzŸþ:³4ê×`‡fÁÁÁÁØŠÖÅøDcô*HKåÄ-ÿö̘•ð{ö챃ÁÎÇ<6Öc{+k‘¿ÕYyS²>èoJÚ£Ïsj L¯í¿GO/ØeiKè¯'Ž”*ÊÇSOíóa˜õ ¡p† v¿PŒ6P~•/‡êumœ72—GJö»ÉÁ-3;TÖ¢`ü5k«ÁÚ;Ôýî£@ ´C;@ìD°C Á@ @;@ìD°C Á@ @;@ìD°C  ËO/<—˽ÿÞŽ&¸«‚">úà*Ó@;AVvšB‡zôè1ò°CÇ_{UѰúñέ[6ýþ³3Õ¡±C0H h'¨Œ^}embõ랟9㞃>hÈýßÚñFÅuv–†ÊØA[òd*<ð€ÿø¢’_§ÞyûÞ{ïÕ©S§~ýúÝ4é†â¯Ìžµï¾jjºýÙçöÉû%wÝ}×Ç íÒ¥KÏž=Î:óŒïnO‘×M¸ö ƒFKL‘éö¥.’o™2yÿÁƒÓ-{îÙÿê«~ù»O?ø·wl=ù¤»víšøë®©¿)kÕYš²ÕHÈ}5H$K­Õ³C­·Ü<`Àýë[6&^˜tãÄ×6¾¼jåòù>Püõ¨#X³zÕKï¾{ßë'Ž/ÉóÞiS—,~hó¦Wžx|ɈÃÏwnŠÜ²yCÊí¥ž“â’5ÞgŸ½Å5aüÕ‰›=¼àõ×6¤Ü÷𫝔d§Ž=%íÕÏ­|ü±E‰Ê²KS¶ ÌMi6½º>=:%H$K­ ÂiŸ¬w2×Å__XóLºX¿îy¼wñ¢…òï¯&]ŸæüuܳôðÂy½{õ’ë¯ýk—]ú3¹>昣¯¸üÒtñÉGïuïÞýÙUOo™óÀ¬~µµu…ç‹T¥ÄŲØùVÏž=Î?ïÜóòºfͼ·hŠÓßôS¢¡ë&\“xGrXýÜÊ”`åŠ'_Yÿ¢F"±üº,Ƙƨ²KœÄ¥¥­õ~WZÒHcÈV¥òã‹wÌðÍK?$ñ7Mº¡Ä³ô쪧ÒÅö77K‚)¿¾I›â?»àüsÏ9kÈýo½åæbÑiº>ûþ™Èz_xYP,‹z– QÄDéúƒo317ø×Ý#Dˆ¡ ‚Ÿ´EÕ;ZÓT¹dGkÑίZ¹üæÉ“Ö¾´fÃË/wŽ^³=ú¨ç׬ZöÄ£µµ{\7áZ}׎m¯wîÜù²K/ÙøêºysgØgmÒW<õDúµK—.oïØZ¬ÏÄëÆ÷éÓgú=wmzu}zjHS÷k¯ùbUzì)ß1bx~üñ%î[v½ l£o¾ñZ‡fÜwO¢qIÙuV‡jØAÞ†Ûm·Ý;ôd‹ E;¿níšcÓ½{÷dÌGùÌÊåÅ_gÿvF2¡55Ý~pþ8ÜÑšì|¿~ýºvízÌ1G'#\biÓ³Æw¿ó­’†L½óöÇ¥‚jjjFvhúWâa}ãÄRVéשwÜVÖh³4F5n¸~Bú)= w´ÚuÖ…ÊØ¡TùÖÛ§ïL i~Þì¢ 6ŒÖÅÛßÜ|Ý„kú÷ï/@ h$´.vH7ö«­]0N³Ë-Ú6šž@ Ðò‘uGkÅõe†æ®`„š"„)!db‡fç²FeIJ4{=@£"LAQÁ¡@ ˆ0uÁ¡@¦ .Ø!T"h‹‚ª¹=LA°C¨D ÐöPåË0uÁ¡@[D°CƒÈ0Ø!T¢…cÖÌ{Zø`KÈ$ÐZìÐ 2lìPå¹L¡­e¿©´qÃÚûì³ö¥5ÕäÜ ™Z ‚D† ÈÅS[SèÕ«ç§Ÿ*§yWO?Þ¹uË&ù~tcK£«D•8ÿ¼s?|T÷îÝ+;Ÿ–}õ©'—Ž<ìPÏ úä£÷.øÁy)~÷ÝûʱðF&¶ŠVÁ¢í#GV¯þW9|ªBòƒ|ñaÅSO 6ô;ß.=dû³OÞ—‡¶@´ vhÉL8÷œ³nštCÙO,Õ‹_Mº¾wïÞéÆô÷ˆ#F=þØ¢ ºâòKÜ÷¹gž^ôÈ‚ÝvÛmöog4»LMVÄ»ì²KñÔ¸6ÏEÿÏüèÚµk1~þ¼9C‡Ø©S§7¶lL‘·L™¼ÿàÁ]ºtÙsÏþW_õK±x7ýê†!Cö/f˜z÷ê5wÎouÎï½³íôÓÆÖÔÔ$rÙ¥?Óª.ùº„Hiê·ï½÷^©Ü~ýú%cÒ*‘j’eÛo¿;w®­Ý#(‰/[UÖFù·¬XP€wßuG"ß”¬gÏgyÆÎw·Ëí;¶½~â _OúvÈ!ß5õ7ZUÊæŒÝ·xÑÂ#†§’}Þ¸amšo§¬R?¦Nú·˜ØÎÍÐÒâgåK£FLÓ‰ºÂÑ»©i_taúuÕÊå©ÅOõù‡CêˆôÈpÏ´;åßK~ö“ã¿v\³[ª@Ó£±CÒù4ÄÊêsÙQöÆë¯öêÕsÚÝ_(ùä›nìW[+^šÜWCõ2lìÐCŽ>z´|&;ý{Ò7N””õæV/;Œ}Tj˺µkFuä '_÷åwWZø`¦ÉOIA©—Ó¿¯¬QþóÀ¬ÄËÍn©MvHs³é׆2™ Ú›Fq=œs‰>£lú½w§[R|Aݺu+>z$c’nßôêú­[6%T/ÃFb‡4‰=ö˜1ɤã[òˆ$ûä£÷ºwAñÆ4ŠýÉu²¿¸â2¹N³âó€~ø‹Yå ×O(ù µ®Iò kžIÉÖù¥‘U%R)55Ýfθ§$žU•µÑK‰K«½p^zú¨+<ª¤]ò°Ä§I…ÁxI÷=¹ì1ù71iú7Ùðâ¿Iëí¾ù3%I$ÿΛ;;=§¤‹wÞz3]œÞ¹Õ°C¢æôï»o¿)ÿ&ŠLÿ¶dG\ ‘PÂé¡òì³Î(K )4›’’ÕºêÊ+Ò/U£¨Ïõ޲ï}÷Ûé¹8=Ñ;÷lϸ«L† Î5…СC‡¢Ó@â‹ß€NÓæb2 É줘O?Þ™~½uÊä4éMi:øQv!ŸúÙéB¾ãœ fš‡O>ûäýTô –tàÙ³lCQ™J¤‰zºkÛÖÍ%ñ¬ª¬†XJXWø²vÒÝwï»ë®»“I‰omß"il‘ÁxI÷%ŠÑÿ~°ómýoª°'·zÙ¡¤ytºoú´þýûË–†sÎ>Ó3ù v°±\2T“)øæ7O*¡†Sö#bMÌIc“ÎϾfQŸëeÛßÜܳg=÷ì_Ju­’µÜðòKz·R‰é^ýÜÊôïÊO¾²þE aðdfÓ8ºô¨Õ»wo‘F½ì¬¥.bù²¥E)¥ÞO\_taÊíÔ±§Ô+¬*Q;”m£!–~°ó­¤iš->ŸY3ï•Æ2v°κ©DÓŠÿzr«—ìR/Zxä‡ë½¶ÊYž¥ÂSU ½¡ìºCšêŒ3ºH éº8ùiSz,\{Í•C‡˜ž©£l飋’ I“C½ØòÙßJ(‰O•OJDÉòùÚqÇ^vé%§zJ2€%9 »fÈþywÍÚW§EAÝ~Û”Òü(ÚçT ¿gIªÊÚhˆ¥D€â¢O“ùwʯo’ÆŠg©è€ºyò$‰¯WàeKaìàÉ­JvHÿ.zdgÚ_vUzú=wÉ¿?¿ä§±*Ý>ÁV¥Ó,}ØÐ¡IgÒßâ3fÙÛ›˜’¹HÅ]üçžQ–n°Ï>‰PN?mìÑG.RFbý¼_½ ›ž&^7¾OŸ>iozu}"Ä4ûM--þ:õŽÛRÛ“p–,~sH>lhš±§¹qq©7= ô«­=ëÌ36¾ºî‘‡æ´ŸyÕÊåÉH®}iMzœ7îœÔ+ TâŠË/íÛ·ïìßÎÀUi¬*k£!–¦ç‘Î;'rI7wvʧh!¿÷ÝorÈÁé±ôÉeí?xpÑic<ÍRRʤQN»]OnÏ®H¸wÚTY³H×ÎR^zá¹é÷Þ-Ï;éèÛßúæˆáÃŒŽ`¥¾H½ÿÜ3O'ÁöèÑ#v´¶O{–Þ|ãµN8>ým S %cẠ×î²Ë.žQöƒóÇzÈÁÉè½µãd÷&ßtc±i:t˜qß=iêXôZT#Ãfa‡ºÂFSÙÓXSS3ò°C‹5áí[“õÛcÝ‹.Ázw´Öµ”2=ú¨$òºµkŽ=fL÷îÝeód2Ý¡‰»¯Ÿ8>QO~ßlmmqÅ™Uµl ± “Îôëׯk×®Çst±±u_îhMñ#F OPIUŠó &ðbæ~v0rÃU?g)2fSÍs…à©]©ïŒŽ`}òÑ{iì$ÚM|}Ý„kšÝLš­hG«ö'¥­w”-zxA i6%iÌŸSSÓ­¸ñæ†ë'$ËбcÇzëïBË?I£É4ª T¢ÉØ!=V4{5*/ñ:s J´ vháh@vÈñÐìÍl?*ñ쪧æÏ›³yÓ+‹-LSˆË.½¤Ù«” ÁAËg‡œš]€uñìÐä*ÑØX¹âÉÒ¹sç^½z^ðƒódÑ!hohùìÐòì*´=;4ˆ ƒB%6†`‡‘a°C¨D ÐÆP¥± SPì*a ê‚B% LA]Eì.Ú0<*Ñì• 0gd‡\;¶J4wí"DˆÐD!LAÎÍ@ ho¨—þ3B„"´Ë`³C³/‘@ YìD°C Á@ @;@ìD°C Á@ @;@ìD°C Á@ @4 ;<½üñ\.÷þ{;š ÚRÖG¼Óì 6‰¬ì fYB·nÝÆŒýšgä§O?Þ¹u˦ßöaT;Ø!•±Ã«¯¬MD°ö¥5ßúÖÉC†ìßôÕÎÊŸ}òþï>ý Ù¥ÝH¨¦uéÞf¯ h¨ŒŠî£%‹êСƒ˜¦âOr‘~1|X—.]F™ØÄΧhí{ßÞ±õä“NìÚµëÁt×Ôßhv¸eÊäýNé÷ܳÿÕWýR×gþ¼9C‡Ø©S§7¶l,)}ñ¢…#F ße—]Ž8bÔÆ kŸzré!‡œò9ò°ô¯¤|ïm§Ÿ6¶¦¦¦wïÞ—]ú³’––T>]O½óö½÷Þ+ׯ_¿›&ÝP,±l K»~5éúýöعsçÚÚ=®¸üÒz¥[W¶h£þÅ{›] @ D5ìðÉGïýð‡zÈÁ%?ÉÅèÑG­xzÙºµkFuä 'oäSF¯ì½§Ž=eø°¡«Ÿ[ùøc‹öÝw@Ñ Oõ°è᯿¶!ÑÊÀû^sõ•Å<?|TÊjýºçõƒ†ü”H!1Búi̘чzÈÑGNñ/¯{!ý{Ò7N””É´š/t飋úô铬·Qùd¢“±tãÄ×6¾¼jåòù> X Kpå//OEÜ?ë¾Í›^yfåòdíëT±u‰ÎÊmÔ¿xo³+a h¨Œj !™£¾}û>±t±þ©ÈÉðJü¼¹³Óü¼l>Ìèá½;ßÝžŠKVâ“•“ô‰¡ºwïþ쪧Š9Ïy`V¿ÚÚbž-y„µâÉeɿɖ¦“©,þÛ­[7,ô†ë'¤ù¿QùÖ<“.Jì­QCt{MM·™3îÉ$¨bëÊm׿¬d@@P;¬Y½ê•õ/&[ôÐÂG v÷]wÔ;¼÷Î6}ËǾ‹ù0£‡÷®~vEºØ±íu‰O3aIÿüšUE¶’ {ŠùôãrïÛ;¶²V””òÁηíB“9íØ±ãï>ý€Uþ³OÞ5jd¯^=Ï>ëŒfÏ7ŽQC]¥$Ò¹mëæ²Ue‚*¶®lÑvýËJ&6;”|„º®Ü¶Õùóæôîݻء¬[¾ˆO=¡Ó,_¶T=¼W Ý[Û·H|‘V?·2]¬\ñdb+ßö¡±ÃÖ®aI¡h]Yåë VzႹ_ta’É©cOI1F u•;8U¾h»¥žmöOœ- %ƒB¬_íaÈÔû]iI#¡¬]MH©S§NÚæxØaí‹«Sdqñ÷öÛ¦Øìð…“ä‘/œ$7MºAâvÝu×Ù÷Ϭ—*`ôÌ Ù°Qy]ÄüSlÔPƒy–œ‚*[4«?ÞÛÜŸ7¡…";cp”5w›Bv@»*;Zߨ²qÙtЈo~ó¤¬Ïi¢Û¯¶ö¬3ÏØøêºGš?hÐ~6;¤ë±§|ĈáiŽýÄãKÜ·?ñºñ}úô™~Ï]›^]Ÿæä³fÞ{í5WÖ5;ÔVu‡š }ü±ÿZÕe•_µrùÍ“'­}i͆—_7îœH†¬†%¸âòKûöí;û·3ôª´SP¬è²õoÊ÷VÍÍ^™f”@eì ¡C‡µµ{üàüqï¼õf]Fv¨+x‡Ô¥K—Ñ£šqß=õ²Ã[;ÞøÆ‰'tíÚuÄðaSï¸Mç™ ©ì€­©©yØ¡ewû`+<ìPvG(«üºµkŽ=fL÷îÝe/n²ðÅËÖ°¿ÿìÃë'ŽO†=¿+µ¶öW\æ+Ú³#7h;TÆ@ жììˆ`‡`‡@ @;;"Ø!Ø!¸£µ]…\.ìˆvhöú4qÛƒ@ ,‚‚@ììˆ`‡`‡@ @;´IvøÝ§4͇­@[E°CÛc‡Ï>yÿÒŸÿìý÷v4Þ'¤íŠâü¢@ã!´«ÉìÐöØáÃ÷ßNíºà‚óßÚ¾ BŸØ«WÏ3N?õ­od-âÓwnݲIOðtAýk `ã'žðýï·$òg?ýñˆáÃʦvh2db‡ÕÏ®=ú¨®]»ÖÔÔvè!<4¿QëÖØjÐVÙ!I,µk¯½öºð‡¼½ã‚Ðg¯xê‰áÆ~çÛߪ¾›ðìÙ@ÀƒßΜ¾Ë.»ÈùÆ‚üiíýúÝ4éCß‚š~vøøÃwkk÷8ãŒÓ^|þÙ /¿tÏ´;gÿvF£Ö-Ø¡2;ÔÕÕí±Ç—üì'ï¼µUD‰Tç?ø@¢{¹fÇtO½óö½÷Þ+žö—cVg’ûj(ùÕ8:{Éâ‡ä4ïQ£F&¶jv¹ši^ѳg;~sk1fÑà ’²mÛºùî»îH³—¤!)ÁYgž±óÝíuîòo™2yÿÁƒÓ½{îÙÿê«~Ùx^Ö6 ?;<÷ÌÓe?é˜P¶oúÕ C†ì_LóéÇ;{÷ê5wÎoý}W¢‹-1bxšfqĨÖ>õäÒC98Y¶‘#+~2lǶ×O<áë)Mú鮩¿±ç´m›þã?þãã?îÛ·Ï•¿¼üÝ·ß,úyJÆ”ŒD‘2ãÆ]ýÜÊ¥þ×'rÞØ²1%˜tãÄ×6¾¼jåòÄ&%™,\07]ozu}zI(ùµlž’ =‡®xzÙºµkFuä '_¶zö€ ~pÞQGQü÷ŒÓO=ù¤ÓŽӦ¦)ÄæM¯<ñø’4öÏwn&Œ¿úÀHºýúkRî{ÍÕW†‚e…Ÿ’œ“TàOe;qËæ ;v|~Í*I“lÈn»í–@ì¾Ó(QƒD ‰Ö¯{~̘чzÈÑGNñ/¯{!ý{Ò7N”[¾÷½ï|ðAkV¯ZöÄ£ƒ jÏìð¯ÿú¯©Îï½÷^ïÞ½®›pÍ»ïlÓË2:™{̘$ÀtŸ×Lô.^XóLJŸÄ^¶kêÊy–Š¿²<%AêM‰Ÿ7wv"t¹N<’Ò|°óífc É4¡C‡2ÇKjSSÓíþY÷•ŽÖ…óÒô²ÎÁŸ|ô^÷îÝŸ]õTñÞ9ÌêW[ –™Ö~qÅeÉà÷ïßÿÔ±§ŸX'&¤ÉañÃ^é™"!]Ø}§Q¢O.{LâÓô5ý›¦Å»uëVWpb$[ôè’‡%~òM7¶gvø—ù—ôøª½mÛ¶ôL—åÞ{g{"fM!¤!Yôê¬~vEŠO|!™<¶äù(ógŸ¼ŸÒôêÕóì³Îx`ö,üªšÁ,OIúK§—™ƒü1VAƒö»úª_¦‹iwß™”M”aÅSOÿµãvß½ï®»îšÆxR’O?ÞY/;¤iQÃ%ï Ë„¬{–6½ºþÎ;n=ý´±;w¾ò——KdÙNLñ·N™œ&ðu…5‹=z<´ðÁtíï»5(1&Eö/Ú±Eomß"ñ?¶¨=³Ã?ÿó?ËãC ›7oîÙ³çm·þ:MæÓ<-ýš¯6¼ü’Þ­Ä,y]a•0=ú]|Ñ…½{÷Nƒºb‡z¿©Z‚WÖ¿X„?&Ð*pí5W&‚HÇ{ÌŸ]p~ºø`ç[iVsþy犋`ÖÌ{K¾›ÌŽÖ¢åË–J‚ôt.V®xR+CB½›èBÁJPñŽÖ[¦LNF'¦Ÿ¶mÝœ&óÉD<8çþdXÄþûûιüTü7ØA ìðÿøÅLJÖ¯_Ÿúî©¿ylÉÃeý®è²ÿà’4é1 Í{êJMÖu¦gIò¬ŒmiÚ™ždïŸu_R°¤)æÙUO%­Øþæ S~}S ;¬}quº(®9Þ~ÛI¦©³ïŸÙìjí¨˜/Z(«™¬å߯wìe—^rÚ©§$úßeeñ,¥ ªÄß)Ûô{îJ¤“fžiÊšžM$ÛP0?üìðÌÊåÉ8,}tÑæM¯,{âÑ‘#;þkÇ(wM½ã¶“è`É⇊Y}§‘•Òõ÷¾ûíC9øù5«ž\öXÒۛݶÙáoÿöoKRX¾|y€Âæø°Vv÷麵kŽ=fLzN”­§I êÀ¼§‡‚~ýú¥Y_¦­e;4¶”´[L»ûÎÔõ㯽ª“LDÒ«®]»&âHÓvH ’9Jl’4sô裊 äÞ©wÞ.û¥“î<ìÐô¯V¶P0üì°mëæqçž-ûÞ{÷ꕊ»[Ëv¢üôöŽ­‰;öØc÷Dô:7Öw°ƒìhM51bxzÒLsZÃÙØ¶Ùá¯ÿú¯ÿð‡?”<>¤°dÉ’DÍ æÍI‹×™C>I#±Czl±ÛÞ†Ùá¯þꯊÿþïÿ~È!‡ìúeH¤™fòéñªÞ]@ Ý¢±Ã³«žš?oÎæM¯,^´0=Î\vé%vÛÛ0;üÅ_üEz|øä“O.\˜fΜyàÜ2eòô{ïš1}Ú÷Ï|ö™§?ªoi h·hcì°rÅ“0¤sçνzõ¼àçÙ[èÛ6;üþ÷¿ß¾}û€zöìùw÷wÿëý¯¾}ûüæ¶)o¼¾ñÝ·ß|÷m¾ÿv/Ú;dm{f‡7îµ×^'ŸüQ£FÞ|óÍéñaÊ”)G=zËæWƒ@½vh«ìпÿï~÷Û‹YøàÜüË&øÃþáþ¡gÏóœozìÐVÙáÌ3NtÉÃ;¶mÙùîöc=æÖ[oý·û·¯ýë—üì'ogÿ C hovh{ìðáûo_}Õ/žY¹\¾þ“ðèâ‡zôèqòÉ'÷íÛçæ›&;zQÂé¢]¡M²ÃgŸ¼ÿÞ;Ûõ¢óG¼³`Þœ‹/ºð7·ß²öÅÕõžwšrí28Ù¡uá¡y3Kþ÷ÀôûgLM˜?gzɯ@ Píð‘%`³ÃFˆ!B„vlvhöG¼@ 4 ‚@ €v"Ø!ˆ`‡@  ‚@ €v"Ø!ˆ`‡@  ‚@ €v"Ø!ˆFe‡§—?žËåÞoGñ¢ÙÛ4*Sø&&RD‹úHâ¤'î¾{ßT««®¼¢Ù+ÐÈÊ¢]:ÌóÛzµ=Ø!ÐÆP:tèÑ£ÇÈÃíUE ÿôã[·lúýgVgkd‡Š³MRêØ±ã}Ó§½±ec؇–†ÊØáÕWÖ¦nŸÔ v´Uè°~Ýó3gÜsðÁ ²ÿ[U|°5²ÃgŸ¼ÿ»O?¨8ÛO/K7~øþÛÍÞ¡DeìP¢À%‘EU©—¦ÞyûÞ{ïÕ©S§~ýúÝ4é†bü-S&ï?xp—.]öܳÿÕWý²ø­··wl=ù¤»víšFâ]SSRJYý/›•¤Y²ø¡Ç¥ŸF™†¹¤Oó½_Mº~¿ývîܹ¶v+.¿´ÞZÚ!P¥“Êxà?þñE%¿¢’˯Ìžµï¾jjºýÙç'×ÝwÝ1|ØÐ¤l={ö8ëÌ3v¾»=E^7áÚƒQ,1E¦Û—>º¨‚QƒmÁú°jHúùóæ z`jWšö—øP\ï½³íôÓÆÖÔÔôîÝû²KV¬›qW‡fG3²CRªÔõ“nœøÚÆ—W­\>ÿÁ$~Âø«Ó([ôð‚×_ÛúhàÀ}¯¹úJùéÔ±§$]]ýÜÊÇ[”4¹^`YIšÑ£JS—uk׌>êÈN8^n¿ò——÷éÓçþY÷mÞôÊ3+—'­·Vvˆ²*}ë-70@ÿZVÉå×£Žé¹)å¶pÁܳéÕõâO@q%j64_‡Äei|%+ñúÆ0- •±CÍ—að Au•²Ã kžI‘I»tä'½×½{÷gW=UŒ™óÀ¬~µµu…™RR˜ÔŸÌV#+IóÔ“K%~ÞÜÙ»ì²K]aú—æN3gÜSÒj#«@ûDY•N¦/©h2×Å_Ë*¹üºxÑ¢&§ig÷,=¼p^ï^½äúë_ÿZš{Ëõ1Ç-Ó× F§>¬’þ±%”äÀ¬’þí[Kr`ìPR‡$¥bþìÆ0-6;”|„š Š¤B:rù²¥Îu‡¤éÑòâ‹.ìÝ»wz0Ì+Òs+SÊ•+žö)" Q­ÃR +ÝÈŠé S#«ÿl÷_'oK%G8­S&ï»ï€’_QÉëe‡v¾Õ³góÏ;7ż¼î…Y3ï-šÐô7ý” ìu®Iö³^ýd£ÆÃ¬Øög‡0ÍŽz¿+-i$S¦µ/®N‘7|±vsûmSœìPÄü…Iw¥YÊìûgbš/ùâáñ¦I7H)¬t#+¦ìáÑÈ*¡¹¿ ¡a‚ÍÅdl ȪôO~|1&E%/®{5¹Ä³ô쪧ÒÅö7¿0DS~}“6¡vÁùçžsÖ!ûßzËÍõê'58°>¬غdSÌ;Ëo=BÏÒýëñ,…qh cÁÆèŠ,߯¶ö¬3ÏØøêºGš?hÐ~vXµrùÍ“'­}i͆—_7îYÎK˜xÝø>}úL¿ç®M¯®Oœf,×^óÅÏØS¾?bÄðüÚÙãKÜWJa¥YkUW\~iß¾}gÿvFÉ“Q«@Û@½ì€Av´¦yuÉŽÖ¢‚•UòâºçókV-{âÑÚÚ=®›p­¾+M³;wî|Ù¥—$•ž7wö€}öÑ&4͇ӯ]ºtѾ¬£Û‚õaÕÀáüæ¯uèÐaÆ}÷$*)>#hœ~ÚØáÆ¦:<þØWV¥;„qh c¡AØ¡®ð(7xР¤±IÇ’’xØaÝÚ5Ç3¦{÷î²m,I»øS»l'«©©yØ¡Å^HCï'žÐµk×ôëÔ;n+öZÙÒ¬ Hσ×OŸ´1¿•®¶öW\Vo­m°ƒ¼ ·Ûn»vè!É ”hTú·¬’˯ÉÈ${›¦£?8îhM¦¦_¿~IÕ9æè•NHsûï~ç[%•Ì:jJÚ‚õaÕ(;œÓAJ™&ù™v´2vãÐÆBVvh9hgZ52±Cõª[ñ[oŸ~¼3ÍTÓd¾…Ô§"ŒCƒŒ…`‡@@ˆ¬?U¬º•Yãíon¾nÂ5ýû÷/Nï›·>-ad,;zDdý©bխ̧ûÕÖ.˜?§ì(«ð­—ÆY Ú2ìhÍå6zÙ!MGgþ3¶Ü—c!Ø!v‚`‡@ Ø!v‚`‡@ Ø!v‚`‡@ Ø!v‚–€`‡@ Ø!v‚`‡@ Ø!v‚`‡@ Ø!v‚`‡@ Ø!vš³ÃÿÎå.Íåzärýr¹©Í=œKr¹c ]œÂ¿|ùO¹Ü·s¹=s¹N¹Üî¹Ü¹ÜÿýåO[s¥á ÈÓ¸½$Ô|õÆÌåâÿ¹\UËÞ[qY™Øaúÿœ~ÜŽÛe·]v«ÝíÔ_ŸÚì#:Ð8ö¢c”z9uý=sDÞõßïöa=ûõìØ©c÷¾Ý8çˆ[?ºU~ºfÝ5%:vÑ‹Jò4n/¹·K·._¹ñ/ïê;°oŠ¿ûÜ]֤㽕•U1;Ü”Ë ÉåÞÉåÖår=s¹§šÛ”?Îåî+@³ÃÿŸËÍÍåÞÊåþG.·%—;1—;ò«ìðßr¹¿ùÿy·ÿÂ)¹Üù_½ñ‡¹Ü÷8;”½·â²2±Ã·'|{Á{\·ñºËW^Þ­G·/úq³›²@ƒcÌÇœyÇ™ šîþ«»ÇM7aÄ[>¼åê—®>àkì;j_Í7¿sómŸÞ&(ÞU„q{ñ®„ƒ¾}Ðág®o*—ûµú÷/s¹¾ÄÒBM¶çrOr+¹7kY°ƒ¬J_øà…òï7¯úf¬J·axØ¡,œuçY=û÷´3ÇÛ÷9tŸï^ÿÝâ¿¿Þùë¶Ü øóùžj2þ•ñwÔÝQ6·’{³–U ;ügaGë…­/çr½bGk[Ä»,)Øäm…ëÿ,ìüI1¿+l}¾ þeú¹Üš\îÿ*`n.×=—›y·'|T(ëw&O1ÏÞ[qYYw´Ö©½nãuW¬º¢[ÏØÑÚ61qÓÄ„ÎýaÞ&¿<>]Ï,ìüI17í¸é–oùù“?Oj0úüÑ_ÐÁgý|ÙÏo~÷æ„qÓÇuݵëé·ž^’§q{Â[oLe¥_ žbž%¼·²²*f‡ÿËý<—Û-—«Íåîln;h `H‘¯çrc –¿s.78—»A=VÜZˆé’Ëí’ËÌå,gØÛ&årGóú”°CÉ¿xoÅee~îâãvé¾Ën{ìvêÍñ6\ÛŽ…yõ‹Wïwä~ÉòwìÜq÷ývÿæÕß,>V|ÿÆï§˜N]:uÞ¥ó>‡ìsÞ}ç¡a7nOøÖµßxÄ@VŸv(ùï­¬¬ŠÙ!ðcY/þ£ÅçY;™pñC'¾Åå–œg°C ið“\nUkÈ3Ø!ÐØóÃ1?}ô§-?Ï`‡@ Ø!¨žr"´ƒàa‡ÚCp²C Ð~`°C ЮP/;üg„í,”e‡æ®T„Ílv(;R@ ÐæìD°C Á@ @;@ìD°C Á@ @;ÿÓÞ™€Eq¤ÿ_îKNÂ(‡ŠÜ ñ¾c¢ñŠ¢Æl4jÁÕD4Þ+ ‚¢Š€àˆx‹â…(›C³Éf“l²ILâæ·ÿ÷ÿE:ééfŽi†·žÏ3ÏtuWuuÕ[õí·ºgŠ „:ABH‚ !¤A„FP‡£GµhÑâÎí뜖 ‚Ð-ÔáRIadd„‹Kccc{{ûÁƒ¦N‘8©AD“£¶êPTpF¡P ÐïÐÁ¤ …gg¥¿ûÎÌÝ_”8E­FøŠò;ÞÕ.-AQ_ÔVPú÷ë£Yzã ûr»ôêðW‡ZXXØÙÙÍœ1óü^ ]ñÞÞ^FFFè›p9óÓ^½\ìëã=vÌh–jUô O'§Ösç¼Ë"-œß©SG.yÙ­kæ)’t^ÏAM‹Z©¶8z£× –Žü>ÞÞ9Ù™8 ÛÛÛ¿µ¤òÏ#¼ÄAAGÓÎ䟸·”ËK‹’Ѿ½çĈñ+îaüÂs½¼:$íM¼xá|òþ=nnmçÍñ%Å籄§Of³äë×}èâÒ†%!‚ 4§Vꀣ:ŽÕׯ^T›Ó±ÙæÒ% ñÞ¾’7ÂKp0yŸ0O¶+ïTN»vnS_ŸÌ"Ëïß¶²²:ž•ηMáèȾ÷êÕ½ö½[·ð·gÍÐy%A49êQrŽgð÷âhohhøèá]N¤¸yý²0O¶K¡PL?–‹<‘›…‘¼`nnŽ1”áÞ­[68;;¡¿P\tóGgDç•LÑäV•E¨o—^•˜Yª£:¨}ôÌvûš‹K›‹ÎWŸ¨J¤23Ÿ;sŠ›Aº·ÔÆÆ3_´p^``K‚…×ù*ÞAM…וfǰÀ†ÙþýûÐOe gO¥…Gí=k˜YR9@L0á˜×Fyzx\½\ÌÆKKËØí[Å$obÄx<¾}{Ï¿®ZÉEêzo (PhAsu༅çó_L‰/Z€É7mXWTp½†m[7Ο7›K•‘žjlllbb¢v¶Š ‚@;u¨¬z/oÎа³³{iðÀŒ£ilW]Þh•VüþðAY¿¾}‚‚ï–ÝÀ͘µkP,P0·ÿ.¸ÉOˆŽLç•LÑäÐZäêz»vÄê¼$AM}U‡kWŠ-œ×ºuëŠò;:/ AD“C_ÕAù¬£cbB¼ÎKBÑÑWu ‚ êBmßh¥P/]évÁŒŒÀÄÌÌÀ¬¬ÀÚlmÁÞZµGGhÝœœÀÅ\]ÁÍ <<ÀÓ:tðõ…N Kð÷‡À@†ÐP‡nÝ {wèÙz÷†¾}¡8†!Cà•W`èP>FŽ„Q£`Ì7Ƈ‰aÒ$˜<¦N…¿üÞ|¦O‡™3aÖ,xç˜3æÎ…ùóaáBX¼–.…¨(X¾V®„èhøë_aÍøðCˆ‰õëaÃØ´ ¶l­[aûvˆ‹ƒøxعa÷nØ»öï‡äd8xRS!- ŽŒ ÈÌ„cÇ ;rsáäI8}òóáìY8 á¸x.]‚+WàÚ5¸~JKáöm(+ƒ{÷àÁ(/‡G ²þþwøôSxòž>…ü¾ü¾ú ¾þ¾ý¾ûþóøñGxö ~ùž?‡ß~ƒÿýï÷¦Âo¸±¸ÀãðhLƒ)1=æ‚yaŽ˜/æŽçÀ3áùð¬xn,–KƒeÂ’aù°”XV,1–K×€W‚׃W…׆Wˆ×‰W‹×ŒWŽ×µ€u5‚õ‚µƒu„5…õ…µ†u‡5ˆõˆµ‰uŠ5‹õ‹µŒu5Žõ޵m€-í­‚mƒ-„í„­…m†-‡í‡­ˆm‰-ŠíŠ­‹mŒ-í­Žm€v€Ö€6–öV‚¶‚ƒvƒÖƒ6„–„ö„V…¶…†v†Ö†6‡–‡ö‡Vˆ¶ˆ‰v‰Ö‰6Š–ŠöŠV‹¶‹ŒvŒÖŒ6–öV޶ŽvÖodTcOÑuWÖÛ€5_+uø÷×_u'ëÐ.RRR‡úRßcë8æ“:::::õ¨˜>µþ$u u u u3Z«âòHHHôšYj|Èw u u u?ä;ï@ê@ê@ê@Ô£:ÈŸüS¹xiO?­ÔyIÈw u uÐcu¨qÉû'òôØÀŽÁÀÀÀÆÆ&88hù{Ëj;ÎËVÈw u uh¢ê vœø ìrI‘ĪÄ5þ¹(‰dù Oß ì¥7®<¼_výJÉî„þ]¼½½þþ¨\ÃþõåÓÓ'³µVLþÍWÿ ßÔÔÔ¡î^@C¨CEùö¿Ö2T‡Fðøû—Ÿêëë3kæ[l3vûÖÎ:™ššØÚÚL?öÉ'¹T©)É;ú%'íå2©(¿‹ÇGNŒ`cþGëÖvèГ·iã¼léb©’¼üÞmòHHHjçù‘ׯ^ìÓ»—™™™Ÿ_çu1°‘Ÿ¼[h 00 à\×ÇùËsUô O<ØÉ©õÜ9ïò8HØ·Ê8F]*)”§:4‚ï rÛ¿ñ£uíÜÜØ÷qÛ³2ŽÜ½}óDα.~'OŠäR………žÍ;‰Gö± – ŽóX™oLòí¿¾ÀÃV,_†B“q$í^Y)fâáîµl‰09êù¤¤¤µR‡!CwîÜ)7'+-õŽ-|uÀ±%ãhZ~^nXhHïÞ=YÚ݉;pWQÁ™Ë%E‹\¸`®—W‡¤½‰/œGMqsk;oîlîDAA˜Ï™ü =ÕT|G{”K6ÂóI?|ÈÞÞŽKu<ë(?“+%P‚g¾5EþóOZ¶lYp.ŸKŽ.FëÖ­…ÉRRR=S‡Û¥WqŒ:¼—Åã(_Ò§°ø];bѹà§åóå÷o[YYÏJçbâã¶)¹ƒ&ïkœ‹mB¾ŽÛœ:œ9}¢oß>Ž/¼€ÕhnnŽõÅ–êãÇù™899½>e— j1FZò‚Xò†£¾|»!Ðþ„bŽzuðXæ•`ð˜þ|j£§‚÷y0ùÌÿ¡Gÿ¤C÷@«/ÁðÿÀú;½WÔáÙ³ço½5ÃÚÚZ¡PĬ]«çêðÑhP±¦¸^êÕ!& >³†ß à_æ°2Huðñ€køÉ¾6„µ6R‡)-¡ÜþÛžÀhÓ&§9Ç•ó7®•°øC“øê€ÚÁ?þÁ½[jÕáDnÆXð£>(c7Ú"ÈMÈwذ>ƽ];üòùg·µµ™29»~µdOâN<øËÏ?UIÅ6'ENlÛÖõ^Y)‹¼Px#Ï基qíF~Ç©¾ÔÁ±+8‚s¸„€»¯uð˜&߀çBð ÞÿHmÔÁïXãá¥`ò3 ÜY­ÃcÁò?0lLû+LÜS7é:DE-oß¾}iii~~¾M:–FïÕá½ °`"Ì€¹ãá/ըêîðo3ø ^ïs»ÁŒîÚ¨C¬|f/;AÄ ðƒL³«V‡16ð•!DZBÇ–Ð×BÍôL¸T|EªCNv&Ædf>wæŸÇ÷ùÍØ¦â;°§ÒoÏšß ÎåãÞGï±]ëc>”P‡'Ÿ<ŽŒ˜Ð¡CûŠò»,t7öïÛ­¡$Éßwhݾ†™%‹{Ðn¹ú™%¯­`ù ó¯¡C2¼rÄp¿Î?©¬Àøè•Ë[98ìŒ-+½Ž^ºïE-mLu¨_ßÁè)~¦·¡Õ|5êЩ—ò˜¶«Àüc0þ™Þ»ZÜÀê\½" t)X~ÞԫÈÙÊLF.ªV‡q`þ“RÞX¤Œpþ –?‚ÿ%˜¥'êPYùV~EÅcfó™­°Æõ^¾i ÏÌàã ±—u˜2TyÌö@xÒ¾3…maØÀjuHô€-aŒ …w;ÂS3Øé¢^z»+3éëZ­o:À¿ •êàÝJ?Û¿ `·1ØËWÒ§ ›À8›òOO¥_äç×ùDnÖá´ƒžlIB®\º```°eó†kWН_½ÈX¼h½½ý¦ ëŠ Î ×°mëÆùóþx*-uhßýÎÚÚ:((pþ¸c»“““™©i¯ž=wÅK«~ÿê‹'ƒ ýü³¿ãæöm›Q,LMMP£ƒƒƒp³)ú¡`³Z Űý+ü­ÞWU‡c•¸ÕMð™Þo+Ÿ;8¥)Õ¡G?0z!Óÿ˜Y Z fߪW‡!Ë•™L˜Q­ÃÖ)7gÌ‚±k•_ÚTÂøÍðÚås‡b=Q‡Ë—o(›éßß3›/.*ÂÍÿá}U‡•‘p°7¬ Ñ£!-žÁþpUuXÐO9€ßo zÀ{áÊç™nUÖÓžÁ´à?f––xÁ×&êÕad[e&þíªÕa”£rÓ¹5ô·W~¹d ZÂpKås‡XcÙª?ø ßh555íØÑwÍêhÁ„3B*³IK—,DGÕÐЙ1k×°×_-,,ðÞ7›:Ðÿ,5²ïÐâ'%Ï”¨}gÉn !P‡qÊÜ{bõÌ’çj0þNÙƒƒ¦Tù¿ðx®Œye„RXŒñ¯J$ÔaL•:LØX=³4$ ,~"uhšê òÎRZ|k¥ª «ÔaAïꙥM]à{¥:¼®ŒÿŨšŸ áWCeLxRp“CBT©C›ê™¥fð Õ¡V :¸º¸è¼zæ;è7Úùæ~`ѬÀ:H½:´®r<;üI|*#»ô¬V‡ŽÓ•›/ö„ ©Ê/!3áÅÉÐ} ôœ ½ÿ}§ÁÐaJu4 ¿ CÞ…W樟Y2«šYš¥ŒŸ¹´Z&Ä*7—Déƒ:g–ôyfIEb^VŽÕ“#ÿ¤Ó†(#'¼\­ »*7€éUêðVL…qÁ0&Fûè.Rå; ó…¡>0¤ öT?³ô]ÕÌR@ÕÌR;»juh®Ü´lzêp<+=aW|qѹýI»Ñ#˜9cºÎ‹Ôøê@¾C#û5þÞÁ~}¥æ©´É×à3áwß!Lª|‡îýÁègèü¾fï,±§Ò;ªÕÁŸ÷TÚò{ˆø¨Z^>–úâ;°§ÒÉɘÍ/Y¼XÏŸJ«¨CJ8|g¡æ©ô¿Ía^ŸjuØàß›*­gH_øÙVvÒè%öTzþïO¥ãxO¥ÿi}~÷¦™Á×MÒwÈÌ8Ü¡C{ccc[[›ˆ ãØk«MòšŠï T‡–+À.ÃÁéE°RÎ89ÄT«ƒû0ý|ƒ•ý²u¬ò¹C§1Ðq*˜=çƒÕO¥=v‚É÷Ði-ôŒTúkÁ;YòÖ/•o´Ù¦¼7Z»æ*Ÿ;LŽˆ­`÷ „ê‰:°7Z½¼¼JKKÏž=kkk«ço´¦÷€Ø—!j,ÉÝáWcH ®V‡%/Á?¬!r”Ò&uT>w˜Õæw‡/,!ݽú©ô.Oå,Ójo¢ô–w€.Ro´~RõFëGøÁð7Zc,•ϺZC?KøØ¶Èñ¹C³‚|‡¦ë;X­£Ï ÅÁà9˜Ü‡¨?ÞYr«zÜàªì—]‚À1Œ~£Ÿ@‘á½þx£Õg=´¬T¾Ñjô Ø>ÿ­R¿†ó:&¿‚ùšñǯáf͆ÀB0ûLÿ˰@_ÞYb¿†›>ý­–-[:::®Å Ðï_Ãå„Á×Öð†ð›¥±/•¢.D-[|¡ðlVæ‘„qì‰b«)4$87'+5e«VK/¨”Tµ×¨6Râ*ÂÂBÑíÊÏË éÝ»§Îm› ˆº :Xðˆ¯òwqüÍòû·­¬¬Žg¥sùÄÇmS8:â<ïo·nÙ v.±™²[×püÄq’m.]²逸rãDy¤/D¬‡Ó²MÆqInÓÜÜ\¢´b#öÉÜcøå†.éb« ݶ‰¸ô¹*5žY’¾ ÔG¿kG,ºQ:·m‚ ê‚vê€7¥çΜbpw•ƒê‰Ü,MÁ1c>(ìðËÕËÅbç–sŽgàÞëW/²ÍƒÉû ùê QžJ­ÔávéUþæÝ²?=³xpï–XiÅFìŠò;¶¶6£Gˆ‹ÝÆ®KºØ*Eºq­„mâM¾ô¹*5Vé«P©¼j›7AZ#­*‹PWJÎ,I ª9Ù™ø=3ã0§)ŒÇ÷t¢å©ÔJÔ¹üM±Òf¤§ò“IKá’£@ìNÜñú”Ivvvƾ"]Â" ÕAâ\õ¢ÂJ@›ÑùâéAhAëJ³cXP;j¨øiii»}«0•Ä̃üûp„³í=5Y’(0¹t14T±ÒæÊÁ¸'×kVG Kž°3Ž ÂÒÅV)Ròþ=lsyÔR6ÿ#q.µ×(Œ» ‰JÐõÂé(P¨uÐ\„#ÿÖ+—.Ô¨ÈâE ìíí7mXWTpow·mÝ8^õãÔ·gÍpppˆýÛ•§Ò˜³Á–Í®])æîWù u¨¯7z‡þé©tê ]•äÒÅÐPÄJ‹‚ÂÑqÔÈ…ùûö$¸»·cÇgeY¹"*ïtîù³§ÇŽ}ÍÕÕµÆjT)RXXè‰Ü¬´ÔŽŽ/,Z8_â\bר6RíUHWAM‹º¨?àÍ$—Ä„ ûìG ‹ÿ.œ <®¸·dñ•oo::¾óöL. Þ* ¼s®Õ­š¨ƒDy„É%Š¡¹:ˆ•6å@’‡»;ÇsŠÙñùy¹/vëjeeÅ^EѬ±UŠ„jëêâ‚~Ù„ñcÙ­bç’¸FadmßË%¢É¡:Aú ©A!„Ô ‚Bê@A!u ‚ „:ABH‚ !¤A„­Õ!5eÿˆáÜLMMðsĈWS%ëür$ •4ë²¢¾l@&M#“bÈ-Ô¡¢üΤÈ÷víž>}úüùsüÄïnnnS&Gr?ÈÒB$4Ε>|Pv¹¤Hå¯êjäÖÍ+®..d0*4ˆ‹ÝæåÕÁØØ‡¾„]ñdu·µ#°vݳÞÑDšÏŸh¡Ó§½ñÒàÁ?þø£Ê_6a Æ¿5ýM±sqÊÄ8ž•nmm9q‚Î+A¼/êÝ»§ŠÁïŽðJçEmLš‰ $íMtt|!>n[qѹŒôÔ¹Ydu·ÜŸ£Z ×OÔ®l¤bê“éç×ùÙ³gjÿÓãq¯J'RKùýÛ!ÁAܪb@$ñ—>š¬Ô)lw͸ܲyƒ¿´Ô|ƒA«hÓÆ™oüëb>°´´,,È×yk6ÍǺøuÞ´aÙFýÚ€ÚXæ[0wýº}}¼1ÞÆÆzÔÈe·®qy¢Ççííeddt©¤PåtÒëêj²$q£¹½:¡¶êðÚèQû÷ïg6PQQÑ«W/4~üÄï,rß¾}cÇŒ®ñ¼ãÇQ(ü%8Å•X¤R“•:Å̯Æ./žU8:âBc>}2 †ýåiìö­æææûö$è¼) ¾ ¨ úa7®•à11®nßÞ³U+‡ˆ ã¸ÛE²ºØ€&ê ¶i$ÌÝøQ Æ ‹‡¾Þ-Œ;†Ë3((³B áßík²®®&K«]ËXo¨­:8;;}þùçÌP8Åï,òéÓ§mœ¥Oºfu4ª<6#¶¥ô"•5®Ô)a~Ò \â}ÚgôûËÅŒÏeee'Ú¶u£ÎÛ±1áÛ€Ú 6}ì¨r˜ ÉHOE¯zêë“É6ênš¨ƒ°i4\0W9¦íÞegkËåy0yŸX$ÖÕÕbIbý£¶ê`jjòüùsf-[¶äÔ¿³HÜ‹ÇHœÛ‡…Ö¬âGŠ-7V«E*…+uJ˜Ÿô—‹-èÙ³;‘8áTäŠåË0žÝ¥4+ø6 6è‡ à@„‘Y¿ÿkúúuâ $ÙFÝm@u6ô‚¹¨à={tGÀÒÒ’‹gio^¿,V‰uuµXtRÿ¨‹ïлwoNð»&÷èˆ)ŠñãT{v#ƒ&ë)ˆ™Ÿô2½zõÀýØ+WDq ­ÚÚÚŒ9M11!¾!šF¶ÔÑwh*6pñÂyŒ¼uó Ûd*ÊïmÔÑ4QaÓH,˜{·ì†5Z›TD%©q KRiêòÜáÑ£G}úôA¯?ñ{ó¨æ!ÁAè$ªì[ŒR‹E*ëed(*8s2÷có¦˜Yr¶Tp.[ŸhãG1x£¯ï¥¨¥.sÎMÈlåìcGÙwlh²ºÛ€vê ±`.óò®]©^•>úý媃p]]‰™%nIbéE„õ‰ÚªCnN–ô» ;wÆ^£ö\#Æ[[[cSª¼ÖÈöŠ-ªÅ"•õ22ˆ3Ù¶­ë¤Èî€UÑ+ðºpÐÐyk6ÍÇæÍrúdvFzª›[Ûio¾A¶Qwàž,àý9oø5i±sñߨØxæŒé…ù»vIJ¡h¢ÂuuUžJ«µÆ×2Ö´ù½Ãô¿¨}Ïù‡~ÀøoM;—ô/¡´x›Q'êPYõØKåg;{vïÔùy“fbåw¦¾>ÙÆÆä ãǪ<˜hæ¶¡µ ×ð×°iÄÌEÉP(¦¦¦Ýº…s‹áÖ¨Âuu5y£µ²¦µŒõí~+=er$Þ#íÚµëÉ“'ÏŸ?ÇOüÞÖÕUú7’„Þ@6@4i ÌÐíÿgéPòÈ‘ÃÛ8;›ššà'~GMç—C4&dDµRM ÿh%¢¹Aê  ¤A„R‚ B©A!DCu ‚ š5ªP @…f¤ÕAçA¡H‚ !¤A„R‚ B©A!„Ô ‚Bê@A!u ‚ „:ABH‚ !¤A„R‚ B©AÔ#uYzLó´´ÀÑÔVZˆ_ˆ¬Ý¿[ªó’ú³+lmmF vãú%Œø ìrIÑãŠ{Zç©É˜_—³„†ÔVÐ&ùÏJ·¶¶Žœ8Aç"©ÑpvUp.{AFzª¯÷àAë%Oò™P—™¥òû·B‚ƒðN†ÅÜ.½:üÕ¡vvv3gL{ôð®D<ë û“vwìèkffXx>/ýpŠŸ_gSSӀܞT"+®[ñ¡©ø8DÓBÅävÆ¡Ñòã/],@Ÿâ£õkÙ+–/S8:2ÿY½ÂÓÃÃÄÄÄÉ©õÜ9ïª5cŽ˜µkÚ´q622R(Ë£–ª)áÈ«= AhH]Ôaü¸1h®xïÄÅà¸íãí“™r ÉÞÞþ½¨%ñÌÂQPÎäŸèÚ5Ì¿‹_xxÆŸÍ?‰›ýúöžT"+µê°;q~/*8ÜW8¡¨˜\ÒÞD½qøåÇoÚ¸=ë‹Îççåš››'&ijƒ.˜ëåÕ“à®äý{ÜÜÚΛ;»RD.•bÎQË_(<›•yeHåHΑG= A¤ÏB¢µ:¬Y÷$h¥\LÙ­khÆhlsé’…xß"Ï,üpÚAf›GÓ¸MìP*'•ÎJ­:ÐÌÑðMîúÕ‹/vëŠ÷3BSòÒ ž=º£#í==$âµP±¬òNåàÁ\\³:šK‹„ï’pA‚JVî0µ* VðÓÕÅeþ¼ÙÃ_Æ^@E³D±ˆÝ¾Ux–ßYJØ'¼³ºz¹¸MçY3ßâ)q² 5ÍÕoW#Æ[[[ÏJWyµ•íÅ^àëã7T‡ª>•Æk¡bYáÍ•ÂÑqÔÈ…ùûö$¸»·ãÒ^¹tÿ-›7 Ï9!&îÒD&ŒÛů3':hŸ+–/cÇ,^´MwÓ†uEgð~~ÛÖ¨ byfeY¹"*ït.:)cǾæêêªrdhHpXhÈ¥‹*Qì,¡a_¨­:HÿN‹7Zk«b§@ÞÃÝÝÄÄ$,,µ€Ÿ] …B7]ôF+QcÐpWꀮ™™Ùé“Ù,>1!Þœ{¸³vMG_4W´äÿ.¸)–g~^î‹ÝºZYYáÁè³Ë»~¨CXX(ÖZiXh:¹r«d ûBƒªÃšÕѨ’xí*–Ï_ú•T"žÕÛá´ƒ,7±¹MÔv.±¬ÔŽTÒ³¨ïØÖÑï/3 ,••UddfÛÖºíúQçÙÇŽ*»XhHFz*z1ÎÎNS_ŸÜpm!+u`KB‹­c(VÕªÞ½ËÎÖ–«¥ƒÉûXüÉÜc¸É-BÄ@g+íxV:· %X˜¼ÑF§zé «‹ßƒ‡»{¥@¸‡D»vÄ¢.·JÖ°/4œ:`ýà0õÁšU²üã|ËÇ aëäŠÅ³zCWšß.Ü"ÑlSeÒO:+-FªÅ‹ôìÙ=o{3aÅòeÏîÖtØ#ô¦Î±áÞ¬ªuÐ*«æLð&¹áÚ¢ ©ƒXUãwTÒž=º£«eii‰âˆ‡=|PÆjéæõËìøŠò;¶¶6£Gˆ‹ÝÆžÈÍâwÄ’7ÚèT÷¾Ðp°:ÉÍÉ:wæ¦.UÔA¥û`‘U%kØH.—)ŠñãT{¨v#U­VË û?«#i)ŽT½zõÀŒ~x$~®\Å€íŽÝmäÈáØÜ‰ ñµ­«úêúTçèzãÞ[7«gÚÙ#Ù¨-d¥8°HÌ,‰Uõݲ66ÖØúlý&V½B Åjܸãõ)“ììì† }¥òw=ÊÌ8̆;TáÆQ³©¨ƒôÌ’°ûȪ’5ì ¡¨†!ÁAx‹‚ΔÊ.¡_ÜÞÓC"^‹‘J,«¼S9x0÷DuÍêh.-6ÿöX…¢‚3è36oúˆ5ñk%loÁ¹PCý“:Èê r¨Rù@=BõOê ¨/È¡þIäõ9Ô?©ƒ ¾ ‡ú'uÔ#äPÿ¤r€ú‚êŸÔA>PCý“:Èê r¨ÿZ©~!‰¡ó²54T—³9@}Açõ¿WcuhA¡Q‚Ú¡ëB5£P£:躀Í(P_ÐmÐP¢ù ¡ѬP«ÏyÆE Í,ˆÍiP ÐÜ‚Š: O1¨o¾@AÍ–Ê{7PØŒ~yöÃ÷:/A¡[þõù'|uÀ0tpÿ'ï}ñé#— ‚Ð ¨ ÊÊ3k äfq^Ù•‚‡·.AÍ ¦bï5±çÔADsCEþ?…”6 endstream endobj 9 0 obj 74314 endobj 10 0 obj /DeviceRGB endobj 11 0 obj << /Filter [ /FlateDecode ] /Width 63 /Height 106 /ColorSpace 10 0 R /BitsPerComponent 8 /Length 12 0 R >> stream xÚÍ[il\×uæ¿ùUôGÐØ’¢m pŠuÒ di½ï²l'UqÜ®íÄ‚Dzd[²hj¡6Š©"%îû6ÃÙ8œCr¸/3äpHŠZlm) %“”¦ß}ßððòÍH–š&qðpß}w9÷ìçÜ¡eÓ£ERóá³-?ð²òï\íËyɽí™àŽ':ö¬îØó|`ëÃmµg?Øþx`Ǭ½;žõïx&¸kUû¶G[qn{λýé`öÓžmOv<‰ž¶mËz"˜ýæ¶ïx2˜ý$Fú¶?Üób`÷‹¾­·?æË^åÝö¤ï㇂j͇‚[ƲãÏüwàãÝüýÖÌGC{W÷öçÚvý§o׋®­«‚¹/µç¬©y÷‡5ï=èv4{˳}ï÷mü¶oÃýî-6ìyÍQ–Sµ÷m_áoчC¯{w¾à>´®!g}ÿ¯ëÞú´íàï¬ß³x³eϯZ³_<±cõàúÖ£,¹ëBµ{Zr^mÉZmÉ}Ó–÷–-ë9[Ϋþã¶æþʲëeÏ‘·ýÇÞuí­·tƒçÄ–æ}o:v®µå½mßö|×Áÿrn²ï{µõƒïù7Þß¶þþªußi?ð²#ëÙÆ{çñòwj|ÿaÏ¡u¶]¿ÈûÅ·*Ö?Ò]ôVðÀ/]›lýèa€ã£G[¶åÜò„=kuãæg[2Ÿµf®²oy¢%ëù¦Ìç-™Ï5oYeÏ|ºñ£ç,™«ë¶ü_-Y?©x÷)ûû6o~¶qó3-›·nzºùë¦'í›·g=‡¥lY«Y«­™jMKæ*µ×–gìFõãl›&ÎÍU¼÷DõÖ—+>|±|ã3eü¸ìýÕhT|´¦ìƒ¾ñƒ¾ÏìùÓ3§b3ã#3§'fNMÌœš939 øää,ÚÑá™èÈL,2s2:;=>3QŸNÏàë§Ó„™s§TãìÉN™ˆÌÜ3sg‚õ::4;ž‰ ¨~4N[Œ ÍLͰÑé b0©lORd ‡Š DÆD|Ì…tn<2 à“Ä!æ"ZByî26¦ö%#t!Ä«gvd$ñÉ' cXtd8^^__“hpwÔ#GØ)2ve@7J&iÎÁºÀ'5}I¤…MŒ¹Ü¯ú1¹5Èîp Ï»¸¨dbƒeqŒä0Š—¢S0Ldç.À\È™H æŠj &"äB1JÀPÆÒE2¢ŸX‘Â@><ü—×§tArÀ&Ù ˆp£FèF†mR+c:ŸœHk’áš0E˜n:—'¢¹“‘:剸ô {"!<&Äž'‚Ì ëu¬H=<ÉDN¤ÎÊ"C!!³tüI^g± 4P˜¨ÛX˜Êá!EyYGò òìlR`’®êª:—òP³I…¢Ï›Ì•Ùƒ'¾ ©yÓx±QºFSeðJWEÁã‰tkOzBa‡òÉÝ•g<¯4š2&âNLJ1!)H[LÔDdž”äâ<¾Bû0D`k°Æš+4!ß1 ý0b¡Ð2ø•êC-À+íåVð$©<8y$H’VBpM¢”Ìy'èFâ•O!â'þšý`·\a â ´HÄ“çÒ[ì›Îì.øèò™'‘çD±W®¬0†è¡ë¡RÓ “Y¤6z€> =i&'•÷Î0½înõ¤´ã+Æs# Ú=z:Ñ\úa½eS9¬<¬h4í …óB’Ù#”ÃùºØ‹¸ŠcE'#%œ‹bƒƒ0Æ!¯AüqFJPž¥ÂÎkÉ0zFÐÌ£}ÉaÔ2Ale )fD| ñ‡¨Ð Ñ™Šý¼ysYÓI%œ#i¨#còN#e¢FáäŽb`· nFûÞ¨¯ÀSÌ#ñ¡<€ &u//{é–Ð!SÓuyÆð”§`è™îø*V‘mQN1"ve*<_EYt‘ƒlPÈé.¹ Õá±ÊÛHp]6ˆ ©Mù†ê«é†Ãh©hÊÐ ”.\@0ŸtR? ¶¸# apΕÑ&»I^b&ä)‚‰çê§&þ\ûŠ…¤¨Ó}@f 9FŠ ø“ÈSHÈ ÞDß% ¤À`)4øGÙ0‘NÇD$Äty­dê§åér8’ @ÿFÎB{¿ mö÷ªIhÊ <Å+à)ø§%»®àä¬àŸŠ¹ä•|b}úDñ,DÝð&Œ^˜Iõ÷%3MɶH=4ÅKKû,»§Qm"Ï,ŒrkB^br}:e€®¼†èâ8€aKU`6ØŸÌÑè› N8)æâŒ°H"-âñå˜B(“ÌÓ2ëŽCl&ÏÂERÙÄÉ‚Âw‰¦„õF|®(?2œ”v‘yJ;ÏHp:RòÈÄe“l‹#`$`ÒzU“¤ª‰‰ƒôAÀSSÊÎ3b4¢Gwhƒ ˜®W$ôíÄfJå Œ6!/Â/¸þz?›–šK×®ÉÈð²!žÃÃJÆôŒlÂx=ÏÕ•Bì6ý8S`uu×,¯wn®¬Y¥¦i½½‰ÑÑ$CÁ;Ãr*äG†—ÓmÆo<£©”$Ô‹MbÔÄø§>~\y‰ât+Ê]h®1G8#Nª›åº™æmZ0æa²sýz2ª¤1ËÓ·3±OÅ\‹‚‚TT$::–]¡ÐM" [€†hG"* ` Í‘&ú‹×/¡¯ñuEHŒá¿Ä¤jDŒùˆäHÙú"ÆAò#‡!1#ã4Œdì!yŸ.-z4'ƒuó,’ŒH€ÍÊžä©B(F#%rÖ©d EOôÄavÏüŽæHô(-ÑÄ­HvÉâì¼ Ï'ƒ§x²B’ªûÌú‰³)êNÕ¸ÔðX â EÀR•Æ\>‘Å )4‹R·”H&ÅF\¸ÇGlÊet|è hùõ‹idª¹&ÂGÉY°$ŸÁø %»¡UÄ+ô§cÿR˜\ªˆÜ² +µ2âjI¢ÛxS´úe4ÔœNiV­­J¨@^$Ý=ø°SŸ§¾q#Yt2ÉÑÓ Ž˜2tbVbuK˜6¶‘€“mÝqH%¼F òR ¤8ÃOØGcýA< ‘gH¬cº‡dv&I}Ô‹çâIM™TjØ&!:¼È ©çæ’ž‘fœÉ¬å|%1“V,ƒ~s‘VïÐIádéŒ&‘ÅÉMô)&ä…¿!jý ?eIì¹äéR묉èhXyX=~K«§zÐÎ*‡X9èÓÒTç¨Aú¹>ÃWjžGèÑ¥ˆbÜd"ÏBkZ-3å;ø[\ª$SÅVÀ€§f‚d¹Câ0eÖc*‰y$qÐ˪\D§<ÄÈFiÿR³SçB'äÊe²<@ è;¨zRÓ¯«ØB‰¼ÉÑäKEu32I¾šþDyåb™uå•k‹´q>m“zÖýˆ$:YvòR¼S­^úgx1•Œy£’`FžØÒfꦯ¦ &SÕ…çb‘†—u!Ž!Úzµ–úh*þHÝIòSÊëuŒçGÃI™þôÔ˜2;õ‚¡.™&“Bäé¤n#a?ñá )c$xä×¢¼ÜH¯ÞëõFZ‰<鼤ÅiþtäÅH ÇÑ]Ò¥û½VÃñ¹A…{zCCIcÌ-–eîè”'ež1 5ˆíïU Ë}o…9Ưh0‘aøD L±°&ƒÁŒ~ÇDŠ1„ m¡bXÂ\É”yé×U-QX Yi*oÿGb*nóº TÚÒ“éâRNÄÐ…™#ïté’[:2ÝÐ1<€©dx ~ŸW–Ì ôLYQè¾E•¸{jé†ÎI½ˆ.Ày‰ $ë×oºÔ E2$“(wgÀŸ¹? ޾,ñg!ˆVôx€‘$CVQ$+4¹`SmÊu=¢¾c÷h4êóD‡‡–Äãó_×JÆØ<»ÈÔuÓ¤Ç6Å(7tik>:¶zŒA²› 5-ƹsÑPg2¶¡hñ\¼ß‚SÍ%rÓåŸ!Yj&œá[Ƥ½:O›˜L®¢h–6ù«á¦Ô4t¯MK qñ‰™‹ÁL’@»*Z¼¸òA÷t&7IxªtË.W(‡âåªT~B {.á)ÐΞUÌ`J«õ+•´Ñ²^0‘`&•Y ìÈ‚ž’ˆƒÐƒIzùÅ”Û][Sëu¦û‰XÂaUkeð@ÙÐuDrs¹È¾±T{1üÝò'hÞé1Is^k¢Gˆ.ƒP·!r*,h¿³’ŸÈe„®àX|xx9 ’¨O.|ù*Ñ,{ È3¹±ô‹ ùc•Ãdϵê½é8”4 ù.æK‡È$‹À,4éõL"L=•ÑéÉÈɲIj&kRØÔûâÅ%±Okç% ¦ðè %Ž,X.¥™óKa ‹-üU°Â¨„‡®Ï]›¹ëïéòºàBd¤?<Ü7Dch ›| øÜ½ÝAŒŒŽ逯l`<Ÿ£á4F†z¹Á4ë±¶èë¢ÐÊFl𵯧£ÅÒè÷¸0´µ4ÕU–—?ò¶9¶æVgKW‡o4<ØØ ¤PTx¤èØa°æÐÁýN{³ÛÕѪ©*ë z!`9{wv´{ 9ØÝÕ.g¼Kä{=nØÝלŒNŒG°NC}•é²@ ­Õ>1>ÒÕéÇÆ~g u°¯ÓaÁ\«Ïã>.§ÈE†ZV€Óni±4ÛâÇN/0øÒYÞ6gwW ÅÚ€ÅA.¡ÍÚ¡îHy ãvÙˆvï ú€|}]ì!„d°?änµ••‡À`Ö×VVU–Z- ˆ=TÀçq55Öb؇¯ý½]Ê nâÿ¨24© ¦"Z_W ¬‚Ô¡°àPññ´ùÑÃùÇ‹Žâ\¥%Ej Oªmi¨ª( ôŸœúC™J<È;51zSÙê°Ðøˆq`CŒÚ´„¦w ´¨ÐÇ;ž> [![›°¢©t+äL‡zZ6ˆ ü/ )¨ Y‚¤´‹á½sÌaÇà¾÷çî)-.‚逈r©[M1& ‹ _iki,+9ÞÖjë!½„`»§¾¶ ”'2º½è9zä°µ¹˜Ã@a–µ¹ŽfJ¿[ØîwcA8–px°çöKaÊð`/ oyÙ Ä'R—à ´ù}­ðD8Bmu%L%,ª :ƒKSm¨Ó7ÐÛÙßÛ!:òÎ+`AµfÏ/ÕßÛÙ¬B¬Õ%UÅÕ•ê‰WTÃfi„Á¡%ÄS]Æ~ÀC6ý• ]„ôa·*ØÀŽ€§ºº¼°èèž½»êë«KËN-8ÔÜ \¶ÿ@NyyqqIQ¨;899611zwÅ0h–F8Ãò²â¢üûJN;z`$¨¢ôPþþвâvŸ»¼äxsc݉¢D.»µ±®ºèظ!¼µ©–gr<¢ÃTl´»3ài®ï¬,±æíkÌÙÝYQâ-:Z½ m4šs÷º { D¬M§}m§}ûlO'ˆÙ;Üá Z­ž†Ú–òâÚÂÂÊ#µ¶ŠòÆâoC2Qà 9Ûû=Íî:4ª­å5Ö2 ®¶–58«ÑãXZƒ-á©þ ð™ìƒ[6ÍÿÕ7nÜ{wñÞ{ï½wáž{æ¿öµÅåž{гpÏ×n‹iá«_ýüñÇ"ý¥Ÿ”¸¸?ïÂ@þżýçsó.ª†ôàyàÂ~t&_/ò5Ï€ù—òÉ—F^:°w|oeSiÇÆõŸ}ùK ‰»‡Ï32f22NedœÏȸ`4ðüÌh.?ð@¤¿#oü@ætæÎÏvf_Êì¼”l|!츘ýQì£Mc›6 nÈœÊÜ0°-hôoxäýõíëKê‹‚ßýò—®ddܸ{¸š‘1‘áÎÈðed edØ32Ê3232-gx`´¿ãCËo¸ÞØqqÇö Ûï ¶~ºõ7îß^.ù®w^µüÏKE/½á|cwÝ+Õ¯¼^ÿzI]‘’ê_ü<ðÓ5Áµ? ®]sWоvwíš¶µkìk×´`7À½vsÍOz?Ø8:Ü[ÒvbŸ-ç`[^þÝ‚û@®mß~Û¾ËÞœ¦=hç¶äìmܽ߾oŸeïKn“µQ}4"g‰ŽGÄ ÿž Üúèðxä÷ƒÑ•`ôÄÆT`ô·!ï@ÜŽˆ 9¸ÇmG< ˆ¤U:#U>RMŸFýi l<ïd±ÃCyZžn—½¤¸±nGЇ¨¦²ÃŠÈÑ1RԞл5ìi û¼á€? „;ƒáPg¸'îë ô…‡Â#CáÈHx,²eP)<î öÆú»cˆ¢»;b]í±,èÚb¾Ö˜ÇsÛGÛœá¡^ìu‡„îÎv›32‚`oÄÐ@oWGÏPg{_Ozû{ðitd°3è·µÔeï8ýwß\øöýó?úáü3OÏ¿ô³ù×_›ß°~~ûöùüüùÒÒùææy¿~hp~zz~vvañúõ…sç¢c ¡Ð‚˹PS³p¬`aïž…6/¼õÖÂ+¯,¼ðâÂÃ,|÷»7î»oì;ß y]ScK0Šƒ ‡z£*’ŽÀ[áB⾜ây¤ØŸ]øäòÅO1¸®¦²èØÑÜœÝùrÈMOóÓPOSCŦÏ~å¯÷þkâï¿—ø—U‰G^H¬úuâç$Þÿ ±{w¢  QW—ðxƒêÞàìÙ™S“Sª"ªÿb¶ÙÔyçå%>þ8ñÛwo¯IüòÉÄϾ›xäÿü7‰oýùè?}½Óe—ê– D›ë€íݳóxá‘ü<åQ«ŠSg.ºÕa x‘¨»;ý훥1[S}u}M¥Ën }=]í}ÝAGKS}méæÌS_¹/þ?Œÿícñûþ;þý—ãý.þTvü÷âÛ¶Åóóãååq›-ÞÙF¯uwG<.W|z:>0÷xâõõñÂÂøž½ñM›âo®‹¯{1þÚÄ×ÿCü•oÆôkÿög|½ÃeG tÞ?¢Y›µ¡¼ô8ÒÄ´Èòø©'Ô®¢Êª ·Ófmª«­*«®,E¼Zg”ÎÈòXCC'¾"CLër lÍòfïòîÙçÍÝï=˜ï=\à=vÜ[Rì­(÷ÖT{ê½–f¯Ýæmuy=m¯Çp»[ÀÚh¬ÔV*Ë¥Åã…c‡Gò÷öíìÎdgµåì ö!•CŒ´Á0žµÍMu ŒN„@¬U‚#C}††&Ó–¡n0J†®©´‘¹êðdlhb|(Äs|t`|l 2`X MuÑ‘e€ˆE–A ¾£ —9l»¯ä@¢ù—"yAhWxìðñ£¹ûv;zéb<Ø"¯Ç v€8͉ࣷl÷Äñ0Ôïuá˜L@¤Ýô»V$àA¯Ïëò¸@ q2RX~ôã ȹ`ü‘Ä›mF¶Ž é¹Ïã„9Å+f öwkÉær=YÅäË™`z€¹ÀS8žœ˜œ>|«‰„þÞ.[s½ÓÑêj& 5@´…DmKs=ô’†ÔUÊ -Õ™‡‘ÍÁ²ùZCApj0ÇDþ‹‰ˆÆq^$žPôy7’å‘áA|Ű5wgi2€6xšv"ÄÝÒX[WWÝðú½­ 0m¸ZÈ ªyh.¸v£ {CÀÈ#ß,8’'2÷ÊŠý@¦·;˜º‚1½Óûz:ÁG2÷È¡¼æ¦Z¬Ñ…ÝîêðßydR˵—©qÀt:PcÒ‚Q`Q…”[L\š®ƒL—é'W†T¤¿ §Œº t–ù#eLêTw[ÜHcÃièdõõŽ*?_4@å°A€&½ª¢äDÑQ4¼m޲’¢ªÊRIxg^ñ$!¶òõ @™>í¡ü\0ÒÕÆúj(6ª(;iO·ø®?iä°¾6‡§Í G<æ°[¼WOwG lH›QÄ™ÓSgNMž6àää8ŽsêäzΪþ$à“jHÏÒ”ñhÄ(ô{Û\X¹©±6BÈêrÚ€'Fž^Z€(é=É•—žz?Ä ¦ÒïqMMŽa‹€Ï j >X> 6æÈðS}F…­³¾¶›â“Wz8íîb¹ÎžP0Ôê…i5Ðéœ Ђý! îébe|ÅRBÌÚê²ÁþN|ˆ1Và bÉ[?Eö(ÜPW ä1Ѹ™·?a¤¨©±"¤”·{çv{KÓÄxÒW–Ÿ EÑ€ ¬ÐŽíY õUâ $0ksÙ@.ø¬ †Â²u}ˆðá³0±Ý(¯¡=0›8E_<"i:5&*ŸëjA'^±ˆ×X¤©¡ƒ{{:`î¯á‰U?t;°&£dá×’ÇàP’¯KX¸a}l*ŸÀ SWSåT•Ìœ¢¾P­ž5UK¯+ ¦ î긚ʔ¯ÕɹK€1@GnQ%§Ê•kšFªOƒq·“¯f¨å˜vkÓÿ]Êö( endstream endobj 12 0 obj 7731 endobj 13 0 obj endobj 14 0 obj 7731 endobj 15 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 522 /Height 876 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 16 0 R >> stream xÚíÒ± À0 ±ßiÅq4€;09Á—,ÅÕÒ¦;˜gšhNàcàH¦ø‡8-Và•Xê¼p½=Á¯Äv6 endstream endobj 16 0 obj 504 endobj 17 0 obj << /Title (HilbertDisplay_GUI.pdf) /CreationDate (D:20090630172118) /ModDate (D:20090630172118) /Producer (ImageMagick 6.4.7 2008-12-12 Q16 http://www.imagemagick.org) >> endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000059 00000 n 0000000118 00000 n 0000000300 00000 n 0000000383 00000 n 0000000401 00000 n 0000000439 00000 n 0000000460 00000 n 0000074970 00000 n 0000074991 00000 n 0000075018 00000 n 0000082890 00000 n 0000082911 00000 n 0000082927 00000 n 0000082948 00000 n 0000083641 00000 n 0000083661 00000 n trailer << /Size 18 /Info 17 0 R /Root 1 0 R >> startxref 83848 %%EOF ShortRead/inst/doc/images/HilbertDisplay_GUI.png0000644000126300012640000030726712227066722023175 0ustar00biocbuildphs_compbio‰PNG  IHDR l:€¦sBIT|dˆtEXtSoftwaregnome-screenshotï¿> IDATxœì½y¸\U™5¾êŽ™næ0$!ææ™0AÄ AèÆF[ØØÀ‚âgÓ Ðbk«Ø ¢  £­¢¨´ÌSd& !HBHBæÜñûãÜusk¥V½»’þ콞'ÏNU³§³Ï¾ï»Þa—PŸ>hbW¥ï3222222þvqÃO—ô»†Þ>wؤ®å­øö—Gÿ¾M(Õ5~p½ËÈÈÈÈÈÈøPÐÕÙ†e+Z «_S®¼ý©¡ç?Ÿ>hb×'‚Áú cÅbt®\„Ž‹?Œþfdddddd|€(54£®±u}cÑœWñ[fõ° @!$|ÿŸ@ÇŠÅX9:V¼÷áö8#####c=áŠ?½ú¾Ô{â”ñ{í,]ˆC6À)Ø…î|ºÔË[;ÐÑÙ…UËd!!####ão?¹ó5vä'±ãVc×k½O¼ð:.ÿõ/ñmú7×Nû¢·Ñ·©Ë[; {ï0¡ë¿N?­Ë¢ué‚õÚpFFFFFƇ‰®ÎNl·ùÆXôÜÖk½Ûm1¿ëìDGGÇßd;ø×oˆw—´u5@Gg'V,xÝüoÅÖ_¾ðü÷Núœ±þð×<·Ô:ø ç`ønÇaÄžŸÅÒ׿þúûÞ^ÆšH}ÞÍïÖ¿MŽ<6Ýïã<´´ÍÃ) ßÚû°0xë)±Çñh¸ZÏÁ;^E/ÜYv סk©T×€‘{ý†lóÔ÷„ÖE³1÷ŸañŒ{Ö[?SŸ÷û½.ÖÕú÷ö=?ÂæãvGÓ6ŸÀí?ý Ù²ùëWWg'ÚÚ×ÿÖ¶ötuv¢££3lç¦ûg%Õ9mï1ëÔγo¼‡gg½W±.öaÛ1ƒ°í&ƒÂv ££KV´ÎŒ½è†J˜ú©CÃöÆ-¿ø}Õú> œ|ÍøáqVýí©KöÇ)×½øùC‹pq¯k*}>v×–¥¿ë¨un?ȹúùC‹p¬¬“÷c¼Ÿë«e‹=Qßg yàÌ|íì4¶?î~a)&Oèû¾´÷a eÓݱñaçàÙÿ¹ ç_x¦}ît|â˜sðÌ«s0zÅ_z®ã;ß/Xs-m8ùdŒØåSøÓõßÃ.û1›zýâÉHyWZÆìPu~+aø.Ÿ\ð?FCg^{èV”>}<†îô)Üõ“Ê„¢l7°ìÞÞûÄí>¸øWb“%¼ùè¯Q*…Á;ƒ{®|{mæ„«x\D´Ÿì|ö½eëÍí­)k¾Ú~Q ){ˆbÀæû`ü‘ßêê1ûOßǼé7V½r0q/ì¹ßAøÅîÄV£P_g›^oèìêDûûÀ(´·wuóx•vÚÛ㿇Õî]›vοéYœ3u+ÀE·¼Ps;ÀêµV [Šè¬øïäý;ñï'ì€kÎÚ??k\û•{ÊkÏÞ ×½3n8gÜðÕ]qãWwÿŸ°NÞ¿r]Æ?Eµßˆûf,ÁÔI}ìïûî?œñY|ö¨ýðÐcOa“)§bÑÆ‡÷Ô;r×c°ñ_ÂŒgǧÙ×Ýp#6Úÿd¼7ö(´·—·ýø{àò³¦âˆ½·Á¾;mÑóý>;n}vÜ_¾q®Ûð¦bìGÏÆ¼¹spÒ§Ä'?ñ1üeɆ¸ïåå«iª®®²:~·f?¶Æoók”Ju¸¯co,\ÖŽŽŽN Ùæ`”Juøí¯…þù˼S<ÆÊ}>ôO˜ùò³øû#&cÚ1Ç`î Ý+>§R}®úê'qà“ðoÃwøÚ'}ËVuà‘oî]u®ªÝ»®}Óu2îcß@ÿ ·Åœ&ßo7|ý¢ïcŦdzo®,›ã×ûîŠë.ü¼]7µÌÁ»oÏÄœgïA]S_Üݺ'–¯,Æ5`ì.hè7Üÿgœü_à­EmkŒ³ÿè­O?ù8F hĨ–zôoFí~6Úï xü¾?à“SvÁ­¿þ6Úï X²é'Ñ&ëöÙ¶-ðÓ¯‹oýßÓÐgø8 ÜÿL¼4geøö^ïÿ|Óܤw%šßJÿúmPlsß~Ã4aH×|À–ÛNÄ]/.ÇÛ‹Ú{®ýÈVkj¶ü­®aõo#4bÛÑEŽº­·ˆ?>·o¿×^±ýZö€h?ÑõæÆ­ùh¿pÏ-u€&ŽñGý+ÚÛZqÖ?ˆã¾ò_øó‹ËÐÑщַžî™»yïµaö‚5׿ûñ¯³³«çãúü×ÞÞQö·³Z;ü~æ‘*þPõÞÔvÛaDO}@! ôÎÊ)»}&´`Ÿ -¸å©•Ç6j·c_ùÚy˜ÿî»Øbp+î¹ñ;xðÕUxe~!1vuk‚¬Ã±w?^½¿èïG>úqüì¡¥X¶²ú5«_\5†hÀÐ?ޱbŸwýàkßø&V._„­†´áîë¿·Æ·wt`Ö=WáÙf`DZð¹?&ì4?¾o1V¶•Eç*ºw]ú¦sXßÜmm­xöå71~Dš=‡Ë.8¿úË2¼õ^{ϵ—~÷büêѷ캩ufÞ{5àȣŕ/ÅÊÖ ÝöÀµW_‰!ýðÀ«mX´¼½lœ†æÎy -}ë1z` í±ãÇ~÷Gè[߆Wèã¾Sqãô¥hëÕÇÿ×÷ðÇg íB«5zc\õÀÌ]Ü^õ=Ôõ>`ûxEóÛûÞík÷£½£ Íýmm­hnÆ ,Þ‡––,]Ñ—æµUì_ï¹oïèÀ—îLöw¨ohÄî‡LE¿þ°dU^œÛVq¼µìÑ~¢ëÍíuÑšö ÷ÜR÷O|ê8|ê”ó°dþ[øÜßMãÞ‡mF÷Á;ËJ˜1¯ Ëæ“á#FbɪN¼¹øƒùÐÙý÷m½ ½êŽÚá¼µwtà퇕ýëýÛº¶³ªµ ‡l? §^žwN;|<Ù~Xòxz¯X±ªK–Z¦›Y««+¡„ z¼«(KJu¨+¥+`ëû°ÏŽ[¬ñ)ëZ1÷í·±ó˜¾èßLè70jƒ ñèë+1aD=ö8pïË:GÞOÌ^‰­F6€úð{‹bëñ0´0aØšmÐý¼+ÍgóÀQ€·ßz;éƒJØbðöðf¼»´÷ ]<¹jϤ¬u/ãõçÅf['ཾ}ÑoäføËô‡ðêË/aÇ1ý0hبpŒ› ^³æA”ÍáÈ–& ˜»Æu £¶Ã„CNÁEgm‰Ææ¾@©X[ Ƭ…mxü6L6s•rïÖ#Ö¾oŠøOlzÈ—ð“ënAgg'¾ñžùí¥xì±G0cÞjA!Z7{Õ8=ö6xîQl¶Í®´ñ¶˜µx6öÞr2f½ò¦?ò¶Û¨†öº:Ú±¤ÌWyõ{ÚÜP‡æRñ{SK1)‹¾‹ ãúb0Špé#7À_f¯ÂÖ£V¯ÛwæÍÅ®›À€úbM•J%,oëÄão´c5ý±z ë}pÂ:–8¿ÄY·.ÀÝg.EcßhllB]©„ήB‰Yºd)Ú:…+ºª¾üíÉ_œ†=—áNüÿÐü¥Ó°tÎŒî9Z€ŽŽ.,\^¹ž¦ö€Z×E¥ö†lºc¸æ÷ ö‹¡ÍÕèñx9å´¯ T*áÛ—\‚9³_Á¤Mú¡s&n íÛ¥½îmmï‚¥X²Ü3»ë «Ú:±te'æ/Ys­¬ ¯ìĪ¶Îž9©ÖÎÒ•=¥þ^í·ZÛÑ:õ»j÷h;°¢µ¨§(h…º5Ž(G©T ¥R ]]ÝŸKu«A!ªïÀjìk‹Q£G£¹q¶ ÑýÇeÎ[XÕÞ‰Ù‹€•ïÍAß!áÈ){aÁ»óËî-•€7—”××P_ÂæÃÆ öºjóÈvFo¸ú4.À–#€~ ÀæM½î¯«ïazúYu\½û1÷á0vë]±ßGŽÄðÁÅ™×ÿüj îWþÍõX¹hú ­>ƱC*ôyÑôºQÅ9ìIÇ]Œæ–á¸äk_Äw݃ήzüé¡¿ T*¡½£ *¸p®Rî­«0©}S¼ñÀõøÁ•7¢½evØew|ñÔÿƒŽ=//v ô﮿ßblï¾ó 5xë %){ãÎgæWøvM´]娠V¡Z;•úSËoµ´sç3óqÅ3×øþŠ;gâăÆÙ±h;èõÿ: X¸uæ_O49”ý+Ì u=ÿ/þþ)Þ|õ¿µÅ—N; }cÐàAØâ£ÿ øÅµ?CsCV¶oÜ=à‹_>ûm·Ú~þqÚ¡¸ê§WcïÍ[°¢‚PÞ§¾èoûÊ¥€ 7Þ$œÇ7î+â‘¿|æ×ÐØ(ˆ-?­ç÷ Þì=ù46õÅæSN ÇÆ~,q¾ó>ìcØ~ïâݹoâþ{îÂèÁMÚ˜ý@<ÆŠ}~ð†ÕsØgPÙö…ЙsÞö¿|ýì²ßÛ:ý\¥Ü».}Sìð÷߯{o ñ–Îz°rÕ*ÜøÄ ,êeÁŠÖÍÚÌÁʙ⭙/àÀƒÃÎS¦aé¢wðÇÛoÃFCšÐÒ ë·æ8—¼ù<`â;¡µ½³çû9Oüðéã? Ô7`Ëýüæ–›ÐdúØWÎëBÚ{Èu–ò®Dó[W*i~ÚgB îûmá„:õ˜¿GG]Æì9 èêÂM×þ-}êÑP_½½›zâ98bç pøîãñÕs¿Ž¶ÖV\ý“ÿÄ ~õh¬¾h:¾hzùZªa¨u]Tj/e­DûE¥zkÙCô!\vþ©èìêÄÉ_ûwìºÿhi^]×±“Ï=û45”Ö˜ç÷ë_)øwÅ3«þ‹îOm(Ê»ž_ö¯÷oëÚÎ]Ï– _˜2_˜2®çówÎìi3j§÷»ÑÀVzYz£®®®›Q(>Dˆêû°°>úuߟïÄÏÿ Fo´ V-y7ýè[øå ×`üÈ>èÓ¼ùàõxtæ2ìñ‘Oãà+ï:Z±ðõ'ñèí?Ü…+ð»­é)Í~ͼë l°ï?â¦ßñÝwÍG`¼ùÐ xäµeØãÐOã?ºmËâå;.Ç_\‰C·êƒn9æ||ûXðÎÛ˜wß•Øp×£ªŽmõütbÖ7bÒÇO\ö½¡©¾ Cû5`ìàµ#PÜ÷ôÜöýè±ØçÊ;°|Ál¼z÷U¹íe×=wÓ¹zÀøÁ×`Ñ»ï`Æ]W•ýÞUe®Rî­´Rû¦x{ú­È—pÈ—‹pöŒ§ðÍo^„Jxz.ð©îë¢u£HÇ›÷þ ¶Øf{\sù ÔÕŽaú`\6Þ}áŒÜn úÈá¸â±?`UGú53ïºÏÍëÂÁ‡} Ÿ>þsXµøüáúKqÍ•—c“!èÓ°f]îl^“²Ž¢ù=`S`Ÿ1²'-½¿¸ô\ìyäçqÔ'?‹ÞÂ5ß=

s$öú66T\øÊàŽWbî{mhmú5—0r`6ÔŒ-G›«¼^ª½c„»&eU›ßÆWnoÁ à÷/´âåy­hmïDÿæ:l2´Ãú7`—KÑ¿¼_ŠÞïÝmϵáÉÙ+ÑÚ î_‡M†4£¥O=ö[BKså±Õ²Ôº.*µ—²V¢ý¢R½µî!{-á®—Ûñøë+ÐÙÕ…=7mÆ1ûo…]þé&,]ºG2c“6jÄ£+NýzÅMÏÅçNü"^}pÍ¿Iz:Íô0eâštýø=§âÊ+þ ÓvõWÓΫs—ãÕyË+ÖÅ>ŒÙã+äQÐv€ÂGá¬_-èöQH`Æm²Yõ MŒÂG¶ˆe«Š?$Ú/ý­–Ï›l²U]èêê ç¬M‡ l28d«F¼ün#–µv¡£³®÷)a³¡•ë&œÐ„†4bU{!”ýîÅ.±Uå ÝxpÈ–MxùÝF,]tv©7vkLûŒkÀྰxe:4×mÓˆUÝÔgµ~À~›5aäÀ&´¶¿Ôw_“2ÆJ;8xË&¼ònV´õ67m3«ÚV÷còø ëß‹WóÐX¸õê¾Ô•ü\¥Ü».}Ó9ÛuL÷kÀÂÝó ¥O G•kº#6V]7Zo8Žº†m¹/úˆ›o¸Ë/Æ6›öǦCJh01ê]m+ðÊ=×aâG¿ˆã¾p:î¸ì l2¸ð¥Ø|PÚªf.èƒU]@ÐPl:¬„ ÊqUZ/ÕÖá®IYGÕæ×µ7¼0e‹&l<´ËWó×Ül5¢„Q*÷«7z¿w»ŒiDKßF,o+æd``»QÀ >~lµîµ¬‹Jí¥¬ùh¿¨To­{ÈоÀA0´ÿ¬h-Ž <(•pýÕW¢£m%†è t¡®dÞzD¦\á·C*üa®¹^Õô?Äv6Õ¯b2¥”>TcPáGÅ¿]raÕ*á¯IP8h<àH&ý­ÖÏÕÈ«ÿRÛ&ÆÆNŸÀ¢Ê×í LW½ŸÕæ§è‹ÿ=£Ã¦ƒ‹kÞ·úó°¾Àäq•ê]ý›«”{×¥o:g#ú#ÆT¿‡8`Sß­7ÇΧý̓Faî«OáŠÿü>6ÔˆæÆÆ ©þ¾÷ÐOð?øO¼8g†hÀžcû¡¥Ûél‹aÅ¿ZÖmµ5”rM´Žj™ßÞØ°ذeíû•Ú?WGí÷­Ý>¤¯ùjûE¥z×fÖ˜²Ùêϳ~q¾~Ær̘׎±ÃšÑ·¡„Ñ-•¯õÞ>ïGÝuRÿßJ;€ uu%Ô›'¶ÿò[׮ſ&I!#ãCÄÃçíŠ3þ{õñíî][<ù½#qÁ–`ÑÊN ìS1#ûbÜ` ocõ6êLÙ²6Ü„ÖàùyÀžcò;›ñþa÷Mûa£!]hï,LXth|¿QW*á…×ÞÄ6{N]¯õ>÷ꛨ+­þÛù·Ö°z¯*m¿åØ®_žûQ,zµ²BFFƺã÷3ºz¨Ù£·[¿ykÿ<³ –u¡³ Ò·„}Æ•ÐTß—‘ñ¿—Ý=ç}©÷äÊçÿÖÚYÞÚ‰Sùn!(Ü|îGñÞkYPÈÈÈÈÈÈÈ(°¼µ_úÅ»…éañªNÌ_öþgÈÊÈÈÈÈÈÈøÿà¦?d6!######cM4 6ßô Í_mó<7ÿ¯ŸÓý®ÎšU^?ûÃ~Œ[”lP~ÿÝw%×÷{ÝŽ–£»ƒÚwØ¡üzí¯[Ï?_ÞçAçQïçx60ûÎEåa‡•÷Oß Ö÷ä“åímT”Ñ{­ëSû«ïÆ«ï¿×ëyǧãpï1û£Ï+Z‡º»uŸúžÞÛ}üøîÃWtýq\C$Ç»Î3?:>¶ëÞ·FãÓúô½&ܾ¢ï‰ÖçöQ7m_Çÿ·¬×­o‡îqßÝýÜvœ¸uÏOsgÏħœV13#######@·éa½ƒL%ýc•VE²SIŠ¿«§’9%-• œDê~§&Iúª¹9 Õݯ’äüîl]”¬UUÉ[%jö›çëá‡ËÛ™<¹ü:Õ¨ùY%âHR'8NÞÇßUÓÑy‹à$~§©)Tòvõºú©é«f¢ë‡Ÿu½j{:O¼?bl”ñ"“´W÷¹‚Ó»Ós=|ë[åõ}æ3Eùâ‹EÉç:qbQn³Må~èûã˜^GÍQ™–7‹óz4zÅKݧ¸Þ~{Q|ùïçœSþY5Óá’H†š,çe÷Ý+÷‹ãá>¢®¶§ï??³TT×2':ߺ.¸žxûÇçÌvy}´Îœ&í˜Âí£„î\—ºŽXrzŸ¶«ûºöƒ¿ë÷ŽùÐÏn>Üþ¥ÏßíZ_´¯’ãºÕýRûÃq³¶=Gö_™ªîë8à(³.™QÈÈÈÈÈÈȰX7FÁId”x)Ñl¼qùõ¯¿^””¬y½ÚþÕ¼TòW¦€H•œ)y©d§’º~&œä¹¤ûŒYއý½é¦¢œ6­()ñ=õTQî¶[QržÔöG‰sçËÛW̓ßs|ÔXhÓ&Üó%œM—pßk?£¤×ëóuL‘*ñ»ï£¥ÐïÝúpí8†Êiœ\ú™¸âŠ¢|晢üዲûx_|ï{EI÷®»Š’šÍe—Uî·jÈŠW_-J®#ÞÏ’Ì5'Ž×“áÐy`É}€×O˜P”Ê ¨ÏŽC5p¾‡¬_}%T#äü|þóå¿ë:p>'ìßm·åÑG—ÿ®ó«ï¹ŽƒëÔõC5NÝ¢÷3Z¿ ÇÀh=n}éßõÓùágÚê9ã蘾'#F”×£L”2º/9f`½ô¹áøÕWDÇï˜0úm½5*B™úÈG«2£‘‘‘‘Ôïåè IDAT‘‘a±nŒ‚“,ɨM’½µÉ4*qñ³óŽUÏy—ªäÌRm®ªi¨³ÖG¤JØÚ/‡z›ó:jN„Fo¨æ¢¶=7~•|)ÑÒæûÈ#E©Ï‘¶feÜ<¨dïæÑiâÎÖælr‘d¿¶LIÔoíá4d~ï¢%:Ϫì'5ï-¶(ÿŒÖ¼yEÉ÷¾-Î7ÇE÷Pãºxì±¢<øàò~s]ñ³2 ޱ`”Çã¢aÔ+¼ÛæÚ?}žìŸ{¾¼ŸóÅ}¬©©¼}Ö¯¶`õ5¢ï„‹HÒu ©«Gës>Fº_¸ùOõqÒh öWûÇyáßµáë{¦R}¢t½ó9Dûþ®ãÖ碌„öÏ1މQß2Ýß©LldF!######â²èᢜ†¦P Fï§ ]%cJrζCÍE%ïT/vµm)ÔFE8 Ûy嫬Þ̪Yê%¬ÑüžýW˜Pɖ׫ÂúÔöM ßyW;žJ°î:"òºw6P‡(C­ †ÂiNZ¿ƒkOÇ«y ¸.œMž2£¸ÞØúÄ|üãE©¶òh]»÷Vïsï5Õð5ÿ ™¯ÌÀС¨—— 5oÛ?ôÐòïÉÐèzWÍT½ôÕ"uuQ[Ÿúf9 ÔE%h<~Ä ºh—‡ƒpÑjÜÉPé:×yÔñj2.JÏ­—ˆ`ÿù¼¸Øßsb̘òÏõvÉ%åíF> ¥“à«…ŒŒŒŒŒŒ ‹Ê¢+m‡êm›ÿî¢ (©i|°ÓH ~Ïþ¨dì|(1© Ði°Î–íò,šÇ€P‰šíùýï‹’ ŒË· ýt>n<Î+ßù,|>ôžç<8æEûí2ÄE™ê¢~¦2Ez½³;^á2K*"_E$ѳ>j ÎÆ¨¥®?>7æ+ oŸóf›•_ïú¥yL”Ù:ðÀÊýÔç ÞðÎÖëò¨Oá|V\ôŒkÇe>tš¸2.?5³¬óiqŒ¢27Ž)uyœFÍo´¾óèö[â8묢<ýô¢TŸ©è=ÔùÒöÊ̺÷Áe*u¾vAß1jTQºýY£&¢ç§ß+3SÅw!3 •E1Õ¼S™g3vš…JÄ.•J†.3žÖ¯6°hNÓÕzµþHCP‰›ñ¹§VÞ®³ ª/ƒ³)Fù"ÉQ54zw³¿©ó¢Ðç§’¬Ë£à2騇þ1©Ñ+ªAê:«Õ'ƒˆ4½iË¥m“ó"0?3 òÌú.0JÁöì¢ä: ܺÓ÷Ú1œÍ;òîÖçL†”™b£çà| ôw–ôQ`ýî>÷<]žç¯ëƒÏ‡q©‰º}Ø1Ѽ¸z&sã ô~çësé¥EÉçH¤ö;:C…ßk¾·o8¦”ÐçªQMúü´ž'ž(Ê]v)¿×3ÿ3ªÒ‡Ç½Ó“}2222222Ö•ErÍP+"ÍÍÙØœ ÏI¤Gìlf‘ MëS¯kBãU#Ipš¼æðç}êË¡qóìm\z½BïwàïÔ©Rcâ¨#Û¥{©6N½ÞQá˜]G.¿"²Qºû\tˆcš4Ã&ÇAFIÏ4 Ïç}ß}‹’™<]DWm¤_\”ÌÓ¡g>.Z ŠûÖ÷\׿ó1"œFù¨èï\¿31?ŽùÒ÷Ði Ê8_–(JFǧgGðy;M1Ò€ÝþiÒîýwýÖu®õ¸ü.ú»îÛ¬OÛQÆCß_2BÌ0Ê(4—O"b2ÔçÂý]Óyd’{/öÞ»(¹?³ŸnŸU&—p>>…ŒŒŒŒŒŒ ‹ê¢D?J©æ\§¤B›5eø;%8ž:¦í«­‡ŸõzF(#¢š5$jÎ.ƒ™óÒ4 öÃi”Œ5ÞVO—£$ËëÕ›Ùy+G™ i‹cûŒj˜9³(i»¦¤ªp¨ó-Hµ%§þ1Ñ ‘o‚«ßÅcGÞó©í¸zõù»û¸®·Û®ü{ÎÃÿwQ~ö³Eyá…EÉuꢂøþF™÷œÆä4gÅ¢>L©Ñ&n~õ{7Ê̹¼)ºÎ•ùÓû¢zÜódFBîSzŒö[5ywv€2¦}BDóe\æ#z­ß]å-ˆ˜?ÞÏ}ÏEáh¿ÜßÇ|ºñ:F†÷È1ÿÿþ)“âò#Dûff!3 •E•0TÒ¦äCÍ…¿ëiV÷­ 5gÕ°„¦§R’‰Ð¸Zí§JjjóT ›õÒ{œp^½*ª„ê4L¶KÉPO+S(CâlšsŸÞ³“'%mÚ‘æë4†(C¡“\Õ+ØÝGD¶å(§}$I»ñGzju}¾.ž9Õ†×ó}"³@°žsÏ-Jç«e¨tïq¤iégÇø8[pª/AdÛw>.ßAtV«W5ÇÈ—"òYàøÈ$ð¾;î(JÍÉý6lî+‘-::³…pÏ#bRô~ÂiÀ.Ê#Õç,u?tÌ„[On]¸³\Ǹq\zŠ¥ë'ß÷¹s‹’wkõå©‚Ì(dddddddXT%TƒUÛ!A‰IÏ$ˆ¼ÓYß-·%5[Ú`¢¸^ÇÓåxO­sg h¿©ÑS²RÍZmz¬Ï­  %K2Ôü÷ì2+FºfžÔÜñ5võfžÍ$§’fªíÝÙ0#ïgµE;ÍÕI¾Î«WÛKÍ_ p£³‰FÞÕît¿ÔŒ}ʤæ#áúÓS5££;ûÃiÜ.:ÀEy¸<ŽAqŒ‹ªqÞù‘oCª7dc×ùˆ2“j¿uŸU¦’š&½ßù\©y’1dþ w:)ÛÑüŠˆAŒ0÷(óªóìæ(êÊù¸úSó9D>Uê¢yúžð=$ôï¬f"vû!Ÿ;¯'ÓÄý]ÏŠ¨5?2£‘‘‘‘‘‘Q•EŠÈfLè)V©qÏ*!~xQRÃ~࢜4©ü~ÕtTcb&«HBdœ¹žŽÙ´ô¬Õ”TCæï—_^Þ?Ö£õ¼z§!éüÑV3çqx¦ãäé[â|0Ü™ z]Ä,D™Ðt\k!éXs]DÞôÚ_ÂÙìÔ»=U㈢6œMZ¯Óù×÷2²«÷´Ž“^ÞšqÒi‚ ÷ ½?Ò@æ­õéõΗD¡ë[û•êsãÎŽpý$¢Ì²³f%ßOÕ”•É`žjbÆFÝu}SÃ%3Á}1z×6³%¡óå˜ÑZÛá÷Ü_Us'#¢ ¬ƒ¾/lŸ÷)SÃvx¶ïçüó½&ÃÍ¿§ÌwÂçÌ3/ØO2êÊtëzÖ³Zª 3 •EF•¤(™ªÍÅÅeò~•x” DuÏ=EÉSç^|±(é+Àz\^zýÒ6ãâ‚ÙÞ£% •ð) R‚»÷Þ¢dNmŽƒšZŸB5}οî?\—ôg>·¢ùŠ¢.øGÑPdü”éPïy=DÐGAçãŒ3ŠòÆ‹’ùž{®(•iuQ©ÏCwš¡g8(ØõQÛ˜j.j#rÇ»øu~VÛ´³:²jˆî47'±©9ÓS}R¯sãråcpL›¶Ëñò98ÍÍùðwÍ?ðùÏ%3ŸFy4êÁEc8ŸŽZ}XR£aô>—QPÛs> Ÿ2”|ßMÙihú^¹h‘èl烔5¢¾bnßå<}ty}<[€Ì1îºTßw¿2.Qô=Ô签ݣýÖý™×óï ™}lW3ì:>eŒO8¡(5#.×#£]4_BªO¡ù8^F¿ÍŸEf2222222,*«^ï½W””|(iN²u%'•´Ô†M è˜cÊë£äG‰L£%Á³"Ü „‹ã&8¾§Ÿ.o‡ó@ ¾.þY¿g½Ê h®}g›Õ344ÎZm™ê+ Œˆ24„‹‹wÑ+„fætztÊá¼ø#Õi©> ©šnÔ_Ç”8›¼‹¯Ž4UúÊð½b?ùÎ?¿r¿T#OͼñàÚ‰ò¢DÑêùPè:Õü.Î]ÛuÌ©¾WΆíò\.Î_áž[´î þ>o^QÒ»þþû‹’>^ʺ¯¸çáEC¹è9Â1[.*ÂùT¹}Ióûhýš!•ˆò®ðûK/-JõA"È`Ó÷„̀ο2Ò:?ÊPð:2 …ŒŒŒŒŒŒ ‹Ê*’Ú.)ùè¹ç*YF%Xµ‘ðôBpéØJ^›mV”ª¹¨Â|”ÈØŸ›o.JÚîÔ†¯¾ÔDh«"œÍKûÅqp¾Ø?ÂÙÆØ.ûCfA} "ßÍÄè¢TRŽ2Î9ol—H#ˆ|‘Fy»(ˆÈWÃiLªÁD> „ú(óÅõ£õFùMS ãQJ£ œOQä;Pk´‹BÛ!çyNTSÔèͰêúï|64?EÄ”ѺÐ}5:ã Š¾`¿¿úÕ¢dž†ýö+Je¤ƒè¢]7.·ÜY0NC!”ù¡Fù6¼òJQÒöéÞ3B}Lø;ûÉ|$jÛL}®j+wÑFú¼Ýsw›îÚ}ÿ ®k2”‘¯…jÎÚÏ(C©þ®9ú՗ʨqöQt1·O>Y^?ûýÓŸ%÷AúÄÐgûË8é|\@Ŧ㈘ Ç`¸èŠT_B™^ÕÌ£vÏ ¡Ï•ë”óæ|oôïšæáaÔƒË<EoÊ·®yºlf2222222,ª‹¦.®7²}Qü¸Þïlo´É«TãÇÝ)[l×jF¨-ŸŸ5ŠƒíÓ{øškŠ’¼Fðl õá¼Ð§‚qÎì5FÚªN=µ¼Ý©S‹R5Aw‡úžDk.p¶ÕHãÚ‰˜…ˆq×S£P›£úÈhÕx£è jªQj]ßNç͙ϙï ïû՝ВëIûib„jZzоŸÎÛüᇋ’§Æ*œ¦Y+í‘ï„û=ŠâQ†#:]2bRÁ|´]o¿}Q2ãßg?[”ûXQò 2Ζï˜÷þ*“ùEù#¢çESh¿ÕDO×TD>L|”æß fVä¾ÏßÕ'ÁåíàûB&Û1 „fÂ%t~oE/dF!######â²èÙŒ•YPÉL5{Åàl~·ß^”F?¨íÕy±»hˆ(a$ѧž@DÑŽpñÛ©^ôQ´ŽóEÐõÂöÔ· òÝPMÛÙ4]> ¶¯Ì2Fªá:&pŸ³Å«÷´Î—j4š‰Ž¹å#_Ž(ú@E]DLUjþe”yá{ªûbÂ)~epïññÇ%÷ ~ÑEEIß„[o-JFA1ú+Š~R8_·ï;9ZQfJWOä垯ú(ÜÙ dl¾õ­¢T1®—1cŠ’Œƒú p\ôSÆ™ Ãî»WîŸë§ÛW«ìŸ™QÈÈÈÈÈÈȰ¨®"¦ÚúUÒ‹$lõU_2 *IѬL?«ále.W¾Ë|¦ $¨¶H§éj¼5½“õôF‚ý£&¨6°?ÿ¹(i{¦$Ëyã¸iÓÒq³ÿ|^j£L}þ‘W°ÚÀœ ”¨•¹HÍIïêQÍG2Xzº(5æást’ºc%¤”æ5p6s·ÕW†ÏG3j=ª¹xr‡³9“ys¶eí·ó‰Šw~O†C÷/7ªq:[<¿×h'ÍïšF5|]ôUâïßùNQrþX2Ú‹6rú:)tÞ¢èeÊôýwóäæÕ1n}è|ê{Bègg«Oeø2 ¬ÑMŒ*á~ÎßyŠ/ó$h}/½T”ŸùLQ¾ý6ªBÏD‰Ÿ(?2£‘‘‘‘‘‘Q•EW•dç¼}U2Q¦A3j½ŒçY §Ÿ^””¬˜?÷ÑFÏzõw•àS ýÒqPò£O‹O×ûfÍ*Jz!s^)aÒ[]36*s¢q×Zgêiæ:ÍueúŒ|h¢Œžåàò(œ¦Îï5Ë´iåŸÉ„é¾­>_©L_äå …Ë„¨ÐïÏfÜ$ãÍë{¬ü{ŽŒ¡23%õå/—×dzV4oûÁ³6ý£yRè«æþî(Ü~1€ìÏŠ%kT™…ŒŒŒŒŒŒ ‹Ê¢Ë`U«ÍÚi¦î\nµå39%jÞšù‰æHµj».Žží8[¬Ëø¥LÇ}÷ÝEÉèõ ¾ÿý¢<û좤äGƅ㦆öÐCE¹ãŽåõ’iÐÌ}ü^5çˆ)R͈ÐþSSs9Õ£xy…Î{j^Bׇj@|þÌpy åõ»uÀùרB×§öC5í/}J4~:òþW¸ùˆNLeŽœfÏï9.“«Ëc’ÊhFù´ÿŽar6iw¦€;ÓE÷åÀvx½Û¿8>Í Ëò²ËŠòœsŠ’ûŹç–ÿ®Ñ(.ªÃe(Lõ¨î9G ¦c¶”ÉŠ˜JeZùœ˜i—yqôù)àü’É%øü/¹¤(ÿå_Š’ï³úñTd2œdÎ]Þ…úh¸}O×]dF!######â´ï^{tÝsÿƒX4NÏ—ƒ›º%(ÍÀH¤ÆûRR¡d´Ûnåß;‰œš6Og¤FÌϼ^ó#з—“0éÀûXž&y¥»³Ͱ碨Ñs^©ñ»q2c#¿§MRã´9j¢ü,?³½HsŒ4vWî2ƒ¹zˆ(¾ÞÁÅE§¶Ãq8÷‚ Š’^ãzN=?; VÛuÏÙù8ð=pë3òw×;oîè´Àèww}dÛΉÞÏu…Oä%åapLá|÷>²]úrñ½f>þÎ< ¬Wß×T‰Zß×Ô÷9:cÃÕ­½ÎÍ+ÿ>è)–.ºÅ½wO=U”ôY¸òÊ¢d^2ͺÔ‡‰Ì„úJ(¢÷!1ªdÑ¢ù=ÿŸ;{&N<å´Ì(dddddddxTí“@‰ÆåGp§Cº¸h2Ôì¨I©÷ªæØW‰5KÚ`˜¿€­\þ…T IÁyR›¿fŽdüý¤IE©š«zó~žþ¨óFÍQ%HÆïÒÖF˜P/Û§†BMWçËi°QF7ÂÙ¦#&C¯‹¾w>3Îæì|uÎ<³ü3£ èC£í«ŒclÔ†­€fôs¶[§!j{îwÂ5y+3ãÚÕöu=Eë*Šzˆò(8Fн÷ŽaÒ~EP›¹j®ºÿ*³E%é<Ð׋û¶j°‘íÆ›ÊÖ¥¤šº{žŽ ÓþéóuŒˆ‚Ñjœú~ñì ¾¯ú¼Xr_¿ó΢äiK§Æœú¾)R3j‘/c¢̚ˆ×Ñ·Ž>cŽ1×÷_÷ÇÈ÷AÇå%J}ß»ÛYÔ+BöQÈÈÈÈÈÈÈQY¤s~”qLárI«­ÈI€©Îô:¥ÅѺþ‘M/ʱ¯pg$¨O½Ü#AÉþ‰'Šò˜cÊû©í¥2 Ζ¬6±Hƒ£$®ytŠ'Å¿k{ ×?=ËÁù.0—>5õ%QF‚Ÿ5óŸfÚTAóŒ8 CĸõÎõ¦y¢SþÜsQŒóãÖY­Þê.#¢[¿®^·ŽÜ<º¨ž(ƒaÄ ªÆ©Lœ;;&òÝÐýÕi–n>£ë\ÆÖȇ"z¿£| ÑYN#×úuÿÑçÄïÕW„ï ÷e‚>oÊÀk?”tyB"Ÿ9Ö§y[t<ÑsÕùΙ3222222jAeQ#Ò,„ùô´ÚݬóêM=EMÛ¡­†÷©íÇeT‚§}i<çůqðª!¸¼ Zf€¤Ä©Þò:Oî Ã+¿N5enœxÄéçÔ¼ÊXñ}¤/ó)0/‚¾çº¿èûAèçÖÖ¢äüÓ·ŒL¦ëoÇ»¿³ÙG!######c]P]åUïYw:›³õN#¢æâ¢ROTI¥³¹D•iPÛ¤ž¾HM^½O£œâ©’¢ËÛ P…(³%_2 ÔTÔ7ƒpy(kýÎ;ØykGQ©ù;t9 ÛùŽ0s'áÎÑ3Ü©‰º>5“(û¥ïƒFIDù#œ-•à}Ô\”9Ñuî2ñÕš÷`]£Œô÷(ê*ŠÃwëIׯs5]4Bª—›Oͼ§í»÷Ó½GôqqgGð9SÃU(cù8f%uwy \{Q;„Ësã˜l2ôÙÐÓu?f¦]>?îMME©¾dÜ?Øžþ]qŒ0?Ó—‚÷¹hÅZä-ÉŒBFFFFFF†EußIÆNbQ‰?Ò„#_‚(þV5¡ÈFFh&»È·A¿Oõê|,"MG5§k”G”oBóAPCqAM”9ã#ÆÇyÑG^Þ‘ºÖSýœ¦èÚ!ÃB[1O=åüð4T‚¾¼_5ïâ¶æEhÞ—D3aFS1nž]&=§¡ë}ޱÑëtÞÜ™"­äò8M7‘O¡ã¦Fã>ße$Œò DyXt4㣶«ãq#5>Þ§õ;Ÿ,­?‚ÎOäïÖ·Î+>½ÏÍK4ßNSwQßýnùý§žZþ{ĈÕÊ$¬í}©¶yçË@æ‰ï2º¯ósÄhõ:E”wÆE™éïD&ÈŒBFFFFFF†Ee‘$²)©„˜j+tÑ®çõù DÐô:•©I¨ ˆ·JŽ·ß^”ôî§­PmÓÑYÎKÞr–j ÜyçòëYŸæµàÙN3äø"fÅÅïêõ©>©ÞòµÆÅ«­S5Tú"ÐA™*]—A „Ñ š‰‘ÌMĤðz–‘ò§ÏI}¢ué4wŠ]ê:uytζ­ïzµ;MÚÍ_¤¹¦2lŽ™t¾ª¹º¸|^ÇýÈ1©¬®K…ÖÇqžyfQ:ÍTßKÇTGgˆ¸Ï‘OVtv„[Ñûí|ø¼èÆye‹È§Eó»°ˆÙv¾%Î÷G™–*3£‘‘‘‘‘‘a¨j‚ÈFîl«=­%zÿ;ÛãüY¿Æ¡ªM‘õ2g>O÷Òû³ š…2 ü6Wû¡ñ®N2¦DùÒKEɸþC-¯_Ï àudf^dtƒfŒ$Ô(ó¢óÖç¹¶ƒÂy­«íÐIàšPmýʰ0ã¦óµÐ¨öëå±ÇŠò§?-Ê£.¿_Ot¶kͨGèû¤óA j(Ê$9D¾%µ®“¨^·o¤F5¥2¡©£Óiar IDAT.uÝ8¤2 ºnØ/õQb}¼ÎiNswL‰îODä3£Q©pŒÛ7¢ytg¤æ· 8ßß݇u¿ÖýÏÇùĹqD>iÊ4òúÔh"ǸV™ŸÌ(dddddddXTÁ# á$SJ:*IE¾ *áh4ëSÍ…¶dÚâ5Cï£f¥^ßÑ©_.?„ŽKEä•Îß9dÈX0ÿ} (Ér<Ô€WM -O-sóiüî9¥zGÞ·„‹pýS L¡ßkÆÃèLÞÏœïôÐûh“d8/ôí £Å¨ 楠׽Ө4?‚ƒj „æp›"ÒÀR™ ç3DDyG\~ µñº³ ´ßη&ò¹Qh{nq÷¹|ªªïƒÎ¯‹pgØ8Ÿ®È‡ òAqû£óysyOôïF…¹û£çå¢î¯|oµ_Êäè{ëž×i”Ÿ#òõsû«æuQÆ5Š.ì…Ì(dddddddXT7&:‰V%@Í ’ƒ³!;ÍßI®Ìœ§¾ üš´Ëp¦PÉL5wa”ñO%?ÍA&€¶lFUŒ]”ôÕPïwBsÁϘQ^ëUD¾.JÀ!5S_j”D¯ÜŠõ;Û\£í“Ðç¥ãWέ©SËÛçsv6C}‘ïÓ¨”‘pëÎ1>ªÑ»õÙŒ\´"ò–W SáâúS5ZE¤I;_7ÿ„jÎã£Þñ„[/nÿ!ts^þÚŽ‹"ˆÞ[½î}ŽòüD>uêõ¯ï‡{ï\ô\­Q6ÊH¸úˆhŸR¨ÏD­y(z!3 •Ee—Ëe(S >Uw’£ÚRôzÍyw*“@Ƃ̇ƒ“ ÕvÅ…µz¥ÒÛvÇ˧-\ï§Í‹¾ d.¼°(Éüð>FCq‰¢œ—HµUF>ŠÔ8êˆÁrÑ Z¯F pÞX?}\œ¿úÈè¼1ê‚P«Jü|ž--åß»ù޼ôÝøµ÷ÙÍsõeªŒ|e\{©Ñ;މr ˜»Oǧ¾Dj>—ñ•à÷Žá‹ÎdÐþ8o|WŸÞïò¨(R3sFÏÕECDQu©™€ÌROõty œï€Ëß¡ã"tŸwyOŽ¡ªaÎŒBFFFFFF†Eš‚óú¼bÝÙšÁÍÙX]œ¶f$£DHÍ‹6e^Ï(€£Ž*Jz›¿ývQRSS‰š»æ óÂñ©w½ƒJÎ÷Þ[”ô½ Øþp™Û4~ž¿kü­Î«F«DÏÛÁIöÎæåÙˆêu’±³Fí¨¯Œ“ô²³}kÜ3á|1È|©élŒÎ&®Œæ‡`;©ñæ©Ì!eH˜÷|]æ9õ*wŒ ÒJ¼ùfQºÌšêõNDÑîtC…j¸Üg\&Be´œ2N©Ño©¾‘Q”a3²©ëûõßù^(“ÇßÕ÷Îiôn¿Q/wŸþ=Œ|Ÿ2ˆµ2u…ŒŒŒŒŒŒ ‹Ê¢…“ˆˆÔ¸b§YEš5Õä4s½ÿÉì°Cùõì?mõ/¾X¹=µí9 Öå:$>"Š'§¤É¼´es\§žÝÐÚZ””p™ÁOO͉×Q3r>µF%¸çy5GL~¯p>#.JÀA5:×oíl¼n^œÒÝïæÏù"¸8s®§™3‹r=ŠR×¶“jÛLÕ\¢ýÅ!ÊÜGæp„òïÕ¦¯uä[Ãö˜©ïg¤ùºçF¸Ó* ÷>8¦BßËèì"òqqLj”91:½Òù\E¾ŽÑI–r¾dʹþ)³­Ð÷NÿÞ¸¿3„cpO‰«/•y­€Ì(dddddddXTù£œîÎê¼â]<¸ÚYR £ÐÔT”Ô€˜'€÷O™RÞŽŽÃy«„ì$²(7v¯ëâõÓBI–ãä|IàuÔh&O.JJ˜\P”wÞY^?ûCAO‰Sߊ(ºÀIôQ¼¿ÖW«ÍÌEe¤ÚT]}ìçßâFDqÍQ¼²›?ý]ë#œW½¶«Ï×3Óœž âÚs`Ä<:M*Õ÷D÷Çè¾E¦„ ‰ËÀé>j껤ãá~£ù5÷Þ8ÍÝùö¸Œ±„2Uúž;fŒpzô~»3"R™ ÷ÞE¨ÕWB¡™ ùY™v—/ÈùH¸Ógφö[ÁúÙ?õI ¢ü5º-Y³©Ì(dddddddX¤©r©Ÿ“„ 'Iê÷Ôt©ùÓÏS»TÂ2Qâ"3álxd,Ô¦©p’éôéE©š?Ù‰]v)JjBÔLt~ietëýå/‹Rm|ôÖ¦¤N‰Ùi ‘@ª:b"¢zôy»<©3ãá˜%õ†wg sâ9§98ïlÕ¸"[*Ci€¢¶Ó(ƒg”é3Z—.~ÿ°ÃÊë×(·.\>‚ëï%ó¨íí¹|.Î÷ÇíÊ\¸~E>Œnâ¾Êù!ó¡ÞüºÎ]ü¿Cä›ý=Ðyuë•Hž!¢< êóÃýVóš¨oƒ>/çëEQ¹}”ûáÖu­ kdF!######â:Uà$/µ‘©‘š P Jãþ)™©-ÍI¤Õ&1‘Ì}všr¤ èõʰè¼;osÕtÕ·ÆE98 ÞÅ‹;[¬2ÌïÀÌšêcà4/ŽßEåh? e²"Í>zÿu<Î+ß1Pî¹;MÌinQtŒ®õ­r¾„jÄ‘mÞE­¸þ¹zµ¿\×¼žû Ûå>à|8ܾî†è}Ž|VÜ{ û·>íOÔ¾cŽ”ùa{ê;¦àïê3@¸÷‚ש/„c u]ê~ÄçÍèAÍÃâ¢íª¼·™QÈÈÈÈÈÈȰ¨.ú«äç¼]¦¨(~75žÝi.3}();MJÏ 'è ¬šÛaþÍ`è ývÞó©. 2'\¹]Í€II˜Ÿuþè£1fLù÷©™ú"D¹ëS­Ç€¨F¢ó««JÚª1¹ë#߇T¦Jmë >w×î¼®uÝ»³3áàÖ‰jr:]‡z½Ó£ùsïO*Óçžc×ï2¥ª†ÙÊußp¾ÑŽñrù "Ížˆ2’FïK„Ô ‹:Þh½º ”Žsù¢hBŸ£FUh4’¶çö1Ç`ºè$ÂIBæyôšLYf2222222,ª‹vªé:›ŽË' ¶•˜Uã ¦K ^m. Ö£ùÔ­%£4¯Bó¨F1QÔÃ3Ï%}&TâeFEæO ´Ž›^Δ·Û®¼¾È›8Š6Ðö•Á¡—°>×È;Ùù@h{‘†å`ÿ¸¾\ތȧ@%ú(3£ößEwèó ·µó Š¼œí\Ÿ[µBDÑ.¯Jôü"Òizz?»u õ¹ùŒæÙ1üžL¤úéóp>Lî=ÔyÐq*¬g½ðzÖ£qÎÖ¯¨•‰Œ¢‘¢(— R¯s Dj^œÈÇÌÍ‹¾_®¾Z3¸ºNõ9:†\×CdF!######Ã"ÍXI–‘×yOkæ š95`–Ìo@8›'%)Úð]æF•ÔÉT8Í/ŠWWÉÝ1ÎvG8߇(Ã5cžž©’1}œ&Ãxp•à#&PM‹ÏM½ªÕK×iQ¦ºˆ‰PÛŸ‚ÏA½×Õ7 ÊÌ骑»è§ è}îsjŽx÷|&—Ê\¸~D6þÔ<:oQ jN„ón˜×o–<£…¾NßKe,#fÍÁÍ´ñw2Ž¡u¹ÿU3N}/µ?N“®•±Ž|\¾ —'Ãå;ˆ2'ºùâûæòQèýÊÄ9¦ÊíŸÎ·ÊE‡áâý‹æ¯1„Ì(dddddddXTýœd8{vQRóâT#Û"¡’ë§ÄC™`ý”àçÎ-JjμŸ¾Ô(hû4gs^Ó*¹:[¯‹§æH ßib?üaQ~ãåßS3Öû¨Ñ+œB”#Õ¶oï2lªäì4j•¼£ *Y»ç«×ký„Ë+eD‹4i‚š›ÓRO…síFß‘†åÙP —L“®kÕ°OHtv†›î#Ñx£8|wá°H³uù>c©Ð(3§ñóýR_+çÂþð=$3¢×sVëú䏨>÷97]ÜïéÓÅûÈL;"Õð]ž7­ýtÌsÄÀê:Ñ÷”ëÆ­·_’Ì(dddddddXT‰œäC¨ ]%œHòu‚J:ŒZÐ ‹Zۣ͌‚žÙê-ªß;D]ª¢¾ªaªæ=qbyS%VÖÃŒ~ÏŒHµA§Ú¨ù<Æ/oßÅ»Œd*Q»xg§i*#‘z¶áΙ't\cä|&ô>^ÇydFFú’‘¦æ4ñÔ¨ ýœšYÒysø~3³dª7}dlänýFy¢¨ çå,·à®wû©Ë õ驃.jD}"f'õ{ÂyõG§[ºŒ…Œâßè”Õh\šÁùš¸|©QZ.Cg”7CE‰èuUö¹Ì(dddddddXTmœ-M5ÜÔ(‡èô9'1¹xã›o.Júð¾=ö¨Ü/_vm*ƒi¶\ÞÕLyöŸùî¾»(©‘©¦¢¹ô JØjƒ¤Ä협ˆ)QI œÄîleŽ™Šrç+è}®’µ³­;[­öÓiln¾œw{dów¾@ŽIŠlÝ.ƒ›ÂiêÑówAFD£Œ³çÆé Ì„Ë_¢p¡³MG>îº(G´ÿFû&EÕ Gõ®×ùu>CÎgI}ΔAvÑ^ï¿í¶¢ä¾è| Ó¢ÐvôlÇ”º÷5Êáö(úÎ12‘¯—ÎÿŠ%PdF!######Ã"-êÁÙ&£8kw6D$jSâïGQÞFa\}QŽU”ôÎU/]ûMolõvšH­¶QBçSçCÏ•§¨g PcW›–zé«ÄÁi,îtEÂiR©pÇeØsí:I_mrôÝØe—òz\TDª÷½FO¸hÕèµÍûis4W~vÞÒÚ®7½_Ç1BZoeÃ1v‘†æöh¿IÍóàâïõº.þžë›ÐÓt3å L[äS–Ê0E>=‘@kkQr?Vß-mŸàûÂqéïÎ6Ÿz¦ˆŽËí_Q?CŸÊ4é8Ô‡#b.ÝûSe}eF!######â²è›j»tñ⯼R”j#w6÷NI‡¾*Y³¤ ÷´ÓÊ¿×þ:øškŠ’6SÖI¾Q|w­Þ¿üž±Î+½Þ©YÒGak’Ñ”Ä)™sÞ4?ƒJ”꣠Ï+Š÷çÇD¹õæ˜(µµñ³jhœG…ÖÇçF††>!ì?K^·×^åõ]pAQžyfyý„j¨d.Øúž¨†¡¶Döƒó̼"ŒZáõ:ï„›oçµ­¾„j4œ/2w¼?:ëë—>3úÞ)æ ’2fn|4§ó9pëCÛ#\FÑ(g¿û]÷7W¯‹>ÑzÎF1c1‘ï¡y_\þÝŸø|ù\¯€öG÷™(êO÷KçsADgPè{©ë-:+%õìΫ{nUþîgF!######â²jëlyÎË[%¼'Ÿ,Jz7ScÐë]޵ݪw´ó æCÍ›÷.Žüøã‹R}çµìl§„ˉÙ0U£ùÄ'Šòw¿+Jjp<=RóP²ÖÜöNbTÍ55ƒÁþ<÷\QNšT”ÔFê|tžT£×xn'ÙGóI¡¦ÎuLŸwj㡇–O&ƒš0ÇÏõÈç¥ó®óªíèùõ|¯8N2c'Tþ=5çÛÁñªÆÍùâ}l_ßW¾oü]}eeLÈÌ<õTQr>8^Öëž#™FþÎùг:ôìçëâö³Ôè‰(S«ÖOï~§(*(ÚGR}:t]FH=ëÀ1,®Ÿz_ÄÔZͦpóë| ¢¼AÎÇͧc¤\ô‹›GÂ1œÚ^•yÊŒBFFFFFF†Eu…Ô<*yQÃÒsÎ]|$Ai¿\l^ï΃×z£sÞ­R%:íŸF+©ÞмŽÕµ×–ÿ¹Ï%5ÓË.+JÕ„4Ÿ˜>½(™¹’ãQÒIðj;c?ÔÖN]5:eZTƒT_ ÕdéÃöh³çxæËégd ¨9ë"ëøá¢d¾2 ›lRÞoBós¨F«óGßÂåwp6_}ž\ïd\<6¯#CÃÏ|îªÑñùqÞXÛç:¢oLj^¶ ³Àï™›ŸÐ|Ÿ·æSÑ÷Ø1¤ú¢(õ¡Hµq»<'·'š_­ßièü^}sâög¥•í«. ¨Õ·‰ˆ¢õ\4áæÇÍ·ûûãÆýp¾DßoÝ7‰(ScdF!######Ã"QÅåÕ"é9IMã:yjR wŠ!ᘵU«Æª’žÚdôzg«LÍܨˆlŠ.þÖ©ñç?åTî—‹"!¨±»Lg.7½Jþ:•¢ýwš¿W 8Š®q’:qÿýEɼªI«æÁû¿üåòû6Û¬(õŒ2ÊL(ô}á85Z ÊÍixª©©ïÆóÏ%Ç­>·A}Œ8=¥ÕÙHUÃqëL çù±Ç*OÇ­™+ÝÙÑzR&E™-÷hýN3Õyw¶q"ÚOܸôz÷Þrèºvñþn¿qû¥æy‰|”ñ2M*“àþž8Æ8òñÐè«è´ZÂùNÕú< 7~Ç”E–k&fÌŒBFFFFFF†Ge&²Åëu*©èyᔼ.~×ÙæœMÊÅ»øVç½ïlNü|ñÅEyþùåõ¹ÌƒD”Ëe>tÃxýn»•×C ÕÙ Ï8£(/¼°(5³i=*A«Åy;“pÌ¡šó6hC2´a“X²¤ü>Õ$MrÑEEÉÌŸê3¡ãŽ¢,”ÙRŸMä|mt]¸(^§§ŽêzÓÓ*9O.3 jòÎûÚ1uzš§ö[™ÖOŸ2ì—2ÇI Z}q4ãž[º(#¥L›æuP¤žÁà4NgkwNÙçA™'…{USç{ÅÏ.®Û_R}Ãe*$ô9¦FIh¾›( .53®®§(úBÿž¹¿Ñß©õ‘‘‘‘‘‘±6¨,b¹\ìD”óŸ ¯£fÂz(±«dã2WN’RD’›ÆS¥vï½EIol~O j]½U‘Æèòðó¬YEÉ3.8ßj«=ù䢌N?sý#Üü§j<*é®­MÍ}Ïvè­OïxzÏGój45%5ñÿ¸(O?½rûŽÙª5·ºFM8M‰õ’‘Q&ÏÙª5“¥j\Oœ7w %¡ëVóSè8õl —O‚Ì€>2 „î+Îæï|l"ezœW»ÚÐÝûelŒö·_ðù9†Ài¦ú½FÁ¸8{öW}‘RÏšˆöûÔ|©g,DùÇð¹úôw}þŽÁsùc\ÿÝßKwóÁ¨õï92£‘‘‘‘‘‘QÕó(ô\e$ÑÔÜÝšYÑy%§z¦2 *é¹q¨Æ¢qÝÔ€N8¡r=n<µ"òêu5?~¯6aÞ§g0¸¨/]O8MÞ}ïâߣv5®[5LµYóº»î*JfbdTÉÔ©EÉ<.^ÚÙŠ£œü ­‡>Χš´Æó»èµUëz!ÃÆu¢Ñ Õ ÕGÀiŒ´ñªFÃhFIí¼sQòýÐL’N#"³A×EºîÈÌ‘aœ2¥òõºé™)‘f1LuÁypb7Ïya4B™œh?s ‚c¦]T‘-EeEyÜß«Ï|¦(¿þõ¢ä¾ežtó¤>Dnˆæ;bž”æ»ÐL¤.б2£‘‘‘‘‘‘aQ=êAá˜çÝ©çkýêË༄W´JB̨ÇÓô4G=ëÕLnÔL"‰N3ïi#&$Ò„#3bn˜;ž×©fChF¶È–è2F§Çéçhü„ÓØ£ ¡„®Ç èé“\;îX”\O¬ï€Êïs¹èuêU1b*ñ+Ó£™u<ŒÒÐhB×GtJFÇ̘Q~¿ž•¡ë%Ê롚½æé#Â( õyà8©ùÓ…3áNTM¥æ} £¡Ðueä#\æÛè½w¶g"•™%31Q?Ǹ|QÆC…‹öR¸õå˜&ý^}w®»®¼ÝHãv>©QÓ¡š¿{úü]”_Ääç< µ ´ï^{tÝsÿƒX4µ>¸EN©s’iª×»³9»8ÏNâÕ~Eq¨Dd{2á¹zΧÃ;Ê1O0“šzƒ«ï…Ë‹à2¡ñzÖOÛ¥zEk{*©ºyr󠲿ápÌëÓSùÔëØIæÛs™£õCD ÎW­gÎ&©÷­­ïŒË)¯¶Qe8”‘ÐS?ݺà}Ì—@^£5œ·wtšŸÎ“˰¨ïÛ×ëÏ;¯(é+Äè"—…ÐzÜ©ûŠbm÷?…;ýU3êiÀÚ¿TŸ¤uw­Ì®‹^ÑßÉ8rÔ “.¯FÄP»uè2¥Fˆò°¸ý¢ûºÞ²ÀÜÙ3qâ)§eF!######ãz…ȶè$f—y°§U#á¸xS':ïm•ï¾»(icvš|”‰Òe2Œšw!’„µŸlŸ^é3‘Ê ©ÆG/x·‹pŒŽfêT œ×±>~¦$Ï=EyÊ)åõ»h5âž;gÚÄY™=Í0òÅp¶k}týÒ»Ÿšx*“¦Ðþ¥2|z¿~Ïçè2ò9ªfýÂïémÎv\=\zv…cä¢L°ÚŽú„è¼zjQªïBŸ_tÖŠö[á¼àÕç"5#Ÿó Òï•qõœOgÃ×}\ç=òP8F(•ÉuóÍè—ÇDŸ«ö35ož‰ã W¯æa‰À~ª/U/dF!######âzÔC”QÎÙº"FÂy£¦JÔQ^­‡ óîvñ¼Ih©63'q»3(\=. ƒ.5ð£.¿>Ò€5?½Ü©9ª­XOÔSå\”ŠB3ìÔÕCû«ëε£^ôºxêäç?_^2 šÁ> ´a: ÆùH(æ™u];ïh­OO‘Ôëœæ¢Œ?óùOŸ^”/çGßýÌõÎû4*E×端–×Ãû”I8ðÀ¢äó#¢|/n¿‰4YÎב2qŽuïwÄPjÿÕ—'b^]AeR4c¦»àzÐÓZ wê¯ú¾8FCwÏÏe$³«ãs{yö˹ç–ßïfe Óê˜UÇ@êúSÝwÝ:&t­X3ì!3 •…Ôxwçͪš¸z «†C¨$¤SdcR[m¼Ôtœw­Ë•¯6wÇH¤zÓ¦ÚÙ/Ɖ³´‘¹Søt<Ó¦Un/ì·>7BŸ³Ëœé$_Â=¢Ö3)œÍþézÐõtè¡EÉyÔ\öd$È$0ƒ£æ[ˆ¢9R}T\º¾wªiè÷ú~±Õ|Smϼ¾Ì›Â÷Žà<2zÄùZ¸çJù˜×ÿð‡EyÎ9•ïw(sêæ“Qd44ƒ‹Æq§z:ßçýï^ÇLéõ.At6„‹fQ¦•g¢h?ô>g«'"Æ€óé˜PÇHhýn½‘IøÕ¯Šr÷Ý‹ò˜cÊïSæÅeLt>ãEñhwŠ/áÆ›m˜…ŒŒŒŒŒŒ ‹Dê .*A¡ñÓ”ˆÔê4màïÎûY¡9ð•Ù`4¾Û!5ó™ó¶U8’$s±s¾uœ:¿„ŽGë¢JTæFºŸxbQ’iã|k€F¿D¾d —Ç@ës>kkËœ:F†¾]dĸ/è{åáqýŒ~wû7¡Ñ8º~R£´¾ ÈŒBFFFFFF†EeÑ&1ƒ“õ¢W/PµÉ©M%:5Q‘š¹NûOªöSùhDQÎ&ålTN’$¨YQ“£ë$ojλ>²IQCᕌu}©F¬Lû­QÔäøY}õ)q¶YWî|)¢øõ(Þš¿ëÙ)©¹äÝY·ÜR”ÿxy½?þqQ2êƒ2ß[Χڤ5ZÅÏ•¡>/ª¹ñy0óáqÇ%5?>çë¢ïCäã2íi}„î{ì×9¯ßm·òëô½pLm”ÅE'è<’yQ&AëSÍš '}sø;£RR£’\&L烖šASùr¸Ì…ÊXêÙ܇ɠ¸¨¯(3b çöí(#nÄÜDóR™QÈÈÈÈÈÈȰ¨|ÖÃðn‹9ó#[‡“ÌÕ¶®qøZoªWo¤©i¦)jDÔ$Ù5uÍ|§ýHvpý'"–ÂÅѺúx=%|=£@ëuŒ„JÖ ¢ˆj@îÌ‚Tß–ˆ‰4B§Q×måÑú]^‘Ô|ºþ5¦ÚÐõ½rã!4ßÞÏ÷æ®»Š’y Ø.5HeØ®22ôm3¦¼ß.nÜÙìµÿÔØ/¸ (ùËòë"®V††óÂûøžéº×è%Ú¸£³V¢}"Z?QÞ"Ò|o»­(É`ª†íÎPÑ~êsVæ/ÚωT„h?vû¦ëŸ«þ½ˆ¢÷2üû³®g7è÷„‹–!×Å¢Eó{þŸÏzÈÈÈÈÈÈÈQ]µMµ9IšãΩ™ªDÕITN"ægÆÅªÆCI?ÊÑî2g¹þ«$Á1Ôô(ÑGã$8>2 Ôàˆè VˆžOäe®÷G§ª9,ïÓSÜ\ô‚‹bqLç‹y¨“›œ IDATtÞ•™PÍÑÅ©§Âi¶Îm°¼O%B§Éª­Ïõß!UQŸwÚ¦ËüGhKä¥}É%EI75ËZO7‹2ªi?˜1‘3álõÚŸ(G:‘êsi~D´ÎÝýQܽk?Õ–«¾:©íQTGô¾(ÈLð:jø—_^”u~ؾfžÔyÑ÷ÜåÑõK/{Íå ˆ¼÷ŽÁŠ˜A½Ÿˆ|—ješ¢u¸¶ŒƒcF£úS}¨zj†E^Ï¿'çW”gžY”ôµãß'w6Ϩ ƒËuÅ|8£G¥æ“©2ÿ™QÈÈÈÈÈÈȰ¨,55%s©Óâ$BGIp¼O3Ω¶Wgƒ£†ÏLh.7¶‹ƒW/ojŒ§¥ä§¹éí1²¹º8ûÈ@?«DÅï+jõq™2µ=z­SÓ§fȨ Úæ˜)PëIç嫚¢¢Ö jŽÑÑë"›e”aÍݧHeŽôzB7O.«Ž“ €c¾4Ê>¼~òäòúTc£í–g*°=V”Ê`èxt?a»š TçS×gêY5šÑÑù<¸ýPŸCÄøêûiæ´_îlÝG"&ÄíoQT—uÝÿ´}®+=5Tëçud°´¿š…L7gfTÍ4;kVQòïFµ±Þo,Jf2%³@Ÿ<¶C_½*Ìjf2222222,ªû(8¨™zÞ:á¼Î£Ó " X¿w’·ÓŒå@ŸU3Q#Šë%\f6ý=5/ƒ^Ï8z=ë"Ò°µ?ÎÆ©Ó8 BPÒæ|Þ~{Q’Qp§ÙEÐv£xg…Ó"p­ýŒ¼¶S5ºÈç'b4:)в`ÉhžŽèâú#ROktšª‡¾¯zË·á2_jûܯÍ¥§)ºçêNSuyQœ¯–Þ¯p¶qÕ´#D>dzcRܾ«óšêó’š™55ÚÇù4èuÜ÷¯ˆûû¥ýT/jüüÌç¤Q Ü?󙢼úêòþNZ”dþNýM8=93 •ó(¼Ôí%¬ùR%¶(“¢æ˜×¸úÈk¸V¯Z"òmpí©Í‹ýŒâwÝýÎé4HÕÄRãqS½¢# ¯Ö\øN"wˆÖQ”WÀÙ¸5š%j=õ­ÖSûRß‹Ô÷FÇ“ŠÔ¸üÔv4߯óÏ%}\ý¼¾OŸ¢|î¹¢ÔÓU£å¼‰Ð¼dœÆ®øýï‹’>FÔĘqðÒK‹’š™@íöSûïrö;M—™`ÕçK5ÿètÜToB}"Üõ©yC"ß±Ôü©Ìœ¾ß3èÎrqí»ûõ½âgúpÝèýÔäÙ.סîK¼O3¡r]’1 ¯B™‚_É qmDßÃÃ+J¾ßÝ ^oY çQÈÈÈÈÈÈÈQY¤Ó(•Ì4Gwj\)¯S¯QÕ˜U¢vº“©¨äI Òi^l¶ü'ž(JÉ\ÕƒHÂlc¼qÔÔ˜Tàu© D­>UlSUÛÕõÁxujz}dÛÖë#[´Þ¯š„~¯’»‹ƒ4*Ç\¨f˜êµG8Í,5¿Iª†¨ýVÍÉÙdùý¼yåßk?Ô‡…ÚPÝ$üýª«ŠòôÓ‹’Ï›ñèê³@ Q×…æùPߎÔÌ‚,ußѳ¨yª™»Ó#_,ÝOsç| ܾE¤®3…2* 3jǽWQ^ƒ(_‹žz©ýâsL̓¡Où¼¸Žõ,þàß%õqài¯|>¸¼^~f?Ôw§2£‘‘‘‘‘‘aQY$‹4ÐH¢W JÁ8zµù«ä¦’_êÙ”´TC"œ·*%X=m/W­¶9ÂK?;ÛœÂÅiGñý‘F@G5K­—’©c 8ß´­)SãæËùh²jpn\dp(‰³~3Öû÷¢ïæeøÓ~¤úL8fÆÁÍ?mêzË@§¾F¼žyÍà Þå…ålËÔ7Î 3g%ót{lQj´‚FyD>+º¸çFCsð³Í=¯T_ÖãNeŒêMõ½ªÕ×@¿×vÙ_¾§|Ž:奄.JÄÝÏç¯> Ê ;¦0ußåzq™ÏˆàuÊd(5mZy¿èƒ@èßÇ(J™QÈÈÈÈÈÈȨ‚Ê¢ Ëmï·M¨íÌ!UÖöU#p’cdSVÛJ¸.Sjˆ:Jªs支š,áNësó®ù("ïßè4EÍAŸªQ8Í-™—!.Êc Ì‹{Îjë¤dN†dáÂòëS5¡HsÑßí×eÕzCýÁEcD̆«ÇÁÙBµ]GÕÀ¹>ùܨQñ9_yeQ~éKEIFd=ÊëåówÌbÇODgáp½G,ù¬mt{ߢSb]T‘cä\&Ȉi%¢|6|¾ª)nuëÇõßEmp_Òý%òÕH}O —1’û·æQPæA¡ãâ}|ÇôÕ©ðzgF!######â²j@IÊÙÆÄ¦·jr”õ¶èì"ʘE¨Í+Š—2iñ:e\nqçËñSÒ£¦ÄÒi úœÍ1Õ¶}¯>(ŽIõÒw§#:Ÿ“uëVh¼Ž7Õ÷ÅÍ—[‡©>;ŠTæÌió¤¶Wׯˆñ‹4F§)»3]”tí±T“óüãWþÞ½§Ú_Íå|@ôwŸ‹:H]wn_ÔqèsÕþ¸÷ÊùlE6üHcÖþëý„¶çlèº>ôïŠF—¸÷Åù,³£ß³ý{î)Jž5¢õóïÞu×åñÇWïçëœíèõº¿Q&Î=7ÞO†®Â~…ŒŒŒŒŒŒ ‹êQ„óÖt§¥ÝqGQê)nÌLÆÓßÔæH8I;ÊÐ^ÏÚ¾³Ù¸|Ê8>¡’DS™œ(Ê„p ¡¹ïkeJR¯sãÑù©õÔ=í‡j¬·V‰T¤>/·~Üórí¨Úz†Sëú%§¾=„³Õ«¦ç¢ÜÙµÎãÚfäŒ4{E¤aG ˆCj”•^1ŽIá¼n½;_E¡÷EýÒëÙ?Í «óªQ4 wjöÊ4+¢õ¢Ìž¡Ä|!ÅF躯€Ì(dddddddXTÙ¨±R3ÐøMÍÔG‰†ñÊ””(©´´t·&’)3¯¹SÔH˜o@mNÒUÛ’~¯÷+³¡×+8O”Ü4Z‚%R—¹‹pçÇ«F¤yªMœˆl–Š(ú€ßÓDOŒâ—µžµÚPk­_5Ò(n<о œGd_[Ÿ©ëC½Æ ]7õf'œï“öKÛÓzRmÜš3ŸÖr±ÉF £ç¥íl/Ò8¢¨B÷ ·ÿEû­Ëãú]çB},5¥ÏÉí/©>HÚ_ý½ÖŒ¬n>Ø2Ê“ùÀè¸&M*JžbÉ¿ßÌôî\™QÈÈÈÈÈÈȰ¨,ª ƒP/jÈ””iQ›™‡žV»›å)NòW¯dÕ$4.Ü!:M¡^ Nâfû¼Ž%õFU ÑIœÌE&Fã¤Ä«§‹iT‰;^ëÑÏ‘mV5=óóá2‹©­¸ÖSIk=-S¯S¯q"UÓˆ¼ÓÕ‡ÅýîÚ‹˜ŒHÃMµuG<µ>×-¶(¿®Væ%Õ§EëO}Î Õì5ÞÜEÝ8ot…î|Y2¢Šh\.º@¡LÉÚ¶C¸L‚Ñþíc7ßQTŒóÝÒúõ´ØhÞX?Qîcº¿«Oë}à¢Üwßòßµ=‹‡pïo­gý°ú<èß1­‡ÑˆdÄ7»FÕ™QÈÈÈÈÈÈȰ¨,ÂD6$J.Ê<¨D¤Leûì½QÈ~g•ÞýŸé÷ Ã| â4•J´m&¢ÄÆA›”óaÑ’¢TQLÑji«ÅâØL±LeÄJ¥”±16éD1˜ c$¢ÁÁFdˆx0“ù¶¿Lž_žë½îý¼í·®“û}Ÿgï{ß{ï{ïç^׺ÖZiÉl>óÔ_ŠÿöJ/Y0É"`×%·v•"L>«ï|gk¹~Î#Ôó®YZ#ÕDIQ)F{Ã$ø¾Ã™ÙNã^e€ŠÆœµë3mFå _ØÚë¯ßZ.×z†Q ƒÁ`q¶I”T–^ñ°"l>ùÄ$Ü~ûÖÞrËá~ Åù{…ê™Õ¾I=›VÊ^i7_½W¬00 ¶Ài[mŠd2NG[sœ•qR›·xíô¿Ça LÏŸyá\ä-Ã^crš*¹ùæ}>V_Ÿ7zØ¢\µsÀxSÞ£Y`àž{¶–ü&I³DÔRš¿ Eå4-Hï!Ð2z\Ö49ïIÓÈxü‰9aq•TG]p~X€Ö%†%1±aMÌí*3ëÏS”…Ñχ”‘Õš(®'ï9æ/ysœÉÖ¿Kéw 8úq1^öãx†µWþ¼½˜7þut‘3<¾ím[ûG´µüÎ’™Ø‘aÞñÖç a…Á`0 ¿rí5¯üË{ïûÊ…§~ôWþ‰_}ÞOWHÍÇ啨jît×û¦Ÿ§ŸÞZ×>hƒ-ªd)¥êa-.Õû·LrŒ ëó¹ÏmíÞp¸_‹ûMÕ×R\´}ÿ«yÀjœ¸·>ºµÜGVøœ7ãû¿5ÏZM°š`5oCºî «>â´}ó-®ößîÏÞ( >§6 ªé¤UH ‡Ñ˜*,>k;Ò}j>`ï—2œî½^m>Y}o‹ÔQŽ"­&ÇÞÚ7­ÖJcVŸKÐÞ§í½Û´žMÛãþ`L|pk¯¼rkaÔ@ê÷±Ç¶Öž–'Çã0Æ7Üpüø ÖøqüŸ¾—ŸúuýŸüþw/¼í¶÷ £0 ƒÁ ã8£ðëÁGf_^ó)›y°¯ïÍ¿±:ŽUœšI1“yÉ<õq@‹¢¿ØZÞÃ)ÃpªÁãïSþ@˜<aúµVmFz]­ð;G´Ûý4ŸÂS/üg6Fa0 ƒAÅñ¥š™ûð¼‚ÁâÀ¢Ç’w|RO?3 ‡ã3TØ>>ŒU+ÙãzEGkµ6LBR¯Vãk¾¢”¹Žÿñ}Ù7åû‘Ô´Ö8ú#©Á“ï0Y(‰¹¸ØŒÂŶ\@‹ß[5³åh–»Ñ|¯Àý6‹¯1 -ß*rϯ§îq´*©Þ>1W­ú_ý$mCÛ¯aÕroÕIãÔ®»5L\Ï呎״Mc|ñžG iY ¢ @ŠIÚ–k®9>NËUn[í>wíÞûŸüäÖbñ£Ept ¿»®®ëëáñq|´01¿ñWL‚1ŒÂ`0 ƒˆãK\«ñ“OËÿ[ÕÉ ˆ8úfqxÅ•,:3^I6qSÕ{ü¶¬ÃÐ,‚Ç[Kqß}[û²—m-+PŸÇÞ¼ eàKêí‡ÚZ˜žUÕí©Øë»7ÖúI¹éW37:úf5ž}Õ›àóq>‘óúšÓ÷¨Á±ÈÐ %-BóÛbMy-Òó—ÎÏ–4ó·1@§^·d·ïW“˜<3§ ®uÑò$†`µVG²¬[-3WDS‘¯ ½¿[FQ®CÊÄ›¿ô>u¿©ŠæG?ºµï|çÖrþäÃ!:ÌóÔýñž§_4?øÁÖÂDPíÙûñ; ³ÁïÊ £0 ƒÁ âlS"ùtÒJ'ÁêÓÕýSîo¶{ä‘­…©0Ìd°Òc•2"&u¿WžÉ·–âÓʗã&>3gàj*mŸ,Wû$Ú„(¿÷÷Çy±±×âÞ[ 1å¦o–Ÿ†ÕèТMZ?¶´=¯­9/s`ô¬%HŒI:Ÿ’úñxlÛËç7F¤õïq§hÃÇÛµâþ›ÆÇhš˜Jªç=oka.ùÞ™A[Í3¢i\)s'–¹3gú8xãŸýRþƒ~¿ùÍÃÿÉpÌÿfôùœhÆÅvñ“çj…Á`0 Ç—°-w|Rß' €W¢Éó >©‰nH>Xêk£âdÓh÷£1|{£Vµ íþqýÚvi<«Ñ8€ãq?`vÒý†¡üÆ7¶‹ùÃÞZ|é-ŠÂHŽôüÒ/ã†Ùõ}O™ƒmœ1×y‰’Æ íŒxÅ+ÇÅïAÊdêh‘«¯>ìo…Á`0 {p|é˜|Pø¶ýýÞ< f R>Ð2Zû"½¿Wvö%¡ŠÆ‚Oµ÷OQiûdQ¬ftM¯@[ÊS-üä3ó ÷¼Ç¹Xh¾ÔU )itüÿª`õº4‹¾Åk'¬Î·Gߪ˦è#©ÌSTJº~«µQ|]÷ÖI8•Ak Ïêþ ]§d áØ{]\;ÄÛ[Ó†–ì»ßÝZ~Wx?Óßµ×nmªõ“æmËÓàùë÷<û3N2æ¶ß¥¤QûøÇû‡1ñøyÏ&fÓï}ç b¿4ž3¢_†Q ƒÁ`q|ék_H¿-J«ê“Åá• ÿ·8]¯Ü¬ReeÆ8R®l#YÆŽK7¬¹hù!Ú ¶ù0“OÕVêTå´o,ùˆ›¥mFƒãP“‚L™]hO³ôÓüK“…žVþ«ñòÉçÜ‹—Þ|¸{5>ßTMv•q¾^­&„ï—3Éz¿Õ%«óÆßïͳN­)’Þ«Z‘ä³÷ñZt„·£j"··§[¼ìGTÕ|¸ÿ¸µ©¶ƒç[{&0N¿79O¢0 _OÞ—‰|Ï{?OZ"‹è?¢Rô‡çË ï‡aƒÁ`0D¬iÀªE„J• Z¶,ðí\vÙa?®†ÅÊ’“k?x¼d¶b;«ðï¾{koºépƒv_S&ÇVÅ´ø~ŽŸZ÷ãûqë­[ûl-ïs¢!ø}¡6™î6SfÕÕyÞ‰ûïßZ~߬™sÞãÉôþü.‚uÅüæwÖµF£0 ƒÁàœG•*LV"Îàç•+Ÿ_o+-¯¼ÛšÌ\®†Õªš©pæ)ž4«Û5Ÿ©ûIµ¼ð ×U.T m•±À÷—à ͧÍ<â:q_W±WM~ªE×2ñ­Æ›'&)ùLO«OÓj?î/Y)“gBª5aø9±E¿ªQJãN¾XªW¦8ö‹•IqU£âíÛý]eÒZވưñ¿5)éw`uì÷êWo-¿ôL Z­Š¤ò÷>ÌoËgàùF~~·Ruß4Ÿ¹_þý):€~þø·öúëã(Þê¸Òþmûfa6æ-Å÷§ûcËÙóÍýÃPÚbóñW™5ûša°’zßU÷ίÕû³·FLB{.̸Šfš-š§i6ÒxVÑ´ 1ºÌ#€UæÙÌ“£ã¨ d¤ ¨dŒ|ík¿¿óέýìg·ö·{k­Ñc>² ŽçóJÑ/yÉáÿɤ?¢èÒy_Fa0 ƒÁ8¾„³oÏñ–XØŽ7¬°’¦4Ÿ-VŽ®>Ö|£F²T’/ËLƪ1iZ?«qÔ©¶@Z©ãÓJ÷Å!ç|—‰á0ƒÂ|¡®|²PöjZÓ’Tð‰;U[ÓÆÑ˜¶ö9X­ æK‹ÂH>÷V;!E'±=–KÚßÕïR×ÇIpôFËLº:/÷Fç´~@›«Õ/›V*1 FcÆV™äöMÑ ü¾üä§UaPS”ðy™yb{˜ž2~ò~Ã2g|dn|þó·æÂˆ‰$ºíýRÓp¾œ?çáL‘~9ºˆó:ƒIÃ( ƒÁ`0ˆ8¾ÔK>Iû°“Ï»ÕxH*dà¸PûSµ¹´L+多nUµVã¨\+¡ÅC§8ïUz:NRé>{?×;‡™€É©vÆjö†dѤù×ÔÐí:{ž4f'iV’åo¬jŒÕꈩFEÊ;àÌx¾Þ¯Yz¶ø=·1’Égo&ÁµV£ ö2CÆêýkû+åUiþï}œ2i¶ç,½ç°¨i›ÖK&šãÃð~ò¸©‘Ãõ£_kl˜7ìÿº×nïãúw†(ZŸOʤÉsaM™k­?—ÖêLÔÃ`0 ƒSp|éê8gꈷvòí®úôS¦G¯„l‘{…”V¢i… Òñ’%¹j1Ø¢J+ûf {…¿ªFNý§<Égl‰{œ®Ù‘ªõ%Ÿ÷ÅŠrH÷ËÌŒçORë_,ß³ï[c4’}5¿Có9ïÍáíÌØw ¬ÉJÌF²Xý^pÿX–Ö\×FYÅjÄ^¦ÀýìÕ¤€TÍÓÛ¯fMŒ H™sÚÞÏ)êÅÿ{ÞÛÏçh¦|ü'žØZæ)Ì×1í‡FÀÌó«§h•„{îÙZªôšŒÃ5Ò{žö'Ï=ä0 ƒÁ`0 "ÎfXIÙ¼"ôÊ?Å¥ƒæ£MÑ-^–íw«Màq¶zî«ñö§æh5'ÚxVUó‰)ð 7ù*Óýf,KTÀdóñÀ©ÑÍò]Í0˜˜›”GÂÌÕ*“ÖæÛÞxòÆD50õãÏ7%=Ÿ¶˜<.ûT±ÈÏóš¢kÒ÷Þ»µhÈäè,fx½RÆH3ÏÂ0 ƒÁ`0 "Ž/!½âAýÙªt­ú®Ú 7YN­ \Z%Ë.3m×V¼>^cVq^ %UIkkÒu²Åî| ŽVIûŠÆœì͇д-þªÚø=¾t¼6žU¦)+Y.MŸ2®#\bRô’¿÷8}^ΰêûÝ4?-:¡1{‘ú[Õ*€Ý“Æv{µZé}¾oQqozÓáv>¯¤e0/ –Ç‘2òúxŽð}q´ ŒÈÞ°µCKd[ IDAT~?s\³o¦ÎHL¹a­ÛQ5x…Á`0 Ç—€T­bÅ…ˆ/‡•ããó¤øú£|>¬ÀP'' ý _ØÚW½êp¼À*f¯œ5Á÷TYä{þg\¨h©ÖÅÊÐ>XŸ¿}¸Ííq§íhÑXÕí•vŠÓ5Ó°jÙÇÎ}NyVãÊšå’¢ VûoZƒ=Ò4 çE»n‰©cÔ½'CÜ“On->Ϧ¶Nic(Ú}Ñ‹÷kÛ¯ß^ªÝÂö<²µ¨×›eºjÙ7Æ'åwñþÍ÷ÞÆ•4m| ©Znb„“ÙjÝøÿÄì4M•ûñ|7c¢qøÜ×—ã¦ã£1 Ï‚3+z«QK)*Ê×~ý»½ÀL £0 ƒÁ âøR‹ ØW“â–AZáyEÆJÈÕ" Æó@¿0®1‘âà[ZTÒøÄX‘ÿÞïm­}›­ª"ãnªp|^VÝs½o²’%ÖTÒI[И÷—jS€f‘´zê gRÛ"i¾gg•9ÕÇ›¶K>Ú´l‡%Ÿ2e¶y°Wƒ“°z›%jËõŸØÚ[o=Ü&!i|l‘§yÖÆçq®Zô‰áH–ã©Ú˜ÕùŸ˜·¤-€AF¿ú>HHÌHó×ûµê¾i?¶§6IÊ“ãóâwÀQ`)ã)×-å1|Þ?¼µW\q8nŸÇdf ƒÁ`p Ž/í£±¥eU±-igâs?õ%ŸãÃIݰÄÑ ¼ð…[ë X{ÕÆ^IÃP¼ûÝ[û¹ÏnÿÆ7îŸ|â¬9?ÀJÔZ ûÊZ†ÉTwÜçeµ-9Ë]%3EG€Ä$¤¨¯X“¥Ô2õh_‡vÿÍt¬Æ©ÛrJ}š‡‰9ññ\Å*hÏï—˜<Àsë\öÆ©ÑM VãóÍ m{®ÓÍ7ú?ÍCc/“°ÊŒ$mBc>¼›ç!ÛË|x¼ÉŸú[Íb´j « K;ïO3ÚÀïi˜„UÑÕ’32¢-dxøºñÆ­ýØÇûñ¼˜ÌŒƒÁ`0 öàø’&å+p+þ·JÔ+FögÅe­‚}4Ér¾æšÃíStAªYÐVÆŸýìÖ¾ÿý[Ë ó$g<Çaå–|=©¦BŠÊ0¼?ǽ㎭%ê#11÷ÁUÔ÷'YðOÊ쵪9H¹Û}ß“¯°ù8“…tjM’¦ÍYeXšeÔ2IúxÀuîa Ì4$hcH¼]Ú¾©åVó¤ûìóMU&¯ïjôNz6 4†¡½×V™„¦•HX}_¥íW5i~'ÍLºÞiû4OS-˜`Žc-ŸŸÿtÝÓõKL¾Çé÷Œ5û‘Ññ±Ç¶–ß›|`kÍTœñþFa0 ƒAÄñ%¤µÀÕâ¯ï•’-â7­9pÞ†–{ºù’Z-‡¶’~ûÛ·–8sªv55Þ–4ÍÃÕãø¾ñ9ùÚøynSm çx©šœû?UÝߘœd©'-Iº®f.a€Ì`:£k²ÀÓyµ/í<÷FC¬2F‹vÚû¼­Fù¤ýÀ*S–ž«tŸÏ^æÐïaGýDN|,ùt=ZTQc¸|Ÿ3ËçþâóûîÛZž ªC_rÉÖ’ùÈmFa0 ƒAÄñ%]ZÁ°’rf'VL¬lœ«ÚÛ{ÅçYª×mU·-ƒ´ÒLêë”ËÛQ¨Í/»ìpü¶t¼2|ñ‹·61,¾Î\i †£*臕!×ÑQªËžVôÉ7ÖâW-€¦YõA7‹¦å¶ß{þÖЀäÓOZ™6®U CBÛÏóiU“–„dáµqƒ½¾eç÷@Kdæ³ÕôXgÓ¢¤ý@;¿U†ªYømþ¤üM‹‘æEÓLxÜÆjþ°Z¶18ésïÇï™GR~žÄµ(o—滿G“Äïµkª€/~qka¦ùýxêGÏ9…aƒÁ`0D_J%°™ÇyÛ²fkRܸÿÇ" ?«4½ÂN–KÊ3òØÇ“`¤ÜéôÃø$Ë¥ù>ù_¬™‹½–z²\l1¹ß½¾ÜÒ˜Vøi%Þ,âtÍä4f¬Z`í¼šO²10?XÎßáy#EÔLRýïõ5§ÏS¼¿Ç—Ôëé8Ü7ÞSŸùÌÖ^yåÖr¬92Óæqø8mœþ>]‡dQžªÒ)Ê(Ïÿ§¼>~—÷KãIã_­âêëßžŸU¦!—èžÿ®ù}˜ªbšÉöq½}bTü;ó}õÕ[ûíoo-σŸëÛn;<îdf ƒÁ`p Ζº>|ŠoOœ-†d™$ß7UîœoÀU,­æfågæ YfÎPhŸfªî–®ý`é§•½-õ–»›¡U݉ÑH–Ž™ Ð|މiûùü›j»©¡[FC>ON²äše”¢’/rÕ2÷}å¾§ª­€çF!18´XÚ®ÞšÆëë±×‚k繪°–ǪïË/?üžè*®£¦Õèû¦Û¼‰‰ÝkyŸÊ&†ÀrÓ64Áª–)}¾—©ió¥Eéø=ì  Î/C”@ºoÖ”ù=Þ˜¡¤J/É/Ä÷DIîoÊ |†Q ƒÁ`qöØaª9àí½²k–_Êôç([ ¬¤\3"ùì“¥K½U»Ï ì]ù§Z X*0ŸÿüÖR£|ÍböñÓ Ö¾4¯¬Ó}ØW¿wo$†¿>Ÿ¤M±¯<õç~Ò¸@²„šo2e¨ä8μéý=¬Møò—·ö‡?ÜÚë¯?ì?1‰IXÕܤíÝ¿·ÉòKó€ë”®°fÆó"iS¼S£ûý‘òÓ€¦m0“’úIûùú5 ~5c&ó;Õ ihÌÕjtHÒð´yì÷ŒÜCmíu×nÇ}LZ²U×Þ/>ϦQâgØEÓØ´eÏÂ0 ƒÁ`0 "Ž/m’¡E´8ëÆ,ð¿µuãYA¡eàÿ¶BZ]¡‚äƒL+Õ½ùü=Ç×Jnn†Õè†S}y«H„±ê“LãKŸ'&¤?X>ðö{ÕæôãyÄø­¦ö÷‰Ñ‚IsžŒÄ\ †¶ÆÇØûyBb€ü½±·ÄÞ<ɵ¶*åHÑ1« lÛ/1 {™ºöyÒ6¬F)¥ë˜ž»Æô®23IÃƯ 3ÙZcâßZÞßéjž…ü¼¸J,LC‹®y†Q ƒÁ`q|I’,ãä{ñÊ$U×k>k#ùî¼bb¥ç ©n=H¹îCÒê½·¸qVöàþû·æÄU*›eçû´ªböþé˜[h¶Ä•Æ“´/ÞÎm)¦|«óê}oû1~GÙGó°?Õë°LRUîó€ï½_RW7FjõüÛöÍâ\Í ÐÐ,RWUõ|5sÕ´«óÅч÷Ñ`é9ó<Ûˬ2}­¿Æ´ùÿ¦}jÛ·ñš¹¶Ô¹oT&ïðuM%yÿ;ãpÚ/åIÛqGe0ŸùÞLÆŽçi…Á`0 Ç—\me–ª&Ÿ3XÅQ-ª¬­epFÈ4~,,ûŽAŠÏn¹ÖÓŠK–•e˸¬¹À·Ô2ç4^[Éâh>Ìæ+KÕW£EV- ¢¸ß÷ܳµ¯{ÝávÆ^ 8íïímñ¥ïSÌ[’ÞΖHš¡U‹o‘JùÒ|J–û½÷n-çK4K¿)º…ïí{öñÓù$R{>@zo$&–ð^­ÏÞy½úü¥çuÕr]âò¸Òçé÷h•‘åúó¾hùSRÿDO`ѯ֊IZ¹t=/Ú¥ÕëÞ¢’. £0 ƒÁà ¬™ -ç¼}:¶¼¶%ñøã‡ßã³Mùñ­¨R]'‹œZ ìoÕ'hH™Sp_ÏàzP K‡ñ³b¤?ç“`åÚ,¡½™Ë¼ò´ï;õÛ˜Št=Ó¸œÉ3Ý/¾Ç’Ä2hÑj¾ï—Ð,¢¦Êöüñóèy÷ÏÿùÖ-ÃüàyðóH¿ÎÌl™{<ÉGŸò4F)]O?¯¯xÅñã)£cc ÛxÚ}_Í,h‹²igö2Ré9n8UC°ª]i×ÏÚ®­áí­EZe,“fÊydØF‹ß3>lÏû¸ýŽÇçÁsl&Œ~ˆÔ|H™|S‰ga…Á`0 gG=$K˜ªˆ¶ØöÖç8®Þ–|TôKÜ9LÁ“On­W”—\²µD¼üå‡Û¥Ì\«äüyªYáqÙ2ó ﵯÝZg¢´Èç->×êxç4O÷1E5{}Ú­J$Ú–4ŽUKË×7YÎ{5Í"ZSN>û”“Ý>çÃu"ƒ§Ç÷õ¯o-õçSÀ×)ݯ¤}H*|°Wýß²Ä,¤Œ—Mk°:~?Oé½’,âV…õÔëÖž¯„U†§1{k>$ö¼Ñ8±Lû3þÛo?ÜîŸþÓ­}÷»·öw~gk_óš­å}Jm~§@bž5€ô÷‘líûÞ·µü.8úÌùÍ­EË“2Š˜¿pa…Á`0 gà쨇T‹À9ä½]²Ø¼Ò'ÿ°’oÎ+°?øƒ­ÅçÌÿ^Ñ‘ÛþƒÜZV`¬ðg¿7³ -ˆ¶‚m*\®×†_+GZ˜V®üÏ÷iå,tËù2ìÓmy RMûþ ¾·º¿íg$Ë©å•h’çK:Nòá·L‚i{ÏOgZc?´-Ö0ÜtÓñã¯j‹šEšÅš¢1’¦aoÿi~ìõá{7F)1GM Ô˜ÊUœ=Ô‹6[5á6Þ´½?oÕ]RTcð{ñÎwn‡eÎû™ßðÄ[{饇Ÿ§y¾Ê`¾õ­‡ýðÜó»áßçû1Õª[Á0 ƒÁ`0 "ÎÖ( E°%•Œã8Y¹xe‡:“ÿóÞªW¢–6QoûÖbY¿ò•[ËJ)‡}aÍ—hK­Å¡·8q€çèÔÝÉàzÃDøûÔ‚T­Ìq»éz¤~ÌXÃÑâ¦÷VÇÍ"M5HJŠ20’¥Ôò$zˇÜ¾Õ÷¿ÿpÏ[W_5“°j¡û:´ûîª ºz?Z4GC‹Šñqöj¸Ný~ožÖoóñƒÕ(ˆfI§è½ L{¯'MCª™ÂïÈÇ>v¸?H{çê<6óî÷°™ ~G¬Y0ãlæl4 ƒÁ`0 öàW®½æ•yï}_¹ðÔþ÷3þê¯þtå£à¸|Wµ³*:©ç“Êfàšk÷öm¯®ÀÚ 9©©OÍèµ-Þ8­ø[?çcn¾X4Öª4ß~ÒD879ŒÐêù§y€¥ÌütFKÐjb´Üë®qÂq‰.À·ø[¿µµ?øÁÖâÛ´å€%ð‡¸µ·Þz8.|¥Dó$´LnMÍïÏAŠ–ðóŸî_bvÒó—¢uÄÿ<²µ0Žh4ü¼ç;[Ë{®Õ¨ñxV-ö‹•!s5:co5Ô½ï—SÇgœ÷8«ÌEÂ^ÍL{8ZÁ!ïÇóÄû =OìïLÈí¹ÕïëSOýè™MŸüþw/¼í¶÷ £0 ƒÁ ã쨇TwÛ>.«,AÊØÿÕ¯>Ü>ùxN]q§•c²DWû_µxÛ¸À^ßß*öúZÓ~|o&¡ÕHq÷´0JV'_y‹ °"1 §Vµk™Ôî¼sk?ñ‰­}ó›·–Œ£ìƒÂçÔ«ç¹ãüÙß º!ES¤8ôäköóm4‹ÏÕòø¦ÅñÞÉRm¸5Ic@~®kµKÍÂæ{úIµ5ãÉöXŠüŸj¬>÷Í‚npj#iR¿«L€Ñ2¶¶ü/‰qñû*E_yÿ4^çÃIãñ<÷ûÐÌÇE?wܱµ7ÞxöqÏ`ȆQ ƒÁ`q|iÆJÆqìÎä—âÜQ ø\Ÿ9ªkÕ~ò&ŸÚªOÓ+G|“/~ñ…£h–Õj.w×—ÎwUí{êÊ<­üAòmÚ7–ªÚ‚ç[t§Z<üOns|Ôo|ãá~XòöÚ’oÕ5Ù~¸¯œýý“r¸Ý‡?¼µD%0~ç„O–mÊìÉ8}tka~8Ÿ6ŸÚ¾-Èä£Äçê•ÜC~ÏŠž»ëfÛ¢JLÒ04-ÁjU1|9͇޴ i¼ç¦0ZfBûÆì3ö –óri¥ïš—-ä„t_±ìѸ:i²´cäãà“fû?ù“­e>à ü­¿µµDuÀ ÜpÃÖbixþ%uº£ ’Új}€TÓÀªþ¤IIý51p¿¶€ [xž?M£Ä{Å™O¹Ž0@0™¾¿0ElÏý$#,xÇ;Ûo}kkaLãe~ðýj4TÓn5&aÕoš«T571O«óc/ã•Æ—ækÊœÈùx~¥Ì¼ ½ï­Ñ3O÷«Í–Q³U±}†Q ƒÁ`q|I™|‘|ÎJÙVR¨€ÉuoMÁK^rø?ûS[Â>å8ú°2j¾2¯èRÔCS»¯úÞ’ï9}Ÿ°·ŪO²­4[Îw,ioïëÃJKÐý¬2)J8#cc,Z9༞ÿü­%jæ«_ÝZ¢þÑ?ÚÚO}jkñU;£ÕÒ®+oFƒñ`i83›UÙFŠbHŸ§ý9NzîØ.1Qé¸àÊ+·f€ë“‚ÅíãÒÞsÏa¿hBÀƒn-ïò$FÓµGÈ»À}DÓÀ¸~xk™Ÿñ³½ÇM¾ô<&f0Y–¾O§fM¿ÉÇߘ»öœ'&¤iÐZTZz_§ŒšþKŒvÒÆ˜òùûþ¦ß­¤éjïå„vŽ`…Á`0 Ç—–Í·ã\ÿ€3¾:¯d]ßÝ“On-h+?[Ši…–|¯Mõ ’º5ùStHÊ™ÐVˆ« Ac,ÒÊ2­ìST@[ÉÚb³/5YþÍ÷˜ª‹îÕb4Kÿ¿ñ­õ Ÿ8ü?ýÓ­ýŸÿskñ­“‘/ùStAšÉ¢[­r—Т?<¾Õ8}ÐîïÞlÇçí>»fŒï§|kÿûßZ€k¯=>öã>P›ÆyAèçïþÝÃý¬U0CäLžFŠÊZe(CÚæÅêvm¿¦9>ßæç©iªƒàßgdLÌÿ7“¶O÷ÿO0j~Þü<¦ü MÛ·ÀD £0 ƒÁ âlB²¬Ó ÄylIÛ"½ä’­eååE®~ú÷ žýS¦µäÃjuSÅ‚–sÜý¦ïSü±÷íú¯jVW˜þ?i¬fÆœß÷-U9lÑ&Éâh×Ó>ïTÍ-u<÷ãå/ßZ×”ðþlç¿£s–@^‡d‘:ßBºï~¾Ò|³ÊÜÛS­Ñ–™}Ûž/®V‹VésŸÛZk Ó’1ò[ a|0I„–0NgõõƒI@ÃÓ¢DœòTf $ ±U¥<•A©6F²Ì›vf•Y] h/4GüîP3ý¥àü8)±Ñ´' UÑ5’fË`>£±iLð…aƒÁ`0œ5B[©¤• +1Tî®êf5<ÀM*P,’äC²…êñïõíúø«Nûªï­õëªbFóÑíõ]¥¸l«sÍ@øþ'_aBSݧ¼fȼòO–Oóež‡wÞ¹µ×_¿µÎ`iF¤e:ÄáÃPp>Ç÷jÕ3–GªsoË¥Åý6-X]9îÕ¬®¼Ó~¾~Í·™Æïûá8b`ß2Zƒ÷íë‰xé¥[ÛVÀ·™U‹Ç¾ÌT] $xêÏã#c%¾õ”‘$---®›Ç‡ÛCbŠZޝ³}ðì‡/×yVÌ Ñ?µ^°ÔÙŽ –'óùɼc\Ôbàºpþ® ̤çÚóêŠ+ÿwÍßWî÷í·oíë_¿µ\ŽÿÊWö³7JÀXÍÛb¤~[^ôžlãXúrmŽ”1´]7˜î7Œ‘£ôþõ¿ÞÚ÷ïÎO‹ž¢_´®’ü–·öxO:y‹`Îü¼%f$س0ŒÂ`0 ƒˆ³—tM}j¦á™^ƒ:ÞêP,û¼a’Š;Åã·| Fb" Ÿ÷‚JôèþÍäñ’y/U KãKÍ@ÊüæqpRNpg,[͆¥çøßUË%E;¸Êš-ÅE’2¦ùžVÞîÿ]ïÚÚ–ßHÚZ®;–ϵ$€¯ƒÂV5Õ×eUƒc ˆ,6,$B4D!p<3[Xxô‹æç×ï›ÕÚÖ:%ÆÅZ Žc탣aˆîâ|¸k £5X«§½QT >ísÁãiªÿ¦ÑZ=žûóï›™Àü5–“àj¥ÎS”Þsf0nºép;/e6øü'Ïýj…Á`0 kQV·La Å·“Á KȹÚ_úÒÃý’Źšé$$Ø»O–HZ©¯úö’¦´*~®!ંfb¼RM–vŠ:@½kß0>iTú¾Ÿ-¿÷uKB“ órÕ÷ ’0w®™î§›æy˼È÷f.@bZ˜Gh&€¯7LÛ;£"çɼb{,°¤©úÐá8?üá­m –Áþ¾žGÖ˜¤L¼×€£?’$æ«1 í}ò­ÆCê?1™{k°fš6¡YÔôÇüå~¸ú+ãOQFézä¼*ÌK× ²f)½_’&$E-¦ß±#Fa0 ƒAÄÙ¦sòýû{ÿï•s¥ãƒqÍV<¨—YÁ[ŽÊ4ß|Ó¬®@W«õ­bõüÒJÜÇ]õÝQ«‹gÕÂà{|ÇX~¨ÂY9s?YA›quÉUËÈ>𿟢Alaˆ­zgºßéú%‹žÌ†ÎWÐêǧû•®‡¤éðuufÅt\gÞô8¸ßh•¸~øð™/¼'øÜýWKŸû‡:÷ÌŒŸ7fÁ&ç§ó3ÀHýâ*«ìßòŽxûvÓ|´å™j$4-Ã* Ú{eu-*,í—>·Ö€ûúân×®W«~ cÑ~ØžZ1f¤|¼U-¡5-Ã( ƒÁ`08Ç—€^‰4õ½WnŽÇwN}«½âu6[.ÉBÞ[w=­ÐÁj<îêñšz|¯ÏºåäoŒƒaŸ¼Ç›|à¬L¹/ÌîÇG?ºµ¬È‰»'O¸ì²ãDZoíüƒ­ýâ·Ö>]¯”ÛuðŠzÕ²òÊ?1¾~6Òý§¿¿xnØÃ0 ƒÁ`0 "Ö¢’š6­LXñ;ƒš3¢áƒ4Sáùj·Wf¶,[rò%Õ•5°ï7ùjA²¼Òx“3¡}ߪ0¶•8÷›ûú¢m-Õù&y‘2;¦•øÿø‡ÿ;ª#1Rí|öúœU ?ùÈ“cÕ§ëí\]Ò–hÓ°´ç¾ÕݯÜó_,Û¿ä%‡ãýÆ7·GÓåÞæ1š,@¿iø>¸j­GÍ ˜´Sãý›Ö =×-Z ´÷ß©8•aHØû~öÿù0ƒí*é~Üo?oÀ™==à÷#ðsÄóõmµpŸ‡Q ƒÁ`qöÎqœ¬\’ÅÃçŽRHHñ¸¬ŒhYéc9ž• WŒóòË·–•oõÐS?{3­d)¤5j\V²É²…èÜþÎINkK.1%-7¹ãÇ}É÷mË¡ÕI>D÷—®gª×°7×¾ûIÕ⌽²ê·œ IDATó$!ío•?pUØ4æsñ'FÊ÷Û,ùÞÕ“¥#á~y\>žÏ‹ëüÄ€FÇÌ<ãBÃðä“[{õÕ‡Ç_ø]Fa0 ƒAÄÙ¦BRK' /Å«·xWþ…/lí#l­38Ò/LÁ _¸µŽ{e›2¦óimó‚½¾¾ ±ºLñüÍ7iFÀQ)¾^í¼±`VsÃ'†ìI×ÍH†æ nÑ!-¿‚3,®Ö&YUµ¯ÆS'K¼Åã{ÿU¬nŸ41-³fBc‚V}çı§<éùlÑ$¶$Sí†4>—ëãüÏ*ÓèqÀørMÛá߉„4Ý_zï¤þ’˜Ì=æü2hPœ¿Ã¿3\w—ûœ4ƒ÷)¿ƒ0I†U ZŽ‹v)1_ÏÂ0 ƒÁ`0 "Ž/!š%ÝTÚö©8ž¹YÄ7ܰµøèðùØ2Å×ôôÓ[KµC2½9Nß»«¶ÙçÇöÄ­6ßq‹ÏM癢9’åºjTM31(lÇÊ•þ­Nç{WYãºÛ¢I*yk?ìãä~q_AÓ`¬Zˆ«×Ñûùþ®æ«ðs“îÃÞxð4¾Õy•ÆçíV­Sk¨œw;ÏÓ¾ûö\k\C4–c‹.ðqÆØ¹3€ÿé?m-ÕK­Õb{3YwܱµT#Lµ,ø• KŒ³™Ûö\úº¯ÖêôËûL´ä×ð¼¶Àa¾õ­­½ñÆãÇK »ûcÞRãˆû¬©`|)ßJ‚3³òû:QƒÁ`0 ΃ãK÷æƒL+WóçiEŸŽïŒfø–XIY½‹¥‹¯Ï†ãVÓy8.•ýZ½š†U m¯¯ÒÛƒf1ÚrÂòHqøŽ+NšVðö…y{«¥Û¸Íp5ux³T=?Ýïj´ H–¶_²4W5>FÚ~u<é8éÿt¾«™Síã5ó—˜[¸)¯EbIôÃ*“šOÜ×ëâ̧¶\_õª­%s$Œÿ“ß䓟ÜÚ+¯ÜZ˜„”'Äçoæ˜q_zºÞ‰Yñy¥<$009é~úú3.kÒü´ p½R¾ gêLï×DZ"j czþv0ÔÃ( ƒÁ`0ˆ8¾¤o+``_SR©'µuZÑ8÷º-\r±cA|ä#[ûæ7~n µÊÔãN¾*—þÌ8€”“ÝýTÅÏý¤ÊOy|^¾>-3°&„6̃-Ÿd¡q^0g³dÍTxÿæ5šÏ9!UKhL8o”GCË»Ñ2]¦qùþf`Ò}LU‹–I÷ÆÌ™c“f¡etTHù#’%kf…çËÿxñ¼¸öã!ÿïOòF0®fñ»õ{Íã2#àþS4Tòí{<0i>šÉlyYü½içq #¶§G±ø¼Ì˜£ÅKó51ØþßïU¿Ý¿çÙ £0 ƒÁ ⸠Ð,‡ýÐ|ô )£–ãtÿôO·öŠ+¶Ÿ*Q¯è¼¢få×,«öm±8Š#YÉ"IãkL@c$šEçíÒýjªì”«ßñÅŽ7ç8d#ª„•9H–WGóe®Õ¹Þ«y ÒóÔðÍwŸŽ“ÐŽßòN$Æ!åHý¤ç¢i`@b 3ƒÙiQHÀ™GcÖ¢˜’Vƒ‹’ù¶ªIJÚWå©¶„ÏÛ¯v>ÎäèçÌÏ?Ûq|í°¦ÂóÉ™^£´3jfË+}ÝS&â/}ik?õ©­ýÏÿyk­±2#Áuƒé OP«RºZãeõùóur†Ý#Fa0 ƒAÄ¢Üù§Xͯ¢VUÙ¨fù_Ž- |s¬ßûÞ­uýz[ø)‡8XelQ­ªâW™††Õ8ù]Ò|_0¬°]p^0>Ö¦Ð/ûò/Ø‚JÕ“&&Õ$ñuH¹í÷F5¤h”äm>mÇÛ5 EËéþ“*ÚãmWŸk´iÜI…ïþÒ³µ¿ÿûÇσ1Û'‹$©p[ü©‘4 «¾éUæªOÕß7ØRfåë<V;ÛGÇý2#äýísô8“…›´ ^A'ßk²DÒýØ›!ÍóUæ¢=G«µ7 _—VMrÕ·n´÷CB²Ìl2î”ù.!i&Z~Ga9ŸKbVUü)s§}ó/–:™¯½öx?îM@óYó\ó^ÀeGûêm'í °&#½×|¼–µi\èÇ–~bÌm`ø¼ý~uKÐ~_ ß?Ã×f„Ì¢Ž2{†Q ƒÁ`q|É’VÖüÏ 6å+H+6¯œ'ÍqíÃ6Øï¾û¶–x`«¶“$Ë#YpMuj¥·Oˆ½*ë6νHû“ùïYi¦•ªU½ì×î#¹Í¯»nk÷úÒm)5 %ùú½âOÇmØk97 @³ÈÓ|Y­òh }ÕÒ_¦0S”´ÀÌLÕË^v¸}Ê×à¨"ög^'•¿Ç…eÉþÎËâýS|>HLUbŠ`°yþ‹±µÔjh–)ýÙ'íè0ú'š"1ÀÕbýÞmÌ. Þ)?CÒœás'ã|Ûm‡û%’óå~ó9™-=¯R^˜~Ûï1HóßÌŽ’t½ž…aƒÁ`0DœmB$·}*É'ŸâËY‰ÓO²Ø]ÐuÏÑ2°¹¿É e‹Áçظ#ùýÿ©qå)ž½©À[ºUm„Ÿî‡ãŽ­-°V!U‡ãúp½Qsc!-šc5Î$_cóÙÛ™úO—Õš©ŸUf£got Xõõ®jkÒyÌ·o{k±€ZIʉÅÊ|m>iÀv©ú¢5ÉÂL›”ƒóBÁ8ɰÈ~h‰ZïƒóJ0>˜Å¯}íð{ŽÃ~ÀU{m±;ŠÂó)i0øÜŒaË&Àðý¡ÿôÞãºÿ›³µ¿û»[›Ì¥•j$­F]ù÷Õ0#–ú=#ze…Á`0 g/YšÅ”,‚ä{ceeU:Ž}\¬¸þñ?ÞÚßþí­eåøão-ª_2hÝpÃñþªüV'=EG¬Zz 1ÉW¶×K×Ó+PoïãÛç¸e`KË–„WªöŹÊ\hÑ'-žÞH–¨±zÝ[¦Ã¤–nQB«Ñ11Vó/4•~cfV5¶˜oεŸúÖ(ø¹FµO\»óø}@?¶˜“ʾÍ+¾wfR¶w¦B¶çya?Þo>¸µ7ß¼µ¿ó;[‹OžëøÀ[ËõLZ3@æ@x饇ÿ[Ã`&¸iÂü¼¤ßƒÄ|úy‚yáþ¾ã‡Û%Æè±Ç¶ÖQ^ï{ß…£HÏ[Ë´˜žËÕ¼Fc|Î`>†Q ƒÁ`±O£ÐÔà-¾µŽF¨W쬬þËÙZrf³bvFFg0Kãd‰/ _\Š‹mqõiü 15ÍRKãq?>ŽÏg5ž¤ uM³aKËÃ>âÕj}-J Å«{»”7c5ZÁ÷Û÷¯Y櫇¦jÑ/«ý'4íJê'©µÛuáy´Æ¨i/ÀjU[Ç£fOUùÐ×?1i\ ¶¬MÓ¸^7ÞxxÜ·¾uk‡†‚~‰>zýë·¶ÕœqFF®ãjÞ#U=ô{æ˜÷´÷÷u¥–Ú'_‡Ý檔‰ñKŒøj4Q›M³æýR^š‹€aƒÁ`0D¬9דÏqÕ¢i–?O+n«gñY}ã‡Û±Rvõ6T¼>.+TVÚÍgÛÎ;©ÃÏk¹¦ï[Vù&Õ¾÷w=wà u\gÇé^7ߨ±zýA[y'‹pÕWߎ·Š½—´}·ÑæObÎN­EÒŽÃç®~Èç̯v“Ç–rÒ\$†ÌQVDoGCÉ÷ž|Ùþžq~úÓ[‹åûþ÷o­ó–`YZíN´çƒÆ!½çÁyVRí”ub‹—ûÂ}s?¼µ©Aж{Ë[Îî—ûñýïþo çã “)sfšß~ÿøs#åH5pV36î}O\Fa0 ƒÁ8{)‘2b±·LS«–“V8é8)þØ+0WñJ™¯ÚН1$«¹ã]rªekK)ùØja_,®·s³' ªi Ú|JçÓ|ëzÂjuÈdQ¤ûìÿ÷æ=«Ú #i#ÜoÓZì×F‹¶ñuic[Qzž=¿ÏCb,Ós›˜,ÃùÈD‹…ÍñÿÃØZÇù»ßßüÍÃñûýÐG‡Ø’Nó-L†ß¿-ÃjªiâíSÕÆôœ’ŸÃÚ„6ßR4KªA“2uúºûøI«àã%Æ#Õ*ÚaƒÁ`0Dœ½”O–µ«y5‹è™£ ­­tR•8ÿŸ|E‰yH¹ÇÓ~MÍ›Væ{¯SúßÇmK»Þ¾Ïh5X‘Ã0xŒ ¨Uêös½±¼<ÎT…mU‹aœ%rj¿íóÖ³,Sž‚S£,ø?Åi§ÌoÉÛÆk´ótTÊÞ( 3ŸIÍ =1ɜއhï%2^qÅá~ÎûÂóô±ï­Ñ²ËçÉq¬Qjj~Ç–.;ðû±ùÜÓ{Úï[2V::„¼>¿«¯>üßQYÎlRuKÿN¥š‰Ñúò—Çe 0ƒêŒÉ‰ñH¿;gT]Fa0 ƒAÄÙ&NZ¹%ßZÒ$Ë6ejõÙÓJß–UËÈ·Z½ÎðJ:ùpÓʸY„Æ©µ±ê ÇgGîvkì£eåÔæäŠ§¶CʰªhŒLš§I£p*£c¤yšgÉ×xjôh÷ן'§å1öÎË–!þÈü‡oݾçµ3[|Î|èq$4&Ïï·ÔŸUùD5ÜyçÖ’‹ÚïÛöžsFC34Éwîh'à|¶¬ÝÛ¯æKñ<%‚5lþð·¿êªÃþ¸?\ÏTí2i7èÇ‚d¹ó}ªzëë³e¦4Æ51éýâçDDÌ… Ã( ƒÁ`08¿rí5¯üË{ïûÊ…§~ôW«²_ý¿~ºÂN+°ªVnêéÔO²¸ST¿O¾7[$ eD´¥V|«>ÊæÓ\õ±§~ý¹¯Ò¤ã¥yÐ2%z;Ÿš/^9'ËÆó eüLØN½_{£föZêí¸«÷7õ·:Oý´Œ“éÿ´_ê¿Eg±¿}ÓñK‡ù S€Eúæ7ö“Ôö¶lSþo—´Y«µS¶7ChÒ˜¥óm~'F x»”ŸÀÛÓŒÚ_ÞO?½µ‰‰1VŸÕýý[Ýü´Ÿg¯žüþw/¼í¶÷ £0 ƒÁ ãøRÆ>0nŸ‹}VIõ¿7ßÂyãÆ“…Ë Ÿq¦ïÀŸ¯Ö _µøVW䧬jÒ8ÚJŸ•zRß¶Ìtö¹¢ZFmœ2r3 dÎc…ßêµïÕ*¬jYšeÖŒS5{-•S·?/f 3¿1€ É‚¥?GG€¦uIùYhï¸ckÿæßÜZ´ï|çÖÚ·n&c•yýêWÏ#Õ¸AëVˆã9 ©åp-›÷’•áä€Hš Þ ¼xŸ¬V¡t4ŒïÛù<Ý_z~W™…¤±9•™NýÁ0 ƒÁ`0 "Î^j¤ QާOü3G)+šUKmÕbIêeÆëŒƒ¬i±@W-›½qùmå·ýúkû¥ñ¦¼)s烙–´¢µeíòw¾³µT©[°¥B f¡4æ«E§¤ós?-`ŠÚ›?Àh¾þU-QÒ\ìÍx™ÆµZ#¥Á¹÷yÏß;ïŠÏ“ùc‹Ñy œ±jŽwݵµßýîá8RÄd’”q °ù ¬â縌ÆÎ `Ó44ÍHùÌôUåçÔó–>LB‹jãzøýÔ4nŒ31RžŸÇ™›†f•!n¿G«Q;fÒÀU'‡Q ƒÁ`q|)c™5 ø†X1¦V²´š*$ $K&i$XñÛÂà|øÞ+ýdq¥*„¶˜“ЏùfWó'´ë´j‰ÚânpZ‘{<þÞª\u±ÑÔëÆ*S“æH¾À=³÷þªhhŒXßêù$ßêê|ÞëË5°”Ø¿eR4Ù´5|îã°ß«_}¼À¼æ½ã*¬Œ¦ F!ÁÑ?†™7òœ¼â‡Çóýoµ[¬UKïwk3|ŸaÜOzŽÓû$ÍTšGÖ¢9ª%#ýnúýžÞo«L²Ç×Þ“‰I;‚aƒÁ`0D¬-ÍÍ8çuò==sùšl9§ªŽ-8©ÈíãôC†7¯©†Øò´•ZóI%ßõj¦:#18i…˜V¸)žØLÃ^mbx@ŠfH-“ÅÓ·ãï{‡ÇaÞ¾ìeÇûññÓ¸÷ZºF²¼ýý^K>¡Å­_¬ó1öÖ¨Hý¦ï=ßx®Ó¸ü~sôÎÇ?¾µoûñãqDSq<¢…`Ÿ¶û±f MÕk^³µÌ_ÞÃö-ã»÷ñh=®Ðî“ßÇ>?Ïtû®½ýßvÛáç)Ž&﮿¿O™ýè·eþó{2Yú‰!k›ÏIëÔ,ÂT»€L†Î7’ò?¤è0¶ÿþ÷·–ê‡ä—ñ{}U[”òOX+bƦi/Ü?L Œ ×…ïÍsD9‘—‚(¸t<3 Mëàû·ªeòqA{®@z¬>Ÿg`…Á`0 gk¼’J>Vç_ÍXg‹4©C=^úaEœâÒS_º.«™;[TIÚ/¡å}HÛ'œj´üÀêïdá¯Zò =O{Ÿ—”ÿ õgMÕð0Y¨æ±ðÿäO¿·¯Üjþ”ß E‹q}÷f¦ž¼ÿÆÑµçÑùi|þ)“+ LzÿÜu×á~Tá\¢cÜžŸTß„IH¿#ŒÃµ3Þô¦Ã〤ñó’j:€ÆÈ´÷Ez¯Õýž…aƒÁ`0D_B؇›,¿½qÚ{3g¥xP|€É'Öj¤{[¡Û÷˜¶KÇiÞV-Ú„½¾Þ4kK–BºßI{ÐâïmÙp?Ru¶¿>õ©­mÑ-Xˆižû<À*£äýW£R®ýä‹mêþ4ž6îĵ8òS¯W»Ïí}ÃýÄl×ÝŒL‚µÎøJ¿D ´üÀçáã;ê«Õfh!R>‚Õ÷vÊ|êí}|¶·î¼?Ûõ¹á†ÃãyÞ¤ë’oçIiÌ[ŠšX=~zÏù:œ}äïÓó°Z‹æ £0 ƒÁ âì¥DʸçÛª–°ªÂw&ÆÄ¸*\ZIÍm&!eòKý‚´Ü›¹«YéôŸ,bçºg,TÕ—\²µœßƒn-Ì ªe,²TUÐXõ&Fi5Cg²¼Z”ÏêýßË`íõ‘¶èU‹(½_¼Ÿïc{NÌÔ|úÓ[{Ë-‡ß3¯|½Ðîоõ­‡ß·çµi Òÿ?Ñ ~/™™j×›çŠ|î/½Í(Z+À{$Yò)¿…-s¿÷ÓuIµ0Òý@[åóásÞ×\sØ_c|RÕI_G°:Œ½Q I³wÃ( ƒÁ`0ˆX[z$UhZáxû´Ýªo2YŽ«ÌH–^ó Mk°ªÙ8«µ*š…Rô `¥…‘®¿}o\'âŸ÷¼­µÅž®3ý$ßhR3>Ô訔>Tæ¨ÕÚi¾´ûn$Eó^,‹ÞhÏÏ©8uÞí}NRÞ æ©3¶ñù8Ïþñýícæ>aa¾üåÇ÷[­ž›ÞWfR ¿@R»û½œž#ÏSûúý^NùoÚy±]b Rí _ÿ>ø>¥Ú¶üýþ‚©¡êfúZ}®ZtBznÎû»áã¦< G0ŒÂ`0 ƒˆãK[xÉ—“ÔµÉÂóJ±E4ËÕ>4?1IE¾½ÐªîUÃÿ¬°zç\îÀó$Y,‰IzüñÃþa’ïæà·~kkmQP»âµ¯ÝZ|Ëø$3°u²×²Þ;š6á¼ùöjš…åñ¶ü.€y˜,Þt]ÿëÝZ˜÷c­Ÿ;ƒŸÇá㤨‹ÄÈú½cÏ¿ç÷Ø›Ñ6õ·úþK©¦%à2a^zéÖò;àãr]Ж€¤]HðýL¿K-¯Ï*VŸóFC¬V¾0ŒÂ`0 ƒ3p| ázì^¹¤Ï÷úTW}:^³b¶Eš¢'£q±|>ÉÇwêŠrÕòÛké­îÏý¥õõr~2 ^uÕÖ Põ8hê]3LT£LÚ _/›nÚZâí/–‡û]]ÉŸ×Rný'4Ë­©¨÷>·É÷|ÿí|Zÿi;#=ÿÉ’MÌà'?yø¿-Rý] 5iQ|ÿyß&FËLCªMü>Lãðujš¬v}“æËÛQfð/8Þ/Œ@š‰YòqSm Æ2å[pí ÞŒ&&jïû;ý®jk@z¿x¾î`‡Q ƒÁ`q|I’´ÏìµÓ‚mÄÞþðIµã¤ï/–¯uoƸUìÍx™°º¿·sŽ{[^^‰¾îuÇû7“´ Y¸-šûw>,€§ŸÞZîóœÿÉ«Ðúo–r‹¶Y­i4Æ"YÌÀjpÇsƒø·öþèøñR ¾Ç‡L4ÉŸÿùÖRû…61}É’l*m×0hŒM{~œ7!eÊlàxT-t GÛì­5R¾™4OÍ î}5f)YÈ~¿¬úÖùŸj“) âÔ¼>« µç?óäÚkÇÓ¢Fó–œÆl‚Õ¼+;˜ËaƒÁ`0Düœeø¿$X]y®ÆG¯ªÙOEZžõ°úý©ãO™=W-šdIÛ‡˜˜1,]“òG¤LqéÿÕL£?+Fª]·v¼/~ñpœà¡‡¶–j I5M¦NÎß;–Øü[ûÁöO?ög[‹¥˜_ÇÕùÒ,X¢ºèŸy´=e0>´6MÒúIHQî××ëÔù·šÑ³1³iGA¥ã®fômš”·ÁãæýÂ{ÃÏKkþ` ÌL¤hŸ×*Ò{©mÃ( ƒÁ`0ˆFášòbų&Õ¾±êKÚ;®ûR=~«‚7n$_몶Â+[€|ÿè£[kµ2ß›HªêÕñ¤ûÚTÎ11°p’Ô46Í‚å¸\7þwí ú£ÝZ¢b>ð­MÕX}€-7΋ù îºkkɨ|_<ßÌd°}˶TS¿í9IyD’åÜòÜ$mÂjtÙ©ù6VÚ½Ñ3 ½÷Üò<§ëhf(EÉyžxþ®_ªõÀ{–ÿéÏ «ÏËh¥Æ\ÎiZ– IDAT.0Ã( ƒÁ`0ˆFáNõ•{›VÄ«ªþ½LB;îªðE/:þy²˜@²¤S•²4޽jõäc&G»3ê9?>t«²’å¶7º!][@ÞÎËÞ(£×oË­ ûîs[û†7çÖ[·–¼dòLÚ_ÏÁy3^ÃUþ@˳b¤ëš¢ ÌÔ¬F©¤ãé4Ãäí`5*çT M{^WŽZ‡T2½ßÓýð}µ¶ å½Hãc¼§xÿ‡š!Iûàã8gª¹AÚg>³µS=r0 ƒÁÅÀ0 Çà"±4Sí‚Sµ ƪ:;õ“VÆm%îø_¯LSµ´Ôó­{?°·‡ûa…Ž¥™ªÂaY¡²_õéîõ™¶þ€£,’¥âã¬FO¬2Z\/,G!ÇN\Wª.šqâ~ðܤùÊöO>¹µdÖ´Eåëæ~“Ƥ1p¶È¿ô¥­ÅÒ³†ÂU ÉóÂ÷-Ó¤ç¹ûµoÝùÚýLÑEIK´ŠÕj¾‰ylãÖ ¬j'Ríæ5™!S†J¿çZТ¡x¾`¼øž< G:ïTÅ3E‰À$3­õ0 ƒÁà £p ^áÞpÃÖ¦œï ­¨Vññ«jöÏ~kßô¦ÃÏÓ¸SºvüU¦$ŸqÚU;ÂJÙy|ŸÉÜØú·¯ÓãJß'5uË(V•UÆiµª«3áù<`n®¾úð8Îi­Aòù^rÉÖ>ñÄÖ^vÙa?ìGÍ€×¼æpGS8n½E™8ŸÃ~°µÖФ¨ kTZþàëd&4‹;YÂ-Z¢E;´ç<Í»M°÷}¸ªù±ïûmF¸åH(Óÿéó4~GÓ‰)lù$@Ò"ð?ÏoŠÞ¸0ŒÂ`0 ƒ30ŒÂ$Ÿ`SÚ§’/~Õ‚N¹Úí›}ä‘­EõJÎùß2$&ÍEóíïòh™ØÒqÏž|›¶œð¡;?Áý$ EÓ$K&Í/¿ªIÌ…‘|±¶œ=œwà±ÇŽ÷ü¤:£kð=>~3 ÎlÇöfúÌxÜ-îÞy5¨6êãzø¹óçé>šIhH¢6ÏóB´í}ÜÕŒ”§2«ý$˜Ùc>¸_÷Õ(k@‹šHðù[#“ТCü»”%¶'*éo<÷z£0 ƒÁ b…c°ê|5î9¡Å¹ƒÕ8x³eJü;çøçÍõçi<É÷ÞÔÍÍ7žÐT뎫g…¨EÀ šj‡\'[² 1*-n¾­ôSF½Sï“÷o ¾w”ƒ«º_´h^ð‚Ãí<Î÷¾wkm±%¤Ì“W\q¸¿-÷½Ñ6 åk0`N`˜OTSmãá>0_ÙÎ0÷V«Žn°Ê½iŒ½ÑX «û­Fùótß@bpZ­Œ¤íHLI;Oæ ã¥5S–¢U€£‡|S•MgZ}ú¹Z¼aƒÁ`0Dì[RWž•‘W<øzÏ«îÿEE²t½’£uæ­ä+\EÒ ´~Zu[04Meo¬Fã´ùÊýeœÜßt¼Õè#Ïwg@d>z~ÕŒŠ‰9ð}I×Ëï!3vôã÷pz_$m—çkŠú1S2ŒÂ`0 ƒ=Øgú³òƒY —~Rÿ²b5ãH>+×h HªZo·ªr^…}vÉRÍ2k™ÔÚuHÛ]wÝÙÛãóK+õ¤9iÑ&-Ç{º>‰™i×i¯ïÖŸ§8öÄ4˜[²f8¼ïòޝ‚ãÿ±¸ñõß}÷ÖR+"Á–¿-§” }žŽcË<ùˆ­–çü’Úží}d´*‡Is’4 ÌC´%hsšæb½×[F/½ÓûÑ¿CdîôsØòJ¤ç%½wÛû¤Œ‘†™ÞÄDò=Z+>˜¢¹Ò{Ñç÷“çe…Á`0 §-ï¹gkññRa¯*÷§ž‡ãÖ½bMÑ ^Ñ¥\ÿM›°—Ip¾äoHQöÙÚ"³Ï¹ù$“oÎ+lg^K[òýú_'ŸîgŠâH¾åS£bšÅéýÛüN¹ïÓxÃp]`Ð$<üðÖ>þøÖ |ï{‡ý%fçÁ·Xµxí«·¥˜4FŠJH'€™µ¥œò¤çǵL<.`‹—ëùÒ—n-ÌG²œÓ}hHû5&4YÐ-:&e¢l™2[tBzƒô<€¤}Iï1×L/Ìç+QGÜOkSœïÄy$Îxï£0 ƒÁ â4Fáúë·–Èßÿû[ûÅ/níªJþ«ùœ>+·d™¬æIXÕ4œÇl4ÃÞøôÔ_ÊØò4¤LV§•}êǾgûNÍ´ ˆ {5_òYÛRÅ’p4A _ö³E›˜1ß?´ ä[ š_b&lQ^uÕáø’#B•J|¹|N4Mºîéx)NÝHŒ`Êàš´"{™ÏWopuþ62YÊõ÷i^{f.R”Uzþ’f¼#ÌçTe216 >®Ÿ·–oùm¦•ß§…÷ë0 ƒÁ`0 "Ž/%šê‹äöÛ·ö+_9üþ—-~:ùʬòæ:Ú'ÙâuAc0ΫFN™ÙÒ »©Ì”‘2mo-Á©QÀãwü}ÊWÐVúÖ&ìe<ÒüÚ«MH¾N3zøþ‰#OÌ– UéÏ–LÊØ˜ju8EÚqñ<9Ib|@Òòx?Îß®¯‡ó `ÙÂå{gJåsòEeÀõÆm †£)R­‡t=ì³wþŠÕüm>6ì}_¥÷]zŽZ&Ëͳš)•ûꪨŽêIï³TãX#’j§ðœŽÇóÉ÷~^‰‚ày<ã÷{…Á`0 kK»¤êvõ·ÿSò(€Õj`¬ü°lÉ RmÚóúæW«ºÉ'Ú|÷`ÕÒhÑ­zÞ*3‘,fcÕâhù#š%ÒîgZÉ'_gÓ®$_­UödJ$‹Ã[з}Çiþµè[þäiiU:Ò}OU÷Ò8R¼bàR|ÿ¥—~N|»Ÿ ¶o™AšÇIóàši;?a•ékÏѪ&Ëó8ÍËvÜ”Ù31Pþ=ÀO×?1 «ŒlÓŠ0SŽfà9²Í‚™¦#Fa0 ƒAÄñ¥`[!âë¼XÑÐV– ùÂ’–!ù¤-‘,Ô”áï¼¾Âfù®~ox^$‹³ÍŸ’Ž»Ê¤ÜøàT_mŠ“nÕ#S? Žvðx`ºR•B,æ•«m¦ùèZ&ô¥µšÂç‘4‰!ZeÐ}tkÉ¢+Òýòq­OóËÍÌï—Ÿ«×¹¾ô·š—%å°Å먄óF!%¬Fi%æÇZ¹t½ÜOÒd™‘àxÌoæ‰O31>¯ÄD%F:½¯ÚóÏ|°&XtBž aƒÁ`0Dì[¦åÿ)Lðù¥L^Þ¾åä^ñ?ôÐÖ¿íã¬j?NU߯®ìÓñðZ 2¡YîîÇŒ€WüÍ×™úkãKãMH°3ªíeLÒsH¿Ä{Ã0¸ÊfòÉûʱpÑ8_¿VËÀ{Ë„gûªö&ñ çz4øüäñiÞ%FËŒc;ïÆh^,$µ~›O é½b­ óÉù3˜î–8óÜ×Ï×yUCÔ2`m?ò¦¤ë4G0ŒÂ`0 ƒˆŸoxÂÅÊ øóƪï|µúŸ?'Ó%pÕ°‹Íج^[$-¾8¡ùæ|<3V;žßãL>ÅUÕþªúz«ÌCŠ·É÷š28zþ`Q7¦"倷ϛ ‹ÀZ 27Úk9÷AŠŽi÷‹ÿŽ”‰ÏãjU$yäp|Ý×^»µüÇÇǃjhˆ””ø}îkÊTH•H´(D»\}õáöiþ¯fd;òvPŬfvMÛñ?׋ó"FÒ²¬2 )Ê N²ì[ÿ¾~Ö¤)MÒVùyh wb>Îx¿ £0 ƒÁ âlé„•ÇÙGû%cþº`KÂ>¸äë½X°Z4Æ$Yé¾§j{)ƒYZaÛWrÂÛ’m58R”ɪ/ru{¯åUhê|G™¬>ǶìŸxbk±Ø¼áýÛóîûš|ù«ŒŒ¯ÃªfÄHýº¿¤…¡ýÎw¶öå/?ìïùÏßZÏ¿§Ÿ>ÒôðüãC·&Àó ÿß{ïa‹v妛Ž7ÕHÏcš¿éùn™6 îÕCÍ„1Îtýl™ÛûðYFa0 ƒAÄÙKþœ@i׿þeÕ(ü¼‘´-sáÅ>>¹à¹¶Too˾ùt“âãøzðÿW¿ºµ¯xÅáþ‰°JÚÌM˰—,½Õ¼-CbÒó’TÏìïÌ~ø¶Éƒb˜ pœ}Ó˜$_º«Ö1o§3@ÚÂñy¤| V»Û‚4¬ön˜ü\r~¯yÍÖb)rXøÌÇÏ}nk¿þõ­}ó›·6Yx޾ð8ùmZ˜¡|dk÷w·Ëü±Ç¶–ûåj£)ÿ‰ç+ Ðæó*C–˜NÆEMt¿ß+Î3„4^ÃÛsŸ¹ÿŒø9ð8üžò|KL^Êhš®ß×m…Á`0 k…–¡Ð°O½õÿÌh†i¸páÂs-g®K‹·½XྠöµE×â£S\uR%ã#µåiØùàƒ[‹¥„O8p4Áª†ÂðÊ;Å¥¯F»øóUŸ§Çš¯7YN-ÎÚóÏ»«rúx¶hÒuL÷rRw§xû¤•0£a$z²È¬eq¼?ó’ëa¦ “è§Ä¤­æÏ°¥ìê <DgÜyçÖþ«u¼žË¦5Z÷«ÌòÞ<,é÷*1’Þo5ÿC‹iÇ3Ržœ¤I][õ_?Ç-/ó0ŒÂ`0 ƒˆ5Bú?­ m®æ Ã!šŠ÷g[b¶ÈYy2>4 ¶(S´€aŸhÊ´f‹í]ï:>NŸHZ²Ø“o5=f^Œ”‹=©±ÛñÀ©[‚-ädÉ$- 0S`‹Í”)ÎUîØîᇷ–Œ¦«Ñ$Ö:X-Þ4Už/ä%pö#ó*ÌÛ½ð…[{Ýu[‹–8aªòjK­àúñœ^~ùÖ¾êU[ëè¤=iŒrÓt´h›UzbŠöF·«Lªϟï™0´Þž÷Âûo[{ë­Ç·Iƒå¼Þ>EE¡)<ã÷e…Á`0 ûLŽfù$ìUsÿÿθ•âvVh>r[Ž~°ª×XÍ‘QΔæy™êÀÉ·ÞÆ“¶Kù-ÿ~^Ë+/Y\¶ø¹_®"™ú3|߬11‘2Øy~¥ëîù ’:˜™ó÷øî]ó!EW°?Õ(ÑÈ`™}ö³[ûêWo-ó‘yËç¶ÜÉœÌÈäÓ†pFD_gÆI?lÏupÆÒ¦ú_ÕÔ4 C›o-“jBËÏâù×úk¿c>NÊ`ê÷ÂÞ°µþ營'Ã׫åaH à9þž›1r…Á`0 ûLSûôÒJm¯ê{pIÅú³Fó'KÁãMÝ’Ê>Õ…§µÅ•âÇ­îͲXŸ«ß2W¶øìv<÷KÔï?YÐ?¾µøØSÆDÏG˜„ÕÜ÷­º¡5 gRk³=çŸ,©÷ïñaya™3/ͨ8ßQ ‰¡KÇKzÒ¥¨#Âç·ß¾µ·Ür¼¿–?ÄÇãº8_GcDý|¢ÙHŒà½ ~õý™ª›¦ñ&Ë~µVŒ÷ƒ)å¹üÍß<ü>wÒ¤‰²v†ãë[[ûÿÞüœC £0 ƒÁ â4?e¸k˜¨†5xåËÿ¨¦±a „»™VüV§Û'’V%1I “TÙ -¯‡‘rçïÕ.€4ΗŸ|·«Œ]RAÛRçül6ho5QW»)“]òŶy““2ü¹ÿ—Ï÷X~΀HÁ;Þ±µï}ïÖ¢i ê8J,1Îð—Λçˆç–ûÍ~D;`QÂ,q0麥y†eîóIó»åE Ÿt~>>×ÕóÅÌBšoiÛ÷ïïCƸØ?1œ'ÌT»^f&s²ª™â¹¿ôÒãÛ_Fa0 ƒÁ8Ÿiß|hÏ9Ú0 KH×égÍ$Vœwݵµ¬8íÓöŠ ‹Ê>gÃQ¨}û?å´÷x±è°,``¿œò;°"Ç·Æñ9_ª¿¥øäd¯úx[µÊÕ:ó¾?ßÌAG³X›¶1Ö¤¬ªÓ“á|íº¯fÎc^XÓ`:ßßpÃÙý¶÷¦£x€µ8¾nhxОÀ0?Ÿ¯Ójü¾ï³Ç•î[ªòêã§¼éýèšI«232ßy?¥ü2 -º*1ˆ©vC:þOïQÏ{¢]è—÷Åþ÷s†8ŒÂ`0 ƒˆÓLüä#i¾a~9Àý"Þpÿ°ØlÁ_uÕÖzåÌöއ†iHÕíKc[Œ¶§ëË'KØ‚À2Dåîh¶Ç·È¸ðõrüdÁ¤œìFЧ7šßâÞ=ަQXÍŒçã¬Ö,IU>èÌ„ÌÇ¥²ZËÆL‚û[Í#Žãýš%š|Ù<0€0!~~aÜço´ûœ˜™ÍÓ®—µ )HË{`-JGÚ?½ŸZ _GU¬^—Æô4¿s’´dG0ŒÂ`0 ƒˆ³—ôm%Þ2Z%{Z‘ ~1à(„¤ÂÆ÷Ÿ,^æ>}k’ïøÔñ¤Ì€©ß4,ªSÿîè3 ì÷¢?žÇk¬úøÁ©ùü³tW™°š¹5iO’J}Uëƒûå(€4®tV÷kKrµ_2޶j¬î—ù Ó‚ºÝïg;Õ,«Ñ7m¾4æÅãûêW·&$å éw¨› ³‰É°Æx;3 #EuøÏïöûj K«Öû, £0 ƒÁ bÍ”_õÁ% ¦­à¿Xx≭½ä’­MU]SÁ>Fׄh¦û-€3?6ža Šþ¬ÑðÊíÌ$4FÀGÒ¤~š3¡]ŸÕç¤|í¼<Òxl ¶èÓe$ËËÌÏ£å¿HLPSŧûáû`&ÎÇΗàíA3]WÏkG3$Pb‚öæió»1™Àš4Ö.³š'Åï¿ô\¤ ¨ž‡éùHšÎÆmU#ua…Á`0 gàì¥^ó™®ú¨ŒdÁ¤ÜÔƒŸ/PK³µ…aŸ[Z§|À–’}nÞÎ+n[ iE¿×¢ýÀ¶ß.ÑüŸÔïi…~j&IãT&ÁÇM×yu\í¹·u5#¥‘ªPò9÷ݾ֖#ßóØjöíRô†µ—ó{ðÞ#sãÕWnŸ˜€/½Õ4à|˜Ï©:-Hïa3x­zgŠ®95š‚çïþû·–*¢ÉÂçs3MÉÂç¸÷Þ»µä%€1$OLb>[fÏ–á±i‡ÚóïÏ]ëÄ Ä†Q ƒÁ`q|ɽšùm55mçùÏ«:âàlpß“6!e¾K-6,.[§ZâßûÞÖ„4_ab®|\„¯}mk“ œÏm)®f,mšŠÕh°]Ô´ ©Jc{Þc±jyòÿ5×þŸÆÁõHy\<>ö§Àó,ò4¯Zž‰_§T]·]Ï„VSæYFa0 ƒAÄñ%MŠe…b˪ùÆ ¯ÈØß™= ³ ‰«Õùþàó–‹Ò|SñÉçÌ~ä°Ç’s=w[ ž¿>þ‡?|ø?ý7Ë»©}>àÔü ÉÛûü¤q¦ÌsþœùB?XúÉBI*yÏ/kdRÜxRç'5?h*ôÄùyp?ä)@ ð†7lí#l-Ïç÷°µ®Í›j(¤yf-Šç?×Ï×ÉñõŽ0“àŒ…-Ó§ÑéÄŒ5-‰kË$†¢Eoø8Ü73ŽnYÕò¥Ìš­J¤÷Oý·÷@Ê7ñ?yΦÃ( ƒÁ`0ˆ8¾ñJ#ùüÀj½ò[dƒ¿^¸¶+n3€y¯ÕQìïêkÌ«/}ik¯»îøx<ï’ K6­ÀÍ`¯ÜéçCÚÚ÷¼gkx`kícÉ×n4K«Å7§~Ïð1ž‰¤ÞoZ«É±€™'ô›´ŽwÞ 3É’´¯½1üoæ,14~¯qÜ—ïñÃ(¼ð…[Ë<ºõÖ­åº}þó[{Ë-‡ýÚ‚M™+S&Êô¼ÏÏ¿Ä4§ç¬ùʃ°š 3ipÌzÞ9³¬‘4fV8NÒ%ßbðü¦ë··Ê§qBFäaƒÁ`0Düʵ׼ò/ï½ï+žzV ê_ýuåÌßëóL+C¯ÈØŽ8`ÃÛ1,ÔÄÔ¸ùæ­E¥Ž >­=^¯°ðÙ±rt¼2HqúFËp稀ä[;5þ*š:ý¼>ô”s=åž?/öŽ´ó¶Ï¼ùÝo;nC;¯ÖoSµ›QðÿMSâç¾ýÄ(€UËÉÇó¼³Ö!Y¢ÉYÍ_Ñ®ój¿{çkC;NºŽ`ïuI–ñª&&a/ó`´(›ÖÏêýlãl™M÷>¿éù±01/?ÅSOý虿Ÿüþw/¼í¶÷ £0 ƒÁ ãì¥×©U½2r¼*Ÿca€d©Ûb£â’ñsûíS³¯Ñ+8|´|ÿÍon-Uˬ NÌK‹+OäÛK+â”ñìbaÕøÎw¶ööÛ·öƒ<Ü®ek™õŒ–ߣíönߪ´µ<>®}÷þ>©¢V-¢Ô¯£ ¬·%æûf‘Œv?~¸ß ™âŽ×2?¦(ûì“¶jÕM>f#ÅÅ)Ãcºÿ‰Á²v#½÷Vó«ùZ&ÃÕ罫g5š 1LI ãçw•IHŸ§÷BºNf‚ÌL»å÷w™Fa0 ƒAÄñ¥IË̈ ÕgûT,©Ô“… ’š:åĽs<|”©¦ßúã8Œ—Lk ›ãR…‘ñ4HUø|<[&)g»±×ÝÍÂxßúÖ­åü¬ÊNH߯ª|›e˜â¶ÓñZ„õ“TÑ_‹?O÷w/óâÿ›…–ò4$Ÿ(°¥“àhƒ¤±IªïTu/©ÈSôƒa H×÷TF¤ã¤çÄ×Ûó-Y¾I’ÆëëÙ̦úOØËXxœ{ŸƒÝ“Þ+M“‘žû¦ahýcR¾3ñžO):äYzE0ŒÂ`0 ƒˆãK°G “ðL/!N×ýØÇ™|SIÅi‹¼ô¥‡ÇÃbáŽû“Ÿfœ2“A<35ZMƒT_ܾ]2Î(g5vS¯ºŸS5 «ªZÿߎÇu$JÄLŒW¶?+MHC;ŸôùÞ( ½ÚžÖϪ&ãÔó3¾ð…Ãþˆ.J ‚ÿøá­½âŠ­u ‚?û³­}Á ¶¶åÍHŸÛr¶Ï¶1Z«™ï’6e5š¥Ý¯4¿š%šÆ š ?YÆ{™Æ„Õh‰U¦'½ŸW£$ü;vêûjïýoã⼬Å[‚óïŽó›œaƒÁ`0Dœ­QHêÚä;cû½Õò@òå¸ú—3bù³ÝoüÆá¸’O`?ùäÖbñÀ44_U²P’Ï5GÓf4_ë*CÐ|hiÿUÜtÓÙýús¢KоÜpÃÅ÷Kjóä{Ý×}±Æ™,Õè€Uòyò<½úÕ[{ÿýÇ·O`~_}õáçfêÈwBTš?i¾·ç4mÌ©Q^ɇï~ÛþÉ缊¦-kÇmó"Y¸FbƒœúiLMc Úq“¦cu^­~ÿØc[KæÚt¿SÌ÷©z(çI>ç9c¿»ïÞZ¢ÒþÙ?ÛZ´z7^ÁFa0 ƒAÄÙKfVB¶R«–Ù«­@“º3e,lÕ¾š*ÍÑ ?üáÖÚrîzGx˜ržóy‹gNµö®Ø›¯ooô†‡ <ŸXéþøÇç;î*’Öd¯/v5Ž¿ù„'½ª®Nh÷×óšùÃfø9¥¦Ì€-$,+ò*p4 é¤Ú«h÷Ñù4°0^hÄ*R-×BX>Xµ€â~Oó†ç§ešãxX(¾ÿŒÓÑ@hTÜÕFyΚjÝó:=FbSÒsÖ2¶[ì§æÉØ›ÿÁ FºŽ¡&@ì×ûŸÊü4MAb‚œ4i€óê¤ã{£ŠNÕ ¥è?>¿ñÆ­uT!¿‡0çŽòûâ·mуžûÞFa0 ƒAÄÙKÕV÷Þ–+°`!ùÖÒñX!Ñ?Q —^z¸ë®§{;ßV½xE lÙо%[0¬ôìöJ7­ø“…‘4fŽNE²¸^f˜ðUc‰þ¼±ªÂn–Ï^‹pïqVãÀWµ ŽH÷%ù‚…äùØšÏÕãmQçUÿ¯¢Yf=´µ×\sø}R1'ÌÞñïU]·ýš/xµÿUmÃź_ôsç[ûâo-,î̾MçÎg¦îÑG·–÷€«­®^¿–ÑÐk²tW"û¶“† $KrÕÒOãLïogœZ;b5¯DªÖÒy&(!Uqäþð;c2E!ìeVÑ®Ï^F¸iÁÒï.¿ŸhxúwøYFa0 ƒAÄñ¥žW"«ñ´÷Þ»µ¨Û‰Ï´†Ÿ¦W>I%œ4®>Ó@¼6+7V–‰Ù`}ûÛ‡ŸƒÄ ÁDX;Ô®_S¡7Kºùò[>…ö|· {§ŽöÜ4F3Åã¯f,4VÇÑ|þéýïã&ÍóÛùnÒøS-ÕóMß§ùµú~hÑ×ã¶oÆÑhœ«›ïQ&õs«=á­-¾Ï}nkS­‹fÁ8oCZ‰žji4쵬Ã÷)1)?kEÂÅòa®ªÐý}Òì¤ý=ý}²\PEÃ0ˆz`\<¶ÄS4ƒó…¤h',H»óªÞWÑ¢öæ;{µ8©*mBÓ„´Z= ©¿ö}b8“f+í—´«y2NÍKrj ïG´ùÐå—Þ>OúEƒNµÉ3òØ £0 ƒÁ âøR*ÅÛ'x¥„åí8c[Äiÿæs%ºÁñÚX*W]µµdjt‚”1ÎÇe¥•Æßâ¸[­#ÅU' ù¨ÃV«ñ5\lKÞy€k)¬ú´Ï›/Âç·zÝóf‹¦=«js,ï”Sðÿ÷¿¿µhC^þòãßóÜqÐ8 ï31„Î<šž§t>é¹[UϯÆÅ;š)}o¤j»~ß´þšŠ=e¾u¿ÉWZž÷×pêûaµvFÚ®åéÙ‹¦•ØÅ”jî+ÑEüïZ){ç¿g¾g<Ã( ƒÁ`0ˆ8¾ÄK™°žÙkÑçŒOÙ™‰†huÈȇ`XÕÏqÉuÍñÑP°…¡xä‘­E}o0N¯Hm¹¤ “ÞÞýzÜXh\Çäc^]©·¸óSWþ[àZ!_þòÖ=ãè›T…ô¼H–ÃjÒTï&€8ÐË.;ì_ªÇg ¨e^Û›sÜÿsœÕ•2šŠ¤þ·¥µªâµÏË+þ_&8?ÅÞýç…-¡”ѰaÕÂhó"UQmçÝ| M…O>žj¡˜ñ€ðqS@ðk¿vöy´ùëëÂóä~W3&K,õ»×r·¥ Cb¬Zâ«Z ?o)š`¯–#Á罹™HÌÍÞçÍy>V‘˜›´Ý©LC:OWsMÌœ÷K¿ãG0ŒÂ`0 ƒˆãK¯ØñÙ³bouØÛJÐ+ÇÇÓoZ!‘QŠÏÉPåqSõÎLm³ 9O|¬ä‡0R”DZåŸ|O\/,4ÆyÕñ«jd÷ßVÄÍwºja=öØá8ÝÞsÏÖ¢yIú‘r”;Ï×›ûN¦Aöç{[† Y«ãj®ÿÔïjˆSçÛq}Þô¦Ãï“åmÍ‹-ïÕ¼-³hcøÒud×dIãkQ">N‹:85OB{~öæ‡Ø«U¡u štŸ³¹åR^›6îÕ裤µ[}¯ùsà÷~clö¾·ý\ù÷#1^ŽR"/ ù¬}úÉs=ŒÂ`0 ƒˆ³—4I5‰Å•|¶­Žz²¸Ÿ3ºâóJ¾»Ä ¤ñWbVãP[.òóæ1¸ØhÇOÕ=÷FØBD{0Ï|ýùþ¯8üÜUÐøßµ`Šœ1fË㫌‰qÞÌ Im߯½·3eI{šÅ–Æm$Æ Õ0HŸ'‹Ø–k»O«Ú­µÒ4P)Ê,i4V«®f¶LŒIŠöIóm5 ¤÷bB»‰éXÍ œþ_ý<=w«UzÛsÛ¢ÙÏyxxRi¡&È0 ƒÁ`0 "Î^Ò$ BÊðõL¯²@’z?eˆÂwÌŠ<Mû@U-2É9êÀÌE³<|žhœ›ÞãHQI­Í¸±œÏ}p±Õÿ 1«ñß«+cjp½¹>¨{ùþ÷kßõ®­5“VÔh`F`˜é|Úÿm>9'ÿyïóÞ«)Ip5Õ¦BoäVóøÿ–aÏÑVÖ:{}Ômÿ„¦‚OŒLªa°šÏƉUæ³1œ-?ðõo׫1‰!IÚ“½[÷2…Fšçíw³1om»ÄÀø}G?ÔBZ­…ra…Á`0 gàøRÉÕøZ•¼Tû¬ZȬlPcGO›ª£±RÂ"·o¬ù¤’ÖÂÇ1“ÐâŠ×ÇùȨ…%|±|ØçÕ8$ŸfSñ&U|Z¹6‹…–±-©×¾vkm9€ûï?Üßóê'?•÷¢ fÿ×¼æÂ™Xõûz¬æÐOŸ7FboFA,(?×·=Fòe7¬îgËÜÕjý\·¼ ¶›öæÔhÏŸv÷V¶`“ÅÛ,úÕh©½™KO̓ªHîúY2iL]‹rILPc<þ5×líl-ù®½vkÍt¥ùÙ,½`óÙ' fÕçšöOqúÉ"Nã⺭j4|1~|žžÃdy¶û—¢„Úþ­ÚáªO=i£öŽßÇIL‰û÷ÿé~µLƒ)#bÚnu>ªñI÷s•ÙN×¹U^ýßã!¯BÒÞ]Fa0 ƒÁ8¾TÚ[Ó ÕGµîxu#ù^ðé“q¨ß›:8ù„[†9ïgË5i\ÝÍHÕy«–§ÆÏ·Ì›k|Àוj D;À ¤ýl‘úú °=óÊZæ+LO‹Yõa&‹ï¼qÔi»½÷ÇLEÓ,œZcÃãjÚ¥5µEÐr﯎Óý¯jHÀÞÚͧ¶mþ¥íÒ÷§Ö>XˆÏ¿páBf“…j$_>ãg%Ë|õynUecãí›æ+õ—úç:œP3f…Á`0 Ç—<Í'k¤¹¥›:<ùï¾{k¯¼rk©·Í8X)µ•¯UÚ ùò’æbÕÇÖÎÛÜyk \,¤Z Ç+á–qÍç ƒCæEû®±ü“Fã=òÈÖRóƒ~`ÌxÑ®ÆÍïÍ·°šçàÔèÐ|í8©¿Õþ“ï5i$Z5ÙÆlùùK™Pƒ˜þOH÷-EW$ ¹õ—,ʶ]›_ éx­Zd²¸Ac l¡7-óá$M˽÷n-QLžG-óeÛ.iz3g­GÒ­Þ÷„U ßó;=Õ#ƒÁ`0œ‚ãK”´²ðÊ<å+H+¥½¿n¾ùðx^¡¥zõŒÿ³ŸÝZª0>ñÄÖOßç=hKª¢—,‹æÃ§2§î—ªZ®öŸ¢@@³ ’J#šTºì‡¶è´,€ª”äÛ  é“On­-•Ĥ­ÆÇ§óhŒÓªZûÔyÂ~ÌoG1´xû½ŒHWSõ'fÇÏ[óá&¬fôxV¯sznV™”ÙÐÿ'Kv/ÓÔ´F‹"KϳÇs*ƒæh4~Ë-[ £ìã}èC[ûº×m-€“Ežòí4~U;Ô4|IZ}¤÷2Ñ¿ö\íÐ0 ƒÁ`0 "ÎŽzH¾©Tõ1Y^‰¡HwªÍÐjLØzÿǂÄW代’EjTp>¸µøÐÑV´ZI5íë”ò\¬*…Mµ»ªÂɇê둘)¶‡Aòõ±åóàëVÁ×±i2š…¼åàí“:|o±öˆÿÉ” ógÆÜyçÖ^~ùá÷×]·µ0 Iñ¾÷~Þ4«–û^ƱEéù÷ÁÛÁ°~猯}mkaN8î§?½µ7Þx|¿ Ã( ƒÁ`08Ç— «M²,V‘,òä›k+hög…ÅŠ’+BV¬öÍþìwxTUóÇ¿)$ô@$*„nH „€”Ð{/â«)òÒ;H/ ÒPŠ€bE|- M@D}ߟÂ+¡J•¢"E ’üþØwVv²“sw³!€óyž<7»÷ÞsÎ=÷Ü»3sfæðŒq®fÂãš_¥PòQ0Ía™$N®™fIS0iR9ü³inM:ß”Y޾'MYZ=ÐäœÙ¨«ß»ZŸ»šŒ«÷Çt<N\Í« Y è{þ^±çí´~«ãÇêsczÏ™4uWïŸÉ‡JªßjFG “Xj¯ô=•Ç} ¤öp/|n£ûP»¶mË}ÊèÒùîÎ5›|2Lå™4d~œÕqÙ÷ˆUŸ)ÚF:Ž#õ¿dI>KåZõ1’æº]Íw`Ê èê8àýcòa1ùŽð9wiµQzoÒçl[òM|“/‡««fºš‰S‚öS·ÄH>6’¯…Õ¼´ÆÍ¿¦Û¥EQEQDœ‹HRþV5 «sß<3"A’÷r§óIҤ㸀4Hí‘òHÐñ&MJ:ޝŽgò™æ¤<í£`5^š0ÍÕš¼²i¿Õh“†C–$«÷‘Ÿ/SúÌ×q7õ¿É÷Fj‡»˜ò3ðzL–"S¹&ÍXš;µºš×”øñ& N$¬~ެbÕBc²$˜ê5å™ ¤¹yé¾òUqé8zßÑó)iÈÜgíÐ!ÇóI& ÄéÓ¶-r3EHZéýbÊS"aò…àãSòé0Y*¸/†”G‚ ~¥r˰Œ¶P‹‚¢(Š¢(à\Ô䣻9ÙMš¡$±™$@¾ ˜$ K•U ÚGÞó$ÁšæÒ¥U ù*™4%­@í–âÊyÔ…)>7³^ù„UÉ–OH™å)žžcš{µêÛÀ×€°:×L’8—ü “÷² “EÇÝ(þ\›4i)ÿo’‰·‡sw5f©\W}ø8³ZŽ»çI–WÉ‚bòà˜¼ò9&o~¿¤¹{:Ž[$Ÿ2Ê«@ïsjY(Z‰Ê!K­ éçgÛR^îÛ@HãÊdÙtÕWƒ÷½ßéwÃj^ é¹—VŸäçKyˆ¤úxàu–jQPEQ%¬©–|Ή0͉¸*i›4 .rZ’¤MsŽ’·(A!‡_—d©]|íŠWå–ÉR"Iü{«súV‘¢ ¸&%y‘›,=„´*›UIÛ¤ ˜®›ònðö˜,P”Sž·ÏZÕX¤z\õ1Åï›Úe:úÇÕû!Y0­z‹sÍ”0YJ¤Œ©V}¬ŽWŽ»Q¦qÃß ¦ú¬–Ï-€R÷´Zo‰¶-?J÷‹, ôù›olÛ l[ºOdÑ£ÕùïGû%è}L×Å£¥¤h2É‚&YZ8V-ö|í#SÔȾ}¶-YH è‚¥S- Š¢(Š¢ˆXS1¹w>IÒÜg@šc3¶B˜«ãIòç%÷²•æø¥| ¼\inÝäÅÊû‡æ´yý¼<ÉÇÁ”wÂS^Û¦¨¾ß”ùÌä«ÂË%xÿH÷‹÷§)ƒ Á-_îÆùV3¼Yõ9æüù~w£$$ „©\“׼ɒawÒó"µ;³H÷Éä ય/Ÿc²$˜ÚkjŸ«ýfZ“ƒÏ}ÓñÒó+ýÎ4kæx>}–2nÒy´Z,‡÷ÏËÀ‘~W$‹'­1ÁÛ+­fLPûÈR@×Å}Þ²$p‹4Ï`Ìׯ (®ÇÓû\©EAQEQç"¤$yJšµ½4‹š“i¿$ñJ™¥x¾>çOå¤J«—Ññ´Ú$÷^'IOš´êûÀ?ór$IÖªfái ÊUîíÌ÷Ky)xfJ^¿)^ÞªgVûÙt¾§£LÏTŽUÍSjf|w8’%ˆâÖ% ¤yrM–[¸¯¿nòi ñ*EEñr ·\#˗϶%o÷+lÛ±c§5 H3äkÉðL­üùáí5­Á1Yv¬Z’8&Ÿéù5YˆMã—4ežÙ‘î/ù2P”ù@p ÷ è ZkB²Hs¬Z$¥ß:~—¨ÝŽûy¿Q=4~ø8çã˜[0¨ß®þ‘®©jQPEQEŨcZKÀ*& ÔU/c) €&I‰·—Gðz¥97wãàtL^¾’ÆkÕBÄ- dñ¡ï]õÈì*š¦¹g~œÕ~p×ûYºnW¯ÏUS¿sËN$Ÿ «¾#ÒsIßóŒ›<‹|xÜ>;>‡ËçŽùšRýôž<ØñxÒ ¹…@²Iý.­²Ë-ªR9RfAw-kÒZ4¦q,ù¦YiüdÉá–JÚOßs_†cÇl[ºï”W…¢Ý¤çM²™ÞC&ß*Ú-ùèpK/—Go˜î#õÔ¢ (Š¢(ŠˆsCš»’¾—æ"9®z]KpIÜ4§MHÍ-šÚé©ÕÝÅÔžê_«åZÕ¼¥ vnapUÓ‘¢B¤óLÞöV¯Ãë—¢TܵX¿¶zßLÇKõ›4UޤñòöH¹Å‰Ï)ó¹~«k¶HsÅR~ÚòŒ€ÜòÀç†ûͶ¥¹cÒé8Zõc²ÀJ™]ÍpjÕÆ5_Ó¸5eb•, ¦÷¯Ÿ|Ïx{è¾Ð~ÞŸ”ñ‘à¾jt<­,Yª S˜ò\˜¢†x?ð÷='/“…‡ŽKNoYP‹‚¢(Š¢("®©ž<^Ÿ4®9Vã%$oS®ÆÁ群8é{Þ>O¯.g•{eɰ:gnŠŽ ø}‘2krÜõÞ7Åé[][ÀÝè^¿4Ë‘,t’¹«QV-Q¦~–|˜¤ë³ª!Ið¸zBŠZàå›2½òë¤úøª®¤iÒñ”'€¼Ó×­³m›7·múɶå™]ií:ÿÓOÛÓ½»mËûMÒDytGš ·š§EÂê{ДCªÏ·$™|ØL¾¼\i!«×ánþ~=ô{fz_òç‚ Ë‡kШEAQEQ‘ŒEÉ{Ù~¶‹s½R9™Í±Îá˜äÍ%.Þn®fÖ’U>„»¸„47/•+­Á5e)o„ÉÀ]W7Y¼¬–g5ÏaŠ2qwü¹šG¤)™ÖÀ47©|šë§Œr¼\òf§q%µOʧ µËT_õçká\ÅŠ¶-YhË}S¨\ÒðÚµs¬Ÿ,¼_¨œU«lÛ×_·m_|ѱ¼V­` “Ï Çªï ÷1EËIš³´¶Õö™>óß nᲺŠÉ¢e5A÷cÊÿ0eŠmK÷]òE1ùvYµàC- Š¢(Š¢d€s‘ä)&‰D’ð%ß…ÌÆÁór¤Ï&È ‰Ë÷:ZÂ4'Í%aS|¯Õxh*‡æl)3ÚìÙÖÊá˜2r\ÕŒ¤¹[w½ÿy™úÑd™³Z¿«ýjÂÕ53x}&‹$iÎåÊ9ÖÇ5K®Ùü>ñ÷ŒäS%ÕCŸ) Šß?¾åï)ZÝ®‹ÚEÑ ”46¾:Ÿó”&æ©9nO!õ‡$É[Í× A™ÍÈ{›ÏÑYm'o—é8WË%LõqLù¤rMß\0iÄîö«äÂ}Køý3i*RtŸ³åÏÏ aòA0­ý@Ï?_@² |ŽYZ?ç™æ¾¥ÕÊ$¬JôÜb%}6i8ü:­jòîÆ»jé0ÕcêWÉòeBš›4e†¤ã¤8v“fLHyWÉbÉ3ª&owOeRåqô\³}úiÛ–®‡û<ñëڴɶýæÛ¶m[Û–ââ)Ê‚Îç«Ryo¿mÛRž:þÈÛ¶Z5ÇïMQ’ω”÷ÆjF^«kHHõñýÒš!®úVY}?K¾¦5†¬ú^-iÛÒø Ë•dáä÷ÓUeÕ× jQPEQ%¬‰Rîææ¹ä-ÍafVçâ­–cÂÓQ& ‘ÇKÞà„iýzST…)?€d°j!°ªÙKù¬j<®ZÜF0áªEÇtžUK!Y~8kÛîÚåø=E=HãËäs Yøs"õ“»ï/ÓsÁWïä«8š, &ˆG1HŠ'›]Qœû¥îú,ðÕîH²”V³£Ï”ë›æT%MÖª·¬¤É›¢¤r¥¸~é3¯Ç´Š«÷ݤÁšÖΰª!gvg’OˆdÁäýÅWŸåÇóãL÷¿x»¥çÖôàõñ¨«–V‚Ú[·®mKãŸ|Æè~[õµ"¬Z 3@- Š¢(Š¢ˆ8A$IJÊÅÎ%žsœKî\R2yOßkLsZÙeiá8‡¡ IDATæé¾p)Cùt(—8Ý?iîRš3æs¹„É+Ø4‡ÍëuÕG€Ÿ/Çǹ)3 )ªÃÝUP=•§AŠ“w7ª‡—ÇÏ—|\LÑÜ ­ÁÛÉ-.ô^¡¹þÒ¥Ïãã’[,ˆž=×'}–, ßoÛ’E¯OÛöÝwmÛ9së£ü ¦¼'S¦À)¦èþüXÍXk53¡ô|J– Ér(=7Ô¿t=d¥|&Ko×O?Ù¶ä³%=|Üóü3¦9~WßW4¤Õš¥<9Z“Æ”¿‚?'üý+YÜ…gÎäýHíݲŶ¥ŒäƒfzNÜøU‹‚¢(Š¢("ÎU ® ˜$,¾ú±`mÛ¿¿mË%>®zJ"Ë,ÔʰF’š«qüY×°Lš‡Ç Ó–¼y­jšVç ^.÷f7•#yC[Í­n²H¼»– S»¥ó\õÕ‘®Ÿk”V5H«¹ý%ox ^ÔNÛ+ÍaKsÆ|¼s_“eJÒ@%NòÁ!ÍöÓOm[Š> þ¡( òE v÷îíX®©>šƒ§5#š5s¬ßä#eRäXZ!L¾ R;$‹–ÉòÄÇ™´j'Õ#ý®Hï/éù“|ð\Í#cÂjÞ"¾Š(wžy“û.Hk€Òï8Ô¢ (Š¢(J8}$MA’øH2§98š36̱¼eËl[ŠOæinÜݹ3O#Íaf7$!sÉ—[ ,dÜð—÷0Åé’„Ëç„M«¶YýÞ”kZ\S4O«>6R½Òg«å¹;žM$]ÅÕ(ÉG0ù ˜Úmò–âã]µØpM‰g„åí‘ÚÏ}zè}G¾”Ï€ ýd9 ç‹[D$ŸÞdI ÷%}Ï×fá¸ki´jãHùCL¾CRþ>Nh{ô¨mK¿ü=Äï3?_²XÒ\?o¯ôÙU$ >þL3ÉÂ&ÍXx¯¨EAQEQç"„ä)I–$)s‰™ÏùŒåX>ͽÑ~’À­Æ¿gÔ²(/yùÒ%y¡µí#¤¹zî5¾t©óvI«EV3}ñvHë³KšŸUM…KÖR;MsR;LŽ»š”T¾¤![õJ¶Á±Úÿ¦þ2­ åMŽãqðR¼:=ŸämΑ,Òý–æpùq?ÓZ)Òꃦ|¦ï¥r ²ÒuQ?ñ5" °mÃÂl[é=`²¬Q=¶-õ;ëwu¼šÖákñhýÅ×H ø8–,=’…ˤ‘S;Þ¾ˆÇrSþ n)¡UDCCm[“Ïo¿®©(Š¢(Š;d<©bò—¾§¹.’$IÒ4Á×"°Jfçn9$YKÞãû¦ÝÙ ÍMmÜhÛ¶jå¸ÿØ1Û–æVI2·ºzšimiî×jt‚Õ|V£3$ •U Çê¸2ų»;NM¾é:øœ§Õ¸vBÊ@Hs¿V-’EEÒD¹æ+•c²ˆIk˜Î—p÷ý“Ù÷ï??Û–ú‰žw²ÄP&´mŸzÊy{¤|¼¿éýÎÇ·Èò(')šÄä[$Y,é<ÒØÉ’BŸiKHù[L¾7¦(3>îùxæy48ÔÎ?´mûõ³m¥ÌÈt<ÝÏðpÇö›òYXjQPEQEĹ(au®X‚k’—µ¤!™¼˜ÏžµmùšžŽJHN¶m²miyj×™3¶-Í Þ/š›¢8[êÊðvê”mK™ÉHÂ5aÒˆMœé|«qÄ&¯wWçàݵPdVb7ÅsK˜|+WóBHÞå¼½&_“‹m[Ò˜xæLÒ€øýâåsÏT¯äaÊ Á‘,/žÖü=…äCAõ‘†I ÿïÿl[êÇ­[m[Ê$Iߛ渥ñÅ5~é÷€ ÷ù¸Ñø¡rÈÒLåK<•Oõ‘…¯Bïsê©Ý·ˆV£¶¨éºyFN:ê§~ˆ‰qÜOÏ õzéÞÝùuXjÒ¨EQEQÜÁš‚dàÇR?i³}à€mK™·8\Ó$_)~Ú—@¥9Órå·÷KžÞ¯¼ßÉÃWO#‰Uš¶ª‘r¬jÚ®Z*«Q1&K•«Ñ®úðp¬FU¸j!¤¨ “EDzÎ¥ï¹C6GäM¾0¤Ñó¸oŸmK/×ÀL>KÒû‡,4®iœsŸîoÕbã*Yõ~|XèýÅçÄÉ+þÂÛöàAÛ–Þ”ÿ†cÕçÃÔ>÷õâï-~]’fL[otý<Ã./•!ý®™2òã¿ùÆñ:J”p<ŽgRäù$˕ǟk“eÌäãd!¬ZEQEñz**2mמ½¸úǯö/ úýO‚âš»U͈k<÷6I2¤y†kU3ä™ù²jîO‚ÇyÇÆ:î>ÜZ9YÕn*—45êgŠ×%Í‚k„IS¶:Çíî Vó0ðãL9ìM>7„Õ9kWûËT¯ß*ÒùVëå a²àIQ &þÞ|¸&Ä£jL™'yyÿùmK «QZ÷+üýDÐûœÞ dY0E9Ðñ”'fìXÇýÜ"À}N¤÷.¥ûOHš·4¾èzÈW, Üç€Î{ï=Û–¯Á!Y¬¤h.ÚÏ-9ô=·°‘Ï?~?øïǪ%’ï¢<®^ýÃ~ÈogO¡Ï€ajQPEQEƹJÁç¨Iãš„ÇM^µ$AQ´Ÿ[¡¨ ™¡0eæË*¸¯}¦µ+¬FYÝnòêå™À(¾Ø´n»Ég@:ÎUo~«ýàé ÜÛØ$¹[µ|¸]Áë1í7i|¿Õú¹¦Á56«ù/¤¸v ««Pò÷}¦|¤©q%Þtß·méyñ4÷ÚâÉ}ªhΜ20’%Át>AýBqý·H«Kk&H@BÊoqù²óã žq–;n)§÷6­ú)Eÿ˜Ö"!Èb@¾͛۶Ô?”‘˜ ÏT.Ypx>Þ^)¯É§‡ú‡ß§ 2~ªEAQEQç".—€iÎΔ»›à«ÿJq¢Û¶Ù¶Vç ï5|î•$6ÉÂbÂ]MÓ]¨]$¹š2èq‹ï®7ºU\õp5*‚—oZÕNjŸÕ¨Þ^þYò~¶ª¹[µpHðz¸EHò’6=¯’ÆcÒ09¼¾ö ½È’ Es¼Ý;:¯×SÜë÷?QQŽŸ )ÊIÒä'OvüÌ}œLã™Ã5tÉG‚¿g¤ŒŠ|¿À-ˆRyÜ’&E•Hå9GðŒ•¼~ò©Ú!­I"å?áõðLš’åî.Ô¢ (Š¢(ŠˆsQOÊLÆ%Iƒ’æzy9‹;îwuÕÊ{…$KÞ¾&\Õ]EÒø$¯b鳫ë¯KãÁª÷½UÍ\‚[~¬Þ)ï‡I%2kpÕ‚&Yv¤ã]]Õ’ÏòñcšåQM´¦ˆ4.¤û#ùºðqIíå^ìt Ч§Ï|®ø~#³ï;Ó{“ÞÃÜ…k ÔŸÔÍÅSù4§ÎÇ™éùç–+BŠ&®‹ÚÏÇí—ÖœàÏe†äýÃÛ)åW Ÿ_qÍÎj~i?Ç´*ŸÕ¹xBÒ,$Ë ×L¸i®Ü4·.Iî„”1ÑT¿´ßU \37ejäí þ¦¸u}ÀãÃ9R´iz”¡N²ì˜æÊÉÂaºŽÌâ®E€?G|Ñ{•¼úMù#$˘ôÞåš/}ækwHÑÒ{€¯*̑ƩtRô÷ ýü{Š’áÑ.BÊ$Éï—iM‰ì‚[É»ŸàѦh>^é}LÞöR|½«sÜRþ)zŒ—']¯tý\£–|ŠÈ`ÇÛ¶F ÇúLQ~Ürpú´mKk5Ðyü=Ëמ‘òððëàýKkCågþ|ÛvÀÇã¤<&_'¨EAQEQk"4×i‘$É{yÿ~Û–¢j×vçFIb×ìªF›Õdu~„천˜|MHBçsŒ„¤Aó9_“F-Í©®Z"LçI帪‰pM‰[6Lyܽ歷Š&Lš»d2iئŒŸ„)ó¥dâòIãš1Ï4*ù$H«©šÈl4ŠÕû(Yð$Ëš)·4¦|*©?­Zˆ%Ëi >Îø}çy ¸…ŠVi¤ß!Þþœ“eÜÏ϶% ×Ð?þض¥ß?~ߨ<о ßS‚ß?n1¡qZ¾¼mKïQ“a5Cë]¨EAQEQç"„”yÎ$9sÉJò:' ˆ¼O¥< œ‡%ÁýI¶ü~¸:÷çªFíéŒxîæÚáªW¿Õ9G«í’ÊÍl}&¯rÓýáãAŠ&°:çΟ)o…´–‡”»ßj¾ š£¦rLy\\µ@yŠÌúîp\]£FÂêùÒø¤ûB™ùý“Ö6î7Ïd  ÷Ç32’…@·dÙŠˆpüžÆ%µoøpÇÏ’%Œg%$_~>Á-@¦hþ¯|-úÌ£b¨²ÍÑœ8—àÏbºOÒ*‹ÒÜ•I³7µÃ¤Ùººßt}Rýž®×#iÐü8©W·š¯A*#ÅßKsÄ4ŽLÓÚ#V-C&ï~n q×ç^aÕ¢GïUÒp¥h5«ãò5˜¼ë­ZèøêŒ\óçí²ª™›æÞ¥ë§q@™©|õcʰÈלàÏ®‘,ü< ~=¼<Œkµ((Š¢(Š"âT´:~æø½©ýäÑ{S¢(÷Ž«Ý;ï’g›‘Žß²¸üìæÒ¯ÙÝ‚Ìáî¸É,×/;ÿþÒÿ4sWû5çÿ,t=WÝkVvQ¸Pú¨µ((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"’%‚¾}ûQ¶|nÒºÜÙ\Ž'Údq…KWWEQ”û—ú,[>å*„¢JµHtìÔ o,Yæðc‚½{v"W®\oðÆ Š¢(ÊýŒa¡sçìØ¶9sæÄ„ˆ?ˆ7cã°ñ“Oñîú5(X |}}Q´hO·UQEQ”{Œ[S…  hÑ"(„V-[à½õkàíí×ßX ý”Áû|„ºõ¡BpeDÕi€¸¸·ŽÛüåV4hØ•ªaÒäiHIIqZï‡}ŒV­Û#8$U#"1jô8$$Ø–]º,mÚur8>!!•ªá»ïþmÿnÍÚwФi+‡„£NÝh,Z¼©©©öýþy }_芡Uж}gü|üD†}a:>£6@§.Ý!•ªÚ­5VÏUEQ”¬Æ#> þþþøÇ3OcË–íéöý~ñ"&Lœ‚Ïý;¶mƲ¥‹Q²d ‡cââVcÉ‹°2v6¹+V®rZ·7ƃí[7aÙÒ×qøÈ¼ ÎàQ¦Li„‡‡¡Sç§Ñ0º6ŒFãFÑðöþKF ©|×ÿqêôi‡ébÿþÿbÁ«‹pèðaܺ•ˆÔÔT$&&âÎ;ðõõEÇí0kö<Œ>¿þú¾ÿþ?˜>m2àÄÉ“HHH@·îÏ¥k7•qæÌ/HIIAHˆc{$¬ojsFdæ\EQEñNmv}µÕásLŸÁ8~ì`†?~Åáåååð½Þ}çmìþzvïÞƒñ&ã‹/6ãÕs\jè­[·Ó«/š7kŠ¡C¢`Á‚ˆ?xC†ŽDJJ |}}ѸQCLš< ß}÷oìÛ¿•+WB©  @jªMY»f äÏŸ®|ûÿüLHÇ[i³»×[!¸2âÞ\èR;EQE"¦Ï`\ýã×tß‹¿T1}Ûÿ7 IIIX³n=7jèt¿ê׫‹úõê¢vT-ôë?óçͲï?xè0¢jEÚþ?xA%K:Xàĉ“¸ví:F ‚€€Àî¯÷8ãïïV-[àãŸàÇ}ûñÜ³ÏØ÷•.„ܹsãüù ¨\)Ôi;K”x>>>8ujGÙÛ#a:ÞJ›½ÿ'  cõÜãÇ:Ü#EQEq—ŒÏ í×’€péÒe$$ÜDBBÄÇãÍØ8¤¦¦¢ÿÒûÓxüðèS§6røúb˶í t-^‚Â…pýú ,]Ï=›®œÀÀâðõõÅʸ·Ð­[g9|+V¬Jw\ÇíÐõégáåå…V-[Ø¿÷÷÷Ç€þý0qÒT$%&""¢îܹƒññ8uê4ôï‡ ¿=…>†y.êá~àòåËxïýáçç‡úõëfwsEQåç¡jD>…GŠÅË/OuˆbPEQÅ=²UPÃÏGã=Vž'ËREQÅ (”)''Rñòò²,¨h¿*Š¢¸†¾c³///¬\þš¸ßhQÐ<3TPPEQEDEQÅcìúj«[SÊý‹ Š¢(ŠGÑuh.TPPEQEDEÉb>ûü ìܵû+[QxÀ…}ûö£lùܼy3»›¢üÍ¡±˜”””n_XåJ˜ÜNΨ^µcÏ7{ѺmG„TªŠ.ÝžÁÙ³gñãûЮCT ­‚ŽŸÆÙ³gÎ5ÕóÊÌ—óªT 3ÞjÇ7{¿Eë6ŽN]ºã—_lu^¾|³fÏCÛ6­l÷`årtíÒÉ·oË6µ%-- ï¾÷> ü'*V FÚQxº[¬÷}Ke+Š’5tëÚ¯-|=Ãc2zýþûï¨V½>Ú°Ñ~üªÕo#ªv}»%¾S—î€JUíÖúì"Ë…òóóK§.Yº3gLGþüùP ~,YºŸüë3Lš8eË–Á‰“'1aâxyyaà€~hѼ)f¾2GŽE…òå_ïùwRRP¯îS8xðC“&OÑ#ÇðÞ»kqíÏk8xð|Lc{¿x&NÁèQÃѼYS\º|¿èÙN±ÀÂE¯cÍÚõ˜6e"ÂÃÃpéÒ%:|ľ?£k4õcŸü^ùx{cܸ1(„³çÎaÚôxyÆlÌxy*`âäi6âƒõ¸qã^|q¢ÃuY­—óÚÂŘ6e" *ˆ §`ðÈ™+¦L‚ büÄɘ:mÞ\þF¦ê1±hñ¼ôÒTäË—ãÇOÆä©Ó±2v.\ø)))¨[·V¿µåË•E¥PÏ<Ð.üŠK—.£j•*öïªT Ãû|ä‘òå^1wÞ‚tÓfÎè÷BoŒ1ì´(sôîƒ6lÄÖ­ÛѨQtºý¦÷Ð#<‚IÇcÊÔ—U+7oÝÄÜy¯bÑÂù(X  öÍ%èÝçŸØ¹c üüüîõ%:%ÎŒW®\Á²å±ˆˆ¨ o↑1lÂ*WB©  x{{cé²XÌ=uêDáÑG‹!ªV$ÆŽ‰uëÖŠ+†jÕªâóÏ7ÛËøì³MhܨaºŽKHHÀgŸo‹cG!øÉ ¨Y³:úöyë×[Ó¾®^¹Š””DG×G``qT AttýÌu„‹$%%!vE&O‡æÍ›¢xñG‚Î:0_£©¿nß¾mìsâî{åïïvíÚ ªV$ŠÕ#ªaÔˆaøòË-lVŽ-[¶a옑x²ByDT«Šgžéf/Ë•z9cFD•*á(„^1=ñߟ`ÌèCPPIôŠé‰½ß~—ézLŒ9 a•+¡t©RèÝ+ß}g›Zxâ‰'àïï/¿ô|‚™Ë—/ Ù¿ ÀÕ«Wºé åáfÄð¡èоm†Çthß#†½G-Ê äGLÏgñڢב––æ°Ïê{¨m›V¨‰±/NÀ¨ÑãкU 4¨_ϾŸ†"E £hÑ"(Z´È½¹8'xÔ¢P³V]@bb"ÂÂ*cÁ¼ÙûƒƒŸ´ÿâäI$$$ [÷çŽIKKCbb"îܹ_•G¸ IDAT__´jÑ «V¯Á°¡ƒœœŒ­Û¶ãÕsÒÕ}æÌ/HIIAHH°ý»J¡¡˜3w¥—j™2¥†NŸFÃèhØ0E;:YÍÉS§qëV"jEF:ÝoºFooï ûËJŸwß+Ø¿ÿ¿Xðê":|·n%"55Õ~Î/¿œEJJ ‚Ÿ¬`?¾¢÷ÚÊ—³ÿO?˜åË9~—˜˜ˆäädœÀf=€Ë—¯ _¾|ÿûÿ2 (pOXEñ>>>xuþ\ôîÛÏn‘€š5«ãÕùs3õ|fùòåÃó1=°pÑëxyúû÷®¼‡Ž;Ž„„›¸s'W¯^EÞ¼y³¼ÝîàQA¡Ä#wîÜ–Ž-]*¹sçÆùóP¹R¨x\ሬYŸ}¾ çÎCÓ&œj…%J<ÄÇB:Q€Ÿ@© ’ðöö¶ß€Ë—/ÛÛxäèQ‡2|||P¿^]Ô¯Wµ£j¡_ÿA˜?oÖ={)— *‰\¹rbï·ß¢UËéö›®ȸ¿¬ö9çĉ“¸ví:F bÿñÚýõûþ'žx>>>8|ø("#k€ƒ_…»õºÊ½ª'#"ªUÅ AýÑ3¦ÝÊã.Å‹?ŠÂ…°oß~”,Y°oßê!E¹×äÊ•KßX„nO?g÷¥ZúÆ"äÊ•3»›æ={<‹¸Uoã³Ï7Ù¿³úºyó&ÆŒÁƒúãøñ=vÖ¾gWj½ÿ'PÜ­ÐfÙ¦–øûûc@ÿ~˜8i*6nüÎ;Ó§Ïà³Ï¿Àëo,u8¶UËæøôÓϱmûWhÙ²¹ÓòòäɃ–-šá•YspøÈQ|ÿý¿±üÍ•èÚµ3 (¨$)Z¯-|gÏÃîÝ{°bå*ûù?ˆÇê·Öàø‰“8sælÙ¶÷Tsó÷÷GLϘ6}&6mú.üŠâíÎk¦k$¤þr¥Ïï&0°8|}}±2î-œ=wÛ¶íÀŠ«ìûóæÍ‹Æ¢ñÊì¹8rô(þv­m.ÎËËËr½‡A“¦­pëV¢Ûýg©žC‡qèÐaœ:upøÈQ:tØ­vüüóqlüäS$''°9 ®]»ÁOV°4v2j‹——ºvéŒE¯/ÁÁƒ‡ðÍÞoñÎú÷ÐÝoEyÈ—/V¯Šµ9¯Šµ[ËDòäɃ޽bðÎú÷ìßY}͘9… D¿ú`Ò¤ñ8uòV¿µÆ¾?°xqxyyaë¶í¸|ù2®\¹rO¯ín²,êÁ /ôí…€€Bˆ]‡±ã&Â××åË•E·n]ŽkÒ¤1&Nž†‚  fêbyÓ¦N¤ÉÓйKwøûû£[×NèÙãY6kÁ‚ùs0aâ4nÒááa2x † È“'7¶nÝŽù "99!!±xáü¬»xaC!oÞ>>(X ^~y*ŽzõžB©  )R£G ÇÌWæà?þ@jjªý½p¯ñz**2mמ½¸úǯö/7lxϾú×ñc³¥a»¾ÚŠçû±|Ë”«øÐ÷ë;ëßòe±øjÇ—æƒöíÛN]º#þ§4ñ‘ò·f×W[Óg°GßqúŽÍ:¨oW. 1};È¿=…>†eÞ¢`% DvIAʽ#>þ ~ûý"‚Ÿ¬€'ObÑâ%Æp(EQ”« Æß»L c§(®“’šŠÙsæáÔ©ÓÈ“'7Z4o†Áƒúgw³îááaú,(ÊCÌßùùÎVåá¡r¥Plúü“ìn†¢(Šâa4[QEQEQAŽðÊÃN=(Š¢(C£ >Ô¢ (Š¢(ŠˆÑ¢°ë+Ï¯Š§h¿*Š¢d%úŽõ ÒJ^Ú¯Š¢(Y‡¾c=‹˜™QQEQ”¿.efT¯UEQEQaêA½VEQåïGáBé¾Ó¨EQEQDTPPEQEDEQEQDTPPEQEDEQEQDTPPEQEDEQEQDTPPEQEDEQEQDTPPEQEDEQEQD<.(ìÛ·eˇàæÍ›ž.Ú-¨=IIIÙÝEQEyàpIP ]ú ­\ Ï<ÛG³‚½{v"W®\o¬¢(Š¢(÷·, ;¶mÆÞ=;±ñã/_> 2ܾÏ××E‹———Ç™¤¤¤ 555»›qßãé~JIIñXYŠ¢(Šû¸%(.€¢E‹ LéRxîÙgpâÄIûÄÝSôÿ7{¿Eë6ŽN]ºã—_Î:-×Ù´ÅÝSVÊûóÏkèûBT ­‚¶í;ãçã'ÒÕ³fí;hÒ´‚CÂQ§n4-^’®ýÛwìD‹VíP1´ þ¸tÉi;÷|³­ÛvDH¥ªèÒíœ={?þ¸í:tAÅÐ*èØùiœ=ûWÛnܸá#F£RX"jÔÆÜy œö›³k€÷?øuë7B…àʈªÓqqoY¾.g¤¥¥aeÜj4lÜOV C­Úõ0ÁB—îï§ŒÚhåúï.OQEÉ~|3sòíÛ·±ùË­ ©ooYæX´x ^zi*òåË‹ñã'còÔéX»Ìíz3*oò”é8þ>ü`=®_»†1/Np8wÉÒåøä_ŸaÒÄq([¶ Nœ<‰ §ÀËË ôs8næŒéÈŸ? äÏï´¯-\ŒiS&¢`¡‚˜0q œ¹raʤñ(X° ÆOœŒ©ÓfàÍåo&Mž†#GŽá½w×âÚŸ×0pð0àù˜ÆkþýâEL˜8£G GófMqéòe\üý¢Ë×u7 ½Ž5k×cÚ”‰Ã¥K—pèðc[îæî~JNJʰV®ÿîòEQ”ìÇ-A¡f­º€ääd(P¯/Záñ£GCXåJ€Þ½b0xèwª5–—€/6mÆŠ7—"øÉ €gÿÑ3fÎ`l–.‹Åº5«Rðè£Å0vÌHL™ò’ÃêˆaCìuHŒ=Uª„zÅôDß~ðáëíçõŠééжÏ>ßäж¾}žÇúõï[®^¹Š””DG×G``q·ïs庈¤¤$Ä®ˆÃÌÓѼyS@ñâ"44ÄØ–»¹»ŸŽ=&¶Ñêõ[éwEQåÞá– ðþ{ë+gN¤¦¥âÌ™_0mú ôìù:vhçôøråÊÚÿ/\8IIIHNN†ŸŸŸ[–Ê;s椤¤ $$ؾ?¤bEûÿ'NžDBBºuΡ¼´´4$&&âÎ;öŸ4¶£Bùröÿ Ê—sü.11Ql[¥ÐPÌ™»ÀÒÜ~™2¥†NŸFÃèhØ0EÃÛÛÛÒuùú:Þê“§NãÖ­DÔŠŒ4Öw÷SFm´zýVú]QE¹w8v}µÕásLŸÁ8~ì ýs‰'Gîܹ¥‚‚’’ŠÑcƉ‚‚³i‰´´´tß9s€LMMœ©<É‘’ÊZ»f•Óéûÿ9r˜e(gíðöN_·³k嘮ÝÇÇï¾ó6v½»wïÁø “ñÅ›ñê‚9.]—U¬Þ‹»û)£6ZåîòÊ”«ˆ¸7ºØrEQvbú N÷nà¿S€¾C\%¦Ï`\ýã×tß‹¿†1}ÛÿçÏñööÂõë×3íõž7o^ÀåË—í‚È‘£G-Ÿ_¢ÄðññÁøƒ¨S; pðà!ûþÒ¥‚;wnœ?•+…fª­®Bm‹?„:ulmûéÀ” * oooK×îããƒúõê¢~½º¨U ýúÂüy³Üº®RA%‘+WNìýö[´jÙ"Ý~wï…ÔFÓõ;ãø±ƒãPQåî~ÓC¬“‘@•¡Ú, —.]FBÂM¤! gÎü‚ù ¢~ýº:4Z!(¨$)Z¯-|C† Àɧ°bå*Ëççɓ͚6Á¬ÙóPdv\¿~o¯]gßïïïýûa⤩HJLDDD5ܹsâãqêÔi èïÜéÏäÉ“-[4Ã+³æ`nÑY¸öçŸXþæJü³_ækÿé@<~øáGÔ©S9|}±eÛvÂÛÛÛ­ëò÷÷GLϘ6}&|}|VÙîÌØ¹S·îEFm4]¿„IHUåïé¡ïÌã–Bƒ†6ç7///)R £`ô¨Ì9(6mtÁü9˜0q 7i‰ðð0 <Ʋ\ÆÔ©1räXtèØeJ—Â?_èƒÇO²ï¡o/BìŠ8Œ7¾¾¾(_®,ºuë’éö›˜6u&Mž†Î]ºÃßßݺvBÏÏ0_{ž<¹±uëvÌ_°ÉÉÉ ©ˆÅ çg꺆 „¼yóà•ÙópáÂ@çÎ-µÇ¦6ftýŠ¢(Êý‰×SQ‘i»öìu˜—ذá=§ó=Š¢(Š’ìúj«ÝGA§<õëݲÀogO¡Ï€aº(”¢(Š¢(2*((Š¢(Š"¢‚‚¢(Š¢("™Já¬(Š¢(ÙI™rÍ)âåå…•Ë_÷«  (Š¢<ШC£ûð‹ÎЩEQEQDTPPEQEDEQEQDTPPEQEäo/(¤¦¦ZZÝQQEQþŽü­…””Ì›ÿnݺ•é•/Ýeß¾ý([>7oÞôÈqŠòwFŸEñ<kAáöíÛX¶<3gÍŵk×Da^>ôW­z-Œ9Wÿü3Óm ÁÞ=;‘+W.‡º’’’2%%Ÿüë3thß.›Z¦<è$''ãùÞ/ 0°86nxŸýkž}¶;²»i÷=kAؽ{76mÞ‚¥ËbqãÆ QX(\8E‹AXXe 6_íÜeßwãÆ 1•Â"Q£6æÎ[àPÎû|„ºõ¡BpeDÕi€¸¸·¤—&;ué©TÕnÁpv\Fõѱßìý­Ût@pH8:uéŽ_~9ëážSÏÒ°aøûûá‹M›¾ß»÷;\ºt mڴ‡}ŒV­Û#8$U#"1jô8§/{gšš3‹Ýšµï IÓV GºÑX´xI¶ME*YÇÏ?ÇÅ‹`ÜØÑ(W®,J”xíÛµE³fMìÇd4¶âV½…¦Í[;”yçÎDT–­Ûìßef<ÑøÜóÍ^´nÛ!•ª¢K·gpöìYüøã>´ëÐC« cç§qöì_ïó+W® Wï~©Tí:tÁnpj™v”.]»ví‡m@ܪ·`tpôóóCJJŠ}Lš< GŽÃ{ï®Åë‹^Å»ï}ˆU«ßü~ñ"&Lœ‚Ïý;¶mƲ¥‹Q²d §åƾ¹°sÇìݳ{÷ìtz\Fõ‹/ÁK/MÅgŸn@__Lž:ݾïA0w)?üýýѲEslذÑáû oD½ºuP¸p|¼½1nÜlߺ Ë–¾ŽÃGŽàå³ÝªoÉÒåX»n=&M‡Û6cö¬ØðñF¼±d¹ý}VÀAÁãd4¶Z4oŠ“'OáÈÑ£öã¿Þó  ^ݧXOVxmábL›2Ÿþë#äÈ‘ƒ‡ŒÀœy¯bʤñøüÓ‘3§?¦N›a?~âäiøãÒ%|øÁzL?˖źTŸ `“ ƒƒƒ±}û¼½fÖ®[ W®\Á²å±ˆˆ¨ ooo$$$à³Ï7áű£üdÔ¬Y}û<õëß\½r)))ˆŽ®ÀÀ⨂èèúNË.X  H‘Â(Z´Š-’îS}Äè‘ÃV¹J—*…Þ½bðÝwÿ¶ïóÏ™¥K•‚——åþ¢Cû¶ø¿~´kL7oÞÄ—[¶¢}»¶€víÚ ªV$ŠÕ#ªaÔˆaøòË-.×sûöm,]‹¹³g¢N(<úh1DÕŠÄØ1#±nÝzûqú¬<<úh1 èß/Ž›ˆÚOEcè°Q– ã±U¬X1T«VŸþ—µë³Ï6¡q£†ðóó³<ž¬0fôHT©ŽRAAèÓÿýéÆŒðð0•D¯˜žØûíwlÖå-[¶a옑x²ByDT«Šgžé–ÉÞrD×z€mþÓ××aaaؼùK4nÜþþþèÜ©#òäÉm?®f­º€ÄÄD„…UÆ‚y6IóÌ™_’’‚`û±•BC1g®m: L™ÒC§ÎO£at4lÆ¢áííÞ‹ÇTQ®\Yûÿ…  )) ÉÉÉðóóCð“ðåæO3¬§RX„ÃçŸöÿÇ­ïŪT GÉ’%°áãaÐÀbÓæ-ðóóCÆ û÷ÿ ^]„C‡ãÖ­D¤¦¦"11wîÜq©ž'O"!!ݺ?çð}ZZš½<___}V"† „.;bÏ7ßàÛo¿Ç ÁÃñÏ~}0dð@-___´jÑ «V¯Á°¡ƒœœŒ­Û¶ãÕsXOV¨P¾œýÿ€€B€òå¿KLLDrr2~ùå,RRRüdûþŠÁOº×A*(ÀfQðññAŽ9P£F |öÙçhÙ²%üýýѶM+»eáý÷Ö!w®\È_ ¿]ó·‚Þ}çmìþzvïÞƒñ&ã‹/6ÛXVáLq%għŸ|ä‘ïÅUÚ·kƒ ‚Aÿ‰?þ-[4‡ŸŸnݺ…˜^}ѼYS 2 DüÁƒ2t$RRRÊpæø›šš–îÿµkV¡@þüéŽõññ±Ü^}V{,]:wB—ÎPµjÌ™»C4Ž-___4kÖÓ^š‰C‡ãܹóðññAí¨Z<;žœ½»½½Óç{•HØ, 4¼¼¼P§N|øá‡èСüýüðØc€O<ŽÜ¹s§;¿D‰'àããƒøøC¨S' ðÓ(TÒ~Ã}||P¿^]Ô¯Wµ£j¡_ÿA˜?oVº²¼ÿ7˜î~¡¹SŸ'ü(\ý^Q\¥]Û6xõµÅøâ‹Íøö»ï1|Ø`À‰'qíÚuŒ>Ä>ç¼ûkçámyóæ\¾|ÙþÜÞ=¿\ºTrçÎóç/ r¥ÐLµWŸ•“R¥‚˜h³X[…  ²f |öù&œ;wM›4²[ <9ž\á‰'‡>ŠÈÈ€C‡x´tƒÍ¢@ÂѨQ#¼óÎ;xyælüû??¥·rßÿo,s%ºví øé@+:|Mš¶Â­[‰–ÏQ”{Åc¢fÍê?q2J–(ðð0@``qøúúbeÜ[8{î¶mÛ+V9-#(¨$)Z¯-|gÏÃîÝ{°bå_Çúûûc@ÿ~˜8i*6nüÎ;Ó§Ïà³Ï¿Àëo,µ§ÏÊÃÁñxqü$|÷Ý¿qá¯øÏÿý€ù ¢VdMx{{[[­Z6ǧŸ~ŽmÛ¿BË–Ííß[Ož&oÞ¼hÜ(¯Ìž‹#Gâÿ~øk×Ú|"<N¯‚l…;wîàÎ;Â@Ë–-‹¸U«III¢°0mê$”/_»tGÿCѵKGôìñ, OžÜغu;:t슦Í[ãØ±Ÿ±xá|§å)R£G ÇÌWæ 2ªª×¬ãr}VHJLĉ“'‘–¦a`ÊýI‡öípíÚu´o߯þ]¡B…0kæKøhÃF4iÚ q«ßˆCžïããƒóç`ß¾ýhܤ%ÞXºÜ>M¼Ð·FŽØqhÔ¤Zµé€•+Wã‘G±£ÏÊÃAñâÅ´4Œó"êG7A¿~Qâ‰Ç1o®Í²kul5iÒ¿þörçÎ…š5ª;ì³2ž²‚éÓ&£p@ÚwèŠ)S_BLÌsðòòBŽ9}ú`Ú´©ðõñA­ÈHäÊ•ðòB__äPk‚¢(ŠrŸP¹R(6}þI–•¯ÎŒÎ;‡¶mÛ¢|ù²(]º.\??? 4Ÿ|ú9ÒÒÒ'OäË›9sæôh¢¢(Š¢ÜÏè/€®]»¢råPôxöè÷Bo,Z´×®]ÃСCqøðaˆÇíÛ·³»™Š¢(ŠrÏQA@­ÈšøÇ3O£bÅ`ÔŠ¬‰àà'±xñbäË—aaáøÏ~@b¢ÆP+Š¢(?þÖ“íÞÞÞ2xÔ¯‡Ç ùÿ—v³¿>è?p(vî܉øø¨_×y.EQ%ûÙõÕÖìnÂCÍßZPÈ‘#bzö€¯¯üüüì¾U«VÁü¹³ðõžoÝ .ªGTC®\¹²¹µŠ¢( GsÚd=¢ ÷æÂ{ÙŽl#---Ý@KKKCêDT œ>ygÏש(Šr÷æB¬\þZv7ã¡Ç© @Ù®EQå~D§îNM‡©(Š¢(?  H÷F=(Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"¢‚‚¢(Š¢("*((Š¢(Š"rÏ…}ûö£lùܼyÓáEQ^<õ¬ßï jCRRR¶µ!³¬X¹ 5k=…²åC°pÑëÙÝåA\fÚûöíG§.ÝÓ}¿ä…hܨ¡Ç¥(ÊýÍÝï///äÍ›¥K¡aÃèÙãYä΂½{v"W®\ÙØÚêçøŸ~€¿¿¦ÊºxñÌš=s缂ÈÈÈ›'‡Z©<ì¸$(;¶mFΜ9íŸ Èï±)Šòà@ï‚ 7oÆÆaã'ŸâÝõkP°@øúú¢hÑ"ÙÝÌŽ””xyyy´Ìó. 55M7tx+Š ·¦ @Ñ¢Eì~~~NMƒîšêÞÿà#Ô­ß‚+#ªNÄŽå°ÍÚwФi+‡„£NÝh,Z¼©©©öýþy }_芡Uж}g|ðá{;¬¶3£:èøoö~‹Öm: 8$ºtÇ/¿œµŸŸ––†•q«Ñ°qs½ÒÕããíqãÆ TPΞ;‡iÓgàå³1ãå©hß®5¼º?ÿ|eË–lÚ¼¨Q#@Ö½G2jFm&–,]Ž™3¦#þ|(??bß\‚Þ}þ‰;¶ÀÏÏ/ú'Mž†#GŽá½w×âÚŸ¶úð|L0–¥ï^}÷J¸eQ¨Y«.*…E RX7iéÑ]½r)))ˆŽ®ÀÀ⨂èèú€Û·océ²XÌ=uêDáÑG‹!ªV$ÆŽ‰uëÖ°i_lÚŒ±cF!øÉ ¨Q£:žýGz¿ +u£GCXåJ(]ªz÷бk+IIIˆ]‡É“Æ¡yó¦(^üQ„†† s§.ס(eË”Á… ––æð}FÏ61hPß„ÇÚÚ[³fuôíó<Ö¯ß~ /‹£ï^}÷J¸eQxÿ½uÈõ¿9._6¨L™ÒC§ÎO£at4lÆ¢áíí'O"!!ݺ?çpNZZqçΜ9ó RRRlßR±¢åú­ÔA”+WÖþáÂHJJBrr2Nž:[·Q+2Òí:|}ï;c¢X‚ DFÏ6RÑñ¹=uú´S“ðþýÿÅ‚WáÐáøu+©©©ÏNÇí0kö<Œ>¿þú¾ÿþ?˜>m2kÏŸ»ï©ýÞÞÞ¶™~ÒX‡3œµ·Rh(æÌ]`¯ß„¾{õÝ+á´Gv}µÕásLŸÁ8~ì ýs‰'·{5ÎoRS¿02ÂÇÇï¾ó6v½»wïÁø “ñÅ›ñê‚9öòÖ®Y…ùÓ;Púøü%´HŽ@¦vºR‡³‡OzI:«/£:Ê”«ˆ¸7¦Û§(ž„?ÛÓ»ÀÇG``ñtÏZF϶+ܺu 1½ú¢y³¦:d ,ˆøƒ1dèH¤¤¤À××5ĤÉÓðÝwÿƾýûQùZ:àÚ3î)‡BS›‰9²ïGJß½úîé3Wÿø5Ý÷⨌é3Øþ¿éÅyóæ\¾|Ù.D9zÔ冶›U¿^]Ô¯Wµ£j¡_ÿA˜?oJ— BîܹqþüT®êôÜ%ž€ÄDÚQ€ƒYn§•:L” *‰\¹rbï·ß¢UËéö[©ãø±ƒ÷@Q<Õ—¡+¤$¬Y·^ —–žmâà¡ÃˆªeÓ<„ ’%Óý(œ8q×®]LjáCØýõ‡cüýýѪe |¼ñü¸o?ž{öû>O¼G$¤ö[i³3¼ÿ÷ãhRº¨½ññ‡P§Ž­½?8€RAéû/#ôÝû÷}÷fô>ÈP|µ" AA%ñHÑ¢xmá2dNž8…+WY>Ÿøé@<~øáGÔ©S9|}±eÛvÂÛÛþþþп&NšŠ¤ÄDDDTÃ;wp >§NÆ€þý'O4kÚ³fÏC‘ÙEpýúu¼½våvZ©Ã„¿¿?bzöÀ´é3áëã‹°°Êv‡šÎ:X®Ã•þW”¬D‹—.]FBÂM$$$à@|<ÞŒCjj*ú÷!ݱ=ÛÄ¢ÅKP¸p®_¿å±+Ðã¹gÓ•X¾¾¾X÷ºuëŒ#‡bÅŠUéŽëØáÿٻ︦®÷㟆 e«àV@œuomëÞu´*UÔº÷© ·Ö‰£­«ZkwëWkÕÖjŽªu´Õ*bTT@@~$E|Þ¯W^IÎ=9çIrrï“sonºñF¿·P(:‚Xb(~ScÎõ\Ý433¿;D“Æ Q(8::æªgkkKǯ±`a$‹]òàþ}6lÜÌ;#‚òì#“¬{eÝkHÍs)•J–-dvp(íÚw$ ÀŸqcG3aâ”|µckkÃÁƒ‡Xºl%©©©øøÔdõÊ¥ÚåÇ ÁÉÉ‘¨M[˜>3sss¼<=èÛ·¶NXX0“'O§GÏ7¨Vµ ï bƬ“ã4¥¼L?;;[,ZÂÍ›7qvr¢wïžÚ‡Ï[«6¯¢P(°µµ¥j•Ê´o׆ÀÁsíš„¼?ÛƒÞÀð᣹s÷]»t&hh`®vY8?‚…‘KÙ¼å}êÔ `Ò¤ñ¹Ö5þþµ¨X¡žžÕrëåi×#†ŠßÔ˜srqqfꔉÌ_I\\jµš¿.Ó[7<,„9áôîÓ+++ú¾Ñ‹Áƒr'Z†ÈºWÖ½†(š5n˜~ôØqýûöí6i_ä‹¢ Ïn&DqqôðA“ŽQxë‚ÌÏè™S¿èM2žDZZš´dÁ¼¹´iÓª@Ú4¤0â/dÝûâÈü¬gÏnE_%hÔ„¢w!„xZwïÞe÷ž½XZZÒ²eóçŽ/4I„ÅNƒ†Í(íêÊ»ï†é-/„È¿—"Qð7¸_OñüôgôYÞe£Ÿ¼.ŃÑD¡š‘óŠ !^lG7¬0¹®‡—Ëï./Äh„ÏËx§ñl6²>x¢S8 !„âå ‰‚B! ’DA!„I¢ „Bƒ$QB!„A’(!„ I„Ba$ B!„0H!„B$‰‚B! ’DA!„I¢ „Bƒ$QB!„A’(!„ I„Bay~*§c€50˜^A aÈ0àlÆå!ð(‘±ìÐ øˆ€ö@$P.£Î  ‘žvw}õ”›Ò¦BÏ㬤e÷àjFìvž£±ö 2ž§¡JU±wú^~ûø7,¬-hùNKÚŽo[€=‘·ÆÄÍ?oróÏ›¤$¤y3 + ’&³eÐnž¿IÂ¬í­©Þª:]ûbïfÀÕ_¯²¼ýò\íŒHur•›Òæx§ñ¹gQ‚ȘHݶ$³¨ù"î^»ËÂë ±²µÒûµWñ“¯D!8âЬ°<2®…xÒ€Þ—‰9–)€À|  p ˜ t~ÍQ÷oÀ&Û}ý™ÒæÍ”ÔÓÖ( šDÁcídõ©Î2…BA­ÎµèÒ‰’¥Kr/ú_ÍýЍQL:4I§nðïÁXØXhï[Û[ëíÏ”6Ã/„ëµWPñäÅäc®·ÆÙÊ¿ç«;!žx`+ÐÝ$ÀpP›{Ñ$ ¯e+»L>$ŸSxÚ{ÚxžVüxb¨Ò Š¶¬rýÊDŸ‰.À^„(Xî?âÿvþ5ÛÕÔI6^È̪3YÚf)¿ìú¥@Ú8ýùi,í,ñnã­-»}OgÊ›ëßÄÌ<‡ êkïiã1…Éë­ØŒk×le®À@)ŠŽîÀÿÐì“ïì˶¬4°M‚  ù†þÍ®'i3»íÀd}°ÔÀ[hvTGÿLˆ19Û{Úx BB\v.Ys2v.v$ÞM$]ŽÂLßQB<›ÞÚÄÅCI}”J­Îµòáí²’.%鳬•êTÂLiÆÅÃÙ=q7) )4Úô‰ÚÌî·£v÷ÚÚ„ ]ζÛh7±¥=Jë 1&g{O©dû.Š5ÀoÀnàºÜVEs@dà‡æ8‡¹À§h3S ð=0 [Y$šƒ-%!†èkïiãâeÓ{qo&žÄà-ƒ¹ñÇ ¾ûB»Ì¹²35¦œ_9ÜjºÑrdK:ÌêÀÁŸ¸ÍL÷ÿ»Ïå.S¯w=mÙ¡U‡°°²0š„¢¯½§ÇT&ÑÈœIˆì³ÝvB² Q´¸e\j–@4ìÜqõÑìZ363fJ›;€*èþªâ{4çÜ-à€æx…±Fž‡¾öž6ž‚9“—@‰R%´·mmd6A9¥Ê”¢T™R”ñ,ƒÒBÉÖ··Ò%¼ fJýŸöе+#Þèì˜)mþöño8Wr¦rýÊÚ²Ë?\æâ‘‹L*­{0åŒÊ3èÑæÃ›|úÚ{ÚxLer¢PÍ´í 4¿t ãvÝ|w)ijglóuÍF7¿ oÎ6·“ûÛûz4»52ɨsÍì†1úÚ{Úx ‚C9ì\í¸úëU\ªºðï¯ÿRÁ¿B!ô&DÁS( ¯¢ÏDSªL©|'½9ÛümÏoÔí­»…쳬) )Úû1çbøp؇Œÿßxœ+9m__{O©LN@šŸHúwѬ£ž¨[!žÌ©ŒëË×gÐ|£@óí=hˆæ¼g€)höÑg&ËO fÆýýÀ,4¿ÐÇ”6ÎgĶ;Çã+帟qíñ_]jïiã) …‚F±?r?ek”%é^Ƕ£ßÊ~…Л†Ýøã±kŽ¢»yî&J %åüÊqù‡ËÄÇÄS¹^e,¬-ˆ9Ãçs>§N÷:Ú$àÈÚ#¸Vs¥Lõ2\8t¯"¾âµiúÿ5¥M€ÿ.þÇ?n0xó`Ç;UpÒ¹Ÿ’¨IÊx•1ú« Cí=m<¦Ê×1N!hv74G³’š†ü4R<[µsÜ%ã:MÂðð‚f¬š­þ` š­š©û%h~ê›)ó¤LMl`š$=Ÿà9eï/3y0ÔÞ³ˆÇ¯MyĸDVu\……µmǵ•ŸFŠg.²…îIƒ–¶] Àò»Ë1·4çǨÙ3ii©i8–s$ [¯MÏJ’&³wÚ^âcâQ˜)(ãY†nÝh<8ë÷}™'eZx}¡ImüºûW*Ö©ˆk5Wò+{™Éƒ¡öžE<Šf¦=vœø¸ÿ´…ûöí&0h,™ž¢¸úÍ Nb|—Å‹Ú_¦-V4–¿/Ÿ7XçèáƒE¡P°ünî3Ø QÜÜw’ƒË2ùÈd£»,^Ôþ@söÆÍëƒì¹À­è«š Ç! ‘ÓÿÐ|CVígÝŸÂt]àµi¯=³ö³îÏùój!Š…Mż?!„é2ÏþX\û3…ÑD¡èä3Bˆ‚¶9ï*:ôý¹Œ¢ø3˜(lÙ¸’ÍV<ËX„E¬ „x¹éMƒŒFñ²uBo¢`ì(h!ÄËCÖB¼\œr•ɯ„Ba$ B!„0H!„B$‰‚B! ’DA!„I¢ „Bƒ$QB!„A’(!„ I„Ba$ B!„0H!„BôÌ…S§NãáåCRRR‘lO!„Y þÍ´!·ccyoÍz>­[·)Y²$õëÕ%hh µkFŒB!„xNò5£pãF ݺ÷á¿ÿþ#rá<ü–­›7àååÁò« +F-•J…Z­.ô~„B¡‘¯D!Þ¬_»š êãîî†OMÆê•Ë´õ˜8i*~þõ¨×  ‹—,3¸7V7s·Â¡ïСS7júÖ&îΣ1Þ¹s—N»3cf°¶mÛwÒþÕNxûдykV­^«]¶n}]ºõÒi#11?ÿºüüó/ùyy„BˆbÇä]‰‰‰>|”ßߤwy©R%µ·Cæ„sñâev´÷0z윜œx;pP®Ç™Rwíº ÌŸ7—R¥Jb_ª”ÁoÇÆòÖÀ·y¥A}ÂBƒQ(¬]·Ï¿øŠà™xxTãŸ+W˜ŠB¡`ô¨tïÖ™eËWò×_ãáQ €o÷ÀÉɉ ê™úò!„Å’É3 ×®G£R©ðôô0Z/11‘¯¾þ–Ó§à]£:¯¼RŸaAo³kמ'®;iÂ8ükùQ¥re¬¬¬ôö{óæôë?fM›‚B¡àñãǬ[ÅâEóiÚ´1eË–¡q£†LŸ6™;vP¦L7nȧŸ}®mkß§ŸÑµKg …©/BQ,ø¯®]»ŽJ¥ÂÇÇ[[æçëËÕÿ͵ûÁÔºÞÞ5òì÷­AChÔðfÏš®-ûçÊéÛ ~þõ´—‰“¦q;6–´´4zöèÆgŸIzz:7oþÇÿý߯tïÞå‰_!„¢¸Ð»ëáèáƒ:÷ƒÆ’€R©äòå¿hРþ3 .“…EÞ{HZ´hÆ?ã¿ÿnQ¶lÔêt¶oÛªw—…R© ]Û6„Ì ççŸáÔéÓÔʘ½¨æY“-WÐ3B!ЦÀ ±ÄÇý—«Üà80h¬ööß—ÏcggG‹ÍØ´å}½‰Âƒ)Uª$+V@©TrîÜŸ4mÚ€?Ξ¥JåJ˜™éN`ä§n^fÏœÆÜˆù 4„;>ÀÙÙ‰ªU*cccCLÌMjùù|¬••:vàÓÏ>çä©Ó |k€ÎsÏþZ!„ű/ÄF¿ªÿ}ù¼ÎýÙ3èýÆFŽGàà·(_¾<ñññ8xˆß~û÷·FakkKǯ±`a$‹]òàþ}6lÜÌ;#‚rµŸŸºyQ(¼Æ„IS8”íÛÞ§T©’Œ9‚à0R’“©W¯.iiiœ=wŽ«WÿeÔÈÚÇ÷ìÑ7ú½…B¡ SÇF_!„âe‘¯.•/_žO?ÙÍ{kÖ3qò4nߎ¥dÉ’¼Ò 'ŽÓÖ  !dN8½ûôÇÊÊŠ¾oôbð ·ô¶™ŸºyQ*•,]¼wFŽeHÐ>ØÅðaCprr$jÓ¦Ï ÆÜÜ/Oúöí£óXÿZT¬POÏjØÛþe…Bñ2Q4kÜ0ýè±ã:û%öíÛM`ÐØ—ê›tZZš´dÁ¼¹´iÓêy‡#„B<3GÌuŒÂ­è«šÿS8GwïÞe÷ž½XZZÒ²eóçŽBQdH¢4h،Ү®¼ûn˜ö—B!„D€¿.{Þ!!„E’ÑD¡šgÍg‡(` …ÂäÈÃË¥233Lº( Tj®ÍÌL»ý$—Ì~òs» c0‹©Ïûy½Or@­~²KzºæZ¥Êßí'íK¥Êßí‚è×”þ‹âk~*•Éë Ù> …‚ÍV\žçŒÂ=='_EÛ‘Ÿç]I!žÒËtÀ{q•ó‹úø)œ…BQ|ä+Qpru“ëàZ!„((&' N®nܽ ×EüZ!„((&' ²*údFA!DAË׌‚(Ú$™BQÐ^ú…_ý 'W7Ÿw(OM’9!„ÐuêÔi<¼|HJJ*к/“bF!scîäê†siw*W«NÛW;°dÙŠb±/(Å5™BcŒmà}}}8~ìÖÖÖÚWJJJ´÷"0ùÌŒEa#ôû¯'°±¶æáÃNŸ9êÕkØóñ^¾ùòsòÝ^ZZêtuƘ––†™™ffÏþ—§Ù8Bæææ¸ºº<ï0ôR©T(Šç²½ÈbF!“«‹ ¥K—¦ZµªôèÞo¿þ333/]¦­³c×G4kц²å*RÅ£:#G%!!Èš™Øÿ¿4iÞ ·ò•¹};N§Ø¸8šµhØqQ«5IDÔ¦-4hÔ”²å*âë_‡E‹—j—ék366ö½"º$IB]9gîݻǡ#ðñ«C·}øxï¾\3§NŸ¡s—xûЫO®_Ö.ëÕ§?>~uððòÁÃËG§¿mÛwÒþÕNxûдykV­^«Ý^dÆrèû#tèÔš¾µ‰»s§°_‚§öB£`eeÅзùúëoµeJ3%sCùíÿN°cÛœ;wžYÁ¡:[º|%«–/åı£88ØkËoݺEç®=hР+—/ÁÌÌŒ¥ËW°yëû,œ÷.¿ÿò3ï­ZÁGíaɲFÚÌÿìFA( ÉœBeÁs‰»s‡½ïbö¬é¬_•«ÎªÕk‰ˆã«/÷aanΜ°¹ÚeQ×päû?v„ãÇŽh—­]·í;v<“ï¿ÛÏ¢…óØ÷ég¬Y»A§ýµë60Þ\¾ýæsìK•*¤gZp^¨}¼¼<‰¾qƒôôtÞèÓ‹Í›Q®œ;¾BHð,¾üê+ÇÌž9:ujS­ZUJXYpãF ;w§uË–,‰\ˆB¡ 5õ1ËW¬fí{«hÕªîîn´hÞŒ°Ð6oyß`›Vm>kE1™Bˆ¢"!!¾cú´ÉÔ¨îE½ºu0 o®zS'OÀ¿–U«Taè@~þùí2{Í—Kg\]]´»5?~̺õQ,^4Ÿ¦MS¶l7jÈôi“Ù±c—Nû“&ŒÃ¿–U*W~nÛ‹üx¡ŽQÐ'3AÈôÛo¿óî‚Eœ;{ޤGP©T$''óøñcm?_ß\ítëÙ‡WÛ·eÞ»áÚ²¿þþ‹„„:vî¦SW­V›Ôæ³VØÇ(<® ñßä./=ì¾4ü¸ûmàæ;R ,î@•Hp>þôñ¨Íá×p¥(SÁ÷ÔÞ¯[ço8ÑíCh·}ßÅEjj*&ŒeçÎX[[3aüx¦O™ò¼Ãz1T¹S>É]¾¦¯døqnBÿ àž÷¬`•7w~úx,Ò!$º&Â#`£¬´Ñ­Óù1ÌxÕTpKã,à+ÅÓ÷ý‚¸~=•J…wêÚ²šÞ5rÕóôôÐÞvvv"%%…ÔÔT,-- ¶ýÏ•+$&&Ò·ÿ@òôôt’““IKKÓ–yëé³(39Q(ªÊ]ºt™ åË£P(HJJ¢×ýèÚ¥33§MÁÑÉ‘3gþ`HÐí>" ‹ÜO»m›Öúþ0117qw×Ìžd>æ‹O÷bŸmE&só¬vôµù¬=«÷ǵ!(S²þ©ÐÂÈO6‚èPa>Ø]€´Ò`žZ0qœé7}àõR‡8ð8¥Y~ݾï­?†²Ñä–iÆÛ|ÙDD„óÝw9räqqqôêÕ ªUéÕ½ûóíÅ1«/$›eýKãC¥áº·aøXã —íÁ!IóØ‚0æ4M†Þ¥Á! ÖßÌà‹Œo¬­CdL,¿›A$ìÁÜÅ…¾ƒ s~)ÍI­Ö,ß¾m«ÞÝ JeÖ¸( Û‹üx¡gRRRØ´e+:¼Àå¿þæþýÌž5gM†~èÐa“ښƌ™ÁtëÙ›¯¾øW<=<°µµ%úÆ j×(¬§Q`žU2gÊä¬DA¡ |)ùo ¸/‡ï5uKÄfü¥q¶Ïánp£$»e<”ÿ”úT=•<òµœÿÒìÁéT^fß쯽 ±íÀk5”¼*Âùq`¦Ï]úÛHt‚äRàz9«¬Ì?p¹™æv²-Ü®*søp†æ¾ÇÐæ °|yÖ‹FEG_çöíÛ4jÔX[Ö¨Q#6oÙò£z…~ ÖáVIøÎŽVÖ_¯d*xă…ÖÑÜÿ© ¬­Éuü mnÁŠjðO (ŸÓþÑäÊŽÁ- œUð[¶ýÝ¿YBߌó 8ª! ,-áç‡à”Ÿ+aŠ£s ]¼x‰%JhïçþˆqcGãââÌê÷Ö2vüÌÍ-¨Q£:ƒÞ*̧úD ;™3‹ƒRSÀâ$(”æpwPì·å®ŸZVs}·3ÃVâ IDATT …t;¸×R¡êJH·€ë `<Øÿ­ù¶o}ªGÁùQÆ…”Œ™½³ÊJ<Ô$é HpÒ”ýÙÚí€4kø__8ª‚¶Fާx™dþŒ×ÕÕU[æêâÂ;wP«Õ2ñ’—‡Ö°½9üã*À;þ–)pÀ+w}—Œ-rëë°ÜJ<†ñg Ek¼À\ ý¯Á8¸`£ùÖÿŸ9¬ªS®OœTšë»J´³w•šÁ (Ÿ‘÷K…Q6`«†÷i”IFv•¼`z¿1@羿-‚gM×)›>‡ÉSfнÇT«V•ÀÀ„Ì Ç¤>\\œ™:e"óD‡Z­æ¯Kç>lNNŽDmÚÂô™Á˜››ãåéAß¾} æ >'/ÄŒB½zuMî»OïžôéÝS§¬gîÛÉYfaaÁ®êÔпú÷{êØ [AÅñ(ã4™ ¶Cy͵ò_°øPS®T‚åEP˜Áýú…Ì}å–€íM"P~\£I’*€ÊN­Ìñ83PYBº9_ìÔ§ç ¼ŸCæ¤`óO¡ÌuMßMöÑN’(ˆW bkjv5¨ÕpÝH‡Nçô' ™_X7ùÀÅ’š]z šD¡Bب`Õé¬Ç¤§k6ôVj0O‡TàÄYÝvk{ækfß³mà7¨a 曆D! À_»±Ö'û2GGG6EeÍ4ïܵ›rîî( ½íè+ ú6ACßÖÛWï^=èÝ«ÇÅYT½P3 ¸‚JæJ4Ì:þ ¯†Yx7ôî÷7¿›QçZ¶ú×!ÍÒ³+0,uû43…JS§õÄÜñX=Ð\'—„)Y·­A‘Ö3 ÙÎ}ål3úÚ™„ØØX5ëÆÆÅáää¤9˜K-ûhòíŠ 8e œîg숱Í*‹±ûÇ`–žõW (5¯æ%=T úxeÜWe½Gw36öN*ˆ7Ó½­â2Êþ6C›Fÿ­çtÍôàKôVŸ;wž[·cñ®Q®\aÕêµôèÞõy‡U¤½3 Â4õþ(þÖÝ`›ƒNõåm4+šõ,nE¤–‹Kš²w°ˆ…¬¯ò$—ûuû43Cû-ÈöfÖ,Ff¹í](ñb«i€ÛUÁå_Ím»x°¹÷¡ô MÙ}'°IÔô-óêP¾|J—.ÍÏ?ŸÀËKós°'NP·NçÙ ¬âˆ·ÖìÿÊy@ãk¸WÊ&ÁC;MYÙGpßRó ÿºæ È2)pÞI7QP«!ótó×,s$ épÓî(¡v ü“±_¾N*œÎXÅǘÁ-3¨¬†S¬Êé§Ðì6y‰¨ÔjE.áêÕ±µµ¡Ãë¯1vŒi»§_V2£PŒv2÷h8˜_‹Ë€RZBüpÌ¶ë ¥Ä,ƒª½@ùœ>‚è)Pi¾æ…CÁ%ãüWf©Pñ¸4ÒK€Ó9ÀzÁ£òš_>”ßk~"éü¤ÚÁ…Ðüƒ¬*~?‘Ðfæ…ãíÁçׂ]^T …‚!C‚˜;7__îÞ½Ëú ˆZ¿þy‡öbh}n•‚öš ¶O4ôüöÕʪS)ÆýSÛjü¶ …Õ¾šcüÜ5uSÍàÃJ0é2XTS%ÁLÕ ü#Øhä…t`WI”`¯‚·’`b¶Ÿém)ó“`‚µfÇÌǰíÅßí_µü|ùöëÏŸw/™Q(F ûýI/ çÊM3³jþ8F€ý.´ßþÕVZí7öÒ›@í7kÊœ@…lÛ¡ ;Àò>\ë*" ìþ…Jß’§ZŸjjüf†æ„Kµ¾*¿¡™Jêì‡;Ø=Nó¯Æ)h¶ßh“/Ù³Cˆ‹‹¥yóæX[[3mêTzõì)»LQ"Þø5ì¦=ìªßy M°TûÃŒ] Øëv)ù“¦ìˆlÍ:¹;+Â=sèw¦'AšB3Cð‰«¾t­rÔìnØs ’ðž|Y"+–åÖà ‚ý šÏç%„YðRíwO$_3 ™É‚\íëÂb³ì–fíÈÈ8¦A¡Û®™š-ö™¾+åeciiɺuëÙ°!#{Ëœæyûº|U7k@æy²Ïå_v†7úd•«å ë½³êç<Â×eáËÒ¹w=äµA¬€Y.0Ý1+žì±¤3m`z‰í a\¾V™™!¹.Ú×B!DAÉsFáÈÙ—#„"·£‡>ïÄ3`4Q0õLUâŧR)4gžBÈöáå¡hÖ¸aúÑcljûO[¸oßîç’B!žµÀ ±:¹À­è«š F!0hì3 L!„E—ÞDáïËçŸuB!„xΜr•ÉÅ„Ba$ B!„0H!„B$‰‚B! ’DA!„I¢ „Bƒ$QB!„A’(!„ I„Ba$ B!„0H!„BT(‰Â¦Í[y¥Q3<¼|X¹ê=ƒeE±O:‡—IIIÖfq÷¤¯™Bˆ¢CïŸBrêÔizõ韫¼\9wŽ|€ØØ8.ZÂâÈ4lØ;[[½e!3žsüŽ••ÕSµU1êk³ c~{½äµBˆÂ—¯D!Ó÷ßí§D‰ÚûJeÖÄDÌÍ›¨ÕjÚ·k£­sù¯¿s•5úâ.Šm !„ÏÒízpvvÂÕÕE{qrÊú[Êž½úà[«.^>˶mßIûW;áí@Óæ­Yµz-jµZ»<==Í[Þ§M»×©QÓŸFMZ°tÙJíòÌÙ ¿:xxùè´SBB'MÅÏ¿õ4añ’e:}ŠÑ˜¼â×צ©1gNÛûé8»öÄǯ}ú ::š“'OÑ­GjúÖ¦gï~DGG›ô<õí È,KII`Ïǟмe[ª{×¢qÓVlÙòA¾ž³>?üø­Ú¼ŠŸ]Bæ„£R©LŽÇØëel™)¯ÃOÇOйK¼}èÕ§?ׯg½ŽB!4žhFÁ˜¨kôG¾?€¥¥¥Á²µë6ðù_<jüså ³ƒCQ(Œ5€•«ÞcÛö]„‡àÏ;wøóÂE£}2'œ‹/³û£í<¸ÿ€Ñc'àääÄÛƒòÝ–©ñ›úZ³båjÂCƒqpt`vp(cÇM¢„µ5¡!³ppp`VðÂÂç±qÓž§1·cc™ÊÔ)yýµW¹s÷.±·cóõœõÙ²å}Ö®YÅÚxÊ—/ǰ !yÆÆ_/cËLyV­^KDD%KÚ1kÖæ„ÍesÔz“âBˆ—Å% ¯4j®s¿}û¶,‰\€ƒ½=..ÎÚýÆ9Ë?~̺õQìØ¶Ÿš”-[†éÓ&ÁèQ#HII!jÓæÏ›Ë믿 €›[Y|}³¾5êëKŸÄÄD¾úú[6m\‡wê z›]»öh7¦¶˜¿©¯E^¦MLíÚ ̰£Øûñ.ükùiËÆŽŸdòó4&þ^<*•ŠÖ­[âî»[¾Ÿ³>cÆŒ¤Fu/†Ê®]{LNŒ½^†–™ú:Lw>æJsüýkifìÝ«înn( ~wˆ&¢P(pttÌÕŸ­­-;¼Æ‚…‘,v]ȃû÷Ù°q3ïŒ29æüÆoˆ©1?‰¼žgåÊ•(íêÊŠ•k7nWþ¹Ê¦Í[µÿãì9~ÿý$M›6ÁÂÜœßÂÝÝ33³§zΫV¯ÅÙÙ‰‡Øµ‰Aß2)ž¼^/CË âý.èäX!^TO´#½U›Wuî+•J.þy&_m 6''G¢6maúÌ`ÌÍÍñòô oß>Ú:ÆÁÎΖ‹–póæMœœèÝ»§v¹‹‹3S§Ldþ‚HâââP«ÕüuéœÞþÂÃB™Nï>ý±²²¢ï½<è­|ÅœßøõÉOÌOÂØóT*•,[ÉìàPÚµïH@€?ãÆŽfÂÄ)ØÚÚpðà!–.[Ijj*>>5Y½réS?çAo `øðÑܹ{‡®]:44Фxòz½Œ-+è÷[!^VŠf¦=v\g¿Ä¾}»s— „BˆâéèჹŽQ¸}• QäO¡„Ba˜$ B!„0H!„B$‰‚B! ’DA!„I¢ „Bƒ$QB!„AùN~ùåW&MžF³m¨é@³m˜4e:¿üú[aÄ÷\:u/’’’ò®,Š$¯âERØãõE#/bÌÅɉ‚J¥"4,‚3CèØ© ÿ÷¿ððaÿ÷¿Ð±cg¦MŸMøÜy¨Tª<Ûòðò1z)*|}}8~ìÖÖÖOÕÎÇiÙª½ ögHÆë“Ùÿ¿ƒ¼Þ±+5júÓ¬E}$Wϯ Ç«± kA­ÓвÌ矒’ò¼C)6L>…óâ%ˈ½ÃgÏjÿÌ |ùòѯ_?zõìÉ’¥+˜:e¢Ñ¶Ž˽ò¹}û6o|›.;æ#üÂennŽ««ËS·AÕjUˆ¾q#ײ_~ýúõêæ.ÿåWêׯ÷Ô}¿¬d¼æß?þDhØ\ÂBƒñóõåöíÛ”°.‘«žŒç‚WãÕ˜‚Z§=)•J…B¡x¢?ãÏIïÖŸ.rüÄÿñɾ}:ƒ8;;;;>Ù·ŸŽŸÈõ€9¹ººè\ì™—§Á³ghë%$$0qÒTüüëQ¯A/Y†Z­6iyfVyì§ãtîÚ¿:ôé;€èèhNž~uŠÜ¬ß‹Ê¤DaëÖ™2eªö¯€/]ºDóæÍ±µµ¥yóæ\ʸ666Lš4™­[?ÌW¡aÄÄÜdõªå˜›gMr„Ì çâÅËìþh;ï­ZÎG»÷²õýM^°båjÂCƒùò‹O°°°`ì¸ID.YNhÈ,¾þòSJ”°",|žÉ±®Z½–ˆˆ0¾úrææÌ ›k°nLÌMæÏ_ÄâÅ 0ÏøKä쬬¬ØµžÝ{ö²n}ßî?@hXï­ZNùråLŽKdÉ9^ ‘ñš%>>ž?Ξ#55•W_ïÌ+šiþ)4Ûô­ŒçÂQØã5/ÆÆÈÚuؾc!Á3ùþ»ý,Z8}Ÿ~Æšµ´u”ffÌœ9C¿eýº÷¸pñ"ïÎ[¤ÓÇÚu˜?o.ß~ó9ö¥JécË–÷Y»f›£Ö³ÿrý“l¦¼>GQ×päû?vDÈ“…ŸŽ§M›6ÚûC‡å‡~ ))‰~ø¡C‡j—µmÛ–cÇŽ›ÀÎ]»ùdßg¬Y½\gJ,11‘¯¾þ–Ó§à]£:¯¼RŸaAo³kד–gš6u2µkP¥re†æÌg™6uþT®\‰!ƒ9~âg“ã:yþµü¨Z¥ C‡òóϿ譧V«™4e:ï¼3ŒªUªlÏ㛢ֱvÝæ„E0yÊt.ˆ Y³&&Ç$t坯ÈxÕˆ‰¹ À'û>cÑ‚wYºd‡%rñ2@Æsa*Ìñj CcäñãǬ[ÅâEóiÚ´1eË–¡q£†LŸ6™;viß­[7jˆ›[Yê׫˔Iøßÿèô1iÂ8ükùQ¥re¬¬¬ôÆ1fÌHjT÷¢~ýz 6”?Þ—«Ž)Ÿ#{{@óï²™³€â阔(ܹsWWWíý“'Oê,Ï~¿téÒÄ݉3©ó“'O>wsBf௳ìÚµë¨T*||¼µe~¾¾\ý÷_ÔjužË3U÷òÔÞvrrÀËS·,99™ÔÔT“böôôÐÞvvv"%%Eïc7FmÁÊÊ’7ô˳MÿZ~L?†íÛwÒ¥s':vxݤX„~9Ç«12^5ÒÓÓ˜9sþþµhÒ¸ãÇá³Ï¿d<¦Â¯¦24Fþ¹r…ÄÄDúöˆŸ=íeâ¤iÜŽ%-- €Ó§Ï080ˆW5£V@}FŽGüýûÚåÞÞ5òŒÃ§¦w¶Û5s}6 ïÏ™(&ÌèììLll,å2¦ëÔ©ÃÑ£GµËëÔ©£½}ûöm\œóÎàbcã5f=ºw¥ï½ó·Éô4cf¦ÈU–¹¢|’öô=öÄÏ?óÓO'¨QSwƒR»nCfΘʠojË.^ºÄªÕkèÖ­ Ÿñ%íÚµ¦UË&Å#rË9^‘ñªáìì @åJµe•*UäÞ½{¨T*Ï…¨0Æk~#jµfœlß¶Uïî¥RÉ£G2Œ×_{•ñãFãààÀ¹óç7~²Î1&7/Š “f7jÄwß}§½E‹-°³³£E‹DEEi—ÛËŸí%rÑ|öìÞA×.´õ®_&0poèÏâEó‰ŸÃØqùå—_ŸWè/¼œãÕ¯eË–¡´««ÎlÑ×£qrrB©TÊx.D=^ JÕ*•±±±!&æ&•*UÌuQ(üóÏ|8W½¤¤$/^LäÂw¶>w—.ÿŶ6?×rWWlmméØá5,Œd±ëBܿφ›ygD@žËŸ·råÜuîgþ¦Ù£ZUíAK))) <„öíÛ2aü@³¿/!1‘a#FóåçŸäjGä-çx5DÆ«®þýû27b>sÃ瘘ÈÊÕkèѽ+ ã¹0ôxÍtñâ%J”Èúyk~Ï`eeŨ‘#4µ&'S¯^]ÒÒÒ8{îW¯þ˨‘#pwwÃÜÜœÍ[> oßÞ\¼p‰M›¶æ«ŸL«V¯ÅÙÙ‰‡Øµ‰AßÊUǔϑ»› …‚ƒß¢Iã†( Ÿ(&¡aR¢P£º½BîÝùxï^½?áyøð!½{õ¢i“FxeÛϪώе»þ)Ü¿. <,„9áôîÓ+++ú¾Ñ‹Áƒ²O^Ë‹:+++Âæç:ÐëÍý¨P¡<îînÏ)²›Œ×'óΈ âããéÓwju::¾ÎÄ cM~¼Œç'SÐã5Sï7èÜ÷÷¯Eð¬éùŠmø°!899µi ÓgcnnŽ—§}ûöÀÑÑ‘…ó#X¹”Í[Þ§N&MÏ„‰SòÕÀ ·0|øhîܽC×. ¨·^^Ÿ#g¦N™Èü‘ÄÅÅ¡V«µŸQñdÍ7L?zì8ñqÿi ÷íÛM`ÐXþ¾|^[¦R©xwÞB¾?|„Ù³ƒyýõ×)S¦ ·nÝâ›o¾!bî\ZµjÁ¬™ÓPêùé”Ï’ŒWñ"y™Çë©S§éÕ§?gNý’çODEá9zø Acur[ÑW 5Áô33*•JB‚gòúë¯òÑî %îN.Î.4x¥>‘‘ó©W·NÞ ñ Èx/¯¢(Ë÷¡¨õëÕÕ{ŠV!Š"¯âE"ãUEò›!„ÏM@€¿CPÄ=ÿße !„¢È’DA!„Üõ°eãÊg‡B!Š ½‰B`é¿B!Dñ¥7QÈ~þ!„B¼œr•É1 B!„0H!„B$‰‚B! ’DA!„I¢ „Bƒ$QB!„A’(!„ I„Ba$ B!„0H!„B$‰‚B! ’DAQàN:‡—IIIϵ½‚ŽCˆ—‘Á¿™ÖÇÃËÇèò¿.{ª`Š’S§NÓ«OÎýñ;VVVÏ;!Š”ÌÏG&{ûR´lÑœàà™8ØÛãëëÃñcG°¶¶~ŽQRdââE–¯Dáø±#¹Ên߾͛ߦK玔âÅðýwû)Q¢111Ìš=‡™3CXóÞ ÌÍÍquuyÞá™8„x‘åk׃««‹ÎÅÁÁž9axyz<{†¶^BB'MÅÏ¿õ4añ’e¨Õj“–gNûé8»öÄǯ}ú ::š“'OÑ­GjúÖ¦gï~DGGŒÕ”>²OGf–¥¤¤h¿-ùøÕÁÃË'ÏÙ!^FÎÎN¸ººàï_‹‰ÆqøÈQ@÷3vûömêÖoÄ'û>Ó>nëûÒ¸IKâïß×–mÛ¾“ö¯vÂÛ'€¦Í[³jõZõ†1{>þ„æ-ÛRÝ»›¶bË–rÅh?Ë9/Ù=MBGùšQÈ)4,‚˜˜›|¶oææYM…Ì çâÅËìþh;î?`ôØ 899ñvà “–¬X¹šðÐ`˜ÊØq“(amMhÈ,˜<‡°ðylܰFol¦ôaLÔÆµ z‡#ßÀÒÒò)^%!^–––¨Tª\ÕÒ¥K<‹Ð°7jHÒ£$/YΪ•Kq°·`íº |þÅW„ÏÄãÿ\¹ÂìàP £G0ÚïíØXf‡2uÊD^íUîܽKìíX½u³ÏЦ§«7~²Îò§‰Cˆâꉅ»vóÉ¾ÏØ¹ý}©½ÄÄD¾úú[6m\‡wê z›]»öðvà <—gš6u2µk0$p0ÃFŒbïÇ»ð¯å§-;~’ÞØLíØÌ˜‹‹³£ DîÝ»Çú QÔ«W3³Ü•]»tâÀƒLŸ1›‡ tîÔV-[ðøñcÖ­bǶ­øøÔ lÙ2LŸ6™ÐЈ<7Ðñ÷âQ©T´nÝww7ÜÝÝ Ö;®Z¼d97bbØ·wwÄ!DqõD‰ÂÉ“§Ÿ;9!³ð×YvíÚuT*>>ÞÚ2?__"k¦þóZž©º—§ö¶““#^žºeÉÉɤ¦¦æúÆojBˆ§óJ£æ$''ãï_‹eK¬BÛö°±±áý-µåÿ\¹Bbb"}ûÔ©ŸžžNrr2iiiFc¨V­*þôêÝ6­[ѦMkÚµm­7aÉôõ×ßòþÛøhç‡8;;™Gö™S!^zGýÑÃuîåïËçˆcÔ˜ ôèÞ•¾oô.´Àô}ÈÍ̹ÊÒÓÓóݶB‘»µÚ´vªyÖdËÆ•ùîSˆ¢(ûg[cë€=»w`cmM)ûRÚY8C._þ›ÄÄ$ÒÒTÄÇÇcggd}ö¶oÛŠ}©R¹§T*¶«T*ùhç‡üðã1~øá³fÏá›oö³|Y¤ÞúçÏÿÉ´³Y8?‚š5³¾L˜‡|þEq4–ø¸ÿr•LƒÆjog®ÒÒÒ=f<îîn„Ι­÷q+V@©TrîÜŸ4mÚ€?Ξ¥JåJ˜™™å¹¼ äÕGæ êîÝ»ØØØpñÒ%6Ì2VN9ˆ¿/Ÿ×ym„xQ™ºÁÓ·.ÈT±ByígȘ¤¤$¦MŸÅØ1#ùûï˜:}6Û?Ü‚B¡ j•ÊØØØs“Z~¾ùz™”J%-[4§e‹æ4i܈#ǰtÉÂ\õîܹˈ‘c<è-:txMg™)qÈç_WÆÖFçÑr®ÂçÎãÒå¿ØöÁfâãïçªïêê‚­­-;¼Æ‚…‘,v]ȃû÷Ù°q3ïŒÈsyAȫʕ+QÚÕ•+×0nÜ(®üs•M›·ê´áîæ†B¡n•܆ ¹IDATààw‡hÒ¸! …GGG½¯‹ÅÝÓŽùyóáèèÀˆáA¤s—žD߸Á™S¿˜ôw½E™¼ß†íÿßA–¯XÅ•+Wquu!,4„Ö­ZèÔ)nã¡0ÝŽå½5ë9|ø·nݦdÉ’Ô¯W— ¡Ô®ð¼ÃE@æg4§µkVÒªe Ž;‚µµõsˆìÅS¨‰ÂñcGr•ݾ}›7¾M—Î ³ëBhXU«U!úÆ\Ë~ùõ7ê׫›»ü—_©_¿Þ³/ßäýÖïÇ"4l.a¡ÁøùúrûömJX—ÈU¯¸‡ÂrãF ½ß€ŸŸ‘ çQ¾|yîݻǃ߱|ÅjÞßUà}ªT* …Þ¿®.JmŠÜ¾ÿn?%Jd}ÞìíKannŽ««K¡õYÜÞÛB}®®.:{æ„EàåéAðìÚz Lœ4?ÿzÔkЄÅK–¡V«MZž9…tì§ãtîÚ¿:ôé;€èèhNžM•Y–’’ Í\}üêàáå“ç·ë/¾üš+W®2òá¹–¥¤¤0iò4EêþUîÇ{÷1$è½’¢@Þoý–,]Îô©“iß®-nneñ÷¯Eu//:Åq<–ðˆyøúx³~íj4¨»»>>5?n «V.ÓÖËkœíýäS:uOuê5dÊÔ™$&&Yï÷¡ïСS7júÖ&îÎö|ü Í[¶¥ºw-7mÅ–-èĶmûNÚ¿Ú oŸš6oͪÕks«œmŠÂåì줳^²´´ÔùŒgÞþéø :wé·O½úôçúuÝõÇËüÞêŒBN¡aÄÄÜä³}{07Ïê:dN8/^f÷GÛypÿ£ÇNÀÉɉ·™´`ÅÊÕ„‡ãàèÀìàPÆŽ›D kkBCfáààÀ¬à9„…Ïcã†5zc3¥c¢6®ehÐ;ùþ–––FëÆÄÜdþüElÛ¶…÷äZneeÅæ¨õôí?R¥J1bøP¾Ý€Ð°Ö¾·’òåÊ™Óó&ï7ÄÇÇóÇÙs¤¦¦òê뉧}»¶Ìž5]»Ëâe!11‘Çòáû›ô./Uª¤öv^ï±ÒÌŒ™3§Q¥re¢oÜ |î<Þ·ˆyï†iÛX»nóçÍ¥T©’¤¦¤0;8”©S&òúk¯rçî]boÇêÔýü‹¯ ž‰‡G5þ¹r…ÙÁ¡( F¡·MûR¥ ú%OhÕêµDD„Q²¤³fÍaNØ\6G­ä½}f‰ÂÎ]»ùdßgìÜþ¾Î”Obb"_}ý-›6®Ã»Fu†½Í®]{x;pPžË3M›:Y»orHà`†ÅÞwá_ËO[6vü$½±™Ú‡1öö¸¸8Ýg­V«™4e:ï¼3ŒªUªpêÔi½õ<<ª±)j áæÿ±wï>.ˆ Y³&&Åó¼Éû­s€Oö}ƢÈô³±²²bö¬é/Íx((×®G£R©ðôô0ZÏ”÷¸[·.Úúnne™2i'MÕI&M§S—.]F¥RѺuKÜÝÝpwwÓÖ{üø1ëÖG±cÛV||4ÿ‹P¶l¦O›Lhh„ÎÆ${›¢ð½Ò¨¹övÙ2e8ð¿¯ôÖ›:y‚ö}:$P»þ÷ö% 'Ož"|î<æ„Ì" À_gÙµk×Q©TøøxkËü|}‰\¬™&Ìky¦ê^žÚÛNNŽxyê–%''“šššë ©}„Q[°²²äÍýò¬ë_Ë ãÇñîúôîEǯh,…EÞï,éééÌœ9 ?_Íî‰ñãÆ°`ábfÏšþRŒ‡ç!¯÷ØÌ̌ӧϰlù*þ¼pG’Q«Õ$''“––¦}Œ·w ííjÕªàO¯ÞýhÓºmÚ´¦]ÛÖ˜™™ñÏ•+$&&Ò·ÿ@8ÒÓÓ¶) ßžÝ;°Î8FAi®4X/{òéììDJJ ©©©\¹zõ¥o =QˆcÔ˜ ôèÞ•¾oô.´~ô4bf¦ÈU–¹âÎ…"w;juþÛ8ñóÏüôÓ jÔÔÝ€Ö®Û™3¦2hà›Ú²‹—.±jõºuëÂç_|I»v­iÕ²EÎ&‹y¿u9;;P¹REmY¥J¹wï*•ªØ‡‚V¡|9”J%—/ÿEƒõŸ¸G8d¯¿ö*ãÇÆÁÁsçÏ3nüdT*•¶ž…EÖ*R©TòÑÎùáÇcüðÃ1fÍžÃ7ßìgùÿ·wo1M_qÀ¿í¿® “vÔI-ˆ·=à.Ä™ +cÙÆ£Qì@7˜!…2u¹“aÃHœ‰N ç2–貸ìÚ:·½È„MqSÐM¦q€ ݃Ò½‘…ÒŽ~?oíÿÏÿøžœþÚžÿá`½}||vªÅéG΂ 8½&y_d„jFw9›Sl6³…— «ÕŠ=ù…P*ÃQ^vÀé9‘‘]]¿ .N ¸ÜÙ‰eQK!‹=Ÿ žÚ ܽ{×>à®vwO¹†øÑ`ñô‚R]Yn_0W®vCW¼_¶žFd„Êþ|oo23³±#= E…ùˆS¯CVýñ£~»Êy;Z¼øI,R(ÐÛÛ‡èè‡ïnûzû —Ë!¼Þ‚ÄÄx45ŸpZ(X,CX¸0ÔcÆ×¯ß€Å2„br¹pịÛ°!1ëÕë“›†ë°|Y‚‚‚pëÖxö™§gõw&ßb¶^.*«>D÷µ_qê¤fó Ãq…" ÁÁÁHyõeÔÖÕã#E,ƒƒ8ö©»s²ÀãñÙ੨¨¥X¤PàPãhµy¸q½Mú–)×P†‡C$ÁpÞˆõêXˆD"Èd2‡¶–,QNy<±²~åŠåö¥ÑÑQ¼‘± ÉÉ/¡¨0ÀÃïSï #;gÎ}}Æá:þ€y;æ iiTU× ª² ÃÃÃh<|[6o0¿Çƒ·”xÛ¶§#7O‹ÌŒP©T0›Íh3qéRN´÷˜±R‰D}óIh4ÛpõJ7ššZܶ{¹³ ?!.n=H$h;o„R©„X,†T*E^nJJ+0:2‚µkŸ‡ÕjEgWzz~G^nŽÛk“ÿb¶^.Nþ`ÓfçAOlÀSYQŠÒ²JlKMƒT*…fûVd¼¹Ó~ž§ã³Á]‚ à`C=””#)911ÏA[°Eº½öŸ {ûöêPS[þþ~Œÿç †¤R)*ÊJªíHª)‹¨ü óvž÷îœ,˜Íf¤jÒ1>nÃk)¯@WT0ã¾þ_ǃ·¨T*|u¦Ÿ9 Ý;ûqçÎ_ Å‹/¬…N§µŸç.c™L†ºšjÔÕ7@ß|kÖÄ ¸¸pJÆÓÁ`0¢á`#ÆÆÆ°zu47þ{ËêÛÙ» —Ëp¼©ï¾_‰D‚§V­„F“ê½?͉@ÏV¯Žµ™.þsÿŸö'ÏžmEfÖÉì·k?ûªoä%¦vÞÊÖº-dV¬ŠföóÔDþúc‡™Uà6gS»sÁ<Çù °MŸ&×·ûz•WÄÿõ@DDD®±P """—X(‘K,ˆˆˆÈ% DDDä """rÉã> ¦vÃ\ôƒü³§É8ó\n g{ÞS``ö4ÇC`cþÍå†KD4ÿÍdÃ%" ®6\’ÀØÈ}‡“‰ˆ8‘’6&ØÎ}ó-îß³øº?DDDäc·obwmF“È~׃õÁ_ö‰ˆˆˆüÀƒÑ‘)ÅÐf4‰R·nÁyù¤cDDDä[·oÂb€V·mF“xôÕĤ 6¨­ø’A*}Üý$"""È/Þö"˜V(LˆWÇÚæ¨ODDDä'.|ÿ£C]ð&z‹vÚ[åIEND®B`‚ShortRead/inst/doc/images/HilbertPlot_H3K4me1.pdf0000644000126300012640000014566712227066722023127 0ustar00biocbuildphs_compbio%PDF-1.4 1 0 obj << /Title (HilbertPlot_H3K4me1.pdf) /CreationDate (D:20080718102900) /ModDate (D:20080718102900) /Producer (ImageMagick 6.3.2 10/15/07 Q16 http://www.imagemagick.org) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 4 0 obj << /Type /Page /Parent 3 0 R /Resources << /Font << /F0 8 0 R >> /XObject << /Im0 9 0 R >> /ProcSet 7 0 R >> /MediaBox [0 0 516 516] /CropBox [0 0 516 516] /Contents 5 0 R /Thumb 12 0 R >> endobj 5 0 obj << /Length 6 0 R >> stream q 515.936 0 0 515.936 0 0 cm /Im0 Do Q endstream endobj 6 0 obj 39 endobj 7 0 obj [ /PDF /Text /ImageC ] endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace 11 0 R /BitsPerComponent 8 /SMask 16 0 R /Length 10 0 R >> stream xÚì½ÏçþÝ™å[ÿÀŸÿª=(5©a+5(¥Q­‰È D"„D<„DdQDÓ´ÖƒÖÚiZÓ§)_åœÓ÷Yƒ,^Ö²îûó$õýqm{pÛ÷~ï}íë×Úïkÿxÿ›séÒ¥K—.]ºtéÒ¥Kôÿ>™þ×ÿú}þì³G~÷î÷YÉK”Uÿÿñ‘?ÿü‘ÿéŸ~Ÿù”÷¢:zVI¿Ù¯'õâO±G/ñ¾üY•¨—ÿù?Yÿªä?þÇGö—1ò_£ËÿMÏzÍe¤ü—uRï)±5¯OwªÒªÿþßùßÿûG–þÃø}þ¯ÿõ‘]¿ýí#ÿîwüë_?²žM£& ÿí¿=²¤L w­PMZÄüÈ®3ÿã<²÷ûŸþÓ#ÿ—ÿòÈjG-?Ës×%oÚH‰tþS¼¶™dÝu)é‰ä+Îx¹ä’´È¥Ck¯ºå¦9ODy’4ÜûMõÙ>9ì-,IÏþâÿO‡,9,8,8,8,8,Ø“k¯ì‘:à\M^…2¢&»7VM—TÒgÊ.!{tåýúH½ùJ–®¬äcLz¢’$SŽŽ|èÖ”ZK¸kµ‘íwªÈú[êÀ¿ûw¬õ[^ôk_{ä¿û»G–ÿ—þùÏY5%Mù[jéTœ ¸¯vqÔ#õÍ{‘þp>ðÿðÈ®ÿÝï%NŠ6é§SîÔr”|±©ÏaÒ¨“Í.õiGNó¢Ï}îJkí–èB4IÞ&Ë}mŠØáÒLs¶4S:,8,H”,c§]«ÔdáHÂ….ÁWqï‘Þ)òÍõ\ånË‹¢ JŒz¥wLÕô§Á ”9êE.IÛ“gî>¹ëJ‰’EÖ©„ϦwyqX‘„¯ý‘…ÿù??²ÊùËGþîw™ ­©/a4MYrt®š*qm÷v„D(— z”Ã#äÞOúÈŽÉS9RüêWœ$ÕçuÞZ²²eζh{×^jˆãWòóÏbJÒö„YÉsrFêz˜FGßâs¦DÿaÁaÁaÁaÁaAò0‡Kr=w¹K{}¼þV²øò¶ë ­ƒo¯Ýù¿nãï,þC=Oärñö¹ê-©ù›¾PÆy»Œ¢¿kS«ÓØÉóÝÿ÷ö“|{Î1Ö¡Äéäoÿþïù«_}dqø7¿ù}þÖ·yñN’ˆÚÔ³¢Þ^’¥Üõ¯Èëp\ŒRvŽ¥vó5hÇ8×sç¡jrE;ñ™¿‰¡ÙSù2Æî=¼ŽÆ%nôYÓ³~ƒþ¼[AŠê¤ùÇâÙe*ïÑ©e:,`û‡;ß   >,,è¼MTÑ«§ýQä˜4;å’÷`¿´—¤±½MÚ í”kÖ.M®.‘·Ö÷wÿÅ Ò¿I—º¬îõ§ÈÛÞ;Ë»ßóXs’YÒÔz±°@q!ň4{é2¢îy¥ûZJ²‹ž|Ƶ؋ë­{þ´/‚:Ùwh$‹ëqZò3!EÒÞNIçžSës6÷ɤ¡ûgÒÃÒÞ˜äÏ9 ’‡gÛýí/~ñÈÚ#‘å¥tX@ª R‡‡‡)}LX 7ßäC˜8:×(÷óôŸ}·•óÊwñ% LvAKL§œ¼Gy˜ýè‘Ë],=•“f?hGb§!õ•t2õžtÆ3ö•ž"WSÍîÙRý„¶²ñÐmDX Uãþ𑵚ü³Ÿ=²G{|—Oû<½ß…'I“Y'íg¦¼zÄÌc‘ÉçMÚ˜v9.ó Ž1iþ¢áþ”¢‚ÎÏÞ{G O܉Úç9É~Égép:¦úšÕÈo$'_qXpXpXpXpXpXàXÀ·’ÅŠ“VôwÌ´«-éF²”ôlÒ¥Ä ÿ××Ó´´ÈãB<ÅCÚÒ¾ÐôîܵšÏ²…¤iì=QÕ=LG¢K²nÒœP@~^²-HŽŠi.¡ß¢Dÿê bÏN.Öì¢Û`ÒjO~KâRâª'Þ]Ð)÷b9#¾In ö9‰ÿNºàšÏ0Sœ6Ù²g_aïö•´ˆ’¥¯®ú>dÕ×ÞÆŽv­P:,8,8,8,8,8,àžÒT³ëjòÿ·Ìýî…äy’§êV™èI7Ë1æªL[ó±$´õr?©—ä˜ÖÚ:¯\ÈÛ„½ånƒË¿»”ÉÿT_5µoSr‘ù=!Šh•MkÊÎU—B_?M‘¢¤ùÝ7v>§¹Dâ$¥É›©¥ivѱÀ³Ÿ•ë4wÙg)©5çµÂ¥æò%ÈyÊÔ[ð{Óü!Ùc·;¯É˜›|Ž´=õË™ÇxXpXpXpXpXpXΚq¼º%É£"¢!Úп~+/õÇÛayº#.í´äH“Uú £¬^£Pæ»-£FÞ#ïߣŽqtúWÑ ­`.ÞòY‹H%‹=îí§“f&¡L{NVæ<ß=(Ï/iJ ÷H>|i9áTÂÐEO–ßž‰Dî«kâ<¶û–®ýerøCÇú7ïÅiàZ e‘Þˆ9R·_¿;+q˜ï­ U¦7Y¿ULî‘÷ôðÝo/š • î?ìì:ÙTßÐ)_ìñµ–“庾ÑZwÛ÷9ƒ²£¹ëÌòÕ!jõbÅô<¬™èw0âê)µÜ­ [bÒXÚ¾{$­¿s¤Ú]^Ó«>Cpþì¨×õ¡9q¾Ï<òC‰;?Ó:õ?Ù¬Õï èúæé°à° õ›ô|I‡‡‡ÔÞ :(ëdª£ÛžåiÉþö³r)I„~ÆÛQ’,¤· ’.yké69®‰ó7N'e—4³×$Í=q©ëO·ˆd5ÝR’ÜÉçm: æ¿e#®9Š 2^A®&¹wÚi5˨¹<ëñHmš}qÝYÉÑVäÈëöEÊݳñ߮ˇ_8Ÿl9ýî¼¥L“ÔÒ ¾ŸùMº‘zñ¿åòµÑaÁaAêë°à°à°àSÀ‚þErï««\'u;•Äá÷öuß¿gí-«n5î™.øSºqBä{´|_\z[÷öuÊÆK>·³áòÿÉ£v°xÒ³?Õ-±×dFùží=iûâ'}Óeç;ÒzÒÌÅcwßû¬¬ù¦HŠd.>-×£= ‹Û²#YD—$"¯•´nGƤ'üfÐÞ&Ïv%lêþ6É%íŽV}ÍUü>ù^ÝÁ®µ{jE¢ŠRó~  ’%û]¨:,Hü9,ðtXð~b×ôÞ]ÜÊ”¨N›V”þÑîSU¹¯ë¹.é_ýá.Q%¸®ún7QëßÓygk.ÝûˆyðìkÜ®óΫ¤oêÑ×wz gñ6ÎyÆyžÅ‚ôÔb;‹•‘~Þýå\¢&»¾ù[°K\;u%©ïÿ‘éóɽ JO%Žõ˜[ç-×w þ£Ý¹G~vÄI^+E\“ôÛôšÜ+®rù±õ¯Y( Hòk~žåɚܧÖÒ#]âŠÝxyÚ—«’ñ/Ù=˜{Îý»=J¯  ºÅ-6Ø©í-$¾,:Æò·cÁÿñ'ÿ÷ÿÎ쑼Ý{÷úÚE™žõ’GZäáý®]Æ©œoJ~ë”j _¼G¾)+y_Ä)ú./aÌ=zÍ‘H>ŸZÚe½xã=u)'ÏÆØÛLpnÓ·3zé߸LõÓŽ¾Ngбt9zbì1µàuüVtóIу%íŒ}u$U’ÿ:ÿÕ_=2ïXNþyÑœÅ.R;©e%ÎXÈI×@Þ1îm2:D)¨µï|ç‘ÛT ܙӣ~BÍÿ=,8,ØÓaÁaÁaÁ§€N‰Çp(qzQ÷ÛÔ§–ÜóïŒ(¦äÊw_C!mjG\RVû¡"¯qòôéíOå’8ï=H+ti]5¡--‘«ü´ñEóôé¾nI‹Ÿ¤ÎxâN]çË”ÖGû¢Þ&ÍôßIg’n$™&oÐ=˜{ìdýÙ…ÿäFš¹±ß¤c,ÑËŠôÊ3xŒˆ”wÿFÊ“¤ÞuëHüyV«;O’—pþó{^¾×Å}fúò/Ûw_tXpX°ØïaÁaÁaÁ§ƒ\¥¥&$ÿæïGþ¬ö¡¥/ƒø µßç²shEØßŽõír¾«Ž#š¯&SÛ6Çú(ýv4FÅ ü¾;z6"Îîu“ç_ü0õmv‹HXÃ’o\F—,Ôu y ¢§·¼ ‚Sž¾¿ÐŸJ¨{i?aŸK¸îyý…Ÿî+’‡÷¨3ä<éÿë¿~ä¯}í‘Ö °k×kÚ›VÉާF‰“”“Ôº%zkô½iöâ3mùÞxÏ”pç°à° ?uXpXpXð©aí"ÑÃÕ¢$‹$/ÖO6NR:]s½ÏÕº¦qN®ßZ;N(l6µyXpXÐmdyÖµâ°@é°à° µÿþcÁÂaê?Å÷bçƒVoù>ųêÜÉɧ’ö2Ñÿ$mwzü Ú£ª# —ëýWYÒðÍŽXFTM><±}©³[uÛ“ë3ïLXVŸ»dÝÏ'¹?[?Ñà¨M|I3×^?Û˜ø¶øº]F).áV@Jˆt‰=ÑÞµDˆðÙg,¯¥Ø©lGöòƒ²ìÂ=ai÷ÏÔÿ^sÁ ÎâÒxÓLíϾŸDódE­}_öB>¨æŸüÉÿó¿³Ûš'ÎR’¬  ‰÷   >>,HúÜýÑ78é·¼¥ÞÕ‹Fêœgè1è ¼<í+£Ž%Mó§ÅU¿mÛ=6¥ìþÄßéü;Žým´c_J龩ūïRî˜âèæ4û÷€’=:ç=ÔOŽˆ:OÍI4¤(JÒÀäi%qÞIÒ9ŸúM¾wi3!i÷ùÄÁÅ?3§ÕÊÒÎ;º.-t¼c¢çôò4V’ÑH5tïáw]ªä«_}dí]ñû0]ßük5Ü;­š)•’Ü•   ÜÞ©]I  >V,`´dÑ1îô£7ð÷­Ñ3°)âxý»0®iî!“—HñÝëôxÒÛ.5ÁQ@»OýÓ³Ü9–xNþt;eIÒÿÅWtûr{Ñdœfޥƻhã. jÔçvú~W¸ŽÎ½5"E§ÏéXŸ(IRN”ô§<‚êòb¿.Gê$-ë»ß}d£~ûÛܽSŠË1õ9O5¹ÄòÔWšåº-ûÌÐïá÷ñú·º|¯»Úÿ›¿ydÅ™å3ýY/w¤HúŸ“VvXpXpXpXpXà婯O úÙ¨Îùôõj…PÀ#'^ÓWý¦Ê×ýg_{M¶æå<•櫊’‘û®D+šôÓŸ>²j \¾B+É]c÷÷å'é~£[Ç’ö·x¯ïøS¾Wd÷Õ}¼IÒl*Åi“ܽGŸ±¾ßM—äÛýj× ÖçÚ1u2qì°à°à°à°à°€#ý8° ÙHâ'×€È3r.Ø‘v¬Q?»'çMwéý·{ß·pÛï¯NÞ¯# y•¾3’F‘üÃk©{Kß7«±ëíØOÖS î ”Ü ºÇæ¹{RØ=@¬C]“Î<;sXP;%¶“béÙ®ÏÜI²X_çF—rc×iÆÈúØw/ÊÑÑk©Üï”î:£r_sï¶°ûêŽÅú}X,尀鰀£>,8,øø° µ°Hÿö5¦¤QîñÒ[“û^¶Ï½^IpïÚõÜÓ³qÛO/ÎÞ;n&¹/¶¿´ÐŸbMÿîöç8 æVÞp]¾šæw•è/_›&å ¯rÎ1–ÙEâOòó´÷>ëx–ÿI"l'݃—<ƒÿ›¢®KiÚò6×ù³ €zW”C( uO¯¯QðK.õòï³ì:¼ð¹×éí$hûL.;ÿÖLç0)ñuç¤Ã~¢pKòü‹?ï8ió’z_»4»tª8Ëêü¤§¢÷KúœxÂÕÒÅ–SËÝ–?ße‘(áì…7ÎÑÞ½¦GYSïD™e–KŽQʇ¤ð°à° µÓù|XpXð1aÁ¢¥Ý3$ÍO;Êè1äE~yÎý¯ùÏþì‘ý[ÞcºG‹Zêýv*i-X%~ºœ( Btr]UÿzI²ÁnI"‹WI-$R4À9ï¾eÙ‰×u¸çô&NÛ1\ ‡»EtßÒ[ècgäuzäÖo5§WY¨Mý&«OQ”Ý“,(¤°hWêkGÔ­»G;“_J›¸Jzz”-ô1к ’gè¾%µÐÇ~XpXðÇÇ‚þ~·[D’2ojò¤µÛW™9Rï7E™:»u«/Ý‹õë_?²ìK÷-¸L=~¥UÓc&Òÿ¢Ê¢ÉÂE7þíx¢öR^œt-MÞ %Öaûê]7iÿü笽¯}ì åݦmÐo@:ý‹|•dMjÇ[XF—°•ÏöÙBÒŠ4o鸰ǂúlmÑgÒÐ#`ŸÛYKŸú9YîeL)ép²šÄ‡E«Uÿ° ÅewXpX°¤Ã‚ ’n'ÔÆ®«*Ñ92ÿºßǕք¤'•ô7kò°sìÇ?~dÙ”ßÀ¦Tâm~ùËL¹§½dÝ«°<ÙQ·îžR…Kg·2ÆäÿýΊ´RßùÙG÷lù®óÉ6]cw¼xQÖ÷Üï §¸m&Ók%¹ôˆŠÓæ³—×äåÿ2–Ò’ê²Hј„’‰3¬ßwtpD‹Þ²œ>¿s8éj§áÙTê+­“†î'“Þ~n{§“&ø³‡Ô.ò*ÙÎaÒa§Ã‚ HC×:o?íÔò§|WUŠ'xò/TR¾\!ÍJÏIÞ,ùœ$GÊE¾ˆÉß…%¾Ç1fõ$|Lzž40ñ'­pº·OýörŸQ8<©×¹Gÿ“úJÜÞí½{ªî¨íÇ™FSvW#úü!Ù Ë“n¤Ô‘®¥Ë«ÏdHg—c²DZŠ~ïwìt>¨$EãÝ'+ŠuXÀ±¤:‡¤óãÂÞï.wŽ—-Èûõo> ¼f¢ÁWcûÛV§ªû"ÿºŠ—ûÊuÒ1ѯšü×[HžŠÉ#¼‘cÁ‘Î%/ç;¾ûáäúYBÞdwÉo$ôI¿½$íéݱ8­HvoÉ´èaßiÙéïs÷ì‹í'-uªWÝêõÛñ=i`÷?‹nï˜H]Z¼©MÞžšã%]‹O8^Ž|–O“ÿ<,8,H\òò” Ò( >,Ø¥ÏÞSR òð:±Å}VžþѾüvÚsÕõÇiî÷Ä&všƒbÔÂ}NÒúºž¸+5ÅôÈÖyÖŽÈá´“p· T’ú¢-óÙn×]“—xBÒRÅß]W™d;]ÊZO¼›1Q˜l¹S’Æè;-}÷uâgTw ²|™3°ÚfòH]Ûiïäv¦´+•ra4Ïôú‡‡‡I“  ”>M,HHŽ%¯•xBë8ÍÒOéÉ;‹Ìð«1ýª[b÷ùüÝïaþîw9q¸ëC¢Ñmî–L•NÁt?@^¥Ø‚ûg¶“¼ÜâÁ¨oéŒÞbÝÏJ'q ûXÍ|uݤ½Ãôºiìiæ–´ºß¤MÿFñ9Õb;ÇÔ>OðѺ壴Üc¼iÂUòNOo§Û`÷cÉf“ô ’.,zuXpXpXÀ>t,`ýn5]Fit~WszÒþLjKßµXtÿ½Xß¶tÃ^J8 \£Ü»“üӯ¿§µÎÞWúB± {ΤùIKO4jÞ5žÚÑmñÕ}š½(¶Iéw{ÜSç³R¿Û!ù«ÁŸíÐÒI+¶Ÿ<êžHmú+{üÜÎÆ2êâí§vú×-—™Rÿ·košs²µÃ‚ÂÂnMé©Ã‚Ão?µó!bA÷{†$/ú¿ Kÿêë0Ÿ}öÈ?ùÉ#ëö ïË÷s&ßÕQ`ÁO}eG^ÈßdE³?ëþ“!ÒuoœèLrßý*ñ(Q’|HãUð’¾GÑ/'Ú–šIoþ'RJ~f÷ù;fQ:‹÷X,ho!q8Ö‘t©ã]šGñ7ï”f;Þ‹,:íN!µ‹î-³µe–›Îîu^¥]¾J‡‡‡éÙ]ç  Ýû°° évú·Çºr¡ßZ§Ö×$}9ÔŸz‹Å¥¾Õú;£ïˆ Ë7}Zê±ÛyžÖ­Ø£÷ËHB·JÚŽ?1õ²#uâ²,ÚßÙw™¦™IG·][ÈÅo$:Ã{k¹ö¹G‘n·öö“w„¢ÏìöK {ò9›[1ë(û-ß %;Mãê:$B®Ò:Òy[%î"ö       vmQMùj~åYÿ¦[ TGÏúÙ™>ƤÏ?ýé#+ÊÔ5áYŒðQ³äs;e&ˆÅŽü_é;[Kb©[±g{udMz9JS-(¹©9ä€~ûÍ{² Q¨ïË{úÁ¹{íßó(ÜçvRÏGä_u×~Çh_U'’V'¿§ìó—&íT; ¨á ;ù-+ý{%Ý''MëHü¿xd!‚µÇý¼óœ·ô›ÊHãuâë’÷å:nG¤î½³h˜ûÚ…ïWüÝïÙûeDÑõ„\Ms¤g=L×®nS»ÏO~•ǵõŽÔ‹ã¸å j$JÒ¨éñžõN}Ô‹4ÓÉÃ×Lò%‡‡‡ÏÚíè°àýÇöE, ¾ŠG[KÑú«¤“ÛÉ“>t®2‘{~ˮҗ¾ôÈßúÖ#'ÔsªäOÜwõÞÓ:—Lj¼Äï¯VrÏFþø¿þ…tµì1(®ÑûxüãGþÛ¿}dEí#bLÌ})56ÝT–l“ëÒ5–š&ns}¼B1ý›vôÑ—:Í3Lt&Iu½M’¥sW!­‰<_|l¢„ôóôÉo«ì—3ŸT?ùÉŽ’œÁ&Mã³ 'ÏÓ{Isªä3 z:,8,8,8,ø4± Iœ–è6ÅÕFê£@»£I×[ï±#ÂîCR_ÿJ¾jœ¼œ2×4“¼Üv”Ò]Íï,ÚÀòn;¾êûèDç¯~õÈjYcô^\Žþçüõ¯?²×Tî÷Œ%.-Þ)IœOén1eç×Á©9üâ*ñ…úI4÷»G‹ë²K˜îúàZ´øpê^÷KiΖžM<”%¥ß¹á:J'­V§ÞÓ›¦~ë^ ò¡s˜%é-/µ&¿á_½=ßüæ#sbê}á?éôä–õ¬^ylG¾];Eý;DÞãßüÍ#«¦ÖL£Ôº¬»>¸Î,ì-L$Þ¥–© Âwˆ©ª¦ßÄ®äÈBûòÔ£¸D¢îßÈçÅ×%ùú,‘p_¡äñÉD­ï^Nø•üç¥IÓ•í¶–,h±ë´s£{Ú¤ii^±´|X4<=uXpX´÷°€£>,ø± s/µÀ“éý+n“]¦¾Š§$Oåíkoáž’Ô’¤8"÷$¢Ðw<ú7î“õuŸÓiNÒïí§Ä[]»´^,ªQÿû¼K6Â5­Ï4’uI¥(„¯ûú{’”s†òZî^Kátz}/áÎé"ý„‹îõš]Ö©Íôe;G”üI·Ü$Ó„éÔ4–/û:f%tf }ÆÎö“½øH º†w:,8,8,`Í Èþ›–Õ¥ÓýÞ½ޚ×Lw4íœdêrLÜãS<çõ¬Õxêoú¤$õÅ$¯è7z¹Îû(têPïø?ÿù#Ž=ÆÔ¢®',q™úÊ2Wåj¸æ±b5ÄëdYIç}D^Gó„òú>£ècñ~ÕšnÀèþ$ÙuÂ_ÚÂî-½¾ßyÂg‰‰>Òdõ]sX3‚3=r)µÿo|ÜXнP÷9}\‰žô>È7µ® IW{I’>)_ü°²üIÒ¨®É^G‘„¾‚I:é—8 •ø]DL%z›ŽïjÍQ£Ëk×ö© U‰c—Y?­;“ü7ƒ·mèYßáÀûÞ=wÎ$OE z/ßûÞ#ûž ¶æñ½´u± ¶¿èƒ#Óã1ÉÔo²‹òŽé©dwü¾Uâç.åe†¹Ï¾<$M>,8,8,8,èécÅŽh±â·Ô[ÖL¼Ò—J¯’Ž%ÍyVÖ‹&$¯Û9Ʊ»Gunø¿éÚ= ñÅ‘E˜¥ïïÛJiå7y]Å=Ü+*âñl¤®ï=fôcÇ—eÞBußHjUÎ;¨ýCÏþ¯¤ìg¯Ä±¤Õ}¶ÆsâšßîÜKúœ¸´p¬û%Ê.ÑЭ¶Cùö8˜S’æ0ì—³¸>Ÿqtà~ãŽÉ8OK£NúãÏ,£èÿc‡.P^‰')âáÿ&MØuÃÛñïiv‹N»I“-4t?æôø»­ä®Ý}‹Ž¹ç÷¯X’†®<•³Øæò®ªä_Ÿô¤ÈµWÙ÷ÚñþnÉ+’ÝNÝ«sw_š ©\·jè<Ox9Í>ºÿQ PZ­¿!P·yp¼iì,§d‰>sH´½£CªŸpÇ=9mŸ¼Õ©Æ®É”~’õb it^Ó÷*¨D·¸Ó?'¿Í6‡9_J3ä»XrXpXôÿ°ÀårX|ÈaÁLJ´‚dk®çôÔ²·°¯þ(¥¯zÜ#ÙBZÓI½'z<û‰3ï,Óu)õ¨¯À$nÓRx×7±)ùXzஓÉvñ𻩽\õ…qò«¤d‰ tž{¿Ë-Á{ÜR˜î£óØcD®ŸŽ>¾ž+|ôoÜè†pÝó”¢:I_D[¿ÿ„VïÔÒîºD’E÷ÙHÒ4J–:F,K½ø¿=*Þi¦Õ¨5}ãU2õYS÷öäXúÝyÞϲ%,{‡ùpXpXpXpXpXpXÐåÂoR¦i\^“wp±w“•n§˜IÒ‡¤o)Q½~òÆ^“ë¼Ýš\gä3Õ‚ÖÍ™é+VþÆî ñvø­™îùù–Jïªìò"‚S';Ÿ>îšÿ¹íQôs‹*ùå/YXì˜.þ+Fä+ûìË¿ ê+Å\ýW¹Z–”…’ò'}Év’•9ÿ‰\O„¢„œ_"¥~&.éï3gûºm^Èè{hS´zöÛ}~QÇOîxB6ùÀg¥œhK»Òì° óœ£P:,8,8, ¶|LX@š·“·ä·×»ò7iàý]c—õ’¤pzÜcÉW§“SsH²f/ôêï™I¾‚¨á”x‰ßGÁÞùìíûíjJü2iר.—nî \"ò·î“uöûg¿çMüðë®´AÏŽ†îÍôûïþî‘¢ì’÷ ŽÑâ’ßp:=ŽäøEYäâ>0IÇ÷‡'-7|¿Ê½$µŸ8–´"ùŸÞ e!î1.$;gjï¶fG©&úÂTó°à°à°à° õBY||XÀ›¾Rï>^龺Ë.I7Ñ%Äé\M5÷w·n#ž|— ×Lo¬î™“E{"¦ô¨QÇ…nMô{ Ê8—R„£KšÀý­ÜÛgä„mzüÍ£@ÂwÂÓÎOÞâ:ïmzÔ…c÷̯ ÊWk¾úÕGî‰zž4ÜϵQs}Ò|o±ŽŽÚɲD1:ñ'! ±ƒ3îEå}äçKNc‰ÜQ£”¢Ž 6%I->ÐóaÁaÁaÁaÁaÁa±€oúIÖÞ¯kZêÝKHs’‚¿Ï:'e5Ém\ý¡Ç…ºUú¾²¤©ÇŽ¿«Ï®V»҃ћ‘íW$gÒšõn}‰Z[çwN—¸æèk‘._¿£ÛK›zü„1Æ%õ¹\×ð…Woi¿kl×+O)úÊ65×òûåÏ”×õ6]²ò„šo|íkì;:Þaíø°à°à°à°à°`i¿k쇎¾o3½ƒt.¥ØÂ.¶£•;¢?ëo‹ŽGjGïÝiÇfòðÞcBŠî[’}-ZDîùìËßšwÒW 9ŠÝ·tÙчwëèÜxÖ¢Ÿõ6K^hSòý™ä-íB®õkoYsá»<€ßhÆâ¾Å#`¼±õÙwBÒŸï~•Ö´{ν$éa·î}†Ò2Iõ“Ÿôß²ýoû‘ýîkßWãÔj.áO5¥oäÆaÁa·pXpXà­|šXàk[ÉR’¥Sçy›V÷¢Ô“ä‹’tx_´ŸòóAétv·ñ¥¼ÛE§?é'Wýõé+qþn¸øÏ®ù½f%‰?ë½N.Ϧù@ÒÕ4ŸY°Ï[–?OÜ ×U}!…¬;õåQPzì¤9̼çp‘Ú³HÚµ¢K¼ëÒ®oɳQ+–1¦œv¿»>Çnxs§º¢¸<ã&mÑŒ‚ÒttPùaA÷]»†pŒ‡‡‡‡ï?¨îí;¬Ò»XÚ¶HsARå|WTïz'J6²Ð"'ICØòrOTj'íÉôQ' ”žè½Ò[èkUì«ï¾ëØ—4'ÙøRgá9SG+·—îá•ýæmo·Ö'µÊ²Mi2[HÑ'¶ÏxBç°·™(ìœç¨û½Ê=umIô³„õÓü3Õ_úòßi·-çÞŽï%G•øOõ¿þõGö^Äg=úißy{X°ÓpXpXÀ~  z_þûÃÂõ’øFž')úuºßßAºoI’Mu¨c\³Nk¬©MF º†ï£Hö’þí8¸øÆîáÙK⃗(ñ¶ád³©÷$Í#zZN ¥ä2å®cŽâÿü“ÿëgÞŸFm÷SxJnã‰*YP@ûeï~¿A²,§6ÝìMçó@o­cÁ¢“5:–™Æ‚)BQÂöKÌ¥Õ¸¬Ý²¤9¾¿…í¸ìÔÎ7¿ùÈŒÊÓJ‚¾ÆÇ¨¾ü«»îó <^¢tXpXе”\cßåÙÇÅodP þç,p/eƒó:îá½ßå”YÒ½T'¡IG@É4ÙæÞ{§––Îhm'‘zž,ÈK:åÏbåÂ1Éôˆœ¯è‘oÉOú­tý[<ßúÖ#ë_+€¾û4ù™´Þ9ìÞÆ¹‘¾MÓå›Ú§,¯º$Màï´†žÚ_¬;ÑLø>jšç(ÑàÚåÿí­¹¿Õ-Òÿ×õÄû=,8,Hõ   >M,èç­’OH<ä ‘ÓÐ×¼>9Lé$zú›i꽿!v=§¬{¿©}×Å<»¦±³„цD¹ßÞ&ŸÉ¿¨´K0ñvi¿[tâ#ê‰÷’n¡i¼‰ÃËŒei“&Ïì—RëºÞNò0»ž¤ú év/ºp/õH?ì2b¬&µÆx»Óœ|ÿë_ïr/G½Uû‡‡‹¶$ú >>,ð/¦ù¨yJZ;Üü+ó´8–“cì«§EÛûÛŸ¯ûÝr &ïMù.~2é3m$µà%¼?m¡d§°ÓÙ[èO%o¿û„îÏŸõ-‰Z_§!µÓýL²î„)nY•Z÷iÏr¬s/µß± ¯‰/cïi^Ä–Î$ÊÝ—v mi,»ýúý«÷›y¼æaÁaAO‡‡¯Éâ°àÃÅ‚ýàmZ*÷5Ö®'>ê$åê¼ò%i2‰rá‚ß3æïìþNç+ËýÝS5ý­0ùî{½fúþõ;[ê)Ùi¯ß÷g¦’EŸwOÛûM-'+óï\Ží'MN-Ó²ËÔí7ÍÓ¸v‰3‚º´¶´ÜýªÛæÂOrLåôœiVàßÌêôh× %åë3œe_´¯ 'Í‘ÄÏ?,8,pŽ$N$Ê?>,H½»ör=+iÝò¾Ã“)B’äÞË“ÔÈs—»¿I9Ò)2æÏ&>Ц’ý.#JVó§úÈžœ*Þn×e”¸ÔKn/ÖM»Hý¦Ö—zŒ¢·ãö+Kç­&)æ43q`i!iÅb ƒÒ-+ $¹ëOóôíO¥±/šÜ#„þ,}8O{©ŽïƧ÷fËœsrv—žò{­‰|DÒíÂÂÂÔÎaAâ$û=,øø°€û—ÈÕeMGéç?d¶¹Œ¢K¶ÛW—¸ËŽ»¶R_Š&¥±ø9é€Öv—¤ýä†Ö»®t§·Â$£Î¥N!¥™ZÞS÷ÿɦò¤o,×II——óÙcݹ•‘oÝ{MbÐÂOÖŸâz´×a̳kÅ^gGIjëôýô¢äž¯Å+rÒ÷H3.í(à=ºÄ‰I’7öF±ô[RûÊWY=þä'ìQqW_P=,8,8,P:,8,8,ð³fI¦uBZßSoƒJüéø’ì‹ÿŠ6ÿ*\ZuJ²Hc¡ŒzZjúXücþs[¦6¦vzïÝ·'‹[Fô,îtn콤Çz^¦–ñÒG)ÑÃtæ²Høì¨½M÷Nî»ô[3ôl§¼£çk³…eDËŒ¢KÒ‘×ë+ò¦Ó^gN-ø7Uþ4Gõ»)4‡áˆ’¶ð|¢|ÈaÁaAïý°à°à°àSÃ‚Ä × ×a§3yñÄ{–Eñ½X¿úÕ#ÿøÇ¿ÏòrÜåôøZmדT'é†'÷þýñE£vÍïþvÙ+¸¤½…„¶Ý_½Ö{’È>¢å)Ê‚ôû|fAÒÔNê«ËtyÖó¢o÷º;¾ôÙ×òìÛ)ïs¹>RÆu—9ç;[™å½")FDÍY®¢U¾§·¨„Ïz ™3s•p혜?,ðtXÀòÂDÿaÁaÁ‡‹îù“¥Žûœ•ÒW¿½ŽZöÏe¸Ý±/îA]´¨kf¢™6è_Žðûq¬¿Ç²züÁy²øÛ/*ñ½’Ü^¬~ñ©÷ÅvMXþ¥mÒßî£KÞÞgDɇ»åöhix-õgÓɦ…Ÿit=‚ú¬-÷ùX—%Ûqùµ¼ÄÓܺý¶L_ùUÛ=¿~Óç;åîiU_ñ«ßüæ‘ÓY³Ã‚ÃÒvXpXð? >D, “n÷œdGÚ<“x%,Pòw·ç”r×í”|¿¨¸÷Ûß>²v¥v{ìZJ )A?éöEaÁî3+ëHçiáÿkþó–}Ô·² _ãÛµÎÛL˜BéóYÎ…¸ûÛ^þ,÷È(ë2[XÆK¯Î3ïÕ_ls§™1÷Þ^âmj‡§{y鞣ƒßœãº!_!ïä>Ö9 ±kÏ¿|ìaÁž ÒS‡‡‡¬ÿq`Aò±žÜ3óM*ñ“1(_Nï5êËÏ…=«¥´Ð$ëÄ—£ûÿþ¾ÏÄ“& s½äG?zdÉÎï¶úÃ¥dS;Ÿ»Œ:¢u-Jõ“n,è™ôÜÇ•¼qê¥ã‘Ë{Iô{k{)ñ¶kàòlÿ½èFú÷5´Jóo»øÙ:yN"E—Qÿ—>ŸžÍ³ÓÃhïTI~RY»q4Ò¤N›ï‡9,ð’Ãòí°à° ?Û/ºqXð¾aAÒpžµ¡ž.‘Äá®·\æÎUêm£tªº—[F×kvkêöë5½MßW¶ÛÅk‰ãíR[0·ó™­±Î³²Ó¶È«·Üy’,ˆv‘" ÏjN§×gësŒËl§·ÙuÆý[já³ÏY³©ï|ç‘»è2í‘:Ÿ²—ôÛõAå‘°€Éïáxyf0íkU>,8,Hé° Ñ“Z>,8,Púб€& ,ßéNž“œìzN¿ÊÖœªE?»Õ$?ŸFÚǘî­J½'Ìz‹-¿%=ëg’÷Û1¢S’¸ôEùÃî:®¥ñrÔÝ[²µt.)áH—K]OÏÊ«KªcD—TúWÞ’÷º ~ûÛüo<ò׿þÈŠÆø Ò>RúÊ1ÑãûÏåÏyÓÝâë´TñáÄUR˜ö'¤ýí‡äíaA{§ù°à° KÍK Þ,à;lO\á"½5GsIÏ~ngR´ë‰Þ5ùØþv–´k·—A|ß×¢ùÉ'¸ŽùÚÐ'½æK»&÷–úIâž/6¢ÒýóÒN²Gî@H^=íUØý|÷·{Jr_rò6]—üwÚÑÍöåÿÿå¿|d÷0Ú»’î–ßsâaŠ úož½å^Ó>:çÃÒ/íâ°à°`I‡ž Ÿ Hᇈ‹Vx O?é7¿î'¦ýß´»Ò¿J//ªIºÔyÕ¥ÖßÜñ3hÏ®êR:‹¿}íýÙ´è|¢9ùº¥—ÄŸä!n$/”<ÌâÁ|¤½r†%ÉCî¸Ð%²`\6•$Oôwîñ©4ófï]ù¿xdíº”WÑi¬ïÿ‘åm:î<Ëí.5¿qÎ%þ¹Ý ÇR÷`~®°{¿‡‡¶Ã‚ÂÃÿý)`Jü”=ï‘s>¸¯îöHQ|DüÂxÒçô´ÿË”ÞãËJí'éx‰óÙמÒSžü”ú’Ÿ°§$—×vÔ^Фs;µ@ ñUHjQÒ+Ú]÷]¯’ç$ŸÓ­Ú{<­K6•,ˆ¹à£§tZ0ùüN¹×ô»RJ2Mî5ývˆÎ%ÕQ¤—Và÷Që6iÿ-IÈ•vãP«©Û‡I ötXpXpXð1aâ0*÷»Œ| —ý&=L%ýì’ó*i~·î$Ížú»n°¦G·Tß¿:;x=½M3I~ö³GþçJ»…&Ií±¯$Á/zÌÁßÊS ©Mÿ­jºË½Ï7Ü·¤¾¨!»\úŒè5D^úz--ò}¶;Û÷8vÂzj¯?•f8J¾ZíuÒWÃTGßùúáÙñB‘.ùµ©¯^&´âx  ¾ØtXpXpXàí|¸XàwG«ev¹Q-ýfýÔZzÇYZNhÒõÜûíú¿`DÒ¿[Þž”xJ»½Fð:¿(›Ú­õíQ‹½Çg}àÂ7*}‰ΤŒ"ºþ'JÒW`žåêkúÐgSÄÓDgòÃÏbÓk‰múmüZ=iæÚ.}“zñh’pá»ß}d~#LíëÞ ÊGÁ»ìx³:%¢ìs•ÂÂ×ì(•|èXîSJ~•:™ø–êø®Ô„ÔNê…#íöHž/5—&ÿ¾gòc}uŒ%®{ÒLž—ñѽf/”Ejs±Ógg;žÅÏð©¤ämâ}xº€‘âH¬¹Œô‹J‹fî }§áÙ™€{Eý–íÈ+º_M³/Îܼ¿AšõÕ¾bÅŠù¨_­ûÞûÏí4B(¿Úió¢‹tÒ|û° I¹ëíaÁaë†Ã‚ 8º…'I ”/oºcû´…¤-‹oß#^“>9aPº‘oÑdZ:£ Né|‡h©åݯî6µøœÝN=¥{¨;"wï± ÷HЦ–™Lòx}ÞBÝ`òY)¼ýß…óJ)&üÚŒÂ9°Ð°Ï’}/[«·ïñÿr½ö‚úI[ß)Jþ¤9mòú-Lq$¢ºÆréaGtX@j»|÷g{yâäaÁaÓa÷þÅbjŠN¾Ï:gö´ÈUj2¹Ê÷èôl×gu>¡Ìkmö¾Hy÷ºä§ËˆØš|Ô[R²¸¤Ÿ;RZ(_úJº‘|ÿ%‡Ó—Shž¹“RcìT™k‚»¯~­N×ù]ÊÉ?,w¶¼ñ“ßH³Í¤9ÔÊW+¿üb¦Û©cÜåî4§ókJÚSšf¿iAß~Xäž´ko³÷EÊ ˜   þøXà”¤uaòн¤w7R›°Æí%­¨îž¹ãH·ý^ÒÓâÛ“·g9[ðõbÿ:vzöÙ”0¨×dJ«¥']¦Iš¯1ÂWñø†Þ=‰žÒwRÜê{œÓûbD"áþ³·¥u,iˆvIí”ê,m¦YŠjþæ7¬}›©}rÉwƒP¦D îüä='¾«¿Ï‡kR}G–®ŸIß”  :ý‡‡I¦‡+ø¿é-uÑŸä7’—KœTê'8ºÎòW¿úÈò?ýé#ó=ÎñÅ¿‘t˜Tqeê-ö’ð¢k;¥Zîcá(¼Çéêi‘æâ-{ý´G1é*µz‰õQ¤»åö1zÖ¬¦kEçCçö>ÒŽ•‹Lªz›®ÉüzãÞBÏ=•ê°¾GxÒú;ï9ç|ÛW™I‰û4=¥;.z”þ°à°€é°à°`éaÁÇŠÞ#ï@ö§|-#} PÔÊÿw¹èt›Þs-íXðï<²Ÿ÷›¢ùÞDn;'™hƒ©&}cBÿú~°„”r’Å¢ÃÅÈmŽˆ¿So‘Ýnž¼_iNòHÜšf)|ß|6½G`¨ékGÂ.…· Sš7&mYF±èÉ‚b{TöYdìr÷h¤l¿÷ÎÓIÒÔ¾<ª4ü/þâ‘u36ýƒÒaÁaA·šÃ‚ž ˜ XçÕ¸‡×ª«’Ç‹’·ñ•_¿£‰·^÷x…[qÒOòðÇ?~dÇ ý–æÙðîÕ»Ä=©¾n õï˜0‰ƒù ûbé‹¢)²DšŸbí>­{ïνäÙØ¦×q,`˾oÁŸuíêúœR×ÃŽÝ»_M~‰'ÎÞ²ïzAó.þ»D#ßÂáEWï|&—z¿i¤ÒCÏ=–ÕQ‰–’jº÷SÉŸþé#ó[KJ‡‡‡‡{ýÂÞÂÇK¿Þ;£I”…ù=×îüÜeêø%ª|&IPþ„z›¬›ŠÔ׳±5%÷ ®¤aÙ À™L¢VÏþîw¬ú:e–â«ÞòaÁaÁaÁaAÑ.ß>ºÃÒð>c©}Öy"åü²›ïDu:Óé0ï]Ö‘În,q€¤3Ä>§$Å…’¢žtg®»í3-Q‹^?µ°Dá–墧ü 7qÆw/ðMÙ£iÔ”f×¥}&C®zË¢Jví™’ÐÇiH«ä‹æ'ûîð©´SúÙùIÇŽnG;ý©G×(Îù­y¦äç»OÿºÜý¤ãWªyXpXpXpXÐ5ÿ°`éñcÂ‚ÔæÂ½îIhûNƒn„Ó¿ò«~ÆmñÞIŸM^PÌ}ˆÞ¹¾ÿýG剆¥eF±’ÏYô|Ñ¢ÞÛtyq=-øë™»žEŠ„þÊŠ´èvôtâ,q §…«},o—`¢6qòY>÷q=‹ã}D‹ž,˜ÚOó4úö…ÏôùºÝm<}¿~Ù-Ü3ý‰ïê!mIÖ‡‡Ýš  –q|LX@É&Mfùîµ’&ø[Œ›c—oú·K¼{JÓOÌ¥ó#Ý‚º-ôCò®‹Eô”äžž}KÍE[øfí匡Ió=ZÈS9¾¢çþdñ*;‡wM>¤øajq¶/Vëv>,ÚÕç«]. ÏÓ(:â§ú< æÙoždL†1g%_k^¼YBµã»I}i҇ÂÂ.÷ÂÂ…‹v|(Xx›N=§“S»ÿqªü»6¼»‰œñ»ž’£'®rŇÜðókËÙ¢¤3¯Ye²î¾#·Ó–¤ætºÏLñ«Ôfê±kȳ~ ä¼°ûα}Ô»g~võÐmZ´ ín§ä•÷ÞõjOÏz},»®>K9㨺'3! ç3iNBa Ü•ê–ËÛ/ÉçÃ/9,8,x–cû¨ ötXZþcbÁ³òrÚ–¾Ò³^Âý™äOúÎÎâi©9þo:¥¤•GÅ…üf§ÝâRNN´uÝî:ßkR:¾å{»nôòÝcôš”½ºÛ÷õíþpAÏÔæ2:Í4|7‚×IQ¬·àþÒ³¸¼<µprçÛkÒÿôš½ÎÊÒ½ÐÉûñ¤*5гþë-Ëfý›ÅÉë*$z¿‡‡¯qæ5Nî|;,øCc9Ð×V’4å9ù¥fÕq_ª]Xþ­ÿB¥¯€Â×ô-É%µ©oŽ§Èƒ—÷/Úìºí´õï•ìra ”ì³¶éíôWGç%%ÿÏ–ÿþïÙ­€»ìœ·ä@Çßd›IŽä÷'ëNý&¹ìÒ_R¢$i]/ï³£þì³6Å–{8ùºg)ôUc•hÅylòÏI[ŽH·9‹V}ß“ÆrXpXpXpXÐÓaÁ§†i¤þÊDò©_/÷“нè<—Þ—eËúR›s2Ñè=º>øXRtÈûê¶WÚËçòâ©ðDyÿê Sò~³¥ù¬eõúK ý|A|׿ùP1=¿§â·¿}d¶àoè®ç)2³{†4vŽš>Šë‰‹ÿït.ÖšÚ|¶þ®]½ýNí³1®ä1zÚã~’×øÈ?ÿù#Kÿê¯ÙoSÖ\·ÓÉrõ¢j×a¯IoéHêöaÁaÁaÁaÁaAOŸpÔ}6í€r¿hé~ðÈ¢ó»ß}dY±¾&¯7}ÔÏvqoç¢3ôºÉ=q_¥°Iôø×ù¦Ö-ˆÜö¼‰c]‹Ú½úbeÝŠ—ØBÒ¢„üÍû+|Õ¬{ƒýÞ¶=NBú»5½†¶IÃ{ý]OÞ®I“Uäök´=ËÃ.…äCØš|‚{y¶¯}푽eÍy×M÷WÞoõt_Äõè¤çjá°à°àµtX°pæ°à°àCÄÕá;KÒ7ÿ¶2[&.Ї‹Úï}ï‘õ͵oû‘EƒŸ›ö¼äm’õ-‰”øÎåœ÷Û3ÒšcǯD9Ÿj& ¢\–”jvo“lê5OÛGÝ%+ÍÑ·`R}_wë#ÚÇ•xž¢@‹f¦~Ózâ.E²½Dç¢]ÚäI-4/:™¨åHÝ+’f÷üÊòr‹ŒÍW›î…ü¶jß_Jš• v[8,è凉W‡‰3‡‹Œþ¹° öòwí´òHÍT´‡Ú»È½s&aЮ=íZ±h]ª¹øÉ~n…HÁ7MGÒtR/E0\Øoº¡‹¨äýúWÝÿò/Y[ç­~ó›Gæîbµ£rÕwmç}† Sè9?I>w}è}Q‡½çžÆõë_?2e$²ÜC)§øCâÞ³6µð6yÔÝŽží÷µÖö:Iÿ»Çðú<FÝPbìÚ5ŠÑQwXð¬ìtXð!b·O=á)f§-³„«¢ÏzïžæÃ÷~—wùô;iiÅnË,÷[#ü¢tÒ=ºþfºðÍý¶žúÑYþõ_?²¾2£=ô³Šn;žÓ€>–„wÝc/üw[îÒO2õ±8=â¿ðñí.èt²eîÁî‘7ýë7@¾ÅŽV¦ò×,4õÕm‰Ò$g:åI»ø/#‡}®’hëú¯ÝÔiîñ.ì#:,èý|ÜXÐõ!ñ¼¿‰ðëäÝû-oˆ*é+/¯•»tºßÞmaÑÀÄù$;J$y*_Ér¹§Éaݼá½È;)váç“æSÔ²|¾ÚÑ7C?ûì‘¿ô¥G–÷S_ôüÎ_Áw:ý<೦{ï^’¤œìÝñôÙÝÚ¯è_T¤&8Ç<ÞHT.ÑÞHIJû:^³‹ÎíîS K/äùÞZ·#ßÓ1×ÿåmuB“tw ­ƒ½ƒ XrXpXpXpXÐË?n,HK:¦Ì³Î+­yÉ*Ó}¼Lé[Ї,2]t©¿;¿æOö’þfê¿©?žygH’]¤Æri—#cá¼²Ÿ"Ô³ú-o¦»G)’¶h¾Ï™QƲ”ÒNÑ®oñKôöä6ÏÄu¹x¿ÜY­ì_YRr ÏÅ[anŸùm²nI¤S˜´¨ceBÌ]^éßÝK,½ÐW'/‘ä›<ä;ÛÝAMsmOû7º&ï‘ùÃÿ÷°ÀÓa9sXpXÀ’O Ò[mâ’²¬Ø£é=(iÅâÃÓS©dÑÞgï…~-1þÃq¥}bþšøC‰$”éIëMþ½ìe\ìE-(ò ûFÿ‘ÿ—Ó-[Ž>Çà,­#!8Ñ¡S›l‡ÒI±»îß|õœÑ-¾³³}oÇßýyžN– ŠÏþ5vÕùÖ·Yˆ¯ú’‘c½¯ã“{É¢{ÉZ“GJÚÞ{ïþäÙØTÒ¨ŽòDÞDÚ'àšÆ’8¦Dd9,8,Hé° Iç°à° kÔÇé<ù–K¯dãÝ»Œº–6»¤–úÏöûÍ{½é§±¤v–èËéo—{?¸®­•Geaü°F·ü x÷ ßgždÇ“Iÿ;ÏSîqò6¦T¼Ôã]¯Ç²|Ô)ªÀï«Rj' (K Ò"¿¯@å²V)õ{<º.uÜì)ùÕí¡Æ>›ºeíš°x•´O {oÿ7ô\|GzXpXž=,8,8,à¿‹&|èXlAëÏŠ*ù|R"m—Žùûþ¢?Iâ^³ï`L£H=vÝîå»n§Déto–ìBå;zÚoIÜë_%ÂÿDzÒ^Žg9ðš½ì³¾en“´%¡jOävŸ·t?Æ~ýw:õÙ¹‘h $þôô±bAâ*»‡§åú7ëeÝËíj싲ë+k”ŽË¨ëÌòšø¼ëêÒ¦ki?õ¶hBçÛn;ˈ’øéOYžGXðñûì1 ù=¿3a‰MuüêrI–Ø#Ýîø¬[ì£C}Ö¡ä{¾ò•GV ïQ&÷”Õ¯ßi,ÛKFŽ<©”F½kø®KKÍ®‡]3»Õ¤–“¦%Dö;J&m¤-§wXFçO$mYFtXpX°hø®KKÍ®‡]3 ¼„1¢Å{òw¶ÇÉO!ù»°kÇ›¾V³¼]öHÑkÚµ¼E.Þ¸ÛøÒµE|–]{üM5ù.ÙýäRÇ“K¹ûLzé´ŠbÜ5JY{¹<›ïÞ\öÝ%”ñrj£8à=º…Òf½ß=›¼ 9&;ò{¼“†¨¦"?<è_6Iq9§Çeýì|‰z¾Ä í^t±ý¥—A”äÙ”üÞi×dúpò$éÛŽeœx;iXÒaAJ‡‡K:,øp±€££åò·ß'Ìø†Ÿ3ò÷b®Ä-oúÏêáŽ&{Jí¨<Ý•46µÙѧ{jׂhŒÃ$Kv—úííøm̼Ñ"qÌ“Ï.dƒ~ßu—WòNŽwÞ‚›Éç?ÜèèÀ©#¸·¦’㚯+¥}§”¦ßYÇ[þˆ¤‡7¦Ø[l‡i±ôMúLl¡¶ëÿæ[ÿ®e÷ð‰«®Éú°K'Ñzì(éÉaÁké°à°à° iék¶ÃtXð>`A÷Q¤™þ?EФÛÒO×d¾Gw¿GzzD«å5ŒXµ—÷š?|–žn þ[Þ»Ïrù[55p }žà:éšà7½w©Q[   7  :ýÔ™ :…)9%®ùüÖ¹ï©K§ì{TŠãZ<ÒB¹Ë”Ï2z°k]“M6îåéý±S˨EÒùŽ ê%:—ˆ_Ç ÖÜ}#¥œ\^‘"÷´ô«~#DÂ5e}}æ»ß}dï—£#|'%è÷N¤8FB:rcñí©<ÙÔ2Iõ»ïÚu¯£ë»mºEô12» ÒÃïˆà)=ÅÑbƒ‡‡‡‡‡‰ª ÎP»\{yÊ¥{þ]ŒÎÛ×´¨Ë®Ç[,XôsAOOÜaعí+ò^žl¶û&YP÷ÀIKÉí®K C髹_7I-EZRL’É듞Իÿ–ð証®Êý.·ÅRɱƒ±Äî }ì¢Ç÷ˆ’$£ÔfÒR¶“0wI»õ§’ç\êï-»^-þ$i¬¯Ús.¡ö%Áîs’õQ·   ˜  >e,ð§Ò©ŽWÉýR:oåÌ5²Ÿ¹ö{ì¥{‰žúâ®ý©®íî¯ô›± úIîÎícï^´ŽåiÕõÙ6¤x­åT¾Èâ- G¹ÌIh  …÷fîü¶Ô‚žòSTÄ2€q·-éI:–NTyÌdávâ0#uÎF¶SkBm~WHñúÚî7Ñyi¦íó‡´£Û÷ípç¹ÿ>,8,8,XÚÙ%~X tXð¡cµ"YAŠ9$-•çÿñŸõVë{íøõ=Þn×}Ú¾VòšÿO­¥:]Û©™þŽ™¬#Ù×ÒËâQ;rJ:—º¯x¯Z—B/ß‘šô,:°ô² s¢j×g–/’Zèä>[ÖIßg—W¤þ,4xËîQK}ŽšäÂhí+QÒ)÷1ŠošÙêY®ü¦ÞÕôš~NT%ßâ¨íZqX¨Ýíå°`±‹Î·Ã‚ÂDÃaÁ œbAÒºSbò7jißqêßFwª8ºÝç/^1½·–ô°Ç£üë'®Õ¾J¨œn6 "8ç]“ÓZË_CÌÝSu)ìœM‚ÏŽÅÓ³ÑÈD ­¬ÇFèoUâщEWé—ºÔ|D?úÑ#»ðÙ· ¶î÷ÒÞé~FòN U÷1jÖªõú´Á#Û*ño‰¦™›óYQõ¥™s§vѱnG‡‡ô6‡½Jó°À{9,øÐ±`ÑöDßq˜øÝ@_rm÷÷ÿêyȨBWZt˜åÝ~oû[0{q=—ñ­Ük*ù.2ç?÷ª1—ÑõÝnÄtׇEW—øÏ³¾héwñÞÏ"No“~)E‡ÈÃ$£eÒ=À2–„~"•VɯVùú¦îsVä„;"زûÏí®ö›xNëå´õY„÷•öý*É*ý)Z´GÕœZ=«úþm¦·kc҇ïsXpXðZk½Žóä°@é°@éýÄ‚Ý?,ÖÄv4:K¿Ý‰'º¡Wâýú;fZßIïƒJý¾‹Î±9éo KJÜæª=ãE ŸÕ çX„,þgÑÛŽÂ wßžê'ÍI’Zf;ÎCÞ#Ív’oa‰ïÇ^$Å=›îýHñ«´š™<›?åózf¯Ÿþõ»þè%Ø{ç kzêxçoÄJ#í)YÓîÛSL`‘Bòu‹.í’¥Öíxšê¤ó\Ëœ$µ¿È”#bTÿúí(^ßã“éYÎ@¸÷’uÒZ³[½-+íÊHZêí'/­óßúÖ#'œfaoL² Dȇ¤þÔaÁaÁaAO‡‡IK?,೪ž´ ËoèuSéK_zäþ–çyÁˆgm¿?µ#ÑÞ—TÜð=iäCzttHqžtÇH²¬×FGÚ÷žõ‡;ç;î/_FÚÇÞe¬˜Ô2>“|ZŸi°ý„_¤ßiæ 2%íýæS®“Üãá>_ÿ*˨Õݳ%ÌJ^‘úß±†|KÒ¿J“xî;Ì)µäñº{šûÊþaAªÙŸ:,8,ØÇÞe}X tXðþ`ÁùYì+Ùµ¯k¤~s¯JtªBå®?‰ŸIo»ÄY§S¾x¦g±Ò5œ«î œþ´ÎÞã]ŸÙKÒÃäsºZ´(Q›x»H<Ü¥³S•ÆÛí‹>$Å(ØBÚ½ìq×.÷N3y%ãžIõ¨YåâúÉ“¡Òy×^Þ?CoO4Lòõš]‹SM5I‰ŸåTòµò´ºM¹$Ë¢.%\èþMÿz”þ°à°à°à° ÓL^|ÜXúMßL²¦ÞR÷>·³':­›ë|­“ö’´tyïëºÍµédõ»çïX°”÷7}Òìú¦µ§ÅK÷[ê}ACjxo¹?µÐ–´1=ÕiXð«'Zeç_Y,ÚçEô0”¦ï;u_—"xi¤´_µ¬¨¯ôMÑ]ŽˆíN¢ŒsÇO–©ÜçKQ!'ÓîÓDƒFÄr¿ ‚šæüñïIu>¤™y²Ï»mã   R:, , >,H5õKkíñ ×^ÿRƒ¯(I¯Ò]sÞïòm÷Žbɽ<½›ÓZ;R,V–4ÁKÈaîAõ/&=Yüí¢u‰iß SòEÏúÞE ‹¼žm¹KYɵȿzÙÇ›höUTßcÀ‘&¤pqÿÜgVlAs9Ý/÷7óÈî{™¼žäR’7öoÇøw^iqoé~Þ½Mâa× ñVYX@’M}÷»œô¤ïØu•5Sü<ÙoŠìRsJ    >&,xÖîz/iìž¿ýíG–¬µÍã:©±Ø—kTÿí–žê?åH-w™ö•¯¤>j¿U i±2Ip¡uX@žûœ¤ü—ùÈþÎÛop’¤MJ¶œ¸·ŒqI‹K%¤¶ÇŽº.ñ;à‰ÚT¾ø·Þÿ}OŸ•Q×ágé|–½¿YÅs¢öQ§s…/úáY±\]òømÓïTt­öœì=ñ3ÍEYî4ðk8îá‰ÔvÚ¦ó–|NüìÚè5Wdd,ºÛéaÁaAªXpXpXø ôqcí½ŸËè>§¿_÷”îdH‘öÛíz_©yÍKìÞFÙï pYð »ë0Ûy ÝRS_ksñÛ ¦,¾K|yv‰­½†#‰3 gÍĹ=ÉB'}£{9îúw©t?sâ¡Gt“¿"bòœëû÷å»î ³xŒ²à µ·æßñ¤çg|›´ñÄhB´~–ëþá° ×Ié°à°à5Éîœ9,Hœ?,øãcÁ¢íÝ‚:Wû¿]|íÉyÈg;=É—^K nR+üÞ?‰Ïµ0$¤=lÉ.þd×¥gÛߟ]"!»ŸôµKÑ€}þÓûåš#Û÷Úµÿû쮉¥_¶ ¬uay?¢CòLYŠš2ÂY(õœQS"——û}˜I¦â­vŠ*»ìô¯ÿVb›^žt‰H=T\‹œ\N.R>,8,Hé°à°à°àSÆ‚ôlçS\ýéÔ¦^(ÍîQ?ÐG÷ìx{êãõßòÿzËÖÛ.WÆý ‹G|=î‹¢ÍKÒ{÷³þÐyë9õþ'4ßKÞâùÓ¨%_%ÞâÜæ}#Œ`°ΗUô“^Ç}¬jþüçìž°K'EßðúI‹8–4ËZÐa‰{¤Ò¨]<§c4£XÞBº-ÐceüºÐ³zµh³ítíZ¤sX°ó°§Ã‚ïsX°§?4P.ÔÌ®Ã;:$¥\ü»ð¤‡ø,WS›Ïz¡½œ½t|YÞýÉ žîé£sÍO6»sfÇÊÄ Žè5ɾ&»]j}\oI5ïaëZÄ»/]ô¯Íúî?§–æ$´MEÀxWƒG9R ™¼í³¾åþ7¥4oQöoh&¯•lÁ)!UŒû-’]´1ÉbÑ7rà° ¥Ã‚½þaÁaÁÇ„.£4Þg©]j&½MoyŒ{ôu©¯·×ìþj£’[1-ºÓ“‚ZÑïè}õ;R S¾{ÈIõšÉ0^ñlZzgr9ÊÇ*¥N-=¤s›1@ÝÏo;¾³=“¾Òªòþuήiéû;‹ÄÓ«¨räå¾C;Åi»6&´õä7õ¥³±DgµâY ì1aÑaÁ[jìô/t&9<[Ó) Ø£ÝCö5£$ë„8´DñPoš¾F£7ÜÔ×òî™ê§g;®õš;&îÜK-'/M[X,qG(¶™Ö³vt~­þki±ÓÝ’võQ¸/]f;=‚×åÈ{<®èÖçO A’\Xß=ª|f²Üe.‘jú×gÔ ãÉ´ýäöx ¿­É].nwÝG=«WKyªsXpXpXÐ{Yäչ͚‡‡$ÿÌ·°ž¸Ï-y'roáÌb 7žåÛßH·/ëu SZ¸·<ÛË»•±fŠ¡¥÷îþŽùì¨å[èÕ-Z¢pÝ RZæ‹DºM-ó„ä¥{ óÏÎjü©® é»0ÉÊCúÙ1÷œÉŸSŽ\•î’r髯4#êHôÎbÚ]F~ßcBº¤]s–ìŽÑ‰þ×tÆÿ=,xo½ü°€|8,8,8,èR{°`Ñÿ¾Ö“ÊÓèºEhU+½»-ž¿ó$qû‹Š5½ÅÞ]‡SÍaXFêøKÜÙyÅgw­^,k‘Â:-vý.Ïá½i.Ä/Þv_‘K#r~zR¹v®¦ˆ®ÿæwv^Ó«>–gíˆé°€¿ ö vÚ  >, §íçÿ¢çén„ΓŽ#Ïòa·ÁEFÏr»?¥ß~o0)q]õ¥™~Ö¾÷¨,¬ÑZžRJÖlÿÙ½oá’§=VCN.üI2Zhë| žÒ?§výéËG;R¿igø;ìFè§•Tç·¿}dµv«º?O±¬ä%R]jét>E±ú—gýÌlâÒ„E÷ö™óaÁÂɽþ³é°à-¼=,ðtXê<‹IjÒ]¯Ïê›ëRi²‹´~´ðí-ô?›’§M4xÿö¥ËHXðì—н…„­?úÑ#3Ž”v³…g±xÑÿ¥å· ù2'áS]c{ÉR³{9êoHÓLƒž–8BÍéžp‘{BŸ™<*Õu ñÐïÍKZ±KÓµ]t~ùËÜ‘BõõUPhÁ5&òayêÙyËaAzö— }è­$š  žÕ:%Çîëo|ÝwŸNÄ<ÛKòE¤aáØ³X° ÕÞch¼¹K6+ŸÏ•2¥ôf½ðÁ9,z¾úÕGNûú\.«‹ÇX$²àB¢j‘[£-tÚ–Q§Þ¦Ö4 Í~ãô¯ýÈi•¹ó™åiVÓ9L¯Â}§M¸ªË6ÓÌP÷éy\”8åmöQ:©„ó(z¿¾£õ-3D­×<,8, ·   >e,H<ì½$,ÖÊñòŒ ¥IJRû]š ¯Òè–ô,=ÂãߣLuoÝo'LOo Á“?…ü6z·èg9Ö¥ŸþM4÷_›<ÛN×d%r5µÓÓí+¨Jã¢ô§2¿íÞQÃuÞw½&½åÙ±TÿY¼NPÚùæä7.©“^Òo‰y‹ÖõtX@J–Ñ-é°à°àÙ±¼?X@ù&ïÁš¤ªk9“ìb‘`Ò1jõ³îiA¨D ë§wÛþ6ºŒÚ-.é·©š~âO%Z¿þÝïY–ë_`ì¼íÿ2Èñî(“43ñs§|ÑÒ}ÔIëÒúij_÷TS‚>^}ÅÒw,/£ ?—ßéÎîPMÒwJü©¾‡¹GBRÝãy¿ô$þ]K•ë·¸Á[NRè¾.YÄâÁHÉaAoaI‡‡KÍÔòaÁaA’Â?ôšÃ]<¹»uwž$dIÞu×/6ímº¶§ó)JŒøú ¥Öµ¥c<ŒŸˆqÿï7ìcsúì¿oïý-Tyz¶¤Ï½e¡3åH/´àànkü—yYMž–#Q›4¹ó6á©b ïÂþX£µ»_í£þbÓaA/y{:,H凇‡ï''îgºžøïå=γû=®U%[,t±¦?„ÿ-É–ýM“콿6ŠÞKù~ZSzê›ß|äî?·¾'›JQ ò6ùpÆv:ްå%6Ø)ñÜv< šöKûSl“Xì‘ÜØõ9y楅ôi8,8,pÎSî‡ÏRxXà%‡"ôoÄtK‹gæyö.÷þÆ”zÜÇÒ%²ô»$Ö×Y!bŸëϯ~õÈ~ï‡N‘Î%n–žRò{ ¤íêW¿…Šùyÿ›žåÒ"µäIØZ63‹%.½Çg¨ ÝoS¾ôQËXœBÎÓü_êXòà ¤Üý?¹ªsd¼ítŠ?~ûtâäâ{Óž÷oª£5å®E»·ïúÖK<¼…·o‘ÔaÁ³\:,8,èüQ:, S‰§´vü¡§®áoáóÛ}~ú·kÂÞZZ§Ûéÿ'{/"Ȳ´ËQˆàQ£åÆÝ]ó—§úïŽøiWíßþí#ûîYÎRܳ åIßS´Á}&}r(ó”宼ß`™_)KŽ v¤ÖÒS=n³Œ«ÇU–9î9]K{&牭Ãi÷{šÅ%j—ä5 RÉÞò[ê‡L‡‡{Z´ýÙÖzˆ·Ðÿìù/5jGe¿ïB:¬ì¯£°÷ÛýÕ~6¿_³Z¨¢ îÏ‘2Š'ÂÍŸüä‘éĥ䫽—åŽZ”¨—cY9Ei’SüªGážÕÌ%í[âl‰3i®•FäwkpgéÎIçùâëR§:‡½µÞr§á-ô?;Fþ{Xð,Ÿ  O >¬´¬ w‹HõßÒÎŽéK4É«/úLþ¤Ô}£4V;H)âMb϶¼¤E«½f:é¿Ì ¼±_®Ÿ~öÙ#ëvŽä‡ÝêÓEGUý«uÆ”œFŸî¤ÛÝÃôøI—Zš]?wmù¢ê;¯eM£ ¯|ºsÕKü‹Ÿ;f9'.'[8, öòÂÂÂÃ>uXð>¤Å7>ëùßRÓë?û¥IcÍ×xE ý­ÖOå(âZ*ø7{Lå]ø®ç[ëÂþý«»ÝÜKøîDÅj¸JèkñôÉʾzëu:O¨!,Ik”‰‡Ä‘ޤЏüOIˆ³H×jO=fµhiâ#?Ë\1ý+þ(>)jgB?ïæ”Pg”þîï9ÑvX°<û–š^ÿ°€}ôq=›  |Œ¿ùÍ#¿v7Bjy)OÞ•ž‡)I0õ›b‰'‹×%ýþýtž;SæSk’d)»­íѪô¬F¤ÈŒ¯Ü³¾“HŸ@ ]Fjm¿imÑOîcÓ}&~~ºÔ=¼#ýOŠùp½•õ¬¼ºž/ú°Øcªã'=“¬»þw9ögÓ¬zEÓ¦¼å½å¥ü°à°à°Àët  þpÉG—¾¦ô<µóŽðÌÑoûÈ©Öï~uáÀ¢Ý3û™2e­jùÕZSî|Hvºà×ΥʹZ÷¹})>ùL/÷^xšŒ‘¿÷ÛKԣ㠵7ÝMGVkº?Ðw'ú×-ӮȤ{ÏÞ)—¢RÎgòÿµÔu{Çš”:J’oÎáåFÁ¤¥n;‹oïó®$ ×çÃçLjç°à°à°à°à°àCIýîçåÂ{ Ò»?{IÒ=ùLo“_«I½,%=Qoù/ùæ»+ý÷Žiç™Ŋ;–í|èR‹ü6ï¤!âƒßÑ'?¬ý¥äOâ¶êð{ˆ»Ö¥6}ǯK3ñ–BJ’çOrOÑ!÷“ý¾è· Å[’Û)9Ÿöåú¿}f²Û£S’fŒ‰K¬CÙ)êuX tXpXàZtXÀQPO ÞçD‰ôw¥ôl÷E)-a& ½ßÅ»v}ëcW’'ñÛç<æ µ›4Ý™°{ŒþÔ“ÔBâyå7r'}ðÓgè1öåž™¿÷v¨íi/¨°F«ü¼çöÝW/ø•l<ÑäÞ5ÁoSôÖüë´¤“çp   ØïaÁaAÒŸO \^ú>x_ëùçJÝÒ½ï¬{ãïÔ“K-½Y÷q¹&,¼+É·èdƒÝ‡ï§ò»ß^,Ýk²ÜWÓØýZ‰wô¥¾TS6íÉ”·O:À~»”›ÒʵÏÓR/.Á¤3ÝÛt=L‘ä„A®\ßLÒuc±>êdBÿ¤EK’©÷¢$­Hüá¦Ïd(Y?ú¹}IzØyuXpXpXpXpXpXàX8©öýû»ÇûçJý]Øïp{mt¯q#I–mv›e}ÒÓWÆ÷§g±‘þýlÉ‚×IÜè­é_ylú´Äÿ×V¥ÓS»sÿLÎøMIjÔ7ù(V¹×ê²Nªîñ|>Ö=Þn_ÏbAÒ¥4‹Xp3eÉ…w¦ÙQÇÁT"MvÙùç¿×Q:,8,8,8,8,Hò:, ùÄûœvmt‰Ð$ýaêÚ²<•ž}Ö:Rc¡°—ïñ„e\,_Ò“4jÙ‚sF~OZͯO’ŸI»Éz9ce=¥¨Eº+£ïêLýú÷LS¤"!iºŸÐ{ô|}‰p>ëáŸ-áIÏ~Ϋk¹Í})É/%[4J¿]‡}VÐcSJ‡‡KùaAÒ®E²^~XpXðþcAê«¿é¿?©{¶né~€t:ƒœI”ì4ïåè7^KI?½—¾ÂÕí¥(aÐ’’õùšš{?%ú%·eZÙ2ò³Ç[ø¬ÿëßÜLºáøÅ-ÑcjAÙW$‰2/ç*i/÷ž‹HZtƒ#íHçc÷Õ[¶ïH”ì(@,Hó„ŽAú}XpXÒaÁaÁaÁaÁ‡ž¸RF¹p^÷¶QcÙþžßc •:Z-´Q‡Iá³ãJô÷gûa:%> ¿a{ñÉžµßÀ=¤÷’vYw=tÚîy}ž!JþvÑsÆN‰‰ì…³…EÊÄ‚}ÏFé³ÉcV¤0é[§í­Œ3>ÆsalyŸ{ó©„_I ÞÎaÁaA¢í°à°à°€ývÚ Ê?ôÔíúÑËþÙ­5E ø.Ùoê£å¦wçÝ®û¿û[¼ó³·æ>!Å—H3{¤o\ÖˆS/Ë€ý¦šÌZOÆiΣrýÖMÊÂÄÿª¥#¨Õô;Òç|¶Óï·&‰tMð,ú“º&ø¿DöŽ)¯Ÿjìh›úíº”,÷°`O‡‡‡äÃaÁÇŠi¼—(ß}gàÞþ²«m±—8Û÷vüßäë1HQ2òdñr» ¦vºoìZí+­òK_I.ˈºvuét»î¼òø˜ßbá«á*QÖ½”‚wâ.S®\»ÎèÖ>!‚N° #ØfçïUH\]ü¹÷ÕïØñ±ð6og—š·ÉRò3Î[î‚XôÖ­ø°`O‡‡}‡‡Þ·ŽKJ|ú¸±£Ë÷‹jßí­ ­²%ÿß„¿eû,W¢m&Äa)í^ñYéx;®¥É{,h›"Q¼KëƒÞ¦×ñvú A—>#*» z}êxlÐ)ÿÅ/ÙïŸIq¹Ä%¿Oå_þò#ë>=eêžGÉÛäªî>jêdGŠÿ$ ‹ÿïýöyT§ßK–È’'õ{X°§Ã‚ć v½J;ýv}Xiñ·oIî ø–—¬O)iˆßÉF?ï½üð‡,? ]NÄxù·/J ÏFÉ’6úÚijÓ)ì»:Ó}l§ëI’E*ñQxtH¸ mñõÜø‡GN÷È¥],ñ¼¿õ­GþÉOù+_ydõ²Ì²-ê^¨K­{×n‰)’³kf:¯—RšÝužx_îm ötXpXÀg  >V,x-%þ±~àŸ7ÑKÿ!ÚgÉ;¬R%/ͧ’¾¥7}¥E¯Òí .$OÎ5»ne;÷,HþsGZ4û¥tTß#6N!;KœÖ)÷{¹å™=ôÓŸ>ò/ùÈB =å§±:|\‘²´WI³Q¢=«¿ýí#÷ÙNçü®{¤¶ëRÇJgÑIR.n0N(Îÿú×Ì6©ÝRHߘqXðì    >5,ðö?þ–Äw«?"ðMÜ¥æ;ý©d­¬ãm²ßý;j<;jÒ¹Ì(’Å%þ¤ª{¿Êî?y›Y⣦7}úr›§ÀÒX´;ôíOøì³G–¯Ö>Où×1z˜ñrb‡×ùÞ÷Y§Ï$áNj?iÈ®{=–Òç3ÏâB’³zËöy¦×äî‚OÕ¦è°`O‡‡‡‡Ÿ&(õµªO'í+5¯%Ú—¸çq é»=©',ïvG=O5—ѱ$õµ{øÞ¦ÅC¼Ò+¯é%ädBÆŽV”EŠçtÙ±#Õ´>ë§Æ´ST>Y( Ï,ÿÀoe¦Ñ¹·÷ý$Œƒ)+¥èhH·I$-r\îúÀ¹××Çèñº]¤/ízëå}O8kò~Ä™®u¤Ms—ÂaÁž øïaÁaÁaÁ§ƒÝWì²ø85á‹J´—¬ìÔO¢9=¤ÐÛôrz¶eÍÎ[K5½~רNyÊŒTtœRòUKÕçWÝ{”†²èþÿYÞ9ÉúNO¢Í[ΈòüB¡Ã7¿ùÈú­½ÄâO{%Y$zü_÷KŠH}~ó›G–GJœaê5iÅ>‡éh¸`w:˜!"äxûiõ©Žïò<›     ¿ôZ’ÄeþÕ¾wû‰~·²tãtúv×›”Ý[¦5Do_-ËÈ6½zÌÁWlIa÷f´\ÆÊHU/´ßgç9ißïâI’ÇHœg;.‘qöœü0ÛôˆœG¨¤]ÉÓ¦¨×³$—VÜ=¤?•ž¥'oìÏúé?~+“)!oâ@òÞþ[8›¢vì=yf×ÉK÷Eh‡³V?Uâ§½Mï…#⌅žßç ”‘ëg’{÷6):Ǵ̺>?›“†,TõØÚ2FO‡ïO:,8,8, Œ\? þ˜X°D:Oü]ryVo[ÒCíÈÒ¿zK¥æøˆœ‡î-©¥ËûcòTÔFòê5ÜL½/òMºíåé¼ÿ³iy¶SžÖF÷•µ×(L-§úŽÄO´D÷á\›K’¢FQ²Dœþ;wáFÒÃES_½5ÚQÂîNÏâK“w›]f23].ôl‹OHÈâÿúÞÒ|XÐårX°?{XpXú:,H”¼ÏX°puxš)½?²ÿ¾‰ÞIõ¬N*ù®Xyþ-á‹Ç: ÔÆ.£$©E+v~.I£ÓêÞ¢!ÜÙëï±ÔyÖŸôv’Ôžåsj!í{¤ÏwÏÿ—ùÈÝ+¦rêO/ñ~»÷ë¾nñ«Ô¢›by·Žgµ(ý›z|--ˆÉÓ aÁÊ$å=vDJ¼wþöhçaSØ5ð° ñg©sXpXpXFô¾aAzqÿœtI‰o‰ɾÒI%÷í\­óˆð¿ϳ!ÔFGŸÝ绦-:¿{ÂÝ:”+—Ø{Ùi{Ͳ–]§¡ëük¼}é’upt}/eŸKÐÓÒFHaß³ývÄLíÐï±ÆÊ’4S\(õòv?ÿš·g ]£ú_Cä¥I^]¾‡‡‡KÂÂO RMÿ‰÷’Þ}úÛ5ŸßgT÷ð~‚ÉuL¿…ª©½pý„ø/âI>ÕOxumY¼b×!¦¾Ä‘¾wÓÓ[üç[,ñÙô¬…öʵWû˜\Ö~{›k—ù=i]×(úÃþÝ™×ä²#ã³í,´-s€·D{ ÏâcG1¯³·ü¬SÜW@¿ÇúL‡IªgŸ}{:,8,8,øcbAE’È[FÁwa寧aq¯.[“%ò¤Õ³ë\´>r€{ Ùòâç;ÇöÔqGr×Y¡/*‘=VÀg¿(Y,tážÿö¤ŸÔc¿ ÷ykâœK”,Yq×´eì¤sñ]ô0;'Sï½~Ÿ¡%î½ëœa¿éٛݱO%~ÇûÎÿ„?÷¿Î þÛûÈòœ¿øÅ#<›  N¦Þ{ýÂ÷ ¨Ï¤?ɥˋÜàZ­,¡†âEZùÕ÷S¼_eVê»ïh‰ õH?í·[ú¢»›è‹$ý/6u¿”ê?;ØùÓ%ÛmPÉOâÈ‚|_ëËr)Ýâãå7‰þ¿ö®fåvã>²W^dã—ð B¸«`0ƒ1^„E¶ƒßÄ\î"ˆÚUÔh$sóu£…fzº{ºF=?êíÁÙgÆßU¹õ£­Ñyf'çiÕ†û{{èËܱ@‡³Wբ胺ðŽêÃ’ùÌDÑ¿ýö¸ðˆ0X0XpŽ  \íƒ_;8~œû“þp§ù]+²U–y[öü:7Ê;&2B1Î{s ŸÖå,YåãfœÞ {Rþù¤/ø+œìqeÄtÚw«rÉú4ûÒÕþËëáÏÑkz[R\Æh¤“¨N~ÝæÑˆ–ìR˜t%yãc{ËQÙ6c—’õ›KÖ{VKîÛÛ§(šðSåÊK¡A>kcé¼>g°`°`‡   úöö)ï€Z»Ûᢽ@­‹[ä<°~Mó×7ûX\)v°¬²v2äUæ|®E–Oc«»ÃriN$x’®ò!®œÞ4yÔJÝú“þYÏVáùbÜó[=WÙó÷(e’ÏIp)ç$ßÔ’õî(GhrÒٟg®\ÛÕÃè™?*+^gÎgÈñ­":X0Xp  4­,ÈmpÔ‚Ï…S>óJ*'Ïl·ìyîC[êv“¹?ƒ7v¨_…î ^yÈ—b‡Zißs¯"þZÔêI¶WÑN¿ÖršÞwŽgQÜkx·£;¹Nµ¬;(]‹\»²Íh½ŽÎÍÆf>›h°#Ñåú^ÜPŽ »é™ù«XÓ£gƧý,yÇ3[;"¢ƒƒƒƒƒ®E 8gþžuvˆ{ôšÆJ5¶ÃßÝØ'…UOÜ]l§÷·ÙÛk ×ȳ®öÞrîC” éi»tæÚõ¾¾®ü4÷âgÑÖãá{™õÎÿT‰ndâ^†h'¾ÄµÎB²ú˜ƒ“ÅuõæÞä|l;½”iè•×-h-|NŽ[i¿ÓkÎÏ;™ôÞOÏó¿,,,   €8VÐD Ð/xž—ër»!²ød9îÁ9ÏDZOV¹é5Γ½“G®¾ûî¸2v8}©5^kK.…kÜðmجr¼–z”l(Û•’Z&ûsÞ¥Èc¶"äýëÈÄ­+v£Γ¿úùd?°êo÷G2½W?ÇOÏ[öŸl=Fïôškß]ÕµF/ ²Ü´Eƒû4X0Xp.ç`A¯…,Ès+j·¼G-ÿ\ë¸×`‡Ÿ×Ä­àü:{«¨Áž\%Ó÷Vµ Å.Y­ëZ‹Z•°ã§÷¥û<¬>mFܺL.‚8"Äã"Þ;†“ë Ø~ÔÞšž¥ÒÈc•€Kq%('=^8ür%÷•¹Ú±.•§¶(çlâÞ½~/Ê­ãU=ˆjæø§ ?Jàèå`Á`Á`h°`°`°@Ï p«XWW6íeÒUŽ ¬èÃ[øÏ•¼ÒOeÈéº.[‚k;—–í6[¦ã³§/­_…y'{cŸ åw{?æÞÊ9Æv0ö€Õé,0ŸÌù5ŽÔÔå,Íõ¸U94>ka?þÖØCƒA™zkÉœèÓ^§«ÔØm[ö’Ìx‡ûÁ‚Á‚Á~:Xà8tï2 ôôÎXp®½Ì!¯S:§)æÏUcàÒàßÐsUz63ê1ñ¬¢ë5M«›¾yqKýà¶äXDÏa~÷Z?ßSSï¯äyd̰ó)^,1ÞÁ—½.== ‘UÙêš{ïí*—|•ý7Ûs«erÊj{w(K&Ë0£CnË`Á`Á`h°`°`°¤%4è¾8ÏJÜ¿pÏ«[1»Á»¢>ËÙæ{”¼–¸jQÎZÎÕÂå÷o­RóÕß”Ï6€˜$¬Žwœ¹v©Ph"BÙ'sœ%ðË/ÇÅóÈ<_û.p .”Ï'xg®\+2¾7òì1¢ñØ|ï"]=Ϲ-«—¾»:bÉã·, WWƒM¼BËÌòt‘ç†gÍŸw_®ŽLz]䔦®Œ¼~@%6X0X0Xsðý`A.a•Þ \ùYn ßÃÃ`çNÖ5fµüŒšîþ R+ÒÀɹ5Ÿûv’KsÞ k 2"ðî¹OŸŽKOçÖÕ¼ ŽÅéN«¾-Úïò[}ùçôâ<êvrõ9ê™ójÀU ÷Zp5ªGuc§æÝ¦-ÑÍímôâÚ¨¶Ýëýœv\„gÇzÒÕ#ƒƒƒùÝÁ‚Á‚FÎç´óÎXÐÌÌ*Ï«œóî~g!ÍI_½÷P›tµðų-WùóLªNgrøÕ ¼7÷ü_å3Ë|8Ÿ‚§X‡Ùx×ÕyÏL¬ý¾öìU’Šƒ;úuéNjá9âJÎy\Êþöã–s56žóެÚa?ºPÞrJ.ÍyHw~]î ƒƒƒƒ.e° oûÿä–:,È2×ï¯&îäæp\àUŽ9 äòðwú“XàîûÝøÛFª,öù,` ÿY£ç9Ëá\T¡‘'§dý6}ÜላjöÚqåç+ËÁ¥7»›žž9ég`û±A–§Cû¹Ö¹^³c'Žöëm´‰Ñ Ê,py   œ^ vì¤ÑÑk± ¿åü'ÏϺwÙÒ‘À<2¿Û19$Òz9]ïu_›kï~| !·wÏIÕ¥¸VCòðêk|Ï#óù ˆekQ>W‘¢)³7ûX•žËÙóÃù]ÜI=RŽÇ61¥sÏõ…¦-çÊl.÷ÿ&–†ó:Â\µmçÙš¾ §Ä8tkÊá>Ójp<,ЧƒN†ƒƒƒ \ÉÙþWçï°ÓÏVÅS^Á¨2túR ÷_\—¶B-ÁÙac±;äô¢­kÊÑK^åÿÇÇŵÀóóßp´œóØ;~f§4çcûxH££¦w褉r4þ°‘y—Ë#–ÆËå·²ÜÔÇö1¢¬ '1¬©pò?'Õl?WÙ’“¹z¶Á‚Á‚ÁWÂ`“Ì`ÁGÀΣ\é×JÖ¸ÓuþÆÑ·~ýõ¸`Ћë¡Ì§b‡ö ~Ëí¿p±£;(·+§4%k,ˆÏªb«à™wþÓäÏy€éº/ÛƒRãÏ£6ïêrûó[ûÚTžW½zïówì$K ë×ñ³³c}©2é9*Hùæ›ãR}ao&FDÎJ3NíH YiìjQ0X0X0XàjÜ—ù`Ó`Áׂ«µ8Þ\ºÛE¥—‹ö°ÒüýÐ<Ü"x6ŽV¹¯0w€kõµ±ŽÆ6´Gô>ͽ˧Lhþsä´ïÚÕ÷ì µ'ÍŸÏ‚pÖ’£šÙë:i4zÏšºcÂy”çýs¤âœÄvòhoöirüD[Íç·ÿë_Ç…Q(—¬q¡‡ý<÷k^£âPÆá¯¦ç¨ZÖ¦Žo–5Μ  8-  |L,p¸ccú.ÏàdÌàœ™C' ùð.*ýŽckQ;qºÛßM“ÓsÉÎ%¸2›”¦-|qôo§äsRm¼ SmËe樎Ú̪/Un÷¥ÔS_cn‘ö»Þw9OÎñ^W&râMØ/†YcxZÞA¦ý:{`å3[N#\—“’F´Ôb•)Ú;X0X0X0X0X0XàÖ”ª?iÚ’-¡é_®íYbʧÆTj\>¢Yqª-ͳ‡}¯Érnl£·ÛU™t}¯#œI¨­ÈßøYJçÆ*YN’y àäÖc_Æ&÷TíÖQ^×Ýp¸*sµÃ¾œFФlKú]ö ì'±‚k$0_ÌVÝ\ ÏN>ºfµ×‹"Ô*'Ü     ¸§ƒ @úg®ÝE!ÿÍ·v^ÿ™­H{·F„2±Ta¼?=#cNéI}ˆJÆù1׳Îy€¾f{Üo¤ÚË<×Þx¡Œª½¬šÕGé(H5›ó¬ê}µ;öŸËÉ€í±·VÄõüÑ é¸çîw@ GÀŽ6+ÿY’îÿ8ÚGTû¹dÄø´ µ+Î?XÀí,XmÅ`Á`ÁNiî­Á‚wÀÎé<¡ë½-9¿§<ð|KØyþœ'sËõòŸ]ŒH¥ÚÔ²Ú;œÄrCmR{ŠCÉ^b™óÞ\žkËiÊìSœry²Žœ;ž38›iäÐçÙ‘^&å6ŸÈ2áµèlá*[jÏÒ³¬¹ÞÆ“»8^˱r#+Ì}»§º¿ŒÛ‚t¤ œÁåp°`° I,Ø‘^¦Á‚wÀ‚sVqÎû©GÒ½ŠM\£[ƒzÕYÏSö6½‡Ìÿjé£|ZòªÍ¥e 4é=Êgr±8×öì”7W¿³sœó?IÕŸh?b‰˜ßÿýïÇÅ#x-G[§)nÕ·“j¯/EUÇÓ©r¥šÂL.$ÃrÃl2¢Çìium‰žíjï-“sòšNwG³h—–ùÅĈÎõ£Á‚«h°`°`°`°ÀÉä,pükzó[ï”IktýÄýÈÙç×NÙ76²Íÿ Ô”spõæoÞÆÃ»·r½û’lžªWÏ~/—¬=×µÑÍŠâ¸Åã%Åø(x>]Ïds¥ñ,·ÎE÷µÙ sÃa¾Gù<#̱^• ¹÷Ö£æ3[­ÊÖY&§hú_*¶Á‚÷§Á‚Á‚Á‚Á‚'± é•aȲí5Å%»4÷ýë¾^…;þÊI²™ij$ßð–ûã°÷ÿֵ̳:Ë©¥õ’̵8Ì5ª”\\BgêõÓýy/=•…Ëä’9¿æD]ðÒ.Šõ'ýï•ËW¯ø×¿â?Œ åo;. Bï½¬Ž¶ª?l4Û[uóÔåÏ­ãó1_£‚YªêK‘Ž2 rÊU4XàZÑËa°`°`°à,hzn㙕·µª~fç}hÇßfÏ™ç­Î¥ä¯øf„ åäVçÖ­ÆmzhÉÍH#·Ý¥äV4H¤Q î_Œ8| °ƒLkTáÓÌ8Ö„ùnkætÌ;»[{­é®«F#nü [Å wäü0ó‰õÀŠny–ÜÑ`Á34X[=X0XÐkm°à,èÉaûjh {Ûï¦UißMîߥŸk¯{×EN2.ŸÃW޳ÀütUM9yÿ×j™Î§9ùƒÜù Îó°hºbóºÚ7•øpÄvÐ[9þàÆ{ˆ1vüãÇå|QsòƒãßX²}:¤pãÕŒ «v›[”íP ˜Î{ •[½rßáûÁ‚ûh°`°€i°`°àkÄ‚¦½NªÚög° ç|µ´r>Ÿ¿èu6P5•ùqžÄI¦ñuš'ÛØ9þ›íkgUÚj•@ÓïÔKk9Y_9Òârr-xŽ$^SÊÈ¥'f0ð<2V“þå/Ç¥’t'Æ4ím|Q£S­…Ïë`}¹µ+®^eé¨Ï!ZCXAÊ+F”OÌï³îø\A‡¿ Á‚¦´,,,`i hž†žÇ×[5W“²ÄÔr®òÌ_±Ì¡G>y@{(HõËézÏ).¿ælòhÎÞ“;Z-'#Ëjù9Ýù ‡³Ùwi~ö l!®.BââêØ'è˜Dý[ï2㱜ÖþûïÇ…s-°ï +K™zR·¾å°òœE¹™w-M%¯ZV¹)A2<ÏÛð©<ÿç?ÇÅûþàOtrFgóƒ÷Ñ`ASò9NΕ?X0X0X°Jz.®F<òÖµô<â4~Ií_µ ÿ aRŸí³A Ðê.{í½äs×rztèŸ62iÞÕYà¾Þ|¢š¶¢‰0 ó¶ 69ÏÏ-b4áyd½0ãŒx|þüØØÒª¥ñÓ¦_h«]dÏI&Ë3Û€ch¿kzÆ“ðºn®Hçz‡úçÁ‚ûj,Ð<ƒƒª÷ÞÒøé`òpäV8¨ õÑOîk8¿–Xn5ÿað³Ì­;»b»mÖ£æ¾æRvdž¿âóýµOoΛvå^¦<4q$·OVij„ês4ºÂsÁNbŠ/ðÛ°Æï¿?.¤c˜×.r»8¬¤RÒøX#Cå¼ ¸w IxZ¿Õ’5Þ«å3ÎòÓs{o]Ö³ÇÕr_ ìÓ`Á`ò0X0XðõbA¶s'ynÚ¼û&ºž¯—Ï’u2aÞ˜+Ü㼯ÆÂ•ªÍ»n¹üpMÇ Î6²ÏÔ”|fk_ÿ£ã~ü3Xp ä’   4å}°@ys=‘Ÿ6{ÜI¶Ùö3Î,I`A#ûH×ãñ Î`«s”ýó9ϼJÙÛä1ê7nÐáªå7oŽ>ÍŒ}÷\Ìâq?ef«fÿ‰‘Œ–£ë^K,+î×ìÁ3bDØ©Š½o½%;dÔ§zÚ¶+G/ø+ø[è‘G•·Ïm¦¨fmhTG}¾òãä£O î£ÁÇÕ`—æh° ×2Xp¨Ov=TÓQfÞEåHg@î°OpÛÞ¸æ­ýzaEØ­ïþq¿êýœgnüS.A-³÷áôÎùüUL_åýy>3Aû`î­\²û~×]N™à¯ÜÙѯ%'Ix?ÍÉ2Áú à÷Tòš“Ëçœ:vuZãÈ3ã/sÂó¹nD¡åkäð³¬Õ±D¿wlµ·ä·öë,8'áÁ‚Á‚Á‚WajÐY,úBă±÷ø‚Þ™ ¾ÊU×ÏœSÁ2ר죲W_E“‰©ô8g¶ÌU® 4rËï:R;Ϩ±š¦Wò[Z>äÉÞÒE_ñ.ÆW[®%.“×r4:â‘›êÂõk½wãLÎ ¯åâoê¹|Õ{Ö,ç„–+戓;A‚W¡sÉ„yÕ=#Ñ`Áݵœ«}°€S  žÄ}×íïf>Ý÷ï·ß—¢É}¶—yË_”=Ÿ#Ö¯Öîú¸¦4¯á¤/Ç}e¯ú|÷tÕ?ßA âp”CýŒ“ƒëÚ"í•̉æwøûž”=R޳¹3✄óhÁÅjÔ“ç”ÙÝ8Šu‡(:¢|Z¾ÎMcý­kµÚ˜Ö›GPƒ«–¼Jƒƒ¹Eƒƒï†ÎG©üy‹÷RõvrŸªuÝMjÉ›²ÌWÛ›õž}H?ƒé¾ÜW9϶ݔeèp)k»Zx/¡Ž@šöò»NòHÁ &Ÿgò<\U—j\ÛÎ3¶ð'ü'J•§Kw¨íƱÎêI|¯ÿíríR\PìPžav6éÖ3¨gv63Xp  4í,,x7,pšr¶ONg™ÊÉMOTp¥ñ ªG×R‡ãƒôÝÜûØwiÎìiµ.þÇsÈ®q²å¶»TCn<Ï4Xð<    ¼?8ɻޡÿŽQë}OŸü*Zõ„®w¸<Ù{äzWc–³®ÚFónÞÓÔ”Ÿ#ª‘†[ΩEq'À°wU~^»—“ùÔqcŽ•9MåÖ©N³®µ´F›Íˆ»üXî:<næýÝþ8'FÒ~8.·¸ÒXGƒÏÓ`Á`Á`ÓÔ`Á{bÁúÆqzÁì¤Öo«ý¹­UâÚß“œŸÉXàtÚ oö].îË®F}ËÙd󵻊JMž¹¸wëzQ+kpGPj .¿“ù; ‚‹‰¹t'7·*2k™%ÐxN'U—_ÛÈéÎãqKùljΩÿÛr¸æð‚Q³Ïú÷^×v}:Xð<    ¼?ô^%èß4ÐvÞƒó$|]¤³lÍî¼ìKOž){K‡D Wï9tî99GNnÎë:ï}K¯çŸÙ´w_†Ù_5cÂÕV¬¢^>'$k–Çœ¾î÷ß‹G ª;<Åþ8Ý%÷éÓqñ $\£®ÕÏž\Ûëäì48XðZ,¸Š“s4X0X0XÒ³éýr:£.̪èwß’®*9_Ô÷Ü,詉d2?= œ+ÓõšŒwM §»¾à¼¥+_ó4»Š²ý\‹§ NÎûue¨»Ø\|FyV/ÇGŠrëxn}Ÿ×ÞôqÈF›Î÷:{,x-   \U×`ÁµXÐKXíœgÜT“œ=¸§WÕ’ó4ùó×hÏ•ë_î{vÇ_¹˜Ã*R0‡\2{àü®rÒs¥<¨/âœï<Öê-§ùô93Îæ“õâXàÞ,¸ †††††††††††>2ýsT1 endstream endobj 10 0 obj 42618 endobj 11 0 obj /DeviceRGB endobj 12 0 obj << /Filter [ /FlateDecode ] /Width 106 /Height 106 /ColorSpace 11 0 R /BitsPerComponent 8 /Length 13 0 R >> stream xÚ{³ÔƵſÿ‡ÉMåŸ×7ÛIżmÆ8ˆ±ÉûmFÒ™,ñ­³fïžÜSª)ÔêÞ½k?ºçÆïþ>ÿüâÖ­‹û÷/>¼xð`ýüâ‹«s}ûèÑú©‹¾®›u|öÙÅ;ë¿úV7ë>õ”NxV'úã<Ô¹¹yóâúõ‹ŸþôâÚµ‹>:4«Ï»w×wéEzî¹}ûâÞ½µÃô“¾¹ú—Wø-e¤y³þuoiŠŽé(dy÷ºG?úÑÿh ûwÓ´ÿç?÷ûÛþ‡öoß®Ç<}¥c·»ºòïïÿú×õÐ#ÿøÇú©ûuQçÿûzç²ÝìsŽËËõð·Ü öu¢FÔÂþ°ÿä“ýÇïoß^ÿÕWÿú×þ÷¿__§îýå/ë+ô.üãú.:ƃº¨þëN}ê:ÝöXÜŸšîäíú¤{îNk:ô½‚{¾øâ‘è©ýÑyõSŸzÄo¤¿Ž·k:è˜Zó=ú÷OZ‰Yî7Ýø×ÔËè\TD¢ßýnÿË_îoÝ:4¥fý:÷gõíè[¨Ê Nô,=IbþùÏë=ØB[Ó_PSê˜Nè?\ ©¹ÇÔàÜdñ§nƒE¡³>uÐUuR×õøß ;[ê_æWÃùþûý7ßì?^ßÅØsÍ$>ÏÇ=däB$Õ§_—ÇÀÕ>¯àßäFÚ¤55¢ƒIäfôOrÌ£J.Ô¨jAй®¿y³6eNÐWz\£VW³“ PŸúó,J=$´0C2*'j§Ì/×Qê’ môm§Ð`žó-4Q—˜ X5‰÷þ÷Æ#“ˆC”Aè„·k ðê~QXÿ¢tQOé¢hN(ŒÇŸ5ž‡`&ôDÐà‹ œÔ+ŒjÉÕ«‹ŒXL¬[ÄÌŸ~ºÎ{v É•”̹ KÏží_¿^ böÖ·2+ÿ÷Ñ#õþÑ¡¡=Ô¥ï¾[ÏQÔ¢ŒøA-Àrú¢éSmBI³´µnˆ”VŸç¤Ó‚ºª·Ó%†ã%ÃØ„¡ÖRÐø*É¢¦¾újíÚjzRc”ÛRïe#z\c×Å3"÷茵u…yU]‚æ|Ú.¨µðÛß®´ÕlŠn:ž?_¯¨q¤»è–"°g&È ‡QÃ*º®ýiªÒnrì´c%Ïëß/¾ØôÑþÇ?^{[èV¯ÌÒª©D²d2ô¯§—ýAíˆ Ø¦ÕfŽŽ¡â4jSŸ_½jxì…Ù/˜hêÁÕPÃ}NŸ ÀpPÝnßÍ•hÉâ+½B¶ûæÍýË—ëyê´ìd ÉÒ`%}²\„Nl£vl žàŸ :,§gá.€³é ˆ5ºSšD:êéÓµoØ£¢‡ ãyêu³(¯Y0eÌäf´¢} …ü¸† fÊãIü RM®z(êéøöÛµÃúäúƒä&´ó@¬oœØpr <“¡A{§ %ºHê¢&îõÕgP·[„´e^†ìg©Ì­MU®œÂíèIäþÁ)À($¡pFW[jŠr†&h$˜†¤€1vªˆ€oë6×>#bì/t¯D1 ‰œà\@=L|0FŠg§‹Pf0ŸdÄ,ãfÙŽ©ÁÀi¡ãí´§ÉÏf¶"ªÝð•(Aáç$`=ÄZ¢oß>Hnñ°À9zž]K³}¢^¢0|‚yrÇ!xȦ^‡¾¶ݼšé©eƒÅƒè($`^JœÁI˜yn±œkS•Xt‘ ôžÈ"'…ÆK ˜sÊqQØþiê£Ó¢oR㆜hD/'¨˜ZǬÒjæI³›ß*ì„®!Ûï¶€d %Àh¼7χ˜gÂKÀ6êETê†@„•ê“[‡+íÕ<ô!$rœÇ†LSóäÉêå ò¡ 扉eЀ˜cÔW…Ì Bº¢$»áH=MU¾ŠÏÞm´ñ73³º‰Ÿ^[B]ãÉMsšÃ*ÈAE,³bfÑY4'^dß$Ïê~‚í`Nǯø×-'_‚¤ú¥Y·“*¥›à´…«S-82o1ÛD¬îÞ²\Å9m;t]”qd9Žày nDèóÏWêe·Ó1¡Þ¼9ÖƒQÁTÖ* ÇÂ$ÙÆí:vJ%,²tQ#Æ{ÅX‹âÑ”'ÔaöÔo&88'¡)ˆ=#‡’Ùßüæ(Üd®3’±kCRŠÅðúä+;AúJͽÌ8m±;Öái_Š&Äüíp1ñ^Ѷª8È<>4Uú–àíGHug‘1¯ª{ ü⎙MIlå÷ß@ÚXÔO~õÕQâšÎêØòr§Mg‡‘º‡Qð ¼ç/÷›÷–Q  ²$8%m}üU‘4ÔH••>©Z&³&%IPl‰…úòËõC’PÖŒx² 0"Ÿ“‚ñ|¢Û0Oåž@[D¿†÷VÖÒŽ’yš ð˜P0Q!cJ%Äd,%…Ý÷ãdÅd4%µ)@åàªÙ/ÃInsb‚q•`¬Ç¥vÄÛŽ=2ûd$¡q‘îîÝ‹ZÉ\³c,º.%¯e•V©8秊ú Þjì¤) èšÃAKWnÙrp{•9‘GêMí/‘I¡ë½¥Å|ÊÑ£ În ˜½~½ªV ‚è ¡=x°–…ddàaŽ5* ˜Ét,-¤Öí¬cãÈQÚ#Ú,‘“å8–â1b[ÕÎÅÃvuÂH':›- ÓJ/ûy&ìS4¿#ç0!yô:D ±=Å-&ntSHµ)†æ70èÖ¼¸é6²’Ó–Á{î $Õ?>`õLJ:™•)¼¥’Û=(ô´_ït¿CvTe@=בˆ°@‚´Rê ¶™¨¼·G0J°¥°Ü)2¶À࢑žGNwJr‹!èÄ–‹OKþ•QB‹fˆÒz£0¿þ0@dWÞƒi u†òR¤õ õ²Êí—„‹1®ê·N½!¾Á¸Ô†ºñ5ºáöí5§V°Jb¡®ÜbãëðTe4"‡¢ØèžØ=Sž±D„Ü¡•ÎÒÅ­@ÄàÌ2YÝNulæ©'Úò™¢ÎˆºÌ‡ôÞǯÔ3y¡0¸´@Ù©y;¼I9-V&„J=yJ×%‘‚Nn))$Zˉ`D§¨7ŒÙ¦–,Y² †0ŒXÂuY2¾Ÿ|r…÷RÛ´§4ùâä.3ž€.#Ê?S¯ðø¤SÒtÎ s ó–ôÇ©”ʱ`ÂDW§xFåÐ!6­¨({PVtóæz,Á‡2Ûš'¡¦Hµ$ö#62¤^LJC¢²ùÞ©¥Þ’É‹?Þõãé~ò“ÕéÎÈ쇿 …ñ^3¶¤^×±w{Uö‘Í rvlœV&‘ítæ Ša-~ÐrœPðk ìÝ»w‘y½y®B‘_ùí… ){.̉í›çJ½!Ì+V£lêº,òI,‘즼ë½41N.;0‹ÐËuU&Ãô¡ö>ó¦›':}^ç†j0;iꕉNât¤—ìaÊ'Û%H™EƒC±=5eÙa¼?£…t.(EBdDH'¬A kà™¥nSŸÒ¨žVMĽ{û_ÿú*$å·›á³ä))éžQk~ãÏZ“wL˜v?ë̇s1œ¦©eK æwÑöÅ‘[‘âÙ³õ+*Ь 1Ð0g‰1R½&ñwbÔ @¹>œÝn<ÆŽ“ Ç.Ç©p¸Ž^Êý©œßËÒ]Q¤Œû"㨠Z–-¡f5Mª£Rƒgô Œñm}5DÑÒCìÑ…=ùaÚ*²ôY•#Ug(¹,\tFNûTver¹¥)mIÓH%\H`¡^W_ÓVö„Í 52;Bô€FÝU_¢º’ªTë‡Nù8‡’šaÈ„]‡d’Î0’r–ƹ“øXŠŒÌÏlj’i+®H.ã•AÏðu‘¬¡õÄ ²{N} ':éÒ|tãe,4á¡•/ÔF<)dÝEít.ܘ·¬Ð<áah¥©ÿò˵¢_,)ã¹ Mø½°èÜÊb»¼ u 6Ž#¢IÝ^²3¥¡³Væñ”DÛ$gJ7üF1$ΦAÔÃ×È:+øMCÿ¢û³†³¼Ú†¦ð@aõŒ]—¾}òd&^„JqÐ&£d}ú0Îä+?m+†4,¸ºsÚRçØ4¸ tÞò¹ŒJ.¸@¯ò–”ÍÒC›ûi[Þe›èUWß}·¿sgýúš ƒn˜!瘊*(¼é 9e„ YCóœ ª|õL±R°lKB µ£Æí¤~2¬=tJDz3óÏè_¹VCxòÖ­ý¯~µ¿¸8…{Ò1˜»KYÊY DDS·%,Bbß|³’N®k è ýë¡öKäÔ9GN¨©gÀúÄÌ‚e@`8›Ýñ™ë®çù¨·þÔ‹Dº_üb=IÿË0¯DÞvÛú Ê3_‹bb`"rdmD:*Z»:Âý°ã–Áœ¾üÁ6×à“À»úЕö\À^†¹v±~¡kEÄÍ–H%quËX:’ 8›¤#©œÁ™´î&AC]÷å‰å™g°ô²Ö‘9M6™Ü±µB=$š.9æ™Z®ÛÐNØL ¢ÄÒš›ÈY}ag!ç:m7ßÚØiP2…¢°õêÕ!cèà91¥4UCý3Ä& öÈaa’ªYÃÌýP‰¶ž¦«‚ކ(Ý'™²ôòI¦LÓW"™ ÎKÝN¯,·ÔƒÆòâŪÖ(¨ $†%ö ü uqJítoË<;3èĨ©ç!ÐsÁ<ô é³]¬pJ»gˆâ²fþ,ónûÏÔŒÝÞÅlk{n ¸ƒžÐ7§ÒÄ÷ä) r¼Š‡T‘ãú—- ,Œ¡~êˆHœ™àCˆ›2nÈá"O$-Haà¡þ²JqÇ’P‰+L%¯«Å4Û_Èšô)QLâûYŽÃG}½Æå»˜°ô‰H÷ôéª<³ÜèŒ{è‚%¼ä!¡‹ÇXðÏ놯(½,ƒ™µÆóBiW¤Ã?®Aš¦«gwÇ{è:¦Óh¤øYºxï^­~ô|éY'"Å-êq€Ú¡Îè5äÃn>2×n´°(e-ý\R’ñ¦¨+8¥—NyŽ©1òÎþéºw…" d£ïYõ¨9/Požÿ ¢ùoÈ{ Šts¦ã…Ö`E%&߯¾Ù‰ÁzÜÆÔcI²¨ôøñaO’Ôxß~»Ö{àwßÚÖeÉJÑÒÞuÐäÕìüüçWz¯ûþ(¿…žä©»w\ô(ñÀã0BëîíÐî$v͆ÛN8nïCËNYÅå÷I)xèn~ÑEÜÉr½Ûÿï?lzI4L‘ë_¶Jžçϯ2×gH—€!µzF™–ãpó¡™^1I;2Ç¢U\Áî5>}MFlnúþÖ ¯>P–«òÓV-æËuBq`ºEfW§Xu›Y§¼¾lY9tòˆ%¿NŠõà|ÇQ޽pó°‚½x£Î†g#܃ñ¶êž ••Ùu‰°z;k#§¨à"rÞã?E¦,Dd ß¶_^(øvÞ~!«K¼è ·'È/b[,‹Ñò|!\¶x#ÖDZ2«øŒ…˜é.K¼{÷hG‘dƒÝñ&Z쵋-˼‘uaH[D€¤b——ðæ.ÏVrcY¶Âp¾ÕW­³P§IEä=% åNQG°B¤»ÿ³ŸvJ/Qy pù—G²òÊÑ×¾ô8-Îå–/°„cíNî[‰µ¨ 'h‡8ÀrìJ@뀼 l>•¹Ú",ÉíØ_–A?$H£v/dÝÄ4]ÐfK¨TÝÐÌ[F¼ÔÏPraÑi:ð Ç¼£NQû…2s«õ*Ì9d¹„Ž——u–S¯š ïÝ;d…–Í׳'Ȩ¥»X ]ÊÉæmÍ]1ëC3ŽjéXwsÊ ÚC@Wï'·ŸòV › ¥µÇvº–N"t!¼cpšM¢^ð2Mõ¶Ü÷Æ=éÜåj´†J/ù]wro®în¤ wnõh{rìÌÌê¶.¶gHÔ9§ÜSJàò¸ôº¸3½©Ž»Nؽ[Ÿëª4ÍŸ¦ÅLt:GsH½zaá¬l ™\)m½WÞ’Ù½$ÝPÐÎPïÖ2«±YQwEj·#ä|ÅBoÞb¡óöËY=¨²„Kb|ëÁº#iîJ]GËJ+K¢é0E×åÙp_~ø¦ë®3^Æyp;o)õŽq·íN™¡!"ã“'ëBBçSºà'×uÑ`8„JL«V#Å!VŪž"]Ÿ\ Î{­a·Ñ©?S¹-Ë‘öÎ5[  öqqñ“–n;ÆH½t .â-fayæÔ–ø)ºe“èÔ´zûö* 9Õ¡„~ ä›F5±Ya¡ƒýK¾xqõ3²ºSìµ’$5tÙ¿sÕ¥ ØoßœŒäš¼ÞFãò´Ñé–Cȵ-g‚iB´¤^4ˈÍ{™rcSerO¬.ìKòÌñSnö¦‘dÿ˜ÝȽ¾)Mdee§’[67ëü}¸<íuJvœÓMqi»Ø&¶­ØFøí¶!vÆr‹ÇáW8“9Ó¹)•í@ ïíâ×U ÙmK_‰ô¶$êÞ!ö*“NÞSö"½•Ýñöbg¾E†½Ä“¥¤g‰ôÁöòÃÓ˶½zu·ý¢Üå¶â ãàmünZÇ,cÑ´vÎܽû±]aNÍà¾e(†ù”Ìv ÎD#8vl‚wÛKž±hø°_}X4š”ÏÕ‘ü 5¡ìeKîøWBÞÆXïy­ÐÛí7»ùeçS*Žñ,èØÝèL‡¤˜Oçe† }ž«:–{ªKEí8‰@(`èF™yr•¹¹\îáGÊ^@^À{ù>ßshS²0éŒòïV¯ûz>JTÇ¢äÌ4<…²KüL@düÍùši[åMó¼Ò*Q4ù\‡¼±ÿ)8ÿ×)sÊϺl§x/ÃÁ©êÌç¾wN“{Íÿ%R=MW¿¾Ç¯±g `µV~Û…_FH´ü_ýÍÇH]¡7(Û=¨¤Mìç(w!ì,¼=Gn»àrrg¥ Îoõ®]»A=«®Èqå¿úc"PüËásßVnà‘<܈›eŸ@zÈ ×><×[®»}·–ï¢~)ƒƒlu]Çýû뾬yƒ‡©ãúõÿá³Ö© endstream endobj 13 0 obj 7413 endobj 15 0 obj 7413 endobj 16 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 17 0 R >> stream xÚíÁ‚ ÿ«mH@ïkè<¥ endstream endobj 17 0 obj 280 endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000195 00000 n 0000000244 00000 n 0000000303 00000 n 0000000507 00000 n 0000000598 00000 n 0000000616 00000 n 0000000654 00000 n 0000000762 00000 n 0000043577 00000 n 0000043599 00000 n 0000043626 00000 n 0000051181 00000 n 0000051202 00000 n 0000051202 00000 n 0000051223 00000 n 0000051692 00000 n trailer << /Size 18 /Info 1 0 R /Root 2 0 R >> startxref 51712 %%EOF ShortRead/inst/doc/images/HilbertPlot_H3K4me1.png0000644000126300012640000016531312227066722023130 0ustar00biocbuildphs_compbio‰PNG  IHDRf6–sRGB®ÎébKGDÿÿÿ ½§“ pHYs  šœtIMEØ gû¤e IDATxÚì½kì¶iUÞ=Ò§vƒ¥¶Sã(Ã^ Ì0 ›ÉdŠE)ÅŠ¢””Ц1ÄÔÆ4&Õ@LµÝ¤‰¶š´Ñ4%TBÚÔR#¥ÕQ‘âÈfdaؼ03Ì40•ÒÒtïûáâÇ“ë÷¿ç8¯ûú~x×úrýïûß׿¼Îë¼×q¬µŽõoxÃ~ïš±±±±±±±ÿ_ÛÃfÆÆÆÆÆÆÆ.ñÇßøÆ«ÚÑþÏû×ï|ç¶}éK÷ïÿþß¿mÿçÿ<½Ÿÿöß¶íïû}ûí¥KûÏñ¾÷Ã÷±?ü‡·íÿïû×ÿõ¿îÏÇçgãûÿûï÷ÃkŸ—ßçx|ïý¯ýçþÀضÿçÿì?ÿÿà=·/ºnŸüä¶ý†o8}«ãÅqü9_¯Çãar!ÙOÚïó½4>é}ŸÃüyÏï§ûëýù8Œßçs¾¯«×ÁýOãåñþÝßݶŸùÌþ<üù¯úªmûÕ_½?Ÿ~pÿ½/|aÿ¹'=éÊã˜Î÷³ŸÝÏSÆÁæýýÇÿ¸mÿø?½.üâ/nÛ§y’xž ¤ó²gÇuÚ3ý±?vzÿ|&ûŸØ÷ OØ_¯r§U„Âõû}ŽÇuõ\“ŸW;φ„¼3#ÇãÆë„ˆ’b|¹þ¾9Ÿàmûä'oÛxÿý·¾u?î·Þºm?ýéýç¾ök·íŸxš‘Kó‚ýzœ`Øb0 tÆëûÿaÏ\ÜrËþû/~ñéqá|AnØu×íÇ…qâ¼}ŒX=8žç9÷ãüÓççù“˜ÁÆ xü<_=ÓzlózœžôýÄø<ö±§Ÿ>Ç8û{39>þï÷Í x\Sà­ïŸ×³Õõ11ëõ×ý±õ&1ˆi>4&óOý©?5 ÁØØØØØØØU2 A;¦G ‰Ïû¼öÚ½§g ûOÿé4°çåó2ò7³àã$äàØ½=1¿n8ÈŸÿßvÛ!áÁ}ä#Û–*ÈȱaÆïÑ>ˆ@2ÜÎÃç³ûN÷+!I{úÉÓ]Ù'¸}/1~߈ÝLVB.F”í8 &{ÊÅÑsæßÿ¾ïÛ¶÷ß¿mßþöýýÿîïÞÏ£»îÚ¶wß½m_ûÚÓãfÄäûöàƒûçÚ÷…ÿÃLð²><êQ§Ÿ¶ÌS>Ï~Ì´€€Òx;6Íøó¼{±‘õE@çŸs|üÛoß¶ÏyΕ×3r+<¯œ»àqðºeÄÜž#3$a3Ânû÷~½.›ÁM¼!ø£9<Ïf Ò8úùO댿Ç<…Qñóåß1ßg=¿÷Þýs”®×Ì@²aÆÆÆÆÆÆÆŽ3ÉÀÀCÅãá51ïùš+{ØxTx@Ž9%ϵ!Ô}Їfä€çêý9Û³y\ãàØ1Hϱ#<>ŽË÷ñí‘Ù&•׌«=ã|˜8.ˆåÒ¥µùa;Å:óÒrÒý^E6i¾¿«û7bð÷|?RLÏfÆÀˆŠý’]Ï}â9»çžmKU0WÏx^›qãs ÷G/b{©îÝTRDL±{{ä ½÷¿Û¾ìe§@ËÖ5²HH#eÁ{¼ì3¨“Å'×!/̓U嶴ߦ4Ö¾cx :vÔôjÕAŠé¸îÚ±Q®›ëtö6–rÒñÒxºGˆ’ØT‹:K9ÅdSðj 2)ÙµXhBz«žô…,܇]ùþ6KãáûrqNÏc³ÿ>Õ;Ôíƒ Øßg½å-ûÏ‘ÍofŽÏûþ¶n–)v›±÷ÓEW{R€ø¬3r4%1Oî­êÉ3–‘f|ŽûÊ8ƒHͤëmJ†«Èx5Ǧ­GI±Äl¦3eí'}™´nÁX»ûfÓI뜫ÁÒ¼óë›nÚß÷ý @Î3=þ=ñü†`llllll¬3ÉC¶GE¬ƒìgwߢž”úzg5Bñ‹>ç)öæ¬Qç:øÿI¹Ï½OžTC6x¢xè +žãZ9Ñçedçìa#”„˜S?w¾O ó…/Üß·†”Rh Ž«9«ŒTëþv´Þ¼ÅZ}\ƽÕÉ{¾]xÅhùþ§ïñ¼ñÙ~ã7¶í ^°m_óš=²uìsÏ€CNº­ëg§V/½zÿZ–¹«ZՋסvV™1Þ'wƒûòË¿¼mÑ•h:©¤ÐÄ6$Ûª Òù97£õîðýKÏwÊ¡J9 þûsïˆtÓïCû½hÝ]M`Q+ǺJ(õ˜IŒx²aÆÆÆÆÆÆÆ.*:ce4wi2ÒHõÅ®ËLõÕ â9‘]ëzT×{ÚÌ8–ÿ±í¯Ïžª=:Ÿ[{ÎÄöÈòƳcÜ’ò\ëâØbàΊ§ýÏØ¶Ä¦ZAC ͳNYà«J‘ I6Ï·ÅÌCÖrcV¯Û÷7uU[EœÙåÎÆæs/yÉéùž˜#Œtý-{Þ¯Ó¿”Ñê¿“þ€‘Wc|’\RŽKˆ>ÍŸV}Òzh¤ó]UêL:-Ö9á99>þñÛ= ôMXw÷¸Ó œÇÙH´1\«÷¿ŸsÚ863C”ºBzÜ[õÙ*óÀ÷\mâç“çÍÌÇÁʼi^sßXÿïºkÿý¦`˜l‚±±±±±±±Ë ÁjLמž‘•óÒÇs{Þóöß§Ÿº³¥Sý'çK ¼)`Q§‡Ý”·ø>HÌבbh¿ø‹ûóã:É"Æ“ÃÃO1¦Ã"flŸïQEÀÿÉà|¢KȵeG'DÖz+¬Ö‡'†¡e7GO¸tÇt6yòØS,2!‰Õ®‡ÿô\!Ùóœøºaä\“˜!?«Èêh–ýj¬öèýNYÞ)ëýÜîwé|[·;ª®@ø‰aûÈGîÿÏzò·^…ŸOêîa`HWŸ›t?M½SPækÌY;Ž÷—~‡RÏÄ8yyþ˜É±Ò«•w¾ÓNÚ/üž Èó‚ñ¢×Œ™k_oêu1 ÁØØØØØØØE†ÀýÂñ ñ\RŒÛ1!×»;ˇlÙ§>uÛÉÙØ£~ÎsöH8)…áA}ô£ûý[¡¾ñxrúж%ÇK± #z©¡÷¥Çúöu_wCåê‘Ĩ¹Š"édÀŒz¾¥y”ƃëñx¼éMûyò?°mQ&uÕ¹ˆ?_šwFÎmHL–”}¿R÷Ǧ’”yßÇ÷<ÀÈÝùó~ÛþÜÏí¿Ot™ªFü¾¯Ë¿“üž C0666666v‘!¸ö+?Í5×\sÍÿóà#vž ±)< {\x.M3ߞسŸ½ÿ¾ ^ÛãA/š~ï|ÏßU/zÑy Ëç{Äò{Á£¶âaë*È÷ù¿¦œ]læ…­»âµlk#%<ÓÔ¾yþIÉÏÀ±ÙUä¸úÿUfcÑ$DaÚ,–®×1üUäe&Á¹;(MCmYÚfò’K×a$²:oR¯‘t_̨%½ˆ”ÍÎõZ Ôë[‹5»çBªÎHëaŸ”•ïlyŸŸÿª¯ºòsñ¬gí?ÿÓ?½m_÷º5&UÙ¬*q¶ù}´ËnBøþ¿cæé÷Ɉ™çŠ×è}¤^$ΰâ ËyÁ8GùÈñ­œr²ÒzÈ÷Ý=×9hÃŒ]føÂ#vžŒ•ÏRl³yÒ vbEF®Äî©:°É~ˆ¡‚¬éý߸÷˜@ú­/¹5¯?õ©½Çç‡GGì—.siÎÆÆ£j!õf0¢f?œÆþR,3!õÕîjζ6’Á\›ºš¥lç†Z½ðj¯‚£ˆÞÖê®2J1swYó}J ™VuŒð»¿ûÊÏ)ÏÑQ†6«ú¾?IÉç¥Õg§jÇrSï¿NLh».kÒ7ýŠ”ÝžÖ«¦ß;ëëãßøÛ=—v_|Þ­ É×ݺ\6†ù¨B«Ÿ£¶˜¡Å`Ã㜲” á.ޝ~õþþ˜é¹÷Þm #Ò÷õ87ÀçÉÿ›çï C0666666v±—Ì€c « P6×g²?ª ÈHuÚVT¡“Mëìa+žL½ðØÞõ®mKV6FŒ†ãâ9rÞxØö,“ÍkfOÐ1l÷løüçO{xÔ­rÞ΢5‘{ò¬[÷7bmö¸í7?Å®W³˜"?š£p4·¢1‰Aj FS„3Cäq÷}N±ñTïn]3„MYò(““îoBà)Ç uóóÄø¹ !ìÔƒÁ½JZ{š-—e•KþŸý³ýº‰ ëoSŒLŒAë^™ÿž¸Š¢'1QV¤mÝÓºÑ~×ÒzŸÿþ¥_L4L:¿0ŠT­êp¤\†aÆÆÆÆÆÆÆ.2M‘Íxb ’¶º=2b"­ÞÕ±Uêø²±d¾3b÷Is¦åCwDS¾çž0$x|þ¼Çf‚ã¿å-ûëxÿû·-ŠUx¤0&0\'Љޑ5Ä—<ÿT}bÔ)[×9 ÍóMÈ¡iÕû{xÊ®þ€ñ}áyy2Ž-WœbŽŽá5ÄÎÿAÌ7ëJx¿éúS×=w9µÎEÒþOÙ÷þ\Bô©®ÛÖêû=ž)KÜëE‹‘›q³îÌ¢»¯º7Ç¡õæhÏÕW¬—ÌÛßú­m‹n ë̓îçoCÐIÁ÷q5 ­si=Hó%UÇ8‡#õ<0£l½4©ª,1%0Ö—ñï‚™n¾à SÎzžž‹–å*œaÆÆÆÆÆÆÆ.2F$ölíòÚžW«'mKõÁ)ëõh¿ûU-{‡³Âñ$ß÷¾mûž÷ì™ ˜¶TôÞ÷nÛo¼òsѪrlFÂîm’Î÷ž{¶-:‰lº© `µ7FÚŠ7½Þ·†}Ê^÷õ6D׌uƒz¶°>|Ë·lÛú¡ýø_wÝ•Ç#½NzG¯Ã÷{õy^Ýoê¾ë«óÅó/ýNYÐç“Ö¯‹(ñÂ$fÀãߺH&†c‚±±±±±±±Ë AŠáØCÆ3J±6¾Õ/óêañ\…oO,!y®$íý¤lk{©7ž·XþM7]Ùc%FMv/ïßzë¶Esœóww3r|ÿRuÆ $ÜêŸW—UŸç*rOŸkï§ý1Þ?1W/é¬v[LÙê©îݱñ†R/ÌÌ@ÊIÙꎕûý4¿}0`l*Q¦õ£]G«ZIëHS´ŒÝâ´¾À˜X!.Õ7KÌå-·ì× Ö¿ïú®mK=ûÿðþüéÙây²ªÿáûŸ˜¥T}‘rR¯‚Ä`%¥Ât¾é÷ËÊ«m½ãþ‘Ó…ò ûq?ßU/¬ËîuÂúÏþÐÉ¡›åª¥ê‡ ÌäøDccccccc—’'јcŸ )&Þõ–dïc!»þ‚¢RˆÑ¹»YBê)›»!<;Ç Bp½2½¨–pì’ï=ÿùÛÖúd3„Q`Ü'²Q}~ ®—qZÍ­Hºçš´«1¼6/LÐó˱øûïß{øÄf©úh]Þš" ³Ð=?CæÜž 7Â…ñýwL׈¸1G©:‡ãP“Xª÷oºGõÜ…ô¨–~Ên·™añ}[Í2ãáý‘ÃñÖ·îÿÏ: “ÉçZ×ÓÄô¶çÊÏBô«UBi~á&+­>O3)Öîû3#Ä:Ïüºá†ýÿÑ•!ÈãÃz~óÍ¿wÍ5×\sÍç>÷KÌ‘Ï+UïÄçw|¢±±±±±±±KÉãmž–²½î®Sö(ï¼sÛÞ}÷¶}Å+¶-YÉdÃò=bè hZòHSlÚž“¯Ãuæ«Yåô^ öÏq@z)¦í:Xׯ>ó™ÛýÆägL ÊLëºÓuÛó¶gÜbtŽ‘®*…%á\…ÀUF‚ùÄuY9ŒñÇðì§t}I£Ï›”óÓÆ¥õžHL^cn’âYמ×^gŽ*^¦¢dž×«H2U74K±õ¦šuêŽ ó‚ýøïÿÓÚôaÎeî|V•JW™¯7ÎQ1Ãf„”óÁç‰Í;ç&—çß 4×ýþÑþ}z°?Eþÿ‘l[ræ8_ëäüöoÅÉu;þ /* §ê–aÆÆÆÆÆÆÆ.3öd[ûÆ,س¶–²‘1Mê÷Ù‘ïãñ¢`¤ï‡äé¢M,Í1Ť±Ýt`CýÀ¶-Ê„öر·½mÛº_6ž,LÌõª0T1àÙâa¹Z9-uóï§,i+¥Ù`šÜ-Ôó%ŲCâç)ÅWcÛ¾¿Î!pÝuëßn†!1I7%Í£4’‚^šß©*qMýçræy4Sèûd>¶ÌÛ—¿|¿r ^÷ºÓŒ–ÍLÑÑq=j­dú›Ÿ®ÚiÌ£™_r…>ñ‰ýï÷òýë·-¹Fëþ›ß¼gx<Þä wÃúnÅÝ6ž«J¡fR†!»Ì´nHIÝ1L<64ÖŸô¤ÓÊ1#ìˆóÍûý 8‡9Y«ü¥BÎæO“ã€Hݵqµº õ÷ö¸$¤™²­¢m=VëÈÓkÎó/Øßì_þËmKõ‡çÍÑêwŠù¹  u‰\Eò á%†¯ÍóÕÏ'$èûØïZ–«Žj],k6vщh±Ûô|™I]}¿þôŸÞ/UH¬¿žÏ ){|3ÐrtZ5PênؘœÆ\YO&ÍKŸ7zÌ@êå@€™±Ÿø‰mûýß¿m_ûÚmKN[˜qæ ÷ËLC{<’§Çw” ÇÆÆÆÆÆÆ2Cà>êH³åØè·b—Žq% ‚å<«¶G„Gs€g&€XzÖžn¨}Ž,u·»VÁ€ÀhسtìÇ104ÊÉM`~é—ö ãA—3r`ì!;–E-ÚûIQ͈¦e½7¤´Š,š¥ý$&Á¹.¾ž?÷çöÿ'¶oåÊTe»aÎ-hÙç« Í¼¿ãõç/Ä$¶†lƒ‘hëJ·zÝ A¦¤¤ ß”úRUŠ×ߤ¯âóJLëHÔ똫’Úz·ª<ÛîWcŽ’’hÚïêëÆtp]<×Ü~tÏÀX³žS¶T»½ñûßO¾ïyfžýrŽOµCZçRÎ×õVí5 ÁØØØØØØØ5_ñ†7¼á÷6æ'yŠÉž‹¤íá&-}{Ž-K´ÅFW=Êæ‘®öKoÈ-¯)J¥˜Pò¸Ï9·ëI1)æOê9s‘êj¢8ЧõÚã”æEZ¯AÔTiíЭ4îiÞ¦ùž [›Ÿ>/”ca Ó8Á`;7(Í¿t« Ÿm~ûõßú[o†`llllllì‹HB®KNžvòlRdú>Ÿ·‡•²ý9{>~?iR¯"KÇÜRÌ´1*ÉCsÿl_R²óûä0Pû¼çöÈBYe~\­Àx¤žÎÎ%6¶ª”Ahˆ=!I#n®óC+žê×Á¹éÃ8¸Çó”ï¹Î<éT¸®ßãmdáñ±$$eÝ7ÅÏT/¿Š`s“ucÈÒ~²NˆrUù²1})Ö›r›ü¥uʈ¹scZ5@ZÏW™ χ¤€ÚÆ31nÞ¿ïcbü{AµúÖÉI:ì‡õ½Ö¯«ÏIû=NÖ˜ºaÆÆÆÆÆÆÆ.3 Ù&-yîÉCK1+#›Câs /²ëJšÍö¬¬×ê~¹Vê“íã$OÄ—º°‰yòôR¬ÑÙ¼öÌ“òŸÍ×·Z…bDs´¾ùÜ,ò”‹ÂûÔÃÌ๓%Œ¶¸‘WÊîe¿Ö¿àóì¤@¯'ÉOÏ“™«Ä(Ù@,T/¤ê‘4¾é<biU ùµÏÍ9IçŸr’îFRLëEÊÉJÏß*ãšb[ŒÝŒ$Ì]bœ‚¥Šáj«ƒÚ=kÜ;Æ>)P¶ùJ•㋞ ¿[iýHLÆjnXc.09ã]èv¸šl+ÅHs¤Žjbs¼¤˜–bÆ6+š ‰Cƒ$‹>@ò„W»†™ø}+':§¡#ß³ÂcbòXU söüª"âÑê ÿß¹FxFÆ®×N]íˆ%ò>1Á„Aþž»ýq¿ÑïXUêCÇ !“¦ÐÆs›zOø¾'DײóÓýOÌäѬþ4>«LÁêq3ª0Z Ÿ÷ï»o¿Žx\Ü-†'Ý÷;îØ¶Ä¸sb-}ß”’ibþZ5Tb°ZÎF›'ís>Oæ?ãL·Xôb¬˜ëõe5Gß Ö ¹ïG¯Ë–ªƒ4 ÁØØØØØØØE† !zÇ®ý‡Õ²%1<±£¾ioû<½¿ žP©ïõyáÑ™™xÌcÖŽw™ØMU ÅR6qʾnÚòÉSJY¹ö$“”•¢R–(žœ=¬–Eßê„Spªö~’¹sBøÓ5¢HÈ#ÍcÏϤϑêšSn†ŸÃ”Užº“&¤˜‘sƒVPÓ}ç¼Y/¬'ᮃiÜV±ÇÇÏi«ÞJ×㜦”Mžª£›ª$ŒØßö¶m Ózë­§ï{Ë YeÝ5Wcçžïî½Âuzœ½®»z(1*G»Á6†ì¨‚kÊ=†`llllllì2CД¢šÂ\Ò_íÖ” “ÒWò¨V³NSw7×›: ŸÏSçËûd™º‹•ûÚ·˜«‘aSnLž&ú ±¿§>õôyqA"iÜSÖncˆZÌëjè’çlDä˜*9Œ_ËÑð}%GÃÕ01VÂLódÃäl䄨ZÝ8Œ‡u,Ò¸%F,ÍÓ[7âMô®ö0ƒ’˜‹¦QïóIã•æï*cf$Öb÷0v̧ԫ…õÄ9Pþ|b8So””³àëå|_ö²ýù¤ù³Ú §1«ÌŸud’Baûýâ5:í÷‹ãòÜò¼³Ž´\‹–ûÒÖ¿TÝ–˜šÄ( C0666666vQ‡ yò &¥¬ëi„ÿƒÐùœëqAäxª|ï®»¶-õöŽõØSO–ëóùÿ3ŸyÚµ‡ "´‡u3äs޵aûú@œ<œ·· i`)÷£!4_¼ßôÜ9%1„)«?Õe›Ihšñ é7fÊÙäM¯€ût4<¿Úsf¦ 1w^ZÕÇ¡ÅÂbMÕ3®Îhë•ç™°fÎá{wÞ¹mÉÁJ çË}ôï”™4_gêÂèÏY¸1Þì/åÄŒRáØØØØØØXfVëIS–hŠm« †g BòñÌø:@ÆÄt\e” S¬´)%¦qK1'{‚œ'õÅÏyÎÞ#´ö8×3€b±föãzúÄ4¦ÈßoýæÖŦlù4þFTi|±Ô}2i±§F(‡q>ž0Ü'ºj&݉†³dÅA®wµ»^z.Ž2=ÉV»!&ÄØ²Å€’‹E§qIÕF)wj•ñJ=DÌtY1ÐÏoÊ52SößzO<ÔÕ=™rŽGêþ˜ÖÆ(´^Œ L°Ï«õ.HßëGšþ¾çb¤ý{Â:ª˜.¬·ã]jžkê#»ð%K1^XŠõûøhu»{c÷«1¿ä!ú¼S7¼Ä¤Ø¥=GržûÜmûþ÷ïÇÃYê6Þgÿä€o¼ñ<$Øbóç"GßÏ„ ›v~#èv~Fb0SŽ™x¾2yÿúë÷ÿ¿öÚÓ#õ¾Hã¾Ê¸¥˜gš÷ ©7f'Å0Bk [B‚>^ª–Huñ«µ1Om½H¹©úiµ;bb2Z¶ùªRfš~®V‘xºî¦ðÚÖ©Õ\¦´¾§.¿é÷'C[çV•ÓüOÏaÒ÷h:Ɇ!»Ì¤Xbê¶—4ë›G<9w‘kŠ])k2ÕÕºÎ7zH»òx´ëm: ð>Ì õ«î‡rõýáÿ0¯zÕ¶%·ƒýSÅ€¶ý*âOŸ[í&wTc{µ¹1RŽ)'¤íùÄ}ðül÷Õ=¯¹?ÖBO<Œë WÇÛuÍ ©«ÙªQVèÑy˜Ϲókµ**!î¶þ$¦5­m¼ÃÔz¤yëÒdLŸoˆ·éC¤óõýN vZ‡“þB¯Äôºš-õ$H=š2¥ïzžÛïlë9‡ñ‰ÆÆÆÆÆÆÆ.=TȬe¯6„†”z€Ø@jxJè9S‡ÿS?µmɺÿ™Ÿ9Ípp^ÎÎL®=LŸ_B()ÖJ•ÝË8×£§®Yõù¼"e NÎÏÌCò[vjS L±Ë£}ëW=ݔݘ 3©ž9U©¤ý¦ù”Æûn¥É¤à˜.: FrÜoWñ\­~ĪRdBbÉV)“R]CºÎAJûgIJ“-û=1)I¿Åã—zxž§^)vŸ´ÕG{¤˜wcÚüXešÒ|ä9Iæøt3dÿ¬§-WÉÌ¿é{I‡Ã÷)­‰l×}á÷i|¢±±±±±±±Kö0V=÷†€íÙ§÷ñĬïãð>±U{ìFÞôø;ç´'•bT«ˆÆž­Ï»›cx·ß¾gžøÄm‹Þ zf(ð©oGw€ó)zœ7gÉ'ô¨¹?—¾ß²ãz¸ 6æËuü)‹:e§˜j»®4ÏVbtÕ çýéOïç óêQ:†Ð*M¶û³ÊP4%;rd¾áö㘺%y¥ëäx(P¢âãûû-÷Æç—²ö[5AÊEHó¸1(«z) )À¶Ï'…Ç6ß¼ßÕ˜ºÿƒÊºéã“C`]˜t}üßëKSê\}?å&¬þ¾9×a‚±±±±±±±Ë Aòp›.AÊ~´b—?gOÄbå%r¨Óǃ{üãO{döŒ`œ{bO)“۪—û£[á$Gµûƒ1@ùŽã½õ­Ûö‡øôñ‰}K]ïZÎHÊŽNm»þUKÙý-¶Üög˜ºÓ%däç&1P«Hº1 ©º&ÅŒ­X‡~ÇÓž¶†DÓsÐrJü¼Í Iuü¾>ë ABÖGcͬ¬?éú½Þ4†Ð OŠõ§u¨1µž×<ç¼NÈ»é¦$KÈw•©hYô«Ìôj÷[ äï\3T©¥yåÜ#ïÏ5]€ö¾™”¦'Òæá0ccccccc‚£H¦ytŽ!%Ï÷AÆŽ…>ëYû×F É£J±{T»OÙãÉóò÷›bYò܈å‚l@îjEì’¬Uìðô~ALŒ«ëéÙËæ^­hJwGõVë¨ÓÕÜœ%nDÓ˜¿1lM Ô×ï®hi~®Öϯž_B¢-[¾õuOL‡‘fRMZïôqo•vÞ­ë!ÏÛƒnÛG?ú4cÄódĘæ}oÞóŽóJó’ýó¹Ô3Ä÷!uåóë„d“žçÆ ›q¾û^ÔÃHó éR|îsÛÖ:"¿¤càûÖ­¶Ž¦ß½Õ.Å•iŸhllllllìÒêíñ8&•<›ä¹¥ºK<0+÷9ÖëíG>²mɲ÷y¥,P3M)Ñž.ßO쪧윪Rª‘°Ï“* ’‘ŠëdW-yÖGõVÿŸzY86žöÓú…§ìn¿nºYó<0ƒæý9¦‰¾=*È!±y¾¤ç4YBÌiüWcËÖ÷0sÓ”ü|_Ósåym$ÖêâSv=çªrÒñ[†¿—|ZÇÌ<&r°R–z~Øî_Ë5kûO¿?«U>¾¼¤a¦‹ß•Ô3é¤ùkEÔtÓk3)Ÿ*2ë˜$æz‚±±±±±±±Ì$qµ~×WS&LH‹ýš0òñ~ÈA 4y¤¼Oö(F¬1Å6­ˆ¸Ê¨$O¬Õ÷&fàCÚ¶7Üpz¿ Ib™‡×fî½wÏt<ÔÖO›«ÿOÈ.!©³u]qB¾Fd ¬*¨9VmDÏþ¸ï«Ý<"JŒL;ïdI©1ÅÖ™÷ ±¶˜pÒh¹)¶md™æAc†³”º£®Ž{bdS•Lëî·ŠÜÓóæûµúü®>/©#gµ§IÚ«¢JŒßã¹v•BÊ=Hç•Éö~RÖ…Q†`llllllì"C<¢si][–±=oÇÉŽ¹ãY5Ï™¬¾g¤ÇñØ‚ü[·% sÇ “'™”£¸žÏ|fÛ~í×î÷çj×{ü'˜¶Ž}¦,^oÛ}ÄŒlÑO¹GHC­'Çɽ"’¦¼³zâjLP:+ÊÁäѦú÷„˜Sv³Ç'éP4%ÉtÿR}{{n¿´ •npI©ÍŸc?«ýêB<ªÏâóä9`ž¥züÖõ.í?åŠø|YXÈQñ|oÊŠ-gähNÒj×ÊTUÎ'õNi:2i]\eRÃÔ~¿ÒóìëHë ï3Ïxß¹Hìf`tÆÆÆÆÆÆÆ2CÐ<{F«ý™[LÇûýÝßÝ{6äøsö”ð€>ñ‰mëìÿäy£Üg}•1µÒbªK÷¸¸ï½Ï7uQKÝ Cú§{œVždÎ&÷ù·:Ù¦¡~µú˜ëÓ]7žACF«;!£”K`„”˜U ôÕçÖóyU2õÂH×ÑtÚ:•˜&Ö“¤Tºº^¥ëv—TŽÃûî~znº6oÒóâç æ•uÏ÷#UÝ$€ÕëXeöÚsתD#Õt&CØž÷Ä šaoЧf²RLcˆ|<~œ›Ãïê…qŸhllllllìRò¬mÄÚ©g]ÍænÈÅF „˜=18gÉ㑳Åã¡Ë!çËÿQ\E«HÆžrÊoU®Žp®ÃÛß¾m¿ç{öžº•¿tc/öôÍøóçê$åµ4O2ÇR¶}SükŒCBéóÎÎoÊ•é~7åG#´¦°¸úÜ®"ø„pò\ÕÇ@y“ý¡7âç1!¿UeLŽu¤1Si?«÷Í9P§¦ïàç>1kiþºË¥Ç‘ý°Nzÿf0ØšL÷£1a«Ì‹‘3ë€×¹”‹ÁïL¿ü.4†&U_¬V ¥ß ï?é’4F5åy޴ùŸhllllllìRóøð8`’g·êAµzñûîÛ#ú¤°†çGr<ßk¯Ý{L'Å0[=oëÞFCÍCgûŒgœFÒ-û˜ïÓ'ž×tQLëj/Hd–²u­<énF:GcúfVcß­z&1-­›Ú*²çþÂpxõ¨cÈËYÐM‘/Íÿv¿[¬Ö}ä?ö±mûÌg^™al]ÿV«²oÕ­çBÓ0³˜#– ŸlËÅðÿÓ<á}Wáí⹪?r^âW@Äü.P­å^6m¼ÒùÁ”$¥×ô;ј“t^«=I׿Kz†!Ë: ±®"¡Ôå/)†á!_wÝÞ3çû·ß¾m‰ ƒé:+”Ïá)®Öo'•”¸Ž"A#Žä ûü¹Î»îÚ¶ôµg(/:»£;–ØZpº.¶0ÍšÒ^SplãOÌqU)2õ7‚IÙÖG5Ü“Ãk²ÀÒHˆÁ1ÐÖEq•éJëCʹ±¡ï,üÆH¬ZË®OÖz$EÅÆˆ´Øx{¾Ò~Ó:–rVÒz׺v¦ùßû£’ÆÇU®—OJ³^ïY÷¸=3àƒöû•ªØŸïcb>WuÒ<öu6=Çmʧ£C0666666–‚ä!5¥µ”%úZÛ“iÊx¼ãûï[½í¶mK¬‹\uc0Øs$V5«W‘Œ=óTGÊþŒp]?êìüÄ8´îY¾ŽsLº ¶nƒ>_×㺛Xê–ÖÆŒ`8î'?¹mŸð„Óú…&(w&&)Ýïô<àÑ™4¹„Û}Nˆ91}鸭ûïÃìµî‰«uímžµù™Î?=ß­ß}³¤€é®Œf&Ò:æ•Çy:[?iݧç=Ýׯ§ý8·Âë`ë’‹#ã•êþmIsNSºi¾¶ž‰ñþÍt˜A?ªŸ¯k|¢±±±±±±±KöPVͦ{Øã2vWC{.>¸GîM#ðÒ—žö ’½óûý<ïykŒB«>Úß›÷ 2üÜçöÿ'—‚ž0|ÎHŒë#Ë›÷É90âM±I×ãcTy»#hÆ%gb`ìÙ:Æk>ÏõX0yÊ\'ãGuãh=÷øùŸß¶ßù§÷oD€‚&çƒÅ|÷}ÇOªDxÍx;›r8Œdç^ ™ñ¼[I”y–b®üà¶¥ŠˆûÅ<4Sb¤ìy“˜î£çû[Uö[ÕX­úHL«¡C“r/óú¼%½Vµàç5)¾¶\$ß§t<—õÍÏM«V1ƒÝzYøw«)ئܣô<µ*ï׿‰±´Ò©{ú\`”Æ'»”+ERвdž~ÚøI#?)ÏÙcÂcÑÚÓòù¸«XòÄøü‹^´G"«YÂM™.Õ¿‰þÝ¿»mè‡öˆì9ÏÙ_'Ÿg¼@Š_35ö¨›²¤‘ǽ÷î· VÎ˳åØ3&6hMøÔs€ëi1U#Êk®J±=&¬NN‹â¸ÿ¼%σ³¨e-|²õùܯÿú¶}á ÷Ïã“rzÜýÎÒç~ú>qfÌ øºžô¤=cBîãÊyy>pžßÜGwuã}Ç`ÒkõÿM÷#1ü?õú8ªÑÈô|¥\‚Õý¥ûjDžrTZ—ÈU”+u´çF¯”ƒÔˆôÿK—Ö®Çã±ÊTù¼›NPÔ·ŸhllllllìB³nô’‰òÈÁ±Q#”¤EÁšV·‘̪®‚‘rúž‘v73 «ÙÇ|„ôýß¿ÿüƒm‹Áë^wÚƒåø>™¦•äáY¡œG,<15¼oÇ~ˆÝ»7È•ëòç¨@_ãbä0¸ŠÄ ŠœÏ‡?¼mÉÑxñ‹÷HÊã â7"JÝ ÍT¤îd)FìûÄÿaŒ„ýÜ1¯˜ï¾ŽË8»Úñc1ŽîI2çÁ~ÑÑp>ÎÛUB|Î=Nó˜r}’òizWsZÒucVàôÿBm: mÝòkϯ´§®‡ì¦£1¾þ”£álù†ð›þCŠá§×­—Fëêã·ÿ­Vk9ž‰ñõõL·Ã±±±±±±±Ì$OÕNòlñPânZè©ÊÕ ƒ+¯›‡ÄqÈJç|“TóT›âÔªÖ²m©‹f|Î×{´Œ«ÝÆüDç:lßoû¶=cвe[NAй%“rNVµù=^m<ÑÃ,¤yÍë—½l} Ñ·½mÛ¾ò•§ÏsU¹²õ]·¾Bz­#ÐrŒSÅþ`0ZÌÖóF…ï§zý”ÏçA®Ü®ÇŒ™!+š‘ðøX©Ó1âÄÜ$¦3U!¥ù~T¶uÍkL%㔞_˜™4^¾þÕêŠviO»Ý—4þ¾_¶ÄØ¥ý5ĽSs”ônÒz’οÍÏöüC0666666v‘!HÙ‘‰ h]Õèçn«yVÍókÈÅž]Êâ7B„`¿ Ž[o½2¢kžÛÑúÒæqò9°µé=¾|ä:ûzUA«1ö´“çÚº&O·†ÄúÎnöçî¼sÏ$ÐWýæ›·-¹#í9p,¹åÈ4FÄ äù’62Nó…×\¿‘¸™æWÊ5ñõð¼§ç#VoäDõ ç#Àu9W !/αe®—j_?ãIµú*íùXíö˜¡†´veôø3.©×…s>\ãã$%ÐôÜ·ù³Ê$$Æ™u§ån¥\Ÿù™mKoæBÒñk=Ž®oé÷¦å 5åÖ ÷m|¢±±±±±±±K á®ÖU:;µy4-†”r ìûQ¸^ïã!³3íúHŽÆÒ“Õ,÷}plØJu˜5ë›§˜˜Ï㖔͚­»nYÁä°x¿ !æ 9y̶%›ë|úÓO{úÑÃ~ØiÆ }?1< qøz`ÈyI¹?ä’¤lf̱~z<ðšjëzøzÂñx°_žKwSäÿ<ÇlArÜGæËïþîþ<]àõŠýqz.4fÈï§>óFn« „íylÌæî£I©ý&æ#åx¥ubUG së%`KÌQbøü÷}ß•™ˆtžéþ¶û˜zâx‰J9FÉV•/‡!»Xe䪧”<•VÅÐêðíiò9W¤—•åZýøjò†àWs.R6ÒûøÇ·-]“çŸIªûåó(—¡­ÆÒœ%îXnSsÝ´5ó+ù&¦ÊH˜ë¡Ç£ÚÀóeU3¹7¥-wGKŒãŒÒ 9"tô}Lˆ¯#©*"éÊ8·$)Ä'åÎô·u¹1³ ‰›ðsÊõy4†.ÍCÏ¿”‹áý¦^íþ_`:Ç'»dÄÓêþí‰9Öt4û3i\·:M#{H ºÖ·ˆqp—Q•Ɖý%düéOï÷Ëñ|pÜù‘mûã?~eäÝbÆ ¹™²gís}0ÞϹÌ@:ÿƤz>´Ü¶NzýbÞèCÛö9Ï9}~îIããú:š^IÒöO¿‰Áæ{ß ¶¼ÿ‹¿¸m_ò’ýþÍ$zñ<%dßzï$F1éWøyo¿GIAs‚±±±±±±±Ë Áj,;yªxüöàœEmƈÒÙËíøöüðô@‚)f”´àÝ Ñ±Ås=ü¦\ç,l#-{ FÄŸÿü¶EY­õ¿0.ö¸Í\$­w¿)±™áH1·¤àûŸêŒ¹#}ŸŒ ãï,êüÙ¹ üÿ©O½2Kˆ®=w­J!Õûù2“àû˜æw/ºC‚”xîü9Ç`}¾Éx~Ù/:Ø{Þ³m¿ã;®ÌHšÉZÍb‚"W†õÌJŽÖyHÕIIŸ¥U´ç¹U)4†¡åù<×'?ùôsØ”iW« Òú›˜žT×ßr`Þõ®m{ýõÛö†N_Oz®’>Ec\üü¦ï»w‡™¾¦<›îÓ0ccccccc‚d­g@êöÅÿíÁس²ç–Jó1k¼ãÙ;‹œÏ%¤Òú7F }®e‚L¹^=I¾ç>òÉ#mŠŒŽ9ZÛã€àcNˆ“ãce^87!!%>÷…/ìÇÉßK÷#!Œý9VlÆñ¥N>uluÖ­«^BHf ̥ܕÔÇÞãLu1r «->ûÙýþÝ»ÄÏ‘k烬]½Âó sCõ ï“STzN=®ž\‡õ 8.Æýw½:÷†-ÈÓ÷=eÛ§uÄJŒ ™Ò³ã±==þ¾~º|ò¼“ËãØ9È:U¹4¦Ã=V‘öªþMû]ósF3…f‚V{¼¤ßƒÖµ­kþmÕ?MŸc‚±±±±±±±Ì´zýäa¥ºi÷oOÊf á%ÔÎ7eM7F y´ÍÃkÌAª#÷çAr÷ܳGjI‰D•bHÍ£µ2  ‰±Gϲ û¤7ê¼í‰ƒSaE<®‹˜¿€Äµ* ÎDZVŸg»¯)Ö—²ŽäVµÒÍq¼÷¾wÛ>ÿùûyöö·o[êëAHÜ/)¹È3ÒMÈÅóÒûñ¼zË[¶í-·lÛ§=íô}n]Íd&äè*£¯Ÿý‘ëÀ¼ç¹äùu6¸çU[?Òó–ri¼çTxœúäJ°åÿ05ª€RõF‹µ{>µÏ·qH¹Ö½p×Ëý†)IëVªÒkŒÆªçSE IDAT~ˆ×Ù´~´j· ÇŸhllllllì‚_šêQSýtŠyÚ#MٷͳkÙ¡öüSñþÜÕ,yV-ë3½n1 ÕjÆ dÑz.P·MÌÏÇo¹ Ǜ§ÎÃýØ›ìóKˆÇFlÓŸoxªy»þÞónµçEB†ÕOyÊi&‚ë4‚nH9eÅ·ç¢uôç=1q. ˜²k¯=Íð`iÞ“[³šãЪ¦üû²Z]’ê ¯Ç'»€#ðÐ"NJ^xPÄÒ+Nž‹=–ÕþÒ­^Óž8žÙ¶ ´lßÕ>Ý º/÷ÝwŸfì!¦ûã>ò)—"]oêÒåûc6!ø¤YÞÆÑ×KV;·Ï‡ý'ä•rLP0DÇÁãžbȉY8:_SõU 1çÒ$¥1^ƒpœ[â.¡ t×í3oª;<îE·W¾rbÌÎQqNIŠõÂ|ýènÛ׿~ÛÒ˃œ‡Õúùô®®KF|~~yíÞÉ£áóOU2 A&ÆÓ¹&tOu•PÊ•ññ=Ÿ°©†°"¦ujlIá6UEµÞ&¾n_×÷;¿³g̘g^ü=Æ&4)™­RH=9Ò:ÔáØãf|¢±±±±±±±¯xÃÞð{×\sÍ5?ò#o¼¢g™ORd³‡c`ä°šE™Î#!B#èXöoþæ¶}ÌcöHÉÕYÖô æfO4!Ó”…ßbÀ«÷'Å´*@Ú^µ7¿yÛ¢qθµÞùI1J A3@©gEëR¶Š,Ó¸%Ä™ªÚýLˆä\müVE“º¶ëlšôGï/Ÿã¾¹Æm·mÛG†sö˜_üÎÑ£å×~mÛþ¥¿´mÉAá~üؽq‚±±±±±±±/:0üamÿÖe­ÅjŒ|ÈÒtÌ·ÅÊVc³|ž˜±ô¼`=IJ|=ßø{ ÏŒý¢Ô…'Çkb±©xëOí׎õ6d•þoDÒdSÊ3"b¾°_#¢ïýÞÓ¬[µ@ÊžMÌÌ@šWíx‰ùZE¸«ÌÀúâ)[¸1 Ñ´óoÊy©*È1L6,U›øùá}˜8ŽCSÀ}õñ¨«÷º”=¶è_¸ eÒg±¢eÊý°rªÇ!ÕÝ7f 1Q»þL$¼:ÏšB^Ë[ÕW8zþ«ŒÛê8¸ÊÊ]€[•óùç~Û~çwî÷Gu{ïpŸéÁpãûyENŒCêó¥×ã]²§2¶Gœ<¢Ä4OÊ1ú橵,žÈ¤˜†”ÕnítêŽÙ²ê±[l¾yÀÉ#MãØ²¢KZ­¥˜^RVãúb!{ù‰OܶΞ'ÆõÜç^ÙƒNZé¾ ¡U6[Íú=ËlÏGºÞUÄ߆4}SÎK«ëOˆF 1iìªryøµg¤|¾Ö!ç„ý¼ìe§‘<ÏERRÄÈ¡‚)à|aÆù¼õx†!»È€ˆ”SL:yv‰9°ælÜUÝ„W¿Ÿºk¹_ûlÛÇ=nÛRMv'ÖôRl«)UºóqS}CÌ­ËŸÏ·U}¸ú‚ñÉ}ðƒ{† ÕY'ãy×tÒþ“ÇŸLC:«ÈêËТOfÓ˜;¶0=O}êiæ%›çHÞŒFÓûà8|íyç´Þ©*ȹä(¸»aÓE1óÕºý%EÅtßÍœøzÎó¶ÞeÊÒ}m Vê•à× é·êš–+DŽ ÷ËÿO¹$^w˜îÁÂzÂ%¿ÇÕÅ·úa¿O †˜²=÷ÔŸ:e97¤Ñ<5#'Ÿ?1oöONBBÉSNYú-Ví˜S«gõy‘´^ëÉЪ%ZÌÃ#Y=éI§?ï~ßéþ:²¼ñ¸[Lx5ÆÙLBÆ«ˆ¬!µ„,ӓ̈‚\3<é{ßòŒ šÜ~Ïu;¤ÎÿY_¬ @ÕŽ»yAµñ‚i"¶zÇ{„E/΄äóIHÑŒ&1ÙÄŒñÄgåÂÖ›%ÝÏÆ45f#Íós©U¦lUA/1-©GA³ÕõÍûµN ±{3Œ3Œ'çïu?íßóÅÏ×¾vÛÒƒ‚ÿ¿úÕÛ]®‡jrÜ0΋-¹6äÖ87g‚±±±±±±±Ë Ab“]ÕH¶†‡B 9e7$“ž|;ß¿ø·íßþÛÛ6u©jUéº<žô—·Æ7H<Å誳s’§žŽË8p_­àØ4ÔSŒ¯ÅŠý=ë68ÛÛýI»¼u…lÒKXÕ{8:ßÍœ5ÆÃæûâó±Iê]Âûwþº+2KézÍ@𡵬ñw¿{Û~ë·n[tOÈÚ&§€ìoûõór/Vu1\cƒ±2Ó`KЦéøiÝH÷ß绪³±:ÏÒ~Ì|¦ž«ëSûiº ¹ƒ¼ýÒÕÒÕY‰Áñücž¼êUûïÑC„㳎™ñ„ »ï¾mK.×ó´§í¯?õò†`llllllì2C`ÍTòÐWùÿøÓˆÍõ£Îâ\íŸ ¢OtêÇùüÜÏöèR–ó*bOž¬ëLã[U´KuΫ±åtîÒ•%Ì@ëŽh}‹†€[N†Ï#!^˵B"çãó²% ú”µßÞo]+Âj9 Á[e \M“ž#^ƒpœ½ ƒ”ºÿ%FöÛb¿(’²#%ÖJ˃î?·Z=“žçÄ€ÁtX§„ûÔ˜Õù—Ƴuló4ÝŸÕ\6ß|^<×09®³OŒX;O_g;¯£MÑÔ9Ñd¾yý÷sÅ/3iÌËs{D8!1…-&íëoŠ‘­Š§iÿ¯2EAHŒÀê¼ 'æÂÇ·®ESzlëe:¿ô±>×Ó¯]‚äùÍzN.\ÛŸ¯?1I±ÍÈÏçCVqªÇNÊwöSÝðj¶obÒ86¤±:®1hóà(‚^?)ÖœÁªù<¼ŸK>zÝ Ñ®2 ©›[˲gÞ;kÞ= V™ûIzMÑ0å(˜y[-§ÿ·,ôU…Ö£J‰9hþWËD%]“”ûàÜ¢–Kâã8«¾å>¥u6­O>^ÒOáüþðµûÎq˜ÇΩkLXS^¤÷¿wþòï¯]%7 ÁØØØØØØØEb |Þw, O ÄKÎÈÇHý¸ šcN¶t>«y5<¯„ ñÀ¸nÇr¨CvW*r&œ#`OØÙ¤-ö¾ª1Þÿ¤èÚzK4f£Í#?~ÝÆƒã$=›¦7Ñž?z‘³Çï2ó†ºé¾ C0666666v™!À“`ëzx<]˜gYºÿwê;o­óä¹&ÍowÅJžš=ÄSöu6…'>÷˜Çl[4ÛÙYŠIÑÕÊ1©TÿoE++ñ¥ÉvLÿhÇãwšiJJ[ζMÙö«Ùî«HÝók¡%¤Ør0ŽVI$fਦ|c2ILÈìÞ{·­»[¶óJ¹ )7!1,Ž9¯š•1Ó`óó³ªÌi¦”ç× çQ¦iu¾\ˆ Ÿùœ$Æ,ÝïÕ\¤4ßZˆs¸/þÝ€ùñzâëöxƒ§‡ßç÷Šï{þ¡C@]ú]rŽKcˆÒçÓóÌ~8çú÷˜yÊïõ0ccccccc‚›NžFBXÖðN-Uø<œ]Ÿ²ýÆøŒŒí‰Y' Åñ$Af(ÈpO>O®ˆºu…L=šÇÝ<Ìvß’2Ø_ø Ûö-oÙ_—ëíuÞºµzá†P|}ÞORÄl½#V…ƒ]Õ‰ðõ´Ü–VÞr5¼Îß „aoµj$!ØÕç9ÍûdFš­WHbSlØóFbµ[k{NSN”÷ÛŽçu­Å¬WuÒ8¦ª‡6žéøÞOË!h: Ycî½’Î;Í›Ö#Á p«²Kçoݯ'?ùôïÎ0ccccccc{4«ZÔF@)æaOîïܶ7ß|zÿf’ÇÙr ¢XÍNo±1Ûý÷o[êK»ä<íqò¾« 4¥PïŸùO/Ö;W‹¤œ*T+¦õ½UÛ€äŸþôÓã#ûC?´ß?=’2'ëó»ß= ÁØØØØØØ˜‚¤¨Åk<¦¤`ÏÛ1Ç´ñTc¶ŠgÄk²Aß÷¾më:J<¸oÜŸ¿»c9†gÄÝ€ ϱÀç?ÿÊž6¯ï»oï‰òú‘¼2‚å8Öw8ÚrµË™ï3÷ß±4gÒ#hšþç"áÄ4¤²]e®VGà¨ãjV¾?‡ž׎†™ÀVm³Z­ò¥(T_¤u%õY­oO]IWÇq•IJ޶¦Å´×Áª¾ÁC=_W{¤Ü—–S”,õ0#Ó ]~gP^µ†{ù³Ž'FšÏÃ@°^¢CÃyÁ„À ð»êÜ4ŒÜ2L¼Ÿ«©2Ë • ]ïGd†€¬r<þGÒÁ’Gën…>þ 7ì=oÎÇÚùŽ¡4ýh·±ÕºèÄÀPÏ 2³ggÅ,#ÚÝ2)Ÿµj—–sÒº¬‹@›öùC…„‰a>øàþ9OÝ÷RöŠ{ò:°ZâqIº&«Hüh®Èê÷}¿V™€43Æ:˜ôV™¯Ä¬æ ¥uÕ±zÖªÚó“Ö³ÔÛ¥]ošÏFîi\9Þ;Þ±m¿ù›÷û'î™Ïܶäp0:þã<î¹gÿûˆÞ€sò`êa>ó™mKîÐ0ccccccc‚äñ&Ïž¢³=“2XË‚¶'Š't÷ÝÛ–ê„ìÉeà|ÐÎ'¶ÞºG%„—<Ó䑯j…cŒ›=N®ÆúÛýJç{´ÚªU!¤\ªÉ`ŸÇ>vÏ\wÝ~¾'¥ÚU%ÛV5çõØó71ž¿Ôûûúa¨&Kû÷¸2^÷YÏÚ—œ4çê°^ø÷Ð0ccccccc—‚”Um…ÂäÙƒ²nD“Ä‚Eé/Åúˆ‰Xk=í7Õ¿UºKžÿjvº=S<7g¦*„œZ¬²Åx=ÎÜ¿oÿö=óBÌk• úrÛjÎÊjV«ãN¹ «ÕGÇkQ6å¾{^eVü¼§qn](Óý3RjHÐÈ¿e—§ý½_«9 çfë¯æ´jŠÆðUØlóûÂf=KëêÇ?¾_Ça _óšmûèGcVÒ}N냫X8÷œI¾ýŽÁó9ÇøÓï9äêaTC$ ÏSçÜ™‘†`llllllì"C6D˜®£!¿Ô7>)¶­VÙ´zú”ÓÂóåXnb\RwÅsÿjÎÕê•d«Ê™«Š|IÃÇk9~ÿÞ{÷:}ÞÈžyôk¿¶mßüæý÷©2Këºç[ë–ØÌ¿cœ'Uéùã8 ÿ¤hˆAb¨³Ãø¢Gã*'ß?3e÷ ÏËøDccccccc—š§ºŠpˆñXÁ„Ø ÚÍ1"býþaòøÈ™¹wÂ>°m©RHý¨}=)Ù<Î =Ú‘S·j]w=\E4‰éh¯¹_Mûûÿ–­jú§ïE¨ Úã_E~©:e5ç¦Õù§ãµ‹UÆ`U“þ(Nç½Ú ÑÇ7cgFg5&”Áió¯­¯)#ÅÈ[uAʶošü­k s±š‚%†Rß‹_¼méáÉ–ìx3×m'EÙ£½@’¹k¡×aŽïÞ4-—Å÷f ­_IÁÔÕi†`llllllì¢u d‡‚Гæ¸5ˆÈ]l z>‡Ž@Êš·ÇÆ÷\WÉûxl~?åL¬~.)­¥úÞãi1jÌב<ïæ)7"yöÜÏUå2b]\ýů95æãj†”ûÒŽ“t5V»G®Öy·ûzô¾{^bÎ jÕI©ÍfD”zA4¥½¦dØz&¸«ê*ƒóPuI\eœ‹Ôª_VnZ§¸?þ?¯=/üÿ¦ož§gI¡«UW˜QxÏ{Îcþoé¬j¿¯2 )‡dµþ¿!¿ãN×Óz ˜ #Ge•Éh±bŽÏ|d~yÝhßO1rº0‚Àü\­¢ZU\U‚<7ÇåhwţЂ¶ÖëŽ!ÎÕ_°qßV{?ðúþû·- ô¹=)X?Ù{_$fƒµÔË…ï3ßa``¬oÀõ¼èEûýÐC†óã>ÐÓÀÇO¹r­ªi‚±±±±±±±Ë AB(V>J1,b\­þ:yÌ®×t}³Í±®„ä[Öqª^H}ÔW=þÖe«yЫ b®.°VvÊuHÈ ÅÛõx¿|ÿ–[Öö—›!8³]e²£pµ×q´+]š?©û`Ë’o –V4µv:¯é×îúôU¦Á¹Ž¡&=Ì]ëŽê¬ê†¤uèèïMA°yòFBÉS_E¶öϵ¤ÙŸ ¤³àóÇ#†ÑIÙÏ©Nÿ¡ŠÁÕžO Ó¹}ê“¥n‰¡hHª!ÈÕnœIHóÇŒGÒJ÷ühó˜ý0RwC®Ï¹/Ì+öO65ú*^§Z©ZµU]ƒö½¶N´^.mÿ-µª+1Ž­~>­“|äÝ®×È~Ýuûqô¼a¾1Ì4ñÿ¤çã.¿©—vÇÛÖ]e“‚!ûóïbú=†`llllllì"C€‡D½#¯S̳)î5–MÊþ73`ÏαagË·¬Ü¦YŸ®«u³%%­ÖSá(²Hyëž²ÀÛ¸ø>ss‰–­~®«ô˜®3eéÚã>ªOaªY»iÿ«±é;vN‘«|申Âþù?ãH¶ë«“B¦«\|Ü”ãB¶·¯'õRX]ç®6ë¾Ý£:&M1óhUKËQ9ÊÄÍMòzý›¿¹m?ÿùmûÍß|Þ:޹z÷Œ1ÓfŒ\ÏO¯‹i¾ÙP,äyxÂN3hþÝôï^úýKç1 ÁØØØØØØØe†€ºF<èÖ °yÄFZö”šGû¥¼túûÎN^íb¶Ú®]_˦½Ú.iGëØý:!ŒÕl⣟c<ð\ÉÆ=ÚWý¡²£ûo1÷¦ñ~I®*&¦Üœ‡¡¶ënU7‰¡Iû‘á§ýúÿž×‰Aôsp4·gõý£ÏM]˜/›O )§,ü6Ÿ®V7£1[©º)U?=ûÙ§‘o;ïtÈuñqÌ ù÷‹ùâ\–ÖÕñ—yÛÞzë~^zžúüRï™ö»ëó¡W‘{}8·g‚±±±±±±±Ë u›ÖÄ'KÒšáMÎF=s IDATõó¼§‚çÅþ9nÒ$gtÏCɉïµX¦³‘íAÝ{ïá>ðÀþs š}hÛ~Ó7]A: æhN@B²l‰iYY2eõ'Ffµ‡B:OëE¬"ªv½íû«LL»žUF¡1DW‹ v«kÈšî‚Ìž7b÷ž·-Æ{´Ê&}…5#ãz 73PŽÉó>ŸûøÇ÷ãÑòÕ*M¦œ¡t}W;ŸŽÞ·v¼„ü›®ˆ{T¯ 1kÍRõ…€„üS›·T; Sàõ:å"‘+ÐWá¤uÝ:Se0666666Ö²+Í86läŸlʰ–4ÏÉ Ù Ô‡:¶cä¿ê&DÃñò'÷×ý=ßse¤‘ÑØØØØØØØ%#+„¹ûXª;wv¿³‡131<¦¤pÆûÔµóù”}™<¦Uû§ÿtÛþµ¿vÚÃ{Á ®Ì„Ø“tW©Äh¤ ®ûNH=y¦ï{ß¶EáŠ\Îæbµnyµ[ZÒ¯hLRÆì¬VÅ8Ö–Ϫbã*‚]­Ö0³òÉOî‘,çëñu7µ”Ïþ­ß‘Æõ(àç½ÍÓÕñKÙÜéû~~è7¿z=)'è\${”éHU&ÉXíÚ˜-ÏÍùIú&fFÓ×”o2«ú#GsÜ£À¹wi<øHÇãºù¿{^o\íÀñÑg@wãïÿýmûœçlÛ×¼æÊÌÓ0ccccccc‚q샘L$eaZÙɽ Vµä‰…¤nN®=Ûû­ßÚ¶/ùþ¼¹N ©ÐºŽ±˜3Ý’çÊxPeñä'o[kv'ã¾:ÖgÆ"!1{’©jc5ÁçѺ(¶XìjOˆsoÈù3M¢!–TOíënˆc^ÂÀ=êQ§%,U…4 ùv>é~µž'«LÐj ÝÇqŒ×U@­ÚbUOä(ó´šs°z«ÌÀQý•öœ¬V÷´q8·J¨é ¬v+MëŸëõ½žú¸íy¿ðC|éÊÏŸ×/Ìë?U3ÿðnÛW½jÛ~Û·í?™Áñ‰ÆÆÆÆÆÆÆ.Ùƒ±’hYí ({€|ž×Ä”>ûÙ=sbë«1ÝÕ>òé}¤8ê6?÷¹mK ¾!²;ÑžnHt56ÉøJž÷oÅ«‡Ê¬™½ƒL±ÁVMÐzf´×çjû7E»U„ÜbÅ®†à}˜±6® `笘©b~³?3j« ŠGûZL7!­”eŸ²ÙY_[OÌK«r±5äÙz[´õiµËe{ÞRUÂÑû¸Ú…u•a8·¥1§£=Fœ{c¦Ï Uy鼬DèûéõÓ¿Ÿ‰1ML áÓž¶ÿÜßû{ûߺ~õWŸ¾ÎaÆÆÆÆÆÆÆ.3);×YɃG'³2’=8{XÖðy9fÓb­©¿6[##÷±é£ÉoF3*üD—<䦕m0Å2Ýê-¯Éuhfvµ^w‘7D²ª3ÐJÊQHH£e[;û·!¢”ËÒ”ûÒ,Å’Ó|rî@‹Y&ƤÝgÃ*ò;:ß<ïA@‰)Ió°Í¿ÖÝõjcNŽ*XEÜG?c·Êˆ¤ùÚô/š¾É¹ Wʲ²`ªîðóìý¶yhF¯ÍwŒßrˆø=µ‚íwnÛg=kÿ¹aÆÆÆÆÆÆÆ.2);ÚÌ@R~ÃÓHÙ»«õÛ _¾‡çãmó¸€RLÉL×3`4e™³z øûÉsôþí!z|ˆ•°4·)4E¨«Ý }_ŒD}½)‹U™nµ®=!¡”˱‹l¥åF4„Ü%ºå)ûçšóóñ^øÂýqF©pllllll,3ö@R,¶uÇKÙ° 11›ÀÈQ0‚f‹nÙÖþ¿=Bb|>!{lÉå¼S×´t݉™qî†õC‘Æ?wB )ܘÓnó¢½nÚä ¡%ÏÛ÷sUó w¨=—ÃŒ]fì·nu)[2ý?i¬[÷€ý;øÃ·-Ù”ìß]¤Z6°û±Û\—zé¬f{?h×ß~û¶¥;1ц€›'ïëóç+ÑtóøÏíZv´ŽÝÖ÷í¹/WšÏF”>ÿT÷î\#÷Äl°?3]wݵm‰£cñ<µzó4¯W³óÛû ùó‰©AiLŠsTüº=¿^SÌÜëfcÚÂNLâêsžr“ŒhWs¼n'åÐö¼¦çªÝ‡–ƒq”áÂ@Ô÷Þ»mŸô¤ÓLR:ï¤qtñ<7cËkW÷µž Mgc‚±±±±±±±®CвúWû©¯jX§˜í#yÚ£ÇÀÑ>àÍc5RKžéQů¦ÓñŠWl[b£«uü±IˆvÕSM±­U¤³Z5ÞO1ëUE´tÝ­>½År5ÁçÝm0Å2}¾0cfñÄ'îwTAîèótTÁ.e¯v­<—ÑI]/[uEÒ¥X­Z9׎2Ž©[êÑ®ŒmXq¯1í8ízS®T[ÿÒ÷ýÜr=äØÀLó~Šñ§ydÍU&-'ëAZ70žwÖWEL/ƒ±±±±±±±Î´zT#{ÎVMÈà\Å:ŽÇ–Ø ýŸW•õ¬Imå¶£ýÆ[…D:Î=÷l[+#6Íl¯ïÃjÌ~ÕZ7Æ”-Þ˜¥UÄÞº»¹.ØL×Ñ\‹„hZL;}ϧÞ é0o­÷‘ú¤3ø?%)Zž{ý«ˆçh×¼V½ŠlS5H‹q=ªK‘bØi[g)ÎyºJâh¶~;ŸsW«zÚóÑš«­rðï“ï3ãö¿±m_üâ+¯‰wN\cÒÍ0˜yð¼t÷\öGUûq7Äö< C0666666v1‡ ½nÈß)žJªo=šeŠgc¬e§âa£;Ð9ž»Ï­æ<©µX41º+ò9ºR¥~í«Ýöš6|B@þœ³Š½ÿ„ Vs Žæh$ωlá§>õÊÈé(nãxno¿ßgÙ§ltß§£¼ÙjWÏÕXvšG(³ñS}c³ò¥Ç‹qjLMCΩ;ݹYöiöú{4Ö¿Úkàèóž×ÕìúV5u”Ah9=ÉÌ<ïyWÞÇÍ¿'¬ç©GObèR.[Ò­`Þñ{ÛÆ1­›ÃŒ]dl«}˜Sݲ=Z{t(á$dB@‘ OÌÌÙúüßY–-ÛzÕ£Nãã~óÍÓ¦Z‚÷u·ÿ§¾œXѹúÉóMžúÑ.o«1Þt^MëÝY¸Ôï3¯B0²>ªŸÇÑì}×;[Ñ2)p¾éMÛöÛ¿}Ïœ1ÿS¬”y•žW#íô|¤Ü„¦Ü¸ZMÀqPM}ë¬ÒzÖ²ÒϽïG»v&åÅÕŒUä~4W¤­‡G«UVÇÏŠŸm}òºÐêìcæï™qäswܱmŸð„+#o3‰‘s/—ÄñœòÚú!¼fä¤ñ¼$=‚ ã1>ÑØØØØØØØ¥äQÚƒ ä‘z4Ï“ãXQ­uë£þä@'çRþà·í“Ÿ¼÷<­Ð•²zW=iW!¤îV ³Ÿoܶľ|pÛREñg‘&äënŽxœŒ[B(çj›7äœbsîIqnw½6Þ ÙEŽ ‰¦ý´žiÜøž™³g>sÿÿ'>±méîë0Â6cêý[Ìø(¢M×k†-ÅRÂj¹1M©q•éZí·®}çfû·:ýUä~´[¢ïÛ¹]3?—‘XÕIñ÷™GïxÇ~}EáóŸü“mûº×m[z 0î0ß_÷uWž>?ÿNðûñK¿´m_ò’ýïur\ÕvÝuÛö¾û¶-¹6)l‚±±±±±±±‹ AÊÒtL$y¸«ýžAúÄxW9žÒóŸ¿mÿÍ¿Ù{nÄào»mÛ¾ìe{ÄiFÂJp«H u¡ò¸µ¬W#u ±!Þ§ê€qäÿ)W!éXÁ̆cr Á¶j{¾-ÀuÖ«uÕç2«È¯ÅxkúG{Dð<²?rO¼˜T…cäâ\‚¤ì¸Úå0]gË98š%ž˜•ÕyÐçÚ|_eV•5W™±Õõó(Ñrw®6‡ åÖœ›ÃãuÏ÷µÝª¼øý`þƒ´QÌ¥j ƒ@áÐójõµÏë/Øf˜ß ß'W#ñ»—zW\ÐQŸhllllllìBc ÑØó"æ‡dâº_ŽÒñ8hMæx¿?3Ù”ä ¤\#ŸVK‹…ÛskZàVPôuø¼ðda’Ç›bÀ)Û5ul1Ü„ØÜ¾ÕŸÛ-²å²¬V)$dÒêõæ 4¦)GÒ`ç8ïy϶%昔»…&‘d­ëgCŽI Þû÷ü]ÕOhÈÙ]ÏÍ!ZÍ)YÏG™¢´î¤ó]evÌx¶ê£Õçá\Ý‘£Õ:m]OU®VÂø=|õ«¯ðÀ¶%g€ß~7³›æå0cccccccuˆ-§þËô‹vò×ýÞóÀ\WŠGBŒœ,Í„0Ù~ï÷îÿÿžþžˆ„l’·µlÙf«±7+0¦n‹þüQíïÕjïÏz )­Æˆ­½'Ì|±Ç½ZÏûÙÏîçû’§ž‰Y1Rp–.Ï×ñ7ÿæ¶ý³vÛÒOñûÆo<ˆüÕ_ݶ·ÞzÀˆqܘ6ŸS÷µÕXxÒ5HzF&þÞêóêý:»ú“ŸÜ¶07Ýtz¾sD.ÓjÎ@b~ãÓžÿ†ØW‘ñjnCÒƒhçÓr Î=¿£ëR{¿åµjªØüü3üßûA'­0rì'õÐqî•süýÇ=n¿þ°ž¥u­UÕ C0666666v±Ê õ}ÆÓ¥˜‰³ëðxÿiO;ØìÙ«M}4¼ºÿs³«zÆQhv®Fyúž™–-›ÙÞu×¶u¶n‹e'ý ¿NÕ#)öy´_;ðîwoÛ¿òW¶íÏþìž©`<ðäɵ9¸{Ù7óéã+L¹.±¾ø*cÁÉ’b cF8«uþÞ¿c©Þºä4™Ùa=rxºNÏ[gk¯æÔø>9g(õ«?·ÛàÑœ–¶¿sן£ÏÙQý ç(5F«1ĉYH¹Mž7ž—^×VsURnuBøœ»*þÖomÛ§?}íº†!»ÈØ#ImŠÑóÚ9É3DùØqêæ–<ª£±.Þ¿ÿþmĶyƾ¾Õ,u¿ŸbÒ©kÚj½î¹È¿}>eýûó 1úÓûë"VG7´nØäÎ|çød»3/“&¿Ÿ/#^®ËŠ¢«ó¤1I 1¶ýµ\ßç¥zøÄ´ù:¬sÂû(ÎÑëÁ Œóæ‰uíöÛ·í+_yú>ùü¸?Îày8šeŸr?ÚzÕ~Š¥UFló/1AftÎÇMÔûiÕLÎ]13á 3§©g‚罯Û番ÈÒ:if¤=7ÃŒ]s©} e‹§Ø$u½þ1;b3h¯ãA™Xí:fg5ÖTimÕ3¶‡zNðšùô¦7mÛW½êô|jŒŒ™8zœÀ€1Ïœ£äë6£õ;¿³mQ´Ri»ïi†`llllllìb•AËH0iÓ;Óu•ޱ¦®txÖ®3^EÖÉSlYÀ«žzb,š¶¸ÿgܲL[²¦Ü˜ªœ ns–jëÊÆñPø3c”b¸­¿wŠI¶û”² “ŽAë¦gûŽï8íy7ãqH½ x¾˜Äð±6®)w±þÖå-!JÏžk²î9ë¹\ÿwV´{K€¨ü\¹›[ê&Éç³—rR’^×Ãþ^øÂý÷y®Až®¶:·WKê^w46ߪ{RvüCe¾Î¶þ­®“íºÛâÿ?êQûûKe¬àëû3ð¡íwÑtï•´>#“þjnÒ…ñŸhllllllìRC0 I¦ïÙSŃG ‹ì_>O79{N©·ÂÑ܆–U}Ô“6¢l1É{K¯ÛýHHÍȡŸZ]zB®Î)À>ö±mKÏ_×Ñê•4’R—Ç©yÌ(Î1/[,.)g6æ)!ˆ†¼“¾†÷“CÊ¡H±ÎÔ>170T=$&‘,}Þ7Ãá\¶ÄòÍXxý«µGn¯~õs’îû±ÎŠÇ™*Ö7_71jŒy›´ñmé~^-3Ъ°¼®·yܘ‡¶~­*ë™8· ®ÇÑ9T踊†Ï¯2(bZ—$1Z)wÉë¡™*¯[m‚±±±±±±±Ì$O«õOO rÎ^ÇÃr=¤»™Ü|5˶ÅÎSw¿ôù–ž¾¿šokHaU#{µK–»M=Æä‡Ç 3`ØHÖÝWƒ‘𑇙ÄPð}r#³ªÙŸÆ/uétº»Ö5äh¤ïª3C 9øù0ã¾Nb¡‰™±î€cÿĆY/@Þ~žˆÉ²npÜïüÎý~©ú€aX…[q1Ý_ö{íµÛF”ž/Ì;kÊYi¹I ùyÞ'eÖÆ(\mO…´®¬2«:«Ý!Óúβ.ÕsH¹cÖßIJ¥Ì¥&¯£ézÌ %Fb‚±±±±±±±‹ = <™”õoO 9!ÆóÁñ!žLË:=ZÿßbvÍcMß?Wqk5–œʪ‡Oz$eFbò¬3Ÿù̶½îº+ïô£ûýbì§·{r¤\ ΆàÜzùÕ#É|=MaµUµs™ŠÕç°­Ï« Hš§ÖXÕ9á{‰iH¹RÞ¿u |¿XïXWÓçÓþ§ÛáØØØØØØXgì°u_s{ lñœÙ6Do)ULv0ˆàúë÷Å' ±B*=¬žª"Úû«žhú^ÊqXÙ­ÖÕõüyŸñçþÙ´ê Çz]§ëy‘²“bO»ÕÇ7ŵ£uÕG•Ý|]­+çjŽÕiêEÑ\{¿ÍÓ4né¼9Ï´nXés4ßyŸœϧg=k©a°n‚Ç™˜¯s"ÒºJ,sµOB²F†0“I§ÁçѪǰĸš‰KÌ„»òGé|=žf¢­x™rÙÁ|ä¾SõÆÿ¹nºaº;çG>²ß»`r^¼6Á¸Ã(Âd1oÑKqîß#'†uª¯ö<C0666666v‘!hu«­›SŠq7ÄAy<Ì1BwwãÿîßnMõÄØŽÆn²»ÚneG™¤Ъ%ŒðÍüøó®2`œHVuZo‰£Õíþ4䱚-½z\ƒbËXe>"O×yn=ûÑ>õG‡4¯vm½(V»¢'вú·×1Ý IDATÓzšª7`xnRRCÔÎI¡»¤«,Ò|H÷ÍÕ0®ó~½~;³Ú!1f¸·çîá߯‡¬Ÿï|ç¶EñfäÛÆ×÷‰y ’v=|zZ®“ŸÆÇ]IW&Q©VqWOß—´>Â\{s·D38¾_ÜW¿¬æ 5Æ0}¾1ÎÃŒ]ìe`OcUY϶Šx‡‰‡eϘ\<ß·¿}ÛÞrËÞ#3²pV¥=uŸoS lÊc«ÚâfPR}º=ò´¿U ÿt]þ>LMÊÒ¶’$90-d·¦®ƒ\×ÍûFͳå{Ü—UÅG#[Sxkóþh„U­ù4®¶WFc¤Ž^O«'OˆûتMVg²Å™¯î2¹z]~†‘ýe¿ªê.”f¬¤Çºg¤ÉçÈ‚gý¼ùæý¼‰»ÀŒ3w{ôû ¯V%¥W~?÷àIŒ û7ÃéõÝ]wÝÃ…ãÁ°XOÀÇå~`ôxi½"s’ÖÕÆHyž C0666666v‘!0H±” :Zï›4'LÀý÷o[ê:ùÿ‹_¼µðÂJç›ú—ÛCnkÙ7E±£Õ -»:)Úùúíñƒ@\¯Í~É®…9Hý¹*0¶.î檈U«ÅðŒ Võ Ž"÷tæx¿Mg )z®22FœÉ¬ŒÙ²ÕÛ}Ä`°` Ör.ZU‘ù–ö¿šUŸrƒø¹> Oïóàÿ ÌtFÌ8Uÿ8ûÝ bÒ)`¿î~™Ö‡Ä¤`>¿4O­ÈqSÎ:9·ß¾m_ûÚý|ÅÌ0˜©¦×EêªÙÌëîê÷Ózåuj‚±±±±±±±k.­zéýÕî{ ‘ß{ïÞC³v9LžžïÏýܶý±;í9µlâÔoµËáÑ«°!½Æ¤óHY¬FÚ z>OVìò‹×õÄ'î_Á»:!)¦¥X]ê.غbºšáèøù7åN#¸£ŒŽ?—æÅª’fz¿é4…£=RnE:ÄTq^­[¤«o`}Œ@*š¦uÁ ž«UG~¾@”Iq\Ǧ}\§™>#[>oE<ÖÛÕõÍLjZgaóšºÖò¾«„\ÍÔr„\唿-ããWF؉a`ýäxVÔm:+mýN¹hÏO}jÛ’{âçb‚±±±±±±±u¥ÂUµUí|ïf‡çÒ|ßû¶íë_éâá¢emŠÁ¶X{BúM©ëܺòU¥ºUDš®—Ü #kë@¸nÄb†ÇßoãjfÀˆ-)%o»Åàò_}.V‘sÛßÕ~>)öUt|¨u âNHÈ÷·åløx )¶ë›éjÕIÌ nb¶|^IïÀç‘r#\`$ËzÀºJÎ@BÖîzšt=Ì $…Ûö»’ª´ÒïOb’“R*¹¬#f*Ì´ž@)g*Íç¤S’>Ÿ˜Öez]\¨¾Ÿhllllllì’=‰æ)'uµ«œc|Ï10ŸÚ¿ÿ÷ÛöÖ[÷Ÿ3òLݸœýž²Ÿ›VvªËÅœ›<ØU%¹£È±!8ï×¹•¶lŽùñ9ªòûà·íÓŸ¾Æ”XÐ}BX̓n÷wU[¿!÷4þMÏcµÊau !'KHöh¯»÷ÛÌ“ëÂÍä 3Oaa ô“dåN+Ñ™)k @ë›óèÀ~ÿù?ß¶õ¯®Ý‡¦‹âë!‡¤œÖÉ/|áô:b¦$êïÿ¿íMèu×yÝxÉÄ œªH ú°TÉÆV,ÛñWD>HL-ZÚ@(ͬ:h¡´PJ놦“âBÚ:(JÁ”º--!ÁÄ»)n»F²£X‘°eK6‰"cì‰Gœ.‹óûßõ®gŸ{ßW¯’µ&‡ÿýŸ{>öÙgß½Ö~žõ¨Ö‚ž ýXãxöÙmKçHáþÏmëj°ß©Ôßt~ö;+à|œòNÿ7®¥q‰Ê)]¯Ž{ß}FQ蜨(Š¢(Šk« 2ÍDÝÌX3kÇÜ53çLTûëxo|ãþ<ª^%iæÃºëT´¥<®3rÌÓ9ÙM×#IQ×Ó˜†»À5;7ƒåš¦‹N¦Ó½Î'ŸæO§ëŸVQ›ÆLÛ—ÕîRzz\ZUˆ”?uˆKǶ{êw©]Ô¯äoá ëbLÄ@©ÜIùÔóuÙb¸Œnç2Ç Örq>%ìo³ &._ý_QúI¡áûHæÎµ{1o·ú\޲‚¶ÿOÆ/0ÊŸÙ) „µj4®Ž1»÷PJçøÛV¾©Ú§'Òþ«Š]ò# â0­RZ… (Š¢(Š« ÁÑ|{·6F'«”• ™/£þݿ۶ª÷Í™ Ž/G©÷¼çúŒÇÅ,¤ªkSïy7³ãZÞQ‡H·¦5uLsõß9“ÕÌRkn<.gž¼Öùvíá™´ÆŸòÈ]´ó•äÚ±ç{Ôa2)[Óûg{º|÷£Õ7“ÒâwÝ\Ó³ÔÚíªrÂç¯~Íê̯OÞ÷ÎÁ)Xî½ãÚ±ŽËüt}_J¦¾§œ§ŸÞ¶üà¶ýÄ'¶í_ü‹ûëþÊWöí©ã;+'=AJª—*Æ@y쌥¢SÛ‰ýÏýnð8©¶Žž§¾mSÕE)/¬‰ó ¿0g/FŠ ™*ÉÿÁù$\Q¾;'*Š¢(Š"ƬÖûæÌkÊÔ\§Ö~é—¶­Ö°þí¿Ý¶ÿäŸì÷þÂì:å¦5:) «L|UQYu¤[u¶KÊBZk$³wÏ/9å‘ hæ-†“ú…c î|ÎnúÜVû”á$f|´¿L³œ³ÊPœÒ²Z¿] T5œÂ0U„ƒgŒkð9Š ‹Y¯ú­L=çu½ŒöWv•þ&£}øáýyægöJcôþIYó^ª©Â,)lo®Õ»ØÖFpÙh/½´NlWBãºbÊèÀèüh¤Àp™ÆÌL}:ÞÔÏfZuxUÉ®BPEQ…!àŒfʤÒÌÞ1†å®¬Ö”~ý×÷ûi …ŽZÌjÐyµÆDGªÄhÎõ8ºvsgî){åRÊ„cÊGkmLï—yÞ\kOÏ]ýPQ÷‚‹âžÖÑu‰±jZ WІcØŽirÜskͺÎO}jÏ||Ïüµ?«êsU{T–ÆIkýÌ: BÞã¤ØpÜåø¯˜ÓI©ÔõþÔOíŸýTô<4Îq\"CwÙUiÍ~ªìQ± $Ç©Tí•íãœ[mLBçDEQEQ\™ß¸hø©sÔtÍ…Ì,UIKŸ“Iè>’s”[ó™z«»ñi&y”©º*”ŽjÆÌèÝ—ò eÌššñ§ê—«ÌxÚ¯¦±üÞQGÈ”EàbVkVm¯ô>'†?!˜2¡£1.»eªIÁsçam×®ZS×Zmª¹@¤ñp5›çßü›m«¼ùûïßÿ_L–Ή¿ò+§ß':j›ªò¹5l§ ë}×ñé ˜§ °êÿ.vá £½mÿ<ë¤vÓ~RBÕ¾¬ÑÃ*T€X…Òù8Jçc¡˜ µ—«ãü1V\9þT!(Š¢(ŠâªB0eò)*;ÍT\o·Æ’”·fª¾%4Ãrû'gÃitó¥ÖÞ§ÌRÎúœŽiRÔ~šI3º[ÇÓŒWQÍÉ7aª¹ëOÕ㎶ï”áO™¹c¢çf¯¤öb»¹µR-¿Ê/å“«ÿpm˜ï‘ûÜ)QtØsãSüÜßd¼.¯œÙ9¿üËÛöw~gÏlŧ „S0Ȩ9N9Ÿ2Q/1eW£€ÏÛ9·ª*êcí¶Æf |úÓÛV~wß}ú9²vÇaçd¨ëJ~ Îù•¿?|gÙž®æÛ›ÊÞô½»R-¶s¢¢(Š¢(®%†ÎÆÔ›Ü1¹”¯ëføî:8“rU§È0Suçc´qbHÎ{ß?1É)CKŒÇåÕÒ ,1mf¬BÆë#³æy\;q&L¿ µí¢‘]]óÕ5ú£ŠÚTáI§~zô}]e¦ÓöK¾ÏT–ȸ]Ìnª=B&å¢ÓÓsc?ÒVŠ›®ãË_ÞŸWYdÚ?ù“§ß‡T]6Eíó½HŠ”S¾’á¢Ü;AæÎã(–ÂÃT2Tã†ÏE"£ï±½´¿Î£Øe]±5î¨Kµúþ0fdú¾ºñ|U¡«BPEQÅU… 1F;:F?]s[ÍN †‹Þ¤'9«ºµ¤´Ö¿užã*SÏø†U¶R¯›ù¦jº.2®­ºücW M3w:”ñ>\,Ét†>íi¦îÞ‹©7zb$GûÕ¹û§všVMkžnœýöÊjÈÛæ:!%àöÛ÷ÇÓZ¸²wFµ»öfŒ”j(‹Gkç¿äpÏ=§ WmÕ)°®¿‘Y»¬"#–;AÇ'Óçuèþk ñÀýލ]öóýÙ~NaYUœ\sÙv·Ýv™ñ§ AQEQW·ÆìfTŽÑ¯2š)ÜùÝÿÉ ¹F®û”ó‘Ïõ„O÷±:C\m¿ä›àÖäG·S4’³ÛÛ9ŒIÁ‘7üÔa‹3e=ÇÄ8’’•bYÒþŽÑ¦Z!é=:Z1}/½ç®Jܹþî|«Çaÿƒ¾óÎÓLÜåoë>¥T‘éÒãŸ~>¸m%¯çÿ¦7m[­I»||ÆÉQµt<2X¾RȰyÿ«ã+Û]pQò¬‘¢¿ÕžŠIb cbRUZ*®f‚ë_/¿|Zab6 Û“ŠA:ϪSéÔç$ŔĬ‡Î‰Š¢(Š¢¸âTÈ™£fxr€ÒZLšÑ¸Ë´Žój]q—7¬™ó·¾µŸikf§.£D“ï[óu3QW¥ê¨ò|¦Ì’ Ú)n†ëžSÊ{çsÒsa;’!LÆ$fJ$‡¿©ŸÀªR¶ê‡1Ý/}Ï9s®ÖÒ˜*'G³2øÜÉTW«ó9‡<*Wì—ºO)î»þ÷ÞñxªÆ((ÆÆ9|®Ž'ú•*.Ä_í­ë” óêùñz壣çÇì>gÝ¿S\\ÿ\õÛá}Nßã”up4 ª AQEQWc˜÷Ï ½§n\cKyÙü¿<Ë]ÔæQF7eœÓ*mîú§Œíhmw<®<à•·ü³?{šêú•Ï/§Gí÷Üsû½Ab¢òWöœ¾LjÔ™ŸÎ5×UÆ|nþþ´­®Ñ»v<êzÔ1pµºæÔÑãÐôøI¸6Íê}Ì"8Ú_\öËÔqέ‘»ó꾞xbÛÊ߀5›Ã¬ŸÕµj:>¦!lŸÔN¡a¿§òã *˺o)É÷„Ê*ŸozO\m“Õì¿Õñ¨ AQEQW‚äÝΙyÊ`tlš©0ê:­™ÐouF4Í¿wyÐSFãêa_*[`Ši5;1 ).N!zþùm{ǧûUÊîpÌAÕáÈ4Ãø¯ÿuÛ>þø¶•׸Ÿ‹Ÿ2í£~G£ú§1Iy:ó’bŽÞ÷êñœR8}Ni?1Ãäs"HI$“ÖšµÆAƨ0&‹×Å|{…?õ÷Ð}=ôÐéûÔ{"f+e.ù*¤ßBkøªÍ0uuޡӬÅüú¯oÛ~ôtÿbìƒÚåsŸÛ¶o}ë¶UVˆS‚2ÀûIμ«12«N§UŠ¢(Š¢ð f†tìJ gtbtœQ»­Ë'u>ÎùÊ­Q9¦î˜lbhS¦5uè»4³œ:Æ%G0µ›˜ª¢ R;¢þsÿýûýY¯ÝåýºûH¾ºþ§ŸÞ¶Š}p^åN™p3y—Åq4¦#9#N„sEÊÿg;qíz•‰L“ãÎãüÒó’·¾ú­îWý™ý[ ™”+*`ÓZ .;‹YQÉ©11F®‘ÓÏEŸ«&M‚®‹Ù‚óÛPí§H=ùä¶U6‘b†’rÀñÜ9 JpJ«P =vúü.ÛÎ95²ýÜû³ZS")-ÓïU!(Š¢(Šâ…ÀÍH§ÕÇŽF]sæäfô©ÚÕÔkßÕ1w×›±ÒyRÕÂÕjŠé|S&Èã*[€5 ÓIÿçõ±Z˜‹–vžß)«àïÿýý~.{FkŠ:~rЛ2שp4›€kû¼>ÇÌV•§äo0í‡G«u¦öp>dÀî×ñt¿ÓñËåãOû£ž³²Vkq°vc 8~Oaõ«ô=~®ë`–‚«Ñ2UÒVßßúEQEq\!p3$®Õ¦jMS­¦å˜½˜Ájµ½´FÌ™¥s¶K3°iýw‡)ƒt÷É56^§˜>ÛÙU##IùÅTnȨ 8¥‡±!\#U3Ÿ}vÛ*ú[YôÍ8·š¥ëÇSÇÊäйÓÂç“úݹU:“’2UX¦59ï)*>½'\»ÿíßÞ¶ªr¨ï‹Ù±½s Ŭ$…,172{7NR¹à¸Äý#äÆ!¾ï)¶Ëù¸5õËäÖ¤rÜbwJ¯ú ³¡¤”(VäÞ{OßÇlÆ„$ŸÔŽŽGî÷¼1EQEQx…À­áq&‘jœëàÅ5'ÎTW=æÝL}º&ífêG×tŽ"y[Êv31#Vdûºµ[Ͱ•Í(7óMÎkÎOA×÷•¯lÛÿñ½ð†7l[­ù¦˜“Ä`£O~Ž!M×ö¯Ke½¤÷îÜ*‹©ºª›¬8U*úiÙQ)P>ÿƒ®sÓ,2mþÍ÷‡Ÿ3º][ú*ð{NuãòÔÇcú>ñº¨00¶×ë|F¨èoú<ú\Ï—ÊÀôw#½©:鹿éwäJ뜨(Š¢(ŠknfFF!/y®§µ22ñ”ÇL%À1VWûÀÍ ß®ÁO•éZáÂÑó)_UÀ´–Ff ã«?HH1TfØ¿Èu|Æ8°N;}4£§Ý¾°mßö¶mû­oíûÓªwxR¦V™Ò*“Jýõ\F¾Ú¯š:=ºµfÇD]¾S>ýé=óOÇÑçrd~oCwŒÓEÍ'GY®»ã»¬þŸãrR<œÏ‰ûÝq>2üýqÌ^`•BÏÁùy°=¹?kP¬þLßÕqcµên‚¢(Š¢(^Qè8Å™^bR‰)\jÍJ‚c .*õ\¦äbÎebiæv)Æç¾¯·ž?ïŽ\ª†(F.ÿ»¿»mßÿþÓ3iÆ0vÏÙU¯£ƒ¢®ûÑG·í·¿½gÎa+p)¾ê@çöw×ïÍ´¸˜¢%žÆ ÿRŠßËäÿ·ÿöéý9Þð½Ðûâ²›Üû-eAýÜ9§²]˜oÏ÷'9ä¹þþvÙ-.&‹û)+Cþ9Në>xj¯”C:e—¸X„äsAgT)KSgL§(¤~¿êgã ûÞtNTEQÅæÎqîèLýRõå©P¬bu-uóèZ1­wnž¼»¿{î¹þLšxßûNÿŸÊgîÎÓ{êÏ¢ôÅ$´åÚª„ï?óOÇŸzî¯ö§tœéš SÊ’“§Ž÷«¿ºmÿÞß;}>~LT1:¶RbäaïÖÉ SÞºÀûš:*:p­›kÔ«Õ'•çÎ/нqΩ©Æ‡sâ$ãu ’‹›VquLØ1Þûî;ö»¡vÑøäÖÂWclø¹S€´Ÿžß'Æœ¸Øç˜8eúéú§ãeú¨BPEQÅ뮵 ®?“äÿ§Nq«Q ç^ïQ%ä\EhºöŵOý½ÊPÜy¥HéÒss¤G;•ÁeU¤ëKΛ<¾c G×ÌÓ÷œ¿ƒ¶ÿøŸfœ_ÿúž¡‘Áè~Uß^ŒXŒJíýÉOnÛx]—¾'¿×~Ì£?ÚßÙ:¿>—²1þw2bhÜñRT<³XÝÓ_Gc`¦—Gýi¦1S_ çËàÞ[7é½U6“ª1:*kR$òJågµŠjŠ)rý÷JõÍNŠ¢(Š¢¨BðºcLàh5ªéÌùhÔéj´º íbI\þsšÑO¯{šâÚµݬ=×:›rÔymZ“ÂEg¯Îìéœ7ÍcN óV=Ç\õ>ó™m«êuòúwƒ˜™.”˜š¢Õu¿O>¹mU0½ï:®ÎïœðÈÈÝ{‘j¸~àÖŽÝ÷ø}®y»ûuÇ™®]ßhL£ô];2Äe›9ÅÃe¥i+åË)|¬ ÁÕZQc •33!šV ½¢8u*PEQE‚×]&•êÑèòs×ú§ÑêS¦HgA2F2 :zÑAÐå­§êvSE€ŸKá@æI 1Y)ªf¶úÎUfl]òÛ®¯œ¤þ•©íÇ,ŒçžÛ¶÷ß¿ÿþg?»m{lÝ?÷sÛö…öχU4]Þ;ó½cf»¿õ­³~Ä÷Ý×9!2 >îý×~Ó˜“tŒzgl‡ ×oÒó¹±-é8N¡XU¼\õA§Ø0fˆÿgHzNnSû«Úªbežzjÿ^¥š/¼n×§ïìcÛöïüY;V!(Š¢(Š¢ ›ñýŸÿ³mx`ÛÒ«|Ê®‰õ†'¦kón¦œª,’I¥µï4Ã>ª¤ˆñk.&¤üwOLJ÷KºZM3]gZÛg»_‰ú5kÈç:[ò{Zã“ÿæ7·íí·o[U$cR=$ý_ÌÇe ŠòWL¯Ÿ±Ó˜•İÕoÄÜXÛCýEû³š'2M2XÞ§ú™>ׯÓód6®s5Ögµ?O3öß´–?màþÌ"aŒ”Ú'ùy¬ŽlWõ+ù1èsÕVqïïÛUäõë{R\Í‹*EQEQT!HL^3¼w½|·ç IDATëú3ª4Sœ:­M¯+}}ñ‹ÛV^þé:¦3婳àô¾VÇ#Ä„´f'(*3ðéڿ˲`»¹˜ -ì¼Ó§÷;eh.êØ9¬Ýu×¾=y]Rb~øt?ƒ¦¡bè|(¥Aµ&èì§ç§˜e/î|ÎS!Ñ–±º~íŸú·[vý*UuL5]OGI§d¬ú LßÛôù긗öwyü?üÃ×.ü<ù œ›õŘ“©âjø¸ñˆûëýe?®BPEQE7S'ã™2BÇÈ8MÑÈi¦Íµ22 9̉Iq ù÷é:Ü~SÆšÖØÝXRœs]Z{TV…[‹¾ò¢`·©2Â~Ä÷Õ1xË│΃Î×DÿW6Ù=÷l[USÔýów;?UŠ¢(Š¢˜g|ë[û™…ÖΦ^ù¯ULërO£cs^ö)vàhL‚[³>·ª™›)3ÖbU‰pÕµ¥™{N«yÝ.¯ß9Â9fŸò›ƒrYɉqÚCe{°}}O¥@ÑùRr¤p\qýñk_;­8Lû«®ß­¥§5÷þ°;&*åŠJbò%áó`­ŽÔoy}ªÍÀ˜^Ï¥«¦çëÞ—Ï~ÏvwY=üž{¿ÜxìÞ_Wµ3ù¸,$Žê·ÚOýWÊ«]²ý/lí”Î‰Š¢(Š¢+o~óþï_ýÕmûþÁ1¦z«bº†FOwE:¦µê3p473Y®ENó·ÝÿóYrÌ›V­K×¥ûƒâZ`ª-påÁ÷t\ãt÷7eTTÒq8óOˆbì̾HýNùòú*Û—íÁÚò}`m‰´6|÷Ý×gd®°t^­½ês)ž«Uõø¼R•<®¡»j—¶^ý° Ÿ‹Òó:ê#2’²™”9f ¸|üÕqʃSúÈ쩌ɷCʤ÷y¼äãú?³À¨H1øÞ÷¶íŸüɶU–•Û¿:'*Š¢(ŠâÚt¦¥™Êç>·mÿá?<=ã}­bÕZ Cóâétx´Ú×QÆ4Š:9ë Î Ñíï<Ý“’âÀëgþº»ä —ÌV§©B‘˜ï[ÐÚ¼‚ó=“ãã`^4ó§]lŸkÎ/Â9ë¹ûMí¤íÞ°m¥x²=è)Ïëà¸Àþ¥óþñï§ØÅP¨"Áóèùèy$¦éú±*šÉ1óRãÏÑñ*ù¸ýcdòupY$ïÙ_]•Mw}éýwY`òYÐý«?é}Òu²}Øÿ®Ôæèœ¨(Š¢(Š1¿×ÌRÕó¦Nv¯5¤:ÒdÌÊ÷äZ¨fh¬7=eSæ™åTp3c7ÃNU¹æwêG)ÛÀ]OªC?UN£?ªä¤5âs«L²ÔÎßøÆþo1 *îù9¦ì”“ÔOœÀµîi¿vY=Óhuæ‹»÷À)"|Ž„?ÿçO_ל™õÀývû¿¹6¿êƒ±:>­ú˜¸qÉUiLï÷Ô©ÒíÇç¬÷ÄÏ9(¦Z©½ÝuH顲¥-¯SÊ€­ÚÚ9QQEQ×Ò E3­E^*oýV£[W}sp3ùi=tç(•˜WR¦Ž|Gó\ս䰘î#Ÿ¸hÞUa•QLóŒÓ;zÿô°ÄLɤÄ(^ÿú=ãRtŒTÐ$™ c¦þ®=RŒÇ´½ä_ g¾”¿Ï÷˜ãBZs4^òÿôgàqÙµ¿Žç˜½k?}ΘŽS©=fýLÇ“4.èºÕßÓ³ª¤ð½Ðÿ•EÃZ|ßœ„SW2Ó{CÇK¾ôe™>¯*EQEQäÇ ÿ´9NàÓåZªË¾Ð÷ž{nÛ²zZÊj8wæ>]“uçŸzü»|Þ)c\½:Ññ¼¼¯i¾ujïé}¹ï¹ëuŠ‚cNŽ©f€òÿYuÐ1`Ÿ 79o:§Höô~1O>åQ³}¤ ¨=týRPÒss1.I©p1\ƒæš?ßÖæpLÓ)›i•ŸŽˆz®Ó*¤«>Ìfa{¹Ø7"fAtNTEQÅ wx­ÆL£o:4*[ƒŒÂy~_ZqpÌfõzXuÏ)ÎïÁå_»5@ýß­ù‘ñ¦«í6ÝŸÇw zÚ^NQ;È»>Å^ˆ1:™ŒãÎ;O¿×ì7ô/ “I…üÛ1õô¼ø}Çyλã;Èw@í(Uéüò—O·çüȶUö»~Oùç÷Þ»¿>2tU½Ós3£ªRê{zÞ.Æfªè|t´MýÕíG…C÷ñÕ¯îû5™îÔQÕ½ïôÛp ?e]ñ½uŠÙ´j­SÊÜùÝ穆J‚¢(Š¢(®*)ŠúF1Ó?ëpyÓ7«š¤›Ù¦:ïnfïb(\ö„«ÂèfÌ\KvJ£ª]öÀ5¶)³˜VkLï[ê)[#­Å;E^ÿb¬¼ÎT¥-õÓÕµÞ)¢S`:nrŠäZ3ÿÏhóïß~ªBÇl»¨®Q‹s|`,ˆ”µ·®ë™g¶­œ,}ôôûªã;¥‡íáüVãe¿pÏIKÑõPAt`6kÐ8e‹×—b\\̆S>è¯@Pùa¿dõÂÔÏRW… (Š¢( ¯¤êiœ©\Jaø³7£¼í¶›{~UË’÷<»[“OÌ,åë’ѳÿéo1­…ºþë¼ßÙžd>œiOýÎu(œî—²_È8\Õ3>?íO†ä:]ž7} 8>ñ’±Ñq.šz«à²M¦ãÙÔãžÞúZ«WÔ½!©T©ê¢ÖÄÉ`]{¹~Á÷—N‡Šþ—ÂöùÏoÛ|äôñ\5¼U`u¼§1­)Â÷4­éO}>ÒyÝx|dÜïdr ä}¹Ø¶·ŽÃêŒõ!(Š¢(Š"+G å¹Z¾JÁiF|³Ú…±®Æ‚ÖµFLãÖt9ã•2ÀµsÓÿþç÷ç¡ó[ŠNg¶cÜé=˜æk»(h^Ÿ÷*3;ׯ‚kši­tZgž1<¾Ë6!£V;©Z£˜µc\d˜ìß.:Û=o>g)\bÒr>TT¾¼ž¿”eoȇDבÞK¶/èóÏïÿ¾ã޽b ¬ƒ·¿}ÛÞ}÷þú\ SRJ¦ÙÓX‚¤\ªß³Ÿ$Ÿ‹iLƒöS?¥#¦þ¯˜“ßýÝmûþ÷¯?¬šÚ•J‚bM®TéìOpQEQÑ©LÆÕ=O3ìUÅáÏÜšÒÍRP’S×d¹V=eÒ.ê[ýM3i:‡¹ã¦:äní{µN™<•ǧÕ%§Ù dðb¢Î‰mêô¦ã‰aè¹3ºY÷•bÈ\t|ÆŠ¸lõ^· µõiþ¶¾¯$ºçÓŸÞ39J1xç;O—NníÙÕ<ÐsÕõP‘Q;){Hß»ë®mû §ß—sÇ‹éû”œJÝ{œŽ›j;Lï3½g®_Kq ‹úŻ߽ïGTyÌžÑ8œjG¸vÃf‚¢(Š¢(æ Ëÿ=×ó½¸>c¼ÙYnMÛE±ÓM3nçp–ÖØyÿÚÒ-­±¥<}ÎWûítM1U9›®…®î¯¿Ö¶Õ¾òÀך¦ †¨Ï B)ÎÛÝ16ÇìÝš~Ênqíå²+„”ÝÂ÷ïå—÷LNþÊPŒkA<üðéç墽S;‘ùëýHÕ s¡~ Ú ªµàž“óßàý¨]Výø^HÙÑ}ñ½¦ÃŸÖê¥x¤,*Hi|qïSÌS-}OŠ kS8^W]Ì’¾§,Ý¿²´ªEQE1WÈÜÒLqÊpŠëϔɜÜý¥àb脦™¥¶ŠbvÙŽ3º×ͼ§y½dþŽN¦ËK^a´¶cøŒæuOcrœ‚#æÊç­ès¶WÊq÷å’¤x‘Ѥëpùé©¶…ëïÓ÷QLNŒX OÙŸøÄ¶ýà·­óÛÐópíÉþÇw½\SÖߊ1£–²!¥C>l·¤ÈéøtþsU“¯€Æ9~îb=ÔY­ÓåÙ ÌNrµ*œRJ'B×.®6Šúƒ”%ö³Ô^NÉI5ôÜé0ùÙÏV!(Š¢(ŠbU! ÒÍ”Q×o¯­ 1}ñ‹ÛVyÌo|ãõ™œ‡<Ó©l8&È*lš±S‰Jk£ú¾ÖÌYwœùïœi«‹)if¯êu¬çbœoÃÔ×—²'\ž·˜™«&sw}«ŠÇ*O)Æ#ùEPaqç*šßÔ/Ø~ÌÒP †² Ž‚ ©[ÓV¿—b!eBÌ_ýS>S&²Z\þþTÑqJœó•`¿pã#•)§0p?Öö`M‡äÓÁ÷…JŸ«Âçî²>œËqÔêÇ:.•«*EQEQÌ‚ä|´ª·XGøÿ=AQÇœkNŒIŒHù¶œÉrF/F™,£|9S¦W<³0Ø?y¼4£W?Õ÷4ƒV´>óÙµ¿Öþ¤$¨]X5ŽHÎoN1˜*Jî}uyãÉ~ÊÝyÉ„ÜósÊHÊ.Ðùä ¨5þ”5­ÕBe`zŸî¼©}Ù_§Î€º)Zê¿tÆûÎw¶­¢ò§ýÊ]GеI×ïb\ ÇÔÿÃÅf¸f/aOýB¨„QéI1UÉ#½wîw—Š‹ëUŠ¢(Š¢ðÕÝL1U3ä È1‘ÆÜZpѰìZ£N3QFñêsæi§ëá LK±S'3Çh¤\|éKÛVbT>ÈÜ´ÆÈü~Âe L=ß§ïgÊ£NuÒW•÷¼RûkËëV÷ãñóâœ*S{$FæÎËã2†ez\¶3£ÜÝ8ê²Ë Ÿ ).Ä1Ú¤DMûéôx®ŸÉ7AÙ)šÞe/¥ëpUR]öëŸSG_§¸»þÊ~á²µø=9‹Jñr×U… (Š¢( C0]#KyªG«'7ªß.À9]qfÊj„ZSçZ•[;vkÆi?:!®Æ¬ÐOkÿïz×~?2M)Se€Ì09­瘇SD¦ï5Ïë|\½ö4ð|®bŠÉPÔ?áòµy|÷¼Üùœ²“jW¸,çáŸ4cl¨H)ïœkàTzUÏ÷ßÅð¸XŒ)3ž*6ІOç£%åÙé÷ÿw~&ɯ#½ïì®Ú«{?Üõò¾™]àúW‚¢(Š¢(®*iMó(Ãw31ç½\Ü\ˆéj­IσŒ3qÎÔ™ÿŸ˜‘›±¦<Þï~wÏØ§Ññ.÷ãß¶=´Ÿak-–Ž~îúÙŽá®zó¯æÑó<\{\½·?Û•>‰áºö¤²¤þ£çÂèÿä<È~ìò´\ •»oÝ®[Œ]ûýëÛöN?'Vå{–j0¶1<ü¾‡ù>º÷?)LÓšü¿ž·b ÞúÖÓÊ3“¯Á“OîÇù«(vÁUád6ǃiM•iM„T¥Ô9>&%° AQEQ>Ë ÍH¦k‚)– ~·C'sáÚ,™£l¹ÆéÖ\É<Ó|é¥m+'EWuŒkŠn-]Û÷½oÏDèkÀva•·iý4Ï;}oúÞr¿©rA¦éÎïˆÄtœ’â¼ü3‹=3^g\;ºìåýëU}îž{®¯8°]©œé>ňé¼÷ƒ?øx¤~“²=\~½;Oz/ )xîúÙÌRrýÕ)U%tŠHŠõH×™Þc—=•üE˜ Äý«EQEác¸VäþïfHÓµ¢:ÞP½wåõÓ±K EÏUÌX Ÿû36Ä18çveæ Ïï·¼eÏ´XOœÙ)šÿ¯ÿõýñ埘´”·†é”ˆÕØœs«0‰Ù$F,gFý­(·6ë?½ÛédéªÎ1KÄ1—-3U.\lÇAŨ–ÀOÿô¶•ƒ¢œ-£ó;¿sZYR–«S²ýy.&€JÛIíÈ, —Mâb/\¿LýË99&G?¾¬BÿmåØèüxR¤ôç31ͲKÊÛu5 iµ¶Ð¥¤?…EQEQX‚%œ<¢˜WY¼º “Òßdlœq‹) ŸŠgîúÿ¾°myäôõé‘Yj¦ÏzânmÐÕ-×÷t¿ÿå¿lÛxÛþþïo[­Í¦(]·†—¢ÙS¶‚{/§k¶é|BŠaô¶ž¯¶º1NÇX\Ôºž2C}_û‘é9ÇB)a.úÜ:¸Ý¶ïwîyˆQª뢨u)Š-P»ýÞïm[9d :ŸŽËvÐßN©ÓÿµÕsá÷“b— ù{àÚgµ¶CªAáª.òyê<|îÓëv>Ó÷09¨¦Øš4.õ}¸ÒÏûSXEQŵĦÌ?Íô4“×™‹vÇÓÚÛþá~†ªúÞÏ=·m•OÏ5±i4¦fì:/gæÓ™¯cnæÇ™·‹ÕHí<1:Ææ”O3mmšË"Ðs[Í^ÑujË¿›Ogæí¯íÿ~Ï{®Ï §¾î¹$/óÔŸ£K÷9ÙáZ=Ç÷ƒL†kï®>½cvÉSÞEÍsm\×¥™i5>fC¹öÕÿyÿê?«1 <î”i²]s"•Çly?.›ç¨0­bxÔÙÓ½Óî<«Ù¼éûšî+=/f[¸÷¸ AQEQ^!8Z•3=æ{¦¿ï®ãmoÛ¶ªâ¥56F9sÍ+17EMkï[ßÚ¶Ê#žæ•º5Zƒáü’ÒpT˜gz\åaÿÆolÛ¿ñ7NÏt³`~l¹þi&î®3ÕE_ubK×µªØMŽëŸ\‹vÑÚŒÍàš´öû»wÛþë}ú½^u4LŒ“µ \M çœéžûT™Kk¼Î?9=ºçŸ¢äSÿpçY}ÿÜý'g¿éû¾š½Æ 7.;¥+Å %8Ÿô{’~‡y<*ÍÊV¡OŒ”ú+Ç뜨(Š¢(Škiæ¦ ×èS~/½ðÅ4¸¦Å™˜[ã׌ŸQÅŒr×ùϯ‹Uìt=ú[Qìifª™™” 9¥§°¸™£ËÇ=WAX™ºvxüñÓL,­]¹5åiTíQÇÌ©bâÖþ¦Lizí¼ZM.=§Ä¸ÈœÃÂçæ¥ è}Ó{EfÃût若6ìtª¥’bN޾g޳®½cúìoŽÉ2‹cš’jr¸ÿOÇ‹UâRãÓt\q±<Œ:×Ñ7ŰL é·’ÆÙ4ÞV!(Š¢(Šâ…À­©h†!ç67Sqkr\ƒt3䔇ÉèUŸÒù˜_¬µyQës]§z;&C¡è>ï¿ÿôþÌfT²‹e,†[<:3žzê§™8ë8=×oâ¨ÏER ¦8ê….¦ ÄÝßQeA>zÿ-ŸÖªõ·ªøé=eUJ9úÝqÇi=}/R¶GRj\í…íôýšf™¤óºëtþIAsÌx:œû~®:¦ó¯ú0ö…ç=š4m7÷ç(é²Î\Vk]X«s¢¢(Š¢(®Ä¸hV2ýTçùèLW[2p牯™²8cRž4×$•= 1í''1®Í$fáÚ‘ÑÔ._™ÊÏ“²IÌñ\f+_i}tµ»b@ÞñŽË^Obœ¯f×–¾4ÓY=^Rô\ô<¾øÅµvQ½ï¾ýçÌZPÌÏ‹/n[ÕOÌÕ;«Ìnª¸L sÖLǙֆ™*G«L5).viú¾M>?ŸÞs¨œ*Ñ.Æ)1û鸫˜2õ÷TEÓ)SR\ ™Þ[Æ¢èwóK_Ú¶¿õ[ÛöqÛªL‚¢(Š¢(®*œÙ¸úæÎ1Ì1˜äíîfVÌ›tk…Z›L„º>eHYø£?Ú¶<°?½Ùµö¢vq3G-­Ï“cWЦvÇMuïW×"WÁ7×2ÙŸ4sUŒÇ†óä_eˆÓ<øÕ5Æiõ²£Y 龫"gÐä©ýÅ„”…Ä~ðÍonÛ»îÚ·Ÿœ]vÓÔ‡!)•î}Xe€SÇËiìFRB¦kÌ Éñ”×˪~nüŸFëOûï4&&9ZNwÜiMÔoô>$å.e‹ðºþ÷ÿÞ¶>zú¾C§ãè½cM+¿CEQEq3?3CÇŒèÅOW},1'Öñvy—ü\û‹áèsÆÈ_@38Þ=ü¹6Cãòªù¹öê©mû®w¾o2"ÍíöK±š9òy…óO ãPûI™‘Âs³p”º÷$9˜­V7KŒöFÅ€1}ç;×>\óÔ{Ä÷Ví£lAL…ç§ÓZZƒ¦â3UäÜÚyRÞÜûçÞߤȤZÓþ<}¾©6Ç?‡£Ù,«ŠÜ4æƒÎt%¿Q ûM8>³½ï}§_)¯:ž~÷>úÑ}ÿÓ{[… (Š¢(Š« ›ù§µ72'ÍÌ\ ‚›)9æfhªa ˜ÎtÈlÜõºµÖ@H÷Íöãÿ¹Ÿ‹ªW>¿²&ópíšòeyýç*éùi¦Ë*sòµàs»YXÆOŒz•!¥óu–J‘Ó~Ê&P?VV>g¬Âj þíj—¤X§iÖHªz誗R‘›zâO³EV}Ê;×)ÔEýU Òñ“C¥«ãÚÉ1úK®zª{ÏÜuë÷×ùû¿¿mï¾{¯hùT!(Š¢(Š"+Zc`ž¿›iºµNÎŒ\,BŠ–uÌWNgºN͸ÄH ýŸL›÷M¿ž×µóßu>®=ëÿjg­±ÒÇsÕ÷R;»™æÍbÞ®¿ Š’ÕõkFK'ÄK9Nïk5ŠüÒç]­î8=®[—“§˜…ž—Ö(‹£þä²è3À5L]‡Ë&ZUhœRjSL³1¨¬ñyp˜ö#Ç€Vûãy§~G³”\­…ôS,÷w×¥Ø1åí¯ÖDHÑÿÓqÏŸöp1Ó˜0)rü\£î½{þù*EQEQ$…@3tÍ$4óH QônÆíÖÓÚ·‹ªçñT•‘kñb2©®´«6æÖÀ2ÿ4´ñO É4v3Çäð6e7 ¬¢Ig;F ëú8s¾Ôuõh_­-˜Å¥”—U¥à‰'öL^1zþð÷ÌBNŸòï`¿dA*ozoõ|ï¼óúŒs:.$ê˜ë4ÃUwtµœB1u¤t×étbî«Ñónüq÷á÷R;ë>è_‘ B±cRX©»¨ýs«XN¿—|5’¯‚k¿ô»«÷QJ«ÚãöÛ«EQEáÍàSõ,‡gžÙ¶ZCdô¸f~bê®jšsÂâLUyìZÛdµAÍ„X«€÷K¿Ψ¸¦•œÎÒus?GÐuÿ˹mÿÑ?º¾¢0ÍÊpùòÓò¥7?ÃäÌYÏí¥—¶í[Þ2c:ç2åÕýÎîŸ"½éú]Ö¾/Ç3:uêo):¿Þ3í§ê†÷Þ{š™Ê2Ñÿù¾%¦Ÿ41]ËN~éýNŒÚ½S§Å¤PNk–\ú=NÏ#e¸¬ä#àÖ€Y­2yn;9濪ýÜÅ´è~™ýU… (Š¢(Š« Ö^œó‘›ñj&NÇ2íçbÒ ÞÍ„xžÏ~ÿ¹ªKI± "àœu<­‘2:Zÿר‹6Ö~¬Eàf´lÇúO¯Ï°ÜŒÐÍœÝÚÒm7hJ¸:³åÚ³¢„µu1¯v Ĺç2ÿ”¿|©çDåHï1 : 2K„ï Fùæ’“µ IDATþ¸qgÊè¦~)î{«JQzWûKZN×7u^<ª(\:«Æ}ªX:ÅÔ­Á¯V'=ê:ÍÂKß{ùåm«)ðRÖ’¿kT(Vë oØ¶ÊÆPìN‚¢(Š¢(®*«LÑUubþü42­‰ŠQ0?]3%͜葯­ŒþvõÔu\9;‘‰é~t7³vÇwÐÿ3LŠŠ[#æ 2U»Y ™ SÏWHÕ³žzʯ2ùÔn©_óói~9¿7õØçÚ¬{nê7R”¥£˜OÿW,Î÷È#ûÿËÄ9­ñyº5f¾—‰Ñ’Nk§$Æ?¯ÒóvãAGŽKSÿÕØƒÕX•Õñ!ݯ{Ý~Î_bõ÷íRYì)†>:Ú_1;«Š>g oªEQEqU!HU¦kÂZ󳓣™ÖòzÀ;Ï}Í è¸&/eAk1ô/øêW·íƒž>>?wy­î8î>¿ÿým«,µ£cG£â/Åô/½fÏ–?øƒ½òÃX—W|îu¹öHùÀ«Ž—ò'pÊÑj»ˆ™H¡‘2 ã|ó›Û–yËb2z.ŠQvžýŽÓIÔ]ÿ¥£éÝqW³JÜu¹j­îú“Òå”ÀU…%1ÛiÿYuT$ܸ–œýè(ëÏuz¼Ô8›ÞOW gÚ/\;MÛ£ AQEQ¯(ÉkºfJ¯|æÿ'/mÅ&ˆ)êoGÑ“¼^ŸQÿb¤oûž™p­Õù¤(Þ)s!ƒÐÚ-™ëdO£ÓÓŒ’Žr¯6tÝZ3Ó}ºì‰K3l×ßÝšï¹ "­Õ’ ¥˜œ©Ráöá…}¿xÛÛöÊ};¸–­÷JQÌúÛµßTQs Žˆ«JΔºèm7^¦ó¹qÅõÇ£ŠˆÎ}O¦JÁ4Æbõ÷Àíï>Oµ+4¾Ü¬˜ª”m•²Ó+'UÐ÷[2íwUŠ¢(Š¢xݵ4ƒq3:çáÍ2g$ŽI§™>×ÖÅ@” ˆa³z¯ÛÕÑ^I»zëºw~·V¦ûJu¼SÖ‚cb¼¯[EP»1?=ùX\:Û 3îK3†ÕµÚ©_Ç4FkøÚʃï Ûã„ú™«z˜˜`ª"èªÂ9EÀÕd™*•ŽY¥Z/ÓÒõ¥vHJ²{OCv±jT.W³Îeö©ÊæôwÓõ£TÁ½‡|î<°¿÷~U!(Š¢(Šâ…À基™Zš%ÆË5 ÕeÓƒc,gfb)›€3~—_ÎóHpÌÄ}Q ‚ÖÂuÜsëÙ¯ÎôW™Ù4oÙÅj¬:—Ñy’JÒ{ß{Z±ž~zÿ}EÕ²_iMMßÇ;ÖØ´ŠgbÖéùQa˜zí»X)s&£v)æé¾—”F¿»öJí°ZµpÊdW ¤¤%å"¯ŽÁ¦v˜ÆÀ¤qÀ)Óš9®=8NUV'9q½>çÿÀß1úÓð9K!ÕñܸT… (Š¢(ŠC°:3Î]nÎLÓÚ‹sîK3@Ö, b &əۉ‚Ž‘ès­y¯F ß,8æífʉL=øe¸™®œ*]–ÉCmÛ/yÛ¾ôÒ¶}øám˪—Ž™$5u äñÜÚnÊÞ™?]gZ£wŒ×eLÛ‹¡«Ù Óq†÷“ÖôÓ¸6õÑ`û;¥"}ß9®^Ϫ2²ê’Þó£U"© ¬* G³H¦pï©{ÏÒxÇëKUVÏ­R©ãÉ—€þ+UŠ¢(Š¢ðÕ§àÌP3­‘O“ |qưî:¯×}žfÊ.:Y1®Ú׈Rþ0™Šs¸zµà¢á§ alWõ9 >øàie&1Lµ§b踦þ¥öçñWãôï£UÓç«ÊS‚R}ö£kÙ<ï4¶(Å,¸ó;f¹û2m_÷ÞvŸŽ«~®?\ªZèª_„‹vw1Ljgǘ]¶‰ú‘ûžSD¦YÓ~ä$ç`;­±áÆöKóvÅq·s¢¢(Š¢(®¹å4 “k%tHZÍ“~æ™m«èp­ù’á9fÏ™û´jVÊ÷MQÎ:_b*TÎõÊŸ2„ÄܦQéNùp~‚b¤ PIÑL_>¬…¡óÉ¿à¾ûößÿö··­ªaªŽxrœ;š÷¿êÁ®3õ¸Ÿ~Õ,7ž¤(óTõL3­9;Eò\Ńï¯S§1#iÍ?1ÓU%))§Ó¬ çÄêڗΰÉÁ–Š•ïÙg·íþèé~””Ü´‘jb¸¿y?Óçžú%cÚÜïbµø»U… (Š¢(ŠW—7Oˆ™Ñ#ÚÍ|ÒÌ•çÓÚ¯[‹rUé„ßþímûã?¾m¿ñm«êv‰i¸*Z®ª™¾Ž/ç<·6v)EàRLsº6Í£ž^‡c¢j')Š1_Õ/Xóùç·­œ,ÅXë`ÊxW•§ L=æ§ÙÓëQ»©V£üW?ÇP¦k®n|"“š:®Ö­_}îÓçíÎãœþœ?@r¶KãÎÑlwÝçt¼_}~ßýîžá þÕ¿Ú¶ûØéóþçÿ¼mßùÎm{ÿý§Ûs5;êÒã5P7N¯ÖVav|qªEQEqU!HQïÎáÈ1)7Ãqyÿ®š^Z“áŒóCÚÿ-f¨ØÎÀóp ÄÕŸÖÚ•²"´FíÚ±ÎY‘ít£òl*©–Aªkïªbj1µ+•(Ö 3aM /)MÓ¼ñÕß+—zÝñ´ŸþÿÞ÷n[ù¾ŒH«~,Ó©Â¥˜ú,¤þÍçêb×9W!(Š¢(ŠâªB<Æ/Í49ÃÑVkïn­Oש™"½ÏÅÀ¹Fïü¦‹„ί»c<®öc57*.ß›íq©‚£ÌòÜ:¯:äñs­1N£ÓtžéZsÓ þfe/\úy¦ý®Dß¶ö~¸ã;¦îý8¨8¤–‹r)K)=‰i^ÊŸÀÅBS_2y*¾ïô~²?9¥XYcdÎ3$ÇAWEÑ)2.&Çù†Lÿt?2zÝßÔAÔÅJð÷ŽïªÊ6Ë (Š¢( ¯8Fž¢Ì§3Û~ÏEGrÆÏëàÚ‰søK M3SŸZú[Ñ´)‚Ê€«úåò½©h0zû(cXexSooM½êÜ—Î3U:£Mׂ5³VÍ Ç¼Ž2ÿUÄéyœ3§{OCAç4ǨÒó9ZÐ=ç)Oõâ§ïIòMIJÙ”á¯*´) žHÑõnœuÏ]íA%Gça¬•¾ŽÏñV÷£÷S…òÐþTø;0ïWÇàéƒ0ý¾;?cÐÜ~)vŠ˹ðJ¿èœ¨(Š¢( ëCfÂ)Ïq:#Nù n-Q×åfÆÓúó\ô–“¿»zpsFë®31&73_eŒSÆÁ,2*ç9Ÿ² œ7þêLþhõ=úLׯyäô~«õã§Ìñ¨#žk‡i•Á”-°ªÔðo×O¦Ê•6*4níŒkUÑLýõh|R¨1Ðú¡ý÷8¾¹˜!µö³R?–"ù›¿¹mÿÊ_Ù_·öWÔ¼óUH×Å%曯*5Sÿ“¡Ï©ºΟÀ=Oµ‹˜¹Ž§,"ý­*Qô+ø“?9}<׎)ƒ`5O¾7bîúÿÝwïÿïœ*µU?“ÒÂqƒ1Œ¨BPEQÅ+ ‹¶MÌdÊ„Ü '×1P^—[»Iù™nF{£jÜê˜æO})\¾¬ÀzéG³TŽ:Í¥µá£í„ô¹‹Ê?Wñ±ÁµÙóK5H£sÙ4Ni"óä{œ²ŸÆ@©ß‰*ÆGŠ¢S©8²†Æ_úK§Û‰×Kï}zî§q‘Ê@Š)J}«JYŠéJÇw®Sÿ÷bÄ|nú?'tÞgŸÝ¶?ò#ÛVþ"RpR?æû»:¹X,1v—õAe€ç½Âøå§Cn‚¢(Š¢(^QÜ ÒE§zÏ« e:£ây53tL„ †k¥ŒZ&3:—ÞhÜìêuS&ösŠÁ*sqY‰1»~~Ô)çwLúÜX´<}nÓöN1ÌÆIL„þ!ŒéqULéÌéÖ¤§Î¤R ˜Ï%bd\›¦§¾îçõ¯ßŸ_ùîŒqÒ÷´îÚÙ:©öc R{ŠrL69•&gR—e–œ$©D¹š"NqT»1AŠïÇ=Ž[G<¶Ç!÷ü9nIñâõ¥q”ý£ AQEQ¯»–f0®NtZÛ_Í«MpÙ.š’×AæA§Eå>b~­ÃÍÀ“S¢cÎÇ!ù–wJVbȉ©O¼«Þ™²1’ã#¯{5KešÕÚÙ­Q»û[­žG0¶„ÌÇåm¯Þ³ä­/È^û}ö³ÛöÑG·íW¾²mßð†ýu=ÿü¶Užþç>·¿žŸø‰µûr1é{î=Ÿ*zS&ìœÓxïbÜsœ:Õ&EØõ[— µZås:~ðwI x/YeRç—‚âüm®\GçDEQEQX§ÂÄ€Ü÷œãž›aMgPÉCœŒjê‘ï®ÿf×¥?ŠsóÏyœ©s¤àÖ†WûMbtGïgÊô/ë2u®KYGcWRìêCâjö™8³w´¯šd¬®*^òG8Zï^ýVQçŒa Ò¨ëQTºÖ µeû*–@ïÉ{ß{ú=úö·÷ ƒÎ÷©OmÛÿñ?¶­²n¿}Û¾ç=Ç®i¶PBŠIJ¿iŸ÷;áË£Ùté¾T£PÿúOÿiÛþÂ/ìÏëü9¦ïo‚¢(Š¢(¼B0­¶”fŒêwyýÓºìS™2æ€QÊ)‹âF1øi´øÔ›=9Tò8ŸùÌ~Æû‹¿8;NºÞÕ¾¼þ©¯@bØé{I‰9W:Ú.«ïcŠ%!SÒš¨˜=âSçõ¹ã;§Açô§¿Åìù=·¦¯ïÉc_1j‡ï}o¯p0{ýDùôÏ=wZAOÂ_ý«{%ÁÕ àõ§ì€£±]©jëjõKëà²ÇRö‰e·ûÝI휎çÚƒkýR”´•2à®#U]åïºb#äÃQ… (Š¢(Š« g.®îy‚ó:“óÔ¹à̈3@Íà5ƒœF¹ŸËÔnt Áôz¦NÓëd¿"ð¡Ç0±ÚŽ«û§ìƒ”ÇŸÚoõù'†;õ˜®'¥"1·–É5UæýÓG$µ3ÏϨl§Lêý—“›ÞÿTS@÷ñÄÛö}ï;}}º/~Oû)VBשóèüŸüä¶}øáÓíñïlÛ|`Û~üã{f™ÆÃi]uÖ\UüœÂãjY$ß * S?Ž£YIÓëvûë~î¹gÛ²fCªº›ü‚˜¥såytNTEQŵ£LÈÅ8FÇó.ÏeÐÎÑêR @Â¥˜á«…éÚ¸»¯;ïܶôÆ>·~ûꌕá¸û<ʦŠùRÞöj‡ô2Yç7Í–p¾d4®€®ÇÕ§wãOÊWw ž×%'Aw½‚<ïï¿ÿ´r¡ã³v‚S~tÞŸýÙm«ì>ÇÜŸO± úÜ)¤«ý}Õ?†5'¦Î–IbpUo“ès6M÷=õÕpíãÆ —5%¥‡÷÷ Ûö¡‡Nüýs÷ëÆuU¬BPEQÅU… Íl¦õ×é˜DG)Íø4ÃÑÚ³ê>_Š©§*{S†üZgЬOî˜Õ4ª|šÇŸê¨§¬§¹þviçA2ŒT½mº¶JõɘÂ)«×5}/óžÖT ãIã‘ó%8šµäÆO±c’ø^=õÔ^Qxç;÷×K¿Å¸¬w½kÿÿgžÙ+¬‚7­…j8FR¤0¥qÅÅŒ¬¾7« $¯ãê4{ÃõËÿõ¿¶í}÷m[9eRrÇqŠ_ú»’Ô9QQEQצ3«éŒÊ1ÎPo»Å¦"«ÕíÎÅ¥ æW»ÿ+j•íÚ%­=Nk¸ã»µÈUg=7“_õ=Xun¼´ÇùÑ~HƸª ¤X çDš˜:û©®“k :~ª9}ž©ê$Ç-ú¥ðûºf1HiÐög~fÛÊ™‘k¶S Å$èÿúûŸý³mûÏÿùéç&FÍç7m‡é8òTñsxùåm«Ú¬FÉl‘ÄÈSuE‚çsJÈÑê¸<°ÿ¾b œ2òÿã¶•?Î'_ùVLkWT!(Š¢(ŠÂ+«ùË‚fÈZ#ƒP¾±fΚ©¼å-·¦RðZ;«„ÉáJÏMÎo.ªÛ­=¦ü÷Äx§3æUeazœ´¦y´æ@:ÎѬéuM•¬£JFr$cv»ëd KªöèÚcšU䪡&G7ƪ¸fÜu×þxÊ+×y5ŠùºqS¾ŠÐ÷s@ßw¿d†îþùž&…fª´¥þH¦Îër5"xSçYodÞNaøüç÷3êß½' ºßgŸÝ¶oû¶UlŽwÇûïÉ–ç¥/Ej¯ÆEQE‘‚£Ì–ɉq¸úê¯nÕ,ƒéuq­Ik•ÉáJêZsrLìh¾ÿjž°›É¯æG;¦t)Dwþ£µ!.Ý§Šˆ»¾é誔žÃÑ*n­ÕÝûÅÿïÛVU¥Ðç U]d=úäªØ“!H!Ðþo}ë¶Õšºc¶® %Çé©C ëïî¼SGMÇÔéDÈýb•ú᪟|x]ÌâX}Ïõ½{ïÝ÷1}§9EbªÚj¡EQEak¬®Ýrí‚37“TìÁ¹ÕÏÅ4þÕº.ÎØ£œc`R˜ýÝïî‚´¶èê˜ó¹»ç9õÿA½v¬½xÝç2Ýô~¬2ëÕãO•U<Í¢Ikô<®ëSæéŽçú§þ§èj­­;äe¸ñ =õSùÈqðßÿûmû+¿²më·¶­ªjÜtÙŠráú­‹šçûãÖ¸“Bäî;9áMkgPÄÀõ;¡,)WIàuÉùÕ4]µR磓˜öêï…îǵ»S:™ÝâÎË÷ÌSUŠ¢(Š¢xE!8wMßÍ<õ9׺\ýù[dD¯öuŠ)0O•ÌÇÍxÍúáŠfU¶GbÈdj«ÑånFíÚÙ15çÄ·ºö>]SOLú¨3⪿Ar†;š-‘œê³pžöÉãQüΗ‚Šó¶y\®õ²=Xë =2sáGt¾?ú£ýߺ>1:2<æ“;åÀ­Óσ18çÆ¤¸«¿«Ù"znôsHU8y½o~óõŸ¯»>Ž¿¬šy.ÜøÅþöä“ÛVÙê·Óñw¼s¢¢(Š¢(®¹Jb,®ú”êzÿÄOìÿÏ<]͸XýÕ‚Î÷¾·méôôjCÞÖÎAyÑ„ªª‘y=òÈsd{L×Ü9ÓŸǭ퓉N™õÔqñÜ(ÿÕª„©W«±UøœS]R&Rtwbn)œNqŒa¡¿3ûczÌÛ×uiœøÜç¶­btüßüÍmû“?¹?žö£"ÆûÑøóÄÛöÑGO·_R\¦ã^r¶tJAŠ™9ê[à³ýÜ÷¨¸¸˜&~žMõ<޾ç«ã„{?”í ßMöOçêž+ÊSçDEQEQ\sL0A _QŸŠªU]oïSŸÚÏŒ_zi?“ÓšÛ­*·JŒƒ gtš jfè&!‡4Æ"¸«›Q_ªª ›9sÆë¢Ú]Þóêó›*d —ö8÷ûÓ¬ƒTíÎ)‰.Úܵ¯»—oí!W#EãKRR<™¥²uÄ@µ–K¦öØcûýœÃ V)•2 þ¯q×ÕqÏ1㦊šSRØ?VJSË_ܶŠyb?rŠ3ïcZEóF½çîþy¿ê·Nãusœä¸˜úI‚¢(Š¢(r ›)][ÎÀ4óüÈGößSþ§«Æë¹YÒ¡™ÛEû«î¹”‘ W=Ž1ª£.¦¢Ïé„•f¼d4Ólú_ùVP  †”‡|`¦ $e­ AQEQWÇ„¦kl©ŠgTšé{ßL¦‡Š ÷IDATøÆ¶Uô«cVœù¹ëpßspy¬T>ݵ½U…fŽÌOÖ}©½åq×]ÛVQ¹dfS&ŸÄju½£ŒÙ!e¤l‡)ÞúLc2nTÔzR8sŠ>“Ñ÷¥H©ú Þ§¯}mÿ2ÜäwáGVÅcU;f7%f|«ÂÕV`R ~ï÷¶­j¨úŸË’šÆö¸l¤¤ì°6‹S Òø·¿½mo¿}?Ò)×1Þ/³GÒû,Bça¿£b ûLþª”.¾/Iuïu‚¢(Š¢(^Q¦u•ÝÌãÊLÃä¥Ò!O3§ ¸™ª›é“)ÈŒÐLMuÍu®^ù¥`|×öJ‹šÖUL¸<ÝU¦2Ö]m‡©÷[­‚6U V™÷Ñû>ÚOV·cLœÿ½÷1—•àœæt^ǘ\möçÔ¯¥”‰É%…ìVƒó)Ðó`?”bòS?uý÷W[1^'üžóЧRàb \­ú©Ð‹ß1[)žî½—BÅ~ûÙÏî’”%㎯ó³fŒö—"¦~O…ŒíæªÊº÷uêâ!«EQEqU!pÑn­‚3©?øƒý éÁOϰRÝk—Ïz£áò°?üáýLóèÌþÒÐ T I1ÎûüRU§UúVÛáÒk»ìßÉó{µjṊÀ´N³ ÎUbÒš°«²©ìö;§,¦ª‰Î÷DÞöwÞ¹]•7_J媥r£”Àé8ùä“ÛVYRŠyš*YŠÆæ™Óí§çƵv2xÇè]~½sê“¡ª¯c&^ÿúýÿõ¹®_Çÿ韾¾R¢ë¦²Àû‘"«þø¶·íïO—j')ú¿b:ÜsbÌ ßÏäã£ïó}¸Rk£s¢¢(Š¢(¬S¡st3_Í´ÉÝÇ>¶mí×®ÏL^­6g°iæu”Á^úþ\´8×rS5/çÍ?‰ž[ÜÝcÂ.»…ÌöRkúÓët1çú¬>çãࢹÅȹvOF¥Ï2%Ý{¥qˆÌFÊ€S*Bê_|ÿœŸ†àú%ÏïîŸëw×ý.»þR… (Š¢(ŠW‚)£âš'g|š‘+ÏT3RÍÀ”¯9­ÿ~«y‹ßªŽf) íÕ9%äRÏ!­•OÇxÉhد8£vN_©ÿM×HÝè¹^ù«1«ýÔ)uî>ó£©[“uLˆÑçò¸×qÝssωµOÒszµ¾S°4®Š‰N«òº\¿"Uû³ZßjVFª9ãlŠJkûttY)‚”úçðú䈨vÑ~rÔßÚO1§øÞ°:0ß3—ݧ~ÁêŠ<ÞTù¬BPEQÅëâ 8™er4tk‡\ÓQT¨Á­êöjg;\ jg:2rmkºÖ”Úç¨Ã¿Çlw}.9E5;&íØRöƒË–™2ÑÕßÒñ\þºn¶c:Òý©¥ þßÿ»mßùÎë+:. ÜÖy7k®7»S;’¡ ŽANkͰߊYªÝ™­‘¤iíÕWÑ)„ü=qý„ÕÝøÁØ9žGŸk*êÿÊ b‘ÆYw=îùºû9š½W… (Š¢(Š« Aš‘8¦FG3F-k†éò3o5¼Ö7ÃwµÒsŸVËJ3ÇLÝqÜ£û^Z;OU ÓwÞìÉÙðÜ~”Žçùêy‚âÚÛeO¸X×î:¯°<ó5~ðü¬êÇqÉÅÈimûÕoRö¯ª@ñ9IɳNÏ=yä»þ蔎TS½®‹~®æ†öû¶­«íâ”)ºNù(;@ý‘ʹ¶Œáñ©±}åd(%çŸØ¶?~º\ÌóA©BPEQ…WÜÌRÞ߬E¨J–fD<°Ÿ¡9g¨[G«÷ÝêHŒoµ}œ²þžF »vw =}/­ÙMÏïÖàÜç¹±I©I ÛjL™8÷Ok×ô·pÌÍ)¬çÎèïéûHe€ý\ÿwÌíV}YC€íœª€RQpIaqÏ‘ÑþÉ1ÙBn¼Jß'œ‚ùè£ÛV1ü]âVçÑïšú£jh¿§ŸÞ¶ªᔪäOBHßSÖÞ /lÛ÷¿ÿúÊ«"ɘ¨:EQE‘ÇŒ§_ÊSe4»fXª?Ιÿ­‚K­ýÞjàótõîYO=1Õ)CvLÞ1Å)£MßsÇIŠk?fe¤šSÅeª$¬öËéqóè”±:F62çþtŒsÏÏ)nÍÝ)«8×Ùrõ<ޝÖpU%§~$lO×ïÓqR6Š»_çoá|èoñկáΣXfÙñ:U]òÞ{·­œUËGç‘ó£?Ÿ3|õ¹þ~ó›÷÷“bÜøïÆ‡*EQEQ\­vèªÄ­FgsF¢5ÍÌ8³ûÓÆÈouh¦ªçižûÔq3þp •ëˆg>c#\lƒ{޳ܴ½ÿþÓû1[AÐõ(Ž ‡¶?÷s³ûuýŒý;Å^QÑ`–Æ4+„¨BPEQÅÕÇìV×*èK ¼OÎ\4³).ƒäø§¯”UCÂ]Ç4z•i¯V÷›F«''6¶ïÔ¡/Ýç4ã\Fy…!Üvý~ÃóŠiÓ1ÍÕ:IYF.$Ŧðz¹öÎØ(—õti%êÒJÁÑþ:}ÿ¦çŸÆâL¯›QøN˜ž_ý•Ï]Jµú«bUØÏµ?cä3@%UNˆîü®;gJŽk©:,k%¤qØU_¬BPEQÅ+ ‹ÒL3=·–¨Ïå•ͣ܋Ë$ žê}ŸËH¦LõÜÿ;æ3uœ2ùÔÞŽ»ç’˜nÚ?1æÕ¬‡©er¦œöC1¯Õl# 2U.í$yiLû;½õ/õ@f펳ê×âj8Ÿ”©?ÁÔW…—ú=’ó ?g¿s¾¬nÈß7Þ‡S’–”¾¯ÉÆ¡ AQEQ¯(¿ökmkEQÅŸQT!(Š¢(Šâuÿ>v­M±3çûIEND®B`‚ShortRead/inst/doc/images/HilbertPlot_H3K4me3.pdf0000644000126300012640000016355212227066722023122 0ustar00biocbuildphs_compbio%PDF-1.4 1 0 obj << /Title (HilbertPlot_H3K4me3.pdf) /CreationDate (D:20080718102906) /ModDate (D:20080718102906) /Producer (ImageMagick 6.3.2 10/15/07 Q16 http://www.imagemagick.org) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 4 0 obj << /Type /Page /Parent 3 0 R /Resources << /Font << /F0 8 0 R >> /XObject << /Im0 9 0 R >> /ProcSet 7 0 R >> /MediaBox [0 0 516 516] /CropBox [0 0 516 516] /Contents 5 0 R /Thumb 12 0 R >> endobj 5 0 obj << /Length 6 0 R >> stream q 515.936 0 0 515.936 0 0 cm /Im0 Do Q endstream endobj 6 0 obj 39 endobj 7 0 obj [ /PDF /Text /ImageC ] endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace 11 0 R /BitsPerComponent 8 /SMask 16 0 R /Length 10 0 R >> stream xÚì{ vWUæ_Q™AP"^ÐÑÎ(ÔñˆBtTc  1^Ð`¼RܬŠÆ@Bm5jÚb¹¡V´´ÐZÚNé½öJÛé½_ÊE¤_?¿y÷¬žÌo~+çÃÁd¦ëdýñæ¼çì½öº<Ï>{ï³ÏüÁsÌ1ÇsÌ1ÇsÌ1Ç:áqèÐ’–üã?.9xpɽ÷.Éã¾û–Ô¿ue^_åÔ5uoÉ?ûÙ%yeýþÌg–ð|IUfI•YR÷¦nuä5©U^™µdíù/Û’æ¿u¾$u®3ÕöÔ$­šå§_ÒÙ"Ó6ËL;ðß¼&ÏdSól =•×g9ÿðK>ùÉ%UNÚåÜvÛ’ºëïÿ~IFZÝ›~/­ê7£‘‘ÀÈóéÍ”¼²t¨ƒZцi‡ù‘%,ŸÑBˤ§ª^‹êÜ¢¿òßÔ$c/#“ñY’^fÄR‡ÿ¼ûo{ÉZìʼ†^ò±-ùÄ'–¼ùÍK^ñŠ%Ì\ƪå Ñ23Sx ³ÕZšqUbˆG•vÎÿ:† † † † † † þ9\º¥äñ©O-ùá^’šgLÒ>]ù¯E5mÅ|LVbç"$}Çz«„3ÎXrÍ5K˜ãä;+Íòˆ’Vbü3s-dz²09‹~gî˜7Éé£K.YÂeÉcõûío_ò‘,¹õÖ%u}qJyäÓŸ^b½¢YZ©tË^„!CrMáy2#í™­`/è£]bý«¥{¾()$L óúŒŠ²^jhžíû´F²9¢Xãk³ y³â¤úÛ‰ºÌGöÇòŒõ*‰«ìlÉÖŠ"rDÅwäˆá‚á‚á‚á‚á‚á‚Ï úØc[žüä%ÌFµ=‘ÑVùTgþîï–ÜqÇÃ:ƆéŸ-­§Ec.z*ãŸxR×WÔJXÆ1_ʬ—yÄx£ŒRÖN1–!g-9ÂcZ7X ™”šW9_°;´—zÞ¿ôÒ%W]µ$Ÿ£ëÞòmnHR×~æ(VýîÙ™ý à ÚÓx–È™%ÔùoÝ]½—²IÖÈȹçž%} ó7ó¢w"—Y”ó‹g­ge½)ÆRö*Óžy>‘ŸœÂ7ûÞ&{ƒì²ÞÌú}ÓMKxM¡Çw.áHþpÁpÁpÁpÁpÁpÁ?gŒ(kÏÖ]vÙ›åL/Øó²áLŒyZŒÑÈó[x­êúÒÝ'÷r0fë¨Ñ†ä#½±±ˆœÇL%æç¿=cD3ûäX͵XcÎf Ì&Z‰µäè c;k!#\0\0\0\0\0\\`sŽ}”Z¦›eòÊôŸÚÒn\QÆÒ ²^¾¥ÅцDËŒêGíIӸüo#,ÃìÞ{‰Ì8cãˆô Ç[Œ[mL(d¬D†J pf<¯ßÂ’Æàé/–@±ëƒ\’»s¤OS[ãkÚÐP^¨·óÈw–ÑŸÛœ¯y‘ÜsGÕg(Ôµ{臖U¬KKZ´ÓûÌšsÎY’å'ã[Ö••ÃÃÃÃÃÃÉyÅ<ífˆgñÉkøÆV–ŸñPsOöänbxõŒg,©½Ž3niy>‰“ïÏ™­f·Bžò…e“ṡk^ÙJm‰Xžéy65L4Ëf´¡«1cÖÕ{ŸV²\¶ÒÌw´yDHÓª×'ÿåêY[k£sÖ¿bÏúQŒ¥,á+vÝ £Å°Î"°÷šEi¯gæï¬cOÕXÌX¦aã\ö”ê¸ýö%ye¢=›¥ÑÃÃÃÃÃÃÉÄCbã–Lé-I¦ ïÎ>{I–Ss+´FÆ>ï3Bè¼`‰å,D*êÆ|·ïø0ŠzÄ6”Ëëû›}d·ûQ)ÓÙðßp çºS;¶Û$ë²YWúÚÊúÄaC3cÓŸ×XiV£naRF ׄ³^âg–œŒc–ï}ʼËà -Yš×ˆŠeuÛÒC3ä1Ì´~ZiXïÿÖž¹GMfA¾}I;˜µë......H.0Ì¡õ²„Ûë«"7ܰĢ‹Þ|Ó›–$Ò2?–ËõFËgÌ$zç‘ïz[>VùUBŽåŽa6cNôñf¾èñc=›÷ëêȕƤ´sêŸcDœéfÉ[вäëv·ï%ÛÈž5ýë—½æ5KjGqãDz‡ý%îa˜5Ö;n†ÖW¬ßõv^þËØ«kô¦ç5²•õ‡³.Fuµ÷Ê+—dÆ%§“% «K† † † † † † ’ ¨a–ü ×húª`ýþ½ß[bÑÎó6ßdvË{¹#Á_üÅêœÚþÐkå÷º¾¾(Çoks2†ùÞeYÜÇ0јÏ×l{â¤Ù'­—šç½ÜU,;êù…8ñÅKê|­+`Öø$[d¾f{Ó’=ò÷½²¼ù×F'ÌV¯|å’ô‚åi´üÍuܵ€\Ðãm•_ý¥ß(°ÝÿhUêcy”Zõ= ãqëµfŒk3¸ÞÆP…bh{úÕùê·ÿê¯.a´°4áÏk† † † † † † ’ ¾áïå¥/]²Ål1„^¦•lÞ(m#¶{[^ù—¹„>eîX^gväïG>rÉË_¾¤÷>çžì0b ¹‰1œÈó†Ö^ãe‹jâ³Æòh *2†‰6æëä¾b„Ü-íSœÞëÌxÛ~žÞ$šΗäHwH«¯¯Z’ÁóLêÆV¤ -+‰-,1\åTo-wüȺz6´hd«{Œe6e9[ÞãË+©a­™a®%C娖ââÉË^¶„ãÒ9â͑×¼dIz¸`¸`¸`¸`¸`¸€\`ÈÀ»è߃1Ï’mÌïŒÓÚæ_Ƙù‘v«¶§+ÞÊžY>ßù"רØBÆÆoÿöîf–{î%[•üM$'¢Z[¸ã13¿Œ žgÆQˆŒá¾^rã?í–ç ç­Ïc‘–vK{’é 3ë¼í³mY¯Vv}øÃK™YKîÂÇÖ¥V93µ3™ VrEw¸íÅìCöa®‹¬XJô¶Ü©{˶´³;=Ë8d„›æy>÷жžm˜™h±M´a¾ÔÁ¬4a_Â<’ñßÏ¡C‘/ªÕÕCËžRöÐ]¶*’çéS³¿q1‘eVçݯj«F{XrFßÃ*„©ß¿ò+K¶»m/\£È8¬ƒcæqr«ÅËIî#ÕÉ¿Œœ/ ÁXK5S–÷–͉íÖào›qæº;ÃØžCóLõˆ ŒÏDNâs™3ÔÄ¥þ ³‰µÙŽô¨5™Ù¢¹Í‘=C˜{ïÛõÌMÆyİ¥ç&Ãí´êÕW/éãHË(Ê#Ç m´9Ë......H.ÈvÙŒªy6a+jÌä~` 1'Ëá>ýÓ m•ÚÓýF³(ª.9õÔ%Õº-6¯·ŸXrbõd†öYÏ{ÙÞ-ÖØ‚)ÆSŒ;ál5™qK¬25XNr7µ¢ÝN:i -ÙöÖf0δy¶È¿¤vŠ`Û-ט¡¶Ž"‘êƒ\BÍ9ož£mY qÛ"Ä0™1C°¬4”`y}íZS¿o¾y ßnÛ’k´i‹Ô|¸`¸`¸`¸`¸`¸ ¹€-Íy+ÖkËuhi‡‡´Iæ”yŸLWÒò·Ü²Ä4L=‰ö3¹ëK©UÜÆìôŒÐsÅ’ñTöµ˜×ä/ö'9¢˜ö<ÿü%–YÕ´yä,¿z›väõé÷:r\®¬1\0\0\0\0\0\@.Øù)Ü+3"mXÏž¦mꙑɌÈ,ÈÙ{¥n9'Îç¾*¡üH¦ÈŒH¬+ ¬{sŸº´jÝ{íµKrÞÇžgsnzKv0›ÈD<™!šQbs9ÙðÁ»í¥¸’µð¨+;²Þdɺ&wM韩iÃÔ?¯äž!†ù,-Ϙ/rtÑôìÑÞ2—HËÝÚi1âaîiÀZlföÆ Yob…µÔ¸’£—},¥³O•hÉña˵ԭ"öä(Pͤ§8óNÍÉ\ôq•ëS«<3\0\0\0\0\0\\ÀhäWųùÕiþk‘ç3ê2Šn½uIŽÿXõXGT§TÛ [ÒÎŒÞÒ?÷%Ë\¨}¨KYBîkW¬ÁÖ±-,Í~Cl¾Þf·í }Ë\ÖbøÃÒ2ZªÞ#Ê{óK†„Yo¶‘|ÁØ Òæ»¥Øjâ'Y`KPÏü—Ùa%$†ÓJ,ŸÖãÎ-["“ííõd¿Èb =bQjæ½¹c?¹ÏxVͨH_çù‹/^òþ÷/á‘èdÍÜ......H.Èziól;3…³H¼‹–·È¤¨?щÑÂý~Æ|·¡¨å¸åBù==Ŷ˜'jYü0¿˜#y&çéˆQ[p€¡V†QÜ¥9k'‡æo¾e¶¥%É&e‡ôßÍ7léѾ¨3gž¹ÄÊ7†ÊZX2#Äün,oÔ3>ï"пù»8š{$šÎY¯­ßè³>¯gæf¬2nÉD°ŒÆŒUr.õ©kê-<ëWˆ$ÏÕc¤§8þÜ·«®......H.Hm ˆ¥–›y}Æ[¾-E²]ŒÞúŠ}ž±7¡zþ²È§i™zd^puh¯%óµé\¾f¤Ù·Íòö„Hhl5‘Š×ó2æ²E;íÆLa^ÎPÏ*­fó CJ.¸`Ií fc5ì-äæÄ‡ÔÖV53Çýé Ã@òÑ–,È2mκÇ7ò&}ÄoÜsÖòHÑ Ç¹Ç {Œ7Ó6mØ÷⸎Ýz©‰q.{J}´0&­÷BÛRÏá‚á‚á‚á‚á‚ár}aMÝø»Ç[›©dv0—y0~µ2†ë|±IZÆìcvÎhéßÛÊÈ¨èŸ ëà;ìæeãƆá?-@1ÂY¦=òi—íÍ¿m÷·{yàîS{Ië}Ï÷,©#ß^4 ±Ãr–ma»˜#Œ"‹IËf÷– 2zÿZ¶šnÌ>+“~Ì{ÿýî¿ï¥ï}ev˜Gú^Ü–Ã2½_ƒÑãÕë^·„=.ë+¦åÙÒZ»’ëLŒÝú¾Dò ã*e¸`¸`¸`¸`¸`¸ ¹€OX[ž×ê ßÞêc/íC´4\²œ¥ïL“ú—oYœÓòŒ¨>2M·*¿Æ1˜Yõ;õäÓ½Åjž'2;ôÏÅ6Ú³…}hj›’匑±:NõF#ŸO»l¯Åï%ª$þ°4›]µZÒn¶§™±ã|‹é;»ÆJî½–ZÙúU+߰˲Þ,œ×'‹õã¢Ô-sHN¬`vJ'“ìLß_¢•®¼r‰íÑÁ¶[\uÖ‹+Ú4\0\0\0\0\0\\À\fÉi1FÈ–øL­,Ú±ùœk9ÞïÝçK9ÑçŽ1šÝe(Ñç‹ávþNkä—8’Ó™_d«Cú˜§ÒË5Ò•k‰³ï~÷ÖÈxc~¥/ø}%²ƒ=[ídÏž-—·\IËý“­çóÖ·.É}­ÃÕô×ÖÑÏØ¦9NÅÖÑþ†{Ô<ýN$a6¥ÝÈ´ç‘âyþ[;j>ñ‰K¬—¶׾‹DiCǬ+ÇІ † † † † † >7. ùœ•¾°ï¯IÍJÄÖn9ežÍ3Yo~ŽøF¿¤e²|Z>c©öÙËoOd™AÙ.rS"?‘­¢‘Öfä3ûlL‰hÏ6âq¯úåYÏZÂròL?jÈ϶Xlô<˜¿·Ï°[ÿ‡ö·•Ïõ=ô-¬Máõ\UHÔµl"ØûPD*ã ÆÝ1#r¥¥åÂoROËŽ>Ú­ï—ÙJ+±´Œv¢3šj#íÆtÙºá‚á‚á‚á‚á‚á‚ä^Ÿó¤lµaà–öfÉYþ{ß»„4L6¼Êß—^º¤™×3 yŒ(æí_À±ÌµØ«2sLŒ{#pfÓr¤Gìµ³™÷úý‹¿¸Äò‘¨Èx®L·þCžyøÃ—Ð/Œ.ë“P·>~¸‹»! {¬‹èšO÷¹o¹aru–¡Æ†¼2ÇßN>y ÷U«»n¼qIfbj›û9“­rO â•E)#*-ÏHÞ’ÑV=n(—çÍSóiOb¬ÅgÏ)D‹çÔv¸`¸`¸`¸`¸`¸€\`OùÌbÑEœ¤ßiÂüw¾s µ-)ÌÌr˜‡â¹ÌÊ1Dퟗ«®–œ}ö’ZÉ™GZ¾²8ÏŸvÚ’Ê—-Èx룷Ž~\®¯—¾Ë¶'äwE‡ý“~æ)±:×-z亟S2`–“q˜µTtpÂ’-y”ñixžµÛ¾mÌf4õ1ËÔ½œ9Í¼Èøg¶¦n,'×ظ[Qµ”ä|w©»®»n‰!¤ú¦…‰NÆ_Œ â{#]ìÒ§ô,û„Ø}z/ŒOzÉî¬ç2ÛUÇpÁpÁpÁpÁpÁpAr½O„Ϻò}+Ždi¹>ño¸•sF=Ö¥Îô5ë"F±ä:sÏ=Kì»íÔ$Q«xä —¤ýóJb&=›ÙÍzmÄŒ‘`OŽ–A马—ûTçïå0+Õ¿ß´»i/Çx/†]‰<™lu]Y‘C/{mž:k´5–kôcF¸å ûc«Œ(êÃVÔù;µyj[/ZåÔ½Å&éwâ*‘Ÿ¾Î{Í’½±Üaîò0B¬—k× 3b“­Çµe\×|jÑX;„äœ;G¡‡ † † † † † ’ ¸êŒžÚR»ar}m0-÷Éx—=%å5‰lĽÔ6§ÝÈeD‰ší*„'§ð¨gçb²aZ˜QÊù}pÍ*Ñ8í™1L4¶rØ.2¾µë¾ß` {eãå<þꯖð /3CŒ@CKâí™gˆódœ-oSÒÚÄ+Ä-k¶‰ÉÙÆ§²1Ã~\Èln3é´¹1-À^ŠåÔL&ÐÜ×ÂV#%¨ó…9•ý´á‚á‚á‚á‚á‚á‚äZ˜Ïã½eˆÏ¬=¯·•“´@â³E¸Õ’¾Èlö™ÑHû×üiF>¿>yÎ9Kz»mÉbó#íp¤ÈC¯Ùó)y9g“3¶iC"­y§ÎÔWA{ Ô[{=CñJË}b&µ5[YÏÊb/Ï÷d‡1ÛÛDZ”×p,÷fa_‚v°˜1Z [÷}Œ^ú~rîÍlÞkïÒ~nž¢_ uye–<\0\0\0\0\0\\Ï DftoZ;Ï$†dÉ5»QsOYZIfNŒ§lÃó´pzÄöŒMŸÖ:Ò*¿Þ±UvÌ>9¾ímK¶D>ÛxÊ|´=ò™ÑimËAF/#„¹Ï\àù>+mv;k¬ãŠ+–°äê¼ä%Kú˜IF ƒ›Œ)zû¤Ù_Ê»jÆ–Œ––y–ð^^iø™bèĨàpžÏlMÍûø7Ñ_æô»ù¥göó.[]œšØ®#æöCØW±VÓæyä•ÃÃÃÃÃÃÉÕ["Ù|Ç{­uðM"ÆUf g%³|ކY<\tÑ’W¿zI}}f·[B6›ÔïúÂ˻޵„ØHYÔõQÔÏõgõ2 êHØû2Cc.gÛ9 AKæaœ×W9Õ£¨µÁU˱Ç.ÙÂÈÌ£ž5ì_â*}WûÆÝÍ{±ñLŽÃ°grÊ)Kl×LD ³?Vç“›¶ämkÂþFŸûlojË åx8јL]GŽUz^ëùÈzV©•E¬­ºÉqòÔv¸`¸`¸`¸`¸`¸ ¹ ŸÚ{ô]Ö’ö1ß•uýí·/É}™*ŠÒÚ´|~÷ñSG~Ç<³ƒúp|)gíeó¿ªßùeIÚ‡‘LÇvõÏnÃÒć|úκ±´6-Ƨ`brÏ;\×J §²¥?Æ’ô¯åË·þ;Qˆ£‘¬…™n$ž×ñƒ?¸Ä®!ZZ?Çz_ÆS¶ 5'kç®@à;nl‹¡K¶ÈdœÐ¶ÇŽETŸYl{Gdó{Ñd+~ÕÈ2”½¬á‚á‚á‚á‚á‚ára¾ùÚìCkdîØw*ëLÍ«2‹ko·-£‰?´vŽ5YÌ3ròÞÜÓ Ÿ¹úgÛü·G3zÙ†º‘ƒä;â€á•1¦ý&¢Z{‰Æœg߃|ÇÈ·žCÖn˜É‰>sûì ×ò7çøè/cÓ°ÚE¼µ¸êùÂVJ0w,ï¾ÿû—|÷w/áŽÍÌ”-m'²ñš*9÷«';ÛÞÔ­ãï´ð–]_,bi F`§=ÑÈ,ÃÃÃÃÃÃÉiOóµ=ÚÓYæQŸï,Óv!³zù,ßã˜Í­mz 'ª°½/|á’_þå%=‡’ zôã¿´ã“uõ•~$JØûÆtä êÌÈÉ2>zIÏ8=°|f“Õ¾¯òL?¾Ô£‘3ûäq¶ˆqË\èÇÙz6¤†ÌVZÌúoÖo±ž£‘Ö0TdÀâÁлÇìÛT8wù®k–Ö÷1lìh‹%ëüpÁpÁpÁpÁpÁpArqŒ1Ügh*ü´µ”¬Ôg¨Ít—gï¸cI¶‹ß»éýK¶"&×JE"pZµvôÍ8É0Ö˺ø¤ÉŒ>2ÆbÌ»U£÷‰0´R–ߣeÖhlB$éù½®©çè|` í`¹C¶Êõ“9[Zm<Ø3>¯4¿z3Þ8«k:÷c)–­ÄÖnYoÜ´¥OÅ2ÙFz¼P"uÎr-}/Ž­¶ø¯ýU*ºØ_ê9—{öQ‘v......H.`ël¦Éž5úñ‡|†¥žŒF–pþùKEó7qï€Øó=˜ö/6©§™¥ãgl„­ÐÉòÑbþµ¯]¨èccˆÚG{]Sß‚Ï+Ɇ¬‘#~̦l…e\?B˜¬jú^1Þ˜´sÙÞ<êL®‘¶¬aDq¬Œq›6/É/Q’Ó­Æ›õ(8z“å˜ß‰„fUö"ØöÞžŒãzkµe«ñóÑVn¤VÖR¶—šä¿…Å;ÃÃÃÃÃÃ='™‰Ä ³É}ñd]ïDÐ Y{éyóÍKè‹>Ó‰ü]å÷Ü”~Ìó²¥_õUKÒœiMÝèM‹:b]ž©Ý ÊžDà-Â{!m£õ¸ƒéF_Ø•Æq†~fICÈ,™;¢¤VùN±Âr“õr’hïZ¦žÄXÚœv#õìOýû}جb½Jò²áÃv¬Ëv±Ç¸¥^r–ÙÐú{&[¢ÑИûðôþbo......H. :%z&˜÷-æó_~Ë>ÿÍ•W5ëzúéKØ®¼’øÀ¹Î,Ÿ¹_¿sm±=ãù÷ í–Xa¨En5Û62Ær,ŽÙ]+Ö˜Œ%ó&[ʼ³¬Ì9GãܾOB¯Q“ŒŠí9’5rüĘ‹”,i¬Ôsq–Ðãy?£ÎÆ$ûž^¾çk¢e†ºÆæÌ Ž}‘sÙ×2|fÿ„~,KÖJƒ%6ýëúÛn[RÿÖ–dêfŒÓÛÇ8Ú|‘˜F­† † † † † † ’ Rç>fX;#ùN \|ñ’ÔóKvŸÙËcsx/ùl•w%ä½9¶“±ˆöÉZìó•¯\Âr²|Ægõ ÅV÷ˆgY`sú¬%m’yÚã•í<Öc#yøC4fKÉÎÔ–ù˜ñÌv¥wÈ8e«ïÝ¿ãVj›‘ÌÝ!úñ´õ!Sd«Ùƒ²¼`äð<-Æ\H¶ªß¹/}͘av#[“#r¶B¾ÞËU(Ä:cÆúZ+÷Qaë,’ÍäZØî2>...... ð›#Ì}Cj•‘\G~]®ZZ{Ï{–ÔEîöV_~a½Dþ”ôoÏYÌtF¦e\ÝUšç5iÏ<èͯ˜ûùû–[–0_ˆ‡©O–À÷¹,ûŒåy¯!¼]“1i¹À2óúQI”Ë7¬F‹ sÊ0§¸À¸-êKcæógYÖ) u3–ˆ*D¶,‡½~§ˆÜŸœíÝWfϾߒ-ʈÊõ©ƒ­£&6Ç™ŒR¶.ýÈÒ [èýá‚á‚á‚á‚á‚á‚ä‚-sUf >iò©–mäPÎÎÔ,gF5wô²H³ìc˜m4Ÿ¦Võ»ÖûYiÄR²g^¹=þûŒËrøtlåJaêšïùž%ŒÌì˜=ƈãŸOå6ׯ+·ä ³Vå<²•f}ô>±+ÿå•Ìý-#†6†-Ôœ¾ÈLgoÊ2¥·kájI~)u¶µ¸y˜†f·ƒ1.jýÃ'·µ[z¶}iK °×Lj......H.Èøìñ°~×ê)ú—ñÌ,«ÿø—d[òÞä³Uùëúë—{WóËö,–ú§¶Wé—š¡®o_¦•ÞùÎ%†BDËŽ9fI¾_FlÌò-öê¨r¦ÞJ g³ÞŒUÆ|êÏùýd*§V˜•õûÎ;—ð ˜Y¦alŽàe+XZ–`±ÍXµø§U 9ëLíWVû²Ã^›5Î+Y‚¡\zÓ²†Èlùbý4r(q;c‰LAÿ&gíì¯×°d²¤õ%ú¨°>³¡ÍníífÙ4\0\0\0\0\0\\Àgm–“ús¡ÕÈÚ‰®éÓ²ÍÆæ›ni-n:˜VY ,¹t«{kÖû”S–ÍžñŒ%äVã\bKÚäñ_’µ'2[þ2Çë·á'×4Ljüņ…̆ó|ƒ/õ´yLóNælFàí·/±U‚– )¹?I¶½v´/3æQÿVl<îqKªuzВ碞ìQÐ,-íF‹q­2sý C{ö'íŒð0r2×[úºY£ù%½<\0\0\0\0\0\`\À'5F­mž¥æÌÖªë/ÿr ëJÉ9#Ž˜M»ø\ɸMìJ” '²Æ@¯ÿ5[Ħ¶|NÏÓ³ÄX~·1-PñINÏ–ÖÚÚœCçwÞ•g’¸‡^o ö鿃݊Ӽ÷Ö[—)jwDÃ|b#u«ãA»ïÅø‚ÜaxË\0}˜G\·i¹`œb•V½æš%æ»ôNÏ/¦sÐÆzYá¶B5ùÈúÌ\rÍþê3ÝXƒño­¶{ëüpÁpÁpÁpÁpÁpAråq›¸è¢%¼7-Fà 9…Ïw†´Ô?ëMD²ÌµZ8óÅÝ_iÆÕQG-ÉháÜ£ƒù˜Z‘•²Õy欳–XŽ[,¥þõ»'Ÿ^SjÝcaæÛÞ¶äyÏ[B´!;0†ûÑ¢…¸Úó2y¤·’•̧rËú:>ô¡%“6šÊÌÊøL g1Ë8vGËléɘ…ë(ªœZMQR³Ò¹ÖºŽúj•Eræû<½Ù¢þ^fmÅþ¤å¬Å9Y›ÜA¡zN4ßeüÔ5ÃÃÃÃÃÃÉôro«Œ«sÏ]b¸ÔÇ^Ƽµ=-V¿s'ê’ü2N•ɹN>;[. ó%©aYàIOZÂxÈ3‰ê£Å*[Q#6†f“>b©ùå—/¹ñÆ%uýƒwÛ ñ?ÏXl³çpÎ9K詞X¾õ ®½vÉ–l%¢Z}ÿjK¯¦Rk{ßk¢ýÉ6úa±a¨˜{>³íô û`´g_¹¯Ö™0Ciɾ`­KýÓS}_‹šÓ\ÙBû³æ)ûÛYr?w<\0\0\0\0\0\`ó5©!ßË#½iHeÑn–É3yžV%¢Úùƒ˜KåÌšqD¶”~!Þ&†Ôûb}ì¥×XW¯µ¬ý|±qqêYØžG½õ“‘YO÷5ëZïš1~JrÍ*wèûùoÕ•ù˜>Ê÷’h™²C1µáØI'-鳘Ú2¶Ó³µþùì³—°‘%ÔQk}˶™éSö— uëm8Ž¥0òÓ&uM¾–wåïK/]ò¾÷-±87 îs—°oCÛ7é/æxÖH X|aÈ଱~ÿîï.yâî{IÏï¬'C«šÅz¾6jLj† † † † † † øL‘÷ÚþcÄóÜEûÂqÜ ËO1¿ôœR»çÕ>ØŒÏÔ<¿¥¸e®‡‘c\fHbšdü¤åÓJÄDoþK+QFQùî v‡öÂ{³ä7½iIú.ç Sÿl…=·ÖQã{·¹·y>§çQlkHU£šYæë^·¤ö¯¨ï–fTØ€ù…R%Ô;k½¬º’Ù¿üË—ÔÁ=á JúÐ%©Ù0ÏØû¤éSFˆEQ–ÉLa B2†­ÏÃì¶1+ÓœW¦M˜ƒÆû=ž“‰],ÙzÑ6vdc̤† † † † † † ’ ìݶ‘xÈŒHÝøÄÄ6rE#„±ghæ/5dþ’SŸ©O¶È¾…—~dùù»J˯|ö>íŸd3÷9Ýݽ—ºë‡~hIêYã –;d›•ã]lEê–Ø˜¿ O¶d%m’¼“¿-+ëÈ1.Ë;ÖØãÖ9hû—}ö+ò|½ XR|”ïôe«‹}r<0}‘%çÁ8©ZÈ/æÍÒ$ww¬\¨Uë56ÕÛÄ,lì`QÔ÷—Ãý¿ìëZ[lÓ›ýX™õ~-&‡ † † † † † ’ ¬ÖKãó”ÕNTïŸ×ÆŒ˜¡==E\"Ú÷yGßñ}CHb ñÓp>õ7m‰YÑØ¢è¸ã–Ô55óEd¶À²†6ÉYc"!Ë7Îe{3ºÒG6ÓJÝ!\i¾ §zä'ûô™e~44³LO;×ïZcl–¡Îé—Þ”›nZÒ3 =’ë±ÉkÌ‹g>s‰õšØ§ÍßÄ1³jß7# ±ï‘½\Ó§GWêÀøI´ìûKyïpÁpÁpÁpÁpÁpArE‘yÙbž{ÒÚóסÁ`„§žy y'¯çwFè—]S“Z×Wó§ýl”Eg í0ûd.ØÓ"­DMzOQçÌåÄ“ÓO_b¸”¹Ï/]¦0¶‰f´sÊú!–#ÌÁ¼æ®»–|Éî3{áh­—gL[uÌ‘ÆÔ9¿;O4 «Òkdv³ kßÂD´kÏë«¥5f•erû´Råx¶½öÁ£¶ìÿd¾põ)sŠ= úšm/ÛþÑ-IMÒGí±ÚúlißǶ±Üá‚á‚á‚á‚á‚á‚äó £ÂØ™ž¥õ1ÖӃ–¿ý¨µÇ@b2çæN>yÉ÷~ï’ÔøVσœ³ƒùÂöf»“†oô¬q=-iwQÛÿñ%µ7]þ›¨=É+÷‰óŒ>ò W/d‹˜ƒ«½­êLáÏ¿ÞÝ»—´{&ù/ãÇ"­®©R[9`HÅþÒ±Ç.©= y%õ77Ô²”¡™õƘ^y½EÑÕV¹$su:£ËzÔŸ6a&×$³\Ánö§ï,Ó©]O      $XíY&÷z¥†¦ íŸÖcLæq­L«ãéO_bdÀg(CÈ<Ã÷ñ-ê¸"—Þ§ïx$f~õW/á¾^V‚å,½üˆG,±h1dëçå³uõöó¨Ælž«$6ŸmËÚ~ôŽ1RÃÔªÎgÉo|ã’ÌЊ·ú]ïµåŽ+E[¬µ0~jDÑv„ vqFÇ 3iöó7[qÉ%K Ãë7çOi½BïDÆv¾Áʾkêϵ 'ƃô¬!£õìÉyá<¬GA_›µ‰„ÆÚÃÃÃÃÃÃÉ|±è%*¦2÷éîe8I–ᨑé¼e¼Åò—hFkT<}ôFTæ‚å^i¨bkÌl™1S^(9ÿü%dü÷ëw·îå~àð^ˆ0ÔǼÉ5ŠüŽªõØ–ŒÎe3—Ó·µî1küã?^òe»OìåÀÃ{ÉœzûÛ—ôøC¯‘GêúzŸë¼ó–Øl2mïóˆÌž¥e#-fÂÕ™dLÓ!׋²¥u\ýÆ|.f´Øèb¶‘Òãj–ÌþO?ž™RçßûÞ%Œç,™qB6!+Y߬Lëà       Ê›ù t¢+5äÓ+u3”Èg@+9-Vgrï2Öh±š¨’{³u©sÍž™_ÔÁŽ*³žú'ùÆ“ñyÜ×g ±ÂðÍ/½f5i=ZŒk Ó‰¢d„Í• %ÅìõÖóÎr'ϧiÕž%ëÊšCÏ•$ƹ=cZŸ'Ç]é5ãzQ$ò+N´[Æ@ßK!+1r˜ÆÑÖƒ²ƒ:3jÜì—yIöo³Æ¼~¸`¸`¸`¸`¸`¸ ¹ ã‡Vµ\°kèµÌ2^O+Œ ì 1w‡ËØ{êS—0fŠq¨yÞ˨`ùÙ{{Ȱˆç³LFWr.¿áRYœ# ä>±2Sê`ñ`hlÑh£g¦¡¡“éÐëlØžyÄ+m^2£ˆ+™9NBJk|ý×/ùÓ?]’ÿÚwiûÑHf}j8Ï|dTX‹mÁÒ,“Hb‘W >[/­—8LMêÊšçþØy%€Ö°¹~û}Ë-K!&ÃÃÃÃÃÃÉ5¶Ss ©íÙg/Ù¢³€ÖËøÉ<ʃž¢Íéå¼2%Ù-ë%JðL=§s]q£ÎÔ.Ád%îlf¬×gå2K«‘Š+¯\Roî[í|.¦ïèå´çéúÌ"ßÑÄü1è;¶·G9Fme±½%6Ìk†lWí•AMØß ÂplŠ6·ÑË‘-=7^Imñro%ëKô­Ëw9s}8ÛËHκl$9uÞ²–ÆúKô,g™Ù‡ç: ëÓÖ1\0\0\0\0\0\\ó³´vÞeQoSs®U£wÒ9ã“×ðK—Ô$Kã¬1Y€ö·u¡Æ>Ä%ËzîQ`|ÄUvl)¹•aKk¥bînÞd-Æø}ª³í´Œ¡¢á9c­°2+6j<íßîþÇ^¬'SGÙ°z ¹VÁîÊóµ"Âp cþ£]Rµäêhc(Ƨy¾ËÉÌŽƒYÞåaÙ5æzK‹pëôŒÆ êýB°¾„õriá´CþNk×þ–¹Î³G†ì—f{k7Åoþæ%ìñ²wJ«     $lÏe{ºÏÈ©ß96Òcëª|©ñë®[bH^÷Öõ\µÈ8´l"nÔL_îN–ëT“çoGŠf†ù=&›ìúÔ̵ǖq´­¡J¶Îø‚­æL½ñ8=˨Ë{ŸñŒ%œä½äâm`ÖW2¿r÷‘½UóÈQå÷mc¾sm*w½ þ%\E\£RÅDô =žžJD2Öë3%G9,bÓûÆ} Ð2´j¶(ýµ¥'c½²ô¯$XN™/îyˆT<† † † † † † ’ ˆT¦£¢Ï²:Ò³¶Ò)[dËZ8+”¥Ù:=–̈"^eíY>¯¬1jÞ3Tɇ?¼„™›¥õö1Þá•ɼyoêY£uýéKz$OMØ:{â#å½ÜuÁ06KæYf\²ŸŽûÒ8ÏEkОDƒ¼†3VùtÙÇ6gÜrÐ"*51ÝŒ×xXl3ì2³,6úH0Db´¤…û¹l‹"b{z‰ u&WcfíÌÓ$Gù¥ÔÚ!Är'5yæ3—0ê8å”%lcìŸv»½ô•µ[®Õ¿ÃÄ–á‹çá‚ႾuÖ;ÿoqAa ×Sqüä¸ã–d{ËW]µ„¨Na4öwUí,Ér>:q˜˜wÕ®Mi«ŒÉ .XR‘cŒZYüؼU–ïÚPÏÔõ2+ëàná†{DΈeöå]ÌkzÖÐ3TF`ÞÕ{ðz23ìÏöÒƒö\Î[´XΚØ:ö|,¬/ÇòSzÍâß|aaz’h ã‚ÿ²û¯{1¬¶–Z«ów¡V톗ђºe$¤      $äÙ°J®/\0Z²í|ç%¿;™¥1Ó‰BôQ¶4ïÊ}ªéÓº¾8+ËÉ^õª%†!̵azÄ`´ÐÉzŸ½¸{†¥õ²dËÃyŽØ“²åµñQ=>$ÂX9Ô–Ñ’GöÈ´ƒ±Lz‡:°]yå/üÂ’·½mIfM_BŒ.b¦ao?òÓ#yØ·¤_ Wë7×èÚøpÖ˜}3ËS«—qb÷VùÏ~ö’¾'iý®DKf:û Œÿ:~ð—XžÒÎÃÃÃÃÃÃÉùÌÈÈÉqŒÚ/«Äò(To3Y¬ÒG–wÌtf1g…Jêꤓ–üÄO,yá —äl8‘“õf¼q_©Ô-ßy1ô&²±úñÃü¥%ízÖÎ3ùÛ0å“C‰6y—E¸±'Ï,Üó5ã»þòJÆ-‘çÆ—ô=‡#¢¨1©•o½Æûly/Ñ>­G£Vô8s<Û˵}~ežZœÓÂd³!Ç¥m¼‘,I ÷9hýžÂî̽¼ù͇÷±Ìá‚á‚á‚á‚á‚á‚ä‚>ƒò-õüöz¶È²Ûø‚ÜAmSg"¼Y›ÿ²ÞMÊŒ`ù̸~Ç­¬7ç ó^Ëý´Ãgã;×D¶Ô|½+2æ{Ìì3(ËéyÇxÁ~ÓŒ4é5'.e¶2s3b­äÔ3ßr¢—i ×HXT׿wß½$ßVc™Ä½Š´l)½i˜Éhäl5G8M+2³&kgÖ®d¦l‰s‹ðü7w7¼5ܶžFþ¶üe¦d$[FçõµãpÁpÁpÁpÁpÁpqA_¯ì1ÙzÜžÅè;έp¦•å÷ÑG{®¹å›,}<ÓbôȽñ¦õÏL¯ãÒK—›pÖ‰¾£æ+`»˜ãŒü>öì_«×z Gš_¦µ"n‡eYjŨëc²Rà rDß»0ܰk¬.Τ¾™—ï‹1 ¶.k´œ2ê[gøc¶5L`ls5#c‰6á¸-cZ1/Ø›5«'é;Æ¿eJ2ÅE-¡=cfÏúý¸Ç-éu6ö4~çõÃÃÃÃÃÃÆ¬±î:ÿü%W_½$[ôU»{éQ”kÉïM¤­˜ÑYŸéè#C*Z†™•σ‰"zŒ4ZƒåÚs·j[­÷ù8R«´€Í±Z¤Qxeæ/­d9ÒG;Ñ kä|Ÿå~Ïï[Ø¡GàŒ®ÊàÈ’­I6üç¿upæ”:[<ð.fDߟÌ]øòÞ¬—==F>€³ÌÌ}z™µ$£q\Úx¶Ÿ­æy®¦¯ÏÆF/önã!ëÊ]ݶXƒ£ÛYÀÆÜú’{®a¶ö9Âùtë3ômLy/ÇH ±Ó¿ô`ý®Ý›ëÝ«\#šëRh¥íûar×—´Rö ?øÁ%y/kÉrjuõU,þõÒη߾¤ß›n¸`¸`¸`¸`¸àþÉÄU¾RZٗײEÄC{aÎÖ‘þʨ¨óù/³ƒVÍhé™+¯çøF®q¥…óúÒ¸M_g[ê`|Öïzëç_æ0KÒ&ŒRöhÚ¤gpÃ+óó‚ÿò¼Í×Ûó¾¡"QŽV2 ûô8–Ù²? ½l‡1‚]ÃzÉM¦9£Ž(ÑsG~-+¥²©²¬ö…ã¸4£·çt¢ÿÍrlnÚ3K~÷»—ÐkµŸIïëä;Ö›÷ Ø1\0\0\pæ‚lW­>²ÜìÛžñoìÀïƒ0ªùÕÖ[zrd€s^ÄêÙ?…ÑJD!–iÖã]=¶ÔØTyöó}0s{|cnæõ¶Ñ (bš1‚!³=ãum´!ÿÍr,ÞX»iÂØØ’w9¶VÖ¸•Y`XmõòJC$Ë/F»y°ï§½æ5KŒ}j¾µXà„–üè.É+«¯›ñÀžCžáHfoû’â¦ÊÖÜ#Ž~aDeí5¦dvΣ®çžØ´*}7\@=‡ Ò ÃÃÃ÷7.Èí»Ìy/gÊêȬ·x¦¯û˜¬ß·Ý¶$mÅ–Úê¯l‹­S­#÷õb®Á±ÉeU#¿–h>êó·"ê]ïZòù>²Dfftb‘ùÔÐŒ‘ÿf4VùùÕHCó”¡:=س#ª"'ÛËQ r=3Å2δ2{¦&[|Ýg'YfZ‰å›ßó.žÏv¥ýsEÛ^㫹ãM•Yë*­GkغtâUþk=„žåÙó̬LËdìk°ï‘½—á‚á;† † † îÏ\PGe_¢b¶«¬qÁK,ƒ,Z8—JÝØözê9ãŒ%Ì ÚÓÐÞ¢Ñò=¯Ïo[ZÚè‘ÇF*Lê Ï~þŽ-ºõØN²3DEþÎZlõ™´ÏhÓefiÔ'Ë·«‰Ìnë-°í6Êdv®ýÛ¹~›1Ö{ßðÍ®¡ôs¦†¥y}¶ºÿzQÆ©¤ÞººðÂ%,Áb ß<µ~ aTÙ»†šdɼ¦ç}c™á‚á‚þ...¸rÁ¡xÖÈÚk'ºz!ï­˜ÌÑlQ®ãb”ÒJDKFEWDZ’cD=Ž1sU­ÍóÖùÏéõd[êm²Y²Én¹eÉ“w§ïåÿd-ÔÖìLTïõOÛ’C· “¡bKÔ­v)r5B® 0®·cææ5\aã3“†yñа—õû³-Ì_jhýÃ~f oá²ç=oÉw.1kÔQ£F厄›|ñ/!ªÐÂ9¢ÅQÄd·Dª–Ô:ÒSO]bYi#Ÿ…äÙJ?     $ä³ObxÉÓž¶¤Çí’ÜÎb/5·'âÌËt¢1G‡¶p³Õ2®þåEÖ^-ª7Dþú¯—ÔqÕUK¸—uÆÏõ×/aÉ?û³K «+¯»nÉçã 2×Á¬·5Ìb>Õ™YöÌnþ2d3O0Ì´¾GÚ¤Fs÷²û]Ä1Ã7¢±1Å cÞÚËÚ‰ç´I® σcÆÊ(e]´㙹@Y?‡¥™÷û|d^o÷‹¡kÞË1^³'y¡ïUŒõi“?ù“%¯xÅ’ìUr,·ïc¤´y?í´%‰Eu>G~X#Ç-*Œµy}–Sg† † † † † † ’ ˆ~–e´g–¡¼†ú[Ìô,ÓÇ ÿͬçžxõo½­Ck×Q+¾,z\bf¦ž9GI¤MЬ^CÁ,³zœ±ˆMÏÖa«v­œä¸Œ.kcÖ.ãMÆ$#–åô<Ò¿Dè¹ÆPż–ë ë°ÙC-áï Ê6ZüË,³³±¤ñ¯Eé‘2½@4îÇÍR8ÂiýOæx?ÏÛ³võ¦jö6#Á8ÝxŸ6gìeKiù;îXœe^Ô[«§Ÿ¾äÕ¯^òK¿´dK$X/e¸`¸`¸`¸`¸`¸ ¹€hÜçW"½Ï´ eæ]Ü}j/ÄÆ$ÛËX²ç\"Rÿ\O¬#æ¿—^º„ïzôn¹™¿s¤(­—íýÜ˯ô{ïß7Ì’=³XT3ÂívØ‚[z5ù½Q^_ÙmºÙºÖK Õ™}†Ïôi®yîíoN3™YÃ1¿ÿRÛ¼ž».¤ž©•í"È\£ý‰cÉ)ù›¤Î¹¢¡wÏ©3{neæïpÁpÃÃÃ̵û¤þùŒCKŸsm^ÉïýÞ’—½l c¦¤ž¦se&í@k3J«z÷*Ÿþr>Î|ÊLd¾Ðþiª…»ÂªX¶¾åª^¾«bÏÅÙ–ÞžysªÏ‹>†y½ñ¬YƬĻ2ûÎ;oÉýÑ’‹/^ROÙµ>Œ°¥wÄ…lŸFCþ›÷fþóöö§M¬§ÔۼŨ‘ÖðÍî¥Ý̽&lu–cý[ë-o‰Õê'0/¶¼K­{+ê¶Ì)ç1\0\0\0\0\0\\ç¹ «޳H¨ß…ɵó’=Ý~~í’x%s­6lïyhF.èã| b[vômL/÷-µ£®ÏuáO Õ;bõ-ZÆUüÍ|ɣƅn¼qI]S=Æ^ý......H.0œ´gä~eÚ¡ÊÌñÚ–~´ø´s—¶:ž÷¼%GZr¨´w9ÎÒÒzgž¹¤ÏÖË3Ä1c%æ¸Í¥"å]¶}—GÖÈ»,멉¡Pæ]þ¦Åhgk…q=µµ> {Y—•ZŒQÛ¾·`Yfì`¡Í É­]Æ€ôÛn½DZ¸çÜÞ>¼ÆÆŠ©mΠ׸q­œ1}r^¸þµ¯²–ðë™Ì¸Ùµ—ÔªVMÔ•gœ±¤®¬ñùá‚á‚á‚á‚á‚á‚äËZ)µµ÷Ѳ²‰Ešù”Áу´jµú§~jI¯5¥\°„sšV~ÏÔ°Ö²&Gdù_ôEKò Í 6»Ú—–÷2k˜¡üJ&wç8 -Fÿ’ÿ=î啌±¾ïaœNôè”; ˜ý3gÁé/Ægž'ËX|¦ÐË–•=—±^z6[d+œÙÇ`ô²ÏcÿÚ¸Ê[6õ¼5þÚ¯-±þ3‘œ«v³E摬÷IOZR£Rlé­·.yÖpMépÁpÁpÁpÁpÁp1ï2§žýsbé#ûŽ˱†÷Æn´9K#ñ «ê#Çð!u#KnáËJ³±=-™v lË–3YGfˆÛ=ëg8cEË›õ²4ã/bWþ6{æyf4½œ¨ç÷jÅwí.ÞKýæˆ+уXÍ]»‰·©¯çØÑÞ"™í¥¥l£éÐëfbÖ°8¡$"ÕJ•’²XýfþÖ(zµ«æ”ï¹g 3«gÿ´RöumG út¸`¸`¸`¸`¸`¸ ¹ }Äõu[„52/ì·!Q=£+íϼ0K’­L[úÎp‰eömÉófmF8³Õx0[ÍgpêIû'‹ï[íÌ}jE SCÚ!K¨ç\CÜ™p Ð/¶ÔÚnœ›-MÛòš,öþó—Ô‘ï~¦†6¶@l7äÜ‚{ÖëË2-w8ÚIÄ6.èûÖ³ê½FQ[¶ËX²üR{ÂÔ½ùÞ«CÖo~í—= 㩾EïÓÃÃÃÃÃÃ#2;›}¸CµikÏw'´äÄ—Ô5¹ïAÚ„e-ëü;Þ±ÄFTlÞÙÐ;s-[ZåÔS<óz;/ä{p[b•Ø’vȵµÌ2³¤ùÚêeùÄù<ßóEjÈÑ?Æ ×-س³inû‰Y´Ð/¬õ2_,n-ÒÒ/™÷bíqîãÇv¥>ÜQÖ³±5â3ã„c>ô>ã–œh‘Ùû±·¶…¡ Ÿéµž¿¾nwû^ò ¯ô”ÅüMúþ³ekb2GqÓ&ÃÃÃÃÃÃɆƒÒÌMã}^ÉLì…ÙgÈIÞɯx d™|^6T4;»{Òw–Yiž…ó_‹v³€ásÉ<¨e=Ëç^|¦³åì–ÙäÞ½5¨sö•¢ŒÏÚ}Ú0„Q]=i·-,f±4\0\0\0\0\0\ÐsAI¶:íÏ9Y>ÕR>q— Ô5µ«‘Äžn8OÚç&ñŠO²ö”š{ óú×ðœ‘ÆÈ7 Ù·ô»Om߉¬7³ØêÍ2YZŽi[²djØg±! ã–%ÒšU·05Çå˜Ñ´˜ùÚðÐðçјq\Aº…© ÷ì ³Ïb2kçÑsŸ­`ë 9­%W\±¤®ü‰ŸX’Wr}>}}ÔQK¬-ô­‘ˆmÑhÌ;\0\0\0\0\0\\À˜1ìÊ\K›lY‰jQaß·»X&×_Ñæ_ú…¹ü¿ #ü?½sgÅX"£õìPdû*Ùx‘iB¨ò{FöuÅŒ ¢P¶Èú u¤Îiô¸µÎÐÌâÚ¦%ÓS©#3†=3>~wö^~ó7ïÅú`Œa‹yf}zͲƒ`Ö°õ YBÖbÌkV%/óÞ¾a½5c1r‡éŸq•,œuåú[ái-íc˜}'ŲX......H.È+ó ÷Œ„-#0YïsŸ»„È~ÿ¶Ýßî%÷SÍýÐ QY³†Od-U !³Ì¬«öÁ3M,iÙö|Æ¤ß Íì雈Áì`®1CiFÅù–˜7Ķò™ÝiO¾™È’ù›1oÑkÅ3½58_ok‰ÆŒá~Ø"j öfä;CÑÞ †]ìEXï‘v°>@ï}öOúV—ÔžÕ¦ón‹nÕ‹®=茗Ÿö´%fºf¸`¸`¸`¸`¸`¸€\p(ž(Ëò…ÌõÕÈÌæ ±‘ºel×ï /\’k3z‡í=Fˆ“¹7GT8ce(jˆDtÍèµ§`æïÛ߾Ğyé}¢Y‰˜Óçˆñ/ÅìÀ7÷{ ì³5ÛÅœM9Ò2Ïæ–Ì>û½Åxž%0×X&Kà¿Ä öµÌÎôoŸ³é;Ë5æ8=Òsbz‡¶5¾¶gÆ^Føw~ç’Œw¿{ÉïÞ¹ó]Ú™ìOÏfì]}õÚ§ŽçÁ‘ [Ìïö;=NôH=óÞôHíUûØÇ.a9…NyW–lÙGË“#¶äše„=çŽƹ´3½¿å ±·¤f{ÙêŒ(ËPË#rïÍ™GV±— Â3ý¬nêlñÀÑúËÖ¼ßç—a‚1¯¤…ƒòÈ–²|³žÕÞ_ií%Ê™7³•MYæ•W.é9È¢XRøÃ̲Œ«Z† † † † † † Èõ5"0±ˆóbù”dh¬a:›™Y7Ý´ÄðÊÊ´¨ËØcöDŸ‘–÷ò'ÃsêioKeKçÙjËnf±å× ',1Þéý˜ÿfToò}yZ&%W5ÔïßýÝ%?ó3K˜GMʺhCHÞÛ÷(²|c ÖÈóu×#¹ä˜Ýñ{Éè"6öý˶ŽÌb=‹Æ-µ÷ý1^c赑ú^ùºöcÓ>ìuô½;âF*ç*úË.[rÎ9KRC¾ÅÉ7OS+fã<á‚á‚á‚á‚á‚á‚䂺þÏÿ|‰Å0Ïæp΂_¶™P–‰DŽÌä˼«1‹ê~oC{²‰åóeKÛÙ¢|ëˆõ²Õõ»¢”WúQCCà–TMòß\s•Ñ’µ'CÙó/#“¹À¸Ý‚Õ[žÇÓ§,'¯Ì·KXN–`¶Jeíö\lOŽϵÆÕîý¾ï[’«ùV`ÆÆÏýÜ’Ç?~IeJý{ÛmKêF…{ÔÐr?­—1ö;¿³$’ºÑ¿i1ã‹7ŽK°ÌÌî|³’¶b ä‚*³,fh–úäÞ2d¨Äœ*ÿâ‹—d‚YÌQ¾-¸J.0†e™ŒçŒØ´6y*¹†µå0ö¿öÚ%×\³ÄzÅyo}½+³Æ®LÚÈñ„œEÜȇ † † † † † ’ èµ´¾ï“šWþÒõïE-©ëó‰>Ÿwè)C°ÌC0ó19륭øäEIý9ÇdqÈÒ,sò^êsÆK˜‰ùÇUú,&.U9¯xÅ’^«´míÙÅqŒÚ™°~²%jY¶RCk]¶X”àÓzZ&cØú6´'ÏæÛ]ÌëŒç̯ìdëøÐ‡–l¯‹oNYÏŠ}!úŽv&Ú˜ƨ ¡bÖÅ7C‰NìOÚ: ¢1q£„ã<̈ú]ØX×Üxã’ÂRó5-i±—qûÆ7.¡¶dÌá‚á‚á‚á‚á‚ár¡kzªÿ>ûõ×/á1ŸP -3y0wÒ›f±¼×tc[¨a^iøI‹ç‰`¹ Þ¿«õÀ¹kDfVb»q=kÏrÈ¿´†gÉD{+Ó¸ c¯¸;{G†ÏÔ'#?Ñ;{&9ÖzÚiKª„²vÔq\Žßd´‚áôìÀÈÉr8âg¹Ãþ‰õâì.ærÿl‘¡3wrÕ­— eÈc\œ­c,† † † † † † ȉNý»Ï™×ùoÅX­$bo92¿òàs [w¤øÜû×P4yªÞá•,Ùp‰hošÔü¾=›šÑ>KÔ3ãêPŒ?d-c´‡Y\3Ëe±i¬ZÊz-3fOk;3ŽÈkr|Ï|a¨esÁd„,§fó|1 ­H ™¹†uÜñÖ[—Ti¯ý’,ÿ=ïYR¹\cŸïþØw6ië‰Ï ™ûž ‘ÄØÐú}[† † EÃÃÃÃ|*áŠ5Îù¦T{mÇ`Ãá´ƒ=»q¬Àö천5¬ë#³Çc+“üEÔ¥Îlu'ºK‰uiÛlÑŒqÞ3]^ÉZø=î;îXROÊ}iÌeÎÀ2/÷èû7³ ¸Œo{Ñk´ýÂýÓJi™²Iù7úªTñ&3‚^ûà—pUm•œ³ÌÅ´vÎØI,Â‹É ÛËìy„lÎëmÝoŸÅýQIí©RëoÉæ|«n,‰Æ5ÆPfÉ´ÃpÁpÁpÁpÁpÁpAr3—¥¥ÅjÖ‰å×™ŠäÊ Î[VöØk~¡%mTÊr–i§Øj4f#–èã9[A 06ú8§&´?ù‚ñfKf¯©HÈ·™rœÄ²À~'NÖy~Ýžã\YJd¶¬éó1Êz ùo~!{¡âÕî‘õÍÓŸþé%Ô0QˆCŒª»ÊzõÞ_Ÿ_†-Ìqâ'ד[ÖoéA¥=³L‹¨~ÕhŸAœµ1LöUò+™)[âŸÿrf?Û’ÚÖwíÅêw~Ï—ÈÓ{¿Ï5"@ý[a¶Mö......H.è‘ÍZ—6O«ÖïšA®uƒ|v¶™ÊÄ®Œdûê¢Er9úè%ŒUÓ‡1Ï6ò“æXÇ‘2ZÖ’ñfºmÉý´|"Ñ•åXÆå¿äDⳬãé5¯YR6|ÚÓ–œzêó&91ÛÈ9Ö¬‘À9_޳¥ý9Rš#99òfõÒ³fÿl5Û•õ& çæõ¦5´|Ü‚ðôN¶ÔÆj˜¿œÝf–ýsõ‹ ›vκrݯ±mXÿÖ þßüÍ’:ÿ“»·í¥ï¥×5ÏzÖá½0N˜Ëù{¸`¸`¸`¸`¸`¸À¸Àž@iÿ¼+g óóy¹r¤„«òêÈwŽz„g–Q^ÃÜa”CˆlŒ‹aâ*[Qè]gŽ9fI¢„å ³ цç-Šl~³—¾vÚ¼ÏÜÚ³º¾›C{ÒwÅ\5Yyýû¿¿„£"W\±„œbý™ƒ1ŸÈ¾õïK«r~ìÇ–ð‹œD-2T?ŽJŽãH,µÍëéÓÌb戭&¦%1wRl¥£«·¯¤™ÝdC r"ûY>ÇdªçS_±±£ÞY;öØ%gž¹Äz=ÃZŒR¿‡ † † † † † È)Œ«l]>]V™õÌUòªW-Ézëýˆœ=1Äct1†éw,^3¾3}²FË,êŸ_ ´H¦YZ9çœ%©I®Uc¬2 8¾‘™KldÛ}è’,?÷ÇȘäﺦæI³çÀ‘¶(}ÄÝ9x/13ÿ­×k¹d„ä ´mêIl©ã+vÝËe—ÞKÖ¿•Ô8Ù÷ÍÈb†œé—úýâ/a¿+íI?Z¾ 1‹É©?Ëg–þ÷ý%ÖHžê9ή±ˆb߉e–d먧±'W)×ìvŽ·çjá‚á‚á‚á‚á‚árA^“mI¬ eÒ¶·Ü²„y÷ò—/ùÃ?\b–ás«E~¶±Îð-$>_÷¨N/ô~g¤¥†6Û•-­kj $1œqXå¼õ­Kh à\vÖ~Ï=KL7ó8­Wã{壭ÒbœiÍ9Â@Ôµ¬§œ|ò’Ü¥­Èõ6žI²ÈI¿”e^ð‚%wݵ„žb…ø™qn£+Ô*{q9Cýu_·ä¥/]bóÅÆV´¹õ²RCúÈÊ$Âôþ5äïõdþZÖ[ŒQCrŸ[,i}¡oÛýí^XNÞÅÝ Í³ÃÃÃÃÃÃÉY×ñÇ/1ûiù–¡Ê×~íæ>£=#„ÏA9ÊasÁö¬Ê£O-*˜³ŒCËÔ¤!ÏäŽm‡Aª¶ç÷ ëúúF ŸRc¯~õc^f+ß>³lMteÉd®ú·fÒŸúÔ%vp,‹Þ¡ «7’µ×Ék_»¤ïÑæ†3Œ¥äJ~Ù‡ûu÷ÑÈ1±ê}Tíµ–£ÎÔzEŽh1Ë9=šmá‹7‹+b/mØ Qˆ^c-Œá»úÈäayÊ–Z&£´Ç“ìç      $P‹ê¬+¿ÝL­l5Wê“Ê’/¸`I®ìÍU»-5¶üÊW.!ÎÔõßôMK^ô¢%Ï...... âY{³´3¢Î†”þ©wúíѯç{r4Ê#ïe™&kØ–,§Ðo‹UÍ/Ûs|K?Í®¯ËܧïÎ8c‰ÅíˆÝóÛHKê¨óÈ•ä[ü;\0\0\À¼. &Ã÷.à\§]¤æ6ÂcìP;/å½l#ã9Ïת<¢ ßr2Ô2´ÉvÁú·ûiâ€á-q’UO‘Ï|æ’¼¾Ž~¾;õ¯ÕÂ5n`#-©³iÅøÏ#Çèl|†¥ÑžK†idÖÞc¾ñ/1ŠõfîäyûmìP3y ×ñöö'#§†ÔÇJ£Cfh–yÜqKÞð†%Öײ<52ì......H.HëŠg^[GG«ÒË\…h+Ö҆ܗ ~—O/ºh [tâ‰K~ë·–0VQÃD¢WañwÚÜ"ÄV*2þ{ÄàõöÍÑ*¢eZ€žê±.ï¥þD»×¸©–l%ØyêcåN2Òˆ´ô‚1š¡“µ1íÆ¨6ägí9fkÖ6oò¨·Ûh™:jŒÚeñ[v×íÅ¼ÏØ®O?}‰õýèÁÞª¿ò+K¶gsœöùùŸ_’:œwÞ’,ÓzqÙ"~Û×úæY¢1m2\^.....°ØN/T´ÔÞÂD•üx’O@ÖÞŠœŠ|VÊ ÊrøÍ”ÎÀ¿äžÃl©Ù3ˤþŒ.>iæa³íWô»!ÏXl§eú¯¥˜5ˆ¨Œ–Œê³e4†<µ-íÊíÿÒþô5ÿ¥ûUÍ,™ñFöÉ£Vbd´çÁ3ÔùòË—ÔÝ[¸›\ÃVç5œÁLm­OB{,r ‰f«-}È:“oDšni=ã)Ë\ëg2Njô)¿îÄ–¦…™§ÃÃÃÃÃÃÉ–ÝôQÿ½wø¤Ìo.p<Ê0‡£"i¢®å²E`ÿôÍ29ãlhÌõè͸ªFã5ó£Å![]qnˆÇ¬g9Œ^^oqÕ#³1£ýÛ㯳áƒau_²¡(Ïl©·0üËw¿—-,fí2œ4ýY~>³’9Å+YNŽ3oÉÙü—»Ù³®-ÜÇñöUˆE•G_µ;°ê™û‡gi¹— ïbûöÛ—Tß _åB=kÕÍpÁpÁpÁpÁpÁpArA¾ÍëÓ#©U®×2ëqÇ þËq!{ŽæLtfžŒõz<ÌLïÇ칯®¾£”5ø…GÚ*wɶg[ÃË,Á¢‚6!OÙ¸Õ•WÒ²öž¹X#×ôlnOëÕaÿ‡™Þï„–ó×ìÌ{©Ï_ýÕCoß52mó·íEÓgÁ¸†™›Ö¶Lguýþ$ÏÛèc€ñ`=^Æ@êP#E–Gõ»¾¸ú­»«÷Rw      $~¦æ©ƒääõ†ée³ÿ–g@²€ÍPB2ºèkF”ņÅXFq†Q\ÀQ¢zj˜ÖãÊ1ÚšÓhcŽYB»±EYÂK^²ä?î®ÙË[åHr¿+f¶”ýÏ-}b‘Í>ӹׄåTßß`¿—µ¤îÅûtŒX³RrÐpÁpÁpÁpÁpÁpArŧ¡.ÏäõÖ:jXúœ{î^ßãõ¡}˜GV¾­¥Îá=¾1Âù»?ÈÏý˜OÆRÍ^VÐ2œA#“›,ßYoßRãYž7£e¶àÃäÌ#³,ËOËåW.yÇ;–ô¬Ú·‘Vâ5ìY>šw,b³öúÊ*¹ïϤ•³µÓZ3¹çÌ–ZLzðKvŸÙ‹¡JoËýìKg†Ò†\_ûöäa=ë%Ö™;îXb|1\0\0\0\0\0\@.0S°Õ´XÏ&eŸw½kI¿R”G}Å»×§‘°gs‹êoÈœ%ä¼¼ÕÂçPfnÏ,yþ®»–|é—.1. MRŽ˜Ñ¿†$6:Ä — ¥-¯ Ïy/˱þe½µ…Ö3¯Õïba–fkÍb§žºÄìC?²·f1f¹‘P±T£CœÓ¤§ˆxôW¡ŸÌØÌ)ûB¹jÅ<˜úð¸á†%å)ÓÖX&ËLd;+d¬×Ýc)kìÇÆ³d®¨c¸`¸`¸`¸`¸`¸ ¹€8Y×÷ojäjÎ7D(õVE^™Ï³§¶„eyè ¶¨÷ZŽ,ñ°Ò]ô©30˶#X¶Ú¡ÇXÃÞ•×d–™ýíÙ<Ÿˆù<Û³}ÇXå¿=ûôB„ïsŸíå]Ƥô 51”>å”%f±¾Õ}.[ 3 -Ó³u°7rå•K,ÆL7Æ*ûc¹ÃÌÁXƒa¹–g ç?úÑ%wÞ¹„:s„§Î×Îð/xÁ’-ýäüÆ¥]oZ‡íÕc6äïá‚á‚á‚á‚á‚ár!€Í½2æ  øLTmÉ·$JêfSåýb¢¡¢!mZÀ¢Ôò‹LaÜjyj˜Öã s§ŽþË’´€ù.K°‘ ›s§ßÍ’ÛqÀÊ7;°–-l»¥.ZÒìCc-¹ãëâÈkÏÜ÷»—|ó7/±+s_µ-ñfùžø#Eu|áî¾½0–êšÉ4çyCEÆÿeÏä±]rÔQKz.¨ðëû5[êÝÏÔ“bØË\N{²-u$Sò    l‰·á‚û'0b¹ÒÉòˆ³¶ÆÌð-¥¢«žÑØ–§?}IÍ4Ñ66•64ËпŒ“¼×ætúg™´^9ûœ¹Ærz4ë¤ÃZuË][¸Ïã†É½…û+ · “{¬¶ÒÒ>̈ŒXú‚ÿòà(_Ö^ñó ÝÇ÷R;˜e-["a•Sh™ÿö\Y]½8ë‰Y”reKÞ[û³1Ú©Uíé÷ú×/éíÆˆMݸûÔ^jÔ‹ˆÇ˜É‘ð\_Jt­ËJÆ5%üQÖŶ¯êÊá‚,m¸`¸`¸ÀŽá‚ûÐ/ü2‚E~¶%¯ìó—ØKXÆqÆ’úv¶E5ìcϼÏÌ%†ó_êÌë÷vŸÞËw|Çá½äõõNM–œã yØ.slùˆ–áèPï}ÖBvË|éy‡¥q¬2ÛN«ªgÉ}»zŽ0ì2þ5­¶ä”õFzÜÎ3õ*¶š¾#ŠZT¼ð…Kòúë¯_b±—;"R“º²ÖŠ›È/UÂ;ß¹„XAïTN±u[r6íoŒV¿ 9¹#gK?Üx“¸šw±'ÏvÕïá‚á‚á‚á‚á‚árA–ÖïŒjV²g^ôq˜÷rîƒmÖ£eè¢ uÛŽ}v3£ëÊŠ«7¼aIê|Ï=Kˆ·%9Ș1¿—J3º²^c|+Òó¯a55ÆŒ]o¹o±jýc«-ý‡¾‡S’8cøÿÅ»Ü Ï—góKë©g]<ªÆ?û³%©[­±ì{nlK^ßï,gø–α²~…sÖõ´§-©¹c^™¤ž=nÔA݈'ì_±'Cüùš¯Yb(Í2‰~ìCf½ÃÃÃÃ<† îÏ\`øf`ÿòÙ„×§}¨9¯ìñÍüžG–f(A¿³ƶ=Ù1rhÔ¤<•sF´›é\oúÔŠ\ÃÒ<Æè_?Ê‘¿í+$ùn kdœÐ¿†öÖ Z•%ØaWÒ§Æ´¤ižw%Ž16hùž¡ê`œ¤ä˜‰é|ÕUK2Ó¿×]·$Ïت «‹6치=b#íFà{©uÍK,OëšÇíÎÝ cÌdz^úŽOyý•¬…ר @bŽ¡JBYoúˆ–Éœ²™èúÍy®º¾¤'Çël/²>ê¬E,ÁxŠ–gùæ/æw±^±wY½f¥¾ÿ`¸Çz Q‰EÄÕ‡ïê÷Ùëã¼g„¾L‘ õùý¿fÿ¼†¨Kë•ÍÓGŒIjn%¬Ãhd]¥Õ9ç,É»²üú:$KËv™Å,×2;ˆuæ©O]R»aÛ Þ¼‹1imgŒ¥úÒz¿°LF]Ÿ)æY¶"á‚á‚á‚á‚á‚á‚äZÉÚU{Õš×zü§å ­4Ãgkõ<±#ýk«¼¬ÆüÍ'\ó;ãÍžmt.-c»Øéèß+_¹äX’Oú•qÆì]°Ey†ÿöY°ý;hU‹f¥õ‚²ŽÕô›GÎKû¤mÓ×¹J3¥Ž3Ï\’×0ùÛf'm¼‹XW¿3f˜ì«ô­®7°8ò™Ë··rÖ•Ú’;¨ƒ¡{Èùû­o]B‹1k˜)–Ö—Èr˜äú=\0\0\Vµ..¸¿qA퉴's1Ö ­jó†|›»Ç cÃâ@Ï,–M=¯-ëM«ÙªÎ\Û|VÚœÜGÌ¿ãŽ%¦[ÿ¬Ý3¸!€aoÏ–GÆË½ÆŒ¨Ìz[‘R£ˆÙûú7»ØK}¿•Vµ1Ь%GcÒ2<ŒU©?홇!jµ”±]³ºäz?k¿âŠ%†<ôõ, ±7ã˜Ö£Ë ªÞ2=Ò[/‘ëEY#÷¥ÌH£O 7ê....è£z¸àþÆŒ[ƘYƒ™’%Ø™ÝËrR¸c€¡Ïß}-—‰äiÛë¾gÈlÖ›ñ–Ñe¨˜%XÚJ¹-hlØkÙw¤ØÛ½Œ‹(Fó¨Ï”¾Åø¿öÚ%´[EÅ“ž´$÷¸&ýÂ/,!•ë‹–†Ö^f¨á½³vî¹K¸Eïež©÷%«›mϬ!:ý§Ýe{yË[ï…Ö3Ö³L±a }†ROË#ÆU...°z‡ † îÏ\Àað·±€å{ŽóFY¦ðJ+‡mI;!û9>C Ó°Ç=cŸÞ›Ï}î’›o^’íª¶dœÚs7¿ÓÍVg i+[ûgÜg£m†º)†É½Ýò<‘¼Žl—½Õ#¼±R¿J°çÄäk¾——×l_‡`÷ÒkìKÊ‘£é©¼&ç=Kj”2Qšú¤Ý8†“LQ»ðåÚâ[z­GžÔ“ý±dFöEsæ`1õOÿô’´sö IªE™³Dëi³äá‚á‚á‚á‚á‚á‚ä{ªâz*bloŒ=>õ&"Ù8†ÅÑ€ú÷üµý0D2;¤ó_ÞËtå—½hI¾SÓã‰=e÷Oµ´Uù¶ÄâÍ6càa»ÛöRübñÀø´>IêüÄ'.yÓ›–0>™;?ÿóKÌ3yž¼ÉëÙáæ–qÃÃÃæ‹á‚á‚áÛÛjËø‰ýË,fŒ•ä 1$­aÜdhÀ]¹z®1±XŽáƒE]HUÚ£µ„ÏÈ…*e½|¾®¸S±e³>wÕKm©9ýÕó,ï͸§±ù%ûÆ#ÔÐôéϰdžOŒÊó9i#6fZ#[‘#„ä ¼²v*®ës1ó.õäk1v0”Há:O^o£LíýÚï:ê¶–0mÜØz’¼25aÉd@jkç-ö Ù£ _dë† † † † † † ’ úÑ€>;8{h³QloÎû¤8`1f–§§ÌæÄ–>s­4úÅð*[Ê®+’ù G ¶DGؘûÔ3k46!š}Ò×fa¢õŒOy—ÅØ–8gÇØ0KΨ۲N€û­mÑŠùȸ:ó³YW–Ðã|fýÈ­Õò‘,ÉqNFßuµ5çŒÉº’oÛ1b …8êeqX¶ÍoߘúÒl58W)¥‰r–¹ÃÃÃÃÃÃÆDìþi(uf¶Ú³¼eÓ|6d°7›¶ Cx=Óy¶\™hLß1&3Ú©¹ÏÆÊo5Wß=ÏŽ:jÉÝw/©óùEõ·SOÆ3Ÿaá=[Û‰ÏäJ¢A®³ímkHÂZ,*¨a#‘–±W×ä×fÿºæä“—ØÈ÷jÛ²‚ÔÖ$ð_Ž¥çÕ–¡Dõ|ƒ¬JûŸímÈvYu߯¶!UÄZ” €DK!5*Ä!ñSAÍI $N‚`ðClLИ€Š_ L21¾ Q£vttfŒF_&:¢ãŒ#ÎŒ&†¦í¼0½6ëCþðã·Ø÷óÜ÷=÷ó\œkŸ½×^{­ÿŸ}ö9‡_¨·È§éÛŸyË-Kù«ÅzC]?È#Ký̼ľjLD«† † † † † † ’ ,³lô¹§Ë,Éq´»`Æ#†Õ´“åmøœŽÕOÌ¡°6öÅ|’Ç gòŽÅ®ßó_Ö™ãe»Ôˆ–™Gõï 7,M¤ÊÚ¬õ~Lm”É6^ÆÚ;% oYsÁö²rD,Jy¯ßr'‰s•o}k){ǽʉÏ—wâdþKä4«ß÷ܳt'/¬Œe9%÷ër? ýSǹ*›gq&S¿ï÷–Ò‡6N)ÙùæsÁ2®ÏÎOªüp!F/ÃÃÃÃW+ÐKl‘±Äšw♫¶×άÊ\°ž2Î9ú,OûYÃw°Æ Ì»:Îh7„±{ay<¿'Âl"w¤Çj?^­ %ô£O/±wo_ªÕÆûvù/Ñ•ÿÒ‹ã&C€|C8íI<϶rXå?𥶪ÃfÔå¿dF)­¯[ZŽ3J³¿ôsö(íÏw¼sôóí"Uæ7~c©•ç¨Yt¥\1g$Ùv¢”ñccˆ:\0\#2\0\À.¸Ö¸À¼a˜“G2b{<çhò+~v.­JÔ²ýKÆ)Õ}Te[¶s²¤ü%ÓÃu¼®(ó¾¯.‰?Œ±>Žõ«,ŸWß™My žu²~®#Œ[{œ·<µø)ÉÈáhÒŸùÛvr’Í™/ì¯åw’yiíý÷/µlͨ0Öffǘ#=bÛW™Ì“Æû†±uî³<ê÷þïQ³_œ_•=7ß¼”vZ<äqò)Ç‹>yÞó–ßö¹€˜o¸2ö......H.xô —ì#y!c†W»é·ÞŸ\£ôWpYÆÎ²ûòvuI?ô÷òÌ{Ìš:·Ö”ê¿øˆüÛ¯þcébõÃX?!bÓÏõ;ï±f´ðÛ´Öfwß½ÔF‡ùØG‚•ɱÈùÏ5Í2É¥·ß¾ÔüI!†Ó«†BfUŸMÆ€ŒdJ¿C•™žµõó™<’}§>øÁ¥u$¿ÕÕcgéÌó£Žþç½ãG¯p.H? ÐÏÃYf¸€þ.¸:¸€Î+zr½J¿1~lµ§ÊÿÅ_,eý½p4íý{=ª“vÅÍhOüLÌäêAz ía¦X»5[Ñz0ž*Ú©-[/F³¬É‘úÜç–æÿZ{ánÌ·¼eiýÎïHëß\d»i?Ÿ ¤TýõdSú+-ÜÑm«‘ý,‚ìÏ ùm݉3CõöìãÂzhsZÅØ£Wë÷߸´ÊßzëÒlå×~mék_»”³A‹ÏÔµ>ö—g dt    p† ®,ÉhÌH`ßíÊš×_QŒœ´Ï’,Ï÷nYFg™Ìnæ2cƒ6Ó?Y[aY ËØ“kÕ=¶[ï8Žùû¤XgcšGªüÓ·õ‡O•íæïª¹pøSŸZJ4¤ÿ‰Kõõ¢.½gÉqO–aÖÐÿ6‹°H«ÚøíÅ:^kŒÕz®œt¾Äd ´Š«:œã1#ò[™Æ¶æŸ\SM«j>`|dN;mÓ›OÒŸÃéÿá‚á‚á‚á‚á‚- »ð¼à¨ñþïŠZŒ™†ô–óŽù«úòîw/å5 ÕLÛvÞg•Þ«¯¥³²]cO{ïVo?q,í·¨&“+l”óˆíÌ̯Àd[uW—øPúC?´´ÿFá¶¡½!9y0k˳8.Ù#*c’sƒ<’;ëß¼CÝg‡Å‰ýKÏ0* u­]Cûô^z›cjÞ3lyÆ3–>îqKÓoù½N‹¤'ÍÎÖÏ0¶M;³ïe¾ÿ!­*ýüç—~ìcK Wé™úBq„y&£½ÊÔSoÏ~öÒŒ„·¿}©!<¹Œ9Òs}z8}Hk‹ Ï–Ë67`„ô¿™G6÷`Ä’5˜åíZ'äÚ‘Elá–/ô£Ý´ôáXi±þ²¶Þçô=CŸ×¿wݵÔbÉæìiŸdIc+ÙGH¢AÚ“£`5sM,Ç({Ty{°OŠü†c%õõ¨søÇ£fë6vÖº1ÅpAzc¸`¸`¸`¸ k.¸Ò…QT«‘²¯„3XÛ~ë)Å>Y?¿àcWp“Y?™+{Z¿ëûõ¹²_]IK ÿËWå·Ä¨*YOWõ÷¦‰Š,ÉŒæè”y,ë%yœ£ÏἉ†`Œ"FæŽÒ3d²y–ÌH>áUe gÈ?þãKé Æ[ýËw8§ ÜíÀ-ËX~g>`b³#"¿ÕÏ|Ì9g¿;Ų8m³¨ï„æ(d¾s½ŽøÀÖËæáŽæpÁpÁpÁpÁpAJEH•,Løä'—òöâQÂÊüäO.evsììêò´¬ý–‹lµ„ø@œa–1‰µ ä Û/—ÑÞ{8Wدö.ÕУçó÷ûåÈ–Ì“¦ÉM¹>À÷¢ÓcDŽ&î°U¿VCN±2œWØ7\²ÎlýÁxO…ñ-Ï2\i,­9ÌOn<*ϲïÔ9³_ï|çRãnßå)K¹¾k[ò-·héyÓú˱˒;;xKë½îöÆŽ)g6ë3ïåYŒ^¶X¹Ywϳ¼Í©Ìÿ}Rú:wâÿõ¯_j,om      ìpA=ó’—,-üÌ묋#D$fMÊw,ýú×—òßñâ”ô_š<ë3yuÏÌ5\íãÜðÓX8ŸÿVÎRó}lÑ®Ž¿·ô}È«Z±Nó<-)Ĩ|Ñ‹–‡Ö=¾’Ü9@Ïçg)bûÏýÜÒ\×Ê‘b^¥wV {üO›m—cÞ­¶ÏÆ€}šëÀ\1¶ˆeœ'Úd‹½µ{ýè³fZHöÉu3ŽïpAÉpÁpÁpÁpÁpÁ>üÝß-­§¨žúÔ¥¹zpq„cD)Ï<ïyKí ,yW‹ÏËsdm¬{;ë¹uCòþz“»×¬dõ×p€{á±s=-ﲕ>&-Â}ø/ûK1nª#ù–‹–~]%ûÎØ¨oKëøË^¶ÔZáZeÏYéÏâ‚ß;üÆQ­GÜù@^`+6.Æ×µ{Ù"LÁ· ö͸2ÿpijEëǽ4ß»²Ã˜Ö£Ê¾|d)Y•½æ=î´qžÿ¦Ö³i¿ò+ÕÎ...... Ô‘ürwɧ?½ôpéë^·´²é¢IŽÑ£¤~ÿ«ÃCGÍ³ì ±F°o±gÖ`ÞYŒñ*ÛV2zy…È\°Õ'ZØ¿£¤ÞÉPëoæ+ãbæZúŠå³~©’/xÁRâOé'>±´læ3þ6‚Æ&Uç_ýÕR³–Ò³KµúK˪z}˹㣘–3¬'Ÿad=¶wb'whÅ3ýÌä~]–±Ì*©B}ŠñÙÏýØV [1OþüÏ/í#j¸`¸`¸`¸`¸`¸€\@¬«÷ Ô—º$_\1¬³§fì«,CÓW¼âë³Ø°Îð¿g;’H;ÓZCc{Ò'¿žë9ÆP†¥¶öRb;0í™Y™eþëá•ë Õâ;Þ±Ôjc;ì@±ï¼ãØX§7ì•«ý!,6ŒMòx¶UkËu'_'úõ×Ï(8ÛaTg´ëY=œk1‹m®e}¡ý†3¬“ï½L.0     d´ 0J>ü᥅ŠünõÅú¤´îtóÚŠW©Œê7¿yi^!æÛír=Šbˆa–ó®®q£‘ýÊsY§ÅÙcYC–Lœy$V ÈMi!­Êvm|Ó’ Jxœ™ËL©¯?üÏ£š‡÷ã“(ñ뿾´Ÿ“Ôïß:üÖQ³×†ÿ¶`匩éÕ\AµõrÇ¿=üýQm¬É–_¹ Â|•½«¯Gٜʲ2G*¿ZUïí±ùm`d2®lž™½ë°v/°w©ÃÃÃÃÃÃÉŒjëû~üŸ§˜õ»"9W8Ï}îÒôjU÷?w|Bïå¾ëƒÑÞ_Õ2³ìzÓ9kãC6[°»{ÃŒ=ËŽ…E»ñBÖÆ¼æ¿výž¿k2­µìã3kþ‡;ºSн«ßµ»ƒÞæˆçr”ë×vì.|¶Uû]v™vödJÔ"›d™šïÙÛ¶-êèí¬9sÙv_—òýá;Þ`vs\È’ÃÃÃÃ9‚ÃÃ%Ìè}Ì¿ÈqZR±ÍküÓ’d¨;Æa޵­ºðz¿GàüÍè⊠[±°»¬9ϵší\öŽåiyú¶Ö Xg–ç^³ÙJ‡¦m‰'æcÆ~Dxn¶uË-Kó)Ë,ÏxãÛ¹™f¿EuÖc3Ò§n=jÚпKßr§êÿƒ?XjsB2”Íjlt¸I´¯Ü¯ûìÅ/ù*¹Øfœ£Zþ¦µÃû2\0\0\0\@Û®>.à¸äÕD/Ù£«Uj¤ò][§ûŽ>^]æ(sDÒç¼®df± cÛÄ2"-áo‹ü[µ`™žx„}O«è%[G"ÏæSrdŽNß;Z˜5¶°EÚÌ:Ó‡ù¥ª”¼YXôµ¯-µçïˆØü¶Ý{ïÒjÅÖ²úB•¬ïj›ð¬®Pqoy®ùôûÒ~޲½]Äf&¥õ䣭Jõ+À}^ô4\°/ÃÃÃÃ×ôqH¹ù楶Zb9råJ¾Óì[ßZZ« §%5RùŽ/qÞwã›å 눖õû†–2ƒ YCÏþŒs²=@ I–¤=öN¶>þ³Ì~|Ú$wç{Ý­~ãñžYÌfö½gúý7³4=Ï“D9S[-)Þ¼ûî¥õïm·-­òßùÎÒÜ)gÙ> F=ÀsW–;ýå ó³ÇÆ%ǽÞÙbÎ’ì×NѶ¬g¸`_† J† † † ²Ý«• ²æ^nºii=}¶“/WºT<æ3KëY³ý5´É||å+—Z ¾e ßþöÒz±´$ë¬;Vý“5%vÄðŠ+K¶Ã:Óò<×zaÇi3‚eŒóÛ4–ƒôaŽÑ•Wô&oûÒ¾Œ½S1-Ìxø±[úìÃÊy±4GÐЉ#X¿ëÙÏüºkb2[ékîY2{‘­ðÞ«½ÿÄÖ¯lFÄþ2žé™üÖc†õð^y?'·Ù`Ö9\°/Ã%ÃÃÃ×°ü#±.±#æÃ+]ʵ.t_ù´kï|e©]ÏÚu}úÜ®.3b‰Õ¼:Î2uýõµa‹Å§aí̾ïǘá-{ÁL·ÚzÞÉ‘2?ØzHžKË뫚5+Ë^ä¹é™šÏWËÏù~iŽ&Ç‹ÈY çÈæûa,J-~¬ý\…m£1Î-²w|»õNdæ^FïÚ[Ù œè­T»Ãû2\0\`µ  \M\`Yð¦7-­'­v$=œq~¥ ÷tõ_º9©ä8æï»îZÚ£bFï»1º˜;–¿<«„\Ç Ûc)l7ý°Ó#Cï¬ßµÉ2µVFœ)©µÁª'ßH–-ÚRã ö‚ï<´Q°þr¤*3bgªõ^ú{‰öüB+½Gd+OÖ‘Šðœk߸‚T¼f~ †3³ÒÛ%Õ"j¶Ë8äÈ'²¶Š"³¿ÿþi¶ÅgÍÈ€Q¥Ãû2\0\0\0\p-pǺŽ|ùËKí–½Û‰ÿ+Qr}&cæ´$/¯ÖŸÿü¥/}éR®3p¼,i-ó=-amü*%Ç·?ÒãX¿Êìf’õ~ôG—fùÚ!l(½Èúó­bô[ö…5Øz =Æœb[é=«í{5[,4¦¯²[Ç3ÿ³F铟¼ô{¿wi>«•µ±G\ŸyÍk–2’sìÈ׉œ–#?p¸ÿ¨ÌZÒ?û™–ØŒ(-Ìú3Ó3zó»K½ÚNà’'=ii=EX­ ìËpÁpÁpÁpÁµÀÕõ)F,Í#Ö/‹ ó #Í"!G§Ÿ{Pl¼lô3’9îœ]p.k{ó›—~ßá»GåLƒ˼#×s‰–yľ­IÏ3èóäû&í.¸82\0\0\0\p¸Àâ“Þ¦XÆì ¯Fé^-2ïˆfvý[Ò£YÍž5Ø<¡Ç½<^ÂXÚAcF[ý0TÏ+hîr$³ÜI¬f&ÒçTzÌx¶ÏÙó÷ÛµUMÃÀì»ç–õöu‹pz ×[vvJðí)YÛÿñÒ>kçf§!€y›ùe±Ä÷oçÚ‘1ÂpÁő႒á‚á‚á¶rþ\Ðç²YÎ(JËë~ÊH/=žçõo•Ìæ/ë´+P泦Ïô‡p_¸l³«`F”ÙÙŸ›ž~HažÁú•Ÿ´ÐêìçN=;Û7å-žpøöQÿõáÿÕl0ü·q4œyÅ+–þÉŸ,e$Tù/~qi½ÇÃøší²_ýTc:›çdƘù»Ö6‹wì¬~ã’,V¿Ë'\-LÏC=ë<ÕÆÅýLÀfwÃG† † † J† [. …;^q§—8¾Ãû’¶¯W”ò­b¼GFä7Èu ~݆µ1Gÿ 3¢ø]ø~îAÛòø²~ËJË£l%Y#hýb=V¦ë¯ù­”«ù¯­“Ôón7ß¼”ãhþ¯2õv ‹·Œ«?ú£¥}ý¼óË5LŽ~î,Ís¹‚Tb«‹?ó3K¿ùÍ¥;sªìEæ…²½=Þ¢”È`,@^æ¹%ÃG† † v"d¸`¸à¬¹ ÏßT‹û÷t¿ùrµJFf®Õ0ÈÎŒ@F©!UÖcõ—°Î<þú×/}õ«—öö–g%¶ɨË|gåñ±í¬,Sï$ܯÍò’Gú’Æ\½=ìc}Ë&k¨UË÷dç¼GYÇó©«<—_lg dDoÎalŸù9b‘výõKùö¼:‹_b<~æYÙzæ~J¾£ç}þ殀• \.. ÙÇá‚á‚óá»æºï¾¥ý5N¶X^Ê·¨ÍŽÓ}aä3+CëÄ5>³)²ç‚>§ ¹ZrÛmKû¼³«`ZhõÓeýäÐü—+ô¥ÊÔ¾Ó;ï\J¿•ØÚZ–çÓ@ý ûÎ5 ²ªfZRgÕýÓÒ’²0ßðÀV8KL^È]f[?úäzÌbÌØÐ²LÖcÙjÝÏ´ë߉m8ßÿîc‰v\4....xl¹ Žä•H¾Ý´Ç+î~dKŸý쥹'-³É"„ùU¿ë …HÅ=¬ÌMC¶…ª§_3Éãùµ>FàŽ0>wXÃVQR¾úÕ¥—#üR¼åQÚÖϵ]…VÒj渴ÊlÎ+ôF¶k|Æ93=mHg¼Õï¯|eiâþ¶v{°ü%¯Ñç\åëŸÂ³Ñd>)}ý6K´™­ÕlŒÜ÷%óq{6K1îÎßÃÃ'•á‚á‚á«ùêàëE=íž÷êÞ½‘¹Ì+ߴĘ¢vëÕÝ+ŽŸ7©ã·Ü²4”…Ää,óp¬ íx›ˆÑ¿‚-V[îôò¬g-ýìg—Z”ž®ô¶qÄ2¥Ç^[Ç൹yžõôóæ»ÙGØzúÁÐÌ"ľH˜³‘Úó™~Îh7Î2láóŒÌýNçÊÞž§‡­ “Íó=Ë3ÙŠÙc+ÌÖ_Ë…žƒlFjq›Öòë··¬¹Ž ìËpAaëé‡á‚á‚+— ,ÎßñŽ¥ìµ­„ð¹oÆc’«7vÍ¢7“}K´3'òðšŽG˜AÌ£ÓÅêB€º*òáëG=k.°úÍ?ŒùÞû(šu2ƒ†$óYÃü³2[ûØKýð‡—~ô£K !ÉtiáC±âúž÷,íïÒî ^ïOãn_"@Ÿi[ŸYY†Œf Õ÷Ô0$Ïí×îˆ*ü·ÇFF»ñ2k¦k=œí2ת•¿þë¥ôöpÁpÁ¾  p|‡ ®>.`Ìóm`\óáµmJ¢:¯ ûœ²Qc뵦TÇsu(KrŸaßbžEÏ0zDê{j+;Èl«imaÑiÉÎÛ(‘´Ùr9KÒŸ,Ÿ%‡†Z†yË[¾Ó'oÌ_[‹HV„W œÉìó¦¡GÏÆDV2-çèôs<Ž;½aè·3.ŒŸ¾GdD › ÚüÙ8×f2ówܱ”}4äIä¬};…ŸÃÃ'•á‚á‚á‚«› Òž½9‚ô|­]$S¤%u×õöÛ—öž¯§lÒ~Zò¶·-å·í²ù,½š™Bìâû©ò,Þ%7LK Ï'•äæHzòMoZziõ›|éKKYžÙGoðÂ%D*žkm™ýTC€Ò|Ãð߸”~¨#µ‚TO2æqËw®Ts/tx†6=0ÎmÃØî±Åjæo‹ŠS¹Ç£¯Ç™>a¾°wæö=Õæ‡ýnvúÊ“ñðß7õ¿þà¨ÆDéÏœ? ôõ›  XÍÃW:döUdònê7.­=é·D<ÚÐóµC2WŽ5¿GO2òø=÷,åw@Rò¹¹úÚ-1tJ48©X¾çò¤ì?k1L ¦Ù‘<ž5§W­u²3GÄòu¯[jxbùh,V}ñ‹—!Sx‡šõs­fߟôm®Rc‰´´–œ’04`‹}Ø«ÁbÌV«l¦‘=âs‚é¥ßÈ}¦°6¶RoïçÒyn®.ý† † NK† † † ®.ÈÈÌñµçÂxg-=c~ ³¤=…Zo}ëRC€¬‡Ï”qUŠY™ö›UŒ,Éï¼3ƒ˜#Wûb£oœu>ÂÑç>Iú¤÷˜!-ýÀ\æ¿<×ð!³€5p¬W9âU¾ÞÁh½fß3wØ_rŠõ¨g.ÖÐ#g_ô†}!´gê|¿7½”Ι_ýmFc =ÓßIç8¦ä* ç·=’¯õhY»Ooºiiz£Ê  œ®   \\Àd4~ò“KßûÞ¥´–Èoùkx•£@/Õ‘|Ç5¯°Œ}xõʱã:óˆWñùžkcÄx¾éÏÜ®UO*¼#ÆqgÞþì·ñlÆLä%¹¢hùÈïŒpÉAy…Þ½”53öE¢¢a/íÌsÙn'†¨=C±¼qP–߉1ÚŸÜĽ }Îrìh›å‚Ùo‘“õpOí´øÉc[/­ßÃÃÃ%ÃÃÃ%éÕ»îZšWsvÍnWI¼–ɱ]…%7ܰ´Ê×s™§=’˜šÍDHë[ÌäæWŽÚå`…åOŽ`®°ñýf—Öq8ÿåˆ÷ùbGˆäûÜaüž™N¼­§rê݉ùoö4£êüö·—¾æ5K™­†66CÈsùíõC‹Û²­zgž·wÜÑBú–öÓNòc¶kž¡%lÝzMd¶©ïÉrnI¶-惈Õ=Kþ˜?9 ÃÃÃÃÃÃÉy/ãq‡:*-Ikÿø¥×_¿4ïØ~íkK êHí¢¤ ‘~â'–æuMÏo5Vmõ¤ý`ï»#^=+<Œ^Q2ª OÈ´ÙqvBTdæ^0öˆTdR‹1ClæûeöïœË^ôs {«{jüÅHÈòäÓ)ޝ12ã9Û­øÏ½Ç;B4³Qfß{ŽæqæýÆ(²uË,ϯA‘ë9¦´Ùm(Ýs¥ÅƒE²ñ2ûnñY2\0\0\@Ÿ  \Ë\@Ë-Òˆ6ÍS®–dý…ÿuõÍš¬Á®µseÉb8Ÿ§3 >d }†Z¾P/mOéIec{,µ:¥Ì—/Æ’ÅmÛ±ÄX#Ñ›å9v5Ó ÆÖïú·ðÓj¶½Ê9wÊÝ’=öölÎX¥gìc¾eÅ"™^el'×ìðš1l*iŢŸÚð„È@°:Ùb¯¬™Ü—=ʹkâd¶›5ÍjgéþáÒ:>\0\0\0\0\À8¼–¹€þ'šíä¬!CiE]úù‡÷µÞu–uÖûª§·Þº´ç©´6§²¤Ç1}[1o;H™y…^=âwBÏZr'ñÍb{ŸÌo†¥û|Ô‹Õ¿“‰?“ùtå]¾;Ž@bNýü$Ï2?˜÷’ƒÌoD~ŽD>Í#lÝì'÷õ›'Í~C9‹¨¾/–kô0ûkž4àÝmZ5\0\0\0\0\0\\Àû†´¶ÄðÄüÃ+¯ÞþŠÒz£uíÊ{×»–>Œ+÷:òÔ§.5d£%ÌÓ-ò󯎳-ÖŸw¬ÎGøÎÀŒ.ËÄ}.Èq·• ˯~eƒgåqÚÐÇdÏzÉàŒO›#Õ÷DìN%£‘ýê9çÌqÖ`õgÜÚ Œ![ä(Öo­þI̶ŒÕŒÀ>öx.Q4ÿån̾¼Å÷‘icÄo`ñ‹]6ã%Ú     $0Vm¦e¨ÙÆ<ÍÓþOziý~îs—¾ìeK9Rl‹η?ñŠÒ®óHávµøÌg.Í{7Œ"@Ž ÷òK…§+|»ãÖî_ó*Õ„% az4¶˜éAfº·H®‘ͧð˜_†®ý\âq)ïG3zûu3FTϧÄICTžÅÖ³Œ!Ï,6[ë¹ÀÆ´ç}³–µÙú3ãÄîÛšý;1Óûëoµg†±D`ÍÃÃÃÃÃÃɉH¶J6XωHYCÞ?­’¿ó;K-géOË#"^–äuSf=}ž}¹óÎ¥u$ws±<¿ÊÇ»uæÃ³Þ™2¬H Oºß•¬ÍUAkÝð‡‘À»Û¸?ÙzQî5Ô¢ÍÆÎÙ ›‡ì YÛÐ8#ÍV? · % Kû˜kä,îëØáYCK[}êýœb½Ë á×z›{^cæ2GÈD¶Ü3LŸT´     äȲwùïµÀvõaɯɇ-¯Ë¶Ü­—‘“¿éŽWÚYø\ORÐDiú§g“$¼4É~Ytõ™ÛçHî)Í1M_q”Sí 9†ÿŒFëuŸ/6Fä/ódŸ³6ǰñâo›‡˜÷èb&ãÖ°žÙé»íÁ‘Ÿ5ä<“{›ig›æ“>nm.š–Û\…ïÏ$§Û ${a63zdèG-W­É…?vøÛ£ÖWV3&«ÌpÁpÁpÁpÁp½w-s{mW.¥|+—¯eøî8æ5†‘™Èf_¦àå(0ˈTÆ—ƒü&f3=ÌÖûküÚûÀK³<×CxjGè%¶Þ³XÉ}÷-5¤µ†xý¸0›úÚˆ3¬™ñF2Sò,‹ùãí(´9£4ã¶Ÿ«Ð‡M¢œq.Ñ›+®ùïNTpm'³»÷­!$ÇÅÊÏö1¿ƒä½W¹sÆÖÞÓîÆÉÖûwÖ¿õ0"ÆpÁpÁpÁpÁpÁp¹€Ö2½ôó·°è#YúPÜ«Í1ªÚžóœ¥†Eô°=çÅ{µöMœÜ}š6—kày }ÎXbycmŽZ¢ Ç:½Íûæ s™ñÉ/°>ô ôJ¯#0Ç©ÖJÆð>2Ðäûº"¹¦"¶•§WûñêG!k ¯nçq®ØÐr¶K;Éïì;Þf5ýœ‡ñIf·úYƬíóŽ}±o­  °•ázu¸àÚák½ZÉýŸ,iö0ão™s 1~ú§—Z–0Š¸Ï“–ä“DÙ:y„OŸôÑhѵÃYsíÚ}Ë[––øDG™þáÛùˆ™µQi­E¾ÛûÇ¢‚xbÿrÕ‚v²6ë;1ŠÚ?鯽f[–álÍÖÒÃ[eêÛJ|ès„lbVÙ\ˆKû³×}N±w<—¶™åf{‘1Éý0ô¶õ}¸`¸`¸`¸`¸`¸À¸À,´»«ÆŒöôsjâ¾Ï¹GŽKÚ“WÍD3ÖfcݯKœ®Øº„•4 ¬/˜ó~\ÖÙǵÞ^wˆ?¶?ÐFÍ„e˜ïÙ:˳ä¾U\o´¯Þ0BÈdIF wSbÛØí¯Ôõ¹i‘–½&¦;÷È}ïy¼GQcp"Lî*ïg)6#²9!±‘£f9ØÏ嬧ÿy„s6úŸq8\0\0\0\0\0\\`1`öÔ{ä>õ©¥ì…íÕ¬ß7Þ¸ô·{iî e.¯èáÒÊ>û®¥]Y‹ýU$ãóòŸ#hvV/ê-ŒÀú·˜‚-ö#Î2Ì¢k nôY@FãÊ$ù:½Ä~q¶À¾dLZ¿2Òl.a{S-†sL3ªmÜÙSâ¤%}DV‚ÙèçYÛ;™ENÄÛaI®¨Øl0÷|Ò~›af+=²¿Ö/ÖÜÏëLéÃü=\0\0\À¾  \Ë\ÀšŠ»¨ô³•÷¹Ø—ºk™ž¿÷Þ¥l‹™›í²æ´‡¾Êç¸÷G˜Mg!ć>¶3— [ŒûzÔbLfù7¼a©Ås¿ÇÿµX…üeír|™ãœEз,oÈcQd£Ðç²½Û°¿ßjö§ghçÎL€ö§èCz›G,öè1‹IË ›5Ù¼ˆÊèµØ&N’÷-*X÷o×ÌçÉÃÃÃÃÃÃäÖGX=ic—WgYæ}ï[jànÆ>gëx}Ó%íz*ßÃ`ߪ0Œ:]É8ì=¼ôd~Û={m÷[ëÈóŸ¿´¾ÉB{ [Œ#Œû˜Ai¶bÑÈš™G´¶ëô’!¡a,›H˜òî<ùËvXm,² ïw÷QÇÚ8.Æ›Éd‹Ü nŒL_¥m<·|WÍü¢nÉŸýÙÒ¾pé¾Ï-JSŒ “û9°áób¸`¸`¸`¸`¸`¸ ¹€- úØèíÉ~ñ:…ÈfÞc»ƒcyšYÆè¥8Öý£Kc âGa‡ˆº6²ô?ãööÛ—îˆYe% vòÈzjèd(d¨Ò³Œõ¢Çpk…^²7ŒqFd¹@/í ùÊ"Š~f$g¼™É›S–Ï#y.ßh;Ø—\E¡ßj†Y»/ ‘8¿²±6í{j±W­üÈ,ý©ŸZJß^wÝÒ‡b5¾˜®j...... Xö¥ý†áf!ÿÝÉë*SžÏ±þÛ¿]Ê!ƒÐÿýWà3zûqaf±¿—#Ä5»>ÃâŠèÁŒ¨#ùÎ:F 1/±¼­€Y¤õÜÚ3£Ù¶ÃÃo;Ë•7›çÐfÚÀ}Ú¬™ÑbbÙgåm¼¬6{³%ã!½Ê•4Cþ<þþ÷/½í¶¥¬‡^%C‘M,Ómîg¼oøÿ2—³uþÎ:ùí,ùáÃWZÇkµíK_ZZ+äÃÃìs¸€å‡ ®.0¿Y´p¤˜)=.qú+Üöùˆ»R-b{Öëym_ zäIŸÔ[Á9j¶ç“™HÊoç™,Vi¡­JåqóŒåBoƒÕÆvm>Ã+É»¬¹ÇÞÁìKæo[Ï¡7l%‡þ·v9‚ôkî1œgÙè÷|ý¨,oCk÷Ѧ_âób†êŒ[öš–ui¡qeF»y€¹o¹C”3œ!Ú3ÇÙ¯> úy Ñ•^e ;ñ“žéç±5Ïäz ¿k¼Ü³p)÷iØn‹U³¶~ÿã?.µøÉ9vÕ9\0\0\0\0\0\\@¼5Èl2Ÿ3[û«Ôþ_‹"0cÆÚ"^õÙg×zɉB'f+•ÜjeŸ–5–q†ºùïsž³”(M´yÚÓ–2³¬w†TÆ>ûå‰`†“öVFÃóD`›/ÿrí¢¿ÞO ÙS‹OúТÅxß8±Xã—,co•dï¥}„בÚQù…/,M›Ù;Ã(Äô6QësŸ[ú›¿¹Ôf)ì/m#‚ÙÜÏ0§d¸`¸`¸`¸`¸`¸ ¹€ñlט¶ Á'Ö—lѾ-ȼÈú™ƒ|Ò‡£ÖcÂK^²ô¤HkXÚ‹qã¡oÅzÊ^Û»,r(ü’ÑŽ‡³\Ùc¬öýíYÌ˜Âø‹ègxHÛÁ ¶’>Oö¡ýy¤Ÿ/YTXÍfÃZÒÇó>¢Z~Y.”põÆ"ŸSo–øÓ?]Jûë-Žìo²9×–m^Ê‘­ 2NÌ•œ±È¶~ø‡—æX§pV0\0\0\À¶† † ®e.ȹFÔïRës^b=¼KË|áu_*¯©“¬ßb¸ÊÜtÓR‹êj1ãðrö”²×öa2`Ư¦mLa­Œ ë!ÚXvdyf!˜a{j\ÀšmýÜZbï6ß™ù0w Á蟾~Æ|žÅ»Ò,Ÿ¾b¯-BÌÛ·Æw–e|2Ô¢Î0“gYœóíiGÊb¦~'wô(GÒ{ÿãðÊ£~ãÕb•¨žežøÄ¥/ùÒáC¶á‚á‚á‚á‚k™ 8:Œ+Ë÷,S8–Þ6ôûìg—VrÜï¾{i[÷wJÓWĽ˿‡ûXIúÖVØ,é‹‹4F,ã¿Ï‘’|NÍÒ²˜gY[f¡áyÏn™;üþ c̼ßqaÌHoäÛl ýeöÕ‘ßýÝ¥÷Ý·”Uô±%g_œ‡°¤Í4zþå,”}Ïx0o×°EÆdÿò——~ýëKû84ÌÙ™SõBïÑæÿ’ûï_j~.¸82\À³† † † ˜ÅçÃéž•‘f×}´¤ßÖõäŠG[×Suõ;û›o‘ÊsËÂÄ¥‹/†™;\@fd>£´Ï†ÏÌ&e+iqnÑke˜i¿á*›…;LmžLèù´-s§"Ÿk6Ž©¯ýR›?TŽpeÖ¦?-¯Óž´¼Žp/1ÇÈ|hÌbhO<ÜÉ©º_̹å-·,ͶÒÿ×_¿ôWuiQûhÀ8džöšù^wÉÓòìõpÁÅ‘á‚á‚á‚á‚>Ï“ ˆ'v…hHŸ(yÕ™¿³/WµR”÷m“/ª¿YÕ"í9Ê…,Ýù×ì!›¤0§ ½3-~zxÄúµƒ†Þ”|W€ñf?‰®ßÄÞ‹ÌÈ·Ü'bg,1rÈe¹Ó2ÏÊãŒzÞÞÏf‘fös›üÍÝï,ÓZéW¿ºÔÞ¾²ƒ`æ™XZï“·šw¤·?GÜr?}Å='ÃG† zxd¸`¸`¸à,¸€gqLhóÝ$kãóæ‰üÆÙb®•^)Â;wë“"RFEz;x£‘ñÖÏ캞ë)Y†=¥ Üy˜½&÷˜›ä/2uþ›øIlä®ãô@Ÿ_ô'í¿çž¥u¯“6W™úêÊCqŸ:kα¨÷›1—s–ÕÛÉxÈhçHÙ}í‡c}É¢‘ñ`3(ƆiŸ­}™j…_ƒº4Ù™¥mé%ŽN"dæpÁÅ‘á‚á‚á‚Ⴞ¶óá‚*“ßVÈV22æÓÃܱV¿+¢.­ï¼º! ä3Yµõ¤­ð÷ù ó‚¨Å¦z$až¦‡OêcÃ^CiÚYbö§ì0cÖ̾ð‰EÖÏš‰ÏåÏZy`>æ[î/¥Or/„­Š0Z’‰þá–æÎŠ<×#mûË¿\ú¢-M¨ÚjÏj­„plÏÅ6j6Hµ9Œõhß’éùÈò¥¤v¨2M ™KëîvÆ†Í Øn²|FàpÁpÁpAZ2\0\0\ÀÜÌënú-ï©å¿±v/fGrïYö4ïç.ÓË—“Úyº×}Ì‚F{¿îðÙ£ÖJšñˆiî ¶È!n³žf“i Û¢7z” OhsŠáQ%kãšFÚ@{2ËR³¼­ qÄö|&æsëßo~s)óšëZY¿ù§"-ë/-®©뙦´œ½&ïÛŒ"mc¼qÔŒ%Éä}Žã>V3_úh·³¬L­ì=ýéK¿öµ¥ŒF{Û$5WÿÞõ®¥Ã6"gQÞj.è½1\0\0\pž\`ÙÇHÎßûÞ¥#zþ¤R8ŸW@¹¿.ûuù˜üØ ½M¿åòMdÆvÕ6^†½}y[Ãa™ÌÇ}.cy‹^ú­¤P+‘„ã“\YbNâ¿€Ã]©9FÌ)®±p…*3‚18IÆ7KˆÕyVλҒìÝ·¾µ´î_gmy$}HìbÌpÜÉ›ŒRÚ™wóEô034…‘Çûs­G½”Ÿ¿øÅ¥Ù#ö´M>ýwà K‡ .‚ äñü=\0\0\Prž\À:y­Á¾üçÃÇš5síèÒÞ‘q^™ûÝï.å}Ò³x¦ì,ø¥qæx ‘‡ñÏI_±_=Z–ô«ÄÉlÅr™WñŒ±l=ÿµv{¾ãÈZ/ˆ ,YOõk,ô°å¯õ‘Œ`ë-d,S¹Ãž–’¹˜õ=¶p­¦þ­l%O‘³ø¥NzƒV‘÷ÙwÛ'ÜÏ"vÀb{G. [E¿ÿûKé–¤ÏiùpÁéŽ×Îhöÿ°õá‚á‚á‚óä‚D*󌡇åTií4;kI›sgìc%Ä.ÃÕÌ/Ž¾á›¸iz‰Ë|±\ÛɫӮˆ­­ Ísó_æ¾›Çs’C3¢ˆÒô¡S±·;–6öHhHÒòzëZå)£çô¬¹?Â'Isˆ|'Æ>_0wÄzQë±Äº–±6wÎÐ*‹É>›²f£ô›Í‚ ©† ÎN† † † † ®D.°È´}J6yo‚µúí”? Éøç»2òšš«j=/Û=ï flÐ6»v6ÆgaærEÈêÙ·g‡5ò8=@ Ï8gÆõØÞïG¥µö|mã˜[ú¹ñ-ïבÜjc\ðêW/ÍH®5´ûþû’Xjï0̜ڙŸpÿ-Ù-1–³…Ì_îsàZ_žk»î/ -¿ÒWl1w›³õ¬s¸`¸€>...¸–¹€cÄèÊ߯zÕR³Ð¢ôìäÒZ©,¨gºO·•ôä‹_¼´ÞÁüJ/2ÞòN%€÷{äd»¼¢7ËÉÈ–=v1¿h¡­A‘}ˆ ÖßÄöTòÅ> s¤zŒÍSù-'úŸÌÅhd.36Œkhó“ž´ôæ›—Þ{ïÒ;ï\jÁQ¶KòÞ4=Æ:m—BÚÃø±Œ³#36O3ÿï`HíÈÍhüžÃƒGMfdû¹%  ØH  ÐóÃ×dëìifY]U}ò“KÓçy•G¿µœãœÔC " Ïeä÷×›cYžofͼ7äd„ï¼u„hLLà¿ynoƒ›5~ZFgîÃL¤ÊœµlÊs áóýêöôíú~0ÞƒÇ~1Þ?lÅð„«õn„·¾uiýþÔ§–²-®üô³MîÔ¥ÒfFïÎ܃s0Ž]ŸY–¹ÄÖfs¿’₊ºzwÄ¿?Ü}Tö.ý–~HÏ3wJ† ÎÚžáÊpÁpÁpAÊEã" ³Àâ*[äα³ø½ïµô–qÛ?+ÄÑ±Øøüç—Ú>Ò»nµ8´•´-­ÍVl½‹8“¾²þöŒf%m•€­XC`ú§G®‰¥ÇòíÓ\±µ¬ž›ê¬Š kÞ/Μ­ëžo'³ôÌ›9Nos.A±2;˜Ì(5ÎV¾ò•¥uäÖ[—ç2Îíý$ißö°K–œ=æ[ælæÐçBÉpÁiY2\0\0\Àq.¸:¸€õó‹“ô-¿œ5"C†^Γ Júµ‹œú9h(ÚcÿÍÚ2r¸†cç¦ÿÙVú™eú’ŒŠü—Œ³Ó ѯçâ¤!Ÿâ§µi³ñs9ëä*Ù„ÞãoC0–ÉVÃ|çv–|á —òܪ9ïgë=Ÿ&Æ2V³_|¿9£Çòõ´]ÚÀ};w¢Kó»–ßwøîQÿÃᮣ¦=;xBÿ°ÕÖ¾°´ŸqF• œ–    \\°ãá ^…½ãKó­:;!þœ3ê¸b–nY_Òc©e=¯©É§DT;NNÛŒ›vÖ~›%Ìqó k°h1ÖãZ =œ¹ÀÕâ× ÌÏ܉j˜–˜c8½«ãøÀÒ-Îü2$$‚eÍŒuÙbÖlWèýÈÚ=Ak1ÅŽX¼±ïýsOYž—¶%æg/ò©%{>(Ë÷÷{&ÝùrÐc%Œ<Î$J×üÍžo w °Å~}&í¬Õ­<Â÷ÌX\å¿ýZ-·þ2ÒRùFkk¸àìd¸`¸`¸`¸àJä‚ÌâºVzæ3—VɺCš¶Ñ“Œ„³ŽÆ~|)§•Y^Í’Óc3´6c›ùE?° ûNÆa|¦ò,¶ÅQ°'à Ÿ­¶hcJÏÿÓ3\1#nÎÛÛÏ8_ªó‹0ýõ~yÚÓ–^LIË¿ùÍ¥Ù/‹·ôgîH'›3òí©«VõˆQÊ µNÙsß}ÿ¬Œ:ÚŸ>´™ûÈ9ƒõ}¸€2\Àš‡ R† vd¸àÊå»&eÆ¥fôæñ²¼Ç=“ËGãH8»ÖiCŽÈ~tqìhÙÍŽd²]®üô£omYü÷,³3VÞ² Óž}˜›¹vgÈOÖ°9U ÷1&?r ªÿÆÊE“ôUŽQ}_2ËpÞbì_R+½ÉàÄ.F5Wäú¿\»³Ì²líç!yJŸk0Ú-ê2VÿÝá£Ú¬x¸àìZ§ ÃÃÃÃW d/˜Aö¼?=`ž³´z‘ vâÖbÀ¢Îêçq¾žg¥Ï‰ÞÌÖž)ÈbÉqu¼ZÉÕ-öËæ*ý*®Å¡eãm¸ —á‚á‚á‚”á‚k 8.¬™#›oZK ó¬ôíH}yüýï_Ê`òÎc‡)ý•¬!¿q× ™{¤ê›™Kf¾ôû‡ -éí>›ØÓ*YoàýeúüpXJÍþ²/D*îŸü᥆Ï=ª½éy®oô+ØD*޲­S1Z²dqA 3šsFQ­2qmôm?IZn;œ‰¹cd¸àÒd¸`¸`¸€Ñ2\}årÁÈÈÈÈÈÈÈÈÈÈȵ,ÿ­£! endstream endobj 10 0 obj 49373 endobj 11 0 obj /DeviceRGB endobj 12 0 obj << /Filter [ /FlateDecode ] /Width 106 /Height 106 /ColorSpace 11 0 R /BitsPerComponent 8 /Length 13 0 R >> stream xÚ]i“Ü6’ýûûmÄΗ‰9¾Ìî8ŽqÌz4–mI-©¥’ÔRêË}ßw@íc?Ö«d&Hi]Áè`±@‰<^&è'OžL?ïÞM^½š¼};ù÷¿'/^L–—Û{ýµ7î!®çÏ'¯_w÷îRÔ?ôn^¾ìj@U?ý4ùõ×¶oÞ, ¨9<Ô×~˜<{¶¨ðõ«wø•l+±óßÿ÷Ò/?-Û2OŸN¾ÿ~ñz«ÛžóuÎÚ¯¸Ç_ܯ¯•ÃÂ2××í”aIþea–G%ªÐ^üïï»WpóüçôÝÿäÃÃÙímWÛo¿ÍNNÚ&ØŠ^×[lqé§»•Iî²fÛŠÑÃ}á‹ì àŒ]åñœ?©ç¸Á+§§]åøûöí;P7¥´É¢ñÕoIá¼yÓŽ.Rƒ5¨Û 3MOpsyž1/¨Ãa ˜Í››–VWW½n`,“ÉâÅ“Ã|vZlålš½rE™«ó´¿z…á«fÍ à+.r©ÇçØòÞuìá¸Hí¢Œ…làfÖ²\uÞÕ½øÕR[Äi/îÉ¢Þåå ,º ûeÛ=Û[ÞìífÌ…ØÀÒð±Úr“Õ"þîì´3%¹ã¸ÎÎÚÊ5€tÐ3N¸ÔÊtpP! &…‚Å3Š­ˆ#Z”µXIuì\ƒ{Á‡¼?Ø/>hb%‘âf%Ëòžë*Fþ—(áïýùψƒíÉÞ^K|×~åARÛó££ÙÖV[ ²ÌÊÇù-RÒÒ5PkQfq?Dy½ˆ2ŸV YÅòðÑA>?+&ªE—U5¤ƒåÊÛå½…×Aü¥¥…rFPzÿøÇ7zzز·šÓô©ÛèÌÚÚìå‹B™’Yq4D1LTMÕ‚X=€&¤ñ†„ÚrËÑQq·²I¥„:ÑÈÒ#Æ¥geZrAè@öJH`5*ZÁWp”3[2Õ”îW>–?þaʹ\8SËiݤðþâbñ[©2íînÏšGÙ—ÁÅESˆ £ÅqÕFm`åšµñ­d°‡j †qôqþôÇ !³`-&+Áœ·MˆÕ‡&qHq‰ª¸Ð´8‡C–Ñä¯ïß{Õ9“€@‚ï²*^qF¬®³j/‚Ù$ï¬S¯ÐæjFH¼5˯Ô'U© rЕ°Öàˆ H±ú)OçÃÄWPêÕÈ¢ lSJõ EFYjñ§Àª{‹œ-…Ô59"ÊÐXÞ³‚à¤`ÄÀIÏXméøÓj~;×ü{Çi¢;Ë`-Ž’þÖ ‘,Uây¼x}UbIiE7 ÔºŽ¤¨„æU­zU ­êOáªò'׫_WU‡¸ÊËgj;.Ûá`alw¨EŒ·Ù‡ÙÖzË“÷"ÜÝÜœ­¯/”0'Ô¢nR€’kµ¥»DüÈ™B’¶‹nã¨ñ.¸ˆ’ …bòe_¾:›2£ÄÿQ±X)v:Íj¹Øl+J驇’zú¿ÕéƒÔÀB¡E‚¨$Õß…•h±ÜYŽãúb=@eG‡`ÛßoëDy t´®« \°Ð©ÖOÌOKbTއG¼ïý½rqÞ5íl´DŒAƒªxJù8‚Ø {œtPpH¥\×—e}5±Î,ØèDWÕ‹ú#,a/Ñÿ—/ÓªÜëNªÚ¬5®÷hœ0¦¾!‡¯¬t<€¯à©²o¡[TD[rËööÌúA^«<ÌÖ>%½‹ÖéBÚ:[VM¹£§4RU_Ù¿‘÷*V ÃõG’K¯ùðw…í¡‡«F‡Q™i´î8ß¾…ŸÖ>g±…4¥ºQÆD`¢‡Œ‹UŽ N³Š+òžóø¤[$ïÏ`€Dhô"­¹„Bs´²žˆu=¬%‚º#ÅP›ØÞNÄWÛÅù–LŒ­Gƒu¤v˜y(úAO-ê*=âÃ÷“Yì_R–ö=Žëâ¼l}IQ;Eå™ú6k(ŒÀ¿gÇŸVÝE–ÓLEúعӨ…è,Ū„‡Œ3W…zNNÀ?m@ú3Z0]T7vç9çò1FUSõÈ8½úñòá¾T_t*´:(7„H=Á9ÇÀUÛAêYÀ¦  §ØRZuªà¨™:ÚÝYÌ2Ê¿{×køGä…I¥a–d̽ÓHd~¼{uY>}š}üø¨Î+…y1l‡Ì ‰¤¦jFPwõrQçD+4J§;ê\ztTV?ÒGä’d1ƒÚ¬)‡K Cã0ΘÌSš¯,ìýV>¾ÏÄ!N‘ZZÙÚè2”á¨ä˜<pDÍZ«A„iŽ5M?tmÓ—/5¬´J… ‡€ÂxJ®¯•wËÙ6w}Ý ¼“ó}lðújvvÚÖ V”›“虀=AßÈ ŽÙ´®dDz»ÙœN«âoå+tŽÔ·kÞ-œ#W8b*Zë&tå}zó¦`¼ñôÍ¡ì%›Î{ ,JF=ÇCÒ?±6Î;(I  ¹–îB[ÂÌøK³îXÅŽâê"ß^妩›Ú*ïi¤Ž©¤ÿ©åP¿z5ƒ œj¼tºåÀÚ ,„‘ªr² ¾r ªÁ¼f‘@»ÿú±\^ô̺”¡^$òŒ&X‘"S´EÏm(Õu#Ñ„NrSZ±æˆáhgîùÓÆÆbI=`þÝÝ¢ã+ ŒK—xÝ0,@]*ÊÁN²àÍãBäÑáìåó ÊÛÅ2йB²TVmаª¿ U]w4ÔtêÈÊŒ°Ÿ¥Û…©u–š°Ds$Ë%…Ãä=+¹âdëùÂhºé¶åï5ó讘D3Z¹†ã“*Ï`1@gg§,‹åœ¶‘Ô«K§Çùò¢¬¯eÎH÷òåÄbð¿ ÚÈ3î'“h—DT»!òZçÂ^U«ˆ¥Ãc\’¶ÙÚj‰P%[I‰Ê-ÂK× P‚鮯ʫ¥Baõž=›h¡é‡…•µÁyjgPh>D7 ð*]~=¼»-Öú朗†°½U¶6KêGËX84ˆ9ý á™*ä_P¶–ŠH2…:ciÜSêâ{*¬Ekg9‰ã¸H¼ÍÅÓ*°áCHîû¥Û­d9Ð2ž»P›…Ž¤ÞÆZ––&çkD¸CrBíÄ,7aÍ:¥¼¤ïæ:•|qE>!³1¶ÌFaa”ÿcGmi…~‚ÈÐ ÇŽU,]n±•BadÓ«îæŽ¾žÕb'Ù(¶Q–£Èã?·Ø~:{÷üvúPˆmr“óÖ¾ š"TÊrq¸Å™0wî¡#2£\6å´ºÖRͰ¹ÏŸOø“’·Å‡Q”†¬[U-°-K ^àWòÉòr«] Ò<ýr¡ènÌxå1à_îo³€(•£G鿨ØI™ÕIxlØ4TtlμvÒªFç½j°\T%90=dlkìÞn#"0põ;[£¿Ì1`^‡ø„ „Qåpˆp”bÛ¨„Î.¯«Œ*·žš¦ó^UAV )ç! +TŠ‹)m)…fYëPŒ¢CG‘c¬°‹P9{Ïw„zº¶®¯ŠÕ0\:aàHDv¹ŠwÙŒG¡>&?T…W}À(”Ûc'1‡Ejµ¨iz¯oÞ´Ai›dIGu¤|R‰ìG?H U…¡²†f=Ømvw ;â£WŸ?6ïžßâ§Ï·§ÇÿEêÙ©‡Ëæ__÷.íWí~·dvÕ¹ŸT¹Ú~5íï×FæÌó'*1M³ è¶sJ4¿¹žýð}jáÄ]Ea@ܵ59 ‹„­Ž±™¯µI2ûåæ*ï§ë‹twW(ÎŒpy½™/1ã•¥%¿o%*·ªŽ’¹¡ø€t™©ßT• 8á¡ämÍxŽ|CktX ÝwÒË"P^ÈÂr^Ю]Ò­r]dH&áÐ*e³Ó¶ÕÌŽÒÎFëVs%"Jnšgù:Øï¶Œ#RÆTE(ôÇn¾RŒMØ¢8d­Ø´z‰ÔâI˜un+Ëó ^;¢io›žeZ’~úînIót8¥²0M|ÙhÓ0 iÏ%XD¨ì‰”emúCyH®yŽ<Ÿçñ%)qàåE¥! _Ål µiskžç:FüÖF€·óÞvb»üʪÀNdÒÚd¼¹î†©5”úñ½˜èدJ«¨FÒÜѶ©¤ «Qê£qt »ö§Æ¤©à~mµìïjHN:ýîëërt˜u^ÇÁ^†‡’‚çi*b Pêw{3sÅpáà0¼·“þ÷‡åên—4ßþã¶jF‰b  ÌåÁ2]!ç ³Ù=wC¤Ã•_ÉN‹æ¥{~UàïCI2rs=.陵§~íï—ýÇã È«Joð³lÐbÎÛòêÕ»Ø`ª6V zG´®O\LiòMªUUå×>lú)R)ú œp~V¬Ø¦¹C÷ô_ ³nW¦óÃ^†¿ë./ZË+&¥ç –†à¬Fd'ZaPÀnÁðë…ÇØ@ʈ•·ƒ# ÐVxxØÊ:ùÛn¹¸(1ô|c£%IžŽÌ+é³²Òm91ů‡…Òaµ—ÞœèÙUê{ÑT‡ì†Ãõ)‘ކŒ°V<ïÂßN+Çáê³e_½ê6¸Ù¸ÇPÀ°y̯híÎ]Ù^½seäÝ0³×‰ÛaêLªúŒ±ƒ«‡,`u\Ö(Ëô§yÜ ¬8ŒØŽ*çK—jê[æ9\äåoƒ>Zd±b q|Tv¶{k1–nèÚÁb²Ün—*x“µã²1—ùà´¨‹†1e¨:‘€.?Í^/ȬØÌÓ’ó<Â)ž'tŸšÓ ¸©ŠÛ¢mâ´ä‚Q븕Æê^åïÅ_Uæ«buúÉ\#k²«Q÷È`¹¿83Ó¨àvad¹¡<j3&çh9ç±$ê’•nøb0ÍÉÔ¢ÃÖÜ_S«¢Ùª´£vWš»*ðô•ëd!NÓ8Ò‹}hÂÁmRÓnK=G®]‹ ,(^·³™ÎN²%ÎÑaáKó´:â+»qÕÎrä=‡oÇfZpâÎf¸ «þ| V‰Ϫ/™'âÆ®­ÖJ&þfý)¹ÛîÐ6“íÙtU*Ä¢‡Õ5‚‘ ¶XΰݳR“æ=à+G=’c Yd{Ûa‘Å:8ކqüŽÕ÷×W ³Ëšm må UÁ1tÒÇ„Ý+{G½rä|é§~«(ˆ ’û‹ Ý‘,×y§!e„¸Ô·o=Õ¶žY­ë¦c÷Ë”:†yœ  2üÝT‚zøÌ¾á²ì»³ÀjõƤâ¨uîîq¬Â°p<+ÃñÏŽÓÇ×·”/æÂµ>ÅyW†ÁÞ”!ÖˆëšùzCV^ªhA­6¬ÆÒRËœ¶Ãœ50Þ·S œcwÅU é çÚ±PrAÕ_~é¥Ü;mìtHš»< Ú3m\{ }€’×Q`D˜t5ýl«ªy’q±Ëqmm–‡¾ù õhbPfœz¬jÙ&ró„1æe;¤¢14®`V¥Ûá:É8hÅCKJ²Î`R&9«a³bøâáÎÃõEÒWF#~#‘y&'ÅYzîÉ“vî¾J=ü…çH¢@>œ&׺ZSÛÆè˜-›ðìõ<ýDûô©Û˜i£¬íÏw·çbÚêž}%’YÃñp¿8ùP;ΤT©Ï­Æk¤_Ê—"¼‡·þùÏV=~•zèÆûIçviO¢Ã{#àÇ Ç*g×>.ߟŸfPlåC¹½Î7gä7L=ä—ŽÛÜ4ßžßß_Mnñcò¶-áô´(á!‡ƒ§¢éI©[ÜŒöâ`öôi-3N;N½œ{­€¤Šc™¡«Hr4¼¿ÍÍ´PØ/ÏÒêÛ[k¤ –—¦m[÷éjÿÆÍ…Ôe;_]‘î쨹»)jŽ“µ,ÅçD³B,ù1¹ Ü ãÈ'Í“½í'›dHõ¼™oþ²2ã)­ÎOs¶Ã6ó­ÖV½?Æ“g¿å«Ërß?ËÏuŽJž¥»ÛÅ> iU‡ÈëŒ2Bê1~Å>Ÿ£fÈ=D[:”¬1gÙÙÓÃr?µØÐJ_Õ «&“¬¯ùßO+åÇfÍ©Mã䵳ݑ}‘Î% bŒ/^t¾FcÒ³¿QrE®ªq‰`Ï>OÁ“JÁ/ÓêUÕÍÌy±åß ™à³é§øÂôìm>¸ RgaX‰æ#^íAˆŸî\¥÷¬)'ßGaiâ0°4sD5Ñ—Œ¬ë®õµ¼÷[qoq µi|p)îRä=¬Ì mºóÓ£³y×-´Usæä"_};õâQZC¸ ¬œ*v\dÕ`2;p•‹ób_áêÓ†‰‹t¸Ÿu@ÜÄñÀ:{îz¤ž»„÷„$5@xvZ:¤nŽr²K@j?áö¦éy—y¾ ™P?¡‡+‹=Å%õÏ„±V2F rˆÁæ¸vNhØŽQr//Z¥êøYÙ ²ø6;7ê4 ›ñiÏF~—OŽ»}¾Ž¶#q<ÝÛÓ(;Û…»/Õ:“Û«:ªj›ì“ñXbUÓ¶þù‚;¨ÁuéüŒG;³´wrü]Æl2Q'¡ú@?àbÚ›³ÔU\½ÚôÚÝîFóh7V3«Ç5êP£U3aëÁ×^œ®_Ñ[ç?s!¤á¹d–©t:œÝ¨(þTHÖ‰³e³<_¹Ƴ¦yœtz];Ø.ó®Ý`c·Ê?Öª2|us“еƒ½Ï<©€§ô/-M>~hÅî?œ/{]›Ë±½8ž½º™Ë}Xqj ׯ#Ù>N´Ó<<¥ÐºR)š°àn¹1ª¯ª °ChÂæ÷*^k÷Ú“Òï;e« jÓîˆIûÔƒùà±$16âŽî!ÅÓ‘zU5®žhî8 ö,ú(’QÇûoQwÕîÙbQÓʹ£šqÐíýûNx•Žk»‡ÊµýàÙ·ITUJ*c (oF©sœ£,ÖRàh?&ÑæFd*f{ˆÖ|›Ì´昅‘\VqåÜmk•Ÿ[íRÞ!¬å4†óS†xÒ‘ÅÖ<> Uzîn& k»¦FÉ%ýuÐ7[·Ba¡x•t¶õfžÖ®tq{ìÒrˆj*ŽÑ9z±ž*“Ûu眽49 [†Œ³fs¨´0u™“½³…S8L;¥º?bŠªü Û4¢èÜå¢÷Žo­ÿÙuè<÷®º:÷Þñ›¤’¡<›·ìÊ(¤izËU–ønBõ‰#Uǘ§²º¤Ue›ª~‹œ3Ä·C79wšÜ)4¦ÛIÉD{ýáC«í_/¥ƒƒòË/>JP•wEpPĆy]mv7×åì¤T^]íŠjmHܾªr]©1Ç R -ˆ”AÏAá§OýÆq ßNØíWŽ°Ô«ŽÎZd0?Ý ¢µÕÞaGßž‰­çˆˆ,á~¢ÿc/ÌfÑ‹w—ÓæñüôˆÖ~þ¹—‰a{ÅÝ‹ZÛ²F–w4hÔU½G:tv­9Bˆêå~{bÏI½ÝxïÈ«l.uqÓ–”C—#1-' ÔÓ•øÛßêzOXKpøÕUUÄ,éª)R#С{Ùíx<F^‰Œ` 3:U–M,‚cä1Å ³èdŠ(Ôž”Þ.EÍ^išž£ôÕûÖÚ”§š«Ï#–q¢ézèÿ³°ÆäàÉ6ó$ Blº¯Ó“ö«ËáÅ8®ÕÕÞâƒlò9¾{{×?Ü; 'Ô‘kÀ¸w ZmŒqˆD#VÃ2[5yÒ2»EÚ•8:lšD—õ˜ªÚ›8齜yN«ÒG!&W iŽp•sFŒàøm}Dhî‰Íùõ×î¦DmgÓÕcéЋÂóRôºÖ5Ò|g1Æ8õܯzÝrZÜ_üUÕ]]á­š~GLűťÄùàØGžJRNëuþLÛ«öÿ¯¤éC‘;Ü/{»Ù*Fæùëæf[whŽPÏ»ˆ×¾…Á\h«,ç¶ËìGÑVÿ4ʦh2hF©6ej¡ŸÒÃýbìÙ$©ò²kjl—ûÓOOJtÁòcÊÍÖVÅ|$óo”]߬Uu°V&xh÷A8µ¾i|Žh^Œ.óm’<¨?:¶¢?¨±KðÝ¿ŸpA‰”6—ýäq ‡‡eò6ǵž4ÿ¿ѽ¥ ŠÙÈÕd¹!†¬¦Ç;£·"6M‚ùðuPF yÎ˰K›ã=5ÿø#ª_ëç¶'žmuað*®Ójc¨TßqÙt89~-ý½´QŠIO&Ô}•z¢dæ*Ìy’šÿíþYûœsîe}çÜ“‚*õ†2 8LwJä8xË–FŸ±™ÿ2™tÇ|‰Õ.ÝöÜþ’ŽËˆä¦y¬I¦DPÇZä6òyÖã=®ñèýŽO)½ü£…­‚„*€‰¼*ãØtÉx•XYµKÖhÿ›óy÷ÕBG=Æ®Aº?üW‘Ìóä &u # Ú óû>‘…žÚ«6·zÈÆÐzJŒïÅ ››ºº<Ðu}­rž- «ñÝwOhy¹Oœvä÷}8¬Ê^|‚¿öFÅ\ùø:/öíõë ÿ‹ŸØ·†ºô믾E½ËÍ>vàlµ»Á›¿ÿýÉÿ‚›§• endstream endobj 13 0 obj 7749 endobj 15 0 obj 7749 endobj 16 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 516 /Height 516 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 17 0 R >> stream xÚíÁ‚ ÿ«mH@ïkè<¥ endstream endobj 17 0 obj 280 endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000195 00000 n 0000000244 00000 n 0000000303 00000 n 0000000507 00000 n 0000000598 00000 n 0000000616 00000 n 0000000654 00000 n 0000000762 00000 n 0000050332 00000 n 0000050354 00000 n 0000050381 00000 n 0000058272 00000 n 0000058293 00000 n 0000058293 00000 n 0000058314 00000 n 0000058783 00000 n trailer << /Size 18 /Info 1 0 R /Root 2 0 R >> startxref 58803 %%EOF ShortRead/inst/doc/images/HilbertPlot_H3K4me3.png0000644000126300012640000020025512227066722023125 0ustar00biocbuildphs_compbio‰PNG  IHDRf6–sRGB®ÎébKGDÿÿÿ ½§“ pHYs  šœtIMEØ ,Ü€‰’ IDATxÚì½w¸ngUîýM$FBHï „ž¡7xAQðQDš ÇM…Ä‚b—(GAš¡ÄÀ EZ ôBHBBB;'ßOîkþÖü½c.ô;ç\×7Æ?ÏÞk½ï,Ï|æ³Æ}1îqSO=õÊU[[[[[[Ûÿ¯m§ž‚¶¶¶¶¶¶¶ücÛ¶mÿ¡ý¯ÿ5Æ‹.ãn4Æk^sŒW^ÅC\ëZÓï]qÅô÷ù,ßßi§éçr¾ü>ÿÏç¶o¿ê7¦ß»Æ5Æxùåc¼öµç¿Ãcºêx?üáôçü\ΗûËñrþüžßçuç{;‰«–ßós™7ÎGΓ‘Ÿ»òÊùùÎýVÇÏýæ÷¼¯ÜþŸ±šo»O»žÌ¯}Ž÷ÇŸÛõð¾rÜüŸß»òÊõÏ-ë.ǽÎuæ¯ÏŽÞycÜm·ésºîuç×ßÞ>Ç÷Œßã}ð9ñ÷¼Û/øÿ¼?øÁ6ï™ßOã[ß*Hh§ùunÇçzâþbë>×ÃãÛ>bëÇÖeŽË÷ïç¹znܪýè˜÷¯V«Õê=—ßavÞì{¶Oñ½Ž}ë[Óû{ó›Çxî¹c|âçg÷Ëùã¼ñúùs›Ï<ŸŸ·ý¼šïü<ïGŒûˆ]/ÿ^yæ;W«ÕjuÆg4CÐÖÖÖÖÖÖ†à?jñD‚\hd¾ó©'ÿ/ÿ2ï¹ÓÓ4&À#™c* ‘Òƒ5Ï‹H:Ç%3äJBÏ’÷ûö·qÿýÇxè¡ó×kŒ =GzØAn<?Ïë¬8畈ȑ!MÎ[µ^‰¨ÌÃçú0f‡×Ïu—y<ûì1uÔ2æäßÿ}Œ{ï=Æ7½é*dvÌ/»lúûï}oŒïyÏO8a ‘ÉÊ{Çû%ÒÏ<“)ªÞ“ÌGF^OÎO¦-–ûºÞõæß×ç´Óæ×7ß/îW^¹lÝàs»ä’1ÞàËß\gæï™!ø|Ϙ^/ïß/‘:ïÿ¬íwX»þí=á}TŒa˜çï~wŒ÷½ïìÇ–1SAÖ™WÛß«ý„óËu˜÷ÜöUc Œ±Éçrœœ?÷më*ÿ³²óÎÓû9á„»5CÐÖÖÖÖÖÖöŸÌT=›ü?1Ïÿñy'#‘³Å(Íó5Ï›7ŒE<Ï›Üd½§JÏ›¤!a2/yÉŸô¤õ÷cˆ9¿¿Ç=Ö{Þ±Ü_Γؓ]_Ž4ßË|]ÿúëçɘ C¼/2Æt0öÈuÂû1äHDÃu–˜0ÏS!>>¿[Ýjý¼ðû|N÷»ßô¾n¼ÇøÇkN:ì°ñó}öY@*&Îb°Yïßÿþ”¡òÊõ‘ÑçxdèìýçûDT!ÏÞpþùVŒ“!ç‹/ž"þ[n|bµZ­V§žvóÕjµZ|òôxdrÞo~sŠt¹¾,×€û‚!ICÚK™9Û7-÷†ï ™c&øœù~ZnYŽOdLæ†L™až?ï5çû×#ÿÏukÏÁ˜_{¼ÏÜÿ—¾4ƃšÿ|öéŒy9;ö¡ö‰ÚÚÚÚÚÚÚþà =¬x>ôœ>þñ1yäÔCyÝëÖ#b"SC`4Ë%`l+×›ØJÆ*kÔ<:zºåÛ«Õjµzâo0A\aP3e,o)"Î|縌áùÇÈÄr‹5WÏ«Š½Ó3_šM¦À²‚+¤Åê"û>ÃÜ fÃç<Œ9ñð:8¿G®Î Ákn¹Z­V«¾püüë_ã!‡ÌÏ{F«^á}>ä!Sfêq›Ÿ‡ ™\r!øžrÒËqìù[®‹1JüyU-Âj¤ë­¾7y_ˆ-i—]Öï[K÷7"Ë*תbªór¾¸ÿó¾-Fn9%öüs>Æü¹¯åód.yž|?ë1Ï5ë’Œµíó;Pšó”ã“Ù¨r×8_¿÷{c|üãׯ|>ïYîÓ˜¹fÚÚÚÚÚÚÚ63D@\0õ´óÚt y¤;∩çBä_emWHÒb:K‘4«¬®˜óTÕuó¸7»ÙÏ€nuéöÌzžV÷ož¾!Æøˆàé93Ædˆ:ß‚3„»ÕlrÓo¨êšéY[ÎI•›Áù·:e~?×ÉuÁuÎßgވĉ,ò9Ó¿øðo9ûûýö›_¿¹¯T£Z 5Çù‡˜þþÛßž",¾G9^~_é6P—ÀÖ/óýÁŽñ¶·_/Ü_ Ùåºßqém×2„–+cû[ÅXUOc xß|/MÁöKCødŒ‰H;·ýšŸã¾`7ÏÉ.®Ëü>HÚ˜»cžùý\WöKæÙz¦…‰‹¥ªÈæ‘U@¶~š!hkkkkkkÛÌÐóÙsÏõˆŒf± dUoZÕµW±ÆhÍóÍÏ)±q‹ñ˜çcv+‘®e¥`õâcâ¼æó†X9ÿ©BàõÆ£åóá|YÖ?=RÞ‡åfX¶2çŸYùOf¹óú,;zi®‘Ý'?g ˆÕ3ó¸DÐUÌ7Ç ã`uüdLù“×AäOûÈGÆxë[¯_ïUì™×aˆ,Ç9é¤1~ñ‹ë!ÎW¥èI] «N±º{«c¯”HéásÏý¥ú#ØöE~ûJÅTò¹‘ù³œ«ª:óÌ1¾æ®°Z­V«W^ñËk™AcØ,'©ª~àý„³êcrÓ?°œ**÷› 0Ï|ž–ÓaŒD3mmmmmmmW3Kµ«+cö¦eõšgI†Ç©bHæùWÈŽH‹ˆ“­éPSšžë§>5ܪnÕbTæ©›ç_Õ™'gÄrLY¬RàJµDC¼›´X 2#Æá ëß7ß2ßó<‡ŠÙ²uÊœ[?ü?¯ƒºœ'c -׋Ÿ³+¾Ÿ¼>fÿ›.‰=ïãŽãñÛyvþìï“é"Tï}•£RéfШ7A†•ö§:ÆäüÜýîÓëJõÄk^3ÆG?zž°÷«ªºi† ­­­­­­m3C°46o±Ö‹Z½|Õ…Ž1Vz|æAó>r¦éM×b’¦˜WåT¹•‡M`úU×ÄJA’°Ê½0æÅÖEÌ­yêU̱BêÌ®åÿí9TÙß•&|õ>ÑѨÁ.†ÌÅ©ê¾y}y/MË?9$A4 ¶Þ\9þÝî6¿>*&×Y1cùÞ“ŸG>rþ¹RùòðÃçß³ä±zÁ‘|/óÓ A[[[[[[Ûf† ê¸4æÍy®U–=†œŠ}æ12öÑ”¯ªz\Ÿ÷—úЧ>uŒé…`ŠZ†$é9Æ3¥æ¼1VGÏëGI•YÓ•G_16U½÷R$^éT m–=^!“*»›Yø†ªê†Xž³åZTókžï+ëê­ ¨™eoó~ìùW¹,†L)´ê›·(‚Z—KËuŠÝþöëçßIcPmŸ­þÈ|ívÑtáÂí£í쮻ί 2MÆhTÏÉN»cádN ¿oÌF2C«yë[—12ÕßAë±QéÄØ>wþùÓ¿'aÚÂðä9æ~9/V¥ÂžÍ´µµµµµµmfL)Ž1øJoÀ£y–ã@HäôÓǘ¬Ìx€—^:Æh‡WÝí¨ ež¤!Ùd“&–hYÊKë^cÓ7äk }ŒÅ†11$ižqC¤UÕU žÈËsÛ«+{.Ku iÚu›¦z•»SÕ;ó<¦HY!`ߺŽZwB«±zpÛ/l¬~ŸÇ1¦Ì˜[ç¶ÞŒ‘0½ {~¼^Ë 3Êyÿúå»­_ÛT¹Nr<*æ°Êù0eXcYÏŸý«Bè¦ç9ë‘F,žÚC:Etñ`y½¦Yo±+Óv7ä–~ó9N®Ãt ˜ånˆ3ž53ûks¾žùÌé÷¶m›~Þ8=Ëhx‡A¡Gœ1óÍ:{Þ¿!JË)1yšu¬ cb*Å¿­Æ&ízi–Ë`Ì”1†Œ-§Â˜cÌ*½cdò~ñ=µ}†ëɺáÙñ,6o=-¨'±´·‰Õõó¹ýés¾zÕ{»Ïìzªr9òûÓNãö~}…¡ýìg§û—1ÁÆŒBÍ|f_°lúo}kŒéµ`ïÝ7÷Õ‹G‘Åj÷Ýç×9?Ïù³ÌçmŒ¹uyåûH«bÀrüóΛ2¶_WŠ˜f›Ž×>Q[[[[[[Ûú”Sæ=xÌD“\ÚÕêŸãÍo¾Ì7Û”ª, ¼BþÌfe=ø_üÅþççcUß^õýÎ5U_øÂÔãNÌÉ'$«¾ó±:ê³ÏãÑG‘]눳^Rí’y3&ê L鑌—1fV…b¹Öý±ÒŠßjõ ¯ãU¯ã/ÿò2F¤ª6âú­æƒëê ?ØgíýVLR,Ìi”ûòït§1î¿ÿ2FͲå9d«ý:Œ¥õ`±êcŽÈ ðóÜr{ì1ý½õb°œ3ö"16ïu®ëùÏã—¿<Æ?øƒõï‘1œ4ë‘Ò A[[[[[[Ûf† žb<æ§TuÌyã±ß¾j¿»ÁÚýŒF†…ó`U\–saï¯!½ªŠû³Ú+Ľ´;¡évØýUÕ4–3b,¤Ê Ræ}ä{afÂ,YÎGΛlê ±-­ó¶**;Ý”ÓÈ€T1úXrlì¾rüo_yƒÙëáþbëɺ;ÚÏÉ(Y}º1z–[a×Ãõ%¼’;ðÁŽñ6·™/Lð‡>4Æôа}Ñæ3Ì@þçù‡Al† ­­­­­­m3CP)7Y—&f+’7-n‹ Yµ•î–f£VÙæ¦ —ñë_czXyUoMD—ëùØÇƘØq<ú0+zÔÏ=wŒ‰iY/Æ”è VÝéAWŠ…U¬˜÷Ïÿçóñ„ÃÈœpÂzdoViÑÛº7D\Õ“W1PVëcÄnœd€ˆ˜+Ívcë4¤»TƒŸçÉóc.N¥$Çód¾ˆüí8ù¼å‘ Êõ¦ªˆûXÅUº öy몷´‡1*†{Î}s—ë2̘4~Ÿ¿·ý|é{Z1Ž£Á÷·Ê]±÷’çÍ|VÊ«Õ~‘}Ÿú 9^˜?üÃ1þ×ÿ:ÞJ14 ‘1ZÍ´µµµµµµ]ÍгºðÂ1ÞøÆÓß³ûa¥õžºÐª¿ê+^e­WJlü^<`‹í2F”^ ¹ÿx†AZ†Ì–vá:ê¨é÷ROðõ¯ãoŸ2¤½¾zÙγLI<ËÜç?ýÓê§Ö#wS¢£çÉ¾îæ¹Ñ,;ú¶·]Ï\X÷>«ê0†Ê²Á+­o󼫘aìãqÇ­gxLw!Zî|Žï~÷IaX®ŽéŠÑ-Í’Îqs†¬˜«CÅ·Ÿ ™¦É÷œÝQ«X®iós½U=0¢q‹[ÌÏK…œ—æ°rçü}ç;cLw@c6L—Â^+EAËqªôŒá«þãYuý¬ªŒa°Ü–ŒÉÙ C–õ]õ ±÷.ã£=ÿ¼r>æ¨p}W¹RÍ´µµµµµµ­6øƒx@‰5l5fZeÓ³®“"cëôlèñTÝé)Y×­ Úy3&Ç€ÊW†P+Ï—oª@n¸ºì*†bçYE¦àä“ç=uÆ—v/\šK`±ÐXbõ<¸.xÆp1‘Ùâñ-÷ƒŒRU—]ÕéÛý~ÿûÓÿ³‡1¹Î;ßy~Þ+”óªu`÷O…7"’ç=oŒ¿ù›óëÇÞ‹A›Ž„Ū©Q!Ö¥Šˆùý-o¹þ}0FÕæ©eýdŒ¾ëÖ³ÿî»ïz¦¬Òï0$¯h6–1!ûÏçYgoû JîÆLTëÝ'æ&¤GÄá‡ÏïGU_«Sd/߯ª"š!hkkkkkks†À<¡!~/±xz6‰u¥ÎÿŒ3¦žÅøx"Ó¯«.o†ìcÉ)2%LÓ’7_!÷·TiÑÖGDV)x¦Ë_bûK«,—&L«:8/Q¤Í÷ßÿþ1Þáë×*ó™"l£7&Ööœ¿ÒÙ°ýc©Rdu]´0Ä{í5ÆäИr 1!öÞUz)Æ´Uïó¦}²}¢¶¶¶¶¶¶¶ ó€{aöº!Æ Y˜ÇÏ6]SÇœ¬ìÄH«¾ådx½<¯y´¼ôÒyߌ•1‹|þÖÝ‘ï“ÕùWÙýö^ò8ÆøZ.Í÷½Š)°Ü’›Þtz¼û·1Fa6ïM¥‡CeÙ¬[æŠÙsbýn† ­­­­­­m3CÀسÙ'Þ´ÆÍƒcÌçyîs¯òÔ¾ñõ«Çư^Û”™¬ûXÕ‡ÝêïéÑYq[ý/­Êª¥Ö9˺n*·¥oöŒ‘: a1ÀÄ:ƒd²Nòû\ïõýߘ‹ê9ÚüVL–iª[ ŽïG¥0Ë{c­b¨Œ3D^õ¹Ó¶6¯¼.{«œ›§?}Œÿò/Sæoiï »¯ŠÙ1$´”Á2Íüj}r>Ã(&—‡Ý^ùy›W"öœ7L!‘¹)qr1eÄ*«~)ƒSí¦Ti¹céÖi=rLÇ£ÒI•†åÜØñòžç>üàõ cey.Ù¿·ª˜YånØu4CÐÖÖÖÖÖÖv5C@Ï3m°yŒD ŒýZ¶*øã$±×¬çffŠžœ­b]æq¢3OЪ,—€Ç1eÀ Ž}ö™~Yà|¾Tz4E¶‡H7#µ¼éáZÌªÒ °Ø¹UæQ3Kžº_ùÊ÷Ûo=2ä}Øsçsàóglž½-ÞñŽ1>îqë‘k…,†kß3fÅ>Ï÷ëuÛ¶1>ç9ëß_"³ŒVýÂõbÕ ?êºÒlìÖïé9’Ør¶ Z®«Ê±ê$"}¾Ÿ¹îä¥ ÊÖÝÍÛjUµ) òó‰©sçs³ê-»?®ŸÌkŽO&ú¬³Æh99±TёɩºÖ~éKë%{L_"¹ Ì l† ­­­­­­m3C@.žl¥¸UÅЈØ,hž°e“Æ¢'ÎßÓ'ⰺݪ+[®39—ż˜=Ïz|^§õ…‚M®@<Ï(#òú3QκÉM¦vÕß=÷Åœ„ªK&f¦ÜFd1M‹å[=/cÓaZ¸Î™C°ÇƈøÄùƒBKýq…¤ø\“£qÃN¯3zQ:Ëñ‚øÒcĵ!+~Þbó¦;`YÜ•^µÜ-FÎ}‚u×–³S15ü¼Åv«l÷üŸ]yüìGÜ/L1“Š˜–ccuüÉåá>fÀre8¿Uõ@õÞZ¯ 3¾\G¬ãgõþ0¦Ð˜/2)Üÿl¦gç—ûEÞoczlߎn„™1Žü;Èy%CÖ A[[[[[[Ûf†`S_ä«\…äì¼óz‹È¶Ò G•Þ ìKNO‘5=v‹!Òc B&2©ŽÃŸóúŒ9±úc«2°:óxŒìÍÀœ€XŽ·÷ÞcŒnB•œl[zȹC솉<è ›Çož.çÅ‚eY“ٰش19\¾ëä{{å{Á÷'ï×ßç??E ù»Öbàý1FZuy4]~~)P)}Z7U"k‹/elÝXv}¥3Áصï?ïWž»X.­ ²ª««ç|#`ÞÞ#Ó±YjÆ´XÕÕRþJQ×Ö¿uÅåß/æ2˜(ÿNXŽY~Ÿ®™ßýîïr—õóV1Ñö¾lú»ß>Q[[[[[[›*Æó’5Éb¾¦¹ÌY¥Qnˆ=–˜¸e¯Z,®Ê¢¥§ÈzÝüœÌyžù?糊)‘'ç! ³áÍ3¦ÒU…|r~ŸLÅÀ,·€±:ëoˆÄbªöü-{¾ªr V»!CËîæu™¦9‘AÎÇ®y9‘$™‡¯}mŒ©ÊsÌz%B1†Æ+MÙ:%|ßùÎ1ÞýîëßG{¾KëÌ1áyªõdH´ªã6ÆÁ˜»ªw$ÿÏë‰b!™;Ë…°çI†ËbÎÆør_·¿¼2ÆôUÕQü>ßC>ÿôذ¿‡|_©Ó掹RÆ|TŽ÷™®ßª*¥êbXU=-]ïU®ƒ!_~ŸëʾeïsÝVûÿÏ\Ó®'_Ú‹„ûB,9Q©¯·ÜGM7À!c ‘[®ÅÒ.¢Ô1Æ"9@•"$4ž–ï™2j~Ï}Ár¹ø^i®ZûDmmmmmmmD˜ô\,aõàU7%‹­Ñ3cv6 yÐÖ+º ´ª¯ºiæç÷‰ÙÅS³ã[¶6=è hó| ©æçaÈh𺉠x¼ÄžSõÁ˜£eÑ.e øýJ©ÑÅÄLsßr ,ÄÖƒuKã|ò÷·¼æ9«Õjµúòj”‹|óòiÙÀñÇñ}nCš¬W®bÜéi`óRÝ/ç¿R\³3CŒ–sd‰fL‡]ŸíSKsVì¾ W̆1|¯ržÃ®ó¥ÕjµZ}~û³ÇåÿY…b9X̲7dÎy0&ÌrDl߬røw̘«\çßüÍö°õLZ˱±\’0Õ™‡äp¿2e[9Ï–ÛfóÛ A[[[[[[Ûf†€È‘uŒU?=²|?Ùù<?ožµùû­b÷VßlJ{Õ<ðú˜o AÕ‘/cXû6dÙ¹±Äœƒ,éSãßbdæÚsŽÙóàñ*„jȶšû<Óöç}Ùur¾Î¹òÈÉüæúòž¡äóaž ‚´çE$°!Ó¨º²*‡ˆ°Ê-2&†ï¹)ïÙº´ïa›ò]õˆ´ÑX:¯ŸþôÓÕôž÷œž‡U1Ñ9øÒ•,bª®|¦w`½Œ 13攌´í«d~¸™.L>÷³?›ëüÇ|Àæßc¬íù’QÉß V)Uû·U;ÄòÜ«y·çÓ A[[[[[[Ûf†Àê¯Íó¦ÇešõUÖ,©inÓåõWŠZÖ ªò íïô)O5G5oô|‰¨,w¢ê¡aÈ–ÆóP£þSŸcê‚ٱبÕÉç¼Ô·xìc—­þ?È€ýÓ­»f,Õ<Æ@˜#Ÿ;çÙ¾eWÏ‘ëÈÖ·=_Û*žª;¯Ëju¿U =ïça‡ÍÕ.|ÎÆðóKcõ•"«ÅàíþÉ(™¢ž)mR„Ï¥ªZ¹š©¸Æìu[ŒžvÎ9ÓçÅç@æ·Ò à|§û©éy˜¾…éø´Ra[[[[[[›3ôøØçÞ³Õ«WšÊ– P!Þ¥õ¥ŒùAñ¾™•OÏβúízM¡ŽʲǷÚU²úœõHݺ1@VGmÙµÔ¸d4ÜÔ=3ß¼ƒ  IDATÏ:3ÍrC†¨ºVÌOæ'Ìׇ!ëÓOã=î1ÿ\ˆh­š„Œ[¥Ü™˜¤)VZ6‘›ÅH¹ÎŒ¡[ºn—®cÓèç:±ýÊbù¯ý>zʘÙ>eóCDk½8ÿYﬦ²Ëɨ”mµ*1»c ìùcc9CÔ'à>kïƒé‘T¹e\§éš†îoœ?ŽåްË%uy®f æ×cûoöþ}±}m«Ö A[[[[[[Ûæ^¦?`}Ã3e3‹IUšæ´ª»yNDêŒí˜‡lLD¾¤bÙ±•ÇhõüU½4¿F$Úö‡2½>žŸÙõd0ëŽ1ׄ±Ljm‡!03‹óyZv,gHÒbÐd†Èñ>­»á?ÿóï}ïõë÷cõö\?|N†\LÀb”ÆÀT̯¯Bø•rŸ!¸ªJ!ˆî¿ü—e äOþäú±Ò+¨˜*2–»´ôü¼æžXU5ß\/¶/[—ì'ìÂYUaØ~f9`výö>³bÏ-JÿøÓÏsŸ³ý?Æ.¶VÝS1ðU/ 2K6?Un[3mmmmmmmÎX6¾!qz”¦ìEDgõ¼¦`uÁDLgœ1ÆN˜¿*‹·B0DéW}øácL7sL±Š#ócHÅb³¹æd¾¾ô¥1pÀúçMDÊyç÷âQç÷ì©@&£ªÛµê«Û¶˜øŽ¿1ïaçóÿí¿ñÕ¯^ÏðØñ_üây“®h©C&Â0„”õ•:tþÞb¯UÌ޲íNŸß‹Bg´Ü+E?þßCŽ–ó»ßýÖßWU×m×mU.Ku7,·…ûÙŸýÙO>yqç8_üâô½5…Ì /ã{Ì?¿|>½2¨CaëïÑR&×r+Œ‰¨Þ¥ ˆU§UŠ¢ìUR1+™v?´y7fÀªrìïÖVuWx½›ôqÚ'jkkkkkkÛTh3c³æá/™ÒÓ¯º@…Hl<1ÚØ]î2=~½öÝwz|ó rÖ·žžØ­n5ï™YŒ‹ˆ‹úÉÆÿØÇÆxÛÛŽ‘=x½Œáå÷oxÃô:9¼Ž7½iÊ,<á ë1–¥ŸX©1qÔ|级Uݹ¾h–#dZø†¸L9Îö'ÓˆE—ƒU6|¿ñˆõ÷ç›X7¯“ïA4óÃXnVÖ_¥àX)óCÌëâ{Âù7Ï™J§¦s±Yg`~^y;º^{lß»òzkª'û‹­‹¥¹yü~¥a9YÜ/*}‰fÚÚÚÚÚÚÚ6+VÈ̲Ÿ-§Àºá™6´1aÌ“åùRd˜ØmÅDXÖ»1¦¨Wy²ö½[ÜbŠ(,‡ ×™1LAŽwì±cd®çÙc,kÖt ¬>Ùº,ZÖ½eÝVõêY—Aäù\˜&V0{=1Ö )2 œÏŒ‡_{H@>öE#‰ãIOš"¶ ¡[Œ‘¿7¥¹tM¼ÿýç™c€¬jȪ@¬ëî Aòy.­¾¨zR0W‰ï‡åð°ÛªuÁ4=î+‰Í/­¶à¼™2hÖeô'XtðÁóß3=Š¥ÝôŒA¶^-UWRÛ÷‰Îç¬GN•se÷Ã矇Èú1Cc‚íïU•ÓbóQåäço{Ûôï@d®ƒV*lkkkkkk[ÎT8nÈ©ÒðŽ”zùÝv[ï!V:=CfÏšFvΧٗ;­÷ iæ [ýhb²ùy²¸ƒ2/†lˆr]©20ÏÓzN˜"ë -˜ÿ[Ì0Ç¡Ra¥CaHÔª!l‹EóüY?<®1LùÜg·4yÞ†„y2É9ØsÏõß#s„ð‡Lç—ë“ÈØ M}Ó äœ«J©ô 콫zX Ûî£êÚWuÛä:Ìÿƒàí}²ý³Ê¡°ª›ÇJ³bŒIª ·š3f±}c íïŽé¸Øß‹Š!ç}ñï„í3#])SZ®ží[±äØñ~9?Üš!hkkkkkkÛ¬THä`žše1VuÅ–ƒdß³ìJ‘ Ú¦ ؘGN<ž)ÁEÓÞÎÃy²Æ€óû]w÷éŸyæ£Ãëªêhi–^Õ [¶¿!6ë^HÏÙê¿«>ö¼®ª¾ÞºVÚó4¤nLÄŒ‘Yß6¯éB†Ç5ï3vÒIë+{¬ççŘë"hï¿=gæÞXŒ½z¯s½AêfUï C|¶^m}U½Pª,ôjß°ù!ð´jÈbÖÕ<Ùó©ºWV]l+Já•?g—Ùª*Ƙ 2Ó‚·\ºêù[nž):Úü˜ba3mmmmmmm›s¬/¶!™*Û–’Å^è±UžY4òósvÙûÎw¦çI,˜õãô¼4O›Y®¼‹Ú<¥^9×iY©ÓO6)=^Îûë^7ÆO\Ïè˜_Uóbß«ºâUY¸Ks,»×Ï÷šû…1V¥RUEU=–>Ocœ*Âz¼lÊ©iŸ¨­­­­­­møźM‘¯ò„ ‰V¥Õ©Òs¤¹X÷52!†´8?v½ÌÖ¬÷¹Ï1J…w¾ó;lþú«ÞôT?úÑy&…Þ['v¿†«êŒÊó'ãA³çjÕT|«˜ VETóÀç\Í«UïÄ–*„yäôç©V‰.GrS¢½¾ÕÞV¥±‘UYæVåÀu&,Ÿ?âºCìÿ3—¸–‘°X±=ÿô ÞJõ¼Œ ]Ê8åxÌ©ˆŽF«0ePÓW°ýÅž“é`TL˜)—Rq“fÕ1¦HÈê1Ë£no9JK÷j¨º6V_ÙÜ¡§ð½ùýcÓ>Q[[[[[[Û¦zð•¢RUi QD6ôÄ’•…¥ŒñŒÃ˜ò]Îsé¥cLW6Cþ“{@…1‹åðþèi¢¦æ{ºÚuÔ“#A-kCpô¬sÞ Ú( æøUÕ‡YÕ¿Ü<`ælTuïöœ­k!¯ÇcàÖcÁŽÏõCÏóZû®[]¹Å\«>öQj̘ó?ïyËž¯=OËr7„˜û3EªnÛMöƒîzàZFo©#Ïûð‡Ïï{ü¾1Õ>bL ×S¾GÄZU]ñº˜kÄ}£Ê «zA°n·¦ÿ`ç«bàKÿ>Ū‹íóýãs­®«êÅbú¿úÕ1î·ß²ý’ œ¼¿fÚÚÚÚÚÚÚ63;~PxøÌÒ7äbˆØ«óØ}÷©gc½’5ÿ“?9ïq%{? Å\ò=ÆXª¬ScX ±Ñ3Ì|¦×‚yšŒU¹•b$¿g´!›ó °˜b•{˜ïR¿* Ü™³ª5¿oõäv\C²Ìޮ֛)ûYli—P®?›_{NK³è+FáôÓׯ«ƒçQ[[[[[[Û†yZ•â ™Åêˆ0*B"zà±ÔÓ›¢âníú YÕDU=arŤÄs… ggé¶mcL¬éÿxýù«˜¡Õ}!0–l}ÊÉ01‡€±fS4„iZ笢°¾ò¶Þy¹2Þ¦ï`9nšû×>Q[[[[[[Û†!@Ó2'b°ljóp ùÄ#4ýËÚ4¤Zu³²,XCDßøÆozÓé÷ì¾Í£·˜¡e×ÒÒ1 ‚i¾?ëYÓë&BÎ÷¬¶Ò¼'²­Â<ä¾ÍãŒÎBî9³Ä­Çç!È±Š©Ñ“&r=õCCþ!9pò9~¾ªó­£eeWL ‘+u¬ºÅ²ë­nܘ«“¶,q«+§r¬º³U1q"ð¬ïê|–“cVÅÒí~L0H1Ÿ»ì²)fˆØÞsCþ†è¹~=taV÷_1|^6ÿdš,ÇűuåþS½¯ÖSû±USUz•Ž ßWÃûYšëe ©ýãóã¼Ã^™1Ö›¡‚¶¶¶¶¶¶¶Í:¦¤O¥Rˆ3eªª¾v‡&ùcLo :óDãÝä&cLŒø=ïã¸a°þHŸÙêVg_Í”XªXßžñqþü¬v`÷±¥J‹K{XõÉ綸yV zéáÀ^UµIÕëšÌ‰Õñ[½yÞ‡¥Õ%U¿ú éXŒ7ë’ójÈc«Š¢ü¹1tù^UgoÈÎ¢Š‘åþiJ |ÿ­*Ãþ>B·\»^2\·•R,cõ¹ŽÛß~3Êãîµ×ô÷an-gÅö‹ê½%Äy·î‘UR{¯mßݤÛ>Q[[[[[[Û&ÜÆ:}C<–mÊP¦Åó%6KÏóâ‹Çø‰OŒñÖ·ãÍo>E*¹®xÓ`îsŸyÏËêê­>›u±–5o}Ø«Þ ôày¼G?zŒÖ½‘-±\C8ìOO^é)˜çE®}öYŒè©2h mVÎy£eõ¶¼nÓˆq>+]®S,´ Cv|_øûüŸÙöV^)VÆê Ë Rª˜E‹sTÝ—v\ÚÅÑö9˱õfŸ³*‡ˆšï ™?Ûùž°jËõ8UµD¥§±T‘ÖôÈLæï™ëië~=æç½ÒG0$oŒÏRåGËñ°Ü[Ýí°­­­­­­­fXgl±ëÆEŠ›!PŸ±·Xêõ3^rÉôz£¸—ÿýî7õ+¥.‹ùÒó^šAÔºõU e–Õkž´)eBµï3[eYç{ûî;ϤT±ÂJqŒDõ}C$¬Ë=þø1žuÖüs¶ªJ—À”«lá*l<×gï¥u 4¥Q¾§•2£!|2ïÞ~Ì,R®”- áZ ÙÖ¹eeW½NŒi°Ø2­U]ñ~’«b:&VB$m±s»ÎK1γÏÖ‡1qÕ÷—®cCêì‰cÌN•+Uus]Úó\1?Ö›¤úÕ}ÕÎfÚÚÚÚÚÚÚ63¬"0³zد}mŒÉ†·:oóÄ­Ÿú+^1ÆÇ=núùÄv,ÖÆºdz ùýW¾2Æh[vf3c 4󬫺pÎG<ßt¯£ÛÛÞ6ÆäN,í"fϗןß?õ©c|ö³çÖQWdzÞa®Ò¥/Õ$SÂã0ç#ç{÷»ç=jË)1̘ü<ía°,»ß[z^¤žšzÆh‚¦n@aÎCÁrh8ïUw9›/qî4Ï`q¾¾üåé>qƒ¬Glö^,}¯­ÞÛÎcÌbµ³·ßÓ÷ ²µë²çe±{cjlß¡^JU½R)V=QŒ²\c ªî¥†È-GÄÖ¹å3_u'¶ç­ûnûDmmmmmmmDÀô|ø‹}Æ_ªmž9¿ÿk¿6ý>‘ëœãñTYÍ9þÁ/CÈÌn7ÏѤ 9qþsüh°§×À™gŽñ‹£eÀêc”ý‚<ßüæ)C`÷eõêôd™¥Ÿÿô£Sä›ëܪ2ž!1"‰T•pý™²›11Öoþßÿ}ʼXwËJݘ0êiX–¹!ëÝwŸ®ë\W˜¹\/Ÿ[•UoHÁ<óù(ˆÆR¯m1t2sgœ1ÆSOã;ß9½G>rŒ/yÉ<³‘ï=ïyóÈêÀçßÃJ1Î.[ì%BdÏÏ…Á»ï}ç?ÇýÒž—í+ÉA°˜ñ[ß:¿?pŸ$ÒÎÿó¾“q1¦Ìö{Ë‘0†Ïr½¸YµV¥PõŒà{ÁóVÕ/ÆLãdÌ›1?ö¾UJ†›æ»}¢¶¶¶¶¶¶¶kœzê©W®V«Õ)§l[‹ä,†²T[¾ú¹eWÓ35ÍC†ôÏ=wŒÑ¬Ž¢UUUaÌIÕ…Ëê”iÍ}\xáôû»î:ÿùݯuéjµZ­¾ñÃMŽ›û>ì°eÈ×îÃ<\"v;¬´ÿ«ØÖÃ6Æ×¼fz«3ŽùGÑPæ)ŸâõP ÏbȆM¯ªKæ|Tú–Îù&¢àsâùÿäOÆøð‡Ï#C‹¡Z×IÎÏRoõüÓ®ª,ìý5† Ò´çq™ÓÄç“yOA•Ëbç±ë`NÈÒzu®'‹íW½C¸Î­J‡ І˜‰"b^Ú°R0Ü*Ò7æ˜û‘½'ö÷·ª®à>cëƒÏõyÏÛÖ A[[[[[[ÛUŽ•Rˆ!Z³Êó3Ädž¸Õ¯'Oúµ¯"G‹éÄâqF«ú¦7ž‡H§ò,-FnŒ‚å TU ¹ŽÄV+mö‹·ßhrœÜWr%–j•/U\#£Â.vÌM±y¢¶?“0[%ÃP!ñÌ ‘OŽ]‹TqX/óès~Þ‡usä¼T]-»Ù”+‰ø­Ž>J“y?x'ž8ÈLG£Rå}ïvÍ!Åyñ»¬e*«ê®Ã0±w1~¶UzÌÒçñ2R Sc¼Â€|æ3S°ª†2fªÊmáÿ 1Û>c]í=5Ñö©ª ÍçR†¢ªr¨îŸ¹D|ŽœŸªß'Ë ³ãmz®íµµµµµµµi·ÃØXïÙrùЇÆxÛÛ®GØô`yûÜOÿô¼çn±B‹‚¡ç•ó²ÿ¼yàæ™Ò#¤'Z)í™ghHêè£ÇøáÏ#bz–a`ˆXLYÎîϪ)ˆLßñŽ1ÞýîÓß[¬—ì†,¨¼DÈnŠ9^úž§Zâ_ÿuŒï{ß_øÂ)â¦f¼=^®ûGÕà7„SõP¨b±èˆ2IîŠß˜ê#Øûöí»Ì"Àû·1¦Ú„¹UW;2<\ÿDôdv¸Uç³y·*;Çïç:8`úý0Q±èmÄReãF·aÿý篷Úg+%UÓרGvqµy3½»î*7 Ê2¦Žç·*®¥óQ1V­±´‡I3mmmmmmmÎT1³¥ˆ&R¦eó¼V÷j1VÖÅ›ÇF R¤b\<ê ȇÚâdª~ô«µ,gÆ4«úçXjî+óßb¥4Wͳe!Ss»Û­÷XÉDY÷9æä8ɰ±<ÿüüAã{ðhšñ¼çíº%ädf ‚a$îr—yߘ«ª«š1SdÈ>õ©1&Í÷ÓOÅtUï…1†|îÔ¡¨r}lÿ²®‰\¯|*=ËÖ¯rvªª C¶¼î0zÙw¹îï}ïùëÈñ“3bŒEU¿_ýß”T?ñü[e¶x\ÞŸ特d#D3]«¾°õRý]àz±œ*'„ïu3mmmmmmm›šÕÅ›ÇOm÷cÿ>cÏÖýªòü–*AñxŒáæ÷axÿA ¦9mfJ]ËûLÏ$˜ãåyšV?‘E|ÞƒÌû¡‡N¿÷G4ÆG?zþ9WŠ„öþÒI®Fî'óaú\ç?õSc|Á Æ¥BCŠÆe~,ç¤Ò°êŽª÷^zwD93óaz ù»üåçOúû·çÏG¤l 1•Uî s±ò½T}-Õw1†„ûcµO±«n”/?ö‚7®V«Õê.ÀÚë°÷Ùª7Œ‰5æ€/¬zÏÞ+ûU½Ð A[[[[[[Ûj£ú€y|ôœ¨°UÅrÌ¥i1@·º~»nËÒŽE+>÷·ÛnóˆÈz8TšÔÆX¬µRÂ3Dÿ'‹žç3FÀ=‘|>Ÿž;u˜#‘ÿ#²iánÌŸçÐCƶ_±ÓäxAz|>A¦'Ÿ<ý9•åèÁó熄ùù àÔ#›'Ofʤ0=_<]ŸD’9ÿ>0ÆcŽ™^ÿ_ÿõïv·é÷¨#Âbv¾!zÛWR ó—9ÐcaJ¾ùÍ)õ–·Œñoÿvú}ë ©âUëãˆ#ÆxÞyóë•÷k:ÜxD¬±tõd.­ÿª~ÿ¹Ï~Îz‡p°õo]«î…œ?cت&îkVÝdLÿÿœç\õóg?`í}Xo *³Z.”).Ú}ñý³ê°¥J‹Æd4CÐÖÖÖÖÖÖvµ#‘^O{Ú¶YÍbá–k}Å«,Ú*ëÖ®‡õæÆ²f]½!Ï­fŸVˆÝ²B-KŸY£A@Ô °šiás^xßAªÆÄT=ø9S(´¾ä{]c$%œ·}P÷º×øùé§OKeA«ß·>îVeSÝ_ëä{ÁuF&¢ŠÍVYܦÎçN%E{Lç"šìùže=ò«®Ó˜ådluZ=¶iãó÷‰íÇ8y/ÉŒe¿ ÓÁª&ö80Ó´äðì¹çü¾]åPÉ‘Õÿøt~nu«eómëÕžÃÒãTzU2.Õç¬:Æf[÷Kßߥ9Æ,Ýžõ¬mÍ´µµµµµµ]å"²¬DË:­¡LÁ¯Ò¢&‚§gìZ"\‹í1ffâRŸJqÌ6c½Öã€Ï!9 D|výf¦Éë[ÚÛÀæÉWÓݰõcýÛ+Ý CÂÕ|P¡-ó™®OSt3db¹ŒVÌÏkëÑt1¬[¢)³†‰ 3e ”|dT,mÿ†Tcalß®ª_Ϧ ¹•~ÉŸ8Æ—¼dƒSéÔð=á{eõþÕüÙ¼Ø~g9FƒG¦œ÷Áù6¤ªf©rŒÁßñÛ'jkkkkkkÛ0Ï<ó<èQ³ž›ý¸ GÄ\zBôÜèAQIͺÅÓŠb]êú+deVõÓN—Æ×þÝ8à.ßi­çMÙ²õÙo»êóÎùÛ*bÈËrH–"ó\÷)§L¿÷üç¯_7Dެ¯¶ï½q”¯ð€õÑ©Ui¨bˆ6¿ö¾,íV§uÇRçoï[º!¸÷2ûòëήG®{ªœ¤*·&ë=1{Þ·Åäy}†Èˆ˜¹.RåQÕÁÛþ`LŽå&UÝï:h=£Êž%É`õ÷ Ëýˆ¾Gºüü1YÿƼXNïÃ?û>×O•}Ÿ1 Ç“Ÿ<Ï,U ²åÖ™Ò¦éÍØz 3eU{ÆÙ A[[[[[[Ûæ^U÷2C¼[Õœ¶îMÆP0¶ÈnVæiÒ£4mö|žYêc´œ€*–û«¿ã_ÿõ”ø“?ã«_=Æt)ãüùf^â1ZlÌ̘ ‹ÅV¹ UÖ­·R ³:h;¾1DÆø‡c<î¸yÄÄû|ÍkÆxÿû¯GÆU ”J·‚¿glÕÎÏçgÕ9¦û‘Ÿï¨:Y]sò}fÑsžyÕs´ûŠ¥›ê-n±þ=c}?ß"ÿØ3ž1Æ{ÜcŒw½ëüsÊÿY•°IVŒ\õþð}´\ S4ä<äûÉ©º®’IÍñ9dþçÜ.ºhŒÔÏØj·Dc¹Ùº³¿kÉ…à>¿'Ö«ÁöMc mÝÛuò¯zx#Ù A[[[[[[ÛÕ:¿õ[ÛÖzNô`ƒ2m~óØ+O¨R`"ò!âÏÏ/¼pŒé¢õK¿4ÆW¾rþzï«1ÿ IDAT™ÝouÁc4Ìjbw† L÷ÁêÆí{æYV:AÀOyÊ£ùoÝ­ÚÁ<ÙJ»œë0ÊqŸüäü}Ù¼oUçÂú§·ÀMn2ÏXð}¨²~™ScïÁñÇO™"×rŒyËÿsÞ(û=ô¡Óß¹E ð²ËƘÜ"o{Œ‰ªže_gýsþ¬g€)èñþÌL¡³ª#çºç¼WÕ:– žñ##uìýgï*',¹"éñÁ^'\¯¬.KN‡ÅÄÉèš„­o¾'ULcÞlÿ¨˜c.ø¼ìï£íO•¢¦).òºøw˘¦|ÿÙÏÞÖ A[[[[[[ÛUŒy–†pÙ÷Ü*=5",«—®ê•»±úÞhêÇSzÅ+Ö{XìÅ@OÕ€!"ólóùœÏæ/óü¤'M¯ß²¤íÿ•r=ÊØÏüÌt4dgÙÌ–%¼4vÊëùó?ŸgR )¸ñ•1Þe¿ÕjµZqÆÔó¯(ZÖ­!¢Ä\™ãbº¦„G¤ð?ÿçüõ˜†|•MLd]®ë0Ûž<$ù>ûõ'ë6×ýÖ·ŽñœG6?ªŽ‘têý£”wûÛÏ#ÉìT¥"åî»Ï3ASaLuX§n÷k]ë¸/!†13Äg é¶°º!ó…¹'©.Øu×õŒˆþáÙX¬ñ´õeO,×ɘc´³Üå.ëŠJ‘¶Ò_©î˘^21|/ªÜ„ë­}¢¶¶¶¶¶¶¶9ÏxƶÕjuul;V!YzRU9=ãª.˜?7Í÷ çs¹¿ :»®¥)cN¬‡®½,G¡ê^fˆÄ”«*ƒ\ºæÝøÆÓŸÃPyôV\!×Êã®ê£-»×•uY«<3ï¬Û7Þž ³ó9¿Ö'Ý>§Äm=ñ¹]zékßwß1¦Ê R´yá﫬k{^yNÑîgnGe¦°h¹AÄì=`ë—U\¦”šïUzUö¾UÓ™ß'W$ûãRå¼üŸ:.ù}ºÆæ9U¹•b-ç­ê.»tpÞL÷†ÏÑÞ2(UŽX¥‡±t«ô>8ÏÝË ­­­­­­íj‹žKnÕ­Î<1"7ˬ˜CXÔ’¶:n"¡ €Ï}nŒ©_ŽEñ,ž15­yýÌgÖµ1¦œf s6Ìs|ï{ǘ>÷†èÍò¹Ä ™%»4 ÜiÈâ¦YOª‡†uOãñÒ½.ÊsÌå0e4‹YrÌ“·‚ úsÎc4ä­·ï¹Dd&øc±vïc]:«R Yòº™ ó|úÓÓ÷7]ý–v)5 CÜÔA±\¾ÙG«œc(«ëª˜P‹%[{í±ÇŽ1¹U îw_úÒ?ð1ÞìfÓã“ÉYÊäÙ¼ñ=fUH•½oŒ\Ö[ŒU¬&¢…ižI¥0YUK±*Áþ^NSf¡}¢¶¶¶¶¶¶¶þy:¬Ç´Ø¶ÅXâÉlÛ6Æßú­ùï!b`+³C¡ÈuXÿnvo# ƒëúÊHf_xàü}W]ÍããçèùÒ³‹goZû•ÆvÕÞ«¦È˜˜b ͬΛ?¯&çßò~~âSÆÇªalÉþǘ9cy¼ÞŠ¡¶ê†ª—›ŒAÕ-÷ÐCç÷cŒªž=_sÁ|äÒ'LæŽ*¨kdŸÓ?2(Þ£Žš^'™.®ÃfÚÚÚÚÚÚÚ63‰=°žiý¤y°±N˜÷˜–ÖUòsVOžlà|?1P2 –Ã`H(ˆžæ _8Æ( VÝÍr~‹MsèáZW½ªÏ¶ÕÁ¢µÿÇ2Ï9>–üÞbêA$ ¬4ÇM‰Ë ë‚—ï}ö³Ó󦥭—Š™2·ÊY0˲¯ÐȸX‹Ja‘×gÕD\Ußúª×!'",2†r¶z}û<« ŒÑ#bâçSŸÑ&>7>/Ó70EP¾Wkæ÷l½VÏÏNc|ªõlûc¥`99ãW!}cÜXÍd¹TU.’½§\OaD—ꘂhÕ«§Rü;ÎõgJÆ@s}7CÐÖÖÖÖÖÖ¶™!Hýh²òéIÜóžóˆ±ª†uê…é!šâœÕÛ2²ìf"'ÖÑWYå†Xn÷Oä•ûŠÇYÕR¹×½æ‘3™j´W½#ò9öO7%BC$†\Kæ}žwÞô÷a–fUW12Çbu¼Ó#0e1;¯!Chöžð÷†äªn—\?yî{í<(¬om¿þÚëɼä¹EÏ!±Ö*G‡–y‰¦>õ+ø¼©SE¼¬Û0t†¨­"ßÿ˜½ïƬPé:œÇªŠÀž£éxTȘÌÏgû«­ûj=r>츖[cëЮ×Þc ™óï«òÿ'>qŒÉö¯ôI¸¿°ú„ë<Õl?ùÉy¦Æº?š®L3mmmmmmm›‚Ýv[p«jë:µ×^óž³Ñ²ØµÕyQä÷éÒAË€]º ‰Z¬ØbYôlsÿù½!*"ý ‰ÒC·Ø¨Å’éIò9WuÃU¶¾yÈ1ÖWÝ3 iñz©³aŸ³Ø_…Ùªb”Ö½¬úùR@^oµ>Ríñ ¿zýÉùˆè¨Ûž†H¬nœëé:×¼áj¼Ð^±û,ãÇî‰a6Â(°šÅž3÷v-5nȹªjÊ~÷…/Œ19[ìÁçcˆï‡­‹Šñ²uÊ÷´bÌ,7ÀbþUNgL¿7F¸š7þœÿÏñ_ò’éú©t;xßù;ÀušãÿÚ¯ñ O˜¿þü SÇûª®£‚¶¶¶¶¶¶¶«‚ª½!ó-Ö3­hÓ6·˜X®›Èžšæ†òÆ*YÇI„³4×tÈŒ˜²™esÞ/¸`а ÑÚõò÷ÉÎN=w•õ^u?4FÁ´ýMq±e"VqÄS¾ëõF;ÈÿqîV«Õju̾Cüþ —ï»ÙmU“ß²»9²ù0EC›^•«®oùùË_>½"sÞ4cŸV·M…É\q­«>·ûÚ}Șc¨,Ë›H›HÓr¥s'‚e68øÌŸÇ¯ö¥J—Âö­ªû¢ϘTû»PeáSßÁêÿ­*ÄIÛy}–CE…Mæ˜ØßËê¼ö\í½Í˜¿ƒŸùÌÓSai×ÛfÚÚÚÚÚÚÚVÆÐC¥'X)§™R^•5]e¯VÙ «­”´ì¼ù^´Ôƒ8©¨²Ð™½oÊVU*ŸOr5¬®×æÙ”î˜UkHÀº UÙɼ~›fsþ­¾ö#ãï<Æ÷^y§Éù>ýÝ}g¸õä°ê CÖE²ªŠYZPéCP;¾Ê±Ü{nü?‘5»Í cõ†à,g#×™ ¬|Žõñ–ôÆ7ŽñÄçŸ[õü‰ˆ?~ŒoyËSe†Ë˜RËe©z#eŸ[ZÏïYWÔJƒ±|Îc²ë“ÃÂë#e÷C&Øthg5ÆcŽYÿw /#¾g6ÆÌÃnï«=·Ã›ß/l=7CÐÖÖÖÖÖÖ¶™!¨bl› rNvd<Çàùëµ÷…ÈÍrUò\LwÌ@Õ®Ûr/,»šÕ²Ö+&Ô4þyŸÙ'©ß@Ä—*2œ?Ó0ÁzÇðÿUÕ·™í7ÆÔZwÈRfÇ›B«Å¾yfý¾­ÿÌÃã?ÿ<ªê£³_þ®ñ¹ÿ箳ûZŽf€ÏɪÐv|ÿ‡ãØ'²¾òÿÌŸ1â\·ºï·OÔÖÖÖÖÖÖ¶až5=%"­ŒÉ 'ûØÇÎ{¤ßûÞ™]Ʋډ” y1fÀ=Ï Yó€éɧO69Ïóáñv·[$«l_󭊀ϓóeÙôD¬ôü !Û<‘q±XuU­QU·T dT®[ÚGÝžçµb°,»›÷gH¼BÖ†l áU]+åÄJßÞ_•ýÎu—>ï'4ÆûÝoºTº öXU’!ÜϺKâµØ¼)3kûµ)9Z‹YÓì¹šŽ„å6ØzeŽ”é²7Do]þLW€÷÷ä'ñE/šgcoß~×ÙçhUÖ£úûÄu‘ê”|înwãÛÞ6ý{Ê}¾{´µµµµµµ-g,{›õ‹VgœXý.»'ܘ÷tãiƯ‹Å~­:¢B&ì^h9±\ï»ß=ÆSNã-o9Ƨ>uêQþÒ/Í{òUw:ÓÎ7ÏêW 9UˆÎæÓúŸ[6{•m½*D^)’ ²¬t.èÁ£Qõn°:lCòÆtT=% r³*‘ª«¥íD¨V]EÌ(÷býó?Ÿÿ¾ýßrªž˽býù–VûX®8«¶0$oûŸ“!hŸ»)rò9W¹Våd †å¢ðyØsÛ*ãûùßY¿ÿÃkú2Ôá{gÇ%3o éµßõÖÕjµZ½îu÷Y­V«Õƒ¼~¿·ª™fÚÚÚÚÚÚÚ6똶>³góóè$¦‘Ø…Åö,uÄUÝ´y”ô€ŒÑ¨´¥«êŠÄýè1>âÓï™F¿ÝipÓsµ,rÓE¨ú„Ó3e¶9³›‰d,«»ª–°y1Oٲ⫘˜!5C@¦»`ŠŽD 5Æ Bƒ­´í+] ~žß”­ !gÛ_ò¹äøXïSê3äSÕ©WJm¬N ¢‹I¥ío ›d¦,÷®Ǫ ésòܘËcÇ1#9Vì-PUý1›'« l}ÛqøÞ˜²"s©’ ÆØ¼õ¡ñ}°®šÜï+ÅQ?Ï÷ßxù}ÖîK®»]òxd> Ñe̺Ïq«^ùÿ%—LßZ¥=oÚr*f RάôA–ælúCTäHØ{jÕKd8ìï‰Í˵7Æ~é1ヿû»óŸ«zcùXºï’{ßûÆxì±ëç³Úì¼ÏzÖ¶fÚÚÚÚÚÚÚ®rüÌC³XG•ÝšÏ'k“ˆ‘Ï%ž{<:þœJOô¿üå1¦ë`ŒÇ3¥.zÀ9>«Ÿ·âVëjs3 m>SO]ÆTTH‡óÄØ¶1¹^C:‰ñUme†d‰ÜMYÑbʦÔgÏÅú¥2·˜=ŸãRƒJ£Ý4Þ ©V]ù>UûÆV{X¬•1k[¶xþè¦Ø{º!^{ýuóû9îR†+¿ÏþbH®b¬ªÊêÛ+%FS µ÷ÆrËìùZÒŠ)4FËbûdVlÿ´j¸ïý`\pºÔš.¯ÛU{O8aŒïz×ü}çºïr—ùç`ú5UU–åâ4CÐÖÖÖÖÖÖæ:U,òc“]Ûå‡W¥5®ö\ë™æ¸ô°cTŽÊçÃ<ä÷8ý=aÕ]ÎSÄûÊØ­Ïbé–ûQ=¯jÞ*#Òäó¨4Þí½¬NÕ¥­B„v=•²#癸šçªÿ»1 U®m©þ‰Ç®£Òý¨ö ëePé ,U.äýE£Ò0ÆÔÖU¾ÿÚ׎ñÞ÷žî{yO²æÿ¶/“é©rUªÞüs0ÞûÞ1ÞñŽÓÏÙupþØØÖñVu|Èp=~íkc|á ǸÛnÛš!hkkkkkk»Êñ«s¥POˆúÃ2-l2ô8ã1Zur ÈXÜøÆS“ͺ ™yÕ{)bY±•2 ³‚éA3Fm9dˆXùs"„ÔOÿŸf ñ™D•ÕÌuo½ˆ€í½1†­Râ´*vÅ#3Âû´nDr<Ž­ëJwƒˆ³ÒèªrªÜ¢ª+Ÿ]¯UXõ‚1B¦`¿·}•ó\1HÕ~Uí#K•6ísö¼YwŸìöT£2?ñÄé¾Ãùà>V!a{Þöž›¾ ¯—LW˜{Ï+&éÝïž2#\Gé푞5Uu÷Ü«"Âì¾ìec|Ö³VÍ´µµµµµµ! gÏ&JìêDÍnó ùÿxzÌš¥çOŒ1óh-¶I› s‹e¾e—Ós´ìdcrýô„«5­x]<ŒócJbÃŒç™õa:ÿ»™ËZÞjn‹ÅhÙeÐÛŽLb³Ku,6Èã›Î„õ‰·:oë`±ßª; eÑÛ÷¹^«®‘’µù´j‹áWšð™Û*fbio–*7¡Rr´ê±ªjÊÖ™*žÿŸþiŒ?û³óë)ûLr½vÉö«ßÿý1¾ùÍcüçž~/ŒpþUÊœ¶š‚áÞ0ÆãŸž'çMÖ¾íK•mS5f ΑGÎ?ßÌ7ÿ>³«oU=µ‰qoŸ¨­­­­­­mÃHb÷ÁŽñv·[ÿ>Ûú"bæ~Áó“f¹WV•VU™îͪžª}Ûö»MóÔ>Q[[[[[[Û="*BųøÔ§Æ˜ìÏh3ÇC9ꨩ§ÄXs Ø=Е*OȲIopƒ1Þ÷¾ËÈÒ,àª+œyèVßšï%&Äùax;_blÉÒ]Ú_œˆêË_ã~û­gJX Ÿç8?àõ«Õjµzý•'þº«®o†Èª.}V]Rõ‚°zé¥Ý1«´óW¹¼N>Ç|?È7HÕ7ßùΔ2FÁÞÇ*kÝ®×æÙ{‘ã‘á4$ÇýŠçO=}•K`È¿ª0Íû³ÜCÌ•žŠ­ËE±j ëfÈûãu?íicLÎ@ôcòû]wŽùù¥—N×iÅØ}æûÙ«êæ~QéИ9¾7Y¿é]pá…c|ÿûÇø¨G­ßǘ³Ãóæïvºçú˜[Ö A[[[[[[Ûf†€ž=³Þ?|Œ—]6ï±Q`ŒÆ²èéñXŒÃ¾o}ã-›Ü´­­GƒÅH-fj÷_]OŽcÊR†$r}øÀÙýäOŽñã㡇Îß¿)­‘¡È}¥žø´ÓÖ#—ÌßoêÄÿ­ ºªàú¶¦`g ‚U—CC.Vï^éyÒ]æº3@†"÷Á.›Õû@†…¹2[¯î‡ÈÊžs• @ddÇ1FǘËöæç­Ê‡Ï©Bäv?¦ÉoʧÆ(Øþc9a¹OÏþ²÷—½’Ãô¾÷­g&Lw!öWµþ¼ƒg×^~îÑãýÑúy<ûì1Þþöc¼ÙͦçIï“oúžÕjµZýëöÑ&ñ7sü<= xÿ<ÿ÷ÌÖw3mmmmmmmWw;|Æ3¶Ízp•‚˜Å¨øy‹YÐS©²c«î‚r2wÓ¢®°ÇjH€}mûžk*‘­Ý7ÂbŒ½ñ9óóD.;ý]SS|«r 8Kc£Ö§óeól:{¯ú¾sÝÛu,e†*m|ÎoÖëÃLëMn™Ã¥ÙÑÌQªru–2–K¯”XÚÒ>œ†å IDAT¥˜Y1•Ò)³Ù+¦“Ì_µ^͸.«˜uÓ‹Y:ÜO™“b9,{^cý?ÿí±¯¦š"HžÏ9½øÜ“³†Át!ìú¯³1&âû?ܘ®s*Uæ¼Û¶mk† ­­­­­­í*G?`ìÇb\ôL-&FädJƒ†üÍ“5ÄCÄQi¬Ócµ*ëÊÈó,e *¦Ärr~"n>Ÿ\žÞsí|›ÇlˆÚb“ôø“•DøŸeK‘H•#RŤ+dU)ÍÂä¼ZlÓÎoˆÈ‚ë¹B˜¶Ž­›×k•åS*4Ï”> 1²>Üôø{{m³ç^iÇWLƒ!vÛ/–þÞt0ˆ”­ëg…èm}š"dUUö{¿7}žO|âô{dŽªýŽû¾17–cô¯ÛsöûQÄýö·ÇÈÜ›Jï¥bšøýlßXË@…à{çI…ÖfÚÚÚÚÚÚÚ6ëTõÓôüˆ˜­O|•“@ʘ„*6jŠ€æ1qðú ° `ë³Þôè¾ùÍ)’²úòo|czݦß@£B´–»`ˆ”ϱäè!˜ç¿´o¼!ÙêùÚzªê¢—jÖWŠc–e¾”)³˜}…,,†È(Ï[ÕÍWóL$Ãê"Sþ<뙽‚°Â8E€ïÏŸœ…|¾b -‡ÆªŸLwÂËÙ0¦È”6mýl•Qã}U¹UõŠ­s2™Õ÷LIòW~e~¿2}Š¿ÿû1¾ô¥c|ç;§×e= l}§Zëæ7czœ{î“ÍÿÝïŽ1=€ªÞ6ÖÔæ¥š?ÛGlŸß¤ãÑ>Q[[[[[[ÛÆR$fõ¡¦Vu#£Gd±ìx\9)¸UJ€AÌæ\Z-`ˆ¢BN´ ¡¥ˆ€ómˆÈ«)ÅÙï+„\u c6«1;àÆÎB®ªN YcÊbv>«fá:¬b‚†ä+ ›ÇŠ1«>·´K#×óÒ –ÛÀÜ“0™·§>uŒÏ}îûJbô\/K{—˜~ ÷a®«ì“‡2¿xþƒš_—|.|žŸüä?ÿù1¦×È™gŽñU¯Z¿n™eïÁ¦ª²ö‰ÚÚÚÚÚÚÚ6èQ0LÏµŠ±±žØb«K­¯´yη»Ù€ß¹òÇ·äó`ŠtÕõrµŸ/EÈ6ÿôˆ?úÑ1&+–¹Ë7·ê ÀëËñˆÄ“®º£-5«Cæý‘ ±çgÏÊ‚KûŒ›oŒc†f£®êö9oVͰ´®›*Ì1{¦SaëŽó”®x–£Põ±÷ßž»åXlŸõÝKsì9-]WdfÈ X‚e÷/ÝǬ ¥å T]TÉXçøÑ»ˆ1'˪½–vk4æŒïí\ç{^%“\¸äTLdîìß±G>rý{oz@\¶žš!hkkkkkkó*zH†`Í“3O…Ô3Ÿ9E ɶj… ‹Ä’öØcê1}늟EÞD†\òûtuLŒ3çKV.c²¦fÝÚ*$d1ÉÌs=å|ÿV·ZìLÁ‡Ja‘ßg­! ‹‘/UH3¤E ï*oˆÁ®·Bþ•n¿Õ^¦¨IäòžÑmõîwñž÷ãW¿:Æt‹cQ¾wÖ­ŽÏÌŸ{æg÷Ý×ï'KsA*ÅF2B†«ª!ëh:–kS)YÚûi÷mŒ‘­7CôÜ¿y•bµÏðï€Õßi“1¶ý›Ç_ÊHó½¶nV͑ϟþ”à}1‡ÍÖý½dnGÖ5¯ÛÞ îÃÍ´µµµµµµÕ cHñ£1ƒÚÈŒ YŒú”SÆxÁë=_"á›ßè¼ÕjµZ}o5 É%Wî:ë¹UzS¤="rC”U×EC¨’Í<‡Á¨bùU=QC>vþ> »Û-íîX1œo"™09DìnIdiýݪúÈ¢á{bºœW«O6Š;ÞqŒ‰½¦žú/þbŒ'ž8½ž¥HܲÒùܪ^$UÕNÕµbbòû›]볫Õjµúø÷]{Ü¥Ý«ÓØªžÅR…Ī{j… +¥FÞ—!l{/ª÷¾êRióo½1LY×ö=Ë•±^ßúÖü:3¦óÅ/ãÓž6ÿ© A&Ǻ©“&=Œåˆt/ƒ¶¶¶¶¶¶6gbßûÞÔS‰QÕaWu¹†|âéì¿ÿz¤MÏò+ÛoºAó¼û´~öÌ’MÝ«y¨ô`-«8u¥‡¶Þãc.=ùJ›Ýt%r¾=®;\ÜK~¸ó¬‡n] AÐ^B…è ).ýYî‘‚ußd>‘ ‘¼Åš‰(èy[µLÕó£Ê½Èñ>øÁ«ðÍÆ˜˜eÖÕÑGO¿Ì1ë‘ðRE_2F¶¿UL£1-¦”h ÝÿV»,ÚõWûr¥»`ˆ¼Ê-±ëáûËŸ‡!ãö•¯Œ1ºÖå7~cþ¹Ãg?·ê†äí·ßü:´^ÝË ­­­­­­Í‚Ê“ iž[³¶ìSS²#‹‡ÏêJÛ<åü<ÌHc”¡‚´R?å6"àJ³?¿3P™ÅÏ>{ŒxÄ?ö±y&Àæ1ówà­v^‹T­K–Õû²À]Û3æÀt"ø½ÄÎØeóÊë%£`È©B2ƒfócëÿ’KÆmþ\cžY¿û·c|Ô£Ö÷¡^/™‹á²6eAë!A$V)}Z®ÀÒªö@áþaˆÓÖcÕ»€û`óµj˜ªÚÄzAØõ-UL´êË…°y³ç·TÇ¥bdLùµº®¥9:Y7éqÏ}éKËž›íö÷ʾ|ÿwÛmz]8Æ¿û»éûnÇk† ­­­­­­m3CPõ‘·îXôÔôDð˜SçÏþæVßoÙ¡–åoL„Ý/³ !DZŸtU«ú‡›sª:Y«§>ê¨1F‰¹Dzÿò/cL½9• í9š'i¿zþ<®iy²°._\ŸÉõ0$³4¶hºžãgGYóŽìm«¨²Ö-çÀúÇgŒnCQ[[[[[[Û=«¥ÙÇKµÀéÙé2ƨJ¡Ž³!i"‰ÜOX<ô*[•ód±ý»±ùÐ#5ÄL-mëFFä[õ„Èù*DPu¡«ê¦mþ,¦\1U®×±ÇbˆiU@{®V-@„–ÿGì&7™Gˆ±¬ äÝhþ=¨æÓÖO•õÍuÁõeŒ€UŸXv¸1ÖÕí>O»íä=^ƒÕ¯[ÎKU=RåtXÏ ~®ÒÔç:²^-V¯o½ªýté¾k¹ÆXŽŽéÖT¹¬ºâü3Ã}6ç 3ðíoOß+[ù}®3ˆÜrLˆä«yåº%CE笺§‚¶¶¶¶¶¶¶Í u/¬ê}é‘1›=Ƙ½u¤b\ìU¯š" Ç>vŠ@¨Lg]cñ¬ ¼å-c¼ï}×#Í*;¹BË}0÷ž·Åx Iä÷Q‹ò¢Åø-ÖnzôXÛ5ÄÈu°©›r]ãf•ן)êU †•§nÊ™d<öÚkž‘á<縕¢™$žß˜Ó÷°ë7&Èr!¸¬º¢Bš<ß3ž1À­›÷½J‰ˆÒôM,GÀrnŒù2¤L†‰ïƒ)©ãd¹/¼O««¯º“Zì¿zÞ•ò¡å¤"f•Ù>הܟÛg²/&'Àr¢ŒfÕ‘éK,Í¡1¦™ï¡å¦”zíµµµµµµµmÐSª4¥-{¼ÊF¶:Õ¥Ùï¿üËcüЇƘžù>ëNeˆ“Hñþ÷_ïA2·ù2E>z°†LsýKç«ÊÙÈØžO•\­êRTÝ(+DBÏÖºV]Þ6ÅÎvZPi2†ŸKõƒe‡·zé¬^×Ò.tV?nYμ{¾¦,jˆÎzs¬ iFËU0æÉÞg{O¬.ÞŽÇ믩)%2gƒç_ÚÆrbŒé­Þ{nU•‰]G5ïyoŒ1ùÊûL®ë…/ckí:!‹Rl”«ýȘªJËr ¶¬Ù>Q[[[[[[ÛFõzêü¹ÕIZ6~eUöoº1G™ÎéUßø*»·ª3·ªÅ´—vs3dOäg4‘–Å>í¾ª.»…Výå ùñ:,VÌãVÕ*ö< Ñ[_y{O+FÂ§åžØ<™â ·b&Œ1änuÞ¶?Ú¾hóe﻽¿Õs°Ø¼½—VçÏX4s™¬Úªª1¦±šî{vë:Éã~üãcŒ’_ºþýßOg  ¦8ø”§Œ1]jíyÙ¾m Ÿ‡­ïj~7å>µOÔÖÖÖÖÖÖ¶A–=ó-e‘ytK»Þåû׿þzÏ{i7A^g…dì¾cs¶˜[ÎKf€H¯bZ*¿Êš6Ï>–jܳ²yþJ“~iu„!^»ocL !Tz†D©ÈffYíU΄ýœÙÑ–Ån±Ò*VkÎbô¬.ª4å+¦Érî³qú` 3‚²¯xÅ”‘«t:ªçi̘uë³ïUÕ¶¿Øs´œëS1p¼®Kc°ª®›Uõ1œ¶Úý.íY`×I…Ñhÿççó7˺˜ÕûøÃóÏ¥ªÂ°÷ÕÞo®;O•× A[[[[[[›+Òã¡§[Åþ¬Þ4ÇÿÍßãóŸ?ïéy}sV«ÕjõW:rµZ­V·¸Åøybî©÷4å8‹òº–öU7O–õêcªbv¬Ï¦vuŽwñÅcŒBsL¯€?7OšõÒÖ¥Ñb½‹6ÄY1H|NŒe©W±pÓ ¯˜’J#½bB¬Ú‘Í—½o\/T䬦ªÎßê›+†Ž?7åH»Î·n¿çÚyâú5E8{në·ÜŸ¥=%ªuÌóB7d]åAÓk95Æpñ8̲ïÛ{g fUEÄç`=,§Œ÷‘®¶©Â²÷Ì£1/¦Ì[妱Zî _crr^®—G>rŒñóómûN3mmmmmmm›« L‰*áùçñÀç=VCæd^ð‚y› E<¤W¿w0G9=oՇܫ>㌠S1Ì>Ík*[ÑãfVºÅV‰œhéºÈû1@z†¥gþ¶·1 Ž›«z˜¢]•ý^)(Z÷Ȫט2Ëjg¶µU!Ø<Ú{gŒ ‘{Ø{d]=«zy®#»¯*§£ê2Yå¼Tû“­ ¾diDd–e½NŒI²*SB´ë0Sæ*ç:­ºÚýTÊ 6ïUî“é#Tï×™ÛO- ¿ÀÆø¾÷M¯ëïãKïó¦ÕjµZ½aûý×Þs`LÙÒ˜ÉÜ)ër=å8éÁ`?´z£}¢¶¶¶¶¶¶¶ CDÒQZ;è yOni–½e÷›g»å-×{¬Œ![ìf“GTä0ëÖKŽ¿óÎóóbõÕÌ9¨TŽûÝïŽ1U†Dè¡[Eì‹_ãÌ?·(8VÝ߬^Û•åLð9UŠ…›%¢·Ø~¥åo̲òmýç÷ình÷•ÿSs?ö­oñÇ|þ=²¦!2ë2hHîߺcšÖ~•{Ãy©²¾­g•I«ueë€J¨|ïŒÉªô>Œ¨êÞ¹±*ªªŠÇæm)ãdÌß/ëú#×Ó/|¾Æ(|àÓÏ'×-¿3`Ì„½?Ô{±÷ߺ:F‡‡LzÖIŽ÷âÏ?Ïjßj† ­­­­­­ms/z–mNÄœ¾í7½éz„Ř*=Çü>Ú#ùÔjµZ­>vù³HÉê÷é)WÝ»–*gY–k¥pFÒzŒ–5dr¿ûñ]ïšÀ—^:e.¬ËYþˆó`ÙÑ–CRÅL Xì²êº™õ@¤FF†¹K•(«ìþ¥ |ÎDú†¤í=Ìyó| qTÍæµzÉÀT ™U×5þœ¹GU½zµnx\{^Æñ½sZ!k{OŒq±}ʪ1ª*&ë¥PUƒ3PUõT=ª}xiÎA•ÃÀª®'c`ø<žþô1F‡…Ïù3Ÿc²ÿ«%þ½ãþnŒ(í÷ã¿þëô~*&X»ò¶OÔÖÖÖÖÖÖ¶)÷¹Ïñàƒç™‹=í½÷ëêwwŒüúçbJdÆTâ¾è¢1¦ê£ºnfÿs]pÞ·mc꣤f¹7¦0gˆ›Ï«ÊÞ·ûZڵή»ª®áñ¬:ç6·ã}ÎÁÔ_ùäÉüÚ{Yõ§· K{'TŠz•¢jû7f‚HÔÌz±˜ÂŸíƒV•³T¡°š¥J£¶YŽ…ý½#Íß'Ç-¹<ùyªÎ2:;ô î|çùùeλšr~ÏùþYgñú×òìó#$3cûœ)ZZO¾—9OêÜáÆøS?µ~>l_³çð£V÷ÒgÎE¥¹oú ÜW­Kd;·õF½…*‡…Ïë;ˆÿ†7\¶ŽSõÅ÷/ ‚íß¶^LĘV©dÿ©ª¯š!hkkkkkkÛÌDaïáŸGA ôðsÌq»&ò°:ó=÷œ÷8-fÇŸ[=)Ïg s–mkY¡U6­Õa/­7¤·´Þ—ÛæÑ[ÌØº.­S'&ÒÌú°˜³Åº-k?öõ¯1Jšü\þ c<ýôyO¼ÊÒÿ¹Ÿ›2[¯}íô:+¤.E²ÒM¹ÐrOì~óý_ÿõ1>÷¹ë׉1\–cÀ÷ÈÚ”N‰Ôªžüy®ç÷z^Óݰ®¡|ßÂäTÕ)|’mÎ\‹M‰>ïycŒÞGÕc%ïU™XÕ‚1c¶op­ûmU¥S1œ_¾_Ô‘0æÂ̪"ì}øìg§Ç?äéûËëãûxöÙS&ÀtŒù’7§Òå Ó™õoŒ¦VµOÔÖÖÖÖÖÖ¶ÃÿJŒÄ²dã Ó37äh1å|ÿ#ãQGÍ{Ð̆4mÓ1 Ç^iæ/õ¸ ٙ y†–µÏŸ³®ÜºŒU]ú,Û”ÏÍb\¦DgH"o®ÿŒ3Æx¯{ÍÏÏRmþJÇ€¹/†8O:iêIsþ­ïxž_”ÀRíÁ÷áߘ2_Axd¨*äcï!»†r>M™¬ÊF·u„lUÕºYÚóÂêÜ«÷”Ì )àqæ¹äy±KdŽóñ1Õ |޼?^Oºµ澕ë´CðÖå.÷Á}ÕÖ× ×±)aÓÉØy¥»À¿?UwÆ¥Y÷±C_/Õ~È®¢±sÏîùûjú"¦Ðk¹;|þ9n˜Ê‡>t× A[[[[[[›3ô,-†Ë^Ì-H–%=×èÁųfW5æ(TUDDÌê6mݾªØ«Õ×V¹2ªÉ̃§çmõ·VeÀX¿}Ît>ö±1¦ %ç7ßË[¦ u;´¬èªÊåóŸ#sˆP2/O|âzäIãïÓÍ’É ‚ü?=ȈØú®”1 Yfä{`½!,ÆÌõÀçOäNF…ÿßªÒ ŸóÛß>Æä~PÉS78ɰªæ"ñþrÝA€ÙǾóéïs<æŒTHÕæÁt–* .Õ/ ‚,Lë"k1}2œ\wv]d–öF±Ü­JùëÀrm8?±£ž2gûí7ÿü,ª­ÿîœ|òü}òï‚U4CÐÖÖÖÖÖÖ¶™!0„JOŠxP Áo<ÆÔŸGoÀ³yÐæ‰šçGäo MVÍ@Ïy)±û°Ø=Ù0/™Ov³3dPå0ñXkÕÕì²Ë¦ÌçÇ{Ñ‹Ö#®/Cì뎲¦}Ÿ]Á,[×%ænð8œç0eyŽTŒ´žV'oÈÙ¿½B5f˾g]OM!ΘOzŒéæ f»U¿i´÷£êÊJ¤˜ÿ_pÁor“é~ÇúóhÊßácLWRëyP釘.AµZN’ÏODlLƒU X­Ÿª‡ƒíGVÅò£öJ°X=ï‡U¦çaûV5Ú}Ú¾ÀýÄz¥XµR3mmmmmmmÎУŠça}¿ãi$¦jH:2¿gHŲ¢+ϲÒ@·.‹†X q[l¿ª÷­˜"Ô?ó¾´Â泊áÂæýR¹‹](ã5…¬J'ÁºP2ÆYe5“¹²:a>wÆLs¾ "¬èpd~¸î­›¢!3Óã0&±nÆ­§AÕÝÙÔAÄD&[Í‚~øÙä¸éžjuî9oö§\uÒ"LÍ®»Î¿ÆÜ¤›ë^{1±ÚÌbÇÇ;]/É-`UC¥g`ˆÚrbl_©r§l½óùq¬ª’ª.±¶>اRT庰ꋹǢ'D÷—93d Ù}6 ®½ïvÝ– fóTU%Y5ßÿ®2hkkkkkks†€ž cA¨æ R™Íb?ñ,£Ïت,†L¥Aë÷m±0ËÖ¯º ÆXçmˆÝ<îê畞B´ì[c*ÅÆ¥ÕK» ‘)¨ô x}|þÆÌIÉqøyÞ™“Ì7™…­2mUwMþ>ó$«?7æ’óúþ÷ñ/ÿrŒ÷wóÏ™1Øäð¹åsa$Øó$óÍt…µçjLWÕãƒßç¾Â˜·í³–Õ¾”ñdõ ÷ü¾Š¹Û~Siù/íõ¿_Éi«öcØUóSõÉ}üÛ¿M{Äë‘}ÅÈqhQûDmmmmmmmDî¬û¬úÎÇÈ °ëRbi‰µÄ“Žç}ÆF­«‘_²{ã¹±-Õl·X¶Å\[ãÿ+¥5‹ 1gv·y¢›'òa}6s5LIË¢Å"­þ›1ìü>±WÓú'SF*?ç]éð½HwFæÔä÷YÇ[íViÙÁßð†1Þç>ÓõýªW1]-—†ï“!zSâdìÔÞSŽD¶VGÍ1ûBbö\G†`­Î;ú©Fyàçï7ã¯üÊÓUÑr>’›çÎùɾfÀöšiù[V}…L™£PuQ´Ü)c*Ù0äÎ}ј¾Ï¦Hkº9U×ÜüüoZ­V«Õ›®¼ÿZ$mŒ‹uYä}X5?ûÛ/c8ùœ.¹dŒ»ì2¿Ïs“Ñm† ­­­­­­íj† Rj3Dc±zŽa‚Ì‚°xœ yrfLߺGYì*ööÊWÎ{ÄUÿrΣyÆSb ï×bµA"aR,&l1M‹1r^ãQ³ —Õ WU9Ÿ;UD,UwK>7žßrW,ÍëÊù/½tŒÌ~Ïç¾öµ)9ÿü1>ä!óŒ)pr>ª*‡¥ ƒ•‚žåp}ç÷œ_ÞZö“d‹³§ßJgå¥/^•ö2¯©Ž`®Že¥Ó`È¿Ê2ÆÄö[ÿÕûkŒNÕ¥±Z«ÃÑ IDAT'1cMa)·ùâ>óô3ï?ù}öûW¼b=C° a/Ô‹ #ºË5‡°ËÅ?¼áìó7fƒÇO½ ŒIm† ­­­­­­m3C`ÈÌêý-VÈ6=’xVa ˆðçešÙ¬‹f×2"9zˆôø,–Ÿ1Ì@¥‘_ÅL«œˆJi‹ß ¡Xyì†$þôOÇø¨G­¿îJ鎞iºÿEã»Rj¤qýT:ó4C U5šÄð‚ôMÁ‘HÌú®ç>²Žƒ„çwÆm{^y/ƒ­”«:fÓt7FÏæßÖåp˜òdr9 b·õO¤eÕ2<^ö¾wd¢ì½c Ûåü.ÕeaO c0¹¬g€Õ÷Ûþiß³*0׬w¾¶ŸW]_Mòøã§ŸË~Æ)ïs¾;½?ç7ÆxŒ?ñc¼ÇêíW}ûlæùä×­V«ÕjßÇÏ¿ìeó »uš¢g3mmmmmmm›ó„+VuOЧL¥½Œ¬oÎÿ+%¿d™³›Lj ™Xv2Ï_År¬»•eÅÒ´k vK-È=ŠpŸüäü:0di ï‡ÙâœÿJc›U•F½e×B°ùµê‹ 9|ô£SDxÈ!óÌb¿¬ÂùéŸ㳟=ÆW¿zAŸsÎov³é÷+…;ÞŸÅM§Ãªgˆ¸yœ=hŒÿøó̇|?û‰õ¬à:áz#R²,uŸ¿oëͺ‰r½Ú4#z#âU#AÅE)DQ©•çûÇ Á7Ûž¿ÕÆ:p਽ý3¾½öZsÍ9æsõÞzï­»&´3Š’ÒõgOu»I:U%¤^ þ7Åš¨[œž´í¥ð¦ºy‚˜áMošíQº%þþOËÖùˆÁqK׳ÞSµ õ)'E4òÐü~úû5ŠñQo†¤à&dçÇ„æËcù”U®õíÕû·ãã¸r¡ºO¦îi¤©®ºzï"éóçëÒ×+é¸Òè9g´…úýï¯7 à mÏzV¿ñ6>ô¡Ó3])>Òþ¢ù¡çÞ§u®ëÕþyÙËÆïs%;¿^ÏNÕ7i§*-bSŽ=_}¿¥Ü"ªÎ"æÑ?ïçK:~½‰á œ8g¶ô}Êæ×HëLŸ“âë^7›QMÏwÒw ß‰¯|e¼ü÷ºt …B¡P(ô3^'é¨{L½_1 y^Ï}îØ¢ÑûÎ:«gœÑÆ¿ù›±E–z¸…–,M÷@ÝbJŠ]Äfu²¤ÉC&O‹,HÁ•ª¨ËÝ•W¶qà ǯS¶±Ï¯²êÝ‚UŒ×«>ü~:ÓDU-ž½O±_·¸“‡ ù»è¢6JÑP¹)´^ÈrEUUxL›b¡¤îßçÊh^#¨jD71–[ξß:_Ï^Öû¼Ú…ö‡ð³_7f@¹ûX•Û"Ï&í/_礼êë&õ³÷ëðõêÝ ßýîñqþꯦ=b¯j¡Ü _·´ýsÄ «{ÖôütEÁÞ^ôüKuö‰ÑíÕGHÏeúé­6"Ð}K½ot>;¯Ö’‚¾»|§Ñuùu¸>‡¾WÝ7ý~b®AÙD…B¡P(Èr”BÓ1ÇL[:Tì i²È7ß|Ú¢Ž=¶[mÕÆW¼bÚ’÷󥘥{6~^n‰ypRKU ÛNUÎÈ8Sáï#-lR2”G£ eÿ»e™4³u¼§;#(x Ü« R®U§(öî¹"ú>gn)­ï½üò6z¯òDu>b´Îu^ºÏI?€ª–’"!1;ɃMÊ‘¤ÑËTP5y´éo?/ÿ =…TÕ@ûUÇóç y–zT¨ÚíÜ_í4y}Äíës}Ê&* …B¡°@ŠU7èû•r1è>R œê³½ ,i?u]œWÂ=¶Í6k£ô¨Š"u‘¤ûïשã(†íóóò—O{ªäS7»¤óáë“<7AJ¥^ÿ-fKÏ•´?hù>Qöÿ%—ŒJ÷½Z@¯ŸxbßúÖ6ªJCº¾oè9㌠åùõù¼“ë¹R~]~ÿ©ë åTQõAÒAèÕ7¡Ü÷ˆÉ3ö뤞Úwo~sÿú¯§Ï;u§õç)û|ùs™ªv»ÏyÃ0 ÷—=dòùDÝSY´Ë&* …B¡°,yòPÈ#‘š@±y²ì(våïw‹Ì-têíÇ¡>ܽʇI›œ¨('€bÎx\[Ý=Rò¼ÝÒôù#ËÝcª8à€ÙçI±ÍTÍB n¹ßtS•CAëËç#U-P ØçÑ«zc”©$yàäqÑ÷{• 1XÄt¥ìsRԨ燿ÖÝŸäÁ‘'ªj1Zäñ*çâU¯G]µ?Ä0øú§û¼÷ÞmÜzë6žzêôyÐs2õ< çhZZ‡þ|Iû™z>ô^1CŽ‹/nãÛ·ò5'׳Ÿ·˜ß'þ<çœÛ<öÝf_Gê²K ©>Oª:oùC&ŸïÚêéqÔQcFÐ'ý~•MT( …BaÁ=|ò)fKžRÊò¤®TÊAðž½ÙcKݹRzò8HIÊç71%dY'%0ïè y®î‰xŒ‘î']yBθPŽå\$%3ò¤|½*L±eò Ý'F‚ºÂQìUк'…NZ)§Ö'u/ìíYBû>1ŽTžºs:#’<[šZoÃw&Mº(¾Þ©º„béþýR’óóž—óë—çº×^Óÿ§ûH9^¤`H=è¹F9Xé¾ûÿ•S¢. ô|S.ÇGÿ}Í™ UbÂùÔïÓÃÖ÷{äσ4ÿþº˜3W¼¤çðÌÞ¿´oŠ!( …B¡pC@ÙÄó*GÍË$øû¤ç1^²¬ÈvKK4)¬É”%FYýIûšÏäq‘§KŒí3ÿ~)?ú:q&€Ö_Òñ*#¯"¦ŠêÀ‰J9:TàÏE¿ÏÅ’g«®’Ï?àíùø›ígîŸÄLýÛ¿µñC¦™z~ûþJÊ ê…óOÿ4{¾ü9öøÇOÿ¥*éK|àãùTÎG ÃðÊWž0Ó£ :iu1T—´”eÞË(P½«b@ú¿+—‘Á¼yXž…K]S–pêÒØ«¼F±yÿ^Ràóã%&‚<·¤¹O¹òäü¾&ÏŠb¸©Îžt6ôý½=hž‰™ žtŸÈcìÕHóCLÅàÓ>§\%úþ”ƒBLPÒgXº´ÊÝðX,Ýwº¯:¿óÎ{’Ûm7Ãäû—˜Fbz¼£?¯z»ÿ%%O߇½ž+y°TMä .•¤ÏAûÆç‰>OŒ™?ÿIy–ž{Ä ¦jåV Êyó2bÞèú^óšŠ!( …B¡p›aByü‰Hžc/Óç Tªn¡?1qĹR'ÅNýü®¸¢{ïØ¨‚ë–­ÝÅ4Ð~ÑûwÞ¹oznjËw>GuÐþïU õ߯Tåçß'eJŽPur\Ä T/ƒB¡P( ‹ 8é¼êU'Ìô’gêäݲJÙ÷c<ûì6J!Š,Ñ”½ìŸ#ËŠ4Ë)65o·ÅT_ê†{«B(–çS½5YཌJŠ™‘&¿Ž«œ1IÙ‹ÕH{žú‘û¼%—˜„Þy£ù!F‚^'Ý«L-Å&é¾Sßw«Öß¶íð¾÷µQŠsófɧìü¤¨÷3èï#f)1É“Õû¥£ ž/Î%å:ªÐ:ùð‡Ûxä‘}Ïw1Š¡§ûAÌ#?åF¬~¯öÅ7ߺúÌçxÊ¢ûF¿OI/!õ殾ºm4›éU öçÕOÚÆ<`¼NœQ(‚B¡P( w8ìäPÝ·[LÉ2v º-%ËLï“7yœéxò€üã6*kÓÏŸvšYóõ£çŒïOÿ^RÌóœZWĸþrùê£ã^xáØã¦îµ~´®So¿¿þü! ½ƒ úžcÄœ³¨÷o¼ñøs¤‹qûçË&* …B¡°@ªÿMYÍ{LÙàdiQLF–ñc3}}NYÁ‡:íé¼6ß|l9¥ú\Òø'Kлðéÿ²„ÉbLóA±E·¤½¾·W/bŒÉc¤~èÎ(–%f€˜ˆƒ§ž‡áZïT’bùIQ‘<¾TÕÒ«Ð{^½Œ^b‚RÌ<’~€ÞwÐAwîùDŒõ Ðú§çÃí?àÁ»‡Jú¤÷á÷Ýï¿FuµÓB¹Y>pß/5FáÖ}fî—ôœLÝ ýý)¦/æJð^º?gž9=Oå,ø}¦8.‘¢a1…B¡P(÷2pÏÁc'úÛ-NR¼“%$ËYÙ¦¤Ø–êTIÉ«7fCgÊ}HÊ„n±Rlª·Ê¿?ÅÞˆy ïs‹ØµÆ)»?ݽÏÕÈ‚õ F×…pæÇçSç«j¿~Ï)ñ\Õ瑩•Äô¸ÇŸÉ#óóKÝiyìÞGÕ*þœ \£¤SB:ô|¡zybb¾(÷Iëäq›=Ï΀¨ž]uþOyJÕàå/o£²ç}ŤQŽU·øüSîŒ3fÚÎ RNHz^¥ž”õîÏ'å`¨ÿ‹Ëö™<ý.Pî­KŸg6HOÃéwdûígŸ¯ïwÿ¼¿žt¨š©‚B¡P( w0䙸ÅCÝ©d‘x¿nYV®Œ•b}d¡&‹/)Ĺœ,OgH(wªÛuËÝÿŸº:Hã?e¹»2ZÊípÏܯ×÷<Éã×뮿Ë.Óž‰>G]õ1êyAY¹´žÈƒ÷÷yL/ÕÓS_óTu‘zPn1[îù8³BÚõžsögòpézè<¨j¥7÷ã†ÆyÊ•ÐÿUm£ë_wÝñ÷踗\2^ÿ”‹$EUWòs&Í-ýß÷£{Šî«JÈsgÒó¤·‡JÒñðïKÌgzžÒ}òÏùùêwJ÷‡ªÄh=&ÜŸ Î$fÐwü~¨ë.)·.ú=+›¨P( …ÂYVäñ¥¦Q±9òpɧ,qzÝ=†;$‹õÓŸnãŸ8m¹¹…æ–ÍŸ{ü~¾½ÊwÎL¸EJõ³òdH‰+Õ¯&æ…´÷©>×=U·`uu)$½ƒ^ÅÍTmá÷‹rˆœY ù÷ìr?ï^¥L¿Iß/~(GC?ìaÓç£ÿ©•×ûï?Íyx½]©{Š¥R¿çœèõ›–Ýo&ƒE¹i¾ˆQ"¥Í”ƒâóúÊW¶ñµ¯~þ%Æ”þïë˜ù„Í7Ÿ>¿´Ï1‘²¨3©êÉ\÷ˆ½*+éâÐïObb˜|ß8ƒäL=wõ|Kû‡º´ú>"†ˆ~¿éw©‚B¡P( ‹uÜò¢*·ôHsœ²<Ý#ìÍî¦ãÈtËÊëÒÉSó:{ò)›:ydžÕìžE¯Çç2ņRÖ*)c ”]íó•<=õp=ÊVvÆï—Žã åTè¸b¨œ¡õЛ+)êêéû€th¾z{Œå˜$fí ۸ÃÓç%fJuÜùÈìy¦÷à.»l6#¥ó”^Ê8{%ݘÞuâç!%ÄcŽi£ô¨zƒ˜ˆt¾šgÞŠræöŸ?Oö\øæ0 ÃðŠì6 Ã0vØôù¤^çn·¾®Iû"n IDAT/ƒô{¨G uÃ¥}EŒIU …B¡P`†€,$ò˜I‘/i2§.O‚˜êÓî–3#'Ï!yTÉÃI X”“A^ªGO ‰© ×ý¸äÿÍß´ñ/hã[Lχ3/>½º‹¤lqbfè~ÓzLuª Ï:éXø:&¨·*…t|¿¥ë"¦<"µÓz&ÏŠæ%1,)VêûPž7yœb˜N?½± Ø»_ç{Þ3û9¥ótf uÍKz^"=1pb\ußþå_¦¿‡¿N]Ÿô@ô=þÜS/Ï¡óöï£çôýj·Éu ï×õúñt]çœ3fF¨GŠŽ?ýÓ6žzêx¾ü:z•ZIg ­_‰‰/† P( …w;¤XJêO±õÇölЋ#Ëœ<;ê•bî)œ” Ó<ÜUÝæÈb¤Øaú|Ò]8òÈ6n¹åx~ô¾×½®/yÉlž<º”+‘˜%ÒH±Ubx;'eEZÎŒ$EMÊA!f é~¸‡Cç›öI/cH9;~Ÿ|>ýy@ÌéiÐ}Kú ]ÔÆw½«Òà×çþþïÛøç>ý=—\ÒF)úüÉCônŸIç#UýÄ>ä>I§@ž²<]yìÄtn‚¿O߻˒&xð½61ä!“†?Åöé|”3 çÖ3ŸÙÇ„ ï|g?ðÙ ˜¤}hz½{Užë ø÷SuÌŠê“Äß›²‰ …B¡P(,²?¨\oW6òÜ)¶ïž–ž<>q¹䞀{I\¹-éPn‰{X~¾>ª†Yg±g¯.}>K–Œÿöu§º~:Oò¤ýºçÍ©HuèIû_ï_{íéÏcäÇñœ]Ç¥Ë6Ÿ¹>/½t1êŠHz¾Hëÿ㟞/_/tõbHÏÙ¤ïâ×›~gé¾R®•3ŒÄ€`NBÙD…B¡P(ÜrqË®7K±\Êv¤î¡éÿŠi);•úÙS,’º¨ùçÉÓHœÇ0ç­G÷ÿ“Gœ)zUÉí?0 ³× †E ¢þÜ œZG´ßIy–®Oç%åBgˆIôõêû›ô;hßÐ<Ðï驤ê©b …B¡P(°AÒ  ˜jêŽå–:Yà~Yðd Ql•bqTGKÝé{©{y8© <¶¤pF±C…¹Å«ãº§ ãl¶Ùôy%&ÂsÒ}H±V×_?f’Ô÷]×µÇmüìgÛ¨°ê¯×]wÚr'&(õbHJ~ÉMÌy$®ýN¹+„RÎ{|ž³ãûT¹þZ‡‚ï{?¿´Uß®€´/©KŸ÷Ìü¼uü`Ÿõ¬éëÑHÝúz÷¹{¼‰Aêí]¢ïQ5娸õÐ|¦ãéyâšþ®7“4ÿ^½àïSäÝå¨ÚIísžÓÇäøó<^òI…áÊ+ÇŒÙí~`àˆÑ£ç¿w'ô×ý| Ï=U›i=(çÁA¹>îqá mÜsÏéûK ©ßoOL•î·>OÏMÒåñïóÊU"=zÞCP( …BŠÁçB–cÒìOeæÚÒú›bÈnùôjù'-ýd »åJZÑK¥”}Jžzêíçæ‡ª&zëÊ©>7Ű|¾5“#&Š<¼ýö›=I{¾—é!O-Õ“g“z0žºÎõt.(JU”û’˜?ŸïÔCA¨Öé=øõ(†îóNúÏ:«ûî;Û“¤®›t½Ô3ån¥y÷ûNÏ#žø<§yñç‡34ô\òû¢¿_ùÊ6¾æ5cf®‹z±ø<¿øÅã÷;ÓJ¹dÔ«Ás݈A¥î Ä4Ñó&éµ²(){CP( …BᆠuA"e3ŠI(Û[ ņÜR¦z[eé* ´½ jÉcr –ê©Î4õÑN&u3£î\óz†7ÜÐÆ5ל¾Ÿniê~xŒSóé±3ò(}>y”mK±gAësž}ÞÛ/œôÜ3 æÌ?ŸrH’1½Zö´î)—Ã0 Ã/–Ýwr~Ü£×:}Ò“¦ÏªÒzMUAÂ!‡´ñßÿ}özŸIq—˜ƒÞÜ?ZWÅ …B¡P¸ƒ! ¿^Ï™úL'¤~ó‚ÇøVôxTŸì±Ï %.R¤"æ…”ÆÜ“¡ºßÄ€P¿ìdŠ Ëßÿ–Ÿº:’'KŒSêH]ô<ûV ‹ÊúÕõ‰¹ðz÷ÞîÔMê})G„ªX|ž<&N÷1uI¼æš6JoÁÿÇH=W‡á§?mã†Nß×y=PbHh‘B¥ë‡%F‰Ö1^ÝrþùmÜa‡izC¤)6LÝ*ý:]ïö_ou =§ÎøÍcfþ.P®™<ÿ‡?¼)¡œ­ô|¡,Žê}gžÙF)¶êyãç~=WŽF×=¡ûJL)ð.bÈË&* …B¡°PS0mQºÅ–´Å©^›½=…Há·‚B¡P( Å…EÕûNž6)%’åë±=·ðô·3äy&ÏÔ™€ÔmίÓcÞ®„FÌ„ÇĨ¯·y@²ˆÖß®ÁOÚð);ž,÷¤»Aë„îko·Bêï׳ÁÓëÍ=6Í×ÃW;§½hüʲ½GŸ£\}ßa‡µñ;ßiã®»NÏ·ß1d”Ó”·ø‡6¾èE³=SŸ'1½L•bÄÔ ‚ž©K,Å®“'žªlT¤óÖùzÄø}HÏ¿Ôõϯ#=Ós˜ª(¦·ÏGŒÏg¯½ÆÇQ•Ö[Þ2û>$†Ö™‘¤IÌå’øõ—Ra¡P( …bp"‚ÒaÒ¶§¾ä©î¸7öNž½¿?õ'P½¿{2niÊ’ýÌgÚø„'L{DI™®_Ç÷úr²½Ú@1CòxÜ’§§k¨ÏË(xÌ’”ÝÈcp&!iÑSÿøÞuxö²æ)W€ UÅ!e=½.½=¨ÏCRÌõ’Kfß/RDÔyÿùŸO¯#ª&Hõó©N?½ŸôÒyÐs‡> ñã]zi•Ó@Šž‰ žÎsÞ.…Tâ ÍßoÄУ@ûÐs_ü¼<÷įûQjã·¾5f<çILuû¤ëñu®ï?çœ1£‘ô†Š!( …B¡P yäKV»~†a8ÿŠŒ^o½Ù e·¦ny)ëÞ-jêSî±DªK¦ë¦:jÒd÷ëxìc§ÏŸ˜”äP×<y:OW<ôØ©²Ë“G§¿½ „S.„ß?ê~FJ~ÔõÎu üs¤ƒAóªljgôý×^;füúݳ¢†·½mü=©®ÎŸæÛçbÌ:ŸË.kã[Ì>NÊò'fƒö1~?)çÄseô~10©>?1Htéz)‡€r%H&·Ï1´/½ç‚Ïcº.z^hüÊWÆï÷ç‡wmLÌ)UùûÄ ÐþSž2{?ê}»íÖÆo~³ù¢y'Æîª«Úø¼çµQõú¿t?¤­O±õÔÍ“êÀ“þ€ß_ϽŒzˆ¡»_ò`Su 1Ä,ööPðç2íºïž³D]t}Ÿ¤ž(ô¢ç='}Þ}þSõIb®Š!( …B¡P Ácq²Ý’ ¿•êY”©[yz/{Y¥ˆ%­xÕ^tQ8`|¾äÑ+†å±¬äyyL¶·KW¯7y~>ºOK—¶Quò^u óyä#Û¨úxòHýûýïTE‘êI¹,é/PÌ+ò=fJ½êxýõãõ£^ò¸åÙûõ¸§›²ñßþöñßb´\· ÝòH7Ý´gœ1½.½ëu?MžàO~2þ>šŠ™“@9-Ê‚§uEÙçÄØÑú¥ª+zŽPŽiñ§u“»ô|¡\„TD:ÔÃÄwõÕmÜjƒ›“ö«5'¯/Uk³’zCP( …B¡‚[xd1§:pÒ ‹1ÅÊu“å(e:b,V4Kš_›õu«ùö÷»âŸ˜ª%K¦×ãûomü¯ÿšžçô\ðTI¹©Kà½;]EbîˆA ãºNGz~RÎß7ÒñèUML!=’¥¯W­“ ~²æäuÐ÷§*0Ÿ7ßWÅ …B¡P˜Ÿ!PlC€,NõùÞyç±öÛŠEQw.½oÿýÛ¨¬þÞ˜+k‘R^b4^% ¸yÁmT7;òðIA¬·:_ooeµë{婺§K¼+ zîyÞäùSŒ°—iðó!Kž<”T ×•;âÕ'¾¾o¾¹®'àžˆ{rä1êý½½-’²&åbPݼïã¤(˜úÍ»n¯W¿rXüú)È¥.v¤KBL#Í“_‡?wH{Ÿbðîy£äû÷±kœÕž“¿Ùwò~{uéPl]ç¡ê)§“F1RX$%R_žÛBUj¾n7ÚhösÉבrÈ”³ãÇóãxÎÐ"EÖ²‰ …B¡P(D?Týä½´²†¥ôöÛÎÈôØœÇ)‹VýßS “”æÜBí­+_QÈßj«i“< ÷ˆÜ‚÷úóä R¬ÌçmõÕ§™ }^®˜,¿OZŸ¤”èõÜ©«#ÅàÈÓ[´ñ@[Ÿ˜1>º§å —3.©Ê eU¯}ß&Êþ‹åkŒ¾Ÿ²ÎÅL‰q$ÈçÇëÅ©›(yL¾®iŸÓ|ÓýN=6’ÇI÷Ù÷ å:Pnð‰O´ñÐC§¿×™¿Þn€½=TÎ\¶ïÌuO¹6t½Î,ˆÑ>äiƒb\è9æðuí¿‡Ô¥3­sª Ñuü43CÊ‹ô<(† P( …B?C <ô¡mÜo¿6ªïóïJî€,*]OêCí¿º‰ÉÓÚxãi‹P–ª,ZÊ®_YHJ‹Iá«·¯{¯²£¿Ÿbð~÷$ûv¦GÃ%ÜÔÊ}Õg3ÐÛ£ }>Õ SÕeûüû÷Ðý ïs¦‡ú­S÷ËkoYc´¾ÿûoã?üÃxÞ7Ù¤_ÿú´Gêç¯ÏI¦ª…Ãkã)§Ì^7þ\sFŒêãi}'}šOgºèû}Þ¨Wƒ®Ÿr„Hi4émóå늘91DÛl3½¿‰ÁpfAºÔ;Å÷‘3‚Äø}Lú~¾´o)ÇÅÿO À _8½žœèý})† P( …B?Cð±µQ1ÚÝwoãW¿ÚFÁý¶2Cu¸§ÿÄ'¶QçîYPB¯£¥"yÊI>çÙÅž…N–jo}.eÇ'eBe!Sö0iŽ“GHž–^weIò˜R¬žŽßËÌ8üºÈ“'ƒÎ_¶g=/òî={>îQI1S¯Ÿzjßýî6¾àãýóº×µñÍož½Ï<‡„<°ÄØ|ô£mTÿù·¬ö’a†áØ_½iæ¼P5Ý?N¯&uõû¸Î:Óß³(kÜî'U)$EѤ7ª>h½h½?ðãë!Æ’æßG¹ÔËÀÏ+U+I?âQš½¯}]RwÂÔ³Âï¯_¿°Î}ÚyöÿÛ¨Ïÿù?g3‹îWÙD…B¡P(Ü–ÇèÚøÊâ~ô£ÛøŠWôy¦¿-pE·ä!èýŸûÌ­·y0 “Œeë:£ÒëQ$f 1îÑê>“EL¹)™bnI{¬‹r’ÎAê&è½{ržÍ­œý-å=bPHSßߟ<8ÒXw‹­n‡…B¡P(˜!œpïÌ3Û(…¤y-õUΤ˜å¯n]YÜú|Êî”ÅæÚõÉcLJeÉC"‹ßs ˆ©ÐûÉÒ% rb8t<¡£A–|RTóë#Í~A€?ÕÓyºåö81N~=î©\ñ¡/´ëúÀ~“÷A×-…³½öjã ËÖœÊuHóåÙã´ÔuRç+FÁ« (—$=üõ´è~ôö<¡ýMÌcêZèp¥Sz¿¾ÿè£gÏ)J¦jz>{΀ßïÔU–Žûºl¢B¡P( nÁ¹åã–§úÈ_xawØáwc"RlIŠŒŠÅº…v;cð«iÏ×-Ü÷¿¿ÏzÖøÿú¼[º²Sƒy5âuþ½ºzŸ_'1” LuÓÉ’¥î…~½~þÊR§:m?_ª !fdÞ¬}ò‰‘¡X,y^_X¾ßè>¹ªëV• ¯ÿ}ìjï†aNüÍ_ε¨~_çýWÕÆOœí¡ù>þÛÕN†aNX~¤HÌCêvš” )g†öƒÏƒ3ˆZ¿Ä é{Äøü/Yhí¯ùÍÚ£ÿ»â#OªŽIU>Ϥ3@úu×µQÕI9’rHÑR#}=W“L¹M´H©–æ…ºî*'(U?-Ú‡e …B¡PXH–ª,õ!×ë;îø»5¤uî&õ§¦¬Y÷°…ÓNk£”ÜÜ¢½òʱ¥—b½:ä’2)äQö¹þï±-êž–´ÒÝÂõØ:ÝGòü<†êzþïiA–/ã±MŠ©’'J 1)®èGžuoóë¼àq9Óãš·ê…öŸŸÇ'ÞþÃÛ‚mf2¾Ï^µì„™×EçéÕViÞ|?x·L¯2‘çïŒçxP?oé*øsJï¿ú×kOÞgÊÂOϯ”A #yöÔ5Tï—޲ç©N?UÁ2¡î³ºTzŽ‚çP•ƒîƒž©Š eÿ§®§Äȼá Óûˆ˜™b …B¡P(,fR×¶õH{ß¿ª0dSŒØ« zñ¹Ïÿ¾ñƱ¥ªº÷dÏ{]É’&íï¤Áï±0êUðÈ£"†#Å.Sv1å@¸çB]iþü|qHz äɹ璪K<çêÛ;•)1+Ÿüäx>zï“{h¤ËàŸ×û/Z¶ÍLrKü~9ÃDÝ•+”»Ê¹Z{íéσáûÒ¯C=(6í Fª{'&Žª…¾Ú9í:—í5ùýÔó&=4ŠI=é¤6*ÛŸ˜býyà¹Îú:ñ÷y.™3Z¿×^;Þ_‚Ö™?Hoƒ˜]/)\ús×Ë&* …B¡°@–/yŒó¢7»ñ÷nÁù¼¯ì^Χç¹ÎŒPµ ň“6·Çî¨ûYî¤áž²éÝ3s uÊ ¬c÷P‰Y!¦ŠbúÔ[ŠA+«šêÉ)wÄ»H’^F×ù ãú¾ õàÏ+?ÿ”KBó៣ûF ‹{Ä»í6>ŽzÈsÜh£éyð?Ob*üþ)'I1ry®®;CLŽŸ{´ïþÚ^]뜎ãLœß'½OJ—ú¼w-M:Þ;Å{o$ÝbnHo@¯_vY¥÷Ñ[•B]V{/Ò—ñó/† P( …Âb† õ}NøÏÿlãÃ6m©¸EÒ«öûÉò½»Y ÞM꽟8ÅðR-ÅÔ©®WÝêžö´Ù [ФUO=$ÈC!O˜¸§è]!½ŠÈA ôÜÔ¼ÿìgm”¢ìå—·qƒ Ú¨lxÏ¥¡õ挎3Q{î9ûþ¤ê ¿R–ôý+f —éÓsTóï=jèýäY§çž”@õ»HH9EIÿ‚~O“®É¢çrÙD…B¡P(È"%€ ‹ãüóÛø‡Ì¶ø‹ci®¹¦Ûn;m¹®l¨ Ük^ÓÆW¾r¶§’ªPÜ3ñ£µq—]¦=²dÕm“ÉÓ'F€ªaRö¾ŸåNP½Ÿ?e5§ó&6yJ4¿©ß½3ꂪ,wbjäi‘‡HŠ™¤Ÿ´ÿýïÓOo㓟<{^ÝÓVº×çQÏ;<æõ¿ýÃ0 Ãgo}ÌLƆ˜'º>bÞô¼ ÷m·ÝØó×u‘g™ž;Ä´Çêççž¿ÿîøüúzuÆrà(׈։ïK_')ïç/††Ö-UéP•Fzîºn‚3ÄÐCP( …B·¨Üò£ìò}öéûB·Ü(öúû†<`Úr¿»·4Å ?þq7ß|¶'è¼{°b vß}|ÿ)Vé­æ‰ê¤)«–êä)íû4ð}]Ó~¡ÏÓ@±xÊ6îí¥@̃{ZÔkÂ÷©×Ó'íôÞyNÝðˆ"SÌ€>wä‘mTÖºž_Î cª½ª|^Î9Gç;fH€”É3¦¿ïú¿GYö¤¼Gè­£êÚ©‹%U9%ÅLb"¨‹ é“ôþNésÊÑ ,ʉpÏŸôG¨šÇ÷sb(U9•MT( …Ba!Y`Â?ýS?|Å´o¯ºj|ßu¿u<儤yñy<å”6¾ô¥³™½®»+WÒ}ôç‚æcÃû´ ¹fùz“Ï‘¤ã@ ±ô\¤Ü Ÿz¾Q÷Xï'>ÑÆC¾ß””?Ýo司~/† P( … Aª•¡š,½N'yP¤õû ÷¨+T·²óW²tS½4é¤,gò€üzÏÐs¨7ÃÃ>þÞ_ߺÚä<ÐyPÝ:å x•3Ko}âç‡a†n>`òÿI'"yØ)Ÿªyü¾yOÿ¿zÇ®ÏyOÚ÷½U<ÊMòj b i}‘Â"1B´y&’U IDATœióãiöÞ{zCP( …Ba1CÐ[œ,·Àܲ¬Þ«&¨+Ũüõ¤„—<ÅÞ\„¤H90îy»e¯ãúuz쟴õý{(+ž<€Þ.e´ÏÄTçåž–ŸWª¿÷ù¦ëOÕþ< \‹õïSÖô#9{]Ó’œTÏîó™êÃéïÔË‚…»n'ωt|$eBÒv÷õGžª3 ²ì½Ž:ypú[ºò`¤äæ×O¹Éâ÷ºkR(sÏŽ´ÌIÉ/UWP1*Ô…zUøõ“ççóF}ïSL[Ÿ;æ˜iQ±ÞTÿŸê¸)7$){¦ãÒ~!O?uC$&%UÛÐú¡ÚOô}~iÝÐ÷¾÷½m<îy­Ìmé²µ&ªNòœÚGÚ÷t¾¾zs]ˆ òyôóuFCßç9ÿñË}&™Ûèf?WŠ!( …B¡°˜!p‹$iAS?fÁëGÅ ¬š €”·Òû¨ÞÞ=mò ÒúÑ÷©ú!Å) XŒ‡×G§˜21^~²èIY´í0oöwòä½zÂ÷1Í ½Nõä>ÿÄÀÐ}ìUšôù&ƇbÎIc¿—éLʬ½Ï]Ÿ/(7#ío×u×÷éPª«÷Ï‘Çýìg·ñè£×šü¼æßc÷§žÚFõò uï]|‰¡¡*)ê>êÏÉÄQ.½îUºÏžc@ëgãS?…B¡P(0‡ )H¥Ïõf½JÙKݵ ÷ (+޳ݒõºtï>æÇõØ*ÅÜÈ’'ŽêyÉñï÷óÕñÝ£ò˜41^Ô„²¸ýóz¿º j^Sò\Éòùu†Äç7u{£:ýô\ Ø2ÍéKÐz]÷^ÍÅýŰÆ0 Ãpó­«w­ÿÔu‘^OJ'œÐÆ=¨G1ûý?øA¥,¹îºÓï£û’ªœ9sÏVY÷ô|ðûæ¿ò`=g¡W—Dç%¥\Gç¥ï×÷è8bä1ûÿißëïk¯þ}J{ʱqƆrzÒ¾%&–ªtb5aý …B¡PÀ^ÄP=7eÕ’EZÝW-P •<>¯·uf€êÕ{û·“GOL@Š­’þ[îî!“瘵äyúÿ}¾Í+Åü¨ŠÂë“æ½ïkº~õÀ jºÏôü O,uYôù¹úÖug®çÔ}Q ®†óõ,qŸºÇ’'çŒÉ¶ÛÎÞbZ=Kž²Éõ÷ûßßFÅè©îÞ×w)ìÝŸ´~R·\ïÆèÊŠ~ü'=©'ŸÜÆõן½žè9$FÆ•[i½Ü®HiJ†~|Êå ýä¯S•DRvõû±¨»lý …B¡PXH–EêÛí–yHd1¹¥]¸g‚ä±»ê±A²LÉc'O„Î+u)L];=Ö¦÷ŸtRo¸¡/yÉì맘9Yð‰Yðó¡…&¿”½ìLå Q¾ÎGžiŠ¡’GF=’§I¹‰IL1\^ÿMó¥óPìÿÁWËã¥õë9+òT5RµåbÈÃÕy<ëYÓûÏ=êu’4©Š#å<¤n§~žÇׯ7¼¡§Ÿ>}<ͧ~w¨'HbD©wŠ3þûé놞óvIõûá:Žb …B¡P(ÜÁ¤îdʶTLÅ-Îdy{v%e‡î¸BeÍû}Õº¥«>ÛnÉ»§åõ³½9%½=ÈÃÔ÷ë|õú‹^ÔÆ¯}­‘ "y´~)¦IÙØÄðPv2ÍKoW=b8äiüèGmÜj«éϧ.‰äaRýwR´Lë†<­äq‘R+åÎl²I—.3^Ïï *iﻇçÕ!^Cб½¹;©ÇåQW¿´ˆ!ð÷9Þö¶Ù±÷ì fÀ¿‡zGPîRÊ¢¼^€@¹:4¿¸Oê§°P( …‚{ˆd©®µÖ´’´®Ý¢\„d?ö±müð‡Û¨:\ïçÝ«tGZëÒœÿþ÷Û¸ÛnmT=økÌ>>y²ø¤™/Ϙ,7ª××çuŽe\z•ßl0Ûó¢óÓxé¥mÜrËù¾7Ý__ÇÉcÑøÐ‡Ž¯‡rRý=1mîùQÌzIP{€‰ññyÔyùz%OÊ»CêþQì4y*‰9r ú4^vY·Øb¶§E±óT½A]ýøª“÷ù º|š¿˜딪»RÕ‡ßç´¾“Žg¯B_z~S÷ IárˆÉòuIŠ˜½U Ê©¡}é¹$~ݽ]5‹!( …B¡°X©0uw£÷'KŽ<Ÿä±Ê‚ùàÇÌÅlÈbK1a1ÎŒ¨‹ž”ª¨î–b?ÎŒxŸmŠù‘…èuòÔ½j^OÿÞwÒ4tOY¼Tg,ÌË ôÂs[ȳ£!yT©NÖ=yšÄÐh=PV5夡ïkÊõ ‚<&_»ïÞÆŸ×6ÐõË×™9oÄP¶zZߊÑûùQlÜë½HO%)¦ä1;ÓèÌš+Xƒ@ Š”‹Ó«wA÷îKRä$ý”ë@Œ]ê~Ø»SO Ò%ðëuÆ’rPˆ¹žWç$õš©n‡…B¡P(2CbŸpß¼^úËÕ'-ki{lÈsz•ëôýŠU»GïšÖ²ØÜâr\£²Ê;Öë»î:þ\RÖó®nÎ f¾kT»'èu³½1YÊfM–?Å(:¨ÿ÷mÜi§»†y¸³ Ï®×#pÆ'iÖ“ïçAYËžàëƒrúzh¿øþ î‰_ÜFï 8ƒBYëîñS7¾´N(FL1åÞç3U³'9oV¿ÿŸª èyB )­w¿©‰ÿM¹>ißÑ:¢ûã¹>”ËEL1=×ý:ɦß#šÏ/~±ê¡ze …B¡PX ËÌ=úC[<^×éŠ[îéºGí7Y¸©Ž´×2Õy©®_Œeý“…ìÇW[Üï1"Ê¢M–¡[ÃÕëIq2Áëª/_¾Ùhž)«þ«_m㣽r‚Ô Å®Ýã§®tîPέ£TE@LRb¤z»êûÅÐ<Ñç(ȳÿþÓL̼y”ZÏ{Ü4£¡¿½7A:Òø§XwŠáû:K=RO‡”ÅOÝóRL?U{ø¾ Ü0z~Ó~"¦Ìß—r¼hööÞðóðyóÏÑïCb€ˆÑ–B0é Põ€Ž·ß~ãçàu×µÑsÿŠ!( …B¡pC@–§{ènQ‘‡LPý¬{PîÉj¼è¢6ª;XŠ K¡lóͧ=#ÿü§>ÕÆ§>u63 x÷1¿ne¥X“,6òÐ)6ìÇ¥ìwÒ”OÚ×+ ú^b|¾÷½»†!HšßòµžSöÏS¬Ú=ª*q8ã“êÄ©ª!) ö2IIÎû¾ÿ¯ÿÕÆ?û³Ùß«œ]—t’âžïÒUÐ>ÑñIΟ~ÿ“‚y\TUA±mòÔ“—t`RuVº¿„Ô…Ô=j÷T©+!1&½è­  ^iÝS5‰ßb"RŽNꎚôô=¯ôÿÃþe†aXo¸f†axç­/ìb¢ôùõÖ›¾OÅ …B¡PX¬C ËO±uêRæÛ—¾ÔFÅ:vÞyl‘¸'LÙ£îùŠp‹ å;ÒðïyúÓ§==ë8ªo¦XTbV„«®j£É’$KY]eéùy'e.÷¼t]+ФHú Gu×,ä^¦Ã™ZW)Æê±ÞÞ^Tm@¹Ô/žÝtSÕKHïÿвgÌ\·úÛse|]yM1…B¡P(ç…šIG%y˜ôœ¢jZWTÿNzTCçëûÃ%bBãë_Ä<•MT( …Ba,XRtr éë_oãÏÞFÕý¦¾Û¤øGŒÿ_ºbÜ#w=}ê/Õ5‘”IóÜ-jÒ†vÏ´ÎÉ££êU9ôÖ{'‹ò®ª2 ã¤ìÊ6'…5bæíîè å=Ò§˜£ÿß='ú|òDsÖ[=âÿ×>ñ\ß7~<½?)¹§D §š×?ðã¸çL ¢{ú³õç í#ªrFŽ˜“Û¸PŸNëƒþîÕ‡pf‘8‰!!EÆ'ÅWRžt]ß7´®“îAêæIºô< õጠ1Å^D¿‹tœ¤á ·”x=Ç„rŒŠ!( …B¡pCàÛO~ÒÆ 7œ¶üd©¨ï¹[vI²€=¤Ø3Ÿ”Cð´§µñÆÛ¨î€nÉ+öNžybnYº¥ç¹nR·EbÈÃs <ò¬V3 û'¿¿êjé1F¯f¸³ðûçž21»§nkTµàžNÒ¢÷ã‘§’˜ ?Nzýê«Ûxÿû·QJg)fêüK—¶ñ¤“ÚxÜqÓ×CóN±òT¯û¢ç=Wh>ˆA"U¹Nš/bRwÉ4¤¸ç6é_$FÈçÑçÝ=Nú ýã118é~és?ûÙø÷‹žë‰áK§œRÖ$ýú} ß!Ž{Ÿ f9=/‹!( …B¡°¸—,í¶h®Ù/–¯1Ó"ÖûU'ùÜç¶QÙ²ðÄ8l±Åز¢,k¯ÐçÃ|ë[ÛxØamôž?þq¥O ï¹ùæñûýº¨~›bûî¹%KÊl^·ì15·L)6F½Ü^ÙÌ@/sðŒgL{«%¦å®ÅtÝ£"O<òxS7@5S®­bþHIbÛTC %O_R2ü뿞}^äAùº÷yr‰ª.(wƒö[RV$O6Õã“bŠåÓs91´Èöõ‘tRüõÔó#ý¾8³C::Ï6šþÊÙr¤*2Ú'¾nHo„tcÒüPïú<ݯEЦe …B¡PXp‹SÌM·®ÑeIëuõ(pËMØl³éÏS¼ê/I‰L¹gŸÝFÅšåaëzKÚtÓñëÎ ¸¨ãÉ"%]S?²¸ÝÒöªê‘ú»¥ì–ÔÝ=e Ü3¢yôïõûO19ú|òüR×ÅTMûTž;yÎÛ”Rš+úºÖû\¿Ãcמ{C —÷.H1n?/÷¨|¿¥¬õ”›áÝ`i}ãçóœrR“bäÔ=@¸¯b¶ˆ1¡ªª§OÇ¥z®SÍo/ ʹ †ªê|}éóºßÞó†ú½RwÙü ÏyN1…B¡P(ˆ!HÞ)†I–8yRd©É3ðãnqŸ+†a†/^¸É0 ðÍ6ãϫۚb“ç×FÕaR Ž yD«%Oe^ôÔÏ뽓G“ª6e‡ß{1 IÃ?Y¼ÓKLIïz¤õA–¿{žS%F¨·[]Êr÷ëèU„Ôù»†º<Á=<ïñ‘˜ šgÖ4Š$FÑï+í‡^OÖ[Òмè|SÁÞìwb©;&­ïÄ{5éèøRÖ¸hË&* …B¡°ˆ!ðºgÏövO–º¾‘ELÙÁ[òïûñ­›Lž§I<êyû­Ó¼¥®ƒÉ³$ >Ÿ<Œ¤1Ÿ<^ªŠ &Åsl¨ºƒ²î/º¨[o=ÛL1V÷xÓF iîÓ>J]ýùÕÛ³…rh}Òú§úöä)Óõ'ôê\PN‰{¼´ß¨ú…Ö yèž“B½(¨ͼÌCÒH9I±vÞj$R‚-† P( …Âb†€,êW-EªãPv$õ ÷ï'-ðo~³»ìÒÆcm£”ßøÆñq•[àçó½ïM{äƒ$mìäx}­Ž»ï¾m<óÌñyR}9y‚nQëú‡óÂ5ô©»õ õ2oEª: FˆÈH©Œ<¨Þ\ÊŠOÌC/!hóEóêÇUŽOÒž÷¼6žxâ˜É#æ¦×óN2ÅÌý¸¤Ò ýêû€˜b¬è:Éc· ç¼ëÍÏ;íËÞ\«Þ^&Ô r^†ƒz2Ðs6ÍG¯b,UG¨ N ˜þ~ý®øzJ¿ïÅ …B¡P¸ƒ!ðØ4iß»eAÙ°²´¼—,.ר×ßúϲüä'Û¸Ûnm<ãŒ>Ê¿—<÷¨Sw.ò8“¢™g™~ðƒã×åA;ÃBÊWTßJ½îl—À; 1T—N±Z²ÌWT—€_nq§ºïÞúhÊ~'ž>—²è{syüo‘SŒŽCûOÇ{×»fŸoòà“GO±Xš7ªî¡ù#Ï’éRUWÊñãRN1 éùä狀ú”+‘ªhÑ:§œZß~Ó¼¦ê Ä%æƒzáãDzΠSDë×ïk1…B¡P(3[vKÏ·ŒÓpOžê¢=ëÑ»ø¹å¤ÞzßK_:í©§˜ uÉòÓ×¿ÞÆ½÷n£×a÷Z¤n!’e­÷»¾ÅÜ(™<ð²ä“G˜æ¡÷{}=ø÷JaK÷#Å{{Jô^Gª2 ªÿ¾ÞºgòÌ<»Ú™ ºŸ½ŠmTåã îyδøq¨›öqò¸üþ®CRØ£ôœ¢,þ´ý|“2¡_ç¸ÐýÖºÐþ×ó‹t>Óãðù¦Üò¸}»2¥ï Ïòóôë¥ûáëŒôsü¾z®ÍUë(§ÆG9yI1uÏû|k†aØãÙ»Ã0 ï}ïxü¹Q A¡P( …;ŠU¸Ež•ǸRŸl·Ý¢¦~Úd©Q@ªš’“ ºìä!ºÅN±Ú^ô2wÔýŒ²£)öF n© ßÒ¥ã×—,^zd‘§œƒ4ÿ”SAž4ÝW_ÝÆõןý½ä1Sní‹´~üoRê$…¤Ç@ž,yà^O­ç1q~~ž;ã÷‡˜ª ¡õKóHL$1 ä1÷*TúsŠ”îˆ™¡uâ:2þôÿS•1ptT]A¬Þœ1µ~¾Îü÷ˆž”‹ç¿§¾¼úNïSoêeáûïœ_í:z¾&CP( …BaX ‹É-#﫜”úR]¨[¸²`¾ó±‡NžŠ,©Ç?¾ª2HºÔŸÚ--Š]ù¼¸eë–·Ï«®W9²ô¤“@äÝÊÊ&&'õª ìY·˜uýzŸæÇµá)'€<úTÇOóì»EîýÙ=¶¸îºÓKoÖuòT©§1~þ71)×…b³)×Å÷‘à ‚i]ùyc“˜5ʲîí1@Ï;bΈ)!Ê9è¤P™”ø(F®X¿öcoõ 1^)wr¾èzˆ)HÌ 14½ ¡¤I½5(÷‡¾ÇçÇyÏqU%è}ÄœCP( …Bá†À=·0ôºWx첊)ö$ ]Õ#1mÁ‘åü©Oµñ Ohã¿ýÛl ȳš=§ë“æÿwË•öüzÉÂÖÿ•›pO#e½Su yV©·1¯}7Û¬Ï|æìuDÕ1É£K: ¤¼)¸'à×K UÒ0O÷…º¼%¥4b ü<({½÷üé~S?õHL 1T}à±rZ¿©Š‰Î‹b͉©JLiòS×Aª:ñyðç™à]'‰LL\Z×4_4?Te’%S/ê*ØË„SVbøhŸøúöëL]8S¯—b …B¡P(,Î!H1kªÃMÙç½1ÅpÜ£qËNLA²ü(6æšþÞkr¨º‚²Š‰A¹§1¯…/P–²¿_Ý&s§¬ä—¿|¶EŸ,oý_Ý/õýë¬3}?ÈÂN}Ùi>’åO ež›ôÈãOUIGÂs†\_€<_º~üTýá 1<ÄzN‚Ÿ'Å”{=óÞýÓ«JÌNòS,›ªeR—G>QUŠï“TOOº4^e’rÀh]$fô R·ÚÄÄ¥!bˆ¡K½zsä¼u]ô|*›¨P( …Â"‚dÁR±ï~wü¾]w[,®¬F–—Žû¥/µñ¬³Úø²—M{rIѬ7ë””í¨îµ×âOñ½Ç[ÙLBŠ-ùhÞ¨jƒºèÒºIÌ#1 ®wª~Š!( …B¡°˜!pK˜<·(SL‚,A²è?|Ú‚ùVkÚ4tÐlžb:dÁS•ÃM7µQ OäI“ ˜)ì­¨"ÝÊ‚çLP –<¶Ôý+uôÏßpC•KºàQŒþ©O3K´^}]²aª£ïíUA¹&¾>’‚yäT§Nž§ï¤3Ašëä¹'eÆÞzp¿.büz©ºÃc×Tu’ò(S­b€R ›Ögo½|b¸t¤¿ÒÛÀbõÄTS•„稚IÏm_úPU•öþ÷÷=‡i^’@ê¾Hz )G+uo¥‘˜‘b …B¡P(,fÈ"!Ýê>HžuýóãQøì³<{ûpS H£{¦äYº§¢×=féó劉n¹Qjoõ¼ ¾ßt^;LL“ß7š_é¸GG1^Íã÷¿ßƇ<¤§Ÿ>ŸÇÞëù‘'œ˜:Ũ©o=­ggRŠÉ&f"y¼~¼t¿ÉC$[×åÚì©>;ÝǤؙr¨ë`Чý•bøþ|!¦)15>¿~½ú¼<_òœsELZb üùäÕ÷¿ÿøsbzõ½ÏxFŸþô>O=1á‰)L )&æl»íÚ¸å–müßÿ{úûwß½çž;>O1<š¯b …B¡P(,fÜqOêWS÷,RÄ"ôö'wK’z-ÒIçHYìTWë1+¡‘†;Õ‹'Ï“<ÈTí°¢ œ·À)GÀ=TMU ½ÙÜò 5ÿ:¿wìóˆçÊ&¦,íêNÌ­ƒÔ­Ž<Üô})KœêÍÓ<ê}ÞÖRì#eÂ^Þï_ï~¦ÿS—”;A= |ßÃêÝ8cGë°÷9MÌ‚Î_ë’%mÜm·é}B94ßT½Ažº˜ÞÔÅ’,g®‰ù¢}””E{çÝ™Š‹/ž=/Úß7œwémGØrô>Uím²I1…B¡P(ˆ!HÝÁÜ"$ËÉ=Š‘“…Gž4eáúyx Iÿßi§ÙHÊÒô÷ylÐç%iÜûüR¹”‹qW<Ïu ëp­{½_Õð³ç“æËc‰½Ç„æÝµÑ{5êS¬²rS í ?ŸÔ5qÞìrºn×s yO]ý¾»B ÇFéù‘º3Ò~é­I9FäY¦çѼž3åD$¦,u¥ý—zK¸§šrtü9äßëëéàƒ§ÏÃzÎË\ˆö®~”³âÌæe—µqë­§ÏÇ?G뛞÷~ÿè9£ç—3²þÜðuI]Bxë–“ûr›mÚøÆ7CP( …B²pï¬e”²[{™ŠÁöjY'Žò~òXèºI“ŸÖGò¤ÒyS/‡¤ÈæžVÊòý‘tHÈÃOº,ô|#ÅÌÄLÐëžµŸ+zNºr(}ß¼ ´_ð*Îþóm|Ìcf¯kno±Åìýî×IÏC½O]]}>ó’r°üûuýZ—T…D¯«»ì 'CP( …BÁ“R–¼ÙIDATÊz¤,NÊvv ZõªIA²—Ý¢úX¯*ð˜iÅ'¥2ŠåRŒÉu ü:È÷¢{d+«ºÀçÁ¯Óç²~Ýs¡Üb~è}¾N(§Q–9]w¯RÙ«]> Ã0üè7›ÍdhÒ>q¢åÐzs™º’ÖºŸ{`©7HÊ^wÆ-yì½ÌVz?Ýzžh>|~è9Iןô#zcýιçœêƒ”˜$Ê©¢œ)ª¾ðûK=d|}{®1Db|ÿú¾òýFžy¯ŒW=ùz&fÈ÷ƒÿN¥œ½_]bïw¿Ù ŒçX-ê>\6Q¡P( …òØÈò¦Ø–{òÉbwËÐ-3b¿n©õÆØRL—Ž=¶o{ÛlÏ/iyßU liòüÈIÚù½ {~I90­;ß[Þ2þ~ªwÏH]7Ý¡Xh/3ã±Rz)hözzô9b¤\oƒÊ‘ æ11©*DÏÊm!¦†ºÔÑó¡—9Lë7u¥óN1ˆ©ÎŸzXô2Åi¿É£'æ')™úóD÷ûßhã;L_¿tOÔ %U]P®Lb8\FçsØaÓëÄ?¯ùq掺)ƒ ×¥Ÿpé¥}ëŸe …B¡PXTe@±¥Ô»€b6dáRw6òLýuŠ¡¹E–WÒ ê€äÁ÷ƲÕm+å"Põݯyîî¡§jÏZ¥ìë¤_@Ì{\+ªË .`n‰SÖ<Õ {Ìßë›õZ?½ºô~¯¦Iëþß›eN]J]KŸr‰z™ÀøàZ˜íYöƨÓù¥ú{ÏOŒ$Ukx® Ý7Zçô¼ìíAûþ| ¦ÂŸ³ôœ÷ûLÝþœ ZsÍ6>ó™³ÏKº'½÷ÓsDüoڞݯ߉]v™¾N¿?Ô-Òïïñ÷jÉÏ¿âøa†aà §¯K9 þyêªG=>Ÿb …B¡P(,V*L3Y¤¤´å1)•yƒ ÿüóÛ¸þúm\o½ñû®ºªm4öX¯¿öó¤þêT§=/üz÷Ù§ïs3ÔõÜÕpOØcÈ”kà盪8ü>¤˜%y¦T Ñ«dØ[Ÿž²þ“Ö¯ö~ïu‘G•”ÑHçº[¦^Ä õÞßÔ”õ½¾?='£w]úç|(çä¹Ï{¢~}©:ˆ®Ò´î‰éLº´éý>ÿ”5OÊŸt¿iRïÿ¼¯Wu”ç»Ùf}ÏW_O´_Iy2í7í×W/?~ržS×u×Mÿ^þüçã÷¿æ5Å …B¡P †€rÜR$?i{SvoÒøön…nQ)¶âÙÇ©:Á=¢”õþ»ŠÍ*ž×2¦lYêæåë…<'ʾï͵ÐçåQ@oŒ;å ¤*:^RœsÏÇ÷3e/“'Þ«,šî7y ½½ˆ‘JÌ"14©JŵÖjãºëÎf4RŒŸt8=˜¦=ÖÄìQµ =çRUQê¶çï#} Ú‡)'bð:ÞM7×–­Éßðõ¯·Q1sbˆUõ¥ï{Ç;æ[/½HÝVé9Iº/ô\ó$~߈Ù(† P( …Âb† )PQÿe·t(Ç Å‚R¬–´Û“^‚3W_íûß>ðwƒLYÈä1&’<%¯î õFëÓ³k{{ PLÒ×§çšÇ˜êʉ) æ#uLYåİ%HûŽzgŸæ×«$RLÊŽO] }¦.~>ÿ/xÁôy¥®¨4¯ÄhQÝ:õ>ñýà]öÏj÷Üêµà×¹HÙ.ä®ôvŸ¤j¿Ÿ—·V"ÃÆ™WäÔñöÚkzþ=KŒí·¥KÇçµöÚÓÇMz"óöÜ œ‹¤à«×¥`èJ¡ÄÌCP( …Bᆀ,²¤¹N±>ÊF&K(YNI#ß d¡¹§—Ǥõìõô¿ëèÕ HUtÝq˶—Hž?žÉcñã“VxÊy!¦„ªÜâ§ãPv¼×ýStÒðûBÌFª b:üü‰éqF/õ·O žõÿ+¯l£˜BÅ¢é:¤ ·ÕVãõé½X|¾õœ’Gï÷ôˆHº-éVxUí+?ïÙBû’<\bÖ¨êÆ«hŸ‘‡î×GŠ”~¾ò´½ZmÑêŠ=çU‚¤*¸ô;ëÕw‹µ²‰ …B¡P(,&ËÕ-/ò$¨Þ8õ—¥,%*õ‰wKÎ-VÊ5 Øœô 6ÝtÅ&”˜ˆ{¯â¦Wo¬r=|]$Ï8Å0=׫1î§ÞĈÌûÿO „és)74ìçq¦ûàÇO=)HÑòŠ+¦÷™3 òhzs–zI¯o×q¥cBJu·ÜÒF1‰›o>žÚ7þý·+ÃÝöú¿þk?úÑ6¾ç=ããèzn¼q|¾znúuS.­?Êö§ûçóGz äqûú¡¿ÓyÎëa»'r<ôº~i?+·Aëg^¦À=w) ªºÅsçüº) ßmgž)—MT( …Ba6f¨Ç‚çlø} û¢÷úÓÅ …B¡P †€²Ì)™zœqF÷¸ñÿ=º×Ãë…g“…LÙÓ+ +Kñï®:¯äÁ¦½OYÙçþfç™6ÅI¯€êž“’¤ÇRés®Yß›Mï'O )ú¾ †!õ‘'EÇS \óJõó~=#§}ìú‚Wÿèób ü>»Â =—è9âÏ'ª!fÁc¶òÀiž’ǘ ò ]WCú(×^;~Ý+­ú<`6c”D¯¡}H÷Å™¯òuæ÷ß™b0hߤÞ©k#=Ǩú‡Î+õ<Ãpê©mSMU~iø>Õ>óª=·‹!( …B¡°˜! å/²|([õµOøÊ0 Ãpðo9é¹ËNýšWÔãõœA‘'°²º’å}wU¤ØYú4o®©ûGÕÔõ’r8RÖrŠÝ'ísb&ˆÉH±|÷ìèzI˜8ŠñÓ:Z”- YÓ®XGóÑ«¹ýõm”b\êréL“3Î@‘'FÕCSöõOÙìôgJh^ˆ ¡ÜÒ[ðûàûCÝëô>¯~ðj Z7þ\NÝ}>’$­3ÞÐs†î·{ÞIé–Σ·*i^…ÁyÏ4ÿÛn;žŸ·¿½Ç7=¯½UÎð ÏxFO8¡‚B¡P( Τìñ¤Y-‹ä+Ë9iz¿r·lÉsé…[˜½u I ÎëOï,V3b­®eÝk!»'@ ƒÄøñzûˆ' ˜ºðQ–woÖpòpS}9yî©>›<ŠyR÷ÂÄH‘®€¿!=æ¯,hš¯TíC̆3[~_uþ^…BŸOýãýo÷´èùäÇÕy}íkmÜn»éyJë‘”ýúô·r ˆ‰£ùÖu¹aZÏTÝ’ô;(7d^[çåó£×µ.¨{©ÏUËQ)2ö2À©—ƒÆÿñ?¦Ÿ×~ϹèýÝY¤×Q6Q¡P( …E½ (»”´Ç)«”Éã%†Ã=HgN Öórzñ¦7µñ¥/Ÿ‡” —,i£î\¯ ]OR–¥j ÿ]HÙùt¿I'ƒ˜}Ÿë@PWH¯V ½gR7KZç þ>êÂKóCÝGŸ'eEªÒ*† P( …Âb²ø½ë–[o|ãØ‚uK‡<À¤wwcE={}îškÆó£úåy™†=}ïÑG·ñµ¯mã†Îö°’âœÃ= ò$ɳ#ýª£õ÷QLÝ™*·ÀÝCH:´?(¦GÌHŠý³C1ÿÄ\Pµ)Í%Ýb({Ÿº>’^1i_&] ¯2 çU•ø}¢ór yí{êI÷ÖÓ;ÞÑÆý÷oãÖ[=B1®üšªŒü>{ÕærY¨Û&yüô¼"½¿W1“˜ÐÔÕÔ÷­?Çî*Ý}ô"6Ø`üÿ5îÓ6ö/o½ÏäsŒ1t´ïŠ!( …B¡°˜!p —b<®D& CÊ„ä9QÌã·¥`/T|w3îž|ò´eK1iê9²”{»ŽÑûˆ)p< aºœ˜Ž´Î©Û™¯ëİPŽç"P¶1),Ò<ú>£ó¤\ò¸è|©‡å¶xö¿ÏïŸî³Þ¯z{ÿ¼{LÔ;ÀçQÝÕ½ž_t})'€@SŽˆðå/Gy”Ê!èÍy }H¹ÄpP šrrÜ3%•r8èy”Î71K©ºŽ@çOÌ ]§Ÿ~W0\yÛõo:ÉàQ Í1¤‹(Ë&* …B¡°@¿î»‚Ön»M[ž¤€—êÕWzë~çͽ»Î›ºŽ%K<¨”5ëÇs ÷üóÛøÀN[¢¤Gž(é‚]º¿þ9úýOëŸr (‹Ý?—ÎÛ¯Ÿ<è´.©ŽŸªÛO ‚3KÄ‘¢£Ï{ xLÛJª:¡n‡Ät)O÷×Ï/)-êøòà×^»êjçL­?A9úœë¤X|ïsŒº2RŽKªo§çiýûü]zi·Ø¢çžÛÆÝwŸ~^Óó’rrH©Ôs'œKÌvêý ¨ë§ÿþè×›Ž>wÓMmô^ÄX‘žLb6Š!( …B¡0D¿œbÏŠéQ}¸[˜diÞÙÉ3ZdˆúußÓHÕäñ»%ìÓÒ¥c†b¾”]»ýö}ž:ÅÐÝÓ¢u•ÃÒúêíJ–ºøQNEê‚Hž[êY@uÈä‰'ÏŸªz÷Uê9AçïÝéót|±R5GoLßÏOŠ‚T%áë—zWøzt…Â7ž½¿ô¹#Žhã>0=oåAo³Íôu'åMZgª óýèóCJ‘‰A ë÷ûwÚim”–òäI/À«i(æîŠš‡µWkTÏ:CkÞñÃ_o>“)êe`|þië¼/º¨Ò¹ Ü‡Ô£…žçÅ …B¡P¸ƒ! þñ”…éŠN¤¡ÿ¯ÿÚÆC¶ˆRòy±¢ŒC¯6ü=Yê)fJuÔäÁ:3@±vòhé~ú¼’¢ ßoWKÙÀ½¡_éÐç(¶MõΤ÷à×EÌ)¤Q œ˜ÚîÙP=|ʦûí¹ šwò\7À÷1:©«%é/è~úz£ÜªgÿüçÛxÀãו;@uáÎløë§œÒFÅŽÕ«À•ùœ }Jú2>¿ÎDøü³—²ôi=Q¼Žû—9>Î^{MO÷íæ›Çó¥ã»^1E:®îÛíŠË׺í9¼Ö\Œ@ïï1„Îl<èA³×»Ï7=/Š!( …B¡‚^‹Ç-Ávjã‡>ÔÆ=÷ÿÿ O[´¯{]ßùÎ6^uÕª1«º‚kÒ»Ö6y„Cr˘²`Óç(ÆJꞃ¢ë¢nddY§>yB©»1´?¨û'1Ĭø}rÏÝ=º‡”⨙ÖKbPü¾R•DozŠUûyQN Ý÷À©ûjê©àÿWÖ¿¿òôÜBô^½pÏÕ™Ê*×÷Ãêõ)»;)‡³@–x/ÓB œÉ#öïõ˜;]'y®´Ÿ©:Á=OêJG¹+ÑQ}7é`Põ‰_Ï9ç´ñáïóÀ¨N;U—Pn yx;ìp÷ìwªk÷u@9žEŸªÃÈcOŠŠt_‰¹ Ú÷ÔPŒ£ô$>ûÙ6>ýéÓû‡~לYðý' ÍÇV[M3ZÔ5’¸”[“ôWè÷Òï»?_5oÅ …B¡PX̤ºbR¢~ðI»™,›»»þß-í¤_àóôú×·ñŸÿùž½‘º_ê‡îÚûnékÞS×/òhÉc'Obù;¦\ÿ\Ê:§ª òü’%ž´Ô“'NûÌ_÷©gGÏ[·O±jòˆÉS¤ìýÞn€iÿ‘g©QÝüè¾’Ç—ª3æÕ- õ¼ªä QŽ<ç¯|¥}ìøyàóAûŸôˆ¤*™Þ®ªÄXùßzŸª¦||ó›mÜyç¾}ê÷YûoË-§ç|é¹Ô›ËDóªóR5‹ö1{ÎlCP( …Ba1Cà_ªûu¸Æ8yRn™¬¹Z3aoY~¿.Oê®¶È©œ¾ç½ïmãúë·QÕ§žºjÝPu“åxÍ5mÜtÓiO“b©Iá²})Ûtý_WΜùy?ó™ããŠ9Uî’?¿(·…"i]Óu¦‰Äxz™^#’æ—r“ªÛa¡P( fÜR¡®„^_êŽ<Y`ä‘Ìk‘«šAžB²ÈæµäÉÖxÔQcK³·v¯–ø…Ÿ¯4Ô½ŽYž€ÇÚ\‘,Á=Yª*!Ì-SZ')FOÇ£¾ì³¦Ø¨gW'faEëýéÿóî—Þª¢ \º~gŒ¼®›¾_£žt¿ýûåAêsîaþâc˜˜e¡xàôõÝû·ÌU¢õMÝút¿äIÓú!†…ÖU)ÇìçíÝüHÂiÿëuéåô2TTõC¹6R”Ôú×ùùsÑs´œù ß_Ò ð}åUþs”A¡P( fH«›<^ÒÊwóÏþ¬ïz×l‹L¹›Vw§„µì)Æë–áýÚiW\ÑFewzVÿÊbTWªyÔùÊRufÀ-XªF ‹”²¾{÷Ô“Â_RÒKõ¿äA¸åîžÝGW$FzgL9ž£CuÕÄ@¸6:ÅœSÌ߯Ù?÷ä({œt\[Ÿ<<­wRPÔëb¼ºå·”[⌭Cáä“§Ÿßú[ŒŒæ•¸y{ž$åQ©ºÄÿïÏÊê'˜Iª¢qF*1}þÜ¡ê/RÒ¤õªç?ÍOb8‹!( …B¡À )(‘Ç¡Êã߯/~±ozÓlK‘,©Þ:Ñ• Ò"ßh£³àWÖuh>åAQLíö<#êB–êúݳ§˜:uc#åAªV! ò<ˆáJçGžÅêüuŠSõ1 î9Ð}£,úTלΗ<¯¿öûêŸóçGêbIYæÔu•Ö‹^ßc6žwÞïÆƒÜ=Ø«¯nã†Î~ÞSCž¼kþ{®Xï>¡X:=×ü:éøt=êq°èp¡ïùAÕ4òÈ•›%ˆ‰¥®¨¾ï®¿~|¿Hy’r*|ÿ‘¾Dú.† P( … AR¦rËÏ- Ŧ¾ð…±éu’ên¸ÞzÓ–ê¼}¦W–çb°daÝS ˜©÷*ðûíyRš¤Ø.°…Ùž&1 ¾ýz<»=ÕË'Ï7yózÐI ß-ÿT…‘z1¤õOóJßOLæ›êÃ{»Pú>Ó÷øûôºbÙž½-Í«Ÿüzýz¾õ­ñõ¬hûU~ýl0Íœ\rI·ÞzÚ“LÌŽ¯_Í›ª¯RÏ÷p) Ÿ²îS¯Š¤ŸÑûû‘˜r_gÒ§¡*´Ô56õ ¢}¤÷ûuotßkÛïí­Kæú½*† P( … Յº…ã–º[pžÝé1 Y®©þ»++&OÙ¤dÑÝSçI–.yj”­Ÿ?T…”ª ü¸Î4ù>÷õ¯Ï­»îlÆÃ×51 :Ï÷~|ÉÌçåCP( …B»º%ä– )8¥nMž•ºªÖÿöz+êaÜÕ¹£uÏ2Åž“V¹[À)ßAšóä9$†"1©~Þ³Õ)–éÙó”=Ý«È!³™Ôg(›¨P( …Ây½JtÔuÌ=ò,’"Þï*înfäÌ3Ç–âþûO[Ò©~›r’ÅMõæ>És%ËŸÏ"§,Ê-èÍþ'ÝŸÎß«#Ü£&¦Î…¤€˜?ªÞ ÏÃÅ¢)öI1TãÇŸ?í´Ù둺ÁÑ:MÝ'ïiì²Kß¾"PÏý­u·ÓÿÓšÃÜ÷!­9Œª.H±“ÖyÀtÞ½uÿÎôøºwÆŒr¹ü9$}10¤gâç¯Ü9õÔÙm·ÙÏqõÔîÿéïI: ~_“R#um$=‡E÷µl¢B¡P( î©“r›ÇP)¶I +é‘övaåà1ÿM÷ÇëZ©'€{ÉóuË”²ts@]ÈH¡N¹ò\‰©òã’GB*õ'OœbŽ©û™wysRBtÆ#åfÐñÒýñ}NúÔ³Ä×yÆ©kebæÒûW¶²h¼LÕÒ¥m” é\hý\°|»É}— ]ÿß÷ªÃ×ý§b i?$]Äy7Þ“Njãa‡µQ:Äh®»N;Á}÷k/ˆq¥ùóž”DëÛ™„Ë/oã–[NÏÍcÊ©*ƒB¡P( Ìrœ, Y~_ýj÷Ûoú€²õùãoã›ß<Û2\Õª VÕó"¤˜_ò°|ÜöìqÒîNYóä¡P÷B÷0Sl˜bm¤Áîïsæc^Åc…T—MóFÕ"ξ>(fKçGÙå©×BÚwîѦê%òü}Þ’Î yè÷ôóƒ¹4Oóλ÷ õyñÅmÜn»ifˆz gêýS=>éøsAʹÏ{Þô󄺭®»¤½ñsŸ›ÍĉÐï%åÒÑ}¢.Œ›l2þœæ_º”CC×EʜŠ…B¡PX¬C@²,b\‹\Ÿ3@Y©¿ó=…ß¶þèÉeé±aŠU“’ž¿ž<µolãZk-V÷ÌS—Bý­ì]­Gÿ<Å"):]¯_7e駬vò¨î™ª ¨ˆzÐý¥ÿ÷Æ’“gïóOŒ‚ϷׯS®‘>§Üªk×ÿý¹äYÞwu•Ó}~P/ÚïÚ”{ÐÛµÓçƒbÛ;ì0=ßþ>Ï9rgO½J<Ûžö—ßg­ƒk®i£º ªz€rYô¼ùÿ¯mR—K—6IÁuÖ™¾^Ïs(èyíûÆ«‘H_âAšýûI ¨ï«E¹Re …B¡PX Ë´·®œ<÷H+»p7Ýè#B±jŠÑSݯ{¾êCî–=Õý§îck¬ÑçYõ2&SKçã”Ï'1 é~PÌ×=+÷ˆiÞ‰±éÍ"O½hÿ¦ž&T}B9(¤øè=¨‹œþïסy\U@¹½û"é0øqR7Wb”è|’¢&é}P¯‘Äã¿7>/z~ÜrKÏ>»ûî;ÍHÜï~·1 ËÖíÚ”“äS¯êM@½Aˆ¡êb Š!( …B¡°˜! ¾ïäA¥®nÛ¡XaáîõDÜ¢¦ºß^%½ÔRï—…žº¨+YòÜÝÓ Ï‘O:~I_AçCZþ½ž6å PÕCbFÈ££>òt])öKž”þ/Íþwœ}ÒØ'E6:Ÿ¯ÕW_µöå¼9¤è™^G…ºÐƒƒz s“4ü‰9ò®‰Ä(Q å¨8İí³Ïl¦Gʉó}èÕPÄàô*{õ3>Ÿ¤\Y½ …B¡P(d†€< ªWtKŠ<'²@ï]¦H—pWÏ“{ò“v‹””ÂÈ’v‹ZÙ·¤3<²xÉÒ¼׿wÞnd÷üiýSw:b è:ÉSq'Uõ,z€)­ŠIsäç§,õ¤…ï÷Ͽי RÞ$½ŒUMo¤·šã¬³Úø‡8{“Îy–¤$IõÿT-“~’¾1¤Bûɯߟw¾.<Áχ˜8é(÷€ª“ˆI¡ã»r'U{Ѻ×óWûÈ»¼CP( …BáCãøã_^ÓP( …Âï7Š!( …B¡0ü_ùUd1hnÆIEND®B`‚ShortRead/inst/doc/images/Strand_and_Dir.pdf0000644000126300012640000001142512227066722022376 0ustar00biocbuildphs_compbio%PDF-1.3 %Çì¢ 6 0 obj <> stream xœµVKo1 ¾çWäÆCÂÄŽóº"!.€®ÄQZŠfA-•ÿ;“ÌcgThEµÒîæ‹_ùl'¾¶Ð:ý´ßÏGsm^~`{ùÓ8ˆ1ÙñíÍ¥A{eœEL>Zv9[$go¾˜‹ç²qiB¤RÍ)Úãá .ÙÁ0‚s¼ŒZÃÆÎ`2J $1<žA‘ ú=€hmdƒ`.ÀA”Ãí#“VJÆ€·Èä|ÒÚ"õ›3 PÐ/Ø›€Nf/ŽÂ.2Qµ¶2˜ “í/qϬÑDÍÝÑPqórµømΌ讄S!M5ërXë}7æ¶\êZÿÑÚW nS—Îr;%‰Î“-™nÛjù_ϫŋ’ Yz¤Ëaó»45Œ›%P_ábOýþK˳f¯ý©=èGMoeÙg¼lD QŽš‚“.-M.ÐJúÔA Ñf7OŽî4î™”ÐåwÌ×»Eå[(@ÅF©vqC0`Pätý»Ò¥|gCÞ<ÈPKò„§2ja†Šœ1"*2Ì2\JG$CŠlešš÷\ã|óˆNjI¬(õRW*’Cde¢#As"÷ÀÉz¤”ƒ€§¼>ÀZãuÂC„R5© è2‚ôð0Ëp‰€õ€^Ê'î‰43•Ö(7]dßÉ},O[nÔ)A%+3×R§õÙm?ŸöÕAž_ÔŽ…lf|–Ѧ ¢è¥äåâÏÞŽæé»?¯n¯~|vøf(@déäT  öpnž~¼:¿ýª»¯öýجŒV"ŽÊ\GRt9]Ïí÷ݱ2:%]SE"Wd˜m¥8!R_»2ÝΪãÏɦ*|’·HDXQô‚ïHŠ Š+öt}WÇ=ÄZãµãX¤œrÕêIð,í@zœ.“¸8"îÉ4;;-÷x®¶ì²—.!Ërón|}ð:rWÓý‹ö½ºÎ“‡ôÉ#’™kÛu^²%éN9ê¶ç”>ÍÖ=|J'»¬o…”DX}žÝÞ|ú~ÞúÜû’ìáí„>]MC³“+À/‡ï"ˆ‰£öéZÃÆÎ<¨¹<9×çv­;0ÍÚ%É$Q³ß'âdVjñi³ët„Ìñöyw‹,â][Ñ ø½|þþÂendstream endobj 7 0 obj 863 endobj 5 0 obj <> /Contents 6 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 4 0 obj <> endobj 11 0 obj <> endobj 12 0 obj <> endobj 9 0 obj <> endobj 8 0 obj <>stream xœeS}TSç¾—Ü÷¬@Wh&ñ#÷×c?¨ŠΩ wœtNŠÈ7XQ\ I$ 7_˜¼! IÀ„P"E¥:±è´®Û´ëæœ+zºžÖÖµû8ï•ë»´gÛûï=¿ßó<¿óû=Ï‹c±1ŽãI»³ss ²S éz¹fs¾ª^¦\-¿Ì®ÃÙõ1ì·“›Zé[ùD¸Ûey.~h½èq"zôºù<ºô}L€ã“7îeªÔ†º¦VK½R”_òjJÊëÿ«lKOO§ŽþÓ¡²äºFImâz¹B¥®—+µT&V(è£T ®ÕP²ª*yÕ*­X¦×Q{h­V«ôÔ+™¯RÛSS·eP¹ºzyƒêuŠVVÓJZk dÊ*ê@½¼FFÕ˪ä«Ü¬zZÛ` ÒRi剹tý†úvQ*W•NåPùòBÖðÿ Ã┪ª¼M­–.•`Ø,ËÆ¶aX!¶+Â~†¥aob;°xþ–X,¦Ç®á»ð‹1É1ÂdAàJlQì?„­+¦ö ²k¯á·—QÖ² Ý(>éñ»{ ˆúLå$ç&`¾¹¥´˜Pm(í4õÂi€¦ˆ_¼î„`>¢ØGrræ´ËVAUA¢¼«­Îd W¼¿û°Â¸¯ô>aë(7ÐæÂf ?‘‰²Û£8ü > [)æ~šÂI¹u_lB‰(ñ«!)Z³õKîE²U%^¾‘Âmà„?ßû“ªêȬžT-4ßwÁ——nÝ•®j-°ky­G¨qY€ž0bôò‚°0¸œð5Öž‹${›pt2Ö2û’fÂë> ½œõ1GH.•O¨{ŽBÀ[8!·‘{ñ÷i(æý™ÁKSä~á±Ðfkc̆ÆF ÁŽÂ?¡ç‘pþã?\»˜L`ça…gÑå³M¡ÄåoP3Â×$=@åhNü޳ßõü#\ô_ˆürbú&üžo™QK‹n† é ×/JzÐD|lõ30<Ë&àVf— 4¡É±Óc ÀßV›ôd´»{­»õöK¯å•qDc‹»C+M@O`ýí¯øÝeÁ»VðøÜ½Œøš+HÎCÀ2›mo†-Hìõƒp 1qáòèIŸƒé‘öµôØOA öG'õƒ´L©Í*'?çT¬«iÍkâ’0aöÇaÞBéwè7è×âv´^h9›ËÕ%vÈt˜»t^]çqvæ—fL}xˆ¼~ìLc¿*$uªRZq*Ü$ÕX†[—@3—zJÔíïìè…>pÛ£öÑöîݾ~ç²fòÀ4Éa·U}¦8*™=½¸4No–~—Îu‹«éÌåý݆¾Ÿ¿8Þÿ.—Gj²I®œ€{™ÖƒöïâYä·{áo:DüS¶ø£<™æÀa)Z"º­ÁZÐ,Q[…ÍD§Û» ¸àµV’Ïê˜m·´ò|E8x’éåù è4Ÿª¸ |‰ée‹Å›ù]»Ôf±[lŒ¼°òPs»Ùf·A<ávzœà*·(zc¼òÆüLdaRÚÚ£o02:(©6~@¢w¿&xI~‘¾Áïó’™«‰ßZ(4ñaìí8åöAIä[ëLÌdÌ{Vÿ$öuYýð#€QŠôbµV«R…µÑ±áðXT;¬äãwµeš}k¥œÃÇ¡–¯lÁÓb½¨]k6!Fou Ú[+a…ñ˜²VaÁ˜1W€bó>’/‘ûZ»ôP~ZvøÍí9×PB™T+çj…a‘;ÔÂØß²Í˜f­³ â/÷ÿþçÂ_qÉwÉ×esp\;?së½óM5g¤§ëÇûòÀˆ(Íc®³É‘DøéžOѬIºÇæ~(6¶´9Lhm9•pÁ1fŠè¦+CylÞ]ž£lŽ †;]]®nÒésya7ÏÎ*‹¤¹·å-£µR’¾Ð5¶ÐÇÖæÌUÜœ;7´pSÚU2 ?§àPï™ÀmýD ‹¾MÓ¢²è!¨UM] ; xãÜ4ŠŸ +Yæ¡§ñ!|eÇÓ×Ä\y“èŠcÀ ÕPo?Ψ¸¸Ï“¹dôØÙe »<Ë=Äß 2ì_tƒ7ØD,¹ü–©ŒÉôdŠ;Ã½ÄÆÙÚûa†ÝW<<ÄÙD\q g7£¢gSÉAÚÂf ´g è! ø£G—B =¾«~Ð8È¢ÂAÑø÷>7î‹{8aÿå47 endstream endobj 13 0 obj 1701 endobj 10 0 obj <> endobj 2 0 obj <>endobj xref 0 14 0000000000 65535 f 0000001191 00000 n 0000004477 00000 n 0000001132 00000 n 0000001239 00000 n 0000000967 00000 n 0000000015 00000 n 0000000948 00000 n 0000001616 00000 n 0000001370 00000 n 0000003423 00000 n 0000001308 00000 n 0000001338 00000 n 0000003402 00000 n trailer << /Size 14 /Root 1 0 R /Info 2 0 R >> startxref 4527 %%EOF ShortRead/inst/doc/images/hilbert_3col.pdf0000644000126300012640000036127312227066722022105 0ustar00biocbuildphs_compbio%PDF-1.4 1 0 obj << /Pages 2 0 R /Type /Catalog >> endobj 2 0 obj << /Type /Pages /Kids [ 3 0 R ] /Count 1 >> endobj 3 0 obj << /Type /Page /Parent 2 0 R /Resources << /XObject << /Im0 8 0 R >> /ProcSet 6 0 R >> /MediaBox [0 0 514 512] /CropBox [0 0 514 512] /Contents 4 0 R /Thumb 11 0 R >> endobj 4 0 obj << /Length 5 0 R >> stream q 513.936 0 0 511.936 0 0 cm /Im0 Do Q endstream endobj 5 0 obj 39 endobj 6 0 obj [ /PDF /Text /ImageC ] endobj 7 0 obj << >> endobj 8 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 514 /Height 512 /ColorSpace 10 0 R /BitsPerComponent 8 /SMask 15 0 R /Length 9 0 R >> stream xÚì½?h^Y–îýN(‘Bð&(áÄ'UR*¨DIJ*QÐIû@í ƒÆÐIc:i04“4ø&x‚ j’8>¦‚ nÁwá2L0œo¯õ<§Îoy¿¾ÏO ¿>:ï9{¯½ÖÞÏú÷þßÿµù¿ü¹Ü Ü|˜O‡“£Àf/p²8áõ¾Ñ³pИøó>—ûòœû+týÞEàìi`oØ4è¯Nަ†Ã½ÀÙ~àð pwð3ëùóÎóyàíqÀu05è õ½oS`ž$K›'Û©AÒ»Ù î4/’1}¢qð,küS*<ž˜;=§×¯þ7á·–d~Fª-'Ï\YzNÊÞáñÔp’°dêÛI…U>É;¼Ÿçpbon¸n¹·¬‹¼òähnØKœìOü^éÏàW³g‰Y˜üzG½EJc‘yÈíá“Àõq —U½‹Ç-%JÒuvš8XûA—Ñž~Áõ~@sêÕÏv¹NN› Ÿü=eƒŸèôóÿüËÇÿ3¬À°à +0¬À°ÿ7?7G½ÅíQÀo½ H“œ]NšÏ3ß]#)³f8p½H6¤Ï¦ÏcʼÞÔ#3Âû©£l‹e;YηSƒäAR¤QÒ“ÜìM7¿hÉRB:çä8@íýe”<|7'þÐ7jø9!\eú[Y}îÅ®•Ë7Òº“Ž,Ÿz_êùÎ>z}%üTUÿN™'dð-Ö9O½~Ð'ZãÔù|ª"9V×ÿ{jð(i=Â:ëÝß? èšwsàÕWù·‰ãÀ÷OóœH lqxuð8ÐÖÐþJrÞ¯ÏË3Ì Ç›‡cÿïY3{Ö®¦†ùjÓpr¼¢¬ôÄãÓ÷$’¥ÛÀÙ7[ç„þöº)„ƒiÙ ¤¾ÝŸlý%Q©—¤ e­Ûó­y¾Ü¼¿Â>D÷á~æî4 Ð|i^tﵺeÁ–X¶äüh…5êñ ßG+EëN»IWÚßÅÅ84…3/òŸ&2u¾¥Ws-H2e=Ÿ&^lN¶ÿ¯~$ó´ú]ò¯5ž;1ê²OÃJÇN€vÍ㬙µªçs´y³Œªvz;éÃË­ÃÙ‹€G8ÇÄÏ,ŸrrýŦáðÉÔàÿÍ'V`Xa†V`XÿZçë —ÎŽæ†r®Ïo¹?Ú4X$s`ac² <õÐ Pwñ¼£göØž'4n’™—ëßL >çÈxœ}gIHÂk0$DŸè[îgO¦½…´‡¹š¼ó»„îlþ'?×õzI™2!×ϯ.’­)­}¯MIË6à·~ 6¦¦õ ’ …î5'Cù'Ï#à99þÔTž Ùµ`{ëOk;+½­9¢víì ŸA+K– ÏÝ?•ÎÔZû|òÔ—óÜ [<ÿkâcàÕvj 4%.›& +¨;ØCki~ß^nëçûmàáEÀO•³ÿ°¸ÙŸÌGò&[p¹?7,cšMg|ŸåÉ¡A÷~üŸM §ûy¾Ÿm 4òÅÇ­•˜ï«½œwkà1|µq¬#~bÝ¥•¢ëµ(Ä ‚9¡挗h ò“ [@} ìïDÇäX³¹ÌQº;˜^¨% ë¨ïÒK½ xÅ9""´D‰…&ÿ"`OnìS±¤âpĪ¥µ:Ùk¦y:{°¾êVœß1!Þ ÌÃÓÀã_Õ;¼î体ÌQ"Ç5¬À°à +0¬À°…-ùͦaïEàsvAqJ‹ºÖ³Å;ž]MŒ}*qVÔZùW:òDo½$FÌO«ïÅÚ'Ç"ϯ½'[ŸÁx0rR¬…f§É7~÷›8Âo¬ù¥ORZt.sl§VYÎ8=•Œõò‰›gX½V«¯”×Lz:ŸÖ¤xló|J­îÿÕßÊ6iäñÔBe ’í¡g™OÎßÁÒp~¹ O´Dcæ»oü/#ëÏ;ìZ>Ãë«ÀM„Y.çhMPÊÞÉÁ”ˆy3óÝùÔðþ`Ó0o?>nevÄê›ÂœµöÍGåwýð"`½m㪙Éo,<@x÷ôTºg±;OšÂŸéÅ£ÿ]#p=O öú}&f _;ÖÃ)Ã7_._N œ5ëC½¯žQÐÜ#ywWæ:´¼äz£ë½€¥ÚrkÓC; ±»ZYbÞº]_a;5’¹ÛÙ!Éiy{öØ¿ç.âòhº<ò[˃/ ¨ñ×' ‹îå4p¸?'VF‹2©‘q‹æt°œç[k|–jFx*&Ù*cÅ–(rø"@>çñ`´_–yQÔ«ù䌖TÏOÅrá>Kô,xÔİà +0¬À°à 8ÿ¢ËD(ŒÎùsv<O<-*_Fßxsºiphœ$ÿàö@Ñ_äˆÈåÞWž—¢ñ½éÝ\L >ëùå)ÃýÅÃвX>½²¯Ž6 sþþB4Usaè­3hûɆϥa´ºy®Ï7º}øþ"ðÝU€ãÆè¸š›£hØà»v|»´=ι½Ç­$"A·ð ¯¯Œ¼5ÿÉ|406\5„õ®ß’­†œµÞ*ÑRô¼V„˜4­qí§†×ÛMüŸø*‘q¤â…-´ž÷ýî™]¸ä÷)–@Ôtö ¯Ý+]-KDž“œOÉ•¯’ZÂV ù…Ã\ß]|m1£Kü°ì´âî^n¯º³W¢žD»Ý9õ-½º¶Zшy¶ög%& —§5³>}ÏŒG-ùŒ’12“È7dFã“«äǨVY6q,E&S¿‰T.žÝ¬²ÂØmz®S>Þ&óòôüžSéÉTiMÌh‘Ïy1ò©¼3ä¾h;°;¹ ˜cw6\|.ýy<5,㜠Møq;5|ÿO¯£|ŠeVžÓkLò°à +0¬À°à Èw¹C'"v´÷óú% Œ©ëlS©bÑ}caœÀ¶yÄ:Kaö/¯¿y(šá5Ðr|Þdïö¦†×û›×‹ÎùbéGs•U8|65¼:ݼ:]v2Ò~ÒØŽÖ“•]a¦ˆ>YÌ{±ÅŠ% éy4ÏÐY1Q¬(o`ŸµÄ,Zš5UÊß¼þãÜÀÊ”²—EziPë@OåXÓÜ5©²Á]ö£j¾0ÂÄœpç[÷S)ê’>bÉ0ž–|õbUʼne:úC÷熅Śς‚“ß—$+¯êõA€'¥¦nÈÀûýOú\Ò™7çépG&´¾XSzï«€þÊó‹\’Þ[8èÙšûyjxõÛMƒª©¶˜´Ä’sí*[ðÂ0Ïåò4À*asKrÙô»rÄä»|ÿ20?,<ô*ôÛï*×½™\5ð-–+ɪÁëZ2zà/÷§c=jƈÒÿK­nŸæê5.šœ¾¼ÏÄÖ–X_z·1ï·ûsÙ‹n…¬ÞîO óÑÜp·N»9˜ohžs‰.Xsó_m2 ž-Òu¾8Ëœ#Ê í`‰Žö\È+Ø_aÍ–°½`,eFë™#YFU–K±”Ü9À#¼0 ëÖÙuµjöª8ï\9-µ„ªÛéÊ›'ùÊïÄaJë Œ þÙ‘uH‹Ö-÷“üý3 Ôy“ä3²‹¬ð:êÀÊ3%†Qu_нòËJäŒâ?Q½D’ÌØE½Þýan`æ,³w-câ»TI[r›VÆ…1V`Xa†V`X2ã9ËüÝú35³ªF°ƒÌâSÖ×lŸa5&ò%--!Œžä!¡Ê ò‚ÑOzòe€~d3™á¥8Ò·O}íVù_´ê—:r»(/0+Ÿèn/pPl›¢ —Ú­éßDöggê˜Q“Óû©U–õÃQ€µãz9,Ì $¿¯°A=C-Ä®"å$ë¿Qÿ—È+ù2M)µ¦ŽCÑ3`Qè+÷ö"àõ‚X¾E7vVÃlavI;«Ì»›ýùfßÑ€Kç ˆ[P· ³ væ%ïI«8-‚9«U/¾øÜóäô‘…sÛ®U²K–#~Õë$½ŠæïfNÒújôX‰‘…B½2Û_ò<ú:Ñk_"¢ÉÂioã8ð€3=•#™ñ$òÿ¸~\ê´“QGeQ-ù¨~`f ’LtysÔä}d²ç +ÀÞ ¿{r•`4µ¬0â*—U“ú͵è×ÈêÅj ÔsýN[ÆÊ'ÚQ{÷( 9Ñ8Ÿ<n¿ ¨r¦£‹±Žüxàçä0]‹è ÅÆ +0¬À°à +0¬À޳¹NUÃU­)ŸYd|^[;#0?bþ:p÷×cÃøŽ¬¥ðý“À‡9àÙaÜ—ò_ÔÝOvÄuksu ²Sé碬p›¼¦2®õï›g%Ìz)×^>bËTÛAo*  çÉó8ϘêASÛòJñZ‡Ïz’7Ï®-Y…g­¼ÂðP¯úyÖœšl Ρ‹¥îXE$z|Ö\= D?cÏí, *ñcmi/ÖµÄ%FÜmãñ(‡¥¦–jKAv+|m®æ¡J#9þêäórβb]åOFÇ@f¼-£³þáÿÍÝ…ù"ØGÖ(ìkÃ{k¤_Ru$\{Vçƒ]öHëSQZÈ[ú/Jöý_èñïëŠèIäYv?Vè[óº/ñ*!ÛÊ`md÷ÁÉÿ½™ç›%7³Ä»âoýÌ]5ÂãŠý•Ÿ Q+¥üæ=SäÑsí íTÓ{«Êo¨tQ¢ !FFî°e(g°BûéoÅNsG±ü•zå¬~sgáÁ‹myÈ}Ø <NÚ&goa>íwå¸>á°à +0¬À°à °ŒçB£ ÿ—ë9¨Š²s¾âžŽ¶BÔ¥²-´únþ65¼›çò*…[ÈŸê¯áîð zßÞm‹<Ë#³®/Vup6X ­YƤi´7ø~oZ½Þî÷Γ¡ßGkD¹öùlÏÅד¥Œ×‰âE…e,+W¹Z/¥Ú@®Vq8Z³ÒWÉíÚ•oGÅ]Í;WôÉ™ûý¤<”zç—ו֫ˆ«dî¿Ë¥7âªG6Ü¢HS{hõ1Æ2ëf˜·AµÇ-«âÁEàÍ6@¾ÂùPˆà-㆕¾ä7eÔ±rõ#»ßy0éƒ3ó#ñÉ~‹.²—¶ÕQ´ÊÀç˜cÙ®õXØã©Øø¦©ÿKõ²ˆ.ô–l/åm©;Ò“:Zʼ™§7óT|‘˜å·sàÝ_e÷ÂlDjiuÔ˜PV!?ýÈß¾ôÜQá‘:Ë"»|÷íܰÄc¬lv™»üߡ@Ÿ§Y˜muž‚æwg[Ö–-~8šO"ý£¨rõ0œ]|¶ ¨—3C_š"Ù°¶ ‰=‹‰™Ò;¬À°à +0¬À°ägÄlØ£ª^0ò\ä[ø|§³žÖÚÁ sy·þqjPöû6¦ «§žp¶|ÑÙ"?òœºÛËþ éç¹Ýj©íàèMUÊRO–”u§v½™euÃÊu*³e{ºü…ÀÙóú›Dž…oÿ<5¼ú]€ì£méÕ'§ëIæûtlRYá™wñ¦…Ý¢SŒò:ï[Ñ6ÔÒŒ/ÕkMw¶ Ô¸`fÎæþA¼(5žõ08=‰|÷yûÚòlþ£‡/æQë[l¤|ýªçj°2%Þ ‹1&¶Ô‚[m„ÿŠU©Çx ó›0J;ê$”(DÔH¨ïŒF@’©L%ûÊ5¶ò³ $ÇBo5,Eés ©Ä^ÂÊÚhŒÖ}¬ß¤‘¹©¸hÍλ¿æó³ ëEF‘ñzž.·®ðŸz*uP‚}ì#¥)ŒeÝxîNN§Z"ÆT,+7_Ù=­°ëcô¸ü¿ Ä9I}˜{˜ùeàqpõûÔfê©*Þ± ]Fm•áOµ‡ž_kdXa†V`XaTKYñ“yH©ÓèÑ+ Æ/m—÷õéæ< ·þioúiϵ°ÜF+%ßôÝA@ÜËë〮d §ûߥWN1œK·÷¨¶jM˜3è—ùlÎÏšÖ»`¼Ÿâ`¹–ç&=­ónàíõìÏÓa¦Æ\/Õœ–Z»°Èã`• ž»K~ŠþÙ4Ô%®¯³ä[èäú¢¾*ŒPÿ 5e ‘~´>½/ÛïÅXVE{—]bi·k-;ޤf¤09ò§ü¸ªsÞíîë€Ö‘­€¤.­ÆÍ×Vu(ÒÞõå\ž0-BWo|Çûz”2Æ•PX>CÑ0=r15x§ÆÓš½=˜Ô;’}vœÆzÑöwç^öŽ#¿Ã>‚_b•‰Â›ÑÍ=g°‹½|w´y·ÔÞŸvX=¡"%X„>îýOQ|¾ŒjèÆßœûœÒ.(ö•wmV ¹~‡ç³å¹³UüÌýß6 Ž)…eÑó0uÙ ¥ÞÀ[HIzÝé¬ûí<5<>Ÿ|d¥+ ®ïzx´~“¯V`Xa†V`XV‹+âˆ/­ÕjShÉ7WÎKÌÔÝ·Sƒ½Nºò´6‰¥>óš/«SÿcB½µÆ%íêȼT`Èü¯”XvgcfÍ«màö" Õ¡>àIäÙï ‹æ,9ÕÈìÛæø@WÈ~=ÌSÃíéÜÀó£3n2fÌ~öœ—ËçÎ×¾5 <Ë:›³ã¶˜(Ö‚æªg.L‰/cг%{«[q;üÅ´½žÄéžž²¢èµÄ–Ö\¥@±Òi¨,©¸;ض&'¦SvŸ¿ÃHWžô‹UÂöì ó°ïá§]„è—'ã*Ü\8k•̪qYË]k_}l3N›‘ …KÔ÷j' ¨Ý®²D/ Œw%?Vz¸Ðw¯ŠÐŽ'I0s½'\ãõ·?<ÔQ5[ô{ÏÖ²N{_¡ï=D¿6ß”R¤]c çYF)c•ýÖk½z¥—½Jf™¡Ë•$Á±¦9ƒ¥¶ž³·2ÚDÛg½SU#ÿêî?§†%&ðá( h[uùTe í…zyãÛ];5\¾Ø4èɇV`Xa†V@Ò%þDµà(¥Ozr#ËÉkí£wù—¢ÿ}{Ÿã+Ý:ô¹üGšeô,9Y)cÏnŽæ=¿l„zCèMN,9k«†×3\M 7ÿ°ix(‘‡ŽÜC~SŽ›lŸ- |gúýþÛ€+WüóÔðþ¯›=›â»,É™ãfÎç"༶Do¹HH§9r8}Øâ«ÅÛñÎ^ÿ™˜ô2ó÷Nr û ßû—é_+þqhÎÞš”·–Uoò{OŸ}'¯®'Ì ÷™š•FxW`ÞN ½çÔk¼·¡ÏÒœMØ—¥vñÚ±èæe \™£êFÚE¨Oýi@šÄ²cBY¢×¾×fzNÇÇØZz»~@%ã ó["î|¢‡G¸«Qæwf—EsˆµåLÃÔ<îôGx÷ä+f,2óëÝKÖãÒ}wÐ/F’öQ1ð5SÎíÓW?VøÉÚ-#œ›Št•ž9Â{X˜wH;¯.ß®d"†¡Äµv‘¥Æ#­3l„+Cþ[@ì«C²seùñizS1uÐóÿõÏÛ£€ªDÞL Zîï“ÐêÓïì;¹ÔâKÎüO©-–Ì<âRÜ…'à=°:Ô9Œí,z,uãái€Ð2ŸÌ'O\\³o†¶ã Jį$ê<i´Õ{p”¯êu¨;RSòK Œt”¢î¥ç5;ÒQŠ“/?Y‰q±”̃µ~KÏ‚+0¬À°à +0¬O[åü¥±F[§$ä§—ŽoŒÃüSCñ0º¢l@yЇ¨—%?r±;Ìj‘Oç¸ræB]ýHªµä1‘LJÿè>?>æû»6K«(k[ýÊßœ¤Çœtpe­dW”Çq÷˜÷Î8S—‡ÔζÓª–”dƒñ{èŽQ¼`]5ƒÂ!k‰r(Iè¹£µ1=¿´]¼(¯_"åò]Š»(žöøg¶!ø‹Í]Ì%&! 1WçtzfÙ'ÅWªÎ¡â„³V¹$êÇ£À®ÝpJd/c µ÷­Á艷¤•´%šçƽÙô¾Eï"}^j ºòÞ3\<ªÒ!\¹Ð`~Sù²PôŸM’Ùeƒþÿÿq,èCàÝñÔ0'>&æ¿n™/¦5E“vvÑ!òº¦†ïxÔ¥ªÞŠ9‰A%¹iØåZϸÂFF¿hdàíe„y©†WX²uQVµF(o7ÿ25hu¸Z~j¾V #d>L¼ß¾ãg»VŒ'ïMÛ$¤ß‡V`Xa†VÀ‘„ȳ(³ýï±%·€VÉÔÆ\üpPvU鞬œß3Î\·Çž¤d5ÌhN¡yÖ³=ÒïÈ—w„:\0FTñ¨ž‘|ñî5£¬1ŒÆÏsàþi@VC^löµñhë&÷ËÆ“5± KCÿ)Þ«°=Ò ŒýL gauÈžõQ£´”jh$®&[OŒžNÊìÇ]îVÝyj_öÅ@¦’9 ö0í<Îå¼D`bÏÐû5w”mEiÒFЧÌÙûaž\Õ\\¨Öcê–ÂÈi¨±±ûº}Ÿ ò„ÖöÌâNRaÛç…u Žɳ¯¶MŸû¡<ä$JuÚ¥á烀j&+¾ñ‡ÓMÃwyžJ|&ìš+J·gj©Ï¦*÷Kyð_X»e/”º¢ÛA•ø^}›¸XÃÜÂå+Ûeñ“²GeõpæóoâQ?5ˆIv„Œ¢\¯®š6ZV©ÿµ§}u0ö6 â…vXF  rKa5à +0¬À°à +°Ã/©ÂÎä ` ¨mŠçK¥¸2E»é4:á»9ðpPgɳ½„V™dq}:ïS3à»t†rN»%O_ñWŠ_ýrjXVGFyåZ 7S#ÿÝiÀ¹â—àwÓ{ÝnÊýù)1ÿ&ðáËÀÛÓÀ«ã©Á7+›÷Qoͯþ·èdj]äzÖgùRŒq˜šÎ>«uõ3NýOé…Þ.~gÆ@—*ÛN6”Ñ¿Ò ¥s%¾Ñq¥åÀ"²³Oá ”C—ggs8¨ÿ`?5ü‰ oüÌÉðß²G lÖÍ›9_ò]>›’@}B=œŸ˜ríèÔBYA¢Øb±^]üjaùºŽçª>ÝÇ8Kˆµ éy_§¸P®Ó¢-S CÓüÒo§¯÷Ïüx¦”ƒ ]ªXЂ‹D戽>hüåÁ÷ÍL]¾)}ôšGç¾­þ_Ûèô™²ÏKñÿjQ³DVp4òþ¬¢©;†Ma§xz™½7è*oè¯T©F9³ç€FÉ1ÉÉJrÖôvɬ˧µ¦Ý¼¿•æd·_ñKÖH¹Rà +0¬À°à +PºT°k3ô°¥Kzž_ɘsöó ^28?ÎÓyôkÐØ¾9Xƒ©v\êWÇÏ Þ(s¯ §ÈRgñ|ß®üô>–•§l4•ý‰ õ»Q_r³ýãÊïF¥óE©”m'þêñ/Sƒ;ñ‰ Û¢?×\$Ÿ(5Ú_$xÞ׉˜±š U·+õÉ9@óN‰\m}ɲ‡Ÿ‘>PŒ¤4¤Ú^-Ø)Y|×'A&NÏ É#ïÑ€§¯¯8Qº¨ð<ÞÇ”‚·)~Ï.»§ìm ]…W„=¥UrÇð|ZÇ ÌSƒìW\ÉßaägwN/ÞyÖµƒ†éW„3ï¦_`æG{$Hˆ}ôÚ­y4R>6¿vXjô0bÌ!û{êÅT¼Ý ¼ÚhàN4îC½šºûÚ&Ü甽ê6øÇ+æ9ÿ•4Ù¶çä~j ÆðüjÁ2[ýp7sÛöÊ çSÃÛ«¹áìjÓ í¤Ú&ZÒ'æÊZ;òó~Ø\s/™4¯qEóf´ƒÆê»Äç¬s¿k-ëZœ¿ö]ùîà +0¬À°à +ÀÓÍÙ·"]¬FE}•žK¶{@ïh«kÔ+!Ï/ïK¬`f^8Š2x!V«°ÞÀJWÎçN•7íÓØ!­ø´Œ’ò·d6w‘¥ÙñºÐÓ"ËI'2ËRþHÎ¥ÿóéÔ <µûýé>ÛhÞÕJ¶Ö{’pÍù™§‰óåPãPì<†ôÚ—S*µú”,z“?“ËÆxE?32zæ?¬grÞªï’ÌSÒGl^%÷ º§c Û/œîçÀç¬OâÅz¬b-¬QÖû’—®CI;ø­³²“\[ <’ÿV»&É x<êù"QÛµOha2¥ç]ûweö,Ãà?‹¾J‰%+Âkü-`J];ñ·íµ¼ÛÉŒ-®5ù^i}´÷Óüúþˆ¹U¤(™Ïù1@¢p‰Ú!`ÿiÑ•¶/žYÕmçɵбUuüWv¨X[Ôxém„-¢åÉÝI–Ä9{Çx07üp±ip=œÌó'£*÷Ú/½ÝÈGìŽHê¿“µ5T!Çš0¿KÑÏÇùoSÃmôÌ%^T㜚ӑùY1{Xa†V`Xa–zYëû²+G9MÀ¨ê—Î/þDãÏ\žüýÃWǽÀíþtëT×SRGù?üiÓPz5ê'gD5Üì|15°fñÖQókÆõlb´ÄíH¶µ"Ôw&gíúYàñ"à^–’|ù…QïëǃÀü—€dþÍŸìÚ©<ú·GsÃÍß7 /üÆ"Éòñét•èΧ%ên}ÞtK±´ˆœ´ÉvÀfíà W—Ž?Y©L–]O’vUÁ½{Ü4x}ñ9ź°4¡Ón¿°k¼rÇT?ÜzàÛ÷'¬€×E–OXɾ‚Ùá&¡k ±U` •讹EÅn¢FY±õð× O“³ÙG²¿'#!á…´§•×ë-hÅdã`{ý|và€\\Ÿ‘ôjzµÔ:˜Ïç@fSZæÙùq»vG]¼,@§úà!Kä˜zŠ?«aS|‡íZ•¥¯·V¸8¬ã òóë_XmO<¡ûÂïÏ îúrnÐŽîÝ^@käÕQ@ý¶ÄKk¿$Ê•"®ûñ8°Ã_ϨTôÆò.‹¸Öa†V`Xa†pÌaž´~¿y -@ßgúÑ4S’™Â ¥ü_žä±ï,Ï•÷ÇÝÿý·W=~ôTŽKNÖêb¦6ó×Ì]À׬§’¿FŒ–ÏÅYÛMïòþ!`O–œõœÒx¯÷ªŒ­÷š—È™uŽ|þ.»ðó‹¹{¦°.ždïŸJnýªý¼t‘l%F”azð•w¦…†eï—äé’õ(TKAç\qqŽyÞlÅŠ8XG܉U@ÿW÷UþWj†ËÙ4P«Ÿ<P*z½QÎò®V€1ŸT– (ý(óÇñxè$ÂÇ~‹ÜE”(kt *VƒYëU¢‚á9eF§¤š½×5zb~J¨ë*³2u~PCS©m®ý¡f;´>†\úíõñÔ 9}ÜÎ |*gØ¥çÔvÇѪkGûcy°¢Ø….Ïñs?%ÊŸ”ÈFVkJ>ê—&2koš°°²A׿Ú4<L w§Ÿöíõkæ—ô€:Nr¿$h=™Ñ¿×í¶QPn­¾(iT×HÅÛ|Ž rW\AŒ:ú7ñ}5_à +0¬À°à +@¶¡dåC«ÐoXü;¬¿ú¹¼ ž²%ÃÈnæw•ÜvHu‰ cÔ"™Š£ìºÎ¸8¯n­8yLÈ“ÀÓZ˜“®Þ‚‘Þ[ûõvÖ`ê§èk¸•>Ý]”¦5-½º¨FÛg6 zÞYrß™À¡IJõh•œ‹Kœ$YAhH=›*o«‹(cD µ?ÿ‚%Ó? Û·è‡Èc2_·®÷:•ËÛ¾äûÏ ZY²ÝžÇ_dëËQ&»˜RJ3Ô×+¦ÌýŒjŒŸµ#ÿ\f¶_GkB  äL]ß ²pžÓU¸r³eÕ¬}Oh)xÛex¹jJ²a½çS +l—] ô£L¹Þ©»˜S¦L«²ö­I ¥» Øyðu½.#€µV²,Å* Vr©NŸã¬šØª$©ÝÖš²Jï&Ö=ëaºÒ¦¶LÈ…$e®Iñ!ÉÓŽ+3÷äe€Rg¡eG-`Xa†V`Xa)*ÝÕ{T»X,½»Oìœy¦—ÙÙŠ'|Øáí²7pÍ:;Xứs¾cÉûÞ®õx©Ÿõ‰GF'ñ®WE=ý­ŒáTþ×ý7²ú´Ê¡oÎñÔðÓ·›²1%†³ëÈãU©Ò]ø_Ÿò: »ÃkÖeÆ½Í ÒôQòÒ¢ÔW ÔCãXÝtò½O¼>È{.¾ÈeorÆ4f¥\Uá¶—-û„z!Z’zF¶UüÍ“)™;ÌÚüej w»h?ÕøÍ“õ«¿J,¥\™å$½Š®H 5î.0Z­ù úßÎïÏûN»£¥^ħšg‡u†Ì{×ÁnPȃ+÷„œ÷{!r‰Üõ)Ž¢0l¬‰Á¸JF·^L ~Gä¯y³]ô?å9bá‡g›†åÙÂs—È>Õ;œ?9žìDY, ´.ß×Òµ]ûγ‡ãÂðdE‹Œ{¹?ÝÜŸ.³ãªY«Ðk'?WÿšÜó¨æŒ¢£ÍH§g¹X(xÿ Q˜Fä–ñ!KZâà +0¬À°à +PΪŒÚêbÆúÊ]=×á À¬ÿFÿNW_‚ÅqËqN1Zëi]Qô ÷G~ý:v\·/ò¿¸SLÿ’1œ¼ŠßNþ„y"eöñ¾ì÷!½ášrŠLKvH¹`”vßY?äI`ƒŠG‰¹T‡`?;2ôJ¿•n™ïûæ2kÐÎgǰ×Þå ]´Y¯É C²ÎHápò_ÉzzÔ'ö'¢Ÿ;NŠ#â'ê½ÒÛ­ ùÈ.Ûr8˜Î7 ‹u{\øI/9%GL§òÓ€¢/ŸÎ %>£íèSÖýƒ&,#©ÏÓjfÆmòM;ÞÏ–¥«³½#Îá3ì%# á ÜÛPû1Î;7Vo&¤kTã±ì‹¤ýþ9‘Õó(ÿô®~< Ü= XcØ+š»>Tz¡edì49«RÙcÅhðV»ŽjላËÝ/²«vì‚´÷KHûՈЮ¦d;fçú“ƒ€ìÅ gq‰dÜñç" 7z< ù‘µe¬=ï¨ÿ©J¥.GÇ&鯆V`Xa†VÀžI/æºøRyŽP9x£úâÅ¿,]Ç|f*É.ì r%~̵|áµ”*ž—5çˆÞXvfÜÁÐÞ˸‚R›~4i~r^Sá?rm.×Ê‹Oîÿ²ièGX¿3r¬|W^ûU øv©ó!… âÇ'Œúë#r{ÏŸV]ðÞ¾xÿ?ΚO?—½f®r,õ¸²m¬°­ÿ]ªdþŽžJëg|ŽU¬“øætjðd35èI^m=KiÝ´xÖôîÚ·èoáÉ-³†N…KyçO÷QeôÈçh´9wÝ5œ;¯hX:»‘›*š¬)=ŒKæWÖrï¯OYbæW%³’C¾;GÏ–lcP¥ñN77 ó©Š4þ±Ê]Wq‰ŒeMEØ R‚{øF‹­ëBæ­t#b°%GO;¬qW“SMÅ„ºCj-ÜüÛ¦áò" û(:b©àNr±Ý¹kÃsÅÌ “ß3~…%æO¾Ñ°à +0¬À°à øÊíŠâÿâ¹²ÓŽˆƒÌÏCùL8×1u>Åë¤Æ¹ pÞ¿= èY<,Y7é:Ác”]ñ¯u#ã²"\ƒÐÿ¬×ZÖ/GŒVO-W–î/¿˜ÆSÙU½JU)ü.OZ«³‹€Çá>UP|—µ"#Q´goQ,í#’×§ɼ¼´ß_$Îâ‹Ä:^ïÏŒÕ\Ø•53ÈÕ,Ãk•³Âœhç ­{±Ù[Ö{Ó,«>ý¿ìIÔ¬‹„ÐØw~D=ž=Ó¹~o/P|‹Ÿ_Ê=³.˜%v6)«;ŸDmÎþ —BB{ÁýØ‚¼FõSN\0c’­ÁÔѲÏs”´ úß«íÔàŠñÈS+þ\ÖëK» ); r¤à}Ot¹*Y~`~<ú_ií˜ ( ±^Â^QrîøÒUƒIªËê+xò§ÀÙ<5N8÷$¬È­ÜFu°ºý*P²ürôè)^Úh‚×¢ÓMÙ Qb»ÝEÿS:N+0¬À°à +ðߨ ” ø˜ibÞ®ŠzÙöŸÓŽ(W‹]uMNyT‘º<PKÛjè¯pFs¼z[°æóŽ4½ÕòŸtK#XM‚Æ¿œ¬ÁA1/æÝEàã?ô#ºr¬ÔcÎ:¡‡o¢s´>Ïl2¯åí§¹-‡¿Ð_Ü{‹u#G?WÏõ9eåt‰Êì9¢ùÄS,+úDì„Þ•ßN€Å׬kân‹¶Ñ¢žƒ½ÛèžÃ5U$Ÿú–±‘Ê=¤Ù……/BÔeá0z~ Ýs›™h`™Î愼¨\5àp k _ªm‡|İ8Ë:OeK‘\%w5Œßîc\mµ6W#»ç°:t©„ >˜èYé½êo`Fé¡oWçzui/Q°Ýå“.Ú¶H2m"ktwÿ»#j·›ýRCÝ”ÎìjÊèÙ>ÆuÙïåˆiôÈ·+‘û±>‚\wÙ!öÒ~r´bXa†V`XaŠŸTãÀšlúÆ”Õâ1¡Þƒüð¬DQ¢ÈØëðx…û¹ÏÏÍï’±570‹ŸZôö(À ý>Þ\‹yTïøâ³&›ï-kÓ•"ªlýÜyßìAûæ¡÷–š{d™ {ÎÄa÷Ið<¾ž¿sCªw°^´wŒZÌÙgLé¢mKVW@3X¼üù´²\Y·GÓíѤ*:;ß=›è#¶gSµ sônöóÔ`²MUú”•£‡ÚÑÜŸpôJ¥;fõ;­¾¯æy-÷æ½([œå!uo·/ê㙩iK¥n13ÙIÇl j62îšQ¬¥VØ*Z7kƒOû¼[>±,¹HÉÀˆ»Û{(O>Í¿–hê¹aé UÎ6 橺½ÜÝþkh¾©ò@ÉPÆL#TÖ×çjqtkÜûÌ”ðR9ÿ`­¯Â;œè¤sØÁ1$yåý×Sۣ͛e¯»ÙXëV†ÚÏ‹`¸Æý]bÏÈ3:jXa†V`Xax²ÛñWòª¤¶dÐG©[âÖ>]M\qw{‡9 c®ëH|üS@9_å\Üe¾ôž£>úÈUÿä¬â‹ó»$ùÍ<5Ì_nÔ7óúÉæzéf®ªÈž(ÃoæÀõŸ½N(–—»“XFÞ–L1ñ$]¿’"çŠÌÜa¤ßí9¥- +(ý<Àg°/LV)ù 1]þ•Ê=á§{sÔÂ4ÞŸnnæ†Íù¦A¾]׋ërø\\+35’êt)Ï]Í8û´Ö\‰gÐOaÛe1.¢Ü5"•d½Jüž÷3ò±2锬ZÌnŒ¬áƒzÚŒº4cÆHlÖÇÈ'tÜæ× hª¢?ÁY‡HO&“#Ýuø4àXnÕ?Ñ}þð¨cž‹uƒ5ìíæ.ï6ö–Ð9…Ó#ˆXgŸqW‰hyf¢6›_Ýq§Þídæã÷óÔÐ÷¯' ähRÙšü^?•Ù!Ô½‡–à|fW¢_Tüר¡Í>G ×´f +0¬À°à +ðßÙ ô¹*ÅO¤ HÐ-7Û@ñv1ÊÕ¨ü;r|JÖÞQ—Ù1AñrêTøø<°ãÙð.ålKÏc&»5k»ÖÇCâš»ûÀÏßÄH¼Þh-“[^.¯ó7G‘iÄ4š#zÒû˜7œpÍÉÏèc*±ŽÖ·ªa›CdöO¼°^I>°0{|ØÓ„¬¶òÂÐSïñYÀXÉ¿9Ö7áqÎ7’–žçÍ<[ÒækBW¨ }¨^Þ=óp+k¤šf>M¿˜Ä;•=Ir”múmwT>,Œ ô|‘7Úwx먅˜=Ç¿uÏGùRAaÆ€þ\È?场ºèOhZêë@Ñuôn× e%µ™ÝdÎî®O{==ìÜűƒ3â?ùîÌó*Ÿ(¯Mµ+5 i=ËßË,^Ù ù¸!óÚÉØk¯úóôï˒昈iôﲨYrÁ0k|”[ÊݯG;eÌlÞ Ì×õ°à +0¬À°à |®ÃO…îoHO gÒÎÓ™FàæWËŒF #ÆY+Ýñtb…gdÇŒ€*>M<}²d–(Az^ÉÆsŸ>ùáéÔðö›MÃÃÑôðKÅ!ù ù:…ùbjøéaÓP¼uªÁ+Æ£cÌ´ p‡FB¬æo/"{wĹ¡26GÀ>YØJû+Q­èxÌ)™Å‡Ïׯ‡`—+H¾Å¥wgFªBˆ¼ÀßJ—C¼c™»y È#ÿ$Á¤ŽS]uKÉ#7ÈÈò‡z5­w2xXé%Úc[®Tÿ¦ó©ÁÖ93ÈJUŠÓucÉ„â·û:Z7|î: ð«–~7³ÚWaC¯Äܹ1^‚2oÏrb{$n„Œ‡ªZ§EÌpa)õÌÜ[’£^¢uæÿb÷è»Ib?£å¿J©°ÆÏ#}NI¬²úd¥ÞóïÒù"åX÷£×KŒ/í2øgN+À2沋ÖÚÏ4¬À°à +0¬À°%CDï¥(Dp/;ú2€Ç('5qèëQæN¥¸Sè W¨%!‘ÏìhÃîiYŠŸó>%ëŠ}=¨y æI6ŸJ~Ÿ»—S`»ixs>5núFÉ€¼Þ|6{päM¸Ívn(^cè d§ÃiÑvä‚1ÞÕjaúÅËIf¯g¥[¤1:±`Ï2Vzé/‰RÞ™œrrÝ®þ—GsC©ÌœÚ@üÛÍßöœ²;Oñá®õÜ–êÑéÞ.]c!WV=íÙx0Ë·0«#CÎÏâñǬûß%s¾Jœ@ŸÕH[OþDÞdJ¸ ?»ÏpEï°€ôKêÒfù­óÕ ƒDY-yaðé/»¾•û*±¯žÇõh¡(KÅ:wVl±ø˜kòi䇻Ï9GdŸ˜¦=Œ“° ÛI›«Ãz^ãñlÒÖ~è$[ªFã¹O^êR®º¢ì“9>ÌC´€ÞnXa†V`XaJò©‹üПÛEZš5b&Nmf åàé×ð5Ï÷W>ó«§ùy"³ÈåŸåùQÏ Š~ZôYc‡Þëò4À³<×8y!]óþË€æúæ‹À’ 67èÌ~¶?Ÿ½Fýe³xâÓ“ËF¨¯ôÍþtóI]²¾Fæ4{mýL¸8þoɹCÄf¯í-EÔˆ—+«2æ(ÓÄÍq`GefÔÁ(§l¬2JWy 3~¢Î4ʦزøži5Äj/‘û‡Ë xÅå\h^uB,ãÙóœô Ãwß{ÌwøU¹:ÍÏhâWÏŽ§[.E–rô²†ž«v°ó¬¹û¿ØŽšÜ5ñiÉŸh$™yÇ}ôañºÂRôÚ†±ÜÕã¼v‡/šÑ) …ü2Jo±€zZù—‘ǧ7M=¼#••¤UØå§‹é÷Šª§üÓ“€dÍ«Úøª/ÍÊùŽ–G4©køÓGÜïôºwßQŸSO^¢‘‡V`Xa†V`µK|]ÊF'K¾'å«`¥ðô5kÝ•3/ÖÎÝA@õ‡oÔŒ°r?5×[Ov^ãè„Xô9³Ø¨!Ä†í¨ƒ—˜ÿ3ðã¸ÿsà}´–›å—¹<šÄéí>îÔiÑUÔÿø8Ï K/5£¿ïmןÓ)ŸÅç…µð¹®=Eò;¯Ù¢CÛ®òß{¥Óv¸&˜{S®utíËêy¥û|®ÐrJe½ŽœK ¸…ši•Ø›Ê)ó¹~Õ'}•’³SÃûo6 óyàqôþeŽyÂ.[¿çE{iÑBÒ`ŸÖp+qƒÊʃ×óÔ°Ô$0ZÀ£$Ù–Ê•ÇLÝÎSÛãÍ›Zƒ±×±Œ&æ²™¸~ɸ:Ö´ßÉh#KkÇ=Ù#æH×µ>¶¹­Tkä8øyPa’ìYš²ÊºljøÒ³¦ßÏ€ êŒWȼ+U2^E5LСµ¯ËÑgÏ•(SXRǯ‹[.¼VîJ”HbXa†V`Xa|¥¸Ô"à¤d¯Ðg„H3ö|´O0O4ª®üx¸ÿmàã‹À«£ÀÝUÀO…ÎtÔ âaXÁŒ¾Wæ11j«xX$KÛµ2vé:Ç(2|»FC|Ô›óÀ‡—uºQ ¨ï6ß-³¦oŸO< M˜1b3.¥†½Qôávën/!= [Æ­qת"ïîuŠºDÆ_á4Jˆ(î- »Š3ªÍ§`T“p†fÓk°<3p>m~‰Ÿ,ëó{]—;ßE3Þ颲r» ¯|µŠÞEw–¥F´'ã]/pZ¨Þ›Ï8jè®&_™??ÌF Ò{X¸»Îãé5+ÞL1–Œ3ƒ‘•Ø ×ĘXRæ õè™e “nÿ ¨>ž®qD%;¤Óã)Ý¢ZäsP[ÏO½W*TP+BžwT¥ðÖ…î%ª‹ÃtŽcÚ}âhÁâÿEFI‘m®w9<*®R2à~Ó˜‘ÒùzpÌyøÇßN¿«’CßáÎ>hž^óÕ'ÝRïcðòõŒÖÝ? øÉ3žV1Ÿâ|.›b?˜TEÁb©£·yŽ$ç—ûÓåR1¬ÏÃ*Ñ_Ðó%Ï…ó«7¢$K«SK`N­(ÕZÑfuÖž,½Åï}Óœ}W–ÎogŸÇ%úMÓgÇ•H y[B“B±uël2íG >³cc ŸÓYXJK©€w´v*¤~c”`oGÁ¿*WZ†×J¬ê Ë]½{zO(GláÄV?¾â%^]L Åû™ï«9‹²ÞŪrf‹ïÖ“H‹à^ó]¬¬VÙý<5Ü$î¿Ø4XBÄ‹â½û®‹f{/6#{9&[[‡«VPñ¢‚G"V<ã]Tƒß]¢ÿyКòŽ…5¢à ּwaÒ8ûkÈ—SCIî~?Çðç;+0¬À°à +0¬@¹²ÿ®„ú;ôþÄâ#îσ:1©Ï`¾×õq€æ,9ˆHün`¦{s0’ªguÊéóUÎøˆígaƒÌô"KÖØ³„ûh ƒ›QXºƒ¢õÞÎsÃc3K7Š¢µØ-ý O²÷)üÖ°Y…—`œc€yRFtåæçP>3Gƾ{î è“»UrŽÈ/u‘o‹öÎø@­Mxùe=ÕáÝ];繡Ä=ÊF+ZµTŸè­@f“!®µ—üÞ–(¬Å hT_vá¼ÀR—¨ÑýëVî8œR™YlÅ1—UDJD(ª=³ª3¹‘~dXýLVÞVL»‚-z¤Âßj+ ÏUÕ™vÓ¼Ö§ÕÈ?ÇI²Z#%¼Æ§Ê¬Rî¸%½n·‡¤õ/Ìaw·œ*"ðÕWWÕ6h%7Ï[÷¬Aå îRJL;Ç!m‡ãUðœ”UÊü°à +0¬À°à ðÜD>§×Œuõ$ÔA*ã†3ËõE€ ’ŸQ…œµûÏ;” ÷.O~ɶ©óMk]Ü=ÄPvT±Ó8ãŒæÓ®+Ì{KÖÒÉ^Sî™®;x(6>#u¢¹yø<˜5u¥˜"¯5®npbf$Ø]š]?À¥,Ï¿ò õl«ª«GxÕ¬)ÑkrÈ6ãuY…Œ÷qOZŠ®âA?ã<—ÈØ¬œvˆšòȳ¯âÍÁܰÃI?§û©á,šÎÌå ŽÝEÙÏPóLwe|¬ jË®¾™ë5¼9b…É,‰¿×³—”¯_Æëúž²ø¯YÚkV#aü'#ûZ]”¢W~©¬,h í£è}.õI8þŒNï4pá<»ˆ_Æ[¦¨cHÊ'çÙɈcK6 ™ªŒN)üãO0§eLxeþî^TWS@Ï“« dGvwó{¥cMxYFÌ. [ä`jýê80¬À°à +0¬À°<¹”ìr}ßYYkÌ[ÛÀì>ªFÈŸ«³|2ÕýÝr?`6I^cÝ[Ïßn+r.;giÁ»°îGY5¶SªüØ¢6rwå²âJëm¯â8çªwLñÊõ–]\¢ìE¯áá=·®Ó\h/A)ÂS™Ù¸¾h¨mz>g‰ÎÍœ)ò®ŒÌßï¾ X»2{ˆ±ØRÅ‚ìS^c?…™!STìàÊ=Ú ƸØ&2EØq¹îúA@2£= Ç“ú¶d¡âóòT]¤hÙÿÁîôùŽg†ž/;xÞù·Eçwµ ‹.å=µÈúå—øØO3òXeNù§äû=-+y¾Põº–V`Xa†V`X2¶8åÝ^ OB¯.WÎïgÈ'ÏVæ1^xnÒ›>îô̯Ï’UÖòªÚ*úWJ«sýZªåÇÕÛ/zN±ú|·œqë7õ+T¤húktýœ?Šuî’j Û½^¹œgóäÂøoÉÉ@Û—yN`·”ÅË–uäûVþ‘:¶Kohž´ù-%* ¯i3+Òi3Ù8ê:Æ Ú:cT{Þ¬œ¸!Wf¤CRÿ«ÍáA€'qëŠí§½×ûýL‘yr!)†J’ƒ¸Ö¢½ueêÏNþÜìM ×§›Yü>?Žu’wD¥êy'±²Ènõñ‡…C…ðbèO$Ï@½Á§Âúe§HK¾‘Ñ׌±Ž²ÌKçÄÞãd!”²B]úÓUN³œ1É·‰¢Ï‘Íj„™€`ÀvìdèïÎo‘õá5Þ B¢n¶ïæÀã}€öÂcy>ùíP¥¸¿L Ú·, 1m’õ=JDºž„RÚÍõU‰ „€Ic´L¿Ê„a†V`Xa†àé‰ù&\¡¥[¤·D»u+Žð«m ø»L®ïÿ-PØžyn¸MøþéA+¹ÕÊérÊì_£§ ºÞ[WFžY9©ÔF:ÜUãæ©ÁµŽ¥!Ááп¦g~³—8 (ïIDÈ •HQ~Žò½>œ¨UŠTt‘l¥ ¤h«v™k¶N±†b{.%òMo„ó¯ý‰ö 'Ä ]M‡KÌ[±ÎŒ¾C”/­ƒý°]•leå?Ï %–¯p«îµ4ª“{¿'ÉÏËÊʵY²Ø¨ù‹Œ$ÝA·ïç©a©ƒMë3ý‚R‹ÞpfÒ}¶C%¬««•ñT&£½ÀêbM¨?L_dÙÅ!s³Ø&hZÚå~gµ,êuŸ³A¦¬€z<Ùûy15øþÚÃh§ÇR]Ö[Ù/‘/íþ·g†µ Òž³Ø;h²éÖ6ÒføÝzÆ;) k¾ ˆs‡Ã™*•1Ô=ªËúôz—ü [°ø÷1&Ôÿˊ˯@/ß§œSÙyåÎ$뢾AÉÿ2_„(Dú[©á­§Ír®gì1OëKV#zÐÈË©Ý,)# ]ê!°×Lgq¨ [ȨQèÞ½ýOá·ÈëµNÕ…„2s£J%@ë=§«mòÛ±'”«µ¬×˜äÚ<ž,ÉÚ½`E“â<ÞÔU‡1Õ”:=¼ÆêŠåÏYCv°Ï +ñ`´ø^;öÌ|þ®ÞEÙ‹ânœ[7ÕcÍs±ù…èx ç›g×Èëýé:UÙÙñ(˜eXO\Šs£y{¥Eý^ìªð4†ªkuÿáoúéKbsú@]?aŸ€ï‰~dô‚\ÎéᙽÛÈû3? <~vº?Ø4¨³ùÝ~ÀÙÉÉsw}Ô^¿Ä:–l}Ø[¬&ù”¿ÉКGŠQ’™#¿——’lŒzµ;*/Çüöß§WËÕ¡ûè9—¸PUŸPÞô½»6 Óëí¦áý~àÝQÀ?ù.êÂYê“0S,?yó,ðp ´/ÞçÕÆ‰‹{û«ÀNj׸ƼxýèÓ”NÎ}HŽ>;Oˆ7@6¢æ”÷Qk2NZ¹÷º¾ôÙTMrYÈZ)ËþDÝ3÷ œ½Üü·»9+ò!ÖBd:Ö´>¥o´äßQwÁGÙgfŸ2w_ú+D˜”½ŸSz}ÞYoÄß•‘´Œ/{W°‡Ç¼áÔÌÅÓªÑSþZ'ŸþV #Õ/ê:k,nywìµ ›Ôå|ù©˜ó°ï³Y,Žž_óÛU·Ó'à +0¬À°à +À¢r%7‚'ÿñ4 ÞñK¤"ª˃“õ/—Ùî·žžK¾¾Kc.rÆqÝ|Põ§"“Sá~|8/÷0z¶g©\1-µv]wW"-¯Óº~GœäüÕÔ uz?o̬»9‘É]&ói]9*u5û¼X>éÍ”t%çö0Ï ó—›ú†t·³(Œ6ÑÏ%¶Ç®ôJKŸ»ËÏUÀ}ÉӍޓÒ!zY Ù””:UЕ²o®óï¯÷§Úî7Û€û'ôäî…‘ðlÒ·«mi×ó¨^Çy@ùY:ËÏ¿JÖLžßûšxî½¾ÿ)Ô•^?}þöEàò‹@ñ•££ì»zͼŸ7 ×m«3Ïbänæù&KŽ48§ÏÝH§çE²k§V–?òxèã¹CÃkçÐW '·[#ô3^ξ_dŸ‡U¼üR›äsÄo×<>ÉäͨžVÕ=V®åõmôÅÔPâC¨ :KW"*»Hz–YgƒãV2ãºÊ!ÔüÉÂjÒ¿ßñ寅Kt§ÏËl2Cö±XRÖ‡ïxrvV`Xa†V`Xâ9JØ7Çœzx14Jª“¦û¹µß'ë-ÊŒHßœº´œí'2v´xsà‹áÙ­¼éª5],”äDÌ£XqN\Þeú<½:ó}µZ®…›•¢õÉü«Ä7æehÍÞÎSƒ%'ϰoÿ¸|25ø>X¡<©ÑCW2òÔ?q¸?x´³‚Ùõ6`pŽÆMbÇØ&–(ÜÀë§ÙÕë¾;hÖnŸ¸Ùa\>}ÙÇŸïŽ7 ×sƒfÜ=wT'u‰éWξßÞ«Å2fÝ9® 06åœK]±]«‹ËR”Ú_¨Ê{sxµ?5Ü63±¬ÇwóÜp»Ý4°‹¥mêf;ÒLQÀÙd{sà(@.Èu0ò[Ä1ºÞ‚ìrþ^rî ϵjtÇl¤šzƾ]jiÅ#SŒýCÝQãœ]uè .ùYÔ‡ˆXðþñ“ówÞ‡`¹ì?s”`Y´(ÅÜênšYÅ·Ãê•u½Eefî*Ù½‘>}ɹ*Xb÷µ#VñÔ6;²n±Þé öH&¾ÌãÀ|•ÈJ;br´Ê,˜©'¶mXa†V`XaJ.FOºCäUÔEÑüFò*Òöjé O¥-‚# #¦‘ºHߥÎ)>óFæ‘«’Lɪ»«@•s.ÖŽïƒÞÓŠë[¸ ¬øÄ O½5úP³››ÇGk2wçÁúµ¥À9]ZB2¹t“ ¼9<ÌUªî¼À7 Ô¨ÎÀí×{áYÉ\káxn(õÐÒ‡»dÏE„ªî£¨ÚzŸ4ÒüšwõÐq EWçœö.÷’LEÏÒÖŸµVôEÍZ+ìу¬®çÙ­—Ò)†q×ÐH^Å`M½Æÿ>5›… AvÌш[Ö¬•7ÐØ¥ õ?û[iÝaŽ>cÉ,³õϱÛa½kÛ‚Ü!“—+v½rÈZ N†£ÔGÔ—‘g–½ÌÝ3÷üXÙK`–uÿa†V`Xa†àS•ì0¬ÖþÔ¹ø’²ã ˜‡â«‚–æ)Þç#x1ë‡Z•©ôí×óÔ°wÔÔþr®lJiÑKŒ`\bÉ2Ö÷8 õøxxx÷, Ÿ&¥eþkàñ«À‡9p »‹*“Ép4ØgÐ'묕Î:£+‹~ƒ¿±‘}å^Euª+¨ü쬄¶Ã+ǪzÚöˆÃÉñ_˜–øÄÔò;çN‰ž÷×ÿ>5,Ͼ{ûÊ]o9 y¾ÞŸ˜ùh&Mzw`gó'ªÈ‡uW÷'b¨_ÖŇ,B˜èo•U¢f˘𳫀r»ãzò, ©°wµõ^ýeÓ°h§ü½—ž$ßBqѪ%¨˜Oò…!!»ËH­NO®GÕ*¼®ÙŠ51À3¦øaÕ»GWöR$9Tj$v2Å ;Ò‡vzGvB\ëçÆ¤×!zæa†V`Xa†(kYEEZpâsÖLòwóÔàœœzxÎ*Õ†ñ„%±^Oê>7ÏÔUæ§z™=ªÈ[´âZ…¸ç…ÜEÝ<Œ2°òIäÕB†ÈãQÀcò, sº¸š×óÜÀø½þœ[* 3®Q¯¬i€·[FCë4këÏe·øÑR½0S?N— FBú_|ãËÊÊØQùŽçÝ4Üÿ) =¦šÛ%ƒž=™C< ãEµÓXj2¯Ú²ú×G>aÉÁW“sá¹ÓSåýßÿS@±£šµ"å¬2à|=×£X;ïˆëX¢—×8ÏÞHþpñeëú|NÕ…Ö÷J¯ªÏ‹ä-µ¢+Š-TT0#i»ºd\/î4Ä=†x Aº…ìAŸMIv´«`æ¹¾˜Š÷îì/åÜQðÕJW3æ¹T½†f3w·`µ™Ãß&Èzái˾´ÌÅÊWS¢Šo=÷lÞ+¦½+™wð¼3c‹,­ÕŽXˆ£OÑ×ý.œ9=à‡ÚÞEäïà +0¬À°à +P<8é0ŒgU•´—ü2ú;P·ø+Y[•¶€ì <;Å;ÖY"ÆGYÂO§­tF·ÚùÈÈ1a;m¶“¼¥¥ÇGïAÓ>YÁõRFìÉÜ`}¥ëéuU$çÙWs•ܨ¥Körä{?ÑÉC`‡‡H[<€æKÕɶÈdj0Õ7ØÜ'þXªÞe$ÞË€üòòàÿð»©áÕó·›ë(EsLm¨OXrý0Ëf ;λºEàáoGÌfµrJâJVÎȪû}ý4ÀÚoòQÎ Ëä´kÜkVµ²Á;9Q=èÁR¾™ç7nºi`EÏz¿Ž‡góÔpû‡Mƒ­¶¢.1zÌHòîè"ðýËktìÐ{Xe®È‡xfwcAç ÊÆÉÌŒÓî{>–ÝT·:îÛvqžJ_ÚGŒ*Wƒó©ÜàºKUÝArÎf‰|r­ð =,­Ž^EÇvoªßµçy=·Í^µ5Ø ³¶óŽêyÝ*àž¡X"ñ9Œü›]*o@«; ÑæŒV`Xa†V`XF •¹££ZNñ`uÊŠK¯GV¸½c’dõ‘ÇÙó»mÀu$”aå1õ¹ÿ<±:FñSÃÉ} xmðŽ[±i A*ÝèGwrzmÀfpä=‹}ï9rïén=únÈ’ó ·Už½×e¿ú®šôªƒi¡GÕzÆwËÊW›Õ:Pœ§c5_ù»¼Ïòz+²t>Nd•?yñ(·¥ òר•ÃlFî1–…,Òiµ\·ß4>—ç¢ò­o¿ Ћí1TBj0e!iTßÌ׿ ÈŸ®=Ãcâ.ÁXPÕ÷NCEHáiþ'‘3%K¡ª—óÜððbÓÀ*y·§Çǀ$O·§Sƒ½Ï9’fHà¼9šn–Ü+×¬àŽ…ÑŒôKïi…2³ öÎL8CV8){¼ì¦ä··ÉÝš£Ù+ ¯÷R´3+ÎAB>i‰ç¡Ÿ—¶ DŒw1–e×Àê貕åí9%cÒxì ÉQҳћOæ\ÏÀh ú£ý^¢F5Ëݪ/QÖ´ˆÁÐÓ+0¬À°à +0¬€NR¥¢)tÑ’ß"˜¢ž-áŸH©¡k4Y™ÆsY=«C”¬H©õ9ºÀ/öB 6ó²7 Õ[Víe9;oàR[,/¦MCõêjjXD+3˜ۥçÇïϼžŸ×WÛ'*-ºgÔèãÇx:¦üxfS_É¢]î%R#ùçédž–^~×LÓˆ‰}âJ´—y”FuEhŽ6¤¥¼KÇÏéïSÞYY­ï’OÅÝ }Ä嬭.áŒyË·ÌÈü ŸÎ.6 \ ¶†É¹ofÎõåÁ û7SW¼Ûè õWŠ%V×55öµãHÁ²ò™ ï…òžªñ¢ß•Ó795l^löf Ÿÿ|n8y150jÚób‡šZײַ 'ü}€ÌCÉT¬ÿ*5äÙó„üøçSÃí¿Í —ÿ{j(Œ£7;=O+Æ8á¬B‘SÝ‘«¥ÏQápG‡¼âÈ,yfÁ¿yi•È&9î}­Gí½%co8zÜe±"%µeÇ j ‡V`Xa†V€O[ò•ºH°’ÐsDôlâ¾o™A¬}w‚£Ô¥îýþ<À‘¡òØòÄšŸ+÷gáOÖX¾’9¥Ó«ünú¤ÏŽQíˆ\¬ grelêÒE(+E«r²1Ý,uÔÅmº»PFˆÛt…½Äëý@©çÜç ö±Š,U5ƒÎj˜mK¦BßxöÅÔ`ÍÀOé%{H³jŸfÜ™›Y{ÄÚF•!ɨdÝoÇ媆dþ×_EèØÈÙô3'“L­îú'½ÞN¨òL©Ò€qà.¢ø—a1qÚ[“Bv~ù2òª‚TÉ¡ª ³v:÷ÆÅ 2ž»Ø³Æ÷6\•ºCrïêýTØ3ekb§äÝ]~˰à +0¬À°à |.©dQá\ãÌô>v1+ÇÒgÑûA(¥Ô<׳§ÆÃ6àYF´g‰LßîÙË€û›Kψÿñ$Ê[_ígsC²æUFë™-aú´:¥Â @ŽêÿüöŸÌ:äþÐ+ ¶ž^Z®ßâÕåJ‡¶p݈ö\jƒd6bʰbGË.7íy*Jf™hé‚G¢1SĈYTÞ(V}s0×à +0¬À°à +ð¹<©~ÝÙ¨s ׋r ž(ù´)òø”3 žY"àšœS“½Ë·ãD¬“õrR[«4¯ ú§[JQ;béèÁH×¼R=Á5§ˆ0TI÷ŽÑ“lÛ¤OŽƒÅs¾:0ËkósVÜ·}U^#Œ¬ÃÉŽÙg´ì8éÕ”µžêS«êù²E†Ç¼?S#žPÝjnî7 Œ–~Ó“7>|è}Áô‚õѼ…Ÿdļi¬¬Åz ô5³w,äëJ}°ÔH©?|¸©·¶¿>ž¬Ãõ½ððšÁSµäå¿nûû½€jÈ’~<Ð éj˜—¾~ãOæù$Ë•4Ümô]žSD/‘¹@0k´•¥ê£¬Ø!w•ÕŒ¤ŸVÀO}ÅQ-þMijêݲšò3*CŒëýQÀϯ*X;ôÝ¿I –¶€óN®©D€ð™ûˆì¸~NˆÑ}< Øá»<Ûµ g©ù¯n_Ý‚Ñø•‘ PðúR•¢Û_ à +0¬À°à +P**Ð ÆjÏÊÎÎ'TÆYôwã*ÞQ9 Ó̪–GÏç2e?)·%Ÿÿòׯ \‰å}_Z¼„8õôqt½ß§X@1$z*q8O™ÈSª$ór;70‡Eym¥'˜3oŒU6SJËÛyn¸MÈ3.†vÙ§ZÔ…ãh°zõ’í#«ŠÍs;Ñ–¬´äÜ5#Á f^õê;ƒµs÷ÛÀece²*Œå,—˜dÌ—µ4£‘QAÒ™Pòt±€haÛõy@^]Ùt=Õ|15¼ûÕ¦Á•%Wsƒ˜œ‡ãûÈpï! />P«ÃÕÅs”nÚPÏbn¦†‡ýMÃÇmàû§ŸNÖ«çk™¾ÃÙ·eÞ×¾NEæÓ“K>JÏ£n;ªGçNê.É[©uÌ:êÀRwnn´°¿j_oAO®û[È]€™?O ¯Ž×{Uew=Y%ñÈA-L‘â déà•&“V:Ô`ÿYîýßëg®2難¹¡h]Æ0s×Áz5¬r‰xu[ U½èêéŒ^ÖÎ0ŸÇo¤ØÔŽëc=ÿa†V`Xa†(»;•¢Ÿ;#ô– ñé\ÿzÓ@=SÎï<—}®ƒC—ä.í:õä *™kùRu ÷ü\ì2Ϋç«ü»6;æ3 ÿæwóÜP²áPíÁ•˜ /i‘ýÒ÷âÇqƒê¡YrÏQ#Zl@Ω¿•+X‹CþCàñ °0?Q·ùÕ7Æ^Ùè<­–Žv‰;âT¹ÐÛi­õ ^cýïí³€¹A³Ž±W|5oTkžë¾}‰§%3É=-˜®2/à|üÖÒü¬åMÛsMà +0¬À°à + ÿ½¼¨ðçNþ=ßB2ãœz²èõ`•¹Ïx(Êwi„ÿ¦Ns©!=¶)™½¼1ÆÕ¾vcÑÿ¢Ò²¹¬{»h)0žô•H-fj£öõÃy ¯˜! Ðÿ(×ìú!àˆVuÊ@}]Ú¾bMÁ[N²<‡ªD¬üâ+Ì Ø8«.¾òàš\!ùH˜O–õNf«˜k“L‘}Ö¬:®õ…¼Ž5¹g„Õ€ósß6מté1°EêÄ&%>TSúajxw07ÌßlÞý}jøîjÓ ÷ :Ážõú®×§év1c”X¯”ÜÏÈ2ºhBVæÍQ`þ} ŒüÚEo0ªV¹r¬'Ϧ~LwûÓݾ劒cëŦÁóB^rë8Ìšt—÷N Å‹vQÌ7ì£y—J•ákÖØþø|jGÛ,¨cbW9,{­/\û7¿ )wž¬„£*(}û2þŸC[ ÎD®Ð² hÌYUÒ±Ód¨r<<Jyîdèïæ e\(õVhÏËYRÙ¢Ḛ̈à +0¬À°ÿ­­ú¹—êôŒà ÉØ¨ßúŽ z躳ª=ÎÈÚfôçZ>,­,1oþ5ÀøÀ½—_¬s¾‚OUØ$øb(Õš»ïŽmxî–Zs«Õ« ‰ÏþÈ~1ÃËÝÁÔaÕ—¬ö´…÷è³u6S@a~Y+CŸ»új -ÞäL‰’þwìùd¯vÌÌñW”ãw_O Œ¹óÃç)L´mÜ^‡"Û‰wW»ÿ ”ü¯m×O$?wŶӀcÒ;,¹Ò~@–ýf?ð°Г“©3ï‘5¢ÅäyNØ öIÄžâŒmÖ·|Øæ«Àÿx}øaðÞ‰ÕØÔ•FvV£ ]G p}p×Ô„#W³¾ ûà°Z©öf[dÛ¼#E“/å\—xQòÃèµÄKÄ3||¹iøqždIUÃà`Ûd}Í¿îæ€¸Å x/ ¹d˜j­ÉN†L«R­‚:ÚƒLÝ¥4ç⇋©aÞ˜¹V<ÅšMó?dûX_e‡Ýé×Q·+,ܳ@‰†Ý¢£î<¬À°à +0¬À°Ž9T¬ úe ßD9}è\Üi­i?Õ|X)»ò™ZN7¨8Qûªà|*Ÿc‚#£þ&÷Û€:h­½}°~Kyx÷‡©¡d^ä7Pæí G@ù­Açu§èì¥Ë÷IÊ®såÔ /ðâÕÊYès YÆù ðݳ€;’£ë„÷y<óz”õs4ïÍËY2#5ÚÈØzwX\ÿx/q/ª¥@ÎÐ׬ /GfºÂs!Ýb D=p®xù?a¾X_¢pMÝšb=1wÃ^‘,ã ç°Øèµ7e‘1è™ÂBÈRœn~°ÿúwO§†³gÂ=‚Oë×fÉžü¼Œ£V¬‚|úàKýÖŠ`T„êÁZý»¯'ãøaïš5¶ÌQÖÙÈ{Ú‘;ô-¬âlÑWúaäN;Ùj˜±LYJÿu‘^î»’’qFN¦³–yÅÉ˲<™Nž«J™gt+ªšw×7sé»®‚/¦ÙA÷uÊLÃûßSuÕièã¦áæIàÇm@q¬ZϬ±a†V`Xaþ;[›‹©ÁÕÉØ»¼“¨ÂyL¢í’½Pýƒ;â”ÊÜa¥(ç:3†Þ}95üt°WçzúMtf—GIñZ§39Ç•_¿¬ß¹¡œ yrL_Ø’ù•6‚§9jrë1yî”_ÿ©ßÖyúôVKò‘5Æg(ç}éŠ<Ý»×I'·>)«²´££6µíֈ맷wY³¨­+å›–Öô°¬F+#-änAi5·F?uWo -!é+' T¢ : ,ë—\Êgbƒ{Ìàìy´X´ô×SÓRNpÿ‡SàǽoÌšd=yŸUo„2 †äûÇÀë½Àc¢ì.:ÖBÒ.IðŠVÔ‡²ÃÔoHø$ånùÌêìyò4@?¾ßÚÖV†Ÿ®U•Û±öáÇtç#Ö©fçDZðÎ ”o!—¨š•RYšoÅçÞwªB|&åœQñþFý ÊÇÂr¯Yœü_>ç2¹7Ö¬)–råo׊SÅuwM~—PzñHKN¥,l@±Ç7 ýïývjxw¨Ýñ$à +0¬À°à +py05ÜŸJM'¬5zC wjczûÝä9b?ëÎ7ÄSv‰`Ô7Zbå˜vb­ ù€2¯Ü½ìõöxP¾†ªÒÙ˜#ã!–Üf¼Ã_3V€£é”œµ>¦‹úML‘¯\ÏÂŒ÷+«‰ÚÉQ©k§Hv®¤®ÖÿJŸèšwGÛ§ŸŠÞöIY,M®Áò¿˜ú y%5°ü†ˆà鹑>§¯—„Ï­bƒø·ðirfy=­@Ñä´¹X›‹„ç¾è4Püž¨ŽÈ“uÿÎæËëß^ªíK#ùwMŬ‘’¯Þ=¯æ¹¡ÖîÎøÉ¬¦n‹¯pÜôù2VvYkAjæ~ÞÙÈ~FäÙ ¯«xQUeÔè!¶aa 5§k´'÷ øéN ôvÔ¬q?€Ñ¶^u7L}WÄ?,{¹ëBô¬Îg¸ëÝ?{¦ˆ‘'²x£Ç—SƒŸ ̤öWŠé™ð%²:v&îR”zLòÀý¡wOŽèHÌØ¶ëäÔðÌðUµí‡V`Xa†Vàažÿ±i°~ȧvI£ÈØ/¾d!e” ¼±ÌOAŠïjYÝÈzX:,Ë™s¤ÙÑ8 [ëBÞ.yR¤ùßœÜM#}dþÞÞ‡HVArþ,qè£7Éù¯Ú@ýRqÕ.¯;|‹ûº«}j©—‡W®“êëÿxóùË€e/ŠL}Œ\ñ|m×ÅÖÌGCŒœkÇå³QÂwXyŽïg¡gŸvðQä*Á;q ÉE0‡qñ¯±Ä¥·³c%’åÓ•ï÷|*îv¸Càê §•)ýÜu7@‘«oþ༸ž!z •ŠðªkN}ÉøCêÆ®óÈRÕ!ó9/dçèÓ‡¶_rÁØw5 ]ÄŽ®ìúTl(Ù<ä=»OÛTDëÓX‹²¿Òõçép%ÆÀcîÊÎÜ/êÑ-:a­ÄHk¥®LÔ6Ž²ÎŠß´/üv÷WãñÆo¦†»£MÃÏ{ÍÎ|ðŽÑ‘sƒ2¹¯ƒäž8)-—A+0¬À°à +0¬Àÿz÷°i ´³#‰Ï}Xw¥F´>ùM@OþýA@™ò¥ÏZJ#;ŒÓsä>G.íð7SÃæW›†¥ËäªÙìË7bNÝ‚Tã×gXô)Œ õ?Ö)×Tñ¾uñìqù9P4¹âôôœúÞf˜Ž'jëYdêùo§†³çUö.Ü´¥ÞbþuàñeÀ˜+]çw¾‘"–±Šûܽ ,i­æígNžçûýMëoó³ÄÓ€¼„ªG­JËžGYgôÕq_§¬BOn±GÙÈl0âÝ£Sw Ç–±µ¸g±Èðùº4íV„û4q­9u%(ŒbÛI+ ÎVº¢“ÉÂÔiEÆ[­ªF‚È„Âa¥”Š(ÈãÓºs-ñdr¼›röe@=h´÷v/âœ5§Œë^UŽ¡8vºŸ§†;!ùðWÛ¹aY§WGå$šMÚè]†V`Xa†V€ÚŒ2¬o,«œøg÷«©*UîMɳsW€ õÖ÷_L ·_nÿ<5œ\mJ¼™$$ÏeóË€ºÑ1fÒrNÝÞq䬨Mãö" ~(f·ä¥5Òi§r2…Få5ËwÁ;‹`»û+ëc®g=®Ò#†y(ô½ê ,›Õyi6 Ù'ç‚…K?©g\â ¦®ç hñ™ëT<}¨/WØÆÓR?Àv—Ù,µÔÖSyÏMYOê©Ìe%gUWË5¥Ñ¦fãºPd²×¸yËÜK\ Ÿ ©{˜ÊèY|¯ðæšu&`ƪ–õÏOo^$²âœ<€7Ç››c¿©Æùì<@ÎçÐ}XBÏ3æaÑ+Tƒoz÷çÀÞ‹D§ç™Si ÇLy's>ؽ¿ë©\¥¾~D«Z¨Õ¹Ž:]T<þ¬WV¨þ7í/#Cj¥=³W`Ë̈"9—µv\+÷%í­ØoÆ63ÖTÞ[¯¾|r39™›¦ÌYßíI@ŒŸäJY´ê”*¿*œ»°Ö²2à +0¬À°à +À+\ÏæÊ-âØ²V¼º®“€XAŸ†òÌåN1ÝI#ïÎ×Ûr=¢à|‚KÆc‘®Ä“¹¡¯Àµ@I`^Œ~÷:-þDE»e·G[Ä”â}Ï~=5”sôÁš‰O»S®ÉûßüC öûî*N˜+[ëøäx0]ÿÂÒH&;hýÆÀÙRa€ø‹D¾zÍ<þzÓðjžÔ9±ð3ü.¡÷Év¡¥~t‘µŠ~×Owÿ¢$‡8_û‡Ýé/¶½f”©>GOUëÅþÉ?˜sñæiÀ:L¦{kBzoöç­\²+K§˜÷G­úŸÎó³©A<§vY®®–û4Æ£rÏcYEt¹JíaîŸo^]XÿÜã# g §™Ï•·Yämõùr‡¦úu{ ¬\vÆ)^WþNÉ'º>,K¼z®íÍÜ3 ±re›n¿×Gkô|&Ç¡to+ëLVÓ’&ù-3ÆÊo6^iÓ‹Õˆ8yéÌË^¢;¤CÌJeN+ÖÚÉfjÐý_ÿã8HêÄöëwaXa†V`Xa\¯Œk‡«ÆutjF…7T.#ÉÙÔSÁçRÎòÛžI`k‚”¬â»|ÆLÜïtže͇¥¶Õê f÷ydÄeÝJßóî½ͳúv—^ÏÉ­!Þ¯P.<Úy[»Eþ=PcáàCG¤oTÆ–RÈÓ˜ÏæŠŒ ìlèrFÿëÂe­¾ZWÙ¸.tžu<糦QP=cGT@gß‹æé³ÀúÏyOßae½zŸr‰H9”¾ÚìÍþJÆUêT §¾¥&¡–X×èþ¹TJ<¯»½€e[±_M o6oÌ鼯HKLìå<5,}0S¶Ù#†–±D]ÆóœÍsÃɯ7 ϳSÃe‚UÓK÷FKõZ“„RêgóºÃÿÂRÓª–]#fɽ ê/P{X…[V\÷*É·ÏÜã¹z†:FI§!Ƹ¬V>-£2Àiü‹drœé7÷ï©+úý’ãIT±D{¼Ì™•l$twpH²²–YøUÔd^¡G@•LrŽ´ÓV`Xa†V`Xk×0%ÿîYÀï®þ)E·{۱ߎ°øœœRá  7ÌX×u]W¹êYXsäK­ÝÄåÅÔp²i‡¦Å¿™wV^ÆãE@~7ßl†×»zsˆ¹JÜO›þ#­òÐ$ÅŽÐnš K^ :Ù'}¾jDFK+Îzi=»ò†FãùÜP¢ò oißËÿ–Ú˨cÌž›½Îg&ÇÏRÓ çÓÕ(U¿ 7¸ÙI¨î™’pÇòÁ‚ÐÃèÊÒQÀ×¼H<›¸ /¦ùX[“YpžŽ¢—ågW¬ïꃖ÷¹Ï½b$ð¢s¤E){yÎõŠ[\±Zê”1Ck¤Æ LöžtÊ$¡HN> ùRzð©u‹–výÄrSÛ€‹.zÕ:Dz>ëX²÷îw^v5Ééeî'¹ÇÒÿ]½8“…f—J¯kñÎ ‡ç%&9+äÏSÃ2V9_اésYüóÜ`/-ºi8ÏSƒ Atœ•ë{(3wžêpšûÞÍABûÀÔÌÒo¬(žœZT>èa†V`Xa†8¼h‚]ºx[êÐ+YÏ£jlêÜ­kÔYæÃ?Ï Î¨RÞP¸0?Ìüªþ¦Oãú¾»¯bÉ\@æ =Üs!sm¬·ÿXzÖäjÍwtÖª ™Îê¯:y´©œ¥i™³æîiòâÕeÜ e,}ˆ¥#3Ð¥9·¨GÇsqž(—8CùþæWÛCξG[¾3É›ü’\S`‡ªWîÓÞâeîà…,|X™¾×^ñçÂÆçÔöE ‘S¢Ç¹cÊŽà·ÓûY* жº¢8âN¥EsÆ­“5>¬ì k5òê÷L¡ëu%¢R=¿”s£xõJNÉUÅV&°TÌà. RDhfàYÀ]5bþjezF®¼"%(e¸ÿ)ŠÕæý»î±}ÆÖò¦kEñàwgÜ–ÈíIsú¹¿‘Ô‚¢p»I…@ö19F=çÝ<7”ŠÖ¾³4Àº²\!0sîX«§¼…cªCÏ^Ì {_N ²h·ÓíR…Rï¥zûôË6 +0¬À°à +0¬€»·°#=¿¨±ðã}€çÍ¢R;½¹Ú¼Y*°Ù=šV†VÀoüwêJ‚Wkš±w¡žMÿ{‘€Ì{QíùðŸº^’{Põ9u¯öi^cÊ3«±Ñ«¾È9*káÔLkU²×±:˜_ÆL:F$ºÂrÍO´«C:üsÉËüŒœ—5ØÓKEFív1lE'ƒ)œŒNÜy={  Ï(2ZŒÕ•d‰'pÝi:Ð ~UóŠÒðdŸ¸U§7µ·¸Óëãézåßrvô·Ö“iâňkÍ{ÞÎ×l¼Jh÷Åü&}»µMø •i¥|L3]ˆ¦èÙŒ¾‹ 5¼FIŒ(%¤x3éÕEÏbÓ)ózí…ø<èíRf‡üùCξfMkœÿkÛ§ çŸÖg]ˆÒ¥¿è–nURN wíz2ÈxÕ.kžî®¤íúêÃÊ÷lÛÃÅÔðx°M94nªH•läûynN{8¸Æ~j¼Ò%3ß}Xa†V`XaćÜøFŠ5b–ÄëûÀ}BÿKÛÞfj¸Ün.·®|+¦âð‹MÇVµæ}Õ 3S£UOÖ«í 7M~œÊQÄ::»Úüì½!l]Y’ÿÿ@ˆ‰ ž,=bK&‘%ƒHVHd…´änÐÄd€Iƒ&“+5˜€£HCFÑ’–¢+EKFÊ=àzÈ€&¶Á’K¶Á‚UK÷ª¾ur?•ºofÿxOô•ÚýüüÞ½çžSuηª¾Õð0O&âdµü·Ž³§u«T]vDÍŠýOY²{R«–ÕØR5Wþˆ½;kÚ/Fƒ½ð|¶¼=œÞ~¬Ù÷óf\³g0>Õ¹M9·È^«¹¯+ñkZfFT¹Ø÷-Œ$êüN¿sª´]´0d`—j\¸òN+>eŸ§ŽÜS9“½ W8ù¬¹ÍœR/ôýNþÙÐû­ n(Ý´ºç‰§†=íÏÕÑ|u*ë²Ûºž½ãÏh/s¹‹ÍD´”O!23S‡¦ÖÂjæL¯ŸÚÍ |Öuý¦|¿:Vç¥î–œŠÆÊÚ˃#_—`;:øPC†Ø&õ{ð?)—~-²A°Ÿ‘vª)à W6öŠ_³fÝ]«Š³¨8G;É,Se®¾ž7 ²ÿÚ3.Þixá†^`xáú)I•Èvª½80èõ›YKUćÞÔ¹!gsùeÄY¶H#¦S¿Û+r<“5 nAQÖ!Ö÷"ÍŠb%¸:Xat{>5¼ÚnT÷$EVyC²bo®m®{Ε¢Bì¿ÉS¼>!žËSCäòËJ––ÏZ>…L…³ôtú+vTu[ªZ¸1œF+«Vî¤ØYÕ6’_¨6„,"ÔÉûœ¬z‰)ÇDcVj‰T¦è3#›5Ö¼DT´Yþaèýê„î1µøöÐm,Å©é}òÂÐ*ÌÎG,;ŸèñAï–ˆXdT"W!í%—ZÂïæ†Ç/ ©ö“¶K‘J‡ìƒxÑÎV}º ›ÃÌ ZNªÉÉ~ú5÷Ήy_)'™(9!qwªÄ¤eÐh(> ;ÜãžK·ø[j>€ÉLjØÏD-2[¸R2·fxûÌòÈ^Ð8÷x±s5G†®ó`à ×jM{›²ã"ïÊê³EíT£÷¨!ü²v‰˜9Ê};O à /0¼Àðà /¬+k=1?XïaµtÂ9æÝLXǹq.ŸQ¬h˃¾3ä’b°žÈ¥Aþ(~«“©V:{Àa.qeE·Xo©.È×h]Ⱥêý¯Î ¡3 5<¬úˆ.ilÅtÁÊU•¶ÊÅ©V‘ß2K¹ÆuóOÎÏÈ«tFâêÉÜÀçH‹ó\5w§«BL™»”ÎHX&°ÆÿÍ<7Üý禡Ûdï‚»&ÕyùÏzjC½3ÆjQ¥¨ZW“wXbʉ-d–2ª;÷©#r§QQ}KVºS÷êÄÞ=)_‚9ê꤃ë¼ÙM ôzχ—›/Ó˜²*ÝûðjǤìç¸87t~Ø3ÆÓJi®VIyùèWë±ãfíÀ›ß†^`xá†^ ì¡j£bÄ–®Ö‰a@º¾¢…Ô{–éꉬ¼©TC=à#ðܓΛN£ˆ¦˜NŠÿú·»âYâ%0gâj¡4ëzáãR}“{+ŒüÃÖÀÚ1^‰,˜bÍ7_ÞÏSÃÕ ÑIPÏ Ñ(®£ôúnÉt Ûè¯Üm šÕèX¥ëÈteD»¬ÁTMS¸—•ÜN®z®b沂)Zù4~&í9³=¹¾JL™§~KÄa}O’âzäµb¥£/9Ô*¾;60v:cn3CO÷ëžšñ¸Ó·úý¤”0^ÿ÷¹!*1#wTûŸ¥jŒÖ>åÖÊ7)ïq75‡ ï¿/ÞM5ówÆÝù+ª¯ŒJIOi‰Óçö¯P¤Û?Ÿ| Ô’ßçóÂUÕ|îvâ•ÝÒŸ(þaæDL >?8(ì©"¯#âÚ®í ¿Ñvÿ­lµj¯ÒN¾ ˜ÞÈ®_ì^ð0²íÇó™%,Œ_ï.ÄÈï§ujIsƒŠ”°š3ŠS=F{léùH“0úθ6…Ôà¯z˜¸A¯/0¼Àðà /0¼çRªÐ—ÍÄ•‡ªz¯ó©õ>kÞsÍc+×nØy-¬hœÈlFum®…¢õ`Œ8<­1{aÈÖýÊpð…ƒù`ˆD+Ó5tœôƒÉâ‘Wѹ’þ‘Ú_~ Wm¨ç8!¦¢™) Ý€8wcTS„Èí˜zFÜ<7Ì/6 ñôçù¦kLil©ÃPÏ¡}Z-ReiÈG‘%H#C¥;øô~b…#ÏÃø~‰]v¥îR=TõåxU1žê¹pÉhÆòz|ä Š ©o‹¬bÄ7ŸÌ†àÊ_Žy¥ìй!¾E–µ–´\;ŒËë“£' 㿚ubrÄ?<30Ó2¡üg¸”¸BEiUoÖ°“Þ³F; kD2Ý¿Ü4$ÿ{3W)ßKKEn™Ïš~œ»Æ÷÷Åú{7²\Y‘AŠŠ0ÎCÎê’¢Ïì*XµàÖØ5÷»±'x7Ï ?;îw†¬+þiÿYíE«6c(^r¬´¢%+çW%†gÅ×£P{ï°ŸnßIƒ=¼Àðà /0¼Àð} z®î‹1\frÒZÊâÕÓ(WîÙôÞ_Þ<1èäõÓ¡a>vü“á‡sÉ#ºØke)jãáîÔ,jµ ¡*àŠÁe]¤S$Us1sÞôï g§SCRl+QÑ:çS6×oò8~ºÔ{#2h+޵ç›Íäп P6£Pz%*³–÷`1eþ“'~vˆP×uK›z–1d$”ö<=5¬ñ}ŒÙJĹFÛés1'ë³àl «(ee]Šÿ,<^ò/Å+õh/ú%Kè¬Ô©!eG3’KÝcfóÒ‡Ê# ™qó•H½JÕ´ÇàÓáJaÆ&øÚê+ÑŽ»Þ-=79—¨ æ µA¨øOˆëä>jÏ]Èc¦¸?"ï}4¼æNï”b³kƒpǘÔçÊ?ªÊ|ؤK/Uè{%ÅÙp÷ò5Þ8g4ß:çcx7d«õ-WCïGiǽ±Þɿç†7¦†á†^`xᆛ/+ ®†óðä ÷60î¦eŠˆ‘s§ä'MÕ^‰5b'š`“. ô>ê­¦ßG?zV„qþÄ Ñã°`3b â^¬(E™Ñ゙dc¶û©0ê¯w†wSƒê²Utvd`?>½“•e5ºD¦+u¥ÄÉ”ë.±ÒlÜç ø:ÿÁ/$g°Ç (àtnà¹;16Å>d–9u<û‹C ïG]k~NWdŸöå%–ʵjóÓ_±&«ä[²>.uªy¿@¬GÄîC+Øí³‹cV(;Ñ÷W±lU¹Æ‘$‡F/ÀXŽ:lÈ–ÔwÕœçäMXÑÆL€ÝC˜+T×,m(ªq<“¾DåßÊN }‚nÝÞÛF¯Ç=Xò\P­ïxQ_áÙíMþó¶î¬«µ‡žß"-›o Üõõ~:ê¹ø»Ç¨¯ŒUY<ó@X¡Zê½å÷+þ<©^c¯8Ͻ"Kþp95Ü}e¸šÛŸoξ™”#*/ ¤OxwnøéÀ Oq{dè;|»Ç÷_”Gz?Ï÷à /0¼Àðà /м{ù‘!Ñø ²ꩈ Ñ#ÄS@ªQñœ¢§ÿÓ3CŒƒ&¿º­9ƒ•Pþ]o QaQ3YoR{Õ±f*¼Õ¢qWÏæ<åÅYÞOñ7[ë§›W=Ëîì`AÌaÙ]!훟Á{ê}Cü” 7êÊÆiÝ}Ù,|kx·5ì³íûíÿßgŠŠÐs÷¬àÊä¤ÌCDÛi‡/Á¸°ž²jcƒþAézjåN™acKTº+~ÿ=ð‰'›ƒûŠÈ]‰r*33é™ïÉ:XÉQ”¿€>³²iQûÏU ,V4ò6£—åÒ¿5EWc¬–\ÙdWaç“ 4ÿ6x×O¹»”uÌÜŒˆùú„¯þ{¤äñ±¨³(­tîâÏ¥zŒïûyn¸~¹i¸85„6ȹA¹²ÜÓrGû 6¬"ŸÑÉùCí`o§†“s‡t$šŸCqBÏ::Åû·‡²½?_Í·×—†è©(ËãI‚üÚ{GÚóÀÿª~íê`nx÷Û©á¤9y3¼Àðà /0¼ÀðäIØe’ñâèPïy›)v¦ø—ê¸e¥wKÅw¬PÄÈVøh"é”ÿÉŠ0ÅDBiY1 œâ¹Öⱪ¨2œç)›Îg4¦bVè {iE5j…Á3Æ:’ý$³Á¼;z™ò9¡)'þJÊ}Áõç†a½Ó{ÊüÛάÑÿõ?~{åR¸™åwáOŸþ:F@Ö#U«a¨Þ„ÏÌÉ>k,¯­ìáMŒÜn½WiÊSÕuR¢^3m)~N¾ëe%ËÔíXdD”(ùŠ6#ìdÀê{1§Rô£O‘|:Á·•hr§³ä•>Ísˆ®=%ëµVVOšüXÜ`Z>3¤¹¡ðÕ4Ÿ:žOÿ™JÉ£±j¬ÌÚ;]÷?zjÁö€L6J o˜ aa#vˆ”æCsj×™VöQÚ9KS¾ãÜýn¡}‡ñ^`xá†^`xÞ3Ý¡{ynèTWx$"E`eáµÞÿ¬ÖhÄX¹vSŒƒf¸+©²ÏZ¨L(‚¬ß :Ëà[ÈAÝ<7$–€ÜffŸE–/J~#¬=ùÍ@òc¼Sœ4CŸÙ½6]o¨ [Ù*žˆÃv-ŠgüvyŸ`œ’gtxŸ/ØS¶Ï à,™¬"Ö`²ÿ%R3v€±ïþ58ïÓª”¸íŠ×àÚdµZÍ ÿ‚Æ`bäà‰R¼ÏŠ—Ñ}!†Xw ‘åK_€æAA¬p§|gÄŽéA¬»¬diE¦G€¿`ÖÇŠ/Hu|KWúÎÉȤ,£š26Ëþ¡f#¬xdúz¿Î×G†ÐQc#K¨wÎ÷“Áõ-½™§†§sC¬nguâ‰#žËïâdöKŒ­ÿW1Ü‹Ï WO¦†·Ÿo’^%˜öPŒôüUFƒö«MÑy¬*Bĺ{j ÝÓs‰Þ^*“ª§îÈ1¼Àðà /0¼Àð<Ç©¶=Ñô«FZFuVh-Tµ·PåBµuØOÍÿ[]§b(±@‘éô;CØU® Ž <Oßì ÊQì;CˆÁùޱÄêÐ/”|Ũ5s\Ÿâé6<ù&ÌùOÔ¸¡ÓýÅç†mêÎÙÚ‡…ŸûüÂÿ?Fˆíd? {<›¬(t·'RÉÌI2E‰ Ú©¾IkÓñÙÜPc—´iï ËC–CW ¾b%Ó X~öúì§{‡wcIþÑOýig¢µ½æ=/ÊäëõÄ7Jó¶ZàÊŒ%Ò¬oz]ïû‹K÷ØO­çŽº¿äÈ oسݢ,An–ó„=èY×OSÌßydˆÏ÷žSUW\£:á¸4¨ÆóìÐðóËMC交¹Šî6ôP¼^Ÿ2ž`êq{QϺGßåŸ' )è)ïqÇ¢QÒ'¿:50+˜ùÆÁz!VVW‘kyŸá†^`xá†HóAk_Z¸Œ;€Óx;xúÓ(=ì <¥êõ,^í ÔGM3ÇWº¤=nÔùö™áÇyj¨+"ÅŒ¹K,#Ѩ‚IÙ­‚*€hÇ4¯ž;hÙª&SE[ÔøÇ(\ ‰-ªQÿÃvÓ µ·xâØ-KñžLx<îÝÒW7Ýi¬÷\Ϋ'_{léËM7Õû‘u<¼Àðà /0¼Àðzj(ôí×G†« êoH5€×ç†à:¸4ÇÎÔJyÖÝäjó›ãÍMÎ)Mù«1ÃýÔÏX¬7«ÃR^¨žâËu¤|D¬e刊5 •ZÙ¥{fð/ }nxä]'nêké¯Ì.÷#¿wx ËÅÎü/³.1~gP%øÿ†ìaHpEºææ?X>‚,,×`Š92ÊFÿK .r%kq-Ö¹ô|Iö¼X­Ä 刢žDâñžâÚž;ôžãâ-Ó„¼h_³¡eÁýW4F†Šdi¥ð:Ëü¤² ï:ñ¥U‘»ú̓OQýEŠÔk|PYÉL€ôí…íLßÎ*<öiÁ?+JßW÷H‰ïâ,ò×oç¹áìëMgHÊÇòrnæÇŸQ²Ád.ºZÝÒ…8k›ÛOò™9o•Oâ•_?_¢ ¬ÑÕÖ ¹ôzkи½û•áí¿¤5üNô“²üÏÈÅåÞI=¿þ´i ã÷ë¾`xá†^`xáî7 R²½s(b5Ξ…Eµ(ÍsÝEŠŒpnÓ‚éiº.DR>€çœ»C7•hähjv_Œgôµü4S.Çh`80ÇjmK|˹¡[õRoâLš:Ñ?ÌÓý _ýyÓ ÅiýmDjÜÄ8ÿ³!uµÐ¬›ç†Ëì÷~ýaþWÃÿ. ¼p{µ&È#‘É¡+8žÔ»‡ìYŠö’[àØÊÖáYìëï“~VoÇÄÒÈÃ.½úWôÌ`LÏ8ºØÓv1“üw ˜“¯žî/ ‰Õ‡ãŸºÜià“U1´rý¨)ãˆeçO[Y¸XSˆÃrO’,6=>wDôï`?âýÚ"[;ño»¥:/ùÌê˜c…Ñ]ÑÇ+ñ븒T9è<ýó·U…꟬5Ë+õ0»¿– ˜ö³”ÃI;øóÖšØ»ÊÆž.`BÈJnÐÜÐU}ÿkÛyjÐ~àçÙlìª[ž¤z5à /0¼Àðà /à^ÀûèE‹w—¢ô¤ÌJ¥UgÄ­œ¾“õˆOXXò™i&0w?ó´ž´iµÂžû¬&{PTV¤f‘bÄ‚cIDÄPõþÎpR…£0Ÿq§%{¶ÖŽE¨ŸsµFZ1èëÿ7™³%Yï¤Õ|iöâüOjÚî7¸c)™á}75­þÔ¤#ñ`ämdQF2Ûàoc½+Çr77tkf{fÙöÐ,Þ\,ñûsÃO[ƒxøw/¦eÅRßÉ7O¦©FpÐÊ)Y¹¯Á0;CÛ«?åH©VÇù?¼Àðà /0¼Àð©ü {¯àt#}iöÑ[ÿ¨”_T³zÇmϯóÙ+¥SÎöÝNý+Ûe§itЉÏQÇ7äÚ­ä•ñä[Ö{Ä»©Ê¥Õ÷•3œÚ'F ª6Z/¨÷{‰õ;7$ݰræå\ê×é§<ÿY§KV»ŸÎ =laäÖ¢ÃûT&qÍv…Iì‘\¶ÛºÔ½Å]ÛQ{óÜ×Ka~4bG1-(³´2áw…/Þ¤úŽ®XîÏ¥VóáoÃþ?„ÑìõåÐ\ålŒ¡QòÏffi|š4Ê^lâžÒŽ%V„jüí)Ÿ}nèzKtðÌe®/#æb4ªU£ƒ+‚Ù¹\;ḋ½º4b>h䥬˜˜XøÖú,V˜œ²šX«ØëìÜb¿ÖýÑbƒÛÑ•{¥jUuà^ân6œÍsƒT®/ Ñ¿ÒyìèïÙõªkôæ¯ÍêW§SÃwÿlˆ¹êO?xEùAªF`ïJUOÞ©Ö øühwÕèÇÛvÁ]+O¶WÙÅâ5'ý†^`xá†^@Oêõ±AЬ¡c¦Q…UdG¶zZLçtVOàÜwô™AâÉúõ„²S‰/Ç|jè¤ndùõìÐ73fÃxFæ“,–ÞÉU {¿7¤¨(WÐ׎:{™SN©+x›=aî_RcÃxvu>cÌtmª.QD8Χñ\Ríå¾þQoÊâ hÛqÞUÜ]ïêצç {XÇyxá†^`xán7·]{AgXÕA¨ßëè™Ñp&U¦åµCõ÷³áfžRÇŸ ºLþô|Ópý`¨Ìÿ*ººÇd[ºì½rè.¾ÿÒðþÔpûÒ ®Ó¡çWȳ›Nd¡ÑT£T8Ëïãj"ÇÌUndNÈ«ÐF ]-x"NììFü-âæ'/¦†}Ö/­;Z2ˆ FüHÏT¿Ý-õø©kFñ§éÊlÞÝRƒ£èjòÝÌð¬äëJ„7ÙqPŽÄuøY^•õ:G¿û/Ù¥ÿõ¾-ÜÏpAæ¤dÔ »ÉÝ‚•QbÅ“>m‡î!`\åƒ4†ŠË‡ñ×C ÞÁjµÄ«poÏ›âÚô¹¸6æ-T5ʪi?S+˰vøíiæ¶¹2Ì)¯ƒO$Vͧšyuè·¾ÏAUÝŠ&võÎ…‡d `eÅÓõ‹ýûÆÖ‘ö½êQ{`ˆ|o(*ʬ]úÊÎ\{ŸKÁRŸ¼¬¸ð5¾^†^`xá†^@SC1 e!J÷,2ßâêÐ Ö+)ŠÔl­GîŽ*»¢U;\ŸZŒ?ã¹f¾ÁÅ熫ϧ†“_oj|ü~žøD‚k’öÕ¤>¼ä±³Z…g¨züZ¹ï^l"'™Ï:öóÆ} /0¼Àðà /0¼Àãͦá䉚HÑÁ{Á(¾Ùk⎼ ¦_í¢‚u{85Üا’§xýÕûéáõ“Mù²@Œ'nA]Nüª©™·†ë/ç†ûcƒb©bŸªÞµNÖŒ×\üÕPù¤b‘ž”W=ß4„®‚l>îå—­!ºjî6 Êï =mÚd f"›á/Ѓ{ÅÎ뜔«`z…Y…xšªJÓC‹ª4g•æÑ7ÚÆî7Ý ˆá|+'SÆߥx+NÊzgÔã8^;Rï!t=ûÏ©áärcÐ]h ¤Áå×ùuìLJ•-°g+OÄ|©Wù‡ÕÚéÞÑ-¹ƒs;쪭ze«ÊÚ_?Ù4ðšÙÝ>]§ÿûÑçÂHôø2ÞSb¸+¬s!åH^Õ¼#Gšj‡ôª{2HÓl§½…_[ÑoIÌÌ¢rŸs°Á8ôäu»%'!ž²l¦Xtýæ™A1Ù››ÒN¯°ÍÕsÅÌÇHöÑ0~5êÅüÓnO oþ07È3ÎÏ7†KC¶ZËz^`xá†^`xÝ©,¿¢¨·[ƒFUVK¿M69rŠ#ëé\¶ ˆ*ûèÈ N Wô«ºÜã¤ÎŸÈ*Fµ~9×'{…9¬^ ªÎxõ­áö7†ï^^=º_êÙW´¬12ñ|¯–S§Quy—Õóýp •×_Ž6 W“acÐé¯+N#®TzùÅÓ‘¦æyšÛX<söÖ(õ´«=?ùrj¨úcÕN2û—¹ˆÑc4ž òNåU_T®Ny’•…p¼¾3DþmÉ!T7ðèˆhoä3ˆ® ÝBŸ:×—>8É0ª^87>Á¤Íz@²@5€ì¶C`C™MÊcÒ¸£zXùä®fE“Mù½Ÿ>‘ÍQìsb“ £•Tõ°©+·~~óô½ÕÃ2K„ñßbKɰuåC¯d,\J\ž/÷WôÌ7ŽÝ…v¼Oþ΋—†+#‚67vü«!Íg(õ¥õU|ÜJ"®D0«÷Ï ?ýËÔ ñ—xs¸¹ùÄbøû‡^`xá†^€UÆûˆ~jÞ‰'¾¸_uŸ÷ÈkÚ'ܾœ¤ÚtõdÓÐÏݪýGÆ ®‡µQ5bµ?ÒhŸŽ ZÊPMó kA~GYv<ƒ'^Eãàþ¨ÛO]¶ÆÜVhÄqÒì6ÄÏòRÏö{5O¯ºEbÔ¯kð¨"^W‹ˆ´‰Û)ÚÌš‹ùÆ:²}7Æ[õ-…H#Yâk1MPÕU©–†2TñOó¿ØI*N§Y¡{dN¬²g‘)×=¦ò¤0 ¾•¸zO<¯Î0Þ#þP㦋+ˆ•’i>`h· ×•j`ÔíúéÜ0¼Àðà /0¼Àð¬†ÖJ‰z10r£&z» ÆÄgfTO3λb¤Ë™1:Z2juÜ8S£ã^œ…a{S—gŸ½¯ÿà ^úO¾4D•¿'õv û¥;Ù¿æ®Þ Âp™º×“–‚úèîeˆnì£ÞÞ¥¢Ç¤З®½u"3c›Ôüh»ŠMN󟺌QŸM£§è$üïãKCÒa«ªÝ°Ò´Éì1ÄìÓxÖ熈83#–!f8y!23uíóʵ¾4ªÈ¶í¯XÕUgÏœâØû¿ÒA•§°—‰Ã„Fâ…RÎ3"˜Îiõ…štÒ@ ÇH3Y˲[íbG$Îr¶`\kVgÝ¿­\ƒÙÅÕ_€I×LF;‡ž+â™!Ž4O`iyœÉ’×Q-~mŸoM÷‚uÑy¯ìS.[2êô+yR®cr<Ò!‰ù&FôöO›]É™C|ûü/uÀÔ¸ /0¼Àðà /0¼Õbž¨²ÞG;¬¥ÎqåvZS]‰Ú­ä¨ å?ß>5¨­gÁ-}£j>´˜ ‹¥êxFRÎ]Å 'köÇ Ë:À‹u¢EÕ½:0D¶#P˜½º¶Î}-ÑUœ8 —_è3Y(¦ò;äd ,AFhߌÕöŸ¶ˆÑ·Ô¡k9ÕŒpvÑb”xt²f5ãvô{Ïøœíņ$ÿ…ê~mËÓ÷Нƒ—¢´êÃèlÏívºíC¿£GÒý¡;ó­õV“RÆ»ˆùL¤»€¥¥GGÁç>?1¼ß¤}¡µ©lÀ˜9^%—*ÔÀÎÑ‚ÅÚÙÃÞPY">GU{Á .QïˆãSóèõÊu&–Uº6Ö¸Õë‡õ¨Æ¥È;³/ ¤—ü>ãÝå.ƒÄù¦kÐ~ÉßsòÃÍ7ÝÑÅ×SCºù‹/ Êp8ù†³;CÍ^Ž=Œ,•ÃR;­®—v†¨Ûz½'êXÍ ¡i³3 /0¼Àðà /0¼@_M®ì¯3‚“:”Ÿ-ìM=ÅËÊ…åÁ ÑÚdîÖÍñæ¦Gñú}Y-IèW¸í >«RW{wnPîSŠ[Q¡ÄMh9{Mb¾ËÌaž•gª; Èß/ͽx:˜ÛÁzA5")ʪ“‹¾qgàlì\Ðâ+ÃÖÏÑ5:VâËüWu®j®fÊš+\ÁŠÎO¯´üòì‘{àþ”[¹Þ‘”âóõ'rý[CªfÒ'h<™z~‚àq70º)úVˆž±×4—[Ç)ù8èu¤XveÏ4ÏÝÎk]|·5|86(Þ3ä©Aö_ñ™´“°Ÿ1ëÐM5EºÁä$޶(=ß’È(óÊ ä(n3òŸqµ+ ÷'x É×'ÂW”‹ŸΙ¾\sRÃà¬V þB–Ü{hžÜ;\åãñKÃõ¹¼hê êŸpöÄØVS"5éZ~Šî=¯Ø-•8ê‹íÜÀn_dJ‡^`xá†^ žà¸Þ÷ÅA¨eÊócÍó”Rï彬£7óÔpâ.ôý¹!>AÓ¹ªÎ• žÁ‹©9ŸuU®ôI—ÿ µ„¥Š*àÞì ³ãÕ±asi¨*Í]GbÑF ;æ~¤[B@_è¿b^¥§¼èßÒ—­¬GU¯ó´Åg”þvO$1å4b¥DDz:z^èâgkÔ•ç}®ú°Ï®ÎÍØYʤe6¦PƼ¯…EyX¯È–þ|<5°¿F<æ%Â>¤B¯„o_Ñ ¦5Ö“Õ|¨œ^‰ƒÇSf®¦ Wd ”) ÙŸÔã‰ùäÍ|µ&%䨱`Vì t]#Ýô_Ð=Nó„¾@<‰âò¬ÝÃé=>^æŒòf=3$1o5’Ko®ôº_2H°äi—È-s_ñ i¥øóUùïÿÅþZõÊüdÞ¬s2²Òa™Õã†yd_÷ +ØÎYöäæhcPu˜ê1ýjÅ­0¨~Gà /0¼Àðà /"VedѨQÂ}q®”;~©Î„«ÿ0\<7¼v¤g¤ñ÷hu¬töš¬ŠsˆM§9Ì«b–팟²9òÑÜ-Æ•µœŽÌÏ»­!Ýã£O‘z)*Êæ*pŒ>‡…—J³zš—gÁ^äI—q^äÝ%ÛÂõ[²CËAy˜þJ~ŸÜ•µ¼Ë^ÊñãÔª¯Ÿæ‰f2=~d(3þñætssÚc¦b6´¾4¤Êu»qÓÞ|µ~Õ•LZú8>_ÆÍ‘±âéöx=ZÎYN±?æjF&°?}õ‘ÖJä-#›‘M–ÊÇ!ñà`S&WqUÉ ÿC®¦°@´œUm†|cÍ(Øw‰«D¼8ñ?|j¼’¢Ï‘'ã¿E ]bÂÅ´Hç™>¸9ž®g-dÊf‘²%ôjÔG>yúh°vœ!QGŸiЪ¹=0蕽#æ3æƒöxÖà /0¼Àðà /°2“eN éŒæÝiž_v‹’êÞ•à_®žî W/ z?»òl«(³t­iVê˜ø™o˯wöp×µãÙÍ?ù½ãìÒáõ9³ñÓ8fŒžF‰ CèæÁs)·,NÊqï¥V‹5PŒ¦|T2x5ó3Ím°CbK•º ƒgäÐpƒ/HŸÉÑн“ëЃP2™žåiPu•üš£g)ÿøwQ£Oª¼¡‚Ž»ëc®žãþíôƒ{reãz`*Ÿ¬â×ôeÉÚ;ÔO0e\“Ùcîª,ãN¡\jÜÓÄîh_¡dáY©ï¯…ûÕøóé0Ëk® g1^UÉ¥žÛJ¦²ça·—}Ö)y(~š¾½jwËËnü‡A;Ï)çÄ8kžûçDfB­µ§ã©\jÚ ¯d©¹ŽIﺰF¡s/c‹¤{ó£Ü㨚 lë4é]Ó:ÑKÊ.ñÚ¸çAF_Ê©ËÇÑZ•æŸÿ~žºÞ QþÔ·Es2r ¬–0ªÆŠª^²üˆeÇ–qmÒ˜`xjÆuüVj‡ä ©´Jè¬Z˜äÄ:ÒÓaWP½jå™Y¹¢V]X ÆsÇÅ]"™Ò¤; ¿ ñT¦„l¸ò%ü·w—†¤-YYt=;¿—ëãéúxJ×FþP/†Å€¢`ülý­¤Ï>Úc´f¯Ž¤ÜZX'Ýûðà /0¼Àðà p-G¶ΡÁ®H—Œ1=q*ã®ïf±øa‘ÆÚû¿m.¶†ëK‡ŸeÔ›^gvÝKªgW%Ï€R0ÖJçÙÅ/¸ZÅnnPL³j:Ū÷8²zY†%ñwŠ•R^–Î\RÕ¸ùbÓÎÚEg E®c¶£Û¸®vþì|jH­Z->Í·ðŨ¦/| ëÝVVVñ)H¦‹çÖ˜óKÏŽê×8Â+{†Ê%êjÅ€Áв‡Þ0zL ò·çSC_SKTNgç4z‘ǻԵ%_ÀؽÔ9X3X"‰Ÿ©±`Æj•™¬M‚¶4PÌHªka Ö…ÿ:§ä`壮{"¼•N±læ] €ûŸ}LKX>/¼^-pbiä_°YÉ[¨±]Þ¯vЖ©y,ñ\0ǸIñhyÒr×aÕ¿™¤-£gñþhnPÝ–òºz§³‘ZûnµXÉÅõ³È&ïò¤·3°â/îÔó^φÚwž;á†^`xá†HçøüÔsûÜpýgCÌCt‘N«V"Í:jØê{уOùQêhùàxslÐÏŠè}85(ÂNñ=BºTýôe:o‰‘Àú9 þbnˆÓœ+`wûà=ìtê÷ÑSžÕ«ÃaÿwŽ4«Åž5‘åjÕ˜™òîSBwBšØþJpd-ô3Ö&µõk‹x:ü¿®#Å%QïOëAI– Þæ# ïÆ‘‰Xy|¸{ °@+ ud‡Ä–h><šnžlôDÞÌ Ê ÕéûÇ£Í 3°ØÏ®mà÷¢Ì~câ÷d‘jdQÈäýqïIOØm5YÐxE bDõ9Œo†Í;dˆ§Lf†ž‘ùÐ…¨Ö,Ź¢©Iȧ\¢ºñ-¥vrÅûP»¯úSÆm1'ÃU_À~1äN±¿ /ÉçE^¦FÛkAÔmâßñÔpáÐ ß;ÄCê‰ßO÷]A:yíÝRÙ—kú¼BÐÿv>6èªnþbûà×£¨±VÇÕlˆ*Wí¦Šæáðà /0¼Àðà ¤yαÂÑÉšÙw<rHoŠÐÃÒêÓ•vî«SÃ|nøÁñóSyé÷ÓºË(TO#æÆ¢qÇ(U¨'á”Í'Û;x—]'Ö¾¢À'§ýíwÛ©A1bÙUÙóÛgLåâ¡5ÑGØyef~;5ÐJ$_FK‚U̺§tfgL k6][óþÝú²8WÖ¨XŪ¢iý.úø>Ö³Ä9÷–4ŒïK'ÑÏÈgFíÌÕçsÃű¶+1Bz¾ÎL&F‚upŒ>SGÖ†wÏN™`ºÿÃÌÆèœnû–Þ‘ÓcåŒØ&= ·ùší¡&áuŽP>\‰Ú“zîàý²Î‘|™ÆjKmk$“•†Vþüæ²&^Ö;­ ÊUå:rSœoôé%¿”ž^€¾;ie`Ï,MÈ»SCô™òÞ.bcfGÏK±×µËc\â±+Д?üœèv<7pG}q87h-„Ö½Ö”l‹Û%fœ2>¼Àðà /0¼Àðºëû#CÌgÙ|>SÁGãþ·frÒæ³÷·´—ÉíõUXËÎKŸm~n¸¿4(ÞªÌÌ›CtaSwuugô-žš¯‘°!ðbð)ÅYyV²~E÷U¾À³ÅG):̺ª·÷UT¼“—å£"ÎÛgb¸~Œ•‘_¹kq;à”’ÕÅœ5?ÎarJˆ³?~a FDT¥ésx‡—á·¯œè«WâÇ*ïöÙd(}ç©bó!”ÀMƒêó¥!Ù(_­¡ýå]£²žvO^€•zdEJFľ==N¬Aè™GLY¼Ÿgú'@•¹—Á¾úˆìh[ñ,è¹øO³ˆqUfáA"#¢ÌŠ=\MÝW¤ü‡Âüð»Ò΄³å`±C F#ÅŒV—¼ë´ß(Ú&ée—’®–šÏød=ÁWÛÍ«nëô4ÏšY>œï.§†PüØÎ ¯ÿºiˆ|›à'íëૡǘ¼’ö ް·Ñëjjx=7×3‡Gp]kAL)G˜axá†^`xáô-wÿ65œl q’õ¹ua:­DÄÊ®_§ÅUõWQs¤J+æÝ¥L?ÔDô³ØÒs9ÍEi#_Ë3<¡ŽsÍ·sCŠ[Á¦­„>yÊæs×ôÑ#7‚uÝç¿úÈcµ’á Q´W›f{²‹Æü‚ÒÒÙÕaÌ ‹ƒª4»à•s+ûZʈEWOÁMª]W6o]¡¡È£Æþ(¢Ûªp÷ȸø½W_æSÇ¡áÝ‘á'‡<¬æm°‹~U§›íz¦±áí<7Ô\…XM`KȤ…Vs±•sHs;Ö¥Ùˆ®1éÈXN9¨ô}ÑÕԞ˛CÃϳAêë¼Çû­A+=þÑ#§ý›Ô –g2‘7« ëèñ£¹aßÈìörncÎç\ârš½%Rœ¾ ðq&wšFƒž«¢r•ð¿uå¦{Ô7î–*ÂØ·~ŠšÛpðÒ ý¡¾ëæ?憋yjHûÿ-ó:Äü°.õ=B/\k [G©¯¯úá†^`xá†U¼hG‰yf叿ÉÅ#CÖ8õÞñ~ÆI½™Á…q»x0„×PÅ5–=ÏŠ=Çy6_93òäËÅ .DÖŸÎ 5{³Î¢>1¼”£|o:£)µÖíù¹fše^r®2®§QEåNªåa¶î»;y§½Ñ@(Œ¿ä¶îêÒjîcMúŒ"BþBšÇÐå;æƒ:eÏOnÛ96Üí¦]²p“Ö·¶"ÞÑOž…Ú†ÉÚÓ&‹Oc):³$»´[´A›`´éI#€¶”j„ä²`—RWqçHƒ× ;ikAJq?>ß4Äw©2ˆ×&(†¶*”^,)q¾:2H=˜jލ_›2 Õ9%F²d8¬ì£ 3V™Ž$Õc—(}†ª‰Qý™1™®s¸r œÿ…)â·¤>¹Œ¢R›#ÆOYásCØmðlô†ìl«gz²›c,6ï‰!”3 ›6ŸÚ5â÷|L~|jàŠ`F‡öà /0¼Àðà /ðøå¦ý£²éÒñ¸I,×vý¥ñÍM3æ³ú©ÅYžÖOW¥©nçAЍ›ÀØ’uÑY8þUÍ(ž¼"wìOvSsÄ_‰U¶gåÒVï‹ ®Ì=Ä­h+’¿€–B?¹Û)žç8}{hùF_ûÅ^Å U/ÿå²öùoV%é 뙆±o”ïÓß¾Þæo ´™bi»›§†‹§›†¤ç@ï†(¹*ïç©áçÏ7 ñ-¿q¼tx†À÷G†P”Í?Ž„gQ¶'løëÙpµ3„WFÇŸÜr«P¼ß“ø%²´!ÒƒÊW}hF´×AUê¡Ov]AÕ½{fàîˆ,kìÓ\s,ØEì("óAsÞ¿åÕ¹áak¸·‡µ™?7¬Dr5÷  ¸/ vØ–HkXΪ»R?“«Œ aîKéêÛ9xm>ÅZŽ÷rUg5\9¨+˜3°ëxü“A90aÛ‹öuï+j5ä±cgå’’­‹'îžE]&&s…º3Zƒá†^`xᆨµÿ)óU08uÞ¾˜¢öA–J–d;7¨Û‚ê#^ŸžŸzÞ£ó*2A:JÏ9lŒd!oŠk0ž;þ*±(<¡Í«zR¶J…Š•%ÆŽõ9̯+g®4ßð/uÔÚ³žyR*ãÑæ_9R<ºm*ÿ68 Œ’bIÁ$P³:9¿‹‡†Z…tµ5\Ÿä'ÀX'í§ãÝ׆ŸvÅÞÞþdø°~yf-’Z…ƒ‡ñ:ÁÇÚ†a ¿éW*P]SŽq\Õà Ú­Se8pdM.üIs}‘ƒŠ|QpS¤|K²=þ|cOEFÑßùzg8ybЕHa,XAÇÛÃü߆º·IWèc ê;ƒâõ+±ÎR;V+’’µ/>´®‘ˆo2ò˳,¸£+*dÌ…O™!ôÔè(±ozÕäÓ÷Ï×n$ÕÞªÛ©ìR ”»<Áà—4O|E¬äFbddÿãóŵzDïjžN. ¬ ¤Ê´žŽ|ŸTÂØgSªbÝúÍ ?o§)é½=Ý4„ò¡G{ã¯>3¼~iøù¹AQx]•ÔUÑùphH6¹¬¦díiá±XáNñJò›;ôšAfBÚ—"Gºîj’eÀÕ¦85ç0¢ÿU eo¶9î¥f‡¦72B¸Ó³§†Zx€Lì\387ˆ¿ÕLèÖÉwÑíPþôÝ,ç¤8±`¿0¼Àðà /0¼ÀðV¬(Û*z%› EœŽ7Ï g»©Ñ™?3¼þÚÀž,)»LüÆ© ÔJÒ屟9œÚR„³Nv§õT{.>б! r&£ÊßóM׿ã|Y]ü™•/ä”hÕ¦ÖÈ9¢7_N )ÇoO¶½ghîñÏïBžjòVêpí$NµªMsm«Ôs±Qõ ê+ÈöÒpˆê0ÿYÊá?><7Ì¿2Üݸºµ—ÎCTåË—á‰+²IF‚Þa¥Îˆ­T–HkíÓœgî%úÎÁÖ]DâôŠû‚¤Ù‹çþ㿤ˆ¨Ñ»ýÖ±5Äêsˆm åQ(³Ú½Àý‘AJÈ1j|´r¯§†³cÃío6 ʾ±ü¯â’¯fƒ¼óÕ Ãw[ÃÛ'†›sCx­ÚUXòTÅI–ë(í$÷å—ŠAå#­Výò±1KõDð½ÉòÓ—|ËÊã¥LQÚrËŠ+?j\•ú0ª±=97p¾mÛfoâjÕoƒö(¼S3jºZ:¨Æ"¦6Êóà /0¼Àðà /@‰¤—å¯Ü~65ô˜Â¢äöãÁæÇ|âÓè)üê3ƒN÷bê¨&6ªÂ)šƒó»¬ñÙñÜÐs¨Tï³t]I15F@x’ù67ÔøNº£x?>Ÿùxœ35ÚÈYZ_aÖ("PT¯íWåOYšcÒ‚Ó‹Í@òè–B¦ Óÿ…7q„ð¼_ùbY!a¥³m±ó9…1/±xÝ‹r>ï á œgPŽè›§Ž#•»y–XkÞM†™„z=hG°ÃiÒfíŒük!1ã~=óö䩃½{hÍøþ2úÆÛÃÅΠü½‡s39»¾»4|n`~Â/ßN óݦ!2i¯‹âþB= øŸMÃë'†7;ƒ,ê»'½®ª~RòáýU1êª5^-ùJ\[c.«Nv·ê·Ô¼ëjÃ÷½žvPxŽÜ×A+¯Ævk>C®k“æ8sæêÉo 7wêxS‰"þÖŸøÙ‹©ùÆ}6‡|5øÕ«£©AÑdr†á¿’Þï±á‹–’þnxá†^`xáRÌùZéÉÊÚø<¹¿›8Vú+Ù¢‡KÇsƒ"MU6âÅ´3ÊŠÔù‘š^a‘²”ó‰ŸuÚJñ5E”¤r°’&5ץà #Åy6.lIúÅ5pV—9™Ø°Òƒ‰ó³wš˜>‚usiÞO”Îѥ…m}9·@_Ì™@V­p_ >ÎâÞßB?\‘û‚“2Hïwõ^ÛÑ5Æ;ŠjÌ£C¥Ï÷€šu¬˜[9sœK 1Æg‡¥Ö>é›áêøW8ý­üÔý±A1÷›_jnjzF²0­¬ùO©}pôø©ÈCóìâ‚4n²гßÞo¤×wsjÿ•ÇùîƒX#qqû* ûZêï*+¯œb ’ï¥ÿÝYæç#;:ý-ÆœLHÀŸÝJ¾+Y >_öÞ"ÌŒ0ç\_Ô0é6Êëd™Þ ÁKÅUÿùß^üáäÿM ›£dSWrÔõ34«û]Ûj^`xá†^`x”£[”Öxá‹£ÿšòš®?3\|m¸ù­ááφ[Ãwç†èökÐ~¾ÞÎ f~Œƒ÷ÈÓüIìJdC!fÄÕ'…:DX¸®µÙ0P­Ø ¥öe¾Õ ´½¯”¼J>žãý‘‹ëšìsç?G]Ò)gÅuNq‹Êk¦·J÷.ïéÑÞ¸_*-³cuvn¸~j`¾k:¡#"¯xe^²¨÷äêÓº+3F×fR&®VEQMëᛩáäÑÜò$ g•ü‹[źò\5A÷‹>×ê.Êq¿Ìð”×›‘xf¸šç+k=95ІP}‹£Z•˜]À] ÷º_)c(º|‘¿óÍ©Aû`ÔDß= ò ª“5Võ«Þ¸s`ýµh‹"FéW~±¤ñ.E²Ø­ùÕ’­ŠH½Û–»Ï7 ºæà™_ÍÚIZÈ ¥ç®{²âoYGY-sÕyã·P}ŽŸÀÚ@ÌüèUú¹!Í“’Wbß% <¦žKØs뢥ïÒÜ–•㾨²R©¿§¿óý7q›z¦ò,Á§)WDª2Ò‡q«þËl&Izjšó‘#ŸîYâΙ/0¼Àðà /0¼«ÆRÇŽCÉld§¼€¬}ôþðÞ41E•x|êáÔp½‚aÀ8œ\Vl]#Ë+ñæŒñ4 аQ:Ï*NgÌOûÈ0g5:¼pÞ"•lF\?zy¤y‹ßžýqj»êƣˌØØ^΢™ġԣÅ*f6)û§xL)Ü’kz˜ç‡\–ÜŠÔ-CL5õú@¨ó|kˆ½‡rVÅ5á)÷ññ1ò âi¢§äÁédˆkF–#µJ°ÇˆOþ£áêÏSC\Õv|\tuw†J=ŃäÏNùº¡ÃÐ\@Ã_7ÿYQæ·ÿi¯'¿ §š^mGµ´ÄHÔª®ˆº–#æ¶8ÛÇçSƒôåîfCòרQs¢þD|ŽeÄWX·˜b”5F,n°\Ú/ÑV—ìÍÄÁ¤9³G_:±1äOøÚ®ëº/õUFæV™º¯Ë´ a ¨IȤ'G³ÃÙQ±OÁvº•påÈ2ÝèµÃÔºˆšYÿYï^`xá†^`xd|þW%çXèM'M¯ˆÑü¼ý½çSÙ"Í·»ynXÉÚbΧl>œÒSàü¡bô¸xÒL>¥(•ÅYª_ìóžkI|Ü1‡X±±`EÒ„ÁY^ï‘ w²èžò„£Ÿ»dzÆãÓMÃæÒAßA_ñ°<^³ÆÑ`Ì:²üÊo ·QŽåR”X¸¢-k9òçá%ÍÞÆ¹XrnˆÓ÷©}-9ÚÁ¼çæywКSg©4H ïöéÔ %ç»{Ãëcƒ´24’ï·Sëf@zÝ¢ Uá·‡†ˆ,«ÍNÙ`9ĵêõ‹g†7Y†WóÜP™®¦ªÈNqRØyú Z’”ÍX2½S,žÖ¸*N”xqåHé Vüßϸ-­ãÅ5“$þÊgQè6×ÍHqR8§Å«™þ¼"£›ºŒ³µþù¯ç¹AÑö$ê*sn¯<;´³ âý4W bõÉà /0¼Àðà /ÀèŒbmÉj•1QÜJÖòzgЈ‘{8š’â±rztó§ j”ÚmSqpªOôñYâÈ9‚¿¬‚Uwàs£oQ|ïï ²Ø1’Òä¿’ ˜Æ ±~®£Ðš€EÒ<×ëñt´sàÜ@ª#÷1ÃCèOy€ÊÁóL GÏ0\<Ý4\=™~>Ý. ß=3DžÀÁtv01ç!ïO°ö×;ÃÃï ?j,>2Ÿ⯾Ô_2c|&¤È,v}i½0öZ¸—²¦ÕÆ"Â^×íe”–6\W…ÝàZæCùöbó£•:O­çƬpJ؇íÝ"¦]q à¢ÉGU[V4ñTèˆ$MUYªïŒ¾åæhºéµŠ²¢M†îDxýkÙ®vxá†^`xá˜÷¸R= Lý¬êæÛg†T‡v¢æ}ÕØn(`^Ū£Ÿæ'm²V%âÅ‘ƒWçc1ú-V4³Úøþè× ›¹R‘sÞ9+Úvú 1!E¬F‚V‚M{tCaØGûng “½K¾2ÜΆÈZÔ(QKöãñðh¢~ ôÐxmQgtnˆ{Ñ󊸰Ï|Ú䢰ý˜ŠßàÊâÞå#4ô]Ž«sŸ+•K,\Éfö¢·ä-÷òzjôÝ5–ÇŽ!8kË#¨«ì¿ânWdž÷Ï î ¯O7 [ÃO_dÏ¥í&é ýëP·ýÕO¿2üð'CèÝÁkת(U&Ša{õo½3”÷XcÈù‰'Ë|ÚÄ$ƒªÌmRH ?E6õ K\"³Ì1HÜl±á‰/¢_à}Áºî妛æßâÓzÄÖp3xG=ËåÓ«:{dH]o8÷ÈŒaþ÷>¤úëE«'(½qéÅ­°O±_r°sGd,ñðà /0¼Àðà °–G×VWYÄ)d9Ù1YÝ5Õž¥¶êykê¾ýãÖð˹A'SY°wiX½ÚôŠ•HË—k0ÍyfW"rÅÆj>ãôšb=Œþ ’[ý`%ûFŽ‹]{¨†Y­s\°"U¤ý§, æŠR°çé\ÌNŒ2ó|ºG l%ŽUpòÜvÌúcNsùÊë+³eÖ­D ;±òÌWäRƒ¢xátg®y Þ -F5U"ê×ó—}NÅÏ?Öè-±uÞ{Ô÷éî|²’Ÿé+:žµïgÞš¤Æ¬þªa1\yk‡ß:ØbýÚdÓ´¯è»wyŠÎG¦«Až…õ¤¬8œxc­YçÖ’‡Þx¶·Æ_O Q ˆ•ž±d½Rá9Ã1žÔâCFD\'9^ñ-6(7#fNä*;|4¨Õðöxnˆ8¾²|}…~ø/«ßž”»ËŒe€„Š8xN]¡¬ÁësÇ<5$v]ù>†ÊÌy7O Ô0g`xá†^`xáxâcß½t‚ÃlO±BZVv öÝ_:ž~<5ȶ«/öë#ƒìáÝa;ÚLò×R<Íšó ΤZ•œ‹{µÏÎxÊë`Ô,Ù ž1}´St¯êE33uCâ|˜—HþŠÖ>X©™E$׫H¢×¼ž—+?«ÚKçAž©ËIy%®ßÂÇõþ/îëÇ©<¥»tö/Ÿœ¬2}¾œ Ô"€£_HõGÕGPU|ZúXŒenpò¸Óê{²>‚µòë=ñ-º/ôS$W›UóEÏt}ˆª]y€Ü ŽU\‰3]ʶU†aÌ|ŸK¨ºRÔ’û@ýüf6ð.‚}"£<Ï]L1YEK²·sõ<÷ARªwN&ÙÌäGKÕãªÊIÜí9Uò¨5·‡£ ÂvÜ;°º^›AÀÖÅé¸zʼn¢k¡»mjœoÎ ×óÔóGgL­ñèÑãýØåI…bØnnˆLÝè¼óiô?üK©¯IWKËV2ÙÂþÈ>c>¬ä Ò×Tf†l[ÉMÌLe´xåŒÓû¬f'&Â×µõ4ÉÒ­€ž7è˜ûæ8BCŒ¬£N÷nåúgÚ8+Kö*fS0nákÞˆ­ÃË×§£Oî½>íçˆSÇ;•yˆh¦¸‘Ð=¶;š¿0D/QÇÝSCôaÄ^îç/ ФK-4‚MZzñ(;=^W"D]¹ß‹=¡4=À½¤YWÑ‘ÑÑé;¯² ;`lêþ><1È÷ÜËe½kÝÿ»Aßøã¥áñg“Aͳ»Üx¿YÝûéAÞsž§¹ëKó¯èwR&ö~iL*{¬¯±‹Ã /0¼Àðà /¢Ÿ:)3/®tœ'¿‘,µ”µ.<Pñ&Ùsý­~æ?ª²5æú«ˆ°(çð¿æ†ÔåÐïñ*Ú+´VìIZw¬¬aþ!*›ÈÅçì–BúÇÄ~À"%M6Ú™ú¼|lÕm'e6ª›¡bdà@äôÊÅ#ƒ²vë:›(þ%nÊ¡ˆA#³Þ÷)“–VN§NDÙ:çæÖ ¹UUŒÌÇœõPÕÛÆ½D‹mhÓA7ù¯ÊÔíñ)+9‡òeˆ¥Š¡RHæ*y4ü‹n˜ì2Ÿ|ÙBj‰@͛ʩ;ydÕzô¥Ýæëé+FÜ¿K.i¹#fSÈÆ&5*¡üN¥D!•õ¸ZÝ‹¯J·Ìï_ÄèÙI1CïWãëÙ  e)_>Ã㻌ó©{$ÅCYaG½®ä°ôë!ûz}ˆëJÉš¯°‹âed5ëó™aNO}aèwd£‚Ñ’>¹ïi«5’Ê¢‘xi ª2œÌ@_óC"J;óÜß9¼Àðà /0¼ÀðŒð¦l=ªûJï÷÷ŽÂ'Tþ„§°û­áí‘áîÀ g™¢Ï ŠëÁ‡¸ªm°"긭SžT×ÊÉ:VYê•cÞäêÉæêI(³ng¥tý‡ÐL+6г+e3~#epQÉñtÜKÌ®`x–oaߺÐ.fVzÑßÇ™Þný¨;³tÇ ¸·IôÙìØ|¬èÕs*4y”cìˆa÷g7¼Àðà /0¼Àðé4¤³?¬×ãJ¥UY äŽôYþïw†‡#ûcƒ®ùú‘ÃùŠû!U[q öºt9Y9ïëÔ†|Wfd­¬,ªò²ªˆ]o¸ö™GÊè0s©žQâ’Éû€5¢ŠBTˆø*ãs×ߪ$¼¤VŠCšÆ=ÇõóÊ5óI¡ëz¬ÄsC½GÍÞ´^X›FûYªæÙ»“s#|7óQq¿Éãzâóù skk,ÏËXË5ò›þ s›JtÉóÜ]r˜»^™+oS>½"ŸÕ«ÏÌ&GoVõl‡Õ[ò>´ØÑ}:5H³1¼§ü‘_¿:sqöÞn§†^lºß‘R4f8¼ƒvæ'¿› /¦†¨K•)v³BÑÿ³§›†á†^`xá†P·>Æõ˜ssžì»Rm@ °û”v†ï ‘‰ªŒPWB^„ø"ö×Kw¡…Ê÷ˆ¸E¯“O3?ÓšÂ91Ù“=g|Æþh¯_Q"©î ç¸Íaf>G[–íá‰AÕ%‰}bÜö™|OÐgçSÕ¡9ž‘q§/TxÓZ×`u£ë׿b«©*ÆÊ—•¬Qj_—ÝEŠÐÕXs±Ø+êd…åK\ú˓ՉO wDnŠ^C {¸ª:Ó ¬ÛCIƱÚ1nÓ¼FDuÅÆìft$ÂrZ›òd«s¼r©ëùÏÈVź ›DÝ«äT{¸0-ogC÷Ko¦‡†°3è§©y%¼«GŽXŸ«æ_®šñßFo‡Sƒ~+«+6)T‘! ÷p$é :¡êŒPð„‹&³^£šLY²zFÇsCxÌá`T­­Hw\›ÿíÎð¸ Í=îüOü¬î¥­Ö_‰±Ñ½ˆ ö;Š”µK{¥Uü¹¡ç «zÔŸ>"ø¯ÿf¸ç}ûðà /0¼Àðà ¤Ð<Ý3–ç³=¾—5A%rÊÈcD‡qs¼Úî :-Ύׇ†8ý!.‘E‡QŸÞÕ§è]²bm©L+…¬â‰éõâS’©éѧX‰¡ãÔL‹ÏŠ›KCgi-YxVÌéô~|Õyù{m`â%œýÓ7J#:]gñ¬‹‘ߣ •6ŒÛJBŽäŠó³®»‹ør5<×côR´·ú Îùâw’Êœ®¡T¥í‹·FÿP\ðêèÏîlžÏ¬í»)t¿ãGøíl ·ãìªÀÄö,Ó+S½?æeeDמˆúڌȸÇ‘wÝ-¬Gä$¸2‰tØÊù”%ùáÀ0¿œŽ7ǽ"Iõkúÿ9örZkÐ6”u_¤¾ê¡½&x¥®Y9$W—†ð1HÉÂû'ß6§ó±¢mcˆ(°žH(®¨ÞÍð~6Ô\—ykè*vær U}^¤ØÆœ‡°BÌåÖžMkŠyÂg÷†TëZzW%KÅ|ðÀW¿™Òßb- /0¼Àðà /0¼¹¡ÃÏ)Ó¯ðçPE.úEQÙἇ¼€æóõÖ -iJ|pÈ#¤¼A­Eüløú׆4z¬!K€c¼5ù5ŽgQH¨~0¬bÔ¤ RC¶G?‹‰‚UL±HfÑ—i òKï×lï ƒeÌž’úÜWÙ“ ÔçÀ?&ÏH¥ú8Ýî‚5MœqýK×›d۫峑ì­*fÒ“²v,‘º~fH®g±Òo&¦Žñ_=5òœ¥÷Pz?}âtô)ÝæøqµwO uO’ð4Ÿm NFvïhn¸Ÿ7÷sšúZjh ƒ§j¯…Ÿa˜«žÔí9ù Q ž]ðfk˜Ÿ9<¯#VnT· ‹W ¥8·NZûiúØ~÷µAÖ@쓘ÏPžô|î."«\?û.(r˽÷ú•#4è †Ý3¨åy½g ;™ú{îþèxaˆ Ué E¾ÐÓs~{¥VT#©ÜWÕˆËÏ}ubݹßà¬öO‹'‹ŒšTÓZvtdk‡^`xá†^`_œ+"Âåì\3*SN©ìƒ"ȪqæêÃŒ_Ô‰û{Çϧ½óûyúþcg}¾²òÄ;Iåg%Ö[…ub/ìÊHà¼g=¯yOvFÑð]qÂ-ŒDâÓ¢—Çræåi=½üCŠm•±"G¤õêmÒªõߪŠÿÊôdí_Z]äûíËkå~ Î·"ÇB+ĽDac"ºÞå)²Lû_¢ö5›w_Œ~ƒWÇ3}Byš)fªo×sg|¹Ä‚Ó:å7ŠÍó}ÅÕÑtõ1b[#ìÅóœj÷òâ?£Kˆ#âót7O´?ñÔ6ÓÉ&¿KEM‰ôº8FbNbfzlúúÐÐ}_›GÛß?d'<6è.)›éŸüᯛ†“›˜Ø×2õ¨…­{80讣 •ôç¡ä3ʽRä‘*ÃóÒ ºË¾¦/Õ‹ˆ_«‹*Ú|ý¾ùÂpõ»Mƒ~›4[ôWn1^®&ƒ+À¯([²[.ê4µ+Kù9šK¬ÞÕ5»õKûRÆÁ±ëV ë‚{ÔÄ²î‰ /0¼Àðà /ðÓ d%Ûå|šº®ƒ»ˆµà+ºÎ4Žk—XI$ÆãþÔ ½YŃ‚ýø›¡wvóó¾¾Ým›˩áúù¦!î‘[õJô#þ–0"Þcá.hŸÿQ¹yåýµú)EQ5?©ä–Öïºô×MU#4£üý:5Ç'ÀöÖHq|#;9ÊËDF¢/Ý î1YižU9&´oZ§W»;ÅgiöÙçPf(J 8ѧqãw1’[üHªR¤Rú>U ÆÓ÷ä»*SZkSŠ ìª)Î0± Ñ“ÚÑõvGÊxjáU5s\SâÞQ9Y­ƒ'ÆÓu×òþ™±ËJ<‰ý6ê¿\ZŠïw›†ùÒðakˆõ«lÕ#ƒüΛ£Í›®3eG”j1—Äí ŠG÷IÕ[AÕœyΊ«£ #¤úLÕv©'{z/ì«üöWÊZy{祃dWo“òÞ_·ô”LyÈE/ŽŒ–XŽùÕ 鮵sØÃyF¤5¸ÜE]-Ô²¥ÇÕ‘Í4Dÿú°™Ë'++'õ‰è®‚îêÿb/¹>‹>ÞìÄŠbx ÿœ0Æçí¥A}Z“E•ý”ª›j¯sþÍ÷Ü·|¸4Hã‚ö*FÛwkÁÆ [ž9ÀQû‰^™y÷å#ƒ~¾©«/÷™è1DŒŸÀ=FÚŸøç /0¼Àðà /0¼@:Qêz<²rÖfÆ`©âŠè§-Du1J¼—Ô¤Øð¨—=ŽS²dlxr¬QoäF’/Š­Èr/û¢ŸiÕ–€O|… ç:yâð¸•âã7[ÃÝáþÀ ÜBª\œntbÕÏõ« òWa‡q§52[yžTÕ›YG¦Þc»Ø×ßÒêòJŠu]y-äÈOHjxGKmWò¤´óú ÒG•Œ÷ý #³±êÕâäY¨a¨ëôè-û9VFëz6pâÞ}„¥ûÇ»&#¯ÿj2 ò›ÞïQÑÇm;×ö&‡†w_º®êËÀ †]ò÷x]ºp™ÝN'Û°è5ã¿U(ùÒ‡Óâ™\ûQGkÍí^ÔÄ™UIusÖì~óvžÞ~Ì_åÓD¾¨Tà^.8ÙÎ ú­2]Ř©g®®9”î¨ý¢=­2`UX+Ùéšâ¥y¨œyñ„1’’ò€ºfÌ+èO¦z4Ï@¨óDŸ?¼Àðà /0¼Àð+<,vé$˜¾ËÏz1ÂÈêŒSm2í N²¯@_6ª(`½°êœlUÌ+°ñù97pœÉÝI•…×f¬zÄÿÕkíÔÀç~ñ§©!ô| þò…AûFçSÞuäu/µÒÇ£¢rtŒÕ5#NÊ}WMD½Ç%Ç!æ'U²Á¨š’:Ïúäù«©A£‘þ™ŠkßL êùÓÑÔp{<7tåj÷ãê¹éV."¶Tí±¢-29•£‹1Ý]ä¸>´L»hÿ´74Ð[%…y´•÷UÙ[%Õ‡r'Œu1¼Àðà /0¼Àð´Ò…mßjŠUAKVc¢Ñƒ3½jä•Ñ_ÃÞÆÉñÙÜòc=zOßçgœ^e»žM 'Ïæ†ƒ'Sƒ2Ó‚Qqµ®Äí±Ò+Fµg&jœjK4v…e*¬ =Z°a5K–±lxð4oë¼âëœ'ô}øüä‘ ‹ÕÕ›ÝÂò³B3ùǸ_äKãj»rv/^K˜TQiÅç¥Îƒóæa͇ùÜ ‹—:j¦Ÿ ˆ+;àüC÷òÎ)_Q¬ÅùR%O¡eMíåî×ÀrÔ*úL±Okz^¥Ðè‹hµv¡èÜ”r5±kŠXE̽sV|WÔ¨š½Š>’Ž4[hW£·¯ezôY껋=}]Sn°ò{i[ê>°®VÇðà /0¼Àðà ôøÂ§ÕÖQ‘hlŠk<3¤±e²DEë:åŠ+:TpKm‹*ñ‘©½cêY¬ç :Ø›oO49úê=Ìuü»c›¢çõõ=ž1qG…+‹¿›ä?GßIÚ1°‰áÑ3’¯×Î\ÿ÷Üðø¿§†ø[Ô­'nAô¼÷¥æäãÏ7?e§ØüTŠ“¿¶b3Äê*Y¦)¦Ÿ ½‹ÂGaœ3Æ¿…Ç¡O¿jîaÿÀÓ:=N²áõÛË·ôŸ½§RüìY‘ˆÆêg/æ­Í®“¼\r5Ãþ?7\|aˆzLÿä_Þ]^m§WÛп;œîzTúæ÷sCV]CæÀ¥Ã_WÕØ‡sƒâ¤gç]ùëݦAQoihðé‡nuÂeÛE£éêšlf«¥bÁøûÁélø(䨛´0õ97»¹!F¶ˆŠ7W§†Ä‘J…Ãß/ jÞˆáFMmáT‰VòäãÓv‹~Ê‹.–„5¼±3dG'òêÜñRÝšŒ®¿gxá†^`xáØ->ŸŒ„ ‹ZVAº/y¢ î3?E$aUúiÚõuQÅL‘óši7³Ö/]‰¾ÕñétO‹Q¢‡Ýƒà,O«Î‘ÁhÇ;uºwœkLy'O ›Ï çí8?õ˜BfÒ¸^æ@Ul®'ñPQXÖBY§ÙU¼4Kq/‰³Âì ´Ô¦j&Zx=_U jüõ3æÆÊÏðé+<fWdDøü8Ý4D.bh,qÀÞ[|aE"—^/¬™³ÔgГúa;7ür:5ˆ}•½Ò˜ÜÍsCto‘z›ÿ•ú*Öµ W.橳=v˜—u“O»¿Ó¸*¬ýä[å/|íWLFÔqó“A¯«7¥znª*óño7 ±Ö‚-tžJÕmÌ'ÁÏ¡æñ|jØ—{ ÞOÒÍSf{ìŸÝ»u-nUy.vOóª2?…AM¿å¿ÊÀËn(ûXu;={¶iÐg/0¼Àðà /0¼@š±èrµRWÄÈàš‹¥­š•‰¹ÊèOĆ>åŽ:·³(M)Oòm;xv…ÞÛSÃ+káti?Ã"©½_ #’¥jŒ,åûñ,IvˆêyŒ­³èÒ±"·€YÍóròG«g·?q×TÉ ³iŠÞg\«@•)òP:2âÌç¥ ï½9‚ó‰ºÇ•‡á£XÕ9èqè È×!'s…]¬ ¯„¨+«ø½‹ÂðÔ•ROâûv ñž½’o€ñ—¢ë ›@× בX_ïÉBÂÎHc-¡<‹w“9{47ô„O諸¨è’ià]7OßÍ9b‹]âÍ_¦òœa}—¢n’ZË}_¦½PôiŠ sXy70$oæ©AWÕ³þöxº=ž˜QÌÈoÊhe® ;11»»ÔZê ÃKzMœöÒá1=ù¥êbã~O?u\âL&£˜r¹}hd|ý¦ŒÎX®ÎóæîO“:Êðà /0¼Àðà aˆñÑ ÕÙ3ÎtvG7Ï7 •]Iu7ˆÈħ!ÇŒv€¡ÍøXUâ;Bu±lÉr–“ÚJTŽþ¨° +C=ÕwC¯ŒÕjé?–+½k[Í@Þf×F×ÎRå÷ëOGQì”Çô¹,GÖïr&§°.‰Ñ'KIÀÚmDtþöéÔðæanHÚVŒžs̹ŠK\;±ye}¥1/Ïqå¯jߨšÇA“poÔž¬Ñá§Ñ澂w·’ÌyȨ:Ö²ª‡R½Oaƒ)õ+¹:ôþùÜ {{r´@·u;O ²o·†Ðx'㙨‘A¼Ÿ”âÄõ °Yt»3„ÚF’É€½˜¸Þ+ÛI~8"þ;Cô‘”UUÝŸ ч9äú„×Åp;=}Dîéé9±~©?¬VÊ8-û®VYŒ`wÝóŠ£÷I±Z=Í’ŸŸ@ßTxÔÄ)q‘çzDž çùðà /0¼Àðà ¤˜ióˆ§(VÈhoÊrÄI³_'zìáˆêzרV=z¬+‚£K’^+´ ªRV:¹Wö†3ÑjæþñÂh+Ê©-ÅùÉT<Öoß©êŒô Ô¡ª£ì!l`Š {._¨ +¶(þ§äsöº{Ÿ¥¾îj„ŽgêÛ_X¡“æ ìgêÃ9¬¿¢m÷Åò¯D„‹ÿ­ªÔé:+w;œêqÊŒ­Q¹Ä+BscE=ŽðÔ÷K÷ìà™!²‘¿Q½mD0eW5‹ôÜÅ™p„«í³ÑÙ˜P“³ Õè«Ý‘Dh,v;ñº":B?Í?AYäw¤œžM ½“Ë¡=þÝÔÐÜ’##4¾1ºm.3ð䦆Ð߀:œîHù¨TZˆßú¿¸G×̼~bˆÝ‘"ãÛ5DµÞ’‡ Žn‰ûŸ}fè³nѸNU„äÁh ÝkÄN˜ó–9ŸÁê¸õãž„Ñö²+î‹Ý|\V&_$†^`xá†ø¿ì"zÈ8 ì‰l‘ÎJˆBƃÃÀod\g¨‹ó ;§/Õ˜Ãè»M¾HL½bÁV×.êimBÄRy¦«qFYr>…}vŒ|šÎ×%;1][á:âħüL× #ÕÇ|©ßç5PƒÙ¹aó©e'=šZ;×Ï É1+˜ã-‘ÄnqÛÀl[øÄ´Ó¨gU<»Ì .ÞsE#®09Uµ#VÓ¾}Ÿ;ãã\ð³1μÍ¢ÓÙ@®ÞïLqvú#FÓ¨.‘Óµ“½ª û%ÌõaWÄXe®V'›F%„«Ã©áõl {]Ÿv¨C÷•»€ŸÆ=™Ÿ´ÿñ×É‹*¯2²[•‘â~ªg8"¶+±Ø Y§Û­!Æyì°Ê) Fÿ⊣­F5kðK\ûÈÓNL¦¾»‚•l||{ØÛ£¦ë§O/3j_jšÃ /0¼Àðà /PºÏ§¨+"½ãÃbùi!Óy‡Y^Ô.‹L'ÌFΊ‡'SÃõùÜg4JÈÖ¬¼zîÆÓIU]…ááµQ}¢×‘ùçèYÔ¸g5“™!ƒÁüUïÜ‘2'±¢ZÇãq¬ag”-NÜZ šKÎ$/°]PUò"¥£.ãPÛÕ^ñgžšÓ{t³»% 4q)ÅG¯ÄIÉæñÎj u!Jì5qGÕ[[ºÂ%â{s/• VÇ\_øš½ï,{Œž%ë§x2Qäýÿ®ÿhHìœC•A&7_ŸN ì¤Ó×àÒw2f”r3‘à'+³T½cîÿŸji/!5ñ*TWÝ™Ïð‡#ƒî:õ¯q(®*ÙÚ ±—JøG§ª±  3R^:Žç†ÈQ×8©§÷p¿Þm®,I¾[uØŠ«ynPŸšž?ïu—>žÁJégß9‹©Kœy±EiÇ|ð5óÁƒÕ™_++9?WvÈeÖ /0¼Àðà /0¼Ï>ñ¼pZI¶3Pñ—žcöiœ”ßÈþõ:K¦ëG xâ`åÒz,ªË+§l®e'´£“×P>j¼²ÄkÒõDÖ´ý¬»Ž(Y¤‚¨ý‘Çt[ýphPw?² Q7ç+âæÛMÃæhnˆJ™­áö¥AgÛd'y~ÄlQ_Ë[ƒÎžbŸxª=y4ôÈ—žµz2Õk|–yµò,˜ÃÆxn–´PSÿ"sBî¥rM…SJ| íTùŠ–JstɧÕ·ž¦¼mzî>vŸÆâ»üFj*Ö¸³ü©*¤sHø{®·®²PlÓì*9Õñ·´'‡ŸBwÄ‘½Vkúˆ®bg69˜ù,økîÄôžŸO ¬Ù|xn¸:6<>Ÿj?wæ«sG$Õ‹ƒ!âÎ/ ìü¾’S:êø±u¹æèÚs Mêî«Þc⪰K£§\ÖynHßî=w¤e}v¹i¸Ÿ ID:uxj•ɉ5¨¿âê±—Ý#«¹eõ /0¼Àðà /0¼@ª×­Ž hGD¥°ÄUoæê¡¥M^¥^ó KÂN÷^ó ‰j2ø…”;Ê‘äU1¶Â3,g¯Y–?–Þô)¢ħÞ!±Fèž³Â¹Õøg¬ÿíë¦u¾ ì|Î[k¨ÝU y„% [ÊH·>AµíˆJóÚæc«ùø¤¨ÖK»ºâ—­Nö§Xãn¹£{ø¥ødäy2z¸âq ³’×ʧk°’3P3Wq®=â’dÌV0rzôAþþÞC‘f;£Ã4¨w y˜‡yju(Q_ÿin`÷ÞE×{ñ¬,›ƒ9݇.wid˜O¢Œe0'‚º=Þo ¯¿4tM/†½V(9ˆ9™?BsOwºyº1”ÕÔm…ôëí©W˜—®¼YMuŸ»yº³F<›¹'$VÖ?ÿÊ!¿ Î•Û©!yFèdÖg©rY“½¢UgO¢ºŽêÞ£r¡Ã /0¼Àðà /à^ *Sü{µˆÎw>Ç¿ˆ‘TÇ„t’Bí<,Iê;¯WüTK»søÜ•‘¥•êÂT3^ò “ Rάn1íËë;Z*;’…ÇsÜ´5ŽI‹Ço kŒzÇ«?á~ž®ÃêêdÏá<;5$M|,ÆÊŒ\<#Ûù…AsCý2*ËÄ.?5 w%¾L«Ž«J–9ÉÿÀ#@É!EĘ¡WOÁ5ŽÌkc\¹Ê²½åJjŒ»zÒôõ—v&5j¬u'•úiÍèg}Þ|fˆ†?Gͨ›GÙ|Ù.Å=ž;ôÈþ ¯½]Ô;~éÓDíΖäd™ÁØp6Fv1lZ¨Ä;ßÂΛ}„ý{½–J–Yyªa+B+Ûûæ0½ô® í?Þeè×àw$S£,ÄÍ“Ž üZ±Æa'yï²¥ÎëÓNŽç“ã•®=)jדݫ9 Tìçž;p*`pÈ¿^`xá†^`xˆz7„óŠŸ—ÌÏñŒx Ï×ǜᨲ?{97Èæp†Ä©ߘX‹“¹–Q’P¸¢Fó-k šÖ ã¬|³–— ÚSK§¼•ˆp=ã—oQOêÈÄóórbx÷ßN êÿ¸rúVÕüÑæâ(Τɛû·G,s5yjÕÝ(&H¯%Îð8ùª&Ô}>–ð|¬U/±­tž¥ÂO¬ôPˆ$VÍ >;zÒd½‹Ÿ¢^÷Þ(s]Yä3™tUVLj„έJÔ»©:2­Á½M6“ìP臫~Ês>}ߥÌèSïû½ø+·¥iö†5ðY¡Ÿ{Ê“î 8Q½ÞN×½'iºNìÁjõÅ—†ë§ÖŠö~ôç¥o§ÛþñýOb™È†"‡×šù;ƒ…cÌY²ìXªÑ‹>˜ÌÍNÉöÒóE<=|“çè†w“Íw.‹ŸÙóK-CU#vöÈãCE8ZWí|¨ÁYª«ÒΊúÉî‹/0¼Àðà /ðÞ 06šîš=¹Òõ[©¨_vø ŸÌçÄçǬµQæ[9#'~†FÎ"žŒJx23¼—jÒ)»DU2ׄˆ°f8¹ÎmD„?†Hzò¶ÈMM*yˆ©%®€Š[ÁŠø4ÃøPÑ+æóÙ8æÅ–ž}axøÆ ú ³£¹A]<>|µiÖßÃç†øÇ.ÎÛbEW0pbMó­Fðkþ@ªë¹»º2ãÑi<‘#º¡£b!ï…sl·d¦k¨WÅW8“÷hk<|a ’pßù,*ë¼’_žè+Åõú/›uïŸf n®ô‡Š«Òýʆ ´+­ù¬ÃÏ©c‹V´ï$cžc~&}6¨íÅoeCÄŽJ;\_V·³Ë”“ª Î)–Š'~riÈOan892ôÌpïf+ y°]ÍÞ½#™Áâß{3Ï ò_ºžë'SÃÏ ÇsÃÙ¡A¾C÷²b=п&ÝyѲk+ÑD¥m,;™Ê\qç<¼Àðà /0¼Àð\_I "ÙEˆ|Uîæ†ÞýaájòÚGU”jÉU/ÆLNØÞtýaɽ(5ÅãÈ0*„ó~DX4ǘIµ'ò˜¢Ÿö7°^Ìï:¶ÊÙp%ˆ×ã.dC5ÓqÛ׎zħþõˆ ÅÉÜÂõÑܵê˜KÉ ÃвQóªzêùÒ {¢¬`õ(y¸ûÿØ{_ɲ+Ý7@‘I"A‚PJA2¥$¥” ””*RJi)›dƒ&I ’ I`â:’Á0°Jb•L®T2©5d¤2 .PC41°Á€gðˆ\0jiß³Ö·Nߪu";Ûî÷ºmïÐg9;*þœØgïõíý­«¯¶õý¬¾ª}¿=Ùð=¹]œ±µžÛ‚G•£ZºÌ¤kHŠ"bVË9}yÉ&«>èôëøùôJ‹§Š Õ…£„Gª-†OûòÃvŠÙ¢NˆØ{ÈJÓãœâlõ :³Lq­¦C†büÔÁ¥µÆœSx¨#æügmDq&,‹èV–;\·¡_q-û:ŠšÌªÿŒ•ZPµœn[XBu¼Å2dÒ¸#úüð»å‘¦Ý ©×¼GäºÚC ›&?þSCì7¨ó`²`]‰šñÇøü°KèRZ¢;4V: tè,ÐY ³£’8“åµL« õЧU6ûŽã÷êÞÁºV¯MTEØX©8>Ujk¹ä †>S5¥”©¤uÄÈ·ÈÇJ/+:[(Hs¦Iü++5Ë`UÛ’9õîÀQpá›ÇP¯WÏnõ%Oʆ²àa%’Ö„ÈOó̓¾+ê ûÚ¡…TEUúÒ{å[ü槆ËÃÃÕ‰»ˆ…ßN–Ü燭:m)-3½ÌTrê|ctAñ /|oU#‹9½Ò+N¤…EäüIµÍãú­?ŸúááCÜ;ÝßjôáÚÚcCÌ WE"Ëã »|Õ†´áiM•hÛX­ò8ëõ^‰šuc"×V]Õ'ÄwmDúFÙÈ>»ÉOWâÙ[x&e­JS¤„+<±›RL&:°pŸqÔ®üH}ÕÚˆóíêÜ®¼}@|£[†¨nMŸ‰ ¸Øw…mœUñP“ÄGmDšÏ¨&MÔƒÝQÓüäœá.ómAWG<0¯¡³@gÎ: tЪOý•ôfŸÚúñ0‚±OI·a„XÉ¥:nàk¦Rbðè§æ)[Ö•çtüjZÅ©,rR×:‰ëwò¦ù¯þã3Ãõcƒ^óÇS¾ÿK™³äæ®§Næ*RQóVküjg8=FÜl Ê÷¿=1ÄŠ«nh±kuë™üe¥Ä2ÕçUìR2eÓØÙ“Õ©¼‘[K‚ªWÜM·ÜoÀ£Ê+d56æ6&–¤íÕŠì-Tzt^`üö4VsùÓÛ•AÖÉ?5Õ‡d΢˜qü£r`ø|Í—\³Ôåê?ìÉÈ|(÷ч½ã5G|͹®Ëœ¡9­kïM) ÖÄë¶qí¨;Ï`CõšwFxÕ 1OdI\+ÓzÏ[ЇmAÍöØÁºýg/ÑØ×¡ÚÞ—mÁ•ÂKv²äÀrž$kÌŠ1%¾"­…23…Î: tè,ÐY`õ×þ …‡”¶1¬îÝ 5’¶Suús9†éõó<©v,½>¸À»uG%+LÚ²-´‚¤báWÔèPÞý¥þFÿöèïésX ÒÝÏ 7Ï ZïÊì»v$¾£ê¿K¤èB‘þö=°1¢Üc¨««º±ÒÈŸòéφ©Îƒ_‰üàʹ“ýÔßí°i>·G†·ÃW¿F¼Ü¬F¨šAx ]Ð3ñ=U}GA«Q†óÃÂÌQ-ñ§Ö§~Šät% w?z;RÉÑ.Î=›Ìæã¸ 7ÿn É+¼SÕ’‡á{-fŸÑçËÝHòƒ—zŒ©"÷]z9w œQT ‘ÇÇYÁ,Œƒ­ê\ÚU‚÷“‚Ç( xÅbÍLôdø^mTסrÈ(—ØÝY%í«â¨‹6[w_ì˜ÙY ³@gÎ: üÐFü/}$ ífìÔQcÂUV›…±Õ|K~Þ9,^éÉsÕ“˜ýËzf®D‘47ý+*]$m~Ïê!ŠhÀ¹e²ÿÅëÍ^<É^­ z×Å­Ã;€Ü=FȾÉþËR?Iqh\}%ö¸®²)Ön¶éä 6<_ñù?3Tï0# uZÿâ? áIT€Ÿ8¢æ˜áfc¸mm„ô“v6Œ˜XíŠÿŠëµáôlqøÌÀžDŠTnQ°†l‘Ç$GŒ_ÑãyÿÕWÏ ê¤¸è°É1Ô~%±‡™«LjGrîë3U²–’ŠˆØlzrS¾[e îÊâ_çzŒSìÌq9šB±Ð@ªÊª÷†i˜W_­ŒÁO›_>kü"Øóð¹Ÿ9¨3s‚9Þ ×O†bˆâö9¦Nšmu1éWÖ¡RM…ŠªTµÿ5Zc)‡w®ÔÝY ³@gÎ: üÐVü/}¤œô’3ÕòB¤}»É¢Îçô_tž¼>^ù¨­­ð]á¼òfkH^'å¿£·K²–ˆIKžèræM¾!ZÚ@ÎazêS÷ö‰ánkP†šì^äìÓJpL<–/éZ°À´ E‚ïÒZ(üq€È Jv¿4ê–„Ò2×Ñ/=n†—mAå¡FSëúÛg†/oP¤´r…x¿¤ÕDý=Ùyt9‘úts`˜ü¼ö®w­½kS$ª~ûÉ0"<€ª;­yZ“û3)ÛkT“Pæõ¢ªlÔJòì¾ íŽ,ÀØZVÒŽ;(Ïé'ƒAYœªhMe†û¥°áà ήÇ}*PŠø5M,öFºÆ9€1O”õ¦:$ØM¥º%S2UbQM9ŸWÌg<|îÀŽ‚ªãíÆ (ý42دÖ³qk”obäØùÌ5g: tè,ÐY ³@gÚŠÿÅÚsÚØ¨x3¼Þôˆ^-O TQ”O÷òé0âæl5Bý§êÖV=LÊÀʼn!T;vñgn6ÃÍî¯_Õ¼ãúU÷ ³H=Éæ3Þ˜Š|Áº³a©ŠSØmH–‡uã™ëä÷:üÔêT‹W^|eHÑÚ{Úä߬³‹Ï”šê-¸ÍO T£…x };kGèÞ)~[±Üº)ÚÁkÓ©"=j}$¥:T>t§òoÖ<ù¢ #}ñåÆpúÜ@Õ‹Õ¼g¡æÆôsŒCUEkga»†Î: tè,ÐYà‡6â1 @ÇøªµW·ÃˆÉæûP\ K‹™V=§¬›½/º²z-§z^¥êleŸýU¢×iAÛImó™ŽùDq²S5ƒð,[g¸xÄY!°¨7É2#ÊT¶1<¶g†è€ãd× ¯öy±™)+¥®S( ÕÃê #âJ y3uDRå1¬ëäMƽ“•&óÅÖðòÈP«¾ÿ•!é!°ŸªfýD¼.ÙéÑ0⮵SU HÑ€±¯Ð•ëJôjMÄÜÓLv+µý^¿ÿç6âbk }¸8Fœo ÉÃK?/ôŽ˜f²êò_Ù)’ñ¬±@ûyúb‘ëŸÌ5«¿>> |]gˆt°” ;™ª>b&,¨‘\wÒg˜]èÏ_µS= ¯}øØ¨_ÁH’m¢îöšus›i/7w¢ m™:6b'R}9Ee¨Zuè„^Â:hã†ÊœQ#¬œ¡³@gÎ: tø¡­ø_ú­àY5<2`‡ê‹µ¬s±ˆŸL,PO¦<]rµúý=~¾!û/|Ó IÙð  ÃO ÇOŸ9Љc!ë?ü;ÊL+­k}+l³²×—æX­{À˜:ŸÕÒT÷Oq¡²‘9Õ ùü>GßEU^xâ&=ÄæmŠB,5.Rüûõ„uúxuOzÈ?É>dÃäés"Ku¹6HSÝ zî.Î ao¡ ²žØñ‡ç­˜Ö¯á|ÓFÜ wSF˜<ÅÒŽäV6®?:ú7ˆGBÿI6pÎúÑœ¹¾34œï ú½ŠE ¹@õ1’´ÉUù‰+Aåääíeh}ZdÌyT4(}òé熴ŸÑÑ#ÅêþÒ;ŒhRî:È¡ôÀ†5aZ¢…+¤x梆MÍhPïÅë„kÕD·SgjV°¤J“j€ð[üií„åwÞa'¦äû†"Çdzœ¹BcWp0\X5{CgÎ: tè,ðC[ñï‰â·»&£(,ÝSWHŸÖÏÛÚpyý’¶Àn¥öBòÿÊÖµaÄá!bMñxù;Côû~nˆz²fgŽ’ÛEþZÐ[ä -b®l\ë×¥³$OÍüäÜE½Ü'ÈóX¸<1ÈÖ©NÂíAž¬Ãñ‡·!¢aU˜3UÔ‡Àgèeöo—6¾]q¤þuÒŽEµò¼;OxÞfïÊáútZ­¬@γåü³aDØVÛKêâ”eÆhì‘ÂBúØ^ WcŠPgÎ: tø»d˜9²ÏŠvóÙT3ÙÏnªÊû´HùéMZNÎð°`ìÝ™²Æ k—ÙËšI-á:¥©`ôß….9)ß­D,Oq³-_¡ňÄ*„³Z®Û¿³k•?/%–{žÓF‡Êþ#J¤Fù2ÞCsûøÑp<×®ô:ä[CgÎ: tè,PÍêùÏ § —?w4ƒz4ÿèaͼ£ñˆˆ2ݵÖF\Rí5h)´6)·‹ù)©RÄǽcîD¥²ÿm`ÅÝä«=(XŒG—,mx²PkêýSƒrRbNº¥M* ü¶â¯”u’V¢ŸIåß #R<×/X‰Þº”ó…\3òÈ‚RTÔ-ú‹ã5¨WbGý~ýá™+.ê3ø+u®§·ñ›ÍjÄÛá‹)ŸèÕãaÄå‘áüÄp½5hí+>“±‚´TÓuºÅH9þŒdVΣCvžë¨%R=›êÆ¢(ÄèíhHU¯õ¼&’ï—¢Šª1ò3é‡ÚÛ°¦™,^d±Íõô4£v·{ÞÕ±ètmHö?æ­‡v×{vØÿ•\//¹ó×yΧºm´1J)–ý¥èÎÉ+Ž»i†¸~iD°¢i…j$QÓƒÞsÞYD•G••Pùf¿püÆàD5«NHɰ õÒ»Æ_•LÂOYßÖÃv): tè,ÐY ³À>KuþÄ=ãdn ?¶GX9eKyÍá¸Sð¯1ƒéøl!¯Yø§`“£ù ‘ã¤üdéÄ÷ k~f.”µÎmd]¥ì¤9»§¾—çîô™eÎ$E%¬½Ù„«gúÜ©J¥Ž–ô›3î4}&#qì9ë¶¥;Rx°j8a‹P‹Wž=Œ´™Ôæ8Ïè?èöSzެúm3ĪJ¶rµúÞ”¹ñ™XÑéé¢:Ùlßâ3ãçX6YDØ2nYf)z0ԛᦒóç‹øúóõp>yƒ¹ÄÌ/cL)æ;NŠM¦¦6s¤¨>áUF(–;0EA#.~çl÷T ­­?è¢Õ4μX¹µþy|,¹ÔãÃ_ #¨U†¶[/«Ý°¾x×8ߨÍsŠs˜s»¨/%ˆû=En(ç ;æÖ½nÃÝYEqè[3À~FÜ#uè,ÐY ³@gÎû,Õ›á Çéƒ2#~ld‹pjN^Žç¿# §óiÜ»˜]~FöÈRΟTMŽQ£TîW„ôíž§¦±à¬’™²P‡ ±jœILjø4笴² œ0·U³Èz¼žðÿn <êµjVSc—p.žì¿ù7£_yTTÀµ… ³ÐP'Áo_ˆŽóó¯,FêÔYâÃæ‡Ù”&æ}Ã¥Ÿ°^´,ÿcƒ<銛}û|Ñ~nÐ}¹}ÑFè½É.¹å|ý©a!Žw¡ªÆl÷âÔÿ¼8]BuQ4rÊ’&ãºc •…$7tØvh…œz»;ƒÐ›\æ›òì“Êþ«ÛcCĈª®µ|܃aæLQsÇùºï¢Œ5˜4@·±ñ‹üïÿ4D¦ü¹SΗFéŒsxÐFpU²†[ÕÓ~Lã]æçYšâf•±¨¨’Ø™ _2à’jŠ=€" dáµç‰hgïVssd`„Fcê‚:Gtè,ÐY ³@gÎûŒÖé ò·f¸ü‰áÇöHêÄln³ÝPm[õ€V”fͨRŠÇ G99’qÒç³"Öý, è:›jD'¿'-£ÚJÔ\œ©Q¬ò]hJgmDª·LªbäJå·°„ËšúôÉoë92ÉÛ¥µl¦ÐÓÀÙ† z0e‚/bÕõQÁLV}֯ΟRe‰¢Щó~TÕ»yü'¿=XÃU#Í.ÅXª¥êȱ»hÌÙœWÐhSA¯™IP†‘ňÞm _¾F|ÑÚˆäÆCQ¬ú4)6ÑIGÊRx`çªbô5‹=£F´>‡[T<¿1¤ž†øÌãºPÌ|¿Gñù¥ܤÎõ’%ŒìˆIÛ8çú¥HWú•î8xj‡»6‚³1XUïŠûå±»¬†!ø#öcg†ëf˜6WóJ‰˜öà gÃÝ``¤4•jDÄ'8(²TÐÎVŠ¥¢z˜O—z˜>@ê,ÐY ³@gÎ,ãóÜþMÍU3Èþ‡½úÜð£{0o…]ötâÓÑÌmˆVåé£a„rê÷%+G5Fu‰93 J[DŸNÒˆä¿fÝZx'Ógêô]rö“ÿ«ä^­QWJÏ(/) źÖONÞdæÓ)8P¼£Õ±ž3ýÿ4~nH#ý+—x¡è]dù…ì36zÆ ÇçD¤ŸŸúó+Ú µy÷kƒ”–ðÒÆk\€ºH½+*+[ßY`µr„¿ÒzÅZގƤ©ÊDÄ3ÓvQHº qç ú.Ž¿â¥´p¯2)çúÈ0}²{0ÙYž•¥ý»&+ O´æ’Í© n{Õ—g}6nƆ¤bA—Ký¡8cßÅ”V·¤F“¦(±@Òdfõ)ë™PYÅzªÁjóRQ¯ž±¸©¥£F8jú¡ªF¨aT}ËZHz²Ã’zì¿âzç80Ȇ«^\ÜYÄÉ_9bÆ:: tè,ÐY ³@g˜o|øwÝüÉpû߆ãŸ8Ü#ö£{¨Š²æ'§ç\u-<;:“zM€X;ÊÜO5Ê|‘Ê«B{EÆ!/ [DÕ¢;¤¥=×KŸ†§¿°H%°æ‘¥Žä©=Œ¨ÔÜæ•3Æy[Ìñ1ÔšEä'•ãJ¯kòW~\­w!;¯äý-ðTÊ®òŠ a1\µÃܶ6BqºËwÕ‚“対CÅro¦>3T0-R\U’›A÷×Õõ •€uø6hŒÓµ8|vMUç½UÕP[ ) ~RD." ¢»(ýøiFyÝÕ…vpVè™T¯Ñ¶§ÿÐFþÒá}—ηÕÊ–rŠ“üXÓ‹_Wb¦ØQ×a"îÑÕ!Ä”2Ê7>g× i Çýþº^õE1ÁïŒmVµä`ƬÐ3ìÜÊ*RÔ±IÕ3Àû1æRYž««•±²Œ…–ý×½ŽÊ$qPpº³£ˆÙe¦³@gÎ: ü=³@îV<[›C+<)-ÿeˆJÈ?²íIŠº|ÖF°W OmÊ;ßhÁôàÂìñœ‡ ëgÃÕRHŒºúˆãy?¼3S©0HÊ+]&9ߪC/J±…ˆËýòüÔß賫¦VÉà©?åˆÁ³vYÊcR¤®ÆSLJV¯K¹Nàñô½ä&FÍ¡ÒòÄ’n«}…¦Šn+.v)—[­b(¨Š,íHëhRrì×ÉûÆëŸî»[$ýK©(¢«:Þ´ãJ‚¢‘½.7ÇpZ€~1òÊ´J»”¨´<[˰Û~ͺþ°ÛR-·E?/sš4&Qç~[jhz¥ê‡¾¤~©°!¬#ÍkS—˜S†]“lxº~²€£³@gÎ: tXÐ.j íÒíëOý2vŠÄ›}L:™®OÚE‚Éo+š€úÆúÕ\õ‘Ç¿5è]<¿ï}À_œ¢L9¶²Ã´„Œc$ûIŸ¢aãîë·°¦½Ïî§®Q£a«}Õ„mD|fØ´8G#•×É|üÂeÕ·E+U÷U4¬*â›™f²*xêr¡ùóZ•¯ŽV#Ô?1ÅÖBy«#¯gîšA±уf=gê3SAÔa »Ç¯k†ìïÆŒR•rh†ª_q»YÝnÒç0Öôøù0bª‡¾¥Ð“?t;#t!yåÏEõöX¯1é.+Î,ö0XIºÊ F5¤<¬â+ç}IúgôsGŒhÔjþ¸†¼vD‰•vs÷ÌE„Æ,£¨Ü?] ¶£ìÑ7ÑšÉbظ#Oƒ”+í¾ÐY>Å–ÑHÙ‘¬%.Ý[6« ú-5ɤuè,ÐY ³@g¿g`—‡ê±ºÿAòhþʇ?5ÄŠ€¥ýÞÞ[üðÄQ}Üé4Šü2túH¼ “lú[ûTK&Ûą̊Y do2ÖlÔÙ0L¹Qå^à¸ï;íCÍVcD¿—±sŒ†ÕoD ‚ªfª)A¯:놩Kãç†ÈÁÇ);yíU×W Ç!f,¡|èé¾°öÙ“çý:2êàésƒ}jB}ŠŠÐêbƒ•ËÏ‘•ð˜@Þu•—üËA¯ÿC3|õÂðÅ#ÃŒIõæjgxµ5Äw©ÛŽâi=*òÕQq³1¼wœOí/Ï>äÎUµ§l©6Êžî¦ò¡¸ƒ Æ)Ѷdä´vùù²"ó.vJ^oѨó<ùý•¬ÎÇ:oÐÙÒÎG;øÐC™q½÷ò‡‡OW>'¾‘Š×·ræ)PƒeÃ9÷‘¢îtè,ÐY ³Àß8 P¯€¶ð g O^C,¯™ »£ÚzßÛ燿µý•j©éœfŠäd§˜]Š@óÓ´,9>yê ÀW8ù1ý•ˆ^ ß–?3UÁš#“R d!gq}É_Œs7EUÃÈ ˆ¤e^Äåb&§oGD¨Nëw[CŠ‘(@1І“*ŒA£Hyv5rw‡+eb4Ä ’• ,¥î¨¨ žõ1WcäíU»Ãû­!4.Ç›ÃÛÇsÃݯ Ñ©³ÌzC¥ñFh‰nmÔGF7ÛýÃÙ0¢=3\o ´ÌŠ#•¿5õëDUŠëÿ^HûUìÒ<‰;¨ /”OÔ+wŽÍ\;ZµôãN•êîÑoÈïÎÅSÃd{½*öTS Ã#¢cMaG ³k›‘·èL:}£*–ÏñÛܽDE>ìܘ™"ÌÓÎ u­ƒ: <è'vè,ÐY ³Àß6 ì9=í{D%Ç\ýž?foòw|¾0D]µÏ ëÏ ßÛçû}¿üÔ@%'îìÁŒt¾äÛ’ TsßX‰Ý%&±9 ÊáqN„Ÿ+úSû÷ÒÆÆ9Ýóè#Ÿw³(ÅÁ"ê/f-!g©Ö‹f”rÿ‘û–öRtUEWQå4ÆÕz¸úH“YˆöD^ÛzÎ o)Æ-ôG†É3ëïd5Bµ¸cd°fõ9©Âƒ²½¢²Ù¬©²¿üñº9Ü P?Äo©u³ã‡Íÿªoyý;CØ=Õp°ã¹ºj¶#ÃÔAñ“%‚4k†6Ó®ž^ý£A3­ý©xwdøâÅjÄ»Ýðn—êW_=1(‡kªäìú’,°WZ#“Ö¹5!©T³Ö4ç›WöHÕ ¥À@3I5÷ܶ7E”µEYD­¿Pê òiøËŽ%éBZe?3ÔX}j˜¥”£®©y\•Œ$ZŽÎ²Ò: tè,ðwÀÌßI¹å¡j¥Ç¿7$Ÿ O:%ým(B¿1þã¹Ã#N¿¯Gh5>'O›!i>ôóFÜÝ\½9ì­¬¥,Òç†ëß#⽊ _á¼öõ 톋í0âÍvõæCÄ ²lX½9¢ætÒ´8Fž:©RÏIëT³ªé½eÿ>;Ý*T¬ÃFÅÏG$!¼ŠÓ‡Ç<_Êxa‡§ª•åw?­¸€jøëaÕ³7ßìɵƒþbªIñŒâKãgÏ8mÈød¨@ÌSS•¶ê¯×z×8ë.Ë?«…ª†}q°º˜¢sßô ûïLê¥WØ®ù}ÚDì¢ÙÒëíêÚ‹fx:N ï7†Ô*õ‡gÈӭó_³haG]¼á©Ê¢ö`ŒOÖê‹Ýˆ] ×…ôºÎytè,ÐY ³Àß Ôˆ¾[Çëƒßˆ;EÖÍøkh.n êÿ=>g/Nއ¿1DçhIÍXÑŒ6d.òæR>QØö9»ŸYäQÏJ}ÃÇŠˆJ½ö$âáK51 B¥‘Â*ò]Jw*k3­/Ö`çzWáeN½5K鿃åÔ¯¦¦OX²£s5Âò˜Ã«•ÇP™„Ù=â—·GÃÛ x?®'bP™å}µ[I¡E_Ô:¬òêYõ˵AcÞvŽÃ7[ÃÛõðvª›§Wjî‰5ó†¦a !gÝËÍ`80\ôiÒ—Þœ´ïž #¾Ú´µ»%kè-ÄKÌs¤Z¸ ÃàÓ˜ŸÅÙ•4“˜E²á˜òÞF õÐtNß;æéÚæœµuîÑÝÃʼn™€Zõº;õW¤ZôˆÜHJ ˆ*!›\l†§g«d¥; tè,ÐYào›ø^ü u–‘°ð w¯ÄVÅšU¯–¿òÇñ3‡²ÆDmê·ø}=KÉóæé/ ª~Æ\›©"ÜœksÃO—\5“F'O®AvUŸYs¾¢3u™iSÕ…ÙÉÎæñ+JîÒŠò«•þnþ"œÓ»hÆÇÆÌ„½’¢r±[]ì²_U–üÎQô"Ííë'†¨¨üØÀÎDqï¢f‚[ûiƒt˜¹iúòW"ë?" ¸w²Û¬2­÷Nu$ûZ*Wè__=7ž #® ²Æ¯O ßþð¿ Q%Cv[µ—ñ¹»`¤îñ ;ÑD…„ˆëø„ˆuè‹§UB~ósCtzúl‘â–Õ?H; FZþÒâu÷Ì®°Ûì)‰‹XÙ®'†¤¡¯å_­Š%ïµRÈìg(æšUeÎM:k_Rqõ-ä_Úê°ÿÈv¬jdÍYÓÒ¼ºstxÈ£³@gÎþÆY€‡wŒêùdñ&Ÿïœ¡¼°öcé¹¼°]Íø+„ý÷Œ¡ãO Ñ]â{zÄš’?HsCy^ÎÂòÅG¯yTKˆüØzoc†(ÂP‘~è:—,=ÎÌxBǪ E¢ÎÉ…,ÚêÝÇHcöyd4æ´öçœý”)ÆŽ6¥îDtÖóÕ¤lU`ŽÒÍOW#¸Zi?Y)"UíÓŠ .ÄO`,¥¯;ùà&?û‘ã½ó˜§wô\£7塵°lSį³0}šÔ»²´ïÚ0âæÀ ›Üž¶/7†¶]MýWߥ©ÞëªÁ³©ñQkD2G :}‘2ÈÔïÞÿnÍðe[Ð5¤L=DÕrŸ3Ù±áÔ9%¬ •œ`w(›´ÇÉ&«Óeí¼ÉUðžrµTaÒãBuw¦½ÄÄsì%óõ¸»ce’4‹ožwïËydPuŽXã^‡<­‚àÊR…R{ŸuIKô‡â¾üÕjDoʇ¬±Î÷>: tè,ÐYàoœÒ™qzÿj8¼1¬ëÀ5§uÍ:Nº ì]òWþXoÍ_¾¯G¬œìØÅïúsÃÕÖ²ÑèÊÕ>‘iž¬NŽÌ/;\7C9é3§>kèÆN[ Û«Œ±|i‡€š %{+õ¯DÅ-åÑʱxªnϘ’py` m¿j†°º¬5§+§,j‘ÑÏ?fªîËÈÉðZBUÀ+™‘쑟èk/;ì?+újžèÚjqø^äg|¹F¨bÃWG†öéjÄ ²Ì·ÿâðÒ•_¦ûË ©Š¿îš~‘v,/ÇË8Zµføæ‰áË#ƒ^haœSÔhŒ€b#ç*èŒ.H>ÓPl|µæ·îÔ®¥¿Y›øA¼§£àè¨ 1WíNÑÒÐÔ_ž}—¯‹îóÁD@úÒ¬´ÿŒ˜Õ9k/YirÿµÄÐêJn›Aš°ú®vxÈ£³@gÎþÆY€ïâ9 •TYU,=ª/Ñ÷?´®ÿ°1Èg§SyÔ"P¯:÷d½>2ÐvÅa|;ƒöSý¾Y§:ºi(â]ÿ4¯×}rD ²wyQ{ä/»9Xx¹5¼:0¨§yT'Ø #.¯FDçôX¡žÃN;=Š¿‚Öž–9ùûà=dwõbñMçªÂ3Å3È÷Oü[¼QBW‹ì†Úná<Å}¤O?ºÏà3S4cöœ3¶tGèLŸÆ:uÅ^MöÍM1ì?UÄô«K¯"e Þ¾Ú®Fܬ ×G†‹ÖF?Y ¢U³ŸÒ·P¬~ØboƒÙQÉ$¬(tÎÐ!•½Ål2<Ó›ö½1VÝ:UÛ›uKñ;‰ÝÂÛÎêpÈäøs†§‘×Þý+Ã&kÎëÛRŸžfµ«»¬/ÑYàÇðè,ÐY ³@g˜¤*ðÞy5¦NÏÇé&EC £?ðЬ8äð¨°è“îvøöÀ¾cÐ${ËÜÿ)ZϽÀþ.}šžOÖÆ_O«"bœ.Åû´~ ãDí2]CDT:DÑ€A~.]‰Ô‰Ëíp¹ý hrªg½ça&Ï2÷T™ô žÃú1gQ-‰U=sª!VbüJVWAÒ—Rï¿9ó.Å‘Öì3xеj^·6bï7¦õˆxŒÞd½èãai-'¾ójø×TŸšCÒÄJÕU&—Þøn³z7Í«»#ƒºÒóÎïÊQ³¯s)dEwÞUV‘ÛÈZª)ô¶C9á'O÷×E9îŽÚˆ¨k§_Ízû°«š9ç/ a·¥äDM uù”¾÷±f¨#EY-0v>Zû¸ò˜KT)± ŒÂ¤É‹ÒÊòí,ðcxtè,ÐY ³ÀÌZ4èãÀshÌgF~â_cäI¤§X¿¨+Bx„ßVWwV¶=2Å`ßÂÃë3Aª‹VŸ1Ly.~"vö¹XÄAR’×X¾?ÍÒçƒÁsß"âJm“ÄMÅnÇH2naOÎc Y§"þUÕÆð-©®u$øÇyOC)Âù;¨¤xø«Ê;I/!ëiO7G$›œêN;’æ5(¤Wp¬b@>4[Ï‘¢1O¬îYž 3[ųäÄ&µDžßÛCÌ=Z ÿáóen -ÕžØÈ¤镊g®Ýd?@ëMÞ´èíº|“&éÖ69|¸Œ™Ëìãì½A“õ÷† >å¹JFRi˜éFµ“1z0RZþeŸi´ÕÁ€Ò91JŠ` †ÞÕYàÇðè,ÐY ³@g˜T—˜#€ùÌÌwžàbN*;£žÍCúã¾ÇÝÆÕž©Øx|2Ùy&Õ}×ë£Âã?õ·rÄXZgö•!ù¤ –„NBÏþXû§ë6‚ù87¯ed©Ã»ƒ³k!Þ˜ÙOÈÞJYfŒME\k¼’ÊUR¨ÒÐ+ççåÚœK¾H¡¬ ²sT¯ôŠÔ1v)ñégì®Ö»2=3ˆ]`²=çjõ á‘]åk“¾oÎøëã—â^ÈŽMU•¹6×9yës#÷ôÙ"ÓpógNQ sõ=NbˆY‡ìµÄê Äð¶çqÐ7;CÊ·‚eSÍ ÝýË6ŒÈ]œfžšj-:È¡±Ô¿IÞv0î)ü×¼wät—Ã@å°Ì4vÆŒoQÜjÑwø1<: tè,ÐYàfrÂJóôu7ÐáÑÐjÒyįçôSCÜÿÐóš"<åÉ…m¡’>Àü©”{‚x31}—û¼™Êˆ×³ÓJõ£Á.éÚT…àk‡j«ÖÙTÅÚ¼À†Ôõ=2jÌgŽ,Rzi3™› Nô:;ó_ñÉ ÝgXï+—¡éÛÃ’Ïu!’R”lé¯{µ1Ôµ_ó’cyè J«OÌÝ*c„a?éÔ³`b¥ëM¡ß%ãÛ¶zÛ2; ñü?ÃÏV#˜«ÈŠvÌ)ãnaò#»J&í"ü˜s5æè¨"¾S$C­2-EšU‹†™bGióÝ&ñÉjÄñO ±×";W6ƒg¥TŒ†yßm _oV#^nÐ̧œzSÂ/ÏúrÜiK‡Ô5軿¿»»/%O:ç¤^#ÐKŽùÐYàÇðè,ÐY ³@g–RüUT»Be$œ­ª—-õÑœ”ª ;èÕzûãþGxÖ¤øýÕêHùòˆõ [5¯æ»ÃÕw™ ¬ ýëëÝ0"jØ–<&*ArŸÏê`=ÀÉc‹qNöµ¦i k/Ö£Sö_hnÐ…’.Á DH>1Lã`¶Hù\WãÆã \Õö¦ !>¼æ˜ª=0w)í7ð«Éæ/ Áæ¡*ûÞÆó› FòÝÓÛ®>úWD2Ǻ@ΙçÈ-©Wê_U)Zñ±¸NÚ:U#?þéjĤw™ y`=ÞMíñIÁŽ9á©çÜöõž,p…¬Dè?•!ÿ{âfØÐ©˜I6çN¦³ÀáÑY ³@gÎ?, D=+ÅEÌ¡û%¹.tæÚ9h=´~âПÎÿÁÐ÷?¤i²‚4×2ûų.k2pNRÍc®PÔ7@…êXÝnÙTÿŸk¼øã¨\4ƒÖ‹æ¿òÅ”Ç ãÖhó“̵L¿Aÿ¯j›ì ) ”d\gÒjd)8(uÕñì¼gÈ5²Àª¶ëz‘ža¿˜ÔÑ^÷Ýã6ùÛï÷'eƒ^`ð¾ü­¼ª˜nQuôÌëÿ2\?2¼>h#ÚOW†Ç1¸:Ôœ¯ ª ’v ¾öuwÎ?1hF%Ò÷1ÂRA¥†A«‰ññîöÁ¶ÐãÓ°ÏIÙdÅÛ>UiðŠˆê+Zï5óà´s5L½„b™ úâòÌÀߪ¸ïŸç©gNÓ}A§!VÉÐbW[µ)¤DEMBqŠ~¦½2Îôàw±Ã¦>; ü: tè,ðò€2;’ÅPtÓgúÑ#ÊY@p ?î„€ /-ú•\l ¯j¸ø¹!,•Ïy“§s½áý™¡VÖÒkx¢×3ò+ÓŸ*Jõ*Æ¿"ÒLßÒþ_ƒt¡÷[CŠ$„’“!Ú7Ö »í>¢—GÉó—U]‚q³©bâ?;ú›r…ÀÔ|.Î ç¿6(ö5ÕsV4 ÎéÁ`·°Ò¢Cå úmi-©t‰geQS¦GO5^œ‰Ta;úZ‚³Nf´ç†/w oN ïv†oN†Œ•¯?Å7êi`]ƒ:?1Ä^Å÷6íçÍÆü¤ÔOħò ³º{DEZÕ‘´ó¡Ÿ\ßè‘ ¬1ÂÚËŒ±d„âdRÖâW³gÖ㺩v~0ÝsW «MÁOÌRõ®ÅýU”¯~Å£Á Þ7Ò˜ç ÆLJ¦??†wø1<: tè,ÐYàfÍ7Å5ét³s(#Œ~ Þw®)ã?æ)ÍqUàPç¸öùj„"¬t ~{dP²”µ„¼)‡Â›ªûH^=5œÿÉ×ùÌQ£¿4VøE©JÀ3Cø¸9é[Tv¼<àO \Å¡„ð\ÆY§Lº(¸‡¨E¬ßé½þJÎÛ¸›®„Ä ×óeÜg¤ñ9ŽBãÃê׆é@ı\ý½¿Sl@½rfå`ΰ*uŠÛd¤etÌÁ™^`õxSô²®°fÑßW¯ÙjQ—[@1BѬRE5h5:õ‡Â¦ß‹UL55±!²~RVô„‹ß®FLÝ[æzbŒ¢L¿—R¬=Æ‚u%ÍCÞF“wd™ö òÔ–g -IÒRj pÉL‘µ*µfo?°H©¿¯–¯$S@·¡7y! ²d¨Å•ËΓ¡8‰‘2:éñçì-ÑûÁ)©?”WºÓ.QѶ"E; tè,ÐY ³Àß5 ÄýõQúãötäyM'ÊC@ÚB:óAI¸øGƒ®í‹­A•‡UQáúl¸žªŠE/lå\ÄYÌû;xÄÔÕ“Õˆ—'ÈËÖFÜ}¾ÁH³TX‹)Í=RÄqù`n€8›×F왺ðÈ2sÑÒ¦gÚêQÊñI¯ÑI°°‰r²Ÿ©|FêÆœªûªyïx¿øFÿÛ_?U<†}ôùµ>½™\_ô,WÏ,í Ù9µa=Jß½½¸w½TN™xÜy–³ÙR´íÇÍÐü±ž†n¶½´¢ªoÀ]ÌÏYÊoüÌÀ>AŒÕdFXÉx—þ ÑÂiž ŸtFƾKkß«9ðÄ@ýŠñœÉå驯µ‰ÊÝÜ'`rôêŒJœÎç+3VmÏ>‡Š+m>»‚¦ù̹}QŠ7`6%ÖKú¯b蘩>˜F¤‹¤)[Ú‘\Æq§¬ †fÝ›§Ãˆ¯^n6†—ëÕˆ‹ñP¼¢rš{—¦³Áàš’žW¼åé“6‚=Új=XåF½:1,ùwÛÆ‘Á6*ýBWIˉ8õ§¨š VÍ‚ŽT/[qýÕ0B̨X>~~–‘¤AÍz-m~V®Àû¡Øìé"$fçºóG²õì\×kAcESy`åêÐÛÏT†>DÆò䎕µ H“”ƹ>"~Ã'n^BrJê!ŽYwxfà§Eíx ¿2$F*ÖÓaDê¥k–º(Ò¾íPﮌ[ÕNÉGX<*Tü¨£5®5ÙUÄĦ]ØW•ì^Ýð¾W;OM‰Z gâQ]ÉhÛ´®ùiE—Û7ó“ÝÆ® ]3™Ž\ZjPøÝä½NWËß«eêÏwè,ÐY ³@gÎ §fÇysxŽïæ¾>Ô)Þ©æõ#¶MŸp±m†!Î,:rx–JÔ¡òœx¯º68Äbufþ&g%Í<î¦çâ)3YëÚdmPí?çCåþÒ¨ÔáÕy=´TSåFƒl¯²;¹ËÒ»: tè,ÐY ³@g)2 îɪ~ õ¬QO wS3–ÝÍ ¥Ú¹ÑwÃjVœo Á8ÈìfGE}Â͉áísƒž9=3„Í·¶Ñíx7ï†É/ì™qøí) §¼øÞm3¨£wÄÁZýXFiƹçëtvãŠSpv¾Ðˆù8/h,÷?ô™žß4i)øÛ…üìï›á»?èGžãKOÚˆÐ͘WŕεÉùY-U=×s…òÓð¯©G OÙ|WÉš_8•ÛžAì/þþÈfuh#ÈD£2à+ÿŽºWëáÕzØ«Ì2Èê‰>VŸ{`ÆÀ6¦uÍ1äÜfm@fÛÕÚ⻌˜ŠÊ2ɯ¸ßªò%v@ihyÕ”Ì,ø‘£‡£ô7zl«.JK²±˜É5G¯Úü¤zI¦ÝfDnQÉòuª"„=•ØK}¼¤ÈÅ(KkS?T$¨ë1>×FL¹Û~Fê§m Èë­JSqú6•&²B4ª~O¿n†ý~Ï3¥â/ÖþsA)ÅÖRuA „xlõ=`a’’v>N±çëŠâYKVοQѪx šØ¯ZA^ã'¼ül±~n8^·ú¯ ü½ª´™wÅæ¯ž9<7“¶:ç'ñ–idèÝÞ§}Ñ^1zªHR2«¾„ïJ;+Ùê9ÚXªÊ‰I½^úEè·RÕ§ú»ò­¨a±3NUÅÓ©Ú&~uÒdí)¥Ž£]”·¼‹Ãø“¹6sÄþëâz8kP8´Ò¥iÖEuk½v°ÒÌÅ׎/Ï : tè,ÐY ³ÀT§Ô¯óI3l aå0Â/æ^ã‹ßxÍ<ñLDM©rGTdE¦3«–].מò4‹¢êcùt®<1Ä s#:/Ðn“ äsñºmø¹aýx0¨—t=§Ë’û,=ý‡||øF2;9FîÆ'ÈCÏZÕJcTKvuf ÷rcøú©á»(?õJ¤S ò8{¦[ø”ç5•]ÏN½Ûˆ8‘Ñoœ}ÿ^ögäLÓw…¥»ïïºÚ#T5B£t|¶±×ûÕXÖŽîfø¬÷YûÄl‚³ÔQÎ+ȱ"±¾Q¯Ü›ƒv¿ýg½;z®ë»œŠÍIɪZÔQ¢=¤­¦€œ¾h‰BÜûùàåäóe5`vý  ô÷jNJ;b5ïÛáîÀ O{ëeò†¸E¯%YoÁæi7¥+§vQG’šlrØ:fêAõån-Õܨ±šØÅ¿â7ÆeÃÖΡYÙ£a£Ç «Ù”5ÅZ|‰qX{„ UF‰>ýI±ArþF0òÂõc ™[—æ¿tQò¾‘;Í®ˆÐ–b¯ÎAº0e¦Î­…r¹Y}ÀùÑ0â«fuÕ»îŽ o6†Î: tè,ÐY€ÖO†ÊÛJç)Ý?N­½àÂY,ÆM# û¢g4¶ì©]NÄ:a‰S”£|ü¸;`Ÿó[CÎðl­Çõªˆ,ÚêQÞ©!>agˆn×:yI ‚ât±.&õ jÜ=n#ŽÏFRˆî‡u>L÷×cÛd½Ñå³VlÈ,ð»í¿"Yoh†°r;˜ë<8ù”Õ«Â!ÛØs=ü›9G¬‹]³x|aô»Ñ¯‡™³ÏÚ'^àJç3ŒÅ»â¾ÃÖÝXãò¬`U®´Ã ;ì{'_§çލ£~fˆZXã\ûTTªÊ{²k„ß~ÚFÜ5C²Zü½ÌHR×Ö7 }ÛÌ™w¡´hžÈ’è‡V’êw>T-´¹z:ŒXàh­wÙÌ; ¿j­Ê˜¬mï­%í<”Fóþ¦ž¡¸ãéJ Ó†öUvƒ >hGT¹ù…!î2+?è3U—~_vXÝíè§íEÏßKÄ}§ÎV-« ÆÌÄæRlùå֠ϼÞ: tè,ÐY ³@gåËè—F…¢}9éþ÷»6ŒxÕV#âÜ¡Uð+; ÒÚÇ•?5$W—_ùݓՈКü¾H›º|b¸û­YÞ—Ï µ‚“2Ëèÿ=Þ#bT™#|2ŒHŠ–¬´#âý3U±­m ÉQ®«‚6Ý‹™ô ¡ ©Ê;&§bߣTN]iæ¬.ÚõL×IP`¬&2þ^=Š<…½ßb ‡scád½)سšRõ€ú9ø5’LwVº™tE&‡z5 ú×·ÝÓÈÍkçî8_ÕTÏÄ÷-TBJ&fÒ@ Ä&ë¤çåce½üöZý,¬œ|¬%=ïë÷øY‘,s‰8MúF­%ÎW’qJTó‚ŽDeOÿ_¿=z0}œQµ/*#l#¼ÒŒŽ!•íòw¤®²ðSó%kOƤÿ·0Bµ¢ ÏsžWÿ;g2u0^#°÷Nû÷JÑGµ³@gÎ: tH~.æ"1>”»GÈZ“*y7ê‰/l‚Ï^u·Ç}Œµæëôë3ƒòžÂÒ6Cøk¼ÎC<¯É&®ÿ®»O Š#çò‰Ä Rï?El ʳÖÈ0 s8úHØS†Œ3¶Çty}¼©½ýÑ8­ë´ûðÇ‚vÖ…r=:Tx€ œ¬kVˆJU½…o¬ŸÌùY5œ¢Ï,œ”ÉÅõù°óW! ƒÐï|üȰÀ>mÙíd…¤F*Ù5Iͱ/Ÿ&?šYuéœâЯ^NŸ¸OPÞ“ÆYñüÕ¬“sþ±!f#=¶Ð“&Pí-• ŒäC2¼bÏã×›Re:} Ô˜4ŸY„ª "F,Capª"é·”9“ìw­ä‚=j9:fšvqè,Ÿ¬SÉx]íAR>÷¼rÙ¡¤¥Ê*Z^˜óª¢©Ïyufˆ{”"ÿñ]ÚûIuWÔ¨~{gÎ: tè,Àl…´îè ¡ÏÔ­ÇÅ#ƒÖÈt¾@÷mÎ+ývu«”Øâ¾ÑËf8ýçÕÆÞüÔðö̯AÖ3ïïf(9ZïŠÐóšK‡[‡tæ’ÐT}ÄXGªSÍ5±–ñ9éħg´.v¨ÙõdF¶±{"E9¨ü|LJ"oe©ô»¢2U öO Ìž¦dÿ+꺆 ¯Þ@žOÓkÁ‡¸ Ÿ¯O+?8‡i+´ê5»¾xa-Èsµî¢Z¯{ÓôiŠ& µ‡û(øÙ“ÿ>æ'yÖ€ÜQc&¡e¥ÈÝEµEŒ'Ôì¥Ý 5Ö(±®rÕmJ̤<‰§Jíˆ:ò)î‘k³ÌÄÜ?í(ÅÄVk¬+á¨òjQ_޶.î{•½DZûTö=Ï÷b¬BaÖZ@ 5«èæY¢S|/=õe—¿Åc›; tè,ÐY ³@gÕ¥_iºN×â÷úßÌÃBíeÓ׌°”ÅÀ“ïü8šK7ÿeøòƒ:*ªcÂásƒÞ«x§wÍ@]ˆö$2¬uUbæš){ o!žÍ¡,쨬Þ:nÛã{Q7cš™žV|Fzþø¤Hg½dcëã~ñ·?˜#ó¥CÊFpêN„bVËï²~KðTéJɻɘÀr–OªNéy¯Ñ'Õ|¢jøŒ\Ñ…‘Ù[<}£Cþ2Ía1¦<ů Ê^T>~XHÏ T^ØÅ¿Xg€cÈш¬FD8$†ãVX`òãZ"«O3ÙŸºù<­±˜•ëž0Uóã7î±~¬qQ¿wAZ©6Ï' ³¬ÖØqAI» ®;x`k¥ˆ°ºÔ¯ªy6ñ`ñƒ/ü+¹›Q÷äî°Û˜9šÖ!$SÇÐî•ÛÎ: tè,ÐY ~‘ÆGÙú1&ê-î@çñÐ ·Fþ”ÿT•ÎQsÉ·¢'}ÂÅÿk'˯ê¾Çkƒìðä‰k#b2ÚNÍ7IÕ”?å]#SÝ*zÁô.#½ÜÞ´6B*ïoªh'è¹—\Ü‘]|ø=Õ.ø6]è/`±ì<{wF åÙqUüÎdAçhØ… ®å’Ù´°jh%ô·ŽÆÐî"ÚÕ´l˾“;~£Æá›3ÞÄW;ƒîoŒ[ÔŽóÉ Ó>Ä'<¡±ñØÕKL3M׉¨KƦ&eì²ÌJc!$óòÛS,Gáñš¯”ì0sB‹ŸšO{0¼²(¨)*˜³‚»PðËBõ¿ê gݰ-÷-y‡æ¯)¹ZäÇè wg®úŒPã<Ëè-DŠöL¯‡JÊm©yóÌ@ÛQô»¹røBvžÿÝY ³@gÎ: „Ê¡áaž;îfä[i½ûlg]²+ÙUÔsзŸž8ÖO × zï/%ÖxýÈpþh84ð[N×Íá]Ç•ü>"åj—öXãn Sü›ÆÊ+<(«èÝo q—Ï ÉoÎuá#Ÿ¬ß ’˜]âþKAçYY¶PÞ0—b¾éîbz$¶*ý(¡§EÜfí9RÖ~|WY)éõüvÝeíôÊ’ÁT£IÓÉ\€9ð͉áö±!4¢šR¬÷°„Ö³>ªšxf"{‘P»ÐøG´@±I¢Åƒš¡h@~BzÇj7׬ãwi'ëT”‡j©µ2~#±¾%ÝÍâ&ª'U ß[ï]U•Óóðž3wo_\Aʶ#S`æÄ·à±Àh{Ô­}Ì›îyDÿµë%Õ‡š4ÙaÕÃô½1zæR1‹Ïñ™ÙY ³@gÎ: Ð~F§9‚Ú@K}aJÜá“f81¨rïQ|N:y}œµQ}‚Ñî©á¶bL0чšùän+:,˜'E–ª ÌC¬ttlÇއ<’“V¢ž ÷Dò”—,ƒÏ"uQ¼uÄ}ô×È·þêÈ û&/¼â!•?õÆ]»;D5ÚÈÅsfIþÊ}«•±´¬]i]ו5ð9‰wjæZ‰Ü÷7õ=Z’´öé«å}Ñ߬_Y`¾GÂõ§_ÍõN ªšxf"”Ï4&ìØ²GåXÈ ¬ÖÙdɪÃò§_ Í*9ë³I•ÕóÎPi‡Y¼Ãa«i÷°¯`,nUEÖ‚f…¯F/U”h,~_Ï`$í´Ö5MŽ+ì™î>wGÛ¬Ù² dòQԛؓ£§òþt"b¬z{6ÜZ·ÓYc§ú6Å/ÐY ³@gÎþNY@^NÔÅ 0æ -Rè'ì4ûU»c'‰Nµž5¿õ_ð޳fZøÈt/u_×ÈJÑnZYDüL÷úa|ÂT¼’=*ÍÃY ù.õ^ÜÇ:†\A´~œ-‡ÀW?1¼ýÔÀ‘i ºïRü"Êç’4åRE-5ÁÙAwGßïÿZ°Þ8kÞª'wÁ¦"}>ÿ7 ÅÔÕkà甸MvcL•^~þêâM1¬±ÀÌIÖf$§§³?çpíöRÿÖ+4ùˆC¥üXGUKEkÏ9*Yõíâ®qý¦è‹=;Zøº¨ô<{}¦Q¢-‚r˜ü×d(ü Ö ÖØ3>ÔU–XY<ÍL<Ã칚G>M¼ «îû[v#’»83œnÛˆ¯>_u]Ú¸NgÎ: tè,P½BúÆiæ}Sé0º²ÕzÞ?†õNï>1¼jm5Ÿtô{ñÊ V§\S?D­_ïÌÂ䑜1KqŠ¿:1pž‡Ü¿=:8+‡3q¤¯Î §Ÿ¬FäÇžñPÖSÛ—õŸáYòEªÓTÁXÅ>WU[ïJVÕG¿m<¯šiÕN"þ-1W=5®}¶NÖƒ¹N•GØÝ†k –Ÿ“'±~;ÕžÚgó–ŠUÖ«‡W«&ºÿÀV¤QZ˜Ýܳ)yKɼ¼ZÖ[.Œ° ¼éúÉ5¸Î©Æ"„‹ ;Œ+O5 PÉ!½ 5Û»²À#Ô©ªÉÝ×ýï¸~Þwê9Õç›>‡ŸÌ»¿'ƒ/!MpÆ–Ô3>'iªe“¾1 ã7¸øòÌ ñœ”7Ûåvè,ÐY ³@gÎqöѵÕå>Võ×›¢qâÚçÑ­œX#7߽χ»6"Þë39|Ê£áá½fxK–_ÞTrŽk~ì ç• Â7çªSÅ ‡WPhÙ·›ÃÅcC®¥¨þb>s¯RTáñ‘þ³'³#¬zDÌ"ÓÞUú›x.öy~Ýfh>\î oüí»­A¾cÍ åî]oW#¾ÜÞm i&pÎ#0Fs;å«O¹r îuô‹a¬iµx>©‚d"ð&s‘ôíò}sl®§°vš“ÔT¹Z©eI¡µ‡îÊÏ\Ð6u©PqåÒÍ^BÕ¾qÄ`çãAÆ,ºGŠÅ­–+7".öXNF3Æþ¡ØÒX)ÅV×½A½›IŸ¡%çþ­FeT=§²ê¾5Ë_ÄkÓ|€­`ŒMÝÑU=3"jvÃñ.ö±ô§Ž·T¶¡: tè,ÐY ³»*p<™7=ž,k>Õ)bÿÚ@Í¥rÚŠ®‹š·á)F„_ìlü#÷¯‰û5÷jIŒ «%/³Ïð‹­!ÆÖ=&©gD|‚²¿ ¬)Çkž”(ûÞl²Éw¥/dâU]øöÞ‘ ùõT0¸ÊJEßdë>1¤8½fŠM]Ô\hý¾ËÒ~ùSÃûÏ Œâ»>2Heªsµž»ëZH§]œ…CC 7ÞÕ¤z‘}h™#³§Ó}ꋪ÷ª«;}5Z•ðîqlU$Å:"q†)†¯‰oa§'Îü¢¦¦U¯êí¿V%b ÓænP׆ÌÍʆ•U9KYÛ­f¤RÕ‰û_|eÏÄ­å:®]_ò§s†Ó—Ê 0`„ˆí„¾M;PkÔ/h¹Ô½cJ4Ca:2I‹c‡ úÜÉSd:éBä8ì®7Ãõd‡; tè,ÐY ³@gxQñ%ëõ,¾èð¿W#®ÿhXðµ)ê ^6}²<’êtvÓÚˆ)#Æ»Ã`u¤øä¤!`„Î}©Ê´kAü䩳¤×šVvñFhÕͨZÐ^.˜­}¼$õj\~Dm‡´Þ§ÊÉ4âùŒ~ݯ‡¡'àÜw±F¼{¾Ù7k'ôè8C«¯YØL×Åz†*-¿Úhs ”‘â ñwª€‘>™Õ•÷Xû´ È/ôÒz£B]<Øã´Þùëvs×HÖIH¬¤âÞÃ?ñØuÄR5cv«»`µU˜ü³%.—^xÆZWµ¤>“ªI“X)‚ìŒûRuÝÎÚWy²úXùQ¸\Á ²þi±Ó“G”fD]žBÍFuδs£ ¤Ïa>?â¾ ­*¨Çg†Ô3¢gÛŒ²f¹»Ó.7,°ì§¶Ö~UZ¿âÜÎ: tè,ÐY ­ä\hÄ’¤€PôòÖ ‘ÂÃU_<È_7ÃíÆ¯¹5ÈÊÓ‘ÎzU™@$jDÇÑk†¬pfK˰C„ÿº©,F ³7b&™ ksS÷q¡çû|¦VîÕC\}ðŽ¥“fñö2Ælambë•QýïU´§¼Éþøg¾vLê ò,¿Ù® G†dÍJ™¤!Ô3>fø‚ŽAûÆgøÊƒ‘´‚}çeØ^mEuT“ÇNòãÓîÅ¿ú¬ßNˆ˜Š)‡Ñ?g7×4`Ô#®S-eê`Õ—-‹„èÖï$Íg¸â«Sµ Ž9Yi‡jŠ˜i4`—È’1þÔ™KEµtwÊ<ç&ÕšTtÈ´{ôj0ï6†°·ñJUÔo#Ò Ä=¥åšŠœކ4m_ƒ)R{'Eæ„íotW/ç$ûC%õ»DÕ! ߺýéó: tè,ÐY ³Àñ$ ûxCvQ¡·+î¹Þñ÷‚5¦Ÿ«ª¯S§ævd¸t¨‚Yòƒ håŽ?FL´˜gWtquëüÉjDœ‰Ø+$îµRÀxb}Ô ß J¯ñ}ºPx¬È¤OZÔêuåè1ƒfƒˆ2¿ïqþýÔ ®F5ªúk¤Úéô·îàËf8ný÷Î'å=uðªJ³k?UZИ06ÿÏ–äÜKyLOÍ®G†ªª¥ à2Z¶‹·ÕdRßvú‚ W†)‹Œþ=(»¯Zí-©²œ {vé!î XêÊÝ£9KÆVª­‰µ8¸SJq’EÿLóÄãթðv%Ç$âÞQ{9õ»d|…âIv†¨é× º(í¹A, eXwªµaDôœBü3WAýE‰ƒöŒÞ‚"ÇHjÔä_*‡üý"¼’iôí·GÃíQgÎ: tè,ðÿ„`ßFÌÒznJþ¬ð´~<3™)þG½ÆÏ¶)"Žù/ð_0K=ê›y¿oyuÃÎãŒs8%J §üìצòðÚq³6ÄY‰ppf̹iÞ1êl[W‘4K}¶ÄÝÿŽðæÔU@ý„'kþ:ž91‹’W'Ó躙¡q8Ý´—¿3¤ÕŠ.Ÿ5£'Ídª7´«iÄ G”èÁ/gñ.x¢1œÏÉ É:iÐ’æ‰ú½ô&“Ñjt¢”Ò´c‰Î­¾f¡^ÖQŠhUÆ*ÐÎP‰‚ÊQ½´Ô÷’¢»öÝ»ªãUõƒ£ Å)Íá=÷‚W^û¿×]%µÄi§K²û¸î˜èvm øâ`0ÈÚ¯ oŽ ïw†IÓsc¢5rc8üÔõgô¼V.­·îÔ>kVÓzç]+û¥Z5R½Þú½—møFÿê»Þ4ƒê竪{6Œ¸<0tè,ÐY ³@gεÃEšQòqà7&×,ç§Ö…ÖÏ’%3M¯W—“×Ï \e/gP];ΜÔëÞd[!¦ªQQgÕ`äwO÷Bd Ôʦ£–ëK`Àïü`̤î¬jeïñÕ|¥X•ä2æÑÊS$ïÝ™ƒ¿"V·ù¸U³‚l˜úÔ“JÎQü E%Í´byêYà”ú€Ðnpüy UÉ)ºDÕÜR§Ev`¹w_÷B±¦ª¿ÇîäºNÖàõÄšR¤ßüÊdëàÍ>\ü^~]ÑÄx³ö©áRôlÉQJó¤Î^ì¦î‚ô"Äo³‚M7ȼG²&T®®þdX`Xÿuª‘Nv>^Ç눥T¼ÊÍ‘AuQdñTe%V·üÂÑ'wGë.<ôÆtå´N¬e­>°ÈkÛÇ1Ô±£ö c^µA½Ó6Œ%ílÑþÍpùx5¢³@gÎ: t¸ÿŒÏ1O+·œqöU M';Î@Ìë!y“Ë™—+.Æ bÂ¥¦ŠÐ©x®×Œÿœè무èÝ&Ä{â èö0t§¨Dá\g´RqâA’PQE*—U_0ìüáOšÕÆp"N ITcðìò˜œžÏ®Ø3)>7g†É‡åfŸ«˜9tU±)WXûëÕýƾ9Ÿ¬­SñäÖñÜk…x=%>!aÍR~¢V=¾‘Ö>ùÁÉæ•Mhñ¨¦FwB_㌔&›síãþÒ&m¡øî“oÊ¡>Ѥû,Le…‘G„g²êuW‰<¾…û.µD™žþÌéz8]Ǫœ¢V湪ëQ„‰ò¤h=´Z/6m„vžª²þöÌpºN7aóCR_Ú¨®¯ºš†Ã߬FÔ8ä´àÄìâNƒ\|üh8~4Ðò¤”̤ s×§9‰ŠñÌ_‹Xñ6Œè,ÐY ³@gÎ,Ï2uÑ_ƒ:£øjÖÆB>—FÉ_Ï{tzfP gZ¡ð›Ä|Ó‰Û‘¢ê®ÏêH«¢µf¸²¥b½°¯·~ôø`V‹«"©Uá©Ã3‡×©þÎ$ÀõE…Î8iÄŠ½Š!ªñ“ôO¥e %k&Ö©¢yýyåë¥ü¸²*ãú×sžµ”‚+yô Ÿ\ç)ë<ó™êË.>ÍÄMüú1kít\aúuEMJù;õïñÉÉË ;ÌXÇzü§TðªfËg øš:ôΓAÊÜ‹,¤¢îîÛÕ$’Ñ’E+ã*æoaZîÍøíÉB¢òLÄ?GÖRZ³Æyk#"pBýUs†ß¨¾WŠA¤½ÓîÔ_¦;ˆõ+‹‘VVî¤Ã+³Õ <Í4zÜK ¾JÒ©ôi¨Ñ—v8ŽÎ: tè,ÐY€Qm5c%Ùaú9ßxßy¦Ó3þwXi¯Ñ¤+ ;#Ëï÷…ßšLÔ£žûà¬×#²QL÷.jY·ï¨és.ÚÅT‹)ì¶Ÿñƒ¤TØû-†åßÌà/ù oq$•`O•¹},Në¨ÝA‹Íê²I%ÓoAþHäªc¤õ§TŸÉGmu4s™¹¦ïý~ÂUL•ÃgÂuk×òkøÉT!êßE_Ê—R”FÆ’ ©Qèy껹£w¬\frÕûBý¤êu‘Íär»œ=3ì§Š °Æµ|¦´ó…©ùÊÔ¿†£T¹€kVâi­;.z6“FÄ;N'Õ³=11WYá¼èc¹ªüÇw!T Et ã5Ô]T Oª)¬ý›3ƒú(Ý.׆7[÷BÁq;E#4C¬ƒâÓ/»Ó…º"=X›à¬P{†ˆ~¸Ù|õ‹·k ÞžÆV–ö©ñöÓnÜ#E#^¬F¼Ù#: tè,ÐY ³@g¥ºÊ°ö<íjÕÈJ«š\a´Æá¡H$©Z”óKò€pÕvѳ2êÁž #b•…m™kÐ} p¥'«Rî5×}…{ÖNÌg±½{:íF¡Z}£Ÿp‘éŸj”Éî¿ë¶µɆTO±ËûÖF°Wä¬qï±ÏÛËó2×Tl¬šRA•ˆÕ±ÀkZ•ò?b7Bß_ò ×@ð„æÑÆý"Oñw¡ºuÒ‹ £±å‚¶†õȺˆ¬ýB5/qYµð{4¢…‘/Ö)ù÷«U/üÅ™ê.¶4Ÿ©R·ÏÏ‹#CÌ+÷ÞÞlV7›)2Dõp|ÿöîñjÄÍ¿Þn wŽ´Éä:’}¦ÆÅ;¨¿”‹*û†«fH÷=üÚT´HꓪÀy¤kÚ«WÕ19ÓÍòOöo™v;mDgÎ: tè,@%‡~Þ—=øyÓ©‡,Pró“J@¯¼·bù}°úrõ¶WgÔá¶X}B}"$Ô€ Ò'ø˜L³È+'¬®§Zvm1ù˜'£­nÎXã:ê™ïøH6,ÌúÌ%‰UËV£ïj¦RZk5ïŒk–ZøUs¯ÿŸÕˆ)n«žLÍ„¿S'ShÕªW.KV·zE9&ô‚UûCŽ+6vŸ>ͽâÙ¬ZYÌöZ™+Â?óâÄ0E#Ìl•î¬útÆ÷ã{¬ñ^ïå<Ö+f`øYô÷¼ZÅw—ÍP«mǘ¸÷–uâÄbß•ê©Ý3¹U—/fšN—Îtô~²>^UÒÂßí§éè;O•LŒ ÅÚ“5ð1G§9€õ»`ÏYEµ—isj4&ª¢WÔXÄtmÕSY"’.~¡Z’âHYçqÜÓCûÆù)ÏfÒôê5C¡š>,°/ú—¹K±+MUa÷Ÿ»ªFdç¬N¸¦m [QMbžš"0¥}ñ 97´çq?»,¤Ö{*ÅØº’£w1ž<í¯°j. iBc9ßâ.#Æ ¬ûírÇrfˆß«;i‰¦ùè:£f{üX÷Ã>¼nÈß­F„eÓküz¸³w\nW—“ª¦‘Ñ.W|ÑY ³@gÎ: $¯ÆÙÿ?šոPú›8C_ŸJÂÌ1J¿7þb¡ªº;ç?7Ä=zb¸x6Œ ­PfçFÔŽ'Z)>óþŽ0y<4òsé]÷>4’ðt'ŸÖf²NE‹81ŸU©¨gä´Škö­ =e´½òzÃç[­JUHXe:y* /,¬zØ¥… Z¸òªw%­s8Ô3TÛ˜:•†²ç¡3í.æœ>Zøé•%Û¿%¬“ÿŠˆFðžãÔɤkC08#-ñ-Çê+ä5Ä.º¡ -ÚSÉ[ÚR€µš¢Ç¨>G+Q¹–â²M;ž*°>üäɵZë)ÆþÐ:&iž—,³äC"Û«F¥NW;× nì \Ãt¯¨ö0ú©ÁWÛaıµ•iZGwÿd¸ùe¡‰#Ɖ’GÃ=½FD¶mXšÌƒm5­Óþ¹>°‡+±â £>R®¢žºçhÄ®>3T]KcÒY ³@gÎ: Tå§V7ÏÇJO¹3˜©[MÍ¢ ÃᜃtRÓœ‰.xæù F¶Ý¯ärgˆUƒˆ,åeÇmÁnï³áîy? ðnÞÛe2=ŠR‘t‰r~OŠÁ* þLäâáóSÏ‹¢<¤;ý‚‡Z õº¤çPa ;èGså’ãx²–ÊÇŪQðïZ-!© ·ƒ?t!w·•o×ëK³Tæ¨tú`uÁi æ*Ä¡çˆ_ŠO<ÅÊ®94·Ñk^Š„l—¾=4 ¨¯çÍpud¸Ø¤ôʶkÉ+­ç•?¥êx%j¶§Ñ–¯,<©ˆ¶–CWT…îR I.Ø{a¯È¡©jâ¾=LšÛ¦ŠLûU)ÀR¨`µW/ Ê*•åQ'šÈ|”¦äkÿÕn5B¹f¯›A^R|½½ð>®†Ãlv5iå…ŽBX­ñJêiÐáµÞ/_xïóÓY ³@gÎ: ¤3>"ˆ’'‹YWôh ㌶‹EúI4~ã¡ìQÓISÙšŸýž—6BŒpúØ U~ÖñY6ÿ…!:'ú§íµÛ öùá,0›í}æ|îÿ|XÈdIÐ÷3ù‘±ÂêÉ÷J›ÉSs‰|«çÄd{wèç¢ßÈØKœ+“?º2ÔÎh@ÚÕø^t´¬±ˆéÓÊÌL¹fIéòn8‘•?¯‘…ÊÒÔÁí=¢·à¬E¥_D#$BÜáÊÀzÜÀl[XED,Ⱥjl£+º¾†WÑGŒ–“^{VN âÜ„úfÒyn âé?R<η†;ÇGÙ=­21E²Éú¥‘Mé½_}¬ÄAQ­E~I¤ˆe®”(Ìr‰¥äŽ”K‹¶%T)>Ͻg>|ëIIûGÃz7ŒHѹ²´Üá¤Y*‚uñ‘nsñÇ~Þxw#û!¡TîX5‘=è‹Ñþëú׋#C²ØP&; tè,ÐY ³@gzÐÂïsð1ª˜¾¡ÆŠRᮊŠù‹£†ƒûbÔYÐ9åô‰A³4ºÅy¦¼r§;ƒª7D?ÁÏ¡¡•oÜË ßòøøì–ÐF–ØáÛ¤T§š3¹j8ëñä›ì:ãì‹ÊcÌ[õæK©%°·•5’Ÿ—êV©0¶ T#y%ú^ê“Ì-ª,S´ jÁÒòïAª½ÄBô¦"¹k‚O9tKõñ!;ûÊÒ|>|4Œ`ýÃÔ%DÖ ú'#1ÑWQc¢5~sg¸ú-dtq=2´ÿe¸=2¼;3¨f‚X@=VÔ™ýë«ßl õWðî¤(‘øOï[Ä=!j¤¾*ú¥R–Ð{1ùôuËt™=ʹZuTŽ[ì7Ð/’{‡ìê¹Iai–w5ÞóEûì1´”)’Y•á“7V]¨fìÛOÒ>h¶«†Þ¡¹³ÛÅf¸˜´ÍTME«‰ÙaœQ‚4sÁïfgÎ: tè,w걃1ð;°_IÌFÁÉo…•sø‰£ÚÀû=§8‹¥zѲ þɬS¿ôçÈý^àò N©É§óGò×Óœß_æÔßë›N^¿ž3v’•ͦÈÀaër§µINÁºHÄY{¡øv[é Æaòü^ã‡éï.4O½j–rä‘UT3°dW=é`úù\)ûbJiß8Ûk.ª{E­Bj23©ÃxæhÆÍ‰!KÖZA/ã+B’æÉºÙyuh¢Bq×Ò‹žÄïvõO”b1¥Žw*u‘GÙ ¯§»6Bó°íŸ9~bøjkXm›÷«ªˆµâ\ÚIÒþSåóW†ÖAO1c¨ù»¤}%Å yXÑgÊY@ŸœÖlÊ”œã[tßc=ÎFküßH-öN¨ó0Õ‘öÿüõjD° gæžÇÝÃË3Ãí'}Z;1p$µ¯f5Âɧ?ךX?]¶3: tè,ÐY ³@gø2ħÅOªÝ:t×ä5C‡8ï†ã]ÔDeU‡‡ùgçGĈ–¤µ ˯®”)G;­öå‹U>‚Žñ û¯ê¯v¯—x¿´°CŠÓ\*¹äóêµd„Xkƒá©![«͇Õöâ5µ[J®J¾’´²Zë+'鬠}ŽX>Äïås4ÖoadajÜ`©A±À¬ÑíèÞL(}¤²uRÕ_kQÓ@ÏȪ#g-ì?æyªŽr4#,›ÛíÉ‚9´LPwåüÆ ë ÿ ¢LÝ7-Ûžb¿¶/·}Â馗S¤í‰A^o]É×Ã7ŸÚSÇO†qýêÕ‚x†ØÒ3[bÑ“—Ÿ‘'…Ab ¡à%뇻é¨6·9÷t©¢ ¸÷Kã{ÏkP-÷׿X¸¶Ò—)b!Tqêl¨ØCœ?5èoU·î,ÐY ³@gÎR¤(×Õ¾ÆÿŽ. XÝÌHJ•â¾£76ºRFÖ˜|mEЦhɲï–VÇùá$°ôÉûÔ'}×°^¾žùtɸ¸£D‚½|lHQ»­…Úõ¯Z¿Êôæó5Œ  ãzñ LJ'QÃ_L¦ rŠÍ›?9NÄð°çªƒÞsÇ»“DŒ(ªˆÓÏÈRT“Ð.½ãÕS5ìªj|¡¦zòrÊþ( ûúåUµ€^ÚˆšF]}»ú¥¶Ç†à}Ä©Æç{§±CtbÅßa-ý¤<üáÈp¼n#T·­ÎG²Ø´öùÊð+ó•¢âY`öâõ’ºhz^£;gòê—"™êGhJÒˆŠâ¶:ÅbfÊW\æó»»ÐZÝGœ«ñ¸ˆg|·13öHqΈRæãòÌpý/ý^Õá’§^ó{•¨:â•ÜzÓ : tè,ÐY ³@ÊΨ÷EóP ÎxòÓy^“Jû){þè_søØ°znPWåtmšKÉ·Pòߎ ¥vQ:ñ-°À²9 …!}N—´ÕšÛzž²¿u…J%„çhhIÍÐL£'Ö{¡[ú¾ºâ\›8•§~Ž$]x¢=NºtúƯ‹ßˆŠÙ ß{/Ó‘à£ò›ò ™ ä–?ú+E?qGxÏÑûïs=žš«µ#®}~váü^bGCùQöPôRô¼0·ÒQ}ê^# çÍ‘!î/ª½imRËD¼«‚üΊ,³ÈþË—zsdP‡Ç÷ëÕûõœ_øëjµ=rÙ‚†YvaOÄP…RýÒç1íXÉÁðx>ê¥sýr¯‹Øà:ÇRÜxÚQÒE—#LB/Â#ÔBÝ)×Ù¾h†©U½@TÕV°ä‚Ͻ¬ŽÎ: tè,ÐY Þæ % œÔXYBs *xÌÒ«OW#¾û£úXkæÌ6m ×µ¾?#;çkà[Òwýù”ËVĸÊÚÐ_FµÕ¼«öRuÄ4&3ýbþ»Â絯´”u… Rµí<ÿ" 4ùˆ“Ÿ×‹ú’ƒhй~c²0T± ‡†7“Yfõ7âŒñ¢ØÛÄŒÚÌ™’¬ê–ÖNòEÎ÷NúCxoµ/â:Òwiæ0.¢Ô O1”À…nªÒa )E´§4Ô©~õ íÓÕñ…Ô†P±‚çõ‘ GÕ:Ö+5JÍŠV(:Űê#â$ÆèÔÍK•¨¹ÓÐÌ'ƒ”Ø€¤“è]-XÌxç“Öªì**Kœ̈Ü9¢s®g³r'€úÒI -ñ¨eÎklå£¿Ú W⓽ºÝ«ÜFo Sï!`‰Õ亨bV¥Î: tè,ÐY $O»»Ò7¤xRÒ‰ÌGŒù&/7†x|‹eÆ#T—åxË…G±3ßöz¹#éþ8еúh–<È{¸ÉG,ªdcUjôâüî³Bu}"!KEµ}Q ô,Ó“˜V¢Þžü³P™ªm¤…³¤ž¡ôáòŒ‹±>Fð·00«X®ºpä /$äJ¬^oÆŠ%÷ìg’ ‡¸ÐÄÑZ×¥ÏiªA/¹î>ö¼açùI¦ŽÑF¿Âé—ú§@Í Z[#£žÿ}ybÐ߯n Ê2{»5ÄüTmju™Y·зˆŽ[¡L+©OÊ‹;þdµõ¢žž×p¨Q£zF‘¥ÐÖRwŒ!÷ ‹¨=òžÂjéW\í áU×ýR56DáFLu‰Aåî+v¿ˆFŽ:6E¿Šyâv#¬qÒŸ±;Åo¹ÝÔHÖ>*x{d¾*`·3ƒ!±Ãõ“Õî»büUÉ_ÿüj; tè,ÐY ³@g\ewŽÜ£ÝàªTgvF„jÖ¯‡óu®¸‹Ó}Ð㯯þ܇pÇçŽOÃI%»÷A•ìº^þÂÀsnª†¹ë…ý&¢^"?éfõi²¡f©, Xïô[j–Ù‡¹QšŸÌ¥¢]­>¾ÐR¼GaR™Ü8@ÝÚgÉkÖXÍÿJǸÖbÕ;ð“yr‡.‘¼½`ó© Ù¬K„Ç™‘«Èâ‰JéŒ'džý×ít%Ü_±›ôFDF¤(2Ô¦ÈU¿f·¡ðõîù:þ^å‹iïå¼u¼kÂ0âýíjDûkpRGÍ›£ä6JU,Rœ3î=àÌ•[˜«»•³1ÆqRìnñGÔ噡^§ô:Žsݱ¼Û¾p¤•ËÝN@[ Øeþ|¡*ªCxÛ†7†`¯/™ƒ¸×©ÃÖšöf¬\ÑY ³@gÎ: $ŠNñšÉXéaU|]+× f ,ÛÅn¸Ø \#Qá‡ôa|¸=W-Ú‡‡Øÿ…×|7nJêPpÐ\o*æÅ Õˆ+ZG Ÿ†ýôõ%ã£* {x6®á̰PÑKÿy6#vGÌëñï•íUL`rF£ÙDwùâ¿ÚªLÉ"éù ä{ßî Ñ}ƽºúí—†«ƒ6âøhüùçgp‡cbÿÁ¶q¶™z†Ò˜ŸÌŠŠŠÇ˜-\ÑŒ<á.ˆ ‘ÏÓ# •¯î”NëpEèö á9 UÖY>¸Æºjr]hÍR÷N •XIr·Ãév˜zkX‰zïÌS'SÄçèW¨—wÆÑ5_lÚ…uïuÏ{L€¹N##`i : tè,ÐY ³@g´Rt_ðñ÷cOv:eD¿HÕÝÒ×¥s¨_ÿ‚µß÷7žaôÝÂë?=Ýk³ü_ÿßÙA}º¯·êŒ4‹.!и:ÞnHz­(U(KÕ3È;qk°Þ±îhá‹Bõ¦À8I?!0ê;„°ä´Š|/ÕFoÆ'¸¿˜ZŠ›^¹7›ü‰¬€hafß§kÓq St­x†Oø…«ŽÄ˜O|{äm1j½™ÒŽB½éaÇ’ïo7÷x ¢<¼òu–* ÔÙÂó«øOÇùÚ ÈOý«|‘ò_l‡‹íÀYqÝÚ]a$aI}’ùç6"eöéú£^ý0#4¹/jmVŠã}‰ï‚¬×”îÜ‹R‰ŠüÖÖFhƾiíM eF¿:Ôg¨YÔHÓh»f®w]µaÄ¥ƒ×“VP}h•ñAfÇì½8F|ó/Uóˆ.3ªíCÚ”=XgÎ: tè, 3]üjÆ âjûä±Iú»fŠ(“Ï‚•¬ô|ÄP-üÞ¿´Jí¿,˜úeÄ Ü3ÀßïCya©{#ýs¤9paË*E¸¥ªkÈ|©Ý踢÷1Uš¤{пs]kI-¡÷vßß¡¡S 3wpNOØ ~]­SA/9¢jGÐM?2O¾1[fý£Í}Kê-ލÎÄ8)F>ëÝ\C`ZD8‰«9ë*°³¤V™2 ³5âàÕ|[?1$E 3!xç‘ÃÙáz3ŒhþˆŠòð>w¸åŸê'x/Åí Fè:ß¿0d]Ϋ…‡‘Ÿ».FçtÿÆ¿½GµKûbÏâ¾§YTX›–0>m§øR%µé.Ëëm–-,ØóaÄ´é7ºÕÝË“:LZ#;tév©Æ´Ð;¬?©qA1Vì¨ö¢Ú‡Ÿî “Õµ»¼ÆkÐhûœQðÎ: tè,ÐY ùéÃu^¬ wÍpú§6Bþˆè1á}(TYZy ¯ÛjDœ£#Ãýø³8Âg]ÌùÔ9úÿ—‡,6j)ËžÎ_8Qê~i>+{=E¬A©ñlìØ²à«-ÖuuÒF¤øLÎOGèfEÿIV”+ŽëQ«LUsY}‚Tí°þ–?Q¨™k%4yµJlaôí`ÆêK× {NÆá¯›| ðÃr„ù]Å+ÍY‘òÂKŒze²*Ñ;Ò#T©§ñj÷]§ÖÅõ¦]û"q÷{ƒ,ÃõÆ /0m vƒÚï…öˬ:ì[dÛcVýpò_«_YѤ„HS=FÄnÇýæI,÷ˆ+.ƹxÕ¿œæƒt×±#¾Ý-çËÝêåÄæ±£Sd¬<ÝQÝn0Èò#~5üYiTD«¿?¦½<׬Œ?iìØiP%5U;ꊘFc΂ì,ÐY ³@gΘM0õÝ6L3\ùþ3¢ ƒßy—bİ‚Ť|‡©ö)»¹í©·7§¬Dƽ¶ë¹v¨ª­2ÓUËBצ™v»[hÿeXó‡äš=øÁ5®ª°1©´2æ%ýó<<¶ìþ£Ï‡V8‚3ŸÕ5š2\оDõ†Þ¥dý¨ðÔ“{Õ‹Š·”½ÄûÔª HÛËžõ ™eÌäuÒzÈ/ÉÚŒ‹– î3úvŽg¨ ¾H#JOnì|—Âw]¶6"±«.ës¤™P÷ók]ˆÙUÂÞè‹™„ïßÕL¯T§Ô?G¹½<FÜn Z‰V#Ôã>"«‹æ™yÙ9ÈG;ñ b0ÒlçÝáüg̰@5¯ìäu½ùÌpÕÚˆª¯ÖúiG~ÿÍ0âøßV#Rõ?ÿûbçð^ŸêæóÚ‘¢šÅÜÑg]Ä«#CÜeÞÍ’a5=N : tè,ÐY ³@¬#¬Ää¡“åljìô 4þkh>X_êO­‰Ÿfiª­ô(­¯ó€Íºðe+Üñr<úh†ï׿ׇNñí©áfgÐz{dxyfà 4)9´ÉôÓCDÕ…^3( zµ}ZETá>Õ%)*Œ‘+çßé Èyí‘•µR¥e¾†ÑzÜWÙ3;“zÍiu³«&ž¡â§HEæNNû%WQ`±“•(¿a+þ³¨÷1å¸ô#î1?ë’±‹:ðJ¨k¤úÙ÷ü£Ö v_ê\Ó _<3´f`ŒeªW¯ŒHÄÐ.Ì Ø; ©è°»©Êï¨Âǵs»5(VÕr´Ã¼ø“!Õ„,ï¥úÇŽ6\Aì-ÅlSÕë¸92p­‰#ÍKï?«p+6&UöÖš*+w’<¶ß}ú: tè,ÐY ³ÀTûW‘¢Êür0óºúuÚ-Õ®Âï£ø%¯"«nSf‡Û\=®¦Ì‘cÿuÿãcFÐÙPãð¥#¼<Í ö»Íðnqkç—?ï¡9pµ1\þÄpómÄ7W#T­÷H–¿z?i‡+/ÌM®³•¦Bß%}môÀÒóUÖÝ‚u¢=Oú 3áM.³qA•Š®ôâ/fÂoÑ£Fœr”0zéó¹NÁ†i]lgL>Adâcô´*'ÅÆæ­Ö”ºjæ³Ëd¬tzŸÃÇê³]«ªHxT?®@˜˜¿1¼“0í þ;GVß_Æç¿V½¢.½î±áýfõ~ŠMÕßç­˜rÊàÇdT$9sŒõœ“‡=TƒþõêÈpóÄ ¥.Õ‚#;ûD̹×x¹}d¸Ù 7S„¼"^h]keø¨Ñ!+Z# øñB3T<-f&k³¤*”n[¨r†¤î–ì¦Z”7ÍÀÎ: tè,ÐY`òKúD¶5ý‰Ójµó/ë©F_<|æd7ü•>”£=-Õ9üô_Ûˆ”Q¯ññc‡úVW‹™,O‡Æÿ Çtö÷Ÿã•{S¥å:«¡Z$›óg=b¦á´.†úbgøæsƒ,ÌåΰàK¥Æ5S?IHÉ´ZˆR#ƒ¬ ôþ+dÀ¥ø=Æ(Ê"±ÇPU„ÊŠ^Øi”ßž¬:Ù^æ…k¦W½F¢’¹P— ÙzÙGõÉ0Bуg¨*dlÙTSîÕcCTuÐd€>À~ªÍ’,’×Í3Ãë!>Ý*•§‘ÉÒ©xïµù ?äõ÷²ÖT³Îv•§›6b½F\ù`Õ^8;¤/U;ÿÒ Ÿâ۹ÑB¢®šU7sÎeŽgŠŸôíËÃÍÚðjks÷©á|eHZ(UVî”8ÛQCÊØÝ™!j*f›ñ >‹øLŠØ|Œ¸ÖBtÛ›ê4†~å#Ÿfµò: tè,ÐY ³@gÈ·Š1‡:ĵŒ3µfc(B>·ÏÛ0Bc%ïFòñéÁõë6_ùË1‹”T½ÃŠä,çSt ?]#Ú¯Þ#ûþÇ_^•Z£ôú¬øê™A,YÞ굇ŠUŒÒ ËY!‘¼à^H(Éî±ÞrøÚ÷;Ç.DcÒ62¿ ÿº/Ç¿Vr`’dŸË}IžÐ}ÜW¸,íIèõfÖXQÕ‚§˜Wt¤ÉÂxF¯áEÑÇÒéÛ»®L=;;CÊËõŠgD?PEîaœ©í“×[ƒâö®‚oy¦÷rÁwüרtôl¶ëõ¯N œyCx“Ÿµ´Ï±–O ÁÚ¨ÂG¾Ï)>YkŠ}d8jîã´¯†ëƒP’/>1Èb‡UñÊiV3.ZŸ£ëãhŽ1‡Tß%öÑ•èïØOJ­B}é%Rrc¶¨ß«W–£”rîlxgÎ: ü±Ÿ9?Î?ÌÕ=‘xo>1|Ñ Z/ÅΩGFø5bL¬®‘:ŒL‘lÞp-ͨ=ydÑgR\œ÷|T‡5W„Î Wæ÷ni]8¾ëÏñó]lÛˆ›íêfûἦ¬üR» ­7glʲ)QŽ5æs¡’[U‡Š5æ<ášâ97æ$û³T¿«*3¾‹àïJ|DÕ]¤‘;ª'º(`ôÖ…5Ð>'FÞÃAµ®ãîõÖܪ_n y×äïæ¼¤è¨*áÅóž&ø-R>ï Éš±–‚lˆü×Íyöþ¹úíJÎ^;ÿ3+© ¿½m#ŽÇ-ߣ‰Ó½¶}NÜ;ùÄ•kézQ²äˆÖ{âr¡ª?c)i£ª¶ƒþâPÛ<»3F›Ý*•ýêJ‹^#ßw¨èÐ #ÇЯ3bY×s݆—?5|í¯¥¨WeÔ!÷׿þ©!­2^»÷E0åQ:¶=£Xú¨.®êåþ™: tè,ÐY ³€ÆZ#6cÙ©$y@0þÇO ¬«¿Û­Awaª»¥œ²¹£å4»àNÝ$÷ÌÆoyØ'LÝR<'b7çïO^o÷ÊíùdVEþK2è§81÷Ž©n€j7AɉúZ°µ{êjE(çôÁç^}¾ˆaK³ˆê i¬ó@Û¾ɳ\â0ãÊk ‹ëgîúa©¦Æ{ÝÄ®Io<;ì͉!i;~µaŸ¡+ªUØ4é`E3œ¬Šʤ´ú¤ê«Ú9êÃtè,ÐY ³@gÎìÑVšksç=‹ý¡}`7ê׎¨R«×‡ Š ëET.øÎso~WŠD^FœIå3}Ðçÿù«I¿]ç/VKQˆ£¥Y”|:Œ«äo¡U§6€Šjüת™<úÕ³Æ ”…èSD¯%ý‡³QÕd±» #,̨ÊnU%+>ñÔ¦Øÿ”[D+µ*NÖ¨Ó•,jð2ZU¹E±#rkvxdˆŠ¾¼ÔHanføGCg¶Î0Õž5)EŠ.¸¹5ðWÄÈ×G¹¶¼ JÕwF <ä;ž4:Í e3!CðüÌ@k|¹m#Ž ŠÕTÄìB\è0ñ¸*ûánÆ<íh®5u]t/°'Œ½vwœE“:ä,OqDÉF5Ø~Þ˜-ŠÞô½D\-ÖÈÍÆ:H*fýLSLlÌÿÛÞÙêFrQx€‰Á’`°²4Ä+™X–¬4ZYK"' $dIˆi2Ï),xy`pH@ò ÁyNWºî¯¶ºí™u ßVkÜÓÓ?÷Öé{êT•aèÕ°ȕ޾ü: tè(ÐQ £@G” „uwÊ ×SÓ@õã(/»)K=²¬žÔÒq1Z÷€×}|  ÀR´kÿㄸ·–ÅâU,©ïû¨XóÙügÑaFCl /ü‰°#¼¤-¤_Åo±cHĬś•<æÁ%ÿ¿™:ÙQiLÅiÂ2øŸÆwÙ/¶4T5‹mƵôŸÉËéõŸ‚5Ô"r¦0ß?Ý+ÔK9ÕdÆØ„BÇ—JáÃj´õ0¬½Xñh5DRVöf- 1Qòò8ÛEµç½[š)E_‘ö”GúÓl}k¦³½ÞìF ~Lø…Î,õÇØ±½!‹w¥”7ƒoTô¿>7“‡Ô9K7±l!ºÃèù†_EÛÄÙb<«§­öçÜŸóðfŽÓQ £@GîÙQà9 ½wtWWÞG©Rë8tpSŒ8T‘þ+q>{ûðÏÜk¦¨nŠA°•µðÁߺ↑¥wá]‘ÄQøœÆmÍ$J¸Àé]¼ÃUdûúÝRwÇ9{¢FAŠe—Œ­YþT ;ÃÛà˜•ÍK:Iù^z~ä‚Ͱg ×ÄYWê1YzZ$æ¸ÇvÕžÕçâ<ãV¤¿3ñHW›Ýhü•Za,y¼’ƒ–ÖõõÝãMEÙ¿|7"¹Ò~“Û¹K—kñq±[ñH¶ !t¶Ã0Úí°-ñŸouὋž™Ï.Uü€ß«‘ôx³Îã­*m¯Ìˆ³üûê…ÙöÆ,.Ó½#%Ãõ{³¨Gü5)To^š­ß™º¥wDÌUךÑá¦%ãú¢QíÉM˜ –ýyGŽlë(ð,P@^ÈWRœÝœqW»|µsÿ¸Sv¹ÕØßÁ~øÀmŸ(óÁþ|wׇÎõýëçÈ«q™4bÅ®Ô~.ò ò0d<7õ“Ua[oŒ§ß˜U’#“3RÆ“XS½‘ÓσtúÖ,=\{©Dü·ÔÀgµ–Àz¨8*«©ßúãK³ËÁìõwfÁ\Åx›jcfÚsÄ›ÆF&‡s %*ñnÉWøn2Ó>êA“2ׄž˜­UÝ¡kï(ÐQ £@GŽâDðDbEsa¶vÛ¶j‹§ï+ý_/Ìþz·Mz$F7¨ÅZî#ùhÿï®ÇE™­Ë>?^÷!ؤ}Ðdá¿Ê’Kñb?C®1¼w{RSÌ>_®©©‡“<°ÆOéâX°2KüRÞEkB™š7—³K)–bÄ ‰ÊN릮 Q‘l&b[<Wñ­¦Ê§¼MÜI©Š‚HŒs³ð–Ì‹˜Fæ¼ÿ?>ކ‡Î…­äâ%/72-¬ÏÖ˜=U’ñÑ®Áí+gGzv¾ÅL)ÑÏ„û`ÕâÈdð¨æ'ìÞ"."Ñð¨“s¶íçïÍTºé½ç &Ê*Ã\¾[öã°3ûz5Ǜ؛×fªu©üA]£ê6ÎMóÑkShäˆáA}Eú“ô^çG ñ‘ï?>óÈ: tè(ð?Bvg¬¦AzÊÏÔúÑ¢Ã;Ôb¿]¬F‹1ŒªnÕO¶ÇûxÿÿtÛþȲ[°:'k}g€¼Ô=v.´šäŸ•âÅçf5G†q±Ø_ëGzHzizTG—ΊߪÓ·ëJ‘Ý“æ{ÑŽVŒH¸«xÄûȉñ^ÕXsá)>Ní.‘”]Å7¨¬‚Ì#^iÄUkÏ:x ùåá·R4òÀ¦ë7f—nK[BÚ¢> "ÄÂHm$?äh öØ-˜Lu¡ý´')¹£äÕ‘¹Ù² ÝJ½ô¬40“ŽWw>aƒz€ÂS·ô¾ ïªN7ò~ë÷“©ï'såê»´Î0ºâú;³æ¾p$ÎÊmÆýgð´¾ÿè>C;š´ÍE#ÇÁë(°ŸoßÏŽ: tøï¡@¨Úä´.ó•iÕ25µ•÷ƒð1 ó"èÎ3ÚНŸùû ¶utISWVÜb.LÉãª9͈êKc–y? ®‘‹b0„ê¯õ-UK*-zûÂí¤+"פ*jR ²F#ÅœÝ5럩D¢“''šAê™oÜŸ£# ™:ÆÅvÆ9#g‡¹]Zݯ7«5(RÔ›ó—#AjIŸËŒS+Æ^ÅïaTNX«÷΋ºÿ â})¹Ð:T-”ÝÌÈ™jzDÅ9xÝ`ùÜɨȉö¬þP>J9€T‡²Ž´PX¸€È{Å}"2U¦WÌÂßž›©wßµW=IêbŒ@ݯÖGnÂ&WÛF;·`¥Ò»ß³N¬#jû0ã¬bq\‘ê–ûUtx`ë(ÐQ £@Gg€u%2÷|ݤ9ô ºªŠ¬³’¾î«³ªó–ÿîödÇœQÖ-U™{ø¨Ž‹Q}f}Iªf²¬yÛ|QW 7Í#­÷ÉðÔ•ròƘ›5ŠZ㘕Qe¢Æs}.YíéLà“+ëR&¤‹sF 1­»™SªOÌpDä”p·£ZWß8O)"j-‚äÇüïË33v8R½ñD¬·†\<öO‘ ?¯sCd3azÝöz{9lkc¦ €›º™'‰Ì;úðíq‰›'M)¼–ëäË7ÜcäFüþoOvÛ“Ö9T²CÌÅ‹ñ½kêA¤À,SטË#³Ðpº±KGì/ͶoÌÍÅ ª W¼‡¨“TÖºKè€çÌʓȀ›A´ÍTgoýÆLGî(ðÀ1; tè( sî(ðÿEsA6š endstream endobj 9 0 obj 97480 endobj 10 0 obj /DeviceRGB endobj 11 0 obj << /Filter [ /FlateDecode ] /Width 106 /Height 106 /ColorSpace 10 0 R /BitsPerComponent 8 /Length 12 0 R >> stream xÚ|¼W¯dYv&¶7Û›cÃ{w#âzŸ73oúÌÊJSÞwUWUWû&»I6]ÍpDŽHŽ4ABÐ@Hz‘0z =H€ èI€Þý­}nr•$®‰qÎÚk}fíµc4¢æ_AäÝ.˜¤|<,ûA®ÖÈdaan›j Ú5Œš*-ž2óq_nGz[¢ŽŽ$º}úcÔ6¨'QO#ªQªa,n¤QÀQDPLQÂP,ÇËí…¸D˜¡H¡ìˆÉAØèÝsôGŸ‹÷ÛâzüÛ^ÔËæ\³.½39Ýo½V>|ÙÜ5h/›í¨‹oÖït—šœ¥ê'-u¼{ð[Ŧ¨ÚhÝB-‰º"Ðg å†pq]Ç&LŒ½†á¶?š=’ìœÿ…ßrÝ3—Óúýv¬BO`,PK %Ó S"Ã)ŸâƒJþIkü(¯?ö’§¸·?œî¬»*@®_¤ÃQ6Ý]/Ê9Ër§6ˆ„á6‰”Šªz¨óš˜,Õ·SòrxçÎÓí¢÷¤7æ¨.ÏÐ Gë ]÷ümTÂE:‰°n‚”(„¯ %Š¥–ˆÂ»„+71N[¡AÃóÉoþåöÿ|¡ÿ·u:¬Ïb=_Þ;þîòdÙÝ›ÌÈ@oöÌE©~7gÿbb>/¶?&lË|‘•/?þÑ«ËB!XÖžI„lKqUˆÃZÇ¢(0w©°a¸/‡dQÌRzoU~3ÜÇì€ä;i¶ñx‘š)͆Lì wël¯Òí‰xëožÝ=½³¹’qÔÕ“ÙîÉác—yŽ¿Mé[ZmÛùE¡3僸ÍDJáMU'e5—EÊÆIòÙÉä£ÙàMû …¸}ÀšfV¨ÔöOˆtqNmôˆ½æX&¡öIà ”2›~‘AI³FL¬P‘£a†ÞUÞWºüû:ÿŸɶ¨+µÏåQWüH +s'¡:£úQDþ2I·e÷ó1S1sR‰·ÒÎQ +Â$RÂWgò銽˜šˆÌªDúpUF!¼5wËc:‹qk2üîèôŸ‘ôÓD‹îbîu†×²œü‚‘töyë*/?ºþj3þ󯟿³\¤òp²éMw‡iŠº8Ñb³¡|¹0Ré®ñV‹¤†¼ëéWpI¤ÅðU{ûîó“6ê‹[¥•Ó5Hr$):/ÑunKÕD¡À Ô&Ö,‘aß2äjˆ[ªQÄœ„»iîa˜æXÄ{ò½òù·üË_Ž«?hñ¯1{Ið{œGX;L#¡yÈ?èpv ë{©È©Œà¥Äõ·‹Î‘ÒhÃÃ+±8·m:¼²Û!sààb"ŽBƼ"éæ­ŽdºxW-ß~¸¢‹t_÷´šêv:®BÀ–£{èt‚ZP³ ”}Ä‚ÆÚÅÒ õ¸ý ,ºÏmåúÌÞT®½ÄšpCsN[/U¾ìf/nUÃc=« c‡±XSzBÉwX¬‘Æ\bÑKÔ½Tï&17õ1Õ‚y.r )GÕ>oÑ–F—\®'£<¿wþôl¶›8°p2E ‹R$ìµÅ%|Y¼ÊÊ+ªG$«¹9‹9žœöx½0ùþbp÷­ç…yû“¡|'ÿfºzý対œUe&“‚㬸W·†ïܾº5üêM~¦¼‡’=àG‡üÉXµoÕî“RÕQ-ѱˆÖrÇ”ÉîgûGo]ç¢ìÎÂvÛâÄ.ŒAåò+'Ê¿ |ƒ\à‹&-ô‚¦To‚ _4EZ™öb8¨Ùªí~º@;*jx'‘- ^G2‰yâ¬Ó~"cª_ô³Ïw¯ª6„‡ÍLÈ=xm#ÉI(ˆÈõÉI}ø¿>>™¹°^©ôbåÅ™ 2¢~Hˈ!VLTvd+–¯ªÖjh%ZbXPy¿…Ÿ½|ô[ÿj±þC¡â¤ðÄÞtsøÞƒËÕ°tskƒuûp8n/õB¦¿ÚðÅ…†t»'_\š¬Ë{›6ýì€, yØ2sž=myû+ôä—ß·ÿ~qÜ]›¢Š(d£)´¦fm|P´‹|lƒ–RûðHÎP)P%PlP¶‡2ˆ¡@}“lGÉrŠ m³BÈÄèDqN¥«+ê*5§BõdŽŒ iþI-Ï X&ãƒÊ6jM¬Z€ÊÅùÃaqGÝùÃáÕÿ»‹¿Ÿ‘H¥TRL%Qu"'LO1–&\“쎒;Lœ Yq.¸êåõRtuŠteL{üáÝáÏ^¿#´ EJÛ½ÝÓï/ö‡ØÆZì]Á{éph®žßé W=®T¥ù: Ø¿ÉËv÷~·s$ÊO yQ /¿sÿáûÞŸvvFíA]*^ƒ†Ú z‘@¾D¾°a ›‡'0G; íq4OmèÍRéB ›]…æu[Z'‚ ͘‘¥ÄŽáüòñYùv"`HžH;‘JH¡ÜIsx‡T—3¹ìE®ƒœ ý³ðÿ­ÿ÷ƒòƒ2P†#.8¿MÄ!U)\­<Èîa2ã¼V"< ÀÝ5úò®üâLÞbdÅ~íÆž !')Ï÷vFû§Cg,\dª½·›þåç;çûP* šÀê÷2ÄQè$-xuÞùsy²”ÎÃýdþìÎì­âÙXç+’´jGZô™)ï¥EmáZØw¹¢“ÌÙÑ¢ˆ‘¦´ªº.D›XD‚Ò²UV}΢”÷H¶‹i_ýñ½-H]@*x©ˆ;‘N°åëg{X¹’9ý^¿Ø_ã6ÈK–…ó_ƒÿtäŸç®ÎÚ‰’DÄ‘¥|§­”T$3óH‡aŽ‹"ÍÍá«Î³£|üê þ» úWÎß葤ÿr¾k"Ÿ`¤óˆ©lo;:;öz6zðèU6á·môn‘wé³ûÃTs4)¥1 r†k§“›ã*¿Sg}¼ªÐ¿»2¿nïß]qÅÀ-Úò@£Ò&Û›ôÃë÷„@çmô2óïž@ „ðšõíÝé‹{fžkåBj¥44Œ3¤’SU2~ ÄgYJœ¤!P‰I#“ ðH….°)•Zíµ1¦"“YÝÞWÉwå[?jŸ´ìûºRµ0§ ÞàDÍwR†#«êÝ€«ˆå‘˜ÕãÙ“î³kóêj÷ðÃÿ¤ )¾_…_½U’Ô—ÆŠ[ÀØÝÝÞÞîPZ E"³P¯šÄPÀ\ÂiרW \#©,ºªTuZH¾dA]¸yŽú9zÞ¹iðŸWˆ—o´"Õ ;P+T\EíG &Ážhô.Èl`ò»µzo¾÷p=¾^ÎåêU»U§Ãk>¼è2'’kŪ‘˜Ü&,ƒ«åÂ.·Û8—ˆ»Dq`(¬¢H”©!Ò8 úHæàT™lU/¦-é¶š*ïå4U:Æ¥ëEQBÃÄ*@ tÀ£È$fq²;üj/»˜æ&'Kóõ^u[›A9ó”rDaQ^g³ém†Q p·´ÞDZtˆt€¿ —˜t¹¤`Ü r‡ M»¶Æ=ˆFjW–ð¡†çðIU›Ñ,‚–Æ.É-ù† ôÙÿ¹•yX–„‘Š£w»èÕÄ]2MÍK-ϧ›Ö‡“bA1. .íõÍ[w©Rv!K¡¦DJôã„ïC<B* ”¯L—šˆf4æ.WXj‘K?#¨<ÂzxÞ|;P}ÍZD ãðÜM” ¦#Lœ$uð0m ¸ì`sþÎ…îÍù§ýåËNû§«Î'¹Ð€znoØ<Æh1ïm†PJðH …½ëT8T¶…ÒlV‘f*ËMTîUhÜÛh…G+=j<®m.Íùª£Z~%lÜd ¥‹ÖÀe„Ò‰lÅ9ð^š£'Kt¯çìóxpö¤ÓýX²/>Êkp»,½£Ô;­b"Àâ1K@¬,R¾KƒÅ;D$ 9R“UYœXúfÏ“í.‘‡XÊXõp>Ñ*Ô=—ö‘(½:?÷¤²¹‘²ÎR&‰BW•( ËkEÔ¢tLlFPëaÐ_Ó®@Q­g÷‹òŽÔoKQ¶IŠ&V y)Z¯z«]°ð )Œ ¿‚ZßBó%Z®œó©C„ <‚‚÷,jAá¤9úä©yÑ^MLû¢ƒ>ú‚“œÀu7Eji—ZDÐuÀ÷bfÀkQƒŽF¨ÖŒ¡N»ûݽ¿òër2ÀÚÈtT]} Ž®H¸HÞ_óÓÞØˆÏázBåz"°ÚØò…ç‹ýˆ L§ÒÆØ2… `A¨áÚכּõ/%ÿºÚ|s0¥9_¾Îêgù”§ß”?,1¸Ò4|å†"ÀÙ"ï„t? n9®Ê¤€3¬‘ëIƒ*¬²n‚K‹ó\8œw9_av8d³îäŠßXËæwªáòJÛ2ª+¿ÊpߨŸ¦)þ¦)`è1Y÷ÖûC #Ü®‚­}‚ ‰Ö=´[¡»CÔªÐýš+K:³ —‘ä ´Ð°‡þùwÁó‡ÏæÅ;]uÞBoðv]|¸Ó ׺Záú´2J ¶*ÂÝžâF€„K—Ç–LÍcª?¥_¥lIk>Ÿ>ž¦ý$º)1nÿOxó(°DyëÛGÆì}ÀÅ›ýþ|ÿBR_° ȵĦ¨e:–Y;ÃKW¶}&Æ”±8¢bhÛ;Ú¡bÌEš6ýÛê±\´ˆ6šH§Ìp[·J逄`MÛÖš™^i¼î-‡o¤ÉXøþ\ÿí.Ú/Po‹ÆcTŽ,í¶a)ÁøähT œÙ5Ê„ÿ||ž^‚%gr„­í² "C<(%Á¤m N²¹$?žŽÞeŠM 9åU‡Zwf_ ô@Ì"ÊÖ +p©R€ä뎼L{f€E*Oû•<*øDändåe± ³G¼PX,7ØZ8 òx4sìíÖò@Ò¦_)´e² (QÚqAÆ‚ë¬Óý¡,+ ^OÈíf¼³ÚÖoÊ?jJò ‹úÍ·w;h¸ëäêXDÛÆP Þ ¥Óûbuü‹É˜ƒ¦=Ÿ™Qv=Ík°·vü®oΈfq"EHg[û\GÌapmÍZ- l ÿ¬*"ƒ¶3<Ïø;ò21Ž-¥I—V ÷mkžf.%©Jï`|1Ø%ÌP–Ûœ ¸ŽY›‹LÙµ­^"ó¥2¬Ô‚ÌT^ªÐšp€1AºÜ Q@°¦Ÿfã²Íf \§ô©ˆ¸ ”ÍÈ×ÝLKcQÑ®£©DiÄÕËãíl3„P€´½/adÒnm†èù>zûŠüü‘©@<¸¨Ù¸‡‘åÁ¤(>xúò;«o9ÛÀw+ò©á ¾,âUt°ó"S & ®$6:• ¤U.”ªÖAÆb©ËTÓXT©h…Êʰ‰úiJ&¾Á)Ü-c‰lGJ%Yêø`ïŽP[Ûc”~ ‘o¬.Jµum©†2óÄŠgÛ?„¢æÆ—|ÈÙÞ¨ì+Üp<y¹’eÒæÛ Gg—H!‰ÙNÌxCå–ñˆÄ¬½6z j4`3MÁ(íõèéýf…§M‹ò–³^5xt¥ÿô.ºÞeæt9ÉœiÛâdd±#× {òÛgÓW¶à}Õ ª'ì·¹ )˸?ÏÚÝn!ßçì%‘Ÿén!:æóBð|ºnVj(ÊØI•ÐYRå`íwÙ§³®(j*òвRö0°÷„mxBÉëÝÃvÖV8;MÅ€i]-ÐVXyÖ ž ÕIš&  TG‰c}¨rÉó€ò(â°£Ïý¦œKô¬ƒÊ¢>å²<( ÌTr0w¡mdeH)«7ˆˆˆna­6ÝõÁXñ‰.ÛÞ¹º%èÇœýÛ~öõG·Z5jÏP¬Ñ|MMSÎò»Jä·.yZêÎ—ï¼ø°½|¢/®ý윰û <ŬøÁûG§¹ß“Û6;7ì½õåhñ{ý°E_ôÄù“në¿=,Ÿ™ÁÝLV™3,шž­Ú²¾Û)?ÙNÊ"(%®EÐË‚qM®¶¼ ÖîìžýëÏþ›õð»íöQ©^•­>•¶‹H)K…›Ø­¤õ7[*2³ ·Âò4TrÁ ctojÜl´\ä‘– uc‹Ìö[H`›l¶ÛFFàkÎ@Î9˜yp›Ûuog;„ÐÁó·ûÓÊìIù–柈|ª†6.²Ø¢2ç+9Î7´ôÄK\`*ooûÕí¾»&WƒÉ~ÂÚAC Úx9˜™Õ½!ë(Ëç?:?ù¸Ÿ–ùÓÞä¿ÿftÿb'—}¾2¸®¬×@… —µ® 혬ÒÙåTëñpª2* {”ó×£ÞÏ×{wz“·*öZ$¯9™ÑÌUºæ|‡‹ÐnÄPH]—iô(á´(ÍÑÛj«ª[ýeÿ<ϺUt´Åx2mLëMW¼¤+€Ñ"Ðk|4¸f[¸$äÀ-mšQió˜oz‹í0nì q¨²Ì£•u» èZÂê=øÛ6°†JûO‹V2Ï+OïE´gyŸñžp¦êh±úyò„ ,%XNOdQ¤L“º‹Ûƒˆn<|Þëív‡ûôÑ?|­÷Ó*r4¼”Ùê~]½'k3¨ì§óMòé{¢·ÞÕ¸Õ£û¢È;³“ï>®u28jï !ÑÓáa§½$ٴ二¼î,¾Ô³+Œ÷±¸,M²Ø7›µn¹Ïná^¿Ù‰ÐÍåá–Åp¸ÂJ¡þ(žvÄÙbûÃŽç­Çs¾³fÁ+°ì·FÁŸíÇT“Äø$'¢§‡×—+‡:è+6VX"Q·"óšo§Æªí´±îGýÞBÿ'{ÅC±B¬B¼ƒÒÚêêèßû†2x9Z-g’Ù²9ivf…MN𠀇FH¹ÍÖz «vìFjëB÷°íößìhC24ž î ß ¥ë ßçNÈ•OtÀ£vg¾<|"T6ëÛFz!™òÕуéhh_%wJ3ò¥^\Ï_dÉÓòê÷³ù²Wø… EÚ¯TÖj »i0k¤úy.Vúòþé½Ãö£éç»âhÜÊzÃÑžI®dþ¯/ý?9Q¼hëµC lZb sR]½p;½X?̦SQƒfY°×›üúèá~õu·žç»¨Ü·Û£ìi³û5Ô`ϘëêÉÁª²*¥‡t«¡Ëi+»%ÍÑΦ·Ù|³J›SÔ/Éþ#Wj“rÏg‰Zy4ÍÂÙݪÑIŽ;þÁõ–(0\f, Hù½YPë<ÅIˆA––Ãû.zæ.‰"öœ‹?(é¤`'qVMrx~—ðÄJ5Ð|˜² ¼ùhbÛƒ°Öp©î–f±Û¥ v T”i«×Î ZKôÕú­è§ÇÃ"©õ\Hé¨ÊgF.2‘ñÒªÅnȯS2LX&Ô"íÝYgØ&´¥”×y€zÏj^^aÁmCƒÛN‹5È`(pë„_ 4 ™’U;ï…)‘w•x¸ 6½É÷ß?{®ß—Ñf=yõñïÒ~•`°àªñŸ«0múHÓÎpRÁt°’Õ'mÿùÄŸÿp?íöq;NÁüˆ«H„Ñ¨Š Øÿ^(hˆ fR‹£<å*¿¬ñë]¾Ò`Þ³IÂpJR\'J. ›­UŸÁuÊ£(µmC/u\âØá4jHõ~Â×(™:ªŽ:eîõ´?(&ËNþ›»ÝÏžtˆ:+Ô¤Ôø0ÎA¹¸¡à:cv‘G!—ògT> ÙÂ…·À‹„×çóÄì%àõ€¹ÀÜ17m: Iz;«d*ØT䊸&ÕŸiþu<þìëO¿wñˆ^Þ^~ðòóyk磄¸ÀÝK´5o°4‘N{^ËÙ•ζÚ;1ƒºðl‹€Û2WµŸæC¬æ~÷4-V‰Ù i³Ã´z†å«J\yȲÝéâ ˜ìGÝV„ñ6•­N™•W a­Ó†Å¢f:Ô…Gm2À_ÇI<<þ¸ÞÞb”~!y=¨\-B"iÓ¼R3 'Ó¤µ‰“ºŸ Ó¯ë½\ý¤ÅïºwŒz>§³[½ö„Mn/¦§§C:í‘ûáÛèäéáÁøi-ºD9”"O9.ÚU£aì~_)‹|øy¹Z‹³·HÙµ»+F >ŽÔ8%‘óa$nGÊMòŒ°·0}‘Ò1ÛIXÐôú@l·b(XåÔ6·z‰E(Š›|€ûJìö‡ÏÒø¡mÕ‰~ó·2ýf~DÕo§ÙíØ|žßþ%ïžKE4ÿ¬b?_ ™ ìÀD¿h÷¤‚¸u*&B \;À§"‰š)ßN†¨˜ïÇv?7Æc܃ŇÕ!zPPœoneòg³[¿âé´{ëÖeFÏTwËŠ_<ÿær^M(?ÝٻܿUÐÛ“¾º‹ZJrú¶È?•¢É’H7lÚ ø—Ì*ŠP²å;£‡×⸃{º¨PˤV¬¬ \± áœxíp=˜eòãW &ask°èµˆj!šÙd óHyèS'À‰Å=j¡ î=d·Òþr´ýëLäi~ŸÌÄù·büÎ~«H𥦡®¡ÈC°AâþX/E™ç‹Ê—y¨F,;&ÊÊx»©G½@D‘¡I†øxž²¢XjZ% tÁ+Õ&´úmõ‹­yWPWà c}A§„Ž}|´óøwî\¾³µÞÿxw½àì0㑲³ ›6~~vÄÕ3PkgyÓ†Ð)' J—’䘆sJm—VºRÐÅ}çúg[¾¸ðYìƒàs­ýñ´ýø§·æOFÙ¸Ýl»ø»¶<©µŸ˜ÙM/E.³ûb·&uC’$ $ ‰²!Á1ËÚÕþèxg‰øãD×é°w¥tËÄ6¢.5±Î ˆžo7v=¡·>jË~÷n7Ì‹H Þ ™Ú½Qы퟊‰64wà‰ªñ.ÆNf¬f–zº³û£Ñ?äµ"¾d¾"B¦¨tPL6øß;ÿúõ÷N~ÿ»Û›í.(|ôüúî„f,fʪ³L¾(øg:4¶½/d`¬Ö±UÜ!ÜyP‰«îªÇf‰‰Ž\æ†ÜIX!Š,3ËŽºÎª#|Çs×ÈU^ìQœÇ4ˆš:µMc#s"šÔ÷il““2»Á s+) ØÇŽ4 Rd,2G™-“µ” ;WXZ@g‡&.m{¦ šª²Ôç~@S» ¯1–ˆpˆž× ÏxQó¦Ú‰Yšˆ &SqŸå¹íœðVþ齫ÉÏÙVèø„~öÝâx»ÛÒ»L®¹z|ðÞ_ÿѵÚNîˆ./ºNVx:)ó[Ô?62—éH•ËšÚ½iáE2ˆ)¡´ˆpâ[éÜ]nžî” v(‚˜OЇoí§/WAälº‡Ðc„:N„ bÐH!ävÐzFnIÖmŠ:Œá~ À£ÝÅÀ–P¼FÄ ö—(XZNävj" Àhiž]qÈ?ÖýãáÔ¥ÒM}?±r©}D8Hde› /ûf·%mÚÈ%*[쳋³;n.W1äf¤J¶ º­çíG×e=ÚONúO¿XÏïÊàF‚Þ]ýòÿá_¬Ö¯Ó,—Œ@‚Õ¿fdR‰ÄÐL§·V™Xî²p˜iöY(T÷:!¡mä _€z!7wäÄ2€lkÈ2÷žNé¡ûÈ™ g ‘ƒèy±m¾?“oö-âÝ 9óã 2Óñ0Ô5ŽEàËæùŠ•Ð  Ž˜ó”QOàqW° ä"à©//q¹„xiêX,u#ðô(&ÆŽ…XN÷bª]¤·h‡ÿË££?zþ½I·JÄ6ái&ÓÌÖOT]´»™,¾ó€iÁ gÅv%ývg÷½'{;ãElóñ œ µfV‡Ey(Ïw[® S.˜)Ú˜åX;7:ÍŽHµg:L‘ü$éìŸÐ|#¥&ˆt•åÙ \]~ŽÐÄAÌAäì8AXçÄQÀ†1wmÖëÊm[Ûî%E±©B^{4­³8R!%R"¢\!r¬ºEyL§Æ—:á„{Àà–n^‘Ba y{€´ÍŒ%¼QÊqo§¬›°O½”ƒ¶ôTÕôÕÉåãÁhu¸G{‡ I¨<*On‹^r·ÈÞxÃZçÃÙáI°Yõz{²(²ör»óõËÝËu‘äK÷f0´ÿWŠ|£ØwïsfÉ1>É\ÎífeÒô¸à‹HàÿcÙŠL!·éöÓÏZí„<v/µÊyw\-W•ï…¾×GÎäÞwü=óPŸÎ‘»ð PjÙµ“<A¨`îûQDY(‚¸ÿë€çšKÒ¯PÅ¢ Ò‚æKi„Š@%©= °ˆ@ Ç&óè“ï†ì:LÇp³û¶•¿wètŸu§Ÿ®ÛßN±ò@]³À+1š ð5ËBòÕzùƒY똦$²RÇõÀÔˆ¨jÖòxÓv¸qg>Îý4±š. œ,ßÁ|ìQ±ÏÏ"‚¡dîE$IY’(?ë{“-¶ãW3’å¬dWœæÇË×_oöv*~woû «*'5 Á·øëQö¾ËŒ^ ö(%Eãâ“[mï£ð£DÖ£0aíºW”oí]ßJÅ;Gûîì}žßµç2”i/‚‹±¬F"l` î:H* Ió8¢2W1ÙÖÝ›J·*š Ú½ì(zVg·bOñš¶c½¢™?a@ôzHŸê®;1Ím‹Æò©ôS5»«þ Ãt3dâ3Hoß^‰#<óÙK÷Žåë*`“ˆðHºAŒ)Erˆ×/éàqHAH–>á±ÛÇ £ñËoO¿ýâëWï~ùàõ‹Ýݯ˜Ùå\(ÕÊÄ$&°"ó–*[ýiV¼PôË$ËcPçBˆYÄ»h@!ÙSúx¢þ Òo§lM©~©g”G$1ˆÛ'C NÐWa£Tƒ›ýzá@Õ$*HD@lÛ´±Œ˜á7²GØ(Û›±Îœ¶’&…l«é[FZ»™}Ò¹óƒ^òèéLÖ·BÕ‚·°GiìNŸ4;aãø|òæùq³É Þ¨£N̦+B@E> Xp×ÿ§ù%\8ƒ½ñƒ^׸5TûØîá„qxzp{=ùŸÿç—>\í.ÀÂc{Š!J²(„«%>¥|ô |ô0ë+«oh‹JOPÓ…à)Ÿcv˜óÕ3sx˜•.,eìÅIÎð)ncåQÊUÅ4´ÓÜ8 MÔ5kæCæ{¢0ÇÞQÓ"MHI‹ 4ØÈV7Ÿ>Ðí¨Bf]•=œ¥’P$A£ýÛ*˜2uádBéçLõ-D4ã—ÉÍ€tS¶‰Å ƒ)i+5G½üfû&"73™><$ž]ëz x5Ÿ¦¿ý ·Þr¾0òƒìÎÂ^$A ã.=?¦­$ã³õp²ÂËò<¦Ú³’-Pb´}TÞÙs'ÚËiT3Édžòžƒ7””Ôjÿ£¢×7†ò˜qp(à¬ö#r kÁÚ<Ê˘8‘g†ÍÆ(pÓ2CUvc—Ÿ¥QŽÂÂ<³…F\Ìɽ6ãÝéÊ¥—#öW€u¹“(ÇîÈÛ2Gƒ½Ewï}@'6T>IHÏ æ›‹y£±í5¯à‡ÞM9s;€ai7–M5 FêÞ4Ê;ŒJØ”Üyr=é¾Se÷2ù¶Þ=£ÊdÝb'Ãá»3:œq(™Ù¦·Úy å˘ƒ’•Ž,P«ÝÃíá'Ÿ´þîÀýÓŽwÍuŽ—˜DâG§$o½ËûRÕ¯uúLE©ú*Bð@˜éŽØªHÛÓD¯U§!UÐÔ…~„:¸›g‘’Qº‚‚nÉãLF:Š•[šì\ožçßó.=eÍ17i'¢æxµ,ì óR¨wÁ½FFü4"5»È8ö ý§}ÈØTt¦nÐDÕ&}£™ÁÂ8¶EfåtÂyÐàLÚ8V—ÏÏþ‹_óïÞº÷óò}ÂÎE>kµ_<^]^O[ßì^Œs…¦«ÞÝ—½"ãNÑ‹âu.õXz{÷ÉvÿÃjtdPK˜˜$E(!÷öCF!I|Rù‚å:mÑqeÒvlnÞz„Í•’/—°¢¹o¾´ÇŠV¹îp¸M»/¶ÚÞ7K÷¯ çAYõM¶;æ³Ç‡í"Û)c4WnÜ4FšÝü&I tv Æ¡ý¢®&÷–w–€Ò„à&Þ¦Ò¶¬qéè}ÀèÐÅoú®°vüqc®­ZŽÛäžÓT¤öa羚³œ¬êt»×ãŃþâ¨86'nj°Tw:åÅ|ôj.í<è|q±óêD@T²‚Tݪ÷¤ÛûÙ½J™eÀx4Ó¤Š;¾ñ=(@Ùu —L«mJ(tP¡ñ¨¼`Õ‘Xå{ùÕÕ_ý¾ç~V&‚p™—™=r¾§œef6•Þé™m¾ØæÕI5ÚŒô@$%G nMŸŠóãž¾T›MygKú‰tü戕ÇôgtãpoÄIcpn‚†âòF…y £ó“·î~zÖ½Ì2ŽÓN&/ž¿}úøÏùj6¿½³Cò]É¿ÚÙ~1߆¦0æAÙê^Üs÷ï^îþ,Öƒ€·=ÆR»ßø D$âfŸ´gN©‹¨"Šìé §:>ÛcÎ÷{omC=¨.²ü^Êúi5 U.ôQ¢nÅüçf¸Ïk”í—fâOQÔs'¢ý©¾j©UÁw*²¨ÒZ³£e¢½©™Î ÛÉñÏvž^ÜlÕá£Lì5S%Ô$‚eÙòÎBž=] Jàðæ@ºÆè†pmÜ¤ÍÆ¸  ×l ØÒpºõ)±Gb8æûú—Ûü€íßNzñéó¢î}^þ®Õú«¼ýUÒ9 {?X®oq2L&6ŸNÆå¨×qŠ™wü–jó°%‡™ù*eU$Ë@ÙÝ¿ÙumvÞ>ïêè† -t@‰Õ$á8%r°žöÕ«¾½=Âɪ7½;ž,AipãDy;Î&ANm¿«@â}dŽSœ¶b ÖØÓÉ[޹p赌&$2ˆ ÊÇ‚>í³W§;ïýó‡{?÷Õ¢«…r/þóƒDæ¦^ïß¿w´¹.éá¡çQJ9Ð1„.m‰AS¶>Ž®àâAæÙèÙÒv"[J(Ìü°Â ?Ëæ¿¢lD3$(Ò$Vp£‰ž¾o¾­ë•?ÂÕwóÍo–›!¥v™´°‡Ôý«1úq¾1ø‘˜œfϰiœ¹7'Fí‚’Ðîº DïMò§ èIžt¸ŸgÞ¬õ¹®‹!Ï'rø TLÛµ=ÜPFÃa#þƒf¼ØTŸOìÞÐMzÄ7Ìñ)ñ?Œý€rðuŒ×êIKÅ@¥Úö×ü(Ï¿ÈZ/ºß1ùS{ègÕñmÝߣéEŸ¶h1†YÐΞ¤— LèKn®¤È›YG*D­ë!ÆïÊÃé«ã4=]Îç[5ȱöŽvh¿EÆÙ|úxKÒ=4ía=_ßZì íiÐ Ñ¡¢pGuŽ>ï Sí¾Õ–ˬXOwäøn몠Әk{kaS±|3þ5bɳÍçl@“–‰»½tQú=‘¶¸È¦§x*"aû«¸ÙQMˆ±2”¶ Ñ7î5"8Hy@IÐôêÃf´À¥I@{¶7±j-´~ÅØ[QšÇ^“ݲ÷ –ýN.㟤òDm» ¿âû‚]+òxÊî<ï¥gyòøLoî¶ð¦¥Ç{ÛÑè\°È¨,WVšjŽSúeŸÇ]EH>ÅדÙú,W²¥Îï­í4â ­bÑÂx›¨ƒí«åÁÐZÂE•=³vfž¡Ÿ*ôºD]9WU²Ç³=;œ/]"ƒ°™± öFm6Û|¶'é7݉¥öKR˜:X.Ó¡F¼ ÄÁÍy‡¼Q¼|ØD†¾ùxЏ9Ne©0±²6jÆ AzÅI£lq3ÙB]‡ ˜"§˜¿ÅU†Ó»)þ-®ò;}¾{Í—OãöG«u+Mq†‡­Îùäø›ÓîGì¾õŽ7&/æª:ÈÜa6,åëŒ/3j|…A-²'Z~Ÿ±ï(è©VP.f§ Ê/t5ëä/ù3€šùl½¥#L>ï®~úöG¼Ü³ÑKšƒxAÌÂEk‚~ºþÛôXN${3®ÓT[Š„»ƒü¹qâ!¨hÚÀ…uÙ.sT—!¹Óáƒi.7³¶Ïìñ.;1Hln“mÓ!çq̼¨é½4œhöBÆ¢$€LKSû.î Xa×Ã%xHÑ”øùÓÑíuÂ~NÈo2úî°seZ{ÝóÓÎü\Ä+F÷r'têg_ïüõñu¯ü-¾ê?}Tõ7ÎîË`š©®\TtTèyÌ¢U÷o;ó‡·:Å€–¹‡íz®·Rk5 ªÇê8©œ¤±ŠD€d=3­Ó»W‹Ý¡=<«,âÙµÍî†&èíIôW úô²CG·†£~»§ ·Z¥ÔHÍfs jÊîNz|’p4÷ËR$Rdò/ºâñdRúµ>»$`l„k5 âÝ軉f-gãèSBô°MK»ÝÖ4g -áÑ´ Æy6Ê+{ÀXÐû1œ\d{uµ{]–Ëwp:'ɉNîVüÛŽÏþ»®>;}z¾yùÞlSª¬_ù§­Th´^¥“?6ƒ½Þõ™b/ÛÏŸ¿wØËón§½½èfc[2¢ÐIîŹL¸O4¨­0‰Kýɪ¹’7g»¢Æ)G4 1xyZËiÙkåí;õRí‡7X6‰ç6›­v€4&‘„ qàfÍ©˜Ý¥'¹»“÷ þB=OviÓ:³d /i„bã+Ý6'Omá3ß§U¿ÅoÈÝZxìÅTúͧ@ýº8Hªø]BZ˜æ™œ$ô,­ò@µôqopÜçãÌ—`3Ù ³wTõÞãw~¸˜õZ‡ÕÎQ÷)¨ÚEœmL§jÜÒl¶¾×¿~w éÕ¦õ·ËÎßOæd™=¶\x²³1æÂ(õHª 6«€ÈѺ»Ù&7““Í1:ÜìJ Á IÈiϰ¾$‡:Òd&¶~Ó+»1×^ɆˆQÞ NVñBEôb˜½îõú ¿3ˆ (ÆNÖuÒl ì5KàßЫm;ÐèŸ6[!'m—éFÖ2¯v­9œB}Êbê•|Fé(… R‹”ì±aFeH/öIðz¸}ïƒ'ïž=é‘á <‰ÞÕæû4;Ájˆ%*c2ç 3uÀÅîd׬ú‡]ùü³óoï¿êðÛ}ê¶)âÜÍRãð–æU1Û•˜Æ)mÛvCÓeooÀDÀtë8ÔžoìŠ7Ÿ–©âÐtÝÁgûý‡"ˆ£ãw›±“Æ\Ó?3Öœ3jd†=1×p«5øöŒ9šì¯ùîA¤$›¶™Ðé,ùvÖ¢é~4£A>±³½n;VµÚèyMúÝ8WZx±c0v«‘8VÅ©Bdl‹Õm£¸#Ñ×E!¾[½ûbüWë“wÛºÛOãdôbÞmÕóV€ÅAʦ©RÌh¡óþÝõz<Ë%‚½/Ë VAÎã….+õQ!> às×e±—F>héôÍSDóþêb;ßÄŠê¢Uôi(ì-$œ¼m˜+I>ÊÈóª À)É=b‹:lêèæè"¯mMPû9'vÛèÅo>­ÈæUdg`*l¦±ö"ið­þüd6ž974q3XBÞ¸'xYÛph .lŠ×Mš*& 2?®gmQbfV¨¾ò §‘C-—•ËJZ­x7ýȤÿõ,ÿj^p Zªfz•ÍúÙEgLz¬÷ñP¶VÙC1XŒ÷*¸¶²§®‰èI«xyD¦Ãõê>o|).° CaLJnÚYn꺢-'ëƒad?'à™=Y`‘2!`~%'éP_Uü4³[.Æ`omäEÈçØ#ÔqHpÄ­œðS?!I_"S»ts•H{@϶âUé´*HEqÅK¤Ktãûü›Ãݬ|{½¼ù•k· `/F.¯|Ûõ,ŒÀ+÷P4•)•ê²ðÒ´W3¥pDHöìðúY¯l÷Gw0ô²x­e§Ý6Ýùåc\¼â£W’QˆÃPv.£ØÖY¦jÒ»uŸè·eíËv…ó2­xXØ&ïf2Ä6\'N†³Þþî˜[ªG³,Øq@Àþ») °¿«RB°H"ÆBÛ+p=åÜ„ ¾ÄÇNü=/~å%Úîû¤`Œ²‚:vöÙËåÎ`o¯ñ µdRæ¸ù·¤P4L-ÄázÍš(yU¹>”Õx¸éýòAÈi™'¬\ñ¨ñUß~þROÒX¥ %í¡Ó½Ø9¾·íŒ › SÃLw7Ëîf­[Xï†2–íHtP;ƒ1ÞeÅih~hf¿Í—e»‰ì’°4{e:w.ß?—²Ÿ×Ñù£‡B}•®hß±÷ÔlY¬ÆNÌ\'Aƒyoo—Ð0æ:æ"n‡|™J– G],}WÖ²:dÔÓÈ®S PéÈ >tɇ.Á fzii§ê&ƒ½ûªÜ1åÀ4'•=RÁºïzrtzëlÛ†+±Ÿ°pƒ!7ŸëeíóÍ.?n>2¨ù•íøÂµ»–e{^r¤ «*q‰"Rt“Lï>ZuŽÎePzQîb3ú·©9ÒzC%e9ÆÊ­znžg‚¿(ôeRdÌ”qI:ÃRgŸ&ê“ßùB·Vú°=ì6­ŸKþ‡XÖÀT7;q ä.ËAHŒvzûàs1Â, Í(2'͇ªU=© ²¼{ê‡, ¸Ý¹hFʱOJ¨b„§N|×ÁûNì87sŒÄ<€|àh]:cÓ“¬ê‘g(7I*“Aá¾ÍþÞù»#7ú§–ï¹Òx ¿éa6¶Ýö»n>ÂåFÞÄrÈ­oùÅ Ó(Ê+ób©1׃^–E@õQ7jæXû+jÆÒ¸™fç’™ZhM•"|?#õ¬ÚÐb‚ÍÏ^å³R(y¼¢šÇIUÌ{ú‡½áOÓ,èn(vÿ¦3㥙G“Ñz¸š]y>B>rà¾ïzÈõmïÈ÷‘¿òã;s}ێá¦ö,|œƒ'…œv«‘;ò(uÂ\“5oæW•ÌÁØ»nÌ*§PÞÕ¿ZÍ/ò$¶/ð¹Ó(禑Ì,Nâæk<yå®ÛÎ|/mKóÝÝû›ì°`##®ÒôÝ‚|$ªÓ¸Ø ôºcŠ¢ ©> ³‰è¡¼ TEcY™2ƒ¨vI“<²Ò÷‚tàãa˜Ôz*’"ºË-lÖ amÏ«¦êÞ]M_ßÎï옮'R'&e55bý‘02Þù|ôOŸœùÿÿ¨V´X`ŽÕkÀJøihEâáÛ`u\9Aâ8üZºq(Fxð´Ôî#@ÝAN^Œ·{É‘v›AD`y7nccÓn<¯“ªÄÕöƒVÀ¬mÆî{OÈQ…>=›\¶nÏö“ýöÉÃÖø­HÝ å§u¶l幇2oÓ¼ÙwÓgìç„;V'×Xl0ðÚÿ×Ù—õX–çež=÷ål÷Ü}ßê.Uuk륪÷}zz›}áp4Cr(’CÑ"i6 A²ÌéņÁ/6`øÁ¯~àßàŸäÌ<·iÑ&Â…žž™ê®ª{ãDF|ùÅ&ÍAÜ‚(¶.ù>…rãÓ ÄR‘ÌYžŠ4 ÒTÆ%61¨³{»xz»Ý•I Îe²7;Œ:“ÅÇ¢õ §‡kÖ:Z±©7EóÄÀ ODa÷!)·w@:°ƒf´éîš3šw"}§ÿø¾»y‘>ì¯ðÅë"Qç ]&op¸Ú9¡q,²Ð€"6² vƒØ§žédÕ†‡>Û]=ú/“í? Ë{§ÇÇÝö×4šEì«€?=X?»ó½ÙA¯‘5³‰ê¶oà‡´²œP /ë'ª—˜²Ú‹eH¶6åVÆe@6„,X­ÇÂÓüD7Ò´B ë„øiˆ>£M³uVÍV¤ ˜1¾§TUÈùÅò/ŒõLõš®AXþ1ë…3…Ñ3¶úYÖ½L½ÁÒ½¨‡Ú› Ùd Œõ66æXv+M#~7”ê&i) tlDyëx=d'#6}ÜÔSªf–)*¼Èµ¬‘°EY$üXZR±LM¢4y:ÌF¯»÷Îþæöè?ÍË£ðãñ hgÄìÇ~.Ó¸§—ÍÍ&[óÆ nÛ›ûæ±0«K~`¢b§—™ZËÃ¥Ùm{ô*îLÂ*õg¡»iåç+Ÿ«.Ñ#jebò&F÷9Ñ«•h2ÖÍõª †¯Ÿ¬~0 Ûkðþßj÷Ǭ`sʦ1ÑéýÃîÙ”ŠEP.Ãù! }è™Ð 6xõškÖ9¡B“tˆf ™Ù)ìxî÷ÿçËŒ5X¬±>Tù»,ëíÔŽá~ìyg †Žg ¸ñ‡´²xÌ‘º‘Ìa‰ùa,†ƒDB{œj«<‰}Yû*DRKºÈ±xȽFñÙAÚiµüªôË~5¹Üˆ$H¢AuZ‘ü5½ÝôqÉíÑsMß`Y¥yWªN¥»‹"¸œX:·Î`ÇÎÜe²=?˜Ý^:RÒÐX/©A!;ëPyä<âOÔéóÖz*¹Áº±¼ÆšWVePH@³ïY…8Ä´—‹\§Œ‡D=Y ½ÄE¶Â’m`AàýA÷³F…ž/À"ŠBZ ±ÂÝV6ALÌu‘¦·x~BùA"µAï’ Z¿‘“ÃXšËÏ8¤ÔNØEørµü‡ÉbhÊ7ƒQéЕ‰<¡Ðýþoo$ } Áï}2Æ#uü²˜{EF±’2Ì[JwÛyãÖöÞR]Pz’—ˆ~ibu(örš÷³”ÅúšÜ”yй8˜¤ca¤È´Q>ÈÅ­sªIÒ㣼ñ2n "B:eúá‚þúYùóEÿ5ÍUÛl…8ÛéÏxðÓÿuúw~J³H¼ƒÊ‰q†/ºžd&¼ˆ}AÄ7R?àòƒPw"²HP‘æicpÙѸ4ˆEšç 2¯Ó#xrµþÁh1ŒŽ{îJÎÐ|à *ô§XÏžY©±ßƒ…1H[pú0DLÜÀjGÕ|]É>£;I°yµì^LÖ1ñLÙ`h€t"`¢½D4"jP¨ €8çéè½^c8äU(¨t¤ s®!v®Ù&»Xt9yÐè>Jò¤’Þ›Óÿ¡ù³ÿ¹[üÙÝË*{! PÉyKwâ›—_ýó÷^?ŸFé•/ï¤7Wæµø4 R®”oTkù!ŸÊt-ø4bÝ„$ˆôq%fîÏ'a™XiE¸5=ÿþÕõÑ쪚Îl°Š Œæ ¬þh,lËyö{ŸK¸£\å !pOëBY6r®HK°±ôLäI¬ó´ïjÿX³iŽ =Áú8Q‹ˆDЦ±A/´ïaíaÆL¸¶îÆÂI+P•˜Œò“gG·bK,‰¸VñEGlÅÕͶ®¤Xp…(ôßÝ>ÿâé°§UÄšÔ8-Â̪e"mÙ\¬ñƒ>+/%¿‹¸d©É8{ÈÅ•åB æk†2 /ÆIÅÓ¸y1š®oûÔ˜:·U¹AÒ Ì†‚óý¡<};|Î$i§ /-“¼d@PJ¯Ñ0>fìÍõö›Ê?–ê@¬ëGéév,ö40ϵI#wI¥‰‡iÀ\)Š„ÇÐÜ„µnUVtTáá–ÓÆã¬¼¸¡õ®»[é´£‡g*ŸtÙ¯Öâi“ ‡c©lÒ·“)$Ì«8³íÊÑakp<ðJož³*•êâ0ÿI‘~I臈¢Ä<až Qk“AÊMÑ&ÁxÛ[l¯°<Š5¶í\,’F"V¾É ÿ2]±dÔìzUÃÊG˜´eâ¨äà ¥Ç*´-k“ð¯ïÑ ¹+Òœ%öÎÈ„bȱF€½Ø1Áì‘2Ožæ­„/¦mJ}ÍÜ·E€& —bX"\ YNÈôu;ÿäèõß{²-NŠñDüö0,UÔj|!sØSË4Æ*FÌ3È­²Õ`Óôæ¬(f9Ÿ§‡­âãˆ< LZÑ¡×gXü&b§^Ĉ„L½ùöã¨ñ8Ș»µY †ä»«ìƒÒ?$>AŠçò¸}—šÊ1@®ŸiÁ›‡A#=dÂi¼ƒÐDËY¶Ìù£¨9¨âQ÷¹¤Ÿš­qXiT6âF@{P7Ça"¨£3ÔØÜ‹-Ù &oÉŸ\šsªYVK¯5h5 N–8õNÙËLÙ­j23ÑšÎ) ' ð¨^fj¤/°jਦð‘&~r†Y™Ÿ"<«rcã~@Êûvð°-MÝm d›×‰X;Ö‹„µ‰Õž2õq;Æ×Bº@Ôøâ±`á|Ù›­ÎäšW‡Æ¶>V¸/q¹ËõýMÞù¬qw.ÍgwOß\Üý23ð;ƒ•ÓRæºÍåH‡\JÄס RÁ¡ ƒ°`%ùèùwuñ2ŠÃøÌ‡Cß»‚Þ•í‚äšõ¡ë½Ç®_÷÷¢šÌFt 8ÌÓô8L³pV¿µg×»“ѳüàÂÊòg¡‰öºŸ©GC^¨8GA-,÷((¤ILÒÐ ÐÙaLwÿÛ9klûØPèX+¡ìíx‚›ì¨/è1¯1¼#‰™¯Å0i°¤ce)¤¼QõÐù¶{°½ ƒBwcÞɈ„ 2 Û¨9¼ÝÏ~4êÝ6Ðý~óÅ®ÛË~­Ë$†XxÕ—í—L?zhµmY‹“D,bã=“txìûÓIW7&çëj:NhA0påywqþ›˜^6õ rj̰¾›£{²S=mà”·F¯¯wbæ :ñZÌr¹½eàLlªU+ÊÙÁeÈ$nß±DN”Æ‘m Ï¡_Ï¸éæ˜ Û%tf/¹ÙÔ7ˆ¥¾™rÏ;2Uàn7›˜T%ZZ$‘0¯aC柬7‹ÕVo~¶Äÿø°{xô8-ßÇy”¾be/v©2÷i¡§g›Õ&g°ßƒýŽúSdŠAÕå:/S}0ÙUZžêáK2ÎÕ1ÑŒã+¯ˆÑB’£uƒŒtûý(Üÿð¾ò’ïûñÀûŽ”bO($¶AZw•}²OÀfp^ˆõé8Õ‹V>êËé lÇCj€n­X(Ì™ò œÆtßÛ·}T #k¥AŸï/LY_}.õB:=O¸^q\+ic›˜xé.gù~›€gŒ™†1ÃDÞ¥âÌŽ­Ù ut±<|r£ûËm÷úÝ]ûpeþÚð…èœÇºiÇHã4BŒ¯ßEÏïÁG[¯Ý#BÉ,¨na¹¢z#Ò¦T‹•<ž¥§¢4F{IôËßô €WÞ@Aø¡?ÑÅq§]LE/-º>Þxxsß$ wá»ë3ßµ”m“Û¡›Bµ.a"Õ}®ÍƒG7²MGv—¿:8¹t óN ÎÚÊäš‘‰¥v‹‡$‘ôI«Š²ÊâFý–$_Ë ÔSÀöúÏwÂÖùc'|„Ó½NWÖs AœÙí¡p3Jµ1cb ‰GdŒ¤Ä™7ï^Ÿœœ’L˜$Ô-ÎF­ )Ú‘ü| ®í:GèË×òöç~»Ýકåù–ÍIÚä²EÙ.>I‹ÌIA bJc“ (ÈL) ùô¹ð§<—‚$[_`çS¸¿jt¿×C=VfÄ„#wš,-€[xÑ .Sú¬Óœ '™ypyb{nï‹q½ë„E¦ˆ¶}†¹‡ò8‘q-‘Q7|B7„¾ç@ ós={ÑIm¹9xävSƒ‹Ì¸ $6ø¤&û¹»~ƒ0h*+hV‡Äá½ól±9ˆ±Iáï!öeF/%$öú>©&Éäåñ£_~¼Û=ídZ݈T0I§LÂåC»M$]ß~úkE\ù¡ê„zƒËk 3A?  €É¾ÅÔ!Ș¥@©VL–:óýÞ4>¸Xg‚žy5S¥~˾û_óÍkþW-ðqÌ$,äŸ{¿d*ç@O-ýÛœMfO®sBwf‰*·‚BÝ“Fâ·u@³55M|œ"l»gvr[Ãúo3å‘vѤ-PZáœh¶í˜Y-eZùQîO&«­Iš„©©(ïKS¥… ÔxÛ茛G¨ÙÓi+©ŽÉ=V”R›ªÿ}¹?2ß‹ú&¶…‹b?!‚>f! Œ ™ˆô¸î/À‹ßñd&¼Ç];­°Ït¶Í’¹F«Ó8ª/õ%¸yÍ£ÌjðR²â-{!ž†IÆ,ÅÝm/bnð-t~’·W$u¦p¬$[¼ÔSBN“ÖT–NÃl€r¤§ô«íˆ•ýç,T±I7žÍøn‡Ž‹Ù‹ËÙ¤ ÄìðùîÁÉrsµÚ C©:ãÅk–Û@¤3~rHš‹òbÓºÓ"B ÉQŽ•öG´š¨ì#SEΚ÷} Nº¦œAp€ç–ÅQ³0!,É ‰á»sïñø‰¦c _u¼kêŠëÑ'eýÄ<ýÀŠjÞcàÆBãšlàV,Åu7¦f]º¿ÜÖêF&·t¬i©GºBGž´ßı,É¡X¢ÚkitäΦ±X-úk†³p†’ûÛ½ò˜fq}gÊ C–(Q7Iú~«î¶×—›¡ù›ÌôðHmœz| n=íwž£æ4/’R!l ,ZT4-yö‚§™65‰¿€þ w!œBx@hU}$ ²•XÇâ"™µù¸’m)rnŒŠÇ7•Éȹ™ea%o©§|U|¶_cÏ“´4 ›& <bbNÐ^˜˜Éœà€bªi!Òeƒ…Q^ûLà89&6K&t/:„œÝDj½×êÂ鸓úê¼ìã’XNŽ¥¬ðˆdЧË^"Þ u¨a$’¡[ëÇÛc;qÀì`»cþXu PõÞ@š…gœuTÚ¹¦2“(–D—íT,³J¦¥i”܈é£0ÙÆ@€ï‡4Q}ÁX•+Ànœ¤,y•.šå²|Õ¿6®LäŽgÍ8 鞪ç0ž ÔõT² _˜ï‡mcYp…æ¦1NeŽÊ”_u‡+v_ë»t`]ˆš,l•…¬;¶¡1lüV Þ*¢L<µ¤€-ååøó,œõÆí_]ýU1> ÄÛ½ û-?¦ L‹ì¤¥K½Ð‹“çß>øËérÝe4t€Ý&qºšm ú S»…²ÑP™'³P¤½v:*®8Ô„qrÊ#–EÉÐYàÁÀ³sÙi-àâ²k¥3„ðÅ"L°×| ‚9Œ ðTf±©û 3—ç¯ñSóù €Éøn ‘,ÕÖHF‰½3b c™$BRTËÁí ÀlÿUû!Óš<éžKý™ØÅÛD†ép¢†KBã®S¹üDõ?ž¶óѯ©ø'Ü»ÆzÆC{›À"vŠ_3o˜å„ä¾jÇåpñѧOׇÃáÔÊ'ÿs»T.ÏÜr(a |ÛcÏp‘ã"û°©oåúªÈH·Ã´L‘-óÞ‹èƒôL± 3Vû²+QÐNÿñГX~‹DQT,è¼kìÓ:Y·NîÙèÄöâ]ÖhÄ GÔ¹£>„퇻-ÅTfˆšš4äl?iæ wöëëèB¨ïN®M2Eœ¸R‚ñ¢Š’·”Ê»"ýáDýh‰7U$3*IÒ»V Û„ˆ¡—>3ÇvŽØ÷ ÿ ;“Xi¬øË·_-ÖCáHwÈ ¡}X–5Ë&‘èEº‚2£v˜/­ò”(~ž°ô¢ÒY÷vй±É,‘æ™Ú@Ø–il”UÅ7nlyb¨좨bh4Þ$æs[ÅÍ÷O¥U¿·Í ”`22n‡é(j0бÜ9Ïஈ6FØ^<² xˣ–®…Mâ%)/K!zlq£wój9™«ùdÐ.tÑk2‘c!MàT'¹UQ£×{§·½C›'½m§ß˜ráö÷ž[Å`§úb¹…û=w cÜ}Ýì¿S [ùð¢Õî«Þµ»~ð €ØB ¶/ ÏM¾ð<à™ófÊXÃØÖ ½´Ø.•ëú4 A¢ÃdCò‰¼T¨\ë4H•ÝïCVÝ®%a¯„ëуkÑ»Mð^>)ÔQ‰cÙº£ä†ËU¢’˜3«KPÏáº[1“㘿h·7}õÕäìi»¸¹Z®Z«<5FÆ+¾ëyqàA…”V;,"J¼V#XŸN1Øü2Ùe2ÒmoEþw }“EÞÂUg¬˸¸ á^B¿ ½€Àð*©'êܹ5+²SªÏ-P*Ï¿L¶3Ï 1@<r³LL20+½å?ðâ#è+/Â^Ò žA~K€'=Ûƒž0Å$énEYzRÕ'Y¨»ÖŸqù4v0©¡»Åy„EH7ž‹'Á[BšðN‘ÏÎt¤:ɳ¤ŒT®¦ x¶.ç,Æ€¬Jzæý7 BÐÍVÞxvQ½ê’¹êNùío_œþÓ=Ñj*–mE:%Ê·Jòz_ûnpŒP˜Ê*Ú‘ƒ±Næ’Ѥé7¡L¨üN¿Úm~¹-þë@ÿšÉ'1þhº¸œm.Cyæ ˜ÞGå´ì¨+Î)„ÇÖP¶VÍܯ †m?x{m›çv¬ÚÝ]"ôôèWQOEÈŽZpÔ‹l— ¿U®›o÷, S@ÓÖ¨ ib¿¦yGl/Ö­¶4á:Öâ§í8 ¹[Ø—X*·²§0¾n·mµâ-Þ8+á­A~=Ûúá¿]þ»¿¹SV’ò3†ŸE&>HË®Åá#kF(¹×%­¾(ä]œ=I¹Ýä…½hnRvË >ÁUÙëÖúÁ£Iöuž>åIB·‹Åf¹~ÐvR²ÞöÑùøóÙv×hë]ÀÀ+l‡-›tÞ^“לûo‰ , DêÓôÒhUE¶kAmÀ™îV¤+¤ûaOo?†B6óYEîˆϛÍìÇniHèÆ¬"Ì|§PJTbÇ׸§0TÌNógvKo'³ ¶xåg£œs8ílnnç?nŠŸÊWéä`PÒñ7‘¾ÏX?cÒ«¹pvÈ=©ýßœÔFëñ“ùõ÷òü Ïž(Š© y?<1 ÆÖB¾c/dØ”Y÷f¯Êü3*W1K¦«ËÕ+/™Ñì°çÇ›ÎÇÛ³öÁY%÷!x ½C{.¸É.šñfYôŸÜ+ÂøÿÐ5LÂMb0HÁƒfp–{ÚUUÔ• ‘“ÄôUð ÖJµð•Ô˜–„Àà8àe€#ãx¶@¶HOX¬bKZ—}´»GSÆñ0–3.-3Iz턤–סÜÇP&Q4íèÃñbŒæ*¹£;‰±zBPܙϿÑ/?èÅ÷"Sßq Zb×nâ2y³Ôåfø`õÎs1@Vñ[@<âhš÷23(ˆxMÝÈT8H£¥jG„!ž¬þ|¾þ&2A›f›ÑF‡ÈVwýX,óìÛ(ù‹ 6Ì”`Í6*¯ZíËçŽ{^Ð~þ/ȯ"þâdý‹yU¥‰G¡O¬ O=2àóº^¨Ï÷€ßÔ#1 œw1×ÖC*BÚœB¼=gÞM»°Ô.A ÍÓ¾þl\÷¬Žz+]&JvrÙÈ@s˜J ,ÔŽLíÑ0/š˜¼mµýÙÅ—ÿý=½jv[LånU+ý<¡iÂx˜Æ¯®·7MBð XMÉš`Ó#a·÷4hi»Ô»« Üj›/X¬¾Ú>`ì^H£N?ÚÜÆ×fýNz#¿ É_zÁkÏ.Xòmë8¹1í<º“Ÿû° ƒ!„ðþœÌï¶^OòÇ„Ÿ:uadWª@PÈ™A,u»éwŠ È*gèB á²–Zà:-®uà}ÍÅL”+B¢E'{ÒÑߊì„ëg¤4MzJƒk€Ñ&æõtM ƒà'ub A= ÕvV=_µ²fóøI5¤¥Èjå@ë S*ÍR ÆMùÁP/Å+Ì”ì•üx‡ÊŸdp3L¸ò­ÖZâùK%š›ƒÃÙö,½,Ú©2}ZЊï9„·|`kNXG¸Y7ÜŒÂSKòÆÐ{`­gÿt‚¯%ë‰jKÔehN¥ˆœXâfImÇR”LõÝÎ#›.=–F¢í‘Q”¨ˆ˜²×g×¥´r;î™(˜Ég¾1Z3û Ó§‰ìWϾߚÝáú€æ~·²"ôƒMݦ0™ šÐ¯`°‹–@ð~‚¶!횇E˞ΗÍìÚ6Û¥N̪mHË=!Ù„r ø¬Ã—*9í—÷ÇÕì¸ «ì ѦÄv;ÝQ蛽X%ÓƒÑd=$ÊrÃédÕ?è6|‰}h±œ`lQ_' ¢ƒ¯øñâ€ïC«&jú{¼ï³Š{œƒÐTÊwÃ%"A¸×5°¬‰S<355¥P3š2ç&AÔ78¡kZzùØÔ…°kàÜVk_Tó(O›ÕôòÍga7vÛñ”抽ๅAÆåì¥48Á÷uÒ)}§Q|Í»3ËYZªÃÓcRâÐí²k™dY¥€¾hàÚ!(&}®wÇ?È×K»@6o´ˆ• º.ûvcKìø±“Uo±>3>Â'T“ôáüêæ §pÀ-guõZ[Ï·w=ømÒM!x@€S¡|ƒÛÆ Âb<ÉÄ-nîÆy‰diûEÚVQÝ4vM¶°'4 Yä‘0x{•°—µdµ–µåokÛˆˆ°Ý e5us¸eëÛ&¹l“ãÄX xpáªf‘@¨ Ñ>â)i7c.¨9ÿ–L–ZE©²DØ ) OM( Žšý]7m\ÝùbpÕLŸ—¢©†ÜîÑã&×ÏFž( v`{ºé­OŸ@™@MÒó¦|~˜bIsoAëTbLìùÚÒì_P¨Œ…ÌÝÕÏ'Üñ=_¸»†Ð@RQdàóG¾º2e¯e§×çÑÉ¡ûˆ$ôH­‹¢JÝȆÉ,Ú:9å ¯†Í–¶ ”ˆE‡ÆCú jf'éìþ¸4·[`²Üæ}ód=Ѐ&ªÀRU08öða<'”„%=cXú>*¢ôЗ0İÊû*Ëta›æÉ¶OƒîªijÁ2ˆrz«ØVâóëHG¶®¸ 9ÄU³‹ÞÿˉLÒ endstream endobj 12 0 obj 24077 endobj 13 0 obj endobj 14 0 obj 24077 endobj 15 0 obj << /Type /XObject /Subtype /Image /Name /Ma0 /Filter [ /FlateDecode ] /Width 514 /Height 512 /ColorSpace /DeviceGray /BitsPerComponent 8 /Length 16 0 R >> stream xÚíÁ1 þ©ça  n·&8 endstream endobj 16 0 obj 277 endobj 17 0 obj << /Title (hilbert_3col.pdf) /CreationDate (D:20090630171833) /ModDate (D:20090630171833) /Producer (ImageMagick 6.4.7 2008-12-12 Q16 http://www.imagemagick.org) >> endobj xref 0 18 0000000000 65535 f 0000000010 00000 n 0000000059 00000 n 0000000118 00000 n 0000000300 00000 n 0000000391 00000 n 0000000409 00000 n 0000000447 00000 n 0000000468 00000 n 0000098144 00000 n 0000098165 00000 n 0000098192 00000 n 0000122411 00000 n 0000122433 00000 n 0000122449 00000 n 0000122471 00000 n 0000122937 00000 n 0000122957 00000 n trailer << /Size 18 /Info 17 0 R /Root 1 0 R >> startxref 123138 %%EOF ShortRead/inst/doc/images/hilbert_3col.png0000644000126300012640000035030512227066722022112 0ustar00biocbuildphs_compbio‰PNG  IHDRðÇsRGB®ÎébKGDÿÿÿ ½§“ pHYs  šœtIMEÙQ  IDATxÚì½]ˆdç•%ú切s@ÁíŸÈ8Ë}•||?‘ñN9_fþ8~žË÷­É}éu²™Ÿ¼î÷Éqµç˜úÓ§è¯bã€óŽüýÙ@•~WñÿGžÆù/á~0‡7«×Ë8n3øçøYϯ¿aÏ÷çͤ¿´S_çéã¸1ÇóîÉ´:~sŠùÝåôXÃùÐè§ÿ_Å+¿gãÁù‚çú!Þ?…çXÂy÷ºÕ÷ÆxÞgðõÝ“˜o¬‡B¸–Îùu-m°P?Ƽ.gr¿¡ºÎ"Ç¿SŸeÕç{¹¿ý㜱?çý8dS·|lžr;XNü>ÅyÙ¶Žùü©·†ëmøiÎuÞ[s×Íp\G¶½R– ×i"Ÿãú?™…B¸tbÝÍ«¢¨Þ/ϪqØÆø̯~Z}oŒãû8žëyÆói¬Ïl^ú©'LçkÏ3eã}ÞoµžNªõ|yŸƒ9û û'€`î¹íϯ ûåžãâ ¤†@<Ïaúê§±>^fã0Ä÷¶KÇë·9·oq]§Yõ|Y1çÖ÷ [7^½®`=n–ž âºâ>Áõo N´~e~\ÈŽYŽ3Ï8¤\ß…0l‰ß—9߃_ÇÌœ5óñJìÁa¸I ïaa €eö ?ø:飢e¼¯-L7üçDŽ@*gpßÛðÁ–ð¡¿=ñ‹¾hÚ_¥E7õÌH‰q0_~×[®ì˜!ÞÒ×´ü1 ˜î—÷}?¥3LèÏ3o1ÑyÏ2ŸëÄ#kŽWέùúƒG¨AŽú^ƒÌ‡ÄŸÿø€Ð …ä>‰ˆÓ…fæB™¾ ~>&B&‚ÌD_œÔ#Æq ²îWëï<Öçoùû\ûÜ›jÞ}uâïonÍ35X¯ƒ™Œ Ðó‹˜GÁ¼~ ÷ƒë'`2.ý>aÜïÃd40ÓwCc>SÜß Æû …d^ýÄ#¨s8þÑÙºcÔú97Ÿ øúWп¿ >V!+e>]õï=ðIö9Öè€|çý<\ÁõvÑ7ÀÔ-üÔ#ê V÷ú~û¸ñ¸¬ÓBö\|âÊ\iLÅðLe¿ïSʘ÷ÏQ⺠ÿ‚@fÌË ¬^GIpós$±¹øÜy_K˜5öä{ý>Èàrœ¥¿WÀ må~ݲ—Ø52-¼¿1æSy°áú/Õ}ç³X9|Ÿ±`dšÉØ×Ëjþ±ž¶ñ\O~¯z}ö±5?®|Nü®egÑ}çñïßó¸ê{oîý‘ˆ-¶Øb‹-¶;¹uþ¿U*Bc43,îmüŸ¾ëñ?Tï¯þ),øèSñMÑ£œÑ绡™²œ saú„Hߟ·€/o÷Ü,¾ùzq|™j?¬9ÄI!ÀRwiÑÃWŸí¿"õ>›‹Dt§p_ûˆ°¿p?;]Aæ]ìKÆhìy —>KÆrüðã°8 tuê‡tO…D“gÂØär_œ7ü&>ò\ =‘…1!3è«ç÷š J›§·Å6Hv‚ÝwÏ?'}‘;ÐñÝ\Ïûþ¹ÉL,2¦†ç9ðH/Èør->’ØÞç¼~þuüñ%Λj~­à{7p¿÷Q$Ÿó㙀¹õü¼4ÆîV…ð®‚xQôŸdT2æùÖëžy{˜ Á+¾ßsah˜åpÌSr]:†H›HmR!¨ÏÀ÷ŒØ óI—Œ²ÆzÆzÛ*Ö<•þæþr°_çLÊþ^Ç~D‹ e <³'ÈhŽqŸ_`±@¡™  ’ì~~²ß#`Z³xºïO|ivÖ@>'k1A¥ì¿²îÒÐÌÔ1öb€yÈl…¼ç³«–ÃdÌ“ b1n “È,°}ÏäŒ?ë]¦XcþЯ»mÄd¯{FÅBc›û­æÂ²ð)˜©±-ùkn4 Îb À ¿È`%oà¸E?>ö»<Ûð¿×ýqáÀgm„.Œ@l±Å[l±ÝÑmî_þù£ ÿooÑ} –,÷ò—ïÏdômt}¾bF`pþODNK²ðH-‘|ú•®·œé#5ÄEí@˜ ñáfâSHžfÈÖ"€ ¥)2êx Ù!‘0H ßÙÎ÷ Ö³@P–w*L }f´ì™—\Jt*óS Iˆ…y| GRUÜó¨,eœoËb>ä¼ð­¥ûò}>ϼï·ôÐ_÷U¶ •T|ææó×,…$5ˆâ¿g „úÜ…éÒþVÄCfÀbYÚyiâø\ƒTbΣ7oyæ‡óý_æÞ—ü0γŠèü¾ËÏ`Þ-ý<û˜R œ×Œ]Iްnìº^gà5 ªý–oÃÍO2*]Î ö‡ènɺCF6ípý’HË¢ý7'Ð ÖÛ®!ù ·~5ûÅÖ·ì'}A¸‹Ÿæú[sLb|ò‘d¤’O>¶îF4<õ&¦ŒcLÇLIJeù,¤ûqš{¤hÈ?ñL›ÅM}w!,†‡Ç'-ëöÞç²Ë:fŒÊû±`l žˆx ýìž‘­Oúä×ܤ·×ùó&È_ß:ôë¢èÈpÞ'dˆûÅy9ç_ÆžXŒÆo8óël ëõW7ýz}ë+à¼WŒ§÷ ›éãßs7ußñç'CÞOýï(Ûï^Y±Å[l±ÅvG·N!œ¦Ò£ô¿+–\G^gÍYšujˆ–ŽÛCÞïCD0ŠÂ[ÀD›D ¹G°fYO<2Ü…W\gß+ÄÇ•w<⣥•äÞ’§O7+|?З¶+Šp…!0_öhŸUåÅÒ[ðc‰Ò5¥¬C³Ph¶D¯™)ÉćÌï•°˜Kñí­"Êô|æûák{2ˆD™Ñô,ÚHçP¿ aj1Ó祄2=A² JÉ^æ<ûÌ¥ÿÍ;†'½õ=*S`ÈJÆÁò¡÷ߟÁ ïõÂ-'AÒËÌ3'B§Ï¾×]̳§x¿T/w½âŸ#5Ÿ¨(er¾AçcñȉY3`~»æ–Ì3HË·+³èï³Æç8Û¦ºc;ÄÔ0»fdãU­§ >Ï\æKÆè³3ñyׯ,à0Yc\g,ÙŒ-J1¯wRÏ4éó¼¶ÿ³˜#å×¹M a°F’²ûçz¢~ £èÃ_ ?›ÈsÕ¢ûƒß÷Œ˜ø}3d}€yqÛ3F æK9óÌI’ûû¥"%™sðµog˜®Cüáu$Y‰(Ùòùöèã/ýü´}âÌ£_¯»yÀØ/SfEöcшÜûÈb°X‡ž0’˜ï›ók~ŸÆßY2M7À`ów:ù„×_0¦¤ã×3c‹2UJ !2±Å[l±Åv'·¹ùçwŽþdéng1´e·#gñ¦Tâ‚å^ñX”(-®Â+IÑgǨaÓ ѯTf«ùÂ%Š›ýh&÷/–¬ú K±i0Ѥ)‘|ö’ŠWÁ[’|މRæsPù0AÖ¡VÑo;‚L‰$rÑW¨å±3/>!ö(Ç yäšÇÏÃ{þ{ªA´fÄ.Œ•û– à ×å},xDmÏÑ2(iΛEDëš·ÄhPŸ±L³T£}C ò×ù%Ï[ª¾Bé€ô1CrÒ¿?‡÷WÁ¼ˆó?E©û^üÂ9œÿ›x.jõ?‡(÷1˜ Ïc¼é›%ÃG&ëÖ!òÄS 5‹…PÝúŽ•a%Å,xdD1¼ÛH°„ò=":s{Í!²Qê¸TkiÈzÕVоÄC_’ü æèq¨½Xì2˜çYî÷— ÷y줯žë4MñýM"v©A>…ñ{ÙkÕgI § ŸIãr¨­fñéŽLbÐÇŒ¨þFjÑüð‘#»€12§ñ½«`ŽûSa”føöÏô¤ß-v‰ÏE_?_œw${L¬Õ^SZÜà¼^kœÇÌR~±ºŸÝŸúé?Àsަs®;fè¯Çñ»z ¿§)Žÿ§ª÷þ¾ºî•ž×­Éu]ܵѼqÿü½ß7߈1±Å[l±ÅvG·NïQ6jeQMçœ%d–õïæýñЍ a¯ÜDy)ˆ¶3}é¦x¦œ>sXÜvú\âËH•¼c‹Õ#c¦RÍIf&ÕÛè;ÂN€ X5qH×S|Þ#y‹QP%° HWf¼WÖ.ø®w-÷–l-˜: ‚ÄÉT$ªT&ˆ\•ÎÌ7¯Ñܪ¤Fßlêç15R]L™€RªÅ%ª8¨Úé-º‰äSi&ÀÎ×ó ‚!…ଇàËߺá‡ï¾g¾€×gð³&£å1‰Ø®Š.ÀH™d÷,#Zz÷¶ïcØ´Ú£DÇT¸cô}æO56‚ºdʸ æ&¹Ý(Tß¼  Ïõ+Êr¦5ùN_}¡U#»ÍŒcŽšƒï£zÞwæ¿Çý%%:ögžKÿ+ÓÖ•&x®Mf°öÇZÇàyµvŸ—¦|™ £Åã'ÍýŸiÖd'qž“ÑÀ>:ôˆµoó±eÓ#<ÆU M÷`Æ´u7©lÉ,µâþêÿéoÉœâ=λ‡ï…®Í%MuS¾Ð²o€áÝý%jè0–Á˜Ï¤áº÷Ä‘ÿýy…ÁG_®þï/aÿã¼Íïßpë¤Ïl…©_g™*­>p<‘ˆ-¶Øb‹-¶;¸UµþíÝÎLIJ%û,ŸçSj“Ãb£o_¼PzJjuÈ«ãÏÂBy4mFNDÌÃ$²ßc•)üŸ5 X7šùÙ»´L¡˜¶ åÀ­‰ Q±Ð-ê^ê„§ZõŽLnøAø$¨Q0¾è-F^—Ñçãàc6a±³œÕ`þiæ7«³™Qª]i–Ç’ÔE?Kð3ì·7„1HIS¤È@‘M­Þ¹äÿ—- hAòšS¹NÒR#¡­®zÙif6TñÐæÖïyÆ"•q­å_Ëó¾CŽRž_ççJ§B »@"Œ‚ºšVŸ?‚~Þ&„²#L‡iœS™ÑÌE‡1ëžÁ£o—ÈgÒ‚|¨ÊüÖþ7M}Tðì6ÏÇD™›w~|àK€`ÕÔ¤æ“÷×·ho"ÝBÆ]”P-¯_‹D|òŠ âÿ¯RçDj¬”VÅÐ+–˜¯þÙóÃZ/V}m\z£”õÞ#`DNWž_Ç3„æ‰+UÛöÕ¾ÔNI5+­hYÊ8¶l+)ú‰µ`X=Öô˜ý Ù8  ëY²ºRe–ȧ>&.ëzÅKê. [1üÏÕ¸]ù6Ö-c1'¿ü]±ß*ZUÝuôˆ¯X}0¶Øb‹-¶Ø"#ðÎч†w{ –É^æßÄGÏêv;oùZ¾øÌky§¢ám¾ßž¯£|l¹m8Ëð,¯G$3õÕË…Bùk &À¢ôñý‡ˆð|gÁ$<µï‘1-ˬDò•ª|”é*,­ Ñž¹(Mmã´C³ôá+“ª†Aú%Hr" EÊ5ÓW•êpž8Ïç%Zx¯Ûliײ2ć¯Qѹ0-‰ ¶EÜÏMüw½e­È¬\ð÷¡L@ÞR•0ÓØ…n#à;F–©?¿Wc’º‚ôd<,‹EÆe$ÑâÅÁŽG¾{×û´kŒ‚!£ê{ËÝ9™ð±‚ôY=ƒ c+Ž2[~6þŒÑÍkî>ˆ”BéD©¤©Y,A-Ƥôû… BZì}¢‚¼úÖ>fgÌûéyîoƒéšGì¬k/Ù9¦;2õË‘÷_²MEqÒ†I²LúÂ,ð¼ÃÔïo–•…ã~¤øÇ–à³!ÎaÞ Da—øÞ »æ˜ŠÁßãù?çàYÆT “ èú*ˆ¦Y_JÅ)|–}gK¸¯Ín³?â¡_rXÐQùoÞ"2‚e>óȽVŸ\ºUóñÍ寲—Ú ©êˆ~ƒùô¥úã@”ÖôÕg«‡©o?ȼÉþPæÝ´™ñPåANÔ>ǺÐlSæ ¡™¾«U…c=ž›ˆ!S…,"hF=³Úà•Ò÷÷üÿ*ŽßC^qrWpHš>Tc`¸Žf¾ê[ äa1Aéœcbˆ´èƒ­1-]É7¯ kŽ¡;®ºá™/Ž·*E ³•uüsÓ<Ó0–Ø «‰r›Ïé™5Û¯8ßs¿ž´fF*YKÔYØøõ²’yFêAþ*®³%18‹TÌc÷u•>‡y‘ÔÏN˺á¾(5BÕéx&’Ê¥ú»bý,Ì\*û‹Æ³Âþ’]aß×X(”ɘêï•g@ò|£™‘¥!kʼÅ<;¦âŠÔ\8Ξ¢¾ŽW˜ ŸÂq—eßáü}·:þç « ×»_ÓÛwp?oÞˆ1±Å[l±ÅOõ+F`7ËmÁ#ÒTòKR{Œ(bË E•0«Ìh]"¯‹•eóØŸWÇ=•y_çH,NZú·Ø¾ ¤~õ„ ‰}žÃs}•5 R¸ˆDˆH"øêu'Hu40%|¨‰äU3¯ž–ÚEXø«R§|Û¢àÁ0˜E,JhÍuÚ/½á“å˳øüi±dùœ™ÆlaÜKÔ¯{ ˜&¯E3¿}ȾIæx„®ùÚŒv¦¦¶!­þ(ºɤ¹³°àçs(gÍ¡s‘Y*-ÕÖêVîS² 4 Gk^˜R'Z ÒÙíæ~ /´¯ÕÔ:þúO°fÖ–`UÁ‰gVÒä„¡ æç{ß|°ì•Z¢Ìmüɨ$RÍ­ðz¥0µXÕ»£–x9ÇaŒç ø<÷Ï9mzÕM Cgùæšm ó<“ZÌš9qøvê×¥1TϸYÍ aNC¹ô›d.B3ãñH ͯžÆ.•÷ŠÈ±–ôµÏËzT‰ÕÐ<y]Ö“ÆÌüüV¢Ä¼9ó•jþ]y¡šY*H_çžgé+X?ò‡çr¿6x>*sršP¹s§·ÑÈœ:Óõ:{`‚©Äû*c!þ¾ÚæNTϵxÊ#ûâÀǤQwfœÃŒãR“ëôw1k ¶Øb‹-¶Ø"#pôaèÐ_…åC­nFm¦¢Åž0—:m¶„™ï˜ÁùÚO+Kå3ŽëÀ²ìÂJ4ç8xÄO ëq½¯8Ô¿ ÄykqSo÷{çûGX^Ÿ½é‘À"£:3AL…ïŸBÎCÂpX•­™0xî!¢HÃKxŽg©ø¤ÿô†C$cAœvý‰·DÏö} Y$T–}Ìî“P½†j)g5Í#·oSÅ,!M³™èzmÞ§Éà,a~Øb‹-¶Øb‹ŒÀÑÿÚ¯LÕGðá&|õôyì‘eb‘›¹×ì›1Ÿ|ϬFw ×¹7PCH‡&á3øþ³øü Ž»ä°ÊûÁñoÓ'(Ù¶X‡<“èhÆ:P±pϳŒó‡Ïçóâs§Â NQú[ˆ»;õÕÚF¬Ê_ûPY?º #*‡1 ¡l޶N{Þ¢Öè`+¦Q¬¢W`Ša•­éEhfJA>™*J AÒR ²ÆLÌZ¨U¬}Cú=ÏXèü¢¡o¾]­]°à¿H_®å«bÛ‚|_²bí«uè ‰²fæi0—1>C0œ×Ì__„ovôSÏÜhw©úZ#€ZøÌgo÷Zÿ±±.Ëî\#4d:–óÖ|×÷BYm¿ZçcìcÜë=¯þŸàÿ;]?^VåTâÈŒz&Ū™–ž«11ü~îëVÉï'Ó ã¢JšA¢Ñ5¿þED£ù”Ÿ?Ǻû|C!ó޾èD£îE?&´ øB™Æž02þMÏýMbaT)2PY4Ô+!)E90Ã÷Òý 7?¸V/£úác˜7ø#ÁõI}S²U˜]6šúØêɼú Œï+ÔíXÇ÷«ãW¸ïÿiõù…׿ü¾›Ê>“ú}…mï·„‘eÌÍ›oDØb‹-¶Øb‹ŒÀŸ F€–±iåÓgEËœõ¡;>º½00ø6¿T½ß| Ç!z·ßçÃøÞóûˆš¶êoë°|Ö¨çœå|–Õ£ZMPtêUSñÑ÷#ËûõJdO©m÷¡C›Ÿ%ú×½%?μ¥O†d„™o*–1³iöÅ2~x–åbÕ»·ç‘vÑm®æ8„˜ùÎk‚к̀:KŸ¾ßlß#›e2'Œ¾§®BðˆJ«ïiÄšXþo@_ÙmF(¡™ ¨G—wZ®hÖ3Z8Ÿµ Q­Æ';£ûGÂd0VàŠ*6Î ³@_(ηLBßfâçY®<‚á:($;ÃôJ8U;]}æ©ÌWêOð~-z:SÆÈ óµ(í(¨mí r–ë3kZêb¨ÉžN|UÏ<èºiÞKÕ‡hé×ZÖH×#á\c—DGc¬ÙÂ\™>B)Y=ÏÌûŒ7ÜûU½žúqõz÷Q” 5橚ûGµ÷­šjá÷ õáת;ʼÕ&ƵëD>ôõ%º¢‡!в¶/ä^7t½¾G¿ç«ÐR ×#2àÜÿg~ÿµØ•nóþµ2bö›Ÿ?G¿lÜ^Ç:]wózdžtýa$—¿‚ç¸Q}oç:×##[l±Å[lwtë¼×Ò^–üØÍ‰G4–?Ëk3Тܚ÷ˆqñp¾?Ås"XcYËðõžþ/Õó\ú+ZÚk¸of]øáÈÀpì¼â‘:‘Dª’‘°zò]ÿ|æÓ/<ãQŠr$ÑÓµj€b¹šq$–~¯Á›ÎEÙl×”á8ˆ~}ŽµË Œƒe-Ès›b™7UN¤gW´ì†=2µ¼lŽ ¢¡‹[ka%êC6äÊÚ ëÄ 0öbÏ÷£Ÿf •B±@Na¿zJÞ=ëÐSϤPý©¹Q@æÅ´ë¥ž63SZ{Ãæ… ë¾ È¼eÚºb¬Ž†ÕK-…S·ÐψÍzð-샅÷'¢ÄYˆþ„V;µ}ƒŒ•Loûy]H¶ƒf;YmaLè+/[ªÚzcÿ±6‡eà½ÔþHÀ¤ÔY‚ïK72[ƒŒ1•m=œ\s ˜UíìúZ+è‡]e.©øï=ÓP€~”Œúý \øyì#Û`ØsêyÌšç÷µm*Bi’¿—!„ÈÄ[l±ÅÛܪZ÷Üímø:^á7Ÿ²hMŽUyK,’´ÅGt.ÚëÞ`ªUsËÄ7YˆÏ“uÒS*Á2âþŸ‹ö½ú„µ Ö*|8KøÿӰȨÿsXncµ+ñÙ‘!8GK×ÿ¬ô¯³ ËzˆçÛdLÃ'ªóQ!ìqøÆ–ßÂuÀ8ÜÃüTV•d~9˜„M©FÖRdëXiŒÅý}ssŒcÖó5h,[̪izÃ~'&‚hMýÔó ë±Bæ‘߇Š9¿ŸP÷±#c0FýtÃ1\Û-± ¶ÿOý|ë[–‚_gö;ÅÚ7·ü¾Äì²!îk‹Œbë2Õ£¾Å“è‡M\ÿÊ»2>‚óïs\|mœL²˜4&(* Æ[l±Å[dÞ9úпõÕS©—M y –kŸQ¯š¿Èèêyˆ?Fôû_zߦ1°¨–aÉìJÔ¬U›º-L… (ÖiOQ ÀþmÕ®XÇÁrZÂ}SáŠù¥ç€üi™mâø‚B×näžÓrõŒÊ9"0ÜÐ|ïU"vÑè'3ÀlŽ>NpÚØËŒÉ`”úÄ+¥Ñ'ºe1ö+•ËFZ-ðP˜Ñ#PíyÍ/U©O,íü^Ü‚Ô00Ÿ£æá+s‘´ (¹®ê (³@d`Ù¬âØóãlyþÂ\ŒµZ›æIãí"£ç»I þÈ^Üò÷gJ€ÌÚ™ydÆyºL¤†ïQyó^ñÍ—ªiOD(zÕ1îû.öÝó~=ÍIÌ2=ÇUû¼ÒžÅÌ´}Í›wðùëø,'U ¬UóQä93–„Õd-KÄô3|¬J!La.ó8‘Ú›øx™ÊžÁ¯Ÿ•7à»`ÃÍ®ïm©zÈ,ƒ"ø,·¢¿/¡.µÍ“SÒOIhìËÒª©¿‰Œ@l±Å[l±EFàè–*F 9ô–0}Ü…(£õE;ú8ß[ÜiÙlq3š™–ákÈsôµÊbU>"’%Xr;æs®Ž[Áu¶Joé-ãþ·YŠUͺâ‹Ô|X¹ÿR”ÜÆ¦tEÄæÏ— ÃÁ ¼O>7‘Û®ôûù]Ö‡ܳˆÕ(¡gðð¾G`Ÿ·¨oøšÐVÝîK¸¿—$Ú;øq°ª– ±ÐZõK÷´ õ}¶äïkvÁqýmA|мŢ×jelY âXiJ{xo =ß?Š$ÜÏü|+P/œÕ¿x^Õ+(D™.oÑ^gˆ®@!È«,½Âgr—œ@ªoîI ‰ÖÑèÐÏ{ebÔ×?¤Â]±^!SÄîë`xÆ,ǺMd<©‘^«Fwèç£ÖŒ0G­UÁ}I³mxÿ¢o šÌ·,“yŽç]Âóýªð Ý £_ãvÞú€]ú.™¿R»å ö”<ß9\ðìGøð·©ÊèùÌÇf)SÂjƒdðÊS8þ-?o‰pY³Æx˜.öãt£‘a¬éQhŒ‘Ìׂˆâ™ !Òì 6)¥ÑÐ’ bU,¿Y½žþæûÓèïKˆ™@¿] ÁÍ ®ï‘d'=É~eE2‘_;la$ë%hퟩŸß|¬—_Œ@l±Å[l±EFà$FÀ 3*©µ0#±Ðõ¹˺#ˆç}×ÙDÔíÖ´="ÁTË—–ª]…D{šW¢µsñù*Ä£/––ÜÖ§p_×uï-k* Òç9Ðêû¾žûH,ñc&÷ î'@¯¼Äú[ôCA]Xª–]Q]ç4žëm">jkÃGeÈ[µÔ HÅ•J–û+×üzvïÌ#´ÖèþírÕ!¨UÛ*…aÐl±èU#y¿ýÂÏ—+8á7Xã‚H²h¾¯TŸ?ñŒÑ1!âëÆ"M…Aíw"–¾Ì×±*0Y ½Œyº+ÊwYé™`Jœži*RycÃ1…úÜKÿ<£ÌgÓå:ðÕÔÈ, cB ÓmfJ¨µŸtš³c–DÑ®V !ñŒ‚1f¹ìoínùî^éÔj œC?|ëÿÝ÷ߤ¹Á>šJµÎñ-_<ðãø ^¯áã!bu.ßÀx2o @Rx}’ 1(¬rx<Ø—1ß´¶‰1²ôQw|¶}þcÍBÒ~Æïç³e`Þ›m43gÂXe-Ê…0‚œ×Z ‚ý±Rz&펻UC—í÷É'D7æn|ï†{ðÕþz¿F`p—‡øÆdͼâäqõB¯›ðrŒˆ-¶Øb‹-¶È}èïvHÖ|¡=kõ±‰‰² }¢´´a™j½r¶[@²c´6óí/ÂÒ$bgµ'wñÐ#úÁ,+ÖÄMKùÙÛÂhð¹Îâ함Kžˆ¥y–ZÞx¥&ÿ‡%ûÉCTCDt(ûiDä!ZÔŒ:ež÷*û—ÊU[q®zÞÑ‘—ö}´ì±eN$죶SÉo3ùe|NL_íM™DZx¿sàû§T}Et{ uìƒêt[˜ñ•–rO<3´]z þ óóGT2®Huý´¤RËn /Sj˜å.NxóeÎüc§êKW ýÂ¯ß Ù}EÞ²NrQ,´ê„S7V]ƒÏvŒu¹Bd ijÅù¦E³9 ¶Ì ËjcˆD!°¯uêåy-†`â«§Rñ×Í%ûÀªrŸ´¬œç+øþ§Ðϵ0Hzÿ¢2åK2Ï)Ø÷ûŸ›¾é<•}ݲhú‹/\k|(Ó•)3ü¾Ãl "ù¤ô5iø¼…ìÃZEϲ×ÓòcëT ãËãG¢ägóQúƒj…J)”)ŸE OÏ3»Û¢ °)ûÙéC¿? æþýeÜkn.qüqÞm¬Ÿñù7Þ÷GœÙ Ê(›²ªÄ ðwžzo¾Øb‹-¶Øb‹ŒÀ‡‡w; u¿÷‚XÌ-õ¯ IŠ ‘%V1ß!}oÃøsø¼¿fùÙ¨Vh>X®_­Œ¾í‘ ¨>c DYk€ªf«°ü/™ $¿rËnW”Ø ‰.edŸû-FUû<Ñ·©øgqÃ3,ŒiÀýQG Äëyø‚X{a ±YïôËÞ¾×ľ*õ¼ ©–ÞÍ5 à>Lú‚Äqžñ¾0%°Lo ô㥠…!ÂyéWUÆâý¥á¶)$j>9û•J™ŒixQ¿é·½Eoy·¥Ÿ×Ôu`uÎB.¬>ÎL™ŸíCoÉnVHeÌÎeøÐÛ•T5Ý•qá÷€4ú¥GäŒUÑT¨ ¦ ¸&LƒTy›z%3SèÃxö="7%Ia|Ê<.ȸðLÿa" “0U©äÿ' ‚_7ôiÛ|S­{‰!"ã4DÿÎß°ªb8þûá-.øq ³š1_}*û,:bŒuúb…´‰š$é žù)46fæ÷Köc*T£ø£ðýó•#fûø´ó`û‚è0f€ë9¦Öôš™Ëra ÈÄ3JÇÛ\u½ÕàkfŒ¦ÕúûùÉjÝ}ò&×1öwÜÇ‹·«ï=ñ rèU2lÔ øóêõo†‘1’5@à4nðß|¿ºÞÜçþuŒ÷¹=î;Ü—ÈP@¯„:%Ìvùé/"#[l±Å[l‘ø0V½LõH}³Zš–5|U/Ââù*£€›@ÙÎÒ`Yýü°¤^"¯,¡k†èÖ+Œêd;°œò_+KéóÿIŒhª¯ /Ÿ¾ßåÀ7ùk hQ” m .óy`aXXƒAÄ©?€ò5êG·¼Ù'ÒÇ}îÀ¢ûx¿=Çàc\ú,( R—`ϱ -îËWY¶Ëp½×ý}Õ‚WˆdO-hÉË6å°™G„5ÅBAvªLhM¿/ÿg>u!H4ƒ Uy"sËc?ôÈfóú‡ˆÖ¾ …¼þ“U¿^ù®G„ö|¿æSfž9|Æ;¿ö¾Î1 K¸Ïk@$ k€¼ L£¹gÍŒ€;­Ñ!UESa^,:ú÷xe?‹òe˜s`¾L{bµ(„q²ša^Tù¯lAø5íy™'hµê›ÅThô¶ìkÔçHÓ!÷—N„ézf ³‰Ná:ž¹2_y! Xðã~Hú*kQœªöɰ_ÍÏaêÏ3’êž– dÔ‡Wz-J_P–í{ô ø0 œ˜iÔ;70ÏXÛ¤”‹aQ%H‰ W”~ü¸þWÀàŒ¾+ë߳آ|ï¡ÿñ@µä¯WñeüÞ¬áýývQ²h¸Î¶$V„1d°.ü¾¹ßL¹7x¦¨ØF2óçøþеb‹-¶Øb‹-2ï}è?Üí}O§áƒ¾ôK±dµ~ú 0Í…%ŠF‹TÌ;KœÈ Hh×ß”:׫¬Þ ê'OÃÒú>¾·÷®Kó‡©g(r©öWŠ–´" Ëÿ•ìZdôél¥Þ‚J”ô‹_¬>êGi@¹ä×µŽëޤZÚ ðe‡ï ÂyNÁþyÆ ×ýàç¢$G¤ð 0Œúߟ×›º‰NËüÐ3çµÅTH]ùÚúûÒ*|\g¥Ä&eâ«O„¹Ô˜ŠZm õFÀˆ0"PCžŒýá|óŒŽ![U†ëÑÇŒþÈý}›2¤FÑK,R_ÖÙ7À ^BÌÑé¤Bª—&s~?.ý¾Âìc€›!ó³ý Ë»”~WÅϲ|ÿ!‹H=3bú š$ Q‰ì§ J…ËÐñÙ–Ñ]sýºòu(ÀÂ'?B‡ýûçÓ8ï¶0*CÑ'Ù&ñA|~õÀïTVd V/eM—\÷¿ã÷ãÄ\sŒ÷=f3ìÊ~Úg¶™fM•þ{/¿Øb‹-¶Øb‹Œ•kŠ{´$Ñ©¶/Êb… SõåÕ› È,Z”[´èy?é‚ Æ–ñH”u)Z÷š¿\k]ܦý„ ˆ6?u°Ì- Xj 329òãˆXSdT~Îóx%·$CÌÔM'¶ÉêdˆùXíÌ9ä̘™„Ù—1OoÉ|Ñ¡™±Éy³Òf†¤èxäkˆ„ÑÝ·€ OTÏ5fÝønó<¨1AÜgtþö„9ôëPãjŠ’-ÚñªAŸˆ>À¸¶àùSQˆœøy•ª>×;™µŽ¿cî&ž)¤šÓ'pˆf§¯Xk|ôE‰1ÍûûÈ’uî9o©³ò¼ô¯Õ»/‘s~ˆOÜ|ÝÝ_63GJ8¦Â(3hûÐI?îÛ]*^"‹+ó5eúø|$ûÑÏãóè¬X̪ßĶ-Kl®Äb0v¿'\¯ÔI÷üƒ¹1_÷Ïiý!J±ºn­Ö@db‹-¶Øb‹íÎnÞ“§-–`¦ZéêK¯ùèf‹/J£«‰üû´Ø~뙀 Ì}dTt#RW%)~ž"+¡xE,daôùhñ¯Ðw)H•—ú–­:Ñšß§ß=¨xõÇ‚X&Ò?¹^F™>ó¥Ê²ì}ß#Œ 5Ra~j ×±(rõeÒ²x„‘‹©žHìÁè°Ô'_˘ˆc È1Ñ*pš Ù$d6VhAQËßûGÜÀgñÊX žo_ÌÖ²3ñQô¬ªÙGLˆåk̹yKý‰Ñýðy^÷>Í͉(³ýÈ+Øâa‡R·L먯bž]þ~ÝX¬Gâ¸ÅfðüÌëÆó¤â“,&Z+dÎ!ûqhF|AÖ¹åõ r,ZªOæyóy9,+Æb|ÿpÃãþAæ…M/kÕî a»ÍËKk' ð\{|®‰ì{ÂÐÙù<\§T4½ŽÇìó›4v*øñ´ü~ö×}`´¨ÓÒñ5)ÈØþ‘y†Õ)k$žQâõ³Yó83ø¡8ð ­þnhÕ[ö[&û §¦¼fî|ù·™MQ½ÿê/ü}æxŽßãþ¹ŠØŸM«ÅÀã×ÃR³•Šn ™õ-öÃËÂX•ÍLWК;\ïaž"#[l±Å[lwp«² # ù³©TƒÓüWZZZ ­Vï[¢òs±\R±œ õ*ûŠE·'u¯5êY•ÄhI=‚ó\V}|Ÿ>™\¢¬W?zÝߦEoNZզ˞Jc–WŒ~Έ4q?§ò}dó˜7¼‡LòÂsÍÓ.…¸-ýèß—âËM>À÷kJ`½æIYcZÎ[JÔ®ù8‰¤TiOÆû;øþó2n#æRî-nEPǾSÎwXþ@H»x?„ïµ''*„ —~ø ÇçY¥ ÕËv_‘u"Õ0÷TG@çyW¶Å(‘ æ…"Ñ6„tÒÌÙø 3SzgÑôöõÔ#êRbV2ÆÉü Zƒ e¾hM¶ºîK‰=Zìz†KïW³Ò ëˆU”$m:*s'Êxã’v›2ç™F£Z«ÿ¬îˆvZÔKŸ\úYk|È~Ï}€ pÖ£uðþ?Bª”©±JmëÛ˜fB©Æ…–&§ÑOÛ=¬?Ö~yð^¬cÄ P‘5±ê‹žéĸköÜà+øÝÀïŵ7È4IuÌ©g–j¿‹…Î3ù=•õ§Ù'Eb!Öˆ-¶Øb‹-¶;»uÞkYôi.xKc¬¾sAD±H¨=‚¯ŠJd¦å/¾ µäÌrÖèxAv#©]`L}…<ñ¼G2Ê@ è‹ïŒ>$jÊ_ÁýR©kˆçÛœ¶ “Ò#ïš‘²FÉŽD»ŸÇSkœÈfoÒÌpE³Âoï<¢öŸú¶N­òVh´®Dm—¤müøp~˜¯°hAðA]héßžï7«~×ñÊhcøêÍç<’» 5 ÍMD¤ê%}ð›ÊìX, |ü`cR¦2Û¦b×É[Õë£Ô¤ç¸¿LKÈræó‰÷ˆP¥æF0C?^T¦áY‚FýÎ ÿ©ÌSói‡ûG¿¦lùñ¼¯S2n“f¦.ˆï¾ÆäLüyu²ïK,ƒ2L™Œ¿1[Üg힤Þg=åÊÓ!ó=…/ÙÖѤ™a}ïŸ%–ì€3Œmº ‚bGP5/¦äg¸¡§¡€·É}1õûÝPtX{ƒ ŒÅ|ˆ÷‰¾èä2ŽÙä_ù+$>î‘(–¢£´¦(Ööe¤&Êv¯bœT¯g°Ÿ‚îÃfîu"Ì’óçÜw©‡ÀdeXÏWn"ëŒëE‰iÑõPû”ì(îËéÉà~ø¬¦‡*R“yüYdb‹-¶Øb‹ínUŒÀßí€Uu¢$u׃DÏ3êµèUµÌÌ‚žzË7Q%+A„¥XÒI‹¥ÙË︊þßatŸ×™Ê}퉥_Ë;N=r¤¥Ÿ‰b[ ÉtZ˜ñɲ%##çc¿ $ŠÝ|·40Sø°`Ñ.â¸>ä»Õç—kWÞï²øØ¶ÕWÇ(t(Q^{É_u±lµ*˜ùnE#^µÎU«^u"2‚ÖZøþ$ïv Õ0sh?þ)ˆˆ©× óbÙ!þó¾y‹]1…<œ§ç°D²<q-r¾Â‡™±ª|—Ù|õþ"μ™Ë)Ò˜43CæCÎý4(ÄwkóÈJ³9Ø/ÓP« „)DŸ-„[·y>¥Š°¬«û\ìn4ö·)v[ªÁ%Âhô6ÖÝxÚò}©}‘kíkkŽ ëÏ<ØþZúñÈs.YØCÄZ1ɾß×sÙ4¶KkE ”ˆîJf%×Ú’íÄû/[ªêÙø.øó§¢#“i"ýTƉ c°DßÄÖ-™U¼>K¥À˜7ŸóÌî°Ëß?TI­ î/i×3§qá«™ŸgmÊšµ˜,;Sýæë1F ¶Øb‹-¶Ø"#`Y¥X«ó,QÉ!kFlVO\•ÿB³ÆËÔê—9ñ$+ –/Õ®VOz m'ˆ¥Jm|¾}Û[h¹øôkÑÈ¡ÙK Ñ_ŠÆ| éH”ö"úT/4#cˇ¥Æ>Ⱦܳ8ÑeŒÇ9¼¿¨çÇõ¿ÿ_R-þ–¬EÔ(Øcµ¼GpÜKäš÷Ÿ736_f2Î-J“ªáÏãjiå‚Hèã~ˆèJî§÷3'ý<ô-™ïÐvÐvße?‰‚`Š÷EÇkž³:ÝHª`–ó|ó,à<Œ½a¶æ±ò#î1 Côödã0º¸¦¼Ù’íQ›‡¢éN-wÙÈÝÎõœB±u£ Êæ‹Ö³çõ0_È|°ˆå½+bbÌÖ÷z{€vYá·Ei3‹#ÈümAê!óLc¯XŽQô™ÔV¨)~?¼Þ“È "ÃCF`ÜmFŠ™V•dÍÖH  Ér,„©2—ÍÌP.1RV+Bõi&ò;’˾.ü‹fŒkŽÜåçß‘,cö¨ó_ñÿǪ~Ýëù˜¢D÷UjüVó{Ftóåj~›2%æÅ fo*̘V½”¨TbìØošM¢ŒYhÉÚ ãór¬>[l±Å[l‘8úÈ=#0V$–zDeù—´øÄ'£U²4o“L)pËi¬yɰôÒ»<2du¬!®¿« LS_ÕO«WQ;»Ktßß‘˜ˆšQ£7ц§p?´¸qÞ­w¥×;ž‘¨ÅNˆ%x …p}É~0…:|ï9 Ø%Tgü÷ÿ;;îÊYkxþ¯¢ÿFâÓ? ‹ÿê-XJ0¬} Ùæ üÏxžóÒ_+1kaL4ê[•[¢Ê‘£œG}fDˆ˜AV äü\ŒY¢‰GP+$ú]6û)ÇÏ+óYL‹tÓ(ø:ï©ø¬™­ÐO×±îÖ±^|ž²ê(£–jU¿Ò3'œg#©¶fËW¢ñ 1v}^½ºlµ* )j¹Xô:³›¸Pçâ„{°žGTD”µþå|0ÍxÖ£÷ZðƈI ˆ1›°ÑÌD©~†ê'$ž²yQúû¦nKšø,™`1Pža¥Ï9H•Ø’5!D7!•l"Î[Û7ÁöíÿßVýQ³-T÷!|@­{¾™ô›×vþ$4ÏÓÌ?~oûåξôw‹.úækè¬Éø{ÅÅÆ/íy= «™ ú8A6ƒT­Me]kÖÅ@„b­Øb‹-¶Øb‹ŒÀ;G^ºÛ[„4 R±´4z_,T,IUÔ|cEº5E¥Coi–bI/á~ÌÇ–½¿%jˆ`ÕÞàÓ•ÍåÃxþ-A¯Acúê_V¯nxÄLKó4^¯jöCÙlùk•µ±ÕÛöH©Vü°ùsZÃòì? Ÿâ·Å‚–|á Y2\ÇÊ’]ÏQ³¿s2&dÒ‚øeÞhöÅTH•D»Ï´ÅbG?±÷ýºˆãdù¨Ö÷F£Î’ Ì·jóˆ÷ZÎã íÿò¿ßðÙ6?#ÐÇý2Fdˆô}Ë¥Gž–¥‚¬æu…ÁÓqâºIÖ†úk Oô©jýd¯pý¡æü¾Àq"²žm4Ž‹fåô5Ϲç÷Í6ê3ÿ}ß3æ?ôë+÷¥Eik³˜‡¶*…ÁÇFXÀà÷›±ÖøÆdiJÛˆ6\o^wÃaÞ=B¦æ>iÔvHÎ"zýGžQfôôDZ?½Ü’ !û¶öÛ@˜¡BöO‹Ñþy3Ѿ¯!ø¤…1ì4ï—¦ƒÓR=×Ú¤™YXÔ—}·­&‹ecàùü"²1~YõãÓ¬¡ÀßKcÂý|Q}“Tö\Sa:­?³q[Ö«2¬ÿ{ñ›#[l±Å[l‘8ú0²jÕ¨Ô¢ o >â8ó> Ñ>Öª…š­ˆ£„r†ùÍø?£ý‰ü­Ê X‚?y¶zýÚ‚¥­¾B­Nß­(3Õê®K4º>gÖmynÆZHÞ2þà‹Õ빋•ù8ªžþÅ-Wh IDATšC‚Ûð5-×ô øg~ë-÷óx¾+¨ö·ý­fäšxkÀ ˆ Ÿµ0´Pä<ÓK?x­þãÿÃr¦R •úpܶ2Òÿª °s]Îßñó‡°ˆþÛ_úXæ§]O¢Ï#[ãqœÿç@ÏþY…à~…¨âl¿zO_`ÒóšñÌ6iÓK°èç+ŒU€¢Ù(¤'>M‹îfÈ¢õçe^L=2«Õ$8éX-KHkH¶HIñM×êÙ³?à ·¬¢³Öüº7_»Di«Ž Ƴ¤"*™†y¨j5aæ†?^òRk0Ã:“uH†„È›L}úo ÄýúýÇü}i ˜õ‹Œ3×µ"w"nePkûˆ®Ç©ÌãD¾?ñû$Ãb!¤ö*ßšÆÄïƒã´eßQÆ ß£~kJ<ƒÚLfÿ¯EÿË|&“^ˆ®ÄØb‚û½-[öO‹5 sÄš2ò;Th6„œ°/Ù)‰ì¿¿‹µb‹-¶Øb‹íÎn‡HÚ,'Z€ðæ·7<â‚åü+Õø·²E^• hÙl @CçE¼>®õ¦aÑnþ5´Ô·_ó×)Q3‹§Q¨ôÕgþ{‰DÛZuF©–XCÎø|8÷­ª_WZ½_E¾ùôûQÈÛˆÎÿ ^Ÿ8}ð+¸ÿ-滣?¯Þªøãð™ ÁY”Übõ=0)}»@|£‰6W$'ã¸Kíó>{T-Ü{ÙÏWcÞ¦¬Z·Ž× Ì'Íû€ÆpPçÀzׯ£¢-ëH£š%vÄ¢ôMyÎGãk5:"4Ó`ÿ€A1j[wáŸ×©Þ6–j{60T¬ÆÁ¢´ÿa<ÊffÍ”ø=ÚËöA&–µ¬Ì[ò\ÿÑÏSf]èù–³ö˜ÓÀ¾Ãìž/‘}[c·a¹ßç¢Ío÷ÓKTôüsš²•oOúñ¶Ú"S™ÇrþTòøSaHvp¿_à~„ìÖ¢°Z,¢Ë0’*ŸÜWT)¶”ßIe6¸®yŸ¹ìÏÇY ò¬Ã Ð5c`LÇø°ÎôFF ¶Øb‹-¶Øîà6÷/ÿüÎÑ k ˆ…fŠcbКò]§ÕŽT«Y| }–ØeaDa*¥=ꌥªÔ¢äw+R¢-Ÿ 2C¾FßK]{Eøª˜–jþðÄ[”4 y¯}U¯> à%D+R;¬›þãÝûªãßýxõÿ…‰E<;rÏŸ³ž¹øxÉXT«Ö'ï63GZ5«õÏqXð–v-ß—°æÍZž2«øm4"€¾(¶™6¹\§/ ‘飑 ²Ðúë©Ì»¢x‹Û2˜Oo¾å ‡ÔöX“õË‹69ï7}‚@úuBÆ…Ù(iN½ ÏØÉeJmÑ, à‰­oêKìK¿u›×É1ôõã]«‘y‘A‘ûæ$p>ƒÉL¤ú\&Ù>µšJM„á,üûìÐï#™Ì_¥Ò¦µ1ìþdžš¯Yô;4ûËj ³az-ùïöžó zT,e6B.ýµ0YZ‹Âæ—ì#‰7óÏg1Sÿ\m¿CZUVõ1ˆày™dye ø{Pj•D½©¬‡ÐòûÐò;¥J“TìIœZl_fWB­0o~w#ÆÄ[l±Å[d>ôîöŸRÑë,¢øÌÖkfLé(xËÉ>B°èçž qA̿쫂}ù<ñˆÄ|¹Š¨&bYõšÿ¯QÇ9£¢©¬7/ˆx*ˆV•×Äâås-É¢îx@5«øðžfŒ|ÈÔŠ^E^’˜ j‰S)iŸ„|_u R+Å‚Tä„!Q_°å¯ª…Gs7}–Zw>é6# e",º&óK,çúÔAq¼wJÝ~â«È™O•ÁX,ñ —×1ëÞb—¬š¥ƒ@¾øý¨/Õ¢÷½²Üqíä™#à¸ç†c r]êó•¬õu+òÐ~·ýA}íó~½Z,JÖ¼¯ÑóÃ_Š`©ùâmÊž¢a5Bt^J-‡Djoîzæ¬ÔØ ´…a ~¾±Ÿ a 5Ëe”{†Dkvô•!àº×ê¦`¨R©Šhú †´½Ž/ÔWš°*úÕÞç2[ªêÙ>Ümþ)óE§ŒI ö{aº‰è‡Â@ów Ø÷Ï“ …^ÊsZ¿È<è+ó,Œô(æA« ÊïŒVáµïMü¾üfÔˆ-¶Øb‹-¶È#` v=oi”‚ðRña´æqãsæÕŽ${€Ø@ˆùtñýe *¹ eZøøÿ“ˆòÜ i„ÿ¯Ñîõ¼EFËrÈ`›žø*UÙ;ó¸wr0©ú¤±´4†z÷_ƒÀâ¿Ãù^ç7Üg²ëèçêõ̉Ê2ßÍ="1ßóÍqã×zG—êû¿Òªq´¨•É å9ÏúòÍU³4:»V%R²ÉÃ. (C¡Ù'92±ì ­n'Zæ+Á3;;3Ä É’(Tó\œêª¬V¨O/øï¥ŒúG¬FaÚã~ÞK¯!_ÂGËñe´ôQ£¿ðë’È¢oõý­×ªñC™®5öC‰®ßß #& =fÒŒ ÝZE2¡¥®ýóÒ¢Î-ÊZ ä†Xç»ÊPI¶ÏiøÈ¯Šn€e7”Â(Íã­1†È•ÑR­:,d :²Ÿ„fÄW«òIå+÷mÊc‚,h0%º™¾µT]. Éîmy¾™ a À"ûÌßU¯ÿï¿(ÿ'_ªâã¨+?@>t†÷´0Ïáúš‡% ÿ ÇY¸†êt[Š%Ÿ;¨†Ç[ðê×–ˆ²˜Î§¤Ó|¿I[]mÉNáƒ/;>k P$0mFœVùÁâû I¦¹Ÿ?m>V{nž'“ùd><Äh̼Âbn>Óu\o—…2!ÙÏÏy¼ûçigÈ"yòÞê¸Ï¼R½> x¡l?—®G’]JµEcLx‚yA@¢}n ’5½€ ǘò«7â¼g¡ ñü œ’ Âëñ=«ïéý”²¿<3_ÝÇSRÅt¬º˜G¥¤fhôTPït=fз(nxÄ—HM«Ù ³ E ´öKˆd1 Rå²þ§þJϯ¿L³$Ø9÷5·¯ZvÃ~3“TJÛg5ÛHc¶d¿/${,Õß…®ïwÍžb¬™U½ìzÅK që  ˆ?H5L«ÅP óÀß *DÊse~Ô ¡›RÞòçËÞ³FF ¶Øb‹-¶ØîàVÅ Ö-ãD¢xÕÅ”I¬}f‘IÕ©EæGÓBÁ÷¨xõ .@żü›@þðu^ï|ˆìêž +µq#Á÷¾÷ܧ(ÏÕjÀrJYMPÂ_ ¥2¥‚HÍÖR³!¡f8‚(žƒ…¹ ÙãôõÂ'ü ‹/Ð"Åùߺç¶X¤5å@]N_ÒÎh¸SS]£ÃµnxKýk;¾ôÈÛºë-9pÞkÂ'¹Æq‘L<’K[ ¬héAN£` uâ{´~!#pÛ[æœùï­'|ÿ3x~ÉÎ9VÜpˆ`䜦Ò¡™iQýŒC2kF`Z-O«Z=u©-Ð=Í¢ ï¹–u"yý<½EM«N€0·jñ±ìýŸã8Û@úGbS,ŸŒí‚Ñß«T¾,›«þYö kSÌ<ÃÚo ÈÔ#@[_e3sÀ6Äùv³E±lì¬ö¨ýbÿ)Å—Ÿúç/EG€û'õ<Æf$¯Œ„õ³0rµ•Z–‡Œ·® a6Ù–qÁmÉàóq\¶d½Pßýž‹2íHö¡lÒü\A³ðDùÏîï‡ßA-‘oÍùß§i3ƒBK?bb½ùzŒˆ-¶Øb‹-¶ÈhÖ€†»Z6V©RÍwùú14ÄñR½‰QΧYÿçÇû-ÉÏL[4×UéoúXfßö-Æ'ðþy|o¬J€Dì³@Ëì9ÿ¸(ç±eRå°”|tZ¦<ÏÓx]EÖÃUd ¤§ð½›Þež/kA©žÆý³Zض!Ý59Þçë×ZÒ̤±’l¾ãÜ3 ¥Fßwü|3¥>Ñ¥°|y •`µ!6šïObo R‰°š @Pé]8?žw÷¢ØUã=w2Ë DüÕ}\<ð¾rfY¶ ÆÏ²w: é-(³9&V•eæŠ$çýpݯîçm¼¿ç/ªûy•LéÔ×H$ÆÀ²¦é§…Ÿ‡ZĦ紙5eOŽ#bX$Mšv&óÑúíP˜­È~áa̺IŒ×߃¯M¬ó1²¥P«H„žúùÜ—¼±Þß´™ùâºI¨îc÷zðãÖö¬JŽ¢ùf¬>[l±Å[l‘¨+ N[,´¡TiÒüQ­3]Jw"ù¶ËÁ#?*æÑÒ7_0£¨Aþ¦ó…‰G´ìÆR»@£äÕ§Ä7¤–¤V KÕrÍ¡jqç[чåM$6¨Y°Î2V†‚1«Èk]…NÀ.² ®ŠE^Ëë7KØû8 á¶ ÐàÇUÚ”i([²KA6æCìú¼ù¤EÉ2H^õ@4߃ô»Ek˪Y¶hì›îÅÌ?gP¥½‰0%ð!§¬‘ Qø̃]èF¬tªñ[ƒÞÀgN̹LgDÞ{j´1PœÍ9Æ$oY÷e·™iQàQ ó²mz®ËiÔƒ™D£¾k­qPvZv3Ùú‚­»ÆLiNýþ’ÉúÈ•¹(›ÖÆ0¤+ÌMzè÷£‘0¡…è`h¿÷…±È1_2êJà¸]>kH4½Eµ3 gÁ3½ Î…éGcoú’%¡ëÔÑmQ¥?c(ù½Âßo’6$hë\jèujU8yÅsç=3`Õ,ù1_É~<…©*d˺6½ˆ‰ô/ ^ÏVáŸOu}¢ô›¨#[l±Å[lwvë¼×R苯Dë|[Þ¼äqRYŒÈ$“¬õ™ªFÔñø–·ˆ­:–æýŠEy ÷¥Zñ{bÑöÅ×F¤°KÕ² LÎ|©zÝü®¿®VTdÔ×j^‚¸L Hùä}äûçФgò‹È‚øäu¥&ÈqdŠ-¬Ei°V]°ëÏ3<‹ß§çK´}º0}Æ:„æØ‹m›úßKSÐ&û¸šášÿ½Cõ öp½©z¨õµmú˜o÷õ®0óž8ÎG÷÷«ôÉcWê`õ‹ÂÞ¼4ç˜ cJ¯|6^S^«ó©Ï8´øæѻȦ͈/bËNú*–%Ã~LÁ #PN›™»þÌg9ìMýý'Z;¡“~bŒCî’‘Æ®CÂì«!šö¥ö+‘Z*H™ë6óH)¹á÷™QK^~*1¦œÙ¦ûaý"Ù‚„y;§¿W½^þ ™?/ É+PS¼%Tî+ƒ6¦ûÝòb40ÞK’ͳ=ñûu)ûÏÓ—š:ßµ†‡Ž_h©ÖhH›Nî½æþTÄmã ÆŽY#vœ.,½¯–4†Tu‚0¥gÜø;0’XV“eVZí­…² dzßd|­Öáý»ŒÍa¬WõþØWÈŒü_?Ž1±Å[l±Åejy½h}ñÖªf ‚,[|è‰äÝÓ¢]EÿÄÕëÎá:3oáï ¢\r¾˜OžoFZTŠJµî³f?dbqªòS)–>§"£jU—@£×‰ÐV> &㺿_Zà+,}»ì/¼2F‚Lò †Â´Ï½ÅH­~C6¹Ï´…ñD¼”Ã"} :Ï«šåž)кë…ÄôÄG†Ì€< É^hiŠä4êÙÆZí7i9ƒÁ †ºd ÊLšû§Dl‡GŒ—eQ´ôëqÞ:¢ø»Õ÷«’‘e¾¶BHZ(®/2 ½„„±8ô ë®'û2þª¬Hfï-¼ÞˆçcM¹TÖ­ÕkO<gÛ€î?¸Ÿ3Ÿâý[âJu)…9 ¡ù–2¿–kô{a0UY®6Ÿgþ{šU¨RbhÞç‚DŸ“a`µÖ-AÔŒ­âø%–kàúñ:+ZžCòØ“i (û 1FrþÖçmÑ©Õxá¸Êù´ŸxÝBcØZt.R‰°Úóþ÷±ßÕýŸKÌšÅ2aÈ=C“hÕ®?O1kÞxß#Q æ÷÷Jdb‹-¶Øb‹-2ú·w{CM,‹‡6Ti΢tƒXÌ=i–^Ç[â*„D nåã°d)“AXÅy¯àß e„½ôwò¸Ð“êeb陎À¾GBì‡|Þ[nEÞ„t<¢J4˜Úÿxî%|mJd}æ¢v@¸M-ù )ÞƒªôÑ¥¨F€ ‹lÍ}ïÑøúöAjE¨"Ÿ&×,zA´Ì{·üõ™Gx}Ý´Èñ¼¬çÎl…ôcø> Çž U3…:UÎK?·ª~ˆs(Êe¦q/–³åwßëÇ1Qdä\4#ÊL<-ê÷ÈõK‘šöx&ˆ¡¥Ê¢®O­á`Yâ#Í;‚ ˆ„ A ôçôÕÂwûb/J̃ñ­êýžéhHm‰Ò×½oÕ5`?œôëW™¤ÛÌYŠÎ‚Æòòm«É ó$â+¤ g"L©UÝK<2¥ÍÏ­û%÷×=Szåzg öɶ“øõ;Äq×”)–yhl‡ú°'-ûŠlº 4-™ZÌ…nˆêÖX!Î+Ë*+›~­Þ£¸'YT{T˜EöÁH²Ø8^c˜k®|ßß¿^õã°çc«¨¿PX–ݺßOí” Zc©L€ô³)/JõMc’¤¿Q…CÖ„ÈP•4L›™;2Öƒ÷Ä>EF ¶Øb‹-¶ØîàVÅ ïn´¸-“ÚÉ%o–ŸäefªÍ-PÆ¢g<¢|ï‘ÌhÛøzþÍÓøÿ_V/ Fà«7½‰÷Èí I]²Ò(˲%_Z-ÇBcºÒ4Ô$jß²%:ò|´_ ËÂú¿²`G3œ!'©=’,Û|°T{À7ŸwD1Ëy¾ ‡”ÁÀ¸Ò78Ò EÊe3³¥€Æ”¸´ª}¬`XˆTécÏÀÜ @m^A¡Ë|$JxVíõË»¾¶CŠñ‚ϱ`Öĉf&&9‰¨|úÔ_÷L‡õõRï{Mߦ¯Uó, DK›ŽÁ|Ò;™ÔŒŸeMѰ6À~¼ÌÇ+ ¤U eÖÃí–õþʉeKõKõÕêúQ„¬ ˜v¼öï¼ Vö¦NÇ-…b!j¼Á<ŽTïbê÷Ôʗ7ý<êKÞ{X޲#Õø$»(ÓëHõÑ%*Ö’‘Sp”y@Fð5Üïg#r¯gpUˆ²¦Ý/U ûòÿ”ÿ°/d^÷¢°ì 0½ ÿ;*1U¦˜ÊýMý<6†A˜ ›O¢¿c öÑE·'óZ÷ó#[l±Å[l‘xçèC+ȸÝlx'i3`+óü™¯ä’˜¯Ø[–é¤ ¨e”â<Ùm„NƒxùÁÁºzÓßgËP}Ô|œUXTW[ª(–¡ùsEª­ÕÑcмءUaƒ%$˜ç`4ÐÑCÔØü{o1³ q˜/:Q¯ÌK™eî}ö¬FËxšÇ¿Ví‹Ï×aÔ2-}hô­Ù}­¹÷f ã¸1ó˜%¥L›‰ÖzàVõ×">»zÿM¼7D ¾·±VA3æã&ʇVÅíÀ3döœì×Ò3$ˉgDhɈ Ka ¤ÚcЪoˆf¶lT\Ä}sÜ að r}§ÄÞq4}W°![ï+µ¬˜®ÌQÒË'ŒçƼ̄Á1_¾¬ï±0t™ÎeôZÖ¢ÕK% Ju´úª6|ŸÊœô¤F…Åõ ËöÊËÕq«ŒÂG?2Êy §Ïdú°ä·sŸŸ®>`³Äµ.9²Ö>Z}ý°Œã¯b|úH ÔãèaÏûXç²^A´ù50<‹¢!ÖaGb-˜ÇžÌ7û0‡8ÿt ¾½åÜ#áG•Žñ9rëï{Da¾ãÜ3&Ï0‹ŒÕ•Ž·øÙÝy×çu)=ÅÌÔ„xjß#'*I^•jŽ©fGÉ`ŒÂ¾?δë‰ñÿ‘ ¥GȤ #FÆ…±'º^þ|Ÿor}J¬Œ1‹ÁÏ˾(À噘5¿ý—êõÕÿ†õ÷ îK±úæ- ]¡ì{ÅoûÄHara‚î'¢`—µ Îd¾™q([ªfZ#Fu*16nò^”UA:%ûǾïßZÞ;•[[œ÷̺Èóÿ¥0 Vó%4¯¿6¦Wkt˜²£(&ÂHš€Æ²ˆrm! PhQ4ÝQ’TÁt_Z~§RÅÐ=Êhâ:¿y#2±Å[l±ÅvG·NÇ>á JFæËjѸæëw.U¯ÏÃ×úìdÍYÂÜ.£L5{¾äùò[8>%@ž–‘à â–Ô£Ï ÎÐgÿWÄÂg~³XÚ*¾âãê@œPP3MnúbgÍÌ€1 !¾ý9¼G,À#ð}¡ôB¸týû±ê¼¯îydXcp$ÚêÃÇTŠâ˜Å ˆÅJæ¼ý2îSˆÕØ Ý }j¨ƒ­ŒGÓêu™ZݸÞ΢¿/* öEKÜô ‰À|ZÅý\cUÃøÒî«^þ»ÕëžøpÉ,=7õÏÉj—‹¬F–zFæ²`vƒŸŸ¹T³£?×ÛûÊhÏÞD6˜‹](¡¥áƒgÿˆ/t$ˆdºÕñ ™ëc€þÜÑÚTp»¿zÝ&‚ù5“ŸGã,‚ï IDAT}Éóí(_î2†ád5î+ûënß)±/Poà4ô$2¬‡ ]Ï4R¡óê·¦OüêþÞÃq ýtJŒ#«?>çæ?û…±ê³\Á€oaáp~%:¸0cÎ3pêÛU…<õ=.øùF¦h$Qâ̦où¡SÇ}D£_7ñý"6äò½Õý±Êd¡Ì“äù@êCúþm©Îÿ ÆŽàøKź_Œ%A¿œÆzc¶V] ™¯m¡ùò¡MGD}Ð`0“ÄÇ,b>nË:„g +•L Å<}ök%ÜôûW®zd"•éD,ŽéY€#2î/xäÎ~êS±sê™[Sz$SÀý÷3LýïÀHú9‘ùÚ¥À\jsÝÑÔ÷(´j¬Ì/ö“eŸHÌSª12Êu[Ùç-  ãŸGõ#R9Ÿýn`?*oð90ï©«ë[˜…T²¸o0{b›óWæM¦Ù.|œç7/ÇØb‹-¶Øb»£›ÏpoÉs,%º8ˆOl ¾úƳ® â©juC¡ LÀ˜–¢ÚG‡¨çþ[X6°é#dt<³ö:͈2ÒI‘%0BÞM<²µØ‡¶¨S¶Ì_ÇzÑ|Gë@öNÆ¡”hØ_i͇ê¿æ.UçyQªT±™˜Zü<Æmëëkx^Þ£í=2#2Ìj>l<—0@ôÕ³®ûæ[¾¿û`¾qÑh§où¯–Ͻ°ddÞ§oŸµ0oXUðEŒË}Ȇ0$<ï;£¡ÇðY‡|ÃÝߥWŸ_|™íôÏÍ×u3ñãÌç|ä>Ϙô1ÏÆ–¾îæ“Õ—¼_ÓB~½±×ázº¨1= ‹Ræ|oýÙoûqâ<½ü•ê{›ÍHý°<¬”ƒ9Ç@RK`ææù²:îon{åCžßô°lŸ5ÂûL»¾6‚êðGÉ?„ën! YBÙlÌ ¿Fµ—Â,ñ©S’ Ózàç£UMdµÌ¶Úï ãÃýàÇxÿ%ô‹ø’Çû^y’û4}ÒObÞ\>= ^4U@¢ß ˜÷ýš e¸È þ¹ÈX­ù=RÅFÕáï”ň¥É'Z-Wµü|ÿñ¹‡ÓfD«¹*eUkoÊxö„ è½?3kóéÐÏ—Ýn3c˜hÙB!TÊ÷ÄdDF ¶Øb‹-¶Øîà6÷/ÿüÎÑ F k©Cžw›™õ©ÑÞöU¶$Ñ|/¢Åa¤óÞ ¡~€eˆæ²EI–Í–-eSVÂ+óÝdz ÷þmœwÊh‰Ô0å:¹ÕÈE ‡ÑGÇêpýÒ#»T«ì‰åÇ|næ³ò:dÞ¦˜È÷¢«‰hħW)…[bñ‹2b"ãXSV+=b#›" —­†|Ñ'À L`!wà;+}–A½úç |£§Ñ/«˜ÀôIn¼îšÍ󣀌þ[õzúïª×§p}oV‹£%?û8/Ú×(¥>»!|C²kîþ-«¦ëÏ;À²QH\L›‘i. ZÉaÿ¿DÅD‹‚ÞpëÞ€ÄLŸ‡ú\'ŸYY×#ùŒÎ®¿×õÌÊØO.,ñC1ï!î/TГy7`™F©.9Fç 'ñ¼@êýÔ3`ɡߟRÍR²çßpûUdÍu} Ì“f£Ô}Lçö‹ ÕW-þ>¯u?xÅï;[™izY'¿ÎõûÈü>Dß÷JÇïƒWµ)cªÔÇ+„Qó;d:€¼GRo l&ÑÜDV¬eaÌ Î3¾é‘)ç½U9ìbíé~àÄ\Õm8Þ$ÆG­ÍBGVU$Ò§Âꞟ€æÝW¿í‘h&û1}¸M‰*4vIÓ9?ï× #HXóô»žÁÕ˜.S4ß¹Öx±Ø 2Ÿd|Ø?2.R}ÖÖ™TTf0—عZv0ÃÇãéçGMѲ#óLô^Œ è ƒ!Õp• !ÆÄ[l±ÅÛݼŽ@×#½¤ð–O¢õÈiIŸ‚¥qÓ‚c¦¤X"U-aSôS_¤Æâ¨EÝŠÒU[>&ï{Ê}¥)³m8õäƒ|ϼùÞ;¢,(Œ@&Ï«ÿ·ªkb)GE#ûUÀrä]óúË 2?ßû/ª÷#ÑOr^S®Âõ-ºY'pðEŒû¤?f¾ßó?ŸRÕ/ü¼Éµ–CÏ#Ö¦Ìy‚Õ{ñiÜßuÜ®ósÔÆ¸Ä‚Õñ÷\öý½«ý %Ëò@2 cT¡Ò¾o–øøœûÿøþÔÀ`ÖK¾ïcŸÀü|943%0Œ¥ØÝ÷÷užˆ ý}ñ¶×¢#:âûN-æópê}ò7§‚Hpžg ÑG6Ãã'ȈT¯ÌÖ Ã@² È&Â×½ù­5¨»^ Ï¥0Ôx¯Ÿ|ÝÏ÷Ú÷‚ 7©¯Ì*÷ 2¬y·yÿìcB‰s¤Ì›2ŒÂÔê>ñbq.1‹«×Œô͇.1NV &xf!•ê|ZUÑÖ1ÆÓ˜ aR©h123ù`ÿÌ<¢5‰=(5¶M÷­®gRŸÁºzú„Œ¯0 DúF¸t›™Â²E©¶µ6€Œ#2Ñ É%6@kzðwœÌÞHj ¨ÞG¬5[l±Å[l‘8ÎШþL¢ku»ËÙ,<<ˆrï ²§ÏFënAŒh?À Ÿ¤±#Qý§Årß߸V÷Z¤ÅÄXŒ/KTiû§Ï–Z‘,}Xô!&­*­T%É·‡’—kz¡9 6LÉÌ5"C>³!ÈÿXSÛ_'‘˳>ðÏa—fGëÓÛó‡5ép>Wõù#ˆ&/^’BµÊM"*«á>†¸¿Wq=f_\îyFê1Œ×eM¤ß¡*"ö%†…ó<…FqÃ3H˜ È ¢··À¬°àî Aÿ0b-v_„Ù“û$£Åº÷xžó :×À¨ìÂ76øùuußÏ"¤>jcšÑÔ²Õ¿r1{U¬|ºzíºŸ¾CÜ÷Ï{é{Õë‰ÝÝ ]«¹á’ePQó‹±LCT=Ýfž·P,–wÎ"î[Dª ÂT)JÖ“é´üÞÏ+Ë;kÌ)ôrÌÿdÁg dÂxÚ~†Ìt(¤Šc¼Ø?…0˜}ÕΗ(ôL˜EÞ¿]Gæ£àãÍ‹oAø €q±lœ‰gfú9¾·(Yrd&-öc&ã€fÊ‹Ü/sß fÏ#ú‰0Z0W]Q“}´ßÂØ¨®™Η7_Œ@l±Å[l±EFàÃ+#‡cÑ‹óÞ3‹g⑾Fó¦->oÍ›Låü¡Å4Í­Ã}Ò#½¾ ÿâï‰Å<ä:ñy.Uê²DÏë•îjJ[|<æÃ'!ÖŸGÔu~è}ƒ‰"q¼ˆçÙ=¯HeµT«úûÎîÄ"Q½O _·ÞÀk¢/¯·KÞçû÷eÆâó²è[jŠÃ‡É˜’!Ç šó9‘K½e¿ô)DÃWž3fa*F4á9Ȭ°öÁ¹ÿ\æ¥ùæ´ Ü šT´Ñ™/-šÿÊÈiãsÒ¦¦/QÖÖü|šÿ-Óͪ7 BÌPûƒŠ…Æ8püpÞmÌ“þ¬eý°¿pÞ5<ÏãA¯¤¡rüGA–ÆÏ0öSœl^ Rb¶…!Mü÷Ó~Ì!kÅæŸþŒç)dU Úâèõ ¿,ÆI¼êtdÍ]ÿi|ü×þùsaø³Qt}ì`€:ÁKÄ<-ý÷$2Fª+‘tÞé§ÂX,Pñþ¿‰êšÌš‡´Šl©Š{¢Ì9Ò˜2G=’-2®Â<2ã Í÷£Ì6³OŒ‘áuTAQ² jLŸ0¥VÇl&t™x3ÆÄ[l±Å[dŽ>2¼ÛY<5E¹®GÊ…DßçZ-Pc´~²X$V­Mòεú›Õè ÂÄ?Ãù>{è-0ó±‰"Øè]ÿ¼T’Êàß«E}J¾/•ð?mÈbºÎnvÈÝòÌ3égDÿ'ëîÁúð‰›ïg꣢ƒ ~*µ™¥þ®X¼óÞbH Â2îëU FÇ­ÎñÅ;"­Bò¤}<Ò¬ \wˆØ…]0 ç h¶ ϑɳ–ðù®ä÷&2ÎÔº'B¥Ïò<îçλM vŒË%Éf1= Fé ¤ÐjŠaR~ÇmwIJoÓ§/ú-A ÊD´ÔC·¨fÕ"Ó5ø(æá­97O¶$|@…G21«[úù>°+@¹ùêÌš±º¦è—Œ„yy÷{A˜ËZ¶jÁ‡æýÍægÑÌ(ô¡­àómÔ¤Øû0ÒÿÇŒ‚güRaÖ&¡èÄÇ•`Vm“U\ñ ™é_É>üý«.Œ*ŒöËò†F¨ Šf¤Î}Buþuý¾?’jyZM²½e²”qP–D¢ôƒd‹Ô”[±ï¥ˆ-ÑÚ«¬]ÆgWwÐj˜Ó–ù”y¦Ëª(&Â0$²uý÷YaWf·™.MGS ÈË1F ¶Øb‹-¶Ø"#pô!f ´ä/æÓæ/›…/ˆ¯–_ j¬>Åšï¹Ù"gôgÐüI* B=›yä2ŸJ!Q§%¢Q.G´2•ÕòLC×ûä‰ ±Ü1&‚„’e1>!Yªß¼Ë~ç¸,áýO> øš?]þîûOŽ‘ýpg'~\JAÄ©079òͳ$µf…YÎŒ&föAÇ÷¯õ'}ÌÆ$øØŠãüØ#0@sîûgqß×DÜíè¶ŸG¡%ïö ^/âû+Œ¥"/%6Äž“13ê‹·<}dôûƈ"¡*¿e’7ÜWdŒ¶'Š„æ+•|k>þ"²^|¬ê×­ïVï/!Úˆ¶o±^‰‘¾þmêZðzêÛÅ<:O_<^¯0;‡1†c _öœdS˜K\|¸dÒò©‘°ªxŒþfvÀïW",2Ì(0ÿ/{ob×y¥‰¾ÅÔù±7è€k×¥œ´Ž±š¸ŠëiœqO9 øºº¢žÐVwÈù¶o_¢Kºlp~ŒJ¥†‰Á‚I•ét &8-An{"“IWÚÐŽklÚ¦J £¡J¹HøTh}v5ÁÞ?N5º?öó¬“õìýZÉo½ëÏÑQ³?Þý¾ïYϳÖz– Ô*ÂÑk±ý¤òóŸó>ëû®€ö÷‰g&3Aþ¹(ÝYWÅGp<Äøó¿ñŒÚŒ@ù®­wÜ%äD½ò±æýï¯û ù_qŸñûudkU¢[c9°iݽeõ÷eß$Ó%Œ‚å(ˆÒÞ2uØóûÊè˜ÂïÏÑ«©$ò÷'2O‘g“î}~^QÄÊýæÊ¤È¼3ÆGªh?OŒ@²dÉ’%K–;÷!G ¦x×ê%/{ 숇ÃnfCh;Ï_÷ž;û “yàëP4ïMù uÄ®”ØìJæ‘G.ž‘õ•&cÀúv Ùiöåº ¥5ðéÑø:ýlâ³÷§: ðø…Á B=´D:ðø7Ø…°,_Qú:½à¼yÀD67ï°ÎçÿÿÉà‘Úû_ãÄV,õÒŒik–m)½ jC@È©à}æý;~¢Qÿ@ªP¨ÇãX•ÆAøÒÕŽŒÔ‰²ùÞ{@¼?A=>õ0žÂóºˆÃ½BáK§ Ò§b%žÓHê~UwB‘b¬*A³°‹sÇ®‹¥G‚¹Ô¿Sß@•é2é7Oô4¯Ïü «-¬û'²Ëd/åy3§€ˆo"Ùñ²Ÿp¾qs?zã Þ¿½î÷fûïøùQj6¹Ô¡óyåè™ðevºK•Ÿ•@¹y«C÷ "çQ!Š~¥ô\ɱÏh5E1aÍ}žŒ@¡ “TËh5Sk#ç<3˜I7Uvù,Ѥ˜m^Oàû—Ø=µðȸÒnzškÅ^/ •*ÌÀ0’öÞRºÝ¯t³Õß9–MWŸéùçuQ”N‡Ò£‚Œ„å&HŠVqå2Œw3‹ÆŒR3øýU÷µ–bãl7I{ûÄ$K–,Y²d‰0F ˆÇDžÙ‹DRˆÍ1¦v\²À‰èË~§c6U”zÓ šóŒá±¾È5’/EÁžì”Ù¨”FO~G²Xí¼@HTÀ3 –y¯–*†–^ýþƒm1î‡ÄSdP‘8ëò h^‡û>¾¢]%ƤàŒ}ÚueÉž¹Õ ¢+øûÔ_Ä÷.K¬Îæ‡æRÈó%3À,[j†×ROK¦9 ‹@hƒ1j Iía1T>d9Ág­W¢üU‰ýHêwOüG Ãóü>´íóæ¸[˜?Tœ+´;˜(Äynúq×y·ˆ²sÌÏCEZW¬9>¹äê ¨¸äZ"GåMè |÷ÓÍû¯@Ùð ”ü†oßÁu5Ïa Çßàq$·‡ÌÚªì'¦}.Ìà"r<†ÐXbõçifAcXÂz?†yWQaïЇjïžÆy_öˆ7—ê[ïЙû˜<•øØ aC>Y‡þeŒûÜôó+—^'#E€6QM4nÖÿ*nd£ê ÉñàøþóóÏ0^[[æþÀýU·ÐÜ÷y\߯_/Ï!™ËžßGKEê¢Ì©¹)ºßíÒw €>v|ÉÒ$n¿o‡~?[.šñÞF®Q%º¹Ü-¿_A˜íå’©ò*™T鞨Œ`c`q|Vw±š(+»¿Ÿ ñú[‰H–,Y²dÉ#ð¡>à‘‘()b/Eƒ¾ÐlΉÏú^ús(¿}Ý{Ìc-fe$¬z€¯2 ôôpÝÇñ÷MÆT3”,øL<ÿº¯#“®n1‹éõ}p-: µ()Zìã(еÆ3}¦ðÝÜT*J=ÔJžû°îf.ž’ªEœ‚˜¬¾ð ƒ›•ÄLÉxœÀ8\’àW«¿"Ìs\kÐNîõ¨¸Ù'2jþÿ³·Îb<š×Ÿä¾^Ýêˆûþ¹ ËnaÝï˜uŽó±Zƒõï¦t¹×=?ì~e¾WZ!ë­ˆÅU)‘ã.±X2-̆_Â}ÎC«ÿÍÿ»y}œÝþðwê¼ò4º²}gì÷9².¾;b…³\«Þœt#DÆö·P ó¯Àƒ é*Î¥ïç§ÅloxÆ.&¢WJ5…Ö…·Sîcx]%Ò#s\æÔ°Î›: •0Fìbº#¼2èê¸Fqûºì»AöS¹ 쉹ç¨Þùª.‚9¹0a@ó÷SPV|ñ;¾úBcÝ4Í¢o1ýÎË™æ ϘfŠÀ%;¾G~W¨à™ûy¹‚ña÷ÜË0³§À½y¿g^5ˆßÊ]’ûÑ®¾A¯Oô`Œ)”êë–+º=Ù¤{~¶t|„x;1É’%K–,YbîÜF`ž&c¸–F)žq+ ’ŠU‡Þ³Û¬‘Kì.Óî„Roiž‘(Ö©1ÖÂó¯à¸=}‹ Ýžt&ú ¦x# ˜mÌ7u!Ý«š±l3oA‰Òo^=AïZ<éS8ÿåAˆÁ?¯a$‡¡ø-ļ ÞDZtf‘ÔIó<‹Ê8˜âœ÷èƒdç’íf}>‹•Aq1Ï|×Dc®˜3Àyh|Hd¦±äA˜ÝÌÏ1…óÑ—d%3¦zç¡<§ ãfÌÌœÌ29d^„ù1ÇÝQÄ­ëˆLÞ~“ †¬×GŒÿqä¤üñšñúîI0[Ï5óàüžG¶>2]C—38ïå[žI$3Áq&ã‘WÝ £1‹x]Ɖ¿ò<¾÷‚Œ+²dÑRS]‡£‚Ȥjbå1¬Ëwšñ¸l9 ëî9ç¨>:ú|viÔî¦E I¢ÚźžõûN Á¯{„)9(¦*È[ûÕ×X7ª6þÇcÍûg®ùn—M Ò¯¯ªòúùG1?ßöû铨Ø|ѯedÌ´ªC”ýAk–}=‰ rÝÇqÝOù“Aæº"s¶…*˜¡0\·C¹¾/¿?ÈAÆr$攑W½ù¶i‘É£Nƒõ@8 „Ü ÓUæ|ˆî„Åä€Ä¦YÉ@*èæXŸýK&à>¾ò{@Bÿ¯×XÂøSAl$Œ—åP,x„’Oº§‰šÆDùþ›¨¸‚ùºjŵNXÐrß3Ì}8ÎØôM0câ¹ãºq %Üçk’OD´ÅqÃul°‹ä;Ý÷eJ‚œ8Þqí]œ \ïŽÿq¼Þ|£y½„~÷ÿðž_Oưà¾JÉF¨Û‚ çY°Vð<†7ÖÃ5„ƪ‘dQ´î` ÙÛ¡ÃÀžAuð¹ó{$U7…Ì#ËÅÊý<žö¯GNÀÇq|T |ŠU¨º±*ƒÜ+|j‡½ ؽ «¨À¸[{¦ØºXJïcõ÷Fêç‡ÂgмÏKïƒeŒÃ6žÛ;5ïÄx=Púœ—‘ìó-}ÌÓ(+nÌvïã-¦"¶¿LºÌ O@®C}U&‚2Âý") &K–,Y²d‰¸óÁü¥ó i£.·:d+JK»Äw‚ž3‘<<ÅËdÅ<ñôèÉÓ³¯¤ëT‘:,9ò¸Ì2M<° âij¢ó¼@'?ܼ^¸æ¯cíÙæú¿øUßWœÝþò9ïù[¿ñ=Ï"pÖ1k}ø¾GžÊ„T1kŒÏ ð]ÍXgÚŠ)f>ëÚb³D*=ßO>Ö{‚ÿ=\÷«ðPÏiÙÑØØDu-úˆYç«&¼æºÕ­ãõï+?ž6>THÄóÞÍói—>¯õ$ÆŸi®ÇGfö9»^>7?ŽÖ£Hb"H@{nHFc¼¤7€iÏ«{èfº,fŽë­ûe,˜È2å3»Ïº›ù²X0õ%ˆ”µ‡ =Õ¡±+fͯáóˆA¿ñ½æ<ÂýãÝu7žµärTy÷~¦Úñ§ÁQ}6¯$vÎñª¥N}(ÈÖrƒ„Qh/,¬Ã1ïÇ÷°qÄó›ïIwB«6Ý*µJ•K‹ù”õZßöëÖæmÝý;aUGìæ‡œ”:óWÍtÝ)Ó©ÞÊbÕ^½÷glX¹ŽÈÌÚxyF'[ðß«µZg,]!q#™_õ¡ß¿¸|›¹>د/ÞXwLÚ%\çÓ¨Ö¸øúšûý@_bëªJð{õ æëîïrþ6åw3) &K–,Y²d÷¸Í†0­£ü <*±YŒSöÄê‚÷(Ù­jcâûn[•e5¯wzZD™f?óD… xT/ ?øgñ¾ÿ½æø‹ð|7Äçý<“]¨Øoœó9ŒË7ðߘ ÏŸn<±ì/XÐÜ÷|åFp LP-r||'R]ä: ¸I}¹Õ!WÂTM„q ýÊ}U-Jlz‡]«tzÕ :òyC4Âä­>é‚TDÿ! ÂÔàs¹>a³ÿò[ ž‡Ö;Ç›ïç%‹ü`·qü gü}^{×…X÷© ~ý\˜x梔ëͤˆá IDAT*ƒŒË±âŸ\Ǹ°Š„90¥gB™%?/ëÏæ/ûÙ÷ƒq©®q½ùu¥Ý(­Kåxݯ–ê"«»¯%¦Ïu…}ƒÝZ-§¦ö d-:.-&L¶eûüDöY®ƒ}¬{v= ã&H»ÖÞ¢¥?EÚþù£º™;[™?Ü(ÂtÖ‘ý)H}>΋ÖúÀ¾ÄõÈþž¼‰Œmüîì`?;÷›Á36|~7õIüŽoãï_ź]ÅõlH—\ê$„#,Y²dÉ’ÝË6ó/ÿüOwžXjrƒ»ˆXRv Hß#µJ<$‹#†Äîo¹dnK·Aæ äÒçÙ°Äv ©^0%*zÔõÝèÆîb¥Ä'¾ÞŸÊixb[{Þã5mtdÅÿD²TY…?ëû+áTÙÏbɼ¬‰Ï™Èbõ§A__˜Ä ÚϺd1ë~Ý!F2óPn³þÚµ½ÓÁ˜#b¯Àóÿ3 žp}—l^¿ë9ö®"ZÆ1Yp°Þ|µª…ã:'ß“y̘]DĪ—Zæ—Åp%¶­çUĤó6LÞYAú­ë­»Ÿ¿Î »¾L’®[]ÏçJæAÉzs<ßjÏÇú‹ž_Ï\¿A³Õ庄½¤ýÌž0+VÅ„KwË3KìX£›ä:u9C7݇}Ïb÷>W¦ÕM•ãÁýLJ–­w>GÕ²'3À꜡<×L7•ù“ܨJ»ìÙtò9–»À}U ÆH­w3K¢ gYí’+¤U SLþʉž «ÈTW¦µ>‚0Y‘ܲƒ¨ [Y?’³6U,„ÂëÇÁdA_¡Ü† ß?…÷¤»i±Ä|`ßáø­â>^ªý:}6øñ¾œùß‹÷¾¶î¨…ù}®¯æsC×äêìà~xõ#,Y²dÉ’ÝËÖäÐ#b,ç˜G*ów€Ñíj(ÙÖŒ)1 fþ?>gý”Äs’ϵzŒ»™~¤ÿ_m>Ë3¦ñ¼‡Odóþÿ<¾gýèK}›Ç„ â¿æ_3‰}ö÷Åa¥µRbn6ÌÂîû~ä¼¼e ðö ÏdŠ\í9y¤m1¿~72 ’Ÿ)¶ÑãÝc®AóúÅþ{þ ÆŸ_øºOë‡Ø¡Å0sŸD7Á²À‰pYÅ2öß›×X*Ë÷ð ™+ãAÞ­yšu3–­/ïC71ÐÎÐëÊ9“¹ûõÈçT¶œc0ŽÆþ™‹ÀuÁ˜féoLÕ+øüçUk]aX*aŸ& W‹ w{ë~Þ:@žBOŠoþ?²1fަ0wˆuÆ3 œvr?ì~z‚Ýøf½îD­ÝðX'?î ÌuJI-Ý0už•DÂa­“)Í¥wIaÝ<¥;h½Ö=¿"ŒVù\)ÁøL<§U g35e.…±’j"ž×bîc™§¹œOôoZŠ‚2/y%C~î⻾êËr5Xm¢†ÂØð:‡ì±ëßbocæÐCûú+cÿsü”© Ëýíø×î¸yOFµ$Ã- ›Û½57_BH9É’%K–,Ù=m3ÿòÏÿtç‡k²à/ù,ô|âc1ÖUo,Ù‡sÞ#3Å%Ô÷.¡Þ÷ð”Îác;’Àìëy©óÕþñ»Upí2%PÙºÏQ—×=_ázm}~žÝøLÛ›çÙïö˜‰,MÁŠH4ÌkE’dVˆŒq=#zî¢Pe}¬™Ý/½ 2d©×Tƺ-Ì<ÇL‘$z Tûk‚lוÑN«L|ݸÖ[–oðÕùs@hˆeçýøY76VGXUÉšCJés¿‚ónñùö×ÜõÉîo1c?n¹T³Lï—~âŽÄ@ëàŸg«»¥0c¶îeof“kNÉXæ0äRd`’žûûæ9X×KeB&~Fb>‡\ ¨™'St‹ˆÔË+xÿLðæ)(n¼å¨Vßwç1¿_û#ÌÒkþþÇ{v‹dWÅaí»2Lj1ÕB²Ê‡û`²³n=䪈Þ'Ž6Ÿc]8ëÑç%'`¨:µß*ÑŪxºàŸÿ€÷§õÿ‡~_0Ž\‰Z™,m+²Ö®ª:½L烽@Ö;÷Íl¶{_ä}XõUðóŠëcTG…Ãî}£Ð^!¢8I愺T@ÜdUÈœÿyŠú»Í÷^;ÆýÇ—Þ<Ï®ÿ8®çMdý/]óŒ/íñ[k~;Å>½ÔkæÛ‹{3޹8óœÂ}>ŠëyçÅÏsRL–,Y²dÉ#ðÏÿtçƒü¥ó°¬®œŠK@š»³Þ# ’•¬±X~ÿ›øÿ7éñÁ3f6þŽÆ%†ßêº$ÝšN>á¡ÂW¡ý§Èi"(a1{øböO¿Û|ïÍŠZÛ¸>ÓÚd¯Yß‚ðséφUxìŽ8@,}XˆGNψõÊ­^ט„à²öˆ G: ¾~¼krñS0øÿ íb+¹0¿¸–dÉ’%K–,1üöœ‡ÆlÕ*¦|ÏsžÚøt8ûd«}ÇwÇÞ㳘‹ißãs¬×ÔØ©d±³N¶”XV–ÆdéiÆèŽþõCB¼±RÕZÏDÀbcÚ•Kþ'T6Oƒ¨} ·Õ«€^4åÉ@‡½iã³îCK»þP¯ 3tÊŸ ²”‡ð{xýaóò$<òãgp?ç3ÄûZµþ¾‹$¨¤×"ëÄRTdü­Þž:5ÜtŸ_cü™¬×Rc£¿%ÈûÐ3cÓ:ta’j©6É|5G©UB…??çÛ ˜¬°qâ²êv;#0¬›uÇ…ä”@ø?ÂB{óêUœ÷˜ŽãˆÑ¯*B“2'L‘äô0&mŠcAâÒ=óä""îóž쫳 èŒcNкßH&>g'ë‰Þ«²p=CæPíyÆË!íÚ']T3ͺŸtü©r© oÞWvÄ×ç×’ë@}†Uüýò¸›Imu¿UæKry‚Œo6'Ç]Ó!8”}N×éQÏDXÎEé™ôé@ùãÛýà÷f°0ã÷Ù±ÿ]Íåw—¹lVÕ£:Òüÿ³?Äx®y¹Èu‹ë(¤J쇉H–,Y²dÉ#pç£Kd± ˆÂ4ëS„§qèP¥ xŠÈEû›1ÄQAX™÷Ä[1ÜžGØYÒÍ‹b^žîk½ã<°UÿÒcðØ€D#ÈuVZÊnw¸îãÑCo^®h¯†I÷ø°žß4ßù<5š‰ç‡¢É:oe“©!bøîã÷e3ÉÞÖ:vËvÆu ÖUÙ,K¶J®27ÓØ`·'ßÊe`Ì–õÅ3òÇ:OÓA`=oðâæ™ ’^B6zù3ß½×±„·ôð¶,+ÚŸ_»ãQaŠžû oz„L¯¥å.ÎéFfõ È•èùúqfÅr|lbHT<úÒ¢hy9œ/ÿ0²²ßšqãIÛ}GŽ 1ÜžŸ¹ÄðªòÝÜÞßä„û,ëîë¶Ø¿fYk×5a,&-Œ›!D­ãf웺 \wÊ0ô=ó•]C‘3 ‹fø˜ÎÙUãÍÑ¥/ßóÌœ(Óª$É™¡â_êƒÎcö¶XëD€yÏ#1ÆBÙ%qºž<Ò&sešÿ²ÿdº麲õê™Q&ýìƒ^º†¬{Þ–:ï<‘̽ҫ1 •_U_9˜DÓ[éE¶jwPŽ×1N£;n.÷gÜŠ=Œkî‘w«[«é 4õVs¿Ÿ½QÏ3­;ÈeyÀr\|@°êÜ޳„Þ Õ3%kS¢Dwße*XîËþf wÜ>ËqXÅüøÏW#,Y²dÉ’%FàCO6Œ»(DœÝ»4Ïkpá> Oæ4<Ôï6žÈç?O±òÚø´ _²Ù­þzÎ#¤  jKý[dMþ²Ç-«Uû_‡à‘]©KˆÒÔ?­üò9ž.<ÖEÆÞ”V‘õ~馿|Ž{%±œyÖSÃÓž·:Pɸß+ªÖ¹)ËϬX]ìx­“I`DÖW×¢5o±ÂrÍ!ez¼5<Ñìÿž×@gu!mƪq½»=A•Gn™èOX½®IŒ‰Û¬gŠs4‡_§ gXŠäTé1²ê)¢hlÌÀn¤+Z6…¶ž‰ôÐ5­ò($kÝý¤›!É{^§Áô ¨ H}$Êoã쉢ԃOc¯k—1 ÒÇÞž¿(wÎKý=«€òCXKÍÎ×ê"nYŠ\mY‰˜ƒ2 Â,Ê8ôd(q¤ãÓä+U6N‘,{¢ª ¨ó_Ö]v¥>2E櫌Œ&G• ƒ0ÅAêÝ©ŒZñk¨ó=rÔQF«§¸ßS_„LX‰^ öãÕ²yÝ#@}›)Sç•^ Qj ¢¨Éû7BL&B&bðHsÞa¿yü ƒØÿ¶k_µõYTG].ý¸qýðÔ}0Y²dÉ’%KŒÀGWF€±–\êŽ+©föý?qûŽ÷`*ñhéQ}ãçòü5ß÷; ›¾Ú ž[ß{\!–]ϬeQ°RÏÝ.xtL´vÕʽgÎìúÙõ¬"Ð>ܼ¯Âkn›‡-ž<‘ÃHª"JiÏúXðÔÕ$øÜD»[-ú¨HXˆ’£e…K *ì{…BS84»î®ßên+ ­»×¤óvâç¹ År~a)S˜žÖï–Š¼5§¥U—쑚uÇTÝÍÕÈýü­å:[1eAl–C Ì€"•~7£1F dN€æîðyâûË=¯m_‚[AltËrAÎz悊–dr,7 ë Ò*.ˆ¹5£Gñ]ä¨"²´óŒúw³Y ¶ºÍØlæO­úh!õBˆà>ç;s¤v¤ ¤¯çŸóô|÷ÙõNßʉá}“¼%U¹ r©r ãÈzËä¼2o3VAÝÏIî€1P¹×=È¥ª¬’ý0HõwF¡{×u¤×[KQødÉãø`‡`\=ßûeÄ܂ȺeÎÇSG½^Çå½ÈzeU /ö½nžÿ¬¯sG}ÎÀÎÿ½ÚÁõP¿„ øë©×@²dÉ’%KvoÛlã5o–àÉlˆçÉúDjˆ3Vz;ù¥æõ½ïÁQg½8ƒ÷£@Œ¥„'S<ˆ¬ËëÞ“[ÁÛ×½­ˆÉ4î+ßEKë€kQä³úJ"·=Ï|hì˜îâÃÍyN<†XÒØwßÛB÷´Uä ™Ìnm‘,öÊŸ~Ú_¾ï=WCªZ¯ÞTbÓÚÅënV©‡{(Çÿ6þþŒ1ÍsÇ+»'¸[ÆÐx´~ݾ§1Ì9¾tãÓØéPô*e"zþ¸…Ƙ5‡ çŸ·Í?Éú:™År=d‚[…"$A^u$;|¤ ê³n<*Ä&9á @ >Ã:Ú4éóŽÁanÈ<4÷G§…±(×ÜsÛ”¤¢œŠŸœ×¬“·ûôuõì…°ƒjˆå ›z ³ÝóÈæ­"hAæ–»C&`V.y°dØL+_Y5§'Hus’æ <Ĭù½\˜1í…d>³k&÷UÂSFbš+AeEéÙ1ëué[—GéÉaÀ]rm†’fú¢lhá¡_wö|%WL×CŽ£ž×Ÿ`UÍHŸg_Æ#ëÞG/CáQ»#jU‹å~P’×qÄÏk>ç±Ï>…u·q¿ÞB˜N«•~…ÁLŒ@²dÉ’%Kv[S5€^Ìê­àq/™\ã1¯é2Ö`z¨ÿdW½+×Ń–.wÌV¬ Ñ"vÄãIÖ¦Õe¡ 4V$H’ž­u×Ò®(OY×'zš¦Ð%ßÓóá8O=ˆnU`6›Ìùóokîîsßc–|E$&²Åʤ[ÕO#D÷©ÁuïqÉ2R߬]âF+­5›ZÆ¢0@'É,õ<ƒd¹ÌÞgUE¯¡kL<¦„fºw™ì… ¥aDÑÏæ‡t´œd/³Ê¡­4ÖÌ-—EϧYÛ:þr]šEbÖt":Á3bÓØ=cê>ú) àKÂÜeê”!å8ÍáAŒ¸Çu¼æÖû<ô Fï®9¤OÁ²¶™óCDfÕ`}]xm÷)L”2MüàâóÍý”¯c^½;ã™!XUÁ®r;ÔÿXFsOÎÇœ"̳²èÞ§ O¤û`ß3Fƒ[ Qûr~Mþ®–uŸßØ£þ½æÊ´²ý÷=âoíë}A¦1=à#aLÈp LIÒ¯3Û¯òn&í›P6|ñª0d°û>¶Ï¯¿‚ã~컎2¿>˜{4Tf¯ß½Þí8¼Q.Ìnûç;jv˵ãH×`ÎÓÈáyâzªH–,Y²dÉ#ðAôûÈ%æ¢Hm¨ŠxDà¬K'€zø¼'ŠSµÄVéÙà{…Äæ†µ÷0+Í 'BiEð÷EAb{Þ®÷=ÒË<3Iÿt~ï8ÎÖ¬Ïb&⥲ß3fy ¯Ï9¼8¦‡¤\zDEtDÏçMiëö{ÝãÑÒˆ×,xÍIÐØþ~YÃùCþy±«ØnN íÁmAÙ˪ä°VLÈÒ#fzÂ…Tµ´zôÉì ò–CUìS$i @„ÉPF¨¥ìüøO«<‚Ï$†CtÆŒh}¹ÞÇm?­ÎZ˜°Ù w¦lÞo—ÍûKÿŽóàŽCô•d…Ú{γ[|`À<ÆRF¦±í5?¥[û©ô9 £é-dýhÌÝ”ï°NO©oÌÊuJ]76víÌoð¹ú®ƒ­ÞRw®ûœêØüÊ<òÌ¥w@«×GÐÿ§>‡ß¯ë¥U?Ò5תÕwÑ^Š ¹_L<“2Žá¤{½ªÞÆÈx(÷· &`sìÏÇóó‰æóŸÿ»îõHFhÈÁ>È›ïyEZÃö«2HdÒ¤:¬žkÖÍòA³î˜ãw%ó¿_ÿ€¢ïsÙ¾q¦yýÌçRÕ@²dÉ’%K–"G`^5õûðÔÇ@ò‚LˆÌ‡ÒO»†™ÁCÎg½_¡Nx z¬;6§ïÁõ¨‰¸èÙöIŠî€!ÏH WûºSÁ°Õ-‘<ðñ"þŸ{MÄT‘Œ‡dÓžfî}V_‹÷TJ[aýé5¯§þ¦9îù¿jÞožÃ÷ÉpHWµLõ´Š"“¬`ö`öûIÜs!²ÊÇH_cÖ-žÃηÓ¤Xw#—BÅb±uûz«g‚|®'ˆHª0Lq0xÄ-f˜íF0f’Už©bfäÀwC:‡Ý ǼԽk¶t)óϺ…év…¶ÀŸÇy·“/ü~0*SúÜ#Ó±æ™ èdÒ»Bµ!ÃÿŽÜ„£k5ì±}_¥c€Xº“ª^ˆ!EäJŒJ߃a7t#Å ½%‚Ö¿ÛçØ]6Ƹ/a½ïä‘/Þhþþ“¾g~jÉ!bNEEм½%×Ûë\­€Vî‰è±h•B}Ùr$VmŸ_ âÅxïûëÏeßæ÷¬ ªåž`>áûdªVð½MÌûA±õ+ocÜÇ  “î{CëÆçŸLÿól€ßAæ¤0G…J³Ê$R¿F-Gé°› Õß+2Ìý ca ó>Ç£¹¾+Ÿ3ðÌ7ÜùÅÂ3 o‚ÉúÿRŽ@²dÉ’%K–;#@Ï8ha1_ñtrÔ+Zv=ëûlßefsö¼‡ÌïæÄ#–ª'ÈÙ<Õ5çÉëuÇL”R/j˜ 7Õà6ÅÂï9_ðÈ1ü؇!zšƒdöê\JE¨#ÊÅ#¯Tƒ›ß77 q‹Ykvo¯Ùšb¢!Zv \ïF¸µGX5…Mdß^a®²®W…>DúŽ(ºíFb›¸,ÆÏœuß≛6¼v}“úcwA”!¢Í^k6s¬‹£2NŠÈX-¤ÑRn›È8kOÉÍ ²${;hOéù½¢¥]?ŽÇÞ —ƒïºf žgy !r<*Ée°ñêQï,ÖÕŒCŠgSŠdKÏýÄö{޲Ä”2 ¿ÞÈa)¯ C(ÐÌz ÜŒ0LÊ<‚ó]÷×OEÁAí5çÙcõÓÍû—~*ž9FcѼ×Ü Ñ}h%Éz·¬wÕЮšw«‚Ñû?ÒÍ$p½’[S Ú CbúµæjeÝç£Ncó¯R'¶V`Þž„Ã7ðßÏCqö"þ?ÈpS‰•7òe\ÿåH—ScÞÈ󘃅yøêns]Ýó@sЬ¬tÏåï6/©ÓóŸßJ9É’%K–,Ybî#`ȱˆÌb!ÝH˜uŽóc¬–àÉnë×Ï{@‹¨g?‘î·¦Çß¼^@L„Y tÉþSórí|óú)z>ûd"pâA¯âû÷!‡³ïûþέnaœkÅnÅÃþÎ{ÇÌÄ:´©‡Œªr—œ·×íùÛ°KÖm-ÈaÊP‰ÜÆóc·/‰Sc»ÞWd(Š\üÿYÑ”·úÖ5A°þ>U3¼eR•„ˆ" íÊGfIUD€YìeDiÎÆù¶GNº4G#DêÝ3¥L¤«b¬B1Û=´Ws3¸Þ·• Ô\ ­ÊQÝEè‚ðbŠs¦ÝÏ.™¥ôor¼Yü-„®X´èÉä -fÞÍp´ªH¨ôf)ÕOºo„n«=;jíua˜ì¹J‡2¸Vµ$õúµê¨^€äpD•0Eg£¥C ú#ìÁ²ïÇ3Ï}ŒÞÎoUe²ßâïK`ˆ·{‘.‡Ìµ¹Ý½m¬ãï «·XíÄn©Ðµ "îÈrÖ<ÁÀž"c_%£],9.ßľ~ ÏÑz_àu+óûâqì—Cɱâ0/gþ8´Uì»Wø9ÜÏ 0Ÿ¹–r’%K–,Y²Ä°jÀºÜM¼Ç¡}¿™ÅøYdi^þ´w¿ FàbÑ`³O|0ñuŽôt‡‚d–ÁììzsÚ•_ze/zb¥"*Í¢Ç÷Ã×1¨jé®×÷ê´‹žxƳË=gÝþ’d³ŸÂ~1úm0D »¨âà÷³zC”iš5k± žj¶ÛÃ·Ü *eIÖýÔã¾3ºWï“)èE˜¤#@¶û›ñÚ½5ã‘M-1ú~7³®d’[  ÖMÁšç?ç™–Z4Ò«ãE~¬^\´Î56¬È?ÓãôeºNºçË|D#ž÷ÓïP3QÓÁ¼’ú{êŒ4›ž±à=¹_¬wêNؼ–ÜŽzÒIàLC_¥4;¾–yÎ܇}öÔX÷ÈVž+çµü‡±òeÆÝŒéLü¸q\ ¦bé´>]Ž'Œ¦* *Äq±ËãUä~PEBêµL‘9mÙ«Áï·óг‘[U‡¡ïsÎ8ΖÛ%óx`йd$„YÒœ*mZn7Eq°ïsUø|¹¯®R߀ëðVóý ÖÇq2p¬rx×ÏgýîuÇßÍUôÄyîEï#Í8²ºí‰ë×#,Y²dÉ’ÝóŒÀ}PlÕok=ªd÷ßÍã·¾æâÙš ÏTc}…8ÈŸEŸíË¥¯"ãYÅq® >r žù¶*gi¬Yõ2×¢±O¤8¯ V­d¹_‰ñý)ÜÇ®ëÌ-(FýiãyžÃ8]|«ûø¬ï 7ñßš ÄÃÞã-$fK—ÈŸ×õ˜ çYÍ:ÝÛ‚lœ×î2ýÖ#L‚ ÙÃ÷?ŠÅÞ•qÒœHï~¯ŒÄhµnßú–×YØsÝ÷©å¹ãïu‹©Yó³îVÌÓiÆç4ܬÛXUƒvm=µS=Ï^è sü¼¨„ú«¥ZDõ?4foº>˜I¿ IDATÖ‡Ý#6U<%Ã0ĉW${¿TÂŽ1ôA¬·ýók!d:¿êîùY+³ º$™ÌÛ“0ñû«UuÈ„0„ˆwìÇÛº ƪdTÁsÜ=~ö\™cs¤›ÌT™χÚÿ‹xOÝ…y02gp_F5G•”U}Ô’# ÌÐ÷±º›!0¦vÖ߯ý.Ôþ|T¾àwf§Xï¼?^6¯úž9;°=7v¾ì/ð;ûɰx½þž~LË“Ø÷÷µ‚ólñóøÝþöçš÷ŸÇó:ý7 3ð#,Y²dÉ’%FàÎ}¿óïéi]jðže)ý£—ñžYÆ…Ä*Ì“‹ÇÈ:Söq.üùã¸ñx´u#¹Z¯WЫâÂç´üŸx®X`g0Ÿ.xÆ'—.}d0jéÙ2êuïë¦P }‰z>0€ŒÒö÷\˜ìlÌœ1¿ï3…ë`ŽÆvÏ眂ÏK7üó°yËêa<¨DËáýƒ±0}ÿ{˪ŒÁ¸aNŸk^Ÿ¶9îëדŽ@²dÉ’%K–Gh¡fÓ²«“ôŸPZ²nx{þ óðPGì¯ÌXzá"ûyÉŽÅÚë±ïÂD÷®ç cdÇq¼ÍûÅ“Åçò^7¢ØÚã c–ãd ]´cfÿêùcᘂÖ-Üe‰yå`¬ßú¾ ŸxúÆHô»Ÿ=ä†y— p+`hv¡´hš÷DH¿.²W]ß PF`^˜$ÑR×.iÆpÞ—žI²çǘò 4íFØ‹0Z—.1ðò.ˆ«…P{¡‘*ÓeÝ ÇÝ G¥Õ¼©žh!ãL”Iä~ C¥Ï×ÃýcÓ%®¤¥ôi)òéø¢Ì:·Ÿö絚DªZ:ÂE‹aôRţʘÁ ¯éO$O­üªò=c‚Ì¿ÖõGý{-û6‘øà1ì¿oÈ|æÇô¿1ó°f•ó°ö÷gë­ß=κ¾rÙ·KíF(LàbÞýœ+QFœ*“¹ƒ!¨¤ªc^~–ØÝ9çD¿»Oþ½(>¾þ¾LÞR¦eÏÍýžX.†TÅüüÝÄ$K–,Y²d‰øàoÿ¥xúǰø(gʘ’kdU&u7#D¹0Ó®‡ª{± ã-Yë–k2{f Ðý‚½ÖÝ}•™_oS9©Óä ÄªnZëMö“Zîûk8ñe<÷ad—0^ÛøÜ“¸î×q}èq×}zñl!„Ïï5ûì<Ë!s¨ú¬ç—n€Â´Ñ*‰õkwÒ㉩>ƒñƒÂੇšãŸC•‘TßXL~ŽóË_©÷x=È ˜É;§ÙT·Ezd˜ó`TF?ó¿Oeð½8*ÙØÓêí«‰H–,Y²dÉ#ð!äX7bÎåuç1·²ÒáA.âó»·º=Úâ¨÷˜ªˆ’³¥s‰±ïöàïßÏßH½’%K–,Y²ÄÜgŒlÁ#ÓZªT»üÛ`¾Ò÷ž¨Ó8»ÁÇ[Ö[žb÷§=AXêñœ RGÕ{ÆPõ"lß–Ü­fáÆAF Tˆ9ßï÷s­×/¤Z$È>ü*Ž{ÚþßD/—‡Á@~óoš×ç ßý±ÆsϤGïËzdHuKVu?/Í5ÊTÂRr5^s׳Ʌp˯ ëê)ûïHªNZ½äù²§Ät[ï$–øû¹ =t¼®Æëo%F Y²dÉ’%KŒuž}°ùOjÛ/I¢tô0<®ÂwGú¾·Ïjû– Öå>(žÎžGd…xlü¾ö—®àù­"ûqCcX¢fÿWÌ)¤ôˆ]•5 Û¶.DzoȺ ‘õgM)CÒòëH¬XëûëX7A}n³‘ÿל‰žgBìƒd.Çr‘œŸZ×…Ôá›R£æ„‘¨’ª&;Ü$Æì "Œ÷ϧÐ]uë«Í>1ü+Y'ÂÚïÁ§‘Kóoy)û±!dß3€LõfF˜¿¥êyèþ" ›ï€ y”¿{²îÙë`‹½dp?ç0¾ý%|üy\?ÖߟHWÄ`½:°¿çgqšÏ,b_ú¯`Êÿ\F{þÍçÞNŒ@²dÉ’%KvoÛl!¬Âã8Oá\iƤ«Çèy®;O{éÀ#F‹ñ‰§oYì’%H»€'³KL¤AMý›D´¸xf¦L(v.ŠP™xÒV7ͺð¾÷(Uó\ëÇ-¦¦}Ã%«ÛÛD‘*(’C6hNý„ªÑ3&ÎØÕñïã¹9_Äÿ?÷c0&ð87¡deYæïŠÙxîÖM±òé<4Á‡ˆÝµ²¤1®[`^6¾ß|î¥ß0æo}ác9‡ÂÌJ—¾#Ñ7—¹ý‹‘θÓÒÚFªUïÏyÜQ²Ó˜·ê Ø|&xV¯wžÊˆB˜ý]Öga Žyd æõ:ؤ÷Vd8­ºÆgMkî ¸SÈ} ‚èÅ]¿o„±¬g2²u]Çëæ¡¿2w¹T#Ó¥Œ™!\?¾¶>÷…Q¤Í}aÚ¥Ð3oQÊKur½9/¯— æœ2o2Ï0X®ÐØÏã¡vOäz9"ïu3L-ý Ía‘ûâ¸^²UÅ@‹ó>¨ Š}òô÷›ïïûy^©Nƒt»d®RŽó®âù¼˜u¯û¥LdŸØóL™›¥Ê3,ìAsNªÏþø[ØÇ¾Ð¼<þº_Oÿð,æ÷9ìï¨xçVóz¬•›‡ýüO9o}OŒP·‰½Ä$K–,Y²d÷°ÍüË?ÿÓÿ€+ˆ=œ€çÀ®NŒý³;ÞÎX<½ˆ#XG²œ-fnÊakÎÓZŒÔÍ龯:éVLR³UùLbAr’¥«§mi«ïù<3R‹ÂX&1ÇV±ª{`­Ú@5ÔÙY·«øÚf¿A¼;‚¤Ma Y¿ó‡ÂPWÁ²Z‘íM} ÄÜŠñ9 EßDz©¦–µb©±^R'=ësØ-Nç‰ÆÞ[Šƒ<ýB7ò´ëjSv„ J- úÊ39¦è˜EÍ.Ô™·þ>$z°î_Q& sÝŒ‹Í?+ðȃHkU/Õ»~½p>žÒ¹ôarúÒå÷5/LžiÃ#v:¿ïÇ¿RECÕvÇ+{sA‡_zÄ;í:™oªô·/óL|_ç·ìg²oeuäﲟjîC!Ês±ù4ÕÆ÷ë!ÚÕRÕ“¨cÈ?²o·˜áÙn†Ï~fý>°Šç²ŠçÇýìb%ЉÆL!‡ÈÿOVÓaÎÛ oYϦ<ˆý5<†Ø[ž~íûT›Ç]qÀÓƒ‡gŠ¡y,ZLªùÞÖD&³‹q¾Efok7®ÃR•¬ä%™‹¿‡÷T»Ù}ߘåœÄzÌ ò×ú}½." öàsaî…Æz%Ûºe·=¢Ñ˜v¬› ö‹·˜lˆ zíþ)¦HÜSûuĘtî|»[›ÆŒ…‰(¤š&×zu™OóV=á«[ªI÷÷‰—Žz¦‚ÕHÚ3£+¶é9¯è]X·Âóƒq3%6?Ÿ¹+BlÍe •2u§ ¿CdžÇª5Z]ö伦ôGF`?²ê¼;”ý^·9a”Õq§>@I¦·y¿B¦ózŸb?ØQÆo"Ì‚ìûyÿ,+0xîÔ?à¾]F§øÜS`ÂVðþ«x]}¬9ÿ¥Ÿ¡'ö¸áë1ìëûPÆÅÿ^~‡æšÏ-ÖÍõnOÎbŸÅøžõûä r?•¬ÿŸ¿‘dÉ’%K–,1ú݆°zT©Oe—.‹­Qq 1;Æ|¬n³Šx‚Á{°V-À,]z`5³Ø;Ywžì@b°<])/—no•eÉvgóZßöàï³ji“‡n8ëFRì®¶º™f‹†ïøñ±î‰Ì]8çqÁë ´‹ƒGØÓ*Š;8þŒc0†‘ØŸyÖ¢TV!' ‡²‘ÝÖ5¯ý=:á ]MQŒçÛ×i)ÕÑÞ°#ˆ©¡·AuŸÏÆ2A‘5þÞ;‹ùxÖ1N­ÍJžÈõD}ónñ-¿¿äÚ[@Öw^É>$UqÜOôx_ž)¥Bg>‡q;@—ÆY_ÆÜ„Þ'Æëík‰H–,Y²dÉîi› !„‚Zÿð.x¤]«GËX ²ÁGrÐVŒ3ÒHÜb0‡Ì2_óˆú#ðd͹»ç7,WC®Œñ¹xÐ{¨A«jï kª@‚:–,±:CôÁ3'›åx Räÿ[Ö,ïS²h[±HA–Lù®n¹xòË–:b^=èJ­gÄ?®1J¬ÛÍD·ÀbæŠø• 9 Գ@ªª5¾à¯¯Ö.“Œ½³'³Ù©âZW(áÎ?¬º‘P)ϹÚM¯ÀĶúyEjòyf k‹"?Ú¨&@˜"1ÊÁ\ƒ8FЕ`NÊOT+×»(UŒÅæRÕ1ÀsþÔßÏ<²²GÌ}¹ÕœwðTüåïwwÇ»"uø|ÝVfNÇõPžïl7cf Í¡…Ù]v_­~¢”8UÖÔï{ÅÍ!˜œUU¹ÿ|F£Úó÷Ýê1ÒCª;lf„:™vÝ”"æ‚U9²ñÁ0å`¬W;[ÔÅ€¾ àKÌ5à¾Cæ€ãt?˜fÆú©ˆ.ˆ/þóˆßû ¾÷½æ8Ï?»æ™% ìâ:ž„nËvßÏO^'w[ûº(§þÏëSTÄëŽ0K`¶°/Ž» º×þKŒ@²dÉ’%KvÛÌ¿üó?Ýù ªv€œ%=xÌ–.Ñ üˆÖwK»™ ¿oYň-×ÞcÒ®j¬âÿ/Ã3û‚G>Zwoõêªàº=äVÿú^7cÂëS$ÍîU…ÂÌǦŒ„÷ü2‰·b{Až‹!5"í;îs9^ªf=×-Ípdõ2f‡yñ8²\/^…E.JvR`1x+SF õ¼2ϰŸ}Ùæ`ì?o ˜Ëþ®ýyÔO°ç¿îIˆÌk«Ï?è~^A{MsÐ<Ó+¨f:™í¶ÖÊ]ɺž o³?©X·ˆÿ¯KÆ Ïbœ¨Ä諌,Ç!÷Œ€V¼‚˜ÿW€ ¨ðGU­*߬òaNB! ŸVaT‘¤©úÌYêûXt+{?¶ë3P¯u®g;¯ŒÓHz](s¨±zë (J˜¥ê“LºÏ Ï«Õ-qÒÍ|èI@nø±êŠB”7™+¦ÕaûxNÿu÷3oIÇUs¦r¿ÿ-Ù0¡Ú øç2­fÀ}=–P¯O¹Vƒ1¸è<EÀ+_†¸öL_%]ÿö*º>DFë 9;÷ƒé³*gÍ1,Óýq½óy±GÂ.Îû‹wSŽ@²dÉ’%K–.7ŒÀ<‘\*0zÝž£f/·²iéùI?ìé7^ÕDªgáéú,ï ]á4{x Çg])!ŸÅz5«šÈJ¥ÌãÙ5y0ÉjƒB¯÷°›ÁÔ*-2 Ã:t3i¢WÒ"Ú avîÖuPªh¦À™û}•9[•æ.IÎS¼Ò^Žu^ê>]z¦Ì9ì0K»–«ãs‘ôwªÄ÷±ß{°‰ºÆÞÉÀ¨"#³ü/!Çà×åwLª81™í¿u°ÞýœM7áÆÅw_Tœ`›ŒEðÌØ#,Y²dÉ’%FàÎÿõ; #°Uy™±Öoªk*±7Õ`ìmqÎ{"üúÊ=©Æ³y-ŸqÈ™±µ<¶|¬ñ¾øx8ßò7£s&}£wEÓ>ƒGøþw7þ,”ñ†o7¯—ÿWxv@:Ç÷=âJŒj ÚÝ[“ndfŒ uªnß”Þ8þO*T½¶ïcà¦ÆX» XædLû— "‰ C^ ™R#ÂAÖê»ëï‹X¡j—2>ÐZr-Tñ’çª6þ¾GH!t#îißsÉA`5 ÿ¿m|hŽ×¨wŽÖùÛy…ш ÙðkÖss=¤š%r9qêW¬âº×©¤öaç±?"¤l6òüDÙ­ÕQ:…±h=‡˜â"ê¾~Yò`KèpÝs>óÿsd¥#„žåÃRÖA-=&Êy^Ú«¡îfxTÉO»“†˜2k¸Ëþ¡LžŽ›ì‹­j˜~÷ó°óÎv3šãÅ\UÕœ)ê>° fL ÑQðÙ÷¦C Ï)‹1F¢dËuhûïÄÿŽiN[®÷›ÇÈè‚ì/ÌM >ÍGæÊDå`¢±>7c üœ'æÒéï‡]¿öê¥ÛדŽ@²dÉ’%KvoÛl!\†‡½’y—H`Ôód÷v7Â"bµ˜“0¥xV;èO¾ôg3Þõ‚DzrHä»îŽ[¾Ø ±•›YÜMía¯ûz­^Û®óÞ?Šë0ÏŒŠeßC6©)¬á•±Ô^s?ìvµüg¢ýߊ]JŒ|0ñˆwÙ¤ïúãMußÝÈÆbèÁÇÆLIQ ºi‘KUA+_|Ÿÿ™Gzu¤ÎÞa"ò~1Êõ±ØÐMŒzŒ´Ú…ºhô·ºŠ'‹Îƒ!ÃnÄÞÒ`ŽÆý‚ÀÇ‚,õ¹I·J2M#ÆV$'Jœ©áÿ:ª8žc&®¾îÇ…ÈÈô0*D“nf¦Žäª´zsÔfF™YÇ6ûÝ ÒTÉoÆ1#Ìó º,žuÑóµä”˜Òœ_o™è’DE§ó!Ö‹D‡AôG´šÄöƒq„QëGþ)wªg» Õ‰i1‘36ݔĎãód’™åN¥GíIÉþÕb΄±¨d‹Ú¯ÃJs³Dy‘ºÊpWÊÈÌy&hùÓž NÖ;WøW£u±·.Ï×wk%c½\Ë~ÿÕ’U¸ÞŒ ïºNc˜ˆí¢þóÎ÷2¯óãøÞU0ð7Ùð1±Êb9ŸC_ÀlÒ%vãû˜\N¡½JEèÀ>Øoøë1Šó“=ä³ Ï³¼ÑgXœ…ǹî+¡ Üuý¥>H­ËóiJ§w«ZPmÿ‰Ü×X>d\JaF4¦/:© à~’i¯íýÂ}z¥,øL”Oc:¶žEWE©’º÷þãÜŽÁ¯y¦iâ«̤§L¥U3ŠÐñ<³#~ýd‚´ëcÂ$°« º n‚Q[y¹¹ÎψŽIOµHwS«ëïùç˜÷u6Ïk ¹H;øâ <ï•g›¿_~¶ÙÏß|T” ¯F˜&¼þâjÊH–,Y²dÉîi› aZ/YHêãð`vé±ÿó¡x0A<–e¼Ý¶:ËÆc¡î‘ž«i©Oâû_¤ÇH&€§ï‡Ñ÷¼¬>Zë÷ç'ø2bî'qÿ#´†ä$ºIÍ#§áÒ·cMoz~#õX9u{„Zj¼uClÎs£œÁxÀeÌÉê}Ïú îÿ8Æ«D€eËih^¶$[¶–Xq)ÌÎ"ŽÇz\öϲNÀ4EÒÌfͼÇ] Ab}³%6ÞŠµ BÊ? $qcÝ!k޳= eË.Ve2Ž+²x-7fVêÆ½Ž@!ˆ7VŠR[¦1w™ÿ†` }~ê§ÙýóDï4×uÙÕÌýÈ©s¯§P¾÷ƒV-d¢+ «µÞ\cÝÏÔœE”‚ì[·~_ ¢^¦‰Ï Þ°ïNáW:ßÊîëÎ-7ÇWá0[¼Œè*í:ü:Œ1 ÚC «ÞŸa›v=œñç¯#Ïá.××ʽëî*:ŠŒYE Ê´­n®¢ Ëž Úõ¶Ðœ#=Ÿê*LüïÉLö‰eä<1måk~ß³œ#îg¢ Âç—EºÖ2‡Ùü–ƒeÌ8˜QfeâRó÷¿C1ÿ¿c€ù[í7ß ž9ùU=1É’%K–,Ù=l²àoÿ%ÞzdK…#ÆJ‡7L<"ÉàaÓÁIŒ+Ò:ñ{@´¯7Èté<žt­ÑWÙÏf:‘”!L©?mõ ˆÕÏâsË4¼á IDATˆ¯‚¸‚/®âüï—ï "aŸö3@ˆ&Y§D>•ÄâæÙ̲õ½‚‘ê`ž¯}ÎgÕR‰uÓ#xªÏ±8—kO…5ñ8}¯€Z”¿¦ ]þ¾3ɽŠìcõÁcÿÁBÅSòͳçqäy ‚jA0Õä®)àxDÈÖµLJ†.|djA ™(^¶t!$†Hd4éFĵ֥?žó<ÇÑr¼ŽÄ™ d×ï„n´îú°È´ð”á`nE-½ ZÏQt eÈÁÉ>pó‹}×ÙÂr•»BåÓÚ×§ç¬:eH¥¶”骥{`ɪ·ýF4øC¬wæX¦ \­˜"~¹.ù¾é¾ÿsoåtH.Ítù°Z ëƒë"r_aÜýu^·‹Ð½ÿX.„2E1}ÑÙ—çšCù²ú+ü<áº+* çG.û½(6’¡Èï@æ/k(Нª¤kJ›øÞ+PZ<†„z8gv›çòÒÃÍsy ûù~Ï‹‡š¿ë;×#,Y²dÉ’ÝóŒÀ}ü%[»Ñ6Eë8Glº”,Ѻò—^GÀ< ì2žÛøÿ+ÚÍÓºÉy†'Ó^A µiiU?ÒRsEø=æJHNK‘1‹ py.­ë=ìFÄuazr]±®„ªŸ uöÅaäfüü>¦Q†BrE*M.êEžc„)1f.Vå¡ÌŠtË4-~T—å`h­û.~'†’SCFÀ._•"{¾ºJ™œã4–¿Kî×Ï zË ~Üwãî¸yZƒ |J¼'¿Ð|î ö­Ÿ¿žª’%K–,Y²Ä|ˆŒ€eMú˜qØGßeôEæêÁx}"ãÖ—g’•«Úáð´žBá50 ÖzÝ!mÆ>Y—]ÑX×0vÓ#³ JgÅž÷@éi1§1#­£j/ŽÇ.g'ñý‹™ éI·ÇN|q– ‡×%`ί‡ ƒ›æñJŸzÄ:9®9±ÅÞÙ}±Ïì3bzÞ÷YљƲ‰0j?DA‘Ȉ÷7’ª“:“Ôzí^7bTÂΫò¢5®ª;ÍÅãÝÈ-Ò°lçÚ3XÌš.€x* æh˜¾*°áÄK̘kŽseì‘)µÈ9©›±<ƒUKnƒ"%˵‰)ê8MüóÕîl-ý†^ywmšŽT¨ÿ~×óªŒ.A„Ýà.ßZsHËtH´î[sJfeœ"H[%çd\˜stï7êKhUˆêªÔ2ÏZã$Jsvš³’u_§R 5îÓºËf‘ûç´?”ë‘î‚áp½“"2ÿS˜IU“åEz!Ô¢€©×IËÁì–x4¡XÆ}lI/} z6µî¯—ûógp~(¾æÿçC®Ay©ûwÅêýE)ÕÖ—å>4ç?Žÿ|þìë/àóÏ#GlT¯ÉžÅyκ{ûǘdÉ’%K–,1Kâ2a]ó¾Gøt`T»?›ø˜}d«1Q"Ð<š‘ÄP¨±¼mH¬ùügt7éù›§× æã@Æ#Öñ2f~è Ä äŒ€¸^“þ×…Ôk¹j ÖîW<èjöŽóÀè3;´’Ø[!9DHCxœTÜ&²†Á˜dZì8c®Žwâ¹ê±Wf4„.¶Ö˜.HC{=A Š #ÕA²j‹#d(È&Å=«+ªN" `ÚcAŸ—uÿÂuZý¯v‘Ôñ¸[7A\(s–Ï:LÇñáæ9x†}ÏÙ]-xäÂûZÁõ]‰UˆV»Õ§×2®’‘ÉóniægÝŒ\9ŽÌÍÙu´ŠëyNºÑU@þ_Äú™˜ëž  \gÒ«Aº  [Ï"wÑ]iõ–dü<ó’ ã¨Ýü‚2’±œX6¾0ÚÑ”,©"÷©ãÞÊí‘ýÇæ—"î^d^è|óYCßźtŠBk-LG¿?ÂnÍcþ‡æh¡1eLV ürhÐ}vzÛØ/+cýõòzÁP ÷<ÓÓR•ê‚\Ưšíþñž2/ø]ÕÜ$äà Îʃñ ýÛIY0Y²dÉ’%KŒÀýö¼gªŠ`­q!Zݦƨnƒ YØDBD´ô¬ˆ4^ÀÿŸ'’¹HìK×½ÇɺåVýè¬ï6f1' -²ª€-ÒõNÇ)Ö¥ËêÀlŒpD¤ËðÐN`ü¾‚¯­á¼çÝ™]•ëeL^º;jìofeÄêêC< õ’g~ˆÌ¨À6õH1~¹ŒO[G µ»EÛßL"9_tž„È׋R*å½i³t#C"DÒì 0ç‘‘ÖY· ãG½Äó«óg7»ÊçhØý-Dƒ‹ôİ\éÊÉuM¥U›Ç Â$Ìv3lA«W‘ëíªÎ¦Ú¯ßVwÏHîIž é ÷•9ÿ»0Tfc¶{ƒì˵0*ÚuÏ>§¹|Ìd”»™=n)9<Ð2Öÿ ßkÞâiì—¹ŸÇCÕÇ#‡¼”ù[ ƒS`U³j30àó³Íy–{~½oJïš%̇I÷sæóüù[‰H–,Y²dÉîikz ô¼‡T‰çDdˆ1x&Àz|b}Oñø7Åcåu ‡@~íý=¯Lºw±*¢VuqÀ3QžË*¯EoHHÀºIß¿›žôe0çƒb.CvM˜ÉJ.•ÐîoCQ ýåµnHÝ‹ €à‘ãHû†k>9oKã[ UqLs ajуȤÜtòz=bª#ˆµú {ÞÄ'>×ú¦_?+øÂ†‹ólô»Ç5¨ÒjÆQrcªl¦“Í¥™O«2³œ¹ï_±Ä$K–,Y²d÷:# ÍÒ¦ž1<²*Kõ8‘"¿¿‘“òäh7M«.±ñ_¦ JºøÌÑs&°g z9”X×Oö#óNsr=£ø«Õm‰H–,Y²dÉîaC÷Á8Ï¡`ÝóMïQ°ž’žJ{D˜I_öòÇë)‰ý]9ôž8=K"¢€˜ù ×O蔟 Ñd?Žã^Dü Çâ1RÉ ]¥¦žë0ð¼$¶ªY»=sÖ‘¢«ŸU ˆ‚¢f³ÞR{ŸÛÂõ,i=zHYäO vücA˜êñ«†¾ 7Æœ2zÊŒ½ âY<Š*‡ƒõ÷=n«Î<ó×c]º*Qäʺ‘™•QL·@æ]+Ä›uC¿LbšA´Ã3ÎóÜç|´º™Iì×ôªn¤"]Ód”D§#—®‡ª…ç·š×UÔÅocÞ® oì­»ïñþq½»u7ÒSÅÄRcÿªuÏÞ¨µ˜…àçW•u#½©Â¥;‘ç»ääÜï’u×3äLÆæ¶2@k~õD_³êc9u7²¶u 룒^,wëåP÷ºç“v#Ìçdþ„îõ©:ºNŒ©;Úke|µWB«û¨?î@˜€Q/²Þù{$ëÅî_™Îë_Ê{힉¯­|µyþ»_oöñQݼ¾þsö¼Îºõc±~ɽÊû^É ×u¦xZŒ²îÀT¿ÍCß`‹=y´7æí—q s½õÎu§=VÞ~#é$K–,Y²d‰ø ” 0Ýï=ó§  7‚öùO¾à‘@)z­îl;4QúxQILm…®®c o©œ5Ä÷6ðž]˜¾rC<¾Vv¦WV›ºž` з]ë] ©ù¹=þÕo K#˜‡â1"o 62T\µ% y¼ïKÏ]³f Éj&" Âf 5W¼çqŽçC¸áýxn†xÅó”ìmëÒ(]U`YbÄCÉñÞE‚+SÄ<ÒÞ•ñ ¡›QhÅTƒG­>ëˆÀç`X·Á¾ï?^H¬0ƨdÒ===–F½2æÏ³P»8Û ”MŒ×;`xŽMºïã8þ—Ý,!Àë±â¡(Öµz7hnŽî|ÎÆJr(rÉÙ!ã6ÏîŒÆ@àÿEam(ëݺçI–½)½‘PÅ?ešDO$W¹^7CR‹ö½)ú…Ⱦ¨9 :9Ÿá"T=D >Ÿª{y´ôzÝÝ(C„˜øqÍE‰•×1UôÝkmþÈjWBUÞÔ}¨nå:@±LÇ{Ü(î?ëÖÉÖ­æý;xÿ)Ëkö÷ÏæÍõ^¤žLÏw… ¢pH›*Púj†÷ø»Âž3`~7>ã7©ˆX‚Y`ÜWñ;~®òŒ‹výÅ»‰H–,Y²dÉ#pódÕ3¤šK—4Óž °˜<5Ï©t4Ï?óÊ_™xøì3Níýux ×‚GŒG€k§¢ÚEÆRf}7½Q«^^º2¶ƒØk®1CñxéÎ×þ¾¬;›Ô©/2˘〬öW‘uzÞVðõ²÷·®‰‡'³…<3ýܵõ/À³|Î#¯Zu Á "RÏ3ÓØ§fe«ÒŸ ãVCAšAˆ~žÝ÷»€zÒMA,ó½Z×£YÚ¬¢€F&ªZð:ª0hÚé\gG=‚àú|U?mÞïT^,—û¢~Æ"u2Æò|3ÏŽt#@ + Jœ=ül_!bÃójåH öDÈØG±Ùéü¾dq¬'Ö[Ûu.0×Àçò¨` öV1Ã: Weü4%óãý»"𲑫ƒ!òñ Õ8ru¤{a¡½St_‰åĺ!в Ž¯Þ§ö:©•ùÅ>ë†*¿/ªŸb÷s¿gÚNâü·Èè4óìÙ²y}_›çïB¯Yw§P@eXêÒ°û«æÎXχñþºÜæë ο=ë×ó€U?÷CïàVó~3G•BÕýüJÙ?¹Ï¼z $K–,Y²d÷¶9eÁ§àA\Ôìx‰ÑSeLhõY8,_Â%8"‚]Q[alYú(0Ñ“\¤2ÓÑæÿ×é1]Àç¶oz$JOòb­ó¦ Ï¥îÕsDŸ@µËóC^æ¨B[Ì ŒGùz7sPøñ-åüÙl÷y¬k›0TS('Œ†0(ƈIöó<ê–ów=ÎD[Þ®‹Zù¥=RÓ¿ø1t'0‘f®úçQ˜·¨x’Y×caò”qÑꈬ‰jŒ»–\e ryîY$vj]×òÎ˙ڤó±´õxܯßrß3 AªLçëœ1Ý«ò9Ñ[ Ba)9O­nšŠô¥j Õ»Cui˺”V*¿Â´àãU÷÷ªÃ1ç´:'Óù2öç ½îý “û©´Wì«JŠïcßû}€¾:Íæ11ÉU˜V¯5çÙÔõ‚ã帮§v›÷—1/1/—$ÅrfTGàWÖ[b’%K–,Y²{Ø\ÕÀÉï£îøKðÄhé™3 }‡1ó8 … O†ˆfÏ…ˆŠž÷߃ù"»IèPF®±"ýJú¸Óƒ]Ï™Hž×!±ýâ[ˆ¹<=ã=ÿ2j™öYWDr[<à¢Ñ¢Y]ãºÃÄßg&ÊcšõkU¢¤×RÈS„Þ[sŒ³”OÜß¼¿²×D´n—ó¢DP‰Ò$µ±·ÁHƒ¯äº8Õáš +ÔÍãx;P Ýݺ¬'ƒ"1ÎÇL˜#ATD:|~õi\Åý¸ßÿý)‰Ù󼛬À8o1„×…ê—瀾Òý ÑåÈå~4«ó‡×iˆ¬×Tƒ ÃyaP†RG­1ê Êo<{@hELû¨koVœÁ{ê”ü[2€}ßþηýhWsI4æ=ëY@ìÖÖ¥ÄþíþgÉKŽJŽlõŠÏ32î­îŠ&.(ÒÏüþ©]J[÷Çë/ü~ÒêjŸX•‚æÙ¾Ñ™ˆõ¢‰ž·öû~=îÞ÷Z9ÚµSºSŽ"û}éõ>æ÷¿¿Õ·°Åï#ÖùHrjÈБQ]<ꙋJº[òwvózg¹>VÝ€J•Âϯþab’%K–,Y²{ž¸o¹a–÷è¹øX½iö³N—±Vé—>0å>Ÿ-i±›ÜžÚÕðåæü%²‚­2³}s™…G^w{äAc¬ZËàñU+ܲ‹\rxð{3ÞsUE½XÝnðU z}æ‘ÂÆýŽ=S¡Ên±÷SV<ß2ÂÌúñlu ¬veâ‘ä¼õ2ðÌc|Ì-)d\KEÞÚuLç[&ëQ‘¢Ü‡!õ‰ÎóÂà2¾µdÝ·bâª' ”öü*OÍT†t‘eÏ¿…GßñLŽöì0{0tîwŒ¥æãfRc ú"¹jÈGêÕ-L½önÁuÿ„=‚¿¯Z•Z•iÔç¥9+2?ZUD¹®£!Ÿ»tomí'ÊTa>sY¯·"׫ë_[Õd„ˆÜÇÝLB!LB¥Lª*¨fò=æò ~Øïfb,†/û‚U‘áwk„yÓʡΠöåQí÷;>?CþÚ­“Û:ŽsóùÑk~_È„q*À¬¿ýVb’%K–,Y²Ä|èÿhZÌ̆%b yÛº2«rÆy6+ˆ‘lþ][d;£{=ÕÄÄ6ÕÃÔna³ë‚p뢲tAÏÝ{v–ÕŠ¿36øÒ/=â1zÒÍ Ðs·zeA*†X©`vÄ+J Dñ,†€¬^zV« º=éë0‘ëëydfž{Ï_‡!LV70çÝk"ÒXÆun#—Áô0®9Æ¿zÈ¿'¾ÄÛ¨|¿m#x_D„=¯ÉÍÏ?‹ûzU+ùiÿ© ¶Jij×gë±æû;7=¬¤®ßºÛ1'À”ºšã¼ð…æ8Ð óyžï™#òÖÕ9æFDêεÐ[õ=ãã|8ƒëy Œc…%«`öäùßîfbŠu„1¨åó‹îu39Ú½´¥8©½(¸ÿ°‡1\azFArFònºgÀÈ-a^þÉ5¿ÎŒ£þõ@ÀT®‚1½rË#AëÉAzN´þ+< _ðˆ³Žô mÿ–Άî·»RÛ6´*„H[®¿Õ³$v>í*"óZr éµ@…?‹eÊüUÆ ’T Õ -F_ü©g¶¶~_(QfUF- `éønVKù]˜f]vÉxs=áóÌ›]a`2›—~ÜX-°Õ*ÃðŠ…•tÅýyÒH–,Y²dÉ#pç¾ßiÕXˆ½"ïJ<´4žÇæ»ÞÃ7…5(ƒcî˜÷¿*ÙϬÿ®&¬Çl¾Ðýn€®kúA¹½Ç_  ¢ÝEb?ãûû³ºj‰1N닽==|S€¢GÈ~!×5×Í hìÇÀa·ÇœÍ­¹ÏPO=2wÇ:Óìr¯U¿c¹!Ò•׿rËgñy±‹äpÒÍt´Æiâ—á{_”îz´•9€Ø…rc¾Þ !t|ÜMTiA.HD«Wó-%·!&«Š1er_+¸MÍ‘ÁœÁ}¼D¦ oO‚)ØFµÆ«œç8ÏŸPG¥èföb]%÷=’üîïØ¤{s¶¾Ä„ É ±éQàSæ&D”>M÷ ÂLÒ—ª“C:ç‘°­+©ž°y&ŒC«»ëž0sª# Õ Æ0Èýó¤US8Ï¢Ì{«r’ý|t ÇÅ<É0o`&·‘3D}“LûÐ@/ši×Ñé²ñûŸuM,Ñ5±Xw÷™KQcv0~¿¸–dÉ’%K–,1ì5 ±‹©h¶8‘ÀQï±²¿q5fÌ®ñLÎ9QŸà<’+ð¨¶ÇŒÁIl\SYŠÒ =Çú.Ù¬Aê1U›<êá iÅr™…,2{ZûÒkL«ßТA±úÝ\þn¿Œ[«N9 d~¬=”¶æ¿ß¼nþþz73AOžêPúr[D*çUÚr­ÓãÒ-òð(\^þú9ƒxÄ­¾ðrŸ<ïSDxŽ/?Š¿ |—óYÆüéæõ_û}1Hêlâ~OáúÏÓ.T?#¼?"&ÒÜ"Òž dØj×7Cädü"}ï3ÍV&R»åc&ФÏ#UÔùP‰íæƽ‚B¢U§°gÆ¡¿/×­Óu‡ì‰øfl„¶ÜꜘŽFéã÷»'š×p_§›ÿ3ä„°‹(¯ƒU"Ïáøçåù’W¦JbÛ™æÍv33­Ü"Ù× AË~Äy” R'¢Éù­~¾ßÍèeºïÊïM&óD÷EÕ•Ñê3Í]‰ê¾Èx "ºÖ GדÌ~mF`xÓÿA{uX7ÕYT¥å˜d0¶Y×÷z*™0Go±Úzcuï3x¦àíÔ}0Y²dÉ’%»·möW=‹]Üï=szTækõu†§^Ü8þ|ˆ-üŸ@l<‚a]}-YŽÙ¡?NC•ïϬYÐf¥xœ<îÁû{ÞV‡«ç{¡¢ò4«wµÞTû‹÷½¶>sx¢š±±ã8o‰§­UAÜÄ3­úð½nfcXû SäÑxª§Ÿh^Ï‘ ˆh¨Ó³R¤cÌA%ˆÝbÖëþ>{ž! ’]8í‘ta]î€É|°ŠAª68OˆØ+ÑǸtÔw§ãë7qœUV…ð:Ö¼<ƒç¸#LÌ"îëMËAÀ¼æyYúì^æêPóõ3Ž0M{-‘)Ó6”c(rQâ `|æ{©—˜g¬JL–öb©/~ûþ¾ô"™«æ¸Œõ3«}±ËêAš–+À®r|zÖÐ IDATÁ÷ú˜±@b¨Žù<,Ü÷Æ)ìߢÇóúnÖ|þq*È9ò¿á¹|óU ;}aD1Žç#ºŠàYMÁz{Ía±\ŽZ¾VkȾÖê.8îFä–âJ¦8ÎPu jDùñRz Éeju•œ2Ó™Ôõײ/+Ckû¤2(}Ù¿Æžqrž¢ðÌРï»ç醹fsˆß§]a~Žúul½m‚ÿÈ´7äd±÷H½à×ôw¬•SR¯dÉ’%K–ìž6×kÀ †xF'>ŽoÀó@V#cBÿä˜Ä¨èÙž&BCÿî+@¶Çáá]:ìöX3íwÍXˆx6¥Ä¤ C@k@`gHfÜm–cAä±~÷¢3ЪkE–}D¡Ù¨­>âö}9¿|¾•edœ”!9Œ s‰±«Þ@Ñê~²«©<ÈØ˜Õ×Âó…çYy³êÏwS®Ã<~21¬b0Ï}Ý#edÕÖ@ ‰ Ž´^<“óŒ»Ç/S­u©áp°*]9/õˆùŽÿðW©˜ˆ,ôsÒå’¶d92@`bjÜÿP‚ËdTqóYb˜™dÝ—ªA/9Ó:|Al@@¬[@¸#™WµêÌÊs–qæ÷V‰ˆ¨?ëYÁûóÊØ‰òçCá>«ž~÷ºGÈûßjÆõß¼EGô„Ø6FŠ¡¬JDý*š+úë;FáĆß#†Ü‘ Ÿ^󌙡æÑΞŸ—±ª€0Û½¨åÚ³DR[=Q"¹öçÙn&5úwe(ënDªÛNÉõÏkvKñ4Ⱥ5ÅDQäìùëÐ.ŒóX·Ë˜7?”ý‚9 Â@0 ÕrÃw×;ÇßôOØ-Tz?¬àï#®{Ó ðú5Ôy±î‘d΃ß7[z'~_’H~~5å$K–,Y²d÷´Ív!×¢ôË0Sd‰:~|ïÅ“P†û¾Òsf_åxЫP`Úç¬YëµuÍò1=z‚bxS}td}¯è ¡dXk 1ÍBb@•ÄV­Ë"=A­g%’`.<¸\úB×1B·'§Ú劰Ôóæ÷#1pËiˆÔeÏKí¼v…³lsxÚ¹ Š[~|·´jC»Rq¹D<ÆÍøû¨ýsÈfÛÅçJQTl1&òüµ:DŸ;c¡,"†PÌ. ºÂ@ ‹7›×礇smJvÁ<ðJ’¥ê1€qáz4eÊϨn‚*ÅÒN<ÒÉ¥í£1˜oÌ7FeÁ#&{Î2Ž­zñà¡àη"Õ ;PÞËSdëIŽóÉ]ÿÞzOàý¿Ãñ—¡‰ÿÿ¼åÊß_0“îñi)HÊóÏf§¹`‰H–,Y²dÉîakrø€C€ôxFMüX.A.1º²gËGðžãê®WOzêóû¾ú€šÌËP&Üd¯€#3a2VÆ}œUÛÚr è°Uâa‚„¢!ó´ÆÝ F+ÉïÑåuÑ£q·ëVGb€Zg{×ÿ×úÛIÄC”Ø®!"N0/ø4Ÿ?.÷qE”™Ý½)ÙÉWÆBõˆX™’¨•™ûó,±~wûg ·bœZ%ä_á|ó F×ýyYw=¤¶{Û#ù!Ž5½ žÙ²ûçß›ù¸ú±f>ná†Â?ŸÝû…¡Ä¥9ŒaV@¸6¿Ó/<"bŒ²ÂóX•ØÿŽ—âñm™ˆ˜Ud Ó?Ö|ÿÑ]ÔýKîÇÙê¦q|«cg=?»CJö8«Tùëç9T!QgƒÕMÃ9ôÖÀ~òY裔¨†z ãvŽãy½0™Û‚˜Kepb^DÕ±®›ÿ?{ï"Ùug Þd">¼‹òÅP’[!¤¦É¨›vÖÒ&m ÜÊv7Ó¨¼š6#õTÓî $@žÅ•Õ°#>ØfËl·Õ·%pÏ 6îîÔ,+‘Y‰LÙ¸šLi)áHãJ:^6„à½Mí‡wÎ/ô;ï]•—ÅøëÞ/QQñþÜwï{ÎïüÎÏk‘JY3Eðâ0ÛZçäø-ͳT?ÍÕQU˜,‹íºçµj2©ÚÒL-ºï㿔ͼú7ÐxÑ‘²#½Fz=º HœLÝ‘¯µ¢Ì³¬?zÂ8D46\èƒ"š«¦Šë ø Ð8Lqý!¹¼ðóœý™4©¥–Zj©¥–Ÿ_¿Œ€Æšc›Ê޹¥BF¬wSvܹTÝ"²Ø¢bžiï÷±m:…ÜqáóÜÉ”TùB¥Òï¸J X«¯}%r÷êè'Àr¸ð;ÌiáUÝ«W'«~7C)òU¯wõ~§È/óÝ÷#;cE¹ Ûq³ª™0&­ªd‹GPJ€B 3€+ø‚08AvòÆPÌ=’!£Â˜`~Ò'c@¨EÀ÷§d– A(ÈÉù<%›A« Úñéx'Ú‚7qÝ÷²6®oGª¨1/ؾ?†úÛ¡s ~ ÷ûX¿÷ë¬v†ì„Ëϯ¸¯£p«ïWïyŽýÀü呸*lËxüîóa:ŽŠC]-ÌÌý>ÂyFÆôáøÔD`þŸòºl1[Ÿ—}Ç»„ã=øñæïÝû¿JõO2S¸."ðiD%?DÀs˜Ð/‚Œ’T7=…ë庳cžû>Ï;"»Šñv’~xoŒ‹d˜ÿ‰8<¶&ž¬#Zå´õùÈûbUæ¹úª(s¦5>d½2€s™E²zZÙ zŸš]¥YfšÅ0æ~Ε¯ãzN›ŸKó\^ žá)>få‡8¯8hæZ­Ð²œ€ÐÁ,]Æø¢–ËÅy¿ÎPQûñºç™ŠR³1èOCŸC~Ù~\1.˜ª¦–Zj©¥–Zb®dý6 #ììŽ=‚h96a§Á˜›VUb}ðáÀ;ÏÑ‹¹&2"½×|þÌG›Ï?Ï*J¬ËŒóîØŽ‹¯D´ŒmÓëZdüç ù©Z7ÈŽ6âègy¯²ƒ¶Ø±ÖéVïjCôˆ©Ó¢l•Õ +ÇñJý¼îˆ!¬ÝŽ~~§9ß}ȧ~¥Xq;ÈîÞï̽㣅4y}T“ãù=ñåæ{/^hv¼Ìâ°½úÈmñ’[ôV7#õwƨ̚û*f+A°Ú"W ³B'µi̽ôHxúÇ8Þ·ÝðZŽ/AtVS€ˆýZJìwãr“§_kîç,îó1ÑÉ£¦ÚϱÔX*û9÷ ÇPTì¥Äz9Έw?}X£ä˜‰K¥ô cø•Gˆ¼fKPƒBçº×Á(Þñ¦¿J«~Š#âPª©ÖZu‘“Õø0¾öÎ;о\‡Öp\j8^îÀsÝã³Ëš¸žËêßPú~neEüIl|ò9­z$bD€hXZÔaß3¿­ªZã@ÖÇÖDªŠZãf×mÙäÕnæ¶Ý ³+¨ÍÊ”)§ÆÊ²ÍÀ4×Íó­P玗¶‚®„ùhÕ~&€ŒÙsð+xê+X·0oÏâ÷îÒÀ÷+‘þÿLÀû8þ½øø.˜¨Z~GèWPÙïÀyÏÃ31©¥–Zj©¥v“·ÞwH¥Æª#ªóRv„µz2£°³cïR<× üÿ>ÔÒ»G²sÄënæcÎÕG¸…zDËÎm¹3ôUš9ײÃÔ˜[«†Aíwš†lˆÀ¾jwê…ôç) ¶½ˆ#[<]ÆœÉ˜×ø\î{1"¨›] ¶z„I$¤Uþ^ÁŽ’Œ…Æü ©{@pé/šï[]ðyä93€X:˜¥Rü,F¸®)€Õ» 1 Fóó¹³×üâãŠUó*‰AZí„LˆÙ¡I©à Yÿq÷}2ÆLG1ËfYƒì—íµæ¾Ö1ÞwÁØìˆFdä4…ß5œŸ–¯­*tqfËUžËs®=ò™d gsÏ=Ku5Þoພƒ6èÖ|¶Â&N¼ëÚÁü±*jdè-ȱ×ɱ¿l®c‰½r½`l¹4¯~ CŒ£€qU!¦oÚ#ܳb8®sѶ¬áz¶ñ÷ma ÔG å §jw2¬ôøW&îgòœbÎ|Ea µ¬¬ÈºÚb*úÝã¤Õd|òöX£Åü:„á`¨†€Y8'Çþ‡&Ã"ŒÊzÆê·üŽó¯Ëûœl`~UX?_Éó“}Y%|Œ€0¨—o÷óu:óY¬ÎÊ~¼›µÈ|Šfmˆ÷SÿV…µ·ÕzÞ‰H-µÔRK-µ›¸5Y¬512†¢f÷tÚºê?—‰¯Àè¿ñ~÷;@âCð=æßb§5…sbžö×ýÎùžµÆ8É8 ¼ Ù¼Õ2vRGbh™T ÔãTêØ4ðˆHëÉ׊°4_[Õ·¢b¿¡š—yóDø/ÉýèÎÝŽãUֹĸ˜OKÇD~ÿA\(c[ô{xy¶Qí<Ãóƒ6`ÄXªTÏ2„1ëäqÄÁlˆŽ˜¨…ô{Žš|^5µ âúž¥6Bb›¦j.É”ƈµ.à¿¿$Œjû™‡S¬½öÙ2Dd5k:P­G¸æÕø–—N¬ÕÕùåßBÂüÙý‚hx›¸Æðy½…ÏOÞ¿S¬ÃÎó3_ÿGø<ÛŸ» ÐO€ Öü|2Þ¨…øé­~^Pã‘ C«åa~)¸ÞÓ¸þ]qœ³ì É3Ǹ.h’.Ëø­ên¦4¨3^ÙÍLÚ°ÑšÁÏZjpD³¨õtß¿V§¬ág°*C¦ÌžÔ4©Šäåðš%U%kUÉ 3¡­õ ~3hj6XÌ퓘¬RPã©JØÊ@Š“ ®ƒCÆðL¼öÏûu£–ñËì©÷|öÓókŠZÔÌe˜'C¬¯¾ýo#Zj©¥–Zj‰# %Ðòx掕;ZÄ8-¦ˆ͈ªrzn]>çw˜ ­lšZƒÌ^È}^t«ÚžÅè·üÎQbþ™VäN˜HI¼øÕ‹;ägÝ#U ¬-|˜g=®sYËÇÞ³Éòq÷ýË_‘3Ïóž×lÜÿ9ÔY¿p‘±xîØÇTF.^øëÈ1f<bu½IåàøÜNãï;Gdnàä(Ï?;‹ÿ¿¸âû_ªèU’ßm~ŒιG ˆ.ÿ¨WëÓïÀ˜qz£*Ù˜œÌ3–WL3DNï}|î~|n{àš%ƒ5ö µ¢Š7ÄÉÇFÿ‹Ûýp!ænŒ[îµ+kP»3ßz‚yU¨g»ù…àzgcppݬRø(®{›ýŒó­ƒÑX1~xó¯ý5§Šó§ùû×p¾=œïR.÷þ8‹ó=TÐÃýV¿TÒ_…h&,ÿZ† ãc„ì…³ðux×ÉlŽ ·®t"ì ¬"Re4DüDryîµÔá¸)% ÁœüqÇjrÃiÖZ±j§‘jƒ­¦§Êd(ÀVµ¾f©ãଛiYjß<ã4¢fHœY1ÍkeQ‘9ãº-ÚeU@?ïÁúzý Æ ×*„ü3çù‘ô—ÖÌÁ}p_¯&gÁÔRK-µÔRKŒÀõ€ 8…óžTåÓ|OîhÖð¹TS»Œwìæ„wì‘óˆOsGƒóÒ+;¶UrçEx8 ÚŽµf‚àÈd öSW>¦ÙŠ­ ¢ÓV­`¼¹09sÿýV¬]k¡èxÉå¹ò½y„IŽÔxP]Ï»sŒ1Õu+ˆvBcü<ÏЪXâ¹â~^¦3îÂÿ.•ƒîûX“u`ZG˜ZqŽÌÔ‡‡L¡­oðé!ëjF42ïËs–õ:›my¦ÑüXÎ7ŒÀ[W#Zj©¥–Zj‰#PÀ›™1ljªB5Ÿ–;p™Dœ±,&-ƒ1‘Søï'1|LÀ>wò#{ß¿Hg2Ùo ¢Ë%æ–K¬G«Õe¤÷DµoNeÃm©VEůžÙA™ç‚Dåø­X5}´>=Ž³ÌŸ’ÇýìËÎ’‰ªô êo:¯MÉkõÊZJy.ê髾–åÄ!å!b¼“7¥¿5¯úÕÖ4öxúð1‡· Ï5È}jÖN/r]™gZ¿1ærA\Aaë>Ä—C42-yñð7G·£ÈóË<ÔêV+ìûª£¦õPgTª¤™µbUBÁXT>«É®cN¿Ô“÷ôµ9}QQž7œ\qãV¯Ë#ñ–‰ÍÒûs¼ÈuN¤&hŸyî×IÆÐ©‘ mU-%õ*ÌK&IKd÷¬C}¾Oõ;½øÁè­“¡­"óBjYhI‚!k‚3‘÷»J4 ÷ÿ-®ÿSÍõî#»©Æ:UHÕØRŽûtÞÜß3j–ä~duʇïñÌÍsèÏŒ»ËÔrà~ï—çÂl+®Û…0ãÒ—äJsÝ_îwkŠF8971oÿ¾.–MÀu÷óîk)k µÔRK-µÔ#pË)hŽCçN©¥¾•˜U.êéLk¨Uéwü×¹ãAŒZ€÷p=ÉnŠs=»ï˜û˜1‘͸ž¤nz+ÿ÷ÅØ÷4‚èì>¥¡?uÔʤ6A}«+­òÕBjrBææâÅ_É›jZSáš“Gn†t§ÿÉuñ[þz®Åçñ×D–¬%Ð;Du×1öLŒ"·˜VBUÍË3ÏtͧV•|¹°š¢!옚Z² 2 F³èœ÷–wËbÕç´¦8P¶˜ɳçx(¤VEºñV$néïàªòãnFd©2÷ÙYOœ.¥ŠšÆÖÆÆ˜©}QŸðÏͼåpëò¼c"†Â0–â_ÂÏ©f¨UP®‹Ù¬ Y÷Ȩq“%ôeÁ}îÓÊùö4žïSâÂZsÂ_j‚VÜzÁñÀ¬}8ñq|Os>'?Ï­Êç|ÜÉø¨@¼û¡eˆcæ=`†Þf \?Ö‘ZTþ§¡ ÚÉÇã\³øÅ!Ž›¡JßøF쾿“9%Óü87¹_un#Y˜O ž3æÁîãå¾øåüšŸÿK<'ô™÷í¹g$Þ}+1©¥–Zj©¥–ßø­ÛòçN;š‰$­z&HÐòÿ%sfÚÀyž€GþÃÏcÇ%õ¢ £*ÅØ,6¿Ð&<ÏÏ`guÕ¨&` Þ(v‚›'›Ï]~g쑼 Ö#•Æî#±eCXÔHˆ*=‹ä¡¶ò`cùÆ¡{‡mÎxY„±Àûµ­ÆéVrœu:ç!VUb‡=xF¢’Ø>ÕñæXˆþXg=zԒظºâžë´èFšV½P‘¸VÍÔªm3ßšÇËXxVøúÞ™ÄT[ùÙ­*hÝH^½Û[> ¢)©³nÆ¡åØ¦ŽiâYoãWßB7ãÒBüêÐ) Œ”PX2(ªŠì-¹ÜŒ™ë¦âA!ÚÆÈ©Y™ûjnã Á‰zŸc0D¬{<3ñ4´Or~‰Sh¿{œ57p>8Çå«Í¸ŸsÂþð ‘ŶíùCƒƒ,…;^òÝûIfa\ñŒ)™Ñ«È–øÍ¿f¶5=îÑo•¬…8cVè¼{fX˜T2”CyoY²ŽZͱ0¹’%X³‚׿Xqãê®k¡Ç·3—-|M!cù@þ— ¸­Õ=ø½os|Ýziµ(*2 8ÞœHµXèXYøóó8­õ@˜úe–™Ï’³þÝëÑRSÕ|ïÝ×’@j©¥–Zj©ÝÔ­÷AØr–’üQE ÆH¾1ó[©bTDJ•9Odwé…à ³^^x$½?€þvZkˆ-ï3FÆÖkˆõÜŠxæëUOàÎØŽÄfµ\x i¾ëÀ÷5¦ÚÔ˜ªÆò‚gb² «K.È´TçÃJ€žÃýº‹ïYº8u½ü¾w«wŒäŽžH}“žòÜc§º.±©}ö“ä!O)ö}ÌŽ\bߦñàãXD*LÔH<ÞKA µ Y­î¦ãú¼-Æ_EwÈ×=ÿ Ù¹[?hž-ãBž{VG½äÛ/‘þ–Cæµ8*°/³n¦É²ht]yßwǨùhÃÁ;¨)3rFÊæ¡h”¦Â`jö–£ßª¯ûNOöÂbÇÍû/šïcéò|,›À3cTèu9výËl›õâ ‡ëÀž®7’×þ_qü5<ßÜ׿ë% Þëðcx~¿‰þ-¾Ë~CþžˆïB‘{ÿ޳' ázÌ@æ€ÈÚæ£2UŒKíaî³T¦¸¯søü—ÕùÓØßÿx^Ï`½"c™³ŸÕ³îÏò»ü|¼TåidMÄ/à4æÉî¡0!–Òç".|5%~'-Û¹¿Ñ¶æÄ3ÙV‹dàçŸÍ_d«d–}ÔRK-µÔR»©›«5Ðrzof‹³z×ãx=';—XýêÌ#ÌLœ Oãó;xÝò}Äx^gyì¼^Ç3Ög zOªæUuw ’;¸‰hˆÈ6nÁþ9’­ÄfjÍó–Ø>UìSAŽbfÏÅ× bÑ- Aáßf‘ªeüžÅð"ΊÁ aƒùÚš×¹S-_{äת&ý¯yè™Ä^×$\ÕêHÝrmµ:À±±ª×¡ü¿Æèµ>ÿH=yEôA¹,ò÷E7sÕŠùËy¨š·á±ðÈJ³ìï1§JÑ^¨¡•­SÈzB•4œÎöÄsË•tðù÷•d‡Ôêy¿@ljø3ŸEìÿ­æ<{8¯­ ¦5gOhjSñ{æ„H1¼ÓœoòïQãŸ;Áþ»qZg[Ž¡ R‹a$Ú£S¸ïmÖþÀñX3$?ôó†¾*¯ Ó8œwÏçB˜;>ÿš!®¯ÔXa>ƒëàºFDÊì#uŒåõUÇ[n½«$ Ö/eÿv´/b‡ÄjṀ]»êw’¬]°™ó“lq§TëZÌuÅoõºÝÇQ‡¹ªA RíÌú•ˆFcÇšW=ðÓíÄCÛò³EMڪ굈0‚@ ñÆ7„Àüf©’GåëˆmQ¯=úñò >wïUÁ˜\ë~uÜäñó:éeð^wYuBEÊXÉ[~º Nf­”’ÿËãÁMäy«_AÝ ÊÄÙùi›—|aâ‚2Z~|š ?’Ð:Ž\—}?0MZŸ=âßayÖ3江Ç÷ÆÊXÿÕÝL‹:<2+‰µO†…ó~ç…ãý,Ÿ¼ïóû—YâL(ŽªÔ61Æ^i-a8̹±GU¿w¾;P•8™Ôo™£Á<òSdDç)Ò§@×=s"\õóÿ45…¿«~ÈÏchù.ô½–ƒÃf Èüà04™¯;Â}Mz~Ý-<3³t‚E•>hFÐŒMÅÛ$ão_ªz*£ýýÛ›óÝsÐ÷ í)×KTó+>ûùŽŸ§›Ì^¸»ùܽ?"SÄÆ~^÷»™“á#¯ßÅùß£ß ÆK=îü}2&㸠¯ÉÍç¿ûÍä#Zj©¥–Zj‰¸eã6¿Ã$[åÝÈÂb¶«Ý;©Vº;cê'ýì'† š×?˜{H${†;BøO¹S’zض#²›O5ò<­N IDAT+¯g*±'ÍÛ¯ÅÉͪPEªg…ä­[í…Ljɵ‘0A˜‰£ÀÔ¥‚ÏÂA‹U$/ ä?ÌÕ㪷p?D‚Â4„;LÇ1k}ïbÕ#ñJUÿRó`"LMËó^cì ù܉ndnH.ç‹ÄÄM‹Àù ŽzʘEk D4:¼ru8T'Ï:Â@ðþ4›ÏY4Tþ¦-P ú1Ð)Tª ¶´!Âăñ"HqªHŒßr>`  ˜ˆÃàãh’{dnÚOÞI°,½FÀ¦‡8!Z–ÕÀ÷÷RcB‡Mœ§ñ¹Çò­Îqö=¼ÿƒà¨UWåó¤&LÝŽŒ¯SÔFi¯ãþ8~7ð<·¯ Ò4f×gwÔÈë§–ÃÀ²}„¨ÄÇ£ s&fˆñQ‰)§OwI'Ó¾¬ÿd´É_Ãñ «P“‚YTÛ3©‰!×I&‹ŒN%ÓàŽÇì‹=þNÍÆŽ¡à86_ ™¿Ì& ŸÂý¼J¿ ¿®©¿Ç9øì}´é—dѽš|RK-µÔRKíæn½–õÓU,m±d‰×‘˜j&±²VÌzµ1_¤ÀÌ#¯‡$¯œª×mÿéÒo- q¬ÛYø>ÛLÀP½ÜÅ»¼ÒükÞèx=ôˆWóQ56œEY«z›z•/<ÊT¨êTÖZ±_A #z^SåËþdÆõÚL;všÔ\’*a¦òÅÎw"NXšgoyøÇI‘Š&Bcú+•þþ˜1]•ç/ÚM{®fh>æ!Rm2h½÷¬›ÉPäcš:¹Q+#Ÿ¤>”,"t3GµÔ´È"¾"­¶ß22Þ#ãмє”¡ ¥ÓhnÕÜ®ûûÀqeˆOÆ—ùD¬ñc>FÏçtzÆZÍq_Ã`×'YGºnš–B³J€ KaVë^·X¾¨é‰à?Ú\ç�åbß'Áñ¸DÖM¿ÕùŠ›§œ?Œ™à«° oãn›ëžÔ·çe¬›#-˜Ö.˜yÆHçÓ¨‡þµë”ÚòœÍW„ÏÝÔúc?.#ë™`:éžB ÏÖ;2<^cQ &Šù¶Ôþ÷eb 2ý ¶s¹O‰0cuç¯órÜOÕ)N’Uá³B¯û÷üÙ7¯Ïá¹o‡e¿&F µÔRK-µÔnâæ|lG"Hò”¨+ëH>{Dj11g­ö;dÛé[+ì ñþ!"ü?«2fÃØèò„³ÞŠß᳚²–õæýNµÒ¼hMä§ Ò´Á#vÛÁIì{:d¨ùò²ukå™kV‚îpõ}¤®|VGªVçÈJóß{þ¹ä¢jžŠcwäßÂÇî•jˆ-@{»¿ï4 Ó7?Y[ì] ©Y«6Öbdúþùä’oo§WǾãnÄmÆæ•1S¦GóþÝÌeáDƃVal!E7ÓQÈ| ±j‹‚`bjz2iű¿ÿ5VѼÆçsë@3O/pœZLóûø¼cþ8¿Éˆ=XqÚ5Aý½K¦ ߟZ?náüp,ÅõÓ9n$ZŠŸ/,[ÈÏœ…1\Ð~˯‡8ý&-ë׳ÝÝ¿×|þÉ6–NqAÖçÚœ*z2xO¯þu ˯6ý³=Xq×Ãõj»ò¿ 5<ø÷<£Ëù²£µ[ð\Îà:˜MD߈œh©ÕØrë4‘ùsx}x0îüq³Ø¿|OýcÈ pãïŸÇ‹êÚóLpÐj¢}a¢òîßÇNT¾àÏߪò©&š‰&ÌüZðÿë_£óµ±?žÌç§êƒ©¥–Zj©¥–ëY¿ÍïÜ+ÙñǪÚI ±‡7«Z‡ khU¤¡ì¹3:M„ „7AÕ¨uxG?ŠÃ\Äç·‰90Ïò‰/7¾ðUÙ±©‘ baêl'4»ï,†¼ ¾ÎNxÄ<­»™UQWª"ÍüÎ(ãõ{D«{­zÙ‚ÙFcæô´Å¼pœüºcxªþŠ‚ï}U!sŸ/nˆávÏÄЯÀe6úæd!ý";r·KfˆõСià]+[@b½† "Z¡©´… iUCô×c5jïmßúžhx†ÂÔXVÏ Â,É}šãeý‹1(-æ€×#HÇj>ˆÉ:b»¢zÞÃWÆÌ›9AJžxdNÕ7ÇÁºûfœž*›ñyI#¯¯tÈ‚qœöéa¿Õɤæ1DK5=bºÙ`ìŽkÈN¦ôØì.?/Îàÿ·ëëÂø¬8Fch¹9³vŽe~1oþ‰æõ™K§è_Ö³'BôLqÉáúUËx&s°èøë7í’1@8µ2}¿~<„˜yÀºþü‰ÞƒÁ3 'Sü>væÿó@ª·‰š»¥zŸ{äT ¢+4«QóÈÅKÚò›»Õ·¥yÎ) >ºÆˆµD8ö1BÆþ¸žFbüAÔÂVk¡îFÖÊ€˜ÃßÀ«½MM|Œ:à†è³Ò:ë‚Ä a\4oYý2±B4•mð;í–ÿÅ ‚À5+Ab+ì šu?ß Ì‚Võß =N‹0Põ¿"û:Â`É|m9J,´FA} A@eD­¤Z¡]×À3rT[ïÌ}¸ÖÖÐÚÔLqlÚ>ÿ"kœ`ž½0;$Hfbø>ÿ ù{P$æîZ5X]°`Ö æ ¯óg >0mÎØ!¿¯}¼ùÜ@ÐïázîÂ÷®Ï|¬‚÷ÿõ-T½ûTó~LÜD5&§Ó'+Ç?’y–·d<¸®ÒÄ4!T߃ÙÈ )8`ž?™¯…¯¦W ¼O©øƒgÖ¾ö9\çï@ÓqšþØ­ßUß·G±¼ÎóÛïjËÈz®ë†j©¬–†dヶ*óˆÈëæh&L1×õçè{ÆŠLGëw\™I™ŽI#Zj©¥–Zj‰ø@õA5™çŽ"¢zŒ!šBœÕtݪY ‚:¹qÇ´‰ÑE8Ù=ôZóJÕéi8Ûí¬)a‡'õΟþÔª@;8N-N}æ`ÇØÒÜ#P"ËBª¹©ª<ˆz^5Z}N«4Þ8ËÀÇÖl'(ßטmPÍÀÂ÷¡;]E:S·|Ú´ðüžŸ‡Ìk‰ñ p\"XKz¹ð±D«O¦ "ÏaFjdíK{n¡›IiÍ›p$.Ž›-/}a*B¤úŸ2.ú9e uæÌ"ŒX¬¶ÔÄhùdH3„ɰŒEDïùëÏ-K-Û|–Ay¼â.Ìœ,9Ÿ¡-"óø ‰ùZŒãÙª¾ãŸGnÙ`0­Z&5}Ÿ>‡ºu\߃øÜ@œ&ôÖf¡ïðÐ/Oãxû¸Î‹@Îwü%òÛ9o#Α§ˆ¤Ñÿ#a†y\{â ËùW±o¿Iî#­V²6±n\ø~™ÆÇÁ¯Ï½ÖbëûD~×8®+¡¾[ŒÝ"‚°ùžUÉhKVA¦ë€däRåU™ÖVVçÇÌ3n™f‹á9e×dÞ)×KŒ@j©¥–Zj©¥4k òá¥òÌ€æ #°ˆ U-ªš» z~Íf5¼€e䘀SŸƒCÔ3PÓ.V’ÚÀÎùàI¨U/â<²“ãý²“4fã}¿3l9Ê)¢åÿÇ e'¨YêD›‹:]i-LÁ:‡‰:Î Äö˜̪~»‡‚Ä˜ß ÏﺯpuŒÅ’#>ÚŸ¹æíö=B)çÝ;â\ÔÍ™ªá#ÈÛzˆ ðúÏ;VxÜîŽy‹•N†©…LæÝLOˆ|O ‚Öÿ«³`}ƒëžEîO³PbYâ¹Ïñ°VÑ)ÓAï} ~f”‚ü&9« JÌ™ëŠf3”ÝŒÜÖ›OÑĶwHû5aÆã­M-Lg„ÁÊ›ù’Ï›×ÑÇ›××ÿ¶y}w×{÷¹½ðŒ×T˜©ÿû®æ<WÁ.«îùj„d¼Ƨõ<óŒ¤ù û`ú¬ïŸÏc”ûëàxøÖ·›Ï½þÙæý‹È£È0ó¾ ýU¾~##ó’óü~Ö ¸Ú¼îì<ÆÅŠcÌáQÖ—ÑÀ¯«Šìƒh]Jñ! 6Ž<.«íîH,?/Àôs²|0¬ÐÏ‚ë_/¢±Áu¼ûjbRK-µÔRK-1drQûrÁP˜Ã4R5®;ö;Sj,&'±Ð»T±XxpŒÕ¶Œípg5A¾p…|aî OãóûÈk§³“V¬Ôé-x&ƒÈCb=ïF’-Ç:ATvÛƒÈq¨Æ?„üqkÉ[×|wczæž!y%ø#wöÂÙïå¾Ó¬JöÞ–{žv=æ8öã+6eÜd‘Ú êœ¨ý¯R­Øµ@ì–wÖÍ|éçje*™OZÝRòù5o¿Ýñü3Õ Ì»ß#¢Ùón¦©ži¡÷|¿fýC•ûó©rÙÊF’ç¾Ì~oùzìT9ó> ™2nü¾ibƾߔ™²ïùª}ŒµɸGžúΣҹψiFRõ1 üº¶N‡CüyÎ;`$NãïÏ?„üy0Ÿ= ݅ϯ¿ïÓ¸Þ«G@Ô\ï‚ÿ|…ãÖÿŒˆ¬[˦ñÏ©ÈÆn]yÏé"³³lb"–ÏãÕž!|ëÍ~o.I-Ó|0Û Êã¡B Šåz´âÖñï}¬y}YhÑX­ Ì·Î+28ÎTõP˜¿iˆ1–`ḞÂ÷J«Òr^R+Q“ óZ‹jîkŒÓlÜÉøñ:ß}#1©¥–Zj©¥–ü|JHYÇZ«œÅk+†­ÀžêHîKQõ‹g}.;#‹íq‡”u#÷;›Wzˆ3c;PUÑ‹»Ï欚’ßž‹–À^¬º\ÝH5欵ƒ‡Au8‹U™#B¹£šÙb‘TC«ËÀœì!F·_û¼íâvÄ´¡(àŒ¶'þ êÈeU¼¤^<ómí~JÎý8ÐX¬Úb}ƒ~jÅÌ#1÷ ÚØçT3£×"ó+öù¾0Ù‡3,êUÎõTœA©Æž 3V*Ò?Ž0vªqiÕ8ìYG´¾<ë´«ƒfëÎE4ººåþ²wΟ ÌÓɱþ\ø=È}?ªŸ€]ÇpßôYµ0æD¸äµþÿõ‡ÍëS¯n9YYMÿüœì2d5ðï# Ç=øx°Š Õ½g5¼àïÃsx¥ôëùP²H¸.P›±'Õ™´äC¾ƒ±‡æØˆ¿ŸÃõ=St;{šzý{׳&Èú¨%QÍšWúHìaüm<ã°F?—cϘRÁlOö³Ð—ß-ÖJË´öóë{_D¿ì¡ŸGÔ^iYøyd×G†A÷úT¿Ó=¾©9øaÊH-µÔRK-µ›»9¬¨ˆ¾º&;aÙ‰Ó9‰È×<É5» óHÄb1Ø‘2¶Â˜JÇ?§¬#È1¦b;ì÷ºovªÌ‚›HpY Íû_>ǬuX«{ÝŒF«N¶¨µ[ççåéõ»³5²#a(„YxjÓ58‚!x;É׿íŸմܱšÖ;Û¯Á òիׯ¾[©ÆÕ¼tÙÛ8RÏzaDªØ½×ý íyã¢)eQg1§AÖ‹ŒUd?Ûs§–fáÏ—ò<Øút¬w"²–?Áª<"_h ÛRú×òí|žÀÿ¹ç=é™G^Hí‰êˆL#Žä«ý™îûàn¹þ̯oË?øëW&nY× ÍÀä›ÞA/\óãdô·@ÂV[¡yEÈ:¼€óíH;ïÃ|,âiO¦.œ÷Œé1>ÄÎ+©ÆZ{&@}&&t dôË>†B1}BrÍ®!ó‹çÊõœˆ–jý?ý³æõa§8Цh…ž?lî÷¨h^G¶’æçïHíƒýàïט€žÿž1Lâ4kY ¥ŸßV;ç£[îþ¦ïpœúß·ï"ûDMÖ:‘u†µd¨‘1†›•×j(Cšûu)„ÔRK-µÔR»™ÛÊ?þÃϯÿ6²¦¢6®¤Úc Œ¹kL_Õlçtÿñ5AFSµ® ·VLNb†¹ìü§ Ö#ov¾ônf0î¤ÊH•'‹¡ù"óyÍDP­|~Eô3A¸ÓÕØ¤2rš]«¿@éc;õÌïT'Y7²Ôëiyh×ÝËî[ y.Y¥O&jõ9_«–‡x¹·œ•A„‘ËuTêYžËPíÉ‘Ïõ"òžç_Ì£3¶Æu ÈíQxÓ? ÄGg<Ö0&¥òY¹Ôwg>·f qÜ®!à@˜Äï¯6ãkµN ç6šq|U_¿uÅõ'cègðùK‹îõ€ýv ÷±_øìcxÁ(lb}¸LÆ?æÇÂge˜3ÝbÜÉ”džOƒoc~c]ÚÀuÝý׿÷,Öí XÈTà:LCö¾ iY€N‘a¾Lñ^ó Ù5§¹L3 ê$TüÌFGÛŠµ ÍëÚ‹J}.8nQ“¦¥þk­Ÿ‹ÐýÃÑØúÌxÍßïZ‰uïÓ¨©ðFóöÇW’F µÔRK-µÔnêÖ a˯ēžjÕÓâ$WéŽ^ÔÐÜÁ˜†@T¢¥"$qðËacGË|aEPV7=øÿgu¼Gqœg¸du)8â½<“zãÂx˜fà„ß9grŸA‘¾hU£Ó>ö­Ž9ÚEª¹eR‡=Hþ¯©ÜùuQÃCP!NEåZK¶B%±ÞLŽÏñRK­ ˃%ƒ³ðLË%‹mú¼mËø,óQ¢d\8N2&fs\ÞN‡µó~|I¿2ì·ÞO¤_̦ †bÑÍÈXÖ™¦Uß­šŠ0‚waªnÆJc~«Â Ä´*šÕ"çÉ„©+µªc„ù²¼íT TU¶fÑHM‹‰¨¬ÃÖ¬:¶Yv T¯Écëy&,Ã8¥s!¯ŸëÚÇ_G`2®/@¶`².c\ÓG`·ç™œ³Ð\ÊÇŒçÏš,Í‹7õþ̯Ã_ÇÿQk“ð9H-­åÀÓSsTˆÆLk‰lžÄ¼þô÷ d–Pã N!Ù\o²#jE¶Ü85-ެkû\ïÞûÏ«ˆ‡N¹¬‡G~<Ú²hóæ¼c†*©ýQÈ:ÙšÏê+#ëO¶ðë`øWøóßËçÄÙ×~W¯v3h“µæºY3èƒÚ­Ä¤–Zj©¥–ÚMÜVþñ~~ýhL¥(þ–ïhõ¦áI7TÚoøŽ!"K >Z½è zAΚwœëÕs'gòI_u,˜#–W—f±ë¼{gWÆŒ"xELºC„Áêf–g>$UËõé‰µŠœø ðï¦ Öjhr<æéNÄ[¾–ìñrk;R§º?—³!KVÑ{Gvö}­ŠF„áÕ¶1•¿1•?È~†Óׯ§›ñ…çW:Lˆda¨—w=ïÞ¡k­  ëmù2Èc®#­õ|T“ ãO«jÚá"¾-íÏ<2TK#yö–´èF2-MÖäÐþd5B~~uU×­î‰j>)«dÁxÂs †áŽE7ó4Å}ž¹Þ|ï2ÖÁ¯cÜÓ÷Ù /Hv½ôwkï4gŽ¥¹g,Ôó¿üIsœÇÿÂk*õ Ñ~3-îG<ês«²‡jxp Ýûž 5ý[X3ášzá[Ƴäk$d`Hæþw‰¿7¹hÍ*eÈ"ùõºî›O®Ÿš²Iá5 ­y«LŒøñ˜‚Œkc”q“ßÃZMMæŸ>O2}Ç2pÜwS­ÔRK-µÔRKŒÀõüúmÝ&D©æ ØÑÑÛßTðZý;1Ñd=QñFQ¬‘cZT‹¾ŒùÒ';¸[i1½ö;ǘz?³—üÏVþ¹ªÃáI,º¥2Ĭ[çíyf¡U÷^œÿZÚ… ;h|n$U·ZÙ²Sm‰yçÝý“!Ÿ7?ðçŸh‰ C" CšôÄ'r•³2I›ð„ß¾ˆûh( [6ŽKU½k5NÐ}aÊÝ @ë¹Í»‘n¦ŒÖ {Üiòvâ~÷|3Ä´èž—õûrœ2^žÙ«Ts0ëFú…zÕ3æÐD&êÓÍë:TêqØ<ˆ0>§´v_‘ŽÓSªòi‚ŠÎžÐT- F`f "•õÏY×L;³ðuçùÑœLÕ?cæ³28Í2[e ~oðïø|5vÇµß ÓdP‹âý Èt ¢aÑj½2Íùóš0o ¿~dF{9QEs#ÓõÝ”5Zj©¥–Zj‰¸þ§ns;¦Jª±qKͼóõú7D±åv¼AbVêåÏØÅ;4ÆšXõÌ<˜E%¯ÞÛ•xNkZó׿Ϙ sÛAkL1VG^ªÊYÌS³ 2A¶ºSSäWÿ‚HS=ÈÑ5bgš7ÞÊ3F…1.­êHç2ö3ï·õm5èfr©¡ÕîÔqΪ$Þíû‘uÆ Þ{[¢úZ(’¥ªüÈ3“Ṯ«E+f‹µ²ú&¾?K°L¶è­*‚‘¾j,ƘÉßcL[Öͼd1ñ‹øFX^·^/û ÕîÂአ°ÎîiUIÔÓ«¾]S@2C!š(Ö¹/µê"γÆñ„ur"Èë”Í£Ì;qüûÑïßòæù™í41d)Ðã¾öÌJ¦Öœ=…Q¬dÞjUTžßPÉ´b}© b?`,Ùj*Øï‘¼0yVŒÂ&Ö—gÞAÒüf„ñÚ`Hß3'úû„ámùyÐ!Ö´Pc¿ž.<3d´qtÒ¯S…j.d= Â,Ûº©Âª~#ÆxD²ôwBý ZÓºNŒ@j©¥–Zj©¥Æ=Šî[*w©Êeªÿ…gêUŸ_Ÿ·œ°°Sg~$v~ÓÌïÜ3uf£*6xõ)™†'kÞ…S×Þ!¯ªð#Ù‘IÞ¦9™i¬2Uªdh5§ ù¸µø ”âhÌbT­šÒ4†fƒ¼¾Å‡30vˆŒÍÕÂ|ÒÂulâ¿/ë8­%¶Å69>ˆìºF]hgmpÜÊý ¼ã‘‹ªé[Îk|Wýcâ÷GRç¼¥i_€˜`ˆy¤÷üuLfÝãÂh´f…jLQ—Ê0…nÆ£Ž9öõýxQm ¯O«„É£6m õü±ªue÷ýµÆ‡j5‚  U¹?ÕTHþ)äµSíÎõ…míãÍë™×šõeùØ ­Òd_øucjëáV'CS‰ß ëÊ[ Ôà¸ô¿øûÑX5;‡*t€)Ë IDATöŸ•3¢ÙxÖ²‹¶¢5fF³²³§Ó"5 Æâ•þ“ž? ¯cûXbéèçðæŸ‹ÕfüTÈŸßFdÀ˜ί}­ÒˆãnÌšã…Fã)s`¼îž›jŨE2Í„:åÖ~¾ØýI5Ëå¼§ÆÊÿ>XBD{¥ã?“š-fPæO«*èÆabRK-µÔRKí&n®Ö@K5,1‹¥kv©û¼ß“ºëªŠ—ñˆOøÿ!b/:ÄIþ¶Å¶5ÖºðˆT‘»í #H!„n$b;/Æ”¨.¤¿f²s¦êvæÕ¤¹VS3¿€-¹!4,Ëbáÿ¿–Øt«n¼2 ÁWQÌÀä<Šë§㊨yÉðPÓ1úfó½—¿tŸkvðOãs;ØáOм¾2ÿp„Ë<`þ?½ÖÏ¢¿þ@v¼æýÍqƒXê c­D.;ìôû(÷H=Hl½5Ô×a5Âl´;¼s¼µ|*伯$Í„!Ñy4ïÇYÌÑS™Öd BZmS}ì«?Z ÿH½Ž;Ž:ºé瘗>öˆ'Ò]#AjÕ² ¾!¡Iä¹Ü‡û:˜ùuˆã‡Õ0³lÜù¼k­MÒW$-§Åç†d8gâØ÷ë@µúÿ?œû÷™¬š­Â˜ÿO5u×5?oýæ² öWÁHŽ}¿‰S&ýdÊžw”ÍXËëxN'ÏOaþýد£2¿2­¹AMçmðµdŒ‰ß~nr’¿Oð‹P_ŒÃ‡t ½¦¹Xñ׉šCÎϵæï›o6ï¿q—g3ÉzQŒQ–Ë<›Éü}_~ßV=ÓUFA]§Þ};iRK-µÔRK-1QF€;IuäûÒǶ›x1úTךJu1k­Xydç"žõÜš3“ÄhkaZ;dÉû-Û*¸£T¶ªsU…­UÕÁ-tïÄZ±Û÷Å[Zê–k´·ãn"aî’J=Ûo¤FUg+üáÜÛÍõíI¼Œó3æ~;ÞË÷4¯Û)ÚŽô„Gì¥ Y>¿‘Sßç?gâLWa}‡#§2nØZH'â¸éÒç ”qAܪ’o>Fáhu¾ lqþ3¦ìNŠìTm¬ÕmHýù:ó~ ªMhù ˆjÛ²^3d ï÷PÖƒ^IfÂ\Àq'v^¿n⸘³yÝü×Íz¶ÍZ至ȸÄX;‘'¾¿ñWÍ÷þë`„Y*̉Òo2ûÁç¯#)H8†,µjdÑïfF69ÏX½ó3Íë³ß%“¤Œˆ0“`kú À7Á†wÙôãøÞ³ŸÀq®t¯3¶‰_BZµD5ÀQoÅ—Mü^=Ϭ²ù=ªª¬F8Eì6ÏóÉÛ›ã_¬…‘ª·e„TƽCSŠ÷¿eèï¥jt}É"ÌÚ<²¾ô#Zj©¥–Zj©‘ø œ'Ø¡0†Á˜°9tiþ¼å‡^Ç;2‹áp§&ˆßcÞëTÔH¼ðHÕbü·{d”‰Š–ªß-$„XcŽšÏmªãž\/¿ÏXªVû ~gȺ÷Ñ|éÌ#;¯©øÇþxúÔjŸ—Ô»½A¨‘ütúCLI<ŠçvA4#`‡½Ïñ¤°‡~)o÷Ÿ_ã—'‚;陡:¦q/DúøŸþ6vôp«€P’•Á½S­ª^Rc!„næ)ÄÔþó´ñ£ÕýnÄHìOŸs!^þј ú9È8È" û‰¡I„Ùh'BŸw3k6„ jù ("dS`¾”|Þ¥ NÕRພ†“ÜSPçç¸aªÅOQû„ïÑä“ç»p ˆ ×.*eŽXSƒ‰­Nf‡Œke —0}qø«e\Kmu´#ãKz2@•huèhóÿ¿ŽëÛ=éŸÓ ïk’k•Ûà¨ïý ¦àß<Ïë¥?ÃØÍ‡òøºc¦è­mC­–1%Ä](£V{f8Ç}Nñü†tŠ„Ã¡9FЦnªµ.DcR…Èúd=’¬%uîä RUµÔypÒ/1©¥–Zj©¥v“·^!ìchªkì0KQ—3ï°Œý¯¸ƒVPy–3C ’mÎPã¢×'*pS• ŒÕ¨¥J^.;_ë¯:†H™W»Õ}A4†¨béUKýú5ÉÚ`ÌH';+b¨;3t6¤ªŒGä@õ2ë¦çtf#ráYk'A2¿ÍÊÀñÞð;ñõgâ`ˆ¯çŸ‹=žC<+É÷6¤0óÈ¿ŽøÙ™(3 〈ÊFÄ90ˆV@Ía±ï™Ž–ÏAé©­:XKÞ:ó·Ke.Ý×»ãî»%é7K³ÇñžzÍ#+æûs}Ú±jtÍñ7q«²y(ýSûþ)ÅeHÆtáŸûc*Õ9¯ÔéŽN{¯w3Ad¢¦Â`ñyÑß`ýpð騻"Œ°0BH„ß ö;³èÈHGÐI?ÂàÜóq}ZÓ¡/ëä1™0s"tœëÍHç¼溷Òùœ¸îp®‘ÙyËÿþ-™†óî~9îXE•>Ö¼aø‚ô‹ÍÓ£0=a ¡])ÅC5u‡_MbRK-µÔRKí&nMÖÀoÝæ·lܹf²£„ ʪS±þû›Î»*¢åó ²·Ì·%’—X£VC«e'\kxEhü¼8 ¶Žåýúþ¨yiuE‰ù´ÕÔº§>p¼êG’¨µÃ¼{8d¬JëZËñ˜onˆ¼ôÊœƒ?NAÕó@v¢ÇÝ1LWòàË<˜u÷c«n7^×þ°y='Ãí¿ÀõÔ͸{´l^׿Ô\ÇEÔM_GÖó¢i9<ª*^³Er¿ÓÖþ,%vWªÚ_³LbÙ0¡±AÐQnrÕƒÖóÓŽŒùjrÞCéy7Ãaý0Ì·pƒÿ×y«ULåþŸø\óz 1~Ó0-<3eˆK²Èï>yÅ3#«JèUá_Ãç@öÌ œöˆðLÅÎ~¸Kœú*9Óì[?<³Êq2¬}M–éªïO«Í"~0Z£À²¨J2¡`Dzþ¾Ì÷Àª'^Ò]ñë]î׳ŒF)ãr„~™è8@~>³ƒ7Ÿ˜U_³€Mk¡ä6OÇŽäù7áP}¢¹~ú(lÜÕ÷ëÿ_iÎO­Fiêþæÿ'½È:½*ãYûG« â'#Ãñ¤Æ…ÖŒÐuCk¤&óòÝ7’F µÔRK-µÔnêÖëb¸™ÊÎ!—ê^ÆX¬Ÿ³jR+HÛò¹,CÆŽ‡Nov¢ãŠåY‚÷ùµ­ª}Á# ‹ÍÖžñ0bÎXø\!È(xDÖòKP&Àjh=oÉ˽“;?Ä|¤ £î ˆü}"eH†d"fÞ`O‚ÖÏ^³¼ä±ë¿Ss‹Û—˜±!_a\¬.ù­¾Ÿs©/^IuÀò;Íë3ˆq®ã>N#Ÿ™Ž‚Wx¿÷#A¸7`–j¹/ä†¤Ú¦Õ —ü2½Å#ÀvvˆŒ/éEÜÓk2~Éä‘ù#±z=o¸a x^yš¯¬5ñ·b—â¥Îfë‚ ÇÆíŗijþ}¹ì“>ï[³:¶ÿãÿ=¯99`µÁÂ; >|Õ30ª ©ä>¬žü]ÝL\5~Æ¡:wŒë"«c)LZõgÍ<œþ¥¯hçéûu/7ÆÓ×­'32²/àÝ?¹ë»ÔòÈ„i²uV²½˜µÕFÀˆýãw¢(„Ñ@?ß>¤ß|~Í´ [Žj?›V©ùÞäÐ÷ÃÞß{•L~ßxô'æ+°¶Ê±0†3yŒ¹Gèµ8õ¶´\™r?Z£ƒ¿¯–µ†çYªƒj±VË"h5­ï­ÿŽø>®ë)\Ï.󌱣H÷ýxûÌç=RŠë§Šû¤ ?ɯJvÆY ‡}ìÈwè¾*ã‡×qÇ}‘þ8ßß|¾yý}¼ô¥æõîcûš ¸Þ fæÿÇjhÓØºVûŒd(‚ ±Ç.N„æ/ €añá·×bFne`ß »1Ý«ŠYw3e-ŸcB 5š‹×»0 9²\¨â·Z%wÊ<û¹N„I¦¯ðëÏTTÛCœ÷ªàmßî‘»ÆúµzŸKe¾Ô´`½œm¹õŒÙHkœ'Run$1yVOÌ¿Fàù]µ×LäÁ×:°òŒˆ\4]sq– Þg @“S©˜ß÷ I!ãΜö*ÿ÷³pö{ñöæx{³ë2ÿ<ó<EsÌ” £N‹ªM##KM[.ërE¦`¶âço.ë½f›É8ˆùÍÈ÷µ†„Ο–oÔÈ)$‹…×÷î[I#Zj©¥–Zj7uë…©GÜ™8íQm[ùm-ùÁ¦‚e,Ì<ÂÇ~§/F‘…ÖW¦º4{Óï,5ßšM\òg IŸ{Wu#¬%â‘óZ~°ä™‹3—eä¬Cíw–¦‚§:Xj´bÅ«n1 êé¯Hlæÿ¾û{xE•@SSÝËü~|ï9Ä0Çûm|þ'¸‘[ßñןÇFŸ©‚ýóºŒXðRÝDR r”Øù‹µ¯ÆFÕðݯ6ÿÿI<ßm0@#é.úV´vâ1‡É™ ÝnàÞR·jhµµÐ(bL€æÇ«ªžÇÉÕ‰,x&¯¥uaÖÉLÖ>ày+?bŽ—ª%(²îñ»t^\é7мC­~üÖÇ^K”_Ùr;ú=\ÿ þzòÁÃm"bÉf*…q)¤úã)LjW¨>·¬2`ÖcçrkÙKš'u|d=}Éû¤X?•q µIò¹8jÕRa†scŠV0NšÏ?quìî÷r.Ë-šêïÏãÖ±{þV%tàk 䇞¡X2þÿÕÇ€ÏÉfÕjHí‡]ó3iþÿ[x K6PL{£šžRç¿0v™dwÕZåTjH”rœ¿_»Ç}Ñ®x&ìÈgÉð¹2[†Ì¥ÅðɈõ¶:;˜U5+ã!øU¼ðÇŸâ`W©æGkKò³X·Œ·J´FæÓ!ãóÄjÀ(Óh5O¶:™IËCת˜AÆ·ú_¨‹"åB%aêäz‹[î¾­¶Ë ”*C;èFîš•d_g?cüÆqv¡Ý®y?ƒéŸ¥Bæ±R Œd¥Ù|¬¡µ¡¢¬]ˆÞ1™AúQQYÕÇ}÷µ›ÔRK-µÔR»™[/uA;; UïÙæð¤Ue[‹Gö‰Ë 5æs( …Õ÷;NC𢥨#1¿‹AëçUå,Ž‹Y̹*–µ 1L‹m²ú—hOj} êX—u#áu\Ç6¿ÿ;x½Ô¼lÜé}ÖtLµLµ1«´)¢Ï±ÈõZž´ªÿi W=RË"þAcø³î~Uýظ6/ôJ,"|ñ–çÿ?Ú _üœgRÊÏâ~ñ÷oûþzý+ç¤~±9ï>‘Ï;žI™B3s†ëv =j0Þd•¶©­áXâhµ.À¼å;Äæ+γ‰üï¤mf ˆñ…!Fú ”[ÏÕS/Þ§êuSLêûÁqZă07dÖ¤¶@-µˆtÑ4Íêo‚u®Ô óÔ— ‰ŒoCâÞ Ñî¿ôÌÀPj.˜Ç±~®R±ïça.óoz§_WóR—þ[gµÅ{°>È:_½õ„Œþ¾›{F`_ý8o°¾µ×Dd±_éHVœÖ ÈõwF˜¤ìëJbRK-µÔRKí&nI#B(¨Z•¼:`Ñâ˜I­zãKŒÌªóáóæE®Ú­Q u×­®:vâ 喝 ˆ1…•nä/ä,Û C#R±*^Uwÿi–iÔw"¢ŠoWaìf,,–©Z"ĺ h êé]ÄØ·g!1¦<üðwvýÍ»:ûIÕÆrþá Iyvœ ý)…#æ[_óL•ª×k‰¥ š!d2"¬SŽþ8 Dø {m1Zß?D¢T/OÁüÍÿÞ¼>ü›[®&‚ 9¾´º¤!/:V©žÆç^¨½Èß ¿üÞâ¼Cž˜†êõ‚ÕQ,G–_ûé{†¨’ZÌûç¸gµÖ\êË·bй OýÉÊ"¢6ä* ‚ÕHQ-ÐÌ3‹ùÝè'Ä®ÉÄ…w"óO™ÊLj ôº³šìºEóÐÒh¾ûê–gª‚2o85 `h©½²ñÍó`~0Ë€ÇÉeÜÛ¼™ùu[Œ?ÃÚÇðhhèOaZÔ, ~]Ï$ ãA|žš›½…ô{ß™HöWÖõ¥`õ߬U[ÆÏ›§Z©¥–Zj©¥–”5 ^ýªÖ?éwR†Ð«¯»wtu,¶®ùê‚ër„£ÖÂÇZj}Í{Ÿw#];ÿ@^g‚Lç²£–ÿÈt’{d\©ßD¤ß[2w" z“_óŒ‚"èûðþ€×ƒÝüöÛþùìâïçpþ/«z[|Z*ÿZ®[æÅ—f#â,iU …9R‰ìÙZÝ’ßWijA»\Ç£ÐT¯5¯#»a ý±Øúïx$| ¯Ÿü(=ÉLƒåÏ#Æ\0ÿ}Í38V5SbÁáí…¹VµÄù˜MæÌ|>ØÅu÷؆Ðò§§¼T™d̼’l¡ŒwSãWþ9«z\[¥Ï-ï~®µhDÖd>V2 Nÿ7ôëïúñVklyÞÍ\Õ1M0¡-í“VK-ä{`fŠ ^øsÿw«u´”~BÌ}ÈqÇçD­‘?kÙh˜&›'Ù‡ggeÔJØzîµcëX¶Ïaü\€?ÂÓ8ÎcX§&¯ùã’½Q sÆ6Ѭœç:™0zyæÇµ ユ²RK-µÔRK-17;#@ÄÇæ›e³…{êÑó ¢|É«T-Ïž;Å#Aô½n¤–õ}ÕFC쑼y­ï¾¬’çó™óJ•2"JÆ„UuÎXïªGú“*r¹\G¯¹ò¸K/óóø´ ˆf¬NIuvéW©Í)"‘óžf י߉áù¬3†dºDûøÕnÆ!hì]óËÒÕt«Ñ³ŸA†H52óªçék_Ó£Fl”Ù'YDcP “AÍÄ|î~:âþŸ)»‘Ø÷¡¸÷?x[iUÐ9™¬f< {ç1®š×3ך×á7Y\Ç}6ï-¦nLïû¼cÈÑÒG€5 ìûüN‘ØGÇ~ÿ™æ{ Hº^qHlÇ?"ø=j"U Š£ž©úq^óÈŸùÏðžZŒR|,Ô³ßTòüþ'3~Ëk\Ì¿£¦!t3…Ä´cµ.r_¥Ì"]#ÊãN„oÙ1Õ¹Ÿg\ÇJarîϛ繃ñbÕfû¾?ÈM¥vŠfAP3aš¡Ìך¡v‹÷Y‰£h G[­–›ËúV £8Âï56j{:SŸÝ‘‰³"©Iæ³]~œÔRK-µÔR»¹[òø2ãúÔÙfîe,Lv®³n™Ó)ë=üÿª|_w¸Z¥P aÔ}¿ V‡þãWkíéNŸyöâWÀšáUH4æ\ (±3ͨ] ÓUÛDªˆu ’/E{ ÎŒ±¦11wº@þ¢ßèËsf¾òÛÂxØsôÌͨòõÍk HÆÜGØÙS=^«Að‡ýj~¥0 | 1 cu:ì â¯ÜøõŸâøÏ ¢¬%›å4jM|ñœŒ¼®IU·á; b)N6¯û`Šx½ÌÛ÷{~×ûyY¿Ï Ã@Õ?«RŽ 8)Aršu“û~9ƒ¼ÿ{ðZ=é™5"ó µAù–ëÍ_ÊÈ©¥–Zj©¥–Ôdç ǰò¤ìdÀ‹5YýÆŠÛ‘°£+OøÃkÕÂZõ$æ¥È{$C¤R~;»WýçÎ ÄufŸRÆß÷á$G•®©Ò¯øc+‹AceD¦“«ƒª<Ñ<ﻤ[j>tðÈ=ˆsóÄóO©;èÒïð‰˜vp܉¸ççe6à=ðèO•nmyïâuß“ç¸êŸ Ñ0f½tó;ú¬ïŸÿž R1uðLŸ0X%guäøˆHhà5ëŸiþWÔÍ|káËÍûŸRcÆêQ¹}2{Ðì Rcv‡Å6™:|ïy&ÄòÇ9?¥F€IL0>§t¦¼Ø¼~ò›+ži "8à¸ôC`Ö?/Ÿ âD¹&er®û¹(HÄ?‘Ø5™‡éÌŸ*ó±Äú0Êý<°ªuâ aó“µ!x¸L˜*e*Õo@k@ô|Í sÌýø«5­%ÓÔ÷çkEìG˜Ë5úX@£d Ý­ž±a?RÛ1:¢¯…Ô^ jÕ÷ƒ1¢0§U©!±Žõ¹ü+|þvŸfLï«Ú’õëÉ ÃiŒå8Ö&F µÔRK-µÔnâ–²>°ãT7ªýN˜‘;¶ yý5b ôäV‡-«¦;FuŒäÓ«Óµ “>U£¾^ûè Îów€Øé²*™0 t’Ë4XëÇËNÝòÒq%Õ«ïå¯ÕóO7Ÿ§zò¶ái²u—ö>wß­[î¼Ô0{`;ú ÄØ6á) yÕûªš¶*j^u›Kžy­Žu÷ÿ[mö—Ž+"„U_Ã"H¶BËaR™Õ 𹎠v0¦Æ~;àoüjwciD8¼ -Ùû°£ŒýÎõî³C¯8¨=²mÅܹc2˜(”•ÏR7»ˆU¯ºÑý~ ;[ÆÆdgND•wï”CË9;t©®"÷¤ƒÖxˆÕá®[;ä¦ßYO~ï ÄÖÔA÷Y¨{Ovö…<Ÿˆ÷º=ǪûïCQ›Çò¿KɨçδhU7íz©³J¤U t?C ŠDgÝLI.µ4FÒ?èçKD@¦¶ßrŸÿOxý4ÎsÇ­é!eâoì|Ž D­6õËuüÿùæÿç^{æ¾v‡Ž3Ó´H6òր??“¨âMó€ë$ãA‡Kƈsñ²×ZÌþàx¦FhZûë³1µ2þž@lüÒíÞÛ¿ÔÚTÛê\òágÝó0dçñýóŽI°çXkÿb=}ßß4Pº.|Õ<[Ïèò9 ä¯ñš¦ߣöãÂ0¸\È LE³Qj¶E톥ÃãØ14Ô"TA´âKSˆƒã„Ÿ^C¿Ÿƒ6ä"™|îEôÓ:~§vË-÷¼È@‘9|÷íT}0µÔRK-µÔ#p#Fà6άöÔ=~g7yëW»¬ºœ©R±ƒ2­ß±jÝìâÛØ¢Þ7­–èžK IDATÙsœÚŽ;2T›*_g®ˆZ?Sõl¬šaô=ó‘#&Œ3=ÞUFž£Jb£ÀçÄùQ·êÚou2iÓ“þ¸#2*¨ŽGGKõ¨·ñøY|ì%ýnFÉ´0ÔlPsÍ?ïe5KÑ*³Ä u¹~žwÌ‹­cœ™¯9PJM•òs~\R;3¢ï žo.H\«QæR =o¼_9gV‰÷ )E;ÄìÚŠ3p`½Læ¥ïk2䬱Bõ?Ç%™ºÃq÷:!ÙÿûdäÀðŒþó\¿Oá÷è>œÿ•¾ŸØc–Ç­ßĤ–Zj©¥–ÚMÜVþñ~~ý#¿ÞhjÄþ xSÓƒúþ™ßÑß×é°ÃøÏ¿â½pÂo‹Òo¸sõ¾ÆÎþìa³“¿ÜRÀÎo/QM5æÎ«ÄæU®U½Z!P©7½üA”¿†ï‘WsçÛÊûçù2¿35 qÔZê‘_‹/Á°ÓÕŠ˜£Îƒšu ŽŽ’G^­ú÷­Ï _™ÿþ¬Ä®%VšQÖ‡ÝL‰:°YŒô}½ão9ªm¹•‰ßB-±Ç³øûeÔ`(ŽØ%/}“Uõþ²yÝþ38ÞÑ9“ùÚPY/1Ž2¯¥ r«5ZýPÛ¡ÃPÚ@ÿí¹/koŒ;'H+ÿ[j7d¢å ãäžÉ·§F€Zà*cóô½±Úâœë%·ï_‚ÖaÇ¿lýê1É,™³ ¯K«Ч¿1ÏŒ©†Èj‡;'=ÂÖª¥A4–Ÿ>óU7—Uø˜eàUùbõê;Ýï³c?Nò¹×,¨¿F!Le5ðýIAÓxщ•µE„I¬” ‘y¶ •~‰þÖd düµ²£4 Iž»ú¯3Œ~|ðv¿`ocYGµÈ <fïXV¾¶Ã~Åûw¯$ÔRK-µÔRKŒÀGî¸ÍïÜØ€œÎJlñå/áïPO~ô+Þ ŒùIÌÍ¥°Ã ¨km;y:x)ùáÄàe´[Eƒp(÷„oŸïù*Ü*‡¬–Z~Ë#¦^·xËùˆ‚÷w,ˆ«a*ùqM…i0dqìßÂSP«*\œüšÄ€ïY]¬ô÷ÄÃÛvÞ’OŸµ˜éÉZ¨ù „ÇJz§‡HžÿÒ9ãppÞ!2«÷ŽÏ?R^wÈšZ†³˜×»‡` € öÄ—b”ùñün˳¶þñ×÷1á6‚Ç}ôšù”ÝÎ(òú'êY¿èf‚¬¦ƒiR¤FÄ1îsÕ FþºÕéË}i,ϓړI¿›Ê»oî‘a%yçËyá—U ý8.)VêpIfçÏOÄø<ª(2ËÀ|È0Œ;gL”­ÞÁ±•­D €1Ÿ`|–YQžÉ°aŽqÊš)5Ÿþ>¤SÆÍhà™){^–måÇÕܘû*‚™j&d…Yem*¶ÎŠº¿œù¬¢*æ"š©åºO-î'fmËÌ*yK­À6Ÿ¨19AæÁûNüø­Ä¤–Zj©¥–Zbnù­Ûrñ×çÎl†³øûöÀ?Ç]q„qc8~"æBy©ˆ2ó1^"ÚI.Ï©ÖçAUøŠclÖ16ØC6F7žßÄùvð @þ¡ïA%žñ‚ÄȨVRŽó„µ[¬š!‘}${©Tÿ8•rŽ{q¤Ê8ê|âûHeLó˜¨çµ"µ0VËj«^ÝNDϬc4îòý¹Dä˜ê{ zæã¦(Àÿ%{Ë÷û)2gµÌ0ˆ¬‚i~"¨¶Iq«ØZVV߯¯ê«¢ç1çPYgÍ9³ðY>Z«‚Ÿâú'=¯ÁHÔRK-µÔRKŒÀϯßrê6·ãi©BëÿG=!;Ë}qs?„âϰƒÃTvvõñ/ùÇmHæÚŠÛ¡W}…BòÜÄ|H§;O¹:Úñ·RaÌ›Z :Ïqg]ÈeXÞ®^‡¨ð‰|¨˜Ö¾ºW+o7x4ë@ü@Æ»¨Ž3až´Ú¢iÆæ_)ÿ_h ýº 9öïú)ü¿>«‘QKÕ>zÐã9ŽYR3rÒ#ØâV¼m|h•5el¤CEú}vÝ#!ÔZÈ”AF£ ݆L™‘¹"ÏæåI‰Íoâ¾Àx¹BF΀û˜ç/ãð/¨§¾T·¼~ç»@ÿ‹ÌçÅçxNÍÿ³†À#8ìç>fÎá9s-;Ts`”|jþZ¿|áï1|f! ñ1ž— B¥L„ĤGˆ‘OxrÉûåqUM=ÑX´!?~3­q4 Ñl‰Ié‡àçI+û@µ”}|¨Âæ¼µêš2ÏF‚¬ÏàÏj- õ—àqîÄë{þ:ÍA‘÷×b>¼Aì:²NXÞ·ÔŠ(VɈA&ŒÆÜ3DЭ˜ÿ@œ#ÅßýFFæAdOEí„ÇÑï»øÚ×Û†ú?ÀÁu á/~ ã¾ìç¦VWõ9ýæÔ m¹uƒÎ¡Ó/4ŒÁ{¯6¯w¢¢g¾Kd£XUÂó`ŽÎ{D,ÌÖT]}ñîîõ{Èæ£0¹dÛ¬c|1+g„ç>&¬Bv”­waLæž±Óª®d@©Å™Èßëc ·Üýñ~˜²RK-µÔRK-1×o¹í6÷Ÿ³¹QŒ@r·ŸxÎku»6Yÿ?[ñ{èo «!ꯛúö…_òùW›x õâ÷^õ"Ÿ5‰¡Nòî²Æ`U^KVƒÕ2`¬±9î°éÀöòῈ<«ë™Ê±ËÎ8VT•[~7‘ÎØÃžŸea´fœÍ"HZ4ÎSÿš åã“vÒ#¡Jk;áSŽãl¢ß^ÖØ»LÇeÞ¿g**Ñå2+afîÇç¶±ä@zÅ­>Oø²ïµ †„2ÏÌÔ‚Ä©¡±ëîûl!ßÓÙÎê°{mZd¥˜7¼®S’mcš¼ŒÝ âQáÇ;µ*û8ξ÷/p_wD|%‚dïXVdíP˱‰óo@óñì³øûÕfœ¿9ýmôÓ;Í÷à¸B¿lâs{‡[Œœ1nÔ€ ƒ™¡ð1yDªd¸0¯mþdò<%ï¾>/¾U“„ëk‡dþù-?‘±?Ö0†ÎÎSx†cô(ü×üük9²öå>æ’EaȬN¤†‰1š¦]Úrç'#ñjÊH-µÔRK-µ›»9ŒÇØf«;iæ ý&vœ¿)Gïûã[Læhœž@¡BŒ1G5Çê÷ñþšìI-G^úÎ[ðò†úzB‡/ÆDçÝ;Tú+°ú˜í¼WýŽ4óqæãÇd'}äóö×±åÝ‚xàÏtp¼³x½`È£A>‹³`wt&#ÂwÏaÄl£?¤“yĪŒ—~Îþÿ„Ÿ5˜ Æò q…nFÅæ“Ö$°l“æ~w2Éo‚ô…áFò–™GMæ…5 ĺb´;°_*Ô*žä}øj“¦%Áº°IÆÉ´%â(¸Âì4Ï•Z„Iß«ã×f¾î|+›Cµ¨}@'<µ&#õÏXœ…×ûïç%ÓAß…Ç+è­ê áÌ—T»œÎ=RÎsÞ9Àq.Ùóº?ßÌ‹OßÙ¼†÷šÏ½9“þÇ<Þ>„ƤòÚ[¯è p´%T ŒÃ¾ àjÜÉx„ì<®£yeö’eÅàþÌÑôد+¥ø‹0+ÅEq(µš$8_Žš¥84šóáÏÆŽ™\fߌSfó„YFß”y†ñ6ÈøföJïó.”©ãzl>dVýïFŽç:Äñ™-õA?ˆÄ¤–Zj©¥–ÚMܼF  ]ÈNãgÎ/ØEÕԃнƒ|ïæ~bŧ™gŒªŽåþ;ÿD7óÀXþ¡ÿ ªñ-V„”ûXk+¦%ãªRG7 ¶3¯} ˆ£°-3TÓš'ϘT¿DrŒ±3ÆIµp¦*åX1[ˆOkSÐÑ óá@™%A5± }ÍOÎ4{Cü 2ñÀך e¿›Ù°ç‚Øm9ÍÆÀ?—3º NsÔŠL¤*¡!k:`ν—z0¤Ü¼ß¸òUåì>© 1¤¨ÎvÍû584NÀ Õ+8ÞÉîþµülÜÿ¹sÍëËÏøyBõ6=ýùýB‡½ˆ*ˆŠ?oàºvpÞuœw¿EÙñÁ]w çÑ£VëL>¿ËçFâ? šï¯Ÿò¾Ò¼Þ 'Ê >Aª8†˜Ÿˆqü´þ”j§­X{¦L¿ê?¢5L2í®LjÖ 8ïù”š›“^`ëAßgd7¸ï' ÕØÁqv¯ù¬¡Ó¸ ×q •²»ìþƒï7Æö'â iš"qå¼ÜÀýLq¿ß}é'‰H-µÔRK-µ›¹õÜNOªMYìŸ1İëÿüáµLÏ#¬:t#ž›½ ‘g<ùGlÙo£ß~ôË=-1gu *~æŸçºä;ïõ=3`ýÜÙ#·:ö±Îe ýºûÿê`æÉîX={‹Êç벃¶Dž ÆjÅ‹\Tø-Ÿ‹nÀoZk’/ÐÝB<ä[*ë¾0›Æóîþ£ƒd‘{õ6Ÿ÷žË$óÏɲ>¾raVŒ‰A¿íðûTõC  qî«ZÆòÞ9a>ùß0¾ñùm~ðΆÑ*1_ÿEÖŒç‡Éä­JðσÏÓTèü;Ö]Î'þaB¿†Pk_ ’>Ñ\ï“Ïû¼üÉßú:÷êXYgœ‡žaÙx¢y}ùˢ΂ ¹þLÄ¡ndXöraÀ乌0þ³õ Œ+:ôÑo£ìuW™\Ç…íËï’2!â(jÚ¹?­ÊhÿŸÝ÷ÖX“×ñe<'V%4gËþxÔ߉Ö‘c4}ÕǧÁ ®µùÿßÿóæýÿ“ÔRK-µÔR»¹[“5ðë·yˆ"*à Îvù·±º=<ª;> ´Ü¼ysÇsÔ n¶Æ¬kèÓØiï<ùË=q'ž¯8¼U‚TÎáT¨ž¶]{„›™ªÝçÛ2»–mY{„;Ô*d† !Èg¿ÃìgÉ*¥Z­ú7°ÏR;ƒóÞ?ÿo¯¦¬ÔRK-µÔRKŒ«¶ÔÒÙò;<:}Q ÕÊb±Ö–|zžÿÚj×ïãy\ÆVócûøûD² žÀû âä5o¶ÉÂ#²õUÜJò‡y:‰©‚·ã]Æç6pœªlgrÞàwʌݞa=rAÜŒ—¬‚Fk†cŠþa50æÁéñ f™åâe.ómAæªr6ÆMK«ÆGèfœl:Jþ¼!ºUAȵ ùJ˜ AX™8 Žøœ!r9òˆÆœÜ¤ö„æ³³¿¨miU/ìûëiùYXÿy§¾3¸®ÔßA%µêá¼IZ6N$»Æ¦ô›õ£mðùRßÀõÅødIÞßäCïAuÑ+þ:Í‘OÔçö;Ð’}¢µúD/µHXË£ßfÐBk.˜ó üþ'¼ÿÄDÎoþ¬BÉùÌl<ÇSÁ×49`–€¬/ÓÜ3žV%±çû3WŠ\ªµÚs'C“ûSa@yžSÌ:»*ÌKðL'ÇOfˆ5 Þ=HŒ@j©¥–Zj©%Fà–ÛþOìÄÄ{1ý9=·¥Z—ä=ZŒJœ£L½ÚB&©ÖÀÿ-g³ >T÷¯ãy¾L„ñ3îÀýç7dã;íû¯1 «©í+âÃû‰ ºM¼‘;Ý™G@†XÕùoæwÖÿo{ï"Ùu¥ Þd#þx*AõbHÉ®Rcg‚Ö´«°›5e·Á¸úÝX^OwÜëíyÛc°w³H /¬2SkÝ6+Ó=6.˜noKl÷xT¢M·„Àת‹*YŒ†ÌòR‘F•8^š‚÷þˆ€Ú?Þ÷Ðùî»U’Ú¶îù'22^¼÷Ýwã|ß9ç;Ç¿©WpÿÐ#bëòÆØíÀK¤ÉN[”Ù dV.¼¦ù²ûZ‚)S¡=†ýC™ížFdRú¯•…¯ªX2r~ª0÷ë€!®A⼉èT¿ãMmõú¯+ Š€ˆõ«è"ù'ÐHžW´~ù˜w\w÷ÉôØÍ°ÝqˆÑƳõŒM˜1U"Ô&ëoUc^:µš#øócîÌwKócÖ¥ßï×ga9Ÿz~É¥ˆQŽ5$zÙ¿7fDª>”i‰5MYÐÿ.ÃåĪDQÚ´ê¶cr>`hÆÂ:ó28lz°íïkÃñôŒï×¾·ÇufîuKØý²Åvãg.yݦw Œ;ªÊÂ2bÝuïŸXóÌ竼®È²‚ùòã×2#-[¶lÙ²eFàŽÖåÇ%;wèc^–¥¨ZìƒÑþÏ pÈ4´Þ£ËöË1æ4‚¨‰œOI6ñ%Qä«6<â#R®5†,ÂrN$kŸž*ëfi¢þ-=åOb¿ßóßרæR»œ¯ó ¿ðîíCØþ£/á8s-{Ç?…㜠‚x×ýü®Þ÷ŒÍHò¡Œ¢Üɉ€Â‚§²?…vš# ½j‰‰ÛqOøýó£¿_v8ÕNfˆó1b»Ïxµ¬T102< „µ¦`‚ûŬlÆN™ ±Œ)KWÂ&ôœ1 <Ý^†b“çQÈý˜ùã¢æs5ôûkwCÑÜ/ä¹hç` “Àí¾€ëyŒÇD«¹°Ý&ï_BO¡H ‹d±GÕüÞžùSæËÉ’gLûȪ ïq\‰¬Ù%PrUˆ¼ÙUs*]B)CõA[îà{;þü¹+ÃI…L›—:Ž ÿû©Œ«åb\ÆB92;“FöWÉþ¤WÂ|ï¼T=ñ¸?~93Ù²eË–-[fî8 FàÐ#öžªÅ²Ki©ô¶ÏŽ{E÷¥ðZ?²1ÏØ˜€œ+ðË´‡›=Ï=?`Œ¾d{ç)—ëkÎyÇÔb‡{ŠˆÖQJ6°ÕçÂ3ž0›X Ó*Çy[—KÍ ìåÒ´ê‘=>䧇Ñj½³vÓÜÂû ÿœ$õ4DgÀ”Á´Û§"íÖVÈûG¸…dG1_ÉkV3bÍ<Ÿ¥.Kaš™ü_uˆ<*–’ÖlJúÌ[wGí¹P&¦"WÕ— b÷¬“o¤+fH!XaZ©(„‘²yÍ:wa`¬§ƒ1'Ò÷>bÒ„AÀ|˜Ï5³Î¡›1Ù@ìø@láÇs³ñÝ y?6÷áaŽæ~<AÐ̹w"wCº:¶ÊPp¾ óó æÏ9éÑaó‹ëϽ¾KàI0 —JÉŽ·*€Ú¼guÇÜw/]žø®c6L'e]žwa¾GÂ0Œ‚ÇF«wZaòŠþçæÔ=ÝëÅ×<ãRÉzÀßïW_ÌŒ@¶lÙ²eË–;ÞçuŠT«Æ,©,=gÉ’¤ÒÓ†÷xƈÍîŸË7â—iÌú?ÍXëü©É=óÈ®D8B °9OZbØS©§µj€Æ3G~_æ³ré™OT#~à!l+û×¾ç×±½…è𽇀@ž±lphuÏþ¶{Îùûf]0Y½`9N¾+a¤¸È\ä µÚõ—ç &§}ÿ—Þ!Á\¥˜cdþ¾šs²eË–-[¶ÛÛ!,»Y=(s¤zÀ²2¹¨'jý›%öW 2ª7ó ø/ÁÍ Øðž<³ô™ul±A(Z±K¢jos»±dÙ²š O¹„jŽ>ëù1B8Ûx…K©2W±æýà÷oÈ'öQ ¢¯‘iИ?•Êpü“U÷þ¡ êÔ@! ýõX7O‰á‡ËýÈ<ˆÂžå0𺞩›ª¢ÚÀ3*Aú³ààz°èG’¼/¬™ùó„àÏÏŽ£LÇiá×K‰ØòT Ú»ÄU¾Ëž}Qô/ì¸@ê…TYÌ÷bŸ×³ùˆç±ûs@‚[ó’ãòêÜÿ;¼ÿ¢ÜÏ‘èìý®ÏA©$çcë#ÝëT»Tö`. îŸuü–saŠ‘»ýó‘ã_ûùDǃŠ¥0UzÿË{€´_–\aš8?ó=è1T¾W€*ím±·Ÿ‡‚âßÙöóŠº`>>#ãz="Ê;w<Ó„ïÕ Éå GwÝRtl99è_8߸ݸî˜)™ÉjÁt˜¯Ô ªpÉ®¶\× ÿ>„Ü}0[¶lÙ²e»­míç?{ãú»¶þžö®CP³ÅçÞðldzü‡‚Zï©Dþˆ‰° Ó1˜K_Í7â—iŸp!xÄQ«bÚÂ#­½Æ¿ŸH ‘¼DܤïI4×ìtÖII‘1ÏC5úMÙ‹LW÷zû™1l­ûj™sˆñv/Ü`¶¸˜Z4«ZŸ‹ H!b%c0 ÂõìÊ‘…ôhH)jö¶÷Àk°S‰±…>ÂE*±÷ÈLs;ÆÖ%Ο)÷Ú¼b6v4‘jŠJ˜…T5F¥ÌV?ž©ãúk\?¯£Æâ4Î9 ¡_@.Ô颛G_üC0øünTiœÄ~©0×°ÇÇÌ#tƘ[¬§'ßñ}Ù3–ccóÆ?¬–aOR!é68ÑÞ <κgúÈ›ò NS¥n;RÙ~vûçcÕÏ\9‡÷¯¹ëÔ.Ÿ'ïÁýxÝ«,ŒakýóÅÏù3¶O¥Ý…¯¢ ª_¢9;˜1w‡ëŽõúuN»Ÿ¶ ŽÁÂ3]qR^¯ùþǯälÙ²eË–-3w¼½f¢¡ÍºÉßÅÖÏ ÑîiªxLà¿g1ãËùFü2Í”ÅÄsÜ¢’UÿÃã}óâ —½'±áVë‘0ëWÿˆæ£—½] £ÐJ-³ÒGD@ì d­Y݆@×=â#Äk€°Nû®ã·X,+|¾Û‹8SLFÔgï¸Ê†1GAŒƒ2©žŒù«¤g)Ï]ã¿¿ ¤5)‰Pv3P‹rè)Vý)ö‹×‹¢¬Æ®Œ±]Ój—ª Γcû…GªV H½µå®ɉ¢ÛiŒ×…Êß÷ZÆ·åµ±)ðùžAz2T¢¸º‡ª÷ç_Äs\ƒ-2 @vRg¿…qº€˜´Õ£Wþy!C`]k?Œ_ýöÔxÚ7¦Í«ÝÞq˜&˜(VK”­GÈ2eªdVȼ,v{‘°1¬«?ê^´ÚÍžÿÔó:— ö^é9!ÊÖ£=ÚfÍ=/V5”Pldn^ÝŠnÏÜ35rJŠÁ®Oªn†ýŒŸ1„Ç„‰‘Ü…Ü}0[¶lÙ²eËŒÀ×︫Ó¨6à‘Ñs¡ËF-îËý«Ò,o‰1'€Û]’ϲ{T?‚;…¨sÔǵïvÿ¿çù5œç·°ýíÚµðÙ”#‹#¶4„”Õ&Ь¿Ͻ¢R"®?ª[Mt+yPq±dßè™xÚâa3 ´F2»H5—="š¯u³È8 <¢)±Ôew<éŸ.Ȭ`ÿï’HsÇ{ðèÚ6šû®|ˆ‡Ÿ§V·v©Ê‚tÓiùn ÚYÿùÚvð‘ZÔ%Lëõõ> ˆ’b!uÕÑéI¶}¤Û1íTYPrB›¸.Q>´ëã¼ žÒ܇ ]íaÆÁÇÖKc<" ’sThŒW”Õ,÷Cq¼ÓOuÇÛ{È#~vu³.­gX erZa48ÿ¥<$ÅDÙ|’zïV«V1‰ù*LlÒ†ÂÈ$æ¹*v–¢³Q·ý§Ó&ÎGs+T¹²•\#Í’×+¹ß † ÕÿK•ƒåÈ üuªÞD›Z'¢þ÷‘¹öhu*I €oSóo…nå^±ZÌïëx赟ã¬#-[¶lÙ²Ýæ6p¹i›û¬è!lïy1&L)ué=Ÿ±hÍW‚|ˆ(&í¿Œº\0OÀ#ÚÂy_d,ŒF‹¬êñÐÇvëú´í<´“@þ§Ž°ýz‡`þôõþ®G–%«=$–6¹*ðËþ<ˆÄšzÛí©øÄÎì]j…#7¥¨dÿz"ít{ô+¨q{f‰›G:ï÷àÄ|yбþzrÍy¼ól±ßÏ{h¢L€BÑo©õ¯ô‘Ì×uA6GrZ/úö4Á!LR}ܵk («EˆqæŸ2Gšå¯Œ* †D·¹J8·?P&ó’U|NU½‘çÏ÷b›Ö«ÄÆe×=—ö êü—‚J•õ:©óðlÿ}ɸ5Ãþñ³ûAf×o}áE÷"Rr[ïg¬{"{ê]SÉ1rGæÂ J Ú—uˆLÇÌŸ_#÷ŸŒT#È»fúüƽ_ŠA?‚V½ZRUôkSTŠ˜îG É PýcF2^²[#p¥ÛçHª,õæªÿ~³è_‡£jšàŸÕ(7f&ƒäÆpºZ÷NaȦìÆ)=WÞLQdF [¶lÙ²e»míç?{ãú{î¾Ë!UuÀ¾è) ç=íëüZ?òؤ¢u6v‰£G}•d‡\G@®Ý‡X ¶{H{ ¤|žm3ô±É=ÉÒµ¬áÊgGï@è(S¥²OÉLÀÓ{šûO2 =ÊFÅ[ñÄAôœKìorÙÏ<¿A⮊gÜ 3uèDªuÂMØcסåþZ‡ÏÐ_çäšÏ "lCбðÛ-‘€ô…Æ"Bô˜om½Ýâd&Þ-¢$Zx䨞«¹!ŠÌ%[Wc|ÃÖçïPî§$!U5€ëŽbíš½-YîQ÷ÆÖ3ª‡ ã>’˜3·;ƒ ½Ð¡ÛÁöx¾$7¤ ¾*ƒÏQ‰™òÀG륙¥=úw˜¿. õ l·(¹$’dÌL›`Z4hÑt^´ÒѴ샟w–;ÑÈý“\æ MáFŒ€ä˜"àÐ#Ñhú&zÏ©y™`Ä¢çUsYù+R¶ÿWžá0FŒ=QAð¡ÿy z=ª_2¿ñs¿d(û™¡Vu5dþ(#ý.®{&Ѻ¶ò^Æ©•q.„ÑoQMðãœ#-[¶lÙ²ÝÞ6x³'DûžÉSê9ÕÞã´º_AöÌ>¦"û|·W±Šçm „¬§µ˜a‡<¿Ü! ÆÚÎ0[ˆqD± ð’y¶ÝççqžŸ®¼'5fŽÂÿzRĺéY¤®yÌÇ—xý¢ Åë²n~ôôQ¯Zaÿ_«W6Êžz¤Ì˜bÔl ;’å{*Ê-n3|Š^ç½Æ÷³×ØË*‡ÁŽGæ)ko4{ßÌ(pþî:&DÀƒLƒï²iùó>)s²Hœ—è,ƒ‡¡—i乊ÄÈ0”‚T¿c.ŒÂ¬iiw˜÷ëÇ#Á{s¯¡XÖ¿Ìó'0>.Èp½èÆùA¼?¼v|4ÿž)ªñ\QKßêå•9ÀübµÏ¤Àóu$û{}·— ÑlízÖ|müû 6ÓðOäxpûz Ì—ôêP†"êËõOu$DAŸ›B¤2ª˜ÉìûVÖ‰¨jj‘˜_’ýnÇ“X)óÀø¢ÿ9"óØÊ¼lÛ·ò‡ýŽžQ‰4aÜ‚Tב±Q&ÀæV¥ª8ù»åÄ‹è™aÊ–2ï+Véð=P·ð{{q虀73#™È–-[¶lÙncër¶îòž¡Ä««ò-f%²K!c[RW©ZÑZ\(’Â+s ZÉîm¤>Ùº’!Ë•HÒH³€á9~ïÏ æ¸»/ž8»É!7!;دt’.]•x²…Ä-{šÙú¦°ˆîQPt›ŠþkMOT5©S1¡Âë$˜çMO9áJB1ëfÈu]Æ¥ì§Sxý*æÉ¯­½Ýi¬}îýõŒßËë“„ñ°Ø§ÄZ£.{Š„ÅoS±ÏA‚IЬñaÿ÷MŸC‘=W©ºr ’¥­È¶Â<Ù >'æÛìÊØÈuJ¾!Цܬ;aðˆïaäê<ɬü”>‡ áRo™ˆ‘2k¾f×ÀA˜‡ò<¤˜Ÿ ϳèDʲ®iV»*LZŠA"»<ôÈåi1⺠9 Æ,EU+¾:¨X 7 ¹Zï)ñi·Z¹¿MØíeX´@Tµ£= 4 _UÔ\·¨êˆ9ø™kžöæHådhn2¯b»gZÏ,jJ‰åˆ°Zƒë(‹bû÷ï:æóŸŠ™Z}µ‡í®àüŽáø?üýîõƒøÝûžÌ9Ù²eË–-[f–U'2†‚ÖD´Ø-ö¡]Õˆx¥Û”yôÈ>à=qC¶’å^Þ$ñçÈFÿÍ5ïy·Ûâ"ÃSú2þÿ8´ÔMnÂã{'vŠ…÷ú˜òÖZÓ‚¼À®Œ@–Ó×è úºÛ¢H0쎅Åz‰ð5«¿¡‡¤T â¸ÖýHÆúÎ#§¢†â`@ö‚ÄJ™ß螺P \©h–ÈÎ.R7D˜ÍY(¤€]ï¢1óé99¥0J’ÛóØ'»ñÿ ®{ô4 ËÇ0.Kìö”õ&³¨ÈŸˆÞÆñŠ_`´O»!fÑ0†€Ã1K0š[ˆV‘ÿz?¢meA,Tÿ!ü5‹]™*­ (UáUþˆœ©W0M0_d\÷…,À †«ýÓ.ÃR )êiULB#_³å£œal¢ÜˆT!óãWKÆüí~FŒ¨Ü}peÝá~F¬ÿ/wðý5w¿¯`»ßf®to˜ƒs‰ë$Žÿ œÏSØÁ§±ŸqÜ÷<›lÙ²eË–-3ïÚB÷Axäí}×çǬvC Á{¤ìzU¢ÞýÂ}ÞÓ³ž½Ä^ª„gªÌ‚i)›‚ŸWÞ¢òÛý¥G¦Ï ÒK¬wu7C¬ pu ÙšæQŠ^=t‰•òÿ¬øög»×ûž…çv™ž»ïwnH±CÆÇÈêfÛ°ý™?/ÕN/%ÖÉSùtSûîî d™è@;îïc#ž/s1Γ‘ÁçƒaYÿÇUÓ4•:ïmçч°#ž6c£Çú‘ž"°B²†­Û› ìHéPb“­ÆŽƒ FÆž%¶Õ£ëù®Ò¢WfŒL}„Ø&cÕ@ú'¼ÒhE¤$×[™»ãïÓtè·S…ÿÞó'ºíN¾æèNÿµ‰,ôŠÝ<òm†ýãcÏ笟9)SÊwR×®×$F]GLŸ·“xþöŠ­Q5Hµ‚¨Kt™ MbþÎ=¢­Úën<š…g.ƒèØ|“žM"WI©ŽB²ñU&ªöIm/ëq)Ý™cÅ®¢¼Ž1î˾(WFÌ‹žþzÿ|Ôó‹t&l~\wçaÙýXŸ¸ncó!<7èZ9–u˜Õq¥(‚VÈÍ*Áüî‰͇ƒŸÿ&ëdË–-[¶l™¸þ.T ˜–ø†GTc UCžeÿÎèÁ$K¸Â`=®uMÒX›ô"°Ü©Ÿßúæßwçù bÐÖ·^ú3O¤j€±ÇêL6gÿnÔ÷7`BjéÐh« ïF™à=6óé±bÿgë>/žåˆ1ö,£¬Uñ¼UO€ÈbD½…a ¹ì®`$vxœ@dÛݧÑÀkʲ=D¼x»L€vUìGÂñ~À°Î¼è÷è#e@)¯ºí¡U%zéñÑ&Û¿%ˆÔñƒ S¶“çX³ãr^ÒMnóŠ ›{Á#æð9{œÅ÷¿†í>CæðOñ¼~hLZ‘˜*1– ä¯Ãœèº×HT*«Ý¡<ßË®‹ž‘4?É©²ªù~­Õ*m?S§Ýèla½ê?·î<ÿÚ/b²,v/ŠŸª Èøʺ-ë16ª{1”ulæ ÍIÓû`Lé\Æs]WíÞ©¿[³Äõ¿øz=ÁXlƒ4f½ÿ9ãó}¬ÇœWcæB@‡%Èý²ç¹l§ƒO²"sþm̃³øÿY0sòyÅq>öRf²eË–-[¶Ì¼ëWîržìÈúŒwžÅsÌŠ§ƒ4óž%cîsÑúÛuïÁɾ&R0]»f `wCC4ðxY¯ÌXt)Zêãßâø;Øé(V‚\#](æ¥(×I¿éõ¸²¦+*ZÝ3b§Æ(ø,þSÇØ¼^sbßßqÛ7õn¯'Ûˆò †ͳoûï[ÌÜ"R§ŽA»#ûA•‘ ÄÀY§Lž¹SËéØöÈühG§õÏ_ßS›_I1ïG:Ql~pcÄ·ígvJéŸBüQÝ{ y(’¬<¢á~Æ@Þµ Xê"éMÌÃýÃî•ÝÍ"¢ó9cyÞˆx¦Ç‰Îã¹ÞYÑ}"³7÷ó¦Å¼©¨dxàŸ“VÖ«VžïM®sÒBcËQÌ[®£H•$êåµÇ"ãH/ô#j­2ˆæoB7 NÅÌò¼pu?S’b,•iñ÷ F!•£;-ÝhYcÈ¿IœÆ"1ngÚ„¨.¬ZÅ L±?×n˜­g®ê21ßu17E»«bÿ'Ùûÿ~ÇûƒÌdË–-[¶l·· Þì±1`„zü½/‹6½h¦S™Î“DÙOc&'©(žb-1C:žqP è38Ÿó8î×~£{ýôî^€És<Îßõ»Ä ³ÿƒ×<7Úº`íúqÒ)""쇅ñÌQ¤EÝz|T–bßs"¢©2$¨^0äLMVSЃ>¶TÝë¯Ûο½¶Š Ø¤Ê!€Ø{& •í7uÇ}ЉŸ±£g.Ê÷12Ë÷^\çUÏdØþ©Ø¸H Éš·ónIl7¥(¦uùö\¨ö¸"E+€—˜«Ö±§²š#ücÂHH¬•×ûö÷ëýñþ,^ŸÀöÏ<Ôóg¿×½ÿãCÏ8«¼nĸð Ïöotóââ³Ýë“w®õ"éB×wëš§UìÂ'ÕA-Ϋ¾Œó=†çíZâ8bVõ”@ÌU¤‡‚õàG»n¼uÿ†ˆEÃ_u¡ú$)»èŸ§ZoûMԻ׊4ñÛó‚÷ì)Ó&ôHL‡C™áFìa?òæözþ>œzûyÊÿ_SmÈ|OdÞDˆ[)”y‚áH=ï2_lü„A7†[rXì¾FÝB±"öÏùÓJÊ÷U]{` .‘¹×@¶lÙ²eËv[ÛÚÏöÆõ†² «èvDú”7<—ï#†ø ³ÇïDÿ8<•ÿÅ#]z.cé^ØâûÅ¡vÇyh³;Î9h08M 1ÏSÙ|ÖŸïÉâ{¯ô3 <Í*æñ»ó={-0öÃìÚƒ]çÉ•ØÞºÎü÷*xj3)²%¢£®ÀÂ{†D d,ö¤m±w0ÌgW7ÕèmU¯µÝÊ}³ÿKW9뻾ð÷ñ…G¦Œ•Õâ)‡kÊL¬¸fAKVµÖs¯ÒFz=Ìû?O*®¥†ô樞±ÒÐr«Ý¹j™­Ð\ÈtL |ù9«sÂûGE!Íæ9ê§'`Šx¥"Ü™ !Aè•jú«ÎCb<[å²*j×1'Q¾fåÛ~ð|×’;E>¿®û•µ^d¯:Q¯ U‚LHr_jÑgi´ûäŠyj ×ñÄyj@qãû 1xŽui=. ˜ǪGÀôŽŽûß‘0ï?Ïj(ë…v×Õ¿V‰¤zÈsŸÔÐñ.å}›xn+ÏD×£U Ü^z%´Â`šûu€9j¯¾–s²eË–-[¶Ì°û "”F³‘EAÙ›"FxvÝ#Æew%ïé·©•Õïn{Opæ=ïR4ëÿÓ=Ý듈‘ ©IOÅó´úbëžvÝhW@«–uÿ»½ÈÕ<}\WÙz$¯Ý£‡0zÜBª%Š~$CoïqQ$/Umé Nõi„ÁXê¤H0ÒÍÐrlŽäú°Ý¦Ôoðþ±÷éÿH €ÒUîé^?ÅleéæÙð¹ƒb• ÏÏ}NŽ!q©n(YÕÀñ¯e|„Y¨¥Ž;RäÓÜíø•þl}býüA‚™Ðúuy~Z˵ðÌW­ Ö̯Ÿvÿ¥J«iënbš«"jÔmpÐ?ߣúú ŒJª›£æH(qèï?«Ä”±­çýÌŽ*Õ®j¥R$šy¤¾É|è<’¬ÿVt[”Qx9]gñûõeÌÿg0ŸöŒ¥UÈ =Æ@æŒá9~U;?~%3Ù²eË–-[fÞõ¾»¼g®]¬ÚÕ¦ €˜/•Šö,Ö$ÜJ¬V˜óìá µµÏBþ8<™Éß~Ö{ˆâýh2ë5Äî‘%LmåsA…hTÖ` ÆìY¤^ZVy‡të¡t¯Ó~쉮ŒŠ4ÆèØ€hŽË~Z¿ÿVöcÈxÝÏb‡wúá¯_VäÜﱇpûM“ïöH` dI]‹‰Ü'ŸËd]æJ`žÜlîñÝþë[xä®ŒŠŽ[ÔµŽÌ™è#´‰ý+Æ)õ=šö9/4ky.×ÁïaÞÜÏ?.¡bžÔØñýØþ'@*#\×9>‡ØÏsŠ$å›6´ásÿSAš­ÄÆ5«Ì@tŸ‚ Ù¦|“Ȱ”ãs?‡ý÷ÇvÃùÛzäÖ&´éS †c܉*‚®÷¯CUâ¾ræüVÅ¿yÿ|NBdÕÐñƪHŒ“vW¬5wG²ç«¨grjÀ –ò>ê]‘R •ç¨]õ¹îOîG%Ï£*_’‰##jÌŸ0‰EJi4Ñ}Qùeu[÷þÕÿEf²eË–-[¶ÛžøÕ÷uÝ›ÆkÃ/;ëÕÓÃ{*tQqߣÆüI¼¿ }¨5ÛR—¢»PÊï¿øã\5-[¶lÙ²eFàú¬®pTŠªgÒÝ­íGPËú[Äf ™ßüÔ+é5Ò¯;ÒȦa;Ó‚?õÿb?¨ÓeÌž1̳¥xŽ ëõ‹?\sùXb3æù*‚«éá‰v?=Ðul£zu-ÝÙíç4<´Ot×ñè&ÎïÀ{¢Ìî®Õƒžk>ö¿æbŽýI¬i×·@ÿÔŒ˜ëÉÞsÜLóóar°-À×mŒ‘ÌW"ÿ¨‹"÷ =©RÕõ¾P¶1Eˆ"ÑWÝ.»õ1[\t&šÁ d·**ýèÙí î»u~êŠ>öDó½0Íw2,Ýü=ƒíÏ7¨ÎAt*j6Òµ“>þ]çÅþñk(»gI-]è,/÷GëÞ+QÐKU‹XŽG{cdõòýë¤ý_êæ•2%>©c/RóLzž4+ŽªXRúºÿV˜M©vМW”’Xg[í†Zô3dÚóÆr„(ý •dÙkÅr‘‚03©ê!¹OÅ EJel"Oª˜Ð¢§}ÕÔ¢$X £åêeáH6òç3‰‚º E²Ù#%·TÖ¿*#’˜y("ÖX{”}±hÖxáçëk¸Î/âÿ—®xD|^ÒÛM ÁúÜ뚉u¢¹êσ±e>p–~Ô´*÷ªÈF@'é’äUƒ~¤½œ~Ýk¥kàÞ_J”Ïh 8Š9 Ó¤TB­Ý)÷3ê:˜ª^ÒÃû×÷‘ zËiØsÄŒ…þëãú"8M IDATøˆÞïÛ4¥Ù?y°y Š€…œÇOå<Ž%’9E¸1Íe”ɘ÷3ƒšãaˆ^»Ê8NOøu°•ÓçÀ@þã÷2#-[¶lÙ²eF€9ô´˜}¹d‹1Âà=Ç)äÆ'Ö¢§çm] Å“g_ò‰hy›'´yÝy.c vñ+­/=‘ˆ÷tAÎôëDö5‘ û²ŸAuÁÙÊ3ô°Ìsf OÎkENÎÄ÷Ô!0*b÷ÖyA…Dýû-NCÖ¢Ieÿú=ãT]·Æ’£în¸þǰ_æh°Ù¿ÿãûè!|ó‡= x<ÓÐf¬ Ûïa^²ÿö×¥¾ú’ä$Duå¡I«6z„Åx@©"Uº‹r ˆTSÔ•*!Jl:$ö«ïUÿ@õC¨Ó`ÈJ5éõùn=S¦YÛVu†­Õ:xAV…hÌ+£Ã1s¬ÇI¢j!•K 1ií¡È/B¬ë‰ãéù§z HîCb0ÿ¾=õ«õóÇ· `ÓOQ¤*L™U#H®„Æ´“ë÷Â3‚|¯‘n´#a:¦šsfë‘芄S’RDÅÍb½Ÿ,¥Ú¥HUgèLža¶xÔ¨Þ‹.ûù=]øß¥O ëåä0wî+2ô5˜ùœ#-[¶lÙ²eFàëwÜÕ1›‚`j‰‘X •®˜-_·ýµv KÓl\jîSYP»_©‚žfû“™PmìÊ¿*å¼mRq±ÿí›6Üvû¡'Æêƒö(c¤Ŷo oÞÙïÖ€žwâ~i¶®yúk•íû¿é‘ù¿ ˆˆaë O¯‡O öüœ(wÂy3¦=–ûHf‹]÷.(RKdGšðZ-@†ê_â>ÿ•0PÚÍL‘gJqO5éÅ"$Îz}©ŠÎW÷Ÿ¨×·û/±MCÈòÜë8¦ê¯ ’Û¦`Øÿš÷H1Ê‚çõ4Âøa6Ú›cH‚tå+ó¦”çI ›JºiAFšùRßnLjªJeè瑎ƒþõaÆÜ"ü¨§‡è¼˜„ä`DŒÇ_r`”Sƃóœã0•8ÆÔÎo<þ…0ÈR&ÖÅ÷õ~æ(™ë3ëÿž=Wò<ŠÒ%{o”¸°©1àÈ9ÛàóºBá;ëé>ñAw\öðy5÷È–-[¶lÙ2#pýŽ»ïê÷ôDÑͲßëó qd3 ™H\ʨ„Tâÿ¬.xˆ°úûn¿_BwÀJ”DëËW;ÏæñÊw1KA;ôuöKOžÑUÄND9í <ÑóÞÓo{¦®À&bQdJÔ¥[1|Îñ{ìžîõì½ÝvûßÕÛ’@þ){ÑÒoßnB¹N5ȵ›š1'ï‰GÊZAÆïÏ`üY‡þ bûŒUŸÃïÖ.~Ìf^÷Hh"ópÜúîyœ{ ” äÉëÄý/®$.™Öõ*Ãp$Ï™æN´+©[uŠÒ¾îZ¯=ó;Rfãeq‡Äy Ⲙ¶v§ÓzùcA¡] YV¢I¿¯ ‘Ú}0¥/U9E¢>?ªº8î™Ç¤"eèG¼DØì¦W Ò¬U'ª{ È±ÒqW]©Â¨…ñj…)µÜ+ QV—YŒ[™†”ö¾"ò L®/2n‹7ý—FÖ—u9þ æ4:®êp„þçÜôvXÕtèç…êÌD ¸PÅzbÞêú¯lpýßÁçkŽA8ß› Ì%˜ñùê¾÷êK¹×@¶lÙ²eËv[Û „Æ¢`U×ÞÃ2OY‹åk;Σn$æ²?O9ƒa êIÄ„O¢úà$ýð:<Ô5\°¿³÷Á3¬½¬Ù¡Æ°^–Ý»<“ÐÞëÂù«Þ3dì«¢Ò"½eç2Ö„>–Ë¿õsç—næî¼ ™$ê\Ûhêߢ1ë{„ýO‰T‰J<~ëj5ôZþô€-»ZbΪ$IäXb¼³/îóõ7‰ôg~p~o€ó{ÿ?Éî˜ÐxPúwÿÖüÆãn×OÅJÎ7äÆ`ÑÊníyÆ¥M$u˜â™Ö·~\SˆÁê嵊 øqkUëÛ±ëãIeØÊs"Ï.«YÁ<É÷& ­«.†D´Dˆ¬.R-|ÍF·zjÉqPMxE„Dêµæ~ýË]TU 9"‘²¡v øû!Hù#±g®GTX-´D»úÍüzgû¿ÒÏŒJAæ $„áY®_2nÃþëÒ.„SÕÇ(Ì^BéÐa0¢j(U8•ç9ºž™gÖT92µjÏ./ÌòŸòw f¤½ÀØ8¡ºìy0cä¦-×%2ǙȖ-[¶lÙnk[ûùÏÞ¸þž÷Ýå= ‰ùV’Éìú:ÍúšGÄRO1 ôx1v‘k ©ÿ„fy!]äÊÃÝ^ϱÐX{"ûÓÒðùiœçxR•ÔáÖâÙÓ®ö?» ñ ®³½¶Û‹õ7@­G8c9îì繄ƒm¦Ê_‚”T1Ò8?’çA©íF(Œœj”«B_;O àa?b× EF‹q©ÖwÝü8Ïy³¢ëb‘R– ÿ"Á¨˜–>¨ãòü(r]÷HRe,LI.$;Ÿ_l·_ô3 ꩇò&²eß_wÈÌb ‰nˆE‚™)eb5ÕŠÇ ég,ƒö4$«ÝU?#Åh…#yØqu§?~”½NÆM”SoV©/ÊíÄj913™¿Ê0¨&Bcßæ7ôVÚC?^Úe6óe½xU¹VÖ÷VîŸï ­×Êçÿð~lþÃë8Þއ.¬ÓßÄÿ…‚­éœ£5÷Ô*‚àïKRQ1•#ÂãZÕº1Ì~Ý6'‘äAÝÐøï±ÄTžÏñ»ô?¿˜lÙ²eË–-3ï:Ù1#éÛ¤¯z³HxŒâY[VxÂ7E¤¹÷X&ÒïÙbÏ¡ßÃT%4õ¼øyD¸WY7ky1vÒÌ=ò§@@ÁX)=4Ʀ/ñ6žñ°zelgÙ–] faƒÙõÈ…€G»ÌŽ¿Žó^sÌÂ[µâ˜äèýÕ:bA ˆt$‚x؉œŒB²ì­Ê¤ÞîE¬Ö¨ @9†Rãó÷ù,ÛȳO!¼E‚Ú˜÷o®1S›Ž‹€Ldƒ·«ÚFªr*ΩbZ"»ºÐ®’­nÈHî‹öEÒ ­Uþ²=°,h¹ÎZ±JSÈ>'2 ¢Ÿ]VQU 4ž¦tV1íŠù”ÈEPæ'ê)! tÌQˆzb o<Ì„¡«g‰ù•b%wÃtd<´gM‹óýž÷³Ì¥²n‹>çãT¥b(öûQ2iŒ©3á÷ñæD¼àÇÑîÿÐ3¼ª`©ëŸUõ`Ü­Ûg›` EB[ ¤Ó£uõdí§öÁtNeýúðhuÝÝàéF÷;xæ•îý_¾œlÙ²eË–-3w@YPµÌ#™äêÚH}eÔ½K²É­Ëc!“Ôºiõ˜D[ü4þ}Úô^öùêÒ¿ò!ô.ú˜%³þ/iÎðÿ<‚Ô¹~ç{¶ñß›Joöõ®5˘±}"€ãÈzŽê~Áˆõ ¿U“úxCNˆq6~»¨k—ÖÕ 2®$$R€ãö‚Ü*Q²´ùt^%F¹¬£ÞvˆÈº1 ãÃêŒV”>ÂÜß?ÊâM @U K!;?9N«÷+ÈýOõOWFâZᦲÂB³Ú¢æpShó×eú!øþDµj¼ëù¡"†÷™ß‹”çýLT²›b‚ÐÜ‹ˆ Æ$$”mÞ0×ãH³”NÀ ñœÖ2^©y û•Œ uST0bdLYïObû ÷&ö² ÂìqÏ”`ЍËð…¡Ï¡zÇÿÖ§Mè×<°íxé×_›'ZÅ úòüGDÏ<ñ{%]wGª‡AŒÅ™›•Pûn¿Qn‹Ý‡nû}T#TèR8ýóîó3tÿÿË¿ÍʂٲeË–-[fî¸ë®þOý—[õœ5+Rb'ý¶­*Píïuï¹²_ýùÚ{ræÙž…æ,úi-ŠaV¯^ ƒÑz$2†ÇE%§-|ý’táSô`uÃÛ9'ê­[ÄÄ— y‰^·j‰ºþTÿúHû>bîÅÇ›úÞšGfŒ9jÖ´zÚRGKMoöÝfÝ-ª3"xúuŽ—Ô¥tó1é¨î>$ݺÆØÛ„œ]ð Ï?¥$W¤˜–¢‡ò äß$îcèG­ö·ç}"µž RWÍXçD “D®I›b×9mür!÷W•á´T‹_”ùÊÊ#Ø(VŸ¨. mzí a½Vô~$^”‹¡LD"[½R=€¡ÌSet牶Mb~q³{#îû&s›l¾É×þyäuœfù‚¬Ó ÖÙSìÝzò4NàÿÀuìâ¸Rÿ_ã{ ô,‡‰óåqTq="óKºxÖÒ3ÀÖ+y~Kyþù½a]šD½|v=ú™­¤îB+¿_ÌíÝþ.ŸÁýø³Ë9G [¶lÙ²e»­mÐçéEÙáà_Ó®Kªõ}\<ñ¹G¾å¼¹X¼gìµ› º´ï†öhþ<é9VÕ~ò¬ó< vˆck時 –kî< éàýEEF‹~f+¢\'õêDŽŒ“%1ÿ¨:€ÿ¯û¬nÕÑËÿ[Éž×nfz>ɪ Ez©n{Š<5 ½é¿SЫe8i*G¢MT˜Ï…)Vu_³uAº~êx‘ySD<ðÌG+ÿ¯šéçŠä£q&¨I1ó~fn\úõ¯M0@:,šÓÁuÚbþZµ ]$e='CÐ kóO»ÂÝõÌ'™ÓÆ?ÇVíµîïçt˜£v7"ñšLáŽC܆¬•á(ûbnÃT×Á Ž3æå`·—!bσúõ~fo™;ãu^ø»ÅœŠóÂÄ5ò;Ê÷dÞø\URe0šùÏ•ùy ¸öJf²eË–-[¶ÛÚÖ~þ³7®¿gËçDÊP©X¢ô&ˆª´žUcOⱌ¥Î¹AVþ1Ƚ«Þ3Þ„2ÖØ¿ F½²Yï÷¤—uß^ñ©AÌ©Dÿé1/©OÐm_ƒ9¨®úñ±˜ud¼'2nñ~”ë;î{ÞLYd7?®ü=ØÁð¬õþNÙ:µðLH¡Ýs±NrçºP±æÌ¯Ë–û ëó:q^`@#åGé:&ñ#ÿ–½pý'ºý>|÷ ÇûØ ™È–-[¶lÙ2# :–•8ÄŸBöpUX×?iû9É‹†ýïÍ£¤õ)_ÒÐ,îRÃÂþ >?GÄn}¡©\µÛ{ž£¡G<ªí|Jbÿ¦7Ø ½ p–u[m;ϺÆþÇìÂxy·—Á($Vº’‚ æŠèž©dKGzÃ# «·-äºm¾pÜw8mq^¸NÄ£:kËž£€í¾dv}Í#¨ HPbÊÿqÖ}ï·Ù €ÝÍ6<Â"-õ¯9ƒMÖ¡§úÕ§ô ‚0O’ 1%Ìaa½í·‰"\ÝÄ`ÙŸžó‚¹uj]žÆtH·WðÈ<Љ C2Æýb6uÔU2ÑMÒª4wJ³²éGÕVŠðýÄÏJæHª¯l½Så¿@ôó~&D™®ÏSa 9Ñ‘\¯)ø ™õ߽ߛ³¾ûÿ§±ž=üL*{¸|çÞîýÙ¯tß?ó‡`°ÿ§Õ>KM¬¯Œ±^Àîƒ0$IbN”Ç/w¯'1¯ž[—ùyèuM–¹sÈ >7ŠÏ{ªLÁ|©RÒ¹¼¯¸XYŽT·žýãk¯eF [¶lÙ²eËŒÀÝž0 |E4̲ט=|©hA©—µ$܄ƻ}Žï1›~ÂXfá‹ÖÛª¢[HtË+×Ci×ü–ï»:ÑÃm¤ a $¾‰¬R*žÁvô`Gˆí±n”aÔ‡Ý+¦-žWHŒºŸÝ¢‘h¥}#uÚ©§VÏ»ž%Üÿ±2!LŽ'µÆ|SˆÀöçõƸS0-e±ë•(ÏEˆY˜ªR¬f%Gˆspcf$š§K…FÍ.š› HðH˜“DuC%È®HÜ®d—¼âÆãg±Ö02nšMŠ9CÔ‘\Õ+QD¿Ônßv [ q'UIP®/ª"XôÏÓBuÚÄ}Ÿ÷3 QŒŽ·ê^„myž¤Ëu’Õ=€áƒqœg°nN…)):FÔâùù¼ÿmìÿûÂ?¾×=Ç-×üú„ï}ûÝëG_ë—itæ¸ÿ½ºˆæ¦Ùõ7ýÏg‘¸ÿ§Á \øü~ð¸d:Ñev³ðëm4î¥×x =Îò>þ9Ðñm¤«ï«¯eeÁlÙ²eË–-3wüÊ]ÞC‡Çd½T‹9x3…”ZÉæ ªˆO6Ò—ÜC¨Üoã=i"ÆÖY7Ìó®Uá/‚ÄÁ!ëF²kµ›!ûZt3l‘Å^À£k|¿ë¯c OlŸÙ­R?kžò2.þþým2ÇåþѦb\ÝM¹‹1s2F`F&ˆEÚæÔXc#LѲ+¤ nío.Ì’!RS˜S†±¹Ì ª?Tù-ÊÎ'Bš%¼~?¡Ÿ`È/¡›í?¥H( [ëêö5‹–®QdêŸn{:èûwÊÞš@z?7ù½ãâé.ü}R-|­÷6„#žp!UÌ ØOÔWW‚›`ŠŸ"$ET möBz\˜‚X@üªü&ÇÕ:z¯~¦ ê®9ïGîÌɈºi{éêvŠDE¿cÂûfÌê±×}׳HÓÞª¶=ƒSú*UŽk¤J‰ÖHõÂ#ǃH‹Ùÿ‡~þhýýi\sR˜sduôA˜Eí.yÙìŸGýõ÷°Þà|NáxßÂ×¶†ž1»Ÿ?Îãyï5DÜ×qž`‘CTJ¯„1Öµf¶ëÇ+øù\´ ¦U5óÊ„ª«99Öó„È™º Eÿó1 6¿q=DÄ`JÄΗó¦û}8cÊÝv—Pw_àóû¿LÆ¡ϧéþÏ3«‚`wC0„÷¿¿P4$ª3’ër‘Zù‹rCd]"swzî—ŸK¢Ûªª©v;Å÷NWþy8ùÉîõ¹g…!‘ã¿úrÎÈ–-[¶lÙnk¼Ùc´X¡ÿú‘—*oEYûô@ „«3UfáÚšG²¬#…gS¿_=Px4{Oá=bÚá*”þ]jÙÏ…w‰ÈL€¦Ì‘ "T» ±o¯@î7‹ÌSŒÃÍܽ7Ý—cH·È hV{›@âŠ\û½!_¾}aœ6©I$¡½ T rè¯7Ò5X¥E/ˆ˜ˆÇªO…ñX5s$éWÌ=Ó®bE¢o}]$½î_î¯ù%ZÿÌy1Ý j® bdÎõ1 A·~þdzˆUÏûŸZþ?–n‚—‚þ ú½ÙxVžQØcŸû#2…Ýëœèy"xÆŽýþ*ê{Y™&®ï"¾¦ðˆ—ÕL«.a¬x·ïñ “¹¯Zâü*%6ݰŸŠ§w0­(m6¶.z¦Î,éÑêÄ”ª$>/SÉÍb—”²"ç¥u¡”\Bt"XåÓJìü^OÞ‡ùKÝv{¨þºð_q]åcÛŽøº–žòç{Ž G)ëê0Á`™$æ1»¢ŠURSHï îB¢× ç¦ìÒzÌ3JÌM¸Èïq¾×ò{-¹<ã7ýNgF [¶lÙ²e»Íçhwí=ÇB<}ó”4k:ô{†EBK¾%÷3è<=Æ,›¢ó¼Æ@¾DLS‹Á^‡ç¶æŒõç>„yùn×,ôŽCý´Ê(Ù<ôʨË^¾ÇFUùë6€I$º!9¥Èýøß‹ˆñS‚Ktìÿ¼%îwÓÏäEzÆÐxæ2ê!¸îïÊþý¼µáÑ^̽8çLp«ŒËMöxÑjVO0×` Ì÷…à«Þ‚t¥Î‹)êsüu4rƒ^ý^f²eË–-[¶Ì ¢—YÀãa¶¢euS³\Šv9k¤Ÿ³!r"û—±ì›Í‚—ØP“@pV¿KÏ. ib?ï_¥´"Wà˜¯Bë=oÕ7Fzʃ]A 7§K`šþDz×B/äV%»‘t££G]žÀù †·/JšCbû—û¦šçA4²‰hÕƒö§oEá2ê[/¹.òjoÌ\,sdØ›bG¤ÝÞý E½èzRI šk¡ç;æ#¥?P =.ÏyÑÞ¡õÝÓªÄ<+Q½ð”ÒÎ>&ëì Æñ\C¥4#?­‹§ÌÓ ÷•óAb¸Dø—D?„Uì™Ò|ÌüØîk¿Néñ¿‰×ßâùKR cïâßgïE=úa‡ðÂõõCþº_{©{ý¯•y£91Q®O¢7C›`À”‘d.s¬Š !i!nlÇ\‰‰2[¢¸gJ`V¨Üº¯]ö ¦ J|æa †k¢U?P-¬Û©vï«É(<…ýb>7¢C²jýø~ܦø~æE¼Çï$«î¸û1®wÂn‚‡ºNlûçUdrh¯¾lÙ²eË–-3wü³»«¦4•çfýÎbÌ3ñlÞðuœÕÀgWšg¥Hâ&ê½ F6•ú^‹UQq¬äQïÞäû~Ï:Ü*#Àëî8O?f dÜ4æüõ–¬w-|LL5²[¹ß©¬rË a+ÿÛþ9(S†EžgíÅc=l¤*ÈÆQ™ôkòâüNþ˜©OwÇÝúWÝq/|¥;ÏsR¥d¾ëóÐ$œ-üNîñ?ƒþ³Ë™È–-[¶lÙnk„ð¦~ôTKõ]Ö‚mº6ÈÒ? å9©žR9Lª šõˆù&òTQŒY¡ôÐ6qœ‰ÄF I±KW´çUÇß½!‹úÐ߬ñº‰œ­•ºXÓ>g`‰0=3 Ýìô„£¾ð¢3ñ<Ͳ»ÉöÕ^Q75ñ`ͳ>”í9Dý½iû7 ¤=÷yª b¡‚‘Q-ÛE ~þ¸­t]SD®U)çSª2™ö·_f‚]0[¯$Xü*6{Ý#íJbí1;@`ÒC`è{TCßÅŒ’iÈß³ëF"gÄ>ë«2.:ÿ‚gmÜÑ[®@ë‘#ëÁ/ŠÞÀHîs È’©ØCŸyêì =fl»\Ès‡ÿ?. u"^2¸¯s}2®£>†uíô.þêpþƒ?ßò_âýÙ~F‰ó¥¥˜÷Ïë"Õ•R{ެè¦YŠâc3ð¿dˆè‹y‚è’ù:¹¦Ý å=³óß-×}MÖ?Ë![sˆ©hŠyήªì­Áý5ÏhZõA"·ÈRÑ„¢Æóö8ÊLN²êI»°rü†2ßDÙ‘ó•Š“—^÷ã9zÓ­ÊŒ@¶lÙ²eËv[—#ð¾.GÀ”£RYÈÃ~ÄÂíORÛ»òâæ‰~D>"˜\~›WO¯^5Îc“]ï.Ëõ0¦õSÍQØYñz³ŒAè‡6Šè"ž1ªÅÍêl÷†È,%rÈ ›;ø© {Uhdì<»zMRž|é÷× B´ÝLŽ›è3¯uöÑöü¿vÁÝ5UK\Ê‚ ’e’Ŷ;Æ­ âÈïo,ÌÀDbÚÅ,q~‰Ü¤™òÛ¶~ƒWd£rç½9&Íu¿{(tš"'ëÿŸ×ÏrL”‘nAºÖÛç<ž Q,TtŒYþŸ¹#éY1†ÕGÌâþ&Ö¯ÏÍ=“ÂíF•gHy<29ï“üß??ðŒ×Oæìáã¯bü?Ãù‰¬óæGJ-áEº?*boEÙ0ÊqJèfŒ„‰Öa†µ¾ß½ŒwÔR™4EÈ`PÚvG¾g® a$ÚÄóéµÈ:ÛJBTU‘¨ò²\Y÷«crÝ8Ïo\é^?³îsÑÆC¿ÞOæR­2ë_Sëų²`¶lÙ²eË–ëwPG@<ËšÖX¬jœ‹§QŠGIGlŸZôˆ9~á#'ó¥so÷2RÙó)%@9ÿcâ0QßàÊ ä.Ç_*J‰ržyŠ7Û{àÖ¬:îÑT²yƒô?Ÿˆ§]«’\ðH;… 4 ßôç—ÔÞ­}™'»†²—ëÔXª"ˆ8Ûßg·)„ä¹JÝPE0‰î‚V!ÌÍHj”ͬãµÞÏ”íW§¿ÖŸ±^vGKè]h6^'ëÈ­ëszjY_ ?¯¢j¡Ö#ûBbùpæ°°çc­hÎs–;уÀ^Ì­ÂsÿC0÷}ºÛß7ÿ±{ÿ4ŽÇn›¬Â˜HÏîŸ]ðØ%qÿÿ 6ø0®û¢VoÌ¥ ã&´Â#Ù¶îGÔ¦(¹BAªHhÊ`ؼ.ú™!Ó-¸¯2Ÿ[™ÏÂXèvÔhjé­!:Ëu¿sù°Ïû×ýë`Va ~/(’·…gÇ;˜¯a=‰…g––ë¯W}õ¥ÌdË–-[¶l·µ úÞÒ÷Å‘¶yBáKcw ³ˆø9<¦ÿ8›Å­^<¡ÅŽ|°{S¼Õºî«‚¼VY»Ýíg´þ;¥}Ÿd<ú™Z´Öƒx’µ(€Ñ£Ý‚‹Èzh‹½I¶TO<òkE¹¯*Cš’ P‹Âßtî‘mœ»,E¶¡ÿº+EöÚ'}(ÇDn1mÆè,ûƯùó±é¶{nŒ1ö3)f Òq 1»Z”!§|Ÿ¨Û¶ãËyØõʬ$˼RF…YÊÚS@ºŠ2—h,ÌÕDºBrÿ•žgã·«üùE9MAYÆy^K}ž‚Ÿ—D 5ÙÕq“ÕJˆÝŸ{¨{ÿ)Äì·%6Ì^-6Ž‹ë~ý‘ç{†Ï‘ÃÁ/þ¹kÐ7(î•nx˜¯5üçžñÐ¥ä0QOÂ4þå~0ÄrzT?`=ñüû™¯F”#¹Nb>ÏûHvß«úÐZ{6 åyÁó³‰ïí+ƒ€n‚š ÑÈ:Pµ`ˆÛ®ÏÿD §°‡„q¼€užH´ÁßÍî=»bnî¸ùýÀ}Ýü8·ï™ƒªÂv|~ÛŽ!W dË–-[¶l·µ¹ªer©KWORr >Oãùuñä­¿4”ƒô+Þ3‹ð[¥ßâ÷SÙü·ÊPü÷DÒ8þ¹[;Õr¿Ùã2ë”/£¶Ð3á©¿ªA»Ýñø¥÷¸Qz3}Õ˜[!±ÇZ©R¨¹µÛ×úfÝŸ\–v+³Øõ1íì&ï¿ÅÆ} 0¨e¤@˜¸Ï©úâ6³Ôlk\+9…Æ>eµÇ‚2|K=ù¾1$±5ˆi²¡©üsPb¼ja`J©/Ÿx$Y B·ûÒzdWÊù72ÏJ]_DA±ƨ”iQKU”×ˬ| ïFº––ƒCÄè»aÞý~…ûîöR‚ßiüºV<Ôm÷A2ÿ£¿Ÿ•)ðuÛOa3Wc²è×·°˜²(<²ž½Ö‰¡Ïã†<_2ïZÉAáyo=“d=‚0*‰j««Çñ‹×û¯o$:'¼¿ÑuÁ¾/½,>£ëR«9b‰ß!Éí£·ÍO¾Õ}~ Ÿ>ØvãtžŒ €r°ææ;çãrÓˆ¡ôÌæ«¹j [¶lÙ²e»½mà aÔum×ýßbADtp}ï‚4$VM¿©=B G=é?«›G⑆ýîÍ}൭۷{ü¿ÂDÜ3Ñ&Õ¢úþ¹gl«/!È$ªÏÅçgpÞÏ!†Æ¾Ú“cþx†Ìž ˆàš^à!ûBbvÆH÷HZãÓþÃ-ufýÇ)S÷S­!j-kàöÔŸ$b¬séÝ = X=Ã,ce$›Ú¾7O ÷ °ÌÓVºŸE]%wCûÜ7ª§±zjÿ‹2 ™ÅFÁÔ©Üó±^fÑÛ|½S˜¤ Àù"L ÿ_Ïú™"îoú¥î¼GèŠhZöc¹–³°ÛË(I[¬¸Üõÿß“ë Ö¥_G@ød÷òȯwÛÿŸ›]·~¡iÖwb庸ÏÜ¥yèe°ª_7Z©Òá ejŸ{{Ø‹¦f‰]™a ö…a©J!:‡~ërE¦Áλ–ß=±ôßEÍÒÖ'2Ý;øÞÎGª‡ôù9òëÚ§9ž˜o—°ž_À}ªD!1Ⱥ¾\øv=㸠ô3)!älÙ²eË–í¶¶µŸÿìëïÚº «ï–6‚–õôuANÚ=ŠšâðHè±èŽu Ô¹…×DfLhÿõíÄé¥tª[a ɳ/s¿‡!'Aíâ—tw´¿;ÎoŒû°'ž®Å¾ƒ¿žÓWý}»äö®ÿñ#AÒ]OûÌ[Ýÿ÷°ýgñÁ¡÷´[A¼™¡g‹=†#2¦éÈ#º Ýã½ ´ìÁæ¹ÔŸ‡Ôy”žùhK0J³5˜Z(³cöv]ûy»dàäxE?cЦô8 rµ½U ȼ*ŽúÇ­´˜ø®ßiHœ·ä0f[øùauàüÇ Y£#_ŠY?"½¯gçý̃u7”º}^ç©ïv÷qïck™FÕ2ëòÎüþ¾‰ù}_xˆ½|çñ%œïãÝñ.•‚œ Ú ’ùÇ뻤ŒÁ!¶gûÌW£P¹r*uóÊXY—SÍùѪš„R`hLæñ~*$”%C¢käø[xÞ Ì}zfìuF¨âh0?Ù+£e,û çñÔ‘gÚD/2BUã»çÚüÄïÝd•§®_’«5ÆxMd\8ßÇ÷á|®l»ù9FwÚ=0õ‘ÿ½³õ ð=`ôt³²`¶lÙ²eË–7®¿Ê‚† ƒ^—ºé¹÷Ü­ [ëc4£fžÙŽG˜…ÏšµîQ+«Rï…8&×"µ¿~M5´y½“_4# 1œÓ¢QN”­ÆÒ_ݲ³qƒãup?ÿ}Ö?ú¬/­sbgƒjl•ß³zÝÖ{ÈγÞ„°$<óH©eBÖ#kݲvKÔúùeý9µÄ}¬-R TeMnw(Ÿ3fŽØ¢Åäü÷4$“j’JµÖù9»Ÿ‰vù$U% õìdq—’5®1îBú¦•<šk H³EJ^ïDÚ1Ú|âüƇº{’Ó0’÷S™† e^›ÎÀ°—`°\Jª,ÈÐmáü.²Þ›ç‡ dïÖ¥½™ïýðÀ E…Þ3¿î6‡`hþM·¾Ö¸ææ¿æ2Lf²^jîÇ`·÷9SN5-÷ëPî³è9´ ÅNcªZŸ;fó£îÆa²Þ]ç×fÝë×»ëeL}Âõ}&¿ÂÚý#c&ëÝg\W&õÌlÛ1Yîô̶ê$%C7d{Ú1a ä9=}gwüï£+áç>ß½žçïÇ óȺP*ã–P^ÍŒ@¶lÙ²eË–7®ßñkáþÂ#gõôÆÌÒ”˜úOà‰’®RÔän†Þƒ§ç¯ difà6Æq^›8ÏçkñÐ~É7iünÀjÉî.9jÝþ)\çÅ#ï™òþÔ A©@eÕâñª’âüÆ B¤Ýÿô¾D1ÍÐLt·Z?Û®zoÈÁÇÖ¬j¦Rê#q£è™ó>¥zÈyWr}Ízÿq"…Á¹gL”QX޳äÈHlÖtD‚H¢•ž!¬ öéîfŒ€0Ëþö@‚…×°¬ò™G¶–“ ±Õ©ô0ĺðçK$?A7Ávß#ÂBÆë”ö:8¦çid÷o¡rœ~ò~lýßm ¯×ß× bþÖ½ÛÿGäüÚK2~ë¾Ûä (ÏQ€Èw¿íŸ§dBl\SÒ¦‰ê–6‘{¤«c]ô3…¬¦ÜÈõ÷ ÿ;P! $ã̪©÷#–ÿCþ^tÛ5Td¬ýzY˼fÎcíÑz±á™¿"s˜·E?ógoɺ&Ï÷×kéEÀõ¹fu(7¯9¦ÀΗǣŽÁQ·ý ¯¼–lÙ²eË–ív¶A!T‡»½ž~Ôs€ž2<°Óð°ÎÁ¹\…lÆlvžÉþÿ‰×:Of ß’uȃí§™È x»ÌÁÐWL$6Ýþr“&‡W¹ëÑ7ROo®¯xìgðöB›@ò¢í^J½¥ÙÀ’SÑ&úzÛ~O ÛþêÚ =åZ™eÕJ.@¡] 炼U™pè‹ákIð7BÚÜ`ÃÏÏzÖ_÷›ì-`]İûÚ_W«ú‰ìxÝß²n^²†þsc"ô¾/ü<²lúy?Ò±óÖû-órYÕ°ëö[Íúçž‘î4ÅðÉx±‹¡)š^éG`š£95§Ñ÷ž¹\ñÇ9ÜÿÃn» ¦ß±ã翆^,›¸.ör¸8\“ûîõ öƘ‘1ðJt¶~`ݲþüìöÈCÛöÏ«R=æZ¬÷ï'o2&8æ:˜Þ ¾ÿþÿT鄆KŽö ñØ¥µ„®AQn»åš×M&}ïÈ?7v¿Éèâ÷oŒ*‰}Éé(ú—‡Ðìi‘s²eË–-[¶ÛÚ:»î‚«°í=y«fêv/)¨¬ä¤uó]¯ˆ0*ÔER_à|í}}$ @J)LÂb•Þ@¡áz òÆqØWÜ5Âq¼“U÷þ)dÛ¯½òû'®:¨Ž{¤;%„‹~ÊÒoìò¶H a9±J®Ó”ÒDSHV½Þë²ù?Ig,W 'È\Sˆ,…iÁ};&âø|mî¿7eG2 ¢ªäKÏʼØõHæµ1!¨z !W dË–-[¶l·µu:[á<ñ¨îq–è[-ž=cÃãÇ¢H¥¼=*JA‰p:d=®ïïþ xÆÏIý«e‘·7cëõmnøý>‚×/Ò…‡÷ þ?4¿?ÕzE°UÇù§2ÆèOsÜ?Ö½Þýp[ýÆç»q}žñÓòýýDz”µ.È5ÒW”»Ó:íB‚êh¬]>·:ýõ~†@S‘ÐÜoEYP«¥Ò¦GÔQ^¯"ö+g¿ù¹¯Vh%çÂ2W1ZsaT9L¤Ü/ͪÂZ#Ÿ›–¹ ÷S@*Øv ÍiË*GÎÜ3 {gȸZµ •K­:DÖ#ä"•TVÀºÏTQÂTdxÓŒcÔýTæÙ-?Ñ«ª¤d¾^Ÿ ¾ÀÖ {ý*æÙÁ üÙõŸƒr_}§W0,R×¥J›…^¬ºD%Í1:…Øô(÷}ŒÀ€¿â‚Zî×;V ¢c‹ª‰ó¸¯_é®ÿQ®'•ŸwÆ0H Sdø^ÊT³ü~ƒtÝ—õÈ_žùàuŸ!s>ïgÖ¢^ ü½ªdmû×éÏé_É9Ù²eË–-[fîxªû^*ùlߨ›ŽàqZ_px$ÓÆ{¬Ónáñ2Ëû 0Ÿc–§äl>Û}¾ÿû;i™e©û¼‡4y=ÐÅÓ#ë¶@÷ª'ðñ?·˜7¾ÿ^|ÿå~F$òè5ç!ò{‡Œ kÚœHì!œÇýˆ)m ÚI|þ<‘Рßã7„´èg 4· eÃ6sU&"꯸`é;¯ÚöV?O¤·ðóB»©i,ÍLƒ’µ—2% Ç\« Ñ+ã"LIÄHHŽKo»¿Ê€0;úÐ#A‡u•T_<´ÙËS@xa=ø { Ú`²Ñ=ß_Æ÷ÏùÕ‚l у ¬É¤°;áAˆ8¿ûß‹yýZ÷úÒ~ÿ[8Ïé½ÉYõÌ<ÁÀ$ò}¸Åïß$# Í ºä±+5úÏ ý¹á ¼N0eB—#š‡ÒC@«B‚(9¶ÂqBÆ~/]íglì÷¿+‰\3*¤>‚H݇M¬‡_Çy?†ôü90OÇå¹TFRD}Î¥ÊàߢZá»#yŠ€zV#=*Y׬&‘KÔèzÉûÑz&κž#‡qåï:º§¾úbÎÈ–-[¶lÙ2#ðßÜÝ1û’½ŒÕîzd$YàÖ…Šž bÑc05²XÏÀÓ9ÇØŒv Ôîssñp[Ö-K®êÜr"¦Ï>êÌN‡Çµ÷¿áó¿î¶_{ùæ»Hië¿Mcÿï'6:ï îÇ/wãu HžçD<ýVºuEÛ¨ãnçTÄüXP_A·Æê%XX4Ô«è×¾êîÙ Ó ÛQY.¥¡^$´üm,|UŠf±ëüÐꀨ¯{‘ :ýÈÞ˜7í’¨ýàç ††Lë¼EÃ_Ÿ‡B´ÞKAª“y?#3Ö˜%rgš«þtyƒÉå±\"ëZºí­ÃÜfqóþZýù0qd¼¿Šçå,³íW¬7ýÿ뺼Þ3ÂÛÚŽ1s‹Mã¼ö1Þ_óñøy®ùûÎûúÆñß Mÿ—ýu0Á´îyyfÂLI»o¬ r¢(»Rg‚ó¶’ª–Rî+ߟÆïÃy<Ç[`&ß#ÂÇ:~ë·è€h—ÍJæÙT˜àµûñþ">áýƒøšZÚÙ¡gܬ7¬;¶>êüV¥Bc¾°>KnŸ›Zºí¾úrVÌ–-[¶lÙ2#pǯÜå<„-x”Ö|æ5Á5›ü𸪿ï^ÿžÉ±“½—ºý=øÌL4¼—}ãwð^kâ!ûXmä13ëúfcñº_zdÞS¦r×bbã…÷¼c¤ÀóÙMœÏ;S]@Ïžã©â:îc7nO/<òŒJ—I‰qk/CXÌ Ve2ÏVú/OX¾§È|…â™"n‹±N9#ÀÝy’áõ%XÑRŒ“u'«ýø´)é äÿŒ­ûºuóÑݽN9ÞµÎG¬»P„ ëTTEu³ó¯‚Ÿùùcz2|îˆ@‡‚à­JÊvº~Ï=r%R¦"_- Նĵ^^qÙëfÝ ¡ƒÃ®übƒÏ[üþ˜>‚ä <ò»ÝëÃø÷‘ƒ53F~oŒó#3û¾ÿè_É|Àçã#¿¾iULcŠ£þ{\×x½Má¿GeÉW_ÉŒ@¶lÙ²eË–wü xÐðˆàaŠÂ®lIDATlBAp_ëÊ%«–ž`@Ö~ƒ¬]ÕbŸ¢ÿî¿ó=ê¹÷Ø–ˆYþÛýž2û«·+<î›6ä$°?:ŽÛÀ£f §T_Û½áqYuÀþöÅâÕ·ª뾆îUðX-fÇ,ëê‡ÁÒÏÝ¡öu·ûïs yF׿a1V¥ÌÁ Ÿ!hEñÌê˜åúŠ[¼ÿ­V!$êí[vGkw{‘~¬@˜Ì5)üùYЃ´ï•AYÕ}P»¶‚fýL]îXõ3’åTbŽ%˜20d\–½,ØG^æÑºgB*Œû«s<7Q-P"¶KeÓÂÇBË<ž¿þ±tûÓqjzkˆÿ­ÛŠý¾Õu‹Ïr4Ú¦¿Å©?ü<‘ùuÜ7¯ÉùO`j¹Z¾K+§UuB˜#™¶šÓB¦ó°æÕ;É@•þù)5vQgDúÝuذõYôÌi€îBcÕ2»n¬ì±±f ã€ßÉÀlœƒöÅ«ýç·Eýa4¾ÿÝëo?ËÌçÆ3ú»ËßWËÍÁõm]Ås².ëu{Èàû9G [¶lÙ²e»ÍmBå=lx¢„DO¶…‡Qˆ–=•‘Š}ÿ2¬FøÚ_yO‰Y¦ôȘÐ "mSsûN)øùýL­ÞÚ3ôD™ :U(•¨n%‡ }‡o"cŸ•µ§Ôú'@†©ÌkcÆLá±»Îsݰì~ ®jg ˆ_ï3 æ[qÌ3€íÁ®»¾1î ëÆm\^Çç@˜›ØÿÝŸì^Ÿ~:Á”D¶ûVÑôz’Fø¢KñV׉ÕGºÁ3¬'oP…µu>?ôëÆæÀWA<ˆó$sð(ï¿t!,´‡<ÌA 1•œQðú4œ(׎‘s`Lª›6ùûÄã~žµ³n;ê­ì-ø¼ûë1Å?<ç æuÆáöÿLퟧIð¹/ÆtÕ~ùúwýºj†¡¼*L›Tc4µÏ©©‚ï ±ìʺëן71™È–-[¶lÙncóÊ‚êQÒ#‚‡mZ㌴ò:ÏñsÄÄ™mÏ,Ivg «º½-VxÚï˜ùý¾eÏ|ÕþÞs[Ù#aå8ìèíìÝ®x7º&2FJåÇY?Öz{Ë:Ýï½M|Ëþú벜ƒâÆÈ4bT¤Ž·n½gO³˜Wðß rÂP =Ô㲺BbÛ¼NÕ=‚$'¤RÅ?‰ÙGQ$˜ê$ô–¹¾—A!,ê[ÎqÔn›¢_PÊqì~ñ°§Èøx=½U!]•ãc¼¶~±×¿ì¾›]8ÆJz´Rub ‰RWN&o*= x5™‹TÝÿMZ´n$ª‘¢*n÷ÎÌEó­îõ ï%Qe¤½Iìy£¢-æáD«Eðúlÿ%é–Z ÓÀœ2 c óû±Ãs¸Î-lwÈÛÛÇ}Ÿbü¬Ziá×µqáÇ=SR'ôS¨ÐÈûzi…Bâòyó÷/çdË–-[¶l·¹ ²¡«xL=Äëæ‰¤¼rÑD²Ÿ­ö?<§á™‘)¸´¢÷/h¢l÷¥ÂÞ;Ä@,¶oíúVj¯­`80ÎÐzg.<Ü‘ ¢DÆèªtUìö"pê'¤r=R pcAâÅ@‘¯÷˜‰| )QùŒ½¢®vr]DsKk¤/|‘èÆVÏ=âãñ¢na¥?;ã0“ï¹/‘žƒ(“ù$ˆ¸\—q»ŸøqÑœ“B‹iÞWkîûTdclØb—øþ¼ÿÆ_¢«'¾ß 7RÅQJßzÍùˆº ?~¬k?anµú$ùÉ«ŠŒ¹øuA†dDd¾s<+©ž ÂÌð}ÍùÄ.¥d\:FñIAÄÔà}U& •à+y¬Ú¬î_F¢* 9o«²‘*—Ó‡óÂxès¾‰÷Ï}_<믧†rjÛýàŸsæP\ø[läƒóì]íÈ`=s¯g*[TÑMTA”óyæ×íFW¥×Çë¬=V][g¿^¿yfF [¶lÙ²e»­ËØ‚² ‘”fO2Æ1Ï„½Æk7ý‰É¨]û–ƒñïPÎÀ`{§ªRLĪ܄í# ý|°ƒýB'€Êc‹~\H¯õ< é:Å­»rß>º ¹0FÜlر ©ïOiËG= x]ïö»-tj~á¿o9 ¢ÑÍ\‚VÛ!«]¿#ÍÅIt9+„‘) 3¶8=Ä&ˆ=B¦àéß’’.rQ7ÆDŒØ¶“Þ K¨Èù„qø¨ÞÈ&s дFN«Böei_x¾š®(Rynr$ós ÷ÿÚŠçYžß4ÃxkëòK+¯ÏçÂX¢*bò¬T)hUÏÜ3Ó ÈTîóˆ½&„Z)¤¹וñ¯âû¯Ë<ÅÌH‘²ôuí¶ SÆãÓ¦úšÓê’€Òíç €Ûü)>G.ÆžU5yV>Tè; Âèl!Ï÷5?®ü]œhÚªõû}èí^ŸD“‚ëëþ÷Ø”KYOfýDZۇyðãsŽ@¶lÙ²eËv[[ç;ˆg܈æüôù®_g³îcT€z±‘“ðX>ó"+¤:FÇåí^~ ¿GÇ÷8˜·££ç¼ý&¶ûr«Î÷çù5œÏ£|ð{YèùrþWò^žÛ«ºpýçžê^¿€óü,"ëGü åúd ujÿ’Ayóº˜lÙ²eË–í6¶.GàGn1©;ÔX¾jIŸ‚Ç2E Àákxý<é}zæŒin÷{ÚQwÁÄvïx ÷4ü«´ÇWU$ÆA•ΨåÍ:oùܺb±~v.N²„™BdhÈ÷½`]ó‡ð½ÒÓE]íÁn/bH"%€Ýé^—ùiü # ±ûBËb'³@žb}¼Y'ø¶ˆy*äB£ìÍEòü-„ Jä6DIc„áÆ÷5º.Alæ¬''aRBÛ?A¾oU«·˜1æuÅê„Ò#)îúÜ/žoûzâ¾¥=÷ZëŽú6õGtžHÎF«Õ5’›Áñ(å|-v>ðº%cÉõ˜ ÓRÝ8¹N`ÞM™¶T í„!mÿ|²^¥g2È`ðy4¾žè®ÿT œ}j×!õéLrVЃ`üþŽ™zðEŒßvŸ?þ÷þù¹ŽóÙ"#†ß³ºöëÜ&r=žŸI/ˆgn©ðiÏÿ‘V®ßSÕ] $ÝhkíJ*9_9G [¶lÙ²eËŒÀ×ßF A7*j5›Gªž¼Öc³K˜y é~çÞÎÓùÔAð„êkýHwéaÿS1¿,{« ÄöŠÏûhùqx‚—a€x%»]¡cjV‡o=¼"ßÑ{Í톽-f ¤§ˆ±.­kȪ^ê1Sgà ¹Dïq[Öv)Ì™(gêþ¢çJ¡ö&°ÿ~| Á  E2{/Ïu¥Õ æÏþ¿ðÌÅ>…q¤WHìW žþ¨ôȶå¸ Ì•W‚¹ ¹×#ÇK/ßø©ŠêÞ-×§_!°½U”c7ž·ÖóBŸ«ˆ2J1Nxþ¾/}®›vÞÑsï…âø¶¿¯¥häë×…ñÙ”ªÎCæ’YWKa¨YooL²dõsÿ[x;Ñçïþü¶¾×½îU>7 ÔuQ˜Á1ufØó„ ¨ä èòÈ›ÉÑ &§I0WQ|¥‚#¿)HŠþF#Ó-3Ù²eË–-[fÞ¸þ®÷ýEç!¬‹gÇX“ÖGÂcv:avî‡Ö¥é0…|ѱú_0Ãð6ëcä²Û ,6{) ¢Ð˜b,à0O cC$Œ¡®ùï+Ò¸Öl‹’TàÔúyX'tÚù ÄŸ¸/QL-bÝ8±KZkUEøª̆0•än4«ô‰q m²Âö£Æ#pÓdÇfTR{>ô3G…gØ {»ùo=3${<ÈyÛ¼ÐûÀºwž§T;PI“zcÉÕØ?Zõ<Þäúúþ ÅP%ô47¨ØíŸ·Ø®ÐóJÝï¹fÙSÀww´ê¡Jæ§ÆšYUÄó›%,ï™ñ#F¯Ì‚éH.@`ª– d?£púw1_ãgNTñ:ªáD¿a³ôLÄ%UÅ œúœ¸ ÿ¨À0àú¦òXƒÏUÐîª65·ˆÌkã×gæL˜’ª.˜¸Ÿ¥(7þø…ÌdË–-[¶l·µ B¡dw$UÜ:ϲð®9>‹÷9”Nâó-x$“Â#[E¼ÿÿ±9Eª;ás$R¡ñZcnDl'ðÿ+Þ!µ EæÊ Xvö¶gÚ LÄïÜí=AS> [label] % \cite[chap. 2]{key} ==>> [label, chap. 2] % The order in the reference list is by label. %--------------------------------------------------------------------- ENTRY { address archive author booktitle chapter collaboration doi edition editor eid eprint howpublished institution journal key month note number numpages organization pages publisher school series title type url volume year } {} { label extra.label sort.label } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t} FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {add.blank} { " " * before.all 'output.state := } FUNCTION {date.block} { new.block } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {new.block.checka} { empty$ 'skip$ 'new.block if$ } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {new.sentence.checka} { empty$ 'skip$ 'new.sentence if$ } FUNCTION {new.sentence.checkb} { empty$ swap$ empty$ and 'skip$ 'new.sentence if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "\emph{" swap$ * "}" * } if$ } FUNCTION {bolden} { duplicate$ empty$ { pop$ "" } { "\textbf{" swap$ * "}" * } if$ } FUNCTION {tie.or.space.prefix} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ } FUNCTION {capitalize} { "u" change.case$ "t" change.case$ } FUNCTION {space.word} { " " swap$ * " " * } % Here are the language-specific definitions for explicit words. % Each function has a name bbl.xxx where xxx is the English word. % The language selected here is ENGLISH FUNCTION {bbl.and} { "and"} FUNCTION {bbl.etal} { "et~al." } FUNCTION {bbl.editors} { "eds." } FUNCTION {bbl.editor} { "ed." } FUNCTION {bbl.edby} { "edited by" } FUNCTION {bbl.edition} { "edn." } FUNCTION {bbl.volume} { "vol." } FUNCTION {bbl.of} { "of" } FUNCTION {bbl.number} { "no." } FUNCTION {bbl.nr} { "no." } FUNCTION {bbl.in} { "in" } FUNCTION {bbl.pages} { "pp." } FUNCTION {bbl.page} { "p." } FUNCTION {bbl.eidpp} { "pages" } FUNCTION {bbl.chapter} { "chap." } FUNCTION {bbl.techrep} { "Tech. Rep." } FUNCTION {bbl.mthesis} { "Master's thesis" } FUNCTION {bbl.phdthesis} { "Ph.D. thesis" } MACRO {jan} {"Jan."} MACRO {feb} {"Feb."} MACRO {mar} {"Mar."} MACRO {apr} {"Apr."} MACRO {may} {"May"} MACRO {jun} {"Jun."} MACRO {jul} {"Jul."} MACRO {aug} {"Aug."} MACRO {sep} {"Sep."} MACRO {oct} {"Oct."} MACRO {nov} {"Nov."} MACRO {dec} {"Dec."} %------------------------------------------------------------------- % Begin module: % \ProvidesFile{physjour.mbs}[2002/01/14 2.2 (PWD)] MACRO {aa}{"Astron. \& Astrophys."} MACRO {aasup}{"Astron. \& Astrophys. Suppl. Ser."} MACRO {aj} {"Astron. J."} MACRO {aph} {"Acta Phys."} MACRO {advp} {"Adv. Phys."} MACRO {ajp} {"Amer. J. Phys."} MACRO {ajm} {"Amer. J. Math."} MACRO {amsci} {"Amer. Sci."} MACRO {anofd} {"Ann. Fluid Dyn."} MACRO {am} {"Ann. Math."} MACRO {ap} {"Ann. Phys. (NY)"} MACRO {adp} {"Ann. Phys. (Leipzig)"} MACRO {ao} {"Appl. Opt."} MACRO {apl} {"Appl. Phys. Lett."} MACRO {app} {"Astroparticle Phys."} MACRO {apj} {"Astrophys. J."} MACRO {apjsup} {"Astrophys. J. Suppl."} MACRO {apss} {"Astrophys. Space Sci."} MACRO {araa} {"Ann. Rev. Astron. Astrophys."} MACRO {baas} {"Bull. Amer. Astron. Soc."} MACRO {baps} {"Bull. Amer. Phys. Soc."} MACRO {cmp} {"Comm. Math. Phys."} MACRO {cpam} {"Commun. Pure Appl. Math."} MACRO {cppcf} {"Comm. Plasma Phys. \& Controlled Fusion"} MACRO {cpc} {"Comp. Phys. Comm."} MACRO {cqg} {"Class. Quant. Grav."} MACRO {cra} {"C. R. Acad. Sci. A"} MACRO {fed} {"Fusion Eng. \& Design"} MACRO {ft} {"Fusion Tech."} MACRO {grg} {"Gen. Relativ. Gravit."} MACRO {ieeens} {"IEEE Trans. Nucl. Sci."} MACRO {ieeeps} {"IEEE Trans. Plasma Sci."} MACRO {ijimw} {"Interntl. J. Infrared \& Millimeter Waves"} MACRO {ip} {"Infrared Phys."} MACRO {irp} {"Infrared Phys."} MACRO {jap} {"J. Appl. Phys."} MACRO {jasa} {"J. Acoust. Soc. America"} MACRO {jcp} {"J. Comp. Phys."} MACRO {jetp} {"Sov. Phys.--JETP"} MACRO {jfe} {"J. Fusion Energy"} MACRO {jfm} {"J. Fluid Mech."} MACRO {jmp} {"J. Math. Phys."} MACRO {jne} {"J. Nucl. Energy"} MACRO {jnec} {"J. Nucl. Energy, C: Plasma Phys., Accelerators, Thermonucl. Res."} MACRO {jnm} {"J. Nucl. Mat."} MACRO {jpc} {"J. Phys. Chem."} MACRO {jpp} {"J. Plasma Phys."} MACRO {jpsj} {"J. Phys. Soc. Japan"} MACRO {jsi} {"J. Sci. Instrum."} MACRO {jvst} {"J. Vac. Sci. \& Tech."} MACRO {nat} {"Nature"} MACRO {nature} {"Nature"} MACRO {nedf} {"Nucl. Eng. \& Design/Fusion"} MACRO {nf} {"Nucl. Fusion"} MACRO {nim} {"Nucl. Inst. \& Meth."} MACRO {nimpr} {"Nucl. Inst. \& Meth. in Phys. Res."} MACRO {np} {"Nucl. Phys."} MACRO {npb} {"Nucl. Phys. B"} MACRO {nt/f} {"Nucl. Tech./Fusion"} MACRO {npbpc} {"Nucl. Phys. B (Proc. Suppl.)"} MACRO {inc} {"Nuovo Cimento"} MACRO {nc} {"Nuovo Cimento"} MACRO {pf} {"Phys. Fluids"} MACRO {pfa} {"Phys. Fluids A: Fluid Dyn."} MACRO {pfb} {"Phys. Fluids B: Plasma Phys."} MACRO {pl} {"Phys. Lett."} MACRO {pla} {"Phys. Lett. A"} MACRO {plb} {"Phys. Lett. B"} MACRO {prep} {"Phys. Rep."} MACRO {pnas} {"Proc. Nat. Acad. Sci. USA"} MACRO {pp} {"Phys. Plasmas"} MACRO {ppcf} {"Plasma Phys. \& Controlled Fusion"} MACRO {phitrsl} {"Philos. Trans. Roy. Soc. London"} MACRO {prl} {"Phys. Rev. Lett."} MACRO {pr} {"Phys. Rev."} MACRO {physrev} {"Phys. Rev."} MACRO {pra} {"Phys. Rev. A"} MACRO {prb} {"Phys. Rev. B"} MACRO {prc} {"Phys. Rev. C"} MACRO {prd} {"Phys. Rev. D"} MACRO {pre} {"Phys. Rev. E"} MACRO {ps} {"Phys. Scripta"} MACRO {procrsl} {"Proc. Roy. Soc. London"} MACRO {rmp} {"Rev. Mod. Phys."} MACRO {rsi} {"Rev. Sci. Inst."} MACRO {science} {"Science"} MACRO {sciam} {"Sci. Am."} MACRO {sam} {"Stud. Appl. Math."} MACRO {sjpp} {"Sov. J. Plasma Phys."} MACRO {spd} {"Sov. Phys.--Doklady"} MACRO {sptp} {"Sov. Phys.--Tech. Phys."} MACRO {spu} {"Sov. Phys.--Uspeki"} MACRO {st} {"Sky and Telesc."} % End module: physjour.mbs %------------------------------------------------------------------- % Begin module: % \ProvidesFile{geojour.mbs}[2002/07/10 2.0h (PWD)] MACRO {aisr} {"Adv. Space Res."} MACRO {ag} {"Ann. Geophys."} MACRO {anigeo} {"Ann. Geofis."} MACRO {angl} {"Ann. Glaciol."} MACRO {andmet} {"Ann. d. Meteor."} MACRO {andgeo} {"Ann. d. Geophys."} MACRO {andphy} {"Ann. Phys.-Paris"} MACRO {afmgb} {"Arch. Meteor. Geophys. Bioklimatol."} MACRO {atph} {"Atm\'osphera"} MACRO {aao} {"Atmos. Ocean"} MACRO {ass}{"Astrophys. Space Sci."} MACRO {atenv} {"Atmos. Environ."} MACRO {aujag} {"Aust. J. Agr. Res."} MACRO {aumet} {"Aust. Meteorol. Mag."} MACRO {blmet} {"Bound.-Lay. Meteorol."} MACRO {bams} {"Bull. Amer. Meteorol. Soc."} MACRO {cch} {"Clim. Change"} MACRO {cdyn} {"Clim. Dynam."} MACRO {cbul} {"Climatol. Bull."} MACRO {cap} {"Contrib. Atmos. Phys."} MACRO {dsr} {"Deep-Sea Res."} MACRO {dhz} {"Dtsch. Hydrogr. Z."} MACRO {dao} {"Dynam. Atmos. Oceans"} MACRO {eco} {"Ecology"} MACRO {empl}{"Earth, Moon and Planets"} MACRO {envres} {"Environ. Res."} MACRO {envst} {"Environ. Sci. Technol."} MACRO {ecms} {"Estuarine Coastal Mar. Sci."} MACRO {expa}{"Exper. Astron."} MACRO {geoint} {"Geofis. Int."} MACRO {geopub} {"Geofys. Publ."} MACRO {geogeo} {"Geol. Geofiz."} MACRO {gafd} {"Geophys. Astrophys. Fluid Dyn."} MACRO {gfd} {"Geophys. Fluid Dyn."} MACRO {geomag} {"Geophys. Mag."} MACRO {georl} {"Geophys. Res. Lett."} MACRO {grl} {"Geophys. Res. Lett."} MACRO {ga} {"Geophysica"} MACRO {gs} {"Geophysics"} MACRO {ieeetap} {"IEEE Trans. Antenn. Propag."} MACRO {ijawp} {"Int. J. Air Water Pollut."} MACRO {ijc} {"Int. J. Climatol."} MACRO {ijrs} {"Int. J. Remote Sens."} MACRO {jam} {"J. Appl. Meteorol."} MACRO {jaot} {"J. Atmos. Ocean. Technol."} MACRO {jatp} {"J. Atmos. Terr. Phys."} MACRO {jastp} {"J. Atmos. Solar-Terr. Phys."} MACRO {jce} {"J. Climate"} MACRO {jcam} {"J. Climate Appl. Meteor."} MACRO {jcm} {"J. Climate Meteor."} MACRO {jcy} {"J. Climatol."} MACRO {jgr} {"J. Geophys. Res."} MACRO {jga} {"J. Glaciol."} MACRO {jh} {"J. Hydrol."} MACRO {jmr} {"J. Mar. Res."} MACRO {jmrj} {"J. Meteor. Res. Japan"} MACRO {jm} {"J. Meteor."} MACRO {jpo} {"J. Phys. Oceanogr."} MACRO {jra} {"J. Rech. Atmos."} MACRO {jaes} {"J. Aeronaut. Sci."} MACRO {japca} {"J. Air Pollut. Control Assoc."} MACRO {jas} {"J. Atmos. Sci."} MACRO {jmts} {"J. Mar. Technol. Soc."} MACRO {jmsj} {"J. Meteorol. Soc. Japan"} MACRO {josj} {"J. Oceanogr. Soc. Japan"} MACRO {jwm} {"J. Wea. Mod."} MACRO {lao} {"Limnol. Oceanogr."} MACRO {mwl} {"Mar. Wea. Log"} MACRO {mau} {"Mausam"} MACRO {meteor} {"``Meteor'' Forschungsergeb."} MACRO {map} {"Meteorol. Atmos. Phys."} MACRO {metmag} {"Meteor. Mag."} MACRO {metmon} {"Meteor. Monogr."} MACRO {metrun} {"Meteor. Rundsch."} MACRO {metzeit} {"Meteor. Z."} MACRO {metgid} {"Meteor. Gidrol."} MACRO {mwr} {"Mon. Weather Rev."} MACRO {nwd} {"Natl. Weather Dig."} MACRO {nzjmfr} {"New Zeal. J. Mar. Freshwater Res."} MACRO {npg} {"Nonlin. Proc. Geophys."} MACRO {om} {"Oceanogr. Meteorol."} MACRO {ocac} {"Oceanol. Acta"} MACRO {oceanus} {"Oceanus"} MACRO {paleoc} {"Paleoceanography"} MACRO {pce} {"Phys. Chem. Earth"} MACRO {pmg} {"Pap. Meteor. Geophys."} MACRO {ppom} {"Pap. Phys. Oceanogr. Meteor."} MACRO {physzeit} {"Phys. Z."} MACRO {pps} {"Planet. Space Sci."} MACRO {pss} {"Planet. Space Sci."} MACRO {pag} {"Pure Appl. Geophys."} MACRO {qjrms} {"Quart. J. Roy. Meteorol. Soc."} MACRO {quatres} {"Quat. Res."} MACRO {rsci} {"Radio Sci."} MACRO {rse} {"Remote Sens. Environ."} MACRO {rgeo} {"Rev. Geophys."} MACRO {rgsp} {"Rev. Geophys. Space Phys."} MACRO {rdgeo} {"Rev. Geofis."} MACRO {revmeta} {"Rev. Meteorol."} MACRO {sgp}{"Surveys in Geophys."} MACRO {sp} {"Solar Phys."} MACRO {ssr} {"Space Sci. Rev."} MACRO {tellus} {"Tellus"} MACRO {tac} {"Theor. Appl. Climatol."} MACRO {tagu} {"Trans. Am. Geophys. Union (EOS)"} MACRO {wrr} {"Water Resour. Res."} MACRO {weather} {"Weather"} MACRO {wafc} {"Weather Forecast."} MACRO {ww} {"Weatherwise"} MACRO {wmob} {"WMO Bull."} MACRO {zeitmet} {"Z. Meteorol."} % End module: geojour.mbs %------------------------------------------------------------------- % Begin module: % \ProvidesFile{photjour.mbs}[1999/02/24 2.0b (PWD)] MACRO {appopt} {"Appl. Opt."} MACRO {bell} {"Bell Syst. Tech. J."} MACRO {ell} {"Electron. Lett."} MACRO {jasp} {"J. Appl. Spectr."} MACRO {jqe} {"IEEE J. Quantum Electron."} MACRO {jlwt} {"J. Lightwave Technol."} MACRO {jmo} {"J. Mod. Opt."} MACRO {josa} {"J. Opt. Soc. America"} MACRO {josaa} {"J. Opt. Soc. Amer.~A"} MACRO {josab} {"J. Opt. Soc. Amer.~B"} MACRO {jdp} {"J. Phys. (Paris)"} MACRO {oc} {"Opt. Commun."} MACRO {ol} {"Opt. Lett."} MACRO {phtl} {"IEEE Photon. Technol. Lett."} MACRO {pspie} {"Proc. Soc. Photo-Opt. Instrum. Eng."} MACRO {sse} {"Solid-State Electron."} MACRO {sjot} {"Sov. J. Opt. Technol."} MACRO {sjqe} {"Sov. J. Quantum Electron."} MACRO {sleb} {"Sov. Phys.--Leb. Inst. Rep."} MACRO {stph} {"Sov. Phys.--Techn. Phys."} MACRO {stphl} {"Sov. Techn. Phys. Lett."} MACRO {vr} {"Vision Res."} MACRO {zph} {"Z. f. Physik"} MACRO {zphb} {"Z. f. Physik~B"} MACRO {zphd} {"Z. f. Physik~D"} MACRO {CLEO} {"CLEO"} MACRO {ASSL} {"Adv. Sol.-State Lasers"} MACRO {OSA} {"OSA"} % End module: photjour.mbs %% Copyright 1994-2004 Patrick W Daly MACRO {acmcs} {"ACM Comput. Surv."} MACRO {acta} {"Acta Inf."} MACRO {cacm} {"Commun. ACM"} MACRO {ibmjrd} {"IBM J. Res. Dev."} MACRO {ibmsj} {"IBM Syst.~J."} MACRO {ieeese} {"IEEE Trans. Software Eng."} MACRO {ieeetc} {"IEEE Trans. Comput."} MACRO {ieeetcad} {"IEEE Trans. Comput. Aid. Des."} MACRO {ipl} {"Inf. Process. Lett."} MACRO {jacm} {"J.~ACM"} MACRO {jcss} {"J.~Comput. Syst. Sci."} MACRO {scp} {"Sci. Comput. Program."} MACRO {sicomp} {"SIAM J. Comput."} MACRO {tocs} {"ACM Trans. Comput. Syst."} MACRO {tods} {"ACM Trans. Database Syst."} MACRO {tog} {"ACM Trans. Graphic."} MACRO {toms} {"ACM Trans. Math. Software"} MACRO {toois} {"ACM Trans. Office Inf. Syst."} MACRO {toplas} {"ACM Trans. Progr. Lang. Syst."} MACRO {tcs} {"Theor. Comput. Sci."} FUNCTION {bibinfo.check} { swap$ duplicate$ missing$ { pop$ pop$ "" } { duplicate$ empty$ { swap$ pop$ } { swap$ pop$ } if$ } if$ } FUNCTION {bibinfo.warn} { swap$ duplicate$ missing$ { swap$ "missing " swap$ * " in " * cite$ * warning$ pop$ "" } { duplicate$ empty$ { swap$ "empty " swap$ * " in " * cite$ * warning$ } { swap$ pop$ } if$ } if$ } FUNCTION {format.eprint} { eprint duplicate$ empty$ 'skip$ { "\eprint" archive empty$ 'skip$ { "[" * archive * "]" * } if$ "{" * swap$ * "}" * } if$ } FUNCTION {format.url} { url empty$ { "" } { "\href{" url * "}{[web link]}" *} if$ } STRINGS { bibinfo} INTEGERS { nameptr namesleft numnames } FUNCTION {format.names} { 'bibinfo := duplicate$ empty$ 'skip$ { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}" format.name$ bibinfo bibinfo.check 't := nameptr #1 > { namesleft #1 > { ", " * t * } { "," * s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { " " * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } if$ } FUNCTION {format.names.ed} { format.names } FUNCTION {format.authors} { author "author" format.names duplicate$ empty$ 'skip$ { collaboration "collaboration" bibinfo.check duplicate$ empty$ 'skip$ { " (" swap$ * ")" * } if$ * } if$ } FUNCTION {get.bbl.editor} { editor num.names$ #1 > 'bbl.editors 'bbl.editor if$ } FUNCTION {format.editors} { editor "editor" format.names duplicate$ empty$ 'skip$ { " " * get.bbl.editor capitalize "(" swap$ * ")" * * } if$ } FUNCTION {format.doi} { doi "doi" bibinfo.check duplicate$ empty$ 'skip$ { new.block "\doi{" swap$ * "}" * } if$ } FUNCTION {format.note} { note empty$ { "" } { note #1 #1 substring$ duplicate$ "{" = 'skip$ { output.state mid.sentence = { "l" } { "u" } if$ change.case$ } if$ note #2 global.max$ substring$ * "note" bibinfo.check } if$ } FUNCTION {format.title} { title "title" bibinfo.check duplicate$ empty$ 'skip$ { "t" change.case$ emphasize } if$ } FUNCTION {output.bibitem} { newline$ "\bibitem[" label * "]{" * write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {word.in} { bbl.in capitalize ":" * " " * } FUNCTION {format.date} { "" duplicate$ empty$ year "year" bibinfo.check duplicate$ empty$ { swap$ 'skip$ { "there's a month but no year in " cite$ * warning$ } if$ * } { swap$ 'skip$ { swap$ " " * swap$ } if$ * } if$ duplicate$ empty$ 'skip$ { before.all 'output.state := " (" swap$ * ")" * } if$ } FUNCTION{format.year} { year "year" bibinfo.check duplicate$ empty$ { "empty year in " cite$ * warning$ } { " (" swap$ * ")" * } if$ } FUNCTION {format.btitle} { title "title" bibinfo.check duplicate$ empty$ 'skip$ { emphasize } if$ } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { bbl.volume volume tie.or.space.prefix "volume" bibinfo.check * * series "series" bibinfo.check duplicate$ empty$ 'pop$ { emphasize ", " * swap$ * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { series empty$ { number "number" bibinfo.check } { output.state mid.sentence = { bbl.number } { bbl.number capitalize } if$ number tie.or.space.prefix "number" bibinfo.check * * bbl.in space.word * series "series" bibinfo.check * } if$ } if$ } { "" } if$ } FUNCTION {format.edition} { edition duplicate$ empty$ 'skip$ { output.state mid.sentence = { "l" } { "t" } if$ change.case$ "edition" bibinfo.check " " * bbl.edition * } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages duplicate$ empty$ 'skip$ { duplicate$ multi.page.check { bbl.pages swap$ n.dashify } { bbl.page swap$ } if$ tie.or.space.prefix "pages" bibinfo.check * * } if$ } FUNCTION {first.page} { 't := "" { t empty$ not t #1 #1 substring$ "-" = not and } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } while$ } FUNCTION {format.journal.pages} { pages duplicate$ empty$ 'pop$ { swap$ duplicate$ empty$ { pop$ pop$ format.pages } { ", " * swap$ first.page "pages" bibinfo.check * } if$ } if$ } FUNCTION {format.journal.eid} { eid "eid" bibinfo.check duplicate$ empty$ 'pop$ { swap$ duplicate$ empty$ 'skip$ { ", " * } if$ swap$ * numpages empty$ 'skip$ { bbl.eidpp numpages tie.or.space.prefix "numpages" bibinfo.check * * " (" swap$ * ")" * * } if$ } if$ } FUNCTION {format.vol.num.pages} { volume field.or.null duplicate$ empty$ 'skip$ { "volume" bibinfo.check } if$ bolden format.year * eid empty$ { format.journal.pages } { format.journal.eid } if$ } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { bbl.chapter } { type "l" change.case$ "type" bibinfo.check } if$ chapter tie.or.space.prefix "chapter" bibinfo.check * * pages empty$ 'skip$ { ", " * format.pages * } if$ } if$ } FUNCTION {format.booktitle} { booktitle "booktitle" bibinfo.check emphasize } FUNCTION {format.in.ed.booktitle} { format.booktitle duplicate$ empty$ 'skip$ { format.bvolume duplicate$ empty$ 'pop$ { ", " swap$ * * } if$ editor "editor" format.names.ed duplicate$ empty$ 'pop$ { " " * get.bbl.editor capitalize "(" swap$ * "), " * * swap$ * } if$ word.in swap$ * } if$ } FUNCTION {empty.misc.check} { author empty$ title empty$ howpublished empty$ month empty$ year empty$ note empty$ and and and and and key empty$ not and { "all relevant fields are empty in " cite$ * warning$ } 'skip$ if$ } FUNCTION {format.thesis.type} { type duplicate$ empty$ 'pop$ { swap$ pop$ "t" change.case$ "type" bibinfo.check } if$ } FUNCTION {format.tr.number} { number "number" bibinfo.check type duplicate$ empty$ { pop$ bbl.techrep } 'skip$ if$ "type" bibinfo.check swap$ duplicate$ empty$ { pop$ "t" change.case$ } { tie.or.space.prefix * * } if$ } FUNCTION {format.article.crossref} { key duplicate$ empty$ { pop$ journal duplicate$ empty$ { "need key or journal for " cite$ * " to crossref " * crossref * warning$ } { "journal" bibinfo.check emphasize word.in swap$ * } if$ } { word.in swap$ * " " *} if$ " \cite{" * crossref * "}" * } FUNCTION {format.crossref.editor} { editor #1 "{vv~}{ll}" format.name$ "editor" bibinfo.check editor num.names$ duplicate$ #2 > { pop$ "editor" bibinfo.check " " * bbl.etal * } { #2 < 'skip$ { editor #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { "editor" bibinfo.check " " * bbl.etal * } { bbl.and space.word * editor #2 "{vv~}{ll}" format.name$ "editor" bibinfo.check * } if$ } if$ } if$ } FUNCTION {format.book.crossref} { volume duplicate$ empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ pop$ word.in } { bbl.volume capitalize swap$ tie.or.space.prefix "volume" bibinfo.check * * bbl.of space.word * } if$ editor empty$ editor field.or.null author field.or.null = or { key empty$ { series empty$ { "need editor, key, or series for " cite$ * " to crossref " * crossref * warning$ "" * } { series emphasize * } if$ } { key * } if$ } { format.crossref.editor * } if$ " \cite{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { editor empty$ editor field.or.null author field.or.null = or { key empty$ { format.booktitle duplicate$ empty$ { "need editor, key, or booktitle for " cite$ * " to crossref " * crossref * warning$ } { word.in swap$ * } if$ } { word.in key * " " *} if$ } { word.in format.crossref.editor * " " *} if$ " \cite{" * crossref * "}" * } FUNCTION {format.org.or.pub} { 't := "" address empty$ t empty$ and 'skip$ { t empty$ { address "address" bibinfo.check * } { t * address empty$ 'skip$ { ", " * address "address" bibinfo.check * } if$ } if$ } if$ } FUNCTION {format.publisher.address} { publisher "publisher" bibinfo.warn format.org.or.pub } FUNCTION {format.organization.address} { organization "organization" bibinfo.check format.org.or.pub } FUNCTION {article} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block crossref missing$ { doi empty$ url empty$ and { "" } { "{}" output before.all 'output.state := "\href{" doi empty$ {url} {"http://dx.doi.org/" doi *} if$ * "}{" * } if$ * journal "journal" bibinfo.check "journal" output.check add.blank format.vol.num.pages output doi empty$ url empty$ and { "" } { "}" } if$ * } { format.article.crossref output.nonnull format.pages output } if$ new.block format.note output format.eprint output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ new.block format.btitle "title" output.check crossref missing$ { format.bvolume output new.block format.number.series output format.edition output new.sentence format.publisher.address output } { new.block format.book.crossref output.nonnull } if$ format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output new.block format.title "title" output.check new.block howpublished "howpublished" bibinfo.check output address "address" bibinfo.check output format.date output format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ new.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.chapter.pages "chapter and pages" output.check new.block format.number.series output format.edition output new.sentence format.publisher.address output } { format.chapter.pages "chapter and pages" output.check new.block format.book.crossref output.nonnull } if$ format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.number.series output format.edition output format.chapter.pages output new.sentence format.publisher.address output format.date "year" output.check } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.number.series output format.pages output new.sentence publisher empty$ { format.organization.address output } { organization "organization" bibinfo.check output format.publisher.address output } if$ format.date "year" output.check } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem author empty$ { organization "organization" bibinfo.check duplicate$ empty$ 'pop$ { output address "address" bibinfo.check output } if$ } { format.authors output.nonnull } if$ new.block format.btitle "title" output.check author empty$ { organization empty$ { address new.block.checka address "address" bibinfo.check output } 'skip$ if$ } { organization address new.block.checkb organization "organization" bibinfo.check output address "address" bibinfo.check output } if$ format.edition output format.date output format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check new.block format.btitle "title" output.check new.block bbl.mthesis format.thesis.type output.nonnull school "school" bibinfo.warn output address "address" bibinfo.check output format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {misc} { output.bibitem format.authors output title howpublished new.block.checkb format.title output howpublished new.block.checka howpublished "howpublished" bibinfo.check output format.date output format.doi output new.block format.note output format.eprint output format.url output fin.entry empty.misc.check } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check new.block format.btitle "title" output.check new.block bbl.phdthesis format.thesis.type output.nonnull school "school" bibinfo.warn output address "address" bibinfo.check output format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {proceedings} { output.bibitem editor empty$ { organization "organization" bibinfo.check output } { format.editors output.nonnull } if$ new.block format.btitle "title" output.check format.bvolume output format.number.series output editor empty$ { publisher empty$ 'skip$ { new.sentence format.publisher.address output } if$ } { publisher empty$ { new.sentence format.organization.address output } { new.sentence organization "organization" bibinfo.check output format.publisher.address output } if$ } if$ format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check new.block format.tr.number output.nonnull institution "institution" bibinfo.warn output address "address" bibinfo.check output format.date "year" output.check format.doi output new.block format.note output format.eprint output format.url output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check new.block format.title "title" output.check format.date output format.doi output new.block format.note "note" output.check format.eprint output format.url output fin.entry } FUNCTION {default.type} { misc } READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } INTEGERS { et.al.char.used } FUNCTION {initialize.et.al.char.used} { #0 'et.al.char.used := } EXECUTE {initialize.et.al.char.used} FUNCTION {format.lab.names} { 's := s num.names$ 'numnames := numnames #1 > { numnames #4 > { #3 'namesleft := } { numnames 'namesleft := } if$ #1 'nameptr := "" { namesleft #0 > } { nameptr numnames = { s nameptr "{ff }{vv }{ll}{ jj}" format.name$ "others" = { "{\etalchar{+}}" * #1 'et.al.char.used := } { s nameptr "{l{}}" format.name$ * } if$ } { s nameptr "{l{}}" format.name$ * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ numnames #4 > { "{\etalchar{+}}" * #1 'et.al.char.used := } 'skip$ if$ } { s #1 "{l{}}" format.name$ duplicate$ text.length$ #2 < { pop$ s #1 "{ll}" format.name$ #3 text.prefix$ } 'skip$ if$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { cite$ #1 #3 substring$ } { key #3 text.prefix$ } if$ } { author format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } { key #3 text.prefix$ } if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {author.key.organization.label} { author empty$ { key empty$ { organization empty$ { cite$ #1 #3 substring$ } { "The " #4 organization chop.word #3 text.prefix$ } if$ } { key #3 text.prefix$ } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.organization.label} { editor empty$ { key empty$ { organization empty$ { cite$ #1 #3 substring$ } { "The " #4 organization chop.word #3 text.prefix$ } if$ } { key #3 text.prefix$ } if$ } { editor format.lab.names } if$ } FUNCTION {calc.label} { key empty$ not { key duplicate$ 'label := sortify 'sort.label := } { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.organization.label { type$ "manual" = 'author.key.organization.label 'author.key.label if$ } if$ } if$ duplicate$ year field.or.null purify$ #-1 #2 substring$ * 'label := year field.or.null purify$ #-1 #4 substring$ * sortify 'sort.label := } if$ } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr #1 > { " " * namesleft #1 = t "others" = and { "zzzzz" * } { t sortify * } if$ } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {author.organization.sort} { author empty$ { organization empty$ { key empty$ { "to sort, need author, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { "The " #4 organization chop.word sortify } if$ } { author sort.format.names } if$ } FUNCTION {editor.organization.sort} { editor empty$ { organization empty$ { key empty$ { "to sort, need editor, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { "The " #4 organization chop.word sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} { calc.label sort.label " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.organization.sort { type$ "manual" = 'author.organization.sort 'author.sort if$ } if$ } if$ * " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT STRINGS { longest.label last.sort.label next.extra } INTEGERS { longest.label.width last.extra.num } FUNCTION {initialize.longest.label} { "" 'longest.label := #0 int.to.chr$ 'last.sort.label := "" 'next.extra := #0 'longest.label.width := #0 'last.extra.num := } FUNCTION {forward.pass} { last.sort.label sort.label = { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := sort.label 'last.sort.label := } if$ } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ label extra.label * 'label := label width$ longest.label.width > { label 'longest.label := label width$ 'longest.label.width := } 'skip$ if$ extra.label 'next.extra := } EXECUTE {initialize.longest.label} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {begin.bib} { et.al.char.used { "\newcommand{\etalchar}[1]{$^{#1}$}" write$ newline$ } 'skip$ if$ preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{" longest.label * "}" * write$ newline$ "\providecommand{\url}[1]{#1}" write$ newline$ "\providecommand{\urlprefix}{URL }" write$ newline$ "\expandafter\ifx\csname urlstyle\endcsname\relax" write$ newline$ " \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else" write$ newline$ " \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup \urlstyle{rm}\Url}\fi" write$ newline$ "\providecommand{\eprint}[2][]{#2}" write$ newline$ "\providecommand{\arxiv}[1]{\href{http://www.arxiv.org/abs/#1}{ArXiv: #1}}" write$ newline$ "\providecommand{\arxivs}[2]{\href{http://www.arxiv.org/abs/#1}{ArXiv: #1 [#2]}}" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} %% End of customized bst file %% %% End of file `simon.bst'. ShortRead/inst/extdata/0000755000126300012640000000000012227066723016446 5ustar00biocbuildphs_compbioShortRead/inst/extdata/Data/0000755000126300012640000000000012227066722017316 5ustar00biocbuildphs_compbioShortRead/inst/extdata/Data/C1-36Firecrest/0000755000126300012640000000000012227066723021657 5ustar00biocbuildphs_compbioShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/0000755000126300012640000000000012227066723023263 5ustar00biocbuildphs_compbioShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/0000755000126300012640000000000012227066723024221 5ustar00biocbuildphs_compbioShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/s_1_sequence.txt0000644000126300012640000007577412227066723027360 0ustar00biocbuildphs_compbio@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK @HWI-EAS88_1_1_1_922_465 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT +HWI-EAS88_1_1_1_922_465 ]]]]Y]]]]]V]T]]]]]T]]]]]V]TMJEUXEFLA @HWI-EAS88_1_1_1_895_493 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA +HWI-EAS88_1_1_1_895_493 ]]]]]]]]]]]]]]]]]]]]]]T]]]]RJRZTQLOA @HWI-EAS88_1_1_1_953_493 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTT +HWI-EAS88_1_1_1_953_493 ]]]]]]]]]]]]]]]]]T]]]]]]]]]]MJUJVLSS @HWI-EAS88_1_1_1_868_763 GTTCTCTAAAAACCATTTTTCGTCCCCTTCGGGGCG +HWI-EAS88_1_1_1_868_763 ]]]]]]]]]]]Y]]T]]]O]]]]VO]W]VZMXVOLS @HWI-EAS88_1_1_1_819_788 GTACGCTGGACTTTGTAGGATACCCTCGCTTTCCTT +HWI-EAS88_1_1_1_819_788 ]]]]]]]]]]]]]]]]Y]]P]RRTYYV][VZXHFSO @HWI-EAS88_1_1_1_801_123 GAACAGCATCTGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_801_123 ]]]]]]]]]]]]]]]]Y]]]R]]]]]]]UZZXVSSS @HWI-EAS88_1_1_1_885_419 GCTTGGTAAGTTGGATTAAGCACTCCGTGGGCAGTT +HWI-EAS88_1_1_1_885_419 ]]]]]]]]]]]]]]C]]VYY]R]]V]]TRVHPAJAM @HWI-EAS88_1_1_1_941_477 GAGAAGTTAATGGATGAATTGGCACAATGCTACAAT +HWI-EAS88_1_1_1_941_477 ]]]]]]]]]]]]]]]]]]]]]]]R]TPVVVZCSFLO @HWI-EAS88_1_1_1_984_473 GTTGGTTTCTATGTGGCTTAATACGTTAATTAAAAT +HWI-EAS88_1_1_1_984_473 ]]]]]]]]]]]]]]]]]]ETY]VJ]]]HTOMEQAHC @HWI-EAS88_1_1_1_570_435 GTCTATAGTGTTATTAATATCAAGTTGGGGGAGCAT +HWI-EAS88_1_1_1_570_435 ]]]]Y]]]]]]]R]]]]]]]]]R]]]HVTREEVHAA @HWI-EAS88_1_1_1_649_729 GATATTTCTGATGAGTCGAAAAATTATCTTGATAAA +HWI-EAS88_1_1_1_649_729 ]]]]]]]]]]]]]V]]]]VYV]]]]T]][ZVRVSSL @HWI-EAS88_1_1_1_867_781 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAA +HWI-EAS88_1_1_1_867_781 ]]]]]]]]]]]]]]]Y]]]T]OV]]]]T[PZJVSFF @HWI-EAS88_1_1_1_722_426 GGACTTTGTAGGATACCCTCGCTTTCCTGCTCCTGT +HWI-EAS88_1_1_1_722_426 ]]]]]]]]]]]]R]]]]]YYY]VT]RY]VVZPQMOO @HWI-EAS88_1_1_1_789_111 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAA +HWI-EAS88_1_1_1_789_111 ]]]]]]]]]]]]]]T]]]]]]]]]P]]][ZZXVASM @HWI-EAS88_1_1_1_945_812 GTATTTTACCAATGACCAAATCAAAGAAATGACTCG +HWI-EAS88_1_1_1_945_812 ]]]]]]]]]]]]]]]Y]YY]]]YV]]]][ZZUQSSS @HWI-EAS88_1_1_1_974_468 GTGTACGCGCAGGAAACTCTGACGTTCTTTCTGTCG +HWI-EAS88_1_1_1_974_468 ]]]]]]]]]]T]]OYYHP]R]T]]Y]HHREEXIAMH @HWI-EAS88_1_1_1_321_368 GTCCCCTTCGGGGCGGTGGTCTTTTGTGTTTTTAAT +HWI-EAS88_1_1_1_321_368 ]]]]]]]]]]]]]]]]Y]]R]]C]M]Y][ZMXVAJS @HWI-EAS88_1_1_1_974_763 GACTGAATGCCAGCAATCTCTTTTTTTGTCTCATTT +HWI-EAS88_1_1_1_974_763 ]]]]]]]]]]]P]]VY]]]Y]]]]]EH][ZZXHSSS @HWI-EAS88_1_1_1_923_392 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGTCCC +HWI-EAS88_1_1_1_923_392 ]]]]]]]]]]]]]]]]]T]R]RTRYECVVVSPEAHA @HWI-EAS88_1_1_1_331_887 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTTC +HWI-EAS88_1_1_1_331_887 ]]]]]]V]]]]]]]]YV]]]T]]]]]]YRVQXVOSK @HWI-EAS88_1_1_1_681_650 GGATTACTATCTGAGTCCGATGCTGTTCAACCACTA +HWI-EAS88_1_1_1_681_650 ]]]]]]]]]]]]]]H]]]]R]]]]]]]PMVSMLOSH @HWI-EAS88_1_1_1_1001_376 GCTACCGATAACAATACTGTAGGCCTGGGTGGTGCT +HWI-EAS88_1_1_1_1001_376 ]]]]]]]Y]]]]YY]]]]]VTYY]CY]][QZMVFFJ @HWI-EAS88_1_1_1_812_666 GGTGGTTATTATACCGTCAAGGACTGTGTGACTATT +HWI-EAS88_1_1_1_812_666 ]]]]]]]]]]]]]O]YT]MV]]J]]]R]JVCMSCSS @HWI-EAS88_1_1_1_879_409 GTGACTATTGACGTCCTTCCTCGTACGCCGGGCCAT +HWI-EAS88_1_1_1_879_409 ]Y]]Y]]Y]]Y]]Y]]Y]]]]]YJJ]EVXVZXOHAJ @HWI-EAS88_1_1_1_874_833 GAGGCTTGCGTTTATGGTACGCTGGTCTTTGTATGT +HWI-EAS88_1_1_1_874_833 ]Y]]]]]]]]]]]]]]]]]YT]]T]HJVTZOXIFNF @HWI-EAS88_1_1_1_671_184 GGATATTTCTAATGTCGTCACTGATGCTGCTTCTGT +HWI-EAS88_1_1_1_671_184 ]]]]]]]]]]Y]]]]]Y]]Y]]VP]]V][ZZXQSSF @HWI-EAS88_1_1_1_770_657 GATAGTTTGACGGTTAATGCTGGTAATGGTGGGTTT +HWI-EAS88_1_1_1_770_657 ]]]]]]]]]]]]]]]]]]]]]]]YRY]][XZXASSS @HWI-EAS88_1_1_1_864_736 GCCTCATCAGGGTTAGGAACATTAGAGCCTTGAATG +HWI-EAS88_1_1_1_864_736 ]]]]]]]]]]]]]]]]]YT]Y]]YYYY]VZUXAOSS @HWI-EAS88_1_1_1_885_763 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTC +HWI-EAS88_1_1_1_885_763 ]]]]]]]]Y]]]]]]]]]Y]]Y]]]]TRWOVJQOSA @HWI-EAS88_1_1_1_246_659 GTTTTTTACCTTTAGACATTACATCACTCCTTCTGC +HWI-EAS88_1_1_1_246_659 ]]]]]]]]]]]]]]]]]Y]]]]]]]T]][ZZXVSNS @HWI-EAS88_1_1_1_977_481 GTTGATAAGCAAGCATCTCATTTTGTGCATATACCT +HWI-EAS88_1_1_1_977_481 ]]]]]]]]]]]]]]T]]]]M]]]]R]EYTZOXLHOS @HWI-EAS88_1_1_1_844_119 GGCATTTAGTAGCGGTAAAGTTAGGCCAAACCCTGG +HWI-EAS88_1_1_1_844_119 ]]]]]]]]]]]]]]]NYVY]]]R]JP]CRJOXEOLL @HWI-EAS88_1_1_1_947_483 GAGGATAAATTATGTCTAATATTCAAACTTGCGCCG +HWI-EAS88_1_1_1_947_483 ]]]]]]]]]]]Y]]P]]YY]VY]]PTVYMCMPLOLH @HWI-EAS88_1_1_1_878_486 GAGAAATAAAAGTCTGAAACATGATTAAACTCCTAA +HWI-EAS88_1_1_1_878_486 ]]]]]]]]]]Y]]]]]]R]]T]]OV]VTMXZRQSNA @HWI-EAS88_1_1_1_966_456 GCTTGTTTACGAATTAAATCGAAGTGGACTTCTTGT +HWI-EAS88_1_1_1_966_456 ]]]]]]]]]]]Y]]]]]V]]]]P]]]YMPZEEVAKC @HWI-EAS88_1_1_1_786_629 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGAT +HWI-EAS88_1_1_1_786_629 ]Y]]]]]]]]]]]]]]Y]Y]Y]]]Y]YYXQVXLMAS @HWI-EAS88_1_1_1_817_744 GTATAAGTCAAAGCACCTTTAGCGTTAAGGTACTGA +HWI-EAS88_1_1_1_817_744 ]]]]]]]]]]Y]]]Y]]]Y]YY]]]]RO[ZTRQSNH @HWI-EAS88_1_1_1_726_628 GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT +HWI-EAS88_1_1_1_726_628 ]]]]]]]]]]]]]]]V]]]R]]]]]]]R[ZZHVLSS @HWI-EAS88_1_1_1_985_406 GATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTT +HWI-EAS88_1_1_1_985_406 ]]]]]]]]]]]]]]V]]]T]]]HMT]JRWZZJASSS @HWI-EAS88_1_1_1_717_240 GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTAT +HWI-EAS88_1_1_1_717_240 ]]]]]]]]]]Y]]]]]V]Y]]]T]PM]]UZZOVSHO @HWI-EAS88_1_1_1_346_566 GTTCCGACTACCCTCCCGACTGCCTATGATGTTTAT +HWI-EAS88_1_1_1_346_566 ]]]]]]]]]]]]]]]]]]O]]]]]YH]]MZVUVSHS @HWI-EAS88_1_1_1_930_759 GGCTTTTTTATGGTTCGTTCTTGTTACCCTTCTGTT +HWI-EAS88_1_1_1_930_759 ]]]T]]]]]]]]]]]]]Y]P]]C]]VMVXZZHVCAA @HWI-EAS88_1_1_1_441_780 GGTTTATCGTTTTTGACACTCTCACGTTGGCTGACG +HWI-EAS88_1_1_1_441_780 ]]]]]]]]]]]]]]]]]]]]]]]]]]R]VVZXVASC @HWI-EAS88_1_1_1_893_385 GTTAACACTACTGGTTATATTGACCATGCCGCTTTT +HWI-EAS88_1_1_1_893_385 ]]]]]]]]]]]]]]]]Y]TV]YJRVRVTOMHEOSLN @HWI-EAS88_1_1_1_860_742 GTCCCCTTCGGGGCGGTGGTCTATAGTGTTATTAAT +HWI-EAS88_1_1_1_860_742 ]]]]]]]]]]]]]]]]T]]RHYC]H]OVVZCRVFNS @HWI-EAS88_1_1_1_646_490 GTAACCGTCTTCTCGTTCTCTAAAAACCATTTTTCT +HWI-EAS88_1_1_1_646_490 ]]]]]]]]]]]]]]]]]]]]]PER]V]]PVZXQOOC @HWI-EAS88_1_1_1_484_791 GCTGATGAACTAAGTCAACCTCAGCACTAACCTTGC +HWI-EAS88_1_1_1_484_791 ]]]]]]]]]]]VY]]]T]]]V]M]YC]]TZZMOJSL @HWI-EAS88_1_1_1_698_397 GTTTTCATGCCTCCCAATCTTGGAGGCTTTTTTATG +HWI-EAS88_1_1_1_698_397 ]]]]]]]]]]]]]]HT]]]]]]]C]]V][ZZXVASS @HWI-EAS88_1_1_1_955_440 GGAAAACGAACAAGCGCAAGAGTAAACATAGTGCCA +HWI-EAS88_1_1_1_955_440 ]]]]]]]]]]]Y]]]]]TR]H]VPVVTOOHPMQLOH @HWI-EAS88_1_1_1_976_442 GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCT +HWI-EAS88_1_1_1_976_442 ]]]]]]]]]]]]]]]]]]]TV]R]]]YYOPCPQHKO @HWI-EAS88_1_1_1_366_209 GAGCAGAAGCAATACCGCCAGCAATAGCACCAAACA +HWI-EAS88_1_1_1_366_209 ]]]]]]]Y]]]]]]]]]]]VY]JH]TY]TTZMLFSH @HWI-EAS88_1_1_1_872_762 GTTTATAGGTCTGGTGAACACGACCAGAAAACTGGC +HWI-EAS88_1_1_1_872_762 PPPPPPPPPPPPPEPPPPPOPPMOOPPOMMMPOOOJ @HWI-EAS88_1_1_1_361_357 GAAGAAATAACATCATGGTAACGCTGCATGAAGTAA +HWI-EAS88_1_1_1_361_357 ]]]]]]]]]]]]]]]]]]V]]]]]]]]H[ZEMVSOA @HWI-EAS88_1_1_1_804_628 GTCAAAAATTACGTGCAGAAGGAGTGATGTAATGTC +HWI-EAS88_1_1_1_804_628 ]]]]]]]]]]]]]]]]]]TY]]R]R]R]WXVRVLMJ @HWI-EAS88_1_1_1_864_773 GGGAGGGTGTCAATCCTGACGGTTATTTCCTAGACA +HWI-EAS88_1_1_1_864_773 ]]]]]]]]]]]VY]]]]]R]]]T]Y]Y]RVVMKHLJ @HWI-EAS88_1_1_1_561_780 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGCA +HWI-EAS88_1_1_1_561_780 ]]]]]]]]]]]]]V]]]]]]]EE]YTRRVZVTOSKJ @HWI-EAS88_1_1_1_415_588 GTAGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTT +HWI-EAS88_1_1_1_415_588 ]]]]]Y]]]]]]]]]]]]]]]]V]]]]]PZOCVSSS @HWI-EAS88_1_1_1_862_123 GTCACATTAAATTTAACCTGACTATTCCACTGCAAC +HWI-EAS88_1_1_1_862_123 ]]]]]]]]]]]]]]]]]]]TT]]P]]]]UZZXVCOS @HWI-EAS88_1_1_1_686_617 GTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCT +HWI-EAS88_1_1_1_686_617 ]]]]]]]]]]]]]]]]]]]MH]]]]]]M[ZZJNSSL @HWI-EAS88_1_1_1_299_507 GTTTTCTGGTCGTGTTCAACAGACCTATAAACATTC +HWI-EAS88_1_1_1_299_507 ]]]]]]]]]]]]]]]]]J]]T]P]Y]O]RJVXOSLO @HWI-EAS88_1_1_1_433_756 GTTAACTTCTGCGTCATGGAAGCGATAAAACTCTGC +HWI-EAS88_1_1_1_433_756 PPPPPPPPPPPPPPPPPPPPHPPPOPPMOPPPNKMA @HWI-EAS88_1_1_1_604_463 GATTTATGTTTGGTGCTATTGCTGGCGGGTTTTTTT +HWI-EAS88_1_1_1_604_463 ]]]]]Y]]]]]]]]]]]R]]]]]RY]OYEHVTQHKS @HWI-EAS88_1_1_1_366_254 GCATTCAAGGTGATGTGCTTGCTACCGATAACCATA +HWI-EAS88_1_1_1_366_254 ]]]]]]]]]]]]Y]]]]]]]]]]V]]]V[RZXAJSO @HWI-EAS88_1_1_1_861_780 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_861_780 ]]]]]]]]]]]]]]]]]]Y]Y]]]]]]R[XOXQLOS @HWI-EAS88_1_1_1_51_508 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_51_508 ]]]]]Y]]]]]]V]]]]]]]]YTJ]]OM[ZZRPAJH @HWI-EAS88_1_1_1_918_394 GCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTC +HWI-EAS88_1_1_1_918_394 ]]]]]]]]]]]]]]Y]]]R]]VY]M]]OVJZPQKAF @HWI-EAS88_1_1_1_873_770 GAATTTACGGAAAACATTATTAATGGCGTCGAGCGT +HWI-EAS88_1_1_1_873_770 ]]]]]]]]]]V]V]]P]]YY]VVV]]R]PUOCOCMH @HWI-EAS88_1_1_1_712_190 GCCGTTTTGGATTTAACCGAAGATGATTTCGATTTT +HWI-EAS88_1_1_1_712_190 ]]]]]]]]]]O]]]V]]]]OC]O]]O]][QTCVSSS @HWI-EAS88_1_1_1_411_573 GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCAT +HWI-EAS88_1_1_1_411_573 ]]]]]]]]]]]]]]]]T]H]]]Y]]R]]RZEXVAJS @HWI-EAS88_1_1_1_228_633 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_228_633 ]]]]]]]]]]]]]]]]]]]]]VV]]Y]P[ZOUVFNH @HWI-EAS88_1_1_1_359_604 GGTGTCTGTAAAACAGGTGCCGAAGAAGCTGGAGTA +HWI-EAS88_1_1_1_359_604 ]]]]]]]]]]]]]]]]]]]]]]EV]VV][ZZXMSMH @HWI-EAS88_1_1_1_303_791 GGATTAAGTTCATGAAGGATGGTGTTAATGCCACTC +HWI-EAS88_1_1_1_303_791 ]]]]]]]]]]]]]]]]]]]]]]]]]]TVVVZXOSSS @HWI-EAS88_1_1_1_998_450 GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTT +HWI-EAS88_1_1_1_998_450 ]]]]]]]]]]]]]R]]]]CT]O]]YR]][ZEEKSSS @HWI-EAS88_1_1_1_697_640 GTGTGAGGTTATAACGCCGAAGCGGGAAAAATTTTA +HWI-EAS88_1_1_1_697_640 ]]]]]]]]]]]]]]]]]]]ET]]]]EPJTXQXVSSL @HWI-EAS88_1_1_1_961_516 GAAGCCTGAATGAGCTTAATAGAGGCCAAAGCGGTC +HWI-EAS88_1_1_1_961_516 ]]]]]]]]]]]]T]]]]Y]]V]TT]]YPTHVOQKLH @HWI-EAS88_1_1_1_676_167 GAATCAGCGGTATGGCTCCTCTCCTATTTGCTCTTT +HWI-EAS88_1_1_1_676_167 ]]]]]]]]]]V]]]]]]]EYV]TOTMV]JEHCENFA @HWI-EAS88_1_1_1_908_493 GATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTA +HWI-EAS88_1_1_1_908_493 ]]]]]]]]]]]]]Y]]]]VR]H]]V]YV[ZECQSSM @HWI-EAS88_1_1_1_335_282 GACATTATGGGTCTGCAAGCTGCTTATGCTACTTTG +HWI-EAS88_1_1_1_335_282 ]]]]]]]]]]]]]]]]YR]]]]]]]T]VWZSEVSSJ @HWI-EAS88_1_1_1_706_512 GTTGAAATGGTAATAAGACGACCAATCTGACCAGCC +HWI-EAS88_1_1_1_706_512 ]]]]]]]]]]]]]]]Y]R]]JVYHRV]]WMZOKLHA @HWI-EAS88_1_1_1_927_495 GTAAGCATTTGGCGCATAATCTCGGAAACCTGCTGT +HWI-EAS88_1_1_1_927_495 ]]]]]]]]]]]]]]]T]]T]]]]T]HOOTTMMKNLH @HWI-EAS88_1_1_1_370_877 GTGAGAGTGTCAAAAACGATAAACCAACCATCAGCA +HWI-EAS88_1_1_1_370_877 ]]]]]]]]]]]]]]TVT]]]]]]]]JVPTQMRQJLJ @HWI-EAS88_1_1_1_223_238 GTTAACAGTCGGGAGAGGAGTGGCATTAACACCATC +HWI-EAS88_1_1_1_223_238 ]]]]]]Y]]]]]]N]R]]Y]]Y]]P]]VPSCTVHHS @HWI-EAS88_1_1_1_324_781 GTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCG +HWI-EAS88_1_1_1_324_781 ]]]]]]]]]]]]]YR]P]]]Y]T]E]WTRJVMHKAF @HWI-EAS88_1_1_1_833_311 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_833_311 ]]]]]Y]]Y]Y]Y]HTRVVT]MRY]VCEVVZJQKHF @HWI-EAS88_1_1_1_364_260 GGTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG +HWI-EAS88_1_1_1_364_260 ]]]]]]]]Y]]]]]]]]]]]PY]V]HM]WMZXIMHS @HWI-EAS88_1_1_1_900_770 GGTCGCAAAGTAAGAGCTTCTCGAGCTGCGCAAGGG +HWI-EAS88_1_1_1_900_770 ]]]]]]]]Y]]]V]J]]]]YY]VO]Y]]TZOCLMOA @HWI-EAS88_1_1_1_674_661 GATATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAA +HWI-EAS88_1_1_1_674_661 ]]]]]]]]]]]]]]]]]]OPY]TY]YE]UQZTQJSM @HWI-EAS88_1_1_1_524_466 GGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGG +HWI-EAS88_1_1_1_524_466 ]]]]]]]]]]]]]]]Y]]]]]]]YHOV][MTPVHHK @HWI-EAS88_1_1_1_960_818 GGTTTAGATATGAGTCACATTTTGTTCATGGTAGAG +HWI-EAS88_1_1_1_960_818 ]]]]]]]]]]]]]]]]]]V]]]]T]]]][VZXMSLN @HWI-EAS88_1_1_1_227_700 GTTGACATTTTAAAAGAGCGTGGATTACTATCTGAG +HWI-EAS88_1_1_1_227_700 ]]]]]]]]]]]]]]]]]]]]]]]]]]]][VZXVOLH @HWI-EAS88_1_1_1_662_208 GTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGG +HWI-EAS88_1_1_1_662_208 ]]]]]]]]]]V]P]TR]]]]]]M]]]TV[PREKMLF @HWI-EAS88_1_1_1_635_393 GTTTCTGTTGGTGCTGATATTGCTTTTGATGCTTAA +HWI-EAS88_1_1_1_635_393 ]]]]]]]]]]]]]]]]]]]]]]]]]]]OJZHUVAFM @HWI-EAS88_1_1_1_403_780 GCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTC +HWI-EAS88_1_1_1_403_780 ]]]]]]]]Y]]]]]]T]]]]]]]]]Y]RRZZRMOSO @HWI-EAS88_1_1_1_468_756 GCAGAAGCAATACCGCCAGCAATAGCACCAAACATA +HWI-EAS88_1_1_1_468_756 ]]]]]]]]]]]]V]Y]]Y]]]HV]OTRVVJMONHFF @HWI-EAS88_1_1_1_484_755 GGTGCTATTGCTGGCGGTATTGGTTCTTCTCTTTCT +HWI-EAS88_1_1_1_484_755 ]]]]]]]]]]]]]]]]]HOT]HCTOEYCCMHMKHAH @HWI-EAS88_1_1_1_973_421 GTTTCCGTTGCTGCCATCTCCAAAACATTTTGACTG +HWI-EAS88_1_1_1_973_421 ]]]]]]]]]]]]]]]]]]]]M]MM]]V][ZEEINSF @HWI-EAS88_1_1_1_497_908 GGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTT +HWI-EAS88_1_1_1_497_908 ]]]]]]]]]]]]]]Y]]]]]R]R]YY]][VTXVSSS @HWI-EAS88_1_1_1_991_521 GAGCTTCTCGAGCTGCGCAAGGATAGGTCGGATTTT +HWI-EAS88_1_1_1_991_521 ]]]]]]]]]]V]]]]]]]RR]]P]T]]YTQOEVSSS @HWI-EAS88_1_1_1_495_814 GCAGTAGACTCCTTCTGTTGATAAGCAAGCATCTCA +HWI-EAS88_1_1_1_495_814 ]]]]]]]]]]]]]]]]]]]]V]Y]]]Y][ZVXVSSA @HWI-EAS88_1_1_1_703_438 GATTATTTTGACTTTGAGCGTATCGAGGCTCTTTAA +HWI-EAS88_1_1_1_703_438 ]Y]]]]]]]]]]]]]]]]]]V]]]]ORWVVZUQCHF @HWI-EAS88_1_1_1_730_507 GTCATTGTGAGCATTTTCATCCCGAAGTTGCGGCTC +HWI-EAS88_1_1_1_730_507 ]]]]]]]]]]]]]]]]]]H]YYV]HOYT[HMOQALH @HWI-EAS88_1_1_1_866_100 GCCATTGCTCATATTGAAGTTCAGGCTGTTATTTTT +HWI-EAS88_1_1_1_866_100 ]]]]]]]]]]Y]]]]]]]]]]]]R]]]]CZTXVSSS @HWI-EAS88_1_1_1_949_458 GGTATGTAGGTGGCCAACAATTTTTATTGCTTGGGT +HWI-EAS88_1_1_1_949_458 ]]]]]]]]]]]]]H]Y]]RRY]]]RH]VEMCMHCJF @HWI-EAS88_1_1_1_320_300 GACACCTAAAGCTACATCGTCAACGTTATATTTTGT +HWI-EAS88_1_1_1_320_300 ]]]]]]]]]]]]]]]YY]]R]EJ]]]YT[JZXVSAH @HWI-EAS88_1_1_1_996_317 GCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAG +HWI-EAS88_1_1_1_996_317 ]]]]]]]]]]]]]]]]]VYR]]]]]]O][ZSXVSHJ @HWI-EAS88_1_1_1_843_780 GGCTTCCATAAGCAGATGGATAACCGCATCAAGCTC +HWI-EAS88_1_1_1_843_780 ]]]]]]]Y]]Y]]Y]Y]]]V]V]]]]YPWTENVNLN @HWI-EAS88_1_1_1_337_794 GTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGG +HWI-EAS88_1_1_1_337_794 ]]]]]]T]]]Y]]]]Y]Y]]]]Y]R]]]MZVXVSJF @HWI-EAS88_1_1_1_599_542 GATAATGGTGATATGTATGTTGACGGCCCTAAGGCT +HWI-EAS88_1_1_1_599_542 ]Y]]]]]]]]V]V]]YY]]Y]JCYTRRVEJENLLAF @HWI-EAS88_1_1_1_636_218 GTTTGTATCTGTTACTGAGAAGTTAATGGTTGGATT +HWI-EAS88_1_1_1_636_218 ]]]]]]]]]]]]]]]]]J]JRY]]VYVH[CVCAAKS @HWI-EAS88_1_1_1_801_780 GTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGAC +HWI-EAS88_1_1_1_801_780 ]]]]]]]]]]Y]Y]]T]Y]]O]EYT]]]TPZTVSCM @HWI-EAS88_1_1_1_753_627 GGATTAAGCACTCCGTGGACAGATTTGTCATTGTGA +HWI-EAS88_1_1_1_753_627 ]]]]]]Y]]]]]]]]]]]R]]]T]]]YV[ZZXQSSC @HWI-EAS88_1_1_1_234_684 GGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGAC +HWI-EAS88_1_1_1_234_684 ]]]]]]]]]]]]]]]]]]]Y]]]]]]V]RTZUVOAS @HWI-EAS88_1_1_1_915_728 GTTATTATACCGTCAAGGACTGTGTGACTATTGACG +HWI-EAS88_1_1_1_915_728 ]]]]]]]]]]]]]]V]]]]]]]]]Y]O][XZXOALK @HWI-EAS88_1_1_1_970_579 GCTTACTCAAGCTCAAACGGCTGGTCCGTTTTTTTT +HWI-EAS88_1_1_1_970_579 ]]]]]]Y]YY]]Y]]]]]RYR]]]O]RR[PTXVSFL @HWI-EAS88_1_1_1_706_163 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_706_163 ]]]]]]]]]]]]]]NTVT]]C]Y]VVH][ZTPLSOH @HWI-EAS88_1_1_1_851_764 GAAAATGCTCACAATGACAAATCTGTCCACGGAGTG +HWI-EAS88_1_1_1_851_764 ]]]]]]]]]]T]R]]]R]OTRY]Y]]VVJUSRESHM @HWI-EAS88_1_1_1_963_398 GGGTGATAAGCAGGAGAAACATACGAAGGCGCATAA +HWI-EAS88_1_1_1_963_398 ]]]]]]]]]]]Y]]V]YVTYHYJ]VJTVWPZOHJHF @HWI-EAS88_1_1_1_706_182 GCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGA +HWI-EAS88_1_1_1_706_182 ]]]]]]]]]]]]]]]]T]]]Y]VTY]RVOSZHHLJA @HWI-EAS88_1_1_1_886_399 GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTAT +HWI-EAS88_1_1_1_886_399 ]]]]]]]]]]]]]]T]]]]PYYYTVRMRWPVRQLAO @HWI-EAS88_1_1_1_975_702 GTAACCCAGCTTGGTAAGTTGGATTAAGCACTCCGT +HWI-EAS88_1_1_1_975_702 ]]]]]]]]]]]]]]]]Y]Y]]]P]]TRYVZVXQSNH @HWI-EAS88_1_1_1_634_538 GGTTAATGCTGGTAATGGTGGGTTTTTTTCTTTTTT +HWI-EAS88_1_1_1_634_538 ]]]]]Y]]]]]]]YO]O]YY]RR]]]E]MVVXEHHS @HWI-EAS88_1_1_1_803_696 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGA +HWI-EAS88_1_1_1_803_696 ]]]]]]]]]]]]]]]O]N]]]]]]]]R][ZTOPKOF @HWI-EAS88_1_1_1_878_417 GAACGAACCATAAAAAAGCCTCCAAGATTTGGAGGC +HWI-EAS88_1_1_1_878_417 ]]]]]]]]]]]]]Y]]]]]]Y]]EJ]JTRVVRKHOM @HWI-EAS88_1_1_1_926_442 GACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTT +HWI-EAS88_1_1_1_926_442 ]]]]]]]]]]Y]]Y]]]]JP]R]]PY]HPVOXOAMO @HWI-EAS88_1_1_1_371_757 GCAGAAGTTAACACTTTCGGATATTTCTGATTAGTC +HWI-EAS88_1_1_1_371_757 ]]]]]]]]]]]]]]]]Y]]YRYT]Y]Y]VOPEIHJJ @HWI-EAS88_1_1_1_986_397 GCAATAGCACCAAACATAAATCCCCTCACTTAAGTG +HWI-EAS88_1_1_1_986_397 ]]]]]]]]]]]YY]]PYVRMVYE]YT]JTOZMHHCF @HWI-EAS88_1_1_1_553_75 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATTTT +HWI-EAS88_1_1_1_553_75 ]]]]]]]]]]]]]Y]]]]]]]CY]CH]]MZZCVFOS @HWI-EAS88_1_1_1_692_494 GGCTGCGGACGACCAGGGCGAGCGCCAGAACGTTTT +HWI-EAS88_1_1_1_692_494 ]]]]]]]]R]]V]]N]]]]]HYRYRRC]CJORAJLO @HWI-EAS88_1_1_1_971_538 GGTTTAAGAGCCTCGATACGCTCAAAGTCAAAATAA +HWI-EAS88_1_1_1_971_538 ]]]]]]]]]]]]]]]V]]]]]]]PY]YTTPZMHNNN @HWI-EAS88_1_1_1_867_629 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCTAC +HWI-EAS88_1_1_1_867_629 ]]]]]]]]]]]]]]]]]]Y]VO]RVTJTPVQREAAC @HWI-EAS88_1_1_1_326_303 GAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA +HWI-EAS88_1_1_1_326_303 ]]]]]]]]]]]]]]]]]]T]]]V]]]T][VZCESHF @HWI-EAS88_1_1_1_680_172 GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCTG +HWI-EAS88_1_1_1_680_172 ]]]]]]]]]]]Y]]]T]]]]YR]]VVVTRVHRVFAJ @HWI-EAS88_1_1_1_997_339 GTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTA +HWI-EAS88_1_1_1_997_339 ]]]]]]]]]]]]]]]Y]]]YH]TJV]]M[ZZRVOOH @HWI-EAS88_1_1_1_415_754 GCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCA +HWI-EAS88_1_1_1_415_754 ]]Y]]]]]]]Y]]]H]]]]]]]]]]Y]]WPXJQSNC @HWI-EAS88_1_1_1_629_192 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_629_192 ]]]]]]]]]]]]]]]V]]]]PY]]]Y]YVEOMHJOO @HWI-EAS88_1_1_1_160_207 GTGATGTGCTTGCTACCGATAACAATACTGTAGGCA +HWI-EAS88_1_1_1_160_207 ]]]]]]]]]]]]]]]]]]P]TY]V]]V]UZPRVSJC @HWI-EAS88_1_1_1_705_461 GTTTAAGAGCCTCGATACGCTCCAAGTCAAAATAAT +HWI-EAS88_1_1_1_705_461 ]]]]]]]]]]]]]]V]Y]]]]]CYY]R][TPRQHKH @HWI-EAS88_1_1_1_584_460 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTATCA +HWI-EAS88_1_1_1_584_460 ]]]]]]]]]]Y]]]]]]Y]]]]]]TYJ]VZZXKAMJ @HWI-EAS88_1_1_1_434_845 GTTCTGCTTCAATATCTGGTTGAACGGCGTCGCGTC +HWI-EAS88_1_1_1_434_845 ]]]]]]]]]]VV]]]]]]]]]]V]]]]][ZVTQNSF @HWI-EAS88_1_1_1_319_700 GATACCCTCGCTTTCCTGCTCCTGATGCGTTTATTG +HWI-EAS88_1_1_1_319_700 ]]]]T]]]V]]]YERYRYPYYPEYM]MCOHTUIKHJ @HWI-EAS88_1_1_1_882_462 GCATTCATCAAACGCTGAATAGCAAAGCCTCTACGC +HWI-EAS88_1_1_1_882_462 ]]]]]]]]]]]]]]]]]P]]Y]]HTRWV[PVPHMJH @HWI-EAS88_1_1_1_346_126 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_346_126 ]]]]]]]]]]]]]]]]]]]]OY]]]]]][JVXQOSS @HWI-EAS88_1_1_1_285_738 GGTCTATAGTGTTATTAATATCAAGTTGGTGGTGCC +HWI-EAS88_1_1_1_285_738 ]]]]]]]]]Y]Y]YV]VV]P]]POORVRVCPCAMCA @HWI-EAS88_1_1_1_885_551 GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA +HWI-EAS88_1_1_1_885_551 ]]Y]]]]]Y]]]]]]]]]Y]Y]]]]VPWUZRXIJLK @HWI-EAS88_1_1_1_211_313 GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCT +HWI-EAS88_1_1_1_211_313 ]]]]]]]]]]]]]]]T]]]]]]]Y]]]]TZZXVSSS @HWI-EAS88_1_1_1_905_706 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAAC +HWI-EAS88_1_1_1_905_706 ]]]]]]]]]]]]]]]]]]]Y]]]]]T]]VZUPMFLL @HWI-EAS88_1_1_1_364_133 GTTGATATTTTTCATGGTATTGATAAAGCTGTTTCC +HWI-EAS88_1_1_1_364_133 ]]]]]]]]]]]]]T]]]]]]]]Y]]O]H[ZVXVFJH @HWI-EAS88_1_1_1_984_424 GTATGCCGCATGACCTTTCCCATCTTGGCTTTCTTG +HWI-EAS88_1_1_1_984_424 ]Y]]]]]]]]]]T]]]]]]Y]R]Y]RTTPZZEOSSF @HWI-EAS88_1_1_1_885_432 GGCTCATTCTGATTCTGAACAGCTTCTTGGGAAGTA +HWI-EAS88_1_1_1_885_432 ]]]]]Y]]]]]Y]]]]]RY]V]YVY]]YORVJNOMA @HWI-EAS88_1_1_1_730_651 GCAGAAGCCTGAATGAGCTTAATAGAGGCCAAAGCG +HWI-EAS88_1_1_1_730_651 ]]]]]]]]]]]YR]]]]]]]]]]]VTW]XZZPOSMS @HWI-EAS88_1_1_1_571_420 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_571_420 ]]]]]]]]]]]]]R]]]]]]]]P]]]OVPOHCILFN @HWI-EAS88_1_1_1_721_668 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAG +HWI-EAS88_1_1_1_721_668 ]]]]]]]]]]]]]]]Y]]V]Y]]YO]]R[ZZXVLLL @HWI-EAS88_1_1_1_863_648 GCCTTCTGGTGATTTGCAAGAACGCGTACTTTTTCG +HWI-EAS88_1_1_1_863_648 ]]]]]]]]]]]T]]]]]TJ]YRV]T]YHMZZEPOFC @HWI-EAS88_1_1_1_714_518 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_714_518 ]]]]]]]]]]]]]]]]]P]]R]V]]]]V[PZXOHHO @HWI-EAS88_1_1_1_832_717 GTTCTTATTACCCTTCTGAATGTCACGCTGATTATT +HWI-EAS88_1_1_1_832_717 ]]]]]]]]]]]]]]]]]]TT]]Y]V]]][ZJRVNSS @HWI-EAS88_1_1_1_345_593 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_345_593 ]]]]]]]]]]]]Y]]]]]]]]]]]]]]][PCPMJLF @HWI-EAS88_1_1_1_833_651 GTAAAGCTGATGGTATTGGCTCTAATTTTTCTATGA +HWI-EAS88_1_1_1_833_651 ]]]]]]]]]]]]]]V]]]]]]]]CRY]]EZMXIALA @HWI-EAS88_1_1_1_794_763 GTGAAAAAGCGTCCTGCGTGTAGCGAACTGCGGTGG +HWI-EAS88_1_1_1_794_763 ]]]]]]]]]]]]Y]Y]Y]PYRRVR]OMRMSCMAJJL @HWI-EAS88_1_1_1_570_882 GTTTTGGATTTAACCGAAGATGATTTCGATTTTCTT +HWI-EAS88_1_1_1_570_882 ]]]]]]]Y]]]]Y]]]EV]HYYC]]RVVCZVXVOLA @HWI-EAS88_1_1_1_677_183 GAATGCAATGAAGAAAACCACCATTACCAGCATTAA +HWI-EAS88_1_1_1_677_183 ]Y]]]]]Y]]T]]]RVV]]]]]R]]]]][ZZMVSJH @HWI-EAS88_1_1_1_894_262 GAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTC +HWI-EAS88_1_1_1_894_262 ]]]]]]]]]]]]]]]]T]]]]]]]]HV][ZVROSSO @HWI-EAS88_1_1_1_109_416 GTCGCAGTAGGCGGAAAACGCACCAGCGCAAGAGTC +HWI-EAS88_1_1_1_109_416 ]]]]]]]]]]]]]]N]V]]]H]TCYR]V[JPMHHAA @HWI-EAS88_1_1_1_168_329 GGATGAAAATGCTCACAATGACAAATCTGTCCACGG +HWI-EAS88_1_1_1_168_329 ]]]]]]]]]]]]]]]]]]]]O]MO]Y]RRVZXOSSO @HWI-EAS88_1_1_1_955_838 GGTGATGCTGGTATTAAATCTGCCATTCAAGGCTCT +HWI-EAS88_1_1_1_955_838 ]]T]Y]]]]]]]]]]V]]]]]V]]J]]]RQZXVSSJ @HWI-EAS88_1_1_1_451_882 GTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATC +HWI-EAS88_1_1_1_451_882 ]]]]]]]]]]]]]]]]]]]]V]P]]RYJ[ZXCSKSS @HWI-EAS88_1_1_1_210_485 GTTATATTTTGATAGTTTGACGGTTAATGCTTGTAA +HWI-EAS88_1_1_1_210_485 ]]]]]]]]]]]]]]]]]]RT]]P]]CVYOHTCKSLA @HWI-EAS88_1_1_1_858_816 GTTGACAGATGTATCCATCTGAATGCAATGAAGAAA +HWI-EAS88_1_1_1_858_816 ]]]]]]]]]]]]]]]]]]]]]]Y]]]]Y[ZZXVKOO @HWI-EAS88_1_1_1_111_677 GGGCGGTGGTCTATAGTGTTATTAATATCAAGTTGG +HWI-EAS88_1_1_1_111_677 ]]]]]]]]]]]]Y]]]]]]]]]]]R]Y][ZPXQSLS @HWI-EAS88_1_1_1_669_439 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAAT +HWI-EAS88_1_1_1_669_439 ]]]]]]]]]]]]]]]]]Y]]]YO]T]]]WZZXQCJM @HWI-EAS88_1_1_1_176_181 GATTAGAGGCGTTTTATGATAATCCCCATGCTTTGC +HWI-EAS88_1_1_1_176_181 ]]]]]]]]]]]]]]]]]]]]MY]]Y]CV[RZXVSFS @HWI-EAS88_1_1_1_681_526 GAAATATCCTTTGCAGTAGCGCCCATATGAGAAGAG +HWI-EAS88_1_1_1_681_526 ]]]V]]]]]]]]]]]]TY]Y]T]C]]R][JZHHFFN @HWI-EAS88_1_1_1_734_219 GGTAAAGGACTTCTTGACGGTACGTTGCATGCTTGG +HWI-EAS88_1_1_1_734_219 ]]]]]]]]]]T]]]]]RC]Y]R]]]]WPCTVCQCMA @HWI-EAS88_1_1_1_643_478 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAG +HWI-EAS88_1_1_1_643_478 ]]]]]]]]]]]]Y]]]]]]J]]V]]]RJJZORVSAH @HWI-EAS88_1_1_1_152_301 GAAGTAGCGACAGCTTGGTTTTTAGTGAGTTTTTCC +HWI-EAS88_1_1_1_152_301 ]]]]]]]]]Y]V]]]]]]]]]]]V]]JJTZZHVSJL @HWI-EAS88_1_1_1_864_228 GTATTGCTTCTGCTCTTGCTGGTGGCGCCCTTTCTA +HWI-EAS88_1_1_1_864_228 ]]]]]]]]]]]]]]]]]]]]RH]VJVROTCXCPHMF @HWI-EAS88_1_1_1_623_542 GATAATCCCAATGCTTTGCGTGACTATTTTCGTGCT +HWI-EAS88_1_1_1_623_542 ]P]]]]]]]YVT]]]]]]]]O]C]]]]][VOJPCAS @HWI-EAS88_1_1_1_851_725 GTTTTTGAGATGGCAGCAACGGAAACCATAACGGGC +HWI-EAS88_1_1_1_851_725 ]]]]]]]]]T]]]]Y]]TJT]YCOVOVCHQJJOCLF @HWI-EAS88_1_1_1_643_262 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_643_262 ]]]]]]]]]]]]Y]]]V]]RVVVYV]]RPVTMNFHN @HWI-EAS88_1_1_1_664_726 GTTAATGCTGGTAATGGTGGTTTTCTTCTTTTCCTT +HWI-EAS88_1_1_1_664_726 ]]]]]]]]]]]Y]]]]]]]]J]]]OR]MCUZEKAOO @HWI-EAS88_1_1_1_736_517 GAAGTCATGATTGAATCGCGAGTGGTCGGCGGGTTG +HWI-EAS88_1_1_1_736_517 ]]]]]]]]]]]]]V]]]]]]O]M]]YR]WEHRMMML @HWI-EAS88_1_1_1_99_173 GTATAATTACCCCCAAAAGAAAGGTATTAAGGATGA +HWI-EAS88_1_1_1_99_173 ]]]]]]]]]]]]]CTTOT]REP]]OO]]RVSOMOSF @HWI-EAS88_1_1_1_664_501 GAGTATCCTTTCCTTTATCAGCGGCAGACTTGCCCC +HWI-EAS88_1_1_1_664_501 ]V]]]Y]]]]]]]]]]V]]TV]YVVHVOWMZEHJAK @HWI-EAS88_1_1_1_339_626 GTTATATGGCTGTTTGGTTTTTTTTTTGTTTATTTT +HWI-EAS88_1_1_1_339_626 ]]]]]]]]]]]]E]ERR]]P]P]V]YOCUEJCLFCA @HWI-EAS88_1_1_1_740_733 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGCT +HWI-EAS88_1_1_1_740_733 ]]]]]]]]]]P]V]]]]]]Y]TT]Y]]PJZVXOOMO @HWI-EAS88_1_1_1_878_404 GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGGA +HWI-EAS88_1_1_1_878_404 ]]]]]]]]]V]]]]]]P]]]]]]VYMP][ZCMQHCC @HWI-EAS88_1_1_1_822_121 GTTTATCCTTTGGATGGTCGCCATGATGGTGTTTTT +HWI-EAS88_1_1_1_822_121 ]]]]]]]]]]]]]]]]]]Y]]PM]]C]PVZVCVSFS @HWI-EAS88_1_1_1_708_703 GAGGAAGCATCAGCACCAGCACGCTCCCAAGCATTA +HWI-EAS88_1_1_1_708_703 ]]]]]]]]]]]]]]Y]]P]]R]]]PYY]MPZXAMMJ @HWI-EAS88_1_1_1_362_553 GTCTCATTTTGCATCTCGGCAATCTCTTTCTGATTT +HWI-EAS88_1_1_1_362_553 ]]]]]]]]]]]]Y]]]]]]]TT]]]]]][ZZMHSSF @HWI-EAS88_1_1_1_960_757 GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT +HWI-EAS88_1_1_1_960_757 ]]]]]]]]]]]]]]]Y]]]RT]]]]]YPVZOXVLKS @HWI-EAS88_1_1_1_752_651 GCACGTTCGTCAAGGACTGGTTTAGATATGAGTCAC +HWI-EAS88_1_1_1_752_651 ]]]]]]]]]]]]Y]]Y]]]]]]]YYV]T[ZRUONFK @HWI-EAS88_1_1_1_754_734 GTAAGAAATCATGAGTCAAGTTACTGAACAATCCGT +HWI-EAS88_1_1_1_754_734 ]]]]]]]Y]]Y]]]]R]OY]TY]]]YMPTJPRQKJJ @HWI-EAS88_1_1_1_825_711 GATGGATACATCTGTCAACGCCGCTAATCAGGTTGT +HWI-EAS88_1_1_1_825_711 ]]]]]]]]]]]]]]Y]NTYYYVVV]RCVRPRRHSNO @HWI-EAS88_1_1_1_308_236 GTGCTCGTCGCTGCGTTGAGGCTTTCGTTTTTTTTT +HWI-EAS88_1_1_1_308_236 PPPPPPPPPPPPPPPPPOPPPPPPEPMPPPMPOFAF @HWI-EAS88_1_1_1_937_329 GGACGCTCGACGCCATTAATAATGTTTTCCGTAAAT +HWI-EAS88_1_1_1_937_329 ]]]]]]]]]O]]]]O]]R]]V]]]Y]]]WZVXVJOS @HWI-EAS88_1_1_1_838_878 GATTACTTCATGCAGCGTTACCATGATGTTATTTCT +HWI-EAS88_1_1_1_838_878 ]]]]]]]]]]]]]]]]]]]]]]J]]M]]TZQXVSNS @HWI-EAS88_1_1_1_414_792 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_414_792 ]]]]]]]]]]]YY]]V]]]]]V]]]HRRTVCOQJOM @HWI-EAS88_1_1_1_730_497 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_730_497 ]]]]]]]]]V]]]]NYPNRYR]]]]YCY[VXXQFMF @HWI-EAS88_1_1_1_969_419 GAGTGGTCGGCAGATTGCGCTAAACGGTCACATTAA +HWI-EAS88_1_1_1_969_419 ]]]]]]]]]]]Y]T]]CRYE]PET]]VEJJQCOMLN @HWI-EAS88_1_1_1_104_533 GTCATGATTGAATCGCGAGTGGTCGGCAGATTTTGC +HWI-EAS88_1_1_1_104_533 ]]]]]]]]]]Y]]]]]RTVV]M]O]TVCWPZXAALA @HWI-EAS88_1_1_1_836_628 GGACGCCGTTGGCGCTCTCCGTCTTTCTCCCTTGCG +HWI-EAS88_1_1_1_836_628 ]]]]]]]]]]]]]]]]]Y]]]T]]]]YYXZEXSFFM @HWI-EAS88_1_1_1_596_390 GCAAGCTGCTTATGCTAATTTGCATACTGACCAAGA +HWI-EAS88_1_1_1_596_390 ]]]]]]]]]]]]]]]]]V]]]]]O]]]]MQZXEAOK @HWI-EAS88_1_1_1_987_447 GTCTGGAAACGTACGGATTGTTCAGTAACTTTACTC +HWI-EAS88_1_1_1_987_447 ]]]]]]]]]]]]]]]]T]]]]]VTT]ERRVZMAHSJ @HWI-EAS88_1_1_1_370_352 GGCCTTGCTATTGACTCTACTGTAGACATTTTTACT +HWI-EAS88_1_1_1_370_352 ]]]]]]]]]]]]YY]]]]R]]]]RRP]O[ZZXVFLS @HWI-EAS88_1_1_1_843_797 GCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGT +HWI-EAS88_1_1_1_843_797 ]]]]]]]]]]]]]]R]]O]CVY]]]T]Y[RMOOSSS @HWI-EAS88_1_1_1_720_664 GTTTACGAATTAAATCGAAGTGGACTGCTGGGGGGA +HWI-EAS88_1_1_1_720_664 ]]]]]]]T]]]]Y]]]]RR]R]]VTRVERVZEQSFF @HWI-EAS88_1_1_1_892_748 GTTGGATTAAGCACTCCGTGGGCAGATTTGTCATTG +HWI-EAS88_1_1_1_892_748 ]]]]]Y]]]]Y]Y]V]]]R]]CJM]JV]WZTEINOS @HWI-EAS88_1_1_1_569_417 GAAATGCAGCAGCAAGATAATCACGAGTATCCTTTC +HWI-EAS88_1_1_1_569_417 ]]]]]]]]]]]]]YV]N]]]]]Y]]O]VVVPNOSNS @HWI-EAS88_1_1_1_231_669 GACTACCCTCCCGACTGCCTATGATGTTTATCCTTC +HWI-EAS88_1_1_1_231_669 ]]]]]]]]]]]]]O]]]R]TOYYR]]Y]EPZXOOSA @HWI-EAS88_1_1_1_990_296 GGCTCTTCTCATATTGGCGCTACTGCAAAGGATATT +HWI-EAS88_1_1_1_990_296 ]]]]]]]]]]T]Y]]]T]]]]T]]O]JPRZTCVASS @HWI-EAS88_1_1_1_113_590 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_113_590 ]]]]]]]]]]]]]]]]YV]]]]R]]]RV[QZXVCNO @HWI-EAS88_1_1_1_355_102 GATAAACCAACCATCAGCATGAGCCTGTCGCCTTGC +HWI-EAS88_1_1_1_355_102 ]]]]]]]]T]]]T]]Y]]MY]T]Y]YVMUSVEVNOF @HWI-EAS88_1_1_1_658_670 GTTTTCCGTAAATTCAGCGCCTTCCATGATGAGACA +HWI-EAS88_1_1_1_658_670 ]]]]]]]]]]YV]]]]]Y]]]]Y]]MTTHSZMQFFF @HWI-EAS88_1_1_1_699_385 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGGCCA +HWI-EAS88_1_1_1_699_385 ]]]]]]]]]V]]]R]]]]]P]Y]Y]REV[ZRXAFHF @HWI-EAS88_1_1_1_943_855 GTTAACAAAAAGTCAGATATGGACCTTGCTGCTAAA +HWI-EAS88_1_1_1_943_855 ]]]]]]]]]]]]]]]]]]]]]]VT]]]][VZXVLKM @HWI-EAS88_1_1_1_465_881 GGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT +HWI-EAS88_1_1_1_465_881 ]]]]]]]]]]]]]]]]E]]]]CHT]V]M[ZZHVFOS @HWI-EAS88_1_1_1_110_475 GAACAGCATCGGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_110_475 ]]]]]]]]]]]]Y]]]]]T]Y]TY]YR]PZZUNOLO @HWI-EAS88_1_1_1_334_219 GACGCAATGGAGAAAGACGGAGAGCGCCAACGGCGT +HWI-EAS88_1_1_1_334_219 ]]]]]]]]]]]]OYY]Y]]]C]PYY]]VCOXXVHOA @HWI-EAS88_1_1_1_313_372 GACGCTGACAACCGGCCTTTACTTGTCATGCGCTCT +HWI-EAS88_1_1_1_313_372 ]]]]]Y]]]]]]]]YV]TVO]]]]YY]R[ZZXVSLS @HWI-EAS88_1_1_1_423_931 GGAGCACATTGTAGCATTGTGCCAATTCATCCATTA +HWI-EAS88_1_1_1_423_931 ]]]]]]]]]]]]]]]]]]]V]]]OO]]]RPZTQOOO @HWI-EAS88_1_1_1_511_536 GTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGG +HWI-EAS88_1_1_1_511_536 ]]]]]]]]]]]]]]V]Y]]O]]]]]T]VPZOJIHJC @HWI-EAS88_1_1_1_233_304 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_233_304 ]]]]]]]]]]]]]]]]]]]]]]]]]]M][ZTXVSJL @HWI-EAS88_1_1_1_239_243 GCCCTCTTAAGGATATTCGCGATGAGTATAATTACC +HWI-EAS88_1_1_1_239_243 ]]]]]]]]]]]]]]]]]]Y]Y]]]Y]Y][UZXVJSM @HWI-EAS88_1_1_1_705_445 GCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGG +HWI-EAS88_1_1_1_705_445 ]]]]]]]]]]]]]]]]]]]]R]]]]Y]YHPPJQLNH @HWI-EAS88_1_1_1_371_846 GCCATCAACTAACGATTCTGTCAAAAACTGACGCGT +HWI-EAS88_1_1_1_371_846 ]]]]]]]]]]]]]]RP]]]]Y]]]Y]R]TTRXSSSO @HWI-EAS88_1_1_1_921_496 GCAATGGAGAAAGACGGAGAGCGCCCACAGCGGCCC +HWI-EAS88_1_1_1_921_496 ]]]]]]]Y]YYY]Y]]]HYO]TYPYHCMEPOJAFAF @HWI-EAS88_1_1_1_322_845 GTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGA +HWI-EAS88_1_1_1_322_845 ]]]]]]]]]]]]]]Y]]]]]]]]Y]]]]WZZOVSMA @HWI-EAS88_1_1_1_243_812 GCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAAC +HWI-EAS88_1_1_1_243_812 ]]]]]]]]]]]Y]]]]]V]]]V]PYTR][ZZNQJLH @HWI-EAS88_1_1_1_370_333 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_370_333 ]]]]]]]]]]]]]]TY]]YY]]]]]]]W[JHMOJSM @HWI-EAS88_1_1_1_859_299 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGCA +HWI-EAS88_1_1_1_859_299 ]]]]]]]]]]R]]]]]]]]]]]]]P]R]XZZXMHOJ @HWI-EAS88_1_1_1_797_117 GAAGTGTCCGCATAAAGTGCACCGCATGGAAATGAA +HWI-EAS88_1_1_1_797_117 ]]]]]]]]]]]Y]]Y]]]]]M]]]]M]]OHHNSSAF @HWI-EAS88_1_1_1_748_430 GCGCTACTGCAAAGGATATTTCTAATGTCGTCACTT +HWI-EAS88_1_1_1_748_430 ]]]]]]]]]]]]Y]]V]Y]]]]]R]]M][RTRMLOH @HWI-EAS88_1_1_1_356_375 GACATTATGGGTCTGCAAGCTGCTTATGCTAATTTT +HWI-EAS88_1_1_1_356_375 ]]]]]]]]]]]]]]]]]Y]]]]]]]O]]WVZPQSSH @HWI-EAS88_1_1_1_655_181 GTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGG +HWI-EAS88_1_1_1_655_181 ]]]]]]]]]]]]]]Y]]]]]]]T]]]TJ[PMPLSJA @HWI-EAS88_1_1_1_801_48 GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGG +HWI-EAS88_1_1_1_801_48 ]]]]]]]]]]]]]]Y]]R]]]Y]]OR]T[ZZRVNSH @HWI-EAS88_1_1_1_802_724 GCGTACTTATTCGCCACCATGATTATGACCTGTGTT +HWI-EAS88_1_1_1_802_724 ]]]Y]]]]]]]Y]]]VV]EV]C]P]RREHSCRHHHL @HWI-EAS88_1_1_1_705_499 GTCAACCTCAGCACTAACCTTGCGAGTCATTTCTTT +HWI-EAS88_1_1_1_705_499 ]]]]]]]]]]]]]]]TY]]]]]YYT]V]PVZXQSOS @HWI-EAS88_1_1_1_186_694 GCGTTTGATGAATGCAATGCGACAGGCTCATGCTGT +HWI-EAS88_1_1_1_186_694 ]]]]]]]]]]]]]]]]Y]]]]E]T]]]]WCZXVSSH @HWI-EAS88_1_1_1_354_371 GTTAGGAACATTAGAGCCTTGAATGGCAGATTTAAT +HWI-EAS88_1_1_1_354_371 ]]]]]]]]]]]]]]]]]]]]]V]]]]]V[OZXVHKS @HWI-EAS88_1_1_1_967_272 GGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTC +HWI-EAS88_1_1_1_967_272 ]]]]]]]]]]]Y]]]]]]]J]]]PP]H][HZXOSSK @HWI-EAS88_1_1_1_668_200 GAACTGACCAAACGTCGTTAGGCCAGTTTTCTGTTC +HWI-EAS88_1_1_1_668_200 ]Y]]]]]]]]]]]]Y]]]]]T]]]P]V][XZXIASL @HWI-EAS88_1_1_1_306_556 GTTTTACCTCCAAATGAAGAAATAACATCATGGTAA +HWI-EAS88_1_1_1_306_556 ]]]]]]]]]]]]H]]]]Y]Y]]]VV]]]XVZTVMMM @HWI-EAS88_1_1_1_881_561 GTCGTCACTGATGCTGCTTCTGGTGTGGTTGGTATT +HWI-EAS88_1_1_1_881_561 ]]]]]]]]]]V]]]]]]]]]]]]VYY]]VZZCVFSS @HWI-EAS88_1_1_1_238_692 GTGGTCAACAATTTTAATTGCAGGGGCTTCGGCCCC +HWI-EAS88_1_1_1_238_692 ]]]]]]]]]]]]]]]]]]]Y]]]]]]]][VZXVSSS @HWI-EAS88_1_1_1_443_888 GCTCAAAGTCAAAATAATCAGCGTGACATTCAGAAG +HWI-EAS88_1_1_1_443_888 ]]]]]]]]Y]]]]]]]]Y]]]]YRPV]]XZVUVHSS @HWI-EAS88_1_1_1_167_340 GTCTTTCGTATTCTGGCGTGTAGTCGCCTTCTGTTT +HWI-EAS88_1_1_1_167_340 ]]]]]]]]]]]]]]]]]Y]EMVM]YHJVECZPLCHS @HWI-EAS88_1_1_1_603_569 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_603_569 PPPPPPPPPPPPPPPPPPPPOPPPPPPPPPOPOOHK @HWI-EAS88_1_1_1_718_225 GTCAACGTTATATTTTGATAGTTTGACGGTTTATGT +HWI-EAS88_1_1_1_718_225 ]]]]]]]]]]]]]]]]NT]V]]]]MY]H[ZZEKSOF @HWI-EAS88_1_1_1_406_412 GGAAAGATTGGTGTTTTCCATAATAGACGCCACGCG +HWI-EAS88_1_1_1_406_412 ]]]]]]]]]]]]]]]]]]]T]YY]T]J][VCMVFMS @HWI-EAS88_1_1_1_549_119 GGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT +HWI-EAS88_1_1_1_549_119 ]]]]]]]]]]]]]]]]]]R]]]TYY]]]VVOPAAKS @HWI-EAS88_1_1_1_693_898 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGT +HWI-EAS88_1_1_1_693_898 ]]]]]]]]]]]Y]]]]]NY]]]]Y]VR]MJQNSAOC @HWI-EAS88_1_1_1_183_559 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA +HWI-EAS88_1_1_1_183_559 ]]]]]]]]]]]]]]]]]]]]]]]Y]]]VTVVRVMSM @HWI-EAS88_1_1_1_314_891 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG +HWI-EAS88_1_1_1_314_891 ]]]]Y]Y]]]]]]]OYY]]]Y]]]YYVVTSZUOOHH @HWI-EAS88_1_1_1_884_867 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTA +HWI-EAS88_1_1_1_884_867 ]]]]]]]]]]]]]]]T]]]]]]]]]V]T[OVXEJSJ @HWI-EAS88_1_1_1_878_444 GCAATCTGCCGACCACTCGCGATTCAATCATGACTT +HWI-EAS88_1_1_1_878_444 ]]]]]]]]]]]Y]]T]T]]]]TRYVMEVVRSRHHNH ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/s_2_export.txt0000644000126300012640000035503012227066723027054 0ustar00biocbuildphs_compbioHWI-EAS88 3 2 1 451 945 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH NM N HWI-EAS88 3 2 1 409 991 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO NM Y HWI-EAS88 3 2 1 451 939 ACCAAAAACACCACATACACGAGCAACACACGTAC LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE NM N HWI-EAS88 3 2 1 447 961 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ NM N HWI-EAS88 3 2 1 450 960 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL NM N HWI-EAS88 3 2 1 467 922 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD NM N HWI-EAS88 3 2 1 874 313 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT ZZZZZZZZZZYZZZZZYZZZZYYZZZZZZZUUUUU chr17.fa 69345321 R A30A3 14 Y HWI-EAS88 3 2 1 907 256 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG ZZZZZZZZUZZUZZZZZZZZZZZZYZYZZZUUHUH chr18.fa 54982866 F 35 67 Y HWI-EAS88 3 2 1 889 547 AATGACCGATAATTAAAAATAAAATCTTTGCATAT ZZZZZZZYZZYZZZZYZZZZZZZZZZZZZXUNUUU NM Y HWI-EAS88 3 2 1 892 426 TCATCATTTTTCTAAGTGTTATGAAGAAAATATAT ZZZZUUZYZYZZZZZLZSZZYYUUZDUJIYUUULU chr12.fa 80537786 R 25T9 18 Y HWI-EAS88 3 2 1 898 354 TTTTGTAGCAAAGTGACAAGTTGTAACAAAGTGAC ZZZZOZZXZZZZZZXZZZZXZZUZXZZZZZLSSSS NM N HWI-EAS88 3 2 1 915 368 TTAACATAGAGGTCACCTATCCCAGAATTCGCTAA ZZZZZZZZZZZYZZZZZZZZZZZZYZZZZZNUUUU chr10.fa 117148563 R 35 18 Y HWI-EAS88 3 2 1 937 326 TTATGCGGAGGAAGTATGCGGATGAATTTATTTTT ZZZZUZZZYYYYZSZUZSYSLSZUUUZZZSHUUHU NM Y HWI-EAS88 3 2 1 895 373 TTCCAATTTGTATCCCCTTGATCTCCTTTTGCTGT ZZZZZZZZZZZZZZZZZZZXZZZZZZZZZZQUUQU 89:255:255 Y HWI-EAS88 3 2 1 926 330 TTATTTATCCTGAAGGCAACTTGTCCCCTTAAGTT YYYYYYYYYYYJYYJSYYYVYYEYYSYSYYLGCGQ chr9.fa 9192755 R 33G1 14 N HWI-EAS88 3 2 1 347 920 GAAAAAAAAAAAAAAAAAAAAAAAAAAAATGGGGT ZZZZZZZZZZZZZZZZXYVVXRULQUUDOFJCCCA 0:202:255 Y HWI-EAS88 3 2 1 874 613 ACCATCTAGACACTGCCATACCTGGGGATCCATCC LLLLLLLLDLLLLLLLLLLLLLLILLLLJLLALLL chr1.fa 3393025 F 35 0 N HWI-EAS88 3 2 1 384 963 GATGGGTGTGCATCCTCTTGCCGTCATATTCCTTC LLGIILIGDGLAGLLFDAIALLFILLALHFEEACA NM N HWI-EAS88 3 2 1 907 299 TTTGGCAGTCTACTTTCAATCTTTTAGTTCTGAAA ZZZZZZZZZZZYZZZZZDZZYZZZMXMZSZUCNUU chr19.fa 4786365 R 24G3G6 0 Y HWI-EAS88 3 2 1 888 810 TTTAGTGATTTCGTCATTTTTCAAGTCGTCAAGTG ZZZZZZZZZZZZXZZZZZZZZZZZMZZSZZUUKUU chr2.fa 98506741 R 35 6 Y HWI-EAS88 3 2 1 877 697 GTGATTTCGTCATTTTTCAAGTCGTCAATTGGATG ZZZZZZZZZZZZZZZZZZZZXZZXZZYYDZQQQUU 0:12:46 Y HWI-EAS88 3 2 1 880 318 TATTTTCAGTTTTCTTGCCCTATTCCACGTCCTAC ZZZZZZZZYZZZZZZZXZZZZYZZZZYZDZUUUUU chr9.fa 3026723 F 19A7G7 0 Y HWI-EAS88 3 2 1 907 342 TGGTCATAAAATATTTGCCTACACAAACGTCCTAA ZZZZZZZZZZZZZZZZXZZZZZZZZZYZMZUUUUU NM Y HWI-EAS88 3 2 1 912 534 TACAGCAGAAGACACCTCTCAGCTTCCCACCTTGC YYYYVYYJYYSYYSYYVYVYYSYYVYYYYYQQQLQ chr8.fa 129798321 F 35 48 N HWI-EAS88 3 2 1 914 642 TAAAATTCCACCAGTGAAATCTTTTCTTTGCTCAC ZZZZZZZZZZZZZYZZZZZZZZZZZZZZZMUUUUU NM Y HWI-EAS88 3 2 1 899 377 TATGATACTTAAGAAATTACATTAATGTTAAAAAG ZZZZZZZZZZZZMZZZZZZZZZZZXZSZZYUUUUK chr16.fa 88687813 R 35 57 Y HWI-EAS88 3 2 1 885 532 TCTTTTGCAGTCACAAGTGGCATTACAGTCATTTT ZZZZZZOZZUZZZZZXXZUOZZZZZZZPZZSSSSS NM Y HWI-EAS88 3 2 1 915 604 AATATTGTAACAATAAAAATGAATATTAAAAATGT ZZZZZZYZZZZZZZZZZZZZYZZZZZZZYZUUUIU 85:11:71 Y HWI-EAS88 3 2 1 878 810 TAAAAAACGTGAAAAAGTGAAATGCACACTGAAGG ZZZZZZZZZZZZZZZZZZZZZZZYZZZXZZUUUUU NM Y HWI-EAS88 3 2 1 929 361 TCTCTCATGGGCTGTTCCTAGTCACCAGGAGCCAG ZZZZZZZZYYYZZZZZZZZYMZZYZZYSXZNUUUU chr8.fa 74191119 R 35 50 Y HWI-EAS88 3 2 1 874 519 TTATTACATTATGGTAATAGTAATTCTATGAAAGT ZZZZZZZZZZZZYSZZZZZSZZYZZZZZZXUUUKU chr15.fa 49598112 R 35 63 Y HWI-EAS88 3 2 1 142 935 AAAAAAAAAAACTGTGAAAAAATCAAAATATAACA LLLLLLLLLLLDLHIHILLILLILFIIIFLACEEE NM N HWI-EAS88 3 2 1 886 878 GATCCCAAGGATTTCTAGAAAAAAAATTGTTTGCC ZZZZZZZZZZZZZZZZZZZYZZZZZYZZZZUUUUQ chr2.fa 123647048 R 27C7 40 Y HWI-EAS88 3 2 1 880 89 TTCTGGTATAGTTTGCCATTATTTGCAGTGTTGGG ZZZZZZZZZZUZZZUZZZZZZZZZLZZJZSAUHGH chr9.fa 94929240 F 30G4 21 Y HWI-EAS88 3 2 1 359 968 GAAAAAAAAAAAAAAAAATATATCTCACATGCCCC ZZZZZZZZZZXOZXSXIZUIIOXQFFHQUCLEIIH NM Y HWI-EAS88 3 2 1 909 544 ACACTATACCCCAAATTATCATAAATAAATTAATT LLLDDLDLLLLLLJLLLLLALDLLLLLLLLLELEE NM N HWI-EAS88 3 2 1 899 539 TACAGCCTGCCAGTATCTCCCAGTCGCAGCAGTTT ZZZZZZZZZZZZZZZZZZZZZZYYZYZZSZUUUUU chr10.fa 62882404 R 35 65 Y HWI-EAS88 3 2 1 901 604 CTTGATTTACAACGTGGTATTGTATTTTACATAGT ZZUZZZUZZUZZZUSLUUYZZUZZZSYZZZUCULU chr4.fa 10916601 R 31G3 27 Y HWI-EAS88 3 2 1 921 822 TACAGATTCCTTAACCACCATCATGGTATTTTACT ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 952 762 GTCCTAATGCTATGATCTCAACATTTGTCATCTCC ZZZZZZZZZZZZZYZZZZZZYZYZZZXZZSUUUUU chr15.fa 28011008 R 35 65 Y HWI-EAS88 3 2 1 936 775 TAGGGCCATTGACTCTGTAAAGCAGTCTTCTTCCT ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZZUUUUU chr6.fa 115483999 F 35 71 Y HWI-EAS88 3 2 1 906 500 CTTGATAAGAAAAATACCACTATTTATATCATCAT ZZZZZZZZYZYZZYZYZZZZZSZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 897 270 GTTGTGAATACAGGTTCTTCATTGCTATCTAAATT YYYOJVYYYYYYYVYYYYYVYYYEYYYYSYLQQQQ chr5.fa 27077055 F 4G30 16 N HWI-EAS88 3 2 1 893 595 ACTTTAATTCTTGTCCCTGTATGTCTAATTACTTC ZZZZZZZZZZZZYZZZZZSXZZSEZZSSZEQUUUU chr16.fa 47153775 R 23G5G5 12 Y HWI-EAS88 3 2 1 882 602 AGAGGAACAGTCAAGCAAAGAGCCATCTTGTCTAA ZZZZZZZZZZZZZZZZZZYZXZZZSZZZZSUUUUU chr6.fa 114345009 F 35 63 Y HWI-EAS88 3 2 1 141 939 ATATGAGTGTGAACATGTGAGTGAGGGTGTGTGTT LDLILILLLLLLDLLLLLLALLLLILLLLLLLLLL NM N HWI-EAS88 3 2 1 879 858 TTTTGTACTTTTGGATGGCTAAGTGAGTCACATAG ZZZZZZZZZZZZYYZZXSZZYYYZXYSZZXUUUUQ chr17.fa 76356869 F 20C14 33 Y HWI-EAS88 3 2 1 906 585 ACGTAATTTTAAAGGGTTCAATTCAACAAGAAGAT ZZUZZZZZZZYYZYZUZZZZZZZYYZZZUSUUUUU NM Y HWI-EAS88 3 2 1 902 401 ATAGCATATGATAATGGAGCAAAAGTTAAATATCA ZZZZZZZZZZZZZZZZZZXZZZZZYZZZYZUUUUU chr6.fa 61278653 F 35 70 Y HWI-EAS88 3 2 1 904 204 TAACTTCTTGAGTTCTTTGTATATATTTAATATTA ZZZZZZZZZUZOZZZZZZOZZZZZXZZJUJSOSSG chr18.fa 43206285 R 35 0 N HWI-EAS88 3 2 1 932 819 GATCCACAACCAAATTATCGCATATAATAATGTAA EJJLJLJLLLLLLDLLLLLLDLLLLLLLLLLLLLE NM N HWI-EAS88 3 2 1 919 409 TACTCTATGATTTAAAATTTTTAAACAAAATTACA LLLLLLLLDLLLLLLJJLLLLLLLLLLLLLALEAE NM N HWI-EAS88 3 2 1 336 929 ACATGCATAAAACTCTAACAGCAACGATACAGTTG YVYSUIUUYSUYSVGYUUWIUFQYQUVHUMQANEA NM N HWI-EAS88 3 2 1 933 554 ACAATAAAAATACATATATTAATATTCTAGAAAGG LLELLLLLJLLLJLJDJJLJLLLLLLJJJLLLECE NM N HWI-EAS88 3 2 1 899 215 TCTATGATTTTGACTATTCTAAGTACCTCATATAG ZZZZZZZZZZZOZZZZZZZZZZOZZZZZZUSOSSL NM Y HWI-EAS88 3 2 1 876 544 CTGCCATACTTAGACCCTCACACTTACATACAATA ZZZYZZZZZZZZXZZZZZZZZWZZZZZXZZUUNUU chr10.fa 90298827 F 35 69 Y HWI-EAS88 3 2 1 364 954 GAAAAAAAAAAAAGAAAGAAAGAGAAATCCCTGGA LLLLLLLLLLLDIIDLIILLLLLLLLHLLLLLLAL NM N HWI-EAS88 3 2 1 881 869 TTTCGTCACTTTACACACCGAAGAGCTTGGTGATA ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 886 564 TTTAAAGTTCTGTAAACATCTTTGCCCTACCCCCT ZZXXZXUOOOOOMOMEOOUUUOKEKXXUPIGOASG NM N HWI-EAS88 3 2 1 917 676 GGACAATGTTATTTTGCTGGATGTAAAACATTTTT ZZZZZZZZZZZZZZZZZZSYZZYZYZZZXXUUUKU NM Y HWI-EAS88 3 2 1 899 739 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGA ZZZZUZZZZZZZZZZZZZYZZZLZZZZZSZUUACU NM Y HWI-EAS88 3 2 1 899 567 CCATCTCTGTAGATGTGAGGACTCCGCTACCCTCT UYZYYYZZZZUUZZUZSULSZZUZZJZZUZLLUUH chr11.fa 85759919 R 34G 25 Y HWI-EAS88 3 2 1 877 530 ATGTCTTTCGCGTTTCCCCCGCGAATCTGCAATTC ZZZZZZZZZUZZZZZZZZZZYZUZZZZYYZUUUUU NM Y HWI-EAS88 3 2 1 952 599 CAATGTAAGATGACTTTGAAATGGGTAAAATACTT ZZZZYZZZZZZZZZZZZXZZZZSSSZZZMXUUNUU chr19.fa 33555851 F 35 2 Y HWI-EAS88 3 2 1 913 506 CTTTAGAAACATTAGAAAACCTTTACTAAAACATC LLLLLDDJLLLLLLDLLLLLIJJLLHHDLDLLELE NM N HWI-EAS88 3 2 1 897 705 GAAGCTCCAAACTTTTTTTTTTGGCTTTTTGCGCT OVOJYYOJJOJOJOSJEOJOJVJEVNEJNNOOGGA NM N HWI-EAS88 3 2 1 943 280 TCGGAATATAACCCTTTATTTTTCGCGTGTGATTG ZZZZZZZZZZZZZZZZZZZZZZZZXZMZXZQQUUQ NM Y HWI-EAS88 3 2 1 422 869 GCTAGGACGAGATCGACTTCCGTCTTATGCCTGTC YIYIYJYYYUOMYYVOYYDUYDYVWQMQQUAQQEA NM N HWI-EAS88 3 2 1 882 513 AAGCCATTTTGACTTCCTCACTTGTATTACTAATT JLDLLLLLLLJLLDJJLJJELLLJLLLEELEELLL NM N HWI-EAS88 3 2 1 940 270 TACATGAAAGTTCTTCCCACTCTTATTGGTGTAGG ZZZZZZZZZYZZZZZZZZZZZZZZZZZZXXNUUUN chrX.fa 77965784 R 35 63 Y HWI-EAS88 3 2 1 952 544 CTTAAGTTATAAATTTAAAATTTCATTATCTAAAT ZZZZZYZZZZUUUZZZZZZZZZZZYZZZJYUUUUU chr17.fa 40370177 F 28G6 41 Y HWI-EAS88 3 2 1 899 607 TACCTATTATGTAGTGGCACATTTCCATTATGTCT YYJYYSYYVYSYYSYSVYYYYYYYYSSYYSQGQQQ NM N HWI-EAS88 3 2 1 888 896 GGAGCAGGGCCTGAGTGGGAAGACCTTGGTTGTTT LLLLEJLLJLLLLJLLLDLLLEELLJJLJLLCELL NM N HWI-EAS88 3 2 1 905 276 GTGTGTGCATTTCTTGGGAATGGGAACTTTGAATA ZZZZOZUZZZZZZZZUXOZXZKUOZZZZZZGSSSS chr17.fa 64723844 F 35 37 N HWI-EAS88 3 2 1 142 943 CGGGGTACACACACCCTCTTCCCACACTGTACAAG ZZZZZZZZZZZZZZZZZZZZZZXZZZYZXXUQSUU chr3.fa 88181975 F 35 30 Y HWI-EAS88 3 2 1 934 544 CCCAGTATTCATTCCACAAACACACAGTGCCCTGC ZZZZYZZZZZZZZZZZZZZZZZZXZZMZXZUUUUU chr8.fa 94050279 F 35 59 Y HWI-EAS88 3 2 1 916 555 TGTTCAAATATAATTTTCTTTACTGATTTTTATTT ZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZUUUUU chrY_random.fa 18996311 R 35 1 Y HWI-EAS88 3 2 1 901 670 GCGCATGCTCAACCAGCTCAGTTCATTTCATTCAT ZZZZZZZZZZZYZZZZZZZYZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 883 460 GATGACATTTATAGACCTCTTCGACAGAGGATGTG ZZZOZZZXZZXZXOZZXZZZUZOOUUUPPPGSOSC 159:47:3 Y HWI-EAS88 3 2 1 921 556 ATGTATGTAGCAGCATGCATAGCCTTAATCATAGC ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZZUUUUU chr2.fa 169986103 R 35 71 Y HWI-EAS88 3 2 1 879 465 TAAAGAAAGAAATTAAAGACTTTTTAGATTTCAAA ZZZZZZZZZUZYZZZZUUYZZZZZZUJUDUUUUUU 0:139:255 Y HWI-EAS88 3 2 1 908 786 TATGACCTTCGCCTTTAGCAATATCTTTGAAAATG ZZZZZZZZZZUZZZZZZUZZZZZZZZZZSYUUUUH NM Y HWI-EAS88 3 2 1 914 591 TATATGTGGGAAATGAAGGGAAGAGAGCCCCAAAC YZZZZYUYZZUZUZMZYZYYUZZZLZDUYYLUUUL chr18.fa 10669427 R 18A16 4 Y HWI-EAS88 3 2 1 885 855 TGTAAGTTTAATTTGACATCCAAATGGTTTTATAC ZZZZZZZZZZZZZZXZZZZZZZZZZYXZZZUUUUU chr2.fa 117484337 R 35 70 Y HWI-EAS88 3 2 1 888 614 GCAACCTATCTCCCAGGCATTTGTTCTTCATTCAT ZZZZZZZZZZZZZZZXZZZZZZYZZZZZZYUUUUU chr4.fa 75212573 R 35 70 Y HWI-EAS88 3 2 1 969 274 TTAAACCAGTATTCTTCATTTAATCAGGTCCCTAC ZZZZZZZZUZZZZZZZZZZZZZZZZZUJZZUUUUL NM Y HWI-EAS88 3 2 1 906 433 GAGAGTGGAGCCATGTCTTTCTGCAACCTGCAGCT ZZZZZZZZZZZZZZZZZZZZZZYZYYZZYSUUCUU NM Y HWI-EAS88 3 2 1 912 770 GCTATGAGTTTCCCTCTTAGAAATGCTTTCATTGT ZZZYUZYYYZZZUYZZZZZZZZSZUZZZZYUUUHU 255:255:255 Y HWI-EAS88 3 2 1 902 640 GACAGAGAAAAGGTAGTAAAACTTGTTAAAATATA YJJYYOOJJYYYODJVYJOJDOVSOSNSNVLQQCG NM N HWI-EAS88 3 2 1 918 278 TTCGTGGGTAGCTCAGTACATTTGTGGGTGGCAGT ZZZZZZZZZZYZZZYZZZZYZZZMKYXXYSUUHIU chr6.fa 91171518 R 2T16G15 0 Y HWI-EAS88 3 2 1 957 618 TATGGAAAACATAGTAATCCTTTAATTTTTTTATT LLLLLLELLEELLLELJEDDLLLLLLLLLDLLLLL NM N HWI-EAS88 3 2 1 874 368 GGAATAGCACAAGGACTACCCCACGTTCACTTGAC ELLLLJJLDLLLDLILJLLLLLLLDJILDLAELEL NM N HWI-EAS88 3 2 1 931 260 TACGTCTAAAAATGAGTCTGCCAGCAGGATCTTTC ZZZZZZZZYZUZZMMLZYZUZZUSZZYSUZUUUUU chr18.fa 41526962 F 2T28G3 0 Y HWI-EAS88 3 2 1 907 367 TTACCTCAGTTAAGAACTGTGACCAGAGCCGGGCG ZZZZZZZZZZZZZYZZZZYZXZZZZXZXZZUQUUU chr15.fa 81143764 F 35 66 Y HWI-EAS88 3 2 1 882 830 GTAACTGGAAATATTCTGCCTTAACATTTTAGCTT ZZZZZZZZZZZZZZZZZYZZZZZZZZZZZZUQUUU chr14.fa 99016975 R 35 67 Y HWI-EAS88 3 2 1 948 315 TTCCCATATTAGAGTAGTGTATAGACTGGTAAGTA ZZZZZZZZZZZUZUZZYZZZZZZSZYZJSZUUCUU NM Y HWI-EAS88 3 2 1 922 268 TCCATTTGGAGCTGAAGTATTTTGGAAGGAAAGTG ZZZZZZZYZZZZZZZYYZZZZZZXSYZMYYUUIUN chr16.fa 11190525 F 35 44 Y HWI-EAS88 3 2 1 889 91 TCCCACGGAGATCTCAATACTCTGGGCTTCTCTAG ZZZZZZZZZZYZZZZYZZZZZZZYZYZZZZUUUNN chr8.fa 36921313 R 35 71 Y HWI-EAS88 3 2 1 879 672 TGTGTGTGTATGTGTGTGTGTGTGCGCCCGCACGC ZZZZZZZZZZZZZXZZZXZLZKZMXSYDYKUHUHU chr14.fa 30832942 R 27G7 0 Y HWI-EAS88 3 2 1 900 175 TCTTTTTTTTTCTTACTCTCTCTAAGTATTTTATC LJLJLLLJLLLELJLDJLLLLLLJLAJLLLLLLLL NM N HWI-EAS88 3 2 1 423 910 GAAAAAATTTAGTGAGAAACAGTTGTCCAATCATA YYYYVJIJOOYSSOYOVYUUUVYVOULUUULELNL NM N HWI-EAS88 3 2 1 893 553 GATAACCTGTTTGATTGTTGGCAAAATTCCCTTGC ZZZZZZZZZZZZYZZZZZZXSZZZXZZZZZUUUQU 21:15:1 Y HWI-EAS88 3 2 1 915 570 ATTTTAAAATGCTTTTGGTTTCTGTACTGAAAACA ZZZZZZZZZZUZZZZZZSZZZZZLZZYZJZUUUUU chr4.fa 92270412 R 6C28 14 Y HWI-EAS88 3 2 1 912 559 TTGCAGGTCTTCAGTCAATGCTGCTTTCCATGTTC YJJJYJSYYYYYOYVYYSYJSOJSYSYSSJQGQQG chr3.fa 92821955 F 35 31 N HWI-EAS88 3 2 1 904 766 TCAGCCATCTCCTCATTTGTCTCCTTCCCCTTAAC YYYYYYJYYVYYYSSYYDYYYVVOYYYYYJQQQGQ NM N HWI-EAS88 3 2 1 910 795 GGAACAGTTTATATTTATTGGATATTCTTAGAGTT ZZZZZZZZZZZZZZZZZZZSMYZYZZDZSMAQKUU chr12.fa 49087737 F 28G6 2 Y HWI-EAS88 3 2 1 943 370 TCTGTTCCCACCGTTGCATTGAGAGACGATCCAAT ZZZZZZZZZZZZXZZSZXZMSZXYMYZDSZKAUQU chr9.fa 66979336 R 19G11G3 1 Y HWI-EAS88 3 2 1 349 954 GAAAGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA YYJYIJYYSYJWOSYSVYYWYYUWYUQYYUQQQNQ NM N HWI-EAS88 3 2 1 892 69 TGTTTGTCAGTTAGGTGCAAGTATTGGGGTTAGTC ZZZZZZZZZYZZZYYZYZZZYZZZZSSYSZUUNUU NM Y HWI-EAS88 3 2 1 917 766 ATTATATGAAACATAATTTATAAATACTAGAATAT ZZZZZZZUZZZZZZUYZZZZSLZSZUJZUJHUUUU chr5.fa 6774915 R 20G14 9 Y HWI-EAS88 3 2 1 883 522 CAACTCCAAACCTCGTATTCCGCCTTCCTCTTCCA LLLLDLLLJLLLJLLJLJLLLLLLLJLJLLLLELE NM N HWI-EAS88 3 2 1 938 813 TGAGGAGTCAGGGCTGGGGGACCGCTCATATTCTC ZZZZUZYZUUUYYZZYYYSYZZUULUZJYSUUUUU NM Y HWI-EAS88 3 2 1 932 488 CAGGTTTTAAATGACGTATTTGATGGTATTGTCTT ZZZYZZZZZZZZSYZSZYZZZEYZMEZXZZCUNUU chr2.fa 138562488 R 35 17 Y HWI-EAS88 3 2 1 939 562 ACCAAGCACGAGGACCCAAGTTTGGGTCTCCATCA ZZZZZZZZZZZZZZZZZZZZZZZXYYZZZZUUUUU chr19.fa 46941599 R 35 70 Y HWI-EAS88 3 2 1 905 313 TTATTCGGCAAGAAGCAATTGCGTACTCTGTTGTT SYOSVYVOJSSJJSVDSOOVSVODOJYVYJCQCCG NM N HWI-EAS88 3 2 1 937 710 TAAGGAAATGTTATAATGAAACCCATTATTTTATA ZZZZUZZZZZZZZZZZZUZZZZZZZZZYZZUULUU chr2.fa 74398714 R 35 56 Y HWI-EAS88 3 2 1 902 77 TCCATTCGATTCCATTTGATAATGATTCCAATCGA ZZZZZZZZZZZZZZZZZXZZZZZZZZZZZZUUUQU NM Y HWI-EAS88 3 2 1 927 397 TTTCTCATTTTTCACGTTTTTTAGTGATTTCTTCA ZZZZZZZZZZZZZZZYZZZZZZZSZSZZZZUKUUU chr2.fa 98502407 F 31G3 2 Y HWI-EAS88 3 2 1 910 553 AATTGGCAAAGAATGGGATCCTACAACATGGGACG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUU 255:57:40 Y HWI-EAS88 3 2 1 899 422 GTTTTTTTTGGTAGGGTTTTTTCCCTTTTTTCCCA ZZZZZZZZZYZZZYYXZZZZZZZZZZZDZZIUUUC NM Y HWI-EAS88 3 2 1 935 385 ATTACCTACTTTAAAAACAAAACAAAACAAAACTA ZZZZZZZZZZZZZZZZZZZZZZZZYXZZZYUUUUU chr7.fa 19483019 R 33A1 44 Y HWI-EAS88 3 2 1 938 274 TCCATGAAAGATTGTATTTCTGTTCTTTTGTTCTG ZZZZZZZZZZYZZZZZZZZZZXZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 884 520 GATCGCAAGACCTCGTCAGCCGTCTTCTTCTTCCA LLLLJELLDLILJLLJLDLLLLLLLLLLELLLLLC NM N HWI-EAS88 3 2 1 929 667 GGGTCTTGTAGATTTAGTATCATATAATTTTCAAA ZZZZZZZZZZOZZZZZLEOZXOZXZZPZZZCOLOO NM Y HWI-EAS88 3 2 1 952 533 TTTCAATGAACTGACTATGGTAAACATGGTACTGA ZZZZZZZYZZZZZZZZZZXMZZZZZYZMEZNNUIU chr14.fa 109174603 R 35 35 Y HWI-EAS88 3 2 1 879 211 GTCTTCATTCTTCTTGAGTTTCATGTGTTTCACAA ZZZZZZZZZZZZZZZZYXZZZZZZXZXZZZUUUUU 101:255:255 Y HWI-EAS88 3 2 1 884 381 AGGTCAGAAGTTTGAAACCAACCTGGCCAACCTGG LLJLLLLDLJLLLJLLLLLLLLLELLLLLLLCLLL NM N HWI-EAS88 3 2 1 909 354 ATAATCTATAAACATGGATAACACCCTATATAAAC ZZZZZZZZZZZZZZZSYZZZZZZZZZZSZYUUUUU chr14.fa 105675009 R 35 63 Y HWI-EAS88 3 2 1 890 745 GACAGCAACTTTTACCAACTGCCTCCTAAGCCCAT ZZZYZZZZZZZZZZZZZZZZYZZZZZZYSXUUUIU NM Y HWI-EAS88 3 2 1 891 370 ATAACTATTTTGAGAAGTCGACTTACTCCGAAGGT ZZZZZZZZZZZUZYYZYZZUYZZZYZZZZSHUUHU chr10.fa 101961852 F 35 52 Y HWI-EAS88 3 2 1 398 813 GAAAACAACTAATTGTCATCTCCACCTCCTCGTCC LLLLLDDLLLLDLLLLLIIDLILLLFLHLLALLLA NM N HWI-EAS88 3 2 1 891 209 TTGCCCACCGACTCCCAGAACCCCCTGCCTTGCTC ZZZZZZZZZZZZZZZZYZYZZZZZZZZZZZUKUUU chr11.fa 63446199 R 35 61 Y HWI-EAS88 3 2 1 940 247 GTTTGCAGTAAATTTCTTTTATTATGTTTATTTAT ZZZZOZZUZZZZZZZZZZZZXZZZZJZZZPGLSLS 0:0:25 N HWI-EAS88 3 2 1 924 560 TGAGTGTGTGCTGCTGGGGCTGTCCAAACTATTTG ZZZZZZZZZYZZYZZZZZYZZYZXZXXZXZUUCUC chr11.fa 117778468 F 32G2 3 Y HWI-EAS88 3 2 1 877 921 GAATGACAGATAACCAGTGTTACAGCCCTCTGACC ZZZZZZZZYZZZZZZZZZZZYZZZYZZZZZUUUUU chr4.fa 52212587 R 35 71 Y HWI-EAS88 3 2 1 976 325 TATGGGATAAAGACGAATCACTCAAACGAGACGTG ZZZZUZZZZZZYZZZZZZZUZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 887 906 GGAATGCAATGTGCTGTAATTGAATTTGCGAGACA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 386 970 GAAAAAAAAAAAAAAAAAAAAAAAAAAATGTGGTG ZZZZZZZZZZZZZYYYVXQVMQQLHFFCDCCFAAA 0:33:255 Y HWI-EAS88 3 2 1 891 230 TTTGTCCTGGTGACTTTTTGATCTTTGCTTTTCTT YYYOYOJYSJYYYSYVYYYOYYOYYYNDYYOQLAQ chr13.fa 99334307 F 27A5G1 13 N HWI-EAS88 3 2 1 884 451 ATTCCACGCTGTCGAGCACGACGCTGAAGCCGAAG ZZZZZZZZZZZZZZZZZMZYZZSZZXSZYZUKUUU NM Y HWI-EAS88 3 2 1 920 365 AGATGGGGTGATTACAAAATCATTAAGTTACAAAA ZZZZOZXXOXZZZZZZZZZZZUZZZZPZZZOSSSS NM N HWI-EAS88 3 2 1 878 296 AGTTACATTAAAATTGTATTTGTATTCAGCTGTCT ZOOZZZZZZZZUZZZZZUZZZUXZZUZUHXSGSOS chr12.fa 50274375 R 35 34 Y HWI-EAS88 3 2 1 881 120 GCCATTAAAATGAAATAGAATCATGGTAATTACAT ZZZZZZZZZZZZZZZZZZZZZZZZYYZZXZUUUQU chr2.fa 121829927 R 35 70 Y HWI-EAS88 3 2 1 877 484 ATCACTGATCCTTCCCACACCAACTACTTTTTTAA LJLLLLDLLILLLJLLLLLLLLJDJDLDLDLLLLL NM N HWI-EAS88 3 2 1 893 606 AAACTAGGAGTTGGTTCTTTGAAAAAATCAACAAT YYYJSJYJYJJOYOJOVOVVOYYYSYYYSYOQLQE chr15.fa 18597700 R 34G 0 N HWI-EAS88 3 2 1 904 324 GTATAGCTCAGGGGTAAAGCACTTGTCTAGGATCA ZZZZZZZZZZZYZYZZYZYZZZZZYZZZZXIUUUU chr7.fa 26124214 R 35 58 Y HWI-EAS88 3 2 1 463 887 ATCATTTTTCTTGCTATAATTCCTAAATAGTGTAT ZZZZZZZZZZZZZZZZZZYZZZXZZZZZZLUQUUU chr9.fa 4440309 F 35 54 Y HWI-EAS88 3 2 1 919 693 TGAATATCTCCAGATCACTCTGGAGAGTGAAGTAT ZZZZZZZZZZZUYZZZZZZZZYSSUYUZYZULUUU chr14.fa 72223491 R 35 54 Y HWI-EAS88 3 2 1 878 692 TCTCCTTACATCTCTTTTTATTCTTTCACTATTTC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr12.fa 34386077 F 35 72 Y HWI-EAS88 3 2 1 918 493 TCTCCACCCAGGTCCTGCTTGTTTACTTAGTTGTG YYYYYVSYVYJOJYYVOYVVOSYVSYYYHDQCEAL chr12.fa 16877741 F 31G1G1 6 N HWI-EAS88 3 2 1 877 572 CGGTTAAGTCGCTGCAATTATTTTGGGTATGTGCA ZZZZZZZZZZZZZYZRZZZZZZZZMXXZYZQUHUU NM Y HWI-EAS88 3 2 1 893 725 GGTTTGAGCGTGAAGCTTTTGACCTTTATGGCTTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUA NM Y HWI-EAS88 3 2 1 891 630 ACCTTACTAATGAGCCATCTCCCCATCCCGAATCC LLJLLJLJLDLLLLLLLLLLLLLLJLLLLJLELLL chr9.fa 101729240 R 9C25 14 N HWI-EAS88 3 2 1 353 995 AAGACTGGAACAAACCATGTTATCCGTACACAACC LLLILLLLLLDLLLLLFLLLLLFLLLLFLLLALAL NM N HWI-EAS88 3 2 1 874 607 CATCTTCTGCAGTTAATGTGGTCAGGTAGCAGGAT ZZZZZZZZZZZZZZZZZYZXXZZYXZZZYZNUUSU chr19.fa 3915206 F 35 3 Y HWI-EAS88 3 2 1 917 629 GTATCTTGAACTTGGCTCAGCGAGGAGTTTAGGTT ZZZZZZZZZZZZZZYZZZZYZZYZYZXZZZUKUUU NM Y HWI-EAS88 3 2 1 907 196 GTTGACAGACAATATAGTAAATTTGGTTACCCGCT LJLLLEJEDELLLJJJELJLLLLLDLLLDLALLCL NM N HWI-EAS88 3 2 1 895 585 GGATGCGTGATCCTGGCTGTATAAGAAATCATGCT ZYZZYZZZZZZZZZYXZZSZXZMZMZZXSYUNNUU chr1.fa 171119303 F 31G3 25 Y HWI-EAS88 3 2 1 893 543 CCAGAGCGTTTTTTAGAAACACCTGGTGTGTAGTT ZZZZZZZZZZZZZZZYZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 943 514 ATATTTTAAAATTGCTTTCTTTTTTTTTTTTTTTT ZZZZZZZZZZYZZYZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 885 634 GTTGGGATTGTGTTGCTAATTGTTGCCGGATTTGG ZZZZZZZZZZZYZZZZZZZZZSZZYZZZMYUUUNU NM Y HWI-EAS88 3 2 1 912 170 GTTTCTTCATGGAGACACTCATAGCTATTTGTTTC ZZZZZZZZZZXOXUOUUZZXOEUEUZUZJPOSSSS NM N HWI-EAS88 3 2 1 905 742 TTTTGCATTTTAGCACATCGATTAATTTTTCAGAA ZZZZZUZZZZZYSZZZZZZUZZZYZZZZZZUUHUU chr6.fa 143903417 F 35 65 Y HWI-EAS88 3 2 1 936 539 GAAAACAATAAATGTTAAACCAAATAGAAACCTTA ZZZZZZZZZZZZZXZZZZZZZZZXZZMZXYUUUUU chr5.fa 58035807 R 35 59 Y HWI-EAS88 3 2 1 896 778 ACATGGAAAGAGCAGTTCTCAACTTGATATGGAAA ZZZZZZZZZZZZZZZZZZZZZZZZZSZZZZKJQUU chr19.fa 12481297 F 35 14 Y HWI-EAS88 3 2 1 915 188 TTGGACAGGGTCACTTCGGGGCTTCATCCTCAGCC ZZZZZZZZZZZZZZZZZXZYZZZZZZZYZZUUUUU chr16.fa 47302165 R 35 28 Y HWI-EAS88 3 2 1 938 382 GTAACGGGGTCCAGAGACAAATTGAACCTACATGA ZZZZZZZZZZZZZZZZYZZZZZZYZZZZZYUUUUU chr12.fa 106101183 F 35 71 Y HWI-EAS88 3 2 1 927 596 CCAAACTCGTCCCTCCTGGGACCTGAGCAGGATGG ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU NM Y HWI-EAS88 3 2 1 921 590 AAAGGAAGAAATCCAGCCCTCTGTGTGGACTCCGT ZZZZUZZZZZZZZZZUZYZZZZUZUZDDJUUUULU chr10.fa 121127944 F 35 22 Y HWI-EAS88 3 2 1 912 857 TAAAAGATTCGCCAAAACCGTAAAGATAGAATTGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 890 507 AAGCCGGTTGATAGTTGCTGGGGCCTGGGGGATAG ZZZZZZZUZZZZZZZZUZZURUSZZZSJYSUUUUL chrX.fa 11161903 F 35 51 Y HWI-EAS88 3 2 1 882 543 GGCCATTCCTGATGATCGCGCAAGTCGCGGCATTC LLLLLLLLLLELLLLLLLLLLLJLLLELLLLALLL NM N HWI-EAS88 3 2 1 942 632 GAAAAGAAAAGAAGAGAAAAGAAAGAAATGAAAAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUQ chr16.fa 75224828 F 28A6 1 Y HWI-EAS88 3 2 1 887 518 AGGTTGCGGCTGCAGTGAGCACCCGTCACACTGCT YJYOSSYYYYYYVSOVJVJVVYVDJNSDYDOCAOO NM N HWI-EAS88 3 2 1 912 515 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATA ZZZZUZZZZZZZZZZZZZYZZYZZZZZZUYUUUHU NM Y HWI-EAS88 3 2 1 923 621 GACTCAGCCAGGAATTCCTTTCTCTGTCTGGACTT ZZZZZZZZZUZZZZZZZZZZZZZZZYZZZUHUUUU chr10.fa 79303829 R 35 54 Y HWI-EAS88 3 2 1 873 579 ATCTTGCAGGGGAAGACTGGGCTGGAGAAGGAGGG ZZZZZZZZZZZZZZZZZZZYZZZZZUXVXZSQUUU chr18.fa 4186859 F 35 61 Y HWI-EAS88 3 2 1 876 690 AGGAATCTTAACCTCATTCTGTTACTCAGGCTGTT ZZZZZZZZZZZZZZZZZZZZZZZYZZZSYYUUUUU chr6.fa 80058264 F 35 65 Y HWI-EAS88 3 2 1 881 446 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTAA ZZZZYZZZZZZZZZYZZZZZZZZZZZZZXZUUCIU NM Y HWI-EAS88 3 2 1 881 885 GTATCTGTTGAGGCCTGTTTTGTGACCGATAATAT ZZZZZZZZZZZYZZZZYZZZZXZXSZZYXZNUUNU chr18.fa 31524278 F 35 2 Y HWI-EAS88 3 2 1 903 63 TCAATTCGTGTACGGGCACGTTGGCATCTTTACTT ZZZZYZUZZYZZZUZYYZYYZZUUZDZZZZUHUUU NM Y HWI-EAS88 3 2 1 884 340 TATGAAATTTATTTCTTCGGCAATCGCGGACGGTG ZZZZZZZZZZZZZZZZZZMSZZZZZXYYSYUUUUU NM Y HWI-EAS88 3 2 1 923 599 GGTTTATTTTGGCTCACAGTTTCAAAAGTTTTCAA ZZZZZZZZZZXOZZZZZZOZZZZZZZUJZZSSSOS chr5.fa 108124829 F 35 31 Y HWI-EAS88 3 2 1 359 933 GAAAATCGCGGCTAGAGGAAGGGGGGGGTGTGTTC YYOYIOOSSSYISVISVYDSIVSWYLVUHHLLAAE NM N HWI-EAS88 3 2 1 952 331 TCCATGCTCTGAAGTCGGCCTCAATGCTGCCGTGC ZZZZZZZZZZZZZYZZXZZZZZYZZXZZYZUUUQU NM Y HWI-EAS88 3 2 1 897 478 TCTTGCGGTAAAGATGTTTTATCAGGGCTTTCGGA YOSJOYJJOYSSOVVOJVYVSYVSSISNDDOLLLL NM N HWI-EAS88 3 2 1 942 167 GAAGTGAATGAGAAGCTGAGAGACGTCTGGGAGGA ZZZZZZZZZYZZZZZZZSZZZYSZZYZZYYUUUUN chr8.fa 113857324 R 35 63 Y HWI-EAS88 3 2 1 928 515 AAGGTGACGGAAGTTCCACGTGTTTTTTTTTAGCA ZZZZZZZZZZYZYZZZZXZXYSZZZMZMZMIINUH NM Y HWI-EAS88 3 2 1 908 379 GTAGTCCCAGCTACTCAGGGAGCAGAGGCGGGAGG ZZZZZZZZZZZZZZZZXZZYZYZZYYZXZYUUQQU NM Y HWI-EAS88 3 2 1 471 818 AGATTGACCGGTCGTTTATTGCAAACATCAAGTCT ZZZZZZZZZZZZZZZZZYZZZZYZZZYZZZUURRU NM Y HWI-EAS88 3 2 1 894 856 TCTGTTTGTTTTGATGAATTGTCATACTCTCCTAG ZZZZZZZYYZZZSZZYYZZZMZZZZXSZXZUNUUN chrX.fa 89655881 R 35 50 Y HWI-EAS88 3 2 1 947 221 GAGCAGGAAGGGGGAAAGAAAGAGCAACAGTAGGA ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUUUQ chr4.fa 31085509 F 35 71 Y HWI-EAS88 3 2 1 889 602 GCCAGGCAGAGGTCCCTGGTTTGGGCTGCCTGGAA ZZZZZZZZZZZZZZZZZZZZZZZYZZZZZZUUUUU chr9.fa 123071963 F 35 71 Y HWI-EAS88 3 2 1 907 394 GTGTTTATAATTTACATATGCTAATTATCATTTAT ZZZZZZZZZZZZZZZZZZZSZZXZZZYZZZKUUUU 0:14:0 Y HWI-EAS88 3 2 1 885 171 GAATGATGCTTAAATAAAGTTTGATGACATTTGTA ZOZUZUOUZZUUUZXLOZOXZZUXXJXZPZSSGAL chr14.fa 9544253 F 33G1 35 Y HWI-EAS88 3 2 1 803 529 GTCGTAGCAGCCTTTGTTTTTTCTCATAAAATCTC ZZZZZZUZYZZZZZZYZZZZZZZZZYZYUYLUUUU NM Y HWI-EAS88 3 2 1 836 558 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU 131:254:255 Y HWI-EAS88 3 2 1 889 459 TGCCCCATCTTTAACACACTGTAAAGCTTTCTTAA ZZZZZZZZZZZZZZZZZYZZZZXZZXZZZZUUUUU NM Y HWI-EAS88 3 2 1 897 132 TGTGTTTTGCAAATTGTAACTTATATCTTGTGTAT ZZZZZZZZOUUXXZZOZXXXZZXZXZZZZJGASGS 11:255:255 N HWI-EAS88 3 2 1 770 342 TCTTTCCACATGCTTGGTTTCTACAGTCTGCTGTC OXUUZUZZUZXOUZXOLLEUUZZZKJJZXPOOLOS NM Y HWI-EAS88 3 2 1 913 348 GTACTCACGCGGTTCGGCTGCATCATCTTTTTTAT JLJJJLLDDLELLLLDELLJLJLLJLJEELLLLEC NM N HWI-EAS88 3 2 1 885 319 TCATCGCCGAAATTTCCACCGCCTGTCAGGAACAG ZZZYZZZZZZZZZZZZZZZZXZZZZZZZKYUNUUU NM Y HWI-EAS88 3 2 1 888 527 TCGGAACGGCAAGCGTCCACCTTGTGTTGGGCGGC ZZZZZZZZZZZZZZZYZZSZZYZYZZZZSYUUKUU NM Y HWI-EAS88 3 2 1 887 639 GTAGAAAGGTGCACGTGTGTGGCTCCTCAGGTTCT ZZOZXXZZOOUZUXZOZZUUXKXXUUJZXPCOSLO 255:255:61 N HWI-EAS88 3 2 1 816 597 GGGTACAATCAACCCCAACCCCATAGCGGATACAT YVJVYIYYJSSSOIOVVSIIYSOIINNNSDQELOL NM N HWI-EAS88 3 2 1 949 565 TTCGTACGCCTCTACTTGCATGTGGGCATAAAACA ZZZZZZZZZZZZZZZZZZZZZYZZXXZZZZUUUUU NM Y HWI-EAS88 3 2 1 910 609 TTTCGGGCAGAGCCCAGCAGCTGACCACAGCCCCT ZZZZZZZZZZZZZZZXZZZZZZYZZZSZXYUUUUQ 26:16:0 Y HWI-EAS88 3 2 1 950 287 TGGTCTTTATCTTGAAGGTGCTCAAGCACTCAGCA ZZZZZZZZZZZZZXZZXMZXZZZZZXZZZZUUQUU NM Y HWI-EAS88 3 2 1 900 738 GCTGTGTAGAGCGGGTTTGCCGACTGCTCCTTTGT JLLELDLLLLLLEELEJLLLIDLLDLLLLLLLEEL NM N HWI-EAS88 3 2 1 953 673 TAGAATTTTTAAATTATGACTAAAAAAACTGCCCT YYJSVYVVYVSSODYYVJYIYOOYYVVVDYLOOOQ chr11.fa 84930670 F 13A14A6 5 N HWI-EAS88 3 2 1 912 397 GATCTAACTTGACTCTTAGGCAAGGTGTTGGAGCT ZUZZZZZZZZZZUZZZZZSLZZZUSZSSZUCUUUU chr5.fa 52273399 R 35 38 Y HWI-EAS88 3 2 1 881 539 CAAATTGCTACCCGAATACACCAGGGCTCTGTGGT YJVYVYOYVYVYYJYYYVYYYYSVJYSYYYQQQQO NM N HWI-EAS88 3 2 1 902 485 TCACCAGAGCATCCTCATTCCATCAGTGGCCCTGG ZZZZZZZZZZZZZZZZYZZZZZZZZSYXSZUUUUQ chr2.fa 31305231 R 35 63 Y HWI-EAS88 3 2 1 365 952 GAAAACAAAACACCCCACACCTAAGAAACAAAGAA ZZZZZUZZZZYZXWMLOUSUUHQQILDMQMKKHCH NM Y HWI-EAS88 3 2 1 879 499 TTATTGATCCACGCCCTCAGCAACATGCTTGCTGG ZZZZZZZZZZZZZZZZZZYYZYZZZZYZZZUUUUU chr15.fa 73952070 R 35 71 Y HWI-EAS88 3 2 1 900 279 GATCGCATCCGGCGGATCGAAAAGATCAATCTCGC ZZZZZZZZZZZZZZZYZZZYYZZZSZZZXZUUUUU NM Y HWI-EAS88 3 2 1 914 833 TATATCTCATACATAGACAAAATATACATATTTAT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU chr6.fa 68101988 R 35 71 Y HWI-EAS88 3 2 1 897 587 ACTCTCTGGTCTCTCACTAGAATCCAGCGCTTGCT ZZUZZZZUZYZUZZSYLZZLYZZZYZSZJZUULLU chr7.fa 19615416 F 16G18 21 Y HWI-EAS88 3 2 1 910 888 GTTTAAAAGGTTTTTTTGTTTTGTTTTGTTTTGTT ZZZZZZZZOZZZZZZZZLZZZZUUZZZJZZSSLSO chr4.fa 155074818 F 35 21 Y HWI-EAS88 3 2 1 361 949 GNGGAGTCTGGTCCCGGGGCCTTTGCATTGTAGGG LALLLLLLLLIGILLLLLIILLLLLDLLLLEELLE NM N HWI-EAS88 3 2 1 918 736 GTGCCCATGGAAGAGATCACCGTGCCGATCGTGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUH NM Y HWI-EAS88 3 2 1 914 423 TGAACCGCGATGAGCTGATGCGCCACGAAGCTGCC SOSVYVJOYYVJOEVYJOYDYSYYOSDJNDLALQQ NM N HWI-EAS88 3 2 1 888 104 TGGACATGCCCAAAATGTACTGTATGAAAATCTCA ZZZZZZZZZZZZZZZZYZZZZZZXZYZZZZUUUUU chr9.fa 31252377 F 35 70 Y HWI-EAS88 3 2 1 879 650 ATAGAAGTAGAAGAAATTCTACCCAACTAATTTTA LLLLLLLLLDLLLIILILLLLLLLLLHHHLLLLLA 0:0:25 N HWI-EAS88 3 2 1 932 144 TTGTGATAGCATGGTGTTTGTTTTAATTTTTTTAA ZZZZZZZZZZZZYXZYZZZSZZZZZXZZDZUUKQQ NM Y HWI-EAS88 3 2 1 881 195 GCCCATTATGCCTTCTCACTGTACTTTGGAGGTCC ZZZZZZZZZZZZZZZZZZZZZYYZZZZSMZUUUUU NM Y HWI-EAS88 3 2 1 901 610 CCTTCGTCCTTCTTAGGTGGTCACAAGTCCTTTGG ZZZZZZZZZZZZZZZZZZYZZZZZZZZZZZUUUUU chr13.fa 69280146 R 16A16A1 14 Y HWI-EAS88 3 2 1 916 173 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZSZUUAKU NM Y HWI-EAS88 3 2 1 930 373 TATATTAGCGTCGGGCCGAGATTTTACTTATCTTT EJJLLLLJJLELLLLLLJLDEILLLLDLJJLELLE NM N HWI-EAS88 3 2 1 894 267 TGATACCCACAACAATATGGATGAATCTAAAAACA ZZZZZZZZZZZZZZZZZZZYZZZZZMZZZZUUUUU chr9.fa 33016479 R 35 59 Y HWI-EAS88 3 2 1 902 99 TGAAAGCCAGTACCAAGAAAAGATTAATTCAGTCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU chr12.fa 71928974 F 19G15 40 Y HWI-EAS88 3 2 1 961 538 GTGGTGCTGGGTGGCACCATTAAACACTCTTCCTT ZZUZZZZZYZZZUYUZZZZZZZZZKZZZZZUUUHU chr9.fa 59082830 R 33G1 44 Y HWI-EAS88 3 2 1 383 970 TAACAAAACACAAAAGAAAAAAAGATCTGTTTCTT YOSUIYSOGOLQYYVFUYUOQUCHQLLFHQAHLDD NM N HWI-EAS88 3 2 1 874 346 TTTAGCTTGCTGTAGTTTATCTTTCATTCTTTAAT ZZZZOZZZOZZUZZUZZZUZZOZZZRZZPZSSAGS NM N HWI-EAS88 3 2 1 899 491 TTTCACGTTTTTTAGTGATTTCGTCATTTTTCAAG ZZZZZZZZZZZZZZZZZXZZZZSZZZZZZZUUUUQ chr2.fa 98502416 F 35 1 Y HWI-EAS88 3 2 1 897 379 AGCCAAAGGCACCTCTCCCTCAAGCAATGTTCCAA LLLLLLLEDLJLLLLELLLLLLLJJLLJLJECLLE NM N HWI-EAS88 3 2 1 928 202 TGGCCTCTGCTGTGGAACAACTAGAGATTCAGTAT ZZZZZZZZZYZZZXZZZZYZZZZZZZZZZZUNUUA NM Y HWI-EAS88 3 2 1 813 295 TTTATGACTTTCAAATTCTATTGGTTGCAAGTGAG ZZZZZZZZZZZZYYZZZZZZZZXSZZXZYZKUDUK chr12.fa 38551409 R 35 55 Y HWI-EAS88 3 2 1 938 105 TTTTCGAAGAGTTAGTATGTTGTCTTTTTATTTAA LLLLDJLLLLLJJIJLLLLIIJLLLLILHHLLEAE NM N HWI-EAS88 3 2 1 898 895 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZYUYYZZZYZZUZZUZYZZLZSZZYZJYUUUGU NM Y HWI-EAS88 3 2 1 885 334 TTCCCCCTGCTTAAGACTGGAAGGCGGATATGGAG YYJYYYYYOYYYYYSOYYVVVOSJJNJIVVCGGLE NM N HWI-EAS88 3 2 1 936 532 TCTGGTTGGATATTTCCACCTGCTCTTCTATTTTA YYYYOYYYSJYOYYYSSOSYYJOYYYYYYYLCGCC NM N HWI-EAS88 3 2 1 890 581 ACTGGCATTATATGCACGTACCAATGAGTATGGCT ZZZZZZZZZZZZZXZYZXZZZZZXZYZSZZUQQUU NM Y HWI-EAS88 3 2 1 904 557 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAAA ZZZZZZZZZZZZZZZZZZYZZSZZZZYZMYUUJJU NM Y HWI-EAS88 3 2 1 790 652 TTTTTGTCTGAAGTGTAGCCAAAAAAGGTGAAGTA ZZZZZZZZZZZZXZYZZYZZZYXZXZZSZYQUUUU NM Y HWI-EAS88 3 2 1 451 929 GAAAAAAAAAAAGAAAAAAAAAAAGAGGGGAGGGG YYYYYYUGWVUSCSQMFOMMHCHDMCFCIIHHHHA chr18.fa 69524991 R 12A18A3 0 N HWI-EAS88 3 2 1 902 478 TTTGATGAGCCTGCTACTAAGCATGTTCAGATATC ZZZZZZYZZZZZZZZZZZZZYZZZSZZZYSUUUUU NM Y HWI-EAS88 3 2 1 908 117 GAATCTAAACTTCGCGGCGAAAAATATGTCACCCG ZZZZZZZZZZZZZYZZXZYYZZZZZZZXZZUUUUU NM Y HWI-EAS88 3 2 1 914 402 CCCGAGCATGTTGGGTGGATAGGGAAAGTCCCTGA ZZZZZZZZZZZZZZZZZYZZZXZYZZYYYZUUUUU 0:30:36 Y HWI-EAS88 3 2 1 920 188 GTTGGGTTTGGTCATTTTAGATGAAGCTGCTTTTT ZZZZYZZZZUZZZZZZZZZLZZYZZJZDUYUUUUG NM Y HWI-EAS88 3 2 1 883 80 TCTCATGGGTGATAATGTTAATAAAATTTTGCTGT OYVJJYJJSYVVOJOYEYVIDOSSODYVJYCCQGO NM N HWI-EAS88 3 2 1 965 558 TGCATTTCTCATTTTTCAAGTTTTTCAGTGATTTC ZZZZZZZZZZZZZZZZZZZMZZZZZZYDZMUUUUU 0:103:50 Y HWI-EAS88 3 2 1 901 227 GCCCTGTGCTTGGAGCCTTGCCCTTCTCACGTGCC ZZZZZZZZZZZZZZYZZZZYZZZZZZZZZZQUUUU chr17.fa 25144121 R 8T26 36 Y HWI-EAS88 3 2 1 898 395 CCCTGAATTGCACCCCTGCTAGCCAGGGCTACTCC ZZZZZZZZZZZZZZZZZYZZZZZZZXSXZZUUUUU NM Y HWI-EAS88 3 2 1 899 121 GGTCGTAGCGGGTTTAGTCTGGAGAGCGTCTTTAA ZZZZZZZZZZYZZZZZYZZZSSXYYZZXZYUUCHN NM Y HWI-EAS88 3 2 1 897 627 GTCAGGGTTGGGGGCCACTGAAGGCCACTGCCCGC ZZZZZYZZZZZZYYZZZZYSYYXYZZSZZXUUUCN chr4.fa 123643328 F 35 63 Y HWI-EAS88 3 2 1 906 48 TTAGTGATTTTCAATAAAAAATCATATTTTTTTTT YYYSYYYOOOSIYYDVYIYSIYIIVNYIVYQQQQQ NM N HWI-EAS88 3 2 1 962 611 GTAGGTAATGATACCATAAAATACCATTCATTTTG ZZZZYZZZZZZZZZZZZZZZYZZZZXZZYMUUUIC chr12.fa 4489782 F 33G1 45 Y HWI-EAS88 3 2 1 936 655 GGATGGATCGTTTTTCCAATTTGGCCTAAATCTTC ZZZZZZZZZZZZZZZZZZZZZZYXZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 956 469 ATACCAAAAATCCATTGTTAAGGGGCTACCCATGG ZZZZZZZZZZZZZZZZYZZYZSSSSZZZYZUUCQQ chr10.fa 109632545 F 32G2 53 Y HWI-EAS88 3 2 1 938 660 TTCATGTGTTTAGGAAATTGTATCTTGTATCTTGG ZZZZZZZZZZZZYYZZZZZYYZZZZZXZYZUUUKJ chr2.fa 8535582 R 35 0 Y HWI-EAS88 3 2 1 879 646 GCGCGTCTTCGTCGGCTGTACTTCCTTCCCCCACA ZZZZZZZZZZZZZZZZZZZXZZZYZXZXZZUUNUH NM Y HWI-EAS88 3 2 1 934 191 TCATAACTATCTCCTATTTATTCCCTTTGAATGTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZMXQUKUQ NM Y HWI-EAS88 3 2 1 888 490 GGCCCTTGGTTCAGACAGCCAGGTGAGCGTGCACT ZYZZZYZUUZZZZUZZUUZZKYYSUDJZDZHUAUU NM Y HWI-EAS88 3 2 1 898 461 TGCCATGCACACCTGTACAAGTGCAGTACGCGTGT ZZZZZZZZUZZZZZZZZZZZZZYZYZZZZZUUUUU chr5.fa 125997759 F 35 67 Y HWI-EAS88 3 2 1 932 286 GACCACCAGCACCGTCACACCAATGATGAAGAACT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr6.fa 113743717 F 35 72 Y HWI-EAS88 3 2 1 837 598 TAACTTTTCTTTTCATAGAGCAGTTAGGAAACACT ZZZZZZZZZZZZZZZZZXZXZZSZZZXDZZUUUUU NM Y HWI-EAS88 3 2 1 882 535 CCAGGCTTCCCTGAGAGTAATTAGCCCCTCAGCTT ZZZZZZZZZZZZXZZZZZZSZZZXZZZZZZUUUUU chr2.fa 165251615 R 35 65 Y HWI-EAS88 3 2 1 944 219 TTCACAGAGCCGTTTCCTGCATTTAAGTCTTGGCA ZZZZZZZZZZZYZZZZZZYZYZZZZYMZZZUACUU chr18.fa 34617501 R 35 39 Y HWI-EAS88 3 2 1 932 170 TCACAAGAGACAGCTACATCTGGGTCCTTTCGATA ZZZZZZZZZZZZZZZYZYZZZSZYZZZZZZUQUUU 255:255:255 Y HWI-EAS88 3 2 1 927 895 GAAATTCCTCCTGACACATAATAATCAGAACAACA ZZZUZZZUOZOUUZXZZOZZOZZKZPUXZUSSLOS 255:255:255 N HWI-EAS88 3 2 1 924 639 GTTTTTGCAGCGTCGGCACCACGTCCGTCTGTTTC ZZZZZZZZZZZYZZYZZZZZXZZZZZYYZZNUUHU NM Y HWI-EAS88 3 2 1 886 315 GATCTGAAGACCTACTATGCCCACTTCTTCTTGCA YVYYJSOYYYJYSVJYSESYOJJOYYYYNJLQLLA NM N HWI-EAS88 3 2 1 889 276 ACTGGCGACCTGGAAGCAGAGGAAATGCACAGGTA ZZZZZZZZZZZZZZZZZYZZZZXZXZZZZZUUUUU chr8.fa 113381811 R 35 70 Y HWI-EAS88 3 2 1 925 541 CAATTCCGCATACTCACAGGCCGCACAGTCTTTCA ZZZZZZZZZZZZZZZZZZZZZZZZZZXZZZUUUUU NM Y HWI-EAS88 3 2 1 971 333 TGTGTGTGTGTGTGTGTGTGTGTGTGTGAGACATT ZZZZZZZYZYZUZYZUZSZLZLZLZDZJSJUHUAA 255:255:255 Y HWI-EAS88 3 2 1 892 483 ACGCTCAAAGATCAGATTCTCCATTGGCAATATCC ZZZZZZZZYZZZZZZZZZZZZZYZZZXZYZUUUUU NM Y HWI-EAS88 3 2 1 895 437 AAAACCTATGAGGCTGTTTAGTTACCCCCTCTTGC ZZZZZZZZZZZZYZZZXZMXMZZXYZZSZKUQHDU NM Y HWI-EAS88 3 2 1 903 510 GAAGTGTTCTTCGCCCTTTATGTAGTTAGCCGCTT ZZZZZZUZZYZZYDZZZZUEZYUYYUZZSZULUUU NM Y HWI-EAS88 3 2 1 931 227 GTGGTTTTCCATTTGGTTCTCTGTCTTTGTTTTTT VYOYYOYYJYYYYVJJOYVOVOIOYVYYDYLLQLG NM N HWI-EAS88 3 2 1 896 546 GAGTCTGTGCTTATAAAGGGGGGAGGCCAATCCAT ZZZZZZZZZZZZZZZZZZZZYZZZZZZZYZUUUJU chr15.fa 5883622 F 35 12 Y HWI-EAS88 3 2 1 944 455 GTTGGATATAGGTGTATAAACTCCTAATCTTTTAT ZZZZOZZZZZUOZUZXZUUOXXZZZNHIUXSSSCS chr11.fa 91560934 F 27G7 21 Y HWI-EAS88 3 2 1 830 561 CCCCCCCCCCCCCCCCCCACCCCCCCCCCCCCCCA ZZZZOZZZZZZZZZZZZZOZZZZZUZZZXZOSSSO 0:139:255 Y HWI-EAS88 3 2 1 906 447 GTCCGCCGTCCGCACCTTGAGCAGATAGTCGAAGC ZZZZYZZZZZZZZZZZZZYZYZZYYZZXYZUIUIU NM Y HWI-EAS88 3 2 1 822 523 TTTAAATCTTAAGTTGGGCAAAGCATTTTAGACCA ZZZZZZZZZZZZXZZZYXZZZZYZZZZZZZKUUUU NM Y HWI-EAS88 3 2 1 971 245 TGTTTTAAAACTTCTGAGGATATCAGTTATTCCCA ZZZZZZZZZZZZZZZZYSMYZYZZZSZZXZUUUUU NM Y HWI-EAS88 3 2 1 408 792 GAAAAATTCCCAGATCTTCCACTGGCCAAAACACG YYWYYJVUOYUIYMUWOUUVYYHCYFYYQQQQNLD NM N HWI-EAS88 3 2 1 879 360 ATTATGCCCCACAACCCTTCCTTTTGTAGCAAATA ZZZZZZZZZZZZZZZZZZZZZZZZZYZYSZUUUUU NM Y HWI-EAS88 3 2 1 881 584 CCTATCCTAGCTGTGCTGACTGGTGAGCCACATTC ZZZZZZZZZZZZZZYZZZZZZYYZXXYZZKUUUUU chr11.fa 9312148 F 35 57 Y HWI-EAS88 3 2 1 754 914 TTCTAGTTCCATCTATTTCCATCAACCACTGAATA ZZZZZZZZZZZZZZZZZZZZXZZZZZRXVZUUNUU chr18.fa 90021100 R 13C21 33 Y HWI-EAS88 3 2 1 876 147 GTGTCCTATGATTTTATGTGTTCCAAAATGGTCAA ZZZZZZZZZZZZZZZZZXZSZZZZZZYXZXJUUUU NM Y HWI-EAS88 3 2 1 889 231 CTTTAATGTTTGAAACTTTGACTTTTCCTTCTTCC YYYYYJOJYOYYYJVOYJJYYJYYYYDSYYQAQLQ NM N HWI-EAS88 3 2 1 913 582 CAATAAAAAGTTTGAACGGGCCGCCTTGCTGGAAG ZZZZZZZZZZZZZZZZZYZZZZZZZZZYZZQUUUU NM Y HWI-EAS88 3 2 1 897 276 ATAAATTCTAGCAGGGGTAAACTTTATTGCTAATA YYYYYYYYJYSYYODOJSYODVVSYIYJJDQLAEQ NM N HWI-EAS88 3 2 1 451 787 CATTAAACACTAAAAAATGGAAACGTACACATGAC YMIIQIMIHIIIMMIMMIDIIFIMIHIMCMDDDAE NM N HWI-EAS88 3 2 1 935 290 AATTTTTGGAGGTAAGTTGTTTTATATGATGATAC ZZZZZZZZYZYUZZZYZZSZZZZZZZZSYZHUUUU chr2.fa 108246981 R 35 50 Y HWI-EAS88 3 2 1 354 958 GCACCCGCTGTACTAAAAACTGGTTGATTCGCCCC ZOXOUXXISOQZZXUWFZZIUZZIMXHLXDSPLSP NM N HWI-EAS88 3 2 1 808 601 GACAAATTGGCAGTATCCGATGGCACCAACTTCTA ZZZZZZZZZZZZZZZZZZKIXMYZWZZRXZUUUUR NM Y HWI-EAS88 3 2 1 950 836 TGTCGGATAGAGTTGTCTATGAGTGCTTCAACAGA ZUZZUZYZZYYUZZUZZZYZSRUSUSJZDYLUUUA NM Y HWI-EAS88 3 2 1 335 951 AAAAAAATAAAAAAAAAAAAAAAAATAAATTAAAA LLLLLLLDLLLJLLLLLLLLLLILLHLLLLELLLE chr3.fa 10824675 F 7A24TG1 0 N HWI-EAS88 3 2 1 958 829 TGAAACACACATTTTGTACGATCTGCAAGTGTTCA ZZZZZZZZZZZZZZZYZZZYZZZZYZZZXZUUUUJ NM Y HWI-EAS88 3 2 1 877 763 CCATCTTGGCCGGGCTGGCCTCTAACTCCTGACCT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUSUUU NM Y HWI-EAS88 3 2 1 907 521 GTGAACGTGCTACGTTATTGAGTGGAATCAGATCG ZZZZZZZZZZZZZYZZZZZXZSZXZZYZZZQUUUU NM Y HWI-EAS88 3 2 1 920 826 GGGTGATTTAAATAAAACCGGAGAGCGAGGCGAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZZUUUUU chr15.fa 84686876 R 35 70 Y HWI-EAS88 3 2 1 876 633 AAGACTAGCGGTTTCTAATACTGCCATCCTGAGTT ZZZZZZZZZZZZZZZZZZZYZZXZZRZZZYJRUUU NM Y HWI-EAS88 3 2 1 956 274 TTGGGATGGCTTCTTATAACTTAAGTCTTTACTTT LLLLDLLLLLLLLLLLLLLLLDLLJLLLLLAALLL chr3.fa 18677929 R 21G12G 0 N HWI-EAS88 3 2 1 880 357 GAATTATCAAAAAATCATCGCTGTACCGCACTCCT ZZZUZZUZZZXOZZOZZZZZDZUZZPXDZXSGGSG NM N HWI-EAS88 3 2 1 813 519 GATAATGTTAAAGAGATACCAAATTAACAAATCCC ZZZYZZUYZZZZMUUZJYZZUSYRZYZYUILUUUU chr4.fa 88474224 R 35 3 Y HWI-EAS88 3 2 1 483 876 CTTTTTGAGTTCTATGATATTTTCTAATTATCTTT ZZZZZZZZZZZZZZYZJZXZZZZZZYVZZVUUUUU chr1.fa 143154011 R 35 56 Y HWI-EAS88 3 2 1 893 526 GCATCTTAAGCCCCAGCATTTGAGGAATCTTGGAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUKUU chr1.fa 91357391 F 35 72 Y HWI-EAS88 3 2 1 922 446 ATAATCCAAAACTTTTCGCATTAAATGCACTCTTT ZZZZZZZZZUZZZZZZZLZUZZZZZZSUYYUUUAU NM Y HWI-EAS88 3 2 1 912 369 ATTAACAGCAACAAGATCTGGTAAGAGCACTGTGC LLLLLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 377 881 GAAAAAAGACTGGGTGCACAGAGGCGTGAGGTCTT YYVYYSYISHIIIILOMDLLFOQHFDHLMLLEGGA NM N HWI-EAS88 3 2 1 753 531 GAATTTTAGCAAGCATGGCAGATACTCTTGACAAT ZZZZZZZZZZZZZZZZZYZYZZZZZYZYZKRUJUU chr18.fa 61449832 R 35 54 Y HWI-EAS88 3 2 1 942 552 AGGAGTCAGACACATCAGACACCAAGGTGGGTCCT ZZZZZZZZZZZZZZZZZYZZZZZYZZYZYYUUUUU chr2.fa 180012890 R 35 71 Y HWI-EAS88 3 2 1 926 764 GTGGCACACAATGAATGTTCTTTAGGAATCAGATT ZZYUZZYZZUYZUUZZSZZZZZZSYSSIZZLCUUU chr14.fa 78515942 R 35 28 Y HWI-EAS88 3 2 1 911 151 TCATAGTTGTGATTAAATGTTGTTGTAATTGATTT YYOSYOYYSYVIVYSYOYVYSSYYSYNNYYGLQLQ chr1.fa 88914937 F 33C1 15 N HWI-EAS88 3 2 1 504 922 GGAATATCTTTCTTTCCTCATGGTTGCACAGAGCC ZZZZZZZZZZZZZZZZZZZZZZLZZXZSYVQJUUR NM Y HWI-EAS88 3 2 1 933 221 GAATTGATGAGAATGAAGATTTTCAACTTAAAGGG ZZZZZZZZZZZZZZXZZYZZZZZZYYZZZZUUCKJ 255:255:255 Y HWI-EAS88 3 2 1 947 674 TTCAGTGAAGTTTTCCAGAAGTTGGTACCTGGTGG ZZZZZZZZZZZZZZZZZYZZXZZZSZZZZZQQUUK chr19.fa 53716027 F 35 43 Y HWI-EAS88 3 2 1 946 342 TTGTAAAATGAATAACCTCTCCTATTTTTTTCTCT YYVVYYYOIOVSOOSOIIIIOYSOISDHVHOEQLO NM N HWI-EAS88 3 2 1 878 561 AACCAAGACCAGGGGGAAGGTGTAGGTCAGAGGCT ZZZZZZZZZZXZZZZZYZZXXZZZYYVXXVLSQUU chrX.fa 6310760 F 35 57 Y HWI-EAS88 3 2 1 920 458 AGAGAAACCCTGTCTTGAAACAAACAAACAAAAAA ZZZZZZZZZZZZZZZZYZZYZZZYZZZYZSUUUUU 101:255:255 Y HWI-EAS88 3 2 1 905 422 CGAGTGTGTATGTCTAGGGTTGTTCTTTCCTCCTT ZZZZZZZZZZZYZZZZXZXZZMZZXZEZXZUUUUU chr5.fa 3936449 F 26G8 33 Y HWI-EAS88 3 2 1 760 694 TCTTCCGTCCGCTCAAATCACCCAAAGCCAGCAGT LJDDLJLDDLLLJLJJLDLLLLLJLLIILLLLLAL NM N HWI-EAS88 3 2 1 931 630 GCTTCCCTCCAGTGCCCAGGCAGTATGCTACCTCT ZZZZZZZZZZZZZZZZZZZZZZZZZZXZZYUUUUU NM Y HWI-EAS88 3 2 1 877 264 AGACTATGACCAAAAATCACTTGGGGAGGAAAGCG ZZZZZZZZZZZZZZZYZZZZZZYYXXZMZSUUUUU chr8.fa 26560368 R 35 38 Y HWI-EAS88 3 2 1 884 637 AGCCCTCGACCCTCTGACCCTCCCACATCCAAGGC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr5.fa 137164832 F 35 72 Y HWI-EAS88 3 2 1 912 345 ATACTCCCACTGTAACAAACACGCCTCTCTGGAAC YVYYSSOJVOJVEYOOJVJYOJJVJNJNVJGGALQ NM N HWI-EAS88 3 2 1 750 577 GACGTGAAATATGGCGAGGAAAACTAAAAAAGGTG ZZZZZZZZZZZZZZZZYXSZZZXZZYZYYZUUUUU 0:31:57 Y HWI-EAS88 3 2 1 923 572 GAATAAAGAACTCTCGTGCTACAGCAAGCATGATA YSYSYYJOYJYYDJYJESOOOODVVYYDVDOGOCQ NM N HWI-EAS88 3 2 1 924 479 ATCTATACTCTGCATCAGTTTATGCCTCTATCTTT ZZZZZZZZZZZUZUZZZSZZYKZSZZZZUUGUUUU chr16.fa 28765746 R 30G4 29 Y HWI-EAS88 3 2 1 893 406 GCGCGAGGCAAATGGGTGTGCAATAACAGCAACTC ZZZZZZZZZZZZZZZZZZZYZXZZZZZZSYUQUQU NM Y HWI-EAS88 3 2 1 889 607 AGGAGGGGCATAGAGAGGAAGTGCTTCCACCCTCA ZZZZYYUZZYYZYZZZZYSUDKUZKZYZZSUULLG chr9.fa 57911928 R 29G3G1 0 Y HWI-EAS88 3 2 1 906 168 TTCAATTTCGGCGGTGCTTTTTTGTTTGTTATTTT VYOYYJYYOVJJDYJEOJYSYOYJYNJVSYLLLQL NM N HWI-EAS88 3 2 1 915 551 TGGATGCTCACAGTCATCTATTGGATGGAACACAG ZZZZZZZZZZZZZZZZZZZZZZYXZZYSZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 756 790 GATTTCCAGAATGTTTTTTGGGCTCACCACCTGCC ZZZZZZZZZZZZZZZZYZZYYXZZZZZZRZURQUU chr5.fa 122518129 R 35 61 Y HWI-EAS88 3 2 1 915 866 GGTCTATACGCAGCTCATGTACGAGTTGAACCGGC ZZZZZZZZZZZZZZZZZZZZYZYZZZZSZZUUUUU NM Y HWI-EAS88 3 2 1 920 940 GTTTTGTGTGTGAATATTGAGTAAACCAAATGATT ZZZZZZZZZZZZZZZZZZXZSZZZZZZYYYUUUUU NM Y HWI-EAS88 3 2 1 908 581 TCCATTGGGAGCCCTATGATCCATCCATTAGCTGA YYYYYYSVVYJYYVYSYOVYSYYYYYSYYVGLQGE 255:255:255 N HWI-EAS88 3 2 1 915 654 CAGGGAACCGGCCTCGGTCTGCATATCGTAAAGAG ZZZZZZZZZZZZZZZYZZZZZZZZZZZXZZUUQUU NM Y HWI-EAS88 3 2 1 952 395 TTTTTCAATTCCTTTGCTCATCTCAACACTTTCTT YYYYYVYYIIOUIOSIYOVIOCOVIHQDUNEEAAL NM N HWI-EAS88 3 2 1 890 497 TGAATCCATTGTGACAGAGTCTGAGGGTAGGACCT ZZZZZZZZZZYZZZZYXZXKZYYXZXXXRSNUNUU chr17.fa 59227515 F 32G2 28 Y HWI-EAS88 3 2 1 433 830 GATGCTCTTCCGTCGAACCACACGCCATAACATCC LLIHLILLLLLAALLLLLLLIILILLLHAFLEEEL NM N HWI-EAS88 3 2 1 910 282 ACCCCCACTTTGCATGGATGTATCACTTCGCTTCT ZZZZZZZZZZZZZZZYZXZZZZZZZZZZZYUUUUU chr9.fa 92391937 R 12A22 39 Y HWI-EAS88 3 2 1 881 553 CCATTCCATAATAATATTGGAAGAGCTCGAGGTCC ZZZZZZZZZZZZZZZZZZZXZZXYYZZZYSUQUUU NM Y HWI-EAS88 3 2 1 824 542 TAATTGTTGTTTATGGGAGTTTTATGGAAGTTTTA ZZZZZZZZYZZZZZXXSXIJXZZXZEDSSDUCIUN NM Y HWI-EAS88 3 2 1 752 661 GAACCTATGAGACCATGAAATAGAGATCAAATAGG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 961 476 AAAAAAAAATCTGGATTAAAGGTGGGTCTTCCTAC ZZZZZZZZZZZZZZYZZZZYXMZSSXZZZZUUUUU chr7.fa 132640600 R 35 41 Y HWI-EAS88 3 2 1 934 714 TTCTGGGTTCTCAGGAAATTCAGTAGCATATAGAC ZZZZZZZZZZZZZYXZXZZZZZYZZXZYZYUUQUU chr10.fa 21913322 R 18C9C6 2 Y HWI-EAS88 3 2 1 943 587 TTTGGAGTCCACATTGGAGGTCGGGGGGAATGCCA ZZZZYZYZZZZZZZZYXZZZYXXXZYXXSYUIUUH NM Y HWI-EAS88 3 2 1 942 376 ACGGAAAATCCAAAATCCGTTGTAACGACAAATAA ZZZZZZZZZZZZZZZZZZYZZXZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 792 319 TCCTTATTTGAAGAAATACATTGTTCATATCATAT ZXUOXZXZZXUOEUZZZXZKZXKZZXUZUUOGSOS chr14.fa 83514743 R 35 27 N HWI-EAS88 3 2 1 752 880 GTGATTTCAGTTTTCTCGCCATATTCCAGGTCCTA ZZZZZZZZZZZZZZZZZXZZZZXZZZZYSXUURUR chrUn_random.fa 4533498 F A16C17 6 Y HWI-EAS88 3 2 1 749 235 GTATGTTTGAAAAAACTCTGTGCTATACAGTTCTG ZZZZZZZZZZZZZZZZZZZYZXZZXZZZZSUUUUU chr19.fa 18090261 F 35 65 Y HWI-EAS88 3 2 1 886 750 GGCGCCGGAAGCTCCCACTACTGCGGCCAGGTTGG ZZZZZZZZZYZZZZZZZZZYZZXZYYZZYSUUUUU chr2.fa 165777088 F 35 65 Y HWI-EAS88 3 2 1 892 396 TCATCTAAAATGTTCTACACTTTGTTTTTTCTCAT LLLLLLLLLLLELLLLLLLDDDJJDHLLLLELLAL NM N HWI-EAS88 3 2 1 928 440 GAGACTTCTTCTTTTTTAATGATTTTCTTTTCTAC OYYSJYYYOVSYYSSYSYYVVYJYEDNYYJQQGQE NM N HWI-EAS88 3 2 1 878 71 TTTAGATTCGTCGGGCGTCCGCCCAGTACTGGCTT ZZZZZZZZZZZZYZZZZZZZXYZZZZZXZZQUUUU NM Y HWI-EAS88 3 2 1 881 511 AAAGCATTTTTACTTCTTCTCTTGTATTACCAATT ELLLLLLLLLLLLLLDJDJJLLLJLLLEELEELLL NM N HWI-EAS88 3 2 1 888 495 TTTTTTAGTGATTTCATCATTTTTTAAGTCTTCAA ZZZZZZZUZZZZZZZZZZZZZZZZZZZSZZCUUUU NM Y HWI-EAS88 3 2 1 931 589 CAGCCGGAGCAAGTGGTCTGCCATGAAGAGTGACA ZZZZZZZZZZZYZZZZZZZZZZZZZYZXXYUUUUU NM Y HWI-EAS88 3 2 1 811 278 TTTAATACATTTAGCCCTAAAATCCCTAAATAAAT ZZZZZZZZZZZZZXZZZZZYZZZZZZZXZYUUUUU NM Y HWI-EAS88 3 2 1 875 664 TTGGCTGTCCTGGAACTCACTTTTTAGACCAGACT YYYYYYYVYYVJSVVVSVOYYYYDYNJNYYAEEQQ chr4.fa 12178082 F 35 0 N HWI-EAS88 3 2 1 939 851 TACTCCTAAAATAAAGTTTTTCCATTTTTATTTTT LLLLDLDDLLLLLJJDLLLLLLIIJHLLLICLLEE NM N HWI-EAS88 3 2 1 954 378 AAATATTGTTGCAGATTATATAAATTTTAACCCAT ZZZZZZUUUZUZZSSZUYZYULYUZZZZYZUUUAU chr10.fa 36654392 F 35 40 Y HWI-EAS88 3 2 1 336 927 ATAACAAAAAAAATATAAACGGAACGACACAATTA LLLLAJLLLLLLLLLLLLIDLLLLLLHHLLLLLLE NM N HWI-EAS88 3 2 1 922 836 GGAAGAGGCTGTCTGTCTAGACTTGCTCTTTTTTT ZZZZZZZZZZZUUZMUYUJYUZUDLJUDSZUUUUU chr5.fa 114898328 F 5G17G8C1A 0 Y HWI-EAS88 3 2 1 900 615 AACTCAAAAAGGTTTTTCTGGCTTGTTATTCGCTT LELJLLJLJLJEJLLLJLEDLLJLLLDLLDEALLE NM N HWI-EAS88 3 2 1 905 263 TCTGGGCTATGACCCGTCGGATGACAACGGGACCG ZZZZZZZZYZYZZZZYZZZZZZZZZZZZMZUUUUU NM Y HWI-EAS88 3 2 1 921 282 ATTAACCCTTCCCCCATCAAATGTGAGTTTTGTAG ZZZZZZZZZZZZZZZYZZYZYZYZXYYZZZCKDUD NM Y HWI-EAS88 3 2 1 900 821 TGAACAGGTGAGAGGGTGCGCCAGAGTACCTGACA ZZZZZZZZZZZZXZZZXSZSZZYZZYDZZZUUUUR 0:255:255 Y HWI-EAS88 3 2 1 961 383 TAGAAATGTCCACTGTAGCACATGGAATATGGCAA ZZZZZZZYZZZZZZSZZZZZZXZXYZZZZZIUUUU 0:40:51 Y HWI-EAS88 3 2 1 903 491 CACTTTATTTGTTTTCAATCACGGCGTGGGCAGGA ZZZZZZZZZZZZZZZZZZZZZZYXZXYYYYUUUUU NM Y HWI-EAS88 3 2 1 907 605 ATGGCCATGACTTGATGGTCTTGAACTTGAGATGG ZZZZZZYZUZZZZUZZZUZZZZYRZYZZEYHUULH chr5.fa 18365733 F 6T28 6 Y HWI-EAS88 3 2 1 930 640 TTGGTTCACGCAGTAGGCCGGCGTGTAGTTCGAAC ZZZZZZZZZZZZYZYSZZZZZZZZZZYYZZUUUUU NM Y HWI-EAS88 3 2 1 789 935 TTAATCATTATTTGTACTCTGAATGAGTCATTTAA YYYYYJSVYYVSSOOYDOYYSJSVOJHVYHQQQQO chr2.fa 43968131 F 35 24 N HWI-EAS88 3 2 1 884 493 GAGCTCTGACTCCACAGCATGTTCGAGCTCACTCC ZZZZZZZZZZZZZSZZZZZZZZZZZYYZZZUUUUU chr9.fa 8001648 R 35 65 Y HWI-EAS88 3 2 1 633 740 GAGAGACTATTTTTGGTTTGTGCTTTGGTTTTCTT LLLLLLDLLLLLLLLLDLLIDLLDLLDLLLLLLLL chr7.fa 118591554 R 6A16C11 2 N HWI-EAS88 3 2 1 903 716 GCGGGCTCCTGTCAAAGTTACCATCCCCACAGCCC LLELLLLLLLLLLLLLLLLJLLLLLLLLLLLLLLL 0:0:19 N HWI-EAS88 3 2 1 801 589 TTTATTATATGTAAGTACACTGTAGCTGTCTTCCG ZZZZZZZZZZUZZZYZZZYZZSZZUYZJYYUUUAH 255:255:255 Y HWI-EAS88 3 2 1 783 924 TTTAAAGACATTTCTACATGCACTTCATATCAGTA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUQUU chr10.fa 31988475 R 35 71 Y HWI-EAS88 3 2 1 835 349 TAGTGATTTAGTCATTTTTCAAGTCGTCAAGTGGA ZZZZZZZZZZOZZZZZZZZZZZUZZPZZXXGSLCS chr2.fa 98506739 R 9C25 0 Y HWI-EAS88 3 2 1 787 267 TTTATTAAGCAGCAAATTTTTATTACTACCAAAAG ZZZZZZZZZZYZZYZXZZZZZYZZYZZXZZIQUNU chr9.fa 26877103 F 35 54 Y HWI-EAS88 3 2 1 750 724 TAACTGTTCTGTGACTCAGTGTCTCTGTGGAATCC ZZZZZZZZZZYZXZZZZZYZYZZZZZXZSMQUUUU NM Y HWI-EAS88 3 2 1 764 596 TTTAATTTTCTCTGTTCTCAAAAAAAAAAAAAAAA OXZXXUOOOUUZZKDZOZXZIUUIKJZDXHGGOSS chr9.fa 25207612 R 35 15 N HWI-EAS88 3 2 1 877 579 TAACATTCTTATCATCTACTTAACACCCCTACTAC YYYYYOSYOIIOUYOWIFQDIUIUOUUQLLEGALL NM N HWI-EAS88 3 2 1 894 251 GATCCAAATTTCCAACAAAAGGTGGTAGATGGAGA ZZZZZZZZZZZZZZZZZZZZZZYZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 937 497 GCTTACGACTGGACCACAATACTGGTCCCTTAGCT ZZZZZZZZZZZYZZZZZZZZZZZXZZZZZZUUQUU chr18.fa 47148461 R 35 70 Y HWI-EAS88 3 2 1 915 805 CACAGGTTTTAATGGACTGAAGCATTGGGAGAGGA ZZZZZZZZZZZZZZZZZZXZZXZZZZSXSYUUUUQ chr1.fa 164832107 F 35 63 Y HWI-EAS88 3 2 1 981 519 TAATATATCCATTATTTGTGAGGATTTATACTTAA ZZZZZZZZZZZZZZZZZXZMZSMZZZZXZZJUUKK chr5.fa 71376143 R 35 40 Y HWI-EAS88 3 2 1 934 677 GTGGGGCTTGCCTTGCCTGGGGATGGTGTGGGCGA YYVYJSSYYVYYYYVYYYSYSSVYVSYNVNLLQOL chr5.fa 127993847 R 35 38 N HWI-EAS88 3 2 1 966 544 AAGGTTCCAAGCTTTTTCAGGTCTTCGCCCAATAT ZZZZZZZZZZYZZZZZZZZSMZZZZZMZZZUUUUU chr10.fa 106665219 R 35 49 Y HWI-EAS88 3 2 1 761 589 GTCATCACCACTATACCCTAGTTAACCACAGGGAC ZZZZZZZZZZZZZZSZZZZYXZZZXZZVZZUUURU chr2.fa 48312350 F 35 65 Y HWI-EAS88 3 2 1 848 364 GCAATGAAGTTGTATGTGTTGATTTGATCCTAGAT ZZZZZZZZZZZZZZZZZZZZYZZZZXXZZZUUUUU NM Y HWI-EAS88 3 2 1 882 486 CTTCTATTTGTCTCATTACTGCATCTGCAAATTCA ZZZZZZYZZZZZZZZZZKZZYZXZXZMZKYUUUUU NM Y HWI-EAS88 3 2 1 879 490 CTGTGTAGCCCCAGCTAGCCTGAAACTCACCACCG ZZZZZZZZZZZZZZZZXZZZZXZYXZZZSZUOUUU chr11.fa 116507478 F 35 38 Y HWI-EAS88 3 2 1 947 363 ACATCCACTTGAAGACTTGAAAAATGACGAAATCA ZZZZZZZZZZZZZZZZZZYZZZZZZZZZYZUUUUU 0:17:42 Y HWI-EAS88 3 2 1 885 207 ATTTCCCTTACAATCACTCCTTTAAAAAATAAACT ZZZZZXZXXOZUOZXZIZXXXXXJOJPIPULOLOS chr5.fa 84520807 R 16A18 18 Y HWI-EAS88 3 2 1 953 516 CTGAGAGAGGGATGAAAAGGCCAGGCTAAGATAAC ZZZZZZZZZZZZZZZYZZZZZZZZYZZZOXUUSUU chr9.fa 76432380 F 35 61 Y HWI-EAS88 3 2 1 909 810 GTGTAGTTGCTTGAAAAGCTTTGGCCCCCCCAGAC ZZZZZZZZZZZZYZZZZYZZZZSYZZZZZZUUUUU chr4.fa 155048026 F 35 65 Y HWI-EAS88 3 2 1 892 273 TGACACATCGGGCAGTCCAAGAAAGGTGCGAAGAT ZZZZZZZZZZZZZZZZZZZMZZZYZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 950 96 TATGATAAAAGTGGAAATCTTTTACATCCACGTTT ZZZZZZZZZZZZZYZZZZYZZZZZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 908 270 GTGGACACCACCGAGCAGCTGAAGAGGATCTCTCG ZZZZZZZZZZZZZZZZYZZZZZZZYYYSZZUUUUU chr19.fa 10292715 R 35 65 Y HWI-EAS88 3 2 1 904 215 CTCTCCCTCACAACATTGTTTTAAAATCTTCCTTA ZZZZZZZZZYZYZZZZZXZZZZZZZZZZZZUUUUU chrY_random.fa 6186055 F 35 2 Y HWI-EAS88 3 2 1 945 377 GCTGTTCTTGTGATAGCGGATAAATCTCATTAGAT ZZZZZZZZZUZOZZZZZXOZZZZUZZZZXZGOSGS NM Y HWI-EAS88 3 2 1 906 251 AAAAGCACTGAGTATTATTAGTATGGCAAATATTA ZZZZZZZZZZZZZZZZZZZZSZZZMMYYYYUUUUU chr2.fa 91587950 F 35 49 Y HWI-EAS88 3 2 1 857 277 TTAACTCATTTCAGCATTAATTTGAAAGTCAATAG ZZZZZZZZZZZZZSZZZZZYZZZSYZZSZZUUUUK NM Y HWI-EAS88 3 2 1 807 124 GAGCTATCGTCAGTTCACCGCGGTTGGCTTTCTAA ZZZZZZZZZZZZYZZYRZZSZYYXZDYDZXUJANQ NM Y HWI-EAS88 3 2 1 928 704 ATGATATTGGCTGGTTTTTTTTTTTTTTTTTTTTT ZZZZZZZZXOZZUMOKOZOXXZZZXUUUDJOSSSC chr14.fa 124922754 R 5T7T21 0 Y HWI-EAS88 3 2 1 914 458 TGAGCACCTGTGTCGGTTTGCGGTACGGATATCCC ZZZZZZZZZZZZZZZZZZZDYXSYSYSSSZQAUUU NM Y HWI-EAS88 3 2 1 906 550 AGACGGCGTTTCACCATGTTGGCCAGGCTGGTCTC ZZZZZZZZZZZZZZZZZZZZSZZZZYZZZMKUUUU NM Y HWI-EAS88 3 2 1 821 663 TAAAGTGGTTTGTATAAATTTTCATTTTTTTGCCA ZZZZZUZZZZZUZYZYZZZZZYZUYZZZZYUAUUU NM Y HWI-EAS88 3 2 1 892 336 AAGTACAGGCAGCCTTTAGGTACAATGGCATCTTC ZZZZZZZZZZZZZZZZZZSYZZZYZZXYZYUUUUU chr2.fa 27914010 F 35 65 Y HWI-EAS88 3 2 1 951 343 GATTGCATGACGATGTTCTTTGCTCGCCTCCTTTT ZZZZYZZZYZZYZZYZZZZZMSYXZSYZZYUUCUU NM Y HWI-EAS88 3 2 1 917 292 GCGACCTGCTGCTGCCGGTGCTGATCAACCAGGGC ZZZZZZZZZZZZZYZZZYZZZZZZZZXZYZUUUUU NM Y HWI-EAS88 3 2 1 885 414 CTGCGAGCATAGGTCAGCTGATGCTTTGTGCCTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZXUUUUU chr2.fa 78193715 F 35 70 Y HWI-EAS88 3 2 1 385 821 CCTTAAATAACTCCTATCTACTCACCACTCCAACC LLIGLLLAIIDILLGIHLILLFLFILLLFIEECEE NM N HWI-EAS88 3 2 1 432 934 GAAAAAAAAATTAAAGTGAGTGATAATTGGTGGAT YYYYYYYUSYGGOSGFLHFICIMMFMDMHQHHDGH NM N HWI-EAS88 3 2 1 881 732 TAGGTGGAAGTTCCAACACTGTAAGCGGCACAGAT ZZZZZZZZZZZZZZZZZZZZXZZZYZZZZYUUUUU NM Y HWI-EAS88 3 2 1 905 841 TCCAGTACGTTTATATATAACAATAATACCATCCA LLLLILLLIDLLJLLLILLLLLLLLLLIILLEAEL chr15.fa 16828403 R 31GA2 7 N HWI-EAS88 3 2 1 913 287 ACGGGAATATAATAGGCTATGACACATGACCAACC ZZZZZZZZZZZZZZXZZZYZSZZZZZZMZYUJUUU chr12.fa 70737561 F 35 46 Y HWI-EAS88 3 2 1 954 567 CTGACAGAGCCAGTTCCTCAGTCCAGGGCCTCGAT ZZZZZZZZZZZZZZZZZZZZYZZZZZYXZZUUQUU chr8.fa 124193938 F 35 70 Y HWI-EAS88 3 2 1 779 278 TTTCTTCACTTCCTCGCATTATTTCCTTGCGTTGT ZZZZZZZYZZZZZZZZZZZZZZZZZZZZSZUUUIU NM Y HWI-EAS88 3 2 1 901 457 AATGCAGATGTTAAATGGTTTTTGATAGATTCAAC ZZZZZZZZZZZZZZZZYYZZZZZXZZZMYZUUUUU NM Y HWI-EAS88 3 2 1 809 551 GTTAGGGTCTGGTCTGCTATCATCACCCACCCTAA ZZZZYYUZZZZYUZZZZZZZZRZZYZZZOZUUUEU chr10.fa 5309337 R 35 58 Y HWI-EAS88 3 2 1 915 842 AGTATTACTATTGAATATTTCTTTAACATCATATT ZZZZZZZZZZZYXZZZZZZZZZZZZZZXZYUUUUU chr12.fa 47613700 R 35 70 Y HWI-EAS88 3 2 1 966 523 TTTTTAGAACCCCTTAATATTGTTTCATATTCTTT ZZZZZZOZXZZZXZZZUZUZZOZDXUHIUXSOASC 0:0:255 Y HWI-EAS88 3 2 1 630 951 GTTCACAAGGAGCATCTCAATGGGACCATCACTCT YYSOVOOOSOJYYYYYVJSSVSJSYIVNYYEQLOQ chr14.fa 69069969 F 35 28 N HWI-EAS88 3 2 1 777 551 TTAAAATTGCTCCTCTAAAATTTGGAACATACTAT ZZZZZZZOXZZZZZZZXUSXUXZOIRRXXXOSSEG chr4.fa 7531467 F 35 43 Y HWI-EAS88 3 2 1 766 882 TTCCTCTCTCACACTTTCCACAGGTCACAAGTGGG OZUZZXZZXZXZUZUZZXXZZUUUZXZPXNLSSSO chr14.fa 33774028 R 35 45 Y HWI-EAS88 3 2 1 652 910 GAATGTCTAAGCCAAGACTGGCAATGCCTGGGCGA LLELLDLLLLLLJLLLLLLLLLLILLHDLLLLELE NM N HWI-EAS88 3 2 1 947 418 AAAGCTCGGGATAAGTGGTGCCGAGGAACCCGGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUOUJ chr12.fa 105549738 R 35 3 Y HWI-EAS88 3 2 1 390 751 ACGCTGTGCATCGTTGAAGTAAGCAGGAACAGTAA ZZZZZZZZZZZZZZZZZZZZZZYZZZYSVZSUUUS NM Y HWI-EAS88 3 2 1 889 636 TGTATATTTTTCATCCAGTCTTGGTAGTTTTAATA ZZZZZZZZZZZUYYZYYUYUSUDLSYJIYYLLLLU chr14.fa 39726067 F 27G2G4 1 Y HWI-EAS88 3 2 1 904 718 GCGTGCTCTTGCCGCCGCCACCATCCCCACCTCCC LJEJLLJLLJLLLJLDLLJJLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 950 820 GTGCCTGGAAAGGGCAAACCTGTTCCCCACAACAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr11.fa 6381861 R 35 72 Y HWI-EAS88 3 2 1 901 754 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGA VYYYYYYYJYYYYYYYYYOYYSSYYYYVNYQQLCQ NM N HWI-EAS88 3 2 1 949 749 TCTCTGTCTTTTTCTTTTGGATGTTTTCCATACGT ZZZZZUZZZYZZZYZZYZSSZYUZZZIUYUCLUGU chrX.fa 73759902 R 26G3G4 7 Y HWI-EAS88 3 2 1 911 60 TCAAGCGCAGCATGTCCTGTGTTGCCTGGGGATCT ZZZZZZZZZZZZZZZZZZYZZZZYZZZYZXUJUUU chr13.fa 41960620 F 35 59 Y HWI-EAS88 3 2 1 756 601 TTTCCCAACACTCTCAGCAGCCATCTTAAACTCTT LLLLLLLLDLILLLLIDLLIALLLLLIDHHELLLL NM N HWI-EAS88 3 2 1 625 116 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZSZUUEHU NM Y HWI-EAS88 3 2 1 941 179 GGGGAAACTTTAGCTTCATCTGGTAACCAGAACCA ZZZZZZZZZZZZYZZZZXZZZXYZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 924 380 AGCCAATCACAGAGTCAGCCAATCACAGACCCAGC ZZZZZZZZZZZYZZZZZYZZZZZZXZYXYZUUUNU chr6.fa 137095738 F 35 25 Y HWI-EAS88 3 2 1 917 38 TGACCAAGGTATCATTGTGTAGAGTGTTATTCTGT YYYYVYJVYYOVOOYYYJEOOSYYONYYVYOQCCO 0:31:255 N HWI-EAS88 3 2 1 923 520 ACATCTATCTATAAATCTGCTCCCGCGCCAATTCA DEJELJJJLLJLDLLJLLLLLLIDLLLLHLCCLLL NM N HWI-EAS88 3 2 1 914 730 TCATGAACAGGCTCGATCTCGATGGAATGATTTGA ZZZZZZZZZZZZZZZZZYZZXZZXZYYZXSUUUAK NM Y HWI-EAS88 3 2 1 911 343 ACACATCACTGGCCAAAAGCAGGGGGGCCAACAGA YVVYYYYVYYJYYYOYYYSYISSVJNSSVSQQOLG chr7.fa 128094815 R 25T9 14 N HWI-EAS88 3 2 1 835 610 GTCCGGCGCAAAGTTGAAGGACTTGTTCGTGAAGT YJYOOYYVVYVSYYYSYYVVVYYYVYYYSSLOQLL NM N HWI-EAS88 3 2 1 882 286 GGCAGAGGCAGGCAGATTTCTGAGTTCTAGGCCAG ZZZZYZZZZZZYZZZYZZZYZSZXZZYXSSNUUIN 202:255:255 Y HWI-EAS88 3 2 1 532 920 GAGGAGAACCATGTAGGGTTGGCCATCACCTCCAC ZZZZZZZZZZZZZZVZZZYZRYZYXZZVZZUSULS chr5.fa 50566858 F 35 62 Y HWI-EAS88 3 2 1 967 197 TATAAAAGGTAACCATCCCAGAAAAGACTCAGATG ZZZZZZZYZZZZZZZZZZZYYYZZXYZZZZUUUUN chrX.fa 68851575 F 35 70 Y HWI-EAS88 3 2 1 879 190 CGGAAGAAGAAATGGCAAATATCAAAAACGATATT ZZZZZZZZZZZZZZYZZZZZZZZZZZZXZXUUUUU NM Y HWI-EAS88 3 2 1 760 365 TAACCATTACCTTTTTTCAAATTCTGACATTTCTA ZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZUUUUU chr15.fa 10092829 F 35 70 Y HWI-EAS88 3 2 1 893 366 ATATTATAAATCATTTATTTACAGAATGGAGCCCA ZZZZZZZZZZZZZZZZZZZZZZZXZZZYMZUUUUU chr5.fa 46633156 R 35 59 Y HWI-EAS88 3 2 1 757 279 GGAAAGGTAGTGCCTGTGGATGGGAATTACAAGCA ZZZZZZZZZUZZZZZZZZZZZYZZYZZZYZSUUUL chr10.fa 82665069 F 35 65 Y HWI-EAS88 3 2 1 792 565 GTTGGGATATGGTGACTAATGCTGCTCTGAGCTGC ZZZZZZZZZZZZZZZZZZZZYZZSZYZZXVQUUQU chr1.fa 94600753 F 35 61 Y HWI-EAS88 3 2 1 966 173 TGTTGTCATTATTTTAGGTAGTCCATTAGGTTAAG ZZZZUYZZZZZZZZZYSLYZLZSSYZZYDDCUUUH NM Y HWI-EAS88 3 2 1 388 976 GAAAAAAAAAAAAAAAAAAAAAAATAGAAATTTTG ZZZZZZZZYYZXXXXVVUDQFIFQFFFMHHCFCAA chr13.fa 93042653 F 24A7A1T 0 Y HWI-EAS88 3 2 1 497 751 CATTAATTCCTAGCAACATGTTTAAAACATGTAAA DLLLLJJLLIELLLLLLLDLLILLJLLLLDLELLL NM N HWI-EAS88 3 2 1 899 752 CTGCTTTGCACTGTCTTTCTCTGTATTACTGTATT ZZZZZZZZZZZZZZZZZZZZZZYZZZZZZZQUUUU chr15.fa 92818643 F 35 67 Y HWI-EAS88 3 2 1 892 547 GTGTATCGTTGTCTCTCTCTGTCTGTTTCTGTCCT JOOYYYYVYYYYYYSYOYYYSYJYONEYYYGQLLC NM N HWI-EAS88 3 2 1 896 767 CGGTACAGGTTCATAAACAAAAAGACTCCCATCTC ZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZQUUUU NM Y HWI-EAS88 3 2 1 901 823 CGCTGACGCTCTTCAACCACCAGCCAGTCGGTAAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 880 207 AAACAAAATAAAAACAAAACAAAATAAAACAATAC ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUUUUU chr1.fa 167844152 F 35 28 Y HWI-EAS88 3 2 1 801 355 GAATGAAATTAGGGAGTCATGTAGATGCACAATAT ZZZZZZZYZZZZZZZZXZYZXZYZYZZYZZUUUUU chr16.fa 60000236 R 35 70 Y HWI-EAS88 3 2 1 712 388 TATACCTTTTTGAACTGCCTCATTGTCAGATTTTA YSYVISVYYYVOVVVSJYYYJYOYDSYQSSQCEQL NM N HWI-EAS88 3 2 1 936 827 TGGCGTATCTGGCTGCTCAGGCGCTTTGGCGCGCG ZZUXUUZZZZOZZZUZUZXOUZXUZZZDIULSLSL NM Y HWI-EAS88 3 2 1 759 361 TTAATCCTTAATAGGAGCAATTTCTCCCTATTTTT ZZZZZZZZZZZZZZZZZZZYZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 495 880 ACTGGGGCCTGTCGTGGGGTTGAGGGAGTGGGGGG ZZZZZZZZZZZZZZZZZZZZZZZZZZXZZZUUUAU NM Y HWI-EAS88 3 2 1 789 348 GGAATGCCGCTGTCATCCTGAGGAGCCGGCTGAAG ZZZZZZZZZZZZZZZZZZZKYXZZYZZYYZUUUNU chr4.fa 154961466 F 35 57 Y HWI-EAS88 3 2 1 933 701 GTTTGGAGCATGTATGCATTCAAGGTCAGTTTTAA ZZZZZZZZZZZZZZZZZZZZZZYZXZZZXZUUUUU chr8.fa 47379601 F 35 70 Y HWI-EAS88 3 2 1 796 584 GGGCCACCTTGCCTGGCCGCTGTGGGCGAGGTTGA LELDLLLLLLLLLLLLLLDLDLLILLLDLLLLLLA NM N HWI-EAS88 3 2 1 904 236 ATATACTGGCGTAGCATACAGTTGATAGTATTCTT ZZZZZZZYUZYZZYZYYYYYUSYSUYUJIQUUULU NM Y HWI-EAS88 3 2 1 480 922 CTACATAAAGCTGGCACAGAGTAGGGTTATTTGCC ZZZZZZZZZZZZZZZZZZYYZZZZZZZZZZUUUUS 23:11:4 Y HWI-EAS88 3 2 1 878 414 CTCTGTAATAAAGAATAGATCTGCAAATTATATTG ZZZZUZZZYZUZUZZZZUZUYYRYUZXUTYUSUAE chr8.fa 51300105 F 33G1 55 Y HWI-EAS88 3 2 1 336 925 AAAAAAAAACACAAACAAAAATACACTCACCCACG UZZZYZZXYZZXYXXUOWIHDSIUOLMIXUAEFEP NM Y HWI-EAS88 3 2 1 882 131 GGGAACTGATGGTGTGTGGCGGGGGGGGTTTTTTG ZZZZZZZZZZZZZZZZZZYXXZXYXYSMSZUUQUJ NM Y HWI-EAS88 3 2 1 884 306 ATTAGTGATCAAGGGGGAAAGGCTCTTGTGGGTGG ZZZZYZZZZZZZZZXZYZYZYZZZZZZMZSINUNI chr2.fa 153106591 F 35 1 Y HWI-EAS88 3 2 1 949 578 TATCTGGTTCCAACGCTACATCGGCTTCGGTTGAC ZZZZZZZZZZZZZZZZZZZZZZYXZZZYMXUUAUU NM Y HWI-EAS88 3 2 1 473 774 AGGATGTGAAAGGATGGGGCTGGGTTAGGACCCAG ZZZZZZZZYZUZZZZZZZRZYYDURZTOTTOSPAI chr14.fa 71647608 R 22T12 29 Y HWI-EAS88 3 2 1 456 896 AGCAGGCAGGGAAAGCATCCTCAAGTCTGGCTTTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr11.fa 34183361 R 35 72 Y HWI-EAS88 3 2 1 910 661 GTTTCTCCCTCCTCCTGATTCTTCTCTATATATTC ZZZZZZZZZZZZZZZZYXZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 949 196 TGAGTGTGGGAAGCCAGAGGCCTCGGCAGCCTGGC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUQUU chr1.fa 89167335 F 35 72 Y HWI-EAS88 3 2 1 877 609 GTTGTCGAGCCCGGCCATGCGCTGGCGATATTGCG YSYYOYJSYYYYYYYDVYYYUYISSYLUVUOOQQQ NM N HWI-EAS88 3 2 1 936 284 ATGTCATTTATAGATATGATGGATTATTCGCATTG ZZZZZZZZZZZZYZZZZYYZZSZZZYZZYDUQUUC chr10.fa 124777654 F 35 44 Y HWI-EAS88 3 2 1 908 470 AAACAGACAACATTAATACCTATACATACCAATAA ZZZZZUZXOZZZZXXIXXZZUIXZZXXXHUSALOO chr1.fa 100954516 R 28G6 10 Y HWI-EAS88 3 2 1 795 148 GATATATGACTCTTTATTGTAGCAGTTTTTTTTTA ZZZZZYZYUZZZZZZYZZSYZUYZLZZDZZUUHAU chr13.fa 10642710 R 15G11G4GA1 0 Y HWI-EAS88 3 2 1 475 755 ATACATGTACATTTTTTAAAAAATGGAGCAAAACA ZZZZZZZZZZZZZZZZZZZZZZZZZSZYZZUUUUU chr1.fa 133991988 R 35 65 Y HWI-EAS88 3 2 1 839 354 TTGGGACTACGACCTGTAAGACTGAGCCAAATTTC ZZZZYZZZZZYZZZZZZYYSZZZZWYZZYYQUUUU chr2.fa 123356256 R 35 61 Y HWI-EAS88 3 2 1 906 223 TGACTCCCCTGTGTTGCGGAGGCTCTGTTTTCCAT ZZZZZZZZZZZZZZZYZZYZXZZZYZSZZMJQUAU chr3.fa 87539367 R 29GG4 12 Y HWI-EAS88 3 2 1 797 112 TAGACAGTTTCTACTTTTGCAATTATTTAAAAATC ZZZZZZZZZZZZZZZZZZSZZYZZZZZZZXUQUUU chr10.fa 108548019 R 35 61 Y HWI-EAS88 3 2 1 817 568 TTCATAATATAAGCACATGCCCTTAACTTTGGTTT LEELJLLJLLILJLLLLDLLLLILLDHLILELEAC NM N HWI-EAS88 3 2 1 830 553 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ZZZZZZZZZZZZZZZZZZZYYZZZZZZYZZUUUUU 131:254:255 Y HWI-EAS88 3 2 1 793 877 GGGAGTGGCGGCGCTCGCCTTTAGTCCCAGCTCTC LLLDLJLJDJJLJDDDLDJILLJDLHHHLLLELEL NM N HWI-EAS88 3 2 1 896 554 AAAAAAAAAATAACAAAAAAAAACACAAAAAAAAA LLLLLLLLLLDLLLLILLLLLLLLLHLLJLLLLEL 0:0:187 N HWI-EAS88 3 2 1 422 781 GCAAATTCTTAGCCCTCATGTCCCTCACACTGTCC ZMZZZZZZZZZZDZZZZZZXYZXDWXZZHXUQOUE NM Y HWI-EAS88 3 2 1 921 700 TTCCTGTGTATGAAAATCTGCGATGGATTGAGGTG ZZZZZZZZZZZZZZZZZZZYZYYZYXYZZMUKKUQ chr2.fa 9425450 R 35 49 Y HWI-EAS88 3 2 1 533 726 GCTCGTAAAGACGGATTTTGATTATTTAATAAAAC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 901 682 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA ZZZZZZZZZZZZZZZZZZZZZZYZZZZYSZUUUUU NM Y HWI-EAS88 3 2 1 810 967 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA OZZZZZZZZZZZZZZZZZZZZZZZYZZYZXSSSSS 255:255:255 Y HWI-EAS88 3 2 1 915 802 GTCGAGCAGGGCATGCCGCGACGCCAAGCGCTGGA ZZZZZZZZZZZZZZZZZZZZZZZZZYZZZYUUUUU NM Y HWI-EAS88 3 2 1 888 414 GTTGCGGAGCGTTTCCCGAATGCGATGCTGCTGAT ZZZZZZZZZZZZZZZZZZYZZZZYZZSZZXUUUUU NM Y HWI-EAS88 3 2 1 917 197 ATATATTTAAATATAGATTCTTTTATTTTCTTTGT ZZZZZZZZZZZZZZZYZZZZZZZZYZZZZMUUUKK NM Y HWI-EAS88 3 2 1 872 584 GCTTTTTTAATATCTGCTGCGACGATGACGCAAGT ZZZZZZZZZZZZZZZYZZSZXZZXZZXZYYUSSAU NM Y HWI-EAS88 3 2 1 916 308 GCTGTGCTTCTTGCGCTTACGATTATTTTTACCAA ZZZZZZZZZZZZSZXZZZZZMYZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 683 109 GCAGAGATTTCAGCATAGGAAATTATCAGATAGGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUQUU chr1.fa 26195046 F 35 71 Y HWI-EAS88 3 2 1 955 525 CAAGTCCAGTTAATTGCACGTCTTTTCAATTGATT ZZZZZZZZZZZZZZZZZZZXZZZZZZZZXZUQUUU NM Y HWI-EAS88 3 2 1 824 273 GTTTCATCAAGAAGCAGAAAGGCTTCACCTCGTCC ZZZZZZZZZZZZZZZZZZZYZYZZZZZZZZUUUUU chr11.fa 85125318 F 35 71 Y HWI-EAS88 3 2 1 225 117 GTTGTATCGATGTGACCTTGTCGACTGGTACGCGG ZZZZZZZZZZZZZYZZZZZZZZZZZZZXZZUUUUU NM Y HWI-EAS88 3 2 1 876 549 AACTTTGGTACCTGGTATCTGTCCAGAAATTTGTC ZZZZZZZZZZZZZZYZZZZZYZZZYZXVZZUUQUU 255:255:255 Y HWI-EAS88 3 2 1 831 639 TATTTCTTCAGTAAGTTACATAAAATAATGATGTA ZZZZZZZZZZZZZZZZZZZZZZZZZZYYZZUUUUU NM Y HWI-EAS88 3 2 1 917 581 GCTGAGCAGCCAATTCATCTCTACGGTAAGGTGAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZXZUUUUU NM Y HWI-EAS88 3 2 1 888 152 TCAGATATTGACCAATCGCCTCTTCTTGCCTACCG ZZZZZZYZZZZZZZZZZYZZZZZZZZZMZYUNUUN NM Y HWI-EAS88 3 2 1 672 712 GTGTAAGCCAAATAAACCCTTTCCTCCCCAACTTG ZZZZZZZZZZZZZZZYZZZZZZZZZZZZZZNUUUQ 255:255:255 Y HWI-EAS88 3 2 1 791 893 TGCTAATGTTCTTAATTCTGATGAAAATGATGAAA ZZZZZZZZZZZZZZZZZZZXZZZZYZZZZZUUUUU NM Y HWI-EAS88 3 2 1 766 920 TCACTTTATTCATTTTTTTAAAAAAAGGTTTACAC ZZZZZZZZZZZZZZZZZZZZZZZZZZSXZZUUUUU chr9.fa 38291967 F 18A16 34 Y HWI-EAS88 3 2 1 457 871 AACTAGACTATTTTAAACAATTAGGAATAAATGTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 877 247 CAAAAAGGGCCAATGACAATTATAATATTAAACTG ZZZZZZZZZZZZZZYZZZZZZZZZZZZZZZUUUUU chr1.fa 163149797 F 35 71 Y HWI-EAS88 3 2 1 875 242 AGACTGGAGAATATGGCAAACTGGGCAGGGTTAGA ZZZZZZZYZYZZZZXZZYYYZSDSKZRMSIUUNHU chr5.fa 140154350 R 35 28 Y HWI-EAS88 3 2 1 955 603 TTTTCAATTTTATAATCTTGAAGTGAACTACCCAT ZZZZZZZZZZZZZZZZZZZXZZYZYZZYZYUUUUU NM Y HWI-EAS88 3 2 1 822 118 TTAGCTTTGCTTTGTCACATATGCCCTTTATTATG ZZZZZZZZZZZZZZZZZZZZZZXZZZZZZSUUUUA NM Y HWI-EAS88 3 2 1 937 581 ACGCCGCGCGGGTATCCAGCCCGGCACCGAACAGC ZZZZZZZZZZZZZZZZZZYZZZZZZZZZXZUUUUU NM Y HWI-EAS88 3 2 1 875 649 GTTATAAAGAATACAAATGCCCCCCACACCCCAAG YYYOSOYYIVUVOSUUIIWUVYIDOLUHQYPLALE NM N HWI-EAS88 3 2 1 348 978 GAAAAAAAAAAAGAAAGTAGAAAGGCTCCATAAGA ZZZSZOZZZZUZGHIYQCUHQCHHMMHHMFFIEAH NM N HWI-EAS88 3 2 1 904 455 CCATGTAGACACTAGCATATCCGGGGATCCATCCC ZZZZYZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU 255:255:21 Y HWI-EAS88 3 2 1 899 159 GTCATGCCAAGATATTTTATATTATTTTTGACTTT ZZZZZZZZYZZZZZZZZZZZYZZZZZZDZMHIUAU chrX.fa 15017633 F 35 0 Y HWI-EAS88 3 2 1 752 323 GAGGAAGTGGCCTGAGAAGGGATGGCACCCCTGTC LDLLLLELLLLLELLLLLLLLDDLIIHLIIAALAL NM N HWI-EAS88 3 2 1 966 674 TTCTTTGTATGCTCCTGGTTCTCAAAAATGTTGTC ZZXZZXUZZZOZZZZZXXZZZZZXOPZXZUSSGSS chr1.fa 195524766 R 35 50 Y HWI-EAS88 3 2 1 940 290 GAATAGTCGCACGAAGCTGCGCAAAATTCCTCGAA ZZZZZZZZZZZZZZZZZZZZZZZZXZZZZZUUUUU NM Y HWI-EAS88 3 2 1 922 524 GAAGATGAGCGATCGCTTCTGGTTCAGATCGGAAG ZZZZZZZZZZZZZZZZZZZZYXZZZZYZZZQQUQQ NM Y HWI-EAS88 3 2 1 691 756 GACTCTTCAATTTTGTGTGTGATGTTTTTTATTTC ZZZZZZZZZZZZZZZZYZZZZZZYZZZZZZUUUUU chr8.fa 34088823 R 35 71 Y HWI-EAS88 3 2 1 759 576 TTTGCCATTGACTGTGTTTTCCTTATGTTTTTTTT YYYYYYYYVJVYYSVOYYYJVSYYSDDYYYOQQQQ NM N HWI-EAS88 3 2 1 913 468 CACCATCTTCTCGGCATCTTATGGTACCTTCTCCA ZZZZZZZZZZZZXYZZZZZZZZZMYYZZZZUUUUU chr4.fa 16273427 R 35 59 Y HWI-EAS88 3 2 1 927 687 GTTGCCATCCAGAGAGAGGAGGGGCGTGGCGAGCC ZZZZZZZZZZZYZZZZYZZZZZZZZZSZSZUUNUU chr5.fa 34976414 F 35 63 Y HWI-EAS88 3 2 1 874 708 TCTTGGCTACGTCTTTCTTAGCATCATCCTTACAG YYSOOYJYIYVISYYYOSYISISJDNYNNNLQEEO NM N HWI-EAS88 3 2 1 940 208 TCGGGCAGCATGACAAAGTCTGGGCGCAAGCGGCT ZZZZUZZZZZZZZZZZSYZZZZSZZYZUZUUUUUU NM Y HWI-EAS88 3 2 1 926 712 GCCTGGTCAATATCGGTGACGCCAAGTCACTGGCC ZZZZZZZZZZZZZZZZZZZZXZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 872 587 TTTCTTAAAAAGTAATTTATATTATAGTCTACATC ZZOZUXZZZXZOKZUUUOZZUZXUZPPZUZSGOSL chr15.fa 18633952 F 2C32 17 N HWI-EAS88 3 2 1 626 421 TTTTCCGTTATTTTCAGTTTTCTCGCCATATTCCA YSSJYSYYYYYVSSVSVVYYYYOYJYYQYSEQQQE 0:27:96 N HWI-EAS88 3 2 1 881 718 AGAGAACACCTTAGATTTAACCTGTAAAATAATGT ZZZZZZYZZZZYZZZYZZZZZZZYYZZZZZUUUNU chr13.fa 67993272 F 35 0 Y HWI-EAS88 3 2 1 935 683 GGGAGGGTCCCAGCACCTCTGCTTTGTCTTTCATC ZOZZXOOUZZZZOZZZZZZXKZZUXIJZPXOSGGL chr5.fa 33713046 F 33GG 6 Y HWI-EAS88 3 2 1 876 516 GCTCCGTGTCCATGGAAGTGAGGCGAACCTTGGCG ZZZZZZZZZZZZZZZZYZZXZZYZZXXZZVUHSUU NM Y HWI-EAS88 3 2 1 894 213 AGAAAGAGAGAGAGAGAGACAGAGAGAGAGAGAGA ZZZZZZZZUZZZZZZZZZYZZZZZZZZZZZUUUUU 57:255:255 Y HWI-EAS88 3 2 1 884 408 ATCTGATTGGGATCGCCCAGCGTGATGGAACCGTT ZZZZYZZZZUZZZZUZZZZYZZYZZZYSZZUUUUU NM Y HWI-EAS88 3 2 1 904 136 TCACGTCCTAAAGTGTGTATTTCTCATTTTCCGTG ZZZZZZZZZZZZYZZZZZZZZZZZZYZZZZUUKUK 38:53:5 Y HWI-EAS88 3 2 1 625 741 GATGGGGAACCAGGGCTAGCCACTTAGAAAGTCCT ZZZZZZZZUZZYZZZZZZZZZUZZZZZZYZUUUUU chr1.fa 149702895 F 35 67 Y HWI-EAS88 3 2 1 898 295 ATCCTTCTTCCATTTCAACTCAAAGACTCTTTATC EJDLLLLJEJLJLJLLDJLLLJLLLJLJLLLLEEA NM N HWI-EAS88 3 2 1 865 316 GTTTATTTTCAGTAATACAGAGATAGATACGAGCT ZZZYZZZZZZYUZZZZYZUUUUYZYUZZYZHUUUU chr2.fa 56767358 F 35 54 Y HWI-EAS88 3 2 1 771 566 TGCGCATGTGCCGAGGGTGGTTCTTCACTCCATGT ZZZZZZZYYZZZYYZZZZZZWZZZZZXZZZUNUIU 255:255:23 Y HWI-EAS88 3 2 1 908 742 GGGCTTCCATACCTGTGTGGGACAGGGAAGATCTC ZZZZZZZZZZZZZZZZZZZXZZZZSZZZZXAUUUU NM Y HWI-EAS88 3 2 1 958 120 TTAATAAATGACTTGTAGTGCAAGATAGCCTGAAA ZZZZZZZZZZYZZZZZZZZZZZZZZZYXZSUUUUU NM Y HWI-EAS88 3 2 1 863 603 TCTCAATTTATGATGCTATGGAGACTCCTGGCCTA ZZZZZZZZZZZYZZXZZZZSXZSZZZZYZMAUUUQ chr15.fa 85312070 F 35 37 Y HWI-EAS88 3 2 1 487 800 CTTGTTTGCGTGGTCGCGCAGCTTGTCAGCTTATG IOYYIYOYYOJJODSSVYYYOISIJHYDNYCLLOE NM N HWI-EAS88 3 2 1 518 564 GTGAAATATGGCGAGGAAAACTGAAAAAGGTGGAA ZZZZZZZZZZZZZZZZZZZZZZYZZZVZZZUUUSU 35:58:27 Y HWI-EAS88 3 2 1 554 588 GGTGACAAAAATGAAATGCCAGTTGCAGAAATACC ZZZZZZZZZZZZZZYZZZZZYZZZZZXYZRUUUUU chr12.fa 103221030 R 35 64 Y HWI-EAS88 3 2 1 267 692 GTTGCTAGACATGAGGAGAATTGACTGTACCATTG ZZZZZZZZZZZZZZZZZZZZZZZZZZRZSXRLUUH chr9.fa 106765676 F 35 52 Y HWI-EAS88 3 2 1 558 895 GTTGAGAGAGCCTCAGAATGAAGAGGTAGCCCAAC ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUSUS chr4.fa 130772238 F 35 71 Y HWI-EAS88 3 2 1 734 546 TATCTTATGTTCTTCAGTTTTGTTTTGTTTGTTTT ZZZZZZZZZZZZZZZZSZZZZSZZZZSZZZCUUUU chr3.fa 47636170 R 35 45 Y HWI-EAS88 3 2 1 887 407 CATTCTGGAGACTCCAGGCCACTTGGGCCTGGTGC ZZZZZZZZZZZZZZZZZZZZZZZZXYZZZYUUUUU chr15.fa 75579139 R 35 70 Y HWI-EAS88 3 2 1 762 639 TTTCTCTTAGTTGCTTCTTGGATGACATCTGATTG ZZZZZZZZZYZZZZZZZZZSSZZXZZRZZZISUUC chr8.fa 54384871 R 35 50 Y HWI-EAS88 3 2 1 941 698 GTCTTGAGAAACCTCCAACTGACTTCCATATTGGC YYYYYSYJYYYYVYYYVVYYOVYVYVYNNNAOAAL chr2.fa 113979562 R 30G4 23 N HWI-EAS88 3 2 1 740 632 GATTCTACGGGTTGTAGGTTATCATTTATTTGACA ZZZZZZZZYYZUZZZYYUZZZZZZZZZYZZUCUUU chr16.fa 69629017 R 35 49 Y HWI-EAS88 3 2 1 584 522 GTTATCTTTTGCATGTCACTAAGTTTTATTGTGAC ZZZZZZZZZZYZZZYZZZZZZZXZZZZYZZNUNUU chr18.fa 48464092 F 35 63 Y HWI-EAS88 3 2 1 812 961 AAAACAGAGCGGTCTTTGTCAGCTCCACGTTCTTT ZZZZOZZXUZZXZZZZDZOXOZXIXZXHHWOLESS NM N HWI-EAS88 3 2 1 593 536 GTTGAATAACAGACAATTTTATCGGGCCTCTGGAA ZZZZZZZZZZZZZZXZZZZZZZZXXXZZZZUUUSU NM Y HWI-EAS88 3 2 1 929 737 GATCGGAAGAGCTCGGTATGCCGTCTTCTGCTTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZXUUUUU NM Y HWI-EAS88 3 2 1 606 914 GTAGAAGTTGATAACCTCCTTTTAACTGCCTATAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUSUUQ chr15.fa 29761550 R 35 69 Y HWI-EAS88 3 2 1 493 855 ACAAGGTGGCACTGGGGACCAGGTTTCCCACATGT ZZZZZUZZZZZUZZSZZZZUURZUYZZXOZUUQLE chr17.fa 31801893 R 34A 46 Y HWI-EAS88 3 2 1 946 605 TTGGTGGTGAGTTTATGCCGAAGCTGGACGAATGC ZZZZZZZZYZZZZZZZSZZXZZXZZMSYZXUUUHU NM Y HWI-EAS88 3 2 1 876 309 GACGCTCGTTGCCACTGATTGTGCAGCGCCATGGA ZZZZZZZZZZZZZXZZZXZZXZXZXVZVDZQUHNR NM Y HWI-EAS88 3 2 1 181 411 GTATAGTTCTGGCCTTAGGAGTACCCTTCTCTTAC ZZZZZZZZZZZYZZZZZXXZXZZZZZZZZZUUUUU chrX.fa 44412950 R 35 70 Y HWI-EAS88 3 2 1 774 582 TCACACTGTCCATGTTTAGTTTCTGTTTCCATGAT ZZZZZZZZZZZZZYZZZZXZZZZZMZZZZZUUJUU chr17.fa 39100850 R 35 23 Y HWI-EAS88 3 2 1 901 769 GCATTAAGGCACAAAAGGTACTCATCAATGAATAC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 883 541 AAGCCTCCGTAGTCCCCTGGGATTGCTCAGCCTTC OSVJOYJYOYSSJOVJYVJSVVSOJVNYJJOGQLQ NM N HWI-EAS88 3 2 1 485 826 CACAGTACAACACAGCAGGGAGTCAACTCTTTCGA ZZZZZZZZZZZZZZYZYXXZVYZZZYZZZZUUURQ chr2.fa 19952288 R 35 68 Y HWI-EAS88 3 2 1 770 535 TCAAACATCCTCTTTTAGACGCCATTCGGGTTAAA ZZZZZZZZZZZZZZZZZYZZZZZWZZZXYZUUUUU NM Y HWI-EAS88 3 2 1 943 132 GATAGTCATGAAAAAGAAGCTCTGTGTTGCATCCT ZZZZUZZZZUYYZZZZZYSZZYZYZSZZZYUUUCU chr3.fa 125312640 R 35 63 Y HWI-EAS88 3 2 1 924 581 CTCCTTCCTTCATTGAATTGTTTTTGTGCTTTTTT ZZZZZZZZZZZZZZXZZZZSZZZZZSZSYZUUUKU NM Y HWI-EAS88 3 2 1 880 454 GAACGTCTGCTCAGTGCGAGGTGATATCACGGAAA ZZZZUZZZZZZZUZZZZYYYZZUZZYZZTZLHUUU NM Y HWI-EAS88 3 2 1 897 954 GAGGGCTTAAAAAGCCCCACTTTTCAGCGGGGCTT ZZZZZZZZZZZZZZZZZXZZZZZZZYXZYZUUUUU NM Y HWI-EAS88 3 2 1 873 456 AAAAAAAAAAAAAAAATCTTTGCCGGACAATACGT ZZZZZZZYZZZZZZYYXYZZZDZZXSRZYXUNUAU NM Y HWI-EAS88 3 2 1 580 801 GGATTTGGTAGGACATTTTTTATTCTCGCGGTTTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZSZXUUUUU NM Y HWI-EAS88 3 2 1 899 440 GACACGTTCGACCCCAAGCCGATTTTGCGGCGAAT ZZZZZZZZZZZZZZZZSZZZXSZZZZZZYYUUAUU NM Y HWI-EAS88 3 2 1 888 563 GTAGCTCGAGAGGAGACAGAACTCCCCACAAGCAT LLLLJDELLJLLJILLLLDLLLLLLLLJILAELEA NM N HWI-EAS88 3 2 1 915 234 CATCTAGTTTTCTAAAAGAGAAAATATTTTAACCC ZZZZZZZZZZZZZZZZYMZXZZZYZZZZZZUUUUU chr3.fa 60164742 R 35 59 Y HWI-EAS88 3 2 1 498 831 CAGAAAGGAAGGCTCTTCAGTAACACTTGACAAGG ZZZZZZZZZZZZZZZZZZZYZZYZXZZZZXUURUU chr8.fa 37741103 R 35 70 Y HWI-EAS88 3 2 1 751 596 GCATGACGACGCAATGCAAACGGATCGCGGTCGCC ZZZZZZZZZZZZZZZZZYYZZZZZZZXZVZUUUUU NM Y HWI-EAS88 3 2 1 760 519 GGCAAAACCGGCTGATACGCCTTTACCAAATCCTT ZZZZZZZZZZZZZZYZZZZZZZZZZZZVVYUUUUU NM Y HWI-EAS88 3 2 1 464 866 ACTCAAGCTGGAAACGTCTTTCTCTTTAGAAATAA ZZZUZYZZZUYUZZRSZZZZZYZZZZZZSIUUUUU chr19.fa 36085820 F 35 50 Y HWI-EAS88 3 2 1 875 627 CTTTGGACCTAAATGTTTTTTTTTTAAACACAAAT ZZZZYZZZZZZZZZZZZZZZZZZZZXXYXZUUNNU NM Y HWI-EAS88 3 2 1 475 904 CAAAGAAAAGTCATTTGCTATCTCGTGCTTCTCCT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU chr4.fa 83715498 F 35 71 Y HWI-EAS88 3 2 1 883 194 CTGCTAGAATTATTGACCCAGCAATTGGAGTTTCA YYYYSVOJYYYYYYVYYVYSYYYYYYYDYVCQQQQ chr1.fa 24618553 F 30C4 2 N HWI-EAS88 3 2 1 808 312 GGCGTCCTCTGCATTCAGCGCCCCCCTCTTCCCCT JELLJLJLLLJLLLJLLLLJIIIDIIJLLLLALLA NM N HWI-EAS88 3 2 1 553 954 GAGTAGTTTTGGAGGCGGATGGGGTGCTTGTTGGT LLLJLJJLLLDDILDILILLILLDILLLLLLLEEL NM N HWI-EAS88 3 2 1 609 906 GAACTTAAACGGTTCGTGGTTATTTTCAGTGTTGA LDJLLLLLLLLLIJILJLLLILLLDLHHILCLLLL NM N HWI-EAS88 3 2 1 912 645 GAAGTTCTCCCCGCGTGGAGGCTGCCGAGGAGGAC ZZZZZZZZZZZZZZZZYZZZZZZZYZZYMZUUUUU chr1.fa 74708623 R 35 59 Y HWI-EAS88 3 2 1 839 225 TATTTTTCAAGTCGTCAAGTGGAAGTTTCTCATTT ZZZZZZZZZZUZZSZZZZYZYUZYLZZZSZULUUU 0:0:21 Y HWI-EAS88 3 2 1 901 310 GTATCCACCGATAAAATGTCTCATCTATTTCTTCT ZZZZZZZZZZZZZZZZZSZZZZZZZZYZZZUUUUU NM Y HWI-EAS88 3 2 1 887 347 GACCCGCTCGCCGACCGGCGCCTGGTGCAGGAAGC ZZZZZZZZZZZZZZZZZZZZZZYYZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 799 533 TAAAAGTTTTAGTTCAGTGCTGAAGTTTTCTCTGA ZZZZYZZZZZZZZZZZZZYZZYWZYZZZZZUUUNQ chr3.fa 51592441 F 35 69 Y HWI-EAS88 3 2 1 933 727 GGCTGTCACTGGCGCCAGGCTTTGGGCTAAGTGCT ZZZZXZZXZZOZZZUZUUXZZZDXZZXZDZSSLOS chr10.fa 20909735 R 22G12 18 N HWI-EAS88 3 2 1 817 123 GTGTGAGTTTTTCGACAAGGAAATGATAATTTATA ZZZZZZZZZZZZZYZYWYZYWYYZZZZSYDUUUUU NM Y HWI-EAS88 3 2 1 754 375 GGTATTTTAAGACAAGATTTGTATCGTTTACTACT ZZZZXOXZOXXZIIUDUZZZJIOXUPDHHNSAEES NM Y HWI-EAS88 3 2 1 770 116 GAAAATATGCTTTCAGCAATCTACTTTTGCCTCAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 780 592 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZWYZZZZZSZUURAU NM Y HWI-EAS88 3 2 1 932 359 GCCCATCACCATCATGGTAGGGAGTGTGGCAGTGC ZZZZZZZZZZZZZZYZZZZYYZKZYZZSYZQUUQH chr10.fa 66179060 F 34A 38 Y HWI-EAS88 3 2 1 726 791 GTCTATCGGTTTGGCTGAATATTGCGCAAAATGAC ZZZZZZOZZZZZUZZZZZZZZZZJZXZZXZSSLSS NM Y HWI-EAS88 3 2 1 949 393 ACAGAAAGAATTTAGTTAGTCTCATGACTTGTTCA LDLLLLLLLLJLLJLLLLLLLLLLLLLILLLEAEL NM N HWI-EAS88 3 2 1 749 524 TAATTAAGATAATCAAAATACATAGATGTAACATT ZZZZZZYZZZYZZZZZZZZZZZZZRZZVXZQUUUU chr6.fa 3662658 R 35 60 Y HWI-EAS88 3 2 1 728 769 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZXZXOOXZUXZXXXXUXZOZUUOXZUXZXZSSALS NM N HWI-EAS88 3 2 1 501 429 GTATAAATTCATATCAGGAACTTTAGGCTTTTATA ZZZZZZZZZZZZZZZZYYYXZZZZYXXZZZUULUU NM Y HWI-EAS88 3 2 1 898 163 GCGCGGTGGTCGTCGTCATCAGTCAGGACATCGAC ZZZZZZZZZZZZXZYYZZZZYZYXSZZVYYUOUAU NM Y HWI-EAS88 3 2 1 960 843 TGCTTCCTGCTAAATCCCAAGTCAAGGTGAATTCA YYJYYSYYYSYYYYYVVSYVVJYYSYYYYYGQQQE NM N HWI-EAS88 3 2 1 670 913 GGTCGCTATGGCCCCGAACCGGCGGTGAGCCCATT LLDDDLEELJJLDIDJLIIDDLDLJLLIIDAALLL NM N HWI-EAS88 3 2 1 934 738 ATTCTGTTGGTTCGATCATTAATGTTCCTGCTACT ZZZZZUYZZYZUZMYZZUZZZUZSZYYJZJUUUUU NM Y HWI-EAS88 3 2 1 804 366 GCTCACTGCAGCCTCCACCTCCCGTGTTCAAGTGA ZZZZZZZZZZZZZZZZZZZYZZZZYYZZZZNUUUH NM Y HWI-EAS88 3 2 1 818 738 GTATTGGAGTTTCAGTTTCAGTCTTTCCAATGAAT ZZZZZZZZZZZZZZYZZZZYXZZZZZYZVXUQSUU NM Y HWI-EAS88 3 2 1 895 476 CTGGAATGGAGCCTACAGGCCGCGTCACTTTGGTG ZXZUZZZZZXOZZOXZZUZZUZODKXZZZDSLLGG chr15.fa 80169658 F 22G10A1 0 Y HWI-EAS88 3 2 1 881 966 GAATAGAGTGATTTGTCTCCTTTCTCCGGATTCTG OJOSOOSSOOJOSYDJYSDOOOSJVVNDNJGLOLL NM N HWI-EAS88 3 2 1 708 110 TTGAGCACATTATAAGTTCAAATTGATCCTTAATA YYYYJYYYYYYVYYYYYYYYYVYYOYYVYYQQOQQ chr2.fa 138987639 F 35 46 N HWI-EAS88 3 2 1 639 497 TTTGGTTGAGAGACTTTTAATGACTGCTTTTATTT ZZZZYZZYZYZUXXZZZZXRZISXZOTXUXUASUU chr18.fa 42662167 F 35 0 Y HWI-EAS88 3 2 1 549 884 GATGGCCTATGAGGGAGGGCATTTGTGGTCTTGAT LDLDIDDLJLLLLLLLJLILIDDLLDHIHLLLLLL NM N HWI-EAS88 3 2 1 905 684 GGCTTTGCGGCACACGTACCACGGCTTTCACCCGG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUAU NM Y HWI-EAS88 3 2 1 917 483 GGGAATGGTTTAAAAAAGCAACCAATGTTACTTCC LLLLDLLELLLLLLLLLELJDELJDLJLLLLLALE NM N HWI-EAS88 3 2 1 809 626 TTCCCATTTTATAGGCAAGCAAACTCACCTCTATT LLJLLDIJLJLLLILLLDAFLLLIIALLLHLLELA NM N HWI-EAS88 3 2 1 843 636 GCCAGATATTATTACGGATGGCTGTGCTTCACCAC YJYOOVYOSVIJYSYOIYOIISVDYHQHDHELQLG NM N HWI-EAS88 3 2 1 890 665 AAGAATTGATGAAGAAGAGTTTGGTTTTTGTGAAA ZZZZZZZZZZZZZZZZZZZZZZZXZZZZZSUQUUU NM Y HWI-EAS88 3 2 1 823 514 GGAATGCCGCACAGCGTTACACATTCGGCACCCAT LLLLDLJLLLLLLLLDLLLDIILLJLLLLLLLLAL NM N HWI-EAS88 3 2 1 487 971 AACGAAAACAAACCTACAGATATGGCGCATGTGCT LJLJLJLLIDLLDLILDDLILLLIILLDLLLLLEL NM N HWI-EAS88 3 2 1 942 392 TACAAACTCGCTAGGTGATGCTGGTGTAAATCCTG ZZZZZZZZZYZZZXXZXZZSZZZSZSZZZZUUUUI NM Y HWI-EAS88 3 2 1 477 816 AATCCAAGAACACATTAAAGCAATCATCCATCCTG ZZZZZZZZZZZZZZZZZZYZZZWZZZZZXYUUUUS 255:255:255 Y HWI-EAS88 3 2 1 463 778 CATAATTACAGAGGCAGAATGTGAGGAAATCAGAA ZZZYZZZZZZZUZZZZZSZUKYUUUUOZZUULUUU chr8.fa 29668485 F 35 42 Y HWI-EAS88 3 2 1 960 516 ACTGTAGGACGTGACATATCCCAAGTCAACTTAAA YYYJYYJJYYVOOOYSVDYIISDOODDJNVQLAOQ NM N HWI-EAS88 3 2 1 836 247 TTAAGCACAGCCTTTGCTAAGATGAGCTGTTCCTG ZZZZYZZZZZZZZZZZZZZYZZZYZZZZXYUUUUU chr3.fa 87584520 F 35 70 Y HWI-EAS88 3 2 1 899 408 CTTCCTAGTCAGCAGACTCAGGCCGCTTACCCAAA ZZZZZZZZZZZZZZZZZZZZXYZZXZZZXZUUUUU NM Y HWI-EAS88 3 2 1 796 618 GTGGCTCCAGCCAGCTTGAGAATTTTGCAAGACTG ZZZZZZZZZZZZZZZZZZZZZZZZZZSZYVNUUUJ NM Y HWI-EAS88 3 2 1 808 373 TCACCCAGGCTGGGGTGCAATGGCACCCTGTCGGC ELLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 879 219 CTAGGCTCAAAAGAGTCCTGTGTCAGCCTCCCAGA ZZZZZZZZZZZZZZZZZZZZZYZZZYZZZZUUUQQ chr1.fa 158268793 F 35 71 Y HWI-EAS88 3 2 1 717 544 TATCGTTTATGGAAGAAAATAATCTAGTTGGTTAA ZZZZYZZZZZZUZZZZYZZZYZZZZUJZYULUUUU chr19.fa 51334036 R 35 47 Y HWI-EAS88 3 2 1 895 734 AGAATTACTTTTAACACTGATATCTTTTCTATGTT LELLDLLJLEJELLLLJLJJLLLJLLJELLLLELL NM N HWI-EAS88 3 2 1 943 590 GTGAACACCCGGATCGGGTTTCGCGCGCCGCCGCC LDLLJLLLLLLLLLLJLLLLLLLLDLLLLLLLLLL NM N HWI-EAS88 3 2 1 949 490 CAGAAGTCAAACTAGAATGATAGATGAATGCAAAT ZZZZZUZXZOZZZZXZXZUZUZOZZUXZZPLOSOS chr2.fa 171277714 F 30G4 29 Y HWI-EAS88 3 2 1 769 583 GACAGCAAGCATTAGGCTCATCAGGAAATAGGAAG VYYYYYYSOYJYYYOOYYVSYYVSSLLVHYCQELQ chr5.fa 73876390 F 35 25 N HWI-EAS88 3 2 1 937 794 TGTGTTTTATTTTTTTTTATTCTTCTCTCATTTAC YVVSSJSOIOOSDSSOOSOJOOCOSJDNDHLCLEE NM N HWI-EAS88 3 2 1 880 934 GTCGTTGAGTCCTGGTTTTTCTGGATTGTGAGATC ZZZZZZZZZZZZZZZZZZZZZZXZYZZXZYUUUUU NM Y HWI-EAS88 3 2 1 905 689 CTTTCAAATATCCCTAAGTCCTCTGAAATGCTTTA ZZZZZZZZZZZZZZZZZDXZXZZZMSXYZKUUCUU chr6.fa 8290349 R 10G21G2 0 Y HWI-EAS88 3 2 1 944 536 CTGCAACTAAAAATTCTACATATACTGTTTATAGC ELLLLLLLJELJLLJLLLLJLLLLEJLLLJELELE NM N HWI-EAS88 3 2 1 973 661 TACACCCAGGTGGCAGGTTCTTAATATTTACCTCA LLJLLLLLELLLLLLLLLLLLLLLLLLLLLLLLEL chr8.fa 71749770 F 35 31 N HWI-EAS88 3 2 1 487 906 CAATCATCTCTAAGCGCCTAAGAGTAGGTGGATAG ZZZZXZZZZOZZUUUZXZZZZIXOUZUXDIGOGLS chr5.fa 102691430 F 32C2 12 Y HWI-EAS88 3 2 1 241 121 GCCTAGTCAGCATGAGGTGGCAAGGGAAAGTCCCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr8.fa 75206122 R 35 72 Y HWI-EAS88 3 2 1 812 513 TATAGTCACATGCTATCCTCTAAGTATAGAAGGCG ZZZZUZZZZZZZZZYZZZZZZYIUZUZUYUUUUUU chr13.fa 55648320 F 35 55 Y HWI-EAS88 3 2 1 935 768 CACTGTTGGTGGGAATGTAAATTAGTACAGCTATT ZZZZZZZZZZYYZZZZZZZZZZZZXZZZZXUUUUU NM Y HWI-EAS88 3 2 1 955 128 GGAATACCACACAGAAAAAAAGAGAAAGAGACAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 780 122 GTTCGACCCGCCAGGCCAGCCCTTGACGTTGGGCG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU NM Y HWI-EAS88 3 2 1 949 519 CATCTTCAGTTCCTTTCAGGGCAAAAGTGCCAAGC ZZZZZZZZZZZZZZZZZYZXXZYZZZYYSZUUUUU NM Y HWI-EAS88 3 2 1 823 511 GCCCACTCCGGTTCCTACTGACGCAGTCACTCATC EELLDLDIILLLLLLJIJILDLLILDLJDLCLLEL NM N HWI-EAS88 3 2 1 784 930 TCCACTCGAGATAGACCGCTTATTGGTTGTAAAGT LLLLLJDDDDLJDLIJILIJLLLDLHLLLILELLL NM N HWI-EAS88 3 2 1 692 182 GGGAAATTTTTATTGTGACTAATTTGTAAAATTAT ZZZZZZZZZZZZZZYZZZZZZZZZZXZYZVUUUUU chr1.fa 146202664 F 17C17 37 Y HWI-EAS88 3 2 1 725 880 GATAATAATTCTTCAGAAAAAGGCTCTGATAACTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 824 226 GTTTGCGTAGACATTCACTTTGTAATATATCATCA ZZZZUZZZZUZZZZZZXZZZZYZYZZUZQZUUUUQ chr3.fa 127685258 R 35 63 Y HWI-EAS88 3 2 1 879 277 ATCAAAATTCCAACTCAATTCTTCAACGAATTGGA ZZZZZZZZZZZZZZZZZXZZZZZZYZZXYVUUJHU 255:255:255 Y HWI-EAS88 3 2 1 920 602 ACGTGGCAACCGACGGGCGTATCGTCAGGCTGAAA ZZZZZZZZZZZZZZZZZZZZYZZZZZZXZYUUUHU NM Y HWI-EAS88 3 2 1 718 237 TTTGGAGATACAGCATGCTCGTTGTTTCGAAGATG LLLLLLLDILDILDDLDDLLDJLLDLLIDLLLELE NM N HWI-EAS88 3 2 1 940 56 TCTTTAATCTGTGTGTCCCTCTTCAGGGTGGGGCT ZZZZZZZZZZZZZZXZZZZZZZZZZYSSZXUUQUU chr9.fa 13807046 R 35 63 Y HWI-EAS88 3 2 1 912 143 TTGCTTTCGATGGATTCCATCGCTACGACAAGGGA ZZZZZZZZZZZUZZZZZZZZZZUZZYSYZYUUUUL NM Y HWI-EAS88 3 2 1 719 581 TAACCCAAAAATATGGCTGGCCTATTCCCCAATGG ZZZZYYYZYZYZZXSYZXSKKZDISZSXJICHNAH NM Y HWI-EAS88 3 2 1 901 712 GTGACGCGGCTCGGCGTCGAGGTCATCGTCAATGA ZZZZZZZZZZZZZZZZYZYZZZYZZZZMZYNUUUU NM Y HWI-EAS88 3 2 1 752 276 TGTGTTTCGCAAATTGTATCTTATATCTTTGGTAT LLLLLLLLILLDLLLLLDLLLLLLLLLLLIAELEL 0:255:255 N HWI-EAS88 3 2 1 496 806 ACAAACCTAGAAGAAGATAGTTACAAGTTTTGTTC LILJLLIDJELLDDDLDILLIDLLLLLLHLLLELL NM N HWI-EAS88 3 2 1 913 301 GGCGCGGTCAGAAAATTTATTACAGAACGCGGGCT ZZZZZZZZZZZZZZZZZZZZZXZZXZZZXZUUUUU NM Y HWI-EAS88 3 2 1 884 563 GTGAATTCAGGGACGATCTGCGGGGGCAATACTGC LDLLLLLLLLLLLLEJLLLJLLLJLLLLLLLELEL NM N HWI-EAS88 3 2 1 943 151 TGAAAACCGACGAGGGTGACGCGAAACAGTGCGGA ZZZZZZZZZZZZZZZZYZZZZZZZZZZZZZQUUUU NM Y HWI-EAS88 3 2 1 750 574 TCCCCAGGCAGAGACCCCACCGGGCTCGCTCACCA ZZZZZUZZZZYZZYZZZZUZZZJZZZZZOZUUUUQ NM Y HWI-EAS88 3 2 1 907 724 GCGGTAGACGGCGCGGCCGCTGCCGTCGGGGCGGG ZZZZZZZZZYZZYZYZXZSXSXXZDDXJXZUCNUU NM Y HWI-EAS88 3 2 1 880 902 ACTTGGTCTGACAGTTACCAATGCTTAATCAGTGA ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUQUQU NM Y HWI-EAS88 3 2 1 876 483 GACCCTAATCCCTCCCACCCCACTTACTTTTTTAA EJJJLDLLJJLJLLLILLDLLJIDJDLLLDLLLLL NM N HWI-EAS88 3 2 1 780 497 GACAATGAGACAATGGATATCCATAGAAATCCTCA ZZZZZZZZZZZZYZZZZZZZZZZZZYZZYYUUUUN NM Y HWI-EAS88 3 2 1 936 760 CTGCACACACCTGTGACATTGCCTCTGCCTGCACA ZZZZZZZZZZZZZZZZZZZZXZZZZZYZZZUUUUU chr6.fa 136799707 R 18C16 3 Y HWI-EAS88 3 2 1 651 642 GTTTATCCACAAACATGTTTCTGTAGAGAGTATTT ZZZUZZZZOZZZZZZZDZZZZDUDZXUXQPSLGGS NM Y HWI-EAS88 3 2 1 909 641 GTCGAAGTCCTGCCACGAGGTGCGCCCGGCGGTGA ZZZZZZZZZZZYZZZZZZZZZZZZZZZZXZUUIUN NM Y HWI-EAS88 3 2 1 818 718 TTGATCTTTGTTTGATACACACCAGGGAGCCATTT ZZZZZZZZZZZZZYZZZZZZZZZYYZYXXZUNUUU chr10.fa 68687231 R 35 63 Y HWI-EAS88 3 2 1 891 562 GGGCAGGTGCTGCTCCAAGAAGAGACGCCATGAGT ZZYZZZZZZZZZZZZZZZZZZZZYZZZZZYUUUUU chr11.fa 3709268 F 35 71 Y HWI-EAS88 3 2 1 944 818 GGGGAACTCGATCGCAAATAAAATGCAGATCGCGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 918 102 TGGGCTGGCTGGGACGTCTCCCCGGGCTGCCCGGG LJJJIDJLDLLLEJDLJDLLLLLLEDLLJLLCLLC NM N HWI-EAS88 3 2 1 928 463 ATACCCTTGTAAAATCTCCTTATCAGGCAACCTAT ZZZZZZZZZZZZZZZZZZZZZZZZZXMZZZUUUUU NM Y HWI-EAS88 3 2 1 856 541 AAAATTGACCCTTGGCAACAGTGGACTCTTTTTTT ZZZZZZOXZZZZZZOZZZZUXZKUZZZZZZSSSSG NM N HWI-EAS88 3 2 1 904 608 TCTATGAAGTGCGATGTTCGGTATCGCTTTTACCG ZZZZZZZZZZZZZZZXZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 764 666 TTTCACCAAAACCCATTATACAAACAATGGGAGTA ZZZZYZZZZYZZZZZZWRZIZZIYZXVZVRHLHLU NM Y HWI-EAS88 3 2 1 703 835 GCGGTTGAGGCTCGCGTTGTCAATGTTTTCCCGCC ZZZZZZZZZYZZZZYXXZKZWVYZKYZKYOASNUE NM Y HWI-EAS88 3 2 1 889 540 TCCCAGTCCTACAGTGTACATTTATTATTTTCCAT LLLLDLLLLLLLLLLLLLLLLLLILLLLLLLLLLL NM N HWI-EAS88 3 2 1 827 250 TCCATGTATCAGGCTTCACTTCCTTTACCAAGAAC ZZZZZZZZZZZYYZZZZYZZZZZZZZSZZYUIUNU chr15.fa 52075675 F 35 53 Y HWI-EAS88 3 2 1 648 727 TCAAATTGCTGTAGCATTATTTGCAGGTTCTTTAT ZZZZZZZZZZUZYMZSZZZZUSYYZZUZZZUUUGU NM Y HWI-EAS88 3 2 1 892 61 GTAATAGACATAATGCATTTACAACTCCAGACATT ZZZZZZZZYZZZZZXZZZZZZZZZXZZYZMUUUUU NM Y HWI-EAS88 3 2 1 837 92 GTCTCTCACTGACTCTGGAGCTATGAGGATGGCCA ZZYZZZYZYYZYZZZZZSWXZZYZSSYSKZIAUUU chr2.fa 10066105 F 35 25 Y HWI-EAS88 3 2 1 907 739 ACCGGAAAGCTCGCGAATTCCTTCATTTCAGCCAG ZZZZZZZZZZZZZZZYZZZZZZZSZZZZSYUUUUU NM Y HWI-EAS88 3 2 1 806 654 TTAAATAATCGTGTAAATTGTTGAGTAGTTGATTT ZZZZZZZZZZYZYZZZZZZYZZXYSZZEZZNUUUU NM Y HWI-EAS88 3 2 1 786 829 GAGTTGAGTTCATGGTTGTCAATACCTGTGACATC ZZZZZZZZZZZZZZXZZZZYZZZZYZZDZKQUJUN NM Y HWI-EAS88 3 2 1 897 513 GATCGGAAGAGCTCGTATGCCGTCTTCTTCTTCGA ZZZZYZZZZZZZZZZZYZYZZXZZZYZZDZUUACU NM Y HWI-EAS88 3 2 1 474 877 AGCTTCGCTTTTACTTTTTCTGCATTTGGCAACAT ZZZZZZZZZZZZZZZZZZZZZYZZZZZYSZUUUUU NM Y HWI-EAS88 3 2 1 898 656 TCCCTGGCCCCACCAGACACATCTCAACTCTTCCA LLLLLJLLLLDLLLLJJJLLLADLLLLLDJLLLLE NM N HWI-EAS88 3 2 1 896 209 GATGTATTAACCAGAAGTAATGATATTTACCTTCA ZZZZZZZZZZZZZZZZZXZZZZXZZZZZZZUUUUA NM Y HWI-EAS88 3 2 1 894 557 GTTGGCGTTCACCCCCACAGGGCCGATAAAGCCAG ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 605 672 GTCATTTTTCCAGTCGTCAAGTGGATGTTTCTCAT ZZZZZZZZZZZZZZZZZZZXSZYZZZYZZZUUURU 0:15:53 Y HWI-EAS88 3 2 1 947 38 TCTAGCGTTCCCTACCCATACAGTAATTTTTCATT ZZZZZZZZZZZZZZZZZZZZZZYZZYZZZZUUUUU 73:52:8 Y HWI-EAS88 3 2 1 953 408 CGCCTTTAATCCCATTTCCTAGCCCTCACTTTTTC YJSYSSSYYOYYSJSSEYYYOIIOVNDVVNGGLOO NM N HWI-EAS88 3 2 1 739 111 GTATTGCACTGCATATATCCCCATAATGTCCTTTT ZZZZZZZZZZZZZZZZZZZZZZZZRZZZZZUUUUU chr1.fa 89453069 F 35 64 Y HWI-EAS88 3 2 1 922 737 TTTACGGGAAACAGCAAATAAAAAAATTAAAAAAC YYYYYJVIJIIYYSSSVYSVOOVYIDHSHVLQOLL NM N HWI-EAS88 3 2 1 536 902 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA ZZZZZZZZZZZYZZZZZZZZZZYZZZZZXZUUHNS NM Y HWI-EAS88 3 2 1 764 946 TGAATATATTTTTAACCATTTAATCTTCCAGTCCA ZZZZZZZZZZZZZZZZZZZZZZYZZZZZYYKUUUU chr10.fa 126572071 R 35 61 Y HWI-EAS88 3 2 1 798 278 GATTTTCTAGCCCTACTGTTGGAGTAATGTCACAG ZZZZZZZZZOZZZZXZZZZZUUOXZUXZUDSLSSL NM Y HWI-EAS88 3 2 1 672 837 GTAATATACATAGCTCGCTAGTCTAAGAGAATTTA LLLLLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 761 272 TATGTTTAAACCCATAGTTTCTAAGTTTTTTTATA ZZZZZZZZZZZZZYZYZZZZZZZYZZZZZZUUQUU NM Y HWI-EAS88 3 2 1 790 916 TCCCTCTTCCTCTGTCCCCAAGTCTACTCACAAAC ZZZZZOXZZZZZZXZXUXZXXZZZZZZZZZOGSLS NM Y HWI-EAS88 3 2 1 934 735 GTCAGCCATGCCCTGGGACAGATCGCCGAACTCTG ZZZZUZZZZZZZZZZYUZUZUZZZUZZYUZUUUUL NM Y HWI-EAS88 3 2 1 800 107 ATTTAAAAACATTTCTCATGATGATGGTAGAGGAC ZZZUZZZZZZZZZZZZZZZYZZZZZZZZZUULUSU 129:255:255 Y HWI-EAS88 3 2 1 801 361 TTGCCGACGTTCTTCGCGACGACGCCGGGCACGGC ZZZZZZZZZZZZZZZYZYZZXZZXZZYVVZRUJUU NM Y HWI-EAS88 3 2 1 538 257 GGGCATGCCTGGCCATGTTTTTTTGTGTTTTTTCC LLLJLLJJEEJILLLJDLEJJJILLJDJLLLLLEE NM N HWI-EAS88 3 2 1 760 882 GAGCCTTTAGGACCTCCTAAAGGTAGGCTACTTTC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 916 513 TCCCAGCTCCACCATTTCACTGCCTTGGAACCGCT ZZZZZZZZZZYZZZZZZZZZZXZZZZXZYZUUUUU NM Y HWI-EAS88 3 2 1 497 885 CGTGAGCAATCGCCATTATAAGATGGCGCTGGCTT ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUSUU 159:255:238 Y HWI-EAS88 3 2 1 905 189 GATCCTGGGCGACGAAAGCCAGACGCCGCTCAAAC ZZZZZZZZZZZZZZYZYZZZYZZZZZZXZZUUCRU NM Y HWI-EAS88 3 2 1 883 791 GACATGGCGCTTGCCGCGCTGGAAGCTGAGCCAGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZSXYUUUQU NM Y HWI-EAS88 3 2 1 769 373 TTCAAGTCGTCACGTGGATGTTTCTCATTTTCCAT ZZZZZUUZYUZZZRUZURYIXYYYUZXTXULUSES 0:25:45 Y HWI-EAS88 3 2 1 854 666 GACCCAGGACAGCAGAACACTTCTAAAAGTGCCAA ZZZZZZZZZZZZZZZZZZZZZZZZZZYZYZUUUUU chr10.fa 74433775 R 35 71 Y HWI-EAS88 3 2 1 706 643 GACAGTTGATCAGTGTATACAGAAATGAGCCCCTT ZZZZZZZZZZZZZZZZZZYZZZZZYZXZVZUUUUU chr15.fa 88716091 R 35 68 Y HWI-EAS88 3 2 1 921 733 GTCCAGCGCCAATACGCCCACCGGGTAGGCGGCCT ZZZZZZZZZZZZZZZZZZZZZZXYZZZYYZQUUUU NM Y HWI-EAS88 3 2 1 950 253 AGGGAGGAAGGGAAGAGACAGACAGATAGATAGAT ZZZZZZZZZZZYZZZZZZZZZZZYZZZYZXUUUUU chr4.fa 123122781 F 35 70 Y HWI-EAS88 3 2 1 755 219 GCTAATTTATTTTGTATTTTTATTAGAGATGTGGT ZUZOZUUXOZUOOMZOUUUZUOUUZIUJJPGCLCS NM N HWI-EAS88 3 2 1 899 792 GTGCGCTGGAATCGAAAGGCGGGATTATGCGGTGC ZZZZZZZZZZZZZZZZZZZZZZZYZZYZXZUUUUU NM Y HWI-EAS88 3 2 1 896 880 TCCTGGGCAGACTGCGGGCTCGCAGGAAACCGAAG ZZZZZZZZZZZZZZZZZZZZZZZZZYXZSZUUOQU NM Y HWI-EAS88 3 2 1 601 710 GCTCCCTCAAAGACTAGGACTCCATGTTTCTAATA ZZZZZZZZZZZZZZZZZZXZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 833 532 TTTCCATGCTGTTTCTTTCTATGTTCTGCTTTCTC ZZZZZZZZZZYZZZZZZZZZZZZZZZZXZZUUUUU chr5.fa 71088116 F 35 70 Y HWI-EAS88 3 2 1 888 593 GTGGAAAGTCGTAATGAAGCTGGGCGTGTCGTGCG ZZZZZZZZZZZZZZZZZZYZZZXZZYXMZZCUUUJ NM Y HWI-EAS88 3 2 1 804 341 TTTCCATGATTTTCAGATTTCTTGCCATATTCCAC OJOYSVYYYOYOSYYVVYYYVYSSYYVYYYQQQLQ 0:64:99 N HWI-EAS88 3 2 1 217 935 GCAGGGTATGGCACCTTTTTTGTTAACTTCGGGAA YYYVOYYJOVYYYJJYYDYYYVYVYYVYVQLLALO NM N HWI-EAS88 3 2 1 883 658 TTTTACTCCTCTTATTATTTCTTCTATTCAAACAT OOYOVSOJJOSOYDJYYJYYSYVSVNYVDYOLQAC NM N HWI-EAS88 3 2 1 480 838 AGGCTTCAGCCCAGGGTAACCCAGGGACAGTCATC ZYZZZZYZZZZZZZZZSZWZZZYXXYOVXXUUNUS chr10.fa 70337282 R 35 59 Y HWI-EAS88 3 2 1 176 487 GAAAATAAGGATTTTCTATATGTTACACAAATATG YYYYYYYVVIYVSYYYYYYYVOVYYYYYYYQQQQO NM N HWI-EAS88 3 2 1 899 622 CCCCACCGGCACACCGCACAGAGCAACTATCCTAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 760 584 TGCGTACACTGCACTACACCAAACACAGGAGATGT ZZZZZZZZZZZZYZZZZYZZZYXZXZYZZVUNUUU chr12.fa 110701291 R 35 61 Y HWI-EAS88 3 2 1 376 105 GTAATGATGTAATAGATTTGACTTAAGCATTAATA ZUXZXZZXZOZXZZXOXZZUZZZUXXXUXUSOSSS chr7.fa 104621960 R 35 49 Y HWI-EAS88 3 2 1 841 588 TTATGCCTGTGTACCACAAGAGTACGGTGTCCATG ZZZZYZZZUZZZZZZZZZUUYRYZZYUZUZUUQUL chr8.fa 96821653 F 35 64 Y HWI-EAS88 3 2 1 779 815 GGCAAGGCCAGAAAGGAGGCAACACATTTCAGTCT ZZZZZZZZZOZZZZZZZZZZZZZZZZZZZZSSSSS chr4.fa 58495865 R 27C7 26 Y HWI-EAS88 3 2 1 506 585 GTTTTTCAAGACAGGGTTTCTCTGTATAGCTCAGG ZZZZZZZZZZZZZZZZZZZZZZZXZZZZSZUUUUU 171:255:255 Y HWI-EAS88 3 2 1 836 298 TTTCCAAGAGCTTAAATACGGGGGTATTTTTTGTC ZZZZZZZZZYZZZZXZZZZXZZYZYRZZZZUUIUU NM Y HWI-EAS88 3 2 1 694 924 TCTTTGTGAGTCCACACACAGTGATTCCTCTCTCC LDLELJJLLJLLLLLLLLLJLLLILLLLLLLELLL 99:45:3 N HWI-EAS88 3 2 1 927 718 TTTCCTTGAATGAAGTAATCTCTCTCCCTCTCTGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 236 887 GAAGAGACCTTGTATCTCCAGTGCTTAGAATAAAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 868 109 TAAAACAAAACAAAATATAGAAGAAATAAGGCTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr14.fa 67188487 R 35 72 Y HWI-EAS88 3 2 1 880 502 AACGGCGGGCCGCCCCCCGCCCCCCCCGCCCCCAC LLLLLLLLLLAILLIILLDLILLILHLAHDLEAEL NM N HWI-EAS88 3 2 1 755 762 GCCCTAAAACTTCAGGTTCCTGTGACATGCAGCTT ZXZXXZZUOZOZZUOJJJZZZJOUOZZUPZEGSLS NM Y HWI-EAS88 3 2 1 804 303 TCTCTCTTGTTCAACAGCACTTGCTACATCGTCGC ZZZZZZZZZZZZZYZZZZXZZZZZZYZYZZUUUQU chr13.fa 24829231 F 35 70 Y HWI-EAS88 3 2 1 906 305 AGTGGATGCGTATGGAGCGTTTAACCTAGGTGCCC ZZZZOZZZUUOZZOXKXZLOZZZUKUZPJPSGLLG NM Y HWI-EAS88 3 2 1 750 178 TTTAGGAGTTAAGAAATTATCAGAATCAGTATTTC ZZZZUYZZUZZZZZZRZYUUZSYYSYTTOOEUSEU chr7.fa 131895428 R 33G1 29 Y HWI-EAS88 3 2 1 813 654 TAGAAGTGTAAGCTGAATAAACCCTTTCTTCCCTA ZZZZZZZZZZZZZZYZZZYZZZZZZZZZZZUUUUN chr4.fa 149057112 R 35 4 Y HWI-EAS88 3 2 1 918 141 GCACGTGGCCAGCGTCACAACTAAAGCGCATTACA ZZZZZZZZZZZYZZZZZZZYZZZZZXZYYZUUUUU chr4.fa 128216332 R 35 70 Y HWI-EAS88 3 2 1 768 355 TACCACCAAAATGTGTGATCCGCAGAGCCTCGTGC OZZZZZZZXZZZZXUUUZZZZUZZURZRZPAGLOC chr13.fa 55384859 F 27A2G3T 0 Y HWI-EAS88 3 2 1 872 573 TAAAGCCACAGGAAGACTAAGATCGGACCTTTCCT VSYVIYSYJYYJYYOYYVYOSYSYONDYYNQQQQQ chr4.fa 95496480 F 8G26 12 N HWI-EAS88 3 2 1 700 743 GTTGTTCACTTGCTTGGCCTTTTCCAACACCACCC ZZZZZZZZZZZZZZZYXZZZZZZZZZVZZZUUUUU chr1.fa 80588256 R 35 68 Y HWI-EAS88 3 2 1 678 894 GGAAACCCTGAAGGAGAGTGGGAGGGAGAGGATTG ZZZZZZZZZZZZZZZZXZZZZZZZZZVZXZUQUUU chr19.fa 38487571 R 35 64 Y HWI-EAS88 3 2 1 647 180 TGTTGCTATATTAATTGTCAAAAGATGTAAGTATT ZZZZZZZZZZZZZZZZYZZZZZZXZZXZZYQUUUU NM Y HWI-EAS88 3 2 1 548 733 GAAAAAGAAATAGAAAATAAAAGTTCTAAAGCTAG ZZZZZZZZZZZZZZZZYZZZZZZZZZZZZZUUURU chr3.fa 124650102 R 35 71 Y HWI-EAS88 3 2 1 889 931 AACAGACATAAAAATAATCATTCGGTACATCAAAA ZZYZZZZZYZZYZZZZSXZXZZZYSZYZZZUUUUU chr3.fa 91860968 R 35 63 Y HWI-EAS88 3 2 1 640 218 GTAATTCCACATTTCTACATGATAACTTGTCTTCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr9.fa 108650593 R 35 72 Y HWI-EAS88 3 2 1 905 283 CAAGGTCTCCACTGGCTGTGCTCGGTCTCTTTTCT ZZZZZZZZZZZZZXZZZYMSXXZMMSXYMMUUJAU chr8.fa 74049944 F 29A2CA1 6 Y HWI-EAS88 3 2 1 601 821 GTATGGTTTCATTGTAGGTATTTGTAAAGCTTAAA ZZZZZZZZZZZZZZZZXXZZZZZXZZZZSZUUUUU NM Y HWI-EAS88 3 2 1 483 822 ATAACAAAAAATAAATAGGTACTTCATAGAAAAAA ZZZZYZZUZYZZZZZZZZZZZZZZZZZZYZUUUUU chr12.fa 90252201 R 35 67 Y HWI-EAS88 3 2 1 788 902 GTACATAGTCCTGTAATTAGTGGAAGCGGTGCCAG ZZZZZZZZZZZZZZZZZZZZZZXZZXZYYZQUUQO chr1.fa 68469637 R 35 66 Y HWI-EAS88 3 2 1 792 39 GTAGGATTCCTACGTTTACCTTTCGCCATCTGGTA ZZZZZZZZZZZZZZZZZZZZZZZZSZYVZZUUJUU 255:255:255 Y HWI-EAS88 3 2 1 951 717 TCGCAAGAGTTCTTTTTTTTTAGACAGAGTCTCGC ZZZZZZZZYZZZZZZZZZZZZZMYZZKZSYNUUAU NM Y HWI-EAS88 3 2 1 751 121 ACATCCACCCCCCCATGCAAATACATACACACTCA ZZZZZZZZZZZZZZZZZZZZSZZZZZZZYZUUUUU chr1.fa 102389647 F 35 65 Y HWI-EAS88 3 2 1 565 559 GCCACAATAATAGCATCCCACCTTTAACAACAAAA LLLJLLIEDIIJLLLJLLLIDLLLLHLLHJLLLLE NM N HWI-EAS88 3 2 1 713 668 GATCGGAAGAGCTCGGTATGCCGTCTTCTGCTTAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUNU NM Y HWI-EAS88 3 2 1 903 380 ACTGGCACTAACAGCAAGGCCACCAGCCAGCGCAT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 567 834 GAAATTTGAAATGTATATAAAGAAAATATCTAATA ZZZZZZZZZZZZZZZZZZZZZXYZZZZZZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 922 696 GGCTATCGCCGTTCGGTCATCGGTCGCACCCACAG ZZZZZZZZZZZZZYYZZZZZZXZYZXZSZZUUUUQ NM Y HWI-EAS88 3 2 1 844 617 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGA ZZZZZZZYZZYZZZYZXZXZZYYZZYYZMZUUHHU NM Y HWI-EAS88 3 2 1 892 822 TCCTGAACGTCCCATCCTCCTGAGCCAAGCCCCCC ZZZZZZYZUZZZYZZZZZZZZZUSZDYYDZLUUUU chr8.fa 73016844 R 22C2G9 0 Y HWI-EAS88 3 2 1 908 305 TGTGTGGACAGAGCGTGCTGGGACCCTCCGTTTCC JYYYOSJJJJYOOVYYVYVOJVYIVVVNDSQEEQL NM N HWI-EAS88 3 2 1 847 624 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZXZZZZYYZZZZZSZUUAJU NM Y HWI-EAS88 3 2 1 637 167 GAGTATAACCTTTTCAAGCGCTATTTTTAATGATG ZZZZZZZZZZZZZZZZYXZYZZYZZZZZXRUUNUU chr11.fa 50543300 F 35 64 Y HWI-EAS88 3 2 1 636 836 GGCAAGTTTGATATTTATGTATGGCATGTTGATCT ZZZZZZZZZZZZZZZZZZXZZZZYZZZYZZQUUUU NM Y HWI-EAS88 3 2 1 902 508 GATGTCCATCTCTGAGGCTCTCGGAACGGCCACTG LJELLLLLLLLLJLLLLLJLLLLLLLLLLDLELEA NM N HWI-EAS88 3 2 1 166 80 GTTTTCTTGCCATATTCCACGACTTACAGTGGACA ZZZZZZZZZZZZZZZZZZZZXZZZZZZZZZUUSUU chr9.fa 3006939 F 19T1T13 1 Y HWI-EAS88 3 2 1 538 881 GGGGGCAGCTCTGGACAGCAATGAACGGATGGGCA LLLJDLLJLLLLLLILDLDLALIDILLALALLLLA NM N HWI-EAS88 3 2 1 495 798 ATCCTTAGCTACATCCTTAGCGGCACAAAGCCAGC ZZZZZZZZZZZZZZZZZZZYZZYZZZZYZYUUUUU chr16.fa 33031616 F 24T10 40 Y HWI-EAS88 3 2 1 806 868 GACATTTCTTCAAAGATATAAAGATAGTGTAACGT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZZZUUUUU NM Y HWI-EAS88 3 2 1 684 788 GATCCTGCTGCAAAATGGATTGGGCTTTTTGGAGA ZZZZZZZZZZZZZZZZZZYZZZZZZZZZZZQUUUU NM Y HWI-EAS88 3 2 1 532 619 GAAACAAAAAACGATTTTAAATTTGCCGATGCTCG ZZZZZZZYZZZZZZZZZZYZZZZZYYZYXZUUUUU NM Y HWI-EAS88 3 2 1 972 788 TTCTTGCTCAGTGTTTCAAAAATGTCCAGTTTATG ZZZZZZZZZZYZYZZZZZZZZZZXZZZZXZUUUUI chrX.fa 7536012 F 35 70 Y HWI-EAS88 3 2 1 610 798 GTATATTTTCTGGAAGCCCCATAGATGAAAAATAG ZZZZZZZZZZZYZZZXZZZZYZVYZZZZYRUQUSQ chr15.fa 8803974 F 35 60 Y HWI-EAS88 3 2 1 533 662 GTAACAAGAGGTTATTTTTACTTTGATAAGAAATT ZZZZZZZZZZZZZZZZZZZZZZZZXXZZZYUUUUU NM Y HWI-EAS88 3 2 1 893 928 GGCGCCGGACTCCAGCACGATCTGCTCTGTCGCGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 833 587 GTATGGATTTCCCAAATTAGCATTCAAAGTTGCAG ZZZZZZZZZZZZZZZZZZYZZYZZZZYZSZUQUUU NM Y HWI-EAS88 3 2 1 895 500 GATGGACCCGGCCATCGTCATCAATCCGACGCTGC ZZZZZZZZZZZZZZZZXZZXZZXYZZZSYZUUUQU NM Y HWI-EAS88 3 2 1 526 413 TAGGGGAAGGTGATGGGAGCAGAAGAATTGGAAGG ZZZZZZZZZYZZXZZZZZZZZZVXZZXZZZNQQUU NM Y HWI-EAS88 3 2 1 902 23 GGCGTTGCTGTCGAACACGGTGGTGTCGCCCTCGG ZZZZZZZZZZUUZYZYYZZYLZYLUUJDSZGULLU NM Y HWI-EAS88 3 2 1 713 703 GTGTTTGGGTGGAAGTGCACGTGAGCCATGGCTCA ZZZZZZZZZZYYZZZZZZXZYZYZZZZXZZUUUUQ chr2.fa 106357370 R 35 70 Y HWI-EAS88 3 2 1 376 770 CCCATGACTCTGAGTTGTTGATGCTCTTTGAGGCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZYUQUUQ chr7.fa 142173463 F 35 67 Y HWI-EAS88 3 2 1 843 441 GAAAAAAAAAAAAAAATCTGCCCAGGAACCATTGT ZZZZZZZZYZYZZDZYXZKSZZZXSKZDZZHUUEN chr3.fa 23079939 F 13G21 11 Y HWI-EAS88 3 2 1 496 916 CCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGA ZYZZZZZZZZZZZZZZZWZZYZZZZZRKYDSUUUN chr6.fa 131327559 R 29G2C1C 0 Y HWI-EAS88 3 2 1 942 529 TTCTTGACCAGCGACCCATGATCTTTGGTGAAAGC ZZZZZZZZZZYZZZZZZYZZYYZZZZXMZMUUUCU NM Y HWI-EAS88 3 2 1 925 107 TTCGACACGCTGTTCGTCAACATCCAGTCAGATCG ZZZZZZZZZZZZZZZYZZZZZZZZZYZZZZQUUUU NM Y HWI-EAS88 3 2 1 489 878 AGACAGATTTTGCTAAAGATGTGTGGTTATTTGTT ZZZZZZZZZZZZZZZZZZYZZZZZZYZZXZUUJUU chr7.fa 110404788 R 35 23 Y HWI-EAS88 3 2 1 823 360 TATGATGTTAAAGGCATTTTAGTTCAGGGGTGGTT ZZZZYZZZUYZYUUUKZZZZYUUZYZJSUSHLLUU chr4.fa 3081855 R 26A8 17 Y HWI-EAS88 3 2 1 598 901 GGGGGAGAGAGGGCAGATTCCTTCTTCTTCTTTGA LELJLJJJLLLDLILLJLDLAILDLLLLDALLAAA NM N HWI-EAS88 3 2 1 452 891 ACCCGTACTTCTTTGACGTAGTCAGGGATTGCCTA LJDLILILLLLLLLDLJILLLLLJLIILDLEELLL NM N HWI-EAS88 3 2 1 655 73 GATGCTGAAGTCTCCCAGCATTAAAATTGAAATGA ZZZZZZZZZZZZZZZZZXZZZZZYYZZZSZUUUUU NM Y HWI-EAS88 3 2 1 817 346 TCATCCTCTCCCCACAGCCTGGCACGCAGACGCAC JOSOJIJOOOOSVSIOEYYIYVSIOIVNSYLELOQ NM N HWI-EAS88 3 2 1 375 321 GTGAAAGGAGAAGAGGATAGTCAGGGAGATCAGTG ZZZZZZZZZZZZZZZZZZZZZZYZZZVZXZURUUU chr3.fa 60160168 F 35 65 Y HWI-EAS88 3 2 1 914 405 TCCGTCCAATCATTCCGATCCGGGCCGGATTTCAT LLLELLLLLJLELLLLDLLLLIJLLHJLHLELLLL NM N HWI-EAS88 3 2 1 720 641 GGCTGTCCTGGAACTCACTTTGTAGACAAGGCTGG ZZZZZZZZZZZZYZZZXZYZZSZZYZZVYYUUURU 146:255:255 Y HWI-EAS88 3 2 1 878 443 TCAGCGCCGCCACACTCTCCAACACGATTGGCCGA ZZZZZZZZZZZZZZZZZZZZZYZZZZVYZVUEUHN NM Y HWI-EAS88 3 2 1 340 980 GAAAAAAAAGGAGACAGTTGGGACATTTGTGCTGC OYYSWYYSWIIQDUIFQUUMDCMIFMUQCMNLDAE NM N HWI-EAS88 3 2 1 613 190 GAAGAATGGAGGACTAAGGATGTTTCTGGAGTTGT ZZZZZZZZZXZZZZZZZZZZSZZZZYZXKYUUQQU chr14.fa 103320657 R 35 55 Y HWI-EAS88 3 2 1 806 543 TCGAGTCATTTCTCCCCTCTCTAGACCTCCAGGTA ZZZZZYZZZZZZZZZZZZZYZZRSYZZVZZQNHUH chr4.fa 147664235 F 28T6 22 Y HWI-EAS88 3 2 1 743 890 GTTGCATATATTTGTAATTACTTTTTTGTTATTTA ZZZZZZZZZZZZZZZZZZZZZZZZZZZMZZJUUUU chr2.fa 126642782 R 35 48 Y HWI-EAS88 3 2 1 555 684 GTGACATCCCCCTGGAAATATCGGTCCTTGGAGTA LLLLLLJLDLLLLILLLLLLJLLLDLLLLDLALEE NM N HWI-EAS88 3 2 1 913 709 GTCTCGCCGCCTCCGCGTCCCACTCCGCGAGCACA ZZZZZZZZZZZZZZZZZZZZZYZZZZZZXZUUUUU NM Y HWI-EAS88 3 2 1 942 436 ACATCTTCCTTGACGCCAGGAATGCCGGCAAAGTC LLLLLLELLJJLLLJLLJLDILDLJLLLLJLELLL NM N HWI-EAS88 3 2 1 781 218 GTTCAAGCTGCAACCACATGAAATCGAGGTGCATA ZZZZZZZZZZZZZZZZZYZZZYJZZZYZYZUUUUR NM Y HWI-EAS88 3 2 1 636 570 TTTTTCCAGACAGGGCTTCTCTGCATACCCCCCAC LELJLLILLLLLLDLIJLLLLLLIDLLHLLAELEL NM N HWI-EAS88 3 2 1 592 506 GTCAAGAACATGTATTCCTTGGTGAAGTTTTACTC ZZZZZZZZZZZZZZZZZZZZXKZSVXMZZZUSUUU chr16.fa 68605852 F 35 47 Y HWI-EAS88 3 2 1 821 603 GAGAACTCTCCGAGGAGCAGAACCCAGTTGGGTGG ZZZZZZZZZZZZZZZZZZZYVZZZZVZYZZUURUU chr11.fa 78559979 F 35 68 Y HWI-EAS88 3 2 1 468 901 ACATAACCAATTCATTACTAGCCCTTACTTAATGT YYYIYYIOYYYSOVYYYYYDSVYSYNWLSIELLOA NM N HWI-EAS88 3 2 1 691 732 GAAAGCGAAAGCTCCTATGCCGATTCTCGCTTGTA LDDLLJDLLLLJLLDLLLDLLLLILHHDLLCLLLA NM N HWI-EAS88 3 2 1 631 492 TTTAAGATTAGCAATAACTTGAGAAACGATGTTTT ZZZZZZZZZZOZZZZZXZZZUXUZXXZXUZGSSSS NM Y HWI-EAS88 3 2 1 487 782 AATGCATGGCAGAGTCATATATAAAGATCAGAGGA ZZZZZZYYZZXYYSZZXZXZOZZXRRUXVOAAHEQ chr4.fa 5925916 R 35 21 Y HWI-EAS88 3 2 1 633 632 GAAAATGAGCAAGCCCAAGGGTACACGTCAAGCCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZVZYNRUUH chr2.fa 156018038 R 35 58 Y HWI-EAS88 3 2 1 805 578 GACCCGCAGTCCCGAGGCCGGCCCCCATCCTGCAC LLLLLLLLLLDLLLLLLLLILLLLLLHLLLALLEE chr11.fa 76030821 R 11G11T8T1G 0 N HWI-EAS88 3 2 1 694 532 TGAGGCCAGACTGGGCAGTCCTCTGCTGTATATGT YJJYIVYVVVYYYYSYYVVYYVVYOYYNULQLQLQ chr8.fa 54397071 R 35 2 N HWI-EAS88 3 2 1 931 600 TCACCCATGGAAGCCCCATCGCTCCTGAGGCCGAA ZZZZZZZZZZZZZZZZZZZZZZZZZZYZXYUUUUU NM Y HWI-EAS88 3 2 1 827 466 TTTATAAATAATTGTAATATCTGATGTTTCTTCAT ZZZZZZYUZYYZZYZZRZZZZZSRZSZZZZUUULU NM Y HWI-EAS88 3 2 1 848 260 TTTATGCAGATATTGAATTGATTAATGCCGGAGAT ZZZZZZZZYZZZZZZZZZZYZZZZZZSZZYNQNHU NM Y HWI-EAS88 3 2 1 974 512 TCCTTGCCTGCCTCTCCTTTCCTGAAGGAGACCCC ZZZZZZZZZYZZZZZZZZZZZZZXZVXKZSNUUUU chr8.fa 113220414 F 35 48 Y HWI-EAS88 3 2 1 961 437 ACTGTCAGGCCCTGGCCTGCCAACATCAGTCTCCG ZZZZZZZYYZZZZXZZZZXZZXZZSZZYRZUUUUA chr19.fa 44774231 R 35 62 Y HWI-EAS88 3 2 1 827 314 GGGAGGGGAGCAGTGATAGGGGTATAAAACAAATA ZZZZZZZZZZZZZZZZZZXYYXWXZRZIZZRUNUU chr3.fa 149274957 R 35 49 Y HWI-EAS88 3 2 1 482 895 ATCACAAACTCAAAAAAAATATAAAAAATTCTTAT YYUYLUUUIIISSQGLDFULIOSUUQFQHDALGAE NM N HWI-EAS88 3 2 1 651 465 GAATCAGCTATTAACTTCTAACAGTTCCTTAGTTA ZZZZZZZZZZZZZZZZZZZYZZXXZZZZZZRQUUU chrX.fa 108231872 F 35 63 Y HWI-EAS88 3 2 1 823 645 GAATTTTGTTTTGTTTTGTTTTGTTTTGTTTGAGA ZZZZZZZZZZZZZZZZZXZZZZXZZZZSZZUQUKU chr5.fa 129502105 R 32TTT 0 Y HWI-EAS88 3 2 1 927 796 AGTCCAACTTCATCTCCGTGAGCTCAAAGCCACTC ZZZZZZZZZZZZZZZZZYZZZYZZZZXZYZUUUUU chr17.fa 69660086 F 35 70 Y HWI-EAS88 3 2 1 921 351 GATACGGATGCTCGAAATAGCGGGCGTCCAGCTTC ZZZZZZZZZZZZZZXZZZZYZYYXYYYXZJJUQUJ NM Y HWI-EAS88 3 2 1 775 516 GCTATTGCTGGTTTAAATAAATTTAGAGAAGACGA ZZZZZZZZZZZZZZZZZZZSZZZZZSXXZZUNUUU NM Y HWI-EAS88 3 2 1 905 418 AACTCCATCAACTGGGGTCGTGTGGTTGAGATCGG ZZZZZZZZZZZZZZZXZZZZYYZZYZZZYZUUUUU NM Y HWI-EAS88 3 2 1 896 176 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZYZZZZZXZZZZZZZLUUUUU NM Y HWI-EAS88 3 2 1 771 404 TTATAAAAATAGCCAAGATGACCTTTAGCTGCAGT ZZZZZZZZZZYUZZZSZZZYYZZZZZUJZZQUPLU NM Y HWI-EAS88 3 2 1 957 508 AGAGAGGCACAGAGGTAAGTTGATTCCCGTCCAAG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZSZUURRJ NM Y HWI-EAS88 3 2 1 784 234 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTTA ZZZZZZZZZZZUUUSYZYYZZKSZZZQYDYUULHU NM Y HWI-EAS88 3 2 1 539 893 GTTTCAGCCGGTCAAAAGGCTGTTGCCCAAAGAAG ZZZZZZZZZZZZZZZZZYZZZZZZYZZZDXUUQUU chr1.fa 70464614 R 35 50 Y HWI-EAS88 3 2 1 956 723 GAATGACTGAAGGGCCACCAAGGTGAGCAGAGAAA ZZYZZZZZZZZZZXZZZZZZZZZZZZSZZZHUUUU chr1.fa 108634297 F 35 52 Y HWI-EAS88 3 2 1 865 465 TTCTACTGTTGAGAAATACCAATTACTGACTCTTA ZZZZZZZYZZYZYZZZZXZZZZZZYZZMXYUUUUN chr8.fa 59178559 R 35 59 Y HWI-EAS88 3 2 1 892 502 ACGGTCGAAATGACAGAATCCATGTTGGCACATGA ZZZZZZZZZZZZZZZZZZZZZZZXZZSXZYUUUQU NM Y HWI-EAS88 3 2 1 964 385 CAGGCAGAGTTCCTGGGTGCTTGGGTTCTGCTGTT ZZZYZZZZZZZZZZZZZZYZZZZXSZZZZXUUIUU chr1.fa 41920588 R 35 49 Y HWI-EAS88 3 2 1 858 630 TGCAAATTAAGAAACTACACAAACACAATTAGATG ZZZZZZZZZZYZZZZZZZZZZZZZZZYXZZUNUUU chr2.fa 82687691 F 35 63 Y HWI-EAS88 3 2 1 189 438 GTAAAACACTTATACAGATAAAAATAAATAGTTAA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZHUUUU chr1.fa 189122495 F 35 59 Y HWI-EAS88 3 2 1 798 952 GTGATTTTCAGTTTTCTCGCCATATTCCAGGTCCT ZZZZZZZZZZYZZZZZZZXZZZZZZZZXYXUUUUU 40:85:50 Y HWI-EAS88 3 2 1 816 235 TTCTCTTCAGAGGTACAAAATCCTACGCCATATAT LLLLLJLLLELLLLJLLLLLJLLLIHLDLLLECEL chr16.fa 96689638 R 25A1T4G2 0 N HWI-EAS88 3 2 1 453 782 ACTTTCAATTTTGCTCCCTCCTAGCTCGTCATCGT YUQYUYLIYYYUSOYISYVUFYSYLFUYQUOALEL NM N HWI-EAS88 3 2 1 801 376 TTAGAATAAATCTCTTCAAATATTTTACAGAGTTT ZZZZZZZZZZZZZZZZZZZXZZZZZZYZZXUQUUU NM Y HWI-EAS88 3 2 1 858 114 TAATTCGTATACGTTTCATATGGAGTTGCCGGATG ZZZZZZZZZZZZZZZZZZZZZZSZYZZSYXUUJUU NM Y HWI-EAS88 3 2 1 317 643 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA JOJOYSVVIOVOSSVSOVIVVVDYSYNYYVQLQQA 255:255:255 N HWI-EAS88 3 2 1 917 482 AGGGAGGGTCAGAAAAATCAGCCAGTGTTACTTCC JLLLEJLJLLLLLLDLLDLJJELJEDELLLLECLE NM N HWI-EAS88 3 2 1 854 244 GTAGTCTATCTATTTTGTTAATCTTTTCAAAACCA ZZZUZZZZYZZZZZZZYZZZYZZZZZZZYUUUUUU NM Y HWI-EAS88 3 2 1 814 109 GAATTACTATGGCATGGTGCTGCTTCAGCCCCAGA ZZZZZZZZZZYUZZZYZZZZZZZZZZYYYZUUEUL chr2.fa 155675957 F 11C23 41 Y HWI-EAS88 3 2 1 195 407 GTGGAAGGCAAAGTGAGTGCTGCAGACAGGAGGAA LLLLLLLJDLLLLDLLLJLLLDLLDLLILLLLLLL chr7.fa 124576490 R 8T13T11G 0 N HWI-EAS88 3 2 1 779 89 AAAGAAACTCATACTTATATTTTCAGTATCTAATC ZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZUUUUU chr16.fa 80786735 F 35 70 Y HWI-EAS88 3 2 1 677 236 GGAAGTTCCGAAGGCTTCCACAGCCTGTTGTGCCA ZZZZZZZZZZZZZZZZZZZZZZZZZZZIZXUUUUN NM Y HWI-EAS88 3 2 1 893 791 AAAGCCAGCAGCTGACTCGAGCCTGGCCAGCGGGA ZZZZZZZZZZZZZZZZZZYZZZZZZZZZXSUUUUU NM Y HWI-EAS88 3 2 1 821 332 TAGTTATAAAAAAGTAAGGCAAGCTTTAATCTCTC ZZZUZZZXZOZOZOXZXOIZXZIXXXUNRZSSSSO chr18.fa 71601507 R 35 36 Y HWI-EAS88 3 2 1 979 500 TTTAAAAAATATTCTGTCAATTTCATACACTCTTC YYYYSJYYSYSYYJJJVOVODVVOYVQIHLOCEQA NM N HWI-EAS88 3 2 1 779 504 GTGCAGTGGCACGATCATGGCTCACTGCAGCCTTG ZZZZZZZZZZZZYZZZZZXZZZZZZZXZYYUUUUU NM Y HWI-EAS88 3 2 1 889 506 AAGCTTGGGGGGACCTACATCCCACCAGAGCTGGG LLLDLLLLLLJLLLLLLLLLLLLLLLLLLLLLLLL chr12.fa 118564386 R 3G31 21 N HWI-EAS88 3 2 1 853 877 GCTCCCATTCACATTGCCATGTAGCAGCGGAAGCA ZZZZZZZZZZZZZZZZZZYZZZZZZXYZZZQUUUS chr17.fa 56204409 R 35 66 Y HWI-EAS88 3 2 1 946 614 CTATTCATATAAAAACCTGTAATAGTACCTTATGG ZZZZZZZZZZZZZZZZZZYZZZZZXZZZYZUUUKQ NM Y HWI-EAS88 3 2 1 684 424 TTTGATTGGTAGGTTGGAGAAATCGGAAACGATTA ZZZZZZZZZZYYZZZZXZSZZYZZXXZZYZUNUUU NM Y HWI-EAS88 3 2 1 877 50 GGTATCTCAAAACATTAAAAATAGAACTACCATAT ZZZZZZZZZZZZZZZZZZZZZZZZYZZZZZUUUUU chr10.fa 108954872 F 3T8T22 10 Y HWI-EAS88 3 2 1 655 855 GCCAGGGTGAACTAGGGGACATCAAAGATATAGGG ZZZZZZZZZZZZZZZZZZZZZZZZZXZZZZUUUUU chr6.fa 16775150 F 35 51 Y HWI-EAS88 3 2 1 873 168 AAGTTTTAGAATTTGGTTCTTGGGCAGTTTGCTTA ZZZZZZZZOXXZZZUUXZXZZOIIXRCZXZEOSSO chr6.fa 144740952 R 35 21 Y HWI-EAS88 3 2 1 656 866 GACCCAGCTATGAATATTTATGTTTGTATGTTTGT ZZZZZZZZZZZZZZZZZZZZZZZZZYZYZXUUUOU chr11.fa 15105662 R 35 70 Y HWI-EAS88 3 2 1 877 715 AGCCTGCAGATTGCATAGTTCGTATTTTACTTTGG ZZZZZZZZZZZZZZZZZZZZZYZZZZZZZZUUUUU chr5.fa 15037425 F 6G28 27 Y HWI-EAS88 3 2 1 879 11 GNNNNNNNNNNNNNTNNNNNNNNNNNNNNNNNNNN LAAAAAAAAAAAAALAAAAAAAAAAAAAAAAAAAA QC N HWI-EAS88 3 2 1 811 218 TTCTGTTTTTCATTGCAACTCATTAACATACTGTG ZZZZYYZZZZZZKZXZZZZZZYZZXSXSZRUUIUI chrX.fa 73844088 R 12G22 2 Y HWI-EAS88 3 2 1 758 191 TAATTACTTGTTCTATCCATAACCACTACTATTTC ZZZZZZZZZZZZZZZZZZZZZSZZYZZXZZUUUUU chr15.fa 20210570 F 35 65 Y HWI-EAS88 3 2 1 829 346 TAAATGAAAATGTCATAATGAAACACATTAATTTT YYYVVIYVYSYVOSYVUYVOIOWUSULUULAQQEE chr16.fa 43061928 F 33GG 1 N HWI-EAS88 3 2 1 790 359 TGGAGTAATTGAAAATTTGCTAGGCAAGGTTGATG ZZZZZZZZZZZZZZZZZZZZZZZZZXZZRYUUUUU NM Y HWI-EAS88 3 2 1 896 98 ACTGATTGTTTGTTCCTGCCTTTTGACACGGTTGA ZZZZZZZZZZZYZZZZZSZZZZZZMYYYYSNUUCC chr18.fa 79595169 F 35 50 Y HWI-EAS88 3 2 1 781 571 GCTATAATTTTCTCCTTCTTTTGCCCAGGTACAAA ZZZZZZZZZZZZZZZZZZZZZZYZZZVZKXUUUUU chr6.fa 140413227 R 35 57 Y HWI-EAS88 3 2 1 750 200 GCTTGCTGTCAAAGCTGGACAGAGCAATGGCAAAG ZZZZZZZZZUZZYYZZZYZZZUYZZZYZUZUPUPU chr7.fa 116173723 R 35 62 Y HWI-EAS88 3 2 1 929 742 ATTTGGCAAGGCTTCGTATGCATATTTGTTATTTA ZZZZZZZZZZZZZZZZZZZXZZZZZZZYZZUUUUU NM Y HWI-EAS88 3 2 1 793 429 GGTTCCGTTCCTAGTTTGTACATATGCTGATCTGT ZZZUZYZZZZZZZUZZZLZYZUZZZUZZIYLUUGU chr1.fa 177208985 F 35 37 Y HWI-EAS88 3 2 1 801 192 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGTA ZZZZZZZZZYZZZZZZYZYZZYYZZZZZXYUUHHU NM Y HWI-EAS88 3 2 1 933 774 AGGAGCTTTCAACTGCTGCTGCACTTTTTTCAAGT ZZZZYZZZZZZUZZYZZZDUSZZZZZZZZZUUULU chr19.fa 48294243 F 18G16 39 Y HWI-EAS88 3 2 1 886 201 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA ZZZZZZZZZZZZZZYZZZZZZZZZZZZZXYUUJQU NM Y HWI-EAS88 3 2 1 502 70 GATGTTTCTCATTTTCCATGATTTTCAGTTTTCTT ZZZZZZZZZZZZZZZZZZZXZZZZZZZSZZUUUUU 37:99:34 Y HWI-EAS88 3 2 1 631 275 GATTTTAAGTTTTCTAGCCATATTCCAGGTCCTAC ZZZZZZZZZZZZZZZZYZZZZZZZZZXKXZUUUUU 0:0:85 Y HWI-EAS88 3 2 1 769 90 GCATGCGGCTTTTCACCGCCCTTCTCCCCCTTGTA YYOYYOSYYYSJIJYDSDYIJJDYDLVNNDGQALC NM N HWI-EAS88 3 2 1 544 984 GGTAAGAGGATCCCATGAGTTTTGTTTTGTTTTTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU chr1.fa 182812609 R 35 71 Y HWI-EAS88 3 2 1 743 406 GAAAATGGCAAGAAAAAGGAAAATCACGGAAAATG ZZZZZZZZZZZZZZZZZZZZZZZZZRZZZZNUSUU NM Y HWI-EAS88 3 2 1 923 250 GCTAGTAGAAAAAGCTGCCTAATCATGACAACTCC LLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL NM N HWI-EAS88 3 2 1 904 720 TATCTAACTGGCCAGGCATGGTGGCTCACCCCTGT ZZZZZZZZZZZZZZZZZZZXYYSKXXXDZZUUUQU NM Y HWI-EAS88 3 2 1 544 679 GAGCAAAAGAGCAAGAGAGAGAGGAGGAGGCAAGC ZZZZZZZZZZZZZYZZZZZZZRZZXZZZZZUSUUU chr10.fa 77031405 F 35 30 Y HWI-EAS88 3 2 1 656 186 GTTTCGTTTTGAAGTCTTGTTGTTCAGGTAATCTG ZZZZZZZZZZYZZZZZZZSZZXZZZZSKZZUUUUN 15:2:0 Y HWI-EAS88 3 2 1 629 822 GTAAATGAGCAATCTGATTGAATAGTGACTCTGAC ZZZZZZZZZZZZZZZYYZZXYSZYDVYZRYUUNUU chr14.fa 40090097 F 35 45 Y HWI-EAS88 3 2 1 912 918 GTCAAGTGGATATTTTCTCATTTTCCATGATTTTC ZZZZZZZZZZZZZZZZYZYSZZZZXZXZXSUUUUQ NM Y HWI-EAS88 3 2 1 641 809 GGGAAACCCCAAACCCCTTGTAGTGGCAGGGGGGC ZZZZZZZZZZZZZZZZZZZZZZZZZZYVZXHUUAL chrX.fa 3095635 F 30A2CA 0 Y HWI-EAS88 3 2 1 782 612 GCTAAATTTGAATACGACGATACCTCAGAATTTTT ZZZZZZZZZZZZZZZZZZZXZZZZZZZYIYUUUUU NM Y HWI-EAS88 3 2 1 669 244 GAATGGGTGTCGGACACAGAAGCCAGGAAGGAGTG ZZZZZZZZZZZZZZZYZYZYYZZZZZZXXZUQUNU chr11.fa 111842488 F 35 66 Y HWI-EAS88 3 2 1 800 98 GACTGTGCACAATGACTTGTTTCTAGCCATACAAG ZZZZUZZZZZZZZUZZZZYZZZZZSSZZUZUUUUU chr7.fa 80627978 F 35 63 Y HWI-EAS88 3 2 1 591 851 GTTAATAATGTATTGAATCCTCTTTTCAGCAAATG ZZZZZZZZZZZZZZZZZZZZZZZZZZZYMZUUUUU NM Y HWI-EAS88 3 2 1 568 744 GTGTGTGAGTTCATTTCTGCATCTTCAATTATGTT ZZZZZZZZZZZZYZZZZZXZZZZZZZZZZZUUUUU chr18.fa 4072143 F 35 34 Y HWI-EAS88 3 2 1 546 595 GCAGAACCAAAGACCAACAGGCCCAAACTCAACTC YYYVSIIVYYYSYIOYDIYIODDYYLYDJSQLQEL NM N HWI-EAS88 3 2 1 670 177 GTGTTTCCATCGCCATTTTCGCTTAATAGTATAAA ZOZUZZZZZZZXZZUZZZZZOZZXXXZXDZOSOOO NM Y HWI-EAS88 3 2 1 807 890 TGACAATTTTTTTACATTTATTTTGTAGATTGGTT ZZZZZZZZZZZZZZZZZZZZZZZZYZVDIZUHHNR chr1.fa 12470118 F 35 25 Y HWI-EAS88 3 2 1 681 215 TTAAATTGTGTTCTAATTTACTATGTAGGTTTTAC ZZZZZZZZZYZZZZZZZZZZZZZZSZZSDZUUUUU chr12.fa 85950709 R 9C25 16 Y HWI-EAS88 3 2 1 962 734 TTTATAGTCTCCAGAAGGGTCTATGCTATGCCTTT ZZZZZZYZZZZZZYZZZYXZZZYZYZZXZXUUUUA chr3.fa 18605968 R 34G 64 Y HWI-EAS88 3 2 1 623 674 GTGACACTTCAAAAAGAAGGCACATCGATCGTGTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU NM Y HWI-EAS88 3 2 1 836 343 GGGCAATCGTCCCTGATCTATGGCCTCATTATTAC ZZZZZZZZZZZZZYLYZZZZZXVZZZZXZZQUCJU chr17.fa 15778882 R 32G2 46 Y HWI-EAS88 3 2 1 886 113 AGAAAACTTCCCTAACCTAAAGAAAGAGATGCCCA ZZZZZZZZZZZZZZZZZZZZZZYZZZZZZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 866 300 GCGAAATCTGCCATTTTCATAAGATGGACGTGCAA ZZZZZZZZZZZZZZZZZZZZZZMYZSXXZYUQUUU NM Y HWI-EAS88 3 2 1 844 539 GCACTCTGCATCTTTAATAGACCCCCGTCTATGCT ZZZZZZZZZZZZZZZZZZYYZZZZZZZZZZUUUUU chr11.fa 113444916 R 35 71 Y HWI-EAS88 3 2 1 789 240 TTTTCAGTTTTCCTCGCCATATTTCCCGTCCTAAA ZZZZZZZZZZZZZZZSZZZZZZZZZZYLZZUUUNU 0:31:52 Y HWI-EAS88 3 2 1 532 342 GTAAATGAGCAATCTGATTGAATAGTGACTCTGAC ZZZZZZZZZZZZZZZZYZZXZYZZSZSZXZUUURU chr14.fa 40090097 F 35 63 Y HWI-EAS88 3 2 1 565 466 TGAAAGTCATGACATAAGAAGAGGGTTGAGTGTAT LLLJLLLLLLDLLDLLLLLLLLLLJLLLLLELLLA NM N HWI-EAS88 3 2 1 510 338 GTTGGACTAAATTACTATTAGTAACTACTAAAACT ZZZZZZZZZZZZZZZZZZZZYZZZZZZZZZUUUUU chr9.fa 72525064 F 35 71 Y HWI-EAS88 3 2 1 793 473 GGCTGGGGTCAGGGAACCCTCCCCATATCATGAGA ZZZZYZZZZZUYZZZZZZZYZZZZYYOZZQUUUUU chr2.fa 119598007 F 16T18 26 Y HWI-EAS88 3 2 1 413 243 GTGGAATATGTCAAGAAAACTGATAATCATGGAAA ZZZZZZZZZZZZZZZZZZYZZZZZZZZYYZUUUSU chr2.fa 98502473 R 10G12A11 2 Y HWI-EAS88 3 2 1 907 578 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZYZZZZZZZYZMZUUQKU NM Y HWI-EAS88 3 2 1 560 198 GAATCCAGTCAGTTTTCATTAGAAAATTTTATATT ZZZZOZZUZZXZZZZZXZZZZUXZZXZZZZSSLSS NM Y HWI-EAS88 3 2 1 666 745 GTCCTTCAAGGCCTGGCTTGAAGTTTTTCTTCGTG ZZZZZZZZZZZZZZZZZZZYZZYZZZZZZZUUOUN NM Y HWI-EAS88 3 2 1 831 202 TATCCATTCCTCTGTTGAGGGGCATCTGGGTTCTT ZZZZZZZZZZZZZYZZYZYXXYZZZZZSXMUUUUU 255:255:255 Y HWI-EAS88 3 2 1 482 880 AGTCTCAGTGGGATCCAGGAACCAAGATGGCTCCC ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU chr11.fa 48041487 F 35 0 Y HWI-EAS88 3 2 1 513 950 GCAGTTCCTTAGACCGCATGGCGTTTCGCTGGCGG LLLLDLLLLJJLILLJIILLILADIDLJDLEAELC NM N HWI-EAS88 3 2 1 758 244 TGAAGTAACAGACGATTGTAAGTCGCCATGTGGAG ZZZZZZZZZZZZZZZZZXZZZXZZZZZZZYUUUSU chr11.fa 57813847 R 35 70 Y HWI-EAS88 3 2 1 686 636 GGATCTACAAAAAACAATCCAGTTTTTAAAATGGG ZZZZZZZZZZZZZZZZZZZZZZZZZZZZVZUUUUU chr18.fa 47133187 R 35 68 Y HWI-EAS88 3 2 1 535 890 GAGATGTATAAAAAAAAGACAACTAGGTTATAAGT ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUSUU NM Y HWI-EAS88 3 2 1 689 488 GGGACAGGGCTGGTTTTTTGTTTTGTTTTGTTTTG ZZZZZZZZZZZZZZZZZZZYZZZZSZZZZSUUUUK chr3.fa 133849203 F 35 63 Y HWI-EAS88 3 2 1 788 709 GTGGTTTAGTGTTTGAGAGATCTTGGGGGTCCAGG ZZZZYZZZYZYZZZZZYZXZZZZZYXSXXXUUNUU chr14.fa 60090838 F 35 26 Y HWI-EAS88 3 2 1 973 454 TGCCCATTGAGAAGGGTTGAAGTTGCATGCATTTT ZZZZZZZZZZZZZZZYZZZZWYZZYZZZSZUUUUU chr8.fa 125850905 R 35 65 Y HWI-EAS88 3 2 1 494 776 AGTGTGGGTAGTACTACTCTGGCTCCAGCTGTCCT ZZZZZZZZZZZZZZZZZZZZXYZZZZYVZYNUUAS chr17.fa 74182095 F 33A1 55 Y HWI-EAS88 3 2 1 932 505 CAGTGAGCCAAGATCAATGCCACTGCACTCCAGTC ZZZZYZZZZZZZZZZZZZZZZYZZZZZZZZUUNUU NM Y HWI-EAS88 3 2 1 815 414 GGTATTTGATTTTCTGGAGTCCACCTTCTTGAGTT ZZZZZZZZZZZZZZZZZZYZZZZZZZZZZZQUUUU 18:255:255 Y HWI-EAS88 3 2 1 770 718 GGCTATGTGGAGCTCAGAGGACAACTTTGTGGAGT ZZZZZZZZZZZZZZZZZXYXXZKZZZZZMYUQRUU chr8.fa 97191714 F 35 45 Y HWI-EAS88 3 2 1 855 339 GAAAGGAGAAATTATGAATTAGAAGTGAGGCTCTG ZZZZZZZZZZYZZYZYRZZZRRYYRXDVCRSUUQQ chr1.fa 79083631 F 35 29 Y HWI-EAS88 3 2 1 552 578 GTTTTATGATAAGTACGAAGTTTAAGCCAAACATG ZZZZZZZZZZYZZYZZZZVZZZZXVVZZDYHSHQN chr15.fa 71249064 F 35 35 Y HWI-EAS88 3 2 1 761 568 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZYZZYWZZZZZRZUUNHR NM Y HWI-EAS88 3 2 1 890 378 CTGTCCCAATATTCAGAGGAACTGGGCCCTGGGAA ZZZZZZZZZZZZZZZZZZZYZZZZXZZZZZUUUUU chr2.fa 174024130 F 35 70 Y HWI-EAS88 3 2 1 710 479 TTATTTTAAGTTCTATTGAATTTATGGTGACTCAG YZZZZZZYUUYYZZUZYZZYZZZXZJDZSXUUULH chrM.fa 11942 R 35 37 Y HWI-EAS88 3 2 1 609 756 GCTTGTGGTTGCAAACACTGTTTTTGTTTCTCAGA ZZZZZZZZZZZZZZZZWZZZZZZZZSZZZZUURQU chr5.fa 28634802 F 35 65 Y HWI-EAS88 3 2 1 903 679 AATGGGAGGCACGTTTGCCTGATGCAGTTTCTAGC ZZZZZZZZZZZZZZZZZZZZZZZYZXXZZZUUUQU NM Y HWI-EAS88 3 2 1 838 392 TCATGGCTTCTAGTTTTTTTTTTTTATTTTACTCC ZZZZZZZZZZZUZZZZZLZDZZZZZSZSZJLUUUU NM Y HWI-EAS88 3 2 1 856 585 GACCTATACAAATCCTACTTTCTCCTATGTGTGGT ZZZZZZZZZZZZZZZZZZZZZZZZZZRZXZUUUQU chr10.fa 85679421 F 35 64 Y HWI-EAS88 3 2 1 899 605 CTTGTCTTACAAAGTAGCATTGTATTTTTCAGTGT LLLLEDLLLLJLDEJEJLLLLELDLLLLLLECEEL NM N HWI-EAS88 3 2 1 902 595 GTTAAAACAACAAAAAAAACAAAAAAATCACTAAA LLDLLLLILJDIELLLDLIALDILDLLDHIALACC NM N HWI-EAS88 3 2 1 864 245 GAACCAGCAATTATCACCTCCCATACCTCGCCTCT ZZZZZZZZZZZZZZZYZZZZZZZZXZZZZYUUUUU NM Y HWI-EAS88 3 2 1 832 673 GCTGGAGTCCGACCTCGAAGACTGACCTAGAGTCA ZZZZZZZZZZYZZZZZZYSZZZZZYZZZZYUUUUU NM Y HWI-EAS88 3 2 1 601 562 GCAAGCAGATCGCATGTATCATGGCACATGTCTGG LLLLLELLILLLLLLLJLLLLLDLLLLLLLLCLLL chr11.fa 4033339 F 5G25G3 2 N HWI-EAS88 3 2 1 829 892 TTAAAATGCATTTAGGACTCCAGGGGGAAACCCTG ZZZZZZZZZZZZZZZZZZZZZZZZZZZXZUSSUUU chr14.fa 35397820 R 35 63 Y HWI-EAS88 3 2 1 961 356 AGTGAACCACATGGAGCCAGGGATTGATGCAAAAG ZZZZZZZZZZZZZZZZZZZZZZZZZZXZYZUUUUQ chr5.fa 136124225 F 35 25 Y HWI-EAS88 3 2 1 659 457 GAATTAATCTAATATATCATGATATAGTATATGCT ZZZZZZZZZZZZZZZZZZZZYZZZZZXZZZUUQUU chr5.fa 60391454 R 35 70 Y HWI-EAS88 3 2 1 182 380 GCAGAGGGCGATGTTGAGTTAGCCAGCACGTAACC ZZZZZZZYZZZZZYZYZZZZZZZZYZZYYYQUUUU NM Y HWI-EAS88 3 2 1 704 672 TCGTATATCGCAGGCCGTTCCGGGTGCAACAGAGT LJLLLLLDLILLLLLDDLLLDIILILLLILLLLEE NM N HWI-EAS88 3 2 1 746 379 TAAAAACCAAAAATAGCGTATAGGTATTTGCAGGT ZZZYZZZZZZZYZYYSZYXRZZKSSYZZZKUUIHN NM Y HWI-EAS88 3 2 1 893 299 ACGATGACTGACGCTCACTCTCCCGCAATGCCTGC ZZZZZZZZZZZZYZZZZZZZZZZZSZXZZYUUUQU NM Y HWI-EAS88 3 2 1 843 700 TCAACCTTCATATCGTCAGATACAGTCCAATCTTT ZZZZZZZZZZZZZZYZZZZZZZZZZZZZZXUUUUU NM Y HWI-EAS88 3 2 1 429 937 GCCACCAACANGTNTGTCTANTGGNCAGGNAGNTG LLLLLLLLLLAIIAILLLLIAILDAAIAIAAEAAE QC N HWI-EAS88 3 2 1 755 193 GAATGATCTCTCCACATTTCCTTCCTCTGGTGACA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZYZUUUUU chr1.fa 180757407 R 35 71 Y HWI-EAS88 3 2 1 817 283 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZZZZZZZZKZUUNHR NM Y HWI-EAS88 3 2 1 764 378 GGTCTTGTCATGCCTAAGTCCTCTTGATCTTAGTC LLLLLLLLLLDLLLLLLLLLLLLLLLLLLLLLELL chr7.fa 115178366 F 10G24 23 N HWI-EAS88 3 2 1 932 606 TCGCCGTATATTGGTCGTTAATGATCTCGTAGATC LLLLLLLLLLELLJJLJJDLLLLLJLLLDJLCLLL NM N HWI-EAS88 3 2 1 967 597 GTGCTTTTTCCATCTTTTAGACCATTTTCCATTCC ZZZZZZZZZZZZZZZZZZZMZZZZZZZZZYUUUUU NM Y HWI-EAS88 3 2 1 955 885 TTTAAGAGAACTAAACAAAATGGTATGGGTACAAC ZZZZZZZZZZZZZZZZZZYZZYZZZZZSZZSRUUN chr1.fa 131923589 F 35 60 Y HWI-EAS88 3 2 1 513 118 GTTGAAGTCAAAGCATTTCTCTCAACTATATGTGC ZZZZYZZZZZZZZZZZZZZZZZZZRYZXZXURSNS chr2.fa 175054175 F 35 0 Y HWI-EAS88 3 2 1 806 729 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGA ZZZZZZZZZZZZZZZZZZZZZYZZZZZZMZUUAAU NM Y HWI-EAS88 3 2 1 422 796 TGCACTCAACTGTTCAGCTCTAAAGGTATGGAGGA ZYZZZZZZYZYZZZZZZZZZZXYIZXUXYXQSSHO NM Y HWI-EAS88 3 2 1 581 904 GTTTACTGGTAGGCATTTCTACCTTTGCATCTCTG ZZZZZZZZZZZZZZZZZZZZXXZZYZXYXZUUUUU chr6.fa 98583100 R 35 70 Y HWI-EAS88 3 2 1 886 389 CTATCAGGCAGGCACGAAAGCCGACGCGGAGCGCG ZZZZZZZZZZZZZZZZYZZYZZYYZXZSXXUUHUH NM Y HWI-EAS88 3 2 1 772 750 TTATGGATGCAATTGAATATCTAAAAGCCATTACA ZZZZZZZZZZYZZZXZZZYZZZYZZZSZZXUUUUU NM Y HWI-EAS88 3 2 1 652 602 TATTTATATCATTTTTATATTTTTCTATAGCCTCT ZZZZZZZZZZZZZZZZZZZZZZZZZZYZXDUUUUU NM Y HWI-EAS88 3 2 1 935 453 GATCGGAAGAGCTCGTATGCCGTCTTCTTCTTTTA ZZZZZZZZZZZZZZZZXZYZZXZZZZYZDZUUAJU NM Y HWI-EAS88 3 2 1 741 697 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA ZZZZZZZZZZZZZZZZZZZZZYYZZZZZKZUUEHS NM Y HWI-EAS88 3 2 1 869 544 TGAGACAGGATGCCACTCTGTGTGCCAGCAGGCTA ZZZZZZZZZZZZZZYZZZZWZXZSZZROZJNUUUU chr6.fa 135113970 F 35 43 Y HWI-EAS88 3 2 1 886 195 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA LLLLELLLLLLLLLLLLLLLLLLLLLLLLLLLLEL NM N HWI-EAS88 3 2 1 103 553 GGTGTTGTTTCCCTAATTTCTTTCTCAGCCTGTTT ZZZZZZZZZZZZZZZZZZZZZZZZZZZSZZUUUUU 255:255:255 Y HWI-EAS88 3 2 1 978 456 ATGGGGCATTTCCATCTCTTGAGACCAGAGGAAGA ZZZZYZZZZZZZZZZZZZZZSZXZZZZXYYNUNNU chr5.fa 126317066 R 35 58 Y HWI-EAS88 3 2 1 550 893 GGAGACACTGGATAAGCACAACTGTGACTTCTGTT OOYOYYYVOVYIDJOSYOYIOYYJDYSLVYLQQQE chr11.fa 120476614 R 12C21G 4 N HWI-EAS88 3 2 1 606 741 GAGTTCTTTTTTCAGCCGGGCGTGGTGGCGCATGC ZZZZZZZZZZZZZZXZZZYYZZZZZZZYZYUQUQU chr1.fa 153365706 R 35 47 Y HWI-EAS88 3 2 1 944 419 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA LLLLDLLLLLLLLLLLLLLLLLLLLLLLLLLLCLL NM N HWI-EAS88 3 2 1 753 458 GCTGATGGAATGTTGCAGGCACAGTGCTACCGGCT ZZZZZZZZZZZYZZYZWYXZRZRZXZZYJZAUSUU chr6.fa 101416782 F 30A4 27 Y HWI-EAS88 3 2 1 964 267 TCTGCTTGAATAAAATCTCATCCTACAACTTTAAA LLLLLLLLLIDLLLIIILIIIIILLDLAALLLALE NM N HWI-EAS88 3 2 1 866 522 TTGTCATCTCTGTTTACTTCTACCACAGAGCCTAT ZZZZZZZZZZZYZZZZZZZZZZZZZZIVZRUUUUU chr14.fa 8551127 R 35 52 Y HWI-EAS88 3 2 1 406 803 GAAAAAAAAACAGAACGATGCGTTCATCCACGGCA YYYVVVSSGVSQIGIUSFFYIHLUUHFQXULPLLH NM N HWI-EAS88 3 2 1 792 647 TTATCCCTGGTTTCTCCTTGTGACTCTCTGTTGTC ZZZZZZZZZZZZZZZZZZZYZXZZZZZZZSUUJUU chr14.fa 75762363 R 35 65 Y HWI-EAS88 3 2 1 414 998 AGAGCTTTAGGCAGCTCGGTGTGTCCTTTCTATTC YIOSMSGSYOSUIYUSUDLIWUQIQQUUUFPLENG NM N HWI-EAS88 3 2 1 776 596 TATATTGCCCCCTGCAGCAATGCCCCTTACCCGTC ZZZZZZZZZZZZZYZXYZZZXZZZXZZZSZUUUUU 12:33:15 Y HWI-EAS88 3 2 1 909 244 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG ZZZZZZZYZZYUYZYUYZKYUDUZIYYODJGUGAA NM Y HWI-EAS88 3 2 1 939 918 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT ZZZZZZZZZZZZZZZZZZYZZYXXZYSSXXUUHHQ NM Y HWI-EAS88 3 2 1 483 208 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA ZZZZZZZZZZZZZZZYZZZZYZZZZYZZXZUUUUS chr8.fa 19708804 R 35 1 Y HWI-EAS88 3 2 1 924 817 ATCTACATTAAGGTCAATTACAATGATAAATAAAA ZZZZZZZZZZZYXZYZYZZYZYZZXKZSYXUUNUN chr5.fa 71805980 F 35 55 Y HWI-EAS88 3 2 1 822 504 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC ZZZZZZZZZZZZZZYZZZZZZZZYYSYSZXUUUUU 29:255:255 Y ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/GERALD/s_5_0001_realign.txt0000644000126300012640000026144012227066723027620 0ustar00biocbuildphs_compbio#RUN_TIME Fri Apr 25 23:26:16 2008 #SOFTWARE_VERSION @(#) $Id: qualityFilter.pl,v 1.8 2007/11/26 14:42:26 tc Exp $ #FILTER_CRITERION ((CHASTITY>=0.6)) #RUN_TIME Fri Apr 25 23:21:48 2008 #SOFTWARE_VERSION @(#) $Id: PhageAlign.cpp,v 1.7 2007/10/04 10:13:50 tc Exp $ #MAX_BLANKS 35 #SEQ_LENGTH 35 #GENOME_FILE /shared/solexa/solexa/Genomes/phi_plus_SNPs.txt #BASES_USED YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYn #SCORE_FILE s_5_0001_score.txt #SEQ_FILE /shared/solexa/ycao/080422_HWI-EAS88_0003/Data/C1-36_Firecrest1.9.2_25-04-2008_solexa/Bustard1.9.2_25-04-2008_solexa/s_5_0001_seq.txt #SCORE_FILE s_5_0001_score.txt AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TGAACAGCTTCTTGGGAAGTAGCGACAGCTTGGTT 3908 1 5093 R AACCAAGCTGTCGCTACTTCCCAAGAAGCTGTTCA -462 TCTACTGTAGACATTTTTACTTTTTATGTCCCTCA 3949 1 1187 F TCTACTGTAGACATTTTTACTTTTTATGTCCCTCA 340 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TCAGATGGATACATCTGTCAACGCCGCTAATCAGG 3952 1 2574 F TCAGATGGATACATCTGTCAACGCCGCTAATCAGG -77 TGAGTCGAAAAATTATCTTGATAAAGCAGGAATTA 4119 1 52 F TGAGTCGAAAAATTATCTTGATAAAGCAGGAATTA -159 TTTCTTACCTATTAGTGGTTGAACAGCATCGGACT 4117 1 353 R AGTCCGATGCTGTTCAACCACTAATAGGTAAGAAA -34 TCTCAGGAGGAAGCGGAGCAGTCCAAATGTTTTTG 3850 1 1498 R CAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGA -170 TAGTAATTCCTGCTTTATCAAGATAATTTTTCGAC 4026 1 55 R GTCGAAAAATTATCTTGATAAAGCAGGAATTACTA -29 TAATGTTTATGTTGGGTTCTTGGTTTGTTATAACT 2651 1 2808 F TAACGTTTATGTTGGTTTCATGGTTTGGTCTAACT 196 TTCAAGATTGCTGGAGGCCTCCACTATGAAATCGC 3951 1 4472 F TTCAAGATTGCTGGAGGCCTCCACTATGAAATCGC -162 TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCC 3945 1 2128 F TTCTGGTGATTTGCAAGAACGCGTACTTATTCGCC -270 TTCAGACTTTTATTTCTCGCCATAATTCAAACTTT 3997 1 2399 F TTCAGACTTTTATTTCTCGCCATAATTCAAACTTT 73 TACCATGAAAAAAATGTGAGTCATGTCTAACTAAC 2250 1 273 R CTGGTTTAGATATGAGTCACATTTTGTTCATGGTA 341 TATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTT 3944 1 3945 F TATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTT -373 TGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATA 3947 1 4958 F TGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATA -36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GGTCTAACTTTACCGCTACTAAATGCCGCGGATTG 3981 1 2834 F GGTCTAACTTTACCGCTACTAAATGCCGCGGATTG -621 GTTATTTCCTAGACAAATTAGAGCCAATACCATCA 4103 1 3884 R TGATGGTATTGGCTCTAATTTGTCTAGGAAATAAC -269 TGTCAGCGTCATAAGAGGTTTTACCTCCAAATGAA 4050 1 1663 R TTCATTTGGAGGTAAAACCTCTTATGACGCTGACA 383 TGAAAAACAAAGTAGCAGCGTCGATTGTGGCAATT -186 1 4278 R CAATGCTACAATGTGCTCCCCCAACTTGATATTAA -424 TATAGTGTTATTAATATCAAGTTGGGGGAGCACAT 4106 1 4288 R ATGTGCTCCCCCAACTTGATATTAATAACACTATA -520 GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 3933 1 4218 F GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 146 CAACAAGAGAATCTCTACCATGAACAAAATGTGAC 4053 1 288 R GTCACATTTTGTTCATGGTAGAGATTCTCTTGTTG 522 GTTATATTTTGATAGTTTGACGGTTAATGCTGGTA 4113 1 2517 F GTTATATTTTGATAGTTTGACGGTTAATGCTGGTA -121 TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT 3878 1 1422 F TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT -42 TAGTTGTTATAGATATTCAAATAACCCTGAAACAA 4196 1 1370 R TTGTTTCAGGGTTATTTGAATATCTATAACAACTA 133 TTTATCAAGATAATTTTTCGACTCATCAGAAATAT 4140 1 42 R ATATTTCTGATGAGTCGAAAAATTATCTTGATAAA -34 TTGATGAAAGCAATGCGACAGGCTCATGCTGATGG 3653 1 4530 F TTGATGAATGCAATGCGACAGGCTCATGCTGATGG -471 TATGATGTTTATCCTTTGGATGGTCGCCATGATGG 3805 1 2713 F TATGATGTTTATCCTTTGAATGGTCGCCATGATGG 157 GGTTGTCAGCGTCATAAGAGGTTTTACCTCCCAAT 3714 1 1666 R ATTTGGAGGTAAAACCTCTTATGACGCTGACAACC -250 TTCGCCACCATGATTATGACCAGTGTTTCCAGTCC 3882 1 2157 F TTCGCCACCATGATTATGACCAGTGTTTCCAGTCC 463 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 TTGCTATTCAGCGTTTGATGAATGCAATGCGACAG 4080 1 4516 F TTGCTATTCAGCGTTTGATGAATGCAATGCGACAG 160 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTA 3908 1 5054 R TAAAGGTCTAGGAGCTAAAGAATGGAACAACTCAC -237 GGATTGACACCCTCCCAATTGTATGTTTTCATGCC 3843 1 3924 F GGATTGACACCCTCCCAATTGTATGTTTTCATGCC -169 GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA 3904 1 1712 F GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA -367 TGTTCAGTAACTTGACTCATGATTTCTTACCTATT 3932 1 375 R AATAGGTAAGAAATCATGAGTCAAGTTACTGAACA 8 CACGCTGATTATTTTGACTTTGCGAGTATCGAGGC 3510 1 4011 F CACGCTGATTATTTTGACTTTGAGCGTATCGAGGC -301 GTAGTAATTCCTGCTTTATCAAGATAATTTTTCGA 4018 1 56 R TCGAAAAATTATCTTGATAAAGCAGGAATTACTAC -252 CGACCAAAATTAGGGTCAACGCTACCTGTAGGAAG 3955 1 4797 R CTTCCTACAGGTAGCGTTGACCCTAATTTTGGTCG -411 GACGCAGAAGTTAACACTTTCGGATATTTCTGATG 3877 1 19 F GACGCAGAAGTTAACACTTTCGGATATTTCTGATG -305 GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT 3995 1 2387 F GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT -394 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGC 3957 1 5052 R GCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTC -306 GTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG 4041 1 4093 R CCCCAATGCTTGGCTTCCATAAGCAGATGGATAAC -459 GTGGTCTATAGTGTTATTAATATCAAGTTGGGGGA 4129 1 4294 R TCCCCCAACTTGATATTAATAACACTATAGACCAC -396 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTCATCAGCAAACGCAGAATCAGCGGTATGGCTC 3920 1 3714 F GTTCATCAGCAAACGCAGAATCAGCGGTATGGCTC 629 AAGACGGCCATTAGCTGTACCATACTCAGGCACAC 3874 1 4732 R GTGTGCCTGAGTATGGTACAGCTAATGGCCGTCTT 293 GTAGTAATTCCTGCTTTATCAAGATAATTTTTCGA 4018 1 56 R TCGAAAAATTATCTTGATAAAGCAGGAATTACTAC -252 GAGATGGCAGCAACGGAAACCATAACGACCATCAT 3609 1 1464 R ATGATGCTCGTTATGGTTTCCGTTGCTGCCATCTC 131 GAATATCCTTAAGAGGGCGCTCAGCAGCCAGCTTG 3677 1 4391 R CAAGCTGGCTGCTGAACGCCCTCTTAAGGATATTC -295 TGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTT 3907 1 3682 F TGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTT -228 GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT 3848 1 232 F GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT -229 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GATTTAATTCGTAAACAAGCAGTAGTAATTCCTGC 4030 1 77 R GCAGGAATTACTACTGCTTGTTTACGAATTAAATC -318 GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG 4008 1 4568 F GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG -47 TTGAACACTCATCCTTAATACCTTTCTTTTTGGGG 3952 1 4442 R CCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAA -88 TGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTA 3956 1 3947 F TGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTA -42 TCCCCTTCGGGGCGGTGGTCTATAGTGTTATTTAT 3646 1 4308 R ATTAATAACACTATAGACCACCGCCCCGAAGGGGA -313 GGAGTAGTTGAAATGGTAATAAGACGACCAATCTG 4013 1 1070 R CAGATTGGTCGTCTTATTACCATTTCAACTACTCC 61 GAGAAGTTAATGGATGAATTGGCACAATGCTACAA 4009 1 4254 F GAGAAGTTAATGGATGAATTGGCACAATGCTACAA -88 GACGGTTAATGCTGGTAATGGTGGTTTTTTTCTTT 3337 1 2535 F GACGGTTAATGCTGGTAATGGTGGTTTTCTTCATT 246 GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT 4082 1 2864 F GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT -255 GATATTCAAATAACCCTGAAACAAATGCTTAGGGA 4088 1 1359 R TCCCTAAGCATTTGTTTCAGGGTTATTTGAATATC 204 GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG 3613 1 564 F GTTTATGGTACGCTGGACTTTGTGGGATACCCTCG -720 GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 3934 1 3768 F GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 108 TTTTGTTAACGTATTTAGCCACATAGAAACCAACA 4198 1 4997 R TGTTGGTTTCTATGTGGCTAAATACGTTAACAAAA -219 TAAAATAGTTGTTATAGATATTCAAATAACCCTGA 4140 1 1375 R TCAGGGTTATTTGAATATCTATAACAACTATTTTA -339 GTTATTATACCGTCAAGGACTGTGTGACTATTGAC 4022 1 2750 F GTTATTATACCGTCAAGGACTGTGTGACTATTGAC -531 GTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGT 3947 1 1980 F GTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGT -365 ATGTAGCTTTAGGTGTCTGTAAAACAGGTGCCGAA 4063 1 2475 R TTCGGCACCTGTTTTACAGACACCTAAAGCTACAT 194 GGTGTTAATCCTGACGGTTATTTCCTAGACAAATT 3688 1 3900 R AATTTGTCTAGGAAATAACCGTCAGGATTGACACC -421 GATGGATACATCTGTCAACGCCGCTAATCAGGTTG 3896 1 2577 F GATGGATACATCTGTCAACGCCGCTAATCAGGTTG -367 GGATATTTCTAATGTCGTCACTGATGCTGCTTCTG 3907 1 3773 F GGATATTTCTAATGTCGTCACTGATGCTGCTTCTG 804 GGTTATTAAAGAGATTATTTGTCTCCTGCCACTTT 3495 1 2883 F GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTA -334 GTTTGAATTATGGCGAGAAATAAAAGTCTGAAACA 4179 1 2396 R TGTTTCAGACTTTTATTTCTCGCCATAATTCAAAC 140 GATAGTAATCCACGCTCTTTTAAAATGTCAACAAG 4081 1 316 R CTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 389 TCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGA 4069 1 2009 F TCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGA 165 GATAGTTTGACGGTTAATGCTGGTAATGGTGGTTT 3945 1 2527 F GATAGTTTGACGGTTAATGCTGGTAATGGTGGTTT 140 GCATTGGGATTATCATAAAACGCCTCTAATCGGTC 3948 1 4602 R GACCGATTAGAGGCGTTTTATGATAATCCCAATGC -603 TAAAATGCAACTGGACAATCAGAAAGAGATTGCCG 4022 1 3395 F TAAAATGCAACTGGACAATCAGAAAGAGATTGCCG 1242 GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC 3853 1 4122 F GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC -87 GCCGAAGAAGCTGGAGTAACAGAAGTGAGAACCAG 4001 1 2446 R CTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGGC -270 GCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGC 3950 1 3297 F GCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGC -92 GATTAACCCTGATACCAACAAAATACCTAAGCATC 3280 1 1336 F GATTAACCCTGATACCAATAAAATCCCTAAGCATT 35 GGTTTCCGAGATTATGCGCCAAATGCTTACTCAAG 3995 1 3602 F GGTTTCCGAGATTATGCGCCAAATGCTTACTCAAG -315 GTACGCGTTCTTGCAAATCACCAGAAGGCGGTTCC 3910 1 2119 R GGAACCGCCTTCTGGTGATTTGCAAGAACGCGTAC -208 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GGTTATCCATCTGCTTATGTAAGCCAAGCGTTGGG 3468 1 4094 R CCCAATGCTTGGCTTCCATAAGCAGATGGATAACC -131 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC 3868 1 1529 F GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC -20 GATAATCACGAGTATCCTTTCCTTTATCAGCGGCA 3936 1 3257 R TGCCGCTGATAAAGGAAAGGATACTCGTGATTATC -364 GATATGAGTCACATTTTGTTCATGGTAGAGATTCT 3987 1 281 F GATATGAGTCACATTTTGTTCATGGTAGAGATTCT -234 GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 4098 1 3816 F GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 407 GGTTAATGCTGGTAATGGTGGTTTTCTTCCTTTCT 3193 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA -79 GATTGTTCAGTAACTTGACTCATGATTTCTTACCT 3915 1 378 R AGGTAAGAAATCATGAGTCAAGTTACTGAACAATC -112 GTTCAGAATCAGAATGAGCCGCAACTTCGGGATGA 3993 1 5123 F GTTCAGAATCAGAATGAGCCGCAACTTCGGGATGA -305 GGATATTTCTGATGAGTATAATTACCCCAAAAAGA 3246 1 4418 F GGATATTCGCGATGAGTATAATTACCCCAAAAAGA 614 GTGGTTTTCTTCATTGCATTCAGATGGATACATCT 4001 1 2555 F GTGGTTTTCTTCATTGCATTCAGATGGATACATCT -282 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TAATTCGTAAACAAGCAGTAGTAATTCCTGCTTTA 3965 1 73 R TAAAGCAGGAATTACTACTGCTTGTTTACGAATTA -239 GAGAACCAGCTTATCAGAAAAAAAGTTTGAATTAT 4022 1 2420 R ATAATTCAAACTTTTTTTCTGATAAGCTGGTTCTC -438 GAGGTGATTTATGTTTGGTGCTATTGCTGGCGGTT 3742 1 2921 F GAGGTGATTTATGTTTGGTGCTATTGCTGGCGGTA -107 GTGATTATCTTGCTGCTGCCTTTCCTGAGCTTAAT 3687 1 3283 F GTGATTATCTTGCTGCTGCATTTCCTGAGCTTAAT 48 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GTTGACGATGTAGCTTTAGGTGTCTGTAAAACAGG 4064 1 2482 R CCTGTTTTACAGACACCTAAAGCTACATCGTCAAC -270 GACACCTAAAGCTACATCGTCAACGTTATATTTTG 3896 1 2493 F GACACCTAAAGCTACATCGTCAACGTTATATTTTG 157 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA 4013 1 25 F GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA -194 GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA 4154 1 4428 F GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA -40 GTTATATGGCTGGTGGGTTTTTTTTTTTTTAATTC 1371 1 4987 F GTTATATGGCTGTTGGTTTCTATGTGGCTAAATAC -64 GGCGTTTTATGATAATCCCAATGCTTTGCGTGACT 3944 1 4613 F GGCGTTTTATGATAATCCCAATGCTTTGCGTGACT -239 GTAAGTTGGATTAAGCACTCCGTGGACAGATTTGT 3896 1 5172 R ACAAATCTGTCCACGGAGTGCTTAATCCAACTTAC -346 GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC 3868 1 1529 F GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC -20 GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT 3983 1 2746 F GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT -281 GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 4081 1 3808 F GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 97 GGATTTTATTGGTATCAGGGTTAATCGTGCCAAGA 4114 1 1327 R TCTTGGCACGATTAACCCTGATACCAATAAAATCC 238 TATTATGGAAAACACCAATCTTTCCAAGCAACAGC 4063 1 3566 F TATTATGGAAAACACCAATCTTTCCAAGCAACAGC -314 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GTTTGGTCAGTTCCATCAACATCATAGCCAGATGC 4008 1 1733 R GCATCTGGCTATGATGTTGATGGAACTGACCAAAC -197 GAAAACATACAATTGGGAGGGTGTCAATCCTGACG 3947 1 3919 R CGTCAGGATTGACACCCTCCCAATTGTATGTTTTC -159 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTTACTCTTGCGCTTGTTCGTTTTCCTCCTACTG 3644 1 1852 F GTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTG -145 GTTTGATGAATGCAATGCGACAGGCTCATGCTGAT 3957 1 4528 F GTTTGATGAATGCAATGCGACAGGCTCATGCTGAT -444 GTTTTTGACACTCTCACGTTGGCTGACGACCGATT 3961 1 4575 F GTTTTTGACACTCTCACGTTGGCTGACGACCGATT -440 GGACGCTCGACGCCATTAATAATGTTTTCCGTAAA 3919 1 696 R TTTACGGAAAACATTATTAATGGCGTCGAGCGTCC 345 GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT 3885 1 1793 F GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT -255 GGAGTAACAGAAGTGAGAACCAGCTTATCAGAAAA 4030 1 2434 R TTTTCTGATAAGCTGGTTCTCACTTCTGTTACTCC 150 GAGCATCATCTTGATTAAGCTCATTAGGGTTAGCC 3987 1 1438 R GGCTAACCCTAATGAGCTTAATCAAGATGATGCTC 794 GCAGGTTTAAGAGCCTCGATACGCTCAAAGTCAAA 4013 1 4023 R TTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGC -429 GCACCGCATGGAAATGAAGACGGCCATTAGCTGTG 3614 1 4748 R TACAGCTAATGGCCGTCTTCATTTCCATGCGGTGC -430 GAGAACCAGCTTATCAGAAAAAAAGTTTGAATTAT 4022 1 2420 R ATAATTCAAACTTTTTTTCTGATAAGCTGGTTCTC -438 GGATTGACACCCTCCCAATTGTATGTTTTCATGCC 3843 1 3924 F GGATTGACACCCTCCCAATTGTATGTTTTCATGCC -169 GTTCCTGAGCATGGCACTATGTTTACTCTTGCGCT 3856 1 1832 F GTTCCTGAGCATGGCACTATGTTTACTCTTGCGCT -181 GATTTTCTGACGAGTAACAAAGTTTGGATTGCTAC 4031 1 492 F GATTTTCTGACGAGTAACAAAGTTTGGATTGCTAC -173 TCGTCACTGATGCTGCTTCTGGTGTGGTTGATATT 3867 1 3787 F TCGTCACTGATGCTGCTTCTGGTGTGGTTGATATT 600 GATTACTTCATGCAGCGTTACCATGATGTTATTTC 3909 1 1628 F GATTACTTCATGCAGCGTTACCATGATGTTATTTC -25 GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 3915 1 4188 F GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 288 TGCCTTTAGTACCTCGCAACGGCTGCGGACGACCA 3945 1 883 R TGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGCA -767 TTATTACCCTTCTGAATGTCACGCTGATTATTTTG 3972 1 3992 F TTATTACCCTTCTGAATGTCACGCTGATTATTTTG -294 GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA 4069 1 777 F GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA -109 GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT 4115 1 486 F GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT -128 GCTACATCGTCAACGTTATATTTTGATAGTTTGAC 3968 1 2503 F GCTACATCGTCAACGTTATATTTTGATAGTTTGAC -512 GCTTAGGGATTTTATTGGTATCAGGGTTAATCGTG 4030 1 1333 R CACGATTAACCCTGATACCAATAAAATCCCTAAGC -332 GGCTCATGCTGATGGTTGGTTTATCGTTTTTGACA 3917 1 4550 F GGCTCATGCTGATGGTTGGTTTATCGTTTTTGACA 111 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA 4003 1 2368 F GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA -410 GATTAACCCTGATACCAATAAAATCCCTAAGCATT 4026 1 1336 F GATTAACCCTGATACCAATAAAATCCCTAAGCATT -396 ACGAGAGCGGTCAGTAGCAATCCAAACTTTGTTAC 3815 1 505 R GTAACAAAGTTTGGATTGCTACTGACCGCTCTCGT -186 GGGAGGGTGTCAATCCTGACGGTTATTTCCTAGAC 3822 1 3905 R GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC -430 TATGTATGTTGACGGCCATAAGGCTGCTTCTTACG 3692 1 4193 F TATGTATGTTGACGGCCATAAGGCTGCTTCTGACG 445 GAGGTTGACTTAGTTCATCAGCAAACGCAGAATCA 4024 1 3702 F GAGGTTGACTTAGTTCATCAGCAAACGCAGAATCA -78 GATGAGTCGAAAAATTATCTTGATAAAGCAGGAAT 4124 1 50 F GATGAGTCGAAAAATTATCTTGATAAAGCAGGAAT 46 GCGAGTCATTTCTTTGATTTGGTCATTGGTAAAAT 4027 1 3655 R ATTTTACCAATGACCAAATCAAAGAAATGACTCGC -506 GGTGATTTGCAAGAACGCGTACTTATTCGCCACCA 3898 1 2132 F GGTGATTTGCAAGAACGCGTACTTATTCGCCACCA -64 GAAGACGGCCATTAGCTGTACCATACTCAGGCACA 3902 1 4733 R TGTGCCTGAGTATGGTACAGCTAATGGCCGTCTTC 275 GTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGC 4006 1 210 F GTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGC -211 GTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATG 4057 1 2197 F GTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATG -159 TGATGCTGGTATTAAATCTGCCATTCAAGGCTCTA 4002 1 3074 F TGATGCTGGTATTAAATCTGCCATTCAAGGCTCTA -200 GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATT 4062 1 2192 F GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATT -120 TGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGAC 3917 1 2662 F TGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGAC -328 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGC 4055 1 4282 R GCTACAATGTGCTCCCCCAACTTGATATTAATAAC -317 GCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGC 3836 1 4916 F GCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGC -430 TGGTCGCCATGATGGTGGTTATTATACCGTCAAGG 3956 1 2733 F TGGTCGCCATGATGGTGGTTATTATACCGTCAAGG -248 GTTGCCGATACTTGGAACAATTTCTGGAAAGACGG 4072 1 3843 F GTTGCCGATACTTGGAACAATTTCTGGAAAGACGG -127 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA 4003 1 2368 F GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA -410 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 TTAATCAAGATGATGCTCGTTATGGTTTCCGTTGC 3894 1 1455 F TTAATCAAGATGATGCTCGTTATGGTTTCCGTTGC 404 GCATTGGGGATTGAGAAAGAGTAGAAATGCCACAA 4069 1 4067 R TTGTGGCATTTCTACTCTTTCTCAATCCCCAATGC -501 TGATGGAACTGACTAAACGTCGTTAGGCCAGTTTT 3578 1 1750 F TGATGGAACTGACCAAACGTCGTTAGGCCAGTTTT 206 GGTCGCCATGATGGTGGTTATTATACCGTCAAGGA 4016 1 2734 F GGTCGCCATGATGGTGGTTATTATACCGTCAAGGA -284 TCGCTTTGAGTCTTCTTCGGTTCCGACTACCCCCA 3380 1 2670 F TCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCC -346 GGCTATGATGTTGATGGAACTGACCAAACGTCGTT 3980 1 1739 F GGCTATGATGTTGATGGAACTGACCAAACGTCGTT -393 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GAAGTAGCGACAGCTTGGTTTTTAGTGAGTTGTTC 3849 1 5078 R GAACAACTCACTAAAAACCAAGCTGTCGCTACTTC -579 GCGAATAAGTACGCGTTCTTGCAAATCACCAGAAG 4007 1 2127 R CTTCTGGTGATTTGCAAGAACGCGTACTTATTCGC -226 GGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTG 3909 1 4142 F GGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTG -313 TTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGTT 3846 1 2003 F TTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGAT -166 GTTCGATAATGGTGATATGTATGTTGACGGCCATA 4048 1 4178 F GTTCGATAATGGTGATATGTATGTTGACGGCCATA -148 TTTTACCTTTAGACATTACATCACTCCTTCTGCAC 3756 1 829 R GTGCGGAAGGAGTGATGTAATGTCTAAAGGTAAAA -284 GAAAAAAAGTTTGAATTATGGCGAGAAATAAAAGT 4143 1 2404 R ACTTTTATTTCTCGCCATAATTCAAACTTTTTTTC -19 GACAGCTTGGTTTTTAGTGAGTTGTTCCATTCTTT 3877 1 5070 R AAAGAATGGAACAACTCACTAAAAACCAAGCTGTC -369 GTTCAGCAGCCAGCTTGCGGCAAAACTGCGTAACC 3900 1 4373 R GGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAAC -174 AACTAACGATTCTGTCAAAAACTGACGCGTTGGAT 3971 1 197 F AACTAACGATTCTGTCAAAAACTGACGCGTTGGAT -204 GAAAATAGTCACGCAAAGCATTGGGATTATCATAA 3984 1 4619 R TTATGATAATCCCAATGCTTTGCGTGACTATTTTC -277 GTTTTCCGCCTACTGCGACTAAAGAGATTCAGTAC 4015 1 1872 F GTTTTCCGCCTACTGCGACTAAAGAGATTCAGTAC -613 GAAGGGTAATAAGAACGAACCATAAAAAAGCCTCC 3978 1 3969 R GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTC -169 GTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGC 3989 1 2608 F GTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGC 911 TATCAGCGGCAGACTTGACACCAAGTCCAACCAAA 3677 1 3233 R TTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATA -228 TGACGACTTCTACCACATCTATTGACATTATGGGT 3936 1 1551 F TGACGACTTCTACCACATCTATTGACATTATGGGT -291 GTGGTTGAACAGCATCGGACTCTGATAGTAATCCA 3697 1 339 R TGGATTACTATCTGAGTCCGATGCTGTTCAACCAC -274 GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 4040 1 4173 F GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 165 GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 3835 1 4265 F GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 2 TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTT 3940 1 1891 F TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTT -223 GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA 4154 1 4428 F GATGAGTATAATTACCCCAAAAAGAAAGGTATTAA -40 TGGTTGAACAGCATCGGACTCAGATAGTAATCCAC 3940 1 338 R GTGGATTACTATCTGAGTCCGATGCTGTTCAACCA -340 GAAGCCTGAATGAGCTTAATAGAGGCCAAAGCGGT 3983 1 426 R ACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTC -25 GCAGTCCAAATGTTTTTGAGATGGCAGCAACGGAA 4065 1 1481 R TTCCGTTGCTGCCATCTCAAAAACATTTGGACTGC 539 GTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG 4041 1 4093 R CCCCAATGCTTGGCTTCCATAAGCAGATGGATAAC -459 TGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTG 3866 1 2589 F TGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTG 64 GGAGGGTGTCAATCCTGACGGTTATTTCCTAGACA 3879 1 3904 R TGTCTAGGAAATAACCGTCAGGATTGACACCCTCC -173 GATTTTCGTCTATTAATCAAAGATTTTGCTAAAGA 207 1 183 F GACCTTTCGCCATCAACTAACGATTCTGTCAAAAA -436 GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 3948 1 392 F GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 212 GATTTGGAGGCATGAAAACATACAATTGGGAGGGT 4059 1 3932 R ACCCTCCCAATTGTATGTTTTCATGCCTCCAAATC -611 GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC 3853 1 4122 F GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTC -87 GAACTAAGTCAACCTCAGCACTAACCTTGCGAGTC 3897 1 3683 R GACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTTC -21 GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG 4080 1 4231 F GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG -27 GAGCTTACTAAAATGCAACTGGACAATCAGAAAGA 4134 1 3387 F GAGCTTACTAAAATGCAACTGGACAATCAGAAAGA 1021 AAAAATTAAAATTTTTACCGCTTCGGCGTTATAAC 4006 1 2303 R GTTATAACGCCGAAGCGGTAAAAATTTTAATTTTT 1043 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGC 4055 1 4282 R GCTACAATGTGCTCCCCCAACTTGATATTAATAAC -317 GGCTGTTGGTTTCTATGTGGCTAAATACGTTTACA 3792 1 4994 F GGCTGTTGGTTTCTATGTGGCTAAATACGTTAACA -256 GATTTATGTTTGGTGCTATTGCTGGCGGGTTTGCT 3425 1 2926 F GATTTATGTTTGGTGCTATTGCTGGCGGTATTGCT 34 GTTTTTGACACTCTCACGTTGGCTGACGACCGATT 3961 1 4575 F GTTTTTGACACTCTCACGTTGGCTGACGACCGATT -440 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 TGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAAT 4052 1 2293 F TGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAAT -293 GCTGGAGTAACAGAAGTGAGAACCAGCTTATCAGA 3956 1 2437 R TCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGC -153 GGTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTA 3938 1 5062 R TAGGAGCTAAAGAATGGAACAACTCACTAAAAACC -159 GGTCTGGAAACGTACGGATTGCTCAGATACTTGAC 3139 1 394 R GTCAAGTTACTGAACAATCCGTACGTTTCCAGACC -388 GATAATTTTTCGACTCATCAGAAATATCCGAAAGT 4121 1 34 R ACTTTCGGATATTTCTGATGAGTCGAAAAATTATC -197 GCGCATAATCTCGGAAACCTGCTGTTGCTTTGTAA 3411 1 3586 R TTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGC -221 ATTCGTAAACAAGCAGTAGTAATTCCTGCTTTATC 3917 1 71 R GATAAAGCAGGAATTACTACTGCTTGTTTACGAAT 109 GCTGTTGCCGATACTTGGAACAATTTCTGGAAAGA 4101 1 3840 F GCTGTTGCCGATACTTGGAACAATTTCTGGAAAGA -16 GATTAACCCTGATACCAATAAAATCCCTAAGCATT 4026 1 1336 F GATTAACCCTGATACCAATAAAATCCCTAAGCATT -396 GCAGTGGAATAGTCGGGTTAAATTTAATGTGACCG 3709 1 2203 F GCAGTGGAATAGTCAGGTTAAATTTAATGTGACCG -162 TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT 3878 1 1422 F TGCCTGACCGTACCGAGGCTAACCCTAATGAGCTT -42 TTACTGAACAATCCGTACGTTTCCAGATCGCTTTG 3668 1 400 F TTACTGAACAATCCGTACGTTTCCAGACCGCTTTG -816 GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTA 4096 1 1652 F GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTA 121 GTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCA 3968 1 1701 F GTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCA -666 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 4093 1 3807 F GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 97 GAAATAACCGTCAGGATTGACACCCTCCCAATTGT 3837 1 3911 F GAAATAACCGTCAGGATTGACACCCTCCCAATTGT -82 GACGGCCATAAGGCTGCTTCTGACGTTCGTGATGA 3843 1 4203 F GACGGCCATAAGGCTGCTTCTGACGTTCGTGATGA 816 GCTTATCAGAAAAAAAGTTTGAATTATGGCGTGAA 3916 1 2412 R TTCTCGCCATAATTCAAACTTTTTTTCTGATAAGC 54 GTTTGTATCTGTTACTGAGAAGTTAATGGATGAAT 4166 1 4238 F GTTTGTATCTGTTACTGAGAAGTTAATGGATGAAT -409 GCAAGCATCTCATTTTGTGCATATACCTGGTCTTT 3884 1 3495 R AAAGACCAGGTATATGCACAAAATGAGATGCTTGC -471 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGA 3915 1 3686 R TCGCAAGGTTAGTGCTGAGGTTGACTTAGTTCATC -140 GAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGA 3892 1 4499 F GAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGA -151 GCCATACAAAACAGGGTCGCCAGCAATATCGGTAT 3871 1 1932 R ATACCGATATTGCTGGCGACCCTGTTTTGTATGGC 649 GCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG 3866 1 5371 F GCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG -150 GCGAGCAGTAGACTCTTTCTGTTGATAAGCAAGCA 3687 1 3523 R TGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGC 321 GTTGACTTAGTTCATCAGCAAACGCAGAATCAGCG 4064 1 3705 F GTTGACTTAGTTCATCAGCAAACGCAGAATCAGCG 27 GGACTGGTTTAGATATGAGTCACATTTTGTTCATG 3932 1 270 F GGACTGGTTTAGATATGAGTCACATTTTGTTCATG -182 GTAGTCGGAACCGAAGAAGACTCAAAGCGAACCAA 3979 1 2665 R TTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTAC 2 GGTTAAATCCAAAACGGCAGAAGCCTGAATGAGCT 3996 1 445 R AGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACC -295 GCTTCTTCGGCACCTGTTTTACAGACACCTAAAGC 4021 1 2470 F GCTTCTTCGGCACCTGTTTTACAGACACCTAAAGC -22 GCCCTCTTAAGGATATTCGCGATGAGTATAATTAC 4008 1 4408 F GCCCTCTTAAGGATATTCGCGATGAGTATAATTAC 366 GTTAATGCTGGTAATGGTGGTTTTCTTCATTTCTT 3451 1 2539 F GTTAATGCTGGTAATGGTGGTTTTCTTCATTGCAT 56 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 4140 1 4236 F GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA -215 TATTGCTTTTGATGCCGACCCTAAATTTTTTGCCT 3918 1 2628 F TATTGCTTTTGATGCCGACCCTAAATTTTTTGCCT 352 GCTGCTTATGCTAATTTGCATACTGACCAAGAACG 4097 1 1592 F GCTGCTTATGCTAATTTGCATACTGACCAAGAACG -140 GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG 3573 1 555 F GAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGG -59 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGC 3957 1 5052 R GCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTC -306 GAGATGCTTGCTTATCAACAGAAGGAGTCTACTGC 3973 1 3519 F GAGATGCTTGCTTATCAACAGAAGGAGTCTACTGC 374 GTAATTCCTGCTTTATCAAGATAATTTTTCGACTC 4016 1 53 R GAGTCGAAAAATTATCTTGATAAAGCAGGAATTAC -74 GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA 4069 1 777 F GGAAACACTGACGTTCTTACTGACGCAGAAGAAAA -109 GTTTTTGAGATGGCAGCAACGGAAACCATAACGAG 4097 1 1470 R CTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAAC 251 GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 3978 1 2617 F GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 362 GGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGAC 4025 1 2371 F GGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGAC -190 GGATTGAGAAAGAGTAGAAATGCCACAAGCCTCAA 4008 1 4060 R TTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCC -224 GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 3835 1 4265 F GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 2 GGTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTA 3938 1 5062 R TAGGAGCTAAAGAATGGAACAACTCACTAAAAACC -159 GCTTGGTTTTTAGTGAGTTGTTCCATTCTTTAGCT 3936 1 5066 R AGCTAAAGAATGGAACAACTCACTAAAAACCAAGC -373 GTAATCCACGCTCTTTTAAAATGTCAACAAGAGAA 4169 1 312 R TTCTCTTGTTGACATTTTAAAAGAGCGTGGATTAC 271 GCATGACAAGTAAAGGACGGTTGTCAGCGTCATAA 3938 1 1684 R TTATGACGCTGACAACCGTCCTTTACTTGTCATGC -207 GGTTAATGCTGGTAATGGTGGTTTTCTTTTTTTTA 2944 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA 72 GAAATAACATCATGGTAACGCTGCATGAAGTAATC 4010 1 1628 R GATTACTTCATGCAGCGTTACCATGATGTTATTTC 211 CCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGT 3749 1 1137 F CCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGT -397 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 GTGCTGATATTGCTTTTGATGCCGACCCTAAATTT 3958 1 2621 F GTGCTGATATTGCTTTTGATGCCGACCCTAAATTT 330 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTCAACGTTATATTTTGATAGTTTGACGGTTAATT 3819 1 2511 F GTCAACGTTATATTTTGATAGTTTGACGGTTAATG -122 GAGGGCGTTCAGCAGCCAGCTTGCGGCAAAACTGC 3836 1 4379 R GCAGTTTTGCCGCAAGCTGGCTGCTGAACGCCCTC -3 GATTTAATTCGTAAACAAGCAGTAGTAATTCCTGC 4030 1 77 R GCAGGAATTACTACTGCTTGTTTACGAATTAAATC -318 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 3923 1 612 F GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 992 GTTGAAATGGTAATAAGACGACCAATCTGACCAGC 3990 1 1064 R GCTGGTCAGATTGGTCGTCTTATTACCATTTCAAC 105 GAAGAGCCATACCGCTGATTCTGCGTTTGCTGATG 3800 1 3717 R CATCAGCAAACGCAGAATCAGCGGTATGGCTCTTC 519 GAGATGGACGCCGATGGCGCTCTCCGTCTTTCTCC 3310 1 1127 F GAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCC -130 GTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTT 4048 1 4227 F GTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTT 317 GTCAATCCTGACGGTTATTTCCTAGACAAATTAGA 4035 1 3897 R TCTAATTTGTCTAGGAAATAACCGTCAGGATTGAC -409 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA 3892 1 1691 F GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA -486 GCTTGATGCGGTTATCCATCTGCTTATGGAAGCCA 3980 1 4103 R TGGCTTCCATAAGCAGATGGATAACCGCATCAAGC 101 GCTCTAATTTGTCTAGGAAATAACCGTCAGGATTG 4105 1 3895 F GCTCTAATTTGTCTAGGAAATAACCGTCAGGATTG -331 GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 3948 1 392 F GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 212 GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA 3904 1 1712 F GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA -367 GTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGT 4063 1 305 F GTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGT -54 GGTGGTTTTCTTCATTGCATTCAGATGGATACATC 4041 1 2554 F GGTGGTTTTCTTCATTGCATTCAGATGGATACATC 44 GGTTACAGTATGCCCATCGCAGTTCGCTACACGCA 3915 1 4884 F GGTTACAGTATGCCCATCGCAGTTCGCTACACGCA -648 GTTTAAGAGCCTCGATACACTCAAAGTCAAAATAA 3788 1 4019 R TTATTTTGACTTTGAGCGTATCGAGGCTCTTAAAC -441 CTGTTTTACAGACACCTAAAGCTACATCGTCAACG 4031 1 2483 F CTGTTTTACAGACACCTAAAGCTACATCGTCAACG -32 GTTGACGGGATGAACATAATAAGCAATGACGGCAG 4051 1 625 R CTGCCGTCATTGCTTATTATGTTCATCCCGTCAAC 119 GGAGGAAGCGGAGCAGTCCAAATGTTTTTGAGATG 3834 1 1493 R CATCTCAAAAACATTTGGACTGCTCCGCTTCCTCC 506 GTAGCGACAGCTTGGTTTTTAGTGAGTTGTTCCAT 3856 1 5075 R ATGGAACAACTCACTAAAAACCAAGCTGTCGCTAC -642 GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 3948 1 392 F GAGTCAAGTTACTGAACAATCCGTACGTTTCCAGA 212 TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC 3847 1 2757 F TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC -401 GATTATCTTGCTGCTGCATTTCCTGAGCTTAATGC 3964 1 3285 F GATTATCTTGCTGCTGCATTTCCTGAGCTTAATGC -278 GAAGAAAACCACCATTACCAGCATTAACCGTCAAA 3968 1 2532 R TTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTC -170 GACTGGTTTAGATATGAGTCACATTTTGTTCATGG 3991 1 271 F GACTGGTTTAGATATGAGTCACATTTTGTTCATGG -352 GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 3978 1 2617 F GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 362 GTTATAGATATTCAAATAACCCTGAAACAAATGCT 4109 1 1365 R AGCATTTGTTTCAGGGTTATTTGAATATCTATAAC -126 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GGTATGGTTGACGCCGGATTTGAGAATCAAAAAGA 4091 1 3354 F GGTATGGTTGACGCCGGATTTGAGAATCAAAAAGA 172 GTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG 4041 1 4093 R CCCCAATGCTTGGCTTCCATAAGCAGATGGATAAC -459 TTAACCGAAGATGATTTCGATTTTCTGACGAGTAA 4064 1 474 F TTAACCGAAGATGATTTCGATTTTCTGACGAGTAA -313 GAAATAACCGTCAGGATTGACACCCTCCAAATTGT 3579 1 3911 F GAAATAACCGTCAGGATTGACACCCTCCCAATTGT 157 GGTTTAGATATGAGTCACATTTTGTTCATGGTAGA 4044 1 275 F GGTTTAGATATGAGTCACATTTTGTTCATGGTAGA 11 GATACTTGGAACAATTTCTGGAAAGACGGTAAAGC 4081 1 3849 F GATACTTGGAACAATTTCTGGAAAGACGGTAAAGC -417 GGCATCAAAAGCAATATCAGCACCAACAGAAACAA 4070 1 2609 R TTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCC 671 GCCAATTCATCCATTAACTTCTCAGTAACAGATAC 4028 1 4242 R GTATCTGTTACTGAGAAGTTAATGGATGAATTGGC -184 GTCATGCGGCATACGCTCGGCGCCAGTTTGTTTAT 3320 1 1008 R ATATTCAAACTGGCGCCGAGCGTATGCCGCATGAC -64 GTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGG 4004 1 3213 F GTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGG 253 GTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAA 4090 1 3139 F GTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAA 220 GGTGCTTTGACTTATACCGATATTGCTGGCGACCC 3942 1 1919 F GGTGCTTTGACTTATACCGATATTGCTGGCGACCC 29 GCTGGTATTAAATCTGCCATTCAAGGCTCTAATGT 3978 1 3078 F GCTGGTATTAAATCTGCCATTCAAGGCTCTAATGT 173 GACAAATAATCTCTTTAATAACCTGATTCAGCGAA 4062 1 2871 R TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTC 195 GGTACGGTCAGGCATCCACGGCGCTTTAAAATAGT 3872 1 1401 R ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACC -129 GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATG 3981 1 2607 F GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATG 931 GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG 3990 1 1879 F GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG -327 GTACGCCGGGCAATAATGTTTATGTTGGTTTCATG 3586 1 2795 F GTACGCCGGGCAATAACGTTTATGTTGGTTTCATG 334 GCCGAGGGTCGCAAGGCTAATGATTCACACGCCGA 3868 1 4680 F GCCGAGGGTCGCAAGGCTAATGATTCACACGCCGA 35 GGTTCGTTCTTATTACCCTTCTGAATGTCACGCTG 3929 1 3983 F GGTTCGTTCTTATTACCCTTCTGAATGTCACGCTG -329 GACAAATCTGCTCAAATTTATGCGCGCTTCGATAA 3982 1 5327 F GACAAATCTGCTCAAATTTATGCGCGCTTCGATAA -245 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 3851 1 2160 F GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 169 TCGATTTTCTGACGAGTAACAAAGTTTGGATTGCT 4021 1 490 F TCGATTTTCTGACGAGTAACAAAGTTTGGATTGCT -313 GCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGG 3943 1 223 F GCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGG 27 GGTAATAAGAACGAACCATAAAAAAGCCTCCAAGA 4054 1 3965 R TCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACC -312 GCTTGAGTAAGCATTTGGCGCATAATCTCGGAAAC 3995 1 3603 R GTTTCCGAGATTATGCGCCAAATGCTTACTCAAGC -158 GTGATTACTTCATGCAGCGTTACCATGATGTTATT 3975 1 1626 F GTGATTACTTCATGCAGCGTTACCATGATGTTATT -189 GTTCCATTCTTTAGCTCCTAGACCTTTAGCAGCAA 4030 1 5047 R TTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAAC 308 TAATAACCACCATCATGGCGACAATCCAAAGGATA 3508 1 2722 R TATCCTTTGAATGGTCGCCATGATGGTGGTTATTA 106 GTTTGGAGGCGGTCAAAAAGACGCCCCCGGTGGCC 3134 1 2993 F GTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGGCA -440 GCAACGGCTGAGGACGACCAGGGCGAGCGCCAGAA 3573 1 868 R TTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGC -474 GCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAA 4060 1 3699 F GCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAA -298 GCTCCTAGACCTTTAGCAGCAAGGTCCATATCTGA 3947 1 5034 R TCAGATATGGACCTTGCTGCTAAAGGTCTAGGAGC -257 GCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTA 3983 1 1822 F GCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTA 387 GGCCTTGCTATTGACTCTACTGTAGACATTTTTAC 3923 1 1172 F GGCCTTGCTATTGACTCTACTGTAGACATTTTTAC 723 GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC 3856 1 3905 F GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC -493 GAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAA 3832 1 4359 F GAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAA -325 GTTACTCCAGCTTCTTCGGCACCTGTTTTACAGAC 3913 1 2461 F GTTACTCCAGCTTCTTCGGCACCTGTTTTACAGAC 67 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT 3944 1 265 F GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT -254 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GAGTGGTCGGCAGATTGCGATAAACGGTCACATTA 3933 1 2227 R TAATGTGACCGTTTATCGCAATCTGCCGACCACTC -524 GCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCG 3963 1 3227 F GCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCG -101 GAATTTTCTCATTTTCCGCCAGCAGTCCACTTCGA 3958 1 110 R TCGAAGTGGACTGCTGGCGGAAAATGAGAAAATTC -359 GATTATTTTGACTTTGAGCGTATCGAGGCTCTTAA 4047 1 4017 F GATTATTTTGACTTTGAGCGTATCGAGGCTCTTAA -228 GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT 3959 1 3944 F GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT -320 GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG 4080 1 4231 F GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG -27 GATAATGGTGATATGTATGTTGACGGCCATAAGGC 4052 1 4182 F GATAATGGTGATATGTATGTTGACGGCCATAAGGC 315 GCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGA 3966 1 4923 F GCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGA 157 GCAATCTCTTTTTGAGTCTCATTTTGCATCTCGGC 3961 1 3426 R GCCGAGATGCAAAATGAGACTCAAAAAGAGATTGC 1363 GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC 3945 1 2367 F GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC -280 GCATGAAGTAATCACGTTCTTGGTCAGTATGCAAA 4026 1 1606 R TTTGCATACTGACCAAGAACGTGATTACTTCATGC 86 GGTATTGATAAAGCTGTTGCCGATACTTGGAACAA 4043 1 3828 F GGTATTGATAAAGCTGTTGCCGATACTTGGAACAA -290 GAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTT 3953 1 4146 F GAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTT -161 GGTGGCATTCAAGGTGATGTGCTTGCTACCGATAA 3933 1 3021 F GGTGGCATTCAAGGTGATGTGCTTGCTACCGATAA 218 GATTGCGATAAACGGTCACATTAAATTTAACCTGA 4015 1 2215 R TCAGGTTAAATTTAATGTGACCGTTTATCGCAATC 293 GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA 3970 1 1193 F GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA -394 GCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 3921 1 4166 F GCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 89 TATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA 3975 1 3083 F TATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA 352 GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC 3856 1 3905 F GTCTAGGAAATAACCGTCAGGATTGACACCCTCCC -493 GACTGAATGCCAGCAATCTCTTTTTGAGTCTCATT 3841 1 3438 R AATGAGACTCAAAAAGAGATTGCTGGCATTCAGTC 753 GATTTGCAAGAACGCGTACTTATTCGCCACCATGA 3962 1 2135 F GATTTGCAAGAACGCGTACTTATTCGCCACCATGA 3 GTATAATTACCCCAAAAAGAAAGGTATTAAGGATG 4129 1 4433 F GTATAATTACCCCAAAAAGAAAGGTATTAAGGATG -90 GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 3915 1 4188 F GGTGATATGTATGTTGACGGCCATAAGGCTGCTTC 288 GTCATTGTGAGCATTTTCATCCCGAAGTTGCGTCT 3643 1 5139 R AGCCGCAACTTCGGGATGAAAATGCTCACAATGAC -193 GTTTGGTCTAACTTTACCGCTACTAAATGCCGCGG 4009 1 2830 F GTTTGGTCTAACTTTACCGCTACTAAATGCCGCGG -694 GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT 3848 1 232 F GAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGT -229 GTTTACGAATTAAATCGAAGTGGACTGCTGGCGGA 4056 1 96 F GTTTACGAATTAAATCGAAGTGGACTGCTGGCGGA 112 GGTGGCATTCAAGGTGATGCGCTTGCTACCGATAC 3443 1 3021 F GGTGGCATTCAAGGTGATGTGCTTGCTACCGATAA -5 GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 3791 1 1139 F GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 102 GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC 3945 1 2367 F GGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTC -280 GTATATGCACAAAATGAGATGCTTGCTTATCAACA 4012 1 3504 F GTATATGCACAAAATGAGATGCTTGCTTATCAACA -69 GCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGA 3910 1 3198 F GCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGA 70 GACATTTTAAAAGAGCGTGGATTACTATCTGAGTC 3992 1 322 F GACATTTTAAAAGAGCGTGGATTACTATCTGAGTC -194 GAGCATCATCTTGATTAAGCTCATTAGGGTTAGCC 3987 1 1438 R GGCTAACCCTAATGAGCTTAATCAAGATGATGCTC 794 GCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCA 3873 1 4056 F GCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCA -69 GCAAGAGCAGAAGCAACACCGCCAGCAATGGCCCC 3079 1 2937 R GGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGC 208 GAGATTATGCGCCAAATGCTTACTCAAGCTCAAAC 3984 1 3609 F GAGATTATGCGCCAAATGCTTACTCAAGCTCAAAC -98 GTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTG 3837 1 544 F GTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTG -302 GGCTACAGTAACTTTTCACAGCCTCAATCTCATCT 3590 1 5266 R AGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCC -569 GAGTTTAATCATGTTTCAGACTTTTATTTCTCGCC 3940 1 2385 F GAGTTTAATCATGTTTCAGACTTTTATTTCTCGCC -75 GGATTGAGAAAGAGTAGAAATGCCACAAGCCTCAA 4008 1 4060 R TTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCC -224 GGTTAATGCTGGTAATGGTGGTTTTTTTCATTTCA 3432 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA 116 GCTACATCGTCAACGTTATATTTTGATAGTTTGAC 3968 1 2503 F GCTACATCGTCAACGTTATATTTTGATAGTTTGAC -512 GAAGTTGCGGCTCATTCTGATTCTGCACAGCTTCT 3618 1 5116 R AGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTC -148 GACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGA 3857 1 2352 F GACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGA 5 ATGCAACTGGACAATCAGAAAGAGATTGCCGAGAT 4013 1 3399 F ATGCAACTGGACAATCAGAAAGAGATTGCCGAGAT 1550 GATGGTTGGTTTATCGTTTTTGACACTCTCACGTT 3917 1 4560 F GATGGTTGGTTTATCGTTTTTGACACTCTCACGTT -138 GTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATG 4041 1 4154 F GTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATG 17 GACGGTTAATGCTGGTAATGGTGGTTTTTTTTTTT 3101 1 2535 F GACGGTTAATGCTGGTAATGGTGGTTTTCTTCATT 260 GCACCTGTTTTACAGACACCTAAAGCTACATCGTC 3947 1 2479 F GCACCTGTTTTACAGACACCTAAAGCTACATCGTC -131 GGATGAGGAGAAGTGGCTTAATATGCTTGGCACGT 3849 1 228 F GGATGAGGAGAAGTGGCTTAATATGCTTGGCACGT -20 TGTCAGCGTCATAAGAGGTTTTACCTCCAAATGAA 4050 1 1663 R TTCATTTGGAGGTAAAACCTCTTATGACGCTGACA 383 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 4011 1 2821 F GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 47 GTTTTATGATAATCCCAATGCTTTGCGTGACTATT 3990 1 4616 F GTTTTATGATAATCCCAATGCTTTGCGTGACTATT -279 GAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGA 3968 1 1982 F GAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGA -451 GTCTGAAACATGATTAAACTCCTAAGCAGAAAACC 4082 1 2371 R GGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGAC -136 GTAAATTCAGCGCCTTCCATGATGAGACAGGCCGT 3956 1 666 R ACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC -210 GCTGGAGTAACAGAAGTGAGAACCAGCTTATCAGA 3956 1 2437 R TCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGC -153 GGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCC 3762 1 857 F GGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCC -110 GTCTGCAAGCTGCTTATGCTAATTTGCATACTGAC 3976 1 1584 F GTCTGCAAGCTGCTTATGCTAATTTGCATACTGAC 69 GATGAGGGACATAAAAAGTAAAAATGTCTACAGTA 4053 1 1189 R TACTGTAGACATTTTTACTTTTTATGTCCCTCATC 14 GACAAGTAAAGGACGGTTGTCAGCGTCATAAGAGG 3968 1 1680 R CCTCTTATGACGCTGACAACCGTCCTTTACTTGTC 76 GTTTGCTGATGAACTAAGTCAACCTCAGCACTAAC 4024 1 3693 R GTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAAC 149 GTCAGTATTTTACCAATGACCAAATCAAAGAAATG 4194 1 3649 F GTCAGTATTTTACCAATGACCAAATCAAAGAAATG -222 GTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA 4036 1 2884 F GTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA -199 GTTTAAGAGCCTCGATACGCTCAAAGTCAAAATAA 4091 1 4019 R TTATTTTGACTTTGAGCGTATCGAGGCTCTTAAAC -313 GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 4098 1 3816 F GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 407 GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA 4045 1 5064 F GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA -354 GAATGGGAAGCCTTCAAGAAGGTGATAAGCAGGAG 4048 1 2079 R CTCCTGCTTATCACCTTCTTGAAGGCTTCCCATTC -166 GTTTATGGTGAACAGTGGATTAAGTTCATGAAGGA 4172 1 1229 F GTTTATGGTGAACAGTGGATTAAGTTCATGAAGGA -51 GTCGTGTTCAACAGACCTATAAACATTCTGTGCCG 3943 1 1788 F GTCGTGTTCAACAGACCTATAAACATTCTGTGCCG -183 GATGCTGTTCAACCACTAATAGGTAAGAAATCATG 4076 1 358 F GATGCTGTTCAACCACTAATAGGTAAGAAATCATG -65 GTTGGCTGACGACCGATTAGAGGCGTTTTATGATC 3671 1 4592 F GTTGGCTGACGACCGATTAGAGGCGTTTTATGATA 33 GTTGATGGCGAAAGGTCGCAAAGTAAGAGCTTCTC 3913 1 165 R GAGAAGCTCTTACTTTGCGACCTTTCGCCATCAAC -437 GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC 3997 1 379 F GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -467 GGTGCTGATATTGCTTTTGATGCCGACCCTAAATT 3926 1 2620 F GGTGCTGATATTGCTTTTGATGCCGACCCTAAATT 559 GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 3978 1 2617 F GTTGGTGCTGATATTGCTTTTGATGCCGACCCTAA 362 GCGTTGACAGATGTATCCATCTGAATGCAATGAAG 4055 1 2563 R CTTCATTGCATTCAGATGGATACATCTGTCAACGC -419 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 3923 1 612 F GTTGAGTTTATTGCTGCCGTCATTGCTTATTATGT 992 GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 3984 1 2743 F GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 26 GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 3860 1 4532 F GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 112 GTCTGTAAAACAGGTGCCGAAGAAGCTGGAGTAAC 4005 1 2461 R GTTACTCCAGCTTCTTCGGCACCTGTTTTACAGAC 0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GACGGTAAAGCTGATGGTATTGGCTCTAATTTTTT 3396 1 3873 F GACGGTAAAGCTGATGGTATTGGCTCTAATTTGTC 178 GTTTCCAGACCGCTTTGGCCTCTATTAAGCTCATT 3885 1 418 F GTTTCCAGACCGCTTTGGCCTCTATTAAGCTCATT -355 GCTCCCAAGCATTAAGCTCAGGAAATGCAGCAGCA 4025 1 3293 R TGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGC -136 GGGCATCTGGCTATGATGTTGATGGAACTGACCAA 3975 1 1731 F GGGCATCTGGCTATGATGTTGATGGAACTGACCAA -224 GAGGCATGAAAACATACAATTGGGAGGGTGTCAAT 3971 1 3926 R ATTGACACCCTCCCAATTGTATGTTTTCATGCCTC -401 GATGTATCCATCTGAATGCAATGAAGAAAACCACC 4077 1 2554 R GGTGGTTTTCTTCATTGCATTCAGATGGATACATC -79 GTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT 3997 1 1479 F GTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT 564 GACTGCCTATGATGTTTATCCTTTGGATGGTCGCC 3646 1 2706 F GACTGCCTATGATGTTTATCCTTTGAATGGTCGCC 44 GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG 3851 1 2445 F GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG -335 GACCGTTTATCGCAATCTGCCGACCACTCGCGATT 3850 1 2233 F GACCGTTTATCGCAATCTGCCGACCACTCGCGATT -253 GAACGGACTGGAAACACTGGTCATAATCATGGTGG 3935 1 2161 R CCACCATGATTATGACCAGTGTTTCCAGTCCGTTC -30 GTACGCGCAGGAAACACTGACGTTCTTACTGACGC 3840 1 768 F GTACGCGCAGGAAACACTGACGTTCTTACTGACGC -179 GGATTGTTCAGTAACTTGACTCATGATTTCTTACC 3931 1 379 R GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -364 GCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGA 4054 1 1864 F GCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGA -370 CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC 3616 1 563 F CGTTTATGGTACGCTGGACTTTGTGGGATACCCTC -615 GCCATCAACTAACGATTCTGTCAAAAACTGACGCG 4031 1 191 F GCCATCAACTAACGATTCTGTCAAAAACTGACGCG -169 GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA 3828 1 4382 F GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA -68 GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG 3988 1 4939 F GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG -492 GTAGAAGTCGTCATTTGGCGAGAAAGCTCAGTCTC 3894 1 1529 R GAGACTGAGCTTTCTCGCCAAATGACGACTTCTAC -18 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTA 4036 1 3708 F GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTA -161 GTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTA. 3852 1 5061 R CTAGGAGCTAAAGAATGGAACAACTCACTAAAAAC 30 GATATGTATGTTGACGGGCATAAGGCTGCTTCTGG 3407 1 4191 F GATATGTATGTTGACGGCCATAAGGCTGCTTCTGA 924 GCAGGAGAAACATACGAAGGCGCATAACGATACCA 3923 1 2051 R TGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGC 184 GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA 4013 1 25 F GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA -194 GCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGAC 3902 1 547 F GCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGAC 10 TTCCTAGACAAATTAGAGCCAATACCATCAGCTTT 3969 1 3879 R AAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAA -307 GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 3937 1 3150 F GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 43 GGTTGTTTCTGTTGGTGCTGATATTTCTTTTGATG 3710 1 2607 F GGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATG 660 GTTTCGCTGAATCAGGTTATTAAAGAGATTATTCG 3834 1 2869 F GTTTCGCTGAATCAGGTTATTAAAGAGATTATTTG 52 GCGTGGATTACTATCTGAGTCCGATGCTGTTCAAC 3915 1 336 F GCGTGGATTACTATCTGAGTCCGATGCTGTTCAAC -212 GTATGCAAATTAGCATAAGCAGCTTGCAGACCCAT 3968 1 1580 R ATGGGTCTGCAAGCTGCTTATGCTAATTTGCATAC -74 GCAGATTGCGATAAACGGTCACATTAAATTTAACC 3999 1 2218 R GGTTAAATTTAATGTGACCGTTTATCGCAATCTGC 214 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 4093 1 3807 F GGTGTGGTTGATATTTTTCATGGTATTGATAAAGC 97 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GACGTTCGTGATGAGTTTGTATCTGTTACTGAGGA 3746 1 4224 F GACGTTCGTGATGAGTTTGTATCTGTTACTGAGAA 408 GGAACAATTTCTGGAAAGACGGTAAAGCTGATGGT 3997 1 3856 F GGAACAATTTCTGGAAAGACGGTAAAGCTGATGGT -321 GACGGTTAATGCTGGTAATGGTGGGTTTTTTTTTT 2848 1 2535 F GACGGTTAATGCTGGTAATGGTGGTTTTCTTCATT 7 GTGTTATTAATATCAAGTTGGGGGAGCACATTGTA 4079 1 4284 R TACAATGTGCTCCCCCAACTTGATATTAATAACAC -296 GTTATTATACCGTCAAGGACTGTGTGACTATTGAC 4022 1 2750 F GTTATTATACCGTCAAGGACTGTGTGACTATTGAC -531 GATGAGTTTGTATCTGTTACTGAGAAGTTAATGGA 4099 1 4233 F GATGAGTTTGTATCTGTTACTGAGAAGTTAATGGA -194 GGTAGAAGTCGTCATTTGGCGAGAAAGCTCAGTCT 3920 1 1530 R AGACTGAGCTTTCTCGCCAAATGACGACTTCTACC -77 GTTATTTCCTAGACAAATTAGAGCCAATACCATCA 4103 1 3884 R TGATGGTATTGGCTCTAATTTGTCTAGGAAATAAC -269 GCTTTAAAATAGTTGTTATAGATATTCAAATAACC 4176 1 1379 R GGTTATTTGAATATCTATAACAACTATTTTAAAGC -262 GGAGTTTAATCATGTTTCAGACTTTTATTTCTCGC 3920 1 2384 F GGAGTTTAATCATGTTTCAGACTTTTATTTCTCGC -335 GAAAGTGTTAACTTCTGCGTCATGGAAGCGATAAA 4052 1 5 R TTTATCGCTTCCATGACGCAGAAGTTAACACTTTC -441 GTTCTTATTACCCTTCTGAATGTCACGCTGATTAT 4020 1 3988 F GTTCTTATTACCCTTCTGAATGTCACGCTGATTAT -165 GAACGCGTACTTATTCGCCACCATGATTATGACCA 3885 1 2144 F GAACGCGTACTTATTCGCCACCATGATTATGACCA -487 TAACCATAAGGCCACGTATTTTGCAAGCTATTTAA 3964 1 4854 R TTAAATAGCTTGCAAAATACGTGGCCTTATGGTTA -180 GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 3860 1 4532 F GATGAATGCAATGCGACAGGCTCATGCTGATGGTT 112 GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC 3920 1 429 F GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC -25 GGGCAATAATGTTTATGTTGGTTTCATGGTTTGGT 3609 1 2802 F GGGCAATAACGTTTATGTTGGTTTCATGGTTTGGT 120 GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT 3944 1 265 F GTCAAGGACTGGTTTAGATATGAGTCACATTTTGT -254 GGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCAC 3870 1 2448 F GGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCAC -508 GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGA 3936 1 669 F GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGA -280 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCT 3957 1 2071 F GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCT 36 GGAGAAACATACGAAGGCGCATAACGATACCACTG 3894 1 2048 R CAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCC 184 GAGCAGTAGACTCCTTCTGTTGATAAGCAAGCATC 3973 1 3521 R GATGCTTGCTTATCAACAGAAGGAGTCTACTGCTC 342 GGCTGGAGACAAATAATCTCTTTAATAACCTGATT 3925 1 2878 R AATCAGGTTATTAAAGAGATTATTTGTCTCCAGCC 221 GATTAAACTCCTAAGCAGAAAACCTACCGCGCTTC 3929 1 2360 R GAAGCGCGGTAGGTTTTCTGCTTAGGAGTTTAATC -342 GCATTAACCGTCAAACTATCAAAATATAACGTTGA 4060 1 2512 R TCAACGTTATATTTTGATAGTTTGACGGTTAATGC -213 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GCAAACGCAGAATCAGCGGTATGGCTCCTCTCATA 3586 1 3722 F GCAAACGCAGAATCAGCGGTATGGCTCTTCTCATA 96 GATTTAACCGAAGATGATTTCGATTTTCTGACGAG 4035 1 471 F GATTTAACCGAAGATGATTTCGATTTTCTGACGAG -226 GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 3791 1 1139 F GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 102 GCCACAACCAATCAGAACGTGAAAAAGCGTCCTGC 3610 1 4916 R GCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGC -227 GCTCTTACTTTGCGACCTTTCGCCATCAACTAACG 3985 1 170 F GCTCTTACTTTGCGACCTTTCGCCATCAACTAACG -506 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GACCTATAAACATTCTGTGCCGCGTTTCTTTGTTC 3803 1 1801 F GACCTATAAACATTCTGTGCCGCGTTTCTTTGTTC -501 GGCGTGAAGTCGCCGACTGAATGCCAGCAATCTCT 3802 1 3452 R AGAGATTGCTGGCATTCAGTCGGCGACTTCACGCC 513 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GGTGTCAATCCTGACGGTTATTTCCTAGACAAATT 3985 1 3900 R AATTTGTCTAGGAAATAACCGTCAGGATTGACACC -310 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG 3988 1 4939 F GTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCG -492 GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT 3959 1 3944 F GTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTT -320 GCTGCATGAAGTAATCACGCTCTTGGTCAGTATGC 3672 1 1609 R GCATACTGACCAAGAACGTGATTACTTCATGCAGC 79 GTCTAATATTCAAACTGGCGCCGAGCGTATGCCGC 3934 1 1003 F GTCTAATATTCAAACTGGCGCCGAGCGTATGCCGC -98 GGATTGTTCAGTAACTTGACTCATGATTTCTTACC 3931 1 379 R GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -364 GTCCTTTACCAGC.TTAGCCATAGCACCAGAAAC. 3758 1 3143 R TGTTTCTGGTGCTATGGCTAAAGCTGGTAAAGGAC 450 GTTTGAGCTTGAGTAAGCATTTGGCGCATAATCTC 3970 1 3609 R GAGATTATGCGCCAAATGCTTACTCAAGCTCAAAC -200 GGTTAATGCTGGTAATGGTGGTTTTCTTCCTTTCA 3434 1 2538 F GGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCA -141 GTAAAATACTGACCAGCCGTTTGAGCTTGAGTAAG 3970 1 3627 R CTTACTCAAGCTCAAACGGCTGGTCAGTATTTTAC -129 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 3644 1 1129 F GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 107 GGATTGTTCAGTAACTTGACTCATGATTTCTTACC 3931 1 379 R GGTAAGAAATCATGAGTCAAGTTACTGAACAATCC -364 GACAGATGTATCCATCTGAATGCAATGAAGAAAAC 4113 1 2558 R GTTTTCTTCATTGCATTCAGATGGATACATCTGTC -409 GTCGGCTACAGTAACTTTTCCCAGCCTCAATCTCA 3864 1 5269 R TGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGAC -276 GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA 3902 1 2644 F GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA -305 GAATGTTTATAGGTCTGTTGAACACGACCAGAAAA 4142 1 1781 R TTTTCTGGTCGTGTTCAACAGACCTATAAACATTC 316 GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 3835 1 4265 F GGATGAATTGGCACAATGCTACAATGTGCTCCCCC 2 GAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT 3883 1 3869 F GAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT -350 GTGATAAGCAGGAGAAACATACGAAGGCGCATAAC 4008 1 2058 R GTTATGCGCCTTCGTATGTTTCTCCTGCTTATCAC -299 GCAGTAGTAATTCCTGCTTTATCAAGATAATTTTT 3943 1 59 R AAAAATTATCTTGATAAAGCAGGAATTACTACTGC -292 AAGGCTTCCCATTCATTCAGGAACCGCCTTCTGGT 3845 1 2100 F AAGGCTTCCCATTCATTCAGGAACCGCCTTCTGGT -316 AAAGCTGTTGCCGATACTTGGAACAATTTCTGGAA 3962 1 3837 F AAAGCTGTTGCCGATACTTGGAACAATTTCTGGAA -250 GTTTCGCTGAATCAGGTTATTAAAGAGATTATTTG 4060 1 2869 F GTTTCGCTGAATCAGGTTATTAAAGAGATTATTTG -37 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GAGAAACATACGAAGGCGCATAACGATACCACTGA 3930 1 2047 R TCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTC -121 GATTACTTCATGCAGCGTTACCATGATGTTATTTC 3909 1 1628 F GATTACTTCATGCAGCGTTACCATGATGTTATTTC -25 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GCTTAATATGCTTGGCACGTTCGTCAAGGACTGGT 4001 1 243 F GCTTAATATGCTTGGCACGTTCGTCAAGGACTGGT -81 GCTATCAGTATTTTTGTGTGCCTGAGTATGGTACA 4034 1 4717 F GCTATCAGTATTTTTGTGTGCCTGAGTATGGTACA -57 GCTTGGTTTTTAGTGAGTTGTTCCATTCTTTAGCT 3936 1 5066 R AGCTAAAGAATGGAACAACTCACTAAAAACCAAGC -373 GACATTATGGGTCTGCAAGCTGCTTATGCTAATTT 3906 1 1574 F GACATTATGGGTCTGCAAGCTGCTTATGCTAATTT -209 GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGG 3987 1 4451 F GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGG -119 CACATCTATTGACATTATGGGTCTGCAAGCTGCTT 3976 1 1564 F CACATCTATTGACATTATGGGTCTGCAAGCTGCTT -485 GGTATTGGCTCTAATTTGTCTAGGAAATAACCGTC 4027 1 3888 F GGTATTGGCTCTAATTTGTCTAGGAAATAACCGTC -489 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 GAGCTTTCTCGCCAAATGACGACTTCTACCACATC 3925 1 1535 F GAGCTTTCTCGCCAAATGACGACTTCTACCACATC 104 GTTGAACACGACCAGAAAACTGGCCTAACGCCGCT 3455 1 1765 R AACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAAC -519 TACGTGGCCTTATGGTTACAGTATGCCCATCGCAG 3930 1 4871 F TACGTGGCCTTATGGTTACAGTATGCCCATCGCAG 191 GCAAGGTCCATATCTGACTTTTTGTTAACGTATTT 3907 1 5016 R AAATACGTTAACAAAAAGTCAGATATGGACCTTGC -326 GAGATGGCAGCAACGGAAACCATAACGAGCATCAT 3887 1 1464 R ATGATGCTCGTTATGGTTTCCGTTGCTGCCATCTC 311 GTCGGGAGAGGAGTGGCATTAACACCATCCTTCAT 3784 1 1256 R ATGAAGGATGGTGTTAATGCCACTCCTCTCCCGAC -310 GTCCACACCATTGCTTTATCTAAAAGGTTTTCACG -363 1 1558 F TTCTACCACATCTATTGACATTATGGGTCTGCAAG -529 GATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCG 3826 1 2638 F GATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCG -278 GATAAGTTGCTTGATTTGGTTGGACTTGGTGGCTA 3767 1 3219 F GATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAA 130 GATTTGAGAATCAAAAAGAGCTTACTAAAATGCAA 4131 1 3370 F GATTTGAGAATCAAAAAGAGCTTACTAAAATGCAA 1077 GGATATTTCTGATGAGTCGAAAAATTATCTTGATA 4074 1 40 F GGATATTTCTGATGAGTCGAAAAATTATCTTGATA -17 GAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGA 3947 1 4143 F GAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGA -64 GGTAATAAGAACGAACCATAACAAAGCCTCCAAGA 3793 1 3965 R TCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACC -57 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA 4041 1 2893 F GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA -161 GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 4004 1 3034 F GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 253 GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA 3828 1 4382 F GTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA -68 GTAATTTTTGACGCACGTTTTCTTCTGCGTCAGTA 3972 1 794 R TACTGACGCAGAAGAAAACGTGCGTCAAAAATTAC -311 GTTTTGTATGGCAACTTGCCGCCGCGTGAAATTTC 3935 1 1955 F GTTTTGTATGGCAACTTGCCGCCGCGTGAAATTTC -188 GGGTTAGGAACATTAGAGCCTTGAATGGCAGATTT 3931 1 3087 R AAATCTGCCATTCAAGGCTCTAATGTTCCTAACCC -123 GCAAAAATTAAAATTTTTACCGCTTCGGCGTTATA 3983 1 2305 R TATAACGCCGAAGCGGTAAAAATTTTAATTTTTGC 1233 TTGAATATTAGACATAATTTATCCTCAAGTAAGGG 4171 1 981 R CCCTTACTTGAGGATAAATTATGTCTAATATTCAA -446 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA 4003 1 2368 F GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCA -410 GCAGAGGAAGCATCAGCACCAGCGCGCTCCCAAGC 3510 1 3318 R GCTTGGGAGCGTGCTGGTGCTGATGCTTCCTCTGC -93 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA 4041 1 2893 F GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGA -161 GCCGCGTGAAATTTCTATGAAGGATGTTTTCCTTT 3617 1 1975 F GCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTT -181 GGTTTAAGAGCCTCGATACGCTCAAAGTCAAAATA 4021 1 4020 R TATTTTGACTTTGAGCGTATCGAGGCTCTTAAACC -192 GAATTAAATCGAAGTGGACTGCTGGCGGAAAATGA 4056 1 102 F GAATTAAATCGAAGTGGACTGCTGGCGGAAAATGA -637 GGTGTCAATCCTGACGGTTATTTCCTAGACAAATT 3985 1 3900 R AATTTGTCTAGGAAATAACCGTCAGGATTGACACC -310 GTCCTTCCTCGTACGCCGGGCAATAATGTTTATGT 3328 1 2785 F GTCCTTCCCCGTACGCCGGGCAATAACGTTTATGT -289 GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGA 3927 1 2311 F GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGA 1475 GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA 3904 1 1712 F GTCATGCGCTCTAATCTCTGGGCATCTGGCTATGA -367 GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 4004 1 3034 F GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 253 GATGAAAATGCTCACAATGACAAATCTGTCCACGG 3991 1 5153 F GATGAAAATGCTCACAATGACAAATCTGTCCACGG -201 GACTACCCTCCCGACTGCCTATGATGTTTATCCTT 3778 1 2694 F GACTACCCTCCCGACTGCCTATGATGTTTATCCTT -140 GAACGTTTTTTACCTTTAGACATTACATCACTCCT 3972 1 836 R AGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTC -175 GAAACAAATGCTTAGGGCTTTTATTGGTATCAGGG 3768 1 1342 R CCCTGATACCAATAAAATCCCTAAGCATTTGTTTC -110 GTGGTTGAACAGCATCGGACTCAGATAGTAATCCA 3977 1 339 R TGGATTACTATCTGAGTCCGATGCTGTTCAACCAC -316 ATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGC 4049 1 2284 F ATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGC -325 GGAAGGCGCTGAATTTACGGAAAACATTATTAATG 3955 1 683 F GGAAGGCGCTGAATTTACGGAAAACATTATTAATG -287 GTGCTCCCCCAACTTGATATTAATAACACTATAGA 4074 1 4290 F GTGCTCCCCCAACTTGATATTAATAACACTATAGA -278 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 3851 1 2160 F GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 169 GTAAACATAGTGCCATGCTCAGGAACAAAGAAACG 4098 1 1823 R CGTTTCTTTGTTCCTGAGCATGGCACTATGTTTAC 86 GAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTT 3864 1 3678 F GAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTT -377 GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 3984 1 2485 F GTTTTACAGACACCTAAAGCTACATCGTCAACGTT 348 GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 3934 1 3768 F GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 108 GATGAGACAGGCCGTTTGAATGTTGACGGGATGAA 3989 1 646 R TTCATCCCGTCAACATTCAAACGGCCTGTCTCATC 313 GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT 3929 1 2379 F GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT -40 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCG 3910 1 1485 F GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCG 25 GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 3644 1 1129 F GATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCAT 107 GGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGC 4030 1 4455 F GGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGC -196 GACCCTCAGCAATCTTAAACTTCTTAGACGAATCA 4013 1 2014 R TGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTC -202 GACGGGATGAACATAATAAGCAATGACGGCAGCAA 4015 1 622 R TTGCTGCCGTCATTGCTTATTATGTTCATCCCGTC 283 GACTGAATGCCAGCAATCTCTTTTTGAGTCTCATT 3841 1 3438 R AATGAGACTCAAAAAGAGATTGCTGGCATTCAGTC 753 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 4011 1 2821 F GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAA 47 GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC 4065 1 3885 F GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC -146 GTCGTAACCCAGCTTGGTAAGTTGGATTAAGCACT 3936 1 5188 R AGTGCTTAATCCAACTTACCAAGCTGGGTTACGAC 104 GGTCGAATTTTCTCATTTTCCGCCAGCAGTCCACT 3872 1 114 R AGTGGACTGCTGGCGGAAAATGAGAAAATTCGACC -319 GTTGACGGGATGAACATAATAAGCAATGACGGCAG 4051 1 625 R CTGCCGTCATTGCTTATTATGTTCATCCCGTCAAC 119 GTTGATGGCGAAAGGTCGCAAAGTAAGAGCTTCTC 3913 1 165 R GAGAAGCTCTTACTTTGCGACCTTTCGCCATCAAC -437 GTCAGTTTTTGACAGAATCGTTAGTTGATGGCGAA 4097 1 188 R TTCGCCATCAACTAACGATTCTGTCAAAAACTGAC -602 GTGGCATTCAAGGTGATGTGCTTGCTACCGATAAC 3925 1 3022 F GTGGCATTCAAGGTGATGTGCTTGCTACCGATAAC 199 GACACCCTCCCAATTGTATGTTTTCATGCCTCCAA 3857 1 3929 F GACACCCTCCCAATTGTATGTTTTCATGCCTCCAA -648 GACACCTAAAGCTACATCGTCAACGTTATATTTTG 3896 1 2493 F GACACCTAAAGCTACATCGTCAACGTTATATTTTG 157 GTAAAGTTAGACCAAACCATGAAACCAACATAAAC 4110 1 2812 R GTTTATGTTGGTTTCATGGTTTGGTCTAACTTTAC -270 GGAAGTAGCGACAGCTTGGTTTTTAGTGAGTTGTT 3857 1 5079 R AACAACTCACTAAAAACCAAGCTGTCGCTACTTCC -534 GGCGGAAAATGAGAAAATTCGACCTATCCTTGCGC 3821 1 125 F GGCGGAAAATGAGAAAATTCGACCTATCCTTGCGC -444 GATTACTTCATGCAGCGTTACCATGATGTTATTTC 3909 1 1628 F GATTACTTCATGCAGCGTTACCATGATGTTATTTC -25 GCTCAAATTTATGCGCGCTTCGATAAAAATGATTG 4071 1 5336 F GCTCAAATTTATGCGCGCTTCGATAAAAATGATTG -195 CTCAACGCAGCGACGAGCACGAGAGCGGTCAGTAG 3903 1 523 R CTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAG 177 GTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAA 4034 1 5102 F GTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAA -81 GTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCT 3844 1 2679 F GTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCT -10 GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG 3979 1 3611 F GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG -529 GCTTTAAAATAGTTGTTATAGATATTCAAATAACC 4176 1 1379 R GGTTATTTGAATATCTATAACAACTATTTTAAAGC -262 GTTATTTCCTAGACAAATTAGAGCCAATACCATCA 4103 1 3884 R TGATGGTATTGGCTCTAATTTGTCTAGGAAATAAC -269 GACGACTTCTACCACATCTATTGACATTATGGGTC 3931 1 1552 F GACGACTTCTACCACATCTATTGACATTATGGGTC -217 GATTAGAGGCGTTTTATGATAATCCCAATGCTTTG 3988 1 4606 F GATTAGAGGCGTTTTATGATAATCCCAATGCTTTG -109 GTCGGGAGGGTAGTCGGAACCGAAGAAGACTCAAA 3952 1 2674 R TTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGAC -453 GCATTTTAGTAAGCTCTTTTTGATTCTCAAATCCG 4044 1 3368 R CGGATTTGAGAATCAAAAAGAGCTTACTAAAATGC 597 GAACAATCCGTACGTTTCCAGACCGCTTTGGCCTC 3780 1 405 F GAACAATCCGTACGTTTCCAGACCGCTTTGGCCTC -277 GAAATAACCGTCAGGATTGACACCCTCCCAATTGT 3837 1 3911 F GAAATAACCGTCAGGATTGACACCCTCCCAATTGT -82 GTTATAACCTCACACTCACCCTATTATCACGTCGT 2707 1 2276 R ACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC -454 GACGGTTATTTCCTAGACAAATTAGAGCCAATACC 4013 1 3888 R GGTATTGGCTCTAATTTGTCTAGGAAATAACCGTC -285 GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG 3613 1 564 F GTTTATGGTACGCTGGACTTTGTGGGATACCCTCG -720 GCAGGAATTACTACTGCTTGTTTACGAATTAAATC 3991 1 77 F GCAGGAATTACTACTGCTTGTTTACGAATTAAATC -356 GCATCCACGGCGCTTTAAAATAGTTGTTATAGATA 4029 1 1390 R TATCTATAACAACTATTTTAAAGCGCCGTGGATGC 115 GAAGAGCCATACCGCTGATTCTGCGTTTGCTGATG 3800 1 3717 R CATCAGCAAACGCAGAATCAGCGGTATGGCTCTTC 519 GGGAAAGGTCATGCGGCATACGCTCGGCGCCAGTT 3750 1 1015 R AACTGGCGCCGAGCGTATGCCGCATGACCTTTCCC -361 GGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAA 3976 1 3240 F GGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAA 108 CTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAG 3991 1 4081 F CTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAG -449 GAAATATCCGAAAGTGTTAACTTCTGCGTCATGGA 3965 1 14 R TCCATGACGCAGAAGTTAACACTTTCGGATATTTC -230 GGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTG 3841 1 4484 F GGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTG -671 GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 3937 1 3150 F GGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGA 43 GCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTC 3921 1 4044 F GCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTC 84 GTAAAAATGTCTACAGTAGAGTCAATAGCAAGGCC 4059 1 1172 R GGCCTTGCTATTGACTCTACTGTAGACATTTTTAC 735 GCCAATATGAGAAGAGCCATACCGCTGATTCTGCG 3856 1 3727 R CGCAGAATCAGCGGTATGGCTCTTCTCATATTGGC 264 GTGGTAGAAGTCGTCATTTGGCGAGAAAGCTCAGT 3931 1 1532 R ACTGAGCTTTCTCGCCAAATGACGACTTCTACCAC 234 GTGAAGTCGCCGACTGAATGCCAGCAATCTCTTTT 3768 1 3449 R AAAAGAGATTGCTGGCATTCAGTCGGCGACTTCAC 326 GATGGCAGCAACGGAAACCCTAACGAGCATCATCT 3607 1 1462 R AGATGATGCTCGTTATGGTTTCCGTTGCTGCCATC 560 AAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA 3968 1 238 F AAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA 297 GTAAAGCTGATGGTATTGGCTCTAATTTTTCTAGG 3649 1 3877 F GTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGG 425 TTTTTCGACTCATCAGAAATATCCGAAAGTGTTAA 4128 1 29 R TTAACACTTTCGGATATTTCTGATGAGTCGAAAAA 227 GATAAAGCTGTTGCCGATACTTGGAACAATTTCTG 3933 1 3834 F GATAAAGCTGTTGCCGATACTTGGAACAATTTCTG -357 GTATCAGGGTTAATCGTGCCAAGAAAAGCGGCATG 4014 1 1316 R CATGCCGCTTTTCTTGGCACGATTAACCCTGATAC -86 GCACAGAATGTTTATAGGTCTGTTGAACACGACCA 4035 1 1786 R TGGTCGTGTTCAACAGACCTATAAACATTCTGTGC -18 TTAATAACACTATAGACCACCGCCCCGAAGGGGAC 3991 1 4309 F TTAATAACACTATAGACCACCGCCCCGAAGGGGAC -389 GTCCAAATGTTTTTGAGATGGCAGCAACGGAAACC 4094 1 1478 R GGTTTCCGTTGCTGCCATCTCAAAAACATTTGGAC 445 GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 4004 1 3034 F GTGATGTGCTTGCTACCGATAACAATACTGTAGGC 253 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 4140 1 4236 F GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA -215 GTTGCGGCTCATTCTGATTCTGAACAGCTTCTTGG 3898 1 5113 R CCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAAC 129 GCTGATTATTTTGACTTTGAGCGTATCGTGGTTCT 3513 1 4014 F GCTGATTATTTTGACTTTGAGCGTATCGAGGCTCT -170 GGATAACCGCATCAAGCTCTTGGAAGAGATTCTGT 3905 1 4121 F GGATAACCGCATCAAGCTCTTGGAAGAGATTCTGT -28 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA 3892 1 1691 F GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAA -486 CATGTTTCAGACTTTTATTTCTCGCCATAATTCAA 4044 1 2394 F CATGTTTCAGACTTTTATTTCTCGCCATAATTCAA -253 GTTTTCTTCTGCGTCAGTAAGAACGTCAGTGTTTC 4003 1 778 R GAAACACTGACGTTCTTACTGACGCAGAAGAAAAC -387 GGAGCAGTCCAAATGTTTTTGAGATGGCAGCAACG 3953 1 1484 R CGTTGCTGCCATCTCAAAAACATTTGGACTGCTCC -30 GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG 3990 1 1879 F GCCTACTGCGACTAAAGAGATTCAGTACCTTAACG -327 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAA 4109 1 1644 F GTTACCATGATGTTATTTCTTCATTTGGAGGTAAA -217 GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG 4080 1 4231 F GTGATGAGTTTGTATCTGTTACTGAGAAGTTAATG -27 GGAAGCCTTCAAGAAGGTGATAAGCAGGAGAAACA 4076 1 2074 R TGTTTCTCCTGCTTATCACCTTCTTGAAGGCTTCC -88 GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG 3979 1 3611 F GATTATGCGCCAAATGCTTACTCAAGCTCAAACGG -529 GCGATTCAATCATGACTTCGTGATAAAAGATTGAG 4095 1 2262 F GCGATTCAATCATGACTTCGTGATAAAAGATTGAG -211 GGTTGTCAGCGTCATAAGAGGTTTTACCTCCAAAT 3965 1 1666 R ATTTGGAGGTAAAACCTCTTATGACGCTGACAACC -490 GCTTGATGCGGTTATCCATCTGCTTATGGAAGCCA 3980 1 4103 R TGGCTTCCATAAGCAGATGGATAACCGCATCAAGC 101 GTAATTCCTGCTTTATCAAGATAATTTTTCGACTC 4016 1 53 R GAGTCGAAAAATTATCTTGATAAAGCAGGAATTAC -74 GGATTGACACCCTCCCAATTGTATGCTTTCATGCC 3589 1 3924 F GGATTGACACCCTCCCAATTGTATGTTTTCATGCC -167 GGTTATATTGACCATGCCGCTTTTCTTGGCACGAT 3937 1 1304 F GGTTATATTGACCATGCCGCTTTTCTTGGCACGAT -362 GAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCT 3731 1 2344 F GAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCT -81 GAATTTACGGAAAACATTATTAATGGCGTCGAGCG 4083 1 693 F GAATTTACGGAAAACATTATTAATGGCGTCGAGCG 776 GAAATCATCTTCGGTTAAATCCAAAACGGCAGAAG 4107 1 457 R CTTCTGCCGTTTTGGATTTAACCGAAGATGATTTC -402 TTGTATGGCAACTTGCCGCCGCGTGAAATTTCTAT 3873 1 1958 F TTGTATGGCAACTTGCCGCCGCGTGAAATTTCTAT 88 GTTAATGCTGGTAATGGTGGTTTTCTTCTTTTCCT 3185 1 2539 F GTTAATGCTGGTAATGGTGGTTTTCTTCATTGCAT 160 GCGGTGGTCTATAGTGTTATTAATATCAAGTTGTG 3809 1 4297 R CCCAACTTGATATTAATAACACTATAGACCACCGC -135 GGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 4014 1 1996 F GGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT -162 GTTCAAGATTGCTGGAGGCCTCCACTATGAAATCG 3968 1 4471 F GTTCAAGATTGCTGGAGGCCTCCACTATGAAATCG -156 GCGCCAGAACGTTTTTTACCTTTAGACATTACATC 3906 1 842 R GATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGC -365 GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG 3573 1 555 F GAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGG -59 GTTCGATAATGGTGATATGTATGTTGACGGCCATA 4048 1 4178 F GTTCGATAATGGTGATATGTATGTTGACGGCCATA -148 GCATTAACACCATCCTTCATGAACTTAATCCACTG 3982 1 1241 R CAGTGGATTAAGTTCATGAAGGATGGTGTTAATGC 165 GAAAACATACAATTGGGAGGGTGTCAATCCTGACG 3947 1 3919 R CGTCAGGATTGACACCCTCCCAATTGTATGTTTTC -159 GCCTATGATGTTTATCCTTTGGATGGTCGCCATGA 3754 1 2710 F GCCTATGATGTTTATCCTTTGAATGGTCGCCATGA -173 GAATGAATGGGAAGCCTTCAAGAAGGTGATAAGCA 4016 1 2083 R TGCTTATCACCTTCTTGAAGGCTTCCCATTCATTC 127 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 4140 1 4236 F GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA -215 GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT 3885 1 1793 F GTTCAACAGACCTATAAACATTCTGTGCCGCGTTT -255 GACAGAATCGTTAGTTGGTGGAGTAAGGTGGCAAA 2944 1 178 R TTTGCGACCTTTCGCCATCAACTAACGATTCTGTC -113 GCGGCTCATTCTGATTCTGAACAGCTTCTTGGGAA 3953 1 5110 R TTCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGC -226 GATTCAATCATGACTTCGTGATAAAAGATTGAGTG 4084 1 2264 F GATTCAATCATGACTTCGTGATAAAAGATTGAGTG 187 GCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTT 3866 1 4034 F GCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTT 280 GACGCAGAAGTTAACACTTTCGGATATTTCTGTTG 3628 1 19 F GACGCAGAAGTTAACACTTTCGGATATTTCTGATG -263 GGTTATTTCCTAGACAAATTAGAGCCAATACCATC 4058 1 3885 R GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC -222 GCGCCGTGGATGCCTGACCGTACCGAGGCTAACCC 3789 1 1412 F GCGCCGTGGATGCCTGACCGTACCGAGGCTAACCC -815 GGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAA 3929 1 4064 F GGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAA -342 GGAAAGCGAGGGTATCCTACAAAGTCCAGCGTACC 3574 1 570 R GGTACGCTGGACTTTGTGGGATACCCTCGCTTTCC -172 GGTGAACAGTGGATTAAGTTCATGAAGGATGGTGT 3967 1 1235 F GGTGAACAGTGGATTAAGTTCATGAAGGATGGTGT -34 TGACGACATTAGAAATATCCTTTGCAGTAGCGCCA 3955 1 3758 R TGGCGCTACTGCAAAGGATATTTCTAATGTCGTCA 238 GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG 4008 1 4568 F GTTTATCGTTTTTGACACTCTCACGTTGGCTGACG -47 GCGTCGTGGCCTTGCTATTGACTCTACTGTAGACA 3922 1 1165 F GCGTCGTGGCCTTGCTATTGACTCTACTGTAGACA 210 GTACGCGTTCTTGCAAATCACCAGAAGGCGGTTCC 3910 1 2119 R GGAACCGCCTTCTGGTGATTTGCAAGAACGCGTAC -208 GGCTCTTAAACCTGCTATTGAGGCTTTTGGGTTTT 3113 1 4043 F GGCTCTTAAACCTGCTATTGAGGCTTGTGGCATTT 51 GGGTTAGGAACATTAGAGCCTTGAATGGCAGATTT 3931 1 3087 R AAATCTGCCATTCAAGGCTCTAATGTTCCTAACCC -123 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 3851 1 2160 F GCCACCATGATTATGACCAGTGTTTCCAGTCCGTT 169 GCCTAACGACGTTTGGTCAGTTCCATCAACATCAT 3912 1 1743 R ATGATGTTGATGGAACTGACCAAACGTCGTTAGGC -58 GACGACCAACATTAGGGTCAACGCTACCTGTAGGA 3675 1 4799 R TCCTACAGGTAGCGTTGACCCTAATTTTGGTCGTC -226 GCAATGACGGCAGCCATCAACTCAACAGGAGCAGG 3468 1 603 R CCTGCTCCTGTTGAGTTTATTGCTGCCGTCATTGC -74 GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA 3902 1 2644 F GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA -305 GTAAAACCTCTTATGACGCTGACAACCGTCCTTTA 3878 1 1674 F GTAAAACCTCTTATGACGCTGACAACCGTCCTTTA -576 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT 3943 1 1771 F GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT -502 GCTGTACCATACTCAGGCACACAACAATACTGATA 3767 1 4719 R TATCAGTATTTTTGTGTGCCTGAGTATGGTACAGC 256 GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT 3995 1 2387 F GTTTAATCATGTTTCAGACTTTTATTTCTCGCCAT -394 GTTGGGGGAGCACATTGTAGCATTGTGCCAATTCA 3889 1 4268 R TGAATTGGCACAATGCTACAATGTGCTCCCCCAAC -435 GCGTAACCGTCTTCTCGTTCTCTAAAAACCATTTT 3908 1 4346 R AAAATGGTTTTTAGAGAACGAGAAGACGGTTACGC -595 GAGTCATTTCTTTGATTTGGTCATTGGTAAAATAC 4122 1 3653 R GTATTTTACCAATGACCAAATCAAAGAAATGACTC -343 GATGATGCTCGTTATGGTTTCCGTTGCTGCCATCT 3851 1 1463 F GATGATGCTCGTTATGGTTTCCGTTGCTGCCATCT 351 GACCAGAAAACTGGCCTAACGACGTTTGGTCAGTT 3835 1 1756 R AACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTC 791 GCTCAAAGTCAAAATAATCAGCGTGACATTCAGAA 4059 1 4001 R TTCTGAATGTCACGCTGATTATTTTGACTTTGAGC -92 GTTTGCTGATGAACTAAGTCAACCTCAGCACTAAC 4024 1 3693 R GTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAAC 149 GCCTTCAAGAAGGTGATAAGCAGGAGAAACATACG 4093 1 2070 R CGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGC 53 GGCAGCAATAAACTCAACAGGAGCAGGAAAGCGAG 4068 1 595 R CTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCC -102 GACGAGCACGAGAGCGGTCAGTAGCAATCCAAACT 3865 1 512 R AGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTC -261 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GATTAAGCACTCCGTGGACAGATTTGTCATTGTGA 3919 1 5164 R TCACAATGACAAATCTGTCCACGGAGTGCTTAATC -131 GTGGTATCGTTATGCGACTTCGTATGTTTCTCCTG 3545 1 2050 F GTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTG -71 GTCAACAATTTTAATTGCAGGGGCTTCGGCCCCTT 3902 1 951 F GTCAACAATTTTAATTGCAGGGGCTTCGGCCCCTT 157 GATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTT 3862 1 2168 F GATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTT -32 GTGGATGCCTGACCGTACCGAGGCTAACCCTAATG 3871 1 1417 F GTGGATGCCTGACCGTACCGAGGCTAACCCTAATG -323 GAACGTCAGAAGCAGCCTTATGGCCGTCCACATAC 3615 1 4196 R GTATGTTGACGGCCATAAGGCTGCTTCTGACGTTC 543 GTAAACATAGTGCCATGCTCAGGAACAAAGAAACG 4098 1 1823 R CGTTTCTTTGTTCCTGAGCATGGCACTATGTTTAC 86 GCAGCAACGGAAACCATAACGAGCATCATCTTGAT 3879 1 1458 R ATCAAGATGATGCTCGTTATGGTTTCCGTTGCTGC 648 GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCA 3946 1 615 F GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCA 483 GCCGTTTGAATGTTGACGGGATGAACATAATAAGC 4083 1 636 R GCTTATTATGTTCATCCCGTCAACATTCAAACGGC -202 GTTATATTGACCATGCCGCTTTTCTTGGCACGATT 3906 1 1305 F GTTATATTGACCATGCCGCTTTTCTTGGCACGATT -216 GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT 3977 1 3158 F GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT -203 GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT 3977 1 3158 F GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT -203 GAAAATAGTCACGCAAAGCATTGGGATTATCATAA 3984 1 4619 R TTATGATAATCCCAATGCTTTGCGTGACTATTTTC -277 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 TTATCCTTTGGATGGTCGCCATGATGGTGGTTATT 3693 1 2721 F TTATCCTTTGAATGGTCGCCATGATGGTGGTTATT 273 GAGTTTGGCGCGATGGTGATTAAAGCGGCGAAGGA -98 1 3420 F GAGATTGCCGAGATGCAAAATGAGACTCAAAAAGA -250 GAATGCCAGCAATCTCTTTTTGAGTCTCATTTTGC 3855 1 3434 R GCAAAATGAGACTCAAAAAGAGATTGCTGGCATTC 1158 GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC 3964 1 2818 F GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC 76 GTGTCAAAAACGATAAACCAACCATCAGCATGAGC 3996 1 4551 R GCTCATGCTGATGGTTGGTTTATCGTTTTTGACAC 204 GATGCTGCTTCTGGTGTGGTTGATATTTTTCATTG 3686 1 3795 F GATGCTGCTTCTGGTGTGGTTGATATTTTTCATGG 143 GAAAAATATCAACCACACCAGAAGCAGCATCAGTG 3982 1 3791 R CACTGATGCTGCTTCTGGTGTGGTTGATATTTTTC 460 GAGATTCAGTACCTTAACGCTAAAGGTGCTTTGAC 3944 1 1895 F GAGATTCAGTACCTTAACGCTAAAGGTGCTTTGAC -29 GCAATCTCTTTTTGAGTCTCATTTTGCTTCTCGTT 3221 1 3426 R GCCGAGATGCAAAATGAGACTCAAAAAGAGATTGC 1071 GGTAATGGTGGGTTTCTTCATTTCATTCAGATGGG 3201 1 2548 F GGTAATGGTGGTTTTCTTCATTGCATTCAGATGGA -215 GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT 3841 1 2341 F GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT -223 GTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTA 3806 1 2349 F GTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTA -21 GATACATCTGTCAACGCCGCTAATCAGGTTGTTTC 3858 1 2581 F GATACATCTGTCAACGCCGCTAATCAGGTTGTTTC -425 GCATCAAAAGCAATATCAGCACCAACAGAAACAAC 4059 1 2608 R GTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGC 939 GGTAAAGTTAGACCAAACCATGAAACCAACATAAA 4097 1 2813 R TTTATGTTGGTTTCATGGTTTGGTCTAACTTTACC -260 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT 3943 1 1771 F GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCT -502 GCTACCTGTAGGAAGTGTCCGCATAAAGTGCACCG 3955 1 4777 R CGGTGCACTTTATGCGGACACTTCCTACAGGTAGC -786 GAACAGCATCGGACTCAGATAGTAATCCACGCTCT 3853 1 333 R AGAGCGTGGATTACTATCTGAGTCCGATGCTGTTC -15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGT 4018 1 2181 F GTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGT -415 GTTGTCAGCGTCATAAGAGGTTTTACCTCCAACTG 3746 1 1665 R CATTTGGAGGTAAAACCTCTTATGACGCTGACAAC 26 GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 4081 1 3808 F GTGTGGTTGATATTTTTCATGGTATTGATAAAGCT 97 GACGATGTAGCTTTAGGTGTCTGTAAAACAGGTGC 4009 1 2479 R GCACCTGTTTTACAGACACCTAAAGCTACATCGTC -194 GAAGCAATACCGCCAGCAATAGCACCAAACATAAA 3990 1 2928 R TTTATGTTTGGTGCTATTGCTGGCGGTATTGCTTC 452 GTAAAGGACGGTTGTCAGCGTCATAAGAGGTTTTA 3949 1 1675 R TAAAACCTCTTATGACGCTGACAACCGTCCTTTAC -387 GACCGACTCCAAACAATTTAGACATGGCGCCACCA 3617 1 2972 R TGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTC -20 GACAGCTTGGTTTTTAGTGAGTTGTTCCATTCTTT 3877 1 5070 R AAAGAATGGAACAACTCACTAAAAACCAAGCTGTC -369 GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT 3841 1 2341 F GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT -223 GAGCGTGGATTACTATCTGAGTCCGATGCTGTTCA 3829 1 334 F GAGCGTGGATTACTATCTGAGTCCGATGCTGTTCA 3 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GTACGGATTGTTCAGTAACTTGACTCATGATTTCT 3939 1 383 R AGAAATCATGAGTCAAGTTACTGAACAATCCGTAC -275 TTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC 3923 1 1486 F TTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC 22 GACTCCTTCTGTTGATAAGCAAGCATCTCATTTTG 3973 1 3513 R CAAAATGAGATGCTTGCTTATCAACAGAAGGAGTC 53 GCAGAATCAGCGGTATGGCTCCTCTCCTATTTGCG 3086 1 3728 F GCAGAATCAGCGGTATGGCTCTTCTCATATTGGCG -346 GAGGCTCTTAAACCTGCTATTGAGGCTTTTTGCAT 3360 1 4041 F GAGGCTCTTAAACCTGCTATTGAGGCTTGTGGCAT 525 GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA 3902 1 2644 F GACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGA -305 GCATGAAGTAATCACGTTCTTGGTCAGTATGCAAA 4026 1 1606 R TTTGCATACTGACCAAGAACGTGATTACTTCATGC 86 GCTTCTTGGGAAGTAGCGACAGCTTGGTTTTTAGT 3890 1 5087 R ACTAAAAACCAAGCTGTCGCTACTTCCCAAGAAGC -589 GGCGTGAAGTCGCCGACTGAATGCCAGCAATCTCT 3802 1 3452 R AGAGATTGCTGGCATTCAGTCGGCGACTTCACGCC 513 GTTGAACGGCGTCGCGTCGTAACCCAGCTTGGTAA 3856 1 5203 R TTACCAAGCTGGGTTACGACGCGACGCCGTTCAAC -408 GACTTCACGCCAGAATACGAAAGACCAGGTATATG 4013 1 3476 F GACTTCACGCCAGAATACGAAAGACCAGGTATATG -233 GTATGGCAACTTGCCGCCGCGTGAAATTTCTATGA 3859 1 1960 F GTATGGCAACTTGCCGCCGCGTGAAATTTCTATGA -170 GATTTGGAGGCATGAAGACATACAATTGGGAGGGT 3774 1 3932 R ACCCTCCCAATTGTATGTTTTCATGCCTCCAAATC -426 TTGGCGCATAATCTCGGAAACCTGCTGTTGCTTGG 3866 1 3589 R CCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAA 8 GATGTAGCTTTAGGTGTCTGTAAAACAGGTGCCGA 4029 1 2476 R TCGGCACCTGTTTTACAGACACCTAAAGCTACATC 162 GTACAGCTAATGGCCGTCTTCATTTCCCTTCGGTG 3334 1 4747 F GTACAGCTAATGGCCGTCTTCATTTCCATGCGGTG -302 GCGCTTCGCTTGGTCAACCCCTCAGCGGCTGCAAT 3119 1 2332 R ATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGC -685 GAATGCAATGCGACAGGCTCATGCTGATGGTTGGT 3862 1 4535 F GAATGCAATGCGACAGGCTCATGCTGATGGTTGGT -174 GACTTTTATTTCTCGCCATAATTCAAACTTTTTTT 3963 1 2403 F GACTTTTATTTCTCGCCATAATTCAAACTTTTTTT -167 GGGGACGAAAAATGGTTTTTAGAGAACGAGAAGAC 4060 1 4338 F GGGGACGAAAAATGGTTTTTAGAGAACGAGAAGAC -28 GCGGTTATCCATCTGCTTATGGAAGCCAAGCATTG 3986 1 4096 R CAATGCTTGGCTTCCATAAGCAGATGGATAACCGC -311 GCTGAATAGCAAAGCCTCTACGCGATTTCATAGTG 3888 1 4493 R CACTATGAAATCGCGTAGAGGCTTTGCTATTCAGC -119 GCTTCCATAAGCAGATGGATAACCGCATCAAGCTC 3965 1 4105 F GCTTCCATAAGCAGATGGATAACCGCATCAAGCTC -105 GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTC 3845 1 3969 F GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTC -321 GACGCTGACAACCGTCCTTTACTTGTCATGCGCTC 3770 1 1688 F GACGCTGACAACCGTCCTTTACTTGTCATGCGCTC -601 GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT 3622 1 562 F GCGTTTATGGTACGCTGGACTTTGTGGGATACCCT -622 GACTTTGTAGGATACCCTCGCTTTCCTGCTCCTGT 3476 1 579 F GACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGT 104 GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT 4082 1 2864 F GATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT -255 GCAAGAGCAGAAGCAATACCGCCAGCAATAGCAGC 3606 1 2937 R GGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGC 791 GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG 3573 1 555 F GAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGG -59 GCAAGCACATCACCTTGAATGCCACCGGAGGCGGC 3899 1 3012 R GCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGC -348 GAACAAGCGCAAGAGTAAACATAGTGCCATGCTCA 3898 1 1837 R TGAGCATGGCACTATGTTTACTCTTGCGCTTGTTC -204 TAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCT 3804 1 3314 F TAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCT -29 GACGACAAATCTGCTCAAATTTATGCGCGCTTCGA 3918 1 5324 F GACGACAAATCTGCTCAAATTTATGCGCGCTTCGA -440 GCTTGGAAAGATTGGTGTTTTCCCTAATAGACGCA 3793 1 3560 R TGCGTCTATTATGGAAAACACCAATCTTTCCAAGC -425 GGCAAAACTGCGTAACCGTCTTCTCGTTCTCTAAA 3834 1 4355 R TTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCC -149 GTTGAACGGCGTCGCGTCGTAACCCAGCTTGTTAA 3608 1 5203 R TTACCAAGCTGGGTTACGACGCGACGCCGTTCAAC -478 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA 4178 1 5002 F GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA -484 GGACACTTCCTACAGGTAGCGTTGACCCTAATTTT 3822 1 4792 F GGACACTTCCTACAGGTAGCGTTGACCCTAATTTT -172 GCCGCCAAAACGTCGGCTACAGTAACTTTTCCCAG 3794 1 5280 R CTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGC -283 GCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTA 3841 1 2039 F GCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTA 103 GATTTGTCATTGTGAGCATTTTCATCCCGAAGTTG 4011 1 5144 R CAACTTCGGGATGAAAATGCTCACAATGACAAATC -304 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 4101 1 276 F GTTTAGATATGAGTCACATTTTGTTCATGGTAGAG 31 GAACCATAAAAAAGCCTCCAAGATTTGGAGGCATG 3986 1 3953 R CATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTC -482 GACTCCTTCTGTTGATAAGCAAGCATCTCATTTTG 3973 1 3513 R CAAAATGAGATGCTTGCTTATCAACAGAAGGAGTC 53 GAGAAAGAGTAGAAATGCCACAAGCCTCAATAGCA 3960 1 4055 R TGCTATTGAGGCTTGTGGCATTTCTACTCTTTCTC 322 GAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCT 3876 1 3970 F GAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCT -66 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAA 3971 1 3151 F GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAA -36 GATTCTCTTGTTGACATTTTAAAAGAGCGTGGATT 4090 1 310 F GATTCTCTTGTTGACATTTTAAAAGAGCGTGGATT 500 GCGCTACTGCAAAGGATATTTCTAATGTCGTCACT 3893 1 3760 F GCGCTACTGCAAAGGATATTTCTAATGTCGTCACT -228 GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC 4065 1 3885 F GATGGTATTGGCTCTAATTTGTCTAGGAAATAACC -146 GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT 4012 1 2372 F GTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACT -365 GTGTCAATCCTGACGGTTATTTCCTAGACAAATTA 3995 1 3899 R TAATTTGTCTAGGAAATAACCGTCAGGATTGACAC -426 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACT 3896 1 2663 F GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACT -359 GTTTTTAGTGAGTTGTTCCATTCTTTAGCTCCTAG 4020 1 5061 R CTAGGAGCTAAAGAATGGAACAACTCACTAAAAAC -104 GTGAAAAAGCGTCCTGCGTGTAGCGAACTGCGATG 3908 1 4898 R CATCGCAGTTCGCTACACGCAGGACGCTTTTTCAC -447 GCTTGCAGACCCATAATGTCAATAGATGTGGTAGA 3996 1 1559 R TCTACCACATCTATTGACATTATGGGTCTGCAAGC -184 GGATTTTATTGGTATCAGGGTTAATCGTGCCAAGA 4114 1 1327 R TCTTGGCACGATTAACCCTGATACCAATAAAATCC 238 GTCATTTCTTTGATTTGGTCATTGGTAAAATACTG 4125 1 3651 R CAGTATTTTACCAATGACCAAATCAAAGAAATGAC -127 GATTCAGCGAAACCAATCCGCGGCATTTAGTAGCG 3908 1 2847 R CGCTACTAAATGCCGCGGATTGGTTTCGCTGAATC -586 GTTATAGATATTCAAATAACCCTGAAACAAATGCT 4109 1 1365 R AGCATTTGTTTCAGGGTTATTTGAATATCTATAAC -126 GCGCTTTAAAATAGTTGTTATAGATATTCAAATAA 4175 1 1381 R TTATTTGAATATCTATAACAACTATTTTAAAGCGC -321 CTCTACTGTAGACATTTTTACTTTTTATGTCCCTC 3947 1 1186 F CTCTACTGTAGACATTTTTACTTTTTATGTCCCTC 313 GATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTT 4029 1 1997 F GATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTT -141 GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT 3841 1 2341 F GCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTT -223 GTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCG 4008 1 845 F GTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCG -495 GCCTGCAACGTACCTTCAAGAAGTCCTTTACCAGC 3908 1 3165 R GCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGC -390 GTTAGCCTCGGTACGGCCAGGCATCCACGGCGCTT 3562 1 1410 R AAGCGCCGTGGATGCCTGACCGTACCGAGGCTAAC -469 GAGAAAGCTCAGTCTCAGGAGGAAGCGGAGCAGTC 3939 1 1510 R GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC -156 GATAAGCAAGCATCTCATTTTGTGCATATACCTGG 3921 1 3500 R CCAGGTATATGCACAAAATGAGATGCTTGCTTATC -578 GGTTTATCGTTTTTGACACTCTCACGTTGGCTGAC 3958 1 4567 F GGTTTATCGTTTTTGACACTCTCACGTTGGCTGAC -157 GACACCCTCCCACTTGTATGTTTTCATGCCTCCAA 3586 1 3929 F GACACCCTCCCAATTGTATGTTTTCATGCCTCCAA -620 GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 3984 1 2743 F GATGGTGGTTATTATACCGTCAAGGACTGTGTGAC 26 TGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTT 4039 1 3358 F TGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTT 462 GAGCCATACCGCTGATTCTGCGTTTGCTGATGAAC 3868 1 3714 R GTTCATCAGCAAACGCAGAATCAGCGGTATGGCTC 582 GTATCCTTTCCTTTATCAGCGGCAGGCTTGCCTCC 3409 1 3246 R GGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATAC -509 CAGAACGTGAAAAAGCGTCCTGCGTGTAGCGAACT 3870 1 4904 R AGTTCGCTACACGCAGGACGCTTTTTCACGTTCTG -432 GGCTTCCATAAGCAGATGGATAACCGCATCAAGCT 4003 1 4104 F GGCTTCCATAAGCAGATGGATAACCGCATCAAGCT -128 GGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAA 3890 1 4834 F GGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAA -292 GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 4098 1 3816 F GATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 407 GCTCGTTATGGTTTCCGTTGATGCCATCTCAAAAA 3759 1 1469 F GCTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAA 88 GTGTCCGCATAAAGTGCACCGCATGGAAATGAAGA 4040 1 4763 R TCTTCATTTCCATGCGGTGCACTTTATGCGGACAC -123 GTCATACTATCAAAATATAACGTTGACGATGTAGC 3746 1 2503 R GCTACATCGTCAACGTTATATTTTGATAGTTTGAC -198 GCGTCCATCTCGAAGGAGTCGCCAGCGATAACCGG 3891 1 1103 R CCGGTTATCGCTGGCGACTCCTTCGAGATGGACGC -412 GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCA 4040 1 1868 F GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCA -558 GAAAAATGGTTTTTAGAGAACGAGAAGACGGTTAC 4070 1 4344 F GAAAAATGGTTTTTAGAGAACGAGAAGACGGTTAC -586 GATTTCATAGTGGAGGCCTCCAGCAATCTTGAACA 3951 1 4470 R TGTTCAAGATTGCTGGAGGCCTCCACTATGAAATC -562 GTCCATATCTGACTTTTTGTTAACGTATTTAGCCA 4040 1 5011 R TGGCTAAATACGTTAACAAAAAGTCAGATATGGAC -280 GGCCGTTTGAATGTTGACGGGATGAACATAATAAG 4077 1 637 R CTTATTATGTTCATCCCGTCAACATTCAAACGGCC -4 GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA 4013 1 25 F GAAGTTAACACTTTCGGATATTTCTGATGAGTCGA -194 GAGAAAGCTCAGTCTCAGGAGGAAGCGGAGCAGTC 3939 1 1510 R GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC -156 GCTGTTCAACCACTAATAGGTAAGAAATCATGAGT 4077 1 361 F GCTGTTCAACCACTAATAGGTAAGAAATCATGAGT -145 GAATATCCTTAAGAGGGCGTTCAGCAGCCAGCTTG 3929 1 4391 R CAAGCTGGCTGCTGAACGCCCTCTTAAGGATATTC -43 GCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTC 3906 1 3617 F GCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTC -110 GAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTC 3731 1 3183 F GAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTC -406 GACTGCCTATGATGTTTATCCTTTGGATGGTCGCC 3646 1 2706 F GACTGCCTATGATGTTTATCCTTTGAATGGTCGCC 44 GATGCCCAGAGATTAGAGCGCATGACAAGTAAAGG 4029 1 1703 R CCTTTACTTGTCATGCGCTCTAATCTCTGGGCATC -637 GCCGTGGATGCCTGACCGTACCGAGGCTAACCCTA 3804 1 1414 F GCCGTGGATGCCTGACCGTACCGAGGCTAACCCTA -535 GTGATTATCTTGCTGCTGCATTTCCTGAGCTTAAT 3943 1 3283 F GTGATTATCTTGCTGCTGCATTTCCTGAGCTTAAT -207 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGA 4122 1 355 R TCCGATGCTGTTCAACCACTAATAGGTAAGAAATC -60 GTCTGGAAACGTACGGATTGTTCAGTAACTTGACT 3910 1 393 R AGTCAAGTTACTGAACAATCCGTACGTTTCCAGAC 29 GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC 3854 1 741 F GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC -537 GACGCCGGATTTGAGAATCAAAAAGAGCTTACTAA 3995 1 3363 F GACGCCGGATTTGAGAATCAAAAAGAGCTTACTAA 287 GCAACCTGTGACGACAAATCTGCTCAAATTTATGC 3930 1 5315 F GCAACCTGTGACGACAAATCTGCTCAAATTTATGC -418 GGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCT 3752 1 4938 F GGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCC -187 GTTCTTGGTCAGTATGCAAATTAGCATAAGCAGCT 4084 1 1591 R AGCTGCTTATGCTAATTTGCATACTGACCAAGAAC -90 GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT 3977 1 3158 F GGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGT -203 GCAATAATGTTTATGTTGGTTTCATGGTTTGGTCT 3622 1 2804 F GCAATAACGTTTATGTTGGTTTCATGGTTTGGTCT -159 GGTAACGCTGCATGAAGTAATCACGTTCTTGGTCA 3899 1 1615 R TGACCAAGAACGTGATTACTTCATGCAGCGTTACC -221 GGTAATAAGAACGAACCATAAAAAAGCCTCCAAGA 4054 1 3965 R TCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACC -312 GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 3933 1 4218 F GCTTCTGACGTTCGTGATGAGTTTGTATCTGTTAC 146 GTTTCAGGGTTATTTGAATATCTATAACAACTATT 4059 1 1372 F GTTTCAGGGTTATTTGAATATCTATAACAACTATT -103 GTCTAACTTTACCGCTACTAAATGCCGCGGATTGG 4007 1 2835 F GTCTAACTTTACCGCTACTAAATGCCGCGGATTGG -623 GCCTGACCGTACCGAGGCTAACCCTAATGAGCTTA 3864 1 1423 F GCCTGACCGTACCGAGGCTAACCCTAATGAGCTTA -57 GCAATAGCACCAAACATAAATCACCTCACTTAAGT 3957 1 2913 R ACTTAAGTGAGGTGATTTATGTTTGGTGCTATTGC -445 GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA 4045 1 5064 F GGAGCTAAAGAATGGAACAACTCACTAAAAACCAA -354 GGAGTTTTATGATAATCCCAATGCTTTGCGACACT 3141 1 4613 F GGCGTTTTATGATAATCCCAATGCTTTGCGTGACT -496 GGAGTAGTTGAAATGGTAATAAGACGACCAATCTG 4013 1 1070 R CAGATTGGTCGTCTTATTACCATTTCAACTACTCC 61 GTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTA 3966 1 4943 F GTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTA -453 GATGCTGGTATTAAATCTGCCATTCAAGGCTCTAA 3979 1 3075 F GATGCTGGTATTAAATCTGCCATTCAAGGCTCTAA 146 GTTTTCTGGTCGTGTTCAACAGACCTATAAACATT 4078 1 1780 F GTTTTCTGGTCGTGTTCAACAGACCTATAAACATT 224 GTGGAGGCCTCCAGCAATCTTGAACACTCATCCTT 3780 1 4461 R AAGGATGAGTGTTCAAGATTGCTGGAGGCCTCCAC -659 GCACGATTAACCCTGATACCAATAAAATCCCTAAG 3980 1 1332 F GCACGATTAACCCTGATACCAATAAAATCCCTAAG -287 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTA 3908 1 5054 R TAAAGGTCTAGGAGCTAAAGAATGGAACAACTCAC -237 GCCAGTTAAATAGCTTGCAAAATACGTGGCCTTAT 3939 1 4849 F GCCAGTTAAATAGCTTGCAAAATACGTGGCCTTAT -447 GTTCATGGTAGAGATTCTCTTGTTGACATTTTAAA 4014 1 298 F GTTCATGGTAGAGATTCTCTTGTTGACATTTTAAA 538 GCACGATTAACCCTGATACCAATAAAATCCCTAAG 3980 1 1332 F GCACGATTAACCCTGATACCAATAAAATCCCTAAG -287 GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC 3812 1 1510 F GACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTC -213 GCTTAATAGAGGCCAAAGCGGTCTGGAAACGTACG 3999 1 413 R CGTACGTTTCCAGACCGCTTTGGCCTCTATTAAGC -557 GATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTT 3845 1 2035 F GATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTT -539 GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG 3851 1 2445 F GCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGG -335 TTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGG 3906 1 2991 F TTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGG 80 GACTGTGTGACTATTGACGTCCTTCCTCGTACGCC 3575 1 2767 F GACTGTGTGACTATTGACGTCCTTCCCCGTACGCC 302 GTTCGTCAAGGACTGGTTTAGATATGAGTCACATT 3964 1 261 F GTTCGTCAAGGACTGGTTTAGATATGAGTCACATT -390 GTTTGGTGCTATTGCTGGCGGTATTTTTTCTTCTC 3112 1 2933 F GTTTGGTGCTATTGCTGGCGGTATTGCTTCTGCTC 183 GTTTTTTACCTTTAGACATTACATCACTCCTTCTG 3782 1 832 R CGGAAGGAGTGATGTAATGTCTAAAGGTAAAAAAC -331 GCTGAATTTACGGAAAACATTATTAATGGCGTCGA 4056 1 690 F GCTGAATTTACGGAAAACATTATTAATGGCGTCGA 244 GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCC 4015 1 4456 F GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCC -433 GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT 4115 1 486 F GATTTCGATTTTCTGACGAGTAACAAAGTTTGGAT -128 GTTGATGGAACTGACCAAACGTCGTTAGGCCAGTT 3908 1 1748 F GTTGATGGAACTGACCAAACGTCGTTAGGCCAGTT 666 GCAGCATCAGTGACGACATTAGAAATATCCTTTGC 3891 1 3768 R GCAAAGGATATTTCTAATGTCGTCACTGATGCTGC 61 GTTTCTTTGTTCCTGAGCATGGCACTATGTTTACT 3957 1 1824 F GTTTCTTTGTTCCTGAGCATGGCACTATGTTTACT 115 GCCATAATTCAAACTTTTTTTCTGATAAGCTGGTT 4015 1 2417 F GCCATAATTCAAACTTTTTTTCTGATAAGCTGGTT -161 GCCGAGGGTCGCAAGGCTACTGATTTCCACGCCGT 2853 1 4680 F GCCGAGGGTCGCAAGGCTAATGATTCACACGCCGA -150 TATGGTTTCCGTTGCTGCCATCTCAAAAACATTTG 4009 1 1475 F TATGGTTTCCGTTGCTGCCATCTCAAAAACATTTG 260 GAAAACCACCATTACCAGCATTAACCGTCAAACTA 3978 1 2529 R TAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTC 270 GTGCCAAGAAAAGCGGCATGGTCAATATAACCAGT 3914 1 1301 R ACTGGTTATATTGACCATGCCGCTTTTCTTGGCAC -306 GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT 3929 1 2379 F GCTTAGGAGTTTAATCATGTTTCAGACTTTTATTT -40 GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 3791 1 1139 F GTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGG 102 GCAGTAGGCGGAAAACGAACAAGCGCAAGAGTAAA 4022 1 1853 R TTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGC -113 GATGCGGTTATCCATCTGCTTATGGAAGCCAAGCA 3989 1 4099 R TGCTTGGCTTCCATAAGCAGATGGATAACCGCATC -458 GCTTATCAGAAAAAAAGTTTGAATTATGGCGAGAA 4172 1 2412 R TTCTCGCCATAATTCAAACTTTTTTTCTGATAAGC -2 GCACCTGTTTTACAGACACCTAAAGCTACATCGTC 3947 1 2479 F GCACCTGTTTTACAGACACCTAAAGCTACATCGTC -131 GCTCATGCTGATGGTTGGTTTATCGTTTTTGACAC 3951 1 4551 F GCTCATGCTGATGGTTGGTTTATCGTTTTTGACAC 100 GCTAAATACGTTAACAAAAAGTCAGATATGGACCT 4045 1 5013 F GCTAAATACGTTAACAAAAAGTCAGATATGGACCT -2 GTTTCTGTTGGTGCTGATATTGCTTTTTATGCCGA 3746 1 2611 F GTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGA 653 GGCCTCATCAGGGTTAGGAACATTAGAGCCTTGAA 3994 1 3097 R TTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCC -176 GAATTGGCACAATGCTACAATGTGCTCCCCCAACT 3878 1 4269 F GAATTGGCACAATGCTACAATGTGCTCCCCCAACT -407 GAATCAGGTTATTAAAGAGATTATTTGTCTCCAGC 4020 1 2877 F GAATCAGGTTATTAAAGAGATTATTTGTCTCCAGC 140 GATTGCTGGAGGCCTCCACTATGAAATCGCGTAGA 3942 1 4477 F GATTGCTGGAGGCCTCCACTATGAAATCGCGTAGA -459 GCGACAGCTTGGTTTTTAGTGAGTTGTTCCATTCT 3870 1 5072 R AGAATGGAACAACTCACTAAAAACCAAGCTGTCGC -308 GTTATAGAGATTCAAATAACCGTGAACCACCTGCT 2799 1 1365 R AGCATTTGTTTCAGGGTTATTTGAATATCTATAAC -302 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -138 1 2652 R ATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTT -194 GAGTCATTTCTTTGATTTGGTCATTGGTAAAATAC 4122 1 3653 R GTATTTTACCAATGACCAAATCAAAGAAATGACTC -343 GCAAGCATCTCATTTTGTGCATATACCTGTTCTTT 3620 1 3495 R AAAGACCAGGTATATGCACAAAATGAGATGCTTGC -595 GGGTCTGCAAGCTGCTTATGCTAATTTGCATACTG 3891 1 1582 F GGGTCTGCAAGCTGCTTATGCTAATTTGCATACTG -202 GCAGTCGGGAGGGTAGTCGGAACCGAAGAAGACTC 3895 1 2677 R GAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGC -184 GAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGC 3851 1 2677 F GAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGC -289 GAATCGTTAGTTGATGGCGAAAGGGCGCAAAGTAA 3828 1 174 R TTACTTTGCGACCTTTCGCCATCAACTAACGATTC -561 GTAAATTCAGCGCCTTCCATGATGAGACAGGCCGT 3956 1 666 R ACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC -210 GCATACTGACCAAGAACGTGATTACTTCATGCAGC 3925 1 1609 F GCATACTGACCAAGAACGTGATTACTTCATGCAGC -60 GCGCATGACAAGTAAAGGACGGTTGTCAGCGTCAT 3901 1 1686 R ATGACGCTGACAACCGTCCTTTACTTGTCATGCGC -441 GGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGG 3936 1 3168 F GGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGG -260 GTGATTTGCAAGAACGCGTACTTATTCGCCACCAT 3904 1 2133 F GTGATTTGCAAGAACGCGTACTTATTCGCCACCAT -292 GAAATTTCTATGAAGGATGTTTTCCTTTCTGGTGA 3697 1 1982 F GAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGA -394 GACGGTTGTCAGCGTCATAAGAGGTTTTTCCTCTA 3383 1 1669 R TGGAGGTAAAACCTCTTATGACGCTGACAACCGTC -171 GCAAAATGAGACTCAAAAAGAGATTGCTGGCATTC 3976 1 3434 F GCAAAATGAGACTCAAAAAGAGATTGCTGGCATTC 1198 GTTCGTTCTTATTACCCTTCTGAATGTCACGCTGA 4037 1 3984 F GTTCGTTCTTATTACCCTTCTGAATGTCACGCTGA -36 GGGTTAGGAACATTAGAGCCTTGAATGGCAGATTT 3931 1 3087 R AAATCTGCCATTCAAGGCTCTAATGTTCCTAACCC -123 GCAGTAGCGCCAATATGAGAAGAGCCATACCGCTG 3898 1 3735 R CAGCGGTATGGCTCTTCTCATATTGGCGCTACTGC -76 GCAGCAACGGAAACCATAACGAGCATCATCTTGAT 3879 1 1458 R ATCAAGATGATGCTCGTTATGGTTTCCGTTGCTGC 648 GAACGTTTTTTACCTTTAGACATTACATCACTCCT 3972 1 836 R AGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTC -175 GGTTGGTTTATCGTTTTTGACACTCTCACGTTGGC 3945 1 4563 F GGTTGGTTTATCGTTTTTGACACTCTCACGTTGGC -168 GCCTCATCAGGGTTAGGAACATTAGAGCCTTGAAT 3955 1 3096 R ATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGC 44 GGTCAGGCATCCACGGCGCTTTAAAATAGTTGTTA 3864 1 1396 R TAACAACTATTTTAAAGCGCCGTGGATGCCTGACC -283 GCTTTCATGCCTCCAAATCTTGGAGGCTTTTTTAT 3640 1 3948 F GTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTAT -45 GCTACTGCAAAGGATATTTCTAATGTCGTCACTGA 3980 1 3762 F GCTACTGCAAAGGATATTTCTAATGTCGTCACTGA 13 GCACCAGAAACAAAACTAGGGGCGGCCTCATCAGG 3857 1 3120 R CCTGATGAGGCCGCCCCTAGTTTTGTTTCTGGTGC 470 GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA 4178 1 5002 F GTTTCTATGTGGCTAAATACGTTAACAAAAAGTCA -484 GCAGATTTAATACCAGCATCACCCATGCCTACAGT 3896 1 3060 R ACTGTAGGCATGGGTGATGCTGGTATTAAATCTGC -219 TCCATTGCGTCGTGGCCTTGCTATTGACTCTACTG 3877 1 1159 F TCCATTGCGTCGTGGCCTTGCTATTGACTCTACTG -181 TATCAGTATTTTTGTGTGCCTGAGTATGGTACAGC 4071 1 4719 F TATCAGTATTTTTGTGTGCCTGAGTATGGTACAGC -48 GTGAGCATTTTCATCCCGAAGTTGCGGCTCATTCT 3839 1 5133 R AGAATGAGCCGCAACTTCGGGATGAAAATGCTCAC -324 GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT 3946 1 3082 F GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT 73 GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 4040 1 4173 F GTTGAGTTCGATAATGGTGATATGTATGTTGACGG 165 GACTCATCAGAAATATCCGAAAGTGTTAACTTCTG 3958 1 23 R CAGAAGTTAACACTTTCGGATATTTCTGATGAGTC -383 GAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGA 3955 1 1993 F GAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGA -266 GCCACTTCTCCTCATCCAACGCGTCAGTTTTTGAC 3868 1 210 R GTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGC -288 TTTATGGTACGCTGGACTTTGTAGGATACCCTCGC 3570 1 565 F TTTATGGTACGCTGGACTTTGTGGGATACCCTCGC -623 GAATCTCTTCCAAGAGCTTGATGCGGTTATCCATC 3867 1 4118 R GATGGATAACCGCATCAAGCTCTTGGAAGAGATTC -198 GCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCAT 3810 1 161 F GCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCAT -171 GGCAGCAAGAACCATACGACCAATATCACGAAAAT 4003 1 4648 R ATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCC 311 GGCGAGAAATAAAAGTCTGAGACATGATTAAACTC 3708 1 2385 R GAGTTTAATCATGTTTCAGACTTTTATTTCTCGCC -566 GGTTAAATTTAATGTGACCGTTTATCGCAATCTGC 4009 1 2218 F GGTTAAATTTAATGTGACCGTTTATCGCAATCTGC 117 GCTACACGCAGGACGCTTTTTCACGTTCTGGTTGG 3793 1 4909 F GCTACACGCAGGACGCTTTTTCACGTTCTGGTTGG -405 GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGAT 4075 1 2863 F GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGAT -108 GATTAAGCACTCCGTGGACAGATTTGTCATTGTGA 3919 1 5164 R TCACAATGACAAATCTGTCCACGGAGTGCTTAATC -131 GCTACTTCCCAAGAAGCTGTTCAGAATAAGAATGA 3789 1 5105 F GCTACTTCCCAAGAAGCTGTTCAGAATCAGAATGA -95 GAAGAAAACCACCATTACCAGCATTAACCGTCAAC 3730 1 2532 R TTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTC -141 GCGCAAGAGTAAACATAGTGCCATGCTCAGGAACA 3970 1 1831 R TGTTCCTGAGCATGGCACTATGTTTACTCTTGCGC 58 GACAGATGTATCCATCTGAATGCAATGAAGAAAAC 4113 1 2558 R GTTTTCTTCATTGCATTCAGATGGATACATCTGTC -409 TCTTTAGCTCCTAGACCTTTAGCAGCAAGGTCCAT 3992 1 5040 R ATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGA 853 GTTGGTTTCATGGTTTGGTCTAACTTTACCCCTAC 3704 1 2818 F GTTGGTTTCATGGTTTGGTCTAACTTTACCGCTAC 107 GCTTTAAAATAGTTGTTATAGATATTCAAATAACC 4176 1 1379 R GGTTATTTGAATATCTATAACAACTATTTTAAAGC -262 ACCTGATTAGCGGCGTTGACAGATGTATCCATCTG 3902 1 2575 R CAGATGGATACATCTGTCAACGCCGCTAATCAGGT -329 GCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGT 3747 1 873 F GCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGT -337 GAAACCAATCCGTGGCCGGTAGCAGCGGTAAAGTT 2590 1 2839 R AACTTTACCGCTACTAAATGCCGCGGATTGGTTTC -397 GGAATAGTCAGGGTAAATTTAATGTGACCGTTTAT 3696 1 2208 F GGAATAGTCAGGTTAAATTTAATGTGACCGTTTAT 211 GGTCTATAGTGTTATTAATATCAATTTGGAGGAGT 3321 1 4292 R GCTCCCCCAACTTGATATTAATAACACTATAGACC -342 GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA 3970 1 1193 F GTAGACATTTTTACTTTTTATGTCCCTCATCGTCA -394 GAAAGGATACTCGTGATTATCTTGCTGCTGCATTT 3802 1 3271 F GAAAGGATACTCGTGATTATCTTGCTGCTGCATTT -170 GTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGC 4066 1 840 F GTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGC 219 GTAAGAAATCATGAGTCAAGTTACTGAACAATCCG 4043 1 380 F GTAAGAAATCATGAGTCAAGTTACTGAACAATCCG -427 GGACATAAAAAGTAAAAATGTCTACAGTAGAGTCA 4076 1 1183 R TGACTCTACTGTAGACATTTTTACTTTTTATGTCC 617 GTTTATCCTTTGGATGGTCGCCATGATGGTGGTTA 3728 1 2719 F GTTTATCCTTTGAATGGTCGCCATGATGGTGGTTA 70 GTCCCCTTCGGGGCGGTGGTCTTTAGTGTTATTAA 3612 1 4309 R TTAATAACACTATAGACCACCGCCCCGAAGGGGAC -383 GTTCCATCAACATCATAGCCAGATGCCCAGAGATT 3993 1 1724 R AATCTCTGGGCATCTGGCTATGATGTTGATGGAAC -205 GTTTGGTCAGTTCCATCAACATCATAGCCAGATGC 4008 1 1733 R GCATCTGGCTATGATGTTGATGGAACTGACCAAAC -197 GTTATATGGCTGGTGGGTTTTTTTTGGGTTTATTC 1637 1 4987 F GTTATATGGCTGTTGGTTTCTATGTGGCTAAATAC 129 GTTGACGATGTAGCTTTAGGTGTCTGTAAAACAGG 4064 1 2482 R CCTGTTTTACAGACACCTAAAGCTACATCGTCAAC -270 GTTCAACCACTAATAGGTAAGAAATCATGAGTCAA 4087 1 364 F GTTCAACCACTAATAGGTAAGAAATCATGAGTCAA -129 GCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTT 3951 1 2365 F GCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTT -111 GGCGTCGCGTCGTAACCCAGCTTGGTAAGTTGGAT 3848 1 5196 R ATCCAACTTACCAAGCTGGGTTACGACGCGACGCC -376 GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC 3920 1 429 F GCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGC -25 GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC 3854 1 741 F GCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGC -537 GAACAAAATGTGACTCATATCTAAACCAGTCCTTG 3939 1 267 R CAAGGACTGGTTTAGATATGAGTCACATTTTGTTC -6 GTCATTGTGAGCATTTTCAGCCCGAAGTTGCGGCT 3641 1 5139 R AGCCGCAACTTCGGGATGAAAATGCTCACAATGAC -518 ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/s_1_0001_prb.txt0000644000126300012640000055000012227066723026011 0ustar00biocbuildphs_compbio -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 19 -19 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -29 29 -40 3 -40 -40 -3 -40 -40 40 -40 -40 -21 -40 21 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 2 -40 -2 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -7 7 -40 32 -40 -40 -32 -40 10 -10 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -31 31 -40 -40 40 -40 -40 -40 -40 40 -40 -23 23 -40 -40 -40 -40 40 -40 -38 13 -13 -40 -14 -40 14 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 13 -13 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 18 -18 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 13 -30 -40 -13 -40 -40 24 -24 40 -40 -40 -40 -19 19 -40 -40 1 -1 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -5 5 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 33 -33 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -15 -40 15 -40 40 -40 -40 -5 5 -40 -40 -40 9 -40 -9 -40 1 -1 -40 -40 -1 -40 1 -39 -11 -40 11 -40 3 -40 -3 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 21 -21 -40 -40 -40 7 -40 -7 40 -40 -40 -40 -40 -8 -40 8 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -18 18 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 35 -40 -40 -35 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -9 9 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 22 -22 40 -40 -40 -40 -40 5 -40 -5 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 33 -40 -33 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 17 -40 -40 -17 40 -40 -40 -40 -40 7 -40 -7 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 36 -36 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -31 31 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 7 -7 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 6 -40 -6 40 -40 -40 -40 -40 -40 2 -2 -40 40 -40 -40 -40 23 -40 -23 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 29 -29 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -1 -40 -40 1 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -13 13 -40 -35 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -15 -40 15 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -13 3 -4 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -8 8 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -26 26 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -4 -35 -2 -3 -24 -40 24 -40 40 -40 -40 -40 35 -40 -40 -35 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -5 5 -40 -27 -40 -40 27 26 -40 -26 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 14 -14 -28 -40 -40 40 -40 -40 -40 -40 -40 40 -40 21 -40 -21 22 -24 -27 -40 -40 -6 -40 6 6 -7 -16 -40 -37 15 -40 -15 -40 40 -40 -40 28 -28 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 15 -40 -40 -15 -28 -40 28 -40 40 -40 -40 -40 -6 -40 -40 6 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 35 -35 -40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 6 -6 40 -40 -40 -40 40 -40 -40 -40 -35 -40 34 -40 18 -22 -40 -21 -40 -40 -40 40 -40 -40 -40 40 -15 2 -40 -2 -40 -40 -40 40 23 -40 -40 -23 -40 4 -40 -4 -40 -34 -40 34 -37 -40 -8 8 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 21 -21 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -9 -40 9 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -29 29 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 17 -17 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 21 -21 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 5 -40 -40 -5 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -21 -40 21 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -34 34 -40 -40 -40 -40 40 -40 -10 10 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -5 5 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 9 -9 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -5 5 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 9 -40 -40 -9 -40 5 -40 -5 2 -40 -40 -2 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 12 -40 -12 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -22 4 -6 -12 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -7 1 -4 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 32 -32 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 7 -7 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 38 -38 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -15 5 -40 -6 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 28 -28 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 11 -11 -40 -40 40 -40 -40 -40 -6 -40 6 -40 40 -40 -40 -40 -40 -40 40 -40 -12 -40 12 40 -40 -40 -40 -40 -40 40 -40 -40 -1 1 -40 -40 -28 -40 28 -35 -40 -40 35 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -34 23 -40 -23 -40 -29 29 -40 -40 -4 4 -40 -40 -40 6 -6 -40 40 -40 -40 -40 40 -40 -40 -40 -0 -40 0 40 -40 -40 -40 -27 -40 27 -40 -2 -40 2 -40 -7 7 -40 -40 -40 33 -40 -33 -6 -40 -40 6 -40 7 -40 -7 -12 -40 -40 12 -40 -7 -40 7 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -32 32 -40 -40 19 -19 -40 -40 -40 -40 22 -22 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -6 6 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 31 -31 -40 -38 38 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -37 -40 37 -40 15 -15 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 3 -40 -3 -40 40 -40 -40 -40 7 -40 -7 -40 -40 -40 -3 3 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -29 29 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 31 -31 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -13 13 -40 -26 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 23 -23 -40 -40 40 -40 -40 -18 -40 18 -40 -40 -37 37 -40 10 -10 -40 -40 -27 -40 27 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 2 -40 -2 -40 40 -40 -40 -40 -31 31 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 17 -17 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -4 -40 4 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -31 31 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -25 25 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -29 -27 11 -11 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 34 -34 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 16 -40 -16 -40 -40 -40 40 -40 -40 -40 -40 40 16 -40 -16 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -27 27 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -10 -40 10 -40 -5 5 -22 -40 40 -40 -40 -40 -8 -40 8 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -8 -40 8 -40 -40 -33 -40 33 2 -40 -40 -2 -40 -17 17 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -19 19 -40 1 -40 -1 -40 -40 -40 -40 40 23 -40 -40 -23 -0 -40 0 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 4 -4 -30 -26 -40 -40 26 -40 -38 38 -40 -40 -40 40 -40 -40 -40 40 -40 -36 36 -40 -40 40 -40 -40 -40 40 -40 -40 -40 18 -40 -18 -40 -40 21 -40 -21 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -17 17 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -5 5 -40 -40 40 -40 -40 -40 -40 -23 23 -40 -40 13 -40 -13 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -20 20 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -3 -40 3 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 3 -3 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 3 -40 -3 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 26 -26 -40 -40 40 -40 -40 -40 -40 -8 -40 8 40 -40 -40 -40 22 -22 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 7 -39 -40 -7 -40 -40 -40 40 28 -28 -40 -40 31 -31 -40 -40 -40 -40 -40 40 -40 -40 -40 40 33 -35 -38 -40 -40 -40 -40 40 24 -24 -40 -40 -40 -5 -40 5 -19 -40 7 -7 0 -40 -40 -0 -40 11 -11 -38 8 -40 -40 -8 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -38 38 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -28 -40 28 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -23 23 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 32 -32 -40 -40 -40 40 40 -40 -40 -40 -40 -21 -40 21 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 36 -40 -37 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 21 -21 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 37 -40 -37 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -19 19 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 17 -40 -40 -17 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 3 -3 -40 -40 -40 -40 -40 40 -40 -40 40 -40 9 -9 -40 -40 -40 40 -40 -40 32 -32 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -37 -40 29 -29 36 -36 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 3 -40 -3 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 9 -40 -9 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 14 -14 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -9 -40 9 40 -40 -40 -40 -40 -40 -40 40 -40 18 -18 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 2 -40 -2 -40 -40 -40 40 -40 -40 -3 3 -1 -40 -31 1 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -20 20 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 20 -40 -40 -20 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 27 -40 -27 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -7 7 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 26 -26 -40 -40 40 -40 -23 20 -40 -24 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -13 9 -40 -11 -40 40 -40 -40 15 -40 -40 -15 -40 -40 -40 40 40 -40 -40 -40 2 -2 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 34 -34 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 8 -8 -40 -40 -40 -40 -40 40 -40 -40 -40 40 16 -16 -40 -40 7 -7 -40 -40 -40 -40 40 -40 -40 20 -20 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -14 14 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 31 -31 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 11 -11 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 3 -3 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -32 -40 24 -25 -40 -40 3 -3 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -35 35 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -13 13 -40 -40 -40 40 -40 -40 27 -27 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -36 36 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -34 34 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 38 -40 -40 -38 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 2 -40 -2 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -35 -40 35 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -19 19 -40 40 -40 -40 -40 -40 -4 4 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 18 -40 -18 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 37 -40 -40 -37 -40 -8 8 -40 -40 -16 16 -40 -25 -40 -40 25 -9 -40 -40 9 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 29 -29 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -20 20 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -29 29 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -37 -40 37 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 30 -30 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -28 28 40 -40 -40 -40 -40 -40 -32 32 40 -40 -40 -40 -40 -40 40 -40 12 -40 -40 -12 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 8 -8 -40 -40 22 -22 -6 -40 6 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 6 -6 -16 22 -40 -40 -22 40 -40 -40 -40 -40 -40 34 -34 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -19 19 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -7 -40 -40 7 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -9 -40 -40 9 -40 -40 40 -40 -40 -40 40 -40 -40 -23 23 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 25 -25 -40 -40 -40 -40 -40 40 -40 -40 26 -26 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -20 20 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 16 -16 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -35 -40 30 -31 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -28 28 -40 -40 -40 -40 40 -40 31 -31 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -23 23 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -17 17 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -37 -40 37 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 9 -40 -9 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 37 -37 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -34 34 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 5 -5 -40 -40 -40 40 -40 -40 -40 -40 40 -40 19 -40 -19 -40 -40 40 -40 40 -40 -40 -40 6 -6 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 1 -1 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 0 -0 -40 -40 40 -40 -40 33 -40 -33 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 30 -30 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 23 -23 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 14 -14 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -16 -8 7 18 -23 -40 -20 11 -11 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 32 -40 -40 -32 10 -40 -40 -10 -16 -2 -40 2 0 -8 -22 -3 -40 -40 -40 40 -40 -35 -40 35 -40 -40 -40 40 -27 -22 -40 21 -40 -40 -40 40 -13 -40 -40 13 -17 -40 -40 17 -31 -40 -40 31 -24 -11 -21 10 5 -5 -40 -19 -2 -0 -40 -9 -40 -25 -40 25 -40 -8 -40 8 -23 -40 -40 23 -22 -23 -40 19 3 -34 -40 -3 -9 -40 -40 9 -6 -15 -18 5 6 -27 -40 -6 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 33 -33 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 17 -17 40 -40 -40 -40 -40 -40 3 -3 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -9 9 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -2 -20 -40 1 3 -21 -40 -3 40 -40 -40 -40 -40 -14 -40 14 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -4 -40 -40 4 2 -15 -40 -3 12 -12 -40 -40 40 -40 -40 -40 -7 -18 -40 6 40 -40 -40 -40 21 -22 -40 -28 40 -40 -40 -40 27 -27 -40 -40 4 -4 -40 -40 40 -40 -40 -40 12 -12 -40 -38 29 -30 -40 -40 -3 -40 -40 3 -8 -0 -40 -2 -40 -30 -40 30 17 -32 -40 -17 -3 0 -40 -8 -9 -40 -40 9 -39 -14 -40 14 13 -31 -40 -13 40 -40 -40 -40 25 -27 -40 -30 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -10 -40 4 -6 -7 -40 -0 -3 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 37 -37 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -32 32 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 21 -21 -40 -40 40 -40 -31 26 -40 -27 40 -40 -40 -40 -29 29 -40 -40 -27 27 -40 -40 40 -40 -40 -40 34 -34 -40 -40 -40 -40 21 -21 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -22 -40 22 -40 40 -40 -40 -40 -26 -40 26 -40 -40 40 -40 -40 40 -40 -40 -40 -16 -40 16 -11 -40 -40 11 -26 13 -40 -13 -40 -40 -40 40 39 -39 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 3 -3 -40 -40 -40 -40 40 40 -40 -40 -40 25 -40 -40 -25 40 -40 -40 -40 -40 -40 40 -40 -40 33 -33 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 36 -40 -40 -36 40 -40 -40 -40 -40 -17 -40 17 40 -40 -40 -40 17 -40 -40 -17 40 -40 -40 -40 -0 0 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 8 -40 -8 -40 -40 -40 -14 14 40 -40 -40 -40 40 -40 -40 -40 -6 6 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 10 -40 -18 -11 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 4 -40 -4 -28 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 31 -31 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -6 6 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -30 29 -40 -39 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -21 -40 21 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -29 -40 29 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 15 -15 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 12 -40 -12 -40 -40 -40 40 -40 40 -40 -40 -40 -15 15 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -17 17 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 14 -40 -14 3 -3 -40 -40 10 -40 -40 -10 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -9 9 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -10 10 -40 -40 -40 -40 -28 28 11 -20 -11 -40 -11 -40 -3 1 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -18 -40 -40 18 -40 8 -8 -40 -40 40 -40 -40 -40 40 -40 -40 2 -2 -40 -40 40 -40 -40 -40 -40 24 -24 -40 -40 -16 16 -40 40 -40 -40 -40 -40 -40 -40 40 -40 29 -29 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -15 -40 -40 15 -40 40 -40 -40 -40 -13 -40 13 -40 -40 -40 40 7 -40 -7 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 9 -9 -40 -40 -40 40 -40 40 -40 -40 -40 4 -40 -40 -4 17 -17 -40 -40 -40 -40 -40 40 -13 13 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -1 -40 -40 1 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 15 -15 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -14 14 -40 -40 -40 40 -40 36 -36 -40 -40 -6 -40 -40 6 -25 -40 -40 25 -40 -21 21 -40 7 -7 -40 -40 -40 40 -40 -40 40 -40 -40 -40 12 -12 -40 -40 33 -40 -40 -33 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -21 21 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -11 11 -28 -40 -40 40 -40 -40 39 -39 -40 -40 -40 -40 -40 40 8 -9 -40 -19 40 -40 -40 -40 14 -38 -40 -14 4 -5 -21 -12 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -9 9 -40 -40 -40 -7 4 -9 -40 -40 -40 40 -37 37 -40 -40 -34 -33 -27 25 40 -40 -40 -40 25 -40 -25 -36 40 -40 -40 -40 34 -34 -40 -40 34 -34 -40 -40 15 -40 -40 -15 -25 -25 8 -8 -35 -40 35 -40 -18 18 -26 -34 33 -33 -40 -40 -11 11 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 11 -11 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 38 -38 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 10 -40 -10 -40 40 -40 -40 -40 -40 -40 40 -40 5 -40 -5 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 12 -40 -12 5 -40 -40 -5 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 3 -8 -7 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -34 -40 -40 34 -14 14 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -13 -40 13 -40 40 -40 -40 -1 1 -40 -16 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -6 6 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -31 30 -35 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 13 -13 16 -40 -40 -16 -28 -16 -19 14 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -13 -40 13 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -0 -40 -40 0 -40 -40 40 -40 -15 15 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 8 -40 -8 40 -40 -40 -40 -40 -40 40 -40 -40 -11 11 -40 -40 -40 -40 40 -40 40 -40 -40 -40 32 -32 -40 -21 -40 -40 21 -40 -35 34 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 26 -26 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 21 -21 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -24 24 -40 -40 16 -16 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -35 -40 35 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 16 -16 -40 -40 34 -34 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 34 -34 -40 -40 40 -40 -40 -40 31 -31 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 30 -30 -40 -40 40 -40 -40 -40 -40 -35 -40 35 39 -39 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 3 -40 -40 -3 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -8 -40 8 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 19 -19 -40 -40 40 -40 -40 -40 -40 40 -40 -35 35 -40 -40 -35 35 -40 -40 -1 -40 1 40 -40 -40 -40 -40 -40 40 -40 -40 -40 18 -18 -40 -40 -40 40 -40 -40 40 -40 -40 -29 29 -40 21 -40 -40 -21 40 -40 -40 -40 -40 -40 -40 40 -40 -18 -40 18 -40 40 -40 -40 -40 -40 -40 40 -40 -35 35 -40 29 -29 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 8 -40 -40 -8 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 33 -33 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 27 -27 -20 20 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -12 12 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -14 3 -40 -4 -40 -40 -40 40 -40 -40 -40 40 -40 -40 32 -32 -8 -40 -18 7 40 -40 -40 -40 -36 -40 -40 35 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 38 -38 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -8 -40 -40 8 -40 -40 40 -40 -40 1 -1 -40 5 -15 -40 -6 -40 -40 18 -18 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 17 -17 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -38 -40 38 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -26 26 -40 -40 -26 26 -40 -40 30 -30 -40 -40 40 -40 -40 -40 31 -31 -40 -40 26 -26 -40 -36 -40 40 -40 -40 12 -12 -40 -40 37 -37 -40 -40 -14 13 -37 -21 30 -30 -40 -40 -15 -40 -40 15 -40 -40 40 -40 29 -40 -29 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 1 -40 -1 -40 -40 -40 -40 40 -40 -10 -40 10 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 14 -14 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -28 28 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -26 26 -40 -40 -40 -40 25 -25 -28 18 -40 -19 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 31 -31 -40 -40 -40 -40 40 -40 19 -19 -40 -40 39 -39 -40 -40 -40 -40 -40 40 -40 -40 -40 40 34 -34 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 38 -38 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 15 -15 -40 -40 -40 40 29 -29 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 33 -33 -40 -40 -40 -40 23 -23 -40 40 -40 -40 -40 33 -40 -33 18 -32 -40 -18 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -2 2 -21 -3 -40 3 -40 -19 -40 19 5 -40 -18 -5 -14 -10 -12 6 40 -40 -40 -40 9 -9 -40 -36 -13 -8 -40 6 -40 -40 -40 40 -1 -40 1 -32 -10 -30 8 -13 -10 -6 -4 -1 -25 -30 -40 24 40 -40 -40 -40 12 -14 -18 -34 -25 -40 -12 11 -15 12 -36 -15 12 -16 -40 -14 -28 -22 -40 21 -15 -29 -11 9 -40 -2 -40 2 -5 -10 -40 3 -24 -20 -10 10 -40 -31 -40 31 -40 -40 -40 40 -39 -40 -24 23 -40 -40 -40 40 1 -6 -14 -6 2 -11 -26 -4 -8 -40 -40 8 -1 -19 -11 -1 -29 -38 -40 29 -40 -40 -40 40 -40 -40 -40 40 -6 6 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 21 -21 -40 -40 -22 -40 22 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 33 -40 -33 -40 -11 -40 11 -40 40 -40 -40 -40 -40 -40 34 -34 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 24 -24 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -35 8 -40 -8 9 -40 -9 -40 -6 6 -40 -40 30 -30 -40 -39 -40 -40 40 -40 4 -4 -40 -40 -40 -40 -40 40 -18 14 -17 -27 20 -20 -40 -40 -22 -37 -6 5 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -40 -23 -40 -40 -40 40 -40 -40 11 -11 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 6 -6 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 37 -40 -37 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 39 -39 -40 15 -40 -15 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -1 -40 1 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -18 18 10 -40 -10 -40 -10 -40 -40 10 -40 -40 40 -40 -40 -40 40 -40 -15 -40 -40 15 -40 -40 40 -40 -2 -40 2 -40 -6 5 -15 -32 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 36 -36 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -36 -40 36 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -18 18 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -26 26 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -16 16 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 32 -32 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -9 9 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -38 -40 38 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -22 22 -40 -8 8 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 33 -33 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -36 -40 36 -40 -40 -40 40 -40 -11 11 -40 40 -40 -40 -40 39 -39 -40 -40 -40 -40 40 -40 -38 38 -40 -40 34 -34 -40 -40 -40 -40 40 -40 -14 -18 12 -40 -40 -21 20 -34 -40 40 -40 -40 -18 3 -33 -3 -40 -9 9 -40 -5 -25 5 -28 -34 -7 -2 -1 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 37 -37 -40 -40 -40 40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -2 -40 2 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -12 12 -40 -40 -40 -40 40 -40 -40 40 -40 27 -27 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -39 -40 39 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -22 -40 22 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 30 -30 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 20 -20 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -16 16 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 2 -2 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -9 9 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 6 -40 -6 -40 -40 40 -40 10 -40 -40 -10 -40 -35 35 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -19 19 -40 -7 -40 7 15 -15 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 33 -33 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -36 36 -40 -40 40 -40 -40 -40 -40 -10 10 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -39 -40 39 40 -40 -40 -40 -40 -40 32 -32 -40 -40 1 -1 -40 40 -40 -40 40 -40 -40 -40 39 -39 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -10 10 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -33 -40 33 -40 -40 40 -40 -40 -40 23 -23 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -9 -40 9 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -35 35 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -11 11 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 4 -40 -4 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 27 -27 -40 -40 27 -27 -40 -40 -40 -40 25 -25 -40 -40 40 -40 36 -36 -40 -40 -24 -40 -40 24 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -23 -40 -40 40 -40 -40 -40 -40 2 -2 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -28 -40 -40 28 -40 40 -40 -40 -40 -40 40 -40 -40 22 -40 -22 23 -40 -40 -23 -40 -40 -9 9 -40 -40 40 -40 -40 28 -40 -28 -40 40 -40 -40 -40 -40 40 -40 -8 -10 -40 5 -40 40 -40 -40 -38 -40 -40 38 -40 -28 -23 22 -17 17 -40 -40 -34 -21 -40 21 -40 -36 -6 6 -39 16 -16 -35 -40 -40 -40 40 -40 -40 -40 40 -5 -9 -9 0 -18 -9 -10 6 3 -3 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 2 -40 -40 -2 40 -40 -40 -40 -40 -40 40 -40 -40 -32 32 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 27 -40 -40 -27 40 -40 -40 -40 20 -40 -40 -20 -40 -40 40 -40 -40 -40 37 -37 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 17 -17 -37 -40 -40 35 -40 -40 40 -40 -40 -40 40 -40 21 -40 -40 -21 -39 39 -40 -40 -40 -40 -40 40 -40 -40 -31 31 -40 -40 -40 40 -40 -40 -11 11 -40 -13 13 -21 7 -40 -40 -7 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 21 -21 -40 -40 -31 31 -40 -40 -23 23 -40 -40 30 -31 -40 -40 4 -4 -40 -40 18 -18 -40 -40 3 -4 -12 -40 -4 -25 -40 3 16 -40 -40 -16 -10 10 -40 -37 -9 9 -40 -37 40 -40 -40 -40 40 -40 -40 -40 -11 11 -40 -36 7 -17 -31 -8 12 -13 -40 -17 -9 9 -40 -21 40 -40 -40 -40 -1 -2 -40 -6 -40 26 -40 -26 33 -33 -40 -40 10 -10 -28 -40 -6 -2 -27 -1 5 -6 -24 -21 40 -40 -40 -40 1 -3 -25 -12 12 -12 -40 -40 -40 -19 -40 19 8 -8 -40 -40 -17 -40 -40 17 -5 5 -27 -28 -40 40 -40 -40 10 -10 -40 -25 11 -11 -40 -38 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -27 -40 27 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -23 -40 23 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 19 -19 -40 -40 -40 -35 -40 35 -40 -24 -40 24 -40 -32 23 -24 -40 40 -40 -40 -40 -13 -40 13 -40 -21 16 -18 -3 1 -26 -10 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -13 9 -22 -12 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 35 -35 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 23 -23 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -13 13 -40 -40 24 -24 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 33 -40 -33 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -2 -40 -40 2 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 3 -40 -3 -22 -39 -40 -10 10 40 -40 -40 -40 -11 -40 -40 11 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -40 -23 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -20 20 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -27 27 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -8 -40 8 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -30 -40 30 -40 -31 31 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 4 -7 -13 -14 -4 -13 3 -23 14 -14 -40 -40 -5 -3 -40 -1 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -35 35 -40 -40 40 -40 29 -29 -40 -40 14 -14 -40 -40 -21 -25 -23 18 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 19 -19 -40 -40 15 -27 -16 -40 -40 40 -40 -40 21 -21 -40 -40 -15 -11 -40 10 -30 29 -40 -35 -31 -16 -40 15 2 -2 -40 -40 -35 25 -40 -25 -29 29 -40 -40 -15 -20 -19 12 -4 -4 -9 -4 -7 7 -22 -33 8 -8 -40 -37 -20 11 -17 -13 -7 -11 -40 5 -39 -40 -40 38 16 -16 -40 -40 -40 -40 -40 40 3 -3 -40 -19 8 -8 -40 -40 -40 -40 -40 40 -2 -7 -35 -1 -18 -18 -22 14 -10 9 -33 -29 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 27 -27 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 29 -29 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 30 -31 -40 -40 7 -8 -40 -15 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -9 9 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 5 -40 -5 -40 -40 -40 40 -40 -40 40 -40 17 -17 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -7 -40 -40 7 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -8 8 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -30 30 -40 -40 -40 -40 -40 40 -40 40 -40 -40 14 -14 -40 -40 -40 -40 -40 40 7 -40 -7 -40 -40 -40 -40 40 -40 -40 9 -9 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -39 -40 39 -40 -40 -14 -40 14 -16 -40 -40 16 -40 -40 -40 40 -40 -13 13 -40 -9 9 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 19 -19 -40 -40 -40 -40 -40 40 -40 0 -40 -0 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -29 -40 -40 29 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 7 -40 -7 -40 -40 40 -40 -40 -40 40 -40 -40 -36 -40 36 -40 -40 40 -40 -40 -40 40 -40 32 -32 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 24 -24 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 24 -40 -24 -40 40 -40 -40 -40 40 -40 -40 -40 18 -18 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -3 -4 -2 -40 -26 26 -40 -40 -10 10 -40 -40 -15 -40 -40 15 -9 -1 -1 -40 13 -20 -14 -40 -40 1 -1 -29 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 34 -34 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 12 -12 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -14 14 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 34 -40 -34 -40 -40 40 -40 8 -40 -40 -8 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 27 -40 -27 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 14 -40 -14 -40 -40 -40 14 -14 8 -40 -40 -8 -40 -40 -3 3 -40 -28 28 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 31 -40 -32 -40 40 -40 -40 -40 -40 -40 40 -40 -18 17 -40 -21 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -24 24 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -35 -40 35 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 30 -30 -40 -40 -40 -40 40 -40 -40 6 -6 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -3 3 -40 -40 -40 -2 2 23 -40 -23 -40 -3 -40 3 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -3 3 -40 -40 37 -40 -37 -40 -40 29 -29 -40 -40 40 -40 -40 -9 9 -40 -40 40 -40 -40 12 -40 -12 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -18 18 40 -40 -40 -40 -36 -40 -40 36 -40 4 -4 -40 -9 -11 6 -37 -7 6 -40 -15 -40 14 -40 -14 -40 -40 -40 40 -40 -40 40 -40 -3 -3 -40 -4 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 18 -19 -40 -34 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 13 -13 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 23 -40 -23 40 -40 -40 -40 40 -40 -40 -40 -34 -40 -40 34 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -21 -40 -40 21 -40 -31 31 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -6 6 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -7 7 -40 -40 -13 -40 -40 13 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 11 -11 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -8 8 -31 -32 -26 -40 26 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -4 4 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 31 -31 26 -33 -40 -27 11 -11 -40 -29 -40 -40 26 -26 14 -14 -40 -40 -40 -40 28 -28 -38 38 -40 -40 0 -2 -28 -9 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 10 -10 11 -11 -40 -33 27 -27 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 23 -24 -40 -40 -40 -40 6 -6 -36 -39 1 -1 -40 -40 1 -1 -40 -40 -40 40 -30 8 -40 -8 30 -30 -40 -40 -22 14 -33 -15 -40 -40 -40 40 -40 -40 -40 40 15 -22 -40 -16 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 11 -22 -30 -11 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 18 -18 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 15 -15 -40 -40 -40 -40 40 -40 -40 -19 -40 19 -40 -40 -40 40 40 -40 -40 -40 19 -19 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -29 -19 7 -7 -40 -40 -40 40 40 -40 -40 -40 32 -33 -40 -40 40 -40 -40 -40 40 -40 -40 -40 12 -12 -40 -40 -40 -34 -40 34 -40 -40 40 -40 -40 -27 -40 27 -40 -40 -40 40 29 -29 -40 -40 -40 -5 -40 5 -34 34 -40 -40 26 -26 -40 -40 -40 29 -40 -30 -40 38 -40 -38 -40 40 -40 -40 -33 -40 12 -13 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 33 -33 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -35 35 -40 40 -40 -40 -40 13 -13 -40 -40 40 -40 -40 -40 21 -21 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 30 -30 -40 -40 14 -14 27 -28 -40 -34 -40 -40 37 -37 -40 -40 2 -2 -40 -40 10 -10 -38 16 -40 -16 -40 -40 40 -40 3 -40 -3 -40 -40 -40 -40 40 8 -8 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 23 -40 -23 -40 -40 -40 40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 29 -33 -32 -40 -40 -40 -30 30 -40 -40 40 -40 -40 15 -15 -40 -16 16 -37 -40 -40 -40 40 -40 -40 -40 -36 36 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -29 22 -23 -40 -40 -40 -40 40 -40 -40 40 -40 -23 23 -40 -40 -40 -38 -40 38 -40 -40 -40 40 -2 -11 1 -18 -5 -26 5 -35 30 -33 -40 -34 -1 -9 -10 -2 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 -40 -9 -40 -40 9 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 33 -33 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -22 22 -40 -40 40 -40 -40 -40 -40 39 -39 -40 40 -40 -40 -40 -40 31 -31 -40 -40 -40 -40 40 -40 -40 23 -23 -40 -40 -40 40 40 -40 -40 -40 -40 -35 34 -40 -40 -30 30 -40 -2 -36 -40 2 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 34 -34 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 28 -28 -40 -40 -40 -40 -40 40 -33 33 -40 -40 -40 -40 40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 40 -40 -40 -40 -40 -40 -40 40 -40 -40 -40 40 40 -40 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -40 -40 40 -40 40 -40 -40 -40 -25 -40 25 40 -40 -40 -40 -40 -40 40 -40 -18 18 -40 -40 -40 40 -40 -40 40 -40 -40 -40 -40 40 -40 -40 3 -13 -40 -4 ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/s_1_0001_seq.txt0000644000126300012640000003024412227066723026021 0ustar00biocbuildphs_compbio1 1 109 548 TTGTTTTCATGTGATTTTAAAAATGTATTTGTTTGT 1 1 105 517 TCCAAACTGGTAGACAATACAAACATTCTCAAATCT 1 1 101 522 TGCACCTGATAGGGTCTCTGCTCTGAGAGAGGAAGG 1 1 113 530 TATGAGAGTAGCCAATGCCACAAAGACGGTGTGTGT 1 1 105 511 TAGTAGGTGTCCTATTCTGATGCCCAGCACGCCAAG 1 1 121 531 GAGAGAACTGAAAATCACAGAATATGAGAAATAGAC 1 1 112 525 GCAGAGACCCACAACCCAGCCAAGCGGCTCCAGACA 1 1 121 595 GAGATATTTATTGAACACTAACACTCTGTCATGCAA 1 1 113 371 GGTGGAAATAGCAAGCATCCCCTTCTCCGCTTACAT 1 1 89 581 TCCCAACCCTCCCCCTAAGAACAATACTCCTGACTG 1 1 83 580 TCAGAGATGATAAACCTAACCCACAAGAGACTGGAG 1 1 95 513 GGAACAAAACACCCATGGAAGGAGTTACAGAGACAA 1 1 97 540 GACAATAATTTGGTATTTTTAGAGAATGTGCAGGCC 1 1 93 384 GGCCTAGCTTCAAACATGGGAGCAGGGATTCAAACT 1 1 122 247 TCTTTTTTCTTGCTATATTCCACGTCCGACAGTGGA 1 1 115 738 GTGAAAAATGAGAAATGCACACTGAAGGACCTGGAA 1 1 117 468 GGTTTGTACAACCCAGCCCCACAGGCCTTTTCTCTC 1 1 69 533 TATCAGAGTCACTCAAATCCTCACATCAACTTTCTG 1 1 121 586 AATGTGTTTTTCAGTGTAACTCACTCATCTAATATT 1 1 117 578 TGCTTCACTGTGTGCCTCTTTTGCTACTTCCACTAT 1 1 115 365 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAA 1 1 119 406 GCCTGTCTACTGTGGTATCAGAGTGATTATTTCTAT 1 1 112 238 TTAGCAGGCCTTGATGGCTACTACTTCCTTTCTCTA 1 1 120 597 CATCCCACTGCAGTTAAACCTTGGCAAGCGGATAGG 1 1 119 390 TTTCCTTGCCATATTTCCCGTCCTAAAGTGTGTATT 1 1 108 606 GATGGGTCGTATTTCTCTCTTTCATTACTCATACCA 1 1 96 508 AATTTGACTTTTAGTAATAGCCTTTTTACAACTAAG 1 1 106 347 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 1 1 92 482 TTTGTATATGTATACATGTTAAGAAGATTCTACTTT 1 1 114 415 CTGATTGCTAAATTAGTCCTGCAAATAACGTTATAA 1 1 117 462 CTCCAGTTCCACAGACTCAAGGCTCTTCTGTTCACT 1 1 88 544 ATAGGGACCAAGCAGCTTTTGAGATACTATTTTTTA 1 1 68 580 TTTCACGTTTTTCAGTATTTCGTCATTTTTCAAGTA 1 1 81 571 TTACTTTTAAAAACTTTATTACTCAATAAAGGCTGA 1 1 75 541 GATAAGTGTGGAATTGATATTACGCTGGCAAAAACT 1 1 113 775 TCATCTCTTAAACTGAGGATAATAATACTTACCACA 1 1 122 660 TATGCAGCTAGAGTCAAGAGCTCAGGGGTACTGGTT 1 1 115 329 GGGGACTGTGGGTGTAGCTCACTTGTTGCAGTGCTT 1 1 118 518 CTGAAAATCATGGAAAATGAGAAACATCCACTTGAC 1 1 120 704 GAACCAGACTCCTGGCAGAAGTTGTGTTCCACTCAC 1 1 105 427 TTCGAGACATTGCTTCTTTCTATATCTCTTTGTGTT 1 1 110 692 GCAGAGACGGTTCCAGGAGAGTTCACCAACTTGTGT 1 1 98 349 TTTCAGTTTTCTCGCCTTATTCCATGTCCTACAGTG 1 1 120 488 CAATATAGACACATTAGACTAGAGTTAATGCATCAG 1 1 120 749 TTGGATTAGAATGGAATCCAATGGAATCAACTGGAA 1 1 115 889 GAGAAAATGCCCCACAGCTGGATCTCCTGGAGGCAT 1 1 98 629 TTGCATTCAAAGGGGATGAGCAAATATTCTTCCTTG 1 1 120 446 ATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTTC 1 1 115 762 ATAGCCTCTTAGGTTAGGCGGGCCTAGGCCTCTTTA 1 1 99 723 GTACATTTTCTTTTCTGTACAGGTACCAACTGCATG 1 1 80 439 TTCCTCAAATTTAATAACAAAATTAAACACATCAGC 1 1 120 897 TTAGGGTGGATTTTGTGAGACTGAGAAAGAAATTGT 1 1 113 628 TGTAACATAGACAGAGTTGAAAGTTAGAGTCTGCTA 1 1 121 143 TAACATTGTGTATCCTATGCCATTTGCCTGGAGTGG 1 1 101 353 TGAGTTTTTCTCTTAGAAATGCTTTCATTGTGTCCC 1 1 122 581 GCTAGGTTCTGCCATTCAACAACAATAAACATGTCT 1 1 97 502 TGGGATTGGTTTGGGGTCAGCTCATGTGCTTCAGGT 1 1 95 455 GCTGTGGCCAACATTCATTTGTCATGGAACCTGACA 1 1 100 681 TGAAACAGAGGCAGAAACGAGTATCGGGCGGTGCTG 1 1 122 300 TAGTAGTTGGTCGATAGTAGTCTGGGCAAACTTTTT 1 1 103 604 GAGTCGTGGATCCAGCTATGCAGGAGGCTCACAGCA 1 1 121 544 CCCTACTGCAGGAAGGAGCTGCAGCTCATTATTCAG 1 1 105 377 TGTCACCACTGTGTCAAGAGCTGTTGTACTGTACAG 1 1 109 610 CAAGAATCAAACGAATAGATGCTAAGCAAGAGCTCT 1 1 96 412 TAGCACAACATTAAATAACTCATAATTATATGACAT 1 1 88 444 ATTATCCAAGTGAACAAAGTTGACATCATCAGTATC 1 1 123 424 CTGAGAGGAGACACCCAAGAGCTACGACTTAGTGTA 1 1 98 361 GTGGGCAGGAGTTTTGTGGGTGATGGGTTCCTGAGT 1 1 119 458 TCCTTGCATAGGTGTTGGCAGCCGAGGAGAATGTGG 1 1 121 629 GCAGATATTACTTGAACTCTAGCTCAGACATTTATG 1 1 112 446 GATCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGGT 1 1 112 379 AATGATACCAATATGCTTGCCCTTGGTCAGTTCATC 1 1 113 631 GGCATAGCCTCCAACACAGGGAGGTTAGGCACCCAG 1 1 118 565 GGCTGGCTCAAGATCAGAAGCCGCTCTGGACGTTTG 1 1 89 533 GAATTCAAAGGAATCATCATCGAAGGGAATCGAATG 1 1 106 886 GAGAAACCCTCTGTGGCACAATGCAATTAGAATCCT 1 1 109 291 GGGATTACCAGTGTGAATTCACAGCAGCAGATGACA 1 1 93 629 TTCTCATTTTTCACGTTTTTTAGTGATTTCGTCATT 1 1 80 481 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 1 1 109 568 ACAAAAGCGGCAGAGGATGGCCGTGGTGGCTATCAT 1 1 113 482 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA 1 1 79 878 GTCATTTTTCAAGTCTTCAAGTGGATGTTTCTTTTT 1 1 98 479 TTGCTCCTGATTCCTTGACCACCCCCACCCAAACAC 1 1 75 217 TTCCATCATCATCACCCTTGTTTAGGCCTTGCCCAT 1 1 100 525 AAAAAATGGATTAAGCCAGCAAGAGAAAGGAGATGA 1 1 113 326 TTCTTTTCCCTCCCTGCCCTAGCCAGGGCTGGTTAG 1 1 85 733 TTTTAGATTGGTAACTTGAAATATTATAGGGCATAG 1 1 111 862 GATCGGAAGGAGCTCGTATGCCGTCTTCTGCTTGGA 1 1 87 618 TTGTCTGTGCCAGCACAGAGAAAGCAACCTGAGCAT 1 1 83 277 TAGACTGCTGCCTAGCAAGCCTTAAGGATTCTTCTC 1 1 103 414 GGGTAGGCTACAGTGGAGGAACAGGCAAAGACCACC 1 1 93 494 GAGTGACAAAGAAGAGAGGGCAGGACAGGCCTGAAA 1 1 65 610 GTCTTATCCATAACTCCTAGAACTTCTATTGACATA 1 1 102 717 GGCCTACGTTGACTTCTGGTACTGAGGTTAAGAAAC 1 1 104 595 CCGGAGTTTCAGTGATCAGAGTACTCTCTGCAGGCA 1 1 118 675 TCCATGGGGTCCTTGGTGCTTTTAAAGCACACCCCC 1 1 107 489 ACAGACAAACTCTTTCTAAAAATAAAAACAAAACAT 1 1 72 446 TGCAAGAAGTGGAATACAAAACAAAGGCTTAGAATG 1 1 85 233 TCATGATAAAATTATTTTATAGATTAGGGATTCAAG 1 1 106 462 AATAAATCTTTAAGCAAAAGTGGCTGGTTTTTTTTT 1 1 82 588 GCTGAGGTCCGAGCTAGGTTTGGACTATCAATCAGA 1 1 80 334 TGAGTGAAAAGGTTTGTGTGTGGGTTGATGTTCTTA 1 1 117 484 TCCCACAGCAGAACAGGATGAGGGGATTTGTAAGTG 1 1 104 475 TCAACCCCCATATTCAGCTGTAAGTAGGTATGACGA 1 1 102 619 GTAAGGAAGGCATTCTTCTCAGAACAACCTAAGATA 1 1 98 190 GTGTATGCAAATGAAGAGTTTCCAGAGGTCAAGATC 1 1 115 189 GTACACACAGATTTGGGGAGACAGCTGCACGGGTCA 1 1 88 462 CATCCCTTTGTCTCCCTGAGTGTGAGCTGCTTTCTG 1 1 113 784 GACTTAGAACCAGGAAGCTGCCTGCCTTGTCATGTT 1 1 107 478 GATCGGAAGAGCTCGTATGCCGGTCTTCTGCTTAGA 1 1 102 248 TCGAGATTATGGTCAGCGTCGAAGAACGCCGCGAGG 1 1 107 310 TCCGCAAATAGCTTGTTTTCTGTGACCGTTTTGGCT 1 1 117 503 CATCTGAAAGTTCCAACCACCCCAACCACTAGACTT 1 1 465 808 GAAAAGAAAATTAAGATGAAAATTTAACTTGCAATA 1 1 87 313 TTTATAATATAATCTTTTATCACATAGATAAATAAA 1 1 90 286 TACACAATTTAGGACGTGAAATATGGCAAGGAAAAC 1 1 88 396 TGTGAGTAGAAGTAGTAGAAGAGAAGCTGTTGTAAT 1 1 81 453 TTAGTTAAAAAAAAATATTTTTTTTTAATTTTATTA 1 1 88 479 CTAGTCCTTTGCCAGTGGTAATCTAGGCATTGAGAT 1 1 120 534 AGCTGCGAAGGAAATGAGCAAATATCCCCCAAGGAT 1 1 111 505 GACTAATAATAAATAAATAAAAAAAATCTACTTAAA 1 1 120 648 GGCGTGATTCTGCTGGCCATTGCCATCAAGCTGTTT 1 1 89 450 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGTAT 1 1 122 166 GCAAATACAGGAAGAACCAAGGGAATGGAGGAGAAG 1 1 82 533 TGTGTCTTATTTGTCTCTGCTCCCTTGGGCACCAAG 1 1 109 730 GATCGGAAGAGCTCGGTCTGCCGTCTTCTGCTTCTA 1 1 94 520 ACTGTAAAGCATTCTTGCCTAGAAAATGATAGGATA 1 1 112 852 TGAAACTAAAGCTACAATAAACTTATATAACACAAT 1 1 92 550 ACCCCTCCATCACTCTGAGGCTGACCAGAAGTATCT 1 1 104 584 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAAAT 1 1 123 436 AAAATGAGAAACATCCACTTGACTCCTTGAAAAATG 1 1 109 580 ATCTTGGATGCCCTACCCCCCTGTCCTCATCCTCTG 1 1 102 549 CTGAGCTGCCTGGAATTAGAACAAGGAATATTTTAT 1 1 121 318 TGGGCGATGATTAGATCTCACCCACTGCGATTAAAG 1 1 119 279 TTGCGATCCTCCTGTCTCTGCCTCCTCTACAGTCCA 1 1 89 424 GCCCTCTCTGCTACTAGATGGGCCAACAAGCAGCTG 1 1 82 804 TTCTGGGTCTTCAATTCTATTCCATTGGTCTACTTT 1 1 90 304 TTCCGCCAGAGTTCCAGGAGGATGCAGGAGGATGGC 1 1 107 425 CAAATGGTTTTAACACTTGAGCCATCTCTTTGCCCT 1 1 110 408 ATGTAAACCACAGTAGAAGTTTGTGAATCTCCCATC 1 1 103 853 TTTTTCTAGGAGTTATTAAAAATACATGCTTAAGTA 1 1 115 514 CTTTCACCTTCCAAGGGCTGTGAAACCACCATTCCC 1 1 114 521 AAATGGGATTGTGTTCGTGATTTCGCTCTCAACATG 1 1 99 337 TAAGGCTGGTCTTAAACAGCAACAAAAACAACGGAA 1 1 118 632 GAGCGGAAGAGCTCGTATGCCGCAATCTCCTTCTAT 1 1 91 364 TAGGGACATGGGAGCCATCTTGACAAGTCTGCAAAG 1 1 114 400 TCCCAACGATCTTCATCTTACTCCGAAATCTAATTT 1 1 85 487 GGCCTCCCAGGAGATCTACTGCAGCCAGGGCAACAT 1 1 113 509 CTCCATTCTAGAGCCTGATTCCAGTTGCACCCACTG 1 1 104 907 GTTAGCATGAAATGTCATGGCAGCTGGATTGACAAA 1 1 123 467 CTATCTGGCACTACAAGAATTAAAATTTAAAAATAA 1 1 74 589 TGAGTTCTTTGGTATTTGGGTTGCTTCACTCAGGAT 1 1 100 564 AACAAGGCAGGAGTTCTGTAGTACTGGGCAGCGAGC 1 1 116 569 TAGCAACACCATAAAAAGTCGTCTAAAAAAGGCACA 1 1 79 401 GCCTCTAAGCACTTGAAATCCATTCAAAGGATCCTT 1 1 98 771 GGTTTTTCAAGACAGGGTTTCTCTGTCTAGCTCTGG 1 1 86 761 TGTGTGAGTTCCTTTGTGATTGTGTTACCTCACTCA 1 1 88 393 TAGGTGGACATGACGTATACACTCCAGTCTAAACAT 1 1 84 708 GATCGGAAGAGCTCGTATGCGTCTTCTGCTTAGATC 1 1 113 439 GCAGCAATCATCCGCTCTGCTGATCCGGACGCAGTC 1 1 83 506 AAATCCACTTGACGAATTGAAAAATGACGAAATCAC 1 1 107 128 GAAAATAAACACTATAGTGGAATGGCTTGATTTTTT 1 1 70 568 GGAATGCCTAAGCATTTCCAGCACTCAGACTTTACC 1 1 122 608 GATCACAACAGACAAGACAGATGGGAATCGCCACAG 1 1 97 306 TTTCACCCCAGCAGGGAGAGTGCAGGCAGGTCCTGC 1 1 121 179 GTTGTTATATGTCAGGCAGTGACTGCCCAAGCACAT 1 1 106 507 CAGATGACTGGCCACCTGCCTGCCCTGGAGAGCAGT 1 1 427 635 GAAAAACAAAGTAGGTATTGAAACAAAATTGAATAA 1 1 109 107 GTGGACATCTGATTTTCTGCTTTTACCTTCCAACTA 1 1 116 82 GAATGGGAGAGGTGGTAGGTGGAATTCTGATTAGAG 1 1 64 473 GATCGGAAGAGATCGTATGCCGTCTTCTGCTTGTAT 1 1 107 663 GTCGACTCCGCGATGCTCTCCGCGGCGATTGCCGTG 1 1 89 718 TATGGAAGGCCTGAGGAGTCTTTTGTTGCAGTCTTT 1 1 380 636 GTTAGAAAACAAAAAGGATACACATTTTTCAAGACT 1 1 88 506 TCATAGTTGCTGAGATTTACAGGACCCAAAACAACA 1 1 123 502 TGAGAAGCAACATATGGTTTAGAATAGAATTATCGA 1 1 74 510 AGGAAAAAGACCCTTTACCAAAACTACCTTGTAAAG 1 1 70 476 GTGTAAGATCTATGCAAAGTCGTGAAAACATCTCTA 1 1 118 160 GTTAATTCCCAGTTGGATAGGTAGTACACATGACGC 1 1 737 593 GATTCCTTCATTGAGAATTATCTGTTTTGCTCTGTA 1 1 84 611 CACAACACACCTCTATTAGTCAACAACTACAAATTG 1 1 114 669 CCTAAACTCACCTTAACCCTAATACTAACCTAACCC 1 1 114 570 CGTCGACTCAGTGGTTAGGGCCTACTCAAAATCTGC 1 1 366 851 GAAAAAACTGGCAAGTGTTCTTAATCTTTCCAGCCA 1 1 120 187 TTTTTATAATTGGTTAATCATTTTTTTTTAATTTTT 1 1 99 468 CATGGGAGCTGAGAGCTAAAAACACACAGATCATCA 1 1 116 556 GATCGGAAGAGCTCGTATGGCCGTCTTCTGCTTAGA 1 1 109 150 GGCTAGGAACCAGTGTGCATGCATACCATTCCCGCC 1 1 114 754 GGTCCTCTGCAAGAGCAGTAAGTGCTTTCAGCTGCC 1 1 111 432 GGCAGACAAGGGAGAGGTGAGTAGGATATGGTGGCA 1 1 373 636 GGGTCACATATATACTATCATATCATGTGCAAATAG 1 1 119 991 GTGGCTCAATCTGGCCTTGAACTTCTGATCCTCCAG 1 1 97 872 TCCTCCCTCCTGCTGCCTGTCATTTTGAGTTCATCC 1 1 117 859 CAGGACAGACTTACCATGTCCACTGTACAGACAGAT 1 1 67 557 TGTGTGTGTAGTGTTGTTGATGCTGTTCCCTTGGTT 1 1 452 555 GATGGGTGGGAGCACACAAATTGAAGCAGGGCCGGT 1 1 355 795 GTCCTACAGTGGACATTTCTAAGTATTCCACCATTT 1 1 98 511 ATTTCTGGAGACCCAGGGACAGCGTGATAGATGCCA 1 1 495 692 GACATCTATTCATATGCCTGGGTGTGTTATTTATAG 1 1 129 389 GGGAAGGAAAAATACTGGAATACTGGGTTATAGGAA 1 1 100 552 GCCCCTATGCACTCTAGACGTTGCTATGTCAGCGTG 1 1 106 452 CAGCACAGCCCGATCTCTGAATTACTTCCACTCTGT 1 1 99 487 GTTGAGTTCAGATGCAAATACCGAGTGTGTTATACA 1 1 465 826 GATAAGGAAACTAAAACACAAGTTAAATAACTTGCC 1 1 90 464 TCAGATCACCCAGGCCTATGGTGAGCTTGAAGAGTT 1 1 96 724 CATATCAATTACAGGTCTTTTAGGTTGTAGGCAATA 1 1 94 317 GGGAATCCAGGCAGGGAAGCCATCCGTGACTCTGAA 1 1 100 399 TGGCTCGGGAGCTCGCCTCCCTCGGCCTCCTCCAAG 1 1 488 607 GATCGGAACGAGCTCGCATGCCGTCTTCTTCTTTTA 1 1 73 788 TGTAGATAAGGTGAAAAGGTAAGTGGACTTTTGATT 1 1 103 490 TACACATAGCGATCAGTCACTTTACTAATGGCCTGA 1 1 123 475 CAACCAAAATACCAACAACAACAACAAAATATCCAA 1 1 443 635 GTTCCTGCTTCCAGGTTCCTGCTGTTCCATTGCTGC 1 1 117 798 GAGGTGCATTTCCTGTGTGCAGAAAAATTCTGGGTT 1 1 110 917 TCTGTCTGTCTCTTAGGAGGAAACCCGAGGCGGCAT 1 1 109 882 CCCAGAGTAGAGTCACAATGTATTAATGCCCAGAGT 1 1 81 142 GGTAATTCTTAACCAAGCTTCTATTTATAGGCAGAT 1 1 117 822 TGTACTAATCTCTGTCAAGACAAACTGTAGCATTTC 1 1 116 174 TGATGCTTCCTCCTCAGCTTGCTCCAGTAACATCAA 1 1 108 268 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT 1 1 83 406 CCCATCCAGTTCCTACCTTAATGTCTGTCCCCATTC 1 1 101 484 CTGGATTTCGAAACGGAATGACAAACGTGTGCGTGC 1 1 483 628 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAA 1 1 107 469 TTATGAATTATAACATCTACCTACACTTATAATATC 1 1 962 565 GGGATGTTCCAGTCAAGGGAACCAGGGTTTGCTCAA 1 1 118 572 CTATCTTGTTGATTTTCTCGAAGAACCAGCTCCTGG 1 1 121 126 GATCGGAAGAGGTCGTATGCCGTCTTCTGATTTGTT 1 1 111 537 AGAAATGCTACGGAGAAAAAGCCAGCAGGGTAAGGG 1 1 119 908 TCTGCAAGTTGAATCTTTTCCAGTTTTTCTCATATG 1 1 115 562 AAAAATGCCAATGAGGTTTAGAGATACGAGGACCCT 1 1 96 884 GACATCAGACATGGAGATGCAGAGTTTGGAGTTTGC 1 1 123 534 ACAGTCCATCGTTTCACCTGGGCTCTTCTCTATGTT 1 1 99 443 TCAGCCTCATGGAACTTTAAGGCAAACATCCCAGAA 1 1 96 906 TGAGAAGAAGATAATGAGGAAGATTTAAGGTCTGAC 1 1 117 195 GGTGGATTGCGGGTGGGTAATCCCCCCCCACCTCAC 1 1 405 806 GATGTTTCTCATTCTCCATGATTTTCAGTTTTCTTG 1 1 68 425 TACATTCCCTTGGCACAAATGCCAACCTACAAGATC 1 1 113 567 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 1 1 69 594 CTAATGGCGATATGATGTCATGTAGATGCCCAAGCC 1 1 90 379 GACAGGCACTGGATGGCATAGCTCAACCACAGGTGT 1 1 111 977 GCTGGATGCGTCTCAGCAGGGCAACCGCATCCAAGT 1 1 85 701 GGAGCCTGTAGAGGCGGGCAGGGCTTATCGCCTGAG 1 1 116 879 CTCCAGGTGCAGCTGTCCTGAGGCTTCTCCAGGGAG 1 1 753 95 GTCTGACGTTCTTTAAGCAGAGCGATTTCAGCTTTC 1 1 104 223 AATGAGCTTTTGTGTTGAGCTGGGGGGGGTGGCGTG 1 1 91 195 TGGGAGCATGAATTTATTACTGTGGTAGAAGAGCAT 1 1 82 227 TAGGAGTTCTCTGGTGGAATTTTTAGGGTCACTTAT 1 1 78 554 TGGGGAGATGTGGGCCCTGGCTGGATATTTGAGGAG 1 1 101 329 GTGGAGGCTAGCACCTGTTTGTGGCCTTGTGAAGGA 1 1 449 243 GATTTTCAAAGTTAAGGGTAAAAATGTTATCACCCG 1 1 401 703 GAAAATGAGAAACATACAATTGACGACTTGAAAAAT 1 1 101 226 GGTATTTTCCTTTTGTTTTATTTCACTTTGGAGGGC 1 1 239 916 GATAGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT 1 1 349 63 GAAAAACGTGAAAAATGAGAAATGCACACTGTAGGT 1 1 158 505 GATTCCTTATGTGGTAATGGAAAATAATATTTCATC 1 1 793 122 GGATGAGAAGAATAGTATATTACATCTCTAGCCACA ShortRead/inst/extdata/Data/C1-36Firecrest/Bustard/s_1_1_0001_qseq.txt0000644000126300012640000005203612227066723026425 0ustar00biocbuildphs_compbioHWI-EAS88 1 1 1 972 352 0 1 CTCCTGCCTCAGCCTCCCAAGTAGCT a`aaa`a_P_\X\```a]][X[MRW_ 1 HWI-EAS88 1 1 1 973 431 0 1 TGATATTTTCCTGTCAGACTAGTCCT a`\`_aaaaa_`X_\WSQZ_ZTZ[[_ 1 HWI-EAS88 1 1 1 973 933 0 1 TGACAGCCCGGAAGCGAGGAAAATAA ab`aaa]]abbaaa`_]__X_^]]]a 1 HWI-EAS88 1 1 1 973 557 0 1 TGCTGGGACTGCAGGCATGAAACACC abaa`a`_aaa_]]`]\`Z\]`]YX\ 1 HWI-EAS88 1 1 1 973 159 0 1 CCCTAATGGCAATTTTGTTTATTCAT aaab`W`^``VUabba[_baYab[M] 1 HWI-EAS88 1 1 1 973 151 0 1 TTGTTTGGGGACAACAAAGATGGCAT abb`ba^V[`Z[]Z\UYVWQ[XFUV\ 1 HWI-EAS88 1 1 1 973 6 0 1 TA........................ BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 973 990 0 1 TATGTAAGTGTGTACACGTGCATATA abab`ba`[a`ba`aa`_]a``aaa_ 1 HWI-EAS88 1 1 1 973 540 0 1 TATAATGACTTCTTTTCCTCTGGGTA aaaaaaa_`aa`aaaa_`aa^BBBBB 1 HWI-EAS88 1 1 1 973 483 0 1 AGACCAGGGTCAGGAGGAGAGATGGA abaaaabaa\]O]]^]`XXHXNRUYX 1 HWI-EAS88 1 1 1 973 955 0 1 CTCTGACATCTGGGGCTTCTGATTCC abbbbbbbbbb`Z``a``_`a_a^Y_ 1 HWI-EAS88 1 1 1 974 417 0 1 CTTCTGCCTCAGTCTCCCGGGTCGCT H_[V_XBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 280 0 1 AGTCCTCTGCCTAGGAAAACCAGAGA aaaaaaaa^`aa^PUVZVZ]`BBBBB 1 HWI-EAS88 1 1 1 974 776 0 1 TTATACCAGTACCATGCTGTTTTGGT aXa`K\GI^ZW[_YGHUYOQYQSBBB 0 HWI-EAS88 1 1 1 974 744 0 1 ACCACAACCAGCTCCTCAGAGTGTGT aU\^_^_\W\^WX\WS\WYSSKUWBB 1 HWI-EAS88 1 1 1 974 801 0 1 AACTCTACATCATCATACCCATCATG BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 656 0 1 GCGCCAGGTTGTGCGCTGAGGCTCCC II__BBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 741 0 1 TGTGTCTGCAAAAATGTTTAAAAAGT aa`a_aa_[]`^__``^aa^^_^^QX 1 HWI-EAS88 1 1 1 974 961 0 1 GGGATGACAAATAAAGGAAACAAGGA a[TTKTNWBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 974 687 0 1 TGGTTTTTTTTGTTGTTTTTTTTTTT aaa]aababbaV`a_aaaabaaab]B 1 HWI-EAS88 1 1 1 975 798 0 1 AGCGATCCGTCAGGTGGCACTTTTTG aa_a^]R[`[^^^XTRZZRZ^^Z^[R 1 HWI-EAS88 1 1 1 975 737 0 1 CTGCTACCTCCACGCCCCAAGTTTAA aabaabaaabaabaaa`a``_U^_V] 1 HWI-EAS88 1 1 1 975 22 0 1 CCCTAGCGCCAAGGGTGTCCGCGGCT ^Z___H[I_IGFT_^R]GTVW]IZ\B 0 HWI-EAS88 1 1 1 975 884 0 1 TACTAATTTACATTCCTACCAACAGT ababbbaabbaabaaaaaaaaaa__W 1 HWI-EAS88 1 1 1 975 586 0 1 AACAATGGAAAGGTCATTTCAAGGTC aaaaaa^\W^^]a]`^a`\PZ\WNT[ 1 HWI-EAS88 1 1 1 975 396 0 1 CCTCAGCCTCCTGAGTAGCTGGGACT aaaa[_aaaa`_XX\]]X]\UQSO[] 1 HWI-EAS88 1 1 1 975 346 0 1 TAGTTTTTCCCTGAATTCTGAGCACC a^a_aaaa````P\[_a_`UJMVXTZ 1 HWI-EAS88 1 1 1 975 617 0 1 AGCACTTTGGGAGGCCTAGGCGGGCC aaaaaaaaa_`]TW]^\]X]XUUYBB 1 HWI-EAS88 1 1 1 975 160 0 1 CCCTAATATCCCAAATGTATCCACGT abaDTNYHWbbWBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 975 511 0 1 TAGCCCCGCCTCCTCTAGGGTCCCGG `a_\RX^`^`_\^^Q``ZBBBBBBBB 0 HWI-EAS88 1 1 1 976 149 0 1 TGATTCTTCTCTCTTTTCTTCTTTAT aaYaa_aa`a_a_aaaa``a`aa_O` 1 HWI-EAS88 1 1 1 976 472 0 1 CCATGTTGGCCAGGATGGTCTTGATC aa`ab\```a\O\a^a_V]Y]ZGNY] 1 HWI-EAS88 1 1 1 976 490 0 1 ACACTGAAAGGGCAATTTGTCACAAC a`Yaaa^X`aX[]WZ``^X]YOVQRX 1 HWI-EAS88 1 1 1 976 969 0 1 TTCGGCCTCCCAAGGTGCTGGGATTA ababb``aaaa_ab_V`a__`]W_]_ 1 HWI-EAS88 1 1 1 976 109 0 1 GGCTCCACTACTATAGGGGCAATTAC aa`a``X`a_`[N^^```^YNNY[QY 1 HWI-EAS88 1 1 1 976 663 0 1 TTGAACCCAGGAGGTGGAGGCTGCCG aa``a^a^Y^\\`]BBBBBBBBBBBB 1 HWI-EAS88 1 1 1 976 476 0 1 ACTCCTGCTCTCTCATGGGCTTTTCT aabbbaaabbabab`_]WT_aaaaab 1 HWI-EAS88 1 1 1 976 496 0 1 AGAGAGCTTTACAAGCACTCTAGCAG aaaaaaaaaa`_[XZaa`aa]YQZXY 1 HWI-EAS88 1 1 1 976 310 0 1 CCATCTTCACTCCTCCTTTGAGTCCA ab`abaaaaaaaaaaaaa`SUQBBBB 1 HWI-EAS88 1 1 1 976 479 0 1 TGCTTCATCTGTGGGATGCTGAAGGA aaaaaa_aaba_^a[\]Z]a\RNQVR 1 HWI-EAS88 1 1 1 977 21 0 1 AAATGGCGCTTGGGGAAAGAGAGGTC [GZb_[G_`a`[ab[DXVV^BBBBBB 0 HWI-EAS88 1 1 1 977 406 0 1 GAGCGTTACCAGCTGCCTCAAAGTTA a`aab`a`a]Pa`aaaa]_X\`UL]] 1 HWI-EAS88 1 1 1 977 861 0 1 TTGCGCGCGTAGGAGTAATGGCTCGC `aaaaaaa``a```_\_]aa]]]VXB 1 HWI-EAS88 1 1 1 977 266 0 1 TGTAGGTCTCTTATCAATGAAGAACT aa`aaa_^a`aa\a[SY_WSQTSXXa 1 HWI-EAS88 1 1 1 978 312 0 1 TGAGTCTCCAAATCAATCCAATGAAG aa\a_aa_a_[]a_\_aa`YS^ZUXB 1 HWI-EAS88 1 1 1 978 647 0 1 GGTGGGGGGCTGAGAATCAGGCACGA S_T\FY_\`\QXZVEW\ZTXWZBBBB 0 HWI-EAS88 1 1 1 978 159 0 1 CTGCGAAGGCTGCCGGGAGCGGGACT `aaa_\^[`\`^`]U]\P[Y`\BBBB 1 HWI-EAS88 1 1 1 978 641 0 1 TGGTCAGGCTGGTCTCGAACTCCCAA aaa\aa`\a`]Y\^`\QHV\ZTXBBB 1 HWI-EAS88 1 1 1 978 686 0 1 CATTTTGGGAGGCTGAGGCGGGCGGT `_aaa`aaaaa`a\`\`a\a`[BBBB 1 HWI-EAS88 1 1 1 979 550 0 1 CCACGAGTGGAGACCTTCCCACGTGT aa`aaa_V_`]`]^_````]]]\R]W 1 HWI-EAS88 1 1 1 979 920 0 1 TCGCAGTACTGTTGTAATTCATTAAG a`baab]a`aa`ab\Y_b`a^aa`[[ 1 HWI-EAS88 1 1 1 979 789 0 1 CCCCTTTCTGTCACCTGCAGAGCTCC aaaaaaaaa`aa^aaa_`a``_]]`` 1 HWI-EAS88 1 1 1 979 886 0 1 TCTTTATTCTGTTCCCCCCCAACCCC aaaabaaaaa]aa``a__`a^]]_`` 1 HWI-EAS88 1 1 1 979 908 0 1 AGTTTGGAAACAATGATAGACATAAG ab_aaaa_aaa`]`a^\`a\^`]`]Y 1 HWI-EAS88 1 1 1 980 525 0 1 CGCCATTGCGCTCCAGCCTGAGCAAC aaaa`aa^_[_```_Z]\]Z[ZVYT\ 1 HWI-EAS88 1 1 1 980 828 0 1 AATTGTGTTCTGTGAACCTTATCTCA aabbb`baaaaba^`___b``a`a]_ 1 HWI-EAS88 1 1 1 980 404 0 1 CCTTCTCCTTGAGCACTTTCTCTTCT aabbbaaaaaZP]_`abaaaaaaaab 1 HWI-EAS88 1 1 1 980 867 0 1 CAGGCATGAGGCACCGTGCGCGGCCT aaaaaaaaaaaa````\aa`^`]XV\ 1 HWI-EAS88 1 1 1 980 252 0 1 GGTCGGGTGCGGCGGCTCCGGCCTGT aaZa```Z`\BBBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 980 648 0 1 ACATGCAGGTGGAGGGGAGGGCTGCG `aa^a_V]XJXVJW]]BBBBBBBBBB 1 HWI-EAS88 1 1 1 980 284 0 1 GATCCCTAAACAGCAGCAAAACGAAA a_baaabaa`a_````a]_[]`\TZY 1 HWI-EAS88 1 1 1 980 678 0 1 AGGGAAGGGTAAAAGGCGAGGCAGGT abbaaaaaaYa``]]__`[^]XQ[BB 1 HWI-EAS88 1 1 1 980 282 0 1 TTACTTACGTAAAAACTTTAGATTAT aba`abaaa_`\]\_aab[YOL_b_b 1 HWI-EAS88 1 1 1 981 215 0 1 GTGGTTACTGGCGCCTGTTATCCCCG __R]H]_VPPX`XO\WZTUU\XBBBB 0 HWI-EAS88 1 1 1 981 351 0 1 CTATCAGAGATGCCGAGAAAGCAGGG ababa`_\]`_]_a]UYXZ[WXKWUU 1 HWI-EAS88 1 1 1 981 632 0 1 ATCCCTCAACAACTGTCCCTAATAGT \^T_a_^W_```a_V^\__VWQ^[RV 1 HWI-EAS88 1 1 1 981 855 0 1 TATTTCTGCGGCCTCTGTTCTGTTCC aaaaaaaaa`__``^a^`b`a^]`[Z 1 HWI-EAS88 1 1 1 981 123 0 1 GCTGGTCTCGAACTCCCGACCTCAGG a``a`^\a`]JO_a^\^XVZ]XPGSW 0 HWI-EAS88 1 1 1 981 551 0 1 CCTGGGAGGCATCTGGGTTCCACCAA aaaaaaa`a_\_a`_`aa_``aa`]U 1 HWI-EAS88 1 1 1 981 785 0 1 GCCAGCCCTGGAGGTAGCTGGGTTTC a^`aa`^^`a]P\]PU\U]`_XM\BB 1 HWI-EAS88 1 1 1 981 769 0 1 GGAGAGGTCTGATCGGTCCAGTGTTG aa^a^aaU^a`[^_`]XXZV]T]ZZT 1 HWI-EAS88 1 1 1 982 94 0 1 AGCAAAGGGTTAAACGAAAAAAAGAC VBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 982 426 0 1 GCAGTGAGCTATGATTGTGCCACTGC a`]a_a``aa`aZ]]_]]ZZVRW[M[ 1 HWI-EAS88 1 1 1 982 414 0 1 TAATGGAAGACGGGAGTTGCAGTGCT a`aaaa_YZ\_]`YRWSX\VOSNVNW 1 HWI-EAS88 1 1 1 982 573 0 1 CTAAATAAGATGGTTAGTACTATAAT aa`]`a```^a^^`a^SZ``^U^[V^ 1 HWI-EAS88 1 1 1 982 341 0 1 GACACATACCCATCTTTTTAGAAAGT a\aaaaaaaaa\aaaaaab[BBBBBB 0 HWI-EAS88 1 1 1 982 997 0 1 TACAGTGAACAGAAAGGTCAGAGCCC abbbbabbbbbbbbbb_T_aaaa^_] 1 HWI-EAS88 1 1 1 982 221 0 1 CAATGGAGAATGAATGGCCTTGAACT aX`b_b_`^`a_V^a_]]`]]WIW]^ 1 HWI-EAS88 1 1 1 982 655 0 1 TCAGGATTCCATGGAGAATATCACAC aaabaaaaaaaaZ]^^^^`_``^^X^ 1 HWI-EAS88 1 1 1 983 404 0 1 GGCAGTGAGCCCCAAGGCTTCCCGTT `aaaaXX\a`aaaWF[\YU_YOEYYX 0 HWI-EAS88 1 1 1 983 204 0 1 ATTAGGCTGGGCACAGTGGCTCCTGC a]\Z\ZZRPZBBBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 983 277 0 1 CTACTCAAGCCTCAGGAATGGCGGAC ababbba^aabb`WZ^]W`a]_WYBB 1 HWI-EAS88 1 1 1 984 727 0 1 TCAGGTATATTTTCAGCAGTCTTGGG aaabb_ba`bbbaaaZa```a]\OYY 1 HWI-EAS88 1 1 1 984 703 0 1 CTGATCTATGGCACCTCTCTTCTGGC aab]aaaa`a^aaaaaaa`^`aYHU] 1 HWI-EAS88 1 1 1 984 252 0 1 CTGCAAGGCCAGGCACGGTGGCTCAT a`a`aa`a`aW^a`aa__V[a[XXSS 1 HWI-EAS88 1 1 1 984 980 0 1 CCTGAGCCACTGTGCCTGGCCAGGGG aaaaaaaa`a`a``a_]_][_aaaa` 1 HWI-EAS88 1 1 1 984 591 0 1 TCCATGTCCCTGCAAAGGACATGAAC aaaaaa_baaa^_U_T[\O]X\][[] 1 HWI-EAS88 1 1 1 984 564 0 1 ATATTTCTTGGAGGCTTTGTTCATTC ababbbbba\ZXZY]`b`S\aWD\`U 1 HWI-EAS88 1 1 1 984 379 0 1 AAAGAACTTCAGCAATTGCAGGAAGC aUWYWRZYY[VUVUUUXXBBBBBBBB 1 HWI-EAS88 1 1 1 984 824 0 1 TTGTCTATCAATTTGATTTATCTTTT abbaababa^`aab_^abbab`baaa 1 HWI-EAS88 1 1 1 984 2 0 1 A......................... BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 984 709 0 1 ATATGGAAATCTGAAGGACTTTGAAT aaaab`_aaaaa_``^a^aa``UXZ` 1 HWI-EAS88 1 1 1 984 748 0 1 ATTTTGTTTGGTAGTTAAAACCATTT abbbbbabb`]ab_aaaa`baa`aaa 1 HWI-EAS88 1 1 1 984 64 0 1 CGTGTAATATGAGAGACGCCGTACGT ababaaaa__WPZORDZZ]]`XLT]` 1 HWI-EAS88 1 1 1 985 246 0 1 CCCCACCAGGGAAATGTCTAGTGTCT aaabaaa^``_RS[``]a`ZRX\\\` 1 HWI-EAS88 1 1 1 985 431 0 1 CAATTAATCCAGCTTCTGTAATTTTT aaabbaaba`W]aaab`Q[SY`aaab 1 HWI-EAS88 1 1 1 985 743 0 1 CTGCCCCATATCTGCCACACACACTC abbbaababbab```ba_]`abaa`` 1 HWI-EAS88 1 1 1 985 857 0 1 AGGTCAGGAGTTTGAGACCAGCTTGG abbV`aaa`a^_aa_a\][V^XXRZ^ 1 HWI-EAS88 1 1 1 985 864 0 1 TTTATTACACAACTCTCTTTCACCCT ]_aa`^a]aa^[LWO]LP^ZVV]TZB 1 HWI-EAS88 1 1 1 985 827 0 1 TCCAGCCAATTTCCAGACTGCCAAAG aababab]abbbaa^b]aaaaa]]`` 1 HWI-EAS88 1 1 1 986 925 0 1 ACTTATAAATAGTATATTTGTTTGGC aaaaabaaaaab`aa`aaa`^aaZIY 1 HWI-EAS88 1 1 1 986 277 0 1 GGAGTAACCAGAGTAAGTGAGCTGGA ]a[aZ`__`_^N_WY]XZ]W\T]YRB 1 HWI-EAS88 1 1 1 986 332 0 1 GTGAGCCAGCATGCCAGCCAGCAAAC a`a``a`[a^\]Z]WDWO[Q[\BBBB 1 HWI-EAS88 1 1 1 986 655 0 1 CGGTATTTTCTCCTTACGCATCTGTG abb_bbbbbabaaba`a]a^_``b]] 1 HWI-EAS88 1 1 1 986 580 0 1 GGCATTGGGCTGGGGAAGGAGTTTGG aaa`aaaZa^`^[[SDT[WGWRX^VW 0 HWI-EAS88 1 1 1 986 956 0 1 TTTTCGGAGCTCAAATGCCATGCTGG aaaaabbabaaa``a`baa`]_\___ 1 HWI-EAS88 1 1 1 987 599 0 1 AACCTCTGACTCCGTGGTTCAAGCAA aaaaaaa_aaaa`_][`]`\Q[HZYV 1 HWI-EAS88 1 1 1 987 220 0 1 CAACATGGATCTCGCAGATACCGTCA a^`babb_[`bb`[]M]O]`a_X]\Y 1 HWI-EAS88 1 1 1 987 293 0 1 GCAGATGCTTTTGCACTGCCTGTGCT aa[aXaa_aaa`Z][_WY]`^`^Z][ 1 HWI-EAS88 1 1 1 987 485 0 1 CAACATGGTGAAACCTTATCTCTACT aaaaaaaa^][]_`aaa`aaaa_]]a 1 HWI-EAS88 1 1 1 987 808 0 1 CCCACACACACCAAGCCTGGGCAAGG a`aaaaaaaa`a``a`a````\]]_` 1 HWI-EAS88 1 1 1 987 175 0 1 AGACATAACAAAAAAAAAACAACCAA `HWBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 987 113 0 1 CTCAGCCTCCCAGAGTGCTGGGATTA aaabbaabaa]J][^Waaba`[E\_Z 1 HWI-EAS88 1 1 1 987 81 0 1 ATTCTGTGGGTTTGTTTGTTTTGTCC abbbbba\a_aba\abaX_bb_H_]X 1 HWI-EAS88 1 1 1 987 526 0 1 GCTCTGACCTTTCTGTTCACTGTAGC a`aaaa^^_aaa`aaaa_```]\]TT 1 HWI-EAS88 1 1 1 987 934 0 1 GTGCAGTGATCATAGCTCACTGCAGT a^baab_baaaaaa`_`_]^Y^^__[ 1 HWI-EAS88 1 1 1 988 201 0 1 TTTAATATTTCACAGTTGGTTACAGT aaaYT\S`U_XDXVG\MTO[`BBBBB 0 HWI-EAS88 1 1 1 988 156 0 1 TTTAGCTAGACACAGAGTGCTGATTG aba`a``SX^]X_UWO[Y]``WHX^X 1 HWI-EAS88 1 1 1 988 309 0 1 CGGCGCGCGCCTGCAATTGCAGGCAC a_`a`a`aa```XT\U_a`ZPTYWYY 1 HWI-EAS88 1 1 1 988 772 0 1 CATGTAGATTGATGTGTCATCAGCGT aabbaaa^aba^a_]Z___a[FY``` 1 HWI-EAS88 1 1 1 988 296 0 1 ATGGTAGACACAGAGGTGGACTGTTT aaaa^a_Y_\^PVUXZFWTKTYFU\] 0 HWI-EAS88 1 1 1 989 630 0 1 CCTCTATTTAACTGTACCTCCCCCAC aabbbabababaa^]aaaaaaa^[BB 1 HWI-EAS88 1 1 1 989 94 0 1 GATAAAGGGGGAGAAC.CGCCGGGCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 989 517 0 1 CTCCAGCTCCCCACTCAGCAGGTGTA aaaa[aaaaaa]G]`a``]\_XP\YU 1 HWI-EAS88 1 1 1 989 980 0 1 TAGCATCACTGCTTGTGGGATGGCTT abbabbbbabbbbbb`baZa`````^ 1 HWI-EAS88 1 1 1 989 292 0 1 ACTCCTGGCTCACTGCAACCTCCGCC YG]\^`_I]_OO[]]]YFWaa\]T[[ 0 HWI-EAS88 1 1 1 989 356 0 1 AGAATATACTAAAAAATGAGCAGGCA aa`abab`ab_X_`a`a`]^_^T\\\ 1 HWI-EAS88 1 1 1 989 398 0 1 TGTGGCAGAGCACAGCCTGCTTGGAT aa^__^a_V_ZLYU[]_Z]\V_QYM[ 1 HWI-EAS88 1 1 1 989 237 0 1 CCCAAAACAACCAACAAAACAACAAA \_KK_J_HJHJRW_LMSSXL__H\a^ 0 HWI-EAS88 1 1 1 990 109 0 1 TTTCAAGAGTCTCATTTCCTAGTTAA aaaa[_^Ua\aaa_a^a```Z^``\T 1 HWI-EAS88 1 1 1 990 173 0 1 AGAGATTCCTAAATACCGAGGACTCT a`Y]W_a^_`XUT]^\^ZRXSSV\\Y 1 HWI-EAS88 1 1 1 990 123 0 1 TTTTAAGCAATTTTGAAGGCGATTTT abaa__a`^`a_`^HW[T_\]V^`a` 1 HWI-EAS88 1 1 1 990 205 0 1 AGTGCAGTGGTGCGATCTTGGCTCAC a^W`W\YSPZUUUPDNVVTSNS\RRQ 1 HWI-EAS88 1 1 1 990 941 0 1 CCAACTACCTACTCCACACTCCCAAA abbbbbbbbbbbbbbabbbabaaZab 1 HWI-EAS88 1 1 1 990 812 0 1 GTGGTGCTACAGTCCATCAAGTAACA a_aa]a`a``_a\]_[_^][_TZXZ\ 1 HWI-EAS88 1 1 1 990 908 0 1 CGTCTGTACTAAAAATACAAAAATTA abaabbababbbbabbaabaa`a`__ 1 HWI-EAS88 1 1 1 990 993 0 1 TGATTCCACATCTGGAGCTGGGAAAG abaabaabababbbbabaabb^^^ab 1 HWI-EAS88 1 1 1 991 748 0 1 TCAGGGGCTTCCCTGCAGGGAGAAAG aaaaaaaaaa^``^a`]Z_XWYKTPU 1 HWI-EAS88 1 1 1 991 146 0 1 AACCAAAGACATAAATAGATTAAGAA ^RNFSDDQ]BBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 991 535 0 1 AGTTCTCTAACAGCTCTCACCCCTCC ababbbbbabbaabbaa`]``aaaaa 1 HWI-EAS88 1 1 1 991 849 0 1 TTTTTCTTTATTCTTCCTAAGGATGA aaaaaaaaaaaaaaa_aa`_ZWX[RS 1 HWI-EAS88 1 1 1 991 689 0 1 TCATGGGCCTACTCCAGTTTGGCTTT aaaabaa`aaaaa_a``]`[YU]`aa 1 HWI-EAS88 1 1 1 991 400 0 1 TCTCCATGTTGGTCAGCTCGGTCTTT aS`JY]V\[[SBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 992 775 0 1 TGGCGCGATCTCAGCTCACTGCAGCC aaa`aaa]```_]\`a`a`\XUOYY] 1 HWI-EAS88 1 1 1 992 955 0 1 AGGATATTGCCTTATTCAATTTTGGT abbaaaaabaaab`aaa``aaaa^Z_ 1 HWI-EAS88 1 1 1 992 926 0 1 GGAGGACCTGGCCCACTAGGAAGCCC a`]`a\]XV]`YKX]XWU]]\\\QYB 1 HWI-EAS88 1 1 1 992 677 0 1 CATCGATAAACTGCTGAACGTTCTGA aaaabaa``ab`Z_aa_`a_]a`_PV 1 HWI-EAS88 1 1 1 992 823 0 1 AGACTCCTCTCTGGTCCTCTGCTCTT abaaaaaaaaa`]``_`a_`^^`^\` 1 HWI-EAS88 1 1 1 992 714 0 1 GCTTTGGCTTTAATGAGGCTGAGGTG aababb^`babaaa^]ZZZ_\Z^WBB 1 HWI-EAS88 1 1 1 992 694 0 1 AGGCTACCCTGCTCTCATTCCAAAGC abaaaaaYa``^`_a[Q^`_YVX\Z] 1 HWI-EAS88 1 1 1 993 112 0 1 TCCTTACATTTCTCTTTAGTTTATGA a_`aa[_S`aa`a`aaa^^^a_O]BB 1 HWI-EAS88 1 1 1 993 93 0 1 AAGAGCAACAACTGATTTAGGCAATT a^a[`[OV`[\]a_R_^`\[LXSO\_ 1 HWI-EAS88 1 1 1 993 882 0 1 AACAAGAGTACCATGGCCTAACTATG a`^__^]YF\SMLQZYOVPX_BBBBB 1 HWI-EAS88 1 1 1 993 526 0 1 TGGGGGGATCTTGGCTCACTACAACC aaabaa`U^^^\WZ_^]VZ[^YJWX] 1 HWI-EAS88 1 1 1 993 136 0 1 CGGTGATGCGATCTCAGCTCACCGCC a``]`^a_a]Q[`a[QX\`YU\YUBB 1 HWI-EAS88 1 1 1 993 143 0 1 ATATATTGCCATCTAGTGTGTTAGAA abababa]aa]]a_R\`Y```BBBBB 0 HWI-EAS88 1 1 1 993 854 0 1 GGCGGATTAACAATTTAATCTTCAGC aa`ab_a``a`^``aa__`^^_][\] 1 HWI-EAS88 1 1 1 993 506 0 1 GGGGACACGTTGTTTGTAAAACCTAT aaa`^a_`a_aa`aaZY`\XZ]Z]W[ 1 HWI-EAS88 1 1 1 993 124 0 1 CCCCTACTGGAGGCAGCCTCATGATT ababaaaaab[`a_[`]`aYJ]KDX] 1 HWI-EAS88 1 1 1 993 149 0 1 AATTCTTCTTTATGTCCGCTTGTCAC `_bbbbbbbba`aTab`R`b_H_[Z_ 0 HWI-EAS88 1 1 1 994 321 0 1 CTGGAGGGAAACCTCAATTCAACGGA aabbaba_S_^^`a_X\_a]PZBBBB 0 HWI-EAS88 1 1 1 994 91 0 1 TAGGAGTATAATTTTAAAAGCCATTT a_aa\a\_a^U`aaaY]]VSY[Q^`] 1 HWI-EAS88 1 1 1 994 361 0 1 AGAAGTCAAATGAAGAAGGTGTTTGA aa_abaa^aab`^`_[Z^aZZ_a^BB 1 HWI-EAS88 1 1 1 994 996 0 1 CTGTCTCCTGAGCATCTTTCTGACTT abbabba``bbbbbbaa`a`a\_`a^ 1 HWI-EAS88 1 1 1 994 838 0 1 ACAGGCGCCCACCACTACGCCCGGCT a]_a`]`]X]\]^\X\ZR]TJTZRPR 1 HWI-EAS88 1 1 1 994 556 0 1 GTGGCTAAGAAAAGATGTACCACTGT aaabaa``^V^^_`\``]_Z]Z[[XV 1 HWI-EAS88 1 1 1 995 516 0 1 CATCTCCTGACCTCATGATCTGCCCG aababaaaaababb`a_W`a_]__YV 1 HWI-EAS88 1 1 1 995 410 0 1 TGGAGTGCACTGGTGCAATCTCAGCT aaa`aWa``^a`[[a\^^__`[PYU] 1 HWI-EAS88 1 1 1 995 226 0 1 ATGTTTTTATAATTCCAGAAACCGTT aaa_aaaaZ_XY[G[]VTUXXXDPX\ 0 HWI-EAS88 1 1 1 995 632 0 1 AGATACATTTTCTTGACTTGAGTCTC abaaababbbbab`Y]aba^\W_`aa 1 HWI-EAS88 1 1 1 995 1001 0 1 TCTATGGTGGATATGTGCAAGAGGCC aabbbbb`bb``a\]]]Z]`bab\I[ 1 HWI-EAS88 1 1 1 995 27 0 1 CTCGGTCCCCGTGGATGGCGGAGCAA a[JI_aa^IaZMXZX]_VQTBBBBBB 0 HWI-EAS88 1 1 1 995 605 0 1 TAGGACACGGAGCTCGTGGTGACCAG J_aXG[FW_]_S]VBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 996 872 0 1 CTGGTGCGCGGCATACGCGCTTTCTT `aaa`a`aaa`_\X_\_a_]_X_\__ 1 HWI-EAS88 1 1 1 996 450 0 1 ATGGTGCTTACTATGTAACAGGCACT aaaa_abbaZ`aXa_aaa_[TWY\_` 1 HWI-EAS88 1 1 1 996 527 0 1 TTCTTGATGTAAAATTCTTGATTGCT aaabb^_bba_TX_aa`aaZ\a`X]a 1 HWI-EAS88 1 1 1 996 102 0 1 TGGCTAATGAGTGACAGTCTATTCAA a`a`a___]Z[WZTYT\Z^\[\_BBB 1 HWI-EAS88 1 1 1 996 124 0 1 GCTGGCATATCCAGGAGCTGCGAGTC aY^a`XY^^\]YJWXO]BBBBBBBBB 0 HWI-EAS88 1 1 1 996 889 0 1 GTGGAGGGAAGGTCAGCAGATAAACA a\aa^ba_Y]`_S[^_\\]ZTYVZYV 1 HWI-EAS88 1 1 1 996 807 0 1 CCCTCCTCATCCGCATCCCGGTCCTC aaaaaaaaaaaa_aa`aaa``\]]aa 1 HWI-EAS88 1 1 1 996 976 0 1 CTAACCTGGGTATCGGCACGATTAAT aabaZ`bbbb_bbabaaa`a_^____ 1 HWI-EAS88 1 1 1 997 427 0 1 ACTCGGGCCGCGGAGGTTGCAGTGAG aaaaa`]^a`a][P\YJYVVQXMTPU 1 HWI-EAS88 1 1 1 997 172 0 1 CTCTGTCTCAAAAACAAAAACAAAAA abbb_bbba``\Y`a___]]`ZOWZS 1 HWI-EAS88 1 1 1 997 454 0 1 AGACCAGCCTAGCCAACATAGTGCAC aaaaabbabaaa`a[]_T_T_VKIS^ 1 HWI-EAS88 1 1 1 997 570 0 1 ATAGGAGTGTGAATCTTATTGTTAAC abaaa`a`a_[SZaaa`X_^OVFNXU 1 HWI-EAS88 1 1 1 997 217 0 1 GGGTTTCTTCTCAGGCTATCAGAGAT aaa]aa_aa`a]WUI[^S^[VXINV[ 1 HWI-EAS88 1 1 1 997 756 0 1 GCCTGTTATCCCAGCTACTCGGAAGG `J``WQT^a]H[OFTOV^O\BBBBBB 0 HWI-EAS88 1 1 1 997 26 0 1 CAGGGGTGGCGGTGTTCTCCTGTCGT _UTZBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 997 713 0 1 GGCACCAATCCCATTATGCCCCCATG aa`[ab^`aaaa^aaa``a_a`^U[Z 1 HWI-EAS88 1 1 1 998 902 0 1 GGGGCCCCTCTCTGGGGCTGGCTGAG a`aa``aa```\aaa`a]X_`]\`]` 1 HWI-EAS88 1 1 1 998 411 0 1 GTACATTTTTTTTTTTCTTTGTTTTG Ua]HH__XM]`a^[Z[BBBBBBBBBB 0 HWI-EAS88 1 1 1 998 747 0 1 TGTCTGTCTTACTTATACTGTTAAAA abaaab_`aaaaab`aaa_V^a_ZSY 1 HWI-EAS88 1 1 1 998 1 0 1 C......................... BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 998 606 0 1 TTGACCGTATAGCTGACAGGAGTCCC aaa`aaaaaa_]]]V[^Z[[VUXY\Y 1 HWI-EAS88 1 1 1 998 206 0 1 CACTAGCGCTCGCCGCAGCCGTGTAA _T_`aaa`aaa``_Z_a``]BBBBBB 0 HWI-EAS88 1 1 1 998 847 0 1 AAAGGCTGCAGTTTAGTAATATTAAG _X_`WNKZIGFUS]P\O^IX[H^K]S 0 HWI-EAS88 1 1 1 998 424 0 1 AGGCTGCAGTACAATAGCGTGATCTC aabaaaa`baa``_a_a``^]X^]_a 1 HWI-EAS88 1 1 1 998 418 0 1 TTTAGTGGAGACGAGGTTCCAACTTG BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 998 815 0 1 AGAAGAACCACCAAACAAACAAGACC Ka^IHGGTVbYGYKJ`V^Y_XXKO]B 0 HWI-EAS88 1 1 1 998 362 0 1 TTGGGCCATTGTATGTGAACAGATCT aaaa`^`[aa^a`aZ_XNZ][VP\Z_ 1 HWI-EAS88 1 1 1 999 750 0 1 GGCTGAGGCAGGCGCATTACTTGAGG aaaaaaaa`_a`T\TPX_\RQTMMTT 1 HWI-EAS88 1 1 1 999 695 0 1 TTACATTTCCAACTCTGGGTCCCGGA abaaabaa`_abaa``^`a]]^``TY 1 HWI-EAS88 1 1 1 999 768 0 1 TGTCTCCACAATGTCTCACCTGCACC abaabaaaaaaaaaaa___`^]]]_` 1 HWI-EAS88 1 1 1 999 405 0 1 CCACCAGAGCCTGACCTAAATTTGAA aaaabaa^aaaa`__aaa\T^`^XZZ 1 HWI-EAS88 1 1 1 999 743 0 1 AAACAATCCCAAGACATGTCAATTCT a__]V]]a_ZMS]\\TZ[V]YU[Y]^ 1 HWI-EAS88 1 1 1 1000 434 0 1 TCCTTGCCCACCCTTATCCCTAGTAC a_aaa`a\_Z]```_Y^^^_]PPYNV 1 HWI-EAS88 1 1 1 1000 335 0 1 AGAATGTCTCTGTTCTGTCAGTCCTT aa_abbaaba`V_aa]H]`]V^TZ]B 1 HWI-EAS88 1 1 1 1000 635 0 1 AAAAAATACAAAAATCATCTGGGTGT aaaa_T_aa]a^^`_a`_a`]WYV][ 1 HWI-EAS88 1 1 1 1000 149 0 1 AGCCGAGACAGAATACAGGCAACAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1000 278 0 1 CAGGAGAATGGCGTCAACCAGGCGGG a_aaa```aa_a`a]X___\_YBBBB 1 HWI-EAS88 1 1 1 1001 13 0 1 CTGGAT....TGGTAATTCTTTTTTT abb`a\DDDD^\]]W\aa_abbabbb 0 HWI-EAS88 1 1 1 1001 779 0 1 GGGTCTATCTTCAATTCAGAATCATT aaa``bababa]Z]aaaYY\\aaYaa 1 HWI-EAS88 1 1 1 1001 852 0 1 ATGCATTCGGGATTCAAACATTGCCT aaaa`aaaaa`[_a`^_``^`[^[]_ 1 HWI-EAS88 1 1 1 1001 62 0 1 CGAAGAGGTTACACCTTAGACCGACT BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 196 0 1 CGCAAACATTCCACATTCGTCGGTTA `GbGFXaGJ\FYM\R_H_L]\INI]^ 0 HWI-EAS88 1 1 1 1001 373 0 1 CAAAGATGCAGAGCATCCGATCGATA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 474 0 1 CAATGGAGCCGAGGAATCGCTCAACA aGbBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 817 0 1 TGACTCTCACCCACTCCCCAAAAGCT abaabbbaaa`aaa]aaa`]_`Y`_a 1 HWI-EAS88 1 1 1 1001 26 0 1 AACCA.GAACCGAAACACAACAACCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1001 694 0 1 TCACTCTGGGGGGAGTGTGTGTGGCA aaaaaaaa__`^^X\WZ\YPTXYBBB 1 HWI-EAS88 1 1 1 1001 427 0 1 CAAGTGATCCTCCTGCCTCAGCCTCT aabbb`bbbbbbb_X^bb_X\aaabb 1 HWI-EAS88 1 1 1 1001 160 0 1 GATGCCATTTGGTGCTCTTTCTTTTT a_aaa_T`ab_Q]^`baaabaaaabb 1 HWI-EAS88 1 1 1 1002 931 0 1 TTTATGTAGTTGGCCAATAGGTATTT abbbbbabbaa\\aaa`a_\\\_bab 1 HWI-EAS88 1 1 1 1002 9 0 1 .AG..........AC.....AGATCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 180 0 1 .TTCTGGCTTGTAAGGTTTCTGCTTT DPZZWSSWZWBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 735 0 1 .TTATCTCAGCTGGGAGCGGTGGCTC DNUTUTUTTTTSBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 1002 172 0 1 .GGCAATTGCATAAGCTTCATCTGGT DNZYYYYWUVWWUUQTVYBBBBBBBB 0 HWI-EAS88 1 1 1 1002 354 0 1 .ACCGCACCCAACGAAAAAAAAGACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 389 0 1 .TCAACTACTCCTGTTATAGCTTGCG DOYYZYVVWYWQFJTUWVWBBBBBBB 0 HWI-EAS88 1 1 1 1002 498 0 1 .AAACCCAAAAACAAACAAGACAACC BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 684 0 1 .CCCTTTCCCCCTTTAGAGGTACCTT DNXXXWXWWWWVXXWVSNJOSRSNTR 1 HWI-EAS88 1 1 1 1002 799 0 1 .CAAGGAAAGCAATAAACAAAAGAAC BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1002 969 0 1 .GTACTGAGCGGGATAATTCGTCGTG BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 630 0 1 .ATCCCCTGACCCCTTGCACTTCCCA DNUUTUTSSSSTTSSSSSUSSSSSBB 1 HWI-EAS88 1 1 1 1003 973 0 1 .TCTCCCTATTCCCTCTGGAACTGGA DNVVWXWWWXXXWUXXWVVXWWWWWU 1 HWI-EAS88 1 1 1 1003 149 0 1 .GCGGAGGTTGTAGTGAGCCAAGATC DNVUBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 224 0 1 .AATCCTGGGTGAGAAATGTTCTCCA DLUWZZYVPTWQWVUUUVYYYYWWQQ 1 HWI-EAS88 1 1 1 1003 232 0 1 .AAAAAGACAAAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 236 0 1 .ATTATCTTCAACTGAAAGCCCCTCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 269 0 1 .CAAAAACAACCCAGCCAACAAACAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 341 0 1 .CACGCAAAAAACAGTCTAAAACACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 400 0 1 .ATAAGGCGGAAA.AGAAGCA.AC.A BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 487 0 1 .CACAACACAAAC.TACAAACTAAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 806 0 1 .GCAGGCTACAACAACAGCAGCAACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 196 0 1 .TCACACCTTCCCTTTGCTGCGTTTC DPWXWUWWWWXWWWWRLTWUWSTWUU 1 HWI-EAS88 1 1 1 1003 446 0 1 .CACAGAGATGGACAGCCTTGATACT DPYWVWWVWWVTUTUUVWWUPQSVWW 1 HWI-EAS88 1 1 1 1003 101 0 1 .CAGCTACAAGGCTACCGTGCTCATA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 133 0 1 .CGAAGTAACAACAACACACGACCCA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 321 0 1 .AAACCACAAAGTACACAAGAACACA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 394 0 1 .CAACAACAGAAAACC.CCACAAAAA BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 456 0 1 .AGCGAGACTCCGTCTGCAATCCCGG DMSTTTSSSTTUBBBBBBBBBBBBBB 1 HWI-EAS88 1 1 1 1003 906 0 1 .TATGTCTTTGACCGTTGGGTCGTAT BBBBBBBBBBBBBBBBBBBBBBBBBB 0 HWI-EAS88 1 1 1 1003 61 0 1 .TACGCGCTTTCTTCTGATCCAGCCT DPSUWWWWWXWWWWWUNSTWBBBBBB 0 HWI-EAS88 1 1 1 1003 417 0 1 .CCTCCCCTAAAGACCTCTGACCGTG DMUTTTTTTSSRORTTTURNRTBBBB 1 HWI-EAS88 1 1 1 1003 475 0 1 .CATGTTGCCCAGGCTGGTTTCCAAT DPWXVXWWXWTRRTWWWTWWWTRRRS 1 HWI-EAS88 1 1 1 1003 373 0 1 .CAAGTTGCTGATCATCCTTTTTTTT DPXXZZZZZXPNRVVVZYYYYYYXZ[ 1 ShortRead/inst/extdata/Data/C1-36Firecrest/s_1_0001_int.txt0000644000126300012640000077614012227066723024433 0ustar00biocbuildphs_compbio1 1 109 548 409.0 504.5 475.0 11120.8 880.8 3231.2 464.8 7933.4 951.9 3059.5 5077.9 6208.9 497.6 944.8 323.7 6858.3 1009.3 3135.8 279.1 7079.8 2822.2 3229.6 242.2 7284.7 1120.4 3011.4 297.4 6954.9 2745.9 7237.6 307.2 723.4 4052.1 6018.4 333.0 1091.4 2261.5 2687.3 709.2 8650.3 988.6 2745.4 4628.5 7704.0 1037.3 3195.5 763.3 5544.4 1340.8 3376.9 3672.5 6658.9 4058.9 5211.3 607.3 2015.4 1002.3 1519.9 1899.4 7716.5 810.8 1475.7 603.3 8588.1 1867.8 2779.4 469.3 7981.1 1375.5 3056.6 491.2 7467.7 4442.5 5464.0 440.9 1837.2 4528.2 5348.6 500.0 1542.4 3964.1 4602.5 1415.1 2554.0 4014.4 5117.1 553.2 1585.7 4056.4 5334.7 567.9 2475.9 2255.0 2787.8 837.7 6907.2 1216.8 1792.6 3496.3 6726.9 1229.2 2841.8 681.3 4536.3 2778.7 4221.0 552.2 3242.3 922.2 1877.2 503.7 7375.9 987.2 2425.7 577.5 7461.2 820.1 1682.3 797.1 6892.2 1438.1 2065.1 2487.8 6057.6 893.8 1734.8 1219.8 5282.9 822.1 2245.5 550.9 6224.7 795.6 1770.3 862.0 6897.3 701.5 1395.3 2727.5 6998.8 897.3 1918.3 882.4 6059.3 1 1 105 517 482.2 636.1 615.1 9592.9 1966.0 6379.1 188.1 572.1 1713.7 6166.5 103.5 909.9 4409.5 5459.8 291.6 709.2 4623.2 5186.9 391.3 863.3 4491.5 5120.4 310.7 804.0 1206.6 4803.8 269.3 835.6 1009.2 1540.4 442.4 6299.5 882.3 1203.6 4540.7 5371.9 908.1 1410.4 4750.8 6091.1 892.9 1413.8 728.0 4856.9 4535.2 4984.8 626.7 1362.4 1300.6 1792.0 3948.5 5201.6 3309.2 4722.9 661.5 1606.9 1762.5 5753.3 522.9 1134.2 3925.9 4722.5 475.7 1332.5 3874.4 4847.0 425.4 1309.0 1493.3 2212.6 556.5 6281.8 3670.9 4927.9 423.4 1552.3 2207.6 5437.1 398.1 1173.8 4324.3 4928.4 354.8 1270.4 4238.6 5005.4 488.2 1226.5 4159.3 5660.8 467.2 1215.8 2049.9 5195.2 492.7 1156.4 3621.9 4979.6 359.9 1314.9 1619.7 2520.2 570.5 5214.4 1101.0 2225.0 581.6 6657.3 1305.0 4328.5 583.8 2959.4 1086.6 2346.2 421.7 5535.0 1502.1 4525.0 473.5 2427.8 3113.9 4753.6 365.9 1645.2 3626.9 5317.4 313.3 1448.2 3239.1 4533.9 401.6 1998.1 1748.2 2759.5 405.8 4439.3 1497.9 3540.4 308.1 2751.4 1310.3 2738.7 384.9 4257.9 1 1 101 522 321.7 -124.5 342.5 7800.9 1109.8 259.5 5263.2 5621.8 1256.2 5588.4 179.6 427.6 4373.7 5268.3 206.4 418.9 1106.7 4785.4 178.9 629.3 1671.8 4855.2 227.0 676.5 385.4 1349.0 325.1 5194.8 713.0 1478.1 4130.2 4602.5 3317.9 4145.5 150.8 738.2 876.1 1478.2 316.2 5976.5 3237.6 4230.2 516.8 1001.1 755.6 1206.2 4125.8 5002.6 1132.8 896.9 3616.6 4607.3 779.4 451.0 3387.7 5101.2 572.8 1229.5 455.2 3596.4 1159.8 4287.5 838.1 2228.2 460.9 1198.3 452.7 5039.3 835.7 4418.2 352.5 1747.0 538.9 1331.8 506.2 5176.6 843.0 1155.5 3046.1 4707.2 1197.3 3741.4 818.8 1925.6 717.8 1659.2 494.5 5150.9 1212.5 4230.9 278.5 1599.6 587.4 1316.1 544.1 4797.7 665.9 1566.7 2649.6 4168.0 2178.2 3227.5 936.5 2112.0 816.2 1643.0 3050.1 4556.8 2104.7 2871.3 933.4 2039.3 1523.9 1583.7 2549.8 3756.0 2122.9 2720.8 594.1 1538.7 735.0 1444.3 2503.0 3814.0 779.4 1531.7 2222.1 3240.8 1990.3 2843.8 651.9 1542.4 2545.3 3253.4 767.0 1565.1 1064.9 1505.9 1778.2 3440.0 772.1 1750.0 1909.0 2931.2 1 1 113 530 983.2 738.3 2887.5 7685.6 3105.3 3713.9 2530.5 2902.6 1137.9 3268.5 911.8 6150.2 556.8 1193.8 3963.4 5572.1 2744.1 3287.2 180.7 3674.4 914.8 3085.3 2648.6 3800.1 2288.9 2906.2 424.3 3621.0 1075.7 2801.6 2964.6 4123.6 1058.6 3291.8 312.5 3626.7 3683.6 4918.7 863.1 1796.7 730.1 1388.6 3114.3 5461.3 1341.0 5010.0 1020.7 1655.8 1100.2 3728.9 788.0 3076.5 3074.2 3553.6 2303.3 3265.8 2889.3 2945.9 1941.3 2627.1 1022.1 2812.8 674.4 4034.0 641.0 1769.5 2708.7 5172.2 908.0 3416.9 1998.4 3308.6 1225.3 3914.0 1937.1 3222.2 2048.9 3552.8 2078.9 2964.9 1649.4 4210.0 648.1 1545.9 2990.3 3920.2 497.9 1756.5 3324.3 4636.1 527.2 1736.0 2551.6 4236.0 870.3 1778.2 1284.0 3148.9 1924.4 3083.1 1916.8 2808.1 799.0 3018.5 1389.6 3049.7 1686.1 2881.3 946.9 2418.3 2487.6 3262.4 1694.6 2751.4 2410.1 3501.5 902.8 1719.5 1858.9 3899.7 936.4 2087.9 1911.3 3557.6 705.9 1607.6 1206.2 3854.2 735.3 2149.2 1812.0 3344.1 768.1 1854.5 1408.3 3325.2 746.2 1856.7 1398.0 3120.7 871.3 2629.8 1042.2 3602.8 1 1 105 511 851.3 361.2 297.9 7601.5 3990.7 4504.0 328.6 912.9 643.8 836.9 4407.9 5098.1 900.7 863.1 244.3 3861.7 4203.5 4969.2 354.7 403.4 889.1 1928.0 3652.7 4121.9 366.5 726.0 4106.5 4806.3 1376.1 1253.7 609.7 3589.7 912.9 1133.1 3572.6 4501.4 675.4 1649.2 225.2 4892.4 1073.9 4562.4 281.7 1678.1 1138.2 4040.2 395.7 2442.3 497.8 2002.3 396.0 5986.4 3132.2 3835.3 437.0 1490.2 680.4 919.8 1216.0 5846.5 559.2 1169.4 435.6 6259.4 1118.2 3930.5 650.0 1692.4 663.0 1340.2 463.1 6132.9 859.3 1206.2 2764.4 4698.4 2888.0 3138.6 434.4 3361.6 802.2 1132.5 699.3 5245.6 675.9 1359.8 2524.3 2889.2 1009.0 3987.0 608.8 2756.1 1215.7 4032.5 391.0 2882.8 1376.0 4241.3 713.9 982.8 2805.8 3583.0 831.2 2247.8 966.2 2127.9 2382.3 4195.7 1225.0 3862.0 601.4 2054.3 2499.7 3660.7 1409.9 2182.1 1163.0 3451.9 705.9 2627.4 632.4 1640.0 2125.7 4082.4 938.7 3442.5 577.2 3170.2 1010.4 3521.6 443.8 2431.8 2396.5 3443.2 412.6 1715.1 2272.6 3003.1 500.8 1478.1 1018.2 1931.5 1700.1 3582.0 1 1 121 531 -819.1 -1528.3 7281.0 7273.4 4784.1 4419.3 -104.1 -1367.9 -342.1 443.4 5386.1 5413.4 4214.8 5233.5 45.6 -490.9 544.9 569.9 3642.2 3600.8 3161.6 3641.0 135.4 189.3 4566.8 4468.5 -112.6 173.3 579.1 4668.1 -331.0 -352.1 219.2 299.4 15.3 6114.9 564.6 1052.5 4717.6 4194.6 3966.7 4372.6 -590.2 -835.5 4178.3 4612.7 261.3 -166.5 4520.1 4991.6 27.0 -152.9 3833.8 5027.9 16.2 -31.1 781.8 1162.7 -76.9 4711.3 1076.8 4966.1 -306.9 -116.5 3347.6 3997.7 151.3 -197.8 1184.3 4671.5 -61.3 931.1 3062.2 3795.7 431.2 309.9 686.9 449.1 3461.3 3840.5 2713.4 2800.2 421.6 -45.1 2930.1 3404.7 232.3 381.4 918.6 1685.9 295.1 4595.8 2849.3 3485.8 407.5 995.9 905.8 1495.1 668.0 4130.8 1039.1 536.6 3524.7 3816.3 2204.7 2819.1 906.2 1058.4 736.2 934.9 3383.2 4020.8 2209.2 2932.5 709.4 750.3 2794.6 3033.6 500.4 822.6 2469.1 2982.4 316.3 612.1 687.0 815.5 286.7 3199.1 2335.9 2702.6 132.1 880.2 919.8 1536.2 1958.2 2108.2 2096.7 2418.8 298.9 390.5 1258.5 3805.4 315.5 408.0 1 1 112 525 -24.2 47.7 4547.5 7224.2 2841.8 6113.4 5.6 -144.1 3814.2 3573.7 63.6 3096.6 852.1 3692.2 3904.6 3544.2 3638.7 3912.9 738.1 302.8 706.8 942.0 3765.3 3760.4 4361.7 5000.3 -42.0 -343.5 2780.9 5965.3 -63.5 170.0 1384.6 4553.9 794.7 265.0 1207.4 4494.1 2285.9 2182.5 4019.3 5119.2 -232.0 -508.7 1405.3 4512.0 1040.2 2466.3 3184.2 5123.3 279.5 403.3 3612.6 4270.7 209.8 1975.5 984.9 3415.2 2139.6 2033.0 1146.3 3937.3 1051.2 2642.7 1264.7 4100.5 93.3 2042.2 3393.1 4814.0 425.7 795.8 1010.1 1452.8 2293.2 3863.2 870.3 3651.0 1631.5 2274.2 1448.6 4734.5 702.6 801.8 2514.5 4795.4 495.1 606.6 2905.2 3672.9 1772.8 2097.4 922.0 1412.5 2141.6 3119.7 1150.7 4097.5 376.6 1081.2 797.6 1611.4 2367.9 3605.0 715.4 1429.1 2186.2 3491.8 943.9 3261.5 543.6 1916.6 539.0 1674.0 367.9 3792.4 637.7 2729.4 1091.4 2129.6 777.2 3613.2 694.4 1861.0 1398.6 2833.7 351.5 2074.8 870.3 1718.5 1285.7 2863.4 1745.6 2647.6 1035.9 2601.5 1574.9 3105.2 954.2 1796.4 1797.2 3544.3 221.0 528.8 1 1 121 595 176.9 2514.4 7352.6 6950.9 4315.4 4841.5 211.4 -1083.4 423.8 565.8 6082.8 5298.3 2188.0 3737.2 227.8 390.4 444.9 819.4 93.6 7423.7 4206.4 4612.5 218.6 528.0 584.6 2433.1 244.5 8169.8 378.6 148.2 283.2 7777.9 757.4 1042.0 149.2 7039.6 4532.4 5013.6 444.6 497.3 657.1 772.9 16.5 7174.5 355.3 924.8 266.9 7221.6 794.7 653.0 3510.4 5345.7 4296.7 4607.3 370.3 749.3 4556.4 2253.6 372.8 463.9 1272.0 5555.3 -112.3 641.8 3776.9 4307.8 218.6 592.5 1065.1 5261.6 -0.9 704.9 1000.6 1591.9 78.3 6184.0 3861.6 4820.6 -2.1 963.0 3987.7 5479.5 36.3 270.6 1669.3 5806.0 19.9 35.1 4079.5 5546.4 124.4 444.2 1597.1 5271.2 -179.0 498.8 692.7 2203.1 95.9 4623.4 1437.4 4188.9 -166.8 1136.3 725.0 1437.5 535.3 5275.2 601.1 1156.2 2221.1 4742.1 631.3 1277.8 722.2 4236.5 1319.1 4484.2 483.1 1338.7 2875.2 4531.8 546.9 1350.7 927.3 1546.6 357.7 4344.9 610.3 1380.5 2546.5 4746.2 1057.7 4174.7 830.6 1999.5 2721.4 4458.0 197.5 1368.3 3250.9 4023.2 21.7 1347.7 1 1 113 371 1007.3 1008.1 6554.6 9321.3 3494.0 5652.1 4161.5 4115.2 1242.8 2706.3 538.7 5913.6 2502.7 5558.8 3215.3 3958.0 805.8 863.5 3210.4 6248.1 3117.1 4511.3 2394.7 3748.2 3391.6 4984.7 1696.6 1997.9 4955.5 7153.9 770.9 1091.9 2388.0 2899.4 1177.2 4862.4 3354.5 4864.0 1055.4 3691.7 1603.9 4318.6 4116.1 5065.2 1722.8 5241.2 3501.5 4366.2 3574.7 5024.2 1001.6 5043.8 3486.5 5974.0 823.7 1827.3 2250.5 3445.6 2918.2 3817.2 2159.3 4890.7 813.1 3536.4 3871.1 5020.0 654.0 2406.3 2256.2 4761.0 720.8 4038.5 1816.1 5174.2 1940.4 3078.3 2651.1 5589.9 565.2 1660.6 1463.6 4180.9 1371.3 4223.4 1266.3 3959.7 2636.8 4172.1 1393.8 3578.4 1600.7 4101.2 1996.8 4231.8 754.4 3762.6 1952.8 4700.3 738.8 4516.5 2073.3 3164.1 699.8 4517.3 2011.7 5223.9 544.4 2120.6 1509.3 4643.8 738.6 3828.2 978.0 2766.7 2220.0 4645.9 1320.6 4563.3 781.4 2508.9 1020.6 2876.5 621.8 4626.9 1110.9 2454.5 1095.1 5212.5 2232.6 4193.1 1341.8 3748.5 1654.2 3975.6 1548.6 4293.0 2343.6 4058.7 1206.2 3431.2 1692.5 3696.3 1409.1 4089.9 1 1 89 581 1671.1 2716.3 997.1 6284.0 3540.1 7589.4 649.7 779.7 2106.0 6075.7 314.3 3533.9 1856.1 7100.9 113.2 757.2 3534.3 4223.7 2292.4 4234.2 3285.4 5377.7 936.9 2159.2 1861.1 5340.4 639.9 841.1 2870.6 6000.0 361.4 1650.5 1451.4 4310.1 606.4 2728.8 875.2 1586.3 1235.3 6065.6 1251.2 3568.9 845.3 2716.0 1023.1 4368.0 692.4 3183.0 921.8 4446.5 443.4 3796.1 1003.2 4137.8 508.7 3898.9 995.6 4363.0 792.2 3452.0 1492.1 3334.8 783.0 5198.5 3125.4 3962.2 1917.1 3184.2 2883.0 4527.8 1684.1 2927.0 956.0 1491.5 3476.6 6135.2 2474.8 3130.2 882.8 3917.9 3440.0 4160.0 1534.2 2676.3 2349.8 4923.8 702.6 1614.0 3340.1 3984.5 825.7 2364.1 3317.6 4090.7 750.5 3664.1 1084.7 1889.6 2156.8 5211.1 2687.9 3287.5 601.0 3280.1 1078.5 3516.7 401.8 3628.9 811.3 2613.5 520.3 5609.9 1170.3 4173.0 1088.1 3337.4 1079.2 4368.3 1007.0 3171.9 1320.8 2395.2 1026.4 5132.7 1042.9 2421.2 1870.1 4491.6 2308.5 4000.3 800.5 2616.9 1341.2 3261.1 794.8 3399.7 1101.7 2489.4 1136.7 5077.2 1528.7 2973.1 2086.6 3890.6 1 1 83 580 1242.1 252.1 -51.1 6264.1 1264.9 4787.2 68.0 1.2 3453.5 3603.7 198.4 1056.1 289.8 -126.2 4127.2 4262.4 2949.7 2919.0 53.5 253.6 933.1 807.0 3293.7 3643.8 2771.3 2954.2 58.3 332.5 915.5 759.0 165.2 5052.4 606.3 606.2 3047.8 3420.4 2566.4 2806.6 67.9 509.1 688.3 1347.3 -24.4 4427.5 3041.1 2946.2 195.5 464.9 3088.0 3661.8 46.5 507.0 3228.2 3453.7 20.1 374.6 1144.3 3886.8 18.0 153.2 787.3 3736.6 -47.6 1230.4 649.2 1475.8 178.7 3990.4 2977.0 3805.8 -6.7 315.0 3181.6 4036.0 31.2 255.0 1005.0 3845.7 148.2 379.9 1012.1 4092.7 -22.0 948.2 1136.5 3873.8 220.1 418.3 2625.3 3743.5 226.3 418.5 1276.8 3621.5 69.6 372.1 2443.4 3947.8 164.0 547.3 2534.3 2675.8 393.7 737.5 1004.4 1320.2 2303.2 2547.6 2179.4 2691.5 848.1 704.0 856.1 1132.7 2479.2 2652.0 1828.3 2380.5 522.1 901.2 729.7 2918.0 317.1 1133.2 389.7 1170.6 478.2 3452.1 543.4 1006.9 2376.7 3031.4 557.7 886.6 2238.0 2687.2 1176.6 1843.7 889.0 1580.2 679.5 1030.2 1854.4 2637.4 1 1 95 513 -112.8 -328.4 5994.9 6048.1 40.7 199.3 4581.7 6371.3 3746.4 3808.4 230.0 1549.7 4184.1 5112.8 284.0 1709.6 1494.7 5257.7 354.5 242.4 4560.3 4638.6 87.5 432.8 3651.8 4201.5 44.7 742.1 4279.4 4496.4 608.4 2186.0 4884.7 5370.8 389.5 321.4 1519.1 5103.6 807.7 929.9 4267.0 4718.9 372.8 131.3 1662.9 5364.8 424.1 1167.2 1222.6 6008.8 422.8 725.6 1406.4 5522.2 83.3 460.5 3315.0 4560.7 539.5 686.1 666.3 1517.0 1045.8 5945.5 371.6 982.4 3835.2 4612.7 940.2 1096.9 3961.8 3669.3 2777.9 2852.1 805.2 1354.2 3007.0 3700.9 396.5 828.2 674.1 1886.4 3509.4 4224.0 762.8 1367.3 3820.7 4280.2 2423.4 2905.2 1022.9 1198.0 1064.9 1296.1 2902.1 2905.4 810.7 1793.5 874.6 3569.3 1034.1 1598.5 1388.7 4826.9 2407.5 4027.8 467.5 1131.6 1084.7 3528.1 555.8 2528.1 2391.6 3366.2 727.1 1328.0 972.4 1282.0 2741.2 4057.3 1681.0 2705.4 1015.9 1994.0 1013.1 1235.9 2225.1 3949.8 1699.6 2717.0 693.8 1310.0 880.7 3313.7 555.7 1207.0 1877.6 3007.2 465.7 1162.7 2151.3 2955.7 303.5 862.6 1 1 97 540 466.9 424.5 5946.6 5984.7 4591.8 4776.4 258.4 392.1 1216.1 5289.2 172.9 483.5 4308.2 5444.8 195.4 438.8 4227.6 5116.9 200.3 562.2 867.4 1010.0 299.9 6015.6 3944.7 4269.6 178.2 508.0 3792.3 4671.5 232.2 602.7 804.7 1225.3 286.7 6149.3 677.5 1040.2 293.2 6974.4 536.4 1004.6 447.9 6821.3 641.0 929.0 3928.5 5426.0 534.7 878.9 3911.7 5203.4 663.3 1162.2 580.9 3805.8 3248.6 3725.6 344.1 1191.0 710.9 1026.4 310.4 5962.1 502.5 1057.7 390.4 6184.3 598.1 990.4 326.4 5909.8 559.3 946.7 334.2 6102.5 784.6 1194.9 299.1 5467.7 2956.1 3446.9 533.4 1939.4 1078.0 1527.8 2774.9 4982.1 2863.5 3469.8 803.4 1886.2 1143.2 1583.7 2680.9 4770.2 2987.3 3525.4 569.9 1571.9 2959.5 3616.5 368.8 1624.5 945.0 1455.7 686.1 4834.2 683.8 1189.0 2402.7 4697.7 645.3 1013.8 1163.4 4235.4 555.5 1392.9 1690.2 3606.3 928.7 2990.1 727.7 2031.6 1891.6 3167.1 648.3 1675.5 1047.8 1590.3 1795.0 2976.7 660.0 1535.7 2220.2 3701.6 918.6 2603.7 882.7 2378.5 1186.9 3225.8 527.4 1888.0 1 1 93 384 486.1 527.4 6609.2 6466.0 536.4 662.8 4192.0 5562.9 1144.1 4402.6 339.1 4322.8 1254.5 4399.8 2276.5 2731.2 1687.3 2407.3 309.9 4978.9 3296.1 4216.3 1831.3 2469.6 509.9 842.0 3652.1 4387.6 1091.0 4343.7 513.0 2477.5 796.4 1175.3 431.6 5751.6 1973.2 2738.9 446.5 5914.2 1407.8 5137.7 554.1 1118.3 4101.4 4973.3 336.7 978.7 3776.2 4457.1 387.1 1099.2 3320.8 3884.3 343.1 2770.6 2040.4 4304.5 294.4 1048.0 2304.5 3415.3 1074.9 2192.8 701.3 1242.7 586.4 4636.1 511.5 944.4 2856.5 4363.1 718.8 2034.8 2495.7 3574.2 487.0 998.1 2629.1 3889.8 1916.6 2712.0 1356.9 2292.6 859.0 2036.0 2254.4 3294.8 1019.5 3256.9 938.0 2780.0 2156.3 2817.8 630.3 2955.0 774.2 1214.5 2576.4 4622.1 572.5 1120.7 2551.2 3871.9 1061.4 1495.0 2181.7 3303.7 1726.2 2449.5 805.8 1821.3 1274.1 1766.0 557.7 3083.6 732.6 1329.6 1019.4 3716.2 856.7 2871.6 622.5 2713.7 1910.5 2809.0 417.7 2432.5 2140.2 2895.1 362.4 2696.7 2359.0 3457.6 430.2 2011.0 1264.2 2923.5 372.4 2661.8 925.7 2159.2 529.7 3726.9 1 1 122 247 721.6 1954.1 260.6 6397.2 2247.8 5939.8 124.2 307.9 481.3 596.9 1501.6 7421.5 353.1 594.4 257.3 7366.4 401.3 757.5 1794.7 8533.3 1321.4 1553.9 369.8 7645.4 1324.6 1532.2 308.6 7600.9 487.7 1118.3 1704.8 7852.7 1023.9 4330.7 300.8 1975.8 666.1 2036.6 322.7 5708.0 562.6 914.3 381.6 6964.6 692.5 1389.2 3125.9 6160.8 1204.7 4912.3 437.6 1673.2 1469.8 2109.8 391.6 6175.9 4055.0 4746.9 364.9 1667.5 1067.9 1562.0 1369.7 7286.1 3296.1 4248.8 438.2 1730.1 893.3 1444.3 1347.5 6870.1 1115.5 1973.6 479.9 6088.7 1289.7 4591.6 321.9 2759.6 1367.5 4584.4 1153.9 2492.5 3249.8 4708.4 437.9 1682.2 1691.5 4669.2 669.6 2095.7 897.3 1742.7 3478.0 5344.6 1273.6 2069.5 723.9 4731.1 1642.1 4290.1 557.4 2137.8 1224.4 4029.7 1413.7 2523.1 1325.6 2392.4 2616.9 4709.2 2464.1 3674.4 1408.8 2480.1 1429.3 3510.3 1403.4 2959.7 2447.1 3425.6 1511.2 2944.1 1004.5 1849.6 3018.8 5057.1 766.2 1413.1 1840.3 5014.3 1165.9 1928.3 2660.3 5050.5 1191.2 1848.5 2361.8 4584.2 2231.9 2883.5 934.7 2345.2 1 1 115 738 636.4 982.9 6128.9 5862.6 1192.4 2151.2 227.6 5367.5 531.4 662.4 5701.9 6023.2 4193.4 5434.4 126.9 265.4 4385.3 5075.8 255.8 2013.3 5023.4 5322.1 173.2 331.5 4537.0 5013.3 82.9 204.9 4052.0 4827.9 230.9 2615.4 836.3 955.1 400.0 7000.4 948.2 1619.4 4045.2 4768.1 3120.6 3925.2 583.4 2823.3 998.9 2284.6 4236.1 4868.3 3558.9 4754.0 306.0 723.0 4139.0 5145.0 317.4 821.7 4518.1 5498.5 261.0 828.7 1099.9 2960.7 446.4 5175.0 965.6 2419.3 2944.2 3913.0 1618.0 5263.6 464.2 1024.7 3503.4 5526.6 292.3 789.4 1590.9 5304.9 237.8 1356.9 3776.3 5291.4 278.5 787.0 1473.8 4754.9 257.4 1911.2 988.7 2876.9 796.9 5274.5 1143.0 2179.3 3155.4 4114.7 2632.4 3609.8 1225.9 2143.5 3028.2 3962.0 1325.6 2117.2 1012.4 1785.9 2931.1 3824.5 1221.2 2899.4 2619.8 3292.3 2454.7 3817.3 652.7 1209.7 1295.9 4421.8 735.6 1378.0 1594.1 4520.5 398.7 1395.9 1611.8 2672.1 687.5 3822.1 1080.7 2485.2 2422.6 3425.9 1019.7 1959.9 2918.1 3936.5 2383.2 3385.1 1436.4 2356.7 2762.9 3393.3 656.9 2336.1 1 1 117 468 494.1 457.5 6365.4 6474.3 1130.2 3931.8 3770.8 3954.2 705.1 2762.1 426.6 4881.3 450.6 729.5 3072.0 7654.6 592.2 2564.0 503.7 6242.4 501.8 909.0 4561.0 5387.9 517.0 966.3 2486.2 5400.3 3611.8 4522.2 1873.4 2304.3 1126.0 4328.4 633.4 2645.6 2433.3 4745.6 532.3 1047.8 3076.8 4392.4 2359.9 2608.1 2296.4 4905.7 624.9 1090.9 1372.7 4082.6 410.9 2990.0 1401.9 3903.9 288.5 3381.2 3122.7 4789.5 470.7 1336.7 846.2 1886.1 2205.7 4880.1 1080.1 3815.5 448.1 3491.9 1073.1 3845.1 466.6 3608.5 1197.4 4457.6 501.0 1554.0 1177.4 4007.8 1558.9 2354.7 2460.5 3444.0 1715.7 2166.9 1134.8 3379.9 1556.8 2558.0 2252.5 3929.5 724.3 1646.9 946.3 1799.3 2172.9 3778.1 686.1 1680.9 2063.3 4041.4 1198.0 3997.4 685.7 1870.7 1715.2 4089.8 584.9 1269.9 1621.8 2513.4 529.9 3738.4 868.3 1639.7 1391.7 4509.1 1760.1 3000.7 554.5 3410.9 1073.8 3034.8 536.5 3732.1 1035.7 3734.7 459.7 2180.0 1187.2 2519.8 555.0 3700.9 871.7 3186.5 1314.5 2797.3 664.1 1745.5 623.9 4510.1 1376.0 3173.4 443.1 2254.5 1 1 69 533 -36.7 -38.3 272.2 5570.7 3295.0 3533.7 63.0 298.9 426.1 478.6 -49.5 4115.4 715.7 2709.0 159.2 325.6 2372.1 2313.9 135.2 430.2 181.7 340.8 1640.0 2044.6 1811.3 1912.0 195.0 355.5 89.3 486.2 1694.0 2136.9 352.7 689.1 -9.2 1645.0 710.3 1623.8 152.6 625.8 1467.3 1621.4 203.0 559.9 677.2 2336.9 69.9 450.1 358.7 626.9 133.3 2140.8 427.5 1998.1 146.7 743.1 1486.3 2104.7 12.6 399.3 1522.9 1971.5 212.6 461.7 1501.1 2187.3 13.7 460.7 549.1 964.1 -37.6 2076.8 609.0 2038.0 112.9 551.1 602.1 1988.1 132.3 583.8 457.3 882.0 77.5 1804.6 697.9 1835.1 189.2 650.7 1472.1 2030.6 171.5 667.6 656.6 1987.6 171.1 566.6 1168.8 1958.7 163.8 491.0 648.0 1386.6 232.8 1201.1 629.8 1749.7 160.0 713.1 1293.8 1716.4 92.8 519.1 1258.6 1796.0 26.0 386.4 653.2 1685.8 79.4 482.4 443.1 891.0 110.2 1796.1 472.1 730.1 94.7 1737.7 392.3 506.6 125.7 1805.8 345.2 1367.4 182.0 993.6 375.2 750.4 138.6 1752.3 439.2 956.8 643.3 1666.9 1 1 121 586 5798.8 6447.3 1584.8 3498.3 6034.6 7737.9 135.0 1991.1 911.2 1895.3 1614.0 7114.3 956.2 4005.5 4433.6 4744.6 1307.7 1855.5 2110.6 4937.4 907.7 3215.4 4386.6 6459.7 700.5 1159.3 1073.0 6246.7 721.2 1023.3 2334.9 6874.0 1020.6 1958.2 377.5 7339.8 577.3 845.5 525.3 8201.9 725.2 1782.3 2049.9 5934.0 1401.7 4651.0 1895.2 3586.4 3524.9 5595.2 507.7 1451.1 1371.3 3166.4 2804.1 5163.7 2415.2 2819.5 624.5 5086.7 2065.1 2793.9 2943.1 6230.3 938.3 1644.3 2255.5 5741.4 3365.6 4028.9 474.9 2172.7 3484.9 4670.8 331.9 3088.0 1814.1 4809.9 458.0 1776.4 1133.7 2644.2 387.4 5194.2 1534.8 4967.6 371.7 2504.1 3133.9 4969.6 1958.2 2817.6 2388.5 4625.1 304.0 1738.1 1140.9 2339.4 332.7 5250.3 1445.6 4685.6 372.8 2834.2 2576.8 3830.4 2152.4 3310.7 1788.0 2680.3 734.2 4530.8 1279.9 3461.3 959.8 3906.1 1266.3 2232.3 1485.8 5345.8 2517.7 3512.2 420.9 3461.0 2719.3 3953.7 1669.2 3086.9 1579.2 2611.5 439.3 4532.2 2747.1 3801.3 389.2 3398.3 1185.9 2747.4 579.8 5307.5 903.8 1809.8 2019.4 5454.0 1 1 117 578 359.1 371.1 293.0 5491.1 529.1 551.6 3297.8 3418.4 967.6 3854.3 177.9 512.2 357.3 760.9 198.8 3964.6 497.6 740.1 182.3 4150.7 1118.7 3395.3 143.6 588.2 2588.6 2682.0 228.6 496.9 1024.3 3573.2 74.6 389.5 529.2 1123.7 230.7 3814.3 454.5 1034.9 2413.4 3477.7 378.2 894.3 353.0 2864.6 467.7 834.6 2046.4 3263.7 357.6 846.6 523.2 3395.0 347.2 885.2 2110.4 3527.1 978.1 3325.8 368.4 864.0 881.2 2738.3 298.8 902.2 569.9 1267.3 363.1 3895.8 733.9 3034.4 249.0 1275.9 488.4 1095.2 288.5 4124.7 510.2 970.4 282.0 4403.6 479.1 951.5 359.5 4003.5 514.7 953.5 425.0 3959.4 460.7 1234.0 2076.5 3420.0 733.9 3136.9 479.1 1680.0 683.3 1484.9 385.6 3487.5 1938.6 3029.2 326.6 1187.6 923.4 2653.0 307.1 1295.3 608.7 1319.7 363.0 3547.0 581.6 1431.9 284.2 3689.3 745.9 3107.3 235.2 1501.0 1011.3 2968.0 236.9 1119.7 1807.5 3224.1 220.4 1116.9 998.3 2835.1 210.0 1150.1 859.5 1701.5 298.8 2974.6 1836.8 2409.1 234.1 1499.7 832.0 1615.1 242.8 3106.1 1 1 115 365 799.5 1673.3 6617.4 7365.4 4399.4 5283.2 303.9 591.2 808.5 1250.4 296.2 6224.8 1603.3 5132.7 295.0 797.2 858.7 2322.2 3812.9 4868.0 843.8 1270.0 3291.4 4267.8 3341.0 4374.8 412.3 906.6 4599.1 5194.1 558.6 1179.6 1255.7 2361.4 3697.8 4505.1 3870.3 4178.9 803.2 1423.9 1243.3 1580.7 3734.0 4404.3 1532.6 5066.8 713.0 1603.4 908.2 2163.9 562.2 5900.0 1518.9 4673.3 637.5 1852.3 921.9 2233.6 3341.6 4723.1 985.0 2188.7 613.7 4322.4 3563.2 4162.7 447.4 1042.8 1122.7 1702.5 678.5 4727.6 1073.2 1837.3 2569.4 4058.4 1601.2 4313.3 675.8 1465.8 1425.9 4607.1 693.8 1254.0 907.6 2124.0 2729.0 3983.1 1194.9 2044.1 801.8 3619.0 1454.9 4258.7 565.4 1689.0 1010.7 2171.8 615.2 4919.3 1002.2 2055.5 554.4 4301.5 1079.4 3959.7 429.5 1707.3 917.0 2018.3 742.5 3897.8 949.3 2136.0 2274.2 3845.9 1132.0 3508.8 752.2 1851.1 867.6 2010.9 422.2 4632.9 1110.6 1800.5 613.5 4298.5 1590.3 2657.6 1513.6 3781.0 1700.5 2732.2 1715.3 3083.2 2291.8 3388.6 792.5 2018.3 2052.8 2992.4 573.5 2464.8 1 1 119 406 381.3 417.6 5987.5 5978.7 1264.7 4922.8 183.7 263.5 1094.9 4820.8 242.5 498.7 364.4 863.1 241.7 6764.0 392.8 700.2 3939.8 4168.2 438.6 723.3 289.3 3819.3 1010.7 4118.1 182.4 558.3 636.6 1272.6 311.8 5700.9 3156.4 4211.6 248.1 773.7 1007.9 4006.0 342.2 1256.3 548.1 1071.8 531.9 7968.0 468.5 832.7 4258.9 6116.2 504.7 781.2 605.2 4329.7 472.2 785.6 3448.8 5005.7 500.8 998.6 2843.9 3875.3 633.7 1040.9 458.6 3366.9 2444.2 3463.6 344.8 1414.6 726.9 1208.5 442.2 4520.7 1065.1 3869.7 303.0 1258.0 2284.9 3412.4 451.3 1109.8 962.0 1415.3 2417.1 3883.8 2374.6 2856.8 880.1 1576.8 796.0 1362.5 2867.7 4606.7 748.6 1206.6 1056.0 3883.8 877.7 1238.9 2646.0 4443.0 2240.2 3077.1 820.5 1904.9 914.5 1418.9 416.2 3706.8 905.4 1432.6 449.0 4481.7 2272.1 2692.9 344.5 2187.0 907.2 1493.6 391.4 4289.6 643.2 1199.0 349.3 4949.6 627.1 1529.9 398.9 4771.9 942.2 2927.2 323.3 2641.1 1001.2 1966.0 439.3 4862.4 2146.1 2719.1 326.6 2927.1 1029.9 1855.0 309.5 4606.6 1 1 112 238 424.3 474.3 336.8 5929.1 523.9 642.2 256.4 5850.8 2928.2 3336.3 287.3 523.9 399.2 577.1 3691.6 4039.1 1016.7 3373.3 398.7 752.1 2681.6 3385.0 334.0 708.4 430.7 678.1 3459.5 4526.7 411.1 719.7 3035.1 3875.6 823.3 2840.1 429.2 714.8 961.2 3294.5 220.2 776.9 448.1 867.0 324.6 4067.3 484.2 786.1 473.4 4548.1 520.7 942.4 2696.2 4220.6 2040.8 2609.4 554.2 1328.1 658.0 978.7 503.4 3911.0 451.4 767.9 2663.4 4188.1 445.6 897.7 2634.6 3618.8 784.2 2985.9 624.8 1479.1 600.6 1104.8 373.9 3915.3 2112.6 2549.2 317.7 1312.0 1138.2 2698.8 333.4 1262.0 761.2 1562.2 351.3 3416.7 1831.0 2779.4 417.3 1846.7 1097.5 2655.8 381.4 1306.5 698.0 1464.0 375.9 3802.4 576.7 1155.4 418.0 4570.9 783.6 2624.5 344.0 1991.0 808.5 2942.2 306.3 1682.4 595.4 1429.9 278.0 4179.4 475.9 1027.7 290.4 4722.4 422.7 1074.3 358.6 4975.1 693.8 2205.6 306.6 2501.2 526.3 1531.0 304.4 4277.6 721.9 2251.8 291.3 2431.4 616.0 1405.6 359.1 3981.5 1419.8 2030.4 281.4 2203.2 1 1 120 597 1704.9 6282.8 1704.3 1283.0 5708.6 6457.8 776.8 1882.3 890.2 1054.4 122.0 7812.3 2188.0 7746.2 16.2 337.0 2228.8 7742.1 2.5 907.4 1190.0 6894.8 331.3 787.3 3988.4 5261.5 544.0 439.4 1693.7 6591.7 283.2 769.3 1036.9 3448.3 590.8 4600.4 549.3 1919.7 3736.5 6322.1 1352.3 4774.1 1688.5 2077.8 3765.9 4575.6 1386.6 1166.1 917.1 2127.0 3424.0 4269.0 1403.6 1501.8 887.4 5543.8 540.9 2253.6 1316.3 6410.1 3432.6 4117.9 1287.1 2446.3 3377.1 4222.4 688.3 2088.4 3606.4 4449.7 1787.7 965.9 1362.8 4317.7 1568.1 2016.1 1662.7 4160.7 629.0 2831.8 1205.8 1356.2 357.5 6257.4 683.1 1238.1 548.1 6229.7 351.9 872.9 3331.9 5672.1 772.4 1804.1 2851.5 4865.7 1360.7 4053.7 1416.4 2214.8 2933.5 3689.0 758.0 1566.9 2506.4 3930.6 818.4 1291.4 944.1 1930.5 2212.6 3759.5 1007.8 3421.8 987.6 1574.3 596.8 2449.9 2717.2 4901.3 1275.9 1951.3 3016.7 4218.3 1799.7 2733.0 1343.4 2562.1 1355.8 1781.0 506.6 3290.7 2079.0 2913.7 844.9 2658.3 1234.5 1685.9 2272.7 3819.5 1021.4 1689.2 2451.8 4045.8 1 1 119 390 192.5 225.8 277.8 8311.5 412.3 622.0 56.5 7445.9 369.8 501.0 202.6 6613.0 1073.7 4216.9 21.7 232.8 1091.2 3773.2 165.7 436.8 338.3 658.0 205.3 4507.1 348.8 622.2 305.9 4975.0 526.2 997.5 3304.1 3981.5 961.6 3712.9 163.4 486.2 1106.0 4107.4 117.3 434.1 2875.3 3399.8 54.4 663.1 697.8 993.6 102.9 6624.2 2851.1 3785.7 192.8 991.5 461.1 637.2 232.1 5773.5 382.8 932.1 98.5 5034.7 468.2 1126.3 169.3 4848.7 869.1 3211.6 151.2 917.9 882.1 4055.0 180.8 585.2 915.8 3394.3 195.0 904.0 421.4 1016.2 2148.4 3775.4 483.2 1056.2 344.4 3675.9 816.0 3463.2 141.1 1160.0 930.6 3711.4 246.8 1230.5 824.2 1243.0 212.5 4375.4 2374.9 3195.6 159.3 1337.9 2328.0 2812.1 246.3 1117.9 1772.5 2763.5 407.2 1316.2 594.8 1015.3 2218.1 3623.0 485.6 1006.8 621.1 3272.2 449.0 688.3 2070.9 3802.9 366.5 862.7 809.8 3747.7 557.4 942.4 2059.0 3838.7 677.2 1137.2 523.0 3863.7 1877.8 2553.7 460.4 2422.3 661.1 1145.0 376.1 5636.5 594.5 887.3 373.5 5609.3 1 1 108 606 552.7 373.8 5153.8 5338.2 3524.3 4088.1 2099.5 2198.2 1291.7 1707.0 139.5 4055.5 1450.9 1996.0 2592.0 3199.3 671.3 890.8 2661.1 3970.5 846.3 2126.7 1813.1 3172.4 1073.3 2398.2 438.7 2871.1 1138.7 2964.3 365.9 2276.0 1104.9 2771.8 1716.4 3187.3 1451.8 2439.0 424.4 2568.4 1555.6 2312.9 1342.8 2870.2 1015.7 1859.2 1496.3 3598.6 1040.9 1972.3 1084.5 3674.5 1110.8 2100.7 521.8 3494.7 1152.2 3114.5 1281.1 2217.8 1009.0 2440.3 610.6 3299.7 1082.7 3125.4 549.3 2624.6 877.0 1860.5 916.4 3908.2 1097.0 3078.4 544.1 2243.3 899.6 1700.1 1274.4 3851.5 1379.5 2058.8 549.9 3282.6 877.4 1667.6 1117.3 3926.9 1069.2 2679.7 1215.6 2600.1 1770.0 2799.8 616.3 1860.5 1212.9 2245.5 731.0 2833.3 1251.9 2007.6 1035.8 3181.7 1429.8 2592.3 1167.8 2466.4 995.9 2534.3 1146.4 2597.1 791.9 1855.1 721.9 3360.1 1134.0 2625.4 1006.0 2768.9 1452.5 2710.8 1192.7 2116.9 1121.9 2496.2 834.8 2482.3 1353.4 2652.7 1069.0 2171.9 1112.2 2546.0 789.8 2209.7 1142.0 2691.1 525.8 1970.3 1387.5 2511.1 845.8 2083.7 1 1 96 508 5615.9 6234.8 161.7 232.0 5619.7 6516.2 45.5 -307.9 595.2 1099.8 249.5 6875.8 533.1 682.4 293.3 6575.4 415.3 118.7 376.7 6320.0 509.0 793.9 3503.1 3980.3 3183.7 3801.8 -3.4 137.7 1136.1 4591.8 -41.7 191.1 173.1 756.7 299.8 6504.6 603.9 1070.2 51.3 6886.3 202.9 473.2 407.3 8074.7 622.3 637.1 305.2 6481.3 3288.7 3222.3 453.1 1379.7 508.7 505.1 3368.0 5317.9 266.1 741.4 500.5 4016.4 3072.6 3787.3 61.2 738.3 3043.5 3719.6 172.5 976.2 1022.3 1464.8 -117.5 4946.6 2894.6 3387.1 393.2 1716.6 801.6 885.1 2423.0 4265.2 956.3 3693.0 425.2 1316.5 1116.6 4164.3 104.7 1242.1 564.6 1068.2 334.9 5017.0 625.5 823.3 254.6 4695.6 632.9 1098.5 295.5 4981.5 703.5 1217.6 129.3 5810.3 515.4 1003.8 351.8 6354.0 2453.7 3244.1 295.8 1900.9 1116.4 3440.5 301.6 1748.4 2373.9 3228.7 -24.9 1166.8 2341.3 3271.3 180.3 1607.3 1102.5 3223.4 70.5 1474.2 773.0 1719.0 139.5 4481.2 2496.8 2853.5 218.3 2157.9 2274.9 2723.3 431.7 1850.1 904.2 1365.0 1758.2 3489.7 1 1 106 347 367.6 181.4 6476.4 6024.2 4452.1 4501.4 240.2 314.5 537.1 324.3 325.9 6856.1 1082.6 4607.1 216.1 553.8 691.2 902.8 4289.0 5009.0 751.0 932.1 3902.6 4428.3 3290.4 3608.1 349.9 560.5 4146.7 5097.0 434.2 535.0 1059.4 1216.7 3506.5 3799.5 3597.1 3712.4 532.6 821.6 923.1 1126.9 3910.3 4238.4 1323.4 4205.4 611.1 1279.8 754.6 1312.8 539.9 5832.0 1214.5 3525.1 581.9 1478.5 479.0 1171.7 3146.7 4050.6 647.5 1100.9 624.2 3873.2 2548.8 3201.0 375.6 1569.5 779.4 1177.0 620.3 5035.5 708.7 1307.0 2729.5 4003.1 1044.0 3499.7 700.7 1450.6 975.9 3757.1 658.4 1286.6 717.7 1543.4 2613.7 3846.6 411.9 1303.8 866.5 3789.4 767.8 2901.4 564.2 2286.4 535.7 1320.2 538.9 5624.4 699.1 1305.5 432.3 4598.5 788.1 2772.2 435.5 2314.8 664.1 1484.6 659.1 4136.4 641.7 1621.5 2033.0 4070.7 821.2 2610.7 711.9 2420.7 589.6 1303.9 434.6 4178.3 666.8 1195.0 509.5 4529.1 1378.3 2019.1 1081.2 3189.4 1464.6 2093.4 1511.3 3023.4 1935.7 2466.1 698.2 2151.5 1752.1 2087.3 571.5 2825.2 1 1 92 482 437.4 201.3 257.8 8164.7 507.4 667.8 211.5 5789.8 377.9 369.4 61.3 4939.8 684.5 507.5 2216.8 2885.4 435.1 416.1 180.9 2391.6 1952.4 2174.4 180.9 595.6 471.8 535.2 193.5 2957.1 1987.6 2208.0 163.2 557.2 747.1 920.6 145.0 2292.0 429.7 775.5 1393.7 2452.7 540.0 921.7 258.0 1867.2 1554.1 2059.3 191.6 640.0 502.3 745.1 236.3 2275.4 1238.8 1359.1 278.0 976.9 799.1 2054.7 86.2 567.2 1319.3 2012.5 149.6 623.3 550.2 879.1 224.6 2131.9 271.5 718.1 992.2 2133.4 448.4 840.9 210.8 1792.9 571.3 1119.7 170.1 1813.1 1175.5 1497.1 231.2 910.6 1241.8 1635.0 211.5 763.2 659.4 921.0 779.2 1640.5 1048.3 1353.9 362.3 865.2 1097.2 1512.0 223.5 924.9 741.9 893.9 880.3 1698.5 827.7 1236.4 321.0 1217.5 610.6 812.5 195.4 1886.2 431.2 994.1 243.7 2065.8 511.9 1245.3 190.2 1430.9 492.0 871.7 250.8 2109.0 895.2 1268.2 149.4 1437.9 499.6 1315.5 198.5 1424.0 458.7 1030.8 241.5 1516.8 431.6 634.6 607.6 1703.0 499.1 885.9 374.5 1648.1 1 1 114 415 2809.2 7681.3 373.6 970.0 944.3 1387.3 2184.2 8803.8 836.3 1280.6 5932.8 6722.4 4850.9 5883.1 498.6 1059.3 985.1 2824.9 393.2 6464.9 2250.3 3055.8 442.0 6339.8 2075.5 2773.9 4598.9 5658.5 1863.5 6430.9 2180.1 2639.0 1246.2 2080.5 566.9 8582.8 5167.7 6120.4 930.4 597.2 4696.9 6139.1 559.5 1534.3 4583.1 5926.5 2347.8 3388.5 1295.8 2250.2 2177.5 6886.2 1767.6 2387.3 500.3 7770.9 3847.4 5472.4 1563.9 2321.1 1694.2 2682.3 3151.3 5057.7 1242.9 2902.9 611.4 4443.5 1637.9 5529.7 574.2 1661.2 1748.7 5658.9 527.9 2652.6 1123.6 2301.6 1606.3 5476.8 1255.7 2249.6 2737.4 5255.9 1604.0 5702.4 767.7 2406.4 4239.5 5863.8 1669.5 2571.5 4199.4 5755.6 666.9 2555.8 3749.3 5604.5 567.1 3023.2 1747.5 2732.4 540.6 5554.2 3440.6 4601.3 1245.0 2156.1 3507.3 4797.3 613.8 1867.2 1871.8 4681.2 1341.9 2348.7 1480.5 2520.6 2623.9 4875.7 1511.7 2289.1 880.7 5697.7 1345.2 2353.4 1240.5 6281.6 2848.8 4038.7 576.9 3354.1 1757.5 2539.8 687.6 5885.4 2971.1 4084.6 1326.8 3086.0 3261.1 4545.5 656.5 2663.2 1 1 117 462 1650.7 7626.5 168.2 -73.6 957.6 1051.8 125.6 8250.5 1540.6 5848.5 238.3 636.7 1543.4 5888.6 359.4 643.0 4375.9 4992.4 355.7 827.7 927.5 1287.6 3883.8 4892.4 785.7 1236.3 400.9 4854.4 887.2 1612.7 247.0 6525.5 1550.9 5363.7 411.0 1302.4 1522.9 5565.4 428.9 1309.3 3958.6 5098.2 359.3 1057.1 1802.2 5180.8 404.2 1136.9 3764.3 4953.7 480.3 1189.2 1087.9 1767.7 2951.1 4168.9 3005.3 4200.7 533.8 1302.2 1399.4 4630.2 391.6 1306.5 951.2 1837.2 370.9 4857.1 1500.8 4579.8 178.0 1605.9 3081.6 3908.1 460.0 1494.8 2955.0 3654.8 517.0 1424.0 1274.5 1726.1 2697.1 4303.5 860.3 1550.8 2791.0 4452.3 1378.5 3745.5 705.8 1923.9 976.8 1951.8 489.8 4179.9 1339.2 3984.5 435.6 1973.1 907.1 2100.6 482.6 4738.2 760.8 1722.8 427.6 4869.6 904.3 3351.2 418.7 2602.9 805.5 1970.5 524.4 4780.9 749.6 1481.0 2106.4 4820.3 654.7 1250.1 946.1 5489.2 711.7 1489.3 598.1 5101.7 1047.9 3254.9 535.4 3043.3 2048.5 3350.9 494.2 2234.0 1240.8 3277.6 434.4 2279.4 924.0 1906.2 369.8 4555.2 1 1 88 544 3149.7 5989.3 226.5 423.1 578.6 816.3 283.3 7524.7 3647.9 3811.7 219.4 2255.8 589.6 700.8 4417.1 5009.3 578.6 723.3 2994.1 4195.7 2081.0 2752.9 2381.2 2786.3 2657.4 3469.1 1065.0 1648.2 1164.0 4088.6 1341.5 1824.2 1262.4 5056.3 391.5 821.9 2930.2 3633.8 404.7 1728.1 2776.6 3237.1 421.4 2719.0 807.0 1271.5 3102.8 4093.1 1162.8 3961.1 616.7 1566.9 2738.3 4211.1 485.0 1333.9 1053.3 2508.3 2262.3 2966.7 1830.2 3990.8 501.3 1041.1 1000.6 2331.7 326.8 3834.1 733.9 1596.7 397.6 4382.4 673.9 1467.2 389.0 5012.2 766.8 2022.9 524.7 4273.0 844.5 1434.2 2590.5 4082.8 2043.7 3225.2 862.1 1661.7 1571.0 2057.1 2143.5 3327.1 2185.4 2572.4 552.3 2597.8 1173.0 2314.2 389.6 3532.4 2431.6 3497.8 391.4 1439.8 1332.3 3571.4 452.2 1391.9 904.9 1779.4 851.3 3829.6 1883.2 2654.6 454.7 2383.7 825.8 1402.2 439.0 3786.9 1144.1 1946.1 297.0 3966.2 780.4 1586.3 266.3 3534.5 752.3 1418.1 360.6 3752.1 632.4 1418.1 654.7 4480.1 819.2 1678.8 465.8 4100.8 1834.1 2451.7 387.3 2693.8 1 1 68 580 338.2 1426.6 161.3 5117.2 294.0 377.8 193.1 5354.7 280.9 1363.2 140.2 5493.0 762.2 3668.3 177.9 453.3 2616.9 3070.0 122.3 424.5 728.8 3235.9 152.0 850.0 366.2 575.9 2713.2 3671.3 357.6 591.6 441.4 3581.2 305.0 952.7 210.4 4842.6 286.8 493.5 181.4 4909.8 583.0 985.5 153.5 5080.3 703.9 908.8 180.3 4482.5 837.6 3223.1 168.2 867.5 1986.3 2451.1 270.2 920.8 344.5 656.2 2250.0 3434.8 373.7 690.4 320.4 2995.1 1860.5 2341.4 217.7 1108.5 556.4 1139.9 251.9 4614.8 696.4 997.9 209.4 4435.6 341.1 1028.9 263.4 4211.1 856.2 2461.4 358.6 1414.1 427.5 821.8 2141.8 3527.4 464.7 1130.5 456.3 3418.8 743.8 2647.8 254.4 1229.2 1713.4 2450.9 334.9 1292.1 411.2 1007.3 240.1 3984.5 378.6 790.7 270.5 4303.9 434.8 804.2 242.5 4534.7 337.6 1044.8 266.5 4354.4 445.5 1051.7 237.9 3569.4 787.5 2200.3 227.6 1576.1 1613.2 2250.1 245.1 1057.7 1620.4 1860.9 345.5 1343.6 585.0 976.1 1449.6 3273.8 634.8 871.5 474.1 2876.7 1329.6 1711.2 423.1 1625.4 1 1 81 571 294.8 233.1 289.9 5109.8 562.3 650.0 42.7 4604.9 2558.4 2787.5 108.6 378.8 811.1 2915.0 97.2 348.8 364.4 603.6 156.2 3272.3 475.2 462.2 125.2 3910.0 480.1 491.4 211.1 3924.1 545.0 674.2 245.4 3613.7 2249.9 2589.7 175.0 532.8 2034.1 2657.4 181.6 559.2 2151.6 2743.1 93.2 441.2 2213.1 2821.7 204.1 466.8 2010.2 2426.7 93.3 580.6 730.4 2417.4 193.4 844.1 485.1 854.9 232.6 2903.0 504.0 773.3 179.8 3229.8 534.1 882.9 224.1 3149.2 1572.5 1891.6 200.9 1084.8 456.9 875.6 195.4 3216.6 449.9 724.9 204.9 3107.9 1491.6 1957.1 108.5 979.1 769.1 2066.4 238.0 1000.8 491.4 1117.1 234.7 3001.4 657.2 2242.2 211.3 1019.8 1626.8 2338.1 227.1 867.9 1482.7 2061.1 167.1 804.3 672.1 881.1 263.4 3012.6 1479.2 1666.0 224.4 1126.6 1640.7 1916.4 245.3 1012.2 1405.4 1932.6 378.7 1078.1 584.4 800.9 1219.5 2413.0 493.2 972.0 1171.2 2153.7 573.2 1758.2 380.9 1238.8 500.1 941.3 411.0 2325.1 501.8 870.1 1078.9 2208.0 964.3 1404.0 485.8 1435.1 1 1 75 541 535.9 842.2 4660.7 5107.3 2927.3 4385.9 249.3 1178.9 621.8 1124.3 2214.3 5105.3 2455.3 3248.4 281.1 2505.6 2512.1 3058.5 1954.2 3338.7 825.0 1387.3 2621.6 3203.8 807.5 1230.8 333.5 3322.7 847.3 2236.0 2770.3 3979.0 748.9 1372.3 374.7 3956.0 700.0 1357.9 3340.7 4862.0 758.1 1407.8 2769.1 4235.0 2014.3 2631.5 589.9 3240.4 2337.9 3445.8 386.4 1431.5 828.5 2909.1 352.0 4198.4 1037.9 2842.9 597.8 3521.0 1683.9 2485.5 1801.1 2929.4 2256.3 3637.3 450.2 1258.2 1062.8 2210.8 451.7 3632.0 2159.2 2820.8 421.7 3366.2 945.9 2361.4 821.6 3711.1 1242.6 1910.4 468.4 3972.4 2556.4 3160.5 359.8 2108.7 1744.8 3497.7 647.4 1711.4 1189.0 2128.2 1859.0 3273.4 1560.5 3095.4 562.6 1964.3 1442.2 2197.5 649.9 2983.9 857.6 1603.0 1956.5 3622.5 920.4 1905.7 1854.1 3273.2 965.8 2493.7 1266.3 2555.7 1707.0 2729.3 1157.4 2237.4 2170.6 2888.7 654.1 1813.9 2119.3 2991.4 661.9 1732.4 2128.7 3055.8 387.1 1436.3 2296.7 3192.4 522.0 1851.1 1093.0 2457.8 1000.8 2215.5 968.3 1633.2 1417.7 3090.9 1 1 113 775 -82.9 168.0 317.1 8082.7 1500.6 5540.2 116.3 -120.6 4391.7 4860.6 215.2 617.8 400.3 1693.7 283.7 6619.8 1060.5 4609.4 257.2 715.3 273.8 731.5 260.7 7092.7 941.5 4542.6 64.9 679.1 530.8 1105.4 234.7 6969.6 599.6 1045.0 292.7 6583.5 3956.7 4762.9 221.7 657.7 3665.3 4163.4 208.1 511.2 4093.3 4701.5 178.1 894.9 1189.2 4733.4 87.0 1004.9 709.8 1220.6 593.2 7686.5 754.7 1293.3 4069.7 5674.6 3079.3 3469.8 719.9 1372.9 772.3 1251.9 3968.8 5600.0 837.4 1282.1 4260.0 5745.5 3073.1 3488.4 366.5 1655.9 1035.7 1573.4 269.7 5705.6 3623.0 3754.4 461.2 1518.4 3650.5 4074.0 198.5 1503.9 1281.8 1838.5 610.0 6304.3 3809.0 4075.3 256.1 1627.7 3424.9 3945.2 188.7 1739.5 1434.8 1870.0 377.4 5374.5 3136.6 4127.2 203.8 1422.2 1237.9 4152.2 281.9 1526.4 727.1 1622.9 267.3 5296.2 1020.5 1671.3 172.6 4928.3 2634.3 3962.1 268.3 1663.1 1401.8 4414.6 130.1 1358.2 1422.8 4666.8 230.7 1209.3 2636.1 4012.5 262.1 1108.6 1556.6 3637.4 268.4 1397.3 2307.8 3244.9 313.4 1951.8 1 1 122 660 482.2 487.0 78.2 6732.4 4381.8 4434.8 199.8 241.7 214.0 212.1 343.2 5617.4 439.3 748.7 3013.6 3433.7 898.4 3915.0 138.3 470.9 3064.7 3652.4 339.2 375.5 607.0 959.4 3049.5 3508.3 916.6 3346.8 378.2 807.4 630.3 973.1 309.1 4222.9 2290.0 3172.6 438.0 864.3 593.1 942.3 2516.3 3414.6 2096.7 2509.4 641.2 1357.2 408.6 693.7 2772.0 3983.9 462.2 957.5 455.8 3519.3 1047.2 3362.8 222.8 902.7 2248.2 2827.2 325.9 1009.7 2062.7 2745.2 521.1 868.6 795.6 1158.8 2203.0 3023.5 1695.9 2323.3 561.0 1051.8 637.5 1170.0 1986.6 2602.5 829.4 2348.5 582.4 1237.0 623.5 1240.7 441.1 3137.8 896.6 2704.2 409.1 1046.3 1616.4 2572.8 528.0 976.3 679.6 1128.9 2196.0 2854.4 444.9 825.4 2122.3 3006.8 473.4 888.5 2262.6 2966.4 382.2 751.7 1860.0 2712.8 569.2 947.3 709.2 2502.6 1270.2 1980.8 502.2 1316.8 843.5 2094.3 427.5 1301.7 607.1 1199.6 496.1 3015.4 469.0 989.8 1971.9 3317.8 455.2 678.6 1832.6 3047.8 586.9 749.6 613.7 2658.9 508.6 945.4 496.4 3383.4 1 1 115 329 543.5 557.3 6240.7 5988.9 539.0 788.5 4817.0 4526.5 474.6 436.6 4330.3 5484.5 455.8 778.5 4302.1 4596.7 2849.5 3354.4 464.2 661.6 1113.8 4074.5 461.3 678.2 627.5 834.5 472.7 6378.9 690.6 723.1 4333.3 5680.4 572.6 694.9 631.6 4585.1 656.3 775.0 4419.5 5824.0 647.2 1085.4 4210.8 5203.4 703.3 878.1 3818.7 4637.1 692.0 879.3 981.8 4273.2 677.8 990.9 3687.1 5476.9 843.3 1251.3 997.6 4117.3 2920.8 3177.7 686.7 1812.5 875.1 1642.1 3030.0 4523.6 1329.6 3241.3 976.7 2316.6 762.0 1700.2 801.1 5314.3 1215.8 3843.1 659.6 1833.1 2334.1 3359.6 606.9 1509.8 1393.3 3424.8 569.5 1572.5 883.0 1622.0 711.4 5170.8 707.7 1323.6 919.7 5546.4 748.0 1375.8 2762.9 5143.1 753.3 1493.7 908.7 4719.6 786.0 1497.9 818.7 4758.3 814.2 1551.3 2083.5 4519.1 1084.0 3092.6 983.5 2323.6 1888.3 3050.4 1031.6 2076.0 1005.2 1710.0 1899.6 4106.9 777.6 1611.3 1130.6 4051.0 759.5 1637.6 2171.8 4121.9 1035.3 2879.3 852.0 2639.1 675.9 1612.5 685.9 4225.5 830.9 1625.7 669.0 4781.4 1 1 118 518 1104.8 5930.4 261.6 440.8 428.6 655.3 224.7 7701.9 439.0 709.9 5156.3 5429.3 4795.2 5117.8 268.7 194.4 5283.5 5491.1 88.4 576.9 4841.4 5504.9 495.1 619.8 4520.5 5330.6 151.9 493.6 1007.9 1339.9 346.9 5753.3 1728.7 5885.2 359.5 550.2 3984.9 5325.8 326.2 774.8 767.4 1348.5 422.0 6841.0 932.1 1447.7 4727.6 6061.8 933.8 1420.9 4209.9 5306.8 3902.8 4589.5 588.3 1193.9 4617.1 5363.5 313.4 521.2 4383.3 4896.1 362.0 923.2 4278.7 4714.8 219.2 1088.0 1200.2 1769.9 702.5 6501.3 1323.6 1809.2 3481.7 5242.9 3231.6 3771.6 873.0 1712.5 1666.8 1879.0 3441.1 4186.0 3690.4 4078.2 667.1 1246.9 4064.4 5100.6 585.2 1003.9 4064.5 4711.8 421.0 1065.4 2035.8 5049.4 413.0 1215.6 3434.4 4150.3 388.5 1459.3 1308.9 2282.7 514.2 5185.1 1369.1 4471.2 336.6 1667.3 1637.0 4904.9 421.5 1250.2 2575.5 4154.4 450.7 1336.7 1190.1 3932.8 416.0 1943.9 747.7 2146.2 455.6 4699.6 753.3 1721.7 682.6 5009.4 1087.2 1696.0 2318.5 4132.2 2379.8 3243.7 850.5 1786.0 1319.7 3835.8 795.4 1865.4 1 1 120 704 804.5 596.3 5293.9 5160.4 3325.6 4066.7 102.1 216.6 3786.3 3719.0 43.9 208.7 650.5 3836.1 40.8 33.9 804.1 3831.3 -294.3 -79.8 2914.1 3448.6 75.4 157.7 545.0 637.0 3732.8 3469.6 3014.7 3181.2 -10.0 -217.3 919.2 3335.7 -154.2 -84.7 401.0 888.6 282.0 4140.1 1013.5 3768.3 -273.5 -66.3 732.8 4061.1 67.6 315.7 507.6 683.7 314.3 4165.0 593.9 625.6 3003.4 3772.1 562.5 898.7 3142.4 2952.2 887.5 3777.6 290.7 -189.8 2310.1 3398.0 409.1 854.8 436.3 952.5 3000.2 3340.3 2256.8 2687.5 203.6 883.7 2228.1 3106.4 490.6 662.3 676.4 1264.1 2707.9 3056.6 553.6 565.8 304.4 3272.5 301.8 761.3 523.6 4067.7 487.8 935.9 2591.6 3680.9 216.5 806.2 846.3 3344.3 513.1 677.4 2642.8 3508.0 503.5 691.9 605.2 3441.9 539.0 840.1 402.6 3302.0 813.4 3068.5 268.4 971.6 796.8 3095.8 321.0 875.3 1940.2 2443.2 185.4 625.3 716.6 2697.7 353.9 1145.7 643.1 1406.3 160.7 3002.9 867.8 2685.1 282.6 1233.3 1600.0 2532.7 149.2 726.0 554.4 2545.8 187.3 1074.1 1 1 105 427 656.7 1156.4 358.7 7771.7 1036.4 1968.1 453.4 6382.1 2283.0 4637.7 373.9 750.6 1733.5 3483.9 2841.0 3366.3 2295.6 2719.2 265.8 2341.2 541.3 1302.1 2984.3 3490.8 1853.1 2400.5 1106.0 3454.3 914.4 3013.7 354.0 3142.5 2032.6 2752.0 582.8 3571.8 713.0 1130.7 2631.5 7927.5 621.5 1064.9 2474.7 5761.3 1376.1 3140.8 2399.2 3576.7 713.6 2457.2 490.7 2598.7 1000.1 3038.3 387.5 3775.7 1561.7 2840.2 327.7 3363.9 1342.1 3534.4 388.0 1599.7 657.6 1378.8 361.5 5094.7 939.8 2734.6 509.7 4608.8 805.7 1498.0 1053.5 4352.9 1098.6 2420.4 1315.2 3064.0 764.5 1557.5 1004.6 3065.8 1980.1 3237.7 334.7 1496.3 1238.8 2165.9 432.2 2943.5 2298.1 3791.7 515.2 1938.2 930.6 2052.3 1256.9 3495.9 1154.4 3394.1 584.0 1721.4 970.5 1677.0 378.2 3150.1 1175.6 2897.5 346.2 1799.7 763.1 1790.0 398.4 3479.1 666.3 1418.7 1320.0 5051.5 697.7 1302.5 1440.9 4987.4 782.7 2107.7 1585.5 3981.9 655.8 1758.2 600.7 3761.6 978.8 2023.0 1423.8 3156.1 622.3 1657.0 901.9 3221.8 680.5 2214.5 601.3 4010.2 1 1 110 692 558.0 682.5 5290.3 5459.1 1418.6 5088.1 329.0 600.7 3925.4 4537.4 427.9 823.7 595.4 1030.9 4030.6 4696.4 3232.7 3871.1 552.3 1436.0 568.9 902.1 4296.4 5262.7 3374.7 3583.3 581.5 1177.2 1341.3 4390.0 500.6 1165.9 707.6 1201.8 3976.6 4709.7 692.4 1080.4 4098.8 4775.6 681.9 1006.7 1105.1 4068.3 628.2 1162.8 800.1 5264.8 1205.0 3604.8 536.7 2457.6 1146.7 4090.4 621.6 1737.9 2504.9 3932.2 670.2 1518.7 1314.6 1909.7 2815.7 3701.2 986.9 1702.5 3473.2 4584.6 1951.3 2900.5 1375.3 2273.1 1021.5 1825.2 2875.5 3829.4 1948.7 2954.8 1333.3 2019.1 1205.4 1684.9 2440.3 3436.4 894.8 1435.3 1180.3 4086.4 763.4 1505.5 753.3 4730.1 1121.3 3411.5 577.3 2315.7 2132.8 3365.1 517.1 1588.0 1320.9 3802.5 571.8 1303.3 1361.7 3597.6 467.9 1230.8 2149.7 3256.8 469.1 1032.6 2188.1 3205.0 511.4 1246.8 1235.8 3454.9 520.6 1705.9 961.2 2017.2 451.8 3415.6 763.3 1724.0 683.7 4328.5 716.1 1454.7 1790.1 3827.2 735.7 1344.5 921.3 3499.6 664.0 1144.7 1647.2 3734.1 616.6 1495.1 995.6 3683.1 1 1 98 349 130.2 8.9 327.4 6779.6 182.9 562.0 -17.6 6732.8 126.2 410.6 -9.2 5891.7 982.9 4001.2 80.0 514.3 3436.4 3701.4 285.8 647.1 312.7 435.0 3714.2 4321.8 73.0 401.2 414.6 3938.9 224.5 462.7 354.3 5003.1 325.2 627.2 12.0 5012.1 357.0 660.3 245.2 5981.0 911.3 3440.5 239.2 573.1 417.0 807.1 206.3 5195.3 811.3 3819.0 525.5 1011.0 279.4 767.6 2632.8 4706.4 705.1 3322.6 298.3 1029.6 770.6 3350.1 199.9 934.5 248.3 816.9 117.8 4891.5 379.9 866.0 340.2 4537.3 2202.4 2587.3 251.5 1313.5 496.4 932.3 306.1 4174.7 439.9 1082.7 72.7 4209.8 690.8 3032.3 147.8 1443.0 896.4 2994.4 271.7 1160.8 1867.7 2895.3 458.3 1393.1 417.0 1053.1 825.4 3714.6 386.0 849.1 1926.7 3822.5 396.9 1139.1 427.6 2952.2 586.0 2741.8 403.0 1409.5 647.2 2672.6 311.1 1709.4 570.5 1214.1 210.9 3494.3 1650.0 2511.9 264.0 1462.1 1059.0 2734.1 90.9 1142.4 1489.9 2113.5 733.2 1688.8 512.3 880.0 1714.9 3476.6 357.3 599.3 873.8 3615.9 394.2 775.5 1716.5 3801.3 1 1 120 488 1649.3 7313.6 511.5 4064.1 6344.6 9108.2 189.2 456.6 5833.4 8500.2 159.4 589.9 3253.2 3989.8 373.1 7589.8 4957.4 5724.2 2747.3 3556.4 2598.0 3354.3 441.2 6420.8 4611.7 5588.9 322.7 3653.0 1200.0 1803.7 5227.7 6559.5 4452.6 5420.6 556.9 3446.4 3616.5 7993.5 399.7 1447.7 4456.6 5584.1 355.2 4315.7 2053.2 7696.1 445.7 1568.2 4017.2 5893.0 384.6 3829.0 1250.7 1914.8 589.1 8414.2 1227.7 1916.7 2053.6 8078.4 3509.3 4951.1 690.5 4080.2 1697.7 3756.8 3325.5 5227.7 3068.5 4538.3 772.8 4400.3 1888.1 6428.1 587.1 2213.4 1233.5 2602.2 509.1 7625.2 3111.3 4982.5 700.4 2910.6 1453.6 2454.2 3199.4 7110.3 2674.8 3299.3 904.3 4609.4 1335.5 2142.9 2781.7 6201.1 1228.4 2168.7 1949.4 6109.2 1523.3 3675.3 981.6 7272.4 3288.4 4787.4 702.8 4726.4 3329.8 5683.2 622.8 3030.1 1941.5 3769.3 823.9 5649.1 2607.6 3652.1 2739.0 5624.9 2973.2 5848.7 900.5 2879.9 3223.3 5624.6 645.5 2687.5 2463.4 3826.1 648.2 5478.9 1931.1 4802.5 633.1 4508.3 2762.1 4340.5 1795.6 4119.8 1645.0 2795.0 2608.2 5256.8 1 1 120 749 392.5 176.7 294.0 6453.4 457.2 553.0 292.4 6172.0 311.1 116.3 4832.4 5209.8 446.5 418.2 3907.3 3836.8 2957.1 3075.7 234.0 713.5 232.3 337.8 218.7 5398.6 375.0 380.5 318.9 6196.9 3859.1 3731.6 333.9 674.9 703.0 931.5 3549.1 4049.6 3089.0 3744.1 312.5 774.2 3615.2 3652.3 286.6 716.2 679.7 885.1 478.2 5698.1 636.2 847.7 3685.8 5049.3 611.4 885.2 4025.7 5082.4 3028.5 3801.3 395.8 876.3 3414.8 3888.5 349.9 789.4 802.5 1382.6 389.9 4596.4 996.5 4303.0 315.1 1160.7 1381.1 4608.4 280.8 809.5 2758.5 3563.7 298.5 877.4 2951.6 3418.0 315.7 1008.5 874.1 1215.7 514.4 4513.4 580.7 802.6 3483.8 5009.5 775.9 1132.6 3307.3 4453.0 2169.4 2859.8 707.2 1339.0 2521.3 3229.6 481.7 1376.1 1027.3 1385.7 475.5 3788.1 1076.2 3446.7 338.2 1383.8 2423.7 3338.0 298.1 1143.2 2370.8 3565.7 316.7 1012.8 1152.9 3034.4 339.6 1427.6 806.3 1536.0 645.1 3613.4 647.1 1255.6 2295.3 3652.5 926.3 1305.4 2018.2 3154.3 1850.1 2373.9 644.1 1512.5 1941.6 2715.1 566.2 1858.5 1 1 115 889 219.2 347.4 4501.4 4082.8 3033.7 3083.1 143.9 94.4 354.5 381.1 3244.9 3427.1 2674.0 2898.1 152.3 197.3 3007.3 3350.5 60.2 252.0 3038.0 3473.5 152.9 233.8 2924.5 3005.2 61.2 218.1 544.3 609.5 220.5 3980.8 483.2 727.4 3026.4 2837.8 862.1 2960.1 243.1 435.1 834.1 3126.8 212.1 230.2 764.8 3064.7 181.1 374.1 868.4 2959.9 150.3 496.9 2410.3 3102.9 204.2 453.8 885.6 3228.1 43.0 298.5 2323.3 3009.2 303.0 452.6 543.5 1008.4 1944.2 2170.9 773.3 2895.3 240.9 605.5 492.8 963.6 338.4 2621.6 424.1 824.2 2084.7 2353.6 519.5 849.5 2125.1 2249.2 1611.7 2054.9 339.2 708.4 496.2 950.4 301.1 2905.8 680.0 2365.1 218.8 769.0 416.7 959.2 314.3 2961.6 691.8 2577.7 181.0 713.7 681.3 2519.7 228.9 734.2 405.2 1014.3 283.5 2448.8 389.8 790.4 1619.7 2464.0 415.1 874.3 1648.9 2194.4 1247.8 1901.5 520.8 902.6 507.8 933.4 1561.3 1974.5 384.5 918.3 1660.9 2360.8 665.7 2015.0 528.8 1217.2 1307.0 1873.6 241.0 993.8 488.2 940.0 344.5 3048.1 1 1 98 629 305.2 222.5 1204.7 6408.0 1145.8 788.5 403.6 5369.9 391.2 332.5 4334.4 5879.8 971.0 4969.7 461.5 -238.4 3839.9 4797.5 -39.8 -71.1 857.2 1012.8 277.3 5792.6 700.8 1003.8 499.5 5604.2 1373.1 5118.1 341.1 -425.7 1516.9 1864.8 353.1 -36.2 3321.9 3885.9 737.0 640.0 2977.5 1420.0 349.9 85.1 795.2 1152.3 3271.4 3616.1 286.9 904.6 3726.4 4286.9 936.0 811.3 3359.7 4183.6 633.5 1202.6 2970.3 3061.7 2159.8 2909.5 508.9 260.4 658.3 1499.7 768.8 4247.1 609.7 1394.6 2932.8 4159.4 2141.3 877.9 1116.7 1250.4 563.4 1396.9 2724.2 3822.2 977.0 2066.8 736.0 1999.9 2172.8 3185.4 624.7 1910.0 2467.1 3266.6 407.4 926.7 2646.7 3392.2 414.6 1052.7 824.0 1994.4 -21.3 3626.2 2214.3 2245.5 185.7 1412.0 1178.5 1223.7 506.2 3874.5 803.6 1214.1 321.0 4643.6 783.0 3248.2 406.5 1825.1 516.5 1587.0 343.9 4289.7 533.3 1104.9 216.6 5170.7 885.5 3225.5 394.9 1709.5 1086.8 3052.4 372.7 1831.5 629.7 1728.3 248.5 4060.8 644.7 945.1 541.9 4874.4 351.8 982.2 1961.9 3964.5 1 1 120 446 5664.9 7160.7 353.7 2289.6 826.6 949.0 458.3 10222.1 2213.2 6428.2 363.3 851.4 1362.5 5272.8 1606.4 2753.4 4438.6 4807.4 1740.6 2663.9 904.6 1170.5 796.7 6733.7 731.8 1453.4 440.2 6522.7 1590.1 5754.1 466.3 3303.2 2121.5 6059.6 435.2 1332.6 752.8 1903.8 2062.6 7487.6 1289.7 4846.0 1393.0 2990.6 849.9 1796.2 1734.4 7345.5 767.2 1462.4 3567.1 6049.9 755.8 1480.4 561.5 5937.3 1239.5 1962.0 705.4 5748.6 949.7 1556.1 3429.1 5510.0 2811.1 3199.5 1639.4 2629.0 858.5 1466.5 3567.6 5570.2 815.5 1239.0 3057.4 5384.4 853.9 1243.8 2556.2 5076.4 2851.0 3484.9 628.5 1837.5 1323.0 4147.5 1482.1 2468.4 2966.6 4159.7 1446.0 2537.8 1099.9 1966.3 1178.8 5287.3 1126.3 4127.9 463.0 2558.4 763.5 1634.8 753.7 5666.6 1170.8 1742.1 2503.7 4534.6 737.7 1313.8 3070.6 5083.8 744.3 1379.4 2895.5 5184.1 630.4 1322.9 1403.7 4855.0 624.7 1530.3 705.1 6043.3 1033.5 3402.0 625.0 3775.3 1026.7 1976.8 610.0 5878.1 726.3 1464.3 1218.1 6336.5 760.6 1550.5 1286.5 5708.8 1095.9 3423.8 1015.0 3259.1 1 1 115 762 4466.2 7141.3 128.4 451.2 1580.7 4379.8 74.8 5221.7 2977.9 3573.1 204.9 3931.2 533.6 1325.8 3094.1 4793.9 900.5 3789.4 2903.6 3645.2 1046.2 4657.5 905.4 1419.3 978.2 3590.4 515.1 3919.3 1648.2 4861.8 396.6 804.6 1062.9 1728.4 376.2 4410.9 1144.4 3242.1 708.3 3872.6 2977.9 3920.3 397.0 1128.5 781.0 1367.8 2991.9 5517.8 1004.1 3595.9 2934.4 3697.1 901.2 3395.1 812.0 4529.0 2335.0 2938.3 953.6 4636.5 2571.0 3082.2 2142.8 3261.0 1026.9 1697.9 3012.8 3909.2 862.1 1626.1 2512.1 4253.3 1293.7 3053.0 614.7 2452.1 999.0 2909.6 2216.9 3086.4 989.4 3180.5 2575.9 3295.3 802.4 1695.7 2116.6 4268.2 927.3 3218.9 668.0 3017.1 1101.4 3363.6 760.7 1672.5 1085.6 3250.9 640.5 3266.7 2291.1 3000.7 2104.5 3194.8 1973.7 2841.5 2186.8 3127.3 1876.3 2702.0 1895.3 2898.8 1845.3 3687.6 547.2 1579.3 1012.1 3047.6 404.3 2529.2 1404.7 2373.6 625.5 2864.3 1006.1 2533.3 503.9 2736.1 1424.0 2457.3 472.0 2867.7 918.3 2452.0 519.5 3149.0 755.3 1572.6 1348.9 4239.7 1817.7 2540.2 661.3 1960.2 1 1 99 723 517.0 1145.8 5102.7 5267.0 223.9 1511.0 329.3 5023.9 3929.6 4315.6 159.3 12.3 1042.0 3659.5 214.4 321.6 3066.3 3851.3 158.3 1254.2 542.9 1155.0 269.5 5673.5 954.9 1049.6 225.3 5950.5 512.6 653.0 262.7 5412.7 557.8 1143.5 265.5 4170.9 1173.8 3889.7 208.2 1140.6 522.5 820.1 314.9 5587.1 374.1 1655.1 260.1 6030.8 594.2 989.8 232.6 5751.3 500.1 1003.8 162.3 4963.1 956.2 4099.7 201.5 727.2 539.1 1235.2 538.5 4943.6 521.0 940.5 2576.8 4407.2 674.5 1025.5 453.3 3422.3 2783.6 3438.0 368.9 1584.2 1317.0 3949.1 326.0 387.8 2414.5 3647.8 401.6 934.0 677.1 1561.0 2229.2 3478.6 701.5 1153.5 2005.7 3282.6 917.6 1310.2 114.5 2424.4 2276.2 3506.6 285.3 1255.7 1187.8 3534.6 339.4 1152.4 1089.3 4010.2 283.6 912.5 2351.4 3556.9 290.9 1016.7 2114.7 3207.0 211.6 978.9 1020.4 2781.5 199.3 922.3 725.6 1415.3 366.8 2895.8 705.1 1228.3 1635.0 2915.8 879.0 2571.1 481.9 1527.2 1536.2 2461.6 423.9 1609.6 740.7 1371.7 462.9 2748.9 827.5 1169.9 1646.0 3204.1 1 1 80 439 450.0 531.0 339.6 7440.3 636.1 950.8 262.2 5981.2 957.8 3473.2 192.2 551.2 791.3 3065.3 212.5 603.2 420.9 840.1 158.4 3037.9 888.5 2799.5 207.7 462.7 2071.8 2757.2 180.0 393.0 2085.3 2846.8 257.2 525.6 1867.9 2471.5 274.5 824.9 601.0 915.5 175.6 3607.6 626.9 966.9 176.1 3491.0 665.0 1238.2 189.8 3220.8 1855.9 2418.9 244.3 829.9 1807.7 2241.9 218.5 1060.4 701.3 1152.4 203.8 2310.4 1637.0 2313.9 191.4 702.3 1551.3 2086.1 201.7 704.2 818.9 2173.1 179.2 685.4 1658.1 2153.8 238.7 714.4 1619.9 1976.0 167.7 686.5 1647.2 2119.0 210.1 655.6 1535.4 2103.9 173.9 843.2 624.6 1141.8 238.4 2273.8 713.8 1160.6 213.9 2400.1 1447.8 2001.8 268.9 1008.3 1575.4 1991.3 212.4 867.3 1373.5 2099.2 206.9 708.5 815.1 2128.1 154.1 809.8 1314.5 1956.0 207.0 841.5 767.5 1877.3 177.6 795.1 1192.4 1792.0 200.2 1003.6 711.6 1299.1 117.5 1756.8 722.4 1733.6 140.6 1061.0 1019.3 1840.9 333.1 1088.2 583.1 1192.6 797.0 1632.8 643.3 1629.7 314.5 1177.8 1 1 120 897 98.5 251.3 470.8 6070.6 639.1 842.3 2677.4 5775.4 3326.9 3930.6 295.3 728.8 210.7 656.2 2824.4 5397.7 798.8 2420.2 2205.3 2887.4 825.5 2441.8 2436.2 3077.6 1667.0 2289.2 331.1 3187.0 754.5 1225.1 2313.6 4749.1 1071.0 2643.3 2074.9 2797.0 1897.9 2167.9 649.0 2952.0 819.2 1257.6 1755.8 5276.5 1382.8 2109.0 463.3 4409.3 868.4 2533.1 173.6 3807.7 1869.7 2525.0 491.7 3843.2 1761.5 2435.6 2117.5 2999.5 853.3 1488.8 511.9 3617.8 966.0 2341.3 1818.7 2972.4 1802.4 2644.5 656.5 2631.2 1572.0 2257.9 1737.7 3019.6 2359.3 3516.9 591.1 996.6 1285.9 3692.8 334.2 1046.4 858.0 1830.1 532.3 4051.8 1647.3 2162.4 1986.0 3601.5 2115.9 2649.9 821.0 1730.1 1603.2 2376.6 1522.6 2637.2 1842.4 3250.5 535.4 1340.2 1925.7 2797.5 352.4 2129.9 1950.9 2970.1 363.4 1378.8 960.4 1951.7 1949.9 2886.3 1367.5 1876.9 1476.0 2477.3 2120.4 2631.0 660.4 1440.7 1495.5 2089.6 1229.6 2315.3 936.3 1454.3 1370.3 3176.7 810.9 1308.5 761.9 3843.1 978.5 1756.8 1265.3 3054.5 984.3 2116.0 628.1 2782.7 1 1 113 628 523.9 689.1 583.6 6322.2 729.6 963.3 3696.9 3947.5 564.7 374.3 215.5 3890.8 3239.2 3085.1 250.3 601.7 3248.7 3295.5 146.3 499.8 749.1 3324.6 228.2 759.0 2486.8 3516.5 610.9 1089.8 852.9 1846.0 294.1 3677.0 2852.9 2964.8 277.3 948.0 1003.3 1298.8 2447.6 3045.2 2445.3 2650.8 356.4 985.4 1404.2 2933.7 302.8 1082.8 2078.4 3147.0 428.9 1154.5 975.2 1166.5 2426.7 3520.3 2003.7 2384.7 703.3 1234.8 568.9 1301.7 2195.9 2978.4 781.4 1039.6 634.4 3135.4 668.9 1693.1 576.2 3894.1 1030.4 1525.4 1353.3 2631.1 1946.2 2453.9 266.7 1142.5 2393.2 2867.1 290.6 923.1 2038.6 2945.5 463.7 1112.7 1165.4 1729.3 1402.4 2685.3 879.7 1392.1 705.7 2646.7 981.8 1548.5 446.1 2820.1 1909.9 2544.8 496.9 1445.5 816.3 1605.5 1560.2 2853.7 1413.9 2427.6 542.8 1533.0 985.4 1603.6 1247.7 2624.0 821.5 1364.4 553.4 2705.9 773.3 2471.8 425.9 1967.8 829.1 1315.1 502.5 3339.4 723.1 1551.2 1380.4 3249.3 907.3 2217.4 573.3 1734.3 688.0 1681.5 460.8 2572.6 1542.0 2180.6 211.9 1748.9 1 1 121 143 106.2 -266.9 105.1 5236.3 2473.3 2731.4 83.2 -166.5 2596.0 2314.1 29.0 -86.2 500.0 2519.6 24.1 -207.7 2344.3 2379.0 53.8 -111.6 220.7 222.3 202.9 4704.9 117.4 -163.5 201.8 4859.2 247.6 -12.0 3292.0 4515.6 62.4 -27.2 280.2 3114.1 97.5 -11.0 2758.8 3916.7 122.1 -77.5 340.3 3244.2 2170.5 2144.3 174.7 987.3 165.1 316.2 200.9 4534.9 512.5 2517.6 138.9 675.8 553.9 2859.8 32.7 603.8 336.6 733.6 43.5 3480.9 1863.9 1884.1 111.1 817.0 410.0 455.6 429.4 3773.6 303.0 539.9 1990.3 3071.4 471.5 2066.2 371.0 955.1 623.6 2329.9 238.5 605.1 1377.1 2007.9 154.4 770.1 520.2 740.8 249.0 3905.3 278.0 573.6 243.0 3984.8 275.2 538.0 423.7 4108.2 380.2 679.2 1803.9 3275.0 532.3 2008.1 496.6 1460.6 469.1 1933.8 279.9 1411.3 195.2 628.0 443.5 3702.0 289.7 557.5 1850.6 3410.1 320.4 661.9 2033.9 3645.0 1176.9 1288.9 826.7 1738.5 458.6 657.4 1736.1 3194.4 335.2 466.7 853.7 2860.0 198.7 306.3 1810.0 3467.3 279.3 542.0 2074.1 3297.2 1 1 101 353 568.2 500.1 744.5 6473.6 334.6 471.4 4617.9 4213.5 2660.1 3178.4 218.8 568.7 189.1 288.0 3327.9 4219.7 -8.6 394.3 421.1 4145.3 250.8 399.5 487.6 5786.1 341.4 471.8 675.2 5399.1 694.0 847.7 345.9 5242.1 691.6 878.4 342.2 4654.3 994.2 3383.8 517.6 725.6 454.5 732.6 524.1 5493.0 829.0 3489.5 562.3 1197.3 344.2 897.1 298.9 5316.0 366.9 541.8 76.3 5006.5 2629.7 2773.9 401.4 1183.6 445.9 610.1 2623.7 4276.3 2185.9 2458.8 431.3 945.8 2383.6 2853.6 324.5 1033.5 2277.6 2370.7 282.3 1215.1 496.4 791.1 530.6 4804.0 451.3 1091.2 2297.1 3765.8 719.0 2886.4 481.7 1468.0 256.6 586.0 642.2 4834.7 173.5 481.8 400.5 5511.5 337.3 903.4 257.3 5298.1 735.1 2660.8 202.1 1685.2 1779.5 2288.1 235.0 1752.8 445.0 827.4 273.7 4215.3 192.7 448.4 523.0 5199.6 153.2 543.9 2181.4 4482.3 191.4 572.1 676.8 3804.7 281.2 588.7 1861.2 4217.0 231.0 664.6 658.7 4589.5 566.7 2570.3 507.4 2345.0 782.6 2806.0 364.9 1696.1 1136.0 2693.9 225.5 1506.4 1 1 122 581 3502.6 3540.0 4835.6 4747.0 1388.7 5549.8 2709.4 2914.1 1050.1 2868.4 111.7 5607.9 4612.1 4138.4 212.7 3889.5 763.1 1040.0 2797.5 5837.2 721.8 715.7 3130.6 5005.5 880.4 3337.2 404.0 4199.4 752.1 1306.2 2315.9 5332.4 664.6 3581.3 3137.9 4478.8 964.1 3253.1 508.6 4147.3 2431.3 3656.8 2800.6 4308.3 1604.5 5431.2 342.2 897.2 1451.7 5160.7 316.0 961.8 3837.3 4904.6 396.9 1229.8 748.2 1256.4 1631.9 5438.2 713.0 3171.9 469.5 5038.3 1272.0 3671.4 292.5 2389.6 2680.7 3985.2 2532.4 2547.3 2893.3 3729.4 666.1 1804.0 2235.7 4363.8 422.4 1178.6 2646.1 3755.1 452.9 2803.3 2637.7 4236.1 611.3 1304.4 1257.4 3457.2 2231.3 3330.9 2822.5 2885.2 2010.7 2610.6 2902.4 3966.5 741.7 2536.8 1223.0 1734.3 1348.1 4320.9 2582.1 4234.4 379.5 1227.0 2602.7 4011.4 680.4 1368.6 2705.4 3919.3 1059.1 1882.7 1739.8 4090.2 372.0 1386.1 2057.3 3246.7 1394.5 2567.5 1129.7 1882.2 438.5 3979.8 868.1 1765.8 1983.6 3781.0 862.0 2533.0 634.6 2970.2 959.4 3089.5 553.8 3107.6 847.6 1736.7 794.2 4298.3 1 1 97 502 297.6 446.5 317.2 4728.6 450.5 591.7 3076.2 3079.7 508.4 554.4 2281.6 2326.6 502.6 681.3 2120.3 2467.3 2064.1 2294.9 138.8 399.8 547.0 770.3 197.3 1941.1 414.8 863.3 125.5 2189.9 690.8 935.3 1870.0 2307.5 592.1 911.8 1964.7 2431.2 627.1 799.4 305.0 2478.4 461.9 635.1 214.5 3576.3 528.5 708.6 326.3 3309.0 495.2 679.0 1504.3 2324.7 559.8 757.2 1588.7 2434.1 494.5 932.5 1442.3 2204.9 487.9 818.6 1575.1 2310.5 564.3 808.9 359.8 2111.1 792.8 2225.2 264.7 933.9 1626.1 1997.7 327.4 798.8 721.8 989.8 1279.8 1978.7 894.6 2105.7 506.1 961.9 588.3 1162.3 231.3 2232.1 943.1 2133.0 147.5 857.1 1600.3 2059.1 170.7 827.3 684.0 1190.5 334.5 2206.7 595.5 886.2 1355.8 2636.5 486.8 1029.0 483.2 2049.8 484.3 968.0 1142.0 2268.7 686.4 1786.2 432.2 1144.1 531.2 1055.7 236.4 2350.6 413.0 975.4 226.8 2540.7 776.2 1765.8 198.8 1195.5 1226.4 1913.4 288.7 1056.3 640.0 1087.1 1003.1 1851.5 539.7 957.6 823.8 1697.5 570.0 849.5 313.4 1703.4 1 1 95 455 1490.9 1481.2 5216.9 4800.6 1577.0 5957.9 269.4 1161.0 479.9 661.2 278.9 7397.9 550.9 1280.8 3786.7 5578.8 812.6 1458.4 489.1 3989.6 799.7 1075.7 3208.4 3918.2 529.5 934.4 3429.9 4130.5 1172.9 4089.4 1180.3 1433.3 1491.5 4405.0 761.1 1008.2 3807.3 4162.9 448.1 735.8 3270.6 4224.1 356.5 608.1 1520.4 4693.8 200.8 657.0 2822.2 3886.7 160.8 1298.4 988.3 1652.7 168.0 4366.9 626.1 1387.2 189.8 4434.0 965.6 3289.4 184.4 1913.2 2159.5 2922.0 167.0 2132.5 724.3 1122.3 128.1 4679.7 735.1 993.7 242.8 5081.0 848.5 1138.3 328.9 4031.1 688.3 1173.3 1973.4 4289.9 585.9 1195.4 691.2 3967.0 1062.2 2736.3 668.7 2142.5 1984.1 2593.2 873.2 2151.5 764.1 1195.1 1121.2 4573.9 563.2 749.3 2395.3 4688.3 921.7 1197.7 1788.8 3072.3 1943.9 2368.2 681.5 1996.2 2113.5 2740.9 650.7 1624.2 1053.6 2502.9 801.0 1857.7 831.5 2506.0 662.3 2441.5 658.9 1284.5 939.2 4419.5 604.1 1121.9 2086.0 4139.9 1547.9 2407.2 1097.1 2195.2 1064.8 2824.2 600.7 1721.8 1864.8 2859.1 518.1 1692.9 1 1 100 681 1608.4 625.9 334.3 6182.9 931.7 1595.5 4458.2 4850.5 3377.1 3508.5 589.6 4644.1 3954.4 5120.8 402.0 860.0 3588.5 4257.7 2250.5 2727.5 1245.7 3871.0 1182.1 1694.2 3134.8 5135.6 394.7 1094.2 1252.6 3448.1 3871.3 4436.9 3547.8 4513.1 718.6 1277.5 1100.9 2569.9 3258.4 3888.2 966.8 1480.4 4025.4 4708.6 1237.7 3970.6 780.3 2490.7 2849.2 3532.2 863.3 2569.9 970.2 1399.8 3219.6 5768.8 2648.3 4567.3 917.9 1601.5 3480.9 4630.0 656.1 1467.6 2571.3 3679.2 1459.2 3485.6 1326.5 4413.6 794.0 1605.1 763.7 1588.6 2731.0 4806.7 1896.6 2767.5 2221.9 3334.4 1038.7 2797.5 2602.2 3223.6 1186.5 2982.4 914.9 3971.7 1994.7 3025.9 1880.3 3602.7 1135.1 2916.7 898.4 3850.6 1180.7 3970.4 753.9 1966.7 1593.2 3190.5 2586.7 3314.4 892.7 1584.3 3124.3 4208.9 931.3 2380.7 2301.3 3399.7 1452.7 3229.1 1048.8 2079.7 1598.9 2728.5 2243.6 3434.3 1139.8 2236.9 2187.7 3734.1 648.8 2115.7 1200.5 3302.0 1042.8 2705.1 1555.5 3305.9 979.8 3178.4 991.4 2434.2 744.0 2724.5 760.2 3502.9 1387.9 1785.3 1994.5 4079.1 1 1 122 300 3208.8 3559.3 174.9 6350.9 4329.9 5172.7 1319.5 1703.5 2620.3 3387.6 2876.0 3695.9 874.9 3203.4 217.9 3969.3 2786.6 3153.0 296.5 4402.5 893.0 3235.5 2782.1 4550.9 932.7 2741.7 965.3 4741.7 2235.2 2735.7 404.8 4733.1 732.0 1124.2 2622.0 5366.7 622.2 1160.4 3189.8 5640.3 1020.9 1768.2 2096.7 5520.5 1289.1 3478.0 630.1 2843.7 1218.1 3379.9 2574.9 4077.9 2121.0 2644.9 2491.0 3898.0 872.0 2687.4 1140.8 4737.8 2464.8 3109.9 651.7 4009.1 2235.4 3177.3 2144.0 4007.7 982.0 2049.3 1091.9 5460.3 2846.0 3675.9 814.8 1889.3 1226.3 2781.5 2472.7 3935.2 996.7 2041.3 2096.2 5119.4 1217.3 3072.0 1986.1 4087.7 1656.0 3034.1 984.7 3398.7 1365.3 2944.1 1995.5 3270.1 1539.6 3082.3 2090.1 3443.2 1357.3 3043.9 2404.7 3958.6 1868.9 4048.6 767.3 2019.8 2453.2 4004.5 842.2 2279.1 2328.7 3322.7 1773.7 3192.9 1977.6 2993.1 1783.4 3240.2 1212.4 3033.3 1076.4 3294.9 1662.3 2969.4 545.4 3565.8 1457.8 2506.6 709.3 4310.8 843.5 1678.2 1564.2 4583.5 743.1 1576.9 521.0 5084.5 923.8 1696.3 606.5 5238.8 1 1 103 604 814.5 1457.6 5079.5 4662.9 3625.0 4019.7 1967.9 2916.2 1323.4 1482.0 3160.0 4835.9 1651.3 1927.5 263.4 5235.1 2333.4 5280.3 196.8 530.0 624.6 996.1 3700.5 4352.9 1284.6 1707.8 1578.4 4602.7 1818.1 1882.8 2651.1 3122.7 984.5 2181.8 2504.7 3359.0 3132.6 3905.8 1217.6 1730.6 706.2 1402.4 1113.1 4794.0 1190.7 3697.7 900.6 2094.6 2192.4 4414.8 262.0 1600.3 2833.7 4116.6 465.1 1035.8 1085.5 2789.6 1842.6 2908.6 1029.9 3006.5 534.1 3025.7 1772.0 2389.2 478.7 3958.6 2087.8 3138.8 377.5 2238.1 918.4 1506.8 1239.6 4077.2 1095.6 1801.2 2219.9 3534.0 1349.1 3693.0 788.5 1334.3 2149.7 3165.4 1353.7 2064.2 1454.6 2130.3 1978.7 2714.7 1033.0 1830.1 2215.6 3178.4 1796.4 2582.3 1319.9 2084.4 1043.9 2017.1 1807.9 2485.6 1226.0 2154.9 1825.8 3159.1 1505.1 3081.0 750.8 2115.6 1641.9 2568.1 482.8 3303.1 1117.2 3334.9 780.7 2178.8 1714.5 2788.3 796.5 1887.1 1347.0 3095.8 581.8 1600.6 1961.8 3166.1 651.6 1666.0 1544.1 2233.5 1300.0 2014.9 1400.0 2996.6 624.6 1467.9 2117.2 3260.3 646.7 1496.8 1 1 121 544 1079.6 5437.8 327.6 578.8 1841.4 6655.0 676.5 925.2 1333.9 6129.1 77.3 659.1 682.0 1153.5 152.0 5557.9 4756.2 5410.9 214.0 815.3 936.0 5875.5 222.3 743.9 741.5 1573.7 422.7 5756.8 911.4 1804.0 3988.7 4741.7 1385.5 5583.3 580.8 927.5 3256.0 5344.8 624.9 1556.3 784.3 1518.5 4189.1 5163.1 864.0 1610.9 3972.9 4796.0 3664.4 4346.7 782.3 1264.0 3737.9 4772.6 812.2 1402.8 959.5 1572.9 2983.2 4004.3 772.4 1219.1 3160.0 3757.6 2997.5 3953.9 935.1 1546.8 1056.0 1906.5 3295.9 4109.8 1273.3 4481.9 1038.2 1834.4 860.7 1886.7 859.7 4674.9 793.9 1690.9 3057.5 4292.6 1346.5 3880.7 1045.8 1812.4 3065.4 4622.8 897.3 1414.8 1286.5 2141.7 3023.6 3613.8 1292.5 3814.4 1210.2 2136.9 940.3 2038.2 770.6 4067.6 1278.0 3746.5 721.4 2281.2 2289.8 3746.2 588.9 1721.9 1137.4 1960.8 601.2 4692.1 878.8 1528.3 579.1 4773.2 2275.7 3023.0 535.9 2425.3 1164.2 1759.4 501.9 4070.3 770.1 1715.0 545.3 4351.7 1244.4 3384.8 556.8 2415.9 2027.0 2975.8 793.6 1897.4 1138.1 2109.4 1952.7 3686.0 1 1 105 377 361.2 163.9 323.7 7212.5 772.5 561.2 4610.3 4927.1 550.6 1041.1 176.5 4437.1 1159.1 4174.2 444.2 606.3 3582.3 4069.1 346.5 485.3 1079.2 4397.9 201.9 518.1 993.6 4047.8 192.0 683.0 3186.2 4281.8 225.5 697.4 998.2 3820.0 200.8 660.1 485.3 1065.2 430.3 6260.9 447.7 863.1 3634.5 5569.2 519.2 983.5 535.5 4697.5 465.6 926.8 2891.3 4609.6 536.5 1100.9 427.7 3684.3 1197.7 3966.0 328.6 1048.5 2815.6 3671.8 259.3 747.1 2536.2 3280.3 536.3 879.0 916.2 1415.9 2176.5 2939.4 2123.4 2672.2 611.6 1241.9 742.2 1364.3 2019.2 3109.7 838.7 3144.3 570.0 1252.5 642.0 1129.8 539.0 4181.3 552.3 1151.9 2260.0 4095.0 559.6 1181.1 679.0 4333.8 562.1 1137.2 642.0 5245.3 642.8 1098.5 1785.8 3924.4 760.8 1286.5 564.4 2952.9 1825.2 2742.3 376.2 1454.0 944.7 2589.2 357.3 1506.1 676.1 1471.2 521.2 3553.4 550.4 1229.9 1664.7 3382.1 719.1 1280.2 658.2 3014.9 1757.4 2330.0 402.9 1626.7 1198.0 2986.3 486.3 1523.6 1504.0 2561.9 567.6 1618.4 884.7 1401.4 1645.1 3561.9 1 1 109 610 1421.7 5411.6 -89.8 15.5 5880.6 5713.8 25.7 97.6 5262.1 6409.2 247.6 283.4 743.0 1066.2 3799.2 4388.4 4129.2 5000.0 22.4 457.3 4113.4 4633.0 84.9 491.9 694.0 959.9 251.2 5700.0 1371.9 5315.4 384.7 666.3 3477.6 4238.6 205.0 827.7 3239.3 4419.3 173.6 626.3 3192.2 4253.8 359.4 617.7 1072.9 4144.9 634.9 966.8 630.8 1149.4 3361.2 3929.7 2552.4 3102.0 473.8 1218.3 3102.4 3704.7 218.2 974.9 1110.3 1412.5 313.9 4290.8 3034.9 3576.1 443.3 1031.0 1081.4 1607.3 2448.5 2914.5 2616.7 3499.7 515.6 1089.7 752.0 1457.3 468.0 3861.4 724.1 1416.0 2327.7 3234.8 979.7 3367.9 598.7 1536.4 711.0 1686.0 502.9 3820.0 2401.1 3197.2 736.5 1582.4 2447.6 3134.2 668.6 1388.7 936.2 1664.6 2003.8 2668.3 1302.1 3332.9 836.6 1430.4 2373.1 3425.5 559.0 1021.2 2328.4 3255.3 765.2 1336.5 1010.6 1667.1 1808.9 2576.3 1657.8 2344.9 832.2 1511.2 755.0 1654.9 1626.5 2687.9 769.2 2673.9 727.4 1933.9 618.7 1607.0 550.7 2981.6 659.5 2265.3 409.6 2137.9 763.6 1816.9 338.5 3245.8 1 1 96 412 1973.7 2107.3 222.6 7167.6 3198.8 4111.7 190.8 332.8 583.4 896.7 2351.7 2563.9 912.0 2904.7 328.1 2260.7 1945.6 2474.2 435.2 2218.2 587.5 1886.6 224.8 1988.3 1822.2 1998.8 1473.6 1922.8 2076.9 2683.5 277.7 585.7 1012.4 3220.7 234.5 596.7 2186.9 2974.1 279.3 898.3 639.6 1105.7 365.3 4518.2 1032.1 2428.9 381.6 3478.9 2351.6 2520.7 250.9 834.3 1745.9 2886.3 284.5 909.1 1834.8 2753.0 232.2 700.4 670.1 1913.8 200.9 2045.5 1368.0 2236.4 195.8 557.4 1407.6 2496.4 212.4 667.5 997.2 2721.5 111.5 649.0 505.0 1232.4 219.0 1549.1 749.4 1994.5 835.2 1563.7 1245.8 2089.3 150.1 1711.8 760.7 1353.6 315.2 1950.8 1301.1 2157.0 227.7 1035.2 1292.5 2116.6 226.5 748.3 790.1 1312.9 210.2 2447.3 717.6 1103.7 427.7 2175.5 1112.6 1643.9 744.9 1849.3 895.1 1265.2 255.6 1844.8 1148.6 1926.9 175.4 1157.7 651.0 1891.7 272.5 2106.9 839.7 1342.2 893.5 2234.2 1059.6 1532.6 406.5 1885.6 898.5 2026.5 1012.8 2237.9 1130.2 1662.3 450.3 2044.2 685.0 1240.8 378.9 2437.3 1 1 88 444 5795.3 6820.8 101.4 447.7 3423.1 3819.4 302.8 6036.6 3376.8 3643.2 247.8 6959.4 4962.2 5679.8 233.8 354.3 1369.5 2679.6 238.7 5087.9 2582.3 5538.1 92.3 638.7 1195.3 4226.6 334.7 1753.0 4197.8 5305.4 274.6 791.7 4460.4 5312.6 356.3 837.8 2393.2 3050.9 3409.9 4313.1 1996.1 2556.4 357.4 4090.2 884.0 3000.9 2833.2 3853.5 3435.1 4342.3 343.9 939.0 3570.9 4739.5 282.5 887.5 2336.2 4897.0 225.6 674.8 3144.0 4120.1 368.8 859.3 3367.4 4222.0 310.6 656.4 3294.7 3675.3 451.4 843.6 965.3 1430.2 2202.2 3863.3 923.3 2262.8 469.0 3011.8 1671.4 2115.1 506.9 3591.5 1650.2 2242.1 1809.2 2665.0 2415.5 3217.3 340.0 2433.9 1431.9 3946.7 1036.1 1959.4 2712.9 3594.6 290.7 1424.9 1494.4 2458.5 328.8 3569.6 1725.9 3440.2 364.6 1417.2 2156.5 2657.4 236.6 2440.0 826.7 1427.5 990.3 3920.1 1390.3 3375.0 292.2 1663.6 2042.1 2505.2 439.4 3087.6 625.6 1423.8 1926.6 4548.3 971.8 1341.0 482.0 3810.0 2035.2 2828.8 277.2 3062.1 1286.6 3009.1 317.9 2923.0 1630.8 3792.8 305.3 710.8 1 1 123 424 1530.5 6806.9 97.0 764.1 805.9 1252.3 288.0 9864.2 579.7 986.2 5643.9 6668.7 3997.0 5078.6 369.8 827.5 591.2 970.9 4590.4 4787.2 3958.2 4683.3 352.1 687.9 759.8 1234.1 3750.4 4583.7 775.2 1118.1 4649.8 5287.7 3406.3 4356.0 628.0 1127.0 954.8 1402.7 4377.9 5414.8 3519.8 4568.4 786.0 1268.5 1654.4 5496.4 581.8 1225.5 4228.9 5315.3 402.4 843.5 1518.6 4313.6 1708.9 2328.0 1587.0 6133.4 478.7 1011.1 1615.4 5324.8 452.5 828.6 3654.3 4818.9 577.9 948.2 3753.1 4904.1 531.0 998.1 1331.7 2137.6 2948.3 3353.6 2984.4 3737.2 753.4 1023.4 1261.6 2155.7 2620.2 3379.7 1478.1 4429.5 773.4 1295.3 1209.5 2437.2 626.1 4318.0 3347.4 4649.9 681.0 1377.6 1813.9 4647.3 688.3 1365.7 1139.6 2660.0 2917.3 3411.2 2563.0 3750.3 713.2 1328.5 1627.4 4158.6 483.3 1388.8 1097.6 1925.4 501.1 4043.7 1107.9 1968.8 525.5 4355.2 2356.2 3642.7 569.2 2267.9 1196.7 2066.1 2343.9 3569.1 970.6 1827.3 977.6 3959.9 920.1 1601.8 2592.6 4685.4 1059.6 1730.9 936.4 4383.0 2529.8 3785.5 654.2 2097.4 1 1 98 361 346.3 22.7 5654.5 5119.6 110.6 -26.1 318.5 4002.4 302.0 146.9 3866.7 4183.6 155.4 124.8 3285.5 3745.4 229.8 281.6 3014.6 3574.4 664.2 3265.5 280.4 338.0 2144.5 2152.1 382.2 516.8 364.6 376.6 3226.0 3492.6 434.9 438.7 2668.0 3411.7 1694.4 2010.0 645.1 760.7 380.3 570.4 3042.6 3601.5 238.8 224.0 584.8 3831.8 296.9 456.4 380.4 5025.8 263.4 326.3 305.2 5227.1 295.8 500.6 514.7 4463.9 273.8 278.2 2350.5 3439.8 177.0 259.3 643.0 3119.9 242.7 292.9 2443.1 3510.7 313.1 455.0 2396.3 3530.3 295.9 636.9 2163.6 3203.4 336.2 651.4 685.8 2393.6 432.0 684.7 1910.2 3152.9 1285.1 1409.4 750.1 1679.4 581.5 786.7 777.6 3702.5 313.1 503.3 2212.0 3690.5 309.2 380.4 2094.7 3465.4 326.1 414.6 1969.5 3069.4 361.2 543.7 654.2 2716.2 293.0 783.0 497.1 2958.2 615.8 2054.6 361.4 1266.0 651.8 1882.8 275.2 1303.8 535.3 1160.9 552.3 2558.6 602.2 928.0 1403.2 2813.9 1202.2 1844.4 700.0 1455.9 495.0 905.4 1186.4 2469.4 488.9 1112.8 474.6 2495.4 1 1 119 458 399.7 -27.3 336.6 7116.0 1351.5 5681.5 127.2 53.4 1191.1 4763.3 585.4 749.2 378.9 415.9 296.1 6587.8 58.8 517.7 336.3 6164.5 488.8 731.2 3861.7 4632.5 1113.3 4308.4 277.2 380.7 3018.5 4389.9 254.0 456.7 634.8 751.5 319.7 6415.3 3183.0 3584.4 434.6 974.0 483.2 694.5 4040.8 5022.0 466.2 645.6 3384.7 4724.3 325.2 557.3 627.7 3526.0 418.9 825.5 2512.8 3986.4 386.3 685.2 505.5 3642.3 500.0 639.4 523.2 4858.8 402.4 844.6 2690.5 4281.1 477.3 872.2 2745.5 3968.0 1178.7 3663.4 587.8 1311.9 2281.6 2949.3 550.6 1115.6 803.4 1386.0 2411.8 3607.6 1026.6 3350.6 674.0 1455.3 855.2 3383.1 776.3 1284.8 772.5 1729.3 2161.4 3049.2 1758.5 2122.1 1137.3 1896.9 791.2 1434.2 2548.9 3353.9 726.8 1177.5 2303.8 3056.0 1577.3 2039.3 1165.7 1841.6 1019.9 1408.2 2069.8 2755.7 1588.6 2291.4 723.3 1311.4 1773.5 2558.7 540.1 1720.5 930.1 1538.8 730.1 3343.7 682.9 1173.4 1850.5 3655.0 513.6 878.2 1292.2 3770.3 559.8 1014.7 1885.5 3504.7 870.2 1168.3 1793.3 2761.4 1 1 121 629 420.7 588.9 4841.6 4484.2 1455.0 5226.4 231.1 -16.5 4153.6 5070.9 44.1 327.7 523.3 760.5 3254.7 3597.4 3356.4 3658.3 7.0 360.2 618.8 1008.5 163.5 3833.4 2876.7 4032.1 334.1 621.5 692.9 764.2 317.4 4327.3 753.0 1072.1 245.4 4706.8 3314.8 3934.2 244.1 944.7 1220.5 3785.6 194.7 789.1 914.8 1259.6 371.9 4800.4 630.7 900.0 386.6 4825.8 886.1 918.9 2794.6 4708.4 2739.1 3236.3 440.1 1034.3 3023.4 3699.5 281.9 697.1 1056.7 3473.3 362.1 1133.8 714.2 1286.1 397.6 4848.6 1201.1 3623.4 356.5 1364.5 775.4 1227.2 363.2 4238.5 2607.9 3130.3 359.2 1200.6 852.0 1423.2 2015.2 3365.3 1080.7 3321.0 500.3 1356.2 612.7 1484.0 360.4 3992.3 1004.0 3782.4 267.5 1216.7 2290.8 2969.2 634.2 1475.3 966.2 1499.4 1992.4 3282.8 1855.7 3094.8 466.4 1113.5 1134.1 3369.2 351.1 1207.8 1906.5 2898.2 330.9 1684.1 783.6 1374.6 292.1 4377.3 525.8 1194.6 285.8 4608.4 686.3 1327.0 325.7 4768.9 1928.3 2692.1 304.5 1611.1 818.8 1344.4 304.1 3711.5 925.6 1461.3 1752.2 3649.4 1 1 112 446 58.6 1858.9 5084.3 5048.5 3437.0 4031.2 175.6 223.1 218.7 213.9 646.7 5323.1 651.9 4028.6 -71.8 192.1 536.5 3663.5 74.9 363.8 853.2 3943.1 63.9 250.5 283.6 664.8 3270.3 3060.2 341.5 422.9 394.4 3443.9 152.4 339.7 3505.0 4159.6 34.3 308.7 3169.1 3868.6 250.9 309.0 3233.1 3766.5 311.9 584.8 3076.6 3662.7 2196.1 2321.1 448.3 851.1 369.3 627.4 2109.0 2832.4 237.1 361.7 412.7 2796.2 614.7 3218.7 233.3 315.4 761.7 2913.7 230.4 266.6 668.5 3094.8 303.3 397.1 381.7 766.7 2039.0 2594.9 197.8 411.3 563.1 2549.5 246.5 571.0 1947.6 2803.7 159.9 585.8 631.0 2479.8 228.6 893.1 2189.8 2718.8 378.9 587.3 2031.9 2772.6 193.9 548.3 2330.1 2942.2 643.0 2220.4 621.6 659.6 593.9 2722.0 275.7 338.7 464.0 2355.1 271.8 755.7 392.7 871.8 279.3 2313.0 186.6 528.3 335.4 2719.7 197.5 558.7 1484.3 2652.5 438.0 1732.4 608.1 1105.0 302.1 855.0 1770.6 2480.5 164.6 571.4 2186.1 2851.9 221.1 538.6 1868.2 2687.2 273.7 443.4 676.0 2097.4 1 1 112 379 6156.0 6747.4 995.6 1156.2 4374.7 5306.3 527.0 4970.1 638.6 796.2 2837.9 9091.6 719.5 904.8 4424.8 5684.4 4027.6 4373.7 360.7 2964.9 1178.5 2820.9 321.2 5664.7 3619.6 4377.6 333.8 2570.0 2381.1 6130.5 295.4 810.2 2313.2 5742.3 472.2 1007.1 4026.1 5468.9 535.6 1162.3 3907.6 5186.8 430.1 1370.0 1328.3 2948.7 741.6 6912.8 3729.0 4559.1 1462.5 2529.3 1675.6 2387.4 616.2 5724.1 1062.6 1788.9 2951.7 4395.2 1615.0 4608.8 549.8 1459.7 949.2 1795.1 475.4 5167.6 1068.3 2450.6 533.7 4893.3 965.9 1872.8 2545.7 4490.8 1673.0 4221.5 647.3 1529.7 1434.3 4766.7 507.0 2182.9 1439.7 4438.9 383.2 2465.5 953.0 2202.5 454.7 5591.2 875.7 1844.4 1197.6 6456.9 921.6 2396.0 3228.2 5765.7 1370.3 2259.5 2534.9 4716.8 985.0 2462.8 827.1 3723.8 1514.7 3925.9 496.1 1940.8 2388.5 3921.5 878.7 1963.6 1087.4 1801.2 2281.4 4347.5 900.2 1628.5 819.1 4589.8 987.2 2113.7 1030.1 4708.4 1468.9 3793.3 552.2 3013.7 2395.7 4018.1 552.4 3167.3 1257.7 2173.6 633.3 5158.0 1451.7 3444.9 671.4 3641.0 1 1 113 631 358.3 349.9 4813.4 3928.6 169.3 146.3 3989.5 3650.4 1018.8 4929.7 407.2 225.8 3543.0 3942.1 202.1 507.9 72.2 341.9 246.0 5370.3 3464.9 4010.7 385.1 774.5 224.0 475.1 3916.9 4298.5 1031.1 4168.7 388.8 550.4 840.2 3964.7 253.6 641.0 475.7 924.7 299.6 4815.5 834.9 3682.6 170.4 588.6 1177.2 3872.5 395.0 745.0 2839.3 3680.0 315.0 507.3 3238.6 3635.9 114.4 488.2 1152.5 3637.4 218.8 440.1 2663.1 3506.1 200.3 273.9 1013.7 3709.7 261.7 307.1 2367.2 3325.7 324.8 359.5 728.5 1206.5 2498.5 2919.4 420.6 722.8 2603.1 3005.9 474.9 695.9 2560.4 2873.6 1668.2 2211.5 746.4 984.1 580.3 917.6 2812.4 2957.0 563.9 717.4 2557.8 2836.0 433.8 797.9 838.9 2329.2 359.4 483.2 624.6 3057.5 1884.9 1986.7 563.2 1372.4 476.2 729.9 1788.4 2342.6 444.6 739.0 1860.4 2892.0 741.7 2311.0 712.0 1327.9 1846.1 2379.9 433.0 996.3 940.8 2882.5 367.7 608.7 860.5 2904.5 216.7 805.0 802.8 2697.9 424.4 776.6 1299.1 2087.5 616.2 980.6 572.4 1108.7 1780.8 2388.6 1 1 118 565 -246.6 -270.1 5044.0 4489.8 -321.9 -594.0 4432.7 4287.6 704.2 3369.2 -31.2 38.5 -176.6 -261.3 163.4 5645.2 -113.3 -100.7 3540.6 3757.9 -38.7 -2.8 3257.8 3228.9 492.6 3191.0 320.8 512.8 -19.6 276.8 214.4 4638.7 662.3 3702.2 29.0 376.3 2688.9 3449.8 177.2 383.5 2672.3 2905.8 120.9 351.6 409.8 601.7 3080.3 3499.9 2533.9 2718.4 412.1 782.1 188.9 599.9 329.7 3968.5 812.7 3815.2 41.6 507.1 2488.9 3251.4 309.2 494.9 515.6 803.7 2515.1 2719.4 3651.2 3404.4 398.8 569.8 3135.2 3370.8 275.2 398.5 616.6 906.0 2259.5 2575.0 774.8 2921.2 461.1 740.0 584.6 3230.2 460.3 596.3 411.8 1085.2 2421.3 2510.1 563.0 2672.8 581.8 993.9 327.2 938.9 397.7 3134.2 481.3 2631.0 375.2 1001.9 196.9 763.7 561.0 3897.3 231.6 674.3 2633.7 3512.6 237.5 496.7 2407.5 3093.7 1304.2 1789.4 686.3 1082.8 679.4 2507.1 478.3 937.1 354.8 939.4 1747.6 2426.8 257.0 630.6 736.8 2996.0 159.2 435.6 506.2 3723.6 156.0 615.0 440.7 4177.0 147.8 577.0 1679.6 3036.5 1 1 89 533 860.7 1529.9 4965.6 4487.0 3599.0 3370.8 8.6 155.3 3195.4 3724.0 376.3 766.5 304.4 649.8 195.0 5335.5 454.3 699.3 273.1 5035.1 841.8 3916.3 170.5 811.7 2407.8 2927.9 487.8 836.9 2971.4 3336.0 412.1 794.2 2882.0 3360.7 176.0 315.3 1133.7 880.3 3581.6 4148.2 882.9 779.5 3000.9 3725.4 2594.3 2846.0 183.3 527.2 2821.1 3504.7 43.6 505.3 1129.2 1056.2 220.5 4547.7 936.7 3287.0 759.9 1501.6 2833.5 3130.1 94.3 604.8 993.6 1036.6 220.6 3774.3 902.5 3550.0 189.1 1302.4 2528.0 2690.9 163.4 2007.9 548.8 961.3 64.0 3653.2 1414.4 3009.1 331.0 994.5 547.2 1119.2 2296.7 3318.8 2026.6 2461.0 583.7 1344.3 2107.3 2620.1 504.6 1020.4 677.5 1482.2 2450.7 2973.2 420.6 1132.8 2691.8 3386.1 775.8 1553.5 2385.3 2829.4 1590.6 2309.6 785.5 1652.9 1991.1 2423.8 282.5 1140.2 712.0 1250.8 361.6 2993.1 669.4 2368.5 423.0 1336.8 566.5 1184.3 1623.7 2234.2 1439.4 2142.8 397.2 1069.5 1835.0 2207.4 257.4 1172.3 645.2 1189.4 484.4 3107.5 468.9 951.0 1622.4 2809.8 1 1 106 886 162.5 -74.8 4146.0 3798.2 2633.4 2339.9 208.2 82.6 219.7 42.9 3296.6 3367.1 2166.8 2294.6 121.8 117.6 2781.9 2865.6 -70.4 -9.7 2148.8 2159.4 841.1 910.3 635.4 2794.1 -158.0 -69.3 792.8 2884.8 -23.1 -66.5 498.3 2651.4 19.8 221.0 249.5 508.7 -20.2 3671.3 278.8 2296.4 87.4 483.2 200.7 465.1 67.3 3334.0 319.8 517.4 2502.3 2806.1 184.3 85.7 488.4 3008.7 -7.4 80.8 2621.1 3180.7 105.3 232.6 2322.7 2790.7 360.3 2035.8 293.9 845.8 1707.0 2234.8 147.5 558.2 816.1 2762.0 132.1 133.6 2073.1 2256.8 64.6 244.0 1867.8 1995.1 109.2 520.5 304.4 580.1 313.5 2738.8 342.9 732.0 2138.3 2389.6 620.4 1966.7 501.6 543.9 1541.2 2013.8 191.1 546.6 1465.0 1951.3 198.8 679.5 498.5 840.9 181.6 2900.4 473.9 807.7 123.1 2752.8 1552.8 1541.5 269.0 960.2 513.4 644.7 1387.7 1998.7 1267.5 1633.4 394.8 850.1 1423.6 1665.1 153.6 730.7 550.3 955.2 43.7 2177.7 421.8 1650.1 156.5 1084.8 491.1 1897.0 0.8 736.9 426.2 842.1 223.6 2176.4 1 1 109 291 234.1 362.8 4993.8 6090.8 1000.0 2683.1 3677.0 3245.6 846.2 2884.3 3464.2 3219.4 3143.8 3559.5 138.6 806.9 365.1 878.4 550.4 5506.6 941.8 1260.4 2080.2 5103.7 3319.4 3432.4 222.4 1389.4 1051.1 4022.9 209.6 2818.5 928.5 3736.1 169.0 2975.7 2685.0 4114.0 187.0 804.0 994.6 2536.7 2412.3 3520.6 545.5 920.3 446.1 3989.0 564.2 890.2 3238.7 4717.4 686.5 2032.8 361.3 3603.2 543.9 1137.4 2802.2 4472.4 2573.5 2977.3 1797.4 2874.4 2115.9 2795.1 636.3 2741.4 1666.9 1826.4 266.6 4356.5 1764.5 2308.0 409.4 4754.1 1338.7 3510.7 271.0 976.9 2755.9 3292.0 466.0 1081.6 1455.7 3472.0 367.5 1139.1 2156.3 2953.5 542.8 3099.8 1311.8 1859.3 2046.8 3373.3 1029.1 2736.3 1346.7 2512.3 2136.9 3036.1 811.6 2433.9 851.8 1516.6 1954.7 3372.2 1034.7 2726.6 1491.9 2211.1 1895.9 2658.9 860.5 1855.6 954.8 2127.7 1858.2 3054.8 1357.9 2592.9 827.5 1942.3 1471.5 2065.4 747.0 3377.5 1294.5 1998.7 1721.4 3178.3 1420.9 2649.7 750.2 1794.1 943.1 2667.8 582.5 1381.4 1450.4 2654.2 407.5 1367.8 1 1 93 629 444.7 461.6 305.6 5906.8 549.1 668.7 237.6 5818.3 1217.2 4842.2 20.9 229.9 423.1 616.8 199.0 6042.4 960.8 4503.9 194.0 618.0 3297.3 4072.1 183.6 320.6 508.1 795.3 267.7 5641.1 460.4 753.2 267.4 5887.9 513.6 566.7 356.8 6364.3 397.1 672.3 271.1 6480.9 440.5 859.0 219.7 5848.0 1197.1 4531.5 98.1 894.7 3109.4 3923.4 82.5 682.4 1031.9 3573.0 245.7 1151.3 564.4 1038.8 2985.5 4526.5 279.7 872.4 394.6 4461.3 441.9 905.3 358.6 5744.8 399.8 783.9 265.2 6087.8 332.5 717.5 273.8 6155.5 428.5 922.9 123.6 5826.7 537.9 968.6 304.9 5081.7 2139.5 2914.9 410.3 1875.1 462.9 873.6 2726.1 5311.7 479.8 807.2 707.6 4201.2 593.1 1032.1 2403.9 4312.6 1915.4 2429.1 427.1 1874.2 554.4 1155.4 301.3 4568.2 528.1 1029.5 239.3 4869.8 479.5 1203.1 292.6 4832.5 791.9 3018.8 514.1 2296.1 438.8 1146.3 2099.2 4536.3 554.3 1243.8 570.5 3989.8 956.4 3100.3 332.5 2130.8 1935.1 3057.5 250.2 1923.9 706.7 1305.3 243.8 4485.2 644.1 1033.3 229.1 5332.9 1 1 80 481 665.4 676.6 4947.0 4550.4 3563.2 4427.3 304.3 280.1 620.8 714.2 267.5 5163.4 1297.7 4000.5 255.7 539.2 633.5 845.4 3581.5 4123.7 650.6 999.7 2959.0 3236.0 2805.9 3372.8 327.2 679.0 3481.8 3810.3 331.8 520.2 837.9 1058.8 3203.9 3562.2 2859.4 3155.8 602.2 849.5 816.1 1104.5 3144.0 3670.7 996.2 3622.6 578.6 1011.5 660.2 1247.9 404.8 3904.7 1010.4 3461.1 408.5 1079.6 661.9 1297.9 2623.0 3266.9 617.8 1255.6 603.8 3117.5 2528.2 2853.6 391.5 1142.1 859.6 1148.5 451.4 3931.8 706.7 1220.8 2349.7 3489.8 934.3 3096.1 499.0 1011.9 961.9 3232.1 613.6 1142.8 680.3 1445.3 2323.8 3305.8 663.6 1169.1 564.0 2974.4 967.4 2646.5 340.2 1514.0 576.5 1350.4 275.1 3593.7 568.0 1361.4 361.4 4465.6 850.6 2705.5 323.4 1731.0 642.3 1424.2 492.1 3582.9 712.0 1390.5 1561.5 3059.5 801.0 2145.5 572.5 2231.0 528.7 1284.0 415.2 4419.3 622.5 1135.7 452.3 4717.3 1433.4 1845.2 1025.6 2973.1 1224.4 1758.6 1309.5 2671.2 1505.3 2352.1 549.3 1709.8 1364.9 1867.2 373.1 2388.5 1 1 109 568 4859.0 5207.6 310.0 597.2 2709.3 5966.8 19.3 141.7 4326.1 5306.6 255.1 317.5 3608.0 4638.2 275.9 433.3 3671.2 5139.5 35.9 187.2 3543.0 4865.0 155.5 341.7 655.8 381.3 3180.3 4546.6 945.9 2459.7 566.4 2551.6 811.9 1821.1 3308.2 3610.1 1508.4 1881.4 3297.1 3687.8 1046.7 3661.0 1466.6 1711.9 3061.7 4623.2 391.2 529.3 1148.4 2796.6 2506.3 3060.5 2428.8 3397.9 744.4 2542.8 1130.5 2445.5 2465.1 2828.9 1681.7 1951.2 2910.1 3264.7 1747.8 2398.3 1835.1 2453.0 1424.0 2101.4 664.8 3232.7 829.8 1156.7 2811.0 3750.7 1201.2 1631.2 2431.4 3275.7 1030.1 2771.1 1067.7 2355.7 1048.4 3550.2 694.7 1580.4 834.3 1961.9 1822.5 3657.2 532.5 1235.2 1558.3 4514.5 1025.3 1508.5 2053.0 3927.0 640.0 1242.1 1733.2 3780.6 508.8 935.8 956.5 5036.6 410.7 874.0 2239.7 4884.5 953.9 1828.0 2113.4 3693.8 607.3 1906.7 985.8 1375.2 904.7 2512.3 639.3 2508.6 1962.6 3184.3 493.3 1246.3 1391.4 2522.9 516.9 2675.7 1138.5 2496.3 1069.7 1808.5 1804.4 2672.3 562.1 1960.7 929.3 1747.2 1202.3 3313.2 1 1 113 482 440.5 508.3 4912.5 4108.0 3594.2 3698.8 194.3 251.2 229.6 180.3 201.4 5343.8 792.8 3717.9 241.7 483.6 197.4 215.0 3552.8 4110.6 485.8 385.0 3262.9 3600.7 2327.9 2661.7 243.3 409.1 3163.0 4332.1 89.6 114.9 738.8 686.9 2964.8 3604.2 2466.5 2543.5 507.9 873.1 659.6 1155.0 2520.1 3051.1 879.1 3720.7 443.0 875.2 418.2 885.4 412.9 4138.0 979.6 2964.9 383.1 934.5 508.2 984.6 2276.6 2921.4 598.0 1128.0 397.0 2915.8 2283.4 2688.8 259.2 941.1 530.9 1106.7 506.7 3888.8 622.2 1122.8 2519.6 3428.4 885.4 2890.2 486.2 1003.3 794.9 3244.0 586.6 1108.6 594.8 1366.7 2540.4 3341.4 531.9 1380.7 495.8 2841.2 820.7 2670.0 372.9 1483.2 646.3 1278.2 284.1 3688.5 534.0 1079.0 333.6 4402.0 745.8 2754.7 382.7 1637.6 677.9 1396.4 543.1 3298.6 546.4 1458.6 2014.3 3489.5 731.8 2500.9 553.1 1983.5 634.7 1359.5 433.6 3760.5 504.1 1251.9 568.2 4755.0 671.9 1146.7 1989.7 3968.9 1579.1 2436.6 578.8 1718.5 2057.1 2767.3 302.2 1092.0 2329.3 2587.6 261.3 1052.8 1 1 79 878 206.2 277.7 4090.0 3953.8 240.0 351.1 175.3 3835.4 690.7 2471.0 91.9 292.8 2076.9 2865.5 92.1 378.0 287.5 314.0 108.7 4098.7 298.0 383.0 142.1 4039.3 217.7 354.9 151.1 4253.2 310.4 407.1 122.9 4084.9 269.4 492.0 193.4 4320.4 658.3 2402.3 99.9 571.1 1774.0 2014.7 150.5 522.8 1757.0 2139.6 216.9 663.7 387.7 502.9 1934.6 2880.9 262.0 457.2 276.5 2657.7 564.2 2206.2 174.7 930.8 178.4 510.4 195.4 3472.9 230.5 627.6 203.5 2991.4 708.8 2292.0 145.2 814.1 1678.5 2067.0 125.4 599.8 1536.9 1929.6 221.8 683.0 384.1 703.6 1807.7 2768.0 248.2 548.2 452.5 2318.4 288.5 462.6 2025.1 3128.5 351.3 490.3 1955.2 2806.4 1073.1 1232.8 375.3 1145.2 352.3 587.2 472.9 2838.5 216.3 502.9 1929.6 3223.7 246.4 442.1 732.3 2851.1 230.4 499.8 375.1 2867.5 292.0 499.5 281.2 2740.1 372.3 1252.6 240.5 1960.6 300.5 762.1 283.5 2225.2 309.0 609.8 1098.8 2771.3 664.2 987.2 638.7 1970.1 412.7 689.8 352.4 2824.7 340.0 509.0 294.1 2973.7 1 1 98 479 310.4 1073.3 27.0 6840.5 252.0 574.0 298.2 6319.0 212.5 456.0 3668.0 3916.6 525.5 1294.0 88.2 -22.9 397.1 610.6 44.1 5048.6 952.1 4117.4 66.8 270.7 719.1 3487.4 158.2 423.7 218.9 254.5 332.3 5428.8 612.6 747.0 3377.8 3895.2 2209.5 2901.6 282.8 369.0 351.7 531.3 81.4 4971.7 706.5 25.0 27.2 4939.9 636.9 3971.5 106.9 1350.1 551.0 3536.0 155.3 782.1 176.1 709.8 -87.1 4111.0 218.5 464.1 208.4 4892.8 154.6 640.2 2360.2 3308.1 2243.4 3113.5 181.4 574.5 903.0 2284.3 64.4 230.6 938.7 3478.8 113.0 257.8 2536.5 3227.9 145.1 682.1 824.6 3219.4 -66.5 367.6 892.8 3699.8 83.2 283.7 764.5 3433.4 133.0 463.6 1020.9 3765.1 -42.1 293.5 1174.4 3629.3 171.1 436.8 2311.6 3455.1 123.5 531.2 904.4 3127.0 307.5 587.6 934.6 3313.1 32.6 447.9 618.7 3152.2 151.2 638.0 610.3 1051.5 143.9 467.7 1948.4 3035.8 241.4 288.6 1868.8 2885.6 114.5 662.1 998.0 2638.3 -9.1 592.9 1512.8 2268.1 190.3 675.1 663.3 2594.6 104.9 838.5 1 1 75 217 310.3 1509.8 665.9 4845.0 476.3 416.6 183.1 4486.6 600.4 2360.2 582.6 763.0 559.5 2620.4 3.2 577.2 1918.8 2043.6 1948.3 1892.3 887.1 998.0 235.1 5028.4 608.8 2075.0 372.0 747.9 2045.5 2382.0 1219.7 1694.6 376.7 591.7 233.6 2137.0 945.9 2477.2 295.4 627.7 1865.5 2191.8 1294.0 1375.5 389.3 775.9 861.3 3669.6 428.1 2669.2 358.1 673.9 1756.0 2490.5 212.7 571.3 1242.0 2535.2 224.7 918.6 614.3 2340.0 1008.7 1109.2 838.2 2253.4 415.8 1053.7 497.8 1376.0 218.1 4280.9 504.3 895.6 695.7 4542.6 301.4 760.1 2085.0 3453.7 344.2 694.3 987.8 3251.9 405.1 748.5 1011.7 3785.6 672.7 1019.9 519.4 3829.6 1501.5 2048.6 749.2 1534.7 430.6 777.5 1730.4 3360.9 311.8 806.7 1814.1 3158.1 723.8 1781.8 470.8 1490.5 640.5 1800.8 697.5 1277.2 248.1 633.4 500.5 4266.9 303.7 544.1 497.5 3933.1 263.8 592.7 1670.9 3418.5 561.7 1961.2 459.7 1251.7 644.5 1747.2 371.0 1242.5 471.8 1842.9 382.9 1473.1 531.2 722.6 353.0 1433.6 286.0 553.3 488.6 3959.1 1 1 100 525 2877.4 5147.7 258.9 -117.1 3058.5 6006.2 -283.4 -162.1 4855.2 4996.7 150.2 339.2 3861.3 4616.7 242.4 418.6 4096.8 4491.0 187.7 386.6 2503.1 4384.1 161.8 394.3 2241.8 2739.5 359.0 3906.4 707.5 3239.3 3252.7 3414.6 343.8 2564.1 3326.1 3671.6 2237.0 4340.8 433.4 790.4 288.9 874.2 333.7 5416.1 451.1 939.6 -46.2 4743.5 2125.3 4006.2 92.6 998.4 2154.7 4158.5 277.1 809.4 565.8 1574.9 2473.1 3097.8 843.6 3040.6 2240.9 3037.1 1048.8 4255.7 2181.3 2435.0 2443.5 3450.9 438.9 884.8 955.9 1723.1 2478.6 2897.9 1678.1 3358.4 690.8 965.5 2193.0 2990.3 405.9 859.6 2197.1 3244.1 475.8 735.8 1038.6 1356.8 2492.7 2962.3 1681.2 2767.3 1066.5 1083.6 962.8 1449.1 2151.3 2804.3 1882.0 2488.4 861.9 1107.8 2203.3 3007.2 497.3 1025.0 2066.5 2908.4 518.5 1080.2 1765.2 2452.9 2389.0 2805.9 1137.7 1929.8 2444.9 3080.6 1569.0 1975.8 1031.0 1826.7 916.2 1112.9 1939.5 2245.2 1651.0 2147.9 1169.1 1827.6 1397.9 1788.5 658.6 2793.5 1329.4 1840.2 1458.1 2580.4 1752.9 2395.1 1140.0 2174.5 1 1 113 326 342.6 291.2 -93.6 5959.8 311.4 513.3 -68.8 6125.5 847.4 3558.7 -158.7 169.5 246.6 440.0 -58.1 5769.4 35.0 201.6 287.9 7044.2 296.3 219.4 269.0 6289.9 277.5 569.7 189.4 5017.7 1012.6 4043.1 -19.1 232.0 972.6 3755.8 168.1 313.8 941.3 3405.4 24.3 532.6 406.2 833.1 -18.2 4801.9 846.0 3808.4 48.3 551.9 903.3 3845.1 195.7 668.1 824.5 3340.4 44.3 818.1 350.3 793.9 384.0 4196.0 124.2 826.8 3041.4 4716.0 899.6 3428.5 279.7 901.6 870.2 3282.1 198.3 821.0 755.5 3147.3 246.5 1167.2 486.4 876.9 262.1 4754.9 1836.1 2850.7 409.2 1460.7 554.2 1133.6 2568.7 3903.7 900.9 3057.4 540.0 1015.0 1090.9 3095.4 214.4 822.4 1809.0 2575.9 444.8 1128.4 534.4 996.4 2671.3 3836.0 450.1 964.7 2604.7 3480.0 482.5 967.0 2403.7 3339.0 582.0 2258.2 630.4 1734.5 295.2 840.6 657.7 3872.9 409.9 766.0 2428.8 3660.7 382.9 859.5 2343.8 3462.0 359.4 744.1 563.7 3178.1 471.6 862.2 437.0 3801.8 1127.2 1764.6 628.2 1854.6 822.1 1054.2 1649.4 2588.4 1 1 85 733 721.1 525.8 251.2 5748.9 1633.3 1460.4 168.5 6001.5 547.4 802.4 222.6 7108.8 509.5 755.1 282.4 6660.6 2922.4 3357.8 384.6 1815.4 656.3 941.1 3234.6 4160.8 2776.5 3484.4 290.6 843.2 667.8 1064.9 269.0 5510.3 510.1 1028.3 419.3 6206.4 638.0 966.0 3391.8 5372.5 579.5 932.2 3576.6 5376.2 751.7 1112.8 737.8 4446.5 3168.9 3935.4 301.8 1087.2 2872.5 4148.8 444.7 1235.3 1532.0 4005.3 398.8 1450.0 744.4 1925.5 420.3 4999.2 657.5 1086.1 590.6 5542.3 826.7 1360.8 2485.6 4853.0 2411.0 3140.2 507.6 1963.5 2632.5 3270.3 895.9 1840.7 2549.3 3094.8 452.0 1934.0 1060.5 1700.1 796.4 4406.2 2327.3 3092.1 402.9 2021.5 785.8 1206.0 460.9 5357.0 832.6 1300.8 842.9 4904.6 2154.1 3162.9 447.5 2326.7 966.7 1553.6 425.0 4339.8 2230.8 3279.6 514.6 2067.8 846.1 1855.4 1987.9 3385.7 745.4 1525.2 2162.4 3775.9 624.8 1464.0 1955.6 3880.6 1066.3 3042.4 946.9 1964.5 1820.9 2653.7 729.9 2233.9 1155.0 1895.8 399.8 3436.8 2040.7 2574.4 481.4 2169.6 1172.3 1657.7 1628.0 3644.5 1 1 111 862 147.9 -84.1 5507.5 5200.7 3344.7 3636.4 58.9 129.8 152.1 111.7 90.0 5216.9 726.2 3855.0 147.0 318.4 250.2 25.0 4001.0 4196.6 338.4 163.7 3565.1 3869.2 2555.1 3016.1 255.5 144.3 3229.3 3191.0 337.5 471.2 530.5 627.2 3858.1 3650.5 613.4 616.0 3500.9 3574.7 2357.5 2549.3 571.1 674.5 602.1 854.0 3487.0 3308.3 888.7 3270.8 337.3 538.7 507.6 804.6 223.8 4533.1 563.5 2964.6 452.8 1228.8 255.9 685.5 2614.5 3258.5 556.2 984.4 568.8 2794.3 2249.9 2390.8 289.0 1244.7 535.2 790.1 566.6 3576.4 489.2 858.9 2230.3 3242.2 714.4 2791.7 590.2 1134.8 585.4 2921.5 569.5 934.9 635.2 1337.0 2424.7 2995.8 512.9 1035.9 615.3 2935.5 624.7 2306.9 330.5 1486.5 481.2 802.3 358.9 3785.8 533.5 1062.3 336.6 3659.1 665.5 2339.2 181.2 1803.8 364.8 978.5 504.9 3409.5 361.4 914.7 1610.9 3177.3 533.9 1967.1 693.0 2001.3 432.9 985.2 416.0 3276.8 307.6 870.3 490.5 3962.3 871.3 1286.7 1230.8 2955.7 921.5 1269.9 1248.2 2715.2 1637.8 1910.3 457.6 1614.3 1 1 87 618 327.1 342.8 303.2 4302.3 410.2 529.7 365.7 4144.9 395.7 466.5 2608.2 2995.8 245.2 568.3 234.8 2627.8 578.3 2817.3 205.8 681.8 306.2 655.8 366.1 3509.8 285.9 604.3 2038.8 2766.9 341.8 613.7 571.2 2695.2 354.2 761.7 1953.8 2701.5 575.5 2364.4 466.5 967.8 732.8 2481.6 258.0 638.6 1699.1 2591.3 356.8 734.0 554.0 1022.3 1733.6 2479.7 745.0 2156.2 452.0 1016.6 1508.2 2332.6 248.5 618.3 840.8 2394.5 303.3 786.4 1397.1 2337.7 329.0 780.9 707.5 1045.5 1555.9 2147.5 1296.0 1990.5 443.8 949.3 616.3 1171.0 1392.9 1916.2 1345.4 1860.7 388.4 967.9 1651.7 2164.8 194.6 601.1 1479.3 1961.3 334.8 894.8 567.7 1161.0 1141.4 1660.7 676.9 1997.5 416.7 986.3 1401.1 2128.8 267.2 743.0 1569.1 1956.0 304.4 792.3 773.1 1765.5 280.4 899.4 558.8 1896.9 161.8 1061.3 393.5 1004.4 359.5 2127.8 408.3 829.3 1039.7 2034.3 984.2 1523.8 540.0 1188.0 524.8 981.0 1193.0 1919.8 689.0 1707.1 487.1 1090.1 1069.2 1480.8 256.1 1176.0 567.9 845.6 248.5 2273.8 1 1 83 277 297.4 593.1 253.4 5806.0 3032.2 2941.8 317.7 342.5 384.3 438.7 3315.4 3188.1 2624.8 2776.5 96.0 297.6 675.0 3158.6 47.8 950.9 508.7 1157.3 320.5 5496.3 180.0 525.6 3371.4 3546.2 768.9 3152.4 273.0 938.4 352.2 689.4 286.2 3882.0 79.7 443.9 2950.8 3816.5 953.0 3141.7 322.5 609.9 821.4 3648.1 211.6 513.9 528.5 908.1 241.1 4657.1 2297.3 2874.3 440.7 1129.2 510.2 691.8 3018.6 3492.7 1026.2 3213.3 425.5 709.7 2535.2 3072.0 336.2 715.2 2220.0 2747.0 509.2 1028.4 695.7 1018.7 2719.4 2817.8 913.8 2618.3 671.0 1073.1 755.2 2841.5 339.9 1050.7 536.7 827.6 500.5 4384.0 396.8 907.8 365.5 3734.8 1995.9 2453.1 484.5 1198.9 2003.4 2906.4 419.1 723.1 714.3 897.7 2495.7 3457.0 579.4 886.5 2394.6 3181.5 1516.0 1965.6 686.8 1353.7 567.3 665.6 409.1 4350.2 387.2 817.5 356.9 4311.5 668.1 2128.6 242.3 1613.4 386.1 977.2 304.5 3756.9 377.2 843.4 278.9 4111.9 503.9 1909.9 331.5 1871.8 445.9 1172.2 198.2 3419.1 571.8 2255.1 321.5 1463.3 1 1 103 414 493.3 544.5 4709.9 4396.6 404.9 586.1 4278.4 4221.8 440.5 519.7 3303.3 3411.4 384.4 394.5 703.8 3099.8 2585.6 2902.5 258.6 776.3 709.0 1055.1 2001.4 2077.3 441.2 784.3 2292.9 2723.6 869.3 2842.5 679.6 980.3 556.6 1114.1 362.8 4128.2 2286.9 2844.9 340.3 1398.9 1267.7 2964.1 269.1 783.2 1925.8 2954.3 359.2 899.1 870.5 1355.2 1932.6 2487.2 637.8 821.1 746.8 3082.6 459.7 819.8 1889.0 2828.2 598.7 1058.7 1893.5 2486.4 1383.7 1835.2 880.9 1340.2 706.9 1026.6 1560.7 2427.5 632.4 1026.8 1673.3 2490.5 1657.4 2078.5 789.3 1087.0 1885.1 2426.1 447.4 786.5 1266.4 2778.9 324.8 679.2 1822.7 2649.1 483.5 901.6 1047.3 1667.9 1314.0 2002.7 635.0 1355.5 1711.8 2165.5 867.3 2212.7 857.8 1374.3 1536.7 2562.8 368.1 899.1 1736.6 2407.4 281.6 719.6 1707.7 2271.3 423.6 778.7 959.1 1397.4 1006.7 1557.1 1336.5 1741.5 606.8 1174.6 1079.6 2165.4 399.0 934.2 921.1 2298.7 361.0 835.7 1398.3 2603.4 321.0 784.0 945.9 2329.0 304.6 991.0 854.2 2431.7 338.0 1261.9 1 1 93 494 380.1 153.9 4703.4 4674.1 4043.1 4862.0 380.6 563.9 634.6 1042.4 3225.2 3356.6 525.5 819.5 51.9 3305.1 632.4 839.0 3178.6 3622.2 3124.6 3276.1 277.0 528.4 1364.3 4111.8 116.0 114.3 3899.1 4259.7 73.4 315.2 3536.0 4306.8 68.4 394.2 3238.2 3727.5 346.6 783.6 882.4 1175.1 3695.1 4440.0 2508.4 3239.5 488.5 860.6 3098.2 3540.8 370.0 887.6 985.7 1141.3 2978.0 3490.7 2495.7 3454.2 543.7 835.3 967.4 1442.3 2793.9 3150.4 2269.3 2876.8 649.8 1205.0 775.9 1110.9 2862.2 3648.7 721.4 1100.0 3038.4 3362.0 778.2 1288.7 2716.9 3208.5 1254.9 3330.1 659.0 1204.0 2589.7 3260.4 607.3 936.9 932.0 1571.5 2102.0 2696.3 885.4 1144.4 2158.3 2531.3 1950.0 2534.7 656.5 1086.8 1072.5 3430.3 577.1 1192.4 2221.0 3028.1 451.6 961.9 970.4 1523.0 1917.7 2592.8 750.7 1228.8 1978.4 2651.9 974.9 2747.5 751.2 1468.4 953.9 2695.7 468.8 1353.6 660.8 1459.7 572.7 3556.2 790.5 1364.4 1565.4 2974.9 1809.5 2431.7 566.0 1427.0 2122.2 2725.0 399.9 1074.0 2305.9 3030.3 301.2 917.9 1 1 65 610 1219.1 1676.5 3382.9 4203.5 367.6 436.3 867.1 5302.7 662.0 3251.1 1334.4 2236.1 363.8 989.3 165.2 4018.2 660.3 1701.6 85.8 4350.2 3399.9 3360.1 104.9 543.2 832.0 1033.7 134.1 3861.9 738.6 2774.7 642.1 1888.1 775.4 3130.4 670.8 1549.9 2155.7 2736.0 198.1 1231.0 1353.4 1641.1 166.5 2697.8 2302.3 2459.6 210.3 1913.5 1948.7 2109.2 1169.5 1789.0 1160.0 2468.6 233.6 1266.8 383.0 685.7 152.6 3561.7 663.9 2311.2 112.8 2115.2 591.9 2525.3 932.1 1841.0 430.4 1264.2 764.1 3231.5 1508.6 2049.7 365.0 1916.2 488.8 811.2 1709.3 3395.9 1629.9 1852.4 686.2 1408.8 1580.1 1955.5 501.4 1643.3 525.3 1824.8 773.4 2027.3 458.5 844.2 1048.7 3615.4 870.5 1224.2 618.1 3130.0 1044.2 2258.7 274.4 1388.7 981.6 1480.2 183.0 2612.1 1749.8 1896.9 235.0 1162.5 967.7 1385.8 217.5 2857.7 867.9 1120.8 639.2 3476.4 468.4 713.7 1591.9 3007.0 1279.8 1814.1 855.0 1625.3 745.9 2014.5 339.4 1645.6 1472.3 2118.9 271.6 1191.2 816.4 1122.2 287.9 2816.2 1187.1 1508.7 338.6 1997.8 1 1 102 717 404.0 563.1 4443.9 4419.5 465.8 488.0 3251.5 4683.6 1067.5 4226.7 201.8 474.3 982.9 4164.0 223.4 4589.9 383.3 483.9 311.0 5564.7 3146.6 3622.5 2245.1 3387.1 894.0 3421.1 406.2 3261.3 547.6 1099.1 2617.0 4568.0 721.5 2999.9 291.1 4227.4 856.3 2696.0 414.5 4910.8 2048.5 2816.0 3290.4 4250.8 2222.0 3894.9 323.2 805.1 1007.0 4077.0 310.9 886.5 2019.2 2383.8 356.5 4579.9 595.6 1063.8 2059.0 5048.6 859.7 3399.2 550.8 2606.9 546.1 1286.4 2050.2 4487.7 534.3 992.6 2692.2 4085.9 564.8 972.8 1898.8 3658.3 1761.4 2109.7 429.6 3871.0 1907.1 1244.1 1970.9 3420.3 935.5 3284.0 565.0 1402.8 1656.7 2329.5 630.9 4057.4 884.9 2228.8 2261.1 4295.0 1763.9 1871.2 866.2 3283.2 803.6 2418.3 2050.8 3689.1 873.9 2640.9 2204.6 3667.8 1341.1 1826.5 761.8 2942.4 1577.6 2480.0 579.6 2592.5 2001.5 2797.6 1313.5 2135.3 2096.9 2484.2 683.5 1761.2 1119.0 1697.6 1672.3 2798.3 1660.3 2242.4 624.3 1667.2 1663.0 2551.2 487.3 1266.0 1663.5 2484.1 366.1 1157.4 1096.3 2898.7 361.0 1445.4 1 1 104 595 1298.7 4903.4 206.3 249.7 1392.7 5335.5 625.4 665.3 650.6 786.3 4702.8 4644.9 533.2 1296.4 3630.8 3730.5 2460.4 4079.1 249.5 406.2 490.8 986.1 3503.5 4174.5 232.8 583.8 574.2 4107.4 405.8 943.5 470.2 5061.1 320.4 1278.8 269.9 4709.0 884.8 3743.6 136.0 906.1 2537.0 3352.9 192.8 854.0 618.5 1328.6 2648.1 3574.3 336.2 798.4 506.7 3754.2 371.7 585.6 2514.5 4472.1 2418.0 3017.9 630.7 1315.0 759.4 1130.8 344.7 4243.3 744.4 3364.2 268.9 1673.2 2169.8 2733.7 598.8 1713.0 829.2 1323.8 2409.0 3724.3 2076.1 2662.5 674.8 1334.8 791.6 1155.8 2572.6 3794.4 828.9 1121.9 760.2 3221.8 2362.0 3056.1 380.5 1360.8 1005.6 2952.8 472.3 1627.2 728.5 1424.6 416.6 3682.4 889.8 3065.9 265.8 1592.3 747.4 1410.0 241.1 3472.4 854.1 2619.5 446.8 1843.1 514.8 1328.9 602.5 3325.7 429.0 1532.7 1513.0 2995.9 831.7 2651.2 516.4 1612.3 1540.3 2618.5 551.1 1575.9 770.4 1260.1 1666.1 2940.6 895.0 1345.4 1771.6 2923.5 1077.2 2472.1 797.3 1537.1 1834.0 2715.9 558.6 1361.2 1 1 118 675 469.8 1137.4 498.2 5543.2 877.8 4367.0 731.1 890.6 1763.5 3719.9 203.4 362.4 3339.6 4005.9 121.3 1356.1 599.2 874.6 224.0 4468.6 188.2 1728.6 3484.3 4049.9 260.8 654.0 3158.2 3200.2 490.5 635.1 3160.5 3491.0 527.6 609.4 2973.7 3375.7 543.0 1028.7 13.2 2786.3 929.9 3118.0 357.8 673.3 570.2 3300.2 656.9 1132.1 244.7 1408.2 160.1 3943.7 192.3 1044.1 386.3 4452.3 54.7 1761.8 2874.0 3853.0 394.6 1313.0 2418.2 3215.7 286.9 610.8 426.4 3012.6 433.3 679.3 2172.6 3245.0 625.3 2669.0 252.6 843.3 288.4 853.0 304.3 4232.9 405.5 600.9 912.2 4348.3 303.3 815.1 738.9 4087.5 277.8 1023.1 724.4 3654.6 1963.1 2476.7 448.2 770.0 2383.5 2818.2 321.1 578.4 2048.7 2642.2 440.5 1330.2 584.9 1518.5 1773.8 2611.5 764.2 2443.9 421.5 938.9 1731.7 2416.2 204.0 777.9 787.0 2524.9 269.9 883.6 1632.1 2547.1 165.7 752.5 673.9 2506.4 216.2 805.6 753.3 2791.7 118.1 568.9 827.7 2409.0 253.7 730.7 714.6 2580.6 184.0 775.2 787.0 2900.4 71.8 562.8 1 1 107 489 5642.6 6190.5 2513.8 1965.9 1258.7 6486.9 1788.7 1550.0 4741.5 5631.7 156.6 905.8 674.4 985.5 3545.7 3682.1 3791.7 3799.9 1260.7 1576.1 1488.9 5099.6 228.6 450.3 3836.1 4526.0 146.9 191.3 4281.4 5244.1 201.1 1350.4 4331.1 4723.2 67.5 2041.9 1558.2 4852.8 163.0 622.2 823.2 2085.1 83.5 4826.8 1366.3 5139.5 1323.5 1808.5 1373.1 2316.3 268.1 4505.3 1468.0 1821.2 320.3 5102.5 719.0 1979.0 227.3 4630.6 1581.4 4425.8 129.7 673.6 1675.8 1965.1 318.0 5089.2 3083.1 3605.9 378.6 1093.9 3049.1 3876.3 300.8 900.0 3141.2 3967.4 784.6 1212.6 3177.9 4189.0 311.6 720.2 3176.9 4089.0 282.7 1458.1 1447.8 1836.2 518.3 3570.3 2996.6 3840.4 299.7 1403.0 3056.5 3969.6 334.9 1442.8 3399.8 3936.5 1081.4 1735.1 2975.4 3675.1 341.2 1140.9 2871.0 3377.8 336.1 1256.7 1467.0 3780.5 293.0 921.3 2475.7 3251.7 214.3 1030.8 2755.4 3241.8 727.4 1436.5 2745.0 3323.3 240.4 1583.3 2543.9 3349.6 393.6 1470.4 1544.1 3874.5 403.9 1058.0 2322.3 3324.0 201.2 891.9 1282.2 2007.4 299.9 3437.5 1 1 72 446 522.6 886.0 300.5 6489.9 2021.6 2480.2 2561.5 3675.1 918.8 3602.2 251.5 1918.1 2816.0 3636.6 348.8 1822.7 2532.0 3727.7 289.0 1246.4 533.1 986.3 2450.6 3942.4 2190.9 2595.9 483.1 1268.7 2552.1 3351.6 447.8 1308.8 670.3 1072.2 2938.6 4409.8 541.7 843.9 690.3 4556.5 513.8 936.5 2896.7 5048.6 585.9 1061.4 2282.4 3768.3 1897.7 2461.8 413.1 1528.2 1980.1 2804.3 272.7 1756.1 834.1 1442.1 424.9 3189.1 1938.8 2655.4 279.3 1548.9 1031.4 2772.3 281.9 1434.3 2051.5 2460.8 347.5 1475.1 2009.2 2735.9 235.2 1221.2 2143.5 2966.6 242.1 882.0 2389.5 3113.7 202.7 830.7 1372.9 2856.3 440.4 996.1 2189.5 2642.6 541.4 1212.3 2008.8 2624.5 579.1 1148.8 2030.1 2457.2 642.9 1080.8 920.8 1553.0 1812.2 2435.4 856.5 1429.7 1383.8 2012.7 991.3 2352.2 471.4 1602.9 668.6 1161.7 306.4 3373.7 686.1 1353.2 355.2 3232.6 1511.3 2005.5 439.2 2200.3 781.5 1292.1 1419.8 3042.1 1445.8 1907.4 656.9 2104.0 1573.1 2108.8 482.3 1936.2 818.7 1304.3 497.0 3004.0 821.0 1436.2 1310.4 2607.8 1 1 85 233 1068.8 821.2 321.9 4596.2 1561.2 4514.3 204.1 461.4 3053.6 3377.4 281.0 654.0 1196.3 974.8 297.1 4481.6 1003.8 956.9 3095.2 4166.6 1701.2 2804.3 311.0 1256.0 718.0 907.4 453.5 5914.1 2338.2 2890.6 1081.5 1307.2 2249.1 2503.4 429.2 1463.4 2271.9 2661.4 373.2 1530.1 2677.8 3045.6 325.2 1108.2 835.4 1194.9 580.3 5791.0 808.4 1294.3 555.3 5986.8 1963.6 2322.5 878.2 3162.8 461.2 1480.7 537.1 5485.7 566.8 1108.9 662.5 5153.4 542.4 992.2 2578.0 6300.0 577.0 948.4 2323.0 5354.9 1333.1 1739.8 750.9 2025.5 698.0 1023.8 2331.5 5372.5 1597.0 1780.0 747.1 1903.4 964.3 1325.5 1986.2 3597.5 1457.0 1962.3 877.8 3048.3 581.8 1191.5 1159.5 5580.7 665.7 1449.0 492.9 4312.8 2043.7 2174.9 752.7 2001.7 760.2 1176.7 1762.5 3658.0 727.4 997.5 1907.0 3793.2 1309.5 1815.7 1491.2 2944.0 1793.8 2026.1 622.0 2616.7 430.5 916.4 572.3 4804.4 933.2 1399.5 598.0 4193.0 939.2 2100.7 1087.5 2906.9 1641.1 2676.4 499.1 2387.0 1534.4 1768.3 612.6 2265.3 665.1 1493.1 1713.3 3580.7 1 1 106 462 4517.3 6172.3 304.4 221.6 5526.0 5312.5 251.6 1186.3 766.9 1092.9 1230.6 8791.6 4595.1 5730.4 256.1 634.0 4445.7 5610.2 323.5 735.5 4317.7 5089.7 322.3 720.6 735.2 1278.5 677.0 7225.4 1497.9 5518.9 406.2 1686.4 1304.2 1912.3 476.5 7001.2 863.3 1846.2 470.8 7189.7 1268.3 1927.9 396.3 6678.0 4519.4 5173.3 993.1 1753.9 4262.3 5018.2 544.1 1039.7 1605.1 2404.3 3195.7 4538.1 1965.4 5602.8 589.2 1162.4 3952.0 4353.1 443.3 1580.2 3983.0 4989.7 926.3 1495.7 3874.8 5112.5 873.5 1436.4 3536.9 4669.4 620.9 1275.1 1362.7 2007.5 2544.7 3905.7 978.8 1491.8 1207.7 4004.6 826.9 1743.9 2911.8 4098.8 887.0 1802.2 2845.9 4022.9 1256.9 4357.0 746.1 1813.9 831.2 2130.5 667.7 4806.4 773.0 1577.6 3029.2 4908.4 960.1 1619.6 2411.7 4384.0 953.1 1666.5 1930.5 4645.8 1276.1 1890.5 1736.0 4184.1 1060.3 1625.3 1590.0 4674.9 962.2 1611.9 1731.2 5875.8 1285.7 2077.8 1465.7 4413.9 1157.1 2274.1 1219.0 4381.6 1186.1 2052.8 1066.5 4186.7 1287.2 2033.2 756.3 3780.0 1165.0 2437.6 959.5 3371.5 1 1 82 588 204.3 -139.8 3540.4 4159.4 883.4 4205.4 -99.9 -230.1 479.7 470.0 200.2 4676.9 386.1 624.9 2828.9 3178.1 2806.8 2863.5 368.3 133.9 154.6 257.6 2771.0 2781.0 248.1 388.3 2271.2 2754.8 397.2 724.7 275.0 2517.6 660.4 3118.7 134.3 725.9 714.0 3097.8 475.6 701.3 294.7 596.4 2254.5 2844.6 1838.3 2000.4 445.5 682.4 302.8 795.1 2049.3 2374.9 654.8 2528.3 242.8 787.2 332.1 852.7 261.3 3418.5 1852.2 2436.3 193.4 717.9 489.1 921.1 2380.6 2897.9 293.1 404.5 2275.6 2986.2 132.4 285.0 509.7 2904.3 225.1 278.0 356.7 3842.6 344.9 599.4 377.4 3685.2 326.6 592.7 1844.5 2800.6 443.5 523.8 1877.9 2777.1 1436.3 1734.5 530.2 1055.4 702.5 2098.8 287.4 1094.8 444.2 704.6 306.2 2944.7 1568.8 1960.1 322.3 1406.4 476.7 981.8 243.4 3025.9 718.3 2373.3 222.1 1053.9 1757.1 2237.5 179.2 850.1 1565.3 2049.5 244.8 1220.5 655.4 1112.2 199.4 2432.4 778.0 2316.3 198.9 1143.9 1434.8 2204.0 364.0 966.9 719.1 993.6 1373.7 2270.6 1357.7 1747.0 419.0 1080.7 1 1 80 334 2420.6 2650.9 191.9 5652.5 1518.4 2421.4 3532.3 3700.8 2121.9 2185.5 2057.7 1410.2 1684.3 1536.4 3399.2 3262.2 552.8 544.0 204.5 3704.6 1264.5 2244.6 3084.9 3264.8 2118.6 2396.8 703.4 762.1 2292.9 3544.3 207.1 502.7 2473.7 2948.6 4.9 322.1 2238.5 3026.5 189.8 696.3 1446.2 1976.4 2900.7 3493.2 537.5 1845.8 2553.6 3350.6 1088.1 2286.6 348.3 2793.1 523.1 693.7 463.2 4460.9 356.6 701.9 567.5 4622.0 423.3 934.9 2375.0 3587.2 1558.3 1685.8 346.3 2898.5 447.7 931.4 2431.4 3824.6 630.1 869.8 404.5 3008.0 458.0 1022.7 2156.7 3541.5 1633.0 1868.3 552.7 3169.7 1021.4 1776.5 2276.7 3686.0 1084.3 1140.5 2410.9 3579.3 620.9 1985.3 2050.3 3557.9 758.0 2017.7 452.0 3022.4 831.6 996.7 557.6 3845.8 606.7 844.0 1631.2 3306.1 1317.3 2253.5 529.0 1533.1 634.7 1825.4 509.0 3206.7 581.8 883.0 1336.9 3279.6 542.3 822.8 356.3 3347.6 808.5 1201.9 312.8 3104.9 514.4 1746.3 594.9 2075.2 728.4 1134.1 301.1 2961.4 1195.4 1614.1 420.5 3128.6 1328.7 1967.5 301.0 1590.8 1 1 117 484 353.3 160.4 13.2 6408.1 701.2 4422.8 115.8 213.9 856.0 5117.0 117.5 60.4 933.4 4633.1 63.0 52.7 3649.3 4041.8 -100.2 87.7 959.0 4388.7 46.7 -342.4 2598.7 3530.2 246.8 406.0 413.2 883.1 3235.0 3325.4 838.1 4286.8 162.0 275.2 2709.3 3479.3 385.9 559.5 303.9 827.8 3524.1 3750.7 2934.2 2765.1 423.3 657.7 3346.2 3823.4 232.3 259.6 981.0 4319.3 145.4 324.2 2615.3 3641.9 329.7 211.9 505.2 952.0 3327.9 3673.8 408.9 859.5 2977.3 3185.8 1774.9 2300.3 594.9 854.7 575.4 795.1 523.0 3971.5 589.0 823.2 2698.0 3361.9 1863.1 1688.0 870.4 1380.9 668.4 1015.4 2670.2 3152.1 482.2 1016.9 2802.5 2814.2 494.5 784.7 2432.4 2554.0 684.1 943.7 2403.0 2410.6 1578.6 2245.3 765.9 682.9 459.3 752.9 517.3 3667.3 246.0 728.6 426.1 4311.8 422.3 846.6 548.1 4263.8 346.1 804.1 1937.5 3388.9 518.7 862.7 718.1 3324.2 1536.8 2215.6 445.3 1139.5 1726.8 2311.7 569.6 1055.9 681.8 914.5 1745.3 2624.1 382.1 644.0 702.1 2858.2 590.9 939.1 1249.5 2416.2 1 1 104 475 45.2 502.8 405.5 6392.8 689.7 4977.8 235.0 501.8 3792.5 5343.0 21.6 55.4 2974.4 4028.5 153.0 152.8 979.8 4595.2 -120.4 -175.0 985.8 3230.7 630.9 1573.6 776.8 4311.0 707.5 1304.9 1060.5 4645.8 548.7 327.3 1141.4 2618.7 294.8 -100.6 2409.3 3115.8 891.3 1486.3 749.2 2291.9 252.3 4258.1 2594.0 4208.7 350.2 921.5 319.9 887.8 519.7 4247.6 958.6 580.8 612.0 4194.8 1349.1 4866.8 450.1 512.9 2302.8 2740.6 784.0 442.1 670.0 1625.5 2585.7 3993.2 948.8 2967.4 594.1 2187.3 528.0 1725.5 768.4 5073.1 291.9 840.2 2782.6 5088.1 704.3 1042.8 2088.3 5282.4 1763.3 2590.9 567.4 2351.2 1623.0 2729.1 826.2 1761.7 996.9 938.0 2507.9 4166.9 1079.4 1238.4 682.3 3734.5 2027.2 2735.9 1528.1 2647.6 712.7 1416.6 2633.6 3457.1 684.5 813.0 1422.7 2579.9 835.2 1039.0 1179.8 4315.9 1988.8 2114.5 964.0 2386.0 1052.9 1898.5 1099.8 3710.1 889.2 1343.3 2168.6 4103.1 1771.0 2034.2 1147.7 1993.2 1536.3 2810.5 1237.7 2409.3 1269.6 930.7 1853.2 3080.6 1793.5 2861.0 870.5 1816.9 1 1 102 619 438.4 550.2 4480.6 4113.0 772.3 800.6 209.0 4207.0 3919.9 4796.6 1909.6 2101.2 3790.1 4552.4 233.7 682.5 619.4 709.8 3412.3 4064.4 1475.7 962.7 3359.5 3795.5 2907.9 3047.1 196.1 553.2 3496.5 4391.8 660.4 912.7 860.4 1059.6 3299.6 3774.1 739.4 996.2 3308.1 3360.4 1125.7 4010.2 495.7 716.7 3186.4 3422.0 547.2 1123.2 601.9 898.9 1239.9 4931.8 476.3 811.7 711.3 4692.3 930.4 3418.6 421.2 1341.4 540.1 902.1 387.7 4570.1 585.1 1484.3 486.6 4959.1 758.3 2892.3 395.4 1484.5 581.4 1623.0 392.9 4556.7 946.3 3323.8 713.0 1503.7 2208.2 2884.3 607.9 1834.6 740.1 1285.7 2323.5 3379.4 2094.9 2949.7 649.8 1214.0 2694.7 3315.6 613.1 1212.1 1276.2 3292.6 302.3 1296.7 2472.1 3045.4 372.4 944.8 2230.5 3081.8 630.5 1054.0 867.5 2920.3 336.8 815.0 875.0 3074.5 262.6 1068.9 633.7 1381.3 263.2 3480.2 1942.3 2607.6 196.3 1187.6 1856.4 2731.4 466.9 1324.1 935.4 1525.7 1760.9 2583.8 1743.9 2385.3 420.4 1457.7 975.3 1267.9 291.4 2951.9 1878.1 2333.1 449.4 1586.6 1 1 98 190 332.1 450.1 4007.5 3980.4 453.0 613.4 123.1 3397.7 304.4 603.2 3298.9 3868.2 467.4 805.3 366.7 3711.7 2263.6 2894.7 457.6 1268.7 449.5 652.7 574.8 5879.9 400.4 771.1 3100.0 3953.2 1026.9 3313.6 570.8 1031.6 2302.1 3166.9 187.2 495.2 2460.0 3040.8 150.1 693.8 2175.4 2758.8 249.0 815.8 600.8 1310.4 490.0 4689.9 769.0 1300.2 2980.2 4514.5 2165.8 2723.2 572.4 1361.9 2161.6 2982.7 693.4 1358.1 861.7 1292.8 2713.8 3744.8 1664.9 2525.1 845.0 1470.9 670.1 1019.9 2638.8 3938.5 524.7 934.2 702.5 3854.8 487.2 939.9 467.4 4646.4 617.2 1182.1 437.5 4508.1 918.4 2663.3 422.0 1562.0 1069.2 3136.9 450.1 1152.7 1832.6 2717.9 564.9 1265.9 827.5 1429.2 2189.4 3432.8 1466.1 2215.9 874.8 1753.5 714.6 1105.5 2048.9 3213.9 554.6 915.1 2263.5 3497.3 614.4 1186.3 717.0 2974.1 802.6 2256.4 495.9 1560.2 1613.4 2146.4 427.7 1510.7 1549.3 2323.1 626.6 1715.5 821.0 1238.4 1642.6 2862.7 1343.3 1900.7 562.5 1748.3 687.1 1157.9 354.8 2826.8 975.6 2147.7 406.9 1549.8 1 1 115 189 265.2 302.6 4003.6 3072.6 224.1 123.8 141.3 3023.9 2376.1 2743.5 118.5 -61.5 794.8 2679.0 -105.7 -133.9 2011.7 2490.8 -87.1 314.2 643.8 2226.2 130.7 316.0 1698.8 1726.0 188.3 298.8 619.9 2554.7 -36.0 54.5 1416.4 2048.4 183.5 251.9 389.4 523.5 2234.5 2577.6 1135.9 1593.9 220.7 422.1 307.3 572.6 15.4 3429.4 289.7 361.7 143.4 4439.5 271.8 248.9 349.8 4296.7 276.1 448.9 2346.4 3165.9 210.5 404.1 2312.6 3009.7 165.8 330.7 2236.1 3252.8 204.3 474.9 2023.2 2648.3 1172.8 1490.9 531.4 957.6 431.0 579.7 1760.5 2463.1 1223.6 1496.4 439.9 735.8 738.4 1777.3 177.4 302.0 1303.7 1825.6 340.3 675.4 452.7 888.5 1651.1 2145.4 406.1 1424.5 570.6 1278.9 354.4 569.3 539.2 3010.1 294.9 636.0 1588.8 2178.4 569.3 1574.4 499.0 1089.3 1093.4 1637.0 319.0 855.0 501.9 1672.1 434.9 831.1 378.1 574.6 1693.8 2259.4 242.0 579.2 2009.6 2600.2 253.2 523.0 1818.7 2264.2 377.4 714.8 507.2 1750.4 568.9 1231.5 320.4 702.8 1095.9 1511.5 286.5 816.7 1 1 88 462 1931.1 6062.1 271.3 1190.4 4229.2 4795.8 275.3 418.9 1110.7 1530.5 269.9 6060.9 1645.4 4877.1 320.7 630.1 1592.2 4460.9 204.9 645.7 1689.0 4800.5 199.3 1047.8 1070.6 1693.1 254.6 4960.1 1364.4 1656.1 291.7 5149.2 1197.2 1695.6 422.6 5650.0 1221.0 1689.7 2985.0 4305.5 1094.0 1692.8 494.3 4220.1 1413.2 4178.7 261.4 1313.2 1319.9 1942.3 276.1 4169.8 1656.7 4323.0 610.9 833.5 1605.8 4607.6 251.0 718.3 1492.4 4037.2 296.1 884.0 1088.4 1821.4 378.9 3812.3 1061.6 1765.5 2346.5 3512.5 2673.6 3124.4 558.1 1124.9 1282.1 1726.7 1797.2 2952.0 1153.2 1726.1 628.7 2940.2 1029.8 1760.2 2054.2 3246.5 992.1 1577.2 704.0 2895.0 1194.8 1690.9 1770.4 3208.1 2632.4 3144.9 599.9 1475.8 1336.6 1978.7 1813.9 3254.8 1396.4 3543.8 549.0 1420.9 1031.6 1977.5 543.5 3298.4 1036.2 1802.5 1613.5 3095.8 1118.1 2951.3 574.9 1760.4 915.2 1720.2 461.7 4253.9 868.3 1603.9 621.0 4087.8 835.1 1653.0 394.2 4382.6 1203.1 3201.3 257.9 2130.1 974.5 1909.0 578.8 3498.5 934.7 1511.2 1475.4 3295.9 1 1 113 784 457.6 499.4 5209.0 4951.8 3794.8 3730.9 213.4 395.0 963.0 4018.0 209.3 633.9 401.0 500.0 258.6 5920.5 501.2 648.7 277.8 6619.5 3647.4 3941.5 383.7 838.9 610.4 876.7 3617.9 4457.5 3506.4 3811.5 439.1 821.2 3442.6 4151.9 340.6 552.9 1162.8 4285.3 320.1 653.1 1233.1 4163.4 333.9 600.6 3185.8 3909.4 563.1 901.3 854.5 1259.0 3718.7 4157.5 697.1 1142.5 3552.5 4263.7 2668.6 3436.1 686.4 1152.9 3075.4 3687.2 519.1 1097.6 977.6 1587.1 2743.4 3536.3 1017.5 3768.4 757.0 1529.1 644.0 1437.9 540.2 4378.3 669.7 1387.2 2328.3 3541.9 1020.7 3350.6 621.5 1274.0 1013.0 3826.6 408.9 1166.6 648.4 1606.1 513.2 4016.5 597.4 1419.7 2352.7 3735.0 878.2 3156.1 714.4 1408.9 860.7 3204.4 595.0 1372.6 526.6 1352.3 487.0 3956.9 528.2 1123.9 432.3 4028.4 500.9 1029.1 2000.7 3736.0 460.2 1194.2 657.2 3361.3 881.5 2775.2 464.8 1748.8 1905.5 3245.6 406.9 1434.3 748.4 1588.3 534.1 3475.9 574.9 1007.2 1836.4 3509.4 530.4 954.8 772.5 3487.0 463.2 1240.4 543.2 4045.4 1 1 107 478 310.4 19.3 4546.1 3441.9 3160.2 2623.5 489.5 110.1 68.8 -59.7 153.5 4625.0 609.9 3194.6 104.5 164.1 262.3 133.0 2878.6 3418.7 380.4 60.7 2777.1 2783.2 2266.5 1891.8 115.5 248.4 2514.5 2948.1 223.8 201.2 548.9 324.6 2564.3 2826.8 1922.8 2264.4 290.9 437.8 466.4 735.2 2507.5 2197.7 761.4 2593.1 347.3 641.2 494.3 514.1 206.0 3364.0 706.5 2200.4 315.0 495.5 378.4 454.9 2074.4 2651.8 292.1 417.0 416.7 2591.4 1975.6 2133.4 58.9 719.4 453.9 630.3 382.5 3134.3 368.1 739.1 1842.5 2572.6 746.9 2398.5 201.8 171.5 639.9 2613.5 75.7 478.7 353.4 729.1 1974.7 2758.3 263.0 569.8 1667.1 2374.2 466.8 1088.5 238.2 1507.4 545.7 1835.3 148.2 1293.9 260.8 635.6 132.6 2921.2 420.7 1117.8 69.0 2486.5 455.4 1583.3 203.9 1445.6 394.8 848.1 524.3 2760.6 262.3 986.3 1271.5 2429.6 433.0 1376.8 333.5 1684.2 343.7 884.7 229.6 2848.5 320.0 771.7 507.4 3043.4 1282.6 1591.5 403.1 937.5 829.2 960.6 921.9 1715.5 1232.3 1474.3 244.2 1051.5 1 1 102 248 368.2 336.6 1401.7 4502.8 893.7 3555.0 113.6 224.8 318.2 426.4 3557.0 4115.5 1561.3 1666.5 1347.4 1380.6 493.9 1462.9 3083.9 3100.3 1549.0 1764.6 1502.3 1556.2 357.4 457.3 260.4 4960.9 577.8 1435.7 245.9 4174.3 1782.6 2009.5 252.2 1983.4 441.8 721.4 321.6 4987.8 395.2 690.8 2724.4 3999.2 430.0 637.6 2897.3 3497.0 440.8 752.5 1275.2 3651.3 1236.9 2703.3 389.0 1033.4 2029.1 2918.1 501.2 1063.2 718.4 1518.7 1776.8 2793.8 770.2 2047.5 1476.6 2236.2 792.1 1389.3 2102.8 3417.5 451.4 1009.0 1201.3 3419.2 642.8 1926.3 620.6 2194.0 707.8 1642.3 1696.1 2852.3 1838.9 2257.1 591.8 1245.4 1647.3 2890.6 646.0 1362.7 1201.0 1886.8 1833.4 2439.1 1682.9 2542.2 679.7 1301.6 1905.6 2107.2 554.0 1871.0 946.0 2191.4 1021.3 1632.9 541.2 1303.7 1985.3 2987.1 643.4 2212.9 1195.2 1919.4 783.3 2480.9 708.6 1632.9 492.9 1185.9 1987.3 3128.7 663.3 1944.3 1224.1 2230.9 507.3 1234.4 1751.5 2915.9 994.3 1951.8 862.8 1748.6 523.2 879.1 1611.4 2706.3 510.9 1183.2 1899.7 2850.6 1 1 107 310 355.9 439.2 321.4 5569.0 1034.3 4240.6 271.9 439.7 1097.6 4187.8 102.1 838.8 468.4 1374.7 4010.2 4430.1 978.1 4028.2 237.1 725.4 3023.5 3709.7 287.7 622.8 2818.7 3202.5 225.6 508.2 3255.9 3937.0 211.1 607.5 620.1 826.6 190.7 4915.8 2706.6 3551.0 323.3 968.3 664.7 995.3 3065.6 3788.0 1246.5 3994.3 353.7 867.8 452.0 1274.2 338.3 5558.1 409.5 886.2 502.2 6167.0 336.8 869.1 3818.2 5101.1 412.5 844.9 535.3 4530.7 548.5 1074.8 195.7 5741.1 391.6 996.9 375.6 6500.8 631.8 1563.9 328.6 5536.3 810.7 3218.8 299.2 1800.3 552.1 928.1 573.5 5312.4 477.7 1038.5 2819.9 4855.8 533.1 1095.3 786.8 4629.8 751.7 1187.2 2569.6 4548.9 2079.7 3266.6 538.9 1402.8 1044.9 3118.8 511.0 1400.1 935.4 3248.8 678.6 1858.8 597.3 1265.2 2572.7 5044.7 554.9 1177.1 852.6 5068.1 521.2 989.8 593.3 5618.1 453.2 1044.7 457.0 6005.4 536.7 1062.2 677.5 5415.1 606.2 1162.6 2203.9 5421.1 700.5 1522.2 2071.2 4104.7 739.7 2190.4 831.2 2773.3 714.4 1523.5 575.0 4243.3 1 1 117 503 1082.8 4776.3 75.6 231.1 3996.7 4854.4 55.0 272.2 435.6 664.2 52.1 5412.8 970.3 4311.0 99.9 375.7 243.4 562.3 241.1 5523.1 386.1 705.4 3336.8 3744.3 2963.4 3753.8 349.2 535.7 4163.3 4414.6 192.1 399.0 3452.7 3943.3 403.8 779.4 564.0 955.4 3676.2 4815.8 441.9 649.1 448.8 4488.6 465.4 871.9 447.6 5520.9 1131.8 4754.7 211.1 880.4 1152.3 4495.6 304.9 896.1 3018.1 4187.7 398.9 800.9 2955.0 4290.7 274.2 633.3 1080.4 3746.4 321.3 804.6 1278.8 4168.7 343.5 1111.3 3041.8 3795.9 338.9 968.9 1236.4 3951.0 243.7 795.8 1065.4 3883.4 328.2 974.5 1109.6 4201.1 195.7 817.7 1282.5 3819.5 294.8 730.8 3033.6 3859.5 264.7 770.9 2950.6 4195.9 217.5 572.2 1297.5 3717.0 274.1 995.9 1210.0 4006.5 229.2 975.6 2369.1 3730.8 238.3 1010.2 999.8 3425.8 189.8 1296.1 921.6 1604.9 235.9 3656.1 2092.9 2860.7 478.1 1767.7 1070.8 1514.3 1811.0 2917.2 2059.4 2747.1 537.2 1547.6 1091.3 2930.0 235.3 1158.1 604.9 1369.3 176.5 2654.3 592.1 1379.0 215.3 2860.4 1 1 465 808 862.1 856.0 13278.0 13850.8 9869.9 12004.6 588.6 1372.2 9820.3 14340.0 631.1 1795.5 10493.0 13361.6 679.3 1976.6 10674.5 12986.2 730.5 2539.8 1765.4 2963.9 10672.2 12955.2 7768.8 10536.7 946.7 3330.5 8798.9 12363.9 896.2 2627.9 9082.9 11734.1 870.5 3107.3 7835.6 10857.6 907.1 3647.4 1956.1 3555.4 1049.3 18400.7 1987.9 3530.3 901.6 17566.5 8225.8 11367.2 931.8 3213.1 8511.0 10406.6 1143.3 3218.8 2604.6 4046.6 8193.1 10590.1 7097.9 9316.1 1376.2 3258.2 2366.0 3979.0 1484.3 11683.0 2310.5 4359.3 7382.4 10117.9 7408.2 9422.8 1765.1 3203.9 7787.0 10638.8 1522.1 3015.2 7900.2 11225.5 1136.8 2685.2 7571.9 10555.1 1178.9 3182.2 2607.6 4604.1 1605.9 12979.9 2590.4 4181.6 1422.3 14033.3 2480.2 4377.4 1477.4 14141.9 7969.4 10217.0 1176.3 3979.4 7246.0 10247.1 997.8 3176.3 2886.9 9998.6 957.3 3869.1 1904.4 4433.5 1232.5 10178.2 1689.4 3689.7 1419.9 10499.7 1843.2 3899.6 5569.6 10282.3 2635.4 9641.2 1473.3 4413.3 6104.7 9897.5 1493.1 4354.8 6137.7 9762.9 1412.8 5146.8 2839.6 5251.1 1508.8 12784.5 5943.1 8367.9 1863.3 5802.8 1 1 87 313 199.2 574.8 204.2 5541.5 256.1 69.1 155.1 5345.3 169.2 306.4 144.2 4578.8 2624.7 2786.1 451.1 347.7 379.3 316.6 141.1 4971.1 2060.0 2307.9 115.1 381.3 2189.3 2064.6 162.0 652.0 538.0 569.9 153.5 3712.5 2360.2 2545.9 358.1 458.7 467.8 609.0 160.0 4261.2 2248.1 2534.9 124.6 512.1 2173.4 2572.9 123.0 604.9 414.1 688.2 170.3 4230.8 601.1 2290.4 175.7 1108.5 387.7 634.9 203.2 4811.0 375.7 583.3 45.3 4481.3 407.7 483.7 175.3 5067.9 460.0 669.2 273.4 4460.7 1723.4 1978.4 149.6 1316.8 459.0 835.9 168.2 4200.1 767.3 2428.3 221.5 1092.5 1707.9 2237.4 187.9 853.4 912.3 2389.3 250.1 696.7 1702.2 2295.2 194.1 1036.6 641.9 1053.9 176.2 3841.7 1757.2 2092.5 395.4 1513.6 666.7 881.0 2030.7 3177.1 1429.9 1686.3 407.6 1497.8 703.3 950.1 322.8 3457.7 1769.4 1970.0 185.6 1245.8 1845.3 2047.9 390.6 1027.7 1694.3 1867.5 225.8 1388.2 799.8 1070.5 153.1 2901.8 1638.4 1724.5 160.9 1037.4 1571.4 1811.7 189.6 1029.9 1584.1 2063.8 189.2 1126.5 1 1 90 286 315.9 892.5 257.7 5531.2 3105.0 3179.1 184.1 1314.7 862.0 3184.9 1403.7 560.3 2465.8 2983.1 940.7 670.0 801.9 3237.4 134.6 551.0 2230.5 2923.2 269.7 551.8 1812.5 2805.5 119.7 589.4 662.0 1003.3 254.7 4395.0 581.1 2105.0 168.1 4354.1 458.2 533.9 433.4 4478.0 2004.7 2189.3 279.3 847.0 538.7 1805.6 2593.2 3298.3 558.0 1396.6 2746.3 3606.1 1673.0 2323.4 493.3 985.1 774.0 2818.9 484.0 2385.9 524.3 942.5 2717.2 3904.0 758.1 1420.1 668.6 3688.5 562.2 933.4 2213.9 3681.3 1670.3 2293.1 614.8 1239.0 1817.7 2190.6 1076.8 1427.4 1884.7 2311.5 442.8 1303.4 908.9 1571.7 311.6 3428.6 1959.1 2235.2 284.0 1583.2 937.2 1791.3 438.6 3713.7 572.6 978.2 1872.1 3204.5 840.3 1515.3 2222.9 3422.9 855.1 2507.8 612.7 1574.5 1565.3 2377.6 366.8 1221.9 1677.9 2137.4 444.4 1365.8 1093.7 1136.3 1773.9 2881.6 635.8 1014.4 1764.3 2947.0 1349.2 1734.4 832.6 1383.8 1461.1 2201.0 317.4 1216.5 1720.6 2159.2 365.3 1108.2 1528.2 2050.2 281.6 1100.0 869.2 2053.5 369.6 1208.1 1 1 88 396 140.9 1096.9 344.8 6266.6 38.8 774.7 4222.7 4503.0 157.6 609.8 110.5 3477.7 225.2 219.8 3463.7 3497.7 2192.1 2383.5 275.1 406.9 203.6 715.6 2234.3 2840.6 175.3 917.4 187.2 2479.8 2543.3 2859.6 429.9 216.3 470.3 564.0 2767.0 3652.9 1969.9 2161.6 447.1 629.3 1938.0 2385.7 1056.3 1564.4 541.1 589.8 2988.5 3376.8 340.9 764.4 326.4 2679.1 1959.4 2070.3 366.2 724.4 304.8 637.8 1929.1 2633.7 430.7 1038.7 409.1 2308.5 1904.6 1957.5 386.3 806.8 668.4 1024.3 1805.7 2390.0 1713.0 1919.7 398.6 625.7 1979.7 1973.6 397.6 551.0 430.7 747.3 1747.2 2126.7 1428.1 1498.3 583.5 800.6 652.3 903.5 1823.7 2400.8 1737.3 1698.8 479.6 844.0 1719.8 2051.7 465.6 804.8 519.0 1019.0 1695.6 2104.1 722.1 2055.8 474.7 729.6 384.6 723.9 485.7 2581.6 276.1 684.9 1628.9 2497.3 436.8 694.3 831.4 2437.6 330.3 635.6 684.4 2907.7 370.4 673.2 1097.6 2562.5 443.6 879.3 810.9 2617.9 1241.3 1387.8 355.5 1483.9 1409.4 1559.2 240.8 1354.7 846.7 1109.7 287.1 2103.6 1 1 81 453 -140.9 -161.3 973.5 6265.0 374.3 364.8 755.7 3583.2 1231.4 1125.9 517.6 795.4 202.7 220.2 986.3 1527.0 204.3 489.1 -200.7 1278.0 126.7 432.0 454.6 1133.7 576.1 579.7 229.1 773.1 788.4 1175.2 77.7 456.5 1028.1 941.2 185.2 678.5 775.6 819.3 406.3 889.6 894.1 890.3 323.0 626.6 1098.2 1614.3 -169.0 227.5 907.6 1197.8 98.7 413.8 785.8 1014.6 104.9 738.9 632.5 712.1 67.1 821.3 427.2 855.9 138.7 831.9 493.1 829.7 265.2 879.5 356.7 474.8 170.3 1233.2 331.9 648.5 147.8 1164.0 359.5 440.5 156.6 1193.2 396.7 719.0 165.9 1081.7 282.1 581.4 92.1 1470.3 527.7 644.6 158.4 1247.3 485.1 710.0 192.3 1132.2 434.4 541.2 224.2 1207.8 418.0 802.7 377.0 1159.1 549.2 1001.4 156.7 620.7 492.4 968.4 3.5 493.9 340.2 819.3 105.0 1095.5 153.7 647.6 233.9 1199.1 412.7 664.2 224.9 1194.9 542.8 938.4 -9.6 991.3 639.9 832.2 96.1 1016.1 583.3 820.3 227.1 1126.3 497.7 785.8 302.7 1024.6 630.4 934.6 202.2 968.9 1 1 88 479 1495.9 5966.1 205.8 438.1 684.8 1037.8 228.6 6432.9 4537.2 4893.8 179.3 572.9 644.3 1248.0 3827.7 4150.2 630.4 1173.8 304.2 3747.2 1547.0 4394.5 191.8 663.9 1287.6 4138.0 219.4 698.7 777.2 1467.8 326.3 4980.4 687.1 1213.0 363.2 5567.6 624.1 1243.4 357.3 5621.4 589.1 1311.9 3066.3 4749.3 1157.5 4457.9 373.6 1015.9 1334.3 4091.6 300.5 960.6 2702.4 3868.1 332.8 1006.1 746.8 1471.6 2443.8 3662.2 575.5 1070.0 532.2 3669.5 471.1 1189.5 2728.5 4097.0 551.7 935.5 2581.0 4525.9 722.4 1325.8 615.1 3504.7 2347.8 3222.2 384.4 1438.5 2378.5 2951.3 358.1 1484.0 965.2 1565.9 377.3 4082.8 1082.3 3199.2 414.4 1782.1 1091.0 1771.3 363.0 3084.5 2413.8 2882.9 487.0 1790.0 894.9 1629.5 2064.2 3588.6 782.2 1586.7 1820.2 3442.7 1189.7 3024.8 701.7 1820.2 1897.5 2539.0 449.0 1942.2 742.6 1273.8 506.7 4314.2 703.1 1201.5 612.6 5071.1 803.4 1285.5 1764.3 4361.7 1567.3 2205.4 929.6 2708.9 1021.1 1451.4 1626.3 3683.9 1621.4 1909.2 583.1 2189.2 808.0 1234.8 428.6 3488.6 1 1 120 534 4141.7 4714.4 -320.0 -102.6 -62.4 -19.0 5203.6 4303.8 975.6 5174.9 -102.2 121.4 8.4 230.1 -45.6 5011.3 381.4 647.7 3533.3 3896.4 938.8 4392.1 388.9 1460.1 49.8 218.9 3962.8 4236.1 3308.3 3334.0 412.4 538.2 3684.0 4522.5 365.0 -446.7 604.8 1942.3 3794.2 3928.9 334.8 704.4 3778.8 3733.9 2658.1 3143.3 561.6 574.4 3517.1 3799.4 991.7 956.9 3449.0 4240.0 877.4 281.9 849.3 1983.9 22.5 3767.9 822.3 849.6 2999.3 3452.8 2771.0 3260.2 499.7 691.3 733.7 821.2 2916.0 3283.1 939.1 4075.2 451.5 639.8 3370.9 3995.6 -3.6 231.6 3687.9 3898.4 179.5 171.9 3354.4 3912.1 74.8 1735.0 1113.0 1513.4 238.4 3321.8 2703.6 3505.6 276.1 963.5 1015.5 2127.4 296.9 3287.0 1027.8 4202.9 185.6 471.5 968.4 4270.6 307.2 410.3 1145.4 4116.6 85.6 521.4 886.6 3937.1 258.3 493.7 988.2 3797.8 237.4 556.2 2110.1 3658.1 231.2 423.5 2087.4 3456.9 372.6 1190.9 729.4 1402.2 2002.0 2001.0 826.6 1539.2 1960.1 2214.0 1732.2 2250.2 442.3 1009.6 721.0 1644.3 373.5 2392.5 1 1 111 505 809.2 624.1 3506.2 4015.6 2285.1 2454.5 302.4 391.4 1152.1 2498.8 52.5 496.3 827.3 927.1 273.3 1889.7 1695.0 1937.5 207.2 732.7 1531.5 2098.3 126.5 530.2 955.1 1450.0 315.2 1504.6 1141.0 1631.2 291.2 1702.3 1608.0 2113.5 273.5 787.1 909.2 1791.1 158.7 1671.2 1626.0 2321.5 17.6 747.0 1633.6 2147.9 252.5 752.8 1732.7 2125.1 190.0 839.1 1141.8 1434.1 254.6 1724.8 1048.0 1765.3 337.1 1545.8 1143.3 1875.0 648.7 1136.4 1564.3 2122.1 154.3 933.9 1095.4 1899.8 301.2 1557.2 1116.5 1612.5 526.4 1325.2 1073.1 1689.7 366.6 1289.7 1146.7 1607.9 706.5 1522.0 1216.2 1956.9 393.1 1168.0 1119.0 2013.5 355.6 933.4 1325.0 1912.8 234.8 882.6 1078.3 1822.2 273.0 1067.4 1063.2 1684.5 604.7 1475.1 1057.9 1671.0 263.0 1627.3 847.3 1725.5 344.1 1546.4 776.6 1539.5 412.3 1798.6 983.4 1537.3 511.8 1582.5 951.1 1793.9 358.6 1391.3 941.0 1618.0 226.8 1545.2 808.5 1566.5 331.1 1642.4 993.1 1581.0 469.9 1558.9 1144.5 1696.1 390.4 1229.9 1111.1 1774.1 276.8 1262.6 1 1 120 648 300.8 51.4 4243.2 3916.7 369.9 710.7 3726.2 3416.4 588.3 3645.5 210.9 460.3 137.8 450.3 3544.2 4141.5 110.3 307.3 326.5 4284.3 377.0 395.7 3564.5 3994.8 2659.6 2508.0 391.2 510.1 312.5 462.2 326.6 5248.7 313.2 718.9 247.5 5060.2 730.8 3282.9 200.6 1067.9 444.5 761.9 231.2 4680.6 317.8 698.7 3060.2 4470.2 819.8 2880.5 512.2 1376.9 378.2 769.7 518.5 3973.0 374.6 653.4 2855.0 4051.6 295.1 791.6 2914.6 4157.5 745.1 3133.7 687.9 1232.1 792.2 2961.6 456.3 1110.0 1829.0 3109.7 240.3 1016.1 732.0 1218.8 396.0 4143.0 572.8 1096.3 578.8 4604.4 590.4 1004.1 2300.8 4350.6 570.1 2548.5 760.1 1870.7 942.9 3029.5 486.1 1460.6 1696.1 2811.3 437.5 1491.7 798.0 1612.2 299.0 3366.0 977.7 2527.5 358.7 1608.2 1868.4 2633.5 317.5 1145.2 1741.1 2419.3 489.9 1420.6 905.9 1526.2 1789.7 2644.5 827.1 2423.6 689.3 1990.3 495.6 1303.4 710.4 3595.1 508.4 1092.9 1888.0 3877.1 476.7 813.0 858.4 4098.6 524.0 896.9 506.4 4650.1 582.5 1039.5 485.2 4373.1 1 1 89 450 72.8 -120.9 4436.9 4337.4 2965.8 3060.9 8.2 -475.6 304.7 302.2 214.9 4826.1 738.4 3219.6 187.9 76.4 804.1 1072.8 2247.9 2122.4 451.4 454.2 2275.8 2540.9 2245.7 2210.1 137.5 223.0 2725.4 2850.8 116.8 -27.0 424.7 420.1 2848.8 3024.9 1960.1 2297.1 373.6 524.9 471.6 569.8 2588.6 2610.2 787.1 2706.1 284.1 553.0 205.6 440.4 248.0 3290.3 579.6 2642.9 74.7 415.2 379.6 674.9 2196.7 2224.0 325.2 506.9 241.1 2450.0 1607.4 2021.0 217.2 760.6 461.8 653.2 140.7 3081.7 260.0 647.9 1858.5 2509.4 484.7 2263.6 374.2 681.3 605.6 2280.6 345.8 463.3 337.1 862.1 1492.0 2223.9 422.6 778.3 397.7 2271.9 485.6 2050.6 238.1 994.4 222.7 767.8 167.3 2696.1 405.1 673.9 176.1 2745.0 567.3 1717.0 64.6 1175.0 329.8 811.7 299.5 2504.5 381.5 813.9 1313.2 2429.1 372.8 1802.3 563.4 1280.0 341.9 587.8 325.2 3489.1 344.6 716.7 436.9 3425.1 802.3 1052.8 990.7 2548.3 877.9 1137.6 899.8 2017.1 1386.0 1453.2 404.3 1373.7 957.8 1452.0 319.2 1743.4 1 1 122 166 790.5 428.6 3894.6 3697.8 736.5 2355.0 179.3 284.5 2095.0 2462.0 482.9 387.1 2014.0 2169.4 51.1 312.3 1866.8 2114.0 203.0 673.0 384.6 478.9 242.2 4013.6 1665.6 1892.2 189.1 401.0 766.7 2329.9 102.2 416.6 1667.8 1905.8 183.2 339.8 404.5 674.2 2116.6 2569.3 411.1 561.4 2048.3 2354.9 1678.5 1693.9 307.7 664.6 1717.5 1816.8 312.7 708.5 446.6 802.8 1848.0 2558.5 1410.2 1636.0 549.8 878.4 1527.3 1872.2 245.2 515.6 578.7 2189.7 252.5 608.0 652.0 2401.1 286.2 640.3 1270.9 1813.4 224.6 621.1 1286.3 1692.8 294.0 493.9 575.5 798.2 1764.4 1869.3 353.1 728.5 1808.1 2016.7 510.2 940.5 1978.6 2134.0 1353.3 1882.9 398.9 803.9 1476.1 1925.1 331.0 673.7 531.1 867.9 382.8 1991.9 400.6 619.3 1727.1 2075.1 459.4 724.2 1538.1 1836.1 839.0 1198.9 692.4 1079.7 464.0 746.8 1628.6 2003.5 362.1 673.7 1690.3 1956.7 826.5 1193.2 626.5 1229.7 490.5 792.8 1377.4 1777.2 1025.3 1352.5 488.7 912.7 981.5 1141.6 481.5 926.1 613.1 915.0 1129.2 1708.9 1 1 82 533 315.3 449.5 227.9 3990.9 353.1 509.9 2558.6 2601.6 375.6 404.7 142.2 2214.1 324.0 341.5 1690.0 2092.8 342.2 436.6 183.2 1947.4 619.8 2081.8 153.4 411.9 364.2 654.6 126.3 2309.1 528.6 641.3 187.0 2226.1 1606.4 1831.5 122.9 515.3 391.1 721.9 221.4 3009.4 339.1 504.6 207.4 2959.6 373.9 563.3 277.1 2432.4 342.3 667.1 1132.5 2117.6 346.1 566.6 261.1 1924.6 593.2 1594.9 164.7 722.7 327.1 782.0 142.8 1946.8 496.7 1585.1 208.7 786.1 348.9 613.4 261.3 2027.6 487.9 726.9 967.6 1942.8 474.6 1482.4 287.5 889.5 456.2 870.8 241.9 1688.5 567.2 1511.9 201.3 715.1 528.4 1696.1 222.0 715.0 542.3 1537.4 164.6 725.5 489.9 835.6 184.2 1682.3 434.3 706.6 277.3 2045.6 332.2 729.3 925.7 1816.6 319.7 639.4 949.4 1726.9 342.1 739.8 981.3 1594.6 507.2 1261.4 317.8 1001.6 873.9 1336.3 193.7 867.5 652.3 1534.9 155.2 760.2 578.5 1431.9 208.3 643.0 932.6 1412.6 223.3 702.4 874.3 1280.9 214.2 705.6 561.4 841.5 698.3 1344.8 1 1 109 730 430.3 43.6 4214.0 3669.5 3079.1 2909.3 146.8 1925.9 205.3 392.3 292.7 4636.5 704.2 3703.5 206.4 553.0 305.0 1100.0 4134.0 4516.4 840.5 1290.7 2796.9 4104.4 2960.0 3757.6 284.4 1053.3 3037.3 4593.9 323.2 444.6 639.2 1492.4 2768.7 3185.3 2307.2 2945.5 660.5 691.8 627.3 1365.0 2854.5 3232.1 553.5 3451.1 1242.1 1546.2 1012.3 668.2 370.0 3169.3 927.3 3272.3 764.0 910.6 478.0 1236.0 2667.0 3999.2 405.0 852.1 2481.8 3309.5 731.0 1120.9 353.5 2679.8 874.8 3395.0 261.3 676.4 630.8 1399.6 628.1 3990.7 646.4 1705.0 1958.0 2612.9 791.5 3829.9 402.3 676.7 1102.0 3283.7 388.8 916.0 1142.4 1254.9 2068.7 3022.2 670.0 1424.0 505.5 2522.5 581.8 2520.6 356.2 1621.5 472.2 1398.7 272.4 3480.2 437.5 1499.5 271.9 2290.9 611.2 2179.2 274.1 820.4 422.9 1281.2 293.9 1340.8 359.9 1238.0 1498.1 829.2 410.1 1804.6 333.1 1062.2 342.5 1123.5 311.4 1501.4 681.5 1060.2 400.1 1664.3 617.0 1496.0 355.5 1519.2 945.3 1806.2 635.8 2590.0 1337.5 2162.8 608.4 1730.3 1 1 94 520 4245.3 4646.9 245.1 1038.0 1218.2 4430.4 391.9 522.2 497.3 643.9 165.8 4682.7 548.8 831.2 2951.9 3532.8 971.4 1094.8 301.4 3038.3 3060.5 3105.7 220.2 780.9 3147.3 3489.4 196.5 417.5 2998.4 3730.6 195.5 1243.4 773.8 1378.5 2432.0 3022.9 1069.2 3795.7 366.4 923.4 2261.7 3220.9 160.0 1528.0 740.5 1279.5 321.3 3888.7 616.0 1030.1 359.7 4245.4 902.2 2744.4 313.6 2614.3 615.1 1716.1 321.8 3187.1 466.1 1124.2 832.8 4101.3 505.1 1217.3 2189.6 3430.2 1159.0 3142.1 481.7 1269.6 988.3 3561.6 307.4 1158.8 1000.5 1869.3 290.2 3610.5 2252.5 3292.7 279.8 1328.7 1082.2 1828.7 1776.7 3350.6 1955.9 2834.7 550.7 1914.5 2395.7 3340.2 352.9 748.0 2427.9 2535.7 261.6 1379.6 2012.6 3060.4 349.4 1890.4 930.2 1318.1 476.8 4154.3 726.9 1227.2 1891.2 3757.3 1519.6 2123.9 498.3 2206.3 846.2 1527.8 393.1 2248.9 1770.4 2270.9 671.2 2020.4 778.8 1579.9 1577.6 2857.6 876.1 1414.6 1529.9 2413.1 1734.2 2318.9 713.0 1829.0 1131.7 1788.0 414.7 2514.8 1914.5 2673.9 325.0 1217.2 1 1 112 852 496.1 595.4 333.3 6286.4 649.7 855.8 4587.5 4714.4 2310.2 2140.2 313.7 2500.1 3269.5 3914.7 319.6 568.1 3101.8 3484.9 225.8 572.0 910.6 2512.4 1639.6 1833.1 920.8 2315.2 233.2 2850.4 2308.8 3493.9 218.8 744.0 2077.3 2622.1 336.6 2750.0 2130.2 3163.8 300.9 892.2 1528.7 2164.8 1917.7 2594.9 875.9 2530.5 1606.5 2295.8 834.7 1176.9 393.5 2983.0 2364.2 3047.2 271.9 1066.2 1122.6 3473.3 305.0 933.8 1752.6 2516.0 231.9 2206.4 1865.0 2532.5 278.6 2424.1 1019.4 2389.7 218.4 2379.5 1921.1 3338.5 294.3 1050.1 1749.3 2556.3 313.3 2197.0 1840.0 2624.0 340.3 2276.2 1536.2 2866.3 325.7 1177.6 927.6 1573.0 323.7 3426.1 1114.4 2111.4 305.2 2513.9 2130.4 2757.5 305.9 1246.0 1045.8 2258.9 436.6 2643.3 1493.9 2089.5 1525.8 2653.8 878.5 1625.7 1450.8 3096.9 1479.5 2054.6 1186.5 2171.5 1409.9 2161.1 938.9 1869.7 1467.0 2768.8 395.7 1371.2 1562.8 2312.2 333.8 1822.3 1221.5 2843.5 355.9 1362.0 1782.0 2861.2 475.2 1518.3 1416.9 2113.3 1061.4 2480.3 949.8 1434.5 1243.2 2996.9 1 1 92 550 4368.0 4632.7 113.3 228.7 1031.7 4446.1 158.5 162.5 1210.9 4948.0 34.1 284.6 1147.7 4991.4 -16.3 112.9 1016.8 4677.0 77.2 365.0 372.9 694.1 213.5 4857.8 858.8 3604.8 73.3 422.0 1155.1 4502.4 97.1 452.5 3282.3 4092.4 74.9 396.1 404.5 866.2 232.6 5208.9 1063.2 4157.7 60.6 391.6 3414.8 3990.3 75.6 446.3 1022.1 3566.2 223.3 803.7 355.7 920.5 238.8 5078.2 824.1 3563.2 191.1 920.8 423.6 852.6 287.1 4522.3 387.7 840.9 2737.5 3807.3 2183.7 2876.4 592.1 1246.7 591.4 1023.0 2697.7 3662.9 425.0 1148.8 2625.2 3581.5 947.1 3250.5 453.0 1150.6 524.0 1078.2 467.8 4353.6 603.3 1073.2 2669.7 3810.5 2039.2 3201.9 585.4 1028.6 999.2 3529.2 345.0 807.4 1094.6 3543.6 348.5 712.6 2215.9 2706.1 507.8 1065.4 877.1 1280.6 2152.0 2848.4 2065.9 2660.6 578.6 1225.8 2214.1 3068.8 556.7 1103.7 877.6 1172.1 2015.2 2858.8 773.7 1125.5 523.8 2433.4 2001.7 2549.1 304.4 1364.9 837.4 1365.8 310.8 3153.5 810.9 2399.4 234.5 1568.3 796.4 1497.6 279.7 3341.5 1 1 104 584 241.2 285.5 4145.0 3959.3 3464.8 3258.6 201.2 209.0 508.4 369.2 209.5 4316.5 951.6 3609.6 249.8 389.7 521.1 818.0 2528.1 2847.6 629.1 682.1 2671.2 2975.7 2382.2 2431.5 151.7 484.5 2779.9 3004.6 349.5 496.4 642.9 1020.6 2058.9 2294.5 2079.4 2800.4 355.1 576.6 594.0 782.1 1891.0 2310.0 995.8 2772.2 459.5 860.2 555.6 1035.9 330.6 3622.4 756.3 3140.2 419.4 885.1 426.1 947.7 2255.9 3092.9 544.6 922.6 507.0 2892.6 1996.2 2444.4 329.4 1001.8 731.6 787.0 483.2 3523.3 575.6 845.8 1828.5 2937.5 806.5 2572.2 492.1 1045.8 849.0 2387.4 466.3 1059.2 620.2 1093.9 1913.3 2618.6 595.3 1182.9 531.0 2592.3 717.7 2523.8 364.7 1220.2 551.9 1048.8 238.3 3171.1 560.2 1001.2 280.2 3165.3 715.3 1951.0 312.8 1704.3 458.2 958.8 436.5 3077.0 431.0 916.8 1602.0 3041.3 665.2 2190.9 533.7 1619.6 493.4 1179.9 371.6 3208.9 608.3 989.6 367.3 3142.5 1154.4 1638.2 816.1 2104.8 1194.7 1383.2 1059.6 2104.0 1616.3 1845.3 518.5 1547.9 1079.0 1850.9 272.9 1924.2 1 1 123 436 7211.7 7918.3 -409.2 240.5 6802.1 8412.6 136.5 -163.2 6238.2 6448.7 231.8 456.1 5834.1 6768.4 139.9 321.6 957.4 1212.3 -18.2 8916.3 822.0 743.5 5377.4 5693.0 4766.9 5010.8 541.4 264.5 1089.1 1526.4 5915.1 5772.3 5025.7 6082.7 627.3 245.9 6152.6 6183.5 575.7 888.6 5866.9 6611.2 392.3 619.7 1898.2 7550.1 331.2 685.8 5418.2 6660.2 361.7 690.1 1018.6 1726.2 425.5 7523.4 1364.3 7051.5 259.0 949.1 1905.3 6963.7 118.7 519.4 4152.5 5544.9 330.7 678.1 1645.5 5549.1 303.8 685.8 937.7 2100.0 338.0 6275.5 959.5 1690.3 637.9 6279.7 1195.5 1988.0 3603.0 4899.1 3836.1 5380.5 430.1 1112.9 1696.2 5408.5 501.8 1549.0 1007.6 2183.9 537.8 6250.6 1540.6 5932.0 398.9 1272.0 1291.3 6006.0 522.2 1629.5 967.1 1981.4 372.1 5490.0 890.5 1705.9 650.6 6534.0 974.0 1744.2 3009.9 5055.5 3357.4 3949.5 839.4 1560.9 3863.7 4652.5 480.0 1697.5 4146.0 4952.2 499.8 1384.0 4206.3 4908.0 407.8 1164.5 3749.0 4928.0 358.2 1868.3 1350.1 2067.5 726.0 6495.2 1406.9 2034.9 3099.5 5660.6 1 1 109 580 3850.5 4602.4 197.6 450.8 511.0 710.9 226.3 6075.8 1130.9 5171.5 194.5 520.5 436.2 565.1 232.0 5119.2 382.0 643.3 136.7 4838.3 465.6 828.6 3121.6 3665.5 337.9 769.7 3000.3 3802.4 3180.8 3663.7 236.9 658.2 686.1 1081.1 230.9 4263.2 448.4 896.9 2685.8 3817.1 979.0 3643.8 418.5 823.6 1148.0 4001.7 198.6 711.6 954.9 4576.1 231.6 795.4 686.6 1470.4 369.5 4475.2 2636.4 3673.0 140.8 1229.6 1199.2 4163.5 247.1 646.2 1020.6 3807.3 247.3 714.3 977.2 4122.3 250.4 839.7 1146.7 3933.7 153.5 700.6 1058.9 3777.5 226.5 892.8 1009.1 3593.7 288.4 918.9 571.1 1772.5 377.8 3029.5 572.4 1453.4 2167.7 3559.1 561.5 1361.4 726.3 3083.9 908.0 3601.1 351.3 1220.7 881.0 3252.2 327.7 1208.8 637.2 1820.0 341.6 3206.7 969.9 3322.5 277.5 1601.0 1946.5 3637.6 261.4 1245.3 930.3 1732.7 301.3 3086.0 915.4 3208.7 318.7 1599.0 915.4 3238.2 264.2 1193.6 679.9 2007.4 270.2 2797.6 802.6 2872.8 219.3 1628.2 522.0 1474.8 465.0 3179.3 589.6 1391.9 1306.4 2965.4 1 1 102 549 1019.1 4597.2 -169.1 -326.2 402.8 481.0 287.7 5795.2 305.9 176.6 3708.5 4292.0 3291.5 2949.2 219.9 414.0 362.9 489.2 3415.1 3738.4 984.4 4397.6 260.5 90.6 119.2 339.2 295.8 5092.9 390.1 741.3 3304.0 3564.8 1024.6 3880.0 -46.9 128.9 937.1 3881.7 315.7 658.1 398.1 712.9 412.2 5832.7 370.6 662.5 3868.8 4737.4 471.0 821.0 3504.1 4046.8 2929.0 2784.7 389.0 1077.3 2896.6 3243.8 327.9 745.8 246.5 494.6 278.4 4811.4 602.3 865.1 -24.6 4814.3 2438.3 3069.2 338.4 1149.6 660.9 763.5 2777.9 4089.9 2754.4 2810.7 105.8 726.5 2856.0 3570.1 293.8 693.9 1110.9 3583.1 219.9 364.6 2780.7 3483.9 32.7 626.0 2664.0 2918.7 408.0 934.5 730.5 1194.8 2752.2 3319.2 523.2 792.6 2803.1 3412.0 1868.7 2254.4 467.9 992.0 2160.7 2658.3 179.6 1140.3 716.5 1151.9 275.1 3758.0 1807.9 2201.8 212.1 1348.8 484.8 850.3 238.4 4128.6 606.4 852.1 109.9 4031.8 520.2 754.5 211.5 4128.6 714.0 963.3 155.4 3617.4 1914.4 2250.7 206.6 1753.0 739.8 983.5 120.7 3930.0 1 1 121 318 439.4 480.6 277.8 5331.7 353.9 561.6 3769.4 3979.7 305.6 489.6 3598.4 3983.4 257.2 564.8 3425.8 3429.5 939.3 3680.1 370.5 583.2 493.7 782.1 3591.9 4174.2 2034.2 2490.0 305.1 750.9 524.0 697.8 562.6 4812.5 550.4 776.0 3027.0 3497.8 2648.2 2899.1 475.7 1079.7 629.1 967.7 297.9 4350.2 635.3 1064.4 327.3 4856.0 2655.7 3634.5 494.5 1360.6 729.6 1108.5 2744.5 4017.6 2561.0 2944.3 546.2 1323.6 549.2 1249.7 442.5 4218.1 932.8 3312.2 300.8 1323.0 481.3 1344.4 375.1 4451.7 1160.2 3402.2 314.9 1062.3 2379.6 3421.0 330.9 885.3 990.2 3536.4 294.4 796.5 994.4 3642.3 289.8 885.5 1244.3 3461.7 350.2 833.2 2066.9 3313.8 258.1 840.2 955.6 3198.7 366.4 1212.3 616.1 1260.3 689.8 4050.1 606.7 1356.1 2267.8 3491.7 670.5 2739.3 915.2 1688.7 673.5 1549.2 2192.5 3320.7 1584.2 2094.4 646.3 1795.9 647.6 1165.7 517.3 3910.1 787.6 1236.8 376.2 3644.8 1739.4 2447.1 410.1 1658.6 2033.0 2865.0 411.3 1097.9 1673.7 2180.1 558.4 1464.7 757.4 1287.1 1577.7 3111.4 1 1 119 279 395.1 258.4 218.9 5321.6 310.0 424.3 268.3 4917.6 409.1 439.7 3118.4 3842.7 864.2 3801.2 267.3 533.6 392.7 759.7 3612.6 3914.6 2877.3 2993.2 292.9 674.5 391.4 772.3 372.9 4632.3 928.2 3840.1 201.2 686.4 953.8 3597.1 181.4 691.2 387.7 1031.6 266.7 4340.8 822.5 3480.3 123.3 784.5 927.3 3387.7 226.0 655.7 527.8 1052.9 356.3 4115.4 454.5 868.4 2505.4 3771.3 447.4 1183.3 385.6 3451.5 888.4 3332.2 295.0 1363.9 422.2 1144.4 268.7 4382.0 780.6 3111.0 302.3 1350.9 362.1 1120.4 485.0 4172.1 467.6 1125.6 2163.6 3503.1 798.9 3035.3 547.3 1145.9 874.0 3336.0 247.7 1161.4 581.1 1543.8 356.5 4043.9 863.2 2829.9 325.7 1279.1 797.7 3024.2 258.8 1123.3 570.6 1456.4 339.2 3897.5 774.9 2745.3 268.3 1554.6 644.8 1435.0 263.2 3523.2 1801.7 2698.5 271.5 1480.0 1014.1 2980.5 235.0 1352.8 1851.7 2858.8 390.8 1302.7 647.8 1591.8 1752.1 3101.4 580.4 1527.8 527.9 2771.3 741.6 2915.2 376.4 1667.3 926.1 2667.5 250.5 1301.0 1713.1 2503.8 275.5 1190.6 1 1 89 424 386.7 268.6 4334.0 3980.7 909.6 3972.8 285.0 435.6 864.6 3618.0 265.7 428.8 812.3 3412.3 195.3 450.3 295.2 585.2 197.4 4141.8 740.1 3382.6 157.9 479.2 317.6 839.8 214.7 3449.1 790.4 3523.6 155.4 535.8 451.0 848.3 245.3 4465.0 430.6 744.7 2688.9 3987.2 728.5 2819.2 384.0 761.2 374.6 839.8 279.4 4819.7 2166.0 2937.8 221.8 785.2 852.1 2932.5 254.6 816.6 568.0 987.3 201.2 3456.3 1892.1 2690.1 272.5 801.0 617.2 1029.0 1933.3 2872.6 1742.0 2300.0 451.5 863.2 596.0 863.8 360.4 3110.0 435.7 734.9 1811.9 2818.0 424.9 769.9 2116.7 2964.1 441.9 860.4 2056.2 2719.2 828.5 2625.4 651.0 1091.3 1053.2 3042.4 384.8 835.8 2064.7 2888.1 330.9 836.4 1954.7 2675.6 275.0 785.8 1046.4 2969.9 214.3 667.9 1824.6 2764.4 316.1 741.8 1733.7 2412.4 397.2 815.8 747.0 1281.6 1301.2 1911.9 766.6 2249.7 545.4 1234.6 1484.1 2238.5 381.7 964.6 765.1 1205.7 1409.8 2033.7 642.6 2180.1 796.2 1435.2 520.6 1255.5 496.9 2826.5 426.3 949.8 1559.1 2752.8 1 1 82 804 415.0 472.8 523.0 6176.0 481.7 717.6 201.1 5090.2 966.3 3409.3 110.0 523.1 413.4 648.7 390.3 5077.8 372.9 603.2 3285.7 4299.1 412.6 557.4 3184.7 4008.1 373.4 694.8 2893.4 4215.8 384.5 678.2 346.1 3232.8 755.4 2712.5 325.5 1172.4 428.3 818.9 290.8 5199.5 413.7 752.3 316.9 4989.4 842.9 2927.6 274.3 1104.3 2210.4 2674.9 240.3 955.5 1952.1 2524.8 273.3 1156.9 600.7 1064.7 340.9 4956.1 576.9 1120.6 331.1 4387.4 954.5 2987.4 209.6 1369.2 662.5 1077.6 238.5 4762.9 2162.5 2562.1 318.2 1569.4 717.7 1118.7 276.3 4361.0 698.9 1148.8 259.9 4002.9 957.6 2893.6 299.3 1184.4 996.0 2831.7 283.5 1233.7 1776.3 2527.2 320.2 1561.9 685.0 1022.6 310.1 3653.0 517.5 888.1 544.9 4270.7 550.0 910.0 1997.0 3779.9 500.8 853.2 1771.8 3467.8 527.2 1131.7 447.9 2759.6 816.1 2332.7 356.7 1871.1 679.9 1294.3 300.8 3437.2 1601.8 2264.4 303.3 1605.3 761.6 2326.6 249.6 1861.2 580.1 1071.5 305.5 3371.1 428.0 804.9 463.9 3567.5 416.9 919.8 1385.7 3569.0 1 1 90 304 216.2 119.6 256.5 5302.1 288.8 304.5 175.6 4587.4 755.6 3178.6 119.6 32.5 702.4 3067.4 143.8 205.5 179.7 403.9 3166.4 3412.0 597.2 2939.0 106.1 225.4 590.2 2642.2 165.8 293.2 1978.3 2660.6 212.2 509.8 435.7 638.5 2436.2 2879.1 1933.4 2199.8 368.6 688.1 324.1 526.6 2546.6 2997.0 292.9 403.7 387.1 3067.0 332.1 603.5 172.9 4261.9 652.7 2361.3 161.3 743.7 830.0 2769.5 156.6 418.3 1741.9 2250.0 297.0 510.9 402.9 672.0 2676.4 3104.9 277.7 707.0 2368.6 3391.7 1423.5 1843.9 545.6 896.7 372.3 543.8 2294.1 2953.8 442.7 760.3 1904.7 2766.7 1301.2 1600.4 499.2 1079.4 442.7 716.5 594.9 2903.6 330.4 591.0 1823.6 2614.6 608.6 1873.4 441.0 956.6 1327.2 1700.1 466.4 782.2 445.1 709.2 1824.9 2655.6 381.1 519.7 2005.9 2624.5 1016.2 1340.2 612.7 1141.9 428.5 493.1 1907.5 2565.2 407.7 466.7 1841.4 2569.6 839.5 1107.5 712.9 1406.9 304.4 553.4 509.1 2507.9 317.0 563.9 1379.3 2368.5 304.8 488.6 1238.6 2071.0 453.9 1230.0 500.3 1089.9 1 1 107 425 1228.6 5755.4 418.9 325.8 4265.1 5278.0 389.4 219.8 3974.9 5831.1 214.0 420.6 3587.8 5055.1 193.6 1102.7 927.5 1398.4 150.2 6732.7 769.2 1302.1 4282.0 5054.3 725.2 1425.5 3895.9 4816.3 301.2 2138.0 694.9 5524.4 1012.2 1125.5 511.3 8866.3 596.9 876.3 705.6 10458.9 712.6 1501.4 316.8 9472.2 3958.3 5092.7 375.1 2291.1 4328.0 4597.1 380.1 791.6 1534.5 4860.7 131.9 1488.0 3526.5 4466.5 57.9 1653.0 1342.1 4400.3 256.8 1599.7 657.6 1244.4 245.3 6535.8 637.9 1423.0 429.5 6104.5 918.2 1498.0 2616.2 5334.0 2876.0 3565.0 767.5 2359.0 1172.6 1900.2 2292.4 4165.0 1463.3 4500.8 582.2 1684.9 1776.8 4863.8 630.6 1770.8 3169.4 4430.4 467.3 1860.5 1386.7 2315.2 602.4 5061.4 1532.6 4493.5 267.2 1747.1 1107.3 2019.9 153.5 4554.6 1353.9 3861.7 168.1 1785.6 834.3 1790.0 306.3 5352.9 588.2 1418.7 331.7 6098.0 721.7 1302.5 303.0 5788.7 599.0 1378.7 2293.3 5428.8 972.0 3237.9 330.5 2293.9 1246.9 3937.0 658.6 3174.6 1071.9 3564.3 375.5 2091.0 909.3 2214.5 468.9 5646.7 1 1 110 408 5112.6 5737.9 410.7 5045.0 735.1 1155.1 289.6 8346.9 598.5 885.6 4685.3 5907.4 2683.5 2612.3 330.3 4760.1 4016.7 4766.2 281.2 744.5 3858.9 4781.4 283.8 635.4 3244.9 3934.1 267.1 3188.8 1233.8 4754.2 302.0 3531.7 1435.0 4685.0 2111.1 3267.2 3477.5 4364.4 338.0 999.1 1392.7 4472.7 455.7 1219.9 2894.4 4162.7 980.1 1637.4 865.5 1528.5 3343.7 4411.2 1898.3 2142.8 630.0 3883.3 2852.9 4298.1 457.6 1201.2 1899.6 2498.3 2363.7 3233.2 2392.7 3121.5 560.7 2783.5 2670.0 3530.1 643.2 1462.4 1067.7 1647.4 2364.9 4066.3 889.3 2458.1 549.7 3353.8 1831.9 2662.2 502.7 4442.2 2088.8 2770.9 605.7 4729.9 2207.8 2927.6 2576.3 4368.1 1081.6 2798.6 931.7 4119.7 1990.6 2773.5 2160.8 3998.6 2487.9 3054.1 690.3 2305.3 2437.3 3059.1 1076.5 2124.9 1037.6 2496.2 542.3 3551.9 1049.9 3213.6 1200.6 2485.4 912.5 2202.2 574.0 3423.5 980.1 3305.7 1298.1 2595.6 1098.5 4074.2 601.7 2378.4 1203.6 3670.3 1117.8 2347.6 1913.3 3743.1 524.2 2001.5 1374.2 2332.8 435.8 3967.3 1073.1 3474.3 476.3 2642.0 1 1 103 853 384.4 450.7 1322.5 6129.9 1031.8 611.2 134.9 5785.4 324.3 481.6 227.8 6101.2 543.2 1110.4 260.3 5825.1 345.9 546.2 1297.7 5136.7 1005.4 3577.5 814.3 1401.7 723.0 1414.7 218.6 4569.2 3260.4 3164.7 295.1 734.5 483.0 837.8 3234.3 4965.5 1162.5 1264.1 3400.9 4843.6 2348.2 2417.4 681.5 1976.9 569.9 1025.2 2905.5 4484.2 475.2 793.4 349.0 3515.7 677.7 1123.0 357.3 5177.3 2470.1 2604.2 1143.6 1784.2 579.5 930.4 355.2 4234.7 1211.0 1163.7 290.3 4692.1 2443.1 2875.1 304.4 1408.0 2659.5 3026.3 874.1 1700.4 2448.4 3054.2 327.3 827.8 2656.8 2991.6 282.7 811.9 2320.1 2648.6 558.4 1500.7 914.0 1341.6 465.1 3998.7 2126.7 2765.1 359.8 1305.6 1033.0 3232.5 298.3 1872.4 2075.7 2452.4 298.8 2057.2 665.0 1364.5 448.6 3800.6 604.1 1261.1 1749.4 3361.6 860.2 2875.7 550.5 1775.8 626.3 1699.9 407.9 3638.5 819.8 1190.4 299.6 3598.5 2058.2 2471.9 350.4 1587.5 1962.8 2624.1 459.7 1868.0 887.4 1513.1 1885.9 3583.5 1221.9 1340.2 527.1 3052.6 1650.3 2502.9 374.3 1814.4 1 1 115 514 1127.1 4509.4 259.1 387.0 399.6 591.2 190.0 5361.1 405.0 348.4 90.1 5763.3 241.2 355.6 227.6 5040.4 889.7 4284.1 98.9 422.2 3473.6 4022.1 139.4 270.5 838.6 3584.8 132.6 412.7 1178.6 4301.7 157.9 527.3 520.8 879.8 216.0 4251.0 268.2 942.2 188.6 5115.4 1052.2 4155.6 136.1 656.6 1181.6 4399.1 164.1 589.1 3101.7 3815.3 14.4 483.1 2587.5 3610.5 295.6 913.9 670.9 1023.3 2617.0 3527.8 374.0 854.4 2987.3 3841.3 396.2 982.0 2444.2 3512.3 873.2 3366.1 527.3 1269.6 499.0 1060.8 462.0 4165.8 515.5 884.3 2537.0 3780.8 482.9 830.2 866.3 3679.0 615.4 787.1 2280.4 3530.9 2538.3 3219.0 745.5 1410.3 2784.5 3601.0 332.1 896.9 2653.8 3214.2 304.0 707.3 1111.8 3297.7 398.2 959.0 1135.0 3392.9 418.4 952.7 1924.1 2970.4 326.5 1134.5 1105.0 2841.2 281.9 1082.4 988.8 2941.2 353.2 1128.1 1673.8 2482.8 329.3 1395.4 759.7 1436.9 329.2 2796.7 567.6 1183.8 265.9 3307.2 841.5 2339.3 298.3 1472.9 797.3 2458.7 227.2 1083.7 713.9 2824.9 255.7 1225.0 1 1 114 521 4193.3 4507.4 -216.8 -750.0 3698.9 4155.1 1.1 -399.0 3801.1 4438.4 -144.1 -178.1 146.9 1176.4 -113.3 5842.1 -288.3 259.9 4201.5 4564.5 329.1 480.1 2670.7 3508.9 -63.1 438.1 3587.5 4004.6 2918.8 2833.9 248.4 366.1 529.4 746.4 33.6 5475.6 262.9 29.5 548.7 6975.0 78.7 93.4 4012.0 5468.3 253.8 710.4 163.8 3992.8 214.8 204.8 2963.6 4278.7 653.9 463.2 515.3 4254.2 450.7 565.2 -55.8 4698.1 916.6 3668.9 360.5 1138.2 211.6 67.0 3216.9 4645.3 218.6 230.8 728.8 4094.5 722.6 1065.8 2700.4 4280.7 2417.1 2386.9 316.4 1393.7 543.1 946.2 197.7 4577.2 54.2 798.6 400.3 4996.0 454.8 551.0 198.2 4583.5 1009.6 3501.0 473.3 1240.9 553.8 827.6 2207.9 3551.3 789.7 3314.0 352.7 1485.4 570.3 1397.6 156.6 3995.5 732.3 2838.5 367.6 1926.8 530.9 1654.5 201.1 3703.3 1122.9 3029.3 94.6 1246.1 2637.3 3048.8 222.9 1294.0 2536.9 3332.3 338.8 862.5 1260.9 3358.1 108.1 536.5 2148.2 3169.1 226.5 1392.4 781.3 1277.9 444.0 3836.9 829.9 999.5 1872.7 3644.8 1 1 99 337 79.9 -147.4 179.4 5233.2 3132.6 3494.8 87.3 -162.3 3073.6 2994.7 -126.5 169.4 45.7 213.4 2943.0 3145.7 289.9 198.8 2651.2 3116.1 716.1 3158.5 156.6 315.4 270.2 446.7 178.0 4129.0 315.7 300.4 3380.1 3609.1 346.0 375.7 2725.8 3000.8 352.5 653.6 182.8 2802.3 740.9 2532.7 222.1 656.5 397.7 787.6 37.5 4785.1 346.8 643.1 244.7 4696.4 2233.8 2381.2 216.1 1124.0 2213.2 2822.2 185.9 710.3 2094.1 2977.7 109.8 424.9 965.7 2658.0 248.5 524.0 1998.8 2505.7 301.0 451.3 680.9 938.4 1801.5 2716.3 791.2 2404.4 453.3 829.3 1856.4 2376.8 326.4 696.8 1804.5 2784.8 190.9 644.5 1151.9 2723.9 192.0 363.0 2023.8 2630.8 212.2 519.7 2037.3 2610.2 279.6 519.3 2204.5 2689.5 279.8 465.9 1973.9 2461.1 240.8 553.9 2036.7 2486.1 253.6 452.4 1054.5 2648.8 197.8 446.5 1902.6 2457.1 195.8 437.1 1855.9 2393.1 213.1 464.3 925.8 2252.3 351.3 590.6 618.1 1057.7 1976.0 2330.8 596.6 1101.9 1898.8 2148.5 1375.3 1907.2 564.3 963.0 1785.6 2339.2 287.7 787.5 1 1 118 632 785.3 720.3 2943.3 5082.2 3635.7 3525.3 -133.8 4223.5 259.5 -10.6 2317.5 4592.7 762.3 3175.1 2514.0 2776.2 392.6 724.5 3518.0 4043.3 684.0 500.1 3284.6 3701.1 2199.7 2646.8 141.2 2015.9 3169.9 4154.5 361.6 349.4 721.0 776.1 2514.9 3851.9 2683.1 4017.5 517.4 732.2 879.1 2686.1 2480.2 2891.5 1066.3 3327.3 465.9 3158.1 833.2 2498.9 313.3 3538.9 971.4 4370.5 320.0 889.8 636.7 3008.5 2501.3 2859.5 713.2 2234.3 448.2 2941.8 2836.6 3820.5 385.4 1064.7 785.3 2796.1 561.0 3680.4 913.4 3046.2 2053.5 2939.5 1017.1 4191.4 316.6 711.0 968.4 4115.4 338.1 735.3 855.7 2554.0 1640.5 2418.6 981.0 3049.5 404.7 2621.4 2149.2 4205.4 400.6 1048.1 2091.1 2739.0 315.4 2818.4 1667.9 2940.2 282.6 3106.0 941.2 3442.2 243.7 1558.3 597.3 1674.1 487.2 3749.6 896.4 2712.3 1314.5 2699.3 1441.3 3111.2 619.7 1737.3 804.9 1567.5 1345.0 3974.0 1319.6 2436.4 558.5 3565.4 1404.6 2795.9 852.7 2585.2 1035.6 1588.2 1285.1 3115.2 1377.8 2249.1 1333.8 2646.3 1238.6 1871.3 1357.7 2892.2 1 1 91 364 363.4 337.9 278.5 5203.2 3220.3 3971.4 165.6 291.5 434.3 524.9 3057.3 3846.8 424.6 650.8 3250.1 3772.1 359.1 657.0 2982.3 3293.8 2569.0 2516.1 311.4 552.4 897.1 3126.6 144.7 392.0 2976.7 3388.8 173.0 486.5 678.6 1014.6 260.9 4475.9 539.0 705.7 3193.7 4176.8 488.4 845.3 2985.5 3936.7 986.6 1281.9 2623.4 3000.5 1956.3 2366.5 936.2 1379.6 674.3 1487.1 2051.1 2639.0 924.3 3431.7 485.7 911.0 1283.8 3195.9 289.9 714.1 1978.6 2736.5 352.8 1214.2 763.4 1534.1 229.1 2764.5 772.6 2565.6 279.7 1670.6 471.9 1115.3 274.3 3397.4 536.6 975.6 728.2 3343.0 870.3 1312.7 1671.5 2532.6 1959.3 2734.3 531.4 1193.4 1361.3 3126.1 362.0 831.0 2431.5 3004.8 388.8 780.7 1887.7 2831.8 700.3 1183.9 811.3 1222.0 1330.6 2340.3 703.4 1348.3 524.2 2148.0 810.2 1987.7 435.3 1643.0 577.2 1071.5 715.4 2907.7 678.1 1413.9 1297.7 2579.2 1119.3 2713.0 416.4 1094.1 2055.0 2766.5 301.9 1022.6 2128.2 2753.4 380.3 1044.5 1741.8 2446.3 610.2 1276.8 910.6 1690.4 1222.2 2198.5 1 1 114 400 3661.1 4080.8 395.6 5928.2 1288.3 4665.9 3426.2 3516.1 1964.9 5003.9 281.8 738.0 1044.8 3851.9 2220.5 1618.6 2602.9 5094.5 561.4 1128.1 3173.0 4192.2 1025.9 2300.0 979.2 3596.8 2279.7 2607.8 1113.1 3575.7 3091.5 3401.6 3427.0 4591.5 476.9 1220.5 813.7 1420.9 571.7 7530.0 1016.7 3459.1 2235.3 4073.8 824.5 3081.6 584.3 5965.3 853.8 1500.2 466.4 6043.3 1142.7 3892.0 2390.8 3426.1 3385.6 4558.8 436.9 1129.3 2257.3 2908.0 387.1 3346.5 1078.5 3397.9 1210.2 2553.0 919.3 2732.7 509.5 3073.2 1783.1 2664.2 547.5 3481.8 1829.0 2801.4 1714.6 2861.0 1118.8 3458.2 1687.3 2351.4 772.4 1807.5 805.8 3795.3 1040.6 4320.0 932.1 1726.2 1021.7 3392.8 2140.3 2907.1 841.2 1837.7 2150.4 4028.8 2273.9 3059.7 609.8 1561.1 1940.5 2499.7 458.4 2541.1 1939.7 3389.1 357.7 1377.6 740.1 1830.0 1343.9 3520.4 1445.8 3094.5 621.6 1736.1 908.3 1586.7 1326.5 3939.3 1730.6 2733.7 1205.8 2388.5 2002.0 3036.1 783.1 1832.2 1524.4 2559.8 713.9 3961.1 824.6 1345.9 1373.4 4877.1 694.7 1392.8 1847.1 5065.9 1 1 85 487 384.1 145.9 4241.5 3949.8 434.8 511.4 3538.7 3492.5 1073.2 4368.7 224.0 423.9 1000.8 4275.4 195.1 352.3 379.6 699.7 115.6 4306.4 949.1 3946.8 198.1 591.3 969.9 3931.6 221.6 360.9 1004.8 4056.0 164.6 444.6 3040.8 4036.5 198.5 492.4 547.9 1003.4 2945.5 3500.0 517.7 909.2 2985.8 3442.8 2497.9 2851.7 503.1 902.8 781.8 1078.4 2496.1 2912.6 2358.1 2766.1 398.5 986.6 674.1 1153.1 255.1 3413.1 827.9 3256.5 243.2 1021.9 654.7 1177.7 284.2 3991.0 2286.9 3023.8 270.6 949.7 1044.7 2991.1 220.3 924.7 552.6 975.4 381.2 3616.6 569.8 915.2 2179.2 3271.5 934.1 3114.9 528.7 1081.8 2387.8 3097.6 400.8 756.1 871.6 1291.3 1667.1 2497.5 930.9 3098.4 478.7 988.8 930.6 3376.4 396.4 1056.3 2007.7 3141.6 353.8 852.7 742.3 1353.9 1967.6 2558.4 617.7 1025.8 2017.5 2714.8 575.2 1037.5 1971.5 2718.8 753.6 2606.0 720.0 1539.6 1716.9 2616.4 517.9 1093.8 1809.4 2603.8 393.9 880.2 1130.3 2867.9 346.9 806.8 1647.6 2280.1 275.8 870.5 911.8 1338.9 248.8 2302.8 1 1 113 509 1081.3 4466.0 -96.4 335.9 458.6 753.1 247.7 5736.4 1351.1 5122.8 159.4 344.2 1263.9 5179.3 137.9 127.3 3684.5 4273.6 167.1 586.6 346.0 683.3 162.7 5259.6 367.5 687.9 227.2 5469.8 1255.3 4495.4 88.9 490.3 640.6 1060.0 175.5 4994.2 3616.2 4659.3 225.6 840.2 699.2 987.0 3390.5 4775.2 3292.1 3999.2 465.7 971.0 555.7 1024.6 2887.4 4029.5 924.4 4050.3 469.9 1126.4 944.9 3245.0 254.5 2145.2 540.8 1125.9 275.6 5067.5 666.9 1000.6 2995.8 4419.8 2594.2 3067.6 584.9 1620.3 721.6 1077.2 320.6 4584.3 495.0 1216.7 281.5 4513.4 1133.8 3993.7 307.3 1060.8 1182.7 3807.1 382.9 1069.5 2731.0 3404.1 519.5 1301.7 658.1 1255.5 2313.8 3607.7 490.5 1081.5 546.8 3255.4 592.2 922.4 614.6 4632.7 687.0 1106.1 2499.6 4493.5 1097.5 3192.5 522.5 1593.8 2338.3 3447.1 368.1 1220.3 1124.2 3454.2 397.8 1194.6 1047.2 3162.3 300.6 1142.8 1223.6 3837.8 288.1 897.3 2274.5 3173.4 349.8 1149.2 974.1 2965.8 348.1 1227.5 627.4 1361.2 442.6 3068.1 600.7 1441.3 1691.3 3197.8 1 1 104 907 1669.6 529.4 3526.9 3271.5 2364.7 1804.7 194.1 3886.9 453.0 614.8 284.3 6758.2 2052.2 2581.5 1283.5 1699.0 437.4 2193.3 2958.2 3224.4 997.8 4285.0 203.3 133.2 2720.4 3226.2 342.4 711.9 516.0 710.4 375.0 5609.6 281.7 1073.4 2917.3 5227.7 1873.7 2104.1 826.3 1375.0 1967.8 2310.4 6.5 1475.9 2991.4 3440.9 258.4 614.9 784.4 2115.5 438.8 3395.3 617.6 2340.5 2225.0 3316.8 901.5 2374.6 491.9 2912.0 933.5 2796.7 404.2 1196.8 1765.7 3332.2 32.6 634.2 1324.9 1940.7 193.9 2856.6 882.3 2379.3 2011.2 2677.2 936.4 1694.7 1847.0 2520.8 979.8 2529.1 508.5 1418.4 2212.9 3088.6 373.1 692.6 1440.9 1810.6 1661.7 2394.6 728.6 2076.4 918.7 1816.7 663.6 1417.0 534.3 3474.6 702.6 2056.0 1656.8 2964.3 1212.1 1903.2 1662.0 2774.7 1653.5 2749.6 480.1 1315.3 1546.0 2094.9 494.6 2427.7 1304.5 2221.1 523.6 2357.0 1096.0 2298.6 1267.4 2363.8 1408.6 2759.1 621.7 1427.9 1024.6 2437.3 940.8 1964.5 1659.3 2242.6 529.9 1506.0 1324.8 2133.0 486.2 1347.1 1387.2 2046.4 1018.4 2301.3 1 1 123 467 1395.7 5640.7 451.9 297.9 440.0 642.7 195.7 6997.3 5024.8 4866.3 60.4 340.8 540.2 809.6 -80.1 7239.3 1092.9 4762.3 17.7 482.6 478.7 806.1 48.1 4594.9 611.4 923.3 3053.1 4409.4 548.8 768.1 3246.6 4281.7 1249.1 4869.1 96.0 361.8 3662.1 3796.2 146.6 735.6 1014.3 3998.6 30.5 858.0 647.5 1091.3 107.4 5245.5 3444.5 4116.5 118.8 857.7 1301.3 4426.8 188.6 712.4 3088.7 4236.1 67.4 585.4 2910.8 3902.3 367.5 807.2 917.1 1032.8 3292.1 4151.2 2678.3 3027.0 505.4 937.8 2781.4 3406.2 333.9 1163.7 796.1 1056.4 85.6 5110.9 720.7 1191.1 172.8 5362.9 2653.3 3410.2 146.7 1315.5 3364.9 3418.0 277.3 1017.8 3296.0 3500.4 274.7 876.6 2855.8 3418.5 151.7 1047.9 927.5 1138.2 411.0 5675.7 680.1 985.2 223.9 5005.2 744.4 1003.3 305.3 5412.3 2495.1 2806.3 269.5 1559.6 2618.0 2636.9 248.9 1476.1 2799.2 3005.0 252.5 1362.7 2750.3 2902.9 310.0 1314.8 2673.9 2658.2 256.0 1831.7 1211.0 1496.9 206.3 4307.7 2462.6 3026.2 338.9 1579.5 2538.6 3010.3 351.2 1751.5 1 1 74 589 185.0 1.4 104.6 3800.8 236.2 294.2 2854.9 2660.3 1540.4 1471.8 8.7 49.1 78.9 177.5 2331.7 2572.2 162.4 137.9 178.3 2286.0 260.5 389.5 75.4 3407.4 538.0 2015.6 -57.6 301.4 270.2 174.3 130.5 3419.1 285.2 333.6 125.1 3355.3 181.6 298.2 145.1 3525.5 176.9 142.3 1902.9 2728.0 205.3 179.6 1738.5 2415.5 159.2 419.0 230.8 1961.0 1263.2 1560.5 68.6 732.5 279.9 475.9 129.2 2763.8 160.7 259.2 137.8 3311.6 223.4 462.6 151.2 2953.5 153.2 311.5 1708.2 2850.9 276.3 400.4 1458.5 2379.7 137.3 318.9 1478.1 2567.8 114.6 253.4 303.9 2269.4 160.9 451.8 307.1 2746.5 154.2 465.2 1367.6 2418.4 335.6 1458.9 333.2 993.3 209.0 461.4 161.3 2791.5 185.6 435.5 234.0 2372.6 535.8 1547.5 121.7 789.3 1225.6 1665.4 172.8 786.6 481.5 1519.6 63.6 940.1 259.5 705.3 146.5 2207.7 462.0 1445.4 12.2 816.5 977.2 1487.8 231.6 872.7 310.6 531.5 1282.4 1982.9 269.8 502.9 1215.4 2106.6 764.9 779.9 359.2 1237.2 312.1 535.8 288.9 1911.8 1 1 100 564 4086.7 4435.8 689.0 709.6 4377.1 4954.6 653.1 621.7 846.8 4465.4 670.3 878.6 3737.9 4141.7 460.8 611.5 3819.2 4131.0 297.7 552.3 1053.7 1309.1 3732.7 3613.3 651.2 1294.7 2957.8 3205.9 1346.5 5030.7 373.0 426.9 3172.1 3929.7 306.6 724.6 690.8 1044.5 4025.6 4466.7 546.4 891.7 3649.3 4048.5 2277.8 2966.7 900.0 1212.0 752.4 1235.7 3192.4 3399.7 801.3 975.4 755.2 4080.9 834.2 1136.2 387.0 4520.3 1053.5 3376.0 469.5 1412.6 555.2 1280.6 626.6 4976.6 421.7 899.8 2903.8 4536.5 538.3 992.3 846.5 4120.0 2245.6 2782.7 537.4 1382.7 708.5 1195.5 2833.6 3644.5 631.5 1265.5 725.2 3362.2 2255.1 3038.4 492.2 1465.3 1045.3 2982.2 428.8 1373.7 763.1 1485.0 513.1 3754.9 534.8 926.6 2242.3 3892.1 484.2 991.1 2138.5 3416.0 491.1 1037.6 2044.4 3609.6 783.8 2695.1 884.3 1726.9 1834.2 2540.7 663.9 1563.7 779.2 1449.0 1617.7 2772.8 848.7 2595.2 905.8 1598.7 739.4 1346.5 1712.7 2503.6 1464.1 2438.7 912.9 1579.3 708.3 1326.8 1497.8 2514.8 845.2 2338.2 822.5 1455.7 1 1 116 569 297.0 -214.0 -310.6 3784.5 2221.2 2376.5 -653.4 -1205.0 -166.3 -342.8 1593.2 1128.6 318.5 844.2 97.8 -267.1 1187.8 1085.8 -745.8 -698.4 876.1 1058.5 -174.4 -310.1 141.7 677.3 -21.4 -72.4 1046.9 1201.1 -150.4 -966.5 249.0 669.9 67.2 -190.4 -269.5 864.1 78.7 -159.1 733.1 1116.2 -521.1 -600.7 170.7 -157.6 -213.4 548.4 312.1 411.4 -264.5 -74.7 1193.3 1076.9 -320.3 -1024.2 393.3 328.0 -236.1 0.7 149.3 131.2 -119.0 -125.3 568.7 419.1 -99.1 -104.8 23.9 -92.4 510.1 -61.2 -27.5 -234.2 -104.1 217.7 143.9 414.2 -475.8 -555.9 -107.0 -4.4 109.2 273.9 -74.7 -235.5 -172.8 596.2 257.2 883.0 -272.3 -746.2 27.1 44.0 -14.3 138.3 558.3 686.9 6.6 -217.4 321.9 -29.5 88.9 59.0 624.8 227.7 55.7 56.3 598.9 611.8 -74.7 -110.5 688.5 866.7 -317.3 -401.2 351.5 39.4 -76.1 196.9 41.0 -136.7 195.2 286.0 129.1 -157.2 497.8 150.6 73.1 240.9 113.3 -129.6 407.2 540.8 47.4 -732.8 208.4 437.0 -193.8 -481.6 326.2 235.8 -151.2 -214.2 1 1 79 401 404.6 294.5 3544.7 5873.2 905.8 3263.6 2235.4 2153.7 880.4 4106.9 225.4 517.9 283.6 629.4 302.2 5042.7 739.3 2941.7 189.8 2015.8 564.7 617.4 234.2 4119.1 2140.7 2305.7 1064.9 1459.7 2540.4 2735.5 257.2 1451.0 657.6 930.8 2463.9 3366.4 882.7 3041.0 1335.1 2074.4 2316.8 3218.9 301.0 790.3 843.0 2924.5 411.7 2207.4 541.4 917.8 1031.5 4104.3 435.1 754.9 871.3 4931.7 400.9 761.0 2174.8 3451.7 1873.0 2292.7 707.4 1517.1 2128.5 2522.7 569.9 1664.7 2170.9 2452.7 643.7 1603.1 707.4 1023.6 656.5 3182.3 725.1 2577.7 586.4 1391.3 957.8 2942.9 430.4 1055.3 1905.1 2570.4 334.4 1317.2 835.4 1537.8 404.0 3156.7 702.8 1475.8 350.0 3511.0 873.3 3151.6 261.4 1226.2 1865.5 2800.7 299.4 800.6 1989.3 2826.2 234.7 779.8 1785.7 2308.0 396.0 1064.2 806.4 1400.4 1505.1 2322.6 700.0 1483.8 1498.5 2376.3 1461.3 1996.6 445.7 1263.3 767.7 1628.2 321.7 2662.2 706.8 2434.9 258.1 1445.5 842.8 2586.9 353.4 1519.3 844.3 1331.4 337.3 3350.8 755.0 1261.2 496.4 3879.3 1 1 98 771 54.0 -359.2 4802.0 4656.2 171.8 -103.2 4480.5 4420.3 171.9 224.5 28.5 2936.3 -95.0 -113.9 198.4 4291.9 157.5 224.1 -26.6 4977.9 300.9 355.3 537.3 4897.5 114.7 -83.9 143.7 4742.1 936.9 3391.3 101.2 634.8 2847.2 2981.4 134.3 330.4 2727.1 2444.5 160.0 511.2 414.7 563.9 2812.0 3139.8 1847.5 2186.0 270.6 559.9 627.7 2599.6 161.2 553.6 1914.2 1965.4 318.7 712.9 296.3 141.4 2925.5 3961.0 206.3 160.6 2816.7 3837.8 223.5 49.2 2591.9 3595.0 68.8 138.9 411.6 2850.3 266.5 73.8 318.4 4417.2 258.7 219.4 256.7 4194.3 523.7 2287.9 389.3 1094.7 344.5 865.4 146.5 3668.8 529.2 2101.9 247.0 999.4 351.2 595.4 119.1 3501.4 293.5 578.2 1605.5 3213.5 229.9 575.6 397.8 3158.7 597.6 1958.4 209.3 1283.1 469.4 820.4 220.4 2603.5 1618.4 1954.8 381.1 1020.4 524.1 899.1 1156.8 2075.5 644.3 1892.1 331.9 1037.1 311.6 908.9 245.9 2284.7 412.4 1472.7 206.7 1207.6 283.0 647.9 430.0 2747.9 246.8 643.4 1462.3 2734.8 270.3 463.3 1521.3 2766.2 1 1 86 761 373.2 409.5 2028.8 5981.5 573.6 798.7 3893.4 5064.4 561.3 1897.6 220.9 3427.5 509.7 718.6 3298.6 4684.8 406.6 758.3 1901.5 4855.4 601.1 912.5 2776.9 4396.8 2781.0 3787.0 384.9 1050.9 804.3 2130.6 2735.9 3869.6 766.1 2165.9 327.1 3855.2 565.5 1125.2 293.0 5167.9 1025.0 3109.6 1514.0 2423.3 966.7 3440.1 421.0 2577.5 879.2 2161.1 368.2 5355.7 725.5 2150.3 435.9 5583.8 699.7 1296.5 684.4 5828.2 851.4 2125.7 2454.8 4644.1 1455.4 1993.4 706.9 4018.3 1007.0 2284.0 2461.5 4151.1 2043.5 2763.3 585.1 2801.5 736.1 1264.7 535.8 5077.3 840.9 2043.3 698.1 4816.0 769.5 2075.3 2204.9 4501.1 663.2 1225.8 936.4 4769.8 620.7 1138.6 2149.1 4911.8 668.7 1811.3 721.6 4050.2 944.0 2102.3 476.0 5046.7 1895.0 2814.3 366.2 3008.1 1125.1 3002.4 382.1 2750.5 1009.0 3395.3 362.6 1904.6 743.8 2496.2 298.6 3060.6 1072.5 2667.5 272.2 2459.6 1785.8 2913.6 266.9 2128.5 1078.6 2977.7 232.4 1679.1 817.5 2330.9 335.5 2910.5 860.9 2440.8 297.8 2475.1 1507.7 2600.0 607.7 2657.8 1 1 88 393 220.2 82.1 264.3 5848.4 3556.2 3408.9 -167.6 365.9 215.4 295.3 2687.6 2607.2 217.1 83.8 2322.4 2498.3 132.5 209.4 176.8 1790.6 289.7 251.8 1624.8 1984.9 184.4 406.9 2052.0 2212.9 2020.7 2393.7 87.7 279.1 726.8 2659.3 -86.3 -46.7 1851.0 2285.3 67.1 585.1 144.3 273.2 288.2 4632.8 450.1 675.9 2376.0 2982.4 2161.2 2416.3 187.7 512.7 469.1 2146.2 282.1 701.9 288.5 687.5 1549.9 2115.0 389.5 537.0 339.3 2073.8 1575.6 1795.2 123.6 745.0 485.2 751.9 162.7 2064.4 1707.3 1934.6 133.8 604.6 788.5 2057.4 206.3 396.8 1776.6 2011.9 35.9 338.7 567.4 2043.1 139.6 538.5 409.7 927.0 160.1 1970.3 594.1 2297.7 180.0 588.9 632.4 2274.8 142.6 569.3 1306.5 1643.7 142.8 485.4 383.0 571.4 1169.1 1703.6 311.5 689.2 343.4 1560.7 391.1 1658.5 163.0 833.5 414.7 817.8 126.9 1872.7 1312.8 1830.3 126.6 671.4 1657.7 2179.8 27.9 912.8 1392.0 2048.8 148.3 531.3 843.5 1969.8 157.4 477.9 1180.0 1763.8 179.5 869.2 558.5 1070.5 142.0 1973.4 1 1 84 708 446.8 484.4 3947.1 3866.8 2899.8 3121.8 165.3 311.3 433.2 492.1 218.0 4313.0 907.7 3091.7 223.0 453.7 421.2 595.1 3090.5 3685.0 432.8 630.0 3094.4 3278.5 2173.3 2569.3 289.3 527.9 2886.4 2955.6 296.4 526.3 593.5 809.2 2273.1 2672.6 2210.6 2574.1 420.3 719.7 572.7 845.0 2304.0 2706.1 861.5 2844.0 428.8 927.1 470.8 1048.0 316.3 3775.8 752.7 2856.9 443.8 1037.6 421.2 1021.4 2601.3 3319.3 539.1 1001.5 444.0 3115.5 2286.0 2619.8 337.5 1065.9 625.1 900.6 469.1 3579.0 548.3 1080.6 1921.8 2947.5 755.6 2728.3 580.4 1122.5 597.7 1227.0 2139.4 3128.5 473.4 1039.3 628.0 2816.4 789.6 2259.6 442.8 1398.0 499.7 1245.8 351.2 3223.6 501.4 1075.9 341.8 3532.3 640.9 2188.9 328.2 1684.2 492.0 1172.3 481.0 3355.0 477.0 1192.7 1639.0 3067.6 739.8 2175.1 675.2 1827.5 536.4 1128.1 390.2 3393.2 582.2 1053.0 381.9 3884.6 1534.4 1833.3 514.6 1908.5 710.0 1087.9 1598.0 2989.2 1475.0 1877.9 485.8 1476.6 742.1 1240.5 375.2 2713.2 702.2 2036.2 403.3 1646.5 1 1 113 439 1244.1 4638.1 4146.8 3967.8 1286.3 5660.4 3133.9 4601.3 3897.5 3459.9 3194.1 3469.4 511.6 866.6 4892.4 5530.1 1087.6 5525.4 2861.3 3102.9 4374.7 4633.7 198.1 840.7 3793.2 4124.6 1972.7 2290.6 794.7 1521.8 2314.9 5583.3 938.7 2899.0 2119.2 4679.3 3244.6 3524.8 780.4 3860.9 795.9 2660.2 290.1 5758.8 1079.8 5069.8 174.0 4133.6 489.4 4142.3 1838.3 2503.5 2061.3 2609.2 2720.5 3592.6 1945.3 4865.9 506.9 506.5 2034.5 2787.9 711.0 3508.3 1821.8 3648.0 382.8 1270.5 667.5 1308.9 1622.5 3973.8 548.7 1194.9 2786.0 4365.1 869.5 3746.1 605.7 1306.9 719.7 1656.0 1358.6 4228.0 1555.7 2520.2 2494.0 2645.5 2470.8 3227.3 1552.3 2090.6 1031.6 2651.8 596.3 2670.6 1197.0 3879.5 325.6 1183.5 1715.8 3576.1 784.0 2437.5 906.3 1178.4 1941.4 3221.1 673.1 1180.2 2005.6 3348.6 1176.9 1001.3 1144.6 1920.9 1327.3 3103.5 335.0 1537.5 1190.2 2121.0 1942.8 978.6 451.4 2349.3 1024.3 2428.0 2257.6 3209.7 570.0 1418.3 1061.3 2168.2 1742.3 3319.7 852.0 1584.6 1194.9 3294.2 1036.6 3025.5 709.7 1922.2 1 1 83 506 3848.9 4339.5 178.8 3.2 4167.8 4963.7 179.3 341.0 4085.8 4361.7 123.5 343.2 517.4 758.3 242.0 5532.9 1111.7 4124.6 91.5 493.7 1171.1 4721.6 88.4 326.5 2875.9 3536.0 192.1 402.4 1011.5 3809.3 253.7 544.2 453.7 922.6 246.2 5497.5 496.3 845.9 381.6 6011.3 664.0 825.9 3562.8 4743.8 2852.4 3595.1 358.6 712.3 1076.9 4090.1 399.6 776.5 740.0 1175.8 3086.8 4047.3 2563.4 3362.9 376.8 855.7 2598.4 3700.9 284.7 802.0 753.9 1108.0 323.9 4964.3 620.7 827.3 450.6 5245.5 773.8 933.6 2870.5 4457.0 2421.7 2839.5 507.5 1037.5 2757.4 3167.0 249.0 847.7 2702.6 3377.2 240.2 729.2 3121.5 3253.6 265.2 740.6 2940.8 3197.0 222.5 909.0 936.8 1358.8 378.0 3523.8 824.7 1077.1 2487.2 4063.0 2293.6 2772.9 555.8 1380.4 1131.0 3279.7 524.6 1204.0 837.1 1478.2 2109.5 3270.5 2435.0 2708.1 554.1 1347.0 2702.0 3264.2 389.3 1183.1 2506.0 2833.6 306.5 1059.3 1063.7 1523.5 316.4 3606.7 1087.5 2839.7 297.6 1429.2 1897.8 2750.7 258.8 1100.8 1170.1 2921.9 255.8 1076.3 1 1 107 128 419.4 384.1 3083.1 4063.7 1792.6 2017.7 185.7 1635.7 2077.6 2278.9 211.1 476.3 2015.8 2418.3 212.8 462.8 1822.4 2113.5 192.6 615.0 867.2 1017.7 230.9 2857.8 1742.7 1812.5 177.3 652.8 1845.0 2084.2 314.4 861.4 1430.6 1892.5 180.7 577.3 1056.2 2052.3 233.1 591.8 1582.4 1850.8 262.4 715.4 671.0 2035.9 894.2 1489.0 561.5 1358.7 303.9 2396.2 1449.9 1759.1 335.2 1714.8 586.7 967.5 809.8 2583.2 1514.0 1899.9 301.9 896.8 593.3 990.5 1563.5 2265.2 780.7 1008.5 436.6 1911.0 835.1 1125.0 1306.7 2192.9 828.6 1178.7 1193.2 1807.6 981.1 1340.4 690.5 1288.5 1168.3 1770.6 399.2 909.7 756.1 1290.8 433.5 2398.1 771.6 1213.5 1226.9 2241.3 510.0 936.3 1594.7 2199.8 673.4 1590.8 904.1 1549.3 554.4 946.7 714.0 2453.5 491.3 831.9 425.9 2541.8 458.3 916.8 967.9 2291.7 755.7 1136.9 545.2 1515.2 654.1 1218.4 595.7 1639.0 587.8 1051.2 355.8 1997.3 451.2 749.9 593.6 2340.4 495.3 962.3 712.9 2738.0 430.4 1082.3 581.1 2048.2 495.5 953.1 415.0 2373.7 1 1 70 568 355.1 375.6 3663.7 3688.1 551.5 678.4 3274.5 3204.4 2826.3 3217.5 102.0 455.2 2903.3 3234.8 170.6 609.8 414.0 622.0 251.6 4164.0 516.2 616.9 2412.6 2861.7 795.8 3059.3 216.1 450.5 772.5 3233.0 270.2 584.6 528.4 994.5 189.8 4376.4 2923.7 3150.3 271.9 702.7 2928.3 3128.5 245.5 554.6 647.9 972.1 2535.9 2836.7 920.0 3338.8 301.3 711.5 2443.2 3190.9 266.0 890.0 534.6 993.5 294.6 3976.5 398.4 897.0 246.1 4332.5 477.8 954.9 352.0 3861.3 809.7 2960.6 245.1 1044.0 841.6 2843.3 305.8 881.6 1884.7 2594.8 326.4 772.0 648.2 1371.2 1787.5 2704.2 901.6 2977.0 441.2 900.3 2034.1 2623.2 466.2 844.7 928.0 2727.1 283.5 927.9 562.1 1397.8 319.2 3183.2 912.3 2546.3 313.8 1036.4 1646.7 2441.8 419.9 1010.1 772.3 1275.0 1772.6 2572.0 1455.1 2144.6 474.7 1041.6 839.4 2091.6 302.1 1198.3 557.3 1121.6 291.9 3275.3 500.2 916.1 287.6 3280.7 687.1 1083.7 256.5 2986.7 1473.3 2195.5 183.3 1354.6 818.8 2398.5 255.7 1214.3 913.6 2512.5 243.2 944.0 1 1 122 608 459.3 345.6 3842.6 3664.1 3144.0 3891.4 155.4 287.2 435.5 598.3 206.4 4613.5 954.6 4095.7 177.7 354.5 3002.7 3445.6 199.7 448.4 954.2 3758.5 165.9 299.0 2824.1 3326.7 178.8 391.6 3048.9 3871.2 114.8 360.5 1055.6 3841.6 241.6 351.6 3186.1 3311.7 233.7 473.6 748.4 1094.5 2564.8 2993.8 2240.9 3131.3 399.4 688.9 1081.7 3955.8 154.9 422.1 2842.9 3649.0 186.4 504.9 2556.9 3315.2 290.2 571.1 750.6 1251.9 2222.3 2578.6 1907.6 2687.8 440.9 769.1 1130.4 3175.0 268.8 631.3 2170.2 3047.6 432.4 719.5 814.0 1289.8 1950.8 2151.2 1728.0 2444.4 474.8 930.5 663.1 1227.8 384.6 2751.9 519.2 857.4 2059.8 2527.0 612.0 911.3 1955.9 2262.4 611.5 1002.4 1842.3 2163.5 1729.3 2136.6 623.4 978.6 2215.3 2810.9 321.3 854.3 846.7 1374.6 353.1 2472.6 852.9 2494.1 354.0 977.0 566.0 1317.6 1445.2 1959.6 819.4 2590.0 565.2 1080.5 1054.2 2823.4 363.0 630.9 1940.8 2760.4 300.6 648.0 1069.3 2973.2 322.4 653.5 1520.4 2695.0 427.0 869.6 868.9 1690.4 1141.3 1608.9 1 1 97 306 605.6 2002.9 217.4 4989.4 592.6 758.7 156.6 4487.2 291.7 453.0 1200.5 4243.9 848.5 3177.5 40.9 250.6 2255.6 3091.5 106.4 419.3 543.4 2718.8 182.7 1715.1 684.8 2595.8 1280.3 1351.9 722.3 2950.7 1003.4 1043.4 691.1 2944.9 586.3 1354.0 2230.9 2050.9 216.0 1480.8 400.1 995.4 2402.1 2976.9 809.2 2794.4 322.2 673.6 2286.5 2825.0 374.4 762.6 383.2 807.3 2395.3 2866.5 474.5 1815.4 2504.0 2568.4 452.8 1374.1 2511.2 2483.8 1570.5 1921.6 568.9 898.8 564.7 1385.2 2114.1 2951.0 1361.8 2028.2 431.9 1093.2 567.5 984.9 1769.9 2386.0 1369.7 1742.4 468.1 2377.0 614.7 1069.6 1805.8 2321.3 1105.3 2312.8 531.3 845.5 1590.4 2089.4 230.8 995.2 544.2 1184.6 1582.2 1984.3 997.5 1266.1 1771.9 2055.1 754.1 2011.4 428.4 1907.8 1344.0 2140.7 417.5 813.3 467.8 1284.7 1532.9 2161.2 602.0 1420.9 1150.4 1969.3 896.9 1136.6 414.3 2210.6 783.2 1921.4 340.7 1107.1 569.7 1949.2 922.4 1434.2 835.4 1289.8 469.2 1909.5 380.9 1024.4 1003.9 1957.6 506.5 1594.7 640.7 1336.3 1 1 121 179 222.5 201.1 3565.7 3275.7 234.3 363.2 169.7 2573.2 146.9 139.0 211.6 4380.2 195.8 209.5 2832.0 3659.2 61.1 185.0 314.5 3757.8 277.0 334.1 117.4 4362.2 1623.0 1727.9 216.3 772.4 450.0 576.3 258.6 4299.6 1760.9 1653.8 156.7 700.9 349.4 414.2 347.1 3471.7 319.0 391.1 1729.2 3150.8 402.6 602.0 398.5 2630.2 798.3 2159.1 98.7 746.6 1729.7 2008.0 327.6 815.7 513.2 666.2 1963.6 2626.0 342.0 562.7 1712.7 2699.2 617.5 1828.0 536.8 1095.3 1170.0 1781.0 387.3 1002.8 509.0 686.9 1759.3 2757.5 312.8 657.0 666.5 2468.5 429.5 668.5 1586.3 2589.3 1169.9 1442.2 420.8 1091.1 596.8 1812.4 319.3 1117.8 440.7 793.5 463.4 2974.3 379.7 749.4 1619.1 2740.5 510.2 1538.4 574.1 1339.4 519.9 1758.7 320.5 872.4 567.0 1908.2 275.4 816.9 1045.3 1815.7 306.2 841.2 1042.8 1572.3 402.6 1141.1 527.2 852.5 1290.2 2212.2 609.1 1688.2 549.1 1350.7 892.7 1648.4 339.2 979.4 655.6 1776.9 278.5 929.2 889.9 1325.6 224.2 962.2 603.7 929.6 175.5 2289.0 1 1 106 507 998.5 4271.5 41.8 -585.5 3702.5 4132.6 152.6 130.8 382.4 572.9 2891.7 3477.2 2981.3 3202.0 175.3 -30.0 -43.7 47.1 275.8 4864.3 449.8 661.4 2458.8 2682.1 2722.8 3031.3 -122.3 69.1 1007.9 4154.7 153.1 127.5 477.1 837.3 -31.0 3980.2 429.9 744.6 3120.3 3480.1 293.7 400.7 2982.9 3699.5 917.9 3357.5 370.5 651.0 1139.4 4033.5 247.0 51.5 2661.5 3074.8 233.5 485.3 1586.8 3488.8 136.9 -92.0 1053.8 3683.3 158.2 81.6 607.3 1317.5 326.4 3253.6 465.9 1102.6 1973.4 2847.2 811.7 2962.8 358.2 952.5 477.7 3007.6 412.8 996.6 622.2 1585.9 389.1 2268.6 479.0 1217.5 1506.9 2560.3 634.2 2323.8 641.6 1323.7 742.8 2804.9 311.9 843.6 662.8 2728.3 310.1 783.1 471.2 1340.0 478.2 2853.6 517.5 1152.3 1780.7 2686.1 505.6 620.8 1988.4 3129.6 1031.9 1648.3 1025.7 1565.8 702.2 1017.3 1905.5 2583.3 1507.0 1789.8 634.9 1155.3 743.0 1091.1 1745.6 2134.7 917.4 2007.0 750.0 1135.6 1159.0 2137.6 655.2 1231.2 588.0 1136.7 1151.2 1699.7 636.9 1152.5 549.5 2020.1 1 1 427 635 1156.7 1648.7 10184.8 10210.8 7206.7 10624.7 400.2 834.0 8816.1 11120.5 349.9 987.1 8086.4 11395.4 357.6 882.3 7513.2 10771.6 297.0 1207.3 7640.7 10258.0 552.5 1122.5 3229.0 12064.1 385.7 736.3 7330.3 10718.5 416.6 1071.8 8126.9 10841.9 449.3 1103.1 7917.8 9281.1 623.9 1428.0 2004.9 3366.0 7181.5 7723.0 1755.1 3643.0 746.1 5828.5 6754.5 10105.6 800.6 2167.6 2324.1 3915.9 5885.1 7581.3 1911.9 3146.7 5986.3 7454.6 1890.1 3786.1 1226.0 6764.3 6121.6 9000.4 796.0 2306.7 2236.7 3553.5 799.0 9536.6 1944.9 3705.3 1155.7 8975.7 2006.3 4033.4 4750.4 7097.2 5354.0 9092.2 1155.8 2429.6 6552.3 10253.6 903.6 1992.0 7039.4 9888.5 1135.1 2096.5 3426.5 9426.7 1147.4 2231.7 5078.9 7882.6 2025.2 3164.1 5999.4 9073.0 1185.8 2320.8 6231.8 9110.3 1087.1 2598.0 5880.6 8941.5 942.9 2582.4 2245.2 4236.7 966.0 8452.0 1878.9 3274.1 1267.2 7956.9 2286.2 4073.9 4338.2 7049.8 4737.9 6888.9 1068.5 2801.2 5307.5 7132.2 961.4 3542.2 2405.4 4688.3 991.9 6749.4 5131.7 8216.4 1009.5 3487.0 5408.1 7672.7 785.3 3105.9 1 1 109 107 125.8 152.9 3270.1 3156.2 225.8 267.0 118.1 3046.6 132.7 144.2 2859.7 3201.6 203.3 243.5 2624.2 2730.3 1649.1 1878.8 163.6 290.6 647.4 2187.8 72.6 189.7 1514.7 1700.4 139.3 303.3 381.8 546.9 130.4 3685.5 487.8 1951.7 127.2 512.5 279.3 526.5 255.7 3459.3 225.9 435.0 2334.9 2859.6 1479.7 1949.8 330.7 803.4 310.6 486.6 219.7 3439.8 267.8 345.8 228.6 3694.9 263.9 429.4 133.7 3392.2 210.4 448.4 182.8 3314.6 472.2 2088.9 132.8 851.0 230.9 515.4 302.4 3244.8 270.5 542.9 1732.3 2696.8 433.0 1807.5 320.8 995.6 238.4 510.7 224.7 3195.4 179.6 444.1 196.3 3466.2 286.8 454.8 255.1 3997.0 380.3 752.8 229.6 3572.8 1285.4 1879.4 175.0 998.9 636.2 1991.2 192.2 855.0 598.0 1806.4 203.7 1125.8 295.6 658.8 214.5 3120.5 306.6 686.9 220.8 3015.8 529.5 1813.0 165.5 1012.9 709.6 1799.8 175.7 898.5 1406.0 2011.4 185.4 848.1 1307.7 1840.1 132.5 729.0 607.0 1579.3 160.0 1199.4 484.5 765.5 170.2 2397.4 1037.5 1568.4 175.4 1142.5 1 1 116 82 349.3 350.7 3269.7 3301.3 2115.6 2339.8 88.9 155.9 1513.6 1665.7 87.9 2246.1 502.3 1640.1 138.3 2310.2 328.7 437.5 2525.4 2599.5 404.2 434.6 1749.7 2512.4 1241.1 1519.1 1446.2 1355.3 1691.4 2590.0 264.9 392.7 522.2 1613.4 1516.0 1885.8 1228.1 2015.7 447.1 641.3 405.9 648.2 1482.3 2932.9 602.4 1681.5 1758.0 2540.6 487.4 762.8 369.9 3058.6 522.8 1636.3 1489.0 2171.0 495.1 1707.4 1556.0 1982.0 623.4 1651.5 386.9 1631.3 1646.5 2089.5 368.8 683.7 535.4 868.6 1516.4 2754.6 485.3 697.9 1298.1 2654.5 604.8 1528.0 455.2 2293.6 654.1 1539.1 1254.6 1814.2 607.6 1658.0 1411.4 2003.7 1263.7 1658.7 504.6 1968.5 1317.1 2047.4 353.6 1155.1 721.4 1865.1 338.0 2315.3 569.0 1800.8 290.7 2156.1 755.7 2087.9 317.3 1278.2 929.5 1563.6 415.5 2134.2 556.5 1549.8 1247.2 2215.1 979.2 1769.9 512.3 1352.8 506.0 927.1 944.7 2563.8 828.6 1396.1 381.1 2488.2 1148.5 1367.8 683.8 1576.6 753.6 1098.0 1148.7 1983.6 944.5 1171.4 458.2 1652.5 749.9 1030.5 947.9 1806.3 1 1 64 473 767.2 227.7 4036.0 3767.2 2943.3 3098.3 235.1 789.5 464.4 311.4 101.9 4793.7 1410.2 3589.7 237.7 450.0 1545.2 734.1 2694.1 3304.2 450.1 1537.3 2311.9 2583.4 2590.8 2447.7 268.2 461.3 2476.1 3250.5 431.4 832.3 632.1 934.0 2891.6 3325.7 1918.1 2620.5 516.2 355.7 606.7 462.4 2176.1 2530.2 1988.4 3543.6 312.5 635.9 691.1 1914.8 268.1 2913.8 1026.0 2780.3 359.5 1020.7 306.1 830.1 2012.7 3406.5 340.2 838.8 535.0 3200.4 1791.2 1573.5 348.0 1562.3 524.2 882.9 479.0 4328.7 573.3 944.4 1684.2 3708.0 1211.5 2726.3 310.7 699.6 741.4 2633.6 845.2 1141.6 327.7 1325.6 1783.9 2768.6 662.7 1013.8 340.2 2313.6 1200.9 2502.7 285.4 1110.5 515.1 1200.4 582.3 3053.5 476.8 812.9 390.0 3387.0 434.6 1953.2 354.3 2253.6 526.7 1279.1 449.8 3025.5 492.0 872.8 1381.5 2856.7 546.7 1292.4 461.5 1741.0 499.1 1290.5 438.8 3585.5 472.1 487.1 534.4 4105.9 789.0 1226.4 1366.8 3272.5 937.7 1044.9 942.9 2272.7 1526.6 1404.5 397.1 1423.6 1120.5 1777.8 384.5 1827.2 1 1 107 663 381.1 309.5 3837.2 3630.9 271.8 309.4 99.4 4113.2 1080.1 3605.7 105.9 267.3 333.0 616.8 3312.1 3311.1 2524.7 2870.8 234.8 546.9 1016.9 3622.7 137.3 300.3 234.0 659.3 247.3 4756.9 884.4 3693.5 92.1 502.4 867.9 3603.0 308.6 468.1 329.4 785.4 2664.2 3026.3 763.6 2826.3 533.2 801.1 459.5 1003.2 2838.4 3273.7 2278.3 2834.3 526.2 1039.1 535.5 841.7 465.0 3644.5 399.1 947.4 2334.5 3169.3 634.9 2609.7 604.0 1301.3 309.6 995.4 314.6 3842.6 633.6 2554.8 311.0 1364.6 400.6 1156.9 190.8 3320.6 701.0 2727.5 182.4 831.6 756.7 3092.5 263.5 755.6 384.6 1360.6 2031.8 2773.5 684.8 2254.3 689.4 1030.7 388.5 1082.9 2017.3 2716.6 442.2 924.7 2193.7 2862.6 581.7 2290.5 979.4 1443.8 571.6 1171.3 1906.6 2442.2 1405.9 2017.6 729.5 1130.8 664.8 922.9 464.4 2641.6 494.8 747.0 439.8 2949.0 395.9 844.6 1508.6 3021.9 518.3 1897.6 728.3 1328.8 612.7 2004.7 592.9 1281.1 463.2 1134.3 1548.1 2382.3 388.0 963.7 808.3 2902.0 474.8 865.2 1276.5 2644.0 1 1 89 718 416.8 302.9 281.9 4799.0 2733.6 3132.8 192.9 1118.7 331.2 443.9 2073.4 6121.8 345.1 1611.9 3125.1 3572.9 420.6 548.2 3882.0 4340.8 2673.6 3354.0 181.1 468.6 2342.7 3438.4 280.8 472.7 634.2 2295.0 2612.5 2975.2 489.6 816.3 2610.1 3919.5 839.8 2807.4 1594.8 2147.7 1060.7 3327.3 332.5 728.8 1446.9 1418.1 384.7 4086.0 1237.5 910.3 2333.0 3321.8 2432.0 2300.3 606.4 1161.6 1528.7 1533.9 2512.9 3040.0 444.6 678.6 2439.9 2914.0 1301.4 1764.7 1176.6 1791.4 553.7 772.7 2822.8 3811.4 505.0 837.0 655.8 3099.5 625.7 2450.4 586.3 1630.4 526.2 1154.7 643.8 3928.7 573.2 911.4 296.7 4038.1 539.7 1009.4 453.1 4717.5 486.8 999.6 793.0 4564.6 505.7 790.4 1858.8 3511.5 501.8 939.3 715.7 3040.0 1429.3 1895.9 542.3 2983.5 768.2 1710.5 1618.8 3120.9 607.4 1975.8 1582.3 2710.3 979.9 1813.9 808.6 2093.8 629.5 1092.6 1612.1 3448.5 417.0 1266.1 797.7 2721.1 604.0 2362.3 442.3 1794.8 491.9 1296.9 402.5 3119.6 466.6 698.0 353.2 3113.2 449.3 1218.8 354.5 3655.8 1 1 380 636 244.6 479.7 10129.7 8263.2 -355.1 -707.2 143.1 7735.1 533.6 519.3 -25.3 8649.2 6153.2 8873.5 402.6 555.6 208.4 627.2 6562.5 6704.0 6721.6 7867.1 -569.6 -417.5 7562.6 8820.2 379.8 496.6 6501.5 8079.9 405.6 599.0 7699.1 10368.3 159.6 256.7 1987.9 9899.8 209.8 379.4 6793.1 8785.8 220.2 496.4 6554.0 8197.4 476.1 790.1 7444.3 9163.4 222.6 -454.7 7384.5 9007.7 448.7 596.6 6226.9 8742.9 297.2 421.6 1542.5 2243.3 5527.6 5438.9 1560.3 2024.9 5380.7 5541.0 5147.2 6665.2 714.1 1018.9 1502.4 2864.6 470.6 6044.0 5634.9 8781.1 442.9 1091.3 2724.9 9671.0 581.9 434.8 6655.7 10222.0 370.7 210.3 2755.7 10070.8 471.1 501.4 5820.4 8291.3 471.4 1207.5 1486.2 2515.5 589.7 5976.3 1164.8 2536.2 579.6 7238.7 1175.4 2445.7 479.4 8026.7 1102.4 2315.1 501.0 7261.6 1196.1 2781.1 59.0 5990.4 1952.8 7405.9 343.2 2103.2 4683.6 7488.1 531.5 1037.4 4045.0 6488.6 649.4 1183.7 1454.8 2607.4 3135.2 4876.5 3820.4 5978.6 703.1 1572.3 2149.6 6940.7 450.5 1555.7 1602.6 3514.1 479.2 5044.0 1 1 88 506 13.9 -48.1 119.8 3622.9 428.8 1677.6 115.1 144.9 1669.6 1998.1 69.5 147.2 267.2 352.6 114.6 1884.9 1379.0 1438.2 67.9 241.1 269.3 162.7 1079.7 1285.1 109.9 213.5 107.7 1327.4 290.3 320.1 141.8 1551.6 297.8 554.8 999.4 1107.1 495.0 1663.4 93.1 175.4 141.2 352.6 92.5 1446.2 284.1 380.8 1038.7 1402.8 902.4 1031.4 168.8 424.3 278.7 426.3 756.5 1203.7 735.5 1050.2 164.0 462.5 232.5 437.2 197.5 1607.9 139.3 361.6 139.6 1505.9 228.4 405.3 144.3 1563.5 923.0 1039.4 103.7 412.6 366.4 1070.5 67.6 396.8 950.6 1020.0 175.1 433.3 279.5 576.3 816.2 1098.8 283.1 480.1 672.6 921.1 788.0 980.5 180.0 314.3 459.9 1220.3 102.2 197.5 420.5 1196.9 96.2 434.7 398.5 1089.5 181.3 470.8 707.9 991.6 108.0 397.7 897.6 1091.7 104.2 386.1 762.1 972.1 87.9 387.4 679.2 1011.0 102.1 513.5 432.6 1180.6 88.3 309.6 609.7 1065.2 157.0 359.7 725.7 1067.2 86.9 356.4 445.5 914.8 121.9 406.2 677.1 1044.8 117.5 283.5 1 1 123 502 5114.3 6166.1 491.7 8378.9 2225.3 2914.6 6089.3 9498.2 5391.5 5895.3 5899.8 6239.9 2108.4 4084.6 4414.0 8304.7 4177.9 6296.0 3869.5 4805.6 6533.0 8079.3 591.6 1107.6 1665.8 2504.9 3887.2 7635.6 2679.4 9228.6 578.8 1876.0 4642.8 6817.3 1964.3 6275.1 4358.9 5378.8 1738.7 6489.8 2162.4 7132.2 3664.9 5788.6 5050.3 7320.1 953.0 2883.5 3318.3 6702.1 970.8 6468.0 4152.1 5870.0 3450.0 6311.5 1557.9 4113.6 861.4 6911.4 2658.1 5726.2 4022.9 5450.7 3312.6 5042.1 4129.1 5346.9 4345.0 6047.8 1748.1 7840.1 3785.4 5730.2 1128.5 6783.2 3037.6 4036.7 2750.7 7142.4 4058.9 5882.2 2416.9 3764.4 1921.9 3863.8 3759.0 6928.2 3991.1 5642.2 2964.2 5250.0 3783.6 4653.5 2655.7 4729.2 3048.2 4645.0 1401.7 5118.5 3799.5 5122.1 3488.0 5601.4 3453.8 4951.4 3522.5 5319.8 4051.2 5645.4 1187.3 3697.1 3189.1 4866.8 2643.2 5593.7 2358.3 3769.2 2015.0 6129.3 1766.1 5164.7 1206.1 6481.9 3064.4 5174.7 2291.6 5529.0 1638.3 3815.3 910.4 6578.9 1749.2 5375.4 1424.4 6318.8 1785.1 3622.0 2347.2 5763.3 3139.5 4307.6 1214.8 4552.3 1 1 74 510 3772.5 4230.3 124.9 169.9 290.9 580.1 3243.5 3195.2 320.6 450.6 2708.5 2787.1 2400.6 2676.6 190.0 242.0 2854.0 3077.0 220.8 83.1 2890.2 3073.6 126.8 136.6 2619.5 2956.6 160.1 350.0 2961.9 3345.3 156.5 253.4 465.9 885.7 2033.8 2063.8 2762.9 3376.9 97.6 375.2 853.9 3163.3 90.1 565.5 850.8 3372.5 131.5 410.5 792.7 3114.4 97.2 260.2 347.0 760.1 177.9 3196.8 337.0 625.4 197.7 3715.4 252.5 678.7 217.0 4084.8 1991.5 2575.1 118.2 469.6 794.7 2895.7 217.9 693.1 828.5 2937.6 200.8 292.5 2015.3 2532.8 108.3 381.8 2133.9 2575.4 208.6 610.5 1946.3 2363.2 95.9 456.6 2097.3 2709.7 51.1 508.5 788.5 2477.9 121.4 580.7 571.8 917.4 202.2 2772.9 1605.7 2345.4 194.4 887.4 824.3 2579.4 64.2 493.9 684.0 2549.4 71.2 696.5 344.4 892.4 136.8 3050.1 394.7 814.6 210.4 3066.0 347.7 759.0 1681.6 3167.3 464.7 761.2 375.3 2556.6 1634.3 2115.5 159.5 1013.7 1809.9 2339.5 128.7 733.2 1654.6 1968.4 267.2 870.9 628.5 1180.7 1125.1 1817.6 1 1 70 476 -395.1 1201.9 4015.4 3818.0 165.8 198.7 143.3 2540.7 867.8 1426.4 2472.3 2581.5 346.8 695.8 174.1 2589.0 2156.6 2060.0 738.7 412.8 2072.7 2262.7 41.8 323.1 552.1 532.8 2278.8 2600.4 1915.5 2019.4 76.8 461.5 372.6 295.2 531.8 2859.5 216.2 2344.8 199.8 1150.0 259.2 45.0 838.5 3191.0 2133.0 2292.0 49.9 356.2 189.9 326.4 198.4 2379.1 603.8 578.2 1657.5 2046.5 866.4 2289.0 183.7 267.9 1720.5 1723.8 139.5 626.1 1614.4 1694.5 147.4 936.8 1624.6 1988.4 239.1 -108.4 373.6 599.1 1223.4 1535.1 375.2 766.4 157.3 1641.4 441.7 1899.0 238.9 572.2 184.0 991.4 1457.8 1623.3 277.4 603.6 434.0 1650.0 345.0 387.5 1176.7 1770.7 1329.8 1292.8 490.3 774.3 1457.2 1676.6 204.1 448.1 1723.4 2100.4 140.6 55.6 1427.1 2017.8 121.9 189.2 839.0 1858.3 104.7 679.0 1170.7 1503.4 123.1 391.6 443.5 681.2 88.1 1730.0 465.1 1640.9 8.9 824.7 589.9 642.0 141.7 1733.4 791.5 1717.6 140.4 757.9 432.1 620.5 111.1 1655.1 1157.8 1545.1 121.9 522.5 1 1 118 160 158.5 121.3 3509.1 3527.7 272.6 268.9 215.1 2910.1 366.9 384.9 121.6 3338.4 2127.3 2300.2 -24.5 173.2 1850.4 2028.3 162.7 535.6 277.0 425.1 171.2 4229.9 253.2 617.4 124.7 3461.9 585.2 2117.3 169.7 585.8 593.8 2073.3 135.2 226.3 611.4 2140.1 135.5 336.4 1175.1 1687.5 248.1 483.2 396.8 615.5 2267.9 2838.8 320.5 529.8 139.1 2768.3 291.4 551.5 240.5 3384.4 256.7 560.6 2140.9 2904.8 283.7 511.1 1788.7 2724.8 1158.0 1568.7 351.7 1036.7 405.8 686.7 233.2 3103.0 1239.3 1628.2 330.0 791.5 361.5 708.9 1650.0 2365.8 306.5 612.4 1711.3 2648.6 416.3 734.7 368.4 1948.1 1208.1 1596.3 545.7 1203.8 480.8 793.0 1652.4 2374.3 408.3 686.6 621.8 2452.6 1286.6 1597.7 465.6 1029.1 701.9 1758.6 303.9 835.8 1167.3 1613.2 286.0 820.3 703.6 1772.9 205.7 895.3 952.8 1489.2 222.4 1012.6 507.5 854.4 420.5 2477.9 519.6 850.3 1163.0 2420.1 1069.5 1462.1 603.2 1197.2 745.2 1640.7 509.9 1114.6 396.5 958.6 990.4 1880.0 551.4 1404.6 618.8 1489.7 1 1 737 593 1181.5 1879.4 14730.0 12682.8 5880.2 7314.4 635.5 1085.5 1131.2 1599.3 943.6 15384.9 1245.5 2234.4 475.9 14278.8 2947.6 14120.6 507.8 1664.7 3316.8 14844.4 392.6 1784.2 1293.8 2941.5 629.7 14099.5 1282.3 2717.8 686.5 15244.8 2980.4 14829.1 708.3 1632.7 8611.7 13030.4 540.4 2266.1 1350.9 3574.5 1022.9 16362.8 1192.9 2897.0 1339.1 15767.4 1480.7 3105.0 9554.9 12804.3 6613.8 10423.3 1546.9 3881.4 1705.4 3801.6 8379.7 11556.5 6107.3 10016.9 1405.0 3095.0 7305.6 10832.5 1013.5 3065.9 1879.9 3574.8 1069.0 13806.6 2062.1 3806.3 936.1 13210.5 6551.4 9859.4 904.4 3984.2 2017.1 4615.3 1055.1 12679.8 2600.6 11596.4 1022.8 5009.0 1952.3 4410.6 2029.4 14553.5 1920.5 4151.7 7550.9 12797.0 1578.3 3482.6 2097.1 11961.1 1516.0 3771.7 1412.0 14646.9 1401.9 3532.1 1309.1 13939.6 1507.5 3523.2 1685.1 13588.8 1518.0 4097.9 5607.2 11263.0 2250.7 9031.8 1864.9 5718.6 1524.2 5027.5 1398.3 11706.5 2295.2 8906.5 1252.3 6508.3 1674.9 4669.5 1839.3 11944.2 1601.5 3953.0 5646.3 13216.0 1960.6 4620.4 2212.1 12994.1 6388.9 10151.6 1493.2 5522.5 1 1 84 611 924.8 4197.0 281.6 408.4 4102.3 4719.6 120.0 273.2 979.7 4398.9 157.1 297.3 3535.3 4075.6 93.8 219.7 3691.5 4219.1 178.7 462.9 1078.3 4163.9 77.5 253.6 3005.5 3682.9 207.9 312.0 1126.1 4243.1 133.9 323.3 3108.4 3782.6 174.5 289.4 1054.3 3649.3 150.9 276.1 1030.9 3585.9 99.1 379.3 513.7 982.8 164.6 4179.7 799.6 3789.6 152.4 837.8 482.1 944.7 204.6 4170.5 2655.1 3245.4 208.4 736.6 578.8 968.3 179.3 4387.7 477.8 848.1 227.6 4296.4 2406.7 3048.1 221.1 1101.7 642.2 1011.5 2301.4 3115.7 400.5 972.5 401.9 2968.2 1076.4 3461.8 157.1 852.3 2449.6 3233.3 166.9 600.9 2802.1 3288.5 220.7 495.6 1267.7 3545.3 245.7 661.3 2276.7 3544.6 216.0 639.0 2594.4 3291.3 228.2 606.6 1085.3 2978.2 198.6 980.3 749.8 1406.9 257.1 3169.1 2157.6 2921.8 174.1 1135.3 1089.0 3133.5 182.1 803.1 2203.3 2857.5 148.7 908.7 2536.1 2958.0 160.0 801.5 2191.8 2884.9 172.9 1089.6 819.9 1401.8 213.8 2983.6 611.3 1018.8 398.0 3630.5 579.1 1021.6 1718.6 2986.8 1 1 114 669 1250.5 6003.5 142.7 -145.1 1492.4 6902.2 49.3 -231.5 421.3 677.9 257.7 8941.0 5084.4 5494.9 129.9 182.5 4662.5 5266.8 137.7 115.4 4024.1 5289.7 167.8 -17.8 1216.5 5307.1 -120.2 102.1 749.8 1388.6 110.9 7286.1 1446.8 5264.3 174.6 601.7 4443.8 5471.1 101.2 492.6 1274.3 5262.1 203.3 552.3 1361.0 5690.2 97.2 750.1 697.9 1518.6 55.8 7272.5 684.5 1231.3 287.8 7580.1 3732.7 4552.8 232.6 1023.3 3767.2 5304.6 154.9 700.4 1323.0 5010.5 128.8 832.8 1148.5 5640.8 155.9 921.6 1273.9 5111.2 198.2 935.4 952.6 1833.0 229.5 5673.8 3160.3 4486.3 187.0 1028.2 3169.4 4512.4 116.8 977.5 1115.0 1759.2 315.3 6187.1 3154.8 4250.6 254.8 1455.8 1391.4 4889.7 97.8 1316.9 1112.6 1835.2 281.5 5338.4 3190.9 4078.5 293.5 1771.3 3269.2 4405.5 218.5 1109.2 1300.7 4718.0 106.5 1129.6 1281.6 4544.4 208.8 1465.8 1173.1 2327.1 238.7 4941.1 2939.4 4056.1 157.1 1583.3 2865.7 4097.2 197.5 1389.5 1335.7 4289.0 269.8 1240.8 1188.0 4066.5 171.4 1177.6 1200.7 3847.6 193.4 1583.8 1 1 114 570 760.1 4180.3 5.9 915.1 387.0 943.6 4856.9 4291.4 250.8 131.8 572.6 4414.2 1014.6 4291.4 316.1 553.1 194.3 411.6 3369.6 4163.6 3014.0 3543.1 209.7 -58.1 981.6 3875.0 348.3 731.1 542.4 1087.6 242.0 4526.9 1571.9 4601.1 -11.9 442.7 2529.9 3722.8 286.6 812.2 599.2 985.2 2876.3 3927.1 376.9 888.8 838.9 3939.7 524.5 896.1 3305.5 4382.7 286.2 778.0 3920.0 5152.2 706.2 1021.0 568.6 3815.5 683.5 1107.8 558.9 4168.7 2260.6 2707.3 744.3 1858.1 942.3 1572.5 2706.7 3483.8 640.6 1276.5 2822.6 4357.2 663.3 1462.7 2654.6 4072.5 973.8 2841.5 907.2 1745.5 1044.1 3284.9 563.8 1579.2 1030.5 2112.8 478.0 4086.5 2597.4 3519.1 539.4 1711.9 1187.5 3622.7 420.9 1737.7 793.7 1903.9 388.2 2991.6 1063.3 3308.8 438.2 1737.5 2161.6 3698.5 328.8 1128.9 2510.9 3613.7 92.3 1215.6 2587.9 3464.0 308.3 1097.6 2272.8 3091.4 312.6 1206.2 1045.8 2092.6 294.9 3100.9 900.9 3173.4 261.3 1370.1 851.3 1770.5 448.0 2727.8 697.6 1279.4 1504.3 3261.6 830.6 2125.1 700.0 2114.1 1 1 366 851 907.8 1267.5 9704.9 8633.3 7247.4 8462.2 390.0 570.4 7676.0 9252.6 290.2 807.5 7785.9 9866.4 283.4 848.5 7837.2 9551.4 313.1 1292.3 7471.6 9446.6 279.0 1149.3 6753.3 9009.6 305.3 1200.1 2298.1 9187.8 424.3 1418.6 1712.2 5590.7 795.6 8091.7 1253.6 2121.4 7614.1 9657.3 1001.0 1834.8 6746.7 8942.2 2062.7 7439.4 909.2 2166.9 5674.9 7512.0 537.7 1737.0 5325.4 7500.4 899.8 1977.5 1542.7 3110.1 6166.9 6846.4 1342.5 2773.1 1337.2 6520.5 1288.3 2485.5 6026.5 7835.9 1299.4 2499.7 1125.9 8059.7 1405.6 2692.1 837.9 9178.8 2127.0 6348.0 690.1 3016.2 1240.7 2636.7 782.3 9455.7 1466.9 2623.8 707.5 10269.0 4998.6 6391.3 669.8 2941.2 4971.1 6136.5 666.1 3037.3 1591.1 2911.1 600.5 8758.0 1936.2 6348.7 760.6 3146.3 1333.8 2723.5 828.7 8420.8 1132.3 2180.6 806.2 8484.7 1401.4 2634.5 812.1 8469.9 1848.4 6175.9 886.7 3281.4 2170.9 6989.7 865.9 3048.2 3601.5 5913.4 1091.4 3155.8 1701.1 3497.6 3664.9 7024.4 1713.3 5952.7 1404.3 4146.9 1984.4 6216.5 1038.7 3776.1 3365.1 5443.2 928.4 4220.1 1 1 120 187 88.7 177.2 558.1 3925.4 191.0 370.7 274.0 2120.9 42.2 118.2 683.0 1513.0 368.2 820.5 205.9 854.8 101.4 556.6 349.1 1284.5 556.0 514.5 489.9 1203.7 333.3 614.0 321.1 835.2 845.1 853.5 214.8 620.2 497.9 795.3 155.0 413.7 399.1 788.3 34.4 668.5 262.4 457.4 313.0 1201.8 538.0 641.2 611.4 1051.5 496.7 775.4 617.3 1157.9 408.8 783.7 444.0 1025.3 497.0 863.5 239.7 1120.2 717.4 934.9 53.6 541.7 579.7 861.9 369.3 691.6 377.5 543.6 477.8 1169.2 343.6 821.5 175.9 631.6 559.8 890.6 34.0 611.7 421.1 745.9 178.8 984.1 312.9 534.9 326.1 962.4 214.4 697.8 219.6 982.4 450.8 851.2 142.0 879.7 319.3 614.6 389.0 1087.4 192.6 509.8 319.2 1304.4 265.2 369.7 246.4 1517.6 302.1 443.3 428.4 1385.0 191.7 364.2 415.5 1438.5 411.2 692.7 293.5 843.7 490.8 767.6 229.1 804.2 540.0 756.9 166.8 1002.4 498.2 719.1 321.0 1028.2 402.1 626.7 302.0 1184.2 332.6 411.5 309.7 1330.6 235.4 477.0 345.6 1290.5 1 1 99 468 2628.1 5271.8 416.8 734.9 2649.3 4406.3 283.4 820.8 2071.8 2933.2 188.0 3986.3 499.8 1096.3 3470.2 4462.8 780.2 1189.3 2110.0 3791.9 1056.2 2272.9 2285.5 2856.0 1971.9 3345.9 473.9 1035.6 1866.4 2808.6 2104.4 2434.7 1131.5 2933.3 638.9 2359.3 1016.2 1890.7 1645.9 4143.9 1591.1 2578.6 1991.4 2421.5 1957.3 2852.2 1835.2 2620.6 1915.8 2558.4 2042.3 2483.6 2635.4 3184.0 718.0 1531.9 1157.0 1867.5 1777.8 3501.5 1147.8 3405.1 780.0 1696.3 1118.5 1788.7 560.1 3968.4 1887.4 3106.9 1416.5 2447.0 1752.5 2989.1 615.7 1569.6 1994.4 2699.8 640.0 2441.9 2353.1 2747.9 1225.0 2169.4 2335.6 3450.9 629.3 1513.2 1547.1 3422.8 606.2 1408.6 2080.2 3010.3 535.7 2224.8 1470.5 3011.4 554.0 2462.8 1706.5 2654.6 1433.6 2421.6 1759.9 3385.4 653.5 1410.5 1725.1 2998.0 541.1 1992.4 1333.9 2595.2 1456.8 2283.4 1610.6 3089.6 599.6 1647.6 1457.5 2738.8 655.2 2693.4 1261.5 2609.1 1052.6 2414.9 1560.4 2819.7 1151.3 2468.3 1154.3 2266.6 1297.8 2806.4 405.1 2392.2 1345.9 2530.0 1487.4 2848.4 806.8 1905.4 1 1 116 556 287.2 70.6 3740.5 3555.6 2750.7 3087.5 217.3 371.0 420.5 305.5 183.3 3632.1 772.0 3055.7 169.6 299.1 329.1 483.3 2709.2 2697.2 444.0 664.2 2185.4 2296.9 2285.7 2728.9 249.6 474.2 2800.7 2945.2 273.3 437.1 567.0 765.9 2560.9 2805.1 2142.8 2301.8 458.9 719.0 540.9 705.6 2484.7 2633.6 763.2 2864.2 402.6 698.5 416.1 837.4 270.9 3092.8 776.0 2894.3 296.3 793.6 337.7 973.5 2219.0 2527.0 413.4 851.4 328.5 2524.7 1858.0 2124.3 286.2 766.5 437.6 783.9 343.2 2767.3 486.1 752.2 1959.8 2617.2 344.1 805.0 1593.3 2211.3 650.1 2326.3 437.2 846.5 593.8 2531.2 456.2 813.5 412.5 830.6 1841.6 2626.9 462.1 997.6 815.4 2176.6 550.5 1906.9 417.0 1404.6 425.6 1112.1 422.4 2526.7 440.8 957.3 260.3 2868.2 475.7 1596.8 336.2 1995.4 406.3 1093.8 389.9 2561.3 384.0 963.1 1022.0 2430.1 484.8 1613.1 646.1 1890.1 392.9 1098.0 410.8 2251.9 575.2 920.7 362.2 2686.9 1099.0 1636.6 470.0 1736.6 691.9 1101.2 1009.8 2244.2 1168.0 1681.6 578.1 1535.4 1 1 109 150 341.0 498.9 3466.4 2904.0 281.7 433.0 3015.5 2912.9 596.6 2500.3 202.5 391.2 227.4 500.7 283.5 4412.6 2092.0 2411.3 303.7 727.9 358.0 430.7 2935.9 3243.8 295.4 494.5 2595.4 2805.7 1720.7 2173.6 466.1 656.5 1801.8 2318.1 197.3 494.5 681.0 2172.9 241.8 572.1 644.9 2239.4 194.6 425.3 1599.3 2070.3 310.5 772.9 481.0 646.5 2535.0 2893.4 324.4 471.7 535.6 2679.2 305.5 537.1 2012.2 2955.8 335.7 475.1 496.5 2584.5 295.0 572.5 1703.7 2500.3 571.9 1999.7 469.6 944.6 1374.6 1946.1 272.2 800.0 407.5 745.2 292.0 2506.2 381.3 718.4 1669.2 2498.4 649.2 1838.0 467.3 846.8 1378.0 2010.9 412.4 905.5 517.4 733.9 341.2 3103.5 1465.2 1664.6 337.9 1207.1 654.1 1987.6 403.4 883.5 678.2 2112.1 335.4 686.7 1335.7 1722.9 232.3 853.5 481.4 736.6 239.1 2499.3 332.0 831.4 182.3 2476.3 544.7 1819.4 217.7 972.9 568.1 2020.2 235.1 832.4 533.6 1724.2 351.6 925.8 369.0 922.1 1337.3 2066.1 422.5 1445.7 341.4 1060.0 424.3 1435.3 310.8 1080.7 1 1 114 754 334.0 784.5 4520.6 4482.5 359.3 565.5 4082.8 3776.7 275.1 579.4 226.8 4064.1 1078.7 4653.4 89.8 306.7 1124.8 4396.8 161.5 637.4 385.2 964.6 164.4 4957.3 904.5 3686.9 148.7 551.7 702.8 1078.4 280.2 4797.2 453.1 978.4 2970.8 3810.1 917.2 4134.6 306.8 726.2 2854.0 3902.4 212.6 468.2 3149.5 3736.5 374.7 1137.2 657.2 1267.5 3591.6 4151.2 2370.8 2936.9 576.3 1024.7 675.8 1282.3 2753.2 3417.4 988.8 3568.1 486.7 838.9 2681.6 3465.5 392.4 970.5 639.3 1364.5 2861.8 3626.4 660.3 1361.0 544.2 3203.1 2784.9 3173.7 300.9 914.2 2745.1 3239.8 397.4 874.5 716.2 1266.0 2133.5 2943.9 476.6 930.5 820.2 3472.4 563.8 1140.9 2355.3 3422.2 812.6 2922.7 588.8 1425.0 602.2 1345.3 437.7 3856.4 515.1 1064.9 488.6 3860.4 528.0 1302.7 481.6 3523.7 936.5 3207.7 432.4 1375.9 1939.0 3190.3 393.2 1085.3 754.5 1398.0 1429.9 2604.8 837.6 2880.2 436.3 1291.1 534.0 1445.5 462.2 2821.7 451.0 1208.1 1505.1 2991.0 753.1 2438.7 584.5 1363.4 917.6 2984.5 468.4 1148.7 1 1 111 432 516.5 1909.5 3942.8 3626.8 661.5 747.8 3120.4 6298.5 684.8 3323.2 190.3 3391.9 2377.3 2841.3 869.1 695.1 814.3 2391.7 2249.7 2688.5 2120.8 2137.9 1863.5 2178.4 972.5 3974.1 286.8 466.4 2370.8 2946.1 133.8 1174.7 2361.5 2758.0 681.2 2234.1 453.3 1058.7 3003.4 4755.5 412.4 1034.9 4346.5 4909.5 1503.6 1865.8 2886.5 2718.7 1795.1 2196.3 1767.6 2561.1 1138.9 1691.9 2345.3 2871.1 1611.5 1967.7 639.9 1271.7 744.4 744.7 2292.8 3936.6 676.9 1171.5 2984.6 3921.7 467.2 1275.4 814.1 3030.2 575.5 1266.5 2551.8 3531.5 2140.5 2650.5 815.4 1564.9 809.2 1742.9 1609.9 2566.0 1071.3 2440.9 925.6 2578.7 2262.5 3207.9 992.2 1334.2 814.6 1469.6 2830.4 3568.2 894.8 1187.7 1931.6 2919.9 1456.7 1942.9 951.2 1964.7 755.5 1212.2 1403.2 3064.7 1254.2 1615.2 1326.1 1266.6 1411.6 2208.8 848.7 2448.4 899.3 1544.0 2047.2 3253.9 917.8 820.6 1580.7 1925.4 1454.8 2315.5 1033.2 2786.3 984.1 1663.8 2212.8 3002.1 1484.4 2257.3 1828.2 2867.5 1205.6 2186.4 1088.4 1874.2 1540.0 2144.7 1220.3 1886.1 1 1 373 636 -486.2 -121.5 9827.6 7967.0 358.7 311.8 7007.8 6135.7 412.8 352.3 6544.5 6178.0 -110.2 357.7 468.5 5445.1 2174.9 11150.2 209.4 448.9 7817.8 10528.7 194.1 429.7 2330.2 10797.8 148.2 236.9 6748.2 8536.6 163.3 728.3 945.2 2058.9 554.2 8651.3 7037.1 8790.1 527.9 1565.1 1159.5 1661.5 612.7 10122.5 6288.8 8207.2 538.0 1556.3 1534.0 2902.9 551.2 7964.5 6471.2 10005.4 317.5 1041.0 1753.5 9731.6 423.3 1306.3 1257.7 3371.1 473.0 7741.8 5882.4 8679.8 485.9 1849.9 1338.3 2688.0 680.8 7867.5 2326.0 9608.9 455.8 1546.7 5333.3 8314.6 604.9 1494.4 1839.1 3142.8 679.5 7139.7 5156.0 8356.2 501.7 2079.5 1433.9 3287.4 695.8 7351.1 2315.3 9283.0 631.2 2265.2 5029.6 7774.2 561.4 2136.8 1378.9 2774.7 1218.3 7116.5 948.1 2481.4 4515.0 8012.2 1016.7 2407.0 1472.3 6083.0 974.5 2896.3 4129.6 6867.3 2155.3 7611.3 1117.7 2220.9 4855.5 7236.8 681.4 1741.3 5171.7 6963.7 457.2 1752.2 4790.7 6578.5 494.7 2566.4 2266.6 3509.1 586.5 6389.2 4134.6 6347.9 1077.5 3015.0 1774.4 4014.0 3165.7 5145.8 1 1 119 991 195.3 200.4 3280.6 3047.7 263.3 357.5 66.9 2221.5 233.1 216.7 2313.1 2415.0 163.3 278.1 2049.0 1922.0 595.3 2260.7 148.6 376.5 277.0 459.4 150.0 2854.0 652.1 2341.2 143.7 241.6 1992.4 2092.0 96.7 208.5 1716.1 1887.1 94.8 305.3 427.6 624.2 154.3 2464.0 588.6 2061.9 111.2 499.9 257.1 597.6 248.5 2076.2 270.3 489.5 1757.9 2248.1 244.6 564.3 1667.3 1856.9 523.8 2043.2 342.0 499.2 505.6 2241.0 146.1 497.7 281.8 694.2 222.1 2332.4 217.5 619.5 292.8 2687.7 376.1 691.7 1475.1 2136.1 1293.3 1771.1 381.6 706.9 1707.1 2154.6 190.5 376.5 647.7 2043.8 144.0 645.0 381.5 675.9 239.1 2254.9 307.1 689.5 177.0 2083.1 447.8 1776.1 147.9 917.2 329.1 760.4 282.0 2093.4 364.7 822.4 1374.9 2122.0 974.3 1432.6 297.0 858.5 409.6 860.0 181.4 1806.0 487.5 1893.0 240.9 869.9 518.8 1940.9 167.6 688.3 383.9 989.0 183.1 1664.5 523.8 1886.5 167.4 810.4 631.9 1896.8 133.2 708.4 1125.1 1690.7 272.3 732.7 511.1 996.9 959.8 1461.3 1 1 97 872 255.8 265.5 273.7 5618.9 819.8 3346.8 109.3 841.2 777.0 3038.7 606.3 850.3 558.9 770.4 267.1 4227.0 743.1 2969.6 448.3 794.1 844.2 3248.7 186.7 654.1 720.0 2890.7 103.1 800.8 453.5 932.6 152.5 3362.8 982.6 3062.6 98.8 480.8 701.5 2704.0 132.5 1052.1 337.2 785.1 227.1 3714.8 307.5 839.7 2237.1 3042.2 638.4 2891.9 272.3 710.0 316.0 580.9 390.4 4073.7 293.4 685.6 2267.7 3346.9 620.9 2553.5 357.1 1011.5 614.4 2535.1 196.2 1048.8 358.4 1082.4 377.1 3487.1 388.3 923.6 1911.4 3013.7 265.8 787.4 345.9 2888.5 753.2 2465.5 486.3 1117.6 1587.7 2258.8 498.6 1126.6 469.9 708.8 467.0 4154.9 336.3 609.3 514.8 4420.2 414.2 678.1 316.5 3537.9 561.2 795.7 455.3 3674.3 512.4 1001.9 1825.8 3289.1 1496.5 1847.9 581.7 1397.3 542.6 850.3 1508.0 2911.1 373.7 881.6 428.9 2765.1 535.3 969.9 318.4 3130.2 871.2 2357.5 232.4 1451.2 1724.0 2114.4 205.6 1385.8 570.8 1059.8 445.7 3233.0 656.3 2122.9 251.8 1274.3 646.7 2214.7 270.3 1454.9 1 1 117 859 1114.0 5215.1 139.6 -165.5 3503.7 4631.4 66.1 276.5 569.4 2274.9 3738.1 3534.3 497.1 596.7 4474.1 4161.3 2699.7 3782.4 150.6 486.4 888.7 3624.8 1891.2 1834.2 2885.3 4294.7 187.4 388.9 1908.3 2400.7 2747.9 2596.5 2476.3 2918.2 2063.8 2023.5 980.8 3671.7 320.7 684.6 592.2 1040.3 1955.9 4459.6 655.9 953.2 1831.0 4312.9 2785.6 4197.0 331.5 782.5 1171.4 4020.5 351.0 615.8 934.4 3269.6 1663.9 1674.8 2810.7 3776.5 392.8 770.6 828.8 1126.5 1409.5 3645.7 604.1 1015.0 2312.7 3595.2 567.1 1126.3 1531.8 3266.2 941.7 3475.1 560.1 1047.0 1032.0 3040.4 1395.2 1772.7 2211.5 3187.5 514.3 865.9 919.7 2866.4 1392.9 1795.9 757.2 2211.6 604.5 2940.7 1377.8 2034.7 2064.2 2765.8 783.6 1308.7 1273.3 2787.1 1792.9 3329.6 494.3 1172.7 1212.8 3622.3 372.4 949.6 1780.4 3237.8 540.4 1054.7 893.8 1514.6 1890.9 2652.1 1391.6 2064.8 1315.4 1770.1 1093.5 2681.0 1233.6 1616.7 1468.0 2392.2 1316.7 1805.7 978.2 1745.6 1925.4 2660.4 1324.4 1754.0 777.9 2247.4 816.4 1275.6 1319.6 3473.4 1 1 67 557 307.8 623.8 200.2 3530.5 412.9 2098.9 2759.3 2681.2 285.4 818.3 117.7 2615.4 200.0 285.2 2357.8 2750.9 748.6 972.4 310.9 2348.8 353.1 1238.3 2078.2 2568.7 329.8 490.2 336.1 2265.2 383.1 733.9 2092.6 2887.4 395.5 1248.7 251.4 2403.4 1684.2 1940.8 363.2 709.9 248.6 777.1 1878.6 2561.6 391.0 756.5 324.7 2345.0 263.0 481.3 1776.0 2363.0 251.6 495.5 330.3 2706.5 371.4 434.1 355.5 3100.1 260.3 498.1 1526.4 2561.7 313.4 450.9 312.3 2516.3 377.0 905.5 449.4 3304.3 499.1 591.6 1514.5 2509.5 1108.7 1365.3 349.1 931.5 443.3 761.3 294.9 2254.7 406.2 787.7 1105.6 2001.6 499.5 1724.0 360.6 1034.8 412.3 770.2 501.2 2516.8 647.3 1064.4 1292.0 2191.8 234.1 781.1 578.9 2350.0 340.9 760.4 298.8 2194.8 452.0 1710.2 272.8 1142.3 460.4 1753.9 192.0 865.8 410.3 1508.2 201.5 560.4 306.4 874.5 512.7 1835.5 271.2 651.3 797.1 1867.3 247.3 649.3 1143.2 1802.4 225.7 585.5 1144.6 1844.6 232.9 581.6 530.4 1978.2 309.3 532.9 540.0 2196.3 1 1 452 555 59.8 -469.9 11427.6 10567.6 7741.3 8904.3 176.2 85.6 1038.9 4221.6 137.6 8017.5 683.4 923.9 7024.9 8157.7 762.6 1013.7 6538.6 8281.5 418.1 788.0 3412.6 6285.1 714.4 982.1 544.0 9190.9 3374.0 3990.9 5225.4 5787.2 280.2 154.9 6418.2 9826.5 765.2 1325.7 5835.9 10451.6 5111.1 6761.4 2490.7 4056.6 1598.8 5021.2 5319.4 5715.2 3891.3 8176.7 830.6 1351.4 5658.4 7689.3 1824.2 2912.7 2491.8 8632.5 720.8 1103.3 4646.8 6685.5 926.6 4882.1 1856.2 7393.0 2497.7 3960.0 4573.2 7563.4 829.0 1676.3 5924.2 7901.5 441.4 1270.3 5159.6 6847.1 2252.0 2623.1 2097.6 4504.8 489.7 6863.4 2596.0 4354.6 641.9 6880.2 1672.0 4353.7 3690.1 5292.4 5231.3 6634.5 1167.2 3784.6 4713.5 6355.0 954.0 3399.1 2013.6 3573.4 4174.5 5783.5 2819.1 7637.2 1590.7 1959.3 4568.5 7129.0 1431.3 1738.4 1719.0 3116.3 4321.1 5308.6 1931.8 3207.0 3309.3 4063.6 1217.6 2874.4 3208.8 4673.9 1520.4 6204.5 1361.3 2901.1 1432.3 4913.4 1106.5 4018.4 1614.2 4499.7 3498.4 4185.8 2391.9 3919.0 3352.1 4709.7 1258.3 2830.1 2542.3 5123.4 1 1 355 795 -586.0 702.7 9564.7 9547.8 388.3 1174.5 -268.2 8335.1 1880.3 11075.2 879.4 442.6 1761.9 11583.1 455.0 583.2 423.9 1291.5 825.0 10871.8 9625.4 10825.0 226.0 800.3 1913.7 10860.0 556.5 728.7 7523.7 11642.9 277.2 1505.5 743.3 1992.4 7815.6 9034.8 321.6 492.9 900.1 9452.4 621.3 1282.0 8834.0 10047.2 387.5 1334.0 8345.5 9742.6 5357.8 7313.0 995.5 1492.9 1730.2 9153.3 837.1 2364.8 6014.3 7206.9 961.3 2355.5 1023.7 2109.9 1005.5 11232.0 923.5 1899.4 367.7 10936.1 772.0 1363.0 682.1 11285.3 1574.3 8363.0 618.0 3309.8 1015.8 2563.5 428.8 8468.9 5624.5 8117.7 518.4 2638.6 6452.0 8598.0 550.7 1860.6 1367.6 2722.0 5229.8 8642.6 1202.9 2265.9 1299.0 7540.2 4666.6 6168.2 879.3 2909.0 1680.3 2887.8 793.3 9018.8 1029.7 2195.2 794.3 8714.6 1647.8 7288.1 721.7 3076.4 2177.6 8081.6 369.3 2459.3 4197.5 7512.7 451.3 2028.7 2094.1 8207.0 649.4 1770.5 2192.1 8525.4 303.0 1717.4 3987.3 7443.8 350.3 2677.1 1488.4 2958.4 621.7 8664.1 1146.9 2584.1 553.2 10045.5 976.1 2485.4 314.9 10132.4 1 1 98 511 3458.1 4113.9 934.5 1777.3 -198.2 484.4 828.3 8107.8 1925.2 1336.8 237.7 5394.6 2088.4 3393.1 322.0 5147.1 1300.1 6360.3 339.5 466.7 2364.4 3173.2 -258.8 4941.7 2123.9 2943.8 3483.3 4478.6 1915.2 2470.9 3275.8 4203.0 4884.7 5505.0 411.4 228.5 1302.8 2498.2 3515.5 3719.3 4267.0 5464.7 427.5 100.9 1428.8 6301.0 308.3 -1.9 1323.7 5684.4 374.0 618.9 1690.0 6127.1 -126.4 -32.3 3820.8 5291.1 392.5 286.9 813.8 1394.5 2877.1 4767.3 2275.5 2803.1 2955.4 2229.3 1025.1 1694.7 3961.8 4271.0 2511.1 3888.2 783.8 1416.9 1831.1 4920.9 370.6 291.4 2809.5 3484.2 1243.1 2262.9 1121.5 1588.6 3233.4 4001.2 1999.4 4363.2 833.7 564.3 1230.8 3505.8 2249.4 285.8 795.7 1798.9 676.9 3299.4 1034.1 1931.8 2361.3 3005.6 2087.2 3824.3 770.1 1055.4 923.8 2056.8 621.3 3473.7 2369.7 2637.6 583.4 1909.7 832.7 1743.2 2110.7 3019.6 2039.4 2827.0 809.4 1717.6 878.3 1127.7 778.4 3949.8 1380.3 1710.0 1771.8 2429.6 1157.0 3528.6 770.4 1413.9 852.1 3185.2 388.4 1278.9 1755.1 2377.8 82.3 2190.7 1 1 495 692 553.1 840.3 9801.3 8047.8 8377.8 8668.8 495.4 709.5 1919.8 8956.6 547.6 1101.0 6639.2 9385.8 433.1 1106.9 955.0 2133.0 455.5 10134.1 1947.0 10071.8 897.4 2630.2 1136.3 1442.3 1508.9 9744.9 7577.0 9514.5 476.8 1326.5 1472.4 1369.4 778.5 11351.4 3283.0 3049.7 742.2 11316.7 2789.3 11724.1 697.2 1032.0 6978.8 9882.3 1757.9 845.0 1321.7 3885.5 780.9 8850.9 5797.5 8850.3 199.3 1492.9 1155.0 3627.3 883.0 8399.1 1062.3 2509.8 4514.1 6794.6 2277.8 10606.1 464.5 1690.2 2044.5 9109.7 895.3 2593.7 866.2 2550.7 968.1 8696.1 895.0 2405.6 4901.6 7818.8 648.6 2368.5 5268.5 7555.7 1045.6 2357.1 4953.5 6974.8 645.4 1926.0 1573.2 5687.8 830.2 1935.8 4943.0 7914.3 1570.7 2457.4 1435.8 7520.0 705.4 1277.4 5011.6 8993.7 635.4 1762.2 1141.3 6931.0 995.7 2165.3 1253.9 7953.1 3770.7 5184.7 751.2 3498.2 1038.7 2372.0 799.7 7749.2 643.3 1843.2 1186.4 8094.0 836.4 2073.4 718.1 8124.2 3888.4 5436.6 569.9 3875.4 1873.9 2488.2 897.5 6971.1 4254.3 5222.7 1347.7 4030.1 1645.8 2744.0 3722.3 7016.0 1 1 129 389 538.7 723.2 9795.0 10087.4 3172.0 3794.2 6857.1 6635.0 567.2 669.0 5530.5 7509.8 4077.8 5182.7 149.3 510.2 4402.1 4567.5 2925.1 3141.3 737.0 1046.2 4913.4 5237.0 2676.1 3043.4 4722.6 4735.7 5036.3 5239.8 553.7 824.2 4531.1 4802.4 2914.3 3509.4 4830.8 5925.5 667.5 1138.4 4569.5 4983.5 2948.6 3815.9 4767.6 5854.7 625.0 1290.0 1116.0 1975.8 488.8 7339.9 3952.4 5853.2 564.0 1582.7 1387.7 5473.4 2446.0 3050.2 895.4 1816.7 601.6 6242.3 2320.6 3032.5 3465.5 4575.1 1075.9 1765.6 3435.0 5014.3 3266.4 3713.0 1833.4 2330.0 3670.8 4787.1 537.4 1263.0 1429.1 3233.2 677.5 4957.0 3302.0 4402.0 1655.5 2545.6 1401.9 5097.9 708.4 3178.0 1141.4 3160.9 714.8 5780.5 990.4 2021.3 3545.8 5636.3 807.0 1691.0 3516.4 5890.6 877.1 2639.8 3157.2 4719.0 808.8 1838.3 905.6 4433.5 1037.8 1733.4 1503.5 5467.1 2424.1 3694.5 841.3 2817.4 1114.0 2131.1 642.2 6125.6 2774.3 3513.2 826.3 4291.8 1449.3 2285.0 3174.4 5760.0 1662.4 2343.3 3180.1 5410.1 2642.5 3470.3 997.2 2847.0 2730.4 4189.6 793.4 2756.0 1 1 100 552 -103.5 -511.0 3640.5 3504.0 717.7 3393.5 163.9 -26.3 742.4 3395.4 -110.1 -25.6 593.8 3376.1 -163.4 -146.5 755.2 3050.7 547.2 655.2 315.4 52.9 232.9 3458.7 2271.5 2613.8 135.7 264.6 327.1 608.3 -73.4 2460.1 330.0 656.0 2266.5 2681.0 685.2 2664.8 279.6 446.0 2092.6 2684.8 109.4 -97.0 664.2 2814.3 232.6 237.0 355.3 714.4 95.4 3142.0 380.0 2304.2 161.8 854.0 473.9 426.0 198.2 3032.6 1910.7 2410.4 159.7 220.7 390.8 816.8 2011.9 2445.4 1234.0 2073.5 429.2 690.9 662.1 2460.2 58.5 918.2 342.4 709.9 1921.7 2454.7 288.6 441.5 343.4 2278.4 328.9 192.4 284.2 2905.6 29.3 871.6 1916.4 2711.3 291.7 2075.9 512.5 999.6 353.8 1045.2 321.4 2502.4 1664.1 2097.5 -39.1 1003.8 539.6 785.4 388.7 2810.1 224.4 574.3 1376.7 2733.0 266.2 769.7 453.3 2292.8 496.7 1915.0 243.5 911.0 1379.9 1860.9 315.7 646.0 651.0 1319.2 1108.5 1473.0 615.8 1751.4 615.3 956.2 472.5 1108.4 1163.6 1954.4 375.8 481.2 596.8 2002.4 430.0 820.2 1276.0 2111.0 1 1 106 452 1294.7 5176.2 115.4 357.8 4767.8 5052.1 227.0 241.8 530.2 882.2 3529.6 4492.1 1129.3 4407.9 967.0 1521.2 3221.4 4450.4 191.0 534.1 1113.9 4048.7 1066.8 1545.2 3085.9 3881.2 230.6 2348.7 853.8 2439.8 2798.9 3111.5 1126.9 4144.9 324.6 1774.8 1102.4 4447.7 1341.5 2070.7 1148.3 4540.0 386.3 695.5 628.3 1342.1 2912.8 3751.1 2248.6 3372.9 602.3 1104.4 770.5 1407.3 1578.6 3591.7 1471.9 3618.5 222.9 1173.3 651.8 1402.0 370.8 3974.4 957.8 3517.5 344.8 1182.1 483.1 1205.6 1382.9 4200.4 672.3 1209.5 2289.8 3615.5 2090.8 2782.2 590.3 1786.9 2386.2 3023.6 438.7 1606.8 723.6 1319.5 342.1 4059.6 1001.9 2200.6 407.5 3852.3 1707.6 3488.5 361.3 1284.8 1048.0 3379.2 761.0 1660.6 805.1 1549.8 633.9 3846.5 1144.3 2152.0 467.1 3403.4 1310.5 3143.1 327.3 1420.9 1047.1 3167.0 1000.4 1488.4 1984.4 3004.7 978.7 1775.4 1116.1 3165.9 575.5 1521.2 802.1 2345.3 384.8 3108.6 1121.8 2945.4 441.4 1910.6 853.5 2395.3 526.4 3583.6 756.1 2155.3 1358.9 3318.8 694.2 1493.4 569.1 3077.5 1 1 99 487 739.6 416.9 3882.2 3526.5 155.0 249.8 236.5 3777.8 264.6 40.1 707.0 5161.7 242.1 173.0 4126.0 4056.6 2253.4 3020.6 313.5 604.0 110.9 137.6 2001.6 3074.0 150.2 300.5 228.0 4061.9 280.0 337.4 162.4 5367.5 856.1 4255.8 84.3 567.8 1983.4 2048.9 1863.8 2306.5 1132.5 921.6 1893.4 2426.4 2108.7 3179.6 424.2 816.2 814.7 1343.6 361.3 2615.6 679.7 376.1 1597.2 2407.6 684.5 2160.6 1146.5 1253.5 1668.5 1921.6 915.8 952.3 1860.1 2876.6 530.2 885.8 1742.5 980.3 1626.3 2301.1 520.0 930.3 517.2 3465.4 1562.5 1968.6 887.6 1594.8 872.4 2885.8 355.5 1398.1 520.8 2178.1 448.9 2422.6 1083.7 1039.1 1577.7 2128.2 1321.8 1890.2 590.3 2033.9 722.0 1665.1 1354.9 2232.8 621.3 699.6 651.6 2282.2 560.9 948.0 1507.6 2137.5 1139.2 1562.1 921.1 2775.9 584.6 989.1 1648.2 2174.7 515.7 749.8 1386.3 3057.6 589.8 1765.8 352.7 2271.2 1343.9 2616.0 703.8 1611.9 751.0 1764.0 355.9 2166.6 1161.4 1958.3 421.8 855.0 755.0 1948.3 297.9 1045.3 1274.0 2030.1 434.9 1367.9 1 1 465 826 719.0 1034.2 11311.5 11249.2 7108.7 8591.5 612.5 838.7 913.0 1454.8 582.3 17111.7 7874.8 8963.0 449.1 948.7 8175.2 9461.0 353.2 1024.8 1395.7 1918.0 8364.1 9441.5 1092.8 1840.0 8482.6 9654.4 5759.3 7488.7 883.0 1426.9 7148.5 9465.2 470.9 864.6 7589.9 9431.7 653.3 1578.4 2337.9 9008.8 590.4 1450.5 1620.6 2722.7 731.2 11672.7 7579.5 9898.1 531.1 1942.4 8069.2 10019.9 740.5 1840.2 7374.1 10037.5 502.3 1286.4 7381.0 10492.2 676.4 1139.6 2985.6 9604.1 642.3 1280.8 6374.5 9625.0 652.7 1331.1 3127.2 9422.4 671.4 1221.8 5939.5 7888.0 1081.7 1566.1 5813.9 7968.5 1126.3 1928.4 1988.9 3687.6 5724.0 6379.7 1534.8 2968.2 1399.1 8199.4 2042.8 3365.3 891.5 10168.5 5901.0 8151.6 906.4 2991.7 6057.4 8617.0 879.0 1813.1 5565.5 8631.5 766.5 2155.9 2493.9 4505.7 735.7 6978.8 5807.1 7964.7 703.2 2734.9 5712.4 8147.4 794.0 2147.3 2634.1 8895.5 792.4 2578.2 1802.9 3740.4 740.2 7522.0 1658.0 3368.3 1204.8 9111.9 1455.5 3497.9 4948.9 8105.2 2072.9 7866.6 1752.9 4291.1 2207.3 8347.4 1110.1 3220.5 1 1 90 464 640.2 2915.3 1291.0 5387.9 648.4 3677.1 374.0 518.7 2870.0 3311.0 168.9 2443.4 316.2 1039.3 2989.3 3183.3 2002.1 3101.0 154.2 607.4 335.9 1073.6 167.1 3207.3 631.8 2967.2 412.9 562.0 2678.9 3432.0 213.7 1154.3 683.5 3041.7 248.4 1298.4 665.3 3203.5 1359.5 76.2 610.3 3006.3 110.8 1043.4 2292.9 2502.2 286.2 472.1 340.6 769.2 2371.9 2203.2 490.0 1639.1 2162.6 2691.5 648.7 2693.4 468.1 729.2 576.8 2623.8 182.1 917.3 381.7 806.0 255.8 2765.3 1592.4 2083.6 -105.0 733.1 540.8 1845.8 612.5 2915.3 297.8 1112.2 1555.5 2471.9 418.4 884.8 1850.8 2334.3 327.1 805.2 582.5 1887.3 501.1 792.3 1696.7 2119.7 1576.9 2051.3 402.1 566.6 595.2 1221.1 1438.4 2022.4 525.6 1875.9 504.7 989.6 298.4 1222.8 474.4 2861.9 324.1 627.2 350.7 2756.7 362.4 699.7 1325.2 2522.5 1214.6 1589.1 364.8 844.7 1309.9 1875.7 584.3 986.8 579.4 913.8 1737.1 1834.1 1123.3 1457.3 863.7 1002.1 429.2 1344.7 1583.3 2166.8 350.4 749.6 429.8 2086.9 453.6 776.1 166.7 1974.9 1 1 96 724 1392.9 5806.4 1212.6 1167.3 4724.6 5608.5 90.0 932.2 1005.6 2599.0 275.9 5648.1 3228.6 4788.5 -31.9 207.5 2055.3 3240.1 236.2 5129.0 1296.2 5036.4 145.2 29.6 3847.2 4538.0 248.6 1544.1 3124.1 5084.3 -8.7 407.6 1803.8 3212.1 151.1 4238.6 1031.8 3047.6 224.7 4791.8 3618.5 4560.0 221.3 887.9 2473.1 5040.5 236.0 1033.3 3315.6 5015.0 386.1 457.1 584.6 2854.5 2665.7 3594.9 689.3 1539.9 2545.8 4314.9 823.1 1575.6 446.5 3320.9 1268.0 4593.8 232.4 883.7 1062.8 3463.3 295.4 4133.5 768.8 2918.2 389.1 4706.4 460.9 1404.9 363.2 5616.9 710.0 1556.9 229.5 4983.7 2218.5 3891.3 268.3 1373.6 893.3 1752.4 2590.0 4220.1 645.3 1656.9 2837.7 4618.3 858.2 2289.5 715.2 3418.0 908.8 2418.2 724.0 4381.2 1605.1 2318.2 2069.1 3817.6 931.9 2425.5 320.2 2951.7 2134.4 3514.3 475.4 1703.9 914.8 1465.5 1989.1 4007.1 714.9 1545.8 1789.2 3750.4 1140.9 3310.9 1058.7 2295.9 2213.5 3179.3 457.5 1461.7 2007.3 3165.4 398.9 1542.8 1104.6 1982.4 303.8 3499.4 2074.7 3119.6 246.2 1801.0 1 1 94 317 1084.7 424.6 4254.3 4194.8 890.6 1829.7 3475.1 3606.3 1523.5 1156.2 3191.9 3228.7 2211.0 2522.7 265.7 2210.8 4066.6 4587.4 282.5 729.7 880.2 968.6 2831.7 6160.9 1375.6 3945.9 475.2 730.2 1337.4 4933.0 409.8 731.7 2173.5 2881.4 461.2 2053.5 604.9 1200.2 3885.3 5012.7 536.1 901.7 4077.8 4722.7 947.3 3715.4 807.2 1446.7 3465.2 4321.8 739.4 1218.6 871.4 2090.3 2381.6 3135.4 702.3 2348.6 2441.5 3055.8 997.8 2080.7 2432.8 2786.5 1617.3 2197.9 1275.9 1722.3 2665.7 3354.4 732.3 1683.0 1753.3 1739.6 2035.5 2718.6 896.9 2366.4 742.9 1737.1 975.9 2638.1 1328.4 2381.6 1449.6 2438.8 781.9 1939.6 1070.4 1655.7 747.6 2973.3 1131.2 3628.5 628.2 1752.3 1469.1 3766.8 671.7 1580.1 1583.9 2538.3 1611.7 2397.5 1087.0 2213.1 899.0 2959.3 997.9 2028.2 1836.5 2787.3 1576.6 2267.2 1018.7 1790.3 983.7 2185.0 673.5 1444.9 768.0 1902.2 778.4 2955.4 967.0 2442.0 809.0 1480.5 1432.3 2108.0 735.0 2973.7 789.2 2063.0 1692.6 2372.0 1366.7 1760.1 1356.4 2268.5 1514.7 2063.6 850.3 1350.7 1 1 100 399 304.6 778.0 338.0 5360.0 827.6 1228.9 2685.3 3105.3 498.8 1197.2 2580.9 3028.9 1083.5 4128.1 181.2 390.8 676.5 1090.4 207.1 2527.6 865.7 2914.6 565.4 753.1 641.5 1197.9 1606.5 1947.4 433.7 870.4 1847.2 2740.7 368.3 1029.8 2038.9 2533.4 1489.9 2004.8 1266.0 1639.3 411.7 847.1 2671.0 3046.6 885.1 2368.2 758.3 1045.7 774.8 1325.1 357.7 2508.3 704.6 2284.6 592.9 1214.7 697.5 1189.1 1298.9 1582.6 667.7 2110.5 589.7 1013.7 626.2 2576.2 398.9 669.2 312.1 1057.3 270.8 2350.2 659.3 2458.1 199.0 883.4 593.7 2139.5 370.9 889.7 589.9 2168.2 308.4 908.5 538.4 1303.3 216.3 2025.1 589.0 2192.4 292.3 1512.6 461.3 961.9 1660.5 2333.9 267.1 490.2 1431.6 2257.7 357.1 1208.2 629.5 1672.3 535.1 1834.0 501.6 1244.3 322.0 1023.2 363.9 2245.6 506.3 1835.8 268.2 1243.8 480.8 1946.2 265.6 1213.0 294.0 1201.3 226.7 2269.9 436.4 1918.9 302.2 1467.8 565.8 2086.3 298.5 1298.7 1204.9 2194.7 503.6 1315.2 1174.7 1923.1 396.1 1278.8 617.6 1198.3 1118.7 2259.1 1 1 488 607 892.0 1317.0 11193.2 10022.1 7472.6 12225.1 396.0 504.7 5646.1 8364.8 524.3 9149.1 2350.5 10619.4 3066.7 5343.0 4286.3 6286.8 8548.4 8284.3 1179.9 2426.1 6984.4 9862.0 6408.5 10955.8 721.2 1184.7 6006.4 8978.9 676.9 6149.8 2144.2 8040.3 6302.8 6440.9 1728.5 3266.2 5281.5 8706.8 6876.4 9190.2 1287.9 1805.3 1860.1 3113.9 5702.0 8153.3 1966.4 7814.3 3862.0 5651.5 4406.8 6968.3 1119.3 8438.8 2166.8 8423.6 3793.5 5892.2 1380.4 3829.5 6310.2 8406.4 1900.5 7145.3 1799.4 7403.0 4663.2 6746.7 1391.8 6966.5 1717.6 3404.7 4271.6 9958.8 1449.9 3351.2 5826.2 8743.8 1983.9 7301.8 2126.2 6053.3 2063.9 9572.8 1783.9 3585.9 1645.4 4417.4 4958.7 9042.9 3450.5 6969.6 1807.7 6746.0 2441.1 9014.0 1291.3 3304.3 3534.9 6909.2 1456.4 8119.9 1969.3 4579.0 3257.1 9229.0 3154.7 7689.0 1669.0 4471.2 2991.4 6083.6 1631.2 7288.3 1664.2 3808.8 4074.7 9758.5 1940.5 6260.1 3673.1 7085.5 2493.4 5071.7 1825.3 8545.4 1720.5 3613.6 3376.0 10809.0 2406.3 4390.3 2541.0 6918.0 2645.7 5119.5 2567.4 6671.8 4029.7 7635.7 1450.2 4228.0 1 1 73 788 1730.4 1835.1 310.8 5476.0 746.7 2391.0 2357.6 2523.8 1335.7 2537.3 238.7 3336.6 1684.8 2109.6 1240.6 2610.6 1369.4 2236.5 2000.8 2726.8 1573.3 2439.4 451.5 2045.5 700.1 1869.0 1214.2 3396.7 1737.9 1988.5 321.1 2814.2 2206.9 2724.4 381.0 2308.9 1354.0 2114.4 1643.4 2313.4 781.2 1894.0 1502.3 2516.2 614.1 1663.2 466.7 4272.1 1172.2 1595.1 1725.9 3503.1 1836.3 1987.3 1561.2 2448.0 1675.4 2000.6 920.1 2644.5 2039.9 2522.5 1413.4 2312.3 1643.6 2506.9 508.3 2160.4 1249.8 2093.1 1586.7 2364.1 1114.9 1401.7 1676.9 3196.1 683.1 1086.5 1631.8 3902.4 1413.6 2186.1 680.6 2193.7 1752.0 2827.4 573.0 1480.8 839.6 1625.1 1409.5 2948.0 1023.6 1925.4 705.3 2383.4 944.1 1593.8 1901.5 2979.8 1205.1 1522.3 1976.7 3113.5 1362.5 1854.7 655.8 2165.0 1115.1 2432.0 513.5 1551.9 581.6 1314.9 927.2 3123.9 620.9 1438.4 1069.7 2906.6 560.7 1327.0 611.0 2521.9 535.6 994.2 1197.2 2914.8 820.5 1611.4 1129.9 2350.6 1069.3 1510.6 584.2 2068.8 564.8 994.5 930.3 2774.1 565.0 1392.6 592.6 2765.9 1 1 103 490 711.6 2039.9 69.8 5339.5 4033.8 3698.7 1281.0 1317.6 1219.2 4127.5 46.0 -64.1 3168.5 3714.6 -507.8 -410.9 484.7 3495.8 594.4 954.0 2667.3 3124.9 537.1 782.5 436.9 697.9 890.5 3993.0 2825.4 3784.5 217.0 126.0 300.6 276.5 2717.4 3012.8 632.5 3084.3 610.6 881.5 397.5 975.7 2812.4 2733.9 2290.8 2662.8 732.3 1079.2 428.8 1043.0 235.0 2741.0 965.9 3050.3 138.1 122.9 2089.5 2733.0 495.5 306.0 420.9 620.9 2153.1 2887.8 230.4 751.7 459.2 2170.6 502.0 2962.9 188.8 704.6 1836.2 2782.7 510.9 705.6 456.2 2494.1 213.4 714.4 281.6 895.6 612.4 3627.4 324.3 542.0 327.0 3758.5 386.4 1091.5 108.9 2556.9 1679.6 2560.5 151.6 913.1 613.1 2584.1 327.7 838.0 540.2 1074.4 450.9 2927.5 1576.5 2219.6 189.8 1002.7 1517.7 2150.4 235.5 941.0 620.5 1150.3 218.2 3177.4 198.2 759.6 1710.6 2985.8 313.8 814.0 1847.3 3056.8 380.4 2286.3 409.0 1114.0 450.9 2393.5 284.2 1153.1 255.7 813.1 409.1 2802.9 470.1 694.3 1340.5 2695.2 1359.1 1719.9 465.5 1091.6 1 1 123 475 1431.5 5089.8 273.2 220.2 1206.5 1194.1 309.4 412.8 1021.4 1494.0 99.2 131.0 767.0 1850.9 275.4 612.4 686.4 1615.0 330.6 834.0 733.0 1081.0 459.0 762.2 897.3 1597.8 362.1 407.5 1014.1 1485.9 320.9 469.6 912.8 1671.7 670.4 794.5 918.7 1587.8 47.4 1211.2 1006.0 1444.3 253.1 1369.6 746.4 1571.3 294.2 904.0 854.7 1785.4 225.3 887.4 1186.3 1702.2 251.4 459.5 1361.9 2029.0 231.9 779.2 822.3 1804.2 228.3 608.5 803.8 1351.2 477.3 1254.2 758.0 1277.8 229.9 926.8 779.0 1586.8 262.3 980.9 911.3 1174.5 232.3 795.0 745.1 1371.0 332.5 1058.4 607.6 1629.5 409.8 1333.0 949.4 1518.3 302.0 1062.4 822.8 1399.0 451.6 620.1 652.8 1326.9 375.9 1082.7 859.3 1549.4 506.6 1141.2 993.9 1496.4 258.2 388.9 734.8 1295.3 313.4 759.1 731.2 1261.0 278.6 570.8 631.4 1326.9 284.2 1355.6 829.1 1508.8 235.6 615.9 841.0 1354.8 329.0 1412.8 661.3 1361.9 304.1 808.4 643.2 1696.9 318.3 885.1 733.8 1369.0 256.4 801.4 873.4 1548.0 231.0 899.1 1 1 443 635 1062.2 2125.3 9605.1 9063.9 1513.7 3042.3 395.5 7762.5 903.1 2191.7 857.8 9396.6 2675.9 11710.1 460.5 1156.9 2438.9 10875.1 786.6 1444.6 1353.6 2744.0 258.1 8681.8 1372.0 2983.8 6281.7 7874.2 2433.0 9625.2 589.9 2157.7 1752.6 3628.2 526.2 7653.2 1618.7 3159.5 905.2 8772.2 2668.4 10639.0 539.1 2190.3 2994.2 10981.1 529.7 1289.8 6224.9 10068.6 882.3 1631.2 1832.0 4504.7 5799.7 7378.4 1500.9 3465.0 5383.1 7304.1 1243.4 3429.8 1063.1 6328.7 1499.2 3517.9 939.1 8939.6 2235.6 9495.7 1088.8 2823.0 2259.1 8890.0 761.0 2738.3 1312.5 3315.3 1350.1 7664.7 1389.2 3788.9 4670.6 6697.2 2020.1 8191.5 1363.8 3002.5 1616.6 4114.1 1978.4 7610.8 1622.1 3554.5 4432.7 7819.8 1313.0 3736.9 1576.4 7185.6 1864.6 3497.0 1312.3 7781.2 2054.2 7765.6 1376.8 3672.4 2105.8 8608.8 887.7 2612.9 4237.0 7766.9 1200.7 3150.8 2165.3 4154.6 1033.0 6610.5 1518.0 3384.4 1367.7 6960.1 1830.4 3486.1 3230.0 6552.7 2052.0 6381.4 1579.9 4199.4 1283.8 4080.3 1258.7 5672.8 1457.5 3533.6 2699.7 5442.6 2732.9 5716.4 1436.7 4017.5 1 1 117 798 258.6 296.0 4370.4 4083.6 2881.1 2806.9 118.1 276.9 340.8 490.9 2984.3 3192.3 498.0 599.2 2240.3 2299.6 303.2 426.5 254.6 2272.8 374.6 528.5 2482.0 2865.7 725.1 2525.2 283.0 433.2 2210.0 2658.7 250.2 588.8 444.9 705.4 213.1 3530.3 333.4 677.7 258.6 4120.7 367.6 685.9 225.4 3813.7 711.5 2352.5 243.4 819.3 675.4 2497.0 219.4 834.0 426.0 782.5 273.6 3528.0 426.0 782.0 1866.8 3020.8 479.7 737.2 478.9 2537.9 433.7 833.8 1786.1 2955.7 394.8 818.4 518.3 3020.5 444.2 870.9 1845.3 3061.5 743.4 2290.4 446.8 997.7 1685.4 2355.4 379.2 923.5 686.0 1179.6 1715.6 2732.7 1372.0 2094.0 518.2 1099.1 1649.9 2199.4 362.3 866.0 1657.4 2314.0 242.6 828.7 1783.3 2209.0 325.3 814.8 1567.3 2059.4 353.2 953.4 712.4 1082.7 282.6 2554.6 596.8 1221.1 285.3 2697.8 645.3 2256.2 215.2 1305.1 509.5 1020.5 395.6 2792.2 537.2 1149.9 1430.5 2530.3 507.5 1119.5 1679.6 2923.9 568.7 1059.2 1479.7 2612.0 588.8 824.7 474.3 2158.4 544.0 1073.7 340.5 2671.5 1 1 110 917 230.5 241.4 211.8 4356.1 694.5 2657.2 85.5 403.5 139.6 263.4 157.1 4796.3 136.8 152.2 2892.9 3226.9 131.1 246.1 277.4 3736.3 621.4 2355.8 151.0 541.8 282.2 486.6 218.9 3671.0 367.8 331.1 2802.1 3502.1 352.5 399.1 388.1 3275.0 525.1 2077.5 260.3 892.2 341.8 567.6 213.9 3672.7 502.5 2002.4 143.1 1037.1 321.2 766.6 217.3 3964.5 366.8 503.1 284.6 4053.5 1469.9 1747.7 368.8 1151.6 485.5 678.6 2165.7 3130.8 360.0 592.3 2466.0 3126.0 1223.7 1631.4 677.0 1245.5 525.5 688.2 2212.8 2990.1 352.1 625.0 2150.5 2859.1 1491.1 1678.7 560.2 1022.8 1811.0 1972.6 304.4 716.5 1729.5 2318.1 284.3 730.7 744.7 2191.2 201.5 684.1 759.6 2272.0 263.2 739.3 671.5 2204.2 433.7 951.3 463.0 875.4 1725.0 2378.1 1074.1 1435.3 668.0 1173.4 582.1 911.3 1452.2 2063.4 417.6 812.4 1469.8 1852.9 498.8 1439.5 603.4 1248.9 365.9 896.9 1454.5 1715.1 390.0 857.1 1343.0 1837.2 641.1 1313.5 671.9 1367.1 1133.3 1412.9 402.1 1225.4 590.6 1067.8 332.1 2264.7 1 1 109 882 1024.8 4100.3 259.8 584.4 1205.5 4711.2 275.8 566.7 1442.9 4369.1 122.5 704.1 3230.8 4184.9 1099.6 1371.1 413.8 719.2 4280.9 4684.2 2972.5 3146.3 380.5 761.4 1099.7 1544.1 4135.9 4390.1 773.1 1693.4 536.6 4152.7 3083.5 3630.2 490.1 1083.2 925.1 1057.6 4235.2 4400.8 2652.3 3104.3 1267.8 1873.6 792.8 1242.3 3215.4 3687.1 756.7 1120.8 626.4 3422.2 1239.5 3666.0 387.0 1018.1 2661.1 3650.3 458.6 760.0 1296.0 3939.6 288.0 663.9 2491.7 3409.2 318.7 724.2 2691.9 2962.0 345.0 1080.6 1209.0 1665.6 583.3 4725.4 725.3 1623.8 2942.7 4058.3 987.5 1640.2 655.7 3519.1 2408.4 2951.2 465.3 1545.7 835.9 1224.1 688.7 5198.3 995.5 1336.5 431.1 5384.8 2348.7 3029.5 386.9 1616.4 2318.0 3064.9 385.1 1551.9 796.3 1338.5 570.8 4490.9 761.2 1459.3 2171.3 3865.9 1066.2 3265.7 1045.4 1725.1 1031.2 3582.2 357.1 1226.5 1129.9 3385.9 425.9 1672.6 1969.2 3371.8 601.0 1593.8 1018.5 1668.5 2037.5 3275.6 2031.4 2611.9 941.6 2160.9 934.3 1362.8 2066.8 3616.2 708.4 1369.7 1138.6 3440.2 1 1 81 142 207.6 137.4 3342.5 3224.2 239.6 349.7 3014.0 2914.6 278.2 203.6 138.6 2268.1 2010.7 2130.4 40.3 207.0 1853.0 2126.5 166.5 417.7 399.6 369.7 153.3 3728.6 203.6 353.3 161.9 3593.7 535.7 2143.6 107.8 562.3 279.8 467.8 177.7 3647.0 326.2 423.7 154.5 3258.0 1890.4 1854.9 172.9 479.2 2095.4 2476.3 152.4 408.1 676.9 2403.5 138.8 340.4 686.3 2488.3 76.3 432.3 1757.8 2196.4 192.0 451.9 1444.2 1786.8 186.2 463.5 412.6 697.6 1732.7 2192.6 571.6 1675.1 284.0 748.4 316.1 692.7 216.6 2590.7 332.3 561.7 149.5 2555.7 543.6 1641.3 165.4 937.1 414.6 706.6 201.3 2562.1 1465.6 1648.0 212.7 1114.0 494.5 682.4 231.0 2982.6 358.8 596.8 239.2 3509.8 419.5 560.3 272.7 3077.0 1306.2 1455.0 202.4 1086.3 455.8 783.0 189.0 2509.6 1166.4 1295.9 268.9 1012.2 484.4 529.1 1150.3 2130.5 409.9 622.6 1347.4 2390.6 641.2 1555.6 422.0 1012.2 1117.0 1427.8 336.6 1003.4 517.6 839.0 1344.1 2316.5 884.0 1021.1 461.6 1363.7 586.3 863.9 382.2 2094.5 1 1 117 822 276.5 190.7 296.5 5431.8 359.5 594.1 3613.1 3812.1 403.6 727.6 205.1 3530.9 2981.4 3754.2 180.6 408.5 963.0 3610.5 38.6 371.2 584.8 1044.1 155.2 3421.9 2519.9 2833.1 103.6 313.9 2241.0 3134.5 187.9 277.8 734.8 1130.7 175.2 3481.7 976.5 2849.5 96.2 910.9 484.3 1084.3 131.6 3514.5 748.5 2910.1 178.8 770.4 330.9 751.0 211.7 2928.3 355.7 774.3 1746.3 2841.7 470.1 908.0 265.2 2238.6 879.0 2477.0 77.6 883.5 1838.3 2884.0 8.8 503.8 1788.9 2384.9 241.4 759.5 793.8 1484.3 1263.2 1925.1 1295.0 2318.0 251.1 826.7 952.0 2788.3 176.7 468.6 1915.2 2567.0 172.6 423.5 1689.5 2392.1 186.6 643.3 1697.0 2429.8 122.2 836.1 911.2 2365.3 182.1 818.3 723.5 1329.0 248.6 2374.3 690.2 1074.4 1154.3 2160.5 803.9 1257.2 350.8 1746.8 1476.7 2119.4 423.3 945.6 827.5 1581.2 1043.8 1711.2 1043.2 2206.9 429.8 1179.8 1345.3 2387.8 317.7 1166.0 852.1 1328.2 241.9 2659.6 639.3 1144.7 262.7 3034.7 579.2 1169.5 160.6 2724.4 625.8 1840.8 237.6 1825.4 1 1 116 174 211.8 231.2 132.1 3755.9 252.7 249.0 3011.7 3135.8 2263.0 2028.1 138.0 343.7 229.8 242.0 183.4 4112.5 206.7 285.9 3516.3 3475.4 638.6 2509.4 196.8 556.0 130.7 209.3 131.2 4714.4 305.7 468.0 213.9 4755.5 521.3 2379.2 170.3 413.4 636.4 2391.6 121.0 494.8 241.8 629.5 120.2 2981.2 620.2 2580.4 184.8 625.6 520.5 2509.8 47.7 770.6 233.4 601.2 178.1 3440.4 696.6 2626.5 122.9 632.6 1476.8 2392.3 258.5 724.6 344.6 772.9 2157.7 2594.7 497.8 1992.4 284.0 941.3 349.0 646.7 163.5 2776.1 240.1 601.8 377.2 3347.9 270.6 676.6 1877.9 3147.3 423.9 1860.2 368.1 1206.1 376.0 903.0 304.4 3089.6 520.8 2148.4 223.9 1014.4 691.5 2204.8 209.5 921.9 1377.9 1945.3 477.8 998.5 392.5 757.9 1602.8 2729.7 907.8 1052.1 464.2 1786.2 1320.1 1790.8 269.0 890.1 1414.8 1674.1 255.3 760.0 763.8 1783.8 270.1 889.8 1297.6 1616.0 238.4 1036.8 557.6 859.2 234.8 2598.2 675.6 1819.6 214.4 1114.4 1075.2 1659.7 209.6 969.5 1347.1 1682.8 377.1 1067.2 1 1 108 268 566.1 812.2 4194.0 4350.9 3255.3 3812.7 42.7 144.7 570.8 702.0 129.3 4600.8 1090.7 3597.1 124.1 353.5 623.8 866.4 3964.3 4142.8 685.6 952.7 3507.8 3702.6 2430.3 3022.4 374.0 634.1 3105.4 3767.5 190.6 517.6 839.5 1121.2 2790.5 2976.3 2712.3 2675.6 394.7 671.3 776.8 1082.4 2840.0 3034.0 1118.9 3698.5 494.4 771.0 694.0 1327.3 482.4 4563.9 1116.2 3237.4 486.4 1144.1 702.2 1360.8 2734.9 3626.5 779.8 1358.5 495.5 3727.1 2305.3 2937.4 476.0 1291.1 709.3 1224.7 572.4 4278.4 633.4 1152.4 2582.2 3646.9 956.7 3124.5 566.1 1107.8 989.2 3216.7 500.4 1197.8 737.2 1591.6 2242.3 3647.2 739.4 1429.6 799.9 3410.5 868.3 2519.8 475.1 1634.6 658.6 1320.6 442.8 4519.7 788.4 1534.1 358.6 4029.2 821.8 2578.1 394.3 2000.7 652.1 1397.5 517.2 4193.5 581.7 1476.5 1874.5 3850.6 740.4 2291.3 782.9 2068.2 577.5 1302.2 486.7 4104.8 750.7 1285.2 438.2 4192.4 1230.0 1654.3 1224.1 3057.6 1211.4 1957.7 1258.0 2956.4 1613.0 2247.9 480.1 1893.0 1369.0 1833.6 427.3 2259.2 1 1 83 406 1423.6 5032.0 202.3 385.8 1543.5 5223.3 331.4 595.7 1489.8 5364.7 757.6 316.9 4438.2 4564.3 372.1 344.4 777.9 980.6 258.2 5070.5 1166.7 5418.3 376.8 341.4 1061.7 4659.9 715.6 1105.5 3527.0 4802.9 643.0 786.7 1118.5 1354.9 3607.7 4074.5 1026.5 1324.9 788.8 4149.4 870.7 1167.3 904.5 5277.9 1591.5 4650.6 665.2 1163.0 1163.0 4838.1 636.3 624.5 758.2 1624.5 376.0 4354.0 2939.6 4023.3 124.7 1098.5 935.2 4184.3 334.5 544.3 714.1 3262.7 488.4 1229.0 543.7 1272.5 115.4 4042.8 890.8 1252.3 288.8 3927.3 2741.3 2948.4 229.1 1329.8 2590.6 3012.1 304.6 1181.9 474.6 1328.3 486.8 3959.7 583.0 1432.9 2174.0 3559.7 530.9 1110.1 705.5 3867.6 813.5 3432.0 409.5 1749.9 544.0 1046.5 615.2 4470.1 352.5 957.8 1831.0 3913.2 241.8 792.7 809.2 3844.2 531.7 2583.2 411.9 2265.5 657.0 3015.4 471.5 1815.7 613.7 3288.0 517.6 1504.8 922.7 3396.9 448.2 1544.0 1576.5 3119.8 359.8 2026.0 911.2 1746.0 576.8 3987.6 685.2 1310.0 485.8 4967.2 901.6 2468.9 501.1 3097.8 1 1 101 484 1143.7 5029.4 -7.6 243.7 360.8 620.7 172.4 5482.9 249.0 149.0 3950.0 5161.7 205.7 247.0 4550.7 4962.2 2895.9 2882.1 281.4 378.8 383.7 86.6 52.5 5180.7 262.1 285.4 200.7 6327.6 324.9 895.2 282.1 6009.4 801.9 4147.1 194.9 751.2 1087.6 719.4 3309.5 4386.7 2776.3 2855.2 536.9 1306.0 3258.1 3905.7 344.8 509.0 3735.7 3911.1 171.5 -6.1 1009.1 3294.1 651.4 1547.0 452.0 1257.5 3073.8 3336.4 578.8 1126.1 3256.6 4261.2 2665.4 2849.1 502.8 1289.8 2507.5 2858.4 315.4 1251.1 728.6 840.4 541.9 4706.3 451.1 870.5 2347.2 3685.1 2026.3 2806.2 626.9 1398.1 1172.3 3427.0 374.6 740.7 2755.7 3120.8 356.4 869.5 2860.5 3204.1 363.2 1018.2 2644.5 3107.1 201.4 751.2 989.0 3079.6 563.2 1738.1 487.3 843.7 2473.9 3591.7 648.7 768.0 769.0 3290.7 370.9 770.9 2206.7 3705.9 506.3 556.6 950.5 3589.0 399.4 726.7 2157.3 3833.5 1020.5 2188.0 958.9 1967.7 614.0 918.8 2288.5 3830.7 539.2 718.7 923.4 3225.3 347.2 1462.0 1657.3 3059.1 1051.2 2521.9 702.2 1608.4 1 1 483 628 -240.8 101.3 9491.4 8003.9 7965.5 9780.5 702.2 -325.8 648.1 1346.2 -7.8 8616.9 2343.6 10211.6 2208.5 197.1 641.9 597.1 8608.3 8580.0 692.6 3119.9 7714.4 7101.9 6599.1 8692.8 305.1 666.5 7307.1 9979.4 -53.9 -101.8 2155.1 2035.0 5509.4 5600.9 6391.0 8123.8 692.2 878.6 1764.5 3010.6 5398.4 5474.7 2500.7 10080.8 1262.3 47.0 1447.0 3960.9 3.5 8065.8 2142.9 10387.8 379.9 2156.3 1235.7 2828.5 6106.4 6598.0 1303.8 2920.7 973.5 6279.1 5438.5 7607.9 541.1 1679.3 1709.3 3295.3 1461.3 7389.7 1093.1 2507.0 4982.2 6799.6 1868.9 7753.2 1448.3 2222.0 1755.9 7992.7 1586.0 1058.1 1075.3 4008.9 5264.2 6212.9 1107.7 3783.8 1879.3 5618.8 1896.1 7661.0 348.3 2348.3 1351.2 3335.6 352.0 6688.4 1135.0 3350.3 1342.5 7730.9 1517.9 7146.6 263.9 3167.8 1155.1 3762.7 1148.2 6349.9 867.0 3391.6 4078.6 6809.9 1522.7 6036.7 1441.3 3699.4 960.2 3048.3 1147.3 8499.8 1204.5 2583.0 1093.6 8200.8 2806.3 4842.8 2155.6 5288.0 2784.5 4551.0 2559.5 4107.5 3682.5 5881.6 1256.3 2838.9 2983.8 5250.9 816.6 3732.1 1 1 107 469 1249.4 764.5 250.5 5250.5 642.2 1707.1 164.1 3308.7 1342.0 1551.5 273.0 983.5 391.0 503.9 829.4 2102.2 440.0 506.4 1100.5 1381.8 629.7 875.1 108.5 503.0 711.2 995.3 148.8 506.2 520.6 689.5 558.8 1547.3 491.3 819.5 245.1 2615.0 1158.4 977.5 576.2 923.3 536.8 1093.3 210.5 1914.5 705.4 1135.5 219.1 658.7 561.3 787.9 428.5 696.4 355.3 1186.5 474.5 902.2 583.1 942.6 198.9 514.6 550.7 983.2 190.0 1033.2 473.8 1260.6 162.6 791.5 497.8 1056.8 329.6 1181.3 655.4 1301.1 283.5 601.0 386.1 1184.6 216.2 776.2 490.8 1338.2 345.0 846.0 381.5 696.5 339.9 948.6 498.5 907.5 360.3 870.2 603.5 1271.0 394.2 752.3 608.0 1106.3 251.9 582.6 408.9 1050.4 394.5 950.6 518.7 995.4 250.0 1026.2 501.3 835.8 329.0 1316.5 591.5 905.9 220.5 616.9 501.0 868.7 187.0 1801.9 544.4 993.5 153.5 750.1 678.3 1188.6 229.1 628.7 493.1 796.3 286.5 1629.4 503.7 841.1 209.1 1023.0 406.7 748.1 317.0 1005.8 431.1 952.5 262.6 637.8 1 1 962 565 -458.7 -43.5 15131.9 14792.1 163.4 389.0 12511.0 12473.3 110.6 197.3 11130.5 11163.1 7480.9 10017.1 614.3 1271.8 927.5 1795.5 692.5 10988.8 277.3 1873.1 11317.4 11683.4 970.5 1101.9 1099.9 13807.4 172.3 926.7 650.2 14869.1 2083.7 11214.7 727.7 -78.1 1864.4 9934.6 923.6 2218.9 6772.6 9265.1 1069.3 246.0 1175.5 1564.3 8035.5 10784.4 1220.8 2450.7 1412.0 9807.2 1896.0 10245.2 992.5 2659.0 5992.3 8994.2 1097.4 2235.3 6457.3 8294.4 1609.8 2821.9 1445.5 3201.8 8482.6 10124.7 1415.2 2431.2 8582.5 10647.0 1367.0 2999.0 7329.8 9477.2 4644.3 6509.9 1847.5 2915.6 6031.9 8529.3 1333.9 2933.1 2110.9 9114.6 1218.9 2524.3 2447.4 8947.5 1257.5 2555.6 4815.7 7603.6 1706.1 3005.1 1741.3 2996.8 7080.4 8143.2 780.2 2233.2 7643.5 9381.7 756.0 2254.5 7747.5 10440.6 1046.9 2309.6 2055.4 9183.3 880.4 1578.5 1874.1 12384.6 640.4 1925.0 1966.6 11219.8 1018.1 2889.9 5670.0 8680.5 1221.0 6024.6 1768.1 4673.5 1183.1 3178.0 1383.1 8725.3 2161.0 6823.3 1489.3 3164.8 4480.0 6833.3 780.0 2946.7 4078.9 6629.5 1146.5 4006.1 1 1 118 572 826.5 3947.4 18.6 -465.0 251.9 327.2 -72.8 5829.2 3361.9 3613.8 -131.0 56.7 320.6 236.5 166.4 5645.6 830.5 4174.7 -49.4 330.9 168.8 273.5 164.6 5753.6 228.5 97.3 220.7 5619.7 354.0 501.4 3882.4 4526.7 301.0 340.2 281.5 4250.7 209.7 265.1 315.5 6129.3 342.3 461.5 3335.9 4801.8 2682.4 3508.2 177.3 703.7 413.5 627.8 141.0 4987.0 376.7 462.5 179.6 5779.7 362.0 475.5 293.6 4983.4 334.3 751.8 252.5 5371.8 673.2 3339.0 131.4 1301.6 384.6 957.0 189.9 5263.5 775.0 3345.0 382.5 1545.0 545.9 1154.1 2666.3 4266.4 2211.5 2999.0 491.9 1178.5 2427.0 3115.3 461.6 1188.2 848.6 1258.1 2753.4 4523.8 2346.4 2778.3 426.4 1138.5 2505.1 3522.2 275.7 733.4 1114.0 3701.8 280.1 970.5 1039.4 3284.8 291.1 814.0 1904.2 2491.5 540.5 1399.7 591.8 1265.5 2154.1 3298.7 713.4 2556.4 455.0 1750.0 468.5 1154.8 275.2 3623.7 787.2 3069.3 166.5 1405.4 830.5 2689.7 171.6 1345.4 461.1 1235.4 538.7 4070.3 360.8 964.2 2292.8 4252.5 395.3 829.9 2251.1 3786.8 1 1 121 126 632.6 396.6 3290.3 3224.7 2527.3 2431.9 1186.7 1942.5 545.6 554.7 711.1 3922.5 1267.8 3104.9 152.1 400.8 435.8 720.3 2810.9 3327.5 573.3 1684.4 2530.0 2973.9 2341.2 2660.9 288.4 429.5 2269.6 2920.2 290.4 2312.9 658.2 913.4 2797.2 3431.8 1602.2 1995.1 535.3 1424.8 629.3 950.6 2872.6 3529.0 947.6 2536.8 2021.2 2649.0 685.0 1068.0 963.6 3697.5 858.6 2232.9 603.6 1518.8 816.8 2319.7 2080.0 2964.2 1080.5 1968.9 519.5 2559.9 2330.5 2718.2 467.6 1244.0 885.3 1256.8 552.4 3598.6 691.1 1252.7 2433.8 3361.0 792.0 2337.2 1100.9 1346.9 842.3 2427.0 586.9 1820.9 763.7 2103.9 1751.6 2727.8 853.6 1658.7 596.7 2636.4 878.1 2209.5 555.7 2284.3 831.9 1421.7 922.1 3864.1 1071.5 2025.4 599.2 3342.6 770.9 2328.9 370.0 2799.1 625.7 1415.0 1254.3 3825.6 700.1 1605.8 1488.8 3058.6 1159.2 2162.9 634.8 1626.5 653.2 1384.6 405.5 3520.4 807.1 1471.5 467.8 3149.0 969.9 1579.5 806.2 3026.0 1030.8 1892.5 1237.0 2678.7 1213.0 1780.9 851.9 2554.9 1153.6 1531.4 921.0 2868.9 1 1 111 537 3676.2 3945.4 236.2 357.9 496.0 641.1 4134.4 4127.9 3367.0 2882.9 195.3 447.2 3347.6 4158.5 171.8 319.4 3310.2 3934.4 145.6 516.4 646.6 727.6 218.4 4430.7 514.8 778.3 2889.4 3333.9 1178.4 4154.7 290.9 652.1 633.4 1165.9 273.8 4687.5 3113.0 3496.4 226.8 902.0 1105.2 3795.9 329.5 625.6 598.3 1311.5 3278.7 3841.9 650.3 997.0 2959.2 3581.6 2518.4 2973.4 672.3 1096.6 868.4 1336.4 2477.3 2878.5 2391.2 3049.1 540.6 1016.4 2612.8 3588.9 306.4 631.2 3121.1 3337.2 368.7 758.4 2857.1 3714.5 325.6 665.8 2723.1 3629.0 421.6 773.0 986.3 1734.1 2235.9 2768.5 1048.6 3664.3 517.5 939.7 1221.5 3753.4 448.3 929.9 2355.2 3611.7 472.6 814.0 1031.3 1755.1 1859.5 2133.9 1148.9 3450.9 625.2 1047.5 2328.4 3133.9 467.3 960.6 945.1 1507.7 1962.0 2612.7 676.2 1210.8 1961.5 2500.6 653.0 1224.5 1888.0 2275.0 708.8 1311.3 658.5 2059.5 1834.9 2686.9 408.3 1085.7 2082.0 2571.4 417.5 880.6 1051.6 1569.9 1587.8 2195.0 733.8 1257.3 1668.0 2259.2 632.7 1088.7 1890.7 2336.1 1 1 119 908 928.8 1050.0 319.6 4277.1 632.9 4305.6 1002.2 1377.6 383.7 526.2 226.9 2877.8 675.2 2169.8 1700.5 1882.1 846.1 2434.6 218.1 1511.9 2001.7 2299.9 1093.0 1396.0 1899.9 2274.5 685.7 2118.4 1729.8 742.2 2741.2 2518.7 539.1 761.7 348.5 3745.8 529.1 1219.7 310.9 3779.7 499.2 908.3 2002.2 3909.2 1980.5 2964.9 332.0 985.5 2701.9 3279.5 118.8 894.0 683.1 1099.2 491.9 4503.4 918.8 3416.4 179.5 896.6 536.3 2076.3 260.2 3095.5 370.5 826.0 335.2 4185.6 370.9 788.1 739.1 4153.9 404.2 963.8 328.0 3803.2 748.6 3064.6 212.8 967.5 802.4 2456.9 290.4 618.9 1395.2 2249.1 1065.6 1687.5 408.7 829.7 2721.5 4208.4 511.2 909.3 804.0 3347.2 472.7 971.7 315.6 3573.7 522.4 1003.9 509.4 4554.0 332.6 894.5 1526.2 4647.5 324.7 980.9 511.1 3613.4 701.7 1646.6 316.7 642.3 656.6 828.5 263.2 2234.5 743.1 2564.4 336.2 1391.5 1214.3 2414.3 415.6 1194.0 724.1 1176.0 1239.6 3244.6 1038.9 1587.7 1094.6 1135.1 880.2 1547.0 524.5 2641.2 653.3 1575.4 1405.2 3314.6 1 1 115 562 3624.7 3941.9 27.3 95.5 3119.3 3674.2 71.7 -270.6 2711.0 2793.1 249.2 522.5 2536.9 3040.9 142.3 193.6 2284.2 2772.8 -64.7 133.6 678.0 593.1 30.8 3089.6 457.5 454.1 1817.9 2170.8 809.1 3131.7 178.1 273.5 807.6 3061.4 0.1 321.9 1852.3 2250.1 248.8 888.9 1651.9 2204.0 117.1 320.2 722.3 1020.8 60.1 2740.1 341.7 738.9 1766.0 2399.7 1640.6 1991.9 730.0 1016.7 469.0 624.3 1542.9 2093.8 486.2 745.0 1838.4 2141.4 392.9 1013.1 318.2 1961.2 246.0 1024.9 285.7 2606.5 375.7 657.0 134.1 2879.1 1390.4 1723.5 246.9 908.7 637.9 835.8 1547.4 2173.4 1424.1 1612.0 274.5 814.3 568.2 1276.6 1333.0 2057.4 1385.0 1467.5 411.3 1008.2 647.3 995.3 291.9 2026.9 1402.4 1664.2 319.3 607.2 637.7 1900.3 328.3 1245.1 492.6 947.4 1228.5 1630.5 1079.7 1629.6 291.9 813.8 364.3 855.7 963.0 1707.3 526.7 859.8 977.3 1513.6 1219.0 1847.4 291.7 871.8 688.0 2017.5 206.4 611.1 621.5 2060.0 291.2 511.3 625.9 1791.0 380.7 575.6 495.9 1204.9 228.5 1673.6 1 1 96 884 273.2 414.2 3117.8 2745.0 1739.5 1842.7 146.0 57.3 473.1 2517.5 142.3 261.8 2201.1 2796.5 59.3 202.1 346.9 411.8 147.7 3863.3 740.0 2852.0 107.6 314.6 2178.1 2607.6 136.7 305.1 464.4 681.0 2106.8 2740.1 1393.6 1565.8 664.2 955.1 704.7 2264.8 226.6 417.0 1400.3 2004.0 185.2 368.3 602.6 983.5 267.0 2680.7 346.3 632.7 1972.8 2298.1 792.2 531.8 1984.4 2332.5 1472.7 1925.7 439.3 671.2 495.3 740.4 1232.1 2195.1 1504.1 1878.5 358.2 787.7 599.9 931.5 331.3 2054.6 427.7 1249.4 1513.5 2038.2 609.0 2093.8 383.4 731.0 1042.7 1691.9 334.6 1202.4 684.2 1304.0 1364.1 1786.3 950.7 1151.1 761.2 1172.0 484.7 713.7 1664.4 2840.1 354.1 755.6 648.5 2141.3 546.1 937.2 293.0 2524.3 648.4 605.2 380.3 2554.4 677.9 644.3 1379.5 2304.4 298.3 859.0 1318.3 2283.2 1224.0 1297.8 470.1 972.8 779.8 644.5 1015.6 1774.2 355.2 950.4 408.5 1860.2 842.1 692.9 281.5 2202.7 521.5 1042.6 401.3 2548.2 393.2 1187.2 870.0 1875.8 808.8 1792.1 441.5 1182.6 1 1 123 534 4753.1 6667.7 -280.7 -46.6 1143.4 5223.5 -276.3 3621.7 5719.5 6300.7 -222.2 119.5 48.5 490.5 4037.6 4628.7 604.6 885.7 -21.3 3815.9 733.9 3872.9 245.2 2486.8 742.1 4120.3 1927.9 1097.8 2760.3 5332.4 102.9 656.5 489.3 1304.8 48.5 5814.0 937.0 3977.7 -567.8 4105.0 286.7 990.4 3389.0 6082.6 49.0 412.0 549.3 5946.1 -20.5 476.6 1876.2 6256.6 -16.9 711.8 1688.0 6461.8 987.1 3776.3 2551.5 3136.5 2424.9 3149.8 253.5 3234.2 724.6 3475.3 1380.8 2528.9 1006.9 3721.5 589.9 1734.1 304.4 2606.9 832.1 5058.3 603.2 1723.6 2271.8 3975.7 287.7 894.7 2962.2 5572.8 126.0 988.8 3304.7 5181.7 1122.7 3461.0 1339.5 2483.7 988.8 2473.4 638.4 4373.9 1055.9 3294.2 537.0 3585.8 751.8 2308.4 197.1 5054.7 516.1 1525.3 428.8 5724.7 968.6 3788.2 477.6 2106.8 1527.2 2309.7 308.9 4267.2 581.7 3533.6 261.0 1892.8 398.1 1525.4 366.9 4324.0 2026.8 2751.8 285.3 3165.3 1923.2 2772.3 350.4 3317.5 897.8 1875.5 1902.6 4107.2 1254.2 1602.1 692.4 3526.2 1197.6 2351.9 578.7 4128.8 1 1 99 443 325.1 175.8 1087.8 5222.2 751.5 4006.9 136.7 48.7 3063.1 3979.0 -101.5 237.3 297.6 685.9 2921.5 3410.7 1025.3 3125.8 290.5 420.8 775.4 3235.5 223.5 486.5 295.0 1521.2 177.3 3072.1 764.4 3585.9 173.2 1154.7 2382.0 2629.9 931.4 1280.8 466.4 735.6 242.0 4413.1 373.6 755.3 2465.5 2345.3 1064.0 919.9 2546.6 2907.9 1815.9 2285.1 222.3 515.6 2311.2 1994.2 268.5 959.8 660.1 2526.3 138.0 586.4 464.7 1342.3 234.6 3312.2 426.3 709.0 337.7 3785.8 781.8 1027.0 114.7 3100.4 2213.8 2611.1 199.2 769.9 1911.3 2287.6 299.1 666.2 770.7 868.2 1877.2 2372.6 443.3 1563.0 1837.5 2392.5 748.3 2835.5 423.7 676.6 1941.5 2633.6 295.5 691.5 1910.3 2653.8 269.2 515.2 1943.5 2349.1 644.5 1113.2 818.9 2354.5 440.8 753.4 1625.9 2116.8 205.7 980.8 607.4 1291.1 223.9 2235.6 706.2 2189.1 216.1 914.6 647.0 2268.4 173.1 1192.5 750.2 2380.4 231.0 918.0 1400.8 2094.1 843.3 1124.0 551.5 1199.3 1385.9 1752.2 1174.2 1324.5 623.0 1056.1 1428.3 1969.9 407.2 929.4 1 1 96 906 170.7 33.4 223.3 4266.3 191.8 480.5 3409.6 3339.1 2028.0 2034.4 73.8 462.0 247.6 433.5 2385.5 2913.7 1677.5 1843.7 105.0 659.9 1812.1 1930.7 101.6 594.9 255.7 483.5 2183.0 2486.9 1484.5 1606.9 107.2 523.7 1459.8 1667.2 169.4 569.3 258.5 570.5 1763.0 2412.5 1479.5 1629.3 152.4 606.7 396.5 624.9 165.3 2317.3 1372.0 1656.2 141.5 678.3 1283.9 1573.2 129.1 562.1 410.2 570.4 257.7 2421.2 409.7 606.0 1315.5 1917.6 1163.5 1454.8 327.3 585.5 515.8 638.7 1548.6 2021.0 410.1 730.1 1585.9 1913.5 1002.4 1470.9 333.8 616.9 1288.0 1537.5 307.9 680.0 557.4 622.1 1368.7 1732.8 1052.8 1117.5 530.6 917.5 456.9 547.0 301.2 2396.4 377.8 651.5 296.8 2353.7 467.2 704.2 227.9 2390.7 1175.1 1322.4 268.2 1005.6 1064.3 1257.1 225.2 755.3 380.0 673.3 1103.3 1734.2 432.1 528.2 1045.3 1702.4 414.0 472.3 366.2 1497.8 406.2 1381.3 249.8 933.9 290.7 647.4 292.9 1687.1 374.4 589.0 1064.4 1979.0 722.0 1076.9 357.3 904.8 460.6 1160.9 313.0 1137.5 1 1 117 195 302.3 356.9 2336.3 3696.5 705.9 2338.0 2927.7 3109.5 481.6 2074.9 164.6 2859.4 251.2 492.7 2893.8 3961.4 291.3 455.5 3042.4 3544.4 1368.4 2326.1 387.8 531.9 554.6 1986.3 264.7 2992.4 661.1 2105.7 165.1 3764.3 321.8 631.7 2177.3 2625.7 617.1 2320.8 305.5 1792.0 523.2 1916.6 1832.2 2181.1 338.0 784.3 1842.5 3099.0 407.6 1550.5 2427.1 3893.0 268.8 583.0 484.6 3657.0 322.7 613.9 2497.9 4069.2 375.8 698.9 1954.5 3112.9 1297.9 1696.2 1840.4 2601.5 965.8 1300.7 837.0 3248.5 1272.3 1867.9 346.9 865.3 1228.8 2035.7 276.2 904.3 928.1 1762.2 354.7 3582.0 1641.0 4689.7 1654.9 3138.0 1116.1 3495.9 486.3 2851.4 939.4 3443.9 357.8 2773.2 918.4 3164.8 1520.2 1874.8 987.5 3019.5 1692.4 2219.3 981.9 3255.6 920.2 1365.1 898.0 3084.6 1555.4 1944.8 1041.3 3160.4 749.0 1237.4 1490.4 3056.1 1269.8 1699.7 1411.2 3059.2 788.8 1198.3 1520.8 3148.3 448.2 1391.3 1422.2 2539.5 443.4 2183.7 1401.8 2769.9 1252.8 2276.2 1280.6 2313.7 1172.0 1419.9 996.2 2252.1 1319.3 2250.4 1 1 405 806 941.6 605.0 10933.4 11741.8 7378.4 9607.0 444.1 1166.2 976.9 1678.3 288.8 16285.7 1017.8 1822.4 10637.7 11505.6 1011.6 1873.3 820.1 11519.0 1012.1 1315.5 792.7 14493.0 1109.1 2049.2 817.9 15318.9 3238.6 12617.6 600.8 1862.3 1121.7 2431.4 767.0 16044.7 2507.5 9314.1 526.1 2360.9 6127.5 8247.2 597.8 2318.0 1189.1 2660.1 955.9 16599.8 1094.9 2752.5 948.2 13213.0 2451.9 9723.8 712.6 3744.2 1367.9 3629.0 1064.8 12807.4 2381.9 11012.2 773.7 2754.9 2754.6 11603.9 832.6 2447.0 6665.9 9921.8 714.6 2699.2 1700.3 3386.2 1329.3 12201.3 1502.4 3712.6 6430.6 10447.8 5686.7 9354.5 1230.1 3789.3 1742.0 3868.0 811.7 11130.5 1472.6 3015.9 950.4 12382.8 1336.1 3096.4 1021.2 14271.3 1338.2 3497.3 1053.1 13700.5 2974.7 10534.5 888.8 4369.3 5970.9 8930.1 1240.8 3535.8 1752.6 3657.2 5098.6 9294.4 1143.2 2807.5 1363.7 9001.9 1372.9 2805.3 890.8 9540.9 1258.4 2721.5 868.8 11345.5 1272.3 3349.3 852.9 9465.6 1992.8 7536.3 725.6 5733.1 1138.4 3303.9 1099.3 12987.7 1186.0 2930.8 1555.1 15374.3 1291.9 3517.9 5045.5 12474.5 1 1 68 425 285.9 -11.9 214.8 5208.4 2519.3 2718.4 72.0 271.1 724.4 3086.6 73.6 295.9 2356.8 2702.4 134.0 290.5 338.8 457.1 195.4 3500.9 313.7 518.8 147.6 3247.5 695.8 2793.2 116.1 401.9 1155.6 3509.8 163.4 109.3 766.7 2933.8 156.5 231.1 258.9 414.7 233.2 3929.0 235.6 427.8 283.6 4038.9 271.5 406.7 2419.0 3407.5 178.1 427.0 2037.8 2818.2 498.4 2306.5 343.8 771.9 1904.5 2436.3 225.7 486.2 857.3 2458.4 167.9 445.1 2059.6 2417.2 136.6 322.1 2030.1 2652.7 79.9 285.3 2019.5 2225.6 158.1 525.7 546.8 764.1 331.8 2566.0 470.0 651.2 1676.5 2628.0 793.3 2149.7 372.3 818.3 762.7 2626.5 316.9 747.8 1879.4 2297.9 211.7 594.1 1881.2 2285.0 259.5 615.3 861.9 2314.4 258.7 550.5 584.6 2422.2 221.9 721.3 581.6 1156.7 207.4 2159.9 1611.6 2098.0 204.1 658.0 885.2 2279.9 174.1 548.7 1446.6 2354.5 220.2 654.2 1545.3 2039.8 297.9 494.6 684.2 1218.7 1448.7 2018.4 1296.4 1656.7 453.5 1120.3 471.9 873.9 300.7 2533.8 658.9 1949.9 447.5 1040.6 1 1 113 567 -130.5 -895.7 4051.7 2939.2 2897.0 2813.7 -272.6 -589.9 90.1 -54.4 -84.9 3541.2 509.5 2428.3 137.4 -9.9 226.7 70.5 2702.0 2576.8 -98.4 -244.9 2693.6 2731.9 2212.2 1784.1 125.5 110.0 2690.4 2991.3 240.9 -283.8 506.1 -273.3 2520.0 2813.2 1658.0 1790.8 438.9 297.4 234.2 283.1 2174.4 2428.8 651.4 2604.7 161.1 -45.8 199.1 444.8 -273.0 2927.4 517.6 2387.0 -52.3 152.7 409.6 351.7 2089.1 2059.1 172.0 237.8 257.5 1963.8 1673.7 1665.7 68.8 662.7 185.6 335.4 184.0 3021.7 315.8 502.2 1779.9 2589.9 623.8 2253.1 32.1 295.8 594.7 1925.7 198.1 568.4 324.0 223.8 1946.0 2343.8 162.8 527.9 376.3 2314.1 323.5 1491.4 110.0 1048.8 184.3 358.8 211.1 2986.1 261.7 289.1 103.0 2720.2 400.5 1487.6 193.4 942.8 29.8 272.4 230.7 2585.9 -175.5 247.2 1578.5 2857.2 134.5 1376.0 392.3 1234.2 89.3 231.9 147.9 2734.0 230.2 409.3 169.4 2904.2 898.6 873.1 666.8 1519.5 827.9 1031.0 981.7 1213.1 1339.4 1574.7 183.6 566.5 917.0 940.3 144.5 1495.9 1 1 69 594 1914.5 3923.6 532.4 322.7 621.5 786.7 226.9 5633.4 2376.3 2517.4 2127.4 2464.8 2218.7 2716.0 338.6 1466.0 413.4 459.2 1554.5 4859.2 512.6 714.1 2678.2 3657.8 1529.3 1621.9 2485.6 2851.2 530.4 2210.2 469.0 2340.6 895.3 2141.8 2088.5 2521.1 1725.1 2295.2 309.3 2588.3 1054.8 1912.2 343.3 2917.2 1871.1 2142.0 277.7 1731.7 526.2 836.8 504.6 4668.1 1218.0 1776.4 1805.1 2816.7 1430.8 1931.5 421.4 1620.7 415.1 834.1 946.7 4153.4 425.0 790.4 1727.0 3387.2 481.4 854.4 1461.8 3491.7 1067.1 2857.6 387.9 1087.5 1345.1 2041.4 1138.4 2327.8 588.0 905.5 647.6 3756.5 408.8 829.2 2210.3 3602.0 532.3 1008.5 628.2 3238.0 1214.0 1937.7 1188.0 2294.6 503.8 1002.7 1437.4 2939.0 1041.5 1401.2 674.5 2265.3 489.4 960.2 1455.9 3264.7 493.1 1394.7 1313.6 2566.1 641.6 1954.0 536.6 1544.6 598.9 2234.4 458.3 1260.4 610.8 2076.6 492.1 1658.8 1191.5 2032.7 892.9 948.2 1205.1 1666.9 572.6 1602.6 564.5 1133.7 1392.4 2788.6 863.3 2034.3 658.2 1898.4 705.4 2362.2 514.0 1695.5 1 1 90 379 330.8 208.4 3723.8 3139.4 2433.6 2864.9 23.3 73.0 663.0 2486.9 35.6 219.7 2498.2 2871.4 81.7 231.5 314.1 409.7 2270.0 2260.4 242.2 265.9 2126.5 2061.6 790.9 2611.6 1.4 128.3 2343.1 2509.6 135.0 165.3 734.8 2759.3 180.3 175.7 320.0 608.4 236.1 3907.8 155.6 393.4 2520.2 3384.3 201.4 392.9 2500.6 2864.8 1696.1 1858.9 329.9 532.7 232.6 540.5 226.8 2514.9 231.5 480.8 1663.8 2173.6 282.0 541.7 1704.9 2010.8 673.0 2391.3 505.9 508.4 1593.1 1915.8 188.4 632.2 629.1 1032.7 126.0 2274.2 1452.9 1989.3 204.3 760.4 588.2 939.3 1244.5 1647.7 644.1 2104.0 390.0 754.2 469.4 1006.7 280.9 2218.0 633.6 2045.4 241.6 960.5 1426.1 2189.4 135.2 485.0 1650.4 2316.9 149.7 461.9 909.5 2021.2 118.7 374.9 661.8 1996.0 164.4 420.3 1240.3 1906.2 125.4 403.0 824.5 1952.5 173.1 375.3 1298.2 1813.5 210.0 639.8 609.8 1077.4 1077.3 1564.1 461.0 721.2 1365.9 1782.0 406.4 751.3 767.6 1734.3 329.9 610.9 1176.8 1912.8 362.2 585.8 684.1 2302.0 1 1 111 977 179.8 523.6 3100.4 2796.4 541.5 2504.9 103.0 190.8 207.9 341.9 98.4 2778.5 226.7 375.4 2381.5 2243.7 258.0 328.7 2445.9 2401.3 1535.8 1687.0 241.8 390.8 286.5 419.4 193.8 2862.4 314.8 576.0 1831.4 2098.3 614.6 2013.0 304.2 431.2 254.2 503.8 1831.1 2076.3 280.9 522.1 316.0 1957.1 459.3 1790.8 220.2 755.7 261.8 733.3 138.7 2191.6 523.1 1967.8 146.8 556.5 1295.6 2061.7 179.9 461.2 459.4 1012.9 1143.1 1494.1 616.1 1811.8 410.0 516.8 1330.9 1819.4 312.9 668.7 486.1 858.9 1378.0 1784.4 301.6 585.6 1494.3 1818.5 351.7 658.0 1390.7 1661.9 569.6 1798.6 435.1 709.3 1395.2 1676.3 369.7 563.4 1286.8 1586.8 237.8 479.8 628.5 1826.5 257.7 457.2 532.1 1771.2 264.8 657.2 578.3 1178.4 895.9 1251.2 551.9 1527.0 358.7 642.9 1030.2 1402.3 238.7 624.5 446.8 871.3 216.1 1541.1 501.0 1530.2 207.6 784.7 553.6 1610.9 179.4 637.5 1059.0 1638.5 191.3 633.6 1027.2 1375.9 339.6 638.7 423.1 812.0 932.5 1411.6 340.9 602.8 524.7 1439.9 1 1 85 701 538.4 666.6 3542.3 4088.5 865.6 2711.9 2605.8 2678.8 1901.5 3428.9 208.4 887.9 509.2 1064.7 2881.5 3612.5 619.4 2673.6 2138.7 2841.1 893.9 3314.4 416.8 998.8 635.7 2233.8 427.7 3112.0 749.8 2502.0 1914.0 2238.0 577.7 1338.4 1573.8 3253.9 1710.8 1920.8 1754.5 2628.3 1509.2 2183.7 1551.8 2351.8 1829.9 2799.4 568.8 1328.5 1402.5 2211.5 1709.7 2442.9 810.5 2177.4 1520.8 2525.8 837.9 2569.1 677.4 2327.9 615.1 1219.5 1691.4 3342.8 642.3 1449.5 1918.1 2785.6 883.8 2241.9 1565.5 2251.6 944.5 2965.3 655.2 1209.5 1415.3 2442.2 1329.6 2217.5 785.1 1320.4 1526.5 2645.9 670.3 1263.0 1853.9 2803.0 603.0 1389.4 1507.0 2697.0 932.7 2489.6 635.4 1500.9 1037.8 1860.1 638.0 2765.2 841.7 1313.5 1172.6 2997.4 1541.8 2096.7 769.0 1836.0 1294.1 1984.4 612.3 2451.7 817.4 2003.8 1177.3 2242.9 1016.9 2037.6 1091.7 1970.9 1051.5 2231.0 606.2 1724.3 787.8 2122.2 424.7 2100.1 614.3 1343.8 539.5 3342.0 621.8 1320.5 1286.4 2578.6 900.3 1718.8 797.3 1906.4 710.4 1265.8 1516.6 2701.7 1 1 116 879 865.8 3992.9 258.8 443.1 349.0 413.1 221.6 6209.6 950.1 3787.6 165.8 489.2 1032.4 3811.3 189.8 382.6 3207.7 3288.4 190.3 472.1 358.1 777.1 3120.6 3664.6 359.8 685.1 3219.5 3607.4 446.9 686.2 479.8 2839.3 302.0 779.9 3835.8 4222.7 981.1 3331.5 425.2 686.5 2778.6 3265.8 361.4 618.2 517.8 777.8 3062.1 3459.7 889.9 3313.8 445.2 887.3 454.7 753.0 491.4 4630.2 375.6 736.5 2928.1 3855.9 410.7 853.7 680.6 3320.8 815.4 2928.9 408.6 1044.1 793.7 3253.8 422.3 1020.8 534.9 1152.8 550.0 3399.3 548.3 961.7 2044.7 3071.1 1818.1 2582.4 784.3 1281.7 613.6 1171.8 2028.6 2792.4 561.6 948.2 2647.7 3258.0 854.4 2334.3 810.5 1541.1 516.9 1226.1 514.2 3581.1 458.4 969.9 488.7 3908.0 649.7 2407.6 396.8 1937.5 548.5 1593.6 301.5 2744.0 678.4 2454.2 289.5 1548.6 854.1 2724.6 274.4 1071.0 1406.6 2453.7 411.6 1157.8 790.0 1234.5 1601.7 2432.7 576.2 1034.1 1976.2 3042.7 492.3 1042.4 2097.7 3210.1 987.0 1698.9 1069.8 2102.6 786.5 1089.2 1805.1 2954.6 1 1 753 95 189.7 -44.5 9459.1 7582.6 135.6 312.8 477.5 6061.0 1180.4 6015.4 147.7 215.2 283.7 517.3 552.7 8422.9 523.4 394.8 5625.3 6605.2 3765.3 4599.8 514.8 735.5 1095.9 5498.5 431.0 692.2 579.3 1504.3 6695.4 6875.4 453.6 1070.2 718.9 7085.2 527.5 1128.5 381.8 9529.5 1192.6 6128.1 200.6 1553.5 561.6 1546.5 327.5 9456.2 384.5 793.4 514.4 8993.4 675.7 1234.8 651.8 10030.7 4015.1 5414.3 543.5 1669.5 4333.9 5717.7 651.1 1137.7 980.9 2052.4 4018.1 6336.4 1534.5 5758.1 715.2 1165.1 3304.5 5130.0 598.5 1437.5 967.5 1805.2 3971.4 6201.7 3001.9 4303.6 1311.8 1784.4 980.2 2101.6 4103.4 5315.2 1158.7 5229.8 1482.6 2486.9 1024.8 1965.9 4825.1 6926.5 2783.3 3929.9 1250.8 2364.5 881.2 1622.3 900.9 7140.9 595.1 1335.3 903.8 7408.4 669.6 1609.4 909.9 7101.8 1239.1 4822.7 820.3 2948.7 2630.0 4992.9 1026.3 2317.4 948.9 2379.6 3557.0 4947.0 1010.2 4429.7 1081.2 2749.9 696.9 1832.1 771.4 6363.2 586.8 1689.5 1017.1 7936.3 765.5 1851.5 962.1 7550.5 1086.4 3859.6 651.1 4144.3 1 1 104 223 2833.2 4517.2 -26.7 1.9 2568.1 4214.4 -94.3 39.3 2049.4 2433.6 177.1 3410.4 399.1 2467.8 2742.5 2593.5 2960.1 3340.8 327.9 168.7 709.2 2426.0 3119.0 2838.4 853.0 3450.7 304.8 -38.8 726.6 2588.5 322.7 3806.1 1730.9 1914.2 304.9 3738.7 1771.3 2047.9 229.6 3756.7 1682.1 2107.2 245.3 2925.0 741.2 2502.4 2211.0 2549.1 497.8 1019.4 387.2 5347.3 1718.6 2287.3 2653.3 3835.9 1655.7 1838.1 264.1 3783.5 499.0 927.2 2576.9 5741.0 580.4 893.7 3499.3 4585.8 2034.6 2589.8 692.8 727.1 680.6 899.5 3300.8 4244.1 1276.7 2487.0 669.4 1188.3 1541.2 2064.8 509.8 2687.5 581.7 1030.2 3027.6 4092.2 560.8 922.0 3529.7 4459.4 1085.5 1457.3 2127.7 3422.8 441.8 763.0 2448.7 4159.7 493.9 786.8 2125.2 4154.5 512.7 943.0 2130.1 3600.4 538.5 984.8 2857.1 4384.9 662.3 931.2 2086.6 3187.8 1033.5 1773.3 847.6 2807.2 522.3 909.6 2691.3 4216.7 583.8 1581.5 2077.1 3203.7 995.1 2109.5 1080.2 1934.2 1234.4 2030.2 1455.3 2331.9 827.5 1618.4 877.5 2507.9 947.9 1719.4 1678.8 3044.9 1 1 91 195 220.9 324.2 249.6 3643.5 479.0 331.2 2496.9 2854.4 331.4 550.9 2288.7 2698.0 336.2 507.0 2195.8 2845.5 1338.2 1937.4 347.0 647.5 335.3 544.4 2456.8 2932.4 902.5 1791.3 299.4 505.4 1603.6 1927.2 257.2 49.9 457.1 459.0 326.5 3377.5 424.6 604.6 2038.4 2662.1 1212.4 1784.0 255.0 522.5 1614.7 2131.9 259.0 699.6 412.7 618.9 302.3 3650.0 244.3 467.8 285.5 4159.6 444.8 534.6 280.9 3915.0 1235.0 1445.7 198.9 886.5 378.3 1036.2 253.7 3569.6 350.6 803.4 252.6 3548.5 1210.3 1727.3 301.0 1012.8 535.0 1883.7 215.0 918.2 467.7 1206.8 434.1 3029.4 480.7 488.1 1605.7 2998.8 348.2 708.6 723.6 2798.4 220.4 905.1 1657.5 2812.9 379.2 699.5 1719.0 2855.8 450.9 575.0 446.4 2632.1 1092.8 1405.8 435.2 1299.9 599.0 838.1 1139.1 2225.0 949.1 1401.3 484.7 1435.1 955.2 1570.6 450.5 1281.7 706.1 748.6 1093.2 2123.5 935.5 1532.9 633.4 1376.4 393.1 899.4 1025.8 1934.8 615.6 1638.9 434.8 1141.6 554.7 1172.5 241.6 937.7 349.6 872.4 273.2 2143.4 1 1 82 227 98.5 15.7 239.2 3634.6 1658.4 1885.0 154.5 138.9 163.5 184.7 1593.4 1871.3 171.7 264.5 1596.9 1533.0 901.6 1077.8 109.4 470.8 183.1 241.5 1404.2 1699.4 327.5 363.0 227.1 1106.7 262.9 327.7 50.1 1652.6 276.2 1046.8 132.9 345.7 281.0 371.0 134.2 1339.2 212.9 851.1 158.9 441.7 230.6 465.4 150.9 1316.4 223.1 343.2 1294.3 1630.8 191.3 341.5 945.7 1525.6 126.0 197.0 251.7 1367.6 127.8 328.2 985.8 1703.6 229.1 364.3 868.4 1687.1 496.3 772.4 134.4 465.4 605.0 877.8 128.4 439.3 252.0 452.3 90.0 1838.5 144.2 330.8 114.6 2014.5 150.7 357.7 63.8 2030.9 233.5 456.5 192.2 1969.1 340.9 562.1 138.8 1814.0 557.8 800.1 201.6 799.6 173.2 413.8 785.6 1648.5 243.9 406.0 649.2 1377.9 228.5 408.4 676.0 1533.3 246.0 404.2 224.1 1399.1 234.3 746.3 123.6 861.9 524.2 817.4 185.4 554.6 303.8 799.8 191.2 714.6 287.5 507.2 95.4 1500.3 308.6 512.3 134.4 1620.7 490.6 659.3 111.2 900.6 372.4 483.6 77.6 1437.1 1 1 78 554 -183.6 305.6 116.9 3300.8 588.5 118.1 2671.0 2401.6 -133.2 387.9 2206.9 2178.3 54.1 -129.4 2114.3 2385.1 84.8 -135.6 2058.3 2214.3 1304.7 1350.1 -62.0 -80.3 61.6 143.9 1807.2 1790.0 1019.8 1231.4 158.1 236.7 133.3 152.3 168.0 2136.0 163.9 138.8 1756.6 1716.8 53.2 513.8 269.2 1971.5 180.2 184.1 1806.4 1618.6 144.1 227.8 1647.7 1305.2 72.2 64.0 1721.7 2035.5 446.8 1796.4 277.6 64.7 394.1 1553.8 179.2 270.3 371.5 1527.2 144.2 100.5 52.4 343.4 209.4 1869.5 39.5 56.5 1510.6 1862.9 96.9 333.0 1431.4 1129.2 113.2 1105.3 333.9 518.6 163.4 503.2 260.1 1609.8 -17.5 358.6 1411.1 1914.4 143.0 82.9 1593.7 1942.1 788.8 872.3 218.1 299.4 242.3 330.9 195.5 1641.1 751.3 854.2 195.9 715.5 263.8 526.5 163.0 1670.2 192.2 342.5 96.2 1611.2 163.7 402.0 47.1 1578.8 162.6 210.1 763.8 1502.1 696.5 827.3 353.5 526.4 399.9 521.1 784.8 954.2 276.8 393.6 1012.2 1069.6 439.0 578.2 500.2 884.8 358.0 499.5 954.1 1401.9 1 1 101 329 311.1 42.4 4055.4 3684.4 358.2 403.4 259.2 2607.6 289.7 418.7 2837.2 3062.4 217.7 296.7 2451.7 2870.4 1723.5 1973.5 278.8 566.5 350.4 414.3 2670.2 2897.5 352.6 368.2 2304.9 2356.9 868.0 2378.7 431.2 700.5 466.9 824.6 183.4 2733.3 2006.5 2377.8 267.5 821.2 799.9 1068.0 1778.1 2204.7 753.4 2405.5 546.6 872.9 1919.8 2305.4 374.6 640.8 871.6 2189.7 294.8 760.5 640.5 2462.0 229.5 715.6 463.4 1026.8 299.6 2598.3 343.4 744.8 1813.5 2926.9 363.6 613.8 651.1 3007.6 353.8 629.4 331.0 3481.8 374.4 591.5 410.1 3718.4 444.1 599.3 1645.5 3138.4 368.6 668.5 780.7 2765.2 400.2 648.0 1613.2 3073.3 393.8 782.3 1967.2 3108.4 554.3 2020.0 716.9 1308.1 669.6 2089.0 477.3 1178.1 451.1 982.4 360.4 2454.8 375.0 726.8 458.2 3002.5 318.5 722.9 1440.0 2941.6 304.5 712.8 849.7 2870.4 473.2 734.8 1237.9 2669.1 1081.7 1478.1 643.8 1553.2 1263.7 1515.6 511.5 1162.3 719.6 1048.9 1327.9 2166.1 491.7 904.6 1303.1 2069.7 1059.0 1499.5 656.8 1458.3 1 1 449 243 773.0 921.5 8466.5 10553.8 5903.0 7854.6 1556.8 2699.6 897.9 3677.1 433.7 7809.8 849.4 1149.1 416.9 8871.6 684.0 1327.2 437.9 7568.9 743.5 1568.9 280.4 6735.1 1812.3 6590.7 2962.6 2750.3 4858.2 7155.0 2207.5 2620.3 4927.4 6899.6 514.8 1066.5 3878.1 6776.9 790.6 1383.8 1311.2 2454.5 4951.8 7583.2 1837.3 4019.9 723.7 5300.6 1358.3 2464.8 425.5 7186.7 4334.5 5629.7 493.2 1828.9 4209.7 7016.9 665.3 1776.9 1360.4 2630.3 3710.6 5184.9 1033.3 2534.7 3616.2 5290.0 1294.2 2413.0 2421.5 4769.3 1518.4 2998.1 1463.6 5942.0 4173.9 5894.8 479.7 2043.6 3874.1 5545.3 545.7 3400.7 4174.2 5550.2 701.8 3134.9 4356.9 5772.2 844.5 1534.7 3770.8 6257.1 706.0 2238.5 1806.9 3953.7 1112.4 5443.8 1355.8 2943.6 3242.1 5735.1 1547.3 3044.1 739.7 4617.0 1426.5 2678.2 855.7 5810.2 3231.2 5150.3 803.2 3433.3 1385.9 4126.6 911.0 4653.4 1831.5 5265.4 975.7 3001.9 3122.3 5430.2 677.8 2888.1 1761.8 5288.4 1048.1 3271.7 1550.8 5787.8 594.4 3038.5 1637.3 5405.3 1149.3 2984.6 1723.6 2543.1 2683.1 5104.8 1 1 401 703 644.7 2477.0 9203.7 8221.6 7107.1 9201.7 123.7 864.4 7477.1 9176.7 1048.2 448.0 7354.8 9479.5 420.5 943.5 7084.5 9939.0 493.1 1190.8 1003.4 1226.4 408.3 9916.2 1048.7 1727.7 6893.0 7076.8 5720.1 7130.8 679.5 1123.1 1299.5 1998.4 7252.5 7018.0 6809.1 7790.5 584.0 749.2 7054.3 9082.0 564.2 1388.4 6627.9 9698.0 415.5 1073.4 2022.3 8607.4 630.1 1165.4 6049.3 7949.2 527.7 1539.9 1527.6 2347.9 522.4 8244.3 5808.4 8228.0 508.3 1580.2 2320.8 8993.3 506.8 1588.2 5742.2 7743.3 523.1 1024.2 5382.8 7990.8 517.7 1376.9 1544.3 3002.8 656.8 7092.1 1569.0 2884.0 773.2 7945.9 1753.1 2888.9 4581.6 5886.8 4672.5 6284.8 987.9 1708.8 2245.3 7897.7 1128.8 1774.9 1416.3 3229.2 4389.5 5474.4 4226.6 6326.4 1023.9 1968.2 2096.1 6748.3 708.6 1701.5 1151.0 2874.0 712.8 6578.7 1323.3 2597.5 957.5 6859.9 1441.6 2627.6 3307.1 5153.1 4211.7 5419.7 1067.7 2293.1 4394.4 6612.6 765.2 1492.9 4946.9 6454.6 691.4 1712.4 4344.1 6193.4 958.1 2083.7 4143.8 5939.2 920.8 2834.2 1897.7 3049.0 954.7 6548.9 1 1 101 226 -174.8 -528.4 3210.7 3592.2 -170.8 -217.6 3008.0 3069.7 -49.9 -15.6 190.9 2066.2 1417.7 1525.5 -98.8 -142.2 -69.8 -250.3 224.9 4784.2 -12.8 -70.7 -83.4 4510.3 120.9 100.6 105.2 4059.8 39.4 194.2 197.5 4020.6 241.5 1691.0 133.4 592.6 236.6 1716.8 101.5 460.0 111.5 273.9 57.8 2826.5 77.7 -26.8 -37.8 3417.9 137.3 260.3 -44.2 3586.7 51.7 87.9 49.7 3721.7 -26.8 185.5 2184.5 2987.2 179.0 153.9 203.0 2637.1 118.7 282.4 230.0 3351.9 -75.2 50.7 156.9 4203.9 118.5 201.2 -26.6 3482.7 1088.0 1140.5 179.9 886.9 223.7 215.0 94.8 3524.9 172.3 259.6 9.5 3483.7 136.8 417.5 -132.9 3257.8 282.4 1507.1 29.0 762.4 921.2 1399.0 202.3 593.2 302.5 1483.2 19.6 905.7 112.5 407.5 -47.7 2405.3 125.4 382.7 -29.0 2751.4 101.4 72.6 201.9 2971.1 185.4 257.9 1281.3 2860.6 290.5 291.1 1283.4 2598.6 664.1 929.8 330.2 1161.3 162.2 205.4 1379.2 2684.7 112.8 280.0 1327.4 2721.5 149.4 256.4 1289.3 2626.5 286.9 905.4 571.1 1402.9 1 1 239 916 396.3 103.9 6222.4 5198.1 2515.4 2755.6 2791.7 2609.4 877.2 -109.3 333.4 5942.1 2096.0 3872.3 191.1 1895.5 742.1 2372.1 3781.3 3577.3 375.0 1173.1 3412.7 4963.9 2379.4 3458.3 1923.0 1793.1 3047.7 4193.4 364.2 528.3 492.4 1252.9 4571.9 4493.7 2072.2 2264.1 1916.0 2139.5 1043.8 2029.1 3290.0 3902.7 932.0 2845.9 175.8 2027.1 698.7 1268.3 1813.0 4625.1 1047.5 3752.4 879.0 1546.9 1147.5 2275.6 3680.2 4048.5 656.0 1788.7 1061.7 4263.6 2068.6 3105.1 1785.9 1848.5 649.4 1300.0 2100.7 4658.5 640.3 1538.0 3140.3 3809.3 882.2 3021.3 1978.1 1934.9 1427.6 3587.0 1157.6 1861.4 1204.4 2133.9 2568.3 3080.1 305.5 1043.8 1735.5 3950.2 939.1 3049.3 1260.9 1437.2 1087.2 2046.3 850.3 3485.2 737.8 1333.3 673.0 4251.2 1002.9 2719.5 1215.9 2131.7 811.8 1896.1 1027.3 3301.0 501.4 1494.9 2615.2 3622.4 1098.8 3021.9 1159.8 1717.0 867.0 2002.1 605.2 3324.6 905.3 1805.1 927.2 3962.3 1362.7 2325.1 1422.5 2763.3 1409.1 2087.9 1505.5 2381.2 1813.0 2487.2 1172.0 2468.2 1393.2 2234.8 991.0 2502.1 1 1 349 63 206.5 199.2 6039.1 5692.3 4316.4 4897.3 161.2 -167.6 3384.3 3910.8 1976.2 1934.4 3903.9 5315.2 197.8 -16.8 4607.1 5079.0 45.5 305.9 3428.8 4341.2 1594.9 1773.7 1153.3 3965.7 246.8 1820.1 951.2 2484.0 3949.9 4326.9 1700.7 2474.5 523.6 3125.7 814.7 1318.0 3325.7 5200.5 2889.5 3352.0 1823.0 2478.3 3399.9 4123.9 501.4 2390.1 3128.3 4115.2 506.6 2812.7 3244.5 4147.2 1526.7 2293.1 3071.1 3929.1 1698.8 2242.9 1009.8 1641.4 820.4 6004.8 1012.0 1653.0 3715.1 5007.9 2956.3 4020.2 783.2 1636.0 1067.2 1902.0 3842.9 4891.6 3010.8 3941.6 633.7 1477.1 3120.6 4719.5 639.8 1259.4 2932.8 3948.8 683.0 3147.7 1194.9 2176.2 763.2 4906.7 1056.0 2006.3 2745.4 4686.2 2105.4 4806.9 825.9 1365.2 3045.1 4319.3 905.5 2264.6 1604.1 4160.5 1548.6 2738.8 2512.1 3994.5 1539.3 2839.2 1272.2 3910.3 1754.3 3364.9 924.6 2132.1 877.2 4857.8 907.5 1709.3 2335.6 5231.2 1057.4 2129.3 882.2 4560.0 2428.9 3551.9 936.1 2596.5 1196.3 2402.4 2276.8 3669.0 1098.7 2231.4 2201.2 3523.9 1835.2 2840.1 973.8 3415.1 1 1 158 505 199.8 3169.0 7513.8 5520.5 5910.5 6385.8 310.1 -246.6 1320.6 2370.4 178.8 8295.9 2306.5 1705.7 652.2 7397.8 833.3 6490.2 233.4 505.6 1514.6 5909.9 304.1 746.7 1013.0 1319.3 334.9 7984.9 2147.0 2733.6 309.9 7651.2 4135.4 5418.1 257.7 657.6 556.7 1074.3 841.4 7401.9 401.5 923.9 5289.5 6470.0 537.1 1282.1 106.2 4610.9 272.3 257.7 5131.9 6952.9 1308.7 1271.0 4266.1 5964.2 853.0 1886.1 575.6 4482.3 4248.0 4876.6 540.1 2728.4 3647.6 4464.4 546.1 2001.8 848.3 1317.6 1976.3 7270.5 579.5 1176.9 4524.1 6714.7 1691.8 2321.2 4470.4 5866.1 3354.7 4350.7 1350.6 1271.2 4352.7 4667.3 703.4 2021.5 3860.3 5258.8 532.7 1336.1 4638.8 5595.7 177.2 1290.1 1632.9 2321.3 208.0 5301.9 4070.9 5438.1 476.2 1939.6 3887.8 4864.7 653.6 2315.1 1240.1 2149.8 1452.2 6426.2 3475.6 4214.5 476.6 2824.5 1509.1 2436.4 421.6 5444.1 670.1 1809.9 527.8 6530.7 969.2 2362.9 428.2 5368.9 1562.5 4975.7 334.9 2043.1 2999.4 4953.0 127.6 1962.2 1216.8 2678.0 391.0 4423.0 1794.4 4949.9 383.5 1640.5 1 1 793 122 470.5 610.9 9286.6 8967.2 912.8 1764.1 7359.8 7806.1 5581.3 6751.4 442.3 5301.9 587.0 792.8 2285.0 8972.9 972.0 2977.8 6117.8 8210.1 3803.1 4911.5 1952.1 4818.6 2709.5 3626.7 6817.2 6461.2 5049.2 6321.6 691.5 3722.3 5658.4 7114.1 1161.5 3596.3 1206.3 1807.5 7412.2 8073.0 5132.6 7257.8 1539.2 3820.9 5868.1 7302.6 761.7 2634.5 1291.5 3768.7 1249.5 8540.0 4270.4 5878.2 2570.5 3322.8 1175.5 3072.0 6522.7 7440.0 2044.4 3239.9 993.1 5588.7 4196.0 6448.6 810.1 4668.2 2551.2 3901.8 707.1 7593.1 3980.9 5613.8 1562.0 3424.5 2121.4 3931.5 950.4 8236.5 1387.1 2894.7 827.9 8706.6 4208.7 6148.7 1112.5 3426.4 1975.6 6522.1 2606.4 3163.1 4310.4 6818.0 1032.7 2420.5 1472.1 2916.4 1792.2 8661.5 1452.0 5349.4 782.7 5028.8 2076.3 3769.4 853.8 6823.6 2325.2 6092.0 756.7 2896.2 1361.9 4061.2 2087.3 6484.6 3545.5 5364.6 1299.9 2979.5 2225.3 3957.2 3987.0 6129.2 2382.0 5628.2 1936.3 2949.5 1722.6 6066.1 1926.4 3315.5 3827.1 6870.1 1232.4 2281.0 2415.9 5889.6 1101.9 2356.1 2856.0 5286.7 1345.6 4241.2 ShortRead/inst/extdata/Data/C1-36Firecrest/s_1_0001_nse.txt0000644000126300012640000077564412227066723024436 0ustar00biocbuildphs_compbio1 1 109 548 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 105 517 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 56.6 52.7 65.2 37.6 46.3 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 101 522 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 530 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 105 511 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 40.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 158.0 27.8 47.2 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 531 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 112 525 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 595 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 371 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 89 581 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 83 580 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 95 513 41.5 34.4 35.5 29.4 44.4 189.0 40.1 48.0 40.1 39.8 28.7 46.1 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 41.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 97 540 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 93 384 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 122 247 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 49.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 115 738 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 117 468 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 69 533 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 586 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 117 578 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 115 365 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 119 406 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 112 238 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 120 597 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 119 390 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 49.4 55.4 34.3 56.0 44.0 75.3 33.9 71.2 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 47.5 52.9 33.0 51.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 108 606 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 96 508 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 106 347 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 92 482 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 114 415 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 117 462 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 88 544 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 68 580 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 81 571 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 75 541 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 775 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 122 660 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 115 329 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 118 518 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 120 704 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 105 427 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 110 692 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 98 349 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 120 488 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 120 749 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 41.9 66.9 34.7 74.0 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 115 889 37.7 35.1 27.2 37.3 40.7 67.2 28.1 57.6 42.9 62.5 25.3 46.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 34.2 65.6 40.2 51.1 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 42.0 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 30.2 49.9 31.2 48.8 28.3 45.1 41.5 51.7 31.4 50.3 39.3 52.3 35.1 63.4 41.6 54.4 36.9 55.0 35.7 51.1 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 98 629 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 30.4 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 28.9 52.1 54.1 67.8 42.2 63.3 48.4 40.0 34.3 38.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 48.8 31.4 48.0 45.0 58.0 31.8 46.8 49.4 62.7 41.0 58.6 1 1 120 446 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 115 762 39.4 43.4 37.4 46.6 44.1 81.3 32.8 45.9 37.5 76.9 30.2 43.8 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 36.3 68.7 42.4 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 99 723 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 80 439 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 120 897 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 113 628 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 41.6 41.9 30.4 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 54.1 67.8 42.2 63.3 41.2 40.0 34.3 38.1 42.5 51.7 27.7 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 49.4 62.7 41.0 58.6 1 1 121 143 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 101 353 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 122 581 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 97 502 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 43.5 64.0 32.6 40.1 41.0 59.5 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 45.7 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 42.8 48.0 33.4 43.9 1 1 95 455 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 100 681 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 122 300 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 103 604 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 544 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 105 377 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 46.8 99.9 34.7 55.7 47.5 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.5 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 38.9 67.3 32.6 71.7 1 1 109 610 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 96 412 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 88 444 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 123 424 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 98 361 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 119 458 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 121 629 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 30.4 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 28.9 52.1 54.1 67.8 42.2 63.3 41.2 40.0 34.3 38.1 49.2 66.9 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 48.8 31.4 48.0 45.0 42.9 31.8 46.8 49.4 62.7 41.0 58.6 1 1 112 446 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 112 379 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 99.9 32.6 40.1 47.5 53.1 35.8 64.0 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 56.3 35.4 50.7 49.1 68.6 30.5 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 42.6 71.7 35.2 47.3 46.4 65.3 34.8 67.5 38.9 43.8 33.4 43.9 1 1 113 631 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 118 565 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 89 533 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 106 886 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 42.9 62.5 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 109 291 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 93 629 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 42.9 48.6 75.7 38.8 91.9 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 40.0 34.3 38.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 80.9 31.4 48.0 45.0 58.0 37.6 46.8 49.4 62.7 41.0 58.6 1 1 80 481 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 109 568 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 482 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 79 878 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 39.7 54.9 33.9 64.7 37.5 48.9 29.5 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 49.2 33.8 45.8 38.6 42.8 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 36.0 44.8 28.1 46.9 1 1 98 479 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 75 217 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 100 525 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 113 326 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 85 733 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 111 862 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 87 618 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 83 277 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 103 414 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 93 494 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 65 610 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 102 717 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 104 595 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 118 675 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 107 489 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 72 446 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 85 233 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 106 462 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 82 588 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 80 334 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 117 484 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 104 475 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 102 619 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 98 190 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 115 189 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 88 462 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 113 784 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 107 478 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 102 248 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 107 310 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 117 503 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 43.5 64.0 32.6 40.1 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 34.4 53.1 45.7 49.6 31.6 40.1 45.7 54.3 34.8 50.5 42.5 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 42.8 48.0 33.2 39.2 1 1 465 808 138.7 252.7 95.6 559.0 126.9 298.4 95.5 202.7 151.8 393.6 69.4 540.0 123.2 244.9 94.3 212.8 106.7 267.1 88.4 265.5 183.3 331.2 89.6 188.8 183.0 352.1 93.3 476.0 203.7 246.1 98.0 175.4 193.1 324.2 111.4 266.2 195.8 339.8 99.2 250.3 146.0 334.1 111.5 259.2 171.5 478.3 106.0 213.1 159.6 398.0 108.0 293.5 179.6 343.5 103.5 333.5 125.2 303.7 97.1 234.3 174.8 429.1 103.8 245.7 151.9 421.9 98.9 291.2 177.2 430.1 96.4 248.7 149.2 345.9 108.1 229.0 158.1 402.9 128.3 259.8 163.2 482.8 121.6 331.7 141.8 446.8 92.4 218.0 162.2 455.2 102.5 324.4 187.2 425.0 116.9 473.1 177.4 483.5 137.3 450.8 207.7 412.6 142.8 373.9 198.2 352.4 126.3 229.9 174.1 417.1 103.5 223.9 168.3 411.4 119.0 373.3 173.9 382.1 137.8 410.1 176.0 373.1 139.7 295.8 158.7 386.8 110.3 310.7 190.5 403.8 131.2 328.9 174.2 406.0 155.5 453.1 156.8 407.7 142.7 483.3 142.9 355.4 134.0 469.3 1 1 87 313 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 90 286 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 88 396 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 81 453 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 88 479 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 120 534 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 111 505 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 54.3 34.8 50.5 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 120 648 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 89 450 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 122 166 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 82 533 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 109 730 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 94 520 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 112 852 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 92 550 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 104 584 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 123 436 53.5 201.4 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 109 580 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 102 549 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 318 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 119 279 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 89 424 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 82 804 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 90 304 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 107 425 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 110 408 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 103 853 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 115 514 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 49.9 48.1 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 62.1 38.6 42.2 51.0 58.2 29.9 57.5 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 114 521 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 99 337 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 118 632 50.0 49.2 31.1 38.9 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 57.4 92.2 32.8 43.5 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 91 364 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 114 400 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 85 487 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 113 509 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 104 907 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 123 467 53.5 43.5 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 74 589 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 100 564 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 116 569 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 79 401 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 98 771 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 86 761 39.4 43.4 37.4 46.6 51.9 81.3 32.8 45.9 37.5 76.9 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 88 393 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 84 708 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 113 439 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 83 506 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 107 128 44.5 39.9 28.7 32.3 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 40.6 30.0 36.9 39.6 64.9 32.2 61.5 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 47.1 40.7 40.0 45.0 52.7 75.5 33.9 53.2 33.3 38.4 27.4 34.3 43.3 39.8 30.9 52.8 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 31.3 43.7 44.9 35.9 36.6 34.0 41.3 54.1 30.7 45.7 1 1 70 568 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 122 608 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 97 306 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 121 179 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 106 507 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 427 635 144.5 215.5 82.1 211.1 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 573.3 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 218.0 467.6 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 109 107 32.5 36.1 26.4 28.9 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 35.1 41.8 27.9 37.0 34.9 39.2 27.9 40.6 37.5 42.7 26.7 35.4 37.2 40.6 25.1 36.9 38.8 45.7 25.5 47.2 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 34.3 40.7 26.5 35.3 35.4 44.1 22.6 38.3 33.3 38.4 27.4 34.3 36.3 39.8 25.8 36.7 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 26.7 43.7 36.5 35.9 25.5 34.0 34.0 42.9 26.1 36.1 1 1 116 82 32.5 36.1 26.4 28.9 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 35.1 41.8 27.9 37.0 34.9 39.2 27.9 40.6 37.5 42.7 26.7 35.4 37.2 40.6 25.1 36.9 38.8 45.7 25.5 47.2 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 34.3 40.7 26.5 35.3 35.4 44.1 22.6 38.3 33.3 38.4 27.4 34.3 36.3 39.8 25.8 36.7 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 26.7 43.7 36.5 35.9 25.5 34.0 34.0 42.9 26.1 36.1 1 1 64 473 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 107 663 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 89 718 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 380 636 144.5 215.5 82.1 211.1 161.9 310.6 71.2 361.0 100.3 238.1 70.4 146.5 108.3 418.1 72.3 124.3 143.8 290.3 89.9 153.1 145.9 220.6 77.1 168.4 174.1 347.2 85.1 184.6 145.1 279.9 80.5 193.0 126.6 274.7 83.2 165.5 139.4 283.8 69.4 158.6 178.5 333.8 77.1 164.4 168.3 325.7 85.7 193.7 158.4 327.6 76.9 180.8 177.6 355.6 88.7 182.6 123.9 279.9 94.9 224.8 123.2 367.0 95.2 189.1 183.3 375.2 97.2 245.2 130.7 312.2 116.4 350.0 169.0 378.2 102.5 316.6 152.8 354.0 108.2 257.1 130.4 345.0 95.4 221.7 161.9 402.0 104.0 244.6 125.7 383.0 125.7 309.2 133.3 252.7 109.4 245.9 138.1 380.8 92.0 237.6 160.5 349.3 94.4 229.7 130.4 371.0 99.4 378.4 162.0 420.0 127.5 298.4 161.0 370.0 108.8 340.0 173.3 217.1 105.4 321.0 164.2 295.6 109.1 305.1 150.7 389.7 101.5 260.8 140.1 385.1 96.7 333.0 119.6 285.5 120.0 304.0 146.9 324.0 72.5 282.0 128.9 383.9 83.2 191.0 1 1 88 506 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 123 502 41.5 194.1 67.5 307.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 43.5 64.0 32.6 40.1 41.0 59.5 34.7 49.2 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 66.9 34.4 53.1 45.7 49.6 31.6 40.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 42.8 48.0 33.2 39.2 1 1 74 510 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 70 476 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 118 160 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 737 593 195.7 548.1 120.3 261.5 278.1 384.6 112.0 277.7 235.5 372.9 113.4 513.0 251.5 421.6 123.6 309.0 262.6 525.8 127.4 279.2 335.2 621.0 137.1 256.5 306.4 658.7 116.0 271.7 307.0 705.0 165.2 347.9 289.4 670.3 142.0 212.6 326.8 795.0 139.7 311.9 250.6 749.9 149.4 357.4 270.0 651.1 167.5 484.7 311.2 568.5 152.6 416.4 257.7 669.3 187.6 592.6 276.0 628.9 173.0 547.8 221.6 673.7 177.1 508.8 289.8 705.9 145.4 376.0 257.9 523.8 165.6 527.8 269.0 700.2 182.1 538.7 291.3 703.1 155.8 521.0 269.1 637.4 194.7 433.3 259.0 714.2 152.2 399.4 304.7 806.6 208.1 489.6 283.5 691.5 206.3 515.1 246.7 695.6 205.3 536.0 285.3 601.8 229.7 583.0 263.0 685.9 213.5 527.6 265.0 689.0 188.6 551.9 267.6 621.3 210.0 547.0 258.6 609.6 202.9 479.3 237.0 612.7 177.3 574.9 277.6 684.1 190.0 506.1 249.4 609.6 178.3 642.8 262.3 629.8 236.8 627.7 292.2 620.1 211.7 569.0 276.1 622.0 215.7 661.3 1 1 84 611 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 114 669 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 114 570 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 366 851 137.8 202.7 79.9 121.1 147.3 250.0 81.3 185.8 149.1 289.9 80.0 167.7 139.0 337.6 73.9 125.3 160.9 305.3 76.9 178.0 172.4 363.5 82.7 181.9 172.6 406.7 70.4 167.4 196.9 402.7 65.5 157.9 150.3 255.7 96.1 181.5 194.9 319.4 84.4 198.6 123.5 299.4 100.9 277.9 166.0 393.2 107.4 222.7 118.9 397.2 98.5 318.8 154.2 365.9 111.5 355.7 160.2 393.0 104.1 198.9 151.1 347.5 101.4 277.0 178.1 449.2 107.2 274.2 186.2 432.0 110.6 330.2 172.2 396.6 106.5 226.2 142.9 400.0 111.1 321.3 158.0 372.3 102.3 238.2 186.5 401.8 111.7 347.6 163.3 413.2 113.0 298.6 199.0 350.2 123.0 375.3 170.1 361.0 121.9 292.1 191.9 364.0 100.7 329.7 175.2 333.5 108.2 302.2 153.2 382.2 110.4 324.0 167.7 421.6 112.0 330.5 165.5 381.8 110.8 267.2 156.8 383.2 102.6 337.0 141.0 406.0 107.7 339.9 146.2 373.9 120.6 314.7 162.6 318.0 121.7 322.3 145.3 341.4 126.6 396.2 178.0 354.2 120.5 419.2 1 1 120 187 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 99 468 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 116 556 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 109 150 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 114 754 39.4 43.4 37.4 46.6 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 79.2 33.0 49.6 47.1 61.8 32.6 44.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 41.8 49.2 35.4 63.5 47.9 52.9 37.0 51.3 48.4 55.8 31.3 51.1 40.1 46.7 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 40.9 58.0 37.6 59.6 47.8 53.1 28.1 46.9 1 1 111 432 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 373 636 142.2 215.5 81.4 122.2 161.9 310.6 71.2 361.0 100.3 238.1 70.4 146.5 108.3 418.1 72.3 124.3 143.8 290.3 89.9 153.1 145.9 220.6 77.1 168.4 174.1 347.2 85.1 184.6 145.1 279.9 80.5 193.0 126.6 274.7 83.2 165.5 139.4 283.8 69.4 158.6 178.5 333.8 77.1 164.4 168.3 325.7 85.7 193.7 158.4 327.6 76.9 180.8 177.6 355.6 88.7 182.6 123.9 279.9 94.9 224.8 123.2 367.0 95.2 189.1 128.3 375.2 97.2 245.2 130.7 312.2 116.4 350.0 169.0 378.2 102.5 316.6 152.8 354.0 108.2 257.1 130.4 345.0 95.4 221.7 161.9 402.0 104.0 244.6 125.7 383.0 125.7 309.2 133.3 252.7 109.4 245.9 138.1 380.8 92.0 237.6 160.5 349.3 94.4 229.7 130.4 353.1 99.4 252.6 162.0 420.0 127.5 298.4 161.0 370.0 108.8 340.0 173.3 217.1 105.4 321.0 164.2 295.6 109.1 305.1 150.7 389.7 101.5 260.8 140.1 385.1 96.7 333.0 119.6 285.5 120.0 304.0 146.9 324.0 72.5 282.0 128.9 383.9 83.2 191.0 1 1 119 991 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 97 872 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 40.1 50.5 37.2 49.0 38.8 42.7 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 117 859 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 67 557 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 452 555 221.0 487.9 95.3 189.5 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 237.6 411.7 100.9 187.7 231.6 389.9 103.6 251.7 177.2 554.9 126.2 288.3 191.4 365.6 122.5 281.1 211.8 522.1 124.8 246.0 176.6 302.1 107.3 293.4 217.2 416.2 113.0 271.0 217.7 472.2 129.2 259.3 151.8 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 193.0 525.6 153.1 334.6 179.5 434.3 113.3 386.0 199.0 474.8 115.0 344.5 189.4 435.8 150.3 422.7 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 199.3 416.0 176.3 363.0 202.4 451.9 150.9 429.8 177.2 373.0 158.6 393.8 1 1 355 795 137.8 202.7 79.9 121.1 147.3 250.0 81.3 185.8 149.1 289.9 80.0 167.7 139.0 337.6 73.9 125.3 160.9 305.3 76.9 178.0 172.4 363.5 82.7 181.9 172.6 406.7 70.4 167.4 196.9 402.7 65.5 157.9 150.3 255.7 96.1 181.5 194.9 319.4 84.4 198.6 123.5 299.4 100.9 277.9 166.0 393.2 107.4 222.7 118.9 397.2 98.5 318.8 154.2 365.9 111.5 355.7 160.2 393.0 104.1 198.9 151.1 347.5 101.4 277.0 178.1 449.2 107.2 274.2 186.2 432.0 110.6 330.2 172.2 396.6 106.5 226.2 142.9 400.0 111.1 321.3 158.0 372.3 102.3 238.2 186.5 401.8 111.7 347.6 163.3 413.2 113.0 298.6 199.0 350.2 123.0 375.3 170.1 361.0 121.9 292.1 191.9 364.0 100.7 329.7 175.2 333.5 108.2 302.2 153.2 382.2 110.4 324.0 167.7 421.6 112.0 330.5 165.5 381.8 110.8 267.2 156.8 383.2 102.6 337.0 141.0 406.0 107.7 339.9 146.2 373.9 120.6 314.7 162.6 318.0 121.7 322.3 145.3 341.4 126.6 396.2 178.0 354.2 120.5 419.2 1 1 98 511 41.5 34.4 35.5 29.4 53.2 189.0 40.1 48.0 40.1 39.8 28.7 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 495 692 144.5 215.5 82.1 211.1 187.9 242.5 80.0 480.0 159.1 209.7 93.7 218.4 176.2 327.2 86.8 165.7 169.8 364.8 97.9 285.7 139.0 234.5 101.7 224.8 211.9 470.1 109.4 228.0 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 573.3 128.3 348.4 223.3 564.4 101.5 413.0 208.4 471.1 125.7 308.8 218.7 488.5 140.5 451.6 187.8 518.0 111.1 403.3 251.3 518.0 110.5 438.8 213.9 488.1 115.3 410.0 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 218.0 467.6 128.5 301.3 167.2 516.9 125.2 365.6 206.1 436.0 136.7 420.4 193.5 476.4 140.0 413.7 220.4 488.3 147.4 384.4 211.2 505.3 142.2 300.6 221.6 530.4 161.1 385.0 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 129 389 130.0 201.4 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 39.1 66.6 38.0 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 76.8 37.0 66.2 49.4 55.4 34.3 56.0 47.8 61.8 33.9 71.2 40.9 81.7 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 56.3 47.5 52.9 33.0 51.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 100 552 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 106 452 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 99 487 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 465 826 138.7 252.7 95.6 559.0 126.9 298.4 95.5 202.7 151.8 393.6 69.4 540.0 123.2 244.9 94.3 212.8 106.7 267.1 88.4 265.5 183.3 331.2 89.6 188.8 183.0 352.1 93.3 476.0 203.7 246.1 98.0 175.4 193.1 324.2 111.4 266.2 195.8 339.8 99.2 250.3 146.0 334.1 111.5 259.2 171.5 478.3 106.0 213.1 159.6 398.0 108.0 293.5 179.6 343.5 103.5 333.5 125.2 303.7 97.1 234.3 174.8 429.1 103.8 245.7 151.9 421.9 98.9 291.2 177.2 430.1 96.4 248.7 149.2 345.9 108.1 229.0 158.1 402.9 128.3 259.8 163.2 482.8 121.6 331.7 141.8 446.8 92.4 218.0 162.2 455.2 102.5 324.4 187.2 425.0 116.9 473.1 177.4 483.5 137.3 450.8 207.7 412.6 142.8 373.9 198.2 352.4 126.3 229.9 174.1 417.1 103.5 223.9 168.3 411.4 119.0 373.3 173.9 382.1 137.8 410.1 176.0 373.1 139.7 295.8 158.7 386.8 110.3 310.7 190.5 403.8 131.2 328.9 174.2 406.0 155.5 453.1 156.8 407.7 142.7 483.3 142.9 355.4 134.0 469.3 1 1 90 464 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 96 724 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 94 317 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 100 399 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 488 607 221.0 487.9 95.3 189.5 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 237.6 411.7 100.9 187.7 231.6 389.9 103.6 251.7 177.2 554.9 126.2 288.3 191.4 365.6 122.5 281.1 211.8 522.1 124.8 246.0 176.6 302.1 107.3 293.4 217.2 416.2 113.0 271.0 217.7 472.2 129.2 259.3 151.8 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 193.0 525.6 153.1 334.6 179.5 434.3 113.3 386.0 199.0 474.8 115.0 344.5 189.4 435.8 150.3 422.7 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 199.3 416.0 176.3 363.0 202.4 451.9 150.9 429.8 177.2 373.0 158.6 393.8 1 1 73 788 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 103 490 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 123 475 53.5 43.5 82.1 159.0 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 443 635 144.5 215.5 82.1 211.1 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 117 798 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 110 917 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 109 882 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.9 53.3 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 81 142 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 38.1 35.0 70.3 49.9 39.0 34.9 31.9 44.4 44.9 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 117 822 39.4 43.4 37.4 46.6 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 41.9 66.9 27.0 54.4 49.2 50.5 37.2 49.0 39.9 46.5 34.7 59.3 39.7 54.9 33.9 64.7 47.1 61.8 32.6 44.9 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 41.8 49.2 33.8 45.8 47.9 52.9 37.0 51.3 43.2 54.4 32.5 36.5 40.1 46.7 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 41.1 49.6 34.4 58.7 40.9 51.9 32.4 45.5 47.8 53.1 28.1 46.9 1 1 116 174 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 108 268 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 83 406 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 101 484 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 483 628 144.5 215.5 82.1 211.1 235.6 544.7 86.0 182.0 185.7 502.6 100.6 212.5 165.6 407.9 91.5 237.0 175.6 392.2 111.2 237.2 200.6 433.0 92.6 171.9 223.8 431.2 87.2 159.7 237.6 411.7 100.9 187.7 231.6 389.9 103.6 251.7 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 176.6 302.1 107.3 293.4 194.7 465.6 108.5 218.0 217.7 472.2 129.2 259.3 151.8 377.7 108.6 314.9 177.1 363.7 108.0 242.6 169.1 350.8 123.2 425.9 176.5 484.6 140.9 404.5 222.9 404.5 139.8 202.8 181.8 513.0 123.4 353.0 214.5 457.0 138.6 354.9 201.3 525.6 153.1 334.6 181.4 397.3 137.1 369.9 199.0 474.8 115.0 344.5 189.4 435.8 150.3 422.7 195.7 501.4 131.1 401.9 215.2 488.6 154.3 316.7 183.7 449.5 144.6 443.0 199.5 498.2 122.8 388.6 209.9 481.1 125.0 399.0 212.6 470.8 106.0 353.5 213.8 380.0 146.6 406.9 199.3 416.0 176.3 363.0 202.4 451.9 150.9 429.8 207.8 466.7 95.4 389.0 1 1 107 469 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 962 565 235.4 366.9 131.8 833.0 264.5 726.8 127.9 289.9 243.0 624.5 142.5 350.5 214.9 518.6 126.9 800.0 197.7 394.5 139.0 378.9 182.9 562.3 168.0 372.5 239.4 515.1 130.5 338.8 249.8 576.1 106.1 349.7 273.2 603.1 155.0 380.2 244.0 588.2 139.0 372.7 265.7 490.8 201.3 367.1 241.1 729.2 146.1 405.7 234.9 640.5 137.8 709.9 227.7 627.4 160.8 495.5 210.9 587.7 172.6 595.8 248.4 634.0 148.5 629.6 245.1 421.5 156.3 536.9 215.2 647.1 177.5 466.9 242.8 619.5 170.9 602.1 264.7 653.2 167.5 691.7 246.7 595.6 180.4 543.5 244.4 592.1 202.1 610.2 251.9 568.0 193.9 594.5 271.0 564.0 188.3 463.2 248.7 547.3 189.2 623.6 219.5 532.3 235.3 663.6 238.7 482.2 201.5 737.4 219.1 560.1 187.8 619.3 205.0 555.3 218.7 694.1 207.5 553.6 194.8 712.6 232.3 526.4 183.4 768.0 205.6 553.8 142.8 507.3 239.0 518.5 109.6 649.7 253.8 468.7 209.7 711.1 249.4 542.5 182.7 660.0 258.1 532.7 172.9 545.6 1 1 118 572 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 121 126 44.5 39.9 28.7 32.3 38.2 39.8 23.0 33.1 36.0 41.8 23.7 32.2 27.7 46.1 26.6 32.0 35.0 38.1 25.8 37.2 35.5 39.0 23.7 31.9 33.0 44.9 25.1 39.2 37.8 54.2 27.0 39.9 40.6 52.1 26.2 38.6 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 37.2 40.6 25.1 36.9 38.8 45.7 25.5 47.2 37.7 40.8 27.3 39.6 35.7 47.6 26.6 39.7 34.7 45.0 28.2 42.5 33.0 44.5 25.4 37.5 31.8 46.9 26.7 42.3 38.0 42.8 24.7 33.7 35.6 46.2 25.9 36.2 33.2 46.0 27.6 40.5 34.3 40.7 26.5 35.3 35.4 44.1 22.6 38.3 33.3 38.4 27.4 34.3 36.3 39.8 25.8 36.7 36.2 39.5 25.5 44.3 34.3 38.7 27.9 35.2 33.3 37.8 25.8 37.3 32.9 40.9 25.4 30.8 35.9 36.0 26.1 34.3 35.8 37.2 22.9 35.0 31.5 44.6 24.4 35.4 33.0 47.1 26.7 43.7 36.5 35.9 25.5 34.0 34.0 42.9 26.1 36.1 1 1 111 537 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 119 908 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 115 562 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 96 884 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 123 534 41.5 194.1 67.5 307.0 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 99 443 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 96 906 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 117 195 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 405 806 138.7 252.7 95.6 559.0 126.9 298.4 95.5 202.7 151.8 393.6 69.4 540.0 123.2 244.9 94.3 212.8 106.7 267.1 88.4 265.5 183.3 331.2 89.6 188.8 183.0 352.1 93.3 476.0 203.7 246.1 98.0 175.4 193.1 324.2 111.4 266.2 195.8 339.8 99.2 250.3 146.0 334.1 111.5 259.2 171.5 478.3 106.0 213.1 159.6 398.0 108.0 293.5 179.6 343.5 103.5 333.5 125.2 303.7 97.1 234.3 174.8 429.1 103.8 245.7 151.9 421.9 98.9 291.2 177.2 430.1 96.4 248.7 149.2 345.9 108.1 229.0 158.1 402.9 128.3 259.8 163.2 482.8 121.6 331.7 141.8 446.8 92.4 218.0 162.2 455.2 102.5 324.4 187.2 425.0 116.9 473.1 177.4 483.5 137.3 450.8 207.7 412.6 142.8 373.9 198.2 352.4 126.3 229.9 174.1 417.1 103.5 223.9 168.3 411.4 119.0 373.3 173.9 382.1 137.8 410.1 176.0 373.1 139.7 295.8 158.7 386.8 110.3 310.7 190.5 403.8 131.2 328.9 174.2 406.0 155.5 453.1 156.8 407.7 142.7 483.3 142.9 355.4 134.0 469.3 1 1 68 425 53.5 43.5 32.6 45.6 53.2 189.0 40.1 48.0 58.1 177.0 39.3 53.0 46.0 66.1 38.0 54.7 44.3 59.4 32.3 56.6 46.5 65.2 37.6 46.3 54.8 184.0 33.1 45.0 55.2 197.0 41.5 59.9 55.0 56.2 37.0 51.7 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 39.8 61.5 36.3 49.0 43.8 158.0 35.8 51.0 44.9 62.1 30.8 51.0 46.8 55.9 37.3 52.0 48.6 47.3 37.0 66.2 46.4 73.3 36.2 51.9 44.0 61.8 33.6 52.4 40.9 78.6 33.1 52.9 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 45.7 54.3 34.8 50.5 49.1 68.6 30.5 48.9 45.7 48.2 40.4 51.6 49.8 71.1 32.7 46.3 41.9 62.1 38.6 42.2 51.0 58.2 29.9 57.5 38.5 52.2 34.4 53.6 38.3 55.8 33.6 46.4 42.5 61.3 32.2 45.8 42.6 59.0 33.2 47.3 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 113 567 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 69 594 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 90 379 53.5 43.5 32.6 45.6 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 47.2 67.7 36.0 59.4 48.3 75.2 31.4 52.7 44.7 57.3 31.2 51.0 43.5 64.0 32.6 40.1 47.5 53.1 35.8 64.0 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 48.6 66.9 34.4 53.1 50.5 55.7 35.7 47.1 51.4 56.3 35.4 50.7 49.1 68.6 30.5 48.9 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 42.6 71.7 33.2 66.9 46.4 53.2 32.0 40.6 38.9 43.8 33.4 43.9 1 1 111 977 37.7 35.1 27.2 37.3 40.7 67.2 29.6 35.3 42.9 62.5 25.3 46.8 39.4 63.5 30.3 49.5 44.2 66.9 29.5 31.0 40.1 53.9 32.7 39.4 40.3 63.8 30.6 48.2 51.6 45.4 32.0 48.7 46.0 46.8 29.7 43.1 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 29.5 44.9 37.5 48.9 29.5 53.0 39.8 49.4 30.6 49.6 42.1 52.3 31.8 54.5 48.1 63.8 32.1 47.5 36.1 51.7 32.5 44.0 40.2 51.1 31.6 50.0 36.1 50.0 30.4 41.4 38.0 57.8 29.7 44.3 42.0 57.1 30.4 46.8 37.1 50.1 30.0 41.5 38.6 42.8 29.4 43.3 34.3 49.7 31.2 44.5 36.1 45.9 28.8 42.1 41.7 41.4 27.0 44.8 36.9 47.0 31.2 49.9 31.2 52.9 30.3 44.0 36.4 49.6 30.7 45.0 39.3 52.3 27.5 45.1 41.6 54.4 31.8 51.8 35.7 51.1 33.5 42.3 39.0 45.0 27.8 48.6 34.9 48.2 29.1 46.3 36.0 44.8 29.6 41.4 1 1 85 701 50.0 49.2 31.1 38.9 51.9 81.3 32.8 45.9 41.6 65.7 29.8 61.7 58.7 73.6 35.5 47.1 44.5 152.0 39.2 56.1 43.3 83.0 32.5 61.7 48.3 75.4 34.6 52.3 57.4 92.2 36.5 58.1 54.8 102.4 30.7 55.5 59.2 72.0 34.7 74.0 56.6 73.9 35.4 58.9 48.2 80.7 44.3 63.9 48.8 79.2 33.0 49.6 48.6 75.7 38.8 91.9 48.8 98.1 37.5 59.2 45.8 67.8 32.5 64.1 47.7 55.2 36.3 68.7 56.7 51.7 29.0 74.0 57.5 75.1 38.0 73.2 46.1 65.2 35.4 57.5 48.9 90.6 36.8 44.1 48.9 51.5 42.7 69.5 45.7 58.6 35.4 63.5 54.1 67.8 42.2 63.3 48.4 55.8 31.3 51.1 49.2 66.9 36.5 70.4 50.1 71.9 35.0 71.5 43.6 68.9 34.7 43.9 43.7 66.8 35.2 66.8 47.4 71.0 35.0 62.1 47.2 61.9 33.2 56.1 40.7 56.7 33.6 51.1 42.9 61.7 32.8 67.6 49.8 80.9 32.5 63.7 45.0 58.0 37.6 59.6 49.4 62.7 41.0 58.6 1 1 116 879 37.7 35.1 27.2 37.3 44.1 62.9 28.1 57.6 37.5 76.9 30.2 43.8 49.7 54.5 35.4 52.8 36.2 39.8 32.4 44.3 44.0 66.9 29.6 53.1 43.9 55.6 31.4 49.6 45.3 57.2 32.9 53.3 41.4 69.5 34.4 54.3 42.3 52.8 31.2 40.5 40.1 53.9 31.7 44.4 38.8 42.7 26.7 47.3 38.4 48.2 33.9 64.7 37.5 48.9 29.5 53.0 42.2 64.4 29.4 59.0 43.2 46.1 33.1 46.9 46.8 49.9 32.6 47.7 42.4 53.5 34.2 65.6 39.8 62.0 32.2 45.3 46.8 60.8 33.1 32.1 40.2 42.4 33.2 49.4 41.8 51.5 37.1 48.0 37.1 50.1 33.8 45.8 38.6 42.8 29.4 43.3 34.3 54.4 32.5 36.5 36.1 45.9 29.6 38.5 36.2 52.7 35.3 47.0 39.6 57.5 30.2 57.5 39.9 48.8 28.3 45.1 41.5 51.7 31.4 50.3 44.8 54.1 35.1 63.4 39.2 48.4 36.9 55.0 41.9 52.2 30.6 61.5 39.0 45.0 34.4 58.7 34.9 48.2 32.4 45.5 36.0 44.8 29.6 41.4 1 1 753 95 123.8 308.4 83.5 230.1 132.7 280.7 61.8 163.4 122.1 272.0 62.0 176.2 104.7 220.1 61.6 137.0 99.9 198.5 82.4 220.8 107.8 209.0 72.9 173.4 123.6 285.4 74.7 145.5 120.2 258.5 75.3 198.0 122.7 242.0 107.3 132.9 163.4 261.9 94.4 178.1 137.3 286.4 91.1 229.6 131.7 342.4 89.1 168.5 118.6 204.3 73.6 255.1 108.4 279.4 90.1 322.9 93.9 247.7 94.0 228.6 101.4 258.0 90.2 282.5 138.2 235.9 91.2 292.3 123.4 282.0 114.7 300.6 125.6 229.8 97.5 281.0 123.6 254.0 110.2 240.2 131.4 277.8 105.0 279.5 119.8 278.6 101.1 284.0 140.3 282.5 108.2 253.1 138.1 268.8 84.3 282.7 112.2 263.0 103.2 263.4 139.1 251.8 82.9 324.5 105.5 227.1 102.9 285.4 110.2 259.7 115.9 365.8 127.3 279.8 125.8 350.5 136.0 276.2 108.4 286.0 107.2 273.7 89.2 282.6 119.4 235.2 96.7 322.0 109.8 269.2 98.0 293.9 131.1 260.6 113.9 322.8 122.0 241.5 118.0 343.7 123.7 229.6 97.2 306.0 1 1 104 223 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 91 195 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 82 227 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 78 554 41.5 34.4 35.5 29.4 44.4 56.3 29.9 52.0 40.1 39.8 28.7 46.1 38.0 63.0 34.5 41.1 50.3 57.8 29.9 42.8 52.7 54.6 30.5 50.6 38.0 62.4 25.7 43.6 45.0 62.0 32.8 43.5 49.7 70.3 33.9 46.1 44.5 146.0 31.0 51.9 49.2 58.4 31.5 47.4 42.2 49.0 30.0 43.5 41.6 41.9 30.4 42.9 41.0 59.5 34.7 49.2 41.5 38.5 27.4 47.4 46.4 53.0 27.8 47.2 46.7 62.1 31.9 49.1 46.4 54.1 32.4 54.2 39.8 49.6 30.4 47.8 43.0 54.3 28.8 39.6 39.5 52.5 31.0 44.3 49.9 48.1 33.4 40.9 44.9 58.0 28.9 52.1 45.7 49.6 31.6 40.1 41.2 40.0 34.3 38.1 42.5 51.7 27.7 37.0 42.6 48.4 32.0 42.8 44.5 54.4 32.9 40.6 43.8 47.0 30.5 38.3 37.9 53.4 30.5 43.9 35.2 49.7 29.5 44.2 43.1 44.8 27.1 38.6 41.5 48.2 33.0 42.5 38.1 48.8 31.4 48.0 38.4 42.9 31.8 46.8 42.8 48.0 33.2 39.2 1 1 101 329 57.5 49.9 36.1 40.0 56.2 66.1 28.2 57.8 46.9 64.3 35.5 81.3 39.1 66.6 38.9 76.1 45.2 79.4 30.3 47.7 52.7 73.5 32.7 57.3 44.3 88.0 34.2 50.5 64.6 70.0 34.0 56.9 53.1 94.0 32.1 59.5 51.0 70.6 38.1 60.3 50.6 71.7 37.1 50.4 49.6 68.5 36.2 47.5 46.8 99.9 34.7 55.7 52.6 67.2 38.5 83.8 47.4 79.2 36.7 53.2 50.9 77.3 36.6 59.9 46.0 75.7 38.9 59.3 54.4 78.0 28.2 61.0 48.9 76.8 36.3 56.7 49.4 55.4 34.3 56.0 47.8 75.3 33.9 71.2 43.7 81.7 34.2 60.6 55.1 63.1 40.5 65.0 50.0 66.6 39.6 66.6 51.4 56.3 35.4 50.7 52.3 44.1 31.4 55.0 43.1 74.7 37.4 60.8 57.2 55.3 38.8 56.7 45.1 52.4 38.3 56.3 47.5 52.9 33.0 51.5 42.8 65.1 34.8 63.5 40.2 68.4 30.2 56.3 49.5 80.0 35.2 59.9 41.5 71.7 35.2 66.9 44.5 65.3 34.8 67.5 48.6 67.3 32.6 71.7 1 1 449 243 118.9 157.6 75.5 446.0 157.7 165.4 55.1 348.0 108.8 178.0 71.3 158.6 135.0 248.9 74.2 139.3 114.9 277.7 80.5 152.0 156.4 177.8 93.7 141.6 174.8 307.7 79.8 146.7 193.8 370.2 88.8 368.0 148.9 351.9 95.9 167.7 134.7 258.2 108.0 168.7 115.2 335.8 89.1 224.5 167.1 373.2 85.1 212.8 177.3 299.3 108.2 196.3 143.7 276.6 105.2 139.3 115.6 371.1 98.9 173.3 162.4 271.3 109.3 173.9 143.9 275.6 122.1 141.0 176.7 358.0 131.1 183.5 137.5 363.3 109.0 153.0 155.9 286.2 100.7 250.2 159.2 339.0 107.4 248.9 164.0 336.0 111.5 150.3 157.6 322.0 164.5 211.4 176.4 379.0 90.7 263.9 148.2 282.4 110.8 199.9 143.9 287.8 125.8 225.1 138.7 321.3 112.6 148.2 137.5 308.0 114.3 135.5 158.4 295.0 125.5 208.4 124.1 288.1 90.9 157.3 129.1 342.4 99.5 245.5 149.0 298.8 95.4 212.3 162.6 312.0 132.7 345.2 181.9 304.4 136.0 350.0 108.2 296.0 93.7 154.7 155.0 300.0 117.9 351.0 1 1 401 703 144.5 215.5 82.1 211.1 187.9 242.5 80.0 480.0 159.1 209.7 93.7 218.4 176.2 327.2 86.8 165.7 169.8 364.8 97.9 285.7 139.0 234.5 101.7 224.8 211.9 470.1 109.4 228.0 180.0 421.0 93.9 233.5 203.0 315.7 116.7 233.6 259.1 407.5 101.7 251.2 203.9 415.5 141.8 267.6 165.3 405.8 121.9 254.6 178.2 409.1 110.7 340.7 194.7 465.6 108.5 218.0 191.3 311.8 124.3 333.3 209.7 573.3 128.3 348.4 223.3 564.4 101.5 413.0 208.4 471.1 125.7 308.8 218.7 488.5 140.5 451.6 187.8 518.0 111.1 403.3 251.3 518.0 110.5 438.8 213.9 488.1 115.3 410.0 201.3 485.4 150.4 422.0 181.4 397.3 137.1 369.9 148.4 347.7 129.0 444.1 197.7 451.0 130.0 426.0 218.0 467.6 128.5 301.3 167.2 516.9 125.2 365.6 206.1 436.0 136.7 420.4 193.5 476.4 140.0 413.7 220.4 488.3 147.4 384.4 211.2 505.3 142.2 300.6 221.6 530.4 161.1 385.0 167.7 456.0 155.1 357.4 126.7 309.6 139.3 409.7 207.8 466.7 95.4 389.0 1 1 101 226 44.5 39.9 28.7 32.3 53.0 72.6 32.5 61.6 45.7 71.9 33.5 48.5 41.5 67.0 36.1 51.3 49.5 57.0 35.0 70.3 49.9 67.1 34.9 69.9 44.4 51.4 34.0 45.4 50.4 52.8 34.3 55.9 43.0 77.4 31.0 45.0 41.3 53.0 27.2 53.4 47.9 47.6 33.7 48.2 50.6 54.6 34.9 48.7 50.2 66.4 30.0 59.3 39.6 64.9 32.2 61.5 50.1 68.3 28.7 50.7 54.0 44.1 38.4 45.9 43.8 75.6 35.1 62.0 46.4 72.9 34.1 55.2 37.8 64.0 41.0 51.3 46.0 62.1 34.2 65.6 43.6 80.1 35.6 49.5 38.9 39.0 34.9 63.2 47.1 64.6 40.0 45.0 52.7 75.5 33.9 53.2 47.3 51.4 31.0 43.6 43.3 61.5 30.9 52.8 43.2 60.8 31.2 65.2 41.2 57.6 32.3 59.0 48.5 56.1 34.0 49.6 42.8 58.2 34.5 53.3 38.8 51.7 35.7 53.2 44.0 57.3 33.7 61.1 44.2 58.6 34.5 61.2 45.6 52.4 31.3 46.8 44.9 42.2 36.6 55.4 41.3 54.1 30.7 45.7 1 1 239 916 79.5 82.4 55.6 92.4 82.3 213.1 42.0 93.8 92.1 109.1 48.6 121.2 79.0 149.8 44.6 82.7 87.4 137.7 54.0 106.3 96.2 118.7 49.3 102.9 85.7 214.2 38.0 100.3 89.9 153.5 63.1 135.5 81.8 171.5 56.3 233.0 80.7 159.5 55.8 125.2 109.4 181.7 57.4 108.4 94.0 162.5 60.7 136.9 80.8 131.3 57.4 91.7 80.2 161.0 48.9 141.9 71.4 161.7 65.8 146.8 84.6 205.3 64.0 174.3 97.9 231.1 59.2 133.9 87.4 225.0 71.9 107.0 102.0 220.8 69.4 131.3 94.8 222.5 58.9 124.7 108.9 245.8 66.6 108.6 79.8 247.2 67.6 203.7 92.3 154.5 69.6 128.3 97.6 208.1 56.3 135.0 81.6 182.9 58.1 188.8 84.4 204.1 55.4 214.8 97.8 155.1 81.1 135.1 90.3 166.3 73.4 127.8 95.4 192.8 66.3 107.9 100.2 202.4 61.3 184.2 107.3 201.2 64.3 186.4 83.6 237.5 64.6 98.6 81.0 196.6 78.7 211.0 87.6 191.6 76.6 120.6 97.7 158.3 65.8 145.9 93.9 181.8 79.4 212.0 1 1 349 63 95.8 189.4 54.1 87.3 141.3 222.6 51.7 192.5 107.8 236.6 59.3 133.7 111.7 244.9 71.6 109.5 106.0 185.8 65.7 246.7 129.6 231.8 62.2 106.0 124.4 231.4 61.8 131.2 133.3 211.9 64.1 103.3 116.4 235.5 66.8 127.4 105.7 221.9 71.2 153.0 104.2 205.0 76.5 162.5 116.6 242.4 64.1 120.8 94.3 177.2 56.0 150.1 106.6 234.4 72.2 167.4 108.7 211.3 76.7 178.4 115.6 200.0 73.4 155.0 135.0 235.8 57.1 205.5 115.9 244.7 78.7 197.9 116.3 237.5 88.5 244.1 109.3 212.8 76.3 171.4 137.5 130.6 80.1 197.4 111.0 229.4 72.6 218.8 121.8 249.8 76.4 148.1 120.3 212.3 91.1 214.3 117.7 228.1 62.7 174.5 109.8 244.7 92.2 166.8 103.2 238.2 78.9 183.3 115.7 249.9 88.5 175.1 130.0 242.3 84.1 225.0 114.0 228.5 80.5 213.4 104.9 209.1 76.0 209.5 105.5 227.2 79.9 204.0 107.4 238.4 93.3 244.9 102.9 185.0 78.8 210.0 94.0 179.1 75.0 213.9 95.2 205.5 72.5 196.0 1 1 158 505 116.8 194.1 67.5 307.0 169.7 300.4 57.2 135.8 141.7 301.5 66.5 131.7 152.0 253.2 68.0 157.0 121.1 237.4 84.6 156.3 160.9 357.3 67.6 133.0 162.9 287.5 61.1 160.4 167.6 376.7 68.0 157.7 141.0 336.9 75.2 160.8 147.8 298.6 56.9 149.7 153.1 332.6 72.1 134.1 144.8 353.5 72.1 166.3 132.5 243.5 60.6 220.6 152.2 227.8 61.0 198.5 140.0 337.9 71.1 208.8 139.1 331.7 90.6 203.9 144.2 328.5 86.6 271.3 131.0 345.3 80.5 263.3 143.6 316.6 89.4 322.6 139.9 339.0 90.3 255.0 149.8 316.6 86.2 282.5 142.4 358.1 94.7 180.2 143.3 334.0 102.2 206.3 125.3 252.6 99.3 210.5 139.7 338.6 77.9 185.8 102.9 276.3 90.6 147.6 141.1 400.9 77.5 231.7 124.1 334.5 89.4 280.6 155.6 343.7 111.2 310.0 112.8 346.2 100.0 269.9 149.2 285.8 92.2 316.7 142.6 364.0 97.9 291.7 161.4 328.0 89.1 249.6 157.0 339.2 99.1 212.9 138.4 318.8 73.3 210.7 127.0 304.4 73.7 283.2 1 1 793 122 123.8 308.4 83.5 230.1 129.7 315.0 72.3 128.8 102.8 252.1 72.5 197.2 128.7 242.4 68.4 175.0 104.6 240.0 77.0 173.1 139.2 209.5 81.8 158.5 118.3 192.6 93.9 217.7 131.1 315.4 99.1 153.7 126.0 280.3 100.2 218.4 148.7 317.6 102.0 233.1 227.7 253.8 89.4 275.1 247.8 255.8 134.5 331.7 125.7 246.8 77.6 296.5 147.5 240.3 86.5 297.4 118.7 255.5 103.5 278.7 126.1 251.5 105.2 211.2 101.1 295.6 117.0 349.1 119.5 293.5 105.2 275.7 112.6 224.6 111.1 283.6 117.4 313.0 107.6 243.1 134.9 276.5 133.3 346.7 110.5 244.0 126.8 306.4 129.7 246.0 131.7 278.4 131.9 289.4 92.4 250.9 132.4 261.2 103.9 313.8 117.8 235.7 101.5 396.0 109.9 216.9 120.3 327.0 131.6 289.0 111.1 354.7 126.1 279.4 120.4 300.3 117.3 253.5 111.5 339.7 116.6 263.4 96.2 325.9 94.3 253.6 96.9 244.1 141.4 247.6 108.2 315.7 116.2 230.1 113.9 301.3 101.1 218.5 104.0 264.9 127.8 238.9 106.6 367.7 ShortRead/inst/extdata/bowtie/0000755000126300012640000000000012227066723017737 5ustar00biocbuildphs_compbioShortRead/inst/extdata/bowtie/s_1_aligned_bowtie.txt0000644000126300012640000034441412227066723024230 0ustar00biocbuildphs_compbioHWI-EAS88_1:1:1:109:548 - chr5 151311501 CAAACAAATACATTTTTAAAATCACATGAAAACAA *777*:::::::::::::::::5:::::::::::: 0 HWI-EAS88_1:1:1:101:522 - chr10 35505988 CTTCCTCTCTCAGAGCAGAGACCCTATCAGGTGCA ,7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:121:595 - chr16 55311504 TGCATGACAGAGTGTTAGTGTTCAATAAATATCTC 55555::::::::::::::::::::::::::1::: 0 HWI-EAS88_1:1:1:83:580 - chr3 42422486 TCCAGTCTCTTGTGGGTTAGGTTTATCATCTCTGA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:513 + chr4 94552390 GGAACAAAACACCCATGGAAGGAGTTACAGAGACA :::::::::::::::::::::::::::3::41777 7759 HWI-EAS88_1:1:1:97:540 - chr15 77506543 GCCTGCACATTCTCTAAAAATACCAAATTATTGTC 24477.:::::7:7::::::::::::::::::::: 0 HWI-EAS88_1:1:1:115:738 + chr2 98506779 GTGAAAAATGAGAAATGCACACTGAAGGACCTGGA :::::::::::::::::::::::::::1::72/77 1 HWI-EAS88_1:1:1:117:578 - chr18 29610052 TAGTGGAAGTAGCAAAAGAGGCACACAGTGAAGCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:112:238 + chr8 29528229 TTAGCAGGCCTTGATGGCTACTACTTCCTTTCTCT ::::::::::::::::::::::::::::::74747 0 HWI-EAS88_1:1:1:96:508 - chrX 117886178 TTAGTTGTAAAAAGGCTATTACTAAAAGTCAAATT 77777::::::::::7::::::::::::::::::: 0 HWI-EAS88_1:1:1:114:415 + chr2 99695065 CTGATTGCTAAATTAGTCCTGCAAATAACGTTATA ::::::::::::::::::::4::::::::177777 0 HWI-EAS88_1:1:1:117:462 - chr13 94473217 GTGAACAGAAGAGCCTTGAGTCTGTGGAACTGGAG 774776::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:81:571 + chr1 196527698 TTACTTTTAAAAACTTTATTACTCAATAAAGGCTG ::::::::::::::::::::::::::::::,2774 0 HWI-EAS88_1:1:1:122:660 + chr9 87840595 TATGCAGCTAGAGTCAAGAGCTCAGGGGTACTGGT ::::::::::::::::::::::::::::::77747 1948 HWI-EAS88_1:1:1:115:329 + chrX 8641018 GGGGACTGTGGGTGTAGCTCACTTGTTGCAGTGCT :::::::::::::::::::::::::::.::&7477 1 HWI-EAS88_1:1:1:118:518 + chr2 98507197 CTGAAAATCATGGAAAATGAGAAACATCCACTTGA ::::::::::::::::::::::::::::::77777 5 HWI-EAS88_1:1:1:120:704 + chr15 29527390 GAACCAGACTCCTGGCAGAAGTTGTGTTCCACTCA ::::::::::::::::::::::::::::::77777 1352 HWI-EAS88_1:1:1:110:692 - chr2 30903181 CACAAGTTGGTGAACTCTCCTGGAACCGTCTCTGC ,7477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:349 - chrUn_random 5889635 ACTGTAGGACATGGAATAAGGCGAGAAAACTGAAA 7,777::::6:::::::::::7::::::::::::: 2 16,24 HWI-EAS88_1:1:1:120:488 - chr13 27398425 TGATGCATTAACTCTAGTCTAATGTGTCTATATTG 1)1-)+:11::,,&:::-::::::11::::::::: 0 22 HWI-EAS88_1:1:1:115:889 + chr11 27330701 GAGAAAATGCCCCACAGCTGGATCTCCTGGAGGCA ::::::::::::::::::::::::::::::77777 1 HWI-EAS88_1:1:1:120:446 + chr3 149312234 ATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTT ::::::::::::::::::7/::::::::3:74777 2234 HWI-EAS88_1:1:1:80:439 - chrX 95193511 CTGATGTGTTTAATTTTGTTATTAAATTTGAGGAA ,4677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:113:628 + chr5 81696161 TGTAACATAGACAGAGTTGAAAGTTAGAGTCTGCT :::::::::::1::::::1:::1:::11+:55)15 0 HWI-EAS88_1:1:1:121:143 - chr3 138145990 CACTCCAGGCAAATGGCATAGGATACACAATGTTA 27272:::::::::::::::::::::::::::::: 0 21 HWI-EAS88_1:1:1:101:353 + chr2 55907066 TGAGTTTTTCTCTTAGAAATGCTTTCATTGTGTCC ::::::::::::::::::::::::::::::72777 33 HWI-EAS88_1:1:1:97:502 - chr8 19623646 CCTGAAGCACATGAGCTGACCCCAAACCAATCCCA +2747::6::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:455 - chr5 137991226 GTCAGGTTCCATGACAAATGAATGTTGGCCACAGC 77171::::3::::/:::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:424 + chr15 80876301 CTGAGAGGAGACACCCAAGAGCTACGACTTAGTGT :::::::::::::7::::::::::::::::77777 0 HWI-EAS88_1:1:1:98:361 + chr13 27275679 GTGGGCAGGAGTTTTGTGGGTGATGGGTTCCTGAG :::::::::::::::::::::::::6::::4727, 0 HWI-EAS88_1:1:1:119:458 - chr11 33034359 CACATTCTCCTCGGCTGCCAACACCTATGCAAGGA 27477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:121:629 - chr6 19201874 ATAAATGTCTGAGCTAGAGTTCAAGTAATATCTGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:112:446 + chr16 45467769 GATCCCGTGGGGAGTCCCGTGTGGGCCCTTGCGGG ::::::::::::::::::::::::::::::77777 455 HWI-EAS88_1:1:1:118:565 + chr2 126799738 GGCTGGCTCAAGATCAGAAGCCGCTCTGGACGTTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:106:886 - chr12 108091440 GGATTCTAATTGCATTGTGCCACAGAGGGTTTCTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:93:629 + chr2 98502407 TTCTCATTTTTCACGTTTTTTAGTGATTTCGTCAT ::::::::::::::::::::::7:::::::,7777 0 HWI-EAS88_1:1:1:79:878 - chr9 35112968 AAAAGAAACATCCACTTGAAGACTTGAAAAATGAC 7%%7%:::::::::::::::::::::::::::::: 0 15,32,33 HWI-EAS88_1:1:1:113:326 - chr16 93329139 TAACCAGCCCTGGCTAGGGCAGGGAGGGAAAAGAA 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:87:618 + chr14 28417016 TTGTCTGTGCCAGCACAGAGAAAGCAACCTGAGCA ::::::::::::::::::::::::::::::47477 0 HWI-EAS88_1:1:1:83:277 - chr1 163068612 AGAAGAATCCTTAAGGCTTGCTAGGCAGCAGTCTA 77777:::::::::::::::::::::::::::::: 0 23 HWI-EAS88_1:1:1:103:414 + chrX 30017731 GGGTAGGCTACAGTGGAGGAACAGGCAAAGACCAC :::::::::::::::::::::::7::::::7+717 1 HWI-EAS88_1:1:1:93:494 - chr11 16451552 TTCAGGCCTGTCCTGCCCTCTCTTCTTTGTCACTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:65:610 - chr4 6913304 ATGTCAATAGAAGTTCTAGGAGTTATGGATAAGAC 55-51::::::::::-:::-:1::1:::::::::: 0 HWI-EAS88_1:1:1:104:595 + chr9 8241476 CCGGAGTTTCAGTGATCAGAGTACTCTCTGCAGGC :::::::::::::5:::::::::::::::177/27 0 HWI-EAS88_1:1:1:107:489 + chr14 25109201 ACAGACAAACTCTTTCTAAAAATAAAAACAAAACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:117:484 - chr17 45306513 ACTTACAAATCCCCTCATCCTGTTCTGCTGTGGGA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:102:619 - chr3 98925241 ATCTTAGGTTGTTCTGAGAAGAATGCCTTCCTTAC 77777:::::::::::::::::::::::::::::: 1 17,34 HWI-EAS88_1:1:1:98:190 - chr13 49151162 ATCTTGACCTCTGGAAACTCTTCATTTGCATACAC 77447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:115:189 + chr11 49097805 GTACACACAGATTTGGGGAGACAGCTGCACGGGTC ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:88:462 + chr16 92402871 CATCCCTTTGTCTCCCTGAGTGTGAGCTGCTTTCT :::::::::::::::::::::::::3::::77777 0 HWI-EAS88_1:1:1:113:784 - chr3 27564436 ACATGACAAGGCAGGCAGCTTCCTGGTTCTAAGTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:117:503 + chr12 113816601 CATCTGAAAGTTCCAACCACCCCAACCACTAGACT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:465:808 - chr4 72904399 ATTGCAAGTTAAATTTTCATCTTAATTTTCTTTTC 74774:::::::::::::::::::::::::::::: 0 25 HWI-EAS88_1:1:1:88:396 + chr3 64607170 TGTGAGTAGAAGTAGTAGAAGAGAAGCTGTTGTAA ::::::::::::::::::::::::::::::7+777 1 HWI-EAS88_1:1:1:88:479 - chr10 54088176 TCTCAATGCCTAGATTACCACTGGCAAAGGACTAG 7%1+7:::,::::::::7::::::::::::::::: 0 HWI-EAS88_1:1:1:122:166 + chr1 154575629 GCAAATACAGGAAGAACCAAGGGAATGGAGGAGAA ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:82:533 + chr17 81150594 TGTGTCTTATTTGTCTCTGCTCCCTTGGGCACCAA ::::::::::::7:::::7:::::::6.::76676 0 HWI-EAS88_1:1:1:94:520 + chr10 129847826 ACTGTAAAGCATTCTTGCCTAGAAAATGATAGGAT :::::::::::::2:::::::7::::::3:71777 0 HWI-EAS88_1:1:1:92:550 + chr5 52477413 ACCCCTCCATCACTCTGAGGCTGACCAGAAGTATC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:123:436 - chr9 3025862 ATTTTTCAAGGAGTCAAGTGGATGTTTCTCATTTT 77777:::::::::::::::::::::::::::::: 0 23 HWI-EAS88_1:1:1:109:580 + chr9 119934090 ATCTTGGATGCCCTACCCCCCTGTCCTCATCCTCT ::::::::::::::::::::::::::::6:77777 0 HWI-EAS88_1:1:1:102:549 + chr4 103786365 CTGAGCTGCCTGGAATTAGAACAAGGAATATTTTA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:121:318 + chr7 148749053 TGGGCGATGATTAGATCTCACCCACTGCGATTAAA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:119:279 - chr1 93630657 GGACTGTAGAGGAGGCAGAGACAGGAGGATCGCAA 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:89:424 - chr12 21341127 AGCTGCTTGTTGGCCCATCTAGTAGCAGAGAGGGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:82:804 + chr3 45654027 TTCTGGGTCTTCAATTCTATTCCATTGGTCTACTT :::::::::::::::::::::::::::,::77477 5099 HWI-EAS88_1:1:1:90:304 + chr13 113023027 TTCCGCCAGAGTTCCAGGAGGATGCAGGAGGATGG ::::::::::::::::::::::::::::::77772 0 HWI-EAS88_1:1:1:107:425 - chr1 148635275 GGGCAAAGAGATGGCTCAAGTGTTAAAACCATTTG 7*7*7:::::::::4:5:::::::::::::::::: 0 HWI-EAS88_1:1:1:103:853 + chr12 26445976 TTTTTCTAGGAGTTATTAAAAATACATGCTTAAGT ::::::::::::::::::::::::::::::7722/ 0 HWI-EAS88_1:1:1:115:514 - chr9 72652180 GGAATGGTGGTTTCACAGCCCTTGGAAGGTGAAAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:99:337 - chr18 66702023 TCCGTTGTTTTTGTTGCTGTTTAAGACCAGCCTTA 77777:::::::::::::::::::::::::::::: 0 16 HWI-EAS88_1:1:1:91:364 + chr8 121963969 TAGGGACATGGGAGCCATCTTGACAAGTCTGCAAA ::::::::::::::::::::::::::6:::27777 0 HWI-EAS88_1:1:1:85:487 + chr17 94350740 GGCCTCCCAGGAGATCTACTGCAGCCAGGGCAACA ::::::::::::::::::::::::::::::77777 12 HWI-EAS88_1:1:1:113:509 - chr2 26341042 AGTGGGTGCAACTGGAATCAGGCTCTAGAATGGAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:467 - chr13 95699951 TATTTTTAAATTTTAATTCTTGTAGTGCCAGATAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:74:589 + chrX 106950434 TGAGTTCTTTGGTATTTGGGTTGCTTCACTCAGGA ::::::::::::::::::::::::::::::77727 0 HWI-EAS88_1:1:1:100:564 - chr4 129888766 CTCGCTGCCCAGTACTACAGAACTCCTGCCTTGTT 24774::6::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:771 + chr2 50906132 GGTTTTTCAAGACAGGGTTTCTCTGTCTAGCTCTG :::::::::::::::::::::::::::::677774 0 HWI-EAS88_1:1:1:88:393 + chr4 128917171 TAGGTGGACATGACGTATACACTCCAGTCTAAACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:70:568 + chr3 151947827 GGAATGCCTAAGCATTTCCAGCACTCAGACTTTAC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:122:608 + chr15 73005135 GATCACAACAGACAAGACAGATGGGAATCGCCACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:97:306 - chr11 116868860 CAGGACCTGCCTGCACTCTCCCTGCTGGGGTGAAA 1)-5-+::+1::0:&:::::1:::::::1:::::: 0 20,29 HWI-EAS88_1:1:1:121:179 - chr11 119472789 TGTGCTTGGGCAGTCACTGCCTGACATATAACAAC 55351:::::::::::::::::::1:::::::::: 0 HWI-EAS88_1:1:1:106:507 + chr13 103686267 CAGATGACTGGCCACCTGCCTGCCCTGGAGAGCAG ::::::::::::::7:::::::::::::::77427 0 HWI-EAS88_1:1:1:109:107 + chr7 77575507 GTGGACATCTGATTTTCTGCTTTTACCTTCCAACT ::::::::::::::::::::::::::::::47747 0 HWI-EAS88_1:1:1:380:636 + chr6 88467025 GTTAGAAAACAAAAAGGATACACATTTTTCAAGAC ::::::::::::::::::::::::::::::74477 0 HWI-EAS88_1:1:1:88:506 + chr11 60987562 TCATAGTTGCTGAGATTTACAGGACCCAAAACAAC ::::::::::::::::::::::::::::::67474 0 HWI-EAS88_1:1:1:70:476 + chr11 63555010 GTGTAAGATCTATGCAAAGTCGTGAAAACATCTCT ::::::::::::::::::::::::::::::77747 0 HWI-EAS88_1:1:1:118:160 - chr16 53463641 CGTCATGTGTACTACCTATCCAACTGGGAATTAAC 26727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:737:593 + chr14 87984710 GATTCCTTCATTGAGAATTATCTGTTTTGCTCTGT ::::::::::::::::::::::::::::::777,7 0 HWI-EAS88_1:1:1:84:611 + chr3 134638627 CACAACACACCTCTATTAGTCAACAACTACAAATT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:114:669 - chr2 178250635 GGTTAGGTTAGTATTAGGGTTAAGGTGAGTTTAGG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:114:570 + chr11 36889387 CGTCGACTCAGTGGTTAGGGCCTACTCAAAATCTG ::::::::::::::::::::::::::::::77772 0 HWI-EAS88_1:1:1:366:851 - chr17 60066142 GGCTGGAAAGATTAAGAACACTTGCCAGTTTTTTC 35-45:::::::::::::::::::::1:::::::: 0 HWI-EAS88_1:1:1:109:150 + chr13 31083932 GGCTAGGAACCAGTGTGCATGCATACCATTCCCGC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:114:754 - chr9 65931645 GCAGCTGAAAGCACTTACTGCTCTTGCAGAGGACC 72772:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:373:636 - chr15 33268025 TATTTGCACATGATATGATAGTATATATGTGACCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:119:991 + chr8 119776480 GTGGCTCAATCTGGCCTTGAACTTCTGATCCTCCA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:97:872 - chr15 102018926 GATGAACTCAAAATGACAGGCAGCAGGAGGGAGGA 77777:6:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:67:557 - chr19 55278807 ACCAAGGGAACAGCATCAACAACACTACACACACA 555)5::::::::::::::::::::::::::::1: 0 31 HWI-EAS88_1:1:1:355:795 - chr2 98507377 AATGGTGGAATACTTAGAAATGTCCACTGTAGGAC 77477:::::::::::::::::::::::::::::: 2 22,32 HWI-EAS88_1:1:1:495:692 + chr7 70657636 GACATCTATTCATATGCCTGGGTGTGTTATTTATA ::::::::::::::::::::::::::::::77677 0 HWI-EAS88_1:1:1:129:389 + chr6 16290023 GGGAAGGAAAAATACTGGAATACTGGGTTATAGGA ::::::1:::1:::::1::::::::11:::5-115 0 HWI-EAS88_1:1:1:100:552 + chr11 100308857 GCCCCTATGCACTCTAGACGTTGCTATGTCAGCGT ::::::::::::::::::::::::::::::74747 0 HWI-EAS88_1:1:1:100:399 - chr12 112645017 TTGGAGGAGGCCGAGGGAGGCGAGCTCCCGAGCCA 11555::::':::::::::::::::1::::::::: 0 25 HWI-EAS88_1:1:1:117:798 + chr9 3553983 GAGGTGCATTTCCTGTGTGCAGAAAAATTCTGGGT ::::::::::::::::::::::::::::::77247 0 HWI-EAS88_1:1:1:110:917 + chr1 95060791 TCTGTCTGTCTCTTAGGAGGAAACCCGAGGCGGCA ::::::::::::::::::::::::::::::477+7 0 HWI-EAS88_1:1:1:81:142 + chr1 70616476 GGTAATTCTTAACCAAGCTTCTATTTATAGGCAGA :::::::::::::::::::::::::::::627747 0 HWI-EAS88_1:1:1:117:822 + chr13 38591529 TGTACTAATCTCTGTCAAGACAAACTGTAGCATTT :::::::::::::::::::6::::::::::22777 0 HWI-EAS88_1:1:1:83:406 - chr3 51397238 AATGGGGACAGACATTAAGGTAGGAACTGGATGGG 77277:::6:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:101:484 - chr5 72595028 CACGCACACGTTTGTCATTCCGTTTCGAAATCCAG 27424:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:962:565 - chr5 137548339 TGAGCAAACCCTGGTTCCCTTGACTGGAACATCCC 67777:::::::::::::::::::::::::::::: 0 25 HWI-EAS88_1:1:1:118:572 + chr2 14309097 CTATCTTGTTGATTTTCTCGAAGAACCAGCTCCTG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:115:562 + chr15 67132730 AAAAATGCCAATGAGGTTTAGAGATACGAGGACCC :::::::::::::::::::::::::::::677777 0 HWI-EAS88_1:1:1:96:884 + chr8 59431019 GACATCAGACATGGAGATGCAGAGTTTGGAGTTTG :::::::::::::::7::::7:::::::6:2,,7, 31 HWI-EAS88_1:1:1:99:443 - chr3 101340562 TCTGGGATGTTTGCCTTAAAGTTCCATGAGGCTGA 72772::::::::4::::::::::::::::::::: 0 HWI-EAS88_1:1:1:90:379 - chr17 67983210 CACCTGTGGTTGAGCTATGCCATCCAGTGCCTGTC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:111:977 - chrX 7207297 CTTGGATGCGGTTGCCCTGCTGAGACGCATCCAGC 77777:::::::::::::::::::::::::::::: 0 26 HWI-EAS88_1:1:1:116:879 - chr17 25793251 TCCCTGGAGAAGCCTCAGGACAGCTGCACCTGGAG 27477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:82:227 + chr18 39915116 TAGGAGTTCTCTGGTGGAATTTTTAGGGTCACTTA ::::::::::::::::,::::::::'&&:+62772 3811 HWI-EAS88_1:1:1:78:554 + chr11 115120689 TGGGGAGATGTGGGCCCTGGCTGGATATTTGAGGA ::::::::::::::::::::::::::::::47772 0 HWI-EAS88_1:1:1:101:329 + chr13 9319191 GTGGAGGCTAGCACCTGTTTGTGGCCTTGTGAAGG ::::::::::::::::::::::7:::::6:,4744 0 HWI-EAS88_1:1:1:401:703 - chr9 3028438 TTTTTCAAGTCGTCAATTGTATGTTTCTCATTTTC 74747:::::::::::::::::::::::::::::: 1 18 HWI-EAS88_1:1:1:158:505 - chr4 33828440 ATGAAATATTATTTTCCATTACCACATAAGGAATC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:793:122 - chr1 103384115 GTGGCTAGAGATGTAATATACTATTCTTCTCATCC 777/7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:446:886 + chrX 132203087 GTTTACTACTTTGCTTGACTACTTTGTCTTTGATC ::::::::::::::::::::::::::::::62274 0 HWI-EAS88_1:1:1:92:979 - chr9 55980151 GCGAGATGACAAGGGAGCTGAAAAATTCCCATCAC 74277:::::::.:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:743:806 - chr8 84429869 AATAGCAACATGTAAAGAACAACAACAACAACAAC %7+72'::.:::7::::::0::::::::::::::: 0 18,26,29,32 HWI-EAS88_1:1:1:644:944 - chr7 82681418 GGTCAATGAGAGAGACTATCTCAACACACACACAC //2/7:&+:+:3:4::::4:::::::::::::::: 0 HWI-EAS88_1:1:1:80:638 - chr10 40361614 CAGTGCCCTGAGCCAATACAGCTCCCTTTTCCTCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:292:800 + chr2 98502984 GGAAAATTTAGAAATGTCCACTGTAGGACGTGGAA ::::::::::::::::::::::::::::::77467 0 HWI-EAS88_1:1:1:120:758 + chr15 8508695 GCCCAAGAGAAGATGCAGTTGAAGAGACTTCTGAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:84:882 + chr8 19737105 TAGGCTCCTGTCTACAAGCATAGCAGAACATCATT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:96:553 - chr17 27699048 GCCCCATGGCTCTCCCATTCTTGTCTCTTGCCCTT 5-1-1::1+::::::::::::::::1:::1::::: 0 HWI-EAS88_1:1:1:114:254 + chrX 8945578 CCACCCTTTGAAGGGTAAGCAATGCTTCAGACGTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:189:938 + chr9 3024457 GTCATTTTTCAAGTCGTCAAGTGGATGTTTCTCAT ::::::::::::::::::::::::::::::+7627 10 HWI-EAS88_1:1:1:680:764 + chr1 117093106 GCCATCTTCTGATACATATGCAGCTAGAGACACGA ::::::::::::::::::::::::::::::77776 1214 HWI-EAS88_1:1:1:932:573 + chr10 129861130 GAGGGACACTCCTCCATTGTTGGTGGGATTGCAAG ::::::::::::::::::::::::::::::2644+ 39 HWI-EAS88_1:1:1:104:920 + chr16 8038662 TCCCTGGTATTATCAGGGAGGAGCAGCAGCTGAGC ::::::::::::::::::::::::::::::77772 665 HWI-EAS88_1:1:1:361:885 - chr16 66264786 TCATATTATTTATGAGTGTCATGTATGAGTTTTAC 77767:::::::::::::::::::::::::::::: 0 31 HWI-EAS88_1:1:1:101:99 - chr1 156153246 CTTTAAATGAGTCTAAAATTAAATTTCCCTGAACC ,7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:84:601 + chr10 23218476 CTAACTGTCAAAAATCAAAACAAAACAAAACCCAC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:121:653 - chr1 93431116 CTGGCGTCCTTGGAGACTGCATGCATATGGCATCT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:108:748 + chr5 144905571 CAGAAGACTGCTCCTACTTAGCACGCTGTAGCTGC :::::::::::::::::::::::::::1::*77/7 0 HWI-EAS88_1:1:1:658:576 + chr10 65452571 GTGGAAAAAAAGATACATTTTCAACAAAAGGTGCT ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:110:96 - chr7 139610865 ACACCCTTCTGCTGATTCAGCATGGCAGGTGCTCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:761:681 - chr13 38472224 TCAGATAAGTGGCCTGCTTCATTTCCAGCTCTTCC 4-31-+01:+::++::1:0::+:::1::11::::: 0 HWI-EAS88_1:1:1:114:969 + chr5 38091139 TGGGCTGACGTCATGCCTGAGCTGTCACGAGCAGA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:91:488 - chr1 79737830 GCCGGGCTGGCCCCGCCTGCCTCAGAGGACCTCTA 447%7::::6::::::::::::::::::::::::: 0 31 HWI-EAS88_1:1:1:98:496 + chr10 82607222 AATGGAGGGCCAACTCCATGCTGAAAGCTGCAGGC :::::::::::::::::::::::::::::677777 0 HWI-EAS88_1:1:1:229:504 + chr2 169471813 GCATTAGGGAAGTTCTGGAGCTACAGCCTTGAAGC ::::::::::::::::::::::::::::::72476 0 HWI-EAS88_1:1:1:343:187 + chr9 35112883 GCGAGGAAAACTGAAAAAGGTGGAAAATTTAGAAA ::::::::::::::::::::::::::::::77777 2 HWI-EAS88_1:1:1:326:884 - chr9 89471099 TTTCATTTTGACCTTTTGGTAAACTCTTGTTCATC 66744:::::::::::::::::.:::::::::::: 0 HWI-EAS88_1:1:1:259:198 - chr7 106443757 GGGAAGCTAATGTTACAGATGTTCTGATATCCCTC 77677:::::::,:::::::::::::::::::::: 0 30 HWI-EAS88_1:1:1:905:603 + chrUn_random 5474428 GAAAAATGAGAAATGCACACTGTAGGACCTGGAAT ::::::::::::::::::::::::::::::77267 2 HWI-EAS88_1:1:1:441:786 - chr5 130297134 CAACTCTCCAGCCCTGAAAACATAAAGTGATAGCC /2)/)122:2::..::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:438:607 - chr15 30113482 ACAATCTCTGTCAGTATCTTTCATGTTTACACAAC 44724:3:::5:::::::5:::::::::::::::: 0 HWI-EAS88_1:1:1:122:325 - chr5 114938473 ATTTGGGGTTTTTATTTGTTTGGTTTTGGTTTTTT 74747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:694:318 + chrX 146627765 GGTGGGTGGATATGGGGGACTTTTGGTATAGCATT :::::::::::::::::::::::::6::::76677 2686 HWI-EAS88_1:1:1:67:631 + chr13 30117647 TCTAGCCTCAACTCTAGCCCAGAGTCAGTCAGACT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:96:390 - chr12 103429255 CAGCCTGAGTCACTTTTGCTTGTGGCCATCTGTGA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:354 + chr11 62783324 GATTCTCGATCTTACAGCACAAGCCATTGCTGTTC ::::::::::::::::2:::::::::::::74777 1549 HWI-EAS88_1:1:1:66:327 + chr16 10776630 TCATCGAAGGTCGGGTCTTCAAGCTCAAGTTTCAG ::::::::::::::::::::::::::::::77674 0 HWI-EAS88_1:1:1:90:639 + chr11 53341749 GGAGTCTCTCCAAACTCTCCTGTCCCTGTGCATGC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:462:687 + chr5 64913204 GCACTTTGTAAATGAATCCCTGACCCTGTGAGAGG :::::::::::::::2::::::::::::0:2,32/ 0 HWI-EAS88_1:1:1:627:243 + chr15 102534496 GATAGATAGATAGATAGATAGATAGGGTAGATAGG ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:213:730 - chr11 46888161 ATTTTTCTCTCAAACTTTTATCCTTAAGAGTTGTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:890 + chr16 56137956 GTGTAGGGGAATGCCAGGGCAAGAAGGTGGGAGTG ::::::::::::::::::::::::::::::77747 0 HWI-EAS88_1:1:1:298:233 - chr4 83752135 TCCATATGGCTTTCTGTATCTGCCAAAAGCCTCGC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:722:589 - chr7 141500020 ACCAGGAATCTCCTTGTGTTTAGTACAACATTCAC 47446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:92:111 + chrX 139333123 TGTACTGGTGCACTGTCTGTAACCCCAGCATTTGA ::::::::::::::::::::::::::::::77724 0 HWI-EAS88_1:1:1:228:416 - chr15 60585510 ATGAGCTCAGTGAGTGATGAAGTCAGTACAGAACC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:321:882 - chr7 49256021 TACTTCATTACTCCCTAGAATATGGAACAAAATAC 76746:::::::::::::::::::::::::::::: 1 25 HWI-EAS88_1:1:1:86:590 - chr12 103461832 GGTGGGCTGTGTGCCGTGACTCTGTGTACTACACG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:872:90 + chr9 3008120 GCCATATTCCAGGTCCTACAGTGTGCATTTCTCAT ::::::::::::::::::::::::::::::77777 78 HWI-EAS88_1:1:1:381:813 - chrUn_random 5249472 GATTTTCAGTTTTCTTGCCATATTCCACGTCCTAC 77776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:331:120 - chr6 135096315 CGGACCTTCACACCCTCTTCATGGCATACCCAGAC 6+464:::::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:109:436 + chr15 37955304 TGGGGCAGTTATGGGGCGGGCGGGCAGCTGGCCTC ::::::::::::77::::::::::::6:::77+%+ 0 HWI-EAS88_1:1:1:323:771 - chr6 108256045 CGAGTTGTTTCTTCTATAAGGAGAGTTCCTAAAAC 27776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:170:530 + chr19 30155442 GGTGATTTTGATTTTGAGCATTCTGGAGTCAACCC ::::::::::::::::::::::::::::::74674 0 HWI-EAS88_1:1:1:570:691 - chr12 33045808 CAAACAAACAAACAAAACCCAATGTTCTAACTGTC 27774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:724:766 + chr2 84672060 GGAAGAGGAGCCACTGTGAGGAAAAGAGAAACTGT ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:64:556 + chr15 93713928 GCCCACGCCCACTTCTCACTTTTTACTCCTGGTTC ::::::::::::::::::::::::::::::42774 0 HWI-EAS88_1:1:1:214:833 - chr2 51250763 ATGGCAAGAGAGAGTGATTGCACATATGTTCTTAC 64476:::::::::::::::::::::::::::::: 0 16 HWI-EAS88_1:1:1:85:155 - chr2 102194880 CCCCACCTTCTGAGTGTAGGTTTGTGAGCCAACAC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:244:874 + chr1 158726947 GTGTGTGTGTGTGTGTGTGTATGTGTGTGTGCGTT ::::::::::::::::7:::(:7:::6::+4&+%7 1 HWI-EAS88_1:1:1:117:832 - chr16 17222480 TAACGCAGGTGTCCTAAGGCGAGCTCAGGGAGGAC 777271::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:917:573 - chr6 29460745 GCTTGCTCAGCCTGCTTTCTTACAGAACCTAAGAC 67466:::::::::::::::::7:::::::::::: 0 HWI-EAS88_1:1:1:78:609 + chr16 39722924 AGACACAACTCCTTCAAGCAGCACATAGAGTTATT :::::::::::::::::7::::::::::::77777 0 HWI-EAS88_1:1:1:113:666 - chr18 68539317 TTTAAACTTGCTGCCCATCCAACCTGGCCAAAAAA 77477:::::::::::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:737:698 + chr14 29380898 GGTTTATGAAAATGTGTTACCTGCACAGATGCAAG ::::::::::::::::::::::::::::::47242 0 HWI-EAS88_1:1:1:266:112 + chr18 21276366 GCATGTTTACGTATGCATGTGTGTGCGTGTGCATT ::::::::::::::::::::::::::::::46277 0 HWI-EAS88_1:1:1:362:99 + chr4 81221337 TACATATTTATATCCCTTTACTTAGGTTTTGGAAA ::::::::::::::::::::::::::::::4+717 0 HWI-EAS88_1:1:1:194:817 + chr8 100334502 GTGATGCCATAGAGAGAAATGCACCAAAAATCTTC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:74:916 - chrUn_random 4261776 ATGAGAAATGCGCACTGAAGGAACTGGAATATGGC 77777:::::::::::::::::::::::::::::: 1 17,23 HWI-EAS88_1:1:1:467:640 + chrX 110412423 GCACTGTAGAGCAAGTTCGAATCCTCCGTGGGCTG ::::::1::::::1:&::::::::::::(+)-44) 0 HWI-EAS88_1:1:1:594:462 + chr17 21515395 GTGCTGTCAATAAAGCAGCAATGAACATGATGGGC :::::::::::::::::::::::::::::,67446 0 HWI-EAS88_1:1:1:644:329 - chr12 116644041 AAACACAATCAAATTCCCTTTATATGTAAGGAATC 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:85 - chr5 91942433 TGCATCTAGCATTGGGCATCCATCACACCACCTAA 77777:::2:::::::5:::::::::::::::::: 0 HWI-EAS88_1:1:1:465:739 - chr9 123086445 CTTCTATGCTTCCTTTGGTGTCTTGTGCATTTCTC -)4141:::1+::::&::0::::::::11:::::1 0 HWI-EAS88_1:1:1:189:394 - chr13 4027997 AATGACTATAATGAGGTCGATTTTGTTTCTACAGC 77277::::::::4::::::::::::::::::::: 0 HWI-EAS88_1:1:1:105:680 + chr7 126820203 TTCTCTGACGTGTTCAAATTATGGCTCATAGATAA ::::::::::::::::::::::::::::::24777 0 HWI-EAS88_1:1:1:395:208 - chr2 159270803 TGGATGCTCATCACCAATAGAAAATGATTCCCTCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:730:590 + chr4 99048180 GGGTTAGGGTTAGGGTTAGGGTTAGGGCTAGGGTT ::::::::::::::::::::::::::::::77746 2 HWI-EAS88_1:1:1:467:751 - chr9 105192522 GGGCGAGGAAATGCAGTCCAAGATGGCTGCCTTTC 77667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:532:767 + chr18 71682834 GTTCATTATGGAGTATAAAGTCACTAAGACTCATT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:762:272 - chr15 10869845 GAATATGTTCATAATTTACTATGACATACAGATTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:920:541 - chr5 9512873 TTTAAAGCTTTATAACAGGTATTAGGCAGAACTTC %4074:::3:::::::::7:::::::::::::::: 0 HWI-EAS88_1:1:1:70:512 + chr13 17647469 TCCCTTCTGGCCTTCATCTTCAGCCAGGAGGCAGA ::::::::::::::::::::::::::::::47647 0 HWI-EAS88_1:1:1:393:151 - chr4 79650067 CAATAACAGCCTTTTCATCAGTAACACACATCTGC &7717::::::::::7::::::::::::::::::: 0 HWI-EAS88_1:1:1:120:109 - chr2 122497729 GCAAATGCTGGAAACTGAGGTAGCCCAAGTTACCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:682:585 - chr14 34552069 GATACACAGTTGTGCTAACATCTATCTTTACCTGC 66446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:942:226 + chr4 56283219 GTGTAAATGCGTGTGTAGTTGTGTGTGTGTCTGTG ::::::::::::::::::::::::::::::1777+ 0 HWI-EAS88_1:1:1:112:742 + chrX 149366751 CCATATGCCAAGTGTTCTCGTGTTATATGTTTTAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:94:501 + chr14 104357152 AAAACTTGTTATCGCTGGACTTGGTCCATCAGACT ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:406:898 - chr2 70261703 ACATACTAATAATTAAATTTTAAATAAAAAAATAC 727776::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:168:417 + chr4 146990452 GTACATTTGATGTCAAGATGCAATAATGAATATTT ::::::::::::::::::::::::::::::76777 0 HWI-EAS88_1:1:1:648:464 + chr9 3002760 GTGTATTTCTCATTTTCCGTGATTTTCAGTTTTCT ::::::::::::::::::7:7:::::::6:77777 62 HWI-EAS88_1:1:1:352:812 - chr9 42299005 GAACTCTGTGAATATGTCACTTTAAAAGATGGTAC 67644:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:158:516 - chr12 109489439 GGTGATGACTCGTCCGCAGTTGCTCCTCCACAGTC 77776:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:82:318 - chr1 195475068 ATGAACCTGTAAGCCAGCCCCAATTAAATGCTGTC %2772&::1+:::44:::.5::::::::::::::: 62 34 HWI-EAS88_1:1:1:198:821 + chr4 123390148 GATATCATGCATTCGCCTCATCTGTCAGGGATAAA ::::::::::::::::::::::::::::::67477 0 HWI-EAS88_1:1:1:992:610 - chr5 41152931 CATCACTGTGACATGCAGAGGGATATGCTGAAGTC 15114::::::::::::::::::::::::::1::: 0 HWI-EAS88_1:1:1:216:192 + chr16 69531389 GCATACACTAGCAAGATTTTATCGAAAGGTCCCAG ::::::::::::::::::::::::::::::77764 4 HWI-EAS88_1:1:1:494:879 - chr8 49100547 CACTCTGGAAACCAGCAGAAGTGTAAGACTTCATC 76767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:497:682 + chr1 120679178 GCTCCCATCTCAAGCATGAAGACCTGAGTTTGAAG ::::::::::::4:::::::::::::::::63452 0 HWI-EAS88_1:1:1:90:332 - chr3 25759645 CACTGAATCTTTGAAGTATATGAAATGCTCTCTGC 47277:::6:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:79:820 - chr16 57787398 TCTGTATGAGAGTGCTTCCCCACCCACCCACACTC /**//:::::4::::::::::4::::::::::::: 1 HWI-EAS88_1:1:1:463:880 + chr8 97621192 GTCTGAGCAGAGAGGGCACCCTGTGGGTCTGAGCC ::::::::::::::::::::::::::::::6+644 0 HWI-EAS88_1:1:1:307:819 - chr6 13457763 CCAGAGACAGCTTGAAAATTAACACCAGAGATTAC 11777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:216:412 - chr1 133707056 ATTTTTGTCATGCCTCTTCCCCATCTGTTTCCACC 716+4:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:94:412 + chr16 44147156 ACTTTAAAAATAAAAATAATGTTCTTGGAAAAAAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:112:685 + chr7 116508643 AAAGAAAACTCAAACTGAATTGAGCAGGATTTTAA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:297:112 - chr12 101924695 GTTGCAGAAAAGTTTACAAACTCCTAGTGTCGGTC 77674:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:377:824 + chr10 93331652 GTATGTCATATTTGGGATTAAAAGTAACAGTAAAA ::::::::::::::::::::::::4:::::77276 0 HWI-EAS88_1:1:1:643:340 + chr19 56312821 GCCTTTCCAAGGGGACAAAAGAATTTCTTCTTGAA ::::::::::::::::::::::::::::::77744 0 HWI-EAS88_1:1:1:486:689 - chr11 102964183 CAGCCCGCCTCGGGCTGTCGCGCGGTGCGGAGTGC 74742:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:895 + chr12 6025965 GATGTAGCTGTCTCTTGTGAGACTATGCCGGGGCC ::::::::::::::::::::::::::::,:&4611 7257 HWI-EAS88_1:1:1:206:113 - chr9 76486175 CCAACTCCTTCAACTTAAATGCTGTCCTGTCTTTC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:155:543 - chr14 45182408 CTGCCTTGGTCTGGCCTCCCTTGATTGCCATTCTC 44647::::5::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:103:621 - chr11 109511761 GGCGGAGTCGCCCACCTGTCACCGAATCGTCCCAC 77777:::++::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:618:814 + chr1 62348806 GTGGGTAAGGGGGACTTTTGGTATAGCATTGGAAA ::::::::::::::::::::::::::::::77666 1691 HWI-EAS88_1:1:1:115:476 + chr5 34556924 ACGAAGCTGGGGCTGCCTCCAAGAAAAGGCTTTAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:221:561 - chr8 92773704 CAGAAACCTGAACCACTAGAAAATGTCAAAACTTC 27777::6:::::7::::::::::::::::::::: 0 HWI-EAS88_1:1:1:192:535 + chrUn_random 5813213 GACATGGAATATGGCAAGAAAACTGAAAATCATGG ::::::::::::::::::::::::::::::76767 2 HWI-EAS88_1:1:1:90:606 + chr14 100491335 ACTGAGAAAAACTGGATGAAGCTCAAGGCCGCCGA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:200:903 - chr9 3007123 TCGTCATTTTTCAAATCGTCAAGTGGATGTTTCTC 77777:::::::::::::::::::::::::::::: 9 20 HWI-EAS88_1:1:1:106:815 + chr13 65755374 GTTGTGAGCCACCATGTGGTTGCTGGGATTTGAAC ::::::::::::::::::::::::::::::77774 11329 HWI-EAS88_1:1:1:95:584 + chr8 5300717 ACATGCTGCCCTCCCATCCCCCTTTCCCTCCCAGG ::::::::::1:::::::::::::::1:::5551- 0 HWI-EAS88_1:1:1:432:157 - chr5 122971608 CCTACCTACCTACCTACCTGACCTACCTACCTACC 17644:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:104:642 + chr14 82150006 ATCATATTTAAAGAACTCTGAATGAGAATATTACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:389:185 + chr8 6265632 GGTTTCTGAAGTTTCTGGGTTGATGGGGCTATAAT ::::::1:::::::::::::::,::+:::1--5%1 0 HWI-EAS88_1:1:1:226:124 - chr2 134165388 CAAGTGAACACTCAGGGGCATCCTCCGAATTGGTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:651:916 + chr15 31137094 GATTTCTCTTTACCATCCCGGTCTCCATCTAGACC ::::::::::::::::::::::::::::::47677 0 HWI-EAS88_1:1:1:101:878 + chr2 80879385 AAATCTGGAATCATAGATGCAAGCATCAGCAGCAG ::::::::::::::::::::::::::::::77777 2 HWI-EAS88_1:1:1:233:952 - chr9 60532291 TGTGGCCCTGTGAACCCACATCCACAAGCACCATC 31%55:+&0::::::&:::::::::::::1::::: 0 19,28 HWI-EAS88_1:1:1:86:206 - chr7 89906681 GTGAAGGGAGAGTATAGGGAACTTTTGGGATAGCA 74677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:60:425 - chr11 34907051 CTTTTACAGGGCACATTTGCAAAGAGAATGGGAGC 47777::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:374:151 + chr8 3118444 GTATATATAAGTGACCCTAAAAATTCCACCAGAGA :1::::::::::1:::&::::::::::1::51111 3938 HWI-EAS88_1:1:1:356:618 - chr5 129140045 TCCAGATCCAGGCTTGGTGGCACACATCTTTAATC 44777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:69:586 + chr13 49537380 GTAAGAGTCCCCTCTCATTTGTTGTTTTGAGGGTG ::::1:::::::::::::::::::1:1:::%-&%- 0 HWI-EAS88_1:1:1:83:547 + chr11 56855742 ATCCAGTAATCTCAGTCCACCCACACCGGGTGTGT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:97:928 - chr17 34762939 GAGTGCACTGTCCCTGTCTTCAGACACACACACCA )725*::&:3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:731 + chr13 65942529 TCTTCATGGGATTGTGACCCTGAGAGTAGCAGGGC ::::::::::::::::::::::::::3:::77777 1 HWI-EAS88_1:1:1:553:911 - chr6 77405836 AAAAGCGAGGCTTGAGGGGTGTTCTCAGCTAGGAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:471:581 + chr4 154722117 GGAACTCGCATTTGTACACCTGATCACCAGCTGGC ::::::::::::::::::::::::::::::66767 0 HWI-EAS88_1:1:1:132:526 - chr3 119416677 GAGGAGGTGCACGTGGGCATTTGTGTATTCCTTAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:404:557 + chr6 65383682 GACAGTGCAGCACCATCAGAATGGTTTGAAGGTCC ::::::::::::::::::::::::::::::76677 0 HWI-EAS88_1:1:1:558:961 - chr9 35113003 GAAATCACTAAAAAACGTGAAAAATGAGAAATGCC 2777/::3::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:421:643 + chr5 3103723 GTCAAATGGAAAAATGTCCTTGATAATATATGGTA ::::::::::::::::3::::::::::,::64126 0 HWI-EAS88_1:1:1:352:91 - chr13 27613660 AAAAGATCTAATACCAAAACCCTTCAAACTATCCC 77776::::::::7::::::::::::::::::::: 0 HWI-EAS88_1:1:1:160:579 - chrUn_random 4739859 ATTTTCCACCTTTTTCAGTTTTCTTGCCATATTCC 77277:::::::::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:119:920 + chr15 75776541 TCAGCACTGGGGAGGCAGAAGTAGGTGGATCTTCG ::::::::::::::::::::::::::::::47772 0 HWI-EAS88_1:1:1:924:101 + chr12 6776262 GTGTGTTTAAATGTAGCCAGTAGATACTACTCATA ::::::::::::::::::::::::::::::77+76 0 HWI-EAS88_1:1:1:667:780 + chr14 21969132 GTCACCTGCTGGAATGCCCTGCTCAGGTGTCACCT :::::::::::::::::::::::::::3::76777 0 HWI-EAS88_1:1:1:447:667 - chr9 59387868 GTGGCCTCTGCACAGCCCAGTCAGTCACCTCCCAC &%644:::,::5::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:704:338 + chrX 94504587 GATGTTTGCTGGACCTTTGAGTTGAAAATCTTCAT ::::::::::::::::::::::::::::::77777 948 HWI-EAS88_1:1:1:480:517 + chr5 112962939 GCTGGGCTCCAGGATTCAGCTGTCCTGGCTGCTCT ::::::::::::::::::::::::::::::66646 0 HWI-EAS88_1:1:1:494:137 + chr5 20173292 GGTGTATCAGGCTCTTCCTGATGCTCGGCTTGTGA ::::::::::::::::::::::::::6:::7+740 0 HWI-EAS88_1:1:1:708:269 + chr5 61137181 GAAACTTAATAATTCATATTGCTGACAGTTGTGTC ::::::::::::::::::::::::::::::47477 0 HWI-EAS88_1:1:1:384:121 + chr1 75376681 GGAACACAAGATCCTGCCAGTCACTCGTCAGGCCC :::::::::::::::::::::::::::::376677 0 HWI-EAS88_1:1:1:962:572 - chr8 26314087 TGGGCAACATGTCTACTTTTGGACCATAAAATTCC 46466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:670:445 - chr5 102897419 AGGTAAGGGAAGCCTATTTTTCAGGCCCCATTCTC 667/7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:608:501 + chr18 26162501 GGGCAAGGGGAAGGAGTACCAAGTAAGTCTGTGCC ::::::::::::::::::::::::::::::74676 20 HWI-EAS88_1:1:1:86:257 + chr7 17160629 GAGAGCCCTGCTGGCTGCTGCCTCTCATACAGGCT ::::::::::::::::::::::::::::6:72277 0 HWI-EAS88_1:1:1:247:371 - chr15 95156470 GAGATGTGTGGAGCATGAGGCAAGCGTGGGTACGC 7677+:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:652:94 - chr8 10070379 CTTCCTTACCTGCTCCTCTACCCTAAACTTCTTCC 76447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:94:396 + chr15 99736506 AAACTCAGAAATCCGCCTGCCTCTGCCTCCCGAGT ::::::::::::::::::::::::::::::77777 446 HWI-EAS88_1:1:1:115:492 + chr16 56873826 CCAGGTCCAATAACCCTAAGGGTACAGTACTGGTA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:771:633 + chr9_random 204671 GATGACTGTGACGTGAATAGGCTTTACCACATTGG ::::::::::::::::::::::::::::::%644+ 0 HWI-EAS88_1:1:1:324:316 + chr18 69778792 GAGGTGGGAACGGGAGCGCTCTTTTAGAGAGTGCA :::::::::::::::::::::::::3::::47764 0 HWI-EAS88_1:1:1:450:874 + chr9 35112970 GAGAAACATCCACTTGATGACTTGAAAAATGACGA ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:700:595 - chr4 32657771 GCAGGTTCGCCCTCCTGCTGGTCAGTGTAAGTTCC ))3351:&&+:1++::::::::::0:::::::::: 0 22,26,28 HWI-EAS88_1:1:1:331:688 + chr17 8309936 GCAGAATGTGAAAATCCCCTTTAGGGTGGGACTAT ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:997:526 - chr16 16115576 CCACATGGTTCTAAAAAAAAGTCTGTAATTACTAC %2627:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:951:242 + chr15 56522981 GTTACATATTTGGACTTTATATGCTTATGACTTCA ::::::::::::::::::::::::::::6:77774 0 HWI-EAS88_1:1:1:274:814 + chrX 35013066 TCCTGGATCAGCCACACACATATGGCATGAACGTG ::::::::::::::::::::::::::::3:47774 0 HWI-EAS88_1:1:1:71:613 - chr14 102072477 TAGTGTTTATCAAATTGGGCTGATGAATTAATTGA 76467:::::7:::::5:::::::::::::::::: 0 HWI-EAS88_1:1:1:85:378 + chr6 96710226 TGGTTGGTGTGTGTGTGTGTGTGTGTGTGTGTGTG ::::::::::::::::::::.:::.:,:,:&7+7+ 21 HWI-EAS88_1:1:1:428:867 - chr14 68491034 GATGTGTGACTTACAGAGTGTTCCACACAAGCACC 46444:::3:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:550:111 + chr7 110634524 GGGTTTATCTATCTTGTTGATTTTCTCAAAGAACC ::::::::::::::::::::::::::::::47777 6638 HWI-EAS88_1:1:1:85:640 - chr15 88558386 AACTCCATAGTGGAATCAATCACCGCATGCTAGCA 77272:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:618 + chr11 34603374 TGCAAAGTTGCTGAGACTCATTTCTGTGTGTGTGT ::::::::::::::::::::::::::::::727/7 0 HWI-EAS88_1:1:1:831:272 + chr1 91061776 GATGGCTAATGTCGCTACGCTACTGAAGAGTAATT ::::::::::::::::::::::::::::::66777 0 HWI-EAS88_1:1:1:220:378 - chr15 7182647 TTCTGGGAAATGTTATTTGGTGCCTTACCTCTTTC 64++7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:783 - chr15 41748710 TACAAATGCCAACACCCACGGGCCAGCACAGGGGT 77477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:96:133 - chrX 116706790 AAATCAGATATCTGTTCACCTTCTCTGCAAGAGGA 77774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:347:245 + chr3 88253630 GGAAACAGAGGGAGAATCGGCGGGCAGCAGGACCG :::::::::::::::::::::::::::5::74446 0 HWI-EAS88_1:1:1:73:379 + chr3 51001490 TCTGTAACTGGAAATGATCCCGGAAAACCAGGAAC ::::::::::::::::::::3:::::::::77772 0 HWI-EAS88_1:1:1:88:982 - chr2 143395483 TCCAAGGAGGCTTCAAATCCTGTCATTTGCACTAC 44777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:889:108 - chr4 109507423 TAGGTTAGGATTTTCACGAACTCTCGCTTTTCACC 4767*:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:116:380 + chr4 42605827 TGGCCTCGAACTCAGAAATCCGCCTGCCTCTGCCT ::::::::::::::::::::::::::::::77777 5955 HWI-EAS88_1:1:1:110:618 + chr12 112017964 GGGGGGGGTGTAAAGTGATACTTTTGATTTTCAGC ::::::::::::::::::::::::::::::77444 0 HWI-EAS88_1:1:1:109:646 + chr18 61567798 ACTGTGGATGTCAGGATGTTACGTTCTAGGCCAAG :::::::::::::::::::::::::6::.:77472 0 HWI-EAS88_1:1:1:152:655 + chr11 76453129 GAGTTGGCAGAGGGAGCCTTCTGTTCTTTCAGGAT ::::::::::::::::::::::::::::::7,246 0 HWI-EAS88_1:1:1:107:251 + chr10 75034546 GGACTTTCTTGGTGGACCTCTATTCCTCCTCCTCC ::::::::::1:::1:::::::::::::::55551 0 HWI-EAS88_1:1:1:359:247 + chr8 25541687 GTCTCCCTGGTACTCTGCTGTCCTCCCTGTAGAGT ::::::::::::::::::::::::::::::77476 0 HWI-EAS88_1:1:1:206:922 + chr10 15518089 GCCTCTTTATTTTTCAGGTTCTGGCAGAGCCTCTC ::::::::::::::::::::::::::::6:67777 0 HWI-EAS88_1:1:1:117:902 - chr17 66135895 CACTAGGATAGTTCACTTATCACTGTTATGCCTCT 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:344:204 - chr3 153531530 ACTGGAAGAGGTCATGCAGCCTGGAATTTCACCTC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:960:238 + chr14 37045628 GGTTTCTGTTAGTAAGATTGTTAGGTTTGCCTTTC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:111:832 - chr1 47701520 CAAAGGGTGTGCACATGTCTGTGACAGTGGAAAGG 27777::::::::::7::::::::::::::::::: 0 HWI-EAS88_1:1:1:210:414 - chr1 159360031 CTGACAACCACAACCTGAGTTCTATCTCTAAGACC 2%267:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:113:423 + chr9 73109791 ATGGGGGAGGAAATCAGGTTGGTCGTGTTTTGTAA ::::::::::::::::::::::::::::::72777 0 HWI-EAS88_1:1:1:179:609 - chr12 112743285 CACCAGCACTCAGAGATCACAGCCAGGTTCGCCAC 63/27::::::::::4::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:481 - chr11 119564002 GAGGTTTCTGTGGCTGATAGAGATGCTGTTTGGAG 7+777::,::::::::::::::::::::::::::: 291 29 HWI-EAS88_1:1:1:412:613 + chr4 123271108 GGAATGTGCCTGGTAAAGATGAGGGAAGTCTGGGC ::::::::::::::::::::::::::::::44764 0 HWI-EAS88_1:1:1:199:268 - chr2 73892592 GAACTGATGGACTGTGAAAATCCAGAGAGTGTACC 77627:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:106:79 - chr10 14480275 ACATCATGCTGGTGAAGATATTCCTCACCAACAGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:496:630 - chr10 75295195 GGAAGGCCCTGTCCCTGAGGAACTTGTCCTCCAGC 77776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:360:608 - chr3 153774512 ATTCCCCTCTATTGTGCCACTTGTGCTGGGACCTC 66177:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:61:311 + chr10 20188508 TGCTGTTACTAGGAAAATTTCTAATGCCAAGATTG ::::::::::::::::::::::::::::::71777 0 HWI-EAS88_1:1:1:84:831 - chr15 23300174 TGAAGTTGATCCAATTAATATTTCTATGATTGCTT /77*7:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:178:149 - chrUn_random 5495981 TTTTGCCATATTCCACGTCCTACAGTGGACATTTC 772466::::::::::::::::::::::::::::: 0 19,30,33 HWI-EAS88_1:1:1:277:916 + chr10 108813503 GGACTGTGAGATGAGAATGAGATTAAACGTAAGGT ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:711:412 + chr5 103942573 GACTTTAATGCCTTTGAATGAAATAGTTCTCCTTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:99:466 + chr1 92919260 TAGAGCCATTTGTCACCTCAGCCTCATGCGTTTGG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:91:328 + chr4 84203001 GCATGGCTCACCACTGCCTGTAATTCCAACCCAGG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:185:969 + chr7 147561908 GACTCAATAAATGAATCTCTTGATTTAAAAGCTGA ::::::::::::::::::::::::::::::76776 0 HWI-EAS88_1:1:1:82:493 + chr13 13268471 CAGGACTGGTGACTCCCAACAGCTGCAGCTGGCCG ::::::::::::::::::::::::::::::74774 0 HWI-EAS88_1:1:1:410:656 + chr2 163439071 GCTAAGGAAACCTATTTGACTGTGTGGGTCACCAC ::::::::::::::::::+:::::::::::267/7 0 HWI-EAS88_1:1:1:850:732 + chr1 177499321 GAAAAGCCATGGAACTTCATACAAGTGTACCAAGG ::::::::::::::::::::::::::::::44242 0 HWI-EAS88_1:1:1:333:226 + chr13 12898740 GACCAGAAACATGAGTATTACCAAGTGCCTGTGTG :::::::::::::::::::::::::3::::7%744 1 HWI-EAS88_1:1:1:341:723 - chr2 98506739 CCACTTGACGACTTGAAAAATGACGAAATCACTAA 14744:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:885:752 - chr11 54560619 GGTATGACTTATCAATACAGTTCATTCTTCGCAGC 46477:::::::::::::::77::::::::::::: 0 HWI-EAS88_1:1:1:370:865 + chr9 103721462 GGCAGGTGGAAGTCATATTGAGAGCCTAAGGGCCT ::::::::::::::::::::::::::::::76567 0 HWI-EAS88_1:1:1:195:373 + chr6 31379504 GATATGTTCTACTAGCTGGGCTGCCTTGTCTGGCC ::::::::::::::::::::::::::::::76477 14 HWI-EAS88_1:1:1:691:713 - chrX 127271312 GAAATCTTAAAGCCCCTTCTTCCCCTGTAACACAC 27666::::::::4::::::::::::::::::::: 0 HWI-EAS88_1:1:1:200:783 - chr14 67312024 TTATCTACTTTCCCATCGATTTCTGTCTTGAGTTC 67767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:608:471 + chr4 24833044 GGAGTTGAGTGCCTGGAGCTGAGACTGGGACGTGG ::::::::::::::::&::::+::::3:::77572 0 HWI-EAS88_1:1:1:907:589 + chr8 106537334 GACATGCCAGACAATCTGAGGTCCTAAAAGGTCAT ::::::::::::::::::::::::::::::74767 0 HWI-EAS88_1:1:1:231:898 + chr6 45680501 GGGGGTGTTACTTTTGCCTACTCATAAAACTCATA :::::::::::::::7::::::::::::::74276 0 HWI-EAS88_1:1:1:91:411 + chr16 39759874 CGTCTTATACATCAAAATGGAGTAAAAAAAATTGC ::::::::::::::::::::::::::::::77747 0 HWI-EAS88_1:1:1:187:290 - chr12 35349962 TGACCTGATGCATTCCTCTTGAGAAGAACATATTC 44664:::::::::6:::::::::::::::::::: 0 19 HWI-EAS88_1:1:1:652:723 + chr4 71689007 GCTGATTCTGCCAAGCCCATTCCCTTGGCTGTGGT ::::::::::::::::::::::::::::::71444 0 HWI-EAS88_1:1:1:65:447 - chr7 53532789 GAGTGCTTCTGTGCCAGTGTAGCTGCCTATGCCCA 77776:::::::::7:::::::::::::::::::: 0 HWI-EAS88_1:1:1:958:555 - chr2 56965751 TTGGCCCCTTTGCTGTAGATGGAAGGGCCTTTGTC 24444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:376:236 + chr16 96817004 GACCCTCTGGTGGAGTGAAATGACACAGTTTTACT ::::::::::::::::::::::::::::::77677 0 HWI-EAS88_1:1:1:946:509 - chr12 30277069 TGTGTCCATGGGAATGACTAACTGGAGTTAGACAC 52677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:337:645 - chr1 116566389 CCTTTTAGCTCCTTGGTTACTTTCTTTAGCTCTTC 47777::::5::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:128:119 + chr10 32770726 TTTTGTCTTCCTTCTTCCTGAGTTTCATGTGTTTT :::::::::::::::::::::0::::6:.:&7777 1 HWI-EAS88_1:1:1:565:485 + chr5 28346557 GTGGGAAAAGCAGTGCACCACTGTGGATGACAGCT ::::::::::::::::::::::::::3:::76677 0 HWI-EAS88_1:1:1:405:164 + chr1 17147751 GCAGCATGGTTGGCTGTAGCTAGGAAGGACAGAGG ::::::::::::::::5:::,:::::::::2726/ 0 HWI-EAS88_1:1:1:212:578 - chr13 6479104 CTGACCACACCACAGATGTTTATCCCACAACTTCC 6476+:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:961:620 + chr12 79819294 GTATAGATGTTTTCCTTACATGGTGTTTAGACACC :::::::::::::::::::::-7::::::346464 0 HWI-EAS88_1:1:1:741:570 - chr11 62987228 GTCCAGTCCTTCCTGTTACTGTTGGCTGCAATCTC 62644:&:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:344:553 + chr10 55010320 GCTGTGCACCTAGATTGGGCAGATCTACTGCTACA ::::::::::::::::::::4:::::::::7727/ 10 HWI-EAS88_1:1:1:241:314 - chr3 105762738 TGGCCCTGCCCCAGCTCAGCTCCACAAATCCGATC 27677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:864:838 + chr13 103825003 GAAAGTTAGCATCCATTATGACAAACCCCCTTTCC ::::::::::::::::::::::::::::::77776 0 HWI-EAS88_1:1:1:925:551 - chr11 50912572 CTATGTTGGCCTTCACAATGCTGACAGAAAGCCTC 647+6:::::::5:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:262:800 - chr3 88434327 AAGTCTGCAGATTCAAGGACAGGCTGGGATTATCC 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:458:520 - chr3 16974505 TAACCAGGCCACTCAGTGCTCCCAGAGACTAAATC 27444::::::::::::::::7::::::::::::: 0 HWI-EAS88_1:1:1:715:921 - chr19 34158722 GTGACACACCTCCTCCAACAAGGCTACACTTTTGC +6774::::,::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:675:808 - chr12 22821024 CAGCACATCTGATGCATCCCATCTAACTACATCCC +7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:396:103 + chr16 16580857 GAATATTATATTGAGTGAGGAAACCCAGACCTAGA ::::::::::::::::::::::::::::::77572 0 HWI-EAS88_1:1:1:797:353 + chrX 58967089 GAGAAGAAGGTATATACTTTTGTTCTAGGATAAAA ::::::::::::::::::::::5:::::::74662 1 HWI-EAS88_1:1:1:406:214 - chr13 98751823 CTGAATGCCTTGTAAAATCCTCAAGCAGTCTGCTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:219:829 + chr8 74418650 GACAGCTAACTGAATCTGGAATGTGTGTCTCTTAT ::::::::::::::::::,::::::::2::75767 0 HWI-EAS88_1:1:1:115:37 + chr11 30912580 TGTCTAAGGAACCGCCAGACTGATTTCCAGAGTAG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:948:531 + chr3 22833876 GCTCAAAGCACATATTGCACCTCACACAATAATAG ::::::::::::::::::::::::::::,:76744 152 HWI-EAS88_1:1:1:889:553 + chr15 88661253 GAGGTCACTTACTCCAGCACGCTGGCCCCACAGAG ::::::::::::::::::::::::::::::76646 0 HWI-EAS88_1:1:1:106:213 + chr9 67031467 CTGTAACAGCAGCAAACTGGCTGGGCTTAAACACA ::::::::::::::::::::::7::6::::77+74 0 HWI-EAS88_1:1:1:210:690 + chr16 88433300 TCTTTTAATTAACTGTTGAGCCTTTACATTCAGAG :::::::::::::::::7::::::::::::7727, 0 HWI-EAS88_1:1:1:859:708 - chr3 153443662 ACAATGACAGATGCTAATTTAGGTCACAGATGTTC 7+774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:781:695 + chr12 112560834 GAAACAATTTTAAATATAGACAACAGGCTACGATT ::::::::::::::::::::::::::::::77677 0 HWI-EAS88_1:1:1:779:278 + chr8 93370018 GTAGCCATTGATGGCTTGCCAGGAACTCACTGTGT :::::::::::::::::::::::3::::::44426 0 HWI-EAS88_1:1:1:479:587 - chr2 98505313 TAGTGAGTTACACTGAAAAACACATTCGTTGGAAA *7727:::::4:::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:489:529 - chr11 109193641 GTTGGAGCCAGGAAGGACAGGGACTGAAAACCAAC 7+477:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:166:121 - chr11 50624595 CCTCAATTTTTATTACATTTAAACATAGGTACAGA 24727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:999:490 - chr5 21763989 ATTTACACCCCAGCTAACTAACCATCTACACCATC 74466::::::::::::7::::::::::::::::: 0 HWI-EAS88_1:1:1:605:618 - chr5 20481976 TTTCAGTAGATGGGATACCTAACATTAAAATGAAC 66777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:354:822 + chr4 104744944 TACAACAATAAAAACTAAATATTTCAAAGCCTATA ::::::::::::::::::::::::::::::44674 0 HWI-EAS88_1:1:1:493:197 + chr3 98355078 GTCTCTGTGTTAATGAGAAACAAAGTGGTCTTCCT ::::::::::::::::::::::::::::::77777 3 HWI-EAS88_1:1:1:242:720 + chr2 98507280 GCACACTGAAGGACCTGGAATATGGCGAGAAAACT ::::::::::::::::::::::::4::+++77777 0 HWI-EAS88_1:1:1:174:678 - chr12 26465257 TGACCTCTGCCTCTGCATGGAAGTTAGAGACCACC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:612:761 - chr17 60066142 GGCTGGAAAGATTAAGAACACTTGCCAGTTTTTTC 55)55:::::::::::1:::::::1:::::::::: 0 HWI-EAS88_1:1:1:223:904 - chr11 75102617 AACCTGGAAATGAAACGTCTTTCCCTTTCTTCAGA 76474:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:84:350 + chr6 138276272 AATGCACAAACAATTAAAGATTTTGATACTAAGCA ::::::::::::::::::::::::7:::::77277 0 HWI-EAS88_1:1:1:790:347 + chr9 31978094 GACACCATAGTTGAAGCCCAGAGCTGAACAAAATC ::::::::::::::::::::::::::::::04277 0 HWI-EAS88_1:1:1:465:814 - chrM 3064 TTTAGCAACATCTAGCCTATCAGTTTACTCCATTC 02476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:93:236 - chrX 34090612 ATGAATATCCTCTCTCTTTTTAATTTTTAATTTTT 777%7&::::::4-::&:::::::::::::::::: 0 HWI-EAS88_1:1:1:328:60 + chr1 39806605 GTGGCGCCTCCTCTGCTTGGCCTACTGAGAGGGAG :::::::::::::::::::::::::::::3424%7 0 HWI-EAS88_1:1:1:166:932 - chr18 64418758 GGAGTTGTGAATGAATAGAAGTTACAACTTCCAGC 74767&::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:498:217 + chr19 33402276 GGAAGTCAAGGCAGGAACTGAAGGAAAGTACTTAG ::::::::::::::::::::::::::::::77667 0 HWI-EAS88_1:1:1:540:820 + chr6 132316409 GATTATCTCAGAAAAAATTACCTAAATTGTCCTTT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:688:509 + chr3 91291942 GAAGCCATCAGCTTTTGGACTCACATGAGCAAAAG ::::::::::::::::::::::::::::::46447 0 HWI-EAS88_1:1:1:237:519 - chr9 42158436 TGTTGAAGGATTGGGTATCAGGTACCAGGCTGGGC 47+27:3::::::::::,::::::::::::::::: 0 HWI-EAS88_1:1:1:594:787 - chr11 49763362 TAATTGTCAACATGACTGAGGATGGATAACGGAGC 77707:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:842:367 + chr3 85433973 GCTTACAGAGCAGGATATGCTGTGAGCTCTGGTGC ::::::::::::::::::::::::::::::66666 0 HWI-EAS88_1:1:1:541:512 - chr15 21841648 TAGCAGTTTGACAACACACATAAAAGCTCTAGAAC 277/7::::::4::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:107:630 - chr10 65700439 ATTCTCCCTCAAACAGACTCACTGGATGCCTTGTG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:386:339 - chr15 9805112 TGTTTATCCTTCTTAATTCTATGGCTCTTTAGTAC 77777::::::::::::5::::::::::::::::: 0 HWI-EAS88_1:1:1:800:671 + chrX 17987304 GTCAAGAGCTCCGGGGTACTGGTTAGTTCATATTG ::::::::::::::::4:::,:::::::::7/762 460 HWI-EAS88_1:1:1:307:339 - chr13 52192648 CGGCTGTCCACACACGTGTACCCCTCCCCCAACAC 1))550&::::::0::+:+1::::1::::::::1: 0 29,33 HWI-EAS88_1:1:1:334:635 - chr9 95659328 TTACAAGTAAGGCCACACTCTCAAGTCGTGTATTC 26/)2::::::::44:+:::::4:::::::::::: 0 HWI-EAS88_1:1:1:194:116 + chr3 19490690 GAGAGGCTATTGGTGAAGCCTAGTTGCAGAGGAAG :::::::::::::::::::::::::,3::,47+61 0 HWI-EAS88_1:1:1:765:305 - chr6 109227670 AAGACTAGATGTAGATTATGTAGATTAGGTTTTTC 77744:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:453:472 + chr10 57002395 GGATGACAAAACTCATAAGCTCTTTAGGACCAATT :::::::::::::::::4::::::::::::72277 0 HWI-EAS88_1:1:1:194:868 + chr17 80210336 GGAGTTATCACAGAGAAAGGAGCTTCAGTTGGGGA ::::::::::::::::::::::::::::::74474 675 HWI-EAS88_1:1:1:585:958 - chr14 69835948 AATTCTTTTAAACTGGCATCTTCTTACCCATTATC 77467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:878:124 - chr4 35616910 ACTCATATCAGAGATAGCATTCAGGAAGTGATATC 74247::::::::::::::5::::::::::::::: 0 HWI-EAS88_1:1:1:880:559 - chr7 29167745 TGTCTTTGAAGGGACTTCATGAGAACTGTCACTTC 24244:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:484:959 - chr18 61539992 TCTATCATCCCTTGGTCACCTAATCCACTGGCTTC 74476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:631:798 + chr5 34543335 GTAAGACACAAAAGTGGAGGCACAGGAACTCGAGA ::::::::::::::::::::::::::::::76+74 0 HWI-EAS88_1:1:1:959:143 + chr2 15314287 GGTTTCATATGGTCTGTGAGTTGTATCATGGGTAT :::::::::::::::7:.::::7:::::::%4407 5 HWI-EAS88_1:1:1:97:817 + chr5 33971991 GTGCTGAGACGCCGGCTGGCCCTAGAGGGTGTTCC ::::::::::::::::::::5:::::::::44726 0 HWI-EAS88_1:1:1:513:570 + chr18 88174086 GGTATCAGGGTAATTGTGGCTTCATAGAATGAATT :::::::::::::::::::::::5:33:::+4677 8 HWI-EAS88_1:1:1:114:913 + chr11 73822624 TGAAACTCCAAAGTTTCTGCAAGGCAAAAGACACC ::::::::::::::::::::::::::::::77777 4331 HWI-EAS88_1:1:1:475:879 + chr4 108507641 GGGCGCTCTTAATTCTTGGGATTGAGAAGATATGG ::::::::::::::::::::::::::::::76772 0 HWI-EAS88_1:1:1:74:894 - chr13 98771228 GGCTTGGTGCGACCTAGCATGAAGCTAGCCACCTC 40777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:275:788 - chr17 80577649 TAGGCCTGTCACAAGGTAAGACTGTAAGTCAAGTA 676726::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:244:885 + chr1 60473612 TCTTGAATAAATTTAAGTGAATGGCTTCTTCCATC :::::::::::::::::::::::4,:::::2/577 0 HWI-EAS88_1:1:1:705:123 + chr16 34326682 GATATGTTATTTGAGGGTAGATATTCATACGTGTG ::::::::::::::::::::::::::::::2747, 0 HWI-EAS88_1:1:1:868:349 + chr15 59731032 GAACTGAACAAAGAATTCTCACCAGAGGAATACCG ::::::::::::::::::::::::::::::76477 18 HWI-EAS88_1:1:1:796:716 - chr19 19915124 CCCTTCCCTCACCAGCTGCAGATTTCCATTCATTC 47744:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:420:151 + chrX 141389154 GCAATGGTGTCAGCCTTTGGATGCTGATTATGGGG ::::::::::::::::::::::::::::::72747 10 HWI-EAS88_1:1:1:489:844 - chr5 104932314 CTGGCTCAGAATTGTTATCGTTTACTGTTCCCATC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:112:809 - chr8 86264088 ATCTTGGGGTAACTCCAGCTGGTGCCCCGTTCCAT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:705:854 + chr11 10071950 GACCTAAAGCTGTACTACAGAGCAATTGTGATAAA ::::::::::::::::::::::::::::::77777 1344 HWI-EAS88_1:1:1:232:230 - chr16 38316488 CTCTCCAAGGCTAGAACACAGAAGGCCATAGCGCC 747475::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:500:289 + chr10 101898003 GGCTTTTGCCCAACCCCTGGGGGCTTTAACCTATC ::1::::::::::1::::::::::::::+:-3151 25 HWI-EAS88_1:1:1:495:528 - chr18 4077005 AAACCAGGTCAAGCACACACTACTTTTATTCTTGC 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:924:391 + chr2 98507129 GGTGGAAAATTTAGAAATGTCCACTGTAGGACGTG ::::::::::::::::::::::::::::6:47774 0 HWI-EAS88_1:1:1:366:70 - chr4 136210793 GGGTGGCTCATCTCTTCCCTTCATGTTAATGTTCC 44776:::::::::::::::::::::::::::::: 0 24 HWI-EAS88_1:1:1:112:318 - chr6 88946188 AAACACACCACCACCACCACCACCATCATCATCAG 4,&%&66...::.77.:7::::::::::::::::: 0 30,31,32,33 HWI-EAS88_1:1:1:608:778 - chr16 39740194 GGGAAGGCTCCAAGACCTGACACTATTACTGATGC 77667:::::7:::::::::::::::::::::::: 2 HWI-EAS88_1:1:1:140:226 - chr5 93792972 TGTCTAGAAAAACCAAAAAACCAAACCAAACCAAC 161+1&::::::/'::::::::::::::::::::: 1 29 HWI-EAS88_1:1:1:872:710 + chr1 105820669 GTAGATATTCAGAATTGAGAGTTCCTCTTGGAGGA :::::::::::::::::::::5::::::::70262 2356 HWI-EAS88_1:1:1:467:252 + chr10 27119787 GTTTATCCTCTGTATATAGGAAGGCTAGTGATTTG :::::::::::::::::::7::::::::::47777 0 HWI-EAS88_1:1:1:342:885 + chr1 40495567 GGAGCATTCCAGCCCCTATAAGGAGCTGGCTCAAG ::::::::::::::::::::::::::::::76647 0 HWI-EAS88_1:1:1:360:519 - chrX 17785061 GCTCTTCCTCCCTCATTAAAGCAACATTTCCTATC %7411:::::::::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:860:372 + chr10 85765967 GCAGGCCCTGTACCCTATTAAAGTGTTTAGAAGAA :::::::::::::::::::::5:::::::.46264 0 HWI-EAS88_1:1:1:352:887 - chr17 13923541 AGAATTCCAAAGTCATACTTGCAGAAACTCTCTGC 76461:::::::::::5::::7::::::::::::: 0 HWI-EAS88_1:1:1:579:944 + chr6 19274392 GTCCACGATCAGGCAGGGGTCCCTGCCTGAACGTC :::::::::::::::::::-::::::2:::6)724 26 HWI-EAS88_1:1:1:369:87 - chr19 13934860 TAAGTATAATTTCTTTGAGCAATTGGTACATAACA 77777:::::::::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:318:362 + chrUn_random 5665648 GGAGAGAGGTTGGAGACCGTACTGTTGGAAGGGCA ::::::::::::::::::::::::::::::77760 6 HWI-EAS88_1:1:1:310:838 - chr4 154696239 GAGGAAGCTTCTAGGCCACACTCCATCTAAGCGAC 13114::::+:::::::::::::::1::::::::: 0 HWI-EAS88_1:1:1:238:910 + chr16 37853307 TACATTTCAGATAGGTATTACTCGACATTTGTGAC ::::::::::::::::::::::::::::::272** 0 HWI-EAS88_1:1:1:735:691 - chr8 33529618 ACTATGTTTCATTCATTTACTTCCATCTTCTCTAC 64446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:335:499 + chrUn_random 5889997 GAATATGTCAAGAAAATTGAAAATCATGGAAAATG ::::::::::::::::::::::::::::::66477 1 HWI-EAS88_1:1:1:261:898 + chr13 23390543 GAACCCCATGATAACACACATATACAAAGAACGTC ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:660:515 + chr7 138344976 GTCTCTACAGGGTGCCAAGGAGGAAAGCATTTCGG ::::::::::::::::::::::::::::::77744 0 HWI-EAS88_1:1:1:73:531 + chr8 68114923 AAGCCACAGCAGCAGCGGTCGCCATCTTGGTCCAG ::::::::::::::::::::::::6:.6::27774 49 HWI-EAS88_1:1:1:284:865 - chr15 36378939 CACACACACACAGCATGCTGTGCCAGGCCCTATAC 44447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:116:169 - chr3 142008386 GCAGGCAGAGCTGAGGCACAGTCTTTTGCTGGGCC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:855:888 + chr2 160565376 GGTTGTCCTGCTTTCTGCTCTGAGAACTGGCCTGC ::::::::::::::::::::::::::::::44747 0 HWI-EAS88_1:1:1:263:912 + chr5 43866456 GAAAAGGGGTCACAGTGTGCCTGTCAATTGACATG ::::::::::::::::::::::::::::::47764 0 HWI-EAS88_1:1:1:72:318 + chr10 104922468 CAAAAAAGAAAAGGCAGTTTGAAGTACTCTAAAAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:709:742 - chr10 74849829 GTTGTGGGGGTAGACTTTGAGACCCTCCTCCTAGC 74476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:76:580 + chrX 4829958 CATCATGACCAAGAAGCAAGGTGGGGAGGAATGGG ::::::::::::::::::::::::::::::77774 1 HWI-EAS88_1:1:1:503:545 - chrX 34429223 CAGCCGTCATTCGGTTAAACTGAGCCGTATCATTC 17+46:::::::::::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:262:193 + chr5 30383649 GGTAATCATAAAGACTCCTGGCCTATCAGCTCAAT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:70:747 - chr10 100579133 CCAGCCCATGTATGCTTTTTGGGTGGTCCCCAAGA 1155-::::::::::::::::1::::::::1:1:: 0 30 HWI-EAS88_1:1:1:731:628 + chr17 26821445 GCATGTAGGCTGCACCTTCCTTGGAAAGTATTGAG ::::::::::::::::::::::::::::::77626 0 HWI-EAS88_1:1:1:479:713 + chr6 140361067 GGATTAAAAGTGTGAACAATCATGCCTGGCTGAAT ::::::::::::::::::::::::::::::66247 0 HWI-EAS88_1:1:1:460:241 + chr8 60320208 GAACTACAGCTGAAAAATGTCACAAGCCGTTGTAA ::::::::::::::::::::::::,:::::67444 0 HWI-EAS88_1:1:1:501:821 + chr15 65547625 GGACCCTAAGACCTCTGGTGAGTGGATCACAGTGC ::::::::::::::::::::::::::::::62444 1046 HWI-EAS88_1:1:1:1001:577 - chr9 20930823 TGTGGTGGTTTGGCCATGTTCCAGCGTTCACAAGC 44466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:103:406 + chr19 30999499 AACAAGACAGAAACCTGGAGGTAAGAGCTGATGCA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:895:881 - chr15 23154304 ATGCATGCTTTATCCTATGCAATTTAGAACAATTC 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:602:870 - chr1 98872753 CATGTGCTGATAGAGTACACAATGGTACATTATTC 77276:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:643:875 + chr1 101716116 GTTTTATGTGAAGTTCCTTGATCCACTTAGATTTG ::::::::::::::::::::::::::::::77774 5333 HWI-EAS88_1:1:1:463:194 + chr2 71402859 GTGTGCCTACAGGACAAGAACCTGGCTTGTGGGCA ::::::::::::::::::::::::::::::77744 0 HWI-EAS88_1:1:1:217:848 - chr2 4025352 CCCTGGTCCAAGGATATACAAACCATCACAAAGGC 44447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:283:435 + chr3 32496509 GAAGGTGGGCTCAGGGCAACGAGTCATAAAAACCA :::::::::::::::::::::::::::::344746 0 HWI-EAS88_1:1:1:236:529 + chr12 117544647 GCTCTGCTTTCTCTGTCTCATGCCGCAGTTTGCAG ::::::::::::::7::::::7::-:3,::7174+ 0 HWI-EAS88_1:1:1:99:940 + chr5 112789336 TATTAACAGGTGTGTTTGGTGGCGGGGTAGTGTGG ::::::::::::::::::::::::::::5:77777 0 HWI-EAS88_1:1:1:441:580 + chr13 46029797 GGGCATTCTTCTTGACTTTATAAAGCAGAGCTAAC ::::::::::::::::::::::::6:::::77677 0 HWI-EAS88_1:1:1:77:597 + chr15 98518820 ACTGTGATAAAACACCCTCCCCAGGGCAGCTCATG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:835:882 + chr5 36641713 GCGTCAGTGTCACTTAGGTGTCTGATGGTGACTCC ::::::::::::::::::::::::::::::24776 0 HWI-EAS88_1:1:1:186:522 + chrX 73361585 GCAGACCCTCCCATCTCTGGCGTGCATCACAACAG ::::::::::::::::::::::::::::,:6%742 0 HWI-EAS88_1:1:1:779:887 + chr4 42477453 GGCAAGGATGGTATAGGCTCCACTGGCACCGGCTG :::::::::::::::::::::,:::::+::+4417 394 HWI-EAS88_1:1:1:394:247 + chr15 67840867 GTAGCAACCAGAAAGTCCCAGATGCCAGGAAAGGA ::::::::::::::::::::::::::::::44667 0 HWI-EAS88_1:1:1:596:935 - chr6 89346371 GCTCCACTCCTGGAACAGAGGGAGATCAAGACCAC 47474:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:609:86 + chr8 116595772 GATTAGCACAATATACACAACATGTGTGCATTCAT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:910:778 - chr6 30557002 CCTTCTGAGCACATGGATTAAAGGTGTTTGCCACC 77674:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:860:108 - chr16 84677794 TGAGACTTAAAAATCAGGTGCTGTTTAAAAGGCCC 2777763::::::5::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:569 + chr4 134255529 GGGGGTATTTCAGATCAGCAACCTACCATCACGAG ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:823:660 + chr14 63528461 GAATAAATGAATGAATGTAAGGTCTGTTGAGCTGA ::::::::::::::::::::::::::::::26764 0 HWI-EAS88_1:1:1:782:417 + chr15 62737092 GTTTTACAAGGAAAGACACTGATCCTACACATATA ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:937:791 + chr5 59705827 GGAAGTCAAAATATCACTCTTTGCAGATGATATGA ::::::::::::::::::::::::::::::77774 21 HWI-EAS88_1:1:1:78:296 - chr4 36873656 AGGCACAGGGGAGGATGCTTGAATCTCACTGAGTA 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:458:217 + chr14 66500513 GTTAGATCACGATAAATGGCTATCAGGAAACTCAG ::::::::::::::::::::::::::::::76644 0 HWI-EAS88_1:1:1:633:789 + chr13 17661991 GAAAGTCAACTAAAGTATTATTAAAGTGACAATGA :::::::::::::::::::::::::6::::60746 0 HWI-EAS88_1:1:1:946:587 - chr11 3055333 TCTTGGACAACTGTGCATCAAACTAACCAGGTGTC 22442:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:941:392 - chr12 10027785 AATATTAGGAAGCAACAATTACTTTTTTTAATATC 77476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:68:266 + chr10 111470315 GCCAGTAGCAGGAGAGATCGCTAAGACCACTGCAG ::::::::::::::::::::::::::::::74462 0 HWI-EAS88_1:1:1:366:310 + chr8 18166847 GATATTCTAAGAAAAATGATTTGAAAATTCATCTA :::::::::::::::::::5::::5:::::67471 0 HWI-EAS88_1:1:1:340:800 + chr15 101762732 GTCAGACACTGACAAAGTCCCAATGGCTTCCGACA ::::::::::::::::::::::::::::::7%274 0 HWI-EAS88_1:1:1:229:861 + chr3 104316044 GAAAAAGCGAAACCCGAAACGCCAAATCCTCACTG ::::::::::::::::::::::::::::::74676 0 HWI-EAS88_1:1:1:216:775 - chr13 112407111 AATAGAAGCGTGAGTTGAAAGTCAGCCAGGGCTAC 66777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:698:761 - chrX 85643415 TTTAATCTTCAAAAATTGCCATACATTACAAATCC 46677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:123:566 + chrY_random 7783568 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ::::::::::::::::::::::::::::::77777 21373 HWI-EAS88_1:1:1:59:664 + chr1 188599577 GAAAGAGTCAGATGTAGTTATTTGCACCCAACCAA :::::::::::::::::::::::7::::::77467 2 HWI-EAS88_1:1:1:309:144 - chrX 163243477 TAGACAGAAGCACATGAAGGAAACCCAGGTGTCTC 67767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:284:523 + chr13 30160744 GTCCCAGGGTCACACCTAGTCAGCATGGTGAGTTT ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:882:88 - chr13 105351782 ATTTATATCTTTCTACAATGTCAGAATTCATTGAC 76467:::::::::::::::::::::::::::::: 0 28 HWI-EAS88_1:1:1:61:241 + chr13 91813031 GCAGGAGGAGCACTAGGCAGGCAGCTGAGTGATGC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:130:654 + chr1 101301523 TTTAAAACTAATTATCAATATAGGAAAATCTCATA 1:::::::::::1:::::::::,11::1::55511 0 HWI-EAS88_1:1:1:738:180 + chr18 43912807 GATACTTGCACCCAAACAGTGGATAGAAGCAGCTG ::::::::::::::::::::::5:::::::67774 0 HWI-EAS88_1:1:1:635:515 + chr8 110888284 GAAAATTAGTGAGATTAGGAATCACGGGCATATTG ::::::::::::::::::::::::::::::7474+ 0 HWI-EAS88_1:1:1:684:593 - chr15 38380001 TCAGCTTACACGGGCTGTCCCATCACTCGTCAGCC 33566::0::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:513:963 - chr2 177504442 AGGAATGTCCCCCAAATACATAAGCGAACACATAC 77677::::::.::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:470:603 + chr12 82923288 GAGCTCTTCTGGGGCTGTAAAAGGAGAACACTGAG ::::::::::::::::::::::::::::::44724 0 HWI-EAS88_1:1:1:247:269 - chr6 46635037 TTCAAGGCAAAATATACCTTGCAAAGCCATTTTCC 44%76::6&:::5::5:::::.::::::::::::: 20 26 HWI-EAS88_1:1:1:554:883 + chr4 31000498 GGTCTGAGACTGTAGAACTTAAGGAGAAAGTGTGG ::::::::::::::::+::3+:442::::+6//*5 0 HWI-EAS88_1:1:1:721:400 - chr9 106846628 TTTGCTCAGCAGTCGTCAGAGAAGCTTTCTCCTAC 424773::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:356:92 - chr8 97105889 AGGAACATCTGCAGCAGATAGAGGATGTGCCAAAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:479 + chr1 69270515 CCATATAATATGAAGCAAATAGAAGTATTATCAGC ::::::::::::::::::::::::::::::76/22 12 HWI-EAS88_1:1:1:89:735 - chr11 105144080 GCTAAAAGTGTTCCTAAGGACACCTTTTCTAAACC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:448:969 - chr8 129053334 GAATCTACCCATGTACAGATTTGGCACCCTTTTCC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:747 - chr4 107414153 AACCAGAATTGATTGCACTCTCTGGAGGTCGACAT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:942:550 - chr18 4364056 TGGGCAGGGCTGAATAAGATGCATCTTTCCGGCTC 26462:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:92:897 + chr16 49863664 TCAGGCTTCCTGGGAGGACTCAATGTGAGTAGGGA ::::::::::::::::::::::::::::::71744 0 HWI-EAS88_1:1:1:243:857 - chr11 64298823 CCATTCAGGATTGGGAGGACAAGGTAGGAGGGAAC 77744:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:875:549 + chr17 46548277 GTCATCATCAGATCTTCTCTTGCCTCCAGATATCA ::::::::::::::::::::::::::::::42774 0 HWI-EAS88_1:1:1:357:398 + chr3 136870147 GATTGATTTAATGCAGCTTCTTTTTACACTGCCCT ::::::::::::::::::::::::::::::,7467 0 HWI-EAS88_1:1:1:87:816 - chr14 76025505 ACTGGAACATTCTACTGTGGCTTATCTAACATTCA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:167:649 + chr9 7683485 TTCTTCTTCTGTAAGATCACCAGCAATCCAGCTTG ::::::::::::::::::::::::::::::44624 0 HWI-EAS88_1:1:1:138:903 + chr3 11961887 GGTCCTTTCGATAAAATCTTGCTAGTGTATGCGAT ::::::::::::::::::::::::::::::47477 18 HWI-EAS88_1:1:1:440:836 + chr2 19120116 GAACAGAGAGCAGGTGGGACAGGAGTCTGCAAAGT ::::::::::::::::::::::::::::::46474 0 HWI-EAS88_1:1:1:169:429 + chr4 23687605 GGCCAAGTAACATATAAAGTCAGACCTATTAGAAT ::::::::::::::::::::::::::::::67767 0 HWI-EAS88_1:1:1:438:149 + chr2 150613231 GCCGGCGGATTTTCCGGCTGTTTTCCAGCTGTGGA ::::::::::::::::::::.:::5:+6::%2%2% 0 HWI-EAS88_1:1:1:207:932 - chr16 36726435 ATCTTCCAGTAAAGCTCAGAGAAGAATCAGGCCAC 76774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:79:164 + chr6 68516258 TTTATAACCTGGAGAGAGTTTGCCTGTTGACATTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:692:733 + chr6 29281330 GTCTCTACTCCAGCCACATCTGTTGCAGTCAGATT ::::::::::::::::::::::::::::::74467 0 HWI-EAS88_1:1:1:411:235 - chr11 6381887 CCAGGCACACTATAGGTCACTTGTGGGTCTTCTGC 46774:::::::::::::::::5:::::::::::: 0 HWI-EAS88_1:1:1:589:804 + chr1 179800979 GGACTAGGTGGGGTGGGAGTGCTGCGTTCTGATGA ::::::::::::::::::::::::::::::42672 1754 HWI-EAS88_1:1:1:74:426 + chr19 55214035 TCTTTGCCAGGCCCTGAGGCTCCCTGCTGACTCAC ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:108:901 - chr4 120221957 CTAGGCAGTCTAGTCATTAAAGACATTTTTACAGG 11771::::&::7:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:276:401 + chr6 12678887 GCCATTAAATGGTTAGAATTTAAGTGCATTTATTA ::::::::::::::::3:::::::::::::75756 0 HWI-EAS88_1:1:1:671:730 + chr9 3014062 GTCGTCAAGTGGATGTTTCTCATTTTCCATGATTT :::::::::::::::::::::,::::::::24677 19 HWI-EAS88_1:1:1:442:703 - chr2 157046318 TCCCATTTCTTTTCCCTTCCTCTCTCCCTCCCTCC -4)4,::::0:::::::0::::::0:::::::::: 0 34 HWI-EAS88_1:1:1:836:281 + chrX 145728394 GTTAGCTTCTGTATTCCACACTCTAACCTGTGCAG :::::::::::::::::4::::::+::::+4/22% 6 HWI-EAS88_1:1:1:375:655 - chr13 43492985 GGCATGCACCACCACCTACAGGCCTTGTTTTGATC 77244:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:697:106 - chr6 138612338 CACCTCTTCTTCCTCCTCTCCTTCTCCTCCTCCTC 7/772:::::+4:::54::::44:::::::::::: 0 19,33,34 HWI-EAS88_1:1:1:207:915 + chr17 31199817 TATAGGTGTTCATTAGCAGAGTGGGTTAGCACAGT ::::::::::::::::::::::::::::::47477 1 HWI-EAS88_1:1:1:656:776 + chr19 61137687 GTGTCAAGTCCACCATTTCCTGAATATTTGGTCTC ::::::::::::::::::::::::::::::/5775 0 HWI-EAS88_1:1:1:371:249 - chr9 63628230 GCTCATGCTCCTCAGGAAGGATAGGGACCCTCTCC 45415::::::::::::::::::::1::::::::: 0 HWI-EAS88_1:1:1:192:836 - chrX 149420568 AGCAGAAAGGAAAAACAGGAAGACTGAGAAAATAC 76277:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:820:240 - chr16 47623082 TAATCCAAATACCCAATAGAACAAGACAGGAAAAC +77)+,,::::.,7::::::::::::::::::::: 0 28 HWI-EAS88_1:1:1:83:857 - chr19 61113994 GCTTAGCCAATGCTATCCTCAGAATTCTTACCTCC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:444:237 + chr6 35409343 GCCTGCAAGTTGCACAGGGAGCCCGAGGGATGTAG :::::::::::::::::::::::::,::::67647 0 HWI-EAS88_1:1:1:77:278 + chr8 52136633 TACAGGATTAGCTCTTAGGCTCACAGGCTTTTACC ::::::::::::::::::::::::::::::77774 766 HWI-EAS88_1:1:1:324:830 - chr18 74967801 CGGCCGTGCACCCAAGCATCACGAACAAACAGACC 74647:::::7:::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:160:887 - chr1 20909434 AGAGACATTTTTGTGATAGCATGCTTGCATAGCAA 74777::::::::::::::7::::::::::::::: 0 HWI-EAS88_1:1:1:883:579 - chr10 120154582 CTCACAGGGCTTTATTAAGTGATGTCAAGCTCCCC 44424:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:219:729 - chr7 81767050 AGGCACAAATAAACACACTTAGAGATCCTTAGCAT 727*7+:::::::.-::5::::::::::::::::: 0 HWI-EAS88_1:1:1:718:906 + chr3 109294286 GGAATTCATAGAGGGGATTTGAGGATCTGGCATTG ::::::::::::::::::::::::::::::66774 0 HWI-EAS88_1:1:1:81:887 - chr8 78210594 ATCTGATAGGATGCTTGCAATAATTTTAATATTTT 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:669:891 - chrX 111281872 GGGATCACATCAAGAATTAACAATATTTATTTTCC 664773::::::::::::::::::::::::::::: 0 17 HWI-EAS88_1:1:1:578:500 + chr4 84169733 GAATTTTAACACAATGCCATTTCCCTAGTTTAACC ::::::::::::::::::::::::::::::74777 0 HWI-EAS88_1:1:1:190:55 + chr4 48169879 GTTAGGTTAATGTTCTAAGCAACTTAAATCAAGCT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:357:281 + chr16 35319124 GAGGAGTAACTGGAGATCTGATTCAGCAGCTAAAA ::::::::::::::::::::::::::::::74447 0 HWI-EAS88_1:1:1:740:881 - chr11 96691439 GAGAGAAGTCCAATGAGTGTGCAGGCCCGCCCCCC 77464:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:379:531 - chr18 55610334 GACACCTTTAAACTCTTGAGTCAAAATACACATGC 67772:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:807 - chr10 59347466 TCTCAGACACTAGGATTAGAGGTGTGCTGTGTGCC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:923:93 + chr19 58478181 GTTAGTTTTCCTCAACTTGACACAGAGCCAGGGAT ::::::::::::::::::::::::::::::27447 0 HWI-EAS88_1:1:1:692:765 + chr4 89942917 GGTTAAGGGAAATGCAATTGCTGATTCAGCCACCA :::::::::::::::::::::::::1::::75777 54 HWI-EAS88_1:1:1:579:797 + chr18 21737313 GTGCAATGAAGATGTGGAAATCAAGGTTTGTGTGA ::::::::::::::::::::::::::::::77644 0 HWI-EAS88_1:1:1:905:418 - chr2 17937214 CACGCACCTGCAGATGCAGCCAGCAGAATTTTCTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:341:479 + chr10 61318033 GGGTTGTTGGCATCATGAAGGCACACAACAGGTGA ::::::::::::::::::::::5::::::376474 0 HWI-EAS88_1:1:1:490:922 + chr11 68375151 GACAGATCTTAGCAGGTCCAGGTGTGAGCAGGCAA ::::::::::::::::::::::::::::::77674 0 HWI-EAS88_1:1:1:804:56 - chr3 104733674 CCTGGCTAAGATGAAAACCTCATCTGACATTATGC 76264:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:371:614 + chr12 39991191 GTCAACATCCTTAGTCATCAGGGAAATGTAAATCA ::::::::::::::::::::::::::::::26774 0 HWI-EAS88_1:1:1:365:281 + chr4 63329328 GCCAGTGGCAAGGTGGTCAGCGGCAATCCCCATCC :::::::::::::::::::::::::5::::72467 0 HWI-EAS88_1:1:1:90:437 - chr10 110564558 AAAGACAGGTGGTGACCACTGGATGGGTCCAGTCT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:519:801 - chr12 8600932 CGTCTTAACTGAACTCCTGGGAGAGAACCTTATTA 27727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:55:174 + chr7 57926732 TTGAAATTTCCAAGTAAAACGAAAACTCCTGGCAC :::::::::::::7::::::::::::::::6624+ 0 HWI-EAS88_1:1:1:926:152 - chr3 92634964 TCAAAAATAAGTCATCAAATTCTGAAAAGATCTTC 62777::::::::::::::::7::::::::::::: 0 HWI-EAS88_1:1:1:594:65 + chr7 110235696 GTGTCATGGCATGTGACAAGAATCATAGCAACAGG :::::::::::::::::::::::::::6::7777% 0 HWI-EAS88_1:1:1:969:461 + chr10 91601940 GAGAGCTTCTAAGTACATAGACCCTCTATGACTGC ::::::::::::::::::::::::4::::267777 0 HWI-EAS88_1:1:1:982:414 + chr18 84509585 GTCCAGCAGGGAGAGCGAGGGCACCCGTGACATTC ::::::::::::::::7:::::::::::::74+44 0 HWI-EAS88_1:1:1:590:459 + chr2 98507409 GACGTGAAATATGGCAAGAAAACTGAAAATCATGG ::::::::::::::::::::::::::::::74774 0 HWI-EAS88_1:1:1:189:354 + chr8 95860503 GACAAAGACCTTTGACAGCAGCTTCCATTCTGCCT ::::::::::::::::::::::::::3:::74777 0 HWI-EAS88_1:1:1:392:197 - chr18 84010337 CATTTGAGCCCTCCCTGTCTTCACCCTGCCAGGGC 644+6:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:980:597 + chr15 36224994 GAATGAAAGGGCAACTGCTGTCCCAGGCAAGATGG ::::::::::::::::::::::::::::::76472 0 HWI-EAS88_1:1:1:309:892 - chr9 63046001 CACTGCAGAGTACTTCAACAGTCATCTCATTAGGC 26767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:476:232 - chr1 149329348 ATAAACTGAACACTCTTACACACTGTGGGGTATCC %4777::::::5::::::::::::::::::::::: 0 34 HWI-EAS88_1:1:1:617:931 - chr2 49745917 CGTTTCTAATCCCACGTTCACACCAGTTCTCTCTC 54451::::::::::::::::::::::::::::1: 0 HWI-EAS88_1:1:1:100:764 + chr14 40499982 AAAATGAGAAAAAACTTTGATTCTGATATGTGGCT ::::::::::::::::::::::::::::::77277 0 HWI-EAS88_1:1:1:680:770 - chr14 100005090 TTTCAAAAGTGAACATTGTACTTTGCTCTGGCAGC 72677:::::::::7:::::::::::::::::::: 0 HWI-EAS88_1:1:1:934:89 + chr12 88133136 GTAGGAGTAACCAAGGTCTTGTTGGAGGAAGTATG ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:180:810 - chr2 72892471 CATGCAAGCCAGCCTCCTTGACCTCACCTTCACCC 2622*:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:145:681 - chr11 65274313 GCTCTCATATAGGTGAGTGACGGATTACCTAGTAC 322)6:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:154:732 - chr2 88483322 TTATGGACCGGGAGAGATGCAATAAGATGTTGCTC 44646:3:::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:659:673 - chr18 7254708 ACTATAACCAGCTATACACTCAAACTCAGGTCCTC 77476:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:464:138 + chr6 21900193 GCTGTGACAAGGAGGCGGCGGGCACACCGTACCGT ::::::::::::::::::::::::::::::26775 0 HWI-EAS88_1:1:1:865:304 - chr1 156941051 GGCATTCCACGAGGCATGTATATTTTACACTACGC 44466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:607:65 + chr18 32510769 GGCAATGAGCAGCTGATGGAATGACATCTTCACTG :::::::::::::::6::::::::::::::64677 0 HWI-EAS88_1:1:1:606:750 - chr9 6521376 GCCAGAGTTCAGAGATAAGGTGCCTATCCTTGGAC 64747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:276:410 - chr5 53971040 GCTCACCAATATGGCCAATCTCCTAGCCAGCTTGC 24*24:.:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:179:375 + chr5 47782368 TCTTGCTCTGGATCATTTGTCCTGAGTCCCCTTGT ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:611:79 - chr4 109292772 AGATTACCTCCATAACAATCGTGCCACTATTGCTC 13)%5&::&&:::::::&:::::::1::::::::: 0 14,17,32,34 HWI-EAS88_1:1:1:930:164 + chr12 25866440 GATAAAACCAATCTATTCATAGTGCATAATGGCTA ::::::::::::::::::::::::::::::77476 0 HWI-EAS88_1:1:1:531:966 - chr4 152871828 TGCAGGTGCTCCCTGCATACAGGACACTGCACTCC )67+7::::::::3:::,::::::::::::::::: 0 HWI-EAS88_1:1:1:108:402 - chr4 40651208 CCTGAGAGCAAGGGAAAGCCGTGCTTTTGTTGACA +2+7733:.:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:80:642 + chr1 35962822 CAAGGGCAGGAGCCATCTGCACTAGAGAAATGTTG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:205:696 - chr4 10995327 AGTGCAGGACCACCTGCTTAGGAATGGGACTGCCC 77774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:988:578 - chr8 11615345 TTAGTTCCCAGCATTTCCGTGAGCTAGCTGTTCAC 44444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:210:508 - chr9 101639144 CCTCTCTGCCACTTTCAATACTGAGACTAGACTGC 24444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:515:830 - chr9 26992010 TTCCAGAGCCCTGAAAAATGCAGTCAACCTGTAAC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:904:104 + chr5 85102840 TTATAACCCGTCTTTGTCTCTTTCTTATACTGATT :::::1:::::::::::::::::0::::+:5-155 0 HWI-EAS88_1:1:1:346:321 + chr1 32024086 GGAGACAGAAAGAAAGAGTGGGAGAGTGGCTTTAA ::::::::::::::::::::::::::::::777*2 0 HWI-EAS88_1:1:1:832:50 + chr11 26556578 GCAGAGAATGGCCTTGTTGGGCATCAATGGAAGAA :::::::::::::::::::::::::3::::2+4%1 0 HWI-EAS88_1:1:1:90:716 + chr14 52360866 CTGCGACCTGAAAAATGGTGGCTGCTTCCTGACTC :::::::::::::::::::::::'::::::++777 0 HWI-EAS88_1:1:1:980:484 - chr14 106807648 AGCCTTGGGTCTGACAGTGGAACTCAGGAAACAGC 64444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:832:334 + chr1 169599474 GGCAAAGTTGGGATCTCGAAGATTAGACTCAGGAA ::::::::::::::::::::::::::::::47744 0 HWI-EAS88_1:1:1:520:851 - chr7 149527166 AACTGCTGAGCCATCTCTCTAGCCCTCAGATGTCC 77727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:488:376 + chr9 53047723 AAAACAAAACAAAACAAAGATTGTTAGTTTGTTAT ::::::::::::::::5:::::::::::::27767 0 HWI-EAS88_1:1:1:842:277 - chr12 30624107 CAGCTGCACTTCTGCATTCCAAAAAGAGTTTTCAC 46666:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:404:453 + chr13 7748634 ATCCACTTATCAGTGAGTACATACCATGTGTGTTC ::::::::::::::::::::::::::::::77777 83 HWI-EAS88_1:1:1:483:934 - chr17 15041865 AATCAGTATCACCAGAGCACACTGGCCAGAAAGCC 77477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:205:928 - chrX 91998074 GAAGAGTTTGTTTTCCCATTGAGATTCCCTTGGAA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:963:539 - chr17 65985558 ACAGCGCCAGGTAGTAAGGCTGTCCCACTCTCTGC 44444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:479:312 - chr14 10418861 CGGACAGGTGTGAGGATGGCAATGTGCTCTGTCAC 47766:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:914:587 - chr7 16776484 AGAAGCCAAACAGGCAAGGAGGAACACTCGGTCTC 74776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:471 + chr15 25306210 AAGGGCCTTATTCATTCGAACCCCTATTCTCCTTT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:559:113 - chr8 50069390 CACAAACAAGGGGGACTCCAAAGCACAAGCTATCC ,7477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:95:652 - chr14 79582034 TTCTCCCATGTAGTCAGGCTCCATGGCAAGTTCCT 77474:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:346:208 - chr2 126229406 TAAAAGGGTAAGCACAGAAAAGACCATGTTTAGGC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:59:586 + chr5 123262186 CAGGTATCTCCTGCATGACTTCTTCCTTTGTGTTC ::::::::::::::::::::::::::::::72777 0 HWI-EAS88_1:1:1:950:465 - chr9 3035817 CCTACAGTGGACATTTCTAAATTTTCCACCTTTTC 67767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:37:511 - chr12 112569389 CAGTGGCGTCCAATGGCACCAGTGTCGGGAGCGCA 77446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:842:298 + chr13 51449553 GCACGGAACAGAAGCAGAGGTGTGACTGGGGTGGT ::::::::::::::::::::::::::::::7*774 0 HWI-EAS88_1:1:1:728:418 - chr9 3024084 TTCCGCCTTTTTCAGTTTTCCTCGCCATATTTCAC 40766:::::::::::::::::::::::::::::: 29 30 HWI-EAS88_1:1:1:766:289 - chr14 65592611 TGTACACTGCATGCCTGTGCTTCGCTAGTTTCATC 24444::3::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:442:335 + chr8 99916411 GCTGACAGAAGGGGTTTGTTTGTTTGAGTGCACAA :::::::::::::::::::::::::3:,:364740 0 HWI-EAS88_1:1:1:741:333 - chr6 84142154 GCTTGGCTCAAAAGAACAGTGACCCACTAATAGCC -)3-4:+::::::1:::::::::1:1::::::::: 0 HWI-EAS88_1:1:1:471:619 - chr6 48996704 CTGCAGAGGGAAACGGAATGACTCAGATGTGTTCC 44726:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:432:389 - chrX 124926192 CCTCATGGATTCTTCTCCAAAATGGATGATACAGT 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:429:771 + chr4 112242027 GTTAAAGTAAGGGCTCTAATTGGCAAAGAATGGGA :::::1::::::::::::::::::::::+:5553) 326 HWI-EAS88_1:1:1:97:74 - chr13 53589422 AAGGAAGTTCATATCAGGAAGTGCCCTTTGTTAGA 77667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:566:896 - chr6 29467360 AACCACAGGCCAATAGTTCTGCATACAGCTGTCTC 76777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:819:674 + chr14 65248061 GTAACTTTGAACTTCTAATTCTCCTACCTTCACAG ::::::::::::::::::::::::::::::72762 0 HWI-EAS88_1:1:1:172:671 + chrX 33576656 AATTTCATGAACCAACTGATATCTCTGTACAACTG ::::::::1:::::::::::::::::+::+33-5) 0 HWI-EAS88_1:1:1:70:991 - chrUn_random 5872863 ACTGTAGGACGTGGAATATGACAAGAAAACTGAAA 74777::::6::::::::::::::::::::::::: 0 24,33,34 HWI-EAS88_1:1:1:945:213 - chr2 98502417 TCATGTTTTTTAGTGATTTCGTCATTTTTCAAGTC 67777:::::::::::::::::::::::::::::: 0 31 HWI-EAS88_1:1:1:450:742 + chr11 99841702 GCCTGGTTCCTGCTAAGACTTGCGATGGAATGGAA ::::::::::::::::::::::::::::::77704 0 HWI-EAS88_1:1:1:206:572 - chr8 74045910 TGCTTAACTTAAAATATACATGACTTTATATCTTC 76177:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:876:554 - chr6 10913668 AAGACCTCTCCTGAGCATATATCCAGAAGATGCCC 45%3100:11:,:::::::::::1::::::::::: 22 32 HWI-EAS88_1:1:1:197:728 - chr2 76084622 GTGATTTCCAAACCATTTTGTCTGGAAGAGAATTA 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:273:941 + chr9 3018047 GTGGATGTTTCTCATTTTCCATGATTTTCAGTTTT ::::::::::::::::::::::::::::::27777 27 HWI-EAS88_1:1:1:453:342 + chr7 119991870 GACCTGAGTTTAGATCTTAGACCATAGCCCCAACA ::::::::::::::::::::::::::::::76171 0 HWI-EAS88_1:1:1:383:476 - chr5 60669036 TAAGTGATACATGATAGAATCTAGTGTTTTAGCAT 37776::::1:::::::::4::::::::::::::: 0 HWI-EAS88_1:1:1:348:47 + chr5 36813946 GAGGGGAAAGAACCAGGCACTGTGGCACTAGTTAG ::::::::::::::::::::::::::::::74766 0 HWI-EAS88_1:1:1:366:313 + chrX 3402464 TAAAAATAGCTATCTTGCCAAAAGCAATCTACAGA ::::::::::::::::::::::::::::::67772 68 HWI-EAS88_1:1:1:235:340 - chr12 55632262 TAGCACAGCTAACTTGCTTGCTCGGGAATCCTACC 04444::::::::,5:::::::::::::::::::: 0 HWI-EAS88_1:1:1:107:687 - chr18 8078052 ATATTCTCTCCACTGTGAGGGACCAAATTCTCCAA 76767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:230:889 + chr15 88906807 GCTTCTTTAGAAGTGGGGACAGTCTCCAAGCTTTC ::::::::::::::::::::::::::::::46774 0 HWI-EAS88_1:1:1:282:781 - chr12 3109994 AATTCATGGAAAATGAGAAACATCCACTTGACGAC 77644:::::::::::::::::::::::::::::: 3 32 HWI-EAS88_1:1:1:150:685 - chr4 25004887 CTTTTCTTGATCATGTTATTTGTCTATGCTTTTAC 236232:::::4::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:904:762 - chr11 93969163 GACTTCCAAGTGCTAGGATTACAGGTGTCAGTCAC 67764:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:101:33 - chr6 67242125 TTGTCTTCACTGTCACAGACCTTTGGAGTAGGAAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:226:671 - chr17 23672319 CCACGACCCTGAGATTAAGTGTCTCATGCTCTACC 47777:::::::::::::::::::::::::::::: 3 15 HWI-EAS88_1:1:1:89:837 - chr1 8056457 AAGCAGCCTCAGTGCAGCTTATGTGGCACTTCTTA 77777:::::::::::::::::::::::::::::: 0 14,19 HWI-EAS88_1:1:1:565:768 + chr6 93504853 GCAAATCCACAGCTACCTCAGGATTGACCTTGAAG ::::::::::::::::::::::::::::::77647 0 HWI-EAS88_1:1:1:661:630 - chr13 52038780 TTCTCCGTTCCTGCCTCCTGATCTACTTGCTACCC 44646:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:366:305 - chr13 17623312 CTGGAAATCCCAGTGACCTGGTTCCTGACTCTGGC 72477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:694:750 - chr13 67492772 GCTACCATGATTCAAGTGCTGGTATTAATGGCAGC 66446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:242:264 + chrX 147541949 GGTTTCCGTAAGGGCTTTGGGAGTGTTGCACAATT ::::::::::::::::::::::::::::::74677 0 HWI-EAS88_1:1:1:649:958 + chr5 76399207 GTGTGTCTGTGTGTCTGTGTGTCTGTGTGTGTCTG ::::::::::::::::::::::::::.:5:27+7% 44 HWI-EAS88_1:1:1:799:87 - chr1 29511051 AGTGGGGAAAGGGCAGGGAAAGGAGGCACTGTGTC 76067:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:251:341 + chr13 29019191 GAGGAGTTTGTTTTGGGTTTGTGAGTTTGGGATCC ::::::::::::::::::::::::7:::6.,4777 0 HWI-EAS88_1:1:1:984:477 - chr12 3109948 TTTAGAAATGTCCACTGTAGCACATGGAATATGGC 14174:::::::::::::::::::::::::::::: 0 14 HWI-EAS88_1:1:1:176:102 + chr12 102340086 TAAAAATAAAAATTAATATGACTCAACATTGGTAC ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:349:688 - chr8 11235884 TATACAGCGGGCACACATCTGGGTACACTGAGTTC 47)44::3:::::::::5::::::::::::::::: 0 HWI-EAS88_1:1:1:430:379 - chr8 51378714 ACAGAGTGAAGATTATTATGAACTAAGAATGAATT 72777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:699:539 - chr17 27592681 ACCACACACACACCACACACACAAAGCACACATAC 62**/:::22,::::::::5:4::::::::::::: 0 HWI-EAS88_1:1:1:496:845 + chr4 53077909 GCTGCCTTGGCCATGGTGTTTTATCACAGCAATAG ::::::::::::::::::::::::::::::76742 0 HWI-EAS88_1:1:1:998:430 - chr7 25384942 TTTTTCTCTTGCAGTGCTGGGGACGGAAACTAGGC 66464:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:116:700 + chr1 126449933 AGGGACTGCTGAGCTGGCTTGGGGGTCACTGAGCC ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:353:866 - chr12 88581933 ACTTAAAAGCGTGTACCACCACTGCCCGGCTTTAC 1,%%3:::+:&:0:(:0:0:::::1:::::::::: 0 33,34 HWI-EAS88_1:1:1:224:84 + chr11 106362802 GTCCTGTACTGTCCTTTGTCCCTGCCCCAAGCGTG :1:1::::1::11111:::1:11:::01::131%1 0 HWI-EAS88_1:1:1:640:539 + chr10 75421961 GATGCTTTCCACACCCACGGTCTTCCTGCTTTAAT :::::::::::::::::::5,:5::::::,64%44 0 HWI-EAS88_1:1:1:850:348 - chr14 41621594 TAAAACGGCAAAGCTTCTGTAAGGCAAAAGACACC ,5555:+::::::,::::::::::::::::::::1 53 28 HWI-EAS88_1:1:1:99:702 + chr8 64280802 CCAGTCCCTGTACATACTTTTCAGAGCACTAGGGA ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:773:384 - chr14 24868884 GCACACTTATCCCGTTCCCATTGGTTGGTTTATTC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:855:104 + chr10 125377747 GTGACAGGCCTGGTCAGAAGGGATAACAGAAAAGT ::::::::::::::::::::::::::22::64476 0 HWI-EAS88_1:1:1:99:333 - chr4 149261220 CATAAAAATAAGCTGGCAGCTGACACAGAGCTCAG +7777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:203:550 - chr18 47329829 GAAGCAGGTGGTGGTGACCGCGGAGGGTAGCCTGC 64+7+3::3:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:105:785 - chr11 96686230 ATTTTAGCTTTTTAAAGAACTTGGGGGAGGGGCTG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:166:853 - chr14 13866161 CAGTCATGCTTCATTGTGTTTTGTGAGAGAAATAC 47447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:381:132 - chr10 119810465 TTCAACAAACACAAATCCTATGCTTTTATATATAC 64%775:::6::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:714:823 - chr2 60399038 AATTAATAAATGAGCTTTTTTACCATAGTCCAAAC 672*6:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:308:860 + chr8 129981915 GTGCCAGTAACCAACCCGTGACTTGAAACCTTTTT ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:92:878 + chr11 64835392 ATCAGTTTTCCCAATACTATATACTATATAGAAGG ::::::::::::::::::::::::::::::4772, 0 HWI-EAS88_1:1:1:349:167 - chr10 107707487 TCAGATTTTTGTGCCTAGAAACTTGGAATTAAGCC 31555:::+:::::::::,1&:::::::::::::1 0 HWI-EAS88_1:1:1:860:554 + chr7 87010633 GGAAGACAATGTCAGATTCCCTGGAGCTGGACATA ::::::::::::::::::::::::::::::46440 0 HWI-EAS88_1:1:1:296:103 - chr12 79870259 GTGAGTCATTGCAATGATAACAGATGCTGTCAGAA 7)677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:196:721 - chr16 21171610 GAGTTCTTTAGAGCTTTGCTGTCTACGAAGTCACA 67327::::::::::3::::::::::::::::::: 0 HWI-EAS88_1:1:1:221:93 + chr16 9908456 GCTGAATGCATGATCACAGCAATGTGGGCTTCCTG ::::::::::::::::::::::::::::::76774 0 HWI-EAS88_1:1:1:67:439 - chr11 50571021 TTCAAGGACCTCTTGCTGTGTAGTCTTAGTAAGAG 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:959:753 + chr6 116145663 GACTGTTGGGCAGAAGCTCTGGTTCCTCTTCAAGT ::::::::::::::::::::::::::::::62266 2 HWI-EAS88_1:1:1:723:636 + chr4 42059385 GCTACCTGCTTTACAGATGGGAGCAGTTTTCTCCA :::::::::::1::+:0::::0::0:::::4-443 1 HWI-EAS88_1:1:1:123:215 - chr17 41961429 AGCAGGACCTATGCATCCTGCCAGAGGCACATATT 55555:::::::::::::::::::::::::::::1 0 HWI-EAS88_1:1:1:95:737 - chr4 144484919 GGACAGCTGTTTAACCTTGCCTTTGGAAGGGGAGT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:813:830 + chr15 84624366 GTGGAGAAGATGTTAGTGGGGGTGAGAGGAGCATG ::::::::::::::::::::::::0::::040444 0 HWI-EAS88_1:1:1:611:34 - chr10 54966350 CACTAACTTTCATTATAGAGACTGTTCAGTAAGCC 27467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:337:384 + chr6 92896494 GGGAGGCAGAGGCAGGCAGATCTCTGAATTTGAGA :::::::::::::::::::5::::::::::7+442 1 HWI-EAS88_1:1:1:117:908 + chr5 58245291 AGTCACTTTAGATGTAAAAACTATGTAACTATCAG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:584:274 + chr19 33060475 TTATATGAATGTTTGCTGACTAATGAGTCTTTTCT :::1:::::1::1:&0:1:::,:1+:+0::)51,3 0 HWI-EAS88_1:1:1:241:287 + chr13 20403450 GACATTTCAGTGTGCACTCTATTTCCCACCAGAGG ::::::::::::::::::::::::::::::40444 0 HWI-EAS88_1:1:1:787:93 + chr5 40411697 GTCTTCCACATAGCTGAGTGCAAGAGCACAAGTCA :::::::::::::::::4::::::::3:::27262 0 HWI-EAS88_1:1:1:730:549 + chrX 163243386 GTCTGCTCTAAATCTTGGCCACATTGTCATCTGGA ::::::::::::::::::::::::::::::76260 0 HWI-EAS88_1:1:1:317:242 + chr4 129099097 GCACACCTTTAATCCCAGCACTTGGGAGGCAGAAG ::::::::::::::::::::::::::::::67477 61 HWI-EAS88_1:1:1:121:979 + chr2 141245719 CTTTGTGGGTGGAGTCAGTTGTCTCCTATGGTGCA ::::::::::::::::::::::::::::::+7477 0 HWI-EAS88_1:1:1:850:422 - chr15 16896739 TATAAGGCTCAAAATTTTGGGTGGATGTTCATCTC 77/67:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:65:863 + chr3 63617222 TTTAAAAAAAGAGAAAGATGCTGATGACAAGCAGT ::::::::::::::::::::::::::::::76777 0 HWI-EAS88_1:1:1:375:550 - chr15 12720207 GCCCGTAACTCCAGGGGATCTGACATCCTCTTCTC 76647::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:126:412 + chr14 107589395 GCATGTGCCATCATAAAAATATAGAGATGAGAGGA ::::::::::::::::::::::::::::::47777 0 HWI-EAS88_1:1:1:432:525 - chr10 83081942 ACAAAACGCCTCTCCCCAGTCTTCTGCCACAGCAC 47666,::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:700:650 - chrUn_random 5249479 ACTTTTCTTGCCATATTCCACGTCCTACAGTGGAC 264263::::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:241:563 + chr5 104173660 GTCATACTGACTCATACATAGCTCCTACACTCAGA ::::::::::::::::::::::::::::5:77724 0 HWI-EAS88_1:1:1:917:891 - chr1 55510902 ACCTGGCATTGATAGGAAAGGTAAACACGGGACAC 72724:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:694:592 - chr10 63629278 CTTCAACTAAACTTGCAAACTCTGAAATGTTCTTA 46677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:93:768 - chr12 48115673 AGTTCGGGGTATACTGGTTAGTTTATATTGTTCCT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:867:516 + chr3 113878743 GACCATAAGTGTGTGGTTTTATTTCTGGGTCTTTA ::::::::::::::::::::::::::66.:77776 0 HWI-EAS88_1:1:1:548:480 - chr13 20070663 GTTCTTTGGTGCATTTGTCTCTACGAATCCATGAC 64442::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:475:646 - chr15 21907106 GGCCTACCTGACCAGCATCAGCCTAGTGGGTGGTC 574/20::+:::34::::::::5:::::::::::: 0 HWI-EAS88_1:1:1:185:417 - chr5 3816829 TTAGCTCACCCTACCTCATAATTTGTTGTGACAAC 2,62%33333:::55:::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:695:799 + chr5 114319271 GTGCAATGAGCGCAACAGTAACCTGCGATCCCTGG ::::::::::::::::::::::::::::::77674 0 HWI-EAS88_1:1:1:59:368 + chr2 72531796 GGCACGTCAGCCTCTTGACGTCAGTCTTCCCAGCC ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:115:192 - chr4 154460838 ACAGGCGTGGTCCAGGCTGCAGGCTCACGGCCAGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:980:503 - chr5 136478377 CCCCTCACTGAAGGATTCTAGGCAGGGGCTCTACC 24664:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:333:616 + chrUn_random 5746062 GCTGCATCCTTGGTTCAATGACTTGCTCAGCCATC ::::::::::::::::4:::::::::::22776*6 0 HWI-EAS88_1:1:1:589:491 - chr2 168770559 GATTTTGGAGATGCCAGTGTCACGGAATGACCACC 66404+::::::::::::::::::::::::::::: 0 15 HWI-EAS88_1:1:1:106:818 + chr4 126937828 ACATCAAAAGGAACACTGGTCATACACATCCTGCC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:964:410 + chr10 7570859 GGGTTATGGCAAGCAAGAGAGTTTTCTGGAGGTGG ::::::::::::::::::::::::::::::42424 0 HWI-EAS88_1:1:1:86:888 - chr15 81660428 CCACTACACCTTCCAGGATCCTAGCATTTATATTC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:427:493 + chr10 28251298 AGCATTTTCAACAATTGGTGCTGGCACAACTGGTT ::::::::::::::::::::::::::::::77477 5262 HWI-EAS88_1:1:1:176:639 + chr2 154677559 TAGGATCTGATGCAGTGAAGGAATGGACTTGCTAG ::::::::::::::::::::::::::::::77762 0 HWI-EAS88_1:1:1:590:246 - chr18 27280792 TGACTTAAGTTTAATGGTTGGGTGTAAGTATTTGC 77777:::::5:::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:260:261 + chr2 65418677 GTTCAATGACTGCAAGTGCTTGAGCAATCACAACC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:731:275 + chr2 36686396 GAACATGAAGAACAGAACAACAAAAAATCCACTAA ::::::::::::::::::::::::::::::77742 0 HWI-EAS88_1:1:1:849:567 - chr14 99329260 GAAGCGCAGAGATATGCCAACAGCTGTAGCAAACC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:162:973 - chr1 91442049 GAAGTGACCAGCCATGGGGTTGTGACTTCTTCTTC 04644:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:410:451 - chr4 25781534 CACTTCTCTGCATCTCTGGCTTCACCTCATTGCAC 717+6::::::65:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:179:383 - chr7 142774930 ATGGTATAGCACATATACCATGAGGGACAGCTTAC 74774::::::7::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:188:185 - chr16 33332847 TAGGTACTAGGGACTGATCGGAGGTCCTTGATAAC 2+424:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:433:441 - chr11 108240003 GGACCACAACCATGTACCACCAAACCTAGCTTTTT 7722*:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:206:725 - chr12 113513201 CTCTGCTGCCTGACAGGCAGGGCTCCTGGCTAGAC 76667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:808:657 - chr18 62755963 TGAAGCTGAATGTGCCATGTACTCAGCGAGGGGTC 26447:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:554:244 + chrX 101858868 GAAGGTAGGTGCATGGGGAGGGAAGAAGGGATCTA ::::::::::::::::::::::::::::::47774 0 HWI-EAS88_1:1:1:711:428 - chr8 116844688 ACACGCCTCCTCTATCAAGACCACACCTCCTAATC 66762::::::::::::::,::::::::::::::: 0 HWI-EAS88_1:1:1:924:770 - chr6 92193078 CTCCCTTTTGCCCGGATGCTGGCGTTTTGTGATCC 74777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:741:535 - chr9 3034640 CCACATCCTACAGTAGACATTTCTAAATTTTCCAC 6+667:::::::::::::::::::::::::::::: 31 20,30,31 HWI-EAS88_1:1:1:369:453 - chr4 24570663 TGGCATTTTGGTGTAGTCTGCTTCTTGCATCTTCC 26764:::&:::::::::::::::::::::::::: 1 HWI-EAS88_1:1:1:885:138 - chr5 110955887 TGCTAGGGAAGACATACCAGAAACCCCTTACCCAC %/)-3::::::::::::::::::::::1::::::: 0 HWI-EAS88_1:1:1:108:420 + chrX 111064812 ACACTTCCACATTGCTGTTCATCACTGAAGGAAGT ::::::::::::::::::::::::::::::77777 23 HWI-EAS88_1:1:1:866:613 - chr6 104498999 ATGTTCAAAATCAAACTCAAGGAGAAAGTGTTCAC 74766:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:499:872 - chr2 154522915 CTCCTGCTGCACCATGCCTGGATGCTGCTACGCTC 72774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:532:575 + chr16 54097763 GTTCTCTCTGAAGAATTACACAATGGTATTTTTAC ::::::::::::::::::::::::::::::77767 0 HWI-EAS88_1:1:1:880:866 - chr2 98502386 TCCAGGTCTTTCAGTGTGCATTTCTCATTTTTCAC 46774:::::::::::::::::::::::::::::: 0 26,30,33 HWI-EAS88_1:1:1:756:863 + chr1 69944995 GTCTTTAAATTCCACCACTCTTTCGTGCCTCATTA ::::::::::::::::::::::::::::::44774 1 HWI-EAS88_1:1:1:764:28 + chr15 97026683 GATACCGACTATGGCTCTCCAGTTCCACCTTCTGT ::::::::::::::::::::::::::3:::74624 0 HWI-EAS88_1:1:1:241:338 - chr2 59840331 ACTTCACATCGCTCATTACATCGCCTTTCAGTAAA )%&%/:&:&1&4:-:3::::::::::::::::::: 0 24,34 HWI-EAS88_1:1:1:769:714 + chr10 80879669 GTATGGAGCTTCCCTCTAGCACTCGCACGCTCACA ::::::::::::::::::::::::::::::76274 0 HWI-EAS88_1:1:1:240:932 - chr11 77968403 ACCCCAGCCCCACCGGTCAACGGCCTACCAGCCCC ++777:&::::::::::::5::::::::::::::: 0 28 HWI-EAS88_1:1:1:705:777 - chr3 62599070 TAAATACTTTGTTTATTCTAGACCCAGACTACTAA 47727::::::::::::4:::-::::::::::::: 0 HWI-EAS88_1:1:1:562:597 - chr12 49782535 TTACAGAGTACTATGGTTAAGTGTTTGCATGAGAC 46777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:676:156 + chr14 92039519 GAATACTCTTTCATTTTAGGGTGAAATATTCTGTA ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:431:544 + chrX 42960859 GAAGAACATAGTGTCGTCGTTCTTTTCTGCTGGTC ::::::::1:::::::::::::::::::::41335 0 HWI-EAS88_1:1:1:945:150 + chr14 85932619 GTGGGTGTTAATCCTCGCAGATTGCGACCCCTAGA :::::::::::::::::::::::6:6::::47274 6 HWI-EAS88_1:1:1:191:747 - chr5 27920815 AGAGAGCCACTGAGCCTGGCTTGAGTTTCTGAAAC 46477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:799:612 + chr17 58281063 GAGAGTGGGATAGATAGCTAGGGCGGGGGTGGGAG ::::::::::::::::::::::::::::::77644 0 HWI-EAS88_1:1:1:163:627 + chr11 5018235 TCAGTGGGGGAGGGGGAGGTTAGAGAGATGGCTCA ::::::::::::::::::::::::::::::64766 0 HWI-EAS88_1:1:1:245:700 - chr1 135274060 TTGAGGCACCCCAGTTGAGGACTGTACTCTACGTA 67776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:376:244 + chr11 90214041 GTCAGTAGCGTGTGTGTCATTGCCATAACGCGTTT :::::::::::::5::::::::::::::::6/777 0 HWI-EAS88_1:1:1:123:267 - chr11 52653462 GAGACAGGAGGATGCAACTAGGCTGCCTAATGAGT 77774:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:268:917 + chr2 130598775 GTATTCAAATCCCCAGCACCCACATACAAAGCTGG ::::::::::::::::::::::::::::::76664 0 HWI-EAS88_1:1:1:908:230 - chr9 71945140 TTACCACTTGGCCACTTCCTGCTCATCGTTGATAC 66677:::5:::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:197:419 + chr1 130307049 GGCAATATGTTATTTACCTCTCAAATGAGCGCACG :::::::::::::::::::::::::::3::77274 0 HWI-EAS88_1:1:1:866:327 - chr1 4202455 ATAAACAGAACTCCAATGACTCAGGCTCTAAGATC %4746:::::::::::::::::::::::::::::: 0 23,34 HWI-EAS88_1:1:1:57:637 + chr15 17631444 GCTGACATGCGTCAGTCCATCCATCTGTCCACTGA ::::::::::::::::::::::::::::::77777 1 HWI-EAS88_1:1:1:681:291 + chr7 18025669 GATCCATTCCTATCTCCTTGTACTAAGGTCAAATC ::::::::::::::::::::::::::::::74677 1838 HWI-EAS88_1:1:1:673:673 + chr8 7896236 GTTGTACAAGCCTGCAATCCCACCAACAATGGAGG ::::::::::::::::5::::::::3::::42426 4826 HWI-EAS88_1:1:1:968:531 + chr19 53623034 GGCCTGGGCTGCCCCTCCTGTGGCACCTCCTTAGG ::::::::::::::::::::::::::::::77066 0 HWI-EAS88_1:1:1:188:499 - chrX 160376728 CTGAGAGCACCCAGTGTACAACTAAACTGATCCAC +2777::::6::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:83:813 + chr3 80617174 AACCTACCCATAAAACATTTAGATAGAAAGGGAGA ::::::::::::::::::::::::::::::27777 0 HWI-EAS88_1:1:1:88:491 - chr15 38510553 GAATGTGTCCTCCCACTCCTGATTCTCCTGCCTCT 77776:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:194:801 + chr19 16016181 GTCACTGAATGCACAGCCTTGCTTGGTGGAATTTT ::::::::::::::::::::::::7:5:::67777 0 HWI-EAS88_1:1:1:689:169 - chr8 69772488 CATATCTCTTTTAGAATTTTTTCTAACAAGATTTC 77464::::3::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:581:905 + chr16 23078140 GATGCTAAGACTTGAAGTGCTCTGAGGCTCCAGAG ::::::::::::::::::::::::::::::74747 0 HWI-EAS88_1:1:1:227:975 - chr8 26384959 ATCTGCCTGGAGTCTGAACAAGATGAGTAAACACC 77225:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:886:158 - chr8 99512766 CAGACTTCTCCACTCTCCTTCCTTGGGTTTGTTCC 77667:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:243:676 + chrX 159385213 GAGATCCTGGGTGTGTCAGAGCTCCTGGGAGTCAA ::::::::::::::::::::::::::::::74764 27 HWI-EAS88_1:1:1:123:548 - chr10 126521221 TTGCCTATAGGCGTTCACCTCTCATTGTTCTCCCT 67%1+,3::::&::::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:216:402 + chr8 72039647 GGACCGCTTCACACTGTTGTCTGCATTTGGATTCC :::::::::::::::::::::::::::::626767 6 HWI-EAS88_1:1:1:118:696 - chr1 137517853 ACAGAATCTATTGGATGGAACACAGGGCCCTCAAT 7/7/&::1:::::::.::::::::::::::::::: 0 30 HWI-EAS88_1:1:1:268:211 + chr16 27977293 GGCAGGAAGAAGTCGCACTGAACTTCATATGAGAT ::::::::::::::::::::::::::::0:75256 0 HWI-EAS88_1:1:1:174:184 + chr2 27880843 GGTCTTTGTGCCATCCACCCATCAAGGTCAGCAGA ::::::::::::::::::::::::::::::77277 0 HWI-EAS88_1:1:1:80:660 + chr12 74577404 GAAACCAGGGCCCCTGCACCTGTTCCTTGCATTGC :::::::::::::::::::5::::::::::47777 0 HWI-EAS88_1:1:1:810:735 - chr4 34086152 CTTTAGACTGGTTTACAGAGGCTGATATGTTTCTC 3/327:22::::::+:::::::::::::::::::: 0 HWI-EAS88_1:1:1:474:263 + chr1 71336215 GTATTTCAGAAGTCATGTTTGCATCTTTGTCTCTT ::::::::::::::::::::::::::::::77766 0 HWI-EAS88_1:1:1:478:393 + chr19 24849407 ACCTGGAGGGTATCATCCTGAGTGAAGTAACCCAA ::::::::::::::::::::::::::::::77746 627 HWI-EAS88_1:1:1:163:211 - chr1 62953437 TGAGTATGTAGCCCAAAGATAGAGTGTATACCTAC 46644::::::5,5::::::::::::::::::::: 0 23,30 HWI-EAS88_1:1:1:988:555 + chr2 133667668 GACTAGCTTCTAATACTATAATTACTAAGAAATGG ::::::::::::::::::::::::::3:3:&4420 0 HWI-EAS88_1:1:1:854:533 - chr7 95344460 TGGAAGTAAAAACGACCCCTGCCCTAAGAAAATGC 27467::::::::::::7:::7::::::::::::: 0 HWI-EAS88_1:1:1:435:632 + chr5 50715185 GCCCTACTTAAAGCATTCCACCCCTTTCCAAATCC ::::::::::::::::::::::::::::::22677 0 HWI-EAS88_1:1:1:525:489 + chrUn_random 5263558 GCTAGGTGTGGGACTATGGCCTGGTCAATTAGAAC ::::::::::::::::::::::::::,+::41044 0 HWI-EAS88_1:1:1:200:836 - chr16 10994521 TGCTTTTCCCTGGGTGAGGCTTATCCATTGTATTC 236672::&:::+:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:242:728 - chr1 187053498 TCAGGGGCTACAGAGCTTTGCCATCTTTGCTCTTT +1477::::::::::6::::::::::::::::::: 0 HWI-EAS88_1:1:1:621:412 + chr14 113068828 GATTGGACTAGAGGGAATGACATAGGTGGCCAAAC ::::::::::::::::::::::::::::::4%0)4 0 HWI-EAS88_1:1:1:101:860 - chr4 138564087 TGCACGTGGCAGCCTGAATCACTGCAGCCTTGACC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:777:729 + chr11 64869257 GTATCCTGACAGCTGTTCCTCGCTGACTAAGTGTG ::::::::::::::::::::::::::::::74744 0 HWI-EAS88_1:1:1:864:751 + chr16 73629325 GTAAGGTAGAAATCAAGTTTGAGTCCTTGATTGGG ::::::::::::::::::::::::::::::77277 0 HWI-EAS88_1:1:1:786:152 - chr12 109230419 CTTACAGCCTTTGATAAAAATAATAAACCCACATC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:318:334 - chrX 53407449 ACAAGTTCCCTCGCCCCACTGCACGGCATTTCATC 4677633:3:3:&:::::::::::::::::::::: 0 22 HWI-EAS88_1:1:1:357:844 - chr18 83636587 TCAAAGGCTGTGATGGCTCAGGCCATCTGGTGTCC 47767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:54:518 - chr12 33337199 CAGAGTCTTTCCTCTTCTGTATCCGTGTGGTTTGA 46427:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:406:321 + chr2 98506541 GTTTCCAACGAATGTGTTTTTCAGTGTAACTCACT ::::::::::::::::::::::::::::::77467 2 HWI-EAS88_1:1:1:701:112 + chr7 68581094 GACTATTAATAACTGCTTCTATTCCTTTAGGGGAT ::::::::::::::::::::::::::::+34+107 0 HWI-EAS88_1:1:1:81:830 + chr1 105564744 TCCACCTATAGGGTTGCAGATCCCTTTAGCTCCTT :::::::::::::::::::::4::::1:+:77277 10694 HWI-EAS88_1:1:1:590:419 + chr14 106558713 GAGCACCTCTTTTTGACTTAAAGGAATGGGAAGCA ::::::::::::::::::::::::::::::74776 0 HWI-EAS88_1:1:1:366:406 - chr14 53070370 TGACAATTGCATTGCACAGCTCTTCTTCCTACATC 46477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:342:363 - chr5 87228828 AAGCAGAAGTAAGTGTGGTATATGCACCCAGAGCC 77647:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:351:700 - chr13 62810951 GTCAATTCTTACAAAAGTTCTTCTTTATTTTTAAT 77477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:603:503 + chr18 41053558 GAAAGAGAGGCCCATTGGACTTGCAAAATTTATAT :::::::::::::::::::::::::,::::74767 10 HWI-EAS88_1:1:1:366:923 - chr7 24982474 AACTAGTATGTGCATGCATCTTTCATTTATGAATC -55-511:1:::::::::::::::1:::::::1:: 0 HWI-EAS88_1:1:1:929:238 + chr3 107063886 GCACCAGGATAGAGAACTCAGGCAGGGAGACTGCA ::::::::::::::::::::::::::::::46766 0 HWI-EAS88_1:1:1:106:67 + chr7 148104030 TAATGGAGCCATAATGTTGGGGACAGCAGGTAGCA :::::::::::::::::::::::::::::,77144 0 HWI-EAS88_1:1:1:369:644 - chr6 93356241 ATCCTCGAGGCTTTTACCTCTGGATGTAGTCAGAA 4464+:::::::::::,:::::::::::::::::: 0 HWI-EAS88_1:1:1:368:437 - chr6 14104807 CATTAATGTATTTATTCACTTTATTTCCAGATCAC 47777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:106:319 + chr4 53819113 GCCCTTGCCTGCGTCTGGCAGGAGTCCTGCCACAA ::::::::::::::::::::::::::::::74777 66 HWI-EAS88_1:1:1:557:185 - chr12 119197313 TTGTTTTACAGATTTATAATTTCCACAAATCATAC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:71:183 + chr19 46396168 TAGAGCAGGGTGAGACTCAGCCTCTTGGAGGAGGG ::::::::::::::::::::::::::::::72777 0 HWI-EAS88_1:1:1:647:592 + chr17 69295642 GACAATCCATAACTCCAGGGTGGACTACTAAGCCC :::::::::::::::::::::::::::::052663 636 HWI-EAS88_1:1:1:126:215 - chr2 126229406 TAAAAGGGTAAGCACAGAAAAGACCATGTTTAGGC 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:184:372 - chr9 99510895 TAGTAGAAATGTTGTCTACTCATCCCTGGAAGTTC %4)46::3&:::::::::5:::::::::::::::: 0 32,34 HWI-EAS88_1:1:1:309:188 + chr3 103241354 GAGGAGCCCCTGGGAGGTACAGGGAAGGAGATAGC ::::::::::::::::::::::::::::::66774 0 HWI-EAS88_1:1:1:124:392 - chr11 52110335 GACAAGCCTTCTCCCTCAGCCTCCCCCAAAACACT 77777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:692:620 + chrY_random 28859341 GGTAATTGAGAGTTTGGCCGGGTATAGTAGCCTGG ::::::::::::::::::::::::::::::64444 1917 HWI-EAS88_1:1:1:767:338 + chr13 112850398 GGAGGACGGCTTCAAATTTGAGTGTAGTCTAGGTT :::::::::::::::5::::::::::::::24227 0 HWI-EAS88_1:1:1:83:121 + chr2 174234880 TGAGAGTACCTGAGAGGCAGAAAGATCTCCGTGAG ::::::1::::::::::&::::::::+:::15515 0 HWI-EAS88_1:1:1:98:275 + chr1 116089801 AGTAAAAGAATGAAGCTTGATATGTTCATGTGCCA :::::::::::::::::::::::::::::.72774 0 HWI-EAS88_1:1:1:278:728 + chrX 55214153 GTGTACATGCTGATCTAGCAATTCTGTTCTAAGTA ::::::::::::::::::::::::::::::74277 0 HWI-EAS88_1:1:1:218:362 - chr16 4790563 TAAACAAATAAGCCACAAAATGACCAGCATCTCAA 27+7+::::::::.::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:563:297 - chr11 50865423 CTTGTACTAGTCAGGGTTCTCTGGAGTCACAGAAC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:259:940 + chr15 25799668 GAGGCTGCCTTTGAACTTCATCTTCCCACTTCTAC ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:140:679 - chr15 85400829 AGCCCCTGGCAAGCACTCTCTCTACACCACCTGCC 60447:3:::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:109:344 + chr11 57893963 ACCAGGCTGGCCTCAAACTCAGAAATTTGCCTGCC ::::::::::::::::::::::::::::::77477 85 HWI-EAS88_1:1:1:574:454 - chr2 135728931 GTGTCTCCAGAAGCCCTGAGTGGCACGCTGCTTTC 66764:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:594:454 - chr14 94065098 AAGCTTTTCAAAGCTCCAAGCCCATCCCCAGCGAC 77466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:750:305 - chr1 146036887 ATATGGAATTGCATAACAGTTACTAGAACCAGCTC 74426::::::6::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:361:156 + chr9 75264392 GTGAATGGGAGTCCAAGGATCTAGCAGTTGTTCAG :::::::::::::::::::::::::::+::4444+ 0 HWI-EAS88_1:1:1:596:20 + chr13 117979300 GAATATGCCAATACAAATGGGACTCAATTCCTTCT ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:499:747 - chr18 22028144 GGGTTACATGGAATCTTTTTGCTACTTCCAGTTTT 77647::::::::::5::::::::::::::::::: 0 HWI-EAS88_1:1:1:620:438 + chr14 52864319 GAGAGGCCTATCCGGTTTCTAGGGCCAAGACCAAG :::::::::::::::4:::::::4:2::2:57%%% 0 HWI-EAS88_1:1:1:577:505 + chr12 24388280 GATGTCTTAAAAGTAGTAGTCTTAGTAAGAAGACA ::::::::::::::::::::::::4::::26236/ 7 HWI-EAS88_1:1:1:113:638 + chr17 43292958 CTTGGGCAGACTTCAAGAAAGGGTCTGAGGAGACA ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:615:446 - chr5 136138360 CTTAACCTTACCCTAAACCTAACCTCCACCCCACC 4*264:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:991:529 - chr10 12548378 GCAGATGAATTTTACCTTGTGCATTTAAACTCATC 2/6%60:::+::2:::3+::::::::::::::::: 0 31 HWI-EAS88_1:1:1:138:949 + chr17 16087054 GGGGCCAAGTTGACCTGCTATGGTGGGAAAGATGG :::::::::::::::::::::::::::.:54,774 0 HWI-EAS88_1:1:1:161:583 - chr11 116671085 AATGAAATGAACTCAGGCCCTGCTGGGACCTCAAC 44777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:853:122 - chr11 6039485 TCTTAGCTGGGCTCCCATGAGTGTATAGTGGTTTC 67647:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:593:709 + chr9 3037227 TGTATTTCTCATTTTCCGTGATTTTCAGTTTTCTC ::::::::::::::::::::5::::::.::77777 30 HWI-EAS88_1:1:1:980:577 + chr11 101001436 GTGTGGCACAGGTCTTTAATCACAACACTTGGGAT ::::::::::::::::::::::::::::::76664 0 HWI-EAS88_1:1:1:607:959 + chr15 40412980 GTATATTAGCAGAAACAGGAAATCAATGATAATGG ::::::::::::::::::::::::::2:::66677 0 HWI-EAS88_1:1:1:731:502 + chr16 23351281 GAACTCAGCCTGGCCCTCCCCCCTTCACACATATC ::::::::::::::::::::::::::2:::22/67 0 HWI-EAS88_1:1:1:408:607 + chr3 8850850 GCACTGACTAACAGAGCAGCTGTCAGTGCAGAGTG ::::::::::::::::::::::::,::::3426,2 0 HWI-EAS88_1:1:1:600:700 + chr2 29998828 GGCTAGTGATTCTGCTGCAGAGACAAAAGCTCTCT ::::::::::::::::::::::::::::::77477 0 HWI-EAS88_1:1:1:921:580 + chr17 14461130 GCCTTAAGGCCAGAACTTGTGGTACAGCTTTGTCC :::::11::::::+:01::1::+::+::1:33411 0 HWI-EAS88_1:1:1:842:893 - chr5 36767520 TCAGGCTGTCAGGCTTGCACAGTTAATACTTAACC 52776::02:::::::::::::::::::::::::: 0 26 HWI-EAS88_1:1:1:335:454 + chr8 19929673 GCCACTTCCATGAAGATAACACTGAAGATAAAGGA ::::::::::::::::::::::::::::::41444 5 HWI-EAS88_1:1:1:898:402 - chr14 55818025 GATATGGAGATGCCCCATGGAGAAGACCTAGATGC 77777:::::::6:::::::::::::::::::::: 0 HWI-EAS88_1:1:1:122:985 + chr15 81057375 AGCAAGTCATGATGAGAAGGGGCAGGTGATCTGAT ::::::::::::::::::::::::::::::67777 0 HWI-EAS88_1:1:1:87:44 + chr17 17141877 TTTCGCACACTCTCACCCTGAGAGAGTTGCTCCTG ::::::::::::::::::::::::::::::77772 0 HWI-EAS88_1:1:1:632:537 + chr12 3109884 GAAAATGAGAAATACACACTTTAGGACGTGAAATA ::::::::::::::::::::::::::::::66474 4 HWI-EAS88_1:1:1:85:771 - chr9 63777305 ACAGGAAATGCTAAGCCTTTTCTCTGTGAGGCAGT 77777:::::::::::::::::::::::::::::: 0 27 HWI-EAS88_1:1:1:479:384 + chrX 69921640 ATATATTGTTTGAAAAAGAAAAGCTAAGGAGACAG :::::::::::::::::::::::::::1:&/2757 0 HWI-EAS88_1:1:1:325:919 - chr12 39399093 CTGTGGAGAAACTGTTCTCTTCCAGTTGGTCCCTC 66767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:548:713 + chr1 171502972 GGATGGCCTTGTGGGACATCAATGAGAGGAGAGGC ::::::::::::::::::::::::+:::::72644 50 HWI-EAS88_1:1:1:709:757 - chr6 56837978 ACTGATGAGCATAGCCAACACCAGAGGCCTTGTCC 44076:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:421:463 - chr3 7874832 CACCAAGTAAGTCCCTTTTCCCCAAAGCATTTCTC 77677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:189:305 + chr1 172550695 AAAACAAGAGGAGAATGTCAGGCAGTGGATGCAGA ::::::::::::::::::::::::::::::44272 0 HWI-EAS88_1:1:1:121:559 + chr5 150295494 ACCATGGTGTCCTTTTATGCAGACTGTCAGTTTGA ::::::::::::::::::::::::::::::777,4 0 HWI-EAS88_1:1:1:224:985 - chr5 149715546 TCCGTTGAAGAGTCACATGTAAAATCTTAGGTTGC 46444:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:333:730 + chr9 77349179 TGGACAGAATCAGCAAAGCTCAGAAAGGCAAAATG ::::::::::::::::::::::::::::::76677 0 HWI-EAS88_1:1:1:295:481 - chr18 88971116 CATGTTAATTTGGTTCCCAAAATTGCACAAAGATC 67777:::::::::::6:::::::::::::::::: 0 HWI-EAS88_1:1:1:102:695 - chr19 43764369 GGGACGAGCGGGCCTCGGGATTCCCGTGAGTGGGA 66477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:208:782 - chr12 101714235 GCTTCCTGCGAGGGCTCTGGAAAGCTACAACTTCC 44646:::::::::::::::::::::::::::::: 0 30 HWI-EAS88_1:1:1:283:124 - chr13 106216589 AACAATAAAAATTTCCCCCCAACATTTAAAGATGC 74/67:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:348:926 - chr3 99538672 GTTTTGTAGTTTGTCAAGCTAATTACTAATTACTC 76767:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:534:649 + chr9 35112888 GAAAACTGAAAAAGGTGGAAAATTTAGAAATGTCC ::::::::::::::::::::::::::::::77477 2 HWI-EAS88_1:1:1:57:247 + chr12 95443584 AAAATCTGAAAGTAATTTTTTTTTTCTACTTTGTT ::::::::::::::::::::::::::::::77+77 0 HWI-EAS88_1:1:1:371:264 + chr9 73120278 GTGAATGCAGTGCATGTCAAGGCCACAATAGGTCA :::::::::::::::::::::7::::::::77664 0 HWI-EAS88_1:1:1:119:447 + chr7 130527814 ATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTT ::::1:::::::::::::1,::::::::1:51555 2234 HWI-EAS88_1:1:1:452:633 - chr8 109751349 CAGCAGCTGCTTTCACCTGCTGTGAAAGAGGGGAC 2/346:::::::::2:::::::::::::::::::: 0 HWI-EAS88_1:1:1:708:636 + chr13 72865562 GGGGAAGGGAACTCTGTACAGTACCTGATCCCAGG ::::::::::::::::::::::::::::::66244 0 HWI-EAS88_1:1:1:924:783 - chr6 86696490 TGCCCAGCAAGCACTCTTCCCTGGTGAGCCATCTC 24777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:955:62 + chr19 54431703 GCAGTGATAAAAAAGCACAGAGGACAATGGCAGAA ::::::::::::::::::::::::::::::77766 0 HWI-EAS88_1:1:1:831:864 - chr19 8651438 CCCAGAAGGACACAAGCATGCAAACACATGTAAAC +4672:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:230:664 + chr7 28363630 GCAGTGTCATCCCTCCTTGGCATCTGCTCTGTGGT ::::::::::::::::::::::::::::::47624 0 HWI-EAS88_1:1:1:67:666 - chr16 30187400 AGTGAGGGTCTGCCTGGGATGCCAAACAGCCTCGC 70467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:71:122 + chr8 115811635 TCCCTACTATCTCTGCTATCACGTCCAGTATATCT :::::::::::1:11:::::::::::::::54515 0 HWI-EAS88_1:1:1:729:594 + chr9 3012271 TTTCACGTTTTTCAGTGATTTCGTCATTTTTCAAG ::::::::::::::::::::::::::::::7776+ 44 HWI-EAS88_1:1:1:763:790 + chr2 131371697 GGAGGTTGCTGAGGTCGCCCGGCTCATAAGCCTGG ::::::::::::::::::::::::::::::76477 0 HWI-EAS88_1:1:1:747:163 + chr14 79581708 GTCTTATTTCTATGTCATTGCCATGAGTCAACAGC :::::::::::::7::5::7::3::::::,76472 0 HWI-EAS88_1:1:1:171:940 - chr12 112902860 GGGGAGTGAGTGGTCAGAGCATCTAACCGCTAGGC 67777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:427:673 - chr7 19324026 GGCCACTGTGGGCAGCACCATCCCTAGCCAGATTC 2420*&::+::::::5::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:652 + chrUn_random 3903666 GCACACTGTAGGACCTGGAATATGGCGAGAAAACT ::::::::::::::::::::::::::::::47727 4 HWI-EAS88_1:1:1:82:416 + chr4 127997225 AAGCCCAAAACGTGTCAGTCACCCAGGATTTCCCT ::::::::::::::::::::::::::::::77777 0 HWI-EAS88_1:1:1:212:420 - chr14 75952284 CGGAACTCTCCCCAGCACTCGGTACTCTCCCCTCC 434330&::::::::::::::::1::::::::::: 0 HWI-EAS88_1:1:1:424:699 + chr11 34153610 GAATGGCATCTACACAGCACAGTGGCCCTGTCCTC ::::::::::::::::::::::::::::::27357 0 HWI-EAS88_1:1:1:68:587 - chr4 107296611 GGCTCTCTGGGCCTGACTCTGAAGGCCCATTTGGG 772/7::::+::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:620:296 + chr3 146911739 GTTTCTACTGAGGAGTCAGTGGTAGATATGGGAGT ::::::::::::::::::::::::::::::46264 0 HWI-EAS88_1:1:1:433:476 - chr6 129450714 TTCTTTATGGATGTGTCCCTTGTGAGATTACCTAT 46662:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:321:757 - chr10 45031807 GGAAGCACAGTTCCTCTTAAGACCCTCAGGACCAC 67677:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:858:880 - chr1 100174508 GAGAAGAGGATGAAAAGTGAGAATAAGGTGCCTAC 67467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:100:104 + chr12 74353200 GACCATATGTCATTTTGTAGGGGAAATGAGTACTG ::::::::::::::::::::::7::::3::4777) 0 HWI-EAS88_1:1:1:698:245 - chr6 98564914 CAAGATGGAAACCAAGCCTTTGCCCTCCCTGGCCC 27777:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:607:839 + chr13 67521655 GCACTCTGCTTTGTAGTCTTTCCCTCCATGTGTTG :::::1:::1::::+:::::::::::::::51-4) 0 HWI-EAS88_1:1:1:672:737 + chr11 88364685 GAAGTCTCATTAGTCAGCACCGACAGCTGCTGCCC :::::::::::::::::::::::::+::::64666 0 HWI-EAS88_1:1:1:157:844 + chr1 173614620 GTCCCCAGAGTCCATTTCGCTCTGACATGTGTTCC ::::::::::::::::::::::::::::::42444 0 HWI-EAS88_1:1:1:756:357 - chr16 6420503 TGCAGTCAGTGCCAGGCTCCTTCTTGCCTGCAACC 17667:::::::::::::::::::::::::::::: 0 20 HWI-EAS88_1:1:1:363:132 - chr2 98507116 TAAAACTGAAAAAGCTGGAAAATTTAGAAATGTCC 722771::::4:::4:::::::4:::::::::::: 2 20,34 HWI-EAS88_1:1:1:460:575 + chr3 135434599 TGAGTTAGAATGGCTGGTCACACTGAAGAAAAGAG ::::::::::::::::::::3:::&+0:::/3)22 24 HWI-EAS88_1:1:1:139:586 + chr3 99468196 GCTTGCTAGGTACCAAGAGGTCTCACATAAGGGCT ::::::::::::::::::::::::::::::42676 0 HWI-EAS88_1:1:1:85:75 - chr17 11013366 TCCCCCTGCCTCTGCCTCCCAAGTACTGGAACTAA 2407)::::::::::::7::::::::::::::::: 0 HWI-EAS88_1:1:1:330:853 - chr15 87231619 CTAAATTAATGCAAAGTTCACACAGTGTGTTTCCA 277773::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:470:334 + chr16 62513434 GCTGAAGGGGTTTGCAATCCATAGGAAGAACAAGA ::::::::::::::::::::::::::::::62674 0 HWI-EAS88_1:1:1:410:160 + chr10 128257163 GGGAAGAGGGAAAGGGACAGTATAAGGGGTAGGAA ::::::::::::::::::::::::::::::55633 0 HWI-EAS88_1:1:1:841:671 + chr9 120654897 GTCAACAAGTCCAGAAAAATGTGATTGACACTGAG ::::::::::::::::::::::::::::::76644 0 HWI-EAS88_1:1:1:95:489 - chr1 57261469 TAATAGAAATTGAGGAAAGCAAGAGAAGGTATCTG 77777:.:::::::::::::::::::::::::::: 0 28 HWI-EAS88_1:1:1:972:553 + chr1 91352070 GTCCACCCCAACATCTACTCCATCTACGAGCTGCT ::::::::::::::::::::::::::::::66766 0 HWI-EAS88_1:1:1:693:177 - chr3 10279015 CTACCCAAGAGCTTTCCTTCACTGTGTGAGCGAGC 44477:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:744:238 + chr19 31521175 GGTAAGACACGTACTCTATTCCCTCAATTTTAGGG ::::::::::::::::::::::::::&:::7442+ 0 HWI-EAS88_1:1:1:727:555 + chr1 186549400 GTACCTTTGGGCTGTTTGGATTCCAGGTTTTTAAT ::::::::::::::::::::::::::::::64246 0 HWI-EAS88_1:1:1:271:146 - chr3 69993825 TATTAAATAAAATTACTATTGCAAGATCCAAAACC 4%677:::::::::::::::::::::::::::::: 0 33 HWI-EAS88_1:1:1:950:165 - chr10 6956507 AGGTTGTGTCACTAAGATCTCAGGAGGTCTGTTAC 76446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:377:667 + chr2 152283384 GTGGCCTTGTGTGGCCTTAGTACCGGGTAGGCTGT :1::::::::::::::::::::::::::::5545) 0 HWI-EAS88_1:1:1:371:378 + chr12 15750846 GAGGGAGAGAGAGATTGAGGCTGTGGTGTACACAT :::::::::::::::::::::::,5:,::340404 0 HWI-EAS88_1:1:1:264:394 + chr2 154470423 GACATGGGAGAGAGTAGATCAAGACCTTTGACATC ::::::::::::::::::::::::::::::06)44 0 HWI-EAS88_1:1:1:624:792 + chr6 72605380 GGATGCTCCCTAGGGGTTAGAACCCGCTTTCCTGC ::::::::::::::::::::::::::::::77244 0 HWI-EAS88_1:1:1:853:327 - chr17 28644977 TCAAAAAATTCTACAACCACCATCATCTTACTGTC *+277::::::::6::::::::::::::::::::: 0 32 HWI-EAS88_1:1:1:265:361 - chr1 127557882 AAATAAATCCACTTCTCCTCCTGACAGTTGTCTTC 77747:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:243:37 + chrX 64309731 GGTGTAGCATTCAATATACCATCTCTAGTTGACTG ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:700:410 - chr2 155914257 GGAATAGCTGGGGTCATAGAACCATAGACACTTAC 74762:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:723:817 + chr11 69624706 GGTGCCTCTTGACGGAAGCGTCTGGAACAGAGAGC ::::::::::::::::::::::::::::::61446 0 HWI-EAS88_1:1:1:334:777 - chr16 39693205 TACTGGGCAAGACACCTCTCCTTGGAGGAGAGTTC 04467:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:163:362 - chr4 138614747 TCCAGATCTTCCATCAACTCTCCCAGGCTGCCCAC 46664:3::::::::.::::::::::::::::::: 0 HWI-EAS88_1:1:1:206:774 + chr3 136314154 GACAAACAGATCTCACATCAGACACATATGGTGAC ::::::::::::::::::::::::::::::74746 0 HWI-EAS88_1:1:1:197:150 - chr17 36270084 ACACTGGTAGAGAAGCGCTGAGGGTTTGGGACAAC 77644:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:353:78 - chr1 117296243 AGAGGAGTGGAAACAGGATAGTTGAGCCTGAACTC 76746:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:656:761 + chr9 110033571 GGAGGGTTTCCTGTAGCCCTGGTTGTCCTGGCTTT ::::::::::::::::::::::::::::::44460 0 HWI-EAS88_1:1:1:208:965 + chr5 7361379 GATATTCCTCCCAAAACATAATAATAGAACAACAA ::::::::::::::::::::::::::::::67774 0 HWI-EAS88_1:1:1:712:710 - chr2 129230917 GAGATCGCCTCTAGCAGCTGCTTTTGAATTGTGGC 40444::::::5::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:98:392 + chr9 9709749 CCAGAAAAGAAATTCCTCCAGACACATAATAATCA :::::::::::::::::::::,::::::::77767 186 HWI-EAS88_1:1:1:922:547 - chr16 76633237 TCTGATTGTTCATTCCCTTTGAACGCTTGTCAGCC 24466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:349:906 + chr13 52437522 GCCAAGTGCCAGCTAGCCCAGCATGCATTGCAGGC ::::::::::::::::::4::::::::::24/%7) 0 HWI-EAS88_1:1:1:261:689 + chr9 77370003 TCTGTAACGAAGGGAATGTCAGAAGTAAAATGGAA ::::::::::::::::::::::::::::::77764 0 HWI-EAS88_1:1:1:779:699 - chr14 62468136 TTCTCTCCCCACCACCTCTGTCATCTATGAATCAT 22204:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:511:111 + chr7 53005167 GGAGGCTCAGTCCCAGCATTTCTGTGACGCATGGC ::::::::::::::::::::::::5:::::16177 0 HWI-EAS88_1:1:1:168:791 + chrX 8031885 GAAGGTCTCCAAACTACCCAGCACTACAGTAACAG ::::::::::::::::::::::::::::::76464 2 HWI-EAS88_1:1:1:540:235 + chr16 36613167 GGAGAAACTCTCCATGCTCACAGGCAGGCTGGAAA ::::::::::::::::::::::::::::::77276 0 HWI-EAS88_1:1:1:879:434 + chr8 55694925 GCTTTCTGAAGCAATATCTAAAAATACATGAGTCA ::::::::::::::::::::::2::::+++%,)52 0 HWI-EAS88_1:1:1:927:439 + chr17 16974040 GGAAATCTTAAGAGTCCCTTACCTGAACCCCATGA 1:::::::::::::::::::::::::::::43454 0 HWI-EAS88_1:1:1:454:839 + chr15 21415873 GAAAGTGGGGAAAAGCCTTGAAGATATGGCCACAG ::::::::::::::::::::::::::::::60222 6 HWI-EAS88_1:1:1:131:356 + chr18 5462322 TTGTATATGAGCATTGTGCTAATCATCTTCTATTG ::::::::::::::::::::::::::::::7777* 0 HWI-EAS88_1:1:1:410:806 - chr4 95519928 CTGCCATTAGCTCCCACCAGACTCCTGCTTCTCCC 7*466:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:173:649 + chr14 32569656 GAGAGGCTCATAGTAGGAGTGTGCTGCGAGCAGAA ::::::::::::::::::::::::::::::77764 0 HWI-EAS88_1:1:1:765:577 - chr17 16509278 TTGTTCACAACCCCTCTCAGGAGAATGGAATTAAC 34736:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:232:747 - chr14 63416748 CCACAGAAGCAACTTAAGGCAGAAAGTAGAAAGGT ,2727:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:200:860 + chr5 143550277 GCCAAACAACGGAGGAGGGTCTCCACCACGGCCTG ::::::::::::::::::::::::::::::46244 0 HWI-EAS88_1:1:1:226:301 - chr1 193909090 GCCCCTGTTTTCAGTACACCGACCCTCACCAAAGC 64647::::::5::::5:::::::::::::::::: 0 HWI-EAS88_1:1:1:720:593 - chr5 117721479 TTTGTCACGACAGCTACACCGGCCTGGTTGTCACC 22022:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:179:435 + chr14 54958717 GGATCTCAATGTAAAACCAGATACACTGAACCTAA ::::::::::::::::::::::::::::::47726 0 HWI-EAS88_1:1:1:334:739 - chr11 100841423 CGTTGGCGGAGTGACTCACGTTTCCCTCAAGACAC 47446:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:527:570 - chr15 10799644 TCTGTCTCTTTATCGGCAACACCAACTTAACCGTA 5257/2:+:+:::4::5::.::::::::::::::: 0 HWI-EAS88_1:1:1:788:926 + chrX 42404451 GTATTAGAAAACAAACATTGTTCCTATTTGTCCTA ::::::::::::::::::::::::::::::77774 0 HWI-EAS88_1:1:1:307:465 + chr12 40752491 GCACGCAGCAGCTGGTTTCTAATGCCACTCTCCTC ::::::::::::::::::::::::::2:::76757 0 HWI-EAS88_1:1:1:800:265 - chr12 106258463 CCACCTTCGTCAGAGCAGCTGTGACTGCCTGCAGC 44242&+,:0:::3::,:::::::::::::::::: 0 HWI-EAS88_1:1:1:69:120 + chr17 20667690 GTAGAAGAATTGGAATGTACTGGTAAAGGTACTGG ::::::::::::::::::::::::::::::77774 23 HWI-EAS88_1:1:1:567:667 - chr14 43324811 GAAGAATGGAAAGTCAGGGACACGGCATGACATTC 42673:::::::::::::::::::::::::::::: 0 HWI-EAS88_1:1:1:164:144 + chr2 57416770 GTAAATTGAAAAACATTTTCTTGATGAACATTTTG :::::::::::0::::::::::::::::::5555) 0 HWI-EAS88_1:1:1:101:736 - chr15 7183990 TTATAGAATCACTCTGTATTTAACAGAAAGCCAGG 27777::::::4:-::::::::::::::::::::: 0 HWI-EAS88_1:1:1:715:680 + chr9 92383679 GTGAGTCAGTCAGGTACTAAGAAGAAAGAATTACT :::::::::::::::::::::::::2::::76257 0 HWI-EAS88_1:1:1:873:386 + chr15 25552486 GAAGAATGTGCCACCAGCTGTTCTCCTCCCGGGAG ::::::::::::::::::::::::::::::44404 0 HWI-EAS88_1:1:1:273:800 + chr16 33204791 GAGTACTTTGTAAATGAACAGTCTAGAAATCAGAA ::::::::::::::::::::::::::::::44744 0 ShortRead/inst/extdata/maq/0000755000126300012640000000000012227066723017224 5ustar00biocbuildphs_compbioShortRead/inst/extdata/maq/out.aln.1.txt0000644000126300012640000040065512227066723021516 0ustar00biocbuildphs_compbioHWI-EAS88_4_1_6_505_934 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacttttgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_7_163_963 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_175_236 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_733_962 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_12_440_508 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_12_293_339 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_15_389_86 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_316_478 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_18_347_964 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_20_796_561 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_20_402_454 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_407_867 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_687_534 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_338_107 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_36_257_639 ChrA 1 + 0 0 23 23 23 4 16 0 0 35 aaagttagagaagtttnacttntgtagtcaacatc ----------------!----!---)))))))### HWI-EAS88_4_1_36_638_853 ChrA 1 + 0 0 23 23 23 3 12 0 0 35 aaagttagagaagtttnatttntgtaggcaccatc ----------------!----!---)))))))### HWI-EAS88_4_1_50_569_725 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_51_124_197 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_57_575_605 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgactcctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_59_934_643 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_60_449_118 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_61_671_133 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_61_164_18 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_62_851_658 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_67_837_274 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtctgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_69_804_185 ChrA 1 + 0 0 23 23 23 3 36 0 0 35 aaagttagagaagtttggactctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_69_116_866 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_954_879 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_72_316_172 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_74_908_747 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_77_324_548 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_78_998_596 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_80_381_562 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_85_636_154 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_87_864_224 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_88_211_199 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_89_908_419 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_92_816_658 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_93_566_937 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_95_845_393 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_102_351_841 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_997_210 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_217_826 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_71_977 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_750_464 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagctagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_114_317_567 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_118_207_399 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_121_642_529 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_124_905_423 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_126_425_312 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_128_605_529 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_714_139 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_879_918 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_394_765 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttaaagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_138_523_739 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaacttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_140_624_38 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_142_221_50 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_146_555_781 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_157_348_728 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_165_817_549 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_175_101_218 ChrA 1 + 0 0 12 12 12 2 20 0 0 35 aaagttagagaagattgacttctgtacgcaccatc -------------------------)))))))### HWI-EAS88_4_1_180_437_690 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_183_965_413 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_184_998_567 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacctctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_186_241_804 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_190_96_602 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_191_401_219 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_197_362_263 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_198_21_166 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_199_377_859 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_199_550_924 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_207_336_676 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_208_329_98 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacttctttaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_214_380_887 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_219_171_610 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_220_901_680 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_220_659_985 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_223_393_46 ChrA 1 + 0 0 15 15 15 3 0 0 1 35 aaagttagagaagtttgacttcngtaggcnccanc ----------------------!--))))!))#!# HWI-EAS88_4_1_226_94_519 ChrA 1 + 0 0 12 12 12 3 0 0 0 35 aaagttagagaagttngacttctgtnggcaccntc ---------------!---------!))))))!## HWI-EAS88_4_1_226_516_529 ChrA 1 + 0 0 12 12 12 3 0 0 0 35 aaagttagagaagttngacttctgtnggcaccntc ---------------!---------!))))))!## HWI-EAS88_4_1_228_627_50 ChrA 1 + 0 0 12 12 12 4 2 0 0 35 aaagttagagaagtttgacttcngtnggcaccaan ----------------------!--!))))))##! HWI-EAS88_4_1_236_499_460 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_240_681_913 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_241_643_582 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_242_252_257 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_242_65_952 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_245_177_198 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_245_806_819 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_246_701_623 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_247_169_893 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_247_812_955 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_249_875_416 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaggttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_252_774_765 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_253_702_960 ChrA 1 + 0 0 23 23 23 3 20 0 0 35 aaagttagagaagtttgncttatgtagtcaccatc -----------------!-------)))))))### HWI-EAS88_4_1_260_109_511 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_260_32_588 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_262_351_961 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagagaagtttgacttccgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_267_546_883 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_268_935_456 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_269_122_97 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_272_825_213 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_274_636_98 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_280_310_986 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_280_702_969 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_282_135_970 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_284_923_377 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_284_244_113 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_285_573_113 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_288_361_945 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_293_200_268 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_296_571_373 ChrA 1 + 0 0 22 22 22 0 0 1 0 35 aaagttagagaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_298_436_249 ChrA 1 + 0 0 15 15 15 1 12 0 1 35 aaagttagggaagtttgacttctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_99_379_546 ChrA 2 + 0 0 22 22 22 0 0 1 0 35 aagttagagaagtttgacttctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_168_686_853 ChrA 2 + 0 0 15 15 15 2 12 0 1 35 cagttagagaagtttgacttctgtaggcaccatcn +------------------------)))))))##! HWI-EAS88_4_1_205_353_54 ChrA 2 + 0 0 23 23 23 3 36 0 0 35 aaagttgagaagtttgacttctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_289_504_719 ChrA 2 + 0 0 23 23 23 3 36 0 0 35 aaagttgagaagtttgacttctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_554_516 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_1_670_579 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_1_766_705 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_939_240 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_666_202 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_74_588 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_224_196 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_822_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_428_152 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_3_281_271 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_4_302_84 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_4_967_989 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_933_109 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_215_27 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_476_235 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_154_433 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_576_223 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttgctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_931_657 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_5_683_969 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_767_356 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_735_96 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_353_316 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_780_324 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_164_380 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_929_924 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_6_843_460 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_900_265 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_441_710 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_911_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_7_274_184 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttcttctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_587_220 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_475_773 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_156_449 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_8_941_976 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_105_638 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_260_582 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_275_157 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_598_626 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_9_281_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_336_522 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_231_590 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_909_844 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_518_601 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_10_468_329 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_11_876_81 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_11_483_84 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_11_549_515 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_11_686_794 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_687_64 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_399_681 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_177_488 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_724_741 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_12_333_34 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_13_365_664 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_13_765_808 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_14_443_868 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_14_983_739 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_14_598_919 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_15_100_670 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_15_698_937 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_16_168_610 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_782_381 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_275_365 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_429_856 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_17_309_358 ChrA 51 + 0 0 22 22 22 4 14 1 0 35 tacccgtataagtttctgctgagctgtacgcaaac -------------------------)))))))### HWI-EAS88_4_1_18_142_762 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_18_388_993 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_19_578_127 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacct -------------------------)))))))### HWI-EAS88_4_1_19_687_139 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_19_611_543 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 taaccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_19_779_638 ChrA 51 + 0 0 15 15 15 3 28 0 1 35 tagccgtataagtttctgctgagctgtagagacca -------------------------)))))))### HWI-EAS88_4_1_20_211_45 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_20_357_830 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_20_230_817 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_672_50 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_870_905 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccatataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_937_43 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_21_785_946 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_22_348_187 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_22_344_199 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_25_776_318 ChrA 51 + 0 0 22 22 22 2 4 1 0 35 tacccgtataagtttctgctgagctgtaggcacat -------------------------)))))))### HWI-EAS88_4_1_25_152_91 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_25_968_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_26_994_219 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_26_425_640 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttactgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_26_179_814 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_27_255_646 ChrA 51 + 0 0 23 23 23 3 0 0 0 35 tacccgtataagtttctnctnngctgtaggcacca -----------------!--!!---)))))))### HWI-EAS88_4_1_27_437_166 ChrA 51 + 0 0 23 23 23 3 0 0 0 35 tacccgtataagtttctnctnngctgtaggcacca -----------------!--!!---)))))))### HWI-EAS88_4_1_27_222_982 ChrA 51 + 0 0 23 23 23 3 0 0 0 35 tacccgtataagtttctnctnngctgtaggcacca -----------------!--!!---)))))))### HWI-EAS88_4_1_30_71_568 ChrA 51 + 0 0 15 15 15 2 14 0 1 35 tacccgtataagttcctgctgagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_30_469_602 ChrA 51 + 0 0 15 15 15 4 24 0 1 35 tacccgtataagttactgctgagctgtagggacat -------------------------)))))))### HWI-EAS88_4_1_35_794_339 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_763_713 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_696_246 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_286_341 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_35_247_331 ChrA 51 + 0 0 15 15 15 2 12 0 1 35 tccccgtataagtttctgctgagctgtaggcanca -------------------------)))))))!## HWI-EAS88_4_1_36_468_589 ChrA 51 + 0 0 12 12 12 2 0 0 0 35 tacccgtataagtttcngctgngctgtaggcacca ----------------!----!---)))))))### HWI-EAS88_4_1_36_438_771 ChrA 51 + 0 0 23 23 23 3 12 0 0 35 tacccgtataagtctcngctgngctgtaggcacca ----------------!----!---)))))))### HWI-EAS88_4_1_40_359_742 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_40_456_979 ChrA 51 + 0 0 12 12 12 3 26 0 0 35 tacccgtataagcttctgctaagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_42_765_439 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_42_988_704 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_42_328_130 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_42_974_932 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_43_727_345 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_43_897_716 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_43_494_109 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_656_493 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_448_163 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_751_711 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_44_195_474 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_44_676_1000 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_46_537_419 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_46_699_851 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_46_567_703 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_47_820_48 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_47_511_496 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_47_327_894 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttactgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_831_163 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_101_426 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_461_518 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_48_367_291 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_49_749_341 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_49_297_670 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_519_35 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_911_397 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_265_657 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_50_471_607 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_51_722_659 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_51_166_596 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_51_987_611 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_52_343_550 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_52_613_232 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_53_906_222 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_53_302_895 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_53_251_886 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_54_740_970 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_55_478_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_55_529_406 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_55_980_989 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtagggacca -------------------------)))))))### HWI-EAS88_4_1_56_888_533 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_56_624_541 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_56_760_759 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_57_761_415 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_57_101_792 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagttactgcagagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_57_244_795 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagtttctacagagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_58_493_276 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_59_458_44 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_59_360_636 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_59_888_699 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_428_629 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_260_435 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_638_563 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_425_164 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_209_541 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_60_843_870 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtagggacca -------------------------)))))))### HWI-EAS88_4_1_61_345_328 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_61_393_363 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_61_516_693 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_62_706_506 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_62_399_960 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_953_13 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_195_783 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_824_567 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_287_482 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_64_476_213 ChrA 51 + 0 0 15 15 15 1 8 0 1 35 tacccgtataagtttctgctgagctgtcggcacca -------------------------)))))))### HWI-EAS88_4_1_65_713_451 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_65_300_711 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_65_55_182 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_67_602_630 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_68_975_227 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_69_777_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_69_849_46 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_70_665_574 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_70_660_219 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_71_709_518 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_73_726_882 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_73_983_991 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_74_165_616 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_74_304_558 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_866_136 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_823_428 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_473_257 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_75_91_37 ChrA 51 + 0 0 12 12 12 3 32 0 0 35 tacccgtataagtttctgctgcgatgtaggaacca -------------------------)))))))### HWI-EAS88_4_1_76_638_869 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_76_599_911 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_77_149_181 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_77_759_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_78_510_65 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_79_225_387 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_79_586_578 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_491_462 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_922_101 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_321_54 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_824_610 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_80_476_339 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_81_868_661 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_81_401_32 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_82_894_629 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_245_634 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_904_85 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_463_804 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_878_496 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_83_89_343 ChrA 51 + 0 0 12 12 12 4 30 0 0 35 tacccgtataagtttctgctgagatgaagccacaa -------------------------)))))))### HWI-EAS88_4_1_84_576_335 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_644_336 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_835_702 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_938_141 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_84_919_792 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_85_349_392 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_85_862_309 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataggtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_581_64 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_567_651 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_618_340 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_290_785 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_664_283 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_86_346_704 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_87_607_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_87_481_131 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_87_409_756 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_600_97 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_959_372 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_170_563 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_88_711_941 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 aacccgtataagtttctgctgagctgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_89_886_292 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_89_951_934 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_352_641 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_770_508 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_856_151 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_315_646 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_521_224 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_90_775_936 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_91_217_492 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_91_328_427 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_91_445_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_92_547_262 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_92_197_929 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_92_584_39 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtagggacca -------------------------)))))))### HWI-EAS88_4_1_93_898_338 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_784_401 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_579_347 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_319_41 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_961_639 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_94_629_109 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_95_312_344 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_96_962_132 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_96_753_420 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_96_866_167 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_97_451_304 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_97_615_686 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_622_163 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_571_422 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_466_903 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_98_265_987 ChrA 51 + 0 0 12 12 12 3 32 0 0 35 taaccgtataagtttatgctgagctgtagtcacca -------------------------)))))))### HWI-EAS88_4_1_99_899_239 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_502_692 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_646_668 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_974_785 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_99_88_981 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_100_614_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_100_982_17 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_101_874_781 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_101_146_787 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagtttctgctggactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_102_966_655 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_102_318_343 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_103_651_423 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_103_218_297 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_104_489_438 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_840_542 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_86_783 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_958_843 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_105_199_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_84_432 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_479_834 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_545_370 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_106_999_282 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_107_617_88 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_107_204_373 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_107_913_344 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_109_658_693 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_109_624_975 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_110_762_557 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_685_225 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_594_661 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_981_447 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_431_747 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_191_957 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_111_329_865 ChrA 51 + 0 0 15 15 15 3 22 0 1 35 tacccgtataagtttctgcttagctgtaggaacaa -------------------------)))))))### HWI-EAS88_4_1_112_611_472 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_112_934_899 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_653_144 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_298_235 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_494_118 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_774_468 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_114_538_653 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_904_185 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_175_228 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_504_833 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_265_756 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_115_538_847 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_547_634 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_809_128 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_116_773 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_116_265_952 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_631_566 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_430_508 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_654_456 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_484_632 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_117_727_367 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_31_314 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_67_453 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_118_442 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_407_511 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_118_571_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_550_357 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_446_122 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_637_173 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_823_82 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_389_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_119_851_942 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_732_162 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_290_298 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_971_602 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_900_960 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtctctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_120_40_964 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_121_567_532 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_121_639_276 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_121_123_944 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_122_843_437 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_122_830_593 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_122_247_567 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_123_150_346 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_123_871_789 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacta -------------------------)))))))### HWI-EAS88_4_1_124_402_502 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_124_938_389 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_124_943_753 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_125_614_325 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_125_866_777 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_85_230 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_369_824 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_891_922 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_126_932_503 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_589_455 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttcctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_983_394 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_111_735 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_129_875 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_128_479_403 ChrA 51 + 0 0 22 22 22 5 28 1 0 35 tacccgtataagtttctgctgagctgtagcaccat -------------------------)))))))### HWI-EAS88_4_1_129_706_587 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_129_290_700 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_129_96_166 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_245_420 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_103_617 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_901_669 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttcttctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_130_860_473 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_703_156 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtataagtttcttcttagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_400_258 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_946_716 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_131_382_850 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_450_689 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_822_417 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_104_435 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_132_367_708 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtaggcccca -------------------------)))))))### HWI-EAS88_4_1_134_612_503 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_134_330_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_134_948_795 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_715_131 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_532_187 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_130_623 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_332_142 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_135_234_201 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_136_565_94 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_136_576_470 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_137_910_193 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_819_224 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_385_648 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_154_598 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_441_142 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_138_288_543 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_139_352_379 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_139_395_912 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_491_178 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_95_332 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_349_303 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_715_771 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_976_655 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_140_675_898 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_141_588_224 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_141_627_829 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_141_106_475 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_304_50 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_871_41 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_727_500 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_186_136 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_92_152 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_358_898 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_142_869_967 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_145_297_37 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_276_538 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_110_179 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_853_746 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_146_113_708 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_148_325_78 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctgcngagctgtaggcacca -------------------!-----)))))))### HWI-EAS88_4_1_148_157_257 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctgcngagctgtaggcacca -------------------!-----)))))))### HWI-EAS88_4_1_148_271_700 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctgcngagctgtaggcacca -------------------!-----)))))))### HWI-EAS88_4_1_149_794_567 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_149_919_742 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_151_190_313 ChrA 51 + 0 0 23 23 23 3 32 0 0 35 tacccgtataagtttctgctaagatgaaggcacca -------------------------)))))))### HWI-EAS88_4_1_152_949_525 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_153_852_370 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_153_705_680 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_154_649_428 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_154_488_570 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_157_819_905 ChrA 51 + 0 0 12 12 12 3 26 0 0 35 tatccgtataagtttctgctgagatgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_160_88_593 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_160_889_791 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtaggaacca -------------------------)))))))### HWI-EAS88_4_1_160_674_142 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_368_62 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_29_522 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_259_416 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_906_773 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_165_995_791 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_166_809_486 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_166_458_803 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tatccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_166_537_760 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_168_961_770 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_168_490_159 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_168_534_317 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcaccn -------------------------)))))))##! HWI-EAS88_4_1_175_112_698 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcagca -------------------------)))))))### HWI-EAS88_4_1_175_605_154 ChrA 51 + 0 0 15 15 15 1 8 0 1 35 tacccgtataagtttctgctgagctgtgggcacca -------------------------)))))))### HWI-EAS88_4_1_175_972_297 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_175_171_599 ChrA 51 + 0 0 15 15 15 1 8 0 1 35 tacccgtataagtttctgctgagctgaaggcacca -------------------------)))))))### HWI-EAS88_4_1_175_93_66 ChrA 51 + 0 0 12 12 12 5 38 0 0 35 tacccgtataagtctctgctgagctgtcgcccccc -------------------------)))))))### HWI-EAS88_4_1_180_530_275 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_452_358 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_480_750 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_842_313 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_178_795 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_181_305_574 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_257_310 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_962_646 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtagncacca -------------------------))))!))### HWI-EAS88_4_1_183_203_839 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_970_713 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_184_766_249 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_882_385 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_636_896 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_846_810 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_162_545 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_231_438 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_436_990 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_1000_559 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_123_514 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_455_449 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_650_292 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_126_568 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacctgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_491_774 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_686_663 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_730_402 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_117_491 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_24_291 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_581_802 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_177_124 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacctgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_538_465 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_421_175 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_142_642 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_168_855 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_520_222 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_951_674 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_655_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_880_30 ChrA 51 + 0 0 15 15 15 3 14 0 1 35 tactcgtataagtttctgctgagctgtaggcacan -------------------------)))))))##! HWI-EAS88_4_1_190_234_928 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_687_550 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_458_206 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_649_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_491_673 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_21_963 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_192_794_557 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_544_257 ChrA 51 + 0 0 22 22 22 1 8 1 0 35 tacccgtataagtttctgctgagctgtatgcacca -------------------------)))))))### HWI-EAS88_4_1_193_883_105 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_685_566 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_795_382 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_359_775 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_656_781 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtacaagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_809_458 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_747_835 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_686_739 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtgtaagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_767_178 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_915_465 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_519_286 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_42_290 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_202_931 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_807_639 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_770_415 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_305_805 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_524_957 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_868_422 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_400_423 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_644_838 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_928_418 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_900_389 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_923_376 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_236_768 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_919_682 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_839_348 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_510_101 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_397_622 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_274_564 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_213_153 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_408_525 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_227_880 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_181_936 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_53_101 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_769_806 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_876_683 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_181_450 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_240_716 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_609_930 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_509_47 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_85_106 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_855_686 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_930_317 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_199_170 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_285_457 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_652_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_780_225 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_360_419 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_414_637 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_723_472 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_977_221 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_28_938 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_154_160 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_792_53 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_456_474 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_452_805 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_275_949 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_604_930 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_461_463 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 cacccgtataagtttctgctgagctgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_211_795_381 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_855_34 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_152_620 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_749_56 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_327_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_60_389 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_927_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_837_360 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_832_577 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_424_551 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_593_370 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_506_253 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_373_107 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_21_252 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_293_558 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_746_879 ChrA 51 + 0 0 22 22 22 2 4 1 0 35 tacccgtataagtttctgctgagctgtaggcactc -------------------------)))))))### HWI-EAS88_4_1_215_163_822 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_587_831 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_920_421 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_438_512 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_362_66 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_668_844 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_439_468 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_192_858 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_49_622 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_457_857 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_711_988 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_219_649_268 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_701_534 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_116_141 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_159_658 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_673_440 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_412_283 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_494_612 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_378_674 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_373_619 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggnacca -------------------------)))))!)### HWI-EAS88_4_1_221_887_101 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_56_28 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_432_887 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_549_866 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_454_243 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_123_508 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_223_528_444 ChrA 51 + 0 0 15 15 15 4 2 0 1 35 tacccgtataagtttctgctganctgtagncacnc ----------------------!--))))!))#!# HWI-EAS88_4_1_226_940_30 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_623_199 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_576_620 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_824_208 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_976_394 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_855_159 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_745_497 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_88_624 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttntgctgagctntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_228_610_567 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttctgctganctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_220_314 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttctgctganctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_229_292_106 ChrA 51 + 0 0 12 12 12 4 10 0 0 35 tacccgtataagtttctgctnagctatagncagca --------------------!----))))!))### HWI-EAS88_4_1_230_884_573 ChrA 51 + 0 0 12 12 12 6 30 0 0 35 tacccgtataagtttctgctgatctttacncnaca -------------------------))))!)!### HWI-EAS88_4_1_230_773_680 ChrA 51 + 0 0 15 15 15 4 10 0 1 35 tacccgtataagtttctgctgagctttagncntca -------------------------))))!)!### HWI-EAS88_4_1_232_647_877 ChrA 51 + 0 0 12 12 12 3 0 0 0 35 tacccgtataagtttctgctganctgtnggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_233_647_357 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtattagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_217_188 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_396_890 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_435_208 ChrA 51 + 0 0 12 12 12 2 24 0 0 35 tacccgtatcagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_405_177 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_129_332 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_602_269 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_679_774 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_944_888 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_668_861 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_758_997 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_81_345 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_78_399 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_394_64 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_480_461 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_235_449 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_715_556 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_409_731 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_801_104 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_279_677 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_617_980 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_242_194_140 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_244_416_239 ChrA 51 + 0 0 22 22 22 1 0 1 0 35 tacccgtataagtttctgctgagctgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_245_587_286 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_245_316_916 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgagccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_681_146 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_321_576 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_699_834 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_19_940 ChrA 51 + 0 0 12 12 12 7 54 0 0 35 tacccgtataagtttctgctgagcactaacacaca -------------------------)))))))### HWI-EAS88_4_1_247_476_209 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_831_394 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_792_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_791_485 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_768_671 ChrA 51 + 0 0 12 12 12 2 20 0 0 35 tacctgtataagtttctgctgagctggaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_383_85 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_645_322 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_269_106 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_171_764 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_737_188 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_187_371 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_646_255 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_493_799 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_381_501 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_573_456 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_458_651 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_734_378 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_62_933 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_563_112 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_91_843 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_253_551_206 ChrA 51 + 0 0 23 23 23 3 16 0 0 35 tacccgtataagtttctnctgagcttcaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_772_502 ChrA 51 + 0 0 12 12 12 2 12 0 0 35 tacccgtataagtttctnctgatctgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_598_84 ChrA 51 + 0 0 12 12 12 3 8 0 0 35 tacccgtataagtttctnctgagctgnagtcacca -----------------!-------)!)))))### HWI-EAS88_4_1_253_582_583 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctnctgagctgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_764_489 ChrA 51 + 0 0 15 15 15 1 0 0 1 35 tacccgtataagtttctnctgagctgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_254_738_845 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_329_354 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_680_573 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_26_645 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_564_258 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_626_621 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_78_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_523_534 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_772_515 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_678_203 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_717_779 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_743_816 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagttactgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_378_694 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_161_512 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_755_432 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_302_459 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_622_21 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_361_595 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_383_1001 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_162_313 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccatataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_566_672 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_710_87 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_514_924 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_840_944 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_542_74 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_322_178 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_367_782 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_649_368 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_173_53 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_122_857 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_487_312 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_144_434 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_650_739 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_368_498 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_26_470 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_281_83 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_690_345 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_857_463 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_157_365 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_587_772 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_290_871 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_892_277 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_117_279 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_215_575 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_652_721 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_272_399 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_798_25 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_673_977 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_273_329_277 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_273_781_314 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_36_507 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_109_486 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_973_783 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_276_770_460 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_232_401 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_735_947 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_855_971 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_704_988 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_655_19 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_376_780 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_236_280 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_179_482 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_34_424 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_685_385 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_888_993 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_357_202 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_692_791 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_622_237 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_138_998 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_242_727 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_763_94 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_861_930 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_31_151 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_358_886 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_147_374 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_453_23 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_808_820 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_395_566 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_51_364 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_493_98 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_870_341 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_568_167 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_435_444 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_732_285 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtatgagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_165_226 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_339_308 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_768_702 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_375_624 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_372_265 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_155_546 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagtttctgctgaactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_465_487 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_163_484 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_49_940 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_315_185 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_234_120 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_763_806 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_212_729 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_566_850 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_625_644 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_129_698 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_921_735 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_474_325 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_798_461 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_241_105 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_615_527 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_742_429 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_331_414 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_97_519 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_452_305 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_583_685 ChrA 51 + 0 0 15 15 15 1 12 0 1 35 tacccgtataagcttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_485_195 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_47_478 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_568_871 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_736_36 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_870_795 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_548_618 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_351_875 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_206_863 ChrA 51 + 0 0 22 22 22 1 2 1 0 35 tacccgtataagtttctgctgagctgtaggcaccg -------------------------)))))))### HWI-EAS88_4_1_298_796_993 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_828_126 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_381_298 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_650_704 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_611_763 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_782_305 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_91_707 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_661_19 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_118_894 ChrA 51 + 0 0 22 22 22 0 0 1 0 35 tacccgtataagtttctgctgagctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_30_360_204 ChrA 52 + 0 0 23 23 23 3 36 0 0 35 taccgtataagtttttgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_42_567_90 ChrA 52 + 0 0 12 12 12 4 26 0 0 35 taccgtataagtttctgctgagctgtaggcacccn ++-----------------------)))))))##! HWI-EAS88_4_1_84_647_783 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_85_852_68 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_89_556_255 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_110_383_762 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_138_964_202 ChrA 52 + 0 0 22 22 22 0 0 1 0 35 acccgtataagtttctgctgagctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_180_572_279 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_196_371_63 ChrA 52 + 0 0 22 22 22 0 0 1 0 35 acccgtataagtttctgctgagctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_209_27_122 ChrA 52 + 0 0 15 15 15 1 12 0 1 35 tcccgtataagtttctgctgagctgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_241_321_218 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_263_418_901 ChrA 52 + 0 0 12 12 12 2 24 0 0 35 taccgtataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_276_104_117 ChrA 52 + 0 0 23 23 23 3 36 0 0 35 taccctataagtttctgctgagctgtaggcaccat ++-----------------------)))))))### HWI-EAS88_4_1_11_791_180 ChrA 101 + 0 0 15 15 15 1 12 0 1 35 cagctttttagttttcacgctgtaggcaccatcaa +------------------------)))))))### HWI-EAS88_4_1_13_514_596 ChrA 101 + 0 0 15 15 15 1 12 0 1 35 tagcttcttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_36_648_772 ChrA 101 + 0 0 12 12 12 2 0 0 0 35 tagctttttagttttcncgctntaggcaccatcaa ----------------!----!---)))))))### HWI-EAS88_4_1_51_638_881 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_56_611_301 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_67_684_559 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_69_801_661 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_71_987_730 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_73_690_22 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_76_889_789 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_91_981_885 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_94_394_46 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_108_560_901 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_138_625_488 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_165_469_971 ChrA 101 + 0 0 15 15 15 2 16 0 1 35 tagctttttagttttcacgctgtagtcagcatcaa -------------------------)))))))### HWI-EAS88_4_1_193_212_968 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_215_444_185 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_232_416_788 ChrA 101 + 0 0 12 12 12 3 0 0 0 35 tagctttttagttttcacgctgnaggcnccatcan ----------------------!--))!))))##! HWI-EAS88_4_1_241_75_622 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_248_642_940 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_250_372_60 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_252_729_227 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_254_716_653 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_274_40_854 ChrA 101 + 0 0 15 15 15 1 12 0 1 35 tagctttttagttttaacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_276_802_411 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_298_887_457 ChrA 101 + 0 0 22 22 22 0 0 1 0 35 tagctttttagttttcacgctgtaggcaccatcaa -------------------------)))))))### HWI-EAS88_4_1_12_1000_484 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_14_688_438 ChrA 151 + 0 0 15 15 15 1 12 0 1 35 ttcgaggcctattaaacccctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_25_975_715 ChrA 151 + 0 0 12 12 12 2 24 0 0 35 ttcgaggcctattaaaactcggctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_43_764_665 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_79_384_542 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_85_692_526 ChrA 151 + 0 0 15 15 15 1 12 0 1 35 tccgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_97_428_606 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_202_266_568 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_207_525_148 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_214_811_380 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_272_840_571 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_273_260_580 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_278_470_89 ChrA 151 + 0 0 22 22 22 0 0 1 0 35 ttcgaggcctattaaacctctgctgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_14_446_215 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_311_196 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_948_414 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_154_938_263 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_217_324_105 ChrA 152 + 0 0 23 23 23 3 36 0 0 35 ttcgggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_296_335_731 ChrA 152 + 0 0 12 12 12 2 24 0 0 35 ttcaggcctattaaacctctgctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_1_689_272 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_247_616 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_765_530 ChrA 201 + 0 0 15 15 15 1 12 0 1 35 ttttctcgatgttttctgatctgtaggcaccatca +------------------------)))))))### HWI-EAS88_4_1_1_408_74 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_566_624 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_1_474_948 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_2_644_906 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_475_521 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_298_368 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_459_421 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_3_619_218 ChrA 201 + 0 0 15 15 15 1 12 0 1 35 gattctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_882_358 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_837_148 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_343_249 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_668_527 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_188_105 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_399_240 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_91_408 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_433_144 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_370_657 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_4_347_731 ChrA 201 + 0 0 23 23 23 7 62 0 0 35 tttcctcgatgttttctgatatgtaggcaaactcg +------------------------)))))))### HWI-EAS88_4_1_5_750_634 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_5_175_355 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_5_154_980 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_485_227 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_291_284 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_629_956 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_216_836 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_6_408_351 ChrA 201 + 0 0 15 15 15 1 8 0 1 35 gtttctcgatgttttctgatctgtagtcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_274_72 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_975_642 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_246_382 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_941_56 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_340_449 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_7_369_42 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_486_24 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_889_617 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_790_848 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_500_208 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_532_773 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_863_353 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_9_452_339 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_863_88 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_635_779 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_514_210 ChrA 201 + 0 0 22 22 22 1 2 1 0 35 gtttctcgatgttttctgatctgtaggcaccatcg -------------------------)))))))### HWI-EAS88_4_1_10_125_708 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_599_930 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_199_964 ChrA 201 + 0 0 22 22 22 1 8 1 0 35 gtttctcgatgttttctgatctgtaggcacaatca -------------------------)))))))### HWI-EAS88_4_1_10_221_964 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_10_685_144 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_11_942_199 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### HWI-EAS88_4_1_11_875_373 ChrA 201 + 0 0 22 22 22 0 0 1 0 35 gtttctcgatgttttctgatctgtaggcaccatca -------------------------)))))))### ShortRead/inst/extdata/maq/out.aln.2.txt0000644000126300012640000040444512227066723021520 0ustar00biocbuildphs_compbioHWI-EAS88_4_1_175_165_901 ChrA 1151 + 0 0 15 15 15 1 0 0 1 35 tttgtactccgatnccattcagactgtaggcacca -------------!-----------)))))))### HWI-EAS88_4_1_180_452_137 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_422_486 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_723_162 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_722_562 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_726_812 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_499_849 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_792_179 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_626_889 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_180_673_993 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_757_364 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_180_709_540 ChrA 1151 + 0 0 23 23 23 5 40 0 0 35 tttgtactccgatgcacttccgactgtaggcacac -------------------------)))))))### HWI-EAS88_4_1_181_663_285 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_109_366 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_636_677 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_604_736 ChrA 1151 + 0 0 22 22 22 2 8 1 0 35 tttgtactccgatgccattcagactgtagntacca -------------------------))))!))### HWI-EAS88_4_1_181_982_96 ChrA 1151 + 0 0 15 15 15 2 12 0 1 35 tttgtactccaatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_241_252 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_579_856 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_434_740 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_181_301_554 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtagncacca -------------------------))))!))### HWI-EAS88_4_1_183_907_317 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_25_353 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacct -------------------------)))))))### HWI-EAS88_4_1_183_808_466 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_782_572 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_627_938 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_264_682 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_816_584 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_183_525_937 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_662_198 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_762_462 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_66_222 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_572_704 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_703_412 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_184_221_982 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_158_88 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_760_348 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_649_674 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_720_835 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_316_853 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_185_570_386 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_868_139 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_174_298 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_186_328_987 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_162_164 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_230_544 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_363_241 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_229_963 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcaggctgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_187_675_370 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_816_98 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_944_223 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_188_450_457 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_189_212_165 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_501_600 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_446_498 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_354_354 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttggactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_128_449 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_189_237_655 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_957_344 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_69_42 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_404_161 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_976_311 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_624_67 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_491_383 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_469_732 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_262_523 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_715_653 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_190_604_894 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcatca -------------------------)))))))### HWI-EAS88_4_1_191_925_314 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_390_512 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_304_487 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_585_557 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_859_346 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_513_411 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_670_155 ChrA 1151 + 0 0 22 22 22 2 4 1 0 35 tttgtactccgatgccattcagactgtaggcacat -------------------------)))))))### HWI-EAS88_4_1_191_196_457 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_646_906 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_204_328 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_967_701 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_486_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_85_654 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_948_870 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_191_475_957 ChrA 1151 + 0 0 23 23 23 6 50 0 0 35 tttgtactccgatgccatacagacaggagcaaaca -------------------------)))))))### HWI-EAS88_4_1_192_764_321 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_718_255 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_61_89 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_951_760 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_483_826 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_108_546 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_592_956 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_192_872_977 ChrA 1151 + 0 0 12 12 12 2 24 0 0 35 cttgtactccgaagccattcagactgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_193_795_502 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_888_420 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_48_358 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_294_393 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_613_321 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_422_868 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_898_223 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_921_867 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_726_726 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_136_757 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_24_904 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_511_886 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_193_383_330 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_365_385 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_295_402 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_387_262 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_363_153 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_89_374 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_402_193 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_766_716 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_88_633 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_194_729_394 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_500_309 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_152_287 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_984_244 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_748_809 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_894_534 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_195_955_862 ChrA 1151 + 0 0 15 15 15 2 14 0 1 35 tttgtactccgatgccattaagactgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_196_227_537 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_492_199 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_453_633 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgattccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_504_531 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_196_200_602 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccaatcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_805_63 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_386_302 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_401_229 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_411_59 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_704_865 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_252_540 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_548_344 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_948_809 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_197_402_230 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_205_99 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_239_418 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_568_92 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_614_761 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_702_704 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_668_817 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_198_383_262 ChrA 1151 + 0 0 12 12 12 2 24 0 0 35 tttgtactccgatgcccatcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_202_326 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_598_501 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcggactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_122_507 ChrA 1151 + 0 0 22 22 22 1 8 1 0 35 tttgtactccgatgccattcagactgtagtcacca -------------------------)))))))### HWI-EAS88_4_1_199_156_219 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_129_619 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_848_436 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_946_702 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_746_868 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_332_767 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_280_808 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_199_965_133 ChrA 1151 + 0 0 12 12 12 5 44 0 0 35 tttgtactccgatgccatacagactgcatgaccca -------------------------)))))))### HWI-EAS88_4_1_199_932_407 ChrA 1151 + 0 0 12 12 12 3 22 0 0 35 tttgtactccgatgccattcagattttaggcacaa -------------------------)))))))### HWI-EAS88_4_1_200_501_535 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_441_220 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_793_808 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtacttcgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_345_959 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_910_938 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_200_61_984 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_697_398 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_289_647 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_201_687_657 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_448_120 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_187_98 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_944_542 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_269_895 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_287_679 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_698_889 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_286_781 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_201_578_490 ChrA 1151 + 0 0 15 15 15 5 32 0 1 35 tttgtactccgatgccattaagactgtagtccaaa -------------------------)))))))### HWI-EAS88_4_1_202_306_167 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_596_525 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_172_252 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_740_685 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_86_811 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_523_851 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_799_461 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_589_37 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_202_284_351 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_590_565 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_775_150 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_67_465 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_534_760 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_547_548 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_567_928 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_203_642_954 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_934_247 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_481_495 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_551_300 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_485_353 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_205_687 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_45_121 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_425_585 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_536_511 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_821_621 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_768_704 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_869_840 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_284_48 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_704_886 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_914_845 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_324_976 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_204_942_964 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_110_329 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_865_454 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_511_456 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_123_134 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_629_890 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactctgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_228_807 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_444_472 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_205_938_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_736_217 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_130_178 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_875_606 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_714_674 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_124_786 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_78_765 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_467_288 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_476_395 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_707_723 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_286_809 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_784_138 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_206_854_733 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_792_159 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_938_212 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_288_238 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_242_789 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_207_626_750 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_144_322 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_433_337 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_455_683 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_521_558 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_45_220 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_152_283 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_555_38 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_841_578 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatttagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_208_660_603 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_238_44 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_141_379 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_29_734 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_118_650 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_329_419 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_209_543_413 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_209_381_729 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccg -------------------------)))))))### HWI-EAS88_4_1_210_658_411 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_639_202 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_455_814 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_779_584 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_700_705 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_831_968 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_663_135 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_863_949 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcagatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_210_471_855 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_397_560 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_649_461 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_690_87 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_841_298 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_664_727 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_226_604 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_383_129 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_211_292_717 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_507_347 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_560_543 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_346_601 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_755_756 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_213_729_796 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_458_730 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_112_485 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_669_785 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_725_492 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_308_685 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_783_751 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_214_278_863 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_428_812 ChrA 1151 + 0 0 22 22 22 2 4 1 0 35 tttgtactccgatgccattcagactgtaggcacat -------------------------)))))))### HWI-EAS88_4_1_215_586_28 ChrA 1151 + 0 0 22 22 22 3 4 1 0 35 tttgtactccgatgccattcagactgtaggcaaan -------------------------)))))))##! HWI-EAS88_4_1_215_738_687 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_284_622 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_215_649_713 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_909_104 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcatactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_185_296 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_431_785 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_329_666 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_572_189 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_215_732_956 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_131_408 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_240_470 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_576_360 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcagaccgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_468_766 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_643_705 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccggtgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_716_897 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_937_848 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_216_423_906 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_329_459 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_536_111 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_375_329 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_83_62 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_684_786 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_24_703 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_863_573 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_217_744_775 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_531_678 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_872_54 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_951_46 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_793_398 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgattccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_416_343 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_218_719_783 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_831_860 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_218_84_993 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacaa -------------------------)))))))### HWI-EAS88_4_1_219_704_121 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_929_571 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_182_101 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_862_326 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_612_196 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_758_618 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_680_694 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_631_602 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccaatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_645_277 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_630_888 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_767_148 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_219_307_994 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_645_733 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_216_92 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_579_660 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_795_176 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_348_979 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_220_673_364 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_709_595 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_214_397 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_391_609 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_521_573 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_316_845 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_533_924 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_221_901_694 ChrA 1151 + 0 0 23 23 23 4 34 0 0 35 tttgtactccgatgccattacgactataggcacaa -------------------------)))))))### HWI-EAS88_4_1_223_611_65 ChrA 1151 + 0 0 15 15 15 4 2 0 1 35 tttgtactccgatgccattcagnctgtagncacnc ----------------------!--))))!))#!# HWI-EAS88_4_1_223_954_583 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_51_74 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_680_332 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_963_676 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_223_276_869 ChrA 1151 + 0 0 15 15 15 3 0 0 1 35 tttgtactccgatgccattcagnctgtagncacna ----------------------!--))))!))#!# HWI-EAS88_4_1_226_143_133 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_501_380 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_37_674 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_179_898 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_226_83_791 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgcnattcagactntaggcanca ---------------!---------!))))))!## HWI-EAS88_4_1_228_74_73 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_411_222 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_619_698 ChrA 1151 + 0 0 23 23 23 4 12 0 0 35 tttgtacgccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_801_195 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_281_830 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_784_140 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_155_803 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_454_603 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctntaggcaccn ----------------------!--!))))))##! HWI-EAS88_4_1_228_83_127 ChrA 1151 + 0 0 23 23 23 6 22 0 0 35 tttgtactccgatgccatccagnctntatgcacan ----------------------!--!))))))##! HWI-EAS88_4_1_229_826_72 ChrA 1151 + 0 0 12 12 12 4 14 0 0 35 tttgaactccgatgccattcngactgtagncaaca --------------------!----))))!))### HWI-EAS88_4_1_229_306_87 ChrA 1151 + 0 0 12 12 12 4 14 0 0 35 tttgaactccgatgccattcngactgtagncaaca --------------------!----))))!))### HWI-EAS88_4_1_229_705_139 ChrA 1151 + 0 0 23 23 23 5 26 0 0 35 tttgaactccgatgccatttngactgtagncaaca --------------------!----))))!))### HWI-EAS88_4_1_230_717_323 ChrA 1151 + 0 0 12 12 12 4 20 0 0 35 tttgtactccgatgccattcagtctgtcgncncca -------------------------))))!)!### HWI-EAS88_4_1_230_629_347 ChrA 1151 + 0 0 22 22 22 3 2 1 0 35 tttgtactccgatgccattcagactgtagncntca -------------------------))))!)!### HWI-EAS88_4_1_230_172_790 ChrA 1151 + 0 0 15 15 15 5 14 0 1 35 tttgtactccgatgccattcagcctgtanncnccc -------------------------)))!!)!### HWI-EAS88_4_1_230_234_525 ChrA 1151 + 0 0 22 22 22 4 10 1 0 35 tttgtactccgatgccattcagactgtagngncaa -------------------------))))!)!### HWI-EAS88_4_1_230_846_946 ChrA 1151 + 0 0 12 12 12 8 26 0 0 35 tttgtactccgatgccattcaggctgtgnncnagt -------------------------)))!!)!### HWI-EAS88_4_1_230_37_920 ChrA 1151 + 0 0 23 23 23 9 38 0 0 35 tttgtactccgatgccatagagactctanncnaac -------------------------)))!!)!### HWI-EAS88_4_1_232_627_724 ChrA 1151 + 0 0 12 12 12 3 0 0 0 35 tttgtactccgatgccattcagnctgtnggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_280_802 ChrA 1151 + 0 0 23 23 23 4 8 0 0 35 tttgtactccgatgccattcagnctganggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_565_423 ChrA 1151 + 0 0 23 23 23 4 8 0 0 35 tttgtactccgatgccattcagnctganggcaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_775_759 ChrA 1151 + 0 0 23 23 23 5 16 0 0 35 tttgtactccgatgccattcagnctggngccaccn ----------------------!--))!))))##! HWI-EAS88_4_1_232_159_270 ChrA 1151 + 0 0 23 23 23 5 16 0 0 35 tttgtactccgatgccattcagnctgcngccaccn ----------------------!--))!))))##! HWI-EAS88_4_1_233_148_640 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcagatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_749_849 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_23_710 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_476_708 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcggatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_865_423 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_233_61_619 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactcagatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_121_248 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_519_656 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_683_317 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_140_884 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_292_455 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccg -------------------------)))))))### HWI-EAS88_4_1_235_614_28 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_504_947 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_377_826 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_464_957 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_861_506 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_235_264_167 ChrA 1151 + 0 0 22 22 22 2 10 1 0 35 tttgtactccgatgccattcagactgtaggaaaca -------------------------)))))))### HWI-EAS88_4_1_236_565_56 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_939_820 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_670_101 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_235_926 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_362_977 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_236_722_747 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcacga -------------------------)))))))### HWI-EAS88_4_1_236_879_125 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_805_196 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_162_681 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_901_284 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_485_181 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_622_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_705_635 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_237_704_636 ChrA 1151 + 0 0 22 22 22 2 10 1 0 35 tttgtactccgatgccattcagactgtaggcccct -------------------------)))))))### HWI-EAS88_4_1_239_365_347 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_490_25 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_743_665 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_276_118 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_771_591 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_456_232 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_305_278 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_676_844 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_239_639_902 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_823_476 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_817_511 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_375_507 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_511_674 ChrA 1151 + 0 0 12 12 12 2 24 0 0 35 ttcgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_240_799_989 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_60_411 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_97_266 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_407_48 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_436_709 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_715_792 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_241_559_649 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_242_182_182 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_242_454_313 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_244_429_934 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_244_419_937 ChrA 1151 + 0 0 22 22 22 1 0 1 0 35 tttgtactccgatgccattcagactgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_244_376_478 ChrA 1151 + 0 0 15 15 15 2 12 0 1 35 tttttactccgatgccattcagactgtaggcncca -------------------------))))))!### HWI-EAS88_4_1_245_671_21 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_245_429_404 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_245_648_851 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_245_289_568 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_524_611 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_279_391 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_406_842 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_131_381 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_267_961 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_671_581 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_433_582 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_246_495_330 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_224_270 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_291_130 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_122_362 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_960_474 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_463_152 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_247_543_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_488_62 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_635_87 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_506_558 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_302_699 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcggactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_424_213 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_816_813 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_438_740 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_248_449_942 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_262_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_377_103 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_226_199 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_554_791 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_249_239_867 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_269_84 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_609_681 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_492_90 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_690_144 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_695_711 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_223_897 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_250_219_530 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_376_644 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_376_123 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_378_728 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_218_819 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_222_829 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_251_190_862 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_174_596 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_193_669 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_562_930 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_252_31_167 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_253_156_265 ChrA 1151 + 0 0 12 12 12 2 12 0 0 35 tttgtactccgatgccantcacactgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_62_468 ChrA 1151 + 0 0 12 12 12 2 12 0 0 35 tttgtactccgatgccantcaaactgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_299_386 ChrA 1151 + 0 0 12 12 12 2 12 0 0 35 ttcgtactccgatgccantcagactgtaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_526_275 ChrA 1151 + 0 0 12 12 12 2 8 0 0 35 tttgtactccgatgccantcagactgcaggcacca -----------------!-------)))))))### HWI-EAS88_4_1_253_871_51 ChrA 1151 + 0 0 23 23 23 3 20 0 0 35 tttgtactccgatgccantcagtctgttggcacca -----------------!-------)))))))### HWI-EAS88_4_1_254_555_684 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_560_804 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_668_587 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_90_36 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_859_668 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_131_144 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_254_489_951 ChrA 1151 + 0 0 15 15 15 3 18 0 1 35 tttgtactccgatgccattcagactgcagtcacaa -------------------------)))))))### HWI-EAS88_4_1_254_365_375 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_659_53 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_677_567 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_861_395 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_228_591 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccgttcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_95_580 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_520_209 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_636_363 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_55_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_377_862 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_256_860 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_305_746 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_256_355_981 ChrA 1151 + 0 0 12 12 12 3 26 0 0 35 tttgtactccgatgccattcagcatgtaggcaaca -------------------------)))))))### HWI-EAS88_4_1_257_227_567 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_48_630 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tctgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_99_350 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_138_641 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcatca -------------------------)))))))### HWI-EAS88_4_1_257_836_193 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_492_907 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_847_309 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_257_600_909 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_123_93 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_462_188 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_651_460 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_631_196 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_258_640_790 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_161_245 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_249_535 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_772_419 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_210_179 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_780_422 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_251_43 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_300_641 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_103_851 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_584_475 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_259_742_943 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_778_689 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_307_677 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgtcattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_461_679 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgacattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_203_461 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgtcattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_534_855 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgacattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_372_111 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgacattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_109_662 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_242_863 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_260_759_444 ChrA 1151 + 0 0 22 22 22 1 8 1 0 35 tttgtactccgatgccattcagactgtaggaacca -------------------------)))))))### HWI-EAS88_4_1_261_783_239 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_572_54 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_346_117 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_566_127 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_633_524 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_527_211 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_26_555 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_261_670_787 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_774_604 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_92_602 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_939_593 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_454_572 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_35_20 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_630_825 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatacagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_262_653_923 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_889_131 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_305_350 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_388_57 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_421_442 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_263_534_834 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 cttgtactccgatgccattcagactgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_264_86_487 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_575_727 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_607_708 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_250_815 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_418_844 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_307_758 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_34_470 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_264_113_362 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_906_202 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_577_32 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_114_221 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_165_830 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_265_955_331 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_856_608 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_128_883 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_485_372 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_519_713 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_726_875 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_696_915 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_266_365_996 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_580_633 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_251_151 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_247_688 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_438_902 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_231_895 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_267_775_910 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_68_166 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_703_412 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_909_179 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_700_926 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_768_802 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_268_669_995 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_369_28 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_760_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_52_525 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_245_269 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_55_463 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_398_212 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_659_763 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_569_917 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_500_976 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_88_947 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_269_678_986 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_695_235 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_133_319 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_316_613 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_744_618 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 cttgtactccgatgccattcagactgtaggcacca +------------------------)))))))### HWI-EAS88_4_1_270_491_800 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_625_862 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_142_871 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_270_828_662 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttatactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_812_449 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_445_347 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_650_393 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_61_99 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_64_84 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_750_504 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_885_134 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_190_651 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_715_908 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_835_643 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_271_662_425 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_927_106 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_452_89 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_836_200 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_331_594 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattcatactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_758_505 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_332_708 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_194_75 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_272_243_56 ChrA 1151 + 0 0 23 23 23 3 28 0 0 35 tttgtactccgatgcaattcagactgagggcacca -------------------------)))))))### HWI-EAS88_4_1_273_268_204 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_273_280_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_113_302 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_530_96 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccaatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_491_230 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccactcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_840_76 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_274_24_896 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_86_67 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_583_27 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_167_731 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_275_19_998 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccattgagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_202_544 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_186_582 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_242_68 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_814_742 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_148_674 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_636_991 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_276_175_50 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_272_633 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 ttcgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_841_184 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_611_21 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_50_240 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_311_459 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_277_47_571 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_243_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_277_995_903 ChrA 1151 + 0 0 15 15 15 2 14 0 1 35 tttgtactcagatgccattcagactgtaggcagca -------------------------)))))))### HWI-EAS88_4_1_278_521_371 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_348_22 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_972_510 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_522_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_269_874 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_278_817_979 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_756_616 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_916_650 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_200_818 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccatccagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_188_200 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_444_758 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_279_142_224 ChrA 1151 + 0 0 12 12 12 4 34 0 0 35 tttgtactccgatgaccttcagactgtatgcaaca -------------------------)))))))### HWI-EAS88_4_1_280_780_448 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_279_586 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_43_20 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_343_99 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_562_767 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_41_201 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_382_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_203_463 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_280_93_931 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_215_676 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_708_682 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_466_953 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_638_893 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_281_433_367 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_231_535 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_769_401 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtaccccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_779_760 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_571_748 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_145_740 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_146_904 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_282_738_104 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_849_723 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_557_515 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_127_630 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_677_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_470_288 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_283_255_384 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_560_188 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_266_16 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_89_201 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_414_285 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_724_602 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_367_632 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_420_900 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_480_968 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_206_107 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_284_337_990 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_524_332 ChrA 1151 + 0 0 22 22 22 1 2 1 0 35 tttgtactccgatgccattcagactgtaggcaccc -------------------------)))))))### HWI-EAS88_4_1_285_24_266 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_498_157 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_717_792 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_285_672_959 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_184_155 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_463_64 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_804_653 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_810_843 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_313_114 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_286_702_981 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_205_813 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_768_689 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_287_424_171 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_461_26 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_565_627 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_495_759 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_617_198 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_206_907 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgacgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_62_584 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_90_552 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_244_843 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgatgccgttcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_288_469_29 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_588_342 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_930_44 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_269_516 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_289_765_764 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_316_662 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_690_340 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_394_930 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_743_950 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_479_562 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_290_784_976 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_112_430 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_379_256 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_94_199 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_269_779 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactccgataccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_501_504 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_432_866 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_291_645_155 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_743_72 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_121_392 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_416_184 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_522_49 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_444_89 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_39_887 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_54_182 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_292_95_409 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_681_414 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_796_77 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_350_464 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_31_595 ChrA 1151 + 0 0 15 15 15 1 12 0 1 35 tttgtactctgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_399_239 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_46_837 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_293_375_957 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_84_634 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_302_780 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_277_796 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_294_471_916 ChrA 1151 + 0 0 22 22 22 1 8 1 0 35 tttgtactccgatgccattcagactgtaagcacca -------------------------)))))))### HWI-EAS88_4_1_294_219_989 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_490_25 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_754_331 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_922_652 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_834_524 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_469_952 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_743_866 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_295_287_669 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_893_387 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_52_248 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_739_545 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_300_245 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_885_305 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_596_585 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_224_530 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_585_659 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_168_375 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_963_212 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_263_918 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_290_998 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_987_353 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_296_901_962 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_208_101 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_297_787_83 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_593_178 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_553_520 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_138_270 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_305_736 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_298_965_694 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_133_495 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_170_731 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_85_542 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_299_76_258 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_198_699 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_211_191 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_708_625 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_275_637 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_671_638 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_300_806_610 ChrA 1151 + 0 0 22 22 22 0 0 1 0 35 tttgtactccgatgccattcagactgtaggcacca -------------------------)))))))### HWI-EAS88_4_1_2_680_125 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttttactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_6_435_358 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_8_939_640 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgtcattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_13_574_465 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_14_52_750 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgccactcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_46_344_473 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_49_475_700 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_53_584_821 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_61_965_204 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_62_499_699 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_71_276_62 ChrA 1152 + 0 0 23 23 23 3 36 0 0 35 tttgtctccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_74_955_763 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_81_386_22 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 atgtactccgatgccattcagactgtaggcaccat +------------------------)))))))### HWI-EAS88_4_1_88_482_346 ChrA 1152 + 0 0 22 22 22 1 8 1 0 35 ttgtactccgatgccattcagactgtaggaaccat -------------------------)))))))### HWI-EAS88_4_1_91_138_131 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_101_869_302 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_102_456_658 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_110_906_286 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtgctccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_116_436_387 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgacattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_117_777_68 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_117_169_803 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_118_153_193 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_122_964_545 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_129_238_144 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_135_368_679 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_139_56_433 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_180_511_114 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttttactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_186_917_788 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_195_715_187 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_196_513_290 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_200_300_85 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_202_139_721 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_204_201_831 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgctattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_207_828_128 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_207_591_367 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttgtactccgatgccattcagaccgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_215_650_870 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_223_789_953 ChrA 1152 + 0 0 12 12 12 4 12 0 0 35 ttttactccgatgccattcagantgtaggnaccnt ----------------------!--))))!))#!# HWI-EAS88_4_1_226_633_216 ChrA 1152 + 0 0 12 12 12 3 0 0 0 35 ttgtactccgatgccnttcagactgnaggcacnat ---------------!---------!))))))!## HWI-EAS88_4_1_235_583_31 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_247_846_234 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_250_144_475 ChrA 1152 + 0 0 23 23 23 3 36 0 0 35 tttgtctccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_260_16_377 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_269_870_651 ChrA 1152 + 0 0 15 15 15 1 12 0 1 35 ttttactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_278_654_839 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_284_774_594 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_285_241_207 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_285_112_835 ChrA 1152 + 0 0 12 12 12 3 28 0 0 35 ttttactccgatgccattcagactgaaggcaacat -------------------------)))))))### HWI-EAS88_4_1_292_606_842 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_293_736_486 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_294_165_735 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_294_545_165 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_298_421_350 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_300_817_405 ChrA 1152 + 0 0 22 22 22 0 0 1 0 35 ttgtactccgatgccattcagactgtaggcaccat -------------------------)))))))### HWI-EAS88_4_1_2_541_123 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_2_141_608 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_2_452_372 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_2_196_900 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcactcgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_3_861_833 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_6_809_802 ChrA 1201 + 0 0 15 15 15 7 38 0 1 35 ctagtttcacttgttctgcacctgtagcaccatca -------------------------)))))))### HWI-EAS88_4_1_8_349_546 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_8_833_26 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_8_828_779 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_8_839_911 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_840_645 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_9_328_905 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_11_989_685 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_12_139_691 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_14_265_793 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_14_515_927 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_14_832_934 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgtcctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_15_300_277 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_639_553 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_123_317 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_16_567_237 ChrA 1201 + 0 0 12 12 12 5 36 0 0 35 ctagtttcacttgttctgaccctgtaggcacaggc -------------------------)))))))### HWI-EAS88_4_1_17_239_394 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_17_878_855 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_18_670_256 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_18_446_37 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_20_383_488 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_590_787 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_25_943_892 ChrA 1201 + 0 0 12 12 12 2 24 0 0 35 ctagtttcacttgttctgcaaatgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_184_540 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_26_186_778 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_30_552_455 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgtgctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_40_714_263 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_42_463_581 ChrA 1201 + 0 0 0 0 0 1 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatn -------------------------)))))))##! HWI-EAS88_4_1_43_187_265 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_47_405_391 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_47_248_134 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_47_793_62 ChrA 1201 + 0 0 12 12 12 2 24 0 0 35 ctagtttcacttgttcttcacctttaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_48_944_51 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_48_322_885 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcacttgctctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_48_463_968 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcacatgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_50_800_346 ChrA 1201 + 0 0 0 0 0 2 4 1 0 35 ctagtttcacttgttctgcacctgtaggcaccaca -------------------------)))))))### HWI-EAS88_4_1_50_985_871 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_51_327_554 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_52_254_414 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_52_536_603 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_53_394_61 ChrA 1201 + 0 0 15 15 15 5 28 0 1 35 ctagtttcacttgttctgcacctgtagttaacccc -------------------------)))))))### HWI-EAS88_4_1_54_759_374 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_58_458_728 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_59_491_90 ChrA 1201 + 0 0 0 0 0 1 12 0 2 35 atagtttcacttgttctgcacctgtaggcaccatc +------------------------)))))))### HWI-EAS88_4_1_59_760_172 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_60_520_814 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_60_292_1001 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggcacaatc -------------------------)))))))### HWI-EAS88_4_1_64_462_862 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_65_740_444 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_67_873_488 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_68_272_231 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcactcgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_69_416_586 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgctcctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_939_523 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_70_891_102 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_73_392_321 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_75_446_14 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_77_109_905 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_78_453_750 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_79_241_957 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_80_315_498 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_83_663_556 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_83_542_829 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_84_260_557 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_84_271_350 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_84_662_532 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_86_547_815 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_87_115_733 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_88_135_297 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_92_984_53 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_92_777_595 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_93_187_232 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_93_117_190 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_96_714_280 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggcgccatc -------------------------)))))))### HWI-EAS88_4_1_98_840_599 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcacttgctctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_99_270_317 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_99_587_955 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_101_982_420 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_484_175 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_108_418 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_103_48_799 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_104_282_695 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_105_210_69 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_106_687_477 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_106_439_789 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_397_800 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_107_834_997 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_108_397_545 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcatctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_714_473 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttcggcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_172_435 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_112_120_621 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_113_139_234 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_116_144_710 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_118_822_149 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_119_299_372 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_119_870_999 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_121_976_81 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_121_742_985 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctattttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_122_701_420 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_123_368_852 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_124_402_605 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_125_195_242 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_318_557 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggcatcatc -------------------------)))))))### HWI-EAS88_4_1_129_898_772 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcacctctaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_129_159_154 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_131_785_699 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_131_657_864 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_134_384_841 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_969_278 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_173_767 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_135_346_334 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_136_611_212 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_136_446_909 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_137_984_320 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_138_326_218 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_139_910_611 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_139_872_706 ChrA 1201 + 0 0 23 23 23 3 32 0 0 35 ctagtttcacttgttctgcttctgttggcaccatc -------------------------)))))))### HWI-EAS88_4_1_139_397_897 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_140_649_246 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_140_805_315 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_141_854_46 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcgcctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_142_664_405 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_145_423_43 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_146_787_49 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_148_48_981 ChrA 1201 + 0 0 0 0 0 1 0 0 1 35 ctagtttcacttgttctgcncctgtaggcaccatc -------------------!-----)))))))### HWI-EAS88_4_1_149_838_74 ChrA 1201 + 0 0 0 0 0 1 12 0 1 35 ctagtttcactcgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_149_70_730 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_150_353_284 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_150_95_920 ChrA 1201 + 0 0 15 15 15 1 12 0 1 35 ctagtttcacttgttctgcatctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_151_451_377 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_151_155_350 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_151_48_804 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_153_770_83 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_154_492_642 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_157_207_300 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_165_27_872 ChrA 1201 + 0 0 0 0 0 1 8 1 0 35 ctagtttcacttgttctgcacctgtaggtaccatc -------------------------)))))))### HWI-EAS88_4_1_166_174_214 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_166_391_34 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_180_915_682 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_181_818_141 ChrA 1201 + 0 0 0 0 0 1 0 1 0 35 ctagtttcacttgttctgcacctgtaggcnccatc -------------------------))))!))### HWI-EAS88_4_1_183_269_287 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_184_509_632 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_189_293_972 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_191_891_642 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_191_340_220 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_192_513_745 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_192_995_674 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_193_683_625 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_193_901_395 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_193_33_145 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_195_902_772 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_197_473_569 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### HWI-EAS88_4_1_197_249_528 ChrA 1201 + 0 0 0 0 0 2 4 1 0 35 ctagtttcacttgttctgcacctgtaggcaccaca -------------------------)))))))### HWI-EAS88_4_1_197_561_501 ChrA 1201 + 0 0 0 0 0 0 0 1 0 35 ctagtttcacttgttctgcacctgtaggcaccatc -------------------------)))))))### ShortRead/inst/script/0000755000126300012640000000000012227066720016315 5ustar00biocbuildphs_compbioShortRead/inst/script/qa-test.R0000644000126300012640000000070212227066720020015 0ustar00biocbuildphs_compbio## fastq nLanes <- 50 library(ShortRead) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") nms <- sprintf("file_%d.fastq", seq_len(nLanes)) qas <- lapply(nms, qa, dirPath=rfq) qa <- do.call(rbind, qas) res <- browseURL(report(qa)) ## BAM fl <- system.file("extdata", "ex1.bam", package="Rsamtools") qa <- qa(dirname(fl), "bam$", type="BAM") res <- browseURL(report(qa)) ShortRead/inst/template/0000755000126300012640000000000012227066725016631 5ustar00biocbuildphs_compbioShortRead/inst/template/0000-Header.html0000644000126300012640000000123712227066725021267 0ustar00biocbuildphs_compbio ShortRead Quality Assessment

ShortRead/inst/template/1000-Overview.html0000644000126300012640000000110212227066725021675 0ustar00biocbuildphs_compbio

Overview

This document provides a quality assessment of Genome Analyzer results. The assessment is meant to complement, rather than replace, quality assessment available from the Genome Analyzer and its documentation. The narrative interpretation is based on experience of the package maintainer. It is applicable to results from the 'Genome Analyzer' hardware single-end module, configured to scan 300 tiles per lane. The 'control' results refered to below are from analysis of PhiX-174 sequence provided by Illumina.

ShortRead/inst/template/1100-Overview-SolexaRealign.html0000644000126300012640000000021412227066725024434 0ustar00biocbuildphs_compbio

The 'aligned' reads referenced in most sections of the report are the reads reported to align uniquely to the reference genome

ShortRead/inst/template/2000-RunSummary.html0000644000126300012640000000223112227066725022216 0ustar00biocbuildphs_compbio

Run Summary

Subsequent sections of the report use the following to identify figures and other information.

@SAMPLE_KEY@

Read counts. Filtered and aligned read counts are reported relative to the total number of reads (clusters; if only filtered or aligned reads are available, total read count is reported). Consult Genome Analyzer documentation for official guidelines. From experience, very good runs of the Genome Analyzer 'control' lane result in 25-30 million reads, with up to 95% passing pre-defined filters.

  ShortRead:::.ppnCount(qa[["readCounts"]])
@PPN_COUNT_TBL@
  ShortRead:::.plotReadCount(qa)
@PPN_COUNT@

Base call frequency over all reads. Base frequencies should accurately reflect the frequencies of the regions sequenced.

  ShortRead:::.plotNucleotideCount(qa)
@BASE_CALL_COUNT@

Overall read quality. Lanes with consistently good quality reads have strong peaks at the right of the panel.

  df <- qa[["readQualityScore"]]
  ShortRead:::.plotReadQuality(df[df$type=="read",])
@READ_QUALITY_FIGURE@ ShortRead/inst/template/3000-ReadDistribution.html0000644000126300012640000000371612227066725023361 0ustar00biocbuildphs_compbio

Read Distribution

These curves show how coverage is distributed amongst reads. Ideally, the cumulative proportion of reads will transition sharply from low to high.

Portions to the left of the transition might correspond roughly to sequencing or sample processing errors, and correspond to reads that are represented relatively infrequently. 10-15%; of reads in a typical Genome Analyzer 'control' lane fall in this category.

Portions to the right of the transition represent reads that are over-represented compared to expectation. These might include inadvertently sequenced primer or adapter sequences, sequencing or base calling artifacts (e.g., poly-A reads), or features of the sample DNA (highly repeated regions) not adequately removed during sample preparation. About 5% of Genome Analyzer 'control' lane reads fall in this category.

Broad transitions from low to high cumulative proportion of reads may reflect sequencing bias or (perhaps intentional) features of sample preparation resulting in non-uniform coverage. the transition is about 5 times as wide as expected from uniform sampling across the Genome Analyzer 'control' lane.

  df <- qa[["sequenceDistribution"]]
  ShortRead:::.plotReadOccurrences(df[df$type=="read",], cex=.5)
@READ_OCCURRENCES_FIGURE@

Common duplicate reads might provide clues to the source of over-represented sequences. Some of these reads are filtered by the alignment algorithms; other duplicate reads might point to sample preparation issues.

  ShortRead:::.freqSequences(qa, "read")
@FREQUENT_SEQUENCES_READ@

Common duplicate reads after filtering

  ShortRead:::.freqSequences(qa, "filtered")
@FREQUENT_SEQUENCES_FILTERED@

Common aligned duplicate reads are

  ShortRead:::.freqSequences(qa, "aligned")
@FREQUENT_SEQUENCES_ALIGNED@ ShortRead/inst/template/4000-CycleSpecific.html0000644000126300012640000000227112227066725022607 0ustar00biocbuildphs_compbio

Cycle-Specific Base Calls and Read Quality

Per-cycle base call should usually be approximately uniform across cycles. Genome Analyzer `control' lane results often show a deline in A and increase in T as cycles progress. This is likely an artifact of the underlying technology.

  perCycle <- qa[["perCycle"]]
  ShortRead:::.plotCycleBaseCall(perCycle$baseCall)
@CYCLE_BASE_CALL_FIGURE@

Per-cycle quality score. Reported quality scores are `calibrated', i.e., incorporating phred-like adjustments following sequence alignment. These typically decline with cycle, in an accelerating manner. Abrupt transitions in quality between cycles toward the end of the read might result when only some of the cycles are used for alignment: the cycles included in the alignment are calibrated more effectively than the reads excluded from the alignment.

The reddish lines are quartiles (solid: median, dotted: 25, 75), the green line is the mean. Shading is proporitional to number of reads.

  perCycle <- qa[["perCycle"]]
  ShortRead:::.plotCycleQuality(perCycle$quality)
@CYCLE_QUALITY_FIGURE@ ShortRead/inst/template/5000-PerTile.html0000644000126300012640000000460712227066725021454 0ustar00biocbuildphs_compbio

Tile Performance

Counts per tile. Dashed red line indicates the 10% of tiles with fewest reads. An approximately uniform distribution suggests consistent read representation in each tile. Distinct separation of 'good' versus poor quality tiles might suggest systematic failure, e.g., of many tiles in a lane, or excessive variability (e.g., due to unintended differences in sample DNA concentration) in read number per lane.

  perTile <- qa[["perTile"]]
  readCnt <- perTile[["readCounts"]]
  cnts <- readCnt[readCnt$type=="read", "count"]
  histogram(cnts, breaks=40, xlab="Reads per tile",
            panel=function(x, ...) {
            panel.abline(v=quantile(x, .1),
                col="red", lty=2)
                panel.histogram(x, ...)
            }, col="white"))
@PER_TILE_HISTOGRAM@

Spatial counts per tile. Divisions on the color scale are quantized, so that the range of counts per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values. Because the scale is quantized, some tiles will necessarily have `few' reads and other necessarily `many' reads.

Consistent differences in read number per lane will result in some lanes being primarily one color, other lanes primarily another color. Genome Analyzer data typically have greatest read counts in the center column of each lane. There are usually consistent gradients from `top' to `bottom' of each column.

Low count numbers in the same tile across runs of the same flow cell may indicate instrumentation issues. HiSeq: columns are upper swaths 1 and 2, and lower swaths 1 and 2, respectively.

  ShortRead:::.plotTileCounts(readCnt[readCnt$type=="read",])
@PER_TILE_COUNT_FIGURE@

Median read quality score per tile. Divisions on the color scale are quantized, so that the range of average quality scores per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values.

Often, quality and count show an inverse relation. HiSeq: columns are upper swaths 1 and 2, and lower swaths 1 and 2, respectively.

  qscore <- perTile[["medianReadQualityScore"]]
  ShortRead:::.plotTileQualityScore(qscore[qscore$type=="read",])
@PER_TILE_QUALITY_FIGURE@ ShortRead/inst/template/6000-Alignment.html0000644000126300012640000000052612227066725022023 0ustar00biocbuildphs_compbio

Alignment

Mapped alignment score. Counts measured relative to counts in score category with maximum representation. Successful alignments will be reflected in a strong peak to the right of each panel.

  ShortRead:::.plotAlignQuality(qa[["alignQuality"]])
@ALIGN_QUALITY_FIGURE@ ShortRead/inst/template/7000-MultipleAlignment.html0000644000126300012640000000040112227066725023530 0ustar00biocbuildphs_compbio

Multiple Alignment

Number of reads matching 0, 1, ... times to the reference genome.

  ShortRead:::.plotMultipleAlignmentCount(qa[["multipleAlignment"]])
@MULTIPLE_ALIGNMENT_COUNT_FIGURE@ ShortRead/inst/template/8000-DepthOfCoverage.html0000644000126300012640000000037112227066725023112 0ustar00biocbuildphs_compbio

Depth Of Coverage

The number of times the aligned reads overlap a given sequence position.

  ShortRead:::.plotDepthOfCoverage(qa[["depthOfCoverage"]])
@DEPTH_OF_COVERAGE_FIGURE@ ShortRead/inst/template/9000-AdapterContamination.html0000644000126300012640000000101012227066725024201 0ustar00biocbuildphs_compbio

Adapter Contamination

Adapter contamination is defined here as non-genetic sequences attached at either or both ends of the reads. The 'contamination' measure is the number of reads with a right or left match to the adapter sequence over the total number of reads. Mismatch rates are 10% on the left and 20% on the right with a minimum overlap of 10 nt.

  ShortRead:::.ppnCount(qa[["adapterContamination"]])
@ADAPTER_CONTAMINATION@ ShortRead/inst/template/9999-Footer.html0000644000126300012640000000015412227066725021376 0ustar00biocbuildphs_compbio

@DATE@; ShortRead v. @VERSION@
Report template: Martin Morgan

ShortRead/inst/template/QA.css0000644000126300012640000000107712227066725017651 0ustar00biocbuildphs_compbiobody{ width: 350pt } table { font-family: monospace } td { padding: 0px 10px } th { text-align: right; font-family: auto } img { display: block; margin-left: auto; margin-right: auto } #header { margin: 1px; padding: 1px; line-height: 82px; } #logo { margin: 0px; padding: 0; } #logo img { margin-left: 0px; vertical-align: middle; } #locationline { clear: right; padding: 0px; } #pagelocation { display: inline; margin: 0px 10px; padding: 0px; font-size: 1.5em; } #pagelocation li { display: inline; margin: 0; } ShortRead/inst/template/QAAdapterContamination.html0000644000126300012640000000062212227066725024045 0ustar00biocbuildphs_compbio

Adapter Contamination

Adapter contamination are at either or both ends of the reads. The 'contamination' measure is the number of reads with a right or left match to the adapter sequence over the total number of reads. Mismatch rates are 10% on the left and 20% on the right with a minimum overlap of 10 nt.

@ADAPTER_CONTAMINATION@ ShortRead/inst/template/QAFiltered.html0000644000126300012640000000022212227066725021473 0ustar00biocbuildphs_compbio

Filtering

Reads avaialable at the start of each processing step are summarized below.

@FILTERED@ ShortRead/inst/template/QAFlagged.html0000644000126300012640000000013212227066725021266 0ustar00biocbuildphs_compbio

Flagged Samples

Not yet implemented.

ShortRead/inst/template/QAFooter.html0000644000126300012640000000015412227066725021177 0ustar00biocbuildphs_compbio

@DATE@; ShortRead v. @VERSION@
Report template: Martin Morgan

ShortRead/inst/template/QAFrequentSequence.html0000644000126300012640000000023312227066725023221 0ustar00biocbuildphs_compbio

Frequent Sequences

Threshold @THRESHOLD_LABEL@ = @THRESHOLD@. @FREQUENT_SEQUENCE_COUNT@ @FREQUENT_SEQUENCES@ ShortRead/inst/template/QAHeader.html0000644000126300012640000000123612227066725021133 0ustar00biocbuildphs_compbio ShortRead Quality Assessment ShortRead/inst/template/QANucleotideByCycle.html0000644000126300012640000000052012227066725023304 0ustar00biocbuildphs_compbio

Nucleotide Use by Cycle

Per-cycle base calls should usually be approximately uniform across cycles. Genome Analyzer `control' lane results often show a deline in A and increase in T as cycles progress. This is likely an artifact of the underlying technology.

@CYCLE_BASE_CALL@ ShortRead/inst/template/QANucleotideUse.html0000644000126300012640000000031712227066725022512 0ustar00biocbuildphs_compbio

Nucleotide Use

Base call frequency over all reads. Base frequencies should accurately reflect the frequencies of the regions sequenced.

@BASE_CALL_COUNT@ ShortRead/inst/template/QAQualityByCycle.html0000644000126300012640000000121612227066725022644 0ustar00biocbuildphs_compbio

Quality by Cycle

Per-cycle quality score. Reported quality scores are `calibrated', i.e., incorporating phred-like adjustments following sequence alignment. These typically decline with cycle, in an accelerating manner. Abrupt transitions in quality between cycles toward the end of the read might result when only some of the cycles are used for alignment: the cycles included in the alignment are calibrated more effectively than the reads excluded from the alignment.

The reddish lines are quartiles (solid: median, dotted: 25, 75), the green line is the mean. Shading is proporitional to number of reads.

@CYCLE_QUALITY@ ShortRead/inst/template/QAQualityUse.html0000644000126300012640000000033012227066725022042 0ustar00biocbuildphs_compbio

Quality Score Use

Quality scores over all reads. High quality scores are blue, low quality scores red. Lines are cummulative frequencies.

@QUALITY_SCORE_COUNT@ ShortRead/inst/template/QAReadQuality.html0000644000126300012640000000042712227066725022170 0ustar00biocbuildphs_compbio

Read Quality

Overall read quality. Lanes with consistently good quality reads have strong peaks at the right of the panel. Flagged samples are non-gray and appear in the legend at the top of the figure.

@READ_QUALITY_FIGURE@ ShortRead/inst/template/QASequenceUse.html0000644000126300012640000000237412227066725022174 0ustar00biocbuildphs_compbio

Sequence Use

These curves show how coverage is distributed amongst reads. Ideally, the cumulative proportion of reads will transition sharply from low to high.

Portions to the left of the transition might correspond roughly to sequencing or sample processing errors, and correspond to reads that are represented relatively infrequently. 10-15%; of reads in a typical Genome Analyzer 'control' lane fall in this category.

Portions to the right of the transition represent reads that are over-represented compared to expectation. These might include inadvertently sequenced primer or adapter sequences, sequencing or base calling artifacts (e.g., poly-A reads), or features of the sample DNA (highly repeated regions) not adequately removed during sample preparation. About 5% of Genome Analyzer 'control' lane reads fall in this category.

Broad transitions from low to high cumulative proportion of reads may reflect sequencing bias or (perhaps intentional) features of sample preparation resulting in non-uniform coverage. the transition is about 5 times as wide as expected from uniform sampling across the Genome Analyzer 'control' lane.

@SEQUENCE_USE@ ShortRead/inst/template/QASources.html0000644000126300012640000000031212227066725021360 0ustar00biocbuildphs_compbio

Data Sources

Subsequent sections of the report use the Ids in the following table to identify figures and other information.

@SAMPLE_KEY@ @PPN_COUNT@ ShortRead/inst/template/image/0000755000126300012640000000000012227066724017712 5ustar00biocbuildphs_compbioShortRead/inst/template/image/bioclogo-small.gif0000644000126300012640000001701412227066724023307 0ustar00biocbuildphs_compbioGIF89aN÷ÔâèåêÓØÙÛ,—°ãááÈÚã{|~ghjâáãîîîffh¢¢¤ïôâÅÄźÓÞppsïóööù飯­ÑÐÑqrt†³ÅÑÞ刊ŒäåæÒ⪤ÉQáêï}¿ÀÂ’”—·ÔxØÖ×®®°™š[\^‡ˆ‹„…‡¸¸º”½ÍáåÌÈÈÉ›œžŸÇFâìÊÎÍÎ[[]B›´}±ÄÕÕÖËÌÍ’±Ñk¡ÅÔëêê‘”¹Éæåä{®ÁÚâÁ®ÌÙÌØßÆÆÈS¡¸¥¦©ªÌ]îîå²²´ðñòb¦¼ÉÊÌššœ…†ˆ¤¥§òðï\]_Ûè½´ËÕa¤ºÛÙÚq¬ÀÕß¶ÉÝ™²³µÏܪèðÖ……ˆÝÜݯÍi“ÊÚŸoprRŸ¶½Ö„»Ô‚††‰çææMMOÄו¿Ô‹©ÅÒ»»½¿Î›œŸAABA@B’¬ðííBACðíìöôôôññŸ¢rtvúùøóððñîíÌÎÐrsv“­úøøòïïýüüNNP™™›˜Ä<Ÿ¡ÌÍÏÌÎÏÍÎÐûúú˜Å=ÄÃÅãäåOOQðññ“•˜“¬˜™›ñîî´¶¸ÄÃÄððñôòòòîîùøøýýýõóóøööNOQÀÂÄùöö÷ööüûúýûüòïîñïîýûûóññ´¶¹öõôøöõýýüõóòÈÛ䜟¡öóópqsù÷÷öóò÷õõúø÷ûûúöõõœž ôòñrsustwöôó­®°×ÙÚØÚÛÃÂÄrtw™Å=õôôþýý~‚ú÷÷š›§ª¬œž¡˜˜›¸¸¹ÏÎÏüûûœ õòòµ·¹ù÷öÀÁÄ£¤¦Ø××úùùóïïÖå±÷õöÐÏÐèççØßã°±³ëê⣣¥ßßßÎÌÍÖרóñðgik˜Å<ÇÇÉ´Ðu°ÏjNNQ¯¯±˜™œ›ŸŽ’†‡‰¾¿Á¬ÉÕÍÙàÅ×àÇÙâÃÚžÀÎÒÒÓm©¾ìëë×⸿ÁÃåæèåãäÅÙ–ÔÞÚàéÇ¿ÑÚÀÒÛÌ×Þèç躺»MMPMNOÛÚÚñííAACÿÿÿ!ù,Nÿÿ H° Áƒ*\Ȱ¡Ã‡#JœH±¢Å‹FH÷IÅ  dI²¤É“(Sì2¨OÿH‘ÂÀ!„jЍÜɳ§Ï l Hté&%Â? -É[u‡ÔÜ€GÔϯ`Ê5¸çÿ^¨Q3à`„} êòïà \}¢´i7€ž†8Šé÷f¬áÈKžÐšèÅ0œkçà)ÈÂ¥ËAn"tÁBe  qW¬‰Ò¡ƒ5 dê×Râ×°c3¬±VÍ‹~åÖâXÃE R•/kè7éߣ5¬tñ‚b‡\¬Mã_ª7”dkߎØQ~°ÿmÒÓ¿Emú­=A0Èe*éÿéšôæ˜À<ý¨hë³Â¤‚‹Õ¦Š.ÜhàOÒÕÀ?ôÓFyüJkàÅ:(ð2àÿ@ ãpð$P‡B@P"qáB´Û!p!lHƒ?І4°a….Á/;° há?ü¡B„m®S ÿý±B¢¡ˆGÜÃ;æp„-ôÇÂçC &dÈÓ`jØ¢„X@ öñBvÀ MláòÈB4<è5Œ`„ŒüwB!òÐBr Ž-†ÁA„NqŠ &ðˆþX£aá8Ìq-Tbˆ Ñ@ˆ6ÃxC$01Š, á…!@…AÞð½ n;Ì;އPd§@”»ròBàñsI€!VX‚E¨l ×yC© XKC†< ÇKHÖ1!“¬¤Ôrž‚«"Aˆ˜EŠ-äÃZ®µÓ <ô!ú1Í Ó…|„6 2ÄY¦þ`ƒ"úñÿ<}iåœQ!A‡v ä,<Å ó?¢uD-rF\ „q@#ˆà H€v°CìFxÐ …ÀDj:!…pèK"D`KlH-J± ;Ä¢¥Y½B¢ƒ 1*R"8p „vØ,qR"üá¨õG ±?Ô!4,H!|qQ‘zÀ„(AhQŽBÄ€‘Da>×iÐ, l˜øþ-¦09"X˜²°ŽLjnˆHªÐqÄ`[XËOÂÁgþðØ¡°Ü$â FŒ`¨Nä&"q'd¢!±à a[@ÿ€²/üd í ?t’]!ê@C ´°…ý¤?ö „ R X‚ Ó@Û†”0• Ig#Øi_8V„ù-tËBXàAvÿ B6Žˆ×æ‡i¸…[ ˆJÔ²ˆÈõÇBá»Î€‡Á}/íÖ”â†F˜B%ˆ8DûÃì.šO¼1….\8ÓàŠHü² ‡ú;Áâõ†)L±?Æá²:ÜÐ…ªmŒ Õ•je/p Ë•e1ä?†L¯J ùd±\ „‘D¼kd!@È`¦k á”rOfD†Ö“ð|±UXŠàiA…u ²è%‰wC-à#_ixâ9a;ö$D7¤„DH d›7Sñ8THT´Xþ@ ‚8¡oþ`®ñpD××|èh€Æßg$@D% 'ppJn¶¯DÈЯT *4 [‡å:~ðBÀÐÌd¿€z£ö»pD%€b·§t@NqZlÔSWÿÀ7Ä"²C+d Q\’‚ÅÇB€;ÿ×-°.€u ƒQ8nŠf t 'a /äTȆ-¤WM¶ŠæfžhÆÐB Г![þà2L‘fhPH#E˜[´<~ðIhy·OϳKh ¬q„±EykÈ7nQ}ðÔä^³À_Cc9´éÄ|sðæè °BÆæB7@ ‰ð´¥~<äKh@XÄaW.´jˆupJ¬Q…}D´ÈEsÉ õ ÿ` ,D‹÷‡t<¤axUy¸q ø§¤ tpxñN9¹ÈA`·†µTIòTÓóLqCþЈÿÅ ªp 0–ðó)Tu •\{¨޵æ1Tu i@%Xõ>Qˆ¶Š ^ÃOéጹB¨B%icèé[8„NÆøqÑøZymàŽ É`t#PŸ¬•p§Fبkê5 …Õó¹›Üt9Qˆ–tp†µuòišYFH‡C“'¯éÈÈW vk1†¹I  …C{@+úŽHú¡ïuœ‡Iáh”G´]|øvO„ø<Ú¢ˆ*ã á"->–ðS$@C´ R@ ÿ` ,%Gq@\5EŽpQq@Z’5R9e Æ qÀä6˜Åe¥0RŸð‚B¤%D° jÎe+ehõŒPŒ¥"q„àg¤…gÞ‡°5R·0ç·p -ÿE6%RlçˆðRI»°æO6RÀQŒÀçÕSpRWŽægžäRv€YUR9õ !„4¤ê4TŸÞYqÀYŸ@êq@çš.n!è ¡ÚÒ5?¾:jÀ0žþ Ȱ<Ƙu@KÀwQv·ÔÉ[î´` †{` °YÿP ¿ —œ0îLNÙ` €ÀYvPÀ0_p0€ð/u† îi`À¥pGEãÞAÈCŒ€͵ÐY% €p~¥ðuÀäJEËn {Àçqpg €pŽä·îºÙPœÄ•@¼ÿ‚¾P¤%íâŽÄ` •Ð\²%GQ¸ÁãÎc…Ùp ·~{pu€V]Š ^µ>ì%®M@A˜¾þxþ0 2À™Ðið ®ÇPÝo°B"`· Q† `Ž•ð ¢ 0xA—@ þPo@0 iÐ`àï€ÚS ~@Ýæø%÷.ž@Þlð¢0 Ð ¨ øÆý®å˜i°ã`»ðe *p{Pã0lð«`ÜQ'æÁ4ð¨ð Þ ®'ß0o9¥`6@Ið ~`¡ •ð‚Àl0šÿ°Yo †p)€¬ðÿîàþ` ’0 ¨ A¡Ðþ¦K0s0†ÐoÀ ˆ ÍÁó–ˆ9sDØ¡dÉ¿LÞøHãËÍ›7”þmäÈQÍÇDÕÜ™ˆ¤“~ýÞtd¹19ý¶¥á4Ó•X£D ñ7Bž4pö䋃gå?GÒl©¶ SˆÁZŽ7þ­¡ Â|¶üý›DPþz-Ã#êß!hNÙ@ÅæÏ$©ú¹J{JŽœ@þ0щt`Ê †L(ø·éÀ'3òüCƒÈ…YkÒ¢I!‡•Ë´½"Q€Ù&…¿EÛÐÙCì ³püñœ’§—ÿ7½âèÙ4)MƒÝáL8éÈ`9£üˆ¤l£ wÝè“=&€&ŽX"±…˜ZÉc!7è ƒ“§@ðçTŽ*äFàã  †=q#‰% )ƒBÖ€%^*ÉaŽÌýƒõàxc5zü§ÂUä8â8·uE€”~Ö˜£4búç ¸ä4LX%™T`c‚Tì2@NŽŽ”*uO"–&Yhà@BØhÇ8VjØèG… Ÿ@Cš9.¨äŸ~„# ¬4êhÿ#%Xì8—O@éŽØðWà¸â”ENá vñ£„áÅ?ÞÅ[@ñ Þ ø‚ 8…—ýƒÁW…]c‘LŒåèËž£äØ ?š ꟪×p…NŠå`¶%ÈãŠlfCäŸQÀ8 ­Õå dXJ ¤XüaƒW›ƒŽ£ÑÑ8 MÖY¢¹ÕùZÉ(ޤ·ÐHâðä 4áJ„<´" >4á 4:z‰Ç¾dã€BVi¤â~Ó#¶æ¼iø–‹>©$=þ¤Ÿ4luxÃÒ‰1ý©Åñ¼ôå%é#0E,®â†QðAOHC!0ÿ4ãiZ“.4FT i€ÒÀ?rHdWøÁHD` %‹„ã:B Æé!!ÿPNG0Ä‘~ÈA{ÅÚH'ô Š<€âž˜ƒ±ˆPü›Å*Ú0¿7ÈÁ ‹˜ßòà0 ¬#ø‡$¢ø9¼ÁŠ›È"ó6b9ެ¢žøÇ†¤ÅM¸kèáäðŠbý‘%vãÈ%Á (>‚ˆ_ÜD*Œ¸U@Ï ÒC?²8ŠMl$‰}”ƒ ÑQž©sE&Ö AÆ$ÿÀŠ&V²¦OyƒJØ.i¹’çaâl”„&þñŠ£:€BÂ… D#%‹ë¡;bŠˆé塇㈦Ù#Cþ²#1[C槉<°ÌÑCÖІQl$Œ}”¤ þE‡xÞs”yDJªøAp"%ñü(Ôøn¶±ª e?Üò†Â±Gýˆ„|ök¬#èãH*ÞÉŒùáÑ•…«VË£\bý€Ä,™Vy^•ÿhƒKš‡”Èb#nÈÅ?R1ŽÒÒ è;ÙC]î´X¡€Ë‰~´2–S±~°l “˜Ÿ5½úU°†U¬c%kYÍzV´¦õzxÄJ³™ cªU®s¥k]ízW¼æU¯{åk_ýúWÇ;ShortRead/inst/template/qa_solexa.Rnw0000644000126300012640000001564112227066725021304 0ustar00biocbuildphs_compbio\documentclass{article} \usepackage{Sweave} \begin{document} \title{Solexa QA report} \date{\today{}} \maketitle{} <>= options(digits=3) library(ShortRead) library(lattice) @ <>= load("@QA_SAVE_FILE@") @ \section{Overview} This document provides a quality assessment of Genome Analyzer results. The assessment is meant to complement, rather than replace, quality assessment available from the Genome Analyzer and its documentation. The narrative interpretation is based on experience of the package maintainer. It is applicable to results from the `Genome Analyzer' hardware single-end module, configured to scan 300 tiles per lane. The `control' results refered to below are from analysis of $\varphi$X-174 sequence provided by Illumina. An R script containing the code used in this document can be created with <>= fl <- system.file("template", "qa_solexa.Rnw", package="ShortRead") Stangle(fl) @ \section{Run summary} Read counts. Filtered and aligned read counts are reported relative to the total number of reads (clusters). Consult Genome Analyzer documentation for official guidelines. From experience, very good runs of the Genome Analyzer `control' lane result in 6-8 million reads, with up to 80\% passing pre-defined filters. <>= ShortRead:::.ppnCount(qa[["readCounts"]]) @ Base call frequency over all reads. Base frequencies should accurately reflect the frequencies of the regions sequenced. <>= qa[["baseCalls"]] / rowSums(qa[["baseCalls"]]) @ Overall read quality. Lanes with consistently good quality reads have strong peaks at the right of the panel. <>= df <- qa[["readQualityScore"]] print(ShortRead:::.plotReadQuality(df[df$type=="read",])) @ \section{Read distribution} These curves show how coverage is distributed amongst reads. Ideally, the cumulative proportion of reads will transition sharply from low to high. Portions to the left of the transition might correspond roughly to sequencing or sample processing errors, and correspond to reads that are represented relatively infrequently. 10-15\% of reads in a typical Genome Analyzer `control' lane fall in this category. Portions to the right of the transition represent reads that are over-represented compared to expectation. These might include inadvertently sequenced primer or adapter sequences, sequencing or base calling artifacts (e.g., poly-A reads), or features of the sample DNA (highly repeated regions) not adequately removed during sample preparation. About 5\% of Genome Analyzer `control' lane reads fall in this category. Broad transitions from low to high cumulative proportion of reads may reflect sequencing bias or (perhaps intentional) features of sample preparation resulting in non-uniform coverage. Typically, the transition is about 5 times as wide as expected from uniform sampling across the Genome Analyzer `control' lane. <>= df <- qa[["sequenceDistribution"]] print(ShortRead:::.plotReadOccurrences(df[df$type=="read",], cex=.5)) @ Common duplicate reads might provide clues to the source of over-represented sequences. Some of these reads are filtered by the alignment algorithms; other duplicate reads migth point to sample preparation issues. <>= ShortRead:::.freqSequences(qa, "read") @ Common duplicate reads after filtering <>= ShortRead:::.freqSequences(qa, "filtered") @ \section{Cycle-specific base calls and read quality} Per-cycle base call should usually be approximately uniform across cycles. Genome Analyzer `control' lane results often show a deline in A and increase in T as cycles progress. This is likely an artifact of the underlying technology. <>= perCycle <- qa[["perCycle"]] print(ShortRead:::.plotCycleBaseCall(perCycle$baseCall)) @ Per-cycle quality score. Reported quality scores are `calibrated', i.e., incorporating phred-like adjustments following sequence alignment. These typically decline with cycle, in an accelerating manner. Abrupt transitions in quality between cycles toward the end of the read might result when only some of the cycles are used for alignment: the cycles included in the alignment are calibrated more effectively than the reads excluded from the alignment. <>= print(ShortRead:::.plotCycleQuality(perCycle$quality)) @ \section{Tile performance} Counts per tile. The dashed red line in the following plot indicates the 10\% of tiles with fewest reads. An approximately uniform % FIXME (wh 6 June 2009): do you mean uni-modal? distribution suggests consistent read representation in each tile. Distinct separation of 'good' versus poor quality tiles might suggest systematic failure, e.g., of many tiles in a lane, or excessive variability (e.g., due to unintended differences in sample DNA concentration) in read number per lane. <>= perTile <- qa[["perTile"]] readCnt <- perTile[["readCounts"]] cnts <- readCnt[readCnt$type=="read", "count"] print(histogram(cnts, breaks=40, xlab="Reads per tile", panel=function(x, ...) { panel.abline(v=quantile(x, .1), col="red", lty=2) panel.histogram(x, ...) }, col="white")) @ Spatial counts per tile. Divisions on the color scale are quantized, so that the range of counts per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values. Because the scale is quantized, some tiles will necessarily have `few' reads and other necessarily `many' reads. Consistent differences in read number per lane will result in some lanes being primarily one color, other lanes primarily another color. Genome Analyzer data typically have greatest read counts in the center column of each lane. There are usually consistent gradients from `top' to `bottom' of each column. Low count numbers in the same tile across runs of the same flow cell may indicate instrumentation issues. <>= print(ShortRead:::.plotTileCounts(readCnt[readCnt$type=="read",])) @ Median read quality score per tile. Divisions on the color scale are quantized, so that the range of average quality scores per tile is divided into 10 equal increments. Parenthetic numbers on the scale represent the break points of the quantized values. Often, quality and count show an inverse relation. <>= qscore <- perTile[["medianReadQualityScore"]] print(ShortRead:::.plotTileQualityScore(qscore[qscore$type=="read",])) @ \section{Alignment} Mapped alignment score. Counts measured relative to counts in score category with maximum representation. Successful alignments will be reflected in a strong peak to the right of each panel. <>= print(ShortRead:::.plotAlignQuality(qa[["alignQuality"]])) @ \end{document} ShortRead/inst/unitTests/0000755000126300012640000000000012227066720017013 5ustar00biocbuildphs_compbioShortRead/inst/unitTests/cases/0000755000126300012640000000000012227066717020117 5ustar00biocbuildphs_compbioShortRead/inst/unitTests/cases/PE_export.txt.gz0000644000126300012640000004530012227066717023206 0ustar00biocbuildphs_compbio‹ö ƒK¬\Ë–ÛÆ’\sþEsP…÷ÝÁ[b£ñ(¼È…ÏÝÌÌüÿ™ÈÈ› @ˆ¾n¨E‘´,$³²"##³øÇ4ô~ù½è“ 'c¬=UY”U7êº(ËÒUUYU~9y^Ék'ƒïœ¾~}ës~ê¦Çåúú½é»®ï‡®n;¼×j÷W†išýþ÷ÿüûÿïß§“‰b“D™=};¹2+l|Êò“ÉÒÓédOø?þë= ³(<Á¨›•+\)U¥XT%^;‡Ï€O³\qúí…ëT¿>®'÷6&<áŸÅÅ{‹›p«²ò÷Ç/},ôïïå÷Ÿ›÷¬*®îZ´Ê•ü£,Ä Ÿxo,Šxÿ.ï-ÎUâÜJÂA^•ë º¼:}­§aš¦ÞMÓpîDEÓuòŽëûI®¡ûŠô/»… £ Kr €2ŒOŽ6`Ú—>‚ˆéšï?š]ßÁU}ß6¸ºßvÁÄdydlGTâ„"‰àÅ·§†É ±{ÛT\6F2 ­Dº†Žûn“µ“KV©–eë×5òŒì\ÿ£ÇÊDª2iaÒSž`_åb!l}Ùaj6:AœŠˆ'nÓÔH :AfDö›‚±ë¶ýŽ „qd`LAždß§ú©÷2ØvùŽ?bHá|øËê"¾Ä4X Xè¿ZxÐÚvù&1XÎD–ÒÁ6,›I2I‘™èqqÅu\V`\ÿ¥nL S÷†(ŸÞšnYº©^· ,;Í "xêÎuI…y–­®»íÌèÈ>Äç]ªƒ˜M æX'›B÷Ó 3Ù×÷¡®b/œ‡Îuò;›s˜\Ýl»—@+Jâͽá.š<|¬ÖÇBŸŸ¾6ˈ½W!§¡uü8Àå4öã0ÝðÒ½cl2™×Ï)Ÿ¿XÓ…X±b¤ a=»ëuX–é‚›Íý<]¯Ë|é¾µË8ÌW Ù<øWø¯à׈˜„é&&™³ånŽØC——š&*2lç3ÀPITžù¢kÞùänËäE·˜ Ã<ŠÁªVD ˆ±àMlŸãM’lñ¦dð‘èÈ~À‘½Sh~•Eã¦!ÜˆŠ‚2…€8Þ:±P L£0ùØ46Èó,Ï¢›éj`’>70 ¢‡¶ÈÆ‘p)5É»•‚ 1®qíy˜Ú™Û¸;° ûh›aǾ¿«A' ’,Fr½Ë·Ì)&zÎOÓ$y°¯ª4ÑÊö*t?UÄOZabx˜ü…½ÕË+7 x¶›ÝÞ ƒõØ4…+7®ÄœgÌÓì$‹ —­¨Íͧ!(­9¯ S¿ùyD2ƒ±\¦[t9Wi£K¸æî Éf  ðÇ8-¼'‹üyý†"žÛ.¤Ió$‹sŒ@rô’³8U‚¿òHzö¹Rë fY1•TŸÙ¶ù¦"[³6'DT¥•}ÀÍùÛnôÇi–Øœ|À&ev‚¥Öˆ}_Âüùâeé~0ƒiºåÒ‘FF ¥Øžˆ#þ ²†Hé€(#Úžyz‘èfتÕs4=9ÍWEt‘¸Gë]"ƒ@A Pp¨ñB¹n÷‘îói˜&¡˜"2`Ë[DÎ ›ÿùÚåà,€Öt¯™¾PÜbë‘^Ó½×;EŠMòÈÆ‰H¡¬\Y—n#ß±>)è=Â*yT¡µdA2‚Šëƒ•äê›VžaÑ®§ÎKs~æ©’·¡Õa|`^n˜ºÄ¼DRE0Õ—j>}*ØñõDÀ–Ôs’ˆ¤òÐj¿·xwµò(·9+–r Z6{÷9PÕm¨&WQÖVs¶ŸlK’xäMáE‚¡øí¥ wpJ¬á ‰iê§]Æq”‘jŠ*‘Àà~b˜s¾Ù–,3YçÔZ¦‹º_ôíJÌSȇ?¿þ©[óiìݧu›J­cXH‡Š€fÒäVH<«á|Ò«Ûþì%ûu,z¸;†ZóˆŸÆ ˜–ñ[¤NFVšÝ,5³ð¯qìvk@oŽû¥kÂHKfÇ[OCÐ’9ïÖ˜(¢9¼*×="®eU¡N|ë ²b0’ú{?´oíÐû«“²ÛsbšÙĤéŠ/…ôÁ6t÷‰³®uÛÖ¸1Ìx-þ¬ñçkÓ–¯(OQ¶Ù ¬÷|’¬X¾Tž»—ª}À9߇~”"^à¦UjÝ´¨Àx©æŸÐŠ´'_y™5¿Œkóu,  g… c|]z¶Á:šRÇ „óUì5ЃPVj!(¶ÁÆQà ÃÈÇvå½ÃLOÑSÕUY¡Š>óæRŒnX¡ÊAN³·àªóŒ¯Í™f®–âÌÒL„÷ZÂ*€ÿ%RcÂl›Y¼PÐëäy¼g¡Â¦¤l@÷eîQ^¯—+Þ¼^æëå²\Q–îº,ýÜ ó©.‘˜MäyEøÝ+"~AÅó<&(a”÷FA¦%Öéžb‰¬õß„g÷.{½y±}oeã¿7]ã¤$L‚›îíú$=ÒŸ´Åìç›…«Öä!ËÇ FŽ£êPФÆ5ÓE.Š®µ[äéÐ]æñìœh¯ó¼Kjâ ´ ³re+Aä‹´,üIàc3Cp‰$k•h Üg€M€¤JT5}¿}ëûªo"óõOä³<¶y†¶–³¸}’þJÄçÚRIÊÎÇ[ÅUFÈä¥àž¯rMór½.Ã2xußÄ“ØÝ ·û>´Öf`Ö°ÐmÖX§š‡¢ˆj”ÊU*`P²íZRÅä|テù·­Sžú Ü,LldQÉ.±aeª°ˆ€G!•ðyèÇ(ÛÂ'9W±ÊÚÔpÙ’ßüŸˆ`¢šl$’J´)ÂÌâ«i¯*“Ýéêiý¾“ö’‹É£T¨‹ÔYQ™ÒÀßV»$R2¢Ñl*$YE¦Ý«•Õ ¾Ê!ð/½µ¿Ÿþ±‹D,.·éõ˜SæîJñ*Ra TdÞ†~ªQlK–k@‰ ö°_¥qšɪ‹ ÛHwbvA)(ÛÒ˜•…2œHg´züÏ:lÏÖ&MíC«D³_qÛZÜsE©/Tw›æyp‹’óÞXŒ-£¼r¬íw [5ΜG#–¯É¦Yºm?’úŠo ¥O¾P$=§vŠ4I¾«ño#ü±ä¸¤‘V7ºˆÉ‚p ôªi­*– „•o8e o]M±RÛ7¾%×ó7þ‹{jÒ¤ ͇:Ád±JÜS‘üï{ÇL8~¿ÑƒÂ-tGRÃüòROŠqÍDäçâÀô@÷5ÒœîÈB»sâJö—T¢'+¥4‡|=6¬þÁ8Úæ‡sç¶! sG–Dq”Ìå¹c|ʴʰÉQ‰˜GFAþƒ¬O‹Uì!w,o…É*¿îÄGýÐÆXÖÌ36aŠtbxTdäñ¶*•¯ùƯ÷¡xíÙýûÅéØD9U [Ù¸Jn&2Á?µ0Ýîcßÿð µw¢êæÚ”O¶qûŽR·¾°®;¼~i¿eÇzw™ƒ,gѼ֑è}µòƒàAâôjp¡s¥goˆÆ¢¥ˆ%={‹”E‚u°ïч‰„<Ïl²6S@èç6°‘¦Ñu „âŽR×T)J•ÍyÕåËS ¯èi¼™~))g^.wÚH*+O¸«¿‘£v6@œe±5å‚S", ŸÇVˆRænádjSجVØ%Õ G"ðõ}Y&° ¦’t}{>·®þFöýî–yê§}Ûò(ËÄ A…"‰Õ€•nz”ôfÒM­çëLVºTæ*?ÑCK/ÿƒíiLœ0I(|$Ájܳ¸Š³û9aÌöil¥=îñ$ìB]nƒ¸Q˜À<±.n§©•~ ìÂJ9Y™àƒ²|§ÆBîLmUKm™i‡QšÀ*6Øn·ie²4°Ùö¶ª#¡yî›d“ÜÙg@)OÕíî{Œ•9ÉJo?~ðOJwºs#åéi³n‘&il­G„’ E>`ù]æ\ óB§€´‡]éЋh9Z¤‹Ûæer%¦…ô–2ÞÆ‹åN;¿‹ª8 Â,üZU„ð@·DÛÄ•J§âNÅ‹R{«Ì"p%æÉ²ª¬2JÓm­ôˆêÊža”›$þim³ûd¼ë.g²bóéÒ×Q\lF*Ø÷Ç´ ÔõËR;5¬{CÄMC=ˆJ=í·²0‰Lþ‘,)Ç%yNŒb-\n{£(o]$/Ï•^“f²åöæÛõ={õ¢º8f(7øá—'3Éc™Pøö!²n±î ±ö÷˜æá,®ØQôõa¨N”i êË<ÖÃx½^úié¯XÚks]¦¿½ó“D”¤6·7÷Ý4¬ì _ÛMZ`ÏK›”,Ä×zú þ¼ÂÛÉ.W·œXrߘhïê·w×îy›Üdaèn3±^ÖR ;8ÅÙ–E)guH¥,”2¯ÎVÊ`ãež/ÈøËõ‚‡ùrå°s~ÂÓöÅaÒ|S”zºáG’Y »u*ˆE`Ujõ0r””lR˜¥´¨µQ ÿ ùíVy%ÖD›©.…ä`ª+5±FuéOmPÈÕA7Î¥{¢$åÄkQü˼2ó™ÇÄäÈ›`)šŠ}«üîGðEYÃÒÈòŒµO˜ç¡mÆL?;Òñ× ;iCyMLáÚeû'ª?®bEù¹Ó~HõöT–8)nóMÔ(… ÉòÇ'ÞÜŠSúaf='äó²¶?¨wñÐÊ×¾ý¼ï™[eºùç›ïMΧiœs¸¿£ÂO„}á ÌS Ó CÔAtrcvQ‰±‚ñ\è€úÊ ˆiOŸÜO£{ %Qsò‘—ùTõ…ÅÆÓÖxšo™;h* 8æ`ܺÂbIi!´ÐOkS˜X€ÊC‡ˆ]Fñª”¯. ¾ï:òó;=Òÿ˜Ú]ûcª/nZ“Úø>’ kã€!EW¡ÜÍÕËeËúnY#š¨Mz[œ§G²¢ä^ /tо,nÃz•6öÕßв~êGy–¯“´vc³C•ymÆ®ˆ[ú|ÎhÖɥʫ¤*¥~êâÙΩõ’û¿p}žD›o=ù£òY AÕ'NÈüƒz; :„YðÑèÑ…ÍæÓè!s%T[T…O¨±že$öê 29ât¬ÄW޳wƒ“Qç»úûlØÀ¤á½ ñ‹I2üýÍ Ó³žJQÎNúPèQ­•K9ˆqm ê0ºèݸ¡=Ëö:çö0Û0‹8Hi3á)O½†ü% ŸÃbœd¶Ã®Då+?MízJö6¶åCr–w’n™Œ±SÛ¸ž£¼íøl̘0Ì콤dçhä%6ÇžttJIG±Î :?ÍM:É:$2U£‡Ç¤îy¨­æÙŽýcOyæñ‡ t›' :ââ»A<%õþ( §Ìü¡M¥Œ³Êû¢ç~fÍ)Ì|Ë¢ç6û‘ï¾”UÂ|Óý҉렎:¬áÜ:Ôâ4ã6—«¿ÀÁQÍæT‹p´Ö¸™Ïã˜DõAª=ê²'VǰëµÌàœsUøS‰å”—²ö"³œÒH¼-=©LxæDš¯ÐÍÆÅ^IéåÖ°åJ!øD:£ö2e&Œ~äC=n Šß7ýÙÄ ƒ뇸@5ý²%G{.Þä¤Ò“~üÖÙÒâ6ÑUÉQÃs#2/ȉˆZG$º{ý~<Õ•âÎÚÜß•×q´mðxv©£üÕ:©U,kÙ—z±ˆÕ'· ‰Çio34É€ý‹t&ùVû/üØ[¥§}¦ª*•Ü8UrÖSeø©ej³gÛ XäaºõNñ" Â<×ÇÍ~<:Ü ßoDRÊ€þਫü‰¸J¿ cŸ8ôQ+ÚÔW¬dÙˆö':×÷T7Vµr^tpïN þóïu/®ª¿u„­,øI4a’EkL1Og«kž "[´,×C–¥*´:Zjý¥ÝèZ]&ã9,¯Õò¥däËgóy’'?…üÑ@Po…ÊÊŸ¼ðg“*ÿªq—z⦖¯N ¿‚Ç@ª¤¤^s؉wól» " B+šZ ·†íy{ä½è±—X*¶ó4¯ÿf /@òˆ%Ïp­Žc׺º+™|( È·z4ýÝÁ²mg#M>Înݕᑅq’n\Xú‰@Ö°¥~•ÍÚØ×üþ *X^“f+[õ”ð ·`â4ÙN½±å¨g‡¨zQ²ôãÛN*Ï2©fø£þÿâ¾uËq£Gò·fÏáýâ\Κm»»J—”Dñ.½ÿC,€@R¤D²µßøìT÷W®*÷L§ÉL$ˆ|ÓW7¦ûÜøGLæ>Ýø›å’2<ª¸ÃÏ#®›„3…j •5®r£üOÁžìù¾±ÁÇUî#в—ÃÏ_R%/´dº_‹`…:‘÷LÒžo×ݤEG3 \{i£ôŸfÿ¦­U:»¨AAAoŒllf«š½„qÇD;sF ñ“.ÉÓåôKHŒ_f sÓ$  Û¹=ÀJ¶X©7g¾AL,ž_™~V7›\™>¬½9q-ɹ!‡.=;›U&§Ôå&F;®g±D¸q$¿Ã<ÇI§²ŽÏ©¼€‚˨DDãF»Wù »¥¨æ.·ä>V‘KTÏ&ê¼T^b>Öl-ë}HÒ-B*´-8) §®ÚÈcS/cM¤Æ™Ù';R¡Áç ŠK åt•s2´ ”aBï7㳎Ê,80ÏUœœW%×9~:{ÿœ?æ’LMb×ñ„eš{¾qáh!ëÛ²ߥrSK(µM`I«éfd¶©Ð˜ÏüD_¿G)yÏ‹ž AäDI²€e›z¸ÐËWJ,¥ªEÃÁ(uBŽ5Ÿ_s¹²LõÂ’pöC(Y›¦Dhþ´bk˜Æ~àÚß'77×à3AXvBVKŠ•¤ÛrÕùæþ‹íÁ˜?Á;O:+/÷åæâ ˆEv™yiÒãäØ!±ãññ™E®\7ÍÎ2˜„ •7Í™ã­Ï®òL¿GAªÙÄnfƒŒ§×Ÿ‚Õazñ[#ÄÝ ys­¨âFa;ååi’‘Á1ô³èâþá:ñÞùEì§ó Âþ*9.}½\¹ŸŒ2N§ ê²h.¦W(vs¹g†B±+åÇîw¾A:ç7çŠMYs‹@Ùê @o1Ña^Ž‚x‚ÆsØ7øá.yñ3ǘô6®1ßSæÔ¡ÊÀ#ÎÀ#@<_eUBéÛW¸N©¸«J•W7¹m)¹æËÖü¼.-0¥ 4NÞ›6[¬ëP}0e‚ Òû6%‡g f*eì¿#J£["›Ái}"=ÌUN8ǬK£Q‡¤“-%À"+óÖóõHYŠa×óÑÈù´>eËŽstGDÁô˜º‰È^Ò­ `^€"r#ÒØ#“ç–YûïU±ÿ¢ºÍT«$:BË3a Áà ë @”¯ëŠwTIõ@Í|­ ÊèÀ#w $ÊÖŠ7ª£h†k罃^–´± Å—æÃ÷×ùf)‡üÅêÊ3}–KÐC÷ÞÁ'¹5V÷U‰‡æ¶´š#_Ë3 «ÿ7(0a”z^4qÔrE̵íí0¯m÷f`ö¡ÿama[]œŸlkTÒ4¶¬BN[3kj® alÀ¾=7ÛßmÚ!«pg†Fh‰ˆ\©I ]ü‹;;I_ÅxU‰±r •îÃ\JÛ_T•T\Ô•€‹L÷¯o§óžÁWÞJË+—"`EÁÛÖÞ*ü#ï5w-„z©%£ìY?ôg L0µ¬º ètÒ(¯fsDUöæ0Ëzw¶Š½%[ݙؙ©jT²¨‘L›!½ç†ªùÉ ñ­d Í¥4Ç/&-œÙ£fƒé a—©]É”Ú[ž ˜anÆÆ­Ý@ü??w/ / …Ù•ÃK çôlVU”.ëzÃW/©,•œ­Öç9< ,¥ÿ9¿9Ky:X-ñ?Üd;ŽÊ–÷ ÏuÓ·ÎZ¼Ü]êÎ!WØ8gÚøC·V|i4Â[…ý(%8œØ.Q¼Ê¹~:, o(YHS"©‹èa¢A´‘t¹Œ¾´°@î@ŽùºÔDª‰‚§ û`^ÌÎS7>G¥zœ¿øË•¹›¦©ï%SGõÍÚƒÿf›dµ\iº®ÿ¹ Úe ¦#ä“Ó•…‚ÜdD˜]펢e•Ð ƒÍ÷ØßqjF!™½³ª¢pù?)˜EVØþƒÔ«=ìDôRŒh«~r´°Á_?xâj‰P‹Í]Ï âHÎÃ+OfUÅîÒ­>W›b,Š bÊÔÔG‰þ=ÚµË°Ê Ñ(C5‡u@¹ Õ´Ýxs±#è…÷ÕY±Í‹PòÜ<NJÂ?œ?Üß°8 ^LJµÝ)Ô—|sÑ‹ÉPÆú³ V\ As1÷íJ¿ÍÕRß$E¦ó‘ùpË aèу‘6§ë´©SO!îj=ãÊó›Û ™ÂöGÝ~Ž÷I d°Ð6®œÿ^åèñˆ–¯Ð‹\KÙé‚Oã +rÊV7Ž]ø>!GI—"°ÎЉK„*†÷HGÏψǞµ¼9—GÑÓr“0xËKƒÍ é¦ó»g“¡]d”³ÔYîÚùUy¥×+TczµGf+]@½î¯¿.·c¹Ô½8IÏ}¤°Q}ëbdÏ×) k4hX`H5&êb_ei**¯Œ„°lPÞ6½[fS\eNÃâúBωž³þHbÝx¿ìÔù2šmfDêmLÓ!PŸâ¹ÎïE%œt¾Ú”O[¢B7ž±fÄÿŸ×³˜v_Ì?{óÚä|‰¬³Ç%I”Ø~ëÉÑ“¹׎ú/lU²tÇa­Âh’CÙñ%y„Wñ >Žà‹‰ÌÕœ>êA/ÇÿÝ0k…÷‰Ärý bÆü䣯§í<ž;ù'”¼L\¬(”Iè¼ÕóÞÖÙc+ÎlVÐK,@Ž€úÚŠs£Sš~Ý®'!ÒÃu }±ç$æÀ(ÒÂü Ê-ªœè-£rWaP~yé˽1¶ƒÙz…1H¿¬÷5ˆ7§½vè ~süÚ–‹êˆ'ƒ¼3´×Qnz¿¯REPÅ%¥A…´Ö<›?™J/{ë&®;ÈoD["×åñl>k󻻈GÆÌ*?"c§ÑÉ%­;Ä ¢‘‹0yåZÂóšS¯=ûâ~v/‡/S¬„ oö'"䟂ò àÈp‡RäObn}ÜS6ðSFáýÚï‡Ã~å^ñ)±FŸõÅ2-ZíĹâ8ô²òïÀ;Iz(·3Æídƺ3HK•»˜5DL§ôAÏss—þK}uºÙH[½9Ôf­! =ÌŸáo!ížB­kÌ÷X82‰Žó÷ùìkôP—ýmŽ/$˜‘.ôü(Ÿzn€”#HmaÀÖÈ„2¨.¶DÔzñ„ÑtDö";/~9""H Ï/ÜX Ë*˜˜•£s]Øi—’MKä…³Œñã@ÏPÎþjè”"s£Õe%½:q~V&Þ Ø•cvªlpB T:0“°,[CÐ^cÎ#ƒž©Œ©\æ8±]¤¿{óp6žžG/é:tÎ[ÊŒþ†ÏR¡>tJ®èäPPEÇ¥ÓeÂ"šñké/v&Ï×þ+ÈWá°y§H=–Œõ€Fªl[ÄFÅíE ÷YÌ#Ýa@½gtb>¸[Ã4š»á ) ÈáC1$%oRyoöÒXèEœéº ôl¹¤tãIto]ªÍ’-vçžÐ™ÕRåFñ®\­V2p$r•œoÚ‡½ O¨‹OÎÏUo,i{% #Ö9~®˜¬î 6’<¯â‹õ£ìÅþU˜/}¿TÒj`ÒðQUô{$Ã%îÜÙ$GÃ>gÊÌ­eP.SACnÉq ö˜wD”8}/j¬ÒØqQÎ/÷p#ò'þKâ6‘¥´^å»ÀškY×lଡNâ%¶¦„ŽBߋܩÆS-þF—€ …xN@VKˆ°¥„Ë7êlÇV•BM{ T`²H€]«ÆÈúš|¤Q: ÃâÂUŽ¡Ëf·éÿ¿–’W‚dqF‡!³ÈÕ£ZJ¢Ÿ2lìŸÃѾEcûŽÆ(ÄóQdŠ‚wÚŒQ3%$±6ÄkëÆ*øÌåÌsQ—1HÉQàrXÚÚÒa ý…Ä:Ý<øál  ÌÞ_C­]œN<6ÿ¢Wƒ¸É+ñ"l 5 Wª”°Ìý;‰ÂY艼qÍY eÖLS‚BGß}މœ;76®›†îüZË`Rc­$ŒïÕz™Õ°=e–<ÀÜKSa wüu8kÚ÷ÂNL¢© ÂX²ùÁ †ó´3!3¯$K@-;[éÒ‡6cü<27{Û/“W(r¢ŸÊK,ÄDy~Û‹ÉæÓÂÍJgçòj1mc'Çòýfá³Ý•:é{÷Ô¨øTï]Œ=Äô+ywj„L¹ß³7ZLð=|Y z‰—¼U;ë¤Y›;÷¥ÔàœÛé•ð……zNý—¸«•Hà8¨„¨žæfgÞ¼„lßIÏÞ×·Êzådò™`Ô¸/·.z…‹ \aåŽÎ¾Òô5tÔ™Ùÿg³_ \bï’¸ÉûÉ 7ÑŠ8xU%Àä ÛÐÔ<žÈL+  Œ¼7ÿpãd&‰ób# d³8ŠF}ýñY&lÏêi¯šE—ŒÏOÃ4ûbøúH(Z^ôÒ[Ľ¤T·ÂŽ…ÂŸNÄȮ¤Š…´ý8묟S.7ò¢0v§pÅok1çUOe-²VÆ[Žd¦‚h{k)y[áÖÅñ±´8ß ¢H,/2{6\V+­sÎ\¦6¥/tÏÜÚ¬ 2! v|›AGïûÄ<ønTYÃv¦d\ÉÃVl0< 3l7óÔ²º>Ly·2 ñ^}yí™&d¡€ &Â0U@õz±ª*#4—“~b€Y©0òghæ„®Žüb°"žÏÏViü{ `ÖÚÎ’b€±Ð³¨ËqËGL7fäìl›ÞË(µÆÑ{lñ·Z ‘¼ô ìrðÄÐû(ôuKcmˆëuÏHýï×E¥'§_”®ÐZ×b‹—²Ç¿ôq© ©²³µ>onH­öujÑ$‰?ZYEn};ùÚ? ÿÚa±çáZ_3|XFùÝ(Š!9Q~_‹·V¤ñlX© %Ój¬Þ™óáú€í?ñüäÀ~\´¼¹²2÷käÔÆÖúaUNë‹üWkÍ¿3õ¯É´£~?Ü¢äëÿ€þéM4bbÍ>N×ËÁÐ?ÕÊiÅÌt|få:d³¢›SŸ0ŠC‚Ô*hØ.o†øÓt§ë8ðS Ï'à*çÅðL;ÍwB•霟õñ*|B‚d>­@ØaÜÛB‘+X”ÏÜ„õDMÉ »í ÒçoSr§éRŠX}QàQ™@5û{#l3á!S@O%(™Í+ÇHPQXk³…yOô^¯0¯=,»•ÖŒ²\î’S†åbŽÈK†µA>L‚×KDÍÞÃëརÏ!ô£=ÃÉ”NŦl7úõ} vå¡x±$çIı:¯ÏS ÊÕ æô6˜`¡Sn]^ÁC’œ°Z«ˆ þŽÇѹNp«x·ç»ÉîÕ¼e}ĺKI­?¯ËŒªPÔåoªŸE‡û½ €&š|°p¾Œ{ZÆk™öÒ+~÷`Ûâ–&él ¤xFá3ÛêðÃüß™#&”`E¶ßbUÛäk7|Ñ*qJZ™N²T·Vƒ>1^#e©g!{uq”7>›’<ãÝ0&v#è¶z~y.gä¾ ´Ä(zØI䘽ˆV±PPEt\±áôµ¾Uìc"†{¥øíÉ xém~Ò+öØÑŸs'ÁN”¼î)Ʊ!ë”q<ƒµ=U%x­$ŸÌÝ`œË¢,; ’ŒƒŸÈ¿ Mx»`ÖÌ–K?Si¢LúQtËZ#óúî}Õßû¡éî}ÛÞ¯íÐþê.§áÞ7·Sßu·[sªÝ•|NCùŠ¥2’‹v›Ù~a2%A$.áWÉIE#À/I_vý~<wúuî´Ì;}túÄ?¥×ôå²^Ì#4{ÆåÛý΢“i¿BÍ,u.±JÇŒÂ;$‚»®hq7úTŸïC7ÔŹ¨÷®ï†æV÷õP_êed.ˆ½Dž–q“Üvôw»)˜8«#SùöÅu[š±²Fí$+ -W.Un ³£÷{~ôç^¾øÒgZt×,š{Q¼òC×›½ãm`ÜÛÅÁ”>c/µƒÈL@¹}¤½cZ­GV4ôôÑöCßÐgZà­¬ú¾º-=ÂÀO%)Y»î©âqá9µ™Twé ¯Sì%Œ±~ÂèV»;¿aÞl]ÿ¸O?:Z2?Cúk„4øŽ®Øx—†£~cµ çœNW‰,x …±4%Œæ ìø8Гújhû–ÖIGz¨:>-ôîÛúJ_®Àw±ï ¹i~JÖ½»=Fø¦‰rÎ&îH†b ;VœXu_6ÃÎÂ÷ùvî«úÏãÛ½ê¿u]û˹Ù›åk6¤Wìpå&…Ëã"õ‘RråÌuè„€i(jÛ\Ù}°-£#ÂǤ}ÐfZ‰1ô]WÉ™¡‡º(½tCŸ[£œ‡zI>yÇëw~‚î4Îd°6ÌÔùÄšô ½Êr>Ç{[Ó[¾×²íh±'>4ô»¾Ñç[×/-0‰©w¦qÎ+ëÆMUBÓ8CXœYG (WèVI]^Èóã'†#Ì‹ºÜÊázi›Cu§À8ÔM¿t‹D)»{¼o@oÕqÔ£š%#€"ñÿ¶P„ƒ/¹¶jèÀrx©ú’‚E™ÚðQ¡‹®îª¾¹,áˆ^•+¦M³å¥«LW–%¿,Oùæ|p¸/²Âv1yœmÓ÷„ä¾iéÅÊ×}Sõ²LŠ„ ?h-ñÎ ¦Í°Ö”W›ƒ,ú{`(¢« W÷è8~èzoïˆvü»—·:TŸýå¾3íÙÚikê«ø—ü×užËyßt÷†²‹,aà}$±¬ºðÅÊû|X¼ßCßé2ÌÞL´ÊƒÄH÷Éòì °žr!ùe:ØžÛt5ñä–”w[S^UmºöÞV·v1ûv¨@`À㹯E;ô¿‚}¤Óif¦ µü¶~A.»{‡ …·G¡éñá.ùÒi1ðÇaœ2”æ%;ZmÛðÞŠÝIõ¼ºPžy¡ÎéÖ ©ðÎtü>Ï÷ûןuµ?Üþ4õþrk׿û†Îã*|ÅQ„ÓuŒ'¶¬^Ë‹âpSs|dƆ„j4µÌâòt‡]ÞáY=ªþq~<þÑãÂwº¼ùÅkÓ¡k)qÊKÔÚx|i2UÞ‚¬‚ £â¢ °¡E6;Zѽ®û¶©[ÚzÍ¥ï/W [ý×¾¾ÕÝО›fñé1W,”N/ÏK™óʵ·›N¡À°À&š0k;/t@:=²9µDý¡ãKéF_RÔ¿/^Iôì"_œÀõémBÿý©iÛI}ˆÔïb¤Ÿ:ÀQþÜoñÑÊùh®¿×¾— ¢«ûóÐ/½Ù0©,}±ëÚøH>Š?ø{f–˜˜á‘iÜ-­ƒÃJ/÷¸MϹ“¯ù:XZ^â…N ,±É“[”hmI0ÁÔ¢Üj«Ôf<<~t”n_͟͵:ÞºâXîoÿY«•‹å0žm)Ë„Ïá(Õ•’yvú lÅ76–!¯¸/¦ÚiD»d!‘õW•Òž <ž¼8@0´YhÔÓOˆ~2ÅË‘‹ Õ“¬U6ßÔôU7,myßÒDÚävy onåÙ‘3eãÆ† æg`TŽíÀŠq9–'·^U­$dç}I«k?»Ê½Ùß]°…Þ³ôˬƒ¢Á¶2—(_Ñ?è±P–Ñ-ocF‚¼×‹Ü۸ȩ$˜â@YžÛr-S‰(ƒ¹€9ý~Ó—ô$è} =ÇÓýÓ›¯Ó²„5âÔM»œ Ž»uÙ×Msv`œe4ðŸÌÔ£¬[¸v6T›F¿ntqšëð¥óI¥†³Z"WBˆänš ØÙ`áî:­²Ç‚[Jï¶bàžK[zá-€$A"joæRQ‹‘”ë¾Þ.™Íþ.lt„· ÛL‘ ­Ù®ïÌ@·KóãÖý]7×ÃWUÖݵ­ÎUSÑ}S•·Ër.œÒÆòÅô[Kíß@¾éÌlKçñ‰t \8µA÷qÆ®6þÙüÙå_¦?õתþë¾0…ùƒ€0÷÷.´©ñ Bðx…†â:r—$ýÑÏkU ôù3ÓºÆÂxvâ3c‰p¶Ôi—¶Æ)¤àÙM!‡‡–)œ ô}®‡{± v‡tgzé²J£Mã§Ó$®P' ™jϦY“tfyu ]±ûjO¡ç|¡š©¢èD5ûï¦-/ûªlÿ¹µ‹ÀkÞ™vø\°ˆâpé»SëÔŽbàzª&3“Ad-K¾¶šöWK•07‚î\ÜÕŒüh¾Ï¿nÝÀ,Åús³ ¯E®J/ „2ã€1å!𺫧ÈÚäC~|o9‰>mNóÖç ÕÂÝ7ÜÃdÏÞõo–ÄBñËuGâÛ°NêÀpìlN£\TÐVÃü•›åiÊ‹Ù=oÚÈ`+í zSm34%U¸Cûé‰ Ã©¾ WµÂ¡7Ú»…d~‡)ÿš]P´Põ:øèŤ±ûr( “==ÞtÄÿ§3䀾$:”eœ–ôÃ2PîRNj¹›fnÄ·€+vÛ-wwv h7C» ]vðò ÚÅnl"kfú¸7½¯ío¬­–oOìøg ¿> p£éMðlTáíÙA‘3oHÜ1Ð*”™;åñÌ"£˜Cïm®(’ø [*:(Ø8~ú¸nåÍ~8-øGÁ2Þ­ÎÍÓ¦QsAn`=„’2ÌjzjuËQ¨ºS°¦¼¹]ZžG¾ã.¤g«ª)Ù S´Z©¶^ H*ÔèSzD²Ãl#¨‰`LÜ¢•ÝÊ~Xlƒ×cÞ^ó~·õÒ™§<¹ÔÂ=·óGÀü0`I‰O@Ë'Aª£†—Û–}_7=?»º_Ì)Mu=?˜À%²ó6bV¿DscF¶Œªu,b-ÚŽ cÃÏf‹=€~îHн·<¿d³°b‡¡br8`žz›µKЬëÞ5•ôrdËÕÂlÁf fk*~ŠË¶^ÌpçÝruúBÙŸ¦©šg(cK¡t)·øÉáñUzs0ÔR¦Ü<Ÿ¨<Ýåê!pýÀŸ2n<¹ÖâÕ÷ëïád<ïµÑØjœ 9&+´X»G3f@ŠâY>-}ÛHá¼0ÚyÊá*Šíï\P>«¼€üH¶ ®ƒz%£ž˜Ò‚U&W;(!+«úã³ÌzpöL|ÃV{`þŽþ?ÌV§‰3˜fˆ|™å/¡;°Óþ©Y¡ÐËøƒ{wͽíVZˆi ó¨¼Êñw OLû7àü¨zAMÜÔA@5;Û¥Fn;ÈÅ;09q¹išºYŽÊqÀ ËôÕ À¾>èžµ^®; Ëð6¤gÛS–¥RjÍnÜq|+(tˆ®ã°w«ÛsµlMã‡üñÖß\÷ãó™ž:ëÏA`TX«01÷W賌çI:J«i¸¢°o $«m¯í½kûúƒT˜þî4Ig7‚vk`-ް+wŒ 9èîd 6ù*añRš)9\ß´œv®)iœ¾±ÛW%‚¾€¦SÊfa€hA45VÖ£p³‡êÑô—þ1ü¼ï›Ë½Ý—átºåϲÿ§üûïî/; G©Æn»nN¥圛xˆÏ霑AÃøAÕxp0|Ã%ÔÀώʦ®jeÿ÷ÝýL&eë¥ùóÖ&½öî8Qǯ°€»š¦óú¢h–.é´ £fLÊà À@ÁÝKÍû,~«áÁ„Ç5^DÂnx¡ÿž¦oËñ‡á™±ç‹)÷ì/Gc=Ùä·;›x:‰+Á(QÔ€'­•;(Í2å²¶iËêrè_—_—Ûʬ*ZR’"™ 2÷÷Ó’éRHg}3Ð¥ƒn4üªT 2ÍaWnvd$#;ZÒ¥å*‡¥‹qôvzשK©éìÎÊ•±Qdº×¬Oš@²J ¹Ìdqé]y)‡ÏÉ\'7œ‹ý.¨º¡—ÎÀ™\øÀ® m"êÚêcäRˆÙ¡†…[ÿ¾½mbïœ?Ü߃¶|êSï=£@C*MË c‡°0QPªÝhm.ÒÝSÿзew/oÿç{¹{ÒßìÆrö|ãM$ËÉV.8ÑdˆufÝB­\.·tÐhËýg\©VÆŠ82볫Ð)-¯•(Ú # XËÛ¦²®iû[[Ó—Ù8¡§á„OÂsk ¶¿ãù—“Æ‚.MgdÖ Ð80ÕíG÷ÃÖšÚúº^Ì*h­!g€oÇÆ¥Îâ¬Ôä 9èû'çv\ðÑ]—1¸¡çòîÅ–ïµÀæµDgÖ\ÖôUu1bzôÑ“¢%鵕-Ôï\£´”çÔCÓÜëú<,Rƒ ð0ÚôóQô‰8 ×¢D)åRâé‚\çNE£rðm¹@o©ð㔇•Ö×åŽ ó“ø]f½Ué¹3·.éŽ:sGs”–=Œ±…Ý ÷¤SDZUC¶]µìCFI"³[æÙöƱ P>¥ˆ‚y„& ™…îa¬/w`69ÿózó¡çþÞWM_­œ‹Äu£™0Ay+™Mf ÃlÚÌùÉÒWLŸÎmÿ÷÷i_”ýåò÷á¯Óñ^_Wuûéƒ)ÿù¾×‹F{AƱàC.Ýj悲*°–R~*rÍmcÍî¹,Ó¶`ngaŒÅ²´ÝZm ¾fX¾L[‘*æ]ð‡ÿÙÅïÌtM(Êa¾•C» 7?¦)0ý¢ªºNô´o5¦=¶†ß]{èu7Üê׬qíJм‰œ`“gG¨¨ô²Ýþ»hûþÂt˽éÝÛºmšGÿ]4?ÊËíÏöÏkA5ñ¯èåž_D…·KC‹YÝäJÏsEïÀc‰„èPIàßAU#¿ÊpТqݶÌŸ-Çy ]ÑÆá‹Ü`Ö Ítt!Œüb.椒@S×ÌYÓ„mõ^¨X‰;,÷’ª•BçÆXe‡0î>sv†^®–dÒ©0jEŸ[ÕáÎâ+¨ÝÚ] ßE  ¡*Ü9°MeîV[ÀOg)ˆð±ëºKNò1º¶Ü­e¡ä¼ÐMôMÓwÍß·ë?Õ¾jV-„|×å™ ¼¾ŒV§šOÆgOït(¨aH×0yFJá/I‚wè¡L¯ð‡ÅáïÃí¿(:T‹Ьi*GÏxqî(Ûñ\¤l+ôçú|kè"k%m^©ÞϲB9 <öÃCÍîÜÑ“¯èþ\¬ª‚”u‰o\†uõ GÖx*¯€å Š;•TŒÄ@¡ HËqÔÍ‹KI‹º½j¯T¨÷{ôÝÒòB7¢è=1ÚJx]ž¡:UÑk­ž==.ÑØž“¦Q½Ð1ö¡Ú'n<²çPß×ß+39Øž$p½·ð²UЄ̅+^M®„*XEò€ß7=¾î/*ªî·;%h|p/´ªâö] %_Íù`–ÏGzÌ£=ãKÇÎŽ¼ðWçoò gJkØ+s0§äªâÉôê´u=zO>(Ymоø$^&o. ëê6Æ‹¦dX‰„Ó­ßvb”@5ÿÃ!¨(;©ðµÑ´-ÿC¶ã²dÀ¾©Ó÷+Ïo eö£)Ø#dc‡4¼–Y3 9ÞõŒ8â1靿Þ?(¡ÔRÔ”Ä-{$SÉï¼KÝU )~»‰óÒ¿Rz3Ô‹šbÔþèÎìî“ÈwWÿøÙÆ'îþ.æ¬ÈÌñ"ÌØ(òªÕÎ ’¤/Ó OÓ›l‘Åþ‹®¤¯¡m}ãIÞ”ŽbŒêŠ m±«Ï«õËм7C?ãÖÝÙ …ñÚÆ>¡U;òÞv¾»•²ßÕKAZ(ï Þè@÷Žä®í…r'Lú»­YÚ’6~µF®ýå³i%¦˜ix¬Y*†‚É )Ìu½°ß½ÎEEôaÀ`‰ã~yð¬³/ÕÓ˜r߸Qo†\d“]­Ž”è À¤$S¿4ÌU‘…Ð¤Ì »·¶Xº â· "S9²À`[ŸyÎ0–ÿ¢ éJwV¡4"«Ò0zijØ’›³æË¼‡£ó8h,ò¡Ã LylÛk÷dëRJã¹â¯P}+¦ÏX&Qnâì;jY·–3!f½ÚŽîø®6‘K}ÎÚž7\=ÔOt4ö€‰¶ÎU0»oê_t1·…ðÎ\꾬ÊÞPÝviJóët^Îvb7ehlN°n~»÷ú£Ï ÅÿÇ «=wÖ±g5=ÑÙÊhžã¸Û²_  DL=˜|o;&N{‚óT†U0É;>¶Êå\+ _„ú×­L{V‰@+v÷I<·[ÈHbØé+,›Ø§_òöD(*ÚŠ—Á¬‘ó¯3GšÒ›ñ'» T« sE[Ó÷¬Ëïo¦mË3}U~5+ňK‹ãɳúéžñBáï¥@JœÌ’Á†Ó`­£S‹T\¦ÒNš½ B´‘"Xx° Ú•°FÁ{çk\ÈQÁõç£Z`ª[Œ$÷™¢´À•'t^ºi”x»TÃ8Jü…Í·I7`ná,¦â@dPMçØv¦P¶:AOe°"ÁÊz¨Ë:æZ³•ÙbÌgöh༓37Q2gfSWÀìäy 5Í0ÚT‹ŸÓ3ÔÁ®ÐŠaj©OÚE­0û9Îû\'gR™„/9ÔCùÈ–+žø´Èvp”¹®uÖ€ÁÌ}hXñF)Y³bæì¾ó÷ÖM¤sçí´b7ŸÜ ¸ë… sDáqçlÐÙTGÈŽ=â-Œu·åÝ÷Yãâ÷ËcXd®UQ„\– ÌÃ=È–JŠÂ”ä¶Ç–iË`·ÞWÈ81=#‹Wj@¯<ö¦±O¨(þ*삲‡#µãƒVÉœò¬sA×zÐàé3ÓÐUW%m!*›ò>Õ*M;´^ Ë/OÅâÿ#_d_íShortRead/inst/unitTests/cases/s_1_0001_int_head.txt.p0000644000126300012640000000073312227066717024076 0ustar00biocbuildphs_compbio#CH4:OBJ152577 11.7 14.3 -1.1 86.2 49.4 110.6 3.2 5.9 53.0 54.6 49.2 46.7 20.8 32.1 0.4 54.7 6.1 16.7 3.9 7.9 #END CYCLE 1 18.8 21.1 96.2 177.4 120.2 218.8 2.7 9.1 74.8 63.5 103.1 203.4 33.9 36.2 94.0 77.2 63.3 39.2 15.8 -1.8 #END CYCLE 2 55.9 112.0 0.8 15.7 340.9 164.8 2.6 4.6 129.2 76.1 77.2 168.4 19.1 11.8 10.9 80.2 2.6 6.9 8.9 31.0 #END CYCLE 3 ShortRead/inst/unitTests/cases/s_1_0001_nse_head.txt.p0000644000126300012640000000073312227066717024071 0ustar00biocbuildphs_compbio#CH4:OBJ152577 8.5 9.0 3.0 6.6 6.2 9.2 3.1 6.4 9.8 10.4 3.0 6.1 8.0 9.0 2.8 5.2 8.2 8.5 3.1 4.3 #END CYCLE 1 12.6 12.5 3.8 6.6 11.9 11.0 3.6 5.8 13.0 14.0 3.3 6.5 13.1 13.5 3.3 7.3 12.5 13.4 3.6 5.7 #END CYCLE 2 13.6 12.4 4.7 7.3 10.5 12.7 4.2 6.4 13.7 12.5 4.6 9.7 12.6 11.7 4.1 6.7 11.3 12.4 4.6 7.8 #END CYCLE 3 ShortRead/inst/unitTests/cases/s_1_0001_pos_head.txt0000644000126300012640000000012012227066717023635 0ustar00biocbuildphs_compbio -0.47 1073.78 -0.45 1558.67 -0.45 1157.37 -0.44 144.35 -0.43 1497.99 ShortRead/inst/unitTests/cases/s_1_results_head.txt0000644000126300012640000023255312227066717024116 0ustar00biocbuildphs_compbio>CMLIVERKIDNEY_7:1:1:112:735 GTGGTGGGGTTGGTATTTGGTTTCTCGTTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:564 GGATACTCAGGCTGGCCCAATTTCTGGGCGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:558 GTAGAATTAGAATTGTGAAGATGATAAGTGTA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:94:531 GTGTTTGTGTGTGTGTTTGCTTGTTTATGTAA U1 0 1 0 chrX.fa 93540767 R .. 3G >CMLIVERKIDNEY_7:1:1:107:680 GTTTAGGTGTAGTGAACTAATATAATTGGAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:531 GCACCTTCCATTTCCAGGTCCTTACTATGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:539 GCGAGGTTAGCGAGGCTTGCTAGAAGTCATCA U0 1 0 2 chrM.fa 11832 R .. >CMLIVERKIDNEY_7:1:1:105:577 GGGGTGAGGGTCCGGGCCAGGTGGTGGTATTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:458 GTTGTTAATGTGGTGGGTGAGTGAGGCCCATT U1 0 1 0 chrM.fa 12004 R .. 7G >CMLIVERKIDNEY_7:1:1:120:589 GAAAAACTTGAGAATCATGTTGAAGCTAAACC R0 3 2 0 >CMLIVERKIDNEY_7:1:1:97:605 GTTTTTTCAATTTACCATCCTCTTCTTCTTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:594 GTTGATTTGGTTGACATATAGTAGAGTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:581 GTTTGGATGAGAATGGCTGTTTTTACTTTGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:569 GGGGTGGTGAAGGTCTCAGACATAAGCTCAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:414 GTCCAGGAGATTCTCAATGGCTTCTTCTTTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:396 GAAGACGTAGGTTTGGCTCTGGTCGTCTCAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:586 GCTTAAGCAAAAAATAGGTTACATTAAGCAGA U2 0 0 1 chr12.fa 122311748 F .. 15G 17A >CMLIVERKIDNEY_7:1:1:108:689 GGTGAGGAGGGGAGGAGTGTAATCCAAGTGCT U2 0 0 1 chr16.fa 56243177 F .. 1T 2C >CMLIVERKIDNEY_7:1:1:105:591 AATCAATACTCATCATTAATAATCATAATGGC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:113:483 GTTTTCCCGTGCGATTGTGGGCTTGTTTATAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:520 AAAACTCTGAACCGTCAATTAAATGCCCATTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:534 TGTTAATTGTCAGTTCAGTGTTTTAATCTGAC U1 0 1 0 chrM.fa 2347 R .. 8C >CMLIVERKIDNEY_7:1:1:113:657 GTGGAACTTGTGGTCGATGTTGATCTCCACAT U0 1 0 0 chr2.fa 241841076 F .. >CMLIVERKIDNEY_7:1:1:117:511 AAAACACAGTGTCATGCCCATAGAACTAAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:884 GTTGGGAGTAGGGTCTTGGTGACTATGTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:711 GGAAGGTCTTAGCGCTGTACATCAAGTCACAA U1 0 1 0 chr2.fa 36629450 R .. 31A >CMLIVERKIDNEY_7:1:1:103:475 GGTGTATGAACATGAGGGTGTTTTCTCGTGTG U0 1 1 0 chrM.fa 12050 R .. >CMLIVERKIDNEY_7:1:1:97:862 GGGGGGGGGGGATGTATGAAGGCACTTTGTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:597 GTGACTGTAATTTGCTGAGAGAGCAGTGAACA U1 0 1 0 chr7.fa 138140031 R .. 3G >CMLIVERKIDNEY_7:1:1:124:544 AGACGCCAAACGCATTAACTGGCGAACAGTGC U0 1 0 0 chr19.fa 2222858 F .. >CMLIVERKIDNEY_7:1:1:102:591 GATTTCTGGTGCTGTTGAGTCCGTAGCATTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:582 GTTTAGGGGATACATCGCCAAGCGCAGGCTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:544 GTCGGTGTCCTCGTTGGTTCGGTACCATTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:522 GCTCCGGGAGCTCGAGGGCATCTTCTCGTTGA U2 0 0 1 chr4.fa 2925125 F .. 1T 7T >CMLIVERKIDNEY_7:1:1:110:602 GTCAGAGGTTGCAGTGAGCTAGGTGTGGTTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:597 GCTTCCTCTCCTGTCAATTCCAGGCTCTTTCC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:118:503 GGATGAACGAGATTCCCACTGTCCCTACCTAC R0 4 1 1 >CMLIVERKIDNEY_7:1:1:96:606 GGGCCTCCGCGCTACCCTCCTCTTCTTATTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:545 GTGAAATATGCTCGTGTGTCTACGTCTATTCC R0 2 0 2 >CMLIVERKIDNEY_7:1:1:98:583 GCTAGGGAGAGAGGTAGGAAGTTTTTTCATAG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:110:854 GGGCGGGCTATGGAAGAATTAATGATAGTATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:930 GGTTTTAATTGTGAGGGATGAGAAGCCATCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:608 GCGAGACGGATCAGATCAAGCAGGGCTCCTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:619 GGTTTACTCACAGTCATTATCAAACCATCTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:572 GACAGCAGCTAGGATTGGGAAAGAATGGAGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:586 GCAGAAAATACAATGAGGACCTGGACTTCAAA U0 1 0 0 chr20.fa 39574989 R .. >CMLIVERKIDNEY_7:1:1:113:773 GCGAACATTACTGGAGGCGCCCTACTCATGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:419 GGAATGATGGTTGTCTTTGGATATACTACAGC U0 1 1 0 chrM.fa 14460 R .. >CMLIVERKIDNEY_7:1:1:102:793 GTTCCATTGTTGTCAAATGCCCACTCTCCATC U0 1 0 0 chr5.fa 179090403 F .. >CMLIVERKIDNEY_7:1:1:119:677 GGCCGGCCCACTCTTTTGCCAAGTATTAGTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:741 GAAATAGAATGATCAGTACTGCGGCGGGTAGG R0 3 0 1 >CMLIVERKIDNEY_7:1:1:111:717 GCAAGACCCTGTCTCAAAAAAAAAAAAAAACA R0 10 255 255 >CMLIVERKIDNEY_7:1:1:91:562 GGAAGCAGAAACAAAGAATTGGTCTTCTAGGA U0 1 0 0 chr3.fa 4862836 F .. >CMLIVERKIDNEY_7:1:1:123:493 GCCATTTGAAACGGAGAGGTGAGGAGACTGGA U0 1 0 0 chr17.fa 39451455 R .. >CMLIVERKIDNEY_7:1:1:92:638 GGCCGAGGAGGGTAGCTGTGGCAATAAAAATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:520 GCCTTACCCCCCACTATTAACCTACTGGGAGA U0 1 1 0 chrM.fa 11862 F .. >CMLIVERKIDNEY_7:1:1:91:623 GCATATGCTTGTCTCAAAGATTAAGCCATGCA U0 1 0 2 chr21_random.fa 1678073 R .. >CMLIVERKIDNEY_7:1:1:123:632 AATTGTACTACCGGGTCACACTGGTCATCGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:588 GGGATCCTCCCACCTCAGCCTCCTAAGTAGCT R0 21 255 255 >CMLIVERKIDNEY_7:1:1:117:572 GCGGTTGGGCCCCTCTCTTATGGAGACTGAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:877 TAACTGTATTTTGTCAGGTGCAATAAAAACAA U0 1 0 0 chr3.fa 12600155 F .. >CMLIVERKIDNEY_7:1:1:118:477 AATAGTTATGTCATCCCTCTTATTAATCATCA U0 1 0 0 chrM.fa 10317 F .. >CMLIVERKIDNEY_7:1:1:102:228 GGGATGTATTTTTTCTAATCATCATTCTTGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:558 GGCGGTTTCGATGATGTGGTCTTTGGAGTAGA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:100:276 CCTGCTCTTCGAAGACAGCAATGAGGAGTTTT U2 0 0 1 chr11.fa 128213498 R .. 1C 2C >CMLIVERKIDNEY_7:1:1:112:136 GGGTTGGGTTCCACTGTGGCCCTCCTGTTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:214 GCCAGAAGAAAGTACCACTGCAAGACATCGTG U2 0 0 1 chr4.fa 114523116 R .. 5C 12A >CMLIVERKIDNEY_7:1:1:110:591 GTCATAGGTAACTACTCGAGGCTCTGCCAGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:477 GACAATTGCTTACTCATTAAAAATAATAGAGC U0 1 0 0 chr1.fa 110080721 R .. >CMLIVERKIDNEY_7:1:1:74:587 GTATCTTCTGTTTTAATTTTCTTAGGTTTATA U0 1 0 0 chr20.fa 39143226 R .. >CMLIVERKIDNEY_7:1:1:109:598 GCTACCACAGCCTTTTTCGGCTGATTCTCATT U1 0 1 0 chr10.fa 8046596 R .. 2G >CMLIVERKIDNEY_7:1:1:99:604 GTTTTTTATAGGGACCTTGCTTTTCTTCTTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:804 TGTATTCTCTACTCTTGACATTACTATCGCAT U0 1 0 0 chr9.fa 82103831 R .. >CMLIVERKIDNEY_7:1:1:123:186 CGCAAGTCCCATCGGACCATCTAGAAGCTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:855 GCAAGATGAAGTGTAAGGTAAAGATTCCTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:552 GGGAAATCAAGAGTTGGTTTAAGAGACTGTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:815 GTTTTTTTCTTAGGAGGGTTTTTCTGAGCCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:598 CTCTACACAGGGCTTGCTTTCCTAAGAAAAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:508 GGGTACATCACAGTTGACTGGCAACGAGTGGA R1 0 2 2 >CMLIVERKIDNEY_7:1:1:87:686 GGTTGGGGGTAAGGTCATAGATCAACAGGATC R0 175 255 255 >CMLIVERKIDNEY_7:1:1:117:596 GGACGTGTACATGCCGGGGAAAGGCTACGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:690 GCTTTTTTGAGTTTAGTCTTAGGGTTACTCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:901 GTAGCTGTTGAGTTGTGGTAGTTAAAATGTAA U2 0 0 1 chrM.fa 10118 R .. 10G 27G >CMLIVERKIDNEY_7:1:1:99:614 GAATGTTATAATTAAGGAGATTTGTAGGGAGA U0 1 2 0 chrM.fa 11059 R .. >CMLIVERKIDNEY_7:1:1:119:865 GAGGTTGGGGGGTCAAGTAATAAGAAGGTAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:82:814 GACAACTTTGCCTTTAAGGTTTTTTTTCTTTT U2 0 0 1 chr2.fa 108438354 F .. 2C 10A >CMLIVERKIDNEY_7:1:1:91:769 GGTATTTGTGGCGAGGCTAGGCAACATTGCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:681 CAGGAAACAAGTTGAAAATAGCATAGATCATG U0 1 0 0 chr2.fa 160497720 F .. >CMLIVERKIDNEY_7:1:1:112:779 GTCTACCTAGCGCAGAGGAGAGGCTGTGTTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:619 GGGGTTAGTCCTTGCTATATTATGCTTGGTTA R0 2 1 0 >CMLIVERKIDNEY_7:1:1:119:838 GGCATTTTCCTCCTTTTTTTTTTTTTTTTTAG R2 0 0 3 >CMLIVERKIDNEY_7:1:1:113:746 GATTTTTAACCAACTTCCACTTCTAGCTTCAA U1 0 1 0 chr11.fa 65024168 R .. 14G >CMLIVERKIDNEY_7:1:1:97:685 GCTGTTCACTCTCGTGTGCTGCAGCCTCTACA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:98:430 GGCATTTTGGAAGCTTTAGGCTCTGTAAGCAT U0 1 0 0 chr13.fa 21174264 F .. >CMLIVERKIDNEY_7:1:1:88:520 GCGAGGAGTCCTGTCAGTTCCGGAAGGAGTAT U0 1 0 0 chr8.fa 2679443 F .. >CMLIVERKIDNEY_7:1:1:112:900 TGGTGACAGACATTGAAAACATAAGTTACATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:705 GGTGGGTAGGCCTAGGATTGTGGGGGCTATGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:399 GAGAGGATTATGATACGACTGTGAGTGCGTTC U1 0 1 0 chrM.fa 11763 R .. 18C >CMLIVERKIDNEY_7:1:1:120:494 GTTCCTTCTCCCTCTTAATAATCTGCCACTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:697 TCTAAACTGACTCGCAGGACAACATTACCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:593 GATGACTTTTTTTGCTTAAGGTAGAGGGCCAG U2 0 0 1 chr1.fa 151882971 F .. 27A 30A >CMLIVERKIDNEY_7:1:1:105:842 GTCGTGTAGCGGTGTTAGTGGTTTTGTTTATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:457 GTCAGAACTAGGGTCAGGGCTAGTCCAGTGCC U0 1 0 0 chr11.fa 118474037 R .. >CMLIVERKIDNEY_7:1:1:114:328 ATTTAACATTTTAATATAAAAAACAGGAAGCT U0 1 0 0 chr17.fa 16066158 F .. >CMLIVERKIDNEY_7:1:1:110:631 GCTTACTAGAAGTGTTAGAACGTAGGCTTGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:456 GGCACCCTGGCGTCCTCGCCTAAAGGAAAGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:381 GCTTGTTATAATTATGCCTCATAGGGATAGTA U0 1 1 2 chrM.fa 11548 R .. >CMLIVERKIDNEY_7:1:1:123:331 CGTTCTTTCATCCTCATCCCTATTCTTCCTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:806 GTTGGCAGCTTGGAAGCAGGGGGATGGGACCT U0 1 0 0 chr16.fa 84172414 F .. >CMLIVERKIDNEY_7:1:1:116:529 GGAGATGGTGATACCAGAAGTCAAGGGCTGGG U1 0 1 0 chr17.fa 45800376 R .. 5A >CMLIVERKIDNEY_7:1:1:112:429 GTAAAATCCCCCTGCTAGGGTTTGCTTTATCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:576 GTTTTGAGTAGTCCTCCTATTTTTCGAATATC R0 2 1 0 >CMLIVERKIDNEY_7:1:1:115:250 GTTCAGCTCTTCAGTCATTCAGCTGTGACTCA U0 1 0 0 chr1.fa 2967533 F .. >CMLIVERKIDNEY_7:1:1:121:793 GAGAAATTAGAACCCATAACCATACACAGGCT U0 1 0 0 chrX.fa 37893628 R .. >CMLIVERKIDNEY_7:1:1:104:804 GAAATATTTGCAGACAAAAAGATCCAGAAAAA U0 1 0 0 chr2.fa 231021536 F .. >CMLIVERKIDNEY_7:1:1:101:660 GCAGAAGGTAGGTGAGGGGCTCCCCGCCCCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:83:211 GGGCAATTTGCCCGGGACTTTGATTTCATTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:569 GCGTCATATGTTGTTCCTAGGAAGATTGTAGT U0 1 1 0 chrM.fa 4022 R .. >CMLIVERKIDNEY_7:1:1:118:754 TTTATGTTGTTAATGTGGTGGGTGAGTGAGTC U1 0 1 0 chrM.fa 12009 R .. 2G >CMLIVERKIDNEY_7:1:1:59:555 GCGCAATCCTATTCTAGAGTCCATATCAACAA R0 3 2 2 >CMLIVERKIDNEY_7:1:1:71:502 GTGGGAAAAAAAATCATATGGCTGGCCCAGAC U2 0 0 1 chr14.fa 74618883 F .. 25T 31G >CMLIVERKIDNEY_7:1:1:119:880 GACAGACTCGTGACTGAAAAACAGCAGGAAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:895 GAAGAACTCAAGAATGTTACTATCAATCTGAT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:87:511 GGATAGTAATAGGGCAAGGACGCCTCCTAGCT U1 0 1 0 chrM.fa 15607 R .. 2A >CMLIVERKIDNEY_7:1:1:115:725 GGGGGGTATAGGGGTAGGTGCTTGCTATATTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:572 TTGTTATTATTATGTCCTACAAGCATTAATTA U0 1 0 0 chrM.fa 213 R .. >CMLIVERKIDNEY_7:1:1:111:439 GTGTCATTTCCTTCCTTGTCAAACACCCGAAG U1 0 1 1 chr12.fa 54840127 R .. 29G >CMLIVERKIDNEY_7:1:1:104:740 GCCGCCGCAGGTGCAGATCTTGGTGGTAGTAG U1 0 1 0 chr1.fa 107915036 R .. 14C >CMLIVERKIDNEY_7:1:1:117:482 AGGAGCTGTATTTGCCATCATAGGAGGCTTCA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:113:535 GGAAGTCAATATAATGTATGGCTTAATTTATC U0 1 0 0 chr15.fa 50735804 R .. >CMLIVERKIDNEY_7:1:1:110:670 GTTTGAGTTTGCTAGGCAGAATAGTAATGAGG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:88:601 GAGGAGGAGGAGGAATATGCCCTTTTACTTGG U0 1 0 0 chr19.fa 19038852 R .. >CMLIVERKIDNEY_7:1:1:120:898 GTTTGCTTTGTTTTTCTTTTGGTCTGGGTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:496 GCCAAAGCCTCCGTTTATGATGGGTATTACTA R1 0 3 1 >CMLIVERKIDNEY_7:1:1:122:644 CTAAATCTGTGTGTGAGAAATGGCAGGTCTAG U0 1 0 0 chr11.fa 64948725 F .. >CMLIVERKIDNEY_7:1:1:94:529 GTGTTTGTGGGTGTGTTTGCTTGTTTATGCAA U1 0 1 0 chrX.fa 93540767 R .. 23A >CMLIVERKIDNEY_7:1:1:76:631 GAGGATATGAGGTGTGAGCGATATACTAGTAT U0 1 1 0 chrM.fa 10525 R .. >CMLIVERKIDNEY_7:1:1:108:570 GTGCTGCTAGGGCTGCAATAATGAAGGGCAAG U1 0 1 0 chrM.fa 15299 R .. 4A >CMLIVERKIDNEY_7:1:1:85:553 GGCCTGGCACGAACGCGGCTGCACTTGGGCGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:317 AAAAAATGCAAATTCAAAAACAAATACACATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:767 GCTGTTCCTTCTGCCTGGTGCCACGATTATTT U0 1 0 0 chr12.fa 112250797 F .. >CMLIVERKIDNEY_7:1:1:98:502 GGGCGGAGGACGGCGAGCTCTTTTGAAAGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:919 TGAGTCTGTGAAAATTGTATTACAGGAGAAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:226 GCACGTCCTGGAAGCTTGGGTAGCGCTAGTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:528 CGACATGATACTATTAAGTGTCTCTATCCACC U1 0 1 0 chr10.fa 72309597 R .. 6G >CMLIVERKIDNEY_7:1:1:106:874 GAGATATTGTCTGACTACCTTCTATGGCATGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:288 AACCAATAGCCCTGGCCGTACGCCTAACCGCT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:117:220 TTGAAATGTCTGCACTGGCAATAACGCCTGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:799 TGAGGAGGCAGTAAATGAAGTTACAGGCTAAC U1 0 1 0 chr15.fa 75564644 F .. 31G >CMLIVERKIDNEY_7:1:1:123:391 CCAGACGTCTGCAGGTTAAACCCATTCAATAG U2 0 0 1 chr12.fa 40767570 F .. 1A 6A >CMLIVERKIDNEY_7:1:1:91:381 GAAGAAATCTTCTTTGGAAGAATTACAACTGG U0 1 0 0 chr18.fa 12330246 R .. >CMLIVERKIDNEY_7:1:1:86:700 GTTTCTCTCATTGTGTAGAGTCAGTGCTAGTG U0 1 0 0 chr3.fa 150339328 F .. >CMLIVERKIDNEY_7:1:1:96:713 ATTCTCCAATTATTATATGAGCTTCTCCTCTC U1 0 1 0 chr15.fa 58291887 F .. 28A >CMLIVERKIDNEY_7:1:1:53:543 GTAATTTTATTTTGAAGTCTCATGCAAGTTGT R0 3 0 0 >CMLIVERKIDNEY_7:1:1:121:229 AAAAGAATGAGTTGAATTTACAAAATCACCAG U0 1 0 0 chr15.fa 55517962 F .. >CMLIVERKIDNEY_7:1:1:99:826 TGATCAGGATTATTGCATCGAGCTTTTAGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:467 TGGATACTAGTATAAGAGATCAGGTTCGTCCT U1 0 1 2 chrM.fa 8719 R .. 32T >CMLIVERKIDNEY_7:1:1:104:215 AGTCTCGGTAGGGTTGTCTCATTTTTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:83:545 GGAAAGACCATGGTCAAAGCAGCGAGATCGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:472 GCGAGTCCTTGACGTTGACAATCGAGTAGTAC R1 0 2 1 >CMLIVERKIDNEY_7:1:1:118:541 CACCATGTTAAGAATGAACTGAAAGTAAGACC U0 1 0 0 chr10.fa 38396171 R .. >CMLIVERKIDNEY_7:1:1:118:775 TTCAAACTGTCATTTTATTTTTACGTTGTTAG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:118:184 GAACTCTCCTGGCTAGGCCCGCGTTCATTAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:158 GTGACTCAACGTCTGTAATTTCAGCAATTTGT U1 0 1 0 chr1.fa 233570139 F .. 32G >CMLIVERKIDNEY_7:1:1:94:706 GTGACTTCATATGAGATTGTTTGGGCTACTGC U0 1 0 1 chrM.fa 3710 R .. >CMLIVERKIDNEY_7:1:1:119:335 ATTCAAGAAGTGAAAGAGCCCGAAAATCAGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:442 GGTCATGCATCTCTACCTACCCACGGCCGCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:756 GGAGCACACCTAGTCTCAGCTACTCGGGAGGC U0 1 0 3 chr4.fa 84723339 F .. >CMLIVERKIDNEY_7:1:1:90:493 GTAGGCTATGTGTTTTGTCAGGGGGTTGTGAA U1 0 1 1 chrM.fa 11506 R .. 4T >CMLIVERKIDNEY_7:1:1:98:761 GGCAGAGCAAGCATTCCCCTTTAAGAGCTTCC U0 1 0 0 chr10.fa 102790158 F .. >CMLIVERKIDNEY_7:1:1:75:607 GGAGGAGCAGTTTAACGTGTGAGATGGTGGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:504 GGATCCACAAACTTCCTGACACTATTTCCATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:638 AATGTGTCAGTATGCCGTCATTGAGCAAAGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:94:571 TTATGTTCTTTCTTGTCCTTTTGTTTGACCTT U0 1 0 0 chrX.fa 102826849 R .. >CMLIVERKIDNEY_7:1:1:122:913 GGTATATCGGGGTAACGCGTGCTTTTAAGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:626 AGCCTCGCTAACCTCGCCTTACCCCCCACTAT U0 1 0 1 chrM.fa 11847 F .. >CMLIVERKIDNEY_7:1:1:95:847 GGATACTGGCATTTTGTAGATGTGGTTTGGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:384 GTTTTTGGGACAGAGTCTCGCTACGCCACCCA U2 0 0 1 chr1.fa 16114545 R .. 9A 10G >CMLIVERKIDNEY_7:1:1:98:489 AATTGAGTGATCGTCGTTTTGGCAAAAATTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:690 GCCGGATTCAATAAACTGGGGTTAATGCGCGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:447 GTAAGTCAGGAAGTAGCCTAGAATGAATCGTG U1 0 1 0 chr1.fa 26996843 R .. 7A >CMLIVERKIDNEY_7:1:1:121:953 GAATGGTAGCACTGGATTTGCTGATGGCCCAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:73 TTCCCCCCCTCCCTCCCCCCACCAGCTTCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:638 AAACAATCTCATATGAAGTCACCCTAGCCATC U0 1 0 2 chrM.fa 3720 F .. >CMLIVERKIDNEY_7:1:1:105:786 GTGGGAAGGTCACCGGCGTGTAGTTGGTAGCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:21 GAAATAATTTTTATACTTNTTTACACCTNNTC QC >CMLIVERKIDNEY_7:1:1:93:486 GGCCACTTTGCATTTATTATAGATTTGTTTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:397 GGCGGTTTTAATTAGTCAATAAACACCTTAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:874 TTGAAACCCTGTATCCCTCTGAAACACTGGAA U0 1 0 0 chrX.fa 99771371 R .. >CMLIVERKIDNEY_7:1:1:117:434 GGCCGCGGTTGCGATCCGTTCCATTGCGCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:657 GTCATCATCTCCTCCTGAACAGTTATCCGACT U0 1 0 0 chr5.fa 179193203 R .. >CMLIVERKIDNEY_7:1:1:122:731 TTTTAGAAGAAAAAAGATAAATTTAAACCTGA U0 1 0 0 chr11.fa 65023785 F .. >CMLIVERKIDNEY_7:1:1:85:791 GGCGACTAGTGTGAGCGTATGAACGAGGGTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:472 GTAAATTTAACTGTTAGTCCAAAGAGGAACAG R0 4 0 3 >CMLIVERKIDNEY_7:1:1:119:663 GATATTTATAACAAGCTCCATCTGCCTACGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:197 GAAGACCCTGTGGAGCTTTCACTTATTAATGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:56 TAAGATGACAACTGCCCTAGACCACTTCTTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:558 CTAGCATTAAGACATTCATGGAAAGCCATTTG U0 1 0 0 chr15.fa 43443453 F .. >CMLIVERKIDNEY_7:1:1:79:463 GGACATCCCGGTATGAGCAGACCTAAACCAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:841 GGTTAATAGTGGGGGGTAAGGCGAGGTTAGAG U1 0 1 1 chrM.fa 11852 R .. 2G >CMLIVERKIDNEY_7:1:1:94:669 GAGATAGGTAGGAGTAGCGTGGTAAGGGCGAT U0 1 0 1 chrM.fa 5458 R .. >CMLIVERKIDNEY_7:1:1:121:114 GGGGTGCAGTTCCTTCACAGGGTCTGTTTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:274 ATCCCTCTTATTAATCATCATCCTAGCCCTAA U0 1 1 1 chrM.fa 10329 F .. >CMLIVERKIDNEY_7:1:1:108:920 GCCTTGGGAGGGCCCTTCAGGAAGTAGGAGTG U0 1 0 0 chr5.fa 150388408 R .. >CMLIVERKIDNEY_7:1:1:123:237 GTCATTTTGCACCAGGTAATAGGGGAAAATTG R0 3 2 1 >CMLIVERKIDNEY_7:1:1:114:859 TGGTATTGCTCGGGGGGTGCTTTCCATTAGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:478 GCAAAGGTGCCCTTGAGGTTGTCCAGGTGAGC U0 1 0 1 chr11.fa 5204438 F .. >CMLIVERKIDNEY_7:1:1:76:566 GATTGGATTTTTGACGGGGCACGCACGGTTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:415 GGTCAATGCTCTGAAATCTGTGGAGCAAACCA U0 1 1 1 chrM.fa 8166 F .. >CMLIVERKIDNEY_7:1:1:97:196 GCAGGTTAGTTGTTTGTAGGGCTCATGGTAGT U1 0 1 0 chrM.fa 10281 R .. 1C >CMLIVERKIDNEY_7:1:1:114:608 GCGAGTACAAGGGTCGACCCCCAAAGGCAGGG U0 1 0 0 chr3.fa 187944204 F .. >CMLIVERKIDNEY_7:1:1:119:136 GGATGTTCCTGCCCTGGCCAGGTACTGGGCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:439 GTTATGAGACCGGCACTGAGGCCGAAAACGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:193 TCTGCAGCCACCCTAGCCCTCCTCCTTCTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:620 GACCTGGCCGCACTCATACTAGCCTGTCGGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:437 CGAGATTTCTTTGACTTTCCTTAAATATTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:716 AATTCCCCTAAAAATCTTTGAAATAGGGCTCG R1 0 2 0 >CMLIVERKIDNEY_7:1:1:109:665 GTGGAAGTAAAATTGTTGGTCAGTGGGGAAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:658 CTAAAGCCTAAAAAGAAAGACTCTCCCTTGTT U2 0 0 1 chr1.fa 177786935 R .. 5T 27A >CMLIVERKIDNEY_7:1:1:113:755 GGGTGATGCCTGTTGGGGGCCAGCGCCCTCCT U1 0 1 1 chrM.fa 9543 R .. 9A >CMLIVERKIDNEY_7:1:1:66:504 GGGGCTTTGATGTATTATTTTGATAAGTAGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:406 GGAAAATTTAAATACAGAAACCCAAGTACTGC U2 0 0 1 chr21.fa 34388496 R .. 12T 32T >CMLIVERKIDNEY_7:1:1:113:387 AAGGGAGCAGGCAAGACTGTCTGAGTGATGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:421 CTGATACTGGCATTTTGTAGATGTGGTTTGTC U1 0 1 0 chrM.fa 9924 F .. 31A >CMLIVERKIDNEY_7:1:1:118:661 AAAGCTGTGGACAAGAAGGATGCTGCTGCTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:793 GGGAAGTGTGGGGGGGCCTGGGTGAGAGCAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:418 GGAAATTAAAGCACAGAACCTTGTGAGATAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:449 CGAGGAGATATGATAGCATGTGTGTGTCTAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:526 ATTCGAATCACCCTAACAAGCCGCAACGTAAA U0 1 3 0 chr8.fa 57149187 R .. >CMLIVERKIDNEY_7:1:1:121:291 CTTCTCCCCGGCTGCTGGTAGCCACGGTGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:449 GTTCTTCCCTCCTGCCACGCTCCTGAAACCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:908 TGCAGGGCTGGTTACCACAAACTCAGTAGGAG U0 1 0 0 chr3.fa 50312384 F .. >CMLIVERKIDNEY_7:1:1:80:802 GTTAAAAGTAAGAGACAGCTGAACCCTCGTGG U0 1 4 3 chrM.fa 2641 R .. >CMLIVERKIDNEY_7:1:1:116:566 GAGAAGGGATCCATGTGAACAGCAGTGGAACA U2 0 0 1 chr2.fa 132755102 R .. 6A 24A >CMLIVERKIDNEY_7:1:1:97:468 GGATTTTCAAGGGCCAGCGAGAGCTCACCGGA U0 1 0 1 chr5.fa 71182646 R .. >CMLIVERKIDNEY_7:1:1:107:880 GCCGTGATGATTTTATAGCATCCTGGGCATTT U1 0 1 5 chr11.fa 116411841 F .. 1A >CMLIVERKIDNEY_7:1:1:84:436 GGGTTTTGTATGTAATATTTTCTTTTTTGTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:61:511 GGGAATTTGCCGCTGGTATCTCCACGACTGGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:525 GGAAGGCTCCATGGTTGTCCTACTTTAAGCAG U2 0 0 1 chr11.fa 65029257 R .. 1A 2G >CMLIVERKIDNEY_7:1:1:107:702 TTTCGATAATAACTAGTATGGGGATAAGGGGT U0 1 1 0 chrM.fa 8932 R .. >CMLIVERKIDNEY_7:1:1:65:532 GAAACGATCTACATCATTGTCATCTCCCAGAA U0 1 0 0 chr9.fa 32532806 R .. >CMLIVERKIDNEY_7:1:1:105:767 GTTAGGGATTGTCCTCCTCTGACATCGCTGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:464 GCCCACTCGAGCCGCAGCCATGTCTGGGGACG R0 2 1 0 >CMLIVERKIDNEY_7:1:1:91:763 GGGAGATTTCTCTCGTTTATCCATTGCTGTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:858 GGGAGAATTCTCTGTGCTAGTAACCACGTCCT U2 0 0 1 chrM.fa 11888 F .. 8C 30T >CMLIVERKIDNEY_7:1:1:59:579 GGCAAGATGAAGTGAAAGGTAAAGAATCGTGT U1 0 1 1 chrM.fa 15273 R .. 30A >CMLIVERKIDNEY_7:1:1:116:695 CTAGGATATAAAATGCGGTTTTTTTAAATGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:622 GCCATTCTCATCCACCTTATAATATTTCAGGA R0 3 1 3 >CMLIVERKIDNEY_7:1:1:95:696 GGTTGATTATTGAGTTTCACGGCTGGCGTAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:651 GGGGATAGGGGTATGAATATGACGGTGTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:611 GTCATTAAGGAGAGAATGAAGAGAAGTAAGCC U1 0 1 0 chrM.fa 15438 R .. 16C >CMLIVERKIDNEY_7:1:1:99:62 GTTTGGTGCTCTTCCTTTTTCTACTGTTAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:763 TGTTAAGCTTGTTTTCCTGCAACTGGATTTTT R2 0 0 9 >CMLIVERKIDNEY_7:1:1:96:221 GCTGAATCAGCGCGGCCCCACGACCCCGCTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:761:671 GTGATAGCGTGGGGCGGCGTCCGTTTGATTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:320 AAAAAAAAAAACAAAAAAAAAGAAGAAGAAAG R1 0 68 255 >CMLIVERKIDNEY_7:1:1:103:198 GTTTGGCTAAGGTTGTCTGGTAGTAAGGTGGA U0 1 0 1 chrM.fa 1696 R .. >CMLIVERKIDNEY_7:1:1:113:914 GAAAATCTTCAAAGCCAACCACCCCATGGACG U0 1 0 0 chr19.fa 55000959 F .. >CMLIVERKIDNEY_7:1:1:113:243 GACGTCCTCATAGTACTCACAAAGGGCTAGCC U0 1 0 0 chr2.fa 121812768 R .. >CMLIVERKIDNEY_7:1:1:115:965 GGATACCGCAGCTAGGAATAATGGAATAGGAA U1 0 1 0 chr16.fa 33870842 F .. 32C >CMLIVERKIDNEY_7:1:1:53:599 GGAAAAGGTTGGGGAACAGCTAAATAGGTTGT U0 1 0 0 chrM.fa 10900 R .. >CMLIVERKIDNEY_7:1:1:115:901 GGATAATGGGTTTGCTGCGGTCAGCCACATAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:555 TCTTGGTTTGCTCTCAGCCCCAATTTTAAAAG U0 1 0 0 chr20.fa 35282756 R .. >CMLIVERKIDNEY_7:1:1:99:808 GCCTGGTTCTAGGAATAATGGGGGAAGTATGT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:115:625 AAAATCCACCCCTTACGAGTGCGGCTTCGACC U0 1 1 0 chrM.fa 10155 F .. >CMLIVERKIDNEY_7:1:1:115:154 GGACTATACATATTCTGTATCCGCAGCTTCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:106 GCCCCCTCCTCTTTCTCGCTTTTTACTATTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:465 GGGGTCCACATATGTTCTTACACCTGAGTGAT U0 1 0 0 chr2.fa 222016548 F .. >CMLIVERKIDNEY_7:1:1:120:35 GCAGTTTTTCGCTCTCGGGCCTCCTCTCTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:548 AAACGCTGTCTCTACTAAAAATACAAAATGGC U0 1 1 38 chr12.fa 100209286 F .. >CMLIVERKIDNEY_7:1:1:71:615 GTTTTCATTTACTAAGAATTGAAAGCAATTAA U0 1 0 0 chr22.fa 22601942 R .. >CMLIVERKIDNEY_7:1:1:117:588 CTTTATCCGACGTGTATTCTACGTTCAGCTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:616 CTGGTTAAAAGTAAGAGACAGCTGAACCCTCG U0 1 5 7 chrM.fa 2644 R .. >CMLIVERKIDNEY_7:1:1:78:262 AAGAAAACAAAGGCAAAATGTCCATTGCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:420 GCTAGGGTGAGTGGTAGGAAGTTTTTTCATAG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:79:550 GCTTACTAGAAGTGAGAAAACGTAGGCTTCGA U2 0 0 1 chrM.fa 9153 R .. 3C 18A >CMLIVERKIDNEY_7:1:1:120:851 TCGGATCCTCAAATGGGGGAGATCACGATGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:595 GGTGGTTTGGTTAAAAAATAGTAAAGGGATGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:387 GGCCTCTTGGAGACAGATGATGACTGGCAAGG U0 1 0 0 chr7.fa 130837333 R .. >CMLIVERKIDNEY_7:1:1:106:402 CCTCCATCACCCCTTCATACATTAGCTTCACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:120:727 CTCTTTTCTGTACACTCAGGGAGCTAAAAAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:224 GGCGGCCCAGCGTTCCTAGCGCCGTCGCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:733 GGACAATTTATGTCTATTCATTAGATTACAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:462 TATGTATCCAAATGGCTCTTTTTTTCCGGAGT U1 0 1 1 chrM.fa 6686 R .. 17A >CMLIVERKIDNEY_7:1:1:110:674 GAGGGGAAGGTGCTTTCCTTACCTCTAAACAG U0 1 0 0 chr19.fa 50013642 F .. >CMLIVERKIDNEY_7:1:1:101:38 TATGCACATTCCACTTCTGCTCCTTACCTGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:875 GGATACAATAGGAGAGTCATGGTTATTTCCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:847 GCCTTGGAGCTTTTGATACTGACGATTGCGCT U0 1 0 0 chr14.fa 19851570 F .. >CMLIVERKIDNEY_7:1:1:122:244 ACGGACTACACCTATCACTCCCTAAACCCCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:225 GGGATAGAAACCTCGCCACCTTCCATTCCTCT U2 0 0 1 chr1.fa 38184430 F .. 9C 16A >CMLIVERKIDNEY_7:1:1:122:219 GCTCTTTTAGCTGTTCTTAGGTAGCTCGTCTG R0 4 1 0 >CMLIVERKIDNEY_7:1:1:81:779 GGACTTCATGTCATTATTGGCTCAACTTTCCT U1 0 1 0 chrM.fa 9820 F .. 9C >CMLIVERKIDNEY_7:1:1:109:533 TGGAGACATGTCATATAAGTAATGCTAGGGTG R1 0 2 0 >CMLIVERKIDNEY_7:1:1:122:182 TGGGATTATAGGTGTGAGTGAGCTACTACGCC R0 3 0 0 >CMLIVERKIDNEY_7:1:1:115:219 CTTCGAGTCTCCCTTCACCATTTCCGACTGCC U2 0 0 1 chrM.fa 9750 F .. 29G 32A >CMLIVERKIDNEY_7:1:1:108:978 GTTTGGATTAGAAGTCAGGGAGGTGTTTCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:949 GTTGATTTTAGGTTTAGGATAGATATGAAGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:70 GTCGCGCTCCCCGGATGCTCGCCTGCTCCTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:215 GAAATACTTGTTGGCTGCTTCTGTGGAACTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:692 GGGGATTTTTCTATGTAGCTGTTGAGTTGTGG U2 0 0 1 chrM.fa 10132 R .. 13G 31A >CMLIVERKIDNEY_7:1:1:104:671 GTGTTGGGAGCGCTTTGGTGACCGCGTGTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:683 CCCATCTATATTTTCCACTATAGACTTCAAAA U0 1 0 0 chr7.fa 30164378 R .. >CMLIVERKIDNEY_7:1:1:106:877 GCCACCAATTAAGAAAGCGTTCAAGCTCAACA R0 6 7 2 >CMLIVERKIDNEY_7:1:1:98:183 GCTGGCTGGTCCCCCCCGCCCTTCTTCTTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:189 GTCCAATTGGGCGTGAGGCGTTCAGTTATATG U2 0 0 1 chrM.fa 2242 R .. 14T 21A >CMLIVERKIDNEY_7:1:1:118:259 AGAGGTTTAGATGATGTGGTCTTTGGTGTAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:956 TGATACTGGCATTTTGTAGATGTGGTTTGACT U0 1 0 0 chrM.fa 9925 F .. >CMLIVERKIDNEY_7:1:1:102:347 AAAAAAAGTAAAAGGAACTCGGCAAATCTTAC R0 4 4 2 >CMLIVERKIDNEY_7:1:1:106:177 GGAGAGGGACCCTATCCTGTACCTCGAAGCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:143:877 GTTGGCCTCATTATGCCAGTATGGCTGCCATT U2 0 0 1 chrX.fa 2834019 R .. 1T 2G >CMLIVERKIDNEY_7:1:1:107:787 TTTCACCGCTACACGACCGGGGGTATATTACG U1 0 1 0 chrM.fa 8135 F .. 28C >CMLIVERKIDNEY_7:1:1:86:608 ACACATTTGTCCTCAACGCAACGGTCATCTCC U2 0 0 1 chr16.fa 19778851 F .. 1C 3C >CMLIVERKIDNEY_7:1:1:119:150 GTGAGCCCCATTGTGTAGTGGTAAATATGTAA U2 0 0 1 chrM.fa 11984 R .. 1C 16A >CMLIVERKIDNEY_7:1:1:95:198 GAAGTAGCGGTTAAGGAGGGTGATGGTGGCTA U1 0 1 1 chrM.fa 5315 R .. 25T >CMLIVERKIDNEY_7:1:1:120:130 GTGGGTTCCGCACCCGCCTCGGCTCCCGCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:497 GGTGTGCAAGGGATGCGGGAGATGTGTGCAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:716 GTGGAAGGGAGAGTGCTGGCCCGAAGCCTTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:715 GCCCTGACGTGCAAATCGGCCGTCAGACTTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:76:389 GAGGGAGAAAGTGGCAGGAGGTGCCTTAAAGA U0 1 0 0 chr5.fa 133946269 R .. >CMLIVERKIDNEY_7:1:1:108:464 GGGGGCACCATCTCCTACCGTTCCCCTCTCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:378 CGTTTTCCTACTACTCAACTTAATCGCCTTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:565 GCCGGGGTGACATTCGCTTTGGGGGGGTAGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:71:625 ATTTCCTCATGATGTTAATACACTTCTTACTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:158 GTTGTATACTTCAAAAGACTTTTTCTCTTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:876 GTGGGGTGGAAGGGAAAGCAAAAGGCTTGGGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:497 TTGGGGTTGAGGGAGAAGGATAGAGGGGTGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:978 GTGGATGTGGACAATTGATATCAATGTTCAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:702 CTCAACCTAGGCCTCCTATTTATTCTAGCCAC U0 1 0 0 chrM.fa 3599 F .. >CMLIVERKIDNEY_7:1:1:112:221 GTCAGTCGGTCCTGAGAGTTGGGCTCGTGCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:929 TGCTTGTATGGCTGCTGTGTTGGTATCTTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:642 GTCCTCTCGTATTGTTGTGACGGCTGCGCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:451 GTCTAAATCAGCTGGGACAACACCCTTCCTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:735 GGAGATGGCTGTGTATGTGTTTTCTCGTGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:555 AGAGAAGCCAGGTTCCAAGCTTTAGGCACCCA U0 1 0 0 chr20.fa 44425279 R .. >CMLIVERKIDNEY_7:1:1:123:435 CCAAGAAAAACCTAAAAAACACCAAAACCAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:550 TGCCGGGCAGGCCACCTACGGTGAAAAGAAAG U2 0 0 1 chrM.fa 6939 R .. 26A 28T >CMLIVERKIDNEY_7:1:1:116:401 AGCTTTTGAAAGTAAAAGAGAAGCTACTTCTG U1 0 1 0 chr15.fa 99643570 R .. 8T >CMLIVERKIDNEY_7:1:1:111:620 TACTGCCTTCTCCTGCGGTATGTTCTTACGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:787 GTGGTCTCGTGGTCCTGAGTTCAGGTGATCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:168 GCCGTTCTTCCTGGCTCCTTTCACTTTTTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:271 CTCCACACCCACTCCCACTCAGCCAATATTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:49:558 GGAAAACTGGAAGACAGAAGTACGGGAAGGCG U0 1 0 0 chr11.fa 65023707 F .. >CMLIVERKIDNEY_7:1:1:91:652 GAAGCGTTAGGAATGCCATTGCGCTTAGAATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:399 GGACAGATCACGAGGTCAGCAGATCGAGGCCA U0 1 3 219 chr4.fa 166216071 R .. >CMLIVERKIDNEY_7:1:1:116:737 CGCTCTTCAACTTGGGAATTTACGTAACCTTC U0 1 0 0 chr11.fa 66434990 F .. >CMLIVERKIDNEY_7:1:1:78:443 GCAAAATAGTGGGATGATTTATAGGTAGAGCC R2 0 0 2 >CMLIVERKIDNEY_7:1:1:82:180 GCAGGTAGAGGCTTACTAGAAGTGTGAAAACG U0 1 1 0 chrM.fa 9163 R .. >CMLIVERKIDNEY_7:1:1:119:688 GGTAGCAGTGGGGCGGGTCTTTTTCTGTTTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:57:739 GGGTTGTTTTCTGGGTATCTAGGTCATCGTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:891 GTGAGTTTGGAGATTTCTTACTATTGCTTGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:44 GTTGTCGTCCGCGTCGGGGCTCTGTGCAGCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:946 GGAGTATTTTGGTTCGTTTTGATTTGTTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:178 GTTGGACCTGAGGGTAAGTTAACAAGGATGAA U0 1 0 0 chr10.fa 93713900 R .. >CMLIVERKIDNEY_7:1:1:88:815 TAAAGTGGGAGAAACTGAGTCCTTTTTTGGTG U0 1 0 0 chr10.fa 28380978 R .. >CMLIVERKIDNEY_7:1:1:109:497 GTTGAATGTGAAATATAAAGAATTAAGCAGCT U0 1 0 0 chr11.fa 95618811 R .. >CMLIVERKIDNEY_7:1:1:89:833 GCGGGGGTTGTATCGGACTGGGTGGTGGTTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:947 GCCATAAGGAGGACAAGGAAGATCTTAGGGAA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:113:567 CTAAGCTTCAAACTAGACTACTTCTCCATAAT U0 1 3 11 chrM.fa 12569 F .. >CMLIVERKIDNEY_7:1:1:123:398 GAGAAAACACCCTCATGTTCATACACCTATCC U0 1 1 1 chrM.fa 12055 F .. >CMLIVERKIDNEY_7:1:1:107:627 TGGAGATGGCGACTAGTGGACATAAGAACTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:799 GGAAATGTTTGCAGTTCATTCTGTCAACTTGC U0 1 0 0 chr15.fa 59958150 R .. >CMLIVERKIDNEY_7:1:1:103:176 GTTCCATCAGATTTCGCCCTCTACCAACCACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:401 GTTTTAATGAGCTTATGCGTGATCCTGTTAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:818 TGCAGCCTAGCCTTCTTGTTTTTATTCTCTGT U1 0 1 0 chr7.fa 111616996 F .. 1A >CMLIVERKIDNEY_7:1:1:81:189 GGTGGGTGGAGCAGATTGTTTGGTTTGTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:693 GTAAGTAGGAGATTGATCTTTGATCAGGAGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:435 TGAATGAGGGATTTATGTTGTTAATGTGATGG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:114:712 CCTGTGTAGATTATTCAGTGCCACAAATTGAA U0 1 0 0 chr20.fa 17535783 F .. >CMLIVERKIDNEY_7:1:1:120:206 AAAGCACATACCAAGGCCACCACACACCACCT R0 2 0 1 >CMLIVERKIDNEY_7:1:1:63:608 GTTTCAGGGGGTTTGGATGAGTATGGCTGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:915 GCCAAGCACATACACCAAATGTCTGAACCTGC R1 0 2 3 >CMLIVERKIDNEY_7:1:1:118:520 GGCCCATCCATGAGTCAGGAAAGGAGCACTGC U1 0 1 0 chr16.fa 55499051 R .. 5G >CMLIVERKIDNEY_7:1:1:81:243 GTTTTAGCCGGTTATTGTCATTTAATTTTTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:516 AAAGGACACGATGGATGTACATACAAATTTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:642 ATAAATACTACCGTATGGGCCACCATATTTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:499 GATTGGGTTAGATGTCCGGCAATTGCATCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:119:77 ATAATTTCTCCCTCTCACCAGTTAACTCTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:666 GGTTAGGAGTGGGACTTCTAGGGGTTTTAGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:604 GTGAGGCCCCGCTTTCACGGTCTGTATTCGAG U2 0 0 1 chr1.fa 91625562 F .. 31T 32A >CMLIVERKIDNEY_7:1:1:97:764 GTTGGTATAGAATGGGGTCTCCTCCTCCGGCG U0 1 1 0 chrM.fa 6570 R .. >CMLIVERKIDNEY_7:1:1:92:559 GTAGAAGTAGAGGTTAAGGAGGGTGATGGTGG U0 1 1 0 chrM.fa 5318 R .. >CMLIVERKIDNEY_7:1:1:69:159 GGGTGAATCACTTTATAACAGTGGCTGATTCA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:79:757 GAAAGATTGACTAACGAGAGATTCTAGATAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:23 CCTTCGTCCTCTAGGAGCATCATCACCTATTG U2 0 0 1 chr18.fa 72184599 F .. 5A 11A >CMLIVERKIDNEY_7:1:1:95:932 TTTGCTTTTTAATATACAAACCATGGTTTTTT U0 1 0 0 chr2.fa 111638510 F .. >CMLIVERKIDNEY_7:1:1:84:209 GTGATTATGTGTTGTCGTGCAGGTAGCGGCTT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:123:111 TTGTATTCCAAGAGAGTTGTTCTCCACTTACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:233 GATCTTCTTAAAGTACGACCCACATTTGTTTT U0 1 0 0 chr11.fa 77089589 F .. >CMLIVERKIDNEY_7:1:1:83:457 GAAGCTCGAGGCGAAGACAGGAAAAAAGACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:368 CTGCTAAGAACGTTACAACGACCCCCAAAGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:55:715 GGAAGGCCACCTTTGGTGGTGGTTTCATTCTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:74:738 GCAAGAACAACATTCCCATGGTCAGTGACTTC U0 1 0 0 chr11.fa 30315626 R .. >CMLIVERKIDNEY_7:1:1:94:782 GTTTTATGCCTCTGTGCCTTCGTTCATGCTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:579 CAATTTTCTTCTCCACGTTCTTCTCGGCCTGT R0 6 1 3 >CMLIVERKIDNEY_7:1:1:109:750 GCGGCTGCTGGCACCAGACTTGCCCTCCAATG U1 0 1 2 chrY.fa 10645457 R .. 31A >CMLIVERKIDNEY_7:1:1:106:729 GTTCCATGTGAAAAGCAGTTGAACTTGGGACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:554 GTCGGGTCTGCGAGAGCGCCAGCTATCCTGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:74:374 ATGAAGCGAACAGATTTTCGTTCATTTTTGTT U1 0 1 4 chrM.fa 8521 R .. 4C >CMLIVERKIDNEY_7:1:1:99:523 GTATAGCCAAGCAAGCGTAGCATGATTTGCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:64:542 GACATACAGACCAATGAAATAGAATTGGGTGC U0 1 0 0 chr14.fa 63907003 F .. >CMLIVERKIDNEY_7:1:1:96:394 AAAATATTTCACCACGACCAAGAAAGGGGAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:800 GTCTGCACGAACTTATAGATTTAAGATTTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:424 GCATTTTGGACTCTTATTCTTCATCTCAGAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:489 CCCCGATGCATACACCACATGAAACATCCTCT U1 0 1 2 chrM.fa 7233 F .. 31A >CMLIVERKIDNEY_7:1:1:122:285 CTGTGTTGAGCACTGGTCACATTGACGGCGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:443 TAGAAAACAACCGAAACCAAATAATTCAAGCA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:124:759 CTTAGGTTCCTTGTTTAGGGCATTTGTTTTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:255 CGCCTTATGGCGCGGGGTTGACGGGGCCCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:756 GATTGGTCCAATTGGGTGTGAGGAGTTCAGTT U0 1 0 1 chrM.fa 2247 R .. >CMLIVERKIDNEY_7:1:1:120:669 AAATTTTTTACTCTCTCTACAAGGTTTTTTCC U0 1 4 0 chrM.fa 2130 R .. >CMLIVERKIDNEY_7:1:1:83:467 AACTCTTTTAAGTTATGGGAAAAAAAATCTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:713 GGTGTATGCCGTTTTCCTAACACTCACAACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:490 ACATGATTGTTCGACGTTCTTGCAAAAATCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:145 TCGTTCTTTAGTGTTGTGTATGGTTATTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:48:459 GGTTTTGTTTTTCTTTTCTCTGTTAGCCACTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:224 GGCGGTGGAGGGGATGGTTTTGCCGCCTCATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:470 GAAGAGGCAGGACACGTCATTGCTACCCTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:526 ACGAACTGGAGTTCAGCTCTTTTGTCAGAAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:27 GGCCAATTGAGTGTTGTAGTTCGCTTCGATCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:76:879 GTCCAATTATGCATCAGAAACAATAGATAGGT U0 1 0 0 chr7.fa 11828110 F .. >CMLIVERKIDNEY_7:1:1:72:138 GTAAATGTAAAGTGTTGTTTTTAGTGACAGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:474 GGCCCATTAAGTCCCTACTAAGAGGGCGTGTC U0 1 0 0 chr19.fa 3927315 F .. >CMLIVERKIDNEY_7:1:1:120:300 ATTTCCTATTCGCCTACACAATTCTCCGATCC U0 1 1 0 chrM.fa 15565 F .. >CMLIVERKIDNEY_7:1:1:113:164 TGCAAATCGGTCGTCCGACCTGGGTCTCGGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:927 GTGACTACAAAAAGGATTAGACTGAACCGAAT U1 0 1 0 chrM.fa 10374 F .. 26G >CMLIVERKIDNEY_7:1:1:47:178 GTACACTATCAATCACTGAAGCAATTATGCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:908 GAACACGGAAACCTGAAGCGTGGATAGAGATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:944 TGGGAGATTATTCCGAAGCCTGGTAGGATAAG U0 1 3 7 chrM.fa 6640 R .. >CMLIVERKIDNEY_7:1:1:115:150 GTATTGGAGACTTTCATTGCAAAGCACTTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:128 GGCTTGCCTTATGAGCATGCCTGTGTTGGGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:243 CAAATTATCCTCCACATTCTGCTGCTTGTTTT R1 0 7 0 >CMLIVERKIDNEY_7:1:1:116:179 AAACAACCGAAACCACATAATTCAAGCACTGC R1 0 2 0 >CMLIVERKIDNEY_7:1:1:106:5 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:107:153 GTGGGCTGCGATCATGCCTGGGCCTCTGAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:220 GCCTGACTGGGGCAAGAAAACAGAGTTTCATC U0 1 0 0 chr20.fa 32979352 R .. >CMLIVERKIDNEY_7:1:1:94:671 AAGTGGCCTTCCCGACGTTCTGCTTCGATGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:894 TGGGACTACAGGAGAAGATAACCACACTAGGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:80:741 GGGATCTCCCAAGGAGTCATGTTCTGAGGGAT U1 0 1 0 chr10.fa 102248463 F .. 32C >CMLIVERKIDNEY_7:1:1:122:17 TGCCATCANNNANGACTNNNNNTGTACANNNT QC >CMLIVERKIDNEY_7:1:1:79:659 AAACCGCCTGGGTACTATCTCGCATGTGATTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:57:517 GCTTCAAGATGAAGCTGAACATCTCCTTCTCA R1 0 3 2 >CMLIVERKIDNEY_7:1:1:112:176 GTCGGGTTGCTTGGGAATGCAGCCCCAAGCGG U1 0 1 0 chr11.fa 84872677 F .. 26A >CMLIVERKIDNEY_7:1:1:96:831 GAAAAATCCACGCCTTACGAGTGCGGCTTCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:174 GTTGAGGTTGACCAGGGGGTTGGGTATGGGAG U2 0 0 1 chrM.fa 3573 R .. 1T 2C >CMLIVERKIDNEY_7:1:1:101:510 ATTCGGTTCAGTCTAATCCTTTTTGTAGTCAC U1 0 1 0 chrM.fa 10374 R .. 26G >CMLIVERKIDNEY_7:1:1:115:146 GGAATTTGAAGTAGATAGAAACCGACCTGGAT U0 1 0 0 chrM.fa 3087 R .. >CMLIVERKIDNEY_7:1:1:106:752 GCACAATATTGGCTAAGAGGGAGTGGGTGTTG U0 1 2 0 chrM.fa 10617 R .. >CMLIVERKIDNEY_7:1:1:120:444 ATTGCCCACACACAGATGCGCCTGCTTCCTCT U1 0 1 2 chr6.fa 108432948 R .. 21G >CMLIVERKIDNEY_7:1:1:92:938 GGGGGGGTGATAGGGGGTAGGGGGAAATGGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:261 CAAGGGTATTCTAGCCTGTACCATCTCGCTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:82:844 TCCGCTTTTGCCATATCTTCAAATTTTCCTTT U0 1 4 7 chr13.fa 29935440 F .. >CMLIVERKIDNEY_7:1:1:108:704 ATTTAGTTGACTCGCCACTCTGCACGGTGGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:549 ATGAGGGAATAACTAGGATTATCTCGTATAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:215 GTCAAACCAGCCACTGCTTCCCATATCACATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:48:621 GGTGTGCCTTGTGGTGAGTAGTGGGTTAGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:92 CTGCATTGGTTTTTTTTCCATTACACCCGTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:234 ATCCACCAGCCTTTGCATTCTCCTCGGAGCAC U0 1 0 0 chr11.fa 2866195 F .. >CMLIVERKIDNEY_7:1:1:68:846 GGTGTGGAAAGTCATGCATGTGGAAGGATCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:889 GTTGGTGAGGTATTGGGGGGAGGGGGTGAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:445 GACCACATCACAGTGAGCCTGGGAAGTAAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:540 CTGGAATTACCGCGGCTGCTTGCTTCACCTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:517 ATTCCACCTACTTCAACTCATTATTGACTTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:568 GCGATTTCTAGGATAGTCAGTAGAATTAGAAT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:120:700 GTTGAATTATTTGGTTTCGGTTGTTTTGTATT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:121:342 CCTGCCCCATGGTATCTACGATGAGATCCAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:797:649 GTTTTGTATGTTCAAACTGTCATTTTATTTTT U0 1 1 0 chrM.fa 5403 R .. >CMLIVERKIDNEY_7:1:1:204:901 GTTTAGTAGTAATCAGTGTGGCTAGAGATTAC U0 1 0 0 chr12.fa 10234229 R .. >CMLIVERKIDNEY_7:1:1:108:514 TGGGGCTTAGAGCACGGGTAAGAGCACGATCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:1000 GTTAACGTAATTGAAGATTCTGGCTCTGGTGG U0 1 0 0 chr21.fa 33847161 R .. >CMLIVERKIDNEY_7:1:1:97:369 CCTTCTTAGGCTATTTCCTTCTGTCCGGACAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:45:436 GTTAGAGTCAGCTTTTTTTTTTTTTTTTTAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:307 CCTCAATACTGTCAAGTGCACCTACTTAATAA R0 2 1 1 >CMLIVERKIDNEY_7:1:1:103:629 ATGATGGATTGGCGACACTGTTGAACAACATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:640 GACCAAGCTGGGGCTCAACCAGAACAAGAAGG U0 1 0 0 chr5.fa 529355 R .. >CMLIVERKIDNEY_7:1:1:100:581 GGGGGGTGGCTTCAAACCCGCTTTGGGGGGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:162 TGACGATAACGTTGTAGATGTGGTCGTTACCT R0 2 1 1 >CMLIVERKIDNEY_7:1:1:71:411 GGACAGTGTGTGCTGGTGATTCTTATTAAAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:51:560 ATGAACCATAACCAATACTACCAATCAATACT U0 1 1 0 chrM.fa 4719 F .. >CMLIVERKIDNEY_7:1:1:92:129 GTTTATTTCTCTTCCTCCTCCCGTACTAGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:451 GTTACACCCCCCTCCCCCCATCACGCACGCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:981 GTTTTATGTTGTTAATGTGGTGGGAGGGTGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:211 GTTGGAATTCCACGGGTTATTCTTCCTGCACT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:689 AAACTTTTGGCCAAGAGAATGTAGGAGGTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:811 CCCCAACCGAAATTTTTAATGCAGGTTTGGTA U0 1 2 0 chrM.fa 2788 R .. >CMLIVERKIDNEY_7:1:1:121:506 GTTTTTGTATTCTGTTTTATTCTGTTTTTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:69 GAAAAGTACAAATCACAGGCATCAAGAAAAAG U0 1 0 0 chr13.fa 97848101 R .. >CMLIVERKIDNEY_7:1:1:82:882 TGTGTAAGCTAGTCGTATTAAGTTGTTGGCTC U1 0 1 0 chrM.fa 11329 R .. 18T >CMLIVERKIDNEY_7:1:1:112:393 CCTTCCCAACCATCCCACAAAGTCTTAGCTCA U0 1 0 13 chr6.fa 146153153 F .. >CMLIVERKIDNEY_7:1:1:93:154 GTCAGTTGTGGTCCTTAAACCTCTTGGCACCT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:122:250 CTCCAATGGTGATGCCTGGGTTGAGGCTCATG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:98:69 GTTTGGATGAGAATGGCTGTTTCTTCTTCGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:692 CTTGGCGGAATCAGCGGGGGAAGCAGACCGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:627 GCAAGTGGAGGTATCTGGGTCTCCCAAGGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:694 GCCAAACCCCAAAAACAAAGAACCCTAACACC U0 1 0 1 chrM.fa 349 F .. >CMLIVERKIDNEY_7:1:1:59:595 GAGAAGGCCTTAAAGTACGTCCGCGGGTTGCT U0 1 0 0 chr7.fa 100670211 R .. >CMLIVERKIDNEY_7:1:1:96:135 GTTTTTGTATTCCCTCCTAGGCCAGGCTTAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:669 CACCTTACTACCAGACAACCTTAGCCAAACCA U0 1 0 1 chrM.fa 1698 F .. >CMLIVERKIDNEY_7:1:1:117:428 CCTAGAAGTCCCACTCCTAAACACATCCGTAT R0 2 1 1 >CMLIVERKIDNEY_7:1:1:237:883 GTTGTTCAGTAACAATTGCTGATACTGCAGCT U0 1 0 0 chr4.fa 111136003 F .. >CMLIVERKIDNEY_7:1:1:121:140 ACAGCTCTTTGGTCATTAGGTACATATCTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:472 TGCCCACCTCAAGGTTAATAAATAAGGTTGTA U1 0 1 0 chr11.fa 63283050 F .. 14T >CMLIVERKIDNEY_7:1:1:97:514 CCCCGCGGATTCATTGAACTAGGACTGTCCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:284 CGACTGTGAGTGCGTTCGTAGTTTGAGTTTGC U0 1 0 1 chrM.fa 11748 R .. >CMLIVERKIDNEY_7:1:1:110:46 GTTCTTGCGGCGGGTCTTGGCTGTATTTTCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:277 ATAACAGCCCCGGCCCCAAATACCCCCACTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:61:438 TATGGTTGATATTGCTAGGGTGGCGCTTCCAA U1 0 1 0 chrM.fa 9048 R .. 32T >CMLIVERKIDNEY_7:1:1:98:561 CCTGAGAATAGGGGAAATCAGTGAATGATGCC R1 0 3 0 >CMLIVERKIDNEY_7:1:1:112:932 GCAAAATCTTAGCATACTCCTCAATTACCCAC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:422:223 AGAACTTCTCCGCTCAGCGCTGGATGAGTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:94:814 TGTAATTCCAGCTACTAGGGAGGCAGCGATAG U2 0 0 1 chr3.fa 171498044 R .. 3G 6T >CMLIVERKIDNEY_7:1:1:81:431 GCCTTGTACTGTTCCCTCTACCCCCTTCAGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:924 GGACAGCTCATGAGTGCAAGACGTCTTGTGAT U0 1 2 1 chrM.fa 8051 R .. >CMLIVERKIDNEY_7:1:1:99:735 GCCGTTTCTCAGGCTCCCTCTCCGGAATCGAA U0 1 0 1 chr21_random.fa 1677674 F .. >CMLIVERKIDNEY_7:1:1:100:952 GCCTCTTGGTTCATCACAACTGCAGCAACTGA U1 0 1 0 chr16.fa 20269487 R .. 6G >CMLIVERKIDNEY_7:1:1:72:744 GTTGTTTTCTATTAGACTATGGTGAGCTCAGG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:106:174 CATCACCCTCCTTAACCTCTACTTCTACCTAC U0 1 1 0 chrM.fa 5322 F .. >CMLIVERKIDNEY_7:1:1:110:581 TCGATTCCTTCCTTTTTTGTCTAGATTTTATG R0 3 0 0 >CMLIVERKIDNEY_7:1:1:121:457 CTTCATTTGCATAGGAGTATAACTTTGTAACT R0 11 33 31 >CMLIVERKIDNEY_7:1:1:73:245 GTGACTTTTATTTTTTAACCAAGAATAATCTA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:106:42 AGGGAGCCGGGGAGGCCGCGGTTCCGGGTGTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:611 CGCGTACTTCGTTGTAGCTCACTTCCACTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:62:806 GAAAAACGAGCTTTGCATCTTCAGGCCAGTAA U0 1 0 0 chr7.fa 29646071 R .. >CMLIVERKIDNEY_7:1:1:73:183 GTGGCTGGGTCCTGGCCCGCAGCCCACCCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:118 CCCGGCTTGAGCCGCCCACTTCAGGCTCTTCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:65:596 GGAATGAGAAGCGAAAGAAAGAAAGAACACGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:664 GGGTTTTTTCGGTAGTGGGGGTTGAAATTGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:493 GGGTTCGATTCCTTCCTTTTTTGTCTAGATTT R0 3 0 0 >CMLIVERKIDNEY_7:1:1:123:321 CCTTTGACGCGTCCTGGTTTCTTACCCTCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:260 CTTTTTCAGGTTAGTACGCGTTCTTCTGTCAG U1 0 1 0 chr18.fa 12020678 F .. 19T >CMLIVERKIDNEY_7:1:1:77:494 GGCCAGTACTTCTCATTTGTATTCTGCAAAAA U0 1 0 0 chr11.fa 117850740 R .. >CMLIVERKIDNEY_7:1:1:124:449 ATTTATTCTAGGACGCTGGGCATGAAATTGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:787 GGCGAGTCAGCTAAATACTTTGACGCCGGTGG R0 2 2 0 >CMLIVERKIDNEY_7:1:1:116:96 GAACTCTTTGGACACTAGGATTAAAACTGTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:421 CAGGGCACATTCACTCCCTGGCGCAGTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:93:732 GTAAAGACTCAAAATAAAAACCTAGACCATTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:86 GTGGCTGTTGTTGTTTTGTTTTTATAGATTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:905 GAAGCAGGCCGGATGTCAGCGGGGTGCGTTGG U2 0 0 1 chrM.fa 4827 R .. 5G 13T >CMLIVERKIDNEY_7:1:1:115:110 AAGATTGAGAGAGTGCGGAGCAGGCAGTTGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:776:651 GGGGGGTGTTCAGTTATCTTTTTGGGGTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:162:481 GCGTCATATGCTTATTTCAATCTACCACTATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:519 GTCATCTTGAACTATCTCTTAAAAGTTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:444 GTCACATCCCCGACGCTCCGGCCCGTGACCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:723 TTAATTGTCAGTTCAGTGTTTTAATCTGACGC U1 0 1 0 chrM.fa 2345 R .. 10C >CMLIVERKIDNEY_7:1:1:217:543 GGAAGAGATAGGATGAGGAAAAATGTGTATAA U0 1 0 0 chr21.fa 41513196 F .. >CMLIVERKIDNEY_7:1:1:65:545 GTCGTCTTAGCGAGTCAGTGAGCACCTCTAAG U0 1 0 0 chr5.fa 175706486 F .. >CMLIVERKIDNEY_7:1:1:122:511 GTCATCAACAACCGCCTACTCACCACCCACCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:927 GCTAGGATGATGATTAATAAGAGGGATGACAT U0 1 0 0 chrM.fa 10324 R .. >CMLIVERKIDNEY_7:1:1:113:622 AAAGTGTAGCCTTGGGACTGGATTTTTGCTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:940 TTTCAATCGATGGGAGCGGGGTAGCTGGTTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:27 GTTTGCATGAGGATGCCTGGGCCTTCGCGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:94:445 GACAACATCCCTGGGACCCTGGAAACCAAATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:99:413 AAGCGGTTTGGTTTAGACGTCCGGGTTTTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:152:500 GTGGCCTTGGTATGTGCTTTCTCTTGTTACAT R1 0 2 0 >CMLIVERKIDNEY_7:1:1:122:279 CTGTGGAGGTAGGAGATGGGGTAGGGGGCGGG U2 0 0 1 chr22.fa 40632456 R .. 1T 4T >CMLIVERKIDNEY_7:1:1:122:625 CTGAACAGTTCCTTTTTCAGAGACATAGATAC R0 8 3 3 >CMLIVERKIDNEY_7:1:1:52:661 GCTTTGCTCTATAACTGTCGACTTGGGCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:362 ATTTCTCTTCCCCGAGGAAAGGGTATCCGCCT R0 4 5 2 >CMLIVERKIDNEY_7:1:1:123:520 CAGACTACCACACCTCACAAAAATGGTCAGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:599 GGGAAGGTGGCTCGGGGGAGTTGAAAAGAACT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:540 GGGGGATTAGCGCTGTGGGTGTCAGCAGGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:665 ATTTAGTCAGTGAATACGGAGTGCCTGGGCCC U2 0 0 1 chr11.fa 8783965 R .. 1T 9A >CMLIVERKIDNEY_7:1:1:89:596 CTACTACTCACTCTCACTGCCCAAGAACTATC U0 1 0 1 chrM.fa 11289 F .. >CMLIVERKIDNEY_7:1:1:81:425 AAATAAATGAATAGGCCAAGAAGATCTACCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:122 CTGTGTTCAGACCGGCGTAATCCAGGTCGGTT U2 0 0 1 chrM.fa 3068 F .. 4A 16A >CMLIVERKIDNEY_7:1:1:38:596 GTTTTCATCTTCGGTTTACAAGACTGGTGTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:882 ATCTGCTTCAGAGGAAAATGCACACTATTCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:130 GCCAAAGCCTCCGATTATGATGGGTATTACTA R0 3 1 1 >CMLIVERKIDNEY_7:1:1:80:502 GCAAATAACAGCCACCAAGGAAATACAGGTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:904 GGCTGGGACTGAGGCGATCCTGCGATCCCCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:961 TTTGAAGTTCTTGTCAAGTCACAGTGAGAAGT U0 1 0 0 chr16.fa 11701351 R .. >CMLIVERKIDNEY_7:1:1:92:811 TACTAATCTCCCTACAAATCTCCTTAATTATA U0 1 1 1 chrM.fa 11053 F .. >CMLIVERKIDNEY_7:1:1:73:648 GTTGGGTTGACAGTGAGGGTAATAATGACTTG U0 1 0 1 chrM.fa 2402 R .. >CMLIVERKIDNEY_7:1:1:93:10 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:81:927 TGTAACTTTAAGGCAGGAAAGACAAATTTTAT U0 1 0 0 chr11.fa 65027835 F .. >CMLIVERKIDNEY_7:1:1:115:462 ATTGGCTGTACACGCGATAATCTATCTTTCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:488 CGGGGAGAGGCTTACTAGCAGCGTGCAAACGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:498 GCGGCACTCCGCACGCCATGCCGCTTTACCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:387 GATTTTTTTACCGATGGCACACACTTCAGGGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:788 TAGATGGAGACATACAGAAATAGTCAAACCAC U0 1 0 0 chrM.fa 9946 R .. >CMLIVERKIDNEY_7:1:1:100:115 GTGGCTGTCTACACGCCCAGCATTGGGCAGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:836:667 GTTTGTATTATGTAATCAAAATAAGGAGCTTG U0 1 0 0 chr14.fa 30178778 F .. >CMLIVERKIDNEY_7:1:1:408:176 AGGCTCAGAAAAATCCTGCGAAGAAAAAAACT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:118:447 ACGAAATAGTGCACCGCATGTTCATTGCTATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:91:465 GCCGGCGTAAAGAGTGTTTTAGATCACCCCCT U0 1 0 0 chrM.fa 932 F .. >CMLIVERKIDNEY_7:1:1:60:677 GGCCGACTCAGGTAAAAAATGAGTGCGTGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:562 GCGGCGCCGCCGCATTGGTTTTTTTCTCCTTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:567 CCTCCTGCTAACTCCTAGCTGACTCAGCATAG U0 1 0 0 chr11.fa 33687265 R .. >CMLIVERKIDNEY_7:1:1:114:152 CTATTTACCATATCATGTACCCGCAGCCACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:791 TTTCTGTTCTTGACCTCGTCCTCTTGCTGTCA U0 1 0 0 chr3.fa 65409523 F .. >CMLIVERKIDNEY_7:1:1:122:35 CGTTTCTGTCTCTCTCACTTTGTCTTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:52:612 GGTCATTCCTGGCTGTTTACTGACCAGGGGCA U1 0 1 0 chr10.fa 6340817 R .. 2T >CMLIVERKIDNEY_7:1:1:87:437 GTTTAGTAATGAGGTTTGAGGGGCTTTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:97:947 TAAAAGTATAAAGTTCACAATATTCTATGTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:91:314 ACCTCGCCATGGCCATACACTTATATGCTGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:203:882 AAAAGAACCATTTGGATACATAGGCATGGTCT R1 0 2 2 >CMLIVERKIDNEY_7:1:1:77:396 GCTTTGTGATGAGTGCAGGGATTTCTACTTTT U0 1 0 0 chr6.fa 160558371 F .. >CMLIVERKIDNEY_7:1:1:123:801 AAACATACCGGCTGGGCAAAAAGGCCTTCGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:658 GTCGTCATCTCCTCCTGTACAGTTGGCCTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:279:788 GGAATATTGAAGTGGAAATGATGAGCTGAGAT R2 0 0 15 >CMLIVERKIDNEY_7:1:1:75:515 AATTACCCCCATACTCCTTACACTATTCCTCA R0 2 0 1 >CMLIVERKIDNEY_7:1:1:51:507 GAGTTGGGGGGGGCACGGCCATAGGGGCATTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:701 GGGGTGTTAGTGATCTTTGCTTTTGTTGTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:590 ATTAAGGTGAAGATAATTACTACTCCCCCGCG U1 0 1 0 chr16.fa 82661071 R .. 14G >CMLIVERKIDNEY_7:1:1:96:374 CAGCAACATGCTTTAACCCCATTGTATGTTTG U0 1 0 1 chr1.fa 25042349 F .. >CMLIVERKIDNEY_7:1:1:94:424 GCTCACTGCAACCTCCACCTCCCAGGTTCAAG R0 255 255 255 >CMLIVERKIDNEY_7:1:1:88:918 GGGGAAGCTTGTTGTTATTTTGGATTCGAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:85:410 TTCGATAATAACTAGTATGGGGACAAGCCGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:514 AGCATGTCCAGTATGAGTGGTGGATGGGGAAT U0 1 1 0 chr5.fa 178974452 R .. >CMLIVERKIDNEY_7:1:1:100:897 GTTTCACCATGTTAGCCAGGATGGTCTCGAGA R1 0 127 255 >CMLIVERKIDNEY_7:1:1:68:439 GTTTGGTGAATTCTGCTTCACAATGATAGGAA U1 0 1 1 chr1.fa 91625409 F .. 2C >CMLIVERKIDNEY_7:1:1:93:573 CTTTGATGAAAAATCTAAGGAGGGTAAAGCCA U0 1 0 0 chr8.fa 91706305 F .. >CMLIVERKIDNEY_7:1:1:90:384 GGACTCTTTCGTTGGTGTACAGCTTTATGAGT U1 0 1 0 chr17.fa 23551581 R .. 32A >CMLIVERKIDNEY_7:1:1:80:617 GGGCCCAAGATGCGTGACAAGGTGAAGAGAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:945 TAAAAAAAAAAACTTAAAAAAAAACATTAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:818 CACAGTTCTAATTCTACTGACTATCCTAGAAA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:106:303 CTTGGTTACAATTACTCGTTATTAACTCCAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:627 GGTGAAGATGGTTAGGTATACGGAGGGGCCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:242 GAATAGGATTGCGCTGTTATCCAAAGGGTAAC R2 0 0 4 >CMLIVERKIDNEY_7:1:1:105:66 CCGCAGTCGTGCGCTGCGGTAAGCCTCTGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:454 CAGGAATTCAGGTCTCTGCTATACATATCTGG U0 1 0 0 chr12.fa 121729590 F .. >CMLIVERKIDNEY_7:1:1:796:641 GAAGTGTTTGGGCCTAATATGGGCGTTGAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:306 CAGGCTGTTCACAGTTAACAGGAGTTGCACTT U0 1 0 0 chr3.fa 69179321 F .. >CMLIVERKIDNEY_7:1:1:94:139 CTGGGGGCCCAGAGGAAGTAACTGATGGCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:66:445 TGGGCTAGAACCGGCCTCACAGCCGCCTCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:127 GGACTGCTCTTGCGTCCTCTCTTTCTCGTCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:232:878 GGCTGCATGAGCTCTCTGTCATATTTCTGTAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:762:686 GTTCCTCTTTGGCTTGCATCTCATTGCTAAGA U0 1 0 0 chr2.fa 11274683 F .. >CMLIVERKIDNEY_7:1:1:116:453 TGATGGATAAGATTGAGAGAGTGAGGAGAAGG U0 1 1 0 chrM.fa 4926 R .. >CMLIVERKIDNEY_7:1:1:96:936 TAGCGATGAGAGTAATAGATAGGGCTCAGGCG U0 1 1 3 chrM.fa 13552 R .. >CMLIVERKIDNEY_7:1:1:88:530 CTGGTAATCTATCCACTAGGATGAATGCAAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:66:839 GAAAGGATAAGGATGCTAAATTGCGTCTGATT R2 0 0 2 >CMLIVERKIDNEY_7:1:1:86:219 TAAAAACTAAGTTATCCAGTTAAGACTTAAAA U0 1 0 0 chr17.fa 24607565 R .. >CMLIVERKIDNEY_7:1:1:88:748 GTTTGATTTTGTTTTTTGTTTTGTTGTGTGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:842 TTCCACCAATCACATGCCTATCATATAGTAAA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:85:633 AAGAGGCGGAGGGGGAGCTCAGTGATGGTGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:608 ACGCAACTGAAAAGACAAAAAATCTCTCTCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:151:415 GGAGATCCTGGCGGCCACCGCCTCCCAATGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:751 GCACATGATTGGATAAGAGGGAGCGGGCGATG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:277:763 GGTTTAGAGCCGAATCCGATTGAAGAGTCATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:854 GAAAACCTCATTTGATATTGACACAATCATTA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:44:538 GTTTTTTAAAAATGTTCGTATATTTTTTAGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:217 GTGTAGGATTTCATCGCAAGAAACCTACTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:35 GTTGGGTTGACAGTGCGGGTAATAATGCCTTG U2 0 0 1 chrM.fa 2402 R .. 5T 17T >CMLIVERKIDNEY_7:1:1:365:762 GAAGGTTTATGGATGCGGTTGATTGGGTGAGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:576 GGTTAAGGGTCACAGTTGGGGCAGGTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:150:377 GTTAAAATAGCCACTTTAAAATCTTTGTTAAT U0 1 0 0 chr3.fa 60778920 F .. >CMLIVERKIDNEY_7:1:1:101:286 ATGAGACGTGGCGATCCCTCTGGCCTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:88 GCTATCTTCATCACTTCTATCATTACCTAAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:9 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:109:869 TTGGTACTCAGGGCTGATGTCGTCAAGTGAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:787 GCTCTGCACACCTCCTTTCTACCCCCAAAGTA U0 1 0 0 chr9.fa 80112847 R .. >CMLIVERKIDNEY_7:1:1:102:751 GTCATCCCTGATTGATGCTATCTGAATATAGT U1 0 1 0 chr2.fa 44401490 R .. 4T >CMLIVERKIDNEY_7:1:1:76:217 GCTTAATTGGTGGCTGCGTTTAGGCCTTCCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:799:656 GAGAGATTGGCAGTATATAAGTGGGTTGAAGA U0 1 0 0 chr2.fa 160105166 F .. >CMLIVERKIDNEY_7:1:1:337:423 ATCCATACATTGGGACAGACCTAGTTCAATGA U2 0 0 1 chrM.fa 15205 F .. 1T 2C >CMLIVERKIDNEY_7:1:1:111:368 GGGGGGTTAATGGATGGTCTCGCTAGAGTGGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:39:589 GACAGAAATCAGGTATTGGCAGGTTTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:133:580 ACCACCCCAGAAGTGGATGAGACCGAACATCT U0 1 0 0 chr1.fa 36565199 F .. >CMLIVERKIDNEY_7:1:1:116:659 GTCGGTTGTTGATGAGATATTTGGAGGGTGGG R2 0 0 3 >CMLIVERKIDNEY_7:1:1:428:884 GTTACATCGCGTCATCATTGGTATATGGTTAG U1 0 1 1 chr1.fa 559772 R .. 21G >CMLIVERKIDNEY_7:1:1:107:622 CTTAACCTCTACTTCTACCTACGCCTAATCTA U0 1 1 0 chrM.fa 5332 F .. >CMLIVERKIDNEY_7:1:1:85:358 AATCTCATCCCCCAAACAGGGTCTCAATCCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:889 GAGCAAACCACAGTTTCATGCCCATCGTCCTA U0 1 1 0 chrM.fa 8188 F .. >CMLIVERKIDNEY_7:1:1:121:915 GGCATCTCTAGGCTAATTGCGCTTTCAAGAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:140 GTAGCTTACTGGGTGTGCGCCGGTTGAGGTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:72:172 GTCTTTCGCCCCTATACCCAGGTCGGACGACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:595 TGAGCCCAGAGTCTTCTACCAGCTCTCATCTT U0 1 0 0 chr6.fa 49529348 F .. >CMLIVERKIDNEY_7:1:1:454:173 ATAACACTGGACCAGCTGTAAAAGTAAACAGT U0 1 0 0 chr10.fa 13220221 F .. >CMLIVERKIDNEY_7:1:1:120:154 TTGTCACCTGGCGCAATAGATATAGGACACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:244 GCATCAGTGAGTGGAAGCGGCGGTCCGCACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:834 TTTGTTTTTACTTGTTGTTTACTTGAATTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:547 AACTTCCAGGAATTGACTTATTTAATTAAGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:83:923 TTTGGCATCCTTGGGGGTTTATGAACTAATCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:407 ATGAACACAGACAGTTAACTCTTTCATAACTG U0 1 0 0 chr5.fa 74703763 R .. >CMLIVERKIDNEY_7:1:1:115:68 ATTTCCTGGCCATTCTAACTCGGCGGCGCCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:62:240 GGTGATATAAAATCTAGACTATGTTGGTTCAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:107:188 GGGGTTCTCACTCTGGAGGTCCACGGAGAGCA U1 0 1 0 chr11.fa 64655563 F .. 29T >CMLIVERKIDNEY_7:1:1:124:745 AAACAAGGCTCATCTCCACCACCTCCACAGTC U0 1 0 0 chr5.fa 10486752 F .. >CMLIVERKIDNEY_7:1:1:101:160 CATGTATTTGTCAAGAAACTTCTTATCTTCAT U0 1 0 0 chr11.fa 113821923 R .. >CMLIVERKIDNEY_7:1:1:97:768 GGCCAGGGCCCTCCTAATTCGGGGGCAGGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:130 AAGACACTCAGGATCGCACTGCCAGATTACTT U2 0 0 1 chr10.fa 120822498 R .. 11T 16A >CMLIVERKIDNEY_7:1:1:852:650 GCTTGTTTCAGGTGCGTGTTAGTGGGAGGGGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:60:445 GGATTATACCGTATCGAAGGCCTTTTTGGATA U2 0 0 1 chrM.fa 9429 R .. 2G 25G >CMLIVERKIDNEY_7:1:1:121:846 TCTCAAATGAGTTTTCATTTTTCTTGTCTTTT U0 1 0 0 chr12.fa 44628527 F .. >CMLIVERKIDNEY_7:1:1:83:748 ATTGCAGCCCTAGTAGCACTCCTCCTCATATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:779 ATCGTCTACATTCATGCTGGAATGGAAACGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:951 TCTCAGGGTTTGTTATAATTTTTTATTTTTAT U0 1 1 0 chrM.fa 8490 R .. >CMLIVERKIDNEY_7:1:1:95:824 GCAGGATCCTGCGACTCAACGTGCAAGATCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:204 CCTCATTCTTACCTGAATCGCCGGACATACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:592 GTCTGTGTCCTGGACCTTTTAGAATTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:104:701 AGAAGAACTAATGTTAGTATAAGTAACATGAA R0 3 1 3 >CMLIVERKIDNEY_7:1:1:48:798 GTTGTTTGGTGTGTGTGGGTGTAATGCTACGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:95:89 GCTTAGCATCGAGTTCCTATACATCCAATGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:813:705 GGAGGAAGTGGTTGTGAGGGGGAGTGCTGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:74:959 GTTGATTTTATGTGATTTTTTTGCGTCGTAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:823 ACAAGCCCTAGTGATACTCATAGCACCTGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:121 TAGCATCATCCCTCTACTATTTTTTAACCAAC U2 0 0 1 chrM.fa 10862 F .. 13C 32A >CMLIVERKIDNEY_7:1:1:123:43 AATAAGGCCTACTTCACAAAGCGCCTTCCCCC U0 1 0 0 chrM.fa 3142 F .. >CMLIVERKIDNEY_7:1:1:66:173 GGGTTTTCTTCCTCCTTAACCAAGTTGAGAAC U0 1 0 0 chrX.fa 19287739 R .. >CMLIVERKIDNEY_7:1:1:72:946 TAAAAACATACTTTTAGAAGAAAAAAGATAAA U0 1 0 0 chr11.fa 65023774 F .. >CMLIVERKIDNEY_7:1:1:124:410 ACGCCCTCCTACTCATCTTCCTTATCTGCTTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:92:113 GAAAGACAAACTCGAATTATGGATTCAGCTCA U0 1 0 0 chr6.fa 45037506 R .. >CMLIVERKIDNEY_7:1:1:105:583 CCATCTAAGGCTAAATACCGGCACGAGACCGA U1 0 1 0 chr11.fa 84872719 F .. 5T >CMLIVERKIDNEY_7:1:1:96:179 TCTATTCCTACTGTAAATATATGGTGTGCTCA R0 2 5 1 >CMLIVERKIDNEY_7:1:1:105:194 GCCCCTACTCCACCCCCTGCCCTTTCTAACCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:962 GGAGAAGGGGCGGAGCGGCAGTGGGCGGTTGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:788:646 GGGTTAGCGATGGAGGTAGGATTGGTGCTGTG U0 1 0 0 chrM.fa 14361 R .. >CMLIVERKIDNEY_7:1:1:67:799 GCCAAGCGTTCATAGCGAAGTCGCTTTTTGAT U1 0 1 0 chr1.fa 91625457 R .. 14G >CMLIVERKIDNEY_7:1:1:90:183 CGGGTTCACACTTGCCACCTGCAGGCATCGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:114:541 TTACAGTAGGAATAGACGTAGACACACGAGCA R0 2 1 2 >CMLIVERKIDNEY_7:1:1:73:92 TATGATTCCCTGGATTATGCAAAGACAAATAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:294:703 GAGGAGGTTAGTTGTGGCAATAAAAATGATTA R0 2 0 1 >CMLIVERKIDNEY_7:1:1:115:194 GGGTGGGTAGCCGACGTCGCCGCCGACCCCGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:100:841 TGGGAGTTTGAGACCATCCTGACCAACATGGA R0 11 255 255 >CMLIVERKIDNEY_7:1:1:155:680 AAAAATTAGCCGGGCGAGGTCGCAGGAGCATG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:117:399 AGCTTAGCATATTTTGAGTTGCTATGCTACAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:323 ATGGCTGCTACGTCATCAGCCATTTCTCACCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:255:764 GGAGTCATAAGTGGAGTCCGTAAAGAGGTATC U0 1 0 0 chrM.fa 11378 R .. >CMLIVERKIDNEY_7:1:1:82:909 GAAGTTTGTCGCTGATGGCATCTTCAAAGCTG R2 0 0 3 >CMLIVERKIDNEY_7:1:1:202:405 GTGCCCACTTCCTATAAAACATATCAAGCCGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:700:423 AAGACTTCCAACAGCCATTGCTGCTGACCAGA U0 1 0 0 chr17.fa 34659015 R .. >CMLIVERKIDNEY_7:1:1:192:890 GTTCTGTGATTTAATCTGACGCAGGTTTATTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:237:899 GTAGAATTAGAATTGTGAAGATGATAAGTGTA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:122:911 CCAACAATGACTAATCAAACTAACCTCAAAAC U0 1 2 0 chrM.fa 8662 F .. >CMLIVERKIDNEY_7:1:1:60:452 GGGGGCTCGAATGGTTCGTGAACTCTTTGTAA U1 0 1 0 chr7.fa 102793758 F .. 30A >CMLIVERKIDNEY_7:1:1:519:403 AACCAGACTCAGCGAGAAGTCTTTTTTGAGAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:532 CACCTGAGCTCACCATAGTCTAATAGAAAACA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:99:579 CCGCCTTTTCATCAATCGCCCACATCACTCGA U0 1 0 0 chrM.fa 14929 F .. >CMLIVERKIDNEY_7:1:1:115:402 GTCTTTTGCCCTTAACAGCGAAGCAACTTCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:855 AAGAATGATCATCTTCCCAGGGTGTTCTCTTA U0 1 1 0 chr2.fa 8741416 F .. >CMLIVERKIDNEY_7:1:1:54:669 GTTGGGTCTTTGAGTGACAATGAGGTTGACGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:649:257 AGCCTACAGTGACTATTCACACTGTAACAAGA U0 1 0 0 chr1.fa 10133197 R .. >CMLIVERKIDNEY_7:1:1:73:211 GTTGATTTGGTTAAAAAATAGTAGAGGGATGA U1 0 1 1 chrM.fa 10867 R .. 8C >CMLIVERKIDNEY_7:1:1:107:88 TAGCATGGCTTTTGCAAGAGTCTTCTGTACTA U1 0 1 2 chr17.fa 20326034 F .. 12G >CMLIVERKIDNEY_7:1:1:102:188 AACCATTTACCCCAATAAAGTATAGGCGATAG R1 0 2 3 >CMLIVERKIDNEY_7:1:1:121:401 CAGGCTGGGACCAGCCCCAACTTTGCCTTGGT U0 1 0 0 chr8.fa 143815005 R .. >CMLIVERKIDNEY_7:1:1:254:820 GCCTACTGTAAATATATGGTGTGCTCACACGA R1 0 2 3 >CMLIVERKIDNEY_7:1:1:320:837 GGGGTCTTAGCTTTGGTTCTCCTTGCAAAGTT R1 0 3 1 >CMLIVERKIDNEY_7:1:1:358:642 GTTGGGGATAGGGGTAGGGGGGGTATGTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:88:430 GGAGATGCAGAAAGACAAGCATGCGAGCAGCT U0 1 0 0 chr1.fa 182164181 R .. >CMLIVERKIDNEY_7:1:1:89:111 TGATAGCTCTTTCTCGATTCCGTGGGTGGTGG U0 1 0 3 chr12.fa 20595644 F .. >CMLIVERKIDNEY_7:1:1:105:717 TGAAAATGAGGATGAGGAAGATTCCTATTGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:801:419 AAAAAAAACAGCATGTGCAAACCTGACAGATG U0 1 0 0 chr21.fa 46433697 F .. >CMLIVERKIDNEY_7:1:1:120:791 CATGGGGTTGGCTTGAAACCAGCTTTGGGGGG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:183:589 ACTTTCCAAAAAAACACCTAATTTGAATCACC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:835 CTTCTTTTTACTGAGGGGTTACTTGAATGTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:299:842 GTACAATGAGGAGTAGGAGGTTGGCCATGGGT U0 1 0 0 chrM.fa 3310 R .. >CMLIVERKIDNEY_7:1:1:68:617 ACGAGAACTTTGAAGGCCGAAGTGGAGAAGGG R1 0 3 0 >CMLIVERKIDNEY_7:1:1:103:853 GATTGTTGTTTGGAAGGGGGATGCGGGGGAAA U0 1 0 0 chrM.fa 13752 R .. >CMLIVERKIDNEY_7:1:1:76:147 GGTGTTGAGCTTGAACGCTTTCTTAATTGGTG R0 4 4 5 >CMLIVERKIDNEY_7:1:1:120:591 CTACATCGCAAGAAATATGTGAGGGTTATTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:517 GGGAATGCTTTCCAGAGGCTACCTAGCAAGCA U0 1 0 0 chr1.fa 202659542 F .. >CMLIVERKIDNEY_7:1:1:718:654 GGGAGGGGGGCCCTGCTAAGGGAGGGCAGGCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:115:493 TGGCACTTTCTCTATGTCCTCTAGAATTAAGA U1 0 1 0 chr14.fa 34314957 F .. 1A >CMLIVERKIDNEY_7:1:1:71:547 TTGATTAGTCATTGTTGGGTGGTGATTAGTCG U0 1 0 2 chrM.fa 8648 R .. >CMLIVERKIDNEY_7:1:1:81:391 GTAAGAATGGTTGGTGTCAGCAGGGACGGGGA U1 0 1 0 chr20.fa 17891399 R .. 1G >CMLIVERKIDNEY_7:1:1:99:391 CAGGGGGTAGGGGCATGCGATGTTGGTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:222:886 GGCAGGTATTAGGGATAATATTCATTTAGCCT R0 16 9 4 >CMLIVERKIDNEY_7:1:1:42:602 GTGAGCTCAGGTGATTGTTACTCCTGCTGCTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:797 GACGGAAAGCGGGGCCTGTGGGGACTTGTGTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:84:475 AGCCGGAAGCCTATTCGCAGGGTTTCTCATTA U1 0 1 0 chrM.fa 13711 F .. 22A >CMLIVERKIDNEY_7:1:1:83:917 GCTAAATCCACCTTCGACCCTTAAGTTTCATA U0 1 2 1 chrM.fa 1400 R .. >CMLIVERKIDNEY_7:1:1:175:437 ATTTAACACCCACCCACCATTTCTCCCTTTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:255:781 GATTGTGTGAGTGCATGTGTTTTTTTTTTTTT U1 0 1 0 chr3.fa 129821553 R .. 32A >CMLIVERKIDNEY_7:1:1:123:736 AGATAACGTTGTAGATGTGGAAGTTTCCATAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:286:823 GAGATGAAACATGAAAGGTAAGGTCTGACATA U0 1 0 0 chr13.fa 32133657 F .. >CMLIVERKIDNEY_7:1:1:99:894 GCCGAATAAAGGGGCCCTGTGGGTTTACTGTT U1 0 1 0 chr1.fa 2486775 F .. 27C >CMLIVERKIDNEY_7:1:1:757:546 AAAAAAAAAAAAAAAAATTCCCCCGGAATTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:227:885 GAGTTTTAAGCTGTGGCTCGTAGTGTTTTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:736:450 ACACGATAAACCCTAGGAAGCCAATTGATATC R0 2 1 0 >CMLIVERKIDNEY_7:1:1:84:216 GTTCTTCAATCAGCCACATAGCCCTCGTAGTA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:230:488 GAAAAATTGAGCCTTGGGACGTGCCCATTTTT U0 1 0 1 chr1.fa 167367634 F .. >CMLIVERKIDNEY_7:1:1:229:454 GCATCAGCGGGGTATCTGTGTCCTACATCAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:16 CAATAGGNNNNNNGTCGNNNNNNGTCACNNNA QC >CMLIVERKIDNEY_7:1:1:92:630 TGGAAATACTGCTGTTATCGTTTAGCCAACAA U0 1 0 0 chr7.fa 30164850 F .. >CMLIVERKIDNEY_7:1:1:108:53 GGTGGAGTAGATTAGGCGTAGGTAGAAGTAGA U0 1 1 0 chrM.fa 5339 R .. >CMLIVERKIDNEY_7:1:1:784:642 GAAATGCTCAGCCGAGTAAAACCTTTGCGTCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:67:561 GTTTATCGTGTGAGCACACCATATATTTAAAG R1 0 2 3 >CMLIVERKIDNEY_7:1:1:116:785 CTAGAAATCGATGTCGCCTTAATCGAGATCTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:957:807 ACTGGATGAACTGAGGATCAGCCGGAAGAGAA U0 1 0 0 chr22.fa 37399151 F .. >CMLIVERKIDNEY_7:1:1:78:809 GGGGCTTTAAGGAGTTGGAGCTCTTGGGAGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:73:732 AGTCCGGACTGGCAGTTGGGCTGGGGGTGTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:112:28 CCGCTCACTAAGCTGGGGGTGGCCGACTGCCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:81:750 TTACACTATTCCTCCTCACCCAACTAAAAATA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:120:246 GCTACATCGTATACTCCACCCCTTACGAGTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:183:222 AGAAGCTCCCCTCAAGTTTTTCCTCACCCAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:824:640 GGGCTGGAAACCGGGGGGGAAGGAGGGGTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:234 CGTGCTCTTGGCTCACTGCAACCTCAGGAGCA U0 1 0 0 chr6.fa 18374777 F .. >CMLIVERKIDNEY_7:1:1:44:472 GCCAGTCATACCTTTCTAGAGGACGATGAAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:984 TACCACTTGCTCATGTCTGTTCAAGAGAGTTT U1 0 1 0 chrX.fa 120010609 F .. 13C >CMLIVERKIDNEY_7:1:1:65:387 GGTGCGACTTGTTTTTATGCCAGAAGAAATGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:169:606 GGAGCATCCGTACTATACTTCACAACAATCCT U1 0 1 0 chrM.fa 15804 F .. 2T >CMLIVERKIDNEY_7:1:1:90:482 GAAAAATCCACCCCTTACGAGTGAGGCAAAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:118:997 GGCCTACTCAGGTAAAAAATCAGTGCGAGCTT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:116:457 TCCGAACTAGTCTCAGGCTTCAACATCGAATA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:113:119 GCTGAAGCAGATAGTGAGGAGAGTATAGCCAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:88:504 GCTCCCTGTGGTTCCTGCCATCGACGCCTCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:770:478 GTTCAGTCTAATCCTTTTTGTAGTCACTCATA U1 0 1 0 chrM.fa 10369 R .. 31G >CMLIVERKIDNEY_7:1:1:115:757 GGATTTCATCGATGGGCGTGACCGAGTGGATT U0 1 0 0 chr4.fa 5509446 R .. >CMLIVERKIDNEY_7:1:1:723:454 ATGGCAAAGTGCTTCCCCTCATGGCCCCACTC U1 0 1 0 chr7.fa 66461545 F .. 27T >CMLIVERKIDNEY_7:1:1:75:669 GCCGCAACCACTTGCTAGTGATACACTGTATC U0 1 0 0 chr8.fa 91141537 R .. >CMLIVERKIDNEY_7:1:1:71:785 GGGGAGAATGCGTGTTAATGTAGTAAAATAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:220:571 ATACTTCTGAACACAAGACACACCAAACACAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:557 CCTCAAACTCCTGAGTAGCTCGCATTAAAGCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:230 GTGAATCTTCTGGGTGTTATGGCCTTCAAATG U0 1 0 0 chr17.fa 25099472 R .. >CMLIVERKIDNEY_7:1:1:91:385 GCAGTTTGTCGTGGAGTTAGAGAATTAGTACA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:156 GCTTGCTAGAAGTCATCAAAAAGCTATTAGTG U0 1 1 1 chrM.fa 11818 R .. >CMLIVERKIDNEY_7:1:1:237:488 GTACACAACACTAGCAAGCATGTAATATTCAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:127:907 GGAGCTTCAATTTTGTCTCTGTGCATACAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:422:816 GTAATAAGCCGGGCTTGAATTGTTTGGTTTCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:370 ACACGACACAGTATTGCTCATTGGGTTAGGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:831 TATTATCGAAACCATCAGCCTACTCATTCAAC R0 3 0 0 >CMLIVERKIDNEY_7:1:1:303:819 GGGAGTTTTTGTGGGTGACTGAAATGATCTAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:96:86 GCTGGGCTTTGGCCTAAAGGTCCTACACCAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:240 CTTTTTAAGTCTGGTTTTGTCTTGTGATAATG U0 1 0 0 chr1.fa 112103657 R .. >CMLIVERKIDNEY_7:1:1:123:637 GGGCGCCTGTAATCCCAGCTACTTGGGAGGCT R0 255 255 255 >CMLIVERKIDNEY_7:1:1:743:406 ACTAGGCCTACTATCCTTCACTCTCACCATAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:255:746 GTTGAAGATTAGTCCGCCGTAGTCGGTGTACT U0 1 1 1 chrM.fa 7912 R .. >CMLIVERKIDNEY_7:1:1:100:996 GAAATTGATATCTTATAATAGTATCCTTAATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:121:693 TGCCAGGAACCATATCAACAATGGCAGCATCA R0 7 5 4 >CMLIVERKIDNEY_7:1:1:76:617 GTATGTTTGGTGGCATTAAATTGGTTTCTTTA U1 0 1 0 chr8.fa 120326783 F .. 1T >CMLIVERKIDNEY_7:1:1:113:474 CTGAGCCCTTCAGTTTCATAATTGTTTTATCC U0 1 0 0 chr9.fa 2647392 F .. >CMLIVERKIDNEY_7:1:1:90:132 GGAAGAAGTGTGGTTCAGTGGGATGCAAGGAT U0 1 0 0 chr5.fa 179240915 R .. >CMLIVERKIDNEY_7:1:1:116:982 GGTTGAGCTAGGCTTCTACATATTGTATACTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:98:220 CCTTAACAACCTAAAACCCTCATTCACACGAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:475:902 GTTTAATCAGAGGGCCATTTTTTTTTTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:440:615 ATAAAGTTGAAAAGCTTTTTAAATTTTTAAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:685:498 AAAAAAATTAAAAAACAGTAGATGTTGGTGTG R0 4 10 35 >CMLIVERKIDNEY_7:1:1:115:421 CTTCACCATTTCCGACGGCATCTACGGCTCAA U0 1 0 0 chrM.fa 9762 F .. >CMLIVERKIDNEY_7:1:1:87:103 ATGCCTTGGGGAGTTGCGCCTGCATGATCCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:87:796 TTCGGTTCAGTCTAATCCTTTTTGTAGTCACT U1 0 1 0 chrM.fa 10373 R .. 27G >CMLIVERKIDNEY_7:1:1:50:488 GTGAGACCATCGTAAATGGGAAGGCCAAGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:106:991 GTGCAGTTGCCATGGTGATTAGAGAAAGGCCG U0 1 0 0 chr1.fa 63761780 F .. >CMLIVERKIDNEY_7:1:1:494:796 GGTGCAGCCGCTATTAAAGGTTCGTTTGTTCA R0 2 2 0 >CMLIVERKIDNEY_7:1:1:121:774 AAAAAATGTATTTAAAAGAAAATTGAGAGAAA U0 1 0 0 chr11.fa 65023379 F .. >CMLIVERKIDNEY_7:1:1:64:458 GTTTTAAGCAGGAGGTGTCAGAAAAGTTACCA U0 1 1 0 chr1.fa 91625511 R .. >CMLIVERKIDNEY_7:1:1:104:112 GTATTGGAGAAGTATAGAAGATCGAAACATAT U2 0 0 1 chr11.fa 65023971 F .. 23A 28A >CMLIVERKIDNEY_7:1:1:243:517 GTAGTATTTAACCTCTCTGAGCTTTAGGTTCC U0 1 0 0 chr1.fa 116799815 R .. >CMLIVERKIDNEY_7:1:1:238:476 GTTTTGTCAGGGGGTTGTGAATGAGTGTGATC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:493 CATTTTTGTCCCTTTGGAAGAAGAAATAGGAC U0 1 0 0 chr21.fa 29637790 F .. >CMLIVERKIDNEY_7:1:1:108:447 GGAGGAACAGGCACGCGCCAAAGAGAGAGAAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:105:764 AGCTGTTCAATCCTCCAACATGCTCTTTCTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:445:893 GGGGAGTTGGCCTCTATGAGGGTTTGTCTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:234 TAATGATGTCGGGGCTGTGGGCTCGGAGGAGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:437:778 GGAGAAGAGGAGGTAGTTATTTGATAGTAGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:487:775 GCTTTCTTTGCAAAGCTCCTTGTTCTGCTGCT U2 0 0 1 chr17.fa 44281632 R .. 8C 31A >CMLIVERKIDNEY_7:1:1:101:75 GGGAAAGTTGAAAAGAACTTTGAAGAGCGAGT U1 0 1 0 chr11.fa 84872770 F .. 28A >CMLIVERKIDNEY_7:1:1:218:892 GGGGAGAAGGGTCTGTGGTAAACGTTAAGAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:70:410 GCACAGCGAGTTATCTTTATTTTTAATAAAAC U2 0 0 1 chr10.fa 134029388 R .. 20G 26A >CMLIVERKIDNEY_7:1:1:169:494 GTTTTATATATACACACACAAACACACACACA U0 1 3 36 chr6.fa 154801193 F .. >CMLIVERKIDNEY_7:1:1:62:23 TTACAACTCCGCCTCTCGACTCTACCTCACCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:58:462 GGCCAAGGCAGGCGGATCATAGGGACAGGAGG R2 0 0 2 >CMLIVERKIDNEY_7:1:1:239:554 GTTTTTTTCTTCGCAGGATTTTTCGGAGCCTT R1 0 2 0 >CMLIVERKIDNEY_7:1:1:374:847 GTTAGAAGGTAGATCTTGAGATGATGATGTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:57:405 GCATGAGTAGGTGGCCTGCAGTAATGTTAGCG R0 2 0 0 >CMLIVERKIDNEY_7:1:1:123:838 GCCAACTATCATTCTGAGGGGCCACAGTGCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:174:881 GGAAGTTAAATATGAGCCACTGGGTGTACCAG U0 1 0 0 chr11.fa 65026108 F .. >CMLIVERKIDNEY_7:1:1:104:519 CTTAACAGGGAAGAGAGAGGGTGGGGGAGAAA U0 1 0 0 chr11.fa 65025582 F .. >CMLIVERKIDNEY_7:1:1:119:4 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:64:349 ACGTAACGATTCACATGCCAACTAGGATCATA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:117:12 GNNNNTNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:105:429 TTTCTTCCCACAACACTTTCTCGGCCTATCCG R0 2 0 2 >CMLIVERKIDNEY_7:1:1:652:652 GAATTCTGGTAGCCAGTGTTCGGATTTCTCTG U0 1 0 0 chr12.fa 100679059 F .. >CMLIVERKIDNEY_7:1:1:123:824 ACTCACCCTAGCGTTACTTATATGACATGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:103:775 GCTGGTTATATTCTTTTCCTCGGTTGTGTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:113:957 TTGGTTCTTCTCCAATGTCTCCTTTTGGAGTT R0 8 14 7 >CMLIVERKIDNEY_7:1:1:87:946 GGAAAAGGGCATACAGGACTAGGAAGCAGATA U0 1 1 0 chrM.fa 7685 R .. >CMLIVERKIDNEY_7:1:1:95:449 ATTTTCTAAGAAAGATTGGTATGATGCGAAAT R2 0 0 8 >CMLIVERKIDNEY_7:1:1:117:423 TGTATATATGTTAGGAAATGGAGAGGTATAGA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:73:490 GCCTTCCTGGGGTTTGGAAATAAAACTTCTGG U0 1 0 0 chr1.fa 149235942 R .. >CMLIVERKIDNEY_7:1:1:35:376 GTTGTATTACTTTTTCTCTTCCTTATTTTTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:788:687 GTAAAATGTATGAAGAACATCTGAAAAGAATG U0 1 0 0 chr14.fa 68923516 R .. >CMLIVERKIDNEY_7:1:1:215:876 ATTAAATGGAAGTAATGGAGAAAGGGGAGAGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:131:591 GTCATAAGTGGAGTCCGTAAAGAGGTTTCTTT U1 0 1 0 chrM.fa 11375 R .. 6T >CMLIVERKIDNEY_7:1:1:698:696 GGAAAATGACACGGCAAATAAATTAGACCTAT U0 1 0 2 chr12.fa 68281517 R .. >CMLIVERKIDNEY_7:1:1:85:156 TTCGTTTGTTCAACGATTAAAGTCCTACGTGA U0 1 2 7 chrM.fa 3035 F .. >CMLIVERKIDNEY_7:1:1:244:114 GTAGTAATATAATTGTTGGGACGATTAGTTTT U0 1 1 1 chrM.fa 10766 R .. >CMLIVERKIDNEY_7:1:1:158:572 GTCGCTCAGCGGCATCCAGCTGTTTGAACGCA U2 0 0 1 chr17.fa 39684369 R .. 5G 11G >CMLIVERKIDNEY_7:1:1:79:472 GTGATGCGGGCTTAGCGATGGGCTCTACTCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:173:271 ATATTATTCCGCAGACCTGAAATCACTTAATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:62:472 GTTATGCCCTTCTCCCATCTCCCGCTCGCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:152:483 GCTCTTTCTTCCCCTCTTCATAGTCAGCCTGG U1 0 1 0 chr7.fa 101619836 R .. 21T >CMLIVERKIDNEY_7:1:1:233:521 AATTCATTGAGTTTGAAGATGCTCTGGAACAA U0 1 0 0 chr16.fa 1714560 F .. >CMLIVERKIDNEY_7:1:1:84:631 AAAACTAGGAATAGCCCCCTTTCACTTCTGAG R0 7 3 3 >CMLIVERKIDNEY_7:1:1:396:755 GAAGGAGTTGTAGGGAAGGAACAGGGTGAGTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:325:752 GTTGGATCATCCCTGTCTTCATCATGCACATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:721 GTTGGCGGGACTGTACGGATGCCCCCTCGCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:335:638 GAGATTAGAACAGGAGAGACTAGCATTGGAAG U0 1 0 0 chr15.fa 46364605 F .. >CMLIVERKIDNEY_7:1:1:765:629 GGAATTTGAAGTAGATAGAAACCGACCTGGAT U0 1 0 0 chrM.fa 3087 R .. >CMLIVERKIDNEY_7:1:1:430:919 GCATAAGTAGTCTTACAACTTAGGAAGATCAT U0 1 0 0 chr17.fa 24178972 F .. >CMLIVERKIDNEY_7:1:1:123:13 GNNNNTNNNNNNNNAGNNNNNNNNNCTTNNNN QC >CMLIVERKIDNEY_7:1:1:115:340 CCCACACCGAGTGACTTCATGTAGTCATCGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:186:623 GGTTTCTGCTTTGTCTCATACCTGGCCCACTT U1 0 1 0 chr1.fa 200237171 F .. 15T >CMLIVERKIDNEY_7:1:1:123:844 CTCGGCGTGGTGGCAAGCGGCCGGGACGGCGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:109:238 CTAAGATAGAGGAGACACCTGCTAGGTGTAAG U0 1 1 0 chrM.fa 6351 R .. >CMLIVERKIDNEY_7:1:1:774:643 GTTTGTCGTAGGCAGATGGAGCTTGTTATCAT R1 0 2 1 >CMLIVERKIDNEY_7:1:1:113:409 AAACGGGTGGGGTCCGCGCAGTCCGCCCAGAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:86:461 GTTAGGGTGCCTTGAATAAGAGGGGTAGGTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:19 GTTTGGCTNNACAGAATTNNNATCCCTTNNNA QC >CMLIVERKIDNEY_7:1:1:70:863 GGCGATTTTAGGTCTGTTTGTCGTAGGCAGTT U2 0 0 1 chrM.fa 11583 R .. 2T 32T >CMLIVERKIDNEY_7:1:1:568:782 AAGGATACTAGTATAAGAGATCAGGTTCGTCC R0 2 1 1 >CMLIVERKIDNEY_7:1:1:63:844 GTGATGGCTGGGGGGGGTTGCTTTTAGTAAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:3 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN QC >CMLIVERKIDNEY_7:1:1:830:647 GAACGAAAAATTCTAGGCTATATACAACTACG U0 1 0 0 chrM.fa 3377 F .. >CMLIVERKIDNEY_7:1:1:169:878 GTTGGATTGTTCACCCACTAATAGGGAACGTG U0 1 0 0 chr1.fa 91625377 R .. >CMLIVERKIDNEY_7:1:1:54:694 GAAGAAGCCAGACGACAGTCAGGAGCTCAGTA R0 5 6 3 >CMLIVERKIDNEY_7:1:1:74:659 GCTCAGAGCACTGCAGCAGATCATTTCATATT R0 2 2 0 >CMLIVERKIDNEY_7:1:1:121:897 AATTTCTGTTTTTTTGGTGTGGTCTGGGTTGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:78:218 GCATAATATTAAGCAATGTTAAAGGCTTCCAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:65:216 GCTAAATCCAGAACTGGAAGAAAAGCTGCTGA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:726 CTTTGGAAACCTAAGGCATGAAGGGGAATTTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:515 AAAAAACTCTACCTCTCTATACTAATCTCCCT R0 2 1 0 >CMLIVERKIDNEY_7:1:1:674:648 AGCAGATTCACCTACACTGAGCAATTAAGAAT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:467 GCAGGCACGCCTCCGTTCCTCGGGTAGATCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:423:207 AAATGATCAGAACCGACCCAGTGAGAAAGGAA U1 0 1 1 chr17.fa 25536335 F .. 32G >CMLIVERKIDNEY_7:1:1:751:745 GTATTTTCCCTTGAGCACCCCCTCTACCCCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:440:900 GGGGGATGGGGGTCTGTGAGGTTGTGGGTAGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:218:388 GCAGTGTAGACGTAGGTTGATGTAGCTGTTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:108:163 GGGGAATTAATTCTAGGACGATGGGCATGACA U1 0 1 2 chrM.fa 8201 R .. 2T >CMLIVERKIDNEY_7:1:1:256:721 GTAAAGTTTTAAGTTTTATGCGATTACCGGGC U0 1 0 0 chrM.fa 3245 R .. >CMLIVERKIDNEY_7:1:1:264:314 AAAAGCTAGCATGTTTATTTCTAGGCCTACTC R0 2 0 0 >CMLIVERKIDNEY_7:1:1:114:384 CCTCCTTCAAATATCCAGGCAGTGTTCAAATT U1 0 1 0 chr17.fa 70361220 R .. 32T >CMLIVERKIDNEY_7:1:1:851:665 GCCATAGGGGTATCATTGCCTTTATTTTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:102:29 CGTAGCCCAAACGTTGACCCAAATCTAGTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:954 GGTTATTTGAGCATGGGGGGACAAAAGTGTAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:275:655 GTGGTTTTTCACTGAAAAGGGGGGTACACCTA U0 1 0 0 chr22.fa 40633150 F .. >CMLIVERKIDNEY_7:1:1:129:388 GTTCTTCTATGGGGTGCTAGATGGGCCCATTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:123:721 ATTGGAGGGACTGTACGGATGCCGCCCCGCCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:250 GGGCACTCTCTGCCAGCTCCACAGGGTGTGAT U1 0 1 0 chr2.fa 95414281 F .. 29G >CMLIVERKIDNEY_7:1:1:38:580 GTTACTGGAGGGCTGGGTGCTGGGCGAGGCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:280:693 GTAGGTTAGGACCTGTGGGTTTGTTCGGTACT U2 0 0 1 chrM.fa 2759 R .. 7T 28A >CMLIVERKIDNEY_7:1:1:103:761 GGCTAGGGCATTTTTAATCTTAGAGCGAAAGA R1 0 2 0 >CMLIVERKIDNEY_7:1:1:240:467 GATGAGACATGGGGGATGATGTAACCCTTTTC U2 0 0 1 chr12.fa 54894075 R .. 5C 18A >CMLIVERKIDNEY_7:1:1:116:603 TGGGGGCTTTGTATGATTATGGGCGTTGTTTA R2 0 0 2 >CMLIVERKIDNEY_7:1:1:111:512 CGGCTCCAATCTTTTGTTCATTTCTTATTGCT R1 0 4 3 >CMLIVERKIDNEY_7:1:1:68:717 GGGTGGGGGATGTCGGGTGGGTGCACGATACT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:466:836 AAGCGCCTTCCCCCGTAAATGATATCATCTCG U1 0 1 0 chrM.fa 3160 F .. 32A >CMLIVERKIDNEY_7:1:1:86:904 GGAAAATCAGAATAGGTGTTGGTATAGAATGG R1 0 2 0 >CMLIVERKIDNEY_7:1:1:105:295 CCTTTTAACCCCTAGTCAGAGCATTTCAGCCG U0 1 2 0 chr3.fa 50338075 R .. >CMLIVERKIDNEY_7:1:1:95:254 CGGACAGAGACGTAAACAACAGCATAGTGTGC U0 1 0 0 chr4.fa 109759652 F .. >CMLIVERKIDNEY_7:1:1:297:877 GGAAAATTCTCAATGGTTTACAAAAGTGCACA U2 0 0 1 chr10.fa 43201192 F .. 11G 24C >CMLIVERKIDNEY_7:1:1:189:553 GATATTTGATCAGGAGAACGTGGTTACTAGCA U0 1 1 0 chrM.fa 11902 R .. >CMLIVERKIDNEY_7:1:1:476:758 GCACATATGACTTGGTCGTTAACATCCCTATT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:110:918 GGAGATTGTGAGAATTGCTTTACAGGAGAAAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:63:657 AAGATATTTAGGCTTTATTCAGAAGGCTTTAG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:90:497 GCTACCGCCCGGCGGCGGCTCTACACCATCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:69:75 TGTATCCGGACCATTGACCTTCCGGCTCTTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:444 GCTACACTTACTTTTTTTCTCCTGTGTTTTCA U2 0 0 1 chr3.fa 192592311 F .. 1T 30G >CMLIVERKIDNEY_7:1:1:104:171 TGTGAGGGGTAGGAGTCAGGTAGTTAGTATTA U0 1 2 0 chrM.fa 10957 R .. >CMLIVERKIDNEY_7:1:1:77:871 TGATAGTCTAACTACTGAGTAAGATCCTCATC U2 0 0 1 chr8.fa 120325808 F .. 13A 20C >CMLIVERKIDNEY_7:1:1:112:504 CTTGAGTGATAGGAAAGGGGTCTGTGATGGGT U0 1 0 0 chr5.fa 150387968 R .. >CMLIVERKIDNEY_7:1:1:111:772 AAGGAATGGGGGAGTGGTGGGGAGGAGAGGTG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:101:152 AGACCCCAAAGTGGATCACACCCGTGTTGCTC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:206:420 GCGACAGCGATTTCTAGGATAGTCAGTAGAAT R0 2 0 0 >CMLIVERKIDNEY_7:1:1:229:422 GTTTATATATCACAGTGAGAATTCTATGATTG U1 0 1 0 chrM.fa 12633 R .. 2C >CMLIVERKIDNEY_7:1:1:270:682 GGGAAGTCCTGTGTCCTTTCAACAGGGGAAAA U0 1 0 0 chr17.fa 362681 R .. >CMLIVERKIDNEY_7:1:1:124:597 CACGCCTGTAATCCCGGCACTTTGGGAGGCCG R0 255 255 255 >CMLIVERKIDNEY_7:1:1:79:50 TTGAGAAGCCGTTTCCTGCGCTGAAGGTTCCC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:71:202 GTGAAATTGACCTGCCCGTGAAGAGGCGGGAC R2 0 0 2 >CMLIVERKIDNEY_7:1:1:75:24 GTTTTTGCTACTGTCTCTGTGCCCTGGGTCTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:151:434 GCTCAGGCTACTGCTAAGGCCTTAGCGTTTTT U2 0 0 1 chr12.fa 51979373 F .. 23G 26A >CMLIVERKIDNEY_7:1:1:57:729 GCAGGGTTGAGTAGTTTTGACAGAGATTTATG U0 1 0 0 chr15.fa 27869625 F .. >CMLIVERKIDNEY_7:1:1:219:427 GTCTGTTAGTAGTATAGTGATGCCAGCAGCTA R0 2 1 0 >CMLIVERKIDNEY_7:1:1:110:282 CCTCTGCCTACTTGTCCCTCCAGATTCAGTTA U0 1 0 0 chr12.fa 2776421 R .. >CMLIVERKIDNEY_7:1:1:79:291 CGGCACCGTGTCCACGTTTTTAGAACCCTTGT U1 0 1 0 chr4.fa 9685390 R .. 18T >CMLIVERKIDNEY_7:1:1:104:495 CTCGCATCAGGAGTATCAATCACCTGAGCTCA U0 1 2 0 chrM.fa 9619 F .. >CMLIVERKIDNEY_7:1:1:190:604 GTCAGGTCTAATCTCACTCAGTCTAGGATAAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:111:428 ATAAAATCCCCCAGTTAGTGTTTGCTTTATCT U2 0 0 1 chr17.fa 71285518 F .. 26A 32A >CMLIVERKIDNEY_7:1:1:108:726 CGCAAGGATGCGCTTTCAAGCACAGAGTAGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:79:505 TGACTTTGGAAGTCCGTAGTGTCTCATTGCTG U1 0 1 0 chr7.fa 10946281 R .. 2T >CMLIVERKIDNEY_7:1:1:85:810 TTTTTTGCTTCCTTAGCAGCCCTGATAGATTG R1 0 4 3 >CMLIVERKIDNEY_7:1:1:109:227 AATCACATGAGTTCTTCAACATTCAAGACTTT U0 1 0 0 chrX.fa 43490430 R .. >CMLIVERKIDNEY_7:1:1:98:678 CTTGGATTAAGGCGACAGCGATTTCTAGGATA R0 2 0 0 >CMLIVERKIDNEY_7:1:1:105:208 TAATGATGTCGGGGTTGAGGGATAGGAGGTGA U1 0 1 0 chrM.fa 12092 R .. 3T >CMLIVERKIDNEY_7:1:1:81:82 GTTGATAACGCGTTGTGATCTCCTTCTGAAGT U0 1 0 0 chr2.fa 47457660 R .. >CMLIVERKIDNEY_7:1:1:686:588 AACCGACTAATCACCACCCAACAATGACTAAT U0 1 2 2 chrM.fa 8645 F .. >CMLIVERKIDNEY_7:1:1:711:177 GTTTGGATGAGAATGGCTGTTTCGCCAACCCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:298:731 GTTTGTTTTAATTATGCCTCTTAGGGTGAGAA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:89:880 GAATGTTCCTGTTTACCTTCTTACAAGAGTCT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:122:790 GGTTGGCTTGTAACTAGCTTTGGGTGGTCTTT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:77:900 TGAGAATGTCAAGGCAAAGATCCAAGACAAGG R0 4 1 0 >CMLIVERKIDNEY_7:1:1:86:36 GAAAAATTCTCGGCTATATACCACTCCGCCAC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:409:763 GTTCATACACCTATCCCCCATTCTCCTCCTAT U0 1 0 2 chrM.fa 12071 F .. >CMLIVERKIDNEY_7:1:1:74:448 GCCTCAGAGTACTTCGAGTCTCCCTTCACCAT U0 1 0 0 chrM.fa 9739 F .. >CMLIVERKIDNEY_7:1:1:724:492 AATGCATCACATCTCTTTGGGTACCCTGGCTA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:743 ATTCCCCTAAAAATCTTTGAAATAGGGCCCGT R0 2 0 1 >CMLIVERKIDNEY_7:1:1:524:815 AAAAAGGCCTTCGATACGGGATAATCCTATTT U0 1 2 0 chrM.fa 9434 F .. >CMLIVERKIDNEY_7:1:1:412:769 GTTGGATGAGTAGGCTGATGGTTTCGATAATA R1 0 3 0 >CMLIVERKIDNEY_7:1:1:104:866 TGCAGTTAGGTGAGTAAAAAGCAAGGAAGTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:299:739 GCGTAAACTAGGGTGATGAGTAGTTGGGTGGT NM 0 0 0 >CMLIVERKIDNEY_7:1:1:116:617 CTTGTTTAAAGTAAGTGAACGCTGAACTGCCG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:75:711 GTTTGTGTCCTATGTCACCACCTTCTTTGTGC NM 0 0 0 >CMLIVERKIDNEY_7:1:1:744:491 AGAGGTTCTTCAGCGGAGAGGGTCTCCAGGCA NM 0 0 0 >CMLIVERKIDNEY_7:1:1:82:459 AAGCCTTTAGTCTTTTCCAGATGTAACCTTAA U1 0 1 0 chr11.fa 65028685 F .. 24C >CMLIVERKIDNEY_7:1:1:83:697 TCTCTGTGCAAAAATATCTCTTCCAGCTCGAA U0 1 0 0 chr15.fa 43445867 F .. >CMLIVERKIDNEY_7:1:1:82:193 GGTTTGTTAAGATGGCAGAGCCCGGAGATCGG NM 0 0 0 >CMLIVERKIDNEY_7:1:1:237:454 GTAGACAGAGGTCTGATAAATCCCTAAAAATG U0 1 0 0 chr2.fa 108277990 F .. >CMLIVERKIDNEY_7:1:1:103:189 AACCATTTACCCAAATAAAGTATAGGAGATAG R1 0 2 4 >CMLIVERKIDNEY_7:1:1:218:888 GTTATTATTTGTTTTGAGGTTAGTTTGATTAG U2 0 0 1 chrM.fa 8672 R .. 27G 31G >CMLIVERKIDNEY_7:1:1:571:370 GCGAATATACCTTGTTTGGTCAATGACTTTAC U2 0 0 1 chr17.fa 34211225 R .. 27T 31A ShortRead/inst/unitTests/cases/s_1_sequence.8_lines_illegal_nucleotide.txt0000644000126300012640000000037212227066717030500 0ustar00biocbuildphs_compbio@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCXTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGYTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK ShortRead/inst/unitTests/cases/s_1_sequence.8_lines_read_mismatch.txt0000644000126300012640000000036012227066717027451 0ustar00biocbuildphs_compbio@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCAT +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZ ShortRead/inst/unitTests/cases/s_1_sequence.8_lines_read_quality_mismatch.txt0000644000126300012640000000036212227066717031223 0ustar00biocbuildphs_compbio@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVM @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZP ShortRead/inst/unitTests/cases/s_1_sequence.9_lines.txt0000644000126300012640000000042312227066717024572 0ustar00biocbuildphs_compbio@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK @HWI-EAS88_1_1_1_922_465 ShortRead/inst/unitTests/cases/s_1_sequence.txt0000644000126300012640000007577412227066717023256 0ustar00biocbuildphs_compbio@HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS @HWI-EAS88_1_1_1_898_392 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC +HWI-EAS88_1_1_1_898_392 ]]]]]]]]]]]]Y]]]]]]]]]YPV]T][PZPICCK @HWI-EAS88_1_1_1_922_465 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT +HWI-EAS88_1_1_1_922_465 ]]]]Y]]]]]V]T]]]]]T]]]]]V]TMJEUXEFLA @HWI-EAS88_1_1_1_895_493 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA +HWI-EAS88_1_1_1_895_493 ]]]]]]]]]]]]]]]]]]]]]]T]]]]RJRZTQLOA @HWI-EAS88_1_1_1_953_493 GTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTT +HWI-EAS88_1_1_1_953_493 ]]]]]]]]]]]]]]]]]T]]]]]]]]]]MJUJVLSS @HWI-EAS88_1_1_1_868_763 GTTCTCTAAAAACCATTTTTCGTCCCCTTCGGGGCG +HWI-EAS88_1_1_1_868_763 ]]]]]]]]]]]Y]]T]]]O]]]]VO]W]VZMXVOLS @HWI-EAS88_1_1_1_819_788 GTACGCTGGACTTTGTAGGATACCCTCGCTTTCCTT +HWI-EAS88_1_1_1_819_788 ]]]]]]]]]]]]]]]]Y]]P]RRTYYV][VZXHFSO @HWI-EAS88_1_1_1_801_123 GAACAGCATCTGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_801_123 ]]]]]]]]]]]]]]]]Y]]]R]]]]]]]UZZXVSSS @HWI-EAS88_1_1_1_885_419 GCTTGGTAAGTTGGATTAAGCACTCCGTGGGCAGTT +HWI-EAS88_1_1_1_885_419 ]]]]]]]]]]]]]]C]]VYY]R]]V]]TRVHPAJAM @HWI-EAS88_1_1_1_941_477 GAGAAGTTAATGGATGAATTGGCACAATGCTACAAT +HWI-EAS88_1_1_1_941_477 ]]]]]]]]]]]]]]]]]]]]]]]R]TPVVVZCSFLO @HWI-EAS88_1_1_1_984_473 GTTGGTTTCTATGTGGCTTAATACGTTAATTAAAAT +HWI-EAS88_1_1_1_984_473 ]]]]]]]]]]]]]]]]]]ETY]VJ]]]HTOMEQAHC @HWI-EAS88_1_1_1_570_435 GTCTATAGTGTTATTAATATCAAGTTGGGGGAGCAT +HWI-EAS88_1_1_1_570_435 ]]]]Y]]]]]]]R]]]]]]]]]R]]]HVTREEVHAA @HWI-EAS88_1_1_1_649_729 GATATTTCTGATGAGTCGAAAAATTATCTTGATAAA +HWI-EAS88_1_1_1_649_729 ]]]]]]]]]]]]]V]]]]VYV]]]]T]][ZVRVSSL @HWI-EAS88_1_1_1_867_781 GAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAA +HWI-EAS88_1_1_1_867_781 ]]]]]]]]]]]]]]]Y]]]T]OV]]]]T[PZJVSFF @HWI-EAS88_1_1_1_722_426 GGACTTTGTAGGATACCCTCGCTTTCCTGCTCCTGT +HWI-EAS88_1_1_1_722_426 ]]]]]]]]]]]]R]]]]]YYY]VT]RY]VVZPQMOO @HWI-EAS88_1_1_1_789_111 GGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAA +HWI-EAS88_1_1_1_789_111 ]]]]]]]]]]]]]]T]]]]]]]]]P]]][ZZXVASM @HWI-EAS88_1_1_1_945_812 GTATTTTACCAATGACCAAATCAAAGAAATGACTCG +HWI-EAS88_1_1_1_945_812 ]]]]]]]]]]]]]]]Y]YY]]]YV]]]][ZZUQSSS @HWI-EAS88_1_1_1_974_468 GTGTACGCGCAGGAAACTCTGACGTTCTTTCTGTCG +HWI-EAS88_1_1_1_974_468 ]]]]]]]]]]T]]OYYHP]R]T]]Y]HHREEXIAMH @HWI-EAS88_1_1_1_321_368 GTCCCCTTCGGGGCGGTGGTCTTTTGTGTTTTTAAT +HWI-EAS88_1_1_1_321_368 ]]]]]]]]]]]]]]]]Y]]R]]C]M]Y][ZMXVAJS @HWI-EAS88_1_1_1_974_763 GACTGAATGCCAGCAATCTCTTTTTTTGTCTCATTT +HWI-EAS88_1_1_1_974_763 ]]]]]]]]]]]P]]VY]]]Y]]]]]EH][ZZXHSSS @HWI-EAS88_1_1_1_923_392 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGTCCC +HWI-EAS88_1_1_1_923_392 ]]]]]]]]]]]]]]]]]T]R]RTRYECVVVSPEAHA @HWI-EAS88_1_1_1_331_887 GCCACCATGATTATGACCAGTGTTTCCAGTCCGTTC +HWI-EAS88_1_1_1_331_887 ]]]]]]V]]]]]]]]YV]]]T]]]]]]YRVQXVOSK @HWI-EAS88_1_1_1_681_650 GGATTACTATCTGAGTCCGATGCTGTTCAACCACTA +HWI-EAS88_1_1_1_681_650 ]]]]]]]]]]]]]]H]]]]R]]]]]]]PMVSMLOSH @HWI-EAS88_1_1_1_1001_376 GCTACCGATAACAATACTGTAGGCCTGGGTGGTGCT +HWI-EAS88_1_1_1_1001_376 ]]]]]]]Y]]]]YY]]]]]VTYY]CY]][QZMVFFJ @HWI-EAS88_1_1_1_812_666 GGTGGTTATTATACCGTCAAGGACTGTGTGACTATT +HWI-EAS88_1_1_1_812_666 ]]]]]]]]]]]]]O]YT]MV]]J]]]R]JVCMSCSS @HWI-EAS88_1_1_1_879_409 GTGACTATTGACGTCCTTCCTCGTACGCCGGGCCAT +HWI-EAS88_1_1_1_879_409 ]Y]]Y]]Y]]Y]]Y]]Y]]]]]YJJ]EVXVZXOHAJ @HWI-EAS88_1_1_1_874_833 GAGGCTTGCGTTTATGGTACGCTGGTCTTTGTATGT +HWI-EAS88_1_1_1_874_833 ]Y]]]]]]]]]]]]]]]]]YT]]T]HJVTZOXIFNF @HWI-EAS88_1_1_1_671_184 GGATATTTCTAATGTCGTCACTGATGCTGCTTCTGT +HWI-EAS88_1_1_1_671_184 ]]]]]]]]]]Y]]]]]Y]]Y]]VP]]V][ZZXQSSF @HWI-EAS88_1_1_1_770_657 GATAGTTTGACGGTTAATGCTGGTAATGGTGGGTTT +HWI-EAS88_1_1_1_770_657 ]]]]]]]]]]]]]]]]]]]]]]]YRY]][XZXASSS @HWI-EAS88_1_1_1_864_736 GCCTCATCAGGGTTAGGAACATTAGAGCCTTGAATG +HWI-EAS88_1_1_1_864_736 ]]]]]]]]]]]]]]]]]YT]Y]]YYYY]VZUXAOSS @HWI-EAS88_1_1_1_885_763 GTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTC +HWI-EAS88_1_1_1_885_763 ]]]]]]]]Y]]]]]]]]]Y]]Y]]]]TRWOVJQOSA @HWI-EAS88_1_1_1_246_659 GTTTTTTACCTTTAGACATTACATCACTCCTTCTGC +HWI-EAS88_1_1_1_246_659 ]]]]]]]]]]]]]]]]]Y]]]]]]]T]][ZZXVSNS @HWI-EAS88_1_1_1_977_481 GTTGATAAGCAAGCATCTCATTTTGTGCATATACCT +HWI-EAS88_1_1_1_977_481 ]]]]]]]]]]]]]]T]]]]M]]]]R]EYTZOXLHOS @HWI-EAS88_1_1_1_844_119 GGCATTTAGTAGCGGTAAAGTTAGGCCAAACCCTGG +HWI-EAS88_1_1_1_844_119 ]]]]]]]]]]]]]]]NYVY]]]R]JP]CRJOXEOLL @HWI-EAS88_1_1_1_947_483 GAGGATAAATTATGTCTAATATTCAAACTTGCGCCG +HWI-EAS88_1_1_1_947_483 ]]]]]]]]]]]Y]]P]]YY]VY]]PTVYMCMPLOLH @HWI-EAS88_1_1_1_878_486 GAGAAATAAAAGTCTGAAACATGATTAAACTCCTAA +HWI-EAS88_1_1_1_878_486 ]]]]]]]]]]Y]]]]]]R]]T]]OV]VTMXZRQSNA @HWI-EAS88_1_1_1_966_456 GCTTGTTTACGAATTAAATCGAAGTGGACTTCTTGT +HWI-EAS88_1_1_1_966_456 ]]]]]]]]]]]Y]]]]]V]]]]P]]]YMPZEEVAKC @HWI-EAS88_1_1_1_786_629 GAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGAT +HWI-EAS88_1_1_1_786_629 ]Y]]]]]]]]]]]]]]Y]Y]Y]]]Y]YYXQVXLMAS @HWI-EAS88_1_1_1_817_744 GTATAAGTCAAAGCACCTTTAGCGTTAAGGTACTGA +HWI-EAS88_1_1_1_817_744 ]]]]]]]]]]Y]]]Y]]]Y]YY]]]]RO[ZTRQSNH @HWI-EAS88_1_1_1_726_628 GGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATT +HWI-EAS88_1_1_1_726_628 ]]]]]]]]]]]]]]]V]]]R]]]]]]]R[ZZHVLSS @HWI-EAS88_1_1_1_985_406 GATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTT +HWI-EAS88_1_1_1_985_406 ]]]]]]]]]]]]]]V]]]T]]]HMT]JRWZZJASSS @HWI-EAS88_1_1_1_717_240 GACTTAGTTCATCAGCAAACGCAGAATCAGCGGTAT +HWI-EAS88_1_1_1_717_240 ]]]]]]]]]]Y]]]]]V]Y]]]T]PM]]UZZOVSHO @HWI-EAS88_1_1_1_346_566 GTTCCGACTACCCTCCCGACTGCCTATGATGTTTAT +HWI-EAS88_1_1_1_346_566 ]]]]]]]]]]]]]]]]]]O]]]]]YH]]MZVUVSHS @HWI-EAS88_1_1_1_930_759 GGCTTTTTTATGGTTCGTTCTTGTTACCCTTCTGTT +HWI-EAS88_1_1_1_930_759 ]]]T]]]]]]]]]]]]]Y]P]]C]]VMVXZZHVCAA @HWI-EAS88_1_1_1_441_780 GGTTTATCGTTTTTGACACTCTCACGTTGGCTGACG +HWI-EAS88_1_1_1_441_780 ]]]]]]]]]]]]]]]]]]]]]]]]]]R]VVZXVASC @HWI-EAS88_1_1_1_893_385 GTTAACACTACTGGTTATATTGACCATGCCGCTTTT +HWI-EAS88_1_1_1_893_385 ]]]]]]]]]]]]]]]]Y]TV]YJRVRVTOMHEOSLN @HWI-EAS88_1_1_1_860_742 GTCCCCTTCGGGGCGGTGGTCTATAGTGTTATTAAT +HWI-EAS88_1_1_1_860_742 ]]]]]]]]]]]]]]]]T]]RHYC]H]OVVZCRVFNS @HWI-EAS88_1_1_1_646_490 GTAACCGTCTTCTCGTTCTCTAAAAACCATTTTTCT +HWI-EAS88_1_1_1_646_490 ]]]]]]]]]]]]]]]]]]]]]PER]V]]PVZXQOOC @HWI-EAS88_1_1_1_484_791 GCTGATGAACTAAGTCAACCTCAGCACTAACCTTGC +HWI-EAS88_1_1_1_484_791 ]]]]]]]]]]]VY]]]T]]]V]M]YC]]TZZMOJSL @HWI-EAS88_1_1_1_698_397 GTTTTCATGCCTCCCAATCTTGGAGGCTTTTTTATG +HWI-EAS88_1_1_1_698_397 ]]]]]]]]]]]]]]HT]]]]]]]C]]V][ZZXVASS @HWI-EAS88_1_1_1_955_440 GGAAAACGAACAAGCGCAAGAGTAAACATAGTGCCA +HWI-EAS88_1_1_1_955_440 ]]]]]]]]]]]Y]]]]]TR]H]VPVVTOOHPMQLOH @HWI-EAS88_1_1_1_976_442 GTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCT +HWI-EAS88_1_1_1_976_442 ]]]]]]]]]]]]]]]]]]]TV]R]]]YYOPCPQHKO @HWI-EAS88_1_1_1_366_209 GAGCAGAAGCAATACCGCCAGCAATAGCACCAAACA +HWI-EAS88_1_1_1_366_209 ]]]]]]]Y]]]]]]]]]]]VY]JH]TY]TTZMLFSH @HWI-EAS88_1_1_1_872_762 GTTTATAGGTCTGGTGAACACGACCAGAAAACTGGC +HWI-EAS88_1_1_1_872_762 PPPPPPPPPPPPPEPPPPPOPPMOOPPOMMMPOOOJ @HWI-EAS88_1_1_1_361_357 GAAGAAATAACATCATGGTAACGCTGCATGAAGTAA +HWI-EAS88_1_1_1_361_357 ]]]]]]]]]]]]]]]]]]V]]]]]]]]H[ZEMVSOA @HWI-EAS88_1_1_1_804_628 GTCAAAAATTACGTGCAGAAGGAGTGATGTAATGTC +HWI-EAS88_1_1_1_804_628 ]]]]]]]]]]]]]]]]]]TY]]R]R]R]WXVRVLMJ @HWI-EAS88_1_1_1_864_773 GGGAGGGTGTCAATCCTGACGGTTATTTCCTAGACA +HWI-EAS88_1_1_1_864_773 ]]]]]]]]]]]VY]]]]]R]]]T]Y]Y]RVVMKHLJ @HWI-EAS88_1_1_1_561_780 GTTATTAATATCAAGTTGGGGGAGCACATTGTAGCA +HWI-EAS88_1_1_1_561_780 ]]]]]]]]]]]]]V]]]]]]]EE]YTRRVZVTOSKJ @HWI-EAS88_1_1_1_415_588 GTAGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTT +HWI-EAS88_1_1_1_415_588 ]]]]]Y]]]]]]]]]]]]]]]]V]]]]]PZOCVSSS @HWI-EAS88_1_1_1_862_123 GTCACATTAAATTTAACCTGACTATTCCACTGCAAC +HWI-EAS88_1_1_1_862_123 ]]]]]]]]]]]]]]]]]]]TT]]P]]]]UZZXVCOS @HWI-EAS88_1_1_1_686_617 GTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCT +HWI-EAS88_1_1_1_686_617 ]]]]]]]]]]]]]]]]]]]MH]]]]]]M[ZZJNSSL @HWI-EAS88_1_1_1_299_507 GTTTTCTGGTCGTGTTCAACAGACCTATAAACATTC +HWI-EAS88_1_1_1_299_507 ]]]]]]]]]]]]]]]]]J]]T]P]Y]O]RJVXOSLO @HWI-EAS88_1_1_1_433_756 GTTAACTTCTGCGTCATGGAAGCGATAAAACTCTGC +HWI-EAS88_1_1_1_433_756 PPPPPPPPPPPPPPPPPPPPHPPPOPPMOPPPNKMA @HWI-EAS88_1_1_1_604_463 GATTTATGTTTGGTGCTATTGCTGGCGGGTTTTTTT +HWI-EAS88_1_1_1_604_463 ]]]]]Y]]]]]]]]]]]R]]]]]RY]OYEHVTQHKS @HWI-EAS88_1_1_1_366_254 GCATTCAAGGTGATGTGCTTGCTACCGATAACCATA +HWI-EAS88_1_1_1_366_254 ]]]]]]]]]]]]Y]]]]]]]]]]V]]]V[RZXAJSO @HWI-EAS88_1_1_1_861_780 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_861_780 ]]]]]]]]]]]]]]]]]]Y]Y]]]]]]R[XOXQLOS @HWI-EAS88_1_1_1_51_508 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_51_508 ]]]]]Y]]]]]]V]]]]]]]]YTJ]]OM[ZZRPAJH @HWI-EAS88_1_1_1_918_394 GCAAGCCTCAACGCAGCGACGAGCACGAGAGCGGTC +HWI-EAS88_1_1_1_918_394 ]]]]]]]]]]]]]]Y]]]R]]VY]M]]OVJZPQKAF @HWI-EAS88_1_1_1_873_770 GAATTTACGGAAAACATTATTAATGGCGTCGAGCGT +HWI-EAS88_1_1_1_873_770 ]]]]]]]]]]V]V]]P]]YY]VVV]]R]PUOCOCMH @HWI-EAS88_1_1_1_712_190 GCCGTTTTGGATTTAACCGAAGATGATTTCGATTTT +HWI-EAS88_1_1_1_712_190 ]]]]]]]]]]O]]]V]]]]OC]O]]O]][QTCVSSS @HWI-EAS88_1_1_1_411_573 GAGTTTATTGCTGCCGTCATTGCTTATTATGTTCAT +HWI-EAS88_1_1_1_411_573 ]]]]]]]]]]]]]]]]T]H]]]Y]]R]]RZEXVAJS @HWI-EAS88_1_1_1_228_633 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_228_633 ]]]]]]]]]]]]]]]]]]]]]VV]]Y]P[ZOUVFNH @HWI-EAS88_1_1_1_359_604 GGTGTCTGTAAAACAGGTGCCGAAGAAGCTGGAGTA +HWI-EAS88_1_1_1_359_604 ]]]]]]]]]]]]]]]]]]]]]]EV]VV][ZZXMSMH @HWI-EAS88_1_1_1_303_791 GGATTAAGTTCATGAAGGATGGTGTTAATGCCACTC +HWI-EAS88_1_1_1_303_791 ]]]]]]]]]]]]]]]]]]]]]]]]]]TVVVZXOSSS @HWI-EAS88_1_1_1_998_450 GTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTT +HWI-EAS88_1_1_1_998_450 ]]]]]]]]]]]]]R]]]]CT]O]]YR]][ZEEKSSS @HWI-EAS88_1_1_1_697_640 GTGTGAGGTTATAACGCCGAAGCGGGAAAAATTTTA +HWI-EAS88_1_1_1_697_640 ]]]]]]]]]]]]]]]]]]]ET]]]]EPJTXQXVSSL @HWI-EAS88_1_1_1_961_516 GAAGCCTGAATGAGCTTAATAGAGGCCAAAGCGGTC +HWI-EAS88_1_1_1_961_516 ]]]]]]]]]]]]T]]]]Y]]V]TT]]YPTHVOQKLH @HWI-EAS88_1_1_1_676_167 GAATCAGCGGTATGGCTCCTCTCCTATTTGCTCTTT +HWI-EAS88_1_1_1_676_167 ]]]]]]]]]]V]]]]]]]EYV]TOTMV]JEHCENFA @HWI-EAS88_1_1_1_908_493 GATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTA +HWI-EAS88_1_1_1_908_493 ]]]]]]]]]]]]]Y]]]]VR]H]]V]YV[ZECQSSM @HWI-EAS88_1_1_1_335_282 GACATTATGGGTCTGCAAGCTGCTTATGCTACTTTG +HWI-EAS88_1_1_1_335_282 ]]]]]]]]]]]]]]]]YR]]]]]]]T]VWZSEVSSJ @HWI-EAS88_1_1_1_706_512 GTTGAAATGGTAATAAGACGACCAATCTGACCAGCC +HWI-EAS88_1_1_1_706_512 ]]]]]]]]]]]]]]]Y]R]]JVYHRV]]WMZOKLHA @HWI-EAS88_1_1_1_927_495 GTAAGCATTTGGCGCATAATCTCGGAAACCTGCTGT +HWI-EAS88_1_1_1_927_495 ]]]]]]]]]]]]]]]T]]T]]]]T]HOOTTMMKNLH @HWI-EAS88_1_1_1_370_877 GTGAGAGTGTCAAAAACGATAAACCAACCATCAGCA +HWI-EAS88_1_1_1_370_877 ]]]]]]]]]]]]]]TVT]]]]]]]]JVPTQMRQJLJ @HWI-EAS88_1_1_1_223_238 GTTAACAGTCGGGAGAGGAGTGGCATTAACACCATC +HWI-EAS88_1_1_1_223_238 ]]]]]]Y]]]]]]N]R]]Y]]Y]]P]]VPSCTVHHS @HWI-EAS88_1_1_1_324_781 GTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCG +HWI-EAS88_1_1_1_324_781 ]]]]]]]]]]]]]YR]P]]]Y]T]E]WTRJVMHKAF @HWI-EAS88_1_1_1_833_311 GGGGGAGCACATTGTAGCATTGTGCCAATTCATCCA +HWI-EAS88_1_1_1_833_311 ]]]]]Y]]Y]Y]Y]HTRVVT]MRY]VCEVVZJQKHF @HWI-EAS88_1_1_1_364_260 GGTTATCCATCTGCTTATGGAAGCCAAGCATTGGGG +HWI-EAS88_1_1_1_364_260 ]]]]]]]]Y]]]]]]]]]]]PY]V]HM]WMZXIMHS @HWI-EAS88_1_1_1_900_770 GGTCGCAAAGTAAGAGCTTCTCGAGCTGCGCAAGGG +HWI-EAS88_1_1_1_900_770 ]]]]]]]]Y]]]V]J]]]]YY]VO]Y]]TZOCLMOA @HWI-EAS88_1_1_1_674_661 GATATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAA +HWI-EAS88_1_1_1_674_661 ]]]]]]]]]]]]]]]]]]OPY]TY]YE]UQZTQJSM @HWI-EAS88_1_1_1_524_466 GGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGG +HWI-EAS88_1_1_1_524_466 ]]]]]]]]]]]]]]]Y]]]]]]]YHOV][MTPVHHK @HWI-EAS88_1_1_1_960_818 GGTTTAGATATGAGTCACATTTTGTTCATGGTAGAG +HWI-EAS88_1_1_1_960_818 ]]]]]]]]]]]]]]]]]]V]]]]T]]]][VZXMSLN @HWI-EAS88_1_1_1_227_700 GTTGACATTTTAAAAGAGCGTGGATTACTATCTGAG +HWI-EAS88_1_1_1_227_700 ]]]]]]]]]]]]]]]]]]]]]]]]]]]][VZXVOLH @HWI-EAS88_1_1_1_662_208 GTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGG +HWI-EAS88_1_1_1_662_208 ]]]]]]]]]]V]P]TR]]]]]]M]]]TV[PREKMLF @HWI-EAS88_1_1_1_635_393 GTTTCTGTTGGTGCTGATATTGCTTTTGATGCTTAA +HWI-EAS88_1_1_1_635_393 ]]]]]]]]]]]]]]]]]]]]]]]]]]]OJZHUVAFM @HWI-EAS88_1_1_1_403_780 GCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTC +HWI-EAS88_1_1_1_403_780 ]]]]]]]]Y]]]]]]T]]]]]]]]]Y]RRZZRMOSO @HWI-EAS88_1_1_1_468_756 GCAGAAGCAATACCGCCAGCAATAGCACCAAACATA +HWI-EAS88_1_1_1_468_756 ]]]]]]]]]]]]V]Y]]Y]]]HV]OTRVVJMONHFF @HWI-EAS88_1_1_1_484_755 GGTGCTATTGCTGGCGGTATTGGTTCTTCTCTTTCT +HWI-EAS88_1_1_1_484_755 ]]]]]]]]]]]]]]]]]HOT]HCTOEYCCMHMKHAH @HWI-EAS88_1_1_1_973_421 GTTTCCGTTGCTGCCATCTCCAAAACATTTTGACTG +HWI-EAS88_1_1_1_973_421 ]]]]]]]]]]]]]]]]]]]]M]MM]]V][ZEEINSF @HWI-EAS88_1_1_1_497_908 GGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTT +HWI-EAS88_1_1_1_497_908 ]]]]]]]]]]]]]]Y]]]]]R]R]YY]][VTXVSSS @HWI-EAS88_1_1_1_991_521 GAGCTTCTCGAGCTGCGCAAGGATAGGTCGGATTTT +HWI-EAS88_1_1_1_991_521 ]]]]]]]]]]V]]]]]]]RR]]P]T]]YTQOEVSSS @HWI-EAS88_1_1_1_495_814 GCAGTAGACTCCTTCTGTTGATAAGCAAGCATCTCA +HWI-EAS88_1_1_1_495_814 ]]]]]]]]]]]]]]]]]]]]V]Y]]]Y][ZVXVSSA @HWI-EAS88_1_1_1_703_438 GATTATTTTGACTTTGAGCGTATCGAGGCTCTTTAA +HWI-EAS88_1_1_1_703_438 ]Y]]]]]]]]]]]]]]]]]]V]]]]ORWVVZUQCHF @HWI-EAS88_1_1_1_730_507 GTCATTGTGAGCATTTTCATCCCGAAGTTGCGGCTC +HWI-EAS88_1_1_1_730_507 ]]]]]]]]]]]]]]]]]]H]YYV]HOYT[HMOQALH @HWI-EAS88_1_1_1_866_100 GCCATTGCTCATATTGAAGTTCAGGCTGTTATTTTT +HWI-EAS88_1_1_1_866_100 ]]]]]]]]]]Y]]]]]]]]]]]]R]]]]CZTXVSSS @HWI-EAS88_1_1_1_949_458 GGTATGTAGGTGGCCAACAATTTTTATTGCTTGGGT +HWI-EAS88_1_1_1_949_458 ]]]]]]]]]]]]]H]Y]]RRY]]]RH]VEMCMHCJF @HWI-EAS88_1_1_1_320_300 GACACCTAAAGCTACATCGTCAACGTTATATTTTGT +HWI-EAS88_1_1_1_320_300 ]]]]]]]]]]]]]]]YY]]R]EJ]]]YT[JZXVSAH @HWI-EAS88_1_1_1_996_317 GCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAG +HWI-EAS88_1_1_1_996_317 ]]]]]]]]]]]]]]]]]VYR]]]]]]O][ZSXVSHJ @HWI-EAS88_1_1_1_843_780 GGCTTCCATAAGCAGATGGATAACCGCATCAAGCTC +HWI-EAS88_1_1_1_843_780 ]]]]]]]Y]]Y]]Y]Y]]]V]V]]]]YPWTENVNLN @HWI-EAS88_1_1_1_337_794 GTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGG +HWI-EAS88_1_1_1_337_794 ]]]]]]T]]]Y]]]]Y]Y]]]]Y]R]]]MZVXVSJF @HWI-EAS88_1_1_1_599_542 GATAATGGTGATATGTATGTTGACGGCCCTAAGGCT +HWI-EAS88_1_1_1_599_542 ]Y]]]]]]]]V]V]]YY]]Y]JCYTRRVEJENLLAF @HWI-EAS88_1_1_1_636_218 GTTTGTATCTGTTACTGAGAAGTTAATGGTTGGATT +HWI-EAS88_1_1_1_636_218 ]]]]]]]]]]]]]]]]]J]JRY]]VYVH[CVCAAKS @HWI-EAS88_1_1_1_801_780 GTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGAC +HWI-EAS88_1_1_1_801_780 ]]]]]]]]]]Y]Y]]T]Y]]O]EYT]]]TPZTVSCM @HWI-EAS88_1_1_1_753_627 GGATTAAGCACTCCGTGGACAGATTTGTCATTGTGA +HWI-EAS88_1_1_1_753_627 ]]]]]]Y]]]]]]]]]]]R]]]T]]]YV[ZZXQSSC @HWI-EAS88_1_1_1_234_684 GGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGAC +HWI-EAS88_1_1_1_234_684 ]]]]]]]]]]]]]]]]]]]Y]]]]]]V]RTZUVOAS @HWI-EAS88_1_1_1_915_728 GTTATTATACCGTCAAGGACTGTGTGACTATTGACG +HWI-EAS88_1_1_1_915_728 ]]]]]]]]]]]]]]V]]]]]]]]]Y]O][XZXOALK @HWI-EAS88_1_1_1_970_579 GCTTACTCAAGCTCAAACGGCTGGTCCGTTTTTTTT +HWI-EAS88_1_1_1_970_579 ]]]]]]Y]YY]]Y]]]]]RYR]]]O]RR[PTXVSFL @HWI-EAS88_1_1_1_706_163 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_706_163 ]]]]]]]]]]]]]]NTVT]]C]Y]VVH][ZTPLSOH @HWI-EAS88_1_1_1_851_764 GAAAATGCTCACAATGACAAATCTGTCCACGGAGTG +HWI-EAS88_1_1_1_851_764 ]]]]]]]]]]T]R]]]R]OTRY]Y]]VVJUSRESHM @HWI-EAS88_1_1_1_963_398 GGGTGATAAGCAGGAGAAACATACGAAGGCGCATAA +HWI-EAS88_1_1_1_963_398 ]]]]]]]]]]]Y]]V]YVTYHYJ]VJTVWPZOHJHF @HWI-EAS88_1_1_1_706_182 GCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGA +HWI-EAS88_1_1_1_706_182 ]]]]]]]]]]]]]]]]T]]]Y]VTY]RVOSZHHLJA @HWI-EAS88_1_1_1_886_399 GATGTTATTTCTTCATTTGGAGGTAAAACCTCTTAT +HWI-EAS88_1_1_1_886_399 ]]]]]]]]]]]]]]T]]]]PYYYTVRMRWPVRQLAO @HWI-EAS88_1_1_1_975_702 GTAACCCAGCTTGGTAAGTTGGATTAAGCACTCCGT +HWI-EAS88_1_1_1_975_702 ]]]]]]]]]]]]]]]]Y]Y]]]P]]TRYVZVXQSNH @HWI-EAS88_1_1_1_634_538 GGTTAATGCTGGTAATGGTGGGTTTTTTTCTTTTTT +HWI-EAS88_1_1_1_634_538 ]]]]]Y]]]]]]]YO]O]YY]RR]]]E]MVVXEHHS @HWI-EAS88_1_1_1_803_696 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGA +HWI-EAS88_1_1_1_803_696 ]]]]]]]]]]]]]]]O]N]]]]]]]]R][ZTOPKOF @HWI-EAS88_1_1_1_878_417 GAACGAACCATAAAAAAGCCTCCAAGATTTGGAGGC +HWI-EAS88_1_1_1_878_417 ]]]]]]]]]]]]]Y]]]]]]Y]]EJ]JTRVVRKHOM @HWI-EAS88_1_1_1_926_442 GACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTT +HWI-EAS88_1_1_1_926_442 ]]]]]]]]]]Y]]Y]]]]JP]R]]PY]HPVOXOAMO @HWI-EAS88_1_1_1_371_757 GCAGAAGTTAACACTTTCGGATATTTCTGATTAGTC +HWI-EAS88_1_1_1_371_757 ]]]]]]]]]]]]]]]]Y]]YRYT]Y]Y]VOPEIHJJ @HWI-EAS88_1_1_1_986_397 GCAATAGCACCAAACATAAATCCCCTCACTTAAGTG +HWI-EAS88_1_1_1_986_397 ]]]]]]]]]]]YY]]PYVRMVYE]YT]JTOZMHHCF @HWI-EAS88_1_1_1_553_75 GTTGAGTTTATTGCTGCCGTCATTGCTTATTATTTT +HWI-EAS88_1_1_1_553_75 ]]]]]]]]]]]]]Y]]]]]]]CY]CH]]MZZCVFOS @HWI-EAS88_1_1_1_692_494 GGCTGCGGACGACCAGGGCGAGCGCCAGAACGTTTT +HWI-EAS88_1_1_1_692_494 ]]]]]]]]R]]V]]N]]]]]HYRYRRC]CJORAJLO @HWI-EAS88_1_1_1_971_538 GGTTTAAGAGCCTCGATACGCTCAAAGTCAAAATAA +HWI-EAS88_1_1_1_971_538 ]]]]]]]]]]]]]]]V]]]]]]]PY]YTTPZMHNNN @HWI-EAS88_1_1_1_867_629 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCTAC +HWI-EAS88_1_1_1_867_629 ]]]]]]]]]]]]]]]]]]Y]VO]RVTJTPVQREAAC @HWI-EAS88_1_1_1_326_303 GAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGA +HWI-EAS88_1_1_1_326_303 ]]]]]]]]]]]]]]]]]]T]]]V]]]T][VZCESHF @HWI-EAS88_1_1_1_680_172 GTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCTG +HWI-EAS88_1_1_1_680_172 ]]]]]]]]]]]Y]]]T]]]]YR]]VVVTRVHRVFAJ @HWI-EAS88_1_1_1_997_339 GTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTA +HWI-EAS88_1_1_1_997_339 ]]]]]]]]]]]]]]]Y]]]YH]TJV]]M[ZZRVOOH @HWI-EAS88_1_1_1_415_754 GCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCA +HWI-EAS88_1_1_1_415_754 ]]Y]]]]]]]Y]]]H]]]]]]]]]]Y]]WPXJQSNC @HWI-EAS88_1_1_1_629_192 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_629_192 ]]]]]]]]]]]]]]]V]]]]PY]]]Y]YVEOMHJOO @HWI-EAS88_1_1_1_160_207 GTGATGTGCTTGCTACCGATAACAATACTGTAGGCA +HWI-EAS88_1_1_1_160_207 ]]]]]]]]]]]]]]]]]]P]TY]V]]V]UZPRVSJC @HWI-EAS88_1_1_1_705_461 GTTTAAGAGCCTCGATACGCTCCAAGTCAAAATAAT +HWI-EAS88_1_1_1_705_461 ]]]]]]]]]]]]]]V]Y]]]]]CYY]R][TPRQHKH @HWI-EAS88_1_1_1_584_460 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTATCA +HWI-EAS88_1_1_1_584_460 ]]]]]]]]]]Y]]]]]]Y]]]]]]TYJ]VZZXKAMJ @HWI-EAS88_1_1_1_434_845 GTTCTGCTTCAATATCTGGTTGAACGGCGTCGCGTC +HWI-EAS88_1_1_1_434_845 ]]]]]]]]]]VV]]]]]]]]]]V]]]]][ZVTQNSF @HWI-EAS88_1_1_1_319_700 GATACCCTCGCTTTCCTGCTCCTGATGCGTTTATTG +HWI-EAS88_1_1_1_319_700 ]]]]T]]]V]]]YERYRYPYYPEYM]MCOHTUIKHJ @HWI-EAS88_1_1_1_882_462 GCATTCATCAAACGCTGAATAGCAAAGCCTCTACGC +HWI-EAS88_1_1_1_882_462 ]]]]]]]]]]]]]]]]]P]]Y]]HTRWV[PVPHMJH @HWI-EAS88_1_1_1_346_126 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_346_126 ]]]]]]]]]]]]]]]]]]]]OY]]]]]][JVXQOSS @HWI-EAS88_1_1_1_285_738 GGTCTATAGTGTTATTAATATCAAGTTGGTGGTGCC +HWI-EAS88_1_1_1_285_738 ]]]]]]]]]Y]Y]YV]VV]P]]POORVRVCPCAMCA @HWI-EAS88_1_1_1_885_551 GTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTA +HWI-EAS88_1_1_1_885_551 ]]Y]]]]]Y]]]]]]]]]Y]Y]]]]VPWUZRXIJLK @HWI-EAS88_1_1_1_211_313 GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCT +HWI-EAS88_1_1_1_211_313 ]]]]]]]]]]]]]]]T]]]]]]]Y]]]]TZZXVSSS @HWI-EAS88_1_1_1_905_706 GTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAAC +HWI-EAS88_1_1_1_905_706 ]]]]]]]]]]]]]]]]]]]Y]]]]]T]]VZUPMFLL @HWI-EAS88_1_1_1_364_133 GTTGATATTTTTCATGGTATTGATAAAGCTGTTTCC +HWI-EAS88_1_1_1_364_133 ]]]]]]]]]]]]]T]]]]]]]]Y]]O]H[ZVXVFJH @HWI-EAS88_1_1_1_984_424 GTATGCCGCATGACCTTTCCCATCTTGGCTTTCTTG +HWI-EAS88_1_1_1_984_424 ]Y]]]]]]]]]]T]]]]]]Y]R]Y]RTTPZZEOSSF @HWI-EAS88_1_1_1_885_432 GGCTCATTCTGATTCTGAACAGCTTCTTGGGAAGTA +HWI-EAS88_1_1_1_885_432 ]]]]]Y]]]]]Y]]]]]RY]V]YVY]]YORVJNOMA @HWI-EAS88_1_1_1_730_651 GCAGAAGCCTGAATGAGCTTAATAGAGGCCAAAGCG +HWI-EAS88_1_1_1_730_651 ]]]]]]]]]]]YR]]]]]]]]]]]VTW]XZZPOSMS @HWI-EAS88_1_1_1_571_420 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_571_420 ]]]]]]]]]]]]]R]]]]]]]]P]]]OVPOHCILFN @HWI-EAS88_1_1_1_721_668 GTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAG +HWI-EAS88_1_1_1_721_668 ]]]]]]]]]]]]]]]Y]]V]Y]]YO]]R[ZZXVLLL @HWI-EAS88_1_1_1_863_648 GCCTTCTGGTGATTTGCAAGAACGCGTACTTTTTCG +HWI-EAS88_1_1_1_863_648 ]]]]]]]]]]]T]]]]]TJ]YRV]T]YHMZZEPOFC @HWI-EAS88_1_1_1_714_518 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_714_518 ]]]]]]]]]]]]]]]]]P]]R]V]]]]V[PZXOHHO @HWI-EAS88_1_1_1_832_717 GTTCTTATTACCCTTCTGAATGTCACGCTGATTATT +HWI-EAS88_1_1_1_832_717 ]]]]]]]]]]]]]]]]]]TT]]Y]V]]][ZJRVNSS @HWI-EAS88_1_1_1_345_593 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_345_593 ]]]]]]]]]]]]Y]]]]]]]]]]]]]]][PCPMJLF @HWI-EAS88_1_1_1_833_651 GTAAAGCTGATGGTATTGGCTCTAATTTTTCTATGA +HWI-EAS88_1_1_1_833_651 ]]]]]]]]]]]]]]V]]]]]]]]CRY]]EZMXIALA @HWI-EAS88_1_1_1_794_763 GTGAAAAAGCGTCCTGCGTGTAGCGAACTGCGGTGG +HWI-EAS88_1_1_1_794_763 ]]]]]]]]]]]]Y]Y]Y]PYRRVR]OMRMSCMAJJL @HWI-EAS88_1_1_1_570_882 GTTTTGGATTTAACCGAAGATGATTTCGATTTTCTT +HWI-EAS88_1_1_1_570_882 ]]]]]]]Y]]]]Y]]]EV]HYYC]]RVVCZVXVOLA @HWI-EAS88_1_1_1_677_183 GAATGCAATGAAGAAAACCACCATTACCAGCATTAA +HWI-EAS88_1_1_1_677_183 ]Y]]]]]Y]]T]]]RVV]]]]]R]]]]][ZZMVSJH @HWI-EAS88_1_1_1_894_262 GAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTC +HWI-EAS88_1_1_1_894_262 ]]]]]]]]]]]]]]]]T]]]]]]]]HV][ZVROSSO @HWI-EAS88_1_1_1_109_416 GTCGCAGTAGGCGGAAAACGCACCAGCGCAAGAGTC +HWI-EAS88_1_1_1_109_416 ]]]]]]]]]]]]]]N]V]]]H]TCYR]V[JPMHHAA @HWI-EAS88_1_1_1_168_329 GGATGAAAATGCTCACAATGACAAATCTGTCCACGG +HWI-EAS88_1_1_1_168_329 ]]]]]]]]]]]]]]]]]]]]O]MO]Y]RRVZXOSSO @HWI-EAS88_1_1_1_955_838 GGTGATGCTGGTATTAAATCTGCCATTCAAGGCTCT +HWI-EAS88_1_1_1_955_838 ]]T]Y]]]]]]]]]]V]]]]]V]]J]]]RQZXVSSJ @HWI-EAS88_1_1_1_451_882 GTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATC +HWI-EAS88_1_1_1_451_882 ]]]]]]]]]]]]]]]]]]]]V]P]]RYJ[ZXCSKSS @HWI-EAS88_1_1_1_210_485 GTTATATTTTGATAGTTTGACGGTTAATGCTTGTAA +HWI-EAS88_1_1_1_210_485 ]]]]]]]]]]]]]]]]]]RT]]P]]CVYOHTCKSLA @HWI-EAS88_1_1_1_858_816 GTTGACAGATGTATCCATCTGAATGCAATGAAGAAA +HWI-EAS88_1_1_1_858_816 ]]]]]]]]]]]]]]]]]]]]]]Y]]]]Y[ZZXVKOO @HWI-EAS88_1_1_1_111_677 GGGCGGTGGTCTATAGTGTTATTAATATCAAGTTGG +HWI-EAS88_1_1_1_111_677 ]]]]]]]]]]]]Y]]]]]]]]]]]R]Y][ZPXQSLS @HWI-EAS88_1_1_1_669_439 GCTGACAACCGTCCTTTACTTGTCATGCGCTCTAAT +HWI-EAS88_1_1_1_669_439 ]]]]]]]]]]]]]]]]]Y]]]YO]T]]]WZZXQCJM @HWI-EAS88_1_1_1_176_181 GATTAGAGGCGTTTTATGATAATCCCCATGCTTTGC +HWI-EAS88_1_1_1_176_181 ]]]]]]]]]]]]]]]]]]]]MY]]Y]CV[RZXVSFS @HWI-EAS88_1_1_1_681_526 GAAATATCCTTTGCAGTAGCGCCCATATGAGAAGAG +HWI-EAS88_1_1_1_681_526 ]]]V]]]]]]]]]]]]TY]Y]T]C]]R][JZHHFFN @HWI-EAS88_1_1_1_734_219 GGTAAAGGACTTCTTGACGGTACGTTGCATGCTTGG +HWI-EAS88_1_1_1_734_219 ]]]]]]]]]]T]]]]]RC]Y]R]]]]WPCTVCQCMA @HWI-EAS88_1_1_1_643_478 GTGAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAG +HWI-EAS88_1_1_1_643_478 ]]]]]]]]]]]]Y]]]]]]J]]V]]]RJJZORVSAH @HWI-EAS88_1_1_1_152_301 GAAGTAGCGACAGCTTGGTTTTTAGTGAGTTTTTCC +HWI-EAS88_1_1_1_152_301 ]]]]]]]]]Y]V]]]]]]]]]]]V]]JJTZZHVSJL @HWI-EAS88_1_1_1_864_228 GTATTGCTTCTGCTCTTGCTGGTGGCGCCCTTTCTA +HWI-EAS88_1_1_1_864_228 ]]]]]]]]]]]]]]]]]]]]RH]VJVROTCXCPHMF @HWI-EAS88_1_1_1_623_542 GATAATCCCAATGCTTTGCGTGACTATTTTCGTGCT +HWI-EAS88_1_1_1_623_542 ]P]]]]]]]YVT]]]]]]]]O]C]]]]][VOJPCAS @HWI-EAS88_1_1_1_851_725 GTTTTTGAGATGGCAGCAACGGAAACCATAACGGGC +HWI-EAS88_1_1_1_851_725 ]]]]]]]]]T]]]]Y]]TJT]YCOVOVCHQJJOCLF @HWI-EAS88_1_1_1_643_262 GTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAG +HWI-EAS88_1_1_1_643_262 ]]]]]]]]]]]]Y]]]V]]RVVVYV]]RPVTMNFHN @HWI-EAS88_1_1_1_664_726 GTTAATGCTGGTAATGGTGGTTTTCTTCTTTTCCTT +HWI-EAS88_1_1_1_664_726 ]]]]]]]]]]]Y]]]]]]]]J]]]OR]MCUZEKAOO @HWI-EAS88_1_1_1_736_517 GAAGTCATGATTGAATCGCGAGTGGTCGGCGGGTTG +HWI-EAS88_1_1_1_736_517 ]]]]]]]]]]]]]V]]]]]]O]M]]YR]WEHRMMML @HWI-EAS88_1_1_1_99_173 GTATAATTACCCCCAAAAGAAAGGTATTAAGGATGA +HWI-EAS88_1_1_1_99_173 ]]]]]]]]]]]]]CTTOT]REP]]OO]]RVSOMOSF @HWI-EAS88_1_1_1_664_501 GAGTATCCTTTCCTTTATCAGCGGCAGACTTGCCCC +HWI-EAS88_1_1_1_664_501 ]V]]]Y]]]]]]]]]]V]]TV]YVVHVOWMZEHJAK @HWI-EAS88_1_1_1_339_626 GTTATATGGCTGTTTGGTTTTTTTTTTGTTTATTTT +HWI-EAS88_1_1_1_339_626 ]]]]]]]]]]]]E]ERR]]P]P]V]YOCUEJCLFCA @HWI-EAS88_1_1_1_740_733 GGTGTGGTTGATATTTTTCATGGTATTGATAAAGCT +HWI-EAS88_1_1_1_740_733 ]]]]]]]]]]P]V]]]]]]Y]TT]Y]]PJZVXOOMO @HWI-EAS88_1_1_1_878_404 GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGGA +HWI-EAS88_1_1_1_878_404 ]]]]]]]]]V]]]]]]P]]]]]]VYMP][ZCMQHCC @HWI-EAS88_1_1_1_822_121 GTTTATCCTTTGGATGGTCGCCATGATGGTGTTTTT +HWI-EAS88_1_1_1_822_121 ]]]]]]]]]]]]]]]]]]Y]]PM]]C]PVZVCVSFS @HWI-EAS88_1_1_1_708_703 GAGGAAGCATCAGCACCAGCACGCTCCCAAGCATTA +HWI-EAS88_1_1_1_708_703 ]]]]]]]]]]]]]]Y]]P]]R]]]PYY]MPZXAMMJ @HWI-EAS88_1_1_1_362_553 GTCTCATTTTGCATCTCGGCAATCTCTTTCTGATTT +HWI-EAS88_1_1_1_362_553 ]]]]]]]]]]]]Y]]]]]]]TT]]]]]][ZZMHSSF @HWI-EAS88_1_1_1_960_757 GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCT +HWI-EAS88_1_1_1_960_757 ]]]]]]]]]]]]]]]Y]]]RT]]]]]YPVZOXVLKS @HWI-EAS88_1_1_1_752_651 GCACGTTCGTCAAGGACTGGTTTAGATATGAGTCAC +HWI-EAS88_1_1_1_752_651 ]]]]]]]]]]]]Y]]Y]]]]]]]YYV]T[ZRUONFK @HWI-EAS88_1_1_1_754_734 GTAAGAAATCATGAGTCAAGTTACTGAACAATCCGT +HWI-EAS88_1_1_1_754_734 ]]]]]]]Y]]Y]]]]R]OY]TY]]]YMPTJPRQKJJ @HWI-EAS88_1_1_1_825_711 GATGGATACATCTGTCAACGCCGCTAATCAGGTTGT +HWI-EAS88_1_1_1_825_711 ]]]]]]]]]]]]]]Y]NTYYYVVV]RCVRPRRHSNO @HWI-EAS88_1_1_1_308_236 GTGCTCGTCGCTGCGTTGAGGCTTTCGTTTTTTTTT +HWI-EAS88_1_1_1_308_236 PPPPPPPPPPPPPPPPPOPPPPPPEPMPPPMPOFAF @HWI-EAS88_1_1_1_937_329 GGACGCTCGACGCCATTAATAATGTTTTCCGTAAAT +HWI-EAS88_1_1_1_937_329 ]]]]]]]]]O]]]]O]]R]]V]]]Y]]]WZVXVJOS @HWI-EAS88_1_1_1_838_878 GATTACTTCATGCAGCGTTACCATGATGTTATTTCT +HWI-EAS88_1_1_1_838_878 ]]]]]]]]]]]]]]]]]]]]]]J]]M]]TZQXVSNS @HWI-EAS88_1_1_1_414_792 GATTTTATTGGTATCAGGGTTAATCGTGCCAAGAAA +HWI-EAS88_1_1_1_414_792 ]]]]]]]]]]]YY]]V]]]]]V]]]HRRTVCOQJOM @HWI-EAS88_1_1_1_730_497 GTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGC +HWI-EAS88_1_1_1_730_497 ]]]]]]]]]V]]]]NYPNRYR]]]]YCY[VXXQFMF @HWI-EAS88_1_1_1_969_419 GAGTGGTCGGCAGATTGCGCTAAACGGTCACATTAA +HWI-EAS88_1_1_1_969_419 ]]]]]]]]]]]Y]T]]CRYE]PET]]VEJJQCOMLN @HWI-EAS88_1_1_1_104_533 GTCATGATTGAATCGCGAGTGGTCGGCAGATTTTGC +HWI-EAS88_1_1_1_104_533 ]]]]]]]]]]Y]]]]]RTVV]M]O]TVCWPZXAALA @HWI-EAS88_1_1_1_836_628 GGACGCCGTTGGCGCTCTCCGTCTTTCTCCCTTGCG +HWI-EAS88_1_1_1_836_628 ]]]]]]]]]]]]]]]]]Y]]]T]]]]YYXZEXSFFM @HWI-EAS88_1_1_1_596_390 GCAAGCTGCTTATGCTAATTTGCATACTGACCAAGA +HWI-EAS88_1_1_1_596_390 ]]]]]]]]]]]]]]]]]V]]]]]O]]]]MQZXEAOK @HWI-EAS88_1_1_1_987_447 GTCTGGAAACGTACGGATTGTTCAGTAACTTTACTC +HWI-EAS88_1_1_1_987_447 ]]]]]]]]]]]]]]]]T]]]]]VTT]ERRVZMAHSJ @HWI-EAS88_1_1_1_370_352 GGCCTTGCTATTGACTCTACTGTAGACATTTTTACT +HWI-EAS88_1_1_1_370_352 ]]]]]]]]]]]]YY]]]]R]]]]RRP]O[ZZXVFLS @HWI-EAS88_1_1_1_843_797 GCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGT +HWI-EAS88_1_1_1_843_797 ]]]]]]]]]]]]]]R]]O]CVY]]]T]Y[RMOOSSS @HWI-EAS88_1_1_1_720_664 GTTTACGAATTAAATCGAAGTGGACTGCTGGGGGGA +HWI-EAS88_1_1_1_720_664 ]]]]]]]T]]]]Y]]]]RR]R]]VTRVERVZEQSFF @HWI-EAS88_1_1_1_892_748 GTTGGATTAAGCACTCCGTGGGCAGATTTGTCATTG +HWI-EAS88_1_1_1_892_748 ]]]]]Y]]]]Y]Y]V]]]R]]CJM]JV]WZTEINOS @HWI-EAS88_1_1_1_569_417 GAAATGCAGCAGCAAGATAATCACGAGTATCCTTTC +HWI-EAS88_1_1_1_569_417 ]]]]]]]]]]]]]YV]N]]]]]Y]]O]VVVPNOSNS @HWI-EAS88_1_1_1_231_669 GACTACCCTCCCGACTGCCTATGATGTTTATCCTTC +HWI-EAS88_1_1_1_231_669 ]]]]]]]]]]]]]O]]]R]TOYYR]]Y]EPZXOOSA @HWI-EAS88_1_1_1_990_296 GGCTCTTCTCATATTGGCGCTACTGCAAAGGATATT +HWI-EAS88_1_1_1_990_296 ]]]]]]]]]]T]Y]]]T]]]]T]]O]JPRZTCVASS @HWI-EAS88_1_1_1_113_590 GCATGGGTGATGCTGGTATTAAATCTGCCATTCAAG +HWI-EAS88_1_1_1_113_590 ]]]]]]]]]]]]]]]]YV]]]]R]]]RV[QZXVCNO @HWI-EAS88_1_1_1_355_102 GATAAACCAACCATCAGCATGAGCCTGTCGCCTTGC +HWI-EAS88_1_1_1_355_102 ]]]]]]]]T]]]T]]Y]]MY]T]Y]YVMUSVEVNOF @HWI-EAS88_1_1_1_658_670 GTTTTCCGTAAATTCAGCGCCTTCCATGATGAGACA +HWI-EAS88_1_1_1_658_670 ]]]]]]]]]]YV]]]]]Y]]]]Y]]MTTHSZMQFFF @HWI-EAS88_1_1_1_699_385 GCAATGGAGAAAGACGGAGAGCGCCAACGGCGGCCA +HWI-EAS88_1_1_1_699_385 ]]]]]]]]]V]]]R]]]]]P]Y]Y]REV[ZRXAFHF @HWI-EAS88_1_1_1_943_855 GTTAACAAAAAGTCAGATATGGACCTTGCTGCTAAA +HWI-EAS88_1_1_1_943_855 ]]]]]]]]]]]]]]]]]]]]]]VT]]]][VZXVLKM @HWI-EAS88_1_1_1_465_881 GGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACT +HWI-EAS88_1_1_1_465_881 ]]]]]]]]]]]]]]]]E]]]]CHT]V]M[ZZHVFOS @HWI-EAS88_1_1_1_110_475 GAACAGCATCGGACTCAGATAGTAATCCACGCTCTT +HWI-EAS88_1_1_1_110_475 ]]]]]]]]]]]]Y]]]]]T]Y]TY]YR]PZZUNOLO @HWI-EAS88_1_1_1_334_219 GACGCAATGGAGAAAGACGGAGAGCGCCAACGGCGT +HWI-EAS88_1_1_1_334_219 ]]]]]]]]]]]]OYY]Y]]]C]PYY]]VCOXXVHOA @HWI-EAS88_1_1_1_313_372 GACGCTGACAACCGGCCTTTACTTGTCATGCGCTCT +HWI-EAS88_1_1_1_313_372 ]]]]]Y]]]]]]]]YV]TVO]]]]YY]R[ZZXVSLS @HWI-EAS88_1_1_1_423_931 GGAGCACATTGTAGCATTGTGCCAATTCATCCATTA +HWI-EAS88_1_1_1_423_931 ]]]]]]]]]]]]]]]]]]]V]]]OO]]]RPZTQOOO @HWI-EAS88_1_1_1_511_536 GTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGG +HWI-EAS88_1_1_1_511_536 ]]]]]]]]]]]]]]V]Y]]O]]]]]T]VPZOJIHJC @HWI-EAS88_1_1_1_233_304 GGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAA +HWI-EAS88_1_1_1_233_304 ]]]]]]]]]]]]]]]]]]]]]]]]]]M][ZTXVSJL @HWI-EAS88_1_1_1_239_243 GCCCTCTTAAGGATATTCGCGATGAGTATAATTACC +HWI-EAS88_1_1_1_239_243 ]]]]]]]]]]]]]]]]]]Y]Y]]]Y]Y][UZXVJSM @HWI-EAS88_1_1_1_705_445 GCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGG +HWI-EAS88_1_1_1_705_445 ]]]]]]]]]]]]]]]]]]]]R]]]]Y]YHPPJQLNH @HWI-EAS88_1_1_1_371_846 GCCATCAACTAACGATTCTGTCAAAAACTGACGCGT +HWI-EAS88_1_1_1_371_846 ]]]]]]]]]]]]]]RP]]]]Y]]]Y]R]TTRXSSSO @HWI-EAS88_1_1_1_921_496 GCAATGGAGAAAGACGGAGAGCGCCCACAGCGGCCC +HWI-EAS88_1_1_1_921_496 ]]]]]]]Y]YYY]Y]]]HYO]TYPYHCMEPOJAFAF @HWI-EAS88_1_1_1_322_845 GTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGA +HWI-EAS88_1_1_1_322_845 ]]]]]]]]]]]]]]Y]]]]]]]]Y]]]]WZZOVSMA @HWI-EAS88_1_1_1_243_812 GCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAAC +HWI-EAS88_1_1_1_243_812 ]]]]]]]]]]]Y]]]]]V]]]V]PYTR][ZZNQJLH @HWI-EAS88_1_1_1_370_333 GGGATGAACATAATAAGCAATGACGGCAGCAATAAA +HWI-EAS88_1_1_1_370_333 ]]]]]]]]]]]]]]TY]]YY]]]]]]]W[JHMOJSM @HWI-EAS88_1_1_1_859_299 GAGTTGTTCCATTCTTTAGCTCCTAGACCTTTAGCA +HWI-EAS88_1_1_1_859_299 ]]]]]]]]]]R]]]]]]]]]]]]]P]R]XZZXMHOJ @HWI-EAS88_1_1_1_797_117 GAAGTGTCCGCATAAAGTGCACCGCATGGAAATGAA +HWI-EAS88_1_1_1_797_117 ]]]]]]]]]]]Y]]Y]]]]]M]]]]M]]OHHNSSAF @HWI-EAS88_1_1_1_748_430 GCGCTACTGCAAAGGATATTTCTAATGTCGTCACTT +HWI-EAS88_1_1_1_748_430 ]]]]]]]]]]]]Y]]V]Y]]]]]R]]M][RTRMLOH @HWI-EAS88_1_1_1_356_375 GACATTATGGGTCTGCAAGCTGCTTATGCTAATTTT +HWI-EAS88_1_1_1_356_375 ]]]]]]]]]]]]]]]]]Y]]]]]]]O]]WVZPQSSH @HWI-EAS88_1_1_1_655_181 GTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGG +HWI-EAS88_1_1_1_655_181 ]]]]]]]]]]]]]]Y]]]]]]]T]]]TJ[PMPLSJA @HWI-EAS88_1_1_1_801_48 GAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGG +HWI-EAS88_1_1_1_801_48 ]]]]]]]]]]]]]]Y]]R]]]Y]]OR]T[ZZRVNSH @HWI-EAS88_1_1_1_802_724 GCGTACTTATTCGCCACCATGATTATGACCTGTGTT +HWI-EAS88_1_1_1_802_724 ]]]Y]]]]]]]Y]]]VV]EV]C]P]RREHSCRHHHL @HWI-EAS88_1_1_1_705_499 GTCAACCTCAGCACTAACCTTGCGAGTCATTTCTTT +HWI-EAS88_1_1_1_705_499 ]]]]]]]]]]]]]]]TY]]]]]YYT]V]PVZXQSOS @HWI-EAS88_1_1_1_186_694 GCGTTTGATGAATGCAATGCGACAGGCTCATGCTGT +HWI-EAS88_1_1_1_186_694 ]]]]]]]]]]]]]]]]Y]]]]E]T]]]]WCZXVSSH @HWI-EAS88_1_1_1_354_371 GTTAGGAACATTAGAGCCTTGAATGGCAGATTTAAT +HWI-EAS88_1_1_1_354_371 ]]]]]]]]]]]]]]]]]]]]]V]]]]]V[OZXVHKS @HWI-EAS88_1_1_1_967_272 GGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTC +HWI-EAS88_1_1_1_967_272 ]]]]]]]]]]]Y]]]]]]]J]]]PP]H][HZXOSSK @HWI-EAS88_1_1_1_668_200 GAACTGACCAAACGTCGTTAGGCCAGTTTTCTGTTC +HWI-EAS88_1_1_1_668_200 ]Y]]]]]]]]]]]]Y]]]]]T]]]P]V][XZXIASL @HWI-EAS88_1_1_1_306_556 GTTTTACCTCCAAATGAAGAAATAACATCATGGTAA +HWI-EAS88_1_1_1_306_556 ]]]]]]]]]]]]H]]]]Y]Y]]]VV]]]XVZTVMMM @HWI-EAS88_1_1_1_881_561 GTCGTCACTGATGCTGCTTCTGGTGTGGTTGGTATT +HWI-EAS88_1_1_1_881_561 ]]]]]]]]]]V]]]]]]]]]]]]VYY]]VZZCVFSS @HWI-EAS88_1_1_1_238_692 GTGGTCAACAATTTTAATTGCAGGGGCTTCGGCCCC +HWI-EAS88_1_1_1_238_692 ]]]]]]]]]]]]]]]]]]]Y]]]]]]]][VZXVSSS @HWI-EAS88_1_1_1_443_888 GCTCAAAGTCAAAATAATCAGCGTGACATTCAGAAG +HWI-EAS88_1_1_1_443_888 ]]]]]]]]Y]]]]]]]]Y]]]]YRPV]]XZVUVHSS @HWI-EAS88_1_1_1_167_340 GTCTTTCGTATTCTGGCGTGTAGTCGCCTTCTGTTT +HWI-EAS88_1_1_1_167_340 ]]]]]]]]]]]]]]]]]Y]EMVM]YHJVECZPLCHS @HWI-EAS88_1_1_1_603_569 GTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCT +HWI-EAS88_1_1_1_603_569 PPPPPPPPPPPPPPPPPPPPOPPPPPPPPPOPOOHK @HWI-EAS88_1_1_1_718_225 GTCAACGTTATATTTTGATAGTTTGACGGTTTATGT +HWI-EAS88_1_1_1_718_225 ]]]]]]]]]]]]]]]]NT]V]]]]MY]H[ZZEKSOF @HWI-EAS88_1_1_1_406_412 GGAAAGATTGGTGTTTTCCATAATAGACGCCACGCG +HWI-EAS88_1_1_1_406_412 ]]]]]]]]]]]]]]]]]]]T]YY]T]J][VCMVFMS @HWI-EAS88_1_1_1_549_119 GGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATT +HWI-EAS88_1_1_1_549_119 ]]]]]]]]]]]]]]]]]]R]]]TYY]]]VVOPAAKS @HWI-EAS88_1_1_1_693_898 GTTTAGATATGAGTCACATTTTGTTCATGGTAGAGT +HWI-EAS88_1_1_1_693_898 ]]]]]]]]]]]Y]]]]]NY]]]]Y]VR]MJQNSAOC @HWI-EAS88_1_1_1_183_559 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA +HWI-EAS88_1_1_1_183_559 ]]]]]]]]]]]]]]]]]]]]]]]Y]]]VTVVRVMSM @HWI-EAS88_1_1_1_314_891 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG +HWI-EAS88_1_1_1_314_891 ]]]]Y]Y]]]]]]]OYY]]]Y]]]YYVVTSZUOOHH @HWI-EAS88_1_1_1_884_867 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTA +HWI-EAS88_1_1_1_884_867 ]]]]]]]]]]]]]]]T]]]]]]]]]V]T[OVXEJSJ @HWI-EAS88_1_1_1_878_444 GCAATCTGCCGACCACTCGCGATTCAATCATGACTT +HWI-EAS88_1_1_1_878_444 ]]]]]]]]]]]Y]]T]T]]]]TRYVMEVVRSRHHNH ShortRead/inst/unitTests/cases/s_2_0001_realign_3col_head.txt0000644000126300012640000000260012227066717025403 0ustar00biocbuildphs_compbio#RUN_TIME Thu Aug 28 00:51:44 2008 #SOFTWARE_VERSION @(#) $Id: qualityFilter.pl,v 1.8 2007/11/26 14:42:26 tc Exp $ #FILTER_CRITERION ((CHASTITY>=0.6)) TTAGAAATGTCCACTGCAGGACGTGG 11953 5 GAAAACTTAAAAAGGTGTTAAATTTT 0 0 GTTTTTTAGTGATTTCGTCATTTTTC 13000 3 TACATATACACATACACATACATATA 13000 56 GTGTTTTTCAGTGTAACTCACTCATC 13000 10 TAGATGCTAAATATCCCCCTCAAAGT 0 0 TGAGGGGTATGACTGAATATCTTCAG 13000 14 GGAAAATTTAGAAATGTCCACTGTAG 13000 50 GACTTGAAGTTATTATCATATAGATC 13000 4 GTATTTCACTTCCTTAAGTGTGTATA 0 0 GAGAAATAACAAAACTAACAGACATT 13000 2 GTAGGACATGGAATATGCCAAGAAAA 11953 71 GCCTCAACAGAAACAAAAATATTGAA 13000 37 GAAAATTTAGAAATGTCCAATGTAGG 11953 66 TGTGCATTTCTCATTTTTCACGTTTT 13000 93 TTGACTTCTTCCTTTCAAATTGTATC 13000 3 GATTTTCAGTTTTCTCGCCATATTTT 10906 57 GAAGGACTTAAATGACTCACTTAAAG 13000 4 GCAAAGTGAGTCCCAGGACAGCCAGG 13000 3 GGTATCAAGAGTTAAAGTTTTATGTA 13000 5 GGACCTGGAATATGGCGAGAAAACTG 13000 48 GTCCTACAGGGGACATTTCTAAATTT 11953 62 TGTATGACATGAAATATGGCAAGAAA 11953 10 TAGTAAAGTTTCTTTTATGAATGTGG 13000 255 TACAATGGTCACTAATCATTCTTAAC 0 0 GTGTATATCAATGAGTTACAATGAAA 13000 2 GAGAAATACACACTTTAGGACGTGAA 13000 49 GTGATTTTCAGTTCTCTCGCCATATT 11953 44 GTGGTTTTTATCATTTTCCATGTTTC 13000 5 GGACTAATAGCCACTTATCAGTGAGT 13000 8 GACACCTGGACAGATTAGATATTATT 0 0 GTGGAAAATTTAGAAATGTCCACTGT 13000 50 GTATGATAAAAACTTCAAATCTCTGA 13000 255 GTGATTTTCAGTTTTCTCGCCATATT 13000 44 GAATCCGGTTAAAGTTGGCAGTTGGT 0 0 GTGGATAATTTAGAAATGTCCACTGT 11953 51 ShortRead/inst/unitTests/cases/s_2_0001_realign_head.txt0000644000126300012640000001472112227066717024472 0ustar00biocbuildphs_compbio#RUN_TIME Thu Aug 28 00:51:44 2008 #SOFTWARE_VERSION @(#) $Id: qualityFilter.pl,v 1.8 2007/11/26 14:42:26 tc Exp $ #FILTER_CRITERION ((CHASTITY>=0.6)) TTAGAAATGTCCACTGCAGGACGTGG 11953 5 GAAAACTTAAAAAGGTGTTAAATTTT 0 0 GTTTTTTAGTGATTTCGTCATTTTTC 13000 3 TGACTGTTGGATTTATATTATTTCTT 13000 1 mmu_ref_1_37:179764953 F TGACTGTTGGATTTATATTATTTCTT 10906 TACATATACACATACACATACATATA 13000 56 GTGTTTTTCAGTGTAACTCACTCATC 13000 10 TAGATGCTAAATATCCCCCTCAAAGT 0 0 GATAAAAGTTTGATACACTTTAGACA 13000 1 mmu_ref_5_37:88334169 R TGTCTAAAGTGTATCAAACTTTTATC 9859 TGAGGGGTATGACTGAATATCTTCAG 13000 14 AATGGGTTCACAGGCAGATCGAGCCG 13000 1 mmu_ref_4_37:41300066 F AATGGGTTCACAGGCAGATCGAGCCG 9859 GGAAAATTTAGAAATGTCCACTGTAG 13000 50 GACTTGAAGTTATTATCATATAGATC 13000 4 GTATTTCACTTCCTTAAGTGTGTATA 0 0 GAGAAATAACAAAACTAACAGACATT 13000 2 GCTGTAACTCCCTCTATTAAGAATCT 13000 1 mmu_ref_6_37:12143858 R AGATTCTTAATAGAGGGAGTTACAGC 9859 GTCAGTTCTCTCCTTCCTCCATACAG 13000 1 mmu_ref_7_37:17322027 F GTCAGTTCTCTCCTTCCTCCATACAG 11953 GTGGCACACAGAACCTATAACCCTCA 13000 1 mmu_ref_16_37:41376291 R TGAGGGTTATAGGTTCTGTGTGCCAC 9859 TTTCTCCAATAGGGTCATACCTCATA 13000 1 mmu_ref_12_37:27398329 R TATGAGGTATGACCCTATTGGAGAAA 10906 TTCCTACAAAGTTTTAATTTTAAATT 13000 1 mmu_ref_3_37:14092109 R AATTTAAAATTAAAACTTTGTAGGAA 9859 GAATGATTGGTGTGATAAATAATGTT 13000 1 mmu_ref_1_37:116730648 R AACATTATTTATCACACCAATCATTC 9859 GAAGCAGACTTTTTAATTTTTTACTA 13000 1 mmu_ref_1_37:97868632 F GAAGCAGACTTTTTAATTTTTTACTA 10906 GTAGGACATGGAATATGCCAAGAAAA 11953 71 GGTAATTCACAGTTTGAAATGAAGCA 13000 1 mmu_ref_X_37:66984760 F GGTAATTCACAGTTTGAAATGAAGCA 9859 GCCTCAACAGAAACAAAAATATTGAA 13000 37 TGCTAACAGGTACTCATGGCACAGAT 11953 1 mmu_ref_3_37:22679356 F TGCTAACAGGTACTCATGGCACAGAA 9859 GAAAATTTAGAAATGTCCAATGTAGG 11953 66 GGGGTTGGTCTGGTGTTGCTCTGTAT 13000 1 mmu_ref_18_37:57492171 F GGGGTTGGTCTGGTGTTGCTCTGTAT 11953 GAGAATGCTCGCCTTTTATATAATGT 13000 1 mmu_ref_4_37:116267591 F GAGAATGCTCGCCTTTTATATAATGT 9859 TGTGCATTTCTCATTTTTCACGTTTT 13000 93 TTGACTTCTTCCTTTCAAATTGTATC 13000 3 GAGGGAATTAGTGAAAGGAATGAATA 13000 1 mmu_ref_1_37:154720925 F GAGGGAATTAGTGAAAGGAATGAATA 9859 GATTTTCAGTTTTCTCGCCATATTTT 10906 57 GTTTTCTCGCCATATTCCAGGTCCTT 13000 1 mmu_ref_2_37:98507289 R AAGGACCTGGAATATGGCGAGAAAAC 11953 GTATATAATTAGTATGCCATGTTTTT 13000 1 mmu_ref_12_37:62103751 F GTATATAATTAGTATGCCATGTTTTT 9859 GTCAAATAAATGCAAAGTCCTTCAAG 13000 1 mmu_ref_12_37:94072062 F GTCAAATAAATGCAAAGTCCTTCAAG 9859 GAAGGACTTAAATGACTCACTTAAAG 13000 4 GCAAAGTGAGTCCCAGGACAGCCAGG 13000 3 GGAAGGGTGAAAGAGGAAGAGAAGGA 13000 1 mmu_ref_1_37:184288690 R TCCTTCTCTTCCTCTTTCACCCTTCC 10906 GTCAGATATTCTATATAATGAAAGAA 13000 1 mmu_ref_13_37:40107677 R TTCTTTCATTATATAGAATATCTGAC 9859 GGTATCAAGAGTTAAAGTTTTATGTA 13000 5 TTTCTCTCTCTCTCTCCACTTCTCTG 13000 1 mmu_ref_13_37:118278073 R CAGAGAAGTGGAGAGAGAGAGAGAAA 10906 GGACCTGGAATATGGCGAGAAAACTG 13000 48 GTCCTACAGGGGACATTTCTAAATTT 11953 62 TGTATGACATGAAATATGGCAAGAAA 11953 10 TAGTAAAGTTTCTTTTATGAATGTGG 13000 255 GTTCCTTTGTACATTAATGGTCATAG 13000 1 mmu_ref_3_37:25517235 R CTATGACCATTAATGTACAAAGGAAC 9859 TACAATGGTCACTAATCATTCTTAAC 0 0 TCAATAAGTAGTAACGGACAGGTGGA 13000 1 mmu_ref_11_37:88900847 F TCAATAAGTAGTAACGGACAGGTGGA 9859 GGAGAAAGTTTATGTTGAGACATTTT 13000 1 mmu_ref_14_37:60444247 F GGAGAAAGTTTATGTTGAGACATTTT 9859 GTGTATATCAATGAGTTACAATGAAA 13000 2 GTGTACTAGAACATTAGCATTTCAAG 13000 1 mmu_ref_9_37:39813035 F GTGTACTAGAACATTAGCATTTCAAG 9859 GAGAAATACACACTTTAGGACGTGAA 13000 49 GTGATTTTCAGTTCTCTCGCCATATT 11953 44 GTGGTTTTTATCATTTTCCATGTTTC 13000 5 GGACTAATAGCCACTTATCAGTGAGT 13000 8 GACACCTGGACAGATTAGATATTATT 0 0 TAAAATTATTGTTCTGGAACGAAAAG 13000 1 mmu_ref_8_37:35218943 F TAAAATTATTGTTCTGGAACGAAAAG 9859 TGGAGAAGTTCTATGTTCCTAAAGGA 13000 1 mmu_ref_2_37:144191295 R TCCTTTAGGAACATAGAACTTCTCCA 10906 GTATATGAACATGTCTACATGTTTGA 13000 1 mmu_ref_1_37:173724022 F GTATATGAACATGTCTACATGTTTGA 9859 GGTGTGGGTGGGTTGTTGTTGGTGGG 13000 1 mmu_ref_12_37:8688329 F GGTGTGGGTGGGTTGTTGTTGGTGGG 10906 GAAACACTGGCAGGTTAACCACAGTC 11953 1 mmu_ref_12_37:119479603 R GACTGTGGTTAAACTGCCAGTGTTTC 10906 GTGGAAAATTTAGAAATGTCCACTGT 13000 50 GTCTCATTCATTTATCCTCAGAGAAG 13000 1 mmu_ref_13_37:89183794 R CTTCTCTGAGGATAAATGAATGAGAC 9859 GATAGCTAAAGCTGAAGTTAGTTAAG 13000 1 mmu_ref_6_37:54554544 F GATAGCTAAAGCTGAAGTTAGTTAAG 9859 GTAAGCAGTATCTGGGTAGCAGTGAT 13000 1 mmu_ref_4_37:30409546 R ATCACTGCTACCCAGATACTGCTTAC 9859 GTTTTGTCGATTTTATTCTTTCCAGG 13000 1 mmu_ref_3_37:112008324 F GTTTTGTCGATTTTATTCTTTCCAGG 9859 TTAATTCCTCTTACTCAGGAAGCAAA 13000 1 mmu_ref_8_37:108643109 F TTAATTCCTCTTACTCAGGAAGCAAA 9859 GTTTGGGAAATTGGATTTTGTTTCGT 10906 1 mmu_ref_7_37:146810559 F GTTTGGGAAATTGGATTTTGTTTGGC 9859 GATAATTCCACATGCATATGTCACAT 13000 1 mmu_ref_9_37:17363912 F GATAATTCCACATGCATATGTCACAT 9859 GAAAAATGAAATCACTTGAATGATGG 13000 1 mmu_ref_4_37:19271012 R CCATCATTCAAGTGATTTCATTTTTC 9859 GTCTCCATCTAGGATACTGTAGGGAT 13000 1 mmu_ref_14_37:47151876 R ATCCCTACAGTATCCTAGATGGAGAC 9859 GGAAAACACGGAGCTAAGGACGGAAT 11953 1 mmu_ref_3_37:145805803 F GGAAAACACGGAGCTAAGGACGGTAT 9859 GTATGATAAAAACTTCAAATCTCTGA 13000 255 GAGGGATGGATGCTATGCTCACTTAT 13000 1 mmu_ref_2_37:136005373 F GAGGGATGGATGCTATGCTCACTTAT 9859 GTGATTTTCAGTTTTCTCGCCATATT 13000 44 GAATCCGGTTAAAGTTGGCAGTTGGT 0 0 GTGGATAATTTAGAAATGTCCACTGT 11953 51 GTCTGCTATCCCTTCCTTCTCTTCCC 13000 1 mmu_ref_1_37:22573779 R GGGAAGAGAAGGAAGGGATAGCAGAC 9859 GAAAAAATATCAAGTGATCAAGTACA 13000 1 mmu_ref_2_37:86868605 F GAAAAAATATCAAGTGATCAAGTACA 9859 GATGTTTCTCATTTTCCATGATTTTC 13000 71 TTCAACATAGTTGTTGAATTGGTGGT 13000 1 mmu_ref_5_37:148339512 F TTCAACATAGTTGTTGAATTGGTGGT 9859 GATATGCGCTTACCCTGCTAGAAGGG 13000 1 mmu_ref_5_37:76436477 R CCCTTCTAGCAGGGTAAGCGCATATC 9859 GTAGAATTTCTGCTCAGAATCCATTT 13000 1 mmu_ref_18_37:19741659 R AAATGGATTCTGAGCAGAAATTCTAC 9859 GTTAAAGCGCCGCAAGTGTTGATTTG 13000 1 mmu_ref_2_37:48411382 R CAAATCAACACTTGCGGCGCTTTAAC 9859 GTGCATTTTTCCTTCCTTCCATCACA 13000 1 mmu_ref_2_37:54382378 F GTGCATTTTTCCTTCCTTCCATCACA 9859 GTGGTTTTTATCATTTTCCATGTTTC 13000 5 GTGAAAAATGAGAAATGCACACTCTA 11953 90 TTTGAATGATTACTAAGGGAAGATTT 13000 1 mmu_ref_6_37:6065828 R AAATCTTCCCTTAGTAATCATTCAAA 9859 GTGTGTAAGGGTGTGGGGGGGATTGT 13000 1 mmu_ref_7_37:60884160 F GTGTGTAAGGGTGTGGGGGGGATTGT 10906 TCTCCAACTATAAATTCATGTTCCAG 11953 1 mmu_ref_3_37:92135783 F TCTCCAACTATAAATTAATGTTCCAG 9859 GGTTGCCAAAAATTATGCCTACAATT 13000 1 mmu_ref_X_37:22779882 R AATTGTAGGCATAATTTTTGGCAACC 10906 GTTTTCTCGCCATATTCCAGGTCCTT 13000 1 mmu_ref_2_37:98507289 R AAGGACCTGGAATATGGCGAGAAAAC 11953 GGAAAATGAGAAACATCCACTTGACG 13000 23 TTCCAAAGTGTGCTTGCAATATGACC 13000 1 mmu_ref_6_37:18221380 R GGTCATATTGCAAGCACACTTTGGAA 10906 GGAAGTTTCTCATATTCTTCGATTTT 0 0 AATCATGGAAAATGAGAAACATCCAC 13000 67 GAATATTTAGAAATGTCCACTGTAGG 13000 3 ShortRead/inst/unitTests/cases/s_2_export_run_as_factor.txt0000644000126300012640000000233212227066717025651 0ustar00biocbuildphs_compbioHWI-EAS88 genome 2 1 451 945 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH NM N HWI-EAS88 genome 2 1 409 991 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO NM Y HWI-EAS88 genome 2 1 451 939 ACCAAAAACACCACATACACGAGCAACACACGTAC LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE NM N HWI-EAS88 genome 2 1 447 961 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ NM N HWI-EAS88 genome 2 1 450 960 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL NM N HWI-EAS88 genome 2 1 467 922 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD NM N HWI-EAS88 genome 2 1 874 313 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT ZZZZZZZZZZYZZZZZYZZZZYYZZZZZZZUUUUU chr17.fa 69345321 R A30A3 14 Y HWI-EAS88 genome 2 1 907 256 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG ZZZZZZZZUZZUZZZZZZZZZZZZYZYZZZUUHUH chr18.fa 54982866 F 35 67 Y HWI-EAS88 genome 2 1 889 547 AATGACCGATAATTAAAAATAAAATCTTTGCATAT ZZZZZZZYZZYZZZZYZZZZZZZZZZZZZXUNUUU NM Y HWI-EAS88 genome 2 1 892 426 TCATCATTTTTCTAAGTGTTATGAAGAAAATATAT ZZZZUUZYZYZZZZZLZSZZYYUUZDUJIYUUULU chr12.fa 80537786 R 25T9 18 Y ShortRead/inst/unitTests/cases/s_2_export_toIUPAC.txt0000644000126300012640000000166112227066717024234 0ustar00biocbuildphs_compbioHWI-EAS88 3 2 1 451 945 CCAG.GCCA-CCGTTCACTCCTGAACCAGTCTCTC YQMI.IMML-MIGIGMFICMFFFIMMHIIHAAGAH NM N HWI-EAS88 3 2 1 409 991 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO NM Y HWI-EAS88 3 2 1 451 939 ACCAAAAACACCACATACACGAGCAACACACGTAC LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE NM N HWI-EAS88 3 2 1 447 961 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ NM N HWI-EAS88 3 2 1 450 960 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL NM N HWI-EAS88 3 2 1 467 922 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD NM N HWI-EAS88 3 2 1 874 313 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT ZZZZZZZZZZYZZZZZYZZZZYYZZZZZZZUUUUU chr17.fa 69345321 R A30A3 14 Y HWI-EAS88 3 2 1 907 256 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG ZZZZZZZZUZZUZZZZZZZZZZZZYZYZZZUUHUH chr18.fa 54982866 F 35 67 Y ShortRead/inst/unitTests/cases/sanger.fastq0000644000126300012640000000022612227066717022436 0ustar00biocbuildphs_compbio@sanger ASCII 33-126; < 59 marks as not solexa GCGGACCGCTTGATATCCATGCCCCAG +sanger ASCII 33-126; < 59 marks as not solexa !\"#$%&'()*+,-./0123456789: ShortRead/inst/unitTests/cases/soap.txt0000644000126300012640000000475712227066717021637 0ustar00biocbuildphs_compbioSIMU_0001_00000081/1 TGTACAGTATGTGAAGAGATTTGTTCTGAACCAAA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 2210 0 SIMU_0001_00000081/2 CATGCCCATGACACTACCTCAGGAGGTCCTGACAG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 2708 1 G->15A40 SIMU_0001_00000082/1 GTATAAAAAGAAAAATGTTTATTAAACTTCTATAG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 50653 2 C->2A40 C->9G40 SIMU_0001_00000082/2 GACATTCTTTAAAGTTTCACTTAAAAGATCTGCAA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 51126 0 SIMU_0001_00000083/1 ATAGAGGGAGTGGAGTAGAGGAAAAGCCAATGATT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 20925 0 SIMU_0001_00000083/2 TCTGCGCTCACTATTAAATAAGAATGACCAGGAGA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 21371 0 SIMU_0001_00000084/1 AGACCCCAGGTGGATGCATTGGTCCTAGGTAAACA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 45408 0 SIMU_0001_00000084/2 GCCGCAGGTGCCTCACCTCTACTCCCTGAAACCTC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 45856 1 A->3G40 SIMU_0001_00000085/1 TAAATTTAAAAATGAGAGAGAAATAAAGAAGGAGA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 57096 0 SIMU_0001_00000085/2 ATATTTCAGACATCCAAAGAGAGAAAGAAAAGTCA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 57516 1 A->6C40 SIMU_0001_00000086/1 TAGGCTTAAGGACAGTGGCAAACATGGCCTCTGCC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 6075 1 T->7A40 SIMU_0001_00000086/2 AGCTGTCCAAACACCTTATCTTTTCATCTCTGACC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 6526 0 SIMU_0001_00000087/1 ACCACTGAGGCCCGCTTTCCCTGCTGAGGGGGGGG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 6827 0 SIMU_0001_00000087/2 ATCACATCACCAGGAGGGTGTAGAAATCTGTAGTT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 7278 0 SIMU_0001_00000088/1 GACTATCTGAGTAACTCTTTCAAAAAGAATTGTCC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 88610 1 G->9A40 SIMU_0001_00000088/2 TTTCAATGATGTTCCAATTTTCTAAAATATAATAT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 89058 2 G->21C40 A->19T40 SIMU_0001_00000089/1 GAACTACAAAATTAGAGATCATCATAGCTATATTG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 91226 0 SIMU_0001_00000089/2 AGGCTATGAAGTGTTGCACGTGATAATCCAAGCAT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 91679 1 A->7G40 SIMU_0001_00000091/1 CTCGCCAAGGCAACACAATGTAGCAGTCTCTCTTG hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 31544 0 SIMU_0001_00000091/2 CAGGCAGACAGCTTCCCTGAGAACCAGTCTCTTAC hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 b 35 - refseq 32056 0 SIMU_0001_00000092/1 TCTGAAACAACCTTTATTCTCTTGAGAGTTAATAT hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 63491 1 C->34T40 ShortRead/inst/unitTests/cases/solexa.fastq0000644000126300012640000000025612227066717022455 0ustar00biocbuildphs_compbio@solexa ASCII 59-126; 59-104 realistic GCGCGGATCTTTAGCATTGTAGTACCGGACATAACAACAATTTTGCC +solexa ASCII 59-126; 59-104 realistic ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefgh ShortRead/inst/unitTests/test_AlignedRead.R0000644000126300012640000002633112227066720022341 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp, "s_2_export.txt") .checkAlignedRead_identical<- function(obs, exp) ## can't compare external pointers { checkIdentical(as.character(sread(obs)), as.character(sread(exp))) checkIdentical(as.character(quality(quality(obs))), as.character(quality(quality(exp)))) checkIdentical(as.character(id(obs)), as.character(id(exp))) checkIdentical(chromosome(obs), chromosome(exp)) checkIdentical(strand(obs), strand(exp)) checkIdentical(alignQuality(obs), alignQuality(exp)) checkIdentical(alignData(obs), alignData(exp)) } test_AlignedRead_Bowtie <- function() { src <- system.file("extdata", "bowtie", package="ShortRead") df <- read.table(file.path(src, "s_1_aligned_bowtie.txt"), fill=TRUE, quote="", sep="\t") aln <- readAligned(src, "^s_1_aligned_bowtie.txt$", "Bowtie") checkIdentical(nrow(df), length(aln)) checkIdentical(as.character(df[[2]]), as.character(strand(aln))) checkIdentical(as.character(df[[3]]), as.character(chromosome(aln))) checkIdentical(df[[4]]+1L, position(aln)) idx <- strand(aln)=="-" s1 <- as.character(df[[5]]) s1[idx] <- as.character(reverseComplement(DNAStringSet(s1[idx]))) checkIdentical(s1, as.character(sread(aln))) q1 <- as.character(df[[6]]) q1[idx] <- as.character(reverse(BStringSet(q1[idx]))) checkIdentical(q1, as.character(quality(quality(aln)))) checkIdentical(as.character(df[[8]]), as.character(alignData(aln)[["mismatch"]])) } test_AlignedRead_SOAP <- function() { fl <- "soap.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE) aln <- readAligned(src, fl, "SOAP") checkTrue(validObject(aln)) checkIdentical(as.character(tbl[[1]]), as.character(id(aln))) strand <- as.character(strand(aln)) checkIdentical(as.character(tbl[[7]]), strand) sread <- as.character(sread(aln)) sread[strand=="-"] <- as.character(reverseComplement(sread(aln)))[strand=="-"] checkIdentical(as.character(tbl[[2]]), sread) qual <- as.character(quality(quality(aln))) qual[strand=="-"] <- as.character(reverse(quality(quality(aln)))[strand=="-"]) checkIdentical(as.character(tbl[[3]]), qual) checkIdentical(as.character(tbl[[8]]), as.character(chromosome(aln))) checkIdentical(tbl[[9]], position(aln)) checkTrue(all(is.na(quality(alignQuality(aln))))) with(pData(alignData(aln)), { checkIdentical(tbl[[4]], nEquallyBestHits) checkIdentical(as.character(tbl[[5]]), as.character(pairedEnd)) checkIdentical(tbl[[6]], alignedLength) checkIdentical(tbl[[10]], typeOfHit) checkIdentical(c("", "G->15A40", "C->2A40\tC->9G40", "", "", "", "", "A->3G40", "", "A->6C40", "T->7A40", "", "", "", "G->9A40", "G->21C40\tA->19T40", "", "A->7G40", "", "", "C->34T40"), hitDetail) }) } test_AlignedRead_readAligned_SolexaExport <- function() { obj <- readAligned(analysisPath(sp), pattern="s_2_export.txt", type="SolexaExport") checkTrue(validObject(obj)) checkTrue(is(quality(obj), "SFastqQuality")) checkTrue(is(alignQuality(obj), "NumericQuality")) checkIdentical(varLabels(alignData(obj)), c("run", "lane", "tile", "x", "y", "filtering", "contig")) } test_AlignedRead_readAligned_SolexaExport_filter <- function() { chr <- "chr5.fa" filt <- chromosomeFilter(chr) obs <- readAligned(sp, "s_2_export.txt", filter=filt) exp <- aln[grep(chr, chromosome(aln))] .checkAlignedRead_identical(obs, exp) obs <- readAligned(analysisPath(sp), "s_2_export.txt", "SolexaExport", filter=filt) .checkAlignedRead_identical(obs, exp) } test_AlignedRead_readAligned_SolexaExport_withWhat <- function() { src <- system.file("unitTests", "cases", package="ShortRead") aln <- readAligned(src, "PE_export.txt.gz", type="SolexaExport", withAll=TRUE) checkIdentical(400L, length(aln)) e0 <- c("HWUSI-EAS618_1:1:1:0:1122#AGCACGA/1", "HWUSI-EAS618_1:1:1:0:843#ACCACGA/1", "HWUSI-EAS618_1:1:1:4:873#ATCACGA/1", "HWUSI-EAS618_1:1:1:4:480#ACCACGA/1") checkIdentical(e0, as.character(id(aln)[c(1,2, 399, 400)])) e1 <- structure(c(41L, 2L, 72L, 4L, 17L, 17L, 5L, 2L, 8L, 70L, 1L, 2L, 1L, 1L, 1L, 37L, 1L, 3L, 2L, 1L, 1L, 70L, 1L, 1L, 1L, 4L, 31L, 1L, 1L, 1L), .Dim = 30L, .Dimnames = structure(list(c("AACACGA", "AACCCGA", "ACCACGA", "ACCCCGA", "AGACCAA", "AGCACGA", "AGCCCAA", "AGCCCCA", "AGCCCGA", "ATCACGA", "ATCCCCA", "ATCCCGA", "CACCCTC", "CACGACC", "CCCCCGA", "CGACCAA", "CGACCAC", "CGCCCAA", "CGCCCCA", "CTCCCTT", "GCGCCCA", "GGACCAA", "GGACCCA", "GGACNAA", "GGCCCAA", "NNNNNNN", "TGACCAA", "TGCCCTA", "TTCCCTG", "TTCCCTT")), .Names = ""), class = "table") checkIdentical(e1, table(alignData(aln)[["multiplexIndex"]])) aln0 <- readAligned(src, "PE_export.txt.gz", type="SolexaExport", withId=TRUE, withMultiplexIndex=TRUE) checkIdentical(sub("/1$", "", as.character(id(aln))), as.character(id(aln0))) colidx <- varLabels(alignData(aln)) != "pairedReadNumber" checkIdentical(alignData(aln)[, colidx], alignData(aln0)) } test_AlignedRead_readAligned_MAQMapview <- function() { fl <- system.file("extdata", "maq", package="ShortRead") obj <- readAligned(fl, pattern=".*aln.*", type="MAQMapview") checkTrue(validObject(obj)) checkTrue(is(quality(obj), "FastqQuality")) checkTrue(is(alignQuality(obj), "NumericQuality")) checkIdentical(varLabels(alignData(obj)), c("nMismatchBestHit", "mismatchQuality", "nExactMatch24", "nOneMismatch24")) checkIdentical(levels(chromosome(obj)), "ChrA") checkTrue(!any(is.na(chromosome(obj))) && !any(is.null(chromosome(obj)))) } readAligned_maq_consistent <- function() { ## FIXME: find adequate data to store in ShortRead pkg if (!file.exists("/home/jdavison/sharedrsrc/proj/ycao/data/binary_maps/s_5.map")) return(TRUE) x <- readAligned("/home/jdavison/sharedrsrc/proj/ycao/data/binary_maps", "s_5.map", "MAQMap") y <- readAligned("/home/jdavison/sharedrsrc/proj/ycao/data/text_maps", "s_5.txt", "MAQMapview") checkIdentical(length(x), length(y)) checkIdentical(width(x), width(y)) checkIdentical(as.character(chromosome(x)), as.character(chromosome(y))) ## FIXME: we'd really like chromosome to have identical levels, ## but info on levels with no mapped reads is not available in the ## text version idx <- match(levels(chromosome(y)), levels(chromosome(x))) checkTrue(all(!is.na(idx)) && all(diff(idx) > 0)) checkIdentical(position(x), position(y)) checkIdentical(strand(x), strand(y)) checkIdentical(alignQuality(x), alignQuality(y)) checkIdentical(alignData(x), alignData(y)) .checkXString <- function(x, y) { checkIdentical(as.character(x), as.character(y)) } .checkXString(sread(x), sread(y)) .checkXString(sread(x), sread(y)) .checkXString(quality(quality(x)), quality(quality(y))) .checkXString(id(x), id(y)) } test_AlignedRead_readAligned_run_as_factor <- function() { src <- system.file("unitTests", "cases", package="ShortRead") aln <- readAligned(src, "^s_2_export_run_as_factor.txt$", "SolexaExport") checkIdentical(alignData(aln)[["run"]], factor(rep("genome", length(aln)))) } test_AlignedRead_readAligned_realign_targetpos <- function() { ## column 4 can be target:pos fl <- "s_2_0001_realign_head.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE) aln <- readAligned(src, fl, "SolexaRealign") checkIdentical(as.character(tbl[[1]]), as.character(sread(aln))) checkIdentical(tbl[[2]], quality(alignQuality(aln))) checkIdentical(tbl[[3]], alignData(aln)[["nMatch"]]) checkIdentical(table(tbl[[5]])[["F"]], table(strand(aln))[["+"]]) chr <- sub(":.*", "", tbl[[4]]) chr[nchar(chr)==0] <- NA checkIdentical(factor(chr), chromosome(aln)) checkIdentical(as.integer(sub(".*:", "", tbl[[4]])), position(aln)) checkIdentical(ShortRead:::.toStrand_Solexa(tbl[[5]]), strand(aln)) checkIdentical(tbl[[7]], alignData(aln)[["nextBestAlignQuality"]]) } test_AlignedRead_readAligned_realign_threecol <- function() { ## column 4 can be target:pos fl <- "s_2_0001_realign_3col_head.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE) aln <- readAligned(src, fl, "SolexaRealign") checkIdentical(as.character(tbl[[1]]), as.character(sread(aln))) checkIdentical(tbl[[2]], quality(alignQuality(aln))) checkIdentical(tbl[[3]], alignData(aln)[["nMatch"]]) checkIdentical(factor(rep(NA_character_, nrow(tbl))), chromosome(aln)) checkIdentical(rep(NA_integer_, nrow(tbl)), position(aln)) checkIdentical(ShortRead:::.toStrand_Solexa(rep("", nrow(tbl))), strand(aln)) checkIdentical(rep(NA_integer_, nrow(tbl)), alignData(aln)[["nextBestAlignQuality"]]) } test_AlignedRead_readAligned_SolexaResult <- function() { fl <- "s_1_results_head.txt" src <- system.file("unitTests", "cases", package="ShortRead") tbl <- read.table(file.path(src, fl), fill=TRUE, col.names=paste("V", 1:12, sep="")) aln <- readAligned(src, fl, "SolexaResult") checkIdentical(as.character(tbl[[2]]), as.character(sread(aln))) chr <- tbl[[7]] checkIdentical(factor(chr), chromosome(aln)) checkIdentical(tbl[[8]], position(aln)) checkIdentical(ShortRead:::.toStrand_Solexa(tbl[[9]]), strand(aln)) ad <- alignData(aln) checkIdentical(tbl[[3]], ad[[1]]) checkIdentical(tbl[[4]], ad[[2]]) checkIdentical(tbl[[5]], ad[[3]]) checkIdentical(tbl[[6]], ad[[4]]) checkIdentical(tbl[[10]], ad[[5]]) checkIdentical(tbl[[11]], ad[[6]]) checkIdentical(tbl[[12]], ad[[7]]) } test_AlignedRead_constructor <- function() { aln <- AlignedRead() checkTrue(validObject(aln)) aln <- AlignedRead(sread=DNAStringSet(polyn("A", 5))) checkTrue(validObject(aln)) aln <- AlignedRead(sread=DNAStringSet( c(polyn("A", 5), polyn("A", 10)))) checkTrue(validObject(aln)) checkIdentical(c(5L, 10L), width(aln)) } test_AlignedRead_compact <- function() { exp <- aln[1:100] obs <- compact(exp) checkIdentical(as.character(sread(exp)), as.character(sread(obs))) checkIdentical(as.character(quality(quality(exp))), as.character(quality(quality(obs)))) checkIdentical(as.character(id(exp)), as.character(id(obs))) checkIdentical(alignData(exp), alignData(obs)) } ShortRead/inst/unitTests/test_AllClasses.R0000644000126300012640000000101112227066720022214 0ustar00biocbuildphs_compbiotest_AllClasses_STRAND_LEVELS <- function() { checkIdentical(ShortRead:::.STRAND_LEVELS, levels(strand())) } test_AllClasses_new <- function() { nmspace <- getNamespace("ShortRead") nms <- names(slot(getClass(".ShortReadBase", where=nmspace), "subclasses")) ## 'new' with no additional arguments ok <- Map(function(x) validObject(new(x)), Filter(function(x) !slot(getClass(x, where=nmspace), "virtual"), nms)) checkTrue(all(unlist(ok))) } ShortRead/inst/unitTests/test_FastqFile.R0000644000126300012640000000110212227066720022045 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") test_FastqFile <- function() { fq <- FastqFile(fl) checkTrue(validObject(fq)) checkIdentical(path(fq), fl) checkTrue(!isOpen(fq)) close(fq) } test_FastqFileList <- function() { fql0 <- FastqFileList(c(fl, fl)) checkTrue(validObject(fql0)) checkIdentical(2L, length(fql0)) fql1 <- FastqFileList(FastqFile(fl), FastqFile(fl)) checkEquals(fql0, fql1) # not identical: externalptr close(fql0); close(fql1) } ShortRead/inst/unitTests/test_Intensity.R0000644000126300012640000000224112227066720022162 0ustar00biocbuildphs_compbiotest_IntensityMeasure_subset <- function() { a <- array(1:1000, c(10, 10, 10)) x <- ArrayIntensity(a) checkTrue(all(a==x)) checkTrue(all(a[,,]==x[,,])) checkTrue(all(a[1:5,,]==x[1:5,,])) checkTrue(all(a[,1:5,]==x[,1:5,])) checkTrue(all(a[1:5,1:5,]==x[1:5,1:5,])) checkTrue(all(a[,,1:5]==x[,,1:5])) checkTrue(all(a[1:5,,1:5]==x[1:5,,1:5])) checkTrue(all(a[,1:5,1:5]==x[,1:5,1:5])) checkTrue(all(a[1:5,1:5,1:5]==x[1:5,1:5,1:5])) } test_Intensity_subset <- function() { check <- function(obj, m, adf) { checkTrue(all(m==intensity(obj))) checkTrue(all(m==measurementError(obj))) checkIdentical(adf, readInfo(obj)) } m <- array(1:1000, c(10, 10, 10)) adf <- SolexaIntensityInfo(1:10) si <- SolexaIntensity(intensity=m, measurementError=m, readInfo=adf) ridx <- sample(nrow(m), 5) cidx <- sample(ncol(m), 5) x <- ArrayIntensity(m) checkTrue(all(intensity(si)==x)) checkTrue(all(measurementError(si)==x)) check(si[,,], m[,,], adf) check(si[ridx,,], m[ridx,,], adf[ridx,]) check(si[,cidx,], m[,cidx,], adf) check(si[ridx, cidx,], m[ridx, cidx,], adf[ridx,]) } ShortRead/inst/unitTests/test_SRError.R0000644000126300012640000000317512227066720021541 0ustar00biocbuildphs_compbiothrow <- ShortRead:::.throw ## SRError test_SRError_construction <- function() { checkTrue(validObject(SRError("UnspecifiedError", "message"))) checkException(SRError(), silent=TRUE) checkException(SBError("UnspecifiedError"), silent=TRUE) # must have message checkException(SRError("Bad error class", "Message"), silent=TRUE) # must have valid class } test_SRError_throw <- function() { err <- SRError("UnspecifiedError", "error message") checkException(throw(err), silent=TRUE) } test_SRError_throw <- function() { err <- SRError("UnspecifiedError", "error message") checkTrue(tryCatch(throw(err), SRError=function(err) TRUE)) checkTrue(tryCatch(throw(err), UnspecifiedError=function(err) TRUE)) } ## SRWarn test_SRWarn_construction <- function() { checkTrue(validObject(SRWarn("UnspecifiedWarning", "message"))) checkException(SRWarn(), silent=TRUE) checkException(SRWarn("UnspecifiedWarning"), silent=TRUE) checkException(SRWarn("Bad Warn Class"), silent=TRUE) } test_SRWarn_throw <- function() { old.opt <- options(warn=2) on.exit(options(old.opt)) warn <- SRWarn("UnspecifiedWarning", "warning message") checkException(throw(warn), silent=TRUE) } test_SRWarn_catch <- function() { old.opt <- options(warn=2) on.exit(options(old.opt)) warn <- SRWarn("UnspecifiedWarning", "warning message") checkTrue(tryCatch(throw(warn), SRWarn=function(warn) TRUE)) checkTrue(tryCatch(throw(warn), UnspecifiedWarning=function(warn) TRUE)) } ShortRead/inst/unitTests/test_SRFilter.R0000644000126300012640000001627412227066720021701 0ustar00biocbuildphs_compbioaln <- local({ sp <- SolexaPath(system.file("extdata", package="ShortRead")) readAligned(sp, "s_2_export.txt") }) test_srFilter <- function() { checkTrue(validObject(srFilter())) checkTrue(validObject(srFilter(name="Filter"))) checkIdentical(name(srFilter(name="Filter")), Biobase::mkScalar("Filter")) checkTrue(validObject(srFilter(function(x) {}))) checkException(srFilter(function(){}), silent=TRUE) checkException(srFilter(function(x, ...) {}), silent=TRUE) } test_occurrenceFilter <- function() { checkTrue(validObject(occurrenceFilter())) aln <- AlignedRead(DNAStringSet(character(2)), chromosome=c("chr1", "chr1"), position=c(1L, 1L), strand=rep(strand("+"), 2)) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=TRUE)(aln))) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=FALSE)(aln))) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=NA)(aln))) aln <- AlignedRead(DNAStringSet(c("A", "T")), chromosome=c("chr1", "chr1"), position=c(1L, 1L), strand=rep(strand("+"), 2)) checkTrue(all(c(TRUE, TRUE) == occurrenceFilter(withSread=TRUE)(aln))) checkTrue(all(c(TRUE, FALSE) == occurrenceFilter(withSread=FALSE)(aln))) checkTrue(all(c(TRUE, TRUE) == occurrenceFilter(withSread=NA)(aln))) aln <- AlignedRead(DNAStringSet(character(4)), chromosome=rep(c("chr1", "chr2"), each=2), position=rep(1:2, 2), strand=rep(strand("+"), 4)) checkTrue(all(occurrenceFilter(withSread=FALSE)(aln))) checkTrue(all(occurrenceFilter(withSread=TRUE)(aln))) checkTrue(all(c(TRUE, FALSE, FALSE, FALSE) == occurrenceFilter(withSread=NA)(aln))) sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(analysisPath(sp), "s_2_export.txt", "SolexaExport") checkIdentical(980L, sum(occurrenceFilter(withSread=NA)(aln))) checkIdentical(996L, sum(occurrenceFilter(withSread=TRUE)(aln))) df <- data.frame(chromosome(aln), position(aln), strand(aln)) checkIdentical(sum(!duplicated(df)), sum(occurrenceFilter(withSread=FALSE)(aln))) checkIdentical(15L, sum(occurrenceFilter(min=5, max=10, withSread=NA)(aln))) checkIdentical(13L, sum(occurrenceFilter(min=3, max=5, withSread=NA)(aln))) checkIdentical(8L, sum(occurrenceFilter(min=3, max=5, duplicates="none", withSread=NA)(aln))) } test_chromosomeFilter <- function() { checkTrue(validObject(chromosomeFilter())) checkException(chromosomeFilter(c("foo", "bar")), silent=TRUE) chr <- "chr5.fa" obj <- chromosomeFilter(chr) checkIdentical(aln[obj(aln)], aln[grep(chr, chromosome(aln))]) } test_strandFilter <- function() { checkTrue(validObject(strandFilter())) checkException(strandFilter(1), silent=TRUE) str <- character(0) obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[FALSE]) str <- "+" obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[strand(aln)=="+" & !is.na(strand(aln))]) str <- c("+", "-") obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[(strand(aln)=="+" |strand(aln)=="-") & !is.na(strand(aln))]) str <- c("+", NA) obj <- strandFilter(str) checkIdentical(aln[obj(aln)], aln[strand(aln)=="+" | is.na(strand(aln))]) obj <- strandFilter(NA_character_) checkIdentical(aln[obj(aln)], aln[is.na(strand(aln))]) } test_nFilter <- function() { checkTrue(validObject(nFilter())) checkTrue(validObject(nFilter(20))) checkException(nFilter("alf"), silent=TRUE) checkException(nFilter(1:2), silent=TRUE) n <- 0 checkIdentical(aln[nFilter(n)(aln)], clean(aln)) n <- 30 alf <- alphabetFrequency(sread(aln), baseOnly=TRUE) checkIdentical(aln[nFilter(n)(aln)], aln[alf[,"other"] <= n]) } test_polynFilter <- function() { checkTrue(validObject(polynFilter())) checkTrue(validObject(polynFilter(20))) checkTrue(validObject(polynFilter(nuc=c("A", "other")))) checkException(polynFilter(1:2), silent=TRUE) checkException(polynFilter("x"), silent=TRUE) checkException(polynFilter(nuc="Z"), silent=TRUE) alf <- alphabetFrequency(sread(aln), baseOnly=TRUE) n <- 30 obj <- polynFilter(n) checkIdentical(aln[obj(aln)], aln[apply(alf, 1, max) <= n]) n <- 30 obj <- polynFilter(n, c("A", "C", "T", "G")) checkIdentical(aln[obj(aln)], aln[apply(alf[,1:4], 1, max) <= n]) } test_dustyFilter <- function() { checkTrue(validObject(dustyFilter())) checkTrue(validObject(dustyFilter(20))) checkTrue(validObject(lgl0 <- dustyFilter(10L)(aln))) checkTrue(validObject(lgl1 <- dustyFilter(10L)(sread(aln)))) checkIdentical(lgl0, lgl1) checkIdentical(lgl0, dustyFilter(10L, 100L)(aln)) checkIdentical(lgl0, dustyFilter(10L, 100L)(sread(aln))) } test_srdistanceFilter <- function() { checkTrue(validObject(srdistanceFilter())) checkTrue(validObject(srdistanceFilter("sdf", 1))) checkException(srdistanceFilter(123), silent=TRUE) checkException(srdistanceFilter("sdfs", 1:2), silent=TRUE) obj <- srdistanceFilter() checkIdentical(aln[obj(aln)], aln) nr <- c("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA", "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA") obj <- srdistanceFilter(nr[[1]], 1L) checkIdentical(aln[obj(aln)], aln[as.character(sread(aln))!=nr[[1]]]) obj <- srdistanceFilter(nr, 1L) checkIdentical(aln[obj(aln)], aln[as.character(sread(aln))!=nr[[1]] & as.character(sread(aln))!=nr[[2]] ]) } test_alignQualityFilter <- function() { checkTrue(validObject(alignQualityFilter())) checkTrue(validObject(alignQualityFilter(70))) checkException(alignQualityFilter("foo"), silent=TRUE) checkException(alignQualityFilter(threshold=1:2), silent=TRUE) checkIdentical(aln[alignQualityFilter()(aln)], aln) n <- 70 obj <- alignQualityFilter(n) checkIdentical(aln[obj(aln)], aln[quality(alignQuality(aln))>=70]) } test_alignDataFilter <- function() { checkTrue(validObject(alignDataFilter())) ex <- expression(x>200 & y<600) checkTrue(validObject(alignDataFilter(ex))) ad <- pData(alignData(aln)) checkIdentical(aln[alignDataFilter(ex)(aln)], aln[eval(ex, ad)]) } test_compose <- function() { f1 <- chromosomeFilter("chr5.fa") f2 <- polynFilter(12) checkTrue(validObject(compose())) checkTrue(validObject(compose(f1))) checkTrue(validObject(compose(f1, f2))) obj <- compose(f1, f2) checkTrue(validObject(obj)) checkIdentical(name(obj), Biobase::mkScalar(paste(name(f1), name(f2), sep=" o "))) checkException(compose("foo"), silent=TRUE) checkException(compose(f1, "foo"), silent=TRUE) checkIdentical(aln[compose(f1)(aln)], aln[f1(aln)]) checkIdentical(aln[obj(aln)], aln[f1(aln) & f2(aln)]) } ShortRead/inst/unitTests/test_SRFilterResult.R0000644000126300012640000000606612227066720023076 0ustar00biocbuildphs_compbiomkScalar <- Biobase::mkScalar test_SRFilterResult_constructor <- function() { checkTrue(validObject(SRFilterResult())) fr <- SRFilterResult(TRUE) checkTrue(validObject(fr)) checkIdentical(mkScalar(NA_character_), name(fr)) df <- data.frame(Name=NA_character_, Input=1L, Passing=1L, Op=NA_character_, stringsAsFactors=FALSE) checkIdentical(df, stats(fr)) fr <- SRFilterResult(c(TRUE, FALSE)) df <- data.frame(Name=NA_character_, Input=2L, Passing=1L, Op=NA_character_, stringsAsFactors=FALSE) checkIdentical(df, stats(fr)) fr <- SRFilterResult(c(TRUE, FALSE),"A") df <- data.frame(Name="A", Input=2L, Passing=1L, Op=NA_character_, stringsAsFactors=FALSE) checkIdentical(df, stats(fr)) } test_SRFilterResult_logic <- function() { a <- SRFilterResult(c(TRUE, FALSE), "A") b <- SRFilterResult(c(FALSE, TRUE), "B") checkTrue(all(a|b)) exp <- structure(list(Name = c("A", "B", "(A | B)"), Input = c(2L, 2L, 2L), Passing = c(1L, 1L, 2L), Op = c(NA, NA, "|")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -3L), class = "data.frame") checkIdentical(exp, stats(a|b)) checkTrue(all(!b == !(b@.Data))) exp <- structure(list(Name = c("B", "!(B)"), Input = c(2L, 2L), Passing = c(1L, 1L), Op = c(NA, "!")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -2L), class = "data.frame") checkIdentical(exp, stats(!b)) } test_SRFilterResult_SRFilter <- function() { fa <- srFilter(function(x) logical(length(x)), "A") x <- fa(1:10) checkIdentical(logical(10L), x@.Data) checkIdentical(mkScalar("A"), name(x)) exp <- structure(list(Name = "A", Input = 10L, Passing = 0L, Op = NA_character_), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -1L), class = "data.frame") checkIdentical(exp, stats(x)) x <- fa(1:10) & fa(1:10) checkIdentical(logical(10L), x@.Data) checkIdentical(mkScalar("(A & A)"), name(x)) exp <- structure(list(Name = c("A", "A", "(A & A)"), Input = c(10L, 10L, 10L), Passing = c(0L, 0L, 0L), Op = c(NA, NA, "&")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -3L), class = "data.frame") checkIdentical(exp, stats(x)) fb <- srFilter(function(x) !logical(length(x)), "B") x <- fa(1:10) | fb(1:10) checkIdentical(!logical(10L), x@.Data) checkIdentical(mkScalar("(A | B)"), name(x)) exp <- structure(list(Name = c("A", "B", "(A | B)"), Input = c(10L, 10L, 10L), Passing = c(0L, 10L, 10L), Op = c(NA, NA, "|")), .Names = c("Name", "Input", "Passing", "Op"), row.names = c(NA, -3L), class = "data.frame") checkIdentical(exp, stats(x)) } ShortRead/inst/unitTests/test_SRList.R0000644000126300012640000000107012227066720021353 0ustar00biocbuildphs_compbiotest_SRList_construction <- function() { srl <- SRList() checkTrue(validObject(srl)) checkEquals(0, length(srl)) srl <- SRList(list()) checkTrue(validObject(srl)) checkEquals(0, length(srl)) srl <- SRList(list(1)) checkTrue(validObject(srl)) checkEquals(1, length(srl)) srl <- SRList(list(1, 2)) checkTrue(validObject(srl)) checkEquals(2, length(srl)) checkEquals(1, length(srl[[1]])) srl <- SRList(1, 2) checkTrue(validObject(srl)) checkEquals(2, length(srl)) checkEquals(1, length(srl[[1]])) } ShortRead/inst/unitTests/test_SRVector.R0000644000126300012640000000071312227066720021705 0ustar00biocbuildphs_compbiotest_SRVector_construction <- function() { check <- function(srv, cls, len) { checkTrue(validObject(srv)) checkEquals(cls, vclass(srv)) checkEquals(len, length(srv)) } check(SRVector(vclass="numeric"), "numeric", 0) check(SRVector(1), "numeric", 1) checkException(SRVector(),silent=TRUE) checkException(SRVector("a", vclass="numeric"), silent=TRUE) checkException(SRVector(1, "a"), silent=TRUE) } ShortRead/inst/unitTests/test_ShortRead.R0000644000126300012640000000217612227066720022076 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file("extdata", package="ShortRead")) sr <- as(readFastq(sp, "s_1_sequence.txt"), "ShortRead") .equals <- function(x, y) { checkIdentical(as.character(sread(x)), as.character(sread(y))) checkIdentical(as.character(id(x)), as.character(id(y))) } test_ShortRead_construction <- function() { obj <- ShortRead() checkTrue(class(obj) == "ShortRead") checkTrue(validObject(obj)) obj <- ShortRead(sread(sr)) checkTrue(class(obj) == "ShortRead") checkTrue(validObject(obj)) .equals(new("ShortRead", sread=DNAStringSet(sread(sr)), id=BStringSet(rep("", length(sr)))), obj) obj <- ShortRead(sread(sr), id(sr)) checkTrue(class(obj) == "ShortRead") checkTrue(validObject(obj)) .equals(sr, obj) } test_ShortRead_narrow <- function() { obj <- narrow(sr, start=1, end=10) checkTrue(class(obj) == "ShortRead") checkTrue(length(obj) == length(sr)) checkTrue(unique(width(obj)) == 10) checkIdentical(as.character(sread(obj)), substr(as.character(sread(sr)), 1, 10)) checkIdentical(narrow(sr, start=start(sread(sr))), sr) } ShortRead/inst/unitTests/test_ShortReadQ.R0000644000126300012640000002044312227066720022214 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") checkShortReadQ <- function(obj, len, wd) { checkStringSet <- function(obj, type, len, wd) { checkTrue(is(obj, type)) checkEquals(len, length(obj)) checkEquals(wd, unique(width(obj))) } checkStringSet(obj, "ShortReadQ", len, wd[[1]]) checkStringSet(sread(obj), "DNAStringSet", len, wd[[2]]) checkStringSet(id(obj), "BStringSet", len, wd[[3]]) # ids w/ diff lengths checkStringSet(quality(obj), "QualityScore", len, wd[[4]]) } .equals <- function(x, y) { checkIdentical(as.character(sread(x)), as.character(sread(y))) checkIdentical(as.character(quality(quality(x))), as.character(quality(quality(y)))) checkIdentical(as.character(id(x)), as.character(id(y))) } test_ShortReadQ_constructors <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- obj <- readFastq(sp) checkTrue(validObject(obj)) checkShortReadQ(obj, 256, list(36, 36, 24:22, 36)) obj <- ShortReadQ() checkTrue(class(obj) == "ShortReadQ") checkTrue(validObject(obj)) obj <- ShortReadQ(sread(sr), quality(sr)) checkTrue(class(obj) == "ShortReadQ") checkTrue(validObject(obj)) .equals(new("ShortReadQ", sread=sread(sr), id=BStringSet(rep("", length(sr))), quality=quality(sr)), obj) obj <- ShortReadQ(sread(sr), quality(sr), id(sr)) checkTrue(class(obj) == "ShortReadQ") checkTrue(validObject(obj)) .equals(sr, obj) } test_FastqSampler <- function() { sr <- readFastq(fl) ## here to re-use equality checker obj <- yield(f <- FastqSampler(fl)) close(f) .equals(sr, obj) yld <- yield(f <- FastqSampler(fl, readerBlockSize=1000)) close(f) checkTrue(validObject(yld)) ## regression yld <- yield(f <- FastqSampler(fl, readerBlockSize=256)) close(f) checkIdentical(256L, length(yld)) } test_FastqSampler_rand <- function() { ## two samples with the same random number seed are identical samp <- FastqSampler(fl, 50) set.seed(123L); obs <- yield(samp) set.seed(123L); exp <- yield(samp) close(samp) .equals(obs, exp) ## different samples set.seed(123L) samp <- FastqSampler(fl, 50) obs <- length(Reduce(intersect, replicate(2, id(yield(samp))))) checkIdentical(7L, obs) obs <- length(Reduce(intersect, replicate(3, id(yield(samp))))) checkIdentical(0L, obs) close(samp) } test_FastqStreamer <- function() { sr <- readFastq(fl) f <- FastqStreamer(fl, n=50) i <- 0L; len <- 0L while (length(y <- yield(f))) { len <- len + length(y) i <- i + 1L } close(f) checkIdentical(6L, i) checkIdentical(256L, len) ## values equal? f <- FastqStreamer(fl, n=50) .equals(sr[1:50], yield(f)) .equals(sr[50+1:50], yield(f)) close(f) ## whole file f <- FastqStreamer(fl, n=500) i <- 0L; len <- 0L while (length(y <- yield(f))) { .equals(sr, y) len <- len + length(y) i <- i + 1L } close(f) checkIdentical(1L, i) checkIdentical(256L, len) ## small reader block size f <- FastqStreamer(fl, n=50, readerBlockSize=100) i <- 0L; len <- 0L while (length(y <- yield(f))) { len <- len + length(y) i <- i + 1L } close(f) checkIdentical(6L, i) checkIdentical(256L, len) } test_FastqStreamer_roundtrip <- function() { out <- tempfile() writeFastq(v1 <- readFastq(fl), out) s <- FastqStreamer(out) .equals(v1, yield(s)) } test_FastqStreamer_IRanges <- function() { sr <- readFastq(fl) ## basics rng <- IRanges(c(50, 100, 200), width=c(5, 4, 3)) f <- FastqStreamer(fl, rng) .equals(sr[50:54], yield(f)) .equals(sr[100:103], yield(f)) .equals(sr[200:202], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## successive rng <- IRanges(c(50, 60), width=10) f <- FastqStreamer(fl, rng) .equals(sr[50:59], yield(f)) .equals(sr[60:69], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## off-the-end rng <- IRanges(250, width=100) f <- FastqStreamer(fl, rng) .equals(sr[250:256], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## too-short buffer to skip all reads in one binary input rng <- IRanges(250, width=5) f <- FastqStreamer(fl, rng, readerBlockSize=10000) .equals(sr[250:254], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) rng <- IRanges(241, width=5) f <- FastqStreamer(fl, rng, readerBlockSize=10000) .equals(sr[241:245], yield(f)) .equals(ShortReadQ(), yield(f)) close(f) ## exceptions rng <- IRanges(50, 49) # non-zero checkException(FastqStreamer(fl, rng), silent=TRUE) rng <- IRanges(c(50, 59), c(60, 70)) # strictly increasing checkException(FastqStreamer(fl, rng), silent=TRUE) } test_ShortReadQ_coerce_QualityScaledDNAStringSet <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp, qualityType="SFastqQuality") res <- as(obj, "QualityScaledDNAStringSet") checkIdentical(as.character(sread(obj)), as.character(as(res, "DNAStringSet"))) checkIdentical(as.character(quality(quality(obj))), as.character(quality(res))) checkTrue(is(quality(res), "SolexaQuality")) obj <- initialize(obj, quality=FastqQuality(quality(quality(obj)))) res <- as(obj, "QualityScaledDNAStringSet") checkIdentical(as.character(sread(obj)), as.character(as(res, "DNAStringSet"))) checkIdentical(as.character(quality(quality(obj))), as.character(quality(res))) checkTrue(is(quality(res), "PhredQuality")) q <- MatrixQuality(as(quality(obj), "matrix")) obj <- initialize(obj, quality=q) checkException(as(obj, "QualityScaledDNAStringSet"), silent=TRUE) } test_ShortReadQ_coerce_matrix <- function() { ## 0-length fq <- FastqQuality() exp <- matrix(NA_integer_, 0, 0) checkIdentical(exp, as(fq, "matrix")) ## ragged matrix fq <- FastqQuality(BStringSet(c("]]X", "]]]X"))) exp <- matrix(c(rep(60L, 4), 55L, 60L, NA_integer_, 55L), 2) checkIdentical(exp, as(fq, "matrix")) } test_ShortReadQ_subset <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp) obj1 <- obj[c(3, 5:7, 9)] checkShortReadQ(obj1, 5, list(36, 36, 23, 36)) checkException(obj[,1], silent=TRUE) checkException(obj[1,1], silent=TRUE) checkIdentical(2L, length(obj[1:2,])) checkIdentical(2L, length(obj[1:2,drop=TRUE])) checkIdentical(2L, length(obj[1:2,,drop=TRUE])) } test_ShortReadQ_narrow <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- readFastq(sp) obj <- narrow(sr, start=1, end=10) checkTrue(class(obj) == "ShortReadQ") checkTrue(length(obj) == length(sr)) checkTrue(unique(width(obj)) == 10) checkIdentical(as.character(sread(obj)), substr(as.character(sread(sr)), 1, 10)) checkIdentical(as.character(quality(quality(obj))), substr(as.character(quality(quality(sr))), 1, 10)) checkIdentical(as.character(id(obj)), as.character(id(sr))) checkIdentical(narrow(sr, start=start(sread(sr))), sr) } test_ShortReadQ_compact <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) sr <- readFastq(sp)[1:10] res <- compact(sr) checkIdentical(as.character(sread(sr)), as.character(sread(res))) checkIdentical(as.character(quality(quality(sr))), as.character(quality(quality(res)))) } test_ShortReadQ_clean <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp) cln <- clean(obj) checkIdentical(class(obj), class(cln)) ## FIXME: need a stronger test checkEquals(length(obj), length(clean(obj))) } test_ShortReadQ_srsort <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) obj <- readFastq(sp) srt <- srsort(obj) checkIdentical(class(obj), class(srt)) checkIdentical(length(obj), length(srt)) checkIdentical(srsort(sread(obj)), sread(srt)) checkIdentical(quality(obj)[srorder(obj)], quality(srt)) } ShortRead/inst/unitTests/test_SolexaIntensity.R0000644000126300012640000000622112227066720023340 0ustar00biocbuildphs_compbiotest_SolexaIntensity_construction <- function() { checkTrue(validObject(SolexaIntensityInfo())) checkTrue(validObject(SolexaIntensityInfo(lane=rep(1, 10)))) checkTrue(validObject(SolexaIntensity())) checkTrue(validObject(SolexaIntensity(intensity=array(0,c(1,2,3))))) checkException(SolexaIntensity(measurementError=array(0,c(1,2,3))), silent=TRUE) checkTrue(validObject(SolexaIntensity(intensity=array(0,c(1,2,3)), measurementError=array(0,c(1,2,3))))) checkException(SolexaIntensityInfo()[,"lane"], silent=TRUE) } test_SolexaIntensity_access <- function() { checkException(measurementError(SolexaIntensity()), silent=TRUE) } test_SolexaIntensity_io <- function() { sp <- SolexaPath(system.file("extdata", package="ShortRead")) int <- readIntensities(sp) checkIdentical(c(256L, 4L, 36L), dim(intensity(int))) checkIdentical(c(256L, 4L, 36L), dim(measurementError(int))) checkIdentical(256L, nrow(pData(readInfo(int)))) int <- readIntensities(sp, withVariability=FALSE) checkIdentical(c(256L, 4L, 36L), dim(intensity(int))) checkIdentical(256L, nrow(pData(readInfo(int)))) checkException(measurementError(int), silent=TRUE) } test_IparIntensity_io <- function() { src <- system.file("unitTests","cases",package="ShortRead") int <- readIntensities(src, type="IparIntensity", intExtension="_int_head.txt.p", nseExtension="_nse_head.txt.p", posExtension="_pos_head.txt") checkIdentical(c(5L, 4L, 3L), dim(int)) checkIdentical(structure(c(11.7, 49.4, 14.3, 110.6, -1.1, 3.2, 86.2, 5.9, 18.8, 120.2, 21.1, 218.8, 96.2, 2.7, 177.4, 9.1, 55.9, 340.9, 112, 164.8, 0.8, 2.6, 15.7, 4.6), .Dim = c(2L, 4L, 3L), .Dimnames = list( NULL, c("A", "C", "G", "T"), NULL)), as(intensity(int), "array")[1:2,,]) checkIdentical(structure(c(8.5, 6.2, 9, 9.2, 3, 3.1, 6.6, 6.4, 12.6, 11.9, 12.5, 11, 3.8, 3.6, 6.6, 5.8, 13.6, 10.5, 12.4, 12.7, 4.7, 4.2, 7.3, 6.4), .Dim = c(2L, 4L, 3L), .Dimnames = list(NULL, c("A", "C", "G", "T"), NULL)), as(measurementError(int), "array")[1:2,,]) checkIdentical(structure(list(lane = structure(c(1L, 1L, 1L, 1L, 1L), class = "factor", .Label = "1"), tile = c(1L, 1L, 1L, 1L, 1L), x = c(-0.47, -0.45, -0.45, -0.44, -0.43), y = c(1073.78, 1558.67, 1157.37, 144.35, 1497.99 )), .Names = c("lane", "tile", "x", "y"), row.names = c(NA, -5L), class = "data.frame"), pData(readInfo(int))) } ShortRead/inst/unitTests/test_append.R0000644000126300012640000000317312227066720021450 0ustar00biocbuildphs_compbio## Function: append (package base) ## x="AlignedDataFrame", values="AlignedDataFrame", after="missing" ## x="AlignedRead", values="AlignedRead", after="missing" ## x="QualityScore", values="QualityScore", after="missing" ## x="ShortRead", values="ShortRead", after="missing" ## x="ShortReadQ", values="ShortReadQ", after="missing" sp <- SolexaPath(system.file("extdata", package="ShortRead")) .equal <- function(x, y) { checkIdentical(class(x), class(y)) checkIdentical(length(x), length(y)) checkIdentical(as.character(id(x)), as.character(id(y))) checkIdentical(as.character(sread(x)), as.character(sread(y))) if (is(x, "ShortReadQ")) checkIdentical(as.character(quality(quality(x))), as.character(quality(quality(y)))) if (is(x, "AlignedRead")) { checkIdentical(strand(x), strand(y)) checkIdentical(chromosome(x), chromosome(y)) checkIdentical(position(x), position(y)) checkIdentical(dim(alignData(x)), dim(alignData(y))) adx <- alignData(x); ady <- alignData(y) checkIdentical(varMetadata(adx), varMetadata(ady)) pdx <- pData(adx); pdy <- pData(ady) row.names(pdx) <- row.names(pdy) <- NULL checkIdentical(pdx, pdy) } } test_append <- function() { aln <- readAligned(sp, "s_2_export.txt") aaln <- append(aln, aln) .equal(aln, aaln[seq_len(length(aln))]) .equal(aln, aaln[length(aln) + seq_len(length(aln))]) } test_append_exception <- function() { checkException(append(sp, sp), silent=TRUE) aln <- readAligned(sp, "s_2_export.txt") checkException(append(quality(aln), aln), silent=TRUE) } ShortRead/inst/unitTests/test_coverage.R0000644000126300012640000000407412227066720021775 0ustar00biocbuildphs_compbio.width <- 10 .mkAln <- function(position, width, strand) { n <- length(position) AlignedRead(sread=DNAStringSet(rep(polyn("A", width), n)), chromosome=rep("ChrA", n), position=as.integer(position), strand=strand) } test_coverage_leftmost_plus <- function() { ## 'leftmost' ## 1 2 ## 8 7 2 ## ++++++++++----- ## ....|....|....|....|....| aln <- .mkAln(8L, .width, strand("+")) cvg <- coverage(aln, width=c(ChrA=25L), extend=5L) checkIdentical(c(7L, 15L, 3L), runLength(cvg[[1]])) } test_coverage_leftmost_minus <- function() { ## ....|....|....|....| ## -----++++++++++ ## 3 8 1 ## 7 aln <- .mkAln(8L, .width, strand("-")) cvg <- coverage(aln, width=c(ChrA=20L), extend=5L) checkIdentical(c(2L,15L,3L), runLength(cvg[[1]])) } test_coverage_fiveprime_plus <- function() { ## 5' ## 1 2 ## 8 7 2 ## ++++++++++----- ## ....|....|....|....|....| aln <- .mkAln(8L, .width, strand("+")) cvg <- coverage(aln, width=c(ChrA=25L), coords="fiveprime", extend=5L) checkIdentical(c(7L, 15L, 3L), runLength(cvg[[1]])) } test_coverage_fiveprime_minus <- function() { ## ....|....|....|....|....| ## -----++++++++++ ## 3 8 1 ## 7 aln <- .mkAln(17L, .width, strand("-")) cvg <- coverage(aln, width=c(ChrA=25L), coords="fiveprime", extend=5L) checkIdentical(c(2L, 15L, 8L), runLength(cvg[[1]])) } test_coverage_width_names <- function() { aln <- .mkAln(1, 10, strand("+")) checkTrue(validObject(coverage(aln))) checkTrue(validObject(coverage(aln, width=c(ChrA=20L)))) ## no names on width checkException(coverage(aln, width=100), silent=TRUE) ## wrong name on width checkException(coverage(aln, width=c(ChrB=100)), silent=TRUE) ## extra width element -- ok checkTrue(validObject(coverage(aln, width=c(ChrA=20L, ChrB=20L)))) } ShortRead/inst/unitTests/test_filterFastq.R0000644000126300012640000000220012227066720022453 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") .all_equal <- function(target, current, ...) { ac <- as.character all.equal(ac(sread(target)), ac(sread(current))) && all.equal(ac(quality(quality(target))), ac(quality(quality(current)))) && all.equal(ac(id(target)), ac(id(current))) } test_filterFastq <- function() { tf <- c(TRUE, FALSE) exp <- readFastq(fl)[tf] filt <- function(x) x[tf] dest <- filterFastq(fl, tempfile(), filter=filt) checkTrue(.all_equal(exp, readFastq(dest))) dest <- filterFastq(fl, tempfile(), filter=filt, yieldSize=100) checkTrue(.all_equal(exp,readFastq(dest))) filt <- function(x) tf rule <- FilterRules(list(filt=filt)) dest <- filterFastq(fl, tempfile(), filter=rule) checkTrue(.all_equal(exp,readFastq(dest))) dest <- tempfile() file.create(dest) obs <- tryCatch(filterFastq(fl, dest, filter=filt), error=conditionMessage) checkIdentical(sprintf("'destinations' exist:\n %s", dest), obs) } ShortRead/inst/unitTests/test_functions.R0000644000126300012640000001147112227066720022211 0ustar00biocbuildphs_compbio## readFastq test_readFastq_autoDetectType <- function() { src <- system.file("unitTests","cases", package="ShortRead") srq <- readFastq(file.path(src, "sanger.fastq")) checkTrue(class(quality(srq)) == "FastqQuality") srq <- readFastq(file.path(src, "solexa.fastq")) checkTrue(class(quality(srq)) == "SFastqQuality") srq <- readFastq(file.path(src, "solexa.fastq"), qualityType="FastqQuality") checkTrue(class(quality(srq)) == "FastqQuality") } test_readFastq_withids <- function() { sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") rfq1 <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt", withIds=FALSE) checkIdentical(as.character(sread(rfq)), as.character(sread(rfq1))) checkIdentical(as.character(quality(quality(rfq))), as.character(quality(quality(rfq1)))) checkIdentical(as.character(id(rfq1)), character(length(rfq1))) } test_readFastq_zerowidth <- function() { fl <- tempfile(); writeLines("@ \n\n+\n", fl) fq <- readFastq(fl) checkTrue(validObject(fq)) checkIdentical(0L, width(fq)) } ## alphabetByCycle checkAlphabetByCycle <- function(obj) { abc <- alphabetByCycle(obj) validObject(abc) checkEquals(length(obj)*unique(width(obj)), sum(abc)) } test_alphabetByCycle <- function() { sp <- SolexaPath(system.file('extdata', package="ShortRead")) sq <- readFastq(sp) checkAlphabetByCycle(sread(sq)) checkAlphabetByCycle(quality(sq)) obj <- alphabetByCycle(sq) validObject(obj) checkEquals(c(17, 94, 36), dim(obj)) checkEqualsNumeric(alphabetByCycle(sread(sq)), apply(obj, c(1, 3), sum)) checkEqualsNumeric(alphabetByCycle(quality(sq)), apply(obj, 2:3, sum)) obj <- rowSums(alphabetByCycle(id(sq))) obj <- obj[obj != 0] exp <- table(unlist(strsplit(as.character(id(sq)), ""), use.names=FALSE)) checkTrue(setequal(names(obj), names(exp))) checkIdentical(as.numeric(exp[names(obj)]), as.vector(obj)) srq <- ShortReadQ(DNAStringSet(), FastqQuality()) abc <- alphabetByCycle(srq) alf <- alphabet(sread(srq)) qalf <- alphabet(quality(srq)) checkIdentical(matrix(0L, nrow=length(alf), ncol=0, dimnames=list(alphabet=alf, cycle=character(0))), alphabetByCycle(sread(srq))) checkIdentical(array(0L, dim=c(17, 94, 0), dimnames=list(base=alf, quality=qalf, cycle=character(0))), alphabetByCycle(srq)) } ## countLines test_countLines <- function() { sp <- SolexaPath(system.file('extdata', package="ShortRead")) nlines <- countLines(analysisPath(sp), "s_1_sequence.txt") exp <- 1024; names(exp) <- "s_1_sequence.txt" checkEquals(exp, nlines) dir <- tempfile() dir.create(dir) checkException(countLines(dir), silent=TRUE) } ## sort / order test_order_stats <- function() { checkIdentical(integer(0), srrank(AlignedRead())) checkIdentical(integer(0), srorder(AlignedRead())) checkIdentical(logical(0), srduplicated(AlignedRead())) } test_alphabetOrder <- function() { ## setup oldc <- Sys.getlocale("LC_COLLATE") on.exit(Sys.setlocale("LC_COLLATE", oldc)) Sys.setlocale("LC_COLLATE", "C") sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") checkEquals(srorder(sread(rfq)), order(as.character(sread(rfq)))) checkEquals(srorder(quality(rfq)), order(as.character(quality(quality(rfq))))) checkEquals(srduplicated(sread(rfq)), duplicated(as.character(sread(rfq)))) checkEquals(srduplicated(quality(rfq)), duplicated(as.character(quality(quality(rfq))))) } ## _mark_field (C code) test_mark_field <- function() { fl <- tempfile() do <- function(s, fl) { doexp(s, strsplit(unlist(strsplit(s, "\n")), "\t"), fl) } doexp <- function(s, exp, fl) { writeChar(s, fl) res <- .Call("_mark_field_test", fl, "\t", c(2L, 3L), PACKAGE="ShortRead") checkIdentical(exp, res) } do("a\tb\tc\nd\te\tf\n", fl) do("a\t\tc\nd\te\tf\n", fl) do("\tb\tc\nd\te\tf\n", fl) do("\t\tc\nd\te\tf\n", fl) ## trailing \t are problematic for strsplit doexp("a\tb\t\nd\te\tf\n", list(c("a","b",""), c("d","e","f")), fl) doexp("a\t\t\nd\te\tf\n", list(c("a","",""), c("d","e","f")), fl) writeChar("\n", fl) res <- .Call("_mark_field_test", fl, "\t", c(1L,1L), PACKAGE="ShortRead") checkIdentical(list(""), res) } ShortRead/inst/unitTests/test_qa.R0000644000126300012640000000225312227066720020600 0ustar00biocbuildphs_compbiotest_missingLaneName <- function() { caught <- FALSE tryCatch(qa(AlignedRead()), error=function(err) { caught <<- conditionMessage(err) == "UserArgumentMismatch\n 'lane' must be 'character(1)'" }) checkTrue(caught) } test_no_replicate_reads <- function() { df <- data.frame(nOccurrences=1, nReads=10, lane=1) x <- ShortRead:::.plotReadOccurrences(df) checkTrue(is(x, "trellis")) } test_qa_alphabetFrequency <- function() { FUN <- ShortRead:::.qa_alphabetFrequency checkException(FUN(DNAStringSet()), silent=TRUE) exp <- alphabetFrequency(DNAStringSet(), collapse=TRUE, baseOnly=TRUE) checkEquals(exp, FUN(DNAStringSet(), collapse=TRUE, baseOnly=TRUE)) exp <- alphabetFrequency(DNAStringSet(), collapse=TRUE) checkEquals(exp, FUN(DNAStringSet(), collapse=TRUE)) dna <- DNAStringSet(c("ACTG", "GTCANM")) checkEquals(alphabetFrequency(dna, collapse=TRUE), FUN(dna, collapse=TRUE)) checkEquals(alphabetFrequency(dna, collapse=TRUE, baseOnly=TRUE), FUN(dna, collapse=TRUE, baseOnly=TRUE)) } ShortRead/inst/unitTests/test_readAligned.R0000644000126300012640000001061612227066720022400 0ustar00biocbuildphs_compbio.readAligned_bam <- ShortRead:::.readAligned_bam fl <- system.file("extdata", "ex1.bam", package="Rsamtools") .what <- c('qname', 'flag', 'rname', 'strand', 'pos', 'mapq', 'seq', 'qual') test_readAligned_bam <- function() { aln <- .readAligned_bam(fl) checkEquals(structure("AlignedRead", package = "ShortRead"), class(aln)) checkTrue(validObject(aln)) checkIdentical(3278L, length(aln)) exp <- structure(c(6L, 37L, 2839L, 283L, 113L), .Dim = 5L, .Dimnames = structure(list( c("33", "34", "35", "36", "40")), .Names = ""), class = "table") checkIdentical(exp, table(width(aln))) exp <- structure(c(1498L, 1780L), .Dim = 2L, .Dimnames = structure(list( c("seq1", "seq2")), .Names = ""), class = "table") checkIdentical(exp, table(chromosome(aln))) exp <- structure(c(1631L, 1611L, 0L, 36L), .Dim = 4L, .Dimnames = structure(list( c(levels(strand()), NA)), .Names = ""), class = "table") checkIdentical(exp, table(strand(aln), useNA="always")) checkEquals(793.298, mean(position(aln), na.rm=TRUE), tolerance=10e-4) exp <- structure(c(3278L, 1L), .Names = c("readName", "alignColumn")) checkIdentical(exp, dim(alignData(aln))) exp <- structure(c(35946L, 21903L, 21933L, 35608L, 139L), .Names = c("A", "C", "G", "T", "other")) checkIdentical(exp, alphabetFrequency(sread(aln), collapse=TRUE, baseOnly=TRUE)) exp <- structure(c(263, 1, 20, 178, 575, 163, 195, 286, 285, 850, 290, 367, 416, 338, 391, 604, 600, 688, 894, 778, 1210, 2284, 1804, 1879, 3307, 10557, 79755, 6380, 150, 18, 3), .Names = c("!", "#", "$", "%", "&", "'", "(", ")", "*", "+", ",", "-", ".", "/", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ":", ";", "<", "=", ">", "?", "@")) checkIdentical(exp, rowSums(consensusMatrix(quality(quality(aln))))) } test_readAligned_bam_no_qname <- function() { .readAligned_bamWhat <- ShortRead:::.readAligned_bamWhat param <- ScanBamParam(simpleCigar=TRUE, reverseComplement=TRUE, what=.readAligned_bamWhat(FALSE)) aln <- .readAligned_bam(fl, param=param) checkIdentical(0L, unique(width(id(aln)))) } .checkEquals0 <- function(aln0, aln1) { checkIdentical(class(aln0), class(aln1)) checkIdentical(length(aln0), length(aln1)) checkIdentical(width(aln0), width(aln1)) checkIdentical(chromosome(aln0), chromosome(aln1)) checkIdentical(position(aln0), position(aln1)) checkIdentical(strand(aln0), strand(aln1)) checkIdentical(alignQuality(aln0), alignQuality(aln1)) checkIdentical(as.character(sread(aln0)), as.character(sread(aln1))) checkIdentical(as.character(quality(quality(aln0))), as.character(quality(quality(aln1)))) } test_readAligned_bam_isSimpleCigar <- function() { p <- ScanBamParam(simpleCigar=TRUE, reverseComplement=TRUE, what=.what) .checkEquals0(.readAligned_bam(fl, param=p), .readAligned_bam(fl)) } test_readAligned_bam_which <- function() { which <- RangesList(seq1=IRanges(1000, 2000), seq2=IRanges(c(100, 1000), c(1000, 2000))) p1 <- ScanBamParam(simpleCigar=TRUE, reverseComplement=TRUE, what=.what, which=which) aln <- .readAligned_bam(fl, param=p1) checkEquals(structure("AlignedRead", package = "ShortRead"), class(aln)) checkTrue(validObject(aln)) checkEquals(2397L, length(aln)) exp <- structure(c(4L, 24L, 2076L, 205L, 88L), .Dim = 5L, .Dimnames = structure(list( c("33", "34", "35", "36", "40")), .Names = ""), class = "table") checkIdentical(exp, table(width(aln))) } test_readAligned_bam_multipleFiles <- function() { aln <- .readAligned_bam(c(fl, fl)) checkEquals(structure("AlignedRead", package = "ShortRead"), class(aln)) checkTrue(validObject(aln)) checkIdentical(6556L, length(aln)) len <- seq_len(length(aln)) idx <- split(len, cut(len, 2, FALSE)) .checkEquals0(aln[idx[[1]]], aln[idx[[2]]]) } ShortRead/inst/unitTests/test_readPrb.R0000644000126300012640000000216412227066720021557 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file("extdata", package="ShortRead")) test_readPrb_input <- function() { check <- function(obj) { checkTrue(validObject(obj)) checkIdentical(256L, length(obj)) checkIdentical(36L, unique(width(obj))) } icheck <- function(obj) { checkTrue(validObject(obj)) checkIdentical(c(256L, 36L), dim(obj)) } acheck <- function(obj, width) { checkIdentical("array", class(obj)) checkIdentical("integer", typeof(obj)) checkIdentical(c(256L, 4L, width), dim(obj)) } check(readPrb(sp, ".*prb.txt", as="SolexaEncoding")) check(readPrb(sp, ".*prb.txt", as="FastqEncoding")) icheck(readPrb(sp, ".*prb.txt", as="IntegerEncoding")) acheck(readPrb(sp, ".*prb.txt", as="array"), 36L) } test_readPrb_consistent <- function() { exp <- readPrb(sp, ".*prb.txt", as="IntegerEncoding") checkIdentical(exp, as(readPrb(sp, ".*prb.txt", as="SolexaEncoding"), "matrix")) checkIdentical(exp, as(readPrb(sp, ".*prb.txt", as="FastqEncoding"), "matrix")) } test_readPrb_errors <- function() { } ShortRead/inst/unitTests/test_readQseq.R0000644000126300012640000000250212227066720021741 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file("extdata", package="ShortRead")) checkBstring <- function(obs, exp) { checkEquals(as.character(obs), as.character(exp)) } test_readQseq_ShortReadQ<- function() { res <- readQseq(sp) checkEquals("ShortReadQ", as.vector(class(res))) checkEquals(256L, length(res)) checkEquals(158223L, sum(alphabetScore(res))) alf <- alphabetFrequency(sread(res), collapse=TRUE, baseOnly=TRUE) checkEquals(structure(c(1697L, 1639L, 1481L, 1706L, 133L), .Names = c("A", "C", "G", "T", "other")), alf) } test_readQseq_ShortReadQ_filtered <- function() { res <- readQseq(sp, filtered=TRUE) checkEquals(187L, length(res)) } test_readQseq_DataFrame <- function() { res <- readQseq(sp) xdf <- readQseq(sp, as="DataFrame") checkEquals("DataFrame", as.vector(class(xdf))) checkEquals(c(256L, 11L), dim(xdf)) checkBstring(sread(res), xdf[[9]]) checkBstring(quality(quality(res)), xdf[[10]]) } test_readQseq_DataFrame_filtered <- function() { xdf0 <- readQseq(sp, as="DataFrame") xdf0 <- xdf0[xdf0[[11]]=="Y", -11] xdf <- readQseq(sp, as="DataFrame", filtered=TRUE) checkEquals(dim(xdf0), dim(xdf)) for (i in 1:8) checkEquals(xdf0[[i]], xdf[[i]]) for (i in 9:10) checkBstring(xdf0[[i]], xdf[[i]]) } ShortRead/inst/unitTests/test_readXStringColumns.R0000644000126300012640000000523212227066720023772 0ustar00biocbuildphs_compbiotest_readXStringColumns_toIUPAC <- function() { src <- system.file("unitTests", "cases", package="ShortRead") fl <- file.path(src, "s_2_export_toIUPAC.txt") colClasses <- rep(list(NULL), 22) colClasses[9:10] <- c(sread="DNAString", quality="BString") names(colClasses)[9:10] <- c("sread", "quality") res <- readXStringColumns(dirname(fl), basename(fl), colClasses=colClasses) ## '.' converted to "-" in DNAString, but not BString checkTrue(all(gregexpr("-", as.character(res$sread[1]))[[1]] == c(5, 10))) checkTrue(all(gregexpr("\\.", as.character(res$quality[1]))[[1]] == 5)) checkTrue(all(gregexpr("-", as.character(res$quality[1]))[[1]] == 10)) } test_readXStringColumns_skip_nrows <- function() { what <- vector("list", 22) what[[2]] <- character() colClasses <- what colClasses[[2]] <- "DNAString" ## single file dir <- system.file("unitTests", "cases", package="ShortRead"); fl <- "s_1_results_head.txt" check <- function(dir, fl, skip, nrows) { pth <- file.path(dir, fl) exp <- DNAStringSet(scan(pth, what, nmax=nrows, skip=skip, fill=TRUE, quiet=TRUE)[[2]]) obs <- readXStringColumns(dir, fl, colClasses=colClasses, nrows=nrows, skip=skip)[[1]] checkEquals(as.character(exp), as.character(obs)) } check(dir, fl, 0L,-1L) check(dir, fl, 100L, -1L) check(dir, fl, 0L, 100L) check(dir, fl, 100L, 100L) ## multiple files dir <- system.file("unitTests", "cases", package="ShortRead"); pattern <- "s_1_results_head.*txt" mcheck <- function(dir, pattern, skip=0L, nrows=-1L) { fls <- list.files(dir, pattern, full=TRUE) exp <- vector("list",length(fls)) nread <- 0 for (i in seq_along(fls)) { if (nrows > 0 && nread >= nrows) break exp[[i]] <- scan(fls[i], what=what, fill=TRUE, skip=skip, nmax=nrows-nread, quiet=TRUE) nread <- nread + length(exp[[i]][[2]]) } exp <- DNAStringSet(unlist(exp)) obs <- readXStringColumns(dir, pattern, colClasses=colClasses, skip=skip, nrows=nrows)[[1]] checkTrue(validObject(obs)) checkEquals(as.character(exp), as.character(obs)) } mcheck(dir, pattern, 0L) mcheck(dir, pattern, 100L) mcheck(dir, pattern, 0L, 500L) mcheck(dir, pattern, 0L, 1500L) mcheck(dir, pattern, 0L, 15000L) mcheck(dir, pattern, 100L, 500L) mcheck(dir, pattern, 100L, 1500L) mcheck(dir, pattern, 100L, 15000L) } ShortRead/inst/unitTests/test_renew.R0000644000126300012640000000203612227066720021316 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file("extdata", package="ShortRead")) ap <- analysisPath(sp) filt <- chromosomeFilter("chr[[:digit:]+].fa") aln <- readAligned(ap, "s_2_export.txt", "SolexaExport", filter=filt) test_renewable0 <- function() { cls <- renewable() for (cl in cls) { def <- getClass(cl, where=getNamespace("ShortRead")) checkTrue(validObject(df)) } } test_renewable_non_virtual<- function() { cls <- renewable() for (cl in cls) { if (!getClass(cl)@virtual) checkIdentical(getSlots(cl), renewable(cl)[[1]]) } } test_renew <- function() { checkIdentical(aln, renew(aln)) labels <- sub("\\.fa", "", levels(chromosome(aln))) updt <- factor(chromosome(aln), labels=labels) checkIdentical(updt, chromosome(renew(aln, chromosome=updt))) obs <- renew(aln, chromosome=updt, position=1L+position(aln)) checkIdentical(updt, chromosome(obs)) checkIdentical(1L+position(aln), position(obs)) checkException(renew(aln, position=1L), silent=TRUE) } ShortRead/inst/unitTests/test_trimEnds.R0000644000126300012640000000336712227066720021773 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") rfq <- readFastq(fl) test_trimEnds <- function() { exp <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 10, 16, 72, 152) checkIdentical(as.integer(exp), tabulate(width(trimEnds(rfq, "I")))) rng <- trimEnds(sread(rfq), "G", relation="==", ranges=TRUE) checkTrue(!all(1L == start(rng))) checkTrue(!all(end(rfq) == end(rng))) checkTrue(all(1L == start(trimEnds(sread(rfq), "G", left=FALSE, relation="==", ranges=TRUE)))) checkTrue(all(width(rfq) == end(trimEnds(sread(rfq), "G", right=FALSE, relation="==", ranges=TRUE)))) exp <- c(1L, 1L, 3L, 3L, 8L, 8L, 12L, 10L, 41L, 41L, 38L, 43L, 47L) obs <- trimEnds(sread(rfq), c("G", "T"), relation="==") checkIdentical(exp, as.vector(table(width(obs)))) } test_trimEnds_unknown_a <- function() { checkIdentical(as.character(sread(rfq)), suppressWarnings(as.character(trimEnds(sread(rfq), "Z")))) obs <- tryCatch(trimEnds(sread(rfq), "Z"), warning=conditionMessage) checkIdentical("some 'a' not in alphabet(object)", obs) } test_trimEnds_classes <- function() { rng <- trimEnds(quality(rfq), "I", ranges=TRUE) checkIdentical(as.character(quality(narrow(quality(rfq), start(rng), end(rng)))), as.character(quality(trimEnds(quality(rfq), "I")))) ## FIXME: additional, e.g., PhredQuality } test_trimEnds_file <- function() { dest <- trimEnds(fl, "I", destinations=tempfile()) checkIdentical(width(trimEnds(rfq, "I")), width(readFastq(dest))) } ShortRead/inst/unitTests/test_trimTails.R0000644000126300012640000000472712227066720022157 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") rfq <- readFastq(fl) .check <- function(xexp, xobs) checkIdentical(as.character(xexp), as.character(xobs)) test_trimTails_BStringSet <- function() { .check(BStringSet("CCCBBB"), trimTails(BStringSet("CCCBBBAAA"), 1, "A")) .check(BStringSet("CCCABBB"), trimTails(BStringSet("CCCABBBAAA"), 2, "A")) .check(BStringSet("CCCABBBAB"), trimTails(BStringSet("CCCABBBABAA"), 2, "A", successive=TRUE)) .check(BStringSet("CCC"), trimTails(BStringSet("CCCABBBABAA"), 2, "B", successive=TRUE)) .check(BStringSet(), trimTails(BStringSet("CCCABBBABAA"), 1, "C")) } test_trimTails_QualityScore <- function() { .qq <- function(x) quality(quality(x)) checkTrue(validObject(trimTails(rfq, 1, "H"))) .check(.qq(rfq), .qq(trimTails(rfq, 1, " "))) .check(BStringSet(), .qq(trimTails(rfq, 1, "]"))) } test_trimTails_XStringQuality <- function() { .qq <- function(x) quality(quality(x)) .qb <- function(x) as(x, "BStringSet") qual <- as(quality(rfq), "PhredQuality") checkTrue(validObject(trimTails(qual, 1, "H"))) .check(.qq(rfq), .qb(trimTails(qual, 1, "!"))) .check(BStringSet(), .qb(trimTails(qual, 1, "]"))) } test_trimTails_file <- function() { exp <- width(trimTails(rfq, 1, "H")) dest <- trimTails(fl, 1, "H", destinations=tempfile()) checkIdentical(exp, width(readFastq(dest))) } test_trimTailw <- function() { b <- BStringSet("BBBBBB") checkIdentical(BStringSet(), trimTailw(b, 1L, "C", 3L)) checkIdentical(BStringSet(), trimTailw(b, 1L, "B", 3L)) checkIdentical(b, trimTailw(b, 1L, "A", 3L)) checkIdentical(BStringSet(), trimTailw(b, 3L, "C", 1L)) checkIdentical(b, trimTailw(b, 4L, "C", 1L)) b <- BStringSet("DDDBBBBB") checkIdentical(BStringSet("DDD"), trimTailw(b, 2L, "C", 1L)) checkIdentical(BStringSet("DD"), trimTailw(b, 1L, "C", 1L)) checkIdentical(BStringSet("D"), trimTailw(b, 1L, "C", 2L)) checkIdentical(BStringSet(), trimTailw(b, 1L, "C", 3L)) b <- BStringSet("DDDBDBBBB") checkIdentical(BStringSet("DDDBD"), trimTailw(b, 2L, "C", 1L)) checkIdentical(BStringSet("DDDBDB"), trimTailw(b, 4L, "C", 2L)) } test_trimTailw_file <- function() { exp <- width(trimTailw(rfq, 2L, "C", 1L)) dest <- trimTailw(fl, 2L, "C", 1L, destinations=tempfile()) checkIdentical(exp, width(readFastq(dest))) } ShortRead/inst/unitTests/test_writeFastq_test.R0000644000126300012640000000224212227066720023365 0ustar00biocbuildphs_compbiosp <- SolexaPath(system.file("extdata", package="ShortRead")) test_writeFastq_roundtrip <- function() { ## potential coercion from '.' to 'N' rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") file <- tempfile() writeFastq(rfq, file) fq <- readFastq(dirname(file), basename(file)) checkIdentical(as.character(id(fq)), as.character(id(rfq))) checkIdentical(as.character(sread(fq)), as.character(sread(rfq))) checkIdentical(as.character(quality(quality(fq))), as.character(quality(quality(rfq)))) } test_writeFastq_writeError <- function() { object <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") file <- tempfile() mode <- "w" max_width <- 10L .write_fastq <- ShortRead:::.write_fastq checkException(.Call(.write_fastq, id(object), sread(object), quality(quality(object)), file, mode, max_width), silent=TRUE) } test_writeFastq_roundtrip0length <- function() { dest <- tempfile() file.create(dest) exp <- readFastq(dest) writeFastq(exp, dest <- tempfile()) checkIdentical(exp, readFastq(dest)) } ShortRead/man/0000755000126300012640000000000012227066716014614 5ustar00biocbuildphs_compbioShortRead/man/AlignedDataFrame-class.Rd0000644000126300012640000000462112227066716021321 0ustar00biocbuildphs_compbio\name{AlignedDataFrame-class} \docType{class} \alias{AlignedDataFrame-class} \alias{append,AlignedDataFrame,AlignedDataFrame-method} \title{ "AlignedDataFrame" representing alignment annotations as a data frame } \description{ This class extends \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}}. It is a data frame and associated metadata (describing the columns of the data frame). The main purpose of this class is to contain alignment data in addition to the central information of \code{\linkS4class{AlignedRead}}. } \section{Objects from the Class}{ Objects from the class are created by calls to the \code{\link{AlignedDataFrame}} function. } \section{Slots}{ \describe{ \item{\code{data}:}{Object of class \code{"data.frame"} containing the data. See \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} \item{\code{varMetadata}:}{Object of class \code{"data.frame"} describing columns of \code{data}. See \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} \item{\code{dimLabels}:}{Object of class \code{character} describing the dimensions of the AnnotatedDataFrame. Used internally; see \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} \item{\code{.__classVersion__}:}{Object of class \code{"Versions"} describing the version of this object. Used internally; see \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} for details.} } } \section{Extends}{ Class \code{"\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}"}, directly. Class \code{"\link[Biobase:class.Versioned]{Versioned}"}, by class "AnnotatedDataFrame", distance 2. } \section{Methods}{ This class inherits methods \code{pData} (to retrieve the underlying data frame) and \code{varMetadata} (to retrieve the metadata) from \code{AnnotatedDataFrame}. Additional methods include: \describe{ \item{append}{\code{signature(x = "AlignedDataFrame", values = "AlignedDataFrame")}: append \code{values} after \code{x}. \code{varMetadata} of \code{x} and \code{y} must be identical; \code{pData} and \code{varMetadata} are appended using \code{rbind}.} } } \author{Martin Morgan } \seealso{ \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} } \keyword{classes} ShortRead/man/AlignedDataFrame.Rd0000644000126300012640000000162512227066716020217 0ustar00biocbuildphs_compbio\name{AlignedDataFrame} \alias{AlignedDataFrame} \title{AlignedDataFrame constructor} \description{ Construct an \code{AlignedDataFrame} from a data frame and its metadata } \usage{ AlignedDataFrame(data, metadata, nrow = nrow(data)) } \arguments{ \item{data}{A data frame containing alignment information.} \item{metadata}{A data frame describing the columns of \code{data}, and with number of rows of \code{metadata} corresponding to number of columns of \code{data}. . The data frame must contain a column \code{labelDescription} providing a verbose description of each column of \code{data}.} \item{nrow}{An optional argument, to be used when \code{data} is not provided, to construct an AlignedDataFrame with the specified number of rows.} } \value{ An object of \code{\linkS4class{AlignedDataFrame}}. } \author{Martin Morgan } \keyword{manip} ShortRead/man/AlignedRead-class.Rd0000644000126300012640000002174412227066716020355 0ustar00biocbuildphs_compbio\name{AlignedRead-class} \docType{class} \alias{AlignedRead-class} \alias{[,AlignedRead,ANY,ANY-method} \alias{[,AlignedRead,ANY,missing-method} \alias{[,AlignedRead,missing,ANY-method} \alias{[,AlignedRead,missing,missing-method} \alias{[,AlignedRead,missing,missing,ANY-method} \alias{[,AlignedRead,missing,ANY,ANY-method} \alias{[,AlignedRead,ANY,ANY,ANY-method} \alias{[,AlignedRead,ANY,missing,ANY-method} \alias{append,AlignedRead,AlignedRead-method} \alias{coerce,PairwiseAlignments,AlignedRead-method} \alias{coerce,AlignedRead,RangesList-method} \alias{coerce,AlignedRead,RangedData-method} \alias{coerce,AlignedRead,GRanges-method} \alias{coerce,AlignedRead,GAlignments-method} \alias{coerce,AlignedRead,GappedReads-method} \alias{chromosome,AlignedRead-method} \alias{position,AlignedRead-method} \alias{strand,AlignedRead-method} \alias{coverage,AlignedRead-method} \alias{srrank,AlignedRead-method} \alias{srorder,AlignedRead-method} \alias{srduplicated,AlignedRead-method} \alias{\%in\%,AlignedRead,RangesList-method} \alias{detail,AlignedRead-method} \alias{show,AlignedRead-method} \title{"AlignedRead" class for aligned short reads} \description{ This class represents and manipulates reads and their genomic alignments. Alignment information includes genomic position, strand, quality, and other data. } \section{Objects from the Class}{ Objects of this class can be created from a call to the \code{\link{AlignedRead}} constructor, or more typically by parsing appropriate files (e.g., \code{\link{readAligned}}). } \section{Slots}{ \describe{ \item{\code{chromosome}}{Object of class \code{"factor"} the particular sequence within a set of target sequences (e.g. chromosomes in a genome assembly) to which each short read aligns.} \item{\code{position}}{Object of class \code{"integer"} the (base-pair) position in the genome to which the read is aligned. AlignedRead objects created by readAligned use 1-based indexing, with alignemnts reported in \sQuote{left-most} coordinates, as described in the vignette.} \item{\code{strand}}{Object of class \code{"factor"} the strand of the alignment.} \item{\code{alignQuality}}{Object of class \code{"numeric"} representing an alignment quality score.} \item{\code{alignData}}{Object of class \code{"AlignedDataFrame"} additional alignment information.} \item{\code{quality}}{Object of class \code{"BStringSet"} representing base-call read quality scores.} \item{\code{sread}}{Object of class \code{"DNAStringSet"} DNA sequence of the read.} \item{\code{id}}{Object of class \code{"BStringSet"} read identifier.} } } \section{Extends}{ Class \code{"\linkS4class{ShortReadQ}"}, directly. Class \code{"\linkS4class{ShortRead}"}, by class "ShortReadQ", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class "ShortReadQ", distance 3. } \section{Methods}{ See \code{\link{accessors}} for additional functions to access slot content, and \code{\linkS4class{ShortReadQ}}, \code{\linkS4class{ShortRead}} for inherited methods. Additional methods include: \describe{ \item{[}{\code{signature(x = "AlignedRead", i = "ANY", j = "missing")}: This method creates a new \code{AlignedRead} object containing only those reads indexed by \code{i}. \code{chromosome} is recoded to contain only those levels in the new subset.} \item{append}{\code{signature(x = "AlignedRead", values = "AlignedRead")}: append \code{values} after \code{x}. \code{chromosome} and \code{strand} must be factors with the same levels. See methods for \code{ShortReadQ}, \code{AlignedDataFrame} for details of how these components of \code{x} and \code{y} are appended.} \item{coerce}{ \code{signature(from = "PairwiseAlignments", to = "AlignedRead")}: \code{signature(from = "AlignedRead", to = "RangesList")}: \code{signature(from = "AlignedRead", to = "RangedData")}: \code{signature(from = "AlignedRead", to = "GRanges")}: \code{signature(from = "AlignedRead", to = "GAlignments")}: \code{signature(from = "AlignedRead", to = "GappedReads")}: Invoke these methods with, e.g., \code{as(from, "AlignedRead")} to coerce objects of class \code{from} to class \code{"AlignedRead"}. Coercion from AlignedRead to \link[IRanges]{RangesList}, \link[IRanges]{RangedData} or \link[GenomicRanges]{GRanges} assumes that \code{position(from)} uses a \sQuote{leftmost} (see \code{coverage} on this page) coordinate system. Since \link[IRanges]{Ranges} objects cannot store \code{NA} values, reads with \code{NA} in the \code{position}, \code{width}, \code{chromosome} or (in the case of GRanges) \code{strand} vectors are dropped. } \item{chromosome}{\code{signature(object = "AlignedRead")}: access the chromosome slot of \code{object}.} \item{position}{\code{signature(object = "AlignedRead")}: access the position slot of \code{object}.} \item{strand}{\code{signature(object = "AlignedRead")}: access the strand slot of \code{object}.} \item{coverage}{ \code{signature(x = "AlignedRead", shift = 0L, width = NULL, weight = 1L, ..., coords = c("leftmost", "fiveprime"), extend=0L)}: Calculate coverage across reads present in \code{x}. \code{shift} must be either \code{0L} or a named integer vector with names including all \code{levels(chromosome(x))}. It specifies how the reads in \code{x} should be (horizontally) shifted \emph{before} the coverage is computed. \code{width} must be either \code{NULL} or a named vector of non-negative integers with names including all \code{levels(chromosome(x))}. In the latter case, it specifies for each chromosome the end of the chromosome region over which coverage is to be calculated \emph{after} the reads have been shifted. Note that this region always starts at chromosome position 1. If \code{width} is \code{NULL}, it ends at the rightmost chromosome position covered by at least one read. \code{weight} must be \code{1L} for now (weighting the reads is not supported yet, sorry). \code{coords} specifies the coordinate system used to record position. Both systems number base pairs from left to right on the 5' strand. \code{leftmost} indicates the eland convention, where \code{position(x)} is the left-most (minimum) base pair, regardless of strand. \code{fiveprime} is the MAQ convention, where \code{position(x)} is the coordinate of the 5' end of the aligned read. \code{extend} indicates the number of base pairs to extend the read. Extension is in the 3' direction, measured from the 3' end of the aligned read. The return value of \code{coverage} is a \code{SimpleRleList} object. } \item{\%in\%}{ \code{signature(x = "AlignedRead", table = "RangesList")}: Return a length(x) logical vector indicating whether the chromosome, position, and width of \code{x} overlap (see IRanges \code{\link[IRanges:IntervalTree-class]{overlap}}) with ranges in \code{table}. Reads for which \code{chromosome()}, \code{position()}, or \code{width()} return \code{NA} \emph{never} overlap with \code{table}. This function assumes that positions are in \sQuote{leftmost} coordinates, as defined in \code{coverage}. } \item{srorder}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}:} \item{srrank}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}:} \item{srsort}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}:} \item{srduplicated}{\code{signature(x = "AlignedRead", ..., withSread=TRUE)}: Order, rank, sort, and find duplicates in \code{AlignedRead} objects. Reads are sorted by \code{chromosome}, \code{strand}, \code{position}, and then (if \code{withSread=TRUE}) \code{sread}; less fine-grained sorting can be accomplished with, e.g., \code{x[srorder(sread(x))]}. \code{srduplicated} behaves like \code{duplicated}, i.e., the first copy of a duplicate is \code{FALSE} while the remaining copies are \code{TRUE}.} \item{show}{\code{signature(object = "AlignedRead")}: provide a compact display of the \code{AlignedRead} content.} \item{detail}{\code{signature(x = "AlignedRead")}: display \code{alignData} in more detail.} } } \author{Martin Morgan } \seealso{ \code{\link{readAligned}} } \examples{ showMethods(class="AlignedRead", where=getNamespace("ShortRead")) dirPath <- system.file('extdata', 'maq', package='ShortRead') (aln <- readAligned(dirPath, 'out.aln.1.txt', type="MAQMapview")) coverage(aln)[[1]] cvg <- coverage(aln, shift=c(ChrA=10L)) ## remove 0 coverage on left ends ltrim0 <- function(x) { i <- !cumprod(runValue(x) == 0) Rle(runValue(x)[i], runLength(x)[i]) } endoapply(cvg, ltrim0) ## demonstration of show() and detail() methods show(aln) detail(aln) } \keyword{classes} ShortRead/man/AlignedRead.Rd0000644000126300012640000000333112227066716017242 0ustar00biocbuildphs_compbio\name{AlignedRead} \alias{AlignedRead} \title{Construct objects of class "AlignedRead"} \description{ This function constructs objects of \code{\linkS4class{AlignedRead}}. It will often be more convenient to create \code{AlignedRead} objects using parsers such as \code{\link{readAligned}}. } \usage{ AlignedRead(sread, id, quality, chromosome, position, strand, alignQuality, alignData = AlignedDataFrame(nrow = length(sread))) } \arguments{ \item{sread}{An object of class \code{DNAStringSet}, containing the DNA sequences of the short reads.} \item{id}{An object of class \code{BStringSet}, containing the identifiers of the short reads. This object is the same length as \code{sread}.} \item{quality}{An object of class \code{BStringSet}, containing the ASCII-encoded quality scores of the short reads. This object is the same length as \code{sread}.} \item{chromosome}{A \code{factor} describing the particular sequence within a set of target sequences (e.g. chromosomes in a genome assembly) to which each short read aligns.} \item{position}{A \code{integer} vector describing the (base pair) position at which each short read begins its alignment.} \item{strand}{A \code{factor} describing the strand to which the short read aligns.} \item{alignQuality}{A \code{numeric} vector describing the alignment quality.} \item{alignData}{An \code{AlignedDataFrame} with number of rows equal to the length of \code{sread}, containing additional information about alignments.} } \value{ An object of class \code{\linkS4class{AlignedRead}}. } \author{Martin Morgan } \seealso{\code{\linkS4class{AlignedRead}}.} \keyword{manip} ShortRead/man/BAMQA-class.Rd0000644000126300012640000000244112227066716017030 0ustar00biocbuildphs_compbio\name{BAMQA-class} \docType{class} \alias{BAMQA-class} \alias{report,BAMQA-method} \alias{report_html,BAMQA-method} \title{Quality assessment from BAM files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more BAM files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method, with the argument \code{type="BAM"}. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. \describe{ \item{report}{\code{signature(x="BAMQA", ..., dest=tempfile(), type="html")}: produces an html file summarizing QA results.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("BAMQA") } \keyword{classes} ShortRead/man/BowtieQA-class.Rd0000644000126300012640000000244712227066716017670 0ustar00biocbuildphs_compbio\name{BowtieQA-class} \docType{class} \alias{BowtieQA-class} \alias{report,BowtieQA-method} \alias{report_html,BowtieQA-method} \title{Quality assessment summaries from Bowtie files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more Bowtie files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method, with the argument \code{type="Bowtie"}. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. \describe{ \item{report}{\code{signature(x="BowtieQA", ..., dest=tempfile(), type="html")}: produces an html file summarizing the QA results.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("BowtieQA") } \keyword{classes} ShortRead/man/ExperimentPath-class.Rd0000644000126300012640000000331012227066716021140 0ustar00biocbuildphs_compbio\name{ExperimentPath-class} \docType{class} \alias{ExperimentPath-class} % constructors \alias{ExperimentPath} % etc \alias{show,ExperimentPath-method} \alias{detail,ExperimentPath-method} \title{"ExperimentPath" class representing a file hierarchy of data files} \description{ Short read technologies often produce a hierarchy of output files. The content of the hierarchy varies. This class represents the root of the file hierarchy. Specific classes (e.g., \code{\linkS4class{SolexaPath}}) represent different technologies. } \section{Objects from the Class}{ Objects from the class are created by calls to the constructor: \code{ExperimentPath(experimentPath)} \describe{ \item{experimentPath}{\code{character(1)} object pointing to the top-level directory of the experiment; see specific technology classes for additional detail.} \item{verbose=FALSE}{(optional) logical vector which, when \code{TRUE} results in warnings if paths do not exist.} } All paths must be fully-specified. } \section{Slots}{ \code{ExperimentPath} has one slot, containing a fully specified path to the corresponding directory (described above). \describe{ \item{\code{basePath}}{See above.} } The slot is accessed with \code{experimentPath}. } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Methods include: \describe{ \item{show}{\code{signature(object = "ExperimentPath")}: briefly summarize the file paths of \code{object}.} \item{detail}{\code{signature(x = "ExperimentPath")}: summarize file paths of \code{x}.} } } \author{Michael Lawrence} \examples{ showClass("ExperimentPath") } \keyword{classes} ShortRead/man/FastqQA-class.Rd0000644000126300012640000000320612227066716017507 0ustar00biocbuildphs_compbio\name{ShortReadQA-class} \docType{class} \alias{FastqQA} \alias{FastqQA-class} \alias{ShortReadQQA-class} \alias{report,FastqQA-method} \alias{report_html,ShortReadQQA-method} \alias{report_html,FastqQA-method} \title{Quality assessment of fastq files and ShortReadQ objects} \description{ These classes contains a list-like structure with summary descriptions derived from visiting one or more fastq files, or from a \code{\linkS4class{ShortReadQ}} object. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. Additional methods defined on this class are: \describe{ \item{report}{\code{signature(x="FastqQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} \item{report}{\code{signature(x="ShortReadQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("FastqQA") } \keyword{classes} ShortRead/man/GappedReads-class.Rd0000644000126300012640000000463612227066716020376 0ustar00biocbuildphs_compbio\name{GappedReads-class} \docType{class} % Class: \alias{class:GappedReads} \alias{GappedReads-class} \alias{GappedReads} % Constructors: \alias{readGappedReads} % Accessors: \alias{qseq} \alias{qseq,GappedReads-method} \alias{qwidth,GappedReads-method} % Combining: \alias{c,GappedReads-method} % Other methods: \alias{qnarrow,GappedReads-method} \alias{narrow,GappedReads-method} \title{GappedReads objects} \description{ The GappedReads class extends the \link[GenomicRanges]{GAlignments} class defined in the GenomicRanges package. A GappedReads object contains all the information contained in a \link[GenomicRanges]{GAlignments} object plus the sequences of the queries. Those sequences can be accessed via the \code{qseq} accessor. } \section{Constructor}{ \describe{ \item{}{ \code{readGappedReads(file, format="BAM", use.names=FALSE, ...)}: Read a file as a GappedReads object. Like with the \code{\link[GenomicRanges]{readGAlignments}} constructor, by default (i.e. \code{use.names=FALSE}) the resulting object has no names. If \code{use.names} is \code{TRUE}, then the names are constructed from the query template names (QNAME field in a SAM/BAM file). Note that this function is just a front-end that delegates to the format-specific back-end function specified via the \code{format} argument. The \code{use.names} argument and any extra argument are passed to the back-end function. Only the BAM format is supported for now. Its back-end is the \code{\link[Rsamtools]{readGappedReadsFromBam}} function defined in the Rsamtools package. See \code{?\link[Rsamtools]{readGappedReadsFromBam}} for more information (you might need to install and load the Rsamtools package first). } } } \section{Accessors}{ In the code snippets below, \code{x} is a GappedReads object. \describe{ \item{}{ \code{qseq(x)}: Extracts the sequences of the queries as a \code{\link[Biostrings]{DNAStringSet}} object. } } } \references{ \url{http://samtools.sourceforge.net/} } \author{ H. Pages and P. Aboyoun } \seealso{ \link[GenomicRanges]{GAlignments-class}, \code{\link[Rsamtools]{readGappedReadsFromBam}} } \examples{ greads_file <- system.file("extdata", "ex1.bam", package="Rsamtools") greads <- readGappedReads(greads_file) greads qseq(greads) } \keyword{methods} \keyword{classes} ShortRead/man/Intensity-class.Rd0000644000126300012640000000771212227066716020203 0ustar00biocbuildphs_compbio\name{Intensity-class} \docType{class} \alias{Intensity-class} \alias{IntensityMeasure-class} \alias{IntensityInfo-class} \alias{ArrayIntensity-class} \alias{ArrayIntensity} % accessors \alias{readInfo} \alias{intensity} \alias{measurementError} % subset \alias{[,IntensityMeasure,ANY,ANY-method} \alias{[,IntensityMeasure,ANY,ANY,ANY-method} \alias{[,IntensityMeasure,ANY,missing,ANY-method} \alias{[,IntensityMeasure,missing,ANY,ANY-method} \alias{[,IntensityMeasure,missing,missing,ANY-method} \alias{[[,ArrayIntensity,ANY,ANY-method} % etc. \alias{dim,Intensity-method} \alias{show,Intensity-method} \alias{show,IntensityMeasure-method} \title{"Intensity", "IntensityInfo", and "IntensityMeasure" base classes for short read image intensities} \description{ The \code{Intensity}, \code{IntensityMeasure}, and \code{IntensityInfo} classes represent and manipulate image intensity measures. Instances from the class may also contain information about measurement errors, and additional information about the reads from which the intensities are derived. \code{Intensity}, and \code{IntensityMeasure}, are virtual classes, and cannot be created directly. Classes derived from \code{IntensityMeasure} (e.g., \code{ArrayIntensity}) and \code{Intensity} (e.g., \code{\linkS4class{SolexaIntensity}}) are used to represent specific technologies. } \section{Objects from the Class}{ \code{ArrayIntensity} objects can be created with calls of the form \code{ArrayIntensity(array(0, c(1,2,3)))}. Objects of derived classes can be created from calls such as the \code{\link{SolexaIntensity}} constructor, or more typically by parsing appropriate files (e.g., \code{\link{readIntensities}}). } \section{Slots}{ Class \code{Intensity} has slots: \describe{ \item{\code{readInfo}:}{Object of class \code{"IntensityInfo"} containing columns for the lane, tile, x, and y coordinates of the read.} \item{\code{intensity}:}{Object of class \code{"IntensityMeasure"} containing image intensity data for each read and cycle.} \item{\code{measurementError}:}{Object of class \code{"IntensityMeasure"} containing measures of image intensity uncertainty for each read and cycle.} \item{\code{.hasMeasurementError}:}{Length 1 logical variable indicating whether intensity standard errors are included (internal use only).} } Classes \code{IntensityInfo} and \code{IntensityMeasure} are virtual classes, and have no slots. } \section{Extends}{ These classes extend \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Methods and accessor functions for \code{Intensity} include: \describe{ \item{readInfo}{\code{signature(object = "Intensity")}: access the \code{readInfo} slot of \code{object}.} \item{intensity}{\code{signature(object = "Intensity")}: access the \code{intensity} slot of \code{object}.} \item{measurementError}{\code{signature(object = "Intensity")}: access the \code{nse} slot of \code{object}, or signal an error if no standard errors are available.} \item{dim}{\code{signature(object = "Intensity")}: return the dimensions (e.g., number of reads by number of cycles) represented by \code{object}.} \item{show}{\code{signature(object = "Intensity")}: provide a compact representation of the object.} } Subsetting \code{"["} is available for the \code{IntensityMeasure} class; the \code{drop} argument to \code{"["} is ignored. Subsetting with \code{"[["} is available for the \code{ArrayIntensity} class. The method accepts three arguments, corresponding to the read, base, and cycle(s) to be selected. The return value is the array (i.e., underlying data values) corresponding to the selected indices. } \author{Martin Morgan } \seealso{ \code{\link{readIntensities}} } \examples{ showMethods(class="Intensity", where=getNamespace("ShortRead")) example(readIntensities) } \keyword{classes} ShortRead/man/MAQMapQA-class.Rd0000644000126300012640000000242112227066716017503 0ustar00biocbuildphs_compbio\name{MAQMapQA-class} \docType{class} \alias{MAQMapQA} \alias{MAQMapQA-class} \alias{report,MAQMapQA-method} \alias{report_html,MAQMapQA-method} \title{Quality assessment summaries from MAQ map files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more MAQMap files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. \describe{ \item{report}{\code{signature(x="MAQMapQA", ..., dest=tempfile(), type="html")}: produces an html file summarizing the QA results.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("MAQMapQA") } \keyword{classes} ShortRead/man/QA-class.Rd0000644000126300012640000000703512227066716016514 0ustar00biocbuildphs_compbio\name{QA-class} \docType{class} \alias{QA-class} \alias{.QA2-class} \alias{QA-class} \alias{QAAdapterContamination-class} \alias{QAFrequentSequence-class} \alias{QANucleotideByCycle-class} \alias{QANucleotideUse-class} \alias{QAQualityByCycle-class} \alias{QAQualityUse-class} \alias{QAReadQuality-class} \alias{QASequenceUse-class} \alias{QASource-class} \alias{QAFastqSource-class} \alias{QAData-class} \alias{QACollate-class} \alias{QAFiltered-class} \alias{QAFlagged-class} \alias{QASummary-class} \title{(Updated) classes for representing quality assessment results} \description{ Classes derived from \code{.QA-class} represent results of quality assurance analyses. } \section{Objects from the Class}{ Users create instances of many of these classes by calling the corresponding constructors, as documented on the help page for \code{\link{qa2}}. Classes constructed in this way include \code{\link{QACollate}}, \code{\link{QAFastqSource}}, \code{\link{QAAdapterContamination}}, \code{\link{QAFrequentSequence}}, \code{\link{QANucleotideByCycle}}, \code{\link{QANucleotideUse}}, \code{\link{QAQualityByCycle}}, \code{\link{QAQualityUse}}, \code{\link{QAReadQuality}}, and \code{\link{QASequenceUse}}. The classes \code{QASource}, \code{QAFiltered}, \code{QAFlagged} and \code{QASummary} are generated internally, not by users. } \section{Extends}{ \code{.QA2} extends class \code{"\linkS4class{.ShortReadBase}"}, directly. \code{QASummary} is a virtual class extending \code{.QA2}; all user-creatable classes extend \code{QASummary}. \code{QASource} extends \code{QASummary}. All classes used to represent raw data input (\code{QAFastqSource}) extend \code{QASource}. \code{QAData} is a reference class, used to contain a single instance of the fastq used in all QA Summary steps. \code{QACollate} extends \code{.QA2}. It contains a \code{SimpleList} instance with zero or more \code{QASummary} elements. \code{QA} extends \code{.QA2}, and contains a \code{SimpleList} of zero or more \code{QASummary} elements. This class represents the results of the \code{qa2} analysis. } \section{Methods}{ Methods defined on this class include: \describe{ \item{qa2}{\code{signature(object="QACollate", state, ..., verbose=FALSE)} creates a QA report from the elements of \code{QACollate}. Methods on \code{qa2} for objects extending class \code{QASummary} summarize QA statistics for that class, e.g., \code{qa2,QAFrequentSequences-method} implements the calculations required to summarize frequently used sequences, using data in \code{state}.} \item{report}{\code{signature(x="QA", ...)} creates an HTML report. Methods on \code{report} for objects extending class \code{QASummary} are responsible for creating the html snippet for that QA component.} \item{flag}{\code{signature(object=".QA2", ..., verbose=FALSE)} implements criteria to flag individual lanes as failing quality assessment. NOTE: flag is not fully implemented.} \item{rbind}{\code{signature(...="QASummary")}: rbind multiple summary elements of the same class, as when these have been created by separately calculating statistics on a number of fastq files.} \item{show}{\code{signature(object = "SolexaExportQA")}: Display an overview of the object contents.} } } \seealso{ Specific classes derived from \code{.QA2} } \author{Martin Morgan } \examples{ getClass(".QA2", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/QualityScore-class.Rd0000644000126300012640000002346412227066716020643 0ustar00biocbuildphs_compbio\name{QualityScore-class} \docType{class} \alias{QualityScore-class} \alias{NumericQuality-class} \alias{IntegerQuality-class} \alias{MatrixQuality-class} \alias{FastqQuality-class} \alias{SFastqQuality-class} % QualityScore \alias{[,QualityScore,ANY,missing-method} \alias{[,QualityScore,ANY,missing,ANY-method} \alias{[[,QualityScore,ANY,missing-method} \alias{append,QualityScore,QualityScore-method} \alias{length,QualityScore-method} \alias{width,QualityScore-method} \alias{detail,QualityScore-method} % NumericQuality \alias{width,NumericQuality-method} \alias{show,NumericQuality-method} % MatrixQuality \alias{[,MatrixQuality,ANY,missing-method} \alias{[,MatrixQuality,ANY,missing,ANY-method} \alias{[[,MatrixQuality,ANY,missing-method} \alias{dim,MatrixQuality-method} \alias{length,MatrixQuality-method} \alias{narrow,MatrixQuality-method} \alias{width,MatrixQuality-method} \alias{append,MatrixQuality,MatrixQuality-method} % FastqQuality \alias{width,FastqQuality-method} \alias{show,FastqQuality-method} \alias{alphabet,FastqQuality-method} \alias{encoding,FastqQuality-method} \alias{alphabetFrequency,FastqQuality-method} \alias{alphabetByCycle,FastqQuality-method} \alias{alphabetScore,FastqQuality-method} \alias{coerce,FastqQuality,numeric-method} \alias{coerce,FastqQuality,matrix-method} \alias{coerce,FastqQuality,PhredQuality-method} \alias{narrow,FastqQuality-method} \alias{trimTailw,FastqQuality-method} \alias{trimTails,FastqQuality-method} \alias{srsort,FastqQuality-method} \alias{srorder,FastqQuality-method} \alias{srrank,FastqQuality-method} \alias{srduplicated,FastqQuality-method} % SFastqQuality \alias{encoding,SFastqQuality-method} \alias{alphabetScore,SFastqQuality-method} \alias{coerce,SFastqQuality,matrix-method} \alias{coerce,SFastqQuality,SolexaQuality-method} \title{Quality scores for short reads and their alignments} \description{ This class hierarchy represents quality scores for short reads. \code{QualityScore} is a virtual base class, with derived classes offering different ways of representing qualities. Methods defined on \code{QualityScore} are implemented in all derived classes. } \section{Objects from the Class}{ Objects from the class are created using constructors (e.g., \code{\link{NumericQuality}}) named after the class name. Defined classes are as follows: \describe{ \item{QualityScore}{Virtual base class; instances cannot be instantiated.} \item{NumericQuality}{A single numeric vector, where values represent quality scores on an arbitrary scale.} \item{IntegerQuality}{A integer numeric vector, where values represent quality scores on an arbitrary scale.} \item{MatrixQuality}{A rectangular matrix of quality scores, with rows representing reads and columns cycles. The content and interpretation of row and column entries is arbitrary; the rectangular nature implies quality scores from equal-length reads.} \item{FastqQuality}{\sQuote{fastq} encoded quality scores stored in a \code{BStringSet} instance. Base qualities of a single read are represented as an ASCII character string. The integer-valued quality score of a single base is encoded as its ASCII equivalent plus 33. The precise definition of the integer-valued quality score is unspecified, but is usually a Phred score; the meaning can be determined from the source of the quality scores. Multiple reads are stored as a \code{BStringSet}, and so can be of varying lengths.} \item{SolexaQuality}{As with \code{FastqQuality}, but with integer qualities encoded as ASCII equivalent plus 64.} } } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ The following methods are defined on all \code{QualityScore} and derived classes: \describe{ \item{[}{\code{signature(x = "QualityScore", i = "ANY", j = "missing")}} \item{[}{\code{signature(x = "MatrixQuality", i = "ANY", j = "missing")}: Subset the object, with index \code{i} indicating the reads for which quality scores are to be extracted. The class of the result is the same as the class of \code{x}. It is an error to provide any argument other than \code{i}.} \item{[[}{\code{signature(x = "QualityScore", i = "ANY", j = "ANY")}: Subset the object, returning the quality score (e.g., numeric value) of the \code{i}th read. } \item{[[}{\code{signature(x = "MatrixQuality", i = "ANY", j = "ANY")}: Returns the vector of quality scores associated with the \code{i}th read.} \item{dim}{\code{signature(x = "MatrixQuality")}: The integer(2) dimension (e.g., number of reads, read width) represented by the quality score.} \item{length}{\code{signature(x = "QualityScore")}:} \item{length}{\code{signature(x = "MatrixQuality")}: The integer(1) length (e.g., number of reads) represented by the quality score. Note that \code{length} of \code{MatrixQuailty} is the number of rows of the corresponding matrix, and not the length of the corresponding numeric vector.} \item{append}{\code{signature(x = "QualityScore", values = "QualityScore")}: append \code{values} after \code{x}.} \item{width}{\code{signature(x = "QualityScore")}:} \item{width}{\code{signature(x = "NumericQuality")}:} \item{width}{\code{signature(x = "MatrixQuality")}:} \item{width}{\code{signature(x = "FastqQuality")}: A numeric vector with length equal to the number of quality scores, and value equal to the number of quality scores for each read. For instance, a \code{\link{FastqQuality}} will have widths equal to the number of nucleotides in the underlying short read. } \item{show}{\code{signature(object = "QualityScore")}:} \item{show}{\code{signature(object = "NumericQuality")}:} \item{show}{\code{signature(object = "FastqQuality")}: provide a brief summary of the object content. } \item{detail}{\code{signature(x = "QualityScore")}: provide a more detailed view of object content. } } The following methods are defined on specific classes: \describe{ \item{alphabet}{\code{signature(x = "FastqQuality", ...)}: Return a character vector of valid quality characters. } \item{encoding}{\code{signature(x = "FastqQuality", ...)}, \code{signature(x = "SFastqQuality", ...)}: Returns a named character vector of integer encodings. } \item{alphabetFrequency}{\code{signature(stringSet = "FastqQuality")}: Apply \code{\link[Biostrings:letterFrequency]{alphabetFrequency}} to quality scores, returning a matrix as described in \code{\link[Biostrings:letterFrequency]{alphabetFrequency}}.} \item{alphabetByCycle}{\code{signature(stringSet = "FastqQuality")}: Apply \code{\link{alphabetByCycle}} to quality scores, returning a matrix as described in \code{\link{alphabetByCycle}}.} \item{alphabetScore}{\code{signature(object = "FastqQuality")}:} \item{alphabetScore}{\code{signature(object = "SFastqQuality")}: Apply \code{\link{alphabetScore}} (i.e., summed base quality, per read) to \code{object}.} \item{coerce}{\code{signature(from = "FastqQuality", to = "numeric")}:} \item{coerce}{\code{signature(from = "FastqQuality", to = "matrix")}:} \item{coerce}{\code{signature(from = "FastqQuality", to = "PhredQuality")}:} \item{coerce}{\code{signature(from = "SFastqQuality", to = "matrix")}:} \item{coerce}{\code{signature(from = "SFastqQuality", to = "SolexaQuality")}: Use \code{as(from, "matrix")}) and similar to coerce objects of class \code{from} to class \code{to}, using the quality encoding implied by the class. When \code{to} is \dQuote{matrix}, the result is a matrix of type \code{integer} with number of columns equal to the maximum width of \code{from}; elements \code{i, j} with \code{j > width(from)[i]} have value \code{NA_integer_}. The result always represents the integer encoding of the corresponding quality string.} \item{narrow}{\code{signature(x = "FastqQuality", start = NA, end = NA, width = NA, use.names = TRUE)}: \sQuote{narrow} \code{quality} so that scores are between \code{start} and \code{end} bases, according to \code{\link[IRanges:intra-range-methods]{narrow}} in the \code{IRanges} package.} \item{trimTailw}{\code{signature(object="FastqQuality", k="integer", a="character", halfwidth="integer", ..., ranges=FALSE)}: trim trailing nucleotides when a window of width 2 * halfwidth + 1 contains \code{k} or more quality scores falling at or below \code{a}.} \item{trimTails}{\code{signature(object="FastqQuality", k="integer", a="character", successive=FALSE, ..., ranges=FALSE)}: trim trailing scores if \code{k} scores fall below the quality encoded by \code{a}. If \code{successive=FALSE}, the k'th failing score and all subseqent scores are trimmed. If \code{successive=TRUE}, failing scores must occur successively; the sequence is trimmed from the first of the successive failing score.} \item{srorder}{\code{signature(x = "FastqQuality")}:} \item{srrank}{\code{signature(x = "FastqQuality")}:} \item{srduplicated}{\code{signature(x = "FastqQuality")}: Apply \code{\link{srsort}}, \code{srorder}, \code{srrank}, and \code{srduplicated} to quality scores, returning objects as described on the appropriate help page.} } Integer representations of \code{SFastqQuality} and \code{FastqQuality} can be obtained with \code{as(x, "matrix")}. } \seealso{ \code{\link{NumericQuality}} and other constructors. } \author{Martin Morgan } \examples{ names(slot(getClass("QualityScore"), "subclasses")) encoding(FastqQuality()) encoding(SFastqQuality()) } \keyword{classes} ShortRead/man/QualityScore.Rd0000644000126300012640000000310612227066716017527 0ustar00biocbuildphs_compbio\name{QualityScore} \alias{NumericQuality} \alias{IntegerQuality} \alias{MatrixQuality} \alias{FastqQuality} \alias{FastqQuality,BStringSet-method} \alias{FastqQuality,character-method} \alias{FastqQuality,missing-method} \alias{SFastqQuality} \alias{SFastqQuality,BStringSet-method} \alias{SFastqQuality,character-method} \alias{SFastqQuality,missing-method} \title{Construct objects indicating read or alignment quality} \description{ Use these functions to construct quality indicators for reads or alignments. See \code{\linkS4class{QualityScore}} for details of object content and methods available for manipulating them. } \usage{ NumericQuality(quality = numeric(0)) IntegerQuality(quality = integer(0)) MatrixQuality(quality = new("matrix")) FastqQuality(quality, ...) SFastqQuality(quality, ...) } \arguments{ \item{quality}{An object used to initialize the data structure. Appropriate objects are indicated in the constructors above for Numeric, Integer, and Matrix qualities. For \code{FastqQuality} and \code{SFastqQuality}, methods are defined for \code{\link[Biostrings:XStringSet-class]{BStringSet}}, \code{character}, and \code{missing}.} \item{...}{Additional arguments, currently unused.} } \value{ Constructors return objects of the corresponding class derived from \code{\linkS4class{QualityScore}}. } \author{Martin Morgan } \seealso{ \code{\linkS4class{QualityScore}}, \code{\link{readFastq}}, \code{\link{readAligned}} } \examples{ nq <- NumericQuality(rnorm(20)) nq quality(nq) quality(nq[10:1]) } \keyword{ manip } ShortRead/man/RochePath-class.Rd0000644000126300012640000001172612227066716020072 0ustar00biocbuildphs_compbio\name{RochePath-class} \docType{class} \alias{RochePath-class} \alias{detail,RochePath-method} \alias{read454,RochePath-method} \alias{readFastaQual,RochePath-method} \alias{readFastaQual,character-method} \alias{readFasta,RochePath-method} \alias{readPath} \alias{readQual} \alias{readQual,character-method} \alias{readQual,RochePath-method} \alias{readBaseQuality,RochePath-method} \alias{read454} \alias{readFastaQual} \alias{runNames} \alias{qualPath} \alias{runNames,RochePath-method} \alias{RocheSet,character-method} \alias{RocheSet,RochePath-method} \alias{runNames,RochePath-method} \alias{show,RochePath-method} % \alias{RochePath} \title{"RochePath" class representing a Roche (454) experiment location} \description{ This class represents the directory location where Roche (454) result files (fasta sequences and qualities) can be found. } \section{Objects from the Class}{ Objects from the class are created with the \code{RochePath} constructor: \code{RochePath(experimentPath = NA_character_, readPath = experimentPath, qualPath = readPath, ..., verbose = FALSE) } \describe{ \item{experimentPath}{\code{character(1)} or \code{\linkS4class{RochePath}} pointing to the top-level directory of a Roche experiment.} \item{readPath}{\code{character()} of directories (typically in \code{experimentPath}) containing sequence (read) information. The default selects all directories matching \code{list.files(experimentPath, "run")}.} \item{qualPath}{\code{character()} of directories (typically in \code{experimentPath}) containing quality information. The default selects all directories matching \code{list.files(experimentPath, "run")}.} \item{verbose}{\code{logical(1)} indicating whether invalid paths should be reported interactively.} } } \section{Slots}{ \code{RocheSet} has the following slots: \describe{ \item{\code{readPath}:}{Object of class \code{"character"}, as described in the constructor, above.} \item{\code{qualPath}:}{Object of class \code{"character"}, as described in the constructor, above.} \item{\code{basePath}:}{Object of class \code{"character"}, containing the \code{experimentPath}.} } } \section{Extends}{ Class \code{"\linkS4class{ExperimentPath}"}, directly. Class \code{"\linkS4class{.Roche}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "ExperimentPath", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Roche", distance 2. } \section{Methods}{ \code{RochePath} has the following methods or functions defined: \describe{ \item{readFasta}{\code{signature(dirPath = "RochePath", pattern=".\\.fna$", sample = 1, run = 1, ...)}: Read sequences from files matching \code{list.files(dirPath, pattern)} (when \code{dirPath="character"}) or \code{list.files(readPath(dir)[run], pattern)[sample]}. The result is a \code{DNAStringSet}.} \item{readQual}{\code{signature(dirPath = "RochePath", reads=NULL, pattern="\\.qual$", sample=1, run=1, ...)}: Read quality scores from files matching \code{list.files(qualPath(dirPath)[run])[sample]}. Non-null \code{reads} is used as an (optional) template for parsing quality scores. } \item{readFastaQual}{\code{signature(dirPath = "RochePath", fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1)}: read sequences and quality scores into a \code{\linkS4class{ShortReadQ}} instance.} \item{readFastaQual}{\code{signature(dirPath = "character", fastaPattern = "\\.fna$", qualPattern = "\\.qual$", sample = 1, run = 1)}: wrapper for method above, coercing \code{dirPath} to a \code{RochePath} via \code{RochePath(dirPath)}.} \item{readBaseQuality}{\code{signature(dirPath = "RochePath", ...)}: Reads in base and quality information. Currently delegates to \code{readFastaQual}, above, but will do more after \code{RochePath} supports more file types. } \item{read454}{ \code{signature(dirPath = "RochePath", ...)}: Pass arguments on to \code{readFastaQual}, documented above. } \item{readPath}{\code{signature(object = "RochePath")}: return the contents of the \code{readPath} slot.} \item{runNames}{\code{signature(object = "RochePath")}: return the \code{basename}s of \code{readPath(object)}.} \item{RocheSet}{\code{signature(path = "RochePath")}: create a \code{\linkS4class{RocheSet}} from \code{path}.} } Additional methods include: \describe{ \item{show}{\code{signature(object = "RochePath")}: Briefly summarize the experiment path locations.} \item{detail}{\code{signature(x = "RochePath")}: Provide additional detail on the Roche path. All file paths are presented in full.} } } \author{Michael Lawrence } \seealso{ \code{\linkS4class{ExperimentPath}}. } \examples{ showClass("RochePath") } \keyword{classes} ShortRead/man/RocheSet-class.Rd0000644000126300012640000000357012227066716017727 0ustar00biocbuildphs_compbio\name{RocheSet-class} \docType{class} \alias{RocheSet-class} \alias{RocheSet} \title{Roche (454) experiment-wide data container} \description{ This class is meant to coordinate all data in a Roche (454) experiment. See \code{\linkS4class{SRSet}} for additional details. } \section{Objects from the Class}{ Create objects from this class using one of the \code{RocheSet} methods documented below } \section{Slots}{ \describe{ \item{\code{sourcePath}:}{Object of class \code{"RochePath"} The file system location of the data used in this experiment.} \item{\code{readIndex}:}{Object of class \code{"integer"} indexing reads included in the experiment; see \code{\linkS4class{SRSet}} for details on data representation in this class.} \item{\code{readCount}:}{Object of class \code{"integer"} containing the number of reads associated with each sample; see \code{\linkS4class{SRSet}} for details on data representation in this class.} \item{\code{phenoData}:}{Object of class \code{"AnnotatedDataFrame"} with as many rows as there are samples, containing information on experimental design.} \item{\code{readData}:}{Object of class \code{"AnnotatedDataFrame"} containing as many rows as there are reads, containing information on each read in the experiment.} } } \section{Extends}{ Class \code{"\linkS4class{SRSet}"}, directly. Class \code{"\linkS4class{.Roche}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "SRSet", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Roche", distance 2. } \section{Methods}{ No methods defined with class "RocheSet" in the signature; see \code{\linkS4class{SRSet}} for inherited methods. } \author{Michael Lawrence } \seealso{ \code{\linkS4class{SRSet}} } \examples{ showClass("RocheSet") } \keyword{classes} ShortRead/man/RtaIntensity-class.Rd0000644000126300012640000000340712227066716020647 0ustar00biocbuildphs_compbio\name{RtaIntensity-class} \docType{class} \alias{RtaIntensity-class} \title{Class "RtaIntensity"} \description{ Subclass of \code{\linkS4class{Intensity}} for representing image intensity data from the Illumina RTA pipeline. } \section{Objects from the Class}{ Objects can be created by calls to \code{RtaIntensity} or more usually \code{readIntensities}. } \section{Slots}{ Object of \code{RtaIntensity} have slots: \describe{ \item{\code{readInfo}:}{Object of class \code{"RtaIntensityInfo"} representing information about each read.} \item{\code{intensity}:}{Object of class \code{"ArrayIntensity"} containing an array of intensities with dimensions read, base, and cycle. Nucleotide are A, C, G, T for each cycle.} \item{\code{measurementError}:}{Object of class \code{"ArrayIntensity"} containing measurement errors for each read, cycle, and base, with dimensions like that for \code{intensity}. } \item{\code{.hasMeasurementError}:}{Object of class \code{"ScalarLogical"} used internally to indicate whether measurement error information is included.} } } \section{Extends}{ Class \code{"\linkS4class{SolexaIntensity}"}, directly. Class \code{"\linkS4class{Intensity}"}, by class "SolexaIntensity", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class "SolexaIntensity", distance 3. } \section{Methods}{ Class "RtaIntensity" inherits accessor, subsetting, and display methods from class \code{\linkS4class{SolexaIntensity}}. } \author{Martin Morgan } \seealso{\code{\linkS4class{SolexaIntensity}}, \code{\link{readIntensities}}} \examples{ showClass("RtaIntensity") showMethods(class="RtaIntensity", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/RtaIntensity.Rd0000644000126300012640000000266412227066716017550 0ustar00biocbuildphs_compbio\name{RtaIntensity} \alias{RtaIntensity} \title{Construct objects of class "RtaIntensity"} \description{ \code{\linkS4class{RtaIntensity}} objects contain Illumina image intensity measures created by the RTA pipeline. It will often be more convenient to create this object using \code{\link{readIntensities}}. } \usage{ RtaIntensity(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer()[seq_len(nrow(intensity))]), ...) } \arguments{ \item{intensity}{A matrix of image intensity values. Successive columns correspond to nucleotides A, C, G, T; four successive columns correspond to each cycle. Typically, derived from \code{"_int.txt"} files.} \item{measurementError}{As \code{intensity}, but measuring standard error. Usually derived from \code{"_nse.txt"} files.} \item{readInfo}{An object of class \code{AnnotatedDataFrame}, containing information described by \code{RtaIntensityInfo}.} \item{...}{Additional arguments, not currently used.} } \value{ An object of class \code{\linkS4class{RtaIntensity}}. } \author{Martin Morgan } \seealso{\code{\linkS4class{RtaIntensity}}, \code{\link{readIntensities}}.} \examples{ rta <- RtaIntensity(array(runif(60), c(5,4,3))) intensity(rta) ## subsetting, access, and coercion as(intensity(rta)[1:2,,], "array") } \keyword{manip} ShortRead/man/SRFilter-class.Rd0000644000126300012640000000547412227066716017712 0ustar00biocbuildphs_compbio\name{SRFilter-class} \docType{class} \alias{SRFilter-class} \alias{srFilter,SRFilter-method} \alias{name} \alias{name,SRFilter-method} \alias{show,SRFilter-method} \alias{c,SRFilter-method} \alias{coerce,SRFilter,FilterRules-method} \title{"SRFilter" for representing functions operating on ShortRead objects} \description{ Objects of this class are functions that, when provided an appropriate object from the ShortRead package, return logical vectors indicating which parts of the object satisfy the filter criterion. A number of filters are built-in (described below); users are free to create their own filters, using the \code{srFilter} function. } \section{Objects from the Class}{ Objects can be created through \code{\link{srFilter}} (to create a user-defined filter) or through calls to constructors for predefined filters, as described on the \code{\link{srFilter}} page. } \section{Slots}{ \describe{ \item{\code{.Data}:}{Object of class \code{"function"} taking a single named argument \code{x} corresponding to the ShortRead object that the filter will be applied to. The return value of the filter function is expected to be a logical vector that can be used to subset \code{x} to include those elements of \code{x} satisfying the filter. } \item{\code{name}:}{Object of class \code{"ScalarCharacter"} representing the name of the filter. The name is useful for suggesting the purpose of the filter, and for debugging failed filters. } } } \section{Extends}{ Class \code{"\linkS4class{function}"}, from data part. Class \code{"\linkS4class{.SRUtil}"}, directly. Class \code{"\linkS4class{OptionalFunction}"}, by class "function", distance 2. Class \code{"\linkS4class{PossibleMethod}"}, by class "function", distance 2. } \section{Methods}{ \describe{ \item{srFilter}{\code{signature(fun = "SRFilter")}: Return the function representing the underlying filter; this is primarily for interactive use to understanding filter function; usually the filter is invoked as a normal function call, as illustrated below } \item{name}{\code{signature(x = "SRFilter")}: Return, as a \code{ScalarCharacter}, the name of the function. } \item{show}{\code{signature(object = "SRFilter")}: display a brief summary of the filter } \item{coerce}{\code{signature(from = "SRFilter", to = "FilterRules")}: Coerce a filter to a \code{\link[IRanges]{FilterRules}} object of length one. } \item{c}{\code{signature(x = "SRFilter", ...)}: Combine filters into a single \code{\link[IRanges]{FilterRules}} object. } } } \author{Martin Morgan } \seealso{ \code{\link{srFilter}} for predefined and user-defined filters. } \examples{ ## see ?srFilter } \keyword{classes} ShortRead/man/SRFilterResult-class.Rd0000644000126300012640000000775112227066716021111 0ustar00biocbuildphs_compbio\name{SRFilterResult-class} \Rdversion{1.1} \docType{class} \alias{SRFilterResult-class} \alias{SRFilterResult} \alias{Logic,SRFilterResult,SRFilterResult-method} \alias{!,SRFilterResult-method} \alias{name,SRFilterResult-method} \alias{show,SRFilterResult-method} \alias{stats} \alias{stats,SRFilterResult-method} \title{"SRFilterResult" for SRFilter output and statistics} \description{ Objects of this class are logical vectors indicating records passing the applied filter, with an associated data frame summarizing the name, input number of records, records passing filter, and logical operation used for all filters in which the result participated. } \usage{ SRFilterResult(x = logical(), name = NA_character_, input = length(x), passing = sum(x), op = NA_character_) \S4method{Logic}{SRFilterResult,SRFilterResult}(e1, e2) \S4method{name}{SRFilterResult}(x, ...) stats(x, ...) \S4method{show}{SRFilterResult}(object) } \arguments{ \item{x, object, e1, e2}{For \code{SRFilterResult}, \code{logical()} indicating records that passed filter or, for others, an instance of \code{SRFilterResult} class.} \item{name}{\code{character()} indicating the name by which the filter is to be referred. Internally, \code{name}, \code{input}, \code{passing}, and \code{op} may all be vectors representing columns of a \code{data.frame} summarizing the application of successive filters.} \item{input}{\code{integer()} indicating the length of the original input.} \item{passing}{\code{integer()} indicating the number of records passing the filter.} \item{op}{\code{character()} indicating the logical operation, if any, associated with this filter.} \item{...}{Additional arguments, unused in methods documented on this page.} } \section{Objects from the Class}{ Objects can be created through \code{\link{SRFilterResult}}, but these are automatically created by the application of \code{\link{srFilter}} instances. } \section{Slots}{ \describe{ \item{\code{.Data}:}{Object of class \code{"logical"} indicating records that passed the filter. } \item{\code{name}:}{Object of class \code{"ScalarCharacter"} representing the name of the filter whose results are summarized. The name is either the actual name of the filter, or a combination of filter names and logical operations when the outcome results from application of several filters in a single logical expression. } \item{\code{stats}:}{Object of class \code{"data.frame"} summarizing the name, input number of records, records passing filter, and logical operation used for all filters in which the result participated. The \code{data.frame} rows correspond either to single filters, or to logical combinations of filters.} } } \section{Extends}{ Class \code{"\linkS4class{logical}"}, from data part. Class \code{"\linkS4class{.SRUtil}"}, directly. Class \code{"\linkS4class{vector}"}, by class "logical", distance 2. Class \code{"\link{atomic}"}, by class "logical", distance 2. Class \code{"vectorORfactor"}, by class "logical", distance 3. } \section{Methods}{ \describe{ \item{Logic}{\code{signature(e1 = "SRFilterResult", e2 = "SRFilterResult")}: logic operations on filters.} \item{!}{\code{signature(x = "SRFilterResult")}: Negate the outcome of the current filter results } \item{name}{\code{signature(x = "SRFilterResult")}: The name of the filter that the results are based on.} \item{stats}{\code{signature(x = "SRFilterResult")}: a \code{data.frame} as described in the \sQuote{Slots} section of this page.} \item{show}{\code{signature(object = "SRFilterResult")}: summary of filter results.} } } \author{Martin Morgan \url{mailto:mtmorgan@fhcrc.org}} \seealso{\code{\link{srFilter}}} \examples{ fa <- srFilter(function(x) x \%\% 2 == 0, "Even") fb <- srFilter(function(x) x \%\% 2 == 1, "Odd") x <- 1:10 fa(x) | fb(x) fa(x) & fb(x) !(fa(x) & fb(x)) } \keyword{classes} ShortRead/man/SRSet-class.Rd0000644000126300012640000000546312227066716017216 0ustar00biocbuildphs_compbio\name{SRSet-class} \docType{class} \alias{SRSet-class} \alias{readCount} \alias{readData} \alias{readIndex} \alias{sourcePath} \alias{phenoData,SRSet-method} \alias{experimentPath,SRSet-method} \alias{show,SRSet-method} \alias{detail,SRSet-method} \title{A base class for Roche experiment-wide data} \description{ This class coordinates phenotype (sample) and sequence data, primarily as used on the Roche platform. Conceptually, this class has reads from a single experiment represented as a long vector, ordered by sample. The \code{readCount} slot indicates the number of reads in each sample, so that the sum of \code{readCount} is the total number of reads in the experiment. The \code{readIndex} field is a light-weight indicator of which reads from all those available that are currently referenced by the \code{SRSet}. } \section{Objects from the Class}{ Objects of this class are not usually created directly, but instead are created by a derived class, e.g., \code{\linkS4class{RocheSet}}. } \section{Slots}{ \describe{ \item{\code{sourcePath}:}{Object of class \code{"ExperimentPath"}, containing the directory path where sequence files can be found.} \item{\code{readIndex}:}{Object of class \code{"integer"} indicating specific sequences included in the experiment.} \item{\code{readCount}:}{Object of class \code{"integer"} containing the number of reads in each sample included in the experiment. The sum of this vector is the total number of reads.} \item{\code{phenoData}:}{Object of class \code{"AnnotatedDataFrame"} describing each sample in the experiment. The number of rows of \code{phenoData} equals the number of elements in \code{readCount}.} \item{\code{readData}:}{Object of class \code{"AnnotatedDataFrame"} containing annotations on all reads.} } } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ \describe{ \item{experimentPath}{\code{signature(object = "SRSet")}: return the \code{\linkS4class{ExperimentPath}} associated with this object.} \item{phenoData}{\code{signature(object = "SRSet")}: return the \code{\linkS4class{phenoData}} associated with this object.} \item{readCount}{\code{signature(object="SRSet")}:} \item{readIndex}{\code{signature(object="SRSet")}:} \item{readData}{\code{signature(object="SRSet")}:} \item{sourcePath}{\code{signature(object="SRSet")}: Retrieve the corresponding slot from \code{object}.} \item{show}{\code{signature(object = "SRSet")}: display the contents of this object.} \item{detail}{\code{signature(x = "SRSet")}: provide more extensive information on the object.} } } \author{Michael Lawrence } \examples{ showClass("SRSet") } \keyword{classes} ShortRead/man/SRUtil-class.Rd0000644000126300012640000001461612227066716017400 0ustar00biocbuildphs_compbio\name{SRUtil-class} \docType{class} \alias{.SRUtil-class} \alias{SRError-class} \alias{SRWarn-class} \alias{SRList-class} \alias{SRVector-class} % constructors \alias{SRError} \alias{SRWarn} \alias{SRList} \alias{SRVector} % methods \alias{detail,.ShortReadBase-method} % internal method, not documented \alias{length,SRList-method} \alias{names,SRList-method} \alias{names<-,SRList,character-method} \alias{lapply,SRList-method} \alias{lapply,SRList,ANY-method} \alias{sapply,SRList-method} \alias{[,SRList,ANY,missing-method} \alias{[,SRList,ANY,missing,ANY-method} \alias{[[,SRList,ANY,missing-method} \alias{detail,SRList-method} \alias{show,SRList-method} \alias{detail,SRVector-method} \alias{show,SRVector-method} \title{".SRUtil" and related classes} \description{ These classes provide important utility functions in the \pkg{ShortRead} package, but may occasionally be seen by the user and are documented here for that reason. } \section{Objects from the Class}{ Utility classes include: \itemize{ \item \code{.SRUtil-class} a virtual base class from which all utility classes are derived. \item \code{SRError-class} created when errors occur in \pkg{ShortRead} package code. \item \code{SRWarn-class} created when warnings occur in \pkg{ShortRead} package code \item \code{SRList-class} representing a list (heterogeneous collection) of objects. \item \code{SRVector-class} representing a vector (homogeneous collection, i.e., all elements of the same class) of objects. } Objects from these classes are not normally constructed by the user. However, constructors are available, as follows. \code{SRError(type, fmt, ...)}, \code{SRWarn(type, fmt, ...)}: \describe{ \item{type}{\code{character(1)} vector describing the type of the error. \code{type} must come from a pre-defined list of types.} \item{fmt}{a \code{\link{sprintf}}-style format string for the message to be reported with the error.} \item{...}{additional arguments to be interpolated into \code{fmt}.} } \code{SRList(...)} \describe{ \item{...}{elements of any type or length to be placed into the \code{SRList}. If the length of \code{...} is 1 and the argument is a list, then the list itself is placed into \code{SRList}.} } \code{SRVector(..., vclass)} \describe{ \item{...}{elements all satisfying an \code{\link{is}} relationship with \code{vclass}, to be placed in \code{SRVector}.} \item{vclass}{the class to which all elements in \code{...} belong. If \code{vclass} is missing and \code{length(list(...))} is greater than zero, then \code{vclass} is taken to be the class of the first argument of \code{...}.} } \code{SRVector} errors: \describe{ \item{SRVectorClassDisagreement}{this error occurs when not all arguments \code{...} satisfy an \sQuote{is} relationship with \code{vclass}.} } } \section{Slots}{ \code{SRError} and \code{SRWarn} have the following slots defined: \describe{ \item{\code{.type}:}{Object of class \code{"character"} containing the type of error or warning. \code{.type} must come from a pre-defined list of types, see, e.g., \code{ShortRead:::.SRError_types}.} \item{\code{.message}:}{Object of class \code{"character"} containing a detailed message describing the error or warning.} } \code{SRList} has the following slot defined: \describe{ \item{\code{.srlist}:}{Object of class \code{"list"} containing the elements in the list.} } \code{SRVector} extends \code{SRList}, with the following additional slot: \describe{ \item{\code{vclass}:}{Object of class \code{"character"} naming the type of object all elements of \code{SRVector} must be.} } } \section{Methods}{ Accessors are available for all slots, and have the same name as the slot, e.g., \code{vclass} to access the \code{vclass} slot of \code{SRVector}. Internal slots (those starting with \sQuote{.} also have accessors, but these are not exported e.g., \code{ShortRead:::.type}. \code{SRList} has the following methods: \describe{ \item{length}{\code{signature(x = "SRList")}: return the (\code{integer(1)}) length of the \code{SRList}.} \item{names}{\code{signature(x = "SRList")}: return a character vector of list element names. The length of the returned vector is the same as the length of \code{x}.} \item{names<-}{\code{signature(x = "SRList", value = "character")}: assign \code{value} as names for members of \code{x}.} \item{[}{\code{signature(x = "SRList", i = "ANY", j = "missing")}: subset the list using standard R list subset paradigms.} \item{[[}{\code{signature(x = "SRList", i = "ANY", j = "missing")}: select element \sQuote{i} from the list, using standard R list selection paradigms.} \item{lapply}{\code{signature(X = "SRList", FUN="ANY")}: apply a function to all elements of \code{X}, with additional arguments interpreted as with \code{\link{lapply}}.} \item{sapply}{\code{signature(X = "SRList")}: apply a function to all elements of \code{X}, simplifying the result if possible. Additional arguments interpreted as with \code{\link{sapply}}.} \item{show}{\code{signature(object = "SRList")}: display an informative summary of the object content, including the length of the list represented by \code{object}.} \item{detail}{\code{signature(x = "SRList")}: display a more extensive version of the object, as one might expect from printing a standard list in R.} } \code{SRVector} inherits all methods from \code{SRList}, and has the following additional methods: \describe{ \item{show}{\code{signature(object = "SRVector")}: display an informative summary of the object content, e.g., the vector class (\code{vclass}) and length.} \item{detail}{\code{signature(x = "SRVector")}: display a more extensive version of the object, as one might expect from a printing a standard R list.} } } \author{Martin Morgan} \examples{ getClass(".SRUtil", where=getNamespace("ShortRead")) ShortRead:::.SRError_types ShortRead:::.SRWarn_types detail(SRList(1:5, letters[1:5])) tryCatch(SRVector(1:5, letters[1:5]), SRVectorClassDisagreement=function(err) { cat("caught:", conditionMessage(err), "\n") }) } \keyword{classes} ShortRead/man/Sampler-class.Rd0000644000126300012640000001341212227066716017612 0ustar00biocbuildphs_compbio\name{FastqFile-class} \docType{class} % Classes \alias{ShortReadFile-class} \alias{FastqFile-class} \alias{FastqFileReader-class} \alias{FastqSampler-class} \alias{FastqSamplerList-class} \alias{FastqStreamer-class} \alias{FastqStreamerList-class} \alias{FastqFileList-class} % ShortReadFile / FastqFile / FastqFileList \alias{FastqFile} \alias{FastqFileList} \alias{open.ShortReadFile} \alias{close.ShortReadFile} \alias{readFastq,FastqFile-method} % FastqFileList \alias{FastqFileList,ANY-method} \alias{FastqFileList,character-method} % FastqFileReader \alias{yield,FastqFileReader-method} % FastqSampler \alias{FastqSampler} \alias{FastqSamplerList} \alias{FastqSamplerList,ANY-method} \alias{FastqSamplerList,character-method} \alias{yield} \alias{yield,FastqSampler-method} % FastqStreamer \alias{FastqStreamer} \alias{FastqStreamer,ANY,missing-method} \alias{FastqStreamer,ANY,numeric-method} \alias{FastqStreamer,ANY,IRanges-method} \alias{FastqStreamerList} \alias{FastqStreamerList,ANY-method} \alias{FastqStreamerList,character-method} \alias{yield,FastqStreamer-method} \title{Sampling and streaming records from fastq files} \description{ \code{FastqFile} represents a path and connection to a fastq file. \code{FastqFileList} is a list of such connections. \code{FastqSampler} draws a subsample from a fastq file. \code{yield} is the method used to extract the sample from the \code{FastqSampler} instance; a short illustration is in the example below. \code{FastqSamplerList} is a list of \code{FastqSampler} elements. \code{FastqStreamer} draws successive subsets from a fastq file, a short illustration is in the example below. \code{FastqStreamerList} is a list of \code{FastqStreamer} elements. } \usage{ ## FastqFile and FastqFileList FastqFile(con, ...) FastqFileList(..., class="FastqFile") \S3method{open}{ShortReadFile}(con, ...) \S3method{close}{ShortReadFile}(con, ...) \S4method{readFastq}{FastqFile}(dirPath, pattern=character(), ...) ## FastqSampler and FastqStreamer FastqSampler(con, n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) FastqSamplerList(..., n=1e6, readerBlockSize=1e8, verbose=FALSE, ordered = FALSE) FastqStreamer(con, n, readerBlockSize=1e8, verbose=FALSE) FastqStreamerList(..., n, readerBlockSize=1e8, verbose=FALSE) yield(x, ...) } \arguments{ \item{con, dirPath}{A character string naming a connection, or (for \code{con}) an R connection (e.g., \code{file}, \code{gzfile}).} \item{n}{For \code{FastqSampler}, the size of the sample (number of records) to be drawn. For \code{FastqStreamer} a \code{numeric(1)} (set to 1e6 when \code{n} is missing) providing the number of successive records to be returned on each yield, or an \code{\linkS4class{IRanges}}-class delimiting the (1-based) indicies of records returned by each yield; entries in \code{n} must have non-zero width and must not overlap.} \item{readerBlockSize}{The number of bytes or characters to be read at one time; smaller \code{readerBlockSize} reduces memory requirements but is less efficient.} \item{verbose}{Display progress.} \item{ordered}{logical(1) indicating whether sampled reads should be returned in the same order as they were encountered in the file.} \item{x}{An instance from the \code{FastqSampler} or \code{FastqStreamer} class.} \item{...}{Additional arguments. For \code{FastqFileList}, \code{FastqSamplerList}, or \code{FastqStreamerList}, this can either be a single character vector of paths to fastq files, or several instances of the corresponding \code{FastqFile}, \code{FastqSampler}, or \code{FastqStreamer} objects.} \item{pattern}{Ignored.} \item{class}{For developer use, to specify the underlying class contained in the \code{FastqFileList}.} } \section{Objects from the class}{ Available classes include: \describe{ \item{\code{FastqFile}}{A file path and connection to a fastq file.} \item{\code{FastqFileList}}{A list of \code{FastqFile} instances.} \item{\code{FastqSampler}}{Uniformly sample records from a fastq file.} \item{\code{FastqStreamer}}{Iterate over a fastq file, returning successive parts of the file.} } } \section{Methods}{ The following methods are available to users: \describe{ \item{\code{readFastq,FastqFile-method}:}{see also \code{?\link{readFastq}}.} \item{\code{writeFastq,ShortReadQ,FastqFile-method}:}{see also \code{?\link{writeFastq}}, \code{?"writeFastq,ShortReadQ,FastqFile-method"}.} \item{\code{yield}:}{Draw a single sample from the instance. Operationally this requires that the underlying data (e.g., file) represented by the \code{Sampler} instance be visited; this may be time consuming.} } } \seealso{ \code{\link{readFastq}}, \code{\link{writeFastq}}, \code{\link{yield}}. } \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") f <- FastqFile(fl) rfq <- readFastq(f) f <- FastqSampler(fl, 50) yield(f) # sample of size n=50 yield(f) # independent sample of size 50 close(f) ## Return sample as ordered in original file f <- FastqSampler(fl, 50, ordered=TRUE) yield(f) close(f) f <- FastqStreamer(fl, 50) yield(f) # records 1 to 50 yield(f) # records 51 to 100 close(f) ## iterating over an entire file f <- FastqStreamer(fl, 50) while (length(fq <- yield(f))) { ## do work here print(length(fq)) } close(f) ## iterating over IRanges rng <- IRanges(c(50, 100, 200), width=10:8) f <- FastqStreamer(fl, rng) while (length(fq <- yield(f))) { print(length(fq)) } close(f) ## Internal fields, methods, and help; for developers ShortRead:::.FastqSampler_g$methods() ShortRead:::.FastqSampler_g$fields() ShortRead:::.FastqSampler_g$help("yield") } ShortRead/man/ShortRead-class.Rd0000644000126300012640000001501612227066716020104 0ustar00biocbuildphs_compbio\name{ShortRead-class} \docType{class} \alias{ShortRead-class} \alias{ShortRead} \alias{ShortRead,DNAStringSet,BStringSet-method} \alias{ShortRead,DNAStringSet,missing-method} \alias{ShortRead,missing,missing-method} \alias{srrank,ShortRead-method} \alias{srorder,ShortRead-method} \alias{srsort,ShortRead-method} \alias{srduplicated,ShortRead-method} \alias{srdistance,ShortRead,ANY-method} \alias{trimLRPatterns,ShortRead-method} \alias{alphabetByCycle,ShortRead-method} \alias{tables,ShortRead-method} \alias{clean,ShortRead-method} \alias{[,ShortRead,ANY,ANY-method} \alias{[,ShortRead,ANY,missing-method} \alias{[,ShortRead,missing,ANY-method} \alias{[,ShortRead,missing,missing-method} \alias{[,ShortRead,missing,missing,ANY-method} \alias{[,ShortRead,missing,ANY,ANY-method} \alias{[,ShortRead,ANY,ANY,ANY-method} \alias{[,ShortRead,ANY,missing,ANY-method} \alias{append,ShortRead,ShortRead-method} \alias{narrow,ShortRead-method} \alias{detail,ShortRead-method} \alias{id,ShortRead-method} \alias{width,ShortRead-method} \alias{length,ShortRead-method} \alias{writeFasta,ShortRead-method} \alias{show,ShortRead-method} \title{"ShortRead" class for short reads} \description{ This class provides a way to store and manipulate, in a coordinated fashion, uniform-length short reads and their identifiers. } \section{Objects from the Class}{ Objects from this class are created by \code{readFasta}, or by calls to the constructor \code{ShortRead}, as outlined below. } \section{Slots}{ \describe{ \item{\code{sread}:}{Object of class \code{"DNAStringSet"} containing IUPAC-standard, uniform-length DNA strings represent short sequence reads.} \item{\code{id}:}{Object of class \code{"BStringSet"} containing identifiers, one for each short read.} } } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Constructors include: \describe{ \item{ShortRead}{\code{signature(sread = "DNAStringSet", id = "BStringSet")}: Create a \code{ShortRead} object from reads and their identifiers. The length of \code{id} must match that of \code{sread}.} \item{ShortRead}{\code{signature(sread = "DNAStringSet", id = "missing")}: Create a \code{ShortRead} object from reads, creating empty identifiers.} \item{ShortRead}{\code{signature(sread = "missing", id = "missing", ...)}: Create an empty \code{ShortRead} object.} } Methods include: \describe{ \item{sread}{\code{signature(object = "AlignedRead")}: access the sread slot of \code{object}.} \item{id}{\code{signature(object = "AlignedRead")}: access the id slot of \code{object}.} \item{[}{\code{signature(x = "ShortRead", i = "ANY", j = "missing")}: This method creates a new \code{ShortRead} object containing only those reads indexed by \code{i}. Additional methods on \sQuote{[,ShortRead} do not provide additional functionality, but are present to limit inappropriate use.} \item{append}{\code{signature(x = "ShortRead", values = "ShortRead")}: append the \code{sread} and \code{id} slots of \code{values} after the corresponding fields of \code{x}.} \item{narrow}{\code{signature(x = "ShortRead", start = NA, end = NA, width = NA, use.names = TRUE)}: \sQuote{narrow} \code{sread} so that sequences are between \code{start} and \code{end} bases, according to \code{\link[IRanges:intra-range-methods]{narrow}} in the \code{IRanges} package. } \item{length}{\code{signature(x = "ShortRead")}: returns a \code{integer(1)} vector describing the number of reads in this object.} \item{width}{\code{signature(x = "ShortRead")}: returns an \code{integer()} vector of the widths of each read in this object.} \item{srorder}{\code{signature(x = "ShortRead")}:} \item{srrank}{\code{signature(x = "ShortRead")}:} \item{srsort}{\code{signature(x = "ShortRead")}:} \item{srduplicated}{\code{signature(x = "ShortRead")}: Order, rank, sort, and find duplicates in \code{ShortRead} objects based on \code{sread(x)}, analogous to the corresponding functions \code{order}, \code{rank}, \code{sort}, and \code{duplicated}, ordering nucleotides in the order \code{ACGT}.} \item{srdistance}{\code{signature(pattern="ShortRead", subject="ANY")}: Find the edit distance between each read in \code{pattern} and the (short) sequences in \code{subject}. See \code{\link{srdistance}} for allowable values for \code{subject}, and for additional details.} \item{trimLRPatterns}{\code{signature(Lpattern = "", Rpattern = "", subject = "ShortRead", max.Lmismatch = 0, max.Rmismatch = 0, with.Lindels = FALSE, with.Rindels = FALSE, Lfixed = TRUE, Rfixed = TRUE, ranges = FALSE)}: Remove left and / or right flanking patterns from \code{sread(subject)}, as described in \code{\link[Biostrings:trimLRPatterns]{trimLRPatterns}}. Classes derived from \code{ShortRead} (e.g., \code{\link{ShortReadQ}}, \code{\link{AlignedRead}}) have corresponding base quality scores trimmed, too. The class of the return object is the same as the class of \code{subject}, except when \code{ranges=TRUE} when the return value is the ranges to use to trim 'subject'.} \item{alphabetByCycle}{\code{signature(stringSet = "ShortRead")}: Apply \code{\link{alphabetByCycle}} to the \code{sread} component of \code{stringSet}, returning a matrix as described in \code{\link{alphabetByCycle}}.} \item{tables}{\code{signature(x= "ShortRead", n = 50)}: Apply \code{\link{tables}} to the \code{sread} component of \code{x}, returning a list summarizing frequency of reads in \code{x}.} \item{clean}{\code{signature(object="ShortRead")}: Remove all reads containing non-nucleotide (\code{"N", "-"}) symbols.} \item{show}{\code{signature(object = "ShortRead")}: provides a brief summary of the object, including its class, length and width.} \item{detail}{\code{signature(x = "ShortRead")}: provides a more extensive summary of this object, displaying the first and last entries of \code{sread} and \code{id}.} \item{writeFasta}{\code{signature(object, file, ...)}: write \code{object} to \code{file} in fasta format. See \code{\link{writeXStringSet}} for \code{...} argument values.} } } \author{Martin Morgan} \seealso{ \code{\linkS4class{ShortReadQ}} } \examples{ showClass("ShortRead") showMethods(class="ShortRead", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/ShortRead-deprecated.Rd0000644000126300012640000000206712227066716021101 0ustar00biocbuildphs_compbio\name{ShortRead-deprecated} \alias{uniqueFilter} \title{Deprecated functions from the ShortRead package} \description{ These functions are deprecated, and will become defunct. } \usage{ uniqueFilter(withSread=TRUE, .name="UniqueFilter") } \arguments{ \item{withSread}{A \code{logical(1)} indicating whether uniqueness includes the read sequence (\code{withSread=TRUE}) or is based only on chromosome, position, and strand (\code{withSread=FALSE})} \item{.name}{An optional \code{character(1)} object used to over-ride the name applied to default filters.} } \details{ See \code{\link{srFilter}} for details of ShortRead filters. \code{uniqueFilter} selects elements satisfying \code{!srduplicated(x)} when \code{withSread=TRUE}, and \code{!(duplicated(chromosome(x)) & duplicated(position(x)) & duplicated(strand(x)))} when \code{withSread=FALSE}. The behavior when \code{withSread=TRUE} can be obtained with \code{occurrenceFilter(withSread=TRUE)}. The behavior when \code{withSread=FALSE} can be obtained using a custom filter }ShortRead/man/ShortRead-package.Rd0000644000126300012640000000111212227066716020362 0ustar00biocbuildphs_compbio\name{ShortReadBase-package} \alias{ShortReadBase-package} \alias{.ShortReadBase-class} \alias{show,.ShortReadBase-method} \alias{append,.ShortReadBase,.ShortReadBase-method} \alias{.Solexa-class} \alias{.Roche-class} \docType{package} \title{ Base classes and methods for high-throughput short-read sequencing data. } \description{ Base classes, functions, and methods for representation of high-throughput, short-read sequencing data. } \details{ See \code{packageDescription('ShortRead')} } \author{ Maintainer: Martin Morgan } \keyword{package} ShortRead/man/ShortReadQ-class.Rd0000644000126300012640000001665212227066716020234 0ustar00biocbuildphs_compbio\name{ShortReadQ-class} \docType{class} \alias{ShortReadQ-class} \alias{ShortReadQ} \alias{ShortReadQ,DNAStringSet,QualityScore,BStringSet-method} \alias{ShortReadQ,DNAStringSet,QualityScore,missing-method} \alias{ShortReadQ,DNAStringSet,BStringSet,BStringSet-method} \alias{ShortReadQ,DNAStringSet,BStringSet,missing-method} \alias{ShortReadQ,missing,missing,missing-method} \alias{coerce,ShortReadQ,QualityScaledDNAStringSet-method} \alias{writeFastq,ShortReadQ,character-method} \alias{writeFastq,ShortReadQ,FastqFile-method} \alias{alphabetByCycle,ShortReadQ-method} \alias{alphabetScore,ShortReadQ-method} \alias{[,ShortReadQ,ANY,ANY-method} \alias{[,ShortReadQ,ANY,missing-method} \alias{[,ShortReadQ,missing,ANY-method} \alias{[,ShortReadQ,missing,missing-method} \alias{[,ShortReadQ,missing,missing,ANY-method} \alias{[,ShortReadQ,missing,ANY,ANY-method} \alias{[,ShortReadQ,ANY,ANY,ANY-method} \alias{[,ShortReadQ,ANY,missing,ANY-method} \alias{append,ShortReadQ,ShortReadQ-method} \alias{narrow,ShortReadQ-method} \alias{trimTailw,ShortReadQ-method} \alias{trimTails,ShortReadQ-method} \alias{qa,ShortReadQ-method} \alias{detail,ShortReadQ-method} \title{"ShortReadQ" class for short reads and their quality scores} \description{ This class provides a way to store and manipulate, in a coordinated fashion, the reads, identifiers, and quality scores of uniform-length short reads. } \section{Objects from the Class}{ Objects from this class are the result of \code{\link{readFastq}}, or can be constructed from \code{DNAStringSet}, \code{QualityScore}, and \code{BStringSet} objects, as described below. } \section{Slots}{ Slots \code{sread} and \code{id} are inherited from \code{\linkS4class{ShortRead}}. An additional slot defined in this class is: \describe{ \item{\code{quality}:}{Object of class \code{"BStringSet"} representing a quality score (see \code{\link{readFastq}} for some discussion of quality score).} } } \section{Extends}{ Class \code{"\linkS4class{ShortRead}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "ShortRead", distance 2. } \section{Methods}{ Constructors include: \describe{ \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "QualityScore", id = "BStringSet")}:} \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "BStringSet", id = "BStringSet")}: Create a \code{ShortReadQ} object from reads, their quality scores, and identifiers. When \code{quality} is of class \code{BStringSet}, the type of encoded quality score is inferred from the letters used in the scores. The length of \code{id} and \code{quality} must match that of \code{sread}.} \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "QualityScore", id = "missing")}:} \item{ShortReadQ}{\code{signature(sread = "DNAStringSet", quality = "BStringSet", id = "missing")}: Create a \code{ShortReadQ} object from reads and their quality scores, creating empty identifiers. When \code{quality} is of class \code{BStringSet}, the type of encoded quality score is inferred from the letters used in the scores. } \item{ShortReadQ}{\code{signature(sread = "missing", quality = "missing", id = "missing", ...)}: Create an empty \code{ShortReadQ} object.} } See \code{\link{accessors}} for additional functions to access slot content, and \code{\linkS4class{ShortRead}} for inherited methods. Additional methods include: \describe{ \item{quality}{inherited from \code{signature(object = "ANY")}: access the quality slot of \code{object}.} \item{coerce}{\code{signature(from = "SFastqQuality", to = "QualityScaledDNAStringSet")}: (Use \code{as(from, "QualityScaledDNAStringSet")}) coerce objects of class \code{from} to class \code{to}, using the quality encoding implied by \code{quality(from)}. See \code{\linkS4class{QualityScore}} for supported quality classes and their coerced counterparts.} \item{writeFastq}{\code{signature(object = "ShortReadQ", file = "character", ...)}:} \item{writeFastq}{\code{signature(object = "ShortReadQ", file = "FastqFile", ...)}: Write \code{object} to \code{file} in fastq format. See \code{?\link{writeFastq}} for additional arguments \code{mode} and \code{full}.} \item{[}{\code{signature(x = "ShortReadQ", i = "ANY", j = "missing")}: This method creates a new \code{ShortReadQ} object containing only those reads indexed by \code{i}. Additional methods on \sQuote{[,ShortRead} do not provide additional functionality, but are present to limit inappropriate use.} \item{append}{\code{signature(x = "ShortReadQ", values = "ShortRead")}: append the \code{sread}, \code{quality} and \code{id} slots of \code{values} after the corresponding fields of \code{x}.} \item{narrow}{\code{signature(x = "ShortReadQ", start = NA, end = NA, width = NA, use.names = TRUE)}: narrow \code{sread} and \code{quality} so that sequences are between \code{start} and \code{end} bases, according to \code{\link[IRanges:intra-range-methods]{narrow}} in the \code{IRanges} package.} \item{trimTailw}{\code{signature(object="ShortReadQ", k="integer", a="character", halfwidth="integer", ..., ranges=FALSE)}: trim trailing nucleotides when a window of width 2 * halfwidth + 1 contains \code{k} or more quality scores falling at or below \code{a}.} \item{trimTails}{\code{signature(object="ShortReadQ", k="integer", a="character", successive=FALSE, ..., ranges=FALSE)}: trim trailing nucleotides if \code{k} nucleotides fall below the quality encoded by \code{a}. If \code{successive=FALSE}, the k'th failing nucleotide and all subseqent nucleotides are trimmed. If \code{successive=TRUE}, failing nucleotides must occur successively; the sequence is trimmed from the first of the successive failing nucleotides.} \item{alphabetByCycle}{\code{signature(stringSet = "ShortReadQ")}: Apply \code{\link{alphabetByCycle}} to the \code{sread} component, the \code{quality} component, and the combination of these two components of \code{stringSet}, returning a list of matrices with three elements: \code{"sread"}, \code{"quality"}, and \code{"both"}.} \item{alphabetScore}{\code{signature(object = "ShortReadQ")}: See \code{\link{alphabetScore}} for details.} \item{qa}{\code{signature(dirPath = "ShortReadQ", lane="character", ..., verbose=FALSE)}: Perform quality assessment on the \code{ShortReadQ} object using \code{lane} to identify the object and returning an instance of \code{\linkS4class{ShortReadQQA}}. See \code{\link{qa}}} \item{detail}{\code{signature(x = "ShortReadQ")}: display the first and last entries of each of \code{sread}, \code{id}, and \code{quality} entries of \code{object}.} } } \author{Martin Morgan} \seealso{ \code{\link{readFastq}} for creation of objects of this class from fastq-format files. } \examples{ showClass("ShortReadQ") showMethods(class="ShortReadQ", where=getNamespace("ShortRead"), inherit=FALSE) showMethods(class="ShortRead", where=getNamespace("ShortRead"), inherit=FALSE) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") quality(rfq) quality(trimTails(rfq, 2, "H", successive=TRUE)) } \keyword{classes} ShortRead/man/Snapshot-class.Rd0000644000126300012640000002234312227066716020011 0ustar00biocbuildphs_compbio\name{Snapshot-class} \Rdversion{1.1} \docType{class} \alias{Snapshot-class} \alias{trellis-class} % Constructor: \alias{Snapshot} \alias{Snapshot,character,GRanges-method} \alias{Snapshot,character,missing-method} \alias{Snapshot,BamFileList,GRanges-method} % Accessors: \alias{files} \alias{files,Snapshot-method} \alias{functions} \alias{functions,Snapshot-method} \alias{show,Snapshot-method} \alias{view} \alias{view,Snapshot-method} \alias{vrange} \alias{vrange,Snapshot-method} \alias{annTrack} \alias{annTrack,Snapshot-method} \alias{fac} \alias{fac,Snapshot-method} \alias{getTrellis} \alias{getTrellis,Snapshot-method} \alias{ignore.strand} \alias{ignore.strand,Snapshot-method} % methods: \alias{pan} \alias{pan,Snapshot-method} \alias{togglefun} \alias{togglefun,Snapshot-method} \alias{togglep} \alias{togglep,Snapshot-method} \alias{togglez} \alias{togglez,Snapshot-method} \alias{zoom} \alias{zoom,Snapshot-method} \title{Class \code{"Snapshot"}} \description{ A \code{\linkS4class{Snapshot}}-class to visualize genomic data from BAM files with zoom and pan functionality. } \usage{ Snapshot(files, range, ...) } \arguments{ \item{files}{A character() or \code{BamFileList} specifying the file(s) to be visualized.} \item{range}{A \code{\link{GRanges}} object specifying the range to be visualized.} \item{...}{Additional, optional, arguments to be passed to the Snapshot \code{initialize} function. Arguments include: \describe{ \item{functions:}{A \code{\link{SnapshotFunctionList}} of functions, in addition to built-in \sQuote{fine_coverage}, \sQuote{coarse_coverage}, \sQuote{multifine_coverage}, to be used for visualization.} \item{currentFunction:}{character(1) naming the function, from \code{functions} to be used for data input and visualization. The default chooses a function based on the scale at which the data is being visualized.} \item{annTrack:}{Annotation track. If built-in visualization functions are to be used, \code{annTrack} should be a \code{GRanges} instance and the first column of its elementMeatdata would be used to annotate the range.} \item{fac:}{Character(1) indicating which factor used for grouping the sample files. The factor should be included in the elementMetadata of \code{files}, otherwise ignored. Used only to visualize multiple files. } \item{.auto_display:}{logical(1) indicating whether the visualization is to be updated when \code{show} is invoked.} \item{.debug}{logical(1) indicating whether debug messages are to be printed.} }} } \section{Methods}{ \describe{ \item{zoom}{\code{signature(x = "Snapshot")}: Zoom (in or out) the current plot. } \item{pan}{\code{signature(x = "Snapshot")}: Pan (right or left) the current plot. } \item{togglefun}{\code{signature(x = "Snapshot")}: Toggle the current functions which imported records are to be immediately evaluated. Note that the active range will be changed to the current active window.} \item{togglep}{\code{signature(x = "Snapshot")}: Toggle the panning effects.} \item{togglez}{\code{signature(x = "Snapshot")}: Toggle the zooming effects.} } } \section{Accessors}{ \describe{ \item{show}{\code{signature(object = "Snapshot")}: Display a \code{Snapshot} object. } \item{files}{\code{signature(x = "Snapshot")}: Get the \code{files} field (object of class \code{BamFileList}) of a \code{Snapshot} object.} \item{functions}{\code{signature(x = "Snapshot")}: Get the \code{functions} field (object of \code{SnapshotFunctionList}) of a \code{Snapshot} object.} \item{view}{\code{signature(x = "Snapshot")}: Get the \code{view} field (object of \code{SpTrellis}) of a \code{Snapshot} object.} \item{vrange}{\code{signature(x = "Snapshot")}: Get the \code{.range} field (object of \code{GRanges}) of a \code{Snapshot} object. } \item{getTrellis}{\code{signature(x = "Snapshot")}: Get the \code{trellis} object, a field of the \code{SpTrellis} object.} } } \section{Fields}{ \describe{ \item{\code{.debug}:}{Object of class \code{function} to display messages while in debug mode } \item{\code{.auto_display}:}{Object of class \code{logical} to automatically display the coverage plot. } \item{\code{.range}:}{Object of class \code{GRanges} indicating which ranges of records to be imported from BAM fields. } \item{\code{.zin}:}{Object of class \code{logical} indicating whether the current zooming effect is zoom in. } \item{\code{.pright}:}{Object of class \code{logical} indicating whether the current panning effect is right. } \item{\code{.data}:}{Object of class \code{data.frame} containing coverage a position is represented for each strand and BAM file.} \item{\code{.data_dirty}:}{Object of class \code{logical} indicating whether to re-evaluate the imported records. } \item{\code{.initial_functions}:}{Object of class \code{SnapshotFunctionList} available by the \code{Snapshot} object. } \item{\code{.current_function}:}{Object of class \code{character} of the function the imported recorded are currently evaluated and visualized.} \item{\code{annTrack}:}{Default to \code{NULL} if not intended to visualize the annotation track. If default visualization function(s) is intended to be used to plot the annotation, \code{annTrack} has to be a \code{GRanges} instance.} \item{\code{functions}:}{Object of class \code{SnapshotFunctionList} of customized functions to evaluate and visualize the imported records. } \item{\code{files}:}{Object of class \code{BamFileList} to be imported. } \item{\code{view}:}{Object of class \code{SpTrellis} that is essentially a reference class wrapper of \code{Trellis} objects. } } } \section{Class-Based Methods}{ \describe{ \item{\code{display()}:}{Display the current \code{Snapshot} object. } \item{\code{pan()}:}{Pan (right or left) the current plot. } \item{\code{zoom()}:}{Zoom (in or out) the current plot. } % \item{\code{set_range(range)}:}{ ~~ } \item{\code{toggle(zoom, pan, currentFunction)}:}{Toggle zooming, panning effects or the currentFuction in which the imported records are to be evaluated and visualized.} % \item{\code{initialize(..., functions, currentFunction, .range, .auto_display, .debug)}:}{ ~~ } } } \author{Martin Morgan and Chao-Jen Wong \email{cwon2@fhcrc.org}} \seealso{\code{\link{SpTrellis}}} \examples{ ## example 1: Importing specific ranges of records file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") which <- GRanges("chrI", IRanges(1, 2e5)) s <- Snapshot(file, range=which) ## methods zoom(s) # zoom in ## zoom in to a specific region zoom(s, range=GRanges("chrI", IRanges(7e4, 7e4+8000))) pan(s) # pan right togglez(s) # change effect of zooming zoom(s) # zoom out togglep(s) # change effect of panning pan(s) ## accessors functions(s) vrange(s) show(s) ignore.strand(s) view(s) ## extract the spTrellis object getTrellis(s) ## extract the trellis object ## example 2: ignore strand s <- Snapshot(file, range=which, ignore.strand=TRUE) ## ## example 3: visualizing annotation track ## library(GenomicFeatures) getAnnGR <- function(txdb, which) { ex <- exonsBy(txdb, by="gene") seqlevels(ex, force=TRUE) <- seqlevels(which) r <- range(ex) gr <- unlist(r) values(gr)[["gene_id"]] <- rep.int(names(r), times=elementLengths(r)) gr } txdbFile <- system.file("extdata", "sacCer2_sgdGene.sqlite", package="yeastNagalakshmi") # txdb <- makeTranscriptDbFromUCSC(genome="sacCer2", # tablename="sgdGene") txdb <- loadDb(txdbFile) which <- GRanges("chrI", IRanges(1, 2e5)) gr <- getAnnGR(txdb, which) ## note that the first column of the elementMetadata annotates of the ## range of the elements. gr s <- Snapshot(file, range=which, annTrack=gr) annTrack(s) ## zoom in to an interesting region zoom(s, range=GRanges("chrI", IRanges(7e4, 7e4+8000))) togglez(s) ## zoom out zoom(s) pan(s) ## example 4, 5, 6: multiple BAM files with 'multicoarse_covarage' ## and 'multifine_coverage' view. ## Resolution does not automatically switch for views of multiple ## files. It is important to note if width(which) < 10,000, use ## multifine_coverage. Otherwise use multicoarse_coverage file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") which <- GRanges("chrI", IRanges(1, 2e5)) s <- Snapshot(c(file, file), range=which, currentFunction="multicoarse_coverage") ## grouping files and view by 'multicoarse_coverage' bfiles <- BamFileList(c(a=file, b=file)) values(bfiles) <- DataFrame(sampleGroup=factor(c("normal", "tumor"))) values(bfiles) s <- Snapshot(bfiles, range=which, currentFunction="multicoarse_coverage", fac="sampleGroup") ## grouping files and view by 'multifine_coverage' which <- GRanges("chrI", IRanges(7e4, 7e4+8000)) s <- Snapshot(bfiles, range=which, currentFunction="multifine_coverage", fac="sampleGroup") } \keyword{classes} ShortRead/man/SnapshotFunction-class.Rd0000644000126300012640000000404212227066716021513 0ustar00biocbuildphs_compbio\name{SnapshotFunction-class} \Rdversion{1.1} \docType{class} \alias{SnapshotFunction-class} \alias{SnapshotFunction} \alias{show,SnapshotFunction-method} \alias{SnapshotFunctionList-class} \alias{SnapshotFunctionList} \alias{SnapshotFunctionList,SnapshotFunction-method} \alias{SnapshotFunctionList,ANY-method} \alias{reader} \alias{viewer} \alias{limits} \title{Class "SnapshotFunction"} \description{ A class to store custom reader and viewer functions for the \code{\link{Snapshot}} class. } \usage{ SnapshotFunction(reader, viewer, limits, ...) reader(x, ...) viewer(x, ...) limits(x, ...) } \arguments{ \item{reader}{A function for reading data. The function must take a single argument (a \code{\link{Snapshot}} instance) and return a \code{data.frame} summarizing the file.} \item{viewer}{A function for visualizing the data. The function must accept the \code{data.frame} created by \code{reader}, and return an \code{\link{SpTrellis}} object representing the view.} \item{limits}{An integer(2) indicating the minimum and maximum number of nucleotides the \code{SnapshotFunction} is intended to visualize. For instance, a \sQuote{fine-scale} viewer displaying a pileup might be appropriate at between 1000 and 50000 nucleotides.} \item{x}{An instance of \code{SnapshotFunction}} \item{...}{Additional arguments, currently unused.} } \section{Fields}{ \describe{ \item{\code{reader}:}{Object of class \code{\link{function}} for reading data from BAM files and returning a \code{\link{data.frame}}.} \item{\code{viewer}:}{Object of class \code{\link{function}} for visualization that returns an \code{\link{SpTrellis}} object.} \item{\code{limits}:}{Object of class \code{integer} for the limits of ranges to be visualized.} } } \author{Martin Morgan and Chao-Jen Wong} \seealso{\code{\link{Snapshot}}} \examples{ ## internally defined function reader(ShortRead:::.fine_coverage) viewer(ShortRead:::.fine_coverage) limits(ShortRead:::.fine_coverage) } \keyword{classes} ShortRead/man/SolexaExportQA-class.Rd0000644000126300012640000000366012227066716021072 0ustar00biocbuildphs_compbio\name{SolexaExportQA-class} \docType{class} \alias{SolexaExportQA} \alias{SolexaExportQA-class} \alias{SolexaRealignQA-class} \alias{report,SolexaExportQA-method} \alias{report_html,SolexaExportQA-method} \alias{report_html,SolexaRealignQA-method} \alias{show,SolexaExportQA-method} \title{Quality assessment summaries from Solexa export and realign files} \description{ This class contains a list-like structure with summary descriptions derived from visiting one or more Solexa \sQuote{export} or \sQuote{realign} files. } \section{Objects from the Class}{ Objects of the class are usually produced by a \code{\link{qa}} method. } \section{Slots}{ \describe{ \item{\code{.srlist}:}{Object of class \code{"list"}, containing data frames or lists of data frames summarizing the results of qa.} } } \section{Extends}{ Class \code{"\linkS4class{SRList}"}, directly. Class \code{"\linkS4class{.QA}"}, directly. Class \code{"\linkS4class{.SRUtil}"}, by class "SRList", distance 2. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".QA", distance 2. } \section{Methods}{ Accessor methods are inherited from the \code{\linkS4class{SRList}} class. Additional methods defined on this class are: \describe{ \item{report}{\code{signature(x="SolexaExportQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} \item{report}{\code{signature(x="SolexaExportQA", ..., dest=tempfile(), type="pdf")}: (deprecated; use \code{type="html"} instead) produces a pdf file summarizing QA results. \code{dest} should be a file.} \item{report}{\code{signature(x="SolexaRealignQA", ..., dest=tempfile(), type="html")}: produces HTML files summarizing QA results. \code{dest} should be a directory.} } } \author{Martin Morgan } \seealso{ \code{\link{qa}}. } \examples{ showClass("SolexaExportQA") } \keyword{classes} ShortRead/man/SolexaIntensity-class.Rd0000644000126300012640000000724212227066716021355 0ustar00biocbuildphs_compbio\name{SolexaIntensity-class} \docType{class} \alias{SolexaIntensity-class} \alias{SolexaIntensityInfo-class} % subset \alias{[,SolexaIntensity,ANY,ANY-method} \alias{[,SolexaIntensity,ANY,ANY,ANY-method} \alias{[,SolexaIntensity,ANY,missing,ANY-method} \alias{[,SolexaIntensity,missing,ANY,ANY-method} \alias{[,SolexaIntensity,missing,missing,ANY-method} \title{Classes "SolexaIntensity" and "SolexaIntensityInfo"} \description{ Instances of \code{\linkS4class{Intensity}} and \code{\linkS4class{IntensityInfo}} for representing image intensity data from Solexa experiments. } \section{Objects from the Class}{ Objects can be created by calls to \code{SolexaIntensityInfo} or \code{SolexaIntensity}, or more usually \code{readIntensities}. } \section{Slots}{ Object of \code{SolexaIntensity} have slots: \describe{ \item{\code{readInfo}:}{Object of class \code{"SolexaIntensityInfo"} representing information about each read.} \item{\code{intensity}:}{Object of class \code{"ArrayIntensity"} containing an array of intensities with dimensions read, base, and cycle. Nucleotide are A, C, G, T for each cycle.} \item{\code{measurementError}:}{Object of class \code{"ArrayIntensity"} containing measurement errors for each read, cycle, and base, with dimensions like that for \code{intensity}. } \item{\code{.hasMeasurementError}:}{Object of class \code{"ScalarLogical"} used internally to indicate whether measurement error information is included.} } Object of \code{SolexaIntensityInfo} \describe{ \item{data}{Object of class \code{"data.frame"}, inherited from \code{AnnotatedDataFrame}.} \item{varMetadata}{Object of class \code{"data.frame"}, inherited from \code{AnnotatedDataFrame}.} \item{dimLabels}{Object of class \code{"character"}, inherited from \code{AnnotatedDataFrame}.} \item{\code{.__classVersion__}}{Object of class \code{"Versions"}, inherited from \code{AnnotatedDataFrame}.} \item{.init}{Object of class \code{"ScalarLogical"}, used internally to indicate whether the user initialized this object.} } } \section{Extends}{ Class \code{SolexaIntensity}: Class \code{"\linkS4class{Intensity}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class "Intensity", distance 2. Class \code{SolexaIntensityInfo}: Class \code{"\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}"}, directly Class \code{"\linkS4class{IntensityInfo}"}, directly Class \code{"\link[Biobase:class.Versioned]{Versioned}"}, by class "AnnotatedDataFrame", distance 2 Class \code{"\linkS4class{.ShortReadBase}"}, by class "IntensityInfo", distance 2 Class \code{"\linkS4class{IntensityInfo}"}, directly. } \section{Methods}{ Class "SolexaIntensity" inherits accessor and display methods from class \code{\linkS4class{Intensity}}. Additional methods include: \describe{ \item{\code{[}}{\code{signature(x = "SolexaIntensity", i="ANY", j="ANY", k="ANY")}: Selects the ith read, jth nucleotide, and kth cycle. Selection is coordinated across intensity, measurement error, and read information.} } Class "SolexaIntensityInfo" inherits accessor, subsetting, and display methods from class \code{\linkS4class{IntensityInfo}} and \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}}. } \author{Martin Morgan } \seealso{\code{\link{readIntensities}}} \examples{ showClass("SolexaIntensity") sp <- SolexaPath(system.file('extdata', package='ShortRead')) int <- readIntensities(sp) int # SolexaIntensity readInfo(int) # SolexaIntensityInfo int[1:5,,] # read 1:5 } \keyword{classes} ShortRead/man/SolexaIntensity.Rd0000644000126300012640000000373612227066716020256 0ustar00biocbuildphs_compbio\name{SolexaIntensity} \alias{SolexaIntensity} \alias{SolexaIntensityInfo} \title{Construct objects of class "SolexaIntensity" and "SolexaIntensityInfo"} \description{ These function constructs objects of \code{\linkS4class{SolexaIntensity}} and \code{\linkS4class{SolexaIntensityInfo}}. It will often be more convenient to create these objects using parsers such as \code{\link{readIntensities}}. } \usage{ SolexaIntensity(intensity=array(0, c(0, 0, 0)), measurementError=array(0, c(0, 0, 0)), readInfo=SolexaIntensityInfo( lane=integer(nrow(intensity))), ...) SolexaIntensityInfo(lane=integer(0), tile=integer(0)[seq_along(lane)], x=integer(0)[seq_along(lane)], y=integer(0)[seq_along(lane)]) } \arguments{ \item{intensity}{A matrix of image intensity values. Successive columns correspond to nucleotides A, C, G, T; four successive columns correspond to each cycle. Typically, derived from \code{"_int.txt"} files.} \item{measurementError}{As \code{intensity}, but measuring standard error. Usually derived from \code{"_nse.txt"} files.} \item{readInfo}{An object of class \code{AnnotatedDataFrame}, containing information described by \code{SolexaIntensityInfo}.} \item{lane}{An integer vector giving the lane from which each read is derived.} \item{tile}{An integer vector giving the tile from which each read is derived.} \item{x}{An integer vector giving the tile-local x coordinate of the read from which each read is derived.} \item{y}{An integer vector giving the tile-local y coordinate of the read from which each read is derived.} \item{...}{Additional arguments, not currently used.} } \value{ An object of class \code{\linkS4class{SolexaIntensity}}, or \code{SolexaIntensityInfo}. } \author{Martin Morgan } \seealso{\code{\linkS4class{SolexaIntensity}}.} \keyword{manip} ShortRead/man/SolexaPath-class.Rd0000644000126300012640000002033712227066716020263 0ustar00biocbuildphs_compbio\name{SolexaPath-class} \docType{class} \alias{SolexaPath-class} % constructors \alias{SolexaPath} % methods \alias{SolexaSet,SolexaPath-method} \alias{qa,SolexaPath-method} \alias{report,SolexaPath-method} \alias{show,SolexaPath-method} \alias{detail,SolexaPath-method} % transforming methods \alias{readIntensities,SolexaPath-method} \alias{readPrb,SolexaPath-method} \alias{readQseq,SolexaPath-method} \alias{readFasta,SolexaPath-method} \alias{readFastq,SolexaPath-method} \alias{readBaseQuality,SolexaPath-method} \alias{readAligned,SolexaPath-method} \title{"SolexaPath" class representing a standard output file hierarchy} \description{ Solexa produces a hierarchy of output files. The content of the hierarchy varies depending on analysis options. This class represents a standard class hierarchy, constructed by searching a file hierarchy for appropriately named directories. } \section{Objects from the Class}{ Objects from the class are created by calls to the constructor: \code{SolexaPath(experimentPath, dataPath=.solexaPath(experimentPath, "Data"), scanPath=.solexaPath(dataPath, "GoldCrest"), imageAnalysisPath=.solexaPath(dataPath, "^(C|IPAR)"), baseCallPath=.solexaPath(imageAnalysisPath, "^Bustard"), analysisPath=.solexaPath(baseCallPath, "^GERALD"), ..., verbose=FALSE) } \describe{ \item{experimentPath}{\code{character(1)} object pointing to the top-level directory of a Solexa run, e.g., \code{/home/solexa/user/080220_HWI-EAS88_0004}. This is the only required argument} \item{dataPath}{(optional) Solexa \sQuote{Data} folder .} \item{scanPath}{(optional) Solexa GoldCrest image scan path.} \item{imageAnalysisPath}{(optional) Firecrest image analysis path.} \item{baseCallPath}{(optional) Bustard base call path.} \item{analysisPath}{(optional) Gerald analysis pipeline path.} \item{...}{Additional arguments, unused by currently implemented methods.} \item{verbose=FALSE}{(optional) logical vector which, when \code{TRUE} results in warnings if paths do not exist.} } All paths must be fully-specified. } \section{Slots}{ \code{SolexaPath} has the following slots, containing either a fully specified path to the corresponding directory (described above) or \code{NA} if no appropriate directory was discovered. \describe{ \item{\code{basePath}}{See \code{experimentPath}, above.} \item{\code{dataPath}}{See above.} \item{\code{scanPath}}{See above.} \item{\code{imageAnalysisPath}}{See above.} \item{\code{baseCallPath}}{See above.} \item{\code{analysisPath}}{See above.} } } \section{Extends}{ Class \code{"\linkS4class{.Solexa}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Solexa", distance 2. } \section{Methods}{ Transforming methods include: \describe{ \item{readIntensities}{ \code{signature(dirPath = "SolexaPath", pattern=character(0), run, ...)}: Use \code{imageAnalysisPath(sp)[run]} as the directory path(s) and \code{pattern=character(0)} as the pattern for discovering Solexa intensity files. See \code{\link{readIntensities,character-method}} for additional parameters.} \item{readPrb}{ \code{signature(dirPath = "SolexaPath", pattern=character(0), run, ...)}: Use \code{baseCallPath(dirPath)[run]} as the directory path(s) and \code{pattern=character(0)} as the pattern for discovering Solexa \sQuote{prb} files, returning a \code{\linkS4class{SFastqQuality}} object containing the maximum qualities found for each base of each cycle. The \code{...} argument may include the named argument \code{as}. This influences the return value, as explained on the \code{\link{readPrb,character-method}} page. } \item{readFasta}{ \code{signature(dirPath, pattern = character(0), ..., nrec=-1L, skip=0L)}: Use \code{analysisPath(dirPath)[run]} as the directory path(s) for discovering fasta-formatted files, returning a \code{\linkS4class{ShortRead}} object. The default method reads \emph{all} files into a single object.} \item{readFastq}{ \code{signature(dirPath = "SolexaPath", pattern = ".*_sequence.txt", run, ..., qualityType="SFastqQuality")}: Use \code{analysisPath(dirPath)[run]} as the directory path(s) and \code{pattern=".*_sequence.txt"} as the pattern for discovering fastq-formatted files, returning a \code{\linkS4class{ShortReadQ}} object. The default method reads \emph{all} sequence files into a single object.} \item{readBaseQuality}{ \code{signature(dirPath = "SolexaPath", seqPattern = ".*_seq.txt", prbPattern = "s_[1-8]_prb.txt", run, ...)}: Use \code{baseCallPath(dirPath)[run]} as the directory path(s) and \code{seqPattern=".*_seq.txt"} as the pattern for discovering base calls and \code{prbPattern=".*_prb.txt"} as the pattern for discovering quality scores. Note that the default method reads \emph{all} base call and quality score files into a single object; often one will want to specify a pattern for each lane.} \item{readQseq}{ \code{signature(directory="SolexaPath", pattern=".*_qseq.txt.*", run, ...., filtered=FALSE)}: Use \code{analysisPath(dirPath)[run]} as the directory path and \code{pattern=".*_qseq.txt.*"} as the pattern for discovering read and quality scores in Solexa 'qseq' files. Data from \emph{all} files are read into a single object; often one will want to specify a pattern for each lane. Details are as for \code{\link{readQseq,character-method}}.} \item{readAligned}{ \code{signature(dirPath = "SolexaPath", pattern = ".*_export.txt.*", run, ..., filter=srFilter())}: Use \code{analysisPath(dirPath)[run]} as the directory path and \code{pattern=".*_export.txt"} as the pattern for discovering Eland-aligned reads in the Solexa 'export' file format. Note that the default method reads \emph{all} aligned read files into a single object; often one will want to specify a pattern for each lane. Use an object of \code{\linkS4class{SRFilter}} to select specific chromosomes, strands, etc.} \item{qa}{ \code{signature(dirPath="SolexaPath", pattern="character(0)", run, ...)}: Use \code{analysisPath(dirPath)[run]} as the directory path(s) and \code{pattern=".*_export.txt"} as the pattern for discovering Solexa \code{export}-formatted fileds, returning a \code{\linkS4class{SolexaExportQA}} object summarizing quality assessment. If \code{Rmpi} or \code{parallel} has been initiated, quality assessment calculations are distributed across available nodes or cores (one node per export file.)} \item{report}{ \code{signature(x, ..., dest=tempfile(), type="pdf")}: Use \code{qa(x, ...)} to generate quality assessment measures, and use these to generate a quality assessment report at location \code{dest} of type \code{type} (e.g., \sQuote{pdf}). } \item{SolexaSet}{\code{signature(path = "SolexaPath")}: create a \code{\linkS4class{SolexaSet}} object based on \code{path}.} } Additional methods include: \describe{ \item{show}{\code{signature(object = "SolexaPath")}: briefly summarize the file paths of \code{object}. The \code{experimentPath} is given in full; the remaining paths are identified by their leading characters.} \item{detail}{\code{signature(x = "SolexaPath")}: summarize file paths of \code{x}. All file paths are presented in full.} } } \author{Martin Morgan} \examples{ showClass("SolexaPath") showMethods(class="SolexaPath", where=getNamespace("ShortRead")) sf <- system.file("extdata", package="ShortRead") sp <- SolexaPath(sf) sp readFastq(sp, pattern="s_1_sequence.txt") \dontrun{ nfiles <- length(list.files(analysisPath(sp), "s_[1-8]_export.txt")) library(Rmpi) mpi.spawn.Rslaves(nslaves=nfiles) report(qa(sp)) } \dontrun{ nfiles <- length(list.files(analysisPath(sp), "s_[1-8]_export.txt")) library(parallel) options(srapply_fapply="parallel") report(qa(sp)) } } \keyword{classes} ShortRead/man/SolexaSet-class.Rd0000644000126300012640000000753012227066716020122 0ustar00biocbuildphs_compbio\name{SolexaSet-class} \docType{class} \alias{SolexaSet-class} % constructors \alias{SolexaSet} \alias{SolexaSet,character-method} % methods \alias{detail,SolexaSet-method} \alias{laneNames,SolexaSet-method} \alias{laneNames,AnnotatedDataFrame-method} \alias{show,SolexaSet-method} % transforming methods \alias{readAligned,SolexaSet-method} \title{"SolexaSet" coordinating Solexa output locations with sample annotations} \description{ This class coordinates the file hierarchy produced by the Solexa `pipeline' with annotation data contained in an \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} (defined in the \pkg{Biobase} package). } \section{Objects from the Class}{ Objects can be created from the constructor: \code{SolexaSet(path, ...)}. \describe{ \item{path}{A \code{character(1)} vector giving the fully-qualified path to the root of the directory hierarchy associated with each Solexa flow cell, or an object of class \code{SolexaPath} (see \code{\linkS4class{SolexaPath}} for this method).} \item{...}{Additional arguments, especially \code{laneDescription}, an \code{\link[Biobase:class.AnnotatedDataFrame]{AnnotatedDataFrame}} describing the content of each of the 8 lanes in the Solexa flow cell.} } } \section{Slots}{ \code{SolexaSet} has the following slots: \describe{ \item{\code{solexaPath}:}{Object of class \code{"SolexaPath"}.} \item{\code{laneDescription}:}{Object of class \code{"AnnotatedDataFrame"}, containing information about the samples in each lane of the flow cell.} } } \section{Extends}{ Class \code{"\linkS4class{.Solexa}"}, directly. Class \code{"\linkS4class{.ShortReadBase}"}, by class ".Solexa", distance 2. } \section{Methods}{ \describe{ \item{solexaPath}{\code{signature(object = "SolexaSet")}: Return the directory paths present when this object was created as a \code{\linkS4class{SolexaPath}}.} \item{laneNames}{\code{signature(object = "SolexaSet")}: Return the names of each lane in the flow cell, currently names are simply \code{1:8}. } \item{show}{\code{signature(object = "SolexaSet")}: Briefly summarize the experiment path and lane description of the Solexa set. } \item{detail}{\code{signature(x = "SolexaSet")}: Provide additional detail on the Solexa set, including the content of \code{solexaPath} and the \code{pData} and \code{varMetadata} of \code{laneDescription}.} } Methods transforming \code{SolexaSet} objects include: \describe{ \item{readAligned}{ \code{signature(dirPath = "SolexaSet", pattern = ".*_export.txt", run, ..., filter=srFilter())}: Use \code{analysisPath(solexaPath(dirPath))[run]} as the directory path(s) and \code{pattern=".*_export.txt"} as the pattern for discovering Eland-aligned reads in the Solexa 'export' file format. Note that the default method reads \emph{all} aligned read files into a single object; often one will want to specify a pattern for each lane. Use an object of \code{\linkS4class{SRFilter}} to select specific chromosomes, strands, etc.} } } \author{Martin Morgan} \examples{ showClass("SolexaSet") showMethods(class="SolexaSet", where=getNamespace("ShortRead")) ## construct a SolexaSet sf <- system.file("extdata", package="ShortRead") df <- data.frame(Sample=c("Sample 1", "Sample 2", "Sample 3", "Sample 4", "Center-wide control", "Sample 6", "Sample 7", "Sample 8"), Genome=c(rep("hg18", 4), "phi_plus_SNPs.txt", rep("hg18", 3))) dfMeta <- data.frame(labelDescription=c("Type of sample", "Alignment genome")) adf <- new("AnnotatedDataFrame", data=df, varMetadata=dfMeta) SolexaSet(sf, adf) } \keyword{classes} ShortRead/man/SpTrellis-class.Rd0000644000126300012640000000476012227066716020136 0ustar00biocbuildphs_compbio\name{SpTrellis-class} \Rdversion{1.1} \docType{class} % constructor: \alias{SpTrellis-class} \alias{SpTrellis} % methods: \alias{zi} \alias{zi,SpTrellis-method} \alias{zo} \alias{zo,SpTrellis-method} \alias{right,SpTrellis-method} \alias{left,SpTrellis-method} \alias{restore} \alias{restore,SpTrellis-method} \alias{show,SpTrellis-method} \title{Class "SpTrellis"} \description{ A reference class to manage the trellis graphics related component of the \code{\link{Snapshot}} functionality for visualization of genomic data. } \usage{ SpTrellis(trellis, debug_enabled=FALSE) } \arguments{ \item{trellis}{A trellis object for storing the plot of the genome area being visualized.} \item{debug_enabled}{\code{logical(1)} indicating whether class methods should report debugging information to the user.} } \section{Fields}{ \describe{ \item{\code{trellis}:}{Object of class \code{trellis} for storing the plot information.} \item{debug_enabled}{\code{logical(1)} indicating whether class methods should report debugging information to the user.} } } \section{Methods}{ \describe{ \item{zi}{\code{signature(x="SpTrellis")}: zoom in} \item{zo}{\code{signature(x="SpTrellis")}: zoom out} \item{right}{\code{signature(x="SpTrellis")}: shift to the right} \item{left}{\code{signature(x="SpTrellis")}: shift to the left} \item{restore}{\code{signature(x="SpTrellis")}: restore to the original plot} \item{show}{\code{signature(x="SpTrellis")}: show the current plot} \item{update}{\code{signature(x="SpTrellis")}: update the trellis parameters of the \code{SpTrellis} object.} } } \author{Chao-Jen \url{cwon2@fhcrc.org}} \seealso{\code{\link{Snapshot}}} \examples{ col <- c("#66C2A5", "#FC8D62") x = numeric(1000) x[sample(1000, 100)] <- abs(rnorm(100)) df <- data.frame(x = c(x, -x), pos = seq(1, 1e5, length.out=1000), group = rep(c("positive", "negative"), each=1000)) cv <- xyplot(x ~ pos, df, group=group, type="s", col=col, main="yeast chrI:1 - 2e5", ylab="Coverage", xlab="Coordinate", scales=list(y=list(tck=c(1,0)), x=list(rot=45, tck=c(1,0), tick.number=20)), panel=function(...) { panel.xyplot(...) panel.grid(h=-1, v=20) panel.abline(a=0, b=0, col="grey") }) s <- SpTrellis(cv) s zi(s) zi(s) left(s) right(s) zo(s) restore(s) } \keyword{classes} ShortRead/man/accessors.Rd0000644000126300012640000000351512227066716017074 0ustar00biocbuildphs_compbio\name{accessors} \alias{accessors} % SRVector \alias{vclass} % ShortRead / ShortReadQ \alias{sread} \alias{sread,ShortRead-method} \alias{id} % AlignedRead \alias{chromosome} \alias{position} \alias{alignQuality} \alias{alignData} % Solexa \alias{experimentPath} \alias{dataPath} \alias{scanPath} \alias{imageAnalysisPath} \alias{baseCallPath} \alias{analysisPath} % SolexaSet \alias{solexaPath} \alias{laneDescription} \alias{laneNames} \title{Accessors for ShortRead classes} \description{ These functions and generics define `accessors' (to get and set values) for objects in the \pkg{ShortRead} package; methods defined in other packages may have additional meaning. } \usage{ ## SRVector vclass(object, ...) ## ShortRead / ShortReadQ sread(object, ...) id(object, ...) ## AlignedRead chromosome(object, ...) position(object, ...) alignQuality(object, ...) alignData(object, ...) ## Solexa experimentPath(object, ...) dataPath(object, ...) scanPath(object, ...) imageAnalysisPath(object, ...) baseCallPath(object, ...) analysisPath(object, ...) ## SolexaSet solexaPath(object, ...) laneDescription(object, ...) laneNames(object, ...) } \arguments{ \item{object}{An object derived from class \code{ShortRead}. See help pages for individual objects, e.g., \code{\linkS4class{ShortReadQ}}. The default is to extract the contents of a slot of the corresponding name (e.g., slot \code{sread}) from \code{object}.} \item{...}{Additional arguments passed to the accessor. The default definitions do not make use of additional arguments.} } \value{ Usually, the value of the corresponding slot, or other simple content described on the help page of \code{object}. } \author{Martin Morgan} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) experimentPath(sp) basename(analysisPath(sp)) } \keyword{manip} ShortRead/man/alphabetByCycle.Rd0000644000126300012640000000436212227066716020143 0ustar00biocbuildphs_compbio\name{alphabetByCycle} \alias{alphabetByCycle} \alias{alphabetByCycle,BStringSet-method} \title{Summarize short read nucleotide or quality scores by cycle} \description{ \code{alphabetByCycle} summarizes short read nucleotides or qualities by cycle, e.g., returning the number of occurrences of each nucleotide \code{A, T, G, C} across all reads from 36 cycles of a Solexa lane. } \usage{ alphabetByCycle(stringSet, alphabet, ...) } \arguments{ \item{stringSet}{A R object representing the collection of reads or quality scores to be summarized.} \item{alphabet}{The alphabet (character vector of length 1 strings) from which the sequences in \code{stringSet} are composed. Methods often define an appropriate alphabet, so that the user does not have to provide one.} \item{...}{Additional arguments, perhaps used by methods defined on this generic.} } \details{ The default method requires that \code{stringSet} extends the \code{\link[Biostrings:XStringSet-class]{XStringSet}} class of \pkg{Biostrings}. The following method is defined, in addition to methods described in class-specific documentation: \describe{ \item{alphabetByCycle}{\code{signature(stringSet = "BStringSet")}: this method uses an alphabet spanning all ASCII characters, codes \code{1:255}. } } } \value{ A matrix with number of rows equal to the length of \code{alphabet} and columns equal to the maximum width of reads or quality scores in the string set. Entries in the matrix are the number of times, over all reads of the set, that the corresponding letter of the alphabet (row) appeared at the specified cycle (column). } \seealso{ The IUPAC alphabet in Biostrings. \url{http://www.bioperl.org/wiki/FASTQ_sequence_format} for the BioPerl definition of fastq. Solexa documentation `Data analysis - documentation : Pipeline output and visualisation'. } \author{Martin Morgan} \examples{ showMethods("alphabetByCycle") sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") alphabetByCycle(sread(rfq)) abcq <- alphabetByCycle(quality(rfq)) dim(abcq) ## 'high' scores, first and last cycles abcq[64:94,c(1:5, 32:36)] } \keyword{manip} ShortRead/man/alphabetScore.Rd0000644000126300012640000000114112227066716017654 0ustar00biocbuildphs_compbio\name{alphabetScore} \alias{alphabetScore} \title{Efficiently calculate the sum of quality scores across bases} \description{ This generic takes a \code{\linkS4class{QualityScore}} object and calculates, for each read, the sum of the encoded nucleotide probabilities. } \usage{ alphabetScore(object, ...) } \arguments{ \item{object}{An object of class \code{\linkS4class{QualityScore}}.} \item{\dots}{Additional arguments, currently unused.} } \value{ A vector of numeric values of length equal to the length of \code{object}. } \author{Martin Morgan } \keyword{manip} ShortRead/man/clean.Rd0000644000126300012640000000200012227066716016155 0ustar00biocbuildphs_compbio\name{clean} \alias{clean} \alias{clean,DNAStringSet-method} \title{Remove sequences with ambiguous nucleotides from short read classes} \description{ Short reads may contain ambiguous base calls (i.e., IUPAC symbols different from A, T, G, C). This generic removes all sequences containing 1 or more ambiguous bases. } \usage{ clean(object, ...) } \arguments{ \item{object}{An object for which \code{clean} methods exist; see below to discover these methods.} \item{\dots}{Additional arguments, perhaps used by methods.} } \details{ The following method is defined, in addition to methods described in class-specific documentation: \describe{ \item{clean}{\code{signature(x = "DNAStringSet")}: Remove all sequences containing non-base (A, C, G, T) IUPAC symbols.} } } \value{ An instance of \code{class(object)}, containing only sequences with non-redundant nucleotides. } \author{Martin Morgan } \examples{ showMethods('clean') } \keyword{manip} ShortRead/man/countLines.Rd0000644000126300012640000000303612227066716017230 0ustar00biocbuildphs_compbio\name{countLines} \alias{countLines} \title{Count lines in all (text) files in a directory whose file name matches a pattern} \description{ \code{countLines} visits all files in a directory path \code{dirPath} whose base (i.e., file) name matches \code{pattern}. Lines in the file are counted as the number of new line characters. } \usage{ countLines(dirPath, pattern=character(0), ..., useFullName=FALSE) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute) of files whose lines are to be counted.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing files whose lines are to be counted. The default (\code{character(0)}) results in line counts for all files in the directory.} \item{...}{Additional arguments, passed internally to list.files. See \code{\link{list.files}}.} \item{useFullName}{A \code{logical(1)} indicating whether elements of the returned vector should be named with the base (file) name (default; \code{useFullName=FALSE}) or the full path name (\code{useFullName=TRUE}).} } \value{ A named integer vector of line counts. Names are paths to the files whose lines have been counted, excluding \code{dirPath}. } \author{Martin Morgan} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) countLines(analysisPath(sp)) countLines(experimentPath(sp), recursive=TRUE) countLines(experimentPath(sp), recursive=TRUE, useFullName=TRUE) } \keyword{manip} ShortRead/man/deprecated.Rd0000644000126300012640000000727712227066716017220 0ustar00biocbuildphs_compbio\name{deprecated} \alias{deprecated} \alias{defunct} \alias{basePath} \alias{pileup} \title{Deprecated and defunct functions} \description{ These functions were introduced but are now deprecated or defunct. } \usage{ basePath(object, ...) pileup(start, fraglength, chrlength, dir = strand( "+" ), readlength = fraglength, offset = 1) } \arguments{ \item{object}{For \code{basePath}, and object of class \code{ExperimentPath}.} \item{...}{Additional arguments.} \item{start}{A vector with the start positions of each read on the reference sequence. All reads must correspond to the same reference sequence.} \item{fraglength}{A vector of the same length as 'start' with the lengths of all the fragments. Alternatively, a single integer, specifying one constant length to assume for all tags.} \item{chrlength}{The length of the reference sequence. You may use the function \code{\link{readBfaToc}} to extract this information from the .bfa file.} \item{dir}{A factor with level "-" and "+" of the same length as 'start', specifying whether the fragment extends to the right (towards higher index values, '+') or to the left (towards lower index values, '-') beyond the read. See below for more explanation.} \item{readlength}{The length of the reads, either as a vector of the same length as 'start' or as a single number. This parameter makes sense only if 'dir' is used, too. If not specified, read lengths and fragment lengths are taken to be the same.} \item{offset}{The index of the first base pair in the result vector. The default is 1, i.e. assumes that the 'start' positions are in 1-based chromosome coordinates.} } \value{ \item{\code{pileup}}{an integer vector of length 'chrlength', each element counting how many fragments map to this basepair.} } \note{ (the following refers to the \code{pileup} function) 1. This function is not suitable for paired-end reads. 2. If the arguments 'dir' and 'readlength' are not used, the fragments are assumed to start at the positions given in 'start' and extend to the right by the number of basepairs given in fraglength. If 'dir' and 'readlength' are supplied then the interval starting at 'start' and extending to the right by the number of base pairs given in 'readlength' marks the position of the read, which is one end of the fragment. If 'dir' ist '+', it is taken as the left end and the fragment will be extended to the right to have the total length given by 'fraglength'. If 'dir' is '-', the end is taken as the right end and is extended to the left. Note that in the latter case, the 'start' position does mark the border between read and rest of fragment, not an actual 'end' of the fragment. If you are confused now, look at the examples below. 3. Sorry for the inconsequent use of 'width' and 'length' in a seemingly interchangeable fashion. } \examples{\dontrun{ Example 1: Assuming that 'lane' is an 'AlignedRead' object containing aligned reads from a Solexa lane, you may get a pile-up representation of chromosome 13 as follows chr13length <- 114142980 # the length of human chromosme 13 pu <- pileup(position(lane)[chromosome(lane)=="13"], width(lane), chr13length ) Example 2: Even though the width of the reads (as repored by 'width(lane)') is only 24, these 24 bp are just one end of a longer fragment. Assuming that all fragments have been sonicated to about the same length, say 150 bp, we may get a better pile-up representation by: pu2 <- pileup(position(lane)[chromosome(lane)=="13"], 150, chr13length, strand(lane)[chromosome(lane)=="13"], width(lane) ) }} \author{Simon Anders, EMBL-EBI, \email{sanders@fs.tum.de}} \keyword{manip} ShortRead/man/dotQA-class.Rd0000644000126300012640000000220712227066716017217 0ustar00biocbuildphs_compbio\name{.QA-class} \docType{class} \alias{.QA-class} \alias{rbind,.QA-method} \alias{show,.QA-method} \title{Virtual class for representing quality assessment results} \description{ Classes derived from \code{.QA-class} represent results of quality assurance analyses. Details of derived class structure are found on the help pages of the derived classes. } \section{Objects from the Class}{ Objects from the class are created by ShortRead functions, in particular \code{\link{qa}}. } \section{Extends}{ Class \code{"\linkS4class{.ShortReadBase}"}, directly. } \section{Methods}{ Methods defined on this class include: \describe{ \item{rbind}{\code{signature(...="list")}: rbind data frame objects in \code{...}. All objects of \code{...} must be of the same class; the return value is an instance of that class.} \item{show}{\code{signature(object = "SolexaExportQA")}: Display an overview of the object contents.} } } \seealso{ Specific classes derived from \code{.QA} } \author{Martin Morgan } \examples{ getClass(".QA", where=getNamespace("ShortRead")) } \keyword{classes} ShortRead/man/dustyScore.Rd0000644000126300012640000000421512227066716017251 0ustar00biocbuildphs_compbio\name{dustyScore} \alias{dustyScore} \alias{dustyScore,DNAStringSet-method} \alias{dustyScore,ShortRead-method} \title{Summarize low-complexity sequences} \description{ \code{dustyScore} identifies low-complexity sequences, in a manner inspired by the \code{dust} implementation in \code{BLAST}. } \usage{ dustyScore(x, batchSize=NA, ...) } \arguments{ \item{x}{A \code{DNAStringSet} object, or object derived from \code{ShortRead}, containing a collection of reads to be summarized.} \item{batchSize}{\code{NA} or an \code{integer(1)} vector indicating the maximum number of reads to be processed at any one time.} \item{...}{Additional arguments, not currently used.} } \details{ The following methods are defined: \describe{ \item{dustyScore}{\code{signature(x = "DNAStringSet")}: operating on an object derived from class \code{DNAStringSet}.} \item{dustyScore}{\code{signature(x = "ShortRead")}: operating on the \code{sread} of an object derived from class \code{ShortRead}.} } The dust-like calculations used here are as implemented at \url{https://stat.ethz.ch/pipermail/bioc-sig-sequencing/2009-February/000170.html}. Scores range from 0 (all triplets unique) to the square of the width of the longest sequence (poly-A, -C, -G, or -T). The \code{batchSize} argument can be used to reduce the memory requirements of the algorithm by processing the \code{x} argument in batches of the specified size. Smaller batch sizes use less memory, but are computationally less efficient. } \value{ A vector of numeric scores, with length equal to the length of \code{x}. } \references{ Morgulis, Getz, Schaffer and Agarwala, 2006. WindowMasker: window-based masker for sequenced genomes, Bioinformatics 22: 134-141. } \seealso{ The WindowMasker supplement defining \code{dust} \url{ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/windowmasker/windowmasker_suppl.pdf} } \author{Herve Pages (code); Martin Morgan} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") range(dustyScore(rfq)) } \keyword{manip} ShortRead/man/filterFastq.Rd0000644000126300012640000000327712227066716017400 0ustar00biocbuildphs_compbio\name{filterFastq} \alias{filterFastq} \title{Filter fastq from one file to another} \description{ \code{filterFastq} filters reads from source to destination file(s) applying a filter to reads in each file. The filter can be a function or FilterRules instance; operations are done in a memory-efficient manner. } \usage{ filterFastq(files, destinations, ..., filter = FilterRules(), yieldSize = 1000000L) } \arguments{ \item{files}{a character vector of valid file paths.} \item{destinations}{a character vector of destinations of the same length as \code{files}. \code{destinations} must not already exist.} \item{...}{Additional arguments, perhaps used by a \code{filter} function.} \item{filter}{A simple function taking as it's first argument a \code{ShortReadQ} instance and returning a modified \code{ShortReadQ} instance (e.g., with records or nucleotides removed), or a \code{FilterRules} instance specifying which records are to be removed.} \item{yieldSize}{Number of fastq records processed in each call to \code{filter}; increase this for (marginally) more efficient I/O at the expense of increased memory use.} } \author{Martin Morgan \url{mtmorgan@fhcrc.org}} \examples{ ## path to a convenient fastq file sp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") ## filter reads to keep those with GC < 0.7 fun <- function(x) { gc <- alphabetFrequency(sread(x), baseOnly=TRUE)[,c("G", "C")] x[rowSums(gc) / width(x) < .7] } filterFastq(fl, tempfile(), filter=fun) ## trimEnds,character-method uses filterFastq internally trimEnds(fl, "V", destinations=tempfile()) } ShortRead/man/polyn.Rd0000644000126300012640000000145412227066716016250 0ustar00biocbuildphs_compbio\name{Utilites} \alias{polyn} \title{Utilities for common, simple operations} \description{ These functions perform a variety of simple operations. } \usage{ polyn(nucleotides, n) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{nucleotides}{A character vector with all elements having exactly 1 character, typically from the IUPAC alphabet.} \item{n}{An \code{integer(1)} vector.} } \details{ \code{polyn} returns a character vector with each element having \code{n} characters. Each element contains a single nucleotide. Thus \code{polyn("A", 5)} returns \code{AAAAA}. } \value{ \code{polyn} returns a character vector of length \code{length(nucleotide)} } \author{Martin Morgan } \examples{ polyn(c("A", "N"), 35) } \keyword{manip} ShortRead/man/qa.Rd0000644000126300012640000001110512227066716015502 0ustar00biocbuildphs_compbio\name{qa} \alias{qa} \alias{qa,character-method} \alias{qa,list-method} \title{Perform quality assessment on short reads} \description{ This function is a common interface to quality assessment functions available in \code{ShortRead}. Results from this function may be displayed in brief, or integrated into reports using, e.g., \code{\link{report}}. } \usage{ qa(dirPath, ...) \S4method{qa}{character}(dirPath, pattern=character(0), type=c("SolexaExport", "SolexaRealign", "Bowtie", "MAQMap", "MAQMapShort", "fastq", "BAM"), ...) \S4method{qa}{list}(dirPath, ...) } \arguments{ \item{dirPath}{A character vector or other object (e.g., \code{\link{SolexaPath}}; see \code{showMethods}, below) locating the data for which quality assessment is to be performed. See help pages for defined methods (by evaluating the example code, below) for details of available methods.} \item{pattern}{A character vector limiting the files in \code{dirPath} to be processed, as with \code{\link{list.files}}. Care should be taken to specify pattern to avoid reading unintended files.} \item{type}{The type of file being parsed; must be a character vector of length 1, selected from one of the types enumerated in the parameter.} \item{\dots}{Additional arguments used by methods. \describe{ \item{\code{sample=TRUE}:}{Logical(1) indicating whether QA should be performed on a sample (default size 1000000) drawn from each FASTQ file, or from the entire file.} \item{\code{n}:}{The number of reads to sample when processing FASTQ files.} \item{\code{fapply}, \code{reduce}:}{Influence how evaluation occurs when this function is run with the \pkg{Rmpi} or \pkg{parallel} packages; see \code{\link{srapply}}.} \item{\code{Lpattern}, \code{Rpattern}:}{A character vector or XString object to be matched to the left end of a sequence. If either \code{Lpattern} or \code{Rpattern} are provided, \code{trimLRPatterns} is invoked to produce a measure of adapter contamination. Mismatch rates are 0.1 on the left and 0.2 on the right, with a minimum overlap of 10 nt.} } } } \details{ The most common use of this function provides a directory path and pattern identifying FASTQ files for quality assessment. The default is then to create a quality assessment report based on a random sample of n=1000000 reads from each file. The following methods are defined, in addition to those on S4 formal classes documented elsewhere: \describe{ \item{\code{qa,character-method}}{ Quality assessment is performed on all files in directory \code{dirPath} whose file name matches \code{pattern}. The type of analysis performed is based on the \code{type} argument. Use \code{SolexaExport} when all files matching \code{pattern} are Solexa \code{_export.txt} files. Use \code{SolexaRealign} for Solexa \code{_realign.txt} files. Use \code{Bowtie} for Bowtie files. Use \code{MAQMapShort} for MAQ \code{map} files produced by MAQ versions below 0.70 and \code{MAQMap} for more recent output. Use \code{fastq} for collections of fastq-format files. Use \code{BAM} for \code{.bam} files; see the \code{param} argument in \code{\link{readAligned}} for information on how to influence reads included in the qa summary. Quality assessment details vary depending on data source. } \item{\code{qa,list-method}}{ \code{dirPath} is a list of objects, all of the same class and typically derived from \code{ShortReadQ}, on which quality assessment is performed. All elements of the list must have names, and these should be unique. } } } \value{ An object derived from class \code{\linkS4class{.QA}}. Values contained in this object are meant for use by \code{\link{report}} } \author{Martin Morgan } \seealso{ \code{\linkS4class{.QA}}, \code{\linkS4class{SolexaExportQA}} \code{\linkS4class{MAQMapQA}} \code{\linkS4class{FastqQA}} \code{\linkS4class{BAMQA}} } \examples{ sp <- SolexaPath(system.file("extdata", package = "ShortRead")) qa1 <- qa(sp) fq <- file.path(analysisPath(sp), pattern="s_1_sequence.txt") qa2 <- qa(readFastq(fq), basename(fq)) # name fastq files ## create report from a random sample of each file qas0 <- Map(function(fl, nm) { fq <- FastqSampler(fl) qa(yield(fq), nm) }, fq, sub(".txt", "", basename(fq))) qa3 <- do.call(rbind, qas0) showMethods("qa", where=getNamespace("ShortRead")) } \keyword{manip} ShortRead/man/qa2.Rd0000644000126300012640000002236512227066716015576 0ustar00biocbuildphs_compbio\name{qa2} \alias{QAFastqSource} \alias{QACollate} \alias{QA} \alias{QAFlagged} \alias{QAFiltered} \alias{QAAdapterContamination} \alias{QAData} \alias{QAFrequentSequence} \alias{QANucleotideByCycle} \alias{QANucleotideUse} \alias{QAQualityByCycle} \alias{QAQualityUse} \alias{QAReadQuality} \alias{QASequenceUse} \alias{QACollate,QAFastqSource-method} \alias{QACollate,missing-method} \alias{qa2} \alias{qa2,FastqSampler-method} \alias{qa2,QAAdapterContamination-method} \alias{qa2,QACollate-method} \alias{qa2,QAFastqSource-method} \alias{qa2,QAFrequentSequence-method} \alias{qa2,QANucleotideByCycle-method} \alias{qa2,QANucleotideUse-method} \alias{qa2,QAQualityByCycle-method} \alias{qa2,QAQualityUse-method} \alias{qa2,QAReadQuality-method} \alias{qa2,QASequenceUse-method} \alias{flag} \alias{flag,.QA2-method} \alias{flag,QAFrequentSequence-method} \alias{flag,QAReadQuality-method} \alias{flag,QASource-method} \alias{report,QA-method} \alias{report,QAAdapterContamination-method} \alias{report,QAFiltered-method} \alias{report,QAFlagged-method} \alias{report,QAFrequentSequence-method} \alias{report,QANucleotideByCycle-method} \alias{report,QANucleotideUse-method} \alias{report,QAQualityByCycle-method} \alias{report,QAQualityUse-method} \alias{report,QAReadQuality-method} \alias{report,QASequenceUse-method} \alias{report,QASource-method} \alias{rbind,QASummary-method} \alias{show,QAAdapterContamination-method} \alias{show,QACollate-method} \alias{show,QAFastqSource-method} \alias{show,QAFrequentSequence-method} \alias{show,QAReadQuality-method} \alias{show,QASummary-method} \title{(Updated) quality assessment reports on short reads} \description{ This page summarizes an updated approach to quality assessment reports in \code{ShortRead}. } \usage{ ## Input source for short reads QAFastqSource(con = character(), n = 1e+06, readerBlockSize = 1e+08, flagNSequencesRange = NA_integer_, ..., html = system.file("template", "QASources.html", package="ShortRead")) QAData(seq = ShortReadQ(), filter = logical(length(seq)), ...) ## Possible QA elements QAFrequentSequence(useFilter = TRUE, addFilter = TRUE, n = NA_integer_, a = NA_integer_, flagK=.8, reportSequences = FALSE, ...) QANucleotideByCycle(useFilter = TRUE, addFilter = TRUE, ...) QANucleotideUse(useFilter = TRUE, addFilter = TRUE, ...) QAQualityByCycle(useFilter = TRUE, addFilter = TRUE, ...) QAQualityUse(useFilter = TRUE, addFilter = TRUE, ...) QAReadQuality(useFilter = TRUE, addFilter = TRUE, flagK = 0.2, flagA = 30L, ...) QASequenceUse(useFilter = TRUE, addFilter = TRUE, ...) QAAdapterContamination(useFilter = TRUE, addFilter = TRUE, Lpattern = NA_character_, Rpattern = NA_character_, max.Lmismatch = 0.1, max.Rmismatch = 0.2, min.trim = 9L, ...) ## Order QA report elements QACollate(src, ...) ## perform analysis qa2(object, state, ..., verbose=FALSE) ## Outputs from qa2 QA(src, filtered, flagged, ...) QAFiltered(useFilter = TRUE, addFilter = TRUE, ...) QAFlagged(useFilter = TRUE, addFilter = TRUE, ...) ## Summarize results as html report \S4method{report}{QA}(x, ..., dest = tempfile(), type = "html") ## additional methods; 'flag' is not fully implemented flag(object, ..., verbose=FALSE) \S4method{rbind}{QASummary}(..., deparse.level = 1) } \arguments{ \item{con}{\code{character(1)} file location of fastq input, as used by \code{FastqSampler}.} \item{n}{\code{integer(1)} number of records to input, as used by \code{FastqStreamer} (\code{QAFastqSource}). \code{integer(1)} number of sequences to tag as \sQuote{frequent} (\code{QAFrequentSequence}). } \item{readerBlockSize}{integer(1) number of bytes to input, as used by \code{FastqStreamer}.} \item{flagNSequencesRange}{\code{integer(2)} minimum and maximum reads above which source files will be flagged as outliers.} \item{html}{\code{character(1)} location of the HTML template for summarizing this report element.} \item{seq}{\code{\link{ShortReadQ}} representation of fastq data.} \item{filter}{\code{logical()} vector with length equal to \code{seq}, indicating whether elements of \code{seq} are filtered (\code{TRUE}) or not.} \item{useFilter, addFilter}{\code{logical(1)} indicating whether the QA element should be calculating using the filtered (\code{useFilter=TRUE}) or all reads, and whether reads failing the QA element should be added to the filter used by subsequent steps (\code{addFilter = TRUE}) or not.} \item{a}{\code{integer(1)} count of number of sequences above which a read will be considered \sQuote{frequent} (\code{QAFrequentSequence}).} \item{flagK, flagA}{\code{flagK} \code{numeric(1)} between 0 and 1 indicating the fraction of frequent sequences greater than or equal to \code{n} or \code{a} above which a fastq file will be flagged (\code{QAFrequentSequence}). \code{flagK} \code{numeric{1}} between 0 and 1 and \code{flagA} \code{integer(1)} indicating that a run should be flagged when the fraction of reads with quality greater than or equal to \code{flagA} falls below threshold \code{flagK}.} \item{reportSequences}{\code{logical(1)} indicating whether frequent sequences are to be reported.} \item{Lpattern, Rpattern, max.Lmismatch, max.Rmismatch, min.trim}{Parameters influencing adapter identification, see \code{\link{matchPattern}}.} \item{src}{The source, e.g., \code{QAFastqSource}, on which the quality assessment report will be based.} \item{object}{An instance of class derived from \code{QA} on which quality metrics will be derived; for end users, this is usually the result of \code{QACollate}.}. \item{state}{The data on which quality assessment will be performed; this is not usually necessary for end-users.} \item{verbose}{\code{logical(1)} indicating whether progress reports should be reported.} \item{filtered, flagged}{Primarily for internal use, instances of \code{QAFiltered} and \code{QAFlagged}.} \item{x}{An instance of \code{QA} on which a report is to be generated.} \item{dest}{\code{character(1)} providing the directory in which the report is to be generated.} \item{type}{\code{character(1)} indicating the type of report to be generated; only \dQuote{html} is supported.} \item{deparse.level}{see \code{\link{rbind}}.} \item{...}{Additional arguments, e.g., \code{html} to specify the location of the html source to use as a template for the report.} } \details{ Use \code{QACollate} to specify an order in which components of a QA report are to be assembled. The first argument is the data source (e.g., \code{QAFastqSource}). Functions related to data input include: \describe{ \item{\code{QAFastqSource}}{defines the location of fastq files to be included in the report. \code{con} is used to construct a \code{\link{FastqSampler}} instance, and records are processed using \code{qa2,QAFastqSource-method}.} \item{\code{QAData}}{is a class for representing the data during the QA report generation pass; it is primarily for internal use.} } Possible elements in a QA report are: \describe{ \item{\code{QAFrequentSequence}}{identifies the most-commonly occuring sequences. One of \code{n} or \code{a} can be non-NA, and determine the number of frequent sequences reported. \code{n} specifies the number of most-frequent sequences to filter, e.g., \code{n=10} would filter the top 10 most commonly occurring sequences; \code{a} provides a threshold frequency (count) above which reads are filtered. The sample is flagged when a fraction \code{flagK} of the reads are filtered. \code{reportSequences} determines whether the most commonly occuring sequences, as determined by \code{n} or \code{a}, are printed in the html report. } \item{\code{QANucleotideByCycle}}{reports nucleotide frequency as a function of cycle.} \item{\code{QAQualityByCycle}}{reports average quality score as a function of cycle.} \item{\code{QAQualityUse}}{summarizes overall nucleotide qualities.} \item{\code{QAReadQuality}}{summarizes the distribution of read qualities.} \item{\code{QASequenceUse}}{summarizes the cumulative distribution of reads occurring 1, 2, \dots times.} \item{\code{QAAdapterContamination}}{reports the occurrence of \sQuote{adapter} sequences on the left and / or right end of each read.} } } \value{ An object derived from class \code{\linkS4class{.QA}}. Values contained in this object are meant for use by \code{\link{report}} } \author{Martin Morgan } \seealso{\code{\linkS4class{QA}}.} \examples{ sp <- SolexaPath(system.file('extdata', package='ShortRead')) fl <- file.path(analysisPath(sp), "s_1_sequence.txt") fls <- c(fl, fl) coll <- QACollate(QAFastqSource(fls), QAReadQuality(), QAAdapterContamination(), QANucleotideUse(), QAQualityUse(), QASequenceUse(), QAFrequentSequence(n=10), QANucleotideByCycle(), QAQualityByCycle()) x <- qa2(coll, verbose=TRUE) res <- report(x) if (interactive()) browseURL(res) \dontrun{## parallel evaluation options(srapply_fapply="parallel") coll <- QACollate(QAFastqSource(fls), qaFastqTemplate) x2 <- qa2(coll, verbose=TRUE) browseURL(res2 <- report(x2)) } } \keyword{manip} ShortRead/man/readAligned.Rd0000644000126300012640000004061012227066716017303 0ustar00biocbuildphs_compbio\name{readAligned} \alias{readAligned} \alias{readAligned,character-method} \title{Read aligned reads and their quality scores into R representations} \description{ Import files containing aligned reads into an internal representation of the alignments, sequences, and quality scores. Most methods (see \sQuote{details} for exceptions) read all files into a single R object. } \usage{ readAligned(dirPath, pattern=character(0), ...) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute; some methods also accept a character vector of file names) of aligned read files to be input.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{...}{Additional arguments, used by methods. When \code{dirPath} is a character vector, the argument \code{type} must be provided. Possible values for \code{type} and their meaning are described below. Most methods implement \code{filter=srFilter()}, allowing objects of \code{\linkS4class{SRFilter}} to selectively returns aligned reads.} } \details{ There is no standard aligned read file format; methods parse particular file types. The \code{readAligned,character-method} interprets file types based on an additional \code{type} argument. Supported types are: \describe{ \item{\code{type="SolexaExport"}}{ This type parses \code{.*_export.txt} files following the documentation in the Solexa Genome Alignment software manual, version 0.3.0. These files consist of the following columns; consult Solexa documentation for precise descriptions. If parsed, values can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{Machine}{see below} \item{Run number}{stored in \code{alignData}} \item{Lane}{stored in \code{alignData}} \item{Tile}{stored in \code{alignData}} \item{X}{stored in \code{alignData}} \item{Y}{stored in \code{alignData}} \item{Multiplex index}{see below} \item{Paired read number}{see below} \item{Read}{\code{sread}} \item{Quality}{\code{quality}} \item{Match chromosome}{\code{chromosome}} \item{Match contig}{\code{alignData}} \item{Match position}{\code{position}} \item{Match strand}{\code{strand}} \item{Match description}{Ignored} \item{Single-read alignment score}{\code{alignQuality}} \item{Paired-read alignment score}{Ignored} \item{Partner chromosome}{Ignored} \item{Partner contig}{Ignored} \item{Partner offset}{Ignored} \item{Partner strand}{Ignored} \item{Filtering}{\code{alignData}} } The following optional arguments, set to \code{FALSE} by default, influence data input \describe{ \item{withMultiplexIndex}{When \code{TRUE}, include the multiplex index as a column \code{multiplexIndex} in \code{alignData}.} \item{withPairedReadNumber}{When \code{TRUE}, include the paired read number as a column \code{pairedReadNumber} in \code{alignData}.} \item{withId}{When \code{TRUE}, construct an identifier string as \sQuote{Machine_Run:Lane:Tile:X:Y#multiplexIndex/pairedReadNumber}. The substrings \sQuote{#multiplexIndex} and \sQuote{/pairedReadNumber} are not present if \code{withMultiplexIndex=FALSE} or \code{withPairedReadNumber=FALSE}.} \item{withAll}{A convencience which, when \code{TRUE}, sets all \code{with*} values to \code{TRUE}.} } Note that not all paired read columns are interpreted. Different interfaces to reading alignment files are described in \code{\linkS4class{SolexaPath}} and \code{\linkS4class{SolexaSet}}. } \item{\code{type="SolexaPrealign"}}{See SolexaRealign} \item{\code{type="SolexaAlign"}}{See SolexaRealign} \item{\code{type="SolexaRealign"}}{ These types parse \code{s_L_TTTT_prealign.txt}, \code{s_L_TTTT_align.txt} or \code{s_L_TTTT_realign.txt} files produced by default and eland analyses. From the Solexa documentation, \code{align} corresponds to unfiltered first-pass alignments, \code{prealign} adjusts alignments for error rates (when available), \code{realign} filters alignments to exclude clusters failing to pass quality criteria. Because base quality scores are not stored with alignments, the object returned by \code{readAligned} scores all base qualities as \code{-32}. If parsed, values can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{Sequence}{stored in \code{sread}} \item{Best score}{stored in \code{alignQuality}} \item{Number of hits}{stored in \code{alignData}} \item{Target position}{stored in \code{position}} \item{Strand}{stored in \code{strand}} \item{Target sequence}{Ignored; parse using \code{\link{readXStringColumns}}} \item{Next best score}{stored in \code{alignData}} } } \item{\code{type="SolexaResult"}}{ This parses \code{s_L_eland_results.txt} files, an intermediate format that does not contain read or alignment quality scores. Because base quality scores are not stored with alignments, the object returned by \code{readAligned} scores all base qualities as \code{-32}. Columns of this file type can be retrieved from \code{\linkS4class{AlignedRead}} as follows (description of columns is from Table 19, Genome Analyzer Pipeline Software User Guide, Revision A, January 2008): \describe{ \item{Id}{Not parsed} \item{Sequence}{stored in \code{sread}} \item{Type of match code}{Stored in \code{alignData} as \code{matchCode}. Codes are (from the Eland manual): NM (no match); QC (no match due to quality control failure); RM (no match due to repeat masking); U0 (best match was unique and exact); U1 (best match was unique, with 1 mismatch); U2 (best match was unique, with 2 mismatches); R0 (multiple exact matches found); R1 (multiple 1 mismatch matches found, no exact matches); R2 (multiple 2 mismatch matches found, no exact or 1-mismatch matches).} \item{Number of exact matches}{stored in \code{alignData} as \code{nExactMatch}} \item{Number of 1-error mismatches}{stored in \code{alignData} as \code{nOneMismatch}} \item{Number of 2-error mismatches}{stored in \code{alignData} as \code{nTwoMismatch}} \item{Genome file of match}{stored in \code{chromosome}} \item{Position}{stored in \code{position}} \item{Strand}{(direction of match) stored in \code{strand}} \item{\sQuote{N} treatment}{stored in \code{alignData}, as \code{NCharacterTreatment}. \sQuote{.} indicates treatment of \sQuote{N} was not applicable; \sQuote{D} indicates treatment as deletion; \sQuote{|} indicates treatment as insertion} \item{Substitution error}{stored in \code{alignData} as \code{mismatchDetailOne} and \code{mismatchDetailTwo}. Present only for unique inexact matches at one or two positions. Position and type of first substitution error, e.g., 11A represents 11 matches with 12th base an A in reference but not read. The reference manual cited below lists only one field (\code{mismatchDetailOne}), but two are present in files seen in the wild.} } } \item{\code{type="MAQMap", records=-1L}}{Parse binary \code{map} files produced by MAQ. See details in the next section. The \code{records} option determines how many lines are read; \code{-1L} (the default) means that all records are input. For \code{type="MAQMap"}, \code{dir} and \code{pattern} must match a single file.} \item{\code{type="MAQMapShort", records=-1L}}{The same as \code{type="MAQMap"} but for map files made with Maq prior to version 0.7.0. (These files use a different maximum read length [64 instead of 128], and are hence incompatible with newer Maq map files.). For \code{type="MAQMapShort"}, \code{dir} and \code{pattern} must match a single file.} \item{\code{type="MAQMapview"}}{ Parse alignment files created by MAQ's \sQuote{mapiew} command. Interpretation of columns is based on the description in the MAQ manual, specifically \preformatted{ ...each line consists of read name, chromosome, position, strand, insert size from the outer coordinates of a pair, paired flag, mapping quality, single-end mapping quality, alternative mapping quality, number of mismatches of the best hit, sum of qualities of mismatched bases of the best hit, number of 0-mismatch hits of the first 24bp, number of 1-mismatch hits of the first 24bp on the reference, length of the read, read sequence and its quality. } The read name, read sequence, and quality are read as \code{XStringSet} objects. Chromosome and strand are read as \code{factor}s. Position is \code{numeric}, while mapping quality is \code{numeric}. These fields are mapped to their corresponding representation in \code{AlignedRead} objects. Number of mismatches of the best hit, sum of qualities of mismatched bases of the best hit, number of 0-mismatch hits of the first 24bp, number of 1-mismatch hits of the first 24bp are represented in the \code{AlignedRead} object as components of \code{alignData}. Remaining fields are currently ignored. } \item{\code{type="Bowtie"}}{ Parse alignment files created with the Bowtie alignment algorithm. Parsed columns can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{Identifier}{\code{id}} \item{Strand}{\code{strand}} \item{Chromosome}{\code{chromosome}} \item{Position}{\code{position}; see comment below} \item{Read}{\code{sread}; see comment below} \item{Read quality}{\code{quality}; see comments below} \item{Similar alignments}{\code{alignData}, \sQuote{similar} column; Bowtie v. 0.9.9.3 (12 May, 2009) documents this as the number of other instances where the same read aligns against the same reference characters as were aligned against in this alignment. Previous versions marked this as \sQuote{Reserved}} \item{Alignment mismatch locations}{\code{alignData} \sQuote{mismatch}, column} } NOTE: the default quality encoding changes to \code{FastqQuality} with \pkg{ShortRead} version 1.3.24. This method includes the argument \code{qualityType} to specify how quality scores are encoded. Bowtie quality scores are \sQuote{Phred}-like by default, with \code{qualityType='FastqQuality'}, but can be specified as \sQuote{Solexa}-like, with \code{qualityType='SFastqQuality'}. Bowtie outputs positions that are 0-offset from the left-most end of the \code{+} strand. \code{ShortRead} parses position information to be 1-offset from the left-most end of the \code{+} strand. Bowtie outputs reads aligned to the \code{-} strand as their reverse complement, and reverses the quality score string of these reads. \code{ShortRead} parses these to their original sequence and orientation. } \item{\code{type="SOAP"}}{ Parse alignment files created with the SOAP alignment algorithm. Parsed columns can be retrieved from \code{\linkS4class{AlignedRead}} as follows: \describe{ \item{id}{\code{id}} \item{seq}{\code{sread}; see comment below} \item{qual}{\code{quality}; see comment below} \item{number of hits}{\code{alignData}} \item{a/b}{\code{alignData} (\code{pairedEnd})} \item{length}{\code{alignData} (\code{alignedLength})} \item{+/-}{\code{strand}} \item{chr}{\code{chromosome}} \item{location}{\code{position}; see comment below} \item{types}{\code{alignData} (\code{typeOfHit}: integer portion; \code{hitDetail}: text portion)} } This method includes the argument \code{qualityType} to specify how quality scores are encoded. It is unclear from SOAP documentation what the quality score is; the default is \sQuote{Solexa}-like, with \code{qualityType='SFastqQuality'}, but can be specified as \sQuote{Phred}-like, with \code{qualityType='FastqQuality'}. SOAP outputs positions that are 1-offset from the left-most end of the \code{+} strand. \code{ShortRead} preserves this representation. SOAP reads aligned to the \code{-} strand are reported by SOAP as their reverse complement, with the quality string of these reads reversed. \code{ShortRead} parses these to their original sequence and orientation. } \item{\code{type="BAM"}}{ Parse BAM files produced by samtools and other third party programs. This method includes the argument \code{param=ScanBamParam()}. The \code{ScanBamParam} object is recycled for all files. The \code{which} and \code{flag} arguments to \code{ScanBamParam()} can be used to influence which reads in the BAM file are parsed; see \code{\link{ScanBamParam}}. The following values override user settings (issuing a warning if contradictory values are provided): \describe{ \item{\code{simpleCigar=TRUE}}{Reads aligned with indels are ignored; this is required for representation in \code{AlignedRead}.} \item{\code{reverseComplement=TRUE}}{By default, BAM stores reads as they are aligned to the reference genome, whereas \code{AiignedRead} stores them as they are prior to alignment; this flag converts reads from the BAM to \code{AlignedRead} format.} \item{\code{what=c("qname", "flag", "rname", "strand", "pos", "mapq", "seq", "qual")}}{These BAM fields are mapped to corresponding fields in \code{AlignedRead}.} } BAM fields are mapped to \code{AlignedRead} as: \describe{ \item{qname}{\code{id}} \item{seq}{\code{sread}} \item{qual}{\code{quality}} \item{strand}{\code{strand}} \item{rname}{\code{chromosome}} \item{pos}{\code{position}} \item{mapq}{\code{alignQuality}} \item{flag}{\code{alignData}} } } } } \value{ A single R object (e.g., \code{\linkS4class{AlignedRead}}) containing alignments, sequences and qualities of all files in \code{dirPath} matching \code{pattern}. There is no guarantee of order in which files are read. } \seealso{ The \code{\linkS4class{AlignedRead}} class. Genome Analyzer Pipeline Software User Guide, Revision A, January 2008. The MAQ reference manual, \url{http://maq.sourceforge.net/maq-manpage.shtml#5}, 3 May, 2008. The Bowtie reference manual, \url{http://bowtie-bio.sourceforge.net}, 28 October, 2008. The SOAP reference manual, \url{http://soap.genomics.org.cn/soap1}, 16 December, 2008. The BAM file format specification, \url{http://samtools.sourceforge.net}. } \author{ Martin Morgan , Simon Anders (MAQ map)} \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) ap <- analysisPath(sp) ## ELAND_EXTENDED (aln0 <- readAligned(ap, "s_2_export.txt", "SolexaExport")) ## PhageAlign (aln1 <- readAligned(ap, "s_5_.*_realign.txt", "SolexaRealign")) ## MAQ dirPath <- system.file('extdata', 'maq', package='ShortRead') list.files(dirPath) ## First line readLines(list.files(dirPath, full.names=TRUE)[[1]], 1) countLines(dirPath) ## two files collapse into one (aln2 <- readAligned(dirPath, type="MAQMapview")) ## select only chr1-5.fa, '+' strand filt <- compose(chromosomeFilter("chr[1-5].fa"), strandFilter("+")) (aln3 <- readAligned(sp, "s_2_export.txt", filter=filt)) } \keyword{manip} ShortRead/man/readBaseQuality.Rd0000644000126300012640000000414312227066716020164 0ustar00biocbuildphs_compbio\name{readBaseQuality} \alias{readBaseQuality} \alias{readBaseQuality,character-method} \title{Read short reads and their quality scores into R representations} \description{ \code{readBaseQuality} reads all base call files in a directory \code{dirPath} whose file name matches \code{seqPattern} and all quality score files whose name matches \code{prbPattern}, returning a compact internal representation of the sequences, and quality scores in the files. Methods read all files into a single R object. } \usage{ readBaseQuality(dirPath, ...) \S4method{readBaseQuality}{character}(dirPath, seqPattern=character(0), prbPattern=character(0), type=c("Solexa"), ...) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute) of files to be input.} \item{seqPattern}{The (\code{\link{grep}}-style) pattern describing base call file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{prbPattern}{The (\code{\link{grep}}-style) pattern describing quality score file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{type}{The type of file to be parsed. Supported types include: \code{Solexa}: parse reads and their qualities from \code{_seq.txt} and \code{_prb.txt}-formatted files, respectively.} \item{...}{Additional arguments, perhaps used by methods.} } \value{ A single R object (e.g., \code{\linkS4class{ShortReadQ}}) containing sequences and qualities of all files in \code{dirPath} matching \code{seqPattern} and \code{prbPattern} respectively. There is no guarantee of order in which files are read. } \seealso{ A \code{\linkS4class{ShortReadQ}} object. \code{\link{readXStringColumns}}, \code{\link{readPrb}} } \author{ Patrick Aboyoun } \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) readBaseQuality(sp, seqPattern="s_1.*_seq.txt", prbPattern="s_1.*_prb.txt") } \keyword{manip} ShortRead/man/readBfaToc.Rd0000644000126300012640000000137312227066716017101 0ustar00biocbuildphs_compbio\name{readBfaToc} \alias{readBfaToc} \title{Get a list of the sequences in a Maq .bfa file} \description{ As \code{\link{coverage}} needs to know the lengths of the reference sequences, this function is provided which extracts this information from a .bfa file (Maq's "binary FASTA" format). } \usage{ readBfaToc( bfafile ) } \arguments{ \item{bfafile}{The file name of the .bfa file.} } \value{An integer vector with one element per reference sequence found in the .bfa file, each vector element named with the sequence name and having the sequence length as value.} \author{Simon Anders, EMBL-EBI, \email{sanders@fs.tum.de} (Note: The C code for this function incorporates code from Li Heng's MAQ software, (c) Li Heng and released by him under GPL 2.} ShortRead/man/readFasta.Rd0000644000126300012640000000563112227066716017002 0ustar00biocbuildphs_compbio\name{readFasta} \alias{readFasta} \alias{readFasta,character-method} \alias{writeFasta} \alias{writeFasta,DNAStringSet-method} \title{Read and write FASTA files to or from ShortRead objects} \description{ \code{readFasta} reads all FASTA-formated files in a directory \code{dirPath} whose file name matches pattern \code{pattern}, returning a compact internal representation of the sequences and quality scores in the files. Methods read all files into a single R object; a typical use is to restrict input to a single FASTA file. \code{writeFasta} writes an object to a single \code{file}, using \code{mode="w"} (the default) to create a new file or \code{mode="a"} append to an existing file. Attempting to write to an existing file with \code{mode="w"} results in an error. } \usage{ readFasta(dirPath, pattern = character(0), ..., nrec=-1L, skip=0L) \S4method{readFasta}{character}(dirPath, pattern = character(0), ..., nrec=-1L, skip=0L) writeFasta(object, file, mode="w", ...) \S4method{writeFasta}{DNAStringSet}(object, file, mode="w", ...) } \arguments{ \item{dirPath}{A character vector giving the directory path (relative or absolute) or single file name of FASTA files to be read.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{object}{An object to be output in \code{fasta} format.} \item{file}{A length 1 character vector providing a path to a file to the object is to be written to.} \item{mode}{A length 1 character vector equal to either \sQuote{w} or \sQuote{a} to write to a new file or append to an existing file, respectively.} \item{...}{Additional arguments used by methods or, for \code{writeFasta}, \code{\link{writeXStringSet}}.} \item{nrec}{See \code{?readDNAStringSet}.} \item{skip}{See \code{?readDNAStringSet}.} } \value{ \code{readFasta} returns a \code{\linkS4class{DNAStringSet}}. containing sequences and qualities contained in all files in \code{dirPath} matching \code{pattern}. There is no guarantee of order in which files are read. \code{writeFasta} is invoked primarily for its side effect, creating or appending to file \code{file}. The function returns, invisibly, the length of \code{object}, and hence the number of records written. There is a \code{writeFasta} method for any class derived from \code{\linkS4class{ShortRead}}. } \author{Martin Morgan} \examples{ showMethods("readFasta") showMethods("writeFasta") f1 <- system.file("extdata", "someORF.fa", package="Biostrings") rfa <- readFasta(f1) sread(rfa) id(rfa) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") file <- tempfile() writeFasta(rfq, file) readLines(file, 8) writeFasta(sread(rfq), file) # no 'id's } \keyword{manip} ShortRead/man/readFastq.Rd0000644000126300012640000001227412227066716017023 0ustar00biocbuildphs_compbio\name{readFastq} \alias{readFastq} \alias{writeFastq} \alias{readFastq,character-method} \title{Read and write FASTQ-formatted files} \description{ \code{readFastq} reads all FASTQ-formated files in a directory \code{dirPath} whose file name matches pattern \code{pattern}, returning a compact internal representation of the sequences and quality scores in the files. Methods read all files into a single R object; a typical use is to restrict input to a single FASTQ file. \code{writeFastq} writes an object to a single \code{file}, using \code{mode="w"} (the default) to create a new file or \code{mode="a"} append to an existing file. Attempting to write to an existing file with \code{mode="w"} results in an error. } \usage{ readFastq(dirPath, pattern=character(0), ...) \S4method{readFastq}{character}(dirPath, pattern=character(0), ..., withIds=TRUE) writeFastq(object, file, mode="w", full=FALSE, ...) } \arguments{ \item{dirPath}{A character vector (or other object; see methods defined on this generic) giving the directory path (relative or absolute) or single file name of FASTQ files to be read.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) results in (attempted) input of all files in the directory.} \item{object}{An object to be output in \code{fastq} format. For methods, use \code{showMethods(object, where=getNamespace("ShortRead"))}.} \item{file}{A length 1 character vector providing a path to a file to the object is to be written to.} \item{mode}{A length 1 character vector equal to either \sQuote{w} or \sQuote{a} to write to a new file or append to an existing file, respectively.} \item{full}{A logical(1) indicating whether the identifier line should be repeated \code{full=TRUE} or omitted \code{full=FALSE} on the third line of the fastq record.} \item{...}{Additional arguments. In particular, \code{qualityType} and \code{filter}: \describe{ \item{qualityType:}{Representation to be used for quality scores, must be one of \code{Auto} (choose Phred-like if any character is ASCII-encoded as less than 59) \code{FastqQuality} (Phred-like encoding), \code{SFastqQuality} (Illumina encoding).} \item{filter:}{An object of class \code{\link{srFilter}}, used to filter objects of class \code{\linkS4class{ShortReadQ}} at input.} } } \item{withIds}{\code{logical(1)} indicating whether identifiers should be read from the fastq file.} } \details{ The fastq format is not quite precisely defined. The basic definition used here parses the following four lines as a single record: \preformatted{ @HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS } The first and third lines are identifiers preceded by a specific character (the identifiers are identical, in the case of Solexa). The second line is an upper-case sequence of nucleotides. The parser recognizes IUPAC-standard alphabet (hence ambiguous nucleotides), coercing \code{.} to \code{-} to represent missing values. The final line is an ASCII-encoded representation of quality scores, with one ASCII character per nucleotide. The encoding implicit in Solexa-derived fastq files is that each character code corresponds to a score equal to the ASCII character value minus 64 (e.g., ASCII \code{@} is decimal 64, and corresponds to a Solexa quality score of 0). This is different from BioPerl, for instance, which recovers quality scores by subtracting 33 from the ASCII character value (so that, for instance, \code{!}, with decimal value 33, encodes value 0). The BioPerl description of fastq asserts that the first character of line 4 is a \code{!}, but the current parser does not support this convention. \code{writeFastq} creates files following the specification outlined above, using the IUPAC-standard alphabet (hence, sequences containing \sQuote{.} when read will be represented by \sQuote{-} when written). } \value{ \code{readFastq} returns a single R object (e.g., \code{\linkS4class{ShortReadQ}}) containing sequences and qualities contained in all files in \code{dirPath} matching \code{pattern}. There is no guarantee of order in which files are read. \code{writeFastq} is invoked primarily for its side effect, creating or appending to file \code{file}. The function returns, invisibly, the length of \code{object}, and hence the number of records written. } \seealso{ The IUPAC alphabet in Biostrings. \url{http://www.bioperl.org/wiki/FASTQ_sequence_format} for the BioPerl definition of fastq. Solexa documentation `Data analysis - documentation : Pipeline output and visualisation'. } \author{Martin Morgan} \examples{ showMethods(readFastq) showMethods(writeFastq) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") sread(rfq) id(rfq) quality(rfq) ## SolexaPath method 'knows' where FASTQ files are placed rfq1 <- readFastq(sp, pattern="s_1_sequence.txt") rfq1 file <- tempfile() writeFastq(rfq, file) readLines(file, 8) } \keyword{manip} ShortRead/man/readIntensities.Rd0000644000126300012640000001122212227066716020233 0ustar00biocbuildphs_compbio\name{readIntensities} \alias{readIntensities} \alias{readIntensities,character-method} \title{Read Illumina image intensity files} \description{ \code{readIntensities} reads image `intensity' files (such as Illumina's \code{_int.txt} and (optionally) \code{_nse.txt}) into a single object. } \usage{ readIntensities(dirPath, pattern=character(0), ...) } \arguments{ \item{dirPath}{Directory path or other object (e.g., \code{\linkS4class{SolexaPath}}) for which methods are defined.} \item{pattern}{A length 1 character vector representing a regular expression to be combined with \code{dirPath}, as described below, to match files to be summarized.} \item{\dots}{Additional arguments used by methods.} } \details{ Additional methods are defined on specific classes, see, e.g., \code{\linkS4class{SolexaPath}}. The \code{readIntensities,character-method} contains an argument \code{type} that determines how intensities are parsed. Use the \code{type} argument to \code{readIntensities,character-method}, as described below. All \code{readIntensities,character} methods accepts the folling arguments: \describe{ \item{withVariability:}{Include estimates of variability (i.e., from parsing \code{_nse} files).} \item{verbose:}{Report on progress when starting to read each file.} } The supported types and their signatures are: \describe{ \item{\code{type="RtaIntensity"}}{ Intensities are read from Illumina \code{_cif.txt} and \code{_cnf.txt}-style files. The signature for this method is \code{dirPath, pattern=character(0), ..., type="RtaIntensity", lane=integer(0), cycles=integer(0), cycleIteration=1L, tiles=integer(0), laneName=sprintf("L%.3d", lane), cycleNames=sprintf("C%d.%d", cycles, cycleIteration), tileNames=sprintf("s_%d_%d", lane, tiles), posNames=sprintf("s_%d_%.4d_pos.txt", lane, tiles), withVariability=TRUE, verbose=FALSE} \describe{ \item{lane:}{\code{integer(1)} identifying the lane in which cycles and tiles are to be processed.} \item{cycles:}{\code{integer()} enumerating cycles to be processed.} \item{cycleIteration:}{\code{integer(1)} identifying the iteration of the base caller to be summarized} \item{tiles:}{\code{integer()} enumerating tile numbers to be summarized.} \item{laneName, cycleNames, tileNames, posNames:}{\code{character()} vectors identifying the lane and cycle directories, and the \sQuote{pos} and tile file names (excluding the \sQuote{.cif} or \sQuote{.cnf} extension) to be processed.} } The \code{dirPath} and \code{pattern} arguments are combined as \code{list.files(dirPath, pattern)}, and must identify a single directory. Most uses of this function will focus on a single tile (specified with, e.g., \code{tiles=1L}); the \code{laneName}, \code{cycleNames}, \code{tileNames}, and \code{posNames} parameters are designed to work with the default Illumina pipeline and do not normally need to be specified. } \item{\code{type="IparIntensity"}}{ Intensities are read from Solexa \code{_pos.txt}, \code{_int.txt.p}, \code{_nse.txt.p}-style file triplets. The signature for this method is \code{dirPath, pattern=character(0), ..., type="IparIntensity", intExtension="_int.txt.p.gz", nseExtension="_nse.txt.p.gz", posExtension="_pos.txt", withVariability=TRUE, verbose=FALSE} Files to be parsed are determined as, e.g., \code{paste(pattern, intExtension, sep="")}. } \item{\code{type="SolexaIntensity"}}{ Intensities are read from Solexa \code{_int.txt} and \code{_nse.txt}-style files. The signature for this method is \code{dirPath, pattern=character(0), ..., type="SolexaIntensity", intExtension="_int.txt", nseExtension="_nse.txt", withVariability=TRUE, verbose=FALSE} Files to be parsed are determined as, e.g., \code{paste(pattern, intExtension, sep="")}. } } } \value{ An object derived from class \code{\linkS4class{Intensity}}. } \author{ Martin Morgan , Michael Muratet (RTA). } \examples{ fl <- system.file("extdata", package="ShortRead") sp <- SolexaPath(fl) int <- readIntensities(sp) int intensity(int)[1,,] # one read intensity(int)[[1:2,,]] # two reads, as 'array' head(rowMeans(intensity(int))) # treated as 'array' head(pData(readInfo(int))) \dontrun{## RTA Lane 2, cycles 1:80, cycle iteration 1, tile 3 int <- readIntensities("Data/Intensities", type="RtaIntensity", lane=2, cycles=1:80, tiles=3) } } \keyword{manip} ShortRead/man/readPrb.Rd0000644000126300012640000000405612227066716016467 0ustar00biocbuildphs_compbio\name{readPrb} \alias{readPrb} \alias{readPrb,character-method} \title{Read Solexa prb files as fastq-style quality scores} \description{ \code{readPrb} reads all \code{_prb.txt} files in a directory into a single object. Most methods (see details) do this by identifying the maximum base call quality for each cycle and read, and representing this as an ASCII-encoded character string. } \usage{ readPrb(dirPath, pattern = character(0), ...) } \arguments{ \item{dirPath}{Directory path or other object (e.g., \code{\linkS4class{SolexaPath}} for which methods are defined.} \item{pattern}{Regular expression matching names of \code{_prb} files to be summarized.} \item{\dots}{Additional arguments, e.g., to \code{\link{srapply}}, used during evaluation.} } \details{ The \code{readPrb,character-method} contains an argument \code{as} that determines the value of the returned object, as follows. \describe{ \item{\code{as="SolexaEncoding"}}{ The ASCII encoding of the maximum per cycle and read quality score is encoded using Solexa conventions. } \item{\code{as="FastqEncoding"}}{ The ASCII encoding of the maximum per cycle and read quality score is encoded using Fastq conventions, i.e., \code{!} has value 0. } \item{\code{as="IntegerEncoding"}}{ The maximum per cycle and read quality score is returned as a in integer value. Values are collated into a matrix with number of rows equal to number of reads, and number of columns equal to number of cycles. } \item{\code{as="array"}}{ The quality scores are \emph{not} summarized; the return value is an integer array with dimensions corresponding to reads, nucleotides, and cycles. } } } \value{ An object of class \code{\linkS4class{QualityScore}}, or an integer matrix. } \author{Martin Morgan } \examples{ fl <- system.file("extdata", package="ShortRead") sp <- SolexaPath(fl) readPrb(sp, "s_1.*_prb.txt") # all tiles to a single file } \keyword{manip} ShortRead/man/readQseq.Rd0000644000126300012640000000301712227066716016651 0ustar00biocbuildphs_compbio\name{readQseq} \alias{readQseq} \alias{readQseq,character-method} \title{Read Solexa qseq files as fastq-style quality scores} \description{ \code{readQseq} reads all files matching \code{pattern} in a directory into a single \code{\linkS4class{ShortReadQ}}-class object. Information on machine, lane, tile, x, and y coordinates, filtering status, and read number are not returned (although filtering status can be used to selectively include reads as described below). } \usage{ readQseq(dirPath, pattern = character(0), ..., as=c("ShortReadQ", "DataFrame", "XDataFrame"), filtered=FALSE, verbose=FALSE) } \arguments{ \item{dirPath}{Directory path or other object (e.g., \code{\linkS4class{SolexaPath}}) for which methods are defined.} \item{pattern}{Regular expression matching names of \code{_qseq} files to be summarized.} \item{\dots}{Additional argument, passed to I/O functions.} \item{as}{\code{character(1)} indicating the class of the return type. \dQuote{XDataFrame} is included for backward compatibility, but is no longer supported.} \item{filtered}{\code{logical(1)} indicating whether to include only those reads passing Solexa filtering?} \item{verbose}{\code{logical(1)} indicating whether to report on progress during evaluation.} } \value{ An object of class \code{\linkS4class{ShortReadQ}}. } \author{Martin Morgan } \examples{ fl <- system.file("extdata", package="ShortRead") sp <- SolexaPath(fl) readQseq(sp) } \keyword{manip} ShortRead/man/readXStringColumns.Rd0000644000126300012640000000601412227066716020677 0ustar00biocbuildphs_compbio\name{readXStringColumns} \alias{readXStringColumns} \title{ Read one or more columns into XStringSet (e.g., DNAStringSet) objects } \description{ This function allows short read data components such as DNA sequence, quality scores, and read names to be read in to \code{XStringSet} (e.g., \code{DNAStringSet}, \code{BStringSet}) objects. One or several files of identical layout can be specified. } \usage{ readXStringColumns(dirPath, pattern=character(0), colClasses=list(NULL), nrows=-1L, skip=0L, sep = "\t", header = FALSE, comment.char="#") } \arguments{ \item{dirPath}{A character vector giving the directory path (relative or absolute) of files to be read.} \item{pattern}{The (\code{\link{grep}}-style) pattern describing file names to be read. The default (\code{character(0)}) reads all files in \code{dirPath}. All files are expected to have identical numbers of columns.} \item{colClasses}{A list of length equal to the number of columns in a file. Columns with corresponding \code{colClasses} equal to \code{NULL} are ignored. Other entries in \code{colClasses} are expected to be character strings describing the base class for the \code{XStringSet}. For instance a column of DNA sequences would be specified as \code{"DNAString"}. The column would be parsed into a \code{DNAStringSet} object.} \item{nrows}{A length 1 integer vector describing the maximum number of \code{XString} objects to read into the set. Reads may come from more than one file when \code{dirPath} and \code{pattern} parse several files and \code{nrow} is greater than the number of reads in the first file.} \item{skip}{A length 1 integer vector describing how many lines to skip at the start of each file.} \item{sep}{A length 1 character vector describing the column separator.} \item{header}{A length 1 logical vector indicating whether files include a header line identifying columns. If present, the header of the first file is used to name the returned values.} \item{comment.char}{A length 1 character vector, with a single character that, when appearing at the start of a line, indicates that the entire line should be ignored. Currently there is no way to use comment characters in other than the first position of a line.} } \value{ A list, with each element containing an \code{XStringSet} object of the type corresponding to the non-NULL elements of \code{colClasses}. } \author{Martin Morgan } \examples{ ## valid character strings for colClasses names(slot(getClass("XString"), "subclasses")) dirPath <- system.file('extdata', 'maq', package='ShortRead') colClasses <- rep(list(NULL), 16) colClasses[c(1, 15, 16)] <- c("BString", "DNAString", "BString") ## read one file readXStringColumns(dirPath, "out.aln.1.txt", colClasses=colClasses) ## read all files into a single object for each column res <- readXStringColumns(dirPath, colClasses=colClasses) } \keyword{IO} ShortRead/man/renew.Rd0000644000126300012640000000576412227066716016237 0ustar00biocbuildphs_compbio\name{renewable} \alias{renewable} \alias{renewable,missing-method} \alias{renewable,character-method} \alias{renewable,.ShortReadBase-method} \alias{renew} \alias{renew,.ShortReadBase-method} \title{Renew (update) a ShortRead object with new values} \description{ Use \code{renew} to update an object defined in \pkg{ShortRead} with new values. Discover update-able classes and values with \code{renewable}. } \usage{ renewable(x, \dots) renew(x, \dots) } \arguments{ \item{x}{For \code{renewable}: \code{missing}, \code{character(1)}, or a class defined in the \pkg{ShortRead} package. For \code{renew}: an instance of a class defined in the \pkg{ShortRead} package.} \item{\dots}{For \code{renewable}, ignored. For \code{renew}, named arguments identifying which parts of \code{x} are to be renewed.} } \details{ When invoked with no arguments \code{renewable} returns a character vector naming classes that can be renewed. When invoked with a \code{character(1)} or an instance of a \pkg{ShortRead} class, a list of the names and values of the elements that can be renewed. When \code{x} is a character vector naming a virtual class, then each element of the returned list is a non-virtual descendant of that class that can be used in renewal. This is not fully recursive. \code{renew} is always invoked with the \code{x} argument being an instance of a class identified by \code{renewable()}. Remaining arguments are name-value pairs identifying the components of \code{x} that are to be renewed (updated). The name-value pairs must be consistent with \code{renewable(x)}. The resulting object is checked for validity. Multiple components of the object can be updated in a single call to \code{renew}, allowing comparatively efficient complex transformations. } \value{ \code{renewable()} returns a character vector of renewable classes. \code{renewable(x)} returns a named list. The names correspond to renewable classes, and the elements of the list correspond to renewable components of the class. \code{renew(x, \dots)} returns an object of the same class as \code{x}, but with components of \code{x} replaced by the named values of \code{\dots}. } \author{Martin Morgan } \examples{ ## discovery renewable() renewable("AlignedRead") renewable("QualityScore") ## instantiable classes ## example data sp <- SolexaPath(system.file("extdata", package="ShortRead")) ap <- analysisPath(sp) filt <- chromosomeFilter("chr[[:digit:]+].fa") aln <- readAligned(ap, "s_2_export.txt", "SolexaExport", filter=filt) ## renew chromosomes from 'chr1.fa' to 'chr1', etc labels <- sub("\\\\.fa", "", levels(chromosome(aln))) renew(aln, chromosome=factor(chromosome(aln), labels=labels)) ## multiple changes -- update chromosome, offset position renew(aln, chromosome=factor(chromosome(aln), labels=labels), position=1L+position(aln)) ## oops! invalid instances cannot be constructed try(renew(aln, position=1:10)) } \keyword{manip} ShortRead/man/report.Rd0000644000126300012640000000715212227066716016423 0ustar00biocbuildphs_compbio\name{report} \alias{report} \alias{report,ANY-method} \alias{report_html} \title{Summarize quality assessment results into a report} \description{ This generic function summarizes results from evaluation of \code{\link{qa}} into a report. Available report formats vary depending on the data analysed. } \usage{ report(x, ..., dest=tempfile(), type="html") report_html(x, dest, type, ...) } \arguments{ \item{x}{An object returned by \code{\link{qa}}, usually derived from class \code{\linkS4class{.QA}}} \item{\dots}{Additional arguments used by specific methods. All methods with \code{type="html"} support the argument \code{cssFile}, which is a named, length 1 character vector. The value is a path to a CSS file to be incorporated into the report (e.g., \code{system.file("template", "QA.css", package="ShortRead")}). The name of \code{cssFile} is the name of the CSS file as seen by the html report (e.g., \dQuote{QA.css}). See specific methods for details on additional \code{\dots} arguments.} \item{dest}{The output destination for the final report. For \code{type="html"} this is a directory; for (deprecated) \code{type="pdf"} this is a file.} \item{type}{A text string defining the type of report; available report types depend on the type of object \code{x}; usually this is \dQuote{html}.} } \details{ \code{report_html} is meant for use by package authors wishing to add methods for creating HTML reports; users should always invoke \code{report}. The following methods are defined: \describe{ \item{\code{x="BAMQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{BAMQA}}.} \item{\code{x="BowtieQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{BowtieQA}}.} \item{\code{x="FastqQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{FastqQA}}.} \item{\code{x="MAQMapQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{MAQMapQA}}.} \item{\code{x="SolexaExportQA", ..., dest=tempfile(), type="html"}}{ Produce an HTML-based report from an object of class \code{\linkS4class{SolexaExportQA}}.} \item{\code{x="SolexaExportQA", ..., dest=tempfile(), type="pdf"}}{ (Deprecated) Produce an PDF report from an object of class \code{\linkS4class{SolexaExportQA}}.} \item{\code{x="SolexaPath", ..., dest=tempfile(), type="html"}}{ Produce an HTML report by first visiting all \code{_export.txt} files in the \code{analysisPath} directory of \code{x} to create a \code{SolexaExportQA} instance.} \item{\code{x="SolexaPath", ..., dest=tempfile(), type="pdf"}}{ (Deprecated) Produce an PDF report by first visiting all \code{_export.txt} files in the \code{analysisPath} directory of \code{x} to create a \code{SolexaExportQA} instance.} \item{ \code{x="ANY", ..., dest=tempfile(), type="ANY"} }{This method is used internally} } } \value{ This function is invoked for its side effect; the return value is the name of the directory or file where the report was created. } \author{Martin Morgan } \seealso{ \code{\linkS4class{SolexaExportQA}} } \examples{ showMethods("report") ## default CSS file cssFile <- c(QA.css=system.file("template", "QA.css", package="ShortRead")) noquote(readLines(cssFile)) } \keyword{manip} ShortRead/man/spViewPerFeature.Rd0000644000126300012640000000457512227066716020356 0ustar00biocbuildphs_compbio\name{spViewPerFeature} \alias{spViewPerFeature} \title{ Tools to visualize genomic data } \description{ Use \code{Snapshot}-class to visualize a specific region of genomic data } \usage{ spViewPerFeature(GRL, name, files, ignore.strand=FALSE, multi.levels = FALSE, fac=character(0L), ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{GRL}{Object \code{GRangeList} containing annotation of genomic data. It can be generated by applying \code{exonsBy()} or \code{transcriptsBy()} to a \code{TranscriptDb} instance. See examples below.} \item{name}{Character(1) specifying which element in \code{GRL} to be visualized.} \item{files}{Charactor() or \code{BamFileList} specifying the file(s) to be visualized. If multiple files, local metadata of the files can be hold by setting a \code{DataFrame} (values(files) <- DataFrame(...)). See examples below.} \item{ignore.strand}{Logical(1) indicating whether to ignore the strand of the genomic data.} \item{multi.levels}{Logical(1) indicating whether to plot the coverage of multiple files on different panels. If \code{FALSE}, the mean coverage of multiple files would be plotted. } \item{fac}{Character(1) indicating which column of local metadata (\code{elementMetatdata()}) should be used to group the samples. Ignore} \item{\dots}{Arguments used for creating a \code{\link{Snapshot}} object.} } \value{A \code{Snapshot} instance} \author{Chao-Jen Wong \email{cwon2@fhcrc.org}} \seealso{ \code{\link{Snapshot}} } \examples{ ## Example 1 library(GenomicFeatures) txdbFile <- system.file("extdata", "sacCer2_sgdGene.sqlite", package="yeastNagalakshmi") ## either use a txdb file quaried from UCSC or use existing TxDb packages. txdb <- loadDb(txdbFile) grl <- exonsBy(txdb, by="gene") file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") s <- spViewPerFeature(GRL=grl, name="YAL001C", files=file) ## Example 2 ## multi-files: using 'BamFileList' and setting up the 'DataFrame' ## holding the phenotype data bfiles <- BamFileList(c(a=file, b=file)) values(bfiles) <- DataFrame(sampleGroup=factor(c("normal", "tumor"))) values(bfiles) s <- spViewPerFeature(GRL=grl, name="YAL001C", files=bfiles, multi.levels=TRUE, fac="sampleGroup") } ShortRead/man/srFilter.Rd0000644000126300012640000002404012227066716016675 0ustar00biocbuildphs_compbio\name{srFilter} \alias{srFilter} \alias{srFilter,missing-method} \alias{srFilter,function-method} \alias{idFilter} \alias{chromosomeFilter} \alias{positionFilter} \alias{strandFilter} \alias{occurrenceFilter} \alias{nFilter} \alias{polynFilter} \alias{dustyFilter} \alias{srdistanceFilter} \alias{alignQualityFilter} \alias{alignDataFilter} \alias{compose} \title{Functions for user-created and built-in ShortRead filters} \description{ These functions create user-defined (\code{srFitler}) or built-in instances of \code{\linkS4class{SRFilter}} objects. Filters can be applied to objects from \code{ShortRead}, returning a logical vector to be used to subset the objects to include only those components satisfying the filter. } \usage{ srFilter(fun, name = NA_character_, ...) \S4method{srFilter}{missing}(fun, name=NA_character_, ...) \S4method{srFilter}{function}(fun, name=NA_character_, ...) compose(filt, ..., .name) idFilter(regex=character(0), fixed=FALSE, exclude=FALSE, .name="idFilter") chromosomeFilter(regex=character(0), fixed=FALSE, exclude=FALSE, .name="ChromosomeFilter") positionFilter(min=-Inf, max=Inf, .name="PositionFilter") strandFilter(strandLevels=character(0), .name="StrandFilter") occurrenceFilter(min=1L, max=1L, withSread=c(TRUE, FALSE, NA), duplicates=c("head", "tail", "sample", "none"), .name=.occurrenceName(min, max, withSread, duplicates)) nFilter(threshold=0L, .name="CleanNFilter") polynFilter(threshold=0L, nuc=c("A", "C", "T", "G", "other"), .name="PolyNFilter") dustyFilter(threshold=Inf, batchSize=NA, .name="DustyFilter") srdistanceFilter(subject=character(0), threshold=0L, .name="SRDistanceFilter") alignQualityFilter(threshold=0L, .name="AlignQualityFilter") alignDataFilter(expr=expression(), .name="AlignDataFilter") } \arguments{ \item{fun}{An object of class \code{function} to be used as a filter. \code{fun} must accept a single named argument \code{x}, and is expected to return a logical vector such that \code{x[fun(x)]} selects only those elements of \code{x} satisfying the conditions of \code{fun} } \item{name}{A \code{character(1)} object to be used as the name of the filter. The \code{name} is useful for debugging and reference.} \item{filt}{A \code{\linkS4class{SRFilter}} object, to be used with additional arguments to create a composite filter.} \item{.name}{An optional \code{character(1)} object used to over-ride the name applied to default filters.} \item{regex}{Either \code{character(0)} or a \code{character(1)} regular expression used as \code{grep(regex, chromosome(x))} to filter based on chromosome. The default (\code{character(0)}) performs no filtering} \item{fixed}{\code{logical(1)} passed to \code{\link{grep}}, influencing how pattern matching occurs.} \item{exclude}{\code{logical(1)} which, when \code{TRUE}, uses \code{regex} to exclude, rather than include, reads.} \item{min}{\code{numeric(1)}} \item{max}{\code{numeric(1)}. For \code{positionFilter}, \code{min} and \code{max} define the closed interval in which position must be found \code{min <= position <= max}. For \code{occurrenceFilter}, \code{min} and \code{max} define the minimum and maximum number of times a read occurs after the filter.} \item{strandLevels}{Either \code{character(0)} or \code{character(1)} containing strand levels to be selected. \code{ShortRead} objects have standard strand levels \code{NA, "+", "-", "*"}, with \code{NA} meaning strand information not available and \code{"*"} meaning strand information not relevant.} \item{withSread}{A \code{logical(1)} indicating whether uniqueness includes the read sequence (\code{withSread=TRUE}), is based only on chromosome, position, and strand (\code{withSread=FALSE}), or only the read sequence (\code{withSread=NA}), as described for \code{occurrenceFilter} below..} \item{duplicates}{Either \code{character{1}}, a function \code{name}, or a function taking a single argument. Influence how duplicates are handled, as described for \code{occurrenceFilter} below.} \item{threshold}{A \code{numeric(1)} value representing a minimum (\code{srdistanceFilter}, \code{alignQualityFilter}) or maximum (\code{nFilter}, \code{polynFilter}, \code{dustyFilter}) criterion for the filter. The minima and maxima are closed-interval (i.e., \code{x >= threshold}, \code{x <= threshold} for some property \code{x} of the object being filtered).} \item{nuc}{A \code{character} vector containing IUPAC symbols for nucleotides or the value \code{"other"} corresponding to all non-nucleotide symbols, e.g., \code{N}.} \item{batchSize}{\code{NA} or an \code{integer(1)} vector indicating the number of DNA sequences to be processed simultaneously by \code{dustyFilter}. By default, all reads are processed simultaneously. Smaller values use less memory but are computationally less efficient.} \item{subject}{A \code{character()} of any length, to be used as the corresponding argument to \code{\link{srdistance}}.} \item{expr}{A \code{expression} to be evaluated with \code{pData(alignData(x))}.} \item{\dots}{Additional arguments for subsequent methods; these arguments are not currently used.} } \details{ \code{srFilter} allows users to construct their own filters. The \code{fun} argument to \code{srFilter} must be a function accepting a single argument \code{x} and returning a logical vector that can be used to select elements of \code{x} satisfying the filter with \code{x[fun(x)]} The \code{signature(fun="missing")} method creates a default filter that returns a vector of \code{TRUE} values with length equal to \code{length(x)}. \code{compose} constructs a new filter from one or more existing filter. The result is a filter that returns a logical vector with indices corresponding to components of \code{x} that pass all filters. If not provided, the name of the filter consists of the names of all component filters, each separated by \code{" o "}. The remaining functions documented on this page are built-in filters that accept an argument \code{x} and return a logical vector of \code{length(x)} indicating which components of \code{x} satisfy the filter. \code{idFilter} selects elements satisfying \code{grep(regex, id(x), fixed=fixed)}. \code{chromosomeFilter} selects elements satisfying \code{grep(regex, chromosome(x), fixed=fixed)}. \code{positionFilter} selects elements satisfying \code{min <= position(x) <= max}. \code{strandFilter} selects elements satisfying \code{match(strand(x), strand, nomatch=0) > 0}. \code{occurrenceFilter} selects elements that occur \code{>=min} and \code{<=max} times. \code{withSread} determines how reads will be treated: \code{TRUE} to include the sread, chromosome, strand, and position when determining occurrence, \code{FALSE} to include chromosome, strand, and position, and \code{NA} to include only sread. The default is \code{withSread=TRUE}. \code{duplicates} determines how reads with more than \code{max} reads are treated. \code{head} selects the first \code{max} reads of each set of duplicates, \code{tail} the last \code{max} reads, and \code{sample} a random sample of \code{max} reads. \code{none} removes all reads represented more than \code{max} times. The user can also provide a function (as used by \code{\link{tapply}}) of a single argument to select amongst reads. \code{nFilter} selects elements with fewer than \code{threshold} \code{'N'} symbols in each element of \code{sread(x)}. \code{polynFilter} selects elements with fewer than \code{threshold} copies of any nucleotide indicated by \code{nuc}. \code{dustyFilter} selects elements with high sequence complexity, as characterized by their \code{\link{dustyScore}}. This emulates the \code{dust} command from \code{WindowMaker} software. Calculations can be memory intensive; use \code{batchSize} to process the argument to \code{dustyFilter} in batches of the specified size. \code{srdistanceFilter} selects elements at an edit distance greater than \code{threshold} from all sequences in \code{subject}. \code{alignQualityFilter} selects elements with \code{alignQuality(x)} greater than \code{threshold}. \code{alignDataFilter} selects elements with \code{pData(alignData(x))} satisfying \code{expr}. \code{expr} should be formulated as though it were to be evaluated as \code{eval(expr, pData(alignData(x)))}. } \value{ \code{srFilter} returns an object of \code{\linkS4class{SRFilter}}. Built-in filters return a logical vector of \code{length(x)}, with \code{TRUE} indicating components that pass the filter. } \author{Martin Morgan } \seealso{\code{\linkS4class{SRFilter}}.} \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp, "s_2_export.txt") # Solexa export file, as example # a 'chromosome 5' filter filt <- chromosomeFilter("chr5.fa") aln[filt(aln)] # filter during input readAligned(sp, "s_2_export.txt", filter=filt) # x- and y- coordinates stored in alignData, when source is SolexaExport xy <- alignDataFilter(expression(abs(x-500) > 200 & abs(y-500) > 200)) aln[xy(aln)] # both filters as a single filter chr5xy <- compose(filt, xy) aln[chr5xy(aln)] # both filters as a collection filters <- c(filt, xy) subsetByFilter(aln, filters) summary(filters, aln) # read, chromosome, strand, position tuples occurring exactly once aln[occurrenceFilter(withSread=TRUE, duplicates="none")(aln)] # reads occurring exactly once aln[occurrenceFilter(withSread=NA, duplicates="none")(aln)] # chromosome, strand, position tuples occurring exactly once aln[occurrenceFilter(withSread=FALSE, duplicates="none")(aln)] # custom filter: minimum calibrated base call quality >20 goodq <- srFilter(function(x) { apply(as(quality(x), "matrix"), 1, min, na.rm=TRUE) > 20 }, name="GoodQualityBases") goodq aln[goodq(aln)] } \keyword{manip} ShortRead/man/srapply.Rd0000644000126300012640000000713712227066716016605 0ustar00biocbuildphs_compbio\name{srapply} \alias{srapply} \title{Apply-like function for distribution across MPI-based clusters.} \description{ This \code{lapply} like function evaluates locally or, if \pkg{Rmpi} or \pkg{parallel} is loaded (and \pkg{Rmpi} workers spawned) and \code{options(srapply_fapply)} set appropriately (see below), across nodes in a cluster. Errors in evaluation of \code{FUN} generate warnings; results are trimmed to exclude results where the error occurs. } \usage{ srapply(X, FUN, ..., fapply = .fapply(), reduce = .reduce(), USE.NAMES = FALSE, verbose = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{X}{Tasks to be distributed. \code{X} should be an object for which \code{lapply} or \code{sapply} are defined (more precisely, \code{mpi.parLapply}, \code{mpi.parSapply}, or \code{mclapply}). Performance is best when these objects are relatively small, e.g., file names, compared to the work to be done on each by \code{FUN}.} \item{FUN}{A function to be applied to each element of \code{X}. The function must have \code{...} or named argument \code{verbose} in its signature. It is best if it makes no reference to variables other than those in its argument list. or in loaded packages (the \pkg{ShortRead} package is available on remote nodes).} \item{\dots}{Additional arguments, passed to \code{FUN}.} \item{fapply}{An optional argument defining an \code{lapply}-like function to be used in partitioning \code{X}. See details, below.} \item{reduce}{Optional function accepting a list (the result of \code{fapply} and summarizing this. The default reports errors in function evaluation as warnings, returning the remaining values as elements of a list. See details below for additional hints.} \item{USE.NAMES}{If \code{TRUE} and if \code{X} is character, use \code{X} as \code{names} for the result unless it had names already.} \item{verbose}{Report whether evaluation is local or mpi-based; also forwarded to \code{FUN}, allowing detailed reports from remote instances.} } \details{ The default value for \code{fapply} is available with \code{ShortRead:::.fapply()}. It tests \code{getOption("srapply_fapply")} for value \dQuote{Rmpi} or \dQuote{parallel}. If \pkg{Rmpi} is indicated, \code{fapply} ensures that \pkg{ShortRead} is \code{require}d on all workers, and then invokes \code{mpi.parLapply} with arguments \code{X}, \code{FUN}, \code{...}, and \code{verbose}. The function \code{FUN} is wrapped so that errors are returned as objects of class \code{SRError} with type \code{RemoteError}. If no workers are available, the code evaluates \code{FUN} so that errors are reported as with remote evaluation. If \pkg{parallel} is indicated, \code{fapply} invokes \code{mclapply} with arguments as for \code{mpi.parLapply}. Custom \code{reduce} functions might be written as \code{reduce=function(lst) unlist(lst, use.names=TRUE)}. } \value{ The returned value depends on the value of \code{reduce}, but by default is a list with elements containing the results of \code{FUN} applied to each of \code{X}. Evaluations resulting in an error have been removed, and a warning generated. } \author{Martin Morgan } \examples{ ## ... or 'verbose' required in argument, srapply(1:10, function(i, ...) i) ## collapse result to vector srapply(1:10, function(i, ...) i, reduce=unlist) x <- srapply(1:10, function(i, ...) { if (runif(1)<.2) stop("oops") else i }) length(x) ## trimmed to exclude errors } \keyword{manip} ShortRead/man/srdistance.Rd0000644000126300012640000000445412227066716017251 0ustar00biocbuildphs_compbio\name{srdistance} \alias{srdistance} % \alias{srdistance,DNAStringSet,character-method} \alias{srdistance,DNAStringSet,DNAString-method} \alias{srdistance,DNAStringSet,DNAStringSet-method} \title{Edit distances between reads and a small number of short references} \description{ \code{srdistance} calculates the edit distance from each read in \code{pattern} to each read in \code{subject}. The underlying algorithm \code{\link[Biostrings]{pairwiseAlignment}} is only efficient when both reads are short, and when the number of \code{subject} reads is small. } \usage{ srdistance(pattern, subject, ...) } \arguments{ \item{pattern}{An object of class \code{DNAStringSet} containing reads whose edit distance is desired.} \item{subject}{A short \code{character} vector, \code{DNAString} or (small) \code{DNAStringSet} to serve as reference.} \item{\dots}{additional arguments, forward to \code{srapply}.} } \details{ The underlying algorithm performs pairwise alignment from each read in \code{pattern} to each sequence in \code{subject}. The return value is a list of numeric vectors of distances, one list element for each sequence in \code{subject}. The vector in each list element contains for each read in \code{pattern} the edit distance from the read to the corresponding subject. The weight matrix and gap penalties used to calculate the distance are structured to weight base substitutions and single base insert/deletions equally. Edit distance between known and ambiguous (e.g., N) nucleotides, or between ambiguous nucleotides, are weighted as though each possible nucleotide in the ambiguity were equally likely. } \value{ A list of length equal to that of \code{subject}. Each element is a numeric vector equal to the length of \code{pattern}, with values corresponding to the minimum distance between between the corresponding pattern and subject sequences. } \author{Martin Morgan } \seealso{\code{\link[Biostrings]{pairwiseAlignment}}} \examples{ sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp, "s_2_export.txt") polyA <- polyn("A", 35) polyT <- polyn("T", 35) d1 <- srdistance(clean(sread(aln)), polyA) d2 <- srdistance(sread(aln), polyA) d3 <- srdistance(sread(aln), c(polyA, polyT)) } \keyword{manip} ShortRead/man/srduplicated.Rd0000644000126300012640000000650512227066716017574 0ustar00biocbuildphs_compbio\name{srduplicated} \alias{srorder} \alias{srrank} \alias{srsort} \alias{srduplicated} % XStringSet-methods \alias{srorder,XStringSet-method} \alias{srrank,XStringSet-method} \alias{srsort,XStringSet-method} \alias{srduplicated,XStringSet-method} \title{Order, sort, and find duplicates in XStringSet objects} \description{ These generics order, rank, sort, and find duplicates in short read objects, including fastq-encoded qualities. \code{srorder}, \code{srrank} and \code{srsort} differ from the default functions \code{rank}, \code{order} and \code{sort} in that sorting is based on an internally-defined order rather than, e.g., the order implied by \code{LC_COLLATE}. } \usage{ srorder(x, ...) srrank(x, ...) srsort(x, ...) srduplicated(x, ...) } \arguments{ \item{x}{The object to be sorted, ranked, ordered, or to have duplicates identified; see the examples below for objects for which methods are defined.} \item{\dots}{Additional arguments available for use by methods; usually ignored.} } \details{ Unlike \code{sort} and friends, the implementation does not preserve order of duplicated elements. Like \code{duplicated}, one element in each set of duplicates is marked as \code{FALSE}. \code{srrank} settles ties using the \dQuote{min} criterion described in \code{\link{rank}}, i.e., identical elements are ranked equal to the rank of the first occurrence of the sorted element. The following methods are defined, in addition to methods described in class-specific documentation: \describe{ \item{srsort}{\code{signature(x = "XStringSet")}:} \item{srorder}{\code{signature(x = "XStringSet")}:} \item{srduplicated}{\code{signature(x = "XStringSet")}: Apply \code{srorder}, \code{srrank}, \code{srsort}, \code{srduplicated} to \code{\link[Biostrings:XStringSet-class]{XStringSet}} objects such as those returned by \code{\link{sread}}.} \item{srsort}{\code{signature(x = "ShortRead")}:} \item{srorder}{\code{signature(x = "ShortRead")}:} \item{srduplicated}{\code{signature(x = "ShortRead")}: Apply \code{srorder}, \code{srrank}, \code{srsort}, \code{srduplicated} to \code{\link[Biostrings:XStringSet-class]{XStringSet}} objects to the \code{sread} component of \code{\linkS4class{ShortRead}} and derived objects.} } } \value{ The functions return the following values: \item{srorder}{An integer vector the same length as \code{x}, containing the indices that will bring \code{x} into sorted order.} \item{srrank}{An integer vector the same length as \code{x}, containing the rank of each seqeunce when sorted.} \item{srsort}{An instance of \code{x} in sorted order.} \item{srduplicated}{A logical vector the same length as \code{x} indicating whether the indexed element is already present. Note that, like \code{duplicated}, subsetting \code{x} using the result returned by \code{!srduplicated(x)} includes one representative from each set of duplicates.} } \author{Martin Morgan } \examples{ showMethods("srsort") showMethods("srorder") showMethods("srduplicated") sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") sum(srduplicated(sread(rfq))) srsort(sread(rfq)) srsort(quality(rfq)) } \keyword{manip} ShortRead/man/tables.Rd0000644000126300012640000000403012227066716016352 0ustar00biocbuildphs_compbio\name{tables} \alias{tables} \alias{tables,XStringSet-method} \title{Summarize XStringSet read frequencies} \description{ This generic summarizes the number of times each sequence occurs in an \code{\link[Biostrings:XStringSet-class]{XStringSet}} instance. } \usage{ tables(x, n=50, ...) } \arguments{ \item{x}{An object for which a \code{tables} method is defined.} \item{n}{An \code{integer(1)} value determining how many named sequences will be present in the \code{top} portion of the return value.} \item{\dots}{Additional arguments available to methods} } \details{ Methods of this generic summarize the frequency with which each read occurs, There are two components to the summary. The reads are reported from most common to least common; typically a method parameter controls how many reads to report. Methods also return a pair of vectors describing how many reads were represented 1, 2, ... times. The following methods are defined, in addition to methods described in class-specific documentation: \describe{ \item{tables}{\code{signature(x= "XStringSet", n = 50)}: Apply \code{tables} to the \code{XStringSet} \code{x}.} } } \value{ A list of length two. \item{top}{A named integer vector. Names correspond to sequences. Values are the number of times the corresponding sequence occurs in the \code{XStringSet}. The vector is sorted in decreasing order; methods typically include a parameter specifying the number of sequences to return.} \item{distribution}{a \code{data.frame} with two columns. \code{nOccurrences} is the number of times any particular sequence is represented in the set (1, 2, ...). \code{nReads} is the number of reads with the corresponding occurrence.} } \author{Martin Morgan } \examples{ showMethods("tables") sp <- SolexaPath(system.file("extdata", package="ShortRead")) aln <- readAligned(sp) tables(sread(aln), n=6) xyplot(log10(nReads)~log10(nOccurrences), tables(sread(aln))$distribution) } \keyword{manip} ShortRead/man/trimTails.Rd0000644000126300012640000001347112227066716017061 0ustar00biocbuildphs_compbio\name{trimTails} \alias{trimTailw} \alias{trimTailw,character-method} \alias{trimTailw,BStringSet-method} \alias{trimTailw,XStringQuality-method} \alias{trimTails} \alias{trimTails,character-method} \alias{trimTails,BStringSet-method} \alias{trimTails,XStringQuality-method} \alias{trimEnds} \alias{trimEnds,character-method} \alias{trimEnds,XStringSet-method} \alias{trimEnds,XStringQuality-method} \alias{trimEnds,FastqQuality-method} \alias{trimEnds,ShortRead-method} \alias{trimEnds,ShortReadQ-method} \title{Trim ends of reads based on nucleotides or qualities} \description{ These generic functions remove leading or trailing nucleotides or qualities. \code{trimTails} and \code{trimTailw} remove low-quality reads from the right end using a sliding window (\code{trimTailw}) or a tally of (successive) nucleotides falling at or below a quality threshold (\code{trimTails}). \code{trimEnds} takes an alphabet of characters to remove from either left or right end. } \usage{ ## S4 methods for 'ShortReadQ', 'FastqQuality', or 'SFastqQuality' trimTailw(object, k, a, halfwidth, ..., ranges=FALSE) trimTails(object, k, a, successive=FALSE, ..., ranges=FALSE) trimEnds(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., ranges=FALSE) \S4method{trimTailw}{BStringSet}(object, k, a, halfwidth, ..., alphabet, ranges=FALSE) \S4method{trimTails}{BStringSet}(object, k, a, successive=FALSE, ..., alphabet, ranges=FALSE) \S4method{trimTailw}{character}(object, k, a, halfwidth, ..., destinations, ranges=FALSE) \S4method{trimTails}{character}(object, k, a, successive=FALSE, ..., destinations, ranges=FALSE) \S4method{trimEnds}{character}(object, a, left=TRUE, right=TRUE, relation=c("<=", "=="), ..., destinations, ranges=FALSE) } \arguments{ \item{object}{An object (e.g., \code{\linkS4class{ShortReadQ}} and derived classes; see below to discover these methods) or character vector of fastq file(s) to be trimmed. } \item{k}{\code{integer(1)} describing the number of failing letters required to trigger trimming.} \item{a}{For \code{trimTails} and \code{trimTailw}, a \code{character(1)} with \code{nchar(a) == 1L} giving the letter at or below which a nucleotide is marked as failing. For \code{trimEnds} a \code{character()} with all \code{nchar() == 1L} giving the letter at or below which a nucleotide or quality scores marked for removal.} \item{halfwidth}{The half width (cycles before or after the current; e.g., a half-width of 5 would span 5 + 1 + 5 cycles) in which qualities are assessed.} \item{successive}{\code{logical(1)} indicating whether failures can occur anywhere in the sequence, or must be successive. If \code{successive=FALSE}, then the k'th failed letter and subsequent are removed. If \code{successive=TRUE}, the first succession of k failed and subsequent letters are removed.} \item{left, right}{\code{logical(1)} indicating whether trimming is from the left or right ends.} \item{relation}{\code{character(1)} selected from the argument values, i.e., \dQuote{<=} or \dQuote{==} indicating whether all letters at or below the \code{alphabet(object)} are to be removed, or only exact matches.} \item{\dots}{Additional arguments, perhaps used by methods.} \item{destinations}{For \code{object} of type \code{character()}, an equal-length vector of destination files. Files must not already exist.} \item{alphabet}{\code{character()} (ordered low to high) letters on which quality scale is measured. Usually supplied internally (user does not need to specify). If missing, then set to ASCII characters 0-127.} \item{ranges}{\code{logical(1)} indicating whether the trimmed object, or only the ranges satisfying the trimming condition, be returned.} } \details{ \code{trimTailw} starts at the left-most nucleotide, tabulating the number of cycles in a window of \code{2 * halfwidth + 1} surrounding the current nucleotide with quality scores that fall at or below \code{a}. The read is trimmed at the first nucleotide for which this number \code{>= k}. The quality of the first or last nucleotide is used to represent portions of the window that extend beyond the sequence. \code{trimTails} starts at the left-most nucleotide and accumulates cycles for which the quality score is at or below \code{a}. The read is trimmed at the first location where this number \code{>= k}. With \code{successive=TRUE}, failing qualities must occur in strict succession. \code{trimEnds} examines the \code{left}, \code{right}, or both ends of \code{object}, marking for removal letters that correspond to \code{a} and \code{relation}. The \code{trimEnds,ShortReadQ-method} trims based on quality. \code{ShortReadQ} methods operate on quality scores; use \code{sread()} and the \code{ranges} argument to trim based on nucleotide (see examples). \code{character} methods transform one or several fastq files to new fastq files, applying trim operations based on quality scores; use \code{filterFastq} with your own \code{filter} argument to filter on nucleotides. } \value{ An instance of \code{class(object)} trimmed to contain only those nucleotides satisfying the trim criterion or, if \code{ranges=TRUE} an \code{IRanges} instance defining the ranges that would trim \code{object}. } \author{Martin Morgan } \examples{ showMethods(trimTails) sp <- SolexaPath(system.file('extdata', package='ShortRead')) rfq <- readFastq(analysisPath(sp), pattern="s_1_sequence.txt") ## remove leading / trailing quality scores <= 'I' trimEnds(rfq, "I") ## remove leading / trailing 'N's rng <- trimEnds(sread(rfq), "N", relation="==", ranges=TRUE) narrow(rfq, start(rng), end(rng)) ## remove leading / trailing 'G's or 'C's trimEnds(rfq, c("G", "C"), relation="==") } \keyword{manip} ShortRead/src/0000755000126300012640000000000012227135272014622 5ustar00biocbuildphs_compbioShortRead/src/Biostrings_stubs.c0000644000126300012640000000003712227135273020332 0ustar00biocbuildphs_compbio#include "_Biostrings_stubs.c" ShortRead/src/IRanges_stubs.c0000644000126300012640000000003412227135273017534 0ustar00biocbuildphs_compbio#include "_IRanges_stubs.c" ShortRead/src/Makevars0000644000126300012640000000067312227135235016323 0ustar00biocbuildphs_compbioPKG_CXXFLAGS=-DPACKAGE_NAME=\"\" -DPACKAGE_TARNAME=\"\" -DPACKAGE_VERSION=\"\" -DPACKAGE_STRING=\"\" -DPACKAGE_BUGREPORT=\"\" -DPACKAGE_URL=\"\" -DHAVE_LIBZ=1 -DSTDC_HEADERS=1 -DHAVE_SYS_TYPES_H=1 -DHAVE_SYS_STAT_H=1 -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_MEMORY_H=1 -DHAVE_STRINGS_H=1 -DHAVE_INTTYPES_H=1 -DHAVE_STDINT_H=1 -DHAVE_UNISTD_H=1 -DSIZEOF_UNSIGNED_LONG=8 PKG_CFLAGS=$(SHLIB_OPENMP_CFLAGS) PKG_LIBS+=-lz $(SHLIB_OPENMP_CFLAGS) ShortRead/src/Makevars.in0000644000126300012640000000013612227066713016726 0ustar00biocbuildphs_compbioPKG_CXXFLAGS=@DEFS@ PKG_CFLAGS=$(SHLIB_OPENMP_CFLAGS) PKG_LIBS+=@LIBS@ $(SHLIB_OPENMP_CFLAGS) ShortRead/src/Makevars.win0000644000126300012640000000055312227066713017120 0ustar00biocbuildphs_compbioZLIB_CFLAGS+=$(shell echo 'zlibbioc::pkgconfig("PKG_CFLAGS")'|\ "${R_HOME}/bin/R" --vanilla --slave) PKG_LIBS+=$(shell echo 'zlibbioc::pkgconfig("PKG_LIBS_shared")' |\ "${R_HOME}/bin/R" --vanilla --slave) %.o: %.c $(CC) $(ZLIB_CFLAGS) $(ALL_CPPFLAGS) $(ALL_CFLAGS) -c $< -o $@ %.o: %.cc $(CXX) $(ZLIB_CFLAGS) $(ALL_CPPFLAGS) $(ALL_CXXFLAGS) -c $< -o $@ ShortRead/src/R_init_ShortRead.c0000644000126300012640000000475012227135273020174 0ustar00biocbuildphs_compbio#include "ShortRead.h" #include "trim.h" #ifdef SUPPORT_OPENMP #include #endif SEXP set_omp_threads(SEXP nthreads) { int n = 1; #ifdef SUPPORT_OPENMP n = omp_get_max_threads(); if (!IS_INTEGER(nthreads) || 1L != LENGTH(nthreads)) Rf_error("'nthreads' must be integer(1)"); omp_set_num_threads(INTEGER(nthreads)[0]); #endif return ScalarInteger(n); } static const R_CallMethodDef callMethods[] = { /* util.c */ {".set_omp_threads", (DL_FUNC) & set_omp_threads, 1}, {".count_lines", (DL_FUNC) & count_lines, 1}, /* trim.c */ {".trimTails", (DL_FUNC) & trim_tails, 4}, {".trimTailw", (DL_FUNC) & trim_tailw, 4}, {".trimEnds", (DL_FUNC) & trim_ends, 4}, /* io.c */ {".read_prb_as_character", (DL_FUNC) & read_prb_as_character, 2}, {".read_solexa_fastq", (DL_FUNC) & read_solexa_fastq, 2}, {".read_XStringSet_columns", (DL_FUNC) & read_XStringSet_columns, 8}, {".read_solexa_export", (DL_FUNC) & read_solexa_export, 4}, {".write_fastq", (DL_FUNC) & write_fastq, 7}, {".count_ipar_int_recs", (DL_FUNC) & count_ipar_int_recs, 1}, /* io_bowtie.c, io_soap.c */ {".read_bowtie", (DL_FUNC) & read_bowtie, 4}, {".read_soap", (DL_FUNC) & read_soap, 4}, /* alphabet */ {".alphabet_by_cycle", (DL_FUNC) & alphabet_by_cycle, 3}, {".alphabet_pair_by_cycle", (DL_FUNC) & alphabet_pair_by_cycle, 5}, {".alphabet_score", (DL_FUNC) & alphabet_score, 2}, {".alphabet_as_int", (DL_FUNC) & alphabet_as_int, 2}, {".alphabet_order", (DL_FUNC) & alphabet_order, 1}, {".alphabet_duplicated", (DL_FUNC) & alphabet_duplicated, 1}, {".alphabet_rank", (DL_FUNC) & alphabet_rank, 1}, {".aligned_read_rank", (DL_FUNC) & aligned_read_rank, 4}, {".read_maq_map", (DL_FUNC) & read_maq_map, 3}, /* pileup */ {".pileup", (DL_FUNC) & pileup, 6}, /* readBfaToc */ {".readBfaToc", (DL_FUNC) & readBfaToc, 1}, /* sampler */ {".sampler_new", (DL_FUNC) & sampler_new, 1}, {".sampler_add", (DL_FUNC) & sampler_add, 2}, {".sampler_status", (DL_FUNC) & sampler_status, 1}, {".sampler_as_XStringSet", (DL_FUNC) & sampler_as_XStringSet, 2}, {".streamer_new", (DL_FUNC) & streamer_new, 1}, {".streamer_add", (DL_FUNC) & streamer_add, 3}, {".streamer_status", (DL_FUNC) & streamer_status, 1}, {".streamer_as_XStringSet", (DL_FUNC) & streamer_as_XStringSet, 1}, {NULL, NULL, 0} }; void R_init_ShortRead(DllInfo * info) { R_registerRoutines(info, NULL, callMethods, NULL, NULL); } ShortRead/src/ShortRead.h0000644000126300012640000000713112227135273016671 0ustar00biocbuildphs_compbio#ifndef _SHORTREAD_H_ #define _SHORTREAD_H_ #ifdef __cplusplus extern "C" { #endif #include #include #include "IRanges_interface.h" #include "XVector_interface.h" #include "Biostrings_interface.h" /* util.c */ typedef unsigned char (*DECODE_FUNC) (char); /* DNAdecode, RNAdecode */ typedef char (*ENCODE_FUNC) (char); /* DNAdecode, RNAdecode */ DECODE_FUNC decoder(const char *); ENCODE_FUNC encoder(const char *); void _reverse(char *); void _reverseComplement(char *); SEXP _get_namespace(const char *pkg); SEXP _get_strand_levels(); int _char_as_strand_int(const char c, const char *fname, const int lineno); typedef char *(MARK_FIELD_FUNC) (char *, const char *); MARK_FIELD_FUNC _mark_field_1; /* nchar(delim) == 1 */ MARK_FIELD_FUNC _mark_field_n; /* nchar(delim) != 1 */ int _mark_field_0(char *, char **, const int); extern const int LINEBUF_SIZE; gzFile *_fopen(const char *, const char *); int _linebuf_skip_p(char *, gzFile *, const char *, int, const char *); int _rtrim(char *linebuf); void _solexa_to_IUPAC(char *linebuf); void _as_factor_SEXP(SEXP vec, SEXP lvls); void _as_factor(SEXP vec, const char **levels, const int n_lvls); int _count_lines_sum(SEXP files); SEXP count_lines(SEXP files); SEXP count_ipar_int_recs(SEXP files); SEXP _get_SEXP(SEXP from, SEXP rho, const char *with); /* xstring_util.c */ typedef SEXP _XSnap; _XSnap _NEW_XSNAP(int nelt, const char *baseclass); void _APPEND_XSNAP(_XSnap snap, const char *str); void _XSNAP_ELT(SEXP x, int elt); /* io.c */ SEXP write_fastq(SEXP id, SEXP sread, SEXP quality, SEXP fname, SEXP fmode, SEXP full, SEXP max_width); SEXP read_prb_as_character(SEXP file, SEXP asSolexa); SEXP read_solexa_fastq(SEXP files, SEXP withIds); SEXP read_XStringSet_columns(SEXP files, SEXP header, SEXP sep, SEXP colIndex, SEXP colClasses, SEXP nrows, SEXP skip, SEXP commentChar); SEXP read_solexa_export(SEXP files, SEXP sep, SEXP commentChar, SEXP withFlags); /* io_bowtie.c, io_soap.c */ SEXP read_bowtie(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar); SEXP read_soap(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar); /* alphabet.c */ SEXP alphabet_by_cycle(SEXP stringSet, SEXP width, SEXP alphabet); SEXP alphabet_pair_by_cycle(SEXP stringSet1, SEXP stringSet2, SEXP width, SEXP alphabet1, SEXP alphabet2); SEXP alphabet_score(SEXP stringSet, SEXP score); SEXP alphabet_as_int(SEXP stringSet, SEXP score); SEXP alphabet_order(SEXP stringSet); SEXP alphabet_duplicated(SEXP stringSet); SEXP alphabet_rank(SEXP stringSet); SEXP aligned_read_rank(SEXP stringSet, SEXP order, SEXP withSread, SEXP rho); /* read_maq_map.c */ SEXP read_maq_map(SEXP filename, SEXP maxreads, SEXP maq_longread); /* pileup.c */ SEXP pileup(SEXP start, SEXP fraglength, SEXP chrlength, SEXP dir, SEXP readlength, SEXP offset); /* readBfaToc.c */ SEXP readBfaToc(SEXP bfa_filename); /* sampler */ SEXP sampler_new(SEXP n); SEXP sampler_add(SEXP s, SEXP bin); SEXP sampler_status(SEXP s); SEXP sampler_as_XStringSet(SEXP s, SEXP ordered); SEXP streamer_new(SEXP n); SEXP streamer_add(SEXP s, SEXP bin, SEXP skipadd); SEXP streamer_status(SEXP s); SEXP streamer_as_XStringSet(SEXP s); #ifdef __cplusplus } #endif #endif /* _SHORTREAD_H_ */ ShortRead/src/XVector_stubs.c0000644000126300012640000000003412227135273017576 0ustar00biocbuildphs_compbio#include "_XVector_stubs.c" ShortRead/src/alphabet.c0000644000126300012640000003033612227135273016554 0ustar00biocbuildphs_compbio#include "ShortRead.h" #include /* * visit all sequences in a set, tallying character frequency as a * function of nucleotide position in the read. */ SEXP alphabet_by_cycle(SEXP stringSet, SEXP width, SEXP alphabet) { const int MAX_MAP = 256; /* FIXME: check types of incoming arguments */ if (!IS_INTEGER(width) || LENGTH(width) != 1) Rf_error("'%s' must be '%s'", "width", "integer(1)"); if (!IS_CHARACTER(alphabet)) Rf_error("'%s' must be '%s'", "alphabet", "character()"); /* allocate and initialize the answer matrix */ const int nrow = LENGTH(alphabet), ncol = INTEGER(width)[0]; SEXP ans, dimnms, nms; PROTECT(ans = allocMatrix(INTSXP, nrow, ncol)); PROTECT(dimnms = NEW_LIST(2)); SET_VECTOR_ELT(dimnms, 0, alphabet); /* FIXME: Cycle dimnames? */ PROTECT(nms = NEW_STRING(2)); SET_STRING_ELT(nms, 0, mkChar("alphabet")); SET_STRING_ELT(nms, 1, mkChar("cycle")); SET_NAMES(dimnms, nms); SET_DIMNAMES(ans, dimnms); UNPROTECT(2); int *ansp = INTEGER(ans); /* convenient pointer to data */ memset(ansp, 0, LENGTH(ans) * sizeof(int)); /* initialize to 0 */ /* set up a decoder for the string */ const char *base = get_XStringSet_xsbaseclassname(stringSet); DECODE_FUNC decode = decoder(base); /* map between decoded character and offset into 'ans' */ int i, j; int *map = (int *) R_alloc(MAX_MAP, sizeof(int)); memset(map, -1, MAX_MAP * sizeof(int)); /* default; ignore */ for (i = 0; i < LENGTH(alphabet); ++i) { unsigned char c = (unsigned char) *CHAR(STRING_ELT(alphabet, i)); map[c] = i; } /* The main loop. Cache the string set for fast access, then * iterate over all strings, and over all characters in the * string. For each character, decode and map into the answer * matrix. * */ cachedXStringSet cache = cache_XStringSet(stringSet); const int len = get_XStringSet_length(stringSet); for (i = 0; i < len; ++i) { cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); for (j = 0; j < seq.length; ++j) { int idx = map[decode(seq.seq[j])]; if (idx >= 0) ansp[j * nrow + idx] += 1; } } UNPROTECT(1); return ans; } SEXP alphabet_pair_by_cycle(SEXP stringSet1, SEXP stringSet2, SEXP width, SEXP alphabet1, SEXP alphabet2) { const int MAX_MAP = 256; /* FIXME: check types of incoming arguments */ if (get_XStringSet_length(stringSet1) != get_XStringSet_length(stringSet2)) Rf_error("'stringSet1' and 'stringSet2' must have the same length"); if (!IS_CHARACTER(alphabet1) || !IS_CHARACTER(alphabet2)) Rf_error("'alphabet' must be list of character vectors"); /* allocate and initialize the answer matrix */ const int dim1 = LENGTH(alphabet1), dim2 = LENGTH(alphabet2), dim3 = INTEGER(width)[0]; const int dim1xdim2 = dim1 * dim2; SEXP ans, dimnms, nms; PROTECT(ans = alloc3DArray(INTSXP, dim1, dim2, dim3)); PROTECT(dimnms = NEW_LIST(3)); SET_VECTOR_ELT(dimnms, 0, alphabet1); SET_VECTOR_ELT(dimnms, 1, alphabet2); /* FIXME: Cycle dimnames? */ PROTECT(nms = NEW_STRING(3)); SET_STRING_ELT(nms, 0, mkChar("base")); SET_STRING_ELT(nms, 1, mkChar("quality")); SET_STRING_ELT(nms, 3, mkChar("cycle")); SET_NAMES(dimnms, nms); SET_DIMNAMES(ans, dimnms); UNPROTECT(2); int *ansp = INTEGER(ans); /* convenient pointer to data */ memset(ansp, 0, LENGTH(ans) * sizeof(int)); /* initialize to 0 */ /* set up a decoder for string1 and string2 */ const char *base1 = get_XStringSet_xsbaseclassname(stringSet1); const char *base2 = get_XStringSet_xsbaseclassname(stringSet2); DECODE_FUNC decode1 = decoder(base1); DECODE_FUNC decode2 = decoder(base2); /* map between decoded character and offset into 'ans' */ int i, j; int *map1 = (int *) R_alloc(MAX_MAP, sizeof(int)), *map2 = (int *) R_alloc(MAX_MAP, sizeof(int)); memset(map1, -1, MAX_MAP * sizeof(int)); /* default; ignore */ memset(map2, -1, MAX_MAP * sizeof(int)); /* default; ignore */ for (i = 0; i < LENGTH(alphabet1); ++i) { unsigned char c = (unsigned char) *CHAR(STRING_ELT(alphabet1, i)); map1[c] = i; } for (i = 0; i < LENGTH(alphabet2); ++i) { unsigned char c = (unsigned char) *CHAR(STRING_ELT(alphabet2, i)); map2[c] = i; } /* The main loop. Cache the string set for fast access, then * iterate over all strings, and over all characters in the * string. For each character, decode and map into the answer * matrix. * */ cachedXStringSet cache1 = cache_XStringSet(stringSet1); cachedXStringSet cache2 = cache_XStringSet(stringSet2); const int len = get_XStringSet_length(stringSet1); for (i = 0; i < len; ++i) { cachedCharSeq seq1 = get_cachedXStringSet_elt(&cache1, i); cachedCharSeq seq2 = get_cachedXStringSet_elt(&cache2, i); for (j = 0; j < seq1.length; ++j) { int idx1 = map1[decode1(seq1.seq[j])]; int idx2 = map2[decode2(seq2.seq[j])]; if (idx1 >= 0 && idx2 >= 0) ansp[j * dim1xdim2 + idx2 * dim1 + idx1] += 1; } } UNPROTECT(1); return ans; } SEXP alphabet_score(SEXP stringSet, SEXP score) { /* FIXME: stringSet is XStringSet */ const char *base = get_XStringSet_xsbaseclassname(stringSet); if (strcmp(base, "BString") != 0) Rf_error("'stringSet' must contain BString elements"); if (!IS_NUMERIC(score) || LENGTH(score) != 256) Rf_error("'%s' must be '%s'", "score", "integer(256)"); DECODE_FUNC decode = decoder(base); const int len = get_XStringSet_length(stringSet); int i, j; const double *dscore = REAL(score); SEXP ans; PROTECT(ans = NEW_NUMERIC(len)); double *dans = REAL(ans); cachedXStringSet cache = cache_XStringSet(stringSet); for (i = 0; i < len; ++i) { cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); dans[i] = 0; for (j = 0; j < seq.length; ++j) dans[i] += dscore[decode(seq.seq[j])]; } UNPROTECT(1); return ans; } SEXP alphabet_as_int(SEXP stringSet, SEXP score) { /* FIXME: stringSet is XStrinSet(1) or longer? */ const char *base = get_XStringSet_xsbaseclassname(stringSet); if (strcmp(base, "BString") != 0) Rf_error("'stringSet' must contain BString elements"); if (!IS_INTEGER(score) || LENGTH(score) != 256) Rf_error("'%s' must be '%s'", "score", "integer(256)"); DECODE_FUNC decode = decoder(base); const int len = get_XStringSet_length(stringSet); if (len == 0) return allocMatrix(INTSXP, 0, 0); cachedXStringSet cache = cache_XStringSet(stringSet); int i; cachedCharSeq seq = get_cachedXStringSet_elt(&cache, 0); int width = seq.length; int *ians = NULL; SEXP ans; for (i = 1; i < len && width > 0; ++i) { seq = get_cachedXStringSet_elt(&cache, i); if (seq.length > width) width = seq.length; } ans = PROTECT(allocMatrix(INTSXP, len, width)); ians = INTEGER(ans); for (i = 0; i < LENGTH(ans); ++i) ians[i] = NA_INTEGER; const int *iscore = INTEGER(score); int j; for (i = 0; i < len; ++i) { seq = get_cachedXStringSet_elt(&cache, i); for (j = 0; j < seq.length; ++j) ians[len * j + i] = iscore[decode(seq.seq[j])]; } UNPROTECT(1); return ans; } /* rank / order / sort / duplicated */ typedef struct { int offset; cachedCharSeq ref; } XSort; typedef int XSEQ_SORT_FUN(const void *, const void *); XSEQ_SORT_FUN compare_cachedCharSeq; XSEQ_SORT_FUN stable_compare_cachedCharSeq; int compare_cachedCharSeq(const void *a, const void *b) { const cachedCharSeq ra = ((const XSort *) a)->ref; const cachedCharSeq rb = ((const XSort *) b)->ref; const int diff = ra.length - rb.length; size_t len = diff < 0 ? ra.length : rb.length; int res = memcmp(ra.seq, rb.seq, len); return res == 0 ? diff : res; } int stable_compare_cachedCharSeq(const void *a, const void *b) { const cachedCharSeq ra = ((const XSort *) a)->ref; const cachedCharSeq rb = ((const XSort *) b)->ref; const int diff = ra.length - rb.length; size_t len = diff < 0 ? ra.length : rb.length; int res = memcmp(ra.seq, rb.seq, len); if ((0 == res) && (0 == diff)) res = ((const XSort *) a)->offset - ((const XSort *) b)->offset; return res == 0 ? diff : res; } void _alphabet_order(cachedXStringSet cache, XSort * xptr, const int len) { int i; for (i = 0; i < len; ++i) { xptr[i].offset = i; xptr[i].ref = get_cachedXStringSet_elt(&cache, i); } qsort(xptr, len, sizeof(XSort), stable_compare_cachedCharSeq); } SEXP alphabet_order(SEXP stringSet) { /* FIXME: stringSet is XStringSet; non-zero len? */ const int len = get_XStringSet_length(stringSet); if (len == 0) return NEW_INTEGER(0); cachedXStringSet cache = cache_XStringSet(stringSet); XSort *xptr = (XSort *) R_alloc(len, sizeof(XSort)); _alphabet_order(cache, xptr, len); SEXP ans; PROTECT(ans = NEW_INTEGER(len)); int *ians = INTEGER(ans); int i; for (i = 0; i < len; ++i) ians[i] = xptr[i].offset + 1; UNPROTECT(1); return ans; } SEXP alphabet_duplicated(SEXP stringSet) { /* FIXME: stringSet is XStringSet; non-zero len? */ const int len = get_XStringSet_length(stringSet); if (len == 0) return NEW_LOGICAL(0); cachedXStringSet cache = cache_XStringSet(stringSet); XSort *xptr = (XSort *) R_alloc(len, sizeof(XSort)); _alphabet_order(cache, xptr, len); SEXP ans; PROTECT(ans = NEW_LOGICAL(len)); int *ians = INTEGER(ans); ians[xptr[0].offset] = 0; int i; for (i = 1; i < len; ++i) ians[xptr[i].offset] = compare_cachedCharSeq(xptr + i - 1, xptr + i) == 0; UNPROTECT(1); return ans; } SEXP alphabet_rank(SEXP stringSet) { /* integer vector of unique indices into sorted set */ const int len = get_XStringSet_length(stringSet); if (len == 0) return NEW_INTEGER(0); cachedXStringSet cache = cache_XStringSet(stringSet); XSort *xptr = (XSort *) R_alloc(len, sizeof(XSort)); _alphabet_order(cache, xptr, len); SEXP rank = PROTECT(NEW_INTEGER(len)); int *irank = INTEGER(rank), i; irank[xptr[0].offset] = 1; for (i = 1; i < len; ++i) { if (compare_cachedCharSeq(&xptr[i - 1], &xptr[i]) == 0) { irank[xptr[i].offset] = irank[xptr[i - 1].offset]; } else { irank[xptr[i].offset] = i + 1; } } UNPROTECT(1); return rank; } SEXP aligned_read_rank(SEXP alignedRead, SEXP order, SEXP withSread, SEXP rho) { if (LENGTH(order) == 0) return NEW_INTEGER(0); SEXP chr, str, pos; PROTECT(chr = _get_SEXP(alignedRead, rho, "chromosome")); PROTECT(str = _get_SEXP(alignedRead, rho, "strand")); PROTECT(pos = _get_SEXP(alignedRead, rho, "position")); int *c = INTEGER(chr), *s = INTEGER(str), *p = INTEGER(pos), *o = INTEGER(order), len = LENGTH(order); SEXP rank; PROTECT(rank = NEW_INTEGER(len)); int *r = INTEGER(rank), i; if (LOGICAL(withSread)[0]) { SEXP sread; PROTECT(sread = _get_SEXP(alignedRead, rho, "sread")); cachedXStringSet cache = cache_XStringSet(sread); XSort *xptr = (XSort *) R_alloc(2, sizeof(XSort)); xptr[0].ref = get_cachedXStringSet_elt(&cache, 0); r[o[0] - 1] = 1; for (i = 1; i < len; ++i) { const int this = o[i] - 1, prev = o[i - 1] - 1; xptr[i % 2].ref = get_cachedXStringSet_elt(&cache, this); if (c[this] != c[prev] || s[this] != s[prev] || p[this] != p[prev] || compare_cachedCharSeq(xptr, xptr + 1) != 0) r[this] = i + 1; else r[this] = r[prev]; } UNPROTECT(1); } else { r[o[0] - 1] = 1; for (i = 1; i < len; ++i) { const int this = o[i] - 1, prev = o[i - 1] - 1; if (c[this] != c[prev] || s[this] != s[prev] || p[this] != p[prev]) r[this] = i + 1; else r[this] = r[prev]; } } UNPROTECT(4); return rank; } ShortRead/src/call.h0000644000126300012640000000123112227135273015704 0ustar00biocbuildphs_compbio#ifndef _SHORTREAD_CALL_H_ #define _SHORTREAD_CALL_H_ #ifdef __cplusplus extern "C" { #endif #define NEW_CALL(S, T, NAME, ENV, N) \ PROTECT((S) = (T) = allocList((N))); \ SET_TYPEOF((T), LANGSXP); \ SETCAR((T), findFun(install((NAME)), (ENV))); \ (T) = CDR((T)) #define CSET_CDR(T, NAME, VALUE) \ SETCAR((T), (VALUE)); \ SET_TAG((T), install((NAME))); \ (T) = CDR((T)) #define CEVAL_TO(S, ENV, GETS) \ (GETS) = eval((S), (ENV)); \ UNPROTECT(1) #ifdef __cplusplus } #endif #endif /* _SHORTREAD_CALL_H_ */ ShortRead/src/const.h0000644000126300012640000000135012227135273016121 0ustar00biocbuildphs_compbio/* Note: This file has been copied from the source code of Maq, version 0.6.5, and is hence copyright (c) Li Hang, who has released Maq under GPL 2. The test for SIZEOF_UNSIGNED_LONG == 8 has been added, and depends on ../configure.ac */ #ifndef NST_CONST_H #define NST_CONST_H #define MAX_ULL 0xffffffffffffffffull #if SIZEOF_UNSIGNED_LONG == 8 typedef unsigned long bit64_t; #else typedef unsigned long long bit64_t; #endif typedef unsigned bit32_t; typedef unsigned short bit16_t; typedef unsigned char bit8_t; extern bit8_t nst_nt4_table[]; extern bit8_t nst_nt16_table[]; extern char *nst_nt4_rev_table; extern char *nst_nt16_rev_table; extern bit8_t nst_nt16_nt4_table[]; extern int nst_nt16_count_table[]; #endif ShortRead/src/io.c0000644000126300012640000006435112227135273015407 0ustar00biocbuildphs_compbio#include #include /* atoi */ #include "ShortRead.h" #include "call.h" static const int SOLEXA_QBASE = 64; static const int PHRED_QBASE = 33; static const int LINES_PER_FASTQ_REC = 4; static const int LINES_PER_FASTA_REC = 2; /* * Solexa 'fastq' files consist of records, each 4 lines long. Here is * an example: @HWI-EAS88_1_1_1_1001_499 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT +HWI-EAS88_1_1_1_1001_499 ]]]]]]]]]]]]Y]Y]]]]]]]]]]]]VCHVMPLAS * inst/extdata/s_1_sequences.txt contains 256 records */ void _write_err(FILE * file, int i) { fclose(file); Rf_error("failed to write record %d", i + 1); } char *_cache_to_char(cachedXStringSet * cache, const int i, char *buf, const int width, DECODE_FUNC decode) { cachedCharSeq roSeq = get_cachedXStringSet_elt(cache, i); if (roSeq.length > width) return NULL; if (decode != NULL) { int j; for (j = 0; j < roSeq.length; ++j) buf[j] = decode(roSeq.seq[j]); } else strncpy(buf, roSeq.seq, roSeq.length); buf[roSeq.length] = '\0'; return buf; } SEXP write_fastq(SEXP id, SEXP sread, SEXP quality, SEXP fname, SEXP fmode, SEXP full, SEXP max_width) { if (!(IS_S4_OBJECT(id) && strcmp(get_classname(id), "BStringSet") == 0)) Rf_error("'%s' must be '%s'", "id", "BStringSet"); if (!(IS_S4_OBJECT(sread) && strcmp(get_classname(sread), "DNAStringSet") == 0)) Rf_error("'%s' must be '%s'", "sread", "DNAStringSet"); /* check in R -- C-level R_check_super... is not adequate */ /* if (R_check_class_etc(quality, qualityClasses) < 0) */ /* Rf_error("'is(<%s>, \"%s\")' failed", "quality", qualityClasses[0]); */ const int len = get_XStringSet_length(id); if ((len != get_XStringSet_length(sread)) || (len != get_XStringSet_length(quality))) Rf_error("length() of %s must all be equal", "'id', 'sread', 'quality'"); if (!(IS_CHARACTER(fname) && LENGTH(fname) == 1)) /* FIXME: nzchar */ Rf_error("'%s' must be '%s'", "file", "character(1)"); if (!(IS_CHARACTER(fmode) && LENGTH(fmode) == 1)) /* FIXME nchar()<3 */ Rf_error("'%s' must be '%s'", "mode", "character(1)"); if (!(IS_LOGICAL(full) && LENGTH(full) == 1)) Rf_error("'%s' must be '%s'", "full", "logical(1)"); if (!(IS_INTEGER(max_width) && LENGTH(max_width) == 1 && INTEGER(max_width)[0] >= 0)) Rf_error("'%s' must be %s", "max_width", "'integer(1)', >=0"); const int width = INTEGER(max_width)[0]; DECODE_FUNC dnaDecoder = decoder(get_XStringSet_xsbaseclassname(sread)); cachedXStringSet xid = cache_XStringSet(id), xsread = cache_XStringSet(sread), xquality = cache_XStringSet(quality); FILE *fout = fopen(CHAR(STRING_ELT(fname, 0)), CHAR(STRING_ELT(fmode, 0))); if (fout == NULL) Rf_error("failed to open file '%s'", CHAR(STRING_ELT(fname, 0))); char *idbuf0 = (char *) R_alloc(sizeof(char), width + 1), *idbuf1, *readbuf = (char *) R_alloc(sizeof(char), width + 1), *qualbuf = (char *) R_alloc(sizeof(char), width + 1); int i; idbuf1 = TRUE == LOGICAL(full)[0] ? idbuf0 : ""; for (i = 0; i < len; ++i) { idbuf0 = _cache_to_char(&xid, i, idbuf0, width, NULL); if (idbuf0 == NULL) _write_err(fout, i); readbuf = _cache_to_char(&xsread, i, readbuf, width, dnaDecoder); if (readbuf == NULL) _write_err(fout, i); qualbuf = _cache_to_char(&xquality, i, qualbuf, width, NULL); if (qualbuf == NULL) _write_err(fout, i); fprintf(fout, "@%s\n%s\n+%s\n%s\n", idbuf0, readbuf, idbuf1, qualbuf); } fclose(fout); return R_NilValue; } /* * solexa/IPAR .*_int.txt.p.gz file */ void _count_ipar_int_recs(gzFile * file, int *n_recs, int *n_cycles) { const char CYCLE_END = '#'; const int LINEBUF_SIZE = 200001; size_t bytes_read = 0; char *buf = Calloc(LINEBUF_SIZE + 1, char); *n_recs = *n_cycles = 0; char *p = 0; /* records and cycles */ while (*n_cycles == 0 && (bytes_read = gzread(file, buf, LINEBUF_SIZE)) > 0) { p = buf; while ((p = memchr(p, '\n', (buf + bytes_read) - p))) { ++p; if (*p == CYCLE_END) { ++p; *n_cycles += 1; break; } else *n_recs += 1; } } /* just cycles */ while ((p = memchr(p, CYCLE_END, (buf + bytes_read) - p))) { ++p; *n_cycles += 1; } while ((bytes_read = gzread(file, buf, LINEBUF_SIZE)) > 0) { p = buf; while ((p = memchr(p, CYCLE_END, (buf + bytes_read) - p))) { ++p; *n_cycles += 1; } } Free(buf); } SEXP count_ipar_int_recs(SEXP fnames) { int i, nfile; const char *filepath; gzFile *file; SEXP ans = R_NilValue, nms = R_NilValue; if (!IS_CHARACTER(fnames)) error("'fnames' must be character()"); nfile = LENGTH(fnames); PROTECT(ans = NEW_LIST(2)); SET_VECTOR_ELT(ans, 0, NEW_INTEGER(nfile)); SET_VECTOR_ELT(ans, 1, NEW_INTEGER(nfile)); PROTECT(nms = NEW_CHARACTER(2)); SET_STRING_ELT(nms, 0, mkChar("reads")); SET_STRING_ELT(nms, 1, mkChar("cycles")); setAttrib(ans, R_NamesSymbol, nms); for (i = 0; i < nfile; ++i) { R_CheckUserInterrupt(); filepath = translateChar(STRING_ELT(fnames, i)); file = _fopen(filepath, "rb"); _count_ipar_int_recs(file, INTEGER(VECTOR_ELT(ans, 0)) + i, INTEGER(VECTOR_ELT(ans, 1)) + i); gzclose(file); } UNPROTECT(2); return ans; } /* * Read a solexa .*_prb.txt file into STRING_VEC */ SEXP read_prb_as_character(SEXP fname, SEXP asSolexa) { const int NUC_PER_CYCLE = 4; if (!IS_CHARACTER(fname) || LENGTH(fname) != 1) error("'fname' must be 'character(1)'"); if (!IS_LOGICAL(asSolexa) || LENGTH(asSolexa) != 1) error("'asSolexa' must be 'logical(1)'"); const int n_reads = INTEGER(count_lines(fname))[0]; const int qbase = LOGICAL(asSolexa)[0] ? SOLEXA_QBASE : PHRED_QBASE; SEXP ans = PROTECT(NEW_CHARACTER(n_reads)); gzFile *file = _fopen(translateChar(STRING_ELT(fname, 0)), "rb"); char buf[LINEBUF_SIZE + 1]; int read = 0; if (gzgets(file, buf, LINEBUF_SIZE) == Z_NULL) { gzclose(file); error("could not read file '%f'", translateChar(STRING_ELT(fname, 0))); } int n_cycles = 0; char *quad = strtok(buf, "\t"); while (quad != NULL) { n_cycles++; quad = strtok(NULL, "\t"); } gzrewind(file); char *score = R_alloc(sizeof(char), n_cycles + 1); score[n_cycles] = '\0'; while (gzgets(file, buf, LINEBUF_SIZE) != Z_NULL) { if (read >= n_reads) { gzclose(file); error("too many reads, %d expected", n_reads); } quad = strtok(buf, "\t"); int cycle = 0; while (quad != NULL && cycle < n_cycles) { int v[4]; int bases = sscanf(quad, " %d %d %d %d", &v[0], &v[1], &v[2], &v[3]); if (bases != NUC_PER_CYCLE) { gzclose(file); error("%d bases observed, %d expected", bases, NUC_PER_CYCLE); } v[0] = v[0] > v[1] ? v[0] : v[1]; v[2] = v[2] > v[3] ? v[2] : v[3]; score[cycle++] = qbase + ((char) v[0] > v[2] ? v[0] : v[2]); quad = strtok(NULL, "\t"); } if (cycle != n_cycles) { gzclose(file); error("%d cycles observed, %d expected", cycle, n_cycles); } SET_STRING_ELT(ans, read++, mkChar(score)); } UNPROTECT(1); gzclose(file); return ans; } /* * Read a solexa 's__sequence.txt' file into CharAEAE objects. */ static void _read_solexa_fastq_file(const char *fname, SEXP ans) { gzFile *file; char linebuf[LINEBUF_SIZE]; int lineno, reclineno, nchar_in_buf; _XSnap seq = VECTOR_ELT(ans, 0), id = VECTOR_ELT(ans, 1), qualities = VECTOR_ELT(ans, 2); file = _fopen(fname, "rb"); lineno = 0; while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if ((reclineno = lineno % LINES_PER_FASTQ_REC) == 2) { lineno++; continue; } nchar_in_buf = _rtrim(linebuf); if (nchar_in_buf >= LINEBUF_SIZE - 1) { // should never be gzclose(file); error("line too long %s:%d", fname, lineno); } else if ((0 == reclineno) && (0 == nchar_in_buf)) { gzclose(file); error("unexpected empty line %s:%d", fname, lineno); } switch (reclineno) { case 0: /* add linebuf to CharAEAE; start at char +1 to skip the * fastq annotation. */ if (id != R_NilValue) _APPEND_XSNAP(id, linebuf + 1); break; case 1: _solexa_to_IUPAC(linebuf); _APPEND_XSNAP(seq, linebuf); break; case 3: _APPEND_XSNAP(qualities, linebuf); break; default: error("unexpected 'reclineno'; consult maintainer"); break; } lineno++; } gzclose(file); if ((lineno % LINES_PER_FASTQ_REC) != 0) error("unexpected number of lines in file '%s'", fname); } SEXP read_solexa_fastq(SEXP files, SEXP withId) { int i, nfiles, nrec = 0; const char *fname; SEXP ans = R_NilValue, nms = R_NilValue; if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character"); if (!IS_LOGICAL(withId) || LENGTH(withId) != 1) Rf_error("'%s' must be '%s'", "withId", "logical(1)"); nfiles = LENGTH(files); nrec = _count_lines_sum(files) / LINES_PER_FASTQ_REC; PROTECT(ans = NEW_LIST(3)); SET_VECTOR_ELT(ans, 0, _NEW_XSNAP(nrec, "DNAString")); /* sread */ if (LOGICAL(withId)[0] == TRUE) /* id */ SET_VECTOR_ELT(ans, 1, _NEW_XSNAP(nrec, "BString")); else SET_VECTOR_ELT(ans, 1, R_NilValue); SET_VECTOR_ELT(ans, 2, _NEW_XSNAP(nrec, "BString")); /* quality */ PROTECT(nms = NEW_CHARACTER(3)); SET_STRING_ELT(nms, 0, mkChar("sread")); SET_STRING_ELT(nms, 1, mkChar("id")); SET_STRING_ELT(nms, 2, mkChar("quality")); setAttrib(ans, R_NamesSymbol, nms); UNPROTECT(1); for (i = 0; i < nfiles; ++i) { R_CheckUserInterrupt(); fname = translateChar(STRING_ELT(files, i)); _read_solexa_fastq_file(fname, ans); } _XSNAP_ELT(ans, 0); if (VECTOR_ELT(ans, 1) != R_NilValue) _XSNAP_ELT(ans, 1); _XSNAP_ELT(ans, 2); UNPROTECT(1); return ans; } int _io_XStringSet_columns(const char *fname, int header, const char *sep, MARK_FIELD_FUNC * mark_field, const int *colidx, int ncol, int nrow, int skip, const char *commentChar, SEXP sets, const int *toIUPAC) { gzFile *file; char *linebuf; int lineno = 0, recno = 0; file = _fopen(fname, "rb"); linebuf = S_alloc(LINEBUF_SIZE, sizeof(char)); /* auto free'd */ while (skip-- > 0) gzgets(file, linebuf, LINEBUF_SIZE); if (header == TRUE) gzgets(file, linebuf, LINEBUF_SIZE); while (recno < nrow && gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (_linebuf_skip_p(linebuf, file, fname, lineno, commentChar)) { lineno++; continue; } int j = 0, cidx = 0; char *curr = linebuf, *next; for (j = 0; cidx < ncol && curr != NULL; ++j) { next = (*mark_field) (curr, sep); if (j == colidx[cidx]) { if (toIUPAC[cidx]) _solexa_to_IUPAC(curr); _APPEND_XSNAP(VECTOR_ELT(sets, cidx), curr); cidx++; } curr = next; } lineno++; recno++; } gzclose(file); return recno; } SEXP read_XStringSet_columns(SEXP files, SEXP header, SEXP sep, SEXP colIndex, SEXP colClasses, SEXP nrows, SEXP skip, SEXP commentChar) { if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character(1)"); if (!IS_LOGICAL(header) || LENGTH(header) != 1) Rf_error("'%s' must be '%s'", "header", "logical(1)"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1) Rf_error("'%s' must be '%s'", "sep", "character(1)"); /* FIXME: !nzchar(sep[1]) */ if (!IS_INTEGER(colIndex) || LENGTH(colIndex) == 0) Rf_error("'colIndex' must be 'integer' with length > 0"); if (!IS_CHARACTER(colClasses) || LENGTH(colClasses) != LENGTH(colIndex)) Rf_error("'%s' must be '%s', length(colClasses) == length(colIndex)", "colClasses", "character()"); if (!IS_INTEGER(nrows) || LENGTH(nrows) != 1) Rf_error("'%s' must be '%s'", "nrows", "integer(1)"); if (!IS_INTEGER(skip) || LENGTH(skip) != 1) Rf_error("'%s' must be '%s'", "skiip", "integer(1)"); if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); int i, j; /* Count lines and pre-allocate space */ const char *csep = translateChar(STRING_ELT(sep, 0)); const int nfiles = LENGTH(files); MARK_FIELD_FUNC *sep_func; /* how to parse fields; minor efficiency */ if (csep[0] != '\0' && csep[1] == '\0') sep_func = _mark_field_1; else sep_func = _mark_field_n; int nrow = INTEGER(nrows)[0]; if (nrow < 0) { nrow = _count_lines_sum(files); nrow -= nfiles * (LOGICAL(header)[0] + INTEGER(skip)[0]); } int ncol = LENGTH(colIndex); SEXP ans = PROTECT(NEW_LIST(ncol)); int *colidx = (int *) R_alloc(sizeof(int), ncol); int *toIUPAC = (int *) R_alloc(sizeof(int), ncol); for (j = 0; j < ncol; ++j) { const char *baseclass = CHAR(STRING_ELT(colClasses, j)); SET_VECTOR_ELT(ans, j, _NEW_XSNAP(nrow, baseclass)); colidx[j] = INTEGER(colIndex)[j] - 1; toIUPAC[j] = !strcmp(baseclass, "DNAString"); } /* read columns */ int nreads = 0; for (i = 0; i < nfiles; ++i) { R_CheckUserInterrupt(); if (nreads >= nrow) break; const char *fname = translateChar(STRING_ELT(files, i)); nreads += _io_XStringSet_columns(fname, LOGICAL(header)[0], csep, sep_func, colidx, ncol, nrow - nreads, INTEGER(skip)[0], CHAR(STRING_ELT(commentChar, 0)), ans, toIUPAC); } /* formulate return value */ for (j = 0; j < ncol; ++j) _XSNAP_ELT(ans, j); UNPROTECT(1); return ans; } /* * _export parser */ enum { /* fields from the _export spec */ SLX_MACHINE = 0, SLX_RUN, SLX_LANE, SLX_TILE, SLX_X, SLX_Y, SLX_MULTIPLEX, SLX_PAIRID, SLX_SREAD, SLX_QUAL, SLX_CHR, SLX_CONTIG, SLX_POS, SLX_STRAND, SLX_ALIGNQUAL, SLX_FILT, /* ID, when calculated */ SLX_ID, /* length of ENUM */ SLX_ELEMENT_END }; SEXP _AlignedRead_Solexa_make(SEXP fields) { const char *FILTER_LEVELS[] = { "Y", "N" }; SEXP s, t, nmspc = PROTECT(_get_namespace("ShortRead")); const Rboolean withMultiplexIndex = R_NilValue != VECTOR_ELT(fields, SLX_MULTIPLEX), withPairedReadNumber = R_NilValue != VECTOR_ELT(fields, SLX_PAIRID), withIds = R_NilValue != VECTOR_ELT(fields, SLX_MACHINE); SEXP sfq; /* SFastqQuality */ NEW_CALL(s, t, "SFastqQuality", nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(fields, SLX_QUAL)); CEVAL_TO(s, nmspc, sfq); PROTECT(sfq); SEXP alnq; /* NumericQuality() */ NEW_CALL(s, t, "NumericQuality", nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(fields, SLX_ALIGNQUAL)); CEVAL_TO(s, nmspc, alnq); PROTECT(alnq); /* .SolexaExport_AlignedDataFrame(...) */ _as_factor(VECTOR_ELT(fields, SLX_FILT), FILTER_LEVELS, sizeof(FILTER_LEVELS) / sizeof(const char *)); SEXP run; NEW_CALL(s, t, "factor", nmspc, 2); CSET_CDR(t, "x", VECTOR_ELT(fields, SLX_RUN)); CEVAL_TO(s, nmspc, run); PROTECT(run); SEXP dataframe; NEW_CALL(s, t, "data.frame", nmspc, 8 + withMultiplexIndex + withPairedReadNumber); CSET_CDR(t, "run", run); CSET_CDR(t, "lane", VECTOR_ELT(fields, SLX_LANE)); CSET_CDR(t, "tile", VECTOR_ELT(fields, SLX_TILE)); CSET_CDR(t, "x", VECTOR_ELT(fields, SLX_X)); CSET_CDR(t, "y", VECTOR_ELT(fields, SLX_Y)); CSET_CDR(t, "filtering", VECTOR_ELT(fields, SLX_FILT)); CSET_CDR(t, "contig", VECTOR_ELT(fields, SLX_CONTIG)); if (withMultiplexIndex) { CSET_CDR(t, "multiplexIndex", VECTOR_ELT(fields, SLX_MULTIPLEX)); } if (withPairedReadNumber) { CSET_CDR(t, "pairedReadNumber", VECTOR_ELT(fields, SLX_PAIRID)); } CEVAL_TO(s, nmspc, dataframe); PROTECT(dataframe); SEXP adf; NEW_CALL(s, t, ".SolexaExport_AlignedDataFrame", nmspc, 2); CSET_CDR(t, "data", dataframe); CEVAL_TO(s, nmspc, adf); PROTECT(adf); SEXP aln; NEW_CALL(s, t, "AlignedRead", nmspc, 8 + withIds); CSET_CDR(t, "sread", VECTOR_ELT(fields, SLX_SREAD)); CSET_CDR(t, "quality", sfq); if (withIds) { CSET_CDR(t, "id", VECTOR_ELT(fields, SLX_ID)); } CSET_CDR(t, "chromosome", VECTOR_ELT(fields, SLX_CHR)); CSET_CDR(t, "position", VECTOR_ELT(fields, SLX_POS)); CSET_CDR(t, "strand", VECTOR_ELT(fields, SLX_STRAND)); CSET_CDR(t, "alignQuality", alnq); CSET_CDR(t, "alignData", adf); CEVAL_TO(s, nmspc, aln); UNPROTECT(6); return aln; } int _read_solexa_export_file(const char *fname, const char *commentChar, int offset, SEXP result) { const int N_FIELDS = 22; Rboolean withMultiplexIndex = R_NilValue != VECTOR_ELT(result, SLX_MULTIPLEX), withPairedReadNumber = R_NilValue != VECTOR_ELT(result, SLX_PAIRID), withId = R_NilValue != VECTOR_ELT(result, SLX_MACHINE); gzFile *file; char linebuf[LINEBUF_SIZE], **elt = (char **) R_alloc(N_FIELDS, sizeof(char*)); int lineno = 0, irec = offset; SEXP machine = NULL, run = VECTOR_ELT(result, SLX_RUN); int *lane = INTEGER(VECTOR_ELT(result, SLX_LANE)), *tile = INTEGER(VECTOR_ELT(result, SLX_TILE)), *x = INTEGER(VECTOR_ELT(result, SLX_X)), *y = INTEGER(VECTOR_ELT(result, SLX_Y)); _XSnap sread = VECTOR_ELT(result, SLX_SREAD), quality = VECTOR_ELT(result, SLX_QUAL); SEXP chromosome = VECTOR_ELT(result, SLX_CHR); int *position = INTEGER(VECTOR_ELT(result, SLX_POS)), *strand = INTEGER(VECTOR_ELT(result, SLX_STRAND)), *alignQuality = INTEGER(VECTOR_ELT(result, SLX_ALIGNQUAL)), *filtering = INTEGER(VECTOR_ELT(result, SLX_FILT)); SEXP contig = VECTOR_ELT(result, SLX_CONTIG), multiplexIndex = NULL; int *pairedReadNumber = NULL; if (withMultiplexIndex) multiplexIndex = VECTOR_ELT(result, SLX_MULTIPLEX); if (withPairedReadNumber) pairedReadNumber = INTEGER(VECTOR_ELT(result, SLX_PAIRID)); if (withId) machine = VECTOR_ELT(result, SLX_MACHINE); file = _fopen(fname, "rb"); while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (*linebuf == *commentChar) { lineno++; continue; } /* field-ify */ int n_fields = _mark_field_0(linebuf, elt, N_FIELDS); if (n_fields != N_FIELDS) { gzclose(file); error("incorrect number of fields (%d) %s:%d", n_fields, fname, lineno); } if (withId) SET_STRING_ELT(machine, irec, mkChar(elt[0])); SET_STRING_ELT(run, irec, mkChar(elt[1])); lane[irec] = atoi(elt[2]); tile[irec] = atoi(elt[3]); x[irec] = atoi(elt[4]); y[irec] = atoi(elt[5]); if (withMultiplexIndex) { SEXP idxString = *elt[6] == '\0' ? R_BlankString : mkChar(elt[6]); SET_STRING_ELT(multiplexIndex, irec, idxString); } if (withPairedReadNumber) pairedReadNumber[irec] = atoi(elt[7]); _APPEND_XSNAP(sread, elt[8]); _APPEND_XSNAP(quality, elt[9]); SET_STRING_ELT(chromosome, irec, mkChar(elt[10])); SET_STRING_ELT(contig, irec, mkChar(elt[11])); if (*elt[12] == '\0') position[irec] = NA_INTEGER; else position[irec] = atoi(elt[12]); if (*elt[13] == '\0') strand[irec] = NA_INTEGER; else { switch (*elt[13]) { case 'F': strand[irec] = 1; break; case 'R': strand[irec] = 2; break; default: gzclose(file); error("invalid 'strand' field '%s', %s:%d", *elt[13], fname, lineno); break; } } /* 14: descriptor */ alignQuality[irec] = atoi(elt[15]); /* 16: pairedScore, 17: partnerCzome, 18: partnerContig 19: partnerOffset, 20: partnerStrand */ switch (*elt[21]) { case 'Y': filtering[irec] = 1; break; case 'N': filtering[irec] = 2; break; default: gzclose(file); error("invalid 'filtering' field '%s', %s:%d", *elt[21], fname, lineno); break; } lineno++; irec++; } return irec - offset; } int _solexa_export_make_id(SEXP result) { const int *lane = INTEGER(VECTOR_ELT(result, SLX_LANE)), *tile = INTEGER(VECTOR_ELT(result, SLX_TILE)), *x = INTEGER(VECTOR_ELT(result, SLX_X)), *y = INTEGER(VECTOR_ELT(result, SLX_Y)), *pairedReadNumber = NULL; const SEXP * run = STRING_PTR(VECTOR_ELT(result, SLX_RUN)), *multiplexIndex = NULL, *machine = STRING_PTR(VECTOR_ELT(result, SLX_MACHINE)); const Rboolean withMultiplexIndex = R_NilValue != VECTOR_ELT(result, SLX_MULTIPLEX), withPairedReadNumber = R_NilValue != VECTOR_ELT(result, SLX_PAIRID); if (withMultiplexIndex) multiplexIndex = STRING_PTR(VECTOR_ELT(result, SLX_MULTIPLEX)); if (withPairedReadNumber) pairedReadNumber = INTEGER(VECTOR_ELT(result, SLX_PAIRID)); const int nrec = LENGTH(VECTOR_ELT(result, SLX_RUN)); char buf[LINEBUF_SIZE]; SET_VECTOR_ELT(result, SLX_ID, _NEW_XSNAP(nrec, "BString")); _XSnap id = VECTOR_ELT(result, SLX_ID); /* FIXME: machine */ int n = 0; for (int i = 0; i < nrec; ++i) { n = snprintf(buf, LINEBUF_SIZE, "%s_%s:%d:%d:%d:%d", CHAR(machine[i]), CHAR(run[i]), lane[i], tile[i], x[i], y[i]); if (withMultiplexIndex) n += snprintf(buf + n, LINEBUF_SIZE - n, "#%s", CHAR(multiplexIndex[i])); if (withPairedReadNumber) n += snprintf(buf + n, LINEBUF_SIZE - n, "/%d", pairedReadNumber[i]); if (n > LINEBUF_SIZE) return -1; _APPEND_XSNAP(id, buf); } _XSNAP_ELT(result, SLX_ID); return 1; } SEXP read_solexa_export(SEXP files, SEXP sep, SEXP commentChar, SEXP withFlags) { const int N_ELTS = SLX_ELEMENT_END; if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character()"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1 || *(CHAR(STRING_ELT(sep, 0))) != '\t') Rf_error("'%s' must be '%s'", "sep", "\t"); /* FIXME: !nzchar(sep[1]) */ if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); if (!IS_LOGICAL(withFlags) || LENGTH(withFlags) != 3) Rf_error("'%s' must be '%s'", "withFlags", "logical(3)"); Rboolean withId = LOGICAL(withFlags)[0], withMultiplexIndex = LOGICAL(withFlags)[1], withPairedReadNumber = LOGICAL(withFlags)[2]; int nrec = _count_lines_sum(files); SEXP result = PROTECT(NEW_LIST(N_ELTS));; if (withId) SET_VECTOR_ELT(result, SLX_MACHINE, NEW_STRING(nrec)); SET_VECTOR_ELT(result, SLX_RUN, NEW_STRING(nrec)); SET_VECTOR_ELT(result, SLX_LANE, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_TILE, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_X, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_Y, NEW_INTEGER(nrec)); if (withMultiplexIndex) SET_VECTOR_ELT(result, SLX_MULTIPLEX, NEW_STRING(nrec)); if (withPairedReadNumber) SET_VECTOR_ELT(result, SLX_PAIRID, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_SREAD, _NEW_XSNAP(nrec, "DNAString")); SET_VECTOR_ELT(result, SLX_QUAL, _NEW_XSNAP(nrec, "BString")); SET_VECTOR_ELT(result, SLX_CHR, NEW_STRING(nrec)); SET_VECTOR_ELT(result, SLX_POS, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_STRAND, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_ALIGNQUAL, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_FILT, NEW_INTEGER(nrec)); SET_VECTOR_ELT(result, SLX_CONTIG, NEW_STRING(nrec)); nrec = 0; for (int i = 0; i < LENGTH(files); ++i) { R_CheckUserInterrupt(); nrec += _read_solexa_export_file(CHAR(STRING_ELT(files, i)), CHAR(STRING_ELT(commentChar, 0)), nrec, result); } _XSNAP_ELT(result, SLX_SREAD); _XSNAP_ELT(result, SLX_QUAL); SEXP strand_lvls = PROTECT(_get_strand_levels()); _as_factor_SEXP(VECTOR_ELT(result, SLX_STRAND), strand_lvls); if (withId) { int ok = _solexa_export_make_id(result); if (ok <= 0) { UNPROTECT(2); Rf_error("internal error: could not make id"); } } SEXP aln = _AlignedRead_Solexa_make(result); UNPROTECT(2); return aln; } ShortRead/src/io_bowtie.c0000644000126300012640000001242712227135273016755 0ustar00biocbuildphs_compbio#include #include "ShortRead.h" #include "call.h" /* HWI-EAS88_1:1:1:83:277 - chr1 163068612 AGAAGAATCCTTAAGGCTTGCTAGGCAGCAGTCTA 77777:::::::::::::::::::::::::::::: 0 23 */ static const char *ELT_NMS[] = { "id", "strand", "chromosome", "position", "sread", "quality", "similar", "mismatch" }; static const int N_ELTS = sizeof(ELT_NMS) / sizeof(const char *); static const int N_FIELDS = 8; int _read_bowtie(const char *fname, const char *commentChar, SEXP ref, int offset) { const int N_FIELDS = 8; gzFile *file; char linebuf[LINEBUF_SIZE], **elt = (char **) R_alloc(N_FIELDS, sizeof(char*)); int lineno = 0, irec = offset; file = _fopen(fname, "rb"); _XSnap id = VECTOR_ELT(ref, 0), sread = VECTOR_ELT(ref, 4), quality = VECTOR_ELT(ref, 5); SEXP chromosome = VECTOR_ELT(ref, 2), mismatch = VECTOR_ELT(ref, 7); int *strand = INTEGER(VECTOR_ELT(ref, 1)), *position = INTEGER(VECTOR_ELT(ref, 3)), *similar = INTEGER(VECTOR_ELT(ref, 6)); while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (*linebuf == *commentChar) { lineno++; continue; } lineno++; int n_fields = _mark_field_0(linebuf, elt, N_FIELDS); if (n_fields != N_FIELDS) { gzclose(file); error("incorrect number of fields (%d) %s:%d", n_fields, fname, lineno); } _APPEND_XSNAP(id, elt[0]); strand[irec] = _char_as_strand_int(*elt[1], fname, lineno); SET_STRING_ELT(chromosome, irec, mkChar(elt[2])); position[irec] = atoi(elt[3]) + 1; /* leftmost-aligned, 0-based */ if (strand[irec] == 2) { _reverseComplement(elt[4]); _reverse(elt[5]); } _APPEND_XSNAP(sread, elt[4]); _APPEND_XSNAP(quality, elt[5]); similar[irec] = atoi(elt[6]); /* previous: 'reserved' */ SET_STRING_ELT(mismatch, irec, mkChar(elt[7])); irec++; } return irec - offset; } SEXP _AlignedRead_Bowtie_make(SEXP ref, const char *qtype) { SEXP s, t, nmspc = PROTECT(_get_namespace("ShortRead")); SEXP sfq; /* SFastqQuality by default */ NEW_CALL(s, t, qtype, nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(ref, 5)); CEVAL_TO(s, nmspc, sfq); PROTECT(sfq); SEXP adf; NEW_CALL(s, t, ".Bowtie_AlignedDataFrame", nmspc, 3); CSET_CDR(t, "similar", VECTOR_ELT(ref, 6)); CSET_CDR(t, "mismatch", VECTOR_ELT(ref, 7)); CEVAL_TO(s, nmspc, adf); PROTECT(adf); SEXP aln; NEW_CALL(s, t, "AlignedRead", nmspc, 8); CSET_CDR(t, "id", VECTOR_ELT(ref, 0)); CSET_CDR(t, "sread", VECTOR_ELT(ref, 4)); CSET_CDR(t, "quality", sfq); CSET_CDR(t, "chromosome", VECTOR_ELT(ref, 2)); CSET_CDR(t, "position", VECTOR_ELT(ref, 3)); CSET_CDR(t, "strand", VECTOR_ELT(ref, 1)); /* alignQuality */ CSET_CDR(t, "alignData", adf); CEVAL_TO(s, nmspc, aln); UNPROTECT(3); return aln; } SEXP read_bowtie(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar) { if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character()"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1 || *CHAR(STRING_ELT(sep, 0)) != '\t') Rf_error("'%s' must be '%s'", "sep", "\t"); if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); if (!IS_CHARACTER(qualityType) || LENGTH(qualityType) != 1) Rf_error("'%s' must be '%s'", "qualityType", "character(1)"); const char *qtype = CHAR(STRING_ELT(qualityType, 0)); if (strcmp(qtype, "SFastqQuality") != 0 && strcmp(qtype, "FastqQuality") != 0) Rf_error("'%s' must be '%s'", "qualityType", "SFastqQuality' or 'FastqQuality"); int nrec = _count_lines_sum(files); SEXP ref = PROTECT(NEW_LIST(N_ELTS)); SET_VECTOR_ELT(ref, 0, _NEW_XSNAP(nrec, "BString")); /* id */ SET_VECTOR_ELT(ref, 1, NEW_INTEGER(nrec)); /* strand */ SET_VECTOR_ELT(ref, 2, NEW_STRING(nrec)); /* chromosome */ SET_VECTOR_ELT(ref, 3, NEW_INTEGER(nrec)); /* position */ SET_VECTOR_ELT(ref, 4, _NEW_XSNAP(nrec, "DNAString")); /* sread */ SET_VECTOR_ELT(ref, 5, _NEW_XSNAP(nrec, "BString")); /* quality */ SET_VECTOR_ELT(ref, 6, NEW_INTEGER(nrec)); /* similar */ SET_VECTOR_ELT(ref, 7, NEW_STRING(nrec)); /* mismatch encoding */ SEXP names = PROTECT(NEW_CHARACTER(N_ELTS)); for (int i = 0; i < N_ELTS; ++i) SET_STRING_ELT(names, i, mkChar(ELT_NMS[i])); SET_ATTR(ref, R_NamesSymbol, names); UNPROTECT(1); nrec = 0; for (int i = 0; i < LENGTH(files); ++i) { R_CheckUserInterrupt(); nrec += _read_bowtie(CHAR(STRING_ELT(files, i)), CHAR(STRING_ELT(commentChar, 0)), ref, nrec); } _XSNAP_ELT(ref, 0); _XSNAP_ELT(ref, 4); _XSNAP_ELT(ref, 5); SEXP strand_lvls = PROTECT(_get_strand_levels()); _as_factor_SEXP(VECTOR_ELT(ref, 1), strand_lvls); UNPROTECT(1); SEXP aln = _AlignedRead_Bowtie_make(ref, qtype); UNPROTECT(1); return aln; } ShortRead/src/io_soap.c0000644000126300012640000001432112227135273016421 0ustar00biocbuildphs_compbio#include #include "ShortRead.h" #include "call.h" /* SIMU_0001_00000081/1 TGTACAGTATGTGAAGAGATTTGTTCTGAACCAAA hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 1 a 35 + refseq 2210 0 */ static const char *ELT_NMS[] = { "id", "sread", "quality", "nEquallyBestHits", "pairedEnd", "alignedLength", "strand", "chromosome", "position", "typeOfHit", "hitDetail" }; static const int N_ELTS = sizeof(ELT_NMS) / sizeof(const char *); int _read_soap(const char *fname, const char *csep, const char *commentChar, MARK_FIELD_FUNC * mark_func, SEXP ref, int offset) { const int N_FIELDS = N_ELTS; gzFile *file; char linebuf[LINEBUF_SIZE], **elt = (char **) R_alloc(N_FIELDS, sizeof(char*)); int lineno = 0; file = _fopen(fname, "rb"); _XSnap id = VECTOR_ELT(ref, 0), sread = VECTOR_ELT(ref, 1), quality = VECTOR_ELT(ref, 2); SEXP pairedEnd = VECTOR_ELT(ref, 4), chromosome = VECTOR_ELT(ref, 7), hitDetail = VECTOR_ELT(ref, 10); int *nEquallyBestHits = INTEGER(VECTOR_ELT(ref, 3)), *alignedLength = INTEGER(VECTOR_ELT(ref, 5)), *strand = INTEGER(VECTOR_ELT(ref, 6)), *position = INTEGER(VECTOR_ELT(ref, 8)), *typeOfHit = INTEGER(VECTOR_ELT(ref, 9)); while (gzgets(file, linebuf, LINEBUF_SIZE) != NULL) { if (_linebuf_skip_p(linebuf, file, fname, lineno, commentChar)) { lineno++; continue; } /* field-ify */ elt[0] = linebuf; for (int i = 1; i < N_FIELDS; ++i) { elt[i] = (*mark_func) (elt[i - 1], csep); if (elt[i] == elt[i - 1]) error("too few fields, %s:%d", fname, lineno); } nEquallyBestHits[offset] = atoi(elt[3]); SET_STRING_ELT(pairedEnd, offset, mkChar(elt[4])); alignedLength[offset] = atoi(elt[5]); strand[offset] = _char_as_strand_int(*elt[6], fname, lineno); SET_STRING_ELT(chromosome, offset, mkChar(elt[7])); position[offset] = atoi(elt[8]); /* leftmost-aligned, 1-based */ typeOfHit[offset] = atoi(elt[9]); SET_STRING_ELT(hitDetail, offset, mkChar(elt[10])); /* 1-3: id, strand, quality */ _APPEND_XSNAP(id, elt[0]); if (strand[offset] == 2) { _reverseComplement(elt[1]); _reverse(elt[2]); } _APPEND_XSNAP(sread, elt[1]); _APPEND_XSNAP(quality, elt[2]); lineno++; offset++; } return offset; } SEXP _AlignedRead_SOAP_make(SEXP ref, const char *qtype) { SEXP s, t, nmspc = PROTECT(_get_namespace("ShortRead")); SEXP sfq; NEW_CALL(s, t, qtype, nmspc, 2); CSET_CDR(t, "quality", VECTOR_ELT(ref, 2)); CEVAL_TO(s, nmspc, sfq); PROTECT(sfq); SEXP adf; NEW_CALL(s, t, ".SOAP_AlignedDataFrame", nmspc, 6); CSET_CDR(t, "nEquallyBestHits", VECTOR_ELT(ref, 3)); CSET_CDR(t, "pairedEnd", VECTOR_ELT(ref, 4)); CSET_CDR(t, "alignedLength", VECTOR_ELT(ref, 5)); CSET_CDR(t, "typeOfHit", VECTOR_ELT(ref, 9)); CSET_CDR(t, "hitDetail", VECTOR_ELT(ref, 10)); CEVAL_TO(s, nmspc, adf); PROTECT(adf); SEXP aln; NEW_CALL(s, t, "AlignedRead", nmspc, 8); CSET_CDR(t, "sread", VECTOR_ELT(ref, 1)); CSET_CDR(t, "id", VECTOR_ELT(ref, 0)); CSET_CDR(t, "quality", sfq); CSET_CDR(t, "chromosome", VECTOR_ELT(ref, 7)); CSET_CDR(t, "position", VECTOR_ELT(ref, 8)); CSET_CDR(t, "strand", VECTOR_ELT(ref, 6)); /* alignQuality */ CSET_CDR(t, "alignData", adf); CEVAL_TO(s, nmspc, aln); UNPROTECT(3); return aln; } SEXP read_soap(SEXP files, SEXP qualityType, SEXP sep, SEXP commentChar) { if (!IS_CHARACTER(files)) Rf_error("'%s' must be '%s'", "files", "character()"); if (!IS_CHARACTER(sep) || LENGTH(sep) != 1) Rf_error("'%s' must be '%s'", "sep", "character(1)"); /* FIXME: !nzchar(sep[1]) */ if (!IS_CHARACTER(commentChar) || LENGTH(commentChar) != 1) Rf_error("'%s' must be '%s'", "commentChar", "character(1)"); if (LENGTH(STRING_ELT(commentChar, 0)) != 1) Rf_error("'nchar(commentChar[[1]])' must be 1 but is %d", LENGTH(STRING_ELT(commentChar, 0))); if (!IS_CHARACTER(qualityType) || LENGTH(qualityType) != 1) Rf_error("'%s' must be '%s'", "qualityType", "character(1)"); const char *qtype = CHAR(STRING_ELT(qualityType, 0)); if (strcmp(qtype, "SFastqQuality") != 0 && strcmp(qtype, "FastqQuality") != 0) Rf_error("'%s' must be '%s'", "qualityType", "SFastqQuality' or 'FastqQuality"); int nrec = _count_lines_sum(files); SEXP ref = PROTECT(NEW_LIST(N_ELTS)); SET_VECTOR_ELT(ref, 0, _NEW_XSNAP(nrec, "BString")); SET_VECTOR_ELT(ref, 1, _NEW_XSNAP(nrec, "DNAString")); SET_VECTOR_ELT(ref, 2, _NEW_XSNAP(nrec, "BString")); SET_VECTOR_ELT(ref, 3, NEW_INTEGER(nrec)); /* nEquallyBestHits */ SET_VECTOR_ELT(ref, 4, NEW_STRING(nrec)); /* pairedEnd */ SET_VECTOR_ELT(ref, 5, NEW_INTEGER(nrec)); /* alignedLength */ SET_VECTOR_ELT(ref, 6, NEW_INTEGER(nrec)); /* strand */ SET_VECTOR_ELT(ref, 7, NEW_STRING(nrec)); /* chromosome */ SET_VECTOR_ELT(ref, 8, NEW_INTEGER(nrec)); /* position */ SET_VECTOR_ELT(ref, 9, NEW_INTEGER(nrec)); /* typeOfHit */ SET_VECTOR_ELT(ref, 10, NEW_STRING(nrec)); /* hitDetail */ SEXP names = PROTECT(NEW_CHARACTER(N_ELTS)); for (int i = 0; i < N_ELTS; ++i) SET_STRING_ELT(names, i, mkChar(ELT_NMS[i])); SET_ATTR(ref, R_NamesSymbol, names); UNPROTECT(1); const char *csep = translateChar(STRING_ELT(sep, 0)); MARK_FIELD_FUNC *sep_func; /* how to parse fields; minor efficiency */ if (csep[0] != '\0' && csep[1] == '\0') sep_func = _mark_field_1; else sep_func = _mark_field_n; nrec = 0; for (int i = 0; i < LENGTH(files); ++i) { R_CheckUserInterrupt(); nrec += _read_soap(CHAR(STRING_ELT(files, i)), csep, CHAR(STRING_ELT(commentChar, 0)), sep_func, ref, nrec); } _XSNAP_ELT(ref, 0); _XSNAP_ELT(ref, 1); _XSNAP_ELT(ref, 2); SEXP strand_lvls = PROTECT(_get_strand_levels()); _as_factor_SEXP(VECTOR_ELT(ref, 6), strand_lvls); SEXP aln = _AlignedRead_SOAP_make(ref, qtype); UNPROTECT(2); return aln; } ShortRead/src/maqmap_m.h0000644000126300012640000000677312227135273016601 0ustar00biocbuildphs_compbio/* Note: This file is based on the file maqmap.h of the source code of Maq, version 0.7.2, which is copyright (c) Li Hang, who has released Maq under GPL 2. The changes to the original allow to switch the value of MAX_READLEN, which is a preprocessor macro in heng's code, at run-time, because Maq used 64 until 0.6.x, then (unless the macro MAQ_LONGREADS is not set) the value 128. */ #ifndef MAQMAP_M_H_ #define MAQMAP_M_H_ #define MAX_READLEN_OLD 64 #define MAX_READLEN_NEW 128 #define MAX_NAMELEN 36 #define MAQMAP_FORMAT_OLD 0 #define MAQMAP_FORMAT_NEW -1 #define PAIRFLAG_FF 0x01 #define PAIRFLAG_FR 0x02 #define PAIRFLAG_RF 0x04 #define PAIRFLAG_RR 0x08 #define PAIRFLAG_PAIRED 0x10 #define PAIRFLAG_DIFFCHR 0x20 #define PAIRFLAG_NOMATCH 0x40 #define PAIRFLAG_SW 0x80 #include #include #include "const.h" /* name: read name size: the length of the read seq: read sequence (see also below) seq[MAX_READLEN-1]: single end mapping quality (equal to map_qual if !paired) map_qual: the final mapping quality alt_qual: the lower quality of the two ends (equals to map_qual if not paired) flag: status of the pair dist: offset of the mate (zero if not paired) info1: mismatches in the 24bp (higher 4 bits) and mismatches (lower 4 bits) info2: sum of errors of the best hit c[2]: count of all 0- and 1-mismatch hits on the reference */ template < int max_readlen > struct maqmap1_T { bit8_t seq[max_readlen]; /* last base is single-end mapping quality. */ bit8_t size, map_qual, info1, info2, c[2], flag, alt_qual; bit32_t seqid, pos; int dist; char name[MAX_NAMELEN]; }; template < int max_readlen > struct maqmap_T { int format, n_ref; char **ref_name; bit64_t n_mapped_reads; maqmap1_T < max_readlen > *mapped_reads; }; template < int max_readlen > inline int maqmap_read1(gzFile fp, maqmap1_T < max_readlen > *m1) { return gzread(fp, m1, sizeof(maqmap1_T < max_readlen >)); } template < int max_readlen > maqmap_T < max_readlen > *maq_new_maqmap() { maqmap_T < max_readlen > *mm = (maqmap_T < max_readlen > *)calloc(1, sizeof(maqmap_T < max_readlen >)); mm->format = MAQMAP_FORMAT_NEW; return mm; } template < int max_readlen > void maq_delete_maqmap(maqmap_T < max_readlen > *mm) { int i; if (mm == 0) return; for (i = 0; i < mm->n_ref; ++i) free(mm->ref_name[i]); free(mm->ref_name); free(mm->mapped_reads); free(mm); } template < int max_readlen > maqmap_T < max_readlen > *maqmap_read_header(gzFile fp) { maqmap_T < max_readlen > *mm; int k, len; mm = maq_new_maqmap < max_readlen > (); gzread(fp, &mm->format, sizeof(int)); if (mm->format != MAQMAP_FORMAT_NEW) { if (mm->format > 0) { maq_delete_maqmap(mm); error ("obsolete map format; use MAQ 'mapass2maq' command to convert"); } if (mm->format != MAQMAP_FORMAT_NEW) { maq_delete_maqmap(mm); error("MAQ format '%d' not supported", mm->format); } } gzread(fp, &mm->n_ref, sizeof(int)); mm->ref_name = (char **) calloc(mm->n_ref, sizeof(char *)); for (k = 0; k != mm->n_ref; ++k) { gzread(fp, &len, sizeof(int)); mm->ref_name[k] = (char *) malloc(len * sizeof(char)); gzread(fp, mm->ref_name[k], len); } /* read number of mapped reads */ gzread(fp, &mm->n_mapped_reads, sizeof(bit64_t)); return mm; } #endif ShortRead/src/pileup.c0000644000126300012640000000266312227135273016274 0ustar00biocbuildphs_compbio#include #include #include SEXP pileup(SEXP start, SEXP fraglength, SEXP chrlength, SEXP dir, SEXP readlength, SEXP offset) { SEXP res; int i, j, st, end, offs; offs = INTEGER(offset)[0]; PROTECT(res = allocVector(INTSXP, INTEGER(chrlength)[0])); memset(INTEGER(res), 0, length(res) * sizeof(int)); for (i = 0; i < length(start); i++) if (INTEGER(dir)[length(dir) == 1 ? 0 : i] == 1) { /* forward direction */ end = INTEGER(start)[i] + INTEGER(fraglength)[length(fraglength) == 1 ? 0 : i]; if (end - offs > length(res)) error("'chrlength' is too small"); for (j = INTEGER(start)[i]; j < end; j++) INTEGER(res)[j - offs] += 1; } else { /* backward strand */ st = INTEGER(start)[i] + INTEGER(readlength)[length(readlength) == 1 ? 0 : i] - 1; if (st - offs >= length(res)) error("'chrlength' is too small"); end = st - INTEGER(fraglength)[length(fraglength) == 1 ? 0 : i]; if (end - offs < 0) error("Lower bound of pile-up vector exceeded."); for (j = st; j > end; j--) INTEGER(res)[j - offs] += 1; } UNPROTECT(1); return res; } ShortRead/src/readBfaToc.cc0000644000126300012640000000361712227135273017133 0ustar00biocbuildphs_compbio#include #include #include #include #include #include #include "maqmap_m.h" struct seq_meta_info { seq_meta_info( int len_, char * name_ ) : len(len_), name(name_) {}; int len; std::string name; }; extern "C" SEXP readBfaToc( SEXP bfa_filename ) { FILE * fp; int name_len, seq_ori_len, seq_len, status; char seq_name[201]; std::deque< seq_meta_info > seqs; if( (! isString(bfa_filename) ) || ( length(bfa_filename) != 1 ) ) error( "First argument invalid: should be the filename." ); fp = fopen( CHAR(STRING_ELT(bfa_filename,0)), "r" ); if( !fp ) { char buf[300]; snprintf( buf, 300, "Failed to open file '%s': %s (errno=%d)", CHAR(STRING_ELT(bfa_filename,0)), strerror(errno), errno ); error( buf ); } while( fread( &name_len, sizeof(int), 1, fp) ) { if( name_len > 200 ) Rf_error( "sequence name >200 characters; invalid BFA file?" ); status = fread( seq_name, sizeof(char), name_len, fp ); status = fread( &seq_ori_len, sizeof(int), 1, fp ); status = fread( &seq_len, sizeof(int), 1, fp ); if( ( seq_ori_len >> 5 != seq_len ) && ( seq_ori_len >> 5 != seq_len - 1) ) Rf_error( "Fields bfa.len and bfa_ori_len do not agree. This is not a " "valid BFA file." ); fseek( fp, 2 * sizeof(bit64_t) * seq_len, SEEK_CUR); seqs.push_back( seq_meta_info( seq_ori_len, seq_name ) ); } fclose( fp ); SEXP res, names; PROTECT( res = allocVector( INTSXP, seqs.size() ) ); PROTECT( names = allocVector( STRSXP, seqs.size() ) ); int i = 0; for( std::deque< seq_meta_info >::iterator a = seqs.begin(); a != seqs.end(); a++, i++ ) { INTEGER(res)[i] = a->len; SET_STRING_ELT( names, i, mkChar( a->name.c_str() ) ); } namesgets( res, names); UNPROTECT(2); return res; } ShortRead/src/read_maq_map.cc0000644000126300012640000001550112227135273017542 0ustar00biocbuildphs_compbio/* Code to read in a .map file produced by the alignment program Maq. Authr: Simon Anders, EBI, sanders@fs.tum.de */ #include #include #include #include #include #include #include "ShortRead.h" #include "maqmap_m.h" #if INT_MAX < 0x7fffffffL #error This package needs an int type with at least 32 bit. #endif template< int max_readlen > SEXP read_maq_map_B( SEXP filename, SEXP maxreads ) /* Reads in the Maq map file with the given filename. If maxreads == -1, the whole file is read, otherwise at most the specified number of reads. The function returns a list (i.e., a VECSXP) with the elements listed below in eltnames, which correspond to the columns of maq mapview. */ { gzFile mapfile; maqmap_T * mapheader; SEXP seqnames, seq, start, dir, aq, mm, mm24, errsum, nhits0, nhits1, eltnm, df, klass; char readseqbuf[ max_readlen ], fastqbuf[ max_readlen ]; CharAEAE readid, readseq, fastq; int i, actnreads, j; maqmap1_T read; char enc[] = { DNAencode('A'), DNAencode('C'), DNAencode('G'), DNAencode('T'), DNAencode('N') }; static const char *eltnames[] = { "chromosome", "position", "strand", "alignQuality", "nMismatchBestHit", "nMismatchBestHit24", "mismatchQuality", "nExactMatch24", "nOneMismatch24", "readId", "readSequence", "fastqScores" }; /* Check arguments */ if( !isString(filename) || length(filename) != 1 ) error( "First argument invalid: should be the filename." ); if( !isInteger(maxreads) || length(maxreads) != 1 ) error( "Second argument invalid: should be the maximum number" "of reads, provided as integer(1)." ); /* Check that file can be opened and is a Maq map file */ mapfile = gzopen( CHAR(STRING_ELT(filename,0)), "rb" ); if( !mapfile ) { if( errno ) { error( "Failed to open file '%s': %s (errno=%d)", CHAR(STRING_ELT(filename,0)), strerror(errno), errno ); } else { error( "Failed to open file '%s':" " zlib out of memory", CHAR(STRING_ELT(filename,0))); } } gzread( mapfile, &i, sizeof(int) ); if( i != MAQMAP_FORMAT_NEW ) { gzclose( mapfile ); error( "File '%s' is not a MAQ map file", CHAR(STRING_ELT(filename,0))); } i = gzrewind( mapfile ); if (i) error("internal error: gzrewind: '%d'", i); /* Read in header and map maqfile sequence indices to veclist indices */ mapheader = maqmap_read_header( mapfile ); PROTECT( seqnames = allocVector( STRSXP, mapheader->n_ref ) ); for( i = 0; i < mapheader->n_ref; i++ ) { SET_STRING_ELT( seqnames, i, mkChar( mapheader->ref_name[i] ) ); } if( INTEGER(maxreads)[0] < 0 || INTEGER(maxreads)[0] >= (int) mapheader->n_mapped_reads ) actnreads = mapheader->n_mapped_reads; else actnreads = INTEGER(maxreads)[0]; maq_delete_maqmap(mapheader); /* Allocate memory */ PROTECT( seq = allocVector( INTSXP, actnreads ) ); PROTECT( start = allocVector( INTSXP, actnreads ) ); PROTECT( dir = allocVector( INTSXP, actnreads ) ); PROTECT( aq = allocVector( INTSXP, actnreads ) ); PROTECT( mm = allocVector( INTSXP, actnreads ) ); PROTECT( mm24 = allocVector( INTSXP, actnreads ) ); PROTECT( errsum = allocVector( INTSXP, actnreads ) ); PROTECT( nhits0 = allocVector( INTSXP, actnreads ) ); PROTECT( nhits1 = allocVector( INTSXP, actnreads ) ); readid = new_CharAEAE( actnreads, 0 ); readseq = new_CharAEAE( actnreads, 0 ); fastq = new_CharAEAE( actnreads, 0 ); for( i = 0; i < actnreads; i++ ) { /* Various checks */ if( gzeof(mapfile) ) { error( "Unexpected end of file." ); gzclose(mapfile); } maqmap_read1( mapfile, &read ); if( read.flag || read.dist ) { error( "Paired read found. This function cannot deal with paired reads (yet)." ); gzclose(mapfile); } /* Build the read sequence and the FASTQ quality string */ if( read.size > max_readlen ) error( "Read with illegal size encountered." ); for (j = 0; j < read.size; j++) { if (read.seq[j] == 0) readseqbuf[j] = enc[ 4 ]; else readseqbuf[j] = enc[ read.seq[j] >> 6 & 0x03 ]; fastqbuf[j] = ( read.seq[j] & 0x3f ) + 33; } readseqbuf[ read.size ] = 0; fastqbuf [ read.size ] = 0; /* Copy the data */ INTEGER(start)[i] = ( read.pos >> 1 ) + 1; INTEGER(dir )[i] = ( read.pos & 0x01 ) + 1; /* '+': 1, '-': 2 */ INTEGER(seq )[i] = read.seqid + 1; INTEGER(aq )[i] = read.map_qual; INTEGER(mm )[i] = read.info1 & 0x0f; INTEGER(mm24 )[i] = read.info1 >> 4; INTEGER(errsum)[i] = read.info2; INTEGER(nhits0)[i] = read.c[0]; INTEGER(nhits1)[i] = read.c[1]; append_string_to_CharAEAE( &readid, read.name ); append_string_to_CharAEAE( &readseq, readseqbuf ); append_string_to_CharAEAE( &fastq, fastqbuf ); } /* Build the data frame */ PROTECT( df = allocVector( VECSXP, 12 ) ); SET_VECTOR_ELT( df, 0, seq ); SET_VECTOR_ELT( df, 1, start ); SET_VECTOR_ELT( df, 2, dir ); SET_VECTOR_ELT( df, 3, aq ); SET_VECTOR_ELT( df, 4, mm ); SET_VECTOR_ELT( df, 5, mm24 ); SET_VECTOR_ELT( df, 6, errsum ); SET_VECTOR_ELT( df, 7, nhits0 ); SET_VECTOR_ELT( df, 8, nhits1 ); SET_VECTOR_ELT( df, 9, new_XRawList_from_CharAEAE( "BStringSet", "BString", &readid, R_NilValue ) ); SET_VECTOR_ELT( df, 10, new_XRawList_from_CharAEAE( "DNAStringSet", "DNAString", &readseq, R_NilValue ) ); SET_VECTOR_ELT( df, 11, new_XRawList_from_CharAEAE( "BStringSet", "BString", &fastq, R_NilValue ) ); setAttrib( seq, install( "levels" ), seqnames ); PROTECT( klass = allocVector( STRSXP, 1 ) ); SET_STRING_ELT( klass, 0, mkChar( "factor" ) ); setAttrib( seq, install( "class" ), klass ); UNPROTECT( 1 ); SEXP strand_levels = PROTECT(_get_strand_levels()); _as_factor_SEXP(dir, strand_levels); UNPROTECT( 1 ); PROTECT( eltnm = allocVector( STRSXP, 12 ) ); for( i = 0; i < 12; i++ ) SET_STRING_ELT( eltnm, i, mkChar( eltnames[i] ) ); namesgets( df, eltnm ); UNPROTECT( 12 ); return df; } extern "C" SEXP read_maq_map( SEXP filename, SEXP maxreads, SEXP maq_longreads ) { if( LOGICAL(maq_longreads)[0] ) return read_maq_map_B< MAX_READLEN_NEW >( filename, maxreads ); else return read_maq_map_B< MAX_READLEN_OLD >( filename, maxreads ); } ShortRead/src/sampler.c0000644000126300012640000003764712227135273016453 0ustar00biocbuildphs_compbio#include #include #include #include "ShortRead.h" #include "IRanges_interface.h" struct bufnode { int len; Rbyte *bytes; struct bufnode *next; }; struct record { int order, length; const Rbyte *record; }; struct records { int n, n_curr, n_tot, n_added; struct record *records; }; SEXP _records_status(struct records *records, struct bufnode *bufnode) { int len; SEXP result = PROTECT(NEW_INTEGER(5)); INTEGER(result)[0] = records->n; INTEGER(result)[1] = records->n_curr; INTEGER(result)[2] = records->n_added; INTEGER(result)[3] = records->n_tot; INTEGER(result)[4] = (NULL != bufnode) ? bufnode->len : 0; SEXP nms = PROTECT(NEW_CHARACTER(5)); SET_STRING_ELT(nms, 0, mkChar("n")); SET_STRING_ELT(nms, 1, mkChar("current")); SET_STRING_ELT(nms, 2, mkChar("added")); SET_STRING_ELT(nms, 3, mkChar("total")); SET_STRING_ELT(nms, 4, mkChar("buffer")); SET_NAMES(result, nms); UNPROTECT(2); return result; } static int _records_compare_order(const void *a, const void *b) { return ((struct record * const) a)->order - ((struct record * const) b)->order; } /* fastq */ const Rbyte *_fastq_record_end(const Rbyte * buf, const Rbyte * bufend) { int id = 1, nchr = 0; if (*buf++ != '@') Rf_error("record does not start with '@'"); while (buf != bufend && *buf++ != '\n') ; /* id 1 */ while (buf != bufend && *buf != '+') /* read */ if (*buf++ != '\n') ++nchr; if (buf != bufend && *buf == '+') id -= 1; while (buf != bufend && *buf++ != '\n') ; /* id 2 */ while (buf != bufend && nchr) /* qual */ if (*buf++ != '\n') --nchr; if (0 != id || 0 != nchr) buf = NULL; if (buf && buf != bufend && *buf++ != '\n') Rf_error("internal: buf != "); return buf; } SEXP _fastq_as_XStringSet(struct records *fastq) { SEXP widths = PROTECT(NEW_LIST(2)); SET_VECTOR_ELT(widths, 0, NEW_INTEGER(fastq->n_curr)); SET_VECTOR_ELT(widths, 1, NEW_INTEGER(fastq->n_curr)); int *sread_w = INTEGER(VECTOR_ELT(widths, 0)), *id_w = INTEGER(VECTOR_ELT(widths, 1)); /* geometry */ #ifdef SUPPORT_OPENMP #pragma omp parallel for #endif for (int i = 0; i < fastq->n_curr; ++i) { const Rbyte *buf = fastq->records[i].record; const Rbyte *start; start = ++buf; /* id; skip '@' */ while (!((*buf == '\n') || (*buf == '\r'))) ++buf; id_w[i] = buf - start; while ((*buf == '\n') || (*buf == '\r')) ++buf; sread_w[i] = 0; /* read */ while (*buf != '+') { while (!((*buf == '\n') || (*buf == '\r'))) { /* strip '\n' */ sread_w[i] += 1; ++buf; } ++buf; } } /* results */ SEXP ans = PROTECT(NEW_LIST(3)); SET_VECTOR_ELT(ans, 0, alloc_XRawList("DNAStringSet", "DNAString", VECTOR_ELT(widths, 0))); SET_VECTOR_ELT(ans, 1, alloc_XRawList("BStringSet", "BString", VECTOR_ELT(widths, 0))); SET_VECTOR_ELT(ans, 2, alloc_XRawList("BStringSet", "BString", VECTOR_ELT(widths, 1))); cachedXVectorList sread = cache_XVectorList(VECTOR_ELT(ans, 0)), qual = cache_XVectorList(VECTOR_ELT(ans, 1)), id = cache_XVectorList(VECTOR_ELT(ans, 2)); #ifdef SUPPORT_OPENMP #pragma omp parallel for #endif for (int i = 0; i < fastq->n_curr; ++i) { cachedCharSeq x; const Rbyte *buf = fastq->records[i].record, *bufend = buf + fastq->records[i].length, *start; char *curr; /* id */ start = ++buf; /* skip '@' */ while (!((*buf == '\n') || (*buf == '\r'))) ++buf; x = get_cachedXRawList_elt(&id, i); memcpy((char *) x.seq, start, (buf - start) * sizeof(Rbyte)); /* read */ while ((*buf == '\n') || (*buf == '\r')) ++buf; curr = (char *) get_cachedXRawList_elt(&sread, i).seq; while (*buf != '+') { while (!((*buf == '\n') || (*buf == '\r'))) /* strip '\n' */ *curr++ = DNAencode(*buf++); buf++; } /* second id tag */ while (!((*buf == '\n') || (*buf == '\r'))) ++buf; /* quality */ while ((*buf == '\n') || (*buf == '\r')) ++buf; /* leading '\n' */ start = buf; x = get_cachedXRawList_elt(&qual, i); curr = (char *) x.seq; while (buf != bufend && curr - x.seq != x.length) { if ((*buf != '\n') && (*buf != '\r')) *curr++ = *buf++; else buf++; } } SEXP nms = PROTECT(NEW_CHARACTER(3)); SET_STRING_ELT(nms, 0, mkChar("sread")); SET_STRING_ELT(nms, 1, mkChar("quality")); SET_STRING_ELT(nms, 2, mkChar("id")); SET_NAMES(ans, nms); UNPROTECT(3); return ans; } /* Sampler */ struct sampler { struct records *sample; struct { struct record *records; int n, n_curr; } current; struct bufnode *bufnode; /* tail end of binary stream */ }; struct sampler * _sampler_new(int n) { struct sampler *sampler = Calloc(1, struct sampler); sampler->sample = Calloc(1, struct records); sampler->sample->records = Calloc(n, struct record); sampler->sample->n = n; sampler->current.records = Calloc(n, struct record); sampler->current.n = n; sampler->bufnode = Calloc(1, struct bufnode); return sampler; } void _sampler_reset(struct sampler *sampler) { struct records *sample = sampler->sample; for (int i = 0; i < sample->n_curr; ++i) Free(sample->records[i].record); if (NULL != sampler->bufnode->bytes) Free(sampler->bufnode->bytes); sample->n_curr = sample->n_added = sample->n_tot = 0; sampler->current.n_curr = 0; } void _sampler_free(struct sampler *sampler) { struct records *sample = sampler->sample; for (int i = 0; i < sample->n_curr; ++i) Free(sample->records[i].record); if (NULL != sampler->bufnode->bytes) Free(sampler->bufnode->bytes); Free(sampler->sample->records); Free(sampler->sample); Free(sampler->current.records); Free(sampler->bufnode); Free(sampler); } void _sampler_add1(struct records *sample, const Rbyte *record, int len, int order, int idx) { /* add record to sample */ if (sample->n_curr == sample->n) Free(sample->records[idx].record); sample->records[idx].length = len; sample->records[idx].order = order; Rbyte *intern_record = Calloc(len, Rbyte); memcpy(intern_record, record, len * sizeof(Rbyte)); sample->records[idx].record = intern_record; sample->n_added += 1; sample->n_tot += 1; } int * _sampler_wout_replacement(int n, int k) { /* sample k of n without replacement */ int *idx = Calloc(n, int); for (int i = 0; i < n; ++i) idx[i] = i; for (int i = 0; i < k; ++i) { int j = (n - i) * unif_rand(); int tmp = idx[i]; idx[i] = idx[i + j]; idx[i + j] = tmp; } return idx; } void _sampler_dosample(struct sampler *sampler) { int n_curr = sampler->current.n_curr; int n_tot = n_curr + sampler->sample->n_tot; double n_choose = n_tot < sampler->sample->n ? n_tot : sampler->sample->n; int n_samp = rbinom(n_curr, n_choose / n_tot); if (0 != n_samp) { int sn_curr = sampler->sample->n_curr; int *keep = _sampler_wout_replacement(n_curr, n_samp); int *drop = _sampler_wout_replacement(sn_curr, n_samp); /* save selected reads */ for (int i = 0; i < n_samp; ++i) { struct record *r = sampler->current.records + keep[i]; _sampler_add1(sampler->sample, r->record, r->length, r->order, drop[i]); } Free(keep); Free(drop); } sampler->sample->n_tot = n_tot; sampler->current.n_curr = 0; } void _sampler_add(struct sampler *sampler, const Rbyte *record, int len) { struct records *sample = sampler->sample; if (sample->n_curr < sample->n) { /* sampling not yet needed */ _sampler_add1(sample, record, len, sample->n_curr, sample->n_curr); sample->n_curr++; } else { /* sample */ struct record *r = sampler->current.records + sampler->current.n_curr; r->record = record; r->length = len; r->order = sample->n_tot + sampler->current.n_curr; if (sampler->current.n == ++sampler->current.n_curr) _sampler_dosample(sampler); } } void _sampler_order(struct records *sample) { qsort(sample->records, sample->n_curr, sizeof(struct record), _records_compare_order); } void _sampler_scratch_set(struct sampler *sampler, const Rbyte *record, int len) { if (NULL != sampler->bufnode->bytes) Free(sampler->bufnode->bytes); if (NULL != record) { Rbyte *bytes = Calloc(len, Rbyte); memcpy(bytes, record, len * sizeof(Rbyte)); sampler->bufnode->bytes = bytes; } sampler->bufnode->len = len; } /* R implementation -- FastqSampler */ #define SAMPLER(s) ((struct sampler *) R_ExternalPtrAddr(s)) void _sampler_finalize(SEXP s) { struct sampler *sampler = SAMPLER(s); if (!sampler) return; _sampler_free(sampler); R_ClearExternalPtr(s); } SEXP sampler_new(SEXP n) { struct sampler *sampler = _sampler_new(INTEGER(n)[0]); SEXP s = PROTECT(R_MakeExternalPtr(sampler, mkString("sampler"), R_NilValue)); R_RegisterCFinalizerEx(s, _sampler_finalize, TRUE); UNPROTECT(1); return s; } SEXP sampler_add(SEXP s, SEXP bin) { /* create a buffer with both scratch and new data */ struct sampler *sampler = SAMPLER(s); struct bufnode *scratch = sampler->bufnode; if (scratch->bytes) { int len = Rf_length(bin), buflen = scratch->len + len; Rbyte *buf = Calloc(buflen, Rbyte), *obuf = scratch->bytes; memcpy(buf, scratch->bytes, scratch->len * sizeof(Rbyte)); Free(obuf); memcpy(buf + scratch->len, RAW(bin), len * sizeof(Rbyte)); scratch->bytes = buf; scratch->len = buflen; } else { int buflen = Rf_length(bin); Rbyte *buf = Calloc(buflen, Rbyte); memcpy(buf, RAW(bin), buflen * sizeof(Rbyte)); scratch->bytes = buf; scratch->len = buflen; } /* parse the buffer */ const Rbyte *buf = scratch->bytes, *bufend = buf + scratch->len; GetRNGstate(); while (buf < bufend) { while (buf < bufend && *buf == '\n') ++buf; const Rbyte *prev = buf; if (NULL == (buf = _fastq_record_end(buf, bufend))) { buf = prev; break; } _sampler_add(sampler, prev, buf - prev); } _sampler_dosample(sampler); PutRNGstate(); if (bufend - buf) { int len = bufend - buf; Rbyte *tail = Calloc(len, Rbyte); memcpy(tail, buf, len * sizeof(Rbyte)); Free(scratch->bytes); scratch->bytes = tail; scratch->len = len; } else { scratch->len = 0; Free(scratch->bytes); } return s; } SEXP sampler_status(SEXP s) { struct sampler *sampler = SAMPLER(s); return _records_status(sampler->sample, sampler->bufnode); } SEXP sampler_as_XStringSet(SEXP s, SEXP ordered) { struct sampler *sampler = SAMPLER(s); if (TRUE == LOGICAL(ordered)[0]) _sampler_order(sampler->sample); SEXP result = _fastq_as_XStringSet(sampler->sample); _sampler_scratch_set(sampler, NULL, 0); _sampler_reset(sampler); return result; } /* Streamer */ struct streamer { struct records *stream; struct bufnode *bufnode; }; struct streamer * _streamer_new(int n) { struct streamer *streamer = Calloc(1, struct streamer); streamer->stream = Calloc(1, struct records); streamer->stream->records = Calloc(n, struct record); streamer->stream->n = n; return streamer; } void _streamer_reset(struct streamer *streamer) { streamer->stream->n_curr = 0; struct bufnode *bufnode = streamer->bufnode, *prev; if (NULL != bufnode) { bufnode = bufnode->next; while (NULL != bufnode) { prev = bufnode; bufnode = prev->next; Free(prev->bytes); Free(prev); } streamer->bufnode->next = NULL; } } void _streamer_free(struct streamer *streamer) { struct bufnode *curr, *next = streamer->bufnode; while (next) { curr = next; next = curr->next; Free(curr->bytes); Free(curr); } Free(streamer->stream->records); Free(streamer->stream); Free(streamer); } void _streamer_add(struct records *stream, const Rbyte *record, int len) { stream->records[stream->n_curr].length = len; stream->records[stream->n_curr].record = record; stream->n_curr += 1; stream->n_added += 1; } #define STREAMER(s) ((struct streamer *) R_ExternalPtrAddr(s)) void _streamer_finalize(SEXP s) { struct streamer *streamer = STREAMER(s); if (!streamer) return; _streamer_free(streamer); R_ClearExternalPtr(s); } SEXP streamer_new(SEXP n) { struct streamer *streamer = _streamer_new(INTEGER(n)[0]); SEXP s = PROTECT(R_MakeExternalPtr(streamer, mkString("streamer"), R_NilValue)); R_RegisterCFinalizerEx(s, _streamer_finalize, TRUE); UNPROTECT(1); return s; } SEXP streamer_add(SEXP s, SEXP bin, SEXP skipadd) { struct streamer *streamer = STREAMER(s); int len = Rf_length(bin); int skip = INTEGER(skipadd)[0], add = INTEGER(skipadd)[1]; /* start with tail of previous bin */ struct bufnode *scratch = streamer->bufnode; if (NULL == scratch) { /* first record */ scratch = streamer->bufnode = Calloc(1, struct bufnode); } if (NULL == scratch->bytes) { /* nothing 'extra' from previous bin */ scratch->bytes = Calloc(len, Rbyte); scratch->len = len; memcpy(scratch->bytes, RAW(bin), len * sizeof(Rbyte)); } else { /* scratch contains tail of prev. bin */ int buflen = scratch->len; Rbyte *bytes = Calloc(buflen + len, Rbyte); memcpy(bytes, scratch->bytes, buflen * sizeof(Rbyte)); memcpy(bytes + buflen, RAW(bin), len * sizeof(Rbyte)); Free(scratch->bytes); scratch->bytes = bytes; scratch->len = buflen + len; } /* find record starts and lengths */ const Rbyte *buf = scratch->bytes, *bufend = buf + scratch->len; struct records *stream = streamer->stream; while (add > stream->n_curr && buf < bufend) { while (buf < bufend && *buf == '\n') ++buf; const Rbyte *prev = buf; if (NULL == (buf = _fastq_record_end(buf, bufend))) { buf = prev; break; } stream->n_tot += 1; if (skip == 0) _streamer_add(stream, prev, buf - prev); else skip -= 1; } /* capture tail of bin */ if (NULL != scratch->bytes) { struct bufnode *next = scratch; scratch = streamer->bufnode = Calloc(1, struct bufnode); scratch->next = next; } if (bufend - buf) { int len = bufend - buf; Rbyte *tail = Calloc(len, Rbyte); memcpy(tail, buf, len * sizeof(Rbyte)); scratch->bytes = tail; scratch->len = len; } return s; } SEXP streamer_status(SEXP s) { struct streamer *streamer = STREAMER(s); return _records_status(streamer->stream, streamer->bufnode); } SEXP streamer_as_XStringSet(SEXP s) { struct streamer *streamer = STREAMER(s); struct records *stream = streamer->stream; SEXP result = _fastq_as_XStringSet(stream); _streamer_reset(streamer); return result; } ShortRead/src/trim.c0000644000126300012640000001167612227135273015755 0ustar00biocbuildphs_compbio#include "trim.h" #include "IRanges_interface.h" #include "Biostrings_interface.h" #define MIN(a,b) ((a) > (b) ? (b) : (a)) #define MAX(a,b) ((a) > (b) ? (a) : (b)) SEXP trim_tailw(SEXP quality, SEXP k, SEXP a_map, SEXP width) { int map[256]; const cachedXStringSet cache = cache_XStringSet(quality); const int len = get_XStringSet_length(quality); const int kmax = INTEGER(k)[0], wd = INTEGER(width)[0]; SEXP end = PROTECT(NEW_INTEGER(len)); int *endp = INTEGER(end); int i, j; for (j = 0; j < Rf_length(a_map); ++j) { const char c = CHAR(STRING_ELT(GET_NAMES(a_map), j))[0]; map[(int) c] = INTEGER(a_map)[j]; } for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); if (0 == seq.length) { endp[i] = 0; continue; } int n = (wd + 1) * map[(int) seq.seq[0]]; for (j = 1; j <= wd; ++j) n += map[(int) seq.seq[MIN(seq.length - 1, j)]]; for (j = 0; j < seq.length; ++j) { const int wstart = MAX(0, j - wd); const int wend = MIN(seq.length - 1, j + wd); n += map[(int) seq.seq[wend]] - map[(int) seq.seq[wstart]]; if (kmax <= n) break; } endp[i] = j; } UNPROTECT(1); return end; } SEXP trim_tails(SEXP quality, SEXP k, SEXP a_map, SEXP successive) { SEXP end; int map[256]; const cachedXStringSet cache = cache_XStringSet(quality); const int len = get_XStringSet_length(quality); int i, j, *endp; end = PROTECT(NEW_INTEGER(len)); endp = INTEGER(end); for (j = 0; j < Rf_length(a_map); ++j) { const char c = CHAR(STRING_ELT(GET_NAMES(a_map), j))[0]; map[(int) c] = INTEGER(a_map)[j]; } const int kmax = INTEGER(k)[0]; if (!LOGICAL(successive)[0]) { #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); int n = 0; for (j = 0; j < seq.length; ++j) { n += map[(int) seq.seq[j]]; if (kmax <= n) break; } endp[i] = j; } } else { const int nbuf = INTEGER(k)[0]; int *kbuf = (int *) R_alloc(sizeof(int), nbuf), ibuf; for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); int n = 0; for (ibuf = 0; ibuf < nbuf; ++ibuf) kbuf[ibuf] = 0; int m; for (j = 0; j < seq.length; ++j) { m = map[(int) seq.seq[j]]; n += m - kbuf[j % nbuf]; if (kmax <= n) break; kbuf[j % nbuf] = m; } endp[i] = j == seq.length ? j : j - nbuf + 1L; } } UNPROTECT(1); return end; } SEXP trim_ends(SEXP quality, SEXP a_map, SEXP left, SEXP right) { SEXP bounds; const int *const map = LOGICAL(a_map); const cachedXStringSet cache = cache_XStringSet(quality); const int len = get_XStringSet_length(quality); int i, j, *startp, *endp; bounds = PROTECT(NEW_LIST(2)); SET_VECTOR_ELT(bounds, 0, NEW_INTEGER(len)); SET_VECTOR_ELT(bounds, 1, NEW_INTEGER(len)); SEXP nm = PROTECT(NEW_CHARACTER(2)); SET_STRING_ELT(nm, 0, mkChar("start")); SET_STRING_ELT(nm, 1, mkChar("end")); SET_NAMES(bounds, nm); UNPROTECT(1); startp = INTEGER(VECTOR_ELT(bounds, 0)); endp = INTEGER(VECTOR_ELT(bounds, 1)); if (LOGICAL(left)[0]) { #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); for (j = 0; j < seq.length; ++j) { if (0 == map[(int) seq.seq[j]]) break; } startp[i] = j + 1L; } } else { for (i = 0; i < len; ++i) startp[i] = 1; } if (LOGICAL(right)[0]) { #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); for (j = seq.length - 1; j >= 0; --j) { if (0 == map[(int) seq.seq[j]]) break; } endp[i] = j + 1L; } } else { for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); endp[i] = seq.length; } } #ifdef SUPPORT_OPENMP #pragma omp parallel for private(j) #endif for (i = 0; i < len; ++i) { const cachedCharSeq seq = get_cachedXStringSet_elt(&cache, i); if (seq.length + 1 == startp[i]) { endp[i] = 0; startp[i] = 1; } else if (0 == endp[i]) { startp[i] = 1; } } UNPROTECT(1); return bounds; } ShortRead/src/trim.h0000644000126300012640000000040412227135273015745 0ustar00biocbuildphs_compbio#ifndef TRIM_H #define TRIM_H #include SEXP trim_tails(SEXP quality, SEXP k, SEXP a_map, SEXP successive); SEXP trim_tailw(SEXP quality, SEXP k, SEXP a_map, SEXP winsize); SEXP trim_ends(SEXP quality, SEXP a_map, SEXP left, SEXP right); #endif ShortRead/src/util.c0000644000126300012640000002207012227135273015745 0ustar00biocbuildphs_compbio#include /* R_CheckUserInterrupt */ #include /* isspace */ #include "ShortRead.h" unsigned char _bDecode(char); unsigned char _dnaDecode(char); unsigned char _rnaDecode(char); /* * Encode / decode XString wrappers */ char _bEncode(char c) { return c; } #define _dnaEncode DNAencode; #define _rnaEncode RNAencode; unsigned char _bDecode(char c) { return (unsigned char) c; } unsigned char _dnaDecode(char c) { return (unsigned char) DNAdecode(c); } unsigned char _rnaDecode(char c) { return (unsigned char) RNAdecode(c); } DECODE_FUNC decoder(const char *base) { DECODE_FUNC decode = NULL; if (strcmp(base, "DNAString") == 0) { decode = _dnaDecode; } else if (strcmp(base, "RNAString") == 0) { decode = _rnaDecode; } else if (strcmp(base, "BString") == 0) { decode = _bDecode; } else { Rf_error("unknown class '%s'", base); } return decode; } ENCODE_FUNC encoder(const char *base) { ENCODE_FUNC encode = NULL; if (strcmp(base, "DNAString") == 0) { encode = _dnaEncode; } else if (strcmp(base, "RNAString") == 0) { encode = _rnaEncode; } else if (strcmp(base, "BString") == 0) { encode = _bEncode; } else { Rf_error("unknown class '%s'", base); } return encode; } SEXP _get_namespace(const char *pkg) { SEXP fun = PROTECT(findFun(install("getNamespace"), R_GlobalEnv)); SEXP nmspc = PROTECT(NEW_CHARACTER(1)); SET_STRING_ELT(nmspc, 0, mkChar(pkg)); nmspc = eval(lang2(fun, nmspc), R_GlobalEnv); UNPROTECT(2); return nmspc; } SEXP _get_strand_levels() { SEXP nmspc = PROTECT(_get_namespace("ShortRead")); SEXP ans = eval(findVar(install(".STRAND_LEVELS"), nmspc), nmspc); UNPROTECT(1); return ans; } int _char_as_strand_int(const char c, const char *fname, const int lineno) { int strand = 0; if (c == '\0') strand = NA_INTEGER; else { switch (c) { case '+': strand = 1; break; case '-': strand = 2; break; default: error("invalid 'strand' field '%s', %s:%d", &c, fname, lineno); break; } } return strand; } /* * apply function 'with' to object 'from' in environment 'rho', e.g., * becuase 'from' is an object and 'with' an accessor. */ SEXP _get_SEXP(SEXP from, SEXP rho, const char *with) { SEXP fun = PROTECT(findFun(install(with), rho)); SEXP res = eval(lang2(fun, from), rho); UNPROTECT(1); return res; } /* * populate elt with pointers into tab-delimited strings in ptr */ int _mark_field_0(char *ptr, char **elt, const int n_fields) { elt[0] = ptr; int i = 0; for (; *ptr != '\0'; ++ptr) if (*ptr == '\t') { if (++i == n_fields) break; elt[i] = ptr + 1; *ptr = '\0'; } if (*(ptr - 1) == '\n') /* trailing newline? */ *(ptr - 1) = '\0'; return i + 1; } /* * parse lines into fields. * * string is parsed until a character in delim is found, or end of * string reached. * * return value is pointer to the start of the next field, or NULL if * no more fields. */ char *_mark_field_1(char *curr, const char *delim) { char *c = curr; while (*c != '\0' && *c != *delim) c++; if (*c != '\0') /* i.e., delim */ *c++ = '\0'; return c; } char *_mark_field_n(char *curr, const char *delim) { const char *d = '\0'; while (*curr != '\0' && *curr != '\n') { d = delim; while (*d != '\0' && *d != *curr) ++d; if (*d != '\0') *curr = '\0'; else ++curr; } if (*curr == '\n') { *curr = '\0'; return '\0'; } return *d == '\0' ? '\0' : curr + 1; } SEXP _mark_field_test(SEXP filename, SEXP delimiters, SEXP dim) { if (!IS_CHARACTER(filename) || LENGTH(filename) != 1) error("'%s' must be '%s'", "filename", "character(1)"); if (!IS_CHARACTER(delimiters) || LENGTH(delimiters) != 1) error("'%s' must be '%s'", "delimiters", "character(1)"); if (!IS_INTEGER(dim) || LENGTH(dim) != 2) error("'%s' must be '%s'", "dim", "integer(2)"); SEXP ans = PROTECT(NEW_LIST(INTEGER(dim)[0])); int i, j; for (i = 0; i < INTEGER(dim)[0]; ++i) SET_VECTOR_ELT(ans, i, NEW_CHARACTER(INTEGER(dim)[1])); #define LINEBUF_SIZE 1024 FILE *file; char linebuf[LINEBUF_SIZE]; if ((file = fopen(CHAR(STRING_ELT(filename, 0)), "rb")) == NULL) error("cannot open file '%s'", CHAR(STRING_ELT(filename, 0))); const char *delim = CHAR(STRING_ELT(delimiters, 0)); for (i = 0; i < INTEGER(dim)[0]; ++i) { if (fgets(linebuf, LINEBUF_SIZE, file) == NULL) error("unexpected end-of-file"); j = 0; char *curr = linebuf, *next; while (curr != NULL) { if (j >= INTEGER(dim)[1]) error("too many fields"); next = _mark_field_n(curr, delim); SET_STRING_ELT(VECTOR_ELT(ans, i), j, mkChar(curr)); j++; curr = next; } } #undef LINEBUF_SIZE UNPROTECT(1); return ans; } const int LINEBUF_SIZE = 200001; /* * open and check file; signal error */ gzFile *_fopen(const char *fname, const char *mode) { gzFile *file = gzopen(fname, mode); if (file == NULL) error("cannot open file %s", fname); return file; } /* * trim & check linebuf, return 0 if processing should continue */ int _linebuf_skip_p(char *linebuf, gzFile * file, const char *fname, int lineno, const char *commentChar) { int nchar_in_buf; nchar_in_buf = _rtrim(linebuf); if (nchar_in_buf >= LINEBUF_SIZE - 1) { // should never be > gzclose(file); error("line too long %s:%d", fname, lineno); } else if (nchar_in_buf == 0) { gzclose(file); error("unexpected empty line %s:%d", fname, lineno); } return *linebuf == *commentChar; } /* * Return the number of chars that remain in the buffer after we've removed * the right spaces ('\n', '\r', '\t', ' ', etc...) */ int _rtrim(char *linebuf) { int i; i = strlen(linebuf) - 1; while (i >= 0 && isspace(linebuf[i])) i--; linebuf[++i] = 0; return i; } /* * Solexa sometimes encodes an uncalled base as '.', but the * Biostrings standard is '-'. Convert a null-terminated character * string in-place. */ void _solexa_to_IUPAC(char *p) { while ((p = strchr(p, '.')) != NULL) *p = '-'; } void _reverse(char *linebuf) { size_t len = strlen(linebuf); int i; char tmp; for (i = 0; i < floor(len / 2); ++i) { tmp = linebuf[len - i - 1]; linebuf[len - i - 1] = linebuf[i]; linebuf[i] = tmp; } } void _reverseComplement(char *linebuf) { static const int MAX_MAP = 256; static char map[256]; static int init = 0; if (init == 0) { init = 1; for (int i = 0; i < MAX_MAP; ++i) map[i] = (char) i; map['A'] = 'T'; map['C'] = 'G'; map['G'] = 'C'; map['T'] = 'A'; map['a'] = 't'; map['c'] = 'g'; map['g'] = 'c'; map['t'] = 'a'; } _reverse(linebuf); for (unsigned int i = 0; i < strlen(linebuf); ++i) linebuf[i] = map[(int) linebuf[i]]; } /* * Chenge vector class and attribute to represent factor */ void _as_factor_SEXP(SEXP vec, SEXP lvls) { SEXP cls = PROTECT(NEW_CHARACTER(1)); SET_STRING_ELT(cls, 0, mkChar("factor")); SET_CLASS(vec, cls); SET_ATTR(vec, install("levels"), lvls); UNPROTECT(1); } void _as_factor(SEXP vec, const char **levels, const int n_lvls) { SEXP lvls = PROTECT(NEW_CHARACTER(n_lvls)); int i; for (i = 0; i < n_lvls; ++i) SET_STRING_ELT(lvls, i, mkChar(levels[i])); _as_factor_SEXP(vec, lvls); UNPROTECT(1); } /* * Count the number of lines ('\n') in a file. * * file: an open file stream at position 0 * */ static int _count_lines(gzFile * file) { const int LINEBUF_SIZE = 20001; size_t bytes_read; char *buf = (char *) R_alloc(LINEBUF_SIZE + 1, sizeof(char)); int lines = 0; while ((bytes_read = gzread(file, buf, LINEBUF_SIZE)) > 0) { char *p = buf; while ((p = memchr(p, '\n', (buf + bytes_read) - p))) { ++p; ++lines; } } return lines; } int _count_lines_sum(SEXP files) { SEXP nlines = count_lines(files); int i, nrec = 0; for (i = 0; i < LENGTH(files); ++i) nrec += INTEGER(nlines)[i]; return nrec; } SEXP count_lines(SEXP files) { int i, nfile; const char *filepath; gzFile *file; SEXP ans = R_NilValue; if (!IS_CHARACTER(files)) error("'files' must be character()"); nfile = LENGTH(files); PROTECT(ans = NEW_INTEGER(nfile)); for (i = 0; i < nfile; ++i) { R_CheckUserInterrupt(); filepath = translateChar(STRING_ELT(files, i)); file = _fopen(filepath, "rb"); INTEGER(ans)[i] = _count_lines(file); gzclose(file); } UNPROTECT(1); return ans; } ShortRead/src/xsnap.c0000644000126300012640000002050512227135273016122 0ustar00biocbuildphs_compbio/* * An _XSNAP is a SEXP that contains sufficient information to create * (`snap') an XStringSet object from its content. It is allocated * once to an initial size, and grows as needed. Any `extra' * allocation is recovered. * * Basic usage is * * SEXP lst = PROTECT(NEW_LIST(4)); * SET_VECTOR_ELT(lst, 0, _NEW_XSNAP(final_length, "DNAString")); * _APPEND_XSNAP(VECTOR_ELT(lst, 0), "ACTAGAC"); * SEXP xStringSet = PROTECT(_XSNAP_ELT(lst, 0)); * UNPROTECT(2); * */ #include "ShortRead.h" SEXP _to_XStringSet(SEXP seq, SEXP start, SEXP width, const char *baseclass); const char *_get_lookup(const char *baseclass); static const int _BUFFERNODE_SIZE = 250000000; /* _Buffer, _BufferNode: linked list of XString data chunks */ struct _Buffer { char *baseclass; int *offset, i_offset; struct _BufferNode *root, *curr; }; struct _BufferNode { int n; /* number of entries */ int buf_size; char *buf, *curr; /* linked list */ struct _BufferNode *next; }; /* _BufferNode implementation */ struct _BufferNode *_BufferNode_new() { struct _BufferNode *node = Calloc(1, struct _BufferNode); node->curr = node->buf = Calloc(_BUFFERNODE_SIZE, char); node->n = 0; node->buf_size = _BUFFERNODE_SIZE; node->next = NULL; return node; } void _BufferNode_free(struct _BufferNode *node) { Free(node->buf); Free(node); } void _BufferNode_encode(struct _BufferNode *node, const char *lkup) { for (char *buf = node->buf; buf < node->curr; ++buf) { const char c = lkup[(int) *buf]; if (c == 0) Rf_error("invalid character '%c'", c); *buf = c; } } int _BufferNode_append(struct _BufferNode *node, const char *s, int w) { int offset = node->curr - node->buf; if (offset + w >= node->buf_size) return -1; memcpy(node->curr, s, w); node->curr += w; node->n += 1; return offset; } SEXP _BufferNode_snap(struct _BufferNode * node, const int *offset, const char *baseclass) { const int n_raw = node->curr - node->buf; SEXP seq = PROTECT(NEW_RAW(n_raw)), start = PROTECT(NEW_INTEGER(node->n)), width = PROTECT(NEW_INTEGER(node->n)); memcpy(RAW(seq), node->buf, n_raw); for (int i = 0; i < node->n; ++i) INTEGER(start)[i] = offset[i] + 1; for (int i = 0; i < node->n - 1; ++i) INTEGER(width)[i] = offset[i + 1] - offset[i]; if (node->n > 0) INTEGER(width)[node->n - 1] = node->curr - (node->buf + offset[node->n - 1]); SEXP xstringset = _to_XStringSet(seq, start, width, baseclass); UNPROTECT(3); return xstringset; } /* _Buffer implementation */ struct _Buffer *_Buffer_new(int n_offsets, const char *baseclass) { struct _Buffer *buffer = Calloc(1, struct _Buffer); buffer->baseclass = Calloc(strlen(baseclass) + 1, char); buffer->offset = Calloc(n_offsets, int); buffer->i_offset = 0; strcpy(buffer->baseclass, baseclass); buffer->root = buffer->curr = _BufferNode_new(); return buffer; } void _Buffer_free(struct _Buffer *buf) { struct _BufferNode *curr = buf->root; while (curr != NULL) { struct _BufferNode *tmp = curr; curr = curr->next; _BufferNode_free(tmp); } Free(buf->offset); Free(buf->baseclass); Free(buf); } void _Buffer_append(struct _Buffer *buf, const char *s) { int w = strlen(s); struct _BufferNode *curr = buf->curr; int i; if ((i = _BufferNode_append(curr, s, w)) < 0) { curr = buf->curr = curr->next = _BufferNode_new(); i = _BufferNode_append(curr, s, w); if (i < 0) Rf_error("ShortRead internal: _BufferNode too small"); } buf->offset[buf->i_offset++] = i; } void _Buffer_encode(struct _Buffer *buf) { const char *lkup = _get_lookup(buf->baseclass); struct _BufferNode *curr; for (curr = buf->root; curr != NULL; curr = curr->next) _BufferNode_encode(curr, lkup); } SEXP _Buffer_snap(struct _Buffer *buf) { int n_buf = 0, n_off = 0; struct _BufferNode *curr, *tmp; for (curr = buf->root; curr != NULL; curr = curr->next) ++n_buf; SEXP xstringsets = PROTECT(NEW_LIST(n_buf)); curr = buf->root; for (int i = 0; i < n_buf; ++i) { SEXP xs = _BufferNode_snap(curr, buf->offset + n_off, buf->baseclass); SET_VECTOR_ELT(xstringsets, i, xs); n_off += curr->n; tmp = curr; curr = curr->next; _BufferNode_free(tmp); } buf->curr = buf->root = NULL; UNPROTECT(1); return xstringsets; } /* Wrap _Buffer in external pointer */ void _xsnap_finalizer(SEXP xsnap) { struct _Buffer *buffer = R_ExternalPtrAddr(xsnap); if (!buffer) return; _Buffer_free(buffer); R_ClearExternalPtr(xsnap); } _XSnap _NEW_XSNAP(int n_elt, const char *baseclass) { struct _Buffer *buffer = _Buffer_new(n_elt, baseclass); SEXP xsnap = PROTECT(R_MakeExternalPtr(buffer, mkString("XSnap"), R_NilValue)); R_RegisterCFinalizerEx(xsnap, _xsnap_finalizer, TRUE); UNPROTECT(1); return xsnap; } void _APPEND_XSNAP(_XSnap snap, const char *str) { _Buffer_append(R_ExternalPtrAddr(snap), str); } SEXP _to_XStringSet(SEXP seq, SEXP start, SEXP width, const char *baseclass) { char classname[40]; /* longest string should be "DNAStringSet" */ int res = snprintf(classname, sizeof(classname), "%sSet", baseclass); if (res < 0 || ((unsigned int) res) >= sizeof(classname)) error("ShortRead internal error in _to_XStringSet(): " "'classname' buffer too small or other error"); SEXP irange = PROTECT(new_IRanges("IRanges", start, width, R_NilValue)); SEXP xstringset = new_XRawList_from_tag(classname, baseclass, seq, irange); UNPROTECT(1); return xstringset; } const char *_get_lookup(const char *baseclass) { ENCODE_FUNC encode = encoder(baseclass); SEXP nmspc = PROTECT(_get_namespace("ShortRead")); SEXP cls = PROTECT(eval(lang1(install(baseclass)), nmspc)); SEXP l = PROTECT(lang2(install("alphabet"), cls)); SEXP alf = PROTECT(eval(l, nmspc)); char *lkup = (char *) R_alloc(256, sizeof(char)); int i; if (alf == R_NilValue) { for (i = 0; i < 256; ++i) lkup[i] = (char) i; } else { for (i = 0; i < 256; ++i) lkup[i] = 0; for (i = 0; i < LENGTH(alf); ++i) { char c = CHAR(STRING_ELT(alf, i))[0]; lkup[(int) c] = encode(c); } l = PROTECT(lang2(install("tolower"), alf)); alf = PROTECT(eval(l, nmspc)); for (i = 0; i < LENGTH(alf); ++i) { char c = CHAR(STRING_ELT(alf, i))[0]; lkup[(int) c] = encode(c); } UNPROTECT(2); } UNPROTECT(4); return lkup; } SEXP _get_appender(const char *baseclass) { char *class = (char *) R_alloc(strlen(baseclass) + 4, sizeof(char)); sprintf(class, "%sSet", baseclass); SEXP l = PROTECT(lang3(install("selectMethod"), install("c"), mkString(class))); SEXP nmspc = PROTECT(_get_namespace("ShortRead")); SEXP appender = eval(l, nmspc); UNPROTECT(2); return appender; } SEXP _XSnap_to_XStringSet(_XSnap snap) { struct _Buffer *buffer = (struct _Buffer *) R_ExternalPtrAddr(snap); _Buffer_encode(buffer); SEXP xstringset = PROTECT(_Buffer_snap(buffer)); /* concatenate */ SEXP appender = PROTECT(_get_appender(buffer->baseclass)); SEXP nmspc = PROTECT(_get_namespace("ShortRead")); int n = LENGTH(xstringset); while (n > 1) { SEXP res; int i; for (i = 0; i < n; i += 2) { if (i != n - 1) { SEXP l = lang3(appender, VECTOR_ELT(xstringset, i), VECTOR_ELT(xstringset, i + 1)); res = eval(l, nmspc); SET_VECTOR_ELT(xstringset, i + 1, R_NilValue); } else { res = VECTOR_ELT(xstringset, i); } SET_VECTOR_ELT(xstringset, i, R_NilValue); SET_VECTOR_ELT(xstringset, i / 2, res); } n = i / 2; } UNPROTECT(3); return VECTOR_ELT(xstringset, 0); } void _XSNAP_ELT(SEXP x, int elt) { SEXP xstringset = PROTECT(_XSnap_to_XStringSet(VECTOR_ELT(x, elt))); SET_VECTOR_ELT(x, elt, xstringset); UNPROTECT(1); } ShortRead/tests/0000755000126300012640000000000012227066712015177 5ustar00biocbuildphs_compbioShortRead/tests/ShortRead_unit_tests.R0000644000126300012640000000012512227066712021474 0ustar00biocbuildphs_compbiorequire("ShortRead") || stop("unable to load ShortRead package") ShortRead:::.test()